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Brief Summary

The scientific study of consciousness, also referred to as consciousness science,
is a young scientific field devoted to understanding how conscious experiences and
the brain relate. It comprises a host of theories, experiments, and analyses that aim
to investigate the problem of consciousness empirically, theoretically, and concep-
tually. This thesis addresses some of the questions that arise in these investiga-
tions from a formal and mathematical perspective. These questions concern the-
ories of consciousness, experimental paradigms, methodology, and artificial con-
sciousness.
Regarding theories of consciousness, the thesis contributes to the understanding
of the mathematical structure that some of the formal theories in the field propose.
The work presented here targets the theory of consciousness known as Integrated
Information Theory (IIT) and the neuroscientific theory known as Predictive Pro-
cessing Theory or Free Energy Principle in its Active Inference form (AI-PP). The
thesis provides axiomatic definitions of themathematical structures that constitute
these theories, and uses these definitions to address some of the open questions
surrounding the theories. For AI-PP, this includes a rigorous derivation of the formula
for Active Inference via Free Energy minimisation and a proof of compositionality
of Free Energy. For IIT, this includes resolutions of some of the criticisms of IIT’s
formal scope and applications, but also the identification of new issues that con-
cern the formalism and its derivation. When possible, the definitions are provided
in the mathematical framework of category theory.
Regarding experiments, the thesis addresses the main paradigm for testing and
falsifying theories of consciousness currently applied in the field. This paradigm
consists of comparing the conscious experience that a theory predicts with the con-
scious experience that is inferred from behavioural data or report by use of meas-
ures of consciousness. The thesis provides a formal model of this paradigm and
shows that under a certain condition—if inference and prediction are independent—,
any minimally informative theory of consciousness can always be falsified. This
is deeply problematic since the field’s reliance on report or behaviour to infer con-
scious experiences, in conjunction with the general structure of most contemporary
theories of consciousness, implies such independence. This observation provides
the exact formal underpinning of the well-known unfolding argument. The thesis
analyses the origin of the problem and identifies precisely which changes are re-
quired to avoid this problem in future research. The thesis furthermore shows that
the problem of falsifying theories of consciousness, and of empirical comparis-
ons of theories of consciousness more generally, follows from a pervasive clos-
ure paradigm in consciousness science, that consists of taking a neuroscientific
account of the brain as input to a theory of consciousness, so as to explain what



consciousness is, without allowing for modifications or adaptations of the neur-
oscientific account that would accommodate consciousness as part of the brain’s
functioning. As is shown in the thesis, this paradigm has implications that point to
a fundamental need of revision.
Regarding methodological and conceptual questions, the thesis contributes to the
foundations of structural research in consciousness science. Structural research
aims to use mathematical structures or mathematical spaces, instead of verbal
descriptions or simple categorisations, to represent conscious experiences scien-
tifically, for example when building theories of consciousness, or when exploring
new empirical avenues to measure consciousness. Despite considerable advances
in this realm, there was, prior to this thesis, no explicit definition of what a math-
ematical structure of conscious experience should be; that is, how the attribution
of mathematical structure to conscious experiences should be systematically un-
derstood. Perhaps the most important contribution of this thesis to the field is to
propose such a definition. The definition, a structural concept, extends existing ap-
proaches wherever available, and provides a basis for developing a common formal
language to study consciousness, bridging developments as far apart as psycho-
physics and phenomenology. In addition, and independently of this proposal, the
thesis offers a critical analysis of which metaphysical premises need to be pre-
sumed in structural research, whether the use of particular formal tools (such as
structure-preserving mappings or homomorphisms) is justified, and how structural
theories of consciousness could otherwise be built in the first place. An attempt to
expand the results from consciousness to more general problems in philosophy of
science is made in the context of the well-known Newman problem.
Regarding the question of artificial consciousness—can AI feel?—, the thesis con-
tributes two results that take the form of no-go theorems, as known from phys-
ics. The first no-go theorem shows that if consciousness is relevant for the tem-
poral evolution of a system’s states—if it is dynamically relevant—, then contem-
porary AI systems cannot be conscious. That is because AI systems run on CPUs,
GPUs, TPUs or other processors which have been designed and verified to adhere to
computational dynamics that systematically preclude or suppress deviations. The
second no-go theorem is situated in the context of computational functionalism, a
view which posits that consciousness is a computation. The theorem shows that
if computational functionalism holds true, consciousness cannot be a Turing com-
putation. Rather, it must be a novel type of computation that has recently been
proposed by Geoffrey Hinton, called mortal computation.
This thesis is part of a global effort to pioneer a mathematical perspective in con-
sciousness science, now called Mathematical Consciousness Science. The hope
behind the research carried out in this PhD is to illustrate the power and usefulness
ofmathematical approaches in different areas of consciousness science, and in do-
ing so, to lay the foundations for future mathematical work that complements and
supports empirical and theoretical work in the further development of this exciting
field.
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1. Introduction

Consciousness is the last major frontier of known science. Its scientific investigation,
known as Scientific Study of Consciousness, or simply Consciousness Science, is con-
cerned with the question of how conscious experience—often described as “what it is
like” for an organism or system to be in some state (Nagel, 1974)—relates to the brain,
or the subject matter of the sciences more generally.

It is perhaps somewhat surprising, from an external point of view, that consciousness
science comprises a host of mathematical models, methods, and questions. This is the
case, on the one hand, because consciousness science builds on mathematical mod-
els and mathematical methods developed in other sciences, for example models of the
brain, analysis techniques, modelling procedures, or statistical tests. And it is the case,
on the other hand, because consciousness itself is amenable to mathematical descrip-
tion and mathematical representation, for example in terms of phenomenal spaces (cf.
Section 1.3). As a result, the study and exploration of mathematical topics has become
a notable task in consciousness science.

Mathematical reflection upon the methods and tools used to study consciousness
was part of consciousness science from the start. One goal of this PhD was to build
upon this pioneering work to help establish the scattered exploration of these topics
within consciousness science, aswell as the enormous interest and contributions to this
topic from formal disciplines like physics, mathematics, computer science, and math-
ematical philosophy, as a full-fledged area of study.

Thanks to the help of and collaboration with a large number of the most outstand-
ing researchers, both in philosophy and the sciences, much progress towards this goal
has now been achieved. The area of study within consciousness science that is de-
voted to the application and study of formal and mathematical methods is now known
as Mathematical Consciousness Science.1 It features a dedicated international confer-
ence series, various special issues, and seminars and workshops throughout the globe.
More importantly, though, it features a community of 200+ researchers whose research
and activities will likely play a significant role in humankind’s scientific understanding of
consciousness.

Mathematical consciousness science is to consciousness science what mathemat-
ical physics is to physics, what mathematical biology is to biology, and what mathemat-
ical neuroscience is to neuroscience.2 It is the application and study of formal andmath-

1The term was first introduced as the title of an online seminar series ‘Mathematical Consciousness Sci-
ence – An online seminar series exploring the role of mathematics in the scientific study of conscious-
ness,’ to which about 1300 researchers had subscribed. In conjunction with other events and endeav-
ours, the series led to the foundation of the Association for Mathematical Consciousness Science.

2Anequally validmetaphorwould be to say thatmathematical consciousness science is to consciousness
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1. Introduction

ematical methods as applied in, or relevant to, the scientific study of consciousness.
Because mathematical methods and mathematical questions appear in experimental,
theoretical, conceptual, and methodological domains in consciousness science, math-
ematical consciousness science comprises experimental, theoretical, conceptual, and
methodological questions.

The research carried out as part of this PhD makes contributions to all of these do-
mains, in vastly different ways. The contributions range from case studies that illustrate
how mathematical methods can be used in a specific area (as for example the case
for modelling of experiments on consciousness, cf. Section 1.2), to foundational work
that addresses a comprehensive body of literature in consciousness science (as for ex-
ample the case for the analysis of mathematical spaces of conscious experiences, cf.
Section 1.3).

The goal of this chapter is to introduce and review these contributions, and thereby
to provide the reader with one initial perspective of what mathematical consciousness
science is, and how it can contribute to the scientific study of consciousness at large. It
is important to note, however, that the chapter does not provide a comprehensive review
or conclusive assessment of mathematical consciousness science. It only mentions
that part of the literature on the topic that is relevant to the questions pursued within
this PhD.

If anything, the term Mathematical Consciousness Science should be taken to refer to
the questions which members of the community of researchers that work on this topic
ask and answer. Much like it was impossible to foresee the developments of modern
mathematical physics prior to the 20th century, it is impossible to foresee what math-
ematical consciousness science might grow to become. The following introduction
to some of the contemporary themes of mathematical consciousness science should
therefore be understood as outlining a very preliminary picture.

This PhD is a cumulative thesis, meaning that it consists of individual papers, which
are presented in Chapters 2 to 11. The papers fall into four broad classes of work in
mathematical consciousness science: research on theories of consciousness, on ex-
periments, onmethodology, and on the question of artificial consciousness. The present
chapter constitutes an introduction and review of the individual projects carried out
within this PhD, and with that an introduction to these four branches of mathematical
consciousness science. But every paper can also be understood without the introduc-
tion provided in this chapter; in case of interest, the reader can jump right into the corres-
ponding chapter. An evaluation of the progress that has been achieved within this PhD,
and outlook onto the future, is presented in the conclusion of this thesis in Chapter 12.

science what theoretical physics is to physics. Theoretical physics and mathematical physics largely
study the same subject matter but differ in the importance that is given to mathematical properties of
mathematical objects. For example, theoretical physicists do not normally worry about the existence
of derivatives of mathematical functions, whereas mathematical physicists do.

2



1. Introduction

1.1. Research on Theories of Consciousness

Theories of consciousness, also calledmodels of consciousness, are hypotheses about
how conscious experiences and the subject matter of the sciences, most notably the
brain, relate. They are usually required to be substantive and non-trivial, and are either
derived from experimental data or meaningful conceptual assumptions. In this section,
we discuss what mathematical consciousness science contributes to the research on
theories of consciousness.

1.1.1. Improving & Clarifying Theories

A first major task which mathematical consciousness science has taken up in regard to
theories of consciousness is to improve and clarify them.

Integrated Information Theory Consider, as an example, Integrated Information Theory
(IIT) (Oizumi, Albantakis, & Tononi, 2014). IIT is considered one of the leading models
of consciousness and aims to describe both the quality and quantity of the conscious
experience of a system, such as the brain, in a particular state.

IIT comprises two main parts. On the one hand, a conceptual part that spells out IIT’s
metaphysical presumptions, as well as a set of assumptions that are taken to character-
ise the essential properties of conscious experiences in full. The latter are referred to as
IIT’s ‘axioms’. On the other hand, it comprises a complex and rather complicated set of
mathematical equations that determine the conscious experience of any system, such
as the brain, based on a formal description of the system. This formal part of IIT consti-
tutes the actual hypothesis about how the subject matter of the natural sciences (e.g.,
the brain) and conscious experiences relate. The conceptual part essentially serves as
a justification of the formal part: the formal part is meant to be derived from the axioms
and metaphysical premises of the conceptual part.

What mathematical consciousness science can contribute to the development and
public understanding of IIT is:

(a) the explication and clarification of which mathematical object it is that the equa-
tions and formal concepts of IIT actually describe,

(b) the exploration and assessment of problems of IIT’s formal constructions, in par-
ticular based on the clarification of the mathematical structure uncovered in (a),
and

(c) ways to define the formal content of IIT in terms ofmore appropriatemathematics,
both to propose improvements of the theory and to make it easier to understand.

Task (a) has been carried out as part of this PhD by Kleiner and Tull (2021) and is
presented in Chapter 2. The goal of this work was to uncover the mathematical object
that underlies the formal descriptions and equations of IIT 3.x, meaning: of any pub-
lished paper (including supplementary material) that has been published by the lab that

3



1. Introduction

develops IIT after the IIT 3.0 paper (Oizumi et al., 2014) and before IIT 4.0 was first pro-
posed in parts in (A. Haun & Tononi, 2019).

The result of this work is a detailed description and definition of the mathematical
mapping that constitutes the formal part of IIT. This mapping maps every formal de-
scription of a system, together with a state thereof, to a space of conscious experiences,
and element thereof (Figure 2.1).

A surprising discovery in this respect was that much of the mathematical structure
that appears to be essential for IIT’s description of conscious experience in terms of
formal spaces is actually auxiliary and merely derives from the particular notion of (net-
work-like) classical systems that has been applied in previous expositions of the the-
ory. The mathematical investigation carried out as part of task (a) allows to delineate
between the essential and auxiliary structure. This matters, for example, for assess-
ments of IIT’s phenomenological implications, as well as for theoretical work that at-
tempts to put Global Neuronal Workspace Theory (GNWT) (Dehaene, Changeux, & Nac-
cache, 2011) on a par with IIT as far as explanatory scope is concerned.

Task (b)—the exploration of reasons to criticise IIT’s formalism—has been a prominent
and important part of the literature on IIT since it’s full formalism was first proposed by
Oizumi et al. (2014), cf. for example (A. B. Barrett & Mediano, 2019; A. B. Barrett, 2014;
Moon & Pae, 2018; Cerullo, 2015). As part of this PhD, Kleiner and Hoel (2021) have
considered a particularly prominent criticism, known as ‘unfolding argument’ (Doerig,
Schurger, Hess, & Herzog, 2019), as well as consecutive investigations of IIT’s scope
(Michel & Lau, 2020), methodology (Negro, 2020), mathematical framing (Tsuchiya, An-
drillon, & Haun, 2020) and testability (Kleiner, 2020a; Ganesh, 2020; Hanson & Walker,
2021).

The result of Kleiner and Hoel (2021)’s investigation, presented in Chapter 5, shows
that there is a fundamental issue with testing IIT that derives both from IIT’s mathemat-
ical formalism and the typical paradigm of testing theories of consciousness.

Importantly, this is not an issue that pertains to IIT alone. Rather, this issue appears
for all major theories of consciousness presently proposed, in a nutshell because much
like one can, in theory, substitute any recurrent system (which is conscious according to
IIT) by a feed-forward system (which isn’t conscious according to IIT), while keeping the
input-output mapping of the system the same, one can in theory substitute any part of
a system (for example, a global workspace) by a look-up-table device without changing
the input-output mapping of the system as a hole. Substituting a recurrent network by
an “unfolded” feed-forward network as in (Doerig et al., 2019), or a finite automaton by
an isomorphic finite automaton as in (Hanson & Walker, 2019) are only special cases of
a huge class of substitutions that can be performed. Therefore, there is a fundamental
issue with falsification of any theory of consciousness, if theories of consciousness are
understood as presently conceived.

We outline the implications of the problemdiscovered in (Kleiner &Hoel, 2021) inmore
detail in Section 1.2, and discuss which steps are necessary to resolve this problem in
Section 12.1 of the conclusion. Readers with an interest in this issue are directed to
Chapter 5.
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First steps towards Task (c) have been carried out by Tull and Kleiner (2021) and are
presented in Chapter 3. The goal of this project was to consider IIT in the context of
the powerful and elegant mathematical language of category theory. To this end, we
have demonstrated how integrated information and other key notions from IIT can be
studied within the simple graphical language of process theories (symmetric monoidal
categories). As in the work on the mathematical structure of IIT, our desideratum was
to stay true to the definitions of IIT 3.x provided in the literature.

The result of this work allows IIT 3.x to be generalised to a broad range of physical
theories and sets the foundation for a categorical definition of IIT. A full categorical
version of IIT that presents the theory in terms of a functor, however, requires breaking
with the formalism of IIT that is published in the literature, and hence is not available
to date. The exploration of IIT’s relation to category theory, however, is thriving, see for
example (Tsuchiya & Saigo, 2021; Tsuchiya, Phillips, & Saigo, 2022; Tsuchiya, Saigo, &
Phillips, 2023) and (Prentner, 2024a).

There aremanymore questions for mathematical consciousness science to consider
in relation to IIT, and it is likely that ultimately, IIT can only overcome the various criti-
cisms of its formal structure that have been proposed if it engages with the contribu-
tions that aremade as part ofmathematical consciousness science, most notably those
that suggest improvements of the theory. For example, as part of the investigation of
the mathematical structure of IIT, Kleiner and Tull (2021) have made a proposal of how
IIT’s formalism could be amended to overcome the criticism put forward in (A. B. Barrett
& Mediano, 2019), see Section 2.11. The amended definition of IIT proposed in this sec-
tion furthermore is such that the problem discussed in (Hanson & Walker, 2023) cannot
occur, qua definition. Both of these proposals could be incorporated into the further de-
velopment of IIT as part of an effort to respond to and resolve worries that exist in the
community of researchers that engage with IIT.

Predictive Processing and Active Inference A second example of improvement and
clarification work concerns Predictive Processing Theory (PP) and its Active Inference
doctrine, also known as ‘Free Energy Principle’ (Parr, Pezzulo, & Friston, 2022). While
not itself a theory of consciousness, this is arguably a first comprehensive theory of
brain function. Because PP and Active Inference aim to offer one coherent principle
that explains phenomena as diverse as perception, cognition, planning and action, a
connection to conscious experience is not surprising.

While there are comparably simple conceptual ideas that afford a substantial under-
standing of the theory—prediction, prediction error, prediction error estimation, preci-
sion, and so fourth—, the theory is in fact a formal theory of the brain, and only a formal
account can grasp the theory in full (Buckley, Kim, McGregor, & Seth, 2017; Parr et al.,
2022). What is more, recent expositions of the theory have moved away from formal
structures where concepts like prediction error still play an important role, and towards
a formal structure that is independent of, and more general than, these ideas, most not-
ably the ‘Factor Graph’ formulations (De Vries & Friston, 2017). A mathematical exposi-
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tion and analysis are therefore helpful not only for inner-theoretic purposes, but also to
make the theory accessible for further theorising, in particular where consciousness is
concerned.

In Chapter 4, Tull, Kleiner, and Smithe (2023) provide a categorical formulation of Pre-
dictive Processing Theory (PP) with Active Inference, expressed in terms of a simple
diagrammatic formal language known as string diagrams that define a monoidal cat-
egory from the branch of mathematics known as category theory. This research in-
cludes diagrammatic accounts of generative models, Bayesian updating, perception,
planning, Active Inference, and Free Energy, as well as a diagrammatic derivation of the
formula for Active Inference via Free Energy minimisation. As part of this project, we
also established compositionality of Free Energy, allowing Free Energy minimisation to
be applied at all levels of an agent’s generative model. Aside from aiming to provide a
helpful graphical language for those familiar with Active Inference, the goal was also to
provide a concise formulation and introduction to the Active Inference framework for
use in mathematical consciousness science.

The hope behind the research carried out in Chapter 4 is to provide a mathematical
basis that allows to formulate hypotheses about how PP and Active Inference relate to
conscious experience in concise and rigorous terms. This is relevant to understanding
and clarifying the various hypotheses (cf. for example (Miller, Clark, & Schlicht, 2022))
and methodological ideas (cf. for example (Seth & Hohwy, 2021)) that have been put
forward in this context, and constitutes a foundation for future mathematical research
on computational phenomenology, cf. Section 12.3.

The Important Case of Non-Formal Theories Integrated Information Theory and Pre-
dictive Processing are, at the present stage of development, of particular interest to
mathematical consciousness science because they are the only formal theories within
the Overton window of consciousness science at large.3 But it is important to note that
the task of improving and clarifying theories of consciousness also concerns theories
which are not presented in mathematical form at the present time.

One reason for an interest in and possible contribution to non-formal theories is that
many theories of consciousness employ what could be called ‘proto-formal’ concepts:
concepts that allude or refer to formal notions, but are not presented in a formal form.
Another reason is that detailed descriptions of neuronal dynamics and brain functions
are formal in nature, and if a theory of consciousness claims that consciousness super-
venes on, or is identical to, neuronal dynamics or a brain function, it must take their
formal structure into account. Either way, formal ideas, concepts and definition are
already part of the theories, albeit mostly not in an explicit way.

Consider, as an example, Global Neuronal Workspace Theory (GNWT), which posits
that a system has conscious representations only if two necessary conditions are sat-
isfied. The first necessary condition is that the system has “two main computational
spaces, each characterized by a distinct pattern of connectivity” (Dehaene et al., 2011).
3Several other formal theories of consciousness exist, for example (L. Blum & Blum, 2022) or (Mason,

2021), to mention two.
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The first computational space is a “processing network, composed of a set of parallel,
distributed and functionally specialized processors or modular subsystems subsumed
by topologically distinct (...) domainswith highly specific local ormedium-range connec-
tions” (ibid.); the other computational space is “a global neuronal workspace, consisting
of a distributed set of (...) neurons characterized by their ability to receive from and send
back to homologous neurons in other (...) areas horizontal projections through long-
range excitatory axons” (ibid.), cf. (Kleiner, 2020b) for a more detailed summary and
first formal exposition. The second necessary condition is that “[t]he entire workspace
is globally interconnected in such a way that only one such conscious representation
can be active at any given time” (Dehaene et al., 2011).

This characterisation of the theory is good enough for contemporary purposes and
contemporary experimental investigations. But for the theory to properly handle the
question of consciousness in organisms and systems that differ from the standard
case of healthy humans, the theory must specify which structure, precisely, counts as
a computational space of each kind, and what the necessary “patterns of connectiv-
ity” are. Computational spaces and patterns of connectivity are formal concepts, hence
ultimately a formal specification is in order.

The clarification, improvement or construction of themathematical structure of exist-
ing theories of consciousness is particularly important in the context of Artificial Intelli-
gence (AI), when investigating the possibility of AI consciousness. Because AI systems
are formal systems, a rigorous application of theories of consciousness to AI systems
cannot do without such formal expositions.

1.1.2. Building New Theories

In the previous section we have reviewed ways in which mathematical consciousness
science can (and to some extent already has) contributed to the study of existing the-
ories of consciousness. A task of equal importance for mathematical consciousness
science is work on proposing new theories ormodels of consciousness. New proposals
may be in need of mathematical approaches because:

(a) they address brain functions or neural dynamics on a level of precision that is not
amenable to non-formal descriptions,

(b) they address the subject matter of the sciences on scales other than the brain, or
(c) because they rely on principles which cannot be precisely expressed in terms of

natural or near-natural language.

While several of the projects carried out within this PhDwere concernedwith the ques-
tion of how to build theories of consciousness (cf. Section 12.1 in the conclusion), no
new models or theories of consciousness have been proposed as part of this PhD.
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1.2. Research on Modelling Experiments

Consciousness science is an inherently empirical discipline. Its progress rests on em-
pirical observation in carefully designed experiments that live up to the highest statist-
ical and methodological standards. While mathematical consciousness science is not
concerned with running experiments, it can contribute to the task of designing and ab-
stractly analysing experiments.

1.2.1. Measures of Consciousness & C-Tests

Because consciousness is not publicly observable “just like that”, running an experiment
that targets conscious experiences differs substantially from experiments in other sci-
ences: it requires means to infer information about the conscious experience of a sub-
ject in experimental trials. Such means are called measures of consciousness. Simply
put, measures of consciousness are “consciousness detection procedures” (Michel,
2023) that can be used to determine whether a subject in an experimental trial has
experienced a stimulus consciously or not. There are various measures designed for
different paradigms. A simple and effective measure is subjective report: asking a sub-
ject whether it has experienced a stimulus consciously or not. Butmany othermeasures
have been developed as well, in particular to target close-to-threshold stimulus condi-
tions, where subjective reports become unreliable.

A closely related concept has recently been dubbed ‘C-tests’ (Bayne et al., 2024). C-
tests are means to infer whether a system is conscious at all, meaning: whether it has
conscious experiences at all, or not. Likemeasures of consciousness, C-testsmake use
of empirical experimental data obtained from individual systems and organisms, but
unlike measures, they do not seek to infer information about the particular conscious
experience in experimental trials. Rather, they aim to test whether a system has con-
scious experiences at all. Being able to test whether a system is conscious has a huge
clinical importance, and matters largely for ethical, judicial and governance questions.

Measures of consciousness and C-Tests are essential for consciousness science to
make progress. That is the case because given the contemporary paradigm of con-
structing neuroscientific theories of consciousness (more on that paradigm in Section
12.1 of the conclusion), they offer the only means to test neuroscientific theories of con-
sciousness in a lab.4

Prima facie, neithermeasures nor C-Tests aremathematical in nature. They are based
on subjective reports, objective performance or behavioural measures. What mathem-
atical consciousness science can contribute to the study ofmeasures and C-Tests, how-
ever, is to model them formally in conjunction with other hypotheses, for example con-
cerning theories of consciousness.

4Contemporary neuroscientific theories of consciousness predict the conscious experience that a system
has in a particular state. They do not, or are not usually taken to, posit changes in brain dynamics or
brain functions. Hence they can only be tested by comparing the prediction the theory makes with the
state of consciousness inferred from a measure of consciousness or C-Test.
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Such an analysis is provided in (Kleiner & Hoel, 2021), and presented in Chapter 5.
Because both measures of consciousness and C-tests operate on data obtained in ex-
perimental trials, they can both be modelled in terms of a formal mapping

inf : O→ E ,

where O denotes a set of experimental data sets, and E denotes an abstract notion of
states of consciousness, which depending on the application can be either states that
target individual experiences, or states that are meant to assess whether as system
has consciousness at all. In the case of measures of consciousness, O comprises data
obtained in individual experimental trials, for example in contrastive analysis designs; in
the case of C-Tests,O denotes data obtained in testing a subject of interest, for example
behavioural indicators of a subject in the case of a non-responsive wakefulness test; the
mapping inf then represents the particular rules and operations that result in ‘conscious’
vs. ‘unconscious’ judgements.

What we found in (Kleiner & Hoel, 2021) was that if such consciousness inference pro-
cedures are independent from a theory’s prediction—a situation which prima facie one
would think is ideal—a very counter-intuitive result follows: for every correct inference
of an experience, one can modify the part of the system that matters for conscious-
ness so as to obtain a different, non-overlapping prediction while keeping the inferred
state constant. Hence the theorymust be false, or (if no correct inference exists) untest-
able. This analysis provides the exact formal underpinning of the unfolding argument
that criticises IIT (Doerig et al., 2019). The analysis shows that the argument applies
to experimental paradigms, which comprise both theory and measurement, rather than
theories alone, and applies to a wide range of theories. More details of this problem,
and ways to resolve it, are presented in the conclusion in Section 12.1.2.

1.2.2. The Closure Paradigm

A second example of modelling experiments in consciousness science is (Kleiner &
Hartmann, 2023), presented in Chapter 6. Unlike the research reviewed in the previous
section, this work does notmodel the inference process viameasures of consciousness
or C-tests. Rather, it models experiments on a more fundamental level, the level of data
collection and data storage.

What this work shows is that a central paradigm that spans experimental and the-
oretical work in consciousness science needs revision: the paradigm that conscious-
ness science is to take a neuroscientific account of the brain as “input”, so as to explain
what consciousness is, without amending or adding to this input—without amending or
adding to the wealth of neuroscientific knowledge, that is. This ‘closure paradigm’, as
one might call it, is at the heart of both identity theories and functionalist theories of
consciousness, and is intimately related to discussions of physicalism and the closure
of the physical in philosophy of mind.

Chapter 6 shows that the closure paradigm conflicts with the testability of theories
of consciousness. The underlying intuition is simple: if theories don’t amend, or add
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to, the neuroscientific model of the brain, they cannot account for how experimental
data, which relies on reports or behavioural indicators, all of which are subject to the
neuroscientific model, speaks in favour of one, rather than another theory.

This has profound implications for how theories of consciousness should be formu-
lated, cf. Section 12.1. At the very least, consciousness needs to be dynamically relevant
with respect to a reference neuroscientific model, meaning: it must be relevant to the
dynamical evolution of a neuroscientific system over and above the dynamical evolution
prescribed by the reference model, for otherwise two theories of consciousness cannot
disagree about the report that should ensue in experimental trials.

Put in somewhat general terms, this result could be read as a requirement for con-
sciousness to have genuine causal powers,5 but it is important to note that these need
not be extra-physical. On the contrary, it is specifically in the case of physicalist and neur-
oscientific assumptions that the full force of this result applies: consciousness needs
to be understood as a full-fledged physical part or process of the brain; it cannot be
subjugated to an epiphenomenon of sorts.

1.3. Research on Conceptual and Methodological Questions

Concepts and methods are essential for any science to move forward. As Daniel Den-
nett once put it, “there is no such thing as philosophy-free science; there is only sci-
ence whose philosophical baggage is taken on board without examination” (Dennett,
1995, p. 21). This is particularly true of consciousness science, where a large number of
concepts have been developed in order to refer to the target phenomenon and make it
accessible to scientific analysis. This work is all but finished, and research on new con-
cepts to describe, refer, or represent (parts of) the target phenomenon in consciousness
science is a particularly important contribution of philosophy of mind to the science of
consciousness.

Good concepts are required to develop rigorous experiments and theories, and are
essential to avoidmistakes in theorising, cf. e.g. (Nida-Rümelin, 2018). Conceptual work
is an essential but often overlooked ingredient in pushing the boundaries of scientific
knowledge. Correspondingly, a third pillar of howmathematical consciousness science
can contribute to the scientific study of consciousness is the exploration and analysis
of formal concepts.

A particularly noteworthy development related to formal concepts in consciousness
science is the introduction of mathematical spaces and mathematical structures in or-
der to describe or represent conscious experiences as part of the scientific methodo-
logy. While pioneering work in this respect has been carried out right in the initial phases
of the field (A. Clark, 1993; Rosenthal, 2010), recent years have seen applications of
spaces and structures in virtually every subdiscipline that is part of consciousness sci-

5There are many different interpretations of what causal language should mean, cf. for example (Beebee,
Hitchcock, Menzies, & Menzies, 2009). This is why the concept of dynamical relevance is formulated
without reference to causation.
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ence. There are clear signs of a structural turn (Kleiner, 2024) in consciousness science
that might change the field fundamentally.

A major part of this PhD was devoted to analysing and exploring the application of
structures and spaces to conscious experience. The central question in these develop-
ments, spanning Chapters 7 to 9, was what claims about the mathematical structure
of consciousness should be taken to mean. This is the question of which conditions
or definitions should or need to be subsumed so as to allow for a meaningful applica-
tion of mathematical concepts in proposals as diverse as quality spaces (A. Clark, 1993;
Rosenthal, 2015; Lee, 2021), qualia spaces (Stanley, 1999), experience spaces (Kleiner
& Hoel, 2021; Kleiner & Tull, 2021), qualia structure (Kawakita, Zeleznikow-Johnston,
Tsuchiya, & Oizumi, 2023; Kawakita, Zeleznikow-Johnston, Takeda, Tsuchiya, & Oizumi,
2023; Tsuchiya et al., 2022), Q-spaces (Chalmers & McQueen, 2022; Lyre, 2022), Q-
structure (Lyre, 2022),Φ-structures (Tononi, 2015), perceptual spaces (Zaidi et al., 2013),
phenomenal spaces (Fink, Kob, & Lyre, 2021), spaces of subjective experience (Tallon-
Baudry, 2022), and spaces of states of conscious experiences (Kleiner, 2020a). We
refer to these proposals jointly as proposals of mathematical structures of conscious
experience.

Chapter 7, published as (Kleiner, 2024), provides an analysis of three popular con-
temporary ideas in consciousness science that might have the potential to strongly
shape initial developments in a structural turn, but which are in fact misunderstandings
or wrong. These ideas concern (a) the conflation of structural and structuralist agendas,
(b) unjustified assumptions in using isomorphisms to understand or model the relation
between neural substrate and conscious experience, and (c) conflation ofmathematical
structure that originates from laboratory operations or mathematical convenience with
structure that actually pertains to conscious experience.

Chapter 8, published as (Kleiner & Ludwig, 2024), provides an analysis of existing
definitions of mathematical structures of conscious experiences, most notably of those
in the context of quality spaces. It identifies problems in existing approaches and offers
a new proposal, built on the shoulder of existing proposals, of how to define structures
of conscious experiences, such as phenomenal spaces, quality spaces, qualia spaces,
and other of the above-mentioned concepts. The work presented in this chapter aims
to provide an improved foundation for structural research in consciousness science to
move forward, outlined in Sections 12.2 and 12.3 in the conclusion.

Chapter 9, finally relates the new proposal developed in Chapter 8 to research on
structural methodologies in philosophy of science, most notably the so-called Newman
Problem (Newman, 1928; Frigg & Votsis, 2011). The chapter shows that the proposal
developed in Chapter 8 is a solution of the Newman problem that has a number of ad-
vantages over existing approaches. In a sense, this chapter identifies the full force of
the developments in Chapter 8.

The hopes and visions behind this research, and how itmight help improve conscious-
ness science in the years to come, are described in the conclusion, Chapter 12.
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1.4. Research on Artificial Consciousness

In light of the vast developments of Artificial Intelligence (AI) in recent years, questions
pertaining to a mind of artificial systems have become particularly important. Due to its
ethical (Metzinger, 2021), legal and societal relevance, the question of whether artificial
systems are or can be conscious, referred to as the question of synthetic phenomeno-
logy or artificial consciousness, is in need of particular attention.

Because AI systems are mathematical systems—they are defined by formal or math-
ematical structures, both on the level of programming and the level of machine code—
the question of synthetic phenomenology is particularly amenable tomathematical tools.
To apply a theory or concept to an AI system, the theory or concept needs to be flashed
out in formal details. Hence, artificial consciousness has become a major topic of
interest in mathematical consciousness science (Association for Mathematical Con-
sciousness Science, 2023). As part of this PhD, two lines of research have been pursued
that target synthetic phenomenology.

1.4.1. Implications of CPU and GPU Design

The first line of research, carried out by Kleiner and Ludwig (in press), is presented in
Chapter 10. It rests on an analysis of the central component of AI systems: their pro-
cessing units.

Contemporary AI systems, for example Generative Pre-trained Transformers (GPTs),
which include Large LanguageModels (LLMs), are computer programmes. They consist
of a few hundred lines of code (almost nothing compared to the tens of millions of
lines of code of operating systems like Windows, macOS, or Linux) and a large file of
several hundred gigabytes which only contains numbers.6 What brings these two things
together are processing units (PUs). The numbers are converted to strings of zeros and
ones, and the code file, once compiled and executed, instructs the processing unit what
to do with these strings. If one runs an AI on one’s own computer, the task is done by
one’s central processing unit (CPU), but more advanced systems usually make use of
graphics processing units (GPUs), tensor processing units (TPUs), or, as of late, data
processing units (DPUs). All of them crunch the numbers as specified in the code, but
they differ in howoptimised and effective they are in doing this. Because of this, as far as
the physical substrate is concerned, contemporary AI systems actually are processing
units (PUs). PUs are what supports an AI, much like brains are what supports you.

In light of this it is very surprising that the nature of PUs has not received any attention
in investigations of whether AIs have minds, including questions of AI consciousness,
prior to the work carried out in (Kleiner & Ludwig, in press). That is the case even though
PUs are fundamentally different from brains and biological substrate.

6The numbers are the weights of an artificial neural network, which result from a training task that makes
use of a large part of the internet. Training is the difficult and expensive part of creating an LLM. Running
the LLM is comparably cheap and can, with enough patience, also be done on a personal computer.
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The largest difference between biological systems like brains and PUs is that PUs are
designed and verified to behave exactly as specified by a formal system in the sense
of mathematics: the calculation in terms of zeros and ones on the chip is precisely
governed by pre-set mathematical rules. “Artificial”, in this case not only means man-
made, but it means that the system is made to behave in an exact pre-specified way.

The analysis in Chapter 10 shows that this fact has strong consequences if conscious-
ness is dynamically relevant. Intuitively speaking, this is the case because dynamical
relevance requires consciousness to be able to make some difference in its substrate,
e.g. in the case of a system’s report about its conscious experience. But the exact ad-
herence of a PU to a pre-set formal system ensures this can’t happen.

The result in Chapter 10 is presented in the formof a no-go theorem, which establishes
the conclusion based on a formal proof. No-go theorems serve an important role in
scientific progress in physics, andwe discuss how they can contribute to consciousness
science in Section 12.5 of the conclusion.

1.4.2. Mortal Computation

The second line of research regarding artificial consciousness pursued in this PhD is
presented in Chapter 11. It also focuses on the distinction between biological and arti-
ficial systems, though not on the level of substrate, as in Chapter 10, but rather on the
level of computation.

The idea—or better: the observation—that there is a difference between the compu-
tation that computers implement, and the computations that biological systems like
brains implement, called neural computation (Piccinini, 2020), is not new. There are vari-
ous differences between PUs and brains, and these differences are reflected in models
of computation that these systems can instantiate.

There is, however, a deeper difference that goes beyond questions of implementation.
This difference was first observed by Hinton (2022), and is called mortal computation.

In a nutshell, a computation is mortal if it cannot be separated from the hardware
on which it runs; if “it dies with the hardware” (Hinton, 2022). All computations carried
out by computers to date are immortal, they can be separated from the hardware. In
contrast, computations carried out by biological systems are mortal, they cannot be
separated from the hardware, because biological computation, which is learned rather
than programmed, relies on “large and unknown variations in the connectivity and non-
linearities of different instances of hardware” (ibid.). Even if it were possible to copy a
mortal computation to another system, it would cease to work.

Chapter 11 is a first indication that consciousness may require mortal computation.
The chapter shows that computational functionalism—the very idea that consciousness
is a computation—implies that consciousness is a mortal computation. That is surpris-
ing because the ‘computations’ in computational functionalism are often conceived of
as being Turing computations, examples of which are the programs we run on today’s
computers and mobile devices. Therefore, the result runs counter to many intuitions.
But it is aligned with the original definition of computational functionalism by Putnam
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(1967), which makes use of probabilistic automata descriptions rather than Turing ma-
chines, and considers biological organisms as examples. The result is also surprising
because it shows that if computational functionalism were indeed true, then contem-
porary and near-future AI systems, which are immortal computations, could not be con-
scious, contrary to thinking in several contemporary analyses, like (Butlin et al., 2023).

It should be emphasised, though, that neither of the results presented in Chapter 10
and 11 attempt to provide a final answer to the question of artificial consciousness. That
is the case because they both only target contemporary and near future systems: con-
temporary and near-future processing units in the case of Chapter 10, and contemporary
and near-future forms of computation in the case of Chapter 11. New developments in
the semiconductor industry, for example regarding analogue computations, indicate a
trend towards transcending both.

1.5. Mathematics in Consciousness Science

No natural science has, so far, been solved without mathematics. And consciousness
is a natural phenomenon. Hence it is no surprise that as consciousness science starts
to blossom, mathematical questions, problems and tasks come to surface as well.

A large part of the agenda of those who work on mathematical questions in con-
sciousness science is to support the development of experiments and theories. Math-
ematical consciousness science is, to a large extent, a service department to other
branches of consciousness science. Several projects in this PhD can be understood in
this way, from themathematical analyses of IIT and Predictive Processing in Chapters 2,
3 and 4, the analysis and modelling of experiments in Chapters 5 and 6, the discussion
of contemporary thinking on structuralist research in Chapter 7, and the contributions
to the debate on AI consciousness in Chapters 10 and 11.

But as is exemplified by mathematical physics, mathematical approaches may also,
occasionally, make contributions that attempt to push the boundaries of scientific pro-
gress themselves. Within this PhD, if anywhere, this has been the case in the work on
foundations of structural approaches in Chapters 8 and 9. This work is not finished, of
course, but the hope is that a few first steps into the right direction have been taken.

This chapter has surveyed the past. In Chapter 12, we attempt to provide an outlook
into the future. We will sketch how the research carried out in this PhD could be pursued
further, and which opportunities this might afford for consciousness science at large.
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2. The Mathematical Structure of Integrated
Information Theory

Johannes Kleiner, Sean Tull1

2.1. Introduction

Integrated Information Theory (IIT), developedbyGiulio Tononi and collaborators (Tononi,
2004, 2005, 2008; Balduzzi & Tononi, 2008), has emerged as one of the leading scientific
theories of consciousness. At the heart of the latest version of the theory (Oizumi et al.,
2014; Marshall, Gomez-Ramirez, & Tononi, 2016; Tononi, Boly, Massimini, & Koch, 2016;
Mayner et al., 2018; C. Koch, Massimini, Boly, & Tononi, 2016) is an algorithm which,
based on the level of integration of the internal functional relationships of a physical
system in a given state, aims to determine both the quality and quantity (‘Φ value’) of its
conscious experience.

While promising in itself (A. M. Haun et al., 2016; Tsuchiya, Haun, Cohen, & Oizumi,
2016), the mathematical formulation of the theory is not satisfying to date. The present-
ation in terms of examples and accompanying explanation veils the essential mathem-
atical structure of the theory and impedes philosophical and scientific analysis. In addi-
tion, the current definition of the theory can only be applied to comparably simple clas-
sical physical systems (A. B. Barrett, 2014), which is problematic if the theory is taken
to be a fundamental theory of consciousness, and should eventually be reconciled with
our present theories of physics.

1Published as: Kleiner, J., & Tull, S. (2021). The mathematical structure of Integrated Information Theory.
Frontiers in Applied Mathematics and Statistics, 6, 602973. (Kleiner & Tull, 2021)
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To resolve these problems, we examine the essentials of the IIT algorithm and form-
ally define a generalized notion of Integrated Information Theory. This notion captures
the inherent mathematical structure of IIT and offers a rigorousmathematical definition
of the theory which has ‘classical’ IIT 3.0 of Tononi et al. (Oizumi et al., 2014; Marshall
et al., 2016; Mayner et al., 2018) as well as the more recently introduced Quantum Integ-
rated Information Theory of Zanardi, Tomka and Venuti (Zanardi, Tomka, & Venuti, 2018)
as special cases. In addition, this generalization allows us to extend classical IIT, free-
ing it from a number of simplifying assumptions identified in (A. B. Barrett & Mediano,
2019).

This work is concerned with the most recent version of IIT as proposed in (Oizumi et
al., 2014; Marshall et al., 2016; Tononi et al., 2016; Mayner et al., 2018) and similar papers
quoted below. Thus our constructions recover the specific theory of consciousness re-
ferred to as IIT 3.0 or IIT 3.x. Earlier proposals by Tononi et al. that also aim to explicate
the general idea of an essential connection between consciousness and integrated in-
formation constitute alternative theories of consciousness which we do not study here.
A yet different approach would be to take the term ‘Integrated Information Theory’ to
refer to the general idea of associating conscious experience with some pre-theoretic
notion of integrated information, and to explore the different ways of how this notion
could be defined in formal terms (A. B. Barrett & Seth, 2011; Seth, Barrett, & Barnett,
2011; P. A. Mediano, Rosas, Carhart-Harris, Seth, & Barrett, 2019; P. A. Mediano, Seth, &
Barrett, 2019).

In the associated article (Tull & Kleiner, 2021) we show more generally how the main
notions of IIT, including causation and integration, can be treated, and an IIT defined,
starting from any suitable theory of physical systems and processes described in terms
of category theory. Restricting to classical or quantum process then yields each of the
above as special cases. This treatment makes IIT applicable to a large class of physical
systems and helps overcome the current restrictions.

Our definition of IIT may serve as the starting point for further mathematical ana-
lysis of IIT, in particular if related to category theory (Tsuchiya, Taguchi, & Saigo, 2016;
Northoff, Tsuchiya, & Saigo, 2019). It also provides a simplification and mathemat-
ical clarification of the IIT algorithm which extends the technical analysis of the theory
(A. B. Barrett, 2014; Tegmark, 2015, 2016) and may contribute to its ongoing critical dis-
cussion (A. B. Barrett & Seth, 2011; Peressini, 2013; Cerullo, 2015; Bayne, 2018; P. A. Me-
diano, Seth, & Barrett, 2019; P. A. Mediano, Rosas, et al., 2019; McQueen, 2019). The
concise presentation of IIT in this article should also help to make IIT more easily ac-
cessible for mathematicians, physicists and other researchers with a strongly formal
background.

Relation to other work This work develops a thorough mathematical perspective of
one of the promising contemporary theories of consciousness. As such it is part of a
number of recent contributionswhich seek to explore the role and prospects ofmathem-
atical theories of consciousness (Tsuchiya, Taguchi, & Saigo, 2016; Hardy, 2017; Kent,
2018; Northoff et al., 2019; Kleiner, 2020b), to help overcome problems of existing mod-
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Physical systems
and states

Spaces and states of
conscious experience

E

Figure 2.1.: An Integrated Information Theory specifies for every system in a particular state its
conscious experience, described formally as an element of an experience space. In
our formalization, this is a map

Sys
E−→ Exp

from the systemclassSys into a classExpof experience spaces, which, first, sends
each system S to its space of possible experiences E(S), and, second, sends each
state s ∈ St(S) to the actual experience the system is having when in that space,

St(S)→ E(S) s 7→ E(S, s) .

The definition of this map in terms of axiomatic descriptions of physical systems,
experience spaces and further structure used in classical IIT is given in the first half
of this paper.

els (Resende, 2018; Kleiner, 2020b; Kleiner & Hoel, 2021) and to eventually develop
new proposals (Chang, Biehl, Yu, & Kanai, 2020; Kent, 2020; Mason, 2016; Kremnizer &
Ranchin, 2015; Hoffman & Prakash, 2014; Mueller, 2017; Signorelli, Wang, & Khan, 2021).

2.1.1. Structure of article

We begin by introducing the necessary ingredients of a generalised Integrated Informa-
tion Theory in Sections 2.2 to 2.4, namely physical systems, spaces of conscious exper-
ience and cause-effect repertoires. Our approach is axiomatic in that we state only the
precise formal structure which is necessary to apply the IIT algorithm. We neither mo-
tivate nor criticize these structures as necessary or suitable to model consciousness.
Our goal is simply to recover IIT 3.0. In Section 2.5, we introduce a simple formal tool
which allows us to present the definition of the algorithm of an IIT in a concise form in
Sections 2.6 and 2.7. Finally, in Section 2.8, we summarise the full definition of such a
theory.

Following this we give several examples including IIT 3.0 in Section 2.9 and Quantum
IIT in Section 2.10. In Section 2.11 we discuss how our formulation allows one to extend
classical IIT in several fundamental ways, before discussing furthermodifications to our
approach and other future work in Section 2.12. Finally, the appendix includes a detailed
explanation of how our generalization of IIT coincides with its usual presentation in the
case of classical IIT.
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2.2. Systems

The first step in defining an Integrated Information Theory (IIT) is to specify a class Sys
of physical systems to be studied. Each element S ∈ Sys is interpreted as a model of
one particular physical system. In order to apply the IIT algorithm, it is only necessary
that each element S come with the following features.

Definition 2.2.1. A system class Sys is a class each of whose elements S, called sys-
tems, come with the following data:

1. a set St(S) of states;

2. for every s ∈ St(S), a set Subs(S) ⊂ Sys of subsystems and for eachM ∈ Subs(S)
an induced state s|M ∈ St(M);

3. a set DS of decompositions, with a given trivial decomposition 1 ∈ DS ;

4. for each z ∈ DS a corresponding cut system Sz ∈ Sys and for each state s ∈ St(S)
a corresponding cut state sz ∈ St(Sz).

Moreover, we require that Sys contains a distinguished empty system, denoted I ,
and that I ∈ Sub(S) for all S. For the IIT algorithm to work, we need to assume fur-
thermore that the number of subsystems remains the same under cuts or changes
of states, i.e. that we have bijections Subs(S) ≃ Subs′(S) for all s, s′ ∈ St(S) and
Subs(S) ≃ Subsz(S

z) for all z ∈ DS .
Note that taking a subsystem of a system S requires specifying a state s of S. An

example class of systems is illustrated in Figure 2.2. In this article we will assume that
each set Subs(S) is finite, discussing the extension to the infinite case in Section 2.12.
We will give examples of system classes and for all following definitions in Sections 2.9
and 2.10.

2.3. Experience

An IIT aims to specify for each system in a particular state its conscious experience. As
such, it will require a mathematical model of such experiences. Examining classical IIT,
we find the following basic features of the final experiential states it describes which
are needed for its algorithm.

Firstly, each experience e should crucially come with an intensity, given by a number
|| e || in the non-negative reals R+ (including zero). This intensity will finally correspond
to the overall intensity of experience, usually denoted by Φ. Next, in order to compare
experiences, we require a notion of distance d(e, e′) between any pair of experiences e, e′.
Finally, the algorithm will require us to be able to rescale any given experience e to have
any given intensity. Mathematically, this is most easily encoded by letting us multiply
any experience e by any number r ∈ R+. In summary, a minimal model of experience in
a generalized IIT is the following.
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S

z

S ′

OR

OR XOR

Sz

OR

OR XOR

S ′

TRUE NOT

Figure 2.2.: As an example of Definition 2.2.1 similar to IIT 3.0, consider simple systems given
by sets of nodes (or ‘elements’), with a state assigning each node the state ‘on’
(depicted green) or ‘off’ (red). Each system comes with a time evolution shown by
writing on each node how its state in the next time-step depends on the states of
the others now.

Decompositions of a system S correspond to binary partition of the
nodes, such as z above. The cut system Sz is given bymodifying the time evolution
of S so that the two halves do not interact; in this case all connections between the
halves are replaced by sources of noise which send ‘on’ or ‘off’ with equal likelihood,
depicted as black dots above.
Given a current state s of S, any subset of the nodes (such as those below the dot-
ted line) determines a subsystem S′, with time evolution obtained from that of S by
fixing the nodes in S \ S′ (here, the upper node) to be in the state specified by s.
Note that while in this example any subsystem (subset of S) determines a decom-
position (partition of S) we do not require such a relationship in general.

Definition 2.3.1. An experience space is a set E with:

1. an intensity function || . || : E → R+;

2. a distance function d : E × E → R+;

3. a scalar multiplication R+ × E → E, denoted (r, e) 7→ r · e, satisfying

|| r · e || = r · || e || r · (s · e) = (rs) · e 1 · e = e

for all e ∈ E and r, s ∈ R+.

We remark that this same axiomatisation will apply both to the full space of experi-
ences of a system, as well as to the the spaces describing components of the exper-
iences (‘concepts’ and ‘proto-experiences’ defined in later sections). We note that the
distance function does not necessarily have to satisfy the axioms of a metric. While
this and further natural axioms such as d(r · e, r · f) = r · d(e, f)might hold, they are not
necessary for the IIT algorithm.

The above definition is very general, and in any specific application of IIT, the experi-
encesmay comewith further mathematical structure. The following example describes
the experience space used in classical IIT.
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Example 2.3.2. Any metric space (X, d) may be extended to an experience space X̄ :=
X × R+ in various ways. E.g., one can define ||(x, r) || = r, r · (x, s) = (x, rs) and define
the distance as

d
(
(x, r), (y, s)

)
= r d(x, y) (2.1)

This is the definition used in classical IIT (cf. Section 2.9 and Appendix 2.A).

An important operation on experience spaces is taking their product.

Definition 2.3.3. For experience spaces E and F , we define the product to be the space
E × F with distance

d
(
(e, f), (e′, f ′)

)
= d(e, e′) + d(f, f ′) , (2.2)

intensity ||(e, f) || = max{|| e ||, || f ||} and scalar multiplication r · (e, f) = (r · e, r · f). This
generalizes to any finite product

∏
i∈I Ei of experience spaces.

2.4. Repertoires

In order to define the experience space and individual experiences of a system S, an IIT
utilizes basic building blocks called ‘repertoires’, which we will now define. Next to the
specification of a system class, this is the essential data necessary for the IIT algorithm
to be applied.

Each repertoire describes away of ‘decomposing’ experiences, in the following sense.
Let D denote any set with a distinguished element 1, for example the set DS of decom-
positions of a system S, where the distinguished element is the trivial decomposition
1 ∈ DS .

Definition 2.4.1. Let e be an element of an experience space E. A decomposition of e
over D is a mapping ē : D → E with ē(1) = e.

In more detail, a repertoire specifies a proto-experience for every pair of subsystems
and describes how this experience changes if the subsystems are decomposed. This
allows one to assess how integrated the system iswith respect to a particular repertoire.
Two repertoires are necessary for the IIT algorithm to be applied, together called the
cause-effect repertoire.

For subsystems M,P ∈ Subs(S), define DM,P := DM × DP . This set describes the
decomposition of both subsystems simultaneously. It has a distinguished element 1 =
(1M , 1P ).

Definition 2.4.2. A cause-effect repertoire at S is given by a choice of experience space
PE(S), called the space of proto-experiences, and for each s ∈ St(S) andM,P ∈ Subs(S),
a pair of elements

causs(M,P ) , effs(M,P ) ∈ PE(S) (2.3)

and for each of them a decomposition over DM,P .
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Examples of cause-effect repertoires will be given in Sections 2.9 and 2.10. A gen-
eral definition in terms of process theories is given in (Tull & Kleiner, 2021). For the IIT
algorithm, a cause-effect repertoire needs to be specified for every system S, as in the
following definition.

Definition 2.4.3. A cause-effect structure is a specification of a cause-effect repertoire
for every S ∈ Sys such that

PE(S) = PE(Sz) for all z ∈ DS . (2.4)

The names ‘cause’ and ‘effect’ highlight that the definitions of causs(M,P ) and effs(M,P )
in classical and quantum IIT describe the causal dynamics of the system. More pre-
cisely, they are intended to capture the manner in which the ‘current’ state s of the sys-
tem, when restricted to M , constrains the ‘previous’ or ‘next’ state of P , respectively.

2.5. Integration

We have now introduced all of the data required to define an IIT; namely, a system class
along with a cause-effect structure. From this, we will give an algorithm aiming to spe-
cify the conscious experience of a system. Before proceeding to do so, we introduce
a conceptual short-cut which allows the algorithm to be stated in a concise form. This
captures the core ingredient of an IIT, namely the computation of how integrated an en-
tity is.

Definition 2.5.1. Let E be an experience space and e an element with a decomposition
over some set D. The integration level of e relative to this decomposition is

ϕ(e) := min
1̸=z∈D

d(e, ē(z)) . (2.5)

Here, d denotes the distance function of E, and the minimum is taken over all elements
of D besides 1. The integration scaling of e is then the element of E defined by

ι(e) := ϕ(e) · ê , (2.6)

where ê denotes the normalization of e, defined as

ê :=

{
1

|| e || · e if || e || ≠ 0

e if || e || = 0 .

Finally, the integration scaling of a pair e1, e2 of such elements is the pair

ι(e1, e2) := (ϕ · ê1, ϕ · ê2) (2.7)

where ϕ := min(ϕ(e1), ϕ(e2)) is the minimum of their integration levels.
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We will also need to consider indexed collections of decomposable elements. Let S
be a system in a state s ∈ St(S) and assume that for everyM ∈ Subs(S) an element eM
of some experience space EM with a decomposition over some DM is given. We call
(eM )M∈Subs(S) a collection of decomposable elements, and denote it as (eM )M .

Definition 2.5.2. The core of the collection (eM )M is the subsystem C ∈ Sub(S) for
which ϕ(eC) is maximal.2 The core integration scaling of the collection is ι(eC). The core
integration scaling of a pair of collections (eM , fM )M is ι(eC , fD), where C,D are the
cores of (eM )M and (fM )M , respectively.

2.6. Constructions - Mechanism Level

Let S ∈ Sys be a physical system whose experience in a state s ∈ St(S) is to be de-
termined. The first level of the algorithm involves fixing some subsystemM ∈ Subs(S),
referred to as a ‘mechanism’, and associating to it an object called its ‘concept’ which
belongs to the concept space

C(S) := PE(S)× PE(S) . (2.8)

For every choice of P ∈ Subs(S), called a ‘purview’, the repertoire values causs(M,P )
and effs(M,P ) are elements of PE(S) with given decompositions over DM,P . Fixing M ,
they form collection of decomposable elements,

causs(M) := (causs(M,P ))P∈Sub(S)

effs(M) := (effs(M,P ))P∈Sub(S) .
(2.9)

The concept ofM is then defined as the core integration scaling of this pair of collec-
tions,

CS,s(M) := Core integration scaling of (causs(M), effs(M)) . (2.10)

It is an element of C(S). Unravelling our definitions, the concept thus consists of the
values of the cause and effect repertoires at their respective ‘core’ purviews P c, P e,
i.e. those which make them ‘most integrated’. These values caus(M,P c) and eff(M,P e)
are then each rescaled to have intensity given by the minima of their two integration
levels.

2.7. Constructions - System Level

The second level of the algorithm specifies the experience of the system S in state s.
To this end, all concepts of a system are collected to form its Q-shape, defined as

Qs(S) := (CS,s(M))M∈Subs(S) . (2.11)
2If the maximum does not exist, we define the core to be the empty system I.
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This is an element of the space

E(S) = C(S)n(S) , (2.12)

where n(S) := |Subs(S)|, which is finite and independent of the state s according to
our assumptions. We can also define a Q-shape for any cut of S. Let z ∈ DS be a
decomposition, Sz the corresponding cut system and sz be the corresponding cut state.
We define

Qs(S
z) := (CSz ,sz(M))M∈Subsz (Sz) . (2.13)

Because of (2.4), and since the number of subsystems remains the same when cutting,
Qs(S

z) is also an element of E(S). This gives a map

Q̄S,s : DS → E(S)
z 7→ Qs(S

z)

which is a decomposition of Qs(S) over DS . Considering this map for every subsystem
of S gives a collection of decompositions defined as

Q(S, s) :=
(
Q̄M,s|M

)
M∈Subs(S)

This is the system level-object of relevance and is what specifies the experience of a
system according to IIT.

Definition 2.7.1. The actual experience of the system S in the state s ∈ St(S) is

E(S, s) := Core integration scaling of Q(S, s) . (2.14)

The definition implies that E(S, s) ∈ E(M), where M ∈ Subs(S) is the core of the
collection Q(S, s), called the major complex. It describes which part of the system S is
actually conscious. In most cases there will be a natural embedding E(M) ↪→ E(S) for
a subsystemM of S, allowing us to view E(S, s) as an element of E(S) itself. Assuming
this embedding to exist allows us to define an Integrated Information Theory concisely
in the next section.

2.8. Integrated Information Theories

We can now summarize all that we have said about IITs.

Definition 2.8.1. An Integrated Information Theory is determined as follows. The data
of the theory is a system class Sys along with a cause-effect structure. The theory then
gives a mapping

Sys Exp
E (2.15)
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into the classExp of all experience spaces, sending each system S to its space of exper-
iences E(S) defined in (2.12), and a mapping

St(S)→ E(S)
s 7→ E(S, s)

(2.16)

which determines the experience of the system when in a state s, defined in (2.14).
The quantity of the system’s experience is given by

Φ(S, s) := ||E(S, s) || ,
and the quality of the system’s experience is given by the normalized experience Ê(S, s).
The experience is located in the core of the collection Q(S, s), called major complex,
which is a subsystem of S.

In the next sections we specify the data of several example IITs.

2.9. Classical IIT

In this section we show how IIT 3.0 (Mayner et al., 2018; Marshall et al., 2016; Tononi,
2015; Oizumi et al., 2014) fits in into the framework developed here. A detailed explan-
ation of how our earlier algorithm fits with the usual presentation of IIT is given in Ap-
pendix 2.A. In (Tull & Kleiner, 2021) we give an alternative categorical presentation of
the theory.

2.9.1. Systems

We first describe the system class underlying classical IIT. Physical systems S are con-
sidered to be built up of several components S1, . . . , Sn, called elements. Each element
Si comes with a finite set of states St(Si), equipped with a metric. A state of S is given
by specifying a state of each element, so that

St(S) = St(S1)× ...× St(Sn) . (2.17)

We define a metric d on St(S) by summing over the metrics of the element state spaces
St(Si) and denote the collection of probability distributions over St(S) by P(S). Note
that we may view St(S) as a subset of P(S) by identifying any s ∈ St(S) with its Dirac
distribution δs ∈ P(S), which is why we abbreviate δs by s occasionally in what follows.

Additionally, each systemcomeswith a probabilistic (discrete) time evolution operator
or transition probability matrix, sending each s ∈ St(S) to a probabilistic state T (s) ∈
P(S). Equivalently it may be described as a convex-linear map

T : P(S)→ P(S) . (2.18)

Furthermore, the evolution T is required to satisfy a property called conditional inde-
pendence, which we define shortly.

The class Sys consists of all possible tuples S = ({Si}ni=1, T ) of this kind, with the
trivial system I having only a single element with a single state and trivial time evolution.
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2.9.2. Conditioning and Marginalizing

In what follows, we will need to consider two operations on the map T . Let M be any
subset of the elements of a system andM⊥ its complement. We again denote by St(M)
the Cartesian product of the states of all elements in M , and by P(M) the probability
distributions on St(M). For any p ∈ P(M), we define the conditioning (Mayner et al.,
2018) of T on p as the map

T |p⟩ : P(M⊥)→ P(S)
p′ 7→ T (p · p′) (2.19)

where p · p′ denotes the multiplication of these probability distributions to give a prob-
ability distribution over S. Next, we define marginalisation over M as the map

⟨M | : P(S)→ P(M⊥) (2.20)

such that for each p ∈ P(S) and m2 ∈ St(M⊥) we have

⟨M |(p)(m2) =
∑

m1∈St(M)

p(m1,m2) . (2.21)

In particular for any map T as above we call ⟨M |T themarginal of T overM and we write
Ti := ⟨S⊥

i |T for each i = 1, . . . , n. Conditional independence of T may now be defined
as the requirement that

T (p) =
n∏

i=1

Ti(p) for all p ∈ P(S) ,

where the right-hand side is again a probability distribution over St(S).

2.9.3. Subsystems, Decompositions and Cuts

Let a system S in a state s ∈ St(S) be given. The subsystems are characterized by
subsets of the elements that constitute S. For any subset M = {S1, ..., Sm} of the
elements of S, the corresponding subsystem is also denoted M and St(M) is again
given by the product of the St(Si), with time evolution

TM := ⟨M⊥|T |sM⊥ ⟩ , (2.22)

where sM⊥ is the restriction of the state s to St(M⊥) and |sM⊥ ⟩ denotes the conditioning
on the Dirac distribution δs

M⊥ .
The decomposition set DS of a system S consists of all partitions of the set N of

elements of S into two disjoint sets M and M⊥. We denote such a partition by z =
(M,M⊥). The trivial decomposition 1 is the pair (N, ∅).
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For any decomposition (M,M⊥) the corresponding cut system S(M,M⊥) is the same
as S but with a new time evolution T (M,M⊥). Using conditional independence, it may be
defined for each i = 1, . . . , n as

T
(M,M⊥)
i :=

{
Ti i ∈M⊥

Ti|ωM⊥ ⟩⟨M⊥| i ∈M
(2.23)

where ωM ∈ P(M) denotes the uniform distribution on St(M). This is interpreted in
the graph depiction as removing all those edges from the graph whose source is in M⊥

and whose target is in M . The corresponding input of the target element is replaced by
noise, i.e. the uniform probability distribution over the source element.

2.9.4. Proto-Experiences

For each systemS, the firstWassersteinmetric (or ‘EarthMover’s Distance’)makesP(S)
a metric space (P(S), d). The space of proto-experiences of classical IIT is

PE(S) := P(S) , (2.24)

whereP(S) is defined in Example 2.3.2. Thus elements ofPE(S) are of the form (p, r) for
some p ∈ P(S) and r ∈ R+, with distance function, intensity and scalar multiplication
as defined in the example.

2.9.5. Repertoires

It remains to define the cause-effect repertoires. Fixing a state s of S, the first step will
be to define maps caus′s and eff ′

s which send any choice of (M,P ) ∈ Sub(S) × Sub(S)
to an element of P(P ). These should describe the way in which the current state of
M constrains that of P in the next or previous time-steps. We begin with the effect
repertoire. For a single element purview Pi we define

eff ′
s(M,Pi) := ⟨P⊥

i |T |ωM⊥ ⟩(sM ) , (2.25)

where sM denotes (the Dirac distribution of) the restriction of the state s to M . While it
is natural to use the same definition for arbitrary purviews, IIT 3.0 in fact uses another
definition based on consideration of ‘virtual elements’ (Mayner et al., 2018; Marshall et
al., 2016; Tononi, 2015), which also makes calculations more efficient (Mayner et al.,
2018, Supplement S1). For general purviews P , this definition is

eff ′
s(M,P ) =

∏
Pi∈P

eff ′
s(M,Pi) , (2.26)

taking the product over all elements Pi in the purview P . Next, for the cause repertoire,
for a single element mechanism Mi and each s̃ ∈ St(P ), we define

caus′s(Mi, P )[s̃] = λ ⟨M⊥
i |T |ωP⊥ ⟩(δs̃)[sMi ] , (2.27)
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where λ is the unique normalisation scalarmaking caus′s(Mi, P ) a valid element ofP(P ).
Here, for clarity, we have indicated evaluation of probability distributions at particular
states by square brackets. If the time evolution operator has an inverse T−1, this cause
repertoire could be defined similarly to (2.25) by caus′s(Mi, P ) = ⟨P⊥|T−1|ωM⊥

i
⟩(sMi) , but

classical IIT does not utilize this definition.
For general mechanisms M , we then define

caus′s(M,P ) = κ
∏

Mi∈M
caus′s(Mi, P ) (2.28)

where the product is over all elements Mi in M and where κ ∈ R+ is again a normalisa-
tion constant. We may at last now define

causs(M,P ) := caus′s(M,P ) · caus′s(∅, P⊥)

effs(M,P ) := eff ′
s(M,P ) · eff ′

s(∅, P⊥) ,
(2.29)

with intensity 1 when viewed as elements of PE(S). Here, the dot indicates again the
multiplication of probability distributions and ∅ denotes the empty mechanism.

The distributions caus′s(∅, P⊥) and eff ′
s(∅, P⊥) are called the unconstrained cause and

effect repertoires over P⊥.

Remark 2.9.1. It is in fact possible for the right-hand side of (2.27) to be equal to 0 for all
s̃ for some Mi ∈M . In this case we set causs(M,P ) = (ωS , 0) in PE(S).

Finally we must specify the decompositions of these elements over DM,P . For any
partitions zM = (M1,M2) of M and zP = (P1, P2) of P , we define

causs(M,P )(zM , zP ) := caus′s(M1, P1) · caus′s(M2, P2) · caus′s(∅, P⊥)

effs(M,P )(zM , zP ) := eff ′
s(M1, P1) · eff ′

s(M
,
2P2) · eff ′

s(∅, P⊥) ,
(2.30)

where we have abused notation by equating each subsetM1 andM2 of nodes with their
induced subsystems of S via the state s.

This concludes all data necessary to define classical IIT. If the generalized definition
of Section 2.8 is applied to this data, it yields precisely classical IIT 3.0 defined by Tononi
et al. In Appendix 2.A, we explain in detail how our definition of IIT, equipped with this
data, maps to the usual presentation of the theory.

2.10. Quantum IIT

In this section, we consider quantum IIT defined in (Zanardi et al., 2018). This is also
a special case of the definition in terms of process theories we give in (Tull & Kleiner,
2021).
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2.10.1. Systems

Similar to classical IIT, in quantum IIT systems are conceived as consisting of elements
H1, ... ,Hn. Here, each elementHi is described by a finite dimensional Hilbert space and
the state space of the system S is defined in terms of the element Hilbert spaces as

St(S) = S(HS) with HS =
n⊗

i=1

Hi ,

where S(HS) ⊂ L(HS) describes the positive semidefinite Hermitian operators of unit
trace on HS , i.e. density matrices. The time evolution of the system is again given by a
time evolution operator, which here is assumed to be a trace preserving (and in (Zanardi
et al., 2018) typically unital) completely positive map

T : L(HS)→ L(HS) .

2.10.2. Subsystems, Decompositions and Cuts

Subsystems are again defined to consist of subsets M of the elements of the system,
with corresponding Hilbert spaceHM :=

⊗
i∈M Hi. The time-evolution TM : L(HM )→

L(HM ) is defined as
TM (ρ) = trM⊥

(
T (trM⊥(s)⊗ ρ)

)
,

where s ∈ S(HS) and trM⊥ denotes the trace over the Hilbert space HM⊥ .
Decompositions are also defined via partitions z = (D,D⊥) ∈ DS of the set of ele-

mentsN into two disjoint subsetsD andD⊥ whose union isN . For any such decompos-
ition, the cut system S(D,D⊥) is defined to have the same set of states but time evolution

T (D,D⊥)(s) = T
(
trD⊥(s)⊗ D⊥

)
,

where D⊥ is the maximally mixed state onHD⊥ , i.e. D⊥ = 1
dim(H

D⊥ ) 1HD⊥ .

2.10.3. Proto-Experiences

For any ρ, σ ∈ S(HS), the trace distance defined as

d(ρ, σ) = 1
2 trS

(√
(ρ− σ)2

)
turns (S(HS), d) into a metric space. The space of proto-experiences is defined based
on this metric space as described in Example 2.3.2,

PE(S) := S(HS) .
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2.10.4. Repertoires

We finally come to the definition of the cause- and effect repertoire. Unlike classical IIT,
the definition in (Zanardi et al., 2018) does not consider virtual elements. Let a system
S in state s ∈ St(S) be given. As in Section 2.9.5, we utilize maps caus′s and eff ′

s which
here map subsystems M and P to St(P ). They are defined as

eff ′
s(M,P ) = trP⊥ T

(
trM⊥(s)⊗ M⊥

)
caus′s(M,P ) = trP⊥ T †( trM⊥(s)⊗ M⊥

)
,

where T † is the Hermitian adjoint of T . We then define

causs(M,P ) := caus′s(M,P )⊗ caus′s(∅, P⊥)

eff(M,P ) := eff ′
s(M,P )⊗ eff ′

s(∅, P⊥) ,

each with intensity 1, where ∅ again denotes the empty mechanism. Similarly, decom-
positions of these elements over DM,P are defined as

causs(M,P )(zM , zP ) := caus′s(M1, P1)⊗ caus′s(M2, P2)⊗ caus′s(∅, P⊥)

effs(M,P )(zM , zP ) := eff ′
s(M1, P1)⊗ eff ′

s(M2, P2)⊗ eff ′
s(∅, P⊥) ,

again with intensity 1, where zM = (M1,M2) ∈ DM and zP = (P1, P2) ∈ DP .

2.11. Extensions of Classical IIT

The physical systems to which IIT 3.0 may be applied are limited in a number of ways:
they must have a discrete time-evolution, satisfy Markovian dynamics and exhibit a dis-
crete set of states (A. B. Barrett & Mediano, 2019). Since many physical systems do not
satisfy these requirements, if IIT is to be taken as a fundamental theory about reality, it
must be extended to overcome these limitations.

In this section, we show how IIT can be redefined to cope with continuous time, non-
Markovian dynamics and non-compact state spaces, by a redefinition of themaps (2.26)
and (2.28) and, in the case of non-compact state spaces, a slightly different choice
of (2.24), while leaving all of the remaining structure as it is. While we do not think
that our particular definitions are satisfying as a general definition of IIT, these results
show that the disentanglement of the essential mathematical structure of IIT from aux-
iliary tools (the particular definition of cause-effect repertoires used to date) can help to
overcome fundamental mathematical or conceptual problems.

In Section 2.11.3, we also explain which solution to the problem of non-canonical met-
rics is suggested by our formalism.
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2.11.1. Discrete Time and Markovian Dynamics

In order to avoid the requirement of a discrete time and Markovian dynamics, instead
of working with the time evolution operator (2.18), we define the cause- and effect rep-
ertoires in reference to a given trajectory of a physical state s ∈ St(S). The resulting
definitions can be applied independently of whether trajectories are being determined
by Markovian dynamics in a particular application, or not.

Let t ∈ I denote the time parameter of a physical system. If time is discrete, I is an
ordered set. If time is continuous, I is an interval of reals. For simplicity, we assume
0 ∈ I. In the deterministic case, a trajectory of a state s ∈ St(S) is simply a curve in
St(S), which we denote by (s(t))t∈I with s(0) = s. For probabilistic systems (such as
neural networks with a probabilistic update rule), it is a curve of probability distributions
P(S), which we denote by (p(t))t∈I, with p(0) equal to the Dirac distribution δs. The latter
case includes the former, again via Dirac distributions.

In what follows, we utilize the fact that in physics, state spaces are defined such that
the dynamical laws of a system allow to determine the trajectory of each state. Thus for
every s ∈ St(S), there is a trajectory (ps(t))t∈I which describes the time evolution of s.

The idea behind the following is to define, for every M,P ∈ Sub(S), a trajectory
p
(P,M)
s (t) inP(P )which quantifies howmuch the state of the purview P at time t is being

constrained by imposing the state s at time t = 0 on the mechanism M . This gives an
alternative definition of the maps (2.26) and (2.28), while the rest of classical IIT can be
applied as before.

Let now M,P ∈ Sub(S) and s ∈ St(S) be given. We first consider the time evolution
of the state (sM , v) ∈ St(S), where sM denotes the restriction of s to St(M) as before
and where v ∈ St(M⊥) is an arbitrary state of M⊥. We denote the time evolution of this
state by p(sM ,v)(t) ∈ P(S). Marginalizing this distribution over P⊥ gives a distribution
on the states of P , which we denote as pP(sM ,v)(t) ∈ P(P ). Finally, we average over v
using the uniform distribution ωM⊥ . Because state spaces are finite in classical IIT, this
averaging can be defined pointwise for every w ∈ St(P ) by

p(P,M)
s (t)(w) := κ

∑
v∈St(M⊥)

pP(sM ,v)(t)(w) ωM⊥(v) , (2.31)

where κ is the unique normalization constant which ensures that p(P,M)
s (t) ∈ P(P ).

The probability distribution p
(P,M)
s (t) ∈ P(P ) describes how much the state of the

purview P at time t is being constrained by imposing the state s on M at time t = 0 as
desired. Thus, for every t ∈ I, we have obtained a mapping of two subsystems M,P

to an element p(P,M)
s (t) of P(P ) which has the same interpretation as the map (2.25)

considered in classical IIT. If deemed necessary, virtual elements could be introduced
just as in (2.26) and (2.28).

So far, our construction can be applied for any time t ∈ T . It remains to fix this free-
dom in the choice of time. For the discrete case, the obvious choice is to define (2.26)
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and (2.28) in termsof neighbouring time-steps. For the continuous case, several choices
exist. E.g., one could consider the positive and negative semi-derivatives of p(P,M)

s (t) at
t = 0, in case they exist, or add an arbitrary but fixed time scale ∆ to define the cause-
and effect repertoires in terms of p(P,M)

s (t0 ±∆). However, the most reasonable choice
is in our eyes to work with limits, in case they exist, by defining

eff ′
s(M,P ) :=

∏
Pi∈P

lim
t→∞

p(Pi,M)
s (t) (2.32)

to replace (2.26) and

caus′s(M,P ) := κ
∏

Mi∈M
lim

t→−∞
p(P,Mi)
s (t) (2.33)

to replace (2.28). The remainder of the definitions of classical IIT can then be applied
as before.

2.11.2. Discrete Set of States

The problem with applying the definitions of classical IIT to systems with continuous
state spaces (e.g. neuron membrane potentials (A. B. Barrett & Mediano, 2019)) is that
in certain cases, uniform probability distributions do not exist. E.g., if the state space
of a system S consists of the positive real numbers R+, no uniform distribution can be
defined which has a finite total volume, so that no uniform probability distribution ωS

exists.
It is important to note that this problem is less universal than one might think. E.g.,

if the state space of the system is a closed and bounded subset of R+, e.g. an inter-
val [a, b] ⊂ R+, a uniform probability distribution can be defined using measure theory,
which is in fact the natural mathematical language for probabilities and random vari-
ables. Nevertheless, the observation in (A. B. Barrett & Mediano, 2019) is correct that if
a system has a non-compact continuous state space, ωS might not exist, which can be
considered a problem w.r.t. the above-mentioned working hypothesis.

This problem can be resolved for all well-understood physical systems by replacing
the uniform probability distribution ωS by some other mathematical entity which allows
to define a notion of averaging states. An example is quantum theory (Section 2.10),
whose state-spaces are continuous and non-compact. Here, the maximally mixed state
S plays the role of the uniform probability distribution. For all relevant classical sys-

tems with non-compact state spaces (whether continuous or not), the same is true:
There exists a canonical uniform measure µS which allows to define the cause-effect
repertoires similar to the last section, as we now explain. Examples for this canonical
uniformmeasure are the Lebesguemeasure for subsets ofRn (Rudin, 2006), or the Haar
measure for locally compact topological groups (Salamon, 2016) such as Lie-groups.

In what follows, we explain how the construction of the last section needs to be mod-
ified in order to be applied to this case. In all relevant classical physical theories, St(S)
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is a metric space in which every probability measure is a Radon measure, in particular
locally finite, and where a canonical locally finite uniform measure µS exists. We define
P1(S) to be the space of probability measures whose first moment is finite. For these,
the first Wasserstein metric (or ‘Earth Mover’s Distance’) W1 exists, so tat (P1(S),W1)
is a metric space.

As before, the dynamical laws of the physical systems determine for every state s ∈
St(S) a time evolution ps(t), which here is an element of P1(S). Integration of this prob-
ability measure over St(P⊥) yields the marginal probability measure pPs (t). As in the
last section, we may consider these probability measures for the state (sM , v) ∈ St(S),
where v ∈ St(M⊥). Since µS is not normalizable, we cannot define p

(P,M)
s (t) as in (2.31),

for the result might be infinite.
Using the fact that µS is locally finite, we may, however, define a somewhat weaker

equivalent. To this end, we note that for every state sM⊥ , the local finiteness of µM⊥

implies that there is a neighbourhood Ns,M⊥ in St(M⊥) for which µM⊥(Ns,M⊥) is finite.
We choose a sufficiently large neighbourhood which satisfies this condition. Assuming
pP(sM ,v)(t) to be a measurable function in v, for every A in the σ-algebra of St(M⊥), we
can thus define

p(P,M)
s (t)(A) := κ

ˆ
N

s,M⊥

pP(sM ,v)(t)(A) dµM⊥(v) , (2.34)

which is a finite quantity. The p
(P,M)
s (t) so defined is non-negative, vanishes for A = ∅

and satisfies countable additivity. Hence it is a measure on St(P ) as desired, but might
not be normalizable.

All that remains for this to give a cause-effect repertoire as in the last section, is to
make sure that any measure (normalized or not) is an element of PE(S). The theory is
flexible enough to do this by setting d(µ, ν) = |µ − ν|(St(P )) if either µ or ν is not in
P1(S), and W1(µ, ν) otherwise. Here, |µ − ν| denotes the total variation of the signed
measure µ− ν , and |µ− ν|(St(P )) is the volume thereof (Encyclopedia of Mathematics,
2013; Halmos, 1974). While not ametric space anymore, the tuple (M(S), d), withM(S)
denoting all measures on St(S), can still be turned into a space of proto-experiences as
explained in Example 2.3.2. This gives

PE(S) :=M(S)

and finally allows to construct cause-effect repertoires as in the last section.

2.11.3. Non-Canonical Metrics

Another criticism of IIT’s mathematical structure mentioned (A. B. Barrett & Mediano,
2019) is that themetrics used in IIT’s algorithmare, to a certain extend, chosen arbitrarily.
Different choices indeed imply different results of the algorithm, both concerning the
quantity and quality of experience, which can be considered problematic.
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The resolution of this problem is, however, not somuch a technical as a conceptual or
philosophical task, for what is needed to resolve this issue is a justification of why a par-
ticular metric should be used. Various justifications are conceivable, e.g. identification
of desired behaviour of the algorithm when applied to simple systems. When consid-
ering our mathematical reconstruction of the theory, the following natural justification
offers itself.

Implicit in our definition of the theory as a map from systems to experience spaces is
the idea that themathematical structure of experiences spaces (Definition 2.3.1) reflects
the phenomenological structure of experience. This is so, most crucially, for the dis-
tance function d, which describes how similar two elements of experience spaces are.
Since every element of an experience space corresponds to a conscious experience, it
is naturally to demand that the similarly of the two mathematical objects should reflect
the similarity of the experiences they describe. Put differently, the distance function d
of an experience space should in fact mirror (or “model”) the similarity of conscious
experiences as experienced by an experiencing subject.

This suggests that themetrics d used in the IIT algorithmshould, ultimately, be defined
in terms of the phenomenological structure of similarity of conscious experiences. For
the caseof colour qualia, this is in fact feasible (Kleiner, 2020b, Example 3.18), (R. Kuehni,
2010; Sharma, Wu, & Dalal, 2004). In general, the mathematical structure of experience
spaces should be intimately tied to the phenomenology of experience, in our eyes.

2.12. Summary & Outlook

In this article, we have propounded the mathematical structure of Integrated Informa-
tion Theory. First, we have studied which exact structures the IIT algorithm uses in the
mathematical description of physical systems, on the one hand, and in the mathem-
atical description of conscious experience, on the other. Our findings are the basis of
definitions of a physical system class Sys and a class Exp of experience spaces, and
allowed us to view IIT as a map Sys→ Exp.

Next, we needed to disentangle the essentialmathematics of the theory fromauxiliary
formal tools used in the contemporary definition. To this end, we have introduced the
precise notion of decomposition of elements of an experience space required by the
IIT algorithm. The pivotal cause-effect repertoires are examples of decompositions so
defined, which allowed us to view any particular choice, e.g. the one of ‘classical’ IIT
developed by Tononi et. al., or the one of ‘quantum’ IIT recently introduced by Zanardi
et. al. as data provided to a general IIT algorithm.

The formalization of cause-effect repertoires in terms of decompositions then led us
to define the essential ingredients of IIT’s algorithm concisely in terms of integration
levels, integration scalings and cores. These definitions describe and unify recurrent
mathematical operations in the contemporary presentation, and finally allowed to define
IIT completely in terms of a few lines of definition.

Throughout the paper, we have taken great care to make sure our definitions repro-
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duce exactly the contemporary version of IIT 3.0. The result of our work is a mathem-
atically rigorous and general definition of Integrated Information Theory. This definition
can be applied to any meaningful notion of systems and cause-effect repertoires, and
we have shown that this allows one to overcome most of the mathematical problems
of the contemporary definition identified to date in the literature.

We believe that our mathematical reconstruction of the theory can be the basis for
refined mathematical and philosophical analysis of IIT. We also hope that this mathem-
atisation may make the theory more amenable to study by mathematicians, physicists,
computer scientists and other researchers with a strongly formal background.

2.12.1. Process Theories

Our generalization of IIT is axiomatic in the sense that we have only included those
formal structures in the definition which are necessary for the IIT algorithm to be ap-
plied. This ensured that our reconstruction is as general as possible, while still true to
IIT 3.0. As a result, several notions used in classical IIT, e.g., system decomposition,
subsystems or causation, are merely defined abstractly at first, without any reference to
the usual interpretation of these concepts in physics.

In the related article (Tull & Kleiner, 2021), we show that these concepts can be mean-
ingfully defined in any suitable process theory of physics, formulated in the language of
symmetricmonoidal categories. This approach candescribe both classical andquantum
IIT and yields a complete formulation of contemporary IIT in a categorical framework.

2.12.2. Further Development of IIT

IIT is constantly under development, with new and refined definitions being added every
few years. We hope that our mathematical analysis of the theory might help to contrib-
ute to this development. E.g., the working hypothesis that IIT is a fundamental theory,
i.e. describes reality as it is, implies that technical problems of the theory need to be
resolved. We have shown that our formalization allows one to address the technical
problems mentioned in the literature. However, there are others which we have not ad-
dressed in this paper.

Most crucially, the IIT algorithm uses a series of maximalization and minimalization
operations, unified in the notion of core subsystems in our formalization. In general,
there is no guarantee that these operations lead to unique results, neither in classical
nor quantum IIT. Using different cores has major impact on the output of the algorithm,
including the Φ value, which is a case of ill-definedness.3

Furthermore, the contemporary definition of IIT as well as our formalization rely on
there being a finite number of subsystems of each system, which might not be the case

3The problem of ‘unique existence’ has been studied extensively in category theory using universal prop-
erties and the notion of a limit. Rather than requiring that each E ∈ E come with a metric, it may be
possible to alter the IIT algorithm into a well-defined categorical form involving limits to resolve this
problem.
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in reality. Our formalisation may be extendable to the infinite case by assuming that
every systemhas a fixed but potentially infinite indexing set Sub(S), so that each Subs(S)
is the image of a mapping Sub(S) × St(S) → Sys, but we have not considered this in
detail in this paper.

Finally, concerning more operational questions, it would be desirable to develop the
connection to empirical measures such as the Perturbational Complexity Index PCI (Ca-
sa rotto et al., 2016; Casali et al., 2013) in more detail, as well as to define a controlled
approximation of the theory whose calculation is less expensive. Both of these tasks
may be achievable by substituting parts of our formalization with simpler mathematical
structure.

On the conceptual side of things, it would be desirable to have a more proper under-
standing of how the mathematical structure of experiences spaces corresponds to the
phenomenology of experience, both for the general definition used in our formalization
– which comprises the minimal mathematical structure which is required for the IIT al-
gorithm to be applied – and the specific definitions used in classical and quantum IIT.
In particular, it would be desirable to understand how it relates to the important notion
of qualia, which is often asserted to have characteristic features such as ineffability,
intrinsicality, non-contextuality, transparency or homogeneity (Metzinger, 2006). For a
first analysis towards this goal, cf. (Kleiner, 2020b). A first proposal to add additional
structure that accounts for relations between elements of consciousness in the case of
spatial experiences was recently given in (A. Haun & Tononi, 2019).

Wewould like to thank the organizers and participants of theWorkshop on Information
Theory and Consciousness at the Centre for Mathematical Sciences of the University of
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under the support of an EPSRCDoctoral Prize at theUniversity of Oxford, fromNovember
2018 to July 2019, and while Johannes Kleiner was under the support of postdoctoral
funding at the Institute for Theoretical Physics of the Leibniz University of Hanover. We
would like to thank both institutions.
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Appendix

2.A. Comparison with Standard Presentation of IIT 3.0

In Section 2.9, we have defined the system class and cause-effect repertoires which
underlie classical IIT. The goal of this appendix is to explain in detail why applying our
definition of the IIT algorithm yields IIT 3.0 defined by Tononi et al. In doing so, we will
mainly refer to the terminology used in (Tononi, 2015), (Mayner et al., 2018), (Oizumi et
al., 2014) and (Marshall et al., 2016). We remark that a particularly detailed presentation
of the algorithm of the theory, and of how the cause and effect repertoire are calculated,
is given in the supplementary material S1 of (Mayner et al., 2018).

2.A.1. Physical Systems

The systems of classical IIT are given in Section 2.9.1. They are often represented as
graphs whose nodes are the elements S1, . . . , Sn and edges represent functional de-
pendence, thus describing the time evolution of the system as a whole, which we have
taken as primitive in (2.18). This is similar to the presentation of the theory in terms of
a transition probability function

p : St(S)× St(S)→ [0, 1]

in (Marshall et al., 2016). For each probability distribution p̃ over St(S), this relates to our
time evolution operator T via

T (p̃)[v] :=
∑

w∈St(S)

p(v, w) p̃(w) .

2.A.2. Cause-Effect Repertoires

In contemporary presentations of the theory ((Marshall et al., 2016, p. 14) or (Tononi,
2015)), the effect repertoire is defined as

peffect(zi,mt) :=
1

|ΩMc |
∑

mc∈ΩMc

p
(
zi | do(mt,m

c)
)

zi ∈ ΩZi (2.35)

and

peffect(z,mt) :=

|z|∏
i=1

peffect(zi,mt) . (2.36)
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Here, mt denotes a state of the mechanism M at time t. M c denotes the complement
of the mechanism, denoted in our case as M⊥, ΩMc denotes the state space of the
complement, and mc an element thereof. Zi denotes an element of the purview Z (des-
ignated by P in our case), ΩZi denotes the state space of this element, zi a state of
this element and z a state of the whole purview. |ΩMc | denotes the cardinality of the
state space of M c, and |z| equals the number of elements in the purview. Finally, the
expression do(mt,m

c) denotes a variant of the so-called “do-operator”. It indicates that
the state of the system, here at time t, is to be set to the term in brackets. This is called
perturbing the system into the state (mt,m

c). The notation p(zi|do(mt,m
c)) then gives

the probability of finding the purview element in the state zi at time t+ 1 given that the
system is prepared in the state (mt,m

c) at time t.
In our notation, the right hand side of (2.35) is exactly given by the right-hand side of

(2.25), i.e. eff ′
s(M,Pi). The system is prepared in a uniformdistribution onM c (described

by the sum and prefactor in (2.35)) and with the restriction sM of the system state, here
denoted by mt, on M . Subsequently, T is applied to evolve the system to time t + 1,
and the marginalization ⟨P⊥

i | throws away all parts of the states except those of the
purview element Pi (denoted above as Zi). In total, (2.25) is a probability distribution
on the states of the purview element. When evaluating this probability distribution at
one particular state zi of the element, one obtains the same numerical value as (2.35).
Finally, taking the product in (2.36) corresponds exactly to taking the product in (2.26).

Similarly, the cause repertoire is defined as ((Marshall et al., 2016, p. 14) or (Tononi,
2015))

pcause(z|mi,t) :=

∑
zc∈ΩZc

p
(
mi,t | do(z, zc)

)∑
s∈ΩS

p
(
mi,t | do(s)

) z ∈ ΩZt−1 (2.37)

and

pcause(z|mt) :=
1

K

|mt|∏
i=1

pcause(z|mi,t) , (2.38)

where mi denotes the state of one element of the mechanism M , with the subscript t
indicating that the state is considered at time t. Z again denotes a purview, z is a state
of the purview and ΩZt−1 denotes the state space of the purview, where the subscript
indicates that the state is considered at time t− 1. K denotes a normalization constant
and |mt| gives the number of elements in M .

Here, the whole right hand side of (2.37) gives the probability of finding the purview in
state z at time t − 1 if the system is prepared in state mi,t at time t. In our terminology
this same distribution is given by (2.27), where λ is the denominator in (2.37). Taking
the product of these distributions and re-normalising is then precisely (2.28).

As a result, the cause and effect repertoire in the sense of (Oizumi et al., 2014) corres-
pond precisely in our notation to caus′s(M,P ) and eff ′

s(M,P ), each being distributions
over St(P ). In (Mayner et al., 2018, S1), it is explained that these need to be extended by
the unconstrained repertoires before being used in the IIT algorithm, which in our form-
alization is done in (2.29), so that the cause-effect repertoires are now distributions over
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St(S). These are in fact precisely what are called the extended cause and effect reper-
toires or expansion to full state space of the repertoires in (Oizumi et al., 2014).

The behaviour of the cause- and effect-repertoires when decomposing a system is de-
scribed, in our formalism, by decompositions (Definition 2.4.1). Hence a decomposition
z ∈ DS is what is called a parition in the classical formalism. For the case of classical
IIT, a decomposition is given precisely by a partition of the set of elements of a system,
and the cause-effect repertoires belonging to the decomposition are defined in (2.30),
which corresponds exactly to the definition

pcut
cause(z|mt) = pcause(z

(1)|m(1)
t )× pcause(z

(2)|m(2)
t )

in (Marshall et al., 2016), when expanded to the full state space, and equally so for the
effect repertoire.

2.A.3. Algorithm - Mechanism Level

Next, we explicitly unpack our form of the IIT algorithm to see how it compares in the
case of classical IIT with (Oizumi et al., 2014). In our formalism, the integrated informa-
tion φ of a mechanism M of system S when in state s is

φmax(M) = ||CS,s(M) || (2.39)

defined in Equation (2.10). This definition conjoins several steps in the definition of clas-
sical IIT. To explain why it corresponds exactly to classical IIT, we disentangle this defin-
ition step by step.

First, consider causs(M,P ) in Equation (2.9). This is, by definition, a decomposition
map. The calculation of the integration level of this decomposition map, cf. Equa-
tion (2.5), amounts to comparing causs(M,P ) to the cause-effect repertoire associated
with every decomposition using the metric of the target space PE(S), which for clas-
sical IIT is defined in (2.24) and Example 2.3.2, so that the metric d used for comparison
is indeed the Earth Mover’s Distance. Since cause-effect repertoires have, by definition,
unit intensity, the factor r in the definition (2.1) of the metric does not play a role at this
stage. Therefore, the integration level of causs(M,P ) is exactly the integrated cause in-
formation, denoted as

φMIP
cause(yt, Zt−1)

in (Tononi, 2015), where yt denotes the (induced state of the) mechanism M in this
notation, and Zt−1 denotes the purview P . Similarly, the integration level of effs(M,P )
is exactly the integrated effect information, denoted as

φMIP
effect(yt, Zt+1) .

The integration scaling in (2.10) simply changes the intensity of an element of PE(S)
to match the integration level, using the scalar multiplication, which is important for the
system level definitions. When applied to causs(M,P ), this would result in an element
of PE(S) whose intensity is precisely φMIP

cause(yt, Zt−1).
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Consider now the collections (2.9) of decomposition maps. Applying Definition 2.5.2,
the core of causs(M) is that purview P which gives the decomposition causs(M,P ) with
the highest integration level, i.e. with the highest φMIP

cause(yt, Zt−1). This is called the core
cause P c of M , and similarly the core of effs(M) is called the core effect P e of M .

Finally, to fully account for (2.10), we note that the integration scaling of a pair of
decomposition maps rescales both elements to the minimum of the two integration
levels. Hence the integration scaling of the pair (causs(M,P ), eff(M,P ′)) fixes the scalar
value of both elements to be exactly the integrated information, denoted as

φ(yt, Zt±1) = min
(
φMIP

cause, φ
MIP
effect

)
in (Tononi, 2015), where P = Zt+1 and P ′ = Zt−1.

In summary, the following operations are combined in Equation (2.10). The core of
(causs(M), effs(M)) picks out the core cause P c and core effect P e. The core integra-
tion scaling subsequently considers the pair (causs(M,P c), eff(M,P e)), called maxim-
ally irreducible cause-effect repertoire, and determines the integration level of each by
analysing the behaviour with respect to decompositions. Finally, it rescales both to the
minimum of the integration levels. Thus it gives exactly what is called φmax in (Tononi,
2015). Using, finally, the definition of the intensity of the product PE(S)×PE(S) in Defin-
ition 2.3.3, this implies (2.39). The concept of M in our formalization is given by the
tuple

CS,s(M) :=
(
(causs(M,P c), φmax(M)), (effs(M,P e), φmax(M))

)
i.e. the pair of maximally irreducible repertoires scaled by φmax(M). This is equivalent
to what is called a concept, or sometimes quale sensu stricto, in classcial IIT (Tononi,
2015), and denoted as q(yt).

We finally remark that it is also possible in classical IIT that a cause repertoire value
causs(M,P ) vanishes (Remark 2.9.1). In our formalization, it would hence be represen-
ted by (ωS , 0) in PE(S), so that d(causs(M,P ), q) = 0 for all q ∈ E(S) according to (2.1),
which certainly ensures that φMIP

cause(M,P ) = 0.

2.A.4. Algorithm - System Level

We finally explain how the system level definitions correspond to the usual definition of
classical IIT.

The Q-shapeQs(S) is the collection of all concepts specified by the mechanisms of a
system. Since each concept has intensity given by the corresponding integrated inform-
ation of the mechanism, this makes Qs(S) what is usually called the conceptual struc-
ture or cause-effect structure. In (Oizumi et al., 2014), one does not include a concept
for any mechanism M with φmax(M) = 0. This manual exclusion is unnecessary in our
case because the mathematical structure of experience spaces implies that mechan-
isms with φmax(M) = 0 should be interpreted as having no conscious experience, and
the algorithm in fact implies that they have ‘no effect’. Indeed we will now see that they
do not contribute to the distances in E(S) or any Φ values, and so we do not manually
exclude them.
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When comparing Qs(S) with the Q-shape (2.13) obtained after replacing S by any of
its cuts, it is important to note that both are elements of E(S) defined in (2.12), which is
a product of experience spaces. According to Definition 2.3.3, the distance function on
this product is

d(Qs(S),Qs(S
z)) :=

∑
M∈Sub(S)

d(CS,s(M),CSz ,sz(M)) .

Using Definition 2.3.2 and the fact that each concept’s intensity is φmax(M) according
to the mechanism level definitions, each distance d(CS,s(M),CSz ,sz(M)) is equal to

φmax(M) ·
(
d
(
causs(M,P c

M ), causzs(M,P z,c
M )

)
+ d

(
effs(M,P e

M ), effz
s(M,P z,e

M )
))

,
(2.40)

where φmax(M) denotes the integrated information of the concept in the original sys-
tem S, and where the right-hand cause and effect repertoires are those of Sz at its own
core causes and effects forM . The factor φmax(M) ensures that the distance used here
corresponds precisely to the distance used in (Oizumi et al., 2014), there called the ex-
tended Earth Mover’s Distance. If the integrated information φmax(M) of a mechanism
is non-zero, it follows that d(CS,s(M),CSz ,sz(M)) = 0 as mentioned above, so that this
concept does not contribute.

We remark that in (Mayner et al., 2018, S1), an additional step ismentionedwhich is not
described in any of the other papers we consider. Namely, if the integrated information
of amechanism is non-zero before cutting but zero after cutting, what is compared is not
the distance of the corresponding concepts as in (2.40), but in fact the distance of the
original concept with a special null concept, defined to be the unconstrained repertoire
of the cut system. We have not included this step in our definitions, but it could be
included by adding a choice of distinguished point to Example 2.3.2 and redefining the
metric correspondingly.

In Equation (2.14) the above comparison is being conducted for every subsystem of
a system S. The subsystems of S are what is called candidate systems in (Oizumi et
al., 2014), and which describe that ‘part’ of the system that is going to be conscious
according to the theory (cf. below). Crucially, candidate systems are subsystems of
S, whose time evolution is defined in (2.22). This definition ensures that the state of
the elements of S which are not part of the candidate system are fixed in their current
state, i.e. constitute background conditions as required in the contemporary version of
classcial IIT (Mayner et al., 2018).

Equation (2.14) then compares the Q-shape of every candidate system to the Q-shape
of all of its cuts, using the distance function described above, where the cuts are defined
in (2.23). The cut system with the smallest distance gives the system-levelminimum in-
formation partition and the integrated (conceptual) information of that candidate system,
denoted as Φ(xt) in (Tononi, 2015).

The core integration scaling finally picks out that candidate system with the largest
integrated information value. This candidate system is the major complex M of S, the

41



2. The Mathematical Structure of Integrated Information Theory

part of S which is conscious according to the theory as part of the exclusion postulate of
IIT. Its Q-shape is themaximally irreducible conceptual structure (MICS), also called quale
sensu lato. The overall integrated conceptual information is, finally, simply the intensity
of E(S, s) as defined in (2.14),

Φ(S, s) = E(S, s) .

2.A.5. Constellation in Qualia Space

Expanding our definitions, and denoting the major complex byM with statem = s|M , in
our terminology the actual experience of the system S state s is

E(S, s) :=
Φ(M,m)

||Qm(M) || · Qm(M) . (2.41)

This encodes the Q-shape Qm(M), i.e. the maximally irreducible conceptual structure
of the major complex, sometimes called quale sensu lato, which is taken to describe
the quality of conscious experience. By construction it also encodes the integrated con-
ceptual information of the major complex, which captures its intensity, since we have
||E(S, s) || = Φ(M,m). The rescaling ofQm(M) in (2.41) leaves the relative intensities of
the concepts in the MICS intact. Thus E(S, s) is the constellation of concepts in qualia
space E(M) of (Oizumi et al., 2014).
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3. Integrated Information in Process
Theories

Sean Tull, Johannes Kleiner1

3.1. Introduction

Integrated Information Theory (IIT) is a theory of consciousness proposed anddeveloped
by Giulio Tononi and collaborators (Tononi, 2008; Oizumi et al., 2014). Originally defined
in terms of a numerical measureΦ representing the level of phenomenal consciousness
of a system (Tononi, 2004; P. A. Mediano, Seth, & Barrett, 2019), the most recent version
of the theory, IIT 3.0, now employs an algorithm which claims to determine in addition
which part of a system is conscious, and what it is conscious of.

In this article we show how the key concepts of IIT, including systems, integration
and causation, can be studied naturally in the language of physical process theories,
which are mathematically described as symmetric monoidal categories. Process theor-
ies come with an intuitive but rigorous graphical calculus (Selinger, 2011) which allows
us to present many aspects of IIT in a simple pictorial fashion.

The constructionswe provide in this article can be applied to any suitable process the-
ory to yield a notion of generalised IIT as defined by the authors in a companion article
(Kleiner & Tull, 2021). This allows us to extend IIT to new physical settings. As spe-
cial cases, choosing the process theory of classical probabilistic processes essentially
yields the usual IIT 3.0 in the sense of (Oizumi et al., 2014). Starting instead from the
theory of quantum processes gives the Quantum Integrated Information Theory defined

1Published as: Tull, S., & Kleiner, J. (2021). Integrated Information in Process Theories: Towards Categor-
ical IIT. Journal of Cognitive Science, 22, 2, 92–123. (Tull & Kleiner, 2021)
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by Zanardi, Tomka and Venuti (Zanardi et al., 2018), which was another motivation for
this work.

Independently of consciousness itself, our constructions provide a possible found-
ation for a general theory of integrated or ‘holistic’ behaviour within process theories,
i.e. monoidal categories, which may be of interest to a broad range of fields. For ex-
ample, neural net-like systems that achieve a task using a high degree of integration
should be more efficient than fully modular ones, in that they require fewer neurons for
the same task, and indeed integrated behaviour has been shown to evolve in simple
models of biological organisms (Albantakis, Hintze, Koch, Adami, & Tononi, 2014). The
methods of IIT have been applied generally in the study of integration in information
processing systems, including treatments of autonomy (Marshall, Kim, Walker, Tononi,
& Albantakis, 2017), causation (Albantakis, Marshall, Hoel, & Tononi, 2017), and state
differentiation (Marshall et al., 2016).

3.1.1. Background: Mathematical Consciousness Science

The background for our work is in the growing field ofMathematical Consciousness Sci-
ence (MCS), which aims to apply formal andmathematical tools in order to resolve open
problems in the scientific study of consciousness. One major goal thereby is to expose
and improve the mathematical structure of neuroscientific theories of consciousness
so as to allow quantifiable comparison between competing models, generate novel ex-
perimental predictions, and to provide a thorough foundation for further development
and combination of theories. More foundationally, it aims to uncover how conscious-
ness relates to the physical world in terms of empirically grounded and philosophically
motivated scientific theories. Progress in this direction is essential for resolving med-
ical challenges (most notably, improving the understanding of neurological, psychiatric
and psychological disorders (Michel et al., 2019)) and ethical reasons (for example the
detection of consciousness in anesthetized or non-communicating patients (Alkire, Hu-
detz, & Tononi, 2008; Fink, Wiese, &Windt, 2018)), and could generate newadvances in AI
(artificial implementation of consciousness-related functions, for example (McDermott,
2007)).

A crucial cornerstone in this program is the representation of conscious experience
in terms of a mathematical spaces, and to expound theories of consciousness as map-
pings from a mathematical description of physical systems to these spaces. Early pre-
cursors of the former are quality spaces (Beals, Krantz, & Tversky, 1968; A. Clark, 1993,
2000) which make use of just noticeable difference between stimuli to construct a rep-
resentation of mental qualities and similarities between them. In the companion article
(Kleiner & Tull, 2021), we provide a definition of an experience space that builds upon
quality spaces while being geared at precisely what is required to flash out IIT as amath-
ematical mapping of the just-mentioned kind.

This contributes to the exploration and application of category theory as a framework
for theories of consciousness (Tsuchiya, Taguchi, & Saigo, 2016; Northoff et al., 2019;
Ehresmann, 2012). Category theory itself provides a natural language for describing
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mappings between scientific domains, such as domains of physical systems and those
modelling phenomenal experiences. Its emphasis on processes between systems in
particular makes it ideal for describing theories and experimental findings which relate
consciousness to dynamical processes, as discussed for example in (Fekete & Edelman,
2011; Wiese & Friston, 2021; Grindrod, 2018). The use of monoidal categories in this
article additionally allows us to treat compositional aspects of systems and processes,
which are central to theories such as IIT.

3.1.2. A primer on Integrated Information Theory

Though the majority of the article is self-contained and requires no prior knowledge of
the theory, for context we include here a short introduction to IIT 3.0 (Oizumi et al., 2014),
as formulated in its general form in our companion article (Kleiner & Tull, 2021) to which
we refer for a more detailed presentation of the theory.

Any generalised IIT, including IIT 3.0, takes as input a given class of physical systems
S, each with a given state space St(S), and specifies a map E which provides each
system with a space describing its possible conscious experiences. Additionally, for
each state s ∈ St(S) the theory specifies a particular experience E(s) ∈ E(S) which the
system will have in that state:

Physical systems
and states

Spaces and states of
conscious experience

E

In IIT 3.0 the nature of thismapping derives from a number of essential properties–so
called ‘axioms’–which are postulated to characterize every conscious experience. Next
to integration and information, these axioms include intrinsic existence, composition
and exclusion (Tononi, 2015). These axioms are being translated into formal require-
ments. To this end, comparably simple physical systems are considered. These consist
of a set of elements (or ‘nodes’), each usually with only two states (on or off), and come
with a discrete Markovian time evolution which is often described via a given causal
graph. The prototypical example would be a human brain, in which the nodes represent
neurons and their firing. The result of the translation process is the algorithm of IIT 3.0,
i.e. the map E when applied to classical physical systems.

Starting from such a system S along with its current state s, the theory then specifies
a set of probability distributions known as the cause-effect repertoire. For each pair
of subsystems M,P (‘mechanism’ and ‘purview’) of S, the cause repertoire caus(M,P )
is a distribution specifying how the current state of M constrains the state of P in the
previous time-step, and similarly the effect repertoire eff(M,P ) addresses the next time-
step instead.

In the IIT algorithm one goes on how to calculate how ‘integrated’ each of these reper-
toires are by comparing them against repertoires obtained instead by ‘cutting’ the (evol-
ution of the) system into various parts, by removing causal connections between them.
For each mechanism M one determines which purviews give the most integrated val-
ues of caus(M,P ) and eff(M,P ), and these repertoire values (along with their level of
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integration) determine a concept for that mechanism. The weighted collection of these
concepts determines the entity E(s), also known as the Q-shape of the system, which is
claimed to specify its total conscious experience. In particular this Q-Shape comes with
its own level of integration, denoted Φ(s), which describes ’how conscious’ the system
is as a whole. A final ‘exclusion’ step enforces that only the subsystem of S with the
highest Φ value will in fact be conscious.

In the article (Kleiner & Tull, 2021) we show how to define a broad class of generalisa-
tions of IIT, in which for example the repertoires need no longer be described by prob-
ability distributions, but the states of a general physical theory. In the present article we
describe how such IITs may be defined starting from any physical process theory. To
do so we define the key notions of any IIT within such a setting, namely causal relations
and their integration.

3.1.3. Structure of article

The article is structured as follows. We introduce process theories in Section 3.2 and
then use them to describe the key notions from IIT – decompositions of objects (Section
3.3), systems (Section 3.4) and cause and effect repertoires (Section 3.5). We summar-
ise how to define a generalised IIT from a process theory in Section 3.6 before giving ex-
amples in Section 3.7 and discussing future work in Section 3.8. The appendix contains
some initial steps in developing a general study of integration in monoidal categories.

3.2. Process Theories

We begin by introducing the framework of process theories used throughout this work;
for more detailed introductions we refer to (Coecke & Paquette, 2010; Coecke & Kis-
singer, 2017). The basic ingredients of such a theory are objects and processes between
them. We depict a process from the object A to the object B as a box:

f

A

B

These processes may be composed together to form new ones in several ways. Firstly,
given a process such as f above, and any other process g fromB toC , wemay compose
them ‘in sequence’ to form a new one from A to C , denoted:

g ◦ f =
f

g

A A

CC
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Secondly, we may compose processes in parallel. Any two objects A,B may be com-
bined into a single object A⊗B. Moreover any processes f from A to B, and g from C
to D may be placed ‘side-by-side’ to form a new process:

f ⊗ g = f

A⊗ C A

BB ⊗D

g

D

C

from A⊗ C to B ⊗D. More generally, by combining these operations, many processes
may all be plugged together to form more complex diagrams describing a single com-
posite process.

As a convenience, any process theory is taken to come with the following. Firstly,
any object A come with an identity process, depicted as a blank wire on A, which ‘does
nothing’ in that composing with it via ◦ leaves any process as it is. Secondly, it has
a trivial object, denoted I , which leaves objects alone when combining under ⊗. We
depict I as empty space:

=

I

I

Finally, we formally assume the presence of a special process which allowsus to ‘swap’
any pair of wires over each other, along with a set of rules saying roughly that diagrams
in the above sense are well-defined.

