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Abstract

Earthquakes are catastrophic geohazards with severe impacts on life and property. Emerg-
ing evidence suggests that linear mechanical models are inadequate for fully explaining the
origins and consequences of devastating earthquakes. There is a critical need for adequate
physics-based rock models and efficient numerical algorithms to explore how nonlinearities
affect our understanding of earthquake mechanisms, in-situ rock conditions along seismic
paths, and the resulting ground motions. In this dissertation, I focus on enhancing the
representation and simulation of nonlinear rock behaviors under dynamic loading across
multiple scales, i.e., from laboratory rock samples to regional-scale earthquakes. The ad-
vancement incorporates physics-based nonlinear rock models derived from laboratory ex-
periments, scalable software for physics-based earthquakes simulation from source to site
on supercomputers, and innovative inversion algorithms aimed at accurately determining
nonlinear parameters of both laboratory and in-situ rocks.

The first part of the dissertation introduces two continuum damage models that aligns with
observations of nonlinear behaviors in rock samples from two commonly utilized laboratory
experiment setups. In the second part, I propose an algorithm based on the discontinuous
Galerkin method to model wave propagation through nonlinear rock rheologies in 3D. This
algorithm is designed for regional-scale simulations that involve complex geometries. I ver-
ify the algorithm against three sets of analytical solutions and confirm that the algorithm
scales effectively on supercomputers. I demonstrate the applicability of the framework to
simulating co-seismic wave speed changes and ground motions during the 2015 Mw 7.8
Ghorka earthquake in Kathmandu valley. In the third part, the numerical solver is ex-
tended to incorporate 3D dynamic rupture modeling. This extension allows us to illustrate
the off-fault co-seismic damage patterns and the high-frequency seismic radiation. In ad-
dition, I demonstrate that in the tensile step-over configuration, localized damage zones
extending from one fault can induce heterogeneous stress perturbations on a neighboring
fault, thereby triggering nucleation. This capability enables detailed simulations of dynamic
rupture processes, including off-fault co-seismic moduli reduction at regional scales.

Based on the earthquake simulation software developed in this dissertation, I propose two
Markov chain Monte Carlo (MCMC) sampling methods to perform Bayesian inversion of
nonlinear material parameters. At the laboratory scale, the forward simulations are compu-
tationally inexpensive. I demonstrate, in the first part of the dissertation, that the Adaptive
Metropolis MCMC algorithm can be utilized to illustrate the precision with which material
parameters can be constrained from the existing experiment setups. At the regional scale,
each forward simulation takes thousands of core hours on modern compute clusters. To
accelerate the inversion, I propose, in the fourth part of this work, a more effective sam-
pling algorithm, i.e., the Multi-level Delayed Acceptance (MLDA) MCMC algorithm. In
the fifth part of this work, I then show how the MLDA algorithm can be optimized for
nonlinear inversion of parameters in dynamic rupture models, specifically for the 2019 Mw

7.1 Ridgecrest earthquake, leveraging geological, seismic, and geodetic observations.
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Chapter 1

Introduction

Earthquakes are profoundly destructive natural events that can cause significant loss of
life, property damage, and disruption to society (Ben-Zion et al., 2022). To mitigate these
adverse effects, it is crucial to forecast when an earthquake will occur and to understand the
expected ground motions associated with it. Furthermore, knowledge of expected ground
motions helps to design buildings and infrastructure that can withstand seismic forces,
reducing the potential for catastrophic damage and improving the resilience of communities
against such unpredictable natural disasters. Accurate hazard quantification enables timely
evacuations and the implementation of safety measures. In this work, we focus on realistic
physics-based modeling of earthquakes, with the aim of providing new tools to better assess
the effects of earthquakes on Earth.

Earthquakes feature abrupt failure of rocks that propagate through weak zones in 3D sub-
surface. They are typically hosted by the Earth’s lithosphere, consisting of the crust and
the upper layer of the mantle (White, 1988). Many evidence points to the fact that the
lithosphere is divided into tectonic plates. The basic hypothesis for the tectonic plates is
given by Morgan (1968). Driven by the convective motion of the lower mantle, the plates
move against each other, loading or unloading the rocks in the lithosphere (Iaffaldano and
Bunge, 2009).

The relative motion at plate boundaries, convergent, divergent, or parallel, leads to various
styles of faulting: thrust, normal, strike-slip, or mixed faulting (Lowrie and Fichtner, 2020).
The fault zones are mechanically weak and host the majority of significant earthquakes on
Earth. Due to their chemical composition, pressure, and temperature conditions, the rocks
in the lithosphere are mainly brittle (Zoback et al., 2007; Robbiano et al., 2024). Once
the brittle rocks reach their failure condition under tectonic loading, the rapid dynamic
motion in the lithosphere is initiated mostly from 0 to 70 km at depths (Maggi et al.,
2000; Scholz, 2019) and generates seismic (mechanical) waves. The wave travels through
different geological structures (crust, mantle, or core, depending on the distance between the
epicenter and the location where the motion is recorded). Before reaching our infrastructure,
the dynamic motion is further modulated by the unconsolidated materials in sedimentary
basins and/or by the surface topography.

Over decades of investigation, physical models have been proposed to describe the onset
of earthquakes on natural faults (source) and how seismic waves travel through different
geological structures, such as crust, mantle, or core, depending on the distance between
the epicenter and the location where the motion is recorded (path) and reach the ground
surface with sedimentary basins or topography (site). A successful model that describes the
physical processes during the onset and development of an earthquake in a system of faults
is the dynamic rupture (DR) model. The key components of a DR model are summarized
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in Fig. 1.1a. They consist of curved fault structures that represent the geological plate
boundaries, host rocks next to the fault surfaces whose mechanical properties vary in the
3D subsurface, and a ground surface with zero load on its top.

In DR models, an earthquake initiates from the fault structures. The basic assumption
is that the two sides of the fault contact each other through a frictional interaction (e.g.,
Scholz, 2019). The relative movement of the tectonic plates drives a temporal variation in
the loading conditions on the fault. When loads exceed the local frictional strength within
a certain region of the fault (Rubin and Ampuero, 2005), a dynamic relative motion of the
plates (at a speed much higher than that of the tectonic plate motion, typically a few cen-
timeters per year) can begin from that region. The region with a dynamic relative motion
can expand until the expansion front reaches certain barriers, such as areas with high fric-
tional strength (Molina-Ormazabal et al., 2023), geometric discontinuities of fault surfaces
(King, 1986; Okuwaki and Yagi, 2018), or the brittle-ductile transition zone (Molnar, 2020).

Such DR models account for different factors that affect the sources of earthquakes, in-
cluding the roughness (Power et al., 1987; Morad et al., 2022), the stress state (Ripperger
et al., 2007; Brodsky et al., 2020), the temperature (Bizzarri and Cocco, 2006), and the
fluid pressure conditions (Vyas et al., 2023) on the fault. Under the above control factors,
the DR models describe the rupturing process on the fault by quantifying the stress drop
(Gallovič and Valentová, 2020), rupture speed (Gabriel et al., 2013), and the slip history on
the fault. The model also resolves vastly different amounts of energy release (earthquake
magnitude), source frequency contents (Taufiqurrahman et al., 2022), radiation pattern
(Palgunadi et al., 2024b; Mia, 2024), and directivity (Yen et al., 2025).

After the dynamic relative motion of the tectonic plates is triggered, the radiated seismic
energy from the source can be transferred to the host rocks and propagate inside the Earth.
A first-order approximation of such energy radiation is the linear visco-elastic wave equation
(Brennan and Smylie, 1981). The equation can account for geometrical spreading (Chapman
and Godbee, 2012), viscous attenuation (Chapman, 2004), heterogeneity of the geological
structures (Kumagai et al., 2011), anisotropy (Igel et al., 1995; Wolf et al., 2020a), etc. After
reaching the unconsolidated part of the lithosphere (shallow subsurface above ∼1 km), the
equation can also capture the amplification of the strain and velocity field in soft materials
(van Ginkel et al., 2022). Local structures, for example, sedimentary basins (Semblat et al.,
2005) and surface topography (Poursartip et al., 2017), can further modulate the frequency
content of the surface ground motion.

1.1 Observed nonlinearity in rocks and soils

Notwithstanding the success of linear visco-elastic model in addressing many aspects of
earthquake-induced dynamic motion of the Earth, there is increasing evidence that a linear
rock model is not sufficient to quantify the ground motions in earthquakes for hazard
assessment. Figs. 1.1b to 1.1g summarize the evidence of nonlinear response of rocks
and soils to dynamic mechanical perturbations from source, path to site, including both
laboratory experiments and earthquake measurements.
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Figure 1.1: Summary of the key components in a dynamic rupture model (a) and the observed
nonlinear responses of rocks and soils in laboratory experiments (b-d) and in earthquake observa-
tions (e-g). The dynamic rupture model setup in (a) is adapted from Taufiqurrahman et al. (2022).
Evidence of rock nonlinearity close to the fault surface is shown in (d) for laboratory adapted from
Marty et al. (2019b) and in (g) for earthquake adapted from Taufiqurrahman et al. (2022). The
sawcut rock sample in (d) shows spatial distribution of the normalized coherence function (NCF)
of the back-projected energy between 400 and 800 kHz on the rupture surface 4-6 µs after the
nucleation of the rupture from the red star. The dashed black curve marks the location of the
rupture front. The frequency amplitude spectra for the acceleration time series recorded during
the 2016 Amatrice earthquake show a comparison among the observation (the black curve), the
reference model with a planar fault surface (the gray curve), and the model with a rough fault
surface (the red curve). Evidence of rock nonlinearity in the host rocks is shown in (c) for labora-
tory adapted from Manogharan et al. (2022) and in (f) for earthquake adapted from Gassenmeier
et al. (2016). The top panel in (c) shows the cyclic loading in stress, while the bottom panel shows
the induced changes in P wave speed. We show the wave speed changes dc/c from ambient noise
cross-correlation before and after the Tocopilla earthquake in Chile on 2007 November 14th. The
color code shows the cross-correlation coeffcient for a given change in dc/c. The positive dc/c
means decrease in wave speed here. Evidence of nonlinearity in soft sediments is shown in (b) for
laboratory adapted from Vucetic and Mortezaie (2015) and in (e) for earthquake adapted from
Bonilla et al. (2011). The hysteresis loops of the stress-strain relationship for a soil sample under
cyclic loading is shown in (b). It also shows the gradual rotation of the hysteresis loop closer to
x-axis during the loading. The panel (e) shows the frequency spectrogram of the ground motion
recorded above a soft sediments in Japan after the 2011 Tohoku earthquake.The blue to purple
regions mark how the frequency components with high energy transit from ∼2 Hz to ∼0.3 Hz.
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Within the fault zone, the non-linearities of the rock are evidenced by the complex fracture
networks in field observations (e.g. Sibson, 1977; Chester et al., 1993; Mitchell and Faulkner,
2009). The fractures indicate that the materials surrounding the fault cores are subjected
to co-seismic damage. Marty et al. (2019a) performed laboratory experiments on dynamic
ruptures with sawcut rock samples and found enhanced high-frequency radiation behind
the rupture front, as shown in the red region in Fig. 1.1d. From 2D dynamic rupture
simulations, one hypothesis that explains the high-frequency radiation is the co-seismic
triggering of off-fault fractures (Thomas and Bhat, 2018; Okubo et al., 2019; Idini and
Ampuero, 2020). As shown in Fig. 1.1g, the additional high-frequency energy from off-fault
damage may potentially fill the gap between the numerical modeling and observations which
cannot be explained with the fault roughness and surface topography (Taufiqurrahman
et al., 2022). In addition to high-frequency radiation, co-seismically developed off-fault
damage zones change how much of the released energy from the unlocked rebound of the
tectonic plate is transferred into seismic radiation (kinetic energy, Kanamori and Rivera,
2006; Okubo et al., 2019). The off-fault damage also results in a more heterogeneous stress
distribution around the fault and influences the earthquake interactions in the fault system
(Sammis et al., 2010; Xu et al., 2015; Mia et al., 2024).

Outside the fault zone, over the past few decades, nonlinear mechanical responses of rocks
to seismic waves have also been widely observed at distances from a few kilometers to more
than 100 kilometers away from the activated faults. Researchers managed to monitor tem-
poral variations of seismic wave speeds in rocks during and after earthquakes with various
monitoring techniques, such as repeating earthquakes (Poupinet et al., 1984; Bokelmann
and Harjes, 2000; Niu et al., 2003; Schaff and Beroza, 2004), controlled sources (Yamaoka
et al., 2001), and cross- or auto-correlation of ambient noises or aftershock recordings among
seismic stations (Sens-Schönfelder and Wegler, 2006; Brenguier et al., 2008b; Bonilla and
Ben-Zion, 2021; Qin et al., 2020). As shown in Fig. 1.1f, the typical behaviors of rocks con-
sist of a rapid co-seismic reduction of seismic wave speeds during the earthquake followed
by a long-term recovery process. Ranging from 0.01% to ≥10%, the measured amplitudes
of the co-seismic wave speed reductions depend on rock types, distances from the source,
depths of interest, temporal resolution of the monitoring techniques, etc.

Similarly to the co-seismic reduction of wave speeds in the field, such reductions are also
measured on laboratory rock samples. The well-controlled environment and accurate lab-
oratory measurement techniques offer a chance to connect changes in seismic wave speeds
with the rheological and physical conditions of rocks. Renaud et al. (2012) make it pos-
sible to quantitatively investigate how rock moduli change during dynamic perturbations
using Dynamic Acousto-elastic Testing (DAET) experiments. As shown in Fig. 1.1c, in
response to dynamic cyclic stress perturbations, the wave speed evolves through a process
similar to that during earthquakes: (1) As the loading starts, the wave speed of the sample
experiences an overall reduction of the wave speed, which gradually stabilizes and reaches
a new quasi-steady state (inside the blue rectangle); (2) After removing the cyclic load-
ing, the wave speed cr recovers over an extended period of time, illustrated by the solid red
curve. We refer to such responses of rock samples to dynamic perturbations as “non-classical
nonlinearity”. Since then, researchers have investigated the dynamic nonlinear response of
different types of sandstones and granites as well (Rivière et al., 2015, 2016; Manogharan
et al., 2021). It has been found that the co-seismic wave speed changes under dynamic per-
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turbation are sensitive to rheology, ambient stress, and thermal and hydraulic conditions
(Manogharan et al., 2022; Lu and Ben-Zion, 2022). This is potentially a new observable that
we can extract from seismic waves to probe subsurface rheology and physical conditions.

Close to the ground surface, nonlinear site effects in earthquakes have also been observed
in numerous studies, particularly in regions where soft sediments amplify the strain field.
These nonlinear behaviors are typically marked by a reduction in the seismic wave speed
and an increase in damping as the ground shake intensifies (Darendeli, 2001). One key
observation of site nonlinearity is the strain-dependent behavior of soils, where larger strains
and cyclic loading lead to a decrease in the shear modulus and an increase in damping,
as shown in Fig. 1.1b adapted from Vucetic and Mortezaie (2015). They affect both
the amplitude and the frequency content of ground motions. This phenomenon was first
documented in the aftermath of strong earthquakes like the 1994 Northridge earthquake,
where nonlinear site responses were observed in soft sedimentary basins (Beresnev and Wen,
1998). Another important finding came from the study of the 1985 Michoacán earthquake
in Mexico City, where significant amplification of ground motions was observed due to local
site effects, with clear signs of nonlinear soil response (Seed et al., 1989).

Recent advances in instrumentation and data collection have further clarified these effects.
For example, recordings from borehole arrays, such as those in Japan (Okada et al., 2004;
Oth et al., 2011) and California (Bonilla et al., 2002), have provided direct evidence of
nonlinear soil behavior during strong earthquakes. Researchers have observed reductions
in shear wave velocity during strong shaking, followed by partial recovery after the seismic
event, a key signature of soil nonlinearity (Wang et al., 2021). A related effect on ground
motion is the enhancement of low-frequency components as shown in Fig. 1.1e during the
2011 Tohoku Earthquake (Bonilla et al., 2011). These findings highlight the importance of
incorporating nonlinear site effects into seismic hazard assessments, as they can significantly
alter the expected ground motion, especially in urban areas built on soft soils.

The evidence presented above confirms that the mechanical responses of rocks are inher-
ently nonlinear, a fact with significant implications for understanding earthquake sources,
the radiated seismic wave field, and their impact on modern civilization. For instance,
co-seismic off-fault damage can generate additional high-frequency ground motions, which,
when recorded above soft sediments, may be modulated to lower frequencies. This alters
the frequency-dependent behavior of seismic ground motions, a key factor in designing
earthquake-resistant structures (Yang et al., 2024). In addition, source nonlinearity in-
fluences fault interactions within complex fault systems, affecting earthquake magnitudes
and the interplay between mainshocks and foreshocks (Hauksson et al., 1993; Ulrich et al.,
2019; Taufiqurrahman et al., 2023; Gabriel et al., 2023). Understanding these dynamics is
essential for earthquake preparedness and risk mitigation.

1.2 Nonlinear physical models for rocks and soils

To quantify the nonlinear responses of rocks and soils discussed in Section 1.1, numerous
nonlinear mechanical models have been proposed. However, providing a comprehensive
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review of all existing models would be beyond the scope of this section. Instead, this
section focuses on summarizing representative models that are particularly relevant to the
earthquake observations presented in Section 1.1. These models contribute to a more precise
quantification of earthquake sources and the resulting ground motions, thereby enhancing
seismic hazard assessment.

Models used to quantify co-seismically generated off-fault damage can be broadly cate-
gorized into two types: (1) discrete models, which incorporate geometrically predefined
discrete structures, and (2) continuum models, which employ a continuous geometry rep-
resentation. Discrete models include the finite discrete element method (FDEM, Munjiza,
1992, 2004; Gao et al., 2018; Okubo et al., 2019; McBeck et al., 2022) and the discontin-
uous Galerkin finite element method (DG-FEM, Palgunadi et al., 2024a; Gabriel et al.,
2024; Palgunadi et al., 2024b). These models offer a conceptually intuitive way to represent
material deficiencies within or near fault cores (Mitchell and Faulkner, 2009). However,
they present challenges, such as complex mesh generation across multiple scales (Palgunadi
et al., 2024a) and increased computational costs due to geometrical discontinuities (Gao
et al., 2018). Additionally, it is necessary to assess the extent to which the modeling results
are influenced by predefined deficiency structures.

In contrast, continuum models typically do not require a detailed geometric representation
of small-scale material deficiencies, making them more flexible in handling variations in
element size. Instead of explicitly defining geometrical structures, these models represent
material deficiencies through one or more state variables (Kachanov, 1986), which capture
the influence of defects on the material’s mechanical response. These state variables evolve
according to thermodynamic principles in response to external loading. Representative
continuum models include the phase-field model (Fei et al., 2023; Hayek et al., 2023),
the Godunov–Peshkov–Romenski model (Resnyansky et al., 2003; Romenski et al., 2007;
Gabriel et al., 2021), the fracture-based damage model (Thomas and Bhat, 2018), and the
continuum damage breakage model (Lyakhovsky and Ben-Zion, 2014; Lyakhovsky et al.,
2016). Aside from these emerging models for the earthquake source nonlinearity, a more
widely applied simple model for fault zone rocks is the Drucker-Prager plasticity (Andrews,
2005; Wollherr et al., 2018). While this model accounts for off-fault energy dissipation, it
simplifies the damage process by neglecting the potential high-frequency radiation (Thomas
and Bhat, 2018; Okubo et al., 2020; Lyakhovsky et al., 2023) and the perturbations in the
fault-adjacent stress field, which will be further examined in Chapter 4.

As summarized in Section 1.1 and illustrated in Figures 1.1c and 1.1f, rocks exhibit non-
classical nonlinearity. This is distinct from the classical rock nonlinearity, which ignores the
temporal evolution of rock moduli under dynamic perturbations. Several existing models
have proposed hypotheses for this phenomenon based on micro-physical processes (Del-
santo and Scalerandi, 2003; Aleshin and Van Den Abeele, 2007; Lebedev and Ostrovsky,
2014). However, these models involve a large number of variables, making experimental val-
idation extremely challenging and their application to earthquakes even more intractable.
Addressing these challenges will be a key focus in Chapter 2.

When modeling the mechanical response of soils in soft sediments during earthquakes, it
is essential to account for energy dissipation resulting from the hysteresis curves shown in
Figure 1.1b. The mechanical responses also include a gradual degradation of moduli under
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cyclic loading (Vucetic and Mortezaie, 2015), which is similar to the previously discussed
non-classical nonlinearity. In existing models that have been applied for regional-scale
earthquake modeling, the IWAN model (Iwan, 1967; Roten et al., 2023) in 3D can quite
successfully resolve the hysteresis curve.

However, the mechanical behaviors of soils are more complicated than hysteresis curves and
can be quite different between sands and clays. For example, loosely packed sandy or silty
soils lose their strength and stiffness due to increased pore water pressure, usually under
cyclic loading. This is also known as the liquefaction effect (Terzaghi et al., 1996; Castro,
1975). With the liquefaction front model of Iai et al. (1990), Oral et al. (2019) investigate the
effect of liquefaction on ground motion on a small scale inside 2D sedimentary basins. Many
more advanced models have been proposed for different types of soils and have been applied
to small-scale simulations to study site effects. I refer to Powrie (2018) for a systematic
overview of the more advanced models.

1.3 Methods for numerical simulation of earthquakes

To apply these advanced nonlinear physical models in actual earthquakes, we need the
physics-based simulation. This essentially requires solving systems of partial differential
equations (PDEs). Several factors make the solutions to the PDEs in the field more com-
plicated than those in laboratory experiments: (1) While the sizes of the samples in the
laboratory are usually a few tens of meters, earthquakes with magnitudes greater than
Mw 7 can impact regions beyond 100 km. (2) Unlike the controlled, simple geometries in
laboratory settings, the field exhibits greater geometric complexity. (3) Natural materials
in the field are inherently more heterogeneous than those used in laboratory experiments.
These complexities necessitate numerical solutions to the PDEs. Additionally, the large
spatial scales involved in field simulations pose significant challenges to both computational
efficiency and the implementation of numerical algorithms.

Earthquake modeling includes simulation of the rupture dynamics at the source and of radi-
ated seismic waves until they reach the ground surface. Dynamic rupture simulations have
been a key area of study to better understand the earthquake rupture process, with pioneer-
ing work by Rice (1980) who integrated the principles of fracture mechanics to describe the
rupture behavior along faults. His contributions laid the groundwork for understanding the
physics of earthquake sources as akin to crack propagation in solid mechanics. Analytical
models, often based on simple geometries and homogeneous material properties, offer valu-
able first-order approximations of the rupture process (Madariaga, 1976; Andrews, 1976;
Das and Aki, 1977). These models help to capture the general principles of stress transfer,
energy release, and rupture velocity. However, natural fault systems exhibit highly complex
behaviors that involve irregular geometries, heterogeneous material properties, and variable
stress conditions that cannot be fully captured by analytical approaches.

As a result, numerical simulations have become indispensable for studying the intricacies
of earthquake ruptures (Oglesby et al., 1998). These simulations allow the incorporation of
more realistic fault geometries, heterogeneous material distributions, and complex bound-
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ary conditions that are observed in nature. To model dynamic ruptures with higher fidelity,
researchers have developed a variety of numerical algorithms that account for the frictional
behavior along the fault interface, which represents the core mechanism driving the rupture
process. These frictional interfaces are often modeled to capture rate- and state-dependent
friction laws that control the evolution of slip during an earthquake (Dieterich, 1979; La-
pusta et al., 2000).

A range of numerical methods have been employed to simulate dynamic ruptures, each with
its strengths and limitations. Among the most widely used are boundary integral methods,
which are effective in modeling rupture in infinite or semi-infinite domains, reducing the
dimensionality of the problem (Geubelle and Rice, 1995; Lapusta and Liu, 2009). The
finite difference method (FDM) has also been applied to simulate dynamic ruptures with
the summation-by-part operator (Day et al., 2005; Kozdon et al., 2013), offering simplicity
in implementation and the ability to model wave propagation efficiently in heterogeneous
media. Other techniques include the split-node finite element method (FEM, Barall, 2009),
which allows discontinuous displacements across the fault plane compared to the more
classical Galerkin FEM (Thomée, 2007). For the same purpose of representing the rupture
boundary, the discontinuous Galerkin (DG) method is another approach that has been
particularly useful. It can also handle complex fault geometries with high-order accuracy
(de la Puente et al., 2009). Due to its element-local operators, the DG method is also highly
scalable and can be efficiently parallelized on supercomputers for large-scale simulations
(Uphoff et al., 2017; Krenz et al., 2021).

These numerical approaches are crucial for capturing the second-order effects that are often
neglected in analytical models, such as the influence of off-fault yielding (Wollherr et al.,
2018), fault roughness (Shi and Day, 2013; Taufiqurrahman et al., 2022), and near-field
ground motion. As computational power continues to increase, these numerical models are
also evolving to account for multi-physics problems, such as fluid flow in fault zones (Wolf
et al., 2022; Mosconi et al., 2024; Wolf et al., 2024) and thermal processes that occur during
slip (Bizzarri and Cocco, 2006; Herrera et al., 2024).

In the numerical simulation of the radiated seismic wave outside fault zones, many of the
numerical methods overlap with those used for dynamic rupture simulations, including
FDM, FEM and DG methods. FDM is a straightforward method that approximates spa-
tial and temporal derivatives using finite difference discretizations, which makes it efficient
and easy to implement on structured grids. However, it struggles with complex geome-
tries and sharp material discontinuities, which can introduce numerical artifacts (Virieux,
1986; Graves, 1996). One of the most advanced FDM codes for 3D seismic simulations
is AWP-ODC (Anelastic Wave Propagation - Olsen, Day, Cui), developed by Olsen et al.
(2008) and Roten et al. (2023). FEM solves the wave equation with higher-order accuracy
employing more sophisticated basis functions. It is highly versatile, capable of handling
complex geometries and heterogeneous media, but it comes with a higher computational
cost (Komatitsch and Tromp, 1999). A specialized variant of FEM is the Spectral Ele-
ment Method (SEM), which combines the geometrical flexibility of FEM with orthogonal
basis functions for efficient matrix inversion. SEM is widely used for large-scale 3D seismic
simulations because it offers a good balance between accuracy and computational cost (Ko-
matitsch and Vilotte, 1998; Carrington et al., 2008). Lastly, DG allows for discontinuities
between elements and ensures the numerical stability at the element interfaces with numer-
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ical fluxes (Dumbser and Käser, 2006). It has also been mathematically proven to be stable
for handling nonlinear wave equations even with strong nonlinearity (Cockburn et al., 2012)
with high-order accuracy (Dumbser et al., 2008; Reinarz et al., 2020). I take advantage of
this very useful feature of DG and extend it for modeling regional-scale 3D nonlinear wave
propagation in Chapter 3 and for modeling 3D dynamic rupture with co-seismic off-fault
damage in Chapter 4.

1.4 Inversion of nonlinear parameters in rupture dynam-
ics

Recent advances in numerical modeling methods have significantly improved our under-
standing of the parameters governing nonlinear on-fault and off-fault physical processes
during earthquakes. These advances enable a more accurate interpretation of earthquake
recordings, which are themselves enriched by the continuous development of measurement
techniques. Modern innovations such as large node arrays (Mellors et al., 2018; Arrowsmith
et al., 2022), ocean bottom stations (Stähler et al., 2016; Marra et al., 2018), and distributed
acoustic sensing (DAS, Parker et al., 2014; Zhan, 2020) have dramatically improved the spa-
tial and temporal resolution of seismic data. In addition, specialized laboratories, such as
the Bedretto Underground Laboratory (Ma et al., 2022; Mosconi et al., 2024), provide
unique opportunities to observe seismic processes in controlled environments, offering valu-
able insight into fault mechanics.

The availability of richer data sets has already facilitated substantial progress in the in-
version of heterogeneous velocity structures of the Earth. Full waveform inversion (FWI,
Virieux and Operto, 2009; Fichtner et al., 2013) methods, for instance, have evolved to
integrate high-resolution data, enabling a more accurate construction of regional velocity
models. Several studies have highlighted the potential of FWI to resolve complex subsurface
structures by incorporating diverse datasets, such as DAS (Egorov et al., 2018; Fichtner
et al., 2025) and ocean-bottom recordings (Plessix and Perkins, 2010; Operto et al., 2015),
into their analysis.

Beyond velocity models, richer datasets also offer the potential to constrain nonlinear pa-
rameters associated with dynamic rupture processes at the earthquake sources. Dynamic
rupture inversion techniques aim to retrieve detailed information about fault slip evolution,
stress changes, and other physical parameters from earthquake observations. One of the first
attempts on dynamic rupture inversion dates back to Mikumo et al. (1987), which simplify
the rupturing mechanism with a locking fracture criterion. Since then, Peyrat and Olsen
(2004) and Twardzik et al. (2014) employ the fully spontaneous dynamic rupture model
and the neighborhood inversion algorithm (Sambridge, 1999), a nonlinear derivative-free
technique to estimate the best-fit model without sufficient information about uncertainties
in the inversion. For the uncertainty analysis, Gallovič et al. (2019) establish and apply a
Bayesian dynamic source inversion framework to regional-scale earthquakes (Gallovič et al.,
2019; Gallovič and Valentová, 2020). Premus et al. (2020) accelerate the Bayesian inversion
for dynamic rupture inversion by more efficient numerical modeling of the dynamic ruptur-
ing process. Their inversion scheme increase the resolution of the inversion (Premus et al.,
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2022; Schliwa et al., 2024a). However, the acceleration sacrifices the complexities in the
geometric complexity of the fault structure, as well as the off-fault nonlinear mechanical
processes (Fig. 1.1d and g), which is the core of this dissertation.

Without compromising the accuracy of forward simulations, the parametric derivative in-
formation provided by the adjoint-based solver can significantly reduce the number of dy-
namic rupture simulations required for uncertainty quantification (Gebraad et al., 2020;
Zhang et al., 2023). Adjoint-based inversion serves as a cornerstone for achieving high-
resolution FWI of the Earth’s velocity structure. However, applying the adjoint method to
the governing equations of dynamic rupture simulations remains a challenge (Stiernström
et al., 2024). These limitations highlight a fundamental challenge in inverting nonlinear
parameters in dynamic rupture simulations: minimizing the number of computationally
expensive yet accurate simulations while ensuring precise uncertainty quantification of the
nonlinear parameters. This challenge motivates my work in Chapters 5 and 6.

1.5 Implementation of nonlinear models in SeisSol

The foundation of this dissertation lies in the implementation of advanced nonlinear models
(Section 1.2) within a numerical solver that fully leverages the computational power of mod-
ern supercomputing infrastructure. Accurate and efficient numerical solvers are essential
both for analyzing the effects of nonlinear rock models on earthquake source mechanisms
and ground motions (Section 1.1) and for inverting nonlinear model parameters using an
expanding modern dataset (Section 1.4). As highlighted in Section 1.3, the DG algorithm
emerges as a particularly robust candidate, offering the flexibility and computational effi-
ciency required to integrate a wide range of nonlinear rock and soil models effectively.

I build on the highly efficient, parallelized numerical solver SeisSol for dynamic rupture and
wave propagation simulations (de la Puente et al., 2009; Uphoff et al., 2024). SeisSol applies
the Arbitrary-accuracy DERivative (ADER) discretization in time (Titarev and Toro, 2002;
Dumbser et al., 2008; Gassner et al., 2011), and the DG discretization in space. The ADER
method leverages a one-step prediction-correction and explicit time-stepping scheme. This
maintains a high-order convergence rate as the element size decreases (Käser et al., 2008).
In earthquake simulations, a convergence rate of order six is commonly used. SeisSol also
incorporates a hybrid MPI-OpenMP parallelization strategy, where MPI manages inter-
node communication, while OpenMP handles multi-threaded parallelization within each
node (Uphoff et al., 2017). Compared to the Runge-Kutta time-stepping (Butcher, 2007),
the one-step ADER scheme reduces communication operations between neighboring MPI
ranks, enhancing its scalability on a large number of compute nodes.

With more than 15 years of development, SeisSol has already incorporated efficient imple-
mentation of a wide range of linear physical models, including linear elasticity and visco-
elasticity (Pelties et al., 2012; Uphoff et al., 2017), acousto-elasticity (Krenz et al., 2021),
anisotropic elasticity (de la Puente et al., 2007; Wolf et al., 2020a), and poroelasticity (de
la Puente et al., 2008; Wolf et al., 2022, 2024). To account for the degradation of off-
fault materials under high stress levels during earthquakes, an elasto-plastic model with the
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Drucker Prager yielding criterion has been implemented by Wollherr et al. (2018). This is
an inelastic nonlinear model that assumes no strain-hardening effect after the stress state
touches the yielding surface. However, the return mapping algorithm (Andrews, 2005) al-
lows one to maintain the linear wave propagation solver while accumulating plastic strain.
The algorithm also restricts the increase in stress levels within the defined yielding surface.

However, the existing elasto-plastic model is not sufficient to explain most of the nonlinear
responses of rocks and soils summarized in Fig. 1.1. Additionally, most models in Sec-
tion 1.2 require explicit nonlinear stress-strain functions. These two factors motivate the
requirement to completely move away from the linear hyperbolic form of the linear wave
equations:

∂uσ
p

∂t
+ Ad

pq

∂uε
q

∂xd

= Epqu
ε
q, (1.1)

where uσ = uσ
p = (σxx, σyy, σzz, σxy, σyz, σzx, vx, vy, vz)

T is a vector of the conservative vari-
ables. σxx, σyy, σzz, σxy, σyz, and σzx are six components of the stress tenser σ = σij; vx,
vy and vz are the three components of the particle velocity vector v. Ad

pq are the coefficient
matrices where the index d runs from 1 to 3 for waves propagating in three-dimensional
space. They consist of the constant material parameters in the linear wave equations, con-
taining the information of wave speed at which the conservative variable up gets transferred
through a unit area in the direction xd (LeVeque, 2002). The source Epqu

σ
q is a linear func-

tion of uσ, with Epq being a constant matrix that contains the linear material properties. I
refer to Uphoff (2020) for the extended definitions of Ad

pq and Epq.

Instead, we need to express the wave equations in the following nonlinear hyperbolic form:

∂uε
p

∂t
+

∂F d
p (v, ε,α)

∂xd

= sp(v, ε,α), (1.2)

where uε = uε
p = (εxx, εyy, εzz, εxy, εyz, εzx, vx, vy, vz,α)T is a vector of the conservative

variables. εxx, εyy, εzz, εxy, εyz, and εzx are six components of the strain tenser ε = εij.
α is a vector that collects all the physical state variables in the nonlinear stress-strain
relationships, which can vary between different models. The flux term F d

p represents the
rates at which the conservative variable qp gets transferred through a unit area in the
direction xd (LeVeque, 2002). The source vector s = sp is a vector that consists of nonlinear
functions of v, ε and α. I refer to Chapter 3 and 4 for the definitions of F d

p and sp for four
different nonlinear models that show the generic applicability of the nonlinear DG algorithm
and its implementation in SeisSol that I develop in this dissertation.

Here, I summarize the key differences in the implementation of nonlinear rock models in
SeisSol, compared to the existing linear models:

• SeisSol originally employs the stress-velocity formulations in Eq. (1.1) for the linear
seismic wave equations (Uphoff et al., 2024). This works equivalently well as the
strain-velocity scheme (Wilcox et al., 2010) for the linear case. However, the majority
of the nonlinear models mentioned in Section 1.2 can only express the stress tensor
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σ as the explicit function of the strain tensor ε. Therefore, it is more convenient in
my implementation in this work to re-formulate the wave equations with the strain-
velocity scheme, in addition to the change in expression of the flux term from linear
to nonlinear.

• The second difference is the way to estimate the discretization coefficient in space and
time during the prediction step. Instead of the linear Cauchy-Kovalevskaya approach
(Kovalevskaja, 1874). I employ a linearization procedure in the nonlinear models to
maintain the HPC-optimized data structure of SeisSol (Uphoff et al., 2024). I release
this restriction in the subsequent correction step described later. This assumption
preserves the convergence of the algorithm for nonlinear hyperbolic PDEs but can
have an effect on the convergence rate with strong nonlinearity, as we will discuss in
Chapter 3.

• The third major difference lies in the data to be communicated between neighboring
MPI ranks for the correction step of the DG algorithm. As explained by Uphoff
(2020), as long as the entire mesh uses a globally uniform time step size, the only
information that needs to be passed on to elements in the neighboring ranks is the
integrated conservative variable Ip =

∫ tn+1

tn
uσ
pdt within the current time step [tn, tn+1].

However, for the nonlinear case, the complete set of coefficients for space and time
discretization needs to communicated, whose data size can be 1 to 7 times larger
depending on the polynomial degrees of the basis functions in DG.

1.6 Scope and outline of this work

This work contains two major objectives: (1) to constrain nonlinear rock models from
laboratory and earthquake data and (2) to investigate the impact of nonlinear rock models
on the earthquake source mechanism and the ground motions. The advances in these
two aspects are achieved based on my adaptation and implementation of the nonlinear
DG algorithm in SeisSol with its justified scalability on thousands of compute nodes on
supercomputers and its adequate flexibility with the different nonlinear models that can be
solved.

Chapter 2 slightly modifies two nonlinear rock models in accordance with the two types of
laboratory experiments on quantifying the co-seismic wave speed changes under dynamic
stress perturbations. I implement both models in ExaHyPE (Reinarz et al., 2020) for 2D
wave propagation and integrate it with a classical Bayesian inversion algorithm to quantify
how well the nonlinear model parameters can be constrained from the data in the laboratory
experiments. This study justifies the validity of these two physical models in explaining the
observed co-seismic wave speed changes.

Chapter 3 extends these two justified nonlinear models to 3D regional-scale modeling of
seismic wave propagation during earthquakes. I introduce a nonlinear DG algorithm that is
flexible for solving different nonlinear models, demonstrated with three examples, including
the two in Chapter 2. With these models, I verify the numerical solutions against existing
analytical solutions and apply one of the constrained models in Chapter 2 to the 2015
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Mw 7.8 Ghorka earthquake in the Kathmandu valley. The unique merit of this work is
its capability of generating the spatial distribution of the co-seismic wave speed changes
after earthquakes using physics-based simulations. We also compare the modeled ground
motions within the sedimentary Kathmandu basin of this nonlinear model with those of
linear elastic, visco-elastic, and elasto-plastic models.

Chapter 4 further demonstrates the adaptability of the proposed DG algorithm in this work
by implementing an additional nonlinear rock model that is well suited for investigating
earthquake source mechanisms with co-seismic off-fault moduli reduction. In this work, I
couple the wave propagation algorithm with the frictional boundaries at fault surfaces for
3D dynamic rupture simulations. This work enables the investigation of the impacts of
co-seismic off-fault moduli reduction on the earthquake energy budgets, source frequency
components of the seismic radiation, and interactions among different fault segments.

Chapters 5 and 6 focus on how to constrain the nonlinear model parameters in dynamic
rupture simulations from data in earthquakes. Chapter 5 integrates an efficient and scalable
Bayesian inversion algorithm with SeisSol for parallel execution of ensembles of dynamic
rupture models for inversion using supercomputer clusters. This work shows how the new
inversion algorithm reduces the number of dynamic rupture simulations required for the
inversion. The other aspect of this work is to show how the additional levels of parallelization
from the inversion algorithm contribute to the efficient execution of SeisSol simulations on
the full machine of supercomputers.

Finally, Chapter 6 shows the application of the above integrated configurations on super-
computers to the inversion of nonlinear on-fault and off-fault parameters from multidis-
ciplinary ground motion recordings during the 2019 Mw 7.1 Ridgecrest earthquake. The
dynamic rupture model in this inversion consists of surface topography of the ground, curved
sub-parallel and conjugate fault structures, nonlinear on-fault friction laws, as well as off-
fault inelastic deformation, which is for the first time integrated in the dynamic rupture
inversion. The inversion quantifies the uncertainties in the fault slip distribution, which
are also constrained by laws of physics, in contrast to the kinematic source inversion. The
geometric and physical complexity involved in the dynamic rupture model in this chapter
also highlights the applicability of the inversion scheme to other earthquakes.

Chapter 2 has been published in the Journal of Geophysical Research: Solid Earth as

• Niu, Z., Gabriel, A. A., Seelinger, L., & Igel, H. (2024). Modeling and quantifying pa-
rameter uncertainty of co-seismic non-classical nonlinearity in rocks. Journal of Geo-
physical Research: Solid Earth, 129(1), e2023JB027149, DOI 10.1029/2023JB027149.

Chapter 3 has received the Outstanding Student Presentation Award (OSPA) at the Ameri-
can Geophysical Union’s (AGU) annual meeting, 2023, and has been submitted in a slightly
altered form to the Journal of Geophysical Research: Solid Earth as

• Niu, Z., Gabriel, A. A., Wolf, S., Ulrich, T., Lyakhovsky, V., & Igel, H. (2025). A
discontinuous Galerkin method for simulating 3D seismic wave propagation in nonlin-
ear rock models: verification and application to the 2015 Mw 7.8 Gorkha earthquake,
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submitted to Journal of Geophysical Research: Solid Earth.

Chapter 4 will be submitted for publication shortly as

• Niu, Z., Gabriel, A. A., Ben-Zion, Y., & Igel, H. (2025). Amplified seismic radiation
and delayed dynamic triggering: brittle rock damage as a catalyst for 3D cascading
earthquake dynamics, in preparation for submission to Geophysical Research Letters.

Chapter 5 has been accepted in a slightly altered form with minor revision as

• Kruse, M., Niu, Z., Seelinger, L., Wolf, S., Lykkegaard, M., Bader, M., Gabriel, A.
A., Bader, M., Seelinger, L. Scalable Bayesian inference of large simulations via asyn-
chronous prefetching multilevel delayed acceptance. Proceedings of the Platform for
Advanced Scientific Computing Conference, Windisch, Switzerland, 2025, Association
for Computing Machinery.

Chapter 6 will also be submitted for publication as

• Niu, Z., Kruse, M., Seelinger, L., Schliwa, N., Igel, H., Bader, M., Gabriel, A. A.
(2025). Bayesian inversion of on-fault friction and off-fault plastic deformation in the
2019 Mw 7.1 Ridgecrest earthquake with dynamic rupture simulations, in preparation.



