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Abstract

Deciphering cellular organisation and how molecular expression patterns vary across tissues is
fundamental to gaining insights into biological processes and disease mechanisms. Advances
in omics technologies, particularly spatial omics, have revolutionised our ability to investigate
these patterns at unprecedented resolution and dimensionality. While various statistical and
machine-learning approaches have emerged to analyse these complex data sets, critical gaps
remain in our understanding of the differential cellular organisation and tissue characteris-
tics across different conditions. Furthermore, the field typically lacks robust tools for a three-
dimensional, holistic view of tissues, which is crucial for comprehending disease dynamics.
In this thesis, I present a suite of mathematical approaches to analyse diverse omics data,
focusing on spatial omics, with various resolutions, throughputs, and dimensionalities to re-
veal crucial insights into differential changes in molecular expression and cellular organisation
across conditions. First, as part of a large multimodal comprehensive study, I expanded on our
understanding of cell heterogeneity, the distinctive proteome signatures in the skull bone mar-
row, and its role in immunological responses to neurological disorders. Second, increasing the
complexity and advancing into the spatial omics domain, I advanced the current approaches
to quantitatively analyse the cellular organisation across multiple scales, from individual cell
types and tissue niches to whole tissue revealing condition-specific tissue changes. Third, I
proposed graph models and comprehensive multimodal ablation studies to understand the tis-
sue traits contributing to patient outcomes and associate them with tissue architecture motifs
to enhance our understanding of disease progression. Fourth, moving into three-dimensional
space, I used our new technology, DISCO-MS, to explore the proteome changes in amyloid-
beta plaques in Alzheimer’s disease to capture very early (6 weeks) and late-stage dynamics
and region-specific variations, providing a holistic view of the plaques’ microenvironment. Col-
lectively, these approaches represent a comprehensive effort and advancement in our ability to
study the differential changes in molecular expression, cellular organisation, and tissue traits
across different physiological and pathological conditions while further extending into three-
dimensional volumes for a more holistic understanding of biological systems.
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1 General Introduction

1.1 Basic Principles of Cell Biology and Neuroimmunology

1.1.1 Cell and tissue biology

Cells are the fundamental functional units of life, essential for carrying out all biological pro-
cesses. They exhibit diverse structures and functions, from liver cells’ metabolic activities to
neurons’ electrical excitability. In multicellular organisms, cells are building blocks for tissues,
organs, and the entire body. This progression reflects the hierarchical organisation of life,
where specialised clusters of cells collaborate to form tissues, and tissues integrate to build
organs that function as part of interconnected body systems. These systems, such as vas-
cularisation, innervation, and the immune system, interlink organs, synchronise their functions
and mediate remote effects during pathological conditions. The bone marrow is an example
of such systemic coordination, where haematopoietic cells contribute to immune system func-
tionality and respond to signals from other body systems (Bandyopadhyay et al., 2024). Such
interconnections highlight the body’s reliance on synchronised systems to maintain homeosta-
sis and respond dynamically to disease.

Each cell is defined by its molecular profiles, encompassing not only genes transcribed into
RNA and subsequently translated into proteins but also additional layers of complexity, such
as modifications in the epigenome, which play a crucial role in regulating its function and state.
Such molecular information is a useful indicator of its functionality. The distinct physical nature
of cells, with a lipid cell membrane acting as a defining boundary of each cell, is crucial for
maintaining the integrity of the cell and allows for physical separation between them. This has
led researchers to view cells as membrane-bound molecular bags (Quake, 2021). The distinct
nature of cells facilitates their study in a dissociated manner within tissues, making it feasible
to investigate individual cells in diverse experimental settings. This, in turn, contributes to our
understanding of cell types, states, and interactions within the tissue in health and disease.
However, cells do not function as single entities, and the precise spatial arrangement, interac-
tions, and distribution of cells within tissue play a critical role in determining the physiological
state of tissues within the organism (Illustration 1). For example, the spatial organisation of
cells is crucial for understanding the various underlying functions in different brain structures
such as the cerebral cortex and the hippocampus (Chen et al., 2023a; Qiu et al., 2024). In
addition, an imbalance in these interactions, or a change in the distribution, structure, or or-
ganisation of different cell types within tissue, can lead to loss of functions and disease (Palla
et al., 2022a; Rao et al., 2021).

Understanding how molecular and spatial characteristics of cells contribute to higher-order
tissue functions provides critical insights into the emergent properties of biological systems.
For example, in cancer research, examining the tumour microenvironment reveals how the in-
terplay between cancer cells and their surrounding stroma drives tumour growth, metastasis,
and resistance to therapeutics (Wang et al., 2023). Moreover, investigating the spatial context
of amyloid-beta plaques in neuroscience has advanced our understanding of Alzheimer’s dis-
ease pathogenesis (Wang et al., 2024). Therefore, studying the interplay between individual
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cells’ behaviour and the constraints imposed by their spatial context is essential to gain deeper
insights into these complex interactions (Polychronidou et al., 2023).

Taking a holistic approach to studying biological systems and combining the diverse infor-
mation provided by modern technologies is crucial for an unbiased understanding of health
and disease (Kirschner, 2005). Therefore, studying both homeostasis and disturbances in the
cellular organisation is not only essential to gain insights into the emergent properties and un-
derlying mechanisms of tissue in different physiological and pathological states but also for our
understanding of tissue biology and enhancing diagnostic and therapeutic strategies.
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Illustration 1. From Cell Biology to Spatial Omics: Mapping Cells in Context. The cell
contains DNA in the nucleus which is transcribed to mRNA. This mRNA is then translated in
the cytoplasm, resulting in protein synthesis. Cells interact together in a three-dimensional
space forming a cellular system. Molecular measurements from cells can be captured at
different levels: from individual cells, single-cell omics measurements (cell x gene/protein)
or from collection of cells, bulk omics measurements (sample x gene/protein). Since cells
exist within a spatial context, the field of spatial omics has emerged, combining single-cell
or bulk omics measurements with their spatial coordinates to study cells in situ.

1.1.2 Immune system and the defensive role of bone marrow

The immune system plays a pivotal role in maintaining the body’s defence mechanisms and
ensuring homeostasis by recognising and responding to pathogens while preserving the in-
tegrity of tissues. An important immune system component is the bone marrow, a primary
lymphoid organ and the principal site of haematopoiesis that produces blood and immune cells
(Leimkühler and Schneider, 2019). Among these immune cells, macrophages, lymphocytes,
and neutrophils are crucial drivers of inflammatory responses (Illustration 2a). In addition to its
role as a cell production site, the bone marrow also functions as a reservoir for immune cells
that are mobilised in response to systemic or localised infections and injuries. This highlights

2



the bone marrow’s importance as both a producer and regulator of immune cells, providing
critical links between systemic immune function and localised immune responses, including
those in the central nervous system.
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Illustration 2. Overview of Immune Cell Types and the Protective Structures of the
Brain. (a) Immune cell types originate in the bone marrow and undergo differentiation
from hematopoietic stem cells. They further differentiate into either myeloid or lymphoid
progenitor cells. Myeloid progenitor cells give rise to erythrocytes, monocytes, neutrophils,
basophils, eosinophils, or platelets. Lymphoid progenitor cells differentiate into T cells, B
cells, or NK cells, which are components of the adaptive immune system. (b) There are
multiple layers protecting the brain from the outside. Starting from the outermost layers,
these include the skin of the scalp, followed by the calvaria (the bone of the skull). Next
are the meningeal layers: dura mater, arachnoid mater, and pia mater, leading finally to the
brain.
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1.1.3 Central nervous system and role of calvaria in neuroimmunology

The central nervous system (CNS) is a major communication network in the body that dy-
namically interacts with the immune system in health and disease. For a long time, the CNS
was considered an immunologically privileged site that is isolated from the peripheral immune
system by the blood-brain barrier (BBB). The BBB, a specialised vascular structure, acts as a
protective shield, preventing most immune cells and substances in the bloodstream from en-
tering the brain while selectively allowing essential molecules (Carson et al., 2006; Alves de
Lima et al., 2020). This concept of immune privilege, however, has been challenged over the
past few decades.

Recent studies have revealed breaches in the BBB during inflammatory diseases such as
stroke, Alzheimer’s disease, and multiple sclerosis which allow immune cells to invade the
brain. Pathways such as the choroid plexus and other mechanisms facilitate the migration of
leukocytes into the CNS, demonstrating active interactions between the brain and the immune
system (Solár et al., 2020). Furthermore, the discovery of skull-meninges connections (SMCs),
microscopic channels between the skull bone marrow and the meninges, has provided com-
pelling evidence of immune cell migration during pathological conditions such as stroke (Cai
et al., 2019). These findings not only reshape our understanding of CNS-immune interactions
but also highlight the importance of studying the two systems together as an interconnected
whole. For example, studies have shown active interactions between the CNS and the periph-
eral immune system, through the discovery of routes for the migration of leukocytes into the
CNS, which regulate immune responses (Ransohoff et al., 2003).

The immune system’s role in CNS health and disease is further underscored by the calvaria,
or skull bones, which actively contribute to neuroimmunology. The skull and brain are sep-
arated by the meninges, three protective membranes (dura mater, arachnoid mater, and pia
mater) that house immune cells crucial for brain health. Studies have shown that the skull
bone marrow supplies immune cells such as monocytes and B-cells to the meninges during
both homeostasis and disease (Cugurra et al., 2021; Brioschi et al., 2021) (Illustration 2b). This
unique proximity of the skull to the brain positions it as a key site for immune-CNS communi-
cation, raising critical questions about how these interactions influence CNS pathology. For
example, does the skull’s immune composition uniquely impact neuroinflammatory responses
compared to other skeletal sites? Profiling the calvaria’s molecular and structural features is
essential for answering these questions and understanding its distinct role in health and dis-
ease.

Understanding CNS pathology requires a holistic approach that considers not only cellular
and molecular profiles within the brain but also interactions with the immune system. Neurode-
generative diseases such as Alzheimer’s and Parkinson’s highlight the complexity of these in-
teractions, where disruptions in cellular organisation and composition lead to systemic effects
(Jeong, 2017). For example, amyloid-beta (Aβ) plaques, a hallmark of Alzheimer’s disease,
illustrate the importance of studying molecular profiles, interactions, and spatial organisation
within the brain microenvironment. Investigating these aspects can uncover critical mecha-
nisms underlying disease progression and identify new therapeutic targets.

Advancements in high-throughput omics technologies (Section 1.3) have revolutionised the
study of molecular and cellular biology by enabling the measurement of molecular profiles at
unprecedented scale and resolution. These technologies, particularly spatial omics (Section
1.4), integrate molecular and spatial information to provide a comprehensive view of cellular
organisation and interactions within tissues. Applying such tools to CNS pathology is crucial
for linking molecular and structural data to the observed functional outcomes, offering insights
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into complex disease mechanisms and facilitating the development of novel diagnostics and
therapeutics.

The interplay between the CNS and the immune system shows the complexity of biological
systems. Studying the brain in isolation is no longer sufficient; instead, a holistic approach
that integrates molecular, cellular, and structural perspectives is necessary. Investigating the
calvaria’s unique role, pathways like the choroid plexus and SMCs, and the broader systemic
interactions will deepen our understanding of CNS pathology and advance therapeutic strate-
gies. As part of this thesis, these questions will be explored to leverage current technological
advances and deepen our understanding of CNS-immune interactions within the broader con-
text of biological systems (Kolabas et al., 2023).

1.2 Optical tissue clearing - DISCO technologies

Studying large tissues (and even full bodies) in three dimensions is necessary for a comprehen-
sive understanding of spatial relationships and interactions within complex biological systems.
However, imaging large tissues while maintaining their structural integrity is challenging with
the common high-resolution histological and microscopy imaging techniques without the loss
of valuable information. On the other hand, whole-body imaging techniques such as positron
emission tomography (PET) or magnetic resonance imaging (MRI) lack cellular-level resolution
(Cai et al., 2023). Although high-resolution histological and microscopy techniques provide
cellular detail, they often require sectioning which can disrupt spatial organisation and lead to
information loss. To address these challenges, optical tissue clearing has emerged as a trans-
formative approach, allowing three-dimensional imaging of intact tissues while preserving their
structural and cellular integrity (Ertürk et al., 2012).

1.2.1 Optical tissue clearing: definition and principles

Optical tissue clearing is a term that describes a rapidly developing process of making bio-
logical tissue transparent by removing light-scattering components such as lipids and water
while preserving the integrity of the tissue structure and maintaining the spatial cellular organ-
isation within the tissue. This process enables high-resolution three-dimensional imaging of
intact tissues and avoids the loss of information that can result from sectioning techniques.
The key principle for achieving tissue transparency in tissue clearing methods is homogenising
the refractive index (RI), which reduces the scattering of light in the medium allowing deeper
penetration and therefore rendering transparent tissue (Cai et al., 2023; Molbay et al., 2021).
The basic workflow of tissue clearing consists of three main principles: fixation, dehydration,
and clearing of the tissue. First, the tissue is fixed to maintain the structural integrity. Dehydra-
tion usually follows fixation, which is the process of replacing water in the tissue with organic
solvents such as methanol and ethanol. After the tissue is dehydrated, it is placed in a reagent
with a matching RI to achieve maximum penetration of light and therefore transparency. After
these steps are completed, the transparent tissue is then imaged using light sheet fluorescence
microscopy providing an unbiased, holistic view to study with cellular resolution the biology at
the tissue, system and whole-body scales.

1.2.2 DISCO technologies

Various tissue-clearing protocols have been developed over the past decade. These different
protocols can be clustered into three categories: hydrogel-based, hydrophilic (aqueous-based)
and hydrophobic (solvent-based) clearing. This thesis focuses on hydrophobic (solvent-based)
tissue clearing, specifically 3D imaging of solvent-cleared organs (DISCO) technologies. The
solved-based clearing methods are considered the oldest clearing methods dating back to the
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19th century (Molbay et al., 2021). These methods use solvents to remove light-scattering
molecules from tissue while preserving tissue integrity. However, the use of solvents results
in tissue shrinkage, which, while beneficial for imaging large tissues, is an irreversible process
that deforms the tissue and disrupts spatial cellular organisation. Therefore, these techniques
are performed gradually to minimise shrinkage and deformation of the tissue. Examples of
solvent-based clearing methods include; 3DISCO (Ertürk et al., 2012), uDISCO (Pan et al.,
2016) which minimises the shrinkage of tissue, iDISCO (Renier et al., 2014) which employs
immunolabelling, vDISCO which uses nanobodies for labelling (Cai et al., 2019, 2023), and
SHANEL which can be applied to intact human organs (Zhao et al., 2020).

Tissue clearing has been widely used in various applications to reveal new biological insights at
the systems level and whole-organism scale. With their ability to preserve tissue integrity dur-
ing imaging, tissue clearing methods offer a powerful approach to studying three-dimensional
structural information at a microscopic scale and uncovering new anatomical connections.
Some of these applications include the visualisation of neural circuits (Ertürk et al., 2012)
and inflammation (Liu et al., 2015), the quantification of cancer cells that have been targeted
by therapeutic antibodies (Pan et al., 2019), visualisation of the whole-body neural projections
in the adult mouse, and discovering short vascular connections (skull-meninges channels) be-
tween the skull bone marrow and the brain meninges, which were previously considered to
be isolated (Cai et al., 2019). The preservation of intact three-dimensional tissue, as well as
the cellular resolution imaging of cleared tissues, facilitates the unbiased, holistic analysis of
biological systems and even entire organisms, opening a wide range of applications in various
biological research fields, from neuroscience and immunology to cancer and developmental
biology. The next natural step for enhancing our understanding of biological systems and gain-
ing deeper insights into their underlying mechanisms is to combine molecular information with
three-dimensional spatial cellular information obtained through tissue clearing. This approach
will pave the way for groundbreaking discoveries and significantly enhance our understanding
of various research fields. The development of technologies to study cellular properties and
organisation in three dimensions on a large scale is essential for providing new insights into
how cells in their spatial context are affected in different pathological states, such as neurode-
generative diseases. These advancements are explored as part of this thesis (Bhatia et al.,
2022).

1.3 High-throughput and resolution biology: Omics technologies

Omics technologies have transformed biological research by enabling high-throughput analy-
sis of molecular and cellular properties. These technologies encompass various fields, such as
genomics, transcriptomics, proteomics, and metabolomics, each focusing on distinct aspects
of biological complexity. By profiling molecular components like DNA, RNA, proteins, and
metabolites, omics studies provide insights into the mechanisms underlying biological func-
tions and diseases.

In the last decades, molecular profiling relied on bulk analysis which captures the average
molecular information of hundreds or thousands of cells. Despite the effectiveness of targeted
probing of specific molecular targets, bulk methods often ignore cell-specific heterogeneity
which is a key aspect of many biological processes. The continuous advancements of high-
throughput technologies have expanded the throughput and resolution of molecular studies
which enabled single-cell analysis that uncovers the diversity of molecular states across tis-
sues with unprecedented granularity (Li and Wang, 2021) (Illustration 1).

Overall, single-cell (and bulk) omics technologies have enhanced our understanding of bio-
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logical systems by enabling genome-wide profiling of individual (or collection of) cells. These
methods have facilitated breakthroughs in immunology, such as characterising immune cell
heterogeneity and discovering novel cell types (Macosko et al., 2015; Pijuan-Sala et al., 2019).
Furthermore, large-scale initiatives, like the Human Cell Atlas, leverage single-cell omics to
create comprehensive maps of human tissues and organs (Regev et al., 2017).

1.3.1 Transcriptomics

Transcriptomics focuses on the study of RNA molecules within cells, providing insights into
gene expression patterns and functional elements of the genome. RNA-sequencing (RNA-
seq) has become a gold standard of transcriptomic analysis, advancing from bulk approaches
to single-cell resolution. Bulk RNA-seq measures average gene expression across large cell
populations, which captures an overview of the molecular expression but fails to specify cell-
specific variations. Single-cell RNA-seq (scRNA-seq) has revolutionised the field by enabling
the profiling of individual cells, facilitating the discovery of rare cell types, cellular heterogeneity,
and gene expression dynamics across tissues (Macosko et al., 2015; Pijuan-Sala et al., 2019).

The RNA-seq process involves extracting RNA from cells, reverse-transcribing it into comple-
mentary DNA (cDNA), and sequencing the resulting fragments (Sanger et al., 1977; Heumos
et al., 2023). This technique provides genome-wide expression data, revealing cellular states
and their roles in health and disease. Single-cell RNA-seq is particularly relevant in immunol-
ogy, where it helps decipher the adaptive and innate immune systems, track gene mutations
during development, and study immune responses in pathological conditions (Stubbington
et al., 2017). However, while single-cell approaches offer high resolution, they lack the spatial
information of the cells they capture, which requires complementary methods to understand
cell interactions in their native contexts.

1.3.2 Proteomics

Proteomics investigates protein levels and post-translational modifications, essential for under-
standing cellular functionality and tissue dynamics. Traditional antibody-based methods, such
as Western blotting (Mahmood and Yang, 2012)and ELISA (Butler, 2000), provide targeted
but low-throughput analysis, typically detecting tens to hundreds of proteins per experiment.
These methods excel in studying specific pathways but lack the capacity for comprehensive
proteome analysis.

Mass spectrometry (MS), on the other hand, has emerged as a powerful tool in proteomics,
offering high-throughput analysis of thousands of proteins in complex samples (Bennett et al.,
2023). MS-based methods provide both qualitative and quantitative data, enabling the iden-
tification of protein interactions, modifications, and abundance. However, these methods pre-
dominantly operate on bulk samples, as single-cell proteomics remains technically challenging
due to the low abundance of proteins and the difficulty of amplifying signals. While early ad-
vancements in single-cell proteomics show promise (Brunner et al., 2022; Mund et al., 2022;
Petrosius et al., 2023), further development is required to achieve broader applicability in bio-
logical research.

1.4 Spatial omics

Biological processes happen in a spatial context and three-dimensional alignments of cells
within the tissue are necessary for the various functions. Therefore, information on both the
spatial context of cells and their molecular profiling is crucial for deciphering the behavioural
changes within the tissue across different conditions. Single-cell experiments performed on
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disassociated cells lack this spatial information. Therefore, the development of a new field of
technologies that captures spatial profiling of gene and protein expression to the resolution of
single cells within the tissue was necessary. This field is referred to as ”Spatial omics” (Bres-
san et al., 2023) (Illustration 1).

Current spatial omics technologies can measure proteins and mRNA. Unlike single-cell tech-
nologies, which reached high levels of throughput, spatial omics face a trade-off between spa-
tial resolution and both throughput and experimental time (Chen et al., 2023b; Bressan et al.,
2023). Since the development of spatially resolved technologies, and despite their current lim-
itations, these methods have greatly advanced biological research. Notably, spatially resolved
transcriptomics was selected as Nature’s Method of the Year 2020 (Marx, 2021), and spatial
proteomics received the same recognition as Nature’s Method of the Year 2024 (Nat, 2024).
Spatial technologies have already contributed to a better understanding of the correlation be-
tween the tumour microenvironment and patient outcome in various breast cancer studies (Ali
et al., 2020; Jackson et al., 2020), developmental stages and brain structures in different ani-
mal models (Moffitt et al., 2018; Zhang et al., 2021; Wei et al., 2022). Furthermore, the human
cell atlas initiative is expanding to include spatial omics to provide spatial atlases for the various
human organs. However, it remains unclear how these spatial data will be standardised, as a
common coordinate system is still needed to accurately map and compare cellular locations
across tissues (Regev et al., 2017).

In addition to advancements in individual modalities, there is a growing focus on multi-omics
approaches that integrate spatial transcriptomics and proteomics, particularly using targeted
methods. Recent innovations, such as combining DBiT-seq (Liu et al., 2020) and CODEX
(Goltsev et al., 2018; Black et al., 2021) (Section 1.4.2) technologies, highlight the potential
of these multi-omics strategies to provide deeper insights into tissue organisation and function
by simultaneously profiling RNA and protein abundance within spatial contexts (Enninful et al.,
2024).

Spatial omics datasets covered in this thesis (Ali et al., 2024; Fischer et al., 2022) can be di-
vided into two modalities, (i) spatial transcriptomics datasets, which measure the abundance of
genes at different resolutions (from multi-cells to subcellular) and different throughput (dozens
of genes to genome-wide expression profiles), and (ii) spatial proteomics datasets, which mea-
sure the protein abundances within the cells. Methods used to acquire data from each modality
can be further categorised based on the technologies and protocols to extract the molecular
and spatial information as elaborated below.

1.4.1 Spatial transcriptomics

Current spatial transcriptomics methods still face trade-offs in terms of resolution, sensitivity,
throughput and cost of use. Most of the commonly used spatial omics methods operate on 2-
dimensional histological slices of tissues of different thicknesses. There have been significant
advancements in spatial omics strategies in terms of profiling and tissue handling. This section
describes in brief three of these strategies; (i) spatial barcoding, where RNA and DNA at
specific locations in the tissue are linked to predetermined ”barcodes”, (ii) multiplexed in situ
hybridisation, which relies on the hybridisation of labelled probes to their complementary RNA
sequences within the tissue, and (iii) in situ sequencing of mRNA molecules.

Spatial barcoding

Spatial barcoding is a widely used approach in spatial transcriptomics, that resulted in the gen-
eration of vast amounts of spatial data. The core principle of this category of technologies is
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the use of unique barcodes that correspond to specific locations on the tissue. These bar-
codes are attached to the RNA molecules in the tissue, therefore allowing the mapping of gene
expression back to their exact spatial position. In addition, each RNA molecular is tagged
to a unique molecular identifier (UMI), which helps to correct for polymerase chain reaction
(PCR) amplification bias, or in other words, distinguish between the original RNA sequence
and any duplicate that might arise during amplification. The resulting library is then prepared
and sequenced using standard next-generation sequencing (NGS) techniques. This technique
provides a highly accurate quantification and localisation of gene expressions in the tissue
(Bressan et al., 2023).

Different methods and technologies of spatial barcoding have been developed in the last
decades. These methods can be categorised based on their underlying technology and resolu-
tion. First, there are array-based methods, such as 10x Genomics Visium and ST (Ståhl et al.,
2016), which capture RNA from tissue sections using arrays of spatially indexed barcoded
spots. This category of methods provides transcriptome-wide coverage while maintaining high
speed and supporting parallelisation. However, one major drawback of such methods is the low
resolution (50-100 µm). The most recent advancement of Visium HD (10x Genomics) improves
on this by reducing the spot size by using 2 x 2 µm barcoded squares without gaps, offering
finer spatial resolution. Second, there are bead-based methods, such as Slide-seq (Rodriques
et al., 2019), which improved the resolution enabling near single-cell resolution. These meth-
ods rely on attaching barcoded DNA to densely packed nano-beads instead of directly on the
slide surface, reaching high spatial density (10 µm). The second version of Slide-seq (Slide-
seqV2) achieves higher resolution and sensitivity (RNA capture efficiency ∼10-fold greater
than Slide-seq) (Stickels et al., 2021). Finally, some methods provide ultra-high resolution and
push the boundaries of spatial transcriptomics even further, using nano-meter-scale barcod-
ing to achieve fine detailed spatial gene expression mapping. For example, Stereo-seq (Chen
et al., 2022). These methods provide great spatial resolution, though at the cost of complex
experimental setups and high costs.

Multiplexed in situ hybridisation-based approaches

Multiplexed in situ hybridisation (ISH) methods are developed on the foundation of single-
molecule Fluorescent in situ hybridisation (FISH) (smFISH) techniques and are used to capture
individual mRNA molecules and their spatial context within tissue (Bressan et al., 2023). These
methods use multiple probes to hybridise mRNA molecules and can capture low-abundance
transcripts at the single-molecule level. The main principles of these methods to enable spa-
tial transcriptome mapping, revolve around repeated cycles of (1) association of barcodes to
a transcript by hybridisation of short DNA probes, (2) reading of the barcodes by fluorescent
imaging, (3) signal detection, and (4) signal reset and probe removal.

In the last few years, several multiplexed in situ hybridisation-based methods have been de-
veloped and enhanced to increase transcriptome coverage and improve the handling of chal-
lenging tissues. For instance, one of the main multiplexed in situ hybridisation-based methods
is multiplexed error robust FISH (MERFISH) (Chen et al., 2015), which has recently been
commercialised, and is continuously being extended and enhanced with features like signal
amplification, simultaneous mRNA and protein measurement as well as the incorporation of
tissue embedding and clearing (Moffitt et al., 2016). Another widely used method that is quite
similar to MERFISH is seqFISH (Lubeck and Cai, 2012; Lubeck et al., 2014) and its extension
seqFISH+ (Eng et al., 2019) which covers transcriptome-wide profiling. Furthermore, there are
other quite different hybridisation-based methods such as ouroboros smFISH (osmFISH) which
replaces barcoding with a simpler protocol allowing the detection of fewer transcripts per cycle
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(Codeluppi et al., 2018) and SCRINSHOT, which is tailored to detect dozens of transcripts in
challenging formalin-fixed paraffin-embedded (FFPE) tissues (Sountoulidis et al., 2020). An-
other commercialised technology that is widely spreading is Xenium (10x Genomics), which
combines multiplexed in situ hybridisation and single molecule imaging and therefore captures
RNA expressions simultaneously from targets within the tissue enabling the profiling of up to
5000 genes. Notably, Xenium can also be applied to FFPE tissues. The diversity of hybridi-
sation methods available for exploring spatial gene expression offers a range of options for
various research needs, meeting the different experimental constraints like throughput, sensi-
tivity, coverage, tissue types, and cost.

In situ sequencing-based approaches

Another stream of spatial transcriptomics methods is based on in situ sequencing, which per-
forms high-throughput sequencing directly within histological sections. Unlike traditional meth-
ods, in situ sequencing mostly uses sequencing by ligation rather than synthesis which is used
in next-generation sequencing (NGS) (Bressan et al., 2023). This sequencing (by ligation)
method is better suited for complex tissue sections. Various in situ sequencing-based ap-
proaches have been developed, from early developments, such as in situ sequencing (ISS)
(Larsson et al., 2010) and fluorescent in situ sequencing (FISSEQ) (Lee et al., 2015), to more
optimised and sensitive approaches such as BaristaSeq (Chen et al., 2018). In addition, fur-
ther advancement of the approach combines ISS with untargeted FISSEQ and expansion
microscopy. This hybrid approach enabled full-length, long-read sequencing with subcellu-
lar resolution, which is used in mapping complex tissues, such as mouse hippocampus and
breast cancer human tissues (Alon et al., 2021). However, despite these advancements, in situ
sequencing approaches are challenging as they require precise imaging with profiling depth
dependent on the cell size.

1.4.2 Spatial Proteomics

Single-cell proteomic technologies are still in the early stages in comparison to single-cell RNA-
sequencing technologies, even for dissociated cells without spatial information. One of the
reasons for that is that, unlike RNA, proteins cannot be directly amplified. This limitation makes
detecting and quantifying proteins at the single-cell level more difficult and therefore delays the
advancements in the field (Chen et al., 2023a). This section briefly describes the common
technologies used to detect proteins, particularly mass spectrometry, and their adaptation to
go spatial.

Mass spectrometry

Mass spectrometry (MS) is one of the most widely used high-throughput proteomics technolo-
gies for identifying and quantifying proteins, and it can be applied to various tissue types, from
fresh-frozen to FFPE tissues. This technology primarily works by ionising protein samples and
then consequently measuring the mass-to-charge (m/z) ratio of the resulting ions. MS-based
proteomics can be approached from two angles: top-down and bottom-up approaches. In top-
down methods, the full-length protein is fragmented inside the MS and the masses of the frag-
ments are directly analysed. On the other hand, in bottom-up methods, the proteins are broken
down into peptides and fed to the MS, in this case, separation of peptides is not necessary (Cui
et al., 2022). One of the most widely used bottom-up mass spectrometry techniques is liquid
chromatography-mass spectrometry (LC-MS). In this technique, proteins are first digested into
peptides, which are then separated by liquid chromatography before being ionised and anal-
ysed by the mass spectrometer to determine their mass-to-charge ratios (m/z) (Aebersold and
Mann, 2003). This method allows for the precise identification and quantification of proteins in
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complex biological samples. Within the LC-MS workflow, there are two main acquisition meth-
ods: data-dependent acquisition (DDA) and data-independent acquisition (DIA). DDA targets
the most abundant peptide ions providing in-depth quantification of those selected peptides
while missing lower abundant ions. On the other hand, DIA fragments all ions within a se-
lected (m/z) range simultaneously, providing comprehensive proteome coverage. Notably, the
MS data in the projects covered in this thesis are acquired using LC-MS and DIA approaches.
Despite the wide range of biological applications and the development of MS over the last
decades, achieving single-cell level resolution is still quite significantly challenging due to the
difficulty in efficiently delivering peptides from single-cell to mass spectrometry instruments
(Cui et al., 2022). However, efforts towards combining laser capture microdissection (LCM)
with mass spectrometry are being developed to overcome these limitations, enabling more
sensitive and spatially resolved proteomic analyses. Extending mass spectrometry-based pro-
teomics approaches to go spatial and include three-dimensional information is also a focus of
this thesis (Bhatia et al., 2022).

Multiplexing antibody-based approaches

A more recent generation of mass spectrometry is mass cytometry (MC), which uses antibod-
ies labelled with stable heavy metal isotopes, which are then detected by a time-of-flight mass
spectrometer. This allows for the simultaneous measurement of multiple proteins in each cell
(Bandura et al., 2009). To extend the high multiplexing capacity of mass cytometry to include
spatial context, mass cytometry is combined with spatial resolution by using laser ablation to
ionise labelled proteins directly from tissue sections. Image mass cytometry (IMC) (Giesen
et al., 2014) and multiplexed ion beam imaging (MIBI) (Angelo et al., 2014) are examples of
widely successful methods leveraging this technique. Despite the high resolution of these
methods, they can measure only around 30 to 50 proteins since they are limited by the number
of discriminated masses and the availability of sufficiently pure metals. Another antibody multi-
plexing approach is Co-Detection by Indexing (CODEX) which uses DNA barcoded antibodies
to label proteins and subsequent imaging cycles to reveal the spatial distribution of these pro-
teins within tissues (Goltsev et al., 2018; Black et al., 2021). These multiplexing techniques
provide greater capabilities compared to traditional mass spectrometry and offer a powerful
avenue to study proteomic changes within tissues with high spatial and molecular resolution
(Bressan et al., 2023).

Spatial omics technologies are rapidly growing, to ideally spatial profile the entire molecular
content of the cell at subcellular resolution within a short time for the entire image. Mostly, the
spatial profiling is done on 2-dimensional slices. However, a shift towards the 3-dimensional
space is necessary to be able to capture the true spatial heterogeneity of the tissues. There-
fore, efforts are directed towards extending the current spatial technologies to 3-dimensional
profiling of tissues (Bressan et al., 2023).

1.4.3 Analysis of Spatial Omics

The rapid growth of spatial omics technologies and the massive increase in the generated
data has led to the urge to develop computational tools to handle and analyse these data
to discover spatial heterogeneity in disease states, identify spatial expression biomarkers in
different tissue stages, and compare spatial niches and cell-type interactions under various
conditions. Therefore, tools to store, integrate, and visualise the vast diversity of spatial data
are continuously being developed (Palla et al., 2022b; Marconato et al., 2024). Spatial omics
methods vary in the technologies they use for spatial profiling, from non-microscopic methods
such as mass spectrometry to DNA sequencing and barcoding. Therefore, the diversity of data
acquisition techniques results in a diversity of data forms, in terms of resolution (multiple cells
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to subcellular), multiplexing (10s of features to genome-wide expression profiles) and modality
(transcriptomics, proteomics) (Palla et al., 2022b; Bressan et al., 2023). Thus, computational
tools that can handle such a diversity of data are essential to harness the richness of the spa-
tial data.

Preprocessing is an essential step in the analysis pipeline of spatial omics data to convert
raw data into interpretable formats, such as cell-by-gene or cell-by-protein matrices (Illustra-
tion I). This step includes image segmentation (for microscopy-based methods), spatial regis-
tration, normalisation, and quality control. Although segmentation has been a focus for spatial
transcriptomics, spatial proteomics methods, such as imaging mass spectrometry or CODEX,
require additional steps such as peak alignment and spectral deconvolution to resolve protein
abundances at the cellular or subcellular levels. These preprocessing steps provide a founda-
tion for downstream analyses.

Other important steps to prepare the spatial omics data for the downstream analyses are
annotation and deconvolution which are critical for identifying cell types and dissecting the
molecular composition of mixed populations. For spatial transcriptomics, annotation leverages
reference transcriptomic datasets to classify cells. In spatial proteomics, similar efforts are
emerging which combine reference proteomes with spatially resolved protein expression data.
Imputation techniques, which is a necessary step especially in proteomics data, are also valu-
able across modalities, helping to address data sparsity, particularly in regions with incomplete
molecular profiles due to experimental limitations.

Statistical and machine learning models are continuously being developed for spatially re-
solved omics data. Whether by adapting established single-cell omics methods to spatial
omics data or by developing new approaches to incorporate spatial information, the goal is
to understand spatial molecular profile patterns, cellular organisation, and cell-cell interactions
within the tissue (Zeng et al., 2022). Various statistical models have been developed to un-
derstand the spatial pattern variation of gene expressions. For instance, Gaussian process
regression was utilised in SpatialDE to decompose the spatial and non-spatial components
of gene expression, to explain the spatial variance and to identify the significantly variable
genes within the tissue (Svensson et al., 2018). Other work utilised CellPhoneDB (Efremova
et al., 2020), a repository for ligand-receptor interactions, to study the cell-cell interactions
between cells within close spatial proximity using permutation tests (Palla et al., 2022b). In
addition, further studies have looked into spatial clustering of spatial data and spatial niches
analysis using Bayesian methods (Zhao et al., 2021) and Gaussian mixture models (Varrone
et al., 2024). Such clustering-based spatial niche methods are useful for comparing the spatial
niches across various conditions, however, they are parameter-dependent, for instance, the
number of clusters, and therefore require hyperparameter tuning. Graphs have been widely
used to represent spatial omics data, as further elaborated in Section 2.2. Therefore, be-
sides the typical statistical methods, graph neural networks have also been widely used to
investigate and obtain new insights from spatial omics data. For instance, graph models have
been utilised to study cell-cell communications and detect indirect interactions (Fischer et al.,
2023; Yuan and Bar-Joseph, 2020). Furthermore, the correlation between patient outcome
and cellular organisation has been investigated using graph neural networks (GNNs) to study
the disease progression and tumour microenvironments in various cancer datasets (Wu et al.,
2022; Hu et al., 2024). The growth of the zoo of models to analyse and investigate the spatial
omics data is still booming. The investigation of cellular organisation and the spatial struc-
ture of tissues across various pathological and physiological states remains a crucial area of
research, that will benefit significantly from the continued development of both statistical and
machine learning-based models to unravel new biological insights. Multiple parts of this the-
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sis underscore the importance of continuing to develop statistical and machine learning-based
approaches to unravel the complexities of cellular organisation and tissue structure. These
methods will pave the way for deeper biological insights in both health and disease (Ali et al.,
2024; Fischer et al., 2022).
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2 Computational Methods

In this section, I discuss the main computational and mathematical modelling approaches I
used in this thesis to analyse molecular profiles and cellular organisation across various con-
ditions using different omics technologies.

2.1 Differential expression analysis

Some omics data is produced as an average of molecular profiles of a collection of cells in the
tissue, the number of cells in the collection can vary from dozens of cells to hundreds and even
thousands in some technologies like common mass spectrometry. Besides being bulk, the
data generated from mass spectrometry is mostly non-spatial. Therefore, pairwise statistical
methods are utilised to compare the molecular profiles of tissues across different conditions,
to identify differentially expressed proteins or genes in one condition versus the other.

In differential expression analysis, the t-test is the standard statistical method for the means
of molecular expressions between two conditions or groups to evaluate whether the difference
is significant or occurred at random. However, the distributions of omics data present addi-
tional complexities. For instance, RNA-seq data is often modelled as count data, assuming
a negative binomial distribution due to its overdispersed nature, which contrasts significantly
with the assumptions of a standard t-test Tools such Scanpy (Wolf et al., 2018) incorporate
these distributional assumptions to perform robust differential expression testing. For protein
abundance data, assumptions may vary based on whether the data is log-transformed or mod-
elled directly as counts or continuous intensities. In addition, in omics studies, thousands of
genes or proteins are analysed simultaneously, and this in turn increases the likelihood of false
positives when identifying genes or proteins as differentially expressed. Therefore, multiple
testing approaches, such as the Benjamini-Hochberg (BH) method (Benjamini and Hochberg,
1995), are used to control the false discovery rate (FDR) and adjust p-values, reducing the
chances of false positives while still identifying truly differentially expressed genes or proteins,
this ensures that the analysis results are statistically robust and reliable, and thus preventing
incorrect conclusions from being drawn.

We should carefully consider the underlying distribution of the data and apply statistical models
that account for these characteristics so that differential expression analysis can provide accu-
rate insights into the molecular changes associated with different conditions and thus prevent
incorrect conclusions from being drawn.

2.2 Representation of tissue as a graph of cells

In the realm of spatial omics, tissues can be viewed as graphs, with nodes representing either
individual cells or collections of cells (or defined spots) and edges representing the proximity
between these nodes (Illustration 3). This concept has been widely adopted across different
spatial omics studies (Dries et al., 2021; Palla et al., 2022a; Wu et al., 2022). In other words, a
tissue can be represented as a graph G = (V,E), where V is the set nodes (or cells, or spots in
the tissue) and E is the set of edges, which represent how the cells are connected in the tissue.
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Graphs are flexible mathematical representations and therefore open wide possibilities to apply
various statistical and deep learning approaches to analyse spatial relationships, investigate
cell-cell interactions, and identify patterns within the tissues of a specific pathological condition
or across different conditions (Fischer et al., 2023; Wu et al., 2022). In addition, representing
the tissue as a graph allows us to leverage well-established graph and topological methods
in the spatial omics field, providing deeper insights into tissue architecture and the underlying
biological processes.

Illustration 3. Representation of Tissue as a Graph of Cells. The cells of the tissue can
be represented as a mathematical graph, where the nodes represent the cells and the edges
represent their spatial proximity. The graph is constructed based on the spatial coordinates
of the cells. Node features can encode different properties of the cells, such as cell type.

Depending on the resolution of the spatial omics technology used to acquire the data, the na-
ture of the nodes of the graph representing the tissue differs. As discussed in Section 1.4,
some spatial omics methods, such as IMC, CODEX, and Stereo-seq, can reach single-cell
resolution profiling, while others, like 10x Genomics Visium, can only capture the average
molecular profiles of dozens of cells. Therefore, the nature of the nodes (whether single-cell
or spot-based data) needs to be taken into consideration while constructing the graph of tissue.

Another aspect that one needs to consider when constructing the graphs from the spatial
omics data, is how to construct the edges between the cells (or spots). For spot-based ap-
proaches with regular grids, such as 10x Genomics Visium, the edges are typically assigned
between the neighbouring spots, representing a grid layout. However, for irregular single-cell-
based approaches, there are several ways to construct the edges to represent the proximity of
cells within the tissue. Some of these methods include:

1. Distance thresholding: In this approach, edges are constructed between cells that are
within a certain distance from each other. This distance threshold is determined based
on the spatial resolution of the data and the biological context to ensure that only cells in
close proximity, which are more likely to interact, are connected in the graph. However,
the choice of threshold can significantly affect the resulting network structure and thus
needs to be carefully selected.

2. K-nearest neighbours: This method involves connecting each cell to its k nearest neigh-
bours, where k is a predefined parameter. This approach ensures that each cell is
connected to a fixed number of nearby cells to capture the local spatial relationships.
This method is particularly useful in dense tissues where cells are uniformly distributed.
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However, it may introduce connections that are less biologically relevant in regions with
variable cell density (Guo et al., 2003).

3. Delaunay triangulation: This is a geometric method that connects cells in such a way that
no cell lies inside the circumcircle of any triangle in the triangulation. This method is often
used to create edges that respect the overall spatial distribution of cells without relying
on arbitrary distance thresholds. Delaunay triangulation is particularly useful in cases
where the goal is to create a network that reflects the natural topology of the tissue and
provides a more accurate representation of spatial relationships in irregularly distributed
cell populations. Another advantage of this method is that it is parameter-free and easy
to use (Lee and Schachter, 1980).

It is essential to consider the nature of the spatial omics data and the type of tissue before
constructing the graphs. This ensures the appropriate methods are chosen for creating the
nodes and edges and in turn, allows the flexibility of the graph to be leveraged effectively for
understanding the underlying tissue structure and spatial molecular relationships and leading
to valuable biological insights.

2.3 Graph neural networks

Graphs are considered flexible mathematical representations that capture nodes and their re-
lationship with edges. Additionally, graphs can represent non-Euclidean data, which is valuable
in representing 3-dimensional real-world data. Due to these advantages and with the extension
of deep neural networks to non-Euclidean domains, the field of geometric deep learning has
been rapidly emerging (Zhou et al., 2020). As mentioned briefly in Section 2.2, a graph can be
denoted as G = (V,E), where |V | = Nv is the number of nodes and |E| = Ne is the number of
edges that form the graph. A ∈ RNv×Nv is the adjacency matrix representing the relationship
between the nodes in the graph. Moreover, features on nodes and edges can be represented
as Xv ∈ RNv×Hf where Hf is the dimension of node features and Xe ∈ RNe×He where He is
the dimension of edge features.

Graph neural networks (GNNs) are neural networks that operate on graphs, utilising message
passing to aggregate information about neighbouring nodes. The flexibility of GNNs allows
them to be used for various tasks at different graph levels which in turn affect the choice of
the loss function and the training setting of the model, supervised, semi-supervised and unsu-
pervised. Additionally, graph learning tasks can be divided into three categories, (i) node-level
tasks, which include node classification and regression problems in which node categorical la-
bels or node continuous features are predicted, (ii) edge-level tasks, which include classifying
edges or predicting links between nodes, and (iii) graph-level tasks, which learns the graph
representations for graph classification or graph regression problems (Zhou et al., 2020).

Various GNN architectures have been developed in the last few decades to address specific
challenges and optimise performance. Among these architectures are graph convolutional net-
works (GCN) (Kipf and Welling, 2016), which generalise the concept of convolutions to graphs
and aggregate information from each node’s neighbours using convolution-like operation, with
layer-wise propagation rule,

H = D̃−1
2 ÃD̃−1

2XW

where Ã = A+ IN with A is the adjacency matrix, D̃ii =
∑

j Ãij with D̃ is degree of matrix Ã,
X is the input matrix, and W ∈ RF×F ′

is the free parameter with F and F ′ are input and output
dimensions respectively. H ∈ RNv×F ′

.
Another GNN architecture that efficiently captures the structure of graphs by focusing on the
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ability to distinguish different graph structures is the graph isomorphism network (GIN). This
model generalises the Weisfeiler-Lehman test and therefore can maximise the discriminative
power of GNNs (Xu et al., 2018) making it a powerful yet simple GNN. The node representation
update rule of GIN is,

hlv = MLPl((1 + ϵl) · hl−1
v +

∑
u∈N (v)

hl−1
u )

where MLPl is a multi-layer perceptron, ϵl is a learnable or fixed scalar, hlv is features of node
v, and N (v) is the set of neighbours of node v.

There exist several other GNN architectures introducing various approaches to addressing
different problems, some incorporate attention mechanisms into the propagation step like the
graph attention networks (GAT) (Veličković et al., 2017) while others employ generative adver-
sarial networks (GAN) (Pan et al., 2018). Therefore, the choice of the graph model architecture,
as well as the graph learning task and training setting is crucial for effectively addressing the
problem at hand.
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3 Aim

The focus of this thesis is on uncovering the differences in cellular organisation and molecular
profiles across various pathological and physiological conditions, to shed new light on how
these variations influence health and disease. The work presented in this thesis is aimed
towards, (1) developing tools and methodologies to address existing gaps in spatial omics, and
(2) investigating complex biological systems to answer a range of research questions. The
aims are detailed as follows:

1. Apply proteomics analyses to investigate the cellular heterogeneity of skull bone marrow
(calvaria) and its uniqueness compared to other bone marrow as well as understand its
role in neuroimmunological responses to neurological disorders (Kolabas et al., 2023).

2. Develop computational tools and spatial metrics to analyse and compare cellular organ-
isation across conditions to quantitively understand differential changes in tissue archi-
tecture in health and disease using spatial omics data (Ali et al., 2024).

3. Utilise graph-based models to explore how tissue traits and spatial patterns, such as
cellular organisation and tissue architecture, contribute to patient outcomes and disease
progression using spatial omics data (Fischer et al., 2022).

4. Advance the study of tissue architecture in 3D by combining tissue clearing with mass
spectrometry to map protein distributions in intact tissues, and to understand stage- and
region-specific changes in neurological disorders such as Alzheimer’s disease (Bhatia
et al., 2022).

Together, this thesis represents a comprehensive effort from method development to data anal-
ysis to enhance our ability to study the cellular organisation, tissue traits, and their implications
for health and disease, spanning two-dimensional spatial omics slices and extending into three-
dimensional volumes for a more holistic understanding of the different biological systems.
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4 Studies

4.1 Study 1: GraphCompass: spatial metrics for differential analyses of cell organisa-
tion across conditions.

The paper “GraphCompass: spatial metrics for differential analyses of cell organisation across
conditions.” was accepted for presentation at ISMB 2024 conference and published in the jour-
nal Bioinformatics. The full citation is:

Mayar Ali*, Merel Kuijs*, Soroor Hediyeh-zadeh, Tim Treis, Karin Hrovatin, Gio-
vanni Palla, Anna C Schaar, Fabian J Theis, GraphCompass: spatial metrics for
differential analyses of cell organisation across conditions, Bioinformatics, Volume
40, Issue Supplement 1, July 2024, Pages i548–i557, https://doi.org/10.
1093/bioinformatics/btae242

Summary:
Spatial omics technologies have been rapidly emerging combining spatial information and
molecular profiles of cells within the tissue. Many tools have been developed to study the
spatial variation within the tissue in disease and health. However, there was still a lack of
computational tools to quantitatively compare the cellular organisation within samples across
different pathological and physiological conditions. We tackled this gap by developing the
GraphCompass package.

In this work, we modelled the tissue as graphs of cells to facilitate differential analysis of phe-
notypes. We adapted several graph metrics that are used in the graph theory field to the omics
domain to quantitatively evaluate and compare cellular organisation in samples across different
conditions at various levels of abstraction: individual cell types, niches, and samples. Some of
the metrics we introduced in our package are novel to the omics field, such as the Wasserstein
Weisfeiler–Lehman (WL) kernel and filtration curves, which provided new insights into the data.
In addition, we adapted and optimised GraphCompass to handle various omics technologies
(transcriptomics and proteomics) and different resolutions (multi-cell spot or single-cell).

We have implemented the package on top of the widely used spatial omics toolbox Squidpy,
in a way that allows easy integration to other current spatial omics workflows. Furthermore, we
have enriched the package with various visualisation functions to provide valuable insights into
the data. We have also focused on developing the package in a user-friendly way to be equally
usable to biologists and computational scientists.

Lastly, we have shown the capabilities of GraphCompass through its application on three
different pathological, developmental and regeneration datasets: breast cancer, myocardial
infarction, and axolotl brain regeneration, with data obtained from different omics technolo-
gies with various resolutions: MIBI-TOF, Visium and Stereo-seq respectively. These datasets
can also be considered as benchmark datasets for further method development. With these
analyses, we highlighted the biological insights that can be obtained from the various metrics
implemented in GraphCompass.
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Abstract
Summary: Spatial omics technologies are increasingly leveraged to characterize how disease disrupts tissue organization and cellular niches. 
While multiple methods to analyze spatial variation within a sample have been published, statistical and computational approaches to compare 
cell spatial organization across samples or conditions are mostly lacking. We present GraphCompass, a comprehensive set of omics-adapted 
graph analysis methods to quantitatively evaluate and compare the spatial arrangement of cells in samples representing diverse biological condi
tions. GraphCompass builds upon the Squidpy spatial omics toolbox and encompasses various statistical approaches to perform cross- 
condition analyses at the level of individual cell types, niches, and samples. Additionally, GraphCompass provides custom visualization functions 
that enable effective communication of results. We demonstrate how GraphCompass can be used to address key biological questions, such as 
how cellular organization and tissue architecture differ across various disease states and which spatial patterns correlate with a given pathologi
cal condition. GraphCompass can be applied to various popular omics techniques, including, but not limited to, spatial proteomics (e.g. MIBI- 
TOF), spot-based transcriptomics (e.g. 10× Genomics Visium), and single-cell resolved transcriptomics (e.g. Stereo-seq). In this work, we show
case the capabilities of GraphCompass through its application to three different studies that may also serve as benchmark datasets for further 
method development. With its easy-to-use implementation, extensive documentation, and comprehensive tutorials, GraphCompass is accessi
ble to biologists with varying levels of computational expertise. By facilitating comparative analyses of cell spatial organization, GraphCompass 
promises to be a valuable asset in advancing our understanding of tissue function in health and disease.

1 Introduction
The spatial arrangement and interactions of cells under dif
ferent physiological and pathological states provide insights 
into the underlying mechanisms of tissue function and disease 
progression. Understanding cell spatial organization is not 
only essential for deciphering physiological processes but also 
for advancing diagnostic and therapeutic strategies (Rao 
et al. 2021, Palla et al. 2022a, Williams et al. 2022).

Spatial omics have emerged as a powerful technology for 
profiling cellular phenotypes in their tissue context. Spatial 
transcriptomics methods such as 10× Genomics Visium 
(Ståhl et al. 2016) and Stereo-seq (Chen et al. 2022), as well 
as spatial proteomics methods such as CODEX (Goltsev 
et al. 2018) and multiplexed ion beam imaging by time of 
flight (MIBI-TOF) (Keren et al. 2019), can measure molecu
lar profiles while maintaining information about the loca
tions of cells, therefore enabling the study of cell–cell 
communication (Fischer et al. 2023) and tissue architecture 
(Fischer et al. 2022, Wu et al. 2022). Spatial omics technolo
gies have been increasingly leveraged by researchers 

interested in delineating mechanisms that disrupt tissue ho
meostasis and cellular niches in diseased individuals. 
For example, spatial transcriptomics data has been instru
mental in deciphering spatial dysregulation in ischemic hearts 
(Kuppe et al. 2022). Additionally, spatial proteomics data 
has been used to elucidate cellular neighborhoods associated 
with disease progression and response to therapy in breast 
cancer (Risom et al. 2022).

Related work has looked into identifying cell interactions 
(Fischer et al. 2023), spatial clusters (Zhao et al. 2021, 
Varrone et al. 2023), and niche composition in individual 
samples (Bernstein et al. 2023). However, methods to com
pare spatial organization across different sample groups are 
still lacking. Such methods would be instrumental in elucidat
ing how the arrangement of cell types influences the overall 
state of a tissue.

In this work, we model spatial omics samples as graphs of 
cells to enable differential analysis of phenotypes. We focus 
on providing easy-to-use graph metrics and statistical meth
ods for the comparative analysis of cell spatial organization. 
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Studying changes in niche composition and tissue architec
ture is essential to unlock new insights into the role of tissue 
organization in prognosis and diagnosis (Rao et al. 2021, 
Palla et al. 2022a, Williams et al. 2022).

We introduce GraphCompass (Graph Comparison Tools 
for Differential Analyses in Spatial Systems), a Python-based 
framework that brings together a robust suite of graph analy
sis and visualization methods, specifically tailored for the 
analysis of cell spatial organization using spatial omics data. 
Developed on top of Squidpy (Palla et al. 2022b) and 
AnnData (Virshup et al. 2021), our methods are easily inte
grated into existing spatial omics analysis workflows. The 
framework’s modular design ensures adaptability and com
patibility with various single-cell data analysis packages 
(Fig. 1a). Available for community use and collaboration, 
GraphCompass can be accessed at https://github.com/thei 
slab/graphcompass/, where we provide extensive function 
documentation and tutorials. We adapted the methods to 
make them flexible enough to handle large feature spaces 
(>20 000 genes), different resolutions (e.g. spot or single- 
cell), and multiple modalities of spatial omics data (Fig. 1b). 
To showcase the broad applicability of the methods in our 
suite, we curate datasets from three different spatial omics 
techniques and show that our methods recapitulate experi
mental results, additionally providing novel insights into the 
global changes in tissue organization under different disease 

and developmental stages. The collection of omics-adapted 
methods we present are an effective hypothesis-generating 
tool that may inform the development of new diagnostic 
methods and therapeutic targets.

To the best of our knowledge, GraphCompass is the first 
method to enable differential analysis of spatial organization 
across conditions at three levels of abstraction: cell-type- 
specific subgraphs (Fig. 1d), multi-cell niches (Fig. 1e), and 
entire graphs (Fig. 1f). Though other methods, such as 
CellCharter (Varrone et al. 2023) and MENDER 
(Supplementary Table S1), also attempt to differentiate sam
ples based on their neighborhood composition, they rely on 
clustering algorithms, and hence a well-chosen number of 
clusters. Here, we propose to perform differential niche 
analysis by studying enriched pairs of neighbor cells. We also 
present approaches that have never been applied to spatial 
omics before, such as the Wasserstein Weisfeiler–Lehman 
(WL) kernel and filtration curves. We adapt them to large 
continuous feature spaces, a typical characteristic of spatial 
omics data, and show that these metrics are powerful tools to 
compare samples and sample groups, capturing both local 
and global information. In this manuscript, we demonstrate 
the capacity of our methods to reproduce results consistent 
with previously published findings, as well as provide novel 
mechanistic hypotheses. To date, GraphCompass is the most 
comprehensive toolkit aimed at differential neighborhood 

(a) (b)

(d) (e) (f)

(c)

Figure 1. GraphCompass offers graph and statistical analysis methods to compare the spatial organization of cells across different conditions. (a) 
GraphCompass workflow. All spatial omics datasets that are stored as AnnData objects are currently supported. Support for SpatialData objects 
(Marconato et al. 2024) will be added in the near future. Select a region of interest (ROI) with napari (https://github.com/napari/napari) or use the entire 
tissue section. We use Squidpy to encode spatial omics measurements as graphs. If available, add node labels, such as cell types. Then, compare 
graphs across conditions or samples using any of the methods implemented in GraphCompass. (b) The example datasets covered here represent various 
technologies and different modalities. (c) In our framework, samples are represented as cellular graphs in which nodes correspond to cells or spots and 
edges denote spatial proximity. Nodes may be labeled (colored) based on their cell type and samples representing the same condition are grouped 
together to account for sample variation. (d–f) GraphCompass integrates multiple spatial metrics to find statistically significant differences in spatial 
organization across experimental conditions, utilizing spatial information at various abstraction levels. (d) Analyse graphs that consist of a single cell type 
and compare them between conditions using graph distance metrics (cell-type-specific subgraphs comparison). (e) Perform neighborhood analysis by 
retrieving cell-type neighbors enriched in one condition compared to another (cellular neighborhood comparison). (f) Using a holistic approach, compare 
entire graphs representing data obtained under two or more conditions (entire graphs comparison).
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composition and spatial organization analysis in the context 
of spatial omics technologies applied to disease studies. We 
hope that this framework will empower significant advance
ments in understanding the complexities of cell organization 
within the spatial context of tissues, both in health 
and disease.