Mathematically, all of this is summarised by saying that a process theory is precisely
a symmetric monoidal category (C,⊗, I) with the processes as its morphisms. Our dia-
grammatic rules correspond to the precise graphical calculus for reasoning in such cat-
egories (Selinger, 2011).

We will often wish to refer to some special kinds of processes. Processes with ‘no
input’ in diagrams (and so formally with input object I) are called states, and can be
thought of as ‘preparations’ of the physical system given by their output object:

ρ

Processes with no output, called effects, may be thought of as ‘observations’ we may
record on our system. Finally, processes with neither input nor output are called scal-
ars. It is common for theories to come with a probabilistic interpretation meaning that
each of their scalars p correspond to a probability, or more generally an ‘unnormalised
probability’ p ∈ R+, with r ⊗ s = r · s for scalars and the empty diagram given by 1. In
particular, the composition of a state with an effect

ρ

e

∈ R+
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corresponds to the ‘probability’ of observing the effect e in the state ρ. Such ‘generalised
probabilistic theories’ are amajor focus of study in the foundations of physics (J. Barrett,
2007).

The theories we consider here will often come with further structure giving them a
physical interpretation. Firstly, every object will come with a distinguished discarding
effect depicted

which we think of as the process of simply ‘throwing away’ or ‘ignoring’ a physical sys-
tem. Similarly, every object should come with a distinguished completely mixed state
depicted as

which corresponds to preparing the object in amaximally ‘noisy’ or ‘random’ state. These
processes should satisfy

A⊗B

=

A B

A⊗B

=

A B

as well as

A = =

I

I
=

for all objects A,B. We then define a process f to be causal when it satisfies

f

B

A

=

A

or similarly as co-causal if it preserves . Discarding processes are in fact closely related
to physical notions of causality; see for example (Coecke, 2014; Chiribella, D’Ariano, &
Perinotti, 2010).

In such a probabilistic theory there is a unique process between any two objects, the
zero process 0, such that composing any process via ◦,⊗ with 0 always yields 0.

At times we will assume our process theory also comes with a way of describing how
similar any two causal states are. This amounts to a choice of distance function on
the set Stc(A) of causal states of each object A, providing a value d(a, b) ∈ R+ for each
a, b ∈ Stc(A). Often thismap dwill satisfy the axioms of ametric, but this is not required.

Our main examples of process theories will come with a notable extra feature, though
this will not be necessary for our approach. In many theories it is possible to ‘reverse’
any process, in that for any process f there is another f † in the opposite direction. We
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say a process theory has a dagger when it comes with such a mapping

f

B

A

7→ f †

A

B

which preserves composition and identity maps in an appropriate sense, and satisfies
f †† = f for all f . The presence of a dagger is a common starting point in categorical
approaches to quantum theory; see e.g. (Abramsky & Coecke, 2004; Selinger, 2007).

Let us now meet our main examples of process theories with the above features.

Example 3.2.1. (Classical probabilistic processes) In the process theory Class of finite-
dimensional probabilistic classical physics, the objects are finite setsA,B,C, . . . and the
processes f from A to B are functions sending each element a ∈ A to a ‘unnormalised
probability distribution’ over the elements ofB, i.e functions f : A×B → R+. Composition
of f from A to B and g from B to C is defined by

(g ◦ f)(a, c) =
∑
b∈B

f(a, b) · g(b, c)

In this theory the trivial object is the singleton set I = {⋆}, with ⊗ given by the Cartesian
product A × B and (f × g)(a, c)(b, d) = f(a, b) · g(c, d). This theory is probabilistic, with
scalars r ∈ R+.

Here A is the unique effect with A(a) = 1 for all a ∈ A. A process f is causal
whenever it is stochastic, i.e. sends each element a ∈ A to a (normalised) probability
distribution over the elements of B. Applying the process to some output wire of a
process corresponds to marginalising over the set which is discarded.

States of an object are ‘R+-distributions’ over their elements, while causal states are
normalised ones, i.e. probability distributions. The completely mixed state A is the uni-
form probability distribution, with A(a) =

1
|A| for all a ∈ A. This theory also has a dagger

by f †(b, a) = f(a, b).
Similarly we define another process theory Classm, in the same way, but with objects

now being finite metric spaces (A, d). Each object A now comes with a metric d on its
underlying set, with A ⊗ B = A × B having the product metric. For each object A we
extend d to a metric dW on probability distributions over A, i.e. causal states of A, called
the Wasserstein metric or Earth Mover’s Distance (EMD), definable e.g. by

dW (s, t) := sup
f
{
∑
a∈A

f(a) · s(a)−
∑
a∈A

f(a) · t(a)}

where the suprema is taken over all functions f satisfying |f(a) − f(b)| ≤ d(a, b) for all
a, b. Class itself may be given a metric on causal states in the same way by taking each
object A to have metric d(a, b) = 1− δa,b.
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Example 3.2.2. (Quantum Processes) In the process theoryQuant the objects are finite-
dimensional complex Hilbert spaces H,K, . . . and the processes from H to K are com-
pletely positive maps f : B(H) → B(K) between their spaces of operators. Here I = C
and ⊗ is the usual tensor product of Hilbert spaces and maps. States ρ of an object H
may be identified with (unnormalised) density matrices, i.e. quantum states in the usual
sense, as may effects. The effect sends each operator a ∈ B(H) to its trace Tr(a),
and is the maximally mixed state on H, with density matrix 1

dim(H)1H. Here a process
is causal precisely when it is trace-preserving, and the dagger is given by the Hermitian
adjoint.

Example 3.2.3. (Quantum-Classical Processes) To combine Class and Quant we may
use the theoryCStarwhose objects are finite-dimensionalC∗-algebrasA,B, . . . and pro-
cesses are completely positive maps f : A → B, with ⊗ given by the standard tensor
product, I = C and the dagger again by the Hermitian adjoint. Here sends each ele-
ment a ∈ A to its trace Tr(a) ∈ C, while corresponds to the rescaling 1

d1 of the element
1 ∈ A, whereTr(1) = d. Each C∗-algebra comes with ametric induced by its norm, provid-
ing a metric on states in the theory.
Class may be identified with the sub-theory of CStar containing the commutative al-

gebras, andQuant with those of the formB(H) for some Hilbert spaceH. More general
algebras are ‘quantum-classical’, being given by direct sums of quantum algebras.

3.3. Decompositions

A central aspect of IIT is evaluating the level of integration of a process, and particularly
of a state of some object. To do so we must compare the object in question against
ways it may be decomposed, as follows.

Firstly, recall that a process f from A to B is an isomorphism when there is some
(unique) f−1 from B to A for which f−1 ◦ f and f ◦ f−1 are both identities. We write
A ≃ B when such an isomorphism exists.

Definition 3.3.1. In any process theory, a decomposition of an objectS is a pair of objects
A,A′ along with an isomorphism S ≃ A⊗A′.

In a process theory with , we will always consider decompositions whose isomorph-
isms are causal and co-causal. We also assume that decomposition isomorphisms pre-
serve any distances between causal states.

For short we often denote such a decomposition simply by (A,A′) and depict its iso-
morphism and inverse by

A A′

S

,

A A′

S
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respectively. The fact that they form an isomorphism means that

= =

One can go on to develop a general study of decompositions in process theories. Here
we just note some of the basics, for more see Appendix 3.A.

Firstly, any decomposition has an induced complement decomposition (A,A′)⊥ :=
(A′, A), with isomorphism given by swapping its components:

AA′

S

All decompositions then satisfy (A,A′)⊥⊥ = (A,A′). Moreover, any object always S
always comes with trivial decompositions denoted 1 := (S, I) and 0 := (I, S) with 0 =
1⊥. Drawing either of their isomorphisms would just mean drawing a blank wire labelled
by S.

It is also useful to note when two decompositions of an object are ‘essentially the
same’. We write (A,A′) ∼ (B,B′) and call both decompositions equivalent when there
exists isomorphisms f, g with

=
f g

B B′

B B′

S

A A′

S

(3.1)

In a theory with , we require moreover that f, g are causal and co-causal.
We write D(S) for the set of all equivalence classes of decompositions of S under ∼

(we will ignore the fact that in full generality each equivalence class may be a proper
class rather than a set). Often we abuse notation and denote the members of simply by
(A,A′) instead of as equivalence classes [(A,A′)]∼. It is easy to see that if two decom-
positions are equivalent then so are their complements, so that (−)⊥ is well-defined on
D(S).

Definition 3.3.2. By a decomposition set of an object S in a process theory we mean a
subset D of D(S) containing 1 and closed under (−)⊥.

Given any decomposition set D of S and any (A,A′) ∈ D, we define the restriction of
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D to A via this decomposition to be the decomposition set

D|A :=



B C

A

| ∃

C A′

B′

s.t.

S

A A′

B

C

B′

∈ D


⊆ D(A)

Intuitively D|A consists of all decompositions of A which themselves can be extended
to give a decomposition of S belonging to D, via (A,A′).

The most important examples of decomposition sets are the following.

Example 3.3.3. Let S be an object with a given isomorphism

S ≃ S1 ⊗ · · · ⊗ Sn

representing S as finite tensor of objects Si which we may call elements. This induces a
decomposition set D of S whose elements correspond to subsets J of the elements. For
any such subset, defining SJ :=

⊗
J Sj we have a decomposition S ≃ SJ ⊗ SJ ′ where J ′

is the set of remaining elements. Then D|SJ
contains a decomposition for eachK ⊆ J in

the same way.

Decompositions via elements as above are the only kinds appearing in classical or
quantum IIT. However, more general ones allow us to treat systems which are not de-
composable into any finite set of ‘elementary’ subsystems.

3.4. Systems

We now begin by seeing how each of the main components of IIT, or any ‘generalised
IIT’ in the sense of (Kleiner & Tull, 2021), may be treated starting from any given process
theory C. The focus will be on a class of systems, as follows.

Definition 3.4.1. By a system type wemean a triple S = (S,D, T ) consisting of an object
S with a decomposition set D and a causal process

T

S

S

which we call its time evolution. A state of S is simply a state of S inC. We typically refer
to a system type simply as a system.
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The setD specifies the ways in which wewill decompose our underlying systemwhen
assessing integration. The process T is intended to describe the way in which states of
the system evolve over each single ‘time-step’, via

T
s

s

7→

In what follows it will be useful to be able to restrict any state s of our system to the
components of any decomposition (A,A′) ∈ D by setting

s|A

A

:=

A′
A

s

and defining s|A′ similarly. We define the trivial system I to have object I , a single de-
composition 1 = (I, I) = 0, and time evolution being the identity.

3.4.1. Subsystems

There are several operations on systems one carries out in the context of IITs. The first
is the taking of subsystems.

Definition 3.4.2. For each object C belonging to some decomposition (C,C ′) ∈ D, and
each state s of S, the corresponding subsystem of S is defined to be the system type
Cs := (C,D|C , T |C) with time evolution

T

s|C′C

C′

C

C′

T |C :=

C

C

The above definition of T |C is from (Oizumi et al., 2014) and aims to capture the evol-
ution of a state of C conditioned on the state of C ′ being s|C′ .

3.4.2. Cutting

Asecond important operation involves removing (someor all) causal connections between
the two different components of a decomposition of a system. For any system S =
(S,D, T ) and decomposition (C,C ′) ∈ D, we should be able to form a new such cut
system of the form

S(C,C′) = (S,D, T (C,C′))

53



3. Integrated Information in Process Theories

with the new evolution T (C,C′) removing some influence between these regions. The
most straightforward form of cutting is a symmetric cut, in which both components are
fully disconnected from each other, with evolution

T

C

C

T

C′

C′

S

S

T (C,C′)

S

S

:= (3.2)

(where the triangle denotes (C,C ′)⊥). However, later we will see that some IITs use
additional structure to carry out alternative notions of system cut.

3.5. Cause and Effect

Central to any IIT is a notion of causal influence between any two possible subsystems
of a system. These influences are captured in a pair of assignments called the cause
repertoire and effect repertoire of the system. In IIT 3.0 these contain probability distri-
butions describing how the present state of each subsystem constrains the past and
future states of each other subsystem (Oizumi et al., 2014). For our purposes it suffices
to note that such cause and effect repertoires amount to specifying a pair of processes

caus

M

P

, eff

M

P

for each pair of underlying objects M,P of subsystems M,P of S via some state s. In
this setting M is typically called the ‘mechanism’ and P the ‘purview’, and the above
processes should capture the way in which the current state m of M constrains the
previous or next state of P , respectively. These constraints are captured by the pair of
states of P given by plugging in the ‘current’ state m of M :

M

m
7→ caus

P

m

,
eff

P

m

We will additionally require the processes caus, eff to be weakly causal in the sense that
whenever the state m is causal then each of the above states must either be causal or
0.
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Example 3.5.1. For any process theory (resp. with a dagger) there is a simple choice of
effect (resp. cause) repertoire given by

eff

P

=

M

T

P

M

P ′

M ′

caus

P

=

M

T †

P

M

P ′

M ′

(3.3)

Note however that this definition of caus may not be weakly causal in our above sense if
T † is not causal.

In a probabilistic process theory we should instead have that

caus

P

=

M

T †

P

M

P ′

M ′m

λm

m

(3.4)

where λm is the unique normalisation scalar for the right-hand state, making it causal if
it is non-zero (and being zero otherwise). It is not in general possible to define a process
caus in terms of its action on statesm in this way, but this is possible for example inClass,
Quant or CStar.

However the repertoires are specified, we will need to compare their values in a fixed
state while varying P . To do so, for each state s of S and each such M,P we define the
cause repertoire at s to be the state of S given by

s|M

causs(M,P )

S

:=
M

caus
P

caus
P ′

S

(3.5)

The features of this diagram have special names in (Oizumi et al., 2014); the right-hand
caus state above, given by taking mechanism M = I , is called the unconstrained cause
repertoire, and the whole process above s|M in the diagram is called the extended cause
repertoire atM,P . Defining them in this way allows us to compare the repertoire values
for varying M,P .

Similarly, effs(M,P ), the effect repertoire at s, and the unconstrained and extended
effect repertoire are all defined in terms of eff in the same way.
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3.5.1. Decomposing repertoires

In an IIT we must assess how integrated each of these repertoire values are at a given
state . This involves comparing the repertoires with how they behave under decompos-
ing each ofM and P . For any decompositions (M1,M2) ∈ D|M ofM and (P1, P2) ∈ D|P
of P , the decomposed cause repertoire process is defined by

caus

M1

P1

caus

M2

P2

P

M

causP1,P2

M1,M2

P

M

:= (3.6)

We then define the state causP1,P2

s,M1,M2
(M,P ) just like (3.5) but replacing caus with the

process (3.6). We decompose the effect repertoire in just the same way in terms of eff.

3.6. Generalised IITs

In summary, let C be a process theory coming with the features , , d of Section 3.2.
To define an integrated information theory we must specify:

1. a class Sys of system types, closed under subsystems;

2. a definition of system cuts, under which Sys is closed;

3. a choice of weakly causal processes caus, eff between the underlying objectsM,P
of each pair of subsystems M,P via some state s, of any system S.

More precisely, this provides the data of a generalised integrated information theory
in the sense of (Kleiner & Tull, 2021). From this data we may now use the IIT algorithm
from (Oizumi et al., 2014) to calculate the usual objects of interest in IIT.

3.6.1. The IIT Algorithm

We now briefly summarise this algorithm as treated in the general setting in (Kleiner &
Tull, 2021), to which we refer for more details. Let us fix a ‘current’ state s of a system
S. Firstly, the level of integration of each value of the cause repertoire is defined by

ϕ(causs(M,P )) := min d(causs(M,P ) , causP1,P2

s,M1,M2
(M,P )) (3.7)

where the minima is taken over all pairs of decompositions of M,P which are not both
trivial, i.e. equal to 1. 2 The integration level ϕ(effs(M,P )) is defined similarly in terms
of eff.
2When causs(M,P ) = 0 we alternatively set ϕ = 0.
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For each choice of mechanism M , its core cause P c and core effect P e are the pur-
views P with maximal ϕ values for caus, eff respectively. The minima of their corres-
ponding ϕ values is then denoted by ϕ(M). We then associate to M and object called
its concept C(M), essentially defined as the triple

(causs(M,P c), effs(M,P e), ϕ(M))

More precisely, in (Kleiner & Tull, 2021), C(M) is given by the pair of above repertoire
values with each ‘rescaled’ by ϕ(M).

The tuple Q(s) of all these concepts, for varying M , is called the Q-shape Q(s) of
the state s. The collection of all possible such tuples is denoted E(S). The level of
integration of Q(s) is calculated similarly to (3.7) by considering all possible cuts of the
system. The subsystem M of S whose Q-shape is itself found to be most integrated
is called the major complex. Rescaling this Q-shape Q(M, s|M ) according to its level
of integration, and using an embedding E(M) ↪→ E(S) we finally obtain a new element
E(s) ∈ E(S).

The claim of an IIT with regards to consciousness is that E(S) is the space of all pos-
sible conscious experiences of the system S, and that E(s) is the particular experience
attained when it is in the state s, with intensity Φ(s) := ||E(s) ||.

Remark 3.6.1. Let usmake explicit how the specification of 1, 2, 3 above provides the data
of an IIT in the sense of (Kleiner & Tull, 2021). The system class of the theory is Sys, and
causs(M,P ), effs(M,P ) and their decompositions are as outlined in Section 3.5.1. When
C is probabilistic and has distances d(a, b) defined for arbitrary states a, b of an objectA,
we may define the space of proto-experiences PE(S) of a system S to be simply its set
of states, with ∥∥∥∥ s

∥∥∥∥ := s

However, if d is only defined on causal states, as in classical IIT, to follow the algorithm
from (Kleiner & Tull, 2021) one must instead set PE(S) := Stc(S)×R+ as in Example 3 of
(Kleiner & Tull, 2021). For either choice, for any subsystem M of S we obtain an embed-
ding PE(M) ↪→ PE(S) by composing alongside M⊥ , and this can be seen to provide a
further embedding E(M) ↪→ E(S).

3.7. Examples

Let us now meet several examples of IITs defined from process theories.

3.7.1. Generic IITs

LetC be any process theory comingwith the features outlined in Section 3.2, including a
dagger on processes. We define a generalised IIT denoted IIT(C) by taking as systems
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all tuples S = (S,D, T ) of an object S in C along with a causal process T and a de-
composition set D induced by a single isomorphism S ≃⊗n

i=1 Si in terms of elements
Si, as in Example 3.3.3. As before each partition of these elements gives a decompos-
ition of S. We define system cuts to be symmetric as in (3.2) and the repertoires in the
straightforward sense of (3.3).

Remark 3.7.1. We can extend this example in to ways. Firstly we may allow systems S to
come with arbitrary finite decomposition sets D of S. Secondly, we may extend the defin-
ition to theories without daggers by instead simply requiring each system S to come with
a process T− describing ‘reversed time evolution’, and then define the cause repertoire by
replacing T † with T−.

3.7.2. Classical IIT

The ‘classical’ IIT version 3.0 of Tononi and collaborators (Oizumi et al., 2014) is built on
the process theoryClassm. As such a toymodel of the theory is provided by IIT(Classm).
However IIT 3.0 itself differs from this theory, using some more specific features of the
process theories Class and Classm which we now describe.

Firstly, note that in these classical process theories, for each object A, each element
a ∈ A corresponds to a unique state given by the point distribution at a, as well as
a unique effect, namely the map sending a to 1 and all other elements of A to 0. We
denote this state and effect both simply by a.3

Any process f from A to B is determined entirely by its compositions with these spe-
cial states and effects since plugging in such a state a and effect b yields its value f(a, b).

Another special feature of these classical process theories is that eachobjectA comes
with a distinguished copying process from A to A ⊗ · · · ⊗ A, for any number of copies
of A, as well as a comparison process in the opposite direction. We denote and define
these respectively by the rules

A A. . .

a

=

A A

. . .
a a

A

A A. . .

a

=

A A

. . .
a a

for all a ∈ A. Abstractly, these operations form a canonical commutative Frobenius
algebra on each object, and there is no such canonical algebra on each object inQuant
due to the no-cloning theorem (Coecke, Pavlovic, & Vicary, 2013). We may now describe
IIT 3.0 itself as follows.

3Typically these are the only kinds of ‘state’ considered, e.g. in (Oizumi et al., 2014) and even in our related
article (Kleiner & Tull, 2021). In contrast here the term ‘state’ would include all distributions over A, i.e.
all states of the process theory Classm.
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3.7.2.1. Systems

In this theory systems are defined similarly to IIT(Classm), being given by a finite metric
spaceS given as a product of elementsS ≃⊗n

i=1 Si, alongwith a causal (i.e. stochastic)
evolution T on S. Additionally in (Oizumi et al., 2014) each evolution T is required to
satisfy conditional independence, which states that for all s, t ∈ S, with t = (t1, . . . , tn)
for some ti ∈ Si we have

S

S1

. . .

S

S

T
T1 Tn

Sn

=

S

where for each element Si we define the process Ti by

:=Ti

Si

S

T

Si

S

SnS1 . . . . . .

having depicted the isomorphism S ≃ ⊗n
i=1 Si by the triangle above. In other words,

conditional independence states that the probabilities for the next state of each element
Si are independent. Equivalently, T must satisfy

S

S1

. . .

S

S

T

T1 Tn

Sn

=

S1

. . .

Sn

3.7.2.2. Cuts

Rather than our earlier symmetric cuts, the system cuts used in IIT 3.0 are directional.
For any decomposition (C,C ′) of S withC =

⊗
j∈J Sj for some subset of notes indexed

by J ⊆ {1, . . . , n}, we define the cut evolution T (C,C′) using conditional independence
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by setting

T
(C,C′)
i

Si

S

:=


Ti

Si

S

(i ∈ J) ,

Ti

Si

C C′

C

S

(i ̸∈ J)


In other words, in the cut system all causal connections C → C ′ are replaced by noise,
while all those into C remain intact.

3.7.2.3. Repertoires

Let us now define the processes caus, eff between a pair of objects M and P , with
M =

⊗k
i=1Mi and P =

⊗r
j=1 Pj for some subsets {M1, . . . ,Mk} and {P1, . . . , Pr} of

elements of the system.
We begin with eff. When P is simply a single element Pj , eff is defined exactly as in

(3.3). For more general P we define eff to again satisfy a form of conditional independ-
ence, so that

eff = eff eff. . .
P P1 Pr

m m m
M MM

p p1 pr

for all m ∈M,p = (p1, . . . , pr) ∈ P . Equivalently, we have that

eff =

P

M
M

P1

. . .eff eff

Pr

MM

P

In a similar fashion, whenever M is a single element Mi we define caus from M to P as
in (3.4), while for more general M we require that

caus =
M M1

. . .caus caus

Mk

PP

p p p
P

m m1 mk

λm
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for all m = (m1, . . . ,mk) ∈ M and p ∈ P , where λm is the normalisation scalar making
caus ◦ m a causal state (probability distribution) if it is non-zero, or λm = 0 otherwise.
Equivalently, this means that

caus =

P

M

P

M1

. . .caus caus

Mk

PP

M
m

m

λm

for each m ∈M . This concludes the data of classical IIT.

3.7.3. Quantum IIT

Zanardi, Tomka and Venuti have proposed a quantum extension of classical IIT (Zanardi
et al., 2018). In fact it is comparatively much simpler to describe in our approach, being
precisely the theory IIT(Quant).

Explicitly, systems in this theory are given by finite-dimensional complexHilbert spaces
H along with a given decomposition into elementsH ≃⊗n

i=1Hi and a completely pos-
itive trace-preserving map T on B(H). States and repertoire values are given by density
matrices ρ. In this theory each Q-shapeQ(ρ)may be encoded as a single positive semi-
definite operator on the space (C2)⊗n ⊗ C2 ⊗H, as discussed in (Zanardi et al., 2018).

3.7.4. Quantum-Classical IIT

We may now define a version of quantum-classical IIT as IIT(CStar). This synthesizes
quantum IIT with the toy version IIT(Classm) of classical IIT, containing both kinds of
systems. In future it would be desirable to synthesise quantum IIT with IIT 3.0 proper.
Since the latter relies on the presence of copying maps, this may be achievable using
the more general notion of a leak on a C∗-algebra (Selby & Coecke, 2017).

3.8. Outlook

In this article we have taken first steps to show how Integrated Information Theory, and
its generalisations to other domains of physics, may be studied categorically. There are
many avenues for future work.

Firstly, we have so far made no requirements on the cause and effect repertoire pro-
cesses caus, eff. To be fit for their name these processes should be required to satisfy ax-
ioms which ensure they have a causal interpretation, ideally determining them uniquely
within any given process theory. Monoidal categories provide a natural setting for the
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study of causality, a major contemporary topic in the foundations of physics (Kissinger
& Uijlen, 2017).

At a higher level, it seems natural for the class of systems Sys of a generalised IIT to
itself form a category. The theory itself should then give a functor into another category
Exp of (spaces of) phenomenal experiences; a formalization of the latter is for example
given in (Kleiner & Tull, 2021).

Making IIT functorial in this way will likely involve modifying it to bemore natural from
a categorical perspective. Developing a useful notion of integration applicable to any
monoidal categorymay also help to resolvemathematical problems of the IIT algorithm,
for example its relying on the unique existence of core purviews which are not guaran-
teed
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Appendix

3.A. Decompositions and Integration

Here we briefly mention a few further results about decompositions of objects in pro-
cess theories; we leave a detailed study of their properties to future work.

Our earlier definition of D|A was based on an idea of one decomposition as being
‘contained in’ another. Let us make this precise.

Definition 3.A.1. Let S be an object in a process theory and (A,A′), (B,B′) two decom-
positions. We write that (A,A′) ⪯ (B,B′) whenever there exists an object C and decom-
positions (A,C) of B and (B′, C) of A′ such that

B

B′

=

S

A C

A′

A

S

B′C

(3.8)

Intuitively, this states that A is contained in B (as is B′ within A′) in a way compatible
with these decompositions.

Lemma 3.A.2. Let S be an object in a process theory. Then ⪯ forms a pre-order on the
set of decompositions of S, with top element 1 and bottom element 0, and (−)⊥as an
involution.

Proof. We always have (A,A′) ⪯ (A,A′) by taking C = I and using the decomposi-
tions 1 and 0 onA in (3.8). Similarly (A,A′) ⪯ 1 by taking C = A′. To see that (−)⊥ is an
involution, suppose that (A,A′) ⪯ (B,B′) as above. Then we have (B,B′)⊥ ⪯ (A,A′)⊥

since

A′

A

=

S

B′ C

A′

B′

S

AC

=B

S

=B

B′

S

AC B′ AC

Hence we always have 0 = 1⊥ ⪯ (A,A′) for all (A,A′). For transitivity, note that
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whenever (A,A′) ⪯ (B,B′) ⪯ (C,C ′) via some respective objects D,E then we have

=
A′

A

S

D C′E

B′

A

S

D C′E

B C

C′

S

EA D

BB′

=

so that (A,A′) ⪯ (C,C ′) via the above decompositions (D⊗E,C ′) ofA′ and (A,D⊗E)
of C. ■

Recall that in any category, a sub-object of an objectA is an (isomorphism class of a)
monomorphismm : M → A. It is split when e ◦m = idM for some e. The sub-objects of
A form a partial order Sub(A).

Lemma 3.A.3. In any process theory with , , for any object S:

1. Any decomposition (A,A′) of S makes A a split sub-object of S via

A
A′

S

,

A
A′

S

(3.9)

Moreover if (A,A′) ⪯ (B,B′) then A ≤ B in Sub(S).

2. ⪯ restricts to a partial order ≤ on D(S), again with top element 1, bottom 0 and
involution (−)⊥.

Proof. 1: We have

= =

If (A,A′) ⪯ (B,B′) then the splitting for A factors over that for B since:

A
A′

S

= A′

A

S

B′C

B B′
=

S

A

C

It follows that A ≤ B in Sub(S).
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2: We need to show that any two decompositions (A,A′) and (B,B′) are equivalent
under ⪯ precisely when they are equivalent in the sense of (3.1). Firstly, if there exists
causal and co-causal isomorphisms f, g making (3.1) hold, then we have

=
f−1 g

A B′A B′

S

A′

S

B

Viewing f−1 and g as decompositions (A, I) of B and (I,B′) of A′, respectively, this
gives that (B,B′) ⪯ (A,A′). Then (A,A′) ⪯ (B,B′) holds similarly.

Conversely, if (A,A′) ⪯ (B,B′) ⪯ (A,A′), via respective objects C,D then

B B′

S

CA

D

=

B

B′

B

S

C A′

D B

=

B
B′

S

Since the right-hand map is an epimorphism by the first part, this gives that

B

CA

D

=

B

B

B

Dually, composing in the other order gives the identity on A, making these causal and
co-causal isomorphisms A ≃ B. Similarly we obtain such isomorphisms A′ ≃ B’. Then
we have

=

B

B

S

C

B

D

A′

B

S

D
B′

C

A
A

=
B′B

S

as required. Now 2 follows since any pre-order restricts to a partial order on its set of
equivalence classes, and so ⪯ becomes a partial order ≤ on D(S). It is easy to see that
the earlier properties of 1, 0, (−)⊥ carry over to ≤. ■
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3.A.1. Integration

Let us briefly allude to how integration may generally be studied and quantified using
decomposition sets.

Suppose we have objects S, S′ with given decomposition sets D,D′ and for each
(A,A′) ∈ D and (B,B′) ∈ D′ a process fB

A from A to B. We denote fS′
S simply by f .

Whenever we have a given distance function d on the set of processes from S to S′, we
may define the level of integration of the family (fB

A )A,B as

ϕ(f) := min
D×D′

d

 S

f

S′

,

A A′

S

fB
A fB′

A′

S′

B′B


where we exclude the top element (1, 1) of D× D′ in the minimisation.

Example 3.A.4. Given any process f from S to S′ we may define such a family (fB
A )A,B

with fS′
S = f by setting

S

B′

f

B

S′

A

fB
A

B

:=

A′

A

Example 3.A.5. Our earlier description of the IIT algorithm precisely includes evaluating
the integration level of each of the families of processes (caus)M,P and (eff)M,P using the
state-dependent distance

dm

 f

M

P

, g

M

P
 := d

 f

P

m

, g

P

m


where m = s|M and d is the distance on St(S).
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4. Active Inference in String Diagrams: A
Categorical Account of Predictive
Processing and Free Energy

Sean Tull, Johannes Kleiner, Toby St Clere Smithe1

4.1. Introduction

Predictive processing (PP) is a framework for modelling cognition and adaptive beha-
viour in both biological and artificial systems (Wiese & Metzinger, 2017; Hohwy, 2020).
A prominent sub-field is the programme of Active Inference, developed by Friston and
collaborators (Smith, Friston, & Whyte, 2022; Parr et al., 2022; K. Friston, FitzGerald,
Rigoli, Schwartenbeck, & Pezzulo, 2017; Sajid, Ball, Parr, & Friston, 2021), which aims to
provide a unified understanding of cognition and action which can be applied at many
levels, from a single neuron to an entire brain or organism. More specifically, active in-
ference gives a proposal for how a cognitive agent represents its own beliefs about the
world, how it updates these beliefs in light of new observations, and how it chooses the
actions it takes, with the latter ultimately leading to new observations.

Central to the framework is that an agent possesses a generative model which ex-
plains its observations causally in terms of both hidden states of the world and its own
actions. Note that this model is internal to the agent, and typically distinct from the ‘true’
causal process in the world which produces the observations. After receiving an obser-
vation, the agent may update this generative model to determine likely hidden states

1Accepted to the 6th International Conference on Applied Category Theory (ACT2023) as: Tull, S., Kleiner,
J., & Smithe, T. S. C. (2023). Active Inference in String Diagrams: A Categorical Account of Predictive
Processing and Free Energy. (Tull et al., 2023)
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which caused the observation (the process of perception) and choose its actions (the
process of planning). In active inference, both forms of updating are carried out together
through a form of approximate Bayesian inference, by minimising a quantity known as
free energy (K. Friston, Kilner, & Harrison, 2006; K. Friston, 2010).

While active inference seeks a principled account of cognition, at present its form-
alisation can seem fairly complex, and there are various aspects which do not follow
immediately from simply applying the definitions to a given generative model. Concep-
tually clear formal accounts of the framework would be desirable to simplify the theory
and address these issues, as well as for applications within AI.

One hope for such a formal account would be for it to be both compositional and
graphical. Indeed the generative models in PP are highly structured, often given as ‘hier-
archical models’ (De Vries & Friston, 2017) which are best represented diagrammatically
in terms of probabilistic graphical models such as Bayesian networks. While there has
been support for, and steps towards, a graphical account of active inference (K. J. Fris-
ton, Parr, & de Vries, 2017), so far the graphical aspects only formally describe the struc-
ture of a generativemodel, while other aspects such as updating and free energy are still
treated through traditional probabilistic calculations, and only informally in diagrams.

Recently however, fully formal diagrammatic methods have been developed for both
describingBayesian networks and carrying out probabilistic reasoning about them. These
approaches are based on (monoidal) category theory and its associated graphical lan-
guage of string diagrams (Piedeleu & Zanasi, 2023). Category theory has been ap-
plied across the sciences as a general mathematics of interacting processes, includ-
ing within probability theory (Coecke & Spekkens, 2012; Cho & Jacobs, 2019), causality
(Jacobs, Kissinger, & Zanasi, 2019; Fritz & Klingler, 2023; Lorenz & Tull, 2023), game the-
ory (Ghani, Hedges, Winschel, & Zahn, 2018), machine learning (Fong, Spivak, & Tuyéras,
2019; Shiebler, Gavranović, & Wilson, 2021), quantum computing (Abramsky & Coecke,
2004) and natural language processing (S. Clark, Coecke, & Sadrzadeh, 2008). In par-
ticular a major ongoing development is in the study of probabilistic processes in terms
of cd-categories (and ‘Markov categories’), which allow one to carry out probabilistic
reasoning entirely through string diagrams (Fritz, 2020).

In this work we give a full categorical account of predictive processing and active in-
ference in terms of string diagrams, interpreted in cd-categories. In doing so we aim
to give a conceptually clear account of the main features of the framework: generative
models, Bayesian updating (including with soft observations), perception, action plan-
ning, and their combination in active inference, and both variational and expected free
energy.

A highlight is a fully graphical derivation of the well-known formula for active infer-
ence in terms of minimisation of free energy. While this is a central result within active
inference, its usual justification is more heuristic in nature. Here we instead derive the
free energy formula purely graphically from a diagrammatic account of active inference
itself, providing what we argue is the most transparent account of this result known so
far.

The categorical perspective also naturally leads us to consider more novel aspects
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of active inference. These include the definition of open generative models (essentially
from (Lorenz & Tull, 2023)) which are generative models coming with ‘inputs’, allowing
them to serve as the building blocks of an overall generative model.

We also introduce a notion of variational free energy for openmodels which allows us
to establish the desirable property that free energy is compositional. Namely, a system
with an overall generative model composed from sub-models may minimise global VFE
by minimising VFE locally within each component. This is a crucial fact in order to apply
free energy as proposed to all levels of a system, say from a whole brain down to its
individual neurons.

Overall, we hope that our diagrammatic accounts of PP can provide a conceptually
clear view of the framework, and also a natural language for reasoning within it. In-
deed, as argued for example in (Lorenz & Tull, 2023) and elsewhere (Jacobs et al., 2019)
diagrams in cd-categories provide a natural way to both represent causal (generative)
models, as well as reason about them. As we demonstrate here they are also natural
for describing the structure of active inference, including free energy. Aside from aiming
to provide a helpful graphical language for those familiar with active inference, we con-
versely hope that this article may provide a succinct introduction to PP for those already
familiar with string diagrams and categorical reasoning.

Further motivations Though primarily a framework for cognition, various proposals
have been put forward for how predictive processing may be related to consciousness
(Wiese &Metzinger, 2017). In previous work, two of the authors developed a categorical
account of the Integrated Information Theory of consciousness, again essentially using
cd-categories (Tull & Kleiner, 2021; Kleiner & Tull, 2021) and based on the work here
we hope to give a categorical account of how consciousness may be accounted for
within PP (Deane, 2021; Hohwy & Seth, 2020). We also see this work as a piece of the
programme of Compositional Intelligence, which explores how categorically structured
models and processes can be applied to (artificial) intelligence. Specifically, PP may be
seen as a proposal for how compositional intelligence manifests in biology; that is, how
biological systems may employ compositionality to carry out intelligent and adaptive
behaviour.

Active inference can also be understood as an alternate proposal to reinforcement
learning (RL) for howagents can learn adaptive behaviour, and shares similar features in-
cluding the role of probabliisticmodels and inference (Tschantz, Millidge, Seth, &Buckley,
2020). It differs from conventional RL by replacing an explicit reward function with the
aim ofmaximizing evidence for a probabilistic model, where the agent’s preferences are
now encoded in the model’s prior distribution (K. J. Friston, Daunizeau, & Kiebel, 2009).

Related work This work can be seen as a part of the growing field of ‘categorical cy-
bernetics’ (Smithe, 2021b; Capucci, Gavranović, Hedges, & Rischel, 2021), including pre-
vious work from one of the authors on compositional accounts of Bayesian updating
(Smithe, 2020) and of active inference in terms of ‘statistical games’ (Smithe, 2021a,
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2022). It differs from previous works by directly formalising the active inference frame-
work itself, and by working explicitly graphically within the simple string-diagrammatic
setting of cd-categories, with the aim of supplying a simple abstract characterization of
active inference agents.

In this way the work is a part of a general movement in applying string diagrams
in cd-categories to probability theory and causal reasoning. A categorical account of
Bayesian inversion was first given by Coecke and Spekkens in (Coecke & Spekkens,
2012), and then within cd-categories by Cho and Jacobs (Cho & Jacobs, 2019), with
further developments in categorical probability by Fritz (Fritz, 2020). Our diagrammatic
account of generative models is precisely that given for causal models in part by one of
the authors in (Lorenz & Tull, 2023), which builds on the earlier categorical treatments of
(causal) Bayesian networks by Fong (Fong, 2013), Jacobs et al (Jacobs et al., 2019) and
others e.g. (Fritz & Klingler, 2023). Indeed, as an agent’s explanation for the observa-
tions it receives from the world, a generative model is ultimately a causal model (Pearl,
2009), though this is not often stressed in the literature.

The two forms of soft Bayesian updating treated here we first studied by Jacobs in
(Jacobs, 2019). The specific treatment of conditioning in cd-categories used here is
from (Lorenz & Tull, 2023). Cd-categories with (non-unique) conditionals have also been
recently studied as ‘partial Markov categories’ in (Di Lavore & Román, 2023), along with
both notions of updating. Our treatment of free energy refers to the KL divergence of
distributions; we note that an axiomatic treatment of Markov categories coming with
divergences on their morphisms has recently been given by Perrone in (Perrone, 2023).

Within active inference itself, graphical aspects have been increasingly prominent,
with discussion of the ‘graphical brain’ in (K. J. Friston et al., 2017). In such works it is
argued that one may describe models as (non-directed) Forney Factor Graphs (FFGs)
(De Vries & Friston, 2017). However, generative models are inherently directed, going
from states to observations with the other direction being intractable to compute ex-
actly. Thus it ismore natural to treatmodels using (generalisations of) directed Bayesian
networks. Nonetheless we note though that FFGs derived from a model still have a role
when minimising VFE via ‘message passing’ algorithms (Parr, Markovic, Kiebel, & Fris-
ton, 2019).

Interestingly, while a Bayesian network is typically depicted as a DAG (with only the
variables labelled), one may argue the diagrams in active inference have been naturally
‘converging’ on their string diagrammatic representation, which also includes labels on
the channels; see Figure 1. We claim that the advantage of string diagrams beyondDAGs
is in allowing one to both represent and reason about the model in the same formalism.

We note that the diagrams in PP are at times only semi-formal, including aspects such
as the free energy which are not strictly part of the generative model. One may see this
work as a step towards the shared goal of representing formally all aspects of PP within
one language of diagrams.

Structure of the article We begin in Section 4.2 by introducing cd-categories and their
diagrammatic account of probability theory. We then apply these to introduce from
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B
A

Ot−1

A
St

Ot
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Ot+1

St−1
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P
ED

Figure 4.1.1.:
A generative model diagram from the recent book Active Inference by Parr, Pezzulo and
Friston (Parr et al., 2022) (left) and the equivalent string diagram representation (right)
(though replacing the informal EFE term G with the prior E).

(Diagram on the left kindly made available under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International Public License.)

scratch the key aspects of PP: generativemodels as Bayesian networks, and their gener-
alisation to open generative models in a cd-category (Section 4.3), (Bayesian) updating
of generativemodels fromobservations (Section 4.4 ), perception and planning (Section
4.5) and their combination in exact active inference (Section 4.6). We then discuss free
energy (Section 4.7) and give a graphical derivation of active inference via free energy
minimisation (Section 4.8). In Section 4.9we then introduce free energy for openmodels
using a graphical formalism of ‘log-boxes’ and use this to establish the compositionality
property of free energy. Finally we discuss future work in Section 4.10.
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4.2. Categorical Setup

Let us begin by introducing the graphical treatment of probabilistic processes in terms
of string diagrams, developed by numerous authors (Coecke & Spekkens, 2012; Cho &
Jacobs, 2019; Fritz, 2020). Formally, these correspond to working in a ‘monoidal cat-
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egory’ or more specifically a ‘cd-category’, but in practice one may avoid mathematical
details and simply work with the diagrams themselves. Though cd-categories are very
general, in this article it suffices to consider the category MatR+ of R+ valued finite
matrices, introduced shortly in Example 4.2.1.

A categoryC consists of a collection of objectsX,Y, . . . andmorphisms or processes
f : X → Y between them, which we can compose in sequence. In string diagrams we
depict an object X as a wire and a morphism f : X → Y as a box with lower input wire
X and upper output wire Y , read from bottom to top.

f

Y

X

Given another morphism g : Y → Z we can compose them to yield a morphism g ◦
f : X → Z , depicted as:

g ◦ f =

X

X

Z

Z

f

g

Y

Each object X also comes with an identity morphism idX : X → X depicted as a blank
wire:

idX =

X X

XX

The identity leaves any morphism alone under composition, that is idY ◦f = f = f ◦ idX
for any f : X → Y .

Formally, a symmetric monoidal category (C,⊗, I) is a category C with a functor
⊗ : C × C → C, and natural transformations which express that ⊗ is suitably asso-
ciative and symmetric, with a distinguished unit object I (Coecke, 2006). All of these
aspects however are expressed most simply in diagrams.

Firstly, the tensor ⊗ allows us to compose any pair of objects X,Y into an object
X ⊗ Y , depicted by placing wires side-by-side.

X ⊗ Y

X ⊗ Y

=

X

X

Y

Y
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Given morphisms f : X → W and g : Y → Z we can similarly form their ‘parallel com-
posite’ f ⊗ g : X ⊗ Y →W ⊗ Z as below.

f ⊗ g

X ⊗ Y

W ⊗ Z

= f

X

W

g

Y

Z

In text we will at times omit the tensor symbols and write e.g. ‘f from X to Y, Z ’ or
f : X → Y, Z in place of f : X → Y ⊗ Z.

The tensor is symmetric so we can ‘swap’ pairs of wires past each other, such that
swapping twice returns the identity, and boxes carry along the swaps as below.

f g

X

ZW

Y

=
fg

W

Y X

Z

We also have a distinguished unit object Iwhose identity morphism we depict simply as
empty space, and denote by 1.

I

I

= = 1 (4.1)

Intuitively, tensoring any object by the unit simply leaves it invariant. The unit allows us
to consider morphisms with ‘no inputs’ and/or ‘no outputs’ in diagrams. A morphism
ω : I → X is called a state of X , depicted with no input. An effect on X is a morphism
e : X → I, depicted with no output. A morphism r : I→ I, drawn with no input or output,
is called a scalar.

ω

X
e

X
r

In particular the ‘empty space’ diagram (4.1) is the scalar 1 = idI.
The compositions ◦,⊗ satisfy axioms which must be considered when working sym-

bolically but are trivial in the graphical language. An example is associativity of compos-
ition (h ◦ g) ◦ f = h ◦ (g ◦ f), which is automatic from simply drawing three boxes in se-
quence on the samewire. Similarly the rule (f⊗g)◦(f ′⊗g′) = (f◦f ′)⊗(g◦g′), displayed in
the left identity below, and the ‘interchange law’ (f⊗id)◦(id⊗g) = f⊗g = (id⊗g)◦(f⊗id),
displayed in the right identity below, amount to letting us freely slide boxes along wires.

f

g′f ′

g

=
f

g′f ′

g
f

g
= f g =

f

g
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Let us now introduce our primary example category in this article.

Example 4.2.1. In the category MatR+ of positive valued matrices, the objects are finite
sets X,Y, . . . and the morphisms M : X → Y are functions M : X × Y → R+ where
R+ := {r ∈ R | r ≥ 0}. Equivalently such a function is given by an ‘X × Y matrix’ with
entries M(y | x) := M(x, y) ∈ R+ for x ∈ X , y ∈ Y .

M

Y

X

:: (x, y) 7→ M(y | x)

Composition of M : X → Y and N : Y → Z is given by summation over Y :

M

Z

X

N
Y :: (x, z) 7→

∑
y∈Y

N(z | y)M(y | x)

The tensor ⊗ is given on objects by the Cartesian product X ⊗ Y = X × Y , and on
morphisms by the Kronecker product, i.e. the usual tensor product of matrices:

M

W

X

N

Z

Y

:: ((x, y), (w, z)) 7→ M(w | x)N(z | y)

The symmetry is simply the isomorphism X × Y ≃ Y ×X . The unit object I = {⋆} is the
singleton set. A state of X is then equivalent to a positive function on X :

ω

X

:: x 7→ ω(x)

where ω(x) := ω(x | ⋆). Similarly, an effect e onX is also equivalent to a positive function
on X via e(x) := e(⋆ | x).

e

X
:: x 7→ e(x)

Finally, a scalar is precisely a positive real r ∈ R+.

4.2.1. Cd-categories

Many aspects of probability theory can be treated entirely diagrammatically, by noting
that categories such as MatR+ come with the following further structure.
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Definition 4.2.2. (Cho & Jacobs, 2019) A cd-category (copy-discard category) is a sym-
metric monoidal category in which each object comes with a specified pair of morphisms

called copying and discarding, respectively, which satisfy the following:

= = = =

The choice of these morphisms is moreover ‘natural’ in that the following hold for all ob-
jects X,Y .

X ⊗ Y

=

X Y X ⊗ Y

=

X Y I

= 1 (4.2)

Thanks to these axioms for copying, we can unambiguously define a copying morph-
ism with n output legs, for any n ≥ 1, via:

. . .

:=

. . .

with the n = 0 case defined to be discarding .
The presence of discarding allows us to identify the truly ‘probabilistic’ processes in

a cd-category. We say that a morphism f is a channel when it preserves discarding, as
below.

f =

In particular, we call a state ω normalised when the following holds. For an explanation
of why this gives the usual definition, cf. Example 4.2.3 below.

ω
= 1

Here we will often call a normalised state ω ofX a distribution ofX , even when working
in a general cd-category 2. We also call a normalised state of X ⊗ Y a joint distribution
over X,Y .

2This is to avoid confusion with the usual use of the term (hidden) ‘state’ in PP.
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A cd-category in which every morphism is a channel, or equivalently is the unique
effect on any object, is called a Markov category (Fritz, 2020). Given any cd-categoryC,
its subcategory Cchannel of channels always forms a Markov category.

Discarding allows us to ‘ignore’ certain outputs of a process. Given any morphism f
from X to Y,Z , its marginal X → Y is the following morphism:

f

Y
Z

X

Let us see how these features describe discrete probability theory within our example
category.

Example 4.2.3. MatR+ is a cd-category. Copying on X is given (y, z | x) = δx,y,z
with value 1 iff x = y = z and 0 otherwise. Discarding on X is given by the function
with x 7→ 1 for all x ∈ X . Hence a state ω is normalised, i.e. forms a distribution on X ,
precisely when it forms a probability distribution overX in the usual sense, i.e. its values
sum to 1.

ω

X =
∑
x∈X

ω(x) = 1

More generally, a process M : X → Y is a channel iff it forms a probability channel,
or equivalently a stochastic matrix, meaning that it sends each x ∈ X to a normalised
distribution M(y | x) over Y . Indeed we have that:

M

Y

X

:: x 7→
∑
y

M(y | x)

Hence M is a channel iff this effect is constant at 1, i.e. for all x we have∑
y∈Y

M(y | x) = 1

In typical probability theory, such a channel is also often called a ‘conditional probability
distribution’ P (Y | X) with values denoted P (y | x) := P (Y = y | X = x) for x ∈ X ,
y ∈ Y . The subcategory of channels in MatR+ is the Markov category FStoch of finite
Stochastic matrices.

Let us see how a few features of probability theory appear in diagrams. Firstly, for any
X,Y , a distribution ω on X ⊗ Y corresponds to a joint distribution over X,Y (left-hand
below). In particular given a pair of distributions ϕ, σ over X,Y , the distribution ϕ ⊗ σ
corresponds to the resulting product distribution over X × Y , with X and Y independent
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from each-other (right-hand below).

ω

X Y

ϕ σ

X Y

A general channel as below represents a probability channel P (Y1, . . . , Ym | X1, . . . , Xn).

P

Y1 Ym

X1 Xn

. . .

. . .

Marginalisation of any morphism corresponds to the usual notion in probability theory,
given by summation over the discarded object.

ω

X
Y

:: x 7→
∑
y∈Y

ω(x, y) M

Y
Z

X

:: (x, y) 7→
∑
z∈Z

M(y, z | x)

Finally we observe that for any effect e : X → R+ and distribution ω the scalar e◦ω corres-
ponds to the expectation value of the function e according to the probability distribution
ω.

E
x∼ω

e(x) =

ω

e

X =
∑
x∈X

e(x)ω(x)

4.2.2. Sharp states and caps

The copying morphisms in a cd-category allow us to identify those states which are
really ‘deterministic’ (Fritz, 2020). We call a state x sharp, and depict it with a triangle as
below, when it is copied by , that is:

X X

x

=
x x

X X

(4.3)

In many categories there is a corresponding effect for each state, playing an important
role for sharp states, thanks to the following feature. We say thatC has capswhen each
object comes with a distinguished effect on X ⊗X depicted and satisfying:

= = = (4.4)
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and such that the following holds for all objects X,Y :

X ⊗ Y X ⊗ Y

=

X XY Y

Intuitively, the cap is an effect which checks if its two input wires are ‘in the same state’.
The first equation in (4.4) expresses that this comparison is symmetric, and the remain-
ing two that it is compatible with copying; for example the second says that each input
when copied is equal to its copy.

Practically, caps allow us to ‘turn outputs into inputs’. In particular, for each state ω
we can define a corresponding effect by ‘flipping ω upside-down’:

ωω
= (4.5)

When ω = x is a sharp state, we call this effect sharp also. One may verify that it is the
unique effect satisfying the following.

x

x
= 1

x x
=

x
(4.6)

Caps are particularly useful in diagrammatic reasoningwhen they are cancellative, mean-
ing that:

f g= =⇒ f g=

for all morphisms f, g.

Example 4.2.4. MatR+ has cancellative caps. Each point x ∈ X corresponds to a norm-
alised sharp state on X which we again denote by x, given by the point probability distri-
bution δx at X .

x

X

:: y 7→
{
1 x = y

0 otherwise

The corresponding effect is given by the function δx also. Each cap is given by (x, y) =
δx,y. We note a useful fact that for any morphism M : X → Y its values M(y | x) can be
given diagrammatically as below.

M(y | x) =

y

x

M
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Every sharp state on X is of the above form for some x ∈ X , or else given by the zero
state 0 defined by 0(x) = 0 for all x ∈ X . The only sharp scalars are 0 and 1. Note that a
general state ω, even when normalised, is not copyable.

X X

ω

̸=
ω ω

X X

Indeed the left-hand side is the distribution (x, y) 7→ ω(x)δx,y , while the right is (x, y) 7→
ω(x)ω(y), which differ unless ω is zero or ω = δx for some x ∈ X .

4.2.3. Normalisation

In graphical probabilistic reasoning it is also useful to be able to normalise states and
processes. We say that a cd-category C has normalisation when it comes with a rule
assigning each morphism f : X → Y a new morphism called the normalisation of f ,
depicted by drawing a dashed blue box:

f (4.7)

such that these normalisations satisfy various axioms, of which we sketch a few here.
For a full definition see (Lorenz & Tull, 2023). Firstly, a general state ω is equal to a scalar
multiple of its normalisation. In particular in MatR+ when the state is non-zero, this
means that its normalisation is indeed normalised in our above sense, i.e. a distribution.

ωω = ω (4.8)

For a generalmorphism f its normalisation is given on each sharp state x by normalising
f ◦ x.

f

x

f

x

= (4.9)

These two rules combine to give the following equation without explicit reference to
states.

f = f f (4.10)
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Note that if f we already a channel then it would be equal to its normalisation, as in this
case we can passing the discarding through f and then the copy map above. In general
normalisations satisfy a few graphical conditions including the following.

f g = f g
f

=
f

(4.11)

Further, for all morphisms f and channels g we have:

=
f

g

f

g

(4.12)

and for all sharp states x and morphisms f we have the following.

f

x

= f

x

For a full account of the properties of normalisation see (Lorenz & Tull, 2023). We
note that for a general morphism f , its normalisation is not necessarily a channel but
only a ‘partial channel’ 3. In terms of states, this is because its sends each sharp state
x either to a normalised state, or else to 0 if f ◦ x = 0. However in MatR+ it will be
a channel provided f has ‘full support’, so that f ◦ x is non-zero for all non-zero sharp
states x.

Throughout the article, the following notation will be useful. For any set X and func-
tion f : X → R+ let us write

Norm
x

f(x) :=
f(x)∑

x′∈X f(x′)

whenever this is well-defined, i.e. the denominator is finite and non-zero.

Example 4.2.5. MatR+ has normalisation. On each object X the zero state 0, given by
0(x) = 0 for all x ∈ X , is defined to have normalisation 0. For any non-zero state ω we
indeed have

ω

X

:: x 7→ Norm
x

ω(x)

3Suchmorphisms are called ’quasi-total’ in (Di Lavore & Román, 2023), wheremorphisms satisfying (4.10)
are also called ‘normalisations’, though are not uniquely chosen unlike our definition.
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For a general morphism M : X → Y the normalisation is given by:

M

Y

X

:: (x, y) 7→
{
Normy M(y | x) if

∑
y∈Y M(y | x) ̸= 0

0 otherwise

As a result if M has full support, so that M(y | x) ̸= 0 for some y, for all x, then its
normalisation is a probability channel.

4.2.4. Further cd-categories

Though we will not need them here, we note that the notion of a cd-category is much
more general than MatR+ , and give a few examples for those familiar with them. The
category Rel whose objects are sets and morphisms are relations is a cd-category, as
are its subcategoriesPFun of sets and partial functions and Set of sets and functions,
with the latter forming the channels in PFun.

There are also many more cd-categories of a ‘probabilistic’ nature, see for instance
(Panangaden, 1998; Cho & Jacobs, 2019; Fritz, 2020). In particular to treat general prob-
ability spaces (including ‘continuous probability channels’) onemaywork in the category
Kl(G) of measurable spaces X = (X,ΣX) and Markov (sub-)kernels f : X → Y , which
send each x ∈ X to a (sub-)probability measure f(x) over Y . Roughly, this means re-
placing all instances of summation Σ in MatR+ above with integration

´
. Of particular

interest in PP is the following subcategory, though we will not work with it in detail in
this article.

Example 4.2.6. (Fritz, 2020, Section 6) In the category Gauss the objects are spaces
X = Rn and morphisms M : X → Y are Markov kernels f : X → Y with densities of the
form f(y | x) = η(y −Mx) for some fixed Gaussian noise distribution η (independent
of x) and linear map M : X → Y . This category models linear processes with Gaussian
noise. More general non-linear Gaussian processes are studied in PP under the so-called
‘Laplace assumption’.

4.3. Generative Models

A central feature in PP is that each cognitive agent possesses a generative model which
describes their internal beliefs about how the observations they receives arise from hid-
den states of the world4. In its simplest form, a generative model consists of a channel
c : S → O describing how likely c(o | s) a given observation o ∈ O is for each hidden

4Note that is distinct from whatever ‘true’ external process produces the observations in reality, with the
latter often called the ‘generative process’ to distinguish it from the agent’s own ‘generativemodel’ (Parr
et al., 2022).
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state s ∈ S, along with a distribution σ over S describing prior beliefs about how likely
each state is.

However, generative models typically come with further compositional structure, re-
lating various spaces of observations and hidden states, as formalised by a Bayesian
network (or more precisely a causal Bayesian network, see later discussion), a probab-
ilistic graphical model based on a directed acyclic graph (DAG). There is in fact a close
correspondence between DAGs and cd-categories, allowing us to describe and study
such models entirely in terms of string diagrams. This view also leads one to consider
more general ‘open generative models’, which may come with ‘input’ variables. These
open models can be used to which describe the individual components of an overall
generative model in the usual sense. For more details on the approach used here, see
(Lorenz & Tull, 2023).

We begin by relating DAGs with the following class of string diagrams.

Definition 4.3.1. (Lorenz & Tull, 2023) A network diagram is a string diagramD built from
single-output boxes, copy maps and discarding:

. . .

with labellings on the wires, such that any wires not connected by a sequence of copy
maps are given distinct labels, and each label appears as an output at most once and as
an input to any given box at most once.

Such diagrams are best understood by examples, which we come to shortly. Before
this, we note that network diagrams are in fact equivalent to DAGs in the following sense.
By an open DAG we mean a finite DAG G with vertices V = {X1, . . . , Xn}, along with
subsets I,O ⊆ V of input and output vertices, respectively, such that each input vertex
has no parents in G.

Given any open DAG G, we may construct an equivalent network diagram featuring a
box ci with output Xi for each non-input vertex Xi. The box ci itself has an input wire
for each parent of Xi in G. In the diagram we copy the output of this box and pass it to
each of the children of Xi, as well as an extra time if Xi ∈ O i.e. Xi is an output vertex
of the DAG.

Xi

Y1 Yk

. . .

. . .

7→ ci

Y1 Yk

. . .

. . .

Xi

By construction, this yields a network diagram DG from the inputs I to the outputs
O of the DAG. Conversely, given any such network diagram D we define an open DAG
GD = (G, I,O) with a vertex X ∈ V for each wire X in D, and with X ∈ I,O iff it is an
input (resp. output) to the diagram.
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In practice the labellings of the boxes are arbitrary, and we consider any two network
diagrams equivalent when they are the same up to the equations of a cd-category and
box re-labellings. Then the above yields a one-to-one correspondence between open
DAGs and network diagrams (Lorenz & Tull, 2023, Sections 3,5).

Example 4.3.2. Consider the open DAG G over {X1, X2, X3, X4} below, with output ver-
tices O = {X2, X3} circled, and with no input vertices. The equivalent network diagram
DG is shown to the right. Note that the labels of the boxes are arbitrary.

X1

X2

X3

X4

⇐⇒

a b

c

d

X3

X1

X2

X4

Example 4.3.3. The following depicts an open DAG over V = {X1, . . . , X5} with outputs
O = {X3, X5} and with inputs I = {X2, X3} highlighted with special incoming arrows. To
the right we show the corresponding network diagram with the same inputs and outputs.

X1

X4

X2 X3

X5

⇐⇒
X1

X2 X3

X5

a

b

c

X3

X4

We may now define generative models themselves, which involve specifying actual
channels corresponding to the boxes in the network diagram.

An interpretation J−K of a network diagramD in a cd-categoryC consists of specifying
an object JXiK for each wireXi and channel JfK : JX1K⊗ · · · ⊗ JXkK→ JXK for each box
f in D with inputs X1, . . . , Xk and output X.

Definition 4.3.4. (Lorenz & Tull, 2023) LetC be a cd-category. An open generative model
in C is given by a network diagram D along with an interpretation J−K in C. We call the
objects corresponding to outputwiresobserved and the rest hidden. We call such amodel
closed when it has no inputs.

Note that an object of an open model may be both an input and output. In practice,
we omit the J−K symbols and for each wireX in the network diagram of a model denote
the corresponding object JXK in C also by X. Similarly for each box c in the diagram
with output X we also write c for the corresponding channel JcK.

83



4. A Categorical Account of Predictive Processing and Free Energy

Remark 4.3.5. Formally, an open generative model in our sense is the same as an open
causal model in the sense of (Lorenz & Tull, 2023); that is, both have the same mathem-
atical definition. However a ‘generative model’ typically refers to a causal model with the
extra interpretation of being possessed by a cognitive agent.

Indeed, though not often stressed in the literature, a typical generative model in PPmay
be seen as a causal Bayesian network, i.e. a causal model in the sense of Pearl (Pearl,
2009). This means that the probability channels which constitute the network do not
represent arbitrary relationships but in fact (beliefs about) causal ones, such as how ob-
servations are caused by (rather than merely correlated with) hidden states of the world.
For more discussion see Section 4.10.

Given any open generative modelMwe obtain an overall channel from its inputs to its
outputs by composing the channels of the model, i.e. viewing the (interpreted) network
diagram as a single channel inC. Often it is useful to also consider the following related
channel.
Definition 4.3.6. Let M = (D, J−K) be an open generative model in C with inputs Iand
outputsO. Let S denote the non-input hidden (non-output) objects of themodel. The total
channel M of the model is the channel from I to S,O:

M

. . .

. . .

I

O
. . .
S

(4.13)

given by interpreting the network diagram D′ in which we modify D by adding an extra
copy morphism to each object in S, to make it an output.

Conversely, the usual channel from inputs to outputs is then simply the marginal over
S:

M

. . .

. . .

I

O
. . .
S

M

I

O

= (4.14)

In particular for a closed generative model, with no inputs, we call the total channel the
total distribution of the model. It is a joint distribution over the hidden objects S and
observed objects O:

M

. . .
O

. . .
S

(4.15)
with the original distribution over the observed objects as its marginal.

M

. . .
O

. . .

S

=

. . .
O

M (4.16)
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Let us now consider generative models in our main example category.

Example 4.3.7. A closed generative model M in MatR+ is precisely a Causal Bayesian
Network (CBN). This consists of specifying:

• a finite DAG Gwith a subset O ⊆ V of ‘observed’ vertices and the remaining S =
V \O being ‘hidden’;

• for each vertex Xi an associated variable with a finite set of values also denoted
Xi, and a mechanism ci given by a probability channel with density:

P (Xi | Pa(Xi)) (4.17)

The term ‘causal’ refers to the fact each such mechanism has a causal interpreta-
tion.

Indeed, as we have seen, such a DAGGwith outputsO is equivalent to a network diagram
D with no inputs. Specifying an interpretation of D is then the same as choosing the
sets Xi of values and channels (4.17) for each box in the diagram. A CBN defines a joint
distribution5 over all the variables V = {X1, . . . , Xn} with density

P (V ) :=
n∏

i=1

P (Xi | Pa(Xi)) (4.18)

which is precisely (4.15). The output distribution of the CBN is given by themarginal P (O)
over only the observed variables, corresponding to (4.16).

Example 4.3.8. An open generative model M in MatR+ is an ‘open CBN’, where now for
the input variables no channel (4.17) is specified. This induces via (4.13) the total channel

P (S,O | I)

from the inputs to the non-input hidden variables S and output variables O, which here
we would denote (the entries of) by M(s, o | i). Its marginal P (O | I) on the observed
variables O yields the channel M(o | i) from (4.14).

In short, a (closed) generative model in MatR+ specifies the internal structure of an
output distribution P (O) in terms of further variables and channels (4.17), while an open
generative model similarly specifies the internal structure of a channel P (O | I) from
inputs I to outputs O.

For the remainder of this section we will describe some of the common forms of
(open) generative models which appear in PP.

5Often a Bayesian network is instead defined as a distribution P (V ) satisfying theMarkov condition (4.18)
in terms of its conditionals. Since these conditionals may not be unique, and the channels ci are an
important component of the model, we instead include the latter explicitly; for more discussion see
(Lorenz & Tull, 2023).
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4.3.1. Simple generative models

By a generative model S → O we mean a generative model M with network diagram:

c

σ

O

S

Thus M consists of objects S,O with O observed and S hidden, a channel c : S → O,
called the likelihood, and a distribution σ on S, called the prior. As alluded to earlier, we
call S the hidden states and O the observations of the model. The total distribution of
the model is given by

c

σ

S O

M

S O

= (4.19)

More generally, we can consider an open variant of such a generative model which
now comes with a hidden object I of inputs, with the following network diagram:

c

σ

O

S

I

(4.20)

Hence both the prior and likelihood now take an additional I input. The total channel is
given by

c

σ

OS

I

M

OS

I

= (4.21)

Intuitively, such an open model M consists of specifying a particular generative model
S → O for each input in I.
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Example 4.3.9. A generative model S → O inMatR+ consists of a finite set S of hidden
states, O of observations, a likelihood channel c(o | s) and prior distribution σ(s). Often
would often write c(o | s) as simply P (o | s) and σ(s) as P (s). We interpret c(o | s) as
the probability of observing o when in the hidden state s. Then the total state (4.19) is the
joint distribution over S,O given by

M(s, o) = c(o | s)σ(s)

and typically simply denoted P (s, o). As the notation suggests P (o | s) is the conditional
and P (s) the marginal of the joint distribution P (s, o).

When the generative model is open as in (4.20) it now comes with a finite set I of input
values, with likelihood c(o | i, s) and prior σ(s | i). The total channel (4.21) is then given
by

M(s, o | i) = c(o | i, s)σ(s | i)
Thus for each input i we obtain a generative model M(i) of the form S → O and an
induced joint distribution M(i) over S,O.

4.3.2. Discrete time models

For a given n ∈ N, a discrete time generative model is a closed generative model M of
the form

B

D

. . .

A

O1

A
S2

O2

B

A

On

S1 Sn

. . .

Thus it consists of observed objects O1, . . . , On, hidden objects S1, . . . , Sn, a prior dis-
tribution D over S1, observation channels {A : St → Ot}nt=1 and transition channels
{B : St → St+1}n−1

t=1 . Typically we mean that there are fixed objects S,O such that
Sj = S,Oj = O for all j, and similarly as our notation suggests all theA andB channels
for each time step are taken to be identical.

We interpret the model M as describing the evolution of a system over discrete time
steps from t = 1, . . . , n. The systembegins in its initial statewith prior distributionD and
then evolves over each time step according to the transition channelsB. Independently,
we observe the system at each time t via the channelA to produce an observation inOt.

87



4. A Categorical Account of Predictive Processing and Free Energy

Example 4.3.10. A discrete time generative model in MatR+ is also called a Hidden
Markov Model or partially observable Markov decision process (POMDP) (Parr et al.,
2022).

4.3.3. Policy models

We now introduce an explicit ingredient whereby the agent can model its own actions.
As in reinforcement learning (Tschantz et al., 2020), a choice of actions or behaviour
is called a policy. In a discrete time setting, a policy can be thought of as determining
likely sequences of actions over the time steps, which in turn influence the evolution of
the states over time.

An n-time step model with policies is a generative model M of the form:

B

. . .

A

O1

A

S2

O2

B

A

On

S1

Sn

P

E

. . .

Sn−1

B
S0

D

Thus it now includes a hidden objectP of policieswhich formsan input to each transition
channelB fromSt, P toSt+1, for t ≤ n−1. Themodel also comeswith a prior distribution
E over P , which are called the habits of the system. Note that here the policy the system
is undertaking is considered hidden.

Again we typically take Sj = S and Oj = O for some fixed objects S,O, with all
channels A identical and all B channels identical.

Example 4.3.11. Models of this form, withinMatR+ , are the central examples used in the
active inference tutorial (Smith et al., 2022) and book (Parr et al., 2022).

4.3.4. Hierarchical models

Central to much of PP is the study of hierarchical generative models (De Vries & Friston,
2017; Parr et al., 2022), which have a natural graphical description. These are generative
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models given by composing various open generativemodels in layers, where the outputs
of the open models in one layer match the inputs of the models in the next layer, such
as in the example below.

M3

M2

M3 M3

M2

M3

M1

M0

S(0)

S(1)

S(2)

S(3)

(4.22)

Here it is understood that each box Mj represents an open generative model, which we
may decompose further in terms of its own network diagramwith inputs and outputs as
shown. The right-hand labels indicate that the input wire toM1 has type S(0), the output
wires from M1 both have type S(1) etc 6.

We interpret the inputs to each (box within a) layer as a ‘control’ signal from the layer
below. Note that because we read diagrams bottom to top, the layers further down
the diagram are in fact those usually referred to as more ‘high-level’ or ‘higher’ in the
hierarchy.

The structure of themodel tells us that the ‘high-level’ features cause the generation of
the ‘lower-level’ features. For example S(0) could describe an overall action policy while
the S(3) control more fine-grained motor actions. Another common example explored
in (De Vries & Friston, 2017) is where the output wires from each box denote individual
time steps. In this case time runs faster in the lower-level layers (higher in the diagram).
For example in the diagram above six time steps occur in layer S(3) for every time step
in layer S(1).

Plugging in the network diagrams for each open model corresponding to Mj yields a
composite network diagram for the whole hierarchical model. For example in the follow-
ing hierarchicalmodel, the network diagrams forM1 andM2 are shown in the highlighted

6It is also common to introduce a labelling convention for the wires such as S(0,1,2) where the indices rep-
resent wire numbers in each layer as we read up the diagram. However this quickly becomes unwieldy,
and in most cases the graphical description of the network is the most convenient.
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boxes below and compose to yield the diagram on the right-hand side.

M2 M2

M1

M0
P

S(1)

S(2)

=

A1

B1

S(1)

S(2)

A2

B2

A2

B2

P
M0

Much of the PP literature concerns such hierarchical models and the passing of these
‘top-down predictions’ (the flow of information up the diagram in this case) are adjusted
by ‘bottom-up errors’ passed back down themodel. The latter takes place when amodel
is updated, which we address next.

4.4. Updating Models

Consider an agent with be a simple generativemodelM of the form S → O as in Section
4.3.1. Recall that this induces a joint distributionM overS,O as in (4.15), whosemarginal
on S is the prior σ describing ‘beliefs’ about how likely each state in S is to occur.

σ

S

=
M

S
O

Now suppose the agent receives an observation, which in general may be ‘soft’, given
by an distribution o over O. The agent would like to update these beliefs to obtain a
new posterior distribution over S, describing how likely each s ∈ S now is given the
observation.

M

S O

,
o

O

7→
update(M,o)

S

How then should the agent update themarginal onS to yield this posterior? For a general
soft observationwith distribution o overO there are at least two distinct but natural ways
to carry out Bayesian-style updating, as pointed out by Jacobs in (Jacobs, 2019), which
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we describe in this section. When the observation o is sharp, however, corresponding to
a single element o ∈ O, there is a canonical way to carry out this belief updating, usually
simply referred to as Bayesian updating, which we introduce first.

4.4.1. Sharp Updating

Let us begin by describing updates with respect to a sharp observation, given by (a point
distribution at) an element o ∈ O. Such Bayesian updating is closely related to the
notion of conditional probabilities, which have a nice characterisation in cd-categories.
Here we follow the approach to conditioning from (Lorenz & Tull, 2023), building on
earlier treatments (Coecke & Spekkens, 2012; Cho & Jacobs, 2019; Fritz, 2020); see also
(Di Lavore & Román, 2023).

Definition 4.4.1. Let C be a cd-category, and ω a joint distribution over X,Y . Then a
conditional of ω by Y is a morphism ω|Y : Y → X such that the following holds:

ω|Y

X Y

σ

=ω

X Y

(4.23)

where σ is themarginal of ω on Y . IfC has normalisation and cancellative caps, we define
the (minimal) conditional to be the morphism:

ω|Y

X

Y

= ω

X

Y

Eachminimal conditional is indeed a conditional as shown in the Appendix of (Lorenz
& Tull, 2023). As we saw for normalisations, a conditional is only a partial channel in
general, being a channel only when ω has ‘full support’.

Example 4.4.2. In MatR+ the minimal conditional ω|Y is given by

ω|Y (x | y) := Norm
x

ω(x, y) =
ω(x, y)∑
x′ ω(x′, y)

whenever the sum in the denominator is non-zero, and ω|Y (x | y) = 0 for all x otherwise.
Thus when ω is normalised with density denoted P (X,Y ) this is the usual conditional
P (X | Y ). The condition (4.23) amounts to the usual ‘chain rule’ P (x, y) = P (x | y)P (y)
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for the probability distribution P (x, y) = ω(x, y), since σ(y) is the marginal P (y) and we
have:

ω(x, y) =
ω|Y

yx

σ

=ω

yx

ω|Y
y

yx

σ
= = ω|Y (x | y)σ(y)

For a generative model M of the form S → O with joint distribution M over S,O we
call the minimal conditionalM |O : O → S the Bayesian inverse of the model. It specifies
how to update beliefs about S for each specific sharp observation o ∈ O. Explicitly,
given a sharp distribution o = δo over O for some o ∈ O the updated beliefs are given
by the posterior:

M

S

O
o

= M

S

O

o

= M

S

O
o

=update(M, o)

S

(4.24)

Example 4.4.3. InMatR+ , for a sharp observation δo for some o ∈ O, the posterior is the
distribution over S given by the usual Bayesian update:

M(s | o) = M(s, o)∑
s′ M(s′, o)

(4.25)

4.4.2. Pearl and Jeffrey Updating

There are two distinct ways to generalise updating to the case of a soft observation
given by a distribution o over O, described in (Jacobs, 2019). Diagrammatically these
correspond to generalising from either the former or latter diagrams in (4.24). For more
on both forms of updating in cd-categories see also the treatment by Di Lavore and
Román (Di Lavore & Román, 2023).

Definition 4.4.4. Let C be a cd-category with normalisation and cancellative caps, and
M a joint distribution over S,O. Given a distribution o overO, the Jeffrey update denoted
MJ or M |o is given by the composite M |O ◦ o, i.e.:

:=M |o

S

M

S

O
o
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whenever this is normalised, andmore generally is given by the normalisation of the above
state. The Pearl update denoted MP or M |o is instead given by the normalisation:

M |o

S

=

M

S

O

o

recalling that the effect o is given by composing o with a cap as in (4.5).

Example 4.4.5. For a generative model M from S to O in MatR+ , with joint distribution
M over S,O, the Jeffrey update is given by

MJ(s) = E
o∼o

Norm
s

M(s, o) =
∑
o

M(s, o)o(o)∑
s′ M(s′, o)

(4.26)

while the Pearl update is

MP (s) = Norm
s

E
o∼o

M(s, o) =

∑
oM(s, o)o(o)∑

s′,o′ M(s′, o′)o(o′)
(4.27)

The distinction between both update procedures is not always considered in the liter-
ature since for sharp observations they coincide with the usual Bayesian update. Indeed
the following is immediate from (4.24).

Lemma 4.4.6. LetC be a cd-category with normalisation and cancellative caps. Then for
each sharp state o on O the updates coincide: MJ = MP = M |O ◦ o.

In contrast, for a general observation o the two updates differ in the way they ap-
ply normalisation, amounting to whether one normalises with respect to (or separately
from) the observation itself.

M

S

o

̸=M

S

o

O
O

The Jeffrey update simply composes the observation o with the Bayesian inverse (par-
tial) channel M |O. If M |O is only a partial channel the result may not be normalised
(such as when o falls outside the support), in which case the update is then further nor-
malised. The Pearl update instead involves a single normalisation, taking place after
composing with the observation, so that o is inside the normalisation box.
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Remark 4.4.7. Jacobs has compared the two forms of updating within MatR+ in detail,
noting that their inferences can differ considerably, but that both can be considered ra-
tional notions of updating (Jacobs, 2019). One difference between the updates is that by
definition Jeffrey updating forms a probability channel in O (whenever M |O is a channel,
i.e. M has full support over O). In contrast, the normalisation over o in Pearl updating
means that it does not form a channel inO. The two update procedures can also be char-
acterised by the following respective properties. For a generative modelM over S,O with
likelihood c, Jeffrey updating minimises the KL-divergence between o and the marginal
on O of the updated model in which we replace the prior with the posterior (left-hand be-
low). Pearl updating instead has the property that it maximizes the expected value of the
function o (right-hand below).

MJ minimises: DKL

 c

MJ

S

O

,
o

O

 MP maximises: c

o

MP

S

O

∈ R+

The PP literature has mostly focused on updating with respect to sharp observations, in
which the two notions coincide. It is an interesting question for the future to determine
which (if either) form of updating is most natural in Bayesian models of cognition.

4.4.3. Updating Open Models

Since a typical generative model in PP is composed of various open generative models
M, it is also important to describe how an agent may update such open modelsM, now
coming with inputs I. In this case we consider the induced channel M : I → S,O. The
prior beliefs about S are now given by the marginal σ : I → S, which we can think of
specifying beliefs over S for each input i ∈ I. Given an observation o over O the agent
now wishes to update this to a posterior channel of the same kind.

σ

S

= M

S
O

I I

7→ update(M,o)

S

I

All of the treatment of updating above generalises straightforwardly to such open
models, amounting to updating the corresponding closedmodelM(i) over S,O for each
input i ∈ I.

Explicitly, for any morphism f : X → Y ⊗ Z in a cd-category, a conditional is any
morphism f |Z satisfying the left-hand equation below, where σ is the corresponding
marginal of f . In the presence of normalisation and cancellative caps, the (minimal)
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conditional is that given on the right below, as in (Lorenz & Tull, 2023).

f |Z

Y Z

σ
=f

Y Z

X

X

f |Z

Y

X Z

= f

Y

X Z

Definition 4.4.8. Let M : I → S,O be the channel induced by an open model M, and o a
distribution over O, in a cd-category with normalisation and cancellative caps. The Jef-
frey update denotedMJ orM |o is given by composingM |O with o as left-hand below (or
more generally by its normalisation if the result is not a partial channel). The Pearl update
denoted MP or M |o is instead given as on the right-hand side.

:=M |o

S

I

M

S

I

O
o

M |o

S

= M

S

O

o

I I

By the defining property of normalisations (4.10) the Pearl update M |o satisfies the
following, which will be useful later.

M |o

S

M=M

S

O

o
O

o

I
I

(4.28)

Example 4.4.9. In MatR+ the minimal conditional of f by Z is given by

f |Z(y | x, z) = Norm
y

f(y, z | x)

and for a probability channel P (Y,Z | X) corresponds to the usual conditional P (Y |
X,Z). The formulae for both updates MJ(s | i),MP (s | i) are the same as (4.26), (4.27)
simply replacing each M(s, o) term with M(s, o | i), i.e.

MJ(s | i) = E
o∼o

Norm
s

M(s, o | i)

MP (s | i) = Norm
s

E
o∼o

M(s, o | i)
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Again both update procedures coincide with M(s | o, i) for sharp observations i ∈ I and
all inputs i ∈ I .

Remark 4.4.10. Di Lavore and Román also study both forms of updating in cd-categories
in which (non-chosen) conditionals exist in (Di Lavore & Román, 2023), calling them ‘par-
tial Markov categories’. There updating is defined via arbitrary (non-minimal) condition-
als, meaning thatM |O can be arbitrarily defined outside the support onO ofM . However
since this arbitrary choice can impact the result of a Jeffrey update M |O ◦ o when o is
also non-zero outside this support, we instead define updating via theminimal conditional
M |O.

4.5. Perception and Planning

Let us now see how the notion of updating is applied by an agent to govern its behaviour
in PP. Two fundamental uses of updating are the following.

Perception Firstly, as already alluded to, we can consider the case of an agent with a
generative modelM from S to O, interpreted as accounting for observations O in terms
of hidden states of the world S. For example, O may be the space of pixel-level descrip-
tions of images while S is a compressed representational space of possible objects
which the images portray.

Given an observation encoded by a (soft or sharp) distribution o overO, the agent can
update its prior over hidden states S to obtain a posterior describing how likely each hid-
den state is to have caused the observation. We refer to this general process of updating
as perception and view the resulting distribution as the agent’s specific perception of the
observation o. Intuitively perception takes the ‘raw data’ of the observation o and returns
(a distribution over) representations S.

update(M,o)

S

perception

S

=M

S O

, o

O

7→

Intuitively, the update answers the question ‘Given that I have received this observation,
how likely is each possible world state?’. In the literature this is often referred to as infer-
ence, in reference to Bayesian inference.

Planning A second application of updating by an agent is in planning its behaviours.
Here an agent possesses a generative model M of the same formal structure but with
objects labelled P, F and interpreted differently. Now P encodes the action policies, or
behaviours, the agent may carry out, while F represents observations (or states) it may
receive in the future. The model M includes a prior over policies which we can think of
as the agent’s habits or typical behaviours.
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Here the agent possesses some preferences about which future observations (or
states) are most desirable, encoded by a distribution C over F . Intuitively, the distri-
bution will have highest density on the most desirable outcomes. The agent can then
plan its actions by updating its habits with respect to these preferences:

update(M,C)

P

plan

P

=M

P F

, C

F

7→

The process of deriving this distribution can intuitively be called ‘planning’. We can think
of this update as answering the question ‘Given that I will obtain my preferences in the
future, how likely is each policy to have led to this outcome?’.

The resulting ‘plan’ distribution over P can be used to guide the agent’s future beha-
viour. For example, an agent may then sample an policy to pursue from this distribution,
so that the more probable policies according to the distribution are more likely to be
carried out.

4.6. Exact Active Inference

Both uses of updating by an agent, planning andperception, come together in the concept
of active inference, of which we are now able to present a fully formal diagrammatic ac-
count.

Consider an agent possessing a generative model describing how its actions, in the
form of action policies P , bring about changes in its observations. These consist of
both observations for the present time (and previous times)O and for future time steps
F . Thus the agent has a closed generative model M of the following form.

M
P

O F

E

action
policies

observations

habits

= (4.29)

Here (abusing notation slightly) we denote by M also the channel from policies to ob-
servations induced by the model, and E is the prior over policies describing the agent’s
habits.

Suppose further that the agent’s model explains the observations at each of these
time steps through hidden states, where S denotes the hidden states in the present

97



4. A Categorical Account of Predictive Processing and Free Energy

time and S′ in the future, so that we have:

B

A A′

B′

O F

P

S S′

M

P

=

O F

(4.30)

for ‘observation’ channelsA,A′ and ‘transition’ channelsB,B′. The induced distribution
on P,O, F is then given by:

E

P

M

P

=

O F

M

O F

(4.31)

The goal of active inference is then the following. The agent receives a current obser-
vation given by a distribution o over O, and also carries a distribution C describing its
preferences for future observations F . The agent then wishes to update its prior E over
policies to yield a posterior which describes its plan of action7:

o

O

C

F

7→ update(M,o, C)

P

plan

P

= (4.32)

Intuitively, the posterior over policies can be thought of as answering the question ‘Given
that I have received this observation o now, and will attain my preferences C in the future,
which action policy am I pursuing?’. Note that, perhaps surprisingly, the agent’s own
action policy is thus treated as hidden from itself, and something that it must infer.

Now, typically the objects above all decompose into further structure, as in the follow-
ing example.

Example 4.6.1. A common application of active inference is to the discrete-time models
with policies given in Section 4.3.3, which we may view as instances of (4.30) as follows.

7Ultimately, having derived their ‘plan’ distribution the agent may then sample a single action policy π ∈ P
as in Section 4.5, and act accordingly. We imagine that via the true ‘generative process’ in the world
(distinct from the agent’s model) this leads to further observations in the future, to which the agent
carries out further planning steps, and so on. Our focus is simply on a single step of how the agent
derives their ‘plan’ from o and C.
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Consider such a model featuring N time-steps, where n << N is considered the current
time, and all times m with n ≤ m ≤ N as in the future. The spaces of ‘current’ hidden
states and observations S,O are the products over all previous time-steps t = 1, . . . , n up
to and including the current time, while the future hidden states and observations S′, F
take the product over all future time-steps t = n+ 1, . . . , N .

S := S1 ⊗ · · · ⊗ Sn S′ := Sn+1 ⊗ · · · ⊗ SN

O := O1 ⊗ · · · ⊗On F := On+1 ⊗ · · · ⊗ON

The observation channels in the overall model (4.30) would then be given by:

A :=

O

S

A

O1

S1

A

On

Sn

. . . A′ :=

F

S′

A

On+1

Sn+1

A

ON

SN

. . .

while the transition channels are as follows:

. . .
S1

B

Sn

P

. . .B

B

S

:=

P

. . .
Sn+1

B

SN

P

. . .B

Sn

B′

S′

:=

PS
S1 Sn−1

. . .

so that the composite (4.31) yields the network diagram for the overall model for times
t = 1, . . . , N .

An agent may employ various update procedures, such as those discussed in Section
4.4, to calculate its plan of action (4.32). Though both forms of updating coincide for
sharp inputs, and the observations o in the active inference literature are typically taken
to be sharp, the preferences C are often not; that is, there may be multiple desirable
future observations in F . Thus Pearl and Jeffrey updating can be expected to differ.

Here we will describe an exact active inference procedure based on Pearl updating,
allowing both observations o and preferences C to be soft. We leave the exploration of
Jeffrey updating in active inference for future work.

Now let us consider how the agent can in the ideal case compute its plan (4.32) via
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an exact update procedure. Firstly, let us rewrite the channel in (4.30) as follows.

M =

O F S

O M2

F

M1

P

=

B

A

A′

B′
O

F

S

S′

S′

P

P

Here the channels M1, M2 are the compositions indicated by the highlighted boxes8.
Now applying the property of Pearl updates (4.28) to M1 we have the following:

M

P

=

O F
S

P

M2

F

M1

E

P
o

C

O

=

M1|o
S

M1

O

o

P

M2

F

E

P

C

=
M |oM1

O

o

P

F

E

P Co C

(4.33)

Here we have again denoted by M1,M2 their respective marginals on O,F , given by
discarding S, S′ respectively. In the last step we used associativity of copying and the

8While we could define M2 without S′ as an output, the appearance of S′ will be useful later in treating
approximate active inference. Note also that the dashed boxes in this case do not denote normalisation.
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following argument:

M =

o
O

F

P

M |o

F

P

= M1|o
S

M2

F

P

P

S

M2

F

M1

P

o
O

=

S

M2

F

M1

P

o
O

=

where in the middle step we used (4.11) and (4.12) to slide the channel M2 and copying
out of the normalisation box, respectively.

Thus we obtain an exact expression for active inference.

Proposition 4.6.2. The plan over policies in Pearl-style exact active inference is given by:

M

P

=

O F M |oM1

O

o

P

F

E

P

C
o C

plan

P

= (4.34)

In MatR+ the plan has density over policies π ∈ P given by:

plan(π) := Norm
π

(E(π)(o ◦M1(π))(C ◦M |o(π))) (4.35)

= Norm
π

M |o
B

o

E

C
π

π
π

A
(4.36)

Proof. The first equality holds by definition, so plan(π) = Normπ f(π) where f is the
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density of the state in (4.33). But this is given by:

M

π
P O F

=
M |oM1

O

o

P

F

E

P

Co C π

=

M |oM1

O

o

P

F

E
P

C

π
π π

P

using that π is sharp, where the three right-hand scalars are precisely the terms in (4.35).
The last line comes from noting that the given marginal M1 : P → A is precisely B ◦
A.

There is only one problem with this form of active inference: the quantity (4.35) is
completely intractable to calculate. Along with the normalisation in calculating M |o,
calculating the terms in (4.35) would involve summation (or integration) over S,O and
S′, F respectively, requiring us to respectively calculate:∑

s∈S,o∈O
o(o)A(o | s)B(s | π)

∑
o′∈F

C(o′)M |o(o′ | π)

To make the calculation of these updates tractable, an agent in active inference is
understood to instead use a special form of approximation scheme, to which we now
turn.

4.7. Free Energy

We have seen that for an agent to perform exact Bayesian updating is computationally
intractable. In active inference, an agent instead carries out approximate updating by
minimising a quantity known as free energy (K. Friston et al., 2006; K. Friston, 2010;
Parr et al., 2022). In this section for simplicity we work concretely in the category C =
MatR+ , though the same notions should be similarly defined in continuous settings.

The extra mathematical ingredient9 needed to define free energy will be the following
.

Definition 4.7.1. For any distribution σ over X and x ∈ X we define the surprise as
S(σ)(x) := − log σ(x). For another distribution ω onX we define the overall surprise of σ
relative to ω as the expectation value:

S

(
ω , σ

)
:= − E

x∼ω
log σ(x)

9To study free energy we will move beyond a purely diagrammatic approach and make use of some prob-
abilistic calculations, most notably to define ‘surprise’. However later in Section 9 we will see how to
represent surprise in diagrams (via ‘log-boxes’). In future work it would be interesting to represent all of
the calculations in this section using such diagrams.
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The entropy H(ω) of ω is its self-surprise:

H

(
ω

)
:= S

(
ω , ω

)
while the Kullback-Liebler (KL) divergence D(ω, σ) from σ to ω is the difference between
these quantities:

D

(
ω , σ

)
:= S

(
ω , σ

)
−H

(
ω

)
TheKLdivergence is a commonly used similaritymeasure ondistributions, withD(ω, σ) ≥

0 and D(ω, ω) = 0 for all distributions ω, σ.
We may now define the following general notion of free energy. Throughout we con-

sider a distributionM over S,O, which we imagine to be induced by a generative model
from S toO. In this section for simplicity given any such distribution we denote its mar-
ginals on S,O and conditional channels M |S ,M |O again simply by M .

Definition 4.7.2 (Free Energy). The Free Energy of a distribution Q over S,O relative to
M is defined as:

FE


Q

S O

,
M

S O
 := S


Q

S O

,
M

S O
 − H


Q

S
 (4.37)

Explicitly then we can re-write the free energy in the following useful form.

FE(Q,M) = E
(s,o)∼Q

[log(Q(s))− log(M(s, o))] (4.38)

= E
(s,o)∼Q

[log(Q(s)− log(M(s | o))− logM(o)] (4.39)

= E
o∼Q

S

 Q

o

S

, M

o

S
+ S


Q

O

,
M

O
−H


Q

S
 (4.40)

We now turn to two specific variants of this quantity commonly considered in active
inference.

4.7.1. Variational Free Energy

Suppose an agent receives an observation given by a distribution o over O, and wishes
to perform an approximate Bayesian update of its prior beliefs about S as encoded by
themarginal ofM on S. It may do so by finding the distribution q over S whichminimises
the following quantity.
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Definition 4.7.3 (Variational Free Energy). Given a distribution M over S,O and distri-
bution o over O, the Variational Free Energy (VFE) of a distribution q over S is defined
as:

F

 q

S
 := FE

 q

S

o

O

,
M

S O


An important feature of the VFE is the following. Using the expression (4.40) and
pulling the entropy term inside the expectation we see that

F(q) = E
o∼o

D

 q

S

, M

o

S
 + S


o

O

,
M

O
 (4.41)

≥ D

 q

S

, M

o

S
 + S


o

O

,
M

O
 (4.42)

The inequality follows fromconcavity of theKLdivergence andJensen’s inequality, which
states that for any probability measure ω onX , measurable function f : X → R and con-
cave function ϕ on R we have

E
x∼ω

[ϕ(f(x))] ≤ ϕ( E
x∼ω

[f(x)]) (4.43)

In particular we see that the inequality (4.42) will be a strict equality whenever o = δo
is given by a sharp observation o ∈ O. In this case theminimumVFE value is given by the
exact Bayesian inverse M |o, with value F = − logM(o). Hence for a sharp observation
o, minimising the VFE minimises the KL-divergence between q and the Bayesian inverse
M |o, achieving approximate inversion q ≈M |o. Moreover F(q) is an upper bound on the
surprise of the observation o, and when q ≈M |o we have F(q) ≈ S(o,M).

VFE Updating This process of minimising VFE to compute an approximate Bayesian
update is central in active inference, but typically only considered for such sharp ob-
servations. Here we can now consider the more general minimisation of VFE for a soft
observation given by a distribution o. In fact we may view this as another notion of
updating for a prior over S, in addition to the two forms of updating met in Section 4.4.

Firstly, observe that in the expression (4.41) since the surprise term is constant, the
distribution q which minimises F(q)will be that which minimises the left-hand expected
KL term, which is equal to the following.

E
s∼q

[
log q(s)− E

o∼o
logM(s | o)

]
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This quantity will in turn beminimisedwhen this expression over S is equal to a constant
K , so that:

log q(s) = E
o∼o

[logM(s | o)] +K

The distribution qwill be given by normalising q(s) in the above expression, allowing us to
ignore the constant and yielding the following notion of updating motivated by the VFE.
Recall that the softmax of a function f : X → R+ is defined by σ(f)(x) = Normx e

f(x).

Definition 4.7.4 (VFE Update). Given a joint distribution M over S,O and distribution o
over O the VFE update is the posterior

MF (s) = Norm
s

eEo∼o logM(s|o) (4.44)

= σ( E
o∼o

logM(s | o)) (4.45)

where σ denotes a softmax over S.
Similarly, for any channel M from P to S,O we define the VFE update of its marginal

P → S point-wise, by MF (s | π) = M(π)F (s) for each π ∈ P .

From the derivation above we see that q = MF is the distribution which minimises
F(q). Note that, as for our other forms of updating, for a sharp observation o = δo we
have MF (s) = M(s | o).

To relate general VFE minimisation for a soft observation to expectation values, we
will use the following form of approximation. Firstly, note that by Jensen’s inequality, for
any probability measure ω and real function f over X we have:

eEx∼ω [log f(x)] ≤ E
x∼ω

[f(x)] (4.46)

Whenever we take both sides of such an inequality to be approximately equal, let us say
we are using a log approximation. In particular for any distributions ω, σ onX the follow
holds log-approximately:

e− S

(
ω , σ

)
⪅

ω

σ

X (4.47)

Indeed this states precisely (4.46) for the case f(x) = σ(x). Such approximations can
be used to relate free energy to exact expectation values, as follows.

Proposition 4.7.5. LetMF be the VFE update ofM relative to a distribution o overO, and
F its VFE value. Then the following holds log-approximately:

MF

S

e−F ≈
M

S

O

o
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Proof. Define f(s) := eEo∼o logM(s|o) and the normalisation constant K =
∑

s f(s), so
that KMF (s) = f(s). Then we have:

F = S(o,M) + E
s∼q

[logMF (s)− E
o∼o

logM(s | o)] (4.48)

= S(o,M)− logK

e−FMF (s) = e− S(o,M)KMF (s)

= e−Eo∼o[logM(o)+logM(s|o)]

= e−Eo∼o[logM(s,o)] ≈ E
o∼o

M(s, o)

where in the last step we used a log-approximation.

Remark 4.7.6. Compare the formula for VFE update to the Jeffrey and Pearl updates
(4.26), (4.27). While the Jeffrey update composes the conditional O → S with o exactly,
the VFE update instead minimises the expected KL below.

MJ

S

M

S

o
O

= while MF minimises E
o∼o

D

MF

S

, M

o

S


4.7.2. Expected Free Energy

A second form of free energy employed in active inference is used by an agent with a
model featuring a space O describing observations in the future. It then has a distribu-
tionC overOmodelling preferences for these future observations. Rather than updating
its beliefs about future states, the agent simply want to assess how well the marginal
of the model on O will fit these preferences, via the following approximation.

Definition 4.7.7. Given a distributionM over S,O and distributionC overO, the Expected
Free Energy (EFE) is defined as

G


M

S O

,
C

O
 := FE

 M

S O

, M

S O

C

 (4.49)

The EFE compares the given model M to the right hand generative model which per-
fectly attains the preferences, via its marginal C over O, whilst making use of the same
inverse channel O → S. Writing the EFE explicitly, and then rewriting in terms of the
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typically more readily computable channel S → O, we have

G(M,C) = E
(s,o)∼M

[log(M(s))− log(M(s | o))]− E
o∼M

[logC(o)]

= E
s∼M

o∼M◦s

[− log(M(o | s)] + E
o∼M

[logM(o)− logC(o)]

= E
s∼M

H
M

s

O

+D


M

O

,
C

O


The final line expresses the EFE in termsof a right-hand risk term, which assesses how
well the predicted state over O matches the preferences C , and a left-hand uncertainty
term given by the expected entropy in the observations. Thus minimising EFE requires
both matching preferences and reducing uncertainty. For more interpretations of EFE
see (Parr et al., 2022).

Now using Jensen’s inequality and the concavity of entropy, one may show that for
any distribution ω and channel c we always have:

E
x∼ω

H

 c

x

 ≤ H

 c

ω


Hence the EFE is bounded above by the surprise of the preferences:

G


M

S O

,
C

O
 ≤ H


M

O
 + D


M

O

,
C

O
 = S


M

O

,
C

O
 (4.50)

Thus minimising the EFE results in reducing the surprise of the preferences, making
them more likely to be obtained according to the model. Taking the inequality to be an
approximation and applying exponentials to both side along with a log-approximation
then gives the following.

Proposition 4.7.8. The EFE is bounded above and approximately equal to the expectation
value:

e−G


M

S O

,
C

O
 ⪅

C
O

M

4.7.3. Free Energy in Active Inference

We conclude this section by noting two uses of free energy in approximate active infer-
ence, treated in the next section. For thesewe now consider a channelM fromP to S,O,
typically induced by an open model. For each π ∈ P this specifies a joint distribution
M(π) over S,O, to which we may apply free energy calculations.
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Corollary 4.7.9. Let o and C be distributions over O. Let MF : P → S be the VFE up-
date of M by o, and for each π ∈ P set F(π) := F(M(π)F ) to the corresponding VFE
value. Similarly for each π ∈ P let G(π) = G(M(π), C). Then we have the following
approximations:

M

S

O

o

P

≈MF

S

e−F

P

e−G

P

M

O

≈

P

C
S

In the above the effect e−F is given by π 7→ e−F(π), for π ∈ P , and e−G is defined
similarly.

Proof. For the first approximation, plugging in a (sharp state given by) an element π ∈ P
to both sides shows that this is equivalent to Proposition 4.7.5 holding for each joint
distributionM(π) over S,O with respect to the observation o. For the second approxim-
ation, apply Proposition 4.7.8 to the joint distributionM(π) over S,O for each π ∈ P .

4.8. Active Inference via Free Energy

Let us now return to the situation of an agent carrying out active inference as in Section
4.6. As before the agent’s generative model M in (4.29) consists of its habits E over
policiesP and a channelM fromP to current and future observationsO,F , factoring via
current and future hidden states S, S′. Given its observation o and future preferences C
it can nowuse free energy to give a viable approximation of its updated plan of behaviour
from Proposition 4.6.2, proceeding in two steps. We saw already in (4.33) that:

M

P

=

O F
M1|o
S

M1

O

o

P

M2

F

E

P

C

o C

‘Perception’ step In the first step, the agent approximately updates the part of the
model pertaining to the current time,M1, in light of the observation o. For each policy π it
computes a distribution q(π) with (approximately) minimal VFE F(q(π)), thus obtaining
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a channel q : P → S which approximates the VFE update of M1 by o. For each π ∈ P
denote the corresponding VFE value by F(π). Explicitly:

F(π) = F () := FE

 q(π)

S

o

O

, M1

S O

π
P


‘Prediction’ step In the second step, the agent uses this approximation channel q, to
obtain a channelMq which approximates themodel over future states and observations,
defined as follows:

Mq

F

P

= q
S

M2

F

P

P

S′

S′

For each policy π this induces a distribution Mq(π) over S′, F , for which the agent can
compute the EFE with respect to the preferences:

G(π) := G

 Mq

FS′

π

, C

F
 (4.51)

Using these free energy quantities, the agent may carry out approximate active infer-
ence. The following formula is central in the active inference literature.

Theorem 4.8.1. The agent can carry out approximate active inference given observation
o and preferences C by setting its plan to have density

plan(π) := σ(logE(π)− F (π)−G(π)) (4.52)

where σ denotes a softmax over π ∈ P .
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Proof. We have:

=

S
O

o

P

M2

F

E

P

C

≈
P

M

F

E

P

C

q
S

e−F

M

P

O F

o C

E

P

e−F Mq

F

C

≈

E

P

e−F e−G

=

M1

where we used Corollary 4.7.9 in both approximation steps. Thus defining our plan as
on the left-hand below yields an approximate update:

plan

P

:= ≈
E

P

e−F e−G

M

P

O F

o C

But finally, note that the left-hand distribution is precisely given by (4.52). Indeed for
each π ∈ P , corresponding to a sharp effect on P , we have:

E

P
e−F e−G

π

= π

E

e−F e−G

π
π = E(π) e−F(π) e−G(π)

Hence the normalisation of the above is precisely the softmax expression (4.52).

This formula for active inference via free energy, though frequently used, is usually
only justified in a fairly heuristic manner (Parr et al., 2022). Previous accounts rely on
the less clear notion of treating EFE as a ‘prior’ to updating10. Here we have instead seen
how the expression can be derived from a direct diagrammatic argument, directly from
the structure of the generative model.
10Despite the fact EFE is not straightforwardly a component of the generativemodel, and requires inference

over present states S to be calculated first, rather than prior to them
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4.9. Compositionality of Free Energy

A crucial aspect of active inference is the idea that an agent can be understood to min-
imise free energy at all levels, so that it may be seen to globally minimise free energy in
its generative model by minimising free energy within each component.

To formalise this idea wemust first introduce a notion of free energy for openmodels.
For this we will make use of the following graphical notation for the surprise.

Definition 4.9.1. Given any effect e onX inMatR+ , corresponding to a function e : X →
R+, we denote by

e

X

the function − log e(x) : X → (−∞,∞].

Remark 4.9.2. Note that a log-box is no longer an effect withinMatR+ , sincewhen e(x) =
0wewill have− log e(x) =∞. Here we will interpret any diagram involving log-boxes with
inputs X1, . . . , Xn and no outputs as a (formula specifying a) function X1 × · · · ×Xn →
(−∞,∞]. Composing boxes in the diagram amounts to summation over wires, as for
MatR+ . Given two such diagrams D1, D2 we write D1 + D2 for the function given by
their point-wise sum as functions. In future it would be interesting to explore a formal
categorical semantics for log-boxes.

In particular we can apply a log box to any distribution ω in MatR+ by first turning it
into an effect, yielding the surprise S(ω)(x) = − logω(x).

ω

X

7→
ω

X

ω

X

= 7→
ω

X

Similarly for a pair of distributions ω, σ we have

S

(
ω , σ

)
=

σ

ω

. (4.53)

From the properties of the logarithm, one may verify that log-boxes then satisfy the
following compositional properties.

Lemma 4.9.3. For all effects d, e and sharp states x the following hold.

1.
d e

= d e+
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2.

= 0

3.

d e = d e+

4.

x

d =

x

d

Proof. Plugging inputs x, y into each equation they reduce to the following respective
properties of the logarithm. (1): log(d(x)e(x)) = log(d(x)) + log(e(x)). (2): log(1) = 0.
(3): log(d(x)e(y)) = log d(x) + log e(y). (4) holds by definition, since both diagrams are
given by y 7→ log d(x, y).

The following properties then follow from diagrammatic reasoning, using the relation
between caps and copying.

Proposition 4.9.4.

1. For all effects d, e and normalised states σ, ω:

d

σ

e

ω

=
d

σ

e

ω

+

In particular, entropy is additive across parallel composition: H(σ ⊗ ω) = H(σ) +
H(ω).

2. For all effects d, e:

=
d e d e

+

3. For all morphisms f, g:

=f

g

f
+

g
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Proof. (1) follows from Lemma 4.9.3 (3) since:

σ ω

d e

=

σ ω

d

ωσ

e

+ =

σ

d

ω

e

+

(2) follows from Lemma 4.9.3 (1), 2 and 3 since:

d e

d

=

d e

= + e

d= + e

(3) is a special case of (2) where we define the effects d, e by composing f, g with caps
on their output, respectively, since using the relation between caps and copying we see
that:

=f

g

f g

Now, by construction, for any joint distributionsM,Q over S,O the free energy is given
by:

FE


Q

S O

,
M

S O
 =

Q

M
−

Q

Q

S

Hence for any joint distributionM over S,O and distributions q,o over S,O respectively,
the VFE is given by:

F

 q

S
 =

q

M
−

q

q

S

o
S O
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We can use this to define a generalisation of VFE for (the channels induced by) open
generative models.

Definition 4.9.5 (Open VFE). Given a channel M : I → S,O, distribution q over I, S and
distribution o over O, we define the open Variational Free Energy as

F

 M

S O

I

, q

S I

, o

O
 := M

S O

I

q o

−
I

q

S

q

(4.54)

In the special case where I is trivial, the open VFE coincides with the usual VFE.
We can use the compositional properties of log boxes to show that this form of free

energy is compositional, in an appropriate sense. First consider the following two ways
in which we may compose open models.

Consider a pair of open models M1,M2 with inputs I1, I2, outputs O1, O2 and hidden
states S1, S2, respectively, such that O1 = I2. We can compose these in sequence into
a single open model M from I1 to O2, with S1, S2, O1 as its hidden states, with induced
total channel M from I1 to the remaining variables given as below.

M1

M2

I1

O2

O1M

I1

O2

:= with total channel

I1

O2

M

S1

=

I1

M1

M2

O1

S1
S2

S2 O2

O1

(4.55)

Formally, the left-hand diagram is a composition in the category of open causal models;
see (Lorenz & Tull, 2023, Sec. 5).

We can also compose openmodels in parallel. Given two openmodelsMi with inputs
Ii, outputs Oi and hidden states Si, for i = 1, 2 we can define an open model M with
both sets of inputs, outputs and hidden states with induced induced total channel M
from I1, I2 to the remaining variables given as below.

M1 M2

I1

O2O1

M

I1

O2

:=

I2

O1

I2

with total channel

I1

M1

O1S1

I1

M2

O2S2

I1

M

O1S1

=

I2

O2S2

(4.56)
For each of these forms of composition of open models, we wish to establish that free
energy is compositional in that the VFE of the open model M is determined from the
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VFE of its constituents. This ensures that locally minimising VFE (within each of sub-
component) can achieve global VFE minimisation also.

Theorem 4.9.6. For the sequential composite model M in (4.55) with O1 = I2, with total
channel M , and any distribution o over O2 and distributions q1, q2, the following holds:

F


I1

O2

M

S1 S2O1

, q2

I1

q1

S1 S2I2

, o

O2

 = F


I1

M1

O1S1

, q1

S1I1

, o1

O1



+ F


I2

M2

O2S2

, q2

S2I2

, o

O2


(4.57)

where

o1

O1

=

I1

q2

S2

(4.58)

Intuitively, (4.58) expresses the way in which the beliefs about inputs I2 in M2 are
passed down to the model M1 as observations in O1 = I2.

Proof. After rearranging some wires, we have that

F(M, q,o) =

M1

M2

I1 S1 O2S2I2

q1 q2 o

−
I1S1 S2 I2

q1 q2

q1 q2

=
M1

I1 S1 S2I2

q1 q2

+
M2

O2S2I2

q2 o

−
I1S1 S2 I2

q1 q2

q1 q2−

where for the first two terms we apply Proposition 4.9.4 with f = M1 and g = M2,
along with the fact that o and q1 are normalised, and the second two terms are from
Proposition 4.9.4 (1). But this is precisely the right-hand side of (4.57).

Next let us turn to the parallel composite of open models.
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Theorem 4.9.7. For any channels and distributions Mi, qi, oi for i = 1, 2, the following
holds.

F


I1

M1

O1S1

I2

M2

O2S2

, q2

I1

q1

S1 S2I2

, o1

O1

o2

O2

 = F


I1

M1

O1S1

, q1

S1I1

, o1

O1



+ F


I2

M2

O2S2

, q2

S2I2

, o2

O2


(4.59)

Proof. The left-hand side is given by

F(M, q,o) = M1

S1 O1

I1

q1 o1

−
M2

S2 O2

I2

q2 o2

M1

S1 O1

I1

q1 o1

−M2

S2 O2

I2

q2 o2

= +

I1S1 S2 I2

q1 q2

q1 q2

I1S1 S2 I2

q1 q2

q1 q2−

which is precisely the right-hand side, where we applied Proposition 4.9.4 (1).

The above results tell us that an agent with an overall generative model mayminimise
VFE by minimising VFE locally within each sub-model, an important property underlying
the application of the free energy to all levels of a system.