Chapter 2

Bayesian-inversion constrained nonlinear
rock models from laboratory data

Dynamic perturbations reveal unconventional nonlinear behavior in rocks, as evidenced by
field and laboratory studies. During the passage of seismic waves, rocks exhibit a decrease in
elastic moduli, slowly recovering after. Yet, comprehensive physical models describing these
moduli alterations remain sparse and insufficiently validated against observations. Here, we
demonstrate the applicability of two physical damage models - the internal variable model
(IVM) and the continuum damage model (CDM) - to provide quantitative descriptions of
nonlinear co-seismic elastic wave propagation observations. While the IVM uses one inter-
nal variable to describe the evolution of elastic material moduli, the CDM damage variable
is a mathematical representation of microscopic defects. We recast the IVM and CDM
models as nonlinear hyperbolic partial differential equations and implement 1D and 2D
numerical simulations using an arbitrary high-order discontinuous Galerkin method. We
verify the modeling results with co-propagating acousto-elastic experimental measurements.
Subsequently, we infer the parameters for these nonlinear models from laboratory experi-
ments using probabilistic Bayesian inversion and 2D simulations. By adopting the Adaptive
Metropolis Markov chain Monte Carlo method, we quantify the uncertainties of inferred
parameters for both physical models, investigating their interplay in 70,000 simulations. We
find that the damage variables can trade off with the stress-strain nonlinearity in discernible
ways. We discuss physical interpretations of both damage models and that our CDM quan-
titatively captures an observed damage increase with perturbation frequency. Our results
contribute to a more holistic understanding of co-seismic damage and post-seismic recovery
after earthquakes bridging the worlds of theoretical analysis and laboratory findings.

2.1 Introduction

Materials with micro- and mesoscale heterogeneities, such as rocks and cementitious ma-
terials, have been widely observed to exhibit non-classical nonlinearity (Guyer and John-
son, 1999; Van Den Abeele et al., 2000; Johnson and Sutin, 2005). In classical nonlin-
earity, researchers formulate stress as a nonlinear function of strain (e.g., the second or-
der stress-strain models of Murnaghan (1937) and Hamiel et al. (2011); the third order
stress-strain models in Landau et al. (1986)). Classical nonlinearity can describe how the
speeds of elastic waves depend on the stress state of the material (Pao and Gamer, 1985),

This chapter has been published as Niu, Z., Gabriel, A. A., Seelinger, L., & Igel, H. (2024). Modeling
and quantifying parameter uncertainty of co-seismic non-classical nonlinearity in rocks. Journal of Geo-
physical Research: Solid Earth, 129(1), e2023JB027149, DOI 10.1029/2023JB027149.
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as well as the different stress-strain relationships between compression and extension. Re-
cent examples are the "bi-linear" models suggested by Pecorari and Solodov (2006) and
Panteleev et al. (2021). However, they are proposed to account for neither the different
stress-strain relationships during loading and unloading nor the time-dependent mechani-
cal behavior of materials like rocks (Van Den Abeele et al., 2000). In this work, we define
non-classical nonlinearity as the behavior of rocks that cannot be explained by formulat-
ing stress as a nonlinear function of strain. One type of such non-classical nonlinearity
can be characterized by hysteresis models (Preisach, 1935; Mayergoyz, 1985; McCall and
Guyer, 1996). Hysteresis models describe stress as a function of not only the current strain
state, but of the strain history as well. Aside from hysteresis, researchers noticed that,
under continuous dynamic external loads, the mechanical responses of rocks may change
over time. Experimental observations of such non-classical nonlinearity were first reported
in Ten Cate and Shankland (1996) from Nonlinear Resonance Ultrasound Spectroscopy
(NRUS) experiments. In their NRUS, the sample’s dynamic response to the excitation at
the same frequency is unexpectedly different depending on whether it is measured during
the upward or downward sweep across different frequencies. We refer to TenCate (2011)
and references therein for a comprehensive summary of the NRUS observations of the latter
type of non-classical nonlinearity.

Details on how rock moduli change during dynamic perturbations were first reported by
Renaud et al. (2012) who performed Dynamic Acousto-elastic Testing (DAET) experiments
on Barea sandstone. Since then, DAET experiments have been developed and conducted on
different types of rock samples (e.g., Rivière et al., 2013, 2015; Jin et al., 2018). Fig. 2.1
shows a recent DAET measurement by Shokouhi et al. (2017) on Berea sandstone samples.
We will refer to all three phases illustrated in Figs. 2.1b and c as “slow dynamics” (following
e.g., Johnson and Sutin, 2005; Rivière et al., 2015; Shokouhi et al., 2017; Manogharan et al.,
2021).

Similar observations have also been reported from the field since the pioneering work of
Sens-Schönfelder and Wegler (2006) and Brenguier et al. (2008a). Gassenmeier et al. (2016)
monitor the change of seismic velocity around the station PATCX from the Integrated Plate
Boundary Observatory Chile Network (IPOC, 2006). During the occurrence of the Mw 7.7
Tocopilla earthquake in Chile on November 14th, 2007, Gassenmeier et al. (2016) observe a
drop and subsequent recovery of seismic velocity within a radius of ≈ 2.3 km surrounding
a station that is about 100 km away from the fault using coda wave interferometry in the
frequency range of 4-6 Hz. Similar co-seismic velocity drops are reported to occur not
only during large earthquakes but also due to intermediate earthquakes with magnitudes
between Mw 5 and Mw 7. Brenguier et al. (2014) map the co-seismic velocity drop in Japan
after the 2011 Tohoku-Oki earthquake (see Fig. 2.1d) using data from the high sensitivity
seismograph network (Hi-net) in Japan (Takanami et al., 2003). While it is commonly
assumed that transient fluid effects are key to the observed velocity drop (Brenguier et al.,
2014; Illien et al., 2022), Manogharan et al. (2021, 2022) find that a velocity drop during
dynamic perturbations of fractured fluid-saturated rocks is not more significant than that
of fractured dry rocks.

Despite phenomenologically comparable observations, it is currently unclear how relevant
the non-classical nonlinearity observed in laboratory experiments is to the observed co-
seismic velocity drops in the field and if an overarching theoretical physical framework
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Figure 2.1: Dynamic acousto-elastic testing (DAET) by Shokouhi et al. (2017) on Berea sandstone
samples. (a) The pump-probe system in DAET. S1-R1 is the pumping sensor pair. S1 is a
piezoelectric ceramic disk glued to the sample. S1 generates a dynamic strain field (the pump
field) with an amplitude of around 4× 10−6 and a frequency of around 4.5 kHz. R1 is a miniature
accelerometer that measures the dynamic strain field (the pump field) generated by S1. The
probing ultrasonic transducer pair S2-R2 measures the change of the P-wave speed ∆cp due to the
pump field. (b) The pump field measured with R1. (c) The measured relative change in P-wave
speed ∆cp/cp0, due to the pump field, with S2-R2. Here, cp0 is the initial P-wave speed of the
sample. In response to the dynamic strain field from S1, the wave speed evolves in three consecutive
phases: (1) As loading starts, the wave velocity of the sample reaches a non-equilibrium state and
experiences an overall drop aside from fluctuations with the cyclic loading. This phase is referred
to as the conditioning of the material and is marked by a dashed black curve with an arrow; (2)
The overall drop of wave velocity stabilizes and reaches a new steady state; (3) After removing the
cyclic loading, the velocity recovers over an extended period of time, illustrated by the dashed red
curve with an arrow.
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can be established. Furthermore, despite the relatively low velocity drops (usually smaller
than 1%) using ambient noises and coda wave Interferometry (e.g., Brenguier et al., 2014;
Gassenmeier et al., 2016; Illien et al., 2022), more recent measurements based on auto-
correlation of a single station (Lu and Ben-Zion, 2022) or the combination of surface and
borehole stations (Qin et al., 2020; Wang et al., 2021), observed velocity drop can be higher
than 10%. Unifying laboratory and field observations is challenged by the vastly different
scales and sparsity of high-resolution observations. We need an appropriate physical model
that can be employed at both scales.

At the field scale, a range of models has been proposed to explain or predict source and site
effects of nonlinearity on earthquake nucleation, rupture dynamics, and ground motions.
The Masing-Prager-Ishlinski-Iwan (MPII) model (Iwan, 1967) has been implemented to
study local non-linear site effects due to soft sediments (Roten et al., 2013, 2018; Oral
et al., 2019, 2022). The MPII model reproduces the hysteretic stress-strain relations and
can be extended to explain the excess pore pressure in liquefiable soils (Oral et al., 2019).
The nonlinearity of fault zone deformation has been modeled as co-seismic off-fault brit-
tle continuum damage (e.g., Xu et al., 2015; Thomas and Bhat, 2018) or non-associative
Drucker-Prager off-fault plasticity (e.g., Andrews, 2005; Wollherr et al., 2018), explicit sec-
ondary tensile and shear fracturing (Okubo et al., 2020; Yamashita, 2000; Gabriel et al.,
2021), using a volumetric representation of fault zones governed by reformulated rate-and-
state friction laws (Preuss et al., 2019, 2020; Pranger et al., 2022) or phase-field inspired
methods (e.g., Fei et al., 2023). However, a physical model that can be used to explain
the co-seismic drop of wave speeds and subsequent recovery is missing. This paper fo-
cuses on identifying appropriate theoretical model(s) that can be informed and verified
by laboratory experiments and are applicable for future large-scale numerical simulations
(e.g., Roten et al., 2023) of seismological observations on the field scale.

Over the past two decades, researchers have proposed different models to explain non-
classical nonlinearity with physical processes at the microscopic scale. Delsanto and Scalerandi
(2003) proposed a model that includes thermally activated random transitions between two
different interstitial states. Since then, many studies have used the framework of adhesive
contacts at rough crack surfaces to explain slow dynamics (Pecorari, 2004; Aleshin and Van
Den Abeele, 2007; Lebedev and Ostrovsky, 2014; Wang et al., 2021). We briefly summarize
the basic ideas of the adhesive contact theory in Appendix 2.E.

While the above physical models are firmly rooted in processes at the microscopic scale,
they introduce a significant number of parameters. Many of these parameters are hard
to constrain directly from observations. Also, the proposed models are restricted to 0D
(oscillation) or 1D analysis, and extension to 2D and 3D would require a substantial effort
although it is crucial for the verification and interpretation of field observations. There
also exist phenomenological models, with fewer parameters, that have been developed over
the last two decades, such as the soft ratchet model of Vakhnenko et al. (2004, 2005).
Their model includes a fast subsystem of displacement and a slow subsystem of ruptured
intergrain cohesive bonds. The concentration of the ruptured bonds is represented by an
internal (damage) variable that evolves to a stress-dependent equilibrium. Later, Favrie
et al. (2015) fully couple these two subsystems.

Berjamin et al. (2017) extend the description of Favrie et al. (2015) by using one internal
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variable to describe the evolution of elastic material moduli. This model will be herein
referred to as the internal variable model (IVM) in the following. IVM ensures that the
kinematics of the internal variable complies with the laws of thermodynamics. The model
can reproduce the conditioning and recovery phases of nonclassical nonlinear elasticity with
only two additional parameters than those used in classical nonlinearity. However, their
expression for the internal energy of the material contains a term that is not clearly linked
to physical processes.

In this work, we offer a physics-based understanding of the origin of such a phenomenologi-
cal term. To this end, we resort to continuum damage mechanics (CDM) (Kachanov, 1958,
1986). We show that the internal variable in Berjamin et al. (2017) is very similar to a scalar
damage variable in typical CDM approaches (Chaboche, 1988). The scalar damage variable
approach is popular in diffuse interface approaches, e.g., to ‘smear out’ sharp discontinuous
cracks via a smooth but rapid transition between intact and fully damaged material states
(Borst et al., 2004; Tavelli et al., 2020). In the CDM context, the damage variable is a math-
ematical representation of defects, e.g. intergranular cavities or microcracks density, which
are distributed in a solid. Different CDM models are characterized by different assumptions
on the distribution of microscopic defects and by the various mathematical operations of
homogenization. Budiansky and O’connell (1976) derive the elastic moduli as a function of
the damage variable with the homogenization of cracks whose directions are uniformly and
omnidirectionally distributed. The Godunov–Peshkov–Romenski (GPR) model (Resnyan-
sky et al., 2003; Romenski et al., 2007; Tavelli et al., 2020; Gabriel et al., 2021) uses a
different homogenization scheme, continuum mixture theory (Romenski and Toro, 2004),
to define a material that is a mixture of a "totally-damaged" and an "undamaged" con-
stituents. It is also possible to account for different elastic behaviors during extension and
compression within the framework of CDM, for example, the “unilateral” damage model
from Chaboche (1992), Lemaitre and Desmorat (2006), and Desmorat (2016).

However, the above CDM-based damage models do not allow healing. The continuum dam-
age healing model (CDHM) introduces an additional healing variable aside from the damage
variable (Darabi et al., 2012; Oucif and Mauludin, 2018). A potentially simpler framework
that can allow healing is the damage model proposed by Lyakhovsky et al. (1997a). It is
based on homogenizing micro-cracks oriented perpendicular to the maximum tension (or
compression). This is different from other damage models based on the homogenization
of cracks oriented uniformly and omnidirectionally (e.g., Budiansky and O’connell, 1976;
Chaboche, 1988; Borst et al., 2004). The internal energy of this model is not uncondi-
tionally decreasing with the increase of the damage variable. However, it has not yet been
investigated how this model can be related to observed slow dynamics. We summarize these
and other representative damage models with respect to non-classical nonlinearity in Table
2.E.1.

From the above overview of models, we notice that the models of Berjamin et al. (2017)
and Lyakhovsky et al. (1997a) both have the potential to reproduce all three phases of slow
dynamics with a small number of model parameters. In the following, we will focus on two
models, IVM by Berjamin et al. (2017) and CDM by Lyakhovsky et al. (1997a), and will
refer to them as “model B” and “model L”, respectively, for brevity. We hope to answer the
following questions about the two models in this work. However, it has not been explored,
if they can quantitatively reproduce the modulus changes, of rocks observed in laboratory
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experiments, or how well laboratory findings may constrain theoretical model parameters.

To investigate these questions, we implement both models in the arbitrary high-order dis-
continuous Galerkin (ADER-DG) solver ExaHyPE (Reinarz et al., 2020) and verify the
numerical simulation results with experimental observations. We infer model parameters
from laboratory measurements using a Markov chain Monte Carlo (MCMC, Metropolis
et al. (1953)) algorithm. This takes uncertainties due to measurement errors into account
and allows us to investigate model parameters’ relative importance and their interactions.
Lastly, we discuss that the CDM model by Lyakhovsky et al. (1997a) may be a preferred
model for large-scale wave propagation simulations capable of linking observations of co-
seismic damage in the field with laboratory findings and continuum damage mechanics
theory.

In Section 2.2, the two models of Lyakhovsky et al. (1997a) and Berjamin et al. (2017)
(model L and model B hereafter) are summarized within the framework of thermodynamics.
We propose a way to explain the origin of the phenomenological term in the model of
Berjamin et al. (2017). We then describe the numerical simulation of the nonlinear wave
propagation with the two models. This is followed by a description of the experiment that
we will compare to the Bayesian problem used for parameter inference and the Adaptive
Metropolis Markov chain Monte Carlo (AM-MCMC) method solving it. In Section 2.3, we
compare the two models regarding the damage evolution during dynamic acousto-elastic
testing and measured amplitude- and frequency-dependent damage. The inversion results
of the model parameters are also shown. Finally, the performance and restrictions of the
two models will be discussed in Section 2.4.

2.2 Methods

We separate this section into two parts. We first detail the derivation of the nonlinear dam-
age models based on the laws of thermodynamics. This approach ensures that the model
parameterization we derive has a clear physical meaning. Based on our thermodynamically
motivated derivation, we aim to infer physical constraints on slow dynamics that are be-
yond phenomenological descriptions. We then describe the experiment and the Adaptive
Metropolis Markov chain Monte Carlo (AM-MCMC) method that we use to evaluate the
model parameters.

2.2.1 The thermodynamic formulation of nonlinear damage models

In the framework of continuum damage mechanics (see Chapter 3 of Zhang and Cai, 2010),
a scalar variable can describe the changes in elastic moduli with damage. We start with
the 1st law of thermodynamics,

·
e =

·
w +

·
q, (2.1)
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where
·
(·) denotes the time derivative, e is the specific internal energy of the system nor-

malized by volume, w is the external work per unit volume of the system and q is the
absorbed heat from the environment per unit volume of the system. At the time scale of
elastodynamic processes, the heat transfer and any possible heat sources are assumed to
be negligible, i.e. we assume an adiabatic process where ·

q = 0. In case of only considering
mechanical work, it is ·

w = σ
=
:

·
ϵ
=
= σij

·
ϵij and (·)

=

denotes a tensor of rank two.

The expression of the internal energy depends on the choice of state variables that are
used to describe the system. For an elastic material, we chose the strain ε

=
and the specific

entropy s as state variables. In addition, to incorporate the damage to the material, we
include another scalar state variable α. This means e ≡ e(s, ε

=
, α).

With the above definitions of state variables, the Gibbs identity can be written as

·
e = T

·
s+

∂e

∂ε
=

:
·
ε
=
+

∂e

∂α

·
α, (2.2)

where T =
∂e

∂s
> 0 is the absolute temperature.

Different nonlinear or damage models have different ways of defining the internal energy as
a function of ε

=
and α. The combination of Eqs. (2.1) and (2.2), together with the earlier

defined assumptions of ·
q = 0 and ·

w = σ
=
:

·
ε
=
, yields

T
·
s = (σ

=
− ∂e

∂ε
=

) :
·
ϵ
=
− ∂e

∂α

·
α. (2.3)

For a spontaneous process in an adiabatic system, ds ≥ 0 for any given ·
ε and ·

α, which is
known as the Clausius–Duhem inequality (Truesdell, 1952). Assuming σ

=
is independent of

·
ε, we derive that

σ
=
=

∂e

∂ε
=

, (2.4)

and
∂e

∂α

·
α ≤ 0, (2.5)

where
∂e

∂α
can be any function of the state variables. Eq. (2.5) describes the evolution of

the damage variable α. A simple and non-trivial (non-zero) expression can be

∂e

∂α
= −τ ·

α, (2.6)
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where τ can be any non-negative constant or non-negative function of the state variables.

In Eq. (2.6), we see that damaged material will only heal ( ·
α < 0) when τ > 0 and

∂e

∂α
> 0;

otherwise damage will steadily accumulate. More specifically, our derivation indicates that
the system’s internal energy shall not always decrease with an increase of damage, when
the healing of the material follows a physically meaningful model. Such interpretation is
possible since we use the framework of a continuum damage model. Substituting Eq. (2.6)
and (2.4) into Eq. (2.3) yields the energy dissipation rate of the system,

D = T
·
s =

0 if τ = 0
1
τ
(
∂e

∂α
)2 if τ > 0

. (2.7)

Both model L (Lyakhovsky et al., 1997a) and model B (Berjamin et al., 2017) describe the
mechanisms of damage and recovery. But they are introduced under different assumptions
regarding the form of the internal energy as a function of strain ε

=
and the damage variable

α. The internal variable of Berjamin et al. (2017) is defined as

e = (1− α)E(ε
=
) + ϕ(α), (2.8)

where ϕ(α) is called the storage energy and increases with the development of damage.
In the 1D case where only εxx = ε is non-zero, Berjamin et al. (2017) express the elastic

energy term in the internal energy as E = (
1

2
− β

3
ε − δ

4
ε2)Mε2 based on Landau’s law

(Landau et al., 1986), where M = λ + 2µ is acoustic modulus while λ and µ are the two
Lamé parameters. In the 2D plane-strain case, Berjamin et al. (2019) use the Murnaghan’s

law E =
λ+ 2µ

2
E2

I − 2µEII +
l + 2m

3
E3

I − 2mEIEII + nEIII (Murnaghan, 1937). l, m,
and n are the three Murnaghan coefficients (third-order elastic constants), while EI = ϵkk,
EII = 1/2((ϵkk)

2− ϵijϵij) and EIII = δijkϵi1ϵj2ϵk3 are three stress invariants that are defined
in Berjamin et al. (2019). δijk denotes Levi-Civita permutation symbol.

According to Eq. (2.6), the damage evolution then reads

·
α =

1

τ
(E(ε

=
)− ϕ′(α)), (2.9)

where Berjamin et al. (2017) proposed two possible expressions of ϕ: ϕ′(α) = γb
α

1− α2
or

ϕ′(α) = γbα. The scaling factor τ is formulated as τ = γbτb, where γb is the scale of storage
energy ϕ(α) and τb is the time scale of damage evolution.

In the model L proposed by Lyakhovsky et al. (1997a) internal energy is defined as

e = E(ε
=
, α)− γI1

√
I2, (2.10)

where, in the linear elastic case, E(ε
=
, α) =

λ

2
I21 + µI2, I1 = εkk and I2 = εijεij are the
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first and the second strain invariant, and γ is a third modulus that originates from the
homogenization of parallel cracks (Lyakhovsky et al., 1997b). It is assumed that λ = λ0,
µ = µ0 − αµr and γ = αγr. The corresponding damage kinematics is then derived by
inserting Eq. (2.10) into Eq. (2.6).

·
α = Cdγr(I1

√
I2 − ξ0I2)

= CdγrI2(ξ − ξ0), (2.11)

where ξ0 = −
µr

λr

and is a negative parameter for solid materials; ξ = I1/
√
I2 and Cd can be

any non-negative function of the state variables ϵ
=

and α. We note that the material heals

( ·
α < 0) when ξ − ξ0 < 0 and is damaged ( ·

α > 0) when ξ − ξ0 > 0.

A comparison of Eqs. (2.9) and (2.11) shows that both models in principle include the
mechanics of healing. However, the crucial term ϕ for explaining slow dynamics in model
B in Eq.(2.8) has only limited physical meaning, which challenges the interpretation of the
physical mechanisms driving the observed slow dynamics (Fig. 2.1c). On the other hand,
conditioning and healing were not yet explored using the model L of Lyakhovsky et al.
(1997a).

So far we have summarized model L and model B in the same thermodynamics framework.
Next, we explain why, based on model L, it may be physically plausible to include a term
in the internal energy W that can increase with damage and how this term can result
in both the conditioning during dynamic perturbations and the recovery after removing
the perturbations. We here propose that the steady state (phase 2 in Fig. 2.1c) during
perturbations can be recovered by assuming the following form of damage kinematics in
Eq.(2.12) for the model L that differentiates the evolution laws during the recovery from
that during the damage. A recovery phase after dynamic perturbations can occur if an
initial strain that satisfies ξ−ξ0 < 0 exists. This strain level does not need to be large since
ξ is only related to the relative magnitude of each strain component (i.e., the shape of the
strain tensor).

·
α =


Cd(α)γrI2(ξ − ξ0) if ξ − ξ0 > 0 and α ≥ 0
Cr(α)γrI2(ξ − ξ0) if ξ − ξ0 ≤ 0 and α ≥ 0
0 if α < 0

. (2.12)

The evolution laws during ‘damage’ (Cd(α), the conditioning during dynamic perturbations)
and recovery (Cr(α)) are treated separately. The steady state (phase 2 in Fig. 2.1c) requires
the increase of Cd(α), the decrease of Cr(α) or both. At the same time, Cd(α) and Cr(α)
are required to remain non-negative to preserve a non-decreasing entropy of the system
according to Eq. (2.7). With the above considerations, we choose Cd(α) = cd exp (−

α

αd

)

and Cr(α) = crα to represent, respectively, the decrease of damage coefficient Cd and the
increase of recovery coefficient Cr with the increase of the damage variable.

Our proposed damage evolution still follows the laws of thermodynamics. We show in
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Section 2.3 that the combination of Eq. (2.12) and the existence of a well-defined initial
strain level recovers many aspects of the observed slow dynamics.

2.2.2 Verification, validation and parameter constraints using lab-
oratory observations

We implement both models in ExaHyPE (Reinarz et al., 2020), an engine built for solving
nonlinear hyperbolic partial differential equations (PDEs) with the arbitrary high-order
derivative discontinuous Galerkin (ADER-DG) method. In Appendix 2.B, we verify the
implementation by comparing our numerical solutions with those given by Berjamin et al.
(2019), who implemented model B in 2D under plain-strain conditions using the finite
volume method with flux limiters. We provide the comparison of our simulation with those
from Berjamin et al. (2019) in Fig. 2.B.1. In the following, we focus on validating the
performance of model B and model L against laboratory observations.

We generate ensembles of our numerical simulations using the two models and compare
to laboratory measurements. One of the main advantages of model B (IVM) and model
L (CDM) is that they have fewer parameters and, therefore may be easier to constrain
than models that are established on detailed physical processes at microscopic scales. We
apply Bayesian inversion to quantify how well the model parameters can be constrained
from laboratory experiments. Most laboratory experiments of slow dynamics are based
on 1D setups. Feng et al. (2018) proposed an experimental setup (copropagating acousto-
elastic testing, Fig. 2.2) that enables the observation of acoustic modulus change during the
propagation of waves in a rock sample. In the following, we first describe the experimental
setup. Next, we formulate a Bayesian inversion problem that we apply for quantitative
characterization of the theoretical model parameters and their associated uncertainties with
respect to reproducing laboratory results. The Bayesian inversion problem is solved with a
Markov chain Monte Carlo (MCMC, Metropolis et al. (1953)) type method.

Laboratory verification experiment measuring slow dynamics in 2D

The experiment is conducted using a sample of Crab Orchard sandstone of size 15 cm × 15
cm × 5 cm. Feng et al. (2018) attached two ultrasound transducers and one receiver to the
rock sample as shown in Fig. 2.2a. T1 is a low-energy high-frequency (HF) transmission
ultrasound (US) transducer, the probe, and R1 is a HF reception US transducer. T2 is
a high-energy low frequency (LF) transmission US transducer, the pump, and R2 is the
laser vibrometer. In the experiment, T2 generates a pumping signal with a frequency of
74 kHz. The particle velocity field excited by T2 is measured with the vibrometer R2 and
the particle velocity is converted to the strain (εxx) along the ray path A between T1 and
R1. The P-wave speed along the ray path A is probed with a 620 kHz signal from T1. The
amplitude of the perturbation by T1 is of much lower amplitude than that by T2 and is
therefore assumed to not perturb the strain field. Once T2 is triggered at t0, T1 will send
signals every 1 µs to measure the P-wave speed along the ray path A. The time difference
between the signal from T1 and t0 is called "trigger delay". The strain field at the wavefront
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of each trigger delay along the ray path A is averaged and shown in Fig. 2.2b. The acoustic
modulus change ∆M/M0 is computed from the change in P-wave speed of each trigger delay
in Fig. 2.2c.

i

ii

B

C

A

(a)

(b)

(c)

Δ
M
/M

0

Figure 2.2: (a) Experimental setup to perform copropagating acousto-elastic testing (Figure
adapted from Feng et al., 2018). T1 is a low-energy high-frequency (HF) transmission ultra-
sound (US) transducer, the probe, and R1 is the receiver of T1. T2 is a high-energy low frequency
(LF) transmission US transducer. The induced velocity field is recorded by the laser vibrometer
R2. The velocity field is converted to the strain field with the method described by Feng et al.
(2018). The shadowed areas indicate the radiation pattern (amplitude as a function of angle) of
(i) T2 and (ii) T1. Line A is the direct ray path from T1 to R1, line B is the direct ray path from
T2 to a point of wave interaction at (8.5, 11.0) cm, and the dashed line C shows the ray path for
the wave from T2 reflected at the top boundary of the sample that arrives at that same point of
interaction at (8.5, 11.0) cm. (b) The strain (εxx) measured at the wavefront of the waves that
are excited from T1 at different trigger time delays. Each data point is the averaged strain at the
wavefront during its propagation from T1 to R1. (c) The estimated relative change in acoustic
modulus, based on the travel time difference between T1 and R1, as a function of the trigger time
delays. Acoustic modulus M = λ + 2µ. M0 is the M without the pumping signals, while ∆M is
the change in M during the propagation of the pumping signals.

Feng et al. (2018) explain the relation between the strain field and the acoustic modulus
change with the nonlinear visco-elastic relationship. They observe a time shift of around 2
µs between the peak in the acoustic modulus change and in strain, which is fit by imposing
a “delay time” ∆t in the visco-elastic relationship. We show in this work that the data may
also be explained with the proposed damage models, without having to impose a “delay
time” for explaining the time shift.
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Probabilistic inversion and uncertainty quantification with a Markov chain Monte
Carlo approach

We begin by defining configurations of our two competing deterministic models, matching
the experimental setup. Next, we augment the deterministic models by embedding them
in a Bayesian inversion problem. This allows us to infer model parameters from data
and discover their interactions, taking into account possible ambiguities and the effect of
uncertainties in experimental measurements.

Deterministic models

We model the 2D slow dynamics experimental setup with both the L and the B models.
The perturbation from T2 is simulated as a Dirichlet boundary condition distributed in the
area where T2 is in contact with the sample. The remaining boundaries are treated as free
surfaces with zero traction. As in the experiment, the strain εxx and the acoustic modulus
change are averaged over the path of the wavefront between T1 and R1 for each trigger
delay (every 1 µs between 0 and 39 µs).

In Eq. (2.8) of model B, the first order nonlinearity in 2D Murnaghan’s law already involves
three parameters (l, m and n). The laboratory data are not sufficient to constrain all three
parameters. Similar to the simplification made in the original paper of Feng et al. (2018),
the change in M = λ + 2µ, which is related to the speed of the P-wave, is simplified as a
function of the damage parameters computed from the 2D simulation and the 1D first and
second order nonlinearity parameters as in Eq. (2.13).

M = M0(1− g)(1− βεxx − δε2xx), (2.13)

where M0 is the initial acoustic modulus of the undamaged rock sample before the pertur-
bations. Such a relationship is also used by Berjamin et al. (2017) in the 1D formulation of
their model. For model L, we derive the variations in speed of the P-wave with the strain
tensor and the damage parameter in Appendix 2.A.

In model B, the two parameters that control the damage evolution are γb and τb. Combining
these with the two nonlinear parameters in Eq.(2.13), the parameters to be inverted are β,
δ, γb and τb.

In model L, it is

·
α =


cdγrI2(ξ − ξ0) if ξ − ξ0 > 0 and α ≥ 0
crαγrI2(ξ − ξ0) if ξ − ξ0 ≤ 0 and α ≥ 0
0 if α < 0

(2.14)

where Cd(α) = cd and Cr(α) = crα in Eq. (2.12). This preserves the necessary components
for describing the observed slow dynamics while reducing the number of parameters that
need to be constrained. In this case, five parameters are related to the damage, i.e. ξ0,
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γ, cd, cr, and the initial strain tensor. It is difficult to constrain all five parameters from
the observations by Feng et al. (2018). We choose the parameters following Lyakhovsky
et al. (1997b, 2016). We assume that ξ0 = −0.79 and that the initial strain tensor in
2D is εxx0 = −ε0, εyy0 = −ε0 and εxy0 = εyx0 = 1.46ε0 such that ξ at the initial strain
state satisfies ξ − ξ0 < 0. This enables the damaged rock to heal after removing dynamic
perturbations. With the above simplifications, the parameters to be inverted in model L
are γr, cd, cr, and ε0.

Bayesian inversion and uncertainty quantification (UQ)

In order to quantify the relative importance of the theoretical model parameters in explain-
ing the evolution of the observed slow dynamics, we apply Bayesian inversion. We first
define the required terms to describe the probabilistic distributions of parameters of both
models. The model parameters m

−
and experimental observations d

−
obs are viewed as random

variables in M ⊂ Rnm and D ⊂ Rnd , where nm and nd are the number of model parameters
and the number of observed data points.

We then aim to find the posterior, namely the conditional distribution of m
−

for a given obser-

vation d
−
obs. We denote the corresponding probability density function (PDF) by ρ(m

−
|d
−
obs).

We refer to Appendix 2.C for a more detailed description of the Bayesian inversion method
that we employ.

To compute an approximation to the posterior distribution, we use the Markov chain Monte
Carlo (MCMC) approach. Based on the amount of a priori information about the PDEs
and the cost of each forward simulation, different types of MCMC sampling algorithms may
be chosen. In this work, we choose the AM-MCMC (Haario et al., 2001) algorithm since the
forward model simulated with ExaHyPE does not provide the derivatives of the solution
with respect to the model parameters. AM-MCMC learns an approximate variance of the
posterior on the fly, automatically improving its efficiency during the run by tuning its
proposals. While more complex UQ algorithms may achieve higher efficiency, AM-MCMC
readily meets our accuracy and computational cost requirements.

We use the AM-MCMC implementation provided by the open-source MIT Uncertainty
Quantification Library ((MUQ) Parno et al., 2021). To couple MUQ to the forward model
in the ExaHyPE simulation framework, we use the universal UQ / model interface UM-
Bridge (Seelinger et al., 2023), which is fully supported by MUQ. For reproducibility, we
provide, in the open research section, the forward model as a ready-to-run container image,
that any UM-Bridge supporting UQ software can connect to.

In order to ensure that the MCMC method gives a sufficiently good approximation of the
inversion results, we compute the Monte Carlo standard error (MCSE) as an indicator
(Vehtari et al., 2021). It is defined as
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MCSE =

√
Var(ρMC(m

−
|d
−
obs))

S
, (2.15)

where ρMC(m
−
|d
−
obs) is the estimated posterior, Var(·) is the variance of a random variable

and S is the number of independent samples drawn from the posterior. MCMC necessarily
produces correlated samples, so the effective sample size (ESS) is applied instead of S. The
ESS is not immediately available, but can in turn be estimated from the chain’s correlated
samples (Vehtari et al., 2021). The MCSE estimates are provided by the ArviZ tool (Kumar
et al., 2019).

2.3 Results

In Section 3.1, we show that model B and model L can reproduce the three phases of slow
dynamics (Fig. 2.1c). In Section 3.2, we analyze the dependence of the simulated damage
on both the frequency and amplitude of perturbations. In Section 3.3, we quantify the
uncertainty of each model parameter based on experimental data.

2.3.1 The three phases of slow dynamics

As shown in Fig. 2.1c, the change of modulus under cyclic loading experiences three phases
from conditioning to recovery. In this section, we explain how models B and L can reproduce
the three phases of slow dynamics observed in laboratory experiments. To demonstrate the
conditioning and recovery of the damage under dynamic perturbations, we treat the sample
in the DAET experiment as an oscillator. We justify the validity of this assumption in
Appendix 2.D. As in Berjamin et al. (2017), we assume that only one strain component εxx
is perturbed. The damage evolution equations for model B are simplified to Eqs. (2.16a),
and those for model L to Eqs. (2.16b), as

·
α =

1

τbγb
(W − γbg), (2.16a)

·
α =


cd exp (−

α

αd

)γrI2(ξ − ξ0) if ξ − ξ0 > 0 and α ≥ 0

crαγrI2(ξ − ξ0) if ξ − ξ0 ≤ 0 and α ≥ 0
0 if α < 0

, (2.16b)

where W = (
1

2
− β

3
εload−

δ

4
ε2load)Mε2load in Eq. (2.16a), εload is the perturbation on εxx and

all other strain components are assumed to be zero. This implies that εload is A0sin(2πfct)
when t ≤ 10 s and becomes 0 when t > 10 s. In Eq. (2.16b), ξ is computed, using Eq. (2.11),
from 2D initial strain with three components εxx0, εyy0, and εxy0 plus the perturbation in
εxx = εxx0 + εload and the remaining strain components are assumed to be zero.
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Figure 2.3: Evolution of the damage variables in model B and model L under a dynamic pertur-
bation that resembles a DAET experiment. (a) The strain perturbation εload added to the system.
(b) Comparison of the damage conditioning and recovery of model B (blue curve), model L (solid
red curve), model L without initial strain (dashed red curve), and model L without different dam-
aging and healing evolution (dash-dotted red curve), i.e. Cd(α) = Cr(α) in Eq. (2.12). model
B (Berjamin et al., 2017) is described in Eq.(2.16a), while model L (Lyakhovsky et al., 1997a) is
described in Eq.(2.16b). The conditioning phase of the models is illustrated with a dashed black
curve with an arrow. The steady state evolution phase of the models is illustrated with a dashed
green curve with an arrow. The region inside the dashed black rectangle is enlarged in (c) to
highlight the healing phase of model B after the perturbation stops (marked with a pink dot). The
two dashed-dotted lines highlight the doubled frequency during the evolution of damage variable
α in model B. (d) Comparison of the change in P-wave speed during one cycle of perturbation
after reaching the steady state. ∆cp/cp0 is the change of P-wave speed ∆cp over the P-wave speed
before perturbations cp0.
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Table 2.1: Summary of model parameters for the comparison of model B and model L, with A0

being the amplitude of the sinusoidal strain perturbation, fc the frequency of the strain perturba-
tion, β the first order nonlinearity, δ the second-order nonlinearity, γb the damage energy, τb the
evolution time scale, γr the nonlinear modulus, cd the damage coefficient, cr the healing coeffi-
cient, ξ0 the modulus ratio as defined in Eq. (2.11), cr is the healing coefficient, εij0 the different
components of initial strains and αd the normalization factor as defined in Eq. (2.16b).

Parameters Values Units Parameters Values Units
Perturbation A0 2× 10−6 1 fc

100 kHzHz

model B β 1.0× 102 1 δ 3.0× 106 1
γb 5.0× 101 Pa τb 1.5× 10−1 s

model L

cd 1.2× 10−1 (Pa·s)−1εxx0 −1.00 ×
10−6

1

cr 5.0× 101 (Pa·s)−1εyy0 −1.00 ×
10−6

1

γr 1.6× 1010 Pa εxy0 1.46× 10−6 1
ξ0 -0.79 1 αd 1.0× 10−4 1

We show the evolution of the damage variables in both models in Fig. 2.3b and c. We
note that the conditioning phase of model L (marked with dashed black curve with an
arrow) is subtle in Fig. 2.3b but will be more pronounced if we set cd to a smaller value
in Eq. (2.16b). The parameters are detailed in Table 2.1. We choose initial strains that
satisfy ξ(εxx0, εyy0, εxy0) − ξ0 ≈ −0.01 < 0. Both model B and model L (the red solid
curve) gradually reach the steady state during perturbations and recover after εload = 0. In
Fig. 2.3b, we also show how the damage will evolve differently when not adding the initial
strain or without differentiating the evolution laws for damaging and healing in model L, i.e.
Eq. (2.16b). Without the initial strain (the red dashed curve), the steady state is reached
at a later stage, and larger damage will be induced. More importantly, the accumulated
damage does not heal after removing the perturbations. In the case that ·

α = CdγrI2(ξ−ξ0)
irrespective of the sign of ξ − ξ0 (the red dash-dotted curve), we observe that no damage
accumulates at the end of each cycle. In this case, all damage that accumulated during
the damaging phase of a cycle is recovered during the healing phase due to the identical
evolution equations.

Fig. 2.3d shows how the change in P-wave velocity relates to the strain perturbations
during the stationary phase. We note here that while only the damage evolution of model
B doubles the perturbation frequency (highlighted with the two dash-dotted black lines
in Fig. 2.3b), both model B and model L generate the “bow-tie” loop that is reported in
DAET experiments (Renaud et al., 2012; Rivière et al., 2015, 2016). We will discuss how
the “bow-tie” loops form with different mechanisms in Section 2.4.2.

2.3.2 Amplitude- and frequency-dependent damage

Both, amplitude- and frequency-dependence of damage have been observed in DAET. Many
observations show that the damage at the steady state (marked by the dashed green line with
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an arrow in Fig. 2.3b) grows with the magnitude and frequency of dynamic perturbations.
The amplitude-dependence of damage can be resolved by various models (Aleshin and Van
Den Abeele, 2007; Vakhnenko et al., 2005; Favrie et al., 2015); however, modeling the
frequency dependence of damage remains challenging. The following discussion will focus
on the capabilities to also model the frequency-dependent damage in laboratory experiments
using models B and L.

We show in Figs. 2.4a-ce how the damage variable α, under two perturbation frequencies
(0.1 and 1 Hz), evolves in our numerical simulation using the two models. In model L, both
the start of recovery (SOR, annotated in Fig. 2.4b) and the average damage (AD, Fig. 2.4b)
during the steady state (phase 2 in Fig. 2.1c) increase with fc, which is consistent with the
observations from Rivière et al. (2016) and Manogharan et al. (2021, 2022). In model B,
SOR follows a similar trend as that in model L. But it shows a frequency independent AD.
The difference between SOR and AD damage is usually not explicitly pointed out in the
observations regarding the metrics for describing the damage. However, as shown in Fig.
2.4e, they can behave very differently when quantifying the frequency-dependent damage.
While AD follows different trends between models B and L, SOR consistently increases with
the perturbation frequency in both models.

We note here that the above frequency-dependent behavior of both models results are
obtained even when assuming that all nonlinear parameters,i.e. β, δ, γb and τb in Eq.
(2.16a) and γr, ξ0, cd and cr in Eq. (2.16b), are frequency-independent. A qualitative
explanation of the frequency-dependent of SOR can be the following. Under our assumption
that the recovery rate increases with the value of the damage variable, stationarity requires
a certain level of averaged damage. For higher frequencies, the amplitude of the oscillations
of damage in each cycle becomes smaller. This may imply that from the same level of
averaged damage, the damage value that the material reaches after one cycle (c.f., the
minimum damage) will increase with frequency.

In Fig. 2.4f, we compare the frequency-dependent AD in model L with the measurements by
Manogharan et al. (2021) using the model parameters in Table 2.D.1. The rectangles show
the AD measured by Manogharan et al. (2021) in their Fig. 8g for 5 different amplitudes
and 3 frequencies (0.1 Hz in purple, 1 Hz in red, and 10 Hz in yellow). The colored dots
with error bars show the results from model L with parameters shown in Table 2.D.1.
The model parameters are varied within certain ranges. The dots represent the mean
values of the model results with parameter variations; while the length of error bars is
the standard deviation of the model results. We find that most of the measured data
points fall within the model predictions and their uncertainties are computed by varying
the model parameter as in Table 2.D.1. AD increases almost linearly with the amplitude
of perturbations (Johnson and Sutin, 2005; Manogharan et al., 2021). The trend of rising
damage with higher perturbation frequencies is also captured by model L. We will present a
mathematical derivation to explain how model L resolves such frequency-dependent damage
in Section 4.1.
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Figure 2.4: (a) Evolution of the damage variables in model B during dynamic perturbations of a
0.1 Hz (blue dashed curve) and 1 Hz (blue solid curve) source signal. model B (Berjamin et al.,
2017) is described in Eq.(2.16a). The damage evolution at the beginning of perturbations (the
region inside the black dashed rectangle) is enlarged in (c) to highlight the conditioning phase.
(c) The zoomed-in plot of the region inside the black dashed rectangle in (a). The dash-dotted
line shows the peak damage is not reached during the first cycle of perturbations. This indicates
that the damage evolution is still in the conditioning phase until ∼0.8 s. (b) Evolution of the
damage variables in model L during dynamic perturbations of a 0.1 Hz (red dashed curve) and
1 Hz (red solid curve) source. model L (Lyakhovsky et al., 1997a) is described in Eq.(2.16b). The
start of recovery (SOR) refers to the damage value at the end of the perturbation and the average
damage (AD) refers to the average value of the damage variable at the stationary phase. The
damage evolution at the beginning of perturbations (the region inside the black dashed rectangle)
is enlarged in (d) to highlight the conditioning phase. (d) The zoomed-in plot of the region inside
the black dashed rectangle in (b). (e) Change of AD and SOR at the end of the perturbations
under different dynamic perturbation frequencies. The blue dots indicate our results for model
B while the green dots are for model L. (f) The change of AD during the stationary phase with
the amplitude and the frequency of the perturbations. The rectangles show the AD measured by
Manogharan et al. (2021) in their Fig. 8g for 5 different amplitudes and 3 frequencies (0.1 Hz
in purple, 1 Hz in red and 10 Hz in yellow). The colored dots with error bars show our results
from model L with the model parameter αd varying between 0.4 and 0.9 in Table 2.D.1. The dots
represent the mean values of the model results with varying parameters; while the length of the
error bars is the standard deviation of the model results.
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2.3.3 Bayesian inversion of damage model parameters from labo-
ratory observations

In this section, we constrain the behaviors of models B and L with another laboratory
experimental set-up - copropagating acousto-elastic testing (Feng et al., 2018). We not
only explore the capability of the models in explaining observations but also quantify how
well (or badly) model parameters can be constrained from this experiment with the AM-
MCMC method introduced in Section 2.2. The values of the parameters to be inverted
are of vastly different magnitudes. Thus, normalization is required for the joint sensitivity
analysis of all parameters. We assume that the values of σM in Eq. (2.C.2) are 6×10−7 and
1× 10−6, respectively, for the inversion of model B and model L. The inversion parameters
are listed in Table 2.2.