2 Materials and methods
2.1 Graph construction
Spatial omics data can be represented as graphs, where nodes 
in the graph represent either individual cells or predefined 
spots, and edges represent proximity between cells or spots 
(Dries et al. 2021, Palla et al. 2022a, Wu et al. 2022, Fischer 
et al. 2023). The nature of the node depends on the type of 
spatial omics technology used:

1) Cell-Based Data: For single-cell resolution techniques, 
each node corresponds to an individual cell. Every node 
is associated with a node attribute, namely the cell’s 
transcriptomic profile. 

2) Spot-Based Data: Technologies like Visium provide data 
at the level of spots, which are predefined, regularly 
spaced areas on a tissue section, each containing multi
ple cells. In this scenario, each spot, with its aggregated 
gene expression information, forms a node. 

Edges represent spatial proximity between nodes. The edge 
construction method depends on the data’s layout:

1) Grid Layout: In spot-based technologies like Visium, 
where spots are arranged in a fixed grid, edge construc
tion is relatively straightforward. Graph edges are typi
cally defined based on direct neighbors in this grid, 
leading to a structured, regular graph topology (Dries 
et al. 2021, Palla et al. 2022b, Sona et al. 2023). 

2) Irregular Layouts: For data not laid out in a grid, defin
ing node adjacency requires more sophisticated meth
ods. Delaunay triangulation is a common approach used 
here. It involves creating a triangulated mesh such that 
no node lies inside the circumcircle of any triangle. This 
method effectively captures the proximity between irreg
ularly spaced cells (Dries et al. 2021, Palla et al. 2022b, 
Zhang et al. 2022). Though distance thresholds and 
k-nearest neighbors have also been used to generate 
graphs from irregularly spaced nodes, they require that 
users tune the threshold or k appropriately, which neces
sitates prior knowledge of the average size of cells in the 
profiled tissue, for example. Delaunay triangulation, on 
the other hand, is parameter-free and hence straightfor
ward to use. 

Once the graph is constructed, it serves as a foundational 
structure for various differential analyses: comparing cell- 
type-specific subgraphs, cellular neighborhoods, and entire 
graphs between experimental conditions, developmental 
stages, or disease states. We use existing methods within 
Squidpy to compute a spatial graph from various types of 
spatial omics data. These graphs serve as the input for the 
analysis and visualization algorithms implemented in our 
package. We describe these analysis functions in the next sec
tions. Broadly speaking, our criteria for our choice of meth
ods are versatility, ease of use, and interpretability. Each 

method returns a different and complementary type of infor
mation, which we explain in greater detail below. Most are 
parameter-free, eliminating the need for hyperpara
meter tuning.

2.2 Comparing cell-type-specific subgraphs
We introduce two graph distance metrics to compare cell- 
type-specific graphs between different conditions: portrait 
and diffusion methods (Supplementary Data A.1).

2.2.1 Portrait method
This method creates a so-called “portrait” of a graph, which 
is a way to represent the overall structure of the graph 
(Bagrow and Bollt 2019). The portrait of a graph typically 
includes information about the distribution of distances be
tween nodes and degree distribution. The idea behind the 
portrait method is to capture the essence of the graph’s topol
ogy in a comprehensive snapshot. The portrait method is ro
bust to graph size and computationally efficient, focusing on 
the global graph structure. These characteristics make it suit
able for handling cell-type-specific graphs of different sizes. 
Moreover, the portrait method offers an information- 
theoretic interpretation, facilitating the extraction of biologi
cal insights.

Given two graphs G and G0, we first define the network 
portrait B of each graph as an array with l × k elements, 
such that 

Blk ¼ jðvi; vjÞ : Dij ¼ l; degreeðiÞ ¼ kj: (1) 

Here, (vi, vj) are node pairs of graph G such that the short
est path between vi and vj, Dij, equals l. The degree of a node 
is defined as the number of edges incident to that node. We 
do not compare G and G0 directly. Instead, we compare their 
network portraits B and B0, such that �ðG;G0Þ � �ðB;B0Þ
(that is, such that the difference between the network por
traits approximates the difference between the graphs). To 
compare the network portraits, we calculate the weighted dis
tributions P(k, l) and Q(k, l), such that 

Pðk; lÞ ¼
kBlkP

c nc
2 ;

Qðk; lÞ ¼
kB0lkP

c nc
2 ;

(2) 

where nc represents the number of nodes within a given con
nected component c, and 

P
c nc ¼ N, with N being the total 

number of nodes in the graph. We subsequently compare the 
two distributions using the Jensen–Shannon divergence: 

DJS ¼
1
2

KLðPjjMÞþ
1
2

KLðQjjMÞ; (3) 

where KL is the Kullback–Leibler divergence and M ¼
1
2 PþQÞð . 0 ≤ DJS ≤ 1 is the dissimilarity score between the 
cell-type-specific graphs G and G0, each representing a differ
ent experimental condition or co-variate. Here, a high dissim
ilarity score implies maximally different graphs, and a low 
score implies that graphs are highly similar. This comparison 
is repeated for every cell type present in both graphs. Cell- 
type-specific dissimilarity scores are jointly visualized to 
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determine which cell types are most similarly organized 
across both conditions.

2.3 Comparing cellular neighborhoods
Neighborhood analysis allows users to compare the count 
and composition of niches between samples, accounting for 
batch effects. To this end, we leverage interpretable linear 
models and Generalized Linear Models (GLMs). These mod
els allow us to determine statistically significant changes in 
the neighborhood enrichment (i.e. the enrichment of spatial 
proximity between two cell types) across multiple conditions, 
offering a deeper understanding of the spatial density and dis
tribution of specific cell types relative to others under a given 
condition. Here, we refer to a pair of cell types as “enriched” 
if they neighbor each other more often than we would expect 
based on random chance. We first compute neighborhood 
enrichment in each sample separately using Squidpy’s 
nhood_enrichment function. This function calculates the 
observed number of each cell type pair, which is then 
compared against the expected frequency. This expected 
frequency is determined through permutation tests.

The nhood_enrichment function returns a n × n matrix 
Z containing enrichment z-scores. Zij represents the enrich
ment of the pair that consists of cell type i and cell type j. 
Since this matrix is symmetric, we extract the upper triangu
lar portion, which we flatten to obtain a row vector of shape 
1 × nðnþ1Þ=2 representing neighborhood enrichment in a 
single sample. Given m samples, we concatenate their corre
sponding vectors to obtain an m × nðnþ1Þ=2 enrichment 
score matrix. By default, we fit a linear model to the neigh
borhood enrichment z-scores. However, if one or more pairs 
of cell types are sparse, we instead fit a Quasi-Poisson model 
to the count of each observed cell type pair. Both the linear 
model and the Quasi-Poisson GLM include a fixed linear 
term to account for the “batch/subject/patient” co-variate, 
and an interaction term between all levels of the condition 
and cell type pair factors. The model functions perform a 
t-test to test if the coefficient for a given predictor is signifi
cant. In neighborhood analysis figures, we report the P-values 
of the significant interaction terms.

2.4 Comparing entire graphs
We present two methods to perform holistic graph comparisons: 
filtration curves and WL graph kernels. Both methods result in 
graph embeddings that can be compared against one another to 
obtain a broad measure of tissue architecture similarity.

2.4.1 Filtration curves
In the context of Topological Data Analysis (TDA), filtra
tions are a fundamental concept used to understand the shape 
of data (O’Bray et al. 2021). The basic idea is to gradually 
“grow” or “filter” the data and observe how topological fea
tures such as connected components, holes, and voids evolve. 
Filtration curves capture both differential abundance and 
density, providing users an overall understanding of tissue 
homogeneity. We define a graph filtration as a sequence of 
nested subgraphs ∅ � G1 � G2 . . .Gm � G, ordered by edge 
weights. Let G ¼ ðV;E;wÞ be a weighted graph, where w :

E! R is the weight function assigning a real number to each 
edge, here defined as the Euclidean distance between the gene 
expression matrices associated with neighboring nodes 
(O’Bray et al. 2021). To generate the filtration curve, we or
der the edges based on their weights, obtaining a series of 

weights w1 ≤ w2 . . . wm−1 ≤ wm. O’Bray et al. (2021) define 
the ith graph in the filtration, Gi, as the subgraph that 
includes all edges whose weight is less than or equal to wi as 
well as all nodes connected by said edges. Since our distance 
function can take on any positive real number, we compute 
10 threshold values from the collection of edge weights to re
strict the algorithm’s computation time. We define the thresh
old values as the 10th, 20th, … , 90th, and 100th percentile. 
At every filtration step, the algorithm analyzes the properties 
of the subgraph by evaluating a graph descriptor function. 
Assuming every node has been assigned a node label (i.e. a 
cell type), we can simply compute the number of each cell 
type present in the subgraphs. Computing and comparing fil
tration curves is an efficient approach for representing graphs 
and contrasting two graphs or sets of graphs.

2.4.2 Weisfeiler–Lehman graph kernels
The WL graph kernel is a powerful technique used in graph 
theory and machine learning, particularly in the context of 
graph classification and similarity analysis. Boris Weisfeiler 
and Andrei Lehman introduced it in the late 20th century as 
a graph isomorphism test (Weisfeiler and Leman 1968). 
Though it has been shown that there are non-isomorphic 
graphs that cannot be distinguished by this algorithm, it has 
been successfully implemented as a graph similarity measure 
(Shervashidze et al. 2011). Broadly speaking, the algorithm 
consists of three steps: node label augmentation, iteration, 
and kernel computation. In each iteration, the node label of a 
given node is transformed into an augmented label, or multi- 
set of labels, that contains the original label as well as the 
labels of the given node’s neighbors. The augmented label is 
subsequently hashed, resulting in a new, compressed node la
bel. Given a graph G ¼ ðV;EÞ, where V is a set of nodes (ver
tices) and E is a set of edges, we can define the node label 
augmentation step as 

ahþ1ðvÞ ¼ hashðahðvÞ;N h
ðvÞÞ; (4) 

We define ahðvÞ as the compressed label of node v at itera
tion h. Similarly, N h

ðvÞ represents the neighbor labels at itera
tion h. Lastly, we define a0ðvÞ as the original label of node v. 
The node labeling step is repeated for a pre-specified number of 
iterations. After the iteration process, the labels assigned to the 
nodes are used to compute a kernel matrix. This matrix quanti
fies the structural similarity between pairs of graphs. The origi
nal formulation of the algorithm restricts its use to graphs with 
discrete labels. However, some of the more common spatial 
omics methods, most notably Visium, do not produce single- 
cell-resolved data. Each spot may contain more than one cell, 
complicating cell type assignment. The spot is best represented 
by its associated gene expression matrix. The Wasserstein WL 
kernel (Togninalli et al. 2019) extends the WL kernel from the 
discrete to the continuous case. We define ahðvÞ as the attribute 
of node v at iteration h. Let w(v, u) be the weight of the edge 
between nodes v and u. Then, the updated node attribute at it
eration hþ1 is computed as 

ahþ1ðvÞ ¼
1
2

ahðvÞþ
1

degðvÞ

X

u2NðvÞ

wðv; uÞ � ahðuÞ
 !

: (5) 

Once the maximum number of iterations has been reached, 
the algorithm evaluates the distance between pairs of nodes 
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ðvi; v0jÞ for each vi 2 V and each v0j 2 V0, resulting in distance 
matrix D. Here, we set the number of iterations to three as 
suggested by the original authors (Togninalli et al. 2019) and 
define the distance between nodes vi and v0j as the Euclidean 
distance between their corresponding gene expression matri
ces (O’Bray et al. 2021). Lastly, the algorithm quantifies the 
similarity of graphs G and G0 by measuring the Wasserstein 
distance between them as 

W ¼ min
T 2Γ
hT ;Di; (6) 

where T 2 Γ is a transport matrix and h�; �i is the Frobenius 
dot product. Note that the Wasserstein WL kernel can be 
applied to data obtained at single-cell resolution as well as 
spot-based data. It does not require cell type annotations and 
provides a global view of tissue architecture similarity.

3 Results
In the next sections, we demonstrate the utility of 
GraphCompass methods by analyzing three datasets derived 
from three different technologies and spatial systems [MIBI- 
TOF breast cancer (Risom et al. 2022), 10× Genomics 
Visium heart (Kuppe et al. 2022), and Stereo-seq axolotl 
(Wei et al. 2022)]. We only use analysis and visualization 
functions implemented in GraphCompass, highlighting what 
can be learned from each function.

3.1 Spatial organization of the tumor 
microenvironment and breast cancer progression
Risom et al. (2022) used MIBI-TOF (Keren et al. 2019) with 
a 37-plex antibody staining panel to study changes in the tu
mor microenvironment during the transition from ductal car
cinoma in situ (DCIS) to invasive breast cancer (IBC), 
allowing them to identify spatial and functional changes in 
various cell types, including myoepithelial cells (MYOEP), 
fibroblasts, and immune cells (Fig. 2a). They compared nor
mal samples to both DCIS samples and IBC patient samples. 
DCIS samples can be further divided into progressors (sam
ples that progress from DCIS to IBC) and non-progressors. 
The subset of data we analyze consists of 67 samples 
(NNormal ¼ 9, NProgressors ¼ 14, NNon−progressors ¼ 44). As part 
of their effort to identify features that distinguish transition
ing samples from non-transitioning samples, the authors used 
a masking approach to gauge the thickness and continuity of 
the myoepithelial barrier in multiplexed images. An impor
tant, yet surprising, finding of this experiment is that myoepi
thelial disruption occurs in lesions that did not become 
invasive (non-progressors), while the myoepithelium of DCIS 
patients that do develop IBC (progressors) stayed mostly in
tact. A robust myoepithelial barrier is a key feature of healthy 
breast tissue, meaning that progressor samples more closely 
resemble normal breast samples in terms of myoepithelial ro
bustness than non-progressor samples do. Risom et al. (2022)
suggest that myoepithelial disruption may be a protective 
mechanism against progression to invasive cancer.

We employed GraphCompass to further investigate the 
downstream effects of myoepithelial disruption on breast tis
sue architecture at different scales. We first used a holistic ap
proach, WL Graph Kernels (Section 2.4.2), to assess the 
overall similarity between the architecture of normal breast 
tissue and the spatial organization of non-progressor and 
progressor samples. Based on this holistic view of breast 

cellular organizational structure, we find that normal tissue 
resembles non-progressor samples more closely than progres
sor samples (Fig. 2b). Next, we generated cell-type-specific 
subgraphs and calculated the dissimilarity scores of the sub
graphs using the portrait distance method (Section 2.2.1). 
These subgraphs indeed suggest that the spatial organization 
of MYOEP in normal breast tissue is significantly more simi
lar to that in progressor tissue than that in non-progressor tis
sue (p ¼ 7:9e−4, Student’s t-test comparing Wasserstein 
distance means between (i) normal versus progressor and (ii) 
normal versus non-progressor) (Fig. 2c). GraphCompass was 
thus able to confirm the previously reported finding that non- 
progressor tissue is characterized by its compromised myoe
pithelial layer, distinguishing it from healthy and progres
sor tissue.

To further attempt to explain the protective quality of the 
disintegrating myoepithelial barrier, we executed a neighbor
hood analysis (Section 2.3) to determine which types of cells 
are more likely to co-occur in non-progressor samples than in 
progressor samples and normal breast samples. To this end, 
we fit a linear model to the cell type pair enrichment scores. 
Interestingly, immune cells were more likely to neighbor 
other immune cells in non-progressor samples compared to 
normal breast samples, indicating that non-progressors 
mount an immune response to the tumor, recruiting T lym
phocytes (TCELL), B lymphocytes (BCELL), and dendritic 
cells (DC) to the site of the tumor. Indeed, CD4T–CD4T, 
CD4T–CD8T, B cell–T cell, and CD4T–DC were all enriched 
in non-progressor samples compared to normal samples 
(Fig. 2f). Notably, we did not observe an enrichment of these 
neighbor pairs in progressor samples. We hence hypothesize 
that a thinner myoepithelial barrier protects against the tran
sition to IBC by contributing to the development of a “hot” 
tumor, i.e. a tumor that presents with a microenvironment 
characterized by heightened immune activity, often featuring 
tumor-infiltrating lymphocytes (Duan et al. 2020). The 
“temperature” of immune environments has indeed been 
shown to play a crucial role in shaping the trajectory of dis
ease progression from pre-invasive lesions to invasive cancer 
(Galon et al. 2010, Fridman et al. 2017). The compromised 
myoepithelial barrier in non-progressor samples may allow 
immune cells, particularly T lymphocytes, greater access to 
the tumor microenvironment, increasing their presence 
around tumors. Our analysis suggests that these tumor- 
infiltrating T cells may eventually trigger cancer cell death, 
preventing progression to IBC.

In addition, we found that monocyte (MONO) organiza
tion in normal tissue is more similar to monocyte organiza
tion in non-progressors than that in progressors (p ¼ 7:6e−3, 
Student’s t-test comparing Wasserstein distance means be
tween (i) normal versus progressor and (ii) normal versus 
non-progressor) (Fig. 2c). Furthermore, the filtration curves 
(Section 2.4.1) show that the average number of macro
phages (MACS) is higher in progressor samples than in non- 
progressors and control samples (Fig. 2e). In mouse models 
of cancer, monocytes have been observed to migrate to the 
site of the tumor, where they differentiate into tumor- 
associated macrophages (TAMs). Multiple independent 
breast cancer studies have identified the TAM signature and 
density as markers of tumor progression (Lin et al. 2003, 
Arwert et al. 2018, Cassetta et al. 2019). Our results suggest 
that progressor monocytes have differentiated into macro
phages, which may affect progressor prognosis (Fig. 2d and 
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Figure 2. MIBI-TOF dataset studying the role of the tumor microenvironment (TME) in breast cancer progression. (a) Schematic figure describing the 
different biological conditions investigated in this study. (b) Comparing entire tissue samples, using Weisfeiler–Lehman Graph Kernels, to show the 
overall similarity in spatial organization across two conditions (normal versus non-progressors and normal versus progressors). The smaller the 
Wasserstein distance, the more similar the spatial organization is under the two compared conditions. (c) Cell-type-specific subgraphs comparison, using 
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e). We could not establish differences in the organization of 
luminal tumor cells between progressors and non-progressors 
(Fig. 2c). Therefore, tumor spatial organization neither seems 
to cause nor appears to be immediately affected by myoepi
thelial integrity.

Understanding and manipulating the immune environment 
is essential for developing targeted therapeutic strategies to 
enhance immune responses and restrain cancer progression. 
Though further experimental validation is beyond the scope 
of our manuscript, we have shown that the algorithms imple
mented in GraphCompass generate results consistent with 
previously published findings, namely that myoepithelial bar
rier disintegration is associated with favorable disease out
comes. We have also demonstrated the use of GraphCompass 
as a hypothesis-generating tool, offering a potential explana
tion as to why myoepithelial loss protects against tumor 
progression.

3.2 Myocardial tissue reorganization following 
ischemic injury
Kuppe et al. (2022) conducted a comprehensive study to ex
amine the changes that occur in the cardiac transcriptome 
and epigenome following a heart attack. They integrated data 
from three different modalities: single-cell RNA-seq, chroma
tin accessibility data, and spatial transcriptomics data gener
ated by the Visium platform (Ståhl et al. 2016). Their data 
contain samples from patients who experienced myocardial 
infarction and healthy individuals. Samples were taken from 
different physiological zones of the myocardium (RZ, remote 
zone; BZ, border zone; IZ, ischemic zone; FZ, fibrotic zone) 
(Fig. 3a). Here, we focus on the experiments that were based 
on spatial transcriptomics data. These experiments show 
changes in the organization of cardiomyocytes and myeloid 
cells after ischemic injury.

To study the effect of ischemic injury beyond the initial site 
of the injury, we performed a comparison of samples taken 
from three physiological regions: the IZ, the unaffected left 
ventricular myocardium (RZ), and control cardiac tissue 
(NIZ ¼ 8, NRZ ¼ 5, NControl ¼ 4). We focused our analysis on 
these three regions to better understand whether RZ is af
fected by the ischemic injury and therefore more similar to 
the IZ or is protected from the injury and thus more similar 
to control tissue. Using the entire graph comparison ap
proach (Section 2.4.2), we show that the spatial arrangement 
of the RZ is not significantly more similar to the arrangement 
of the IZ than that of the control (Fig. 3b). This indicates that 
the remote zone might not be impacted, or only partially im
pacted, by the myocardial infarction. To further study the 
effects of ischemic injury at the cellular organization level, we 
utilized the cell-type-specific portrait method (Section 2.2.1). 
We found that the organization of cardiomyocytes in the RZ 
differed from that in the normal tissue samples. It also dif
fered from cardiomyocyte organization in the IZ. Overall, the 
spatial arrangement of cardiomyocytes in the RZ is slightly 
more similar to the arrangement in the control samples than 
to the arrangement in the IZ, though the effect is not signifi
cant (P¼ .25, Student’s t-test comparing Wasserstein distance 
means between (i) RZ versus control and (ii) RZ versus IZ) 
(Fig. 3c). This finding indicates that the cardiomyocytes in 
the remote ventricular myocardium are impacted by the in
jury, though to a lesser extent than the cardiomyocytes in the 
IZ. Our results also suggest that the arrangement of myeloid 
cells in the RZ is significantly more similar to that in the 

control tissue than that in the IZ (p ¼ 2:2e−7, Student’s t-test 
comparing Wasserstein distance means between (i) RZ versus 
control and (ii) RZ versus IZ) (Fig. 3c). This supports the no
tion that the damage inflicted by ischemic injury on myeloid 
cells is localized at the injury site. The filtration curves also 
show that cardiomyocyte organization in the RZ is affected 
by the injury (Fig. 3d), while myeloid organization is not 
(Fig. 3e). In particular, the curves show that both the number 
and density of cardiomyocytes in the RZ have been impacted 
by the infarction.

Collectively, our results support the finding that myocar
dial infarction can have localized or systemic impacts on dif
ferent cell types. Though damage typically originates in a 
specific area of the heart, we observe that the consequences 
can extend beyond the initial site of injury. Indeed, experi
mental studies have suggested that the size of the infarct 
depends on the post-infarct inflammatory response 
(Frangogiannis 2014).

3.3 Restoration of axolotl brain function upon 
injury: comparing healthy and regenerated brains
Wei et al. (2022) used the Stereo-seq technology (Chen et al. 
2022) to generate spatial omics data spanning six axolotl de
velopmental stages and seven regeneration phases. The axo
lotl is a type of salamander, known for its remarkable ability 
to regenerate lost body parts. This ability makes them an in
valuable model for studying tissue regeneration and wound 
healing, potentially offering insights applicable to human 
medicine (Fig. 4a). To shed light on the molecular events that 
precede regeneration, the authors removed a part of the brain 
and then collected spatial transcriptomics data 2, 5, 10, 15, 
20, 30, and 60 days post-injury. They claim that 60 days 
post-injury, brain cell composition, and the spatial distribu
tion of cell types are restored.

To assess tissue restoration success, we focused on studying 
the last two regenerative stages using two samples collected 
30 and 60 days post-injury (30 DPI and 60 DPI). We com
pared the 60 DPI sample against the 30 DPI sample as well as 
a control adult sample from the development dataset 
(N30DPI ¼ 1; N60DPI ¼ 1, NAdult ¼ 1). The aim of our analy
sis is to understand whether, after 60 days, the regenerating 
axolotl brain is more similar to the unharmed adult brain or 
the 30 DPI brain. If the axolotl brain has indeed completely 
regenerated, we would expect to see that both the distribu
tion of cell types and their spatial organization have been re
stored, mimicking that of the control adult sample. 
Comparing the 30 DPI, 60 DPI, and control sections at the 
sample level (Section 2.4.2), we show that the 60 DPI brain is 
slightly more similar to the 30 DPI brain than to the adult 
brain, indicating that the arrangement of cells has not been 
fully restored post-injury (Fig. 4b), though the differences 
are subtle.

Comparison of the cell-type-specific subgraphs further sup
ports our conclusion that the spatial organization of the 
regenerated brain differs from the organization of the healthy 
brain. Indeed, the portrait graph (Section 2.2.1) indicates that 
the organization of multiple cell types in the 60 DPI sample 
resembles the 30 DPI organization more so than the adult 
brain organization. For example, one cell type that is ar
ranged similarly in the 30 DPI and 60 DPI samples is the tel
encephalon neuroblast (tlNBL), which has been shown to 
have a role in telencephalon neurogenesis during regeneration 
(Lust et al. 2022) (Fig. 4c), indicating that regeneration may 
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not yet be complete 60 days after the injury. However, the 
portrait plot also shows several cell types in the 60 DPI sam
ple whose spatial organization is similar to that of adult cells. 
These cell types include dorsal pallium excitatory neurons 
(dpEX) and Sfrpþ ependymal glial cells (sfrpEGC). This sug
gests that the arrangement of dpEX and sfrpEGC cells is re
stored 60 days post-injury.

Wei et al. (2022) observe that development and regenera
tion are characterized by many of the same processes, includ
ing neuronal differentiation and migration, but that several 
pathways were uniquely upregulated in regenerating brains. 
In addition, they identify two subtypes of ependymoglial cells 
(EGCs), one of which is present in the developing brain, 
while the other is found only in the regenerating brain. It is 

possible that these biological differences underlie the incom
plete restoration of cell spatial organization in regenerating 
brains, but more data is needed to draw robust conclusions.

To summarize, we find that the arrangement of some cell 
types is successfully restored in the 60 days following brain 
injury. However, we also highlighted differences in the orga
nization of the 60 DPI brain and the healthy adult brain, indi
cating that the former had not been fully regenerated at the 
60-day mark.

4 Discussion
GraphCompass is a comprehensive graph analysis framework 
that provides quantitative methods to compare cell spatial 
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organization across physiological systems, pathological 
states, and developmental stages. Compatible with spatially 
resolved transcriptomics and proteomics data, 
GraphCompass integrates multiple graph-based and statisti
cal approaches for investigating spatial graphs at three differ
ent levels of abstraction: individual cell types, multi-cell 
neighborhoods, and entire samples. These methods were 
adapted for spatial omics data, such that they can handle 
high-dimensional features, flexible node identities (spot or 
single cell), and variable edge weight definitions.

Differences in cell spatial organization can be indicators of 
disease states, or correlate with how patients respond to 
treatments. Studying cell spatial organization across individu
als can provide insights into developmental and regenerative 
processes, which can guide the development of engineered tis
sues and organoids. We believe that GraphCompass will sig
nificantly advance our understanding of the role of tissue 
architecture in healthy development, disease onset, 
and recovery.

In this manuscript, we have demonstrated the capabilities 
of GraphCompass through its application to datasets derived 
from diverse technologies, highlighting the biological insights 
that can be obtained from the various metrics it implements. 
Developed in Python, GraphCompass interfaces seamlessly 
with Squidpy and AnnData, enhancing its scalability and 
the potential for expansion with new methodologies. With 
GraphCompass, our aim is to offer the computational biol
ogy community user-friendly and accessible graph compari
son methods, empowering both experimental and 

computational scientists in the analysis and interpretation of 
tissue architecture differences across different biologi
cal phenotypes.
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10 Ali and Kuijs et al.

A. Supplementary Methods

A.1. Di↵usion Method
Di↵usion, in the context of graphs, refers to the process of

spreading a certain amount of an imaginary substance (like

information, heat, etc.) across the nodes of a graph over time.

Di↵usion on graphs can be intuitively understood through the

analogy of balls connected by springs. When you impart energy

to one ball in the system (for example, by hitting or pushing it),

this energy is represented by the ball’s movement. As the ball

starts moving, it stretches or compresses the springs connected

to it (the edges in the graph). This, in turn, transfers energy

to the balls (nodes) at the other ends of these springs. Balls

directly connected to the moving ball receive the energy first,

and then the energy propagates to others in a ripple-like e↵ect.

The overall structure of the graph (how balls are connected by

springs) a↵ects the energy di↵usion pathway and rate. Di↵usion

on graphs is implemented by NetLSD [Tsitsulin et al., 2018], a

Python library that encodes a so-called “trace signature” to

capture the energy di↵usion process. The trace signature is

computed as follows: Given graph G, calculate its normalized

Laplacian as

L = I � D
� 1

2 AD
� 1

2 . (7)

A and D are the adjacency and degree matrix of G, respectively.

Next, we compute the closed-form solution to the heat equation

associated with the normalized Laplacian, which is defined as

@ut

@t
= �Lut, (8)

where ut represents the imaginary “energy” of a given node at

time t. The solution to the heat equation is then computed as

Ht = e
�tL

=
nX

j=1

e
�t�j�j�

T
j . (9)

Here, Hij,t quantifies the amount of energy transferred from

node vi to node vj at time t. �j and �j represent the jth

eigenvalue and eigenvector, respectively, of the Laplacian with

Dirichlet boundary conditions. As a last step, we compute the

heat trace ht as the trace of Ht, such that

ht = tr(Ht) =
X

j

e
�t�j . (10)

To compare two graphs, we simply compute the L2 distance

between the corresponding heat traces computed at di↵erent

times t,

d(G, G
0
) =

vuut
nX

t=1

(ht � h0
t)

2. (11)

Alternatively, we can cluster the heat traces to reveal sample-

level similarities. The clusters can be visualized using, for

example, a UMAP. Samples that cluster together are similar

in terms of spatial organization.
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Table 1. Comprehensive overview of methods for di↵erential analysis of cellular organization in spatial omics data across conditions.

Method
Cell-type

Abundance

Cell-type

Organization

Neighborhood/

Niche

Analysis

Tissue-level

Architecture

Code

Availability
Comments

Cluster-based

CellCharter

[Varrone et al.,

2023]

X X

Requires

hyperparameter

tuning

MENDER

[Yuan, 2024]
X X

Requires

hyperparameter

tuning

SOTIP [Yuan

et al., 2022]
X X X

Unflexible

predefined

neighborhood

shapes and

sizes; potential

for false

negatives

Image-based

Qualitative

image analysis

[Risom et al.,

2022]

X X

Dataset-specific

analysis;

not

generalizable or

reproducible

Simple statistics

Qualitative

niche analysis

[Kuppe et al.,

2022]

X X X

Dataset-specific

analysis;

not

generalizable

Cell-type

composition

analysis [Wei

et al., 2022]

X X

Dataset-specific

analysis;

not

generalizable

Graph-based

Graph neural

networks

(GNN) [Wu

et al., 2022, Hu

et al., 2024]

X X X X

Computationally

expensive;

requires GPU

and a large

sample size

GraphCompass X X X X X

Resource

e�cient,

optional

hyperparameter

tuning, no

need for GPU;

comprehensive

documentation

and tutorials;

insightful

visualization

functions



4.2 Study 2: Graph neural networks learn tissue phenotypes from spatial molecular
profiles.

The paper “Graph neural networks learn tissue phenotypes from spatial molecular profiles.”
was published in 2022 as a preprint on bioarxiv. The full citation is:

Mayar Ali*, Sabrina Richter*, Ali Ertürk, David S. Fischer, Fabian Theis, 2022,
Graph neural networks learn emergent tissue properties from spatial molecular pro-
files, bioRxiv 2022.12.08.519537; https://doi.org/10.1101/2022.12.08.
519537

Summary:
Advancements in spatial omics enable the capture of spatial patterns within tissue niches,
which in turn facilitates the study of tissue traits and their associations with patient outcomes.
In this study, we analysed different cancer datasets: colorectal and breast cancer datasets,
to investigate confounding tissue traits influencing patient outcomes and associate these traits
with tissue architecture motifs.

We modelled tissues as cell graphs and applied graph neural networks (GNNs) to integrate
spatial and single-cell data. We also designed a comprehensive multimodal ablation study
to compare pseudobulk, single-cell, and spatially informed models to understand tissue traits
contributing to patient outcomes. Our results showed that spatial information is encoded in
global gene expression, which suggests that simpler models may be sufficient in data-limited
regimes. However, we believe that larger datasets may reveal more complex relationships.
However, we showed that graph neural networks capture hidden tissue architecture motifs rel-
evant to disease progression and patient survival.

We further extended our ablation study to explore immune cell organisation and identified
tissue traits influencing outcomes. In colorectal cancer, tissue architecture was the main con-
founding factor, while in breast cancer, cell organisation and cell-type frequencies contributed
to cancer grade. In addition, we developed interpretation methods that highlighted the contri-
butions of different tissue neighbourhoods to patient outcomes.

Our study showed that GNNs provide a powerful framework for integrating cellular organisa-
tion and tissue architecture. To the best of our knowledge, we presented in this study the most
comprehensive multimodal ablation study to investigate the different tissue traits contributing
to the disease stage. These insights can enhance our understanding of disease progression
and support the treatment of pathological states.
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Tissue phenotypes, such as metabolic states, inflammation, and tumor properties, emerge from both 
molecular states of individual cells and their spatial organization. Spatial molecular assays provide an 
unbiased view of cellular spatial patterns, enabling both phenotype prediction and insights into tissue 
architecture. Graph models offer a natural framework for analyzing spatial proteomics data by integrating 
molecular expression profiles with tissue structure. Here, we apply graph neural networks (GNNs) to classify 
tissue phenotypes based on spatial cell patterns. We show that, for relatively simple classification tasks such 
as tumor grading in breast cancer, incorporating spatial context does not significantly improve predictive 
performance over models trained on single-cell or pseudobulk representations. However, GNNs effectively 
capture biologically meaningful spatial patterns, retaining prognostic signals beyond categorical tumor 
labels, highlighting tumor-grade-specific cell type interactions, and uncovering complex immune infiltration 
patterns in colorectal cancer that are not readily detectable with traditional statistical approaches. These 
findings suggest that, while spatial dependencies may not always enhance classification performance in 
small datasets, GNNs can serve as valuable tools for characterizing tissue organization and 
microenvironmental interactions. This study establishes GNNs as powerful tools for analyzing tissue 
architecture in spatial omics data, while also highlighting their current limitations in predictive modeling due 
to dataset constraints. 
 

The high molecular resolution provided by single-cell RNA-seq (scRNA-seq) has put the cell as a functional unit in the 
focus of recent advances in tissue biology1. However, interactions between cells and properties of the tissue beyond 
the length scale of a cell are largely lost in assays that are based on dissociated tissues. Highly multiplexed imaging 
technologies such as Imaging mass cytometry (IMC)19 and co-detection by indexing (CODEX)20 enable the 
simultaneous measurement of dozens of protein markers at subcellular resolution within intact tissues. These 
technologies are particularly valuable in oncology and immunology, where they help characterize the tumor 
microenvironment and study how spatial organization of cells shapes disease progression and therapeutic 
responses21,22. By capturing the coordinated behavior of malignant, immune, and stromal cells in different tumor 
phenotypes, these datasets provide insights into mechanisms of effective versus ineffective tumor control, ultimately 
advancing immunotherapies23,24. 

In order to analyze tissue organization, single-cell spatial omics data can be modeled as spatial graphs, where nodes 
represent individual cells and edges encode spatial proximity. This representation enables computational models to 
capture tissue architecture and cellular interactions explicitly2-4. Graph neural networks (GNNs) have emerged as a 
powerful tool for integrating spatial, molecular, and cellular information. Recent studies suggest that GNNs can 
identify disease-relevant tissue structures and even outperform traditional clinical metrics in certain prognostic 
tasks5–7. However, the extent to which GNNs effectively leverage spatial context for prediction, and whether their 
learned representations faithfully capture biologically meaningful features, remains unclear. 

Here, we systematically evaluate the predictive performance and interpretability of GNNs for tumor phenotype 
classification using spatial omics data. We first conduct a comparative multi-model ablation study to assess the 
individual and combined contributions of spatial context and single-cell features to predictive performance. Second, 
we perform in-depth interpretability analyses of graph models to understand the underlying factors driving model 



predictions and to better understand the biological relevance of the learned representations. Specifically, we address 
two key questions: (1) Does spatial context enhance predictive performance compared to single-cell or bulk 
representations? (2) Can graph models yield biologically meaningful insights into tissue organization? To this end, we 
explore several model interpretation strategies, including learned sample embeddings, attention-based interaction 
patterns, and saliency maps, to determine whether GNNs capture relevant biological structures. Our findings aim to 
clarify the role of spatial information in tumor phenotype prediction and highlight the potential of graph-based models 
as interpretable tools for spatial omics and tissue biology. 

Results 

Graph neural networks model tissue phenotypes 

To investigate the role of tissue architecture in tumor phenotype prediction, we perform a multi-model ablation study 
to assess the performance of graph neural networks (GNNs) across multiple spatial omics datasets. Our goal is to 
determine how spatial context and single-cell information contribute to predictive accuracy, and whether graph-based 
models can capture meaningful biological patterns across different cancer types and imaging platforms (Figure 1a,b). 
 
We first evaluate the performance of GNNs in predicting tumor phenotypes from spatial omics data, specifically 
examining the influence of spatial context and single-cell resolution. For this, we consider three distinct datasets with 
graph-level supervision tasks: a cohort of CODEX samples from colorectal cancer biopsies (CODEX - colorectal 
cancer9, 140 images from 35 patients), and two cohorts of imaging mass cytometry (IMC) breast cancer biopsy data 
(IMC - Jackson10, 559 images from 350 patients and IMC - METABRIC11, 500 images from 454 patients). For the 
CODEX - colorectal cancer dataset, we focus on predicting binary anatomic labels, specifically the presence of 
tertiary lymphoid structures. For the IMC - Jackson and IMC - METABRIC datasets, we predict tumor grades, 
distinguishing between grades 1, 2, and 3 tumors. In all cohorts, hold-out splits are defined by patient to avoid 
leakage of batch information (Methods). 

We represent the data as spatial graphs, where each node corresponds to an individual cell and is annotated with 
single-cell features. Spatial graphs are constructed by connecting cells with an edge if their Euclidean distance fell 
below a fixed threshold radius, with neighborhood sizes (resolutions) determined based on the average node degree 
distribution³ (Supp. Fig. 1). This representation enables the modeling of both cellular attributes and spatial 
relationships within the tissue. GNNs operate on these graphs by iteratively aggregating information from neighboring 
nodes and ultimately pooling the learned cell-level representations into a single graph-level embedding, which serves 
as the basis for tissue phenotype prediction. 

Ablating over tissue architecture motives in spatial omics for tumor phenotype prediction 
To disentangle the contribution of spatial context and single-cell resolution to model performance, we designed a 
comprehensive ablation study building on the spatial graph framework described above. In this setting, we 
constructed spatial graphs where each node represents an individual cell and is annotated with its molecular profile, 
such as protein or gene expression levels, while edges represent spatial proximity as previously described. To 
benchmark the utility of spatial context and single-cell resolution, we compared three scenarios: (1) the full molecular 
profiles of cells within their spatial context encoded via spatial proximity graphs (Spatial Tissue Architecture), (2) 
molecular profiles of in silico dissociated single cells without any encoding of potential interactions (Single Cell), and 
(3) pseudobulk profiles computed as the mean molecular expression across all cells in a tissue image (Bulk) (Figure 
1c). For each of these inputs, we applied tailored machine learning models: graph convolutional networks (GCN) and 
graph isomorphism networks (GIN) for the spatial graphs, multi-instance learning (MI) models for the single-cell input, 
and multi-layer perceptrons (MLPs), logistic regression and random forests (RF) for the pseudobulk-level 
representation. We optimized all models using hyperparameter grid searches within a nested cross-validation 
framework (Table 1-2), and performance was evaluated using the area under the precision-recall curve (AUPR) to 
account for class imbalances (Methods). 



We found that GNNs trained on spatial graph representations of tissue images did not significantly outperform 
multi-instance learning (MI) models trained solely on single-cell expression vectors for all datasets (ΔAUPR=0.052 
and p=0.21, ΔAUPR=0.036 and p=0.086, ΔAUPR=0.014 and p=0.56 for CODEX - colorectal cancer, IMC - Jackson 
and IMC - METABRIC, respectively, Fig. 2a,b,f). In addition, the single-cell resolution modelled by the MI models 
offered no substantial improvement over pseudobulk representations (ΔAUPR=-0.012 and p=0.71, ΔAUPR=0.005 
and p=0.80, ΔAUPR=-0.021 and p=0.31 for CODEX - colorectal cancer, IMC - Jackson and IMC - METABRIC, 
respectively, Fig. 2a,b,f, Supp. Fig. 2). Notably, only in the IMC - Jackson breast cancer dataset did the spatial model 
significantly outperform the pseudobulk-level representation (ΔAUPR=0.041 and p=0.019). These findings suggest 
that the added value of spatial context or single-cell resolution for tumor phenotype prediction is limited in current 
spatial omics datasets, which comprise only up to a few hundred images. The strong performance of pseudobulk 
representations likely reflects their ability to smooth out cell-to-cell variability and emphasize dominant molecular 
signals at the tissue level. In contrast, more complex spatial or single-cell models may require larger datasets, or 
more complex phenotypes that are tightly coupled to spatial organization, to fully leverage the additional layers of 
information they encode. 

Spatially-aware graph embeddings reveal clinically meaningful tissue representations 

The ability of graph neural networks (GNNs) to explicitly model cellular interactions and tissue architecture offers 
unique opportunities for capturing biologically meaningful spatial features that may not directly translate into 
classification performance. Despite the comparable predictive performances of GNNs to the baseline models, it 
remains worthwhile to explore what these models learn about tissue organization and whether their learned 
representations reflect relevant biological structures or processes. Therefore, we analyzed the graph-level 
embeddings learned by the GNNs. These embeddings, obtained after node-pooling, provide spatially-aware 
representations of entire tissue samples and can be interpreted as a continuous patient manifold (Methods). 
Interestingly, the embeddings revealed biologically meaningful patterns beyond the separation required for tumor 
phenotype classification. For the two breast cancer datasets, we found that the graph embeddings recapitulated the 
sequential ordering of tumor grades (1, 2, and 3), even though the categorical multi-class loss function does not 
enforce such ordering. For the IMC - Jackson dataset, the embeddings showed a clear gradient of tumor grades, 
progressing from grade 1 through grade 2 to grade 3, as reflected in the increasing pairwise distances between 
grades (Fig. 2c,e). In the IMC - METABRIC dataset, although the distance between grade 1 and grade 3 embeddings 
was not significantly greater than that between grade 2 and grade 3, the median distance from grade 1 to grade 3 
was still higher, suggesting a partial preservation of grade ordering (Fig. 2i). This interpretation is further supported by 
principal component analysis of the learned embeddings. The first principal component (PC1) revealed a graded 
separation across tumor grades: grade 3 samples were shifted toward the positive end of PC1, grade 1 clustered 
toward the negative end, and grade 2 was distributed between them. This suggests that the model captures a latent, 
continuous trajectory consistent with tumor severity (Fig. 2g). Furthermore, to assess whether the learned 
embeddings also captured prognostic signals, we examined the association between the first principal component 
and disease-specific patient survival, and indeed found a correlation even within samples of the same tumor grade 
(Fig. 2d,h). This was reflected in the right-censored concordance index, which yielded median values consistently 
above 0.5 across cross-validation runs of the selected model (IMC - Jackson: 0.55, 0.54, 0.57 for grades 1, 2, and 3; 
IMC - Metabric: 0.86, 0.62, 0.53; Supp. Fig. 3a,b). These analyses show that the graph models learned meaningful, 
even clinically interesting, sample representations that go beyond the separation of labels they were trained on and 
offer two important implications: (1) the multifaceted utility of these embeddings suggests that the models base their 
predictions on biologically meaningful features and may generalize to further interpretation tasks, and that (2) the 
continuous nature of the learned representations reflects gradual variability across tumor grades and patient 
subgroups, highlighting their potential for future studies to explore clinical outcomes along such latent trajectories. 

Uncovering spatial patterns of immune cell distribution in breast cancer with graph neural networks 

These results suggest that gene expression states, the input node states in the presented ablation study, contain 
significant information about the tissue labels, even in the absence of information about spatial connectivity. However, 
the cell-wise gene expression states themselves are functions of the spatial context3,25, thus potentially confounding 
this ablation result. To address this potential limitation in the capture of spatial patterns of cells that are predictive of 
tissue labels, we set out to perform a similar ablation study in which the input node states are discrete cell type labels. 



These cell type labels do not resolve fine-grained gene expression variability within cell types that is often 
confounded by spatial context3 but may still represent relevant spatial patterns in the tissue: for example, the spatial 
distribution of immune cells within tumors in a spatial graph of cells that has cell type labels as node states. To 
specifically query immune cell distributions, we reused the previously described graph representation of tissue 
images, replacing molecular expression profiles with binary immune versus non-immune cell representations as node 
features. 
 
To determine whether GNNs pick up tumor phenotype specific spatial patterns of immune infiltration into the tumor, 
we designed a second ablation study to compare their classification performance against baseline models. 
Specifically, we compared: (1) the graph tissue representation with binary node features of immune vs non-immune 
cell (“Spatial Tissue Architecture” model), (2) tissue density structure, using either the graph skeleton or the histogram 
of node degrees without cell phenotype information (“Density” model), and (3) the cell type fractions (immune vs. 
non-immune) only (“Cell Type Fractions” model) (Figure 1c). As an additional control, we trained GNNs on data with 
randomly permuted node labels (“Permuted Spatial Tissue Architecture” model) to test whether predictions relied on 
specific immune-tumor spatial arrangements, while keeping the adjacency matrices and cell type fractions fixed 
(Methods). 

Notably, we found that GIN models trained on the spatial immune cell distribution of the IMC - Jackson breast cancer 
dataset significantly outperformed all other models. This included models trained solely on cell type fractions, tissue 
density features, and permuted node labels (ΔAUPR = 0.072, p = 0.019 for Cell Type Fractions; ΔAUPR = 0.16, p = 
5.47e-6 for Density; ΔAUPR = 0.047, p = 0.041 for Permuted, Figure 3a). Therefore, we conclude that the GIN model 
successfully captured distinctive spatial patterns of immune cell invasion associated with different tumor grades. In 
contrast, for IMC - METABRIC dataset, graph models did not outperform baseline models trained solely on immune 
cell fractions, although they did outperform both the tissue density-based and permuted graph baselines 
(ΔAUPR=0.052 and p=0.14 for Cell Type Fractions, ΔAUPR=0.12 and p=6.69e-6 for Density, ΔAUPR=0.088 and 
p=9.72e-3 for Permuted, Figure 3b). The generally low performance on this dataset, close to random baseline levels, 
may explain why modeling complex spatial patterns failed to improve prediction performance. This finding highlights 
the current limitations imposed by small sample sizes in spatial omics datasets. Together, these findings show that 
while spatial modeling of immune cell organization can enhance phenotype prediction in certain settings, its 
effectiveness likely depends on dataset size, signal strength, and the degree to which immune spatial patterns are 
linked to the target phenotype. 

To further explore the ability of GNNs to retrieve spatial patterns, we trained a graph attention network (GAT) on the 
IMC - METABRIC dataset and analyzed the learned interactions between neighboring cell types in the context of 
tumor grades (Figure 3c-e, Supp. Fig. 4). Interpreting the weight matrix of the first graph convolutional layer 
(Methods), similar to how convolutional filters are visualized in image recognition models, revealed biologically 
meaningful interactions. Specifically, setting the convolutional filters in context with the learned attention mechanism 
between cell types (Figure 3c), we found that the proximity of fibroblasts around tumor cells to be indicative of grade 
1 tumors, while the occurrence of macrophages next to tumor cells rather indicated grade 3 tumors (Figure 3c,d). 
This observation aligns with the increased presence of macrophages near tumor cells in grade 3 tumors and the 
higher prevalence of fibroblast-tumor cell interactions in grade 1 tumors11 (Figure 3e). 
 
In summary, our findings demonstrate that GNNs applied to immune cell patterns within tumor tissue can identify 
distinctive spatial patterns of immune infiltration relevant for tumor grade prediction, as shown in the IMC - Jackson 
dataset. We further demonstrated a way to extract such patterns from fitted models. Our findings emphasize the 
value of GNNs in integrating diverse factors contributing to phenotype prediction and to uncover subtle spatial 
patterns that hold promise for advancing our understanding of tumor microenvironments and informing targeted 
therapeutic strategies. 

Graph neural networks capture complex immune infiltration patterns in colorectal cancer  

Previous studies have shown that the spatial distribution of immune cells in colorectal cancer is predictive of disease 
outcomes and is used to stratify tumors.5,9. This motivated us to investigate whether spatial immune infiltration 



patterns could again be found to distinguish between tumor cores with tertiary lymphoid structures (TLS) and those 
with diffuse immune infiltrates (DII). 
 
To model these spatial patterns, we represented tissues again as spatial proximity graphs where nodes were 
categorized as either immune or non-immune cells. Surprisingly, GNNs trained on this representation did not 
significantly outperform models trained on permuted node labels, where cell type identities were randomly shuffled 
(ΔAUPR = 0.004, p = 0.88, Figure 4a). This suggests that immune cell identity contributed little to the model's 
predictive performance in this setting. Moreover, models trained on the graph structure alone, without any node 
feature information, outperformed graph models that included either immune status or full molecular profiles as node 
features (ΔAUPR = 0.023, p = 0.44 for Spatial Tissue Architecture (immune/non-immune features); ΔAUPR = 0.027, 
p = 0.45 for Spatial Tissue Architecture (molecular features), Figure 4a, Supp. Fig. 2). This indicates that the 
underlying spatial arrangement of cells, independent of their molecular or immune identity, may be the dominant 
predictive signal in this dataset. Supporting this, even random forest classifiers trained on node degree histograms 
achieved comparable performance in distinguishing tumor areas with tertiary lymphoid structures from those with 
diffuse immune infiltrates (ΔAUPR = 0.071, p = 0.12, Figure 4a). 
 
The relevance of tissue density in modelling colorectal cancer also explains the strong performance differences 
between GCN and GIN models in this setting. While GCNs normalize node degrees during message passing, GINs 
preserve node degree information through sum aggregation. Modifying GCNs to use sum aggregation restored their 
performance to match GINs (ΔAUPR=0.17 and p=1.49e-4 GIN vs. GCN, ΔAUPR=0.015 and p=0.51 GIN vs. GCN 
with sum aggregation, Supp. Figure 5d). This finding highlights the significance of preserving tissue density structure 
in models of cellular organization. 
 
We note that tissue density may be confounded by local cell type composition, thus not guaranteeing that the density 
model is indeed an ablation that is free of spatial information. To understand if the GIN model captured 
immune-related spatial features in these settings in which it did not outperform the density model, we employed a 
gradient-based interpretability approach, calculating the gradient of the model’s output with respect to node-level 
inputs to estimate the contribution of individual cells. Positive gradient values indicated features characteristic of TLS 
regions, while negative values pointed toward the DII label. First, stratified cells by their node degree and the 
immune-to-non-immune cell ratio in their local neighborhood and computed average gradient values. Interestingly, 
while node degree alone was sufficient to achieve high predictive performance, the model clearly incorporated 
immune identity into its predictions. For instance, cells with node degrees between 10 and 15 and high immune 
fractions were strong indicators of TLS regions, whereas cells with similar degree but lower immune content were 
associated with DII regions (Figure 4b). This level of discrimination could not be achieved by models relying only on 
tissue density. Next, we asked whether cells within similar local features, same node degree and immune fraction, 
were used differently by the model depending on whether they point towards TLS or DII regions. For this, we 
compared the average gradient values between cells from TLS and DII images (Figure 4e,f). The gradient values 
revealed a specific subset of cells (with node degree 10-20, immune cell fraction >80%) that emerged as key 
determinants of TLS classification. However, the presence of these cells alone did not fully explain the model’s 
predictions; cells with identical local properties exhibited substantially lower gradient values when they originated 
from DII images. This suggests that the model leveraged broader spatial context beyond local density and immune 
abundance. To further investigate potential sources of this contextual difference, we analyzed the neighborhood 
compositions of these predictive cells, using annotations from the original dataset (Figure 4c,d,g). We found that cells 
linked to TLS regions were most often situated in follicle- or T cell-enriched neighborhoods, while the same cell types 
in DII regions were more frequently embedded in granulocyte- or macrophage-enriched neighborhoods. Even among 
cells residing in T cell-enriched neighborhoods, gradient values differed markedly between TLS and DII images 
(Figure 4h,i), further supporting that the model captures subtle, higher-order spatial cues that distinguish immune 
microenvironments. 
 
These findings suggest that the graph models capture spatial organization patterns beyond local tissue density, 
immune cell composition, and immediate neighborhood context. Despite cells having the same node degree, immune 
fraction, and neighborhood annotation, the model assigns distinct importance depending on whether they originate 
from TLS or DII regions. This indicates that the model leverages more complex spatial relationships within the tissue 
subgraph to distinguish between these phenotypes. Such patterns are difficult to capture with conventional models, 



highlighting the strength of graph-based approaches in learning subtle, context-dependent features of tissue 
architecture. It is also important to keep in mind that tissue density may still embed some spatial context due to 
confounding with local cell composition, which may partly account for the performance of the density-based models 
relative to the graph models. 

Cell type encodings enable interpretability in graph representation learning despite lower prediction 
accuracy 

Cell type labels are a coarsening of vector-shaped cell-wise mean gene expression observations. One would expect 
the increased feature complexity of gene expression states compared to cell type labels to translate to overall 
improved predictive ability of models that use these node states in the input. Indeed, graph models were significantly 
better when trained on gene expression vectors as opposed to one-hot encoded cell type node representations on 
the breast cancer datasets, IMC - Jackson data and IMC - METABRIC data (p=7.22e-4 and p=3.59e-3, respectively, 
Supp. Fig. 5a-c). Nonetheless, cell type encodings offer a lower-dimensional and interpretable representation of 
tissue, which can be particularly valuable for identifying structural patterns and supporting mechanistic studies, such 
as those modeling immune infiltration. 
 
Introducing additional prediction tasks to combat overfitting 
 
Overfitting is of particular concern in relatively small cohorts of hundreds of observations as those that we considered 
here, especially when working with high-dimensional molecular feature spaces. We introduced an auxiliary 
self-supervision task (Methods) to the graph model, where the graph neural network predicts the cell type 
composition of neighboring spectral clusters, to constrain the node embeddings, and compared the resulting 
performance with standard graph models. However, this task did not improve overall performance of the graph 
models (Supp. Fig. 6). We added further sample-level labels in a multi-task setup to the GCNs trained on the IMC - 
Jackson and IMC - METABRIC datasets but did not find this to improve the prediction accuracy on test data (Supp. 
Fig. 7). These results highlight the challenges of training expressive graph models on limited data and point to the 
need for larger, more diverse datasets to fully leverage their potential. 

Discussion 

In this study, we evaluated the ability of GNNs to capture tissue phenotypes from spatial molecular profiling data, 
leveraging their capacity to implicitly integrate multiple layers of biological information: spatial organization of cells, 
overall cell type composition, molecular expression profiles as well as structural tissue features such as cellular 
density patterns. We found that for relatively simple classification tasks, such as predicting tumor grade in breast 
cancer, the inclusion of spatial context did not improve phenotype classification performance, likely due to the limited 
dataset sizes of a few hundred images. However, despite this, GNNs successfully captured biologically meaningful 
spatial patterns, revealing insights beyond what traditional statistical approaches could extract. For instance, 
GNN-derived sample representations contained clinically relevant signals beyond categorical tumor grade labels. 
Using Graph Attention Networks, we identified tumor-grade-specific cell type interactions in one of the breast cancer 
datasets, and in colorectal cancer, GNNs uncovered complex immune infiltration patterns that would not have been 
apparent through simple statistical analyses. Even in cases where these patterns did not enhance classification 
accuracy, their successful retrieval suggests that GNNs could serve as valuable tools for spatial data analysis, 
helping to characterize tissue organization principles and microenvironmental interactions. 
 