4.10. Outlook

In this article we have aimed to give a concise formulation of active inference in terms
of string diagrams interpreted in a cd-categoryC, focusing on the case of finite discrete
systems as described by C = MatR+ . In particular we were able to derive the formula
for approximate active inference via free energy minimisation purely from the high-level
structure of a generative model undertaking active inference, and derived a composi-
tionality property for free energy.
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However these are just the first steps towards a fully compositional account of intel-
ligent behaviour according to predictive processing, and there are many directions for
future work.

Message passing So far we only studied active inference at a high-level, saying that
an agent must, for each observation, arrive at an updated distribution q by free energy
minimisation, without discussing how this is to be carried out. In PP this minimisation
is normally achieved via so-called ‘message passing’ algorithms, such as ‘variational’
and ‘marginal’ message passing (Parr et al., 2019). These are defined on undirected
graphical models described by Forney factor graphs, induced by a generative model.
In future it would be interesting to include a categorical account of message passing
within our framework, to complete our description of active inference.

Continuous settings Another technical matter would be to extend the treatment of PP
beyond the finite case to further cd-categories describing continuous settings, such as
a suitable category of Gaussian probabilistic processes, which are widely employed in
PP under the ‘Laplace assumption’. One issue is in extending our treatment of min-
imal conditionals to such continuous settings, where they are not as straightforwardly
defined.

Causal reasoning We have here pointed out that an generative model may be seen
precisely as a causal model (Pearl, 2009). In future it would be interesting to explore
how an agent may carry out causal reasoning on its model using concepts from the
causal model framework such as ‘interventions’, as treated graphically in (Lorenz & Tull,
2023), and how such reasoning relates to active inference.

Approximations The treatment of active inference via free energy in Section 4.8 re-
lied on applying various approximation steps from Section 4.7 to parts of the diagram.
Certainly more could be done to set bounds on how well these approximations hold,
including how they extend from part of a diagram to the whole generative model.

Updatingwithin PP The categorical perspective led us to naturally consider soft obser-
vations (given by distributions) rather than the usual sharp ones (given by points), which
come with distinct notions of Jeffrey and Pearl updating (Section 4.4), as well our new
notion of VFE updating (Section 4.7). While we were able to describe active inference
via the latter two forms of updating, it would be interesting to compare against Jef-
frey updating and establish which form of exact updating is most naturally considered
(and approximated) in PP. That is, given that both forms of updating have different goals
(Jacobs, 2019), which one (if either) is approximately carried out by the brain? This ques-
tion was also raised in (Di Lavore & Román, 2023).
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We note that Pearl updating can be more generally defined with respect to any ef-
fect (see e.g. (Di Lavore & Román, 2023)), i.e. any (not necessarily normalised) func-
tion. There is disagreement between active inference and reinforcement learning (RL)
in whether an agent’s preferences should, rather than as a distribution as in active infer-
ence, be simply modelled by a function C : F → R+ assigning a ‘value’ in R+ to each
possible future observation, i.e. as an effect C on F (K. J. Friston et al., 2009; Tschantz
et al., 2020). In this case Pearl updating may be the most natural to treat planning. In
contrast, Jeffrey updating may be most fitting for perception, with an observation o nat-
urally encoded as a distribution i.e. a ‘fuzzy point’ in O.

Consciousness in PP Various proposals have been put forward for how PP and active
inference can be related to consciousness. Continuing from previous work from two of
the authors on IIT (Kleiner & Tull, 2021; Tull & Kleiner, 2021), in future we hope to account
for these proposals within our graphical account of active inference.

Categorical modifications of PP Beyond simply recasting previous results in PP cat-
egorically, in future one may also study what new insights the compositional perspect-
ive may bring to PP and active inference, and to connect the work to ongoing research
within categorical cybernetics (Smithe, 2021b; Capucci et al., 2021) and more broadly to
the research programme of compositional intelligence.
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5. Falsification and Consciousness

Johannes Kleiner, Erik Hoel1

5.1. Introduction

Successful scientific fieldsmove from exploratory studies and observations to the point
where theories are proposed that can offer precise predictions. Within neuroscience the
attempt to understand consciousness hasmoved out of the exploratory stage and there
are now a number of theories of consciousness capable of predictions that have been
advanced by various authors (C. Koch et al., 2016).

At this point in the field’s development falsification has become relevant. In gen-
eral, scientific theories should strive to make testable predictions (Popper, 1959). In the
search for a scientific theory of consciousness, falsifiability must be considered expli-
citly as it is commonly assumed that consciousness itself cannot be directly observed,
instead it can only be inferred based off of report or behavior.

Contemporary neuroscientific theories of consciousness first began to be proposed
in the early 1990s (F. Crick, 1994). Some have been based directly on neurophysiological
correlates, such as proposing that consciousness is associated with neurons firing at
a particular frequency (F. Crick & Koch, 1990) or activity in some particular area of the
brain like the claustrum (F. C. Crick & Koch, 2005). Other theories have focusedmore on
the dynamics of neural processing, such as the degree of recurrent neural connectivity
(Lamme, 2006). Others yet have focused on the “global workspace” of the brain, based
on how signals are propagated across different brain regions (Baars, 1997). Specific-
ally, Global Neuronal Workspace theory claims that consciousness is the result of an

1Published as: Kleiner, J., & Hoel, E. (2021). Falsification and consciousness. Neuroscience of Conscious-
ness, 2021(1), niab001. (Kleiner & Hoel, 2021)
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“avalanche” or “ignition” of widespread neural activity created by an interconnected but
dispersed network of neurons with long-range connections (Sergent & Dehaene, 2004).

Another avenue of research strives to derive a theory of consciousness from analysis
of phenomenal experience. The most promising example thereof is Integrated Informa-
tion Theory (Tononi, 2004, 2008; Oizumi et al., 2014). Historically, Integrated Information
Theory is the first well-formalized theory of consciousness. It was the first (and argu-
ably may still be the lone) theory that makes precise quantitative predictions about both
the contents and level of consciousness (Tononi, 2004). Specifically, the theory takes
the form of a function, the input of which is data derived from some physical system’s
internal observables, while the output of this function are predictions about the contents
of consciousness (represented mathematically as an element of an experience space)
and the level of consciousness (represented by a scalar value Φ).

Both Global Neuronal Workspace (GNW) and Integrated Information Theory (IIT) have
gained widespread popularity, sparked general interest in consciousness, and have led
to dozens if not hundreds of new empirical studies (Massimini et al., 2005; Del Cul, Bail-
let, & Dehaene, 2007; Dehaene & Changeux, 2011; Gosseries, Di, Laureys, & Boly, 2014;
Wenzel et al., 2019). Indeed, there are already significant resources being spent attempt-
ing to falsify either GNW or IIT in the form of a global effort pre-registering predictions
from the two theories so that testing can be conducted in controlled circumstances by
researchers across the world (Ball., 2019; Reardon, 2019). We therefore often refer to
both GNW and IIT as exemplar theories within consciousness research and show how
our results apply to both. However, our results and reasoning apply to most contempor-
ary theories, e.g. (Lau & Rosenthal, 2011; Chang et al., 2020), particularly in their ideal
forms. Note that we refer to both “theories” of consciousness and also “models” of
consciousness, and use these interchangeably (Seth, 2007).

Due to IIT’s level of formalization as a theory, it has triggered the most in-depth re-
sponses, expansions, and criticisms (Cerullo, 2015; Bayne, 2018; P. A. Mediano, Seth, &
Barrett, 2019; Kleiner & Tull, 2021) since well-formalized theories are much easier to cri-
ticize than non-formalized theories. Recently one criticism levied against IIT was based
on how the theory predicts feedfoward neural networks have zeroΦ and recurrent neural
networks have non-zeroΦ. Since a given recurrent neural network can be “unfolded” into
a feedfoward one while preserving its output function, this has been argued to render
IIT outside the realm of science (Doerig et al., 2019). Replies have criticised the as-
sumptions which underlie the derivation of this argument (Kleiner, 2020a; Tsuchiya et
al., 2020).

Here we frame and expand concerns around testing and falsification of theories by
examining a more general question: what are the conditions under which theories of
consciousness (beyond IIT alone) can be falsified? We outline a parsimonious descrip-
tion of theory testing with minimal assumptions based on first principles. In this ag-
nostic setup falsifying a theory of consciousness is the result of finding a mismatch
between the inferred contents of consciousness (usually based on report or behavior)
and the contents of consciousness as predicted by the theory (based on the internal
observables of the system under question).
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This mismatch between prediction and inference is critical for an empirically mean-
ingful scientific agenda, because a theory’s prediction of the state and content of con-
sciousness on its own cannot be assessed. For instance, imagine a theory that predicts
(based on internal observables like brain dynamics) that a subject is seeing an image of
a cat. Without any reference to report or outside information, there can be no falsifica-
tion of this theory, since it cannot be assessed whether the subject was actually seeing
a “dog” rather than “cat.” Falsifying a theory of consciousness is based on finding such
mismatches between reported experiences and predictions.

In the following work, we formalize this by describing the prototypical experimental
setup for testing a theory of consciousness. We come to a surprising conclusion: a
widespread experimental assumption implies that most contemporary theories of con-
sciousness are already falsified.

The assumption in question is the independenceof an experimenter’s inferences about
consciousness froma theory’s predictions. To demonstrate the problems this independ-
ence creates for contemporary theories, we introduce a “substitution argument.” This
argument is based on the fact that many systems are equivalent in their reports (e.g.,
their outputs are identical for the same inputs) and yet their internal observables may
differ greatly. This argument constitutes both a generalization and correction of the
“unfolding argument” against IIT presented in (Doerig et al., 2019). Examples of such
substitutions may involve substituting a brain with a Turing machine or a cellular auto-
maton since both types of systems are capable of universal computation (Turing, 1937b;
Wolfram, 1984) and hencemay emulate the brain’s responses, or replacing a deep neural
network with a single-layer neural network, since both types of networks can approxim-
ate any given function (Hornik, Stinchcombe, & White, 1989; Schäfer & Zimmermann,
2006).

Crucially, our results do not imply that falsifications are impossible. Rather, they show
that the independence assumption implies that whenever there is an experiment where
a theory’s predictions based on internal observables and a system’s reports agree, there
exists also an actual physical system that falsifies the theory. One consequence is that
the “unfolding argument” concerning IIT (Doerig et al., 2019) is merely a small subset
of a much larger issue that affects all contemporary theories which seek to make pre-
dictions about experience off of internal observables. Our conclusion shows that if in-
dependence holds, all such theories come falsified a priori. Thus, instead of putting the
blame of this problem on individual theories of consciousness, we show that it is due
to issues of falsification in the scientific study of consciousness, particularly the field’s
contemporary usage of report or behavior to infer conscious experiences.

A simple response to avoid this problem is to claim that report and inference are not
independent. This is the case, e.g., in behaviorist theories of consciousness, but argu-
ably also in Global Workspace Theory (Baars, 2005), the “attention schema” theory of
consciousness (Graziano & Webb, 2015) or “fame in the brain” (Dennett, 1991) propos-
als. We study this answer in detail and find that making a theory’s predictions and an
experimenter’s inferences strictly dependent leads to pathological unfalsifiability.

Our results show that if independence of prediction and inference holds true, as in
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contemporary cases where report about experiences is relied upon, it is likely that no
current theory of consciousness is correct. Alternatively, if the assumption of independ-
ence is rejected, theories rapidly become unfalsifiable. While this dilemma may seem
like a highly negative conclusion, we take it to show that our understanding of testing
theories of consciousness may need to change to deal with these issues.

5.2. Formal Description of Testing Theories

Here we provide a formal framework for experimentally testing a particular class of the-
ories of consciousness. The class we consider makes predictions about the conscious
experience of physical systems based on observations or measurements. This class
describes many contemporary theories, including leading theories such as Integrated
Information Theory (Oizumi et al., 2014), Global Neuronal Workspace Theory (Dehaene
& Changeux, 2004), Predictive Processing (when applied to account for conscious ex-
perience (Dolkega & Dewhurst, 2020; A. Clark, 2019; Seth, 2014; Hobson & Friston, 2014;
Hohwy, 2012)) or Higher Order Thought Theory (Rosenthal, 2002). These theories may
be motivated in different ways, or contain different formal structures, such as for ex-
ample the ones of category theory (Tsuchiya, Taguchi, & Saigo, 2016). In some cases,
contemporary theories in this classmay lack the specificity to actuallymake precise pre-
dictions in their current form. Therefore, the formalisms we introduce may sometimes
describe a more advanced form of a theory, one that can actually make predictions.

In the following section, we introduce the necessary terms to define how to falsify
this class of theories: how measurement of a physical system’s observables results in
datasets (Section 5.2.1), how a theory makes use of those datasets to offer predictions
about consciousness (Section 5.2.2), how an experimenter makes inferences about a
physical system’s experiences (Section 5.2.3), and finally how falsification of a theory
occurs when there is a mismatch between a theory’s prediction and an experimenter’s
inference (Section 5.2.4). In Section 5.2.5 we give a summary of the introduced terms.
In subsequent sections we explore the consequences of this setup, such as how all con-
temporary theories are already falsified if the data used by inferences and predictions
are independent, and also how theories are unfalsifiable if this is changed to a strict
form of dependency.

5.2.1. Experiments

All experimental attempts to either falsify or confirm a member of the class of theories
we consider begin by examining some particular physical system which has some spe-
cific physical configuration, state, or dynamics, p. This physical system is part of a class
P of such systems which could have been realized, in principle, in the experiment. For
example, in IIT, the class of systems P may be some Markov chains, set of logic gates,
or neurons in the brain, and every p ∈ P denotes that system being in a particular state
at some time t. On the other hand, for Global Neuronal Workspace, P might comprise
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the set of long-range cortical connections that make up the global workspace of the
brain, with p being the activity of that global workspace at that time.

Testing a physical system necessitates experiments or observations. For instance,
neuroimaging tools like fMRI or EEG have to be used in order to obtain information about
the brain. This information is used to create datasets such as functional networks, wir-
ing diagrams, models, or transition probability matrices. To formalize this process, we
denote by O all possible datasets that can result from observations of P . Each o ∈ O is
one particular dataset, the result of carrying out some set of measurements on p. We
denote the datasets that can result from measurements on p as obs(p). Formally:

obs : P ↠ O , (5.1)

where obs is a correspondence, which is a “generalized function” that allows more than
one element in the image obs(p) (functions are a special case of correspondences).
A correspondence is necessary because, for a given p, various possible datasets may
arise, e.g., due to different measurement techniques such as fMRI vs. EEG, or due to
the stochastic behaviour of the system, or due to varying experimental parameters. In
the real world, data obtained from experiments may be incomplete or noisy, or neuros-
cientific findings difficult to reproduce (Gilmore, Diaz, Wyble, & Yarkoni, 2017). Thus for
every p ∈ P , there is a whole class of datasets which can result from the experiment.

Note that obs describes the experiment, the choice of observables, and all conditions
during an experiment that generates the dataset o necessary to apply the theory, which
may differ from theory to theory, such as interventions in the case of IIT. In all realistic
cases, the correspondence obs is likely quite complicated since it describes the whole
experimental setup. For our argument it simply suffices that this mapping exists, even
if it is not known in detail.

It is also worth noting here that all leading neuroscientific theories of consciousness,
from IIT to GNW, assume that experiences are not observable or directly measurable
when applying the theory to physical systems. That is, experiences themselves are never
identified or used in obs, but are rather inferred based on some dataset o that contains
report or other behavioural indicators.

Next we explore how the datasets in O are used to make predictions about the exper-
ience of a physical system.

5.2.2. Predictions

A theory of consciousness makes predictions about the experience of some physical
system in some configuration, state, or dynamics, p, based on some dataset o. To this
end, a theory carries within its definition a set or space E whose elements correspond
to various different conscious experiences a system could have. The interpretation of
this set varies from theory to theory, ranging from descriptions of the level of conscious
experience in early versions of IIT, descriptions of the level and content of conscious
experience in contemporary IIT (Kleiner & Tull, 2021), or the description only of whether
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a presented stimuli is experienced in GNW or HOT. We sometimes refer to elements e
of E simply as experiences.

Formally, this means that a prediction considers an experimental dataset o ∈ O (de-
termined by obs) and specifies an element of the experience spaceE. We denote this as
pred, for “prediction,” which is amap fromO toE. The details of how individual datasets
are being used tomake predictions again do notmatter for the sake of our investigation.
What matters is that a procedure exists, and this is captured by pred. However, we have
to take into account that a single dataset o ∈ O may not predict only one single exper-
ience. In general, pred may only allow an experimenter to constrain experience of the
system in that it only specifies a subset of all experiences a theory models. We denote
this subset by pred(o). Thus, pred is also a correspondence

pred : O ↠ E .

Shown in Figure 5.2.1 are the full set of terms needed to formally define how most
contemporary theories of consciousness make predictions about experience. So far,
what we have said is very general. Indeed, the force and generalizability of our argument
comes from the fact that we do not have to define pred explicitly for the various models
we consider. It suffices that it exists, in some form or the other, for the models under
consideration.

It is crucial to note that predicting states of consciousness alone does not suffice to
test a model of consciousness. Some have previously criticized theories of conscious-
ness, IIT in particular, just based off of their counter-intuitive predictions. An example
is the criticism that relatively simply grid-like networks have high Φ (Aaronson, 2014;
Tononi, 2014). However, debates about counter-intuitive predictions are not meaningful
by themselves, since pred alone does not contain enough information to say whether a
theory is true or false. The most a theory could be criticized for is either not fitting our
own phenomenology or not being parsimonious enough, neither of which are necessar-
ily violated by counter-intuitive predictions. For example, it may actually be parsimoni-
ous to assume that many physical systems have consciousness (Goff, 2017). That is,
speculation about acceptable predictions by theories of consciousness must implicitly
rely on a comparative reference to be meaningful, and speculations that are not explicit
about their reference are uninformative.

5.2.3. Inferences

As discussed in the previous section, a theory is unfalsifiable given just predictions
alone, and so pred must be compared to something else. Ideally this would be the ac-
tual conscious experience of the system under investigation. However, as noted pre-
viously, the class of theories we focus on here assumes that experience itself is not
part of the observables. For this reason, the experience of a system must be inferred
separately from a theory’s prediction to create a basis of comparison. Most commonly,
such inferences are based on reports. For instance, an inference might be based on an
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P O E
obs pred

Figure 5.2.1.: We assume that an experimental setup apt for a particular model of conscious-
ness has been chosen for some class of physical systems P , wherein p ∈ P rep-
resents the dynamics or configurations of a particular physical system. O then
denotes all datasets that can arise from observations or measurements on P .
Measuring the observables of p maps to datasets o ∈ O, which is denoted by
the obs correspondence. E represents the mathematical description of experi-
ence given by the theory or model of consciousness under consideration. In the
simplest case, this is just a set whose elements indicate whether a stimulus has
been perceived consciously or not, but far more complicated structures can arise
(e.g., in IIT). The correspondence pred describes the process of prediction as a
map from O to E.

experimental participant reporting on the switching of some perceptually bistable im-
age (Blake, Brascamp, & Heeger, 2014) or on reports about seen vs. unseen images in
masking paradigms (Alais, Cass, O’Shea, & Blake, 2010).

It has been pointed out that report in a trial may interfere with the actual isolation
of consciousness, and there has recently been the introduction of so-called “no-report
paradigms” (Tsuchiya, Wilke, Frässle, & Lamme, 2015). In these cases, report is first
correlated to some autonomous phenomenon like optokinetic nystagmus (stereotyped
eye movement), and then the experimenter can use this instead of the subject’s direct
reports to infer their experiences. Indeed, there can even be simpler cases where report
is merely assumed: e.g., that in showing a red square a participant will experience a red
square without necessarily asking the participant, since previously that participant has
proved compos mentis. Similarly, in cases of non-humans incapable of verbal report,
“report” can be broadly construed as behavior or output.

All these cases can be broadly described as being a case of inference off of some
data. This data might be actual reports (like a participant’s button pushes) or may be
based off of physiological reactions (like no-report paradigms) or may be the outputs
of a neural network or set of logic gates, such as the results of an image classification
task (LeCun, Bengio, & Hinton, 2015). Therefore, the inference can be represented as a
function, inf(o), between a dataset o generated by observation or measurement of the
physical system, and the set of postulated experiences in the model of consciousness,
E:

inf : O→ E .

Defining inf as a function means that we assume that for every experimental dataset
o, one single experience in E is inferred during the experiment. Here we use a func-
tion instead of a correspondence for technical and formal ease, which does not affect
our results: If two correspondences to the same space are given, one of them can be
turned into a function.2 The inf function is flexible enough to encompass both direct

2If inf is a correspondence, one defines a new space E′ by E′ := {inf(o) | o ∈ O}. Every individual
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P O E
obs

pred

inf

Figure 5.2.2.: Two maps are necessary for a full experimental setup, one that describes a
theory’s predictions about experience (pred), another that describes the experi-
menter’s inference about it (inf ). Both map from a dataset o ∈ O collected in an
experimental trail to some subset of experiences described by the model, E.

report, no-report, input/output analysis, and also assumed-report cases. It is a mapping
that describes the process of inferring the conscious experience of a system from data
recorded in the experiments. Both inf and pred are depicted in Figure 5.2.2.

It is worth noting that we have used here the same class O as in the definition of the
prediction mapping pred above. This makes sense because the inference process also
uses data obtained in experimental trials, such as reports by a subject. So both pred
and inf can be described to operate on the same total dataset measured, even though
they usually use different parts of this dataset (cf. below).

5.2.4. Falsification

We have now introduced all elements which are necessary to formally say what a falsi-
fication of a theory of consciousness is. To falsify a theory of consciousness requires
mismatch between an experimenter’s inference (generally based on report) and the pre-
dicted consciousness of the subject. In order to describe this, we consider some partic-
ular experimental trial, as well as inf and pred.

Definition 5.2.1. There is a falsification at o ∈ O if we have

inf(o) ̸∈ pred(o) . (5.2)

This definition can be spelled out in terms of individual components ofE. To this end,
for any given dataset o ∈ O, let er := inf(o) denote the experience that is being inferred,
and let ep ∈ obs(o) be one of the experiences that is predicted based off of somedataset.
Then (5.2) simply states that we have ep ̸= er for all possible predictions ep ∈ obs(o).
None of the predicted states of experience is equal to the inferred experience.

What does Equation (5.2) mean? There are two cases which are possible. Either, the
prediction based on the theory of consciousness is correct and the inferred experience
is wrong. Or the prediction is wrong, so that in this case the model would be falsified. In
short: Either the prediction process or the inference process is wrong.

element of this space describes exactly what can be inferred from one dataset o ∈ O, so that inf ′ :
O → E′ is a function. The correspondence obs is then redefined, for every e′ ∈ E′, by the requirement
that e′ ∈ obs′(o) iff e ∈ obs(o) for some e ∈ e′.
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We remark that if there is a dataset o on which the inference procedure inf or the
prediction procedure pred cannot be used, then this dataset cannot be used in falsifying
a model of consciousness. Thus, when it comes to falsifications, we can restrict to
datasets o for which both procedures are defined.

In order to understand in more detail what is going on if (5.2) holds, we have to look
into a single dataset o ∈ O. This will be of use later.

Generally, inf and obswill make use of different part of the data obtained in an experi-
mental trial. E.g., in the context of IIT or GNW, data about the internal structure and state
of the brain will be used for the prediction. This data can be obtained from an fMRI scan
or EEG measurement. The state of consciousness on the other hand can be inferred
from verbal reports. Pictorially, we may represent this as in Figure 5.2.3. We use the
following notation:

oi For a chosen dataset o ∈ O, we denote the part of the dataset which is used for
the prediction process by oi (for ‘internal’ data). This can be thought of as data
about the internal workings of the system. We call oi the prediction data in o.

or For a chosen dataset o ∈ O, we denote the part of the dataset which is used for
inferring the state of experience by or (for ‘report’ data). We call it the inference
data in o.

Note that in both cases, the subscript can be read similarly as the notation for restricting
a set. We remark that a different kind of prediction could be considered as well, where
one makes use of the inverse of pred. In Appendix 5.B, we prove that this is in fact
equivalent to the case considered here, so that Definition 5.2.1 indeed covers the most
general situation.

5.2.5. Summary

In summary, for testing of a theory of consciousness we have introduced the following
notion:

P denotes a class of physical systems that could have been tested, in principle, in
the experiment under consideration, each in various different configurations. In
most cases, every p ∈ P thus describes a physical system in a particular state,
dynamical trajectory, or configuration.

obs is a correspondence which contains all details on how the measurements are
set up and what is measured. It describes how measurement results (datasets)
are determined by a system configuration under investigation. This correspond-
ence is given, though usually not explicitly known, once a choice of measurement
scheme has been made.

O is the class of all possible datasets that can result from observations or meas-
urements of the systems in the class P . Any single experimental trail results in
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p

o ∈ O
pred(o)

or

oi

inf(o)

er

pred(o)

ep

E

Figure 5.2.3.: This figure represents the same setup as Figure 5.2.2. The left circle de-
picts one single dataset o. oi (orange) is the part of the dataset used for
prediction. or (green) is the part of the dataset used for inferring the state
of experience. Usually the green area comprises verbal reports or button
presses, whereas the orange area comprises the data obtained from brain
scans. The right circle depicts the experience space E of a theory un-
der consideration. ep denotes a predicted experience while er denotes the
inferred experience. Therefore, in total, to represent some specific experi-
mental trial we use p ∈ P , o ∈ O, er ∈ E and ep ∈ E, where ep ∈ pred(o).

a single dataset o ∈ O, whose data is used for making predictions based on the
theory of consciousness and for inference purposes.

pred describes the process of making predictions by applying some theory of con-
sciousness to a dataset o. It is therefore a mapping from O to E.

E denotes the space of possible experiences specified by the theory under consid-
eration. The result of the prediction is a subset of this space, denoted as pred(o).
Elements of this subset are denoted by ei and describe predicted experiences.

inf describes the process of inferring a state of experience from some observed data,
e.g. verbal reports, button presses or using no-report paradigms. Inferred experi-
ences are denoted by er.

5.3. The Substitution Argument

Substitutions are changes of physical systems (i.e., the substitution of one for another)
that leave the inference data invariant, but may change the result of the prediction pro-
cess. A specific case of substitution, the unfolding of a reentrant neural network to a
feed-forward one, was recently applied to IIT to argue that IIT cannot explain conscious-
ness (Doerig et al., 2019).
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Here we show that, in general, the contemporary notion of falsification in the science
of consciousness exhibits this fundamental flaw for almost all contemporary theories,
rather than being a problem for a particular theory. This flaw is based on the independ-
ence between the data used for inferences about consciousness (like reports) and the
data used to make predictions about consciousness. We discuss various responses to
this flaw in Section 5.5.

We begin by defining what a substitution is in Section 5.3.1, show that it implies falsi-
fications in Section 5.3.2, and analyze the particularly problematic case of universal sub-
stitutions in Section 5.3.3. In Section 5.3.4, we prove that universal substitutions exist
if prediction and inference data are independent and give some examples of already-
known cases.

5.3.1. Substitutions

In order to define formally what a substitution is, we work with the inference content or
of a dataset o as introduced in Section 5.2.4. We first denote the class of all physical
configurations which could have produced the inference content or upon measurement
by Por . Using the correspondence obs which describes the relation between physical
systems and measurement results, this can be defined as

Por := { p ∈ P | or ∈ obs(p) } , (5.3)

where obs(p) denotes all possible datasets that can bemeasured if the system p is under
investigation and where or ∈ obs(p) is a shorthand for o ∈ obs(p) with inference content
or.

Any map of the form S : Por → Por takes a system configuration p which can pro-
duce inference content or to another system’s configuration S(p) which can produce
the same inference content. This allows us to define what a substitution is formally. In
what follows, the ◦ indicates the composition of the correspondences obs and pred to
give a correspondence from P to E, which could also be denoted as pred(obs(p)),3 and
∩ denotes the intersection of sets.

Definition 5.3.1. There is a or-substitution if there is a transformation S : Por → Por such
that at least for one p ∈ Por

pred ◦ obs(p) ∩ pred ◦ obs(S(p)) = ∅ . (5.4)

In words, a substitution requires there to be a transformation S which keeps the infer-
ence data constant but changes the prediction of the system. So much in fact that the
prediction of the original configuration p and of the transformed configuration S(p) are
fully incompatible, i.e. there is no single experience e which is contained in both predic-
tions. Given some inference data or , an or-substitution then requires this to be the case

3I.e., pred ◦ obs(p) = {e ∈ E | e ∈ pred(o) for some o ∈ obs(p)}, it is the image under pred of the set
obs(o).
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T (p)

o resp. o′

or = o′r

oi

p

o′i

pred(o)

inf(o)

er = e′r

pred(o)
ep

E

pred(o′)
e′p

pred(o′)

Figure 5.3.1.: This picture illustrates substitutions. Assume that some dataset o with in-
ference content or is given. A substitution is a transformationS of physical
systemswhich leaves the inference content or invariant butwhich changes
the result of the prediction process. Thus whereas p and S(p) have the
same inference content or , the prediction content of experimental data-
sets is different; different in fact to such an extent that the predictions of
consciousness based on these datasets are incompatible (illustrated by
the non-overlapping gray circles on the right). Here we have used that by
definition of Por , every p̃ ∈ Por yields at least one dataset o′ with the same
inference content as o and have identified o and o′ in the drawing.

for at least one system configuration p that gives this inference data. In other words,
the transformation S is such that for at least one p, the predictions change completely,
while the inference content or is preserved.

A pictorial definition of substitutions is given in Figure 5.3.1. We remark that if pred
and obs were functions, so that pred ◦ obs(p) only contained one element, Equation (5.4)
would be equivalent to pred(obs(p)) ̸= pred(obs(S(p))).

We will find below that the really problematic case arises if there is an or-substitution
for every possible inference content or. We refer to this case as a universal substitution.

Definition 5.3.2. There is a universal substitution if there is an or-substitutionSor : Por →
Por for every or.

We recall that according to the notation introduced in Section 5.2.4, the inference
content of any dataset o ∈ O is denoted by or (adding the subscript r). Thus the require-
ment is that there is an or-substitution Sor : Por → Por for every inference data that
can pertain in the experiment under consideration (for every inference data that is listed
in O). The subscript or of Sor indicates that the transformation S in Definition 5.3.1 can
be chosen differently for different or. Definition 5.3.2 does not require there to be one
single transformation that works for all or.
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5.3.2. Substitutions imply falsifications

The force of our argument comes from the fact that if there are substitutions, then this
necessarily leads to mismatches between inferences and predictions. This is shown by
the following lemma.

Lemma 5.3.3. If there is a or-substitution, there is a falsification at some o ∈ O.

Proof. Let p be the physical system in Definition 5.3.1 and define p′ = S(p). Let o ∈
obs(p) be a dataset of p which has inference content or and let o′ be a dataset of p′
which has the same inference content or , guaranteed to exist by the definition of Por

in (5.3). Equation (5.4) implies that

pred(o) ∩ pred(o′) = ∅ . (5.5)

Since, however, or = o′r , we have inf(o) = inf(o′). Thus we have either inf(o) ̸∈ pred(o)
or inf(o′) ̸∈ pred(o′), or both. Thus there is either a falsification at o, a falsification at o′,
or both.

The last lemma shows that if there are substitutions, then there are necessarily falsi-
fications. This might, however, not be considered too problematic, since it could always
be the case that the model is right whereas the inferred experience is wrong. Inaccess-
ible predictions are not unusual in science. A fully problematic case only pertains for
universal substitutions, i.e., if there is an or-substitution for every inference content or
that can arise in an experiment under consideration.

5.3.3. Universal substitutions imply complete falsification

In Section 5.2.4, we have defined falsifications for individual datasets o ∈ O. Using the
‘insight view’ of single datasets, we can refine this definition somewhat by relating it to
the inference content only.

Definition 5.3.4. There is an or-falsification if there is a falsification for some o ∈ Owhich
has inference content or.

This definition isweaker than the original definition, because amongall datasetswhich
have inference content or , only one needs to exhibit a falsification. Using this notion, the
next lemma specifies the exact relation between substitutions and falsifications.

Lemma 5.3.5. If there is an or-substitution, there is an or-falsification.

Proof. This lemma follows directly from the proof of Lemma5.3.3 because the datasets
o and o′ used in that proof both have inference content or.

This finally allows us to show our first main result. It shows that if a universal substi-
tution exists, the theory of consciousness under consideration is falsified. We explain
the meaning of this proposition after the proof.
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Proposition 5.3.6. If there is a universal substitution, there is an or-falsification for all
possible inference contents or.

Proof. By definition of universal substitution, there is an or-substitution for every or.
Thus the claim follows directly from Lemma 5.3.5.

In combination with Definition 5.3.4, this proposition states that for every possible
report (or any other type of inference procedure, cf. our use of terminology in Sec-
tion 5.2.4), there is a dataset o which contains the report’s data and for which we have

inf(or) /∈ pred(o) , (5.6)

where we have slightly abused notation in writing inf(or) instead of inf(o) for clarity.
This implies that one of two cases needs to pertain: Either at least one of the inferred
experiences inf(or) is correct, in which case the corresponding prediction is wrong and
the theory needs to be considered falsified. The only other option is that for all inference
contents or , the prediction pred(o) is correct, which qua (5.6) implies that no single in-
ference inf(or) points at the correct experience, so that the inference procedure is com-
pletely wrong. This shows that Proposition 5.3.6 can equivalently be stated as follows.

Proposition 5.3.7. If there is a universal substitution, either every single inference opera-
tion is wrong or the theory under consideration is already falsified.

Next, we discuss under which circumstances a universal substitution exists.

5.3.4. When does a universal substitution exist?

In the last section, we have seen that if a universal substitution exists, this has strong
consequences. In this section, we discuss under what conditions universal substitu-
tions exist.

5.3.4.1. Theories need to be minimally informative

We have taken great care above tomake sure that our notion of prediction is compatible
with incomplete or noisy datasets. This is the reason why pred is a correspondence, the
most general object one could consider. For the purpose of this section, we add a gentle
assumption which restricts pred slightly: we assume that every prediction carries at
least a minimal amount of information. In our case, this means that for every prediction
pred(o), there is at least one other prediction pred(o′) which is different from pred(o).
Put in simple terms, this means that we don’t consider theories of consciousness which
have only a single prediction.

In order to take this into account, for every o ∈ O, we define ō := obs(obs−1(o)), which
comprises exactly all those datasets which can be generated by physical systems p that
also generate o. When applying our previous definitions, this can be fleshed out as

ō = { o′ | ∃ p such that o ∈ obs(p) and o′ ∈ obs(p) } . (5.7)
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Using this, we can state ourminimal information assumption in a way that is compatible
with the general setup displayed in Figure 5.2.2:

We assume that the theories of consciousness under consideration are minimally in-
formative in that for every o ∈ O, there exists an o′ ∈ O such that

pred(ō) ∩ pred(ō′) = ∅ . (5.8)

5.3.4.2. Inference and prediction data are independent

Wehave already noted, that inmost experiments, the prediction content oi and inference
content or consist of different parts of a dataset. What ismore, they are usually assumed
to be independent, in the sense that changes in oi are possiblewhile keeping or constant.
This is captured by the next definition.

Definition 5.3.8. Inference and prediction data are independent if for any oi, o′i and or ,
there is a variation

ν : P → P (5.9)

such that oi ∈ obs(p), o′i ∈ obs(ν(p)) but or ∈ obs(p) and or ∈ obs(ν(p)) for some p ∈ P .

Here, we use the same shorthand as in (5.3). For example, the requirement oi ∈ obs(p)
is a shorthand for there being an o ∈ obs(p) which has prediction content oi. The vari-
ation ν in this definition is a variation in P , which describes physical systems which
could, in principle, have been realized in an experiment (cf. Section 5.2.5). We note that
a weaker version of this definition can be given which still implies our results below, cf.
Appendix 5.A. Note that if inference and prediction data are not independent, e.g. be-
cause they have a common cause, problems of tautologies loom large, cf. Section 5.5.
Throughout the text we often refer to Definition 5.3.8 simply as “independence”.

5.3.4.3. Universal substitutions exist

Combining the last two sections, we can now prove that universal substitutions exist.

Proposition 5.3.9. If inference and prediction data are independent, universal substitu-
tions exist.

Proof. To show that a universal substitution exists, we need to show that for every o ∈
O, an or-substitution exists (Definition 5.3.1). Thus assume that an arbitrary o ∈ O is
given. The minimal information assumption guarantees that there is an o′ such that
Equation (5.8) holds. As before, we denote the prediction content of o and o′ by oi and
o′i, respectively, and the inference content of o by or.

Since inference and prediction data are independent, there exists a p ∈ P as well as a
ν : P → P such that oi ∈ obs(p), o′i ∈ obs(ν(p)), or ∈ obs(p) and or ∈ obs(ν(p)). By Defin-
ition (5.7), the first two of these four conditions imply that obs(p) ⊂ ō and obs(ν(p)) ⊂ ō′.
Thus Equation (5.8) applies and allows us to conclude that

pred(obs(p)) ∩ pred(obs(ν(p)) = ∅ .
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Via Equation (5.3), the latter two of the four conditions imply that p ∈ Por and ν(p) ∈
Por . Thus we may restrict ν to Por to obtain a map

S : Por → Por ,

which in light of the first part of this proof exhibits at least one p ∈ Por which satis-
fies (5.4). Thus we have shown that an or-substitution exists. Since o was arbitrary, it
follows that a universal substitution exists.

The intuition behind this proof is very simple. In virtue of our assumption that theories
of consciousness need to be minimally informative, for any dataset o, there is another
dataset o′ which makes a non-overlapping prediction. But in virtue of inference and pre-
diction data being independent, we can find a variation that changes the prediction con-
tent as prescribed by o and o′, but keeps the inference content constant. This suffices to
show that there exists a transformation S as required by the definition of a substitution.

Combining this result with Proposition 5.3.7, we finally can state our main theorem.

Theorem 5.3.10. If inference and prediction data are independent, either every single
inference operation is wrong or the theory under consideration is already falsified.

Proof. The theorem follows by combining Proposition 5.3.9 and Proposition 5.3.7.

In the next section, we give several examples of universal substitutions, before dis-
cussing various possible responses to our result in Section 5.5.

5.3.4.4. Examples of data independence

Our main theorem shows that testing a theory of consciousness will necessarily lead to
its falsification if inference and prediction data are independent (Definition 5.3.8), and
if at least one single inference can be trusted (Theorem 5.3.10). In this section, we give
several examples that illustrate the independence of inference and prediction data. We
take report to mean output, behavior, or verbal report itself and assume that prediction
data derives from internal measurements.

Artificial neural networks. ANNs, particularly those trained using deep learning, have
grown increasingly powerful and capable of human-like performance (LeCun et al., 2015;
Bojarski et al., 2016). For any ANN, report (output) is a function of node states. Crucially,
this function is non-injective, i.e. some nodes are not part of the output. E.g., in deep
learning, the report is typically taken to consist of the last layer of the ANN, while the
hidden layers are not taken to be part of the output. Correspondingly, for any given
inference data, one can construct a ANN with arbitrary prediction data by adding nodes,
changing connections and changing those nodes which are not part of the output. Put
differently, one can always substitute a given ANN with another with different internal
observables but identical or near-identical reports. From a mathematical perspective
it is well-known that both feed-forward ANNs and recurrent ANNs can approximate any
given function (Hornik et al., 1989; Schäfer & Zimmermann, 2006). Since reports are just
some function, it follows that there are viable universal substitutions.
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A special case thereof is the unfolding transformation considered in (Doerig et al.,
2019) in the context of IIT. The arguments in this paper constitute a proof of the fact
that for ANNs, inference and prediction data are independent (Definition 5.3.8). Cru-
cially, our main theorem shows that this has implications for all minimally informative
theories of consciousness. A similar result (using a different characterization of theor-
ies of consciousness than minimally informative) has been shown in (Kleiner, 2020a).

Universal computers. Turing machines are extremely different in architecture than
ANNs. Since they are capable of universal computation (Turing, 1937b) they should
provide an ideal candidate for a universal substitution. Indeed, this is exactly the reason-
ing behind the Turing test of conversational artificial intelligence (Turing, 1950). There-
fore, if one believes it is possible for a sufficiently fast Turing machine to pass the Tur-
ing test, one needs to accept that substitutions exist. Notably, Turing machines are just
one example of universal computation, and there are other instances of different para-
meter spaces or physical systems that are capable thereof, such as cellular automata
(Wolfram, 1984).

Universal intelligences. There are models of universal intelligence that allow for max-
imally intelligent behavior across any set of tasks (Hutter, 2003). For instance, con-
sider the AIXI model, the gold-standard for universal intelligence, which operates via
Solomonoff induction (Solomonoff, 1964; Hutter, 2004). The AIXI model generates an
optimal decision making over some class of problems, and methods linked to it have
already been applied to a range of behaviors, such as creating “AI physicists” (Wu & Teg-
mark, 2019). Its universality indicates it is a prime candidate for universal substitutions.
Notably, unlike a Turing machine, it avoids issues of precisely how it is accomplishing
universal substitution of report, since the algorithm that governs the AIXI model beha-
vior is well-described and “relatively” simple.

The above are all real and viable classes of systems that are used everyday in science
and engineering which all provide different viable universal substitutions if inferences
are based on reports or outputs. They show that in normal experimental setups such as
the ones commonly used in neuroscientific research into consciousness (Frith, Perry, &
Lumer, 1999), inference and prediction data are indeed independent, and dependency is
not investigated nor properly considered. It is always possible to substitute the physical
system under consideration with another that has different internal observables, and
therefore different predictions, but similar or identical reports. Indeed, recent research
in using the work introduced in this work shows that even different spatiotemporal mod-
els of a system can be substituted for one another, leading to falsification (Hanson &
Walker, 2021). We have not considered possible but less reasonable examples of uni-
versal substitutions, like astronomically-large look-up ledgers of reports.

As an example of our Main Theorem 5.3.10, we consider the case of IIT. Since the
theory is normally applied in Boolean networks, logic gates, or artificial neural networks,
one usually takes report to mean “output.” In this case, it has already been proven that
systems with different internal structures and hence different predicted experiences,
can have identical input/output (and therefore identical reports or inferences about re-
port) (Albantakis & Tononi, 2019). To take another case: within IIT it has already been
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acknowledged that a Turing machine may have a wildly different predicted contents
of consciousness for the same behavior or reports (C. Koch, 2019). Therefore, data
independence during testing has already been shown to apply to IIT under its normal
assumptions.

5.4. Inference and Prediction Data are Strictly Dependent

An immediate response to our main result showing that many theories suffer from a
priori falsification would be to claim that it offers support of theories which define con-
scious experience in terms of what is accessible to report. This is the case, e.g., for
behaviourist theories of consciousness but might arguably also be the case for some
interpretations of global workspace theory or fame in the brain proposals. In this sec-
tion, we show that this response is not valid, as theories of this kind, where inference
and prediction data are strictly dependent, are unfalsifiable.

In order to analyse this case, we first need to specifically outline how theories can be
pathologically unfalsifiable. Clearly, the goal of the scientific study as a whole is to find,
eventually, a theory of consciousness that are empirically adequate and therefore cor-
roborated by all experimental evidence. Therefore, not being falsified in experiments is a
necessary condition (though not sufficient) any purportedly “true” theory of conscious-
ness needs to satisfy. Therefore, not being falsifiable by the set of possible experiments
per se is not a bad thing. We seek to distinguish this from cases of unfasifiability due to
pathological assumptions that underlie a theory of consciousness, assumptions which
render an experimental investigation meaningless. Specifically, a pathological depend-
ence between inferences and predictions leads to theories which are unfalsifiable.

Such unfalsifiable theories can be identified neatly in our formalism. To see how, recall
thatO denotes the class of all datasets that can result from an experiment investigating
the physical systems in the class P . Put differently, it contains all datasets that could,
in principle, appear when probed in the experiment. This is not the class of all possible
datasets of type O one can think of. Many datasets which are of the same form as
elements of Omight simply not arise in the experiment under consideration. We denote
the class of all possible datasets as:

O : All possible datasets of type O .

Intuitively, in terms of possible worlds semantics, O describes the datasets which could
appear, for the type of experiment under consideration, in the actual world. O, in con-
trast, describes the datasets which could appear in this type of experiment in any pos-
sible world. For example, O contains datasets which can only occur if consciousness
attaches to the physical in a different way than it actually does in the actual word.

By construction, O is a subset of O, which describes which among the possible data-
sets actually arises across experimental trials. Hence, O also determines which theory
of consciousness is compatible with (i.e. not falsified by) experimental investigation.
However, O defines all possible data sets independent of any constraint by real empir-
ical results, that is, all possible imaginable data sets.
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Introduction of O allows us to distinguish the pathological cases of unfalsifiability
mentioned above. Whereas any purportedly true theory should only fail to be falsified
with respect to the experimental dataO, a pathological unfalsifiability pertains if a theory
cannot be falsified at all, i.e. over O. This is captured by the following definition.

Definition 5.4.1. A theory of consciousness which does not have a falsification over O is
empirically unfalsifiable.

Here, we use the term ‘empirically unfalsifiable’ to highlight and refer to the pathological
notion of unfalsifiability. Intuitively speaking, a theory which satisfies this definition ap-
pears to be true independently of any experimental investigation, and without the need
for any such investigation. Using O, we can also define the notion of strict dependence
in a useful way.

Definition 5.4.2. Inference and prediction data are strictly dependent if there is a function
f such that for any o ∈ O, we have oi = f(or).

This definition says that there exists a function f which for every possible inference
data or allows to deduce the prediction data oi. We remark that the definition refers to
O and not O, as the dependence of inference and prediction considered here holds by
assumption and is not simply asserting a contingency in nature.

The definition is satisfied, for example, if inference data is equal to prediction data, i.e.
if oi = or , where f is simply the identity. This is the case, e.g., for behaviourist theories
(Skinner, 1938) of consciousness, where consciousness is equated directly with report
or behavior, or for precursors of functionalist theories of consciousness that are based
on behavior or input/output (Putnam, 1960). The definition is also satisfied in the case
where prediction data is always a subset of the inference data:

oi ⊆ or . (5.10)

Here, f is simply the restriction function. This arguably applies to global workspace
theory (Baars, 2005), the “attention schema” theory of consciousness (Graziano&Webb,
2015) or “fame in the brain” (Dennett, 1991) proposals.

In all these cases, consciousness is generated by – and hence needs to be predicted
via – what is accessible to report or output. In terms of Block’s distinction between
phenomenal consciousness and access consciousness (Block, 1996), Equation (5.10)
holds true whenever a theory of consciousness is under investigation where access
consciousness determines phenomenal consciousness.

Our second main theorem is the following.

Theorem 5.4.3. If a theory of consciousness implies that inference and prediction data
are strictly dependent, then it is either already falsified or empirically unfalsifiable.

Proof. To prove the theorem, it is useful to consider the inference and prediction content
of datasets explicitly. The possible pairings that can occur in an experiment are given
by

Oexp := { (oi, or) | o ∈ O } , (5.11)

138



5. Falsification and Consciousness

where we have again used our notation that oi denotes the prediction data of o, and
similar for or. To define the possible pairings that can occur in O, we let Oi denote the
class of all prediction contents that arise in O, and Or denote the class of all inference
contents that arise in O. The set of all conceivable pairings is then given by

Oall :={ (oi, o′r) | o ∈ O, o′ ∈ O} (5.12)
={ (oi, o′r) | oi ∈ Oi, o

′
r ∈ Or } . (5.13)

Crucially, here, oi and o′r do not have to be part of the same dataset o. Combined with
Definition 5.2.1, we conclude that there is a falsification over O if for some (oi, o

′
r) ∈ Oall,

we have inf(o) /∈ pred(o′), and there is a falsification over O if for some (oi, or) ∈ Oexp,
we have inf(o) /∈ pred(o).

Next we show that if inference and prediction data are strictly dependent, then Oall =
Oexp holds. We start with the set Oall as defined in (5.12). Expanding this definition in
words, it reads

Oall = { (di, dr) | ∃ o ∈ O such that dr = or and ∃ õ ∈ O such that di = õi } , (5.14)

where we have symbols di and dr to denote prediction and inference data independently
of any dataset o.

Assume that the first condition in this expression, dr = or holds for some o ∈ O. Since
inference and prediction data are strictly dependent, we have di = f(dr). Furthermore,
for the same reason, the prediction content oi of the dataset o satisfies oi = f(or).
Applying the function f to both sides of the first condition gives f(dr) = f(or), which
thus in turn implies oi = di. This means that the o that satisfies the first condition
in (5.14) automatically also satisfies the second condition. Therefore, due to inference
and prediction data being strictly dependent, (5.14) is equivalent to

Oall = { (di, dr) | ∃ o ∈ O such that dr = or and di = oi } . (5.15)

This, however, is exactly Oexp as defined in (5.11). Thus we conclude that if inference
and prediction data are strictly dependent, Oall = Oexp necessarily holds.

Returning to the characterisation of falsification in terms of Oexp and Oall above, what
we have just found implies that there is a falsification over O if and only if there is a
falsification over O. Thus either there is a falsification over O, in which case the theory
is already falsified or there is no falsification over O, in which case the theory under
consideration is empirically unfalsifiable.

The gist of this proof is that if inference and prediction data are strictly dependent,
then as far as the inference and prediction contents go, O and O are the same. I.e,
the experiment does not add anything to the evaluation of the theory. It is sufficient to
know only all possible datasets to decide whether there is a falsification. In practise,
this would mean that knowledge of the experimental design (which reports are to be
collected, on the one hand, which possible data a measurement device can produce,
one the other) is sufficient to evaluate the theory, which is clearly at odds with the role
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of empirical evidence required in any scientific investigation. Thus such theories are
empirically unfalsifiable.

To give an intuitive example of the theorem, let us examine a theory that uses the
information accessible to report in a system to predict conscious experience (perhaps
this information is “famous” in the brain or is within some accessible global workspace).
In terms of our notation, we can assume that or denotes everything that is accessible
to report, and oi denotes that part which is used by the theory to predict conscious
experience. Thus in this case we have oi ⊆ or. Since the predicted contents are always
part of what can be reported, there can never be any mismatch between reports and
predictions. However, this is not only the case for Oexp but also, in virtue of the theory’s
definition, for all possible datasets, i.e., Oall. Therefore such theories are empirically
unfalsifiable. Experiments add no information to whether the theory is true or not, and
such theories are empirically uninformative or tautological.

5.5. Objections

In this section, we discuss a number of possible objections to our results.

5.5.1. Restricting inferences to humans only

The examples given in Section 5.3.4.4 show that data independence holds during the
usual testing setups. This is because prima facie it seems reasonable to base infer-
ences either on report capability or intelligent behavior in a manner agnostic of the ac-
tual physical makeup of the system. Yet this entails independence, so in these cases
our conclusions apply.

One response to our results might be to restrict all testing of theories of conscious-
ness solely to humans. In our formalisms this is equivalent to making the strength of
inferences based not on reports themselves but on an underlying biological homology.
Such an inf function may still pick out specific experiences via reports, but the weight
of the inference is carried by homology rather than report or behavior. This would mean
that the substitution argument does not significantly affect consciousness research, as
reports of non-human systems would simply not count. Theories of consciousness,
so this idea goes, would be supported by abductive reasoning from testing in humans
alone.

Overall there are strong reasons to reject this restriction of inferences. One significant
issue is that this objection is equivalent to saying that reports or behavior in non-humans
carry no information about consciousness, an incredibly strong claim. If non-humans
contradicted a theory (like a complex organism acting in pain while a theory predicted
a lack of pain) the theory would be presumed to be correct above any behavior or re-
port, meaning that abductive application of the theory ignores the fact that this sort of
abductive reasoning should actually falsify the theory. Indeed, this is highly problematic
for consciousness research which often uses non-human animal models (Boly et al.,
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2013). For instance, cephalopods are among the most intelligent animals yet are quite
distant on the tree of life from humans and have a distinct neuroanatomy, and still are
used for consciousness research (Mather, 2008). Even in artificial intelligence research,
there is increasing evidence that deep neural networks produced brain-like structures
such as grid cells, shape tuning, and visual illusions, and many others (Richards et al.,
2019). Given these similarities, it becomes questionable why the strength of inferences
should be based on homology instead of capability of report or intelligence.

What is more, restricting inferences to humans alone is unlikely to be sufficient to
avoid our results. Depending on the theory under consideration, data independence
might exist just in human brains alone. That is, it is probable that there are transform-
ations (as in Equation (5.9)) available within the brain wherein or is fixed but oi var-
ies. This is particularly true once one allows for interventions on the human brain by
experimenters, such as perturbations like transcranial magnetic stimulation, which is
already used in consciousness research (Rounis, Maniscalco, Rothwell, Passingham, &
Lau, 2010; Napolitani et al., 2014).

For these reasons this objection does not appear viable. At minimum it is clear that if
the objection were taken seriously, it would imply significant changes to consciousness
research which would make the field extremely restricted with strong a priori assump-
tions.

5.5.2. Reductio ad absurdum

Another hypothetical objection to our results is to argue that they could just as well
be applied to scientific theories in other fields. If this turned out to be true this wouldn’t
imply our argument is necessarily incorrect. But the fact that other scientific theories do
not seemespecially problematic with regard to falsificationwould generate the question
of whether some assumption is illegitimately strong. In order to address this, we explain
which of our assumptions is specific to theories of consciousness and wouldn’t hold
when applied to other scientific theories. Subsequently, we give an example to illustrate
this point.

The assumption in question is that O, the class of all datasets that can result from
observations or measurements of a system, is determined by the physical configura-
tions in P alone. I.e., every single dataset o, including both its prediction content oi and
its inference content or , is determined by p, and not by a conscious experience in E. In
Figure 5.2.2, this is reflected in the fact that there is an arrow from P to O, but no arrow
from E to O.

This assumption expresses the standard paradigm of testing theories of conscious-
ness in neuroscience, according to which both the data used to predict a state of con-
sciousness and the reports of a system are determined by its physical configuration
alone. This, in turn, may be traced back to consciousness’ assumed subjective and
private nature, which implies that any empirical access to states of consciousness in
scientific investigations is necessarily mediated by a subject’s reports, and to general
physicalist assumptions.
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This is different from experiments in other natural sciences. If there are two quantities
of interest whose relation is to be modelled by a scientific theory, then in all reasonable
cases there are two independentmeans of collecting information relevant to a test of the
theory, one providing a dataset that is determined by the first quantity, and one providing
a dataset that is determined by the second quantity.

Consider, as an example, the case of temperature T and its relation to microphysical
states. To apply our argument, the temperature T would replace the experience spaceE
and p would denote a microphyiscal configuration. In order to test any particular theory
about how temperature is determined by microphysical states, one would make use of
two different measurements. The first measurement would access the microphysical
states and would allow measurement of, say, the mean kinetic energy (if that’s what the
theory under consideration utilizes). This first measurement would provide a dataset om
that replaces the prediction data oi above. For the secondmeasurement, one would use
a thermometer or some other measuring device to obtain a dataset ot that replaces our
inference data or above. Comparison of the inferred temperature with the temperature
that is predicted based on om would allow testing of the theory under consideration.
These independent means provide independent access to each of the two datasets in
question. Combining om and ot in one dataset o, the diagrammatic representation is

P −→ O←− T ,

which differs from the case of theories of consciousness considered here, wherein the
physical system determines both datasets.

5.5.3. Theories could be based on phenomenology

Another response to the issue of independence/dependence identified here is to pro-
pose that a theory of consciousness may not have to be falsified but can be judged by
other characteristics. This is reminiscent of ideas put forward in connection with String
Theory, which some have argued can be judged by elegance or parsimony alone (Carroll,
2018).

In addition to elegance and parsimony, in consciousness science, one could in par-
ticular consider a theory’s fit with phenomenology, i.e. how well a theory describes the
general structure of conscious experience. Examples of theories that are constructed
based on a fit with phenomenology are recent versions of IIT (Oizumi et al., 2014) or
any view that proposes developing theories based on isomorphisms between the struc-
ture of experiences and the structure of physical systems or processes (Tsuchiya et al.,
2020).

It might be suggested that phenomenological theories might be immune to aspects
of the issues we outline in our results (Negro, 2020). We emphasize that in order to
avoid our results, and indeed the need for any experimental testing at all, a theory con-
structed from phenomenology has to be uniquely derivable from conscious experience.
However, to date, no such derivation exists, as phenomenology seems to generally un-
derdetermine the postulates of IIT (Bayne, 2018; A. B. Barrett & Mediano, 2019), and be-
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cause it is unknown what the scope and nature of non-human experience is. Therefore
theories based on phenomenology can only confidently identify systems with human-
like conscious experiences and cannot currently do so uniquely. Thus they cannot avoid
the need for testing.

As long as no unique and correct derivation exists across the space of possible con-
scious experiences, the use of experimental tests to assess theories of consciousness,
and hence our results, cannot be avoided.

5.5.4. Rejecting falsifiability

Another response to our findingsmight be to deny the importance of falsificationswithin
the scientific methodology. Such responses may reference a Lakatosian conception of
science, according to which science does not proceed by discarding theories immedi-
ately upon falsification, but instead consists of research programs built around a family
of theories (Lakatos, 1980). These research programs have a protective belt which con-
sists of non-essential assumptions that are required tomake predictions, andwhich can
easily be modified in response to falsifications, as well as a hard core that is immune
to falsifications. Within the Lakatosian conception of science research programs are
either progressive or degenerating based on whether they can “anticipate theoretically
novel facts in its growth” or not (Lakatos, 1980).

It is important to note, however, that Lakatos does not actually breakwith falsification-
ism. This is why Lakatos description of science is often called “refined falsificationism”
in philosophy of science (Radnitzky, 1991). Thus cases of testing theories’ predictions
remain relevant in a Lakatosian view in order to distinguish between progressive and de-
generating research programs. Therefore our results generally translate into this view of
scientific progress. In particular, Theorem 5.3.10 shows that for every single inference
procedure that is taken to be valid, there exists a system for which the theory makes
a wrong prediction. This implies necessarily that a research program is degenerating.
That is, independence implies that there is always an available substitution that can
falsify any particular prediction coming from the research program.

5.6. Conclusion

In this paper, we have subjected the usual scheme for testing theories of consciousness
to a thorough formal analysis. We have shown that there appear to be deep problems
inherent in this scheme which need to be addressed.

Crucially, in contrast to other similar results (Doerig et al., 2019), we do not put the
blame on individual theories of consciousness, but rather show that a key assumption
that is usually being made is responsible for the problems: an experimenter’s inference
about consciousness and a theory’s predictions are generally implicitly assumed to be
independent during testing across contemporary theories. As we formally prove, if this
independence holds, substitutions or changes to physical systems are possible that
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falsify any given contemporary theory. Whenever there is an experimental test of a the-
ory of consciousness on some physical system which does not lead to a falsification,
there necessary exists another physical system which, if it had been tested, would have
produced a falsification of that theory. We emphasize that this problem does not only
affect one particular type of theory, for example those based on causal interactions like
IIT; theorems apply to all contemporary neuroscientific theories of consciousness if in-
dependence holds.

In the second part of our results, we examine the case where independence doesn’t
hold. We show that if an experimenter’s inferences about consciousness and a theory’s
predictions are instead considered to be strictly dependent, empirical unfalsifiability fol-
lows, which renders any type of experiment to test a theory uninformative. This affects
all theories wherein consciousness is predicted off of reports or behavior (such as be-
haviorism), theories based off of input/output functions, and also theories that equate
consciousness with on accessible or reportable information.

Thus theories of consciousness seemcaught between between Scylla and Charybdis,
requiring delicate navigation. In our opinion there may only be two possible paths for-
ward to avoid these dilemmas, which we briefly outline below. Each requires a revision
of the current scheme of testing or developing theories of consciousness.

Lenient dependency. When combined, our main theorems show that both independ-
ence and strict dependence of inference and prediction data are problematic and thus
neither can be assumed in an experimental investigation. This raises the question of
whether there are reasonable cases where inference and prediction are dependent, but
not strictly dependent.

A priori, in the space of possible relationships between inference and prediction data,
there seems to be room for relationships that are neither independent (Section 5.3) nor
strictly dependent (Section 5.4). We define this relationships of this kind as cases of
lenient dependency. No current theory or testing paradigm that we know of satisfies
this definition. Yet cases of lenient dependency cannot be excluded to exist. Such cases
would technically not be beholden to either Theorem 5.3.10 or Theorem 5.4.3.

There seems to be two general possibilities of how lenient dependencies could be
built. On the one hand, one could hope to find novel forms of inference that allow to sur-
pass the problems we have identified here. This would likely constitute a major change
in themethodologies of experimental testing of theories of consciousness. On the other
hand, another possibility to attain lenient dependence would be to construct theories
of consciousness which yield prediction functions that are designed to explicitly have
a leniently dependent link to inference functions. This would likely constitute a major
change in constructing theories of consciousness.

Physics is not causally closed. Another way to avoid our conclusion is to only consider
theories of consciousness which do not describe the physical as causally closed (Kim,
1998). That is, the presence or absence of a particular experience itself would have to
make a difference to the configuration, dynamics, or states of physical systems above
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and beyond what would be predicted with just information about the physical system
itself. If a theory of consciousness does not describe the physical as closed, a whole
other range of predictions are possible: predictions which concern the physical domain
itself, e.g., changes in the dynamics of the system which depend on the dynamics of
conscious experience. These predictions are not considered in our setup andmay serve
to test a theory of consciousness without the problems we have explored here.
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Appendix

5.A. Weak Independence

In this section, we show how Definition 5.3.8 can be substantially relaxed while still en-
suring our results to hold. To this end, we need to introduce another bit of formalism:
We assume that predictions can be compared to establish how different they are. This
is the case, e.g., in IIT where predictions map to the space of maximally irreducible con-
ceptual structures (MICS), sometimes also called the space of Q-shapes, which carries
a distance function analogous to a metric (Kleiner & Tull, 2021). We assume that for
any given prediction, one can determine which of all those predictions that don’t overlap
with the given one is most similar to the latter, or equivalently which is least different.
We calls this a minimally differing prediction and use it to induce a notion of minimally
differing data sets below. Uniqueness is not required.

Let an arbitrary data set o ∈ O be given. The minimal information assumption from
Section 5.3.4.1 ensures that there is at least one data set o′ such that Equation (5.8)
holds. For what follows, let o⊥ denote the set of all data setswhich satisfy Equation (5.8)
with respect to o,

o⊥ := { o′ ∈ O | pred(ō) ∩ pred(ō′) = ∅ } . (5.16)

Thus o⊥ contains all data sets whose prediction completely differs from the prediction
of o.

Definition 5.A.1. We denote by min(o) those data sets in o⊥ whose prediction is least
different from the prediction of o.

In many cases min(o) will only contain one data set, but here we treat the general case
where this is not so. We emphasize that the minimal information assumption guaran-
tees that min(o) exists. We can now specify a much weaker version of Definition 5.3.8.

Definition 5.A.2. Inference and prediction data are independent if for any o ∈ O and
o′ ∈ min(o), there is a variation

ν : P → P (5.17)

such that oi ∈ obs(p), o′i ∈ obs(ν(p)) but or ∈ obs(p) and or ∈ obs(ν(p)) for some p ∈ P .

The difference between Definition 5.A.2 and Definition 5.3.8 is that for a given o ∈ O,
the latter requires the transformation ν to exist for any o′ ∈ O, wheres the former only
requires it to exist for minimally different data sets o′ ∈ min(o). The corresponding
proposition is the following.
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Proposition 5.A.3. If inference and prediction data areweakly independent, universal sub-
stitutions exist.

Proof. To show that a universal substitution exists, we need to show that for every o ∈ O,
an or-substitution exists (Definition 5.3.1). Thus assume that an arbitrary o ∈ O is given
and pick an o′ ∈ min(o). As before, we denote the prediction content of o and o′ by oi
and o′i, respectively, and the inference content of o by or.

Since inference and prediction data are weakly independent, there exists a p ∈ P
as well as a ν : P → P such that oi ∈ obs(p), o′i ∈ obs(ν(p)), or ∈ obs(p) and or ∈
obs(ν(p)). By Definition (5.7), the first two of these four conditions imply that obs(p) ⊂ ō
and obs(ν(p)) ⊂ ō′. Since o′ is in particular an element of o⊥, Equation (5.8) applies and
allows us to conclude that

pred(obs(p)) ∩ pred(obs(ν(p)) = ∅ .

Via Equation (5.3), the latter two of the four conditions imply that p ∈ Por and ν(p) ∈ Por .
Thus we may restrict ν to Por to obtain a map

S : Por → Por ,

which in light of the first part of this proof exhibits at least one p ∈ Por which satis-
fies (5.4). Thus we have shown that an or-substitution exists. Since o was arbitrary, it
follows that a universal substitution exists.

The following theorem shows that Definition 5.A.2 is sufficient to establish the claim
of Theorem 5.3.10.

Theorem 5.A.4. If inference and prediction data are weakly independent, either every
single inference operation is wrong or the theory under consideration is already falsified.

Proof. The theorem follows by combining Proposition 5.A.3 and Proposition 5.3.7.

5.B. Inverse Predictions

Whendefining falsification, we have considered predictions that take as input data about
the physical configuration of a system and yield as output a state of consciousness. An
alternative would be to consider the inverse procedure: a predictionwhich takes as input
a reported stated of consciousness and yields as output someconstraint on the physical
configuration of the system that is having the conscious experience. In this section, we
discuss the second case in detail.

As before, we assume that some data set o has been measured in an experimental
trail, which contains both the inference data or (which includes report and behavioural
indicators of consciousness used in the experiment under consideration) as well as
some data oi that provides information about the physical configuration of the system
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pred−1
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Figure 5.B.1.: The case of an inverse prediction. Rather than comparing the inferred and pre-
dicted state of consciousness, one predicts the physical configuration of a sys-
tem based on the system’s report and compares this with measurement results.

under investigation. For simplicity, we will also call this prediction data here. Also as
before, we take into account that the state of consciousness of the system has to be
inferred from or , and again denote this inference procedure by inf .

The theory under consideration provides a correspondence pred : O ↠ E which de-
scribes the process of predicting states of consciousness mentioned above. If we ask
which physical configurations are compatible with a given state e of consciousness, this
is simply the preimage pred−1(e) of e under pred, defined as

pred−1(e) = { o ∈ O | e ∈ pred(o)} . (5.18)

Accordingly, the class of all prediction data which is compatible with the inferred exper-
ience inf(o) is

pred−1
(
inf(o)

)
, (5.19)

depicted in Figure 5.B.1, and a falsification occurs in case the the observed o has a pre-
diction content oi which is not in this set. Referring to the previous definition of falsific-
ation as type-1 (Definition 5.2.1), we define this new form of falsification as type-2.

Definition 5.B.1. There is a type-2 falsification at o ∈ O if we have

o ̸∈ pred−1
(
inf(o)

)
. (5.20)

In terms of the notion introduced in Section 5.2.5, Equation (5.20) could equivalently
be written as oi ̸∈ pred−1

(
inf(or)

)
i
. The following lemma shows that there is a type-2

falsification if and only if there is a type-1 falsification. Hence all of our previous results
apply as well to type-2 falsifications.

Lemma 5.B.2. There is a type-2 falsification at o if and only if there is a type-1 falsification
at o.

Proof. Equation (5.18) implies that o ̸∈ pred−1(e) if and only if e ̸∈ pred(o). Applied to
e = inf(o), this implies:

o ̸∈ pred−1(inf(o)) if and only if inf(o) ̸∈ pred(o) .

The former is the definition of a type-2 falsification. The latter is Equation (5.2) in the
definition of a type-1 falsification. Hence the claim follows.
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6. The Closure of the Physical,
Consciousness and Scientific Practice

Johannes Kleiner, Stephan Hartmann

6.1. Introduction

The closure of the physical is a central assumption in the philosophy of mind and in the
scientific study of consciousness (Kim, 1996; Papineau, 2009). It underlies both func-
tionalist and identity theories of consciousness and is a central component of many, if
not all, neuroscientific models of consciousness. However, we will show below that the
closure of the physical is untenable in a scientific context because it implies that no ex-
periment can actually distinguish between two theories of consciousness that obey this
assumption. It is therefore incompatible with scientific practice and hence unscientific.

The central idea of our argument is the observation that in any scientific experiment
the measurement results must be stored or transmitted before analysis, and we show
that this means that the stored data are determined by the physical properties of a stor-
age device or a transmission channel. In conjunction with the closure of the physical,
this means that the stored data are independent of which theory of consciousness is
true.

It has already been pointed out that the closure of the physical is a problematic as-
sumption in a scientific context. (Pauen, 2000) and (Pauen, 2006), for example, make
this point with respect to property dualism and qualia epiphenomenalism. Our proof
presented below covers the general case. It shows independently of any other meta-
physical premises that one of the central assumptions in the empirical study of con-
sciousness is flawed. This calls into question the theoretical basis of a large number
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of experiments conducted to date and shows that the hope of basing a physical func-
tionalist or identity-based understanding of consciousness on empirical observations is
null and void.

The remainder of this paper is organized as follows. Section 6.2 elaborates which
theories of consciousness our argument addresses and defines an epistemic version of
the closure of the physical. Section 6.3 identifies a necessary condition for theories of
consciousness to be distinguished by empirical data. Sections 6.4 and 6.5 discuss the
role of empirical data in the scientific study of consciousness and why they supervene
on physical events. Section 6.6 is devoted to the proof of ourmain claim, and Section 6.7
shows that the causal closure of the physical, as usually defined ontologically, implies
our definition, which ensures that our result holds in full generality. Finally, Section 6.8
contains some concluding remarks.

6.2. Theories of Consciousness

We use the term theories of consciousness to refer to the theories that are tested, com-
pared, or derived in experiments in the scientific study of consciousness, regardless
of what metaphysical status of consciousness they presuppose. This includes, for ex-
ample, Integrated Information Theory (Oizumi et al., 2014), Global Neuronal Workspace
Theory (Mashour, Roelfsema, Changeux, & Dehaene, 2020) or Higher Order Thought
Theory (Brown, Lau, & LeDoux, 2019), and in general all scientific theories which adhere
to functionalism, identity theory or epiphenomenalism. This also includes illusionist or
eliminativist theories that are subject to experimental testing, even though they do not
grant consciousness an independent ontological status, but merely aim to explain why
someone has the illusion of being conscious (Sprevak & Irvine, 2020).

Our results rely on two general facts about theories of consciousness. The first is
that theories of consciousness relate to physical events, where physical events are the
kinds of events that are the subject of natural sciences such as biology, chemistry,
neuroscience, and physics. Some theories modify the description of physical events
provided by natural science, for example, by postulating changes in the temporal evolu-
tion of physical states, as recently in (Chalmers & McQueen, 2022), others simply adopt
whatever natural science says about physical events without any modification.

The causal closure of the physical is the assumption that for every physical effect,
there is a sufficient physical cause. Its key epistemic repercussion (cf. Section 6.7) is
that theories of consciousnessmust not amendwhatever it is that the physical sciences
say or imply about physical events. We call this epistemic assumption closure of the
physical: A theory of consciousness obeys the closure of the physical if and only if it
does not posit any changes to the physical events explained, predicted or otherwise
determined by natural science.

This premise can be expressed concisely in formal terms. To this end, we introduce
two sets1 of event-descriptions. First, for any theory of consciousness T , we denote by

1Note that we do not distinguish between classes and sets in this paper.
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PT the physical events which T is committed to, for example the firing of some neurons
or the instantiation of some functional property. Every element in PT is a description of
an event that occurs, according to T , in the actual world. The description specifies the
event andmay include properties or relational information about the event. What exactly
a description contains and in which language it is formulated is not of importance here.

Second, we denote by PP the physical events which natural science explains, predicts
or determines. Whatever it is that natural science says or implies about the physical
events in the actual world is part of the class PP . Each element is in turn a description
of an event, including its properties and relations, and we allow that the description is
either deterministic or indeterministic.2

Since scientific theories are complex, PP may not be known or even knowable. And as
science progresses, PP is likely to change over time. For this reason, in what follows,PP

functions like a variable. It is not important what value this variable actually takes, but
only what relationship a theory of consciousness has to this variable.

A theory of consciousness obeys the closure of the physical only if it does not pos-
tulate any changes to the class PP . Thus, it does not replace, change, or add to the
description of physical events explained, predicted, or otherwise determined by natural
science. This means that for every physical event in PT to which a theory of conscious-
ness is committed, there is an element of PP that provides a description of that event in
one of the languages of a natural science. The descriptions in the two sets may differ
in language, but not in content.

In formal terms, this means that there is an embedding of PT into PP , i.e. an injective
(one-to-one) function ι of the form

ι : PT −→ PP , (6.1)

which specifies for every physical event and description that the theory of conscious-
ness is committed to the corresponding event and description explained, predicted, or
determined by natural science. The existence of this function is the concise meaning
of the closure of the physical introduced above: A theory of consciousness T obeys the
closure of the physical if and only if there exists a function ι as in (6.1). We will show
in Section 6.7 that the usual reading of the causal closure of the physical implies just
that.3

2In terms of a fundamental physical theory, PP may be thought of as comprising all events which are part
of those dynamically possible trajectories that occur in the actual world.

3The closure of the physical so conceived could also be defined in terms of variables and other concepts
used in scientific theories, such that a theory of consciousness obeys the closure of the physical if and
only if it makes no change to the concepts that natural scientific theories employ to predict and explain
physical events, orwhich otherwise determine physical events. While this formulationwould capture the
more familiar assumption that “physical laws already form a closed system” (Chalmers, 1996, p. 127),
it introduces another level of abstraction (concepts used in scientific theories) that is avoided when
formulated in terms of events.

151



6. The Closure of the Physical, Consciousness and Scientific Practice

6.3. Experiments

In the scientific study of consciousness, experiments are conducted to falsify, confirm,
or distinguish between competing theories of consciousness. Themost important com-
ponent of any experiment is measurement, i.e., laboratory operations that produce a set
of data which constitutes the result of the measurement.

The second general fact on which our argument is based is that scientific theories
of consciousness have something to say about possible measurement results. We as-
sume that any theory allows one to derive, for some experiments and under appropriate
auxiliary assumptions, a class of data sets which, according to the theory, may occur as
the result of the experiment. This requirement singles out scientific theories as those to
which our argument applies.4

Weuse the symbolM to represent an experiment, and furthermore introduce the sym-
bol OM to denote all data sets which could result from this experiment according to
some assumption or theory. So OM denotes the possible measurement results of M
in some context. If an experiment M only made measurements on one system and
everything were deterministic, then there would only be one data set in OM . But exper-
iments usually consider many systems and things are not deterministic, which is why
we have a whole class of data sets that can occur in M .5

Given an experiment M to which a theory T can be applied, we denote the data sets
which can occur in M according to T by OT . In experimental practice, OT is deduced
from T , making use of approximations and auxiliary assumptions, so that it contains the
pre- or retrodictions of T . But in our case we stick to the precise meaning independently
of approximations and auxiliary assumptions. Any result o ∈ OT canoccur in experiment
M after T , and any o ̸∈ OT cannot occur in M after T . If o ∈ OT occurs, then the
probability of T increases (and T is confirmed), and if o ̸∈ OT occurs, then the probability
of T decreases (and T is disconfirmed). In a Popperian framework, the occurrence of
o ∈ OT provides a corraboration of T and the occurrence of o ̸∈ OT amounts to a
falsification of T .

What matters for our purposes is that if two theories provide the exact same inform-
ation about which results may or may not occur in an experiment, then these theories
cannot be distinguished in that experiment. Theories forwhich this is the case are empir-
ically indistinguishable. Put concisely in terms of the notation we have just introduced,
two theories T and T ′ are empirically indistinguishable if there is no single experiment
M such that OT ̸= OT ′ in M . So if two theories are to be empirically distinguishable,
they cannot yield exactly the same class of possible measurement results for each ex-
periment. There must be at least one experiment in which OT ̸= OT ′ , so that in this
experiment there is at least a chance that a result o occurs which lies in one but not in

4In particular, if we assume that experiments are required to distinguish between competing theories of
consciousness, we assume that consciousness cannot be deduced from the physical or, if it can, that
experiments are required to figure out how because the deduction fails in practice due to complexity
and/or too little knowledge.

5For now, M can be thought of as an experiment actually conducted in the actual world to distinguish
between theories of consciousness, although logical possibilities will come into play in Section 6.4.
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both classes and is thus consistent with one but not with both theories.6
It is natural to expect that a large number of experiments will not be able to distinguish

between two arbitrary theories, since experiments are usually designed with specific
theories in mind. Empirical indistinguishability holds only if for two theories there is no
experiment at all that can distinguish between them.

If an assumption implies that this is in fact true of all theories obeying this assump-
tion, and if there are two or more competing theories which do so, this is obviously
problematic. In case such an assumption is implied, all experiments that seek to distin-
guish between theories become meaningless, and all subsequent differences between
theories obeying that assumption untestable. This is incompatible with any empirically
based scientific practice, so we take this a sufficient condition to call such an assump-
tion unscientific. Thus, if an assumption implies that any two different theories obeying
that assumption are empirically indistinguishable, we conclude that the assumption is
unscientific.

We emphasize that this condition is a decidedly weak sufficient condition for a par-
ticular assumption not to be scientific. We have by no means proposed a new solution
to the notorious demarcation problem. Moreover, the condition is independent of the
choice of the preferred account of theory testing. An assumption that is unscientific in
this sense undermines any empirical scientific progress in the field in question.

Experiments in the scientific study of consciousness usually use two different types
of measurements (Chalmers, 2004). First, theymake use of what are called third-person
measurementswhich employ standard scientific methods. Typical examples are EEG or
fMRI recordings. Second, they use what might be called first-person or consciousness-
inferring measurements. This class of measurements has been characterized as using
the subject’s access to his or her own conscious experience in some way, such as via
verbal reports or pressing of a button (Metzinger, 1995). More recently, the term sub-
jective measures of consciousness has come to refer to these types of measures (Irvine,
2013), in contrast to objective measures and no-report paradigms (Tsuchiya et al., 2015),
which infer a subject’s state of consciousness indirectly, e.g., by evaluating forced choice
tasks (Del Cul et al., 2007) or behavioral data such as optokinetic nystagmus and the
pupillary reflex (Frässle, Sommer, Jansen, Naber, & Einhäuser, 2014).

What exactly the difference is between measurements in the first and third person is
not important for our purposes. The only important thing is that both types of measure-
ments produce results that need to be analyzed, interpreted or transformed. To do this,
they must be stored on a data repository. This fact has implications that we analyze
below.7

6Note that empirical indistinguishability is weaker than empirical equivalence, as defined, for example,
in (Weatherall, 2019a) and (Weatherall, 2019b). Two theories are empirically indistinguishable if they
make exactly the same testable statements about experiments to which they are both applicable. Em-
pirical equivalence also requires that the two theories apply to exactly the same experiments.

7We emphasize that this also holds true for “measuring” consciousness by introspection. Because sci-
ence is an intersubjective endeavor, whatever is accessed by introspection in any experiment that aims
to distinguish among competing theories of consciousness has to be stored or transmitted in order to
be shared with other scientists. Nothing hinges on how precisely one flashes out what is special about
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6.4. Data

We have minimally characterized measurements as laboratory operations that provide
a data set that is designated as the result of the experiment. But what does it mean that
this data set must be stored on some device? To address this question, let’s take a hard
disk as an example. A hard disk stores data by magnetizing a thin film of ferromagnetic
material that forms the surface of the hard disk platter. The film is made up of many
tiny, sequentially aligned magnetic regions, each of which has a magnetization vector
that can point in one of two directions. When data is stored on the disk, the head of the
drive arm moves over these areas and changes the magnetization vector by applying
electric fields. When reading data from the disk, the actuator arm uses weaker electric
fields to sense the magnetization vectors of the areas.

The data stored on the disk is the distribution of magnetization vectors across the
magnetic areas in terms of the order of the areas. Two copies of the same disk cannot
differ in the data stored on it without differing in at least some magnetization vectors.
The data is determined by the magnetization vectors.

The crucial thing about themagnetization vectors that determine the data stored on a
hard disk is that they are not just properties of the device, but actually physical properties
of the device, the kind of properties that are the subject of natural science, in this case
electromagnetism. Electromagnetism explains their causal properties, such as how the
magnetization vector responds to electric fields, and also their dynamic properties, such
as how magnetization vectors change over time without interactions.

Accordingly, the occurrence of a particular distribution of magnetization vectors over
the ferromagnetic film at a particular time is a physical event, the kind of event that is
the subject of natural science. It follows that the data stored on the hard disk is determ-
ined by a physical event: in this case, the distribution of magnetization vectors over the
ferromagnetic film. There is no constraint on why or how this physical event occurs, but
once the event occurs, the data stored on the hard disk is determined.

This is true not only for hard drives, but for all data storage devices, such as solid-
state drives or flash drives, where the relevant semiconductor properties can only be
explained using condensedmatter theory and quantummechanics. But even when data
is stored on something as simple as a piece of paper or a spoken word, the data super-
vene on physical events, namely the distribution of ink molecules on the paper material
and air pressure fluctuations, which in these cases represent sound waves.

We can again express this fact succinctly in formal terms. Functions in the mathem-
atical sense of the word are defined to capture exactly those cases where something
is completely determined by something else. Let us denote by P the set or class of all
physical events (and descriptions) that can possibly occur in the real world, and by OD

all records that can possibly be stored on a storage deviceD. The notion of possibility at
issue here is logical possibility. The physical events explained, predicted, or determined

consciousness and its measurement. What matters below is only that measurement results need to
be stored or transmitted and that different theories of consciousness may be formulated which are
compatible with the same set of physical events. The closure of the physical enforces the latter.

154



6. The Closure of the Physical, Consciousness and Scientific Practice

by natural science for the actual world form a subset of P, the subset PP we introduced
above. The same is true for the physical events PT to which a theory of consciousness
is committed.

The fact that the physical events which occur in the actual world determine the data
that is stored on a storage device D can then be represented by a function

dD : P (P) −→ P (OD) , (6.2)

where P (P) is the set of all subsets of P, called the power set of P, and where P (OD) is
the power set ofOD. The function dD provides for every logically possible set of physical
events P ⊂ P of the actual world a class of data sets OD ⊂ OD that could be stored on
D at a particular time, so it maps element-wise as

dD : P 7−→ OD . (6.3)

It selects from all physical events which, according to P, are part of the real world those
which are relevant for data storage on the device D, e.g. the magnetization vectors in
the case of a hard disk. Since P may contain indeterministic statements, the output
of the function may also be indeterministic. For this reason, the output is represented
by a class OD , which may contain more than one record o. However, although OD is
consistent with indeterminism in physical events, it is completely determined by PP .
This is enforced by the fact that dD is a function. If D is not instantiated in a set P, the
function simply returns the empty set.

In order to use this function in the following, we have to consider two conditions. The
first condition arises from the fact that the data stored on a device D corresponding to
some physical events is independent of the language used to describe those events.
Applied to the embedding ι introduced in (6.1), this means that

dD
(
ι(PT )

)
= dD

(
PT

)
. (6.4)

The content of ι(PT ) and PT is the same, so also the data stored on D.
The second condition targets situations where one set of physical events completely

contains another, e.g. when the latter is a partial description of the former. A set of
physical events P2 completely contains another set P1 if all event descriptions of P1 are
also contained in P2, which means that P2 describes exactly the same events as P1. It
may add to the description ofP1, but it does not change it in anyway. Thus, ifP1 includes
all the physical events required to instantiate a data repository D, and thus determines
the data stored on D, it follows that P2 also includes these events, so that the data that
P1 and P2 determine to be stored on D are the same. Whenever we have P1 ⊂ P2 and
D is instantiated in P1, we have

dD
(
P1

)
= dD

(
P2

)
. (6.5)

6.5. Measurement Results

We are now ready to apply this result on data storage to experiments in the scientific
study of consciousness. The measurements performed in these experiments tend to
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be quite complex. They may employ advanced brain imaging techniques such as EEG,
ECoG, or fMRI, and require finely tuned equipment and sophisticated analysis to learn
about a subject’s state of consciousness.

In the case of EEG, ECoGor fMRI recordings, it is relatively clearwhat the result of such
measurements is. It is the data set that the scanner provides after each trial and that
is stored in computer memory. In the case of subjective measures, one would normally
expect reports or keystrokes to count as results; in the case of objective measures,
changes in pupil size and the like. Crucially, however, all of these are physical events.
The electrical activity that an EEG electrodemeasures is asmuch a physical event as the
sound waves that make up a spoken word or the mechanical movements of a button.

Our analysis from the last section allows us to make this point despite the termino-
logical ambiguities about what to count as the result of a measurement. A necessary
condition for a record to count as the result of a measurement is that it be stored some-
where. This can be computer memory, but it can also be something simpler like ink on
paper or density fluctuations in soundwaves. Even data transmission, such as in a cable
attached to a button that a person presses, is a form of data storage, albeit of very short
duration. So for something to be considered a measurement at all, there must neces-
sarily be a data repository D, so that some of the data stored on D is the result of the
measurement.

However, we have established above that the data stored on a device D is determ-
ined by physical events. Since a part of this data represents the measurement result,
the measurement results are also determined by physical events. How these physical
events come about – what their causes are – is not constrained by our analysis. The
events can have purely physical causes, physical and non-physical causes, or a priori
only non-physical causes. Which of these cases applies and with respect to which no-
tion of causality depends on the theory of consciousness.

As before, let us denote by M an arbitrary but fixed experiment in the scientific study
of consciousness, and let us denote byD the data store or stores necessarily used inM
to store the results of the measurement. We have already introduced the symbol OM to
denote the data sets that, under certain assumptions or theories, could be the possible
outcomes of the experimentM . Our analysis from the previous section then shows that
OM is also determined by the function dD introduced in (6.2), namely by restricting dD to
the part of the data stored on D that represents the measurement results. If we denote
this restriction by dM and all data sets that could possibly result from M by OM , we
obtain a function

dM : P (P) −→ P (OM )

P 7−→ OM ,
(6.6)

which maps any set of physical events P, which could possibly represent the physical
events of the actual world, to the measurement results, which in this case would be
determined as the result of the experiment M .

The function dM establishes a connection betweenwhat a theory of consciousness T
predicts or postulates about physical events in the real world, on the one hand, and the
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possible measurement outcomes that can occur according to T , on the other. It selects
from the events PT that the theory T is committed to those events which determine the
data that is stored on D. Making use of the symbol OT introduced above to denote the
possible measurement results that can occur in M after T , this means that

dM (PT ) = OT . (6.7)

In this way, we can determine OT independently of approximations or auxiliary assump-
tions.

6.6. Why the Closure of the Physical is Unscientific

By considering that measurement results must be stored and are thereby determined by
physical events, we have obtained a novel, additional handle for analyzing experiments
in the scientific study of consciousness. In addition to what experimenters derive from
a theory T and appropriate auxiliary assumptions, we can now analyze measurement
results along the path of what a theory of consciousness says about physical events.
This gives rise to the following theorem.

Theorem 6.6.1. The closure of the physical is unscientific.

Proof. LetT1 andT2 denote two theories of consciousnesswhich obey the closure of the
physical. This implies that there exist embeddings ι1 : PT1 −→ PP and ι2 : PT2 −→ PP

as in (6.1). Let M denote an experiment to which both T1 and T2 are applicable, and D
the data storage device(s) used in that experiment. Because of condition (6.4), we have
dD(ι1(PT1)) = dD(PT1) and dD(ι2(PT2)) = dD(PT2).

Both T1 and T2 need to be committed to the existence of physical events which in-
stantiate the data storage deviceD used inM , for otherwise they would violate the very
conditions that make M possible. Therefore, D is instantiated in both PT1 and PT2 . Be-
cause applying ι1 resp. ι2 does not change the content of the described events, it follows
that D is also instantiated in ι1(PT1), resp. ι2(PT2).

Because ι1 is an embedding, we have ι1(PT1) ⊂ PP . Because D is instantiated in
ι1(PT1), Equation (6.5) applies so that we have dD(ι1(PT1)) = dD(PP ). The same applies
to ι2, so that also here, Equation (6.5) implies dD(ι2(PT2)) = dD(PP ). So we in fact have
dD(ι1(PT1)) = dD(ι2(PT2)), which in light of the above implies dD(PT1) = dD(PT2).

We thus find that the data stored on D is exactly the same for both theories. Restric-
tion to dM introduced in (6.6) furthermore implies that dM (PT1) = dM (PT2), and because
of (6.7), this implies that OT1 = OT2 . So the measurement results of M are exactly the
same according to both T1 and T2. Independently of which predictions one arrives at by
making use of auxiliary assumptions, the closure of the physical implies that the data
sets which can occur in M cannot differ.

Since M was chosen arbitrarily, this conclusion holds for any experiment M , so T1

and T2 are empirically indistinguishable. And because T1 and T2 were arbitrarily chosen
among the theories obeying the closure of the physical, we can conclude that all theories
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obeying the closure of the physical are empirically indistinguishable. It follows that the
closure of the physical is an assumption that is unscientific.

6.7. Causal Closure of the Physical

The causal closure of the physical is the assumption that for every physical effect there
is a sufficient physical cause. This is an ontological assumption; it refers to what is the
case in the actual world. In contrast, the assumption we have been working with above
– that a theory of consciousness obeys the closure of the physical if and only if it does
not postulate changes in physical events explained, predicted, or otherwise determined
by natural science – is epistemic in nature, it depends on the definition, formulation, and
content of a theory of consciousness.

The precise meaning of the causal closure of the physical depends heavily on what
notion of causality one subsumes, what ontology one grants to causality (if any), and
what one allows as relata of the causal relation. Nevertheless, there is a great deal of
consensus about what epistemic implications this assumption has.

According to Jaegwon Kim, for example, the causal closure of the physical implies
that “to explain the occurrence of a physical event we never need to go outside of the
physical realm” (Kim, 1996, p. 147). And Frank Jackson characterizes the causal closure
of the physical as the claim that “the physical sciences, or rather some natural exten-
sion of them, can in principle give a complete explanation for each and every bodily
movement, or at least can do so up to whatever completeness is compatible with inde-
terminism in physics” (Jackson, 1996, p. 378).

These statements exemplify that the causal closure of the physical is generally taken
to imply that every physical event which is explained at all, is explainable by natural sci-
ence. But explanation, precisely construed (Strevens, 2006), is only one way in which a
theory can address events. Making room for prediction and other possible ways as well,
we may take the above to imply that every physical event which is predicted, explained,
or determined at all, can be predicted, explained, or determined by natural science.

Applied to a theory of consciousness, this means that any physical event that the
theory explains, predicts, or determines can (eventually) be explained, predicted, or de-
termined by natural science. But for this to be true, the theory must not replace, alter,
or add to the natural science account of physical events, because otherwise it would be
committing itself to physical events that cannot be explained, predicted, or determined
by natural science. Thus, the causal closure of the physical implies that a theory of con-
sciousness cannot make changes to the physical events that are explained, predicted,
or determined by natural science.

This point can be stated more clearly in formal terms. We have denoted the set of
physical events that a theory of consciousness is committed to by PT . These are the
events explained, predicted, or otherwise determined by that theory. And we have de-
noted the set of physical events explained, predicted, or otherwise determined by natural
science (now or in the future) by PP . Thus, if every physical event that can be explained,
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predicted, or determined at all can be explained, predicted, or determined by natural sci-
ence, then every event that is in PT is also in PP . Taking into account the different lan-
guages that can be used in the two cases, this means that for every event description in
PT there is a corresponding event description of the same event in PP . This constitutes
an injective function that maps PT to PP .

We thus arrive at exactly the same formal requirement as in Equation (6.1). The causal
closure of the physical implies that there is an embedding ι : PT → PP that specifies
for each physical event and physical description that the theory of consciousness is
bound to the corresponding event and description explained, predicted, or determined
by natural science.8 Causal closure of the physical implies closure of the physical, and
as a corollary of Theorem 6.6.1 we posit that causal closure of the physical is also un-
scientific.9

We emphasize that nowhere in our argument do we restrict to physical events which
are already explained or predicted by natural science. What matters is only which rela-
tion a theory of consciousness proposes between the physical events it is committed
to and the physical events that natural science posits. Even if a theory presupposes
that the physical events it associates with conscious experiences are determined by
physical laws, but cannot in practice be explained or predicted based on these laws, as
weak emergentist theories would have it, our argument applies. Theories of this sort
may be wrong about what they say about physical events, and experiments may help to
determine whether this is the case, but insofar as they buy into the very same underlying
account of physical events as all other theories, the measurement results necessarily
are the same as if any other theory were true. Because of the weak emergence claim, no
postulate of such theory can imply any changes in the underlying physical events, and
ipso facto no changes in measurement results.10

8More advanced formulations of the causal closure of the physical lead to the same conclusion. Consider
for example, the proposal by Barbara Montero and David Papineau in (Montero & Papineau, 2005), that
“[e]very physical event is determined, in so far as it is determined at all, by preceding physical conditions
and laws”. Every physical event that is determined by preceding physical conditions and laws is an
element of the class PP . Every element of PT is, according to the broad reading of ‘determined’ applied
(Montero & Papineau, 2005), determined by a theory of consciousness. Hence it follows that every
event in PT is also in PP , and taking into account the different languages that may be used to describe
the event, that there is an embedding ι as in Equation (6.1).

9We note that the commonly understood epistemic reading of the closure of the physical, as expressed in
Kim and Jackson’s remarks, follows from the causal closure of the physical, as defined in the beginning
of this section, only if an appropriate notion of ‘physical’ is presupposed. This means that the causal
closure of the physical must forbid the introduction of new physical entities that have effects that are
not explained by the physical sciences.

10That is not so for strong emergentist theories, of course. These introduce genuine new causes and
effects which are not claimed to be reducable to fundamental physical laws. It is well known that
strong emergentist theories are not compatible with physicalism and the causal closure of the phys-
ical (O’Connor, 2021a).
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6.8. Conclusion

We have shown that the causal closure of the physical goes far beyond what is usu-
ally considered. Since all measurement results in the scientific study of consciousness
are either physical events (such as keystrokes or sound waves) or at least determined
by physical events (such as data stored on hard disks), no two theories obeying the
causal closure of the physical can actually be distinguished in experiments. Our result
applies to all major neuroscientific theories of consciousness as well as to the leading
philosophical paradigms in the field. It applies to any theory of consciousness that fits
into the natural science account of physical events without altering it. This includes
all functionalist and identity theories of consciousness, such as GNW (Mashour et al.,
2020), HOT (Brown et al., 2019), AST (Graziano & Webb, 2015), or predictive processing-
based theories (Schlicht & Dolega, 2021), as well as eliminativist or illusionist theor-
ies (Frankish, 2016). But it also includes theories such as IIT, whose mathematics takes
the form of a function that maps physical states and events to conscious states and
events (Kleiner & Tull, 2021).11

Wehave shown that no experiment of any kind can actually distinguish between these
theories. Whatevermeasurement result is consistent with one theory is necessarily con-
sistent with the other, because qua closure of the physical, the physical functioning of
the brain, from stimulus presentation to verbal message or similar output, is exactly the
same according to all these theories. This observation is at odds with the numerous
experiments conducted to date to distinguish precisely between some of these theor-
ies. Our results show that there is a major flaw which underlies these experiments. The
theories on which these experiments are based violate a necessary condition for the
experiments to work as intended.

There are two potential conclusions that one can draw from our results. Either, ex-
perimenters do not really adhere to the closure of the physical when conducting experi-
ments, but implicitly assume that the theories tested modify what falls solely within the
realm of natural science. If this is the case, then our results constitute an imperative
to improve the tested theories and make explicit what is implicitly assumed. If, on the
other hand, experimenters do not implicitly adhere to the closure of the physical when
running experiments, then our results call into question the very conclusions drawn on

11Our results do not, however, apply to theories of temperature, life, or similar. They are fully compatible
with there not being difficulties of the sort we point out in distinguishing different such theories em-
pirically. Consider, as an example, the case of temperature, whose relation to microphysical events is
sometimes claimed analogous to consciousness’ relation to physics. In contrast to consciousness,
however, experiments on temperature explore a purely macroscopic theory – thermodynamics – which
does not addressmicrophysics at all. The relation between temperature andmicrophysics is addressed
only in terms of theory reduction of thermodynamics to statisctical physics (Dizadji-Bahmani, Frigg, &
Hartmann, 2010). What is more, in statistical physics, the microphysical state actually depends on tem-
perature, as apparent for example from the fact that temperature is part of the partition function that
describes the state’s statistical properties (Landau & Lifshitz, 1980). If one were to change one’s theory
of how temperature supervenes on the physical, one would have to change these statistical properties
as well so as to ensure the link to thermodynamics remains valid. Different theories of temperature are
not compatible with one and the same microphysical distribution.
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the basis of these experimental results. In either case, our results show that the closure
of the physical must be abandoned in both theory and experiment. Theories of con-
sciousness must explicitly state how what they take to be consciousness (physical or
otherwise) comes to determine reports and other measures of consciousness, and to
do this they must enter the realm of natural science.

In a very different context, Einstein once asserted that “[it] is the theory which decides
what we can observe” (Filk, 2016; Heisenberg, 1971). It seems that this point has not yet
been fully recognized in the construction of scientific theories of consciousness.
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7. Towards a Structural Turn in
Consciousness Science

Johannes Kleiner1

7.1. Introduction

So far, the scientific study of consciousness has mainly employed verbal and linguistic
tools, as well as simple formalisations thereof, to describe conscious experiences. Typ-
ical examples are the distinction between ‘being conscious’ and ‘not being conscious’,
betweenwhether a subject is ‘perceiving a stimulus consciously’ or not, betweenwhether
a subject is ‘experiencing a particular quale’ rather than another, or more generally any
account of whether some X is part of the phenomenal character of a subject’s expe-
rience—part of what it is like to be the subject, that is—at some point of time. Form-
alisations of these verbal descriptions mostly make use of set theory, examples being
sets of states of consciousness of a subject and simple binary classifications, or of real
numbers, for example to model ‘how conscious’ a system is. There are sophisticated
mathematical techniques in the field, but to a large extent, they only concern the statist-
ical analysis of empirical data, and the formulation of a theory of consciousness itself,
but not the description of conscious experiences which underlies the data collection or
modelling effort.

Much like words shape thoughts, descriptions shape science. In the case of con-
sciousness studies, the descriptions that were available so far have fed into theories of

1Published as: Kleiner, J. (2024). Towards a structural turn in consciousness science. Consciousness and
Cognition, 119, 103653. (Kleiner, 2024)

163



7. Towards a Structural Turn in Consciousness Science

consciousness, have determinedwhat can be inferred about the state of consciousness
of a subject, and have guided ways of conceptualising the problem under investigation.

They have, for example, led to a number of theories that explain what it takes for a
single stimulus or a single piece of information to be consciously experienced, but which
remain silent or vague on how the phenomenal character as a whole is determined.
They have led to measures of consciousness which are specifically tailored to find out
whether a single stimulus or single quality is experienced consciously (Irvine, 2013), but
are not meant to infer phenomenal character beyond this. And to some extent, at least,
they have privileged research programmes which search for either-or conditions related
to consciousness, such as arguably the search for Neural Correlates of Consciousness
(NCCs) that is largely predicated on a conception of having “any one specific conscious
percept” (C. Koch et al., 2016).

Because verbal descriptions only parse part of the phenomenal character of an ex-
perience, part of what it is like for an organism to live through a particular moment, it is
no surprise that means to go beyond these simple descriptions are highly sought after.

In recent years, the idea of using mathematical spaces, or mathematical structure
more generally,2 to go beyond verbal descriptions and simple formalisations have star-
ted to sprout in virtually every discipline involved in the scientific quest to understand
consciousness. Following rich developments in psychophysics over more than a cen-
tury (Pashler & Wixted, 2004), and pioneering work by Austen Clark (A. Clark, 1993) and
David Rosenthal (Rosenthal, 1991) in consciousness science, mathematical spaces are
now applied in philosophy, (A. Clark, 2000; Coninx, 2022; Fortier-Davy & Millière, 2020;
Gert, 2017; Lee, 2021, 2022; Rosenthal, 2010, 2015, 2016; Fink et al., 2021; Lyre, 2022;
Kob, 2023; Renero, 2014; Prentner, 2019; Yoshimi, 2007; Chalmers & McQueen, 2022;
Silva, 2023; Atmanspacher, 2020), neuroscience (Tononi, 2015; Tallon-Baudry, 2022;
Zaidi et al., 2013; Lau, Michel, LeDoux, & Fleming, 2022; Malach, 2021; A. Haun & Tononi,
2019; Oizumi et al., 2014; Hebart, Zheng, Pereira, & Baker, 2020; Josephs, Hebart, &
Konkle, 2023; Tsuchiya et al., 2023; Zeleznikow-Johnston, Aizawa, Yamada, & Tsuchiya,
2023; Haynes, 2009; Michel, in press), cognitive science (Hoffman, Prakash, & Prent-
ner, 2023; Rudrauf et al., 2017; Hoffman & Prakash, 2014; O’Brien & Opie, 1999), psy-
chology (Klincewicz, 2011; Kostic, 2012; Young, Keller, & Rosenthal, 2014) and mathem-
atical consciousness science (Grindrod, 2018; Kleiner, 2020b; Stanley, 1999; Resende,
2022; Mason, 2013, 2021; Signorelli, Wang, & Coecke, 2021; Tsuchiya, Taguchi, & Saigo,
2016; Tsuchiya & Saigo, 2021; Tsuchiya et al., 2022; Kleiner, 2020a; Kleiner & Hoel,
2021; Kleiner & Ludwig, 2024). They are known under various different names, including
quality spaces (A. Clark, 1993; Rosenthal, 2015), qualia spaces (Stanley, 1999), experi-
ence spaces (Kleiner & Hoel, 2021; Kleiner & Tull, 2021; Rosenthal, 2010), qualia struc-

2The termmathematical structure, which I will explain in detail Section 7.3 below, is more general than the
term mathematical space. That is, every mathematical space is a mathematical structure, but there are
also mathematical structures which are not mathematical spaces, either because they only comprise
individuals (so do not satisfy the intuition that a space is aboutmany individuals), or because their struc-
ture is more complex than one would typically take a space to be. The question of which mathematical
structures to call mathematical spaces is a matter of convention, which is why there is no definition of
a general concept of mathematical space in mathematical logic.
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ture (Kawakita, Zeleznikow-Johnston, Tsuchiya, & Oizumi, 2023; Kawakita, Zeleznikow-
Johnston, Takeda, et al., 2023; Tsuchiya et al., 2022), Q-spaces (Chalmers & McQueen,
2022; Lyre, 2022), Q-structure (Lyre, 2022), Φ-structures (Tononi, 2015), perceptual spa-
ces (Zaidi et al., 2013), phenomenal spaces (Fink et al., 2021), spaces of subjective ex-
perience (Tallon-Baudry, 2022), and spaces of states of conscious experiences (Kleiner,
2020a). A first formalised theory of consciousness tomake use ofmathematical spaces
was Integrated Information Theory (IIT) 2.0 (Tononi, 2008); more recent versions expand
and refine the idea (Oizumi et al., 2014; Albantakis et al., 2023).

What unites all these proposals is the hope that themathematical structures they pro-
pose are useful to describe the phenomenal character of an experience more compre-
hensively, more precisely, or more holistically than verbal descriptions or simple formal-
isations allow, and that mathematical structures can cope both with the apparent rich-
ness and with the many details that make up experiences. If this hope pans out, it has
far-reaching implications on how to study, measure and think about consciousness.

My goal here is to offer three comments which I think are important to keep in mind
when applying structural ideas in theory and experimental practice, so as to avoid mis-
conceptions or misunderstanding early on. I hope that my comments are helpful for
those working on structural ideas as well as those observing these developments with
a degree of scepticism.

7.2. Three Promises of a Structural Turn

Before offeringmy comments below, I will briefly sketch the implications and limitations
that structural methodologies may have for consciousness science. This might be of
interest to those who have not engaged with this research before, and allows me to
illustrate what I think are some of the great promises of a structural turn.
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7.2.1. Theories of Consciousness

We currently have at least 39 theories of consciousness,3 with new theories being pro-
posed on a regular basis, albeit without much general attention. The reason for that, I
contend, is that as far as theoretical work is concerned, it is actually very easy to come
up with theories of consciousness of the type we have today.

Themajority of contemporary theories of consciousness aim to explainwhether a sys-
tem’s state, a stimulus, a piece of information, or a representation is consciously exper-
ienced, or not. That is, they target a binary classification between states, signals, stimuli
or representations. The simple verbal distinctions mentioned in the introduction—a sys-
tem ‘being conscious’ or not, ‘perceiving a stimulus consciously’ or not, ‘experiencing a
particular quale’ or not—are all examples of such binary classifications.

Formulating theories of consciousness that target binary classification is relatively
straightforward, as far as theoretical work is concerned. This is because devising a
{0, 1} classification only requires identifying someproperty, function, or dynamicalmode
of a brainmechanism. All configurations that exhibit this property, function or dynamical
mode aremapped to 1, while all which do not aremapped to 0. And within non-structural
approaches, nothing technical prohibits one from postulating that the 1 cases corres-
pond to conscious experience of a stimulus, state, piece of information or represent-
ation, while the 0 cases correspond to unconscious experience thereof. The empirical
or conceptual validity of such a choice is an important question, yet from a technical
standpoint, formulating theories that target these distinctions is straightforward.

It is much more difficult to come up with a well-formed hypothesis that relates to a
mathematical space or mathematical structure. That is because a mathematical space
or mathematical structure has two parts. On the one hand, it contains a set of points.
On the other hand, it contains relations or functions that express connections between
the points, for example an order relation or a metric function. Therefore, there is much
more information to provide when specifying how a space or structure relates to a brain

3An unpublished list compiled by Dr. Jonathan Mason on behalf of the Association for Mathematical
Consciousness Science (AMCS) and the Oxford Mathematics of Consciousness and Applications Net-
work (OMCAN) comprises the following theories of consciousness in the peer-reviewed literature:
Activation/Information/Mode-Synthesis Hypothesis, Adaptive Resonance Theory, Attention Schema
Theory, Centrencephalic Proposal, Conscious Agent Networks, Conscious Turing Machine, Conscious-
ness Electromagnetic Information Field Theory, Consciousness State Space Model, Cross-Order Integ-
ration Theory, Dendrite/Apical Dendrite Theory, Dynamical Core Theory, Electromagnetic Field Hypo-
thesis, Enactive and Radical Embodiment, Expected Float Entropy Minimisation, First Order Represent-
ational Theory, Free Energy Principle Projective ConsciousnessModel, Global NeuronalWorkspace The-
ory, Global Workspace Theory, Higher-Order Thought Theory, Integrated Information Theory, Integrated
WorldModeling Theory, Layered ReferenceModel of the Brain, Memory Consciousness and Temporality
Theory, Mesocircuit Hypothesis, Multiple Draft Model, Network Inhibition Hypothesis, Neural Darwinism
Theory, Orchestrated Objective Reduction, Passive Frame Theory, Predictive Processing and Interocep-
tion, Proto-Consciousness Induced Quantum Collapse, Psychological Theory of Consciousness, Rad-
ical Plasticity Thesis, Recurrent Processing Theory, Self Comes to Mind Theory, Semantic Pointer Com-
petition Theory, Single Particle Consciousness Hypothesis, Temporo-Spatial Theory of Consciousness,
Thalamo-Cortical Loops and Sensorimotor Couplings. This list might not be complete, and some of the
theories might point to similar or analogous theoretical constructs.

166



7. Towards a Structural Turn in Consciousness Science

mechanism, or a physical system more generally. Furthermore, virtually every mathem-
atical object comes with a set of axioms that parts of the object have to satisfy. So
not only is more information needed, but this information may also have to satisfy con-
straints to provide a legitimate definition. This is why defining a space or structure is
much more of a challenge than finding a binary classification.