Table 2.2: Summary of all model parameters considered in the MCMC inversion, with β being
the first-order nonlinearity, δ the second-order nonlinearity, γb the damage energy, τb the evolution
time scale, γr the nonlinear modulus, cd the damage coefficient, cr the healing coefficient, ξ0 the
modulus ratio as defined in Eq. (2.11), cr the healing coefficient and εij0 the different components
of initial strains.

Param. Values Units Param. Values Units

model Bβ 1.8× 102 × [0,4] 1 δ 3.0× 108 × [0,4] 1
γb 1.0 ×10[0,2] Pa τb 1.0 × 10−6

×10[0,3]
s

model L

γr 4.5× 109 × [0,4] Pa εxx0 -ε0 1
cd 1.0× 105 × [0,4] (Pa·s)−1εyy0 -ε0 1
cr 5.0× 106 ×10[0,2] (Pa·s)−1εxy0 1.46ε0 1
ε0 5.0 × 10−8

×10[0,3]
1 ξ0 -0.79 1

In the MCMC runs of model B and model L, 70,000 simulations with different model
parameters are sampled from the posterior. In this process, 13,826 and 10,444 proposals
are accepted, respectively. The Monte Carlo standard errors (MCSE) of each parameter in
models B and L are given in Figs 2.6a, f, k, and p. The inversion for each of model B and
model L on a single core of the Intel i7-1165G7 processor takes around 10 hours.

We compare the simulation results and the observations from the experiment in Fig. 2.5.
We show the raw data of measured modulus changes with dashed red curves. The solid
blue curve in Fig. 2.5a and the solid green curve in Fig. 2.5b are, respectively, predictions
of model B and model L with the best-fit parameter set in MCMC. Model B (the solid
blue curve) and model L (the solid green curve) match the observations with correlation
coefficients of 0.91 (model B) and 0.83 (model L). While model B has a higher correlation
coefficient, the variation of modulus is delayed compared to the data (the dashed red curve).
This time shift is also applied in the visco-elastic formulation proposed by Feng et al. (2018).
However, since we here directly simulate the wave propagation and the variation of modulus,
needing to add a delay is unexpected.

Unlike model B, if we compare model L and the data in the time interval between 30 µs
and 40 µs, the delay is better resolved. Model L overestimates the modulus increase during
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Figure 2.5: Comparison between the observations from experiments by Feng et al. (2018) and
model predictions corresponding to 70,000 MCMC samples of the respective model’s Bayesian
posterior. The data from the experiment is shown with the red dashed line. (a) Inversion results
of model B, Eqs.(2.13) and (2.16a). The model prediction with the highest posterior probability
is shown in the solid blue curve. The dashed line shows the mean prediction with error bars
indicating the standard deviation. All samples’ model predictions are plotted as a blue-shaded
area. (b) Inversion results of model L, Eq.(2.14). The model prediction with the highest posterior
probability is shown in the solid green curve. The dashed line shows the mean prediction with
error bars indicating the standard deviation. All samples’ model predictions are shown in a green
shade.

the compression of the sample between 20 µs and 30 µs. The MCMC ensembles of model B
(the blue-shaded area) and model L (the green-shaded area) partially account for modulus
variation in the early period between 5 µs and 15 µs. While Feng et al. (2018) achieved
a better fit to that earlier part of the signal, their discrepancies between data and model
predictions in the later time range, e.g., between 30 µs and 40 µs, were large. We refer to
Appendix 2.D for a further discussion about the agreement between the model predictions
and the experimental data.

The marginal probability distributions of the laboratory-constrained model parameters of
models B and L are shown in Fig. 2.6. The histograms in blue on the diagonal of Fig. 2.6
show the one-dimensional marginal distribution of the model parameters in model B. The
values with the highest marginal probability for the normalized β, δ, γb and τb are 1.10, 3.21,
0.88, and 1.75. The two-dimensional marginal distribution of each pair of two parameters is
shown on the upper triangle of Fig. 2.6. The first-order nonlinearity parameter β remains
relatively independent of other parameters. In distinction, the correlations among the other
three parameters are significantly stronger. We can infer that with higher damage energy
(γb), the second-order nonlinearity will more likely be larger whereas the time scale for
damage evolution τb be smaller.

Similarly, the histograms in green on the diagonal of Fig. 2.6 show the one-dimension
marginal distribution of the model parameters in model L. The values with the highest
marginal probability for the normalized γr, cd, and ε0 are 1.30, 0.50, and 1.80. We find
that the healing coefficient cr is not well constrained by the laboratory observations. The
two-dimensional marginal distribution of each pair of two parameters is shown on the lower
triangle of Fig. 2.6. We observe a negative correlation between the nonlinear modulus γr
and the damage coefficient cd. We relate this effect to the lack of resolution in constraining
the healing coefficient. According to Figs. 2.6e and j, the trend of damage increase due
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Figure 2.6: Sensitivity of different parameters in model B and in model L based on MCMC
inversion. We show the one-dimension marginal probability density of the four parameters in
model B (in blue) and model L (in green) on the diagonal of the plot matrix. The four parameters
in model B from left to right and top to bottom are the first-order nonlinearity (β), the second-order
nonlinearity (δ), the damage energy (γb), and the evolution time scale (τb). The four parameters
in model L from left to right and top to bottom are the nonlinear modulus (γ), the damage
coefficient (cd), the healing coefficient (cr) and the initial strain level (ε0). The two-dimension
marginal probability density of all pairs of two parameters in model B is shown in the upper
triangle subplots of the plot matrix. The density is shown with the color map from dark blue
to white. The brighter the color, the higher the density. Similarly, the two-dimension marginal
probability density of all pairs of two parameters in model L is shown in the lower triangle subplots
of the plot matrix. The density is shown with the color map from dark green to white. The brighter
the color, the higher the density. MCSE stands for Monte Carlo standard errors of each model
parameter.
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to larger damage coefficient cd is better compensated for by the decrease of the nonlinear
modulus γr than by the increase of the healing coefficient cr.

We here summarize the information gained from this section. We can estimate the fol-
lowing parameters from the data in co-propagating acousto-elastic testing: the first-order
nonlinearity (β), the second-order nonlinearity (δ), and the damage energy (γb) in model
B, as well as the nonlinear modulus (γ), the damage coefficient (cd), and the initial strain
level (ε0) in model L. Among them, the initial strain level (ε0) is an important parameter
that we introduce in this paper to explain slow dynamics as shown by the dash-dotted red
curve in Fig. 2.3b. We will discuss the physical implications of this parameter in Section
4.3. Two model parameters are poorly constrained - the evolution time scale (τb) in model
B, and the healing coefficient (cr) in model L. We will discuss possible reasons and suggest
feasible ways to better constrain these parameters in Section 4.4.

2.4 Discussion

In this paper, we analyse the behavior of two physical models to simulate nonlinear elastic
wave propagation and compare them with laboratory observations. Several interesting
aspects are worth further discussing here: (1) We find that model L can reproduce the
increase of average damage (AD) with the frequency of strain perturbations during the
steady state of damage. We will here revisit this main advantage and interpret it from both
mathematical and physical points of view. (2) We will also discuss how the influence of
the damage variable on the wave speeds can be similar to second-order nonlinearity. (3)
In model L, one of the key assumptions required for recovery after removing perturbations
is the existence of initial strain. We will discuss the validity of this assumption. (4) Most
importantly, we will revisit the major goal of proposing a model(s) whose parameters can be
constrained. This enables the model(s) to be applied to connect the observed non-classical
nonlinearity in the laboratory and in the field.

2.4.1 The frequency-dependence of damage

Recent studies find a general trend of increasing average damage with the excitation fre-
quency during the stationary phase (Rivière et al., 2016; Manogharan et al., 2022, 2021).
However, the underlying mechanism is not well understood. While Rivière et al. (2016)
favors models with rate/time dependencies, not every such model also results in frequency-

dependent damage during the steady state. In model B, the average damage is
E

4γb
A2 +

O(A4) (Berjamin et al., 2017), where A is the strain amplitude of perturbations and is
not related to the frequency (see also Fig. 2.4). In model L, frequency-dependent average
damage is observed and follows the same trend as the measurements (c.f., the red dots in
Fig. 2.4e).

We here interpret these findings analytically (see Appendix 2.A). We show that in model L,
the decrease of the damage coefficient and the increase of the healing coefficient with damage
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contribute differently to the frequency-dependent AD. We can also show that damage at the
steady state can increase with the frequency of the dynamic perturbation. Specifically, with
increasing healing coefficient (Cr(α) = crα), the average damage tends to decrease with fre-
quency, i.e. Eq. (2.A.2); while with decreasing damage coefficient (Cd(α) = cd exp (α/αd)),
AD becomes larger as the frequency increases, i.e. Eq. (2.A.6).

2.4.2 Damage vs. second-order nonlinearity contributions to co-
seismic changes in wave speed

Forming a "bow-tie" loop relation between the wave speed variation and the strain pertur-
bation requires that the time series of the modulus change contain a frequency component
that doubles the frequency of strain oscillation. In model B, there are two sources of such
double frequency. The first mechanism is second-order nonlinearity, as has been recognized
in previous analysis (Sens-Schönfelder et al., 2019). The second mechanism contributing to
the double frequency is related to damage and healing within a cycle. The rock is damaged
when the absolute value of the strain increases while it heals otherwise. This leads to two
cycles of damage and healing inside one cycle of strain perturbation.

In model L, neither the second-order nonlinearity (δ) nor the double damage-healing cycles
exist. The rock damages when the tensile strain is large enough that ξ− ξ0 > 0 and it heals
otherwise. This implies that the oscillation of the damage variable has the same frequency
as the strain perturbations, as highlighted with the two dash-dotted black lines in Fig.
2.3b. Instead, the mechanism in model L that adds the double frequency to the damage
evolution is the change of wave speed with the amplitude of the strain, coming from the
third non-quadratic term in Eq. (2.10).

We caution that damage effects may be confused with the effects of second-order nonlin-
earity in observations of "bow-tie" loops. In the framework of this paper, we introduce a
damage variable to explain the conditioning and the recovery of the wave speed. However,
in addition to slow dynamics, the damage variable can also influence the measured wave
speed in a similar way as classical nonlinearity. Such confusion may also appear in compar-
isons of modulus variation as in Fig. 2.6. The third parameter (the damage energy γb) in
model B determines the magnitude of damage: the smaller the damage energy, the larger
the magnitude of the damage. We conclude that the positive correlation between γb and
the second-order nonlinearity (δ) implies that the effect of the damage evolution on the
modulus is comparable to that of the second-order nonlinearity. However, it is possible to
discern the fundamental difference in the effects of the damage variable versus second-order
(classical) nonlinearity. The latter will lead to the same strain-dependent modulus change,
irrespective of the loading rate. However, the change of modulus due to the damage variable
will always be rate-dependent, as given in Eq. (2.6).
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2.4.3 Physical interpretation of both damage models

Whether damage evolution discriminates between compression and extension can lead to
different interpretation of the physical mechanisms underlying the evolution of the damage
variables. Different hypotheses have been proposed relating damage to friction (Aleshin
and Van Den Abeele, 2007) or to adhesion (Lebedev and Ostrovsky, 2014). Since the sign
of γbg in Eq. (2.8) is not related to compression or extension of strain, the healing and
damage terms of model B are clearly separated. The healing term becomes larger than zero
once damage occurs irrespective of the strain state. The healing term is simultaneously
increasing with the accumulation of damage. Once the healing term becomes large enough,
damage accumulation reaches a quasi-static state.

In contrast, the damage evolution of the material in model L differentiates between com-
pressive and extensive deformation. Here, rock only heals when the material is sufficiently
compressed (ξ − ξ0 < 0). The quasi-static state is reached due to increasing healing speed.
Lebedev and Ostrovsky (2014) proposed a possible explanation of slow dynamics being re-
lated to the thermal processes due to adhesion at the contacts of rock grains. The adhesion
potential (Jacob and Israelachvili, 1992) is non-symmetric for compression and extension.
The mechanism of adhesion therefore also favors a model that considers different effects of
damage and healing under compression and extension.

While both models explain the slow dynamics mathematically, the physical interpretation
of the L model has richer physical implications. First, each term in the internal energy
of the L model has a physical meaning, and the formulation strictly follows the laws of
thermodynamics. The healing is related to γI1

√
I2, a term that comes from the opening

and closing of micro-cracks (Lyakhovsky et al., 1997a). At the microscopic scale, this may
be interpreted as a re-attachment of asperities at contact surfaces. Second, as shown in
Fig. 2.6, the initial strain is relatively well resolved to be around 3 × 10−6. The existence
of this non-negligible initial strain may be related to the cohesive contact or to the thermal
deformation of rocks. The typical thermal expansion coefficient of rock is of the order of
10−5K−1 (Kirk and Williamson, 2012), where K is the unit of the absolute temperature.
This means a change of less than 1 K may equate to the here-constrained magnitude of the
initial strain. Although more observations are required to confirm this interpretation, the
existence of initial strain possibly explains why slow dynamics typically become prominent
when the dynamic strain is larger than 10−6 but not for smaller values (Remillieux et al.,
2017). Gajst (2020) and Lyakhovsky et al. (2022) add a storage energy term in model L
that is similar to the second term in Eq. (2.8). This new term also prevents the growth of
damage until the perturbation is larger than a certain threshold. Whether introducing an
initial strain as in our work or adding an additional storage energy term is more suitable for
explaining the observed non-classical nonlinearity discussed in this paper is an interesting
topic for future work.

We also note that the steady state is reached due to the increasing speed of healing under
compression with higher accumulated damage. This increase is not necessarily linear. It is
here in Eq. (2.14) only assumed to be linear for simplicity and demonstration purposes. A
physically motivated expression requires specific experiments to constrain this behavior.
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2.4.4 Model complexities and data availability

In the following, we discuss current limitations and future avenues for constraining param-
eters in models B and L from experiments. We will argue for the potential of conducting
DAET and copropagating acousto-elastic testing experiments on the same sample to more
accurately invert the model parameters.

β and δ in Eq. (2.13) of model B, and γr and ε0 in Eq. (2.14) of model L are related to
the simultaneous oscillation of modulus with the cyclic loading in phase 2 of slow dynamics
in Fig. 2.1. In the copropagating acousto-elastic testing experiments, the wavefront of the
probing wave is propagating simultaneously with the wavefront of the pump wave. Thus,
we can use this experiment to constrain β and δ in model B and γr, ε0 in model L, see Figs.
2.6a, f, and p.

However, since the duration of perturbation in the copropagating acousto-elastic testing
experiments is not long enough, τb in Eq. (2.13) of model B, Cd and Cr in Eq. (2.14) of
model L are less well constrained in Figs. 2.6f, k, and p. As explained in Section 3.1, τb
and γb of model B, as well as Cd and Cr of model L, describe how the models reproduce
the mechanical response of rock samples at a longer time scale. In this work, we use
DAET experiments to estimate these model parameters in Fig. 2.4f. However, for the same
sample, no co-propagating acousto-elastic testing experiments are available. Longer time
scale damage model parameters may be better constrained using DAET and copropagating
acousto-elastic testing experiments on the same sample.

2.4.5 Limitations

The damage variable capsulizes changes in material stress-strain relations due to the physi-
cal processes, such as adhesion (Lebedev and Ostrovsky, 2014), plastic deformation at grain
contacts (Lieou et al., 2017) or friction (Aleshin and Van Den Abeele, 2007), at meso- and
microscopic scales. Compared to the explanation of Lebedev and Ostrovsky (2014), the ac-
cumulation of damage during the extension of material might be related to the detachment
at the contacts of asperities; whereas the recovery (decrease of the damage variable value)
might be associated with re-attachment and with asperities that gradually shift from the
secondary stationary state to the main stationary state. However, developing a stringent
mathematical framework connecting the damage variable at the macroscopic scale with
microscopic physical processes is challenging and currently elusive.

Model L does not match the modulus change equally well as model B, especially during
rock compression. In model L, the increase in wave speed due to the third term γI1

√
I2

during compression cancels out the wave-speed drop from damage. Future modification of
the L model may mitigate the influence of its third term on the change in wave speed while
preserving differentiating between tensile and compressive strains.

In this work, we analyze the behaviors of two damage models. To compare our 2D simulation
results with laboratory observations, we simplify some of the model parameters acknowl-
edging the limited amount of available observational data. One aspect that will require
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further investigation for modeling slow dynamics in 2D and 3D is the full response of ma-
terial damage from strain perturbations including different components of the strain/stress
tensor. Lott et al. (2017) proposed a formulation that connects a scalar damage variable to
the stiffness tensor. The resulting changes in P- and S-wave speed in response to different
modes of perturbations qualitatively match observations. In future work, this relationship
may be combined into the internal energy formulation in Eq.(2.2) to potentially refine our
dynamic understanding of how the steady state in DAET (phase 2 in Fig. 2.1) is reached.

The achieved quantitative match of our modeling results and laboratory observations demon-
strate the potential of both proposed models to capture natural co-seismic damage of rocks.
The amplitudes of the changes in moduli modeled here and observed in laboratory experi-
ments are small under small strain perturbations (∼ 10−4, see Tables 2.1 and 2.2, and Fig.
2.4f). At the field scale, the observed magnitudes of moduli changes vary between 10−4

and 10−1 depending on the depth, rock/soil types, and level of the dynamic strain (e.g.,
Gassenmeier et al., 2016; Qin et al., 2020; Wang et al., 2021). As a next step, the nonlinear
models can be implemented in large-scale 3D wave solvers, e.g., SeisSol (https://seissol.org)
or ExaHyPE (Reinarz et al., 2020). The associated major challenges stem from the nature
of nonlinear hyperbolic partial differential equations. Solutions can become discontinuous
during the propagation of waves even when the initial conditions are smooth (LeVeque,
2002). There are numerical methods that may resolve such dynamic discontinuities by in-
troducing numerical diffusion. This comes with different criteria for numerical stability and
typically requires higher spatial and temporal resolution. It leads to computationally more
expensive schemes. However, to simulate co-seismic damage and post-seismic recovery as
observed in the field, 3D simulations will be indispensable to help bridge the gap between
the laboratory and the field scales.

2.5 Conclusions

We demonstrate the applicability and compare two models that explain the observed non-
classical nonlinear behaviors of rocks, an internal variable model (IVM) and a continuum
damage model (CDM). The analyzed IVM, model B, is proposed by Berjamin et al. (2017),
while the CDM, model L, is adapted from Lyakhovsky et al. (1997a). Using both physical
models, we numerically simulate nonlinear wave propagation in rocks with fast and slow
dynamics with the discontinuous Galerkin (DG) method in 2D.

• We compare the simulation results with two sets of experiments. In dynamic acousto-
elastic testing, the model that we adapted from Lyakhovsky et al. (1997a). can quan-
titatively explain both amplitude- and frequency-dependent damage of rock samples.

• In co-propagating acousto-elastic testing, the change of modulus in laboratory obser-
vation has a higher correlation coefficient with simulation results using the model by
Berjamin et al. (2017) than those of the model that we adapted from Lyakhovsky et al. (1997a).
However, only the latter model explains the observed delay of modulus variation rel-
ative to strain.

https://seissol.org
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• From the joint posterior distribution of the model’s parameter space using Adaptive
Metropolis Markov chain Monte Carlo (AM-MCMC), we demonstrate that nonlinear
parameters can be resolved but that the associated uncertainties vary. We find that
the effects on wave-speed changes from the second-order nonlinearity and from the
damage variable can be very similar.

• The evolution time scale (τb) in the model of Berjamin et al. (2017) and the healing
coefficients cr in the adapted model from Lyakhovsky et al. (1997a) are particularly
challenging to resolve from co-propagating acousto-elastic testing. We suggest that
the model parameters can be better constrained if we can conduct dynamic acousto-
elastic testing and copropagating acousto-elastic testing on the same sample.

We conclude that the quantitative match between both models and the laboratory observa-
tions justify the applicability of these models in describing the phenomena of slow dynam-
ics. Future nonlinear damage modeling using either physical model in a 3D highly-scalable
software for seismic wave propagation simulations will allow comparison to field-scale ob-
servations and account for natural complexities such as complex surface topography and
subsurface heterogeneities.
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Appendices

Appendix 2.A Analytical analysis of model L

A1 Analytical interpretation of the frequency dependence of model
L

Here we derive analytical solutions to the frequency-dependent damage of the model of
Lyakhovsky et al. (1997a). We make the following simplifying assumptions: First, we
assume that only εxx is perturbed by εload = ε0sin(ωct), as in Fig. 2.3. As in Table 2.1,
ξ(ε0

=
)+ξ ≈ 0.01 and is assumed to be zero at the initial strain level. Further, we approximate

I2(ξ − ξ0) = R0εload +O(ε2load) ≈ R0εload.

• Increasing healing coefficient with damage

In the case when the healing coefficient linearly increases with the damage variable, Eq.
(2.12) is simplified as

·
α =


CdγrR0εload =

c1
ε0
εload if εload > 0 and α ≥ 0

CrαγrR0εload =
k1
ε0
αεload if eεload ≤ 0 and α ≥ 0

0 if α < 0

. (2.A.1)

Consider one cycle of perturbation where t ∈ [0, 2π/ωc] and the damage variable at the
beginning of the cycle is α0. We then derive that the maximum damage at t = π/ωc is
αmax = α0 + 2c1/ωc at the end of the cycle, αt = αmax exp (−2k1/ωc). At the dynamically
steady state, αt = α0. The average of the damage variable in a cycle is approximated by

< α >≈ 0.5(α0 + αmax) =
c1
ωc

1 + ε
−2k1/ωc

load

1− ε
−2k1/ωc

load

, (2.A.2)

which is monotonously decreasing with frequency.

• Decreasing damaging coefficient with damage

43
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In the case when the damage coefficient exponentially decreases with the damage variable,
Eq.(2.12) is simplified as

·
α =


CdγrR0 exp (−α/αd)εload =

c1
ε0

exp (−α/αd)εload if εload > 0 and α ≥ 0

CrγrR0εload =
c2
ε0
εload if εload ≤ 0 and α ≥ 0

0 if α < 0

. (2.A.3)

Following a similar consideration as above, we derive

exp (α0/αd) =
K

1−K

2c1
ωcαd

, (2.A.4)

exp (αmax/αd) = exp (α0/αd) +
2c1
αdωc

, (2.A.5)

where K = exp (− 2c2
αdωc

). Multiplying Eq. (2.A.4) and (2.A.5), it is derived that

exp (
α0 + αmax

αd

) =
K

(1−K)2
(
2c1
ωcαd

)2. (2.A.6)

with the right-hand side monotonously increasing with frequency.

Analytical analysis of the combination of the two cases in Eq. (2.A.1) and (2.A.3) is
challenging. But within the parameter space used in Fig. 2.4, we can show that the
damage at the steady state can increase with the frequency of the dynamic perturbation.

A2 Model L in 2D

The model of Lyakhovsky et al. (1997a), with plane strain assumption, can be written in
2D as a set of hyperbolic PDEs as

∂q
−

∂t
=

∂F
−

∂x
+

∂G
−

∂y
+ s

−
, (2.A.7)

where

q
−
= (εxx, εyy, εxy, vx, vy, α)

T ,

F
−
= (vx, 0,

1

2
vy, σxx/ρ, σxy/ρ, 0)

T ,

G
−
= (0, vy,

1

2
vx, σxy/ρ, σyy/ρ, 0)

T ,

s
−
= (0, 0, 0, 0, 0,

·
α),
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and ·
α is given in Eq. (2.12). The stress-strain relationship is σij = (λI1− γ

√
I2)δij +(2µ−

γ
I1√
I2
)εij. It is therefore derived that

∂F
−

∂q
−

=


0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1/2 0

Q11 Q12 Q13 0 0 0 D1

Q21 Q22 Q23 0 0 0 D2

0 0 0 0 0 0 0

 , (2.A.8)

where

ρQ11 = (λ+ 2µ)− γ(2
εxx√
I2

+
I1(ε

2
yy + 2ε2xy)

I2
√
I2

),

ρQ12 = λ− γ(
I1√
I2
− I1εxxεyy

I2
√
I2

),

ρQ13 = −γ(
2εxy√
I2
− 2I1εxxεxy

I2
√
I2

),

ρQ21 = −γ(
εxy√
I2
− I1εxxεxy

I2
√
I2

),

ρQ22 = −γ(
εxy√
I2
− I1εyyεxy

I2
√
I2

),

ρQ23 = 2µ− γI1
ε2xx + ε2yy

I2
√
I2

.

With the same method as in Berjamin et al. (2019), the P-wave velocity in the x direction
reads

cp =
1

2

√
2Q11 +Q23 +

√
(2Q11 −Q23)2 + 8Q13Q21, (2.A.9)

Appendix 2.B Numerical implementation and verification
in ExaHyPE

We implement both models in ExaHyPE (Reinarz et al., 2020), an engine built for solving
nonlinear hyperbolic partial differential equations (PDEs) with the arbitrary high-order
derivative discontinuous Galerkin (ADER-DG) method. We verify the implementation by
means of comparison of our numerical solutions with those given by Berjamin et al. (2019),
who implemented the IVM B model in 2D under plain-strain conditions using the finite
volume method with flux limiters.

In this verification benchmark, the simulation domain is [0.0, 0.4] m × [0.0, 0.4] m. A point
force radiates seismic waves and is defined as fx = A sin 2πfctδ(x− xs)δ(y− ys), where δ is
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Figure 2.B.1: (a) Snapshot of the elastic strain energy field (1 − α)W in J/m3 at t = 0.04 ms
by Berjamin et al. (2019) simulated using the Finite Volume Method (FVM). R1 at (0.2, 0.22)
m and R2 at (0.2, 0.27) m are the locations of two receivers where the recorded time series of
the damage variable α is shown in (b) and (c), respectively. The solutions from Berjamin et al.
(2019) with FVM are plotted as dashed curves and the ExaHyPE solutions of our implementation
with the arbitrary high-order discontinuous Galerkin (ADER-DG) method are plotted in solid
curves for R1 in (b) and R2 in (c). Different source amplitudes with A = 0.5, 0.7, and 1.0 kN/m
are plotted in red, blue, and black, respectively. The relative root mean square (RRMS) errors

=
√

(α1 −α2)2/(α2 −
−
α2)2, derived from the solution vectors of ADER-DG α1 and FVM α2

respectively are denoted and
−
α2 is the average of α2.
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the Dirac delta function injected at (0.2, 0.2) m in x-direction and fc = 100 Hz. Following
the implementation of Berjamin et al. (2019), the Dirac delta function is approximated as

δ(x− xs)δ(y − ys) =
exp (−(d/σc)

2)

πσ2
c (1− exp (−(R/σc)2))

1d≤R, (2.B.1)

where d =
√
(x− xs)2 + (y − ys)2; 1d≤R is the indicator function whose support is a disk

space with a radius of R = cp/(7.5fc); cp =
√

(λ+ 2µ)/rho0 is the speed of the P-wave in
the undamaged material and the width parameter of the Gaussian function is σc = R/2.
In the simulation using the ADER-DG method in ExaHyPE, a structured quadrilateral
computational mesh is used to discretise space with an element edge length of around
1.66 mm, which means that 27 cells resolve one wavelength of P waves and 16 cells resolve
one wavelength of S waves. We choose the 1st order Lagrange basis with Gauss-Legendre
quadrature nodes. The achieved excellent agreement is shown in Fig. 2.B.1a. shows the
map of elastic strain energy at t = 0.04 ms from Berjamin et al. (2019). Solutions to
the damage (α) evolution at the two receivers, R1 at (0.2, 0.22) m and R2 at (0.2, 0.27)
m are compared between the Finite Volume solutions of Berjamin et al. (2019) and our
implementation in ExaHyPE in Figs. 2.B.1b and c.

Appendix 2.C Theoretical background for Bayesian inver-
sion

In order to quantitatively investigate the relative importance of the theoretical model pa-
rameters that explain the evolution of the observed slow dynamics, we apply Bayesian
inversion to both models.

The model parameters m
−

and experimental observations d
−
obs are viewed as random variables

in M ⊂ Rnm and D ⊂ Rnd , where nm and nd are the number of model parameters and the
number of observed data points. Let G : Rnm → Rnd denote the model map taking a
parameter onto a model prediction.

We then aim to find the posterior, namely the conditional distribution of m
−

for a given obser-

vation d
−
obs. We denote the corresponding probability density function (PDF) by ρ(m

−
|d
−
obs).

To directly compute underlying parameters from observed data, we would have to apply the
inverse of the model map G−1. However, that inverse is not available for our models. Em-
ploying Bayes’ theorem, we can reformulate the posterior in a way that, as will be detailed
below, only involves the forward map G:

ρ(m
−
|d
−
obs) =

ρ(d
−
obs|m

−
)ρ(m

−
)

ρ(d
−
obs)

∝ ρ(d
−
obs|m

−
)ρ(m

−
). (2.C.1)

We call ρ(m
−
) the prior density, ρ(d

−
obs|m

−
) is the likelihood that describes the probability
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density of measuring the observed data when m
−

is given, and ρ(d
−
obs) is the unconditional

PDF of measuring the observed data. Broadly speaking, the posterior considers a model
parameter to be likely if the parameter is plausible and its corresponding model prediction
is close to observed data.

In practice, ρ(d
−
obs) is not available. A way to circumvent an analytical derivation is to

sample the posterior with the Markov chain Monte Carlo (MCMC) method, where ρ(d
−
obs)

cancels out due to being independent of m
−

.

The prior encodes expert knowledge about what parameters might be generally plausible,
not considering our specific observation. Considering the physical constraint that all model
parameters are non-negative, it is M = {m

−
∈ Rnm|0 ≤ mi ≤ bi, i = 1, 2, . . . , nm}. bi is

the assumed upper bounds of each model parameter. Another constraint on the model
parameters is

∫
M ρ(m

−
) dm

−
= 1. With the above two constraints and based on the maximum

entropy principle of designing the prior (Good, 1963), the data is assumed to be uniformly
distributed in M.

Since we assume measurement errors to be Gaussian, we choose the likelihood as a Gaussian
distribution centered around the model prediction G(m

−
):

ρ(d
−
obs|m

−
) =

1√
(2π)n detC

=

e
−
1

2
(d
−
obs−G(m

−
))TC

=

−1(d
−
obs−G(m

−
))
. (2.C.2)

The covariance matrix C
=
∈ Rnd×nd captures the assumed variances of and the correlation

between data points, encoding our knowledge about measurement accuracy. With the
additional assumption that the measurements of data points are independent of each other
and all have the same variance σ2

m, we set C
=
= diag(σ2

m, . . . , σ
2
m).

From Eq. (2.C.1) and Eq. (2.C.2) it is clear that the posterior density can, up to an
unknown constant factor, be computed point-wise. Every evaluation then requires a corre-
sponding evaluation of the model map, i.e. one simulation run.

Appendix 2.D Details about the comparison with the DAET
experiments

D1 The validity of treating a DAET sample as a 0D oscillator

Manogharan et al. (2021) conduct DAET measurements on Westerly granite rock samples
under triaxial loading conditions. They load the sample with 20 cycles of sinusoidal stress
perturbations in one direction. The loading frequencies are 0.1, 1, and 10 Hz. For each
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frequency, they load the sample with 5 different amplitudes. They monitor the change of
P-wave speeds during the oscillations and also after the oscillation stops.

Before looking into details of the results, we first justify the validity of assuming the sample
in DAET as an oscillator under the used loading frequencies. The shortest wavelength of P-
wave in their rock sample is around 4165 m/s / 10 Hz ≈ 416.5 m (Manogharan et al., 2021).
This is still much larger than the length of the sample, which is 26 mm in the direction of
loading. If we further assume the material is homogeneous, the strain field induced by the
pumping signals is then uniform. This also means we can ignore the propagation of the
pumping waves. In other words, we treat the sample as an oscillator.

D2 Agreement between the model predictions and the experimental
data in Fig. 2.5

We here extend the discussion in Section 3.3 of the main text. We first give an explanation
to how model L explains the delay. In Eq. (11), when the tensile strain reaches its peak,
damage development will not cease (ξ − ξ0 > 0). It only stops upon the strain becoming
sufficiently compressive, i.e., once ξ is much smaller than zero such that ξ − ξ0 < 0. This
further damage that lasts for around 1/4 of the cycle leads to a larger modulus drop after
peak tensile stress as is observed in the laboratory data. However, between 20 µs and 30 µs,
there is a discrepancy between the solid green curve and the dashed red curve. The strain
within this time range is negative (compressive). This indicates that model L overestimates
the modulus increase during the compression of the sample.

Between 5 µs and 15 µs, both model B (the solid blue curve) and model L (the solid green
curve) do not vary as much as the data. However, the MCMC ensembles of model B (the
blue-shaded area) and model L (the green-shaded area) account for modulus variation at
that early period. The early modulus drops are compromised in our inversion to fit the
later part of the data better. Feng et al. (2018) made a better fit to the earlier part of the
signal, whereas their discrepancies between data and model predictions in the later time
range, e.g. between 30 µs and 40 µs, were then too large.

D3 Model parameters used to compare with the observed amplitude-
frequency dependence

The evolution of damage follows Eq. (2.12) with Cd(α) = cd exp (−
α

αd

√
I2
) and Cr(α) =

crα. We adopt a slight change in Cd(α) for a better fit of the data. Our adapted damage
evolution is still subject to the restrictions from the laws of thermodynamics in Eq. (2.5),
i.e., ensuring that the entropy is increasing in a closed system.
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Table 2.D.1: Summary of parameters for the comparison of model B and L, with A0 being the
amplitude of the sinusoidal strain perturbation, fc the frequency of the strain perturbation, β the
first order nonlinearity, δ the second-order nonlinearity, γb the damage energy, τb the evolution
time scale, γr the nonlinear modulus, cd the damage coefficient, cr the healing coefficient, ξ0 the
modulus ratio as defined in Eq. (2.11), cr the healing coefficient, εij0 the different components of
initial strains and αd the normalization factor as defined in Appendix 2.D.

Para. Values Units Para. Values Units
Perturbation A0 6× 10−5 1 fc 0.1, 1 or 10 Hz

model B β 1× 102 1 δ 3× 107 1
γb 3× 104 Pa τb 1× 10−1 s

model L

cd 5.0× 100 (Pa·s)−1εxx0 −2.00× 10−6 1
cr 5.0× 10−2 (Pa·s)−1εyy0 −2.00× 10−6 1
γr 8.0× 109 Pa εxy0 6.78× 10−6 1
ξ0 -0.39 1 αd [0.4, 0.9] 1

Appendix 2.E A short review of theories for slow dynam-
ics and damage mechanics

We provide a list of continuum damage models in terms of how they behave with respect
to non-classical nonlinearity in Table 2.E.1. We compare these models in terms of four
characteristics: (1) Stress-strain relation under zero damage; (2) Whether the model differ-
entiates between extension and compression in damage kinematics; (3) Linear or nonlinear
relationship between the damage variable and the moduli; (4) Whether they contain the
mechanism of healing.

Table 2.E.1: Summary of chosen representative damage models (see text for details). The two
models that we focus on in this work are highlighted in bold.

models stress-strain
relationship
before dam-
age

damage kine-
matics in
compression
and extension

relationship
between dam-
age variable
and moduli

healing mech-
anisms

IVM1 Nonlinear Same Linear Yes
CDM2 Linear Different Linear Yes
CDM3 Linear Same Nonlinear No
GPR4 Linear Same Nonlinear No
CDHM5Linear Same Nonlinear Yes
1 model B, Berjamin et al. (2017)
2 model L, Lyakhovsky et al. (1997a)
3 Budiansky and O’connell (1976)
4 Resnyansky et al. (2003); Romenski et al. (2007); Tavelli et al. (2020); Gabriel

et al. (2021)
5 Darabi et al. (2012)

As mentioned in the main text, many studies have used the framework of adhesive contacts
at rough crack surfaces to explain slow dynamics. The adhesion potential at the contact
of the grain boundary, as a function of the displacement of one surface relative to the
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other interacting surface, can have two local stationary points. This is different from the
linear elastic case where the elastic energy of the material, as a function of strain, only has
one global minimum, which is the vertex of the quadratic curve. Lebedev and Ostrovsky
(2014) argue that, under a certain level of external forcing, the energy input from smaller
asperities can be large enough to cause the system to leave the first local minimum and
reach a secondary local minimum during the perturbation. Compared to the displacement
at the first local minimum, the second one has larger values. This means at the same level
of external forcing, the displacement at the interface becomes larger. This corresponds
to a softening of the material. Such contacts may gradually return to the initial state of
equilibrium due to thermal fluctuations and may be responsible for the slow dynamics.

The apparent logarithmic recovery of material moduli with time in slow dynamics may be
explained by a superposition of exponential evolution processes at different time scales. This
idea is supported both mathematically (Snieder et al., 2017; Sens-Schönfelder et al., 2019)
and from experimental observations (Shokouhi et al., 2017). The anisotropic elastic mod-
uli drop can be explained to the first order by introducing a scalar conditioning variable
(Lott et al., 2017) to the stiffness tensor as defined by Hughes and Kelly (1953).
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Chapter 3

Nonlinear wave propagation in 3D with
kinematic source models

The nonlinear mechanical responses of rocks and soils to seismic waves play an important
role in earthquake physics, influencing ground motion from source to site. Continuous
geophysical monitoring, such as ambient noise interferometry, has revealed co-seismic wave
speed reductions extending tens of kilometers from earthquake sources. However, the mech-
anisms governing these changes remain challenging to model, especially at regional scales.
Using a nonlinear damage model constrained by laboratory experiments, we develop and ap-
ply an open-source 3D discontinuous Galerkin method to simulate regional co-seismic wave
speed changes during the 2015 Mw7.8 Gorkha earthquake. We find pronounced spatial
variations of co-seismic wave speed reduction, ranging from <0.01% to >50%, particularly
close to the source and within the Kathmandu Basin. The most significant reduction occurs
within the sedimentary basin and varies with basin depths, while wave speed reductions
correlate with the fault slip distribution near the source. By comparing ground motions
from simulations with elastic, viscoelastic, elastoplastic, and nonlinear damage rheologies,
we demonstrate that the nonlinear damage model effectively captures low-frequency ground
motion amplification due to strain-dependent wave speed reductions in soft sediments. We
verify the accuracy of our approach through comparisons with analytical solutions and as-
sess its scalability on high-performance computing systems. The model shows near-linear
strong and weak scaling up to 2048 nodes, enabling efficient large-scale simulations. Our
findings provide a physics-based framework to quantify nonlinear earthquake effects and
emphasize the importance of damage-induced wave speed variations for seismic hazard as-
sessment and ground motion predictions.

3.1 Introduction

Large earthquakes generate strong ground motions that pose a significant threat to civil
structures and human life (Ben-Zion et al., 2022). Physics-based models of rocks and
soils are essential for simulating potential ground motions from earthquakes in numerical
simulations that can account for the spatial heterogeneity and complex surface topography
of the Earth’s lithosphere (Cui et al., 2010; Taufiqurrahman et al., 2022; Roten et al., 2023).
Linear models have successfully explained key phenomena in seismic wave propagation,
such as wave field amplification in soft sediments (Moczo and Bard, 1993; van Ginkel et al.,
2022), directivity effects of large earthquakes (Boatwright and Boore, 1982; Roten et al.,
2014; Wollherr et al., 2019), and resonance in near-surface structures, including surface
topography (Lee et al., 2009; Hartzell et al., 2014) and sedimentary basins (Castellaro and

53
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Musinu, 2023).

In recent decades, nonlinear mechanical responses of rocks to seismic waves have been
widely observed, covering distances from a few kilometers to over one hundred kilometers
from the source (Sens-Schönfelder and Wegler, 2006; Gassenmeier et al., 2016; Lu and
Ben-Zion, 2022). Temporal variations in seismic wave speeds during and after earthquakes
have been observed using techniques such as repeating earthquakes (Poupinet et al., 1984;
Bokelmann and Harjes, 2000; Schaff and Beroza, 2004), cross-correlation of the ambient
noise or aftershock recordings between seismic station pairs (Sens-Schönfelder and Wegler,
2006; Brenguier et al., 2008b; Qiu et al., 2020a), and auto-correlation of data at individual
stations (Bonilla et al., 2019; Qin et al., 2020; Li and Ben-Zion, 2023). In these observations,
rocks typically exhibit a rapid co-seismic reduction in seismic wave speeds, followed by long-
term recovery (Gassenmeier et al., 2016). Measured magnitudes of such co-seismic wave
speed reduction range from less than 1% up to over 10%, depending on factors such as
rock type, distance from the source, depth of interests, and the temporal resolution of the
monitoring technique (Brenguier et al., 2014; Wang et al., 2021). Notably, auto-correlation
analyses at single stations reveal that co-seismic reductions in wave speed up to 8% are
possible at depths between 1 km and 3 km within 20 minutes after an earthquake (Bonilla
and Ben-Zion, 2021). Co-seismic wave speed changes under dynamic perturbation are
sensitive to rheology, ambient stress, and thermal and hydraulic conditions (Manogharan
et al., 2022; Lu and Ben-Zion, 2022). Such changes are potentially new observables that
can be extracted from seismic waves to probe subsurface structure and rheology. However,
observations of co-seismic wave speed changes may not be adequately captured by linear
elastic or visco-elastic models (Johnson and Sutin, 2005; Rivière et al., 2015; Manogharan
et al., 2022), indicating the need for more advanced physics-based frameworks.

The nonlinear mechanical responses become most prominent when seismic waves propagate
through soft sediments, typically located a few hundred meters below the ground surface
(Wang et al., 2021). Soft sediments typically exhibit low seismic wave speeds, amplifying
the strain field to values exceeding 10−3 and reducing the shear modulus by more than
50% (Roten et al., 2012; van Ginkel et al., 2022). This behavior is accompanied by the
damping of ground motion amplitudes (Rajaure et al., 2017) and a change in the frequency
components of seismograms toward lower values (Bonilla et al., 2011; Castro-Cruz et al.,
2020). Accounting for such nonlinear mechanical responses is crucial for modeling ground
motions at both low frequencies (≤1 Hz, Roten et al., 2014) and high frequencies (Roten
et al., 2016).