As datasets grow in size and phenotype complexity, graph-based approaches remain a promising avenue for 
modeling spatial molecular data. With richer and more extensive datasets, there will be greater flexibility to explore 
more sophisticated model architectures. While our study was constrained to relatively simple GCN and GIN models 
due to dataset size limitations, future work could benefit from models with higher capacity, such as Graph Attention 
Networks13 or spatially aware message-passing architectures, which may be more sensitive to subtle tissue niche 
motifs. Additionally, hierarchical pooling strategies could enhance information aggregation in larger graphs5, which 
may for example become available in the context of tissue clearing16. Integrating spatial profiling with high-resolution 
single-cell RNA sequencing may further improve the molecular input space for GNNs14, allowing for a more detailed 
characterization of tissue organization. 



 
Beyond methodological advancements, the ability of GNNs to extract spatially structured biological signals suggests 
potential applications beyond classification tasks. In research settings, such models could aid in identifying 
microenvironmental features associated with disease progression or treatment response, offering an interpretable 
framework for studying tissue organization. In the long term, if trained on sufficiently large and diverse datasets, 
GNN-based models could contribute to biomarker discovery or aid in stratifying patients based on spatially defined 
phenotypic traits. However, realizing these possibilities will require not only larger and more comprehensive datasets 
but also careful validation to ensure robustness and clinical applicability. Taken together, our findings highlight both 
the current limitations and future promise of GNNs for spatial molecular profiling data, positioning them as a powerful 
tool for studying the complex interplay between tissue structure and molecular state.  



 
 
 
Figure1. Overview of spatial graph framework and ablation design for phenotype prediction. (a) Tissue-level 
phenotypes are functions of the architecture of the tissue. In this case, two immune infiltration regions, Tertiary 
lymphoid structure (TLS) region and diffuse immune infiltrate (DII) region, can be distinguished based on the spatial 
distribution of immune cells. This anatomical label cannot be inferred based on frequencies of cell types that would be 
available in dissociation-based protocols, but only based on the spatial distribution of cells9. One example image from 
the CODEX - colorectal cancer dataset for each class. (b) (top) The spatial context of each cell can be formally 
represented by a graph in which edges are weighted based on the distance between nodes. Each sample can be 
represented as one such graph, where nodes are colored by the measured cell features. Node features and the 
proximity graph are input to the model. We perform prediction with a model that consists of graph neural network 
layers to produce node embeddings, followed by pooling over nodes and a final classification network that outputs a 
tissue-level label. (bottom) Different downstream tasks and interpretation approaches can be performed using the 
graph embeddings, such as cell-type interactions or neighborhood analysis, cell importance to the phenotype 
prediction, and sample representation where the spatially-aware graph embeddings can be visualized with a PCA in 
which each point reflects one graph (image) and depicts separation of samples by the tissue-level class. (c) Design of 
the ablation study. Bulk models only have access to the average node feature vector of the graph whether 
proportions of cell types or average molecular expression. Single Cell  models have access to single-cell-resolved but 
in silico dissociated data from the observed spatial graph. Graph Statistics are spatially aware models that have 
access to the full spatially resolved data, but reduce it to simpler summary statistics such as tissue density 
represented by node degree. Finally, Spatial Tissue Architecture which are represented by graph models, have 
access to node features and the spatial proximity graph. 



 
 



Figure 2: Graph networks capture latent biological signals related to breast cancer grade and patient 
survival. (a,b,f) Multi-modal ablation study on tumor phenotype classification performance using molecular cell 
representations. Shown is the area under the precision-recall curve (AUPR) across three-fold nested cross-validation 
for the best performing hyper-parameter set per test split selected based on the train loss for (a) CODEX - colorectal 
cancer and the validation loss for (b) IMC - Jackson, and (f) IMC - METABRIC. Bulk represents the pseudobulk 
expression per sample, Single Cell is the set of molecular expression vectors per tissue image and Spatial Tissue 
Architecture represents the spatial tissue graph representation. The mean positive class prevalence across the 9 
cross validation splits is included as a random predictor (grey line). (c-e) and (g-i) show analyses on the graph 
embeddings from the GIN models for IMC - Jackson and IMC - METABRIC, respectively. (c, g) PCA of the graph 
embeddings obtained from a GIN model of training, validation, and test data with class labels superimposed. (d, h) 
Clinical disease-free survival (DFS) annotations. Gray points indicate graphs without recorded survival annotations. 
(e, i) The average euclidean distances between graph embedding vectors from different classes. 
 
 

 



 
Figure 3: Graph neural networks capture tumor microenvironment features beyond cell type proportions or 
tissue density. (a, b) Multi-modal ablation study on breast cancer tumor grade classification performance using 
binary cell types feature space for (a) IMC - Jackson, and (b) IMC - METABRIC. Shown is the area under the 
precision-recall curve (AUPR) across three-fold nested cross-validation for the best performing hyper-parameter set 
per test split selected based on the validation loss. Cell Type Fractions represent the ratio between immune vs 
non-immune cells per sample, Density is represented either as the histogram of node degrees within a sample, or it is 
the full graph structure without node features. Permuted Tissue Spatial Architecture refers to a spatial tissue graph 
representation with cell identities randomly permuted across the graph and Tissue Spatial Architecture represents 
samples via their spatial tissue graphs. The mean positive class prevalence across the 9 cross validation splits is 
included as a random predictor (grey line). (c-e) Interpretation of the attention mechanism of a GAT model (Methods) 
trained on the IMC - METABRIC dataset with cell type input. (c) Heatmap of the attention weights between different 
pairs of key and query cell types. (d, e) Neighborhood analysis on tumor cells. (d) Heatmap of the filter weight matrix 
of the first convolutional node embedding layer weighted by the attention weights for Tumor query cells (bottom) set 
into global context by the averaged gradients of the different graph labels wrt. the filter activation scores (top). (e) 
Difference in neighborhood frequency between tumor cells and other cell types in cancer grade 1 versus grade 3, 
showing the average differences between the neighboring environment of tumor cells during disease progression. 
 



 
Figure 4: Graph neural networks model complex spatial immune infiltration patterns in colorectal cancer. (a) 
Multi-modal ablation study on colorectal cancer anatomical phenotype prediction using binary immune vs. 
non-immune cell feature space. Shown is the area under the precision-recall curve (AUPR) across three-fold nested 
cross-validation for the best performing hyper-parameter set per test split selected based on the train loss. Cell Type 
Fractions represent the ratio between immune vs non-immune cells per sample, Density is represented either as the 
histogram of node degrees within a sample, or it is the full graph structure without node features. Permuted Spatial 



Tissue Architecture refers to a spatial tissue graph representation with cell identities randomly permuted across the 
graph and Spatial Tissue Architecture represents samples via their spatial tissue graphs. The mean positive class 
prevalence across the 9 cross validation splits is included as a random predictor (grey line). (b) Cells stratified by 
node degree and fraction of immune cells in the immediate neighborhood colored by agreement between enrichment 
of a cell category within one phenotype class and the average model saliency using GIN model. (c, d) Spatial plots of 
the spatial tissue graphs colored by the neighborhood cell annotation from the original publication from samples with 
different anatomical phenotypes, (c) TLS region and (d) DII regions. (e-i) Cell saliency analysis based on the GIN 
model. (e,f) Average cell saliencies stratified by node degree and fraction of immune cells in the immediate 
neighborhood for cells from (e) TLS samples and (f) DII samples. Saliencies are computed as the gradient of the 
output wrt. the input cell representations (yellow: TLS, blue: DII). (g) Neighborhood composition of the cells 
highlighted in (e) and (f). (h,i) Same as (e, f) of cells annotated as T cell enriched neighborhoods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Methods 

Data 

IMC - Jackson (breast cancer) 

The breast cancer dataset (Jackson et al.10 with 559 images from 350 patients) was measured with IMC. The dataset 
consists of samples from three breast cancer grades, grade 1 (114 images), grade 2 (214 images) and grade 3 (231 
images). Here, 34 proteins in a panel specific to breast cancer microenvironment were simultaneously measured. We 
used the segmentation provided by Jackson et al.. We used the following channels: 1021522Tm169Di EGFR, 
1031747Er167Di ECadhe, 112475Gd156Di Estroge, 117792Dy163Di GATA3, 1261726In113Di Histone, 
1441101Er168Di Ki67, 174864Nd148Di SMA, 1921755Sm149Di Vimenti, 198883Yb176Di cleaved, 201487Eu151Di 
cerbB, 207736Tb159Di p53, 234832Lu175Di panCyto, 3111576Nd143Di Cytoker, Nd145Di Twist, 312878Gd158Di 
Progest, 322787Nd150Di cMyc, 3281668Nd142Di Fibrone, 346876Sm147Di Keratin, 3521227Gd155Di Slug, 
361077Dy164Di CD20, 378871Yb172Di vWF, 473968La139Di Histone, 651779Pr141Di Cytoker, 6967Gd160Di 
CD44, 71790Dy162Di CD45, 77877Nd146Di CD68, 8001752Sm152Di CD3epsi, 92964Er166Di Carboni, 
971099Nd144Di Cytoker, 98922Yb174Di Cytoker, phospho Histone, phospho S6, phospho mTOR, Area. Jackon et 
al. annotated the following cell types: B cells, T and B cells, T cells, macrophages, T cells, macrophages, endothelial, 
vimentin hi stromal cell, small circular stromal cell, small elongated stromal cell, fibronectin hi stromal cell, large 
elongated stromal cell, SMA hi vimentin hi stromal cell, hypoxic tumor cell, apoptotic tumor cell, proliferative tumor 
cell, p53+ EGFR+ tumor cell, basal CK tumor cell, CK7+ CK hi cadherin hi tumor cell, CK7+ CK+ tumor cell, epithelial 
low tumor cell, CK low HR low tumor cell, CK+ HR hi tumor cell, CK+ HR+ tumor cell, CK+ HR low tumor cell, CK low 
HR hi p53+ tumor cell and myoepithelial tumor cell. We coarsened the cell types into B cells, T and B cells, T cells, 
macrophages, T cells, macrophages, endothelial, stromal cells (vimentin hi stromal cell, small circular stromal cell, 
small elongated stromal cell, fibronectin hi stromal cell, large elongated stromal cell, SMA hi vimentin hi stromal cell) 
and tumor cells (hypoxic tumor cell, apoptotic tumor cell, proliferative tumor cell, p53+ EGFR+ tumor cell, basal CK 
tumor cell, CK7+ CK hi cadherin hi tumor cell, CK7+ CK+ tumor cell, epithelial low tumor cell, CK low HR low tumor 
cell, CK+ HR hi tumor cell, CK+ HR+ tumor cell, CK+ HR low tumor cell, CK low HR hi p53+ tumor cell, myoepithelial 
tumor cell). We binarized the cell types into immune cells (B cells,  T cells, macrophages) and non immune cells 
(endothelial, vimentin hi stromal cell, small circular stromal cell, small elongated stromal cell, fibronectin hi stromal 
cell, large elongated stromal cell, SMA hi vimentin hi stromal cell, hypoxic tumor cell, apoptotic tumor cell, proliferative 
tumor cell, p53+ EGFR+ tumor cell, basal CK tumor cell, CK7+ CK hi cadherin hi tumor cell, CK7+ CK+ tumor cell, 
epithelial low tumor cell, CK low HR low tumor cell, CK+ HR hi tumor cell, CK+ HR+ tumor cell, CK+ HR low tumor 
cell, CK low HR hi p53+ tumor cell, myoepithelial tumor cell). We used the disease-free survival annotations censored 
in the cases where the disease-free survival equaled the overall survival to perform survival analysis.  

IMC - METABRIC (breast cancer) 

The breast cancer METABRIC cohort (Ali et al.11 with 500 images from 467 patients) was collected with IMC. Here, 37 
proteins in formalin-fixed, paraffin-embedded breast tumor samples were measured. METABRIC dataset consists of 
images from three breast cancer grades, grade 1 (50 images), grade 2 (181 images) and grade 3 (269 images). Ali et 
al. segmented the single cells in the images using random forest classifier and then the expression of proteins in 
single cells was quantified. The mean protein expression of the segmented cells are used as the node features of the 
spatial graph. We used the following channels: HH3_total, CK19, CK8_18, Twist, CD68, CK14, SMA, Vimentin, 
c_Myc, HER2, CD3, HH3_ph, Erk1_2, Slug, ER, PR, p53, CD44, EpCAM, CD45, GATA3, CD20, Beta_catenin, CAIX, 
E_cadherin, Ki67, EGFR, pS6, Sox9, vWF_CD31, pmTOR, CK7, panCK, c_PARP_c_Casp3, DNA1, DNA2, 
H3K27me3, CK5, Fibronectin. Ali et al. annotated the following cell types: B cells, Basal CKlow, Endothelial, 
Fibroblasts, Fibroblasts CD68+, HER2+, HR+ CK7-, HR+ CK7- Ki67+, HR+ CK7- Slug+, HR- CK7+, HR- CK7-, HR- 
CKlow CK5+, HR- Ki67+, HRlow CKlow, Hypoxia, Macrophages Vim+ CD45low, Macrophages Vim+ Slug+, 
Macrophages Vim+ Slug-, Myoepithelial, Myofibroblasts and T cells, Vascular SMA+. We coarsened the cell types 
into B cells, Endothelial, Fibroblasts (Fibroblasts, Fibroblasts CD68+), Macrophages (Macrophages Vim+ CD45low, 
Macrophages Vim+ Slug+, Macrophages Vim+ Slug-), Myoepithelial, Myofibroblasts, T cells, Vascular SMA+ and 
Tumor cells (HER2+, HR+ CK7-, HR+ CK7- Ki67+, HR+ CK7- Slug+, HR- CK7+, HR- CK7-, HR- CKlow CK5+, HR- 
Ki67+, HRlow CKlow, Hypoxia). We binarized the cells types into immune cells (B cells, Macrophages Vim+ CD45low,            



Macrophages Vim+ Slug+, Macrophages Vim+ Slug-": "immune cells, T cells) and non-immune cells (Basal CKlow, 
Endothelial, Fibroblasts, Fibroblasts CD68+, HER2+, HR+ CK7-, HR+ CK7- Ki67+, HR+ CK7- Slug+, HR- CK7+, HR- 
CK7-, HR- CKlow CK5+, HR- Ki67+, HRlow CKlow, Hypoxia). We used the disease-specific survival that is the time 
until the last follow-up or death censored according to the disease specific death indicator to perform survival 
analysis. 

CODEX - colorectal cancer 

The colorectal cancer dataset (Schürch et al.9 with 140 images from 35 patients) was measured with CODEX. The 
dataset consists of two patient groups, one group with Crohn’s-like reaction (CLR) represented in 68 images and one 
group with diffuse inflammatory infiltration (DII) represented in 72 images. Four regions were sampled from each 
patient: from patients in the CLR groups, two regions containing a tertiary lymphoid structure (TLS) and two diffuse 
immune infiltrate regions (DII) were sampled per patient, while from patients in the DII group, four diffuse immune 
infiltrate regions were sampled per patient. The sample-specific anatomic label (with tertiary lymphoid structure or 
diffuse immune infiltrate, Figure 2) Patients from the CLR group have higher overall survival than patients classified 
as DII. Here, 57 proteins specific to the tumor microenvironment were measured. We used the segmentation 
previously performed by Schürch et al.. The molecular abundance per cell segment and the coordinates of the center 
of each cell were used to construct the spatial graph. We used the following channels: CD44, FOXP3, CD8A, TP53, 
GATA3, PTPRC, TBX21, CTNNB1, HLA-DR, CD274, MKI67, PTPRC, CD4, CR2, MUC1, TNFRSF8, CD2, VIM, 
MS4A1, LAG3, ATP1A1, CD5, IDO1, KRT1, ITGAM, NCAM1, ACTA1, BCL2, IL2RA, ITGAX, PDCD1, GZMB, EGFR, 
VISTA, FUT4, ICOS, SYP, GFAP, CD7, CD247, CHGA, CD163, PTPRC, CD68, PECAM1, PDPN, CD34, CD38, 
SDC1, HOECHST1:Cyc_1_ch_1, CDX2, COL6A1, CCR4, MMP9, TFRC, B3GAT1, MMP12. Schürch et al. annotated 
the following cell types: B cells, CD11b+ monocytes, CD11b+CD68+ macrophages, CD11c+ DCs, CD163+ 
macrophages, CD3+ T cells, CD4+ T cells, CD4+ T cells CD45RO+, CD4+ T cells GATA3+, CD68+ macrophages, 
CD68+ macrophages GzmB+, CD68+CD163+ macrophages, CD8+ T cells, NK cells, Tregs, adipocytes, dirt, 
granulocytes, immune cells, immune cells / vasculature, lymphatics, nerves, plasma cells, smooth muscle, stroma, 
tumor cells, tumor cells / immune cells and undefined, vasculature. We binarized the cell types into immune cells (B 
cells, CD11b+ monocytes, CD11b+CD68+ macrophages, CD11c+ DCs, CD163+ macrophages, CD3+ T cells, CD4+ 
T cells, CD4+ T cells CD45RO+, CD4+ T cells GATA3+, CD68+ macrophages, CD68+ macrophages GzmB+, 
CD68+CD163+ macrophages, CD8+ T cells, NK cells, Tregs, granulocytes, immune cells, immune cells / 
vasculature, lymphatics and tumor cells / immune cells) and non-immune cells (adipocytes, dirt, nerves, plasma cells, 
smooth muscle, stroma, tumor cells, undefined and vasculature). 

Spatial proximity graphs 

We considered spatial neighborhood graphs built with fixed kernel radii across all images. In all datasets considered 
here, pixel dimensions are fixed across images so that radii defined in pixels correspond to consistent spatial 
distances across images. We defined a raw adjacency matrix  for each image with entries based on a radius  of 𝐴 𝑎
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Spectral clustering 

We applied spectral clustering to the spatial graphs by first constructing a k-nearest neighbor (kNN) graph using the 

spatial coordinates of the cells, with . The kNN graph is undirected, where an edge exists between two {𝑧
𝑖
}𝑛

𝑖=1
𝑘 = 10

nodes and if either  is among the nearest neighbors of or vice versa. 𝑖 𝑗 𝑖 𝑘 𝑗 



Label preparation for the self-supervision task 

For each spectral cluster , we define the local self-supervision label , where is the number of cell types, 𝐶
𝑖

𝑦
𝑖

∈    ℝ𝑑 𝑑 

as the normalized cell type frequency vector computed over all cells in the neighboring clusters , where the 𝒩(𝐶ᵢ)
neighborhood is defined using cluster connectivity in the original kNN graph. 
 
 

dataset learning 
rate 

l2 radius number of 
clusters 

IMC - breast 
cancer 
(Jackson) 

{5e-2, 
5e-3, 5e-4} 

{0,  
1e-6,  
1e-3} 

{10, 20, 50} {5, 10, 20} 

IMC - breast 
cancer 
(METABRIC) 

{5e-2, 
5e-3, 5e-4} 

{0, 1e-6,  
1e-3} 

{10, 20, 55} {5, 10} 

CODEX - 
colorectal 
cancer 

{5e-2, 
5e-3, 5e-4} 

{0,  
1e-6,  
1e-3} 

{25, 50, 
120} 

{5, 10} 

Table 1: Hyperparameters related to training and data processing screened in grid search for each dataset. 
 
 

dataset depth 
feature 
embeddi
ng 

width 
feature 
embeddi
ng 

depth 
node 
embeddi
ng 

width 
node  
embedding 

depth 
graph 
embedding 

width 
graph  
embedding 

IMC - 
breast 
cancer 
(Jackson) 

{1, 2, 3} {4, 8, 16, 
32, 64} 

{1, 2, 3} {4, 8, 16, 32, 
64} 

{1, 2, 3} {16, 64} 

IMC - 
breast 
cancer 
(METABRI
C) 

{1, 2, 3} {4, 8, 16, 
32, 64} 

{1, 2, 3} {4, 8, 16, 32, 
64} 

{1, 2, 3} {16, 64} 

CODEX - 
colorectal 
cancer 

{1, 2, 3} {4, 8, 16, 
32, 64} 

{1, 2, 3} {4, 8, 16, 32, 
64} 

{1, 2, 3} {16, 64} 

Table 2: Hyperparameters related to model topology for models with molecular features as input screened in 
grid search for each data set. node embedding: The node embedding describes transformations of node-wise 
feature vectors and is used in MI and GCN/GIN models. All layers have the same width. graph embedding: The graph 
embedding describes the layer stack that transforms the graph representation to a graph label prediction. The input 
representation derives from an aggregation over nodes for MI and GCN/GIN models and is the input feature vector 
for MLP models. All layers have the same width. 



Hold-out definitions 

We implemented a nested cross validation. For each study, the datasets were split into training (80%), validation 
(10%) and test (10%) datasets, except for CODEX - colorectal cancer study which was split into only training and test 
datasets due to the limited number of samples. The split was performed on the patients domain, ensuring that images 
from the same patients are grouped together in the split. In the nested cross validation, we used 3 random tests and 
3 validation splits. The same splits were used for all the models to ensure fair comparison. We used early stopping on 
the validation loss for the two breast cancer datasets and fixed number of epochs for colorectal cancer dataset. The 
best models were selected based on their performance in terms of the lowest validation loss (or training loss in case 
of CODEX - colorectal cancer). To evaluate the models, we compared based on Area Under Precision-Recall curve 
(AUPR) (section Evaluation metrics). This metric provides an overall assessment of the models’ ability to distinguish 
between the tissue phenotype and capture the balance between precision and recall. To determine the optimal 
hyperparameters, we employed a grid search strategy where different combinations of hyperparameters were 
explored as shown in Tables 1 and 2. 

Evaluation  

Evaluation metrics: We used the area under the precision-recall curve (AUPR): as a metric for classification 
performance across all classes considered.  

 𝐴𝑈𝑃𝑅 =  
𝑖

∑(𝑅
𝑖

−  𝑅
𝑖−1

) 𝑃
𝑖

where  are recall and precision respectively for threshold . The score for multi-class is calculated using 𝑅
𝑖
 𝑎𝑛𝑑 𝑃

𝑖
𝑖

macro average. 

Evaluation comparison: We used a two-sided t-test to assess the statistical significance of performance differences 
between independent scenarios. For each scenario, we identified the best-performing model class by comparing the 
mean AUPR across repeated runs. p-values below 0.05 were considered statistically significant. 

Models 

All neural network models used in this study are feed-forward architectures designed to perform graph-level 
classification. The models take graph-structured inputs or reduced representations thereof and predict 
phenotype-level outcomes. Depending on the experiment, models were trained using either a cell type feature space 
(one-hot-encoded categorical input) or a molecular feature space (continuous gene expression values). 

In molecular feature space models, we first embed the input node features into a lower-dimensional latent space 
using a fully connected multilayer perceptron (MLP) with non-linear activation,  where   are the raw ℎ

𝑖
= 𝑀𝐿𝑃(𝑥

𝑖
) 𝑥

𝑖

features of node , and   is the resulting node embedding. 𝑖 ℎ
𝑖

For graph models, node embeddings are passed through graph neural network (GNN) layers, including GCN, GIN, or 
Graph Attention Networks, to propagate information through the graph structure. The final graph representation is 
obtained by pooling node embeddings via mean; in our experiments, we used mean pooling. 

Each model is trained for graph-level supervision (e.g., tumor class prediction) using the appropriate loss function 
depending on the task type: categorical cross-entropy (CCE) for classification, mean squared error (MSE) for 
regression, binary cross-entropy with logits (BCE) for proportion outputs, and a custom right-censored MSE loss for 
survival prediction. 

All models share a consistent data structure and training pipeline to ensure comparability. Node and graph features 
are accessed as standardized batch tensors, and predictions are generated through the shared forward API. 
Optimization is performed using the Adam optimizer with learning rate scheduling. 



In addition, we implemented random forest and logistic regression baselines using scikit-learn, trained on the same 
aggregated graph-level feature representations used by the MLP models. 

Bulk  models 

 
Pseudobulk multi-layer perceptron networks (MLP): We implemented a pseudobulk reference model by aggregating 
cell-wise feature vectors into a single vector per image. For models using the molecular feature space, we computed 
the mean of each feature across all cells in the image. In the case of models using the cell type feature space, we 
computed a compositional representation by normalizing the distribution of one-hot encoded cell types across the 
image, resulting in a frequency-based encoding per cell type. The aggregated input vector passed through a fully 
connected neural network as described in Table 2 (graph embedding) to obtain the graph-level prediction .  𝑦 =  𝑓(𝑥)
 
Pseudobulk random forest (RF) and logistic regression models: Using the same aggregated input representations 
described above, we trained scikit-learn random forest and logistic regression classifiers for graph-level 
prediction. Model performance was monitored using log-loss on a validation set. 

Single-cell  models 

 

Multi-instance networks (MI): For the multi-instance reference model, each node’s features were 𝑥
𝑖

∈ ℝ𝑑 

independently transformed using a stack of fully connected layers with non-linear activation functions. At each layer ,  𝑙

the transformation is given by, , where  is a non-linear activation, is a ℎ
𝑖 

(𝑙+1) =  ϕ(ℎ
𝑖
(𝑙)𝑊(𝑙) +  𝑏(𝑙) ) ϕ 𝑊(𝑙) ∈ ℝ

𝑑
𝑙
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𝑙+1  

learnable weight matrix, and  is a bias term. After the final layer, the node embeddings  are aggregated using 𝑏(𝑙) ℎ
𝑖 

(𝐿)  

a pooling operation (mean, max, or sum) to form a graph-level representation, . This graph 𝑧 = 𝑃𝑜𝑜𝑙({ℎ
𝑖
(𝐿)  }𝑁

𝑖=1
 )

embedding  was then passed through a multilayer perceptron to generate the graph-level prediction , as 𝑧 𝑦 =  𝑓(𝑧)
detailed in Table 2. 
 
Correlation Network: We constructed a correlation network by generating k-nearest neighbor (KNN) graphs based on 
gene expression similarities instead of spatial proximity. We applied a log transformation to the expression matrix and 
used Scanpy’s sc.pp.neighbors to compute the correlation-based adjacency matrix.  

Spatially-aware models 

 
Node degree models (Density): To explore the impact of spatial information on the tissue-level phenotype 
classification, we implemented two models: a random forest and logistic regression.  To generate the node degree 
distributions, we computed the histogram of node degrees from 0 to 14, with an additional bin for nodes with a node 
degree exceeding 14. The resulting histogram was normalized to obtain the proportion of nodes within each bin. 
These normalized node degree distributions were then used as input features for the random forest and logistic 
regression models. By incorporating the full distribution of node degrees per graph, we aim to capture the spatial 
information within each graph which play a significant role in the graph structure and should be able to provide 
insights about the tissue-level phenotypes. 

Graph models 

 
Graph convolutional networks (GCN): The node embedding layers for the Graph Convolutional Network are defined 

as: , where  is a Leaky ReLU activation function with negative slope factor 0.1,  𝐻(𝑙+1) = ϕ 𝐴*𝐻(𝑙)𝑊
(𝑙)( ) σ 𝐻(𝑙) ∈ ∈ ℝ𝑛𝑥𝑑

is the input node feature matrix of dimensions (number of nodes x input features),  is a learnable weight 𝑊(𝑙) ∈ ℝ𝑑𝑥𝑑'  



matrix is a weight matrix of dimensions (input features x output features) and  is the symmetrically normalized 𝐴*

adjacency matrix:  where  is the raw adjacency matrix and  is the degree matrix of A. he resulting 𝐴* = 𝐷
− 1

2 𝐴 𝐷
− 1

2 𝐴 𝐷
node embeddings were aggregated using a pooling layer and passed through a multilayer perceptron (MLP) to obtain 
graph-level predictions. We additionally implemented a GCN variant with sum aggregation (GCN_SUM) to assess its 
performance relative to other graph models (Supp. Fig. 5d). 
 
 
Graph isomorphism networks (GIN): We used GIN as a graph neural network model for tissue-level classification, 
designed to capture global graph structures through aggregation-invariant operations and non-linear transformations. 
The node embedding layers for the GIN models at layer  are defined as: 𝑙

 ℎ
𝑖
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where denotes the node feature embeddings vector node  at layer , denotes the set of neighbors ℎ
𝑖
(𝑙 − 1) 𝑖 𝑙 − 1 𝒩(𝑖) 

of nodes and  is a learnable scalar (fixed to 0 in our implementation). To form the graph-level representation, node ϵ

embeddings from all GIN layers are concatenated, , where  is the number of GIN ℎ
𝑖
 =  𝐶𝑂𝑁𝐶𝐴𝑇(ℎ

𝑖
(0),  ℎ

𝑖
(1),  ...,  ℎ

𝑖
(𝐿) ) 𝐿

layers. These concatenated node embeddings are then aggregated across all nodes using mean pooling 

. The graph-level representation  then passed through a fully connected network to learn the ℎ = 1
𝑁  

𝑖 =1

𝑁

∑ ℎ
𝑖

ℎ

tissue-level phenotype classification , where  is the classification output.  𝑦 =  𝑓(ℎ) 𝑦 
 
Graph convolutional networks with self-supervision (GNN-SS): We introduced an auxiliary self-supervision task to the 
graph neural networks. For each pre-computed spectral cluster in the graph, the model predicts the cell type 
composition of all neighboring clusters combined. After the graph embedding layers, node embeddings within each 
cluster are pooled and passed through a one-layer neural network to produce the predicted composition. A mean 
squared error (MSE) loss is computed between the predicted and true composition vectors and added to the main 
graph-level loss during training. 
 
GNN-Permuted: We used the described Graph Neural Networks (GNN) but trained them with randomly permuted 
node features, preserving the adjacency matrix to maintain the graph structure. 
 
Graph attention networks (GAT): We implemented Graph attention networks with dot-product attention to allow for 
actual incorporation of both partners in the attention value computation. Instead of computing scalar scores for all 
nodes and taking pairwise sums to weight the information transfer between two nodes, here, the attention score is 
computed as  

 α
𝑖𝑗 

=  𝑠𝑜𝑓𝑡𝑚𝑎𝑥
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with  and  being weight matrices corresponding to linear embeddings for the query and key nodes, respectively, 𝑊
𝑄

𝑊
𝐾

and softmax being computed over all neighbors of a query node after subtracting the maximum value. We used 4 
dimensional key and query embeddings for the dot product computation. The message passing step is then 
performed as  

, 𝑥
𝑖
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with a node feature embedding matrix  and  as a Leaky ReLU activation function with negative slope factor 0.1. 𝑊
𝑉

σ

Node embeddings were then aggregated using a mean pooling layer followed by a simple MLP for final graph-level 
predictions. 
 



Other baselines 

Random predictor:  showing the expected value of the random predictor, which is the mean positive class prevalence 
plotted per class across the cross validation folds. 
 

Downstream analyses and model interpretations 

Tissue graph embeddings 

For the sample representation analyses, we computed the graph embeddings for the whole dataset as obtained as 
activations after the global node pooling step within the respective GNN. These latent graph representations were 
then quantile normalized to follow feature-wise uniform distributions as implemented in 
sklearn.preprocessing.quantile_transform, followed by a PCA transformation. 

Survival analysis 

To assess the signal of the disease-free survival covariate in the graph embedding space, we used the loadings of 
the first principal component as predictor and quantified the performance using the concordance index for 
right-censored data. This concordance index computes the fraction of comparable data pairs, that is pairs where at 
least the earlier event occurred, that were predicted in the correct order. 

Graph attention network interpretation 

We visualized the learned attention weights between nodes of different cell types in the case of one-hot encoded cell 

type identities as node input features as follows: First, we computed  for all combinations of cell α
𝑖𝑗

~
=  𝑥

𝑖
𝑇𝑊

𝑄
𝑊

𝐾
𝑇𝑥

𝑗

types, then subtracted the maximum value per key cell type, and exponentiated these values to mimic the softmax 
transformation. For visualization purposes, these values were additionally divided by the maximum value per key cell 
type. Secondly, inspired by interpretation methods from image recognition, we looked into the learned filter weights of 
the first convolutional node embedding layer. We retrieved the node embedding weight matrix  and scaled it 𝑊

𝑉

according to the transformed attention scores corresponding to the key cell type of interest. To set the individual filters 
into context, we computed the average gradients of the model outputs with respect to the activations of the individual 
filters. We computed the frequencies of the different cell types as neighbors of a cell type of interest per image and 
averaged those values over the images per cancer grade to validate findings from interpreting the filter weights. 
Plotted in Fig. 3e and Supp. Fig. 4b are the differences of these averaged frequencies between grade 1 and grade 3. 

Cell saliency analysis 

To determine how much individual cells influence the GNNs predictions, we calculated gradients of the model outputs 
with respect to the cell type indicators of the input nodes. We deemed cells with positive gradients corresponding to a 
specific tissue phenotype class as indicative for that phenotype. 

Code and data availability 

We used published datasets provided in the original studies. We summarized all models, training and interpretation 
mechanisms discussed here in a python package centered around graph-level supervision on spatial single-cell 
graphs, https://github.com/theislab/tissue.  
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Supp. Figure 1: Graph summary statistics of analyzed data. Mean node-degree per image by radius length used 
in benchmarks (a) and in a scan across (b), number of nodes per image (c), binned accuracy by number of nodes in 
graph (d) and label distribution over graph size bins (e) for CODEX - colorectal cancer (left), IMC - breast cancer 
(Jackson) (middle) and IMC - breast cancer (METABRIC) (right) datasets. 
 
 



 
 
 

 
Supp. Figure 2: Baseline models for graph neural networks on molecular feature space. (a-c) Three separate 
applications of graph neural networks to predict tumor phenotypes on the IMC - breast cancer (Jackson), IMC - 
breast cancer (METABRIC) and anatomical label on the CODEX - colorectal cancer datasets.  The neural networks 
are a multi-layer perceptron in Bulk, a multi-instance (MI) in Single Cell, and a GCN and GIN in the Graph scenario 
GNN. Baseline models are random forests (RF) and regression models (Logistic regression) trained on the mean 
feature value across the graph (Bulk), the node degree distribution per graph (Density), or the correlation network of 
k-nearest neighbor (KNN) graphs based on gene expression similarities (Methods). 
 

 
 
Supp. Figure 3: Patient survival analysis based on graph embeddings. Boxplots showing the censored 
concordance index values computed based on the first principal component of the graph embeddings for all 9 
cross-validation splits, for breast cancer datasets, (a) IMC - Jackson and (b) IMC - METABRIC. 
 



 
Supp. Figure 4: Attention filters from graph attention (GAT) model. The analyses presented concern the IMC - 
breast cancer (METABRIC) dataset. (a) Attention filters from the GAT model for the eight different cell types across 
the cancer grades. (b) Bar plots of the differences in relative adjacency for the different cell type neighbors in grade 1 
compared to grade 3. 
 



 
 
Supp. Figure 5: Training of models that predict anatomical labels and cancer grade based on cell type and 
molecular feature space. (a-c) Comparison between the performance of the molecular and binary cell types 
features for the different datasets: (a) CODEX - colorectal cancer, (b) IMC - breast cancer (Jackson), and (c) IMC - 
breast cancer (METABRIC.)  (d) Comparison of different aggregation functions for graph models on colorectal cancer 
dataset. GCN with default aggregation function (GCN), GCN with sum aggregation function (GCN_SUM) and GIN 
with default aggregation function (GIN). 
  

 
Supp. Figure 6: Graph models with self-supervision. (a) The spatial context of each cell can be formally 
represented by a graph in which edges are weighted based on the distance between nodes. Each sample can be 
represented as one such graph, where nodes are colored by the measured cell features. We perform prediction with 
a model that consists of graph neural network layers to produce node embeddings, followed by pooling over nodes 
and a final classification network. In addition, the node embeddings of connected components of nodes on the spatial 
proximity graph can be aggregated for local self-supervision tasks, such as reconstruction of adjacent clusters’ cell 
type composition. dotted line: connected component of nodes on spatial proximity graph. (b-d) Comparison of 
performance of graph models with and without self-supervision task on the different datasets: (b) CODEX - colorectal 
cancer, (c) IMC - breast cancer (Jackson), and (d) IMC - breast cancer (METABRIC) trained on molecular features 
using different measures (N=9 nested cross validations per method and dataset).  
 



 
Supp. Figure 7: Multitask learning models. On breast cancer datasets, (a, b) shown is the accuracy on test set 
based on number of tasks (upper panel) and epoch-wise training of multi-tasking models (lower panel) on (a) IMC - 
breast cancer (Jackson) dataset, and (b) IMC - breast cancer (METABRIC). target with only the cancer grade and 
multitask with cancer grade, disease-free survival (DFS) month, estrogen receptor (ER) status HER2 status, 
progesterone receptor (PR) status and tumor size.  
 
 
 
 
 
 



4.3 Study 3: Distinct molecular profiles of skull bone marrow in health and neurologi-
cal disorders.

The paper “Distinct molecular profiles of skull bone marrow in health and neurological disor-
ders.” was published in 2023 in the journal Cell as a resource article. The full citation is:

Zeynep Ilgin Kolabas*, Louis B. Kuemmerle*, Robert Perneczky*, Benjamin Förstera*,
Selin Ulukaya, Mayar Ali, ..., Fabian J. Theis, Ali Ertürk, ”Distinct molecular pro-
files of skull bone marrow in health and neurological disorders.” 2023, Cell 186.17
(2023): 3706-3725. https://doi.org/10.1016/j.cell.2023.07.009

Summary:
In this study, we investigated the molecular profile of the skull and its connection to the meninges.
In addition, we studied the response of the skull to neurodegenerative disorders. We have com-
bined various technologies: single-cell RNA-seq, mass spectrometry-based proteomics, tis-
sue clearing, light sheet fluorescence microscopy, confocal microscopy, 2-photon microscopy,
scanning electron microscope, and translocator protein positron emission tomography (TSPO-
PET), to have a comprehensive study of the skull bone marrow in different pathological condi-
tions and comparison to the different bone marrow in mouse and human.

My collaborators generated a vast amount of molecular and imaging data for this study. For
molecular data, they generated single-cell RNA-seq and mass spectrometry-based proteomics
data from five bones in addition to the skull, meninges and brain in mice with three different
conditions, naı̈ve, sham-operated, and stroke. In addition, they generated single-cell RNA-
seq data from one human skull and mass spectrometry-based proteomics data from the skull,
vertebrae, and pelvis from twenty samples. For the imaging data, they imaged mouse skulls
at different time points before and after stroke (up to 72 hours after stroke) using 2-photon
microscopy. Moreover, they were able to detect more than 500 skull-meninges connections
(SMCs) in different locations in the human skull using various microscopy.

My collaborators analysed the single-cell RNA-seq data, while I developed the software and
analysed the proteomics data from the various bones (5 bones, skull, meninges, and brain) in
different conditions (naı̈ve, sham-operated, and stroke) in mice, as well as human proteome
data from the three bones (skull, vertebrae, and pelvis), highlighting the distinct molecular pro-
files of the skull to the other bones.

Finally, by analysing TSPO-PET images of human skulls from patients with various neuro-
logical disorders, we reported spatial and temporal inflammatory responses that highlight brain
inflammation.

This study may be viewed as a resource, with a large collection of data, for further studies
investigating the role of the skull in neurological conditions.
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SUMMARY

The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its
molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the
mouse skull has the most distinct transcriptomic profile compared with other bones in states of health
and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that
the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique
synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-
meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission to-
mography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses
with a disease-specific spatial distribution in patients with various neurological disorders. The unique molec-
ular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing,
monitoring, and treating brain diseases.

INTRODUCTION

The complex interplay between immune cells at the central ner-

vous system (CNS) borders and the CNS resident immune sys-

tem has become the subject of intensive research.1 The dura

mater of the meninges is directly connected to the adjacent

skull bone marrow via skull-meninges connections (SMCs) that

allow the trafficking of immune cells2–5 and might facilitate the
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preferential recruitment of immune cells to the meninges from

the skull bone marrow.5–7

In mice, high-throughput, multidimensional techniques, such

as flow and mass cytometry and single-cell RNA sequencing

(scRNA-seq), have provided a detailed map of the cell-type

composition and molecular profiles of meningeal immune

cells.8–12 CNS border-derived cells can be functionally distinct

from blood-derived cells of the same type5 and cells from

different regions of the CNS borders.12,13

By contrast, little functional and multidimensional molecular

data are available for the skull bone marrow and how it relates

to other bones. For example, Herisson et al.4 found a higher

influx of monocytes and neutrophils from the skull than from

the tibia after brain injury, and Cugurra et al.5 showed that dural

monocytes and neutrophils are mainly directly derived from the

skull bone marrow. Basic scRNA-seq data of the unperturbed

skull in comparison to the tibia marrow were obtained by Mazzi-

telli et al..14 Proteome-wide characterization of the bone marrow

inmice has focused on individual cell types and bones in homeo-

stasis15–18 or has used antibody-based methods.19 For the skull

bonemarrow, profiling has been limited to small flow ormass cy-

tometry panels.6,9,10 Thus, it remains unclear whether the

expression profiles of skull bone marrow cells are distinct from

those of other bones and whether different types of bone mar-

rows react differently to brain injury.

In humans, the functional roles and molecular makeups of the

skull bone marrow, and other bone marrows are even less well

characterized. A limited number of ‘omics studies of the human

bone marrow have been presented,20–23 but a systematic char-

acterization of potential differences among different bone mar-

rows under different conditions is yet to be performed. Even on

an anatomical level, although the presence of human SMCs

has been suggested using microcomputed tomography (mi-

croCT),4 their detailed conformation at the cellular level remains

elusive.

Here, we performed a systematic and comprehensive molec-

ular analysis of the RNA and protein expression profiles of

diverse bone marrow cells in mice and humans. In mice, we per-

formed bulk and scRNA-seq and bulk proteomics on cells from

six different bones, the dura, and the brain in three conditions

(naive, middle cerebral artery occlusion [MCAo], and sham-oper-

ated animals). Our data show that different bones have distinct

molecular profiles, with the skull calvaria bone displaying the

highest number of differentially expressed genes (DEGs) and

ligand-receptor (LR) pairs, mainly related to migration and

inflammation.

For studies in humans, we collected post-mortem samples

from the skull, vertebra, and pelvis of 20 deceased individuals

and performed proteomic analysis, again showing a unique

molecular profile of the skull. Using optical clearing on human
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skull + meninges + brain specimens, we characterized the

anatomical details of SMCs at the cellular level. Using functional

imaging in patients, we found disease-specific increases in

18 kDa translocator protein (TSPO) positron emission tomogra-

phy (PET) signal in different parts of the skull in numerous neuro-

logical diseases and a strong correlation between changes in the

brain and skull TSPO-PET signal in patients with Alzheimer’s dis-

ease (AD) and stroke in longitudinal data. These data provide a

critical link between the skull and neurological diseases in

humans.

RESULTS

Skull is a dynamic site that responds to stroke
To test the skull marrow’s involvement in the response to brain

injury, we used MCAo as a model for stroke in mice.24 In

MCAo, the mice first undergo a neck incision to expose the ca-

rotid artery before the occlusion of the middle cerebral artery

(Figure 1A). A sham-operation procedure without MCAo mimics

a local injury without inducing stroke.24–26

Two-photon imaging on the skull after stroke (n = 3 for naive

and sham, n = 5 for MCAo) at baseline and 2, 24, and 72 h

post injury showed that both sham and MCAo groups had a sig-

nificant decrease of LysM+ cells (mostly myeloid cells) (Fig-

ure S1A, p = 0.004 in sham and p % 0.0001 in MCAo). Further-

more, there was a higher efflux of myeloid cells from the skull

after stroke (Figure S1B), similar to what was observed for

Ly6Chi monocytes and neutrophils.4

Next, we studied immune cells in the skull marrow and brain

using KikGRmousemodel.5,27We used ultraviolet laser illumina-

tion to convert a photoconvertible protein to RFP in the skull area

above the ischemic brain region (Figures S1C–S1E). We de-

tected RFP+ B, T, and myeloid cells in the ipsilateral brain 1

and 6 h after photoconversion (Figure S1C), indicating that im-

mune cells from the skull marrow are recruited to the brain after

injury.2,4–6

Expression differences between cells of different bone
marrows
Next, we assessed if/how skull cells might be different. To this

end, we performed scRNA-seq analysis on three flat bones

(calvaria, scapula, and pelvis [ilium]), two long bones (humerus

and femur), and one irregular bone (vertebra from thoracic level

T5 to lumbar L3), along with dura mater and brain samples in

naive, sham-operated, and MCAo-operated animals (Figure 1A).

Single-cell transcriptomics of >100,000 cells across the bones

and conditions revealed 17 coarse and 50 fine cell types

(Figures 1B–1D). We found a bone-specific abundance of the

coarse cell types, whereas meninges and brain-specific cells

were separated (Figure 1B). We detected large numbers of neu-

trophils (�25%) and erythroid cells (�30%) along with other ex-

pected cell types (Figures 1E and S1F). Neutrophil populations

were clearly separated between the conditions (Figure 1C). Stan-

dard cell-type proportions were homogeneously distributed

among different bones (Figures 1E, 1F, S1G–S1J, and S2).

Cell-type proportions were validated permouse by deconvolving

pooled samples with SNPs and flow cytometry, with an overall

correlation of 0.88 (Figure 1F).

To investigate changes in absolute cell numbers, we imaged

whole mouse bodies at cellular resolution using vDISCO tissue

clearing28 and found that the number of total cells (propidium io-

dide [PI]-labeled cells) increased in the calvaria marrow of mice

after stroke compared with controls (Figures S3A–S3C; Video

S1). The overall increase in cell number contrasts with the

decrease in LysM+ cells quantified by live imaging (Figure S1A),

suggesting the mobilization of specific cell types out of the skull,

whereas there is an overall increase in immune cell numbers as a

response to injury.

Hierarchical clustering showed that the long bones, femur,

and humerus clustered together with the pelvis. Likewise, the

two flat bones, scapula and calvaria, clustered together. The

irregular vertebral bone branched with the flat bones in naive

condition and after MCAo surgery and with the long bones and

pelvis in sham condition (Figure 1G). Calvaria clustered with

scapula in naive and sham conditions. Notably, it formed its

own branch in MCAo condition, indicating a skull-specific im-

mune reaction to brain injury.

To assess how strongly the gene expression profiles of one

bone’s population diverge from the other bones’ pooled popula-

tion for each cell type, we used principal component regression

analysis (Figure 2A). The calvaria’s neutrophils diverged most

from the neutrophils of the other bones in all three conditions.

On analyzing DEGs, we found the highest number in the

calvaria for all conditions (Figure 2B; Table S1, tabs 5–13): in

naive condition, 96; sham condition, 15; and MCAo condition,

62 genes were upregulated, whereas 138, 538, and 62 were

downregulated, respectively. In all three conditions, most of

the differentially downregulated genes in the calvaria were

observed in progenitor cells such as pro-neutrophils, granulo-

cyte-monocyte progenitors, and erythroid progenitors, whereas

the upregulated genes were mostly in the myeloid lineage

(Figure 2B).

In naive condition calvaria myeloid cell DEGs related to the

regulation of apoptotic processes and programmed cell death

pathways (Table S1, tabs 5–7), and calvaria-unique DEGs were

mostly transcription factors, immediate early genes, and taxis-

related genes (Figure 2C; Table S1, tabs 5–7). Transcription fac-

tors included Nr4a1 and Nr4a2 involved in cellular proliferation,

apoptosis, metabolism, and T cell regulation,29 with an anti-in-

flammatory and damage-limiting role after ischemic stroke.30

Taxis-related DEGs include chemokines and chemokine recep-

tors, e.g., Cxcr4, Ccrl2, Ccl4, and Cxcl2. Finally, the calvaria ex-

hibited DE pro- and anti-inflammatory genes mostly in neutro-

phils, such as Il1b,31 Ptgs2,32 and Thbs2,33 of which some are

also involved in cell adhesion and migration. In sham-condition

calvaria, some genes were common with naive differentially up-

regulated genes (DUGs) such as Nr4a1 and Egr1 in addition to

some distinct ones such as Btg2 (anti-proliferation factor).34

InMCAo-condition calvaria, neutrophils harboredmost DUGs.

Some DUGs were in common with other conditions such as

Nr4a1, Cxcl2, Ccrl2, and Egr1, whereas others were unique to

stroke, such as Cd69 (T cell migration),35 Gpr35 (inflammation

regulation),36 and Nr4a3 (T cell and progenitor proliferation)29

(Figure 2C). We validated the upregulation of Nr4a1 in the

calvaria using tissue clearing and immunostaining (Figures 2D

and 2E) and RNAscope37 (Figure 2F).
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Figure 1. Bones diverge based on transcriptional signature of cell types

(A) Experimental design of single-cell RNA sequencing of bones, dura, and brain, and a schematic of themiddle cerebral artery occlusion (MCAo) model of stroke.

(B–D) Uniform manifold approximation and projection (UMAP) distribution of scRNA-seq colored by (B) region, (C) condition: naive, sham-operated, and MCAo,

and (D) cell type with fine annotated cell types in the surrounding with matching color.

(E) Relative proportions of the coarse cell types.

(F) Correlation between relative proportions of the cell types in scRNA-seq and independent animals measured by flow cytometry using 15 color panel. Mean

Pearson correlation over conditions and bones is 0.875.

(G) Dendrograms for naive, sham, and MCAo conditions. (n = 3 pooled animals for sham and n = 6 pooled animals for MCAo.).

See also Figures S1 and S2.
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Figure 2. Different cell types show unique differentially expressed genes and ligand-receptor pairs between bones
(A) PC regression plot shows how strongly each bone’s cell population diverges from the pooled population of other bones by variance explained for each coarse

cell type. Only significant differences are shown for level 1 annotations. (permutation test, p < 0.0001)

(B) Differentially expressed genes in naive, sham, and MCAo conditions (p < 0.05, LFC > 1 threshold). Each bar represents the fine cell-type color the genes are

upregulated in. Fine cell annotations are used.

(C) Calvaria-unique upregulated genes in the three conditions. (p < 0.05, LF change > 1)

(D) Representative images of Nr4a1 labeling after clearing and light-sheet fluorescent microscopy, n = 3.

(E) Threshold based quantification of 123 scans of Nr4a1 (p = 0.0040). Nr4a1+ voxels as % of total volume. Data represented as ±SEM.

(F) Nr4a1 transcript is shown to colocalize with Lyz2 and Mpo, myeloid cell marker and progenitor marker, respectively, using RNAscope.

(G) Ligand-receptor interactions in three conditions on coarse cell-type annotations. (permutation test, 1000 permutations, p = 0)

(legend continued on next page)
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Focusing on the damage-associated molecular patterns

(DAMPs) in CD45+ immune cells, known to guide the immune

response in trauma and infection,38 we found calvaria-specific

expressions of Trem1, Trpm2, Nlrp3, Trem2, and Cgas (Fig-

ure S3D). The skull was unique in downregulating Trem1 and

Tlr2 in response to MCAo (Figure S3E).

On investigating the LR interactions using CellPhoneDB,39

we identified bone-type unique interactions (Figure 2G;

Table S1, tabs 14–28). In each of the three conditions, we found

a core module of LR interactions common to all bones. The

numbers of common LR pairs increased for MCAo (naive,

1,153; sham, 1,163; and MCAo, 1,382 pairs). Among the unique

interactions, calvaria had the most for naive and MCAo (153

and 73, respectively), whereas vertebra had the most in

sham (173).

Gene ontology (GO)-term analysis showed that common pairs

to all bones in all conditions were mostly involved in cell migra-

tion, cytokine production, and immune regulation such as

Pecam1-Cd177,40 Cd74-Mif,41 and Lgals9-Cd47 (Table S1,

tabs 18, 23, and 28). The calvaria-unique pairs included Il1b-

Adrb2 and Ccl4-Ccr5 in naive, Ccl4-Cnr2 in sham, and Cxcl2-

Dpp4 and Cd28-Cd86 in MCAo conditions. Naive LR pairs had

GO terms mostly related to taxis, cell motility, and cytokine pro-

duction whereas sham had immune activity-related terms (Fig-

ure S3F; Table S1, tabs 18, 23, and 28). Skull-unique LR pairs

in MCAo were mostly related to cell migration, chemotaxis, or

immune cell activation (Figure S3F).

In conclusion, calvaria displayed the highest number of DUGs

and LR pairs among the bones tested, suggesting a distinct mo-

lecular profile related tomigration and inflammation, especially in

the myeloid lineage. This unique signature might underly the dif-

ferential cell recruitment from the skull bone marrow to the

brain.2,4–6

Skull and meningeal neutrophils share unique
similarities
As most of the calvaria-specific genes were in neutrophils (Fig-

ure 2B), we next examined their developmental trajectories using

RNA velocity42 in its scVelo43 implementation and pseudo-

time,44 which aligned well with the RNA velocity trajectory

(Figures 2H and S3G). Our analysis revealed a subset of mature

neutrophils from calvaria clustering next to a group of neutrophils

found in the dura (Figure 2H). Along the trajectory, we observed a

higher percentage of late neutrophils in the calvaria compared

with other bones (Figure S3G). Upon injury, we observed a shift

toward late neutrophils in the dura, most prominently in MCAo

(Figure S2A). A representative phase portrait of a calcium-bind-

ing gene S100a6 confirmed the validity of our scVelo trajectory

analysis (Figure S3H).

To investigate the similarity of mature neutrophils in the

calvaria and dura, we performed branching trajectory analysis

using partition-based graph abstraction (PAGA).45 We observed

a clear distinction between the naive vs. injury groups with the

dura positioned in the middle (Figure 2I). The meningeal

neutrophils from the naive condition connected with almost

all bones in the naive condition, whereas the sham and

MCAo meningeal neutrophils connected to the calvaria’s

sham and MCAo, revealing a similarity between their late-stage

neutrophil population profiles. The number of common DEGs

between the dura and the calvaria also increased from 6 upregu-

lated and 7 downregulated genes in naive (Figures 2J and S3I–

S3K) to 29 upregulated to 15 downregulated genes in MCAo

(Figure S3K).

The calvaria displayed the highest pro-inflammatory signature

among bones in all conditions (Figure S3L) with neutrophils hav-

ing the highest pro-inflammatory signature in the calvaria and B

cells having the lowest (Figures S3L and S3M). Comparing the

pro- and anti-inflammatory scores of the meningeal immune

cells with those of the bones, we saw a stronger inflammatory

response to injury and especially to MCAo in themeningeal cells,

mainly in monocytes and neutrophils.

We validated our scRNA-seq results using bulk RNA-seq for

the same bones. Uniformmanifold approximation and projection

(UMAP) showed similar trends as we saw in scRNA-seq data

(Figure S4A). The overall mean correlation of gene expression

values between the bulk dataset and a pseudo-bulk created

from the scRNA-seq dataset was r = 0.81 (Figure S4B). 69 of

the 98 genes in naive, 19 of the 78 genes in sham, and 48 of

the 62 genes significantly upregulated in calvaria in the

pseudo-bulk scRNA-seq data showed the same trend in

both datasets (Figure S4C). 9, 4, and 21 of these genes showed

the same trend and were also significant in both samples for

naive, sham, and MCAo conditions, respectively (Figure S4C;

Table S1, tabs 31–34).

We also sequenced CD45+ cells in 6-month-old 5xFAD AD

model mice vs. littermates using smart-Seq2 (n = 3 per group)

(Figures S4D and S4E). Comparing smart-Seq2 data from wild-

type calvaria and femur with our scRNA-seq dataset, we found

that 15 of the 23 upregulated genes showed the same trend in

both (Figure S4F; Table S1, tab 35).

Overall, our data show that bones change their transcriptome

in pathologies, and the calvaria holds a distinct profile mostly

close to meninges.