The task is more difficult even if the space or structure that a theory is to provide
has a specific, theory-independent form. That is the case if the theory has to account
for phenomenal structure that has independent justification or independent motivation,
for example from psychophysical experiments. This difficulty is illustrated by the fact
that we do not, at present, have a theory of consciousness that targets the mathemat-
ical structures that have been proposed to account for conscious experiences on inde-
pendent grounds. To the best of my knowledge, there are only two theories that define
phenomenal spaces: Integrated Information Theory (IIT) (Albantakis et al., 2023) and
Expected Float Entropy Minimisation Theory (EFE) (Mason, 2021). While both theories
represent significant advances, establishing a link to existing phenomenal spaces (cf.
Section 7.5) remains a next-level challenge.4

Because formulating theories that account for phenomenal structure in addition to
non-structural explanandanecessitatesmeetingmore constraints than formulating non-
structural theories, structural theories are likely to be more predictive than their non-
structural counterparts. Furthermore, because the phenomenal structure is an integral
aspect of phenomenal character, a theory that accounts for phenomenal structure in
addition to non-structural explananda has a broader explanatory scope than one that
focuses solely on the conscious-unconscious distinction. Therefore, a structural turn
might deliver more explanatory and more predictive theories of consciousness. This is
the firstmajor implication I can see of structural approaches in consciousness science.5

Structural methodologies might inspire, and be inspired by, novel theoretical ideas
that derive from any of the existing theories of consciousness, or from their combin-
ation. Proposals like the Conscious Turing Machine (L. Blum & Blum, 2022) or Integ-
rated World Modeling Theory (Safron, 2022) that combine features of existing theories
of consciousness (such as, for example, Integrated Information Theory, Global Neuronal
Workspace Theory, and Free Energy Principle based proposals) could be particularly in-
teresting in this regard.

4Proponents of both theories are fully aware of this task, and IIT has made a first step in this direction
in (A. Haun & Tononi, 2019). In addition to accounting for phenomenal structure that has independent
justification, there are other tasks and challenges that structural theories have to meet and resolve. For
example, an anonymous reviewer has kindly pointed me to the fact that according to IIT, richly struc-
tured experience can be entailed by static systems without dynamics, which might pose an empirical
or conceptual challenge for IIT.

5In saying this, I do not intend to diminish the value of “binary” theories of consciousness. They are an
integral part of consciousness science and encapsulate a substantial body of evidence. But, onmy view,
they need to be extended so as to address phenomenal charactermore holistically as well. Whether this
should be done on a case-by-case basis, or whether there might be a theory of qualitative character that
can serve for a larger number of binary theories, is not something that needs to be decided in advance.
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7.2.2. Experimental Investigations

A shift towards structural methodologies could also have significant implications for ex-
perimental research. One immediate implication follows from the previous section, i.e.,
from the transformative effect that structural methodologies could have on theories of
consciousness. If structural theories of consciousness would indeed be more predict-
ive than the non-structural theories we have today, then they might be easier to test than
the theories we have today,6 and the new predictions about structural facts might offer
new avenues for experimental investigation.7

But structural thinking could also yield new experimental tools and methodologies
that are separate from theoretical advancements. For instance, under certain condi-
tions, structural approaches offer an entirely newmethodology formeasuringNCCs (Fink
et al., 2021). This methodology could potentially address some of the foundational
challenges in existing methodologies, such as the co-activation of cognitive processing
centres causally downstreamof the coreNCC, andmight not require traditionalmethods
to assess a subject’s state of consciousness. I discuss and criticise the key assump-
tion that enables this methodology—the assumption of a structure-preserving mapping
between phenomenal and neuronal structures—in Section 7.4 below. But nevertheless,
even if this assumption proves to be more limited in scope or strength than initially an-
ticipated, the methodology might still have advantages compared to existing options to
search for NCCs.

The implication that intrigues me most, however, is the possibility that structural ap-
proachesmay introduce newmeasures of consciousness. Ameasure of consciousness,
as conventionally understood, is a method to determine whether an organism is con-
scious, or whether a given stimulus or signal has been consciously perceived. Measures
of consciousness are “consciousness detection procedures” (Michel, 2023) of sorts.

Building on the extensive previous work in both psychophysics and consciousness
science, structural approaches raise the possibility to construct new and potentially
more powerfulmeasures of consciousness, which do not only focus onwhether a single
stimulus is experienced—a single quality of phenomenal character, that is—, but on phe-
nomenal character more comprehensively.

The potential of structuralist approaches in this regard can be nicely illustrated by
considering verbal report, which is a paradigmatic (albeit often criticised) measure of
consciousness. In the case of report, subjects use language to report facts about their
experience. They might, for example, indicate that they experienced a red colour, or saw
a face in a masked stimulus. The problem with reports is that when compared with the
actual experience, they contain very little information. Which shade of red did the subject

6Lukas Kobmade this point for structuralist approaches during awonderful talk at the recent Structuralism
in Consciousness Studies workshop at the Charité Berlin, though my comment here concerns the wider
scope of structural approaches, cf. Section 7.3 for more on that distinction.

7Speculating wildly, one might hope that if theories of consciousness could account for theory-
independent phenomenal spaces, this could help tomitigate the problem that empirical tests of theories
of consciousness currently rely heavily on theory-dependent methodological choices (Yaron, Melloni,
Pitts, & Mudrik, 2022).
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experience, precisely? How did they experience the face, and with which details? What
else did they experience in addition to the reported fact? In information-theoretic terms,
this problem arises because the channel capacity of verbal report and other behavioural
indicators is low compared to the information content of conscious experiences.8

Structural approaches allow us to bypass the limited channel capacity of reports and
similar measures of consciousness, because structural descriptions can store informa-
tion about the phenomenal character of a subject. That is the case because structural
descriptions represent features of a subject’s phenomenal character that relate indi-
vidual non-structural facts. For example, relations between experiences, or relations
between constituents of experiences, such as individual qualities.

Given the structural information in a phenomenal space, a few bits of information col-
lected in an experimental trial, for example by means of reports or similar measures of
consciousness, can suffice to pin down the location in a structure, resulting in informa-
tion aboutwhat a subject is experiencing thatmight go far beyond the bits of information
that were collected. This is similar to how a geographic map can be used to decode rich
information about one’s location based on a few bits of information. Finding one’s way
in the wilderness without a map or map-like tools generally is a very difficult task. But
given a map, procedures like triangulation are available that only require a few bits of in-
formation, such as the angles between three landmarks in line of sight, to pin down one’s
position and find one’sway. That is possible becausemaps store information about geo-
graphy. Another example of this sort is quantum tomography, where a set of carefully
chosen measurements, together with structural information about the quantum state
(specifically, the inner product and projective structure of the Hilbert space) is used to
pin down the exact state among an infinite number of possibilities.

In a similar vein, phenomenal spacesmight be used to decode information from care-
fully chosen low-channel-capacitymeasures of consciousness. How to precisely do this
remains an open question as of yet, and strongly depends on a thorough understanding
of phenomenal structure in the first place (cf. Section 7.5), but it is a viable possibility.

7.2.3. Conceptual Work

Structural approaches can also be essential, finally, in conceptualising consciousness
and its potential problems. It is not unlikely that interesting philosophical implications
arise, specifically in the context of structuralist assumptions, but what I’d like to high-
light here is the importance of structural thinking in shaping our pre-theoretic problem
intuitions about consciousness; those intuitions, that is, which guide both our theorising
and experimental work.

Structural thinking might well turn what we previously thought about consciousness
upside down. It might change how many of us think about their own research in the

8I’m very grateful for a conversation with Lucia Melloni about the problems of reports and structural ideas
to resolve these during a walk at the above-mentioned Structuralism in Consciousness Studies work-
shop. The idea sketched here came up during this walk, and is Lucia’s as much as, or even more than,
mine.
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Figure 7.2.1.: What is an automorphism? This figure illustrates the concept of auto-
morphisms. Automorphisms are somewhat analogous to rotations of a
space around some axis (top row). More formally, an automorphism is
a function that maps every point of a mathematical space to a different
point of the same space in such a way that all relations of the space are
preserved: whenever two points are related before the mapping, they are
also related after the mapping. This is illustrated by the bottom row, where
individual points of the space are depicted by coloured dots, and relations
are depicted by red lines. An automorphism maps every dot to a new dot,
represented here by the change in location of the colours, in such a way
that when two dots were related before the mapping (red line between two
dots) the targets of the mapping are also related (red line between target
dots). Automorphisms form a group because any two automorphisms can
be combined to form another automorphism, in this case one from the left-
hand space all the way to the right-hand space.

(Depiction of CIE colour space gamuts by Wikimedia Commons, Michael Horvath, under
CC BY-SA 4.0; this image is shared under the same license.)

170

https://creativecommons.org/licenses/by-sa/4.0/deed.en


7. Towards a Structural Turn in Consciousness Science

first place. To give two very preliminary examples, I think that structural approaches are
relevant for epistemic arguments like Mary’s room (Jackson, 1998, 1986), and for modal
arguments like colour inversion (Shoemaker, 1982; Block, 1990).

For epistemic arguments such as Mary’s room, the big question is whether one pre-
sumes that structural facts about experiences are known. IfMary propositionally knows,
for example, which structure the experience of red has, and if structure is sufficient
to individuate experiences, then she might be able to use her advanced neuroscience
knowledge to create an embedding of the structure of red experiences within her own
phenomenal space, even if she never experienced red, or any colour for that matter, be-
fore. Similarly, outside the realm of thought experiments, we might use structural facts
to create experiences that approximate what it is like to be a bat. Structuremight furnish
an objective phenomenology (Lee, 2022).

Modal arguments, similarly, need to be rethought. The typical colour inversion thought
experiment presumes fairly homogeneous colour spaces—colour spaces that possess
symmetries. This presumption is critical because if a colour inversion is not a sym-
metry, then the difference between colour experience before and after the inversion
will manifest itself both in behaviour and in the use of colour words: through similar-
ity judgements and other expressions of structural facts. The closest approximation
we have to a space of consciously experienced colour qualities is the CIELAB colour
space (Schanda, 2007), a rendering of which is depicted in Figures 7.2.1, 7.3.2, and 7.5.1,
which is highly non-homogeneous and may not admit symmetries to the extent that we
expect. Adding valence and other consciously experienced attributes of colour experi-
ences might further erode any remaining symmetries. Thus, at least the usual intuitions
regarding qualia inversions and other modal arguments may cease to be valid. Struc-
tural approaches might force us to reconsider intuitions that are built on these types of
arguments.

7.2.4. Limitations

While structural approaches do, on my view, offer a number of benefits to the science
of consciousness, it is also important to see their limitations.

A first limitation of structural approaches is that it is not clear, at present, how much
of phenomenal character—how much of what it is like to experience something, that
is—can be grasped by structural tools. While it is clear that much of the phenomenal
structure that is usually associated with the content of consciousness can be represen-
ted structurally (much of it actually is structural, one might say), it is not clear whether
some of the more subtle or remote facets of phenomenal character are amenable to
a structural analysis. Can the experience of a self or ego be represented structurally?
What about the experience of other minds? Or the pre-reflective and pre-conceptual
awareness of being aware, sometimes referred to as subjective character?

A second limitation of structural approaches relates to measurability. Even if a facet
of phenomenal character is amenable to structural tools, it might still be difficult, costly,
or even impossible to measure. It might take years to construct a full quality space of
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a single modality. Is this actually feasible in experimental practise for anything but the
most salient structures of phenomenal character?

A third limitation is the question of whether structural approaches can actually get
any closer to modelling what is sometimes described as an intrinsic nature of qualia or
qualities, the “raw experience”, so to speak. Do structural approaches have any handle
on modelling this? Or can they just circumscribe the structure that intrinsic properties
instantiate? And to the extent that such intrinsic nature is the core of the problem of
consciousness, can structural approaches get us any closer to understanding this core?

My own view of these limitations is that they define some of the key questions that
structural research will have to tackle in the upcoming years. Because experiences ex-
hibit structure, structural approaches are, by necessity, part of any research programme
that targets experiences in full. But to what extent they contribute to resolving the core
questions at the heart of consciousness science is an open question.

7.3. Metaphysical Premises

My first comment concerns an intuition which I have often encountered when discuss-
ing structural approaches with colleagues: that structural approaches are metaphysic-
ally presuming. Most notably, they seem tomany to be tied to physicalist or reductionist
metaphysics. The goal of this comment is to show that this is not the case. Structural
approaches offer a new descriptive tool that can—in theory, at least—be applied inde-
pendently of metaphysical assumptions, and in research programs of any metaphysical
flavour. Structural approaches do not in themselves have metaphysical premises, and
they do not by themselves come with a preferred metaphysical interpretation. Rather,
they can be applied to and combinedwith the particular metaphysical ideas or presump-
tions that are already employed in a research program.

The major reason why structural approaches are often taken to be metaphysically
presuming is that they are conflated with structuralist approaches. Structuralist ap-
proaches assume that individuals can be individuated by structure: that for every in-
dividual x, there is a unique location in a structure, a location in which only x holds.
Intuitively speaking, the idea is that specification of all structural facts suffices to also
specify all facts about individuals in that structure.

In the context of consciousness science, the individuals in question can be experi-
ences, phenomenal character, qualities or qualia. The structures in question are exper-
ience spaces (spaces whose elements are experiences), phenomenal spaces, quality
spaces or qualia spaces. Furthermore, there are ontological, epistemological and meth-
odological ways of reading a structuralist claim. But in all cases, the idea is that the
domain of individuals exhibits structure, and that this structure is sufficient to individu-
ate the individuals in the relevant sense.

Structural approaches, in contrast, are not committed to a claim of individuation. An
approach is structural if it applies mathematical structure. And as I will now explain,
more often than not, mathematical structure does not individuate individuals. In order
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Figure 7.3.1.: Structural vs. structuralist approaches. Structural approaches make use
of mathematical spaces or mathematical structures to represent or de-
scribe conscious experiences. These spaces and structures may, and in
general do, admit for automorphisms (cf. Figure 7.2.1). This implies that
there are points in the space which have the exact same relational struc-
ture. Structuralist approaches, on the other hand, assume that all points
of the space can be individuated by their relational structure, meaning that
no two points have the same relational structure. This can only hold true if
the space does not admit automorphisms, other than the identity mapping
that is always an automorphism.
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to see why, we must differentiate between two readings of the term ‘structure’. This
will also yield a clear formal definition of structuralism in a given consciousness-related
domain.

Mathematics offers an unambiguous definition of what a structure is. Amathematical
structure consists of two things: domains, on the one hand, and functions or relations,
on the other hand. The domains of a structure are the sets on which the structure is
built. They comprise the points, or elements, in a space, the individuals in a structuralist
sense. In the case of a metric space, for example, there are two domains: the set of
points of themetric space and the real numbers that constitute the “distances” between
points. In the case of a partial order, there is just one domain: the domain of elements
that are to be ordered. The second ingredient of a mathematical structure are functions
and/or relations. Functions map some of the domains to other domains. In the case of
a metric structure, for example, there is a metric function that maps two points to a real
number. Relations link points to each other. In the case of a partial order, for example,
there is a binary relation on the set of points. This relation specifies ordered pairs of
points, usually written as p1 ≤ p2.

When the term ‘structure’ is used in natural science, it usually follows this mathemat-
ical definition. For example, if we talk about the structure of space-time, we mean the
mathematical structure that describes space-time, called a Pseudo-Riemannian man-
ifold. If we talk about the structure of a neural network, we mean the mathematical
structure of the directed graph that specifies the connectivity of the network: the mesh
of nodes and edges, where each node represents a neuron or neuronal assembly, and
where each directed edge specifies a neural pathway between neurons or assemblies.

When we use the term ‘structure’ in the context of structuralist ideas, however, it only
refers to the second ingredient of a mathematical structure: the functions and relations
that a mathematical structure contains. These functions or relations are what individu-
ates the individuals—the elements of a domain—in a structuralist sense.

While customary in the context of structuralist assumptions, this use of the term
‘structure’ to designate only relations and functions is problematic. That is the case
because we cannot actually specify relations or functions without specifying the points
or elements that the relations or functions operate on. The symbol ‘≤’, for example, can
be used to indicate a type of structure, a partial order in this case, but it cannot define or
specify a structure. Any concrete definition or specification of a partial order needs to
make use of, or refer to, the points that the relation links. It needs to make use of some
set of points—some domain in the mathematical sense of this word. Strictly speaking,
it does not make sense to use the term ‘structure’ to refer only to the functions or re-
lations. I will refer to structure in the structuralist sense—that is to the functions and
relations that are part of structure in the proper sense of the term—as structure in the
narrow sense of the term.

The structuralist idea that relations or functions determine all individuals still makes
sense, of course, independently of terminological issues. And it can be expressed in a
neat formal requirement, making use of the notion of an automorphism, cf. Figure 7.2.1.
An automorphism is a one-to-one mapping from the domains of the structure to them-
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selves which preserves the functions or relations. That is, it preserves structure in the
narrow sense of the term. For every point of the structure, an automorphism specifies
a point as its target in such a way that the functions and relations of the structure do
not change when going from the source to the target: whenever some points satisfy a
relation before themapping, they also satisfy the relation after themapping, and equally
so for functions.

Automorphisms may or may not exist. The identity mapping (not changing anything)
is always an automorphism, but depending on how rich or complex the structure in the
narrow sense of the term is, theremight not be other automorphisms. In particular, if it is
indeed the case that every point x of a structure satisfies a unique location of structure
in the narrow sense of the term, then there is no automorphism other than the identity.
One cannot exchange any two points without changing structure in the narrow sense
of the term. In this case, one says that the automorphism group is trivial. 9 Vice versa,
if the automorphism group of a structure is trivial, then every point must have a unique
location.10

Because structuralism (in the context of consciousness) is the assumption that every
point x of a structure (in the general sense of the term) satisfies a unique location of the
structure in the narrowsense of the term, structuralism is equivalent to the condition that
the automorphism group of the relevant structure (in the general sense of the term) is
trivial. This constitutes a nice formal characterisation of structuralism in consciousness
science:

(STR) Structuralismabout a domain is true iff the automorphismgroup
of that domain is trivial.

Here, the domain could comprise individual experiences, phenomenal characters, qual-
ities or qualia, depending on which type of structuralism is under consideration.11

The crucial point of this section is that mathematical structures can, but need not,
obey structuralist assumptions; theymay ormay not have a trivial automorphism group.
A theory or experiment can be structural, in the sense that it makes use of mathemat-
ical spaces or structures, without necessarily being structuralist. This is illustrated by
Figure 7.3.1.

In fact, if we look at mathematical spaces in mathematics, physics and other nat-
ural sciences, in the majority of cases, the automorphism group is not trivial. Simple
examples of spaces with non-trivial automorphism groups are the Euclidean spaces
R2, R3 and Rn for any n ≥ 2, and many metric spaces, Riemannian manifolds, Hilbert
spaces, or graphs.

9It’s ‘trivial’ because that’s the simplest possible case, and the set of automorphisms is a group because
automorphisms can be combined and inverted as required by the axioms of a group in mathematics.

10For every point to have a unique location in a structure is for there not to exist a permutation or other
mapping of the domains of that structure to themselves that leaves the structure in the narrow sense
of the term invariant.

11The term ‘domain’ also has two meanings: The meaning of domain in the sense of mathematical struc-
ture as introduced above, and the meaning of domain as a group of related items in general language.
Fortunately, both work if it is clear what the structure of a domain is.
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Therefore, not only is there a difference between structural and structuralist approach-
es, but it is in fact quite common that the former applies while the latter doesn’t. Struc-
tures in the general sense of the term may, but often do not, boil down to structures in
the narrow sense of the term. This has three consequences for research in a structural
turn.

Consequence 1. Structural vs. Structuralist Agendas

Much like the two senses of the term ‘structure’ at issue here are often conflated, so are
structural and structuralist agendas. Both are subsumed under the general heading of
‘structuralism’, for example. A first consequence of the above is that there is a difference
between structural and structuralist agendas, and it is important to be clear about which
agenda one is pursuing when engaging in structuralist research.

If one is using mathematical tools and methods, for example, to help place “struc-
tural phenomenal properties at the core of the science of consciousness” (Chalmers,
2023b), as required by a very attractive position called weak methodological structur-
alism that has recently been put forward by David Chalmers, then one is engaging in
a structural agenda: an agenda which makes use of mathematical spaces and math-
ematical structure but which is not committed to a structuralist claim. Put differently,
structural tools like mathematical spaces can also be employed if one rejects the idea
that structure (understood in the narrow sense of the term) is all that matters. They are
free of explanatory and epistemic charge.

Consequence 2. Metaphysics of the Mind

Many structuralist approaches are not metaphysically neutral. They imply that certain
properties that some consider crucial with respect to consciousness do not exist, or are
not knowable. For example, if ontic phenomenal structuralism is true, then there are no
intrinsic phenomenal properties, and no genuinely private properties. Ontic structural
realism implies that there are no qualia as conventionally understood (Dennett, 1988).
If epistemic phenomenal structuralism is true, then one cannot know (either scientific-
ally, or by introspection) of intrinsic or private properties, all we know about conscious
experiences derives from structural properties.

Structural approaches are not tied to these assumptions. They are perfectly compat-
ible with the existence of intrinsic or private properties. As far as the mathematics is
concerned, if private or intrinsic properties exist (or if there are properties which are not
accessible to structural cognitive processing), this simply means that the automorph-
ism group of the structure is not trivial. There are points that cannot be individuated by
structure alone.

To give a very simple example, consider the case where there is no structure in the
narrow sense of the term at all, i.e. the case where there are no relations or functions
between qualities or qualia at all. This case can be described in terms of mathematics:
the qualities or qualia simply form a set. A set is a mathematical structure according
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to the definition of mathematical structure referenced above. It is the simplest case of
a mathematical structure, but an important one. So while this case is opposed to the
ideals of structuralist thinking, it is a simple but perfectly fine example of a structural
approach.

What is more, structural approaches might actually help to address intrinsic, private
or ineffable properties in scientific contexts. My first paper on consciousness, (Kleiner,
2020b), is devoted precisely to this issue. In a nutshell, I show that mathematical tools
can be used to formulate theories of consciousness that address these properties even
if they are, in an intersubjective sense, non-collatable. Because of these mathemat-
ical tools, mathematical approaches allow us to go further than non-mathematical ap-
proaches can go. Ultimately, this works because, in the words of Jürgen Jost, “[m]a-
thematics translates concepts into formalisms and applies those formalisms to derive
insights that are usually not amenable to a less formal analysis.” (Jost, 2015).

Consequence 3. Metaphysics beyond the Mind

The third consequence, finally, concerns the conviction mentioned at the beginning of
this section that structural approaches seem to many to be tied to physicalist or reduc-
tionist metaphysics.

The intuition that motivates this conviction arguably derives from the equivocation of
structural and structuralist assumptions, together with the idea that science can only
explain relations. If structural assumptions would indeed imply that “[t]here is nothing
to specifying what something is over and above stating its location in a structure” (Fink
et al., 2021), and the physical sciences could only explain structure, then it would indeed
be the case that structural approaches would render consciousness amenable to sci-
entific and arguably physicalist explanation. What is more, when ontology is concerned,
structuralist assumptions imply that none of the prototypical non-physicalist properties
of consciousness exist (cf. Consequence 2). This, too, intuitively speaks in favour of a
physicalist and reductionist research programme.

While it is clear that these intuitions do not have the force of a logical argument, it
seems fair to say that structuralist assumptions are well aligned with physicalist meta-
physics, and in the form of one of its most promising incarnations, neuro-phenomenal
structuralism (Fink et al., 2021; Lyre, 2022), might even “open an attractive door for re-
ductionism” (Fink et al., 2021).

The problem with the conviction mentioned above is that structural approaches are
not necessarily structuralist approaches. The majority of mathematical spaces that are
used in the sciences have a non-trivial automorphism group and therefore do not satisfy
the defining criterion of a structuralist approach in the context of consciousness sci-
ence (cf. Figure 7.3.1). In other words, one can choose to apply mathematical tools and
methods to describe consciousness without committing to structural assumptions and
a fortiori without committing to physicalist or reductionist metaphysics. Structural ap-
proaches can be used and might be beneficial in any type of metaphysical programme,
from reductive physicalism to property dualism or idealism.
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In fact, there are a number of structuralist approaches which target non-physicalist
metaphysics already, on the level of toy-models. (Atmanspacher, 2020), for example,
uses mathematical language to outline how the neutral domain in a Pauli-Jung style
dual aspect monism might relate to the mental and physical aspects. And the pro-
posals (Signorelli, Wang, & Coecke, 2021) and (Signorelli, Wang, & Khan, 2021) use a
category-based graphical calculus to indicate how ideas from the Yogacara school of
Buddhist philosophy could be fleshed out in terms of a scientific theory of conscious-
ness.

I make these points not to argue for a non-physicalist research programme, but to
show that structural approaches are not tied to physicalist or reductionist assumptions.
Rather, my point is that mathematical spaces and mathematical structures provide de-
scriptive tools that can be applied to any choice of metaphysical assumptions, and in
research programmes of any metaphysical flavour. Structural approaches do not have
metaphysical premises, and they do not come with a preferred metaphysical interpret-
ation.

7.4. Isomorphisms and Structure-Preserving Mappings

The core question which drives the scientific study of consciousness is the question of
how conscious experiences and “the physical” relate. A ubiquitousmathematical object
in the context of mathematical structures is that of an isomorphism, illustrated in Fig-
ure 7.3.2 and explained in detail below. Because of its ubiquity, when introducing struc-
ture to the phenomenal domain, many feel that it is natural to assume that this structure
is related to physical structure by an isomorphism or structure-preserving mapping. My
goal here is to show that this assumption is not in fact justified. We either need to search
for a rigorous justification, or if there is none, proceed in different ways.

Intuitively speaking, an isomorphism expresses a relation between two structures.
Precisely speaking, it is a bijective mapping between the domains of two structures that
preserves the relations or functions of these structures. That is, it is a map from the
elements or points of one structure to the elements or points of another structure. A
map is bijective if it is one-to-one and onto, meaning that every element in the target
space gets mapped to by exactly one element in the source space.

In practice, because the physical has amuch larger domain andmuch richer structure
than the phenomenal, when the concept of an isomorphism is applied in consciousness
science, what is actuallymeant is an isomorphismonto the image. Thismeans that there
is an isomorphism from the phenomenal domain to a substructure of the physical do-
main. Often, homomorphisms are used as well. They are defined exactly like isomorph-
isms, except that they do not have to be one-to-one or onto, so that some elements in
the target space might not get mapped to, and/or several elements in the source space
might map to the same element in the target space. Strictly speaking, though, homo-
morphisms are not appropriate either,12 but to avoid unnecessary technical details, I will

12 For the nerds ;-) The concept of homomorphism as used in mathematics presumes that two structures
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Figure 7.3.2.: What is an isomorphism? This figure illustrates the concept of isomorph-
isms as applied in consciousness science to link a phenomenal space or
structure (left) with a physical space or structure (right). By definition, iso-
morphisms operate on the level of points. An isomorphism maps every
point of the phenomenal space to a point in the physical space. It does so
in such away that the relations between points (indicated here by red lines)
are preserved, meaning that any two points which are related on the left
are related in the exact same way on the right, and the mapping needs to
be invertible. An isomorphism presupposes that structures on both sides
of the mapping are given. It does not define, or pick out, the structure in
its target domain, which is why it is not a suitable mathematical object to
explain, predict, or define phenomenal structure in terms of physical struc-
ture.

(Depiction of CIE colour space gamut byWikimedia Commons, Michael Horvath, under CC
BY-SA 4.0; this image, excluding the drawing of the brain, is shared under the same license.
Drawing of the human brain from Freepik.)
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admit them too. I will use the term structure-preserving mapping to denote homomorph-
isms or isomorphisms with the understanding that the domains and structures of the
source and target have been adapted appropriately to avoid the technical problems. As
far as intuition is concerned, my comments are easiest understood when thinking about
an isomorphism onto the image.

The assumption under discussion then is:

(ISO) The physical and the phenomenal are related by a structure-
preservingmapping from the phenomenal domain to the phys-
ical domain.13

This assumption is a very consequential assumption. It promises, for example, a new
methodology for measuring Neural Correlates of Consciousness (NCCs). To date, NCC
research has to make use of intricate measures of consciousness (Irvine, 2013), to dis-
tinguish between trials where the subject perceives a stimulus consciously from trials
where it doesn’t. If (ISO) is true, a whole new avenue for investigating NCCs is available:
to search, among neural structures in the brain, for structures that are homomorphic to
or identical with the structures of the phenomenal domain. This search could, in prin-
ciple, be carried out independently of any measure of consciousness, and might give a
unique result, so that potentially at least there is a methodology where one “[does] not
have toworrywhether subjects ‘really’ had a phenomenal experience of a stimulus” (Kob,
2023).

The existence of a structure-preserving mapping between the phenomenal and phys-
ical domain also has important consequences for theories of consciousness: it implies
that a large class of theories of consciousness is false, namely all those which do not

have the same signature, meaning that both structures need to have the same type of functions or
relations: the same number of functions or relations of the same arity, that is. Because the physical
has muchmore structure than the phenomenal (think about the rich structure of electrodynamics in the
case of neurons, say), the concept of homomorphism is too strong to express the underlying idea. One
could attempt to define a partial homomorphism as a homomorphism that respects some, but not all,
structures of the target domain. But for questions other than multiple realizability, the ‘isomorphism
onto the image’ conception seems to be closer to the underlying intuition. The same applies if one
reverses the direction of the homomorphism, cf. Footnote 13.

13 In addition to the problem mentioned in Footnote 12, there is also the question of which direction a
homomorphism should take. Should it go from the physical domain to the phenomenal domain, as
in (Fink et al., 2021), or vice versa? Because it is unlikely that all elements of the physical domain are
mapped to the phenomenal domain (there are neural mechanisms which are not relevant for conscious
experiences, for example), and because a map in the sense of mathematics requires a specification of
a target element for every element of the source domain, it seems more natural to me to choose the
phenomenal-to-physical direction. Choosing the physical-to-phenomenal direction would require one to
introduce yet another sense of partiality, that of a partial function, which is only defined on some of its
elements. The problem with this is that a homomorphism which is partial in both this sense and the
sense of Footnote 12 always exists, so that the statement (ISO) is vacuous. This is not the case for an
isomorphism onto the image in the phenomenal-to-physical direction, because of the need to specify
a target element in the physical for every source element in the phenomenal in such a way that the
image has the same structure as the phenomenal. This is why I think isomorphisms onto the image in
the phenomenal-to-physical direction are the right tool (and the right intuition) to work with, though my
comments below do not turn on this choice.
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take the form of a homomorphism. A good example of this is Integrated Information
Theory (IIT) (Oizumi et al., 2014; Albantakis et al., 2023). It is sometimes assumed that
IIT is structure-preserving or even an isomorphism, but according to IIT’s mathematical
formulation, this is not the case. The mathematics of IIT come with two clear ‘slots’ for
the physical and phenomenal domain. One of the slots is the input to the theory’s al-
gorithm. It requires a physical description of a system, for example in terms of neurons.
The other slot is the output of the theory’s algorithm. For every systemandphysical state
of this system, this output is amathematical structure called ‘Maximally Irreducible Con-
ceptual Structure’ in IIT 3.0, and ‘Φ-structure’ in IIT 4.0. This structure “is identical to [the
system’s] experience” (Oizumi et al., 2014). The mathematical algorithm of the theory
specifies amapping between those two slots which is not a homomorphism. Therefore,
the theory does not specify a homomorphism between the physical and phenomenal
domains. And consequently, if (ISO) is true then IIT must be wrong.14

Are isomorphisms justified?

The above shows that (ISO) is indeed a very consequential assumption. This would be
good news if (ISO) were also a justified assumption. But, as I will argue here, this is not
the case. While isomorphisms and homomorphisms are natural in mathematics, they
appear not to be the right sort of object to achieve the goals of consciousness science
in investigating the relation of the phenomenal and the physical. For the purpose of
this discussion, I will assume that these goals are “to explain, predict, [or] control the
phenomenological properties of conscious experience” (my italics) in terms of physical
properties, following Anil Seth’s Real Problem of Consciousness (Seth, 2022), with the
understanding that phenomenal structure is an integral part of phenomenal character,
and that structural properties are properties too.

My comments are tied directly to what an isomorphism or homomorphism is. As ex-
plained above, isomorphisms and homomorphisms aremappings between the domains
of two structures (between the points or elements of these structures, that is) which sat-
isfy certain conditions. The conditions enforce that the mappings are compatible with
the structures on both ends. This has two important consequences for the question at
hand.

14The only way to enforce viewing IIT as an isomorphism is by claiming that the output of IIT’s algorithm
is itself a physical structure, which then happens to be related by an isomorphism to the phenomenal
domain. Given the interpretation of the mathematical structure outputted by IIT as “identical to [the
system’s] experience” (Oizumi et al., 2014), it is hard to see how such interpretation can plausibly be
made. The mathematical quantities outputted by IIT do not appear anywhere else in the physical sci-
ences, and are conceptually and mathematically rather removed from physical theories. Such claim
also violates the implicit presupposition in (ISO) that there are more or less well-defined structures on
both the phenomenal and physical sides. If there were no constraints on which structure to consider,
then (ISO) would be a vacuous statement. Any mapping of the form f : P → E, where P denotes phys-
ical structure andE denotes phenomenal structure, can be turned into an homomorphism between the
physical and the phenomenal if E is taken to be a physical structure as well. As a rule of thumb, if a
structure is actively defined by a theory of consciousness, rather than just adapted from some other
part of science, it should probably not count as physical structure in the sense required by (ISO).
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The first consequence is that a homomorphism presupposes that the structures on
both ends of the mapping are given. If only one of the two structures is given, or none
even, then (ISO) becomes an empty statement. This is because anymapping of the form
f : E → P , where P denotes the physical domain and E denotes the experiential do-
main, can be turned into a homomorphism if at most one domain comes with structure.
One can simply define the structure on the other domain so that the mapping becomes
a homomorphism. Assuming that there is a homomorphism without presupposing that
structure on both ends of the mapping is given amounts to not assuming anything at
all.

But if a homomorphism presupposes structures on both ends, it doesn’t explain, pre-
dict or allow to control these structures. Homomorphisms fall short to explain, predict
or allow to control those phenomenal properties they were introduced to cope with.

Second, and more importantly in my opinion, homomorphisms do not have the right
mathematical form to pick outwhich structure there is. That is the case because they are
maps fromdomains to domains. They do not actuallymap fromstructures to structures,
as is sometimes thought. They only map points in one domain to points in another
domain in such a way that the mapping between the points preserves or respects the
structure on both ends. This speaks against an explanatory or predictive function as
well, as I shall now explain.

Let us first consider explanation. Do homomorphisms, or other structure-preserving
mappings, explain phenomenal structure in terms of physical structure? There are vari-
ous notions of explanation that are available in science, ranging from the early deductive-
nomological and inductive-statistical ideas studied by Carl Hempel (Hempel & Oppen-
heim, 1948; Hempel, 1962) to more modern understandings of explanation in the form
of causal-mechanical models (Salmon, 1984), unificationist models (Friedman, 1974;
Kitcher, 1989), contrastive explanation (van Fraassen, 1980) or interventionalist mod-
els (Woodward & Hitchcock, 2003; Hitchcock & Woodward, 2003).

It is clear that homomorphisms do not fit the original Hempel models of explanation
because they do not derive phenomenal structure in any meaningful sense from a gen-
eral law and initial conditions. What is crucial though is that they also don’t sit well
with the other models of explanation. This is the case because, in one form or another,
these models all require ‘what if things had been different’ information. In the causal-
mechanical model of explanation, ‘what if things had been different’ information is re-
quired to test the robustness of a purported causal mechanism. In unificationist models
it matters for questions of breadth of a unifying explanation. In contrastive explanations
it is central to deal with alternative scenarios that would have occurred under different
conditions. And in interventionist models, it is required to explicate how an intervention
changes the explanadum variable.

Homomorphisms do not pick out structure on the physical or phenomenal side, they
only relate points of the domains in a structure-preserving way. Therefore, they do not
provide ‘what if things had been different’ information about phenomenal structure. But
‘what if things had been different’ information is required by the above-mentioned mod-
els of explanations. Therefore, homomorphisms do not constitute an explanation of

182



7. Towards a Structural Turn in Consciousness Science

phenomenal structure according to these models.
Because homomorphisms don’t pick out phenomenal structure, they do not offer al-

ternatives to how phenomenal structure could be if things had been different. For this
reason, they also do not predict phenomenal structure. Prediction, too, requires math-
ematical tools that pick out the right structure among a class of possible structures.

A helpful way to think about the problems of explanation and prediction is to think
about what would define phenomenal structure in terms of neural structure, or phys-
ical structure more generally. Consider, as an analogy, computer games. Computer
games employ mathematical structure to model rich and detailed visual imagery. Yet
the mathematical models are defined mostly in terms of objects in the sense of object-
oriented programming. There is nothing in the actual code of the gamewhich resembles
the structure of the visual scene; rather, the code defines how the structure should be
rendered, and it does so in terms of objects and properties. The visual structure created
by the game is not homomorphic to the code that runs in order to create the scenes, yet
it is defined by the code. This example illustrates that homomorphisms are not the kind
of thing one would expect when defining structure.

What these points illustrate, on my view, is that homomorphisms and structure-pre-
serving mappings more generally are not the right sort of object to define, explain, pre-
dict or control phenomenal structure. They might be natural in the context of mathem-
atical questions, but they are not natural for the purposes of consciousness science.

Consequently, (ISO) is not in fact a natural or justified assumption. We either need to
search for a rigorous justification, or if there is none, proceed in different ways. Because
(ISO) is so consequential for theoretical and experimental work, using (ISO) without
proper justification, or in the hope that a justification will eventually be found, is not
a viable option.

This comment also applies to mathematical objects known under different names, if
these objects are in fact homomorphisms. Important examples thereof are mathem-
atical objects known as diffeomorphisms, which are maps between smooth geometric
shapes called manifolds. Diffeomorphisms are homomorphisms between the mathem-
atical structures that define smooth manifolds. And much like the simpler cases dis-
cussed above, they map points of one manifold to points on another manifold in a way
that respects the mathematical structure on both sides of the map. They do not explain
or define the structure.

What, if not isomorphisms?

If isomorphisms and homomorphisms are not the sort of thing that explains, predicts
or defines phenomenal structure, what is? Which mathematical objects should we use
to relate the physical and the phenomenal in a structural turn?

My view is that there is no general mathematical principle that we can commit to.
Rather, much like theories of consciousness in the pre-structural area were built one-
by-one, we have to build structural theories one-by-one, working with different ideas,
concepts, motivations and metaphysics in each case. The challenge of finding the right
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mathematics to explicate these ideas, concepts and motivations in a structural con-
text is not something we can bypass by choosing one mathematical tool that fits them
all. This is not technically possible, but also it is not desirable. The difference between
ideas, concepts and metaphysical underpinnings in a structural context is precisely in
the mathematics that relate the physical to phenomenal structure. We cannot waive the
problem of finding the right mathematics without also waiving the possibility of choos-
ing different metaphysical or conceptual ideas.

7.5. Which Phenomenal Structure?

Myfinal comment concerns the question ofwhich structure to considerwhen embarking
on structural research. That’s the question of what phenomenal structure is and howwe
find it. This question is important because conscious experience does not “come with”
mathematical structure in any direct sense. There is nothing in what it is like to exper-
ience something that is per se mathematically structured, other than if one explicitly
experiences something mathematical.15

Rather, mathematical spaces and mathematical structures are tools or languages we
can use to describe (ormodel) phenomenal character, much like English or any other lan-
guage can be used to describe phenomenal character. And just as we need definitions
or conventions to apply English language terms, we need definitions or conventions to
apply mathematical terms. These might not be as simple as in the case of English, but
still they flesh out the conditions under which one is, and under which one isn’t, justified
in making a structural and mathematical claim.

Because mathematics is a different type of language from English, the definitions or
conventions to apply structural terminology are of a different type too. They constitute
methodologies, meaning they are collections of methods, procedures or rules, that can
and need to be used to assess mathematical claims.

Because phenomenal character does not “come with” mathematical structure in any
direct sense, any claim about a structural fact, and any application of structural ideas,
is always relative to a specific understanding of what phenomenal structure is, and a
fortiori, relative to the methodology that defines this particular understanding. That is, it
is not meaningful to claim that experiences have a certain structure. Much like a claim
about whether experiences have qualia depends on what exactly one takes the term
qualia to denote, the claim that experiences have a certain structure depends on what
one takes phenomenal structure to denote (Figure 7.5.1). When working with or thinking
about phenomenal structure, we need to be clear about which methodology we pre-
sume. Otherwise, we’re prone to making errors. This is the first major point I’d like to
make in this comment.16

15We do experience mathematical structures if we know and recognize them, for example in the case of
geometrical shapes, or if we actually work withmathematical structures. But we do not experience non-
mathematical experiences as mathematically structured. We do not, for example, experience colours
as constituting a metric space or having a partial order.

16Therefore, working with mathematical structure in consciousness science is different from working with
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Figure 7.5.1.: Different definitions imply different spaces. Mathematical spaces and
mathematical structures are tools to describe or represent phenomenal
character, much like technical language terms are too. Different definitions
or conventions of how to use mathematical terms to describe or represent
phenomenal character—different conventions of what terms like ‘mathem-
atical structure of conscious experiences’ or ‘phenomenal spaces’ mean—
lead to different structural representations of the same set of experiences,
here illustrated by three different CIE colour spaces. Black arrows indic-
ate different definitions or conventions, which imply different methodolo-
gies for constructing phenomenal spaces in the lab. Much like technical
language terms might differ in scope, quality, adequacy, and presupposi-
tions, definitions or conventions regarding mathematical structures differ
in scope, quality, adequacy and presuppositions.

(Depiction of CIE colour space gamuts by Wikimedia Commons, Michael Horvath, under
CC BY-SA 4.0; this image is shared under the same license.)
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What is phenomenal structure, and how do we find it?

There are three important landmarks that have influenced theway inwhichwe usemath-
ematical structures to describe conscious experiences today: quality spaces as intro-
duced by Austen Clark (A. Clark, 1993), quality spaces as introduced by David Rosenthal
(Rosenthal, 1991, 2010) and Q-spaces as introduced in IIT 2.0 (Tononi, 2008). While
these methodologies have served an important function in enabling structural research,
it is also important to be clear about their shortcomings.

As far as IIT is concerned, the obvious shortcoming is that the theory does not provide
a phenomenal interpretation of the structure it proposes, other than the claim that the
structure “is identical to [the system’s] experience” (Oizumi et al., 2014). This gives rise to
what David Chalmers has called theRosetta Stone Problem (Chalmers, 2023b): the prob-
lem of how to translate the mathematical structure that IIT proposes into phenomeno-
logical terms. IIT does not actually specify a methodology that clarifies how to interpret
and test their proposed structure in phenomenal terms.

The proposals by Clark and Rosenthal do specify methodologies. The major short-
coming of thesemethodologies, onmy view, is that they conflate three sources of math-
ematical structure:

1. Mathematical Convenience. Some of the structure is introduced simply for math-
ematical convenience.

2. Laboratory Operations. Some of the mathematical structure refers to, or depends
on, laboratory operations.

3. Conscious Experience. Only part of the mathematical structure actually pertains
to conscious experiences or phenomenal character.

mathematical structure physics or other natural sciences. In physics and other natural science, we do
not have direct access to the phenomena we’re studying. In a certain sense, for structural claims in
physics, anything goes, as long as the relevant notion of measurement for that structure reproduces
what is observed. This is why there are hugely different proposals about the structure of spacetime,
for example, ranging from quantized spacetime (Rovelli, 2004) and emergent spacetime (R. Koch &
Murugan, 2012) to proposals that depart completely from what we intuitively think spacetime should
be (Finster & Kleiner, 2015). As long as limiting processes exist that relate these proposals to previous
models, in this case the notion of spacetime of General Relativity, all those proposals are viable options.
This is not the case for consciousness, because consciousness has a different epistemic context. For
example, it exhibits what is sometimes called epsitemic asymmetry: there are “two fundamentally dif-
ferent methodological approaches that enable us to gather knowledge about consciousness: we can
approach it from within and from without; from the first-person perspective and from the third-person
perspective. Consciousness seems to distinguish itself by the privileged access that its bearer has to
it” (Metzinger, 1995). In other words, in addition to the usual scientific way of accessing and modelling
a phenomenon there is a second way of accessing the phenomenon (described in terms of the first
person perspective metaphor above). Because of this different epistemic context, using mathematical
structure to describe a phenomenon is different in the case of consciousness, and more constrained,
than in the case of physics.
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Clark’s Quality Spaces

Quality spaces as introduced by Austen Clark (A. Clark, 1993) are based on the following
methodology. To construct the quality space for an individual subject,17 one fixes a
class of stimuli § that can be presented to the subject, and defines two tasks that the
subject can complete in response to the presentation of one or more stimuli. The first
task probes whether the subject is able to discriminate the experience elicited by two
different stimuli consciously. The second task probes whether the subject experiences
a stimulus to be more similar to a reference stimulus than another stimulus. This is
called relative similarity.18

The discrimination task is used to define a global indiscriminability relation on the
class of stimuli §.19 While discriminability does not constitute an equivalence relation,
global indiscriminability does. This equivalence relation partitions the set of stimuli.
Each set in this partition contains stimuli which are globally indiscriminable from each
other, and defines a quality in Clark’s proposal. The collection of the sets in this partition
(the space of equivalence classes of §, in mathematical terms) defines the domain of
the quality space that is being constructed.

The relative similarity task is used to define a graph, in the mathematical sense of the
term, between the qualities: a mesh of nodes and edges that link some of the nodes.
Working with stimuli that represent the different qualities, one first collects relative sim-
ilarity data. This is data about whether a quality q1 is more similar to a reference quality
q0 than another quality q2. One might find that the pair (q1, q0) is more similar to each
other than the pair (q2, q0), say. Having collected this data for all qualities in the set,
one then represents them as a graph. Every quality one has previously constructed is
a node of the graph, and every pair (qi, qj) about which one has relative similarity data
is an edge of the graph between the nodes that represent the qualities. The important
part now is that the edges get labels, namely numbers, and these numbers must be
chosen in such a way that the relative similarity judgements that have been collected
are represented truthfully by the ordering of the numbers. The label of the edge (q1, q0)
above, for example, must be a lower number than the label of the edge (q2, q0), because
the former pair is more similar to each other than the latter pair. The result of this pro-
cedure is a labelled graph, where the nodes represent qualities, edges indicate pairs for
which similarity data is available, and labels on the edges represent relative similarity.
In mathematical terms, this is called a POSET-labelled graph, where POSET means ‘par-
tially ordered set’. The partial order is the phenomenal structure of the relative similarity
experiences.

17Clark mostly has humans in mind, but does consider the case of animals briefly in (A. Clark, 1993). Noth-
ing hinges on humans in the methodology he proposes.

18There is considerable freedom in which class of stimuli to choose and how to define and implement the
tasks, which is why the proposal constitutes a methodology much more than a definition, on my view.

19Two stimuli are globally indiscriminable if and only if the following two conditions hold:

1. The two stimuli are indiscriminable from each other.

2. The two stimuli have identical indiscriminability relations to all other stimuli in §.
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Up to this point all the mathematical structure is still grounded in conscious experi-
ence, to a large extent. The data to carry out the constructions is based on tasks that
might utilize reports or behavioural measures, but these tasks should depend on what
is experienced.

The next step in Clark’s methodology consists of introducing a metric, a tool to meas-
ure distances in terms of continuous numbers, and in fact an Euclidean space that has a
uniform, homogeneousmetric. To this end, it makes use of a procedure known as ‘multi-
dimensional scaling’ (Beals et al., 1968). In Clark’s case, it consists of finding an embed-
ding of the graph into an Euclideanmetric space in such away that the distance between
the nodes of the graph—which are mapped to points in the metric space—reproduce the
ordering of relative similarity that the labels of the graph encode.

From the perspective of phenomenal character, this step is mind-blowing. Not only
is the metric introduced without any reference to experience, but this step also leads to
the introduction of many more points besides the original qualities that were carefully
constructed making use of global indiscriminability. Technically speaking, it leads to an
infinity of additional points, all of which feature in the metric function of the space, and
none of which is any different from the points that were carefully constructed based on
tasks and stimuli.

The only justification I can think of why one would make use of this last step, as com-
pared to just working with the POSET-labelled graph, is mathematical convenience. A
POSET-labelled graph might just be too unfamiliar a mathematical object. Or maybe
the reason is that it cannot easily be further analysed on a computer in familiar ways.
These justifications are in fact made explicit in introductory texts on psychophysics.
Luce and Suppes, for example, speak of representational measurement, of which multi-
dimensional scaling is an example, as “an attempt to understand the nature of empirical
observations (...) in terms of familiar mathematical structures“ (Luce & Suppes, 2002,
p. 1) (my emphasis), and add that “the use of such empirical structures in psychology
is widespread because they come close to the way data are organised for subsequent
statistical analysis” (Luce & Suppes, 2002, p. 2). Be that as it may, the last step that
introduces the metric function fails to be grounded in conscious experience. It is an
example of 1. above.

Rosenthal’s Quality Spaces

The construction of quality spaces as defined by David Rosenthal is based on a class of
stimuli as well. But in this case, one only needs a discrimination task, as well as means
to vary the stimuli.

Themain step in Rosenthal’s methodology is to construct Just Noticeable Differences
(JNDs) from variations of the stimuli and the discrimination task. To this end, one varies
a stimulus in some direction until the subject notices the difference between the stimu-
lus and the variation. The class of stimuli which one can reach by varying one stimulus
without creating a JND gives a set or region in stimulus space, and much like in the
case of Clark, the idea is that these regions constitute qualities. A metric function is
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introduced on the set of qualities by counting the minimal number of regions one has to
pass so as to go from one quality to the other.

In this proposal too, there is a question as to the experiential source of the metric
function. Because the metric function can be specified once JNDs have been construc-
tedwithout needing any additional data, it might not legitimately represent anything over
and above the JNDs and their neighbourhood relations. Furthermore, while we do exper-
ience color qualities as instantiating a relative similarity structure, we do not experience
qualities to be a certain number of steps apart, as ametric would require if it indeed rep-
resented a structure of conscious experience.20 So there is a worry of the metric being
due to mathematical convenience as well here.

A more fundamental worry though in this case concerns the variations of stimuli that
one needs in order to construct JNDs and their neighborhood relations in the first place.
The idea of a variation—starting with one stimulus and then changing that stimulus con-
tinuously until a subject notices a difference—requires a topology on the stimulus space.
A topology defines what it means to “draw a line without lifting a pen” on an abstract
space, so to speak. And it is precisely what provides the continuous curves required for
variations. Without a topology, there is no notion of closeness of two points. One could
go from any point to any other point immediately.

The problem is that different topologies give different variations. Sowhen one actually
constructs a quality space according to Rosenthal’smethodology in the lab, the resulting
space depends on the topology of the stimulus space that has been used. Much like
there isn’t just a single notion of colour space, there isn’t just a single topology on colour
stimuli one can use. As a result, themetric function that one constructs in an application
of Rosenthal’s methodology actually depends on the topology that has been chosen in
the experiment, which is a laboratory operation in the sense of 2. above.

In the case of Rosenthal’smethodology, there is in fact a theory that can be used to an-
swer these and similar worries, a theory about what consciousness is, about how qual-
ities should be understood, and about how consciousness and qualities relate. When I
asked David Rosenthal about the problem regarding topology, for example, he countered
by assuming that there is just one actual physical topology in reality and that this is the
topology that should be used. It is not clear to me how this would work in practice, given
that this topology is presumably defined by Quantum Electrodynamics (QED), and too
far removed from experimental practice to be applicable—in the lab, some choice of to-
pology will have to bemade nonetheless—, but theoretically speaking, the answer is fully
valid. Similarly, the theory aboutwhat qualities are and how they relate to consciousness
discharges the methodology from the problem that, according to the subsumed notion
of discrimination in this case, discriminations could also be made unconsciously.

There is, however, no free lunch. And the price to be paid for solving methodological
problems by theoretical assumptions is that the methodology now depends on these
assumptions and cannot be used to formulate or test other theories of consciousness.

20For amore careful examination of the case of ametric, cf. (Kleiner & Ludwig, 2024). For questions on how
quality spaces should relate to consciousness or phenomenal character according to the underlying
theory, cf. below.
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The methodological tool might be deprived of much of the impact it could otherwise
have.

Onmy view, quality spaces are ways to describe or represent the explanandum—what
is to be explained: qualitative or phenomenal character, what it is like to be—, while the-
ories of consciousness are the explanantia—what does the explaining. This is why I
have always been tempted to read Rosenthal’s proposal as a general methodology that
is independent from his theory. This is possible and addressing the above-mentioned
problems on purely methodological grounds leads, on my view, to fruitful further devel-
opments of his construction (cf. below and (Kleiner & Ludwig, 2024)).

How to move forward

In the last two sections, I have analysed two proposals for methodologies that define
what quality spaces are. While these proposals have served an important role in en-
abling structural thinking, much of the essential structure in these proposals is not ac-
tually grounded in conscious experiences, but in mathematical convenience and labor-
atory operations.

It is possible to go beyond individual methodologies and analyse the type of condition
that is applied in these proposals and more recent work. That is, the type of condition
that decideswhether amathematical structure is a quality space or phenomenal space—
a mathematical structure of conscious experience, to use a general term. In a nutshell,
all existing proposals I know of amount to:

(A) Conditions on the domains (sets of points) of a mathematical structure, formu-
lated in terms of qualities, qualia, phenomenal properties or similar aspects of
conscious experiences.

(B) The requirement that themathematical axioms of the structure (such as the axiom
that the metric distance between a point and itself is zero) are satisfied.

This type of condition can be shown to be insufficient to ground a thorough under-
standing of phenomenal structure. This is the case because (a) it is prone to admitting
incompatible structures, (b) allows for arbitrary re-definitions of structures that still sat-
isfy the condition, and (c) in a subtle but important sense, the condition is indifferent
to structural facts of conscious experience. I do not have the space here to explain
these problems in detail; they are explained and illustrated in (Kleiner & Ludwig, 2024,
Section 1).

I take the problems of existing proposals, and the insufficiency of the general type
of condition that is applied, to constitute a need of constructing a new methodology
for phenomenal spaces. This methodology needs to take previous methodologies into
account, but needs to amend and extend them to avoid the three insufficiency problems
as well as the issues with non-conscious sources of the mathematical structure.

In (Kleiner & Ludwig, 2024), Tim Ludwig and I have set out to find a methodology
that achieves this task. The result is illustrated in Figure 7.5.2. The proposal shares
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Figure 7.5.2.: How to define phenomenal spaces? This figure illustrates one way to
define phenomenal spaces and other mathematical structures of con-
scious experiences. One starts out with a choice of qualities (bottom left),
for example colour qualities, sometimes also called qualia or conceptu-
alised as instantiated phenomenal properties. The qualities form a set
that constitutes the points of the phenomenal space (bottom right). Every
experience comprises a subset of qualities, and as experiences change
from one experience to the next, the subset of qualities that is realised
varies (top left). These variations can be understood as mappings from
the set of qualities to itself, and therefore have the same formal structure
as automorphisms (Fig. 7.2.1): mappings from the points of a space to
other points of the space (top right). This allows for the following simple
definition of phenomenal structure: Phenomenal structure is that math-
ematical structure whose automorphisms are identical to the variations of
the qualities as experiences change. Put differently, phenomenal structure
(indicated here by red lines) is that mathematical structure which renders
the following statement true: the variations of (qualities of) conscious ex-
periences are the automorphisms of the structure (top centre). For details,
cf. (Kleiner & Ludwig, 2024).

(Depiction of CIE colour space gamuts by Wikimedia Commons, Michael Horvath, under
CC BY-SA 4.0; this image is shared under the same license.)
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with David Rosenthal’s methodology that it rests on variations, though in our case, any
transition from one conscious experience to another counts as variation, and we do not
demand continuity or restrict only to variations of stimuli.

Put in terms of phenomenal properties, the core intuition of our proposal is that a
mathematical structure is a phenomenal space if and only if there is a phenomenal
property that behaves exactly as the mathematical structure does under variations. If
a variation preserves the mathematical structure (if it is an automorphism of the struc-
ture, in mathematical terms), then it must not change the phenomenal property. If, con-
versely, a variation does not preserve the mathematical structure, then it must change
the phenomenal property. In a nutshell: there is something “in” conscious experience
(the phenomenal property) that behaves exactly as the mathematical structure does.

7.6. Conclusion

Structural approaches, which make use of mathematical structure to describe or model
conscious experiences, offer newand valuable avenues for studying consciousness. My
aim in this paper is to provide three comments that I consider important when engaging
in structural research. Each comment targets what is, in my view, a misconception or
misunderstanding that I aim to clarify.

My first comment focuses on themetaphysical underpinnings of structural approaches.
I show that, contrary to popular belief, structural approaches are not tied to physicalist
or reductive metaphysics. Instead, they offer versatile descriptive tools that can be util-
ised irrespective of one’s metaphysical commitments, across research programmes of
any metaphysical flavour.

My second comment concerns isomorphisms and structure-preserving mappings. A
number of emerging structuralist research programmes rely on assuming a structure-
preservingmapping between the phenomenal and the physical domain. I argue that this
assumption is unwarranted, and that isomorphisms and structure-preserving mappings
are not the right mathematical object to provide explanations, predictions, or definitions
of phenomenal structure. Instead, we should direct our attention to structural theories
of consciousness, without expecting a single mathematical formalism to fit them all.
One major experimental consequence of this is that methods such as Representational
Similarity Analysis (Kriegeskorte, Mur, & Bandettini, 2008), which search for structural
similarity, may not be the right approach to search for the neural correlates of structure.

My third and final comment focuses on the question of what phenomenal structure
is, and how we find it. Conscious experiences do not “come with” mathematical struc-
ture in anymeaningful sense. Rather, mathematical spaces andmathematical structure
offer a language to describe or represent conscious experiences, and just like we need
definitions or conventions to apply English language terms to consciousness, we need
definitions or conventions to apply structural terms. In the case of structure, the defini-
tions and conventions take the form of methodologies that govern how to construct or
use themathematical terminology. Inmy final comment, I review the twomajor method-
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ologies that have guided recent developments: quality spaces as introduced by Austen
Clark, and quality spaces as introduced by David Rosenthal. I show that both suffer from
fundamental issues, and discuss how to move forward in light of this.
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8. What is a Mathematical Structure of
Conscious Experience?

Johannes Kleiner, Tim Ludwig1

Attempts to represent conscious experiencesmathematically go back at least to 1860
(Fechner, 1860), and a large number of approaches have been developed since. They
span psychophysics, philosophy, phenomenology, neuroscience, theories of conscious-
ness, and mathematical consciousness science (A. Clark, 1993; Stanley, 1999; A. Clark,
2000; Yoshimi, 2007; R. G. Kuehni & Schwarz, 2008; Rosenthal, 2010; Klincewicz, 2011;
Kostic, 2012; Zaidi et al., 2013; Mason, 2013; Hoffman & Prakash, 2014; Oizumi et al.,
2014; Renero, 2014; Young et al., 2014; Rosenthal, 2015, 2016; Gert, 2017; Grindrod, 2018;
A. Haun&Tononi, 2019; Prentner, 2019; Kleiner, 2020b; Fortier-Davy &Millière, 2020; Lee,
2021; Tsuchiya & Saigo, 2021; Coninx, 2022; Lee, 2022; Resende, 2022; Tallon-Baudry,
2022; Tsuchiya et al., 2022) and are known under various different names, including
quality spaces (A. Clark, 1993), qualia spaces (Stanley, 1999), experience spaces (Kleiner
& Hoel, 2021; Kleiner & Tull, 2021), Q-spaces (Chalmers & McQueen, 2022), Q-structure
(Lyre, 2022),Φ-structures (Tononi, 2015), perceptual spaces (Zaidi et al., 2013), phenom-
enal spaces (Fink et al., 2021), spaces of subjective experience (Tallon-Baudry, 2022),
and spaces of states of conscious experiences (Kleiner, 2020a). The mathematical
structures and spaces introduced by these approaches have enabled significant ad-
vancements in their respective fields. Nevertheless, this research remains largely frag-
mented. The various approaches employ different formalizations and differentmathem-
atical structures, and they presume a different, and sometimes partial, understanding
of the concept of a mathematical structure or space when applied to conscious exper-
ience. What is missing, from our perspective, is a definition of the term ‘mathematical

1Published as: Kleiner, J., & Ludwig, T. (2024). What is amathematical structure of conscious experience?.
Synthese, 203(3), 89. (Kleiner & Ludwig, 2024)
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structure of conscious experience’ that clarifies how this term can and should be used.
In this article, we propose a definition of mathematical structures of conscious ex-

perience. Our main desideratum is that for a mathematical structure to be of conscious
experience, there must be something in conscious experience that corresponds to that
structure: a specific structural aspect of conscious experience.

Our key idea is to use variations to identify and investigate these structural aspects of
conscious experience. That is because variations can serve as a binding link between
conscious experiences and mathematical structures: on the one hand, variations relate
to conscious experiences, because variations change aspects of conscious experiences
(like qualia, qualities, or phenomenal properties); on the other hand, variations relate to
mathematical structures, because they may or may not preserve them.

In defining a mathematical structure of conscious experience, our proposal does not
answer the question of what thismathematical structure actually is, or which type it has.
Instead, our proposal identifies the analysandum for future work on spaces and struc-
tures of conscious experience, based on which phenomenal spaces, quality spaces,
qualia spaces, Φ-structures, as well as several other related concepts, can be construc-
ted and investigated.

This paper is structured as follows. In Section 8.1, we discuss how recent approaches
relate mathematical structures to conscious experience and identify three key issues in
these approaches. In Section 8.2, we present our proposal together with the necessary
background information. In Sections 8.3, and 8.4, we consider two important examples:
relative similarity and topological spaces. In Section 8.5, we show how our proposal
resolves the three problems identified in Section 8.1. Finally, our conclusion follows in
Section 8.6.

8.1. The Status Quo

So where do things stand? Most of the early work that has attributed mathematical
structure to conscious experience was grounded in intuition. Whether or not a specific
mathematical structure is a mathematical structure of conscious experience–a struc-
ture which “pertains to”, or “belongs to” consciousness, that is–was not assessed sys-
tematically; instead, it was assessed based on an intuitive insight of appropriateness.
More recent approaches have realized the need for a more systematic method, for ex-
ample (Gert, 2017; Lee, 2021, 2023; Prentner, 2019; Resende, 2022; Rosenthal, 2015,
2016). In this section, we analyze what we take to be the condition that underlies these
approaches: a condition that justifies prescribing amathematical structure to conscious
experience. As we will see, this condition is quite natural. But, as we will demonstrate,
it cannot be understood as a sufficient condition.

In a nutshell, a mathematical structure consists of two building blocks; for a detailed
introduction, see Section 8.2.2. The first building block consists of one or more sets
called the domains of the structure. The second building block are relations or func-
tions which are defined on the domains. For reasons explained below, we will denote
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them as structures in the narrow sense of the term. A metric space, for example, is a
mathematical structure that is defined on the two domains: a set of points and the real
numbers. Furthermore, it comprises a function—the so-called metric function—which
maps two points to a real number. A topological space, to give another example, is a
mathematical structure that is defined on a single domain: a set of points. Furthermore,
it comprises a collection of unary relations, which are subsets of the domain.2

Usually, amathematical structure also comeswith axioms. The axioms establish con-
ditions that the functions or relations have to satisfy. In the case of a metric structure,
the axioms require the metric function to satisfy three conditions, called positive def-
initeness, symmetry, and triangle inequality. In the case of a topological structure, the
axioms ensure the collection includes the empty set and the whole domain, that it is
closed under finite intersections, and that it is closed under arbitrary unions.

When put in these terms, recent proposals that go beyond intuitive assessments,
make use, either directly or indirectly, of the following condition to justify that a spe-
cific mathematical structure is a mathematical structure of consciousness. Here, we
use the term aspect as a placeholder for qualia, qualities, (instantiated) phenomenal
properties, or similar concepts.3

(MDC) A mathematical structure is a mathematical structure of conscious exper-
ience if and only if the following two conditions are satisfied:

(D1) The domains of the structure are sets whose elements correspond to aspects
of conscious experiences.

(D2) The axioms of the structure are satisfied.

In the case of the metric structure introduced in (A. Clark, 1993), for example, (D1)
is satisfied because the set of points corresponds to qualities of conscious experience.
The real numbersmight have a phenomenal interpretation as describing degrees of sim-
ilarity, as for example in (Lee, 2021). Condition (D2) requires positive definiteness, sym-
metry, and the triangle inequality to hold. This includes, for example, the condition that
“points should have distance zero just in case the qualities represented by those points
are phenomenally identical” (Lee, 2021, p. 14). In the case of the topological structure
introduced in (Stanley, 1999), to give another example, (D1) is satisfied because the do-
main of the structure refers to qualia. Condition (D2)would require, then, that the chosen
collection of subsets satisfies the axioms of a topological space.

Prima facie, (MDC) could be taken to define what a mathematical structure of con-
scious experience is. However, if understood as sufficient condition, the following three

2A unary relation on a domain, in the mathematical sense, is a subset of the domain; see Section 8.4.
3We use the term ‘aspect’ as a placeholder for these terms because the above condition is not unanim-

ously framed in either of these terms, and because our proposal in Section 8.2 is applicable with respect
to any of these choices. In short, our goal is not to pick any one of these concepts but to offer a defini-
tion that works with respect to any of these concepts. Which concept is best suited for a particular task
or domain is a philosophical question that can be answered independently of our proposal.
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problems arise.

Problem 1: Incompatible Structures

A first reason why (MDC) cannot be a sufficient condition to assess whether a math-
ematical structure is a mathematical structure of consciousness is that it allows for
incompatible structures.

Consider, as an example, the case of topology. A basic question in topology iswhether
a target domain is discrete or not. A target domain is discrete if and only if its topology
contains all subsets of the domain (K. Joshi, 1983). Otherwise, the target domain is
not discrete. These two cases are exclusive, meaning that discrete and non-discrete
topological structures are incompatible.

According to (MDC), conscious experience has a discrete structure. That is because
any set whatsoever can be equipped with the discrete topology. Therefore, picking a set
X of aspects (qualia, qualities, phenomenal properties, etc.) and choosing its discrete
topology provides amathematical structure that satisfies both conditions (D1) and (D2).
But, according to (MDC), consciousness also has a non-discrete structure. That is be-
cause any set can also be equipped with a non-discrete topology. We can, for example,
take an arbitrary decomposition of the set X into two subsets A and A⊥, where A⊥ is
the complement of A, and consider the topology {∅, A,A⊥, X}. This choice satisfies all
axioms of a topology, and therefore satisfies (D2). Furthermore, it is built on the same
setX as the discrete topology above, which implies that it also satisfies (D1). Therefore,
the discrete and the non-discrete topological structures are both structures of conscious
experience, according to (MDC).

This example shows that, if understood as a sufficient condition, (MDC) implies that
two incompatible structures are both structures of conscious experience, and that they
do so with respect to the exact same domain of aspects. The condition fails to determ-
ine which of the two incompatible structures is the right one.

Problem 2: Arbitrary Re-Definitions.

A second reasonwhy (MDC) cannot be a sufficient condition is that it allows for arbitrary
re-definitions: if one structure is given that satisfies (MDC), then any arbitrary definition
of a new structure in terms of the given structure also satisfies (MDC), so long as the
domains of the structure remain unchanged. If the former pertains to consciousness,
so does the latter.

A simple and well-behaved example of this is given by rescaling ametric function. Let
us suppose that (M,d) is a metric structure which pertains to consciousness according
to (MDC), where M is a set of aspects and d is the metric function, which provides a
real number d(a, b) for every two aspects a and b. Since (M,d) satisfies (MDC), so does
every structure (M,C · d), where C · d is the multiplication of the function d by a positive
real number C. Here, the number C can be chosen arbitrarily. If one metric structure
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pertains to consciousness according (MDC), so does an uncountably infinite number of
metric structures.

What is more, when re-defining structures, one is free to change the axioms as one
pleases. For example, we could pick any function f that maps M to the positive real
numbers and define a new distance function by (f(a) + f(b)) · d(a, b). This is not a
metric structure anymore, because the triangle inequality axiomdoes not hold. But it still
satisfies positive definiteness and symmetry, and therefore satisfies (MDC), with a new
set of axioms. One could even break asymmetry to get a distance function like the one
applied by IIT (Kleiner & Tull, 2021). More severe cases appear with more complicated
structures.

This is a problem, not only because of the unlimited number of structures that appear,
but also because there is an arbitrariness in the definition of a new structure, specifically
concerning the axioms. It seems strange that the axioms can be redefined at will, so as
to always satisfy Condition (D2). Something is missing that restricts this arbitrariness
in (MDC).

Problem 3: Indifference to Consciousness.

The third reason, which speaks against the sufficiency of (MDC), is that the proposed
condition seems somewhat indifferent to details of conscious experience.

To illustrate this indifference, let us consider again the discrete and non-discrete topo-
logical structures from above. As we have shown, these structures pertain to conscious
experience according to (MDC). Yet, nothing more than a few lines needed to be said to
establish this fact. In particular, we did not need to use any noteworthy input related
to consciousness other than picking some set of aspects; and it didn’t matter which
aspects we picked.

It is a red flag if so short an analysis, which does not depend on consciousness in a
meaningful way, establishes facts about the mathematical structure of conscious ex-
perience. The example exposes an indifference of (MDC) to details of conscious exper-
ience: the definition only relates to the different aspects, but not to the sort of mathem-
atical object that connects these different aspects. Speaking somewhat vaguely, (MDC)
does not refer to the “way” in which the different aspects of consciousness are re-
lated. This is why, in the case of topology, it allows one to draw conclusion without
any noteworthy input from actual experience. This constitutes another reason that con-
dition (MDC) is missing some important component, if used as sufficient condition.

Cause of these Problems

These three problems arise because (MDC) is not only a necessary, but also a suffi-
cient condition: it contains an ‘if’ condition in addition to the ‘only if’ condition. In the
first example, we show that two incompatible mathematical structures—a discrete and
a non-discrete topology—each satisfy (D1) and (D2). Because (MDC) is a sufficient con-
dition, it follows that both structures are structures of conscious experience, according
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to (MDC). In light of the incompatibility of discrete and non-discrete topologies, this con-
stitutes an issue of the definition. In the second problem, we show that for any given
structure or space that satisfies (D1) and (D2), any arbitrary redefinition yields a structure
or space which also satisfies (D1) and (D2), for a suitably adapted set of axioms. Be-
cause (MDC) is a sufficient condition, this implies that the arbitrarily redefined structure
is also a mathematical structure of conscious experience, which for reasons explained
above, constitutes an issue aswell. The third example, finally, builds on the first example
and makes use of the sufficient condition in exactly the same way. Because there is no
condition in (MDC) that relates to structure in the narrow sense of the term—no condition
that relates to relations or functions, that is—, and because of the sufficient condition
in (MDC), structures of conscious experience can be established without reference to
structure in the narrow sense of the term.

The Way Forward

To resolve the three problems, our task is to propose a definition for a mathematical
structure of conscious experience that makes sense as a necessary and sufficient con-
dition. This will be the content of Section 8.2.

Two desiderata guide our search. First, as is the case with (MDC), an improved defini-
tion should be about conscious experience in the sense that it targets qualities, qualia, in-
stantiated phenomenal properties, or similar aspects of conscious experience, as in (D1)
above. Second, there should be something in conscious experience—a quality, or quale
or phenomenal property—that relates to structure in the narrow sense of the term. This
“something” should make sure that the definition is not indifferent to conscious experi-
ence in the sense of Problem 3, and that the definition refers to functions or relations in
a meaningful way, so as to stop arbitrary re-definitions (Problem 2). The proposal which
we present in the next section is the result of our search.

Despite the above-mentioned problems, we think that (MDC) is an important condi-
tion. It might not be suitable as a sufficient condition, but it is valuable as a necessary
condition. If one understands mathematics pragmatically as constituting a language–
a body of symbols and terms with rules that connect these–, then mathematics can
be used to describe phenomena, much like the English language can. Looking back at
Condition (MDC) after our analysis, and presuming this pragmatic conception of math-
ematics, we think that (MDC) is best understood as an expression of what it takes for
a mathematical structure to describe conscious experience. That is, (MDC) might be a
valuable descriptive tool that utilizes mathematical structure to represent information
on how aspects are related to each other (as explicated by (D1) and (D2)).

Because of this, we will refer to a mathematical structure that satisfies (MDC) as a
mathematical structure that ‘describes conscious experience’ in what follows. The new
conditionwhichwe develop below contains (MDC) as necessary part; this is alignedwith
the intuition that any mathematical structure of conscious experience also describes
conscious experience.
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8.2. Mathematical Structures of Conscious Experience

In this section, we provide a definition of what mathematical structures of conscious
experience are. Based on this definition, phenomenal spaces, quality spaces, qualia
spaces, and related structures can be constructed and investigated. The definition em-
bodies away to think andwork withmathematical structures when applied to conscious
experience.

Our key desideratum in improving (MDC), explained above, is that for a mathematical
structure to be a mathematical structure of conscious experience, rather than just a
descriptive tool for conscious experience, theremust be a structural aspect in conscious
experience that relates to that structure. A major goal of this section is to explain this
in detail. Denoting a mathematical structure by S, we call this structural aspect an S-
aspect.

To make sense of what an S-aspect is, we need to understand how aspects (like
qualia, qualities or phenomenal properties) relate to mathematical structures. While as-
pectsmay have an arity, meaning theymay be instantiated relative to other aspects, they
are not experienced as having a mathematical structure per se (unless, of course, they
are aspects of experiences of mathematical structures themselves, such as of geomet-
ric shapes). Therefore, relating aspects to mathematical structures requires a tool that
applies both; concrete aspects of conscious experience and abstract formal entities.
Variations provide such a tool.

In general, a variation is a change of something into something else; in our case, it is
a change of one experience into another experience. Such variationsmay be induced by
external stimuli or interventions, occur naturally, or be subjected to imagination (‘imagin-
ary variations’ (Husserl, 1936)). Variations are directly related to aspects of conscious
experiences because a variation can change an aspect. This is the case iff an aspect is
part of the experience before the variation but isn’t part of the experience after the vari-
ation. And variations are also intimately related to mathematical structures, because
they may or may not preserve them, as explained in detail below. An S-aspect, then, is
an aspect that is changed by a variation if and only if the variation does not preserve the
structure S. To explain this in detail is the purpose of the remainder of this section.

8.2.1. Terminology and Notation

Here, we introduce the key termswe use to definemathematical structures of conscious
experience. These terms are conscious experiences, aspects of conscious experiences,
and variations of conscious experiences. The introduction proceeds axiomatically, so
that our construction does not rely on a specific choice of these concepts. Rather, any
choice of these concepts that is compatible with what we say here can be the basis of
an application of our definition.

Our construction is based on a set E of conscious experiences of an experiencing
subject. We denote individual conscious experiences in that set by symbols like e and
e′; formally e, e′ ∈ E. From a theoretical or philosophical perspective, one may think of
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the set E as comprising all conscious experiences which one experiencing subject can
have, i.e. all nomologically possible experiences of that subject. From an experimental
or phenomenological perspective, onemay think of this set as comprising all conscious
experiences that can be induced in the lab or in introspection. Different such choices
may lead to different mathematical structures being accessible.

We use the term aspect as a placeholder for concepts such as qualia (Tye, 2021),
qualities (A. Clark, 1993), mental qualities (Rosenthal, 2010), or (instantiated) phenom-
enal properties.4 For every experience e ∈ E, we denote the set of aspects instantiated
in this experience by A(e). The set of all aspects of the experiences in E, denoted by
A, is the union of all A(e); formally A =

⋃
e∈E A(e). Individual aspects, that is members

of A, will be denoted by small letters such as a, b, c. When explaining examples, we will
often use the abbreviation ‘a is the experience of ...’ as a shorthand for saying ‘a is a ...
aspect of an experience’. For example, ‘a is the experience of red color’ means ‘a is a
red color aspect of an experience’.

Some aspects may require other aspects for their instantiation. For example, it is
usually the case that an experience of relative similarity is an experience of relative sim-
ilarity of something, for example two color aspects relative to a third color aspect. If
an aspect a requires other aspects for its instantiation, we will say that the aspect a is
instantiated relative to aspects b1, ..., bm, or simply that a is relative to b1, ..., bm. Aspects
which are instantiated relative to other aspects are the building blocks for the structure
of conscious experience.

A variation of a conscious experience e changes e into another experience e′. Because
experiences have structure, there may be various different ways to go from e to e′.5
Therefore, in addition to specifying e and e′, a variation is a partial mapping

v : A(e)→ A(e′) .

Thismapping describes how aspects are replaced or reshuffled by the variation. Amap-
ping which is not surjective, meaning that it does not map to all aspects inA(e′), makes
room for appearance of new aspects. A mapping which is partial, meaning that it does
not specify a target for every aspect in A(e), makes room for aspects to disappear.
4Many other concepts work as well. For example, if one works with an atomistic conception of states

of consciousness, where the total phenomenal state of a subject—what it is like to be that subject at
a particular time—is built up from individual atomic states of consciousness, one can take e to denote
the total phenomenal state and aspects to be the states of consciousness in that total state. Another
example would be to take aspects to denote phenomenal distinctions as used in Integrated Information
Theory (Tononi, 2015). What matters for our definition to be applicable is only that according to one’s
chosen concept of conscious experience, every conscious experience exhibits a set of aspects.

5To illustrate this point, consider, for example, the following two mappings v and v′ which map the num-
bers 1, 2, and 3 to the numbers 2, 4, and 6. The mapping v is the multiplication of every number by 2,
meaning that we have v(1) = 2, v(2) = 4, v(3) = 6. The mapping v′, on the other hand, is defined by
v(1) = 6, v(2) = 2, v(3) = 4. If we only cared about the sets of elements that these mappings connect,
the mappings would be equivalent: there is no difference between the set {2, 4, 6}, which is the image
of v, and {6, 2, 4}, which is the image of v′. If, however, we care about the structure of the elements of
the sets–in this case, the ordering of numbers–, then there is a difference. While 2 ≤ 4 ≤ 6, it is not the
case that 6 ≤ 2 ≤ 4. Because we care about the order of the elements, we need to say which element
goes where.

201



8. What is a Mathematical Structure of Conscious Experience?

8.2.2. What is a Mathematical Structure?

To find a rigorous definition of the mathematical structure of conscious experience, we
need to work with a rigorous definition of mathematical structure. Mathematical logic
provides this definition, which we now review.

A mathematical structure S consists of two things: domains, on the one hand, and
functions or relations, on the other hand. We now introduce these concepts based on
two simple examples.

The domains of a structure S are the sets on which the structure is built. We denote
them byAi, where i is some index in a parameter range I. In the case of a metric struc-
ture, for example, the domains would beA1 = M andA2 = R, whereM is a set of points
andR denotes the real numbers, understood as a set. In the case of a strict partial order,
there is just one domain A, which contains the elements that are to be ordered.

The second ingredient are functions and/or relations. Functions f map some of the
domains to other domains. In the case of a metric structure, the function would be a
metric function d : M ×M → R, which maps from A1 × A1 to A2. A relation R, in the
mathematical sense, is a subset of them-fold productAi×...×Ai. Here,Ai is the domain
on which the relation is defined, and m is the arity of the relation, which expresses how
many relata the relation relates. The product is usually just written as Am

i . In the case
of a strict partial order, the relation is binary, which means that R is a subset of A2. For
binary relations, one usually uses notation like a < b instead of writing (a, b) ∈ R.

In almost all cases, mathematical structures also come with axioms, which estab-
lish conditions that the functions or relations have to satisfy. They are useful because
they constrain and classify the structure at hand. For S to be a metric structure, for ex-
ample, the function d has to satisfy the axioms of positive definiteness, symmetry, and
triangle inequality (Rudin, 1976). For S to be a strict partial order, the relation R has to
be irrefelxive, asymmetric, and transitive (K. D. Joshi, 1989).

To have a nice and compact notation, we will use one symbol Sj to denote both func-
tions and relations. That is because, in any concrete proposal, it is always clear whether
Sj is a function or a relation.6 The index j takes values in some parameter range J that
specifies how many functions or relations there are. Using this notation, we can repres-
ent the definition of mathematical structure provided by mathematical logic as follows:

A mathematical structure S is a tuple

S =
(
(Ai)i∈I , (Sj)j∈J

)
of domains Ai and functions or relations Sj .

For given domains Ai, the mathematical structure S is fully determined by the Sj .
Thus, we can also refer to Sj as ‘structures’, if the domains are clear from context. For

6In mathematical logic, mathematical structures are denoted as triples of domains, relations, and func-
tions. However, in our case, using just one symbol for functions and relations improves readability
substantially.
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simplicity, we can drop the index j and simply write S whenever we consider just one
such structure.

As a final step in this section, we introduce the relata of a structure S. This will be help-
ful to write things concisely below. The term relata designates those elements that are
related by a structure. In the case where S is a relationR on a domainA and has aritym,
these are the elements of them-tuples (b1, ..., bm) ∈ R. In the case where S is a function
f : A1 × ...×Am−1 → Am, the relata are the elements of the m-tuples (b1, ..., bm−1, bm)
where bm = f(b1, ..., bm−1), and where the other bi range over their whole domains. For
notational simplicity, we write b1, ..., bm instead of (b1, ..., bm) when designating relata
below.

8.2.3. What is a Mathematical Structure of Conscious Experience?

Finally, to the heart of the matter! We recall that we have so far identified two desiderata
for a mathematical structure S to be a mathematical structure of conscious experience.
First, it should be about conscious experiences in the sense that its domains should
correspond to aspects of conscious experiences. Second, there should be aspects in
conscious experience that relate to the structure S. The following definition satisfies
these two desiderata. Its explanation is the task of the remainder of this section.

(MSC) A mathematical structure S is a mathematical structure of conscious ex-
perience if and only if the following two conditions hold:

(S1) The domains Ai of S are subsets of A.

(S2) For every Sj , there is a Sj -aspect in A.

Here,Adenotes the set of all aspects of the experiences inE; formallyA =
⋃

e∈E A(e),
theAi denote the domains of the structure S, and the Sj -aspects are defined below.

Condition (S1) guarantees that the first desideratum is satisfied. Condition (S2) guar-
antees that the second desideratum is satisfied. Furthermore, whenever a certain type
of structure (metric, topological, partial order, manifold, etc.) is claimed to be a struc-
ture of conscious experience, the axioms that constrain and classify that type have to
hold. Therefore, any mathematical structure of conscious experience (MSC) is also a
mathematical structure that describes conscious experience according to (MDC). The
condition that has been applied in previous proposals remains a necessary condition
in (MSC).

The remaining task of this section, then, is to explain what an Sj -aspect is. For nota-
tional simplicity, we use the symbol S to denote Sj . As we have emphasized before,
variations are key to understand the structure of conscious experience, because they
link aspects and structure. Therefore, to be able to precisely define what an S-aspect
is, we need to understand how variations relate to aspects, on the one hand, and struc-
tures, on the other hand. Our strategy is to first discuss how variations relate to aspects.
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This amounts to specifying what precisely it means for a variation to change an aspect.
Second, we focus on how variations relate to mathematical structure. This amounts to
explaining what it means for a variation to preserve a structure. Finally, combing these
two steps allows us to understand S-aspects and provide a useful definition.

What does it mean for a variation v : A(e) → A(e′) to change aspects? The under-
lying idea is simply that an aspect is present in the source of the variation, A(e), but
not present any more in the target of the variation, A(e′). We need to take into account,
though, that aspects are often instantiated relative to other aspects (see Section 8.2.1).
This can be done as follows.

A variation v : A(e)→ A(e′) changes an aspect a ∈ A(e) relative to b1, ..., bm ∈ A(e)
if and only if a is instantiated relative to b1, ..., bm in A(e), but a is not instantiated
relative to v(b1), ..., v(bm) in A(e′).

In the case where a ∈ A(e) is not instantiated relative to other aspects, the definition
indeed reduces to the simple condition that a ∈ A(e) but a ̸∈ A(e′). The negation of the
definition is also as intuitively expected: the aspect is present both in the source and in
the target.7

For applications it is important to understand that this definition can fail to apply in
two ways. First, it can fail because there is no a in A(e′) which is instantiated relative to
v(b1), ..., v(bm). This, in turn, can be the case either because there is no a in A(e′) at all,
or because there is an a in A(e′) but it is instantiated relative to other aspects. Second,
it can fail because one or more of the v(b1), ..., v(bm) do not exist. The second case is
possible because v is a partial mapping, which means aspects can disappear.

What does it mean for a variation to preserve a mathematical structure? The underly-
ing idea is that a variation preserves the structure if and only if the structure is satisfied
before the variation and remains to be satisfied after the variation. By its very nature,
this is amathematical condition, namely the condition of being a homomorphism (Mileti,
2022). The definition of a homomorphism, though, always applies to all elements of a
domain at once. For our case, it is best to refine this definition to a single set of relata.8

Avariation v : A(e)→ A(e′)preserves a structureS with respect to relata b1, ..., bm ∈
A(e) if and only if we have

(P1) R
(
b1, ..., bm

)
= R

(
v(b1), ..., v(bm)

)
if S is a relation R, or

(P2) v
(
f(b1, ..., bm−1)

)
= f

(
v(b1), ..., v(bm−1)

)
if S is a function f .

7Because the definiendum already includes the first part of the condition, the negation is as follows:
A variation v : A(e) → A(e′) does not change an aspect a ∈ A(e) relative to b1, ..., bm ∈ A(e) if and
only if a is instantiated relative to b1, ..., bm in A(e) and a is also instantiated relative to v(b1), ..., v(bm)
in A(e′).
We felt that is the best way of writing things to optimize clarity.

8For notational simplicity, we write R
(
b1, ..., bm

)
= R

(
v(b1), ..., v(bm)

)
instead of R

(
b1, ..., bm

)
⇔

R
(
v(b1), ..., v(bm)

)
.
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As in the previous case, the negation of this definition is exactly what is intuitively ex-
pected: a variation does not preserve the structure if and only if the structure is satisfied
before the variation, but not satisfied after the variation.9

For applications it is again important to see that the definition can fail for two reas-
ons. First, it could be the case that one or more of the v(bi) do not exist in A(e′), if the
corresponding aspect disappears. Second, the identities may fail to hold.

We now have the keys to understand S-aspects. The underlying idea is that an S-
aspect is an aspect that, under any variation, behaves exactly as the structure S does:
whenever S is preserved, the S-aspect does not change, and whenever the S-aspect
changes, the structure S is not preserved. This is expressed by the following defini-
tion.

An aspect a ∈ A is an S-aspect if and only if the following condition holds:
A variation does not preserve S with respect to relata b1, ..., bm if and only if the
variation changes a relative to b1, ..., bm.

Here, the condition needs to hold true for all variations and all relata. This means that
it needs to hold true for all variations of all experiences e in the set E that instantiate
relata of the structure S.

This concludes our proposal for the definition of the mathematical structure of con-
scious experience. It is a structure whose domains correspond to sets of aspects, and
which contains an S-aspect for every relation or function of the structure. In the next
two sections, we apply this definition to examples. On the one hand, these examples
illustrate the definition. On the other hand, they provide new insights to structures that
have been featured prominently in previous approaches.

8.3. Relative Similarity

Our first example concerns relative similarity, which plays an important role, for example,
in the construction of quality spaces by Austen Clark (A. Clark, 1993, 2000).

A first step in applying our definition is to choose a setE. Here we takeE to comprise
experiences of three color chips, as indicated in Figure 8.3.1A, where one of the chip (the
reference) has a fixed color coating and the others vary in a range of color coatings Λ.
A color coating is a physical stimuli.

The second step is to specify the set of aspectsA(e) for every experience e ∈ E. Here,
we take A(e) to comprise: (a) the color qualities in e, that is, the experienced colors of

9A variation v : A(e) → A(e′) does not preserve a structure S with respect to relata b1, ..., bm ∈ A(e)
if and only if we have R

(
b1, ..., bm

)
̸= R

(
v(b1), ..., v(bm)

)
if S is a relation R, or v

(
f(b1, ..., bm−1

)
̸=

f
(
v(b1), ..., v(bm−1)

)
if S is a function f .

This negation agreeswith the intuition because the definiendumalready states part of the condition that
follows, namely that b1, ..., bm are relata of the structure S in A(e), which implies that (b1, ..., bm) ∈ R
if S is a relation and that f(b1, ..., bm−1) exists in A(e) if S is a function, meaning that the structure is
satisfied before the variation.
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the individual chips; (b) positional qualities of the color experiences, that is, which chip
has which color; and (c) the experience of relative similarity. Relative similarity is an
experience of one pair of aspects to be more, less, or equally similar to each other than
another pair of aspects; here, the two pairs have to have one aspect—the reference—
in common. In Figure 8.3.1A, for example, the color of the top left chip will, for many
readers, be less similar to the reference chip than the color of the top right chip. An
experience e in the set E may exhibit many other aspects as well. However, A(e) only
comprises those which are relevant for the construction at hand.

To pick out relative similarity more precisely, we let b0, b1 and b2 denote the color as-
pects of the three chips in an experience e, where b0 is the color aspect of the reference;
see Figure 8.3.1B. For some experience e, it might be the case that the colors b1 and b0
are experienced as less similar to each other than the colors b2 and b0. In this case, the
experience e has a relative similarity aspect in the above sense; we denote this “less-
similar” relative similarity aspect by a. So, a is an aspect of e, and it is instantiated
relative to b1 and b2. (To be precise, a is also relative to b0. But since b0 does not vary in
E we can leave this implicit.)

Variations change one experience e into another experience e′. An example for a vari-
ationwould be a swap of the coatings of the two non-reference chips, as in Figure 8.3.1C.
Another example for a variation would be to change the coatings of both non-reference
chips to some other coating in Λ, as in Figure 8.3.1D. Formally, variations are represen-
ted by mappings v : A(e)→ A(e′). In the first example, Figure 8.3.1C, the mapping is of
the form v(b1) = b2 and v(b2) = b1, and v(c) = c for all other aspects c, except for the
relative similarity aspect a, which is discussed in detail below. In the second example,
Figure 8.3.1D, the mapping is as in the first example but with v(b1) = b3 and v(b2) = b4.

The key question of this example is: Is there a mathematical structure of conscious
experience which corresponds to relative similarity? To answer this question, we pro-
pose a mathematical structure and check whether this structure satisfies (MSC).

The words “less similar than” in the description of relative similarity already indicate
that some order, in the mathematical sense of the word, might be involved. For reasons
that will become clear below, we propose a strict partial order as mathematical struc-
ture. Our task in the remainder of this section is to show that this proposal indeed sat-
isfies (MSC) with respect to experienced relative similarity. A strict partial order (C, <),
consists of a set C, which is the domain of the structure, and a binary relation ‘<’ on C.
For all x, y, z ∈ C, this binary relation has to satisfy the following axioms:

▶ Irreflexivity, meaning that there is no x ∈ C with x < x.

▶ Asymmetry, meaning that if x < y, then it is not the case that y < x.

▶ Transitivity, meaning that if x < y and y < z, then also x < z.

In order to turn a strict partial order into a proposal for a mathematical structure of
conscious experience, we need to specify how the set C and the relation < relate to
aspects of conscious experience. For the set C we choose the color qualities of the
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Figure 8.3.1.: To help explain the example of relative similarity, this figure illustrates ex-
periences with color qualities and variations thereof. Subfigure A illus-
trates an experience of three color chips as well as the concept of relat-
ive similarity: many readers will experience the color of the top-left color
chip to be less similar to the reference chip than the color of the top-right
color chip. Subfigure B illustrates our notation for the color aspects cor-
responding to the color chips. Subfigures C and D illustrate variations v of
experiences: a swap of two color aspects in C; and a replacement of two
color aspects in D.

experiences inE, meaning thatC now comprises the color qualities evoked by the coat-
ings Λ of the chips we consider. For example, it contains what we have labelled b0, b1,
b2, b3 and b4 in Figure 8.3.1. For the relation, we define bi < bj if and only if bi is exper-
ienced as less similar to b0 than bj is to b0. (Since relative similarity, as defined above,
depends on the choice of reference b0, it would be more precise to write <b0 instead of
<. However, to simplify the notation, we keep the reference implicit.)

For this proposal to make sense, we first need to check whether the axioms are sat-
isfied. If they were not satisfied, the proposal could still be a structure of conscious
experience; but it wouldn’t be a strict partial order. That’s why the axioms are not expli-
citly mentioned in (MSC). Irreflexivity is satisfied because no color quality is less similar
to the reference than itself. Asymmetry is satisfied because if a bi is less similar to the
reference than bj , then bj is not less similar to the reference than bi.

The use of terms like ‘less similar to’ in natural language suggests that transitivity is
also satisfied; it suggests that, if bi is less similar to the reference than bj and bj is less
similar to the reference than bk , then bi should be less similar to the reference than bk. But
it might very well be the case that natural language is not precise enough to describe its
target domain. The use of natural languagemay be justified in simple cases, or even in a
majority of cases, but whether or not transitivity holds for all bi, bj , bk ∈ C is, ultimately,
an empirical question. For the purpose of this example, we’re going to assume that
transitivity holds as well.

Having checked that the axioms hold—that is, that the proposal is indeed a strict par-
tial order—we can proceed to check whether the structure is a mathematical structure
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of conscious experience according to (MSC). Concerning Condition (S1), there is one
domainC and it consists of color qualities, so this condition is satisfied. Therefore, only
Condition (S2) remains to be checked.

We now show that the relative similarity aspect a, as defined above, is in fact an S-
aspect, where S is the ‘<’ relation on C. That is, it is a <-aspect. To see that this is true,
we have to show that a variation does not preserve < with respect to relata b1 and b2 if
and only if the variation changes a relative to b1 and b2.

Consider any variation v : A(e) → A(e′) that does not preserve < with respect to
relata b1, b2 ∈ A(e). Two aspects b1 and b2 are relata of < if either b1 < b2 or b2 < b1.
We focus on the first case as the other one follows from the first by renaming b2 and b1
in what follows. By definition of the < relation, b1 < b2 means that b1 is experienced as
less similar to the reference than b2. Therefore, there is also a relative similarity aspect
a ∈ A(e) as defined above. As explained in Section 8.2.3, there can be twoways in which
the variation v might not preserve <. Either v(b1) or v(b2) are not defined, or, if they are
defined, it is not the case that v(b1) < v(b2). In the former case, there cannot be an a in
A(e′) relative to v(b1) or v(b2), simply because the latter do not both exist. In the latter
case, it follows from the definition of < that v(b1) is not experienced as less similar to
the reference than v(b2). So, there is no a ∈ A(e′) relative to v(b1) and v(b2). Hence, we
may conclude that v changes a relative to b1 and b2.

For the opposite case, let v : A(e) → A(e′) be a variation which preserves < with
respect to relata b1 and b2. As before, this implies that a is in A(e) relative to b1 and
b2. Because v preserves <, v(b1) and v(b2) both exist and we also have v(b1) < v(b2).
Applying the definition of< then implies that a is also inA(e′) relative to v(b1) and v(b2).
Hence v does not change a relative to b1 and b2.

Because in both of these cases, v was arbitrary, it follows that a is indeed a<-aspect.
Therefore, Conditions (S1) and (S2) of (MSC) are both satisfied, and the strict partial
order (C, <) is indeed a mathematical structure of conscious experience; it is the math-
ematical structure of relative similarity of color experiences with respect to b0.

8.4. Phenomenal Unity and Topological Structure

Our final example concerns topological structure. Interestingly, this is intimately tied
to phenomenal unity, the thesis that phenomenal states of a subject at a given time
are unified (Bayne & Chalmers, 2003). Phenomenal unity gives rise to a mathematical
structure of conscious experience.10

Recall that we have introduced the setA(e) to denote aspects of the conscious exper-
ience e, where we have used the term ‘aspect’ as a placeholder for concepts like qualia,
qualities, or (instantiated) phenomenal properties. Most examples of these concepts

10A connection between topology and phenomenal unity has already been conjectured in (Prentner, 2019),
where an attempt was made to construct a topological space based on a binary relation that describes
the “overlap” of mental objects. The construction only leads to the weaker notion of a pre-topology, but
should be regarded as an important first step in this direction. For a summary of the formal construction,
see (Kleiner, 2020b, Example 3.22).
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are “independent” from the experience in which they occur; they could be experienced
together with a largely different set of aspects in a different experience. Yet, experiences
seem unified; their aspects are experienced as tied together in some essential way. This
raises the question of what underlies this experience of the unity of a conscious exper-
ience? As we will see, somewhat surprisingly, the answer is: a topological structure of
conscious experience.

Much has beenwritten about the question of phenomenal unity in the literature, for ex-
ample (Bayne, 2010; Bayne & Chalmers, 2003; Cleeremans & Frith, 2003; Mason, 2021;
Prentner, 2019; Roelofs, 2016; Wiese, 2018), and in order to make use of some of the
results, we assume that the term ‘aspect’ denotes an instantiated phenomenal property
or quale. The set of aspects A(e), then, comprises the phenomenal properties or qualia
which are instantiated in the experience e, also called the phenomenal states of the ex-
perience e.11 Our question, then, is what it means that “any set of phenomenal states of
a subject at a time is phenomenally unified” (Bayne & Chalmers, 2003, p. 12).

There are various answers one might give to this question. A promising answer is the
so-called subsumptive unity thesis, developed in (Bayne & Chalmers, 2003):

“For any set of phenomenal states of a subject at a time, the subject has a
phenomenal state that subsumes each of the states in that set.” (Bayne &
Chalmers, 2003, p. 20)

According to this thesis, what underlies the experience of the unity of a conscious ex-
perience is that for any set X of phenomenal states in the conscious experience, there
is a further phenomenal state that subsumes each of the states in X. This phenom-
enal state characterizes what it is like to be in all of the states of X at once (Bayne &
Chalmers, 2003, p. 20).

Put in terms of aspects, the subsumptive unity thesis says that for any set X ⊂ A(e)
of aspects of an experience, there is an additional aspect in A(e) that subsumes the
aspects in X. This aspect is the experience of what it is like to experience the aspects
inX as part of one experience e together, the experience that they are unified, as we will
say. Let us call this aspect the phenomenal unity aspect of X and denote it by aX . It is
instantiated relative to the elements of X.

Phenomenal unity gives rise to amathematical structure of conscious experience. To
see how, let us use the symbol T to denote a collection of subsets ofA(e), to be specified
in more detail below. Every subset of A(e) is a unary relation on A(e),12 and hence also
on the set A that comprises all aspects of the experiences in E. Therefore, (A, T ) is a
mathematical structure; it has domain A and its structures are the unary relations in T .
As we show next, because of the subsumptive unity thesis, the mathematical structure
(A, T ) is a mathematical structure of conscious experience according to (MSC).
11A phenomenal state is an instantiation of a phenomenal property, or quale, by a subject at a given time.

This instantiation constitutes part of the experience of the subject at the time. An experience e, in our
terminology, is an experience of a subject at a given time. Hence, a phenomenal state is an instantiation
of a phenomenal property, or quale, in an experience e.

12An m-ary relation on a set X is a subset R of Xm. Hence, a unary relation, where m = 1, is a subset of
X.
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Because A is the set of all aspects of E, Condition (S1) of (MSC) is satisfied. There-
fore, only Condition (S2) remains to be checked. This condition is satisfied because for
every set X ∈ T , the phenomenal unity aspect aX is an S-aspect for S = X ; an X-
aspect for short. To show that this is the case, we need to check that a variation does
not preserve X with respect to relata b1, ..., bm if and only if it changes aX relative to
b1, ..., bm. Let v : A(e) → A(e′) be a variation that does not preserve X with respect to
relata b1, ..., bm . The relata of the subset X are the elements of that subset. Therefore,
we have b1, ..., bm ∈ A(e), so that the subsumptive unity thesis implies that there is a
phenomenal unity aspect aX relative to the b1, ..., bm in A(e). The condition that v does
not preserveX furthermore implies that either not all of the v(bi) exist or that at least one
of them is not in the set X. Therefore, there is no phenomenal unity aspect aX relative
to v(b1), ..., v(bm) in A(e′). Hence, the variation v changes aX relative to b1, ..., bm ∈ X.
Vice versa, let v : A(e) → A(e′) be a variation which preserves X with respect to relata
b1, ..., bm. This implies that aX is instantiated relative to b1, ..., bm in A(e). The condition
that v preserves X furthermore implies that v(b1), ..., v(bm) exist, and that they are ele-
ments of X. Therefore, aX is also instantiated relative to v(b1), ..., v(bm) in A(e′). This
shows that the variation does not change aX relative to b1, ..., bm. Thus, aX is indeed an
X-aspect. And because that is true for anyX ∈ T , (A, T ) indeed satisfies Condition (S2)
and hence (MSC).

The previous paragraph proves that, if the subsumptive unity thesis holds true for all
sets X in T , then (A, T ) is indeed a mathematical structure of conscious experience.
As we will explain next, this structure is intimately tied to a topological structure.

A topological structure (M, T ) consists of a set M and a collection T of subsets of
M . The collection has to satisfy three axioms, and there are a few different ways of
formulating these axioms. Here, we choose the formulation that corresponds to what
is usually called ‘closed sets’. The axioms are:

▶ The empty set ∅ and the whole set M are both in T .

▶ The intersection of any collection of sets of T is also in T .

▶ The union of any finite number of sets of T is also in T .

Are these axioms satisfied by the structure (A, T ) induced by phenomenal unity?
To answer this question, it is important to note that the subsumptive unity thesis does

not provide a phenomenal unity aspect aX for every subset ofA. It can only provide such
an aspect for a set of aspects that are actually experienced together. That is, it can only
provide such an aspect for a subsetX ofA(e). Therefore, T is not the discrete topology
introduced in Section 8.1. Second, it also cannot be the case that it provides a phenom-
enal unity aspect for every subset ofA(e). That’s because then there would be an infinite
regress: for every subsetX ofA(e) there would be a new aspect aX inA(e), giving a new
subsetX ∪{aX} that would give a new phenomenal unity aspect aX∪{aX}, and so forth.
This problem is well-known in the literature (Bayne, 2005; Wiese, 2018). Rather, we take
it, the quantifier ‘any set’ in the subsumptive unity thesis must be understood as ‘any set
of aspects that are experienced as being unified’. While it is arguably the case that the
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whole set of aspects A(e) of an experience is always experienced as unified–by which
we mean: the whole set of aspects is experienced–, introspection suggests that we
consciously experience only a select group of aspects as unified at a time.13

So, which sets of aspects do we experience as unified? While we cannot give a gen-
eral answer to this question here, there is a special case where a sufficiently detailed
specification can be given: the case of regions in visual experience. Here, ‘regions’ are
sets of positions of the space that visually perceived objects occupy.14 The positions
in a region are experienced as unified. Therefore, the regions of visual experience are
members of the collection T which is induced by phenomenal unity. Furthermore, they
appear to satisfy the axioms of a topology as stated above: the whole set of positions
in a visual experience is a region; it seems to be the case that intersections of regions in
visual experience are also regions in visual experience; and it seems to be the case that
the union of any two regions in visual experience is also a region in visual experience.
For the empty set, no S-aspect of consciousness is required (there are no relata of the
corresponding unary relation), so wemay take the empty set to be amember of T . Thus,
all axioms of a topology are satisfied.

Therefore, if we take M to denote the position aspects of visual experiences, and
choose T to comprise the regions of visual experience, then (M, T ) is indeed a topo-
logical structure. And, as shown above, it is a structure of conscious experience as
defined in (MSC). We thus find that, because of the subsumptive unity thesis, this topo-
logical structure is indeed a mathematical structure of conscious experience; much like
conjectured in (Tallon-Baudry, 2022), it is a topology of the visual content of subjective
experience.

8.5. The Three Problems Revisited

In this section, we discuss how the new approach (MSC), which we have developed in
Section 8.2.2, resolves the three problems discovered in Section 8.1.

Problem 1: Incompatible Structures

The first problem was that the condition (MDC), which has been applied in previous
approaches, admits incompatible structures to conscious experience. Is this also true
of (MSC)?

If two structures are incompatible, then there exists at least one automorphism of

13This solves the infinite regress problem because, arguably, we do not always experience the phenomenal
unity aspects as unified with the sets they correspond to. So, there is not always a phenomenal unity
aspect aX∪{aX} for the set that consists of aX and X.

14It is also plausible to think that visual experiences do not contain positions as aspects, but only regions.
However, assessing whether or not this is the case goes beyond the scope of this paper. Here, we
assume that positions are aspects of visual experiences.
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one structure that is not an automorphism of the other structure.15 As we explain be-
low, this condition implies that two incompatible structures cannot have an S-aspect
in common. Therefore, it is not possible for two incompatible structures to pertain to
conscious experience in the exact same way; so, (MSC) indeed resolves the problem of
incompatible structures.

Let S and S′ denote two incompatible structures with the same domains. Then, there
is at least one automorphism of one structure that is not an automorphism of the other
structure. Let us denote such an automorphism by v and assume that it is an auto-
morphism of S but not of S′. Because v is not an automorphism of S′, it follows that
there is at least one set of relata b1, ..., bm of S′ in some A(e), such that the variation
v : A(e) → A(e) induced by the automorphism does not preserve S′ with respect to
these relata. On the other hand, because v is an automorphism of S, it follows that this
variation preserves S with respect to b1, ..., bm. If an aspect a is an S′-aspect, then, ap-
plying the definition of S′-aspects, we find that the variation v needs to change it. In
contrast, if an aspect a is an S-aspect, then, applying the definition of S-aspects, we
find that the variation v must not change it; either because the b1, ..., bm do not consti-
tute relata of S, or because the variation v preserves S with respect to relata b1, ..., bm.
Because an aspect cannot be both changed and not changed under a single variation,
there cannot be an aspect a that is both an S-aspect and an S′-aspect.

Problem 2: Arbitrary Re-Definitions.

The definition (MSC) also resolves the problem of arbitrary re-definitions. That’s be-
cause any re-definition changes the relations or functions of the respective structure,
and therefore generates an own, independent condition for something to be an S-aspect
of the redefined structure. Whether or not this new S-aspect is a part of conscious ex-
perience is a substantive question that depends on the actual experiences of the subject
under consideration; it is not automatically the case.

Consider, as examples, the cases of rescaling a metric, which we have introduced in
Section 8.1. If, per assumption, (M,d) were a structure of conscious experience, then
for any relata (b1, b2, d(b1, b2)), the condition for d-aspects would have to be satisfied.
Rescaling this to (M,C · d) generates a new condition because now, the relata to be
considered are (b1, b2, C · d(b1, b2)). These are different relata, and correspondingly, dif-
ferent experiences and different variations will enter the definition of a C ·d-aspect. The
same is true for an (f(a) + f(b)) ·d(a, b)-aspect. Whether or not these structures sat-
isfy (MSC) depends on the details of the conscious experiences under consideration;
but they do not automatically satisfy (MSC) just because (M,d) does.

15Automorphisms are structure-preserving mappings from a structure to itself. Put in terms of the termin-
ology we have introduced in Section 8.2.2, automorphisms are mappings v that map the domains of a
structure to themselves. These mappings have to be bijective, and they have to preserve the structure,
meaning that they have to satisfy (P1) for all elements of the domain in case of relations, and (P2) for
elements of the domains in the case of functions.
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Problem 3: Indifference to Consciousness.

The third problem is resolved, finally, because of the introduction of S-aspects in (MSC),
which are a counterpart “in” conscious experience to the structure in the narrow sense
of the term. S-aspects introduce a connection between functions or relations in a math-
ematical structure, on the one hand, and aspects (qualia, qualities, or phenomenal prop-
erties) of conscious experiences, on the other hand. Because S-aspects are part of
the definition of (MSC), any application of (MSC) requires engaging with details of the
conscious experiences of the subject under consideration; (MSC) is not indifferent to
conscious experience in the sense of Problem 3 of Section 8.1.

Consider, for example, the two topological structures of Section 8.1. While (MDC) only
required us to check whether the structures address aspects and satisfy the axioms,
(MSC) also requires us to check whether there is an S-aspect in conscious experience
that corresponds to the topological structures. As we have seen in Section 8.4, this
involves a careful investigation of conscious experience and relies on intricate notions
such as phenomenal unity.

8.6. Conclusion

In this article, we investigated mathematical structures and mathematical spaces of
conscious experience. We were not concerned with questions of type or explicit form
of these structures or spaces, but with the question of what it means to speak about
mathematical structures or mathematical spaces of conscious experiences in the first
place. We answer this question by providing a definition ofwhatmathematical structures
of conscious experience are. This definition provides a foundation for the construction,
investigation and identification of concepts like phenomenal spaces, quality spaces,
qualia spaces and Q-structures.

Our definition of mathematical structures of conscious experiences is grounded in a
foundational understanding ofmathematical structures and spaces as laid out bymath-
ematical logic. And it is axiomatic in the sense that it can be applied to any conceptualiz-
ation of conscious experiences, and any choice of aspects thereof (e.g. qualia, qualities,
phenomenal properties, phenomenal distinctions), which satisfy the formal requirement
that for every conscious experience there is a well-defined set of aspects.