Capturing co-seismic wave speed changes relies on adequate nonlinear rock models. Some
of such nonlinear models originate from thermodynamic processes at the microscopic scale
(Iwan, 1967; Delsanto and Scalerandi, 2003; Lebedev and Ostrovsky, 2014). These models
usually introduce more parameters than those constrained by observations (Wang et al.,
2021). As a practical compromise, continuum damage mechanics (CDM) models are based
on simplified assumptions about microscopic material deficiencies and describe macroscopic
stress-strain relationships using fewer parameters (Kachanov, 1986; Desmorat, 2016; Gabriel
et al., 2021). Within this framework, the CDM model by Lyakhovsky et al. (1997a) and
the internal variable model (IVM) by (Berjamin et al., 2017) have been shown to reproduce
laboratory measurements of co-seismic wave speed changes in rocks (Renaud et al., 2012;
Feng et al., 2018; Manogharan et al., 2022; Niu et al., 2024). For unconsolidated sediments,
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such as soil, the loss of stiffness under cyclic loading is effectively described by a hyperbolic
shear modulus reduction curve (Kramer and Stewart, 2024; Vardanega and Bolton, 2013).

Previous studies have developed numerical methods for modeling co-seismic wave speed
changes in 1D (Remillieux et al., 2017; Berjamin et al., 2017) and 2D (Berjamin et al., 2019;
Niu et al., 2024), which have been validated through laboratory experiments. The fourth-
order staggered-grid finite difference method, implemented in the software AWP-ODC,
resolves shear modulus reduction using the IWAN model (Iwan, 1967) in 3D, with a focus on
capturing nonlinear effects in soft sediments for ground motion simulations (Cui et al., 2010;
Roten et al., 2023). Consolidated rocks, such as granite, also experience co-seismic wave
speed reductions (Shokouhi et al., 2017), which remain mostly smaller than 1%. Resolving
such small changes is computationally expensive using the IWAN model (Roten et al., 2023).
Leveraging this phenomenon as a probe for rock types and subsurface physical conditions
(Rivière et al., 2015; Manogharan et al., 2022) requires the development of a numerical
framework capable of resolving 3D co-seismic wave speed changes in consolidated rocks.
Such a framework would act as a critical bridge, enabling realistic regional-scale modeling
of co-seismic wave speed changes directly informed by laboratory data. However, to the
best of the authors’ knowledge, this approach remains unrealized to date.

To fill this gap, we here propose and validate a novel algorithm based on the discontinuous
Galerkin method (Cockburn and Shu, 1989; Dumbser and Käser, 2006; Dumbser et al., 2008)
for modeling seismic wave propagation in 3D nonlinear rock rheologies. We implement this
algorithm in the open-source software SeisSol (Heinecke et al., 2014; Uphoff et al., 2017;
Krenz et al., 2021; Uphoff et al., 2024), which is specifically suited for field-scale seismic wave
propagation simulations involving heterogeneous velocity models and complex geometries.
We verify the implementation by comparison against analytical solutions and present scaling
tests on the Frontera supercomputer (Stanzione et al., 2020).

Using this framework, we simulate co-seismic wave speed changes and ground motions
during the 2015 MW 7.8 Gorkha earthquake in the Kathmandu Valley. This earthquake oc-
curred directly beneath the Kathmandu Valley (Fan and Shearer, 2015), causing over 9,000
fatalities, extensive property damage, and significant loss of life in Nepal. Ground motion
records reveal that the Kathmandu basin experienced unexpectedly weak high-frequency
motions but larger low-frequency motions compared to empirical predictions (Takai et al.,
2016). This behavior has been attributed to nonlinear site response (Castro-Cruz et al.,
2020). To evaluate this hypothesis, we utilize an experimentally constrained nonlinear
model, IVM, to simulate the co-seismic wave speed changes in rocks (Niu et al., 2024).
We also adapt IVM such that it captures the hyperbolic shear modulus reduction curve in
soft sediments. By integrating laboratory data, our simulation results quantify the spatial
variability of field-scale co-seismic wave speed changes and their impact on peak ground
motions, offering important insights for seismic hazard assessment.
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3.2 Method

When nonlinear rock rheology is incorporated into seismic wave propagation simulations,
the governing wave equations are classified as nonlinear hyperbolic partial differential equa-
tions (PDE, Lax, 2005). A key characteristic of these equations is their potential for solu-
tions to develop spatial discontinuities, even if the initial conditions are smooth (LeVeque,
2002). Solving these equations requires an algorithm that can adequately resolve discontinu-
ities while maintaining numerical stability. Additionally, to allow realistic large-scale earth-
quake simulations and energy efficiency, the implementation must scale efficiently across a
large number of compute ranks (Carrington et al., 2008; Cui et al., 2010; Heinecke et al.,
2014; Uphoff, 2020; Krenz et al., 2021).

This section describes how we formulate the two nonlinear damage rock models employed
in this work as a system of nonlinear hyperbolic PDEs. We then outline the spatial and
temporal discretization of these PDEs using the discontinuous Galerkin method (Hesthaven
and Warburton, 2007; Cockburn et al., 2012).

3.2.1 Mathematical framework for nonlinear wave propagation in
damaged rocks

To model co-seismic wave speed changes and their impact on ground motions, we adopt the
recent mathematical framework by Niu et al. (2024) that utilizes a continuum damage model
(CDM, Lyakhovsky et al., 1997a) and an internal variable model (IVM, Berjamin et al.,
2017). Both models have been shown to quantitatively match laboratory data (Manogharan
et al., 2022; Feng et al., 2018; Niu et al., 2024). 2D solutions for co-seismic wave speed
changes modeled with the IVM implemented in the DG method have been validated against
the results of the finite volume method (Niu et al., 2024).

In the following, we present a unified DG algorithm for nonlinear wave propagation, de-
signed to accommodate any nonlinear rock model explicitly formulated as a system of
hyperbolic equations, including IVM and CDM. This approach extends our previous 2D
implementation of IVM to 3D and applies our 3D discontinuous Galerkin (DG) method to
model wave propagation using the CDM nonlinear rock model.

Hyperbolic PDEs are required for implementation in SeisSol (Uphoff et al., 2024). Previous
work implemented linear visco-elasticity (Käser et al., 2007; Uphoff, 2020) and Drucker-
Prager elasto-plasticity (Wollherr et al., 2018) using the DG algorithm for linear hyperbolic
equations. In contrast, CDM and IVM introduce nonlinear hyperbolic PDEs, which we
summarize as follows:
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∂t
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, (3.1)

where ε
=
= εij and σij denote, respectively, the total strain and stress tensors, vi is the vector

for particle velocity, and ρ is the material mass density. α is a damage variable, which is 0
for intact rock and 1 for fully damaged rock. rα defines the evolution rate of the damage
variable α as a function of the strain tensor and the damage variable itself.

IVM and CDM are both extensions of the classical linear elastic stress-strain relationship
that is parameterized with two Lamé parameters, i.e., λ0 and µ0 (Landau et al., 1986).
The differences between the two models lie in how they are extended to include nonlinear
functions of the stress tensor σij(ε

=
, α), and how the source term rα(ε

=
, α) is defined.

For the IVM (Berjamin et al., 2017), we writeσij(ε
=
, α) = (1− α)(λ0I1δij + 2µ0εij + σmur

ij )

rα(ε
=
, α) =

1

γbτb
[
1

2
λ0I

2
1 + µ0I2 +Wmur − ϕ(α)]

, (3.2)

where ϕ(α) = γb[α/(1 − α)]2 is the storage energy, γb is the scale of ϕ(α) with units in
pascals (Pa), and τb is the time scale of damage evolution. I1 = εkk and I2 = εijεij are two
strain invariants.

The original IVM framework can incorporate the classical Murnaghan nonlinear elasticity
(Murnaghan, 1937) with three additional material parameters l0, m0, and n0 to account for
third-order terms in the non-quadratic components of the elastic energy function Wmur =
(l − m)/3I31 + mI1I2 + nI3, where I3 = δijkεi1εj2εk3. This leads to the additional stress
component σmur

ij = a0δij+a1εij+a2εikεkj, where the coefficients a0 = l0I
2
1−(m0−1/2n0)(I

2
1−

I2), a1 = (2m0 − n0)I1, and a2 = n. δijk denotes the Levi-Civita permutation symbol.

While Murnaghan nonlinear elasticity is useful for modeling some instances of stress-induced
anisotropy (Sharma, 2010), it may not adequately explain the observed co-seismic wave
speed reductions under dynamic stress fields (Gassenmeier et al., 2016; Berjamin et al.,
2017; Niu et al., 2024). Therefore, in the following, we choose to set l0 = m0 = n0 = 0 to
exclude the additional terms of Murnaghan nonlinear elasticity in our proposed algorithm.
This also ensures that σmur

ij = Wmur = 0 in Eq. (3.2). However, in Sections 3.3.1 and 3.3.2,
we demonstrate that our proposed algorithm remains generic and can accurately resolve
nonlinear effects resulting from a simplified Murnaghan nonlinear elasticity in 1D.

For the CDM (Lyakhovsky et al., 1997a, 2016), we write
σij(ε

=
, α) = λ0I1δij − αγr

√
I2δij + [2(µ0 + αξ0γr)− αγrξ]εij

rα(ε
=
, α) =

{
CdγrI2(ξ − ξ0) , if ξ − ξ0 > 0
0 , if ξ − ξ0 ≤ 0

, (3.3)



58 3. Nonlinear wave propagation in 3D with kinematic sources

where γr is a third modulus originating from the homogenization of parallel cracks (Lyakhovsky
et al., 1997b), and Cd is a damage evolution coefficient. ξ = I1/

√
I2 is derived from the

two strain invariants. It grows from −
√
3 for isotropic compression to

√
3 for isotropic

extension. The damage α starts to accumulate as the strain state deviates farther enough
from the isotropic compression. This is expressed as ξ − ξ0 > 0, where ξ0 is a material
parameter that is usually negative for rocks (Lyakhovsky et al., 2016).

In this work, we propose a generic algorithm that can be used for either IVM or CDM.
Both models can generally be formulated as a nonlinear hyperbolic system of conservation
laws with an additional source term following Dumbser et al. (2008):

∂up

∂t
+

∂F d
p (v−

, ε
=
, α)

∂xd

= sp(v−
, ε
=
, α), (3.4)

where up = (εxx, εyy, εzz, εxy, εyz, εzx, vx, vy, vz, α)
T is a vector of the conservative variables.

εxx, εyy, εzz, εxy, εyz, and εzx are six components of the strain tensor ε
=
= εij; vx, vy and

vz are the three components of the particle velocity vector v
−
. The flux term F d

p represents
the rates at which the conservative variable up gets transferred through a unit area in the
direction xd (LeVeque, 2002). The source vector sp = (0, 0, 0, 0, 0, 0, 0, 0, 0, rα)

T with only
one non-zero element rα defined in Eq. (3.2) for IVM or Eq. (3.3) for CDM.

3.2.2 Numerical discretization of the nonlinear wave equations

Our implementation adopts the Arbitrary-accuracy DERivative (ADER) discretization in
time (Titarev and Toro, 2002; Dumbser et al., 2008; Gassner et al., 2011), and the discon-
tinuous Galerkin (DG) discretization in space (Cockburn and Shu, 1989; Dumbser et al.,
2008). Here, we apply a linearization to the nonlinear hyperbolic PDEs to simplify the
adaptation of the algorithm to both damage models, as outlined in Section 3.2.1. This
linearization also minimizes the necessary changes to the existing data structure in SeisSol
(Uphoff, 2020; Uphoff et al., 2024). We provide a detailed description of the method in this
section and Appendix 3.A and will demonstrate in Section 3.3.1 that the algorithm still
converges using linearization.

We subdivide the computational domain into tetrahedral elements. Within each element Tm,
we use a modal discontinuous Galerkin approach to approximate the conservative variables
as u

−
≈ u

−
h, employing Dubiner’s orthogonal polynomial basis functions, ϕl(x−

) (Cockburn

et al., 2012). The temporal evolution of the solution is captured using time-dependent
coefficients Qlp(t) defined as:

uh
k(x−

, t) =
L∑
l=1

Ulk(t)ϕl(x−
), k = 1, 2, ..., K, (3.5)

where the index l runs from 1 to L = (p+1)(p+2)(p+3)/6 for a polynomial degree p. The
index k runs from 1 to K, the number of elements in the conservative variables up in Eq.
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(3.4). We discretize the time-dependent coefficients using the ADER scheme with a Taylor
series as

Ulp(t) =
N∑
i=0

(t− tn)
i

i!
Di

lp, (3.6)

where D0
lp = Ulp(tn), and Di

lp =
∂iUlp

∂ti

∣∣∣∣
t=tn

for i ≥ 1.

This discretized system is solved in two steps. First, we linearize the nonlinear hyperbolic
system and estimate Di

lp using the Cauchy-Kovalevskaya approach (Kovalevskaja, 1874).
In the following, we refer to this step as the “prediction step”. It allows us to obtain
the estimated Ulp(t) within one stage, as opposed to the Runge-Kutta method (Butcher,
2007; Gassner et al., 2011). In the second step, we use the predicted Ulp(t) to integrate
the conservative variables over time while adequately addressing spatial discontinuities at
element interfaces, which we refer to as the “correction step”. In Appendix 3.A, we detail
the algorithm to solve these discretized nonlinear wave equations proposed in this work,
including how we implement free-surface and absorbing boundary conditions.

3.3 Verification against analytical solutions

In this section, we verify the proposed numerical algorithm by solving three problems with
known analytical solutions. It is essential to confirm that the proposed numerical scheme
converges to the correct solutions before applying it to large-scale seismological applications,
for which it is impossible to derive analytical solutions for nonlinear wave equations in 3D.

We first compare our numerical solutions for plane waves in 3D with two existing analytical
solutions in 1D: (1) the nonlinear Riemann problem and (2) the generation of high-frequency
harmonics from a single-frequency source. For 3D analysis, we show that the proposed
algorithm can accurately resolve stress-induced anisotropy of CDM, in agreement with the
analytical solutions from Hamiel et al. (2009).

3.3.1 The nonlinear 1D Riemann problem

The Riemann problem is a canonical benchmark with analytical solutions for nonlinear
hyperbolic PDEs in one dimension (LeVeque, 2002). It is defined by initial conditions with
a single discontinuous interface, where the variables have one set of uniform values on one
side of the interface while having another set of different uniform values on the other side.
The Riemann problem is widely used to assess whether numerical algorithms can accurately
resolve discontinuities in solutions, which is an important feature of nonlinear hyperbolic
PDEs.

We use a plane shear wave in 3D to configure the 1D Riemann problem. The plane shear
wave comprises εxy and vy. We set the remaining components to zero. We define the
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wavefront as parallel to the y−z plane, such that the domain only varies in the x direction,
which simplifies Eqs. (3.1) to:


∂εxy
∂t

=
1

2
(
∂vy
∂x

)

ρ
∂vy
∂t

=
∂σxy(εxy)

∂x

, (3.7)

where we define σxy = 2µ(1− βεxy)εxy as a nonlinear function of εxy with β being the first
order nonlinear coefficient (Landau et al., 1986).

This formulation is comparable to a 1D reduction of Murnaghan nonlinear elasticity, as
described after Eq. (3.2). Meurer et al. (2002) provide analytical solutions to the Riemann
problem for Eqs. (3.7), incorporating the simplified 1D nonlinear stress-strain relationship.

We choose material parameters and initial conditions to show the accuracy of our proposed
algorithm for materials with strong nonlinearity. Therefore, we set the following initial
conditions for the Riemann problem.

[εxy, vy]
T =

{
[0.1,−0.5]T for x < 0
[0.2,−1.0]T for x ≥ 0

. (3.8)

These initial conditions are also shown as dashed curves in Fig. 3.1. We set ρ = 1.0,
µ = 1.0 and β = 10.0. The black curves shown in Fig. 3.1 are the corresponding analytical
solutions evaluated after 4 ms. The solutions feature one shock wave (interface with sharp
discontinuities, marked with red dashed rectangles) and one rarefaction wave (a smooth
transition from one state on the left to another state on the right, highlighted by purple
rectangles).

We compare this analytical solution to several numerical results obtained with a polynomial
order p = 3 on three mesh sizes: h = 2.5 mm (dashed blue curves), h = 0.5 mm (dash-dotted
blue curves) and h = 0.1 mm (solid blue curves). Figs. 3.1c and 3.1d focus on the numerical
solutions at the shock wavefront and at the rarefaction wavefront. The shock wave exhibits
stronger spatial oscillations than the rarefaction wave, primarily due to solution variations
within each element. The amplitude and wavelength of these oscillations both decrease
as the mesh is refined, indicating that oscillations can be effectively suppressed with mesh
refinement.

We analyze the convergence rates for different orders of polynomial basis functions and
present the results in Fig. 3.1b. We quantify the L2 errors in our numerical simulations at
t = 4 ms using the L2 norms of the differences between the analytical solution uana and the
numerical solutions unum. We determine the convergence rate by analyzing the reduction of
L2 errors with mesh size h on a logarithmic scale. The observed convergence rate remains
first order across all polynomial degrees tested (1 to 5), indicating that this algorithm does
not achieve arbitrarily high-order accuracy at discontinuities. Nonetheless, we still observe
lower L2 errors with higher-order basis functions on the same mesh (p-convergence, Wollherr
et al., 2018). We will discuss the underlying causes and potential improvements in Section
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Figure 3.1: Comparison of the analytical and the numerical solutions with varying mesh resolution
h and polynomial degrees p for the Riemann problem. (a) Comparison of numerical and analytical
solutions of vy and εxy using shape functions of polynomial degree 3 (O4, representing convergence
rate of order 4). We show solutions for three mesh sizes: h = 2.5 mm (dashed blue curves), h =
0.5 mm (dash-dotted blue curves) and h = 0.1 mm (solid blue curves). The initial conditions (IC)
are illustrated as dashed black curves, and the analytical solutions are given in solid black curves.
(b) Convergence analysis showing the error decay with decreasing mesh size h, for simulations
using basis functions of polynomial degrees 1 (O2, blue dots), 3 (O4, orange rectangles), and 5
(O6, green triangles). The dashed black line indicates first-order convergence as a reference. Panels
(c) and (d) highlight specific features of (a): the shock wavefront (inside the dashed red rectangles)
in (c) and the rarefaction wavefront (inside the dashed pink rectangles) in (d).

3.3.2 1D frequency modulation by nonlinear materials

The generation of harmonics from a single-frequency source is a mathematically intriguing
problem in nonlinear wave propagation. It is widely used to quantify material nonlinearity
in acoustic testing and non-destructive evaluation (Shah and Ribakov, 2009; Matlack et al.,
2015; Jiao et al., 2025). This behavior is a distinctive and general feature of wave propa-
gation in nonlinear materials, existing in both the Murnaghan nonlinear elasticity and the
nonlinear stress-strain relationship in Eq. (3.3) of CDM.
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For the 1D Murnaghan nonlinear elasticity defined in Eq. (3.7), we use the 1D analytical
asymptotic solutions from McCall (1994) derived using perturbation theory, which describes
how the amplitudes of generated harmonics depend on the nonlinear parameters of the ma-
terial, the propagation distance, and the source amplitude. We use this analytical reference
solution in the following to show that our proposed algorithm can accurately resolve the gen-
eration of harmonics in 1D nonlinear numerical simulations, exemplarily for 1D Murnaghan
nonlinear elasticity.

We adopt the same plane shear wave description as in Section 3.3.1 for the single-frequency
source setup and solve the same nonlinear wave equations as in Eqs. (3.7). The simulation
is carried out in a cubic domain [-0.025, 0.025] m × [-0.025, 0.025] m × [-0.025, 0.025] m,
with periodic boundary conditions on all faces. We define the initial conditions for the plane
wave such that the wavelength is 0.05 m, matching the length of the simulation domain:

[εxy, vy]
T = [V0/cs, V0]

T × sin (2πkx), (3.9)

where k = 20 m−1 and cs =
√

µ/ρ is the shear wave speed. We set µ = 82.7 GPa, ρ = 2473
kg/m3, and vary the wave amplitude V0 and the nonlinear coefficient β to assess whether the
simulation results can quantitatively match the analytical asymptotic solutions at a small
propagation distance in Eq. (34) of McCall (1994). We note that the shear modulus defined
here is unrealistically high for rocks; however, these parameters are chosen solely to verify
that the numerical solutions are mathematically consistent with the asymptotic solutions.
Additionally, the asymptotic solution from McCall (1994) indicates that the amplitude of
the second-order harmonics does not depend on µ.

The single-frequency waveform is modulated by the nonlinear parameter β during propa-
gation. Fig. 3.2a shows the modeled time series at distances of 0.0, 0.5, and 1.0 m from the
source. While the peak amplitude and period remain unchanged, the shape of the waveform
changes within one period due to the high-order harmonic generation.

We show the generated harmonics 1.0 m away from the source in Fig. 3.2b. McCall (1994)
derived an asymptotic solution for the amplitude of the second-order harmonics at small
distances away from the source. This analytical asymptotic solution is no longer valid at
larger distances. As shown in Fig. 3.2c, these analytical solutions (dashed curves) serve as
exact asymptotes to the numerical solutions (solid curves) at small distances. We present
results for three sets of parameters, demonstrating the robustness of the match between the
analytical asymptotic and our numerical solutions.

3.3.3 3D stress- and damage-induced anisotropy

Rocks exhibit various types and levels of anisotropy (Nur and Simmons, 1969; Nur, 1971;
Browning et al., 2017). This anisotropy arises from various internal flaws, such as cracks,
joints, and fabric development due to differential stress and strain during tectonic processes
(Panteleev et al., 2024). The anisotropy of seismic wave propagation in such rocks can
depend on the stress state and accumulated damage, a phenomenon referred to as stress-
and damage-induced anisotropy. This dependence leads to nonlinear stress-strain relation-
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Figure 3.2: Comparison between numerical and analytical asymptotic solutions for wave propaga-
tion from a single-frequency source. (a) Recorded time series of vy at the source (dashed red curve)
and at distances of 0.5 m (dash-dotted red curve) and 1.0 m (solid red curve) from the source.
(b) The frequency amplitude spectrum of the time series of vy at 1.0 m from the source shows
the generation of high-order harmonics, which are multiples of the fundamental frequency. (c)
Comparison between the analytical asymptotic solutions (dashed curve) and the numerical (solid
curves) solutions. We show three sets of parameters, with variations in the nonlinear modulus β
and the amplitude of the source V0. We note that the analytical asymptotic solutions are known
to be only valid at short distances from the source.
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ships, which are important for capturing path and site effects in earthquake simulations.
Accurately resolving these effects is essential to advance numerical simulations of ground
motions.

Both Murnaghan nonlinear elasticity and CDM describe stress-induced anisotropy (John-
son and Rasolofosaon, 1993; Hamiel et al., 2009). However, while Murnaghan nonlinear
elasticity may require unrealistically high values for l0, m0, and n0 in Eq. (3.2), CDM
provides a physical framework that can describe stress- and damage-induced anisotropy
and has been experimentally validated (Hamiel et al., 2009). Here, we demonstrate that
our proposed generic algorithm is suitable for implementing CDM by verifying its ability
to resolve stress- and damage-induced anisotropy in 3D. We compare the numerical results
with the analytical solutions derived by Hamiel et al. (2009).

We set up several plane-wave initial value problems to investigate how the P, S, and qS
wave speeds depend on the orientation of the initial stress with respect to the normal vector
of the initial wavefront and the damage level α. The qS wave speed is the additional wave
speed resulting from anisotropy (Harris et al., 2009). Without loss of generality, we fix the
normal vector of the wavefront to (1,0,0) and vary only the initial stress field and α. Since
CDM represents the seismic wave field using the total strain tensor ε

=
= ε

=

pre + ε
=

dyn, we
pragmatically apply initial stress by prescribing initial strain values.

The initial strain field consists of two parts: (i) a uniform strain field ε
=

pre, that represents
the stress (strain) state of the rocks before dynamic perturbations from seismic waves; and
(ii) the perturbation field udyn

i = (εdyn
xx , εdyn

yy , εdyn
zz , εdyn

xy , εdyn
yz , εdyn

zx , vx, vy, vz, α)
T , substituted

into Eq. (3.4). The expression for udyn
i depends on the wave type and is given as


udyn
i = A0r

1
i sin (2πkx) , for P wave

udyn
i = A0r

2
i sin (2πkx) , for S or qS wave

udyn
i = A0r

3
i sin (2πkx) , for S or qS wave

, (3.10)

where the three vectors r1i , r2i and r3i are defined in Eq. (3.A.21). The classification of r2i
or r3i is either S or qS waves depending on the orientation of the uniform strain field ε

=

pre.

We list the material properties of the CDM model and the initial values of the PDEs in
Table 3.1. The corresponding mathematical formulation is provided in Eq. (3.3). We adopt
the same cubic geometry as in Section 3.3.2.

Table 3.1: Summary of the perturbation field and the model parameters of the continuum damage
model.

Parameters Values Units Parameters Values Units
perturbationsA0 2.5 × 10−6 1 k 20 m−1

model para.
λ0 32 GPa γr 37 GPa
µ0 32 GPa ξ0 -0.75 1
ρ 2760 kg/m3 Cd 0.0 (Pa·s)−1

We set the initial damage variable α to 0.5. We define ε
=

pre in its principal coordinate
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system as (εpre
xx , ε

pre
yy , ε

pre
zz , ε

pre
xy , ε

pre
yz , ε

pre
zx )

T = (1 × 10−3, 0, 0, 0, 0, 0)T . Following Hamiel et al.
(2009), we initially align the global coordinate system in the numerical simulation with the
principal coordinate system of ε

=

pre. We then rotate ε
=

pre counterclockwise around the z-axis

by an angle ϕani, which ranges from 0 to 180 degrees.
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Figure 3.3: Comparison between analytical and numerical wave speeds of different phases for
damage- and stress-induced anisotropy. (a) P-wave speed comparison, where black dots represent
numerical simulation results and the black curve corresponds to the analytical solution. (b) S-wave
(red curve and dots) and qS-wave (blue curve and dots) comparisons, showing numerical results
alongside analytical predictions.

Figs. 3.3a and 3.3b compare analytical and numerical solutions for P waves and for S and
qS waves, respectively.

3.4 Modeling co-seismic wave speed changes during the
2015 Gorkha earthquake

We apply our verified numerical framework to model co-seismic wave speed changes during
the April 25, 2015, Mw 7.8 Gorkha earthquake in the Kathmandu Valley. We set up a
geometrically complex 3D simulation of nonlinear seismic wave propagation from a finite
source model of the 2015 Mw 7.8 Gorkha earthquake. Our setup captures key features
relevant for modeling earthquake-related ground motions: a geometrically complex low-
velocity sedimentary basin, layered subsurface geometry that represents different geological
units, and a finite source model accounting for the directivity effect of a large earthquake.

3.4.1 Numerical setup, nonlinear parameters and source model

As shown in Fig. 3.4b, the 3D computational domain has a size of 440×380×200 km3.
The velocity model includes five geological units (Table 3.2). The first unit accounts for
the surface topography and bathymetry of the shallow sediments within the Kathmandu
basin with a low S-wave velocity of 200 m/s (Bohara and Ghimire, 2015). The second unit
captures the strong topographical variation outside of the sedimentary basin within the



66 3. Nonlinear wave propagation in 3D with kinematic sources

Kathmandu Valley. We sample the surface topography with a resolution of 5 km. Units 3
through 5 are derived from a regional 1D velocity model (McNamara et al., 2017).
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Figure 3.4: Model setup for the non-linear kinematic simulation of the 2015, MW 7.8 Gorkha
earthquake. (a) Fault slip distribution interpolated from Wei et al. (2018)’s kinematic source
model. The dashed gray line indicates the 12-km depth slice shown in Fig. 3.5a. (b) Compu-
tational domain, consisting of five geological units. We incorporate topography, as well as the
bathymetry of the sedimentary basin (white region at the upper boundary of the domain). (c)
Shear modulus reduction with strain amplitude of the IVM model (blue curve) within the basin
that has been parameterized to match the IWAN model (dashed red curve, Iwan, 1967). (d) Map
view of sedimentary basin depth variation, with five strong motion stations (Takai et al., 2016)
marked by red triangles.

We will compare the effects of three inelastic rheologies and elastic behavior using otherwise
the same model setup: (i) visco-elastic, (ii) elasto-plastic, and (iii) internal variable model
(IVM). In the visco-elastic case, we adopt the Zener model (Carcione et al., 1988) to describe
viscous attenuation in SeisSol (Uphoff and Bader, 2016a; Uphoff et al., 2024). We list the
visco-elastic quality factors for the P-wave (QP ) and the S-wave (QS) inside each layer in
Table 3.2. The effective quality factors approximate the target quality factors well within
the frequency range of 0.03 to 3 Hz. They increase asymptotically to infinity outside this
frequency range, yielding close to linear elastic behavior. We set the quality factors as
QP = 0.1VS and QS = 0.05VS for VS measured in m/s following Olsen et al. (2003). In
the elasto-plastic setup, the inelastic behavior is only effective inside the sedimentary basin
(unit 1). We adopt the Drucker-Prager plasticity (Wollherr et al., 2018) and provide the
material parameters in the footnote of Table 3.2.
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We employ the IVM (Berjamin et al., 2017) to investigate nonlinear co-seismic wave speed
changes outside the fault core and extending over 100 kilometers from the fault. The model
has been validated in Niu et al. (2024) against two sets of laboratory experiments, which
demonstrates its ability to quantify nonlinear co-seismic wave speed changes in granite
samples (Manogharan et al., 2022) and sandstone samples (Feng et al., 2018). The mathe-
matical description of IVM nonlinearity is summarized in Eq. (3.2). We refer to Berjamin
et al. (2017) and Niu et al. (2024) for more details. The chosen model parameters of the
IVM within each region are given in Table 3.2. The nonlinear parameters inside the sed-
imentary basin (unit 1) are calibrated to match the modulus reduction curve from a 2D
analysis presented in Oral et al. (2022), constrained by the shift in resonance frequencies
observed during significant events with magnitudes exceeding MW 6.5 within the Kath-
mandu Valley (Rajaure et al., 2017). For the layered bedrocks (units 2 to 5), we constrain
the nonlinear IVM parameters from experiments by Manogharan et al. (2022) investigating
nonlinear co-seismic wave speed changes of Westerly granite samples. As discussed in Niu
et al. (2024), the parameter γb, which determines the amplitude of stationary wave speed
reductions under dynamic perturbations, can be constrained from experiments. However,
the time scale τb, which governs how quickly rocks reach the stationary state, remains highly
uncertain. Here, we assume τb = 10 s in units 1 to 5, which is consistent with the time
scale at which the changes in wave speed stabilize, as observed in experiments on Westerly
granite samples (Manogharan et al., 2021).

Table 3.2: Material parameters for each geological unit of the computational domain.

region depth cp cs ρ Qp Qs γb τb
unit km m/s m/s kg/m3 1 1 kPa s
1* variable 300 200 1400 20 10 0.5 10
2 variable -

3
5500 3250 2700 325 162.5 356 10

3 3 - 23 5502 3600 2700 360 180 437 10
4 23 - 45 6100 3600 2900 360 180 437 10
5 45 - 200 8100 4500 3300 450 225 550 10

* Plasticity is only effective inside the sedimentary basin in the elasto-plastic simulation.
The yielding strength is 224 kPa, with an internal friction angle of 26 degrees and a
visco-plastic relaxation time Tv of 0.05 s (Wollherr et al., 2018).

We employ a polynomial degree of five and SeisSol’s velocity-aware meshing capabilities to
adapt the element size h for each of the five geological units, ensuring at least three elements
per S-wave wavelength of a maximum target frequency. In this way, our simulations resolve
up to 0.5 Hz of the seismic wavefield everywhere in the domain, including in the complex
geometry, low-velocity basin. We refine this mesh around the finite fault plane, which is
embedded in units 1 to 3, to h = 800 m for a higher resolution of the kinematic rupture
evolution. As a result of the velocity-aware meshing, the sedimentary basin (unit 1) is
resolved with a higher mesh resolution of h ≈ 133 m. In units 2 and 3, mesh resolution
gradually decreases, and h increases from 800 m near the finite fault plane to ≈2000 m
away from the source region.

In this example, we implement the finite source model of Wei et al. (2018) on a meshed
finite fault plane to represent the MW 7.8 Gorkha earthquake. We do not model the
spontaneous dynamic rupture process on the fault. The relatively coarse kinematic source
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model is interpolated using 2D polynomial functions of degree three over a 186 km × 121
km rectangular fault plane, which results in 22,506 square sub-faults of size 1 km × 1 km.
We infer a variable slip rate on each of these sub-faults from the finite source model. Next,
we interpolate the imposed slip rates onto SeisSol’s triangular fault mesh as an internal
boundary condition. This implementation is based on the approach of Tinti et al. (2005);
Causse et al. (2014). We use a Gaussian source time function to describe the slip rate
function on each fault element (Bouchon, 1997).

3.4.2 Large-scale nonlinear co-seismic wave speed changes

Our nonlinear simulations reveal a significant reduction of co-seismic wave speed changes
following the Gorkha earthquake across a vast region (Fig. 3.5). Fig. 3.5a shows wave speed
changes 80 s after the rupture onset at 12 km depth. Nonlinear co-seismic wave speed
reductions near the source range between 1% and 10% and are particularly pronounced
close to the fault plane. For example, in the 12-km depth slice shown in Fig. 3.5a), the
dashed black line marks the fault plane, which hosts a high slip at this depth.

The spatial distribution of the near-fault wave speed changes correlates with the fault slip
distribution (Fig. 3.4a), with larger reductions in areas of large fault slip. Within the range
of 70 km from the fault intersection, the wave speed reductions all exceed 0.01%. This level
of damage is still measurable with coda-wave- or ambient-noise-based interferometry (e.g.,
Brenguier et al., 2014; Gassenmeier et al., 2016; Lu and Ben-Zion, 2022).
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Figure 3.5: Map views of co-seismic wave speed changes and fault slip distribution. (a) Co-seismic
wave speed changes at 12 km depth, illustrating spatial variations in velocity reduction. The dashed
black line marks the fault plane location at this depth. (b) Co-seismic wave speed changes at 2
km depth, highlighting near-surface variations in wave speed reduction. (c) Co-seismic wave speed
changes within the sedimentary basin, showing localized effects of nonlinearity in low-modulus
materials.

We show simulated co-seismic wave speed changes at 2 km depth in Fig. 3.5b, which are
lower compared with the changes at 12 km depth in Fig. 3.5a. However, the affected region
is larger. At 2 km depth, wave speed reductions exceed 0.01% within a 100 km radius.

Within the sedimentary basin, nonlinear co-seismic wave speed changes are much larger
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(Fig. 3.5c), and peak changes reach 88%, corresponding to local peak strains up to 3×10−2

as can be seen in the shear modulus reduction curve (Fig. 3.4c). The spatial distribution
of these changes correlates with the depth variations of the sedimentary basin (Fig. 3.4 d),
with greater reductions in wave speed located in regions with larger basin depths. These
findings align with field observations of nonlinear site effects, which report significant wave
speed reductions in soft sediments during strong shaking (Bonilla et al., 2011). We will
further compare the wave speed changes modeled here with observations in Section 3.5.

3.4.3 Nonlinear site effects and sedimentary basin effects

In conjunction with co-seismic wave speed changes, we observe clear effects of the non-
linear rheology on ground motions. Such effects are exemplified in synthetic seismograms
comparing linear elastic, visco-elastic, perfect elasto-plastic, and nonlinear damage model
simulations (Fig. 3.6a) at station KTP (Fig. 3.4d). Compared to the linear elastic case,
all three other models show different levels of ground motion damping at station KTP.
The nonlinear damage model exhibits the strongest wave attenuation due to progressive
modulus degradation, the accumulation of damage leading to the reduction of moduli.
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Figure 3.6: Time series and frequency analysis at station KTP. (a) Time series recorded at station
KTP (marked in Fig. 3.4b) for different rheological models: elastic (solid blue curve), elasto-plastic
(dash-dotted green curve), visco-elastic (dashed orange curve), and the IVM (solid red curve). (b)
and (c) are spectrograms of the IVM and elastic cases, respectively, showing the frequency content
of the recorded waveforms. The dashed red rectangles highlight the amplification of lower-frequency
components in the IVM simulation. (d) Normalized frequency spectra of the time series recorded
between 20 s and 50 s, comparing elastic (dashed blue curve) and IVM (solid red curve) models,
illustrating the enhanced low-frequency content in the IVM simulation. In Fig. 3.B.1, we show
the frequency spectra of time series recorded at four other stations marked in Fig. 3.4d.

Our simulations suggest that co-seismic degradation of rock moduli may be an impor-
tant mechanism contributing to the observed low-frequency amplification in soft sediments
(Bonilla et al., 2011). We capture this effect in the spectrograms of nonlinear damage vs.
linear elastic models (Figs. 3.6b, c). In the amplitude-frequency spectra of the modeled
ground motion recorded between 20 s and 50 s after rupture onset(Fig. 3.6d), we observe
a systematic enhancement of low-frequency components (0.1–0.2 Hz). In our simulation,
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this low-frequency amplification is not unique to station KTP. As shown in Fig. 3.B.1, low-
frequency amplification is a general feature of the modeled ground motions at stations with
high PGV values. High PGVs are correlated with significant ground deformation, lead-
ing to strong moduli reduction, consistent with the IVM shear modulus reduction curve
(Fig. 3.4c). Such low-frequency amplification is expected during wave propagation through
materials with co-propagating wave speed reduction. For example, a laboratory acoustic
experiment on rock samples illustrates this phenomenon (Remillieux et al., 2017), where
wave speed reduction delays the arrival time of later phases, elongating the period and
consequently shifting the energy to a lower frequency.

3.4.4 Nonlinear rheology and ground motions (<0.5 Hz)

We compare modeled shake maps of peak ground velocity (PGV) across models with varying
rheologies in Fig. 3.7. Linear elastic simulations show a strong correlation between the PGV
in Fig. 3.7a and the depth of the sedimentary basin in Fig. 3.4d. Visco-elastic and elasto-
plastic models reduce PGVs inside the Kathmandu basin, consistent with previous regional-
scale studies (Narayan and Sahar, 2014; Taborda and Roten, 2015; Esmaeilzadeh et al.,
2019). Extending Southern California ShakeOut simulations to include IWAN plasticity
also led to a reduction in ground motion amplitudes (e.g., Roten et al., 2023).

The nonlinear damage model attenuates PGVs across both high- and low-shaking intensity
regions, unlike the elasto-plastic model, which primarily reduces high PGVs (Fig. 3.7b).
The elasto-plastic model attenuates regions of high PGVs, such as in the pink dash-dotted
rectangles in Fig. 3.7b. However, elasto-plastic effects are negligible in regions with rel-
atively low PGVs, such as those marked with blue dashed rectangles in Fig. 3.7b, which
is expected from previous theoretical work and numerical simulations (e.g., Roten et al.,
2014; Kojima and Takewaki, 2016; Seylabi et al., 2021). The plastic yielding surface is
only reached when stress reaches a certain threshold. Below this threshold, the mechanical
behavior of the material is the same as that of the linear elastic model. In contrast, the
nonlinear damage model continuously degrades moduli with increasing strain amplitude
(Fig. 3.4c).

3.5 Discussion

3.5.1 Accuracy and performance of the nonlinear implementation

In Section 3.4, we applied the proposed algorithm to model regional-scale nonlinear co-
seismic wave speed changes in 3D. Nonlinear seismic wave propagation simulations are
computationally demanding, necessitating efficient algorithms and optimized implementa-
tions for execution on large-scale high-performance computing (HPC) systems (e.g., Reinarz
et al., 2020; Roten et al., 2023). To illustrate the efficiency of our nonlinear PDE solver, we
analyze its convergence rate with reduced element size h in Section 3.3.1. We also analyze
p convergence in Fig. 3.1, where the L2 errors in numerical solutions decrease with element
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Figure 3.7: Maps of peak ground velocity (PGV) for different rheologies: (a) elastic, (b) visco-
elastic, (c) IVM and (d) elasto-plastic. The dashed blue rectangles highlight the region where the
elasto-plastic model exhibits minimal attenuation, while the dash-dotted pink rectangles indicate
areas where attenuation is more pronounced.
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shape functions of higher polynomial degree p.

Fig. 3.1 shows a first-order convergence rate for simulations using basis functions of poly-
nomial degrees 1 to 5. This low order of convergence results from the linearized Cauchy-
Kovalevskaya procedure used in the prediction step, c.f. Eq. (3.A.2). The prediction
step approximates the time-dependent coefficients Ulp(t) within a single time step using
a Taylor series expansion (Toro et al., 2001). In this step, to compute high-order time
derivatives, we linearize the nonlinear hyperbolic equations in Eq. (3.A.2) and apply the
Cauchy–Kovalevskaya procedure to the linearized system, as detailed in Dumbser and Käser
(2006). This linearization ensures algorithmic generality across various nonlinear rock mod-
els but limits the accuracy of Ulp(t) at higher orders, thus constraining the overall conver-
gence rate.

A low-order convergence rate observed at solution discontinuities, such as shock waves, is
consistent with Godunov’s theorem (Godunov and Bohachevsky, 1959). This theorem es-
tablishes that high-order linear solvers have non-monotonic behavior near steep solution
gradients. In addition, spectral convergence properties might be reduced to low-order accu-
racy due to the manifestation of the well-known Gibbs phenomena in the vicinity of strong
discontinuities (e.g., Hesthaven and Warburton, 2007, Chapter 5.6). Local low-order con-
vergence is also evident in SeisSol’s dynamic rupture implementation (Sec. 6.3 Wollherr
et al., 2018).

A potentially promising extension of our work is the incorporation of a discrete Picard
iteration scheme (Lindelöf, 1894; Youssef and El-Arabawy, 2007; Dumbser et al., 2008;
Gassner et al., 2011; Reinarz et al., 2020). The Picard iteration can substitute our linearized
Cauchy-Kovalevskaya procedure in the prediction step to estimate Di

lp in Eq. (3.3). This
approach has been shown to help preserve high-order convergence up to 7 in ADER-DG
solvers (Dumbser et al., 2008).

We analyze the performance of our SeisSol implementation on the supercomputer Frontera
at TACC (Stanzione et al., 2020). Additionally, we suggest potential improvements to
enhance the current algorithm, including future large-scale hardware architectures.

We evaluate the scalability and speed-up of the nonlinear SeisSol implementation using the
2015 Kathmandu earthquake model shown in Fig. 3.4b. We here discretize the simula-
tion domain with three different meshes containing approximately 17, 40, and 100 million
elements, respectively. In the discontinuous Galerkin (DG) method, the degrees of free-
dom (DOFs) are directly proportional to the number of tetrahedral elements. We use a
polynomial degree p = 3 (Eq. 3.5) for performance analysis, resulting in 200 DOFs per
element.

The scaling tests consist of simulations using all three meshes and various numbers of
compute nodes, running for 3 s of physical simulation time with the same time step size.
SeisSol employs a hybrid MPI-OpenMP parallelization scheme, utilizing MPI for inter-node
communication and OpenMP for multi-threaded parallelization within each node (Uphoff
et al., 2017).