Protein-level bone heterogeneity in mice
After transcriptomics, we also investigated proteome profiles in

mouse bones, meninges, and brain using mass spectrometry

proteomics (three biological replicates) (Figures 3A and S5).

We quantified 9,597 proteins in total, 4,172 present in at

least half of the samples (Figure S5A) and at least 5,000

proteins were present in at least one sample of each bone

(Figures S5B–S5D).

(H) Left: in the neutrophil subpopulation, calvaria, and dura neutrophils are highlighted in region-basedUMAP. Right: projected developmental trajectory of MCAo

neutrophils subset using scVelo.

(I) PAGA analysis on the neutrophils subpopulation demonstrates separation of samples based on condition.

(J) DE genes (DEGs) among dura, calvaria, and other bones, in three conditions (n = 3 pooled animals for sham and n = 6 pooled animals for MCAo). (p < 0.05, LF

change > 0.5)

See also Figures S3 and S4.
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Principal component analysis (PCA) showed segregation of

the brain and meninges from bones. Calvaria samples were

distributed over the PC1, clustering closest to themeninges (Fig-

ure 3B) and closer to femur in MCAo conditions (Figure 3C). We

did not observe any clustering based on conditions (Figures 3B

and 3C). On comparing the calvaria’s proteomic signature in

sham andMCAo, we found 28 upregulated and 6 downregulated

proteins (Figure S5E; Table S2, tab 10). Prominent examples

include complement proteins such as CFB, which regulates B

cell differentiation46 and cell adhesion factors including CD947

and NID248 (Table S2, tab 10).

A matrix plot and a dendrogram confirmed the segregation of

calvaria, meninges, and femur MCAo samples from all other

bones across all conditions (Figures 3D, S5C, and S5D). We

A D
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G

I J
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Figure 3. Proteomics identifies protein modules that characterize inter-bone expression differences

(A) Illustration of the experimental pipeline is shown: mouse calvaria, humerus, vertebra, pelvis, and femur from three animals were collected to perform mass

spectrometry in three different conditions, that is, naive, sham-operated, and MCAo.

(B and C) Principal component analysis (PCA) of (B) six bones, dura, and brain and (C) six bones in naive, sham, and MCAo conditions.

(D) Dendrogram demonstrates the relation among bones and conditions.

(E–J) Protein expression modules identified by WGCNA among bones, brain, and meninges. Module distributions are shown in the left-hand panels the cor-

responding GO terms in the right-hand panels (n = 3 independent samples each for bones and brain for all conditions, n = 3 for meninges MCAo and sham

conditions).

See also Figure S5.
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found 45 upregulated proteins in the calvaria in naive condition

(p < 0.005, log fold change [LFC] > 1), 65 proteins in sham, and

67 proteins in MCAo compared with other bones, whereas we

identified a higher number of downregulated proteins (Fig-

ures S5F–S5K; Table S2, tabs 1, 4, and 7).

Using weighted correlation network analysis (WGCNA), we

identified three modules with calvaria-specific differences.

Module 1 was (mostly related to extracellular matrix [ECM] or-

ganization) increased in calvaria samples for all three condi-

tions as well as meninges MCAo and vertebra MCAo samples

(Figures 3E and 3F). Module 2 (mainly involved in neutrophil

degranulation and immunity, and mRNA processing) showed

a decreased expression in brain, calvaria, and meninges

(Figures 3G and 3H). Module 3 was also downregulated in

calvaria and meninges (Figure 3I) with GO terms related to pro-

tein transport, neutrophil degranulation, and immune pathways

(Figure 3J). Comparing the protein with scRNA-seq data for

module 2, we found a Spearman correlation value of R =

0.42, suggesting that this phenomenon is recapitulated on the

RNA level49 (Figure S5L). Our proteomic analysis confirms neu-

trophils as a major source of the differences between calvaria

and the other bones.

Characterization of SMCs in human samples
We next explored the relevance of our findings in humans. First,

we characterized SMCs using tissue clearing and light-sheet

fluorescent imaging in 23 skull + dura mater samples in frontal,

parietal, and temporal regions coming from seven human skulls

(Figures 4A and S5M). We used immunofluorescence to label

myeloid cells (LYZ2) and macrophages (IBA1) (Figures S5N

and S5O), PI to label cell nuclei, and lectin to label vasculature

(Figures 4B–4D). Human SMCs most often transverse the dura

mater, opening to the sub-dural space underneath to arachnoid

granulations50 (Figure 4B; Videos S2 and S3). We confirmed that

SMCs transverse the dura using bright-field imaging of un-

cleared formalin-fixed paraffin-embedded (FFPE) sections of de-

calcified human skull (Figure 4E).

We quantified more than 500 SMCs and found that they are

mostly 40–90 mm wide (Figures 4F and S5P) as suggested.4

Some SMCs were >150 mm, which were often surrounding big

blood vessels and occasionally diploic veins (Figure 4C; Video

S3). Region-based analysis did not reveal significant differences

(Figures 4G and S5Q). We next used graph analysis and found

the average shortest path length from a bone marrow cavity to

SMC as �3,000 mm, and the average radius along the shortest

path as �37 mm (Figure S5R). Furthermore, using histology on

skull + dura mater, we found that PDGFR-B signal was present

both at the vessels and at the SMC lumen (Figure 4H). This sug-

gests that the SMC lumen is linedwith a layer of fibroblastic cells,

known antigen-presenting cells,51 that might potentiate cerebro-

spinal fluid (CSF) sampling already at the beginning of the SMCs.

Finally, we performed scanning electron microscopy on

human skull + dura mater (Figures S5S–S5W). We found similar

structures as we identified using tissue clearing, immunohisto-

chemistry (IHC), and as previously shown using microCT4 that

were filled with fat/lipids. The SMC structure showed immune

cells within, in addition to a fibroblastic cell layer (Figures S5S–

S5W) as suggested by histology (Figure 4H). These findings sug-

gest that human SMCs might be filled with fat, unlike those of

mice,4 allowing immune trafficking while serving as an energy

source to hematopoietic stem cells.52–54

Human skull proteome is distinct from vertebra and
pelvis
Next, we obtained 20 post-mortem human skull, vertebra, and

pelvis samples from two independent autopsy centers for prote-

omic analysis (Figures 5A and S6A). We detected 8,526 protein

groups before and 5,320 protein groups after filtering (Figure 5B).

The highest number of uniquely detected proteins was in the

skull with 105 unique proteins (Figure 5C). GO analysis revealed

27 skull-specific synapse and synaptic signaling related terms.

For example, the term ‘‘chemical synaptic transmission’’ was

represented by proteins such as SYP, SYN3, SNAP25, and

SLC17A7 (Figure 5D; Table S2, tabs 14–16). Mouse proteome

also showed a positive trend in Syp and Snap25 proteins in the

calvaria (Figure S6B). This might suggest that skull is more

involved in neuropeptide or neurotransmitter-based communi-

cation, compared with other bones.55

The PC1 of PCA plot depicts the distinct nature of the skull,

whereas PC2 demonstrates that the skull samples have a larger

variance (Figure 5E). Euclidian distance between pairs showed

the differences between skull and pelvis to be the highest and

that between vertebra and pelvis to be the lowest (Figure 5F).

Bone proteome differences were not driven by age, post-mor-

tem interval, sex, or cause of death (Figure S6C). On the global

proteomic scale, we observed a strong downregulation of pro-

teins in the skull compared with other bones, fewDE proteins be-

tween the vertebra and the other bones, and a strong

Figure 4. Tissue clearing enables a comprehensive characterization of human skull-meninges connections

(A) Frontal, parietal, and temporal regions of the skull and coronal view depicting the meningeal layers and the brain.

(B) Representative light-sheet microscopy image of cleared tissue corresponding to the red box in (A). The right panels show skull-meninges channels connecting

the skull bone marrow to the sub-dural space and to the dura mater.

(C) Representative skull piece cleared and imaged for SMC quantification in different regions of the human skull. Diploic vein and an exemplary SMC are shown.

(D) Representative skull-meninges-channels in different sizes:�33,�73,�96, and�154 mm. Autofluorescence in gray, lectin in magenta. Left panels are labeled

with PI (cyan) and right panels with LYZ2 (cyan). Dura mater in some panels is not preserved in (D).

(E) Human SMC example from 1 mm thick FFPE embedded skull-dura section.

(F) Quantification for % of channel size in frontal, parietal, and temporal regions. Data represented as ± SEM.

(G) Quantification for annotated channel numbers, normalized to 1 cm3 (22 region of interests (ROIs) in total, >500 channels, from seven post-mortem samples,

frontal vs. parietal p = 0.09, parietal vs. temporal p = 0.08, and frontal vs. temporal p = 0.48). Data represented as ±SEM.

(H) Human SMC example with an artery passing to the skull from 8 mm thick fixed-frozen skull-dura section labeled with DAPI (blue), aSMA (green), PDGFR-B

(red), and CollagenIV (gray).

See also Figure S5.
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Figure 5. Human bones differentially express distinct protein modules

(A) Illustration of the experimental pipeline, 60 bones in total were collected to perform mass spectrometry-based proteomics on 20 skull, 20 vertebra, and 20

pelvis.

(B) The number of proteins detected from each bone is shown with a boxplot.

(C) The number of common proteins and unique proteins detected from different bones are shown with an upset plot. GO terms associated with unique skull

proteins are shown at the bottom.

(D) Expression levels of a selection of proteins belonging to GO terms related to synapse term that were detected in more than half of the skull samples uniquely.

(E) Principal component analysis of the three bones analyzed.

(F) Boxplot depicts the Euclidean distances between pairs of bones using the first 2 principal components. (p = 2.862e-04 for skull-pelvis vs. vertebra-pelvis, p

value =2.862e-04 for skull-pelvis vs. vertebra-pelvis)

(G)WGCNA among bones reveal one significant module where calvaria genes are downregulated comparedwith two other bones with some exceptions. Biggest

source of variance is the bone type.

(legend continued on next page)
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upregulation of proteins in the pelvis (Figures S6D–S6I; Table S2,

tabs 19–27).

Cellular processes such as translation, metabolism of RNA,

and leukocyte activation-related terms were downregulated in

the calvaria, whereas ECM organization-related terms were up-

regulated (Figure S6E; Table S2, tab 20). These differences are in

line with our mouse scRNA-seq dataset, e.g., in the collagens

Col1a1 and Col1a2 in naive (p = 0.0004 and p = 0.0016, respec-

tively) andMCAo (p = 0.00005 and p = 0.0002, respectively) con-

ditions. In mice, COL1A1 and COL1A2 were also among the top

DE proteins in the calvaria (Table S2, tabs 1, 4, and 7). ECM

strongly influences immune cell functions,56 suggesting that

the functional role of ECM differences should be investigated

further. Additionally, the most abundant protein in our human

skull dataset was COL1A1, a structural protein encapsulating

blood vessels in bone marrow,57 suggesting differences in the

vascular organization of the skull bone marrow.

Using WGCNA, we identified a module that was downregu-

lated in the skull samples of the human proteomics dataset (Fig-

ure 5G), whose GO terms were very similar to mouse proteome

modules: most prominently neutrophil degranulation and mRNA

processing (Figure 5H).

Overall, two notable groups of proteins showed interesting

expression profiles between the bones. First, we identified

several proteins unique to the skull that relate to synapses, and

second, a downregulation of neutrophil degranulation and

mRNA processing in the skull. To test how these differences

would translate into the RNA level, we performed scRNA-seq

of one human post-mortem skull (Figure 5I). After annotating

10 cell types (Figures 5J and S6J), we assessed the presence

and expression levels of unique skull proteins (Figure 5C). Six

of the 256 unique synapse-relevant genes were detected in the

dataset, mostly in fibroblasts (Figure 5K). This allowed us to

rule out immune cell expression as a source of the synapse-

related terms. We speculate that the difference in synaptic pro-

tein levels could either hint at a denser or more active innervation

of the skull bone marrow or it might reflect the immune surveil-

lance of the brain that leads to a transport of peptides from brain

to the skull.

The human scRNA-seq data supported the presence of the

mRNA processing and neutrophil degranulation modules. Prote-

omics data and scRNA-seq data correlated with R values of R =

0.49 and R = 0.38 for the genes in these GO terms, respectively

(Figures 5L and 5M). This correlation from both mouse and hu-

man datasets suggests a consistently low neutrophil degranula-

tion and lower mRNA processing, based on previously reported

correlations between mRNA-protein levels.58,59 Thus, we

conclude that the human skull differs from other bones at both

transcriptomic and proteomic levels.

TSPO signal in the skull is associatedwith inflammatory,
ischemic, and neurodegenerative CNS diseases
Next, we examined the reaction of the skull to different neurolog-

ical disorders in patients. TSPO is a protein markedly upregu-

lated in the brain during neuroinflammation and is used as a

PET biomarker.60,61 We also found significantly higher Tspo

RNA levels in the calvaria in injury compared with naive mice

(Figure S7A), especially in neutrophils. To confirm the ability of

PET imaging to measure skull-specific TSPO-PET signals, we

performed imaging on three living mice and immediately isolated

the skulls. The isolated skulls had a strong association with the

skull signal in the live animals confirming the skull origin of the

TSPO signal (Figure S7B).

Next, we assessed TSPO-PET signals in 50 patients belonging

to the AD continuum, 43 patients with 4-repeat tauopathies

(4RTs),62 10 patients in the post-acute phase of stroke, 15 pa-

tients with relapsing-remitting multiple sclerosis (RRMS),63 and

14 patients with primary progressive multiple sclerosis (PPMS)

(Table S3, tab 1). We used 3D surface projections on a CT tem-

plate to show substantial relative TSPO-PET differences in pa-

tients belonging to the AD continuum compared with healthy

controls (Figure 6A). We found a clear increase in TSPO-PET sig-

nals in calvaria regions adjacent to the frontal, parietal, and

motor cortices of patients belonging to the AD continuum

(Figures 6A–6F; Video S4). Similarly, elevated skull inflammation

was observed in each cohort of patients with distinct patterns in

different pathological conditions (Figures 6B–6F), e.g., a promi-

nent temporal pole signal in stroke and multiple sclerosis pa-

tients (Figures 6B and 6E), in the skull base in RRMS and

PPMS patients (Figure 6D), and in the skull adjacent to the pre-

frontal cortex and the motor area in 4RT patients (Figures 6C

and 6D). In 5xFAD mouse model of AD, we observed a similar

TSPO signal elevation in the fronto-parietal and temporal regions

compared with controls (Figures S7C and S7D). These results

indicate that TSPO-PET imaging of the skull can reveal distinct

signal patterns in inflammatory, ischemic, and degenerative

CNS conditions, at least at the cohort level.

In the AD continuum patients, the overall TSPO-PET signal

was increased in females over males and was negatively associ-

ated with age in patients with AD (Figures S7E and S7F). We did

not find statistically significant differences between male and fe-

male patients in the 4RT, stroke, and PPMS cohorts, although

RRMS showed increased TSPO tracer uptake in males (Fig-

ure S7E). We did not find significant correlations with AD severity

based on cognitive tests such as mini-mental-state examination

(MMSE), the Consortium to Establish a Registry for AD (CERAD)

neuropsychological test battery, and the clinical dementia rating

(CDR) scale (Figure S7G). There were also no significant associ-

ations with specific clinical stages of AD such as in the

(H) GO terms from the module of skull downregulated proteins.

(I) Single-cell sequencing of post-mortem skull sample illustration.

(J) UMAP of single-cell sequencing of post-mortem skull sample (n = 1).

(K) Expression of unique skull detected proteins in the scRNA-seq data.

(L) Correlation plot of the module from (G), mRNA processing GO term. Protein expression vs. scRNA-seq. Spearman correlation, R = 0.49, p < 0.0001.

(M) Correlation plot of the module from (G), neutrophil degranulation GO term protein expression. Protein expression vs. scRNA-seq. Spearman correlation,

R = 0.38, p < 0.0001.

See also Figure S6.
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comparison of the prodromal stage characterized by subjective

cognitive decline (SCD) or mild cognitive impairment (MCI) and

the AD dementia stage (Figure S7H). Early and late clinical AD

subgroups displayed a similar increase in the calvaria TSPO-

PET signal (Figures S7G and S7H), suggesting that skull inflam-

mation occurs during all stages of the AD continuum.

Notably, a significant correlation between the TSPO-PET sig-

nals in the calvaria and the brain was only observed in Braak

stage VI regions, which can suggest an increasing skull inflam-

mation with advanced tau spread (Figure S7I). TSPO-PET levels

in the calvaria were associated with decreased b-amyloid42 but

not b-amyloid40 concentration in CSF (Figures S7J and S7K).

Lower b-amyloid42 in CSF is associated with more fibrillar amy-

loid deposits in the brain,64 suggesting that b-amyloid is also a

trigger for increasing skull inflammation. By comparison, the

C2 bone of the vertebra had no significant increase compared

with controls in any of our cohorts (Figure S7L).

Next, we performed longitudinal analysis on patients with

stroke and AD.Our stroke patients were scanned again 3months

after the stroke, whereas patients with AD were imaged

18 months after their baseline scan. Time points were chosen

based on clinical necessity. On comparing 13 patients with AD

A

D E FC

B

Figure 6. Distinct TSPO uptake patterns are observed in the skull of patients with inflammatory, ischemic, and degenerative CNS diseases

(A) 3D surface projection (triple fusion with CT and MRI templates; quadrant cut [top]; transparent CT [bottom] displaying increased activity within skull) shows

%-TSPO-PET differences between patients with AD and healthy controls at the group level.

(B) Average TSPO-PET signal in Alzheimer’s disease (AD), stroke, primary progressive multiple sclerosis (PPMS), relapsing-remitting multiple sclerosis (RRMS),

and 4-repeat tauopathy (4RT) patients.

(C–F) TSPO-PET signal quantifications in skull regions adjacent to different brain regions: (C) fronto-parietal area (p = 0.007 for control vs. AD, and p = 0.03 for

control vs. 4RT), (D) motor area (p = 0.006 for control vs. AD and stroke, and p = 0.002 for control vs. 4RT), (E) temporopolar area (p < 0.001 for control vs. stroke,

PPMS, and RRMS), and (F) skull base (p < 0.001 for control vs. PPMS and RRMS). Data represented as ±SEM. One-way ANOVA with Bonferroni post hoc

correction (see STARMethods for details). Data were normalized as described in the STARMethods. Significant differences of disease vs. controls are indicated.

Pairwise comparisons of all groups can be found in Table S3.

See also Figure S7.
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A

D E

C

B

Figure 7. Serial calvaria TSPO-PET imaging of patients with Alzheimer’s disease and stroke

(A and B) Axial and sagittal slices show%PET difference images of patients with Alzheimer’s disease (AD, n = 13, A, +11%, p = 0.0046 in AD vs. 0%, p = 0.902 in

controls) and stroke (n = 13, B, -17%, p = 0.029 in stroke) against age-matched healthy controls (normalized as described in the STAR Methods). Controls in (A)

(n = 15) were imaged serially and controls in (B) (n = 11) were imaged at a single time point. %PET difference images are depicted with and without CT overlay.

Right panels show individual time courses of calvaria TSPO-PET signals of (A) patients with Alzheimer’s disease and healthy controls at a median follow-up

(legend continued on next page)
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with 15 serially imaged age-matched healthy controls, we found,

on average, an 11% increase in the skull TSPO-PET signal in pa-

tients with AD (p = 0.0046, paired t test), whereas healthy con-

trols revealed no change (p = 0.902, paired t test, Figure 7A).

By contrast, we observed a 17% decrease (p = 0.029, paired

t test) in the skull TSPO-PET signal of stroke patients 3 months

after the onset of their stroke (13 stroke patients, 11 controls)

(Figure 7B).

After normalization (see STAR Methods), we generated sur-

face projections to reflect the pattern of longitudinal TSPO-PET

changes by statistical parametric mapping (SPM) (voxels with

p < 0.05, uncorrected for multiple comparisons) (Figure 7C) on

SPM12 skull surface template. We observed that signal in-

creases in patients with AD were mainly observed in areas highly

relevant to AD pathology such as the skull covering the temporal

and parietal cortices65 and were also in line with the regions we

report as significantly higher in the baseline condition, i.e., motor

area and fronto-parietal cortex (Figures 6C and 6D). In stroke pa-

tients, we observed a longitudinal decrease in the whole skull

without specific regional preferences (Figure 7C).

We correlated TSPO-PET changes in 246 brain regions of the

Brainnetome Atlas66 with the overall skull TSPO-PET signal

changes in patients with AD and found that regional increases

of microglial activation in the brain are correlated with progres-

sive overall skull inflammation (Figure 7D). This association

was found for brain regions highly relevant to AD pathology,

namely the posterior cingulate cortex (PCC), which remained

statistically significant even after strict false discovery rate

(FDR) correction for multiple comparisons (Figure 7E). Only

weak correlations were found in controls (Figure 7D). These re-

sults suggest that skull responds to brain inflammation in AD

and may serve as a proxy for monitoring neuroinflammation in

humans.

DISCUSSION

Neuroinflammation is a significant factor in many CNS disorders.

Recent findings suggest that studying the connections between

the dura mater and neighboring calvaria marrow could provide

insights into brain inflammation. Observing cells and molecules

specifically associated with the calvaria-meninges-brain axis

could be an effective way to monitor and understand this

process.

Our study shows that there is a clear difference between the

marrow cells suggesting localized functions for different bones.

Our human proteomics analysis confirmed that human skull

has a distinct molecular profile as in mice. As these proteomics

data were obtained from post-mortem individuals with a wide

range of ages and pathologies, it suggests that the skull bone

marrow remains distinct across a wide range of conditions.

Moreover, the increased levels of brain-related, especially syn-

aptic proteins, in the human skull suggests that communication

along the skull-meninges-brain axis might occur in both

directions.55

Overall, our extensive data on human SMCs using tissue

clearing of large samples of human skulls with attached dura

mater suggest that they facilitate immune cell trafficking be-

tween the skull and meningeal surface of the brain similar to

detailed observations provided in different studies in mice.2,4–6

Although the disruption of the blood-brain barrier after patholog-

ical conditions such as stroke as well as the infiltrating immune

cells through blood has been well-documented,12,67,68 it is

currently still unclear under which conditions and what fraction

of immune cells reach the meninges or to the parenchyma

from the calvaria compared with other routes.6,12,69

Several studies demonstrated the clinical utility of TSPO-PET

imaging in neurological diseases such as AD, Huntington’s dis-

ease (HD), amyotrophic lateral sclerosis, Parkinson’s disease,

multiple sclerosis, and migraine.70,71 The correlations between

brain and skull inflammation signal we observedwith a third-gen-

eration TSPO-PET ligand [18F]GE-18072 suggest that the use of

skull imaging for the early diagnosis and/or monitoring of brain

pathologies should be further investigated. However, given the

limited disease specificity of the TSPO signal, it is likely that

different contrast agents and imaging modalities will be needed

for clinical applications. Our data support the notion of chronic

inflammation in patients with AD73,74 vs. resolving inflammation

in stroke patients after acute trauma.75,76 As calvaria cells are

localized very close to the surface, it could be easier and faster

to image it by different modalities, for example, optoacoustic im-

aging technologies in the future, which are portable and less

costly compared with MRI/PET imaging and could provide early

point-of-care diagnosis.77

TSPO is strongly upregulated inmicroglia and astrocytes upon

activation and is also expressed on infiltrating macrophages

in the brain.60 However, its sources outside the brain are

less understood as many immune cell types including neutro-

phils express TSPO.78,79 The increased cell numbers in the

skull marrow in response to injury also suggest a mechanism

for the increase in TSPO signals seen in mouse and human

data for various diseases, although more detailed studies are

needed to establish the sources of signal increase for each

condition.80,81

Our data suggest that different bones in the body have distinct

molecular profiles. Notably, the response of the calvaria to

neurological pathologies is different from other bones, indicating

interval of 18 months and (B) patients with stroke at a median follow-up interval of 84 days. Mean (thick line) and standard deviation (dashed lines) of calvaria

TSPO-PET.

(C) Surface projections show statistical parametric mapping (SPM) of longitudinal TSPO-PET changes (left: increases, hot/right: decreases, cold) of patients with

AD, patients with stroke, and healthy controls. Voxels with p < 0.05 (t value threshold 1.78, uncorrected for multiple comparisons) are projected on the SPM12

skull surface template.

(D) Brain surface projections show regional correlations (Pearson’s correlation coefficient, R) of longitudinal TSPO-PET changes in calvaria with longitudinal

TSPO-PET changes in brain of patients with AD and healthy controls.

(E) Correlation between calvaria and brain TSPO-PET changes in the left posterior cingulate cortex that survived false discovery rate correction for multiple

comparison of 246 brain regions (R = 0.871, p = 0.027 in AD vs. R = -0.066, p = n.s. in controls).
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that the skull may be useful for monitoring and potentially con-

trolling inflammation in various brain pathologies in the future.

Limitations of the study
Our data have limitations, despite the rich data on molecular

analysis and imaging in mice and humans. We could not statis-

tically compare transcriptomics differences in mice and humans

due to the limited number of samples. We only focused on a

selected number of bones in mice and humans. Also, for ethical

reasons, we could not obtain bone samples from healthy hu-

mans for comparison with pathological states. Different causes

of death might also be affecting the molecular profile of the

samples.

Although our data provide leads for the molecules that might

regulate the skull’s response to disease, only future mechanistic

studies can clarify their exact involvement. Future work must

explore inter-individual differences and gene expression profile

evolution over time in mice. Additional characterization of the

specific contribution of skull immune cells compared with other

bones and exact routes of trafficking is necessary to understand

the neuroimmune axis. Although our study suggested B cell, T

cell, and myeloid cell trafficking, it would be interesting to eluci-

date specific cell-type dynamics in certain disease cases.

Finally, our detailed demonstration of skull inflammation in

diverse diseases in humans suggests that it can be used for

diagnosing ormonitoring diseases in the future, but detailed clin-

ical studies are needed to explore its clinical utility.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT

DETAILS

B Animals

B Human samples and participants

d METHOD DETAILS

B Middle cerebral artery occlusion (MCAo) model

B Skull preparation for chronic imaging

B Live Imaging

B Behavioral experiments - Neuroscore

B Perfusion, fixation and tissue preparation

B vDISCO whole-body immunostaining, PI labeling and

clearing

B Nr4a1 labeling and clearing of mice bones with

SHANEL

B Human skull labeling and clearing with SHANEL

B Light sheet microscopy imaging

B Reconstruction of whole-mouse body and mouse

head scans

B Fixed-formalin paraffin embedding, sectioning and

H&E staining

B Human fixed frozen sections, immunohistochemistry

and imaging

B Single-cell isolation for scRNAseq and proteomics

B Cell sorting and plate-based bulk RNA-sequencing

B Single-cell suspension isolation from the human bones

for proteomics

B Single-cell isolation from human skull for scRNAseq

B scRNA sequencing – 10x Genomics

B Sample preparation for bulk RNA isolation

B Bulk RNA isolation, library preparation and sequencing

B Flow cytometry

B Multiplexed RNAscope smFISH

B High-resolution imaging

B Image stitching

B Scanning electron microscopy

B Proteomics Sample Preparation

B Liquid chromatography and mass spectrometry

(LC-MS/MS)

B Proteomics data processing

B Small animal PET/MRI acquisition

B Human TSPO-PET imaging acquisition

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Single-cell RNA data analysis

B Bulk RNA data analysis for 5xFAD dataset

B Bulk RNA data analysis for MCAo dataset

B Statistical analysis of KikGR animals

B Image Analysis

B Proteomics data analysis

B Small animal PET/MRI analysis

B Human TSPO-PET imaging analysis

B Statistics for human TSPO-PET imaging

d ADDITIONAL RESOURCES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2023.07.009.

ACKNOWLEDGMENTS

This project has received funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation program

(ERC CoG no. 865323 to A.E. and ERC-StG 802305 to A.L.) and Nomis Foun-

dation (A.E.). This work was further supported by Vascular Dementia Research

Foundation, Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany’s Excellence Strategy within the framework of

the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID

390857198 and ID 390857198 [C.P.]), grant DI-722/16-1 (project ID:

428668490) and a dedicated grant to M. Brendel. (BR4580/1-1), to I. Khalin

(457586042), ICARUS study (FOR 2879, ID 405358801), procurement of the

MRI scanner (DFG, INST 409/193-1 FUGG), to N.K. and O.S.C. through

Emmy Noether Programme (KR5166/1-1), and to A.E.H. (DFG SFB1444, Proj-

ect 14, DFG HA5354/12-1). Additionally, C.P. supported by Friedrich-Baur-

Stiftung, C.P. and S. Katzdobler. by Lüneburg Heritage Foundation, A.E.H.
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Börsch, A.-L., Ricci, A., Martı́n-Salamanca, S., Li, X., Lu, I.-N., et al.

(2021). Single-cell profiling of CNS border compartment leukocytes re-

veals that B cells and their progenitors reside in non-diseased meninges.

ll
OPEN ACCESS

Cell 186, 3706–3725, August 17, 2023 3721

Resource



Nat. Neurosci. 24, 1225–1234. https://doi.org/10.1038/s41593-021-

00880-y.

13. Beuker, C., Schafflick, D., Strecker, J.-K., Heming, M., Li, X., Wolbert, J.,

Schmidt-Pogoda, A., Thomas, C., Kuhlmann, T., Aranda-Pardos, I., et al.

(2022). Stroke induces disease-specific myeloid cells in the brain paren-

chyma and pia. Nat. Commun. 13, 945. https://doi.org/10.1038/s41467-

022-28593-1.

14. Mazzitelli, J.A., Smyth, L.C.D., Cross, K.A., Dykstra, T., Sun, J., Du, S.,

Mamuladze, T., Smirnov, I., Rustenhoven, J., and Kipnis, J. (2022). Cere-

brospinal fluid regulates skull bone marrow niches via direct access

through dural channels. Nat. Neurosci. 25, 555–560. https://doi.org/10.

1038/s41593-022-01029-1.

15. Zaro, B.W., Noh, J.J., Mascetti, V.L., Demeter, J., George, B., Zukowska,

M., Gulati, G.S., Sinha, R., Flynn, R.A., Banuelos, A., et al. (2020). Prote-

omic analysis of young and old mouse hematopoietic stem cells and their

progenitors reveals post-transcriptional regulation in stem cells. eLife 9,

e62210. https://doi.org/10.7554/eLife.62210.

16. Ryan, D.G., Knatko, E.V., Casey, A.M., Hukelmann, J.L., Dayalan Naidu,

S., Brenes, A.J., Ekkunagul, T., Baker, C., Higgins, M., Tronci, L., et al.

(2022). Nrf2 activation reprograms macrophage intermediary meta-

bolism and suppresses the type I interferon response. iScience 25,

103827. https://doi.org/10.1016/j.isci.2022.103827.

17. Chumak, V., Sielatycka, K., Ciechanowicz, A., Bujko, K., Ratajczak, M.Z.,

and Kucia, M. (2023). Proteomic analysis of murine bone marrow very

small embryonic-like stem cells at steady-state conditions and after

in vivo stimulation by nicotinamide and follicle-stimulating factor reflects

their germ-lineage origin and multi germ layer differentiation potential.

Stem Cell Rev. Rep. 19, 120–132. https://doi.org/10.1007/s12015-022-

10445-6.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Atto647NconjugatedantiGFP nanobooster Chromotek Cat.#gba647n-100;RRID:AB_2629215

Anti-NUR77 antibody Abcam Cat# ab153914

anti-Lysozyme antibody Abcam Cat#ab108508; RRID:AB_10861277

Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Abcam Cat#A-21245; RRID:AB_141775

APC/Cyanine7 anti-mouse Ly-6G/Ly-6C (Gr-1) Antibody Biolegend Cat#108423; RRID:AB_2137486

APC anti-mouse CD11c Antibody Biolegend Cat# 117309; RRID:AB_313778

BD Horizon� BUV395 Rat Anti-Mouse CD45 BD Biosciences Cat#565967; RRID:AB_2739420

BD Horizon� BV421 Rat Anti-Mouse CD117 BD Biosciences Cat# 562609; RRID:AB_11154585

BD Pharmingen� PerCP-Cy5.5 Rat Anti-Mouse F4/80 BD Biosciences Cat# 567202; RRID:AB_2916500

Brilliant Violet 510� anti-mouse I-A/I-E Antibody Biolegend Cat# 107635; RRID:AB_2561397

Brilliant Violet 650� anti-mouse TER-119/Erythroid

Cells Antibody

Biolegend Cat# 116235; RRID:AB_11204244

Brilliant Violet 711� anti-mouse NK-1.1 Antibody Biolegend Cat# 108745; RRID:AB_2563286

Brilliant Violet 785� anti-mouse/human CD11b Antibody Biolegend Cat# 101243; RRID:AB_2561373

PE anti-mouse CD179a (VpreB) Antibody Biolegend Cat# 143603; RRID:AB_11147372

PE/Dazzle� 594 anti-mouse CD182 (CXCR2) Antibody Biolegend Cat# 149317; RRID:AB_2750072

BD Pharmingen� PE-Cy�7 Rat Anti-Mouse Ly-6A/E BD Biosciences Cat# 561021; RRID:AB_2034021

BD Pharmingen� Alexa Fluor� 700 Rat Anti-Mouse CD3

Molecular Complex

BD Biosciences Cat# 561388; RRID:AB_10642588

Brilliant Violet 605� anti-mouse Ly-6C Antibody Biolegend Cat# 128035; RRID:AB_2562352

BD Pharmingen� PE-Cy�5 Rat Anti-Mouse CD45R/B220 BD Biosciences Cat#553091; RRID:AB_394621

Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed

Secondary Antibody, Alexa Fluor 647

Invitrogen Cat#A-31573; RRID:AB_2536183

Alexa Fluor 594 Anti-alpha smooth muscle Actin

antibody [1A4]

Abcam Cat#ab202368;RRID:AB_2924381

Anti-PDGFRB antibody produced in rabbit Merck Cat# HPA028499; RRID:AB_10602018

Mouse Anti-Human Type IV Collagen-FITC (2F11) SouthernBiotech Cat#1460-02; RRID:AB_2794763

Chemicals, peptides, and recombinant proteins

Methyl-beta-cyclodextrin Sigma Cat#332615

Hydroxy-L-proline Sigma Cat#441562

4%paraformaldehyde(PFA) Morphisto Cat.#11762.05000

Tetrahydrofuran Sigma Cat#186562

Benzyl alcohol Sigma Cat#24122

Benzyl benzoate Sigma Cat#W213802

Ethylenediamine tetra acetic acid Carl Roth Cat#1702922685

CHAPS Roth Cat# 1479.4

Guanidine hydrochloride Roth Cat# 6069.3

Acetic acid Roth Cat# T179.1

TritonX-100 PanReac Applichem Cat.#A4975,1000

N-Methyldiethanolamine Sigma Cat.#471828

Dichloromethane Roth Cat.#KK47.1

RPE buffer Qiagen Cat#1018013

(Continued on next page)

ll
OPEN ACCESS

e1 Cell 186, 3706–3725.e1–e16, August 17, 2023

Resource



RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Ali Erturk (ali.erturk@

helmholtz-munich.de).

Materials availability
This study did not generate new unique reagents.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Propidium iodide ThermoFisher Cat.#P3566

Lycopersicon Esculentum (Tomato) Lectin Invitrogen Cat.# L32470

Critical commercial assays

10x Chromium Single Cell 30 Library & Gel Bead Kit v3

for mouse and v3.1 for human

10x Genomics https://www.10xgenomics.com/support/

single-cell-gene-expression

RNAscope Multiplex Fluorescent Reagent

Kit v2 Assay

Advanced cell Diagnostics,

Bio-Techne

https://acdbio.com/rnascope-multiplex-

fluorescent-v2-assay

Deposited data

Mass spectrometry raw data This paper PRIDE accession code: PXD041665

All code used in this study This paper https://github.com/erturklab/skull_immune

Patient source file This paper Table S3

Single-cell sequencing raw counts matrices and

annotation and bulk RNA-sequencing data

This paper NCBI’s GEO: GSE192616

Experimental models: Organisms/strains

LySM-GFP (Lyz2tm1.1Graf, MGI: 2654931) MMRC Strain#012039-MU;RRID: MMRRC_012039-MU

5xFAD (B6SJL-Tg(APPSwFlLon,PSEN1*M146L

*L286V)6799Vas/Mmjax MGI:3693208)

Jackson Laboratory Strain#034848-JAX;RRID: MMRRC_034848-JAX

KikGR33 (Tg(CAG-KikGR)33Hadj/J) Jackson Laboratory Strain#013753:RRID:IMSR_JAX:013753

C57BL/6J mouseline Jackson Laboratory Strain#:000,664;RRID:IMSR_JAX:000,664

C57BL/6NJ mouseline Jackson Laboratory Strain#:005304:RRID:IMSR_JAX:005304

Software and algorithms

ImSpector MiltenyiBiotec https://www.miltenyibiotec.com/DE-en/products/

ultramicroscope-blaze.html

Imaris Bitplane AG https://imaris.oxinst.com/

Vision4D Arivis https://www.arivis.com/de/

Fiji Schindelin et al.82 https://ImageJ.net/software/fiji/

syGlass VR syGlass https://www.syglass.io

Scanpy v. 1. 6 Wolf et al.83 https://scanpy.readthedocs.io/en/stable/

GraphPadPrism (8.2.1) GraphPad software https://www.graphpad.com

PMOD Digilent https://www.pmod.com/web/

IBM SPSS Statistics version 22.0 IBM https://www.ibm.com/spss

Image analysis algorithm This paper https://github.com/erturklab/skull_immune

Other

0.22 mm syringe filter Sartorius Cat#16532

SCEM medium Sectionlab SCEM

70 mm Falcon� Cell Strainers Falcon Cat#08-771-2

35� ultra-diamond knife Diatome https://www.scienceservices.eu/tools-supplies/

diamond-knifes/ultra

EconoSpin(TM) All-in-1 Mini Spin Clumns for

DNA/RNA extraction

Epoch life sciences Cat#1920-250
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Data and code availability
d Single-cell RNA sequencing data raw counts, matrices and annotation and bulk RNA datasets are available via NCBI’s GEO

(GSE192616), proteomic data is available on PRIDE, accession code: PXD041665 and patient source file human TSPO-PET

imaging study can be found under supplemental information. Imaging data is available upon request from the corresponding

author.

d All code used in this study can be found as jupyter notebooks in the project github repository: https://github.com/erturklab/

skull_immune.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
Animal housing and experiments in this work were conducted in agreement with the institutional guidelines (Klinikum der Universität

München/Ludwig Maximilian University of Munich, Technische Universitaet Muenchen, Regierung von Oberbayern and UK Home

Office), after approval of the ethical review board of the government of Upper Bavaria (Regierung von Oberbayern, Munich, Ger-

many), and in accordance with the European directive 2010/63/EU for animal research. The transgenic lines used in this study are

C57BL/6, LySM-GFP (Lyz2tm1.1Graf, MGI: 2654931) and 5xFAD (B6SJL-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax

MGI:3693208) acquired from Charles River and Jackson Laboratory. KikGR33 (Tg(CAG-KikGR)33Hadj/J) mice were kindly given

to C.B. by Dr. Josef Anrather, Weill Cornell Medical College, New York. KikGR33 mice were bred and housed at the animal core fa-

cility of the Center for Stroke and Dementia Research (Munich, Germany), and for which male mice were used. 3-month-old male

mice were used in study with the exception of bulk AD and 5xFAD TSPO-PET dataset, where the sex of the animals were female

and the age were 6-months-old for bulk AD and 4.5-months-old for TSPO-PET dataset. In all in vivo experiments in this study, litter-

mates of the same sex were randomly assigned to experimental groups, the animals were housed under a 12/12 h light/dark cycle, all

animals were healthy in the beginning of the experiment, no drugs were given to animals during the time of data acquisition, no spe-

cific food, temperature and cage conditions were kept. All data are reported according to the ARRIVE.84

Human samples and participants
All anatomy donors or next-of-kin gave their informed and written consent to explore the cadavers for research and educational pur-

poses. The signed consents are kept at the institutes involved. Institutional approval was obtained in accordance to the Saxonian

Death and Funeral Act of 1994, of the independent ethics committee of the Hamburg Chamber of Physicians (protocol 2020-

10353-BO-ff) and the Ethics committee of Technical University of Munich (67/22S). The skull samples in this study are coming

from the following sources: University Medical Center Hamburg-Eppendorf, Institute of Legal Medicine; Institut für Allgemeine Path-

ologie und Pathologische Anatomie, Technische Universität München and Anatomy Institute, University of Leipzig, Institut für Re-

chtsmedizin der Universität München. A detailed list of post-mortem samples used for light sheet imaging and proteomics samples

are given in Figures S5O and S7A.

Regarding human participants: ten patients with stroke, 29 patients with multiple sclerosis (15 with relapsing remitting multiple

sclerosis and 14 with primary progressive multiple sclerosis), 43 patients with 4R tauopathies, 50 patients with AD and 27 age-

and sex-matched individuals without objective cognitive impairment and with intact motor function were available for calvaria anal-

ysis of TSPO-PET. Sample sizes were determined in the specific study protocols, based on comparisons of TSPO-PET signals in

brain between disease and controls. Power was set to 0.8 and alpha was set to 0.05 with the goal to achieve effect sizes of 1.0,

also graded sufficient to test for differences in skull TSPO-PET signals. Allocation into study groups was determined by the clinical

diagnosis. Severe neurological disorders other than the investigated diagnosis were excluded in the study protocols, assuming

immunocompetence in all participants. All participants were naı̈ve to TSPO-PET at study inclusion. In one set of analyses stroke,

MS and 4R tauopathy patients were compared with controls, while the AD cohort, for which additional biomarkers were available,

was analyzed separately. All patients with multiple sclerosis were investigated during observational studies. We included all baseline

scans of therapy naı̈ve patients with primary progressive multiple sclerosis (n=14) and patients with relapsing remitting multiple

sclerosis (n=15; previously published in Unterrainer et al.63) regardless of therapy regimes. However, patients who received steroid

therapy < 4 weeks prior to PET as well as patients with additional CNS pathologies were excluded a priori. PET acquisition and

PET data analyses of the multiple sclerosis cohort (ethics-application: 601–16) were approved by the local institutional ethics

committee (LMUMunich) and the German radiation protection (BfS-application: Z 5 – 22463/2 – 2015 - 006) authorities. The 4R-tau-

opathy cohort62 was composed of patients with possible or probable b-amyloid negative corticobasal syndrome (n=29) and patients

with possible or probable progressive supranuclear palsy Richardson syndrome (n=14) according to Armstrong Clinical

Research and Movement Disorders Society criteria respectively. Detailed inclusion and exclusion criteria were published else-

where.62 One case was excluded due to cropped skull. PET acquisition and PET data analyses of the 4R-tauopathy cohort

(ethics-applications: 17–569 & 17–755) were approved by the local institutional ethics committee (LMU Munich) and the German ra-

diation protection (BfS-application: Z 5 - 22464/2017-047-K-G) authorities. A total of 27 healthy controls deriving from the

different cohorts were included to cover the whole age range of patients. PET acquisition and PET data analyses of the stroke cohort
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(ethics-application: 19–428) were approved by the local institutional ethics committee of the LMU Munich (ethics-application:

19–428) and the German radiation protection authority (BfS-application: Z 5 - 22464/2019-163-G). To compare different patient co-

horts, we used harmonized data from different PET imaging studies: All patients with acute ischemic stroke (n=10) were recruited

from the ongoing ICARUS study which included a TSPO-PET up to 10 days after stroke onset. Inclusion criteria were an age

>50 years, acute ischemic stroke as defined by an acute focal neurological deficit in combination with a corresponding infarct as

documented by diffusion-weighted imaging (DWI)-positive lesion on brain MRI, presence of an infarct involving the cortex or a strictly

subcortical infarct, written informed consent; and willingness to participate in study assessments including follow-up. Exclusion

criteria were among others multiple infarcts, infratentorial infarcts affecting the brain stem or cerebellum, immunomodulatory ther-

apies within the last 3 months, chronic inflammatory disease, and infectious diseases (< 7 days prior to stroke). The AD cohort

was composed of nine cases with subjective cognitive decline due to AD, 13 cases with mild cognitive impairment due to AD,

18 cases with AD dementia, and 12 cases with corticobasal syndrome, dementia and underlying AD. Initial results of brain TSPO la-

beling in this cohort are published elsewhere.85 Two patients with ADwere excluded from the cross-sectional TSPO-PET group com-

parison due to limited field of view. Participants were enrolled in the interdisciplinary AD study "Activity of Cerebral Networks, Amyloid

and Microglia in Aging and AD (ActiGliA)". In the AD cohort and its controls, Ab-PET was performed in all participants using [18F]flu-

temetamol.86 PET acquisition and PET data analyses of the AD cohort (ethics-applications: 17-569 & 17-755) were approved by the

local institutional ethics committee (LMUMunich) and the German radiation protection (BfS-application: Z 5 - 22464/2017-047-K-G)

authorities. Longitudinal follow-up imaging within the ActiGliA cohort was available for 13 patients of the AD continuum and 15 con-

trols at a median interval of 18 months. Additionally, 3 months follow-up imaging was available for 13 patients with stroke. Age,

gender, SNP coding and medication status of participants are provided in Table S3.

METHOD DETAILS

Middle cerebral artery occlusion (MCAo) model
The MCAo model was used to generate transient cerebral ischemic strokes by introducing an intraluminal filament through the ca-

rotid artery of mice anesthetized with isoflurane mixed with 30% O2 and 70% N2O. To initiate the occlusion the left common carotid

artery and interna of the animal were permanently ligated and a silicon capped nylon suture (6/0) was introduced through a cut in the

common carotid artery and advanced through the external carotid artery until it reached and obstructed the MCA for 30 minutes.

Regional cerebral blood flow was monitored, in the bregma coordinates 2-mm posterior, 5-mm lateral, via transcranial laser Doppler

flowmeter from the induction of stroke until 10minutes after retraction of the filament and reperfusion took place. After the procedure,

mice were left for recovery in temperature-controlled cages for two hours in order to minimize the risk of hypothermia. Sham-oper-

ated animals were subjected to the same procedure without the insertion of the filament. Body temperatures were kept constant

throughout all surgeries with a feedback-controlled heating pad at 37.0 ± 0.5 �C. Animals were then kept in their home cages with

facilitated access to water and food whilst being subjected to behavioral tests for three days. Mice were excluded in case of insuf-

ficient MCA occlusion (a reduction in blood flow to 15% of the baseline value) or blood flow recovery >80% within 10 min of

reperfusion.

Skull preparation for chronic imaging
Experiments were carried out on 8-12 weeks old male LysM-GFP -/+mice. Induction of anesthesia with buprenorphine (0.1mg/kg Bw)

and isoflurane (5%, 30s), was followedbymaintenance anesthesiawith 1.5-2.5% isoflurane in roomair with 30%oxygen/70%air under

continuous monitoring of body temperature 37.5 C� with a feedback-controlled heating pad. Glass window preparation was adapted

from described method.87 Mouse was placed on a stereotactic frame (RWD Life Science Co.,LTD, Shenzhen, China) where head was

fixed by ear bars and the eyes were covered with Bepanthen ointment (AG Bayer, Leverkusen, Germany). The left parietal bone was

exposed after resection of the mouse scalp. Sterile saline was applied to the skull and the periosteum were gently removed with for-

ceps. Then, Ultraviolet-curable glue Loctite 4305 (Henkel, Düsseldorf, Germany) was applied onto the parietal bone surface. A sterile

round glass window of 3-mm diameter was placed on the skull followed by two by 1s exposures every 3s of ultraviolet light source

UV301DUV365NMLight Flashlight (LIGHTFE LightingCo., Ltd., Shenzhen, China) to cure the glue. Then, skull surrounding thewindow

was prepared for the dental cement application by putting for 1 min onto the surface of iBond Self Etch (Kulzer GmbH., Hanau, Ger-

many) solution with subsequent curing by UV source for 5 s using Demi�Ultra Dental Curing Lights (Kerr Corporation, Brea, CA, USA).

Then on top of the etching solution the dental cement Tetric EvoFlow� (Ivoclar Vivadent, Schaan, Liechtenstein) was applied.

Before UV curing, the titanium ring was placed on the skull to have the window in its center and then cement was cured with the

same UV source (Demi� Ultra Dental Curing Lights) for not more than 5 s including every side around the ring. Finally, a thin stripe

of dental cement was applied onto the inner edge of the ring, with subsequent 5 s UV exposing, to fix the ring to the skull. Carprofen

(4mg/kg every 24h) was administered i.p. for the following 72 hours.

Live Imaging
For multiphoton imaging, we used an upright Zeiss LSM710 confocal microscope equipped with a Ti:Sa laser (Chameleon Vision II)

from Coherent (Glasgow, Scotland) and 2 external photomultiplier detectors for red and green fluorescence.88 Anesthetized animals

(1.5 % of isoflurane) were placed on a heating pad under the microscope. For visualization of the vasculature, 5 min prior to the
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imaging, the fluorescent tracer Tetramethylrhodaminisothiocyanat-Dextran (TMR-Dextran), 3000DaMW (Sigma-Aldrich, St.Luis, MI,

UA) was injected subcutaneously. The scanning was performed with Z-stack, 50-100 mm depth, laser (900 nm) power from 6-8% till

12-16% depending on the region of interest (ROI) depth. GAASP detector with LP˂570 nm filter for the GFP channel, LP˃570 nm for

the TMR channel, and NDD detector SP˂485 nm for the bone visualization, all with master gain 600. Image size 1024x1024, 8 bit.

Objective: W Plan-Apochromat 20x/1.0 DIC M27 75mm. For the series scanning, the laser power was 8-10%, 5 frames every 1 s.

For each animal, 2-3 ROI was chosen which were imaged at baseline, 2, 24, and 72 hours post-stroke, or at the respective time point

for naı̈ve and sham-operated animals.

Behavioral experiments - Neuroscore
Neuroscore24 was performed to assess each animal’s general and focal deficits every day. The scoring was composed of general

deficits (scores): fur (0 to 2), ears (0 to 2), eyes (0 to 4), posture (0 to 4), spontaneous activity (0 to 4), and epileptic behavior (0 to 12);

and focal deficits: body asymmetry (0 to 4), gait (0 to 4), climbing on a surface inclined at 45� (0 to 4), circling behavior (0 to 4), fore-

limb asymmetry (0 to 4), compulsory circling behavior (0 to 4), and whisker response to touch (0 to 4). This resulted in a score of 0 to

56 in total; up to 28 from general and up to 28 from focal deficits.

Perfusion, fixation and tissue preparation
After the mice were anesthetized with a mixture of midazolam, medetomidine and fentanyl (MMF) (1ml/100g of body mass for mice;

i.p.), and showed no pedal reflex, they were intracardially perfused with 0.1 M PBS (combined with heparin, 10 U/ml, Ratiopharm).

100-125mmHg pressure with a Leica 13 Perfusion One systemwas used for perfusion. PBS ran for 3-4 minutes for single-cell isolation

experiment, 5-10 minutes for tissue clearing experiments to let the blood wash out at room temperature. For single-cell isolation ex-

periments, boneswere dissected as detailed in the Single cell isolationmethod section. For the tissue clearing experiments, PBSperfu-

sion was followed by the administration of 4% paraformaldehyde (PFA) in 0.1 M PBS (pH 7.4) (Morphisto, 11762.01000) for 10-20 mi-

nutes. After removal of the skin and a washing step with PBS to clean the animal as much as possible, the animals were post-fixed by

4% PFA for the first 24 hours at 4�C and washed three times with 0.1M PBS before processing with the clearing protocol.

vDISCO whole-body immunostaining, PI labeling and clearing
The detailed protocol of vDISCO was described previously.2,89 The mouse bodies were placed inside a 300 ml glass chamber (Omni-

lab, 5163279), to be filled with the appropriate solution regarding the protocol to cover the entire body of the animal (�250-300ml).

A transcardial-circulator system was established in order to allow peristaltic pumping of the solutions (ISMATEC, REGLO Digital

MS-4/8 ISM 834; reference tubing, SC0266), with the pressure being set at 180-230 mmHg (50-60 rpm). The tubing was set to allow

pumping of the solutions through the heart (attached to a perfusion needle (Leica, 39471024)) into the vasculature with the same entry

point used for PBS and PFA perfusion steps described above. The other end of the tube was immersed into the chamber with a loose

end to allow suction of the solution into the body. The samples were initially perfused with a decolorization solution (25% of CUBIC

reagent 190 which is composed of 25 wt% urea (Carl Roth, 3941.3), 25 wt% N,N,N’,N’-tetrakis (2-hydroxypropyl)ethylenediamine

(Sigma, 122262) and 15wt%Triton X-100 (AppliChem, A4975,1000) in 0.1MPBS)) for 2 days, refreshing the solutions every 12h. Sam-

ples were washed with PBS for 3x2h. Then, decalcification solution (10 wt/vol% EDTA in 0.01 PBS, pH�8-9, Carl Roth, 1702922685)

was perfused for 2 days followed by half a day with permeabilization solution composed of 0.5% Triton X-100, 1.5% goat serum

(GIBCO, 16210072), 0.5 mM of Methyl-beta-cyclodextrin (Sigma, 332615), 0.2% trans-1-Acetyl-4-hydroxy-L-proline (Sigma,

441562), 0.05% sodium azide (Sigma, 71290) in 0.01 M PBS. To initiate the PI labeling and boosting, the setup was adjusted. The

free end of the perfusion tubewas connected to a 0.22 mmsyringe filter (Sartorius, 16532) and an infrared lamp (Beuer, IL21) was aimed

at the chamber to enable the solution’s temperature to be around26-28 �C. This setupwas then left running for 6 days after the addition

of 35 ml of nanobooster (stock concentration 0.5 – 1 mg/ml) and 290 ml of propidium iodide (stock concentration 1 mg/ml) which was

added directly into the refreshed permeabilization solution. Next, the body was placed into a 50 ml tube (Falcon, 352070), with the

same permeabilization and labeling solution, and an extra 5 ml of nanobooster was added. The tube was then put on a shaker at

RT for 2 additional days for labeling. Atto647N conjugated anti GFP nanobooster (Chromotek, gba647n-100) and Propidium iodide

(PI, Sigma, P4864), was used to boost the signal from the LysManimals and stain cell nuclei respectively in the study. Then, the animals

were placed back into the initial perfusion setup, where the washing solution was perfused for 2x12h, which was composed of; 1.5%

goat serum, 0.5% Triton X-100, 0.05%of sodium azide in 0.1MPBS. 0.1MPBSwas used towash the sample 3x2h. 3DISCO protocol

was applied for whole body clearing. The animals were freed from the perfusion system, but kept in glass chambers and placed on top

of shakers (IKA, 2D digital) at room temperature inside a fume hood. Glass chambers were sealed with parafilm and covered with

aluminum foil along with the 3DISCO application. For dehydration, sequential immersion of tetrahydrofuran (THF) (Sigma, 186562)

(50 Vol% THF, 70 Vol% THF, 80 Vol% THF, 100 Vol% THF and again 100 Vol% THF ) was applied every 12 hours. Then three hours

of dichloromethane (DCM) (Sigma, 270997) immersion for delipidation was followed by indefinite immersion in BABB (benzyl alcohol +

benzyl benzoate 1:2, Sigma, 24122 and W213802) solution for refractive index matching.