Our definition rests on the notion of variations, which are changes of one conscious ex-
perience to another. Because variations can be induced introspectively (for example, as
in Husserl’s imaginary variations (Husserl, 1936)), stimulated in a laboratory by change
of stimuli, or studied theoretically based on a proposed theory of consciousness, our
definition constitutes a general method to identify and study structures of conscious
experience.

The grounding of mathematical structures of conscious experiences proposed here
is methodologically neutral in the sense that it can be combined with many methods,
practices, and procedures that are used to investigate conscious experience, spanning
empirical, analytical, and phenomenological research. Furthermore, it is conceptually
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neutral in the sense that it can be applied to any conception of ‘conscious experience’
and ‘aspects’ thereof, as long as every conscious experience comes with a well-defined
set of aspects. This includes common conceptions using qualities, qualia, or phenom-
enal properties, but also less common ideas based on atomistic conceptions of states
of consciousness or phenomenal distinctions.

Our definition complements recent approaches that study quality spaces, qualia spaces,
or phenomenal spaces, because it retains the abstract condition that these proposals
apply—Condition (MDC) in Section 8.1—as a necessary part. This abstract condition is
extended by our proposal, so as to avoid three problems that interfere with recent ap-
proaches, see Section 8.1.

In light of the increasing interest in using mathematical structures to model and rep-
resent conscious experiences in the scientific study of consciousness and philosophy
of mind, the investigation of how to define and understand mathematical structures of
conscious experience is important, in our view. This work contributes to this investig-
ation. It highlights issues with previous ways of understanding structural claims and
offers an improved conception that rests on meaningful desiderata. Hence, we hope, it
contributes to building a foundation for structural research for both theory and experi-
mental practice.

As a first application, and to illustrate our definition, we considered relative similar-
ity and topological spaces. We found that relative similarity, which plays an important
role in several constructions of quality spaces, is indeed a mathematical structure of
conscious experience, see Section 8.3. Topological spaces also qualify as mathemat-
ical structures of conscious experience, but for a surprising reason: they are intimately
related to phenomenal unity, see Section 8.4.

We view the results presented here as one further step in a long journey to investigate
conscious experience mathematically. This step raises new questions and creates new
opportunities, both of which can only be explored in an interdisciplinary manner. A new
question, for example, is whether our result onmathematical structuresmight open new
perspectives on measurements of consciousness (Irvine, 2013), as arguably promised
by the Representational Theory of Measurement (Krantz, Luce, Suppes, & Tversky, 1971)
whenever an axiomatic structure on a target domain is available. We hope that, ulti-
mately, our result provides a basis for developing a common formal language to study
consciousness across domains.
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9. The Newman Problem of Consciousness
Science

Johannes Kleiner

9.1. Introduction

The Newman problem is a fundamental problem for structural theories and structural
assumptions throughout science. It was first raised by Newman (1928) in response to
Russel’s The Analysis of Matter, and concerns theories or assumptions which posit that:

“ ‘There is a relation R such that the structure of the external world with ref-
erence to R is W .’ ” (Newman, 1928)1

Here, R denotes what would now be called the type of a structure. This could, to take a
very simple example, be a partial order relation. W is a specification of such structure,
meaning that it provides a set of mathematical objects—the elements that are to be
related— and specifies which elements in that set are related by the binary relation.

The problem with such postulate is that “[a]ny collection of things can be organised
so as to have the structure W , provided there are the right number of them. Hence the
doctrine that only structure is known involves the doctrine that nothing can be known
that is not logically deducible from themere fact of existence, except (‘theoretically’) the
number of constituting objects” (ibid.).

1“The world consists of objects, forming an aggregate whose structure with regard to a certain relation
R is known, say W ; but of the relation R nothing is known (or nothing need be assumed to be known)
but its existence; that is, all we can say is, ‘There is a [type of] relation R such that the structure of the
external world with reference to R is W .’ ” (Newman, 1928).
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It should not be immediately clear or self-evident why the antecedent of this state-
ment is true—why any collection of things can be organised so as to have any structure
W , provided there are the right number of them—, and neither why, if the antecedent is
indeed true, it constitutes a problem. We explain why it is true, andwhy it does constitute
a problem in Section 9.2.

Consciousness Science—the scientific investigation of conscious experience and its
relation to the physical domain—is currently seeing early signs of a structural turn (Kleiner,
2024). As we will explain in Section 9.3, the Newman problem can undermine structural
research and hence needs to be addressed for any theory-based structural research
program to go ahead as intended.

The goal of this paper is to show that phenomenal spaces, and similar explications
of the mathematical structure of conscious experience, do not suffer from the Newman
problem, if the mathematical structure of conscious experience is understood in the
right way. Nothing hinges on the particularities of consciousness here, other than that
themethodology of structural claims that resolves theNewmanproblemwas introduced
in the context of consciousness. Therefore, we hope that this work might be of interest
also to those who work on structural questions independently of consciousness.

9.1.1. Previous work

The Newman problem is almost 100 years old. Hence, it is no surprise that there is a
large body of literature on the topic that discusses and clarifies the problem, as well
as a host of different possible resolutions. We locate the work presented here in the
landscape of existing resolutions in Section 9.6 and recommend (Frigg & Votsis, 2011)
for an excellent review thereof.

In consciousness science, too, the problem has been discussed and resolutions have
been proposed.

Lyre (2022) addresses the Newman problem in the context of a proposed relation
between brain states and experiences called Neurophenomenal Structuralism. Here, the
Newman problem threatens to undermine the claim that neural structures represent the
structures of worldly states and processes. It constitutes a problem about what a sub-
ject can know about the world, so to speak. Lyre proposes a solution for the Newman
problem that follows Russel’s own answer to Newman (Russell, 2014), “that certain spa-
tiotemporal [relations in the domain of worldly states and processes] do indeed carry
over to [relations among neural states and processes]. We can indeed directly refer to
certain spatiotemporal [relations in the domain of worldly states and processes]—or, in
Russell’s words, are ‘directly acquainted’ with them.” (Lyre, 2022) That is the case, ac-
cording to Lyre, because the sense organs encode the very spatiotemporal relations that
govern external states, for example spatial changes or temporal differences.

Lyre’s proposal targets the ramifications of the Newman problem for individual sub-
jects and their epistemic or representational capacities. This paper, in contrast, is con-
cerned with the abstract case of structural claims as part of scientific or philosophical
theorizing.
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Chalmers (2022) explains the Newman problem when applied to phenomenal con-
sciousness in the context of his comparison of Carnap’s logical construction of the
world and Lewis’s account of Humean supervenience. Chalmers endorses Carnap’s res-
olution of the problem in terms of naturalness conditions (cf. Section 9.7.2), and con-
cludes that “[b]ecause ofNewman’s problem, any construction systemneeds something
extra-logical in the base” (Chalmers, 2022). Our result, albeit not spelled out in terms of
the systems applied by Carnap or Lewis, challenges this claim.

The Newman problem also surfaces in the discussion of consciousness’ potential in-
trinsic properties. Both (Seager, 2006) and (Brüntrup, 2011), for example, take the New-
man problem to show that consciousness must be taken to exhibit intrinsic properties
or intrinsic qualities. “It is very satisfying to see that the intrinsic nature argument is ex-
actly what is required to avoid Newman’s problem, and one would want it to be the case
that both Russell and Eddington’s deployment of consciousness as an intrinsic nature
was explicitly directed at this issue” (Seager, 2006).

What our paper adds to this research is the proposal that if spaces and structure of
conscious experience are understood in the right way from the start, no further resolu-
tion of Newman’s problem is required.

9.1.2. Structure of this paper

After explaining Newman’s problem in Section 9.2, we discuss it implications for con-
sciousness science in Sections 9.3 and 9.4. Section 9.5 is devoted to explaining how a
suitable definition of phenomenal spaces, and of mathematical structure of conscious
experience more generally, avoids the Newman problem from the start. Section 9.6 ex-
plains how this generalizes to structural claims that do not target consciousness. Full
mathematical details of the resulting general proposal are given in Appendix 9.A. Sec-
tion 9.7 discusses the limits of the methodology we introduce, and concluding remarks
are offered in Section 9.8.

9.2. The Newman Problem

Newman’s problem arises because of what expressions like

“the structure of the (...) world
with reference to R is W ” (9.1)

(Newman, 1928) are traditionally taken to mean. For a mathematical structure W that
comprises a domain C (the ‘elements’ of the structure) and a relationR , this traditional
meaning consists of the following two conditions:

(D1) The elements of the domain C are properties of the world.

(D2) The relation R as specified by W exist.2

2This requirement is usually implicit in the requirement that the axioms of a structure (transitivity, reflex-
ivity, anti-symmetry, for example, in case of a partial order), have to hold.

217



9. The Newman Problem of Consciousness Science

Because amathematical relationR is a collection of tuples of elements of the underly-
ing domain, Condition (D2) is actually stating that the tuples that constitute the relation
R as specified by W exist.

Expressions like (9.1) are taken to be true if and only if (D1) and (D2) are true. Other
than (D2), “of the relationR nothing is known (or nothing need be assumed to be known)
but its existence” (ibid.). That is the content of (9.1) as traditionally conceived.

Let us consider, as an example, a partial order structure. Mathematically speaking, a
partial order structure consists of a set of elementsC , called the domain of the structure,
on the one hand, and a binary relation R, on the other hand. The binary relation R is
a subset of C × C , meaning that it is a collection of tuples of the form (c1, c2), usually
written as c1 ≤ c2 in the case of partial orders. The fact that the partial order structureW
consists of these two constituents is often expressed by writing W = (C,R).

Condition (D1) then states that the elements of the domain C of the partial order (as
specified byW ) are properties of the world. Condition (D2) states that there exists a bin-
ary relation (viz. a collection of pairs of elements) that relates the elements as specified
by W . The elements need to be arranged in tuples as specified by W for this condition
to be true. This is what is means to say that a partial order structureW is a structure of
the world, according to the traditional understanding of expressions like (9.1).

The problem with this understanding of (9.1) is that while elements in the domains of
the structure are required to have referents in the world (a structure is a structure of the
world only if there are properties as specified in the domain of W ), this isn’t true of the
relation. The relation is not required to have a referent in the world. The condition on
the relation is only exposed qua condition on the properties. In other words, the relation
is not required to correspond to any concretum in the world, Condition (D2) only relates
abstract formalism in W to abstract descriptions of the world. As a consequence, any
abstract specification of structure in the world will satisfy (D2). This consequence is
expressed by the following theorem, presented in (Frigg & Votsis, 2011; Ketland, 2004).

Theorem 9.2.1 (Newman’s Theorem). LetC be a collection of individuals and letW be a
structurewhose domain has the same cardinality asC. Then there exists a structureWC

whose domain is C and which is isomorphic to W .

That is to say, independently of whether the world actually comprises a relation R as
specified byW , if the properties exist, one can simply define a suitable relation to render
Condition (D2) true. “[G]iven any structure, if collection C has the same cardinality as
that structure, then there is a system of relations definable over the members of C so
that C has that structure. (...) [A]ll we have to do in order to define a relation is to put
elements in ordered tuples and put these tuples together in sets, whichwe can always do
as long as we have enough elements” (Frigg & Votsis, 2011). Condition (D2) is not itself
depending on anything in the world over and above the dependence already established
by (D1). This is the cause of the Newman problem.

There are a number of ways to resolve the Newman problem, cf. (Frigg & Votsis, 2011,
Sec. 3.4) for an excellent discussion. When the problem is presented as above, the ob-
vious route to a solution of the Newman problem is to ask whether one could not re-
place (D2) by a better condition, such that Theorem 9.2.1 ceases to apply. This route is
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precisely the one we will take in Section 9.5, but first we will discuss why the Newman
problemapplies to consciousness science, andwhich ramifications it has for conscious-
ness science.

9.3. The Newman Problem in Consciousness Science

Consciousness science is seeing early signs of what could be a structural turn. Virtually
every field that is involved in consciousness science has started to employ mathem-
atical spaces and mathematical structures as means to investigate, model, or meas-
ure the phenomenon.3 In doing so, many different methodologies and ideas are ap-
plied, known under various different names, including quality spaces (A. Clark, 1993;
Rosenthal, 2015; Lee, 2021), qualia spaces (Stanley, 1999), experience spaces (Kleiner
& Hoel, 2021; Kleiner & Tull, 2021), qualia structure (Kawakita, Zeleznikow-Johnston,
Takeda, et al., 2023; Tsuchiya et al., 2022), Q-spaces (Chalmers & McQueen, 2022; Lyre,
2022), Q-structure (Lyre, 2022), Φ-structures (Tononi, 2015), perceptual spaces (Zaidi et
al., 2013), phenomenal spaces (Fink et al., 2021), spaces of subjective experience (Tallon-
Baudry, 2022), and spaces of states of conscious experiences (Kleiner, 2020a). All of
these proposals attribute mathematical structure to conscious experiences, which is
why we will use the term ‘mathematical structure of conscious experience’ as an um-
brella term to refer to these and similar proposals.

In all of these proposals, there is a mathematical space or mathematical structure E
that is claimed to describe, represent or model conscious experience. Modulo termino-
logical choices, all of these proposals endorse some variant of the claim that

“the structure of
conscious experience is E”. (9.2)

In (Kleiner & Ludwig, 2024), we have analyzed those proposals that work with explicit
conditions to assert such claims, cf (Kleiner & Ludwig, 2024, Sec. 1). Perhaps unsur-
prisingly, other than explicit statements of the axioms that a mathematical structure is
required to satisfy, these are exactly Conditions (D1) and (D2), with ‘properties of the
world’ replaced by ‘properties of conscious experiences’ or analogous constructs.

In (Kleiner & Ludwig, 2024), we use the term ‘aspect’ as a placeholder to denote con-
cepts like qualia, qualities, instantiated phenomenal properties, phenomenal distinc-
tions, or similar, that feature in claims of the form (9.2). For terminological simplicity, in
this paper, we will work with the concept of phenomenal properties, which are properties
of the phenomenal character of an experience, where ‘phenomenal character’ refers to
what it is like for an organism to be that organism in a particular state (Nagel, 1974).4

3A list of references of current developments is given in Kleiner (2024).
4Philosophers often define an experience to be the instantiation of a phenomenal property by an experi-

encing subject, so that an experience is an event. The phenomenal character of an experience in this
framework is what it is like for the subject to undergo such event. Cf. Nida-Rümelin (2018) for more
details on and problems of this way of thinking. Those from a more formal context often tend to take
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However, all we say below applies to other conceptual choices (qualia, qualities, phe-
nomenal distinctions, etc.) as well.

In terms of phenomenal properties, we can formulate the conditions placed on struc-
tural claims in consciousness science as follows. Expressions like (9.2), where structure
E = (C,R) consists of domain C and relation R, are taken to be true if and only if

(C1) The elements of the domain C are phenomenal properties of conscious experi-
ences.

(C2) The relation R as specified by E exists.5

To give an example of this in consciousness science, consider ametric space of color
qualities. The requirement that a specification E of such space is a structure of con-
scious experience—a quality space, for short6 —comprises, first, the condition that the
points of the metric space are color qualities (being phenomenally presented with red,
blue, etc.), and that the real numbers that describe the distances in a metric spaces are
experienced degrees of similarity of such color qualities (being phenomenally presen-
ted with a degree of similarity). Color qualities are phenomenal properties, hence this
requirement is Condition (C1). Second, for any two color qualities, there must be an ex-
perienced degree of similarity of those color qualities as described by the metric func-
tion.7 This just means that any triple that consists of two color qualities and the cor-
responding degree of similarity as specified of the metric function must exist. This is
Condition (C2). Only if both (C1) and (C2) are satisfied, is this an instance of a quality
space.

Because conditions (C1) and (C2) are exactly analogous to conditions (D1) and (D2),
the Newman problem applies to consciousness science in the exact same way as it
applies in other domains. Explicitly, the Newman problem (Theorem 9.2.1) implies that
any claim of the form (9.2) is empty, as far as the structural content is concerned. Noth-
ing over and above the cardinality of the set of phenomenal properties is endorsed in a
claim like (9.2). This has far-reaching consequences.

the term ‘conscious experience’ to refer directly to what it is like. In this paper, we will use the term
‘phenomenal character’ to denote what it is like, in the hope that this choice is the largest common
denominator across fields and backgrounds.

5As in the case of general structural claims (Section 9.2), this requirement is usually implicit in the require-
ment that the axioms of a structure have to hold.

6For details on how quality spaces are constructed in consciousness science, cf. (Kleiner, 2024, Sec. 5).
7Ametric space consists of two domains and one function. The domains are the set of points of the space

and the real numbers. The metric function maps any two points to one real number. For simplicity, we
have formulated (C2) in terms of relations only. Technically speaking, this condition can also be applied
to functions because any function d : C1 × C2 → R is a unary relation on C1 × C2 × R. We do think,
however, that it is good to distinguish relations and functions in such contexts, and do so in (Kleiner &
Ludwig, 2024).
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9.4. Implications for Consciousness Science

The Newman problem has a number of ramifications in consciousness science. On the
more obvious side of things are its ramifications for structuralist research programs.
Less obvious, maybe, is that the Newman problem also undermines work on theories of
consciousness.

9.4.1. Structuralist Research

Structuralist research programs in consciousness science come in one of two flavors.
They either target the question of what can be known, scientifically or introspectively,
about what it is like—what can be known about phenomenal character, in the termino-
logy applied in this paper. Or they target the question of what phenomenal character
actually is—in which sense it exists, so to speak. Following terminology of philosophy
of science, we might designate the former as epistemic phenomenal structural realism
(EPSR), and the latter as ontic phenomenal structural realism (OPSR). OPSR says that
phenomenal structures are ontologically basic: non-structural features of phenomenal
character, such as intrinsic qualities, do not in fact exist; only claims of the form of (9.2)
can be true. EPSR is the view that all we can know about phenomenal character is its
structure; only claims of the form (9.2) can be known. Cf. (Frigg & Votsis, 2011) for the
corresponding distinction in philosophy of science. Therefore, if claims like (9.2) are in
fact void over and above implications of cardinality, so are OPSR and EPSR. The New-
man problem, if unresolved, undermines these research programs. This is well known,
cf. e.g. (Lyre, 2022) or (Chalmers, 2023b).

9.4.2. Theories of Consciousness

What is less well known, maybe, is that the Newman problem also undermines theories
of consciousness. Specifically, it undermines theories that address phenomenal struc-
ture, if those theories are intended to be applicable to non-human organisms or non-
human systems more generally.

That is the case because for non-human systems, ostensive definitions of phenom-
enal structures fail. We cannot use language to pick out the referent of a structural claim
like (9.2) in non-structural terms, either because non-human systems have no suitable
language, or, in the case of LLMs, because they do not use language in the same way as
we do. “The ostensive definition [only] explains the use—themeaning—of thewordwhen
the overall role of the word in a language is clear. Thus [only] if I know that someone
means to explain a colour-word to me the ostensive definition ‘That is called »sepia«’
will help me to understand the word” (Wittgenstein, 1953). In human cases, we can get
around purely structural claims like (9.2) by pointing out which phenomenal structure
a phenomenal claim like (9.2) is intended to address. In non-human systems, because
of the lack of shared meaning of language, this is not an option. The only thing we can
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do is to specify the structure abstractly, as in (9.2), which is why the Newman problem
applies in full force.

This is particularly evident in one of the mathematized theories of consciousness, In-
tegrated Information Theory (IIT) (Albantakis et al., 2023; Oizumi et al., 2014). IIT com-
prises a carefully constructed algorithm that specifies, for anymathematical description
of a system in a specific state, a complex mathematical structure calledΦ-structure (cf.
Kleiner and Tull (2021) for a structural exposition of IIT). The Φ-structure is the output
of IIT’s algorithm. In terms of the terminology applied here, it specifies the phenom-
enal character that a system is experiencing when it occupies the respective state. But
IIT does not provide a phenomenal interpretation of this structure, it only provides the
mathematics. This is a perfect example of (9.2).

To provide a Φ-structure is a substantial achievement of IIT. But if the Newman prob-
lem applies (which it must if (9.2) is understood as (C1) and (C2)), then IIT’s structural
claim is entirely void, over and above the cardinally of the elements in the structure.

This is related to what Chalmers (2023b) has called the Rosetta Stone problem of IIT:
the problem of how to translate the mathematical structure that IIT proposes into phe-
nomenological terms. If Newman applies, it follows that no such translation is possible,
as the structural claim is void; IIT’s structural claim can always be satisfied simply by
defining the required structure over phenomenal properties.

The same applies to other theories of consciousness if they make structural phe-
nomenal claims. Theories are prone to Newman’s problem because they are supposed
to stand on their own, they should be meaningful independently of ostensive human-
language pointers that specify which structure is what in phenomenal character. It
should suffice for a theory to specify the phenomenal structure of a system in terms
of structural language; the relevant parts of phenomenal character should then be de-
termined.

So how many theories address phenomenal structure and are intended to be applic-
able to non-human organisms or non-human systems? At present, only a small fraction
of theories address phenomenal structure. Examples are IIT, mentioned above, as well
as Expected Float Entropy Theory (Mason, 2021) and Rosenthal’s quality-space version
of higher order thought theory (Rosenthal, 2010). However, it can be argued that ad-
dressing phenomenal structure is inevitable once theories start addressing phenomenal
character more faithfully than they presently do. Binary distinctions between whether
a stimulus is being consciously perceived, or not, or whether a system is conscious at
all, or not, might not suffice to explain phenomenal character faithfully (Kleiner, 2024).
Furthermore, it can be argued that all theories of consciousness should be formulated
in such a way that they can, in principle, be applied to non-human systems or organ-
isms (Kanai & Fujisawa, 2024). This might be part of the desiderata for a theory to
count as a meaningful theory of consciousness.

Therefore, the class of theories thatwill eventually come into the realmof theNewman
problem is large. It looks like the Newman problem went by largely unnoticed, as far
as scientific theories of consciousness are concerned, because most theories are not
advanced enough at the present stage for them to introduce the tools that the Newman
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problem vexes. But once they do, the Newman problem might well undermine much of
the effort in constructing them, if unresolved.

9.5. Solving the Newman Problem of Consciousness Science

The obvious solution to Newman’s problem, when presented as in Section 9.2, is to re-
place Condition (D2) resp. (C2) by another condition, so as to modify the meaning that
expressions like (9.1) or (9.2) should have, in such a way that Newman’s problem ceases
to apply. This amounts to proposing alternative definitions of expressions like (9.1)
or (9.2) that avoid Newman’s problem; just like one proposes improved definitions of
concepts like qualia or phenomenal consciousness in philosophy of mind to avoid prob-
lems the terms might otherwise face.

When improving (D2) resp. ((C2)), a new condition must remain compatible with the
spirit of (9.1) resp. (9.2). The major constraints this raises is that the condition should
also be formulated abstractly, and must only make use of exist quantifiers (‘there exists
...’); no direct reference of properties of the world resp. phenomenal properties can be
included. We nowdiscuss three proposals of how this could be achieved. We employ the
terminology of phenomenal properties, but the same points could bemade with respect
to properties of the world, as we explain in Section 9.6.

9.5.1. Higher-Order Phenomenal Properties

An immediate idea to improve Condition (C2) is to work with higher-order phenomenal
properties. Phenomenal properties are properties of the phenomenal character of a
conscious experience, and much like first-order phenomenal properties (presumably,
for example, being phenomenally presented with red), there are higher-order properties
(for example, being phenomenally presented with similarity of two shades of red).8

To improve (C2), one could simply add the condition that there exists a higher-order
phenomenal property for every relationR in a structureE. That would amount to replay-
ing (C2) by:

(C2′) The relation R as specified by E exists, and there is a higher-order phenomenal
property.

The idea is that for every relation R, there is one higher order phenomenal property, and
that no two relations can have the higher-order phenomenal property in common.

This conditionwould indeed resolveNewman’s problembecause the simple existence
of a structure with phenomenal properties as its domain is not sufficient any more to
satisfy (C2′). Rather, theremust be a phenomenal property (or something in the world, in

8In (Kleiner & Ludwig, 2024), we have called these ‘structural properties’, but this choice of terminology
might not be ideal as it suggests that these properties already have some structure in themathematical
sense of the term. This is not the case. Rather, they only have arity (the number of lower-order properties
they are instantiated relative to, cf. Section 9.5.2 below).
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Newman’s terms). This is an additional requirement whose satisfaction does not follow
from Theorem 9.2.1.

However, (C2′) is not a suitable proposal because the structural phenomenal property
that needs to exist has nothing to dowith the relationR as specified by themathematical
structure E. The condition does not pin down the relation in any significant sense, over
and above the requirement that the number of relations that exist is smaller than the
number of higher-order properties. It’s not enough to just require some phenomenal
property to exist.

9.5.2. Arity

In order to remedy the problem of (C2′) that themathematical structure ofE has nothing
to do with the higher-order phenomenal property that is required to exist, we have to
expand the requirements placed on the higher-order phenomenal property.

While higher-order phenomenal properties do not have, or cannot be taken to have in
this context, a mathematical structure that one can simply reference, they do exhibit a
feature that in mathematics is called arity, and in philosophy may also be called adicity.
It is the number of lower-order properties the higher-order property is instantiated relat-
ive to. For example, if the higher-order property is being phenomenally presented with
similarity of two different shades of red, it has an arity of 2.

Relations in the mathematical sense of the term also have arity. It is the number of
“slots” in the relation, or in other words, the number of elements that every tuple in the
relation comprises. A binary relation, for example, has arity 2 because its tuples are pairs
of elements. A relation of arity n comprises n-tuples, each of which consists of a list of
n elements of the domain. Making use of this fact, we could modify (C2′) to read:

(C2′′) The relation R as specified by E exists, and there is a higher-order phenomenal
property that has the same arity as R.

This is an improvement over (C2′) because now the phenomenal property cannot be
arbitrary any more.

However, (C2′′) still fails because there are vastly different relations of the same arity.
Arity characterizes a relation to some extent, but it still leaves most details of a relation
unspecified.

What is needed to arrive at a satisfying condition is some way of characterizing a
relation’s mathematical form, that can also be interpreted in terms of phenomenal char-
acter.

9.5.3. Automorphisms

One way to characterize a mathematical structure in full (up to a certain point, cf. Sec-
tion 9.7) is given by its automorphism group. Automorphisms are functions that map
every element from a domain of a structure to another element of the domain. Themap-
ping has to be one-to-one (implying that it has to be invertible), and has to preserve the

224



9. The Newman Problem of Consciousness Science

relations (and functions) defined over a structure. If a structure consists of one domain
C and one binary relation R, for example, this mapping takes the form

f : C → C ,

and the requirement that it preserves the relation is formaly stated as

R(c1, c2) = R (f(c1), f(c2)) (9.3)

for all c1, c2 ∈ C.9 Automorphisms form a group because they are invertible, and be-
cause any two automorphisms can be concatenated to give a new automorphism.

Automorphisms are intriguing objects in the current context because, once a domain
is specified (qua Condition (C1)), a set of automorphism can be specified as a set of
functions {f1 : C → C, f2 : C → C, ....}. Neither the relation R, nor the tuples that con-
stitute the relations, have to be specified when specifying the functions in the set.

Of course, if one would only specify a set of automorphisms, the Newman problem
would apply just as well. They are formal objects and hence always exist, if the domain
contains enough elements. What is needed, in addition, is a link between automorph-
isms and phenomenal properties. Such a link can be provided, as we now explain.

Let us consider an arbitrary function (also called ‘mapping’) f : C → C , where C is
a domain of a structure that satisfies (C1). An arbitrary mapping can or cannot be an
automorphism of a structure E, depending on whether it satisfies the definition of an
automorphism, or not—that is to say, depending on what the structureE is, and depend-
ing on how elements are mapped by the function. If a function is an automorphism, one
often says that it “preserves” the structure. If it is not an automorphism, one says that
it does “not preserve” the structure. Those are abstract statements in the domain of
mathematics. (Cf. Definition 9.A.2 in Appendix 9.A for formal details.)

But in cases where a domain C satisfies (C1), functions f : C → C can also be un-
derstood as something concrete: they describe how phenomenal properties change.
To give a very simple example: if a subject has an experience of seeing red, and that
changes to an experience of seeing blue, this can be described as a (partial) function
that maps from phenomenal properties to phenomenal properties; it maps being phe-
nomenally presented with red to being phenomenally presented with blue. Such a vari-
ation of phenomenal properties must, in turn, be understood as a variation of the under-
lying experience whose phenomenal properties are at issue. Variations of experiences
are changes from one experience to another, and for every such change, there is a cor-
responding variation of (instantiated) phenomenal properties.

Because functions canbe interpreted in both abstract and concrete terms, they provide
the link between the abstract domain of mathematics and the concrete domain of con-
scious experiences that is needed to amend Condition (C2′′). They allow us to express
the requirement that the higher-order phenomenal property in (C2′) mirror the structure
E in terms of behavior of variations as follows: a higher-order phenomenal property
9We write an equal sign here for notational simplicity. The formally correct statement would be
R(c1, c2) ⇔ R (f(c1), f(c2)) for all c1, c2 ∈ C.
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must behave as the structure does under variations. This means that the higher-order
phenomenal property must prevail in phenomenal character if the mapping between
first-order properties induced by a variation preserves the structure; and it must disap-
pear if the mapping between the first-order properties induced by a variation does not
preserve the structure. We will say that in former case, the variation “preserves” the
higher-order phenomenal property, whereas in the latter case it “does not preserve” the
higher-order phenomenal property (cf. Definition 9.A.1 in Appendix 9.A for formal de-
tails).

We call a higher-order property that satisfies this requirement for a relation R a phe-
nomenal R-property. In concise terms:

(SP) A phenomenal property p is an R-property iff any variation that preserves the rela-
tion R preserves p.

We note that this definition is only meaningful if (C1) holds; (C1) provides the “baseline
correspondence” between mathematical structure and phenomenal properties that al-
lows to make sense of variations both in terms of changes of phenomenal properties
and automorphisms.

We can thus present a suitable extension of (C2) as:

(C2′′′) The relation R as specified by E exists, and there is a corresponding higher-order
phenomenal R-property.

This is the meaning/definition of structural claims like (9.2) we have arrived at, for
independent reasons, in (Kleiner & Ludwig, 2024) as well. It makes use of variations
which form an important part of earlier proposals of how to define spaces of conscious
experiences, for example Rosenthal (2015), and it retains the original Condition (C2):
since (C2′′′) implies (C2), Condition (C2) is a necessary part of Condition (C2′′′).

Condition (C2′′′) resolves the Newman problem because the mere existence of some
structure is not sufficient to satisfy the condition. The condition requires that there is a
phenomenal property of the right sort. This is a requirement whose satisfaction does
not follow from Theorem 9.2.1. The condition furthermore leaves no freedom for the
relation to vary while the property is fixed, as (C2′) and (C2′′) did. Hence it is, as far as
we can see now, a viable solution of the Newman problem of consciousness science.

9.6. A general solution?

In the previous section, we have shown how the Newman problem of consciousness
science can be resolved by providing a more careful definition of what structural claims
are taken to be. Here, we discusswhether this affords a solution of theNewmanproblem
independently of consciousness.

Before we embark on this discussion, we would like to mention that there are several
viable solutions of the Newman problem already, discussed in detail in (Frigg & Votsis,
2011). A review of these solutions would go beyond the scope of this paper, but suffice
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it to say that the solution presented here might be a case of the ‘Real vs. Fictional Rela-
tions’ class of solutions that attempt to distinguish real relations in the world from those
that are merely defined (called ‘fictional’ by (Newman, 1928)).

The viability of our solution of the Newman problem in consciousness science as a
solution of the general Newman problem depends on whether the ingredients we have
made use of also exist in the general setting of the Newman problem. These are higher-
order phenomenal properties, and the concept of variations.

The notion of higher-order phenomenal property easily carries over to any context in
which a structural claim like (9.1) ismade. There are higher-order properties of the world
in a similar sense as there are higher-order phenomenal properties.10

The case of variations ismore difficult. The crucial property of variations that enables
definition (C2′′′) is that the variation changes both the first-order property, and the higher-
order property. Can we make sense of such variations? And if so, what defines the
variations that exist as compared to those that do not.

In a context like (9.1), where the reference of a structural claim is “theworld”, one could
make sense of variations in terms of possible world semantics as used in modal logic,
cf. e.g. (D. Lewis, 1986). Specifically, one could consider the set of all nomologically
possible worlds—the set of worlds that are compatible with the laws of nature, that is—
and then define a variation simply to be a map from one nomological possible world w1

(e.g., the actual world) and all its properties to another nomological world w2 and all its
properties. Such a variation preserves a (possibly higher-order) property if and only if it
is present before and after the variation, meaning if it is a property of both w1 and w2,
and it preserves a structure S if and only if it is an automorphism of S, where the latter
definition makes use of (D1).11

This gives rise to the following exposition of structural claims like (9.1). The notion of
R-property is defined as:

(SP) A property p is a R-property iff any variation that preserves the structure R pre-
serves p.

Claim (9.1) is true if an only if the following two conditions are true:

(D1′) The elements of the domain C of are properties of the world.

(D2′) The relation R as specified by W exists, and there is a higher-order R-property.
10If properties are conceived of as properties of things, onemightwant to distinguish the concept of higher-

order properties from the concept of relational properties. Relational properties are properties between
things. There can be both first-order relational properties, and higher-order relational properties. Prop-
erties which are properties only of one thing are calledmonadic properties, and there are both first-order
and higher-order monadic properties, the latter of which are properties of properties of one thing. Ac-
cording to this conception of properties, our proposal below could be defined in terms of either relational
or higher-order properties, or both; what matters is that the properties in question have arity, also called
adicity. I would like to thank Andrew Lee for pointing this out.

11Because properties can disappear from w1, as in the case of consciousness, mappings must be under-
stood as partial functions. Because they need not be surjective, properties can appear in moving to
w2. More details on such mathematical subtleties are given in the appendix, and in (Kleiner & Ludwig,
2024).
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While abstract at first, this condition is highly compatible with physical sciences, be-
cause nomologically possible worlds should not be understood as atomistic entities.
Rather, the set of nomologically possible worlds is intimately connected with initial con-
ditions of natural laws, and a fortiori with repeated experiments. Structural claims so
defined can be assessed empirically by considering “chunks” of the actual world in sci-
entific experiments, and by studying how these chunks behave as time or other para-
meters vary.

An alternative to this approach would be to take properties in the world to be attached
to objects, or groups of objects, in the world, and to consider variation of such (groups
of) objects. This would also provide a suitable concept because a variation of a (group
of) objects would vary both first-order and higher-order properties of the object or group.
A definition of this kind would be of advantage because it would be more intuitive as
the above. However, it would not naturally align with the foundations of physics, where
existence of individual objects (rather than just one global field with particles as modes
or excitations thereof) in an intuitive sense is somewhat contested. Still, it might be a
viable option, and might actually correspond to the above definition if possible worlds
are conceptualized in the appropriate way.

We provide a full formal exposition of our proposal in Appendix 9.A, and discuss a
limitation of our approach in Section 9.7. The consequences of this limitation are, on
our view, what ultimately determines the viability of our proposal for purposes of solving
the general Newman problem. In the next section, we explain how our proposal relates
to the Newman problem when expressed in terms of Ramsey sentences.

9.6.1. Ramsey sentence formulation of the Newman problem

The Newman problem is often stated in terms of Ramsey sentences, introduced by
Carnap (D. Lewis, 1970). In a nutshell, for any theory T that contains observational pre-
dicatesQi and non-observational predicates Pi, one can first form a logical conjunction
of all of a theory’s postulates/axioms/rules to write the theory as a single formal sen-
tence that is usually denoted as (Frigg & Votsis, 2011)

T (P1, ..., Pm, Q1, ..., Qn) . (9.4)

The Ramsey sentence of such theory is the result of replacing all non-observational
predicates Pi by variables, which we denote as Xi, and adding an existential quantifier
over these variables, denoted by ‘∃’ to the sentence.12 This gives the theory’s Ramsey
sentence TR,

∃X1 ...∃Xm T (X1, ..., Qn) . (9.5)

A Ramsey sentence encodes a theory’s full empirical content. Because the predicates
Pi are non-observational predicates, they do not have observational consequences over
and above their mere existence and role in the theory T . Therefore, a theory and its
12This is an instance of quantification over predicates, which presumes second-order logic.
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Ramsey sentence have the same observational consequences. Furthermore, the Ram-
sey sentence (9.5) follows logically from (9.4). Cf. (Frigg & Votsis, 2011, Sec. 3.3) for
more details.

Making use of Ramsey sentences, the Newman problem can be stated as the follow-
ing theorem. Here, a model of a theory is u-cardinality correct if it has the same cardin-
ality as the unobservable predicates of a theory, and empirically correct if its empirical
substructure is isomorphic to the empirical substructure of the target domain (Frigg &
Votsis, 2011).

Theorem 9.6.1 (Cardinality Theorem). The Ramsey Sentence of theory T is true if, and
only if, T has amodelS (i.e. S |= T ) which isu-cardinality correct and empirically correct.

This theorem establishes that “all we can infer from the truth of [a theory’s Ramsey
sentence] TR about the unobservable world is a claim about its cardinality” (ibid.), and
that “any claim the [Ramsey sentence] may make about the existence of unobservable
relations or their formal properties is automatically true (or ‘trivially’ true, as the point is
often put)” (ibid.).

How does our proposal deal with the Ramsey sentence formulation of the Newman
problem?

Our proposal amounts to a redefinition of the truth-condition of structural claims. Ac-
cording to the received view of such truth-conditions, a second-order predicate that ex-
presses a structural claim is true iff Conditions (D1) and (D2) are true. According to our
proposal, a second-order predicate that a expresses a structural claim is true iff Condi-
tions (D1′) and (D2′) are true.

This changes the implications of the existential quantifiers in (9.5). They do not assert
that there exists structure in the world that satisfies (D1) and (D2), but rather that there
exists structure in the world that satisfies (D1′) and (D2′).

As a consequences, the right-to-left direction of Theorem 9.6.1 breaks down. While it
is still true that the truth of a Ramsey sentence of a theory T implies that there is amodel
which is u-cardinality correct and empirically correct (Condition (D2) is still a necessary
part of Condition (D2′); this is the left-to-right direction of the theorem), the opposite
direction fails to hold: it is not the case that any model which is u-cardinality correct and
empirically correct implies the truth of the Ramsey sentence, because it also needs to
satisfy the R-property condition in (D2′).

As a consequence, with the improved understanding of structural claims that we have
proposed above, it ceases to be true that “any claim the RS may make about the exist-
ence of unobservable relations or their formal properties is automatically true (or ‘trivi-
ally’ true, as the point is often put)” (ibid.).

9.7. Objections

In this section, we would like to address one objection to, and one fundamental worry
of, our proposal.
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9.7.1. Reconstructing structure

The fundamental worry concerns the question of just how much of a mathematical
structure can be identified (or “reconstructed”) from its automorphism group.

Consider again the three proposals we have made in Section 9.5. Starting from the
fundamental idea to add existential quantifiers of higher-order properties in (C2′), we
have subsequently expanded the condition so as to limit the number of mathemat-
ical structures that can be associated with a given higher-order property. While Con-
dition (C2′) did not put any constraint on how the structure relates to a higher-order
property, Condition (C2′′) required arity to match up, and Condition (C2′′′) required the
variations that constitute a structure’s automorphism group to match up with the vari-
ations that preserve the higher-order property.

The problem we discuss here is that while it is true that an automorphism in general
characterizes a mathematical structure in full, it does not do so in extreme situations.
Automorphisms “min out” at some point. Once the automorphism group is trivial, it
remains trivial even if more structure is added, as we now explain.

Consider a mathematical structure W that consists of a domain C and relation R,
where the relation R allows to individuate every element of C uniquely based on rela-
tional information alone. This is the case for graphs, for example, if every node of a
graph has a unique number of edges that connect to that node, called the degree of that
node. The automorphism group of such structure contains only the identity mapping,
for every other mapping would not be able to preserve the edge relation (cf. (9.3)). In
this case, the automorphism group of the structure is called ‘trivial’.

Trivial automorphism groups constitute a problem for our proposal because once the
automorphism group is trivial, automorphisms fail to track any further changes to struc-
ture that preserve triviality. If, for example, a further edge is added to a graph, while
preserving the condition that every node has a unique degree, then the automorphism
is trivial before and after the change in structure. It can neither track, nor be used to
reconstruct, the difference in structure. Put more abstractly, different relations that are
defined over a given (fixed) set of elements can all have the same trivial automorphism
group. The condition for there to be an R-property is the same for any relation R that
satisfies (D1′) for a given set C and whose automorphism group is trivial. This problem
of automorphism-based criteria to distinguish structure is well-known in the structural
parsimony debate in philosophy of physics (T. W. Barrett, Manchak, &Weatherall, 2023).

There are two different responses one can give to this problem, and both apply.
First, one could argue that this problem indicates that Condition (D2′) can still be

improved. Maybe some more advanced math could be used to resolve structure via
automorphisms even if the automorphism group of a structure is trivial. Local auto-
morphisms and sheaves come to mind. Or maybe there is an entirely different way of
formulating a condition that replaces (D2). Both are viable options to explore in further
research.

Second, one could argue that the problem is not actually detrimental to the proposal,
because such relations cannot satisfy both Conditions (D1′) and (D2′).

To see why this is the case, we first emphasize that the problemwe describe here only
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applies if individual relations already imply that the automorphismgroup of a structure is
trivial. That is because every relation R is required to have a corresponding R-property.
If a structure contains more than one relation, and the entirety of them render the auto-
morphism group trivial, all is well.

Consider, therefore, a single relation R that precludes non-trivial automorphisms. For
this relation to satisfy (D2′), there needs to be anR-property p as described by (SP). This
yields two conditions: First, any variation that preserves R needs to preserve p. And
second, any variation that does not preserve R must not preserve p. The automorph-
ism group being trivial implies that only the second case applies, so that any variation
whatsoever must not preserve p. The mathematical formalism of our proposal implies
that if there is to be an R-property p, any world which instantiates the elements in one
tuple ofRmust instantiate p. Because the relation has trivial automorphism, there must
at least be two tuples in the relation. Therefore, we must at least have two worlds that
instantiate p. But any variation from one of these worlds to the other of these worlds
preserves p, as it is instantiated both in the source and target world of the variation. This
violates the condition that there is no variation that preserves p, and hence there cannot
be an R-property for a relation that has trivial automorphism.13

The formal arguments behind this reasoning are provided rigorously in Appendix 9.B
(cf. Lemma 9.B.2). In summary, the mathematics of our proposal simply deny rela-
tions that induce trivial automorphism groups the status of viable objects of a structural
claim. This is aligned with the idea that a mathematical structure is only meaningful to
the extent that it can be probed by variations.

9.7.2. Does naturalness suffice?

Oneway to resolve the Newman problem is to assume that “only natural relations should
be taken into account when pondering the structure of the world; we need not, strictly
speaking, deny that the world instantiates (...) any relation compatible with its cardin-
ality, but we submit that only natural relations are taken into account when it comes
to assessing the claims of a theory” (Frigg & Votsis, 2011). This idea was introduced
by D. Lewis (1983), and is the solution endorsed by Chalmers (2022) in the context of
consciousness science, cf. Section 9.1.1.

Given that our proposal in (D2′) introduces a technical term, one could object that the
solution in terms of naturalness is preferable, simply because it is a simpler solution. Is
this so?

The solution terms of naturalness amounts to reinterpreting the ‘exists’ quantifier
in (D2). Instead of an abstract existential claim, it would have to be interpreted as quan-
tifying over natural relations. If there is a natural relation R as specified by W , then (D2)
is true. If not, (D2) is false.

This resolution of the Newman problem is problematic, cf. (Frigg & Votsis, 2011,
Sec. 3.4.1(b)). One problem is that what counts as a natural kind might change as sci-
ence progresses, cf. (Melia & Saatsi, 2006). Another problem is that distinguishing nat-

13For a formal proof of this claim, cf. Lemma 9.B.2 of Appendix 9.B.
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ural kinds from non-natural kinds might require non-structural language of the world to
begin with, cf. (Psillos, 2005).

But more fundamentally, even, for this solution to work and be applicable one has to
presume that the world is mathematical, and that mathematical terms refer “just like
that”. One has to presume that it is meaningful to say there is a natural relation, where
‘relation’ is used in the mathematical sense of the term.

This is a substantive claim, and at least when it comes to phenomenal character, there
are good reasons to think it is wrong. Conscious experiences do not come with math-
ematical structure in any meaningful way. Phenomenal character isn’t experienced as
a metric space, for example. There are experiences, and mathematical formalism is
useful to describe or represent experiences. To say that conscious experiences have a
mathematical structure is a way of describing them, not part of what they are naturally
given as. Similarly, natural kinds (or related concepts) might not constitute mathemat-
ical structure “just like this”.14

If this is true, then the naturalness solution is in fact solution (C2′), where ‘phenomenal
properties’ are replaced by ‘natural properties’. The reasons for rejecting this proposal in
favor of (C2′′′) apply mutatis mutandis to natural properties. As a result, the naturalness
solution might not get around the introduction of the technical terms in (D2′). It might
simply amount to (D2′) formulated with (higher-order) natural properties. An important
change in caseswhere inflationary conceptions of properties are involved, but otherwise
not substantially different.

9.8. Conclusion

We have considered how the Newman problem applies to consciousness science, and
shown that it threatens to undermine structural research and structural theories that
target conscious experience.

The problem resides in the particular understanding of structural claims that is pre-
sumed when discussing phenomenal spaces, quality spaces, qualia spaces, experience
spaces and the like. If unresolved, research that subsumes this understanding is inher-
ently limited and prone to errors. As far as theoretical work is concerned, use of such
spaces simply doesn’t make sense with the usual subsumption of structural claims.

However, when one adopts are more careful definition of structural claims, the New-
manproblemceases to apply. The upshot of our discussion, framed in termsof phenom-
enal properties for simplicity, is that if structural claims like “the structure of conscious
experience is E” are taken to be true if and only if the following two conditions hold, the
Newman problem ceases to apply.

(C1) The elements of the domain C of are phenomenal properties of conscious exper-
iences,

14There is also a worry of circularity here, if in order to be able say that the world has some mathematical
structure, one needs to be able to say that natural kinds have such structure.
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(C2) The relation R as specified by E exists, and there is a corresponding higher-order
phenomenal R-property,

Here, a phenomenal property p is an R-property iff any variation that preserves the rela-
tion R preserves the phenomenal property p.

What distinguished our proposal from previous approaches is only the inclusion of
R-properties in (C2). This suffices to resolve the Newman problem and the negative
consequences that otherwise apply. While abstract at first, this proposal is straightfor-
wardly applied to existing cases, and in fact builds on previous definitions of quality
spaces, as explained in (Kleiner & Ludwig, 2024).

For readers with a broader background in philosophy, we have presented our proposal
in general, consciousness-independent terms in Section 9.6 and Appendix 9.A. Whether
or not this proposal is helpful in the general discussion of the Newman problem, and
whether it can be applied to domains other than consciousness, is an open question.
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Appendix

9.A. Full Definitions

Here, we provide formal details of our proposal of the general Newman problem as
presented in Section 9.6. We denote a mathematical structure by S. It is a tuple

S =
(
(Ai)i∈I , (Sj)j∈J

)
of domainsAi and functions or relations Sj . We denote the class of nomologically pos-
sible worlds byW and the properties of a worldw ∈W byA(w). For expository reasons,
we define the class of all properties of all worlds by

A =
⋃

w∈W
A(w) . (9.6)

A variation of a world w changes w into another world w′. Because worlds have struc-
ture, there may be various different ways to go from w to w′.15 Therefore, in addition to
specifying w and w′, a variation is a partial mapping

v : A(w)→ A(w′) .

This mapping describes how properties of the world w are replaced or reshuffled by
the variation. A mapping which is not surjective, meaning that it does not map to all
properties in A(w′), makes room for appearance of new properties of w′. A mapping
which is partial, meaning that it does not specify a target for every property in A(w),
makes room for properties to disappear.

Higher-order properties are properties that are instantiated relative to other proper-
ties. If a property a requires other properties for its instantiation, we will say that the
aspect a is instantiated relative to properties b1, ..., bm, or simply that a is relative to
b1, ..., bm. Higher-order properties are the building blocks for our proposal to define struc-
tual claims like (9.1).

15To illustrate this point, consider the following example, provided in (Kleiner & Ludwig, 2024). Let v and
v′ be mappings that map the numbers 1, 2, and 3 to the numbers 2, 4, and 6. The mapping v is the
multiplication of every number by 2, meaning that we have v(1) = 2, v(2) = 4, v(3) = 6. The mapping
v′, on the other hand, is defined by v(1) = 6, v(2) = 2, v(3) = 4. If we only cared about the sets
of elements that these mappings connect, the mappings would be equivalent: there is no difference
between the set {2, 4, 6}, which is the image of v, and {6, 2, 4}, which is the image of v′. If, however, we
care about the structure of the elements of the sets–in this case, the ordering of numbers–, then there
is a difference. While 2 ≤ 4 ≤ 6, it is not the case that 6 ≤ 2 ≤ 4. Because we care about the order of
the elements, we need to say which element goes where.
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Definition 9.A.1. A variation v : A(w) → A(w′) does not preserve a property a ∈ A(w)
relative to b1, ..., bm ∈ A(w) if and only if a is instantiated relative to b1, ..., bm inA(w), but
a is not instantiated relative to v(b1), ..., v(bm) in A(w′).16

In the case where a ∈ A(w) is not a higher-order property, this definition reduces to the
simple condition that a ∈ A(w) but a ̸∈ A(w′). The negation of the definition is also as
intuitively expected: the property is present both in the source and in the target.17

For applications it is important to understand that this definition can fail to apply in
two ways. First, it can fail because there is no a inA(w′)which is instantiated relative to
v(b1), ..., v(bm). This, in turn, can be the case either because there is no a in A(w′) at all,
or because there is an a in A(w′) but it is instantiated relative to other aspects. Second,
it can fail because one or more of the v(b1), ..., v(bm) do not exist. The second case is
possible because v is a partial mapping, which means aspects can disappear.

We use the term relata to designate those elements of a domain that are related by
a structure. In the case where S is a relation R on a domain A and has arity m, these
are the elements of the m-tuples (b1, ..., bm) ∈ R. In the case where S is a function
f : A1 × ...×Am−1 → Am, the relata are the elements of the m-tuples (b1, ..., bm−1, bm)
where bm = f(b1, ..., bm−1), and where the other bi range over their whole domains. For
notational simplicity, we write b1, ..., bm instead of (b1, ..., bm) when designating relata in
what follows.

Definition 9.A.2. A variation v : A(w) → A(w′) preserves a structure S with respect to
relata b1, ..., bm ∈ A(w) if and only if we have

(P1) R
(
b1, ..., bm

)
= R

(
v(b1), ..., v(bm)

)
if S is a relation R, or18

(P2) v
(
f(b1, ..., bm−1)

)
= f

(
v(b1), ..., v(bm−1)

)
if S is a function f .

As in the previous case, the negation of this definition is exactly what is intuitively ex-
pected: a variation does not preserve the structure if and only if the structure is satisfied
before the variation, but not satisfied after the variation.19

16In (Kleiner & Ludwig, 2024), we use the term ‘changes’ rather than ‘does not preserve’. In hindsight, we
think it is easier to speak of preservation too in this case.

17Because the definiendum already includes the first part of the condition, the negation is as follows:
A variation v : A(w) → A(w′) preserves a property a ∈ A(w) relative to b1, ..., bm ∈ A(w) if and only if a
is instantiated relative to b1, ..., bm inA(w) and a is also instantiated relative to v(b1), ..., v(bm) inA(w′).

18For notational simplicity, we write R
(
b1, ..., bm

)
= R

(
v(b1), ..., v(bm)

)
instead of R

(
b1, ..., bm

)
⇔

R
(
v(b1), ..., v(bm)

)
.

19A variation v : A(w) → A(w′) does not preserve a structure S with respect to relata b1, ..., bm ∈ A(w)
if and only if we have R

(
b1, ..., bm

)
̸= R

(
v(b1), ..., v(bm)

)
if S is a relation R, or v

(
f(b1, ..., bm−1

)
̸=

f
(
v(b1), ..., v(bm−1)

)
if S is a function f .

This negation agreeswith the intuition because the definiendumalready states part of the condition that
follows, namely that b1, ..., bm are relata of the structure S in A(w), which implies that (b1, ..., bm) ∈ R
if S is a relation and that f(b1, ..., bm−1) exists in A(w) if S is a function, meaning that the structure is
satisfied before the variation.
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For applications it is again important to see that the definition can fail for two reas-
ons. First, it could be the case that one or more of the v(bi) do not exist in A(e′), if the
corresponding aspect disappears. Second, the identities may fail to hold.

Definition 9.A.3. A property a ∈ A is a S-property if and only if the following condition
holds:
A variation does not preserve S with respect to relata b1, ..., bm if and only if the variation
does not preserve a relative to b1, ..., bm.

This condition needs to hold true for all variations and all relata. Thismeans that it needs
to hold true for all variations of all worlds w in the class W that instantiate relata of the
structure S. Definitions 9.A.1 to 9.A.3 allow us to define Conditions (D1′) and (D2′) in
more detail.

Definition 9.A.4. A mathematical structure S is a mathematical structure of the world
if and only if the following two conditions hold:

(D1′) The domains Ai of S are subsets of A.

(D2′) For every Sj , there is a Sj -aspect in A.

Here, A denotes the set of all properties of the worlds in W as defined in (9.6).

9.B. Objections

In this appendix, we provide the Lemmas that underlie the explanations in Section 9.7.

Lemma 9.B.1. If a property a is a S-property, every world that instantiates relata of S
needs to instantiate a relative to these relata.

Proof. Let a be a S-property and w be any world that instantiates relata b1, ..., bm of
S. Definition 9.A.3 holds true for all variations of all worlds that instantiate relata of
the structure S. Because w instantiates relata, Definition 9.A.3 applies to any variation
that maps from w to any other world. Let v be any such variation. This variation either
preserves S with respect to relata b1, ..., bm, or it does not preserve S with respect to
relata b1, ..., bm.

Because a is a S-property, if v preserves S with respect to relata b1, ..., bm, then it
preserves a relative to b1, ..., bm. But according to Definition 9.A.1, this can only be true
if a ∈ A(w) relative to b1, ..., bm (cf. Footnote 17 for details). If, on the other hand, v
does not preserve S with respect to relata b1, ..., bm, then it does not preserve a relative
to b1, ..., bm. But according to Definition 9.A.1, this too can only be true if a ∈ A(w)
relative to b1, ..., bm. Thus both cases imply a ∈ A(w) relative to b1, ..., bm. Thus the
result follows.
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The condition that corresponds to the automorphism group of a structure being trivial
in the full formal setting of our definition introduced in Appendix 9.A is that no variation
of a structure, other than the identity, preserves this structure. For this case, we have
the following lemma.

Let S be a structure over a domain A0, and assume that S contains at least two sets
of relata that are properties of least two worlds.

Lemma 9.B.2. If no variation preserves S with respect to any of its relata, no S-property
exists.

Proof. Let w1 and w2 be worlds that instantiate the relata of S. Lemma 9.B.1 implies
that if there is a S-property a, both of these worlds need to instantiate a relative to the
relata that they instantiate. Consider now a variation from w1 to w2 which maps the
relata instantiated inw1 to the relata instantiated inw2. According to Definition 9.A.1, this
variation preserves a relative to the relata instantiated inw1 (cf. Footnote 17). Thus there
is a variation that preserves a relative to said relata. If a is a S-property, Definition 9.A.3
furthermore implies that the variation preserves S with respect to those relata. This
contradicts the antecedent of the claim in the Lemma. Hence no S-property can exist.
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10. The Case for Neurons: A No-Go
Theorem for Consciousness on a Chip

Johannes Kleiner and Tim Ludwig 1

Thequestion ofwhether artificial intelligence (AI) systemsare conscious has emerged
as one of critical scientific, philosophical, and societal concern. While empirical support
to differentiate theories of consciousness is still nascent and while current measures of
consciousness (the simplest example of which is interpretation of verbal reports) can-
not justifiably be applied to AI systems, our best hope for reliable answers is to link AI’s
potential for consciousness with fundamental properties of conscious experience that
have empirical import or philosophical credibility.

Significant progress in this regard has already been achieved. In (Chalmers, 2023a),
David Chalmers assesses evidence for or against AI consciousness based on an ex-
tensive array of features that a system or organism might possess or lack, such as self-
report, conversational ability, general intelligence, embodiment, world or self-models,
recurrent processing, or the presence of a global workspace. In (Wiese, 2024), Wanja
Wiese proposes a criterion for distinguishing between conscious and non-conscious AI,
anchored in the desiderata of the neuroscientific Free Energy Principle.2

1Forthcoming in Neuroscience of Consciousness.
2These are examples of research whose aim is to evaluate whether AI systems of the more recent form

are or can be conscious. Other interactions between AI research and consciousness science include
the use of AI inspired tools and concepts to model consciousness, for example (L. Blum & Blum, 2022;
Ji et al., 2024; Juliani, Kanai, & Sasai, 2022), and studies of how models of consciousness might help
to build better AI, for example (L. Blum & Blum, 2023; Juliani, Arulkumaran, Sasai, & Kanai, 2022; Mollo
& Millière, 2023). The question of whether machines in general can be conscious has guided much of
the debate in philosophy of mind over the previous decades, cf. (Block, 1980; Bronfman, Ginsburg, &
Jablonka, 2021; Chalmers, 2010; Clancey, 1993; A. Clark, 1998; Dennett, 1991; Haugeland, 1989; Holland,
2003; Penrose, 1989; Searle, 1980; Edelman, 1989; Tegmark, 2017; Turing, 1950), among others.
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In this paper, we propose a result of similar nature, which however does not rely on
system features and how they relate to consciousness, but on a general property of con-
sciousness: dynamical relevance. Here, dynamical refers to the temporal evolution (the
dynamics) of a system’s states as described by a theory of consciousness. Conscious-
ness is relevant to a system’s time evolution if the time evolution with consciousness
differs from the time evolutionwithout consciousness. Whether or not consciousness is
dynamically relevant depends on the theory of consciousness under consideration, and
in how far this theory implements consciousness-dependent changes of the dynamical
evolution, as compared to a reference theory that addresses the same states.

What sets AI systems apart in the context of consciousness is not the specific com-
putational architecture that is employed; architectures that closely resemble the mam-
malian brain’s computational structure can arguably also be used, after all (K. J. Friston
et al., 2022). Instead, the distinctive aspect is the hardware on which an AI architecture
operates, namely CPUs, GPUs, TPUs, or other processors. This hardware is designed
and verified to ensure that the system’s dynamics evolve precisely as described by a
computational theory during what is known as functional and post-silicon verification.
These verification processes ensure that the design of the chip (the layout of integrated
circuits in terms of semiconductors), as well as the actual product (the processing unit
after production), yield dynamics exactly as specified by the computational theory. Any
dynamical effects that violate the specification of this theory are excluded or dynamic-
ally suppressed by error correction.

Our result is an example of a no-go theorem similar to those used in physics. That is,
it is a formal theorem that proves a conclusion to hold based on formal assumptions. In
our case, these assumptions comprise dynamical relevance of consciousness, as well
as formal statements of functional and post-silicon verification.

No-go theorems serve an important role in scientific progress in physics. This role is
not necessarily to establish a conclusion beyond doubt, but to direct research and atten-
tion to the assumptions that feed into the no-go theorem. Only once such assumptions
have been confirmed to hold true, the conclusion of the theorem will be established.3

In this spirit, we too do not contend that our result resolves the issue of AI conscious-
ness. Rather, we take our result to point at the theorem’s assumptions, most notably
dynamical relevance, for further research. If dynamical relevance holds true, then our
result does have strong implications. If it does not hold true, our result ceases to apply.
In explaining our assumption in Section 10.1, we do give good reasons for why dynamical
relevance may plausibly be true, but our explanations are not intended to establish this
beyond reasonable doubt. Rather, they are meant to invite further research to establish
clarity in respect of this assumption.

Our theorem is mathematical in nature, it rests on formal quantities and a formal
proof. Andmuch like formal proofs in other sciences can only be intuitively explained up
to a certain point, so can our proof. The following argument is an attempt to explain our
proof intuitively, but we would like to stress that this intuition does not capture the res-

3We would like to thank Ryota Kanai for introducing the notion of no-go theorems to consciousness sci-
ence.
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ult in full. In fact, the objective of formal modelling is to delineate all concepts involved
in intuition carefully, so as to present a theorem that underwrites the intuition both in
scope and precision.

(A1) Verification of processing units ensures that any dynamical effects that change
the computational dynamics of a processing unit are precluded or suppressed.

(A2) If consciousness is dynamically relevant, and AI systems are conscious, then
there are dynamical effects that change the computational dynamics of an AI sys-
tem.

(A3) AI systems run on processing units.

(C) If consciousness is dynamically relevant, AI systems cannot be conscious.

The conclusion (C) follows because qua (A3) and (A1), verification ensures that any dy-
namical effects that change the computational dynamics of an AI system are precluded
or suppressed. (A2) states that if consciousness is dynamically relevant, and AI sys-
tems are conscious, then there are dynamical effects that change the computational
dynamics of an AI system. Therefore, if consciousness is dynamically relevant, then AI
systems cannot be conscious. The crucial work of the formalisationwe introduce below
is to make sure this reasoning is also sound if consciousness’ dynamical effects apply
on a “level below” the computational level.

In a nutshell, this paper shows that if consciousness makes a difference to how a
system evolves in time—as it should if consciousness is to have any evolutionary ad-
vantage, for example—then any system design which systematically precludes or sup-
presses diverging dynamical effects systematically precludes or suppresses the system
from being conscious.

Before embarking on the formal research that puts the above reasoning on solid ground,
we focus on the new concept of dynamical relevance: we explain it in more detail in Sec-
tion 10.1, and give reasons for why it may, plausibly, be true.

10.1. What is Dynamical Relevance?

Dynamical relevance is a formal condition. It is defined in Section 10.2.2, once formal
preliminaries have been introduced in Section 10.2.1. The goal of this section is to ex-
plain and illustrate the concept in non-formal terms, so as to make it accessible to a
wide audience.

Dynamical relevance is a relational concept. It describes how something, for example
a property, relates to the dynamics of a system, as described by a theory. If that “some-
thing” is relevant for the dynamics of the system, then we call it dynamically relevant.
In contrast, if that “something” is not relevant for the dynamics of the system, then we
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call it not dynamically relevant or dynamically irrelevant. Before applying dynamical rel-
evance to consciousness, let us give two examples of how this notion applies to other
properties.

Example 1: A moving car

As an intuitive first example, we consider a hypothetical theory for a moving car.4 The
theory predicts, we presume, how the car behaves as forces are applied to it. In partic-
ular, it describes which dynamical trajectory the car takes on a parking lot as forces are
applied to its steering wheel and its brake and gas pedals for a given initial position and
velocity.

How much load we add to the car is not predicted by the moving-car theory, it re-
quires an extension of this theory that is also capable of dealing with load. If one puts a
heavy box into the trunk of the car, the car’s dynamical trajectory will be different from
its dynamical trajectory with an empty trunk. This difference might be small and hard
to notice or large and easy to notice; for example, in the case of a Moose test, a heavy
box in the trunk could make the difference between tipping over and not tipping over.
In any case, as the load of the car makes a difference to the dynamics of the car, the
moving-car-plus-load theory introduces a new variable that is dynamically relevant with
respect to the moving-car theory.

The colour of the car’s seats is also not predicted by the moving-car theory, and if that
should be taken into account, an extended model with a new variable that describes
said colour is required as well. For example, the seats could be coloured in black, blue,
or red. In contrast to the car’s load, however, the moving-car-plus-colour theory will not
make changes to the dynamical trajectory of the car; the car’s dynamical trajectory will
be the same for all seat colours. Thus, as the seat colour doesn’t make a difference to
the dynamics of the car, according to the moving-car-plus-colour theory, the seat colour
is dynamically irrelevant with respect to the moving-car theory.

To summarise, for the hypothetical extensions of themoving-car theory outlined above,
the car’s load is dynamically relevant, whereas the seats’ colour is dynamically irrelevant.
We emphasise that the specification of the reference theory is important. With respect
to a more elaborate moving-car theory that takes into account the driver and their psy-
chology for the prediction of the car’s dynamical trajectory, the seats’ colour might very
well make a difference for the dynamics of the car and, thus, be dynamically relevant.

Example 2: An electrical circuit

As a more scientific example, we consider an electrical circuit. In an electrical circuit,
voltages and charge currents are typically described by electrical circuit theory. For ex-
ample, Ohm’s law V = R · I relates the voltage drop V across an electrical resistor with
resistance R to the charge current flow I through the resistor. Besides the resistor, the
electrical capacitor is another important circuit element. A capacitor stores electrical
4We thank Wanja Wiese for suggesting this example when discussing our manuscript.
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charge Q, when a voltage V is applied to it; the capacitor’s capacitance C determines
the amount of charge that is stored for a given voltage Q = CV .

Based on the two circuit elements, resistor and capacitor, one can build a simple elec-
trical circuit: a so called RC-circuit, where a capacitor is effectively connected to itself
but only via the resistor. When the capacitor is initially charged up to the voltage V0, it
will decay on a timescale τ = RC ; explicitly, V (t) = V0 e

−t/τ . This constitutes a model
for the capacitor voltage in an RC-circuit; or, for brevity, RC-circuit model.

This model can be extended to take into account further quantities of interest. For
example, the resistance of a resistor R depends on the temperature T of the resistor.
Temperature is a concept from thermodynamics but not from circuit theory, so it is not
part of the RC-circuit model as described above. But the temperature is relevant for
the resistance, and hence it is dynamically relevant for the voltage in an RC-circuit; it
changes how the voltage evolves over time. Thus a model that extends the RC-circuit
model to take into account temperature posits temperature as dynamically relevant. In
contrast, if we extended the RC-circuit model to take into account the resistor’s col-
our coating, the new variable would not be dynamically relevant, because the resistor’s
colour coating is dynamically irrelevant for the voltage in an RC-circuit; it makes no
difference to how the voltage or other quantities in the original model evolve in time.

Dynamical relevance of consciousness

Having clarified the concept of dynamical relevance in general contexts, we can now
discuss its application in consciousness science. For brevity, we will use the term ‘dy-
namical relevance’ in what follows to abbreviate the term ‘dynamical relevance of con-
sciousness’.

Dynamical relevance (of consciousness) describes the relation between a theory of
consciousness and a reference theory on which the theory of consciousness is built,
for example a neuroscientific theory that describes those brain functions that operate
independently of consciousness. In a nutshell, a theory of consciousness posits con-
sciousness as dynamically relevant, if being conscious makes a difference for the time
evolution of a system, as compared to what the reference theory, that does not contain
consciousness, would prescribe.

A simple example of a theory of consciousness that posits consciousness to be dy-
namically relevant is a theory which proposes that consciousness is a specific cognit-
ive function that would be absent if systems did not possess consciousness. Another
simple example is a theory of consciousness which posits that consciousness is some-
thing non-physical and endows consciousness with a causal effect on physical states.

Relation to other Properties

Consciousness can be dynamically relevant in both physicalist and non-physicalist on-
tologies. That is, it is ontologically neutral. By endorsing dynamical relevance one is not
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committed to any specific ontology. As we will now show, dynamical relevance is fur-
thermore implied by other (important) concepts in both physicalist and non-physicalist
concepts. Therefore, dynamical relevance is aweaker assumption than those concepts.
It is easier to accept and less demanding than these other concepts.

In physicalist contexts, dynamical relevance is implied by at least three concepts. First,
it is implied by strong emergence. That is the case, because the “fundamental higher-
level causal powers” (O’Connor, 2021b, Sect. 4), which exist in the case of strong emer-
gence, make a difference to the time evolution of the substrate states.

Second, dynamical relevance can also be implied by some forms of weak emergence.
It is arguably implied, for example, by the information decomposition approach to causal
emergence (P. A. M. Mediano et al., 2022). In this approach, even weak emergence in-
duces downward causation. If downward causation implies that there are causal effects
of the higher-level property on the lower-level property, then the higher-level property is
dynamically relevant to the lower-level property.

Finally, dynamical relevance is also implied by the assumption that consciousness
has intrinsic or functional value (Cleeremans & Tallon-Baudry, 2022), which motivates
agents and guides their behaviour. That is the case because an agent’s behaviour is
part of the agent’s dynamical trajectory. Therefore, if “it is only in virtue of the fact that
conscious agents ‘experience’ things and ‘care’ about those experiences that they are
‘motivated’ to act in certain ways” (Cleeremans & Tallon-Baudry, 2022, p. 1), then con-
sciousness is dynamically relevant.

In non-physicalist contexts, dynamical relevance (of consciousness) is implied by a vi-
olation of an ontological assumption known as ‘causal closure of the physical’ or ‘com-
pleteness of the physical’ (Robb, Heil, & Gibb, 2023). This assumption states that for
every physical effect, there are sufficient physical causes.

Dynamical relevance is implied by a violation of the causal closure of the physical,
because if the physical is not causally closed in virtue of consciousness, there are phys-
ical effects at least one of whose jointly sufficient causes is consciousness—usually
conceived of as a property or substance separate from the physical properties or sub-
stances in this context. But a cause makes a difference to the time-evolution of its
effect. Hence it follows that consciousness makes a difference to the time evolution of
some physical effects: the time evolution with consciousness differs fromwhat it would
have been without consciousness. Thus, if the physical is not causally closed in virtue
of consciousness, consciousness is dynamically relevant.

Is dynamical relevance plausibly true?

Our no-go theorem is predicated on dynamical relevance; it only applies if dynamical
relevance holds true, and its conclusions apply to AI systems only in this case.

This paper is not intended to establish dynamical relevance as true. A key function of
no-go theorems is to point to the underlying assumptions, and this is exactly what we
take the main point of our theorem to be.

What we need to do, however, is to give reasons for why it is plausible to assume dy-
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namical relevance. Some of these reasons have already been given above. Because dy-
namical relevance follows from other assumptions that are taken to be valid—because
it is a weaker assumption—, it is plausibly true. However, there are also more direct
reasons for this, which we review in this section.

Consider, as a simple example, an experiment which relies on a subject’s reports on
her conscious experiences. Let us assume that the subject is shown some stimulus
followed by a mask, and that she has to press a button to indicate whether she has
consciously perceived the stimulus, or not, across various trials. Throughout the trials,
we might measure her EEG signal, so as to carry out an analysis that distinguishes EEG
activity in the case of conscious perception fromEEG activity in the case of unconscious
perception. This analysis might target a theory of consciousness, so as to confirm or
refute whether the difference in EEG signal is aliened with the theory’s predictions or
retrodictions about this case.

A necessary condition for such an analysis to be possible is that the report—the press-
ing of a button, in this case—can depend on whether the subject has consciously per-
ceived a stimulus, or not. Put in terms of the theory of consciousness that a study aims
at, we may say: A necessary condition, for the above analysis to be possible, is that the
report (or EEG data for that matter) depends on whether the subject is experiencing the
stimulus consciously or not (according to the theory, if it were true). If the time-series of
reports and EEG data does not depend on consciousness, the experiment cannot have
any weight in supporting the theory. In other words, the theory must posit conscious-
ness as relevant to the report or EEG data (or both). And because report and EEG data
are part of the dynamics of theories from natural sciences, the theory of consciousness
must posit consciousness to be dynamically relevant. Dynamical relevance is likely a
precondition for the experiment and the analysis to work as intended. Further details
are needed to cash out this example, and to see if it indeed applies. But we take it to
show that dynamical relevance is at least plausibly true.

More generally, we may say that any empirical investigation of consciousness relies
on measures of consciousness (Irvine, 2013) to infer the state of consciousness of a
subject (some information about the subject’s conscious experience, that is). An exper-
iment may use objective measures of consciousness that rely on behavioural or neural
markers, or subjectivemeasures of consciousness that rely on a subject’s reports about
their conscious experience. Both types of measures rely on data that is part of the dy-
namics of the physical. And for a measure of consciousness to work as expected—to
allow us to infer something about the state of consciousness of a subject—, conscious-
ness must make a difference to the data that feeds into the measure. It must make
a difference to the dynamics that explain the data, and hence be dynamically relevant,
with respect to a theory that contains such explanation.

The same argument can bemade not only for scientific investigations, but for any kind
of intersubjective exploration of conscious experiences. Debating consciousness relies
on certain dynamics of the vocal cord (among many other things), making art about
consciousness makes use of behaviour. All of these cases are part of the dynamics
of an organism, and if the dynamics are to depend on consciousness, consciousness
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needs to be dynamically relevant.5
The upshot of these arguments is that dynamical relevance could well be a necessary

condition for the type of activities we carry out when engaging in empirical scientific
studies of consciousness. These arguments do not show that dynamical relevance is
true. For all we know, there is the possibility that it isn’t. But if it isn’t, the empirical
investigation of consciousness—and with it the science of consciousness—might not
make sense; a necessary condition for its possibility would likely be violated.

Current Theories

The above arguments do not depend on any specific theory of consciousness. But it
is interesting to ask what current theories of consciousness say about dynamical relev-
ance.

First, it is important to note that empirical tests of theories of consciousness presume
that consciousness is dynamically relevant according to these theories. That is the case,
because they assume that whatever is measured can corroborate or falsify a theory, or
speak in favour of one theory rather than another. For this to be possible, consciousness
must make a difference to the data. And because the data is drawn from the physical
dynamics of a system, consciousness must be dynamically relevant.

Second, we can consider the metaphysics of theories of consciousness. In cases
where these are clear, they do, in our eyes, imply dynamical relevance. Consider, as
an example, Integrated Information Theory (IIT) (Oizumi et al., 2014). IIT assumes that
experience is primary and physics—or better, physical descriptions—are secondary. In a
sense, only experience exists, in the form of cause-effect-structures. Hence it should be
the case that experiencemakes a difference to the physical dynamics, so that conscious
experience is dynamically relevant.

Another example is Global Neuronal Workspace Theory (GNW) (Dehaene et al., 2011).
Here, too, we think, the metaphysical interpretation implies dynamical relevance. GNW
assumes that conscious experiences are tied to a global neuronal workspace, “consist-
ing of a distributed set of (...) neurons characterised by their ability to receive from and
send back to homologous neurons in other (...) areas horizontal projections through
long-range excitatory axons” (Dehaene et al., 2011, p. 56). Organisms that posses a
workspace are conscious, while organisms that do not posses a workspace are not
conscious, according to the theory. Hence whether or not a system is conscious makes
a difference to a system’s information processing architecture and, a fortiori, to the sys-
tem’s dynamics.

The only thing which speaks against dynamical relevance among current theories
of consciousness, in our eyes, is their mathematical formulation (in those very limited
cases where a mathematical formulation exists).

5This argument can be strengthened by considering what is required to distinguish two or more theor-
ies of consciousness empirically, cf. (Kleiner & Hartmann, 2023), where however dynamical relevance
is referred to as ‘empirical version of the closure of the physical’ in (Kleiner & Hartmann, 2023), and
formulated in more generality than we do here.
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Consider, for example, Integrated Information Theory (IIT). The mathematics of IIT is
given in terms of an unwieldy algorithm that takes as an input a physical description
of a system as given by some reference theory, and provides as output a mathematical
description of the conscious experience of that system. An analysis of themathematics
that underlie this algorithm shows that the algorithm defines a map which goes from
the description to the descriptions of conscious experience (Kleiner & Tull, 2021; Tull &
Kleiner, 2021).

Therefore, according to IIT’smathematics, consciousness is not dynamically relevant.
The physical evolution of the systems are exactly as they are in the reference theory that
provides the input to IIT. No change whatsoever is introduced to these dynamics by the
theory. The mathematics of IIT do not instantiate dynamical relevance.

In our view, this is an issue of themathematical formulation that IIT applies. Themath-
ematics do not naturally align with the metaphysical foundation of the theory, and the
exact same formal properties which speak against dynamical relevance are the source
of other issues, most notably issues with falsifying the theory, cf. (Kleiner & Hoel, 2021),
and issues related to the unfolding argument, more generally (Doerig et al., 2019). The
mathematics of IIT may need to be revised, at the very least to instantiate dynamical
relevance, so as to resolve these problems with falsification.

Definitions

Weconclude this sectionwith a pointer to the places in themanuscript where the precise
definition of dynamical relevance is given: in Section 10.2.2, Definitions 10.2.1 and 10.2.2.
Definition 10.2.1 is epistemic. It defines the concept of dynamical relevance with re-
spect to a theory of consciousness, relative to some underlying neuroscientific theory,
independently of whether either of the theories is true. Definition 10.2.2 then builds on
this epistemic definition to provide an ontic definition. This definition is about whether
consciousness is actually dynamically relevant. What is crucial in Definition 10.2.2 is
that it suffices that there is some reference theory with respect to which the true the-
ory of consciousness satisfies Definition 10.2.1. This is sufficient to prove our result,
Theorem 10.2.4. Referencing the actual world is important in the context of this result
because post-silicon verification is about what actually happens, once a processing unit
has been manufactured.

10.2. No-Go Theorem

10.2.1. Formal Preliminaries

The central notion which underlies our result is that of the time evolution of a system’s
states. Given a scientific theory T and a system S within the scope of the theory, we
denote by kT (S, s) the dynamical evolution (also called ‘trajectory’) of S with initial state
s. This dynamical evolution describes how the state s evolves in time according to T . An
example is the evolution of a brain state according to a neuroscientific theory. We will
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abbreviate kT (S, s) by kT if it is clear from context that we’re talking about one system
and one initial state.

The class of scientific theories which is relevant in the present context are theories
of consciousness, on the one hand, and neuroscientific theories on which theories of
consciousness are built, on the other hand. These neuroscientific theories are theories
that a theory of consciousness makes use of to explain how consciousness relates to
the brain, and to which it refers for all explanations that do not involve consciousness:
the theories that have been developed in neuroscience or other natural sciences. We use
the symbol Υ to denote all such theories that are relevant for AI or consciousness, and
refer to the theories in this class as reference theories, because they are the theories that
a theory of consciousness can refer to. Examples are theories of neuroscience, biology,
chemistry, computer science and physics.

Different theories describe systems at different levels (List, 2019), and in some cases,
the states of a system posited by one theory T (the “lower” level) can (in principle) be
mapped to states of another theory T ′ (the “higher” level). If this is the case, we write
T < T ′. Because dynamical evolutions are sequences of states, if T < T ′, we can map
any dynamical evolution kT of T to a (not necessarily dynamical) evolution of T ′, which
we denote as kT |T ′ .

We assume that there is a reference theory TF ∈ Υ that can be mapped to states
of any other reference theory in Υ, which means that TF < T for all T ∈ Υ. For lack
of a better term, we will refer to this theory as a fundamental reference theory, but em-
phasise, that it does not have to be “the true” fundamental theory. The requirement that
TF < T for all T ∈ Υ is only an epistemic requirement that expresses relationships
been theories in Υ, and leaves open whether TF , or any other theory in Υ for that mat-
ter, is the true theory which correctly describes the actual dynamics. Whether or not
this can be the case depends precisely on the question of whether consciousness is
dynamically relevant. What justifies the assumption that there is a theory whose states
can be mapped to states of the other theories (whose states ground the states of all
other theories, one might say) is that the states of quantum theory can, in principle, be
mapped to states of all physical theories in Υ. That is because quantum theory is what
underlies condensed-matter theories as far as they are relevant for semi-conductors
and integrated-circuit design of processors. So, for all practical purposes, we can think
of TF as quantum theory. We remark that the requirement of a relationship of states is
much weaker than any reductive assumption.

Finally, we assume that there is a fact to the matter of what the real (that is: actual)
dynamics of any system are, even if that fact may not be knowable. We denote the
description of the real dynamics in terms of the states of any reference theory T ∈ Υ
(any “level” of description, so to speak) by k∗|T . If T < T ′, the description of the real
dynamics in terms of the states of both theories are compatible, that is k∗|T |T ′ = k∗|T ′ .
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10.2.2. Dynamical Relevance

Theories of consciousness (tocs), sometimes also calledmodels of consciousness, ex-
press a relation between a description of a system, on the one hand, and a description
of its conscious experiences, on the other hand. The latter could be a description of
its phenomenal character (cf. e.g. (Kleiner & Ludwig, 2024; Lee, 2021)), or simply an
expression of whether a system S has conscious experiences at all. Together, both de-
scriptions constitute a state s of the toc. Because a toc expresses a relation between a
description of a system and a description of its conscious experiences, the state s con-
tains both a non-experiential and an experiential part, whichwe refer to as reference state
and state of consciousness, to have a simple terminology that is free of metaphysical
burden. The dynamical evolution kM (S, s) of a system S in a state s of the theory/model
of consciousnessM expresses how the reference state and the state of consciousness
relate according to the theory.

Because tocs contain a reference description of a system at some level, for every toc
M , there is at least one reference theory TR ∈ Υ such that the physical part of any state
s of M , and therefore also any dynamical evolution kM , can be expressed in TR. We
denote this state by s|TR

and the expression of the reference part of the trajectory kM in
terms of TR by kM |TR

. So, kM |TR
is whatM says about the evolution of reference states

on TR’s level of description. We call any such TR an underlying reference theory of M .
To offer an alternative perspective that might be helpful to illustrate this notation,

consider again that any theory of consciousness M expresses a relation between a
description of a system and a description of its conscious experience, or if framed in
the terminology we have just introduced: a relation between a reference state and a
state of consciousness. Let us suppose that the former constitute a set P̃ and that the
latter constitute a set E. Here we are adding a ‘∼’ on top of P because the states which
the theory of consciousness usesmight not be identical to the states that any reference
theory uses; there could be simplifications, for example. What needs to be the case,
however, is that these states can be mapped to the states of some reference theory TR.
The states of the reference theory are what the theory of consciousness “means” when
addressing reference states, so to speak. Let us assume that the reference states of TR

form a set. A trajectory kM of M is a trajectory over P̃ ×E. By restricting to P̃ and then
mapping to P , we obtain a trajectory over P . This is what the symbol kM |TR

denotes: it
is what the trajectory of M implies for the time evolution as expressed in terms of the
states of the reference theory TR.6

Independently of what the description is that a toc applies on the side of conscious-
ness, there is a fact to the matter of whether a system is conscious or not when in a
trajectory kM (S, s). This means: whether the system S has conscious experiences at
least at one point of time in the dynamical evolution kM (S, s). Making use of the im-
portant link between tocs and reference descriptions, we can say that a system S is
conscious in a dynamical trajectory kTR

of the reference theory iff there is a dynamical

6We are grateful to an anonymous reviewer for pointing out that this perspective might be helpful to in-
clude.
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evolution kM of M such that (a) we have kM |TR
= kTR

and (b) the system is conscious
in kM .

Whether a toc has anything original to say about the dynamical evolution of its refer-
ence states, or simply presumes the dynamical evolution of a reference theory—of an
underlying neuroscientific theory, that is, in most cases—, is precisely the question of
dynamical relevance, defined as follows. Let M denote a toc and TR ∈ Υ a reference
theory thereof.

Definition 10.2.1. Consciousness is dynamically relevant according toM with respect to
TR iff

S is conscious in kM ⇒ kM |TR
̸= kTR

.

Here, the right-hand-side is short-hand for kM (S, s)|TR
̸= kTR

(S, s|TR
), where s|TR

de-
notes the restriction of the state s of M to TR. The left-hand side is a shorthand for ‘S
is conscious in kM (S, s)’, meaning that there is at least one point of time in kM (S, s) so
that S has a conscious experience at that time according to M . The condition has to
hold for all dynamical trajectories kM of M , meaning for the dynamical trajectories of
all systems S in the scope of M , and all states s of these systems.

This definition expresses the intuition that if S is conscious according to a toc M ,
then the dynamical evolution as specified byM differs from the dynamical evolution as
specified by the underlying neuroscientific theory alone.

We have already referenced the ‘real’ dynamics of a system and introduced the sym-
bol k∗|TR

to denote what the real dynamics of a system would look like in terms of the
states of TR. There is also a fact to the matter of whether a system in a trajectory k∗

is conscious and how conscious experiences relate to the physical. That is, there is a
‘true’ or ‘real’ theory of consciousness, which we denote byM∗. As in the physical case,
M∗ may be unknown or unknowable. We will denote its dynamical evolutions by kM∗ .
Because these describe what really happens, we have kM∗ |TR

= k∗|TR
for all TR. Using

M∗, we can define dynamical relevance simpliciter:

Definition 10.2.2. Consciousness is dynamically relevant (CDR) only if it is dynamically
relevant according to the ‘true’ toc M∗ with respect to some reference theory TR ∈ Υ.

10.2.3. Functional and Post-Silicon Verification

What is unique about AI systems in the present context is not the particular architecture
that is employed; AI can also be built on architecture derived from the brain; cf. e.g
(K. J. Friston et al., 2022). What is unique is rather that the architecture runs on CPUs,
GPUs, TPUs or other processors that have been designed and verified in the lab.

There are two major verification steps in processor development, called functional
and post-silicon verification. Functional verification (Mishra & Dutt, 2005; Wile, Goss, &
Roesner, 2005) is applied once the design of a processor in terms of integrated circuits
has been laid out, but before the manufacturing phase begins. It applies simulation
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tools, formal verification tools and hardware emulation tools to ensure that the design
of the chip meets the intended specifications as described by a computational theory
Tcomp. Post-silicon verification (Mishra, Morad, Ziv, & Ray, 2017; Mitra, Seshia, & Nicolici,
2010) is applied after the silicon waver has been fabricated. It applies in-circuit testing,
functional testers, failure analysis tools and reliability testing, among other things, to
ensure that the physical product works as Tcomp would have it. The theory Tcomp is spe-
cified by a processing unit’s instruction set architecture, present-day examples of which
are the ARM instruction set architectures on which on most data centre servers run, or
the X-86 instruction set architecture on which most desktop devices run.

Functional verification is a theoretical endeavour. It applies simulation and emulation
tools based on a theoretical account on how the substrate, on which a processor is to
be built, behaves. Because this substrate is a semi-conductor, this theoretical account
is based on quantum theory. Put in terms of dynamics, functional verification aims to
ensure that whatever happens in the quantum realm, or below, implements or is com-
patible with the dynamics as described by Tcomp, formally:

kTF
|Tcomp = kTcomp (10.1)

for all dynamical evolutions of a processor S. This condition could fail, for example, be-
cause of leakage currents, most notably those created by tunnelling of electrons through
a transistor’s gate oxide layer. Tunnelling is an effect described by quantum theory, and
needs to be controlled for in order to ensure transistors implement a choice of Tcomp.

Post-silicon verification, on the other hand, is applied to a chip once it has been built.
It ensures that the dynamics of the actual physical product comply with Tcomp. Making
use of the k∗ notation to denote the actual dynamical evolution of a system, post-silicon
verification enforces that

k∗|Tcomp = kTcomp (10.2)

for all dynamical evolutions of a processor S.
Being an AI system means running on CPUs, GPUs, TPUs or other processors that

have been designed and verified. That’swhatmakes the system “artificial”. And because
processor dynamics compose (the output of one is the input of the next), verification
holds for AI systems as well: there is an underlying computational theory Tcomp that
accounts for what “happens” on the processors while the system is running, and the
computational dynamics satisfy (10.1) and (10.2).

10.2.4. AI Consciousness

With all this in place, we can formulate the question that is being asked precisely. The
term ‘artificial intelligence’ is used very broadly, comprising many different computa-
tional architectures and applications. What one means when one asks whether an AI
system is conscious is whether the computational architecture that is applied by this
system, with the specific quirks of its implementation and training, potentially in a spe-
cific task, has conscious experiences. The architecture and these specifics determine
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the computational dynamics the system is capable of. Thus, the question is whether
the system has a computational evolution kTcomp such that it is conscious in this com-
putational evolution according to a theory of consciousness M ; cf. Section 10.2.2 for a
definition of what this means in terms of dynamics kM of M .7 In summary:

Definition 10.2.3. An AI system S is conscious according to a theory of consciousness
M only if there is at least one dynamical evolution kTcomp in which the system is con-
scious according to M .

This is a very weak condition, which however has one important consequence: that
the question of AI consciousness is determined by facts on the computational level and
above; it is independent of what happens on a sub-computational level. That is, if we
have a a trajectory kTR

ona sub-computational level (TR < Tcomp) with kTR
|Tcomp = kTcomp

then S is conscious in kTcomp only if it is conscious in kTR
.

10.2.5. No-Go Theorem

Our main result is the following theorem.

Theorem 10.2.4. If consciousness is dynamically relevant, then AI systems aren’t con-
scious.

Before giving the proof, we first illustrate the result for the simpler case where con-
sciousness is dynamically relevant with respect to the computational level Tcomp itself.
The power of the theorem is to extend this result to all other cases. Subsequent to this
illustration, we prove a lemma needed for the main theorem, and then proceed to prove
the theorem itself.

So let us consider the case where TR in Definition 10.2.2 is Tcomp. The following chain
of reasoning assumes that consciousness is dynamically relevant (Definition 10.2.2)
with respect to Tcomp.

Let S be an AI system. Because of post-silicon verification (10.2), all of the dynamical
evolutions of S satisfy

k∗|Tcomp = kTcomp . (10.3)

Application of Definition 10.2.2 for the case TR = Tcomp implies, via Definition 10.2.1,
that if S is conscious in a kM∗ , then kM∗ |Tcomp ̸= kTcomp . The converse of this statement
is that if kM∗ |Tcomp = kTcomp , then S is not conscious in kM∗ . From the paragraph before
Definition 10.2.2, we have kM∗ |TR

= k∗|TR
for all TR. Setting TR = Tcomp, this gives

kM∗ |Tcomp = k∗|Tcomp , which is why the identity (10.3) establishes the prerequisite of
the above condition for all dynamical evolutions of S. Therefore, it follows that S is
not conscious in any kM∗ . Thus, Definition 10.2.3 implies that S is not conscious, as
claimed.

The remainder of this section is devoted to the proof of the theorem in the general
case. To this end, we first state and prove the following lemma.

7The point here is to restrict downwards, not upwards. Any question “above” the computational level can
be posed in terms of computational dynamics.
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Lemma 10.2.5. Dynamical relevance passes downward, in the sense that if TR < T ′
R and

consciousness is dynamically relevant according toM with respect to T ′
R, then it is also

dynamically relevant according to M with respect to TR.

Proof of the Lemma. Consciousness is dynamically relevant according to M with re-
spect to T ′

R, iff
S is conscious in kM ⇒ kM |T ′

R
̸= kT ′

R
.

Because TR < T ′
R, there is a function which maps states—and therefore also dynamical

evolutions—from TR onto T ′
R. Therefore, we have

kM |T ′
R
̸= kT ′

R
⇒ kM |TR

̸= kTR
.

Together with the above, this gives

S is conscious in kM ⇒ kM |TR
̸= kTR

,

which is the case iff consciousness is dynamically relevant according toM with respect
to TR.

We now proceed to the proof of the theorem.

Proof of the Theorem. We first consider the case where TR in Definition 10.2.2 is TF .
Let S be an AI system. Because of functional and post-silicon verification, we have

kTF
|Tcomp = kTcomp = k∗|Tcomp (10.4)

for all dynamical evolutions of S. Because consciousness is (by assumption) dynamic-
ally relevant and we have assumed TR = TF , Definition 10.2.1 applies to give

S is conscious in kM∗ ⇒ kM∗ |TF
̸= kTF

(10.5)

for all dynamical trajectories kM∗ of M∗.
Let us now assume that S is conscious in some trajectory kM∗ of M∗. According to

the last implication, we thus have

kM∗ |TF
̸= kTF

.

Because TF < Tcomp, we can map both of these trajectories to Tcomp. For kM∗ |TF
, this

gives

kM∗ |TF
|Tcomp = k∗|TF

|Tcomp

= k∗|Tcomp = kM∗ |Tcomp ,

where we have made use of identities established in Sections 10.2.1 and 10.2.2. Equa-
tion (10.4) furthermore establishes that

kM∗ |Tcomp = k∗|Tcomp = kTcomp .
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The two facts that (a) kM∗ |Tcomp = kTcomp and (b) that S is conscious in kM∗ establish
that S is conscious in kTcomp .

Equation (10.4) also establishes that

kTF
|Tcomp = kTcomp .

Because of this equation and TF < Tcomp, the implication of Definition 10.2.3 explained
in the last paragraph of Section 10.2.4 applies and establishes that S is conscious in
kTF

.
Unwrapping what ‘S is conscious in kTF

’ means by definition, we find that there must
be a dynamical evolution k̃M∗ of M∗ such that

(a) k̃M∗ |TF
= kTF

and

(b) S is conscious in k̃M∗ .

Together, these two conditions violate (10.5). Thus we have arrived at a contradiction.
The assumptions that went into the derivation of this contradiction were that con-

sciousness is dynamically relevant with respect to the TF level, that S is an AI system,
and that S is conscious in a trajectory kM∗ of M . The first assumption is stated as a
condition in the theorem. Thus it follows that the latter two cannot be both the case.

Because kM∗ was arbitrary, it follows that an AI system S cannot be conscious in any
trajectory kM∗ ofM∗. Consequently, applying Definition 10.2.3, it cannot be conscious at
all. This establishes the claim that if consciousness is dynamically relevant with respect
to TF , then AI systems aren’t conscious.

It remains to consider all other cases of TR in Definition 10.2.2. Therefore, let us as-
sume that consciousness is dynamically relevant with respect to some TR ̸= TF . Be-
cause TF < TR for all TR ∈ Υ, and because dynamical relevance passes downward
(Lemma 10.2.5), it follows that consciousness is also dynamically relevant with respect
to TF . Hence the previous case applies and the result follows in full generality.

10.3. Objections

In this section, we discuss a few immediate responses to our result.

10.3.1. Verification is imperfect

Verification is an industrial process thatmay not be perfect: despite functional and post-
silicon verification, the actual dynamics of a processor may not adhere to the computa-
tional theory targeted by verification in all cases. Verification may leave a bit of wiggle-
room for the dynamics to diverge from the computational theory. Could thiswiggle-room
suffice for consciousness to unfold its dynamical effects?

Any answer to this question depends on how exactly consciousness is dynamically
relevant and which imperfections arise in day-to-day verification. It is natural to expect
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that consciousness’ dynamical relevance is systematic in nature: dynamical effects
should systematically occur if a system is conscious and make a systematic difference
to how the system evolves in time. The imperfections in day-to-day verification, on the
other hand, are likely to bemostly random in nature, meaning that the deviation in dynam-
ical evolution they fail to suppress are random too, both in time (when such a deviation
can occur) and in the extent to which they can make a difference. If this is true, it is
unlikely that the wiggle-room left open due to imperfections suffices for consciousness
to unfold its dynamical effects.

10.3.2. Determinism

One objection to our result takes our result to show or imply that a deterministic system
cannot be conscious, and argues that this is very unlikely to be true. Hence the result
must be wrong or rest on very weak assumptions, so the objection goes.

This objection fails because our result does not show or imply that deterministic sys-
tems cannot be conscious. What prevents a system from being conscious, according
to our result, is that its design forces it to comply to a formal system that is independent
of consciousness. The system is “locked into” a formal system, so to speak. It cannot
deviate from it. Reality is forced to adhere to a theoretical construct, by design.

Our result is fully compatible with deterministic systems, and alsowith a deterministic
relevance of consciousness to a system’s dynamics.

10.3.3. Probabilistic processing

Verification as applied in industry targets deterministic computational theories. Would
our result also hold in case of verified probabilistic processing?

The mathematical framework we apply is compatible with probabilistic processing:
we do not make an assumption as to whether the notions of state and dynamical evol-
ution are deterministic or not; a state may well be a probability distribution and its dy-
namical evolution a stochastic process. Verification, in this case, implies that a system
conforms to the stochastic process as described by a stochastic computational theory.
This leaves room for consciousness to have a dynamical effect, but only if this effect
conforms to the probability distributions as described by the stochastic computational
theory. That is, consciousness may determine how the probability distributions of the
stochastic computational theory are sampled, but it cannot change them. As in the case
of imperfect verification, we remain sceptical as to whether this limited freedom is com-
patible with the systematic nature of consciousness’ dynamical effects that are to be
expected.

10.3.4. Quantum computing

Doesour result also hold true in the case of quantumcomputing? Quantumcomputing is
a young industry and it is not yet clear which type of verification, if any, will need to be de-
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ployed. It is likely, however, that any type of verification will need to presuppose a notion
of measurement, which is an inherently vague concept in quantum theory (Bell, 1990)
that is partially external to the account of quantum dynamics by the Schrödinger equa-
tion. If consciousness were related to measurement (for example via consciousness-
induced dynamical collapse as proposed in (Chalmers & McQueen, 2022)), then verific-
ationmight leave enough room for consciousness to have a systematic andmeaningful
effect. If, on the other hand, consciousness is not related to measurement in quantum
theory, it is likely that verification of quantumcomputers to adhere to quantumdynamics
will preclude any potential dynamical effects of consciousness; just as in the classical
case.

10.4. Conclusion

This paper addresses the question of whether AI systems are conscious. Its objective
is to introduce a new formal tool, in the form of a no-go theorem, that may provide an
answer to this question which is independent of the specific computational architecture
that an AI system utilises, and which does not rely on any specific cognitive feature that
an AI system might possess or lack that may be related to conscious experience.

The no-go theorem is based onwhat we take to be the only property that distinguishes
AI systems from other cognitive systems, a property that might well embody the actual
meaning of the word ‘artificial’ in ‘artificial intelligence’: that the system runs on a sub-
strate that has been designed and verified, rather than naturally evolved.

Ultimately, we believe that any scientific statement about whether a system is con-
scious needs to be based on a theory of consciousness that is supported by theoret-
ical, philosophical, and most importantly empirical evidence. Consciousness Science8

searches for such theories. The crucial premise in our result—dynamical relevance—is a
property which theories ascribe to consciousness, so that our theorem can be regarded
as establishing a fact about AI’s capability for consciousness for a whole class of the-
ories of consciousness: all those that posit consciousness to be dynamically relevant.
Results of this form are important as long as evidence in favour of any single theory of
consciousness, as well as evidence to distinguish among them, is still in its early stages,
and while the space of possible theories remains only partially explored.

Our result has a few interesting, slightly funny, and potentially relevant implications
for AI engineering and AI interpretability. The most notable of these is that our result
shows that if an AI system states that it is conscious, then this cannot be because it
is conscious. That is to say, even if an AI system were conscious, the cause of any
such statement cannot be that the AI system is conscious. This follows because if
such a cause existed, consciousness would have to be dynamically relevant, in which
case our theorem implies that the system isn’t conscious. Another implication is that
if consciousness has functions that could improve a system’s information processing,

8Also called Scientific Study of Consciousness to emphasise the importance of contributions from hu-
manities, most notably philosophy.
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then, to make use of those functions, theories of consciousness should be taken into
account when designing the substrate on which an AI system will run.

The question of whether AI systems are conscious is ofmajor societal concern (Asso-
ciation for Mathematical Consciousness Science, 2023). It has important ethical (Bost
rom & Yudkowsky, 2018; Metzinger, 2021), legal (Benzmüller & Lomfeld, 2020; Suss-
kind, 2019), and technological consequences, and will likely play a major role in shaping
governance of AI and how individuals interact with this technology. Our result aims to
deliver a rigorous and justified answer to this question that does not rely on contingent
assumptions, such as the truth of a particular theory of consciousness, or the validity
of a particular test of consciousness when applied to AI systems. The result relies on
the truth of its main assumption, dynamical relevance, further investigation of which is
an objective of future research.
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11. Consciousness qua Mortal Computation

Johannes Kleiner

11.1. Introduction

A fundamental tenet of general purpose digital computing is that software is separ-
ated from hardware, so that the same program or algorithm can be run on any suitable
system. This tenet is about to be broken. Contemporary developments in Artificial In-
telligence (AI) and AI chip production have led to the identification of a novel concept
of general purpose computing, called mortal computation (Hinton, 2022). This concept
draws a line between the type of computations that contemporary processing units do,
and the type of computations that brains and other biological organisms carry out.

Computational functionalism, first defined by Putnam (1967), posits, in a nutshell, that
consciousness is a computation. This view has gained popularity again in light of the
staggering achievements in AI development in recent years. AI models are computa-
tions, so if computational functionalism is true, AI models can—and, depending on the
nature of the computation that consciousness is, will—become conscious (Butlin et al.,
2023).

Here we show that computational functionalism is not indifferent with respect to the
type of computation that consciousness is. We show that if there is any organism that
is capable of conscious experiences, but which cannot be programmed—for example,
non-human animals; cf. Assumption 11.4.1—, then computational functionalism implies
that consciousness is a mortal computation. To establish this result, we make use of a
differential definition of mortal computation, as well as general facts about the relation
between programs, Turing computation and immortal computation.

Our result challenges the usual understanding of computational functionalism, which
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is centered around Turing-like models of computation. If our result holds true, con-
sciousness cannot, according to computational functionalism, be a Turing computation
or programmed. Yet, contemporary AI systems and programs are Turing computations.
Therefore, this result speaks against the possibility of AI consciousness (though it does
not aim to settle the issue due to questions of realization, cf. Section 11.7).

The underlying perspective of this paper is that the discovery of mortal computa-
tion by Hinton (2022) may well be a first step towards understanding of a whole new
paradigm of computation, potentially as consequential as the Turing-Church-Gödel-Her-
brand paradigm of computation of the past nine decades (Gödel, 1934; Church, 1936;
Turing, 1937b).1

11.2. Mortal Computation

The notion of mortal computation was identified and coined by Hinton (2022, Sec. 9),
who describes a learning task that makes use of unknown properties of hardware that
vary across systems, such as variations in the connectivity of a system, or variations
in non-linear processes in a system. As a result, the parameter values that define the
learned computation “are only useful for that specific hardware instance, so the compu-
tation they perform ismortal: it dieswith the hardware” (Hinton, 2022, p. 13). The general
computing paradigm of the past nine decades, in contrast, implies that a computation is
largely independent of the hardware on which it is run: “[T]he same program or the same
set of weights can be run on a different physical copy of the hardware. This makes the
knowledge contained in the program or the weights immortal: The knowledge does not
die when the hardware dies” (Hinton, 2022, p. 13).

There is, at this early stage, no constructive definition of mortal computation,2 but

1The question of whether a computation is a Turing computation is different from questions regarding
Turing computability. The former concerns the nature of computations. For example, the question of
whether neural computations are Turing computations (Piccinini, 2020). The latter concerns functions,
in the mathematical sense of the term, that map natural numbers to natural numbers, and asks whether
their value can be computed by a Turing machine. A function is Turing-computable iff there is a Turing
computation (meaning: an abstract mathematical model of a Turingmachine) that halts on all numbers
for which the function is defined, and does not halt when provided with numbers for which the function
is not defined. This is the case iff the function is λ-computable (Church, 1936; Turing, 1937a) or general
recursive (Gödel, 1934; Kleene, 1936). The definition of Turing-computability of functions leaves open
what the computation is that implements the function, which is what this paper is concerned with.

2There are two ways of reading Hinton (2022, Sec. 9). On a deflationary reading, a mortal computation
is simply a Turing computation that is not known in its entirety to an outside programmer. Call this the
epistemic reading of mortal computation. It is suggested by Hinton’s emphasis of “large and unknown
variations in the connectivity” (ibid.). On a different reading, a mortal computation is a computation that
fundamentally transcends some of the constraints of Turing computation, for example the existence
of an immutable tape for purposes other than read and write actions, or the existence of a transition
function that is Markov, as suggested by Hinton’s emphasis on “non-linearities of different instances of
hardware” (ibid.). Call this the ontic reading of mortal computation. On the ontic reading, the state of
affairs of the hardware is partially unknown to the computation itself. The computation may have to
deal with, and make use of, non-Turing properties of the hardware. Both interpretations are compatible
with (11.1).
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wemay consider a differential definition, that helps us distinguish mortal computations
in virtue of what they are not. To provide such definition, denote by C the class of all
computations. C comprises all Turing computations, which we will denote by CTM in
what follows, as well as other notions of computation, for example, non-deterministic
Turing computations, neural computations, analogue computations and the yet-to-be-
understood mortal computations.

The core intuition behind immortal computation is “that the software should be sep-
arable from the hardware” (Hinton, 2022, p. 13). In practice—in central processing units
(CPUs), graphics processing units (GPUs), tensor processing units (TPUs), or data pro-
cessing units (DPUs)—this separation is enabled by a processing unit’s Instruction Set
Architecture (ISA). An ISA contains specifications of all computations that the processing
unit can carry out, and it is with respect to these specifications that programs, operating
systems and compilers are defined. To run a program is to run machine code that spe-
cifies which of the ISA’s computations are to be carried out in which order (call this con-
catenation) and how the results of computations are to be used by other computations
(call this combination). Differences among processing units’ performance, design, size,
etc., are differences in an ISA’s implementation. The ISA exists to ensure binary-code
compatibility of software despite such differences; it is the boundary between software
and hardware.

The computations defined by an ISA constitute a reference relative to which software
is defined, and which a class of hardware implements. It ensures that a program can
run on different physical copies of the same type of hardware. Computation is immortal
precisely because it is defined with respect to such reference. We can formalize this
requirement as follows.

Definition 11.2.1. A computation c ∈ C is immortal iff there is a class of reference com-
putations cref ⊂ C such that c is a concatenation and combination of these reference
computations. A computation c is mortal iff it is not immortal.

We will denote the class of immortal computations by CImm. Immortal computations
are meant to be a subclass of Turing computations, so that we have

CImm ⊂ CTM . (11.1)

Because an immortal computation c is a concatenation and combination of reference
computations, every system that can realize an immortal computation c must be able
to realize its reference computations cref. This is the only implication of Definition 11.2.1
we will make use of in what follows. To explicate this implication formally, we denote
by Sys the class of all systems. This class includes, for example, all CPUs, GPUs, TPUs,
and DPUs in use today, as well as all biological organisms. Furthermore, we denote by
C(S) all computations that a system S ∈ Sys can realize or implement. Using such
formalism is of advantage because it can be applied to any account of implementation
of a computation (Piccinini, 2015). The essential implication of the previous definition
then reads as follows.
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Implication 1. If c ∈ C is immortal, then there is a class cref ⊂ C such that for all S ∈ Sys

c ∈ C(S)⇒ cref ⊂ C(S) . (11.2)

An important class of immortal computations are computations specified by writing
a program in some programming language; computations that are coded, that is, and
compiled to run on CPUs, GPUs, TPUs or DPUs. We will simply refer to these compu-
tations as ‘programs’. Programs are immortal because they are defined with respect to
some programming language that in turn is defined, via its compiler, with respect to one
or more ISAs.

We denote the class of computations that can be coded with any of the existing pro-
gramming languages by Prog. Because programs are immortal, we have

Prog ⊂ CImm . (11.3)

11.3. Computational Functionalism

Computational functionalism was introduced by Putnam (1967) as the following set of
assumptions.
1. “All organisms capable of feeling pain are Probabilistic Automata.

2. Every organism capable of feeling pain possesses at least one Description of a
certain kind (i.e., being capable of feeling pain is possessing an appropriate kind
of Functional Organization).

3. No organismcapable of feeling pain possesses a decomposition into partswhich
separately possess Descriptions of the kind referred to in 2.

4. For every Description of the kind referred to in 2, there exists a subset of the
sensory inputs such that an organism with that Description is in pain when and
only when some of its sensory inputs are in that subset.” (Putnam, 1967, 1975,
p. 434)

In giving this definition, Putnam equates Probabilistic Automata with descriptions of a
system; “[t]he Machine Table mentioned in the Description will then be called the Func-
tional Organization of [a system] S relative to that Description” (ibid.).

The understanding of computation has evolved substantially since Putnam (1967),
cf. e.g. (Piccinini, 2015). To connect Putnam’s definition to computation as presently
understood, and to do justice of it being a definition of computational functionalism, we
reformulate Condition 2 in abstract terms, making use of the set C(S) of computations
that a system can realize, which we have introduced above. It is clear from the context
of Putnam’s definition that it is to apply to all systems, not just organisms in a narrow
sense. Denoting the experience of “feeling pain” by e, and the class of systems capable
of having this experience by Syse, we may hence read Putnam’s Condition 2 as follows.
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Implication 2. Computational functionalism implies that there is at least one computa-
tion c∗ ∈ C such that, for all S ∈ Sys,

S ∈ Syse ⇒ c∗ ∈ C(S) .