We evaluate the performance in terms of speed-up, which is defined as ts/t0 with ts being
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Figure 3.8: Scalability and performance. (a) Speed-up of simulations as a function of the number
of compute nodes, scaling up to 4096 nodes on Frontera (Stanzione et al., 2020). The dashed black
curve represents the ideal strong-scaling regime, where doubling the number of nodes halves the
time to solution. The dash-dotted gray curves illustrate the ideal weak-scaling regime, where pro-
portionally increasing the number of nodes with the number of mesh elements results in the same
speed-up. Different mesh sizes are represented by red triangles (17 million elements), blue circles
(40 million elements), and purple rectangles (100 million elements). Both axes use a logarithmic
scale. (b) Hardware performance analysis during simulations of the 2015 MW 7.8 Ghorka earth-
quake (Section 3.4) for different rock models, shown as a bar plot. The mesh used here contains
≈2.3 million elements, and the simulation ran on 32 nodes of SuperMUC-NG (Phase 1).
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the time to solution for a given combination of mesh size and number of compute nodes,
t0 is the time to solution of the baseline simulation which uses a 100-million-element mesh
on 128 nodes. Fig. 3.8 illustrates the scalability on the Frontera supercomputer at TACC
(Stanzione et al., 2020). Frontera employs Intel Xeon Platinum 8280 ("Cascade Lake")
processors, each offering 56 cores per node and operating at 2.7 GHz. The total number of
available compute nodes is 8,368.

We analyze how speed-up depends on mesh sizes and the number of compute nodes in
Fig. 3.8a. To facilitate direct comparison across different mesh sizes for both strong and
weak scaling, we normalize the speed-up by nodes per million elements in the following
discussions. The results indicate that for fewer than 20 nodes per million elements, strong
scaling is nearly linear using the 100 million element mesh, meaning that speed-up increases
almost proportionally with node count.

To analyze weak scaling behavior, we compare different mesh sizes using the same number
of nodes per million elements. The speed-up across the three different mesh sizes remains
nearly identical as long as the number of nodes per million elements remains below 20.
However, at 40 nodes per million elements, performance deviates significantly from ideal
scaling in both strong and weak scaling tests. Performance degradation becomes more
pronounced as the number of elements increases, corresponding to a larger number of com-
pute nodes. One possible explanation is that the communication time between MPI ranks
occupies a larger proportion of the overall computation time. Optimizing SeisSol’s perfor-
mance at those higher node counts is beyond the scope of this study and requires further
development efforts.

We compare the performance of our implementation using nonlinear space-time interpola-
tion kernels with that of existing SeisSol models. Since our implementation in this work
for nonlinear hyperbolic equations only supports a uniform time step size across the en-
tire simulation domain (global time stepping, GTS), we constrain our comparison with the
other existing models in SeisSol to the GTS scheme. Uphoff et al. (2017) demonstrate the
strong scaling behavior of SeisSol for dynamic rupture earthquake simulations using a lin-
ear elastic model. With a mesh containing approximately 51 million elements, the parallel
efficiency remained ∼95% on 512 nodes compared to a performance of ∼660 GFLOP/s on
16 nodes. The simulation on 512 nodes corresponds to ∼10 nodes per million elements,
which is within the range of our scaling analysis in Fig. 3.8a.

In terms of strong scaling, our nonlinear implementation reaches a speed-up of ∼15.3 when
increasing the number of nodes from 128 to 2048 for a mesh with ∼100 million elements.
This result is comparable to the elastic model above, with a parallel efficiency of 95.7% up
to ∼20 nodes per million elements. However, when the number of nodes is further increased
to 4,096, the parallel efficiency drops to 61.5%, indicating the need for further optimization
of our current implementation for handling nonlinear wave propagation at extreme scales.
For example, Wolf et al. (2022) recently optimized the implementation of computationally
intensive poro-elastic rheologies in SeisSol, achieving performance degradation of less than
10%, even at more than 40 nodes per million elements.

The strong scaling behavior does not fully capture the absolute performance of the code
in terms of floating point operations per second (FLOP/s). To provide a more precise
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assessment, we compare FLOP/s among simulations using the four material models de-
scribed in Section 3.4. For a 2.3 million element mesh, performance measurements are
taken from results running on 16 nodes of SuperMUC-NG (Phase 1) with shape functions
of polynomial degree 3. SuperMUC-NG employs Intel Xeon Platinum 8174 processors, each
equipped with 48 cores per node, operating at 2.7 GHz. As shown in Fig. 3.8b, simulations
with elastic, visco-elastic, and elasto-plastic materials achieve a node-average performance
of 654 GFLOP/s, 636 GFLOP/s, and 550 GFLOP/s, respectively, using double-precision
floating-point arithmetic. In contrast, the nonlinear implementation with IVM achieves 360
GFLOP/s, which represents a 45% reduction in computational performance compared to
the elastic model.

The current implementation does not yet support local time stepping (LTS, Breuer et al.,
2016; Uphoff, 2020), which is crucial for efficiently handling non-uniform element sizes due to
mesh refinement near faults, complex fault geometries, or highly-varying surface topography.
Thus, on the same mesh, the time-to-solution for the nonlinear IVM implementation is
approximately 5.56 times longer than the linear elastic material in our simulations presented
in Section 3.4. Therefore, future implementation of LTS for nonlinear models is a promising
avenue for improving computational efficiency while maintaining accuracy.

3.5.2 Linking co-seismic wave speed changes of rocks from labora-
tory measurements to regional scale field observations

In this section, we discuss what the simulations of the 2015 Ghorka earthquake reveal about
co-seismic wave speed changes in linking measurements of co-seismic wave speed changes
from the laboratory with field-scale observations. Under well-controlled environments and
boundary conditions in the laboratory, the dynamic responses of rocks to seismic wave
fields can be better constrained. In this work, we employ an experimentally constrained
continuum mechanics model, the IVM (Berjamin et al., 2017; Niu et al., 2024). However,
the amplitudes of the modeled regional wave speed changes may not be comparable to
observations during the 2015 Ghorka earthquake. In the following, we discuss reasons that
may contribute to the amplitude difference between the simulated regional co-seismic wave
speed changes and those in field observations.

Lu and Ben-Zion (2022) show that the average wave speed changes within a depth range
from 0 to ≈3 km can exceed 1% within 90 km from the fault. These changes are two orders
of magnitude larger than our simulated wave speed changes at depths of 2 km within 100
km from the fault, which is likely due to large perturbations within soft sediments across
the upper few hundred meters below the surface. Such significant perturbations inside
the sediments are not reflected in our analysis of a depth slice at 2 km. Fig. 3.5c shows
that wave speed changes within the sedimentary basin reach 88%. Similarly, using seismic
observations from the KiK-net network, Bonilla et al. (2019) observe wave speed reductions
greater than 60% in shallow soft sediments within 150 s after the occurrence of the 2011 MW

9.0 Tohoku-oki earthquake in Japan. These results suggest that incorporating the shallowest
sedimentary layers may increase the average wave speed changes, potentially enabling a
more quantitative comparison between numerical simulations and field observations.
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Although this study demonstrates how to adapt laboratory-derived nonlinear models to
regional-scale numerical simulations of co-seismic wave speed changes, the nonlinear IVM
material properties used in our simulations were not constrained with rock samples from
the Kathmandu Valley. However, the spatial variation patterns of co-seismic wave speed
changes modeled here may be transferable across similar lithologies. For example, our
simulations reveal that the amplitude of co-seismic wave speed changes correlates strongly
with fault slip close to the source (Figs. 3.5a and 3.4a). At increasing distances from the
fault, the dynamic strain amplitude is modulated by the layered Earth model, shown in
Fig. 3.4. With slightly softer rocks (lower cs in Table 3.2) at a depth of 2 km, the region
where the changes in wave speed are greater than 0.01% is broader than that at a depth of
12 km (Fig. 3.5a and 3.5b). This effect is particularly prominent within the sedimentary
basin, where low-moduli unconsolidated materials experience greater strain amplification.
We find that the basin depth distribution is an additional factor that adds to the spatial
variability of changes in nonlinear wave speed. Our results (Fig. 3.5c) indicate that larger
sedimentary basin depths lead to greater co-seismic wave speed reductions. Other factors
that might contribute to the variation, for example, the direction of incoming waves (Oral
et al., 2022), require further investigation as a next step.

A limitation of our approach is that the nonlinear damage model (IVM) remains isotropic
even as damage accumulates. However, material anisotropy may develop under high damage
levels (Fig. 3.3), further influencing directivity effects and path and site effects. Accounting
for non-linear anisotropy will introduce additional challenges in accurately implementing
free-surface boundary conditions. Although the method outlined in Appendix 3.A is suitable
for isotropic models only, it can serve as a first-order approximation for damage- and stress-
induced moduli changes at the free-surface boundary by only accounting for the induced
changes in the effective Lamé parameters in Eq. (3.A.17).

3.5.3 Incorporating background stress effects on co-seismic non-
linear wave speed changes

In Section 3.4, we use the IVM with experimentally constrained parameters (Niu et al.,
2024) on Westerly granite to quantify the spatial distribution of co-seismic wave speed
reductions following the 2015 MW 7.8 Ghorka earthquake. This model assumes a universal
co-seismic wave speed reduction, irrespective of the initial stress state. Similar universal
reductions in wave speed under dynamic perturbations have been observed in laboratory
rock samples under unconfined stress conditions Remillieux et al. (2017); Feng et al. (2018)
and under uniaxial compression of up to 20 MPa (Rivière et al., 2015; Manogharan et al.,
2021). However, Manogharan et al. (2022) show that the level of uniaxial compression exerts
a second-order influence on the amplitude of co-seismic wave speed reductions, indicating
that a more advanced model is needed to incorporate the dependence of wave speed changes
on the background stress state.

The CDM (Lyakhovsky et al., 1997a), described in Eq. (3.3), explicitly accounts for the
background stress state. In this model, the amplitude of damage accumulation depends
on how close the current stress state is to a critical stress threshold, defined by ξ0 in Eq.
(3.3). In Section 3.3.3, we demonstrate that our proposed algorithm can quantify stress- and
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damage-induced anisotropy in wave propagation using CDM. However, applying CDM to
co-seismic wave speed changes requires sufficient knowledge of the pre-existing background
stress state.

Properly configuring the background stress state is especially important when modeling
layered geological structures, particularly when accounting for spatially varying bathymetry
in sedimentary basins (unit 1 in Fig. 3.4). Using CDM, the background stress state is
imposed by specifying the initial strain tensor. To prevent spurious wave generation at
the beginning of the simulation, it is necessary to ensure the stress continuity condition
at layer boundaries. This is challenging when incorporating geometrically complex basin
bathymetry, where the strain tensor must be reoriented according to the basin geometry.
A potential solution to this challenge in future work may be first to solve the static strain
field resulting from the overburden of rocks and soils. This balanced strain field may then
be applied as the initial strain state for wave simulations, ensuring a physically consistent
background stress distribution.

3.6 Conclusions

To develop a seismic wave propagation method capable of modeling observed co-seismic
wave speed changes, we propose a generic numerical algorithm based on the discontinuous
Galerkin (DG) method that can be applied to a wide range of nonlinear rock models. We
verify the numerical solutions obtained using our new approach implemented in the open-
source software SeisSol against three sets of analytical solutions and confirm the convergence
of the algorithm. Using the Riemann problem setup, we demonstrate that the proposed
method accurately resolves discontinuities in nonlinear hyperbolic equations. We find a
1st order convergence rate at solution discontinuities with basis functions of polynomial
degrees 1 to 5. On the same mesh, using higher-degree basis functions leads to lower
numerical errors. We show that the method can accurately resolve the amplitude of high-
frequency harmonics generated by wave propagation in the Murnaghan nonlinear elasticity
model. The proposed method can also properly quantify the stress- and damage-induced
mechanical anisotropic behaviors of rocks.

We evaluate the parallel performance of our implementation on Frontera and find that both
weak and strong scaling remain close to linear up to 20 nodes per million elements, allowing
efficient simulations on meshes with up to 100 million elements and scalability up to 2048
nodes. However, despite the good parallel scalability, node-level performance remains non-
optimal, indicating the need for further optimizations to improve computational efficiency
and reduce runtime for handling future nonlinear wave propagation simulations at extreme
scales.

We apply our algorithm to regional-scale earthquake simulations, including non-linear wave
propagation effects from source to site. We use the experimentally constrained nonlinear
model IVM to capture co-seismic wave speed changes during the 2015 Mw 7.8 Gorkha earth-
quake in the Kathmandu Valley, incorporating a free surface with topography, a sedimentary
basin with low wave speeds and complex bathymetry, a layered geological structure, and a
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finite source model that accounts for rupture directivity effects. The simulation results show
that co-seismic wave speed reductions depend on the fault slip distribution near the source
and are modulated by basin depth tens of kilometers away from the fault. Co-seismic wave
speed changes also enhance low-frequency components in soft sedimentary layers, affecting
ground motions. This study demonstrates, using a physics-based framework to quantify
nonlinear earthquake effects at a regional scale, the importance of damage-induced wave
speed variations for seismic hazard assessment, ground motion predictions, and as an ob-
servable to better constrain earthquake physics and rock mechanics.

Open Research

The source code of SeisSol with nonlinear IVM implementation is available as open-source
software from Uphoff et al. (2024) under the branch damaged-material-nonlinear-drB.
The model setup, simulation outputs, and post-processing scripts to reproduce all figures
are available from Niu et al. (2025).



Appendices

Appendix 3.A DG algorithm for nonlinear wave equations

In this section, we provide the details on three components of the DG algorithm proposed
in this work: prediction step, correction step, and boundary conditions.

Prediction step: linearization and temporal approximation

In the prediction step, we retain only the conservative term of Eq. (3.4) assuming weak
nonlinearity (∂σij/∂εmn and ∂σij/∂α → constant) and employ a linearization procedure.
Our main motivation for this linearization in the prediction step is to maintain the HPC-
optimized data structure of SeisSol (Uphoff et al., 2024). We will release this restriction in
the subsequent correction step described later. This assumption preserves the convergence
of the algorithm for nonlinear hyperbolic PDEs but can have an effect on the convergence
rate, as we will discuss in Section 3.3.1.

We write for the linearized prediction step:
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This condition is satisfied if
∂

∂t

(
∂F d

p

∂uq

)
∂uq

∂xd

≪
∂F d

p

∂uq

∂

∂xd

(
∂uq

∂t

)
, which requires

∂F d
p

∂uq

to

vary slowly in time compared to the temporal variation of uq.

From Eqs. (3.1) and (3.4), F d
p incorporates the nonlinear stress-strain relationships. Con-

sequently,
∂F d

p

∂uq

changes gradually under weak nonlinearity. The weak nonlinearity makes

Eq. (3.A.2) a more accurate approximation for the second-order time derivative of up. We
reiterate that this assumption only pertains in the prediction step.

Following Uphoff (2020), the arbitrary order (i) derivative of qp in time (Di
lp) is computed

as follows:

Di
lp

∫
Tm

ϕkϕldV = −
∫
Tm

ϕkB
d
pq(u−

tn)D(i−1)
lq

∂ϕl

∂xd

dV, (3.A.3)

where Di
lqϕl =

∂iuq

∂ti
.

For linear wave equations, we derive Bd
pq =

∂F d
p

∂uq

as a cell-wise constant that keeps its value

along the simulation (Uphoff, 2020). In our nonlinear case, we need to re-compute the cell-
wise averaged Bd

pq from utn
p at the beginning of each time step tn, i.e. Bd,tn

pq = Bd
pq(u−

tn) =∫
Tm Bd

pq(u−
tn)dV/Ve and Ve is the volume of the tetrahedral element.

If we substitute Bd,tn
pq in Eq. (3.A.3), the integration in a reference cell E3, which is defined

in a reference Cartesian coordinate system where the position vector of a point is ξi, will
be

Di
lp|J |

∫
E3
ϕkϕldV = −|J |Θ−1

ed D
(i−1)
lp Bd,tn

pq

∫
E3
ϕk

∂ϕl

∂ξe
dV, (3.A.4)

where Θ−1
ed = ∂ξe/∂xd. We refer to Chapter 3.1 of Uphoff (2020) for the detailed def-

inition of the reference Cartesian coordinate system. Defining Mkl =
∫
E3 ϕkϕldV and

Ke
lk =

∫
E3 ϕk

∂ϕl

∂ξe
dV , we derive

Di
lp|J |Mkl = −|J |Θ−1

ed D
(i−1)
lq Bd,tn

pq Ke
lk, (3.A.5)

which is directly comparable to Eq.(3.31) in Uphoff (2020).

If the nonlinear source term is considered, we simplify and add the nonlinear source term
only when i = 1 in Eq. (3.A.5).

D1
lp|J |Mkl = −|J |Θ−1

ed D
0
lqB

d,tn
pq Ke

lk + |J |
∫
E3
sp(q

−

tn)ϕkdV, (3.A.6)
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where utn
q = D0

lqϕl, with the same definition of Θ−1
ed as Eq. (3.A.4). The nonlinear source

function sp(u−
tn) is evaluated on a nodal basis of utn

q projected from the modal basis coeffi-

cients D0
lq as presented by Wollherr et al. (2018).

Correction step: time integration and discontinuity handling

The weak form of Eq. (3.4) with integration by part looks like

∂

∂t

∫
Tm

ϕkUlp(t)ϕldV +

∫
∂Tm

ϕk(F
d
p nd)

∗dS −
∫
Tm

∂ϕk

∂xd

F d
p dV =

∫
Tm

sp(Ulpϕl)ϕkdV, (3.A.7)

where sp(Ulpϕl) = (0, 0, 0, 0, 0, 0, 0, 0, 0, rα)
T as in Eq. (3.4). nd is the normal vector of the

interface ∂Tm. Integrating both sides of the Eq. (3.A.7) in one time step [tn, tn+1] yields

∫
Tm

ϕkϕl[Q
n+1
lp − Un

lp]dV +

∫
∂Tm

ϕk

∫ tn+1

tn

(F d
p nd)

∗dτdS −
∫
Tm

∂ϕk

∂xd

∫ tn+1

tn

F d
p dτdV

=

∫
Tm

ϕk

∫ tn+1

tn

sp(Ulpϕl)dτdV. (3.A.8)

According to Eqs. (3.5) and (3.6), we estimate the space-time integration in each term of
Eq. (3.A.8) with Di

lp derived from the prediction step.

We expand on the space-time integration term by term in the following. We start from the
second term on the left-hand-side of Eq. (3.A.8) when ∂Tm is on the element surfaces that
are not on the boundaries of the computation domain. The latter case will be addressed in
Appendix 3.A. The interface flux within the computational domain (F d

p nd)
∗ must account

for the solution discontinuities on each side of the interface. Strictly speaking, this requires
solving the Riemann problem for a nonlinear hyperbolic system (LeVeque, 2002). Here we
use the local Lax-Friedrich flux FLF

p which has a simple form while preserving numerical
stability. Its expression is

FLF
p = (F d

p nd)
∗
p

=
1

2
(F d

p (u
+
p ) + F d

p (u
−
p ))nd +

1

2
C(u−

p − u+
p ), (3.A.9)

where C is the largest eigenvalues of the matrix Bd
pq((u−

+ + u
−
−)/2) in Eq. (3.A.3). As

defined in Eq. (3.A.9), FLF
p is a nonlinear function of up on both sides of u+

p and u−
p . For

the numerical integration, we evaluate FLF
p at the quadrature points in space and time

following Uphoff (2020) and expand the second term on the left-hand-side of Eq. (3.A.8)
as
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∫
∂Tm

ϕk

∫ tn+1

tn

(F d
p nd)

∗dτdS

=
Ns∑
i=1

βiϕk,i

Nt∑
z=1

γzF
LF
lp,z,s|Sf |∆t, (3.A.10)

where βi and γz are weights, respectively, for surface and time integration.

For the third term on the left-hand-side of Eq. (3.A.8), we also discretize F d
p = Fd

lp(t)ϕl(x)
with the same modal basis functions as up. We briefly summarize the procedures here and
refer to Wollherr et al. (2018) for the detailed formulae. The evaluation of Fd

lp(t) follows 3
steps: (1) Project Ulp(t) into a nodal basis and obtain the UNode

lp (t) coefficients in the nodal
basis; (2) Evaluate the coefficients Fd,Node

lp in nodal space by substituting UNode
lp (t) into the

nonlinear function Fd
p (U

Node
lp ) based on Eq. (3.1) to Eq. (3.3); (3) Obtain the coefficients

Fd
lp(t) in modal space by projecting back from the nodal space coefficients Fd

p (U
Node
lp ). The

third term on the left-hand-side of Eq. (3.A.8) then becomes

∫
Tm

∂ϕk

∂xd

∫ tn+1

tn

F d
p dτdV

=

∫ tn+1

tn

Fd
lp(τ)dτ

∫
Tm

∂ϕk

∂xd

ϕldV. (3.A.11)

We employ a similar procedure for the right-hand-side of Eq. (3.A.8). We discretize sp(t) =
Slp(t)ϕl and yield ∫

Tm
ϕk

∫ tn+1

tn

sp(Ulpϕl)dτdV

=

∫ tn+1

tn

Slp(τ)dτ
∫
Tm

ϕkϕldV. (3.A.12)

Free surface and absorbing boundary conditions

We need to take care of the numerical flux (F d
p nd)

∗ in the second term of Eq. (3.A.8)
when ∂Tm is defined on two types of boundaries that are important for earthquake simu-
lations: the absorbing boundary and the free-surface boundary. While IVM in Eq. (3.2)
remains isotropic with damage accumulation, CDM in Eq. (3.3) can introduce stress-
induced anisotropic mechanical responses in rocks (Hamiel et al., 2009). Such anisotropy
inside the bulk materials can be resolved using the local Lax-Friedrich flux in Eq. (3.A.9)
(de la Puente et al., 2007). In defining the boundary conditions of the simulation domain,
we simplify by only considering the nonlinear effects on the isotropic moduli, i.e., the two
Lamé parameters. To achieve this, we retain only the components of B

=

d = Bd
pq that cor-

respond to the isotropic effective Lamé parameters, denoting an approximated matrix as
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B
=

d,eff . The expressions for B
=

d,eff are (Wilcox et al., 2010):

B
=

1,eff =



0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

2
0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 −1

2
0

−λeff + 2µeff

ρ
−λeff

ρ
−λeff

ρ
0 0 0 0 0 0 0

0 0 0 −2µeff

ρ
0 0 0 0 0 0

0 0 0 0 0 −2µeff

ρ
0 0 0 0

0 0 0 0 0 0 0 0 0 1



,

(3.A.13)

B
=

2,eff =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1

2
0 0 0

0 0 0 0 0 0 0 0 −1

2
0

0 0 0 0 0 0 0 0 0 0

0 0 0 −2µeff

ρ
0 0 0 0 0 0

−λeff + 2µeff

ρ
−λeff

ρ
−λeff

ρ
0 0 0 0 0 0 0

0 0 0 0 −2µeff

ρ
0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



,

(3.A.14)
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B
=

3,eff =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1

2
0 0

0 0 0 0 0 0 −1

2
0 0 0

0 0 0 0 0 −2µeff

ρ
0 0 0 0

0 0 0 0 −2µeff

ρ
0 0 0 0 0

−λeff

ρ
−λeff + 2µeff

ρ
−λeff

ρ
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1



.

(3.A.15)

The effective Lamé parameters for IVM are

{
λeff = (1− α)λ0

µeff = (1− α)µ0

. (3.A.16)

The effective Lamé parameters for CDM are

{
λeff = λ0 − αγrϵ/

√
I2

µeff = µ0 − αξ0γr − 0.5αγrξ
, (3.A.17)

where ϵ = (εxx + εyy + εzz)/3.

We compute the numerical fluxes (F d
p nd)

∗ on both the absorbing boundary and the free-
surface boundary based on the solutions of the Riemann problem with an upwind method
using the approximate effective matrix B

=

d,eff defined in Eq. (3.A.13) to (3.A.15). We
assume that the outgoing waves at the element interface are only influenced by the state in
the element that the interface belongs to; the incoming waves at the element interface are
only influenced by the state in the neighboring element.

To compute the upwind flux, we diagonalize matrix B
=

1,eff = R
=
Λ
=
R
=

−1, where Λ
=
=

diag(−ceffp ,−ceffs ,−ceffs , 0, 0, 0, ceffs , ceffs , ceffp , 0), ceffp =
√

(λeff + 2µeff )/ρ, ceffp =
√

µeff/ρ,
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and

R
=
=



1 0 0 − λeff

λeff + 2µeff
0 − λeff

λeff + 2µeff
0 0 −1 0

0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0
1

2
0 0 0 0 0 −1

2
0 0

0 0 0 0 1 0 0 0 0 0

0 0
1

2
0 0 0 −1

2
0 0 0

ceffp 0 0 0 0 0 0 0 ceffp 0
0 ceffs 0 0 0 0 0 ceffs 0 0
0 0 ceffs 0 0 0 ceffs 0 0 0
0 0 0 0 0 0 0 0 0 1



,

(3.A.18)

where the last column results from the extra zero eigenvalues due to the introduction of the
damage variable.

For the absorbing boundaries, we use the same method as Dumbser and Käser (2006).

F abs
p = (F d

p nd)
∗
p

= TpqB
1,eff,+
qr T−1

rs qs, (3.A.19)

where B
=

1,eff,+ = R
=
Λ+

=
R
=

−1. Λ+

=
= diag(0, 0, 0, 0, 0, 0, ceffs , ceffs , ceffp , 0) only keeps the posi-

tive terms in Λ
=
. T−1

pq is the rotation matrix that operates on the vector of the conservative
variables us, rotating the quantities to the face-aligned coordinate system.

T
=
=



n2
x s2x t2x 2nxsx 2sxtx 2txnx 0 0 0 0

n2
y s2y t2y 2nysy 2syty 2tyny 0 0 0 0

n2
z s2z t2z 2nzsz 2sztz 2tznz 0 0 0 0

nxny sxsy txty nxsy + nysx txsy + tysx nxty + nytx 0 0 0 0
nzny szsy tzty nzsy + nysz tzsy + tysz nzty + nytz 0 0 0 0
nxnz sxsz txtz nxsz + nzsx txsz + tzsx nxtz + nztx 0 0 0 0
0 0 0 0 0 0 nx sx tx 0
0 0 0 0 0 0 ny sy ty 0
0 0 0 0 0 0 nz sz tz 0
0 0 0 0 0 0 0 0 0 1


.

(3.A.20)

For the free-surface boundaries, we first rotate uq to the face-aligned coordinate system
as un

p = T−1
rs us. We then derive the constraints to the conservative variables ub

q on the
boundary face from an upwind flux below in a similar way as Uphoff (2020).
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u
−
b = u

−
− + ω1r−

1 + ω2r−
2 + ω3r−

3

= u
−
− + ω1



1
0
0
0
0
0

ceffp

0
0
0


+ ω2



0
0
0
1/2
0
0
0

ceffs

0
0


+ ω3



0
0
0
0
0
1/2
0
0

ceffs

0


, (3.A.21)

where u
−
− is the projection of solutions in the local element on the free surface; r

−
1 is the

column in R
=

that corresponds to -ceffp in Λ
=
; r

−
2 and r

−
3 are the two columns in R

=
that

correspond to -ceffs in Λ
=
. ω1, ω2 and ω3 are unknowns to be constrained from the free-

surface boundary conditions, which we will further define below.

We derive from ub
p the face-aligned boundary stress uσ,b

p = (σxx, σyy, σzz, σxy, σyz, σzx, vx, vy, vz, α)
T ,

where

uσ,b
p = Cpqu

b
q

=



λeff + 2µeff λeff λeff 0 0
λeff λeff + 2µeff λeff 0 0 1
λeff λeff λeff + 2µeff 0 0 0 0

=

0 0 0 2µeff 0 0
0 0 0 0 2µeff 0
0 0 0 0 0 2µeff

0
−

I
=


u
−
b, (3.A.22)

where I
=

is a 4 by 4 identity matrix, while 0
=

and 0
−

are, respectively, the zero matrix and
zero vector that complete the matrix Cpq.

On the free surface, σxx, σxy and σzx in uσ,b
p should be zero. With these three more con-

straints, we solve the unknowns ω1, ω2 and ω3 in Eq. (3.A.21). We can substitute these
unknowns back in Eq. (3.A.21) to obtain ub

q in the face-aligned coordinate system. We
finally compute the boundary flux with ub

q as below.

F free
p = (F d

p nd)
∗
p

= TpqB
1,eff
qr ub

r. (3.A.23)
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Appendix 3.B DG algorithm for nonlinear wave equations

This section provides supporting information for reproducing the low-frequency enhance-
ment observed in ground motions from our simulations using the nonlinear damage model,
IVM. We present comparisons between the frequency components of the velocity time se-
ries predicted by the elastic model and the IVM at four additional strong motion stations
within the Kathmandu Valley, as shown in Fig. 3.B.1. Among the four listed stations,
we find a prominent low-frequency enhancement in the simulations with IVM between 0.2
Hz and 0.35 Hz at station TVU and between 0.3 Hz and 0.45 Hz at station KATNP.
In contrast, the frequency spectra at stations THM and PTN show negligible differences
between simulations using the linear elastic model and those with IVM. peak ground veloc-
ity (PGV) is strongly correlated with the prominence of the low-frequency enhancement.
Specifically, the PGV at station TVU and KATNP is approximately twice and four times
higher, respectively, than at station THM. The PGV at the station PTN is approximately
60% larger than that at station THM. With such an intermediate PGV value, only a minor
low-frequency enhancement between 0.25 Hz and 0.4 Hz is observed at station PTN. The
more prominent low-frequency enhancement associated with larger PGV is attributed to
the stronger reduction in co-seismic moduli in regions with high PGV values.
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Figure 3.B.1: Normalized frequency spectra of the upward-downward velocity time series recorded
between 20 s and 50 s for simulations employing elastic model (the dashed blue curve) and IVM
(the solid red curve) at 4 stations: (a) TVU, (b) KATNP, (c) THM, and (d) PTN. We provide
peak magnitudes of the velocity vector at the four stations on the top right of each subfigure.
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Chapter 4

Dynamic rupture simulations in 3D with
co-seismic off-fault damage

Understanding the nonlinear mechanical response of rocks and soils to seismic waves is
crucial for understanding earthquake rupture dynamics and ground shaking across source,
path, and site. However, the critical reduction in elastic moduli during earthquakes is often
ignored. Using a novel 3D high-performance computing implementation of the nonlinear
Continuum Damage Breakage model, we show that the earthquake energy budget differs sig-
nificantly between elastic and damage-inclusive scenarios. Nonlinear off-fault damage leads
to increased high-frequency radiation and off-fault shear band formation. The nonlinear
seismic wave field includes frequency modulation, damage- and stress-induced anisotropy,
and additional inelastic energy dissipation. We identify a new mechanism of delayed dy-
namic triggering, driven by damage-induced stress heterogeneity and rock moduli reduction
in tensile stepover fault systems. Nonlinear damage facilitates rupture cascading across
multi-fault systems, with varying delay times linked to damage rheology and geometric
fault zone evolution, suggesting potential for new observational constraints.

4.1 Introduction

Geological and geophysical evidence shows ubiquitously that crustal faults are surrounded
by hierarchical zones of rock damage with reduced elastic moduli (e.g., Sibson, 1977; Chester
et al., 1993; Ben-Zion and Sammis, 2003; Mitchell and Faulkner, 2009). These damage
zones are generated, maintained, and grow by recurring earthquake ruptures (e.g., Mitchell
and Faulkner, 2009; Rockwell and Ben-Zion, 2007). Such damage contributes to off-fault
energy dissipation as well as to a stronger heterogeneity in the off-fault materials. This
heterogeneity can lead to significant differences in rupture processes compared to scenarios
where it is not considered. These variations may manifest in several ways, including altered
energy partitioning, distinct seismic radiation patterns, and modified fault interactions.
(Passelègue et al., 2016; Okubo et al., 2019; Johnson et al., 2021; Kurzon et al., 2022).

The energy partition during the occurrence of earthquakes is important for understanding
how much energy stored in the bulk rock materials can be released and how much of the
released energy is converted to seismic motions (kinetic energy, Rice et al., 2005; Kanamori
and Rivera, 2006). It is also one of the first-order constraints for validating analytical and
numerical models for dynamic rupture against field or laboratory observations (Kanamori
and Rivera, 2006). Okubo et al. (2019) adopted 2D Finite-discrete Element Method to
model the dynamic rupture processes on the main fault and the off-fault fractures at the
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same time. Off-fault fractures are represented as the loss of cohesion at the interfaces of
elements. They find that the off-fault fracture energy can take up 4% to 34% of the total
energy released, depending on the rupture distance and the initial background stress field.
This represents a significant amount of energy, while the exact value varies between the 2D
and 3D configurations of the rupture dynamics, particularly at shallow depths (Ma, 2008).

Aside from the total radiated kinetic energy, the frequency components of the seismic radia-
tion can also be qualitatively alternated by the off-fault co-seismic damage. Taufiqurrahman
et al. (2022) find deficits in the high-frequency components of seismograms in simulations
compared to the recorded ground motions. The origin of high-frequency radiation has
been studied over decades (e.g., Madariaga, 1977; Hanks and McGuire, 1981; Hanks, 1982;
Dunham et al., 2011; Castro and Ben-Zion, 2013; Passelègue et al., 2016; Ben-Zion et al.,
2024). There are multiple factors that affect high-frequency radiation, such as sudden nu-
cleation and arrest of rupture, complex fault geometry, roughness of the fault surface, and
the nonlinear response in subsurface sedimentary rock. Marty et al. (2019b) shed light on
the additional high-frequency acoustic waves during stick-slip events. Okubo et al. (2019)
show that secondary fractures can promote high-frequency radiation in 2D. Kurzon et al.
(2022); Lyakhovsky et al. (2023) enable the "quasi-static" simulation of dynamic rupture
in a diffused fault zone and the off-fault damage in 3D to investigate the radiated high-
frequency seismic energy in a heterogeneous fault core. Thomas and Bhat (2018) adopted
a damage model that writes the Gibbs energy of the material as the summation of the
elastic energy in the bulk and the fracture surface energy of all crack fronts. In all of the
above simulations, they find that the off-fault damage comes with high-frequency radiation
during the dynamic rupture. However, quantifying the enhanced high-frequency radiation
for realistic regional-scale earthquakes remains difficult due to limitations in computational
power.

Beyond the influence of off-fault damage on the dynamic rupture process of a single fault,
the reduction of moduli during the damage process and the resulting stress heterogeneities
can also have a significant impact on fault interactions in fault systems (Sammis et al., 2010;
Xu et al., 2015; Mia et al., 2024). To investigate the first-order factors that influence fault
interactions, the fault system is simplified as two parallel fault planes that are separated by
a few kilometers from each other. Finzi and Langer (2012) investigate the fault interaction
with a zone with pre-defined lower shear modulus. They find that this enables the rupture
to jump over a larger distance. Liu and Duan (2014) compare the elastic case with the
Drucker-Prager plasticity and with the existence of off-fault pore pressure. But Drucker-
Prager plasticity does not account for the moduli reduction before reaching the yielding
strength of rocks. It also ignores the temporal evolution of the damage, as evidenced
by the experiment of Hamiel et al. (2006) on granitic rocks. To accurately quantify the
heterogeneous off-fault moduli reduction and the perturbed stress field, which is critical
for determining the activation of neighboring faults in realistic fault zones, a numerical
algorithm and its efficient implementation are essential but are still missing for 3D dynamic
rupture simulations.

We propose an algorithm based on discontinuous Galerkin method to combine dynamic rup-
ture simulation with wave propagation in different nonlinear rock rheologies in 3D. We prove
in an earlier work that the algorithm is stable and converging for nonlinear wave equations
in 3D. Chapter 3 describes how experimentally-constrained nonlinear damage rock models
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can be formulated as a system of nonlinear hyperbolic PDEs. The algorithm can adequately
address frequency modulation and the damage- and stress-induced anisotropy in nonlinear
wave propagation. In this work, we employ this algorithm to solve the nonlinear continuum
damage breakage (CDB) model by Lyakhovsky and Ben-Zion (2014) and Lyakhovsky et al.
(2016). We further extend the algorithm to include dynamic rupture modeling. With the
extension, we illustrate the incurred off-fault damage and the its impact on earthquake
interaction. We parallelized the numerical framework using MPI and OpenMP to enable
efficient execution on modern high-performance computing systems. This enables the simu-
lation of dynamic rupture and the related co-seismic off-fault damage, as well as co-seismic
wave speed changes far away from the source, for realistic regional-scale earthquakes.

Utilizing the comprehensively verified algorithm in this work, we unleash the possibility
of quantitatively modeling how the heterogeneous off-fault moduli reduction can facilitate
the triggering of earthquakes on neighboring faults in 3D. We also show the distributed
mesh-independent mathematical representation of the rock damage can localize into shear
bands. The shear band angles quantitatively match the theories and are stable features
that can be resolved consistently better with mesh refinement. Such localized co-seismic
moduli reduction also generates additional high-frequency radiation between 1 and 10 Hz.
This might compensate for the high-frequency deficit in many dynamic rupture simulations
compared to observations.

4.2 Integrate dynamic rupture into nonlinear wave sim-
ulations in 3D

We build on the method described in Chapter 3 by implementing the continuum damage-
breakage (CDB) model from Lyakhovsky and Ben-Zion (2014). In this study, we integrate
nonlinear wave propagation with 3D dynamic rupture simulations.

We first summarize the CDB model that we implemented in this work and show how
it fits into the numerical algorithms described in Chapter 3. CDB model is proposed
within the framework of continuum mechanics. The mechanical response of rocks from their
intact states to their failure is mathematically described with a scalar damage variable (α)
that represents the density of distributed micro-cracks and a scalar breakage variable (B)
describing the grain size distribution in the post-failure stage of rocks (Einav, 2007a,b). In
CDB, the latter stage is named the granular phase (Lyakhovsky et al., 2016). Both α and
B are defined in the range of [0,1].

The generic formula for the system of equations that are suitable for the numerical algo-
rithms proposed in Chapter 3 is the following nonlinear hyperbolic system of conservation
laws with a source term (Dumbser et al., 2008) in Eq. (4.1).
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∂εij
∂t

=
1

2
(
∂vi
∂xj

+
∂vj
∂xi

)

ρ
∂vi
∂t

=
∂σij(ε

=
, α, B)

∂xj
∂α

∂t
= rα(ε

=
, α, B)

∂B

∂t
= rB(ε

=
, α, B)

, (4.1)

where ε
=
= εij and σij denote strain and stress tensor, vi is the vector for particle velocity,

and ρ is material mass density. α is a damage variable and B is a breakage variable. rα and
rB are two functions of the strain tensor, the damage variable and the breakage variable.

For CDB model, we substitute the expressions for σij, rα and rB with the ones listed in Eq.
(4.2).



σij(ε
=
, α, B) = (1−B)σs

ij +Bσb
ij

rα(ε
=
, α, B) =

{
Cd(1−B)γrI2(ξ − ξ0) , if ξ − ξ0 > 0
0 , if ξ − ξ0 ≤ 0

rB(ε
=
, α, B) =

{
CB(1−B)P (α)γrI2(ξ − ξ0) , if ξ − ξ0 > 0
0 , if ξ − ξ0 ≤ 0

, (4.2)

where γr is the nonlinear modulus. I1 = εkk and I2 = εijεij are the first and the second
strain invariant. ξ = I1/

√
I2 is derived from the two strain invariants. It grows from

−
√
3 for isotropic compression to

√
3 for isotropic extension. The damage α starts to

accumulate as the strain state deviates farther enough from the isotropic compression. This
is formulated as ξ − ξ0 > 0, where ξ0 is a material parameter that is usually negative for
rocks (Lyakhovsky et al., 2016). Cd and CB are, respectively, the damage and the breakage

evolution coefficient, P (α) =
1

exp (
αcr − α

β
) + 1

is the probability of the material to be in

the granular phase (Lyakhovsky and Ben-Zion, 2014). Such mathematical expression makes
sure that the probability of transition P (α) ≈ 0 when α ≪ αcr, whereas P (α) ≈ 1 when

α≫ αcr. With this definition of P (α), the breakage accumulation rate
∂B

∂t
in Eq. (4.1) is

very small when the damage variable is well below its critical transition value (α ≪ αcr).
The breakage accumulation rate becomes significant when α → αcr. This represents the
rapid transition from the solid to the granular phase (Lyakhovsky and Ben-Zion, 2014).
σs
ij = λ0I1δij−αγr

√
I2δij+[2(µ0+αγrξ0)−αγrξ]εij is the stress-strain relationship for solid

state of the material and σb
ij = (2a2 + 3a3ξ)I1δij + a1

√
I2δij + (2a0 + a1ξ − a3ξ

3)εij is the
stress-strain relationship for granular state of the material (Lyakhovsky et al., 2016). The
granular phase moduli from a0 to a3 ensure the mechanical stability of the material during
the transition from the solid phase to the granular phase (Lyakhovsky and Ben-Zion, 2014).

The system of equations in Eq. (4.1) can be more generally formulated in the following
form for the nonlinear hyperbolic system of conservation laws with a source term (Dumbser
et al., 2008).
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∂qp
∂t

+
∂F d

p (v−
, ε
=
, α, B)

∂xd

= sp(v−
, ε
=
, α, B), (4.3)

where q = (εxx, εyy, εzz, εxy, εyz, εzx, vx, vy, vz, α, B)T is a vector of the conservative variables.
εxx, εyy, εzz, εxy, εyz, and εzx are six components of the strain tenser ε

=
= εij; vx, vy, and

vz are the three components of the particle velocity vector v
−
. The flux term F d

p represents
the rates at which the conservative variable qp gets transferred through a unit area in the
direction xd (LeVeque, 2002). The source vector sp = (0, 0, 0, 0, 0, 0, 0, 0, 0, rα, rB)

T with
only two non-zero components rα and rB defined in Eq. (4.2).

We then take care of the numerical flux on the frictional interface for dynamic rupture simu-
lation. We first rotate qq to the face-aligned coordinate system as qnp = T−1

rs qs, with the rota-
tion matrix Trs given in Chapter 3. For a more accurate estimation of the stress on the fault,
we derive the face-aligned conservative variables qσ,bp = (σxx, σyy, σzz, σxy, σyz, σzx, vx, vy, vz, α, B)T

for the stress-velocity form of the wave equations according to Pelties et al. (2012) with
the nonlinear stress-strain relationships in Eq. (4.2). Using qσ,bp , we solve the stress on the
interface with various types of friction laws (Uphoff, 2020) on the fault interface. We follow
the same procedures as described in earlier publications related to SeisSol from Pelties et al.
(2012) and refer to them for more detailed descriptions of the formula.

4.3 Off-fault damage patterns, high-frequency radiation,
and energy dissipation from damage evolution

In this section, we systematically examine the effects of co-seismically evolving off-fault
damage on the dynamic rupture process in 3D. We focus on three aspects: (1) Different
off-fault damage patterns below and beyond the solid-granular phase transition of rocks;
(2) Generation of high-frequency seismic (kinetic) energy during the rapid transition be-
tween solid and granular state; (3) Partitioning of on-fault and off-fault energy partitioning
accounting for the thermodynamical irreversibility of the rock damage process.