Nr4a1 labeling and clearing of mice bones with SHANEL
Mouse heads and left femurs were collected from three-month-old, male, wild-type C57Bl6/J mice (n=3). After dissection to remove

surrounding tissue, bonesweredecalcified in 20%(wt/vol) ethylenediamine tetraacetic acid (EDTA, pH=8.0, prepared indH2O) for two
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days at 37�C. EDTA was removed by washing in 0.1 M PBS for 3x2 hours. Bones were stained and cleared using the SHANEL pro-

tocol.91 Samples were dehydrated in 50–70–100% ethanol/dH2O for 1 hour each, delipidated in dichloromethane/methanol (2:1)

for 6 hours and rehydrated in sequence with the same dilutions backward. Next, they were incubated in acetic acid/dH2O (30 mL/

L) 2 hours for extracellular matrix hydrolyzation and washed with dH2O for 3x15 minutes. Then, samples were incubated in extracel-

lular matrix proteoglycan extraction solutions consist of 4M guanidine hydrochloride, 0.05M sodium acetate, and 2%Triton X-100 in

0.1 M PBS for 2 hours, washed first with dH2O and then PBS for 3x15 minutes each, followed by incubation in 10% 3-[(3-

Cholamidopropyl)-dimethylammonio]-1-propansulfonat (CHAPS) + 25% N-Methyldiethanolamine (NMDEA) in dH2O at 37�C for

further permeabilization and washed with dH2O for 3x15 minutes. Blocking was performed with 0.2% TritonX-100, 10% DMSO,

10% goat serum in 0.1 M PBS (blocking solution) for 6 h at 37�C. Anti-NUR77 antibody (1:200, Abcam, ab153914) were added

with 0.2% Tween-20, 5% dimethyl sulphoxide (DMSO), 5% goat serum, 0.001% heparin in 0.1 M PBS (primary antibody solution)

and incubated for 2 days at 37�C. After washing with 0.2% Tween-20, 0.001% heparin in 0.1 M PBS (washing solution)

4x20 minutes, bones were incubated with Goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor

647 (1:200, Abcam, A-21245) and propidium iodide (1:1000) in 0.2% Tween-20, 5% goat serum, 0.001% heparin in 0.1 M PBS (sec-

ondary antibody solution) for 2 days at 37�C, washed with washing solution. Clearing was performed by dehydrating the bones in di-

lutions of 50-70-100-100% ethanol/dH2O for 12 h each, followed by delipidation of the samples in 100% dichloromethane (DCM) for

15 minutes. Finally, samples were kept in refractive index matching solution BABB (benzyl alcohol + benzyl benzoate 1:2, Sigma,

24122 andW213802). If not stated otherwise, steps were performed with constant shaking at room temperature inside a fume hood.

Human skull labeling and clearing with SHANEL
SHANEL protocol with extended incubation periods were performed on human post-mortem skull pieces. Bones were decalcified in

20% (EDTA, pH=8.0) for 1.5-2months (until the bone becomes cuttable) at 37�CEDTAwas removed by washing in 0.1MPBS for 3x2

hours. Bones were incubated in 10% CHAPS + 25% NMDEA solution for 4 days at 37�C and washed with dH2O for 3x20 minutes.

Bones were dehydrated in 50-70-100% ethanol/dH2O, each with overnight incubation, delipidated overnight in DCM/MeOH (2:1)

and rehydrated. Then, samples were incubated in acetic acid for 4 hours, followed by incubation with 4 M guanidine hydrochloride,

0.05 M sodium acetate, and 2% Triton X-100 in 0.1 M PBS for 2 days and washed first with dH2O and then PBS for 3x20 minutes.

Samples were incubated in a blocking solution overnight at 37�C. Staining was performed in two groups: some samples were incu-

bated with recombinant anti-Lysozyme antibody (1:250, Abcam, ab108508) in primary antibody solution for 10 days at 37�C, washed

with washing solution 4x20 minutes, then stained with Lycopersicon Esculentum (Tomato) Lectin (LEL, TL), DyLight 649 (1:500, In-

vitrogen, L32470) for 7 days at 37�C, washed with washing solution 4x20 minutes, incubated with Goat anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody, Alexa Fluor 568 (1:200, A-11036, Thermo Fisher) and washed. The remaining samples were

stained with Lycopersicon Esculentum (Tomato) Lectin and Propidium Iodide (1:1000, Sigma, P4864) in primary antibody solution,

washed and proceeded with clearing. Clearing was performed by dehydrating the bones in dilutions of 50-70-100-100% ethanol/

dH2O for 12 h each, delipidated in 100% DCM for 15 minutes and incubated indefinitely in BABB (benzyl alcohol + benzyl benzoate

1:2, Sigma, 24122 andW213802). If not stated otherwise, steps were performed with constant shaking at room temperature inside a

fume hood.

Light sheet microscopy imaging
Single plane illumination (light sheet) image stacks were acquired using an Ultramicroscope II and Ultramicroscope Blaze (Miltenyi

BioTec). The available filter sets were ex 470/40 nm, em 535/50 nm; ex 545/25 nm, em 605/70 nm; ex 560/30 nm, em 609/54 nm; ex

580/25 nm, em 625/30 nm; ex 640/40 nm, em 690/50 nm. The filter sets used to capture the LysM signal and the PI labeling were 640/

40 nm and 545/25 nm filter sets, respectively. Low magnification whole-body imaging of the LysM mice was performed with Ultra-

microscope Blaze, with a 1.1x objective, 3x8 tiling with 35% overlap and 6 mm z-step. Exposure time was 120 ms, and laser power

was 25% and 12% for LysM (647nm) and PI (594nm) channels, respectively. The depth of the scans was approximately 13 mm from

dorsal and ventral surfaces, whichwere then reconstructed. Thewhole head imageswere takenwith anOlympusMVX10 zoombody,

which offered zoom-out and -in ranging from 0.63x up to 6.3x. The depth of the scans was approximately 4 mm and the z-step used

was 6 mm combined with an exposure time of 200 ms. Human bone pieces were imaged with 1.1x magnification using LaVision

BioTec MI PLAN 1.1x/0.1 NA (WD = 17 mm), with 1.66X zoom, as stacks, tiles were adjusted to cover all the bone surface with

25-35% overlap. The depth of scans was 1-1.5 cm. Higher magnification imaging of ROIs from mice bones were obtained with

12x magnification using PLAN 12x/0.53 NA (WD = 10 mm), LaVision 470 BioTec MI) objective as 1 tile, step size of 6 mm. Depth

of scans was 0.5-1 mm. Following settings were kept the same for all samples: Exposure time: 120 ms; light sheet width: 100%;

and light sheet thickness: 7 mm (NA 0.31). Multiple tile scans were stitched with Fiji’s stitching plugin (http://discotechnologies.

org/SHANEL/manual_stitching.py) and visualized in 3D using Imaris (v.9.6 3 64, Imaris).

Reconstruction of whole-mouse body and mouse head scans
The image stackswere acquired and saved by ImSpector (Miltenyi BioTec) as 16-bit grayscale TIFF images for each channel separately.

The whole-body tiled stacks were initially stitched utilizing Fiji/ImageJ to obtain stitching on the xy-axis (http://discotechnologies.org/

SHANEL/manual_stitching.py). Next, Vision 4d (Arivis AG) was used to fuse the stacks in the z-axis. For heads, one tile stacks were

acquired, hence stitching was not necessary. Imaris (Bitplane AG) was used to visualize both whole body and intact mouse heads.
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Fixed-formalin paraffin embedding, sectioning and H&E staining
Fixed formalin paraffin-embedded samples were acquired from decalcified human skulls initially by using the Sakura Tissue-Tek VIP

6 AI machine. The samples were placed in holders and were sectioned as 1 mm thick slices using Microm HM 355Smicrotome. Sec-

tions were then placed in the Sakura Tissue-Tek Prisma machine for H&E staining. The images were then acquired by a bright field

microscope using 40x magnification.

Human fixed frozen sections, immunohistochemistry and imaging
Fixed samples were placed in 15% sucrose in PBS until they sunk and then in 30% sucrose overnight. Samples were frozen in SCEM

medium (Sectionlab, Japan). 7 mm cryosections were cut using Kawamoto‘s film method92 on a cryostat, which were then stored at

�80�C until further use. For immunofluorescence, sections were thawed, rehydrated in PBS, blocked with 10% serum, and stained

with antibodies in 1% serum in PBS containing DAPI for 1–2 h. Antibodies used were; anti-SMA-Alexa Fluor A594, 1A4, Abcam;

Collagen-IV-FITC, 2F11, Southern Biotec; anti-PDGFRB, HPA028499, Merck; Donkey anti-Rabbit IgG (H+L) Highly Cross-

Adsorbed Secondary Antibody, Alexa Fluor 647. Stained sections were washed and mounted with aqueous mounting medium (Flu-

oromount, Thermo Fisher, MA, US).

Sections were imaged with at a Zeiss LSM880 using a 20x objective.

Single-cell isolation for scRNAseq and proteomics
Single-cell isolation from the calvaria, brain, meninges, humerus, scapula, vertebra, femur and pelvis was done for one animal at a

time. Three naı̈ve, six MCAo-operated and three sham operated animals were pooled in threes for single-cell RNA sequencing.

Another cohort of three animals for naı̈ve, three animals for sham-operated and three MCAo-operated animals were not pooled

and were treated separately for proteomic analysis. These experiments were performed on sham and MCAo animals that had the

procedure three days prior to the single-cell isolation experiment. Separate equipment was utilized during the isolation to ensure

high viability of cells free of contamination. The animals were anesthetized with Isoflurane and then with a Ketamine/Xylazine mixture

(0.6 ml Ketamine + 0.3 ml Xylazine + 5.1 ml Saline, 0.2 ml for 20 gr animals). Then animals were transcardially perfused with 10 ml of

ice-cold 0.1 M PBS. After the blood was rinsed, the calvaria bone, humerus, scapula, vertebra, femur, brain, meninges, and pelvis

were dissected and processed by separate people to minimize the time required in order to keep the cell viability to a maximum and

conditions comparable for all locations. The isolated cells were processed with 37�C pre-warmed DMEM (Thermo Fischer,

21013024) with 10% heat inactivated fetal bovine serum (FBS) (Sigma Aldrich, F7524-100ML). For brain cell isolation; the brain

was isolated from the calvaria and the rest of the body, then, the cortex was separated and the leptomeninges was removed

from the surface, the final sample consisted of the injured region. The sample was placed in 5 ml of trypsin enzyme with 0.05% con-

centration and incubated in a pre-heated 37�C water bath for 2 minutes. Following this, the reaction was stopped with 10 ml of 37�C
pre-warmed DMEMwith 10%heat inactivated FBS, the cells were dissociated by gentle tritration with a 1000ml and 200ml pipette and

filtered through 70 mm Falcon� Cell Strainers (08-771-2). For meningeal cell isolation; after the brain was removed, the meningeal

dura layer that was attached to the calvaria bone, was plucked carefully using fine tipped dissection pincers (Dumont #55 Forceps,

Dumostar, 11295-51, FST) under a dissection microscope. Leptomeninges was not isolated and therefore is not included in this

study. The dissected meninges was placed in 37�C pre-warmed DMEM with 10% heat-inactivated FBS solution, shredded with a

fine scalpel, gently titrated with a 200 ml pipette and filtered through a 70 mm Falcon� Cell Strainers (08-771-2). For humerus, verte-

brae and femur cell isolation; the bone was dissected from the body and the muscles and connective tissue were meticulously

cleared off. The bone marrow inside was flushed out to the collection tube with the help of a syringe (Braun, Injekt - F Solo

2-piece Fine Dosage Syringe 1 ml x 100), and further dissection of the bone was performed by fine pincers (Dumont #55 Forceps,

Dumostar, 11295-51, FST). The remaining bone was cut into small pieces and added to the cell mix. This mixture was shortly vor-

texed with 37 �C warmed DMEM with 10% heat-inactivated FBS and filtered with 70 mm (Falcon� Cell Strainers, 08- 771-2). Lastly,

for the flat bones, calvaria, scapula and pelvis, after carefully clearing the non-bone parts in the sample i.e., muscles and connective

tissue, they were cut into small pieces (Extra Fine Bonn Scissors, 14084-08, FST), and shortly vortexed and filtered through 70 mm

Falcon� Cell Strainers (08-771-2). After all the samples were ready, they were centrifuged at 4 �C, with 1000 rpm, for 5 minutes. The

supernatant of all samples was then discarded and the remaining precipitate was put into small 1.5 ml Eppendorf tubes (Eppendorf

Safe-Lock Tubes, 1.5 mL, Eppendorf Quality�, 0030120086) after resuspension with DMEM. Cell viabilities and numbers were

checked with trypan blue by an automated cell counter (TC20� Automated Cell Counter) and controlled by manual counting (Neu-

bauer Cytometry Chamber, MARI0640031).

Cell sorting and plate-based bulk RNA-sequencing
6-month-old mice were used for this study (3 5XFAD, 3 wildtype littermates). Cell sorting for CD45 and CD11b positive cells, cDNA

generation and library construction was performed as described previously.93 Briefly, after cells were passed through a 70 mm cell

strainer, staining was performed for 15 min using 7AAD (Thermo Fisher, A1310, 25 ug/ml) and the antibodies against CD45 (eFluor

450,30-F11, eBioscience,Cat.:48-0451-82, 1:200) and CD11b (PE/Cy7,M1/70, eBioscience, Cat:25-0112-82,1:200). Cells were then

washed with PBS (Sigma, D8537). Viable (7AAD negative) immune cells (CD45 and CD11b positive cells) were sorted by flow cytom-

etry (SH800; Sony) into the 96-well plates by groups of 50 cells per well (we acquired 69 samples). The 96-well plates were filled with

4 ml lysis buffer containing 0.05% Triton X-100 (Sigma), ERCC (External RNA Controls Consortium) RNA spike-in Mix (Ambion,Life
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Technologies) (1:24000000 dilution), 2.5 mM oligo-dT, 2.5 mM dNTP and 2 U/ml of recombinant RNase inhibitor (Clontech). The plate

was spun down and frozen at -80 C.

cDNA and cDNA libraries were generated using an improved version of the Smart-seq2 protocol. The plates with the sorted pools

were first thawed and then incubated for 3 min at 72�C and immediately placed on ice. To perform reverse transcription (RT), we

added to each well a mix of 0.59 ml H2O, 0.5 mL SMARTScribe� Reverse Transcriptase (Clontech), 2 mL 5x First Strand buffer,

0.25 ml Recombinant RNase Inhibitor (Clontech), 2 ml Betaine (5 M Sigma), 0.5 ml DTT (100 mM), 0.06 ml MgCl2 (1 M Sigma), and

0.1 ml Template-switching oligos (TSO) (100 mM AAGCAGTGGTATCAACGCAGAGTACrGrG+G). Next, RT reaction mixes were incu-

bated at 42�C for 90 min followed by 70�C for 5 min and 10 cycles of 50�C 2 min, 42�C 2 min; finally ending with 70�C for 5 min for

enzyme inactivation. Pre-amplification of cDNA was performed by adding 12.5 ml KAPA HiFi Hotstart 2x (KAPA Biosystems), 2.138 ml

H2O, 0.25 ml ISPCR primers (10 mM, 50 AAGCAGTGGTATCAACGCAGAGT-3), 0.1125 ml Lambda Exonuclease under the following

conditions: 37�C for 30 min, 95�C for 3 min, 20 cycles of (98�C for 20 sec, 67�C for 15 sec, 72�C for 4 min), and a final extension

at 72�C for 5 min. Libraries were then cleaned using AMPure bead (Beckman-Coulter) cleanup at a 0.7:1 ratio of beads to PCR prod-

uct. Library was assessed by Bioanalyzer (Agilent 2100), using the High Sensitivity DNA analysis kit, and also fluorometrically using

Qubit’s DNA HS assay kits and a Qubit 4.0 Fluorometer (Invitrogen, LifeTechnologies) to measure the concentrations. Samples were

normalized to 160 pg/mL. Sequencing libraries were constructed by using an in-house produced Tn5 transposase.94 Libraries were

barcoded with the Illumina Nextera XT (FC-131-1096, Illumina) and pooled, then went through three rounds of AMPure bead

(Beckman-Coulter) cleanup at a 0.8:1 ratio of beads to library. Libraries were sequenced 2x100 reads base-pairs (bp) paired-end

on Illumina HiSeq4000.

Single-cell suspension isolation from the human bones for proteomics
Bone samples were collected into formalin and were washed with PBSwithin 24 hours of fixation. Then, samples were placed in 20%

EDTA (pH�8) in 37�C. EDTAwas changed every second day.When all bones reached a cuttable softnesswith scissors and a scalpel,

the samples were washedwith PBS overnight. 20 skull, vertebra and pelvis were dissected by carefully clearing the non-bone parts in

the sample i.e., muscles and connective tissue. The same sizes of bones were cut into small pieces on a glass petri-dish with PBS.

The resulting cell suspension was filtered through 40 mm Falcon� Cell Strainers into a 50 ml Falcon tube. The samples were centri-

fuged for 5 minutes in 12000g. The supernatant was discarded. The pellet was resuspended in 1 ml pbs and transferred to 1.5 ml

Eppendorf tube (Eppendorf Safe-Lock Tubes, 1.5 mL, Eppendorf Quality�, 0030120086). The tubes were centrifuged for another

5 minutes in 12000g. PBS was discarded and samples were stored in -80 until all samples were acquired.

Single-cell isolation from human skull for scRNAseq
Sample was sectioned in the clinic with an electric saw to generate thinner, smaller pieces and was collected in DMEM + 10% FCS.

The sample was brought to lab from the clinic on ice. Using a needle and a syringe, the bonemarrow cells were flushed DMEM+ 10%

FCS (Gluc + /Glut +) into a 50 ml tube. Bone was further crushed using a mortar on ice in order to release more marrow cells into the

cell suspension. Each sample was filtered through a 70 mm strainer and centrifuged at 500 rcf for 5 mins at 4�C. Supernatant was

discarded. The pellet was resuspended in 10 ml chilled PBS / 2%BSA. Then, the cells were visually counted using trypan blue to

assess the high viability. Next, the samples were washed again as above and resuspended for loading to the 10X Chromium.

scRNA sequencing – 10x Genomics
Samples were used for scRNA-seq if the fraction of dead cells determined by trypan blue staining was below 20%. Cell suspensions

were diluted with PBS/2% FCS for mouse experiments and PBS/2% BSA for the human experiment, to a final concentration of

1000 cell/ml and 17.000 cells per sample were loaded onto 10x Chromium Single Cell RNA-seq chips to recover a target cell number

of 10.000 cells per sample. Libraries were generated in three replicates for the mouse experiment. The 10x Chromium Single Cell 30

Library &Gel Bead Kit v3 formouse and v3.1 for humanwas used following themanufacturer’s protocol. Librarieswere sequenced on

an Illumina HiSeq 4000 (150 bp, paired end) for mouse experiment and NovaSeq6000 for human experiment.

Sample preparation for bulk RNA isolation
Mice were deeply anaesthetized with ketamine (120mg/kg) and xylazine (16mg/kg) and transcardiacally perfused with cold PBS. The

necessary samples were quickly harvested and placed in ice-cold RNAlater solution in 1.5 ml tubes.95 The samples were left in RNA-

later solution for 24h in 4 �C. Next, the solution was discarded and samples were placed in -80 for storage until RNA isolation.

Bulk RNA isolation, library preparation and sequencing
The samples were processed 12 at a time. Samples were in a 2ml Eppendorf tube. 1ml of Trizol and ametal beadwas added to each

sample. Samples were then lysed in Tissue Lyser with 30 Hz frequency for 3 minutes. 200 ml of Chloroform was added to each sam-

ple. After rigorous vortexing, samples were incubated at room temperature for 15 minutes. Next, samples were centrifuged at

10,000 g for 10 minutes at 4�C. The upper phase of the sample was transferred into a new tube. 240 ml, 100% seq-grade EtOH

was added and samples were briefly vortexed. The samples were loaded into Econospin columns and were centrifuged at

13000 g for 30 seconds at room temperature. Flow-through was discarded. The samples were washed 3x with RPE buffer (Qiagen

#1018013) and centrifuged at 13000 g for 30 seconds each time. After the last wash, sample was centrifuged dry. Next, columnswere
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transferred into new 1.5 ml tubes with open lids for 10 minutes. RNAse free water was used to elute the sample in 30 ml. Final centri-

fuge was performed at 9000 g for 2 minutes at room temperature. All samples were subjected to Nanodrop, Qubit and Bioanalyzer

assays in order to determine quality and quantity of each sample. Samples were stored at -80 until all samples were processed. Only

samples with RIN>8 were used. Illumina ligation stranded mRNA prep kit was used for library preparation and the sequencing of 95

samples were performed on a PE 2x100 flow cell.

Flow cytometry
Cell isolation and labeling

Cell isolations were prepared as previously described in ‘‘Single cell isolation for scRNAseq and proteomics’’ section. The suspended

cells were centrifuged at 500g for 7 minutes at 4�C. The supernatant was discarded, and samples were resuspended in 1 ml FACS

buffer. The 1 ml buffer with cells was transferred to a FACS tube. Tubes were spun down at 500 g 7 minutes at 4�C. The supernatant

was discarded and each sample was resuspended in 50ml FACS buffer with 0.5 ml FC blocker. The samples were incubated for 10mi-

nutes, in dark on ice. Then 50 ml of antibody mix was added to each sample: (1 ml each from Ly-6G/Ly-6C (APC/Cyanine7, Biolegend,

#108423), Cd11c (APC, Biolegend #117309), F4/80 (PerCP-Cy5, BD, #567202), CD45 (BUV395, BD. #565967), CD117(BV421, BD,

#566290), I-A/I-E (Brilliant Violet 510, Biolegend, #107635), Ter-119 (BV650, Biolegend, #128035), NK-1.1 (Brilliant Violet 711, Bio-

legend, #108745), CD11b (Brilliant Violet, Biolegend, #101243), CD179a (PE, Biolegend, #143603), CD45R/B220 (PE-Cy5, BD,

#553091), CD182 (CXCR2) (PE/Dazzle 594, Biolegend, 149317), Ly-6A/E (PE Cy 7, BD, #561021) and 1.5 ml each from CD3 Alexa

Fluor 700, BD, #561388), Ly-6C (Brilliant Violet 605, Biolegend, 128035), 34 ml FACS buffer). Samples were incubated for 15 minutes

on ice in dark. After the staining 3 ml of FACS buffer was added to each sample. The samples were centrifuged at 500 g 7 minutes at

4�C. After discarding the supernatant, samples were resuspended in 200 ml of FACS buffer to be measured by the machine.

Proportions

Sample were recorded on a LSRFortessa (BD) and data were analyzed with FLowJo software (Tree Star). Cell numbers were calcu-

lated as percentage of an appropriate gate. After gating out doublets, dead cells (SytoxGreen+) and red blood cells (Ter119+), white

blood cell (CD45+) subpopulations were defined as follows: T-cells (CD3+), immature B-cells (B220dim I-A/I-Evar), mature B-cells

(B220+ I-A/I-E+), NK-cells (NK1.1+), monocytes (F4/80+), eosinophils (Ly6G-, SSChigh), early neutrophils (Ly6G+, CXCR2-), late

neutrophils (Ly6G+, CXCR2+) and hematopoetic stem-/progenitor cells (LSK cells, Lineage-, Sca-1+, c-Kit+).

Photoconversion KikGR

Micewere anesthetizedwith 1.5–2% isoflurane (vol/vol), delivered inmedicine air, andmaintained at 37 �C throughout the procedure.

Briefly, a skin midline incision wasmade on the head of the mouse, and the skull was exposed. Photoconversion was performed with

a defocused (5-mm beam diameter) violet laser source (405 nm, peak power 4.5 mW, ThorLabs) placed 5 cm above the skull of the

brain ischemic region (ipsilateral) for 3 min. Mouse skin was then sutured and allowed to recover on a heating pad until responsive.

One hour or six hours after photonconversion, mice were anesthetized with isofluorane and transcardially perfused with 20 ml cold

PBS containing Heparin (2U/ml). Cell suspensions from brain and skull (ipsilateral and contralateral), spleen and femur were isolated

as indicated below for flow cytometric analysis and the percentage of photoconverted red cells (KikGR+) was analyzed in the appro-

priate cell populations.

Cell isolation

Mice were deeply anaesthetized with ketamine (120mg/kg) and xylazine (16mg/kg) and transcardiacally perfused with cold PBS. The

skull, femur, spleen and brain were immediately harvested and kept on ice. The olfactory bulb and cerebellum were discarded, and

the brain wasmechanically dissociated in RPMImediawith a douncer homogenizer, followed by a Percoll gradient centrifugation. For

the isolation of skull bonemarrow,meninges were peeled from the skull cup under themicroscope and not included in this study. The

isolated calvarium was cut into small pieces and mechanically dissociated on top of a 40 mm cell strainer with the end of a 1-mL sy-

ringe plunger. After centrifugation at 500g for 7 minutes, cell suspensions were washed with PBS or FACS buffer.

Flow cytometry of KikGR animals

For differentiation of live and dead cells we stained cells with the Zombie NIR (BioLegend). For surface marker analysis, nonspecific

binding was blocked by incubation for 10 min at 4 �C with anti-CD16/CD32 antibody (Biolegend, 5 ng/mL) antibody and stained with

the appropriate antibodies for 15 min at 4 �C. The following antibodies were used for extracellular staining: CD45 (clone 30-F11,

eFluor450, Invitrogen # 48-0451-82), CD11b (clone M1/70, PE/Cy7, Invitrogen # 25-0112-82), Ly6C (clone HK1.4, PerCP/Cy5.5,

BioLegend #128012), Ly6G (clone 1A8-Ly6g, PE-eFluor610, Invitrogen #61-9668-82), CD3 (Clone 17A2, APC, Invitrogen #

17-0032-82) and CD19 (eBio1D3, APC/eFluor780, Invitrogen # 47-0193-82).

Cells were washed with FACS buffer, resuspended in 200 ml of FACS buffer and acquired using a Cytek� Northern Lights (Cytek�
Biosciences, US) and analyzed using FlowJo software (Treestar, US). Isotype controls were used to establish compensation and

gating parameters.

Multiplexed RNAscope smFISH
Large tissue section staining and fluorescent imagingwere conducted largely as described previously.96 Sectionswere cut from fixed

frozen samples embedded in OCT at a thickness of 10 mmusing a cryostat, placed onto Hydrophilic Plus slides (BioSB) and stored at

-80�C until stained.
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Fixed frozen tissue sections were processed using a Leica BOND RX to automate staining with the RNAscope Multiplex Fluores-

cent Reagent Kit v2 Assay (Advanced Cell Diagnostics, Bio-Techne), according to the manufacturers’ instructions. Probes may be

found in Table S1, tab 37. Prior to staining, sections were post-fixed in 4% paraformaldehyde in PBS at 4�C for 15 minutes, then

dehydrated through a series of 50%, 70%, 100%, and 100% ethanol, for 5 minutes each. To maximize adhesion of sections, slides

were then baked at 37�C for 30 minutes. Following manual pre-treatment, automated processing included digestion with Protease III

for 10minutes prior to probe hybridisation. Tyramide signal amplification with TSA Vivid 520, TSA Vivid 570, and TSA Vivid 650 (Tocris

Bioscience) and TSA-biotin (TSA Plus Biotin Kit, Perkin Elmer) and streptavidin-conjugated Atto 425 (Sigma Aldrich) was used to

develop RNAscope probe channels.

To reduce autofluorescence, slides were treated immediately post-staining with TrueBlack� Plus Lipofuscin Autofluorescence

Quencher (Biotium) for 5 minutes, then washed several times with PBS before mounting with ProLong Gold Antifade Mountant

(Thermo).

High-resolution imaging
Stained sections were imaged with a Perkin Elmer Opera Phenix Plus High-Content Screening System, in confocal mode with 2 mm

z-step size, using a 40X (NA 1.1, 0.149 mm/pixel) water-immersion objective. Channels: DAPI (excitation 375 nm, emission 435-

480 nm), Atto 425 (ex. 425 nm, em. 463-501 nm), TSA Vivid 520 (ex. 488 nm, em. 500-550 nm), TSA Vivid 570 (ex. 561 nm, em.

570-630 nm), TSA Vivid 650 (ex. 640 nm, em. 650-760 nm).

Image stitching
Confocal image stacks were stitched as two-dimensional maximum intensity projections using proprietary Acapella scripts provided

by Perkin Elmer. Resulting images were viewed as OME-TIFFs using OMERO Plus (Glencoe Software).

Scanning electron microscopy
Human skull samples were freshly prepared, dissected and immersed into fixative (4%PFA and 2.5%glutaraldehyde in 0.1M sodium

cacodylate buffer, pH 7.4; Science Services). After decalcification in EDTA for 1month at 4�C and 1month at room temperature, skull

samples were washed, further dissected into 1x2 mm slabs bearing dura and bone layers and immersion fixed for 24h in fixative. We

applied a standard rOTO en bloc staining protocol including postfixation in 2%osmium tetroxide (EMS), 1.5%potassium ferricyanide

(Sigma) in 0.1 M sodium cacodylate (Science Services) buffer (pH 7.4).97 Staining was enhanced by reaction with 1% thiocarbohy-

drazide (Sigma) for 45 min at 40�C. The tissue was washed in water and incubated in 2% aqueous osmium tetroxide, washed and

further contrasted by overnight incubation in 1% aqueous uranyl acetate at 4�C and 2 h at 50�C. Samples were dehydrated in an

ascending ethanol series and infiltration with LX112 (LADD). Blocks were screened for tunnel structures transversing from the

bone to the dura on cross sections using sequential trimming (TRIM2, Leica) and light microscopy of semithin sections. Serial sec-

tions were taken with a 35� ultra-diamond knife (Diatome) on an ATUMtome (Powertome, RMC) at a nominal cutting thickness of

200 nm and collected on freshly plasma-treated (custom-built, based on Pelco easiGlow, adopted fromM. Terasaki, U. Connecticut,

CT), carbon coated Kapton tape (kindly provided by Jeff Lichtman andRichard Schalek). Tape stripeswere assembled onto adhesive

carbon tape (Science Services) attached to 4-inch silicon wafers (Siegert Wafer) and grounded by adhesive carbon tape strips (Sci-

ence Services). EMmicrographs were acquired on a Crossbeam Gemini 340 SEM (Zeiss) with a four-quadrant backscatter detector

at 8 kV using ATLAS5 Array Tomography (Fibics). We acquired medium resolution (40-100 nm) images of the entire section and the

region of interest and processed in Fiji.82

Proteomics Sample Preparation
Sample preparation for proteomics analysis was performed as described previously with slight modifications.98 Briefly, for mouse

samples, SDC lysis buffer (2% SDC, 100 mM Tris-HCl pH 8.5) was used to lyse the cell pellets at 95�C for 45 min at 600 rpm in a

thermoshaker. For human samples which were fixed in PFA, prior to the SDC lysis buffer step, the samples were first resuspended

in 6% SDS buffer, heat denatured, sonicated and then precipitated using 80% acetone overnight in -20�C. Next day, these samples

were centrifuged and the pellet was resuspended in SDC lysis buffer. After this, the procedure remains the same for both mouse and

human samples. Naı̈vemeninges samples frommicewere lost during sample preparation. The samples in SDCbuffer were sonicated

in high mode for 15 cycles (30 sec OFF, 30 sec ON) (Bioruptor� Plus; Diagenode). The samples were again heated at 95�C for 45 min

at 600 rpm in a thermoshaker. The extracted and solubilized protein concentration was estimated by BCA method and 25 mg of pro-

tein was further reduced and alkylated using a final concentrations of 10 mM TCEP and 40 mM CAA in dark, at 45�C for 10 min with

600 rpm in a thermoshaker. The protein sampleswere digested overnight with Trypsin and LysC (1:50, protease:protein ratio) at 37�C,
1,000 rpm shake. Resulting peptides were acidified with 1% TFA 99% isopropanol with 1:1 volume-to-volume ratio, vortexed and

centrifuged to pellet residual particles. The supernatant was transferred to fresh tubes and subjected to in-house built StageTip

clean-up consisted of three layers of styrene divinylbenzene reversed-phase sulfonate (SDB-RPS; 3 M Empore) membranes. Pep-

tides were loaded on the activated (100% ACN, 1% TFA in 30%Methanol, 0.2% TFA, respectively) StageTips, run through the SDB-

RPS membranes, and washed by EtOAc including 1% TFA, isopropanol including 1% TFA, and 0.2% TFA, respectively. Peptides

were then eluted from the membranes via 60 mL elution buffer (80% ACN, 1.25% NH4OH) and dried using vacuum centrifuge
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(40 min at 45�C). Finally, peptides were reconstituted in 10 mL of loading buffer (2% ACN, 0.1% TFA) and peptide concentration was

estimated using PierceTM Quantitative Colorimetric Peptide Assay.

Liquid chromatography and mass spectrometry (LC-MS/MS)
The mass spectrometry data was acquired in data independent acquisition (DIA) mode. The LC-MS/MS analysis was carried out us-

ing EASY nanoLC 1200 (Thermo Fisher Scientific) coupled with trapped ion mobility spectrometry quadrupole time-of-flight single

cell proteomics mass spectrometer (timsTOF SCP, Bruker Daltonik GmbH, Germany) via a CaptiveSpray nano-electrospray ion

source. Peptides (50 ng) were loaded onto a 25 cm Aurora Series UHPLC column with CaptiveSpray insert (75 mm ID, 1.6 mm

C18) at 50�C and separated using a 50 min gradient (5-20% buffer B in 30 min, 20-29% buffer B in 9 min, 29-45% in 6 min,

45-95% in 5 min, wash with 95% buffer B for 5 min, 95-5% buffer B in 5 min) at a flow rate of 300 nL/min. Buffer A and B were water

with 0.1 vol% formic acid and 80:20:0.1 vol% ACN:water:formic acid, respectively. MS data were acquired in single-shot library-free

DIA mode and the timsTOF SCP was operated in DIA/parallel accumulation serial fragmentation (PASEF) using the high sensitivity

detection-low sample amountmode. The ion accumulation and ramp timewas set to 100ms each to achieve nearly 100%duty cycle.

The collision energy was ramped linearly as a function of the mobility from 59 eV at 1/K0 = 1.6 Vs cm�2 to 20 eV at 1/K0 = 0.6 Vs

cm�2. The isolation windows were defined as 24 X 25 Th from m/z 400 to 1000.

Proteomics data processing
diaPASEF raw files were searched against the human uniport database using DIA-NN.99 Peptides length range from seven amino

acids were considered for the search including N-terminal acetylation. Oxidation of methionine was set as a variable modification

and cysteine carbamidomethylation as fixed modification. Enzyme specificity was set to Trypsin/P with 2 missed cleavages. The

FASTA digest for library-free search was enabled for predicting the library generation. The FDRwas set to 1% at precursor and global

protein level. Match-between-runs (MBR) feature was enabled and quantification mode was set to ‘‘Robust LC (high precision)’’. The

Protein Group column in DIA-NN’s report was used to identify the protein group and PG.MaxLFQ was used to calculate the differ-

ential expression.

Small animal PET/MRI acquisition
All rodent PET procedures followed an established standardized protocol for radiochemistry, acquisition times and post-process-

ing,100,101 which was transferred to a novel PET/MRI system.102 All mice were scanned with a 3TMediso nanoScan PET/MR scanner

(Mediso Ltd, Hungary) with a triple-mouse imaging chamber. A 15-minute anatomical T1 MR scan was performed at 45 min after

[18F]-GE180 injection (head receive coil, matrix size 96 3 96 3 22, voxel size 0.24 3 0.24 3 0.80 mm3, repetition time 677 ms,

echo time 28.56 ms, flip angle 90�). Injected dose was 13 ± 2 MBq delivered in 200 ml saline via venous injection. PET emission

was recorded at 60-90 min p.i. PET list-mode data within 400–600 keV energy window were reconstructed using a 3D iterative al-

gorithm (Tera-Tomo 3D, Mediso Ltd, Hungary) with the following parameters: matrix size 55 3 62 3 187 mm3, voxel size 0.3 3

0.3 3 0.3 mm3, 8 iterations, 6 subsets. Decay, random, and attenuation correction were applied. The T1 image was used to create

a body-air material map for the attenuation correction.

Human TSPO-PET imaging acquisition
All participants were scanned at the Department of Nuclear Medicine, LMUMunich, using a Biograph 64 PET/CT scanner (Siemens,

Erlangen, Germany). Before each PET acquisition, a low-dose CT scan was performed for attenuation correction. Emission data of

TSPO-PET were acquired from 60 to 80 minutes62,103 after the injection of 187 ± 11 MBq [18F]GE-180 as an intravenous bolus, with

some patients receiving dynamic PET imaging over 90 minutes. The specific activity was >1500 GBq/mmol at the end of radiosyn-

thesis, and the injectedmass was 0.13 ± 0.05 nmol. All participants provided written informed consent before the PET scans. Images

were consistently reconstructed using a 3-dimensional ordered subsets expectation maximization algorithm (16 iterations, 4 sub-

sets, 4 mmgaussian filter) with amatrix size of 3363 3363 109, and a voxel size of 1.0183 1.0183 2.027mm. Standard corrections

for attenuation, scatter, decay, and random counts were applied. For the AD cohort, emission data of Ab-PET were acquired from 90

to 110 minutes after injection of 188 ± 10 MBq [18F]flutemetamol. Ab-PET was assessed by a visual read (one expert reader), and the

decision of Ab-positivity/negativity was supported by a software-driven approach implemented in HERMES Gold (V4.17, HERMES

Medical Solutions AB, Stockholm, Sweden). One positive evaluated target region (frontal, temporal, parietal, posterior cingulate)

defined the scan as positive.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell RNA data analysis
Count matrix generation

Count matrices were created using CellRanger (v. 3.0.2) aligning reads to the mouse genome mm10 (ensrel97). Spliced and un-

spliced matrices for RNA-velocity43 analysis were computed using the velocyto (0.17.17) pipeline. (n=3 pooled animals for sham

and n=6 pooled animals for MCAo).
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Quality control

Samples were jointly analyzed using scanpy83 (v. 1.6) and anndata (v. 0.7.5) in Python 3.7. Different quality control filters104 were used

to account for the characteristics of the different samples: In bone samples, all cells with amitochondrial read fraction higher than 0.2

were removed. In meninges and brain samples, thresholds were 0.3 and 0.6, respectively. Further, cells with less than 1000 UMI

counts (bone samples) and 500 UMI counts (meninges, brain), and more than 50,000 UMI counts were removed. We did not apply

a minimum gene filter per cell to retain erythroblasts. All genes expressed in less than 10 cells were removed. To estimate doublets,

we used the tool scrublet with a doublet score threshold of 0.1 and removed cells with a higher doublet score. Additionally, we filtered

out two small clusters that showed dendritic cell markers as well as markers from other cell types as theymight also be doublets, and

a sub cluster of early monocytes that showed an increasedmitochondrial fraction. Finally, our filtered dataset contained 147,082 cells

expressing 17,040 genes coming from 32 samples.

Data preprocessing

To normalize the data with scran,105 size factors were determined as follows: data were first temporarily normalized by total with a

target sum of 10,000 per cell followed by log+1-scaling. Then, for each cell, 30 nearest neighbors were computed and data were

clustered with Leiden clustering at default resolution 1. Small clusters with less than 100 cells were merged with closely related clus-

ters based on the PAGA graph. For PAGA graph calculations we used scanpy’s implementation with default parameters.106 Then,

size factors were computed on these clusters and the UMI count data were divided by scran size factors for each cell and log+1-

scaled. Then, mitochondrial reads were removed and 4,000 highly variable genes per sample were computed (highly_variable_genes

with flavor "cell_ranger" in scanpy). Further, cell cycle scores were computed (score_genes_cell_cycle in scanpy). To evaluate batch

effects, PC regression scores for the variance explained by cell cycle, anatomic region and condition were computed for the full data-

set and the MCAo replicates, respectively. PC regression scores were lowest in the condition and replicate covariate, respectively,

and therefore no batch effect correction was performed.

Dendrograms

With scanpy’s dendrogram function SciPy’s hierarchical linkage clustering was calculated on a Pearson correlation matrix over re-

gions which was calculated for 50 averaged principal components.

Cell type annotations

Cell types were annotated according to a two-step procedure. In a first step a Leiden clustering was calculated on the log-normalized

data. The Leiden clusters were annotated with coarse cell type labels according differentially expressed known markers. In the sec-

ond step leiden clustering with multiple resolutions were calculated for each coarse cell type. Based on differently expressed known

markers, as well as additional information like number of genes107 and scVelo43 implementation of RNA velocity42 the clusters were

annotated with fine cell types, and coarse annotations were refined.

Variance explained by covariates and PC regression

To quantify how strong cell type populations of each region diverge from the other regions the explained variance was calculated by

linear regression in PCA space. For each bone the cell type populations were grouped into the given bone vs the other bones. Scores

were only calculated if there were at least 20 cells in each of both groups. 50 principal components were calculated for each cell type.

A linear regression on the group variable was calculated for each PC component. R2 scores of the linear regression weremultiplied by

the eigenvalues of the pc components and normalized by the eigenvalue sum, and finally summed up to the variance explained. The

significance of each obtained variance explained score wasmeasured via a permutation test. The region annotations were permuted

1000 times. Scores with a p-value below 0.0001 were considered as significant. We decided to exclude scapula in further down-

stream analysis because we detected an overall decrease in log counts in this sample.

Combinatorial DE tests

For each gene, two t-tests were calculated to identify if the gene is upregulated in a group of bones. To define the two bone groups for

a given gene, bones were ordered by the gene’s mean expression and split in two groups at the highest mean expression gap. The

first t-test was conducted on the two groups and the second on the two bones closest to the expression gap. The second test en-

sures that the expressions of the two closest bones of the two groups are significantly different. Themaximal p-value andminimal log

fold change of both tests were used to identify DEGs. The chosen thresholds are p < 0.05 and LF change > 1 (> 0.5 for neutrophils

analysis).

Other differential expression tests

Differences of DAMP expressions and pro- and anti-inflammatory genes were measured with t-tests (p < 0.05, Benjamini-Hochberg

correction). The distributions of each DAMP’s expression over CD45+ cells of each bone in the scRNA-seq data were tested for sig-

nificance differences between conditions. The pro- and anti-inflammatory genes were tested individually as well as themean expres-

sion of pro- and anti-inflammatory gene sets respectively between groups of bones and conditions.

Ligand receptor (LR) interactions

For each bone ligand receptor interaction pairs between cell types were calculated with CellPhoneDB’s39 statistical analysis. An

interaction is defined by four variables: ligand, receptor, ligand cell type and receptor cell type. For a fair comparison between bones,

pairs were only calculated on cell types that had at least 10 cells in each bone. The statistical analysis was applied on log normalized

counts. 400 cells per cell type were sampled to generate a uniform background distribution of the permutation test which otherwise

would be skewed towards highly abundant cell types. Cell types with more than 400 cells were down sampled using geometric

sketching108 (geosketch v 1.2), while the other cell types were up sampled. Strict thresholds based on the CellPhoneDB p-values
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were applied to reduce the number of false positives: Interactions were considered as significant for p-values equal to 0 (1000 per-

mutations). Interactions were only considered unique to a bone group if the p-value difference between that group and the non-sig-

nificant group was above 0.95.

Gene ontology enrichment

Enrichment of Gene ontology (GO) terms for biological processes were calculated using GProfiler.109

RNA velocity

RNA velocity42 in its scVelo43 (v 0.2.3) implementation was used as follows: the dataset with spliced and unspliced raw counts was

reduced to the given cell type and condition. Then genes were filtered to 2000 genes with at least 20 counts each, and cells were

normalized (filter_and_normalize function in scVelo). First and second order moments for velocity estimation with the scVelo’s

dynamical model were calculated with default parameters.

Pseudotime analysis

Diffusion pseudotime44 was calculated to order cells along the neutrophil maturation trajectory. For naive, sham and MCAo a PCA

and neighbors’ graph were recalculated on the neutrophils population. The default parameters of scanpy’s tl.dpt function was used.

As root point we selected the most extreme pro-neutrophil cell from the umap. For cell density visualization along pseudotime44 the

cell count was smoothed with a Gaussian kernel according to the default parameters of seaborn’s (v 0.11.1) kdeplot function. Den-

sities were normalized for each region separately.

Donor Deconvolution based on SNPs

To enable statistical tests between different groups in the scRNA-seq data and validate the obtained cell type proportions we decon-

volved the samples of pooled animals based on obtained SNPs profiles of the measured transcripts. For SNPs calling we used

cellsnp-lite110 (v. 1.2.2). Based on the obtained SNPs of each cell vireo111 (v. 0.2.3) was used to demultiplex the 3 animals in each

pooled sample. Erythrocytes were removed from the analysis as they only express the hemoglobin genes which leads the deconvo-

lution algorithm to identify Erythrocytes as one donor.

Correlation of proportions with flow cytometry data

Pearson-correlation between cell type proportions of scRNA-seq and flow cytometry was measured over all cell types obtained in

flow cytometry. Since flow cytometry measurements are relative to gated subgroups, we transformed the proportions of scRNA-seq

cell types relative to comparable coarse subgroups as well. The significance of proportion differences between bones or conditions

were obtained by t-tests over flow cytometry samples and over SNPs based deconvolved animals of the pooled scRNA-seq sam-

ples. A few cell type proportion differences were observed consistently with statistical significance (p < 0.05) in both methods. E.g.,

we observed a significantly higher number of mature B-cells in sham-operated and MCAo operated compared to naı̈ve animals

(Table S1, tab 3). Other cell type differences were observed with either one of the methods, but did not always reach statistical sig-

nificance in both (Table S1, tabs 3 and 4). Upon injury, B-cell progenitors were depleted in both the flow cytometry and the scRNAseq

data. Moreover, mature neutrophils in the calvaria had a strong trend for an increased cell proportion that, however, did not reach

significance (Table S1, tabs 1–4).

Other differential expression tests

Differences of DAMP expressions and pro- and anti-inflammatory genes were measured with t-tests (p < 0.05, Benjamini-Hochberg

correction). The distributions of each DAMP’s expression over CD45+ cells of each bone in the scRNA-seq data were tested for sig-

nificance differences between conditions. The pro- and anti-inflammatory genes were tested individually as well as themean expres-

sion of pro- and anti-inflammatory gene sets respectively between groups of bones and conditions.

Bulk RNA data analysis for 5xFAD dataset
BCL files were demultiplexed with the bcl2fastq software from Illumina. After quality control with FastQC, reads were aligned using

rnaSTAR65 to the GRCm38 (mm10) genome with ERCC synthetic RNA added. Read counts were collected using the parameter

‘‘quantMode GeneCounts’’ of rnaSTAR and using the unstranded values. We filtered out data points with less than 6000 genes or

a mitochondrial fraction above 0.0015. Data points were log-normalized by total counts. The significance of the Tspo difference be-

tween WT and 5xFAD was calculated with a t-test. Differentially expressed genes between bones were obtained from t-tests with

Benjamini-Hochberg correction and a p-value threshold of 0.05. The PCA was calculated on log normalized counts. (n=3 5xFAD,

5 wildtype animals, 50 cells per sample, 69 samples in total: 37 wildtype, 32 5xFAD).

Bulk RNA data analysis for MCAo dataset
For the count matrix generation reads were aligned to the GRCm39 genome with Salmon112 using the nf-core/rnaseq pipeline113

(v. 3.9). No sample was excluded after quality control. Differentially expressed genes between bones were obtained using the

DESeq2model.114 The UMAPwas calculated based on a PCA on log-normalized counts (normalization by total counts). For the com-

parison with scRNA-seqmouse data the pearson-correlation betweenmean log raw counts over genes of single cell and bulk data of

each bone was calculated. (n=5 naı̈ve, 5 sham, 6 MCAo animals).

Statistical analysis of KikGR animals
Due to high penetration of UV laser, someCd11b+ cells, that could bemicroglia were illuminated as well. To control for this offset, the

percentage of microglia illuminated was subtracted from myeloid cells. Acquired data was analyzed and visualized using GraphPad
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Prism (version 8.0) using two-tailed t-test. (Each dot represents a biological replicate, n=5 for 1h and n=4 animals for 6h, data rep-

resented as ± SEM).

Image Analysis
2-Photon analysis

We analyzed the 2-photon image stacks as maximum intensity projected time-series (3 frames per batch). We trained a random for-

est pixel classifier (Ilastik115 with default settings) on 3 images of the green channel (LysM-eGFP) and used that for subsequent clas-

sification of the LysM-eGFP channel of each image stack. This gave 8-bit probabilities for each frame, whichwe then thresholded and

watershed-segmented using ImageJ.82 We performed this procedure with the pixel count (=area) occupied by GFP+ cells. We

normalized LysM+ cell density at each time point to the cell density at baseline for each ROI. To account for other influences such

as laser skull exposure, laser illumination, and anesthesia we further normalized the fold changes in sham and MCAo to those

observed in naı̈ve animals at the same time point. The quantification graph was analyzed and visualized using GraphPad Prism

(version 8.0) using two-tailed t-test and simple linear regression. (n=3 for naı̈ve and sham and n=5 animals for MCAo, data repre-

sented as ± SEM.)

Tissue cleared mouse head analysis

For quantification of the mouse heads, manual ROIs were drawn on the frontal and parietal skull bones. C57BL6/J mice has been

used for naı̈ve condition quantification. The areas above manually selected threshold based on bone marrow coverage were re-

corded. The quantification graph was analyzed and visualized using GraphPad Prism (version 8.0) (Ordinary one-way ANOVA with

multiple comparisons). (n=3 per group, data represented as ± SEM).

Nr4a1 analysis

Three naı̈ve mice heads and femurs were labeled with Nr4a1 antibody and propidium iodide (for nuclei staining) and high-resolution

images were obtained for 20 ROIs from the mouse skulls and 14 ROIs from the femurs (Figure 2D). We then quantified the number of

voxels with a signal above threshold and found that a significantly higher percentage ofNr4a1 positive voxels in themouse head (Fig-

ure 2E). For the quantification ofNr4a1, same-sized regions of interest (ROIs) of 12x scans of theNr4a1 channel was used. For each of

these, an expert manually selected the signal activation threshold after visual inspection in an image analysis software (e.g., Fiji).

These thresholds were then used in Python to obtain binary masks of active expression of the same size as the ROI. Pixels that

have higher intensity than the threshold in the Nr4a1 channel are assigned the value of 1 (positive pixels), and the rest, 0. The total

amount of pixels above threshold in each ROI is the number of positive pixels in the binary mask, whereas the percentage of signal in

the volume is calculated as the number of positive pixels divided by the number of total pixels in the ROI. The quantification was

analyzed and visualized using GraphPad Prism (version 8.0) using two tailed t-test. (n=3 per group, data represented as ± SEM).

Human skull segmentation and channel measurement

Segmentation of the skull channels network andmeasurement of skull meninges channels were performed by using syGlass (https://

www.syglass.io/). This software allows to visualize themicroscopic data of the light sheet microscopes in 3D in Virtual Reality (VR). To

segment and measure the data, smaller ROIs were cut out in VR. In these ROIs the openings in the meninges connected to the skull

meninges channels were segmented up to the channel network that connects to the first bonemarrow chambers in the skull. Then the

Virtual reality software was used to change visual settings in order to measure, segment and to generate videos in 3D. The quanti-

fication was analyzed and visualized using GraphPad Prism (version 8.0) using two tailed t-test. (n=7 post-mortem samples, 23 ROI in

total, 522 channels, data represented as ± SEM).

Graph Representation of the Skull Channels

In order to achieve an additional compact representation of the skull channels we extracted a graph representation from the human

skull segmentation described above using VR.We used the voreen open-source software to generate a centerline representation and

second a graph representation with edges and nodes. In total, the skull channel graph consists of 399 nodes, and 440 edges with an

average node degree of 2.21. The images are rendered using the Syglass software (Figure S6R).

Proteomics data analysis
Both human and mouse samples were jointly analyzed using scanpy (v. 1.9.1) and anndata (v. 0.7.6) in Python 3.8 and follows similar

analysis pipeline. (n=3 independent samples each for bones and brain for all conditions, n=3 for meninges MCAo and sham

conditions.)

Quality control

All proteins expressed in less than half of the bone samples were filtered out. For mice, themeninges were excluded from the filtration

criterion since we identify the least number of proteins.

Data preprocessing

The data was further log-transformed and normalised per sample. KNN imputation was our method of choice using KNNImputer

(n_neighbors=5) from the sklearn package (v. 0.22).

Gene set enrichment analysis (GSEA)

Enrichment of Gene ontology (GO) terms for biological processes were analysed using GProfiler109 and Enrichr.116
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Weighted correlation network analysis (WGCNA)

To identify the different modules of correlated genes in our datasets, WGCNA were used [python version: PyWGCNA117]. This

method is an unsupervised algorithms for finding clusters (modules) of highly correlated genes based on a graph where nodes rep-

resents genes/proteins and the adjacency matrix is calculated based on the co-expression similarity between the nodes. Modules

are then identified as clustered of interconnected nodes (genes/proteins) using hierarchical clustering. Gene ontology enrichment is

further applied for genes/proteins identified from each module are to determine the biological processes pathways related to these

modules.

Dendrograms

With scanpy’s dendrogram function scipy’s hierarchical linkage clustering was calculated on a Pearson correlation matrix over re-

gions which was calculated for 50 averaged principal components.

Differential expression tests

To identify differentially regulated genes across two conditions (e.g. one bone vs the rest), scanpy’s method that ranks genes group

using t-tests was used. The maximal p-value and minimal log fold change were used to identify differentially expressed proteins/

genes (DEPs). The chosen thresholds are p < 0.05 and LF change > 1. These DEPs were further used to plot the volcano plots.

Small animal PET/MRI analysis
To capture skull specific PET signal from the skull in three wildtype mice, immediately after in vivo TSPO-PET imaging of mice, the

brain, blood (perfusion via PBS) and all tissue surrounding the skull bonewas removed. The skull bone of eachmousewas imaged via

a second TSPO-PET session. The signal attributable to the skull in the in vivo TSPO-PET images were compared to the signal in the

respective skull-only TSPO-PET as standard of truth. For this purpose, an in-house CT template to delineate the skull bone in PET

was used and a cluster-based analysis (k-means clustering) was performed, dividing the skull into 50 regions of increasing PET signal

intensity. We studied TSPO-PET images of 5xFAD mice (n=6) and wild-type mice (n=6), all female at an age of 4.5 months. Normal-

ization of injected activity was performed by cerebellar scaling118 to ensure consistency with human data. TSPO labeling in the skull

was obtained in each mouse from a fronto-parietal volume-of-interest (comprising 24 mm3) and from a temporal volume-of-interest

(comprising 16 mm3), which were semi-automatically delineated using an in-house CT template. Fronto-polar skull was spared to

avoid signal spill-over from regions with strong amyloidosis and microglial activation inside the brain. TSPO labeling of the skull

was compared 5xFAD and wild-type mice. Voxel-wise differences were calculated to allow a volume-of-interest independent vali-

dation of elevated skull tracer binding in 5xFAD mice. The quantification and visualization was done using GraphPad Prism (version

8.0) using two-tailed t-test (data represented as ± SEM) and correlation analysis.

Human TSPO-PET imaging analysis
All TSPO-PET data were analyzed using PMOD. Spatial normalization was performed to a tracer specific templates in the Montreal

Neurology Institute (MNI) space which was acquired via MRI-based spatial normalization. All images were normalized by cerebellar

grey matter scaling (defined by the Hammers atlas119) prior to analysis and a standardized-uptake-value (SUV) analysis served for

pseudo-reference tissue independent validation.

For stroke, multiple sclerosis and 4R tauopathy patients we defined three target regions based on a voxel-wise exploratory anal-

ysis: temporopolar skull (comprising 18 cm3), skull base (comprising 97 cm3), and prefrontal skull (comprising 7 cm3). All regions were

semi-automatically delineated using the human CT template available in PMOD. Region-based PET values were normalized to a

composition of values of exactly age-matched (% 1 year difference) controls at the group level. Voxel-wise differences (% vs.

age-matched controls) were calculated to allow a volume-of-interest independent validation of elevated skull tracer binding in all pa-

tient groups. Following the region-based approach, we used compositions of exactly age-matched controls for this calculation.

For the AD cohort, TSPO labeling in the calvaria was obtained in each participant from a large fronto-parietal volume-of-interest

(comprising 66 cm3), whichwas semi-automatically delineated using the humanCT template available in PMOD. Posterior and frontal

calvaria was spared to avoid signal spill-over from sinuses and extracranial structures. Furthermore, we used a Brainnetome66 atlas-

based classification of cortical brain regions and corresponding calvaria regions to test for regional calvaria-brain associations. To

this end, we increased the dimension of the atlas by a factor of 1.2 and we delineated all volumes-of-interest that were represented in

the calvaria as defined by the CT template (R50% of voxels included). This approach resulted in 64 individual calvaria-brain region

pairs. TSPO labeling of the calvaria was compared between AD patients with b-amyloid pathophysiology (AD) and b-amyloid nega-

tive controls. Voxel-wise differences were calculated to allow a volume-of-interest independent validation of elevated calvaria tracer

binding in patients with AD. TSPO labeling of the calvaria was correlated with age, sex, and cognitive testing (MMSE, CERAD, CDR)

as well as with b-amyloid levels in CSF. Calvaria-brain associations of TSPO-PET were tested for the global calvaria volume-of in-

terest with Braak stage and b-amyloid related composite brain regions. Furthermore, calvaria-brain associations were tested by a

correlation matrix of the predefined 64 volume-of-interest pairs. Single region increases in patients with AD vs. healthy controls

were correlated between calvaria and brain regions.