In Putnam’s terms, being capable of realizing c∗ is being capable of experiencing pain.
Modulo details of sensory input referred to in Putnam’s Condition 4, we may say that
experiencing pain is realizing a computation c∗, or, in more simple terms yet, that the
experience of pain is c∗. Nothing hinges on these terminological shortcuts, though. Put-
nam’s conditions must hold as well for experiences other than pain, but may be realized
by different computations in each case.

11.4. Programs

We have denoted the class of computations that can be coded with any existing pro-
gramming language by Prog. We now define Sys0 to denote the class of systems that
can run such programs. Because programs are defined relative to Instruction Set Ar-
chitectures (ISA) of the underlying programming language, Sys0 is the class of systems
that can realize ISAs of existing programming languages. Denoting, as above, an ISA of
a program c ∈ Prog by cref, this class is defined as

Sys0 = {S ∈ Sys | cref ⊂ C(S) for at
least one c ∈ Prog} . (11.4)

The class Sys0 comprises all desktop and laptop computers, mobile devices, worksta-
tions, servers and supercomputers. It comprises anything that can run any Instruction
Set Architecture of any existing compiler or programming language. But it does not
comprise animals, or other organisms, that cannot be programmed—it does not contain
organisms which are incapable of operating non-trivial logic as required by ISAs, that is.
If any such animal or orgamism is conscious, the following assumption holds true.

Assumption 11.4.1. There is a system S ̸∈ Sys0 that is capable of conscious experience
e.

In what follows, we assume computational functionalism (viz. Implication 2) and As-
sumption 11.4.1. The following lemma shows that if this is the case, the computation c∗

is not among all programs.

Lemma 11.4.2. c∗ ̸∈ Prog.
Proof. Assume c∗ ∈ Prog and let S̃ denote the system in Assumption 11.4.1. Because
S̃ ̸∈ Sys0, it follows that c∗ref ̸⊂ C(S̃). But because S̃ ∈ Syse, Implication 2 implies that
c∗ ∈ C(S̃). This violates (11.2), so that c∗ cannot be immortal. But all programs are
immortal (cf. (11.3)). Hence we have arrived at a contradiction. It follows that c∗ ̸∈
Prog.
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11.5. Turing Computation

Next, we consider Turing computations. A computation is a Turing computation iff it
can be realized by (the abstract mathematical model of) a Turing machine.

Some (in fact, most) contemporary programming languages are Turing complete:
they can be used to simulate universal Turing machines, meaning that they can be used
to implement any Turing computation. For any Turing computation, one can write at
least one program that realizes this computation, and running this program instantiates
the Turing computation. This implies that

CTM ⊂ Prog . (11.5)

As a consequence, we have the following lemma, which shows that the computation
c∗ put forward by Computational Functioanlism is not a Turing computation.

Lemma 11.5.1. c∗ ̸∈ CTM .

Proof. Follows from Lemma 11.4.2 and (11.5).

11.6. Immortal Computation

The next lemma shows that consciousness is a mortal computation.

Lemma 11.6.1. c∗ ̸∈ CImm.

Proof. Lemma 11.5.1 states that c∗ ̸∈ CTM. Because of (11.1), we furthermore have
CImm ⊂ CTM. Therefore, it follows that c∗ ̸∈ CImm.

11.7. Conclusion

We have shown that computational functionalism implies that consciousness is a mor-
tal computation, and that consciousness cannot be a program or Turing computation.
We hope that this result contributes to the understanding of computational functional-
ism and its implications, including questions of AI consciousness, and that it highlights
mortal computation as a potential concept of interest with respect to question of the
mind.

Because all contemporary Artificial Intelligence (AI) is immortal computation, the res-
ults provide initial reason to believe that no current or near-future AI can be conscious.
Only artificial systems that employmortal computations can instantiate consciousness.
The results presented here do not, however, prove this to be the case. That is because
it might be the case that consciousness, despite being a mortal computation, can be
realized by immortal computations. Whether this is a viable option, and what precisely
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it means to realize or implement a mortal computation, depends on details of the no-
tion of mortal computation that are to be developed in future research. Because mortal
computation is not Turing computation, the possibility of such realization might bear
various difficulties, in case of which strong implications for synthetic phenomenology
would follow.
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This thesis has explored a variety of topics in consciousness science from amathemat-
ical perspective. The goal of this concluding chapter is to review the progress that has
beenmade, but not in the formof a synopsis of the individual projects that have been car-
ried out—such synopsis can be found in the last section of each chapter already. Rather,
this chapter attempts to paint a broader picture of the research that has happened in this
PhD. It seeks to explicate both the goals and long-term visions that underlie, or have
emerged from, this research.

In a sense, this chapter is an attempt to project existing results into the future. The
hope is that such a projection, even if blurry, might provide the reader with a much more
lively picture of the research that has begun in this PhD.

12.1. How do we Build Theories of Consciousness?

A first contribution of this PhD to consciousness science concerns the question of how
theories of consciousness can, or should, be constructed.

Consciousness science, in its present stage of development, comprises a large num-
ber of theories. There are at least 39 theories published in journals that relate to the
field (cf. Section 7.2.1), and likely many more in journals of different disciplines or un-
published at the present stage.

While some variation among theoriesmight be expected given the differentmetaphys-
ical assumptions and explanatory strategies that are employed (Signorelli, Szczotka, &
Prentner, 2021), the bulk of the variation, arguably, may be due to the fact that there are
no noteworthy constraints in proposing a theory of consciousness. Any hypothesis or
experimental finding can, once singled out from its context, be presented as a new the-
ory of consciousness. All that is required is the individuation of some property, mode,
mechanism or configuration among the subject matter of the natural sciences, as well
as some conjecture of how this property, mode, mechanism or configuration might re-
late to the conscious perception of a stimulus, the instantiation of a phenomenal prop-
erty, or the subject being conscious at all, cf. Section 7.2.

This situation may be due to the fact that consciousness science does not yet have
a thorough paradigm, in the sense of Kuhn (1962), for how to build a theory of con-
sciousness. The various theories that exist are, as far as the construction of theories of
consciousness is concerned, more akin to examples.1 They embed a huge amount of

1I am grateful to Tim Ludwig for discussions on this topic.
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very valuable insights, but a thorough paradigm that guides the construction of theories,
like Newtonian mechanics in physics, for example, is not yet available.

Much of the work on theories of consciousness in this PhD was aimed at gauging
the direction in which such a paradigm for the theory-building process might eventually
be found. Three lines of research are related to this question, which we review in what
follows.

12.1.1. The Role of Mathematics in Constructing Theories of Consciousness

A question that drove much of the research carried out in this PhD is the question of
which role mathematics can play in the theory-building process in consciousness sci-
ence. This includes questions like:

(a) What can mathematics add to the theory-building process in consciousness sci-
ence? Are there particular advantages when using mathematics to formulate the-
ories of consciousness? And if so, how do these advantages pan out in practice?

(b) Are there reasons for why itmight be necessary to usemathematics in formulating
theories of consciousness, under certain circumstances?

(c) How do we actually use mathematics to build theories of consciousness?

It is important to stress that the use of mathematical formalism in constructing theor-
ies of consciousness is not obviously a good idea. The largemajority of theories of con-
sciousness that exist today is not formulated in mathematical terms, and the science is
making good progress nevertheless. Any call for mathematization, either in general or
in specific cases, needs to introduce good reasons for why a mathematization should
be applied. Good reasons that justify not only the effort of applying the mathematiz-
ation, but which also take into account the further scientific progress of theories. The
exactness and devotion to detail involved in mathematical methods can easily inhibit a
progressive research programme.

The following answers to the above questions are a synopsis of various research pro-
jects carried out in this PhD. On the one hand, the research projects directed at uncov-
ering or reconstructing the mathematical structure of existing theories of conscious-
ness, including theories that are already using formalism, like Integrated Information
Theory (IIT) and Predictive Processing Theory (PP) with Active Inference, as presented
in Chapters 2, 3, and 4, but also non-formal theories, such asGlobal NeuronalWorkspace
Theory (GNWT) and Higher Order Thought Theories (HOTT).2 On the other hand, the re-
search projects that work on foundations of a structural turn, as presented in Chapters 7,
8 and 9.

A more faithful account of the target phenomenon. Perhaps the most important con-
tribution that mathematics can make to the theory-building process in consciousness
2The research on GNWT is in its final stages and has already been presented in the Mathematical Spaces

for Conscious Experiences symposium at ASSC26 in NY. The research on HOTT is in its early stages.
Both are unpublished at the present stage.
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science is the use of mathematical structures and mathematical spaces to represent
phenomenal character. This affords a more faithful representation of the target phe-
nomenon of consciousness science in theories of consciousness, where ‘faithful’ is
meant to indicate that the representation is true to the representandum: it resolves the
details that matter.3

The question of how to use mathematics to represent phenomenal character and
other aspects of conscious experience has taken up a large part of the research in this
PhD, spanning Chapters 7 to 9. For an introduction and high-level synopsis thereof, cf.
Sections 1.3 and 12.2.

What is important to note is that the introduction of mathematical spaces or struc-
tures requires one to use formal theories of consciousness: ‘structural theories’ of con-
sciousness that provide a hypothesis about how the subject matter of other natural sci-
ences (neuroscience, biology, etc.) relates to the structure of conscious experience.
The application of structures of conscious experiences in theories of consciousness
pulls the whole theory-building process into a new realm: the realm of mathematized
theories.

Flexibility and parsimony in explicating ideas, experimental results, or metaphysics.
A second advantage which mathematics might bring to the theory-building process in
consciousness science is the explication of ideas, experimental findings, or metaphys-
ics in constructing theories of consciousness.

The mathematical method is known for its dedication to detail, which does matter
substantially in many circumstances. But for theories of consciousness, at least in this
early stage of development of consciousness science, detail is not what matters most.
It is, arguably, more important to get the broad story right than to consider all possible
details.

The features of mathematics that are of advantage at the present stage of develop-
ment of consciousness science are, rather, flexibility and precision. Mathematics is flex-
ible because it allows one to define concepts precisely as intended, free of terms that
have several meanings or unintended connotations. And mathematics is precise be-
cause a mathematical definition requires one to spell out all details that matter. There
can be vagueness, but if so, its boundaries are precisely defined.

Because of flexibility and precision, mathematics enables one to explicate ideas, em-
pirical findings, or metaphysics in exactly the way one would like to state them, staying
true to what the idea, empirical finding or metaphysical assumption actually comprises.
This is, in many cases, a large advantage over non-formal language.

Mathematics in the natural sciences. A third reason for why mathematics might, at
least at some point of development, be the right language for formulating theories of
consciousness is thatmathematics is also the language used inmost theories of natural
science.

3For a formal definition of a faithful representation in mathematics, cf. (nLab, 2024a) and (nLab, 2024b).
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Theories of consciousness are hypothesis about how the subject matter of natural
sciences (usually simply called “the physical”) and consciousness relate. Therefore,
theories of consciousness need to refer to the subject matter of natural sciences in
some form.

At the present stage of development, this reference is usually made by use of names
(e.g. names of ROIs) or neuroanatomical orientations (e.g. prefrontal vs. posterior cor-
tex). But the parts of the brain that are referred to by these names or orientations are
distinguished in virtue of their structure, function, or processing. And it is at least likely
that a detailed account of such structure, function, or processing requires the use of
formal terms or formal models.

Movements in this direction are already taking place. Seth and Hohwy (2021)’s call
for replacing the search for ROI-based Neural Correlates of Consciousness by a search
“through the lens of [P]redictive [P]rocessing” (Seth & Hohwy, 2021, p. 1), and further
developments in this direction in Computational Phenomenology (cf. Section 12.3), are
examples of research programs that engage with mathematical models of the brain in
virtue of their success in neuroscience.

The first two pointsmentioned above–amore faithful account of phenomenal charac-
ter, and the opportunity afforded by flexibility and parsimony in explicating ideas or ex-
perimental results—constitute advantages that mathematics might bring to the theory-
building process in consciousness science (question (a) above). The use of mathem-
atics in the natural sciences might constitute a reason of why the use of mathematics
might be necessary at some point of development of consciousness science (ques-
tion (b) above).

There are further advantages that mathematicsmight afford, which deservemention-
ing. They are, however, a bit more speculative, and perhaps of a more specific relevance
in practice. But they constitute important ideas nevertheless.

Universality. A first advantage is tied to a desideratum for theories of consciousness
which has recently been proposed by Kanai and Fujisawa (2024): that theories should be
formulated in such a way that they can “determine whether a given dynamical system
is conscious, irrespective of its origin or composition (e.g. whether it is a biological
brain, hurricane or computer)” (Kanai & Fujisawa, 2024). This desideratum is called
universality.

While very plausible at first look, the desideratum is not uncontested. Researchers in
consciousness science whose work is more aligned with methods and theories of cog-
nitive science argue that theories in cognitive science are not universal in this sense.
These theories explain phenomena, but target only the brain. Research on the various
forms of memory, say, is not required to produce theories that also hold true for AI sys-
tems. So why should a theory of consciousness?

This is certainly a fair point. For all we know, consciousness could be instantiated
only in biological systems. And if it is instantiated in artificial systems, perhaps in an
entirely different way.
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On the other hand, one could argue that most theories of consciousness intend to
say something that is true of consciousness per se, not just consciousness of systems
in the scope of neuroscience. These theories seem to want to provide a universal un-
derstanding. The same holds true for views that take consciousness to be a natural
kind.

Independently of whether one endorses the desideratum or not, it is arguably the case
that the desideratum can only be met by theories of consciousness which are formu-
lated in mathematical terms. This is the case because, if any language is capable of
being applied to the vast range of systems that the desideratum requires, it is the lan-
guage of mathematics. Any adequate description of Large Language Models (LLMs),
for example, is a description in terms of mathematics: LLMs are defined in terms of
formal models explicated in computer code. And hurricanes afford formal models as
well. Hence any universal theory of consciousness will likely have to be a mathematical
theory of consciousness.

Unification. Mathematics could, arguably, be required to unify the different theories of
consciousness that exist to date.

Awonderful example of this is themodel of consciousness developed byM. Blum and
Blum (2021), called Conscious TuringMachine (CTM). This is amodel of consciousness,
where ‘model’ is understood in the sense of computer science, which is different from
the notion of ‘model’ in neuroscience and other natural sciences. The CTM is meant
to fulfil the same role in consciousness science that Turing’s model of computation or
Shannon’s modelling of information fulfilled in computer science. A big part of the work
that flows into the definition and exposition of thismodel rests on incorporating the core
formal ideas of other theories of consciousness in that model, ranging from GNWT and
IIT to theories about the evolutionary origin of consciousness, for example the proposals
by Humphrey (2023).

Transcending Language. Another opportunity ofmathematical approaches in building
theories of consciousness that should arguably be mentioned is that they can help to
overcome the confines of non-formal language. Mathematics might allow to construct
theories of consciousness that rely on concepts which cannot properly be expressed in
non-formal language, not because of the practical limitations of non-formal language,
but because of the logical context in which non-formal language is embedded.

This idea is often important in the context of investigations that aim at formulating
theories of consciousness based on Buddhist, Hinduist, or other idealist assumptions,
because important concepts in these metaphysical frameworks are expressed as what
looks, from a classical logic perspective, like contradictions, but nevertheless contain
substantive points.

Because mathematical formalism is not necessarily tied to classical logic, or other
presumptions and categories of a mind selected for in natural evolution, mathematics
offers a natural and arguably unique starting point to construct theories of conscious-
ness that embed, rely on, or are inspired by concepts that transcend non-formal lan-
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guage. Mathematics, in a sense, allows one to “climb out of” the edifice erected by
natural selection. Next to precision and flexibility, this may be a main reason behind the
success of mathematics in foundations of physics and related disciplines.

This concludes a very initial assessment of howmathematics might be of help—or, in
some cases, even necessary—in constructing theories of consciousness.

Regarding question (c) above—of how to go about building mathematical theories
of consciousness—, the present results suggest only one important answer: there is
no one-fits-all solution. Mathematical theories of consciousness are of the same type
as non-formal theories of consciousness: they express hypotheses of how the subject
matter of the natural sciences relates to conscious experience. The difference lies only
in the language that is used to represent the subject matter of the natural sciences,
conscious experiences, and the relation that holds between them. But this difference
in language does not reduce options. On the contrary, it allows for more freedom in
formulating theories of consciousness. Which formulation is appropriate depends on
the metaphysics, idea, or empirical finding that motivates the theory. The actual work
of explicating this idea will have to be done in each case separately. Making use of the
methodological opportunities reviewed above in concrete cases remains challenging
and requires as innovative research as always.

It goes without saying that the mathematical effort is complementary to, and not in
competitionwith, non-formal approaches in consciousness science. Mathematical con-
sciousness science extends and amends non-formal approaches, in the very same way
as theoretical and mathematical physics extend and amend experimental physics (cf.
Chapter 1). The hope is that a combination of formal and non-formal approaches can
ultimately lead to a paradigm in constructing theories akin to the powerful paradigms
available in other natural sciences.

12.1.2. Constraints for Theory-Building

A second line of research in this PhD that turned out to be intimately connected to the
question of how to build theories of consciousness emerged from modelling experi-
ments in consciousness science. This research led to the identification of a constraint
for theories of consciousness, meaning: a condition that has to be satisfied. The con-
dition is a constraint because, as we now explain, theories which violate the condition
cannot actually be empirically investigated. Violation of the condition by IIT and other
contemporary theories of consciousness is precisely what implies that these theories
are “wrong or (...) outside the realm of science” (Doerig et al., 2019).

12.1.2.1. Constraint

The upshot of Chapters 5 and 6 is that this constraint consists in the following require-
ment:

A theory of consciousness must explain
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why measures measure what they measure.

Here, ‘measures’ refers to measures of consciousness, or C-tests,4 both of which are
tools to infer information about whether a system is conscious, or what it is conscious
of. ‘Explain’ is a shorthand for the requirement that a theory of consciousness must
afford an explanation. The requirement is that a theory must explain why measures of
consciousness work as intended, if the theory is true, at least for those measures that
are used to test the theory’s predictions.

Virtually all theories of consciousness that have been proposed to date fail to sat-
isfy this requirement, for one of two reasons. Those theories that offer a specific and
well-defined hypothesis about how conscious experience relates to the brain, such as
the formal part of IIT, mostly fail because they do not model how subjective report, or
other behaviour that measures and C-tests rely on, comes to reflect the content of ex-
perience as inferred by the respective measures and C-tests. For example, the specific
hypotheses they propose do not contain a concrete explanation of why or how subjects
can report on their experience. There is no explanation of how, when a subject reports
on their experience, that report can depend on the content of experience according to
the theory.

The theories that, on the other hand, operate with a less specific hypothesis about
how conscious experience relates to the brain (as is the case, for example, for GNWT,
which does not specify the necessary or sufficient conditions for something to count
as a global workspace), fail for another reason. While the broader picture they propose
often includes a sketch of a mechanism that might explain why report or other behavi-
oural indicators come to reflect the content of consciousness, the explanations are too
general to afford of an explanation of why measures measure what they measure.

As a result, in both cases, there is a theoretical possibility to vary the part of the brain
that is responsible for conscious experiences, according to the theories, without chan-
ging the report. Such variations are called substitutions in (Kleiner &Hoel, 2021), presen-
ted in Chapter 5. In the case of IIT, one can, in theory, substitute a part of the system
with an unfolded system, so as to change the experience while keeping the report con-
stant. In the case of GNWT, to give another example, one can substitute the part that
constitutes the workspace by a simple lookup-table system. In both cases, the exper-
ience changes, but not the behaviour. As explained in detail in Chapter 5, this leads to
the problems that Doerig et al. (2019) have first spotted for IIT-like theories.

As we will see in the next section, resolving this constraint means breaking with some
assumptions that are deeply embedded in consciousness science at the present stage
of its development. This results in challenges for the field, most notably for theory-
building, but also yields novel opportunities, in both theoretical and experimental re-
search.

4The notion of C-test, proposed in (Bayne et al., 2024), was not available at the time when (Kleiner & Hoel,
2021) and (Kleiner & Hartmann, 2023) were written. But all analyses provided in Chapters 5 and 6 apply
to both C-tests and measures. That is the case because C-tests have the exact same formal structure
as measures; both are methodologies to infer states of consciousness from experimental data. The
difference is which data is considered, and what the states of consciousness that are inferred describe.
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Before discussing these implications, it should be noted that this is only a first con-
straint that has been discovered. It is very likely that there are more constraints on how
to build theories of consciousness, which are not known at the present stage. Further
research into measures and C-tests, perhaps in the form of a measurement theory for
consciousness science (cf. Section 12.4), and consciousness’ unique epistemic context
is required.

12.1.2.2. Resolution

Resolving the constraint explained in the last section requires detailed analyses of indi-
vidual theories of consciousness. Because every theory has its own proposal for how
consciousness relates to the brain, it also needs its own explanation, perhaps in the
form of a mechanism, of how the content of consciousness comes to determine report
in just the right way. To provide an explanation that features enough details to preclude
the substitutions explained in the last section is likely no easy feat; a general recipe is
probably not available.

There is, however, a minimal condition that all theories have to meet, and which can
serve as a starting point for investigations into how individual theories of conscious-
ness could address the constraint. This minimal condition has first been identified in
Chapter 6, in the context of the study of epistemic implications of a particular meta-
physical assumption, and was refined in Chapter 10, so as to present it in a form that
underlines its complete metaphysical neutrality. It is now called dynamical relevance.

The definition of dynamical relevance, whichwewill reviewmomentarily, makes use of
the fact that scientific theories of consciousness are built on top of the knowledge and
insights of natural science: theories of consciousness make use of models or theories
from natural sciences to express their hypotheses of what consciousness is and how it
relates to the subject matter of the natural sciences. The model or theory from natural
science that a theory of consciousness T is built on, or makes use of, can be called T ’s
reference theory.

Dynamical relevance, then, in simple terms, is the requirement that a theory of con-
sciousness posit that consciousness makes some difference (= is relevant) to the time
evolution of the states of its reference theory. The time evolution of the states of a
theory is sometimes called a theory’s dynamics, hence the name dynamical relevance.
Cf. Section 10.1 and Definition 10.2.1 for a more careful exposition and definition of this
notion.

Dynamical relevance is a minimal condition. Any account of how a system’s reports
or behavioural indicators, as described by the reference theory, come to depend on con-
sciousness as posited by the theory of consciousness, is an account of how conscious-
ness is relevant for the system’s dynamics as described by the reference theory. It is
important to note that this condition is not in conflict with physicalism, but rather rests
on the fact that reference theories—models of the brain, for example—express a particu-
lar state of knowledge in the sciences, which the theory of consciousness amends. Dy-
namical relevance could be cashed out in terms of a causal influence, but if so, between
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consciousness as a physical phenomenon and the brain as a physical phenomenon.
All that is required is that consciousness get a proper role in the cognitive architecture
instantiated by the brain, as far as reports and other behavioural indicators of conscious-
ness are concerned.

12.1.2.3. Implications

Because dynamical relevance is aminimal condition thatmust bemet in order to resolve
the constraint explained in Section 12.1.2.1, it can serve as a basis to analyse which
implications the constraint has for consciousness science at large.

At the very least, the constraint requires a fundamental change in theoretical thinking
in the context of theories of consciousness. In addition to the “from brain to conscious-
ness” direction, it requires us to engage in the “from consciousness to brain” direction
as well, so as to specify which difference consciousness makes in our understanding
of brain function.

But it would be wrong to think that these implications merely affect theories. Rather,
what the constraint, and the analysis in Chapter 5 show, is that we need to step away
from conceiving theories and measures as independent from each other. Rather, we
must develop a coherent perspective on testing theories of consciousness, in which
both the theory’s prediction and the measure’s function are considered together. Both
are part of understanding, and deriving, predictions in consciousness science, and they
cannot be separated. We need a comprehensive perspective of testing theories, which
manages the “delicate navigation (...) between Scylla and Charybdis” (Kleiner & Hoel,
2021) in this context.

12.1.3. Structural Theories of Consciousness

A third contribution of this PhD thesis to the question of how to build theories of con-
sciousness concerns the use of mathematical structure and mathematical spaces in
theories of consciousness.

One important advantage of using structure and spaces for building theories of con-
sciousness has already been mentioned in Section 12.1.1: structures and spaces en-
able theories of consciousness to represent phenomenal character more faithfully. This
might constitute a desideratum for theories of consciousness in its own right, but the
use of structure also has practical—and quantifiable—consequences that are of inde-
pendent interest: a larger explanatory scope and an increase, everything else being
equal, in predictive power.

Structural theories of consciousness have a larger explanatory scope than their non-
structural counterparts, because structures and spaces represent phenomenal charac-
ter more comprehensively than non-structural approaches can do. They represent the
various qualities or phenomenal properties that are instantiated in single experiences,
but they also represent phenomenal relations that hold between them. Furthermore,
structures and spaces can represent more features and more details of phenomenal
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character than would otherwise be possible. As a consequence, structural theories can
explain more of phenomenal character than their non-structural counterparts are cap-
able of.

Structural theories of consciousness have, everything else being equal, a larger pre-
dictive power than their non-structural counterparts, because a structural theory of con-
sciousness constitutes amuchmore detailed and rigorous hypothesis of howconscious
experience relates to the brain.

Consider, for example, Global Neuronal Workspace Theory (GNWT). GNWT does not,
in its current formulation, offer an account of how phenomenal character is determined,
it only explains how signals from parallel processors enter consciousness. But a prom-
ising idea about the relation between GNWT and phenomenal character—that it is the
content of the workspace that determines phenomenal character in full—is available in
the field. Structural tools allow to turn this idea into a scientific hypothesis, which results
in a range of additional predictions that could, in principle, be tested.

The exploration of structural tools for building theories of consciousness has just be-
gun. A big part of this PhD, presented in Chapters 7 to 9, was devoted to providing a solid
foundation for the use of structure and spaces in scientific theories of consciousness.

12.2. Promises and Foundations of a Structural Turn

Over the previous years, consciousness science has seen a steep increase in the use of
mathematical structures and mathematical spaces to describe or represent conscious-
ness. These developmentsmight constitute early signs of a structural turn in conscious-
ness science, in which mathematical spaces and structures are used, in conjunction
with the tools that are available already, to improve theories, experiments, measures
and concepts.

Much of thework carried out in this PhDwas directed at understanding the foundation
of structural research, and the opportunities a structural turn might afford. The upshot
is that structural approaches have a huge potential in consciousness science. If imple-
mented in the right way, they will lead to better theories, better experiments, and better
concepts. They carry a promise to vastly extend the range and scope of consciousness
science, and might offer a new perspective on many questions currently studied in the
field.

In what follows, we explain some of the more palpable promises of a structural turn.
Needless to say, these promises can only be realised by community efforts, spanning
researchers across different fields and research programmes.

12.2.1. Structural Theories

A first big impact that structural approaches can have on consciousness science con-
cerns theories of consciousness, specifically the use of mathematical structures or
spaces to represent conscious experience and phenomenal character in theories of con-
sciousness, as mentioned already in Section 12.1.1.
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Such ‘structural theories’ are not different in kind from binary theories of conscious-
ness. Structural approaches do not constrain themetaphysical or conceptual content of
theories. They too are hypotheses about how consciousness and the subject matter of
the natural sciences relate. The difference between structural and non-structural theor-
ies is that the former employ a different way to handle, describe or represent conscious
experience, based on mathematical spaces and mathematical structure.

We have already touched on the advantages that structural theories might bring to
consciousness science in Section 12.1.3: structural theories are more explanatory; and
structural theories are more predictive, cf. Chapter 7.

Further work is necessary to realise these advantages. At the present stage of de-
velopment, only three structural theories are available: Integrated Information Theory
(Oizumi et al., 2014), some Higher Order Thought Theories (Brown, in press) and Ex-
pected Float Entropy Theory (Mason, 2013). But while all of these theories employ or
account for some structure to represent phenomenal character, they do not yet account
for the actual structure as found in psychophysical approaches and mathematical phe-
nomenology. Only when they do this will some of the advantages start to realise.

What this PhD contributes to this promising strand of developments is work on the
foundations of what it means to represent or describe phenomenal character in terms of
mathematical structure in Chapter 8 and 9, as well as a critical assessment of some of
the ideas that have started to emerge on how to build structural theories of conscious-
ness in Chapter 7.

12.2.2. Structural Experiments

A second huge promise of a structural turn in consciousness science concerns experi-
ments. Making use of structure to describe or represent conscious experience is likely
to change measurement in consciousness science.

A case in point is the measurement of Neural Correlates of Consciousness (NCCs).
As shown by (Fink et al., 2021), if certain assumptions about structure hold true, most
notably (a) structuralism—the idea that the structure of conscious experiences fully de-
termine all non-structural experiential facts, including which phenomenal properties are
instantiated in an experience—, and (b) that there is an isomorphism between the phys-
ical structure of the brain and the phenomenal structure of experience, a whole new
paradigm to search for the NCCs can be provided. This paradigm might not rely on re-
ports in near-threshold contrast conditions (Baars, 1986).

Unfortunately, as shown in Chapter 7, the assumptions presumed in (Fink et al., 2021)
are not justified as general conditions on which an NCC research programme can rely.
Most notably, the assumption of an isomorphismbetween the physical and phenomenal
domains, or of a structure-preserving mapping more generally, does not serve the pur-
pose it is required to serve in this context. Therefore, the research programme outlined
in (Fink et al., 2021) can only be understood as a research programme that presumes a
specific class of structural theories of consciousness; this class is to all structural theor-
ies of consciousness what the class of identity theories is to all non-structural theories
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of consciousness.
In spite of these constraints, the general point that Fink et al. (2021) are in essence

making—that structural approaches might afford a whole new class of measurement
schemes for NCCs, and perhaps also for other measurements in consciousness sci-
ence, one might add (cf. Section 12.4), holds true. The identification of technical dif-
ficulties of this first proposals is a sign of good progress, and might lead to ways of
overcoming them. The future of NCC research, and measurement of consciousness in
general, might well lie in methodologies that combine structural tools with novel exper-
imental or philosophical ideas.

12.2.3. Structural Concepts

The most exciting promise of a structural turn in consciousness science, which (of
course) is also the one which is most difficult to assess at the present time, might argu-
ably be the creation of new methodologies for consciousness science, where the term
‘methodology’ is used in the general sense of a “body of methods used in a particular
field of study or activity” (Oxford English Dictionary, 1989). This includes theories of con-
sciousness and novel experimental tools, as discussed in the previous two sections, but
may also go beyond them.

Structural approaches may offer entirely new avenues for conceptual engineering.
This could be the case, for example, in the context of mathematical phenomenology
(cf. Section 12.3), where structural approaches could afford entirely new ways of rep-
resenting, describing and thinking about aspects of phenomenology. Perhaps math-
ematical structural approaches can address those aspects of phenomenal experience
that are difficult to express in common language, for example nondual awareness or
nonegoic reflexivity (Metzinger, 2024), to name just two. And it could be the case in
psychophysics, where structural approaches could afford entirely new ways of repres-
enting and measuring structural phenomenal properties, new ways which are grounded
in the mathematical structure of said properties.

These opportunities are particularly interesting from an illusionist or discourse elim-
inativist perspective (Frankish & Sklutová, 2022; Irvine & Sprevak, 2020), both of which
hold that existing concepts that address the target phenomenon of consciousness are
misleading, and should either be discarded or regarded as illusory. However, they do not
aim to discard the field of consciousness science entirely, but rather propose alternative
concepts. “The positive part of a discourse eliminativist’s argument aims to show that
an alternative way of talking, thinking, and acting is available” (Irvine & Sprevak, 2020).

Structural concepts might offer such an alternative way of talking, thinking, and act-
ing. This is the case because structural concepts can be grounded directly in empirical
data, much like is the case in the monumental foundational measurement theory of
Krantz et al. (1971). Because of this, structural methodologies could provide a found-
ation to develop concepts and methods that overcome what appears to be—from the
perspective of these views—ill-founded conceptual foundations.

The methodology for structural representations of conscious experience developed
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in Chapters 8 and 9 of this PhD thesis offers a starting point for exploring these oppor-
tunities in more detail.

12.3. Mathematical Phenomenology & Computational
Phenomenology

The term ‘phenomenology’ denotes various concepts in consciousness science. It is
sometimes used to denote the object of investigation in consciousness science, viz.
what is also denoted by terms like ‘conscious experiences’ or referred to by locutions
like “what it is like” (Farrell, 1950; Nagel, 1974). But it also denotes away of engagingwith
consciousness scientifically and philosophically. Phenomenology in this latter sense
refers to a discipline (and movement) in philosophy that contributes to consciousness
science, but also has goals that transcend it. It is usually taken to be grounded in the
works of Edmund Husserl, Martin Heidegger, Jean-Paul Satre, and Maurice Merleau-
Ponty, among others.

Phenomenology has important insights, and importantmethodologies to offer to con-
sciousness science. In contrast to conceptions of consciousness that are prominent in
other disciplines and other parts of philosophy, phenomenology emphasises the lived
character of experience, how experience constitutes itself, and structural aspects of a
more dynamical nature. All of these are part of the object of investigation of conscious-
ness science, and a full scientific understanding of consciousness will have to include
these aspects as well.

12.3.1. Mathematical Phenomenology

Mathematical phenomenology, also called mathematized phenomenology, aims to ap-
ply mathematical concepts and techniques in phenomenological investigations, most
notably in the form of mathematical presentations of the results of such investiga-
tions. Mathematical phenomenology has been pioneered by Petitot (1999) and Yoshimi
(2007). Important recent work has been carried out by Prentner (2019, 2024b), who uses
mathematical tools related to pre-topologies to provide a mereological account of the
unity of consciousness, intentionality, the self-world distinction, and time.

The research carried out in this PhD does not contain a project devoted to math-
ematical phenomenology, but mathematical phenomenology is both a future outlook
and important background for research carried out here: the research on mathematical
structures of conscious experience, presented in Chapter 8 is aimed at mathematical
phenomenology as much as it is aimed at psychophysical spaces. It offers a definition
andmethodology for how to usemathematics to represent or describe conscious exper-
ience, which is based on variations. These variations can result from the variations of
stimuli that are presented to a subject, as in the case of psychophysical spaces, but they
can also result from imagined variations in the very sense of Husserl’s eidetic variations
(Husserl, 1939; De Santis, 2011).
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Because the definition and methodology can be applied to both variations of stim-
uli and eidetic variations, the research presented in Chapter 8 offers the possibility of
connecting psychophysics with phenomenology. It offers the hope of unifying quality
spaces as constructed “in the lab” in psychophysical measurements with mathematical
representations of phenomenology as constructed in phenomenological studies. This
might lead to a more comprehensive and thorough representation of conscious experi-
ences in terms of mathematical structure, and offers a hope of cross-inspiration of the
two fields.

Whether or not these hopes realise in practise is a matter of future study. Only prepar-
atory work has been undertaken in this PhD. But it is inspiring to think that mathematics
might be the key to arrive at a more unified and integrated agenda in consciousness
science, which transcends the mutual criticisms of methodologies that exist at the mo-
ment.

12.3.2. Computational Phenomenology

A particularly interesting development in the context of mathematical approaches to
the mind is computational phenomenology. Computational phenomenology, in its ori-
ginal conception, is the modelling of phenomenology in terms of computational tools
from computer science (Harlan, 1984). More recently, the term has been used to denote
the modelling of phenomenology in terms of the computational framework provided by
Predictive Processing Theory and its Active Inference doctrine (Ramstead et al., 2022).

Becausemodels of computation aremathematicalmodels, computational phenomen-
ology can be seen as a part of mathematical phenomenology. And much like mathem-
atical phenomenology in general, computational phenomenology in particular requires
a solid foundation of how to represent phenomenology in mathematical terms. Founda-
tional work onwhat itmeans to represent phenomenologymathematically is also found-
ational work of what it means to represent phenomenology computationally.

In light of this connection betweenmathematical phenomenology and computational
phenomenology, computational phenomenology presents an interesting future applica-
tion of some of thework onmathematical structures of conscious experience presented
in Chapters 7 to 9.

Another noteworthy relation between the work carried out in this PhD and compu-
tational phenomenology is research on the mathematical structure of Predictive Pro-
cessing Theory (PP) and Active Inference, presented in Chapter 4. This chapter provides
an account of the mathematical structure of PP and Active Inference models in the
mathematical language called category theory. This is not simply a reformulation of the
formulae in which the theory is usually defined, but an account of which mathematical
structure lies behind these formulae.

The hope behind the research in Chapter 4 was that the mathematical account of PP
andActive Inference can be helpful in understanding how the theory relates to conscious
experience. This hope carries over to recent developments in computational phenomen-
ology.
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12.4. What is Measurement in Consciousness Science?

Contrary to public conception, consciousness can be measured. There are several so-
called measures of consciousness that can be used to measure whether a stimulus has
been perceived consciously in experimental trials, cf. e.g. (Seth, Dienes, Cleeremans,
Overgaard, & Pessoa, 2008). And there are empirical tests that can be applied to hu-
mans and some non-human animals to investigate whether they are capable of having
conscious experiences, or not, now called C-tests (Bayne et al., 2024). Cf. Section 1.2
for an introduction to both.

What there isn’t, at present, however, is a substantive theory of measurement (also
called measurement theory) for consciousness science that provides a foundation for
measurements of the various forms.

Measurement theories are an important part of those scienceswheremeasurement is
not straightforward. Consider, as an example, the case of psychology. In the first part of
the 20th century, the question of whether there is measurement at all in psychology has
been heavily debated, somuch so that in 1932 a committee of the British Association for
the Advancement of Science was appointed “to decide whether or not there was such
a thing as measurement in psychology” (Borsboom, 2005), cf. (Ferguson et al., 1940).
The committee’s report was highly divided, with amajority of members around the phys-
icist Norman Campbell strongly rejecting claims about the possibility of measurement
in psychology.

In response to this rejection by part of the committee, psychologists started to de-
velop theories of measurement that are targeted specifically at psychological experi-
ments, first in the form of scales by Stevens (1946) and then in the form of axiomatic
theories of measurement (Cliff, 1992), the most well-known of which is foundational
measurement theory (Krantz et al., 1971), also called representationalmeasurement the-
ory. These developments were pivotal to the progress of psychology in the 20th century
(Michell, 1999; Borsboom, 2005), and still form the basis of much of the empirical work
that is being carried out.

Another example ofwhere a theory ofmeasurementwas crucial for understanding the
intricacies of measurement is quantum theory in physics. Quantum theory comprises
a comprehensive account of measurement, where complicated measurement apparati,
thatmight fill awhole room in a lab, are represented by comparably simplemathematical
objects: self-adjoint operators onHilbert spaces,5 which in finite-dimensional cases, and
given a choice of basis, can be thought of asmatrices over complex numbers. Based on
thesemathematical representations ofmeasurement devices, quantum theory provides
an account of how measurement interfaces with the time evolution of a system, which
includes an account of possible results of themeasurement procedure, as well as an ac-
count of how the measurement procedure changes or modifies the state of the system.
While this account of measurement is also the source of the notorious measurement
problem of quantum theory (cf. e.g. (Myrvold, 2022)), it is hard to imagine which pro-

5In present-day quantum information, measurements are represented by the more general concept of
quantum instruments, developed by Ozawa (1984).
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gress could have been possible without the introduction of this part of the theory by von
Neumann (1932).

Given consciousness’ unique epistemic context, it is likely that a theory of measure-
ment will be as consequential for consciousness science as it has been for psychology
and quantum physics. Building on these examples, a preliminary list of desiderata for a
measurement theory of consciousness science could comprise the following elements:

(a) An abstract representation of measurement. Both psychology and physics, des-
pite being different in many respects, rest on abstract (and, in fact, mathematical)
representations of measurement procedures. Correspondingly, a measurement
theory for consciousness science will likely have to comprise abstract represent-
ations of measurements in consciousness science. Such representations should
be both descriptive (in the sense that they are built on and represent the actual em-
pirical measurements that are carried out) and normative (in the sense that they
guide the development of novel forms of measurement).

(b) What constitutes a measurement, and what not? The abstract representations
of measurement should account for what measurement of consciousness is, and
delineate betweenwhat counts asmeasurement, andwhat does not. For example,
does simple verbal report constitute a measurement? And how far can no-report
paradigms be pushed while still constituting measures of consciousness?

(c) Which aspects of consciousness are measurable, and which not? A theory of
measurement for consciousness science should provide conditions that have to
be in place for some aspect (or property, mode, part, etc.) of conscious experience
to be subjected to measurement.

(d) How does measurement integrate with theories of consciousness? A theory of
measurement should furthermore account for how measurement integrates with
theories or models of consciousness. In fact, lack of such integration is precisely
what plagues the theory-building process in consciousness at the present stage
of development, cf. Section 12.1.2.

(e) Which conditions make measurement possible? The abstract representations
of measurement should, ideally, also provide conditions that make measurement
possible. This is the case, for example, for representational measurement the-
ory in psychology, which relates measurement of a qualitative structure to repres-
entation and uniqueness theorems regarding quantitative representations of that
structure.

Because measurement theory in both psychology and physics is based on a math-
ematical representation of the measurement process, it is at least prima facie possible
that mathematicsmight offer the right tools to construct ameasurement theory for con-
sciousness science as well. Whether or not this is possible, or fruitful, remains an open
question, and scepticism is fully warranted. But in light of the importance (and, in some
cases, necessity) of mathematical theories of measurement in other sciences, the pos-
sibility seems worth exploring.
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Within this PhD, some progress has beenmade in regard to such exploration of points
(a) and (d), albeit in unsystematic form. Regarding (a), a first mathematical representa-
tion of measures of consciousness, which also applies to C-Tests, has been developed
inChapter 5. This representation has subsequently been applied to investigate problems
and necessary conditions of the integration of measures of consciousness in theories
of consciousness as required by (d), cf. Section 12.1.2 for a summary. Furthermore, the
work on foundations of structural methodologies in Chapters 7, 8, and 9, might contrib-
ute to exploring (c) when combined with ideas from axiomatic measurement theory.

It is needless to say that these results constitute only very initial steps, and a further
exploration of all of the above-mentioned questions is urgently needed. The hallmark of
a successful measurement theory, the allocation of new measurement procedures to a
field, as for example the case with additive conjoint measurement (Luce & Tukey, 1964)
in psychology, is still nowhere in sight.

12.5. No-Go Theorems in Consciousness Science

An important methodological tool in physics are so-called no-go theorems. These are
theorems, in the mathematical sense of the term, that establish a conclusion about a
subject matter of interest based on mathematical assumptions and a proof. The con-
clusion usually establishes that something is impossible, hence the ‘no-go’ in the name.
A well-known example in physics is John Bell’s proof that local realism—roughly, in this
context, the idea of aworld composedof localised elementswith definite states—cannot
be true if quantum theory is true (Bell, 1964).

The idea that no-go theorems might be useful in consciousness science goes back
to Ryota Kanai. Inspired by this idea, some of the research in this PhD made use of the
methodology of no-go theorems, explicitly in Chapters 10 and 11, but implicitly also in
Chapter 5.

Fundamentally, the idea behind research based on no-go theorems in consciousness
science is the very same as in physics: to make use of assumptions that are mostly
uncontested, so as to derive, with mathematical rigour, a proof of a statement which “is
a bombshell—hardly anyone would have guessed” (Edgington in response to (D. Lewis,
1976), quoted in (Leitgeb, 2013)), ideally speaking.

In the case of Chapter 10, for example, the assumptions concern general details re-
lated to the design and manufacturing of the chips on which contemporary AI systems
run (CPUs, GPUs, etc.), as well as the assumption that consciousness is dynamically rel-
evant. The somewhat unintuitive result that the no-go theorem establishes is that con-
temporary AI systems cannot be conscious. In Chapter 5, to give another example, the
assumptions concern the general mathematical form of contemporary neuroscientific
theories of consciousness, as well as the relation between theories of consciousness
and measures of consciousness. The somewhat unintuitive result that follows is that
theories of consciousness can always be falsified, cf. Section 12.1.2.

Formal theorems are of course well-known in philosophy under the banner of math-
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ematical philosophy, cf. Section 12.7, and the application of formal methods and formal
theorems carries asmuch potential for consciousness science as it does for philosophy.
Most notably,

“it forces us to put our cards on the table, that is, to make tacit presuppos-
itions explicit; it helps us to separate the essential from the accidental by
making transparent what exactly is needed tomake an argument go through;
where two areas of philosophy share enoughmathematical structure, it may
allow us to translate arguments in the one area into arguments in the other; it
functions as ameans bywhichwe can put some of our “intuitions” to the test
and correct our epistemic biases (...); it facilitates the illustration of abstract
circumstances by means of diagram (...), it forges unexpected connections
from philosophy to those scientific areas in which mathematical methods
are accepted as a standard anyway” (Leitgeb, 2013, p. 274); and it allows for
the whole suite of automated deduction to be applied to a field.6

In the case of no-go theorems, in addition to establishing a particular conclusion, no-
go theorems also serve a second purpose in scientific methodology, a purpose which
is somewhat implicit in physics but which should be made explicit in consciousness
science: they shift attention and resources from the subject matter addressed in the
conclusion of the theorem to the subject matter addressed by the assumptions. The
hope in using no-go theorems in consciousness science, therefore, is also to shift at-
tention, and potentially resources, to the assumptions that feed into a theorem.

A major conclusion of Chapter 10, for example, is that more attention needs to be
placed on studying the substrate on which AI systems run. A major conclusion of Chap-
ter 11 is that more research is needed to understand the novel concept of computation
that is emerging at the present time; and the conclusion of Chapter 5 is that the present
paradigm of formulating and testing theories of consciousness needs revision, cf. Sec-
tions 12.1.2.

Mathematical methods and formal theorems have been very useful in philosophy, and
no-go theorems havemade a large impact to the development in physics. It is likely that
they can also play a noteworthy role in making progress in consciousness science, and
it would be nice to see further explorations of this opportunity.

12.6. Artificial Consciousness

Investigations of the potential of Artificial Intelligence (AI) to exhibit conscious experi-
ences, and of the nature of those experiences where they are indeed possible, are start-
ing to become a key area of research in consciousness science. The list of questions
that this area of research will have to answer is long. It comprises, for example, the

6I would like to thank Stephan Hartmann for pointing me to the latter.
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following questions:7

1. Are AI systems conscious? – Or to be more precise, which AI systems are con-
scious? This is the question of whether AI systems can have conscious experi-
ences at all, independently of what the experiences are.

2. Are there tests for whether AI systems are conscious? – This is the question of
whether there are operational procedures that can be applied to AI systems so as
to infer whether they are capable of having conscious experiences. As of late, such
procedures have come to be called C-tests (Bayne et al., 2024). Simple examples,
like direct interpretation of what Large Language Models (LLMs) state about their
own experiences, are not suitable for rigorous tests, simply because LLMs are
trained on huge amounts of data that include analyses of and statements about
consciousness, so that a suitable prompt, given the appropriate fine-tuning, can
lead to corresponding reports independently of whether LLMs are conscious or
not. Other tests will have to be found.

3. Are there theoreticalmeans to assesswhetherAI systemsare conscious? –Here,
‘theoretical’ includes both scientific and philosophical methods. A particularly im-
portant question in this class is:

4. Can scientific theories of consciousness, or models of consciousness, provide
reliable assessments of consciousness in AI systems? – The emphasis here is
on ‘reliable’. Theories of consciousness are hypotheses about how conscious ex-
perience and the subject matter of the sciences relate. The question is whether
a theory of consciousness that targets the subject matter of the brain sciences
can also be applied rigorously to AI systems. Are the theoretical constructs, and
the empirical evidence, rigorous and detailed enough to warrant the application of
theories of consciousness to AI systems?

5. Which conscious experiences do AI systems have, when conscious? – This is
the question of the phenomenal character of the conscious experiences of AI
systems—the question of what it is like to be an AI system in a particular state.
Are the conscious experiences of AI systems anything like human conscious ex-
periences? If so, what are the differences? If not, is there anything that can be said
about AI’s experiences? This includes, in particular, the following question:

6. Can AI systems feel pain? – Or do they otherwise suffer? This is an important
ethical question, without resolution of which there is a potential for humanity to
create a tremendous amount of suffering, cf. (Metzinger, 2021).

7. Artificial Phenomenology – Is it possible to apply the basics of Phenomenology
to artificial systems, so as to develop an understanding of the phenomenology of
artificial systems, if such phenomenology exists? Perhaps by use of mathemat-
ical phenomenology (Section 12.3), or objective phenomenology (Nagel, 1974; Lee,
2021)?

7I would like to cordially thank Lenore Blum and Ryota Kanai for discussions on the topic. The list of
questions presented here came up in a discussion with themwhen preparing for the ASSC27 Blueprints
for Machine Consciousness symposium in Tokyo.
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8. Are theremeasures of artificial consciousness? – This is the question of whether
it is possible to construct measures of consciousness that can be applied to AI
systems, for example to find out whether AI systems experience a particular stim-
ulus consciously, or not.

9. Can one build conscious AI systems? – Do the theories, or tests, provide enough
details to create blueprints for building conscious AI systems? Can we implement
the precise properties that theories of consciousness pin down as sufficient for
consciousness? And if so, do they provide enough details to warrant assessments
of the type of conscious experience the AI systemwill have? Can it be ascertained,
for example, that the AI system will not be in pain or constantly suffer, as required
by (Metzinger, 2021)?

10. Which forms of computation are suitable to support artificial consciousness, if
any? – This question comprises two questions: the question of which types of
computation can support consciousness—can a Turing computation, say? And
the question of which specific properties a computation would have to exhibit so
as to support artificial consciousness, if any does.

11. Which role did evolution play in the emergence of conscious systems? – And
which implications does this have for consciousness of artificial systems?

12. Does consciousnessmatter for existential risk? – This is the question of whether
conscious AI systems, in particular self-conscious AI systems, pose a particular
worry in the context of alignment and existential threats.

Research within this PhD has contributed to questions 3., 10., and 11.. Concerning
question 3., the PhD offers a perspective on the question of AI consciousness that fo-
cuses on the actual substrate of contemporary AI systems: CPUs, GPUs, and other pro-
cessing units. The research, presented in (Kleiner & Ludwig, in press) and Chapter 10,
lead to a no-go theorem that speaks against the possibility of artificial consciousness
for systems that run on contemporary chips. Cf. Section 1.4.1 for an introduction to and
summary of this research.

A contribution to questions 10. and 11. can be found in Chapter 11, which is con-
cerned with the distinction between mortal and immortal computation, introduced by
Hinton (2022). This distinction is related to (but does not precisely track) the distinction
between the types of computation carried out by systems that have naturally evolved
and the types of computation carried out by contemporary AI systems. Chapter 11
finds that, perhaps surprisingly, computational functionalism in its original conception
by Putnam (1967), sides with mortal computation, rather than immortal computation.
This constitutes another argument against the possibility of consciousness in contem-
porary AI systems. The emphasis, however, lies on ‘contemporary’, as developments
that might transcend the paradigm of computation that has shaped the last half cen-
tury are already underway. Cf. Section 1.4.2 for a summary of the research presented in
Chapter 11.
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12.7. Mathematical Philosophy of Mind

Mathematical philosophy is “the application of mathematical methods to philosophical
questions and problems” (Leitgeb, 2013, p. 269). Mathematical philosophy of mind, cor-
respondingly, is the application of mathematical methods to philosophical questions
and problems of the mind.

Following Leitgeb (2013)’s explication of the role, tasks and opportunities of scientific
philosophy, of which mathematical philosophy is a part, mathematical philosophy of
mind can be understood in three equally validways. Firstly, it can be understood as philo-
sophy for the mind sciences. That is, a philosophy that reflects on the developments in
the mind sciences which are mathematical in nature, on a meta-level, with the goal of
reforming or improving those developments. Secondly, it can be understood as philo-
sophy that is part of the mind sciences. That is, a philosophy which works hand-in-hand
with scientists were mathematical methods appear, are applied, or could be helpful in
the mind sciences. According to this understanding, mathematical philosophy of mind
works with the same object languages as the sciences of themind, but addresses some
of the more general and more fundamental mathematics-related questions that appear.
Thirdly, mathematical philosophy ofmind can be understood as philosophy ofmind done
with mathematical methods. According to this understanding, mathematical philosophy
of mind targets the questions, problems and hypotheses that are unique to philosophy
of mind, but uses formal and mathematical methods to do so, for example formal ex-
plications of non-formal concepts. Mathematical philosophy of mind, according to this
last understanding, does not aim to improve progress in the mind sciences, but rather
is primarily concerned with the long-standing questions of philosophy of mind.

The research carried out in this PhD clearly falls into the second category, it is math-
ematical philosophy of mind carried out as part of the mind sciences. Inspired by Metz-
inger (2007)’s analysis of the types of interaction between philosophy of mind and the
mind sciences, this research can be classified as contributing to the following four pil-
lars of mathematical philosophy of mind.

Analysis of the target phenomenon. An important role of philosophy of mind in re-
lation to the sciences of the mind, and correspondingly of mathematical philosophy of
mind, can be subsumed under the header of analysis of the target phenomenon. This in-
cludes, mainly, the study of concepts that refer to the target phenomenon, so as tomake
the phenomenon, or properties thereof, accessible to scientific investigations. Such
analysis can include both work on existing concepts and the proposal of new concepts,
and aims to improve progress in the sciences either bymaking these concepts available
for use in scientific investigations, or by helping scientists to conceptualise the problem
under consideration.

Pivotal examples of such analyses in consciousness science are the introduction
and analysis of qualia (C. I. Lewis, 1929; Peirce, 1866; Dennett, 1988; Shoemaker, 1991;
Block, 2004), of phenomenal consciousness (Chalmers, 1996; Husserl, 1960), of the
‘what it is like to be’ characterisation of experience (Farrell, 1950; Nagel, 1974), and of
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the hard problem of consciousness (Chalmers, 1995) and the notion of an explanatory
gap (Levine, 1983). The last two have played a particularly important role in shaping
what scientists think about their object of investigation, independently of whether they
are in agreement with these analyses or not.

Mathematical philosophy of mind is particularly suitable to carry out such analyses in
cases where formal concepts are applied to the target phenomenon. In the context of
consciousness, this is the case for mathematical representations of conscious experi-
ence or phenomenal character. Research in this PhD has analysed existing proposals of
such representations in Chapters 7 and 8. It has identified a number of shortcomings,
and proposed a new definition of such representation in Chapters 8 and 9. The hope is
that this new definition is helpful to make progress in structural research in both theory
and experiments in consciousness science.

Analysis of methods. A second pillar of how philosophy of mind supports the mind
sciences is the analysis of methods used by the latter, including critical analysis of ex-
istingmethods, so as to investigatewhether thesemethodswork as intended, construct-
ive analyses of existing methods, so as to improve these methods, and the proposal of
new methods. Important examples in consciousness science are the critical analysis
of measures of consciousness in (Irvine, 2012) or (Michel, 2019) and the constructive
analysis of C-Tests in light of natural kinds in (Bayne et al., 2024).

Mathematical philosophy of mind offers two avenues for extending this work. On the
one hand, it can cope with methods in the sciences which are thoroughly mathemat-
ical in nature. On the other hand, it can apply mathematics to provide new analyses of
methods of the sciences which are not mathematical in nature.

This PhD contains an example of each kind of contribution. Regarding analyses of
mathematical methods in consciousness science, it offers an analysis of a newmethod
to search for NCCs which has been proposed based on structuralist assumptions, cf.
Chapter 7 and Section 12.2.2. The upshot is that this new method uses assumptions
which are not justified in this context. Regarding applications ofmathematics to analyse
methodswhich are notmathematical in nature, it offers an analysis of the contemporary
paradigm for testing theories of consciousness in Chapters 5 and 6, cf. Section 1.3 for
an introduction and review of these results.

Analysis of results. A third pillar of how philosophy of mind interacts with the mind
sciences is the analysis of results of investigations of the mind sciences. This includes
results of empirical studies as well as results of theoretical investigations, both of which
comprise proposed theories of consciousness. The goal is to improve the understand-
ing of such results, for example by critical analysis of whether the conclusions that are
being drawn are justified, or by constructive analyses of what the result might mean or
imply. Examples of this mode of interaction in the case of consciousness science are
the numerous analyses and criticisms of theories of consciousness, and the analyses
of implications of experiments for the larger questions of the field.
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Mathematical philosophy ofmind can extend this interaction to results which are thor-
oughly mathematical in nature. The main examples thereof, to date, are formal theor-
ies. Analysis and improvements of two main formal theories in the field are presented
in Chapters 2 and 3 (Integrated Information Theory) and 4 (Predictive Processing and
Active Inference).

Bottom-up constraints. A fourth mode of interaction between philosophy of mind and
the sciences of the mind, which Metzinger (2007) identifies, concerns the use of sci-
entific results as bottom-up constraints on philosophy of mind, so as to inform philo-
sophical research onphilosophical questions, for examplemetaphysical theories. Prime
examples in consciousness science are the many philosophical studies of neurological
disorders of consciousness, such as blindsight (Cowey & Stoerig, 1991; Stoerig, 2006),
agnosia (Devinsky, Farah, & Barr, 2008), dissociative identity disorders (Kihlstrom, 2005)
or neglect (Bisiach, Luzzatti, & Perani, 1979).

Thismode of interaction ismore alignedwith the third way of understandingmathem-
atical philosophymentioned above, and there are no thorough examples of such interac-
tion in this PhD. Perhaps the formal exposition of structuralist assumptions in Chapter 7
(cf. Section 7.3), and the assessment of such assumptions in light of the types of struc-
tures that appear in the sciences could be taken to be an example, but knowledge about
the mathematical structures of conscious experience is too limited at the present point
of development to draw any thorough metaphysical conclusions.

The above classification of mathematical philosophy of mind leaves out Chapters 10
and 11. Perhaps that is the case because they are more aligned with the philosophy
of mind done with mathematical methods understanding of mathematical philosophy.
But the question of artificial consciousness, which these chapters target, is also an im-
portant question of consciousness science. Perhaps it is best to consider philosophy
of mind as part of consciousness science, and avoid making a strict distinction all-
together.

Mathematical philosophy has already achieved a hugeprogress in epistemology, philo-
sophy of mathematics, metaphysics, ethics, social philosophy and philosophy of lan-
guage (Hartmann & Sprenger, 2012; Leitgeb, 2013). As consciousness science is reach-
ing the stage where mathematical tools and methods become more widely applicable,
mathematical philosophy of mind might too. The big promise of mathematical philo-
sophy of mind to consciousness science is that it can help facilitate the important inter-
action between philosophy and consciousness science in the novel phase of mathem-
atized consciousness research.

The exploration of mathematical philosophy of mind, therefore, is likely a worth-while
enterprise. “The desiderata of exactness and fruitfulness will always ‘pull’ explication
towards the application of mathematical methods” (Leitgeb, 2013, p. 272).
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12.8. Synopsis

The research carried out in this PhD contributes to experimental, theoretical, concep-
tual, andmethodological questions in consciousness science (Chapter 1). It showcases
that mathematical methods and mathematical tools can be helpful to consciousness
science in tasks as diverse as constructing theories of consciousness (Section 12.1),
realising a structural turn (Section 12.2), exploring mathematical and computational
phenomenology (Section 12.3), understanding measurement in consciousness science
(Section 12.4), applying no-go theorems (Section 12.5), studying the question of artificial
consciousness (Section 12.6), and realising the promises of a mathematical philosophy
of mind (Section 12.7).

The goal of the present chapter was to project the results of this PhD into the future, so
as to provide the reader with a broader picture of what the research in this PhD means,
how it could be further developed, and how it might factor into the future development
of consciousness science.

The research carried out in this PhD thesis is grounded in the conviction that every
single theory, experiment, and concept in consciousness science is proposed for some
good reason and embodies some good idea. Consciousness science is still in the early
stages of its development, and as the field continues its journey, all of these ideas and
reasons can make a decisive difference to further progress. Perhaps the novel develop-
ments in the field, a small part of which has been surveyed in this chapter, will rely on
precisely some such idea or reason.

It was a huge pleasure and honour to be part of the late stage of the early development
of consciousness science during this PhD. “We are still at the beginning–the best is yet
to come.”8

8This is a quote from (Leitgeb, 2013), though out of context. Leitgeb (2013) applied it to mathematical
philosophy; here it is meant to apply to consciousness science.
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The Mathematical Structure of
Integrated Information Theory
Johannes Kleiner1* and Sean Tull 2*

1Ludwig Maximilian University of Munich, Munich, Germany, 2Cambridge Quantum Computing Limited, Cambridge,
United Kingdom

Integrated Information Theory is one of the leading models of consciousness. It aims to
describe both the quality and quantity of the conscious experience of a physical system,
such as the brain, in a particular state. In this contribution, we propound the mathematical
structure of the theory, separating the essentials from auxiliary formal tools. We provide a
definition of a generalized IIT which has IIT 3.0 of Tononi et al., as well as the Quantum IIT
introduced by Zanardi et al. as special cases. This provides an axiomatic definition of the
theory which may serve as the starting point for future formal investigations and as an
introduction suitable for researchers with a formal background.

Keywords: Integrated Information Theory, experience spaces, mathematical consciousness science, IIT 3.0, IIT 3.x,
generalized IIT

1 INTRODUCTION

Integrated Information Theory (IIT), developed by Giulio Tononi and collaborators [5, 45–47], has
emerged as one of the leading scientific theories of consciousness. At the heart of the latest version of
the theory [19, 25, 26, 31, 40] is an algorithm which, based on the level of integration of the internal
functional relationships of a physical system in a given state, aims to determine both the quality and
quantity (‘Φ value’) of its conscious experience.

While promising in itself [12, 43], the mathematical formulation of the theory is not
satisfying to date. The presentation in terms of examples and accompanying explanation veils
the essential mathematical structure of the theory and impedes philosophical and scientific
analysis. In addition, the current definition of the theory can only be applied to comparably
simple classical physical systems [1], which is problematic if the theory is taken to be a
fundamental theory of consciousness, and should eventually be reconciled with our present
theories of physics.

To resolve these problems, we examine the essentials of the IIT algorithm and formally define a
generalized notion of Integrated Information Theory. This notion captures the inherent
mathematical structure of IIT and offers a rigorous mathematical definition of the theory which
has ‘classical’ IIT 3.0 of Tononi et al. [25, 26, 31] as well as the more recently introduced Quantum
Integrated Information Theory of Zanardi, Tomka and Venuti [50] as special cases. In addition, this
generalization allows us to extend classical IIT, freeing it from a number of simplifying assumptions
identified in [3]. Our results are summarised in Figure 1.

In the associated article [44] we show more generally how the main notions of IIT, including
causation and integration, can be treated, and an IIT defined, starting from any suitable theory of
physical systems and processes described in terms of category theory. Restricting to classical or
quantum process then yields each of the above as special cases. This treatment makes IIT applicable
to a large class of physical systems and helps overcome the current restrictions.
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Our definition of IIT may serve as the starting point for
further mathematical analysis of IIT, in particular if related to
category theory [30, 49]. It also provides a simplification and
mathematical clarification of the IIT algorithm which extends
the technical analysis of the theory [1, 41, 42] and may
contribute to its ongoing critical discussion [2, 4, 8, 23, 27,
28, 33]. The concise presentation of IIT in this article should
also help to make IIT more easily accessible for
mathematicians, physicists and other researchers with a
strongly formal background.

This work is concerned with the most recent version of IIT as
proposed in [25, 26, 31, 40] and similar papers quoted below.
Thus our constructions recover the specific theory of
consciousness referred to as IIT 3.0 or IIT 3.x, which we will
call classical IIT in what follows. Earlier proposals by Tononi et al.
that also aim to explicate the general idea of an essential
connection between consciousness and integrated information
constitute alternative theories of consciousness which we do not
study here. A yet different approach would be to take the term
‘Integrated Information Theory’ to refer to the general idea of
associating conscious experience with some pre-theoretic notion
of integrated information, and to explore the different ways that
this notion could be defined in formal terms [4, 27, 28, 37].

Relation to Other Work
This work develops a thorough mathematical perspective of
one of the promising contemporary theories of
consciousness. As such it is part of a number of recent
contributions which seek to explore the role and prospects
of mathematical theories of consciousness [11, 15, 18, 30, 49],
to help overcome problems of existing models [17, 18, 34]
and to eventually develop new proposals [6, 13, 16, 20, 22,
29, 39].

1.1 Structure of Article
We begin by introducing the necessary ingredients of a
generalised Integrated Information Theory in Sections
2–4, namely physical systems, experience spaces and
cause-effect repertoires. Our approach is axiomatic in that
we state only the precise formal structure which is necessary
to apply the IIT algorithm. We neither motivate nor criticize
these structures as necessary or suitable to model
consciousness. Our goal is simply to recover IIT 3.0. In
Section 5, we introduce a simple formal tool which allows
us to present the definition of the algorithm of an IIT in a
concise form in Sections 6 and 7. Finally, in Section 8, we
summarise the full definition of such a theory. The result is
the definition of a generalized IIT. We call any application of
this definition ‘an IIT’.

Following this we give several examples including IIT 3.0
in Section 9 and Quantum IIT in Section 10. In Section 11
we discuss how our formulation allows one to extend classical
IIT in several fundamental ways, before discussing further
modifications to our approach and other future work in
Section 12. Finally, the appendix includes a detailed
explanation of how our generalization of IIT coincides
with its usual presentation in the case of classical IIT.

2 SYSTEMS

The first step in defining an Integrated Information Theory (IIT)
is to specify a class Sys of physical systems to be studied. Each
element S ∈ Sys is interpreted as a model of one particular
physical system. In order to apply the IIT algorithm, it is only
necessary that each element S come with the following features.

Definition 1. A system class Sys is a class each of whose
elements S, called systems, come with the following data:

1. A set St(S) of states;
2. for every s ∈ St(S), a set Subs(S) ⊂ Sys of subsystems and for

each M ∈ Subs(S) an induced state s|M ∈ St(M);
3. a set DS of decompositions, with a given trivial

decomposition 1 ∈ DS;
4. for each z ∈ DS a corresponding cut system Sz ∈ Sys and for

each state s ∈ St(S) a corresponding cut state sz ∈ St(Sz).
Moreover, we require that Sys contains a distinguished
empty system, denoted I, and that I ∈ Sub(S) for all S. For
the IIT algorithm to work, we need to assume furthermore that
the number of subsystems remains the same under cuts or
changes of states, i.e. that we have bijections Subs(S)xSubs’(S)
for all s, s’ ∈ St(S) and Subs(S)xSubsz(Sz) for all z ∈ DS.

Note that taking a subsystem of a system S requires
specifying a state s of S. An example class of systems is
illustrated in Figure 2. In this article we will assume that
each set Subs(S) is finite, discussing the extension to the infinite
case in Section 12. We will give examples of system classes and
for all following definitions in Sections 9 and 10.

3 EXPERIENCE

An IIT aims to specify for each system in a particular state its
conscious experience. As such, it will require a mathematical
model of such experiences. Examining classical IIT, we find
the following basic features of the final experiential states it
describes which are needed for its algorithm.

Firstly, each experience e should crucially comewith an intensity,
given by a number ||e|| in the non-negative reals R+ (including
zero). This intensity will finally correspond to the overall intensity of
experience, usually denoted by Φ. Next, in order to compare
experiences, we require a notion of distance d(e,e′) between any

FIGURE 1 | An Integrated Information Theory specifies for every system
in a particular state its conscious experience, described formally as an element
of an experience space. In our formalization, this is a map Sys →E Exp from the
system class Sys into a class Exp of experience spaces, which, first,
sends each system S to its space of possible experiences E(S), and, second,
sends each state s ∈ St(S) to the actual experience the system is having when
in that space, St(S)→ E(S), s1E(S, s) . The definition of this map in terms of
axiomatic descriptions of physical systems, experience spaces and further
structure used in classical IIT is given in the first half of this paper.
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pair of experiences e,e′. Finally, the algorithm will require us to be
able to rescale any given experience e to have any given intensity.
Mathematically, this is most easily encoded by letting us multiply
any experience e by any number r ∈ R+. In summary, a minimal
model of experience in a generalized IIT is the following.

Definition 2. An experience space is a set E with:

1. An intensity function ||.|| : E→R+
2. A distance function d : E × E→R+
3. A scalar multiplication R+ × E→ E, denoted (r, e)1r · e,

satisfying

‖r · e‖ � r · ‖e‖ r · (s · e) � (rs) · e 1 · e � e

for all e ∈ E and r, s ∈ R+.

We remark that this same axiomatisation will apply both to
the full space of experiences of a system, as well as to the spaces
describing components of the experiences (‘concepts’ and
‘proto-experiences’ defined in later sections). We note that
the distance function does not necessarily have to satisfy the
axioms of a metric. While this and further natural axioms such
as d(r · e, r · f ) � r · d(e, f ) might hold, they are not necessary
for the IIT algorithm.

The above definition is very general, and in any specific
application of IIT, the experiences may come with further
mathematical structure. The following example includes the
experience spaces used in classical IIT.

Example 3. Any metric space (X, d) may be extended to
an experience space X :� X × R+ in various ways. E.g., one can
define ||(x, r)|| � r, r · (x, s) � (x, rs) and define the distance as

d((x, r), (y, s)) � r d(x, y .) (1)

This is the definition used in classical IIT (cf. Section 9 and
Appendix A).

An important operation on experience spaces is taking their
product.

Definition 4. For experience spaces E and F, we define the
product to be the space E × F with distance

d((e, f ), (e′, f ′)) � d(e, e′) + d(f , f ′), (2)

intensity
����(e, f )���� � max{����e����, ����f ����} and scalar multiplication

r · (e, f ) � (r · e, r · f ). This generalizes to any finite product∏
i∈I
Ei of experience spaces.

4 REPERTOIRES

In order to define the experience space and individual experiences
of a system S, an IIT utilizes basic building blocks called
‘repertoires’, which we will now define. Next to the specification
of a system class, this is the essential data necessary for the IIT
algorithm to be applied.

Each repertoire describes a way of ‘decomposing’ experiences, in
the following sense. LetD denote any set with a distinguished element
1, for example the setDS of decompositions of a system S, where the
distinguished element is the trivial decomposition 1 ∈ DS.

Definition 5. Let e be an element of an experience space E. A
decomposition of e over D is a mapping e : D→ E with e(1) � e.

In more detail, a repertoire specifies a proto-experience for
every pair of subsystems and describes how this experience
changes if the subsystems are decomposed. This allows one to
assess how integrated the system is with respect to a
particular repertoire. Two repertoires are necessary for the
IIT algorithm to be applied, together called the cause-effect
repertoire.

For subsystemsM, P ∈ Subs(S), defineDM,P :� DM ×DP . This
set describes the decomposition of both subsystems simultaneously.
It has a distinguished element 1 � (1M , 1P).

Definition 6. A cause-effect repertoire at S is given by a
choice of experience space PE(S), called the space of proto-
experiences, and for each s ∈ St(S) and M, P ∈ Subs(S), a pair
of elements

FIGURE 2 | As an example of Definition 1 similar to IIT 3.0, consider simple systems given by sets of nodes (or ‘elements’), with a state assigning each node the
state ‘on’ (depicted green) or ‘off’ (red). Each system comes with a time evolution shown by labelling each node with how its state in the next time-step depends on the
states of the others. Decompositions of a system S correspond to binary partition of the nodes, such as z above. The cut system S z is given by modifying the time
evolution of S so that the two halves do not interact; in this case all connections between the halves are replaced by sources of noise which send ‘on’ or ‘off’ with
equal likelihood, depicted as black dots above. Given a current state s of S, any subset of the nodes (such as those below the dotted line) determines a subsystem S′,
with time evolution obtained from that of S by fixing the nodes in S ∖S′ (here, the upper node) to be in the state specified by s. Note that while in this example any
subsystem (subset of S) determines a decomposition (partition of S) we do not require such a relationship in general.
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causs(M, P), ef f s(M, P) ∈ PE(S) (3)

and for each of them a decomposition over DM,P.
Examples of cause-effect repertoires will be given in Sections 9

and 10. A general definition in terms of process theories is given
in [44]. For the IIT algorithm, a cause-effect repertoire needs to be
specified for every system S, as in the following definition.

Definition 7. A cause-effect structure is a specification of a
cause-effect repertoire for every S ∈ Sys such that

PE(S) � PE(Sz) for all z ∈ DS. (4)

The names ‘cause’ and ‘effect’ highlight that the definitions of
causs(M, P) and eff s(M, P) in classical and Quantum IIT describe
the causal dynamics of the system. They are intended to capture the
manner in which the ‘current’ state s of the system, when restricted to
M, constrains the ‘previous’ or ‘next’ state of P, respectively.

5 INTEGRATION

We have now introduced all of the data required to define an IIT;
namely, a system class along with a cause-effect structure. From
this, we will give an algorithm aiming to specify the conscious
experience of a system. Before proceeding to do so, we introduce a
conceptual short-cut which allows the algorithm to be stated in a
concise form. This captures the core ingredient of an IIT, namely
the computation of how integrated an entity is.

Definition 8. Let E be an experience space and e an element
with a decomposition over some set D. The integration level of e
relative to this decomposition is

ϕ(e) :� min
1≠z∈D

d(e, e(z)). (5)

Here, d denotes the distance function of E, and the minimum is
taken over all elements of D besides 1. The integration scaling of e
is then the element of E defined by

ι(e) :� ϕ(e) · ê, (6)

where ê denotes the normalization of e, defined as

ê :�
⎧⎪⎪⎨⎪⎪⎩

1

‖e‖ · e if ‖e‖≠ 0
e if ‖e‖ � 0.

Finally, the integration scaling of a pair e1, e2 of such elements is
the pair

ι(e1, e2) :� (ϕ · ê1, ϕ · ê2) (7)

where ϕ :� min(ϕ(e1), ϕ(e2)) is the minimum of their
integration levels.

We will also need to consider indexed collections of
decomposable elements. Let S be a system in a state s ∈ St(S)
and assume that for every M ∈ Subs(S) an element eM of some
experience space EM with a decomposition over some DM is given.
We call (eM)M∈Subs(S) a collection of decomposable elements, and
denote it as (eM)M.

Definition 9. The core of the collection (eM)M is the subsystem
C ∈ Subs(S) for which ϕ(eC) is maximal.1 The core integration
scaling of the collection is ι(eC). The core integration scaling of a
pair of collections ((eM)M, (fM)M) is ι(eC , fD), where C,D are the
cores of (eM)M and (fM)M, respectively.

6 CONSTRUCTIONS: MECHANISM LEVEL

Let S ∈ Sys be a physical system whose experience in a state
s ∈ St(S) is to be determined. The first level of the algorithm
involves fixing some subsystem M ∈ Subs(S), referred to as a
‘mechanism’, and associating to it an object called its ‘concept’
which belongs to the concept space

C(S) :� PE(S) × PE(S) . (8)

For every choice of P ∈ Subs(S), called a ‘purview’, the
repertoire values causs(M, P) and eff s(M, P) are elements
of PE(S) with given decompositions over DM,P . Fixing M,
they provide elements with decompositions over Sub(S)
given by

causs(M) :� (causs(M, P))P∈Sub(S)
eff s(M) :� (eff s(M, P))P∈Sub(S) . (9)

The concept ofM is then defined as the core integration scaling
of this pair of collections,

CS,s(M) :� Core integration scaling of (causs(M), eff s(M)).
(10)

It is an element of C(S). Unraveling our definitions, the
concept thus consists of the values of the cause and effect
repertoires at their respective ‘core’ purviews Pc, Pe, i.e. those
which make them ‘most integrated’. These values caus(M, Pc)
and eff(M, Pe) are then each rescaled to have intensity given by
the minima of their two integration levels.

7 CONSTRUCTIONS: SYSTEM LEVEL

The second level of the algorithm specifies the experience of
system S in state s. To this end, all concepts of a system are
collected to form its Q-shape, defined as

Qs(S) :� (CS,s(M))M∈Subs(S) . (11)

This Is an Element of the Space

E(S) � C(S)n(S) , (12)

where n(S) :� |Subs(S)|, which is finite and independent of the state
s according to our assumptions. We can also define a Q-shape for
any cut of S. Let z ∈ DS be a decomposition, Sz the corresponding
cut system and sz be the corresponding cut state. We define

1If the maximum does not exist, we define the core to be the empty system I.
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Qs(Sz) :� (CSz ,sz(M))M∈Subsz (Sz ) . (13)

Because of Eq. 4, and since the number of subsystems remains the
samewhen cutting,Qs(Sz) is also an element ofE(S). This gives amap

QS,s : DS → E(S)
z1Qs(Sz)

which is a decomposition ofQs(S) overDS. Considering this map for
every subsystem of S gives a collection of decompositions defined as

Q(S, s) :� (QM,s|M)M∈Subs(S)

This is the system level-object of relevance and is what specifies
the experience of a system according to IIT.

Definition 10. The experience of system S in the state
s ∈ St(S) is

E(S, s) :� Core integration scaling of Q(S, s) . (14)

The definition implies that E(S, s) ∈ E(M), whereM ∈ Subs(S) is
the core of the collection Q(S, s), called the major complex. It
describes which part of system S is actually conscious. In most
cases there will be a natural embedding E(M)→ E(S) for a
subsystem M of S, allowing us to view E(S, s) as an element of
E(S) itself. Assuming this embedding to exist allows us to define
an Integrated Information Theory concisely in the next section.

8 INTEGRATED INFORMATION THEORIES

We can now summarize all that we have said about IITs.

Definition 11. An Integrated Information Theory is determined
as follows. The data of the theory is a system class Sys along with a
cause-effect structure. The theory then gives a mapping

Sys →E Exp (15)

into the class Exp of all experience spaces, sending each system S
to its space of experiences E(S) defined in Eq. 12, and a mapping

St(S)→ E(S)
s1E(S, s) (16)

which determines the experience of the system when in a state s,
defined in Eq. 14.
The quantity of the system’s experience is given by

Φ(S, s) :� ‖E(S, s)‖ ,
and the quality of the system’s experience is given by the normalized
experience Ê(S, s). The experience is “located” in the core of the
collection Q(S, s), called the major complex, which is a subsystem
of S.

In the next sections we specify the data of several example IITs.

9 CLASSICAL IIT

In this section we show how IIT 3.0 [25, 26, 31, 48] fits in into
the framework developed here. A detailed explanation of how

our earlier algorithm fits with the usual presentation of IIT is
given in Appendix A. In [44] we give an alternative
categorical presentation of the theory.

9.1 Systems
We first describe the system class underlying classical IIT.
Physical systems S are considered to be built up of several
components S1, . . . , Sn, called elements. Each element Si
comes with a finite set of states St(Si), equipped with a
metric. A state of S is given by specifying a state of each
element, so that

St(S) � St(S1) ×/ × St(Sn). (17)

We define a metric d on St(S) by summing over the metrics of
the element state spaces St(Si) and denote the collection of
probability distributions over St(S) by P(S). Note that we may
view St(S) as a subset of P(S) by identifying any s ∈ St(S) with
its Dirac distribution δs ∈ P(S), which is why we abbreviate δs
by s occasionally in what follows.

Additionally, each system comes with a probabilistic
(discrete) time evolution operator or transition probability
matrix, sending each s ∈ St(S) to a probabilistic state
T(s) ∈ P(S). Equivalently it may be described as a convex-
linear map

T : P(S)→P(S) . (18)

Furthermore, the evolution T is required to satisfy a property
called conditional independence, which we define shortly.

The class Sys consists of all possible tuples S � ({Si}ni�1,T) of
this kind, with the trivial system I having only a single element
with a single state and trivial time evolution.

9.2 Conditioning and Marginalizing
In what follows, we will need to consider two operations on the
map T. LetM be any subset of the elements of a system andM⊥ its
complement. We again denote by St(M) the Cartesian product of
the states of all elements in M, and by P(M) the probability
distributions on St(M). For any p ∈ P(M), we define the
conditioning [26] of T on p as the map

T |p〉 : P(M⊥)→P(S)
p′1T(p · p′) (19)

where p · p′ denotes the multiplication of these probability
distributions to give a probability distribution over S. Next, we
define marginalisation over M as the map

〈M| : P(S)→P(M⊥) (20)

such that for each p ∈ P(S) and m2 ∈ St(M⊥) we have
〈M|p(m2) � ∑

m1∈St(M)
p(m1,m2) . (21)

In particular for any map T as above we call 〈M|T the
marginal of T over M and we write Ti :� 〈S⊥i

∣∣∣∣T for each
i � 1, . . . , n. Conditional independence of T may now be
defined as the requirement that
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T(p) � ∏n
i�1

Ti(p) for all p ∈ P(S) ,

where the right-hand side is again a probability distribution over
St(S).

9.3 Subsystems, Decompositions and Cuts
Let a system S in a state s ∈ St(S) be given. The subsystems are
characterized by subsets of the elements that constitute S. For any
subset M � {S1, . . . , Sm} of the elements of S, the corresponding
subsystem is also denoted M and St(M) is again given by the
product of the St(Si), with time evolution

TM :� 〈M⊥|T|sM⊥〉, (22)

where sM⊥ is the restriction of the state s to St(M⊥) and |sM⊥〉
denotes the conditioning on the Dirac distribution δsM⊥ .

The decomposition set DS of a system S consists of all
partitions of the set N of elements of S into two disjoint sets
M and M⊥. We denote such a partition by z � (M,M⊥). The
trivial decomposition 1 is the pair (N ,∅).

For any decomposition (M,M⊥) the corresponding cut
system S(M,M⊥) is the same as S but with a new time evolution
T(M,M⊥). Using conditional independence, it may be defined for
each i � 1, . . . , n as

T(M,M⊥)
i :� {Ti i ∈ M⊥

Ti|ωM⊥〉〈M⊥∣∣∣ i ∈ M
, (23)

where ωM ∈ P(M) denotes the uniform distribution on St(M).
This is interpreted in the graph depiction as removing all those
edges from the graph whose source is inM⊥ and whose target is in
M. The corresponding input of the target element is replaced by
noise, i.e. the uniform probability distribution over the source
element.

9.4 Proto-Experiences
For each system S, the first Wasserstein metric (or ‘Earth Mover’s
Distance’) makes P(S) a metric space (P(S), d). The space of
proto-experiences of classical IIT is

PE(S) :� P(S) , (24)

where P(S) is defined in Example 3. Thus elements of PE(S) are
of the form (p, r) for some p ∈ P(S) and r ∈ R+, with distance
function, intensity and scalar multiplication as defined in the
example.

9.5 Repertoires
It remains to define the cause-effect repertoires. Fixing a state s of
S, the first step will be to define maps causs′ and eff ′s which send
any choice of (M, P) ∈ Sub(S) × Sub(S) to an element of P(P).
These should describe the way in which the current state of M
constrains that of P in the next or previous time-steps. We begin
with the effect repertoire. For a single element purview Pi we
define

eff ′s(M, Pi) :� 〈P⊥
i

∣∣∣∣T|ωM⊥〉(sM), (25)

where sM denotes (the Dirac distribution of) the restriction of the
state s to M. While it is natural to use the same definition for
arbitrary purviews, IIT 3.0 in fact uses another definition based on
consideration of ‘virtual elements’ [25, 26, 48], which also makes
calculations more efficient (Supplementary Material S1 of [26]).
For general purviews P, this definition is

eff ′s(M, P) � ∏
Pi∈P

eff ′s(M, Pi), (26)

taking the product over all elements Pi in the purview P. Next, for
the cause repertoire, for a single element mechanismMi and each
~s ∈ St(P), we define

causs′(Mi, P)[~s] � λ〈M⊥
i

∣∣∣∣T|ωP⊥〉(δ~s)[sMi], (27)

where λ is the unique normalisation scalar making
causs′(Mi, P) a valid element of P(P). Here, for clarity, we
have indicated evaluation of probability distributions at
particular states by square brackets. If the time evolution
operator has an inverse T−1, this cause repertoire could be
defined similarly to (25) by causs′(Mi, P) �
〈P⊥

∣∣∣∣∣T− 1
∣∣∣∣∣ωM⊥

i
〉(sMi) , but classical IIT does not utilize this

definition.
For General Mechanisms M, we Then Define

causs′(M, P) � κ∏
Mi∈M

causs′(Mi, P) (28)

where the product is over all elements Mi in M and where
κ ∈ R+ is again a normalisation constant. We may at last now
define

causs(M, P) :� causs′(M, P) · causs′(∅, P⊥)
eff s(M, P) :� eff ′s(M, P) · eff ′s(∅, P⊥) , (29)

with intensity 1 when viewed as elements of PE(S). Here, the dot
indicates again the multiplication of probability distributions and
∅ denotes the empty mechanism.

The distributions causs′(∅, P⊥) and eff ′s(∅, P⊥) are called the
unconstrained cause and effect repertoires over P⊥.

Remark 12. It is in fact possible for the right-hand side of Eq.
28 to be equal to 0 for all ~s for some Mi ∈ M. In this case we set
causs′(M, P) � (ωS, 0) in PE(S).
Finally we must specify the decompositions of these elements
over DM,P . For any partitions zM � (M1,M2) of M and zP �
(P1, P2) of P, we define
causs(M,P)(zM ,zP) :�causs′(M1,P1) ·causs′(M2,P2) ·causs′(∅,P⊥)
eff s(M,P)(zM ,zP) :�eff ′s(M1,P1) ·eff ′s(M,

2P2) ·eff ′s(∅,P⊥), (30)

where we have abused notation by equating each subsetM1 and
M2 of nodes with their induced subsystems of S via the state s.

This concludes all data necessary to define classical IIT. If the
generalized definition of Section 8 is applied to this data, it
yields precisely classical IIT 3.0 defined by Tononi et al. In
Appendix A, we explain in detail how our definition of IIT,
equipped with this data, maps to the usual presentation of the
theory.
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10 QUANTUM IIT

In this section, we consider Quantum IIT defined in [50]. This is
also a special case of the definition in terms of process theories we
give in [44].

10.1 Systems
Similar to classical IIT, in Quantum IIT systems are conceived as
consisting of elements H1, . . . ,Hn. Here, each element Hi is
described by a finite dimensional Hilbert space and the state space
of system S is defined in terms of the element Hilbert spaces as

St(S) � S(HS) with HS �⊗
i�1

n

Hi,

where S(HS) ⊂ L(HS) describes the positive semidefinite
Hermitian operators of unit trace on HS, i.e. density matrices.
The time evolution of the system is again given by a time
evolution operator, which here is assumed to be a trace
preserving (and in [50] typically unital) completely positive map

T : L(HS)→ L(HS) .

10.2 Subsystems, Decompositions and Cuts
Subsystems are again defined to consist of subsetsM of the elements
of the system, with corresponding Hilbert space HM :�⊗i∈MHi.
The time-evolution T M : L(HM)→ L(HM) is defined as

T M(ρ) � trM⊥(T (trM⊥(s)⊗ ρ)) ,
where s ∈ S(HS) and trM⊥ denotes the trace over the Hilbert
space HM⊥ .

Decompositions are also defined via partitions z � (D,D⊥) ∈ DS

of the set of elements N into two disjoint subsets D and D⊥ whose
union is N. For any such decomposition, the cut system S(D,D⊥) is
defined to have the same set of states but time evolution

T (D,D⊥)(s) � T (trD⊥(s)⊗ωD⊥ ) ,
where ωD⊥ is the maximally mixed state on HD⊥ , i.e. ωD⊥ �

1
dim(HD⊥) 1HD⊥

.

10.3 Proto-Experiences
For any ρ, σ ∈ S(HS), the trace distance defined as

d(ρ, σ) � 1
2
trS( �������(ρ − σ)2√ )

turns (S(HS), d) into ametric space. The space of proto-experiences
is defined based on this metric space as described in Example 3,

PE(S) :� S(HS) .
10.4 Repertoires
We finally come to the definition of the cause-effect repertoire.
Unlike classical IIT, the definition in [50] does not consider virtual
elements. Let a system S in state s ∈ St(S) be given. As in Section
9.5, we utilize maps causs′ and eff ′s which here map subsystemsM
and P to St(P). They are defined as

eff ′s(M, P) � trP⊥T (trM⊥(s)⊗ωM⊥ )
causs′(M, P) � trP⊥T †(trM⊥(s)⊗ωM⊥ ) ,

where T † is the Hermitian adjoint of T . We then define

causs(M, P) :� causs′(M, P)⊗ causs′(∅, P⊥)
eff(M, P) :� eff ′s(M, P)⊗ eff ′s(∅, P⊥),

each with intensity 1, where∅ again denotes the empty mechanism.
Similarly, decompositions of these elements overDM,P are defined as

causs(M,P)(zM ,zP) :�caus′s(M1,P1)⊗caus′s(M2,P2)⊗caus′s(∅,P⊥)
eff s(M,P)(zM ,zP) :�eff ′s(M1,P1)⊗eff ′s(M2,P2)⊗eff ′s(∅,P⊥),

again with intensity 1, where zM � (M1,M2) ∈ DM and zP �
(P1, P2) ∈ DP.

11 EXTENSIONS OF CLASSICAL IIT

The physical systems to which IIT 3.0 may be applied are limited
in a number of ways: they must have a discrete time-evolution,
satisfy Markovian dynamics and exhibit a discrete set of states [3].
Since many physical systems do not satisfy these requirements, if
IIT is to be taken as a fundamental theory about reality, it must be
extended to overcome these limitations.

In this section, we show how IIT can be redefined to cope with
continuous time, non-Markovian dynamics and non-compact state
spaces, by a redefinition of the maps Eqs. 26 and 28 and, in the case
of non-compact state spaces, a slightly different choice of Eq. 24,
while leaving all of the remaining structure as it is. While we do not
think that our particular definitions are satisfying as a general
definition of IIT, these results show that the disentanglement of
the essential mathematical structure of IIT from auxiliary tools (the
particular definition of cause-effect repertoires used to date) can help
to overcome fundamental mathematical or conceptual problems.

In Section 11.3, we also explain which solution to the problem
of non-canonical metrics is suggested by our formalism.

11.1 Discrete Time and Markovian
Dynamics
In order to avoid the requirement of a discrete time and Markovian
dynamics, instead ofworkingwith the time evolution operatorEq. 18,
we define the cause- and effect repertoires in reference to a given
trajectory of a physical state s ∈ St(S). The resulting definitions can be
applied independently of whether trajectories are being determined
by Markovian dynamics in a particular application, or not.

Let t ∈ I denote the time parameter of a physical system. If
time is discrete, I is an ordered set. If time is continuous, I is
an interval of reals. For simplicity, we assume 0 ∈ I . In the
deterministic case, a trajectory of a state s ∈ St(S) is simply a
curve in St(S), which we denote by (s(t))t∈I with s(0) � s. For
probabilistic systems (such as neural networks with a
probabilistic update rule), it is a curve of probability
distributions P(S), which we denote by (p(t))t∈I , with p(0)
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equal to the Dirac distribution δs. The latter case includes the
former, again via Dirac distributions.

In what follows, we utilize the fact that in physics, state spaces are
defined such that the dynamical laws of a system allow to determine
the trajectory of each state. Thus for every s ∈ St(S), there is a
trajectory (ps(t))t∈I which describes the time evolution of s.

The idea behind the following is to define, for every
M, P ∈ Sub(S), a trajectory p(P,M)

s (t) in P(P) which quantifies
how much the state of the purview P at time t is being
constrained by imposing the state s at time t � 0 on the
mechanism M. This gives an alternative definition of the maps
(26) and (28), while the rest of classical IIT can be applied as before.

Let nowM, P ∈ Sub(S) and s ∈ St(S) be given. We first consider
the time evolution of the state (sM , v) ∈ St(S), where sM denotes the
restriction of s to St(M) as before and where v ∈ St(M⊥) is an
arbitrary state of M⊥. We denote the time evolution of this state by
p(sM ,v)(t) ∈ P(S). Marginalizing this distribution over P⊥ gives a
distribution on the states of P, which we denote as pP(sM ,v)(t) ∈ P(P).
Finally, we average over vusing the uniformdistributionωM⊥ . Because
state spaces are finite in classical IIT, this averaging can be defined
pointwise for every w ∈ St(P) by

p(P,M)
s (t)(w) :� κ ∑

v∈St(M⊥)
pP(sM ,v)(t)(w)ωM⊥(v), (31)

where κ is the unique normalization constant which ensures that
p(P,M)
s (t) ∈ P(P).
The probability distribution p(P,M)

s (t) ∈ P(P) describes how
much the state of the purview P at time t is being constrained by
imposing the state s on M at time t � 0 as desired. Thus, for every
t ∈ I , we have obtained a mapping of two subsystems M, P to an
element p(P,M)

s (t) of P(P) which has the same interpretation as the
map Eq. 26 considered in classical IIT. If deemed necessary, virtual
elements could be introduced just as in Eqs 27 and 29.

So far, our construction can be applied for any time t ∈ T . It
remains to fix this freedom in the choice of time. For the discrete
case, the obvious choice is to define Eqs 27 and 29 in terms of
neighboring time-steps. For the continuous case, several choices
exist. E.g., one could consider the positive and negative semi-
derivatives of p(P,M)

s (t) at t � 0, in case they exist, or add an
arbitrary but fixed time scaleΔ to define the cause-effect repertoires
in terms of p(P,M)

s (t0 ± Δ). However, the most reasonable choice is
in our eyes to work with limits, in case they exist, by defining

eff ′s(M, P) :� ∏
Pi ∈ P

lim
t→∞

p(Pi ,M)
s (t) (32)

to replace Eq. 27 and

causs′(M, P) :� κ∏
Mi∈M

lim
t→−∞

p(P,Mi)
s (t) (33)

to replace Eq. 29. The remainder of the definitions of classical IIT
can then be applied as before.

11.2 Discrete Set of States
The problem with applying the definitions of classical IIT to systems
with continuous state spaces (e.g., neuronmembrane potentials [3]) is
that in certain cases, uniform probability distributions do not exist.
E.g., if the state space of a system S consists of the positive real numbers

R+, no uniform distribution can be defined which has a finite total
volume, so that no uniform probability distribution ωS exists.

It is important to note that this problem is less universal than one
might think. E.g., if the state space of the system is a closed and
bounded subset of R+, e.g. an interval [a, b] ⊂ R+, a uniform
probability distribution can be defined using measure theory,
which is in fact the natural mathematical language for probabilities
and random variables. Nevertheless, the observation in [3] is correct
that if a system has a non-compact continuous state space, ωS might
not exist, which can be considered a problem w.r.t. the above-
mentioned working hypothesis.

This problem can be resolved for all well-understood physical
systems by replacing the uniform probability distribution ωS by
some other mathematical entity which allows to define a notion of
averaging states. For all relevant classical systems with non-compact
state spaces (whether continuous or not), there exists a canonical
uniform measure μS which allows to define the cause-effect
repertoires similar to the last section, as we now explain.
Examples for this canonical uniform measure are the Lebesgue
measure for subsets of Rn [35], or the Haar measure for locally
compact topological groups [36] such as Lie-groups.

In what follows, we explain how the construction of the last section
needs to be modified in order to be applied to this case.

In all relevant classical physical theories, St(S) is a metric space in
which every probability measure is a Radon measure, in particular
locally finite, and where a canonical locally finite uniform measure μS
exists.We defineP1(S) to be the space of probabilitymeasures whose
first moment is finite. For these, the firstWassersteinmetric (or ‘Earth
Mover’s Distance’)W1 exists, so that (P1(S),W1) is a metric space.

As before, the dynamical laws of the physical systems determine
for every state s ∈ St(S) a time evolution ps(t), which here is an
element of P1(S). Integration of this probability measure over
St(P⊥) yields the marginal probability measure pPs (t). As in the
last section, wemay consider these probability measures for the state
(sM , v) ∈ St(S), where v ∈ St(M⊥). Since μS is not normalizable, we
cannot define p(P,M)

s (t) as in (32), for the result might be infinite.
Using the fact that μS is locally finite, we may, however, define a

somewhat weaker equivalent. To this end, we note that for every state
sM⊥ , the local finiteness of μM⊥ implies that there is a neighborhood
Ns,M⊥ in St(M⊥) for which μM⊥(Ns,M⊥ ) is finite. We choose a
sufficiently large neighborhood which satisfies this condition.
Assuming pP(sM ,v)(t) to be a measurable function in v, for every A
in the σ-algebra of St(M⊥), we can thus define

p(P,M)
s (t)(A) :� κ ∫

Ns,M⊥

pP(sM ,v)(t)(A) dμM⊥(v), (34)

which is a finite quantity. The p(P,M)
s (t) so defined is non-negative,

vanishes for A � ∅ and satisfies countable additivity. Hence it is a
measure on St(P) as desired, but might not be normalizable.

All that remains for this to give a cause-effect repertoire as in the
last section, is to make sure that anymeasure (normalized or not) is
an element of PE(S). The theory is flexible enough to do this by
setting d(μ, ]) � ∣∣∣∣μ − ]

∣∣∣∣(St(P)) if either μ or ν is not inP1(S), and
W1(μ, ]) otherwise. Here,

∣∣∣∣μ − ]
∣∣∣∣ denotes the total variation of the

signed measure μ − ], and
∣∣∣∣μ − ]

∣∣∣∣(St(P)) is the volume thereof [10,
32]. While not a metric space any more, the tuple (M(S), d), with
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M(S) denoting all measures on St(S), can still be turned into a
space of proto-experiences as in Example 3. This gives

PE(S) :� M(S)
and finally allows one to construct cause-effect repertoires as in
the last section.

11.3 Non-canonical Metrics
Another criticism of IIT’s mathematical structure mentioned [3]
is that the metrics used in IIT’s algorithm are, to a certain extend,
chosen arbitrarily. Different choices indeed imply different results
of the algorithm, both concerning the quantity and quality of
conscious experience, which can be considered problematic.

The resolution of this problem is, however, not so much a
technical as a conceptual or philosophical task, for what is needed to
resolve this issue is a justification of why a particular metric should
be used. Various justifications are conceivable, e.g. identification of
desired behavior of the algorithm when applied to simple systems.
When considering our mathematical reconstruction of the theory,
the following natural justification offers itself.

Implicit in our definition of the theory as a map from systems to
experience spaces is the idea that the mathematical structure of
experiences spaces (Definition 2) reflects the phenomenological
structure of experience. This is so, most crucially, for the distance
function d, which describes how similar two elements of experience
spaces are. Since every element of an experience space corresponds
to a conscious experience, it is naturally to demand that the similarly
of the two mathematical objects should reflect the similarity of the
experiences they describe. Put differently, the distance function d of
an experience space should in factmirror (or “model”) the similarity
of conscious experiences as experienced by an experiencing subject.

This suggests that the metrics d used in the IIT algorithm
should, ultimately, be defined in terms of the phenomenological
structure of similarity of conscious experiences. For the case of
color qualia, this is in fact feasible [18, Example 3.18], [21, 38]. In
general, the mathematical structure of experience spaces should be
intimately tied to the phenomenology of experience, in our eyes.

12 SUMMARY AND OUTLOOK

In this article, we have propounded the mathematical structure of
Integrated Information Theory. First, we have studied which exact
structures the IIT algorithm uses in the mathematical description of
physical systems, on the one hand, and in the mathematical
description of conscious experience, on the other. Our findings are
the basis of definitions of a physical system class Sys and a class Exp
of experience spaces, and allowed us to view IIT as a map Sys→Exp.

Next, we needed to disentangle the essential mathematics of
the theory from auxiliary formal tools used in the contemporary
definition. To this end, we have introduced the precise notion of
decomposition of elements of an experience space required by the
IIT algorithm. The pivotal cause-effect repertoires are examples
of decompositions so defined, which allowed us to view any
particular choice, e.g. the one of ‘classical’ IIT developed by
Tononi et al., or the one of ‘quantum’ IIT recently introduced
by Zanardi et al. as data provided to a general IIT algorithm.

The formalization of cause-effect repertoires in terms of
decompositions then led us to define the essential ingredients
of IIT’s algorithm concisely in terms of integration levels,
integration scalings and cores. These definitions describe and
unify recurrent mathematical operations in the contemporary
presentation, and finally allowed to define IIT completely in
terms of a few lines of definition.

Throughout the paper, we have taken great care to make sure
our definitions reproduce exactly the contemporary version of IIT
3.0. The result of our work is a mathematically rigorous and
general definition of Integrated Information Theory. This
definition can be applied to any meaningful notion of systems
and cause-effect repertoires, and we have shown that this allows
one to overcome most of the mathematical problems of the
contemporary definition identified to date in the literature.

We believe that our mathematical reconstruction of the theory
can be the basis for refined mathematical and philosophical analysis
of IIT.We also hope that this mathematisationmaymake the theory
more amenable to study by mathematicians, physicists, computer
scientists and other researchers with a strongly formal background.

12.1 Process Theories
Our generalization of IIT is axiomatic in the sense that we have only
included those formal structures in the definition which are necessary
for the IIT algorithm to be applied. This ensured that our reconstruction
is as general as possible, while still true to IIT 3.0. As a result, several
notions used in classical IIT, e.g., system decomposition, subsystems or
causation, aremerely defined abstractly at first, without any reference to
the usual interpretation of these concepts in physics.

In the related article [44], we show that these concepts can be
meaningfully defined in any suitable process theory of physics,
formulated in the language of symmetric monoidal categories. This
approach can describe both classical and Quantum IIT and yields a
complete formulation of contemporary IIT in a categorical framework.

12.2 Further Development of IIT
IIT is constantly under development, with new and refined
definitions being added every few years. We hope that our
mathematical analysis of the theory might help to contribute
to this development. For example, the working hypothesis that
IIT is a fundamental theory, implies that technical problems of
the theory need to be resolved. We have shown that our
formalization allows one to address the technical problems
mentioned in the literature. However, there are others which
we have not addressed in this paper.

Most crucially, the IIT algorithm uses a series of maximalization
and minimalization operations, unified in the notion of core
subsystems in our formalization. In general, there is no guarantee
that these operations lead to unique results, neither in classical nor
Quantum IIT. Using different cores has major impact on the output of
the algorithm, including theΦ value, which is a case of ill-definedness.2

2The problem of ‘unique existence’ has been studied extensively in category theory
using universal properties and the notion of a limit. Rather than requiring that each
E ∈ E come with a metric, it may be possible to alter the IIT algorithm into a well-
defined categorical form involving limits to resolve this problem.
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Furthermore, the contemporary definition of IIT as well as our
formalization rely on there being a finite number of subsystems of
each system, whichmight not be the case in reality. Our formalisation
may be extendable to the infinite case by assuming that every system
has a fixed but potentially infinite indexing set Sub(S), so that each
Subs(S) is the image of a mapping Sub(S) × St(S)→ Sys, but we
have not considered this in detail in this paper.

Finally, concerning more operational questions, it would be
desirable to develop the connection to empirical measures such as
the Perturbational Complexity Index (PCI) [7, 9] in more detail,
as well as to define a controlled approximation of the theory
whose calculation is less expensive. Both of these tasks may be
achievable by substituting parts of our formalization with simpler
mathematical structure.

On the conceptual side of things, it would be desirable to have a
more proper understanding of how the mathematical structure of
experiences spaces corresponds to the phenomenology of experience,
both for the general definition used in our formalization—which
comprises the minimal mathematical structure which is required for
the IIT algorithm to be applied—and the specific definitions used in
classical and Quantum IIT. In particular, it would be desirable to
understand how it relates to the important notion of qualia, which is
often asserted to have characteristic features such as ineffability,
intrinsicality, non-contextuality, transparency or homogeneity [24].
For a first analysis toward this goal, cf [18]. A first proposal to add
additional structure to IIT that accounts for relations between
elements of consciousness in the case of spatial experiences was
recently given in [14].
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APPENDIX A: COMPARISON WITH
STANDARD PRESENTATION OF IIT 3.0

In Section 9, we have defined the system class and cause-effect
repertoires which underlie classical IIT. The goal of this appendix
is to explain in detail why applying our definition of the IIT
algorithm yields IIT 3.0 defined by Tononi et al. In doing so, we
will mainly refer to the terminology used in [25, 26, 31, 48]. We
remark that a particularly detailed presentation of the algorithm
of the theory, and of how the cause and effect repertoire are
calculated, is given in the Supplementary Material S1 of [26].

A.1 Physical Systems
The systems of classical IIT are given in Section 9.1. They are
often represented as graphs whose nodes are the elements
S1, . . . , Sn and edges represent functional dependence, thus
describing the time evolution of the system as a whole, which
we have taken as primitive in Eq. 18. This is similar to the
presentation of the theory in terms of a transition probability
function

p : St(S) × St(S)→ [0, 1]
in [25]. For each probability distribution ~p over St(S), this relates
to our time evolution operator T via

T(~p)[v] :� ∑
w∈St(S)

p(v,w) ~p(w) .

A.2 Cause-Effect Repertoires
In contemporary presentations of the theory ([25], p. 14] or [48]),
the effect repertoire is defined as

peffect(zi,mt) :� 1

|ΩMc | ∑
mc∈ΩMc

p(zi|do(mt ,m
c)) zi ∈ ΩZi (35)

and

peffect(z,mt) :� ∏|z|
i�1

peffect(zi,mt). (36)

Here, mt denotes a state of the mechanism M at time t. Mc

denotes the complement of the mechanism, denoted in our case
asM⊥,ΩMc denotes the state space of the complement, andmc an
element thereof. Zi denotes an element of the purview Z
(designated by P in our case), ΩZi denotes the state space of
this element, zi a state of this element and z a state of the whole
purview. |ΩMc | denotes the cardinality of the state space of Mc,
and |z| equals the number of elements in the purview. Finally, the
expression do(mt ,mc) denotes a variant of the so-called “do-
operator”. It indicates that the state of the system, here at time t, is
to be set to the term in brackets. This is called perturbing the
system into the state (mt ,mc). The notation p(zi|do(mt ,mc)) then
gives the probability of finding the purview element in the state zi
at time t + 1 given that the system is prepared in the state (mt ,mc)
at time t.

In our notation, the right hand side of Eq. 35 is exactly given by
the right-hand side of Eq. 25, i.e. eff ′s(M, Pi). The system is prepared

in a uniform distribution on Mc (described by the sum and
prefactor in Eq. 35) and with the restriction sM of the system
state, here denoted by mt , on M. Subsequently, T is applied to
evolve the system to time t + 1, and the marginalization 〈P⊥

i

∣∣∣∣
throws away all parts of the states except those of the purview
element Pi (denoted above as Zi). In total, Eq. 25 is a probability
distribution on the states of the purview element. When
evaluating this probability distribution at one particular state
zi of the element, one obtains the same numerical value as Eq.
35. Finally, taking the product in Eq. 36 corresponds exactly to
taking the product in Eq. 26.

Similarly, the cause repertoire is defined as ([25], p. 14]
or [48])

pcause(z∣∣∣∣mi,t) :� ∑zc∈ΩZc
p(mi,t

∣∣∣∣do(z, zc))∑s∈ΩS
p(mi,t

∣∣∣∣do(s)) z ∈ ΩZt−1 (37)

and

pcause(z|mt) :� 1
K

∏|mt |

i�1
pcause(z∣∣∣∣mi,t), (38)

where mi denotes the state of one element of the mechanism M,
with the subscript t indicating that the state is considered at time
t. Z again denotes a purview, z is a state of the purview and ΩZt−1
denotes the state space of the purview, where the subscript
indicates that the state is considered at time t − 1. K denotes a
normalization constant and |mt | gives the number of
elements in M.

Here, the whole right hand side of Eq. 37 gives the probability
of finding the purview in state z at time t − 1 if the system is
prepared in state mi,t at time t. In our terminology this same
distribution is given by Eq. 27, where λ is the denominator in Eq.
37. Taking the product of these distributions and re-normalising
is then precisely Eq. 28.

As a result, the cause and effect repertoire in the sense of [31]
correspond precisely in our notation to causs′(M, P) and
eff ′s(M, P), each being distributions over St(P). In
(Supplementary Material S1 of [26]), it is explained that these
need to be extended by the unconstrained repertoires before being
used in the IIT algorithm, which in our formalization is done in
Eq. 29, so that the cause-effect repertoires are now distributions
over St(S). These are in fact precisely what are called the extended
cause and effect repertoires or expansion to full state space of the
repertoires in [31].