To investigate the above problems, we employ the setup according to the community bench-
mark problem TPV3 (Harris et al., 2009). It features a right-lateral vertical strike-slip fault
in a half-space that nucleates from the center of the fault. In our 3D simulation, the do-
main is 120 km, 120 km, and 60 km long, respectively, in the x, y, and z directions. The
fault is 30 km along the strike (x-dir) and 15 km deep (z-dir). The fault slip behaviors
are governed by the linear slip weakening law (Rice, 1985; Harris et al., 2009). We list the
material properties that are not defined in the benchmark and the initial background stress
hosted in the rocks in Table 4.1.

We first investigate the patterns of off-fault damage according to the CDB model. We show
results in two end-member cases: (1) small damage, where the material does not reach
the solid-granular phase transition; (2) large damage, where the material transits into the
granular phase within ∼0.01 s.
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Table 4.1: Summary of model parameters for tpv3. The nonlinear modulus γr and the granular
phase moduli from a0 to a3 are computed according to Lyakhovsky and Ben-Zion (2014), with
a strain invariants ratio for onset of breakage decrease ξd = -0.9 defined therein. The stress
component pair (σxx, σzz) = (-71, -71) MPa and (-45, -118) MPa correspond to the maximum
compressive stress oriented, respectively, 59.1 and 54.6 degrees from x-axis.

Parameters Values Units Parameters Values Units

fault

σxx -71, -45 MPa Dc 0.3 m
σyy -120 MPa µs 0.667 1
σzz -71, -118 MPa µd 0.425 1
σxy 70 MPa σyz, σzx 0 MPa

bulk material

λ0 32 GPa a0 7.43 GPa
µ0 32 GPa a1 −22.14 GPa
γr 37 GPa a2 20.93 GPa
ξ0 -0.75 1 a3 -8.56 GPa
Cd 6.0× 10−5 (Pa·s)−1CB 100Cd (Pa·s)−1

βcr 0.05 1 ρ 2760 kg/m3
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Figure 4.1: Dynamic rupture when the damage level is below the solid-granular phase transition.
The damage distributions across the fault at the depths of 7.5, 5.0 and 2.5 km are shown in (d).
The damage distribution on the fault plane is shown in (a). The recorded time series of slip rate (b)
and shear traction (c) at the three on-fault receivers, i.e. the green rectangles in (a), are also shown.
In (b) and (c), the dashed curves are from reference simulations where the off-fault materials are
elastic; while the solid curves are from simulations where the CDB model is implemented.



4.3. Rupture dynamics with a single fault plane 95

We show in Fig. 4.1 the distribution of off-fault damage and how it influences the dynamic
rupture processes in the small damage case. The region of on-fault damage is larger at
depths that are farther away from the depth of nucleation. When comparing the off-fault
damage among depths of 2.5, 5.0 and 7.5 km, we find that the damage also extends the
farthest away from the fault plane at 2.5 km; whereas it is constrained closest to the fault
plane at 7.5 km, as shown in Fig. 4.1d.

We then show how the time series of the slip rate and the fault traction in the strike
direction are different from the linear elastic case in Fig. 4.1b and 4.1c. The rupture speed
becomes smaller. This results from the energy released during the rupturing being partially
consumed by the off-fault damage. It also leads to a lower peak in slip rate. After the
passage of the rupture front, the shear traction also falls back to a slightly lower value,
compared to the case with elastic off-fault materials (the dashed curves in Fig. 4.1c).

When the damage level reaches the solid-granular transition conditions in the CDB model,
the stress-strain relationship will rapidly change from the solid type, that is, B → 0 in Eq.
(4.2), to the granular type, i.e. B → 1 in Eq. (4.2). This transition leads to significant
differences in the off-fault damage distribution. In Fig. 4.2f, we show the off-fault damage
distribution at 7.5 km depth. We can see localized damage structures that extend from
the fault plane into the bulk material at an angle of around 35.6 degrees. The theory
of CDB describes the internal friction angle of the material in analogy to Byerlee (1978).
The equivalent internal friction angle in the CDB model is determined from the nonlinear
material properties ξ0 in Eq. (4.2). As listed in Table 4.1, ξ0 is -0.75 (Lyakhovsky et al.,
1997a). This corresponds to an internal friction angle of 43 degrees. In the simulation of
Fig. 4.2f, the angle between the maximum compressive principal stress and the fault plane
is 59.1 degrees. The two conjugate weak planes should take an angle of 45 - 43/2 = 23.5
degrees from the maximum compressive principal stress. This corresponds to angles of 59.1
- 23.5 = 35.6 degrees or 59.1 + 23.5 = 82.6 degrees between the weak plane and the fault
plane. We find the theoretical angle of 35.6 degrees from the fault plane in Fig. 4.2f (red
dashed line) agrees with our numerical simulation results. The same angles are kept as
the depth changes from 7.5 to 2.5 km in Fig. 4.2d and Fig. 4.2e. We further verify the
consistency by varying the angle between the maximum compressive principal stress and
the fault plane from 59.1 degrees to 54.6 degrees in Fig. 4.2c. This time, the weak plane
from numerical simulation also takes a smaller angle from the fault plane, which is around
31.1 degrees. The damage pattern is also stable when refining mesh sizes from 100 m to 25
m. We show the mesh-independency in Appendix 4.C.

Aside from changes in off-fault damage patterns, the sudden transition from solid to granular
states also generates high-frequency seismic waves. We show a snapshot of the velocity
field at 3.5 s after the nucleation of the fault in Fig. 4.2b. We can see the secondary
wave field generated from the regions where the solid-granular transition takes place. We
put two receivers at (1.0, -0.1, -7.5) km (the red triangle) and at (1.0, -3.0, -7.5) km
(the blue triangle). We illustrate how the frequency components of the seismograms are
different from the linear elastic case in Fig. 4.2a. We see that at both locations, frequencies
between 2 and 10 Hz are enhanced by the secondary wave field. The high-frequency waves
generated behind the rupture front are also observed in laboratory experiments by Marty
et al. (2019b). This is an indication that including the off-fault damage may compensate for
the high-frequency deficiency between the observations and simulations by Taufiqurrahman



96 4. Rupture dynamics in 3D with co-seismic off-fault damage

0 7500 15000-15000 -7500
x (m)

0 7500 15000-15000 -7500
x (m)

(a)

(c)

(d)

(f) 7.5 km

1.5 km

7.5 km

35.6o

0 7500 15000-15000 -7500
x (m)

0 7500 15000-15000 -7500
x (m)

(e) 4.5 km

0 7500 15000-15000 -7500
x (m)

10 1 100 101

frequency (Hz)

10 7

10 6

10 5

10 4

10 3
p

sd

velocity 
magnitude (m/s)

2.0

1.0

0

(b)

31.1o

35 650
shear moduli reduction (%)

35 650
shear moduli reduction (%)

35 650
shear moduli reduction (%)

cdb, 0.1 km

elastic, 0.1 km

cdb, 3.0 km

elastic, 3.0 km

35.6o

35.6o

35 650
shear moduli reduction (%)

10000

-10000

0y (m)

15000

-15000

0

15000

-15000

0

15000

-15000

0

y (m)

y (m)

y (m)

(m
2
/s

)

-10000

0y (m)

Figure 4.2: Dynamic rupture when the damage level reaches the solid-granular phase transition.
The damage distributions for maximum compressive stress oriented 59.1 and 54.6 degrees from
the x-axis at the depth of 7.5 km are, respectively, shown in (c) and (f). For the case when the
orientation angle is 54.6 degrees, the damage distribution at 2.5 km and 5.0 km are given in (d) and
(e). The distribution of the magnitude of the velocity vector at the depth of 7.5 km for background
stress orientation angle of 59.1 degrees is given in (b). We put two receivers at (1.0, -0.1) km (the
red rectangle) and (1.0, -3.0) km (the blue rectangle) in (b). The solid black (R1) and gray (R2)
curves are the power spectral density (psd) of the recorded seismograms in (a). The dashed black
(R1) and grey (R2) curves are the power spectral density of the seismograms for the linear elastic
off-fault material.
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et al. (2022) for actual earthquake events.
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Figure 4.3: Energy budget during the dynamic rupture process. (a) Accumulation of different
energy components during the dynamic rupture process in time. (b) The dashed curves represent
are kinetic energy; the dash-dotted curves represent the absolute values of the frictional work on
the fault; and the bar plots represent the percentage of the off-fault energy dissipation. The initial
stress conditions are the same as in Fig. 4.2f. And the undefined parameters are the same as in
Table 4.1.

As shown in Fig. 4.2b, the rapid transition of the off-fault material from solid to granular
phase generates additional kinetic energy. In addition to this, the thermodynamically irre-
versible damage evolution process also contributes to off-fault energy dissipation. This is
important for evaluating how much of the stored energy in locked faults can be released as
kinetic energy when they are unlocked.

We first show the different components of energy in our simulations are consistent with the
energy conservation laws. This is an important basis for later energy analysis. We provide
the mathematical definition of each energy component in Appendix 4.B. The component
that releases energy and drives the dynamic rupturing process is the drop in the stored
mechanical potential energy ∆E in the bulk rock material, i.e. Eq. (B7). Similarly to the
elastic case, the energy released is consumed by the breakdown work Wb, the friction work
Wf on the fault after the friction coefficient reaches its dynamic value µd, and the radiated
kinetic energy K. In the CDB model, an additional member that consumes energy is the
dissipation (increase of entropy of the system) during the evolution of damage. The energy
dissipation rate T

·
s can be derived as in Eq. (4.B.6). In our simulation, we compute each

energy component independently and show how they accumulate in time in Fig. 4.3a. We
can see that K −Wf −Wb +D matches the released mechanical potential energy −∆E.

We then compare the proportion of different energy components by the time the entire fault
is ruptured. Higher ratio of kinetic energy is generated from the dynamic rupture process
for lower µd. This ratio does not change significantly as the off-fault damage becomes larger
(larger Cd). As shown in the dash-dotted curves in Fig. 4.3b, in the linear elastic case (zero
Cd), the energy dissipated by the fault friction takes the largest proportion when µd = 0.475
(the black dash-dotted curve). Such on-fault energy dissipation drops systematically with
the increase of the damage evolution coefficient Cd for all the tested dynamic coefficient
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µd. In particular, the on-fault dissipation drops faster for lower µd. At Cd = 4 × 10−5,
in contrast to Cd = 1 × 10−5, the off-fault dissipation (the bar plots) takes the smallest
proportion when µd = 0.475 is the highest.

Off-fault energy dissipation has several impacts on dynamic rupture processes. First, it
slows down the rupture speed and therefore makes the cohesive zone size drop slower in
the along-strike direction, i.e. Fig. 4.D.2. Such larger cohesive zone size also exists for off-
fault plasticity that dissipates energy off-fault (Wollherr et al., 2018). The lower rupture
speed also reduces shear traction ahead of the rupture front to a lower value and impedes
the transition from the sub-Rayleigh rupture speed to an intersonic speed (supershear)
(Dunham, 2007). This is also observed with discrete off-fault fracture networks by Okubo
et al. (2019). We show in Fig. 4.D.1 how the supershear transition systematically takes
longer propagation distance to develop with increasing damage evolution coefficient Cd.

4.4 Facilitated but delayed trigger by the evolving dam-
age

We show in Fig. 4.2c that the damage extends in the direction of the weak plane predicted
by the CDB model. We also demonstrate in Fig. 4.3 that the total energy released from the
bulk materials matches the sum of the radiated kinematic energy, the negative frictional
work on the fault, and the energy dissipation during the thermodynamically irreversible
rock damage process. These results confirm that the numerical simulations properly solve
the physics of the CDB model.

Table 4.2: Summary of model parameters for tpv23. The nonlinear modulus γr and the granular
phase moduli from a0 to a3 are computed according to Lyakhovsky and Ben-Zion (2014), with a
strain invariants ratio for onset of breakage decrease ξd = −0.9 defined therein.

Parameters Values Units Parameters Values Units

fault

σxx -25 MPa Dc 0.3 m
σyy -60 MPa µs 0.548 1
σzz -25 MPa µd 0.433 1
σxy 29.38 MPa σyz, σzx 0 MPa

bulk material

λ0 32 GPa a0 7.43 GPa
µ0 32 GPa a1 -22.14 GPa
γr 37 GPa a2 20.93 GPa
ξ0 -0.75 1 a3 -8.56 GPa
Cd 5.0× 10−6 (Pa·s)−1 CB 100Cd (Pa·s)−1

βcr 0.05 1 ρ 2760 kg/m3

With the above assertion on the correctness of the solutions, we employ the numerical simu-
lations to analyze how the off-fault damage influences the rupture triggering on neighboring
fault segments that are geometrically disconnected in 3D. We choose the configuration as
described in the TPV23 community benchmark (Harris et al., 2018). It features two right-
lateral vertical strike-slip fault planes in a half-space. The earthquake nucleation starts from
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fault A. In our 3D simulation, the domain is 120 km, 120 km, and 60 km long, respectively,
in the x, y and z directions. Both faults are 30 km along-strike (x-dir) and 20 km deep
(z-dir). They are aligned parallel to each other and are separated by 3 km in y-dir. In the
along-strike direction, their projection in the x-z plane overlap for 10 km. The fault slip
behaviors are governed by the linear slip weakening law (Rice, 1985; Harris et al., 2018).
We list the material properties and the initial stress on the fault in Table 4.2. In the rock
experiment, we see that the rock modulus drops at a higher level of loading during damage
(Hamiel et al., 2009). This is not fully accounted for with perfect plasticity. Here we show
the mechanisms of how such modulus reduction can facilitate earthquake triggering between
two adjacent faults.
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Figure 4.4: Jump across a stepover with off-fault moduli reduction. The slip rate distributions and
the shear traction distributions on both faults are shown in Fig. 4.E.1. We plot the distribution of
shear modulus reduction (b), slip rate (d) and shear traction (e) on both faults at 35 s; while the
distribution of shear modulus reduction across the faults at 35 s is given in (a). The comparison
between the shear traction (the solid curve) and the shear strength (the dashed curve) at the
receiver (the blue triangle) in (b) is given in (c).

The dynamic rupture process initiates from one of the fault planes. As shown in the slip rate
distribution at 4 s and 7 s after nucleation in Figs. 4.E.1a-1 and 4.E.1a-2, the rupturing
process is similar to that in the linear elastic case. The instantaneous dynamic stress
perturbations on the second fault, that is, the green region in Fig. 4.4c, is not sufficient
to make the shear traction larger than the shear strength. After the rupture front reaches
the edge of the first fault plane, large localized damage begins to accumulate from the left
and right edges of the first fault (the light blue regions in Fig. 4.4c). The damage then
starts to expand in 3D and slowly reaches the second fault plane (the dark red patches in
Fig. 4.4b). Such damage leads to a drop in the rock moduli and, as a result, to a drop in
the shear traction (as shown in the dark patch in the right column in Fig. 4.4e). The local
drop in shear traction results in an increase in shear traction in its neighboring regions, e.g.
the bright yellow curved strip surrounding the dark purple patch at 35 s in Fig. 4.4e and
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the blue region in Fig. 4.4c. This leads to a creeping front that migrates with the high
shear traction region. This process corresponds to the dark blue region in Fig. 4.4c. Then
the nucleation of spontaneous dynamic rupturing processes initiates from these high shear
traction regions and starts to propagate, as shown in the pink region in Fig. 4.4e. The
second fault eventually breaks off as in Fig. 4.E.1a-4.
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Figure 4.5: Variation of delayed time between the rupturing of the entire fault 1 and the initiation
of the dynamic rupture on fault 2 with nonlinear modulus γr and damage evolution coefficient Cd

in continuum damage breakage (CDB) model in Eq. (4.2). The unchanged parameters are defined
in Table 4.2. Each marker represents a delay time derived from one corresponding independent
simulation.

We highlight here that the rupture nucleation on the second fault is delayed by around
31 seconds after the first fault was completely ruptured. Such delayed triggering of events
has been widely observed in earthquake sequences (Hauksson et al., 1993; Taufiqurrahman
et al., 2023; Gabriel et al., 2023). We further investigate how the nonlinear parameters in
the CDB model control the delay time in Fig. 4.5. For each nonlinear modulus γr, we vary
the damage evolution coefficient Cd from 3.0 ×10−6 (Pa·s)−1 to 10.0 ×10−6 (Pa·s)−1. The
trigger delay time when γr = 37.2 GPa increases from 7 to 51 s when we use a smaller
damage evolution coefficient Cd. When we further vary the nonlinear modulus γr from
37.2 GPa to 27.2 GPa, the trigger delay time is further prolonged from 51 s to 72 s. The
trigger delay time may be even longer if we set either γr or Cd to a lower value. Further
investigation of the possible longer trigger delay time, i.e. a few tens of minutes or even
hours, is restricted by the explicit time stepping scheme in the ADER-DG algorithm, which
aims at resolving high-resolution wave fields (Dumbser and Käser, 2006; Pelties et al., 2012;
Wollherr et al., 2018). To understand the trigger delay on a longer time scale, we may
need to solve the CDB model with an implicit time-stepping scheme, such as the symmetric
interior penalty discontinuous Galerkin (SIPG) method by Uphoff et al. (2023).
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4.5 Conclusions

In this work, we integrate the dynamic rupture simulation with the previous 3D numerical
scheme of nonlinear wave propagation. We implement the continuum damage breakage
(CDB) model as one realization of the algorithm. We numerically verify the algorithm
from three aspects: (1) We show the numerical stability of the algorithm during the rapid
transition of the breakage variable from 0 (solid phase) to 1 (granular phase). (2) We show
that the localized off-fault damage zones are consistent as we refine the mesh size from 100
m to 25 m around the fault plane. (3) We also show that the energy dissipation during the
accumulation of off-fault damage in our numerical simulation quantitatively agrees with the
theory of the CDB model.

We show two end members of the off-fault damage distribution with a single vertical strike-
slip planar fault setup. In particular, when off-fault damage exceeds the threshold for the
solid-to-granular phase transition, we observe localized damage structures extending from
the main fault at angles determined by the initial background stress and the internal friction
of the rocks. The angles in the numerical simulation also match the theory of the CDB
model. Compared with the elastic case, such localized damage structures also generate
more high-frequency seismic energy that comes with a rapid transition from the solid to
the granular phase.

Despite increased off-fault energy dissipation from damage accumulation, we find that neigh-
boring faults are more easily triggered in the tensile stepover configuration. We show that
localized damage zones that extend from one fault can introduce a heterogeneous stress
perturbation on its neighboring fault. This stress heterogeneity triggers nucleation on the
second fault. The benchmark also demonstrates that this works provides a unique tool
that can model how discontinuous fault segments that are separated by a few kilometers
can be connected to each other in a fault system (Wesnousky, 2006). The triggering can
be delayed depending on the time required for the damage zone to reach the second fault.
We find that a smaller damage evolution coefficient Cd or a smaller nonlinear modulus γr
can prolong the delay time from a few seconds to a few minutes. The delay time can be
significantly longer with even lower Cd or γr. The current limitation is that the explicit
time-stepping algorithm makes it too expensive to simulate damage evolution beyond a few
minutes when the finely resolved wave field is not necessary.
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Appendices

Appendix 4.A Thermodynamic expressions of the contin-
uum damage breakage model

In this section, we summarize the CDBM proposed by Lyakhovsky et al. (2016) to provide
a better understanding of the model in terms of its energy balance. The model starts with
the first law of thermodynamics,

·
u = σ

=
:

·
ε
=
+

·
q, (4.A.1)

where
·
(·) denotes the time derivative, u is the specific internal energy of the system nor-

malized by volume, w is the external work per unit volume of the system and q is the
absorbed heat from the environment per unit volume of the system. At the time scale of
elastodynamic processes, the heat transfer and any possible heat sources are assumed to
be negligible, i.e. we assume an adiabatic process where ·

q = 0. In case of only considering
mechanical work, it is ·

w = σ
=
:

·
ε
=
= σij

·
εij and (·)

=

denotes a tensor of rank two.

The expression of the internal energy depends on the choice of state variables that are
used to describe the system. For an elastic material, we chose the strain ε

=
and the specific

entropy s as state variables. In addition, to incorporate the damage to the material, we
include another scalar state variable α. This means u ≡ u(s, ε

=
, α, B).

With the above definitions of state variables, the change of the internal energy in time can
be written as

·
u = T

·
s+

∂u

∂ε
=

:
·
ε
=
+

∂u

∂α

·
α +

∂u

∂B

·
B, (4.A.2)

where T =
∂u

∂s
> 0 is the absolute temperature. If we ignore the coupling between the

entropy s and the other state variables, we can define u = us(s) + e(ε
=
, α, B), where we

define e(ε
=
, α, B) in this work as the mechanical potential energy of rocks.

Different damage models have different ways of defining the internal energy as a function
of ε

=
and α. The combination of Eqs. (4.A.1) and (4.A.2), together with the previously

defined assumptions of ·
q = 0 and ·

w = σ
=
:

·
ε
=
, yields the following results.
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T
·
s = (σ

=
− ∂e

∂ε
=

) :
·
ε
=
− ∂e

∂α

·
α− ∂e

∂B

·
B. (4.A.3)

For a spontaneous process in an adiabatic system, ds ≥ 0 for any given ·
ε and ·

α, which is
known as the Clausius–Duhem inequality (Truesdell, 1952). Assuming σ

=
is independent of

·
ε
=
, we derive:

σ
=
=

∂e

∂ε
=

. (4.A.4)

We can then derive the energy dissipation rate of the system from Eqs. (4.A.3) and (4.A.4),

·
D = T

·
s = − ∂e

∂α

·
α− ∂e

∂B

·
B. (4.A.5)

The effective Lamé parameters in Section 4.2 to apply the friction laws on the fault interfaces
according to Pelties et al. (2012) are

{
λeff = (1−B)(λ0 − αγrϵ/

√
I2) +B(2a2 + 3a3ξ + a1ϵ/

√
I2)

µeff = (1−B)(µ0 − αξ0γr − 0.5αγrξ) +B(a0 + 0.5a1ξ − 0.5a3ξ
3)

, (4.A.6)

where ϵ = (εxx + εyy + εzz)/3.

Appendix 4.B Energy conservation in continuum damage
breakage model and dynamic rupturing

The accumulation of damage in rocks is a thermodynamically irreversible process. This
comes with an energy partitioning that is different from the elastic case. The loss of potential
energy in the rocks not only transforms into frictional energy on the fault and kinetic
energy in the bulk material, but dissipates as an entropy increase of the system as well.
In this section, we derive the mathematical expression of the dissipated energy and how it
is balanced with the change of potential energy, the frictional work on the fault, and the
radiated kinetic energy.

We start from the momentum conservation of the system, ignoring the body force, in Eq.
(4.B.1).

ρ
∂vi
∂t

=
∂σij

∂xj

. (4.B.1)
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We multiply vi on both side of Eq. (4.B.1) and integrate it in the entire simulation domain
Ω to derive ∫

Ω

viρ
∂vi
∂t

dV =

∫
Ω

vi
∂σij

∂xj

dV. (4.B.2)

We can re-formularize the left-hand-side of Eq. (4.B.2) and apply the Gauss’ theorem on
the right-hand-side of Eq. (4.B.2). This leads to∫

Ω

∂(1/2ρvivi)

∂t
dV =

∫
Γ

viσijnjdS −
∫
Ω

σij
∂vi
∂xj

dV, (4.B.3)

where nj is the normal vector of the face element Γ, Γ = Γfault ∪ Γsurf consists of the fault
interfaces Γfault and the boundaries of the entire domain Γsurf . Since σij = σji, we can
re-write Eq. (4.B.3) as∫

Ω

∂(1/2ρvivi)

∂t
dV =

∫
Γ

viσijnjdS −
∫
Ω

σij
1

2
(
∂vi
∂xj

+
∂vj
∂xi

)dV. (4.B.4)

For infinitesimal deformation, the strain tensor ·
εij =

1

2
(
∂vi
∂xj

+
∂vj
∂xi

). We substitute this into

Eq. (4.B.4) and get ∫
Ω

∂(1/2ρvivi)

∂t
dV =

∫
Γ

viσijnjdS −
∫
Ω

σij
·
εijdV. (4.B.5)

From Eqs. (2.3) and (4.A.4), we can derive

T
·
s+

∂e

∂α

·
α +

∂e

∂B

·
B = 0. (4.B.6)

If we add Eq. (4.B.5) to Eq. (4.B.6), substitute the second term on the right-hand-side of
Eq. (4.B.5) with Eq. (4.A.4), and consider the definition of e in Eq. (4.A.2), we derive

∫
Γ

viσijnjdS =

∫
Ω

∂(1/2ρvivi)

∂t
dV +

∫
Ω

(
∂e

∂ε
=

:
·
ε
=
+

∂e

∂α

·
α +

∂e

∂B

·
B)dV +

∫
Ω

T
·
sdV (4.B.7)

=

∫
Ω

∂(1/2ρvivi)

∂t
dV +

∫
Ω

·
edV +

∫
Ω

T
·
sdV.

If we define
·

W f =
∫
Γfault viσijnjdS as the power of frictional force on the fault inter-

faces,
·

W s =
∫
Γsurf viσijnjdS as the power of the external work on the domain boundaries,

·
K =

∫
Ω

∂(1/2ρvivi)

∂t
dV as the change rate of kinetic energy,

·
E =

∫
Ω

·
edV as the change

rate of mechanical potential energy, and
·
D =

∫
Ω
T

·
sdV as energy dissipation rate due to

irreversibility of the process.
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Appendix 4.C Mesh independence of the off-fault damage
structure

For the combination of dynamic rupture with nonlinear wave propagation, when the damage
reaches solid-granular transition conditions, shear bands start to extend from the fault
interface. The angles of the shear bands to the fault agree with the theoretical predictions
of the CDB model, as in Fig. 4.2. Here, we also show in Fig. 4.C.1 that the off-fault shear
band and damage distribution patterns are mesh-independent when refining off-fault area
from 100 m to 25 m. Only the resolution in the localized damage region increases.
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Figure 4.C.1: The spatial distribution of the localized shear modulus reduction, zoomed in on the
region within the dashed red rectangle in Fig. 4.2c. The largest tetrahedral element size in (a),
(b) and (c) are, respectively, 100 m, 50 m and 25 m.

Such localized damage results in a non-smooth breakage variable distribution inside the
damage zone. This also becomes a great challenge for using shape functions of an order
higher than 2. The shape function can become highly heterogeneous within the cell and
such heterogeneity can enhance the non-smoothness in the results. This can lead to the
values of the damage and the breakage variables falling outside of the physical range from 0
(intact rock) to 1 (fully damage rock). We tested that with the Dubiner’s basis functions of
polynomial degree 1 (p = 1, Cockburn et al., 2012; Wollherr et al., 2018), such un-physical
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results can be avoided. There are a bunch of methods that can potentially suppress the non-
smoothness inside a cell for p ≥ 2. We may introduce a-priori smoothing algorithms, like
introducing artificial viscosity (Hartmann and Houston, 2002; Persson and Peraire, 2006),
filtering (Radice and Rezzolla, 2011), WENO- or HWENO-based reconstruction (Qiu and
Shu, 2004). We may also detect the oscillatory regions and introduce smoothing locally
(Diot et al., 2013; Loubere et al., 2014).

The solid-granular phase transition inside the damage zone also contributes to secondary
waves and high-frequency radiation. We show in Fig. 4.C.2 how the high frequency depends
on the mesh. Compared to the elastic case (the dashed black curve), the off-fault phase
transition generates more energy beyond 0.4 Hz on all three mesh resolutions. The shape
of the power spectral density keeps a similar amplitude up to around 5 Hz. Beyond this
frequency, a finer mesh resolves a greater energy.
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Figure 4.C.2: (a) Particle velocity along y-axis recorded at the red rectangle in Fig. 4.2b. The
dashed black curve shows the reference solution when the off-fault material is purely elastic, with
a mesh refinement up to 50 m next to the fault plane. We show side-by-side the recorded time
series when the off-fault damage in the CDB model is considered with a mesh refinement up to
100 m (the thin solid blue curve), 50 m (the dashed blue curve) and 25 m (the thick solid blue
curve). (b) The power spectral density (psd) of the particle velocity along y-axis transformed from
the corresponding time series in (a).

Appendix 4.D Supershear transition and cohesive zone
width with off-fault damage

In this section, we address the impacts of off-fault damage processes on two important
aspects of the dynamic rupture: (1) supershear transition and (2) cohesive zone size.

A rupture front that propagate at an intersonic speed (supershear) can significantly change
the directivity of earthquakes. In the supershear, the constructive interference of the waves
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Figure 4.D.1: Variation in the point of supershear transition during the fault rupturing. (a)
Changes of peak slip rate in the along strike for both elastic (the solid curve) and CDB (the
dashed curve) off-fault material models. The two dash-dotted arrows mark the location where
we define as the point of supershear transition. The red line marks region where we nucleate the
dynamic rupture (Harris et al., 2018). (b) Variation in the point of supershear transition in the
along strike direction with stress excess S. The solid black curve show the variation in elastic case;
while the color-coded curves in orange show the variation in CDB model case, with Cd = 1×10−5,
2 × 10−5, 3 × 10−5 and 4 × 10−5 (Pa·s)−1. The rest of the parameters are the same as listed in
Table 4.1.
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radiated from a Mach front results in much stronger ground motions than a wave front
that is transported at sub-Rayleigh speeds (Bernard and Baumont, 2005; Dunham and
Archuleta, 2005; Bhat et al., 2007). The supershear transition in this work in Section 4.3
results from the daughter crack that nucleates in front of the sub-Rayleigh rupture due to
the local dynamic stress peak (Andrews, 1976; Dunham, 2007). We show in Fig. 4.D.1b
how the damage coefficient Cd influences the supershear transition. We here define that
the supershear transition initiates from the point where the peak slip rate reaches a local
maximum as marked with the two dash-dotted arrows in Fig. 4.D.1a according to Gabriel
et al. (2012). The red line in Fig. 4.D.1a marks the rcrit where we nucleate the dynamic
rupture (Harris et al., 2018).
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Figure 4.D.2: Variation of the cohesive zone width in the along strike direction for both elastic
(the dashed curve) and CDB (the solid curve) model case. In the CDB model case, Cd = 3× 10−5

(Pa·s)−1 with the rest of the parameters same as those in Table 4.1.

The cohesive zone (also known as breakdown or process zone) is defined as the area behind
the rupture front where the shear stress drops from its static to its dynamic value (Day et al.,
2005). Within the cohesive zone, the slip rate and the fault traction change significantly.
This makes the dimension of the cohesive zone an important length scale to resolve in mesh
refinement. We show in Fig. 4.D.2 how the cohesive zone is altered by the off-fault damage.

Appendix 4.E Evolution of damage, traction, and slip rate
in the two faults in a step-over setup

We use this section to provide the slip rate and shear traction distribution on the two faults
in the step-over set up in Section 4.4 at different times after the nucleation of the dynamic
rupture on the first fault. We show in Fig. 4.E.1a-1 to 4.E.1a-4 the distribution of slip rate
on the two faults at 4s, 7s, 35 s and 40 s, and in Fig. 4.E.1b-1 to 4.E.1b-4 the distribution
of shear traction on the two faults at 4s, 7s, 35 s and 40 s.
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Figure 4.E.1: Slip rate (a-1 to a-4) and shear traction (b-1 to b-4) distribution on the two fault
planes at 4, 7, 35, and 40 s for the step-over setup in Fig. 4.4.



Chapter 5

Nonlinear inversion for 3D dynamic
rupture simulation - Method

Bayesian inference enables greater scientific insight into simulation models, determining
model parameters and meaningful confidence regions from observed data. With hierar-
chical methods like Multilevel Delayed Acceptance (MLDA) drastically reducing compute
cost, sampling Bayesian posteriors for computationally intensive models becomes increas-
ingly feasible. Pushing MLDA towards the strong scaling regime (i.e. high compute re-
sources, short time-to-solution) remains a challenge: Even though MLDA only requires a
moderate number of high-accuracy simulation runs, it inherits the sequential chain struc-
ture and need for chain burn-in from Markov chain Monte Carlo (MCMC). We present fully
asynchronous parallel prefetching for MLDA, adding an axis of scalability complementary to
forward model parallelization and parallel chains. A thorough scaling analysis demonstrates
that prefetching is advantageous in strong scaling scenarios. We investigate the behavior
of prefetching MLDA in small-scale test problems. A large-scale geophysics application,
namely parameter identification for non-linear earthquake modelling, highlights interaction
with coarse-level quality and model scalability.

5.1 Introduction

Mathematical inverse problems provide a rich framework for gaining insight into a mul-
titude of problems and phenomena in science and technology by combining models and
data to infer unknown parameters, such as material properties, reaction rates, or effective
potentials (Ghattas and Willcox, 2021; Arridge et al., 2019; Liang et al., 2023; Puel et al.,
2022). Observational data is typically noisy and incomplete, while computational models
only approximate the true system. Consequently, modern research increasingly focuses on
incorporating these uncertainties into inference problems. A common approach to UQ is
to formulate an inverse problem in the Bayesian framework (Kaipio and Somersalo, 2005),
assigning a posterior probability to unknown parameters based on prior knowledge as well
as goodness-of-fit between model prediction and observational data.

An attractive choice for solving Bayesian inverse problems (BIP) are MCMC algorithms
(Metropolis et al., 1953; Hastings, 1970; Duane et al., 1987; Homan and Gelman, 2014; Cui
et al., 2016), as they impose minimal assumptions on the model. However, this generality
comes at the price of requiring large numbers of model evaluations. This cost can easily
become excessive, particularly for inverse problems governed by partial differential equations
(PDE) that already require High Performance Computing (HPC) resources for a single
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Figure 5.1: Overview of the MLDA algorithm and its target application, the 2019 Ridgecrest
earthquake. (a) Surface displacement data during the earthquake Taufiqurrahman et al.
(2023). (b) Visualization of the simulated earthquake source and the generated seismic
wave field Abram et al. (2019). (c) Structure of the proposed MLDA model hierarchy. (d)
Modeled plastic deformation, which is controlled by physical parameters, the target of the
inference in this work.

evaluation.

Multilevel Markov chain Monte Carlo (MLMCMC) (Dodwell et al., 2019) exploits a hier-
archy of models with varying fidelities, allocating most of the computational effort to less
accurate but fast approximate models. MLMCMC thus achieves efficiency gains compara-
ble to Multilevel Monte Carlo (MLMC) (Giles, 2008) in uncertainty propagation. MLM-
CMC relies on the assumption of independent samples from coarser levels, which serve
as proposals for the finer levels. However, in practice, this independence only holds ap-
proximately, introducing bias. The more recent MLDA (Lykkegaard et al., 2023), based
on delayed-acceptance MCMC (Christen and Fox, 2005), addresses this limitation. Com-
pared to MLMCMC, which has been successfully parallelized and deployed on HPC systems
(Seelinger et al., 2021), MLDA introduces stronger data dependencies between levels, and
is therefore more challenging to parallelize.

In this work, we introduce a novel parallelization approach for the MLDA algorithm based
on prefetching (Strid, 2010; Angelino et al., 2014), the parallel evaluation of possible future
Markov Chain states based on a binary decision tree. Prefetching acts as an additional
level of parallelism on top of model parallelism and parallel execution of multiple MLDA
chains, each of which naturally exhibit diminishing returns.

We discuss the theoretical basis for prefetching in a multilevel context. On an example
problem, we investigate performance by comparing prefetching to parallelization with mul-
tiple chains. The results indicate that prefetching is in fact needed for optimal parallel
efficiency in the strong scaling regime, i.e. where many compute resources are employed to
rapidly achieve an inversion result.

Our prefetching MLDA implementation supports the UQ and Modeling Bridge (UM-Bridge)
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interface (Seelinger et al., 2023), leading to a modular pipeline that transparently scales to
HPC clusters and allows linking to any simulation code. It is available open-source online
(Kruse et al., 2024).

Finally, we apply prefetching MLDA to a novel, computationally challenging inverse prob-
lem in geoscience. It aims to infer subsurface material parameters in a non-linear seismic
model using earthquake data. We use three-dimensional, non-linear dynamic rupture mod-
els of the Ridgecrest earthquakes (similar to Taufiqurrahman et al. (2023)), California’s
biggest earthquakes in more than 20 years which ruptured multiple segments of a complex
fault system (Ross et al., 2019). Our inversion aims to explain high-rate global positioning
system datasets with earthquake physics. The model is implemented in the earthquake
simulation software SeisSol (Heinecke et al., 2014; Uphoff et al., 2017; Krenz et al., 2021),
which integrates seamlessly with our computational pipeline. We construct the multilevel
model hierarchy by varying the PDE discretization level, and augment it with an adaptive
surrogate model based on Gaussian Process (GP) regression (Rasmussen and Williams,
2006) on the coarsest level.

5.2 Asynchronous prefetching MLDA

Bayesian inverse problems define, for some parameter of interest θ ∈ Rd, a posterior dis-
tribution πpost(θ|dobs), given observations dobs ∈ Rq of the system under consideration. In
this work, we consider scenarios where the data is the perturbed output of a PDE model,
given a specific parameter set as its input, dobs = G(θ) + η. η ∈ Rq is the realization of a
noise variable with known statistics. This induces a likelihood l(dobs|θ) to observe the data,
given a parameter candidate. In combination with some prior distribution πprior(θ), Bayes’
theorem yields the posterior as

π(θ) ≡ πpost(θ|dobs) ∝ l(dobs|θ)πprior(θ). (5.1)

MLDA algorithm MCMC methods generate correlated samples from a target distribu-
tion π (in our scenario a Bayesian posterior). Given a sample θn ∈ Rd, MCMC algorithms
generate a new sample θn+1 in a two-step procedure. Firstly, a proposal candidate θ̃n+1

is drawn from a distribution q(·|θn), which is typically cheap to evaluate. The proposal
is then accepted (θn+1 = θ̃n+1) or rejected (θn+1 = θn) according to a transition probabil-
ity α(θ̃n+1|θn). Importantly, proposals tend to be cheap to compute, while the transition
probability depends on costly target density evaluations π(θ̃n+1) and π(θn).

A major drawback of MCMC methods is that they typically require a large number of
evaluations of the target density to achieve a sufficient number of effectively uncorrelated
samples. Multilevel algorithms may drastically reduce that cost. We employ the MLDA
algorithm (Lykkegaard et al., 2023) in this work. The basic idea of MLDA (as for other
multilevel methods) is to employ a hierarchy of models with different accuracy-cost tradeoff.
We denote this hierarchy as subchain levels s = 1, 2, . . . , K with corresponding target
densities πs. We presume that densities on lower levels are cheap to compute but coarse
approximations of the posterior, whereas evaluations on higher levels are computationally
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more expansive, but more exact. We set π = πK . MLDA generates high-quality proposals
on subchain level l by spawning an MCMC chain on subchain level l − 1 at the current
state. The final sample of that coarser-level subchain is then used as a proposal for level l.
Applying this recursively across levels results in an increasingly fast rate of decorrelation
for samples on finer levels. Through a careful choice of model hierarchy and subchain
lengths (see Lykkegaard et al. (2023) for details on convergence rates), MLDA can achieve
a significant reduction in overall cost for sampling π.

Prefetching MLDA Like single-level MCMC algorithms, MLDA is inherently sequen-
tial. A trivial method of parallelization is the generation of multiple independent chains.
However, since each chain requires a burn-in period and mixing, parallel chains scale at
diminishing returns. Thus, we additionally employ within-chain parallelization through
prefetching (Brockwell, 2006; Strid, 2010; Angelino et al., 2014). The underlying concept
of prefetching is to expand possible future states of a MCMC chain θn+j, j = 1, 2, . . . from
a given state θn in a binary tree, representing all future accept/reject decisions. We refer to
this structure as a Markov tree. Possible future states can be determined in advance, since
proposals are typically cheap. We can then conduct the costly target density evaluations
for possible future states in parallel. Now, given a pool of Np workers, Np target density
evaluations across the Markov tree can be conducted simultaneously. With the obtained
results, the Markov chain can potentially be advanced by Np > 1 steps. Since we might
precompute density evaluations in branches that the MCMC algorithm ultimately does
not take, the efficiency of prefetching depends on a “clever” distribution of computational
resources onto the possible future states of the chain.

We now introduce an extension of prefetching for MLDA, including fully asynchronous
operations accommodating differing run times across levels. We begin by establishing a
formal notation for a Markov tree and its nodes. A general Markov tree consists of a
sequence of levels l ∈ N+

0 , not to be confused with the subchain levels s of the MLDA
algorithm. We characterize a node t in layer Tl by a string,

t ∈ Tl with Tl ⊂ {a, r}l, (5.2)

indicating the sequence of accepts (a) and rejects (r) leading to the state of that node. We
denote the root level as T0, which only contains the root node t0. Moving on, we define the
concatenation operation to create a descendant or child of a given node,

⊕ : Tl × {a, r} → Tl+1. (5.3)

Informally, this means that a child node is generated from its parent by appending a letter
from {a, r} to its defining string. A complete Markov tree is given as the directed acyclic
graph resulting from the concatenation of nodes over subsequent layers. Under abuse of
notation, we resemble this by the union of layers,

T :=
⋃
l∈N+

0

Tl. (5.4)

An exemplary Markov tree is depicted in Fig. 5.2.
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Figure 5.2: Three levels of a Markov decision tree. Nodes are labelled with the sequence of accepts
and rejects leading to that node.

For the MLDA algorithm, tree nodes carry two additional quantities, their subchain levels
s(t) ∈ {1, 2, . . . , K} and their indices i(t) ∈ {1, 2, . . . , Is(t)} within the respective subchain.
We define for the root node

s(t0) = K, i(t0) = 1, (5.5)

and for all t ∈ T , x ∈ {a, r} through recursive concatenation

s(t⊕ x) =


s(t) if s(t) = 1 and i(t) < I0

s(t) + 1 if s(t) < K and i(t) = Is(t)

s(t)− 1 else,
(5.6)

and

i(t⊕ x) =


i(t) + 1 if s(t) = 1 and i(t) < I0

i(νs(t⊕ x)) + 1 if s(t) < K and i(t) = Is(t)

1 else.
(5.7)

Here, we have introduced the mapping νs : T → T from a node to its closest ancestor on
the same subchain level, i.e. s(νs(t)) = s(t).

We can now define the states of the nodes in the Markov tree. Assuming that proposals
on the coarsest level of the MLDA hierarchy are generated by a distribution q(·|·), we set
θt0 = θn and define subsequent states recursively:

If s(t⊕ x) = s(t) = 1 : θt⊕x =

{
θ̃t ∼ q(·|θt) if x = a,

θt if x = r,
(5.8a)

If s(t⊕ x) = s(t) + 1 : θt⊕x =

{
θt if x = a,

θνs(t⊕x) if x = r,
(5.8b)

If s(t⊕ x) = s(t)− 1 : θt⊕x = θt. (5.8c)

Asynchronous prefetching In our work, we employ asynchronous prefetching, making
use of computational resources as soon as they become available. This is absolutely crucial
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in MLDA, since model run times may vary extremely across levels: An entire subchain may
complete before a previous finer-level node. To this end, we distinguish four computational
states for each node in the Markov tree. Nodes in the set O ⊆ T have not been assigned
any computational resources yet. Nodes in W ⊆ T are currently running evaluations
of the target density. For nodes in D ⊆ T , the computation has been completed, and
computational resources have been freed. And finally, nodes in E ⊂ T have been eliminated
through MCMC accept/reject decisions.