As a validation of specificity, we performed an additional analysis of TSPO tracer uptake in the corpus vertebrae of C2. This bone

was chosen as a negative control region since it was captured in nearly all acquisitions as the most remote bone structure relative to

skull. The analysis was performedmanually using HERMES Full Flex (V4.17, HERMESMedical Solutions AB, Stockholm, Sweden). A

1.0 mm3 sphere was placed in the center of C2 and SUV was extracted and normalized to cerebellar uptake (i.e. SUVr).
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For longitudinal imaging, individual follow-up TSPO-PET SUVr of the fronto-parietal region were compared to baseline by a paired

t-test for both patients of the AD continuum and controls. For patients with stroke, we used SUV normalization since distinct changes

of tracer uptake in whole brain did not allow reference tissue normalization for the longitudinal analysis. Here, individual follow-up

TSPO-PET SUV of the infarct region were compared to baseline by a paired t-test, as no 3 month follow-up scans were available

for healthy controls. As a region independent analysis we used the skull template implemented in SPM (V12, University College of

London, London, UK) running in Matlab version R2016 (MathWorks Inc., Natick, MA) and performed a voxel wise paired t-test anal-

ysis between baseline and follow-up images of patients of the AD continuum and controls (SUVr) aswell as patients with stroke (SUV).

A p value threshold of 0.05, incorrectly formultiple comparisons, was considered significant to obtain a pattern of changes rather than

only peak clusters with the highest changes. Significant changes were displayed as a skull surface projection. The ActiGliA cohort

also allowed to correlate changes of TSPO tracer uptake in brain with changes of TSPO tracer uptake in skull for patients of the

AD continuum and controls (not feasible in stroke due to the individual locations of the lesion). Skull was treated as one region of

interest as described for the longitudinal analysis above. Brain was parcellated into 246 regions of the brainnetome atlas.120 Chances

of all 246 brain regionswere correlatedwith changes in skull separately for patients of the AD continuumand controls. An FDR correc-

tion for multiple comparisons was applied to the respective p values.

Statistics for human TSPO-PET imaging
Group comparisons of VOI-based PET results between patient groups with mixed neurological disorders and controls (n=5 groups)

were assessed by 1-way ANOVA and Bonferroni post hoc correction for multiple comparisons using IBM SPSS Statistics (version

22.0; SPSS). All data were controlled for age, sex and the TSPO single nucleotide polymorphism at the individual subject level.

Group comparison of Human TSPO-PET results between controls and AD patients were assessed by a two-tailed t-test in SPSS

Statistics (version 22.0; SPSS), controlled for age, sex and the TSPO single nucleotide polymorphism. For correlation analyses, Pear-

son coefficients of correlation (R) were calculated. A threshold of P less than 0.05 was considered to be significant for the rejection of

the null hypothesis. The visualization of the data was done using GraphPad Prism (version 8.0), (data represented as ± SEM).

ADDITIONAL RESOURCES

Videos related to this work: https://www.discotechnologies.org/Calvaria/.
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Supplemental figures

(legend on next page)
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Figure S1. Assessment of skull cell dynamics and details of cell-type annotations, related to Figure 1

(A) Overview of the two-photon experiment and representative images from sham andMCAo groups. 2, 24, and 72 h after surgeries same ROIs were imaged. Per

each imaging session, animals were given dextran for vessel labeling (n = 3 for naive and sham and n = 5 animals for MCAo). Scale bars, 50 mm.

(B) Quantification of changes in area between sham and MCAo conditions. LysM was quantified based on maximum intensity projected time series of 3 frames

per batch. Average area of LysM cells in MCAo is less than sham in 24 h (p = 0.04) and both conditions have significant decrease of LysM cells over time (p = 0.004

for sham and p <0.0001 in MCAo)Data represented as ±SEM.(see STAR Methods for details).

(C) Photoconversion in KikGRmousemodel to track cell trafficking from skull to brain 3 days after stroke. B cell (1 h, ipsi vs. contra skull, p = 0.06, brain, p = 0.09. 6

h ipsi vs. contra skull, p = 0.02, brain, p = 0.06), T cells (1 h, ipsi vs. contra brain, p = 0.027. 6 h ipsi vs. contra skull, p = 0.001, brain, p = 0.013), andmyeloid cells (1

h, ipsi vs. contra skull, p = 0.03. 6 h ipsi vs. contra skull, p = 0.02, brain, p = 0.004) were analyzed within the skull and brain compartment at indicated time points.

Data represented as ±SEM.

(D and E) Gating strategy for B cells, T cells, myeloid cells in bone marrow and spleen (D) and in brain (E).

(F) Coarse and fine annotated cell types and their marker genes.

(G–I) Deconvolved pooled data using SNPs showing (G) coarse annotations, (H) B cell fine cell annotation, and (I) neutrophils fine cell annotations.

(J) Gating strategy for proportions: B cells, T cells, monocytes, neutrophils, eosinophils, erythroid cells, progenitors, NK cells, late neutrophils, B cell progenitors

for flow cytometry experiment demonstrating proportions.
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Figure S2. Proportions and UMAP of fine cell types over all conditions, related to Figure 1

Coarse cell types are shown separately with their fine cell-type proportion over three conditions, and their UMAP distribution for the cell-type, condition and

region: (A) neutrophils, (B) monocytes, (C) B cells, (D) progenitors, (E) dendritic cells, (F) macrophages, (G) T and NK cells, (H) basophils, (I) erythroid cells, and

(J) structural cells.
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(legend on next page)
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Figure S3. Analysis of skull cell numbers, neutrophil development, and inflammatory responses in different bones and themeninges, related

to Figure 2

(A) Whole head clearing of LysM mice in naive, sham, and MCAo (stroke on left side) condition.

(B) Quantification of PI signal in the frontal and parietal bones showa strong trend (F(2,6) = 5.027, p = 0.522) for increasedPI signal inMCAo condition compared to

sham (p = 0.124) and naive conditions (p = 0.053).

(C) Quantification of PI signal in the contralateral parietal skull bone of show increase (F(2,6) = 8.323, p = 0.019) in PI signal in MCAo condition compared to sham

(p = 0.040) and naive (p = 0.022) conditions (n = 3 per group); dpi, days post injury.

(D) Expression of DAMP relevant genes in three conditions with their relative hierarchical clustering.

(E) Comparison of naive vs. injury response of specific DAMP genes. Color code indicates significance (p < 0.05).

(F) The unique LR pairs in the skull and vertebra in three different conditions. LR pairs that occur in at least 5 different cell-type pairs in a given bone group are

shown. (permutation test, 1000 permutations, p = 0)

(G) Pseudo-time analysis of naive, sham, and MCAo with normalized cell density in each condition for each region.

(H) Phase portrait showing unspliced and spliced counts in neutrophils of gene S100a6 for naive, sham and MCAo respectively.

(I–K) Mean expressions of upregulated genes in meninges and in a single other group in (I) naive, (J) sham, and (K) MCAo.

(L and M) Mean and standard deviation of (L) anti-inflammatory and (M) pro-inflammatory score over cells of all cell types, B cells, neutrophils, and monocytes in

naive, sham, and MCAo (significance and LFC in Table S1, tabs 29 and 30). Inflammatory score is based on the expression of Il6, Il1a, Il1b, Ifng, Il11, Il7d, Il7f, Il18

and Tnf (pro-inflammatory) and Il1rn, Tgfb1, Il4, Il10, Il12a, and Il13 (anti-inflammatory).
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Figure S4. Analysis of bulk RNA-seq data of bone marrow cells, related to Figure 2

(A) PCA of calvaria, scapula, humerus, vertebra, pelvis, and femur from 5 naive, 5 sham, 6 MCAo animals. Color represents region and shape represents

condition.

(B) Correlation between bulk RNA gene expression and scRNA-seq pseudobulked dataset. r = 0.81.

(C) Representative genes that show the same trend with scRNA-seq data for each condition. p values and log-fold changes are given on top of each violin plot (p <

0.001 for Ptgs2, p = 0.066 for Nr4a2, and p = 0.061 for Dusp5 in naive, p = 0.001 for Cxcl2, p = 0.015 for Plk3 and p = 0.019 for Dapl1 in sham, p < 0.001 for Ptgs2, p

< 0.001 for Adra2a, and p = 0.002 for Cxcl2 in MCAo). Single-cell expression of these genes are given with ‘‘expected,’’ positive means scRNA-seq data showed

an increased trend of the given gene.

(legend continued on next page)
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(D) PCA of femur and calvaria in 5xFADmodel of Alzheimer’s disease. 5xFAD animals are comparedwith their littermate controls. Colors represent different bones

whereas shapes represent condition.

(E) Calvaria upregulated and downregulated genes in control case. There are no differentially expressed genes in AD case. The expression of the differentially

expressed genes are shown in all groups for comparison. (p < 0.05)

(F) Selected upregulated genes that show the same trend in 5xFAD dataset. p values and log-fold change are given on top of each violin plot (p < 0.339 for Cxcl2, p

= 0.461 for Il1b, and p = 0.461 for Ptgs2 . Single-cell expression of these genes are given with expected, positive means scRNA-seq data showed an increased

trend of the given gene.
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(legend on next page)
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Figure S5. Details of the analysis of mouse proteome data and human skull-meninges channels, related to Figures 3 and 4

(A) Number of proteins detected from each bone.

(B) Number of common proteins and unique proteins detected from different bones for different conditions. Top: naive, middle: sham, and bottom: MCAo.

(C) 10 top upregulated proteins for each region in each condition (LFC > 1, p < 0.05).

(D) Dendrogram for each sample and condition is shown.

(E) Volcano plot shows the difference between calvaria MCAo vs. sham. (LFC > 1, p < 0.05) Related GO terms are shown below.

(F–K) Volcano plots are showing (F) naive calvaria vs. other bones, (H) sham calvaria vs. other bones and (J) MCAo calvaria vs. other bones, respectively. (LFC > 1,

p < 0.05) (G–K) GO terms of upregulated calvaria proteins in (G) naive, (I) sham, and (K) MCAo conditions are provided below each volcano plot.

(L) Correlation plot of module 2 of WGCNA neutrophil degranulation GO term proteins with scRNA-seq expression levels. Spearman correlation, R = +0.42,

p < 0.0001.

(M) Details for post-mortem tissue clearing and light-sheet fluorescent imaging experiments.

(N) Channels connecting calvaria’s bone marrow to the meninges with Iba1+ cells. Scale bars, 150 mm.

(O) Human bone marrow labeled for cell nuclei (PI, in green), macrophage (Iba1, in magenta) is shown with calvaria bone (autofluorescence).

(P) Skull channel diameter distribution based on each ROI quantified.

(Q) Channel number per 1 cm3 distribution over all ROIs and samples.

(R) Annotated skull + dura ROI, bottom part shows dura with brown annotation, skull channels are annotated in green and bone marrow is annotated in gray.

Annotated dura, skull and bone marrowmask. Graph extraction of human skull architecture, total length, and radius of the shortest path from skull marrow to the

dural meninges in mm, respectively. Scale bars, 500 mm.

(S–W) 200 nm thick scanning electron microscopy images of a SMC with zoom-ins. (S) shows different axial depths of the same channel.
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(legend on next page)
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Figure S6. Details of the analysis of the human proteome data, related to Figure 5

(A) Post-mortem sample information, category of death is based on how death affects the brain.

(B) Two proteins found uniquely in the human skull that show a similar trend in the mouse dataset. Snap25 and Syp expression in calvaria MCAo is higher than in

sham (p = 5.786e-08 and p = 2.000e-05, respectively).

(C) PCA of bones based on age, cause of death group, PMI, and sex, respectively; PMI, post-mortem interval.

(D–I) Volcano plots among different bones: calvaria vs. others (D), vertebra vs. others (F), and pelvis vs. others (H) suggest there is a global downregulation in the

skull compared to pelvis. (LFC > 1, p < 0.05) with GO terms for upregulated and downregulated for each bone (E), (G), and (I).

(J) Cell-type annotation marker genes for scRNA-seq of human skull.
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Figure S7. Influence of imaging method, and various covariates on TSPO-PET data, related to Figure 6

(A) TSPO RNA levels in naive vs. injury (MCAo + sham) (p < 0.0001) conditions in the skull from the scRNA-seq data. TSPORNA levels in 5xFAD vs. wild type in the

calvaria (p = 0.0065).

(B) In vivo TSPO-PET imaging of three wild-type mice, followed by a second scan after immediate removal of the brain, blood, and all tissue surrounding the skull

bone. Signal attributable to the skull in the in vivo TSPO-PET images was compared to the signal in the respective skull-only TSPO-PET to delineate skull signal in

mice (three replicates, R2 = 0.534, 0.761, 0.283, p < 0.0001).

(C) Coronal slice upon a CT template shows %-TSPO-PET differences between 5xFAD and wild-type mice at the group level. Images indicate increased TSPO

labeling in the fronto-parietal and temporal skull of 5xFAD mice in contrast against age-matched wild-type mice. White arrows indicate spots with higher in-

creases of skull TSPO labeling when compared to adjacent increases of brain TSPO labeling in 5xFAD. Axial slices upon an MRI template show TSPO-PET in an

individual 5xFAD and an individual wild-type mouse. Elevated TSPO labeling in fronto-parietal and temporal skull is present (white arrows) in the 5xFAD mouse

when compared to the wild-type mouse. H* = hypophysis with known strong TSPO-PET signal.

(D) Fronto-patietal skull, p = 0.0017, temporal skull, p < 0.0001 (two-tailed t test). Data represented as ±SEM.

(E) Quantification of relevant skull signal sex differences for AD (p < 0.0001; controlled for age and TSPO-binding single nucleotide polymorphism), stroke (p = 0.2),

PPMS (p = 0.2), RRMS (p = 0.02), 4RT (p = 0.5) patients and controls (p = 0.1). Data represented as ±SEM.

(F) Quantification of fronto-parietal skull signal age associated patterns (p = 0.019, two-tailed t test, controlled for gender and TSPO-binding single nucleotide

polymorphism) among 50 AD continuum patients. Data are means ± SD. SUVr, standardized uptake value ratio.

(G) Fronto-parietal skull TSPO signal from patients with AD show no significant correlation with clinical severity in MMSE (p = 0.681), CERAD (p = 0.063), and CDR

(p = 0.453) scorings.

(legend continued on next page)
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(H) Fronto-parietal skull TSPO signal in Alzheimer’s disease compared to control patients (prodromal vs. dementia: p = 0.63, data represented as ±SEM.).

(I) Fronto-parietal skull TSPO signal shows a positive association only with brain TSPO signal in the Braak VI stage region (p = 0.115 for Braak I, p = 0.248 for Braak

II, p = 0.458 for Braak III, p = 0.450 for Braak IV, p = 0.855 for Braak V, and p = 0.012 for Braak VI).

(J) Fronto-parietal skull TSPO signal is not significantly associated with brain TSPO signal in any b-amyloid related regions: frontal (p = 0.782), temporal (p =

0.458), parietal (p = 0.748), and posterior cingulate cortex/precuneus (p = 0.447).

(K) Fronto-parietal skull TSPO signal is correlated with b-amyloid42 (p = 0.044) but not b-amyloid40 (p = 0.741) in cerebrospinal fluid, also reflected by the sig-

nificant negative correlation of the b-amyloid ratio (p = 0.033).

(L) TSPO-PET signal quantifications in C2 bone of vertebra. One-way ANOVAwith Bonferroni post hoc correction. See STARMethods for details of normalization

and statistical analysis. Significant differences of disease vs. controls are indicated (p = 1.0 for control vs. stroke, PPMS, RRMS, and 4RT, p = 0.154 for control vs.

AD). Data represented as ±SEM. Pairwise comparison of all groups can be found in Table S3.
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4.4 Study 4: Spatial proteomics in three-dimensional intact specimens.

The paper “Spatial proteomics in three-dimensional intact specimens.” was published in 2022
in the journal Cell as a resource article. The full citation is:

Harsharan Singh Bhatia*, Andreas-David Brunner*, Furkan Öztürk*, Saketh Kapoor,
Zhouyi Rong, Hongcheng Mai, Marvin Thielert, Mayar Ali, ..., Fabian Theis, Matthias
Mann, Ali Ertürk, ”Spatial proteomics in three-dimensional intact specimens.” Cell
185.26 (2022): 5040-5058. https://doi.org/10.1016/j.cell.2022.11.
021

Summary:
Most spatial proteomics methods are limited in profiling to few proteins or 2-dimensional sec-
tions. However, studying proteome in three-dimensional large specimens (or even the whole
body) is essential to capture the cellular function in pathological and physiological stages in
an unbiased holistic view. In this study, we developed a technology that allows the proteome
analysis of 3D large specimens by combining tissue clearing, imaging, robotic tissue extrac-
tion, and ultra-high-sensitivity mass spectrometry.

My collaborators developed DISCO-MS technology and applied it to cleared tissue using differ-
ent techniques (3DISCO, uDISCO and vDISCO). They generated proteomics data from both
fixed-fresh tissue (as control) and cleared tissues. Subsequently, my collaborators and I anal-
ysed the data to compare the composition, structure, and function of the entirety of expressed
proteins between fresh and cleared tissues and showed that with DISCO-MS we can achieve
high depth and quantitative accuracy comparable to that of fresh samples.

DISCO-MS was employed on various mouse models as well as human data. First, my col-
laborators utilised and validated the capabilities of DISCO-MS technology on mild traumatic
brain injury (mTBI) mouse model. They generated proteomics data on isolated regions with
locally activated microglia with known spatial locations extracted by laser capture microdis-
section (LCM). My collaborators and I analysed this data and identified several biomarkers of
mTBI that were both novel and previously reported in literature which confirmed the power of
DISCO-MS to analyse spatially resolved proteomics data in an unbiased manner.

My collaborators further applied DISCO-MS on early-stage (6 weeks) and late-stage (6 months)
Alzheimer’s disease (AD) mouse models, identified the Aβ plaques in both time points using
deep-learning models (U-Nets), extracted individual Aβ plaques using laser capture microdis-
section (LCM) and generated proteomics data for Aβ plaques at early and late AD stages. I
further analysed the proteomics data of the isolated single-plaque microenvironments with the
known spatial locations in whole brains and highlighted AD biomarkers at the early stages of
the disease.

To apply DISCO-MS to larger cleared specimens (or even whole bodies), my collaborators
developed a robotic tissue extraction tool (DISCO-BOT) to precisely extract small samples
from specific locations. My collaborators generated proteomics data from cleared samples
extracted via DISCO-BOT from mouse bone marrow and human heart tissue with acute my-
ocardial infarction. My collaborators and I analysed these two sets of data and were able to
identify perturbations in specific protein groups.

The development of DISCO-MS represents a significant advancement in 3-dimensional spatial
proteomics, providing a new avenue to study the molecular profiles of tissues in an unbiased
and holistic manner.
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Furkan Öztürk, ..., Fabian Theis,

Matthias Mann, Ali Ertürk

Correspondence
mmann@biochem.mpg.de (M.M.),
erturk@helmholtz-muenchen.de (A.E.)

In brief

DISCO-MS and DISCO-bot allows for

unbiased spatial proteome analysis of

small tissue regions identified by

panoptic imaging of large cleared

samples, in silico reconstructions, and

automated minimally invasive robotic

tissue extraction.

Bhatia et al., 2022, Cell 185, 5040–5058
December 22, 2022 ª 2022 Elsevier Inc.
https://doi.org/10.1016/j.cell.2022.11.021 ll



Resource

Spatial proteomics in three-dimensional
intact specimens
Harsharan Singh Bhatia,1,2,24 Andreas-David Brunner,3,4,24 Furkan Öztürk,1,24 Saketh Kapoor,1 Zhouyi Rong,1,2,13
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SUMMARY

Spatial molecular profiling of complex tissues is essential to investigate cellular function in physiological
and pathological states. However, methods for molecular analysis of large biological specimens
imaged in 3D are lacking. Here, we present DISCO-MS, a technology that combines whole-organ/whole-
organism clearing and imaging, deep-learning-based image analysis, robotic tissue extraction, and ultra-
high-sensitivity mass spectrometry. DISCO-MS yielded proteome data indistinguishable from uncleared
samples in both rodent and human tissues. We used DISCO-MS to investigate microglia activation along
axonal tracts after brain injury and characterized early- and late-stage individual amyloid-beta plaques in
a mouse model of Alzheimer’s disease. DISCO-bot robotic sample extraction enabled us to study the
regional heterogeneity of immune cells in intact mouse bodies and aortic plaques in a complete
human heart. DISCO-MS enables unbiased proteome analysis of preclinical and clinical tissues after unbi-
ased imaging of entire specimens in 3D, identifying diagnostic and therapeutic opportunities for complex
diseases.
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INTRODUCTION

At their early stages, many diseases have modest pathological

changes in mostly unknown tissue regions, making them hard

to identify and characterize. For example, early changes in de-

mentia may include the activation of a few local inflammatory

cells, changes in the microvasculature, and the appearance

of just a few initial amyloid-beta plaques in uncharacterized

brain regions.1 Such small regional changes are extremely

hard to identify using standard histology, limiting our ability

to investigate initial stages of diseases for early diagnosis

and therapy. Recent advances in tissue clearing technologies

allow fluorescence imaging of complete biological tissues

including mouse organs and whole bodies as well as intact

human organs.2–4 After tissues are rendered transparent,

end-to-end laser scanning microscopy reveals their cellular

and subcellular details. Leveraging artificial intelligence (AI)-

guided image analysis, even tiny changes in cellular structures,

which otherwise would be missed, can be identified readily

and quickly.5,6 However, visually pinpointing these regions

alone does not answer mechanistic questions at the molecular

level.

In parallel, enormous progress has been made to increase the

throughput of single-cell transcriptomic technologies,7–9 even

though some studies show that RNA expression may weakly

correlate with the protein expression.10–13 More recently, sin-

gle-cell analysis of proteomes has also become possible with

the advent of ultra-high-sensitivity mass spectrometry (MS)-

based approaches.10,14–17

At the RNA level, it is possible to preserve the spatial context in

two-dimensional (2D) samples as spatially resolved transcrip-

tome analysis is quickly becoming a mainstay of the molecular

biology toolkit.18–25 Methods for spatial proteome analysis are

actively developed, but most methods are either limited to

analyzing fewer than 100 proteins (e.g., highly multiplexed or

multi-round immunostaining) or limited to 2D samples (e.g.,

MS-based spatial proteomics) or both.26–30 In addition, it has

been unclear to what extent these methods can be made

compatible with advanced whole-organ imaging of optically

cleared tissue.

Here, we combine whole-organ and whole-mouse tissue

clearing and imaging with ultra-high-sensitivity MS-based

proteome analysis and can characterize the proteome of

samples isolated from cleared tissue comprising fewer than

100 cells. We term this method three-dimensional (3D) imaging

of solvent-cleared organs profiled by mass spectrometry, or

DISCO-MS (Figure S1A). Using DISCO-MS, we successfully

analyzed fluorescently labeled small target regions isolated

from whole mouse or human organs to discover spatial-molec-

ular profiles of initial pathological events in various disease

models (Video S1). To facilitate sample extraction, we devel-

oped a robotic tissue extraction system (called DISCO-bot)

for more challenging specimens including whole adult mouse

bodies and whole human organs (Video S2). Combining

DISCO-MS and DISCO-bot, we studied the spatial proteome

heterogeneity of immune cell-enriched tissues from bone

marrow niches of intact mice and aortic plaques from the

human heart.

RESULTS

MS-based proteomics of solvent-cleared tissue
Tissue clearing is a chemical process that relies on tissue perme-

abilization and subsequent extraction of different biomolecules

including water (organic-solvent-based methods) and lipids (in

most clearing methods).31 Whether the proteome of tissues after

these diverse extraction steps remains intact had been unclear.

To investigate this, we employed MS-based proteomics, which

can provide unbiased in-depth insights into the composition,

structure, and function of the entirety of expressed proteins.32

To this end, we subjected solvent-cleared samples to prote-

omics workflows with respect to protein recovery and qualitative

andquantitative reproducibility.Using fresh-frozen tissues ascon-

trols, we started with 3DISCO and uDISCO clearing methods

(Figures S1B–S1D), two commonly used methods that are quick

and known to provide the highest tissue and organ transparency.3

We tested several protein-solubilization approaches and figured

that the combination of SDS-based protein solubilization and tis-

sue pulverization, followed by SDC resolubilization and protein

digestion, yielded qualitatively and quantitatively very similar pro-

teomes between fresh and solvent-based clearing methods

(Figures S1B and S1C). We identified up to 5,500 proteins across

conditionswith Pearson correlation coefficients between 0.89 and

0.99 (Figure S1D).

While 3DISCO and uDISCOwork well for fluorescent dye imag-

ing, the signal of endogenousfluorescentproteins suchasEGFP is

rather unstable and decays with time.33 To avoid this, we devel-

oped vDISCO, which uses fluorescent-dye-conjugated nanobod-

ies to stabilize and enhance fluorescence signals.34 As vDISCO in-

cludes several additional steps that might change proteome

constitution, we also tested our proteomicsworkflow on these tis-

sues. Identification of more than 6,000 proteins across all clearing

conditions including vDISCO and replicates with Pearson correla-

tions ranging from 0.85 to 0.94 confirmed the suitability of our

workflow (Figure 1A). Next, we asked whether archived human

brain tissues can be analyzed and cleared human brain tissue

stored in formalin for more than 5 years with the DISCO and

SHANEL methods.4 DISCO-MS identified more than 5,000 pro-

teins in all clearing conditions very similar to paraformaldehyde

(PFA)-fixed controls at high quantitative reproducibility (R = 0.91–

0.96) (Figure 1B). We conclude that our sample preparation work-

flow allows the MS-based proteome analysis of cleared mouse

and human specimens at high depth and quantitative accuracy

comparable to fresh and PFA-fixed control samples.

High proteome yield in vDISCO cleared tissues
Next, we examined the in-depth proteomes of vDISCO-cleared

tissues to investigate potential protein depletions introduced

by the clearing process and compared with fresh-frozen sam-

ples. We identified close to 8,000 proteins, a very substantial

proportion of the total proteome across conditions and biolog-

ical replicates with a high quantitative reproducibility (R = 0.94;

Figure 1C and S2A). Coefficients of variation (CVs) within fresh

(non-perfused) and cleared (perfused and fixed) conditions

were below 0.2, demonstrating that vDISCO clearing yields pro-

teomes that are qualitatively and quantitatively similar to fresh

tissue and highly reproducible across biological replicates
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Figure 1. Proteome of cleared rodent and human tissues

(A) Proteome analysis from mouse brain tissues after different organic solvent-based tissue clearing methods vs. fresh controls. Protein identifications and

proteome correlations across all clearing techniques and fresh tissue are shown. (N = 3 biological replicates, n = 9 total experimental replicates per condition).

(B) Archived human brain cortex blocks cleared and number of detected protein groups with proteome correlations across all clearing methods are compared

with the numbers in PFA fixed blocks. n = 4 experimental replicates.

(C) Quantitative reproducibility of vDISCO-cleared vs. fresh.

(D) DE analysis of vDISCO-cleared vs. fresh sample proteomes highlighting the expected change in ‘‘blood microparticle’’ due to blood perfusion step for tissue

clearing in contrast to fresh samples. Otherwise, proteins in other GO groups were unchanged.

(legend continued on next page)
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(Figures S2B–S2E). The only altered gene ontology (GO) term

was ‘‘blood microparticle’’ proteins, not surprising as fresh tis-

sues were not perfused. Other GO keywords are quantitatively

and qualitatively preserved (Figure 1D and S2F). Next, we

checked the protein mass distributions between fresh and

vDISCO mouse brains for membrane, organelle, and cytoskel-

eton terms. We found that all percentage protein mass differ-

ences were well below 15% across sub-terms and that the pro-

tein mass change associated with all membrane-related terms

was below 3% (Figure 1E). Moreover, we also looked at the spe-

cific membrane-bound protein class, which are plasma mem-

brane proteins. The percentage total protein mass change was

below 0.5%. As an example, we highlighted epidermal growth

factor receptor (EGFR), a transmembrane receptor, between

fresh and vDISCO-cleared brain samples (Figure S2G). In sum-

mary, even the strongest organic solvent-based tissue clearing

approach, vDISCO, yields qualitatively and quantitatively very

similar proteomes compared to the fresh tissue.

Proteomes of micro-dissected tissues imaged in 3D
After establishing a high-quality and reproducible MS-compat-

ible sample preparation workflow for solvent-cleared tissues,

we turned to the unbiased proteome analysis of smaller target

tissue regions (�0.0005 mm3) previously imaged and located

in 3D. We successfully met three major challenges: (1) reliable

dissection of small tissue regions identified by 3D imaging of

cleared tissues, (2) analysis of deep proteomes from only a few

nanograms of dissected and rigid solvent-cleared tissue, and

(3) registration of small tissue regions back onto a complete 3D

light-sheet image stack. To solve the first challenge, we devel-

oped a series of steps to render cleared rigid tissue soft for pre-

cise cryo-sectioning and laser capture microdissection (LCM)

without deformation. In short, we reversed the clearing protocol,

rehydrated the cleared tissue stepwise, and cryo-preserved it.

This workflow avoided rupturing of the tissue during cryo-

sectioning and allowed us to laser micro-dissect tissue regions

as small as 0.0005 mm3 corresponding by volume to approxi-

mately 60 cells. Next, we miniaturized our sample preparation

workflow and then performed MS-based proteome analysis

on a modified trapped ion mobility MS platform developed for

highest sensitivity down to the level of single cells.10 Lastly, we

automated registration of the 2D LCM images back to the 3D

light-sheet imaging stack (Figure 2A). Briefly, following light-

sheet microscopy imaging, the cleared mouse brains were rehy-

drated, cryoprotected, sectioned, and imaged prior to cutting by

LCM. These images were aligned (rigid registration) to produce a

reconstructed 3D stack of LCM sections. These were then coor-

dinated slice by slice to a subset of the light-sheet imaging stack

(affine registration), and the highest-scoring section was subse-

quently used to project the regions of interest (ROIs) onto the 3D

light-sheet imaging data (Figure 2B and S3Q; see Methods S1).

To explore the potential of our technology in biological appli-

cations, we first used a mild traumatic brain injury (mTBI) mouse

model to identify and analyze proteomes of brain regions

containing discrete local inflammation. mTBI and concussions

are common injuries that can lead to long-term morbidities

such as sleep disorders, neuropsychiatric disorders, and even

early onset of dementia.35 They are characterized by chronic

inflammation, which can induce neurodegeneration in selected

brain regions, particularly along the stretched axonal tract.36

We used a repetitive mTBI injury model on CX3CR1-EGFP

mice (Figures S3A and S3B), in which all microglia are labeled

with an EGFP-fusion construct. The mild nature of this injury

was confirmed by behavioral test that showed no significant al-

terations after 8 weeks post injury in Barnes maze and beam-

walk tests (Figures S3C and S3D). Brains of CX3CR1-EGFP

mice were processed for vDISCO labeling and clearing 8 weeks

post injury, showing microglia activation in discrete regions of

whole brain. ClearMap quantification37 identified activated mi-

croglia with enlarged morphology in diverse brain regions, espe-

cially along the axonal tracts including the optic tract and the

corpus callosum when compared with sham-operated

animals (Figures S3E–S3L). The same mTBI injury model on

Thy1-GFP-M reporter mice (expressing GFP only in neurons)

confirmed the axonal abnormalities in the same brain regions

(Figures S3M–S3P).

We then used DISCO-MS on isolated ROIs including locally

activated microglia with known spatial information (Figures 2B

and 2C; Video S3). Analyzing three ROIs from the optic tract as

small as 0.0005 mm3 compared to corresponding regions in

sham control animals, we quantified up to 1,400 proteins per

ROI. Overall, we found 602 common proteins in all ROIs of

mTBI and sham. Comparing ROIs from mTBI among them-

selves, we found a shared proteome signature comprising 717

proteins, with each ROI having unique sets of proteins (Fig-

ure 2D). Principal-component analysis (PCA) separated the

proteomes of ROIs betweenmTBI and controls (Figure 2E). Inter-

estingly, several proteins related to axonal damage and repair

were strongly differentially regulated between conditions. For

example, stathmin1 (Stmn1; 32-fold increase) is a protein

involved in the regulation of microtubule filament system. Its

overexpression has been shown to promote disassembly of mi-

crotubules in blast-induced mTBI.38 Neurocan (Ncan; 30-fold in-

crease) is a chondroitin sulfate proteoglycan involved in the

modulation of cell adhesion and migration, which is upregulated

in injured brains.39 Eight proteins were uniquely detected in

mTBI, including metadherin (Mtdh) present in glial cells but not

yet been described in mTBI. Furthermore, we found many previ-

ously described proteins in the context of brain injury, providing

positive controls, and many yet unknown proteins to be downre-

gulated in the mTBI model. For example, acid ceramidase (aC-

Dase, Asah1), an enzyme implicated in sphingolipid metabolism

and in multiple diseases, was downregulated40–42 and has previ-

ously been associated with morphological defects in cultured

neurons.43 Our data now suggest its potential involvement in

axonal deformity in mTBI. We also observed alterations in mito-

chondria proteins along the optical tract such as caseinolytic

protease proteolytic subunit (Clpp), a mitochondrial matrix

(E) Percentage change of protein mass distribution between vDISCO-cleared vs. fresh samples. Percentage changes are shown as a median change within one

group for organelles, membranes, and cytoskeleton GO terms (N = 3 biological replicates, n = 9 total experimental replicates per condition).

See also Figures S1 and S2.
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protease,44 and mitofusin 2 (Mfn2), a mitochondrial membrane

protein that participates in mitochondrial fusion and contributes

to the maintenance and operation of mitochondrial network45

(Figure 2F). We further validated the enrichment of Stmn1

and Ncan in mTBI brain tissues by immunofluorescence

(Figures 2G–2I). Our data demonstrate that DISCO-MS is a

powerful approach for obtaining unbiased proteomic information

on heterogeneous tissue regions with known spatial locations.

Scalable and robust pathology identification using deep
learning
One of the early hallmarks of Alzheimer’s disease (AD) pathology

is the accumulation of amyloid-beta (Ab) plaques in the brain pa-

renchyma.46 We anticipated that the unbiased detection of Ab

plaques, followed by their equally unbiased proteome analysis

using DISCO-MS, would provide valuable insights into the initial

stages of AD. To this end, we used the 5xFAD mouse model of

AD to identify Congo red labeled Ab plaques in young mouse

brains.

As the locations of these initial plaques are unknown, we

developed a deep learning (DL) approach to identify all Ab pla-

ques rapidly and reliably in whole mouse brain scans. In short,

our network architecture is based on U-Net, a well-established

approach for biomedical image analysis47 (Figure 3A). To assess

our segmentation quality, we calculated a wide range of voxel-

wise and Ab plaque segmentation metrics. Our DL architecture

for automated Ab plaque detection showed high performance

in volumetric accuracy (0.99 ± 0.00), volumetric (0.71 ± 0.06),

and surface (0.94 ± 0.03) as well as overall Dice scores (0.89 ±

0.09) per Ab plaque. After segmenting all plaques in the entire

brain using DL, we registered our data to the Allen brain atlas

to obtain region-wise quantifications for over a thousand brain

subregions (Figure 3B).48,49 We then grouped them into the ma-

jor brain regions as defined by the Allen mouse brain ontology for

simplicity and visualized plaque volume per region in early and

later stages of disease (Figures 3C and 3D) using brainrender-

an open source Python package for interactive visualization.50

Our DL model identified few Ab plaques in 6-week-old mouse

brains and identified several thousand at a later stage of the

disease (6-month-old 5xFAD), (Video S4) whereas plaques

were absent at 5 weeks of age. We also confirmed our finding

of Ab plaques in 6-week-old mice in the same brain regions by

immunohistochemistry with anti-Ab monoclonal antibodies

(Figure S4A). To compare the plaques between 6-week- and

6-month-old 5xFAD mice in 1,238 different brain regions, we

grouped 72 major brain regions according to Allen brain atlas

and plotted 27 disease-relevant regions. Some of the main brain

regions with initial plaques were retrohippocampal region, me-

dulla, molecular layer of cerebellar cortex, fiber tracts, subiculum

areas, visual area, and hippocampal formation. The subiculum

area and retrohippocampal region showed much larger number

of plaques at later stage (6months) of disease: 1,689 and 10,630,

respectively (Figures 3E and 3F). We observed the largest

plaques in the midbrain (motor related, 3,438 mm3) followed by

temporal association areas (2,880 mm3), posterior amygdalar

nucleus (2,450 mm3), and auditory areas (2,366 mm3), with an

average volume ranging between 2,000 mm3 and 3,500 mm3 in

early stage (Figure 3G). Interestingly, the plaque volume of these

regions were significantly reduced at 6 months, indicating a tem-

poral change in plaque morphology, either caused by adverse

biological effects by their surrounding microenvironments or

potentially causing changes to it during disease progression.

Following the DL-based identification of early Ab plaques in

the 5xFAD mouse model, we isolated four ROIs (volume:

�0.0005 mm3) from the hippocampal region vs. corresponding

brain regions from the control mice and subjected them to

MS-based proteomics (Figures 4A–4D). We compared �2,000

proteins across replicates and PCA plot separated the ROIs

with Ab plaques from the control brain regions (Figure 4E). Differ-

ential expression (DE) analysis revealed that many well-charac-

terized AD-associated proteins were enriched in 5xFAD ROIs

including the Ab precursor protein,46,51 (32-fold increase) and

the thimet oligopeptidase 1 (8-fold increase) (Figure 4F). Apart

from known and well-established AD-related proteins,52,53 we

also detected less-characterized proteins in early-stage Ab

plaques such as a member of the calcium-binding protein family

S100a11.

Moreover, we asked how similar the proteomes of our ROIs

with early Ab plaques were compared to each other. Plaques

with more than 1,200 protein identifications each shared 768

proteins, defining a core proteome of early-stage Ab plaque

formation (Figure 4G). An abundance rank plot of the shared

early-stage Ab plaques’ core proteome revealed several mem-

bers of the Ywhaz (14-3-3) and the S100a protein family. In the

early-stage Ab plaque ROIs, we also found many other proteins

involved in AD such as two isoforms ofMapt, namelyMapt-4 and

Mapt-5, illustrating the specificity of MS-based proteomics

(Figure S5A). Our proteomics data also highlight early-stage Ab

plaque variability (Figure S5B) with respect to well-characterized

AD proteins (Mapt, Tmed10, App), proteins of the S100a family,

Figure 2. DISCO-MS reveals effects of mTBI in discrete regions of whole brain

(A) Schematic representation of the alignment procedure.

(B) Location of the LCM slice (outline) inside the light-sheet stack, with the dissected 200 3 200 mm areas (white squares) inside the optic tract.

(C) 3D reconstruction of stiched images of an exemplary CX3CR1-GFP/+ mouse brain after mTBI, highlighting substantial increase in activated microglia (in

magenta) along optic tract region. 3 neighboring ROIs along optic tract were identified, laser captured, and subjected to proteomic analyses. Scale bar, 100 mm.

(D) The number of shared and unique set of proteins in mTBI.

(E) PCA plot showing the distribution of individual ROIs from mTBI vs. ROIs from control (sham) with the same spatial location.

(F) Volcano plot showing the significant enrichment of proteins.

(G) Histological validation of the top 2 proteins in the optic tract: (1) stathmin (Stmn1) in red and nuclear marker Hoechst dye in blue, (2) neurocan (Ncan) shown in

magenta along with microglia marker (Iba1) in green and Hoechst dye in blue. Scale bars, 20 mm.

(H and I) Intensity quantification of Stmn1 immunostaining signal (p = 0.007, n = 3 from total 8 sections) and Ncan immunostaining signal (p = 0.044, n = 3, animals

from total 11 sections) in mTBI vs. sham, respectively (unpaired two-sided Student’s t test, data presented as ± SD).

See also Figure S3, Methods S1, and Video S3
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peptidases (Thop1, Ppia), proteins of the Ywha family, and other

structure-determining proteins including Nefm and Map2.

Finally, we confirmed the presence of S100a11 and Thop1 in

early-stage plaques of 5xFAD brain slices by immunofluores-

cence, whereas these proteins are absent from the respective

regions in wild-type (WT) mice (Figures S4B–S4D).

We next compared plaque regions to neighboring non-plaque

regions in the dorsal and ventral subiculum, where we observed

initial plaque formations (Figures 4H and 4I).We found that 29 pro-

teins were upregulated whereas 14 proteins were downregulated

in these early plaque isolates. Among others, we found significant

quantitative change of proteins related to vesicle fusion, vesicle-

mediated transport, and secretory pathways (Bnip1, Cpd; >10-

fold increase in both; p < 0.0001 for Bnip; p < 0.05 for Cpd), which

are potentialmarkers for an early ADonset (Figure 4K). Knownpla-

que-associated proteins were regulated in a region-specific

manner, which were previously identified only at the later stages

of AD without precise spatial location (Figure 4L). For example,

an increased expression of Manf had been reported in APP/PS1

transgenic mice only at later stages of the disease.54 Actl6b is

involved in transcriptional activation and repression of select

genes by chromatin remodeling and has been investigated in in

the context of later-stageAD (6–15months).55Mutations in human

Actl6bhavebeenassociatedwith intellectual disability,56 suggest-

ing a role of this protein in the early stage of neurological condi-

tions, including AD. Mbp, Cnp, and Plp1 have been associated

with the structural integrity of the myelin sheath and its function

in age-related AD.57 In addition tomany significantly enrichedpro-

teins in early plaques vs. non-plaque areas of the same region, we

also found substantial subregional heterogeneity (Figures S5C–

S5E). Furthermore, many of these proteins were uniquely distrib-

uted across these two subregions. These could potentially drive

disease progression in a region-specific manner, a concept that

has been little explored thus far due to technical limitations.

Next, we profiled the later-stage plaque (6 months) microenvi-

ronment in a region-specific manner and compared this with

early plaque protein enrichments (Figures S5F and S5G). Dorsal

subiculum data showed a significant upregulation of 49 proteins,

whereas 21 proteins were downregulated. Among the upregu-

lated proteins, we found proteins related to S100a family

(S100a13), complement activation and microglia phagocytosis

pathway (C1qa, C1qb, Itgb), and tau protein binding (Apoe,

S100b, Clu). We also observed a distinct proteomic signature

in dorsal vs. ventral subiculum at later stages, indicating region-

and time-specific changes in the proteomic landscape around

these plaques (Figures S5H and S5I).

Taken together, DISCO-MS allowed us to pinpoint early- and

late-stage Ab plaques from the whole brains in 3D and analyze

their spatial proteomic makeup. We recovered many known

markers of Ab plaques in AD as well as less-characterized pro-

teins in AD pathogenesis. Our data also suggest the significant

involvement of S100a, Ywhaz (14-3-3), vesicle fusion and

transport, myelin sheath function, and the complement system

related family members in early-stage Ab plaque development.

DISCO-MS from large-volume samples by DISCO-bot
tissue extraction
Next, we aimed to develop DISCO-MS for even larger samples

including whole mouse bodies and whole human organs. As

sectioning/imaging for LCM is impractical for large-volume sam-

ples at scale, we developed a robotic extraction system (named

DISCO-bot), using biopsy needles to isolate ROIs for subse-

quent proteomics analysis (Figure 5A). This required (1) stabiliza-

tion of wholemouse body for robotic extractionwhile imaging, (2)

minimizing biopsy needle deflections during extractions, and (3)

biopsy needles that can penetrate into hard cleared tissues.

Firstly, to stabilize the sample, we investigated different resins

and agarose concentrations to modulate bed stiffness, compat-

ibility with the clearing solutions, and imaging and figured that

2% agarose embedding was well suited for our purpose. Next,

we customized different 3D-printed mouse holder adaptors

and needle holders, according to their strength and force-deflec-

tion criteria and chose the one with the least deflection (Fig-

ure 5B–5E and S6). Last, we tested various needle sizes and

shapes with stylet inside and found that needles size 18 gauge

(G) and/or 22 G provided a good penetration and sample extrac-

tion precision without contamination of undesired tissue (Fig-

ure 5F; see details in STAR Methods). We further optimized the

DISCO-bot to work concomitantly with the light-sheet micro-

scope (Figures 5G–5I). The resulting DISCO-bot system allowed

the extraction of small tissue regions from cleared samples while

imaging, thereby enabling non-destructive and repetitive tissue

isolation at scale for DISCO-MS (Figures 5J–5M; Video S5; see

DISCO-MS Handbook as Methods S1).

To demonstrate the utility of the DISCO-bot in our DISCO-MS

pipeline, we cleared LysM-eGFP mice using vDISCO. We co-

labeled nuclei with propidium iodide (PI) to identify the ROIs for

DISCO-bot extraction. Imaging of the whole body allowed us

to spatially identify locations of all LysM-eGFP+ cells, which

weremostly found to be in bonemarrow niches (Figure 6A; Video

S6). We then focused on the cranium and scapula, two bones

with irregular 3D structures and thus hard to study with standard

2D sections. We chose three ROIs from the parietal cranium re-

gion and six ROIs from scapula (three from the lateral border

(LysM-eGFP) and three ROIs from the medial border (LysM-

eGFP+) [Figures 6B–6E]). DISCO-bot-extracted ROIs were then

Figure 3. Deep learning analysis of plaques in whole 5xFAD mouse brains

(A) 3D U-Net architecture including layer information and feature sizes.

(B) Segmented plaques overlaid on the hierarchically and randomly color-coded atlas to reveal annotated regions available.

(C) Visualization of plaque volume per region in 72 regions.

(D) Visualization of plaque volume per region in a subset of 27 major regions.

(E) Quantification of the number of plaques in the major brain areas of 6-week-old mice (n = 3, ±SD).

(F) The number of plaques in the major brain areas of 6-month-old mice (n = 2, ±SD).

(G) Quantification of the plaque volume in 6-week-old mice (in blue, n = 3, ±SD) and 6-month-old mice (in orange, n = 2, ±SD).

See also Video S4
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Figure 4. DISCO-MS unravels the single-plaque proteome in AD mouse model

(A) Major steps of DISCO-MS.

(B) 3D visualization of Ab plaques (in red) in stiched images of 5xFAD mouse brains (n = 4 experimental replicates). Scale bar, 500 mm.

(legend continued on next page)
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analyzed using the DISCO-MS pipeline as described above. In

the cranium, we identified the shared signature of 1,984 proteins

in all three ROIs with Pearson correlation between 0.72 and 0.76

(Figures 6F and 6G). To verify the precision of DISCO-bot extrac-

tion, we compared our results with proteomics of freshly isolated

skull marrow cells.58 We found�2,200 shared proteins out of to-

tal 2,550 identified protein groups when compared with isolated

skull-proteome, confirming the high precision of DISCO-bot

extraction. Among others, seven protein groups identified here

were earlier shown to be expressed both at transcript and prote-

ome level in freshly isolated skull marrow, which further validates

the extraction precision using robotic arm (Figure 6H). In the

scapula, we observed distinct signal of LysM-eGFP in medial

vs. lateral border bone. PCA clearly separated the two groups

as well as the ROIs itself, particularly from medial border, indi-

cating inter-regional and intra-regional heterogeneity among

these extracts. We identified 1,250 proteins across conditions

with high Pearson correlation coefficients (0.88–0.98) and found

a common signature of 764 proteins between lateral and medial

border bone, whereas 336 and 22 proteins were unique to the

respective regions (Figures S7A–S7C). DE analyses showed up-

regulation of ten proteins, including those related to the innate

and adaptive immune system such as antigen-presenting mole-

cule H2-L (MHC class1b), B cell/T cell receptor pathway-related

proteins, and cytokine signaling proteins such as signal trans-

ducer and activator of transcription 3 (Stat3), which are involved

in biological processes of inflammatory response regulation to

antigenic stimuli. Among 33 downregulated proteins were sig-

nalosome-related proteins (Cops7a) and proteins related to actin

filament network formation (Fhod1) (Figure 6I–6L and S7D).

These results demonstrate that DISCO-MS can be applied to

whole adult mouse bodies after end-to-end imaging to investi-

gate spatial-molecular heterogeneity and diverse biology.

Spatial proteomics of coronary arteries in SHANEL-
cleared human heart
Next, we tested our DISCO-bot-aided DISCO-MS approach in

coronary artery disease (CAD). Acute myocardial infarction (MI)

is the major contributor to cardiovascular mortality, the leading

cause of deaths worldwide.59,60 It occurs when atherosclerotic

plaques (largely made up of lipids and calcified tissue) slowly

build up in the inner lining of a coronary artery and then suddenly

rupture, causing thrombus formation, occluding the artery and

ultimately prevent blood flow to other parts of body. Recent ad-

vances in single-cell RNA sequencing (scRNA-seq) technologies

have provided a deeper understanding of cardiac cells in both

health and disease61,62 but lack precise spatial information.

Moreover, transcript levels may weakly correlate with proteome

data, even at the single cells.10

We obtained PFA-fixed human heart, labeled its vessels with

dextran, and cleared the whole heart using SHANEL human or-

gan clearing protocol (Figures 7A and 7B). This readily located

the calcified atherosclerotic plaques of any size along regions

without plaques in the same coronary artery. We extracted six

ROIs around the large plaque-associated regions and six ROIs

from the little-to-no plaque-associated regions, which could

represent early plaque formation along the coronary artery of

the same heart for DISCO-MS analysis (Figures 7C–7F; Video

S7). We quantified 1,300 proteins in each ROI and found 53

downregulated and 6 upregulated proteins (Figure 7G). System-

atic GO term and pathway analysis of regulated proteins

suggests the regulation of hypertrophic cardiomyopathy, car-

diac muscle contraction (TPM1, TPM2, MYL2, MYL3, MYH6,

MYBPC3, DES), focal adhesion, blood coagulation, plasmin-

ogen activation, platelet aggregation, fibrinogen complex,

blood-clotting cascade (SERPING1, FGA, FGG, FGB, FN1) (Fig-

ure 7H, S7E, and S7F). Some of these proteins were regulated in

a region-specific manner including MYH10, MYH11, FGA, FGB,

and FGG, which have already been reported to be associated

with plaques (Figure 7I). Furthermore, we found upregulation

(2.2-fold, p < 0.05) of myosin heavy chain (MYH8), a less-charac-

terized protein in context of atherosclerotic plaque. As its

related forms MYH10 and MYH11 were recently discovered as

biomarker for atherosclerotic plaque formation,63,64 our findings

of MYH8 in the context of CAD is encouraging and invites further

investigation. We also observed a 2.5-fold (p < 0.01) increase in

glyoxalase 1 (GLO1), a ubiquitous cellular enzyme that partici-

pates in the detoxification of methylglyoxal, a cytotoxic byprod-

uct of glycolysis that induces protein modification (advanced

glycation end products, AGEs), oxidative stress, and apoptosis.

GLO1 and AGEs are implicated in the pathogenesis of aging and

diabetes. A large-scale meta-analyses showed a gene network

involved in antigen processing to be strongly associated with

CAD.65 Key drivers of this network included GLO1, which

strengthens the potential role of this protein in reprogramming

atherosclerotic plaque microenvironment. We also observed a

significant enrichment (2.3-fold, p < 0.01) of carbonic anhydrase

6 (CA6), which might play a role in vascular calcification, hence

plaque progression, and has not been associated with CAD

before. CA are a group of isoenzymes that catalyze the reversible

conversion of carbon dioxide into bicarbonate. CA isoenzymes

were previously shown to be involved in the vascular

calcification in humans.66,67 We further found perturbations in

members of recently discovered myosin heavy-chain family

(C) Enlarged view of region marked in (B) 4 different ROIs (in yellow) from hippocampus, each containing single-plaque, selected and isolated for mass spec-

trometric measurements. Scale bar, 100 mm.

(D) 2D projection of selected ROIs. Scale bar, 100 mm.

(E) PCA plot of ROIs’ proteome from 5xFAD vs. the same regions from control.

(F) Volcano plot showing the significantly enriched proteins.

(G) The number of shared and unique sets of proteins in 5xFAD.

(H) Selection of early plaque and non-plaque ROIs from 2 subregions of subiculum. Scale bar, 1,000 mm.

(I and J) Enlarged view of regions marked in (H). Scale bar, 100 mm.

(K) Volcano plot showing significantly enriched proteins in plaque vs non-plaque areas in dorsal region.

(L) In ventral region (n = 14–20 ROIs per region).

See also Figures S4 and S5 and Video S1.
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Figure 5. DISCO-bot enables non-destructive tissue extraction from large, cleared samples while imaging

(A) Schematic of robotic extraction.

(B) 3D model of the mouse holder.

(C) 3D model of needle holder.

(D) Cleared mouse on optimized mouse holder.

(E) Needle attached to the needle holder.

(F) The biopsy needles with sealing stylets.

(G) CAD model of microscope with robotic arm.

(H) Components of microscope and robotic setup annotated as (1) light-sheet microscope, (2) needle attached on the needle holder, (3) Meca500 6 DoF robotic

arm with vacuum tube, (4) objective, (5) sample mounted on the mouse holder, (6) mouse holder stage.

(I) Meca500 robotic arm.

(legend continued on next page)
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(MYH10, MYH11) biomarker and MYH6, a less-characterized

form in the context of late-stage atherosclerotic plaquemicroen-

vironment. Moreover, we observed a significant reduction in the

expression of MACROH2A.1 histone, which has been little stud-

ied in context of regulating autophagy and cholesterol efflux.68

DISCUSSION

Deciphering tissue heterogeneity is essential to understand

normal physiology and pathological processes. However, despite

the enormous progress made in single-cell and spatially

resolved -omics technologies,7–10,14–17 spatial-omics analysis of

tissue regions imaged in whole organs and organisms remained

challenging.

We addressed this challenge by developing and applying

DISCO-MS for proteome analysis of small tissue regions identi-

fied by panoptic imaging of large samples, in silico 3D recon-

structions using AI, and automated minimally invasive tissue

isolation for large-volume tissues using robotics. Employing

DISCO-MS, we identified brain regions affected by the early

stages of Ab plaque genesis in the brains of a young AD mouse

model. Most of the initial plaques appeared in the retrohippo-

campal regions, including the entorhinal area, and some in hind-

brain regions, including pons and medulla.69 The proteome data

provided by our work can facilitate the discovery of diagnostic

and therapeutic approaches tailored for an early-stage interven-

tion of AD. Future studies are warranted as, e.g., time course and

molecular details might differ between the 5xFAD mouse model

we used and other widely employed models such as the 3xTg-

AD mice.70 Our method also allows the analysis of human post-

mortem samples to explore the clinical relevance of our findings.

Earlier studies obtained the proteomic profiles either from the

lysedwhole brains of ADmice71 or providedonly average informa-

tion on the plaque pathology from pre-selected brain regions

without spatial details on the whereabouts of the plaques.72,73

Moreover, some of these studies were performed only on

certain isolated cell types or brain sections,74,75 again missing

the spatial context at the whole-organ level. More recently, at-

tempts were made to characterize the plaques in whole brains of

5xFAD mice; however, these studies lack spatial proteome infor-

mation.76,77 In contrast, we obtain the proteomic data on isolated

single-plaquemicroenvironmentswith the known spatial locations

in whole brains. Thus, we provide both molecular information

related to single plaques, and their spatial location, which would

be critical for localized targeted treatments.

Our technology performs equally well on mouse and human

tissues and yields qualitative and quantitative proteomics data

nearly indistinguishable from uncleared samples, even for the

harshest organic solvent-based tissue clearing approaches.

The broad compatibility with different tissues and organisms

and the relative ease of the DISCO-MS procedure will allow

benchmarking different animal models against human samples

on the molecular and anatomical levels.