The behavior of the cause- and effect-repertoires when
decomposing a system is described, in our formalism, by
decompositions (Definition 5). Hence a decomposition z ∈ DS

is what is called a parition in the classical formalism. For the case
of classical IIT, a decomposition is given precisely by a partition of
the set of elements of a system, and the cause-effect repertoires
belonging to the decomposition are defined in Eq. 30, which
corresponds exactly to the definition

pcutcause(z|mt) � pcause(z(1)∣∣∣∣m(1)
t ) × pcause(z(2)∣∣∣∣m(2)

t )
in [25], when expanded to the full state space, and equally so for
the effect repertoire.
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A.3 Algorithm: Mechanism Level
Next, we explicitly unpack our form of the IIT algorithm to see
how it compares in the case of classical IIT with [31]. In our
formalism, the integrated information φ of a mechanism M of
system S when in state s is

φmax(M) � ���CS,s(M)��� (39)

defined in Eq. 10. This definition conjoins several steps in the
definition of classical IIT. To explain why it corresponds exactly
to classical IIT, we disentangle this definition step by step.

First, consider causs(M, P) in Eq. 9. This is, by definition, a
decomposition map. The calculation of the integration level of
this decomposition map, cf. Eq. 5, amounts to comparing
causs(M, P) to the cause-effect repertoire associated with every
decomposition using the metric of the target space PE(S), which
for classical IIT is defined in Eq. 24 and Example 3, so that the
metric d used for comparison is indeed the Earth Mover’s
Distance. Since cause-effect repertoires have, by definition,
unit intensity, the factor r in the definition (1) of the metric
does not play a role at this stage. Therefore, the integration level of
causs(M, P) is exactly the integrated cause information,
denoted as

φMIP
cause(yt ,Zt−1)

in [48], where yt denotes the (induced state of the) mechanismM
in this notation, and Zt−1 denotes the purview P. Similarly, the
integration level of eff s(M, P) is exactly the integrated effect
information, denoted as

φMIP
effect(yt ,Zt+1) .

The integration scaling in Eq. 10 simply changes the intensity
of an element of PE(S) to match the integration level, using the
scalar multiplication, which is important for the system level
definitions. When applied to causs(M, P), this would result in an
element of PE(S) whose intensity is precisely φMIP

cause(yt ,Zt−1).
Consider now the collections (9) of decomposition maps.

Applying Definition 9, the core of causs(M) is that purview P
which gives the decomposition causs(M, P) with the highest
integration level, i.e. with the highest φMIP

cause(yt ,Zt−1). This is
called the core cause Pc of M, and similarly the core of
eff s(M) is called the core effect Pe of M.

Finally, to fully account for Eq. 10, we note that the integration
scaling of a pair of decomposition maps rescales both elements to
the minimum of the two integration levels. Hence the integration
scaling of the pair (causs(M, P), eff(M, P′)) fixes the scalar value
of both elements to be exactly the integrated information,
denoted as

φ(yt ,Zt ± 1) � min(φMIP
cause, φ

MIP
effect)

in [48], where P � Zt+1 and P′ � Zt−1.
In summary, the following operations are combined in Eq. 10.

The core of (causs(M), eff s(M)) picks out the core cause Pc and
core effect Pe. The core integration scaling subsequently considers
the pair (causs(M, Pc), eff(M, Pe)), called maximally irreducible
cause-effect repertoire, and determines the integration level of

each by analysing the behavior with respect to decompositions.
Finally, it rescales both to the minimum of the integration levels.
Thus it gives exactly what is called φmax in [48]. Using, finally, the
definition of the intensity of the product PE(S) × PE(S) in
Definition 4, this implies (39). The concept of M in our
formalization is given by the tuple

CS,s(M) :� ((causs(M, Pc),φmax(M)), (eff s(M, Pe),φmax(M)))
i.e., the pair of maximally irreducible repertoires scaled by
φmax(M). This is equivalent to what is called a concept, or
sometimes quale sensu stricto, in classcial IIT [48], and
denoted as q(yt).

We finally remark that it is also possible in classical IIT that a
cause repertoire value causs(M, P) vanishes (Remark 12). In our
formalization, it would hence be represented by (ωS, 0) in PE(S),
so that d(causs(M, P), q) � 0 for all q ∈ E(S) according to (1),
which certainly ensures that φMIP

cause(M, P) � 0.

A.4 Algorithm: System Level
We finally explain how the system level definitions correspond to
the usual definition of classical IIT.

The Q-shapeQs(S) is the collection of all concepts specified by
the mechanisms of a system. Since each concept has intensity
given by the corresponding integrated information of the
mechanism, this makes Qs(S) what is usually called the
conceptual structure or cause-effect structure. In [31], one does
not include a concept for any mechanism M with φmax(M) � 0.
This manual exclusion is unnecessary in our case because the
mathematical structure of experience spaces implies that
mechanisms with φmax(M) � 0 should be interpreted as
having no conscious experience, and the algorithm in fact
implies that they have ‘no effect’. Indeed we will now see that
they do not contribute to the distances in E(S) or any Φ values,
and so we do not manually exclude them.

When comparing Qs(S) with the Q-shape Eq. 13 obtained
after replacing S by any of its cuts, it is important to note that both
are elements of E(S) defined in Eq. 12, which is a product of
experience spaces. According to Definition 4, the distance
function on this product is

d(Qs(S),Qs(Sz)) :� ∑
M∈Sub(S)

d(CS,s(M),CSz ,sz(M)) .
Using Definition 3 and the fact that each concept’s intensity is
φmax(M) according to the mechanism level definitions, each
distance d(CS,s(M),CSz ,sz(M)) is equal to

φmax(M) · {d[causs(M, Pc
M), causzs(M, Pz,c

M )]
+ d[eff s(M, Pe

M), eff zs(M, Pz,e
M )]}, (40)

where φmax(M) denotes the integrated information of the concept
in the original system S, and where the right-hand cause and
effect repertoires are those of Sz at its own core causes and effects
for M. The factor φmax(M) ensures that the distance used here
corresponds precisely to the distance used in [31], there called the
extended Earth Mover’s Distance. If the integrated information
φmax(M) of a mechanism is non-zero, it follows that
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d(CS,s(M),CSz ,sz(M)) � 0 as mentioned above, so that this
concept does not contribute.

We remark that in Supplementary Material S1 of [26], an
additional step is mentioned which is not described in any of the
other papers we consider. Namely, if the integrated information
of a mechanism is non-zero before cutting but zero after cutting,
what is compared is not the distance of the corresponding
concepts as in Eq. 40, but in fact the distance of the original
concept with a special null concept, defined to be the
unconstrained repertoire of the cut system. We have not
included this step in our definitions, but it could be included
by adding a choice of distinguished point to Example 3 and
redefining the metric correspondingly.

In Eq. 14 the above comparison is being conducted for every
subsystem of a system S. The subsystems of S are what is called
candidate systems in [31], and which describe that ‘part’ of the
system that is going to be conscious according to the theory (cf.
below). Crucially, candidate systems are subsystems of S, whose
time evolution is defined in Eq. 22. This definition ensures that the
state of the elements of Swhich are not part of the candidate system
are fixed in their current state, i.e., constitute background conditions
as required in the contemporary version of classcial IIT [26].

Eq. 14 then compares the Q-shape of every candidate
system to the Q-shape of all of its cuts, using the distance
function described above, where the cuts are defined in Eq. 23.
The cut system with the smallest distance gives the system-
level minimum information partition and the integrated
(conceptual) information of that candidate system, denoted
as Φ(xt) in [48].

The core integration scaling finally picks out that candidate
system with the largest integrated information value. This
candidate system is the major complex M of S, the part of S
which is conscious according to the theory as part of the exclusion
postulate of IIT. Its Q-shape is the maximally irreducible
conceptual structure (MICS), also called quale sensu lato. The
overall integrated conceptual information is, finally, simply the
intensity of E(S, s) as defined in Eq. 14,

Φ(S, s) � E(S, s).

A.5 Constellation in Qualia Space
Expanding our definitions, and denoting the major complex byM
with statem � s|M , in our terminology the experience of system S
state s is

E(S, s) :� Φ(M,m)
||Qm(M)|| · Qm(M) . (41)

This encodes the Q-shape Qm(M), i.e. the maximally irreducible
conceptual structure of the major complex, sometimes called
quale sensu lato, which is taken to describe the quality of
conscious experience. By construction it also encodes the
integrated conceptual information of the major complex,
which captures its intensity, since we have
||E(S, s)|| � Φ(M,m). The rescaling of Qm(M) in Eq. 41
leaves the relative intensities of the concepts in the MICS
intact. Thus E(S, s) is the constellation of concepts in qualia
space E(M) of [31].
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Abstract

We demonstrate how integrated information and other key notions from
Tononi et al.’s Integrated Information Theory (IIT) can be studied within
the simple graphical language of process theories (symmetric monoidal
categories). This allows IIT to be generalised to a broad range of physical
theories, including as a special case the Quantum IIT of Zanardi, Tomka
and Venuti, and sets the foundation for a categorical definition of IIT.
Keywords: Integrated Information Theory, Process theory, Monoidal
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1. Introduction

Integrated Information Theory (IIT) is a theory of consciousness proposed
and developed by Giulio Tononi and collaborators (Tononi, 2008; Oizumi
et al., 2014). Originally defined in terms of a numerical measure � repre-
senting the level of phenomenal consciousness of a system (Tononi, 2004;
Mediano et al., 2019), the most recent version of the theory, IIT 3.0, now
employs an algorithm which claims to determine in addition which part of a
system is conscious, and what it is conscious of.
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In this article we show how the key concepts of IIT, including systems,
integration and causation, can be studied naturally in the language of physical
process theories, which are mathematically described as symmetric monoidal
categories. Process theories come with an intuitive but rigorous graphical
calculus (Selinger, 2011) which allows us to present many aspects of IIT in
a simple pictorial fashion.

The constructions we provide in this article can be applied to any suitable
process theory to yield a notion of generalised IIT as defined by the authors
in a companion article (Kleiner and Tull, 2021). This allows us to extend
IIT to new physical settings. As special cases, choosing the process theory
of classical probabilistic processes essentially yields the usual IIT 3.0 in the
sense of (Oizumi et al., 2014). Starting instead from the theory of quan-
tum processes gives the Quantum Integrated Information Theory defined
by Zanardi, Tomka and Venuti (Zanardi et al., 2018), which was another
motivation for this work.

Independently of consciousness itself, our constructions provide a pos-
sible foundation for a general theory of integrated or ‘holistic’ behaviour
within process theories, i.e. monoidal categories, which may be of interest
to a broad range of fields. For example, neural net-like systems that achieve
a task using a high degree of integration should be more e�cient than fully
modular ones, in that they require fewer neurons for the same task, and
indeed integrated behaviour has been shown to evolve in simple models of
biological organisms (Albantakis et al., 2014). The methods of IIT have
been applied generally in the study of integration in information processing
systems, including treatments of autonomy (Marshall et al., 2017), causation
(Albantakis et al., 2017), and state di�erentiation (Marshall et al., 2016).

1.1 Background: Mathematical Consciousness Science

The background for our work is in the growing field of Mathematical Con-
sciousness Science (MCS), which aims to apply formal and mathematical
tools in order to resolve open problems in the scientific study of conscious-
ness. One major goal thereby is to expose and improve the mathematical
structure of neuroscientific theories of consciousness so as to allow quantifi-
able comparison between competing models, generate novel experimental
predictions, and to provide a thorough foundation for further development
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and combination of theories. More foundationally, it aims to uncover how
consciousness relates to the physical world in terms of empirically grounded
and philosophically motivated scientific theories. Progress in this direction
is essential for resolving medical challenges (most notably, improving the un-
derstanding of neurological, psychiatric and psychological disorders (Michel
et al., 2019)) and ethical reasons (for example the detection of conscious-
ness in anesthetized or non-communicating patients (Alkire et al., 2008;
Fink et al., 2018)), and could generate new advances in AI (artificial im-
plementation of consciousness-related functions, for example (McDermott,
2007)).

A crucial cornerstone in this program is the representation of conscious
experience in terms of a mathematical spaces, and to expound theories of
consciousness as mappings from a mathematical description of physical
systems to these spaces. Early precursors of the former are quality spaces
(Beals et al., 1968; Clark, 1996, 2000) which make use of just noticeable
di�erence between stimuli to construct a representation of mental qualities
and similarities between them. In the companion article (Kleiner and Tull,
2021), we provide a definition of an experience space that builds upon quality
spaces while being geared at precisely what is required to flash out IIT as a
mathematical mapping of the just-mentioned kind.

This contributes to the exploration and application of category theory as
a framework for theories of consciousness (Tsuchiya et al., 2016; Northo�
et al., 2019; Ehresmann, 2012). Category theory itself provides a natural
language for describing mappings between scientific domains, such as do-
mains of physical systems and those modelling phenomenal experiences.
Its emphasis on processes between systems in particular makes it ideal for
describing theories and experimental findings which relate consciousness
to dynamical processes, as discussed for example in (Fekete and Edelman,
2011; Wiese and Friston, 2020; Grindrod, 2018). The use of monoidal cate-
gories in this article additionally allows us to treat compositional aspects of
systems and processes, which are central to theories such as IIT.

1.2 A Primer on Integrated Information Theory

Though the majority of the article is self-contained and requires no prior
knowledge of the theory, for context we include here a short introduction



Integrated Information in Process Theories 95

to IIT 3.0 (Oizumi et al., 2014), as formulated in its general form in our
companion article (Kleiner and Tull, 2021) to which we refer for a more
detailed presentation of the theory.

Any generalised IIT, including IIT 3.0, takes as input a given class of
physical systems (, each with a given state space St((), and specifies a mapE
which provides each system with a space describing its possible conscious
experiences. Additionally, for each state B 2 St(() the theory specifies a
particular experience E(B) 2 E(() which the system will have in that state:

Physical sys-
tems and states

Spaces and states of
conscious experience

E

In IIT 3.0 the nature of this mapping derives from a number of essential
properties–so called ‘axioms’–which are postulated to characterize every
conscious experience. Next to integration and information, these axioms in-
clude intrinsic existence, composition and exclusion (Tononi, 2015). These
axioms are being translated into formal requirements. To this end, com-
parably simple physical systems are considered. These consist of a set of
elements (or ‘nodes’), each usually with only two states (on or o�), and
come with a discrete Markovian time evolution which is often described via
a given causal graph. The prototypical example would be a human brain,
in which the nodes represent neurons and their firing. The result of the
translation process is the algorithm of IIT 3.0, i.e. the map E when applied
to classical physical systems.

Starting from such a system ( along with its current state B, the theory
then specifies a set of probability distributions known as the cause-e�ect
repertoire. For each pair of subsystems " , % (‘mechanism’ and ‘purview’)
of (, the cause repertoire caus(" , %) is a distribution specifying how the
current state of " constrains the state of % in the previous time-step, and
similarly the e�ect repertoire eff (" , %) addresses the next time-step instead.

In the IIT algorithm one goes on how to calculate how ‘integrated’ each of
these repertoires are by comparing them against repertoires obtained instead
by ‘cutting’ the (evolution of the) system into various parts, by removing
causal connections between them. For each mechanism " one determines
which purviews give the most integrated values of caus(" , %) and eff (" , %),
and these repertoire values (along with their level of integration) determine
a concept for that mechanism. The weighted collection of these concepts
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determines the entityE(B), also known as the Q-shape of the system, which is
claimed to specify its total conscious experience. In particular this Q-Shape
comes with its own level of integration, denoted �(B), which describes ’how
conscious’ the system is as a whole. A final ‘exclusion’ step enforces that
only the subsystem of ( with the highest � value will in fact be conscious.

In the article (Kleiner and Tull, 2021) we show how to define a broad
class of generalisations of IIT, in which for example the repertoires need no
longer be described by probability distributions, but the states of a general
physical theory. In the present article we describe how such IITs may be
defined starting from any physical process theory. To do so we define the
key notions of any IIT within such a setting, namely causal relations and
their integration.

1.3 Structure of Article

The article is structured as follows. We introduce process theories in Section
2 and then use them to describe the key notions from IIT – decompositions
of objects (Section 3), systems (Section 4) and cause and e�ect repertoires
(Section 5). We summarise how to define a generalised IIT from a process
theory in Section 6 before giving examples in Section 7 and discussing future
work in Section 8. The appendix contains some initial steps in developing a
general study of integration in monoidal categories.

2. Process Theories

We begin by introducing the framework of process theories used throughout
this work; for more detailed introductions we refer to (Coecke and Paquette,
2010; Coecke and Kissinger, 2017). The basic ingredients of such a theory
are objects and processes between them. We depict a process from the object
� to the object ⌫ as a box:

5

�

⌫

These processes may be composed together to form new ones in several
ways. Firstly, given a process such as 5 above, and any other process 6 from
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⌫ to ⇠, we may compose them ‘in sequence’ to form a new one from � to
⇠, denoted:

6 � 5 =
5

6

� �

⇠⇠

Secondly, we may compose processes in parallel. Any two objects �, ⌫ may
be combined into a single object � ⌦ ⌫. Moreover any processes 5 from �
to ⌫, and 6 from⇠ to ⇡ may be placed ‘side-by-side’ to form a new process:

5 ⌦ 6 = 5

� ⌦ ⇠ �

⌫⌫ ⌦ ⇡

6

⇡

⇠

from � ⌦⇠ to ⌫ ⌦ ⇡. More generally, by combining these operations, many
processes may all be plugged together to form more complex diagrams
describing a single composite process.

As a convenience, any process theory is taken to come with the following.
Firstly, any object � come with an identity process, depicted as a blank wire
on �, which ‘does nothing’ in that composing with it via � leaves any process
as it is. Secondly, it has a trivial object, denoted �, which leaves objects
alone when combining under ⌦. We depict � as empty space:

=

�

�

Finally, we formally assume the presence of a special process which allows
us to ‘swap’ any pair of wires over each other, along with a set of rules saying
roughly that diagrams in the above sense are well-defined.

Mathematically, all of this is summarised by saying that a process theory
is precisely a symmetric monoidal category (C, ⌦, �) with the processes as
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its morphisms. Our diagrammatic rules correspond to the precise graphical
calculus for reasoning in such categories (Selinger, 2011).

We will often wish to refer to some special kinds of processes. Processes
with ‘no input’ in diagrams (and so formally with input object �) are called
states, and can be thought of as ‘preparations’ of the physical system given
by their output object:

d

Processes with no output, called e�ects, may be thought of as ‘observations’
we may record on our system. Finally, processes with neither input nor output
are called scalars. It is common for theories to come with a probabilistic
interpretation meaning that each of their scalars ? correspond to a probability,
or more generally an ‘unnormalised probability’ ? 2 R+, with A ⌦ B = A · B
for scalars and the empty diagram given by 1. In particular, the composition
of a state with an e�ect

d

4

2 R+

corresponds to the ‘probability’ of observing the e�ect 4 in the state d.
Such ‘generalised probabilistic theories’ are a major focus of study in the
foundations of physics (Barrett, 2007).

The theories we consider here will often come with further structure
giving them a physical interpretation. Firstly, every object will come with a
distinguished discarding e�ect depicted

which we think of as the process of simply ‘throwing away’ or ‘ignoring’ a
physical system. Similarly, every object should come with a distinguished
completely mixed state depicted as

which corresponds to preparing the object in a maximally ‘noisy’ or ‘random’
state. These processes should satisfy

� ⌦ ⌫
=

� ⌫

� ⌦ ⌫
=

� ⌫
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as well as

� = =

�

�
=

for all objects �, ⌫. We then define a process 5 to be causal when it satisfies

5

⌫

�

=

�

or similarly as co-causal if it preserves . Discarding processes are in fact
closely related to physical notions of causality; see for example (Coecke,
2014; Chiribella et al., 2010).

In such a probabilistic theory there is a unique process between any two
objects, the zero process 0, such that composing any process via �, ⌦ with 0
always yields 0.

At times we will assume our process theory also comes with a way of
describing how similar any two causal states are. This amounts to a choice
of distance function on the set Stc(�) of causal states of each object �,
providing a value 3 (0, 1) 2 R+ for each 0, 1 2 Stc(�). Often this map 3
will satisfy the axioms of a metric, but this is not required.

Our main examples of process theories will come with a notable extra
feature, though this will not be necessary for our approach. In many theories
it is possible to ‘reverse’ any process, in that for any process 5 there is
another 5 † in the opposite direction. We say a process theory has a dagger
when it comes with such a mapping

5

⌫

�

7! 5 †

�

⌫

which preserves composition and identity maps in an appropriate sense, and
satisfies 5 †† = 5 for all 5 . The presence of a dagger is a common starting
point in categorical approaches to quantum theory; see e.g. (Abramsky and
Coecke, 2004; Selinger, 2007).
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Let us now meet our main examples of process theories with the above
features.

Example 1 (Classical Probabilistic Processes) In the process theory Class
of finite-dimensional probabilistic classical physics, the objects are finite
sets �, ⌫,⇠, . . . and the processes 5 from � to ⌫ are functions sending each
element 0 2 � to a ‘unnormalised probability distribution’ over the elements
of ⌫, i.e functions 5 : � ⇥ ⌫ ! R+. Composition of 5 from � to ⌫ and 6
from ⌫ to ⇠ is defined by

(6 � 5 ) (0, 2) =
’
12⌫

5 (0, 1) · 6(1, 2)

In this theory the trivial object is the singleton set � = {¢}, with ⌦ given
by the Cartesian product � ⇥ ⌫ and ( 5 ⇥ 6) (0, 2) (1, 3) = 5 (0, 1) · 6(2, 3).
This theory is probabilistic, with scalars A 2 R+.

Here � is the unique e�ect with �(0) = 1 for all 0 2 �. A process
5 is causal whenever it is stochastic, i.e. sends each element 0 2 � to a
(normalised) probability distribution over the elements of ⌫. Applying the
process to some output wire of a process corresponds to marginalising
over the set which is discarded.

States of an object are ‘R+-distributions’ over their elements, while causal
states are normalised ones, i.e. probability distributions. The completely
mixed state � is the uniform probability distribution, with �(0) = 1

|� | for
all 0 2 �. This theory also has a dagger by 5 †(1, 0) = 5 (0, 1).

Similarly we define another process theory Classm, in the same way,
but with objects now being finite metric spaces (�, 3). Each object � now
comes with a metric 3 on its underlying set, with � ⌦ ⌫ = � ⇥ ⌫ having the
product metric. For each object �we extend 3 to a metric 3, on probability
distributions over �, i.e. causal states of �, called the Wasserstein metric or
Earth Mover’s Distance (EMD), definable e.g. by

3, (B, C) := sup
5
{
’
02�

5 (0) · B(0) �
’
02�

5 (0) · C (0)}

where the suprema is taken over all functions 5 satisfying | 5 (0) � 5 (1) | 
3 (0, 1) for all 0, 1. Class itself may be given a metric on causal states in the
same way by taking each object � to have metric 3 (0, 1) = 1 � X0,1.
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Example 2 (Quantum Processes) In the process theory Quant the objects
are finite-dimensional complex Hilbert spaces H ,K, . . . and the processes
from H to K are completely positive maps 5 : ⌫(H) ! ⌫(K) between
their spaces of operators. Here � = C and ⌦ is the usual tensor product of
Hilbert spaces and maps. States d of an object H may be identified with
(unnormalised) density matrices, i.e. quantum states in the usual sense, as
may e�ects. The e�ect sends each operator 0 2 ⌫(H) to its trace Tr(0),
and is the maximally mixed state on H , with density matrix 1

dim(H) 1H .
Here a process is causal precisely when it is trace-preserving, and the dagger
is given by the Hermitian adjoint.

Example 3 (Quantum-Classical Processes) To combine Class and Quant
we may use the theory CStar whose objects are finite-dimensional C⇤-
algebras �, ⌫, . . . and processes are completely positive maps 5 : � ! ⌫,
with ⌦ given by the standard tensor product, � = C and the dagger again
by the Hermitian adjoint. Here sends each element 0 2 � to its trace
Tr(0) 2 C, while corresponds to the rescaling 1

31 of the element 1 2 �,
where Tr(1) = 3. Each C⇤-algebra comes with a metric induced by its norm,
providing a metric on states in the theory.

Class may be identified with the sub-theory of CStar containing the
commutative algebras, and Quant with those of the form ⌫(H) for some
Hilbert spaceH . More general algebras are ‘quantum-classical’, being given
by direct sums of quantum algebras.

3. Decompositions

A central aspect of IIT is evaluating the level of integration of a process, and
particularly of a state of some object. To do so we must compare the object
in question against ways it may be decomposed, as follows.

Firstly, recall that a process 5 from � to ⌫ is an isomorphism when there
is some (unique) 5 �1 from ⌫ to � for which 5 �1 � 5 and 5 � 5 �1 are both
identities. We write � ' ⌫ when such an isomorphism exists.

Definition 4 In any process theory, a decomposition of an object ( is a pair
of objects �, �0 along with an isomorphism ( ' � ⌦ �0.
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In a process theory with , we will always consider decompositions
whose isomorphisms are causal and co-causal. We also assume that decom-
position isomorphisms preserve any distances between causal states.

For short we often denote such a decomposition simply by (�, �0) and
depict its isomorphism and inverse by

� �0

(

,

� �0

(

respectively. The fact that they form an isomorphism means that

= =

One can go on to develop a general study of decompositions in process
theories. Here we just note some of the basics, for more see Appendix A.

Firstly, any decomposition has an induced complement decomposition
(�, �0)? := (�0, �), with isomorphism given by swapping its components:

��0

(

All decompositions then satisfy (�, �0)?? = (�, �0). Moreover, any object
always ( always comes with trivial decompositions denoted 1 := ((, �) and
0 := (�, () with 0 = 1?. Drawing either of their isomorphisms would just
mean drawing a blank wire labelled by (.

It is also useful to note when two decompositions of an object are ‘essen-
tially the same’. We write (�, �0) ⇠ (⌫, ⌫0) and call both decompositions
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equivalent when there exists isomorphisms 5 , 6 with

=
5 6

⌫ ⌫0
⌫ ⌫0

(

� �0

(

(1)

In a theory with , we require moreover that 5 , 6 are causal and co-causal.
We write D(() for the set of all equivalence classes of decompositions

of ( under ⇠ (we will ignore the fact that in full generality each equivalence
class may be a proper class rather than a set). Often we abuse notation and
denote the members of simply by (�, �0) instead of as equivalence classes
[(�, �0)]⇠. It is easy to see that if two decompositions are equivalent then
so are their complements, so that (�)? is well-defined on D(().

Definition 5 By a decomposition set of an object ( in a process theory we
mean a subset D of D(() containing 1 and closed under (�)?.

Given any decomposition set D of ( and any (�, �0) 2 D, we define the
restriction of D to � via this decomposition to be the decomposition set

D|� :=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

⌫ ⇠

�

| 9
⇠ �0

⌫0

s.t.

(

� �0

⌫

⇠

⌫0

2 D

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

✓ D(�)

Intuitively D|� consists of all decompositions of � which themselves can be
extended to give a decomposition of ( belonging to D, via (�, �0).

The most important examples of decomposition sets are the following.

Example 6 Let ( be an object with a given isomorphism

( ' (1 ⌦ · · · ⌦ (=



104 Sean Tull and Johannes Kleiner

representing ( as finite tensor of objects (8 which we may call elements. This
induces a decomposition set D of ( whose elements correspond to subsets
� of the elements. For any such subset, defining (� :=

À
� ( 9 we have a

decomposition ( ' (� ⌦ (� 0 where � 0 is the set of remaining elements. Then
D|(� contains a decomposition for each  ✓ � in the same way.

Decompositions via elements as above are the only kinds appearing
in classical or quantum IIT. However, more general ones allow us to treat
systems which are not decomposable into any finite set of ‘elementary’
subsystems.

4. Systems

We now begin by seeing how each of the main components of IIT, or any
‘generalised IIT’ in the sense of (Kleiner and Tull, 2021), may be treated
starting from any given process theory C. The focus will be on a class of
systems, as follows.

Definition 7 By a system type we mean a triple ( = ((,D,)) consisting of
an object ( with a decomposition set D and a causal process

)

(

(

which we call its time evolution. A state of ( is simply a state of ( in C. We
typically refer to a system type simply as a system.

The setD specifies the ways in which we will decompose our underlying
system when assessing integration. The process ) is intended to describe
the way in which states of the system evolve over each single ‘time-step’, via

)
B

B

7!
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In what follows it will be useful to be able to restrict any state B of our system
to the components of any decomposition (�, �0) 2 D by setting

B |�

�

:=

�0
�

B

and defining B |�0 similarly. We define the trivial system � to have object �, a
single decomposition 1 = (�, �) = 0, and time evolution being the identity.

4.1 Subsystems

There are several operations on systems one carries out in the context of IITs.
The first is the taking of subsystems.

Definition 8 For each object ⇠ belonging to some decomposition (⇠,⇠ 0) 2
D, and each state B of (, the corresponding subsystem of ( is defined to be
the system type ⇠B := (⇠,D|⇠ ,) |⇠) with time evolution

)

B |⇠0⇠

⇠ 0

⇠

⇠ 0

) |⇠ :=

⇠

⇠

The above definition of ) |⇠ is from (Oizumi et al., 2014) and aims to
capture the evolution of a state of ⇠ conditioned on the state of ⇠ 0 being
B |⇠0.

4.2 Cutting

A second important operation involves removing (some or all) causal con-
nections between the two di�erent components of a decomposition of a
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system. For any system ( = ((,D,)) and decomposition (⇠,⇠ 0) 2 D, we
should be able to form a new such cut system of the form

( (⇠ ,⇠0) = ((,D,) (⇠ ,⇠0) )

with the new evolution ) (⇠ ,⇠0) removing some influence between these re-
gions. The most straightforward form of cutting is a symmetric cut, in which
both components are fully disconnected from each other, with evolution

)

⇠

⇠

)

⇠ 0

⇠ 0

(

(

) (⇠ ,⇠0)

(

(

:= (2)

(where the triangle denotes (⇠,⇠ 0)?). However, later we will see that some
IITs use additional structure to carry out alternative notions of system cut.

5. Cause and E�ect

Central to any IIT is a notion of causal influence between any two possible
subsystems of a system. These influences are captured in a pair of assign-
ments called the cause repertoire and e�ect repertoire of the system. In IIT
3.0 these contain probability distributions describing how the present state of
each subsystem constrains the past and future states of each other subsystem
(Oizumi et al., 2014). For our purposes it su�ces to note that such cause
and e�ect repertoires amount to specifying a pair of processes

caus

"

%

, eff

"

%

for each pair of underlying objects " , % of subsystems " , % of ( via some
state B. In this setting " is typically called the ‘mechanism’ and % the
‘purview’, and the above processes should capture the way in which the
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current state < of " constrains the previous or next state of %, respectively.
These constraints are captured by the pair of states of % given by plugging
in the ‘current’ state < of ":

"

<
7! caus

%

<

,
eff

%

<

We will additionally require the processes caus, eff to be weakly causal
in the sense that whenever the state < is causal then each of the above states
must either be causal or 0.

Example 9 For any process theory (resp. with a dagger) there is a simple
choice of e�ect (resp. cause) repertoire given by

eff

%

=

"

)

%

"

%0

" 0

caus

%

=

"

)†

%

"

%0

" 0

(3)

Note however that this definition of caus may not be weakly causal in our
above sense if )† is not causal.

In a probabilistic process theory we should instead have that

caus

%

=
"

)†

%

"

%0

" 0<

_<

<

(4)

where _< is the unique normalisation scalar for the right-hand state, making
it causal if it is non-zero (and being zero otherwise). It is not in general
possible to define a process caus in terms of its action on states < in this
way, but this is possible for example in Class, Quant or CStar.
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However the repertoires are specified, we will need to compare their
values in a fixed state while varying %. To do so, for each state B of ( and
each such " , % we define the cause repertoire at B to be the state of ( given
by

B |"

causB (" , %)

(

:=
"

caus
%

caus
%0

(

(5)

The features of this diagram have special names in (Oizumi et al., 2014);
the right-hand caus state above, given by taking mechanism " = �, is called
the unconstrained cause repertoire, and the whole process above B |" in the
diagram is called the extended cause repertoire at " , %. Defining them in
this way allows us to compare the repertoire values for varying " , %.

Similarly, effB (" , %), the e�ect repertoire at B, and the unconstrained
and extended e�ect repertoire are all defined in terms of eff in the same way.

5.1 Decomposing Repertoires

In an IIT we must assess how integrated each of these repertoire values
are at a given state . This involves comparing the repertoires with how
they behave under decomposing each of " and %. For any decompositions
("1,"2) 2 D|" of " and (%1, %2) 2 D|% of %, the decomposed cause
repertoire process is defined by

caus
"1

%1

caus
"2

%2

%

"

caus%1,%2

"1,"2

%

"

:= (6)

We then define the state caus%1,%2

B,"1,"2
(" , %) just like (5) but replacing caus

with the process (6). We decompose the e�ect repertoire in just the same
way in terms of eff.
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6. Generalised IITs

In summary, let C be a process theory coming with the features , , 3 of
Section 2. To define an integrated information theory we must specify:

1. a class Sys of system types, closed under subsystems;

2. a definition of system cuts, under which Sys is closed;

3. a choice of weakly causal processes caus, eff between the underlying
objects " , % of each pair of subsystems " , % via some state B, of any
system (.

More precisely, this provides the data of a generalised integrated infor-
mation theory in the sense of (Kleiner and Tull, 2021). From this data we
may now use the IIT algorithm from (Oizumi et al., 2014) to calculate the
usual objects of interest in IIT.

6.1 The IIT Algorithm

We now briefly summarise this algorithm as treated in the general setting
in (Kleiner and Tull, 2021), to which we refer for more details. Let us fix a
‘current’ state B of a system (. Firstly, the level of integration of each value
of the cause repertoire is defined by

q(causB (" , %)) := min 3 (causB (" , %) , caus%1,%2

B,"1,"2
(" , %)) (7)

where the minima is taken over all pairs of decompositions of " , % which
are not both trivial, i.e. equal to 1. 1 The integration level q(effB (" , %)) is
defined similarly in terms of eff.

For each choice of mechanism " , its core cause %2 and core e�ect %4
are the purviews % with maximal q values for caus, eff respectively. The
minima of their corresponding q values is then denoted by q("). We then
associate to " and object called its concept C("), essentially defined as the
triple

(causB (" , %2), effB (" , %4), q("))
1When causB (" , %) = 0 we alternatively set q = 0.
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More precisely, in (Kleiner and Tull, 2021), C(") is given by the pair of
above repertoire values with each ‘rescaled’ by q(").

The tupleQ(B) of all these concepts, for varying " , is called the Q-shape
Q(B) of the state B. The collection of all possible such tuples is denoted E(().
The level of integration of Q(B) is calculated similarly to (7) by considering
all possible cuts of the system. The subsystem " of ( whose Q-shape is
itself found to be most integrated is called the major complex. Rescaling
this Q-shape Q(" , B |" ) according to its level of integration, and using an
embedding E(") õ! E(() we finally obtain a new element E(B) 2 E(().

The claim of an IIT with regards to consciousness is that E(() is the
space of all possible conscious experiences of the system (, and that E(B)
is the particular experience attained when it is in the state B, with intensity
�(B) := || E(B) ||.

Remark 10 Let us make explicit how the specification of 1, 2, 3 above
provides the data of an IIT in the sense of (Kleiner and Tull, 2021). The
system class of the theory is Sys, and causB (" , %), effB (" , %) and their
decompositions are as outlined in Section 5.1. When C is probabilistic and
has distances 3 (0, 1) defined for arbitrary states 0, 1 of an object �, we may
define the space of proto-experiences PE(() of a system ( to be simply its
set of states, with ���� B

���� := B

However, if 3 is only defined on causal states, as in classical IIT, to follow
the algorithm from (Kleiner and Tull, 2021) one must instead set PE(() :=
Stc(() ⇥ R+ as in Example 3 of (Kleiner and Tull, 2021). For either choice,
for any subsystem " of ( we obtain an embedding PE(") õ! PE(()
by composing alongside "? , and this can be seen to provide a further
embedding E(") õ! E(().

7. Examples

Let us now meet several examples of IITs defined from process theories.
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7.1 Generic IITs

Let C be any process theory coming with the features outlined in Section
2, including a dagger on processes. We define a generalised IIT denoted
IIT(C) by taking as systems all tuples ( = ((,D,)) of an object ( in C
along with a causal process ) and a decomposition setD induced by a single
isomorphism ( ' À=

8=1 (8 in terms of elements (8 , as in Example 6. As
before each partition of these elements gives a decomposition of (. We
define system cuts to be symmetric as in (2) and the repertoires in the
straightforward sense of (3).

Remark 11 We can extend this example in to ways. Firstly we may allow
systems ( to come with arbitrary finite decomposition setsD of (. Secondly,
we may extend the definition to theories without daggers by instead simply
requiring each system ( to come with a process )� describing ‘reversed time
evolution’, and then define the cause repertoire by replacing )† with )�.

7.2 Classical IIT

The ‘classical’ IIT version 3.0 of Tononi and collaborators (Oizumi et al.,
2014) is built on the process theory Classm. As such a toy model of the
theory is provided by IIT(Classm). However IIT 3.0 itself di�ers from this
theory, using some more specific features of the process theories Class and
Classm which we now describe.

Firstly, note that in these classical process theories, for each object
�, each element 0 2 � corresponds to a unique state given by the point
distribution at 0, as well as a unique e�ect, namely the map sending 0 to 1
and all other elements of � to 0. We denote this state and e�ect both simply
by 0.2

Any process 5 from � to ⌫ is determined entirely by its compositions
with these special states and e�ects since plugging in such a state 0 and
e�ect 1 yields its value 5 (0, 1).

Another special feature of these classical process theories is that each
object � comes with a distinguished copying process from � to � ⌦ · · · ⌦ �,

2Typically these are the only kinds of ‘state’ considered, e.g. in (Oizumi et al., 2014)
and even in our related article (Kleiner and Tull, 2021). In contrast here the term ‘state’
would include all distributions over �, i.e. all states of the process theory Classm.
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for any number of copies of �, as well as a comparison process in the
opposite direction. We denote and define these respectively by the rules

� �. . .

0

=

� �

. . .
0 0

�

� �. . .

0

=

� �

. . .
0 0

for all 0 2 �. Abstractly, these operations form a canonical commutative
Frobenius algebra on each object, and there is no such canonical algebra on
each object in Quant due to the no-cloning theorem (Coecke et al., 2013).
We may now describe IIT 3.0 itself as follows.

7.2.1 Systems

In this theory systems are defined similarly to IIT(Classm), being given by a
finite metric space ( given as a product of elements ( ' À=

8=1 (8 , along with
a causal (i.e. stochastic) evolution ) on (. Additionally in (Oizumi et al.,
2014) each evolution ) is required to satisfy conditional independence,
which states that for all B, C 2 (, with C = (C1, . . . , C=) for some C8 2 (8 we
have

)

B

C

= )1

B

C1

)=

B

C=

( (

(=(1
. . .

where for each element (8 we define the process )8 by

:=)8

(8

(

)

(8

(

(=(1 . . . . . .

having depicted the isomorphism ( ' À=
8=1 (8 by the triangle above. In

other words, conditional independence states that the probabilities for the
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next state of each element (8 are independent. Equivalently, ) must satisfy

(

(1

. . .

(

(

)

)1 )=

(=

=

(1

. . .

(=

7.2.2 Cuts

Rather than our earlier symmetric cuts, the system cuts used in IIT 3.0 are
directional. For any decomposition (⇠,⇠ 0) of ( with ⇠ =

À
92� ( 9 for

some subset of notes indexed by � ✓ {1, . . . , =}, we define the cut evolution
) (⇠ ,⇠0) using conditional independence by setting

) (⇠ ,⇠0)
8

(8

(

:=

©≠≠≠≠≠≠≠≠≠≠≠≠
´

)8

(8

(

(8 2 �) ,

)8

(8

⇠ ⇠ 0
⇠

(

(8 8 �)

™ÆÆÆÆÆÆÆÆÆÆÆÆ
¨

In other words, in the cut system all causal connections⇠ ! ⇠ 0 are replaced
by noise, while all those into ⇠ remain intact.

7.2.3 Repertoires

Let us now define the processes caus, eff between a pair of objects " and %,
with " =

À:
8=1 "8 and % =

ÀA
9=1 % 9 for some subsets {"1, . . . ,": } and

{%1, . . . , %A } of elements of the system.
We begin with eff. When % is simply a single element % 9 , eff is defined

exactly as in (3). For more general % we define eff to again satisfy a form of
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conditional independence, so that

eff = eff eff. . .
% %1 %A

< < <
" ""

? ?1 ?A

for all < 2 " , ? = (?1, . . . , ?A ) 2 %. Equivalently, we have that

eff =

%

"
"

%1

. . .eff eff
%A

""

%

In a similar fashion, whenever " is a single element "8 we define caus from
" to % as in (4), while for more general " we require that

caus =
" "1

. . .caus caus
":

%%

? ? ?
%

< <1 <:

_<

for all < = (<1, . . . ,<:) 2 " and ? 2 %, where _< is the normalisation
scalar making caus � < a causal state (probability distribution) if it is non-
zero, or _< = 0 otherwise. Equivalently, this means that

caus =

%

"

%

"1

. . .caus caus

":

%%

"
<

<

_<

for each < 2 " . This concludes the data of classical IIT.



Integrated Information in Process Theories 115

7.3 Quantum IIT

Zanardi, Tomka and Venuti have proposed a quantum extension of classical
IIT (Zanardi et al., 2018). In fact it is comparatively much simpler to describe
in our approach, being precisely the theory IIT(Quant).

Explicitly, systems in this theory are given by finite-dimensional complex
Hilbert spaces H along with a given decomposition into elements H 'À=

8=1 H8 and a completely positive trace-preserving map) on ⌫(H). States
and repertoire values are given by density matrices d. In this theory each
Q-shapeQ(d) may be encoded as a single positive semi-definite operator on
the space (C2)⌦= ⌦ C2 ⌦ H , as discussed in (Zanardi et al., 2018).

7.4 Quantum-Classical IIT

We may now define a version of quantum-classical IIT as IIT(CStar). This
synthesizes quantum IIT with the toy version IIT(Classm) of classical IIT,
containing both kinds of systems. In future it would be desirable to synthesise
quantum IIT with IIT 3.0 proper. Since the latter relies on the presence of
copying maps, this may be achievable using the more general notion of a
leak on a C⇤-algebra (Selby and Coecke, 2017).

8. Outlook

In this article we have taken first steps to show how Integrated Information
Theory, and its generalisations to other domains of physics, may be studied
categorically. There are many avenues for future work.

Firstly, we have so far made no requirements on the cause and e�ect
repertoire processes caus, eff. To be fit for their name these processes
should be required to satisfy axioms which ensure they have a causal in-
terpretation, ideally determining them uniquely within any given process
theory. Monoidal categories provide a natural setting for the study of causal-
ity, a major contemporary topic in the foundations of physics (Kissinger and
Uijlen, 2017).

At a higher level, it seems natural for the class of systems Sys of a
generalised IIT to itself form a category. The theory itself should then give
a functor into another category Exp of (spaces of) phenomenal experiences;
a formalization of the latter is for example given in (Kleiner and Tull, 2021).
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Making IIT functorial in this way will likely involve modifying it to be
more natural from a categorical perspective. Developing a useful notion of
integration applicable to any monoidal category may also help to resolve
mathematical problems of the IIT algorithm, for example its relying on the
unique existence of core purviews which are not guaranteed�.
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A. Decompositions and Integration

Here we briefly mention a few further results about decompositions of objects
in process theories; we leave a detailed study of their properties to future
work.

Our earlier definition of D|� was based on an idea of one decomposition
as being ‘contained in’ another. Let us make this precise.

Definition 12 Let ( be an object in a process theory and (�, �0), (⌫, ⌫0)
two decompositions. We write that (�, �0) � (⌫, ⌫0) whenever there exists
an object ⇠ and decompositions (�,⇠) of ⌫ and (⌫0,⇠) of �0 such that

⌫

⌫0

=

(

� ⇠

�0

�

(

⌫0⇠

(8)
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Intuitively, this states that � is contained in ⌫ (as is ⌫0 within �0) in a way
compatible with these decompositions.

Lemma 13 Let ( be an object in a process theory. Then � forms a pre-order
on the set of decompositions of (, with top element 1 and bottom element 0,
and (�)?as an involution.

Proof. We always have (�, �0) � (�, �0) by taking ⇠ = � and using
the decompositions 1 and 0 on � in (8). Similarly (�, �0) � 1 by taking
⇠ = �0. To see that (�)? is an involution, suppose that (�, �0) � (⌫, ⌫0) as
above. Then we have (⌫, ⌫0)? � (�, �0)? since

�0

�

=

(

⌫0 ⇠

�0

⌫0

(

�⇠

=⌫

(

=⌫

⌫0

(

�⇠ ⌫0 �⇠

Hence we always have 0 = 1? � (�, �0) for all (�, �0). For transitivity,
note that whenever (�, �0) � (⌫, ⌫0) � (⇠,⇠ 0) via some respective objects
⇡, ⇢ then we have

=
�0

�

(

⇡ ⇠ 0⇢

⌫0

�

(

⇡ ⇠ 0⇢

⌫ ⇠

⇠ 0

(

⇢� ⇡

⌫⌫0

=

so that (�, �0) � (⇠,⇠ 0) via the above decompositions (⇡ ⌦ ⇢ ,⇠ 0) of �0

and (�,⇡ ⌦ ⇢) of ⇠. ⌅

Recall that in any category, a sub-object of an object � is an (isomorphism
class of a) monomorphism < : " ! �. It is split when 4 � < = id" for
some 4. The sub-objects of � form a partial order Sub(�).
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Lemma 14 In any process theory with , , for any object (:

1. Any decomposition (�, �0) of ( makes � a split sub-object of ( via

�
�0

(

,

�
�0

(

(9)

Moreover if (�, �0) � (⌫, ⌫0) then �  ⌫ in Sub(().
2. � restricts to a partial order  on D((), again with top element 1,

bottom 0 and involution (�)?.

Proof. 1: We have

= =

If (�, �0) � (⌫, ⌫0) then the splitting for � factors over that for ⌫ since:

�
�0

(

= �0

�

(

⌫0⇠

⌫ ⌫0=

(

�

⇠

It follows that �  ⌫ in Sub(().
2: We need to show that any two decompositions (�, �0) and (⌫, ⌫0) are

equivalent under � precisely when they are equivalent in the sense of (1).
Firstly, if there exists causal and co-causal isomorphisms 5 , 6 making (1)
hold, then we have

=
5 �1 6

� ⌫0� ⌫0

(

�0

(

⌫
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Viewing 5 �1 and 6 as decompositions (�, �) of ⌫ and (�, ⌫0) of �0, re-
spectively, this gives that (⌫, ⌫0) � (�, �0). Then (�, �0) � (⌫, ⌫0) holds
similarly.

Conversely, if (�, �0) � (⌫, ⌫0) � (�, �0), via respective objects ⇠,⇡
then

⌫ ⌫0

(

⇠�

⇡

=

⌫

⌫0

⌫

(

⇠ �0
⇡ ⌫

=

⌫
⌫0

(

Since the right-hand map is an epimorphism by the first part, this gives that

⌫

⇠�

⇡

=

⌫

⌫

⌫

Dually, composing in the other order gives the identity on �, making these
causal and co-causal isomorphisms � ' ⌫. Similarly we obtain such iso-
morphisms �0 ' ⌫’. Then we have

=
⌫

⌫

(

⇠

⌫

⇡

�0

⌫

(

⇡
⌫0

⇠

�
�

=
⌫0⌫

(

as required. Now 2 follows since any pre-order restricts to a partial order on
its set of equivalence classes, and so � becomes a partial order  on D(().
It is easy to see that the earlier properties of 1, 0, (�)? carry over to . ⌅
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A.1 Integration

Let us briefly allude to how integration may generally be studied and quan-
tified using decomposition sets.

Suppose we have objects (, (0 with given decomposition sets D,D0 and
for each (�, �0) 2 D and (⌫, ⌫0) 2 D0 a process 5 ⌫� from � to ⌫. We denote
5 (

0
( simply by 5 . Whenever we have a given distance function 3 on the set of

processes from ( to (0, we may define the level of integration of the family
( 5 ⌫� )�,⌫ as

q( 5 ) := min
D⇥D0

3

©≠≠≠≠≠≠≠≠≠≠≠
´

(

5

(0

,
� �0

(

5 ⌫� 5 ⌫
0

�0

(0

⌫0⌫

™ÆÆÆÆÆÆÆÆÆÆÆ
¨

where we exclude the top element (1, 1) of D ⇥ D0 in the minimisation.

Example 15 Given any process 5 from ( to (0 we may define such a family
( 5 ⌫� )�,⌫ with 5 (

0
( = 5 by setting

(

⌫0

5

⌫

(0

�

5 ⌫�

⌫

:=

�0
�

Example 16 Our earlier description of the IIT algorithm precisely includes
evaluating the integration level of each of the families of processes (caus)" ,%

and (eff)" ,% using the state-dependent distance

3<

©≠≠≠
´
5

"

%

, 6

"

% ™ÆÆÆ
¨

:= 3
©≠≠≠
´
5

%

<

, 6

%

<

™ÆÆÆ
¨
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where < = B |" and 3 is the distance on St(().
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Abstract

The search for a scientific theory of consciousness should result in theories that are falsifiable. However, here we show that
falsification is especially problematic for theories of consciousness. We formally describe the standard experimental setup
for testing these theories. Based on a theory’s application to some physical system, such as the brain, testing requires com-
paring a theory’s predicted experience (given some internal observables of the system like brain imaging data) with an in-
ferred experience (using report or behavior). If there is a mismatch between inference and prediction, a theory is falsified.
We show that if inference and prediction are independent, it follows that any minimally informative theory of conscious-
ness is automatically falsified. This is deeply problematic since the field’s reliance on report or behavior to infer conscious
experiences implies such independence, so this fragility affects many contemporary theories of consciousness.
Furthermore, we show that if inference and prediction are strictly dependent, it follows that a theory is unfalsifiable. This
affects theories which claim consciousness to be determined by report or behavior. Finally, we explore possible ways out of
this dilemma.

Keywords: consciousness; theories and models

Introduction

Successful scientific fields move from exploratory studies and
observations to the point where theories are proposed that can
offer precise predictions. Within neuroscience, the attempt to
understand consciousness has moved out of the exploratory
stage and there are now a number of theories of consciousness
capable of predictions that have been advanced by various
authors (Koch et al. 2016).

At this point in the field’s development, falsification has be-
come relevant. In general, scientific theories should strive to
make testable predictions (Popper 1968). In the search for a sci-
entific theory of consciousness, falsifiability must be considered
explicitly as it is commonly assumed that consciousness itself
cannot be directly observed, instead it can only be inferred
based off of report or behavior.

Contemporary neuroscientific theories of consciousness first
began to be proposed in the early 1990s (Crick 1994). Some have
been based directly on neurophysiological correlates, such as
proposing that consciousness is associated with neurons firing

at a particular frequency (Crick and Koch 1990) or activity in
some particular area of the brain like the claustrum (Crick and
Koch 2005). Other theories have focused more on the dynamics
of neural processing, such as the degree of recurrent neural con-
nectivity (Lamme 2006). Others yet have focused on the “global
workspace” of the brain, based on how signals are propagated
across different brain regions (Baars 1997). Specifically, Global
Neuronal Workspace (GNW) theory claims that consciousness
is the result of an “avalanche” or “ignition” of widespread neural
activity created by an interconnected but dispersed network of
neurons with long-range connections (Sergent and Dehaene
2004).

Another avenue of research strives to derive a theory of con-
sciousness from analysis of phenomenal experience. The most
promising example thereof is Integrated Information Theory
(IIT) (Tononi 2004, 2008; Oizumi et al. 2014). Historically, IIT is
the first well-formalized theory of consciousness. It was the
first (and arguably may still be the lone) theory that makes pre-
cise quantitative predictions about both the contents and level
of consciousness (Tononi 2004). Specifically, the theory takes
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the form of a function, the input of which is data derived from
some physical system’s internal observables, while the output
of this function is predictions about the contents of conscious-
ness (represented mathematically as an element of an experi-
ence space) and the level of consciousness (represented by a
scalar value U).

Both GNW and IIT have gained widespread popularity,
sparked a general interest in consciousness, and have led to
dozens if not hundreds of new empirical studies (Massimini
et al. 2005; Del Cul et al. 2007; Dehaene and Changeux 2011;
Gosseries et al. 2014; Wenzel et al. 2019). Indeed, there are al-
ready significant resources being spent attempting to falsify ei-
ther GNW or IIT in the form of a global effort pre-registering
predictions from the two theories so that testing can be con-
ducted in controlled circumstances by researchers across the
world (Ball 2019; Reardon 2019). We therefore often refer to both
GNW and IIT as exemplar theories within consciousness re-
search and show how our results apply to both. However, our
results and reasoning apply to most contemporary theories, e.g.
(Lau and Rosenthal 2011; Chang et al. 2019), particularly in their
ideal forms. Note that we refer to both “theories” of conscious-
ness and also “models” of consciousness, and use these inter-
changeably (Seth 2007).

Due to IIT’s level of formalization as a theory, it has triggered
the most in-depth responses, expansions, and criticisms
(Cerullo 2015; Bayne 2018; Mediano et al. 2019; Kleiner and Tull
2020) since well-formalized theories are much easier to criticize
than nonformalized theories. Recently, one criticism levied
against IIT was based on how the theory predicts feedforward
neural networks have zero U and recurrent neural networks
have nonzero U. Since a given recurrent neural network can be
“unfolded” into a feedforward one while preserving its output
function, this has been argued to render IIT outside the realm of
science (Doerig et al. 2019). Replies have criticized the assump-
tions which underlie the derivation of this argument (Tsuchiya
et al. 2019; Kleiner 2020).

Here, we frame and expand concerns around testing and fal-
sification of theories by examining a more general question:
what are the conditions under which theories of consciousness
(beyond IIT alone) can be falsified? We outline a parsimonious
description of theory testing with minimal assumptions based
on first principles. In this agnostic setup, falsifying a theory of
consciousness is the result of finding a mismatch between the
inferred contents of consciousness (usually based on report or
behavior) and the contents of consciousness as predicted by the
theory (based on the internal observables of the system under
question).

This mismatch between prediction and inference is criti-
cal for an empirically meaningful scientific agenda, because
a theory’s prediction of the state and content of conscious-
ness on its own cannot be assessed. For instance, imagine a
theory that predicts (based on internal observables like brain
dynamics) that a subject is seeing an image of a cat.
Without any reference to report or outside information,
there can be no falsification of this theory, since it cannot
be assessed whether the subject was actually seeing a “dog”
rather than “cat.” Falsifying a theory of consciousness is
based on finding such mismatches between reported experi-
ences and predictions.

In the following work, we formalize this by describing the
prototypical experimental setup for testing a theory of con-
sciousness. We come to a surprising conclusion: a widespread
experimental assumption implies that most contemporary the-
ories of consciousness are already falsified.

The assumption in question is the independence of an experi-
menter’s inferences about consciousness from a theory’s pre-
dictions. To demonstrate the problems this independence
creates for contemporary theories, we introduce a “substitution
argument.” This argument is based on the fact that many sys-
tems are equivalent in their reports (e.g. their outputs are iden-
tical for the same inputs), and yet their internal observables
may differ greatly. This argument constitutes both a generaliza-
tion and correction of the “unfolding argument” against IIT pre-
sented in Doerig et al. (2019). Examples of such substitutions
may involve substituting a brain with a Turing machine or a cel-
lular automaton since both types of systems are capable of uni-
versal computation (Turing 1937; Wolfram 1984) and hence may
emulate the brain’s responses, or replacing a deep neural net-
work with a single-layer neural network, since both types of
networks can approximate any given function (Hornik et al.
1989; Schäfer and Zimmermann 2006).

Crucially, our results do not imply that falsifications are im-
possible. Rather, they show that the independence assumption
implies that whenever there is an experiment where a theory’s
predictions based on internal observables and a system’s
reports agree, there exists also an actual physical system that
falsifies the theory. One consequence is that the “unfolding
argument” concerning IIT (Doerig et al. 2019) is merely a small
subset of a much larger issue that affects all contemporary the-
ories which seek to make predictions about experience off of in-
ternal observables. Our conclusion shows that if independence
holds, all such theories come falsified a priori. Thus, instead of
putting the blame of this problem on individual theories of con-
sciousness, we show that it is due to issues of falsification in
the scientific study of consciousness, particularly the field’s
contemporary usage of report or behavior to infer conscious
experiences.

A simple response to avoid this problem is to claim that re-
port and inference are not independent. This is the case, e.g., in
behaviorist theories of consciousness, but arguably also in
Global Workspace Theory (Baars 2005), the “attention schema”
theory of consciousness (Graziano and Webb 2015) or “fame in
the brain” (Dennett 1991) proposals. We study this answer in de-
tail and find that making a theory’s predictions and an experi-
menter’s inferences strictly dependent leads to pathological
unfalsifiability.

Our results show that if the independence of prediction and
inference holds true, as in contemporary cases where report
about experiences is relied upon, it is likely that no current the-
ory of consciousness is correct. Alternatively, if the assumption
of independence is rejected, theories rapidly become unfalsifi-
able. While this dilemma may seem like a highly negative con-
clusion, we take it to show that our understanding of testing
theories of consciousness may need to change to deal with
these issues.

Formal Description of Testing Theories

Here, we provide a formal framework for experimentally testing
a particular class of theories of consciousness. The class we
consider makes predictions about the conscious experience of physi-
cal systems based on observations or measurements. This class
describes many contemporary theories, including leading theo-
ries such as IIT (Oizumi et al. 2014), GNW Theory (Dehaene and
Changeux 2004), Predictive Processing [when applied to account
for conscious experience (Hohwy 2012; Hobson et al. 2014; Seth
2014; Clark 2019; Dolega and Dewhurst 2020)], or Higher Order
Thought Theory (Rosenthal 2002). These theories may be
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motivated in different ways, or contain different formal struc-
tures, such as e.g., the ones of category theory (Tsuchiya et al.
2016). In some cases, contemporary theories in this class may
lack the specificity to actually make precise predictions in their
current form. Therefore, the formalisms we introduce may
sometimes describe a more advanced form of a theory, one that
can actually make predictions.

In the following section, we introduce the necessary terms
to define how to falsify this class of theories: how the measure-
ment of a physical system’s observables results in datasets
(Experiments section), how a theory makes use of those data-
sets to offer predictions about consciousness (Predictions sec-
tion), how an experimenter makes inferences about a physical
system’s experiences (Inferences section), and finally how falsi-
fication of a theory occurs when there is a mismatch between a
theory’s prediction and an experimenter’s inference
(Falsification section). In Summary section, we give a summary
of the introduced terms. In subsequent sections, we explore the
consequences of this setup, such as how all contemporary theo-
ries are already falsified if the data used by inferences and pre-
dictions are independent, and also how theories are
unfalsifiable if this is changed to a strict form of dependency.

Experiments

All experimental attempts to either falsify or confirm a member
of the class of theories we consider begin by examining some
particular physical system which has some specific physical
configuration, state, or dynamics, p. This physical system is
part of a class P of such systems which could have been real-
ized, in principle, in the experiment. For example, in IIT, the
class of systems P may be some Markov chains, set of logic
gates, or neurons in the brain, and every p 2 P denotes that sys-
tem being in a particular state at some time t. On the other
hand, for GNW, P might comprise the set of long-range cortical
connections that make up the global workspace of the brain,
with p being the activity of that global workspace at that time.

Testing a physical system necessitates experiments or
observations. For instance, neuroimaging tools like fMRI or
EEG have to be used in order to obtain information about the
brain. This information is used to create datasets such as func-
tional networks, wiring diagrams, models, or transition proba-
bility matrices. To formalize this process, we denote by O all
possible datasets that can result from observations of P. Each
o 2 O is one particular dataset, the result of carrying out some
set of measurements on p. We denote the datasets that can re-
sult from measurements on p as obsðpÞ. Formally:

obs : P‡O ; (1)

where obs is a correspondence, which is a “generalized function”
that allows more than one element in the image obsðpÞ (func-
tions are a special case of correspondences). A correspondence
is necessary because, for a given p, various possible datasets
may arise, e.g., due to different measurement techniques such
as fMRI vs. EEG, or due to the stochastic behavior of the system,
or due to varying experimental parameters. In the real world,
data obtained from experiments may be incomplete or noisy, or
neuroscientific findings difficult to reproduce (Gilmore et al.
2017). Thus for every p 2 P, there is a whole class of datasets
which can result from the experiment.

Note that obs describes the experiment, the choice of
observables, and all conditions during an experiment that gen-
erates the dataset o necessary to apply the theory, which may

differ from theory to theory, such as interventions in the case of
IIT. In all realistic cases, the correspondence obs is likely quite
complicated since it describes the whole experimental setup.
For our argument, it simply suffices that this mapping exists,
even if it is not known in detail.

It is also worth noting here that all leading neuroscientific
theories of consciousness, from IIT to GNW, assume that expe-
riences are not observable or directly measurable when apply-
ing the theory to physical systems. That is, experiences
themselves are never identified or used in obs but are rather in-
ferred based on some dataset o that contains report or other be-
havioral indicators.

Next, we explore how the datasets in O are used to make
predictions about the experience of a physical system.

Predictions

A theory of consciousness makes predictions about the experi-
ence of some physical system in some configuration, state, or
dynamics, p, based on some dataset o. To this end, a theory car-
ries within its definition a set or space E whose elements corre-
spond to various different conscious experiences a system could
have. The interpretation of this set varies from theory to theory,
ranging from descriptions of the level of conscious experience
in early versions of IIT, descriptions of the level and content of
conscious experience in contemporary IIT (Kleiner and Tull
2020), or the description only of whether a presented stimuli is
experienced in GNW or HOT. We sometimes refer to elements e
of E simply as experiences.

Formally, this means that a prediction considers an experi-
mental dataset o 2 O (determined by obs) and specifies an ele-
ment of the experience space E. We denote this as pred, for
“prediction,” which is a map from O to E. The details of how in-
dividual datasets are being used to make predictions again do
not matter for the sake of our investigation. What matters is
that a procedure exists, and this is captured by pred. However,
we have to take into account that a single dataset o 2 Omay not
predict only one single experience. In general, pred may only al-
low an experimenter to constrain experience of the system in
that it only specifies a subset of all experiences a theory models.
We denote this subset by predðoÞ. Thus, pred is also a corre-
spondence

pred : O‡E :

Shown in Fig. 1 is the full set of terms needed to formally de-
fine how most contemporary theories of consciousness make
predictions about the experience. So far, what we have said is
very general. Indeed, the force and generalizability of our

P O E
obs pred

Figure 1. We assume that an experimental setup apt for a particular
model of consciousness has been chosen for some class of physical
systems P, wherein p 2 P represents the dynamics or configurations of
a particular physical system.O then denotes all datasets that can arise
from observations or measurements on P. Measuring the observables
of p maps to datasets o 2 O, which is denoted by the obs correspon-
dence. E represents the mathematical description of experience given
by the theory or model of consciousness under consideration. In the
simplest case, this is just a set whose elements indicate whether a
stimulus has been perceived consciously or not, but far more compli-
cated structures can arise (e.g. in IIT). The correspondence pred

describes the process of prediction as a map from O to E.
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argument comes from the fact that we do not have to define
pred explicitly for the various models we consider. It suffices
that it exists, in some form or the other, for the models under
consideration.

It is crucial to note that predicting states of consciousness
alone does not suffice to test a model of consciousness. Some
have previously criticized theories of consciousness, IIT in par-
ticular, just based off of their counter-intuitive predictions. An
example is the criticism that relatively simply grid-like net-
works have high U (Aaronson 2014; Tononi 2014). However,
debates about counter-intuitive predictions are not meaningful
by themselves, since pred alone does not contain enough infor-
mation to say whether a theory is true or false. The most a the-
ory could be criticized for is either not fitting our own
phenomenology or not being parsimonious enough, neither of
which are necessarily violated by counter-intuitive predictions.
For example, it may actually be parsimonious to assume that
many physical systems have consciousness (Goff 2017). That is,
speculation about acceptable predictions by theories of con-
sciousness must implicitly rely on a comparative reference to
be meaningful, and speculations that are not explicit about their
reference are uninformative.

Inferences

As discussed in the previous section, a theory is unfalsifiable
given just predictions alone, and so pred must be compared to
something else. Ideally, this would be the actual conscious ex-
perience of the system under investigation. However, as noted
previously, the class of theories we focus on here assumes that
experience itself is not part of the observables. For this reason,
the experience of a system must be inferred separately from a
theory’s prediction to create a basis of comparison. Most com-
monly, such inferences are based on reports. For instance, an in-
ference might be based on an experimental participant
reporting on the switching of some perceptually bistable image
(Blake et al. 2014) or on reports about seen vs. unseen images in
masking paradigms (Alais et al. 2010).

It has been pointed out that report in a trial may interfere
with the actual isolation of consciousness, and there has re-
cently been the introduction of so-called “no-report paradigms”
(Tsuchiya et al. 2015). In these cases, report is first correlated to
some autonomous phenomenon like optokinetic nystagmus
(stereotyped eye movement), and then the experimenter can
use this instead of the subject’s direct reports to infer their
experiences. Indeed, there can even be simpler cases where re-
port is merely assumed: e.g., that in showing a red square, a
participant will experience a red square without necessarily
asking the participant since previously that participant has
proved compos mentis. Similarly, in cases of nonhumans inca-
pable of verbal report, “report” can be broadly construed as be-
havior or output.

All these cases can be broadly described as being a case of in-
ference off of some data. These data might be actual reports
(like a participant’s button pushes) or may be based off of physi-
ological reactions (like no-report paradigms) or may be the out-
puts of a neural network or set of logic gates, such as the results
of an image classification task (LeCun et al. 2015). Therefore, the
inference can be represented as a function, infðoÞ, between a
dataset o generated by observation or measurement of the
physical system, and the set of postulated experiences in the
model of consciousness, E:

inf : O ! E :

Defining inf as a function means that we assume that for ev-
ery experimental dataset o, one single experience in E is inferred
during the experiment. Here, we use a function instead of a cor-
respondence for technical and formal ease, which does not af-
fect our results: if two correspondences to the same space are
given, one of them can be turned into a function. (If inf is a cor-
respondence, one defines a new space E0 by E0 :¼ finfðoÞjo 2 Og.
Every individual element of this space describes exactly what
can be inferred from one dataset o 2 O, so that inf 0 : O ! E0 is a
function. The correspondence obs is then redefined, for every
e0 2 E0, by the requirement that e0 2 obs0ðoÞ iff e 2 obsðoÞ for some
e 2 e0.) The inf function is flexible enough to encompass both di-
rect report, no-report, input/output analysis, and also assumed-
report cases. It is a mapping that describes the process of infer-
ring the conscious experience of a system from data recorded in
the experiments. Both inf and pred are depicted in Fig. 2.

It is worth noting that we have used here the same class O
as in the definition of the prediction mapping pred above. This
makes sense because the inference process also uses data
obtained in experimental trials, such as reports by a subject. So
both pred and inf can be described to operate on the same total
dataset measured, even though they usually use different parts
of this dataset (cf. below).

Falsification

We have now introduced all elements which are necessary to
formally say what a falsification of a theory of consciousness is.
To falsify, a theory of consciousness requires mismatch be-
tween an experimenter’s inference (generally based on report)
and the predicted consciousness of the subject. In order to de-
scribe this, we consider some particular experimental trial, as
well as inf and pred.

Definition 2.1. There is a falsification at o 2 O if we have

infðoÞ 62 predðoÞ : (2)

This definition can be spelled out in terms of individual com-
ponents of E. To this end, for any given dataset o 2 O, let er :¼
infðoÞ denote the experience that is being inferred, and let ep 2
obsðoÞ be one of the experiences that is predicted based off of
some dataset. Then (2) simply states that we have ep 6¼ er for all
possible predictions ep 2 obsðoÞ. None of the predicted states of
experience is equal to the inferred experience.

What does Equation (2) mean? There are two cases which
are possible. Either, the prediction based on the theory of con-
sciousness is correct, and the inferred experience is wrong. Or
the prediction is wrong, so that in this case the model would be
falsified. In short: either the prediction process or the inference
process is wrong.

P O E
obs

pred

inf

Figure 2. Two maps are necessary for a full experimental setup, one
that describes a theory’s predictions about experience (pred), another
that describes the experimenter’s inference about it (inf). Both map
from a dataset o 2 O collected in an experimental trail to some sub-
set of experiences described by the model, E.
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We remark that if there is a dataset o on which the inference
procedure inf or the prediction procedure pred cannot be used,
then this dataset cannot be used in falsifying a model of con-
sciousness. Thus, when it comes to falsifications, we can re-
strict to datasets o for which both procedures are defined.

In order to understand in more detail what is going on if (2)
holds, we have to look into a single dataset o 2 O. This will be of
use later.

Generally, inf and obs will make use of different part of the
data obtained in an experimental trial. For example, in the con-
text of IIT or GNW, data about the internal structure and state of
the brain will be used for the prediction. These data can be
obtained from an fMRI scan or EEG measurement. The state of
consciousness on the other hand can be inferred from verbal
reports. Pictorially, we may represent this as in Fig. 3. We use
the following notation:

oi For a chosen dataset o 2 O, we denote the part of the
dataset which is used for the prediction process by oi (for
“internal” data). This can be thought of as data about the
internal workings of the system. We call oi the prediction
data in o.
or For a chosen dataset o 2 O, we denote the part of the
dataset which is used for inferring the state of experience
by or (for “report” data). We call it the inference data in o.

Note that in both cases, the subscript can be read similarly

as the notation for restricting a set. We remark that a dif-

ferent kind of prediction could be considered as well,

where one makes use of the inverse of pred. In Appendix

B, we prove that this is in fact equivalent to the case con-

sidered here, so that Definition 2.1 indeed covers the most

general situation.

Summary

In summary, for testing of a theory of consciousness we have
introduced the following notion:

P denotes a class of physical systems that could have been
tested, in principle, in the experiment under consideration,
each in various different configurations. In most cases, ev-
ery p 2 P thus describes a physical system in a particular
state, dynamical trajectory, or configuration.

obs is a correspondence which contains all details on how the
measurements are set up and what is measured. It
describes how measurement results (datasets) are deter-
mined by a system configuration under investigation. This
correspondence is given, though usually not explicitly
known, once a choice of measurement scheme has been
made.

O is the class of all possible datasets that can result from
observations or measurements of the systems in the class
P. Any single experimental trial results in a single dataset
o 2 O, whose data are used for making predictions based on
the theory of consciousness and for inference purposes.

pred describes the process of making predictions by applying
some theory of consciousness to a dataset o. It is therefore
a mapping from O to E.

E denotes the space of possible experiences specified by the
theory under consideration. The result of the prediction is
a subset of this space, denoted as predðoÞ. Elements of this
subset are denoted by ei and describe predicted
experiences.

inf describes the process of inferring a state of experience
from some observed data, e.g., verbal reports, button
presses or using no-report paradigms. Inferred experiences
are denoted by er.

The Substitution Argument

Substitutions are changes of physical systems (i.e. the substitu-
tion of one for another) that leave the inference data invariant,
but may change the result of the prediction process. A specific
case of substitution, the unfolding of a reentrant neural network
to a feedforward one, was recently applied to IIT to argue that
IIT cannot explain consciousness (Doerig et al. 2019).

Here, we show that, in general, the contemporary notion of
falsification in the science of consciousness exhibits this funda-
mental flaw for almost all contemporary theories, rather than
being a problem for a particular theory. This flaw is based on
the independence between the data used for inferences about
consciousness (like reports) and the data used to make predic-
tions about consciousness. We discuss various responses to this
flaw in Objections section.

We begin by defining what a substitution is in Substitutions
section, show that it implies falsifications in Substitutions im-
ply falsifications section and analyze the particularly problem-
atic case of universal substitutions in Universal substitutions
imply complete falsification section. In When does a universal
substitution exist? section, we prove that universal

p

o ∈ O
pred(o)

or

oi

inf(o)

er

pred(o)

ep

E

Fig. 3. This figure represents the same setup as Fig. 2. The left circle depicts one single dataset o. oi (orange) is the part of the dataset used for
prediction. or (green) is the part of the dataset used for inferring the state of experience. Usually the green area comprises verbal reports or but-
ton presses, whereas the orange area comprises the data obtained from brain scans. The right circle depicts the experience space E of a theory
under consideration. ep denotes a predicted experience while er denotes the inferred experience. Therefore, in total, to represent some specific
experimental trial we use p 2 P; o 2 O; er 2 E and ep 2 E, where ep 2 predðoÞ.
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substitutions exist if prediction and inference data are indepen-
dent and give some examples of already-known cases.

Substitutions

In order to define formally what a substitution is, we work with
the inference content or of a dataset o as introduced in
Falsification section. We first denote the class of all physical
configurations which could have produced the inference con-
tent or upon measurement by Por . Using the correspondence obs
which describes the relation between physical systems and
measurement results, this can be defined as

Por :¼ fp 2 Pjor 2 obsðpÞg ; (3)

where obsðpÞ denotes all possible datasets that can be measured
if the system p is under investigation and where or 2 obsðpÞ is a
shorthand for o 2 obsðpÞwith inference content or.

Any map of the form S : Por ! Por takes a system configuration p
which can produce inference content or to another system’s configu-
ration S(p) which can produce the same inference content. This
allows us to define what a substitution is formally. In what follows,
the � indicates the composition of the correspondences obs and
pred to give a correspondence from P to E, which could also be
denoted as predðobsðpÞÞ (That is, pred � obsðpÞ ¼ fe 2 Ej
e 2 predðoÞ for someo 2 obsðpÞg, it is the image under pred of the
set obsðoÞ.), and \ denotes the intersection of sets.

Definition 3.1. There is a or-substitution if there is a transfor-

mation S : Por ! Por such that at least for one p 2 Por

pred � obsðpÞ \ pred � obsðSðpÞÞ ¼1 : (4)

In words, a substitution requires there to be a transformation S
which keeps the inference data constant but changes the predic-
tion of the system. So much in fact that the prediction of the origi-
nal configuration p and of the transformed configuration S(p) are
fully incompatible, i.e. there is no single experience e which is con-
tained in both predictions. Given some inference data or, an or-sub-
stitution then requires this to be the case for at least one system
configuration p that gives this inference data. In other words, the
transformation S is such that for at least one p, the predictions
change completely, while the inference content or is preserved.

A pictorial definition of substitutions is given in Fig. 4. We re-
mark that if pred and obs were functions, so that pred � obsðpÞ
only contained one element, Equation (4) would be equivalent
to predðobsðpÞÞ 6¼ predðobsðSðpÞÞÞ.

We will find below that the really problematic case arises if
there is an or-substitution for every possible inference content
or. We refer to this case as a universal substitution.

Definition 3.2. There is a universal substitution if there is an

or-substitution Sor : Por ! Por for every or.

We recall that according to the notation introduced in
Falsification section, the inference content of any dataset o 2 O
is denoted by or (adding the subscript r). Thus, the requirement
is that there is an or-substitution Sor : Por ! Por for every infer-
ence data that can pertain in the experiment under consider-
ation (for every inference data that is listed in O). The subscript
or of Sor indicates that the transformation S in Definition 3.1 can
be chosen differently for different or. Definition 3.2 does not re-
quire there to be one single transformation that works for all or.

Substitutions imply falsifications

The force of our argument comes from the fact that if there are
substitutions, then this necessarily leads to mismatches be-
tween inferences and predictions. This is shown by the follow-
ing lemma.

Lemma 3.3. If there is a or-substitution, there is a falsification

at some o 2 O.

Proof. Let p be the physical system in Definition 3.1 and define
p0 ¼ SðpÞ. Let o 2 obsðpÞ be a dataset of p which has inference
content or and let o0 be a dataset of p0 which has the same infer-
ence content or, guaranteed to exist by the definition of Por in (3).
Equation (4) implies that

predðoÞ \ predðo0Þ ¼1 : (5)

Since, however, or ¼ o0r, we have infðoÞ ¼ infðo0Þ. Thus we have
either infðoÞ 62 predðoÞ or infðo0Þ 62 predðo0Þ, or both. Thus there is
either a falsification at o, a falsification at o0, or both. h

The last lemma shows that if there are substitutions, then
there are necessarily falsifications. This might, however, not be
considered too problematic, since it could always be the case
that the model is right whereas the inferred experience is
wrong. Inaccessible predictions are not unusual in science. A
fully problematic case only pertains for universal substitutions,
i.e., if there is an or-substitution for every inference content or

that can arise in an experiment under consideration.

Universal substitutions imply complete falsification

In Falsification section, we have defined falsifications for indi-
vidual datasets o 2 O. Using the “insight view” of single data-
sets, we can refine this definition somewhat by relating it to the
inference content only.

Definition 3.4. There is an or-falsification if there is a falsifica-

tion for some o 2 O which has inference content or.

This definition is weaker than the original definition, be-
cause among all datasets which have inference content or, only
one needs to exhibit a falsification. Using this notion, the next
lemma specifies the exact relation between substitutions and
falsifications.
Lemma 3.5. If there is an or-substitution, there is an or-

falsification.

Proof. This lemma follows directly from the proof of Lemma 3.3
because the datasets o and o0 used in that proof both have infer-
ence content or. h

This finally allows us to show our first main result. It shows
that if a universal substitution exists, the theory of conscious-
ness under consideration is falsified. We explain the meaning
of this proposition after the proof.
Proposition 3.6. If there is a universal substitution, there is an

or-falsification for all possible inference contents or.

Proof. By definition of universal substitution, there is an or-sub-
stitution for every or. Thus, the claim follows directly from
Lemma 3.5. h

In combination with Definition 3.4, this proposition states
that for every possible report (or any other type of inference pro-
cedure, cf. our use of terminology in Falsification section), there
is a dataset o which contains the report’s data and for which we
have

infðorÞ 62 predðoÞ ; (6)
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where we have slightly abused notation in writing infðorÞ in-
stead of infðoÞ for clarity. This implies that one of two cases
needs to pertain: either at least one of the inferred experiences
infðorÞ is correct, in which case the corresponding prediction is
wrong and the theory needs to be considered falsified. The only
other option is that for all inference contents or, the prediction
predðoÞ is correct, which qua (6) implies that no single inference
infðorÞ points at the correct experience, so that the inference
procedure is completely wrong. This shows that Proposition 3.6
can equivalently be stated as follows.
Proposition 3.7. If there is a universal substitution, either every

single inference operation is wrong or the theory under consider-

ation is already falsified.

Next, we discuss under which circumstances a universal
substitution exists.

When does a universal substitution exist?

In the last section, we have seen that if a universal substitution
exists, this has strong consequences. In this section, we discuss
under what conditions universal substitutions exist.

Theories need to be minimally informative
We have taken great care above to make sure that our notion of
prediction is compatible with incomplete or noisy datasets. This
is the reason why pred is a correspondence, the most general
object one could consider. For the purpose of this section, we
add a gentle assumption which restricts pred slightly: we as-
sume that every prediction carries at least a minimal amount of
information. In our case, this means that for every prediction
predðoÞ, there is at least one other prediction predðo0Þ which is
different from predðoÞ. Put in simple terms, this means that we
do not consider theories of consciousness which have only a
single prediction.

In order to take this into account, for every o 2 O, we define
o :¼ obsðobs�1ðoÞÞ, which comprises exactly all those datasets
which can be generated by physical systems p that also gener-
ate o. When applying our previous definitions, this can be
fleshed out as

o ¼ fo0j9 p such that o 2 obs ðpÞ and o0 2 obs ðpÞg : (7)

Using this, we can state our minimal information assumption in
a way that is compatible with the general setup displayed in
Fig. 2:

We assume that the theories of consciousness under consid-
eration are minimally informative in that for every o 2 O, there
exists an o0 2 O such that

predðoÞ \ predðo 0Þ ¼1 : (8)

Inference and prediction data are independent
We have already noted, that in most experiments, the predic-
tion content oi and inference content or consist of different parts
of a dataset. What is more, they are usually assumed to be inde-
pendent, in the sense that changes in oi are possible while keep-
ing or constant. This is captured by the next definition.

Definition 3.8. Inference and prediction data are independent if

for any oi, o0i and or, there is a variation

� : P! P (9)

such that oi 2 obsðpÞ; o0i 2 obsð�ðpÞÞ but or 2 obsðpÞ and or 2
obsð�ðpÞÞ for some p 2 P.

Here, we use the same shorthand as in (3). For example, the
requirement oi 2 obsðpÞ is a shorthand for there being an o 2
obsðpÞ which has prediction content oi. The variation � in this
definition is a variation in P, which describes physical systems
which could, in principle, have been realized in an experiment
(cf. Summary section). We note that a weaker version of this
definition can be given which still implies our results below, cf.
Appendix A. Note that if inference and prediction data are not
independent, e.g., because they have a common cause, prob-
lems of tautologies loom large, cf. Objections section.
Throughout the text, we often refer to Definition 3.8 simply as
“independence.”

Universal substitutions exist
Combining the last two sections, we can now prove that univer-
sal substitutions exist.

Proposition 3.9. If inference and prediction data are indepen-

dent, universal substitutions exist.

T (p)

o resp. o′

or = o′
r

oi

p

o′
i

pred(o)

inf(o)

er = e′
r

pred(o)

ep

E

pred(o′)
e′
p

pred(o′)

Figure 4. This picture illustrates substitutions. Assume that some dataset o with inference content or is given. A substitution is a transformation
S of physical systems which leaves the inference content or invariant but which changes the result of the prediction process. Thus whereas p

and S(p) have the same inference content or, the prediction content of experimental datasets is different; different in fact to such an extent
that the predictions of consciousness based on these datasets are incompatible (illustrated by the nonoverlapping gray circles on the right).
Here, we have used that by definition of Por , every ~p 2 Por yields at least one dataset o0 with the same inference content as o and have identified
o and o0 in the drawing.
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Proof. To show that a universal substitution exists, we need to
show that for every o 2 O, an or-substitution exists (Definition
3.1). Thus assume that an arbitrary o 2 O is given. The minimal
information assumption guarantees that there is an o0 such that
Equation (8) holds. As before, we denote the prediction content
of o and o0 by oi and o0i, respectively, and the inference content of
o by or.

Since inference and prediction data are independent, there
exists a p 2 P as well as a � : P! P such that oi 2 obsðpÞ; o0i 2
obsð�ðpÞÞ; or 2 obsðpÞ and or 2 obsð�ðpÞÞ. By Definition (7), the
first two of these four conditions imply that obsðpÞ � o and
obsð�ðpÞÞ � o 0. Thus, Equation (8) applies and allows us to con-
clude that

predðobsðpÞÞ \ predðobsð�ðpÞÞ ¼1 :

Via Equation (3), the latter two of the four conditions imply
that p 2 Por and �ðpÞ 2 Por . Thus, we may restrict � to Por to obtain
a map

S : Por ! Por ;

which in light of the first part of this proof exhibits at

least one p 2 Por which satisfies (4). Thus we have shown

that an or-substitution exists. Since o was arbitrary, it fol-

lows that a universal substitution exists. h

The intuition behind this proof is very simple. In virtue of
our assumption that theories of consciousness need to be mini-
mally informative, for any dataset o, there is another dataset o0

which makes a nonoverlapping prediction. But in virtue of infer-
ence and prediction data being independent, we can find a vari-
ation that changes the prediction content as prescribed by o and
o0 but keeps the inference content constant. This suffices to
show that there exists a transformation S as required by the
definition of a substitution.
Combining this result with Proposition 3.7, we finally can state
our main theorem.

Theorem 3.10. If inference and prediction data are independent,

either every single inference operation is wrong or the theory un-

der consideration is already falsified.

Proof. The theorem follows by combining Propositions 3.9 and
3.7. h

In the next section, we give several examples of universal
substitutions, before discussing various possible responses to
our result in Objections section.

Examples of data independence
Our main theorem shows that testing a theory of consciousness
will necessarily lead to its falsification if inference and predic-
tion data are independent (Definition 3.8), and if at least one
single inference can be trusted (Theorem 3.10). In this section,
we give several examples that illustrate the independence of in-
ference and prediction data. We take report to mean output, be-
havior, or verbal report itself and assume that prediction data
derives from internal measurements.

Artificial neural networks. ANNs, particularly those trained us-
ing deep learning, have grown increasingly powerful and capa-
ble of human-like performance (LeCun et al. 2015; Bojarski et al.
2016). For any ANN, report (output) is a function of node states.
Crucially, this function is noninjective, i.e., some nodes are not
part of the output. For example, in deep learning, the report is

typically taken to consist of the last layer of the ANN, while the
hidden layers are not taken to be part of the output.
Correspondingly, for any given inference data, one can con-
struct a ANN with arbitrary prediction data by adding nodes,
changing connections and changing those nodes which are not
part of the output. Put differently, one can always substitute a
given ANN with another with different internal observables but
identical or near-identical reports. From a mathematical per-
spective, it is well-known that both feedforward ANNs and re-
current ANNs can approximate any given function (Hornik et al.
1989; Schäfer and Zimmermann 2007). Since reports are just
some function, it follows that there are viable universal
substitutions.

A special case thereof is the unfolding transformation con-
sidered in Doerig et al. (2019) in the context of IIT. The argu-
ments in this article constitute a proof of the fact that for ANNs,
inference and prediction data are independent (Definition 3.8).
Crucially, our main theorem shows that this has implications
for all minimally informative theories of consciousness. A simi-
lar result (using a different characterization of theories of con-
sciousness than minimally informative) has been shown in
Kleiner (2020).

Universal computers. Turing machines are extremely different
in architecture than ANNs. Since they are capable of universal
computation (Turing 1937), they should provide an ideal candi-
date for a universal substitution. Indeed, this is exactly the rea-
soning behind the Turing test of conversational artificial
intelligence (Turing 1950). Therefore, if one believes it is possi-
ble for a sufficiently fast Turing machine to pass the Turing test,
one needs to accept that substitutions exist. Notably, Turing
machines are just one example of universal computation, and
there are other instances of different parameter spaces or phys-
ical systems that are capable thereof, such as cellular automata
(Wolfram 1984).

Universal intelligences. There are models of universal intelli-
gence that allow for maximally intelligent behavior across any
set of tasks (Hutter 2003). For instance, consider the AIXI
model, the gold-standard for universal intelligence, which
operates via Solomonoff induction (Solomonoff 1964; Hutter
2004). The AIXI model generates an optimal decision making
over some class of problems, and methods linked to it have al-
ready been applied to a range of behaviors, such as creating
“AI physicists” (Wu and Tegmark 2019). Its universality indi-
cates it is a prime candidate for universal substitutions.
Notably, unlike a Turing machine, it avoids issues of precisely
how it is accomplishing universal substitution of report, since
the algorithm that governs the AIXI model behavior is well-
described and “relatively” simple.

The above are all real and viable classes of systems that are
used everyday in science and engineering which all provide dif-
ferent viable universal substitutions if inferences are based on
reports or outputs. They show that in normal experimental set-
ups such as the ones commonly used in neuroscientific re-
search into consciousness (Frith et al. 1999), inference and
prediction data are indeed independent, and dependency is not
investigated nor properly considered. It is always possible to
substitute the physical system under consideration with an-
other that has different internal observables, and therefore dif-
ferent predictions, but similar or identical reports. Indeed,
recent research in using the work introduced in this work shows
that even different spatiotemporal models of a system can be
substituted for one another, leading to falsification (Hanson and
Walker 2020). We have not considered possible but less reason-
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able examples of universal substitutions, like astronomically
large look-up ledgers of reports.

As an example of our Main Theorem 3.10, we consider the
case of IIT. Since the theory is normally applied in Boolean net-
works, logic gates, or artificial neural networks, one usually
takes report to mean “output.” In this case, it has already been
proven that systems with different internal structures and
hence different predicted experiences, can have identical input/
output (and therefore identical reports or inferences about re-
port) (Albantakis and Tononi 2019). To take another case: within
IIT it has already been acknowledged that a Turing machine
may have a wildly different predicted contents of consciousness
for the same behavior or reports (Koch 2019). Therefore, data in-
dependence during testing has already been shown to apply to
IIT under its normal assumptions.

Inference and Prediction Data Are Strictly
Dependent

An immediate response to our main result showing that many
theories suffer from a priori falsification would be to claim that
it offers support of theories which define conscious experience
in terms of what is accessible to report. This is the case, e.g., for
behaviorist theories of consciousness but might arguably also
be the case for some interpretations of global workspace theory
or fame in the brain proposals. In this section, we show that
this response is not valid, as theories of this kind, where infer-
ence and prediction data are strictly dependent, are
unfalsifiable.

In order to analyze this case, we first need to specifically out-
line how theories can be pathologically unfalsifiable. Clearly,
the goal of the scientific study as a whole is to find, eventually,
a theory of consciousness that are empirically adequate and
therefore corroborated by all experimental evidence. Therefore,
not being falsified in experiments is a necessary condition
(though not sufficient) any purportedly “true” theory of con-
sciousness needs to satisfy. Therefore, not being falsifiable by
the set of possible experiments per se is not a bad thing. We
seek to distinguish this from cases of unfasifiability due to path-
ological assumptions that underlie a theory of consciousness,
assumptions which render an experimental investigation
meaningless. Specifically, a pathological dependence between
inferences and predictions leads to theories which are
unfalsifiable.

Such unfalsifiable theories can be identified neatly in our
formalism. To see how, recall that O denotes the class of all
datasets that can result from an experiment investigating the
physical systems in the class P. Put differently, it contains all
datasets that could, in principle, appear when probed in the ex-
periment. This is not the class of all possible datasets of type O
one can think of. Many datasets which are of the same form as
elements of O might simply not arise in the experiment under
consideration. We denote the class of all possible datasets as:

O : All possible data sets of type O :

Intuitively, in terms of possible worlds semantics, O
describes the datasets which could appear, for the type of ex-
periment under consideration, in the actual world. O, in con-
trast, describes the datasets which could appear in this type of
experiment in any possible world. For example, O contains
datasets which can only occur if consciousness attaches to the

physical in a different way than it actually does in the actual
word.

By construction, O is a subset of O, which describes which
among the possible datasets actually arises across experimental
trials. Hence, O also determines which theory of consciousness
is compatible with (i.e. not falsified by) experimental investiga-
tion. However, O defines all possible datasets independent of
any constraint by real empirical results, i.e., all possible imagin-
able datasets.

Introduction of O allows us to distinguish the pathological
cases of unfalsifiability mentioned above. Whereas any purport-
edly true theory should only fail to be falsified with respect to
the experimental data O, a pathological unfalsifiability pertains
if a theory cannot be falsified at all, i.e. over O. This is captured
by the following definition.

Definition 4.1. A theory of consciousness which does not have

a falsification over O is empirically unfalsifiable.

Here, we use the term “empirically unfalsifiable” to highlight
and refer to the pathological notion of unfalsifiability. Intuitively
speaking, a theory which satisfies this definition appears to be
true independently of any experimental investigation, and with-
out the need for any such investigation. Using O, we can also de-
fine the notion of strict dependence in a useful way.

Definition 4.2. Inference and prediction data are strictly dependent

if there is a function f such that for any o 2 O, we have oi ¼ f ðorÞ.

This definition says that there exists a function f which for
every possible inference data or allows to deduce the prediction
data oi. We remark that the definition refers to O and not O, as
the dependence of inference and prediction considered here
holds by assumption and is not simply asserting a contingency
in nature.

The definition is satisfied, e.g., if inference data is equal to
prediction data, i.e., if oi ¼ or, where f is simply the identity. This
is the case, e.g., for behaviorist theories (Skinner 1938) of con-
sciousness, where consciousness is equated directly with report
or behavior, or for precursors of functionalist theories of con-
sciousness that are based on behavior or input/output (Putnam
1960). The definition is also satisfied in the case where predic-
tion data are always a subset of the inference data:

oi � or : (10)

Here, f is simply the restriction function. This arguably applies
to global workspace theory (Baars 2005), the “attention schema”
theory of consciousness (Graziano and Webb 2015) or “fame in
the brain” (Dennett 1991) proposals.

In all these cases, consciousness is generated by—and hence
needs to be predicted via—what is accessible to report or out-
put. In terms of Block’s distinction between phenomenal con-
sciousness and access consciousness (Block 1996), Equation (10)
holds true whenever a theory of consciousness is under investi-
gation where access consciousness determines phenomenal
consciousness.

Our second main theorem is the following.

Theorem 4.3. If a theory of consciousness implies that inference

and prediction data are strictly dependent, then it is either al-

ready falsified or empirically unfalsifiable.

Proof. To prove the theorem, it is useful to consider the infer-
ence and prediction content of datasets explicitly. The possible
pairings that can occur in an experiment are given by
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O exp :¼ fðoi; orÞ j o 2 Og ; (11)

where we have again used our notation that oi denotes the pre-
diction data of o, and similar for or. To define the possible pair-
ings that can occur in O, we let Oi denote the class of all
prediction contents that arise in O, and Or denote the class of
all inference contents that arise in O. The set of all conceivable
pairings is then given by

Oall :¼ fðoi; o
0
rÞ j o 2 O; o0 2 Og (12)

¼ fðoi; o
0
rÞ j oi 2 Oi; o0r 2 Org : (13)

Crucially, here, oi and o0r do not have to be part of the same data-
set o. Combined with Definition 2.1, we conclude that there is a
falsification over O if for some ðoi; o0rÞ 2 Oall, we have
infðoÞ 62 predðo0Þ, and there is a falsification over O if for some
ðoi; orÞ 2 O exp , we have infðoÞ 62 predðoÞ.

Next we show that if inference and prediction data are strictly
dependent, then Oall ¼ O exp holds. We start with the set Oall as
defined in (12). Expanding this definition in words, it reads

Oall ¼ fðdi;drÞ j 9o 2 O such that dr ¼ or and 9~o 2 O such that di ¼ ~oig ;
(14)

where we have symbols di and dr to denote prediction and

inference data independently of any dataset o.
Assume that the first condition in this expression, dr ¼ or

holds for some o 2 O. Since inference and prediction data are
strictly dependent, we have di ¼ f ðdrÞ. Furthermore, for the
same reason, the prediction content oi of the dataset o satisfies
oi ¼ f ðorÞ. Applying the function f to both sides of the first condi-
tion gives f ðdrÞ ¼ f ðorÞ, which thus in turn implies oi ¼ di. This
means that the o that satisfies the first condition in (14) auto-
matically also satisfies the second condition. Therefore, due to
inference and prediction data being strictly dependent, (14) is
equivalent to

Oall ¼ fðdi; drÞ j 9o 2 O such that dr ¼ or and di ¼ oig : (15)

This, however, is exactly O exp as defined in (11). Thus we con-
clude that if inference and prediction data are strictly depen-
dent, Oall ¼ O exp necessarily holds.

Returning to the characterization of falsification in terms of
O exp and Oall above, what we have just found implies that there
is a falsification over O if and only if there is a falsification over
O. Thus either there is a falsification over O, in which case the
theory is already falsified or there is no falsification over O, in
which case the theory under consideration is empirically unfal-
sifiable. h

The gist of this proof is that if inference and prediction data
are strictly dependent, then as far as the inference and predic-
tion contents go, O and O are the same. That is, the experiment
does not add anything to the evaluation of the theory. It is suffi-
cient to know only all possible datasets to decide whether there
is a falsification. In practise, this would mean that knowledge of
the experimental design (which reports are to be collected, on
the one hand, which possible data a measurement device can
produce, one the other) is sufficient to evaluate the theory,
which is clearly at odds with the role of empirical evidence re-
quired in any scientific investigation. Thus, such theories are
empirically unfalsifiable.

To give an intuitive example of the theorem, let us examine a
theory that uses the information accessible to report in a sys-
tem to predict conscious experience (perhaps this information
is “famous” in the brain or is within some accessible global
workspace). In terms of our notation, we can assume that or

denotes everything that is accessible to report, and oi denotes
that part which is used by the theory to predict conscious expe-
rience. Thus, in this case we have oi � or. Since the predicted
contents are always part of what can be reported, there can
never be any mismatch between reports and predictions.
However, this is not only the case for O exp but also, in virtue of
the theory’s definition, for all possible datasets, i.e., Oall.
Therefore, such theories are empirically unfalsifiable.
Experiments add no information to whether the theory is true
or not, and such theories are empirically uninformative or
tautological.

Objections

In this section, we discuss a number of possible objections to
our results.

Restricting inferences to humans only

The examples given in section 3.4.4 show that data indepen-
dence holds during the usual testing setups. This is because
prima facie it seems reasonable to base inferences either on re-
port capability or intelligent behavior in a manner agnostic of
the actual physical makeup of the system. Yet this entails inde-
pendence, so in these cases our conclusions apply.

One response to our results might be to restrict all testing of
theories of consciousness solely to humans. In our formalisms,
this is equivalent to making the strength of inferences based
not on reports themselves but on an underlying biological ho-
mology. Such an inf function may still pick out specific experi-
ences via reports, but the weight of the inference is carried by
homology rather than report or behavior. This would mean that
the substitution argument does not significantly affect con-
sciousness research, as reports of nonhuman systems would
simply not count. Theories of consciousness, so this idea goes,
would be supported by abductive reasoning from testing in
humans alone.

Overall, there are strong reasons to reject this restriction of
inferences. One significant issue is that this objection is equiva-
lent to saying that reports or behavior in nonhumans carry no
information about consciousness, an incredibly strong claim.
Indeed, this is highly problematic for consciousness research
which often uses nonhuman animal models (Boly et al. 2013).
For instance, cephalopods are among the most intelligent ani-
mals yet are quite distant on the tree of life from humans and
have a distinct neuroanatomy, and still are used for conscious-
ness research (Mather 2008). Even in artificial intelligence re-
search, there is increasing evidence that deep neural networks
produced brain-like structures such as grid cells, shape tuning,
and visual illusions, and many others (Richards et al. 2019).
Given these similarities, it becomes questionable why the
strength of inferences should be based on homology instead of
capability of report or intelligence.

What is more, restricting inferences to humans alone is un-
likely to be sufficient to avoid our results. Depending on the the-
ory under consideration, data independence might exist just in
human brains alone. That is, it is probable that there are
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transformations (as in Equation (9)) available within the brain
wherein or is fixed but oi varies. This is particularly true once
one allows for interventions on the human brain by experi-
menters, such as perturbations like transcranial magnetic stim-
ulation, which is already used in consciousness research
(Rounis et al. 2010; Napolitani et al. 2014).

For these reasons this objection does not appear viable. At
minimum, it is clear that if the objection were taken seriously, it
would imply significant changes to consciousness research
which would make the field extremely restricted with strong a
priori assumptions.

Reductio ad absurdum

Another hypothetical objection to our results is to argue that
they could just as well be applied to scientific theories in other
fields. If this turned out to be true, this would not imply our ar-
gument is necessarily incorrect. But, the fact that other scien-
tific theories do not seem especially problematic with regard to
falsification would generate the question of whether some as-
sumption is illegitimately strong. In order to address this, we
explain which of our assumptions is specific to theories of con-
sciousness and would not hold when applied to other scientific
theories. Subsequently, we give an example to illustrate this
point.

The assumption in question is that O, the class of all data-
sets that can result from observations or measurements of a
system, is determined by the physical configurations in P alone.
That is, every single dataset o, including both its prediction con-
tent oi and its inference content or, is determined by p, and not
by a conscious experience in E. In Fig. 2, this is reflected in the
fact that there is an arrow from P to O, but no arrow from E to O.

This assumption expresses the standard paradigm of testing
theories of consciousness in neuroscience, according to which
both the data used to predict a state of consciousness and the
reports of a system are determined by its physical configuration
alone. This, in turn, may be traced back to consciousness’ as-
sumed subjective and private nature, which implies that any
empirical access to states of consciousness in scientific investi-
gations is necessarily mediated by a subject’s reports, and to
general physicalist assumptions.

This is different from experiments in other natural sciences.
If there are two quantities of interest whose relation is to be
modeled by a scientific theory, then in all reasonable cases
there are two independent means of collecting information rele-
vant to a test of the theory, one providing a dataset that is deter-
mined by the first quantity, and one providing a dataset that is
determined by the second quantity.

Consider, as an example, the case of temperature T and its
relation to microphysical states. To apply our argument, the
temperature T would replace the experience space E and p
would denote a microphysical configuration. In order to test
any particular theory about how temperature is determined by
microphysical states, one would make use of two different
measurements. The first measurement would access the micro-
physical states and would allow measurement of, say, the mean
kinetic energy (if that’s what the theory under consideration
utilizes). This first measurement would provide a dataset om

that replaces the prediction data oi above. For the second mea-
surement, one would use a thermometer or some other measur-
ing device to obtain a dataset ot that replaces our inference data
or above. Comparison of the inferred temperature with the tem-
perature that is predicted based on om would allow testing of
the theory under consideration. These independent means

provide independent access to each of the two datasets in ques-
tion. Combining om and ot in one dataset o, the diagrammatic
representation is

P! O T ;

which differs from the case of theories of consciousness consid-
ered here, wherein the physical system determines both
datasets.

Theories could be based on phenomenology

Another response to the issue of independence/dependence
identified here is to propose that a theory of consciousness may
not have to be falsified but can be judged by other characteris-
tics. This is reminiscent of ideas put forward in connection with
String Theory, which some have argued can be judged by ele-
gance or parsimony alone (Carroll 2018).

In addition to elegance and parsimony, in consciousness sci-
ence, one could in particular consider a theory’s fit with phe-
nomenology, i.e., how well a theory describes the general
structure of conscious experience. Examples of theories that are
constructed based on a fit with phenomenology are recent ver-
sions of IIT (Oizumi et al. 2014) or any view that proposes devel-
oping theories based on isomorphisms between the structure of
experiences and the structure of physical systems or processes
(Tsuchiya et al. 2019).

It might be suggested that phenomenological theories might
be immune to aspects of the issues we outline in our results
(Negro 2020). We emphasize that in order to avoid our results,
and indeed the need for any experimental testing at all, a theory
constructed from phenomenology has to be uniquely derivable
from conscious experience. However, to date, no such deriva-
tion exists, as phenomenology seems to generally underdeter-
mine the postulates of IIT (Bayne 2018; Barrett and Mediano
2019), and because it is unknown what the scope and nature of
nonhuman experience is. Therefore, theories based on phe-
nomenology can only confidently identify systems with
human-like conscious experiences and cannot currently do so
uniquely. Thus they cannot avoid the need for testing.

As long as no unique and correct derivation exists across the
space of possible conscious experiences, the use of experimen-
tal tests to assess theories of consciousness, and hence our
results, cannot be avoided.

Rejecting falsifiability

Another response to our findings might be to deny the impor-
tance of falsifications within the scientific methodology. Such
responses may reference a Lakatosian conception of science,
according to which science does not proceed by discarding theo-
ries immediately upon falsification, but instead consists of re-
search programs built around a family of theories (Lakatos 1980).
These research programs have a protective belt which consists of
nonessential assumptions that are required to make predic-
tions, and which can easily be modified in response to falsifica-
tions, as well as a hard core that is immune to falsifications.
Within the Lakatosian conception of science research programs
are either progressive or degenerating based on whether they
can “anticipate theoretically novel facts in its growth” or not
(Lakatos 1980).

It is important to note, however, that Lakatos does not actu-
ally break with falsificationism. This is why Lakatos description
of science is often called “refined falsificationism” in philosophy

Falsification and consciousness | 11

D
ow

nloaded from
 https://academ

ic.oup.com
/nc/article/2021/1/niab001/6232324 by guest on 02 D

ecem
ber 2024



of science (Radnitzky 1991). Thus cases of testing theories’ pre-
dictions remain relevant in a Lakatosian view in order to distin-
guish between progressive and degenerating research
programs. Therefore, our results generally translate into this
view of scientific progress. In particular, Theorem 3.10 shows
that for every single inference procedure that is taken to be
valid, there exists a system for which the theory makes a wrong
prediction. This implies necessarily that a research program is
degenerating. That is, independence implies that there is al-
ways an available substitution that can falsify any particular
prediction coming from the research program.

Conclusion

In this article, we have subjected the usual scheme for testing
theories of consciousness to a thorough formal analysis. We
have shown that there appear to be deep problems inherent in
this scheme which need to be addressed.

Crucially, in contrast to other similar results (Doerig et al. 2019),
we do not put the blame on individual theories of consciousness,
but rather show that a key assumption that is usually being made
is responsible for the problems: an experimenter’s inference about
consciousness and a theory’s predictions are generally implicitly
assumed to be independent during testing across contemporary
theories. As we formally prove, if this independence holds, substi-
tutions or changes to physical systems are possible that falsify any
given contemporary theory. Whenever there is an experimental
test of a theory of consciousness on some physical system which
does not lead to a falsification, there necessary exists another
physical system which, if it had been tested, would have produced
a falsification of that theory. We emphasize that this problem
does not only affect one particular type of theory, e.g., those based
on causal interactions like IIT; theorems apply to all contemporary
neuroscientific theories of consciousness if independence holds.

In the second part of our results, we examine the case where
independence does not hold. We show that if an experimenter’s
inferences about consciousness and a theory’s predictions are
instead considered to be strictly dependent, empirical unfalsifi-
ability follows, which renders any type of experiment to test a
theory uninformative. This affects all theories wherein con-
sciousness is predicted off of reports or behavior (such as be-
haviorism), theories based off of input/output functions, and
also theories that equate consciousness with on accessible or
reportable information.

Thus, theories of consciousness seem caught between Scylla
and Charybdis, requiring delicate navigation. In our opinion,
there may only be two possible paths forward to avoid these
dilemmas, which we briefly outline below. Each requires a revi-
sion of the current scheme of testing or developing theories of
consciousness.

Lenient dependency

When combined, our main theorems show that both indepen-
dence and strict dependence of inference and prediction data
are problematic and thus neither can be assumed in an experi-
mental investigation. This raises the question of whether there
are reasonable cases where inference and prediction are depen-
dent, but not strictly dependent.

A priori, in the space of possible relationships between infer-
ence and prediction data, there seems to be room for relation-
ships that are neither independent (The substitution argument
section) nor strictly dependent (Inference and prediction data
are strictly dependent section). We define this relationships of

this kind as cases of lenient dependency. No current theory or test-
ing paradigm that we know of satisfies this definition. Yet cases
of lenient dependency cannot be excluded to exist. Such cases
would technically not be beholden to either Theorem 3.10 or
Theorem 4.3.

There seems to be two general possibilities of how lenient
dependencies could be built. On the one hand, one could hope
to find novel forms of inference that allow to surpass the prob-
lems we have identified here. This would likely constitute a ma-
jor change in the methodologies of experimental testing of
theories of consciousness. On the other hand, another possibil-
ity to attain lenient dependence would be to construct theories
of consciousness which yield prediction functions that are
designed to explicitly have a leniently dependent link to infer-
ence functions. This would likely constitute a major change in
constructing theories of consciousness.

Physics is not causally closed

Another way to avoid our conclusion is to only consider theories
of consciousness which do not describe the physical as causally
closed (Kim 1998). That is, the presence or absence of a particu-
lar experience itself would have to make a difference to the con-
figuration, dynamics, or states of physical systems above and
beyond what would be predicted with just information about
the physical system itself. If a theory of consciousness does not
describe the physical as closed, a whole other range of predic-
tions are possible: predictions which concern the physical do-
main itself, e.g., changes in the dynamics of the system which
depend on the dynamics of conscious experience. These predic-
tions are not considered in our setup and may serve to test a
theory of consciousness without the problems we have ex-
plored here.

Supplementary Materials
(A) Weak Independence

In this section, we show how Definition 3.8 can be substantially
relaxed while still ensuring our results to hold. To this end, we
need to introduce another bit of formalism: We assume that
predictions can be compared to establish how different they
are. This is the case, e.g., in IIT where predictions map to the
space of maximally irreducible conceptual structures (MICS),
sometimes also called the space of Q-shapes, which carries a
distance function analogous to a metric (Kleiner and Tull, 2020).
We assume that for any given prediction, one can determine
which of all those predictions that do not overlap with the given
one is most similar to the latter, or equivalently which is least dif-
ferent. We calls this a minimally differing prediction and use it to in-
duce a notion of minimally differing datasets below. Uniqueness is
not required.

Let an arbitrary dataset o 2 O be given. The minimal infor-
mation assumption from Theories need to be minimally infor-
mative section ensures that there is at least one dataset o0 such
that Equation (8) holds. For what follows, let o? denote the set of
all datasets which satisfy Equation (8) with respect to o,

o? :¼ fo0 2 O jpredðoÞ \ predðo 0Þ ¼1 g : (16)

Thus o? contains all datasets whose prediction completely
differs from the prediction of o.

Definition A.1. We denote by minðoÞ those datasets in o?

whose prediction is least different from the prediction of o.