We make these decisions as soon as the target densities for all relevant nodes have been
computed. If an MCMC move from the state θt is accepted, we prune t ⊕ r and all its
children, i.e. we put these nodes into the set E. If the move is rejected, we prune t ⊕
a and its subtree. Note that the MLDA algorithm comprises different types of MCMC
decisions, each requiring different target densities to be evaluated. For subchains on levels
s = 1, 2, . . . , K − 1, this facilitates additional within-subchain pruning. On these levels,
only the target densities at the first and last subchain index are needed for a subsequent
MCMC decision on the next finer level. Consequently, as soon as a succession of three
or more nodes in a subchain are uniquely connected, we can make the first node in that
sequence the immediate parent of the last node, effectively pruning all intermediates. Given
the recursive nature of MLDA’s subchains, we would otherwise have to track an extreme
amount of subchain nodes before advancing to the next fine-level state.

Next, we devise a strategy for optimally assigning computational resources to nodes in
the Markov tree. For this, we assume that we can approximately predict the acceptance
probability for a node on subchain level s by a level-dependent estimate α̃s. Such estimates
can be static guesses or adaptive (e.g., depending on the previous behavior of the Markov
chain). In addition, we have to take into account that the acceptance probability is either
zero or one if the MCMC decision has already been made. We hence define the approximate
acceptance rate γ as

γ(t⊕ a) :=


α̃s(t⊕a) if t⊕ a, t⊕ r ̸∈ E,

1 if t⊕ r ∈ E,

0 if t⊕ a ∈ E.

(5.9)

Moving on, we recursively construct the estimated probability PR(t) of a node t to be
reached by the actual Markov chain. We set PR(t0) = 1 and extend to other nodes as

PR(θt⊕x) =

{
PR(θt)γ(t⊕ a) if x = a,

PR(θt)(1− γ(t⊕ a)) if x = r.
(5.10)

We can now formulate an optimization problem for finding a node t∗ whose target density
should be evaluated next, as soon as computational resources become available. This is
simply the node t ∈ O that has maximum probability of being required for the propagation
of the Markov chain. The probability of a node being required, in turn, is given by the
probability of its immediate ancestor being reached. So we define the mapping ν : T → T
from a node to its parent, and obtain the next candidate for target density evaluation
according to

t∗ = argmax
t∈O

PR(ν(t)). (5.11)
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Under this choice of optimality condition, the probabilities of child nodes are necessarily
lower than those of their parents. Consequentially, the optimal node can always be found
in the subtree of layers l ≤ L∗, where L∗ is the first layer for which no target densities have
been computed yet.

p=1

p=0.25 p=0.75

p=0.15 p=0.1 p=0.45

α=0.6

α=0.25

p=0.3

α=0.6

Figure 5.3: Traversal of node probabilities through an exemplary Markov tree. Green color
indicates finished posterior evaluation, orange indicates computations in progress. The most likely
candidate, selected for the next posterior evaluation, is encircled in red.

Active subtree While considering an infinite tree on a theoretical level, we operate only
on an active subtree TA ⊂ T in practice, adding and pruning nodes as the algorithm
progresses. New node pairs (t ⊕ a, t ⊕ r) are only added to the active tree if their parent
meets one of the following conditions:

(a) t is the root

(b) t is an accept node, meaning that the last letter in its string is an “a”, and t ∈ D∪W

(c) t is a reject node, meaning that the last letter in its string is an “r”, and its accept
sibling ts ∈ D ∪W

This ensures that along any possible path, exactly one advance accept/reject decision that
still needs target density evaluation is in the active subtree. As soon as computational
resources are available, evaluation is started for the current t∗ ∈ O. As soon as results of
computations are returned and resources freed, available MCMC decisions are performed
and subtrees pruned, including within-subchain pruning. Importantly, as soon as there is
a unique path between the root node and a fine level child tN , that child’s state is a new
sample of the Markov chain. We then discard the entire tree before that sample and make
it the new root, i.e. t0 ← tN .

Overall, the presented MLDA algorithm iteratively performs a sequence of steps, until the
desired number of fine-level samples is reached. These steps can be summarized as follows:

1. Expand the Markov tree, request new posterior evaluations,
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2. update the Markov tree with finished jobs,

3. compute available MCMC decisions,

4. prune the Markov tree, and

5. if possible, propagate the Markov chain.

5.3 Scaling MLDA for HPC Simulators via UM-Bridge

Prefetching MLDA applies to a very wide range of inverse problems, since it only requires
access to pointwise evaluations of the posterior (and no gradients of the forward model etc.).
In order to make our software equally universal, we perform model evaluation calls through
UM-Bridge. UM-Bridge is an easy-to-use framework for interacting with simulation codes
regardless of programming language or platform, as demonstrated by Seelinger et al. (2025).

It allows our Python implementation of prefetching MLDA to link to any simulation model
from simple test problems to highly optimized simulations running on massively parallel
HPC architectures. We illustrate the resulting setup in Fig. 5.4.

Parallel Requests

MCMC Client

Forward

Load Balancer

Simulation Model
Level K

Simulation Model
Level 1

Forward

...

Forward

Surrogate
Retrain

Figure 5.4: Computational setup consisting of UQ client, cluster-side load balancer, adap-
tive surrogate model and parallel simulation instances.

The prefetching MLDA Python code constitutes the client side in our setup, requesting
model evaluations from the cluster via UM-Bridge. The load balancer, typically running
on the login node of an HPC cluster, launches simulation model instances as needed and
forwards evaluation requests to them.

In total, we employ three levels of parallelism:
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• We run multiple independent MLDA samplers and collect their results (which is valid
since they sample the same posterior), making use of multiprocessing.

• Each sampler performs asynchronous prefetching (Section 5.2) for in-chain parallelism.

• The simulation model itself may be parallelized.

Importantly, since the generic load balancer handles simulation runs on the cluster, Python’s
multiprocessing framework is enough for prefetching MLDA to control parallel simulation
runs across thousands of cores. Model parallelism is entirely transparent to the UQ side.

In our geophysics application (Section 5.5), we employ a MLDA model hierarchy that in-
cludes a GP surrogate (Rasmussen and Williams, 2006) in addition to numerical simulators.
The GP approximates the simulation model on the coarsest simulation level at extremely
low cost.

We ensure GP accuracy while restricting training to high-posterior areas through an adap-
tive procedure: We initially pretrain the surrogate from simulation runs on only a small
number of Latin Hypercube points. During the UQ run, we employ the mean prediction
as an approximation to the simulator. However, if GP variance exceeds a threshold (indi-
cating high approximation error), we trigger an additional coarse-level simulation for that
parameter, updating the GP for higher confidence in that area.

5.4 Application: Bayesian Inference in Seismology

Demonstrating prefetching MLDA in a real-world application, we target a highly relevant
inverse problem from computational seismology: Inferring information about earthquake
sources from surface recordings only.

5.4.1 Modeling Earthquakes in SeisSol

The forward problem is solved by the earthquake simulation software SeisSol (www.seissol.
org). The Earth is modeled as a 3D elastic body and the respective elastic wave equation
is expressed in first-order formulation,

∂tu+ A∂xu+B∂yu+ C∂zu = 0, (5.12)

where u is the vector of unknowns (stress and particle velocities). The flux matrices A,
B and C contain the material parameters (Lamé parameters and density). This hyper-
bolic partial differential equation is solved using the Discontinuous Galerkin method with
Arbitrary high-order DERivatives time stepping (ADER-DG, Dumbser and Käser, 2006).

SeisSol implements ADER-DG for elastic (Dumbser and Käser, 2006), viscoelastic (Dumb-
ser et al., 2007; Uphoff and Bader, 2016b), anisotropic (de la Puente et al., 2007; Wolf

www.seissol.org
www.seissol.org
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et al., 2020b) and poroelastic (de la Puente et al., 2008; Wolf et al., 2022) material mod-
els. In addition, it features plastic deformation (Wollherr et al., 2018) and the coupling of
acoustic and elastic domains (Krenz et al., 2021). A key component of SeisSol are dynamic
rupture earthquake sources (Pelties et al., 2012, 2014). For this source type, the non-linear
frictional failure along prescribed fault planes is simulated along with the seismic wave
fields. The movement of the sliding fault induces wave motion in the surrounding bulk
volume. Interaction of frictional failure and wave motion allows researchers to investigate
earthquake physics. For example, dynamic models can explain how rupture jumps from
one fault segment to another one (Taufiqurrahman et al., 2023; Gabriel et al., 2024).

SeisSol has been used on several petascale supercomputers to model earthquake scenarios
with several billion degrees of freedom, achieving a significant fraction of the theoretical peak
performance (Heinecke et al., 2014; Uphoff et al., 2017; Krenz et al., 2021). On the node
level, SeisSol relies on the code generator YATeTo (Uphoff and Bader, 2020), which gener-
ates high-performance code by mapping kernel descriptions (in Einstein sum convention) to
highly optimized backends for small matrix operations. Through different backends, SeisSol
achieves performance portability between different compute architectures including GPUs
(Dorozhinskii and Bader, 2021). SeisSol uses a hybrid parallelization approach: On node
level, we use either OpenMP (for CPUs) or CUDA/SYCL/ROCm (for GPUs). Between
nodes, the mesh is partitioned and communication between ghost and copy cells is done
with MPI. Asynchronous communication then hides communication behind computation.

In the Bayesian inverse problem considered (see Section 5.4.2), the results of the forward
model depend on several volumetric material parameters, e.g. Lamé parameters λ and µ or
plastic cohesion c, encoded in the parameter vector θ. When the UQ sampler requires a
forward model evaluation for a parameter θ, a small wrapper script prepares input files for
SeisSol. Parallel execution of SeisSol is then triggered. SeisSol produces artificial seismo-
grams, which we compare to real-world recordings in order to form the Bayesian posterior
Eq. (5.15).

The wrapper code acts as an UM-Bridge server, making SeisSol easily accessible to the UQ
code. Integrating UQ and model in such a way retains full flexibility w.r.t. model complexity
(e.g. scattering at material interfaces or at the free surface), while cleanly separating it from
the complexity of the UQ workflow.

5.4.2 2019 Ridgecrest, CA, earthquake scenarios

Modern measuring techniques enhance the quality and quantity of data available for char-
acterizing earthquake dynamic rupture processes and include strong-motion and broadband
seismometers, high-rate Global Navigation Satellite System (GNSS) instruments and space
geodetic datasets (e.g., Gabriel et al., 2023; Hayek et al., 2024).

However, while non-linear inversions of earthquake data for dynamic parameters to con-
struct physically consistent earthquake models have been conducted (Fukuyama and Mikumo,
1993; Peyrat and Olsen, 2004; Gallovič et al., 2019; Schliwa et al., 2024b), the immense
computational cost of each forward model restricted these to simplified model setups and
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inversions for on-fault parameters only. MLDA addresses the above limitations, drastically
reducing the required number of full-complexity, high-resolution forward simulations.

As a demonstrator scenario, we examine linked dynamic rupture simulations of the 2019
MW6.4 Searles Valley foreshock and the MW7.1 Ridgecrest mainshock (Taufiqurrahman
et al., 2023). This earthquake sequence involves the rupture of a complex fault system
comprising four major non-planar segments. To capture off-fault rock deformation, we
embed the rupturing faults in elasto-plastic materials using a Drucker-Prager yield criterion
(Wollherr et al., 2018). The yielding strength τc is defined by two spatially varying material
parameters, plastic cohesion c and friction angle ϕ, as

τc = c cos(ϕ)− σm sin(ϕ), (5.13)

where σm = σkk/3 is the mean of the stress tensor trace σij. These plastic parameters
strongly influence earthquake dynamic rupture processes and ground shaking. Following
Taufiqurrahman et al. (2023), we define spatially varying rock elastic moduli and prestress
fields by combining a 3D community velocity model CVM-S4.26 (Lee et al., 2014) and a 2D
community stress model representing the regional state of stress in the Southern California
upper crust (Yang and Hauksson, 2013). We also assume spatially varying plastic cohesion
c0(x, y, z) as proportional to the shear modulus of the 3D velocity model. The plastic
cohesion is c = γc0(x, y, z), where γ is a scaling factor to be inverted for using MLDA. The
friction angle ϕ is held constant across the domain, for simplicity.

Under the above assumptions, the parameter vector is θ = (γ, ϕ)T ∈ R2. Observational data
for the inverse problem consists of three-dimensional displacement time series recorded at
10 GNSS stations near the fault system (Melgar et al., 2020). Each station provides surface
displacement vectors δi(t), with i representing east-west, north-south or up-down direction,
at a sampling rate of 1 Hz. In total, we obtain observations dobs ∈ Rq, where q = 3×10×nt,
and nt is the number of discrete points in the time series of each displacement component.

We aim to approximate the posterior distribution π(θ|dobs). We employ a uniform prior for
all parameters, with the componentwise bounds defining a feasible rectangle Ωprior within
the parameter space. Furthermore, we assume that our data corresponds to the output of
our forward model G(θ), perturbed by zero-centered Gaussian noise:

dobs = G(θ) + η, η ∼ N (0, C), C = σ2
dI, (5.14)

where σ2
d is a scalar constant and I ∈ Rq×q denotes the identity matrix. In total, we define

the Bayesian posterior

π(θ|dobs) =

 1
Z
exp

(
− 1

2
||dobs −G(θ)||2C−1

)
, if θ ∈ Ωprior,

0, else,
(5.15)

where we have used the matrix-weighted norm || · ||2C−1 = ⟨·, C−1·⟩. The normalization
constant Z only depends on the data and the chosen prior intervals.
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Figure 5.5: Hierarchy of “banana”-shaped posterior densities.

5.5 Results

5.5.1 Artificial Test Case

We first present results for prefetching MLDA based on an artificial hierarchy of 2D poste-
rior densities. We define “banana“-shaped densities, which can be obtained from a simple
transformation of a Gaussian density (Kaipio and Somersalo, 2005). Based on a precision
coefficient ci, we write for the parameters θ1, θ2 ∈ R of the i-th member of the density
hierarchy

πi(θ1, θ2) ∝ exp
[
− 1

2
ci
(
20(θ21 − 2θ2)

2 + 2(θ2 − 1
4
)4
)2]

. (5.16)

We construct a hierarchy of models with precision parameters ci = {0.1, 0.3, 1.0}, which
is depicted in Fig. 5.5. Since evaluation of these densities is practically instantaneous,
we introduce artificial sleep times ti = {0.001s, 3s, 10s} to emulate the workload of more
realistic posterior evaluations. The compute time on the coarsest level is still negligible,
mimicking a fast surrogate model.

Before evaluating the parallel efficiency of the prefetching algorithm, we demonstrate the
potential usefulness of MLDA compared to vanilla MH MCMC (Metropolis et al., 1953),
based on our test hierarchy. To this end, we directly draw samples from the fine-level
distribution with the MH-MCMC algorithm. We further generate an equal number of
samples with the MLDA algorithm, using 30 samples for level one subchains and three
samples for level two.

Verifying that our MLDA implementation delivers the expected statistical efficiency, we
compare the ACFs and ESSs of the two obtained sample sets (Fig. 5.6). For the MH-
MCMC algorithm, samples are highly correlated, initially up to a lag of ∼ 40 samples.
The autocorrelation is reduced by a factor of more than 10 for the samples obtained with
MLDA. Similarly, we observe that the ESS is about a factor 10 higher for the MLDA
samples. When implemented efficiently, this means that the utilization of a hierarchy of
models can significantly reduce burn-in times and increase the number of effective samples
for statistical estimation.
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Figure 5.6: ACFs for MH-MCMC (left) and MLDA samples (center). ESS comparison for both
algorithms (right).
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Figure 5.7: Runtime speed-ups for prefetching-based parallelization of MLDA with the banana
posterior hierarchy.

Parallel speedup Moving on, we discuss results regarding the core contribution of this
work, parallelization through prefetching. We conduct MLDA runs as described above,
with parallelization trough prefetching for a varying number of up to 10 parallel threads.
To assess parallel efficiency, we inspect the overall speed-up in run times, which is simply
given as the ratio of the execution time without pre-fetching, t1, and that for Nth parallel
threads, tNth ,

Sth(Nth) = t1/tNth . (5.17)

Fig. 5.7 summarizes the speed-up results. In the artificial problem, parallelization through
prefetching yields an overall speed-up of about 2.5–3 in the tested range of threads. However,
the speed-up reaches a plateau rather quickly, so that we anticipate a single-digit number
of threads to be sensible in many cases.

Lastly, we point out that the current implementation of parallelized MLDA leaves some
room for improvement. Specifically, ongoing simulation runs are not aborted when they
become obsolete through an MCMC decision. Moreover, we employ a rather simplistic
acceptance predictor for future states, which does not take into account the random draws
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for the realization of the actual Markov Chain.

Optimal parallelization strategy To assess the usefulness of prefetching, we need to
compare it to the obvious competing parallelization approach for MCMC, namely running
parallel chains. Generating parallel chains is an embarrassingly parallel task, but also
exhibits diminishing returns: Burn-in has to be performed for every single chain, implying
that an increasing amount of samples has to be discarded when more parallel chains are
run. To formalize this, suppose we intend to generate Meff usable samples of a posterior
distribution (not to be confused with the ESS presented above). From the total number of
samples generated, we have to deduct Mburn burn-in samples for every chain. Let ν = Meff

Mburn
further be the ratio of effective samples to burn-in samples. Given such a fixed ratio ν, the
speed-up through Nch parallel chains is

Sch(Nch) =
Nch

1 + Nch−1
ν+1

. (5.18)

Given the sampling procedure from the banana hierarchy, we choose for our assessment
Mburn = 7 and Meff = {50, 100, 200, 400}. The resulting speed-ups for up to 32 parallel
chains are presented in Fig. 5.8 (left). Clearly, parallelization performance deteriorates
when burn-in becomes significant compared to the overall number of samples that are
computed per chain. This is also apparent from Eq. (5.18). For ν ≫ Nch, we can expect
(nearly) perfect speed-up. As we approach ν ∼ O(1), however, we can observe that also
Sch ∼ O(1), regardless of the number of chains employed.

For the case Meff = 50, we compare the performance gain of parallel chains with that of
prefetching. Specifically, we study the relative increase in speed-up RS = ∆S/∆N for an
increase in computational resources ∆N , which is either the number of parallel chains or the
number of threads for prefetching. Note that these two quantities are comparable, as they
both denote multiples of the computational resources required for a posterior evaluation.
The corresponding results are depicted in Fig. 5.8 (right). While speed-up rates for parallel
chains are generally higher than those for prefetching, both exhibit diminishing returns. As
a result, we have to find an optimal, problem-dependent balance between the two.

To quantify the interplay between Nch and Nth, we consider the problem of optimal resource
allocation for our artificial problem, under constraints that resemble realistic scenarios.
Assume that our posterior evaluation requires one generic unit of computational resources.
This might correspond to use-cases where posterior evaluations are obtained from software
that is not parallelized or whose parallelization does not scale well. We further consider the
scenario that these evaluations are expensive, e.g. for large simulations of physical systems.
Thus, we anticipate to obtain only relatively small numbers of samples, and again choose
Meff = {50, 100, 200, 400}. Further suppose that these samples have to be obtained under
severe time constraints, while a large number of resources Ntot is available. This might
indeed be a typical case for rapid prototyping and risk assessment in R&D projects. For
our exposition, we choose Ntot = {16, 32, 64, 128}. Under these constraints, we intend to
find the optimal combination of resources that minimizes evaluation time for the desired
sample numbers. Formally, we compute

N∗
ch, N

∗
th = argmax

Nch,Nth∈N+

Sch(Nch)Sth(Nth), and NchNth = Ntot. (5.19)
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Figure 5.8: Left: Speed-up through employment of parallel chains, for different values of Meff and
Mburn = 7. Right: Speedup-rates of parallel chains vs. prefetching, for Meff = 50.
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Figure 5.9: Optimal distribution of resources for different combinations of Meff and Ntot. Left:
Optimal number of parallel chains. Right: Optimal number of threads for prefetching.

This is a simple combinatorial optimization problem, whose results are depicted in Fig. 5.9
for the chosen combinations of Meff and Ntot.

The illustrations confirm our qualitative assessment on the interplay of Nch and Nth. For
relatively large sample numbers Meff, parallel chains are more efficient, although prefetching
with a low number of threads might still yield some performance gain. On the other hand,
prefetching is particularly effective for low Meff, when burn-in becomes significant more
quickly. In this case, up to eight threads can be employed.

To conclude our discussion, we comment on the projected speed-ups Stot = SchSth for
different combinations of resource distribution. Even if prefetching appears to be a favorable
choice according to the solution of the above optimization problem, the simpler approach
of parallel chains might still be a better option if performance gains are only marginal.
Therefore, we evaluate Stot for the case Meff = 50 and varying Ntot, for all possible resource
combinations Nch, Nth. These speedups are visualized in the bubble plot 5.10.
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Figure 5.10: Projected Speed-up for different combinations of Nch and Nth, for+ Meff = 50. Sizes
of the bubbles indicate the speed-up value.

The results indicate that, for given Meff, performance gain through prefetching is highly de-
pendent on the total amount of available resources Mtot. If only few resources are available,
only few parallel chains can be spawned, whose parallel efficiency is favorable compared to
prefetching. In addition, we note that the projected speed-up in this scenario is relatively
independent of the chosen resource combination. This is quite different for large Ntot. We
observe that for Ntot = 128, prefetching with up to eight threads is clearly preferable to
assigning all resources to parallel chains. Indeed, the potential performance gain through
prefetching is almost 100%.

We conclude that prefetching is a viable approach for strong-scaling scenarios, i.e. when
high computational resources are employed to compute a limited number of samples in a
short time.

5.5.2 Large-Scale Seismology Application

As a real-world use-case, we apply our parallelized MLDA algorithm to the Bayesian inverse
problem described in Section 5.4.2. The approach employs a hierarchy of three models
with increasing complexity. At the coarsest level, we utilize a surrogate model based on
GP regression, trained with data (both pretraining and online) obtained from the next
higher level in the model hierarchy. This second, as well as the third and finest level, use
full SeisSol simulations on computational meshes with ≈4 million tetrahedral elements.
The polynomial order of the basis functions is set to three on the second level, and four
on the third level, resulting in roughly double the runtime for the latter. The results of
the second level differ by less than 5% difference from those of the third level in most
cases. However, the additional accuracy gained by using higher polynomial order is crucial
to resolve the coupling between the foreshock and the mainshock in the 2019 Ridgecrest
earthquake sequences (Taufiqurrahman et al., 2023). Subchain lengths are set to 30 and
two for level one and two, respectively. All following results have been obtained using
the Frontera supercomputer (Stanzione et al., 2020). The machine employs Intel Xeon
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Figure 5.11: Left: Surrogate model estimated probability density of the plastic cohesion γ and
the internal friction angle ϕ. Red dots represent training points; Right: Accepted samples and
density estimates from the finest MLDA hierarchy level.

Platinum 8280 ("Cascade Lake") processors, each offering 56 cores per node and operating
at 2.7 GHz. The total number of available compute nodes is 8368.

The results from the inversion procedure are depicted in Fig. 5.11 (bottom). These include
440 fine-level samples, obtained from two independent chains, together with the density
estimate for the two-dimensional posterior. Our main finding is that the plastic cohesion
coefficient γ has a near-uniform probability distribution in its parameter space, while the
friction coefficient ϕ shows a clear tendency towards higher values. We also observe a slight
negative correlation between the two parameters. The GP surrogate posterior density
approximation (Fig. 5.11, top) is in good agreement with the fine-level samples, indicating
that the surrogate and coarser SeisSol simulations provide a reasonable approximation of
the posterior.

We then assess the posterior predictive performance of the inferred parameter set by running
fine-level forward simulations for all MCMC samples. We compare the resulting displace-
ment in the east-west direction to the observational data at three GNSS stations, as shown
in Fig. 5.12. We observe that the posterior predictive ensemble reproduces the data rea-
sonably well at the first two GNSS stations, with the prediction intervals encompassing the
observations. However, the third station (P594) shows a slight discrepancy between the
predictive ensemble and the data. We attribute this offset to the simplistic parametrization
in our inverse problem, which cannot fully capture all complexities in the high-dimensional
data. Nevertheless, the inferred parametrization provides reasonable predictions, including
confidence intervals, for the Ridgecrest model.

After discussing the inference results, we now evaluate the performance of our MLDA
sampler in context of the geophysics application. As for the artificial setup, we present the
ESS and ACF functions of the obtained samples in Fig. 5.13. The results indicate that
employing the MLDA algorithm yields similar improvement as for our previous experiment.
The ESS reaches about 50% of the total sample size, and burn-in can be estimated as < 10
samples. This again represents an improvement by an order of magnitude compared to



128 5. Nonlinear inversion of 3D rupture dynamics - Method

0 5 10 15 20
time (s)

0.2

0.1

0.0

ew
 (m

)

CCCC: EW

0 5 10 15 20
time (s)

0.05

0.00

0.05

ew
 (m

)

P580: EW

0 5 10 15 20
time (s)

0.050

0.025

0.000

0.025

0.050

ew
 (m

)

P594: EW

Figure 5.12: Comparison between simulations (blue solid curves) and the observed displacement
data δ in the east-west (EW) direction (black dashed curves) from three (CCCC, P580, P594) of
the ten GNSS stations.

what can be expected from standard MH-MCMC.

Optimal parallelization strategy Lastly, we assess prefetching for the inversion, com-
pared to other means of parallelization. The procedure is analogous to the analysis of the
artificial model hierarchy in Section 5.5.1. We introduce, however, an additional degree of
freedom, namely the speed-up Ssim(Nsim) of single model evaluations when parallelized on
Nsim processing units:

Ssim(Nsim) = t1/tNsim . (5.20)

In this concrete setting, processing units correspond to compute nodes. Importantly, Ssim

is a gross quantity incorporating runtime speed-ups across all levels, weighted by the num-
ber of evaluations on each level. Thus, it is specific to the MLDA run configuration. It
further implies that we utilize the same number of nodes for the parallelization on levels
two and three (surrogate model evaluations are run in serial). The speed-ups for the con-
ducted MLDA run, along with the speed-ups for parallel chains and prefetching threads,
are depicted in Fig. 5.14.

We can now formulate an optimization problem for the allocation of computational re-
sources, similar to equation (5.19),

N∗
sim, N

∗
ch, N

∗
th = argmax

Nsim,Nch,Nth∈N+

Ssim(Nsim)Sch(Nch)Sth(Nth),

and NsimNchNth = Ntot. (5.21)
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Figure 5.13: Left: Effective sample size over total number of samples in two MLDA chains; Right:
Auto-correlation among the samples on the finest level.
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We investigate distribution of resources for Mburn = 7, Meff = {50, 100, 200, 400}, and Ntot =
{256, 512, 1024, 2048, 4096, 8192}. The maximum amount of available resources corresponds
to almost the entire Frontera compute cluster. The results in Fig. 5.15 show that, in contrast
to the artificial problem above, prefetching is not as advantageous here. Only for low sample
numbers and high computational resources, activating prefetching is optimal. We attribute
this to two aspects: (1) SeisSol already scales very well in the given resources, leaving little
room for parallelization on the UQ side. (2) The GP surrogate proves extremely effective,
leading to highly uncorrelated MLDA samples. This implies that only a very short burn-
in phase is necessary, making parallel chains unusually favorable compared to prefetching.
We conclude that, although the application has greatly benefited from MLDA and our
computational pipeline, it is not an ideal use-case for prefetching.

This is also confirmed by our assessment of the projected speed-ups for Meff = 50 and
Ntot = 8192, visualized in Fig. 5.16. Although this is a scenario that favors prefetching
(small sample size, large amount of resources), we again observe that heavy parallelization
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of SeiSol is favored. Distribution of additional resources onto prefetching threads does not
yield advantages over parallel chains. In this scenario, parallel chains should be employed,
as their implementation is unarguably simpler.

5.6 Conclusion

In this work, we have presented a novel parallelization strategy for the MLDA algorithm via
fully asynchronous prefetching. We have introduced the necessary theoretical foundations
for prefetching in a multilevel setting. In addition, we have presented a modular com-
putational pipeline that makes our workflow suitable for large-scale applications. We have
further introduced the utilization of GP surrogates into the computational model hierarchy.

To assess the viability of the method, we have compared prefetching to the parallel sim-
ulation of multiple chains for an example problem. Our findings indicate that prefetching
can be a valuable resource for scenarios where the strong scaling behavior of the sampling
procedure is relevant. This is typically the case for expensive computational models, large
computational resources, but limited time-to-result.

Beyond the example use-case, we have applied our parallelized prefetching algorithm to a
large-scale problem in geoscience. Although the parametrization considered is quite sim-
plistic, it demonstrates the viability for Bayesian inference involving large-scale simulations.
We envision an extension of the inverse problem setup towards additional parameters, such
as friction on the fault planes and off-fault inelastic deformation during seismic events.

While prefetching does not seem to yield significant performance improvements in this
particular case, we anticipate it to be valuable in scenarios where the forward model is not as
well parallelized as SeisSol. It therefore is a promising addition for the solution of statistical
inverse problems in realistic scenarios. Our generic computational pipeline facilitates this
transfer, allowing for incorporation of a wide range of computational models.
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Chapter 6

Nonlinear inversion for 3D dynamic
rupture simulation - Application

This study quantifies uncertainties and correlations among on-fault and off-fault nonlin-
ear physical parameters through Bayesian inversion of the MW 7.1 2019 Ridgecrest earth-
quake, constrained by multidisciplinary surface deformation data. We incorporate dis-
placement time series from GNSS, static GPS vector data, and fault-parallel offsets from
satellite imagery, employing a multilevel Bayesian inversion algorithm for efficient sam-
pling. The dynamic rupture model adopts strong velocity-weakening rate-and-state friction
and Drucker-Prager visco-elasto-plasticity for off-fault deformation. The results reveal a
significant correlation between the on-fault rate-and-state friction parameter and the off-
fault plasticity parameter, with greater inelastic off-fault deformation compensating for
less velocity-weakening behavior. The solution of the probabilistic inverse problem indi-
cates that the mean shallow slip deficit is ∼38.5%, with a standard deviation of ∼26.8%.
Preferred models suppress overshooting at the fault’s southeastern segment and suggest
a gradual decrease in velocity-weakening frictional behavior along the fault. This work
demonstrates the feasibility of integrating dynamic rupture simulations hosted in complex
fault geometries with Bayesian inversion methods to effectively constrain the properties of
earthquake sources.

6.1 Introduction

The MW 7.1 Ridgecrest earthquake struck California on 5 July 2019 (Shelly, 2020). It is
preceded by several foreshocks that are larger than MW 5.0 (Ross et al., 2019; Taufiqurrah-
man et al., 2023). The Ridgecrest earthquake sequence is hosted by parts of the Eastern
California Shear Zone (ECSZ, DuRoss et al., 2020; Barba-Sevilla et al., 2022), which con-
tains multiple subparallel and conjugate fault structures. Many conjugate faults have not
been previously mapped (Brandenberg et al., 2019; Thompson Jobe et al., 2020). Although
the MW 7.1 mainshock occurs in a complicated fault system, it is also recorded with inter-
disciplinary instruments, e.g. strong motion seismic stations (Hauksson et al., 2020), global
navigation satellite system (GNSS) co-seismic displacements (Melgar et al., 2020; Floyd
et al., 2020), and fault displacement discontinuities, hereafter referred to as offsets, from
optical image correlation (OIC) using satellite images (Antoine et al., 2021).

The extensive and high-quality datasets have significantly enhanced the data-based inter-
pretation of the Ridgecrest earthquake from various perspectives. One notable compilation
of this work includes the kinematic inversion of the fault slip distribution using various

133
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methods (Ross et al., 2019; Xu et al., 2020; Qiu et al., 2020b; Goldberg et al., 2020; Wang
et al., 2020). After one of the first results of the inversion of the fault slip distribution from
Ross et al. (2019), the most recent studies include different high-resolution data, e.g., bore-
hole strain data (Hanagan et al., 2024). Some of the recent high-resolution kinematic fault
slip inversion is based on the elastic Green’s functions computed from 3D finite element
modeling that account for complex fault geometries (Barba-Sevilla et al., 2022; Antoine
et al., 2024).

From the kinematically inverted fault slip distribution, different amplitudes of shallow slip
deficits (SSD) during the mainshock have been derived. According to Wang et al. (2014)
and Milliner et al. (2020), SSD is accommodated either with postseismic and interseismic
creep, or by off-fault diffusive deformation due to inelastic deformation. However, in most
earthquakes, the former is not large enough to balance the SSD (Fialko et al., 2005; Brooks
et al., 2017; Pousse-Beltran et al., 2020; Wang and Bürgmann, 2020).

It is convincing that off-fault inelastic deformation can qualitatively contribute to SSD. But
the quantitative calculation of SSD due to off-fault plasticity with physics-based numerical
models (dynamic rupture simulations) for the 2019 Ridgecrest earthquake sequences is cap-
tured only recently by Taufiqurrahman et al. (2023). Their dynamic rupture model, which
moderately matches multidisciplinary data, includes visco-plasto-elastic rheology, hetero-
geneous 3D velocity model, curvilinear conjugate fault structures, and surface topography.
However, the parameter space in dynamic rupture simulations has not been systematically
explored. Specifically, the extent of uncertainty in the chosen physical parameters remains
unexamined. As a result, the variability in the physically computed SSD and how well it
compares to observations remain elusive.

The main challenge for parameter inference lies in computationally expensive dynamic
rupture simulations (usually at least hundreds of CPU hours) with complex fault structures
and inelastic rock rheology (Wollherr et al., 2018; Ulrich et al., 2019; Gabriel et al., 2023).
A systematic exploration of the nonlinear parameter space for uncertainty analysis requires
thousands to millions (Gallovič et al., 2019; Schliwa et al., 2024a) of simulations for Markov
chain Monte Carlo (MCMC) sampling. With the simplification of the rupture model to
planar faults and linear elastic rheology, Schliwa et al. (2024a) significantly compensated
for the expensive simulation with GPU-accelerated modeling. Yet a simplified dynamic
rupture model is not sufficient to capture the inelastic off-fault deformation for SSD.

Instead of reducing the cost of each simulation, we resort to reducing the number of required
simulations, utilizing a multilevel MCMC (ML-MCMC) algorithm that more efficiently
explores the parameter space (Giles, 2008; Dodwell et al., 2019). ML-MCMC relies on the
assumption of independent samples from coarser levels, which are used as proposals for
finer levels. However, in practice, this independence is only approximate, leading to bias. A
recent advancement in ML-MCMC, the multilevel delayed acceptance (MLDA) algorithm
(Lykkegaard et al., 2023), eliminates this assumption. In addition, further accelerated
through prefetching-based parallelization (Christen and Fox, 2005; Angelino et al., 2014),
MLDA achieves more than a 10-fold speed-up compared to the single-level MCMC method
(Kruse et al., 2025). It also accelerates the sampling based on relatively small models,
such as those with a few million elements, by up to four times on HPC architectures with
thousands of CPUs (Kruse et al., 2025).
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With the prefetching-based MLDA algorithm, we conduct Bayesian inversion of the nonlin-
ear physical parameters in the dynamic rupture model of the MW 7.1 mainshock in the 2019
Ridgecrest earthquake sequences. The dynamic rupture model accounts for complex fault
structure and surface topography, and for nonlinear on-fault friction and off-fault inelastic
deformation. We infer the underlying model from a joint dataset that includes real-time
(Melgar et al., 2020) and static (Floyd et al., 2020) surface displacement from GNSS, as
well as fault-parallel offset from OIC (Antoine et al., 2021). The inversion results shed light
on the correlations among the nonlinear parameters. We also, for the first time, derive
uncertainties in the fault slip distribution from physics-based dynamic rupture inversion,
with a special focus on SSD, for the MW 7.1 Ridgecrest earthquake.

6.2 Data and Methods

The objective of this work is to quantify the uncertainty and correlation among on-fault
and off-fault nonlinear physical parameters that can be constrained by the available data.
Surface displacement from GNSS stations and satellite images is widely available data to
constrain the rupture process in kinematic source inversion. We use this section to present
the near-field surface deformation data that we use. We then elucidate how we employ a
parallelized version of the MLDA algorithm (Lykkegaard et al., 2023; Kruse et al., 2025)
for efficient probabilistic inference.

6.2.1 Data on surface deformation

The first data set that we incorporate is the fault-parallel offset along the surface fault
traces, which is sensitive to the shallow fault slip distribution (Qiu et al., 2020b). The
WorldView and Pleiades satellites provide optical images at a ground resolution of 0.5 m.
Data processing with image correlation is sensitive to displacement down to 0.05 m (Antoine
et al., 2021). We define ∆uobs(s) as the along-strike variation of the fault-parallel offset,
where s is the along-strike distance with an origin defined at the epicenter, as shown with
the dashed black axis in Fig. 6.1.

We integrate fault-parallel offsets with near-field surface displacements from GNSS to enrich
our data set. Adequately processed recordings of antennas (GNSS stations) that move with
the ground during earthquakes can be transformed into real-time point measurements of
displacement time series at GNSS stations. We incorporate the processed displacement time
series from Melgar et al. (2020) during the 2019 Ridgecrest earthquake, with a sampling
rate of 1 Hz. These time series at 10 stations close to the activated fault system are
particularly useful for describing the rupture history during the earthquake. For clarity in
a later description, we define uGT,obs

i (t) as the recorded time series from a GNSS station.
The index i here comprises to degrees of freedom, that is, the direction component j of a
given station and the index k of the station itself. The component j includes the north-south
(NS), east-west (EW), and upward-downward (UD) directions.

The near-field surface displacement time series are complemented by processed static dis-
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placement vector data at 11 more GNSS stations from UNAVCO. The accuracy of the
measurement is between 1.5 and 2.1 mm (Floyd et al., 2020). We define uGS,obs

i as the
recorded co-seismic static displacement of a GNSS station. Again, the index i comprises
two indices, that is, the component j of one station and the station index k. The component
j includes the north-south (NS) and east-west (EW) directions.
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Figure 6.1: (a) Map view of the GNSS and seismic stations that we account for in this work. They
are close to the epicenter (the red star) of the MW 7.1 mainshock and to the fault structure (the
solid black curves) that hosts the 2019 Ridgecrest sequence. We mark the fault trace (F1) ruptured
by the MW 7.1 mainshock with a solid red curve. The yellow rectangles denote stations where
processed displacement time history are available from Antoine et al. (2021); the purple rectangles
are stations where we only use their co-seismic static displacement from Floyd et al. (2020). The
blue rectangles are locations of strong-motion seismic stations. We highlight the region where
we assume spatial variation of plastic cohesion c and direct-effect parameter a in a red rectangle.
Their scaling factor transit, respectively, from γ0 and α0 to γ1 and α1 along the black arrow. The
parameters in the dynamic rupture model follows Taufiqurrahman et al. (2023) and are listed in
Table 6.1. We show the coordinate system for the definition of fault-parallel offset with the dashed
black axis. Panel (b) reiterates the reference values of the depth dependent direct-effect parameter
a and the constant evolution-effect parameter b in Eq. (6.A.5).

Above all, we integrate displacement time series uGT,obs
i (t) from GNSS at 10 stations, fault-

parallel offset ∆uobs(s) from satellite images, and near-field static displacement vectors
uGS,obs
i from 11 GNSS stations as data for inversion of nonlinear physical parameters in

dynamic rupture simulations.
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6.2.2 Model parameters in dynamic rupture modeling of earth-
quakes

In this section, we define the on-fault and off-fault nonlinear parameters that we attempt
to infer with the data in Section 6.2.1. In dynamic rupture modeling of earthquakes,
spontaneous rupturing of the fault zone materials is governed by the nonlinear friction law
between bulk rock materials on two sides of 2D curved surfaces embedded in 3D space. The
friction law that we use here is a strong velocity-weakening rate-and-state (SV-RS, Dunham
et al., 2011) friction law, which captures the laboratory-observed significant reduction in
co-seismic friction at high slip rates. We provide detailed formulations of the SV-RS friction
law in Appendix 6.A.

According to the SV-RS friction, we end up with one friction parameter for this on-fault
nonlinear physical process. We need to ensure the accuracy in the quantified uncertainties
and correlations among the on-fault and off-fault parameters. But we are restricted by the
computationally expensive large-scale dynamic rupture simulation. Therefore, we select a
physically important parameter a− b that controls the spontaneity of the dynamic rupture
process (Dunham et al., 2011). a−b is also important for reproducing shallow slip behavior
in postseismic and interseismic periods (Kaneko and Fialko, 2011). In practice, we fix
b = 0.014 and vary a to control the value of a − b. We adopt the same depth-dependent
a0(z) by Taufiqurrahman et al. (2023) as the reference, where z is the depth axis that points
vertically upward. We illustrate their reference model setup in Fig. 6.1b. In the inversion,
we scale this reference model with a scaling factor α by defining a depth-varying a(z) as

a(z) = αa0(z). (6.1)

The off-fault nonlinear process originates from inelastic deformation of the off-fault mate-
rials under large dynamic loading. We adopt the Drucker-Prager visco-elasto-plasticity to
model the off-fault inelastic deformation. It defines a yielding strength τc beyond which
the inelastic deformation starts to accumulate with loading. The yielding strength τc of the
rocks is defined via two material parameters, plastic cohesion c and bulk friction angle ϕ,
as

τc = c cos(ϕ)− σp sin(ϕ), (6.2)

where σp = σkk/3 is the mean of the trace of the stress tensor σij. The plastic parameters
have a strong influence on the fault rupturing processes and near-field ground motions.
The fault system is embedded in a geologically heterogeneous region. We define spatially
varying rock elastic moduli and the stress field by combining a 3D community velocity
model CVM-S4.26 Lee et al. (2014) and a 2D community stress model representing the
regional stress state in the upper crust of Southern California Yang and Hauksson (2013).
The plastic parameters c and ϕ can also vary in space. For demonstration purposes, we
assume a plastic cohesion c(x, y, z) that changes in space (Taufiqurrahman et al., 2023)
and is proportional to the shear modulus µ(x, y, z) according to the 3D community velocity
model. Based on that, we define the plastic cohesion in the simulation as

c = γ0γµ(x, y, z), (6.3)
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where γ is a scaling factor to be determined, and γ0 = 10−4 is the reference value adopted
by Taufiqurrahman et al. (2023).