Although tissue clearing presumably removes the lipidic cast

of membrane proteins, we observed that the plasma membrane

protein GO class was hardly affected, suggesting that DISCO-

MS can be used to identify surface markers for drug targeting.

Beyond neuroscience, this technology may transform spatial

molecular investigations in many other biomedical research

areas including clinical samples. We already applied DISCO-

MS to human heart samples with atherosclerotic plaques and

identified molecules involved in CAD such as GLO1, CA6,

MYH6, and MACROH2A.1. After SHANEL clearing, we quickly

navigated through the whole coronary artery in 3D and pin-

pointed the spatial distribution of plaque-associated regions.

Given the precision and sensitivity of our method, we were

able to isolate and analyze neighboring tissue regions with and

without pathology for comparison.

A key advantage of our approach is that the robot-guided

extraction of tissue isolates directly from the cleared tissue

makes it scalable, as no prior sectioning and registration is

needed. This allows the quick streamlined isolation of many

samples from identical specimens while retaining complete

spatial information and allowing for the resampling of other parts

of the same specimen in future analyses.

In conclusion, we present a spatial unbiased proteome

profiling technology comprising complete 3D-imaging data of

whole organs and organisms, enabling unbiased identification

and automated extraction of interesting tissue regions and

including subsequent molecular characterization. Notably, the

DISCO-MS technology presented here is versatile across label-

ing and solvent-cleared methods for whole organs. It is not only

applicable to reporter mouse lines but can also be utilized where

reporter lines are unavailable. In those cases, deep tissue label-

ing with dyes and potentially antibodies can be performed

against the antigen of interest, imaged as a whole organ, and

subjected to MS-based proteome profiling. DISCO-MS should

be of great interest to researchers with archived solvent-cleared

organs and imaging data, where molecular data are missing.

This method will further enable to interrogate themolecular basis

of a pathological milieu located in a seemingly randommanner to

advance research in complex diseases.

Limitations of our study
Although we have demonstrated that DISCO-MS enabled us to

perform unbiased proteome analysis after unbiased imaging of

entire specimens in 3D, further developments would be needed

to extract fewer cells for downstream proteome analyses. Our

current method works well for down to about 60 cells and pro-

vides us with average molecular details of these cells and their

microenvironments. While this is sufficient to study diverse bio-

logical questions such as plaque heterogeneity, it is still far

from the single-cell level. Single-cell resolution is important to

understand the cell compositions and cellular interactions in

the biological processes under investigation. To reach that

goal, the current protocol needs to be refined for smaller sample

(H and I) Coarse calibration with mouse in imaging chamber prior to extraction.

(J–M) Robotic extraction example: (J) target selection, (K) needle approaching the target, (L) extracting the target under vacuum, (M) evaluation of extracted

region.

See also Figure S6, Methods S1, and Videos S2 and S5
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Figure 6. DISCO-bot-aided DISCO-MS on bone marrow niches of whole mouse bodies

(A) Stiched images of whole body of LysM-EGFP mouse after clearing and imaging (n = 4). Scale bar, 700 mm.

(B) 3D visualization of stiched images of whole head zooming into parietal surface before extraction.

(C) 3D visualization of stiched images of right scapula showing lateral and medial borders before extraction (PI in blue, LysM in red). Scale bar, 500 mm.

(D) Marked 3 ROIs in parietal surface after robotic extraction. Scale bar, 500 mm.

(E) Marked 6 ROIs, 3 in lateral border and 3 in medial border after extraction. Scale bar, 500 mm.

(legend continued on next page)
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volumes to extract sub-nanogram tissues from the cleared sam-

ples. Furthermore, the proteomic sample preparation for cleared

tissues could beminiaturized to the level of single cells or pooled

cell states without losing proteomics depth.17
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Figure 7. Human heart clearing, imaging, and proteomics from atherosclerotic plaques in coronary artery

(A) Image of whole human heart before clearing.

(B) Image of human heart after SHANEL clearing. Scale bar, 2 mm.

(C) 3D visualization of stiched images of portion of human heart showing dextran-labeled vessels (in green), plaques as autofluorescence (in gold). Scale bar,

1,000 mm.

(D) Stiched images of coronal arterywith atherosclerotic plaque-associated regions andnon-plaque regions before robotic guided extraction. Scale bar, 1,000mm.

(legend continued on next page)
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and Chédotal, A. (2017). Tridimensional Visualization and Analysis of Early

Human Development. Cell 169, 161–173.e12. https://doi.org/10.1016/j.

cell.2017.03.008.

3. Ueda, H.R., Ertürk, A., Chung, K., Gradinaru, V., Chédotal, A., Tomancak,
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Migh, E., Schweizer, L., Santos, A., Bzorek, M., Naimy, S., Rahbek-Gjer-

drum, L.M., Dyring-Andersen, B., Bulkescher, J., Lukas, C., Eckert,

M.A., Lengyel, E., Gnann, C., Lundberg, E., Horvath, P., and Mann, M.

(2022). Deep Visual Proteomics defines single-cell identity and heteroge-

neity. Nat. Biotechnol. 40, 1231–1240. https://doi.org/10.1038/s41587-

022-01302-5.

18. Alon, S., Goodwin, D.R., Sinha, A., Wassie, A.T., Chen, F., Daugharthy,

E.R., Bando, Y., Kajita, A., Xue, A.G., Marrett, K., Prior, R., Cui, Y., Payne,

A.C., Yao, C.C., Suk, H.J., Wang, R., Yu, C.C.J., Tillberg, P., Reginato, P.,

Pak, N., Liu, S., Punthambaker, S., Iyer, E.P.R., Kohman, R.E., Miller, J.A.,

Lein, E.S., Lako, A., Cullen, N., Rodig, S., Helvie, K., Abravanel, D.L., Wa-

gle, N., Johnson, B.E., Klughammer, J., Slyper, M., Waldman, J., Jane-

Valbuena, J., Rozenblatt-Rosen, O., Regev, A., IMAXT Consortium,

Church, G.M., Marblestone, A.H., Boyden, E.S., Al Sa’d, M., Alon, S.,

(E) Stiched images of coronary artery after extraction of ROIs, extraction points are shown in blue (plaque region) and in magenta (non-plaque region). Scale bar,

1,000 mm.

(F) Enlarged view of ROIs around the segmented plaque marked in (E). Scale bar, 1,000 mm.

(G) Volcano plot showing the significantly enriched proteins in plaque (ROIs 1–6) vs. non-plaque areas.

(H) Pathway enrichment of differentially regulated proteins.

(I) Heatmap of differentially regulated proteins in each ROIs.

See also Figure S7 and Video S7.

ll

Cell 185, 5040–5058, December 22, 2022 5055

Resource



Aparicio, S., Battistoni, G., Balasubramanian, S., Becker, R., Bodenmiller,

B., Boyden, E.S., Bressan, D., Bruna, A., Burger, M., Caldas, C., Callari,

M., Cannell, I.G., Casbolt, H., Chornay, N., Cui, Y., Dariush, A., Dinh, K.,

Emenari, A., Eyal-Lubling, Y., Fan, J., Fatemi, A., Fisher, E., Gonzalez-So-

lares, E.A., Gonzalez-Fernandez, C., Goodwin, D., Greenwood, W.,

Grimaldi, F., Hannon, G.J., Harris, O., Harris, S., Jauset, C., Joyce, J.A.,

Karagiannis, E.D., Kovacevic, T., Kuett, L., Kunes, R., Kupcu Yoldas, A.,

Lai, D., Laks, E., Lee, H., Lee, M., Lerda, G., Li, Y., McPherson, A., Millar,

N., Mulvey, C.M., Nugent, F., O’Flanagan, C.H., Paez-Ribes, M., Pearsall,

I., Qosaj, F., Roth, A.J., Rueda, O.M., Ruiz, T., Sawicka, K., Sepulveda,

L.A., Shah, S.P., Shea, A., Sinha, A., Smith, A., Tavare, S., Tietscher, S.,

Vazquez-Garcia, I., Vogl, S.L., Walton, N.A., Wassie, A.T., Watson, S.S.,

Weselak, J., Wild, S.A., Williams, E., Windhager, J., Whitmarsh, T., Xia,

C., Zheng, P., and Zhuang, X. (2021). Expansion sequencing: Spatially

precise in situ transcriptomics in intact biological systems. Science 371,

eaax2656. https://doi.org/10.1126/science.aax2656.

19. van den Brink, S.C., Alemany, A., van Batenburg, V., Moris, N., Bloten-
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Caliskan, O.S., Ali, M., Rong, Z., Mai, H., Hummel, S., Bartos, L.M., Bie-

chele, G., Zatcepin, A., Albert, N.L., Unterrainer, M., Gnorich, J., Zhao,

S., Khalin, I., Rauchmann, B.S., Molbay, M., Sterr, M., Kunze, I., Stanic,

K., Besson-Girard, S., Kopczak, A., Katzdobler, S., Palleis, C., Gokce,

O., Lickert, H., Steinke, H., Bechmann, I., Buerger, K., Levin, J., Haass,

C., Dichgans, M., Havla, J., Kumpfel, T., Kerschensteiner, M., Simons,

M., Plesnila, N., Krahmer, N., Bhatia, H.S., Erener, S., Hellal, F., Brendel,

M., Theis, F.J., and Erturk, A. (2021). Multi-omics and 3D-imaging reveal

bone heterogeneity and unique calvaria cells in neuroinflammation.

https://doi.org/10.1101/2021.12.24.473988.

59. Nabel, E.G., and Braunwald, E. (2012). A tale of coronary artery disease

and myocardial infarction. N. Engl. J. Med. 366, 54–63. https://doi.org/

10.1056/NEJMra1112570.

60. Wong, N.D. (2014). Epidemiological studies of CHD and the evolution of

preventive cardiology. Nat. Rev. Cardiol. 11, 276–289. https://doi.org/

10.1038/nrcardio.2014.26.

61. Fernandez, D.M., Rahman, A.H., Fernandez, N.F., Chudnovskiy, A., Amir,

E.-A.D., Amadori, L., Khan, N.S., Wong, C.K., Shamailova, R., Hill, C.A.,

Wang, Z., Remark, R., Li, J.R., Pina, C., Faries, C., Awad, A.J., Moss,

N., Bjorkegren, J.L.M., Kim-Schulze, S., Gnjatic, S., Ma’ayan, A., Mocco,

J., Faries, P., Merad, M., and Giannarelli, C. (2019). Single-cell immune

landscape of human atherosclerotic plaques. Nat Med 25, 1576–1588.

https://doi.org/10.1038/s41591-019-0590-4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Iba1 Wako Cat.# 019–19741; RRID: AB_839504

Stathmin 1 Novus Biologicals Cat.# NBP1-76798; RRID:AB_11015725

Neurocan abcam Cat.# ab31979; RRID:AB_2149711

S100a11 R&D Cat.# MAB5167; RRID:AB_1207907

Thop1 Novus Biologicals Cat.# NB400-146; RRID:AB_10128241

MOAB2 Novus Biologicals Cat.# NBP2-13075; RRID:AB_2923428

Goat anti-rabbit IgG Alexa Fluor 647 Invitrogen Cat.# A21245; RRID:AB_2535813

Goat anti-Mouse IgG Alexa Fluor 488 Invitrogen Cat.# A11029; RRID:AB_2534088

Goat anti-Mouse IgG Alexa Fluor 594 Invitrogen Cat.# A11032; RRID:AB_2534091

Goat anti-Rat IgG Alexa Fluor 594 Invitrogen Cat.# A11007; RRID:AB_10561522

Goat anti-Rat IgG Alexa Fluor 488 Invitrogen Cat.# A11006; RRID:AB_141373

Atto647N conjugated anti GFP

nanobooster

Chromotek Cat.# gba647n-100; RRID:AB_2629215

Chemicals, peptides, and recombinant proteins

Congo Red Sigma-Aldrich Cat.#C6277

Propidium iodide (PI) Sigma-Aldrich Cat.#P4864

Paraformaldehyde (PFA) Sigma-Aldrich Cat.#P6148

Tetrahydrofuran (THF) Sigma-Aldrich Cat.# 186562

tert-butanol Sigma-Aldrich Cat.# 360538

Dichloromethane (DCM) Sigma-Aldrich Cat.# 270997

Diphenyl ether (DPE) Alfa Aesar Cat.# A15791

Vitamin E (DL-alpha-tocopherol) Alfa Aesar Cat.# A17039

Benzyl benzoate Sigma-Aldrich Cat.#W213802

Benzyl alcohol Sigma-Aldrich Cat.# 24122

CHAPS Carl Roth Cat.# 1479.4

N-Methyldiethanolamine Sigma-Aldrich Cat.# 471828

Trypsin Sigma-Aldrich Cat.#T6567

Formic acid Sigma-Aldrich Cat.# 64-18-6

Acetonitrile Sigma-Aldrich Cat.# 75-05-8

Experimental models: Organisms/strains

CX3CR-1
GFP mice: B6.129P2(Cg)-

Cx3cr1tm1Litt/J

Jackson Laboratory Strain # 005582; RRID: IMSR_JAX:005,582

Thy1-GFP-M mice: Tg(Thy1-EGFP)MJrs/J Jackson Laboratory Strain # 007788; RRID: IMSR_JAX:007,788

5xFAD: B6.Cg-Tg(APPSwFlLon,

PSEN1*M146L*L286V)6799Vas/Mmjax

Jackson Laboratory Strain #034848-JAX; RRID:

MMRRC_034848-JAX

LysM-eGFP: B6.129(Cg)-

Lyz2tm1.1Graf/Mmmh

MMRC Strain #012039-MU; RRID:

MMRRC_012039-MU

C57BL/6J mouse line Jackson Laboratory Strain #:000,664; RRID: IMSR_JAX:000,664

Software and algorithms

ImSpector Aberrior/LaVision https://www.lavisionbiotec.com

Imaris Bitplane AG https://imaris.oxinst.com/

Vision4D Arivis https://www.arivis.com/de/

imaging-science/arivis-vision4d

Fiji Schindelin et al.81 https://ImageJ.net/software/fiji/

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Ali Ertürk (erturk@

helmholtz-muenchen.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All mass spectrometry raw data, libraries and outputs from each particular search engine analyzed in this study have been

deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier: Database:

PXD034027 and Database: PXD025316.

d The source code for registration of 2D to 3D images is provided in supplemental information under Methods S1.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
Weused the following animals in the study: mixed gender for CX3CR1-eGFP (10months old), males only for Thy-1-GFPM (10months

old), mixed gender for 5xFAD (6 weeks and 6-months old), mixed gender for LysM-eGFP (3 months old) and mixed gender

for C57Bl6/J (3 months old) from Jackson Laboratory. The animals were housed under a 12/12 h light/dark cycle. The animal

experiments were conducted according to institutional guidelines: Klinikum der Universität München/Ludwig Maximilian University

of Munich and after approval of the Ethical Review Board of the Government of Upper Bavaria (Regierung von Oberbayern, Munich,

Germany) and the Animal Experiments Council under the Danish Ministry of Environment and Food (2015-15-0201-00535) and

following the European directive 2010/63/EU for animal research. All data are reported according to the ARRIVE.78 Sample sizes

were chosen based on prior experience with similar models.

Human samples
Intact human brains from a 92 years-old female and intact heart from a 97 years-old female were taken from human body donors with

no known neuropathological diseases. The donors gave their informed andwritten consent to explore their cadavers for research and

educational purposes, when still alive and well. The signed consents are kept at the Anatomy Institute, University of Leipzig,

Germany. Institutional approval was obtained in accordance to the Saxonian Death and Funeral Act of 1994. The signed body donor

consents are available on request.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

syGlass VR syGlass https://www.syglass.io

Ansys Academic Research Mechanical Ansys https://www.ansys.com/academic

RoboDK 5.5 RoboDK Software S.L. https://robodk.com/

MaxQuant (1.6.7.0) Tyanova et al.87 https://maxquant.org/

Perseus (1.6.7.0) Tyanova et al.87 https://maxquant.org/perseus/

GraphPad Prism(8.2.1) GraphPad Software https://www.graphpad.com

Code for 2D to 3D image registration This Paper Methods S1

Deposited Data

Mass spectrometry raw data, libraries and

outputs

This paper https://www.ebi.ac.uk/pride/; ID#

PXD034027 and PXD025316

Others

18G A-max paed Bone marrow biopsy

needle 40,901,803

HVM Medical Products GmbH https://hvm-medical.com/

produktkatalog-biopsie/

22G Chiba Fine Needle 07,742,208 HVM Medical Products GmbH https://hvm-medical.com/

produktkatalog-biopsie/
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METHOD DETAILS

Repeated closed head mild traumatic brain injury (mTBI)
Before mTBI, tin foil was taped and tightened to the U-shaped stage made of clear plastic container (383 273 27 cm3) containing a

sponge collection (383 253 15 cm3). Then, mice were pre-treated with buprenorphine (1:15 saline, 50ul/20mg, ip) and anesthetized

with 4% isoflurane using 1.0 L min�1 air until non-responsive to a paw or tail pinch. To ensure the head acceleration and rotation

following the head impact, the mice were placed under an impact tip on the tin foil, which contains holes according to the shape

of a mouse and can support the body weight of the mice. The mice were kept under light anesthesia with continued 2% isoflurane.

mTBI was produced using a stereotaxic impactor device with a 5-mm round tip coatedwith 1mm thick rubber, which can preserve an

intact skull after impact. The impact tip was placed and covered the scalp’s area from just behind the eyes to the midline of the

ears, the center of the tip at approximately midway along the sagittal suture. The injury was produced without skin incision (velocity

of 5 m/s, depth of 0.5mm, and dwell time of 0.1 s). The mouse was removed quickly from the collection sponge and transferred to the

recovery box maintained at 32 �c. In total, mice received four hits with a 48 h interval in seven days. Sham mice receive identical

handling and exposure to the same time length of anesthesia as the mTBI mice but receive no impact.

Perfusion and tissue preparation
Mice were anesthetized using a combination of midazolam, medetomidine and fentanyl (MMF) (1mL/100g of body mass for mice;

i.p.). As soon as the animals did not show any pedal reflex, they were intracardially perfused with cold heparinized 0.1 M PBS

(10 U/mL of Heparin, Ratiopharm; 100–125 mmHg pressure using a Leica Perfusion One system) for 5–10 min at room temperature

until the blood was washed out, followed by ice-cold 4% paraformaldehyde (PFA) in 0.1 M PBS (pH 7.4) (Sigma) for 10 min. Then, the

brains were extracted and post-fixed in 4% PFA for 1 day at 4�C and later washed with 0.1 M PBS for 10 min 3 times at room tem-

perature. The whole brain clearing or nanoboosting procedure was started immediately. For the collection of fresh frozen samples,

animals were sacrificed by cervical dislocation and brains were quickly snapped frozen in liquid nitrogen and stored in �80�C until

further processing.

Congo red labeling of whole brains of 5xFAD animals
Whole brains were dehydrated with gradual addition of methanol in PBS (50% x1, 80% x1, 100% x2, each for 1 h). Overnight bleach-

ing with 5%hydrogen peroxide in methanol was done at 4�C. Brains were then gradually rehydrated in 100%, 80%, 50%methanol in

PBS (1 h for each step, followed by 2 additional washes in PBS). Detergent washing was then performed in PBS with 0.2% Triton

X-100 for 2 h, brains were incubated overnight at 37�C in PBS with 0.2% Triton X-100 and 0.3 M glycine, followed by blocking in

PBS with 0.2% Triton X-100 and 6% goat serum for 7 days. Following blocking, the tissue was washed for 1 h twice in PBS with

0.2% Tween 20 and 10 mg/mL heparin (PTwH). Next, brains were incubated with 10 mM Congo Red (Sigma, C6277) at 37�C in

PTwH for 5 days. After that, brains were washed in PTwH for 2 days with periodic solution changes and gradually dehydrated using

3DISCO clearing as described next.

Clearing of brains using DISCO methods
We followed the 3DISCO and uDISCO passive clearing protocol as described previously. In brief, dissected brains were placed in

5 mL tubes (Eppendorf, 0,030,119.401) and covered with 4.5 mL of clearing solution. All incubation steps were performed in a

fume hood with gentle shaking or rotation, with the samples covered with aluminum foil to keep them in dark. To clear the samples

using 3DISCO, gradient of tetrahydrofuran (THF) in distilled water (v/v%), 2 h for each step, was used as 50%, 70%, 90%, 100% and

overnight 100% THF; after dehydration, the samples were incubated for 45 min in dichloromethane (DCM, Sigma, 270,997), and

finally in BABB (benzyl alcohol + benzyl benzoate 1:2, Sigma, 24,122 and W213802) until transparency. Next for uDISCO a gradient

of tert-butanol (Sigma, 360,538) in distilled water (v/v %) was used as 50, 70, 90, 100 twice at 32�C for 12 h each step, followed by

immersion in DCM for 45 min at room temperature and finally incubated with the refractive index matching solution BABB-D15 con-

taining 15 parts BABB, 1 part diphenyl ether (DPE) (Alfa Aesar, A15791) and 0.4% Vol vitamin E (DL-alpha-tocopherol, Alfa Aesar,

A17039), for at least 6 h at room temperature until achieving transparency.

vDISCO whole-brain passive immunostaining, clearing and imaging
Passive vDISCO was performed on dissected organs as performed by Cai R et al. First, the post-fixed brains were pre-treated with

permeabilization solution containing 1.5%goat serum, 0.5%Triton X-100, 0.5mMofMethyl-beta-cyclodextrin, 0.2% trans-1-Acetyl-

4-hydroxy-L-proline and 0.05%Sodium Azide 0.1M for 2 days at 37�Cwith gentle shaking. Subsequently, the brains were incubated

in 4.5 mL of this same permeabilization solution plus the nanobooster Atto647N conjugated anti-GFP (1:600, which is �5–8 mg of

nanobooster in 4.5 mL) for CX3CR1-eGFP and Thy-1-GFPM brains for 12–14 days at 37�C with gentle shaking, then brains were

washed for 2 h 3 times and once overnight with the washing solution (1.5% goat serum, 0.5% Triton X-100, 0.05% of sodium azide

in 0.1 M PBS) at room temperature and in the end washed for 2 h 4 times with 0.1 M PBS at room temperature. The immunostained

brains were cleared with 3DISCO clearing first they were put in the Eppendorf 5 mL tubes and then incubated at room temperature

with gentle shaking in 4.5 mL of the following gradient of THF in distilled water (v/v %), 2 h for each step: 50, 70, 90, 100 THF and
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overnight 100%THF; after dehydration, the sampleswere incubated for 45min in DCM, and finally in BABB until transparency. During

all the clearing steps, the tubes were wrapped with aluminum foil to keep them in dark.

vDISCO whole body immuno labeling, clearing and imaging
The detailed protocol of vDISCO was described previously.34 The mouse bodies were placed inside a 300 mL glass chamber

(Omnilab, 5,163,279), to be filled with the appropriate solution regarding the protocol to cover the entire body of the animal

(�250–300mL). A transcardial circulator system was established in order to allow peristaltic pumping of the solutions (ISMATEC,

REGLO Digital MS-4/8 ISM 834; reference tubing, SC0266), with the pressure being set at 180–230 mmHg (50–60 rpm). The tubing

was set to allow pumping of the solutions through the heart (attached to a perfusion needle (Leica, 39,471,024)) into the vasculature

with the same entry point used for PBS and PFA perfusion steps described above. The other end of the tube was immersed into the

chamber with a loose end to allow suction of the solution into the body. The samples were initially perfused with a decolorization

solution (25% of CUBIC reagent 1 (55) which is composed of 25 wt% urea (Carl Roth, 3941.3), 25 wt%N,N,N0,N0-tetrakis (2-hydrox-
ypropyl) ethylenediamine (Sigma, 122,262) and 15 wt % Triton X-100 (AppliChem, A4975,1000) in 0.1 M PBS)) for 2 days, refreshing

the solutions every 12h. Samples were washed with PBS for 3 3 2h. Then, decalcification solution (10 w/v % EDTA in 0.01 PBS,

pH�8–9, Carl Roth, 1,702,922,685) was perfused for 2 days followed by half a day with permeabilization solution composed of

0.5% Triton X-100, 1.5% goat serum (GIBCO, 16,210,072), 0.5 mM of Methyl-beta-cyclodextrin (Sigma, 332,615), 0.2% trans-1-

Acetyl-4-hydroxy-L-proline (Sigma, 441,562), 0.05% sodium azide (Sigma, 71,290) in 0.01 M PBS. The setup was adjusted to initiate

the PI labeling and boosting. The free end of the perfusion tube was connected to a 0.22 mm syringe filter (Sartorius, 16,532) and an

infrared lamp (Beuer, IL21) was aimed at the chamber to enable the solution’s temperature to be around 26–28�C. This setup was

then left running for 6 days after the addition of 35 mL of nanobooster (stock concentration 0.5–1 mg/mL) and 290 mL of propidium

iodide (stock concentration 1 mg/mL) which was added directly into the refreshed permeabilization solution. Next, the body was

placed into a 50 mL tube (Falcon, 352,070), with the same permeabilization and labeling solution, and an extra 5 mL of nanobooster

was added. The tube was then put on a shaker at RT for 2 additional days for labeling. Atto647N conjugated anti GFP nanobooster

(Chromotek, gba647n-100) and propidium iodide (PI, Sigma, P4864) was used to boost the signal from the LysM-eGFP animals and

stain cell nuclei respectively in the study. Then, the animals were placed back into the initial perfusion setup, where washing solution

was perfused for 23 12h, which was composed of; 1.5% goat serum, 0.5% Triton X-100, 0.05%of sodium azide in 0.1MPBS. 0.1M

PBSwas used to wash the sample 33 2h. 3DISCO protocol was applied for whole body clearing. The animals were demounted from

the perfusion system but kept in glass chambers and placed on top of shakers (IKA, 2D digital) at room temperature inside a fume

hood. Glass chambers were sealedwith parafilm and coveredwith aluminum foil alongwith the 3DISCO application. For dehydration,

sequential immersion of tetrahydrofuran (THF) (Sigma,186,562) (50 vol% THF, 70 vol% THF, 80 vol% THF, 100 vol% THF and again

100 vol% THF) was applied every 12 h. Then 3 h of dichloromethane (DCM) (Sigma, 270,997) immersion for delipidation was followed

by indefinite immersion in BABB (benzyl alcohol + benzyl benzoate 1:2, Sigma, 24,122 and W213802) solution for refractive index

matching.

SHANEL sample preparation and clearing
Archived human samples were obtained in PFA which were stored for a long period of time (>5 years) at 4�C and subjected to our

previously published SHANEL clearing protocol with somemodifications.4 Briefly, samples were dehydrated with EtOH/dH2O series

at RT: 50%, 70%, 100% for 1 h for each step, then incubated with 10 mL DCM/MetOH (2:1 v/v) (freshly prepared) for 6h at RT

followed by rehydration with EtOH/dH2O series at RT: 100%, 70%, 50%, dH2O for 1 h each step then incubated with 0.5M acetic

acid (30 mL/L) at RT for 2 h, then wash with dH2O twice for 15 min and then incubated with 4M guanidine hydrochloride

(382.12 g/L), 0.05M sodium acetate (4.1 g/L), 2% v/v Triton X-100 in dH2O, (measure pH: 6.0) at RT for 2 h, then wash with dH2O

twice for 15 min each and wash with PBS twice for 15 min each. Afterward samples were incubated with 10% CHAPS, 25%

N-Methyl diethanolamine in dH2O at 37�C for 4 h and then washed with dH2O twice for 15 min each. Since we did not perform

any deep antibody labeling in these samples, we started clearing these samples without prior blocking or antibody labeling steps.

Clearing was done with THF in water with dilutions (v/v %) of 50%, 70%, 90%, 100%, 1h each, 100% overnight, DCM 45 min

and incubated in BABB until the samples were transparent.

Behavioral assessment
Barnes maze

Briefly, amaze consisting of a surface bright circular platformwith an escape black box can be recessed and located at the bottom of

one of the 20 holes. Visual shapes were placed on 3 walls of the room as cues. For all trials, mice were placed in a cylinder black start

chamber in the center of themaze for 10 s. After the chamber lifted and the test started, mice were given 3min to locate and enter the

target box during the spatial acquisition time. For a period of 4 days, 4 trials were given per day with an inter-trial of 15 min. The trial

endedwhen themouse entered the escape box or after 3min had elapsed.Micewere allowed to remain in the escape box for 1min. A

system (Ethovision XT) was used to continually track and record themovement of themice. Escape latencywasmeasured as the time

taken for the mouse to enter the box.
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Assessment of motor function

Themice were given 3 trials training per day for 3 days to walk along a 1 cm diameter and 100 cm long wood beamwith a goal box on

the end of the beam before mild TBI. The beam was placed 1 m above ground. The latency that it takes walking to cross the beam

after 8 weeks from mild TBI were recorded. Mice that were unable to cross the beam were removed in the training.

Immunofluorescence and confocal microscopy
Briefly, mice were sacrificed after 8 weeks of injury or at six weeks of age following transcardial perfusion with PBS and with 4% cold

PFA. Brains were post-fixed in 4% PFA at 4�C overnight. Either frozen sections or cleared-rehydrated frozen sections were treated

with 0.2%Triton X-100 in PBS for 15min, blocked for 1 h at room temperature with 10% serum in PBST. Then incubation with primary

antibodies Iba1 (1:1000, Wako, 019–19741), Stathmin 1 (1:300, Novus, NBP1-76798), Neurocan (1:300, abcam, ab31979), S100a11

(1:300, R&D, MAB5167), Thop1 (1:300, Novus, NB400-146), MOAB2 (1:1000, Novus, NBP2-13075), at 4�C for overnight and Alexa

conjugated secondary antibodies (1:1000, Goat anti-rabbit IgG Alexa Fluor 647, Invitrogen, A21245; Goat anti-Mouse IgGAlexa Fluor

488, A11029; Goat anti-Mouse IgG Alexa Fluor 594, A11032; Goat anti-Rat IgG Alexa Fluor 594, A11007; Goat anti-Rat IgG

Alexa Fluor 488, A11006) were incubated for 1 h at room temperature. Slices were mounted after being stained with Hoechst

33,342 (Invitrogen). Images were acquired with 10x, 40x, and 633 objective of confocal microscope (ZEISS LSM880).

Light-sheet microscopy and image processing
Single plane illuminated (light-sheet) image stacks were acquired using an Ultramicroscope II (LaVision BioTec) and UltraMicroscope

Blaze (Miltenyi Biotec), featuring an axial resolution of 4 mmwith following filter sets: ex 470/40 nm, em 535/50 nm; ex 545/25 nm, em

605/70 nm; ex 640/40 nm, em 690/50 nm. Whole brains were imaged individually using high magnification objectives: 43 objective

(Olympus XLFLUOR 43 corrected/0.28 NA [WD= 10mm]), LaVision BioTecMI PLAN 123 objective (0.53 NA [WD 10 =mm]) coupled

to an Olympus revolving zoom body unit (U-TVCAC) kept at 1x. High magnification tile scans were acquired using 20-35% overlap

and the light-sheet width was reduced to obtain maximum illumination in the field. Processing, data analysis, 3D rendering and video

generation for the rest of the data were done on an HP workstation Z840, with 8 core Xeon processor, 196 GB RAM, and Nvidia

Quadro k5000 graphics card and HP workstation Z840 dual Xeon 256 GB DDR4 RAM, nVidia Quadro M5000 8GB graphic card.

We used Imaris (Bitplane), Fiji (ImageJ2), Vision 4D (Arivis) and syGlass (for 3D and 2D image visualization). Tile scans were stitched

by Fiji’s stitching plugin49.

Registration of light-sheet and LCM images to correlate probe selection
In order to map the proteomic samples to the whole brain light-sheet imaging we developed a registration protocol. The LCMmethod

is acquired in order to select the ROI to be cut from the sample of brain tissue. The registration of light-sheet and LCM images is very

challenging because it is a multimodal registration problem and the imaged tissue undergoes physical changes when the re-clearing

process is applied after the light-sheet imaging, introducing scale differences and sometimes even damaged tissue. Moreover, the

tissue contrast and lighting distribution are different.

For the purpose of registering the images, we acquired consecutive 2D LCM slices (0.65 x 0.65 mm2, slice thickness 12 um) which

correspond to the 3D light-sheet volume (1.633 1.633 4 mm3). We down sampled all images to the largest dimension to achieve an

isotropic resolution of 12um.We experimentedwith amultitude of registration steps, such as: 3D-3D volume registration, 2D-2D slice

registration, various transformations (rigid, affine, BSpline), edge extraction, binary thresholding, normalization strategies, and sim-

ilarity metrics. We found the best performance for the following protocol using elastix:

1) Pre-processing: Both LCM and light-sheet images were clipped to the relevant contrast ranges and normalized to the [0, 255]

range. Additionally, the LCM slices undergo histogram equalization to mitigate the severe lighting differences, 2) first, a single LCM

slice is rigidly registered to each 3D light-sheet slice 3) next, we calculate different image similarity scores between the registered

LCM slice and its corresponding LS slice. We choose the most similar slices as an initial match in z-Dimension 4) then, we create

a 3D LCM volume by padding the single LCM slice and then do a full 3D affine registration to the 3D light-sheet volume to account

for scaling differences. These four steps lead to our registration result, where the two red boxes indicate a potential cut region of

interest in the LCM image and its corresponding spatial location in the light-sheet image.We find that the registration of the individual

LCM slices is very successful, whereby the equalization plays a crucial role. The rigid registration is also able to find a good initial-

ization for the affine registration in the next step. The third step poses harder challenges, as the differences between the LCM and

light-sheet images outlined above persist. For example, we observe that the brightness of the light-sheet image increases radially

outwards, whereas in the LCM the light is more region-dependent. Furthermore, in the LCM images various regions are so hypo-

intense, that even the extraction of low-level features such as edges is not very informative for the registration. These challenges

particularly impact the registration of the LCM volume in the z direction. We are convinced that this registration problem is a highly

non-trivial task and believe that future research will be of high relevance for the community beyond our application.

Optimization of cleared tissue for cryopreservation and sectioning
After acquiring the whole brain images from CX3CR1-eGFP, 5xFAD, C57BL/6J mice the brains were further optimized for cryopres-

ervation and sectioning. The course of tissue clearing and imaging in BABB makes the tissue brittle and hard to process further. To

solve this, we rehydrated the samples with the respective clearing solutions to be able to process samples for cryosectioning.
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Thereafter, samples were washed with PBS twice for 15 min each and cryopreserved overnight with 30% sucrose solution in 4�C. To
avoid any ice crystals formation, samples were further embedded in Optimal cutting temperature compound (OCT compound) under

the chilled isopentane container placed on dry ice. Samples were stored in �80�C until cryosectioning.

Laser-capture microdissection
For themicrodissection of cells and plaques, we used both the PALMMicro-Beam system (Zeiss) and Leica LMD 7000 (Leica). PALM

Micro-Beam uses a focused laser beam to cut out and isolate the selected specimen without contact. The laser catapult quickly iso-

lates the region of interest and uncontaminated in the adhesive cap mounted in the RoboMover upwards. The Leica system projects

the samples downwards. Briefly, in case of the PALM system, after cryosectioning, sections were mounted on the polyethylene

naphthalate (PEN, Zeiss) slides and were either stored at �80�C in 50 mL falcon tubes filled with molecular sieves (Sigma-Aldrich)

or processed further for serial dehydration with ethanol and air dried for 15 min under the hood. Cells in the optic tract from

mTBI/Sham brains and amyloid-beta plaques from the 5xFAD and from respective WT brain regions were micro-dissected by laser

pressure catapulting (LPC) UV LCM system (Palm Zeiss Microlaser Technologies, Munich, Germany) consisting of an inverted mi-

croscope with a motorized stage, an UV laser and an X-Cite 120 fluorescence illuminator (EXFO). The microdissection process

was visualized with an AxioCam ICc camera coupled to a computer and was controlled by Palm RoboSoftware (Zeiss, Germany).

An area of approximately 200 3 200 mm (corresponding to 40–60 cells) were cut by laser using a 203 objective (LD Plan-Neofluar

203/0.4 corr M27) and catapulted against gravity into the adhesive cap. Tissues were quickly lysed in 20 mL of lysis buffer, spun

down and kept in dry ice or stored in �80�C. To avoid any uncertainties in capturing ROI, each time after catapulting as well as after

lysing and spun down, the cap was examined under the camera.

Automated robotic proteomic probe extraction from whole body
The strategy applied in this study was image guided extraction of targeted samples in the bone marrow of scapula and cranium on

whole mouse body with a precise robotic biopsy solution. The imaging takes place under the Ultramicroscope Blaze manufactured

by Miltenyi Biotec. The robotic arm Meca500 R3 manufactured by Mecademic Robotics is used to control the motion of the needle

sets to extract multiple targets. During the imaging, the embedded whole mouse body was placed on a bed designed for this study

that holds the sample stable under the load applied by the needle. The Meca500 was mounted above the microscope to utilize the

slim gap between the submerged lens and the walls of the sample bath for the operation on the mouse during live imaging. The

extraction was conducted by using two sizes of biopsy needles with stylets sealing the shaft of the needle to prevent unwanted tissue

contamination while approaching the target. The larger diameter needle was fixed on the robotic arm with a holder designed and

manufactured to ensure the access of the finer needle to the target with precision.

Precision and accuracy of sampling
Themost important problem to overcome in the deep tissue sampling in a whole mouse body is to achieve the required precision and

accuracy of the sampling needle tip. Since the operation happens in toughened, inhomogeneous multilayer tissue, the forces acting

on the needle and the tissue during the penetration are highly fluctuating and axially asymmetric. The borders of two different types of

tissues e.g., bone and muscle, tend to deflect the needle in the direction of the muscle. These forces result in bending of the needle

which leads to inaccuracies when approaching the target. Since it is problematic to move the needle sideways or rotate it inside the

tissue due to high traction, it is complicated to compensate for the inaccuracy after the needle has penetrated into the tissue.

Providing precision and accuracy to the operation requires every component on the load path to remain as rigid as possible. The

translational stage of the microscope is fixed on the main structure and holds the mouse bed, the mouse bed supports the agarose

embedding around the mouse and the agarose embedding supports the whole mouse body including the extremities and inner or-

gans. On the other end of the setup the robotic armwas fixed on themain structure. The needle holder is screwed on the last actuator

of the robot arm. The needle is fixed on the needle holder with a screw. The load transfer mechanism can be reduced to some basic

components to model the bending behavior of the structure and calculate the deflections. The total deflection of all these compo-

nents under load is optimized to provide an accurate positioning of the needle deep in the tissue.

Needle gauge
The needle gauge plays a key role in the total deflection. The needle can be considered as a cylindrical cantilever beam and the

maximum deflection on the needle caused by a concentrated load at the tip is defined by the formula:

dmax =
Pl3

3EI

In this equation the maximum deflection dmax is proportional to the force applied on the tip P, proportional to the cube of the length

of the needle l and inversely proportional to the Young’s modulus of the needle’s material E and the static moment of inertia I.

The needle’s deflection in the deep tissue is not only caused by the concentrated force applied on the piercing tip, but also by the

distributed load on the needle, for which case the deflection at the tip is defined by the formula: dmax = ul4

8EI .
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In this case the maximum deflection dmax is proportional to the distributed load applied on the needle u, proportional to the 4th

power of the length of the needle l and inversely proportional to the Young’smodulus of the needle’smaterial E and the static moment

of inertia I. The static moment of inertia I can be calculated as:

Iy = Iz =
p
�
R4 � r4

�

4

For both of these equations the static moment of inertia I is proportional to the difference of the 4th power of the outer R and inner r

radii of the needles. These calculations suggest a 22G needle would deflect around 9 times further away from target in comparison to

an 18G needle.

Although a larger needle is more accurate meeting the target due to lower deflection, there are also disadvantages such as collect-

ing a larger sample including unwanted neighboring tissue. Furthermore, since the penetration area is larger with a larger needle, the

force required to achieve the penetration stress on the tissue is also larger. Occasionally, it becomes impossible to apply the neces-

sary force for penetration, since the tissue cannot support such loads and the harder bone tissue gets pushed into the softer muscle

tissue.We found that the optimum solution to this problemwas using two needles in combination. The procedure applied in this study

was to extract bone marrow with 18G blunt tip biopsy needle A-MAX PAED and 22G Chiba biopsy needle. Both of these needles

include a stylet to block the hollow shaft of the needle until the biopsy target is reached. Initially the 18G needle was fixed on the

needle holder on the Meca500 and the coordinates of the tip of the needle are calibrated under the microscope. The needle is

advanced with the Meca500 axially to the coordinates where the stylet is about to touch the target. Then the 18G stylet is removed

to create an open channel for the 22G needle to move until the target without any resistance or deflection. As soon as the 22G needle

reaches the target the 22G stylet is removed from the needle and the target is sucked in to the needle’s shaft with the slight vacuum

supplied by a syringe and the chopping motion of the beveled needle tip around the target. When the targets acquisition is confirmed

observing the light sheet image, the needle is retracted without stopping or increasing the vacuum applied by the syringe and the

sample is deployed into a low binding 0.5 mL Eppendorf tube with some extra ECi (ethyl-cinnamate) to make sure any remaining

pieces of the sample in the needle is flushed before the next target.

Specimen holder and needle holder strategy
During the imaging process the sample and the lens are submerged into an imaging solution with a refractive index of 1.56. The com-

mon options for this medium aremostly ECi or benzyl benzoate and benzyl alcohol (BABB) solution with a 2:1 ratio. Themouse holder

and needle holder are manufactured using the clear resin on a Form3 manufactured by Formlabs. This process provides agile

prototype iterations but the manufactured parts lose their integrity and start falling apart upon contact with BABB. Therefore, these

experiments are conducted under ECi. The mouse bed and the needle holder are modeled using finite elements method (FEM) to

simulate their behavior under loading using Ansys Academic Research Mechanical 2022 R2. Using the stresses and deflections

calculated from the static FEM analyses, an iterative method was employed to optimize the structures of the mouse bed and the

needle holder. The mass of the mouse bed was reduced to around 80 g and the needle tip to around 20 g, while the simulated total

deflection of both pieces combined was reduced to less than a millimeter from an initial total deflection around 7mm under extreme

load conditions such as 40 N axial load applied on the needle and the same amplitude applied on the mouse bed in the direction of

needle’s approach.

Embedding of the whole mouse body
Although the whole mouse body is cleared and fixed, it still deflects far enough for the needle to miss the target. Especially when the

target is in a bone, the forces required for penetration go beyond 10N with the 18G needle. Embedding the body with a gel or resin is

crucial to limit the deformation of the mouse body. The uneven structure of the internal organs, gaps in the chest cavity and curved

outer surfaces create incalculable sources for tissue and needle deflection. To stabilize the cleared mouse bodies during robotic tis-

sue extraction, they had to be embedded in a block of agarose. To do this, we prepared a 2% (w/v) solution of agarose by dissolving

the agarose powder in deionized water. This mixture was heated in a microwave until the agarose had completely dissolved. Then,

the mixture was allowed to cool until it had reached a temperature of about 50–60�C. This cooled agarose solution was then poured

onto the sample, and it was left to cool until it had completely solidified. After it had solidified, excess parts of agarose around the

samples were carefully trimmed away using a sharp scalpel.

To clear the agarose and prepare it for light sheet imaging, the sample was dehydrated in a serial dilution of tetrahydrofuran

(ROTISOLV, Carl Roth). The dilutions used were as follows: (v/v) 20%, 30%, 50%, 70%, 90%, 100% -2x. After the sample had

completely dehydrated, it was immersed in a solution of BABBwhich is a mixture of benzyl alcohol and benzyl benzoate to complete

the clearing process. The sample was immersed in these solutions for a minimum of 24 h at every stage.

Manipulation system
A common solution for micrometer accurate targeting is a micromanipulator but in this study the target was located deep in the hard-

ened and tough tissue. Considering the force required in case of a bone penetration is in the range of 10 N and micromanipulators

operate in the range of hundreds of mN, the standard solution would not suffice for this specific problem.
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For the image guided sample extraction, a robot armwith harmonic drives was selected. The advantages in comparison to amicro-

manipulator or a piezo electric stage system is the level of applicable force without compromising accuracy. TheMeca500 can apply

a force of 110N and still remain within a precision tolerance of 5 mm. Being able to control such a force with high precision in a large

working envelope with 260mm reach in 6 degrees of freedom, provided us the freedom to conduct experiments with various assem-

bly positions, tool deigns, needle dimensions delivering repeatable results.

The system is controlled via the programming and simulation software for industrial robots RoboDK. The 3D models of the optical

table, microscope and other structural parts are assembled corresponding to their real locations in a 3D CAD software and exported

as.STEP file to the RoboDK environment. From that point on Meca500 is controlled over TCP/IP socket communication with ASCII

commands. Having the whole environment in the control software, paths are calculated in segments to avoid any collision. Any

misalignment with the needle tip in real world and computer model is also calibrated in the software before sample extraction.

Optimization of DISCO cleared sample preparation for mass spectrometry analysis
Several conditions and combinations of solubilizing agents for the isolation of proteins from tissue cleared mouse brain, heart, and

lung samples were initially evaluated for protein extraction efficiency, peptide recovery, and qualitative and quantitative reproduc-

ibility keeping fresh or PFA-fixed as reference. Our goal was to establish a workflow that recovers proteomes that are as similar

as possible to non-cleared tissue and is universal for all tissue clearing techniques.

Cleared organs or cryosections were removed from the refractive index matching solution BABB and washed five times with 1x

PBS solution. The organ was then flash-frozen and pulverized in a Covaris CP02. Afterward, the samples were resuspended in

different protein solubilizing solutions (6% SDS500 mM TrisHCl, pH 8.5 (SDS buffer); 2% Sodium deoxycholate, 100 mM TrisHCl

pH 8.5, 10 mM Tris-(2-carboxyethyl)-phosphine (TCEP), 40 mM Chloroacetamide (SDC buffer); 50% Trifluoroethanol, 100 mM

TrisHCl, pH 8.5 (TFE buffer), followed by protein extraction at 95�C, 1.000rpm for 45 min. Then the samples were subjected to son-

ication (Branson) at maximum frequency for 30 cycles at 50%output, followed by another heating step at 95�C, 1.000 rpm for 45min.

From here on, processing steps diverged for each protocol.

Proteins solubilized in the SDS buffer were precipitated with ice-cold acetone at 80% v/v ratio overnight at �80�C, followed by

centrifugation at max. g for 15 min at 4�C. The supernatant was removed, the pellet was washed with 5 mL ice-cold 80% v/v

Acetone/ddH2O, followed by 30 min precipitation on dry ice. The acetone wash steps were repeated two times for a total of three

washes. Proteins solubilized in the TFE buffer, were subjected to solvent evaporation in a SpeedVac at 45�C until dryness before

further processing.

In case of SDS-SDCor TFE-SDC protocol, in which SDS or TFE protein extraction was coupled to an SDC-based protein digestion,

SDS- or TFE-solubilized proteins were resuspended in 1mL of SDC buffer and heated to 95 �C at 1.000 rpm for 10 min to denature

proteins, reduce cysteine bridges and alkylate free cysteine residues. Afterward, samples were sonicated for 15 cycles each 30 s at

max power in a Bioruptor, followed by another heating step for 10 min at 95�C, 1.000 rpm in a Thermoshaker.

SDC-only, SDS-SDC, TFE-SDC solubilized protein solutions were cooled down to room temperature, diluted 1:1 with 100 mM

TrisHCl, pH 8.5, followed by protein concentration estimation by Nanodrop. Extracted and solubilized proteins were digested over-

night at 37�C and 1.000 rpm, with trypsin and LysC at a protein to enzyme w/w ratio of 1:50. Next day, trypsin and LysC were added

again at a protein to enzyme w/w ratio of 1:50 and proteins were digested further for 4 h at 37�C, 1.000 rpm. Resulting peptides were

acidified with 1% TFA 99% Isopropanol in a 1:1 ratio and vortexed, followed by centrifugation at 22.000 xg RT to pellet residual par-

ticles. The supernatant was transferred into a fresh tube and subjected to StageTip clean-up via SDB-RPS. 20 mg of peptides were

loaded on two 14-gauge stage-tip plugs. Peptides were washed twice with 200 mL 1% TFA 99% ddH2O followed by 200 mL 1% TFA

99% isopropanol in an in-house-made StageTip centrifuge at 2,000 xg. Peptides were eluted with 100 mL of 5%Ammonia, 80%ACN

into PCR tubes and dried at 45�C in a SpeedVac centrifuge (Eppendorf, Concentrator plus). Peptides were resuspended in 0.1%TFA,

2% ACN, 97.9% ddH2O.

After evaluation of protein extraction efficiency, all sample preparation for Fresh, PFA-fixed, uDISCO-, 3DISCO-, SHANEL-cleared

tissue was performed following the SDS-SDC protocol. For LCM sample preparation, LCM samples were caught on PCR tubes with

adhesive caps and successful isolation was verified by visual inspection. 20mL of SDS-buffer was added to each tube. The tube was

closed and vortex for 30 s, followed by centrifugation for 5 min in a table-top centrifuge to ‘catch’ the LCM sample in the protein

solubilization buffer, which was confirmed afterward by visual inspection. Sample preparation was performed as described for

the SDS-SDC protocol, except for the following modifications: No shaking during cooking steps; Instead of a Branson sonicator,

a Bioruptor was used for each sonication step; No Covaris CP02 was used for crushing the sample; Acetone precipitation was

performed at 100 mL total volume; SDC resuspension and protein digestion was performed in a 20 mL volume.

High-pH reversed-phase fractionation
To generate a deep library of experiment-specific precursors, peptides were fractionated at pH 10 with the spider-fractionator.79

50 mg of purified peptides were separated on a 30 cm C18 column in 96 min and concatenated into 16 or 24 fractions with 2 min

exit valve switches. Peptide fractions were dried in a SpeedVac and reconstituted in 2% ACN, 0.1% TFA, 97.9% ddH2O for

LC-MS analysis.
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Liquid chromatography and mass spectrometry (LC-MS)
LC-MS was performed on an EASY nanoLC 1200 (Thermo Fisher Scientific) coupled online either to a quadrupole Orbitrap mass

spectrometer (Q Exactive HFX, Thermo Fisher Scientific), or a trapped ion mobility spectrometry quadrupole time-of-flight mass

spectrometer (timsTOF Pro, Bruker Daltonik GmbH, Germany) via a nano-electrospray ion source (Captive spray, Bruker Daltonik

GmbH). Peptides were loaded on a 50 cm in-house packed HPLC-column (75 mm inner diameter packed with 1.9 mm ReproSil-

Pur C18-AQ silica beads, Dr. Maisch GmbH, Germany). Sample analytes were either separated using a linear 100min gradient

from 5 to 30% B in 80 min followed by an increase to 60% for 4 min, and by a 4 min wash at 95%, a decrease to 5% B for 4 min,

and a re-equilibration step at 5% B for 4 min, or separated on a linear 120 min gradient from 5 to 30% B in 90 min followed by an

increase to 60% for 10 min, and by a 5 min wash at 95%, a decrease to 5% B for 5 min, and a re-equilibration step at 5% B for

5 min (Buffer A: 0.1% Formic Acid, 99.9% ddH2O; Buffer B: 0.1% Formic Acid, 80% CAN, 19.9% ddH2O). Peptides derived from

LCM and matching libraries were separated using a linear 70 min gradient from 3 to 30% B in 45 min followed by an increase to

60% for 5 min, an increase to 95% in 5min, followed by 5 min at 95% B, a decrease to 5% B for 5 min, and an equilibration step

at 5% B for 5 min. Flow-rates were constant at 300 nL/min. The column temperature was kept at 60�C by an in-house manufactured

oven.

Mass spectrometry analysis for the evaluation of sample preparation on a Q Exactive HFX was performed in data dependent scan

mode. For full proteome measurements, MS1 spectra were acquired at 60.000 resolution and an m/z range of 300–1.650 with an

automatic gain control (AGC) target of 3E6 ions and a maximum injection time of 20 ms. The top 15 most intense ions with a charge

of two to eight from eachMS1 scan were isolated with a width of 1.4 Th, followed by higher-energy collisional dissociation (HCD) with

a normalized collision energy of 27% and a scan range of 200–2,000 m/z. MS/MS spectra were acquired at 15,000 resolution with an

AGC target of 1E5, aminimumAGC target of 2.9E3, and amaximum injection time of 28ms. Dynamic exclusion of precursors was set

to 30 s.

Deep proteomes and comparisons of clearing conditions with the SDS-SDC protocol were acquired on a standard timsTOF Pro in

a data-dependent PASEF mode with 1 MS1 survey TIMS-MS and 10 PASEF MS/MS scans per acquisition cycle. Ion accumulation

and ramp time in the dual TIMS analyzer was set to 100ms each andwe analyzed the ionmobility range from 1/K0 = 1.6 Vs cm�2 to 0.6

Vs cm�2. Precursor ions forMS/MS analysis were isolated with a 2 Thwindow form/z < 700 and 3 Th form/z > 700 in a total m/z range

of 100–1.700 by synchronizing quadrupole switching events with the precursor elution profile from the TIMS device. The collision

energy was lowered linearly as a function of increasing mobility starting from 59 eV at 1/K0 = 1.6 VS cm�2 to 20 eV at 1/K0 = 0.6

Vs cm�2. Singly charged precursor ions were excluded with a polygon filter (otof control, Bruker Daltonik GmbH). Precursors for

MS/MS were picked at an intensity threshold of 2.500 a.u. and re-sequenced until reaching a ‘target value’ of 20.000 a.u taking

into account a dynamic exclusion of 40 s elution.

Peptides derived from LCM samples were acquired on a timsTOF Pro modified for highest ion transmission and sensitivity, as

described in Brunner et al., in a data-dependent or data independent acquisition PASEF mode.10 In DDA, 1 MS1 survey TIMS-MS

and 5 PASEF MS/MS scans represents one acquisition cycle. Ion accumulation and ramp time in the dual TIMS analyzer was set

to 50 ms each and we analyzed the ion mobility range from 1/K0 = 1.6 Vs cm�2 to 0.6 Vs cm�2. Precursor ions for MS/MS analysis

were isolated with a 2 Th window for m/z < 700 and 3 Th for m/z > 700 in a total m/z range of 100–1.700 by synchronizing quadrupole

switching events with the precursor elution profile from the TIMS device. The collision energy was lowered linearly as a function of

increasing mobility starting from 59 eV at 1/K0 = 1.6 VS cm�2 to 20 eV at 1/K0 = 0.6 Vs cm�2. Singly charged precursor ions were

excluded with a polygon filter (otof control, Bruker Daltonik GmbH). Precursors for MS/MS were picked at an intensity threshold

of 1.500 a.u. and re-sequenced until reaching a ‘target value’ of 20.000 a.u taking into account a dynamic exclusion of 40 s elution.

For DIA analysis, wemade use of the correlation of ion mobility (IM) with m/z and synchronized the elution of precursors from each IM

scan with the quadrupole isolation window. We used the short-gradient diaPASEF method as described in Meier et al.80 but per-

formed five consecutive diaPASEF cycles before the next MS1 scan. The collision energy was ramped linearly as a function of

the IM from 59 eV at 1/K0 = 1.6 Vs cm�2 to 20 eV at 1/K0 = 0.6 Vs cm�2.

QUANTIFICATION AND STATISTICAL ANALYSIS

ClearMap quantification
To quantify microglia distribution in whole brains of mTBI and sham animals, we used ClearMap. As the script was originally devel-

oped for quantification of the cFos+ cells, to comply with the offeredmethod, we performed the following pre-processing steps on our

microglia data using Fiji before ClearMap:

1. Background equalization to homogenize intensity distribution and appearance of the microglia cells over different regions of

the brain, using pseudo-flat-field correction function from Bio-Voxxel toolbox.

2. Convoluted background removal, to remove all particles bigger than relevant cells. This was donewith themedian option in the

Bio-Voxxel toolbox.

3. Two-dimensional median filter to remove remaining noise after background removal. The filter radius was chosen to ensure the

removal of all particles smaller than microglia cells.
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4. Unshapen mask to amplify the high-frequency components of a signal and increase overall accuracy of the cell detection al-

gorithm of ClearMap.

After pre-processing, ClearMap was applied by following the original publication and considering the threshold levels that we ob-

tained from the pre-processing steps. As soon as the quantification was completed, the data was exported as an Excel file for further

analysis.