In the reference model from Taufiqurrahman et al. (2023), an overshooting is observed in the
southeastern segment of fault F1 according to the surface displacement of GNSS stations
and the fault-parallel offset data. To examine whether we can discriminate between on-
fault and off-fault nonlinear processes that suppress the overshooting at the southeastern
segment of the fault F1, we assume that the on-fault direct-effect parameter α and the
off-fault plastic cohesion γ are potentially spatially variable along the fault strike direction,
and that such variation can bring the total slip on the fault in dynamic rupture simulations
closer to observations. We assume that such variation in a and γ from the northwestern to
the southeastern segment of fault F1 in Fig. 6.1a is linear. Their values transit from α0 to
α1 for the scaling factor of the direct-effect parameter a; while from γ0 to γ1 for the scaling
factor of plastic cohesion c. We will discuss the validity of this assumption in Section 6.4.1.

6.2.3 Bayesian inversion of large-scale dynamic rupture simula-
tions

To increase the efficiency of the Bayesian inversion, we take advantage of the MLDA algo-
rithm (Dodwell et al., 2019; Lykkegaard et al., 2023), which exploits a hierarchy of models
with varying levels of fidelity and allocates most of the computational effort to less accurate
but fast approximate models. We start the description of the method from formularizing
the Bayesian inverse problem where the algorithm is applied. The data used for constrain-
ing the inversion has three different formats. We use a dedicated Section 6.2.3 to describe
how the different dataset are assimilated in the Bayesian inversion framework.

Observational data and misfit

As described in Section 6.2.2, we allow for spatial variation of plastic cohesion γ and direct-
effect parameter α in the southern part of the fault structure. This brings a higher flexibility
in the parameter space. As a result, the epistemic uncertainty in the southern part of the
fault is also lower. To account for this effect, we separate the fault-parallel offsets from
the satellite images ∆uobs(s) into ∆uFN,obs(s) for s ≤ 10 km, and ∆uFS,obs(s) elsewhere in
the dashed black coordinate system in Fig. 6.1. From our dynamic rupture simulations,
we can also derive the accumulated fault slip ∆uFN(s) and ∆uFS(s) at the ground surface.
We define the L2 norm of the differences between the data and simulation outputs as 2
independent dimensions, i.e. dFN and dFS, in Bayesian inversion as

dk =

√√√√ Nk∑
l=1

(∆uk(sl)−∆uk,obs(sl))2, k = FN or FS, (6.4)

where NFN = 158 and NFS = 101 are the numbers of discretized along-strike points sl
where the northern- and southern-segment fault-parallel offset values are measured. When
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model outputs match the data exactly, the corresponding values for these two dimensions
are dFN = 0 and dFS = 0, which means zero misfit.

Similarly, we can also compute time series for the 3 components of surface displacement
vectors at 10 GNSS stations uGT

i (t). We then define the L2 norm of the differences between
the data and simulation outputs as nGT

d = 3 × 10 independent dimensions dGT
i as

dGT
i =

√√√√NGT∑
l=1

(uGT
i (tl)− uGT,obs

i (tl))2, i = 1, 2, ..., nGT
d , (6.5)

where NGT is the number of discretized time points tl when the displacement vectors are
measured. When the model outputs match the data exactly, the corresponding values for
these 30 dimensions are dGT

i = 0.

The 2 horizontal components of the static surface displacement vectors at 11 GNSS stations
are nGS

d = 2 × 11 scalar values. We derive them from dynamic rupture simulations at 60
seconds after the nucleation of the mainshock, as uGS

j and directly define 22 dimensions of
output in the inversion dGS

j as

dGS
j = uGS

j , j = 1, 2, ..., nGS
d . (6.6)

When the model outputs match the data exactly, the corresponding values are dGS
j = uGS,obs

j .

Bayesian problem formulation

The model parameters m and the experimental observations dobs are viewed as random
variables in M ⊂ Rnm and D ⊂ Rnd , where nm and nd are the number of model parameters
and the number of observed data points. According to Section 6.2.2, nm = 4. Let G : M→ D
denote the model map taking a parameter set in a model prediction.

We then aim to find the posterior, that is, the conditional distribution of m for a given
observation dobs. We denote the corresponding probability density function (PDF) by
ρ(m|dobs). To directly compute the underlying parameters from the observed data, we
would have to apply the inverse of the model map G−1. However, that inverse is not
available for our models. Employing Bayes’ theorem, we can reformulate the posterior in a
way that, as will be detailed below, only involves the forward map G:

ρ(m|dobs) =
ρ(dobs|m)ρ(m)

ρ(dobs)
∝ ρ(dobs|m)ρ(m). (6.7)

We call ρ(m) the prior density, ρ(dobs|m) is the likelihood that describes the probability
density to measure the observed data when m is given, and ρ(dobs) > 0 is the unconditional
PDF of measuring the observed data, or evidence. Broadly speaking, the posterior consider
takes higher values if a parameter is plausible from a-priori knowledge and its corresponding
model prediction is close to the observed data.
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In practice, ρ(dobs) is prohibitively expensive to evaluate. MCMC methods circumvent this
issue, in that they only require evaluations of the un-normalized density.

The prior encodes expert knowledge about what parameters might be generally plausible,
not considering our specific observation. Taking into account physical constraints, we define
an upper and a lower bound for the prior range of each value, as M = {m ∈ Rnm|lbi ≤
mi ≤ ubi, i = 1, 2, . . . , nm}. lbi and ubi are the assumed lower and upper bounds of each
model parameter, as listed in Table 6.1. With the above two constraints and based on the
maximum entropy principle of designing the prior (Good, 1963), the data is assumed to be
uniformly distributed in M.

Table 6.1: Summary of all model parameters considered in the dynamic rupture modeling, with α0

and α1 being the scaling factors of the direct-effect parameter a in Fig. 6.1b, L the characteristic
slip distance, γ0 and γ1 the scaling factors for plastic cohesion, and ϕ the bulk friction angle. The
on-fault friction parameters that do not vary in the inversion are V0, f0, VW , fW , Vinit and b in
Eq. (6.A.2) to Eq. (6.A.6).

Param. Values Units Param. Values Units

off-fault γ0 [0.1, 2.0] 1 γ1 [0.1, 2.0] 1
ϕ 0.7 arc

on-fault

α0 [0.4,1.4] 1 α1 [0.4,1.4] 1
L 0.2 m
b 0.014 1 Vinit 1.0× 10−16 m/s
f0 0.6 1 V0 1.0× 10−6 m/s
fW 0.1 1 VW 1.0× 10−1 m/s

We assume a zero-centered, additive Gaussian noise model for the observed data. It follows
that the likelihood ρ(dobs|m) is given as

ρ(dobs|m) ∝ exp
(
− 1

2
(dobs −G(m))TC−1(dobs −G(m))

)
. (6.8)

The covariance matrix C ∈ Rnd×nd encapsulates the statistics of the noise, reflecting our
understanding of measurement precision and the epistemic uncertainties inherent in model
assumptions. Given the modest dimensionality of our model space dim(M) = 4, we as-
sume that the components of the covariance matrix exceed their respective measurement
accuracies for the fault-parallel offset and the processed displacement data from the GNSS
stations.

As described in Section 6.2.2, we allow for a larger variation in the model space of the
southeastern segment of fault F1. We assume that this can reduce epistemic uncertainty in
the southeastern segment of fault F1. Consequently, we distinguish between the standard
deviations for point-wise measurements of the fault-parallel offset, assigning σFS = 1.2 m
to the southeastern segment and σFN = 1.7 m to the northwestern segment, to reflect the
differentiated uncertainties between the segments. We set the standard deviation σGT

i of
the processed GNSS time series (GT) based on their comparison with the reference model.
For point measurement at each time point, we set σGT

i between 5 and 15 cm, depending
on how well the reference model matches the observations. We set σGS

j for each component
of the horizontal static displacement of GNSS stations at 6 mm, which is around 3 × the
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precision of the data (Floyd et al., 2020). We additionally assume that all observations are
statistically independent and set C = diag(σFN,2, σFS,2, σGT,2

i , σGS,2
j ), where i = 1, . . . , nGT

d

and j = 1, . . . , nGS
d .

From Eq. (6.7) and Eq. (6.8), it is clear that the posterior density ρ(m|dobs) can be
computed point-wise up to an unknown constant factor. Then every sample requires an
evaluation of the model map G(m), i.e., one dynamic rupture simulation. Since each
simulation can be computationally expensive, we employ the following MLDA algorithm to
make sure the sampled simulation can represent the posterior as effectively as possible.

6.2.4 MLDA accelerated with prefetching

MCMC is a crucial algorithm for sampling the posterior probability distribution in Bayesian
inversion. But a major drawback of MCMC methods is that they typically require a large
number of evaluations of the target density π to achieve a sufficient number of effectively
uncorrelated samples. To reduce the number of costly evaluations, we employ the MLDA
algorithm proposed by Lykkegaard et al. (2023), which is further accelerated with the
prefetching technique (Kruse et al., 2025). The basic idea of MLDA is to employ a hierarchy
of models with different accuracy-cost trade-offs. We denote this hierarchy as levels l =
1, 2, . . . , L with the corresponding target densities πl. We assume that densities at low
levels are inexpensive to compute, while those at higher levels converge to πL ≈ π. MLDA
generates high-quality proposals at level l by spawning a sub-chain on a lower level l−1 for
the current state. The final state of that sub-chain is then used as a proposal for the level l.
Applying this recursively across levels results in an increasingly faster rate of decorrelation
for samples on finer levels. Through a careful choice of the model hierarchy (see Lykkegaard
et al. (2023) for details on convergence rates), MLDA can achieve a significant reduction in
the total cost for sampling π.

In practice, we employ a three-level (L = 3) implementation of the MLDA algorithm.
We use a Gaussian process regression (GPR, Schulz et al., 2018) surrogate model at the
coarsest level (l = 1). We train the surrogate model with data from the model on l = 2,
so that it can provide estimates for the likelihood in Eq. (6.8) with a given set of model
parameters m. The surrogate model acts as a guide for the sampling process, proposing
mostly decorrelated samples at the finer levels (l = 2, 3). Both models at levels l = 2 and
l = 3 use full SeisSol simulations on computational meshes with approximately 4 million
tetrahedral elements. The polynomial degree of the basis functions in SeisSol is set to two
on level l = 2 and three on level l = 3, resulting in roughly double the runtime for the
latter. Between each sample on level l = 3, we explore 2 samples from level l = 2, between
which we obtain another 40 samples from level l = 1. This can decrease autocorrelation
between the samples up to 90% at the finest level (l = 3), allowing for posterior estimation
with a drastically reduced number of samples (Kruse et al., 2025).
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6.3 Results

In this section, we present the results of the Bayesian inference for the parameters of interest,
namely the off-fault plastic cohesion (γ0, γ1) and the on-fault direct-effect parameter in
SV-RS friction (α0, α1). All simulations have been run on the Frontera supercomputer
(Stanzione et al., 2020). The machine employs Intel Xeon Platinum 8280 ("Cascade Lake")
processors, each offering 56 cores per node and operating at 2.7 GHz. The total number of
available compute nodes is 8368. We have utilized approximately half of the machine (4097
nodes) for 12 hours. Following a previous benchmark (Kruse et al., 2025), we optimize the
configuration of the MLDA level hierarchy to maximize the number of effecitve samples.
With 32 MLDA chains, 2 prefetching threads, and SeisSol parallelization on 64 nodes, we
have obtained 640 samples in total on the finest level.

6.3.1 Posterior distribution of on- and off-fault parameters

To more effectively estimate the Bayesian posterior in Eq. (6.7), we exclude samples that
belong to the "burn-in" phase (Kruse et al., 2025). Statistically, only the samples that are
accepted after the "burn-in" phase can represent the posterior probabilistic distribution
ρ(m|dobs) of the parameter space.

Excluding burn-in samples, we show the 1D and 2D marginal distributions of off-fault
plastic cohesion (γ0, γ1) and the on-fault direct-effect parameter in SV-RS friction (α0, α1)
on the upper diagonal of Fig. 6.2. The highest probability in the 1D marginal distribution
of γ0 and γ1 is, respectively, around 0.9 and 0.5. According to Eq. (6.3), they correspond
to 9.0 ×10−5µ(x, y, z) for the background off-fault plastic cohesion and 5.0 ×10−5µ(x, y, z)
for the plastic cohesion around the southeast of the faults in Fig. 6.1. For the on-fault
direct-effect parameter, the highest probability in the 1D marginal distribution of α0 and
α1 is around 1.2 and 1.0. This corresponds to a linear transition from a − b = −0.002 in
the northwest part of fault F1 to a − b = −0.004 in the southeast part of fault F1. We
will discuss the spatial variation of the plastic cohesion and the direct-effect parameter in
Section 6.2.1. Among the 2D marginal distribution of different pairs of parameters, we
find a clear positive correlation between γ0 and α0. Physically, this means the effect of
smaller off-fault inelastic deformation (larger α0) can be at least partially compensated by
less velocity-weakening on-fault friction (larger γ0).

For comparison, we also show the pre-trained surrogate model at level l = 1 of the MLDA
model hierarchy on the lower diagonal of Fig. 6.2. We find that the pre-trained model
captures most features in the Bayesian posterior in terms of the parameter range with
high probability, as well as the correlation between γ0 and α0. It misses a high-probability
region marked with the blue rectangle in Fig. 6.2b. But it also demonstrates that the
MLDA algorithm can still retrieve proper Bayesian posterior when models at a lower level
contain inaccurate information.



6.3. Results 143

1 2
0

20

40

60
# samples

1 2
0

20

40

60

0.5 1.0
0

20

40

60

80

0.5 1.0
0

10

20

30

40

50

1 2

0.5

1.0

1.5

2.0
0.00 0.02

1 2
0.4

0.6

0.8

1.0

1.2

1.4
0.00 0.03

1 2
0.4

0.6

0.8

1.0

1.2

1.4
0.00 0.03

1 2

0.5

1.0

1.5

2.0
0.00 0.60

1 2
0.4

0.6

0.8

1.0

1.2

1.4
0.00 0.02

1 2
0.4

0.6

0.8

1.0

1.2

1.4
0.00 0.03

0.5 1.0

0.5

1.0

1.5

2.0
0.00 1.20

0.5 1.0

0.5

1.0

1.5

2.0
0.00 0.96

0.5 1.0
0.4

0.6

0.8

1.0

1.2

1.4
0.00 0.03

0.5 1.0

0.5

1.0

1.5

2.0
0.00 0.88

0.5 1.0

0.5

1.0

1.5

2.0
0.08 0.88

0.5 1.0
0.4

0.6

0.8

1.0

1.2

1.4
0.00 1.50

0plastic cohesion: 1plastic cohesion: 0direct-effect frction: 1direct-effect frction:

0
p

la
st

ic
 c

o
h
e
si

o
n
:

1
p

la
st

ic
 c

o
h
e
si

o
n
:

0
d

ir
e
ct

-e
ff

e
ct

 f
rc

ti
o
n
:

1
d

ir
e
ct

-e
ff

e
ct

 f
rc

ti
o
n
:

# samples

# samples

# samples

(a)

(e)

(i)

(m)

(b) (c) (d)

(f) (g)
(h)

(j) (k) (l)

(n) (o) (p)

0

1

0

1

Figure 6.2: Panels of the Bayesian likelihood ρ(dobs|m) from the pretrained surrogate model
and Bayesian posterior ρ(m|dobs) from MLDA inversion. The panels on the diagonal from top to
bottom are 1D marginal posterior probabilistic distribution of off-fault plastic cohesion (γ0, γ1) and
on-fault direct-effect parameter in SV-RS friction (α0, α1). The panels on the upper triangle are
the 2D marginal Bayesian posterior of each parameter pair from MLDA inversion. The black dots
are all the accepted samples excluding the burn-in phase. The density of the dots is color-coded
in gray, which is proportional to ρ(m|dobs). The panels on the lower diagonal are the 2D marginal
Bayesian likelihood, color-coded in blue. The red dots are the 52 samples used for pretraining the
surrogate model. The more transparent dots correspond to lower ρ(dobs|m).
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6.3.2 Models with high posterior probability

After an overview of the complete ensemble of sample parameters, here we focus on the
subset of samples with relatively high posterior probability. In Figs. 6.3a and 6.3b, we show
samples with a posterior probability density ρ(m|dobs) greater than 0.25 ρmax (blue and red
dots) and 0.5 ρmax (yellow rectangles), where ρmax is the maximum ρ(m|dobs) among all the
accepted samples in MLDA. We can still observe the positive correlation between γ0 and α0.
We plot the corresponding model output of the fault-parallel offset along the surface fault
trace (blue and red curves), together with the data (the dashed black curve) from Antoine
et al. (2021). We find a subset of models where the fault slips do not reach the surface in
the south-eastern part of the fault (between 12 km and 30 km). Provided their relatively
good match with the data at the north-western part of the fault (between -10 km and 10
km) from the epicenter, their data misfits are not prominently larger than the misfits from
the models where the south-eastern surface fault trace is ruptured. We mark the former
subset of models in red (hereafter referred to as group 2); while the latter subset in blue
(hereafter referred to as group 1) in Fig. 6.3.

We further select a subset of samples with posterior probability density larger than 0.5 ρmax

(yellow rectangles) in Fig. 6.3a and 6.3b. All samples in this subset belong to group 1 (blue
dots). This indicates that the models where south-eastern part of the fault is ruptured at
the surface are preferred. Among this subset of samples, the mean values of off-fault plastic
cohesion are 0.6 for γ0 and 0.6 for γ1; whereas the mean values of on-fault direct-effect
parameter are 0.8 for α0 and 1.1 for α1. At the same time, the correlation between γ0 and
α0 is still preserved in this subset.

In addition to fault-parallel offset, we also utilize both static and real-time surface displace-
ment from GNSS in the inversion. We show the static displacement at 21 stations in Fig.
6.4a, together with 40 s of the three-component displacement time series at 10 stations in
Fig. 6.4b. We continue showing the model output from group 1 (red arrows and curves in
Fig. 6.4) and group 2 (blue arrows and curves in Fig. 6.4), corresponding to samples with
posterior probability density larger than 0.25ρmax. The blue and red circles in Fig. 6.4a
delineate the uncertainties in the static displacement, respectively, in group 1 and group
2. The radius of the circle is equal to two times the standard deviation of the subset of
models. The static displacement data fall inside the circles at 14 out of the 20 stations for
group 1, whereas this value is only 6 for group 2. This also means that the surface static
displacement data prefer the models in group 1 to those in group 2. But such a preference
is no longer as obvious from real-time displacement time series at the 10 GNSS stations
(Melgar et al., 2020).

6.3.3 Uncertainties in shallow slip deficit

With the ensemble of accepted models in MLDA, we can single out a best-fit model that
has the highest Bayesian posterior probability density. We show the total fault slip on fault
F1 in Fig. 6.5a. We mark a small segment of the fault where the rupture does not reach
the surface. Such an unruptured fault surface has also been captured in previous kinematic
fault slip inversion results from the 2019 Ridgecrest mainshock (Barba-Sevilla et al., 2022;
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Figure 6.3: Accepted models in MLDA with high posterior probability density. We sepa-
rately show the 2D marginal distributions for the pair of parameters (γ0, α0) in panel (a)
and (γ1,α1) in panel (b). We plot the models with posterior probability density ρ(m|dobs)
larger than 0.25ρmax in two groups (group 1 in blue dots and group 1 in red dots); and the
models with ρ(m|dobs) larger than 0.5ρmax in yellow dots. ρmax is the maximum ρ(m|dobs)
among all the accepted models in MLDA. We also plot the fault-parallel offset results from
group 1 (in blue curves) and group 2 (in red curves) in panel (c). Meanwhile, we show the
fault-parallel offset data from Antoine et al. (2021) in the dashed black curve.
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Figure 6.4: Comparison of the model output from group 1 and group 2 with static and real-time
surface displacement measurements at GNSS stations. (a) Co-seismic horizontal static displace-
ments at 21 GNSS stations. The stations where we only use the static displacement data are shown
in orange rectangles, while the stations where real-time displacement measurements are available
are marked with pink rectangles. The mean values of displacement output from models in group
1 and group 2 are, respectively, in blue and red arrows. The radii of the blue and the red circles
equal two times the standard deviation values in each group of models. The yellow arrows denote
static displacement data from Floyd et al. (2020). (b) 40 s of real-time displacement time series at
5 of the 10 pink stations in (a). The left and the right column are, respectively, east-west (EW)
and north-south (NS) components. The blue and red curves are simulation results from models
in, respectively, group 1 and group 2. The black dashed curves are from the processed GNSS data
by Melgar et al. (2020). We compute the average data misfits between the data and, respectively,
the results from group 1 (the blue numbers) and those from group 2 (the red numbers). The black
numbers mark the peak amplitudes of the time series in each sub-panel of (b).
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Hanagan et al., 2024; Antoine et al., 2024).
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Figure 6.5: (a) The fault slip distribution of the best-fit model from the MLDA inversion. The
blue star marks the center of earthquake nucleation in dynamic rupture simulations. (b) Fault slip
variation along the intersection A-A’ in (a). Results from all the accepted models are shown in
gray curves. The yellow curve plots the mean fault slip among all the accepted models, with the
error bars marking the depth-dependent fault slip standard deviation.

A more unique estimation of the model output from the Bayesian inversion with MLDA and
physics-based dynamic rupture simulations is that we can now statistically evaluate SSD
from all the accepted models in the inversion. We show the fault slip distribution along
a vertical intersection (A-A’) on the fault that goes through the earthquake nucleation
center. We plot the fault slip along A-A’ from all the accepted models with the gray curves
in Fig. 6.5b. We find that while the rupture does not reach the surface in a few models,
the normalized fault slip at the surface is between 0.4 and 0.9 in most models. We compute
the mean output of all accepted models and plot it in the yellow curve in Fig. 6.5b. The
lengths of the error bars mark the standard deviation of all accepted models. The mean
value of SSD in the inversion is approximately 38.5%, with a standard deviation of 26.8%.
We also observe a trend that the slip uncertainty increases towards shallower depths. We
will discuss the inverted SSD in this work and compare it with previous results in Section
6.4.2.

6.4 Discussion

In this section, we further analyze the results from Section 6.3. Bayesian inversion with the
MLDA algorithm in this work provides us with a unique opportunity to explore statistics
in the nonlinear parameter space of physics-based dynamic rupture simulations. We start
from an analysis of the preferred model parameters from the inversion. The ensemble of
accepted models used for estimating the Bayesian posterior in parameter space is also useful
for statistically evaluating the fault slip distribution that are constrained by both data and
physical principles. In this regard, SSD is of special interest due to its close correlation with
the off-fault (inelastic) diffuse deformation (Xu et al., 2016). We will discuss the SSD from
our dynamic rupture inversion in comparison with the previous results from the kinematic
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fault slip inversion. In the end of this section, we will discuss the two groups of models that
both have relatively high probability density (> 0.25ρmax). This sheds light on the merits
and limitations of the inversion method that we employed in this work.

6.4.1 Off-fault plasticity and on-fault friction

Both off-fault plastic cohesion c in Eq. (6.2) and on-fault a − b values in the SW-RS
friction law in Eq. (6.A.2) are important to determine the fault slip distribution and the
off-fault deformation. The former controls the energy dissipation through off-fault inelastic
deformation, competing with the energy loss from frictional heating in consuming the total
energy released from the earthquake (Dunham et al., 2011; Gabriel et al., 2013; Nielsen et al.,
2016). On the other hand, a − b influences the amount of energy dissipation from a given
fault slip and determines whether the rupture process is spontaneous (velocity weakening)
or not (Dunham et al., 2011). The Bayesian inversion with the MLDA algorithm provides a
unique opportunity to investigate whether (and how) it is possible to discriminate the effects
of c and a− b on the on- and off-fault deformation with surface displacement measurement.

From the inversion results in Fig. 6.2, we can also observe the correlation between c and
a − b. Less energy dissipation through off-fault inelastic deformation (larger γ0) needs to
be compensated for by less prominent velocity-weakening (larger α0) in on-fault friction.
Compared with the model parameters manually chosen by Taufiqurrahman et al. (2023),
that is, c = 1.0 ×10−4µ(x, y, z), the results from all the accepted samples (Figs. 6.2a and
6.2f) and from the high-probability subset of samples (yellow rectangles in Fig. 6.3) prefer
a lower plastic cohesion. Among the high-probability subset of samples, the mean values
of γ0 and γ1 are, respectively, 0.58 and 0.61. They correspond to c = 5.8 ×10−5µ(x, y, z)
and c = 6.1 ×10−5µ(x, y, z). A lower plastic cohesion helps suppress the amplitudes of
surface displacement close to the fault and allows a better match with observations at
GNSS stations, e.g., P464, P580, and P616, in Fig. 6.4a.

In terms of a − b value for on-fault friction, results from all the accepted samples (Fig.
6.2k and 6.2p) and from high-probability subset of samples (yellow rectangles in Fig. 6.3)
show a different trend in terms of how a− b varies from the northwestern part (α0) to the
southeastern (α1) part of fault F1. In Fig. 6.2, most samples distribute around 1.2 for α0;
while around 1.0 for α1. This corresponds to a decrease of a− b from -0.002 to -0.004 from
northwest to southeast, indicating a more prominent velocity-weakening friction behavior in
the southeast segment of fault F1. However, based on the high-probability subset of samples
(yellow rectangles) in Fig. 6.3, most samples distribute around 0.8 for α0; while around
1.1 for α1. We can find an explanation for this disagreement from the subset of samples in
group 2 (the red dots) in Fig. 6.3a. Almost all (> 95%) of the samples where α0 centers
around 1.2 come from group 2, where the fault rupture does not reach the surface between
12 and 30 km. We also find that samples from group 2 do not show up in models with even
higher probability density (the yellow dots) in Fig. 6.3a. This indicates that the samples
from group 2 biased the distribution in Fig. 6.2k. We therefore propose that the inversion
results prefer an increase of a − b from around -0.006 to -0.003 from the northwest to the
southeast. This corresponds to a less prominent velocity-weakening frictional behavior on
the southeastern segment of the fault F1. A geological observation that may support such



6.4. Discussion 149

transition is the less continuous surface fault trace outcrop from observations before the 2019
Ridgecrest earthquake around the south-eastern segment of the fault F1 (Thompson Jobe
et al., 2020). This indicates a less mature fault zone (Dolan and Haravitch, 2014; Manighetti
et al., 2021), which might result in less prominent velocity-weakening on-fault friction (Ikari
et al., 2011).

6.4.2 Uncertainties in shallow slip deficit

In this work, we for the first time present SSD from physics-based dynamic rupture sim-
ulations systematically constrained from multidisciplinary surface displacement data. We
used this opportunity to quantitatively compare with SSD derived from kinematic fault
slip inversion, constrained by different types of observation, and using different inversion
methods (Wang et al., 2020).

With lower plastic cohesion values (γ0 and γ1) and less prominent velocity-weakening fault
friction (larger α1) in the south-eastern part of the fault, the fault slip values are generally
smaller in the best-fit model in this work, as shown in Fig. 6.5a, compared to the reference
model by Taufiqurrahman et al. (2023). Meanwhile, lower plastic cohesion results in larger
diffused off-fault deformation (Roten et al., 2017), and thus larger SSD. The SSD in the
reference model is around 20%. From the ensemble of accepted models in the MLDA
algorithm in this work, the mean value of SSD is 38.5%, i.e. Fig. 6.5b. In a most recent
estimate of the SSD from kinematic fault slip inversion by Antoine et al. (2024), the shallow
slip deficit is around 36%. Earlier estimations of this value vary from 2% to 45%, indicating
a large uncertainty in the estimation of SSD (Wang et al., 2020; Jin et al., 2022). The
uncertainty in the estimated SSD in Fig. 6.5b is also comparably large, with a standard
deviation of 26.8%.

With a ten-fold acceleration in Bayesian inversion with prefetching MLDA (Kruse et al.,
2025), we show the practicality of solving low-dimensional inverse problems for regional-scale
earthquakes with complex geometry and inelastic off-fault deformation, such as the MW 7.1
Ridgecrest earthquake, 2019. However, the dimension of parameter space is still limited by
computationally expensive dynamic rupture simulations. The low dimension of parameter
space that we explore in this work increases the epistemic uncertainties and prevents us
from matching the observations to their measurement accuracies. Potential methods for
further accelerating the inversion process are emerging on the horizon. They include deep-
learning-based surrogate models (Yang et al., 2023) to handle high-dimensional input for
lower-level model in MLDA, adjoint dynamic rupture simulations from Stiernström et al.
(2024), which provides parametric gradient information for inversion, and fused simulation
that enables execution of ensembles of dynamic rupture simulations at the same time, which
can provide additional speed-up (Breuer et al., 2017; Heinecke et al., 2019).
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6.5 Conclusions

This study presents the application of a novel MLDA algorithm for Bayesian inversion,
partition uncertainty, and correlation among nonlinear parameters in physics-based dynamic
rupture simulations. Through an integration of multidisciplinary surface deformation data,
we reveal a strong correlation between on-fault friction (direct-effect parameter, a) and off-
fault plastic cohesion (c). The results demonstrate that lower plastic cohesion compensates
for reduced velocity-weakening friction, highlighting the interplay between these processes
in controlling fault slip distribution and off-fault deformation.

The estimated shallow slip deficit (SSD) is 38.5%, with a standard deviation of 26.8%.
Such range of SSD are comparable with results from previous kinematic fault slip inversion
studies. We highlight that the SSD values in this work are supported by dynamic rupture
simulations that account for off-fault inelastic deformation. This supports the hypothesis
that off-fault inelastic deformation can quantitatively explain the observed SSD in the MW

7.1 2019 Ridgecrest earthquake. Additionally, preferred models from our inversion suggest
a gradual decrease in velocity-weakening behavior along the fault, suppressing overshooting
at the southeastern segment. This finding is consistent with the geological observations of
less mature fault zones in this region.

The combination of MLDA and dynamic rupture simulations provides a powerful framework
for quantifying earthquake mechanics, despite current limitations in measurement accuracy
and parameter space dimensionality. Future advancements, such as AI-based surrogate
models and adjoint dynamic rupture simulations, hold promise for improving efficiency and
resolution in large-scale inversions. Overall, this work establishes a foundation for more
precise and comprehensive investigations of the earthquake source properties with direct
constraints from quantitative field observations.



Appendices

Appendix 6.A SV-RS friction law in dynamic rupture
modeling of earthquakes

We use this section to clarify the nonlinear parameters in the SV-RS friction law in Section
6.2.2. In this friction law, the frictional fault strength τs (the upper bound of the shear
traction τ on a fault surface) is proportional to the local normal traction σn, which is

τs = f(V,Ψ)σn, (6.A.1)

where f(V,W ) is known as the friction coefficient. It is a function of the slip rate V and
the state variable Ψ. In SV-RS friction, it is defined as

f(V,Ψ) = a sinh−1(
V

2V0

exp(
Ψ

a
)), (6.A.2)

where a is the direct-effect parameter and V0 is the reference slip rate, at which the friction
coefficient takes a reference value f0. The state variable Ψ evolves to its steady-state value
Ψss depending on the slip rate V and a characteristic slip distance L in Eq. (6.A.3).

dΨ
dt

= −V

L
(Ψ−Ψss(V )), (6.A.3)

where Ψss(V ) is written as

Ψss(V ) = a ln(
2V0

V
sinh(

fss(V )

a
)), (6.A.4)

corresponding to a steady-state friction coefficient fss. At steady state, the low-velocity
friction coefficient fLV is defined as

fLV (V,Ψ) = f0 − (b− a) ln
V

V0

, (6.A.5)

where b is the evolution-effect parameter that determines how the friction evolves with the
state variable Ψ from the instantaneous direct effect a. To account for the friction reduction
at high slip rates, SV-RS friction further defines a fully weakened friction coefficient fW at
a weakened slip rate VW . Combining fLV , fW and VW , fss can be defined as

fss(V ) = fW +
fLV (V )− fW

(1 + (V/VW )8)1/8
. (6.A.6)
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Appendix 6.B Real-time displacement at the GNSS sta-
tions not presented in Fig. 6.4b

In Fig. 6.B.1, we provide the comparison between the output of the accepted models in
MLDA and the real-time displacement recordings at 10 GNSS stations, supplementary to
Fig. 6.4b.
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Figure 6.B.1: Supplementary results of Fig. 6.4b. The first three columns from the left are 40 s of
real-time displacement time series at the remaining 5 of the 10 pink stations that are not presented
in Fig. 6.4b. From left to right, they show, respectively, east-west (EW), north-south (NS), and
upward-downward (UD) components. The blue and red curves are simulation results from models
in, respectively, group 1 and group 2. The black dashed curves are from the processed GNSS data
by Melgar et al. (2020). Meanwhile, the upward-downward (UD) components of the 5 stations in
Fig. 6.4b are shown in the right most column of this figure.



Chapter 7

Concluding remarks

7.1 Summary

In this dissertation, I advance nonlinear rock models and constrain their parameters from
laboratory experiments, develop a nonlinear discontinuous Galerkin (DG) algorithm that
incorporates these models into wave propagation and dynamic rupture simulations, and
integrate the efficient Bayesian inversion algorithm MLDA with supercomputing infras-
tructures. The eventual goal for which this dissertation is intended is to pave the way
towards constraining nonlinear rock model parameters from earthquake observations so
that it is eventually possible to compare these values with measurements from laboratory
experiments.

I start from exploring the applicability of two models explaining the observed non-classical
nonlinear behaviors in rocks, comparing an internal variable model (IVM) and a continuum
damage model (CDM). The IVM is based on the work of Berjamin et al. (2017), while the
CDM is adapted from Lyakhovsky et al. (1997a). The results indicate that both models
provide a quantitative match with laboratory observations, supporting their effectiveness in
capturing the co-seismic wave speed changes in rocks. But they have different merits and
deficiencies. CDM is derived from a more physical assumption, but it also has more param-
eters to be constrained; whereas IVM has fewer parameters and can be easier constrained,
but is also more phenomenological (still based on laws of thermodynamics).

Based on the above understandings of the nonlinear rock models, I move on to develop
a scalable software for numerical modeling of regional-scale 3D seismic wave propagation,
extending from the in-house maintained software SeisSol. The extended solver can now
account for geometric complexities of the surface topography and heterogeneous geological
structures. I evaluate the parallel performance of our implementation on Frontera and
find that both weak and strong scaling remain close to linear up to 20 nodes per million
elements, allowing efficient simulations on meshes with up to 100 million elements and
scalability up to 2048 nodes. With an implementation of the experimentally constrained
nonlinear model IVM, I apply the extended solver to the 2015 Mw 7.8 Gorkha earthquake in
the Kathmandu Valley, incorporating a free surface with topography, a sedimentary basin
with low wave speeds and complex bathymetry, a layered geological structure, and a finite
source model that accounts for rupture directivity effects. The simulation results show that
co-seismic wave speed reductions depend on the fault slip distribution near the source and
are modulated by basin depths tens of kilometers away from the fault. Additionally, co-
seismic wave speed changes enhance low-frequency components in soft sedimentary layers,
affecting ground motions, which is relevant for seismic hazard assessment.
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As a next step, I further integrated the nonlinear DG algorithm for wave propagation with
3D dynamic rupture simulations. The numerical framework proposed in this work is flexible
with different nonlinear models. With another nonlinear rock model, the continuum damage
breakage model (Lyakhovsky et al., 2016), which is well suited for fault zone nonlinearity,
I investigate the impact of off-fault co-seismic moduli reduction on the earthquake source
mechanism and earthquake interaction. The results show that localized damage zones that
extend from one fault can introduce a heterogeneous stress perturbation on its neighboring
fault. This stress heterogeneity triggers nucleation on the second fault. This part of the
dissertation demonstrates that the tool developed in this work is unique in modeling how
discontinuous fault segments that are separated by a few kilometers can be connected to
each other during earthquakes (Wesnousky, 2006).

With the extended solver developed in this work, we are equipped with the tool to model
nonlinear earthquake-related observations in the field. Along the path towards a comparison
between the constrained nonlinear rock model parameters from earthquake observations
and these values from laboratory experiments, I integrated the SeisSol simulations with an
efficient and scalable Bayesian inversion algorithm, the prefetching-based multilevel delayed
acceptance Markov chain Monte Carlo (MLDA-MCMC) algorithm, on supercomputers.
Tests on the integrated inversion framework indicate that the prefetching technique with
MLDA-MCMC can be a valuable tool for scenarios where the strong scaling behavior of
the sampling procedure is relevant. This is typically the case for expensive computational
models, large computational resources, and limited time-to-result.

I end this dissertation with an application of the inversion algorithm to data from the 2019
Mw 7.1 Ridgecrest earthquake to investigate the interaction between nonlinear on-fault
friction and off-fault inelastic deformation. Through an integration of multidisciplinary
surface deformation data, the inversion results demonstrate that a lower plastic cohesion
compensates for the reduced velocity-weakening friction, highlighting the interplay between
these processes in controlling fault slip distribution and off-fault deformation. The inversion
also provides an estimated shallow slip deficit (SSD) of 38.5%, with a standard deviation of
26.8%. The uniqueness of this work lies in the fact that inverted SSD values are supported by
high-resolution dynamic rupture simulations that account for off-fault inelastic deformation.

7.2 Outlook

This work contains four emerging ingredients in earthquake physics: better nonlinear me-
chanical models for rocks and soils, an extended numerical solver for nonlinear wave propa-
gation and dynamic rupture, a generic framework for Bayesian inversion of rupture dynam-
ics with complex geometry and nonlinear parameters, and their geophysical applications to
regional-scale earthquakes. This dissertation provides a tool for evaluating the effects of
different nonlinear models on ground motions and earthquake source mechanisms. It can be
used for investigation of mechanisms and observations in actual earthquakes (as in Chapter
3), for theoretical study of the first-order influence of the nonlinear models (as in Chap-
ter 4), and for constraining the nonlinear on-fault and off-fault parameters in earthquakes
hosted by fault structures with complex geometry and nonlinear physical mechanisms (as
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in Chapter 6). In this section, I list some practical extensions of this dissertation.

Explain high-frequency seismic energy radiated from the fault structures that
host regional-scale earthquakes: This work provides unique foundations for studying
more observations in earthquakes with nonlinear models. One example can be to investigate
whether the co-seismic off-fault moduli reduction can explain the high-frequency ground
motions between 0.5 and 5 Hz during the 2016 Mw 6.2 Amatrice, Italy, earthquake, which
cannot be explained with fault roughness and surface topography (Taufiqurrahman et al.,
2022). The results in Chapter 4 show the co-seismic off-fault moduli reduction can introduce
significantly enhanced high-frequency seismic radiation from 0.4 Hz and up to 10 Hz. This
range covers the gap in the previous study very well. Therefore, the co-seismic off-fault
moduli reduction may be a promising candidate to fill this gap.

More realistic ground motion simulation for soft sediments in 3D: Aside from
the better characterization of earthquake sources, the extension of SeisSol in this work also
enables a better characterization of ground motions above soft sediments. In Chapter 3,
I investigate the effect of co-seismic wave speed reduction on ground motions within the
Kathmandu sedimentary basin. While the results already show that such reductions in
wave speed can reproduce low-frequency enhancement, the nonlinear model IVM used in
Chapter 3 does not yet include the accumulation of inelastic strain. For the extension in
this direction, I already have some preliminary work that combine inelastic strain (using a
single-mechanism Maxwell visco-elastic model) with time-dependent degradation of moduli
in non-classical nonlinearity in Fig. 1.1. This model extends from the model in Eq. (3.1).
I formulate the combined model as:

∂εij
∂t

+
∂εpij
∂t

=
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
ρ
∂vi
∂t

=
∂σij(ε

=
, α)

∂xj
∂α

∂t
= rα(ε

=
, α)

∂εpij
∂t

=
1

η
τij

, (7.1)

where the additional variables to Eq. (3.1) are the inelastic strain tensor εpij, the deviatoric
stress tensor τij = σij−1/3σkk, and the viscous coefficient η. I show in Fig. 7.1 that this sim-
ple combination of visco-elasticity and IVM can reproduce the stress-strain curves measured
on a soil sample under cyclic loading (Weaver, 2019). The implementation of this combined
model is also available in the SeisSol repository (https://github.com/SeisSol/SeisSol) under
the branch “damaged-material-nonlinear-drPlasB”.

Further improvement in the accuracy and performance of the nonlinear DG
algorithm: Aside from the geophysical application, there is also plenty of room for im-
provement on the solver side for the nonlinear extension of SeisSol. Here, I briefly summarize
the following three major points:

https://github.com/SeisSol/SeisSol
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Figure 7.1: Comparison between the stress-strain curves from (a) laboratory experiments on soil
samples from Weaver (2019) and (b) the model that combines inelastic strain with IVM in Eq.
(7.1). The soil sample is subjected to dynamic cyclic loading. With the increase in the number
of loading cycle, which is the color code of panel (b), the angle between the hysteresis curve and
x-axis drops.

• As discussed in Chapter 3, some node-level performance optimization is required
to enhance hardware performance for the newly implemented space-time integration
(matrix-matrix multiplication) function.

• Another promising point of improvement is to enable the local-time-stepping (LTS)
for the nonlinear implementation in this work. The currently version only supports a
uniform time step size in all the elements of a mesh. This is a significant bottleneck
for the simulation domain with complex geometry or significant local mesh refinement
for higher resolution. While LTS has limited room for improvement in hardware
performance, it can increase the speed by more than 10 times in terms of the time to
solution (Breuer and Heinecke, 2022).

• The third point is related to the convergence order of the current nonlinear DG
algorithm in this work. As shown in Chapter 3, with a linearized Cauchy-Kovalevskaya
procedure in the prediction step of time integration, the algorithm only has a first-
order convergence rate independent of the polynomial degrees of the basis functions
in space. As discussed by Käser et al. (2008), a high-order convergence rate can
also reduce the time-to-solution. A potentially promising extension of our work is
the incorporation of a discrete Picard iteration scheme (Lindelöf, 1894; Youssef and
El-Arabawy, 2007; Dumbser et al., 2008; Gassner et al., 2011; Reinarz et al., 2020) to
replace the linearized Cauchy-Kovalevskaya procedure. This approach has been shown
to help preserve high-order convergence up to 7 in ADER-DG solvers (Dumbser et al.,
2008).

Further acceleration of the Bayesian inversion with dynamic rupture simula-
tions: Chapters 5 and 6 introduce the multi-level delayed acceptance (MLDA) Markov
chain Monte Carlo (MCMC) algorithm (Dodwell et al., 2019), which significantly enhances
the efficiency of Bayesian inversion. However, the number of parameters that can be in-
verted is still limited by: (1) the current Gaussian process regression surrogate model lacks
generalization across different earthquake sources and gives insufficiently good estimation
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in high-dimensional parameter space; (2) each forward simulation has a high computational
cost; and (3) the curse of dimensionality in gradient-blind MCMC (Fichtner et al., 2019).
A promising avenue for addressing these limitations is the integration of deep learning (DL)
architectures to develop surrogate models that improve computational efficiency while gen-
eralizing effectively across diverse earthquake scenarios. By combining the MLDA algorithm
with DL-based surrogate models and adjoint 3D dynamic rupture simulations (Stiernström
et al., 2024), it is possible to further accelerate Bayesian inversion while improving accu-
racy and scalability. Future research can focus on refining these techniques to expand the
applicability of high-dimensional seismic inversion in large-scale earthquake modeling.
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