Deep learning analyses
The segmentation of the stained Ab plaques represents a key step toward a reliable quantification thereof. We develop a customized,

three-dimensional deep learning approach to optimize segmentation of Ab plaques in the whole brains of 5xFAD animals. Our

network architecture is inspired by the well-established U-Net architecture. Our loss function is an equally weighted combination

of Dice and binary cross entropy loss. We use the Ranger optimizer, which combines Rectified Adam, gradient centralization and

LookAhead. Annotation of our dataset was performed in Fiji and double checked by multiple experts.81 Our dataset consists of

98 image volumes (300 3 300 3 300 voxel) from one Alzheimer brain; where 34 vol include Ab plaques, and 64 vol do not contain

any plaques. An ensemble of experts including the scientist who imaged the brains labeled all images. We randomly sampled our

training set of 85 vol (21 with AD plaques, 64 without AD plaques), our validation set of seven volumes and our separate test set

of six volumes. During training and testing we applied suitable data augmentation protocols. In order to assess the quality of our seg-

mentation we calculate a wide range of voxel-wise and Ab plaque wise segmentation metrics. Based on the reliable segmentation of

individual Ab plaques we continued toward a statistical evaluation of the number and size of Ab plaques per brain region. First, we

registered all of our brains to the Allen brain Atlas, enabling a single voxel assignment to brain structures. For whole brain segmen-

tation we extracted the single connected components using cc3d,82 which represent our individual segmented Ab plaques and

calculate their total size in voxels as a biomarker. Using this registration and biomarker, we calculated per brain region statistics

for the presence and size of Ab plaques across the whole brain.

Proteomics data processing
Raw files were either searched against the mouse Uniprot databases (UP00000589_10090.fa, UP00000589_10090_additional.fa) or

human Uniprot databases (UP000005640_9606.fa, UP000005640_9606_additional.fa). For DDA raw file analysis, we used the

MaxQuant version 1.6.7.0 which extracts features from four-dimensional isotope patterns and associated MS/MS spectra. False-

discovery rates were controlled at 1% both on peptide spectral match (PSM) and protein level. Peptides with a minimum length

of seven amino acids were considered for the search including N-terminal acetylation and methionine oxidation as variable modifi-

cations and cysteine carbamidomethylation as fixed modification, while limiting the maximum peptide mass to 4.600 Da. Enzyme

specificity was set to trypsin cleaving c-terminal to arginine and lysine. Amaximum of twomissed cleavages were allowed. Maximum

precursor tolerance in the first search and fragment ion mass tolerance were searched as default for TIMS-DDA data. Main search

tolerance was set to 20 ppm. The median absolute mass deviation for the dataset was 1.57 ppm for precursors. Peptide identifica-

tions by MS/MS were transferred by matching four-dimensional isotope patterns between the runs with a 0.7 min retention-time

match window and a 0.05 1/K0 ion mobility window. Label-free quantification was performed with the MaxLFQ algorithm, and a min-

imum ratio count of 1.83 For DIA data analysis of the 5xFAD samples isolated from different brain regions, a hybrid library containing

all single-shot DIA files and region-specific libraries (16 fractions each) were created using the Spectronaut software suite (version

14.10.201222.47784; Biognosys AG, Schlieren, Switzerland).84 All files were searched against the mouse Uniprot databases

(UP00000589_10090.fa, UP00000589_10090_additional. fa) of canonical and isoform sequences. For DIA single-shot analysis, a

minimum of three fragments per peptide, and a maximum of six fragments were included for data extraction. Searches used protein

N-terminal acetylation and methionine oxidation as variable modifications. Protein intensities were normalized using the ‘‘Local

Normalization’’ (Q-value = 0.2) algorithm based on a local regression model.85 A protein and precursor FDR of 1%was used. Default

settings were used for other parameters. Within our regional brain tissue FAD comparison, after filtering and before performing sta-

tistical analysis, our data were filtered for at least 3,500 protein identifications per samples and at least 50% data completeness per

protein. This resulted in a total of 4,296 protein identifications across 60 samples at a data completeness of above 95%. For down-

stream analysis, the 5%missing values were imputed from a downshifted normal distribution. For DIA analysis of human heart sam-

ples, library free approach was used and the data was analyzed using DIA-NN (Version 1.).86

Proteomics downstream data analysis
Proteomics data analysis was performed in the Perseus environment (version 1.6.7.0),87 Prism (GraphPad Software, version 8.2.1).

MaxQuant output tables were filtered for ‘Reverse’, ‘Only identified by site modification’, and ‘Potential contaminants’ before further

processing. Protein and peptide identifications were reported after filtering as described above. Proteome correlations across tech-

nical/analytical/biological replicates were performed after log10-transformation. Coefficients of variation (CVs) were calculated

across the full dataset or within experimental groups on raw intensity levels for shared observations of more than one. Hierarchical

clustering was performed in Perseus with default parameters and Pearson correlation as distance parameters. Before DE analysis,

data were filtered for at least two observations in one group to be compared, followed by log2-transformation and imputation from a

normal distribution modeled as the dataset with a downshift of 1.8 standard deviations and a width of 0.3 standard deviations. Deep

ll

e10 Cell 185, 5040–5058.e1–e11, December 22, 2022

Resource



proteomes of biological replicates from fresh or vDISCO cleared tissue were tested for differences by a two-sided t-test. False-dis-

covery rate control due to multiple hypothesis testing was performed by a permutation-based model and SAM-statistic with an

S0-parameter of 0.2 and an FDR of 0.01. Ontologies for cellular compartment assignment and keywords was performed with the

mainAnnot.Mus_musculus.txt.gz followed by log2-fold difference frequency counts for the terms ‘Extracellular space’, ‘Bloodmicro-

particle’, ‘Neurodegeneration’, ‘Aging’, ‘Neurogenesis’, ‘Receptor’, ‘Virus-Host’, ‘Immunity’, Wound healing’ and ‘Cell migration’. 1D

enrichment analysis was performed on the two-sided t-test difference and only enriched terms with a size of larger than ten were

displayed in the comparison of fresh versus vDISCO deep proteomes. CVs rank plots were calculated within each of the deep pro-

teome groups and plotted against the median abundance of each protein within each group after log10-transformation.

For the calculation of systematic ontology-related protein mass shifts, total protein copy number estimations of the deep fresh and

vDISCO cleared proteomes of biological replicates were calculated using the Perseus plugin ‘Proteomic ruler’.88 Protein copy

numberswere calculatedwith the following settings: Averagingmode. ‘All columns separately’, Molecular masses: ‘Molecular weight

[kDa]’, Scaling mode: ‘Histone proteomic ruler’, Ploidy: ‘2’, Total cellular protein concentration: ‘200 g/L’. Proteins were annotated

with regards to their cellular compartment by gene ontology from the mainAnnot.mus_musculus.txt.gz. For protein mass estimates,

we multiplied the resulting protein copy number by its protein mass for each conditional replicate and summed up all protein masses

to obtain the total protein mass for each representative proteome reflecting 100% of the protein mass. To calculate the subcellular

protein mass contribution, we calculated the protein mass proportion for the GOCC terms related to the cytoskeleton: ‘Actin fila-

ment’, ‘Intermediate filament’, ‘Centrosome’, ‘Microtubule’; Membranes: ‘Cytoplasm’, ‘Plasma membrane’, ‘Membrane’; Organ-

elles: ‘Mitochondrion’, ‘Nucleus’, ‘ER’, ‘Golgi apparatus’. For calculating the organellar change between the respective Fresh and

vDISCO sub-proteomes, individual protein mass contributions were normalized by its total proteome mass first, followed by ratio

calculation to obtain the percentage shift of protein mass between Fresh and vDISCO brains.

For PCA of both LCM applications (mTBI and FAD), data were grouped according to their condition, filtered for at least 760 or 900

proteins for the FAD or mTBI experiment respectively and at least 2 observations within one of the two conditions, column-wise me-

dian normalized, and missing values were imputed from a normal distribution with a width of 0.3 standard deviations that was down-

shifted by 1.8 standard deviations. DE analysis for the FAD andmTBI experiment was performed by two-sidedWelch’s t-test on LFQ

or IBAQ data respectively. False-discovery rate control due to multiple hypothesis testing was performed by a permutation-based

model and SAM-statistic with an S0-parameter of 0 or 0.2 and an FDR of 0.3 or 0.5 for the mTBI and FAD comparison, respectively.

ADDITIONAL RESOURCES

d Videos related to DISCO-MS work: http://discotechnologies.org/DISCO-MS/

d Further details on the vDISCO protocol: http://discotechnologies.org/vDISCO/

d Videos related to workshops: http://discotechnologies.org/workshop/
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Supplemental figures

Figure S1. Optimization of sample preparation from cleared tissues, related to Figure 1

(A) The workflow for optimization of DISCO-MS from clearing bulk tissue to mass spectrometry. Organs can be isolated from any organism followed and cleared

by any organic solvent-based tissue clearing. The cleared tissues then subjected to sample preparation workflow we developed for the mass spectrometry

analysis. In short: the tissues were solubilized, reduced and alkylated, digested into tryptic proteins and cleaned up ready for liquid chromatography coupled to

mass spectrometry (LC-MS) analysis. (B) Protein identifications across analytical duplicates for SDC, SDSSDC, or TFESDC preparations coming from fresh or

cleared mouse brains (3D, uD: 3DISCO and uDISCO clearing methods, respectively). (C) Peptide levels of the samples shown in (B). (D) Proteome correlation

matrices for measurements presented in (B) and (C). High Pearson correlations indicate very similar proteomes across conditions in SDSSDC and TFESDC.
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Figure S2. Quantitative assessment of proteome and gene ontologies in vDISCO-cleared and fresh mouse brain tissues in biological trip-

licates, related to Figure 1

(A) Proteins identified across all three biological replicates for either fresh or vDISCO-cleared tissue. (B) Coefficients of variation (CV) for either the total dataset

including freshandvDISCOcleared tissue, or fresh/vDISCOonly. Note thatCVsacrossbiological replicates are lowand thatCVsacrossbiological triplicates arevery

similar for fresh and for vDISCOhighlighting that proteomeof vDISCO-cleared organs is highly reproducible. (C) Abundance toCV rankplot for either fresh tissue (left;

7,691 proteins in total; 54%of all proteins are belowCV = 0.2) or (D) vDISCO cleared tissue (right; 7,604 proteins in total; 47%of all proteins are below CV = 0.2). (E)

Protein intensity correlationplot for all six biological replicates (3x freshand3xvDISCO-cleared). (F) Log2-fold changes for the terms ‘Immunity’ (99proteins), ‘Wound

healing’ (76 proteins), ‘Virus-Host’ (24 proteins), ‘Neurodegeneration’ (9 proteins), ‘Cell migration’ (498 proteins) and ‘Receptor’ (1,018 proteins) between fresh and

vDISCO-cleared biological triplicates. (G) Mean intensity difference in one of the plasmamembrane-associated proteins in fresh and vDISCO cleared brains (N = 3).
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Figure S3. mTBI model validation by behavior and axonal morphology, related to Figure 2

(A) Depicting the mTBI impact area on the intact skull. (B) Schematic plan of the repetitive mTBI experimental mouse model (red points indicate each impact time

point). (C) Barnes maze test in sham vs. mTBI animals. n = 10 animals per group. (D) Beam walk test in sham and mTBI animals. n = 10 animals per group. No

significant behavior change detected-confirming the ‘‘mild’’ nature of our TBI model. (E) 3D-reconstruction of stiched data of an exemplary CX3CR1GFP+mouse

brain after mTBI. Segmented microglia shown in magenta. Scale bar, 500 mm. (F) Stiched images of coronal optical slices showing optic tract with activated

microglia. Scale bar, 400 mm. (G) Corresponding brain regions (coronal view) shown in Allen Brain atlas. (H, J) Highmagnification image of optic tract inmTBI brain

from (F) vs. the same region from sham control brain from (I) showing the activated microglia morphology in mTBI brain compared to control brain. Scale bar,

200 mm, (K) Quantification of total number of microglia in mTBI vs. Sham animals. (L) Quantification of microglia numbers in mTBI vs. shammice using ClearMap

method. Only the regions withmajor changes are shown. (M) 3D view of stiched images of whole brain from a Thy1-GFP-Mmouse aftermTBI. Scale bar, 1000 mm.

(N) 2D orthoslice of stiched images showing the axonal swellings in corpus callosum (white matter areas). Scale bar, 500 mm. (O, P) High magnification images

marked in (N). Scale bar, O, 100 mm and P, 50 mm. (Q) Overview of potential hurdles when registering light-sheet z-planes (left) and LCM sections (right) from the

same brain. 1: Light-sheet Illumination can produce striping artifacts and uneven illumination. 2: Small, loosely attached structures such as the choroid plexus

inside the ventricles will change shape during slicing. 3: Bulk tissue generates stronger autofluorescence, leading to e.g., uneven background illumination across

the cortex. 4: During cryosectioning into 12 mm sections, regions may tear.
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Figure S4. Histological validation of Ab plaques and DISCO-MS hits in 5xFAD brains, related to Figure 4

(A) Tissue histology validation of Congo red plaque staining with a plaque-specific monoclonal antibody (MOAB, green). Furthermore, the microglia were stained

using IBA1 antibody (in white) and nuclei using Hoechst dye (in blue). Microglia activation around the plaques of 5xFAD mouse brain is apparent. Scale bars,

20 mm. (B) Histological validation of DISCO-MS hit S100a11 (red) in hippocampal region using antibody immunostaining in 6 weeks old mice. The plaques were

co-labeled using the MOAB2 antibody (in green). (C) Intensity quantification of S100a11 (N = 3 animal per group from total 12 sections; unpaired two-sided

Student’s t test; p = 0.0311; data are presented as average ±SD). (D) Histological validation of DISCO-MS hit Thop1 (in green) in hippocampal region of 5xFAD

animals along with Congo red-labeled (in red) plaques in 6-weeks old mice. Scale bars, 10 mm.
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Figure S5. DISCO-MS unravels the spatiotemporally regulated single-plaque proteome in AD mouse model, related to Figure 4

(A) Rank order of core protein signals in a single plaque microenvironment. (B) Log10 abundance distribution of selected proteins and protein families as a

function of their coefficient of variation (CV) across the core Ab plaque proteomes. Dynamic range coverage is up to four orders of magnitude. CVs indicate

variability in the shared plaque core proteome, among proteins known to play a role in Alzheimer’s disease. (C) Principal component analyses (PCA) in early stage

(D) Volcano plot showing the significantly enriched proteins in 6w dorsal vs. 6w ventral plaques. (E) The number of shared and unique set of differentially ex-

pressed (DE) proteins in 6w and 6m regions. (F) Volcano plot showing the significantly enriched proteins in 6mdorsal plaque vs. 6w dorsal plaque. (G) In 6m ventral

plaque vs. 6w ventral plaque region. (H) PCA in later stage regions. (n = 8–10 ROIs per region). (I) Inter-regional enrichment at later stage plaque.
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(legend on next page)
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Figure S6. Optimization of needle and mouse holders for robotic extraction from whole body, related to Figure 5

(A) The iterative development of the models using finite element analysis method to evaluate the approximate deflection of 6.2 mm for needle holder A, (B) 2.6mm

for needle holder B and (C) 0.8 mm for needle holder C. (D) Deflection levels are color coded and plotted to comparatively present the iterative development of the

needle holder design. "Images used in A-D courtesy of ANSYS, Inc.". (E) On the other side the maximum deflection levels for the mouse holder (E) is 3.6 mm, for

the (F) 1.1 mm, for the (G) is 0.6 mm and for the mouse holder (H) is 0.2 mm. (I) Plot to comparatively present the iterative development of the mouse holder design

for the precision of targeting. (J) Showing number of protein groups obtained with various needle gauge size. Note, that in addition to 18G and 22G needles we

used here in biological applications (Figures 6 and 7), we could also obtain >1800 proteins with even smaller size needles.
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Figure S7. Spatial proteomics from DISCO and SHANEL cleared samples, related to Figures 6 and 7

(A) Principal component analyses (PCA) showing distribution of ROIs in medial and lateral border of scapula bone marrow. (B) Protein intensity correlation plot for

all 6 ROIs from LysM-EGFP+ and LysM-EGFP-. (C) Venn diagram showing shared and unique proteins in medial vs. lateral border of mouse scapula. (D) Heatmap

showing the proteins related to cytokine pathway in LysM-EGFP+ and LysM-EGFP- scapula samples. (E) Biological process terms associated with regulated

proteins in plaques vs. non-plaques regions in human right coronary artery. (F) Cellular component terms associated with regulated proteins.
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5 General Discussion

Throughout this thesis, I have demonstrated how omics technologies, particularly spatial omics,
can be leveraged to address cell and tissue biology across various pathological and physiolog-
ical states. The thesis comprises three main parts: In the first part I developed statistical and
machine learning approaches to study spatial cell arrangements in tissue under different con-
ditions leveraging spatial omics data from various technologies. We developed these tools to
help scientists utilise this data to uncover insights into diverse biological systems. The second
part examines the role of the skull in brain diseases through unbiased holistic omics analysis.
In the third part, we extended the spatial proteomics techniques into three dimensions by com-
bining our imaging and mass spectrometry-based approaches, developing a new technique to
better represent the tissue microenvironment.

To maintain a logical flow and accommodate the increasing complexity of the technologies,
I will order the studies to reflect this progression and align with the aims of the thesis. I will be-
gin with an analysis of bulk proteomics data to study the uniqueness of the molecular profiles
of the skull bone marrow (Kolabas et al., 2023). This will be followed by a shift to single-cell
or spot molecular profiles combined with spatial information (in 2-dimensional slices) to study
changes in cellular organisation and tissue architecture (Ali et al., 2024; Fischer et al., 2022).
Finally, I will discuss our extension of spatial proteomics into 3-dimensional space using tis-
sue clearing, 3D imaging techniques, and ultra-high-sensitivity mass spectrometry to develop
a novel 3D spatial proteomics technique, particularly focusing on its application in Alzheimer’s
disease (Bhatia et al., 2022).

5.1 Main findings

Here, I will briefly highlight the main findings from each of the studies presented in this thesis
before expanding on them in the discussion of key implications, limitations and outlook.

5.1.1 Skull bone marrow molecular profile differs from other bones

Using optimised tissue clearing and imaging, we previously unravelled physical connections
between the skull and dura matter through skull-meninges channels (SMCs) (Cai et al., 2019).
In our resource paper (Kolabas et al., 2023), we combined cutting-edge technologies omics,
tissue clearing and TSPO-PET imaging technologies and demonstrated the molecular dis-
tinctiveness of skull bone marrow compared to other bones and its therapeutic implication in
brain diseases in mice and humans. Notably, we observed minimal proteomic changes in skull
bone marrow under pathological conditions, indicating that its role may be more specialised
than previously thought. In human samples, we detected synaptic vesicle membrane proteins
unique to the skull, suggesting potential communication pathways with the brain. This distinc-
tion persisted regardless of pathological state, pointing to fundamental differences in the skull’s
biological function.
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5.1.2 GraphCompass uncovers cellular organisation and tissue architecture across
different conditions

Moving to the spatial space with higher molecular profiling resolution and by representing spa-
tial omics data as graphs of cells, we have the flexibility to utilise the graph learning theories
and adapt them to the omics domain. In our paper (Ali et al., 2024), we adapted graph com-
parison metrics and developed GraphCompass packages to compare the cellular organisation
of tissues at various abstraction levels: cell types, niches and samples across different patho-
logical and physiological states. This package can aid in answering some key biological ques-
tions such as how cellular organisation and tissue architecture differ across conditions and
what spatial patterns are indicators of specific conditions. We demonstrated the capabilities of
GraphCompass in providing a quantitative framework for analysing tissue architecture across
different conditions. When applied to breast cancer progression, our analysis revealed that
increased immune cell co-occurrence in non-progressor samples may explain the protection
against invasive breast cancer progression consistent with previous literature (Risom et al.,
2022). GraphCompass supported the finding that myocardial infarction can cause changes
in the cellular organisation beyond the site of the injury (Kuppe et al., 2022), and highlighted
some cell types organisation that has been successfully restored after a brain injury in the
axolotl brain such as dorsal pallium excitatory neurons (dpEX) and Sfrp+ ependymal glial
cells (sfrpEGC) (Wei et al., 2022). GraphCompass provides a comprehensive package of
graph comparison methods that can empower both computational and experimental scientists
to analyse the tissue architecture across various conditions.

5.1.3 Graph neural networks reveal tissue traits and predictive factors across patho-
logical stages using spatial omics

We extended the same representation of tissue as a graph of cells in our manuscript (Fischer
et al., 2022) and applied more complex models, namely graph neural networks, to investigate
the emergent properties of tissues in the various pathological stages. To achieve this, we con-
ducted a multimodal ablation study on both the molecular and cell-type feature spaces. Our
results showed that molecular features effectively encode spatial information and are predic-
tive of patient outcomes. However, in the cell type feature space, the predictive factors varied
across cancer data sets, whether the cellular organisation, the proportion of immune cells, or
tissue architecture was more predictive of patient outcomes. In addition, we developed inter-
pretation methods for the graph models to highlight specific regions within individual tissues
that contribute to colorectal cancer staging and were able to capture tissue-level phenotypes,
such as survival analysis in breast cancer, that the model had not been explicitly trained on.

5.1.4 DISCO-MS: advances in 3D spatial proteomics

In our effort to extend the spatial omics domain to capture the three-dimensional nature of the
cells in whole tissues (or even full body), in our other resource paper (Bhatia et al., 2022), we
developed DISCO-MS which is a new technique that combines the cutting-edge technologies
of tissue clearing, imaging, and mass spectrometry. DISCO-MS enabled several significant dis-
coveries in Alzheimer’s disease research. We detected amyloid-beta (Aβ) plaques in 5xFAD
transgenic mice modelling Alzheimer’s disease at 6 weeks, earlier than previously reported
(Jawhar et al., 2012; Uras et al., 2023). The technology identified novel proteins in early-stage
plaques, including S100a11, and revealed distinct regional differences in plaque composition
between the dorsal and ventral subiculum. We further observed region-specific gene regulation
patterns that affect synaptic plasticity and immune response, suggesting local microenviron-
ments play a crucial role in disease progression. Lastly, with the development of the advanced
robotic tissue extraction tool (DISCO-BOT), we demonstrated the capability of the DISCO-MS
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technique to be applied to whole mouse bodies and large human heart tissues, and using our
proteomics analysis pipeline, we were able to identify changes in various protein groups across
different conditions. This new development introduces a new approach for examining cellular
functional changes across conditions in an unbiased three-dimensional holistic manner.

5.2 Key implications

5.2.1 Skull bone marrow molecular profiles differ from other bones

The primary goal of our study (Kolabas et al., 2023) was to investigate the potential molecular
differences between the skull bone marrow and other bones driven by the recent discoveries
of skull-meninges channels connecting the skull bone marrow and the brain meninges (Cai
et al., 2019). This led us to two questions: (1) How does the skull differ from other bones in
the body under both healthy and pathological conditions? and (2) What role does the skull
play in both healthy and pathological brain function? In our attempt to answer these ques-
tions, we employed a range of technologies and followed two distinct pathways. The first path-
way involved studying molecular changes at transcriptome and proteome levels across various
bones. We used single-cell RNA sequencing and mass spectrometry-based proteomics to
analyse different flat and long bones in comparison to the skull, meninges, and brain, across
three conditions: naı̈ve, sham-operated, and stroke in mice and three bones including skull in
human samples with various causes of death. The second pathway leveraged tissue clearing
and light-sheet imaging to investigate the spatial dynamics of immune responses. For this dis-
cussion, I will focus on my contributions to the analysis and interpretation of the proteomics
data.

Our key goal in investigating the mouse proteome from various bone types and conditions
was to understand how the skull bone marrow differs from other bones in both health and
disease. With this in mind, we posed two key questions when analysing the data: (1) Is the
skull distinct from other bones, and if so, how? and (2) How does the skull proteome change
under pathological conditions, i.e. does it become more similar to or more distinct from other
bones? The proteomics data supported our hypothesis that the skull is indeed distinct from
other bones. However, I observed less prominent changes than expected between the patho-
logical condition and the naı̈ve state. Further investigation revealed distinct proteins in the skull
bone marrow in mice, particularly in modules of proteins, related to neutrophil degranulation
pathways, which are downregulated in the skull. This result was also supported by single-cell
RNA-seq data. This downregulation may indicate that the skull bone marrow is more tightly
regulated in terms of the immune response, potentially due to its proximity to the CNS, to pre-
vent excessive inflammation that could harm the brain.

To answer the second question, the results offer several insights into the skull compared to
other bones, both in its naı̈ve state and after brain injury. The subtle proteomic changes in
skull bone marrow under pathological conditions might be due to various factors which we can
only hypothesise and focusing primarily on immune cells may also limit our understanding of
what makes the skull unique. First, bone marrow across different bones might function more
collectively than expected, as no studies have specifically examined their response to disease.
Our findings suggest that the differences between bone marrows may not be as significant.
Second, each bone marrow might have specialised roles. The skull’s role may not be to act as
a broad immune reservoir but rather to closely monitor the brain’s immune state, maintaining a
lower level of mRNA activity and being prepared to respond if needed. Third, more substantial
changes could occur at the epigenomic level or through protein modifications, which are known
to affect bone homeostasis and disease progression.
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In human samples, I compared the proteome profiles of the skull with the vertebra and pelvis
from 20 human samples with various causes of death. Our reasoning behind choosing these
two bones is one would expect either the vertebra to be more similar to the skull due to their
proximity to the central nervous system (CNS) or that the pelvis and skull are more alike since
they are both classified as flat bones. Surprisingly, neither proximity to the CNS nor bone
type appeared to influence the bone marrow significantly. Instead, the vertebra and the pelvis
showed more similarity to each other than the skull. Most notably, I detected synaptic vesicle
membrane protein (SYN) in the skull marrow, suggesting possible communication via periph-
eral nerves or brain antigens passed through the meninges. These findings lay the groundwork
for further experimental work to understand the origin of these pre-synaptic proteins and the
mechanistic distinction of the skull from other bones.

This study provides a comprehensive framework for understanding the unique molecular and
functional features of the skull bone marrow and further serves as a benchmark for future
research of bone marrow biology and its relationship with brain health.

5.2.2 Spatial omics as graphs - what we can learn about cellular organisation in differ-
ent conditions

Moving to spatial omics, with the increase in molecular profiling resolution up to the single-
cell level and the addition of spatial information, our research (Ali et al., 2024; Fischer et al.,
2022) aimed to understand the cellular organisation and tissue architecture differences across
samples in various pathological and physiological states, while developing methods to guide
future research. This work addresses a crucial gap in the spatial omics domain, where existing
tools often lack the ability to quantitatively compare tissue architectures across conditions and
explain the emergent tissue traits that drive patient outcomes. Two key questions drove our
efforts: How do cellular organisation and tissue architectures differ under various conditions,
and what tissue traits are most predictive of patient outcomes? To tackle these, we worked on
two approaches. First, we adapted graph similarity metrics to quantitatively compare samples
at multiple levels of abstraction: cell types, tissue niches, and entire samples (Ali et al., 2024).
Second, we utilised graph models that can incorporate both spatial and molecular information
and conducted a multilevel ablation study to examine the tissue trait influencing patient out-
comes (Fischer et al., 2022). I will discuss in detail the key implications of each of the methods
below. It is worth mentioning that for both approaches, we represented spatial omics data as
graphs of cells or spots, a representation that has been used in the spatial domain (Palla et al.,
2022a) (Section 2.2).

5.2.2.1 Spatial omics-adapted graph comparison metrics revealed biological insights

Recent studies have shown that cellular organisation plays an important role in determining
the pathological or physiological state of the tissue and that tissue architecture changes with
disease progression or during developmental stages (Schürch et al., 2020; Jackson et al.,
2020; Wang et al., 2023). This led us to an important question: how can we quantitatively cap-
ture these spatial changes across different conditions? To tackle this challenge, we developed
GraphCompass package (Ali et al., 2024), a comprehensive tool that collects omics-adapted
graph similarity metrics, which can be easily used to unravel biological insights about the dif-
ferential neighbourhood composition and tissue architecture across different conditions. Our
choice of graph comparison metrics was driven by their interpretability, adaptability, and ability
to handle data sets with varying sample sizes, which are common in spatial omics, especially
those involving different conditions. This is due to the emerging nature of the field and the high
experimental cost. With spatial omics data represented as graphs of cells or spots (Palla et al.,
2022a), this structure serves as a foundation for differential analysis, enabling the comparison
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of specific cell type sub-graphs, neighbourhood composition, and entire graphs between dis-
ease states, developmental stages, and experimental conditions.

In selecting the metrics for the package, we prioritised interpretability, versatility and ease
of use. For each of the abstraction levels: cell type, niches and samples, we chose metrics
that were most suited to the information provided at each level and adapted them to the spatial
omics data. We included metrics that capture the essence of tissue topology, tissue homo-
geneity, and both local and global views of tissue architecture. Some of the metrics we used
were foreign to the omics field, such as filtration curves O’Bray et al. (2021) and Wasserstein
Weisfeiler-Lehman graph kernels (Togninalli et al., 2019). We developed the GraphCompass
package on top of widely-used spatial omics analysis packages Squidpy (Palla et al., 2022b)
and AnnData (Virshup et al., 2021), making it easy to extend to more metrics.

To test our package, we gathered spatial omics data from three different studies, each with
different conditions, representing distinct disease stages, physiological regions, and regener-
ative states across various organs, all obtained using different spatial omics technologies of
different resolutions. These data sets can serve as benchmarks for further differential method
developments. The three data sets include breast cancer progression, myocardial infarction
from different sites of the heart after ischaemic injury, and the regeneration stages of the ax-
olotl brain after injury. Our results from applying GraphCompass to the different data sets
were largely confirmatory of previously reported findings in the literature, while also offering
explanations for some intriguing new observations. For example, in the breast cancer data
set, we confirmed the unexpected finding of (Risom et al., 2022), that myoepithelial cells in
patients who progressors to invasive breast cancer (IBC) showed greater similarity to control
samples than those who did not progressor to IBC. To further explore the immune environ-
ments of progressor and non-progressor patients in comparison to control samples, we used
GraphCompass’s neighbourhood analysis metrics. We observed an increased co-occurrence
of immune cells in non-progressor samples, suggesting that the thinner myoepithelial barrier
in these patients may have influenced the immune environment, potentially offering protection
against the progression to IBC (Galon et al., 2010; Fridman et al., 2017). This example shows
how GraphCompass can serve as a hypothesis-generating tool; however, validation experi-
ments will be necessary to confirm these findings.

With these different applications, our results showed the capabilities of our GraphCompass
tool as a differential toolkit to compare samples across different conditions and at various ab-
straction levels, as well as its generalisability to the different spatial omics technologies and
biological systems. GraphCompass closes a gap in differential spatial omics tools by pro-
viding a comprehensive suite of graph metrics, which is likely to be further extended in the
future to cover more metrics, for studying spatial cellular arrangement and tissue architecture
changes across conditions.

5.2.2.2 Ablation study to understand emergent tissue properties

Another intriguing question we were eager to explore was: What tissue traits contribute to pa-
tient outcomes? By tissue traits, I mean properties of the tissue such as cellular organisation,
the proportion of immune cells in case of cancerous tissues, or overall tissue architecture re-
gardless of cell states. Recent studies have demonstrated the power of graph neural networks
in correctly identifying different patient outcomes and examining the tumour microenvironment,
particularly in cancer data sets (Schürch et al., 2020; Wang et al., 2023). However, to our
knowledge, no studies have directly focused on identifying the specific tissue traits that con-
tribute to patient outcomes, a gap that we aimed to fill in our study (Fischer et al., 2022).
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To tackle this, we took a deep learning approach, utilising graph models to uncover the un-
derlying predictive features of disease states. In an extensive multimodal ablation study, we
explored spatial and molecular information from spatial omics technologies and benchmarked
graph models against traditional machine learning models to capture tissue-level phenotypes.
This analysis was particularly challenging due to the complexity of the models and the need
for large data sets, hundreds of images, to avoid overfitting. Given that spatial omics is still an
emerging field, finding data sets large enough for our study was difficult. Fortunately, for our
study, we could access three cancer data sets with a couple hundred images, one for colorec-
tal cancer and two data sets for breast cancer data sets.

To explore the different tissue traits, we investigated our models on two feature spaces, molec-
ular expressions and cell types. When we focused on molecular information, we found that
spatial data is indeed encoded within the molecular profiles, as permuting the nodes in the
graph models did not affect performance. This has been reported in recent studies (Fischer
et al., 2023) and suggests that, while spatial omics data provides a valuable layer of detail, its
spatial features may be implicitly captured by molecular markers alone. However, by investi-
gating the graph embedding, we were able to obtain further insights which show that graph
models could extract deeper layers of information from the data patterns and relationships be-
yond what the models were explicitly trained on, such as survival analysis. This highlights the
potential of graph neural networks to learn more than just the obvious features and their ability
to uncover hidden biological insights.

Even though global gene expression seems to be predictive of patient outcomes, we wanted to
investigate whether spatial patterns and other tissue traits such as cell type frequencies also
contribute to patient outcomes. Therefore, we switched to examining the cell type information,
and indeed we noticed that the graph models outperformed other baseline models. The differ-
ence in performance between graph models and baselines was mostly obvious in colorectal
cancer and therefore, based on prior studies, we anticipated that cellular organisation would
play a key role (Schürch et al., 2020). However, our intriguing results showed that even when
we permuted the nodes, or even when we removed the cell-type features, the models still per-
formed remarkably well. This suggests that it might not be cellular organisation driving the
patient outcome, but the tissue architecture regardless of the cell states.

Interestingly, the breast cancer data sets revealed more complex patterns, with each of the
two data sets showing different levels of importance for cellular organisation as a predictive
factor for patient outcomes. This variation reflects the heterogeneity of breast cancer, a dis-
ease known for its complexity and diverse behaviour across patients. Our findings align with
the literature, illustrating the impact of tissue structure and cell types in driving disease out-
comes (Jackson et al., 2020; Ali et al., 2020).

To the best of our knowledge, our multimodal ablation study is the most comprehensive in
the field. Notably, we invested considerable time in training strong baseline models. These
baseline models provided a robust point of comparison and highlighted the strengths and po-
tential of graph neural networks in capturing different aspects of tissue traits. We believe that,
with more data, graph models will continue to prove their power in unravelling the complexities
of tissue architecture traits and patient outcomes.

5.2.3 Spatial proteomics goes 3D

Most current spatial omics technologies are performed on two-dimensional slices, limiting our
understanding of three-dimensional cells and tissue structures. This limitation is particularly
significant in spatial proteomics, a relatively new field where high-resolution spatial methods
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are currently two-dimensional and have limited proteome coverage (Giesen et al., 2014; Golt-
sev et al., 2018), while common mass spectrometry methods with broader proteome coverage
lack spatial information (as discussed in Section 1.4.2). Our DISCO-MS technique was devel-
oped to address this gap Bhatia et al. (2022).

To demonstrate DISCO-MS’s capabilities, we applied it across multiple disease models and or-
gans. In this discussion, I will highlight its application in detecting the early onset of Alzheimer’s
disease in the 5xFAD mouse model. We focused on three key questions: (1) How early can Aβ
plaques be detected in the brain? (2) What differences exist between early- and late-stage Aβ
plaques? (3) How do Aβ plaques vary across different locations within the subiculum region, a
region where these plaques first appear?

Our findings revealed that Aβ plaques are detectable at 6 weeks, significantly earlier than the
reported 2-3 months threshold (Uras et al., 2023; Kim et al., 2019). Motivated by this detec-
tion of Aβ plaques at 6 weeks, I expanded our investigation to explore the proteomic profiles
of these early-onset plaques (6 weeks) in comparison to both control regions and the more
widely studied late-stage plaques at 6 months, which in turn addresses our second research
question. DISCO-MS technique using laser capture microdissection (LCM) enabled us to ex-
tract single Aβ plaques and run mass spectrometry on them. From the results of early-stage
Aβ plaques, we were able to identify proteins that were not previously reported in Alzheimer’s
disease studies, including S100a11, a calcium-binding protein family implicated in inflamma-
tion and cell cycle regulation and have been reported to influence trace metal homeostasis in
the brain (Cristóvão and Gomes, 2019), both of which may play key roles in the early develop-
ment of Alzheimer’s pathology. While I successfully identified Apoe, a well-established marker
associated with Alzheimer’s disease progression at the late stage of AD, its absence in the
early stage suggests its involvement may emerge at later stages of plaque development.

Further, I investigated the regional differences between Aβ plaques in the dorsal and ven-
tral subiculum, an early site of plaque formation, and revealed distinct molecular profiles. We
observed that certain genes were differentially regulated between the dorsal and ventral re-
gions such as Tspan7 and Negr1, involved in synaptic plasticity and maintenance, and Mif,
a gene linked to immune regulation, suggesting region-specific responses to plaque develop-
ment (Zhang et al., 2019). From this finding, we can hypothesise that the local microenviron-
ment within each subregion might play a crucial role in shaping plaque composition and devel-
opment. It might be the case that region-specific differences in cellular populations, metabolic
activity, or protein expression create distinct environments that influence the form and develop-
ment of Aβ plaques. These findings highlight the importance of local context in Alzheimer’s dis-
ease progression and suggest that plaques may not develop uniformly across different regions
of the brain, especially in early stages. Further investigation into these regional differences
could provide new insights into how Alzheimer’s disease progresses and why certain areas of
the brain are affected more severely than others.

Our study highlights the potential of DISCO-MS for spatial proteomics, particularly in detecting
early Aβ plaques, at 6 weeks in 5xFAD model which has not been reported before, as well
as revealing regional differences in the brain. Although we applied DISCO-MS to other dis-
ease models, they are beyond the scope of this discussion. In addition, our findings suggest
that Aβ plaque formation is influenced by local microenvironments, providing new insights into
Alzheimer’s pathology and the need for further investigation into regional variations in disease
progression.
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5.3 Limitations

While our studies provide valuable insights into utilising omics data, particularly proteomics,
to understand biological systems, applying graph approaches to the spatial omics domain and
extending spatial proteomics to the 3-dimensional space, as with any other studies several
limitations need to be acknowledged. The diversity of technologies used introduces additional
methodological and computational challenges, as each method comes with its constraints and
variability. In this section, I will highlight the various technical and biological limitations of the
technologies and computational approaches used throughout the studies presented in this
thesis.

5.3.1 Technical limitations

In this part, I will discuss the technical limitations that arise from the various technologies used
to acquire the data, as well as the constraints and challenges of the different computational
approaches utilised to preprocess, analyse, and interpret the diverse omics data sets. This
includes issues related to data acquisition techniques, preprocessing variability, and computa-
tional methods applied to extract meaningful biological insights from the data.

5.3.1.1 Mass spectrometry proteomics data acquisition and processing

Mass spectrometry proteomics presents several challenges in data acquisition and process-
ing. The lack of standardised protocols introduces variability in both acquisition methods and
preprocessing pipelines. For proteomics data acquisition, the two main methods that are used
are data-dependent acquisition (DDA) and data-independent acquisition (DIA). While DDA se-
lects peptides based on abundance, it often overlooks lower abundance proteins. DIA on the
other hand, which was used in our studies, scans a broader spectrum of proteins, however, this
comes at the cost of increased noise and decreased sensitivity for low-abundance peptides.
Therefore, the choice of data acquisition method may affect the outcome by missing important
biological insights or introducing false positives.

Another source of variability or limitation when dealing with mass spectrometry proteomics
data is the absence of consensus on a best-practice preprocessing pipeline. Several key steps
in the preprocessing pipeline can introduce variability, including the order of normalisation and
log transformation, as well as the method used for imputing missing data. These methods
usually vary across different studies, with each researcher choosing what suits their data, and
may therefore distort biological signals. A problem associated with proteomics data, unlike
RNA-sequencing data, is the presence of a large amount of missing values (ranging from
10-50% of missing values). There are multiple sources for missing values, where some are
missing at random due to technical errors, while others are not random, meaning they may
have low abundance below the detection threshold of the machine (Jin et al., 2021). As a
result, proper imputation methods are applied to correct for these missing values, which can
introduce variability and bias into the data. For our studies, we applied k-nearest neighbours
(kNN) imputation to address the missing values. kNN imputation can be effective by filling in
gaps based on the similarity of nearby data points, however, it has its limitations. One key
limitation is that it assumes similar samples have similar missing values, which may not always
hold true in biological data. Moreover, kNN imputation can introduce bias, particularly when
the missing values are not randomly distributed or when the nearest neighbours themselves
contain noise, potentially distorting the biological signals further.

These technical limitations in acquisition and preprocessing could influence the biological inter-
pretations drawn in this thesis. For instance, the use of DIA may have introduced background
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noise or masked low-abundance proteins relevant to disease pathways. Similarly, kNN imputa-
tion, while practical, may have affected downstream analyses by introducing biases, especially
in heterogeneous tissue types. Therefore, while the insights presented are robust within the
applied frameworks, they must be interpreted with awareness of these underlying methodolog-
ical constraints.

5.3.1.2 Tissues as graphs of cells and graph neural networks: model complexity and
data constraints

When it comes to utilising graphs for spatial omics across different conditions, we face limi-
tations in various aspects of modelling, such as data constraints, representation, and model
complexity, which may affect the biological insights we can obtain from our methods.

In our methods papers (Ali et al., 2024; Fischer et al., 2022), we are relying on the repre-
sentation of tissues as graphs of cells, with edges representing the proximity of cells. While
this proximity-based method effectively captures local cellular interactions, it may overlook im-
portant long-range connections between cells that are not solely dependent on spatial proxim-
ity. These long-range connections, such as those involved in signalling pathways or immune
responses, can be critical to understanding biological processes. With our focus proximity
alone to determine if two cells are communicating, the model risks missing key cellular inter-
actions, thereby limiting the insights gained from the graph. In addition, in our paper (Fischer
et al., 2022), we use a distance-based approach to determine whether two cells are connected,
which introduces further limitations. This method requires hyperparameter tuning to define the
distance threshold at which two cells are considered neighbours. Therefore, it adds a layer
of complexity to the modelling process, and choosing an inappropriate threshold can either
overestimate or underestimate the true biological connections, leading to biased or incomplete
interpretations of the tissue.

The use of graph neural networks (GNNs) presents both opportunities and challenges when
applied to spatial omics data. While GNNs are powerful tools for capturing the relationships be-
tween cells, their complex implementation comes with certain limitations. In our study (Fischer
et al., 2022), we utilised well-established graph models such as Graph Convolutional Networks
(GCNs) and Graph Isomorphism Networks (GINs), which rely on aggregation functions to ag-
gregate feature information from neighbouring nodes. One limitation of this approach is the
nature of the aggregation functions. For instance, GCNs use a weighted average to aggregate
features from neighbouring cells, which works well in homogeneous environments but may
oversimplify the heterogeneity of the tissues. On the other hand, GINs utilise a summation-
based aggregation that is better at distinguishing between graph structures, but they can be
sensitive to sparsity in nodes, especially in small data sets. We conducted experiments on the
aggregation functions of GCNs and GINs and indeed observed differences in model perfor-
mance when altering the aggregation methods. In addition, both models rely on local neigh-
bourhood information, which limits their ability to capture long-range interactions between cells.

Another limitation of GNNs, as with other deep learning models, is the need for a large amount
of data. Since our problem involves graph classification, we required a substantial number of
tissue samples with various conditions. This poses a significant challenge in the field of spatial
omics due to the limitations and high costs of the technologies. However, even with the couple
hundred sample data sets we were able to obtain, the model’s complexity may have led to
overfitting, especially in the colorectal cancer data set that was too small to allow for a proper
validation split.
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5.3.1.3 3D spatial proteomics: technological barriers

Our DISCO-MS, and 3-dimensional spatial proteomics technologies in general, provide a great
promise to understand tissue architecture and cellular organisation. However, it is a new field
and still faces multiple technical limitations.

One of the limitations of our technology is the lack of single-cell resolution. Although we were
able to reach the resolution of dozens of cells, achieving single-cell resolution remains a chal-
lenge, not just in 3-dimensional spatial proteomics, but even in non-spatial mass spectrometry.
This is due to the requirement for a specific amount of tissue material to generate a detectable
signal. In addition to the challenges in sample preparation and instrumental limitations.

Despite DISCO-BOT’s development, tissue extraction remains labour-intensive and cannot
match the precision of laser capture microdissection, potentially introducing sampling bias.

5.3.2 Biological limitations

In the following section, I will discuss the biological limitations that arise from the inherent
complexity of the tissues and systems studied, as well as the challenges associated with in-
terpreting proteomic and spatial omics data. These limitations include issues related to tissue
heterogeneity, the variability of protein abundances, and the dynamic nature of biological pro-
cesses that may not be fully captured in our analyses.

5.3.2.1 Tissue heterogeneity

Tissue heterogeneity poses significant challenges, particularly in bone marrow and tumour
analysis. Although we aim to capture a wide range of cellular behaviour, the variability in cell
populations, such as rare immune or structural cells, might be under-represented, especially
given the focus on certain cell types, for example, immune cells in our study of skull bone mar-
row (Kolabas et al., 2023). This diversity within tissues can complicate our ability to draw broad
conclusions and may limit the scope of our insights.

Furthermore, this heterogeneity may also affect the reproducibility of the findings across dif-
ferent data sets, as the composition and interactions of cell types may vary from sample to
sample. This makes it more challenging to generalise the findings and increases the risk of
missing key biological processes that are crucial in other contexts.

5.3.2.2 Protein abundances in tissue

Proteomic analysis is based on relative abundance and therefore introduces its challenges.
Because protein levels can fluctuate between tissues and conditions, the use of relative abun-
dance might obscure the role of low-abundant proteins that could be biologically significant.
These proteins, although present in small amounts, may play critical roles in processes like
signalling or immune responses. The reliance on relative abundance makes it difficult to de-
termine the true impact of these proteins, potentially leading to incomplete or skewed interpre-
tations. In addition, this limitation can affect our understanding of disease progression, where
even small shifts in the expression of low-abundant proteins could have major biological conse-
quences. By focusing primarily on more abundant proteins, we may overlook subtle but critical
molecular changes that are key to understanding complex biological processes.

In summary, these limitations provide context for interpreting our findings and highlight areas
for future technological and methodological improvements. By addressing these constraints,
we can work towards more comprehensive and accurate models of biological systems.
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5.4 Outlook

In this thesis, I have demonstrated the use of existing omics technologies to study different
biological systems, specifically skull biology. I have also highlighted our efforts in developing
computational graph methods for spatial omics technologies to explore cellular organisation,
tissue architecture, and the different tissue traits across various conditions. Moreover, I con-
tributed to the development of novel technology aimed at extending the spatial proteomics field
to three dimensions. However, this work opens up many future research directions that can be
explored to further deepen our understanding and refine these methodologies. Here, I outline
multiple areas that could significantly extend this work. Future research opportunities arise
from this work in several key areas:

5.4.1 Leveraging multi-omics and spatial omics for a deeper understanding of the
brain-skull axis and disease targeting

This study (Kolabas et al., 2023) has a large collection of molecular data from both single-cell
RNA-seq and proteomics, which contributes to our understanding of skull biology. However,
RNA is relatively more dynamic than protein, and factors such as time delays and other ex-
perimental or processing influences may have impacted the results. Therefore, it would be
valuable to perform a multi-omics approach to study both RNA and protein simultaneously
from the same cells. This combined analysis could provide a more complete picture of cellular
differences and offer further insights into skull biology. This in turn can make the study more ro-
bust when comparing the skull bone marrow under various conditions and therefore enhances
our understanding of the brain-skull axis.

In addition to single-cell RNA-seq and proteomics, incorporating spatial omics would offer an-
other layer of information. Spatial omics provides insight into the spatial context of cellular
organisation and tissue architecture. This could reveal how molecular interactions vary across
different regions of the skull and provide clues to how specific regions interact with the brain,
particularly in response to brain pathologies like neuroinflammation.

Furthermore, the use of proteomics to identify key protein targets in specific diseases could
open new therapeutic avenues. By identifying disease-specific proteins, we can pinpoint molec-
ular targets that are crucial for pathological processes. With tools like AlphaFold (Abramson
et al., 2024) and RFdiffusion (Watson et al., 2023), these proteins could be further analysed to
design peptides or drugs that specifically bind to and modify their function which can be used
for targeted treatments. This could be especially valuable for diseases linked to the brain-skull
axis, such as neurodegenerative diseases, where modulating skull-related immune responses
could influence disease progression.

5.4.2 Advancing graph-based methods in spatial omics

For our two graph-based papers (Ali et al., 2024; Fischer et al., 2022), several future directions
can significantly extend the scope and power of these methods, offering deeper insights into
tissue organisation, cell-cell interactions, and disease mechanisms.

For the GraphCompass package (Ali et al., 2024), future work can focus on expanding the
range of graph metrics to study more complex cellular interactions. One potential direction
is the addition of long-range neighbourhood analysis, which could help capture more distant
cellular interactions. Many spatial omics tools focus on immediate cellular neighbourhoods,
but extending the analysis to consider cells further apart could uncover signalling pathways or
structural relationships that are otherwise overlooked.
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Another interesting future direction to extend the metrics is to adopt methods such as per-
sistent homology or other topological data analysis (TDA) techniques (Ballester and Rieck,
2023) that could help capture underlying topological structures that standard graph metrics
might miss. Persistent homology approaches are foreign to the spatial omics field. However,
they can provide insights into the shape and structure of cellular networks across different
scales, which could be crucial for understanding tissue heterogeneity or complex pathologies
such as cancer progression and developmental stages.

The currently available spatial omics data sets have small sample sizes, a of maximum a few
hundred, which makes it rather challenging for graph neural networks not to overfit. However,
I believe that with the continuous development of the field, larger data sets will be available
and therefore graph models will be more powerful and less prone to overfitting. Therefore,
once these large data sets are available, we should expand our work (Fischer et al., 2022)
to include such data sets which can allow the graph models to capture more complex tissue
architectures and subtle patterns of cellular organisation that might be difficult to detect with
smaller data sets.

Another direction would be to enhance the architecture of graph models and integrate other
approaches. First, by incorporating transformer-based graphs. Transformer models, which
excel at capturing long-range dependencies and relationships, could potentially reveal new
insights into tissue organisation by learning more complex interactions between distant cells.
The self-attention mechanism in transformers may enable the model to focus on the most im-
portant connections, providing a better understanding of how different parts of the tissue, along
varying distances, can influence patient outcomes. Another architectural enhancement would
be the introduction of topological graphs, which focus on preserving the hidden topological
structure within the data. This additional layer of information could offer further insights into
the overall organisation of tissues. By capturing both the geometric and topological properties
of cell distributions, topological graphs could help uncover latent features or hidden structures
within tissues that may not be detected by traditional graph-based models.

Further studies should also focus on validating the findings from GNNs through experimental
approaches, ensuring that the predicted tissue-level traits align with biological reality. In partic-
ular, applying these models to different cancer types or brain-related diseases could highlight
the ability of graph-based approaches to understand a wide range of pathologies.

5.4.3 Combining 3D spatial proteomics and graph models

A promising future direction for DISCO-MS (Bhatia et al., 2022) lies in its integration with graph
models to explore complex tissue microenvironments. By combining graph-based approaches
with DISCO-MS, which is a bulk proteomics technique, it would be possible to extract Aβ
plaques and form graphs representing their spatial relationships and molecular profiles. This
could provide critical insights into how Aβ plaques are organised and their molecular charac-
teristics in early-stage Alzheimer’s disease. In addition, this approach could be extended to
study tumour microenvironments, where it would help in understanding the molecular profiles
of metastases and why some are successfully targeted while others are not. This could open
new avenues for targeted therapeutic strategies aimed at disrupting key cellular interactions in
the metastatic process.

Another exciting prospect is extending 3D spatial proteomics to the single-cell level and map-
ping it onto a graph. Achieving this would offer a comprehensive view of how individual cells are
organised and interact in three-dimensional space, providing an unprecedented understanding
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of tissue architecture in both healthy and diseased states. While this remains technically chal-
lenging, it would represent a significant leap forward in the spatial omics field that can allow for
detailed cellular resolution in a 3D representation of tissue.

The studies discussed in this thesis, though focused on different areas, are deeply connected
and point toward an exciting future for biological research. These developments collectively
form a unified framework for advancing both research and therapeutic development. The com-
bination of different omics approaches with graph models and DISCO-MS technology holds
promise for transforming our understanding of complex diseases like Alzheimer’s disease and
cancer.

5.5 Conclusion

In this thesis, I have explored several cutting-edge approaches to studying biological systems,
ranging from skull biology to graph-based analysis of tissue organisation, and novel techniques
for advancing spatial proteomics. We leveraged existing omics technologies to gain new in-
sights into the molecular and cellular landscape of the skull and its relationship to brain health.
The development of graph models enabled us to quantitatively compare tissue architectures
and study the emergent tissue traits across various conditions. Furthermore, extending spatial
proteomics into three dimensions through DISCO-MS has opened new possibilities for cap-
turing detailed molecular profiles in a three-dimensional context, for example in diseases like
Alzheimer’s disease.

Each project contributed unique perspectives to our understanding of tissue organisation and
molecular changes. Together, these approaches create a richer view of biological processes,
from molecular dynamics in the skull to complex cellular patterns and detailed spatial molecu-
lar profiles in different biological systems.

The thesis achieved two primary goals, (1) to develop tools and methodologies to address
the gaps in spatial omics technologies to study differential cellular organisation and tissue
traits across different conditions, and (2) to investigate complex biological systems at a holistic
view. Our focus on cellular organisation and molecular profiles across various pathological and
physiological conditions has advanced our understanding of how these variations influence tis-
sue structure and contribute to disease. While these projects may appear distinct, they form
a cohesive foundation for future research in neuroscience and cancer research. By bridging
these technologies and methodologies, this work sets the stage for significant advances in
understanding tissue and systems biology.
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Palleis, Julia Schädler, Johannes C. Paetzold, Sabine Liebscher, Anja E. Hauser, Ozgun
Gokce, Heiko Lickert, Hanno Steinke, Corinne Benakis, Christian Braun, Celia P. Martinez-
Jimenez, Katharina Buerger, Nathalie L. Albert, Günter Höglinger, Johannes Levin, Christian
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Munich, December 12, 2024
(Location/date)

MAYAR ALI
(First and last name in block letters)

(Signature)

182


	General Introduction
	Basic Principles of Cell Biology and Neuroimmunology
	Cell and tissue biology
	Immune system and the defensive role of bone marrow
	Central nervous system and role of calvaria in neuroimmunology

	Optical tissue clearing - DISCO technologies
	Optical tissue clearing: definition and principles
	DISCO technologies

	High-throughput and resolution biology: Omics technologies
	Transcriptomics
	Proteomics

	Spatial omics
	Spatial transcriptomics
	Spatial Proteomics
	Analysis of Spatial Omics


	Computational Methods
	Differential expression analysis
	Representation of tissue as a graph of cells
	Graph neural networks

	Aim
	Studies
	Study 1: GraphCompass: spatial metrics for differential analyses of cell organisation across conditions.
	Study 2: Graph neural networks learn tissue phenotypes from spatial molecular profiles.
	Study 3: Distinct molecular profiles of skull bone marrow in health and neurological disorders.
	Study 4: Spatial proteomics in three-dimensional intact specimens.

	General Discussion
	Main findings
	Skull bone marrow molecular profile differs from other bones
	GraphCompass uncovers cellular organisation and tissue architecture across different conditions
	Graph neural networks reveal tissue traits and predictive factors across pathological stages using spatial omics
	DISCO-MS: advances in 3D spatial proteomics 

	Key implications
	Skull bone marrow molecular profiles differ from other bones
	Spatial omics as graphs - what we can learn about cellular organisation in different conditions
	Spatial proteomics goes 3D

	Limitations
	Technical limitations
	Biological limitations

	Outlook
	Leveraging multi-omics and spatial omics for a deeper understanding of the brain-skull axis and disease targeting
	Advancing graph-based methods in spatial omics
	Combining 3D spatial proteomics and graph models

	Conclusion
	 SUBAPPENDIX

	References