12 | Kleiner and Hoel

D
ow

nloaded from
 https://academ

ic.oup.com
/nc/article/2021/1/niab001/6232324 by guest on 02 D

ecem
ber 2024



In many cases minðoÞ will only contain one dataset, but here
we treat the general case where this is not so. We emphasize
that the minimal information assumption guarantees that
minðoÞ exists. We can now specify a much weaker version of
Definition 3.8.
DefinitionA.2. Inference and prediction data are indepen-

dent if for any o 2 O and o0 2minðoÞ, there is a variation

� : P! P (17)

such that oi 2 obsðpÞ; o0i 2 obsð�ðpÞÞ but or 2 obsðpÞ and or 2
obsð�ðpÞÞ for some p 2 P.
The difference between Definitions A.2 and 3.8 is that for a
given o 2 O, the latter requires the transformation � to exist for
any o0 2 O, wheres the former only requires it to exist for mini-
mally different datasets o0 2minðoÞ. The corresponding proposi-
tion is the following.

Proposition A.3. If inference and prediction data are weakly in-

dependent, universal substitutions exist.

Proof. To show that a universal substitution exists, we need to
show that for every o 2 O, an or-substitution exists (Definition
3.1). Thus assume that an arbitrary o 2 O is given and pick an
o0 2minðoÞ. As before, we denote the prediction content of o and
o0 by oi and o0i, respectively, and the inference content of o by or.

Since inference and prediction data are weakly independent,
there exists a p 2 P as well as a � : P! P such that oi 2
obsðpÞ; o0i 2 obsð�ðpÞÞ; or 2 obsðpÞ and or 2 obsð�ðpÞÞ. By Definition
(7), the first two of these four conditions imply that obsðpÞ � o
and obsð�ðpÞÞ � o 0. Since o0 is in particular an element of o?,
Equation (8) applies and allows us to conclude that

predðobsðpÞÞ \ predðobsð�ðpÞÞ ¼1 :

Via Equation (3), the latter two of the four conditions imply that
p 2 Por and �ðpÞ 2 Por . Thus we may restrict � to Por to obtain a
map

S : Por ! Por ;

which in light of the first part of this proof exhibits at

least one p 2 Por which satisfies (4). Thus we have shown

that an or-substitution exists. Since o was arbitrary, it fol-

lows that a universal substitution exists. h

The following theorem shows that Definition A.2 is sufficient to
establish the claim of Theorem 3.10.

Theorem A.4. If inference and prediction data are weakly inde-

pendent, either every single inference operation is wrong or the

theory under consideration is already falsified.

Proof. The theorem follows by combining Propositions A.3 and
3.7. h

(B) Inverse Predictions

When defining falsification, we have considered predictions
that take as input data about the physical configuration of a sys-
tem and yield as output a state of consciousness. An alternative
would be to consider the inverse procedure: a prediction which
takes as input a reported stated of consciousness and yields as
output some constraint on the physical configuration of the

system that is having the conscious experience. In this section,
we discuss the second case in detail.

As before, we assume that some dataset o has been mea-
sured in an experimental trail, which contains both the infer-
ence data or (which includes report and behavioral indicators of
consciousness used in the experiment under consideration) as
well as some data oi that provides information about the physi-
cal configuration of the system under investigation. For simplic-
ity, we will also call this prediction data here. Also as before, we
take into account that the state of consciousness of the system
has to be inferred from or, and again denote this inference pro-
cedure by inf.

The theory under consideration provides a correspondence
pred : O‡E which describes the process of predicting states of
consciousness mentioned above. If we ask which physical con-
figurations are compatible with a given state e of consciousness,
this is simply the preimage pred�1ðeÞ of e under pred, defined as

pred�1ðeÞ ¼ fo 2 Oje 2 predðoÞg : (18)

Accordingly, the class of all prediction data which is compat-
ible with the inferred experience infðoÞ is

pred�1ðinfðoÞÞ ; (19)

depicted in Fig. 5, and a falsification occurs in case the observed
o has a prediction content oi which is not in this set. Referring to
the previous definition of falsification as type-1 (Definition 2.1),
we define this new form of falsification as type-2.
DefinitionB.1. There is a type-2 falsification at o 2 O if we have

o 62 pred�1ðinfðoÞÞ : (20)

In terms of the notion introduced in Summary section,
Equation (20) could equivalently be written as
oi 62 pred�1ðinfðorÞÞi. The following lemma shows that there is a
type-2 falsification if and only if there is a type-1 falsification.
Hence all of our previous results apply as well to type-2
falsifications.
Lemma B.2. There is a type-2 falsification at o if and only

if there is a type-1 falsification at o.

Proof. Equation (18) implies that o 62 pred�1ðeÞ if and only if
e 62 predðoÞ. Applied to e ¼ infðoÞ, this implies:

o 62 pred�1ðinfðoÞÞ if and only if infðoÞ 62 predðoÞ :

The former is the definition of a type-2 falsification. The latter
is Equation (2) in the definition of a type-1 falsification. Hence
the claim follows. h

P O E
obs

pred−1

inf

Fig. 5. The case of an inverse prediction. Rather than comparing the
inferred and predicted state of consciousness, one predicts the phys-
ical configuration of a system based on the system’s report and com-
pares this with measurement results.
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Schäfer AM, Zimmermann HG. Recurrent neural networks are
universal approximators. In: International journal of neural sys-
tems. Springer, 2007;17:253–63.

Sergent C, Dehaene S. Neural processes underlying conscious
perception: experimental findings and a global neuronal work-
space framework. J Physiol Paris 2004;98:374–84.

Seth AK. Models of consciousness. Scholarpedia 2007;2:1328.

Seth AK. A predictive processing theory of sensorimotor contin-
gencies: explaining the puzzle of perceptual presence and its
absence in synesthesia. Cogn Neurosci 2014;5:97–118.

Skinner BF. The behavior of organisms: an experimental analy-
sis. Appleton-Century, Cambridge, Massachusetts: B.F. Skinner
Foundation. 1938.

Solomonoff RJ. A formal theory of inductive inference. Part I.
Inform Control 1964;7:1–22.

Tononi G. An information integration theory of consciousness.
BMC Neurosci 2004;5:42.

Tononi G. Consciousness as integrated information: a provi-
sional manifesto. Biol Bull 2008;215:216–42.

Giulio T. Why Scott should stare at a blank wall and reconsider
(or, the conscious grid). In: Shtetl-Optimized: The Blog of Scott
Aaronson. Available online: http://www. scottaaronson.com/
blog, 2014.
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Recent activities in virtually all fields engaged in consciousness studies indicate early signs of a 
structural turn, where verbal descriptions or simple formalisations of conscious experiences are 
replaced by structural tools, most notably mathematical spaces. My goal here is to offer three 
comments that, in my opinion, are essential to avoid misunderstandings in these developments 
early on. These comments concern metaphysical premises of structural approaches, the viability 
of structure-preserving mappings, and the question of what a structure of conscious experience 
is in the first place. I will also explain what, in my opinion, are the great promises of structural 
methodologies and how they might impact consciousness science at large.

1. Introduction

So far, the scientific study of consciousness has mainly employed verbal and linguistic tools, as well as simple formalisations 
thereof, to describe conscious experiences. Typical examples are the distinction between ‘being conscious’ and ‘not being conscious’, 
between whether a subject is ‘perceiving a stimulus consciously’ or not, between whether a subject is ‘experiencing a particular 
quale’ rather than another, or more generally any account of whether some 𝑋 is part of the phenomenal character of a subject’s 
experience at some point of time. Formalisations of these verbal descriptions mostly make use of set theory, examples being sets of 
states of consciousness of a subject and simple binary classifications, or of real numbers, for example to model ‘how conscious’ a 
system is. There are sophisticated mathematical techniques in the field, but to a large extent they only concern the statistical analysis 
of empirical data, and the formulation of a theory of consciousness itself—but not the description of conscious experiences which 
underlies the data collection or modelling effort.

Much like words shape thoughts, descriptions shape science. In the case of consciousness studies, the descriptions that were 
available so far have fed into theories of consciousness, have determined what can be inferred about the state of consciousness of a 
subject, and have guided ways of conceptualising the problem under investigation.

They have, for example, led to a number of theories that explain what it takes for a single stimulus or a single piece of information 
to be consciously experienced, but which remain silent or vague on how the phenomenal character as a whole is determined. They 
have led to measures of consciousness which are specifically tailored to find out whether a single stimulus or single quality is 
experienced consciously (Irvine, 2013), but are not meant to infer phenomenal character beyond this. And to some extent, at least, 
they have privileged research programmes which search for either-or conditions related to consciousness, such as arguably the 
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search for Neural Correlates of Consciousness (NCCs) that is largely predicated on a conception of having “any one specific conscious 
percept” (Koch et al., 2016).

Because verbal descriptions only parse part of the phenomenal character of an experience, part of what it is like for an organism 
to live through a particular moment, it is no surprise that means to go beyond these simple descriptions are highly sought after.

In recent years, the idea of using mathematical spaces, or mathematical structure more generally,1 to go beyond verbal descrip-

tions and simple formalisations have started to sprout in virtually every discipline involved in the scientific quest to understand 
consciousness. Following rich developments in psychophysics over more than a century (Pashler & Wixted, 2004), and pioneer-

ing work by Austen Clark (Clark, 1993) and David Rosenthal (Rosenthal, 1991) in consciousness science, mathematical spaces 
are now applied in philosophy, (Clark, 2000, Coninx, 2022, Fortier-Davy & Millière, 2020, Gert, 2017, Lee, 2021, 2022, Rosen-

thal, 2010, 2015, 2016, Fink et al., 2021, Lyre, 2022, Kob, 2023, Renero, 2014, Prentner, 2019, Yoshimi, 2007, Chalmers & 
McQueen, 2022, Silva, 2023, Atmanspacher, 2020), neuroscience (Tononi, 2015, Tallon-Baudry, 2022, Zaidi et al., 2013, Lau et 
al., 2022, Malach, 2021, Haun & Tononi, 2019, Oizumi et al., 2014, Hebart et al., 2020, Josephs et al., 2023, Tsuchiya et al., 
2023, Zeleznikow-Johnston et al., 2023, Haynes, 2009, Michel, In press), cognitive science (Hoffman et al., 2023, Rudrauf et al., 
2017, Hoffman & Prakash, 2014, O’Brien & Opie, 1999), psychology (Klincewicz, 2011, Kostic, 2012, Young et al., 2014) and math-

ematical consciousness science (Grindrod, 2018, Kleiner, 2020b, Stanley, 1999, Resende, 2022, Mason, 2013, 2021, Signorelli & 
Wang & Coecke, 2021, Tsuchiya et al., 2016, Tsuchiya & Saigo, 2021, Tsuchiya et al., 2022, Kleiner, 2020a, Kleiner & Hoel, 2021, 
Kleiner & Ludwig, 2023). They are known under various names, including quality spaces (Clark, 1993, Rosenthal, 2015), qualia 
spaces (Stanley, 1999), experience spaces (Kleiner & Hoel, 2021, Kleiner & Tull, 2021, Rosenthal, 2010), qualia structure (Kawakita 
& Zeleznikow-Johnston & Tsuchiya, et al., 2023, Kawakita & Zeleznikow-Johnston & Takeda, et al., 2023, Tsuchiya et al., 2022), 
Q-spaces (Chalmers & McQueen, 2022, Lyre, 2022), Q-structure (Lyre, 2022), Φ-structures (Tononi, 2015), perceptual spaces (Zaidi 
et al., 2013), phenomenal spaces (Fink et al., 2021), spaces of subjective experience (Tallon-Baudry, 2022), and spaces of states of 
conscious experiences (Kleiner, 2020a). A first formalised theory of consciousness to make use of mathematical spaces was Integrated 
Information Theory (IIT) 2.0 (Tononi, 2008); more recent versions expand and refine the idea (Oizumi et al., 2014, Albantakis et al., 
2023).

What unites all of these proposals is the hope that the mathematical structures they propose are useful to describe the phenomenal 
character of an experience more comprehensively, more precisely, or more holistically than verbal descriptions or simple formali-

sations allow, and that mathematical structures can cope both with the apparent richness and with the many details that make up 
experiences. If this hope turns out true, it has far-reaching implications on how to study, measure, and think about consciousness.

My goal here is to offer three comments which I think are important to keep in mind when applying structural ideas in theory 
and experimental practice, so as to avoid misconceptions or misunderstanding early on. I hope that my comments are helpful for 
those working on structural ideas as well as those observing these developments with a degree of scepticism.

2. Three promises of a structural turn

Before offering my comments below, I will briefly sketch the implications and limitations that structural methodologies may 
have for consciousness science. This might be of interest to those who have not engaged with this research before, and allows me to 
illustrate what I think are some of the great promises of a structuralist turn.

2.1. Theories of consciousness

We currently have at least 39 theories of consciousness,2 with new theories being proposed on a regular basis, albeit without 
much general attention. The reason for that, I contend, is that as far as theoretical work is concerned, it is actually very easy to come 
up with theories of consciousness of the type we have today.

The majority of contemporary theories of consciousness aim to explain whether a system’s state, a stimulus, a piece of information, 
or a representation is consciously experienced, or not. That is, they target a binary classification between states, signals, stimuli or 

1 The term mathematical structure, which I will explain in detail Section 3 below, is more general than the term mathematical space. That is, every mathematical 
space is a mathematical structure, but there are also mathematical structures which are not mathematical spaces, either because they only comprise individuals (so do 
not satisfy the intuition that a space is about many individuals), or because their structure is more complex than one would typically take a space to be. The question 
of which mathematical structures to call mathematical spaces is a matter of convention, which is why there is no definition of a general concept of mathematical 
space in mathematical logic.

2 An unpublished list compiled by Dr. Jonathan Mason on behalf of the Association for Mathematical Consciousness Science (AMCS) and the Oxford Mathematics of 
Consciousness and Applications Network (OMCAN) comprises the following theories of consciousness in the peer-reviewed literature: Activation/Information/Mode-

Synthesis Hypothesis, Adaptive Resonance Theory, Attention Schema Theory, Centrencephalic Proposal, Conscious Agent Networks, Conscious Turing Machine, 
Consciousness Electromagnetic Information Field Theory, Consciousness State Space Model, Cross-Order Integration Theory, Dendrite/Apical Dendrite Theory, Dy-

namical Core Theory, Electromagnetic Field Hypothesis, Enactive and Radical Embodiment, Expected Float Entropy Minimisation, First Order Representational 
Theory, Free Energy Principle Projective Consciousness Model, Global Neuronal Workspace Theory, Global Workspace Theory, Higher-Order Thought Theory, Inte-

grated Information Theory, Integrated World Modeling Theory, Layered Reference Model of the Brain, Memory Consciousness and Temporality Theory, Mesocircuit 
Hypothesis, Multiple Draft Model, Network Inhibition Hypothesis, Neural Darwinism Theory, Orchestrated Objective Reduction, Passive Frame Theory, Predictive 
Processing and Interoception, Proto-Consciousness Induced Quantum Collapse, Psychological Theory of Consciousness, Radical Plasticity Thesis, Recurrent Processing 
Theory, Self Comes to Mind Theory, Semantic Pointer Competition Theory, Single Particle Consciousness Hypothesis, Temporo-Spatial Theory of Consciousness, 
Thalamo-Cortical Loops and Sensorimotor Couplings. This list might not be complete, and some of the theories might point to similar or analogous theoretical 
constructs.
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representations. The simple verbal distinctions mentioned in the introduction—a system ‘being conscious’ or not, ‘perceiving a 
stimulus consciously’ or not, ‘experiencing a particular quale’ or not—are all examples of such binary classifications.

Formulating theories of consciousness that target binary classification is relatively straightforward, as far as theoretical work is 
concerned. This is because devising a {0, 1} classification only requires identifying some property, function, or dynamical mode of a 
brain mechanism. All configurations that exhibit this property, function or dynamical mode are mapped to 1, while all which do not 
are mapped to 0. And within non-structural approaches, nothing technical prohibits one from postulating that the 1 cases correspond 
to conscious experience of a stimulus, state, piece of information or representation, while the 0 cases correspond to unconscious 
experience thereof. The empirical or conceptual validity of such a choice is an important question, yet from a technical standpoint, 
formulating theories that target these distinctions is straightforward.

It is much more difficult to come up with a well-formed hypothesis that relates to a mathematical space or mathematical structure. 
That is because a mathematical space or mathematical structure has two parts. On the one hand, it contains a set of points. On 
the other hand, it contains relations or functions that express connections between the points, for example an order relation or a 
metric function. Therefore, there is much more information to provide when specifying how a space or structure relates to a brain 
mechanism, or a physical system more generally. Furthermore, virtually every mathematical object comes with a set of axioms that 
parts of the object have to satisfy. So not only is more information needed, but this information may also have to satisfy constraints 
to provide a legitimate definition. This is why defining a space or structure is much more of a challenge than finding a binary 
classification.

The task is more difficult even if the space or structure that a theory is to provide has a specific, theory-independent form. That 
is the case if the theory has to account for phenomenal structure that has independent justification or independent motivation, 
for example from psychophysical experiments. This difficulty is illustrated by the fact that we do not, at present, have a theory of 
consciousness that targets the mathematical structures that have been proposed to account for conscious experiences on independent 
grounds. To the best of my knowledge, there are only two theories that define phenomenal spaces: Integrated Information Theory 
(IIT) (Albantakis et al., 2023) and Expected Float Entropy Minimisation Theory (EFE) (Mason, 2021). While both theories represent 
significant advances, establishing a link to existing phenomenal spaces (cf. Section 5) remains a next-level challenge.3

As formulating theories that account for phenomenal structure in addition to non-structural explananda necessitates meeting more 
constraints than formulating non-structural theories, structural theories are likely to be more predictive than their non-structural 
counterparts. Furthermore, because the phenomenal structure is an integral aspect of phenomenal character, a theory that accounts 
for phenomenal structure in addition to non-structural explananda has a broader explanatory scope than one that focuses solely on 
the conscious-unconscious distinction. Therefore, a structural turn might deliver more explanatory and more predictive theories of 
consciousness. This is the first major implication I can see of structural approaches in consciousness science.4

Structural methodologies might inspire, and be inspired by, novel theoretical ideas that derive from any of the existing theories 
of consciousness, or from their combination. Proposals like the Conscious Turing Machine (Blum & Blum, 2022) or Integrated 
World Modelling Theory (Safron, 2022) that combine features of existing theories of consciousness (such as, for example, Integrated 
Information Theory, Global Neuronal Workspace Theory, and Free Energy Principle based proposals) could be particularly interesting 
in this regard.

2.2. Experimental investigations

A shift towards structural methodologies could also have significant implications for experimental research. One immediate 
implication follows from the previous section, i.e., from the transformative effect that structural methodologies could have on 
theories of consciousness. If structural theories of consciousness would indeed be more predictive than the non-structural theories 
we have today, then they might be easier to test than the theories we have today,5 and the new predictions about structural facts 
might offer new avenues for experimental investigation.6

But structural thinking could also yield new experimental tools and methodologies that are separate from theoretical advance-

ments. For instance, under certain conditions, structural approaches offer an entirely new methodology for measuring NCCs (Fink 
et al., 2021). This methodology could potentially address some of the foundational challenges in existing methodologies, such as 
the co-activation of cognitive processing centres causally downstream of the core NCC, and might not require traditional methods 
to assess a subject’s state of consciousness. I discuss and criticise the key assumption that enables this methodology—the assump-

tion of a structure-preserving mapping between phenomenal and neuronal structures—in Section 4 below. Nevertheless, even if this 

3 Proponents of both theories are fully aware of this task, and IIT has made a first step in this direction in Haun and Tononi (2019). In addition to accounting 
for phenomenal structure that has independent justification, there are other tasks and challenges that structural theories have to meet and resolve. For example, an 
anonymous reviewer has kindly pointed me to the fact that according to IIT, richly structured experience can be entailed by static systems without dynamics, which 
might pose an empirical or conceptual challenge for IIT.

4 In saying this, I do not intend to diminish the value of ‘binary’ theories of consciousness. They are an integral part of consciousness science and encapsulate a 
substantial body of evidence. On my view, they need to be extended so as to address phenomenal character more holistically as well. Whether this should be done on 
a case-by-case basis, or whether there might be a theory of qualitative character that can serve for a larger number of binary theories, is not something that needs to 
be decided in advance.

5 Lukas Kob made this point for structuralist approaches during a wonderful talk at the recent Structuralism in Consciousness Studies workshop at the Charité Berlin, 
though my comment here concerns the wider scope of structural approaches, cf. Section 3 and Fig. 2 for more on that distinction.

6 Speculating wildly, one might hope that if theories of consciousness could account for theory-independent phenomenal spaces, this could help to mitigate the 
problem that empirical tests of theories of consciousness currently rely heavily on theory-dependent methodological choices (Yaron et al., 2021).
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assumption proves to be more limited in scope or strength than initially anticipated, the methodology might still have advantages 
compared to existing options to search for NCCs.

The implication that intrigues me most, however, is the possibility that structural approaches may introduce new measures of 
consciousness. A measure of consciousness, as conventionally understood, is a method to determine whether an organism is conscious, 
or whether a given stimulus or signal has been consciously perceived. Measures of consciousness are “consciousness detection 
procedures” (Michel, 2023) of sorts.

Building on the extensive previous work in both psychophysics and consciousness science, structural approaches raise the pos-

sibility to construct new and potentially more powerful measures of consciousness, which do not only focus on whether a single 
stimulus is experienced (a single quality of phenomenal character, that is), but on phenomenal character more comprehensively.

The potential of structuralist approaches in this regard can be nicely illustrated by considering verbal report, which is a paradig-

matic (albeit often criticised) measure of consciousness. In the case of report, subjects use language to report facts about their 
experience. They might, for example, indicate that they experienced a red colour, or saw a face in a masked stimulus. The problem 
with reports is that when compared with the actual experience, they contain very little information. Which shade of red did the 
subject experience, precisely? How did they experience the face, and with which details? What else did they experience in addition 
to the reported fact? In information-theoretic terms, this problem arises because the channel capacity of verbal report and other 
behavioural indicators is low compared to the information content of conscious experiences.7

Structural approaches allow us to bypass the limited channel capacity of reports and similar measures of consciousness, be-

cause structural descriptions can store information about the phenomenal character of a subject. That is the case because structural 
descriptions represent features of a subject’s phenomenal character that relate individual non-structural facts.

Given the structural information in a phenomenal space, a few bits of information collected in an experimental trial, for example 
by means of reports or similar measures of consciousness, can suffice to pin down the location in a structure, resulting in information 
about what a subject is experiencing that might go far beyond the bits of information that were collected. This is similar to how a 
geographic map can be used to decode rich information about a path based on a few bits of information about location. Finding one’s 
way in the wilderness without a map or map-like tools generally is a very difficult task. Given a map, procedures like triangulation 
are available that only require a few bits of information, such as the angles between three landmarks in line of sight, to pin down 
one’s position and find one’s way. That is possible because maps store information about geography. Another example of this sort is 
quantum tomography, where a set of carefully chosen measurements together with structural information about the quantum state 
(specifically, the inner product and projective structure of the Hilbert space), is used to pin down the exact state among an infinite 
number of possibilities.

In a similar vein, phenomenal spaces might be used to decode information from carefully chosen low-channel-capacity measures 
of consciousness. Precisely how to do this remains an open question as of yet, and strongly depends on a thorough understanding of 
phenomenal structure in the first place (cf. Section 5), but it is a viable possibility.

2.3. Conceptual work

Structural approaches can also be essential, finally, in conceptualising consciousness and its potential problems. It is not unlikely that 
interesting philosophical implications arise, specifically in the context of structuralist assumptions, but what I’d like to highlight here 
is the importance of structural thinking in shaping our pre-theoretic problem intuitions about consciousness; those intuitions, that is, 
which guide both our theorising and experimental work.

Structural thinking might well turn what we previously thought about consciousness upside down. It might change how many 
of us think about our own research in the first place. To give two very preliminary examples, I think that structural approaches are 
relevant for epistemic arguments like Mary’s room (Jackson, 1998, 1986), and for modal arguments like colour inversion (Shoemaker, 
1982, Block, 1990).

For epistemic arguments such as Mary’s room, the big question is whether one presumes that structural facts about experiences 
are known. If Mary propositionally knows, for example, which structure the experience of red has, and if structure is sufficient 
to individuate experiences, then she might be able to use her advanced neuroscience knowledge to create an embedding of the 
structure of red experiences within her own phenomenal space, even if she never experienced red, or any colour for that matter, 
before. Similarly, outside the realm of thought experiments, we might use structural facts to create experiences that approximate 
what it is like to be a bat. Structure might furnish an objective phenomenology (Lee, 2022).

Modal arguments, similarly, need to be rethought. The typical colour inversion thought experiment presumes fairly homogeneous 
colour spaces—colour spaces that possess symmetries. This presumption is critical because if a colour inversion is not a symmetry, 
then the difference between colour experience before and after the inversion will manifest itself both in behaviour and in the use 
of colour words: through similarity judgements and other expressions of structural facts. The closest approximation we have to a 
space of consciously experienced colour qualities is the CIELAB colour space (Schanda, 2007), a rendering of which is depicted in 
Figs. 1, 3, and 4, which is highly non-homogeneous and may not admit symmetries to the extent that we expect. Adding valence 
and other consciously experienced attributes of colour experiences might further erode any remaining symmetries. Thus, at least the 
usual intuitions regarding qualia inversions and other modal arguments may cease to be valid. Structural approaches might force us 
to reconsider intuitions that are built on these types of arguments.

7 I am very grateful for a conversation with Lucia Melloni about the problems of reports and structural ideas to resolve these during a walk at the above-mentioned 
Structuralism in Consciousness Studies workshop. The idea sketched here came up during this walk and is Lucia’s as much as, or even more than, mine.
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Fig. 1. What is an automorphism? This figure illustrates the concept of automorphisms. Automorphisms are somewhat analogous to rotations of a space around 
some axis (top row). More formally, an automorphism is a function that maps every point of a mathematical space to a different point of the same space, one-to-one, in 
such a way that all relations of the space are preserved: whenever two points are related before the mapping, they are also related after the mapping. This is illustrated 
by the bottom row, where individual points of the space are depicted by coloured dots, and relations are depicted by red lines. An automorphism maps every dot to 
a new dot, represented here by the change in location of the colours, in such a way that when two dots were related before the mapping (red line between two dots) 
the targets of the mapping are also related (red line between target dots). Automorphisms form a group because automorphisms can be inverted, and because any two 
automorphisms can be combined to form another automorphism, in this case one from the left-hand space all the way to the right-hand space. (For interpretation of 
the colours in the figure(s), the reader is referred to the web version of this article. Depiction of CIE colour space gamuts by Wikimedia Commons, Michael Horvath, 
under CC BY-SA 4.0; this image is shared under the same license.)

2.4. Limitations

While structural approaches do, in my view, offer a number of benefits to the science of consciousness, it is also important to see 
their limitations.

A first limitation of structural approaches is that it is not clear, at present, how much of phenomenal character—how much of what 
it is like to experience something, that is—can be grasped by structural tools. While it is clear that much of the phenomenal structure 
that is usually associated with the content of consciousness can be represented structurally (much of it actually is structural, one might 
say), it is not clear whether some of the more subtle or remote facets of phenomenal character are amenable to a structural analysis. 
Can the experience of a self or ego be represented structurally? What about the experience of other minds? Or the pre-reflective and 
pre-conceptual awareness of being aware, sometimes referred to as subjective character?

A second limitation of structural approaches relates to measurability. Even if a facet of phenomenal character is amenable to 
structural tools, it might still be difficult, costly, or even impossible to measure. It might take years to construct a full quality space 
of a single modality. Is this actually feasible in experimental practise for anything but the most salient structures of phenomenal 
character?

A third limitation is the question of whether structural approaches can actually get any closer to modelling what is sometimes 
described as an intrinsic nature of qualia or qualities. Do structural approaches have any handle on modelling this? Or can they just 
circumscribe the structure that intrinsic properties instantiate? And to the extent that such intrinsic nature is the core of the problem 
of consciousness, can structural approaches get us any closer to understanding this core?

My own view of these limitations is that they define some of the key questions that structural research will have to tackle in the 
upcoming years. Because experiences exhibit structure, structural approaches are, by necessity, part of any research programme that 
targets experiences in full. To what extent they contribute to resolving the core questions at the heart of consciousness science is an 
open question.

3. Metaphysical premises

My first comment concerns an intuition which I have often encountered when discussing structural approaches with colleagues: 
that structural approaches are metaphysically presuming. Most notably, to many they seem to be tied to physicalist or reductionist 
metaphysics. The goal of this comment is to show that this is not the case. Structural approaches offer a new descriptive tool 
that can—in theory, at least—be applied independently of metaphysical assumptions, and in research programs of any metaphysical 
flavour. Structural approaches do not in themselves have metaphysical premises, and they do not by themselves come with a preferred 
metaphysical interpretation. Rather, they can be applied to and combined with the particular metaphysical ideas or presumptions 
that are already employed in a research program.

The major reason why structural approaches are often taken to be metaphysically presuming is that they are conflated with struc-

turalist approaches. Structuralist approaches assume that individuals can be individuated by structure: that for every individual 𝑥, 
there is a unique location in a structure, a location in which only 𝑥 holds. Intuitively speaking, the idea is that specification of all 
structural facts suffices to also specify all facts about individuals in that structure.
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In the context of consciousness science, the individuals in question can be experiences, phenomenal character, qualities or qualia. 
The structures in question are experience spaces (spaces whose elements are experiences), phenomenal spaces, quality spaces or 
qualia spaces. Furthermore, there are ontological, epistemological, and methodological ways of reading a structuralist claim. In all 
cases, the idea is that the domain of individuals exhibits structure, and that this structure is sufficient to individuate the individuals 
in the relevant sense.

Structural approaches, in contrast, are not committed to a claim of individuation. An approach is structural if it applies mathe-

matical structure. And, as I will now explain, more often than not, mathematical structure does not individuate individuals. In order 
to see why, we must differentiate between two readings of the term ‘structure’. This will also yield a clear, formal definition of 
structuralism in a given consciousness-related domain.

Mathematics offers an unambiguous definition of what a structure is. A mathematical structure consists of two things: domains, on 
the one hand, and functions or relations, on the other hand. The domains of a structure are the sets on which the structure is built. 
They comprise the points, or elements, in a space, the individuals in a structuralist sense. In the case of a metric space, for example, 
there are two domains: the set of points of the metric space and the real numbers that constitute the ‘distances’ between points. 
In the case of a partial order, there is just one domain: the domain of elements that are to be ordered. The second ingredient of a 
mathematical structure are functions and/or relations. Functions map some of the domains to other domains. In the case of a metric 
structure, for example, there is a metric function that maps two points to a real number. Relations relate points to each other. In 
the case of a partial order, for example, there is a binary relation on the set of points. This relation specifies ordered pairs of points, 
usually written as 𝑝1 ≤ 𝑝2.

When the term ‘structure’ is used in natural science, it usually follows this mathematical definition. For example, if we talk about 
the structure of space-time, we mean the mathematical structure that describes space-time, called a Pseudo-Riemannian manifold. 
If we talk about the structure of a neural network, we mean the mathematical structure of the directed graph that specifies the 
connectivity of the network: the mesh of nodes and edges, where each node represents a neuron or neuronal assembly, and where 
each directed edge specifies a neural pathway between neurons or assemblies.

When we use the term ‘structure’ in the context of structuralist ideas, however, it only refers to the second ingredient of a 
mathematical structure: the functions and relations that a mathematical structure contains. These functions or relations are what 
individuates the individuals—the elements of a domain—in a structuralist sense.

While customary in the context of structuralist assumptions, this use of the term ‘structure’ to designate only relations and 
functions is problematic. That is the case because we cannot actually specify relations or functions without specifying the points or 
elements that the relations or functions operate on. The symbol ‘≤’, for example, can be used to indicate a type of structure, a partial 
order in this case, but it cannot define or specify a structure. Any concrete definition or specification of a partial order needs to make 
use of, or refer to, the points that the relation relates. It needs to make use of some set of points—some domain in the mathematical 
sense of the term. Strictly speaking, it does not make sense to use the term ‘structure’ to refer only to the functions or relations. I will 
refer to structure in the structuralist sense—that is to the functions and relations that are part of structure in the proper sense of the 
term—as structure in the narrow sense of the term.

The structuralist idea that relations or functions determine all individuals still makes sense, of course, independently of termino-

logical issues. And it can be expressed in a neat formal requirement, making use of the notion of an automorphism, cf. Fig. 1. An 
automorphism is a one-to-one mapping from the domains of the structure to themselves which preserves the functions or relations. 
That is, it preserves structure in the narrow sense of the term. For every point of the structure, an automorphism specifies a point 
as its target in such a way that the functions and relations of the structure do not change when going from the source to the target: 
whenever some points satisfy a relation before the mapping, they also satisfy the relation after the mapping, and equally so for 
functions.

Automorphisms may or may not exist. The identity mapping (not changing anything) is always an automorphism, but depending 
on how rich or complex the structure in the narrow sense of the term is, there might not be other automorphisms. In particular, if it 
is indeed the case that every point 𝑥 of a structure satisfies a unique location of structure in the narrow sense of the term, then there 
is no automorphism other than the identity. One cannot exchange any two points without changing structure in the narrow sense of 
the term. In this case, one says that the automorphism group is trivial.8 Vice versa, if the automorphism group of a structure is trivial, 
then every point must have a unique location.9

As structuralism (in the context of consciousness) is the assumption that every point 𝑥 of a structure (in the general sense of 
the term) satisfies a unique location of the structure in the narrow sense of the term, structuralism is equivalent to the condition 
that the automorphism group of the relevant structure (in the general sense of the term) is trivial. This constitutes a nice formal 
characterisation of structuralism in consciousness science:

(STR) Structuralism about a domain is true iff the automorphism group of that domain is trivial.

8 It is ‘trivial’ because that’s the simplest possible case, and the set of automorphisms is a group because automorphisms can be combined and inverted as required 
by the axioms of a group in mathematics.

9 For every point to have a unique location in a structure is for there not to exist a permutation or other mapping of the domains of that structure to themselves 
that leaves the structure in the narrow sense of the term invariant.
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Fig. 2. Structural vs. structuralist approaches. Structural approaches make use of mathematical spaces or mathematical structures to represent or describe conscious 
experiences. These spaces and structures may, and in general do, admit for automorphisms (cf. Fig. 1). This implies that there are points in the space which have 
the exact same relational structure. Structuralist approaches, on the other hand, assume that all points of the space can be individuated by their relational structure, 
meaning that no two points have the same relational structure. This can only hold true if the space does not admit automorphisms, other than the identity mapping 
that is always an automorphism.

Here, the domain could comprise individual experiences, phenomenal characters, qualities or qualia, depending on which type of 
structuralism is under consideration.10

The crucial point of this section is that mathematical structures can, but need not, obey structuralist assumptions; they may or 
may not have a trivial automorphism group. A theory or experiment can be structural, in the sense that it makes use of mathematical 
spaces or structures, without necessarily being structuralist. This is illustrated by Fig. 2.

In fact, if we look at mathematical spaces in mathematics, physics, and other natural sciences, in the majority of cases, the 
automorphism group is not trivial. Simple examples of spaces with non-trivial automorphism groups are the Euclidean spaces ℝ2, ℝ3

and ℝ𝑛 for any 𝑛 ≥ 2, and many metric spaces, Riemannian manifolds, Hilbert spaces, or graphs.

Therefore, not only is there a difference between structural and structuralist approaches, but it is in fact quite common that the 
former applies while the latter does not. Structures in the general sense of the term may, but often do not, amount to structures in 
the narrow sense of the term. This has three consequences for research in a structuralist turn.

Consequence 1. Structural vs. structuralist agendas

Much like the two senses of the term ‘structure’ at issue here are often conflated, so are structural and structuralist agendas. Both 
are subsumed under the general heading of ‘structuralism’, for example. A first consequence of the above is that there is a difference 
between structural and structuralist agendas, and it is important to be clear about which agenda one is pursuing when engaging in 
structuralist research.

If one is using mathematical tools and methods, for example, to help place “structural phenomenal properties at the core of 
the science of consciousness” (Chalmers, 2023), as required by a very attractive position called weak methodological structuralism 
that has recently been put forward by David Chalmers, then one is engaging in a structural agenda: an agenda which makes use of 
mathematical spaces and mathematical structure but which is not committed to a structuralist claim. Put differently, structural tools 
like mathematical spaces can also be employed if one rejects the idea that structure (understood in the narrow sense of the term) is 
all that matters. They are free of explanatory and epistemic charge.

Consequence 2. Metaphysics of the mind

Many structuralist approaches are not metaphysically neutral. They imply that certain properties which some consider crucial 
with respect to consciousness do not exist, or are not knowable. For example, if ontic phenomenal structuralism is true, then there 
are no intrinsic phenomenal properties, and no genuinely private properties. Ontic structural realism implies that there are no 
qualia as conventionally understood (Dennett, 1988). If epistemic phenomenal structuralism is true, then one cannot know (either 
scientifically, or by introspection) of intrinsic or private properties, all we know about in regard to conscious experiences derives 
from structural properties.

Structural approaches are not tied to these assumptions. They are perfectly compatible with the existence of intrinsic or private 
properties. As far as the mathematics is concerned, if private or intrinsic properties exist (or if there are properties which are not 
accessible to structural cognitive processing), this simply means that the automorphism group of the structure is not trivial. There 
are points that cannot be individuated by structure alone.

10 The term ‘domain’ also has two meanings: The meaning of domain in the sense of mathematical structure as introduced above, and the meaning of domain as a 
group of related items in general language. Both meanings apply here if it is clear what the structure of a domain is.
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To give a very simple example, consider the case where there is no structure in the narrow sense of the term at all, i.e. the case 
where there are no relations or functions between qualities or qualia at all. This case can be described in terms of mathematics: 
the qualities or qualia simply form a set. A set is a mathematical structure according to the definition of mathematical structure in 
mathematical logic. It is the simplest case of a mathematical structure, but an important one. So while this case is opposed to the 
ideals of structuralist thinking, it is a simple but perfectly fine example of a structural approach.

What is more, structural approaches might actually help to address intrinsic, private or ineffable properties in scientific contexts. 
My first paper on consciousness, (Kleiner, 2020b), is devoted precisely to this issue. In a nutshell, I show that mathematical tools 
can be used to formulate theories of consciousness that address these properties even if they are, in an intersubjective sense, non-

collatable. Because of these mathematical tools, mathematical approaches allow us to go further than non-mathematical approaches 
can go. Ultimately, this works because “[m]athematics translates concepts into formalisms and applies those formalisms to derive 
insights that are usually not amenable to a less formal analysis” (Jost, 2015).

Consequence 3. Metaphysics beyond the mind

The third consequence, finally, concerns the conviction mentioned at the beginning of this section that structural approaches 
seem to many to be tied to physicalist or reductionist metaphysics.

The intuition that motivates this conviction arguably derives from the equivocation of structural and structuralist assumptions, 
together with the idea that science can only explain relations. If structural assumptions would indeed imply that “[t]here is nothing 
to specifying what something is over and above stating its location in a structure” (Fink et al., 2021), and the physical sciences 
could only explain structure, then it would indeed be the case that structural approaches would render consciousness amenable to 
scientific and arguably physicalist explanation. What is more, when ontology is concerned, structuralist assumptions imply that none 
of the prototypical non-physicalist properties of consciousness exist (cf. Consequence 2). This, too, intuitively speaks in favour of a 
physicalist and reductionist research programme.

While it is clear that these intuitions do not have the force of a logical argument, it seems fair to say that structuralist assump-

tions are well aligned with physicalist metaphysics, and in the form of one of its most promising incarnations, neuro-phenomenal 
structuralism (Fink et al., 2021, Lyre, 2022), might even “open an attractive door for reductionism” (Fink et al., 2021).

The problem with the conviction mentioned above is that structural approaches are not necessarily structuralist approaches. The 
majority of mathematical spaces that are used in the sciences have a non-trivial automorphism group and therefore do not satisfy 
the defining criterion of a structuralist approach in the context of consciousness science (cf. Fig. 2). In other words, one can choose 
to apply mathematical tools and methods to describe consciousness without committing to structural assumptions and a fortiori 
without committing to physicalist or reductionist metaphysics. Structural approaches can be used and might be beneficial in any 
type of metaphysical programme, from reductive physicalism to property dualism or idealism.

In fact, there are a number of structuralist approaches which target non-physicalist metaphysics already, on the level of toy 
models. Atmanspacher (2020), for example, uses mathematical tools to outline how the neutral domain in a Pauli-Jung style dual 
aspect monism might relate to the mental and physical aspects. Other proposals, for example (Signorelli & Wang & Coecke, 2021, 
Signorelli & Wang & Khan, 2021), use a category theory-based graphical calculus to expand ideas from Buddhist philosophy.

In making these points, I am not to arguing for a non-physicalist research programme. My point is that structural approaches 
are not tied to physicalist or reductionist assumptions. Mathematical spaces and mathematical structures provide descriptive tools 
that can be applied to any choice of metaphysical assumptions, and in research programmes of any metaphysical flavour. Structural 
approaches do not have metaphysical premises, and they do not come with a preferred metaphysical interpretation.

4. Isomorphisms and structure-preserving mappings

The core question which drives the scientific study of consciousness is the question of how conscious experiences and ‘the physical’ 
relate. A ubiquitous mathematical object in the context of mathematical structures is that of an isomorphism, illustrated in Fig. 3 and 
explained in detail below. Due to its ubiquity, when introducing structure to the phenomenal domain, many feel that it is natural 
to assume that this structure is related to physical structure by an isomorphism or structure-preserving mapping. My goal here is to 
show that this assumption is not in fact justified. We either need to search for a rigorous justification, or if there is none, proceed in 
different ways.

Intuitively speaking, an isomorphism expresses a relation between two structures. Precisely speaking, it is a bijective mapping 
between the domains of two structures that preserves the relations or functions of these structures. That is, it is a map from the 
elements or points of one structure to the elements or points of another structure. A map is bijective if it is one-to-one and onto, 
meaning that every element in the target space gets mapped to by exactly one element in the source space.

In practice, because the physical has a much larger domain and much richer structure than the phenomenal, when the concept of 
an isomorphism is applied in consciousness science, what is actually meant is an isomorphism onto the image. This means that there 
is an isomorphism from the phenomenal domain to a substructure of the physical domain. Often, homomorphisms are used as well. 
They are defined exactly like isomorphisms, except that they do not have to be one-to-one or onto, so that some elements in the 
target space might not get mapped to, and/or several elements in the source space might map to the same element in the target 
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Fig. 3. What is an isomorphism? This figure illustrates the concept of isomorphisms as applied in consciousness science to link a phenomenal space or structure 
(left) with a physical space or structure (right). By definition, isomorphisms operate on the level of points. An isomorphism maps every point of the phenomenal space 
to a point in the physical space. It does so in such a way that the relations between points (indicated here by red lines) are preserved, meaning that any two points 
which are related on the left are related in the exact same way on the right. The mapping also needs to be invertible. An isomorphism presupposes that structures on 
both sides of the mapping are given. It does not define, or pick out, the structure in its target domain, which is why it is not a suitable mathematical object to explain, 
predict, or define phenomenal structure in terms of physical structure. (Depiction of CIE colour space gamut by Wikimedia Commons, Michael Horvath, under CC

BY-SA 4.0; this image, excluding the drawing of the brain, is shared under the same license. Drawing of the human brain from Freepik.)

space. Strictly speaking, though, the mathematical concept of homomorphisms is not appropriate either,11 but to avoid unnecessary 
technical details, I will admit them too. I will use the term structure-preserving mapping to denote homomorphisms or isomorphisms 
with the understanding that the domains and structures of the source and target have been adapted appropriately to avoid the 
technical problems. As far as intuition is concerned, my comments are easiest understood when thinking about an isomorphism onto 
the image.

The assumption under discussion then is:

(ISO) The physical and the phenomenal are related by a structure-preserving mapping from the phenomenal domain to the physical 
domain.12

This assumption is a very consequential assumption. It promises, for example, a new methodology for measuring Neural Correlates 
of Consciousness (NCCs). To date, NCC research has to make use of intricate measures of consciousness (Irvine, 2013), to distinguish 
between trials where the subject perceives a stimulus consciously from trials where it doesn’t. If (ISO) is true, a whole new avenue for 
investigating NCCs is available: to search, among neural structures in the brain, for structures that are homomorphic to or identical 
with the structures of the phenomenal domain. This search could, in principle, be carried out independently of any measure of 
consciousness, and might give a unique result, so that potentially at least there is a methodology where one “[does] not have to 
worry whether subjects ‘really’ had a phenomenal experience of a stimulus” (Kob, 2023).

The existence of a structure-preserving mapping between the phenomenal and physical domain also has important consequences 
for theories of consciousness: it implies that a large class of theories of consciousness is false, namely all those which do not take 
the form of a homomorphism. A good example of this is Integrated Information Theory (IIT) (Oizumi et al., 2014, Albantakis et 
al., 2023). It is sometimes assumed that IIT is structure-preserving or even an isomorphism, but according to IIT’s mathematical 
formulation, this is not the case. The mathematics of IIT come with two clear ‘slots’ for the physical and phenomenal domain. One 
of the slots is the input to the theory’s algorithm. It requires a physical description of a system, for example in terms of neurons. The 
other slot is the output of the theory’s algorithm. For every system and physical state of this system, this output is a mathematical 
structure called ‘Maximally Irreducible Conceptual Structure’ in IIT 3.0, and ‘Φ-structure’ in IIT 4.0. This structure “is identical to 
[the system’s] experience” (Oizumi et al., 2014). The mathematical algorithm of the theory specifies a mapping between those two 

11 The concept of homomorphism as used in mathematics presumes that two structures have the same signature, meaning that both structures need to have the 
same type of functions or relations: the same number of functions or relations of the same arity, that is. Because the physical has much more structure than the 
phenomenal (think about the rich structure of electrodynamics in the case of neurons, say), the concept of homomorphism is too strong to express the underlying 
idea. One could attempt to define a partial homomorphism as a homomorphism that respects some, but not all, structures of the target domain. But for questions other 
than multiple realizability, the ‘isomorphism onto the image’ conception seems to be closer to the underlying intuition. The same applies if one reverses the direction 
of the homomorphism, cf. Footnote 12.
12 In addition to the problem mentioned in Footnote 11, there is also the question of which direction a homomorphism should take. Should it go from the physical 

domain to the phenomenal domain, as in Fink et al. (2021), or vice versa? Because it is unlikely that all elements of the physical domain are mapped to the phenomenal 
domain (there are neural mechanisms which are not relevant for conscious experiences, for example), and because a map in the sense of mathematics requires a 
specification of a target element for every element of the source domain, it seems more natural to me to choose the phenomenal-to-physical direction. Choosing 
the physical-to-phenomenal direction would require one to introduce yet another sense of partiality, that of a partial function, which is only defined on some of its 
elements. The problem with this is that a homomorphism which is partial in both this sense and the sense of Footnote 11 always exists, so that the statement (ISO) 
is vacuous. This is not the case for an isomorphism onto the image in the phenomenal-to-physical direction, because of the need to specify a target element in the 
physical for every source element in the phenomenal in such a way that the image has the same structure as the phenomenal. This is why I think isomorphisms onto 
the image in the phenomenal-to-physical direction are the right tool (and the right intuition) to work with, though my comments below do not turn on this choice.
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slots which is not a homomorphism. Therefore, the theory does not specify a homomorphism between the physical and phenomenal 
domains. And consequently, if (ISO) is true then IIT must be wrong.13

4.1. Are isomorphisms justified?

The above shows that (ISO) is indeed a very consequential assumption. This would be good news if (ISO) were also a justified 
assumption. However, as I will argue here, this is not the case. While isomorphisms and homomorphisms are natural in mathematics, 
they appear not to be the right sort of object to achieve the goals of consciousness science in investigating how the phenomenal 
and the physical relate. For the purpose of this discussion, I will assume that these goals are “to explain, predict, [or] control the 
phenomenological properties of conscious experience” (my emphasis) in terms of physical properties, following Anil Seth’s Real 
Problem of Consciousness (Seth, 2021), with the understanding that phenomenal structure is an integral part of phenomenal character, 
and that structural properties are properties too.

My comments are tied directly to what an isomorphism or homomorphism is. As explained above, isomorphisms and homomor-

phisms are mappings between the domains of two structures (between the points or elements of these structures, that is) which satisfy 
certain conditions. The conditions enforce that the mappings are compatible with the structures on both ends. This has two important 
consequences for the question at hand.

The first consequence is that a homomorphism presupposes that the structures on both ends of the mapping are given. If only 
one of the two structures is given, or none even, then (ISO) becomes an empty statement. This is because any mapping of the form 
𝑓 ∶ 𝐸 → 𝑃 , where 𝑃 denotes the physical domain and 𝐸 denotes the experiential domain, can be turned into a homomorphism 
if at most one domain comes with structure. One can simply define the structure on the other domain so that the mapping is a 
homomorphism. Assuming that there is a homomorphism without presupposing that structures on both ends of the mapping are 
given amounts to not assuming anything at all.

But if a homomorphism presupposes structures on both ends, it doesn’t explain, predict, or allow to control these structures. 
Homomorphisms fall short of explaining, predicting, or controlling those phenomenal properties they were introduced to cope with.

Second, and more importantly in my opinion, homomorphisms do not have the right mathematical form to pick out which 
structure there is. That is the case because they are maps from domains to domains. They do not actually map from structures to 
structures, as is sometimes thought. They only map points in one domain to points in another domain in such a way that the mapping 
between the points preserves or respects the structure on both ends. This speaks against an explanatory or predictive function as well, 
as I shall now explain.

Let us first consider the case of explanation. Do homomorphisms, or other structure-preserving mappings, explain phenomenal 
structure in terms of physical structure? There are various notions of explanation that are available in science, ranging from the early 
deductive-nomological and inductive-statistical ideas studied by Carl Hempel (Hempel & Oppenheim, 1948, Hempel, 1962) to more 
modern understandings of explanation in the form of causal-mechanical models (Salmon, 1984), unificationist models (Friedman, 
1974, Kitcher, 1989), contrastive explanation (Van Fraassen, 1980) or interventionalist models (Woodward & Hitchcock, 2003, 
Hitchcock & Woodward, 2003).

It is clear that homomorphisms do not fit the original Hempel models of explanation because they do not derive phenomenal 
structure in any meaningful sense from a general law and initial conditions. What is crucial though is that they also don’t sit well with 
the other models of explanation. This is the case because, in one form or another, these models all require ‘what if things had been 
different’ information. In the causal-mechanical model of explanation, ‘what if things had been different’ information is required 
to test the robustness of a purported causal mechanism. In unificationist models it matters for questions of breadth of a unifying 
explanation. In contrastive explanations it is central to deal with alternative scenarios that would have occurred under different 
conditions. And in interventionist models, it is required to explicate how an intervention changes the explanadum variable.

Homomorphisms do not pick out structure on the physical or phenomenal side, they only relate points of the domains in a 
structure-preserving way. Therefore, they do not provide ‘what if things had been different’ information about phenomenal struc-

ture. But ‘what if things had been different’ information is required by the above-mentioned models of explanations. Therefore, 
homomorphisms do not constitute an explanation of phenomenal structure according to these models.

Because homomorphisms don’t pick out phenomenal structure, they do not offer alternatives to how phenomenal structure could 
be if things had been different. For this reason, they also do not predict phenomenal structure. Prediction, too, requires mathematical 
tools that pick out the right structure among a class of possible structures.

A helpful way to think about the problems of explanation and prediction is to think about what would define phenomenal structure 
in terms of neural structure, or physical structure more generally. Consider, as an analogy, computer games. Computer games employ 

13 The only way to enforce viewing IIT as an isomorphism is by claiming that the output of IIT’s algorithm is itself a physical structure, which then happens to 
be related by an isomorphism to the phenomenal domain. Given the interpretation of the mathematical structure outputted by IIT as “identical to [the system’s] 
experience” (Oizumi et al., 2014), it is hard to see how such interpretation can plausibly be made. The mathematical quantities outputted by IIT do not appear 
anywhere else in the physical sciences, and are conceptually and mathematically rather removed from physical theories. Such a claim also violates the implicit 
presupposition in (ISO) that there are more or less well-defined structures on both the phenomenal and physical sides. If there were no constraints on which structure 
to consider, then (ISO) would be a vacuous statement. Any mapping of the form 𝑓 ∶ 𝑃 →𝐸, where 𝑃 denotes physical structure and 𝐸 denotes phenomenal structure, 
can be turned into an homomorphism between the physical and the phenomenal if 𝐸 is taken to be a physical structure as well. As a rule of thumb, if a structure is 
actively defined by a theory of consciousness, rather than just adapted from some other part of science, it should probably not count as physical structure in the sense 
required by (ISO).
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mathematical structure to model rich and detailed visual imagery. Yet the mathematical models are defined mostly in terms of objects 
in the sense of object-oriented programming. There is nothing in the actual code of the game which resembles the structure of the 
visual scene; rather, the code defines how the structure should be rendered, and it does so in terms of objects and properties. The 
visual structure created by the game is not homomorphic to the code that runs in order to create the scenes, yet it is defined by the 
code. This example illustrates that homomorphisms are not the kind of thing one would expect when defining structure.

What these points illustrate, in my view, is that homomorphisms and structure-preserving mappings more generally are not the 
right sort of object to define, explain, predict, or control phenomenal structure. They might be natural in the context of mathematical 
questions, but they are not natural for the purposes of consciousness science.

Consequently, (ISO) is not in fact a natural or justified assumption. We either need to search for a rigorous justification, or if 
there is none, proceed in different ways. Because (ISO) is so consequential for theoretical and experimental work, using (ISO) without 
proper justification, or in the hope that a justification will eventually be found, is not a viable option.

This comment also applies to mathematical objects known under different names, if these objects are in fact homomorphisms. 
Important examples thereof are diffeomorphisms, which are maps between smooth geometric shapes called manifolds. Diffeomor-

phisms are homomorphisms between the mathematical structures that define smooth manifolds. And much like the simpler cases 
discussed above, they map points of one manifold to points on another manifold in a way that respects the mathematical structure 
on both sides of the map. They do not explain or define the structure.

4.2. What, if not isomorphisms?

If isomorphisms and homomorphisms are not the sort of thing that explains, predicts, or defines phenomenal structure, what is? 
Which mathematical objects should we use to relate the physical and the phenomenal in a structuralist turn?

My view is that there is no general mathematical principle that we can commit to. Rather, much like theories of consciousness in 
the pre-structural area were built one-by-one, we have to build structural theories one-by-one, working with different ideas, concepts, 
motivations and metaphysics in each case. The challenge of finding the right mathematics to explicate these ideas, concepts and 
motivations in a structural context is not something we can bypass by choosing one mathematical tool that fits them all. This is 
not technically possible, nor is it desirable. The difference between ideas, concepts and metaphysical underpinnings in a structural 
context is precisely in the mathematics that relate the physical to phenomenal structure. We cannot waive the problem of finding the 
right mathematics without also waiving the possibility of choosing different metaphysical or conceptual ideas.

5. Which phenomenal structure?

My final comment concerns the question of which structure to consider when embarking on structural research. That is the 
question of what phenomenal structure is and how we find it. This question is important because conscious experience does not 
“come with” mathematical structure in any direct sense. There is nothing in what it is like to experience something that is per se 
mathematically structured, other than if one explicitly experiences something mathematical.14

Rather, mathematical spaces and mathematical structures are tools or languages we can use to describe (or model) phenomenal 
character, much like English or any other language can be used to describe phenomenal character. And just as we need definitions 
or conventions to apply English language terms, we need definitions or conventions to apply mathematical terms. These might not 
be as simple as in the case of English, but still they flesh out the conditions under which one is, and under which one is not, justified 
in making a structural and mathematical claim.

Because mathematics is a different type of language from English, the definitions or conventions to apply structural terminology 
are of a different type too. They constitute methodologies, meaning they are collections of methods, procedures or rules, that can and 
need to be used to assess mathematical claims.

And because phenomenal character does not “come with” mathematical structure in any direct sense, any claim about a structural 
fact, and any application of structural ideas, is always relative to a specific understanding of what phenomenal structure is, and a 
fortiori, relative to the methodology that defines this particular understanding. It is not meaningful to claim that experiences have 
a certain structure. Much like a claim about whether experiences have qualia depends on what exactly one takes the term qualia 
to denote, the claim that experiences have a certain structure depends on what one takes phenomenal structure to denote (Fig. 4). 
When working with or thinking about phenomenal structure, we need to be clear about which methodology we presume. Otherwise, 
we are prone to making errors. This is the first major point I would like to make in this comment.15

14 We do experience mathematical structures if we know and recognize them, for example in the case of geometrical shapes, or if we actually work with mathematical 
structures. But we do not experience non-mathematical experiences as mathematically structured. We do not, for example, experience colours as constituting a metric 
space or having a partial order.
15 Therefore, working with mathematical structure in consciousness science is different from working with mathematical structure physics or other natural sciences. 

In physics and other natural science, we do not have direct access to the phenomena we are studying. In a certain sense, for structural claims in physics, anything goes, 
as long as the relevant notion of measurement for that structure reproduces what is observed. This is why there are hugely different proposals about the structure 
of spacetime, for example, ranging from quantized spacetime (Rovelli, 2004) and emergent spacetime (Koch & Murugan, 2012) to proposals that depart completely 
from what we intuitively think spacetime should be (Finster & Kleiner, 2015). As long as limiting processes exist that relate these proposals to previous models, in this 
case the notion of spacetime of General Relativity, all those proposals are viable options. This is not the case for consciousness, because consciousness has a different 
epistemic context. For example, it exhibits what is sometimes called epsitemic asymmetry: there are “two fundamentally different methodological approaches that 
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Fig. 4. Different definitions imply different spaces. Mathematical spaces and mathematical structures are tools to describe or represent phenomenal character, much 
like technical language terms are too. Different definitions or conventions of how to use mathematical terms to describe or represent phenomenal character—different 
conventions of what terms like ‘mathematical structure of conscious experience’ or ‘phenomenal space’ mean—lead to different structural representations of the same 
set of experiences, here illustrated by three different CIE colour spaces. Black arrows indicate different definitions or conventions, which imply different methodologies 
for constructing phenomenal spaces in the lab. Different geometrical shapes indicate different types of spaces that result from applying these methodologies. Much 
like technical language terms might differ in scope, quality, adequacy, and presuppositions, definitions or conventions regarding mathematical structures differ in 
scope, quality, adequacy and presuppositions. (Depiction of CIE colour space gamuts by Wikimedia Commons, Michael Horvath, under CC BY-SA 4.0; this image is 
shared under the same license.)

5.1. What is phenomenal structure, and how do we find it?

There are three important landmarks that have influenced the way in which we use mathematical structures to describe conscious 
experiences today: quality spaces as introduced by Austen Clark (Clark, 1993), quality spaces as introduced by David Rosen-

thal (Rosenthal, 1991, 2010) and 𝑄-spaces as introduced in IIT 2.0 (Tononi, 2008). While these methodologies have served an 
important function in enabling structural research, it is also important to be clear about their shortcomings in moving forward.

As far as IIT is concerned, the obvious shortcoming is that the theory does not provide a phenomenal interpretation of the structure 
it proposes, other than the claim that the structure “is identical to [the system’s] experience” (Oizumi et al., 2014). This gives rise 
to what David Chalmers has called the Rosetta Stone Problem (Chalmers, 2023): the problem of how to translate the mathematical 
structure that IIT proposes into phenomenological terms. IIT does not actually specify a methodology that clarifies how to interpret 
and test their proposed structure in phenomenal terms.

The proposals by Clark and Rosenthal do specify methodologies. The major shortcoming of these methodologies, on my view, is 
that they conflate three sources of mathematical structure:

1. Mathematical Convenience. Some of the structure is introduced simply for mathematical convenience.

2. Laboratory Operations. Some of the mathematical structure refers to, or depends on, laboratory operations.

3. Conscious Experience. Only part of the mathematical structure actually pertains to conscious experiences or phenomenal 
character.

5.2. Clark’s quality spaces

Quality spaces as introduced by Austen Clark (Clark, 1993) are based on the following methodology. To construct the quality 
space for an individual subject,16 one fixes a class of stimuli  that can be presented to the subject, and defines two tasks that the 
subject can complete in response to the presentation of one or more stimuli. The first task probes whether the subject is able to 

enable us to gather knowledge about consciousness: we can approach it from within and from without; from the first-person perspective and from the third-person 
perspective. Consciousness seems to distinguish itself by the privileged access that its bearer has to it” (Metzinger, 1995). In other words, in addition to the usual 
scientific way of accessing and modelling a phenomenon there is a second way of accessing the phenomenon (described in terms of the first person perspective 
metaphor above). Due to this different epistemic context, using mathematical structure to describe a phenomenon is different in the case of consciousness, and more 
constrained, than in the case of physics.
16 Clark mostly has humans in mind, but does consider the case of animals briefly in Clark (1993). Nothing hinges on humans in the methodology he proposes.



Consciousness and Cognition 119 (2024) 103653

13

J. Kleiner

discriminate the experience elicited by two different stimuli consciously. The second task probes whether the subject experiences a 
stimulus to be more similar to a reference stimulus than another stimulus. This is called relative similarity.17

The discrimination task is used to define a global indiscriminability relation on the class of stimuli  .18 While discriminability does 
not constitute an equivalence relation, global indiscriminability does. This equivalence relation partitions the set of stimuli. Each set 
in this partition contains stimuli which are globally indiscriminable from each other, and defines a quality in Clark’s proposal. The 
collection of the sets in this partition (the space of equivalence classes of  , in mathematical terms) defines the domain of the quality 
space that is being constructed.

The relative similarity task is used to define a graph, in the mathematical sense of the term, between the qualities: a set of nodes, 
and edges that link some of the nodes. Working with stimuli that represent the different qualities, one first collects relative similarity 
data. This is data about whether a quality 𝑞1 is more similar to a reference quality 𝑞0 than another quality 𝑞2. One might find that 
the pair (𝑞1, 𝑞0) is more similar to each other than the pair (𝑞2, 𝑞0), say. Having collected this data for all qualities in the set, one then 
represents them as a graph. Every quality one has previously constructed is a node of the graph, and every pair (𝑞𝑖, 𝑞𝑗 ) about which 
one has relative similarity data is an edge of the graph between the nodes that represent the qualities. The important part then is 
that the edges get labelled by numbers, and these numbers must be chosen in such a way that the relative similarity judgements that 
have been collected are represented truthfully by the ordering of the numbers. The label of the edge (𝑞1, 𝑞0) above, for example, must 
be a lower number than the label of the edge (𝑞2, 𝑞0) if the former pair is more similar to each other than the latter pair. The result 
of this procedure is a labelled graph, where the nodes represent qualities, edges indicate pairs for which similarity data is available, 
and labels on the edges represent relative similarity. In mathematical terms, this is called a POSET-labelled graph, where a POSET is 
a partially ordered set. The partial order is the phenomenal structure of the relative similarity experiences.

Up to this point all the mathematical structure is still grounded in conscious experience, to a large extent. The data to carry 
out the constructions is based on tasks that might utilize reports or behavioural measures, but these measures depend on what is 
experienced.

The next step in Clark’s methodology consists of introducing a metric, a tool to measure distances in terms of continuous numbers, 
and in fact an Euclidean space that has a uniform, homogeneous metric. To this end, it makes use of a procedure known as ‘multidi-

mensional scaling’ (Beals et al., 1968). In Clark’s case, it consists of finding an embedding of the graph into an Euclidean metric space 
in such a way that the distance between the nodes of the graph—which are mapped to points in the metric space—reproduce the 
ordering of relative similarity that the labels of the graph encode.

From the perspective of phenomenal character, this step is unwarranted. Not only is the metric introduced without any reference 
to experience, but this step also leads to the introduction of many more points besides the original qualities that were carefully 
constructed making use of global indiscriminability. Technically speaking, it leads to an infinity of additional points, all of which 
feature in the metric function of the space, and none of which is any different from the points that were carefully constructed based 
on tasks and stimuli.

The only justification I can think of why one would make use of this last step, as compared to just working with the POSET-labelled 
graph, is mathematical convenience. A POSET-labelled graph might just be too unfamiliar a mathematical object. Or maybe the reason 
is that it cannot easily be further analysed on a computer in familiar ways. These justifications are in fact made explicit in introductory 
texts on psychophysics. Luce and Suppes, for example, speak of representational measurement, of which multidimensional scaling is 
an example, as “an attempt to understand the nature of empirical observations (...) in terms of familiar mathematical structures” (Luce 
& Suppes, 2004, p. 1) (my emphasis), and add that “the use of such empirical structures in psychology is widespread because they 
come close to the way data are organised for subsequent statistical analysis” (Luce & Suppes, 2004, p. 2). Be that as it may, the last 
step that introduces the metric function fails to be grounded in conscious experience. It is an example of 1. above.

5.3. Rosenthal’s quality spaces

The construction of quality spaces as defined by David Rosenthal is based on a class of stimuli as well. But in this case, one only 
needs a discrimination task, as well as means to vary the stimuli.

The main step in Rosenthal’s methodology is to construct Just Noticeable Differences (JNDs) from variations of the stimuli and the 
discrimination task. To this end, one varies a stimulus in some direction until the subject notices the difference between the stimulus 
and the variation. The class of stimuli which one can reach by varying one stimulus without creating a JND gives a set or region in 
stimulus space, and much like in the case of Clark, the idea is that these regions constitute qualities. A metric function is introduced 
on the set of qualities by counting the minimal number of regions one has to pass so as to go from one quality to the other.

In this proposal too, there is a question as to the experiential source of the metric function. Because the metric function can be 
specified, once JNDs have been constructed, without need of additional data, it might not represent anything over and above the 
JNDs and their neighbourhood relations. Furthermore, while we do experience colour qualities as instantiating a relative similarity 

17 There is considerable freedom in which class of stimuli to choose and how to define and implement the tasks.
18 Two stimuli are globally indiscriminable if and only if the following two conditions hold:

1. The two stimuli are indiscriminable from each other.

2. The two stimuli have identical indiscriminability relations to all other stimuli in  .
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structure, we do not experience qualities to be a certain number of steps apart, as a metric would require if it indeed represented a 
structure of conscious experience.19 So there is a worry of the metric being due to mathematical convenience here too.

A more fundamental worry in this case concerns the variations of stimuli that one needs in order to construct JNDs and their 
neighbourhood relations in the first place. The idea of a variation—starting with one stimulus and then changing that stimulus 
continuously until a subject notices a difference—requires a topology on the stimulus space. A topology defines what it means to 
“draw a line without lifting a pen” on an abstract space, so to speak. It is precisely what provides the notion of continuous curves 
required to specify variations in Rosenthal’s definition. Without a topology, a variation can jump from any point to any other point.

The problem is that different topologies give different variations. So when one actually constructs a quality space according to 
Rosenthal’s methodology in the lab, the resulting space depends on the topology of the stimulus space that has been used. And much 
like there isn’t just a single notion of colour space, there isn’t just a single topology on colour stimuli one can use. As a result, the 
metric function that one constructs in an application of Rosenthal’s methodology actually depends on the topology that has been 
chosen in the experiment, which is a laboratory operation in the sense of 2. above.

In the case of Rosenthal’s methodology, there is in fact a theory that can be used to answer these and similar worries, a theory 
about what consciousness is, about how qualities should be understood, and about how consciousness and qualities relate. When I 
asked David Rosenthal about the problem regarding topology, for example, he countered by assuming that there is just one actual 
physical topology in reality and that this is the topology that should be used. It is not clear to me how this would work in practice, 
given that this topology is presumably defined by Quantum Electrodynamics (QED), and too far removed from experimental practice 
to be applicable; in the lab, some choice of topology will have to be made nonetheless. But theoretically speaking, the answer is 
fully valid. Similarly, the theory about what qualities are and how they relate to consciousness discharges the methodology from the 
problem that, according to the subsumed notion of discrimination in this case, discriminations could also be made unconsciously.

There is, however, no free lunch. The price to be paid for solving methodological problems by theoretical assumptions is that 
the methodology now depends on these assumptions and cannot be used to formulate or test other theories of consciousness. The 
methodological tool might be deprived of much of the impact it could otherwise have.

In my view, quality spaces are ways to describe or represent the explanandum—what is to be explained: qualitative or phenomenal 
character, what it is like to be—, while theories of consciousness are the explanantia—they do the explaining. This is why I have 
always been tempted to read Rosenthal’s proposal as a general methodology that is independent from his theory. This is possible and 
addressing the above-mentioned problems on purely methodological grounds leads, in my view, to fruitful further developments of 
his construction (cf. below and Kleiner and Ludwig (2023)).

5.4. How to move forward

In the last two sections, I have analysed two proposals for methodologies that define what quality spaces are. While these 
proposals have served an important role in enabling structural thinking, much of the essential structure in these proposals is not 
actually grounded in conscious experiences, but in mathematical convenience and laboratory operations.

It is possible to go beyond individual methodologies and analyse the type of condition that is applied in these proposals and more 
recent work. That is, the type of condition that decides whether a mathematical structure is a quality space or phenomenal space—a 
mathematical structure of conscious experience, to use a general term. In a nutshell, all existing proposals I know of amount to:

(A) Conditions on the domains (sets of points) of a mathematical structure, formulated in terms of qualities, qualia, phenomenal 
properties or similar aspects of conscious experiences.

(B) The requirement that the mathematical axioms of the structure (such as the axiom that the metric distance between a point and 
itself is zero) are satisfied.

This type of condition can be shown to be insufficient to ground a thorough understanding of phenomenal structure. This is the 
case because (a) it is prone to admitting incompatible structures, (b) allows for arbitrary re-definitions of structures that still satisfy 
the condition, and (c) in a subtle but important sense, the condition is indifferent to structural facts of conscious experience. I do not 
have the space here to explain these problems in detail; they are explained and illustrated in (Kleiner & Ludwig, 2023, Section 1).

I take the problems of existing proposals, and the insufficiency of the general type of condition that is applied, to constitute a need 
of constructing a new methodology for phenomenal spaces. This methodology needs to take previous methodologies into account, but 
needs to amend and extend them to avoid the three insufficiency problems as well as the issues with non-conscious sources of the 
mathematical structure.

In Kleiner and Ludwig (2023), Tim Ludwig and I have set out to find a methodology that achieves this task. The result is illustrated 
in Fig. 5. The proposal shares with David Rosenthal’s methodology that it rests on variations, though in our case, any transition from 
one conscious experience to another counts as variation, and we do not demand continuity or restrict only to variations of stimuli.

Put in terms of phenomenal properties, the core intuition of our proposal is that a mathematical structure is a mathematical 
structure of conscious experience—a phenomenal space, to use a simpler term—if and only if there is a phenomenal property that 
behaves exactly as the mathematical structure does under variations. If a variation preserves the mathematical structure (if it is an 

19 For a more careful examination of the case of a metric, cf. Kleiner and Ludwig (2023). For questions on how quality spaces should relate to consciousness or 
phenomenal character according to the underlying theory, cf. below.
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Fig. 5. How to define phenomenal spaces? This figure illustrates how to define phenomenal spaces and other mathematical structures of conscious experience. One 
starts out with a choice of qualities (bottom left), for example colour qualities, sometimes also called qualia or conceptualised as instantiated phenomenal properties. 
The qualities form a set that constitutes the points of the phenomenal space (bottom right). Every experience comprises a subset of qualities, and as experiences 
change from one experience to the next, the subset of qualities that is realised varies (top left). These variations can be understood as mappings from the set of 
qualities to itself, and therefore have the same formal structure as automorphisms (Fig. 1): mappings from the points of a space to other points of the space (top right). 
This allows for the following simple definition of phenomenal structure: phenomenal structure is that mathematical structure whose automorphisms are identical to 
the variations of the qualities as experiences change. Put differently, phenomenal structure (indicated here by red lines) is that mathematical structure which renders 
the statement true: the variations of (qualities of) conscious experiences are the automorphisms of the structure (top centre). For details, cf. (Kleiner & Ludwig, 2023). 
(Depiction of CIE colour space gamuts by Wikimedia Commons, Michael Horvath, under CC BY-SA 4.0; this image is shared under the same license.)

automorphism of the structure, in mathematical terms), then it must not change the phenomenal property. If, conversely, a variation 
does not preserve the mathematical structure, then it must change the phenomenal property. In a nutshell: there is something “in” 
conscious experience (the phenomenal property) that behaves exactly as the mathematical structure does.

6. Conclusion

Structural approaches, which make use of mathematical structure to describe or model conscious experiences, offer new and 
valuable avenues for studying consciousness. My aim in this paper is to provide three comments that I consider important when 
engaging in structural research. Each comment targets what is, in my view, a misconception or misunderstanding that I aim to 
clarify.

My first comment focuses on the metaphysical underpinnings of structural approaches. I show that, contrary to popular belief, 
structural approaches are not tied to physicalist or reductive metaphysics. Instead, they offer versatile descriptive tools that can be 
utilised irrespective of one’s metaphysical commitments, across research programmes of any metaphysical flavour.

My second comment concerns isomorphisms and structure-preserving mappings. A number of emerging structuralist research 
programmes rely on assuming a structure-preserving mapping between the phenomenal and the physical domain. I argue that 
this assumption is unwarranted, and that isomorphisms and structure-preserving mappings are not the right mathematical object 
to provide explanations, predictions, or definitions of phenomenal structure. Instead, we should direct our attention to structural 
theories of consciousness, without expecting a single mathematical formalism to fit them all. One major experimental consequence of 
this is that methods such as Representational Similarity Analysis (Kriegeskorte et al., 2008), which searches for structural similarity, 
may not be the right approach to search for the neural correlates of phenomenal structure.

My third and final comment focuses on the question of what phenomenal structure is, and how we find it. Conscious experiences 
do not “come with” mathematical structure in any meaningful sense. Rather, mathematical spaces and mathematical structure 
offer a language to describe or represent conscious experiences, and just like we need definitions or conventions to apply English 
language terms to consciousness, we need definitions or conventions to apply structural terms. In the case of structure, the definitions 
and conventions take the form of methodologies that govern how to construct or use the mathematical terminology. The two 
major methodologies that have guided recent developments are quality spaces as introduced by Austen Clark, and quality spaces as 
introduced by David Rosenthal. I show that both suffer from fundamental issues, and discuss how to move forward in light of this.
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Abstract
Several promising approaches have been developed to represent conscious experi-
ence in terms of mathematical spaces and structures. What is missing, however, is an
explicit definition of what a ‘mathematical structure of conscious experience’ is. Here,
we propose such a definition. This definition provides a link between the abstract for-
mal entities of mathematics and the concreta of conscious experience; it complements
recent approaches that study quality spaces, qualia spaces, or phenomenal spaces; and
it provides a general method to identify and investigate structures of conscious expe-
rience. We hope that ultimately this work provides a basis for developing a common
formal language to study consciousness.

Keywords Quality spaces · Qualia spaces · Phenomenal spaces · Perceptual spaces ·
Q-spaces · Structuralism

Attempts to represent conscious experiences mathematically go back at least to
1860 (Fechner, 1860), and a large number of approaches have been developed since.
They span psychophysics, philosophy, phenomenology, neuroscience, theories of con-
sciousness, and mathematical consciousness science (Clark, 1993, 2000; Coninx,
2022; Fortier-Davy & Millière, 2020; Gert, 2017; Grindrod, 2018; Haun & Tononi,
2019; Hoffman & Prakash, 2014; Kleiner, 2020; Klincewicz, 2011; Kostic, 2012;
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ner, 2019; Renero, 2014; Resende, 2022; Rosenthal, 2010, 2015, 2016; Stanley,
1999; Tallon-Baudry, 2022; Tsuchiya & Saigo, 2021; Tsuchiya et al., 2022; Yoshimi,
2007; Young et al., 2014; Zaidi et al., 2013) and are known under various different
names, including quality spaces (Clark, 1993), qualia spaces (Stanley, 1999), expe-
rience spaces (Kleiner & Hoel, 2021; Kleiner & Tull, 2021), Q-spaces (Chalmers
& McQueen, in press), Q-structure (Lyre, 2022), �-structures (Tononi, 2015), per-
ceptual spaces (Zaidi et al., 2013), phenomenal spaces (Fink et al., 2021), spaces of
subjective experience (Tallon-Baudry, 2022), and spaces of states of conscious expe-
riences (Kleiner, 2020). The mathematical structures and spaces introduced by these
approaches have enabled significant advancements in their respective fields. Nev-
ertheless, this research remains largely fragmented. The various approaches employ
different formalizations and different mathematical structures, and they presume a dif-
ferent, and sometimes partial, understanding of the concept of amathematical structure
or space when applied to conscious experience. What is missing, from our perspec-
tive, is a definition of the term ‘mathematical structure of conscious experience’ that
clarifies how this term can and should be used.

In this article, we propose a definition ofmathematical structures of conscious expe-
rience. Our main desideratum is that for a mathematical structure to be of conscious
experience, there must be something in conscious experience that corresponds to that
structure: a specific structural aspect of conscious experience.

Our key idea is to use variations to identify and investigate these structural aspects
of conscious experience. That is because variations can serve as a binding link between
conscious experiences and mathematical structures: on the one hand, variations relate
to conscious experiences, because variations change aspects of conscious experiences
(like qualia, qualities, or phenomenal properties); on the other hand, variations relate
to mathematical structures, because they may or may not preserve them.

In defining a mathematical structure of conscious experience, our proposal does
not answer the question of what this mathematical structure actually is, or which type
it has. Instead, our proposal identifies the analysandum for future work on spaces
and structures of conscious experience, based on which phenomenal spaces, quality
spaces, qualia spaces, �-structures, as well as several other related concepts, can be
constructed and investigated.

This paper is structured as follows. In Sect. 1, we discuss how recent approaches
relate mathematical structures to conscious experience and identify three key issues
in these approaches. In Sect. 2, we present our proposal together with the necessary
background information. In Sects. 3, and 4, we consider two important examples: rel-
ative similarity and topological spaces. In Sect. 5, we show how our proposal resolves
the three problems identified in Sect. 1. Finally, our conclusion follows in Sect. 6.

1 The status quo

So where do things stand? Most of the early work that has attributed mathematical
structure to conscious experience was grounded in intuition. Whether or not a specific
mathematical structure is a mathematical structure of conscious experience—a struc-
ture which “pertains to”, or “belongs to” consciousness, that is—was not assessed
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systematically; instead, it was assessed based on an intuitive insight of appropriate-
ness.More recent approaches have realized the need for a more systematic method, for
example Gert (2017); Lee (2021, 2023); Prentner (2019); Resende (2022); Rosenthal
(2015, 2016). In this section, we analyze what we take to be the condition that under-
lies these approaches: a condition that justifies prescribing a mathematical structure to
conscious experience. As we will see, this condition is quite natural. But, as we will
demonstrate, it cannot be understood as a sufficient condition.

In a nutshell, a mathematical structure consists of two building blocks; for a detailed
introduction, see Sect. 2.2. The first building block consists of one or more sets called
the domains of the structure. The second building block are relations or functions
which are defined on the domains. For reasons explained below, we will denote them
as structures in the narrow sense of the term. A metric space, for example, is a mathe-
matical structure that is defined on two domains: a set of points and the real numbers.
Furthermore, it comprises a function—the so-called metric function—which maps
two points to a real number. A topological space, to give another example, is a math-
ematical structure that is defined on a single domain: a set of points. Furthermore, it
comprises a collection of unary relations, which are subsets of the domain.1

Usually, a mathematical structure also comes with axioms. The axioms establish
conditions that the functions or relations have to satisfy. In the case of ametric structure,
the axioms require the metric function to satisfy three conditions, called positive
definiteness, symmetry, and triangle inequality. In the case of a topological structure,
the axioms ensure that the collection includes the empty set and the whole domain,
that it is closed under finite intersections, and that it is closed under arbitrary unions.

When put in these terms, recent proposals that go beyond intuitive assessments,
make use, either directly or indirectly, of the following condition to justify that a
specificmathematical structure is a mathematical structure of consciousness. Here, we
use the term aspect as a placeholder for qualia, qualities, (instantiated) phenomenal
properties, or similar concepts.2

(MDC) A mathematical structure is a mathematical structure of conscious
experience if and only if the following two conditions are satisfied:

(D1) The domains of the structure are sets whose elements correspond to
aspects of conscious experiences.

(D2) The axioms of the structure are satisfied.

In the case of the metric structure introduced in Clark (1993), for example, (D1)
is satisfied because the set of points corresponds to qualities of conscious experience.
The real numbers might have a phenomenal interpretation as describing degrees of
similarity, as for example in Lee (2021). Condition (D2) requires positive definiteness,
symmetry, and the triangle inequality to hold. This includes, for example, the condition

1 A unary relation on a domain, in the mathematical sense, is a subset of the domain; see Sect. 4.
2 We use the term ‘aspect’ as a placeholder for these terms because the above condition is not unanimously
framed in either of these terms, and because our proposal in Sect. 2 is applicable with respect to any of
these choices. In short, our goal is not to pick any one of these concepts but to offer a definition that works
with respect to all of these concepts. Which concept is best suited for a particular task or domain is a
philosophical question that can be answered independently of our proposal.
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that “points should have distance zero just in case the qualities represented by those
points are phenomenally identical” (Lee, 2021, p. 14). In the case of the topological
structure introduced in Stanley (1999), to give another example, (D1) is satisfied
because the domain of the structure refers to qualia. Condition (D2) would require,
then, that the chosen collection of subsets satisfies the axioms of a topological space.

Prima facie, (MDC) could be taken to define what a mathematical structure of
conscious experience is. However, if understood as sufficient condition, the following
three problems arise.

Problem 1: Incompatible structures

A first reason why (MDC) cannot be a sufficient condition to assess whether a math-
ematical structure is a mathematical structure of consciousness is that it allows for
incompatible structures.

Consider, as an example, the case of topology. A basic question in topology is
whether a target domain is discrete or not. A target domain is discrete if and only if its
topology contains all subsets of the domain (Joshi, 1983). Otherwise, the target domain
is not discrete. These two cases are exclusive, meaning that discrete and non-discrete
topological structures are incompatible.

According to (MDC), conscious experience has a discrete structure. That is because
any set whatsoever can be equipped with the discrete topology. Therefore, picking
a set X of aspects (qualia, qualities, phenomenal properties, etc.) and choosing its
discrete topology provides a mathematical structure that satisfies both conditions (D1)
and (D2). But, according to (MDC), consciousness also has a non-discrete structure.
That is because any set can also be equipped with a non-discrete topology. We can,
for example, take an arbitrary decomposition of the set X into two subsets A and A⊥,
where A⊥ is the complement of A, and consider the topology {∅, A, A⊥, X}. This
choice satisfies all axioms of a topology, and therefore satisfies (D2). Furthermore, it
is built on the same set X as the discrete topology above, which implies that it also
satisfies (D1). Therefore, the discrete and the non-discrete topological structures are
both structures of conscious experience, according to (MDC).

This example shows that, if understood as a sufficient condition, (MDC) implies
that two incompatible structures are both structures of conscious experience, and that
they do so with respect to the exact same domain of aspects. The condition fails to
determine which of the two incompatible structures is the right one.

Problem 2: Arbitrary re-definitions

A second reason why (MDC) cannot be a sufficient condition is that it allows for
arbitrary re-definitions: if one structure is given that satisfies (MDC), then any arbitrary
definition of a new structure in terms of the given structure also satisfies (MDC), so
long as the domains of the structure remain unchanged. If the former pertains to
consciousness, so does the latter.

A simple example of this is given by rescaling a metric function. Let us suppose
that (M, d) is a metric structure which pertains to consciousness according to (MDC),
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where M is a set of aspects and d is the metric function, which provides a real number
d(a, b) for every two aspects a and b. Since (M, d) satisfies (MDC), so does every
structure (M,C · d), where C · d is the multiplication of the function d by a positive
real number C . Here, the number C can be chosen arbitrarily. Therefore, if one metric
structure pertains to consciousness according (MDC), so does an uncountably infinite
number of metric structures.

What is more, when re-defining structures, one is free to change the axioms as one
pleases. For example, we could pick any function f that maps M to the positive real
numbers and define a new distance function by ( f (a)+ f (b)) ·d(a, b). This might not
be a metric structure anymore, because the triangle inequality axiom might not hold.
But it still satisfies positive definiteness and symmetry, and therefore satisfies (MDC),
with a new set of axioms. One could even break asymmetry to get a distance function
like the one applied by IIT (Kleiner & Tull, 2021). More severe cases appear with
more complicated structures.

This is a problem, not only because of the unlimited number of structures that
appear, but also because there is an arbitrariness in the definition of a new structure,
specifically concerning the axioms. It seems strange that the axioms can be redefined
at will, so as to always satisfy Condition (D2). Something is missing that restricts this
arbitrariness in (MDC).

Problem 3: Indifference to consciousness

The third reason, which speaks against the sufficiency of (MDC), is that the proposed
condition seems somewhat indifferent to details of conscious experience.

To illustrate this indifference, let us consider again the discrete and non-discrete
topological structures from above. As we have shown, these structures pertain to
conscious experience according to (MDC). Yet, nothing more than a few lines needed
to be said to establish this fact. In particular, we did not need to use any noteworthy
input related to consciousness other than picking some set of aspects; and it didn’t
matter which aspects we picked.

It is a red flag if so short an analysis, which does not depend on consciousness
in a meaningful way, establishes facts about the mathematical structure of conscious
experience. The example exposes an indifference of (MDC) to details of conscious
experience: the definition only relates to the different aspects, but not to the sort
of mathematical object that connects these different aspects. Speaking somewhat
vaguely, (MDC) does not refer to the “way” in which the different aspects of con-
sciousness are related. This is why, in the case of topology, it allows one to draw
conclusion without any noteworthy input from actual experience. This constitutes
another reason that condition (MDC) is missing some important component, if used
as sufficient condition.

Cause of these problems

These three problems arise because (MDC) is not only a necessary, but also a sufficient
condition: it contains an ‘if’ condition in addition to the ‘only if’ condition. In the first
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problem, we showed that two incompatible mathematical structures—a discrete and
a non-discrete topology—each satisfy (D1) and (D2). Because (MDC) is a sufficient
condition, it follows that both structures are structures of conscious experience, accord-
ing to (MDC). In light of the incompatibility of discrete and non-discrete topologies,
this constitutes an issue of the definition. In the second problem, we showed that for
any given structure or space that satisfies (D1) and (D2), any arbitrary redefinition
yields a structure or space which also satisfies (D1) and (D2), for a suitably adapted
set of axioms. Because (MDC) is a sufficient condition, this implies that the arbitrarily
redefined structure is also a mathematical structure of conscious experience, which
for reasons explained above, constitutes an issue as well. The third problem, finally,
built on the first one and makes use of the sufficient condition in exactly the same
way. Because there is no condition in (MDC) that relates to structure in the narrow
sense of the term—no condition that relates to relations or functions, that is—, and
because of the sufficient condition in (MDC), structures of conscious experience can
be established without reference to structure in the narrow sense of the term.

The way forward

To resolve the three problems, our task is to propose a definition for a mathemati-
cal structure of conscious experience that makes sense as a necessary and sufficient
condition. This will be the content of Sect. 2.

Two desiderata guide our search. First, as is the case with (MDC), an improved
definition should be about conscious experience in the sense that it targets qualities,
qualia, instantiated phenomenal properties, or similar aspects of conscious experience,
as in (D1) above. Second, there should be something in conscious experience—a qual-
ity, or quale or phenomenal property—that relates to structure in the narrow sense of
the term. This “something” should make sure that the definition is not indifferent to
conscious experience in the sense of Problem 3, and that the definition refers to func-
tions or relations in ameaningfulway, so as to stop arbitrary re-definitions (Problem2).
The proposal which we present in the next section is the result of our search.

Despite the above-mentioned problems, we think that (MDC) is an important con-
dition. It might not be suitable as a sufficient condition, but it is valuable as a necessary
condition. If one understands mathematics pragmatically as constituting a language—
a body of symbols and terms with rules that connect these—, then mathematics can
be used to describe phenomena, much like the English language can. Looking back
at Condition (MDC) after our analysis, and presuming this pragmatic conception of
mathematics, we think that (MDC) is best understood as an expression of what it
takes for a mathematical structure to describe conscious experience. That is, (MDC)
might be a valuable descriptive tool that utilizes mathematical structure to represent
information on how aspects are related to each other (as explicated by (D1) and (D2)).

Because of this, we will refer to a mathematical structure that satisfies (MDC) as
a mathematical structure that ‘describes conscious experience’ in what follows. The
new condition which we develop below contains (MDC) as necessary part; this is
aligned with the intuition that any mathematical structure of conscious experience
also describes conscious experience.
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2 Mathematical structures of conscious experience

In this section, we provide a definition of what mathematical structures of conscious
experience are. Based on this definition, phenomenal spaces, quality spaces, qualia
spaces, and related structures can be constructed and investigated. The definition
embodies a way to think and work with mathematical structures when applied to
conscious experience.

Our key desideratum in improving (MDC), explained above, is that for a mathe-
matical structure to be a mathematical structure of conscious experience, rather than
just a descriptive tool for conscious experience, there must be a structural aspect in
conscious experience that relates to that structure. A major goal of this section is to
explain this in detail. Denoting a mathematical structure by S, we call this structural
aspect an S-aspect.

To make sense of what an S-aspect is, we need to understand how aspects (like
qualia, qualities, or phenomenal properties) relate to mathematical structures. While
aspects may have an arity, meaning they may be instantiated relative to other aspects,
they are not experienced as having a mathematical structure per se (unless, of course,
they are aspects of experiences of mathematical structures themselves, such as of
geometric shapes). Therefore, relating aspects to mathematical structures requires a
tool that applies to both: concrete aspects of conscious experience and abstract formal
entities. Variations provide such a tool.

In general, a variation is a change of something into something else; in our case,
it is a change of one experience into another experience. Such variations may be
induced by external stimuli or interventions, occur naturally, or be subjected to imag-
ination (‘imaginary variations’ (Husserl, 1936/1970)). Variations are directly related
to aspects of conscious experiences because a variation can change an aspect. This
is the case iff an aspect is part of the experience before the variation but isn’t part of
the experience after the variation. And variations are also intimately related to mathe-
matical structures, because they may or may not preserve them, as explained in detail
below. An S-aspect, then, is an aspect that is changed by a variation if and only if the
variation does not preserve the structure S. To explain this in detail is the purpose of
the remainder of this section.

2.1 Terminology and notation

Here, we introduce the key termswe use to definemathematical structures of conscious
experience. These terms are conscious experiences, aspects of conscious experiences,
and variations of conscious experiences. The introduction proceeds axiomatically, so
that our construction does not rely on a specific choice of these concepts. Rather, any
choice of these concepts that is compatible with the requirements below can be the
basis of an application of our definition.

Our construction is based on a set E of conscious experiences of an experiencing
subject. We denote individual conscious experiences in that set by symbols like e
and e′; formally e, e′ ∈ E . From a theoretical or philosophical perspective, one may
think of the set E as comprising all conscious experiences which one experiencing
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subject can have, i.e. all nomologically possible experiences of that subject. From an
experimental or phenomenological perspective, onemay think of this set as comprising
all conscious experiences that can be induced in the lab or in introspection. Different
such choices may lead to different mathematical structures being accessible.

We use the term aspect as a placeholder for concepts such as qualia (Tye, 2021),
qualities (Clark, 1993), mental qualities (Rosenthal, 2010), or (instantiated) phenom-
enal properties.3 For every experience e ∈ E , we denote the set of aspects instantiated
in this experience by A(e). The set of all aspects of the experiences in E , denoted
by A, is the union of all A(e); formally A = ⋃

e∈E A(e). Individual aspects, that
are members of A, will be denoted by small letters such as a, b, c. When explaining
examples, we will often use the abbreviation ‘a is the experience of ...’ as a shorthand
for saying ‘a is a ... aspect of an experience’. For example, ‘a is the experience of red
color’ means ‘a is a red color aspect of an experience’.

Some aspects may require other aspects for their instantiation. For example, it is
usually the case that an experience of relative similarity is an experience of relative
similarity of something, for example two color aspects relative to a third color aspect.
If an aspect a requires other aspects for its instantiation, we will say that the aspect a
is instantiated relative to aspects b1, ..., bm , or simply that a is relative to b1, ..., bm .
Aspects which are instantiated relative to other aspects are the building blocks for the
structure of conscious experience.

A variation of a conscious experience e changes e into another experience e′.
Because experiences have structure, there may be various different ways to go from e
to e′.4 Therefore, in addition to specifying e and e′, a variation is a partial mapping

v : A(e) → A(e′) .

This mapping describes how aspects are replaced or reshuffled by the variation. A
mapping which is not surjective, meaning that it does not map to all aspects in A(e′),
makes room for appearance of new aspects. A mapping which is partial, meaning
that it does not specify a target for every aspect in A(e), makes room for aspects to
disappear.

3 Many other concepts work as well. For example, if one works with an atomistic conception of states
of consciousness, where the total phenomenal state of a subject—what it is like to be that subject at a
particular time—is built up from individual atomic states of consciousness, one can take e to denote the
total phenomenal state and aspects to be the states of consciousness in that total state.Another examplewould
be to take aspects to denote phenomenal distinctions as used in Integrated Information Theory (Tononi,
2015). What matters for our definition to be applicable is only that according to one’s chosen concept of
conscious experience, every conscious experience exhibits a set of aspects.
4 To illustrate this point, consider, for example, the following twomappings v and v′ whichmap the numbers
1, 2, and 3 to the numbers 2, 4, and 6. The mapping v is the multiplication of every number by 2, meaning
that we have v(1) = 2, v(2) = 4, v(3) = 6. The mapping v′, on the other hand, is defined by v(1) = 6,
v(2) = 2, v(3) = 4. If we only cared about the sets of elements that these mappings connect, the mappings
would be equivalent: there is no difference between the set {2, 4, 6}, which is the image of v, and {6, 2, 4},
which is the image of v′. If, however, we care about the structure of the elements of the sets—in this case,
the ordering of numbers—, then there is a difference. While 2 ≤ 4 ≤ 6, it is not the case that 6 ≤ 2 ≤ 4.
Because we care about the order of the elements, we need to say which element goes where.
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2.2 What is a mathematical structure?

To find a rigorous definition of the mathematical structure of conscious experience,
we need to work with a rigorous definition of mathematical structure. Mathematical
logic provides this definition, which we now review.

A mathematical structure S consists of two things: domains, on the one hand, and
functions or relations, on the other hand. We now introduce these concepts based on
two simple examples.

The domains of a structure S are the sets on which the structure is built. We denote
them by Ai , where i is some index in a parameter range I . In the case of a metric
structure, for example, the domains would be A1 = M and A2 = R, where M is a set
of points and R denotes the real numbers, understood as a set. In the case of a strict
partial order, there is just one domain A, which contains the elements that are to be
ordered.

The second ingredient are functions and/or relations. Functions f map some of the
domains to other domains. In the case of a metric structure, the function would be a
metric function d : M × M → R, which maps from A1 × A1 to A2. A relation R, in
the mathematical sense, is a subset of the m-fold product Ai × · · · × Ai . Here, Ai is
the domain on which the relation is defined, and m is the arity of the relation, which
expresses how many relata the relation relates. The product is usually just written as
Am

i . In the case of a strict partial order, the relation is binary, which means that R is
a subset of A2. For binary relations, one usually uses notation like a < b instead of
writing (a, b) ∈ R.

In almost all cases, mathematical structures also comewith axioms, which establish
conditions that the functions or relations have to satisfy. They are useful because they
constrain and classify the structure at hand. For S to be a metric structure, for example,
the function d has to satisfy the axioms of positive definiteness, symmetry, and triangle
inequality (Rudin, 1976). For S to be a strict partial order, the relation R has to be
irrefelxive, asymmetric, and transitive (Joshi, 1989).

To have a nice and compact notation, we will use one symbol S j to denote both
functions and relations. That is because, in any concrete proposal, it is always clear
whether S j is a function or a relation.5 The index j takes values in some parameter
range J that specifies how many functions or relations there are. Using this notation,
we can represent the definition of mathematical structure provided by mathematical
logic as follows:

A mathematical structure S is a tuple

S = (
(Ai )i∈I , (S j ) j∈J

)

of domains Ai and functions or relations S j .

5 In mathematical logic, mathematical structures are denoted as triples of domains, relations, and functions.
However, in our case, using just one symbol for functions and relations improves readability substantially.
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For given domains Ai , the mathematical structure S is fully determined by the S j .
Thus, we can also refer to S j as ‘structures’, if the domains are clear from context.
For simplicity, we can drop the index j and simply write S whenever we consider just
one such structure.

As a final step in this section, we introduce the relata of a structure S. This will
be helpful to present definitions concisely below. The term relata designates those
elements that are related by a structure. In the case where S is a relation R on a
domain A and has arity m, these are the elements of the m-tuples (b1, ..., bm) ∈ R. In
the case where S is a function f : A1×· · ·×Am−1 → Am , the relata are the elements
of them-tuples (b1, ..., bm−1, bm)where bm = f (b1, ..., bm−1), andwhere the other bi
range over their whole domains. For notational simplicity, we write b1, ..., bm instead
of (b1, ..., bm) when designating relata below.

2.3 What is a mathematical structure of conscious experience?

Finally, to the heart of thematter!We recall thatwe have so far identified two desiderata
for a mathematical structure S to be a mathematical structure of conscious experience.
First, it should be about conscious experiences in the sense that its domains should
correspond to aspects of conscious experiences. Second, there should be aspects in
conscious experience that relate to the structure S. The following definition satisfies
these two desiderata. Its explanation is the task of the remainder of this section.

(MSC) Amathematical structure S is a mathematical structure of conscious
experience if and only if the following two conditions hold:

(S1) The domains Ai of S are subsets of A.
(S2) For every S j , there is an S j -aspect in A.

Here, A denotes the set of all aspects of the experiences in E ; formally A =⋃
e∈E A(e), the Ai denote the domains of the structure S, and the S j -aspects are

defined below.

Condition (S1) guarantees that the first desideratum is satisfied. Condition (S2) guar-
antees that the second desideratum is satisfied. Furthermore, whenever a certain type
of structure (metric, topological, partial order, manifold, etc.) is claimed to be a struc-
ture of conscious experience, the axioms that constrain and classify that type have to
hold. Therefore, any mathematical structure of conscious experience (MSC) is also a
mathematical structure that describes conscious experience according to (MDC). The
condition that has been applied in previous proposals remains a necessary condition
in (MSC).

The remaining task of this section is to explain what an S j -aspect is. For notational
simplicity,we use the symbol S to denote S j . Aswe have emphasized before, variations
are key to understand the structure of conscious experience, because they link aspects
and structure. Therefore, to be able to precisely define what an S-aspect is, we need
to understand how variations relate to aspects, on the one hand, and structures, on
the other hand. Our strategy is to first discuss how variations relate to aspects. This
amounts to specifying what precisely it means for a variation to change an aspect.
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Second, we focus on how variations relate to mathematical structure. This amounts
to explaining what it means for a variation to preserve a structure. Finally, combing
these two steps allows us to understand S-aspects and provide a useful definition.

What does it mean for a variation v : A(e) → A(e′) to change aspects? The
underlying idea is simply that an aspect is present in the source of the variation,
A(e), but not present any more in the target of the variation, A(e′). We need to take
into account, though, that aspects are often instantiated relative to other aspects (see
Sect. 2.1). This can be done as follows.

A variation v:A(e) → A(e′) changes an aspect a ∈ A(e) relative to
b1, ..., bm ∈ A(e) if and only if a is instantiated relative to b1, ..., bm in A(e), but
a is not instantiated relative to v(b1), ..., v(bm) in A(e′).

In the case where a ∈ A(e) is not instantiated relative to other aspects, the definition
indeed reduces to the simple condition that a ∈ A(e) but a /∈ A(e′). The negation of
the definition is also as intuitively expected: the aspect is present both in the source
and in the target.6

For applications it is important to understand that this definition can fail to apply in
two ways. First, it can fail because there is no a in A(e′) which is instantiated relative
to v(b1), ..., v(bm). This, in turn, can be the case either because there is no a in A(e′)
at all, or because there is an a in A(e′) but it is instantiated relative to other aspects.
Second, it can fail because one or more of the v(b1), ..., v(bm) do not exist. The second
case is possible because v is a partial mapping, which means aspects can disappear.

What does it mean for a variation to preserve a mathematical structure? The under-
lying idea is that a variation preserves the structure if and only if the structure is
satisfied before the variation and remains to be satisfied after the variation. By its very
nature, this is a mathematical condition, namely the condition of being a homomor-
phism (Mileti, 2022). The definition of a homomorphism, though, always applies to
all elements of a domain at once. For our case, it is best to refine this definition to a
single set of relata.7

A variation v : A(e) → A(e′) preserves a structure S with respect to relata
b1, ..., bm ∈ A(e) if and only if we have

(P1) R
(
b1, ..., bm

) = R
(
v(b1), ..., v(bm)

)
if S is a relation R, or

(P2) v
(
f (b1, ..., bm−1)

) = f
(
v(b1), ..., v(bm−1)

)
if S is a function f .

6 Because the definiendum already includes the first part of the condition, the negation is as follows: A
variation v : A(e) → A(e′) does not change an aspect a ∈ A(e) relative to b1, ..., bm ∈ A(e) if and only if
a is instantiated relative to b1, ..., bm in A(e) and a is also instantiated relative to v(b1), ..., v(bm ) in A(e′).
We felt that is the best way of writing things to optimize clarity.
7 For notational simplicity, we write R

(
b1, ..., bm

) = R
(
v(b1), ..., v(bm )

)
instead of R

(
b1, ..., bm

) ⇔
R
(
v(b1), ..., v(bm )

)
.

123



89 Page 12 of 23 Synthese (2024) 203 :89

As in the previous case, the negation of this definition is exactly what is intuitively
expected: a variation does not preserve the structure if and only if the structure is
satisfied before the variation, but not satisfied after the variation.8

For applications it is again important to see that the definition can fail to apply for
two reasons. First, it could be the case that one or more of the v(bi ) do not exist in
A(e′), if the corresponding aspect disappears. Second, the identities may fail to hold.

We now have the keys to understand S-aspects. The underlying idea is that an S-
aspect is an aspect that, under any variation, behaves exactly as the structure S does:
whenever S is preserved, the S-aspect does not change, and whenever the S-aspect
changes, the structure S is not preserved. This is expressed by the following definition.

An aspect a ∈ A is an S-aspect if and only if the following condition holds:
A variation does not preserve S with respect to relata b1, ..., bm if and only if the
variation changes a relative to b1, ..., bm .

Here, the condition needs to hold true for all variations and all relata. This means that
it needs to hold true for all variations of all experiences e in the set E that instantiate
relata of the structure S.

This concludes our proposal for the definition of the mathematical structure of
conscious experience. It is a structure whose domains correspond to sets of aspects,
and which contains an S-aspect for every relation or function of the structure. In the
next two sections, we apply this definition to two examples. On the one hand, these
examples illustrate the definition. On the other hand, they provide new insights to
structures that have been featured prominently in previous approaches.

3 Relative similarity

Our first example concerns relative similarity, which plays an important role, for
example, in the construction of quality spaces by Clark (1993, 2000).

A first step in applying our definition is to choose a set E . Here we take E to
comprise experiences of three color chips, as indicated in Fig. 1A, where one of the
chip (the reference) has a fixed color coating and the others vary in a range of color
coatings �. A color coating is a physical stimuli.

The second step is to specify the set of aspects A(e) for every experience e ∈ E .
Here, we take A(e) to comprise: (a) the color qualities in e, that is, the experienced
colors of the individual chips; (b) positional qualities of the color experiences, that
is, which chip has which color; and (c) the experience of relative similarity. Relative
similarity is an experience of one pair of aspects to be more, less, or equally similar to

8 A variation v : A(e) → A(e′) does not preserve a structure S with respect to relata b1, ..., bm ∈ A(e)
if and only if we have R

(
b1, ..., bm

) 	= R
(
v(b1), ..., v(bm )

)
if S is a relation R, or v

(
f (b1, ..., bm−1

) 	=
f
(
v(b1), ..., v(bm−1)

)
if S is a function f . This negation agrees with the intuition because the definiendum

already states part of the condition that follows, namely that b1, ..., bm are relata of the structure S in A(e),
which implies that (b1, ..., bm ) ∈ R if S is a relation and that f (b1, ..., bm−1) exists in A(e) if S is a
function, meaning that the structure is satisfied before the variation.
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Fig. 1 To help explain the example of relative similarity, this figure illustrates experiences with color
qualities and variations thereof. Subfigure A illustrates an experience of three color chips as well as the
concept of relative similarity: many readers will experience the color of the top-left color chip to be less
similar to the reference chip than the color of the top-right color chip. SubfigureB illustrates our notation for
the color aspects corresponding to the color chips. SubfiguresC andD illustrate variations v of experiences:
a swap of two color aspects in C; and a replacement of two color aspects in D

each other than another pair of aspects; here, the two pairs have to have one aspect—
the reference—in common. In Fig. 1A, for example, the color of the top left chip will,
for many readers, be less similar to the reference chip than the color of the top right
chip. An experience e in the set E may exhibit many other aspects as well. However,
A(e) only comprises those which are relevant for the construction at hand.

To pick out relative similarity more precisely, we let b0, b1 and b2 denote the color
aspects of the three chips in an experience e, where b0 is the color aspect of the
reference; see Fig. 1B. For some experience e, it might be the case that the colors b1
and b0 are experienced as less similar to each other than the colors b2 and b0. In this
case, the experience e has a relative similarity aspect in the above sense; we denote
this “less-similar” relative similarity aspect by a. So, a is an aspect of e, and it is
instantiated relative to b1 and b2. (The aspect a is also relative to b0. But since b0 does
not vary in E we can leave this implicit.)

Variations change one experience e into another experience e′. An example for a
variation would be a swap of the coatings of the two non-reference chips, as in Fig. 1C.
Another example for a variation would be to change the coatings of both non-reference
chips to some other coating in �, as in Fig. 1D. Formally, variations are represented
by mappings v : A(e) → A(e′). In the first example, Fig. 1C, the mapping is of the
form v(b1) = b2 and v(b2) = b1, and v(c) = c for all other aspects c, except for the
relative similarity aspect a, which is discussed in detail below. In the second example,
Fig. 1D, the mapping is as in the first example but with v(b1) = b3 and v(b2) = b4.

The key question of this example is: Is there a mathematical structure of conscious
experience which corresponds to relative similarity? To answer this question, we pro-
pose a mathematical structure and check whether this structure satisfies (MSC).
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The words “less similar than” in the description of relative similarity already indi-
cate that some order, in the mathematical sense of the word, might be involved. For
reasons that will become clear below, we propose a strict partial order as mathematical
structure. Our task in the remainder of this section is to show that this proposal indeed
satisfies (MSC) with respect to experienced relative similarity. A strict partial order
(C,<), consists of a set C, which is the domain of the structure, and a binary relation
‘<’ on C. For all x, y, z ∈ C, this binary relation has to satisfy the following axioms:

– Irreflexivity, meaning that there is no x ∈ C with x < x .
– Asymmetry, meaning that if x < y, then it is not the case that y < x .
– Transitivity, meaning that if x < y and y < z, then also x < z.

In order to turn a strict partial order into a proposal for a mathematical structure
of conscious experience, we need to specify how the set C and the relation < relate
to aspects of conscious experience. For the set C we choose the color qualities of the
experiences in E , meaning that C now comprises the color qualities evoked by the
coatings � of the chips we consider. For example, it contains what we have labelled
b0, b1, b2, b3 and b4 in Fig. 1. For the relation, we define bi < b j if and only if bi is
experienced as less similar to b0 than b j is to b0. (Since relative similarity, as defined
above, depends on the choice of reference b0, it would be more precise to write <b0
instead of <. However, to simplify the notation, we keep the reference implicit.)

For this proposal to make sense, we first need to check whether the axioms are
satisfied. If they were not satisfied, the proposal could still be a structure of conscious
experience; but it wouldn’t be a strict partial order. That’s why the axioms are not
explicitly mentioned in (MSC). Irreflexivity is satisfied because no color quality is
experienced as less similar to the reference than itself. Asymmetry is satisfied because
if bi is less similar to the reference than b j , then b j is not less similar to the reference
than bi .

The use of terms like ‘less similar to’ in natural language suggests that transitivity
is also satisfied; it suggests that, if bi is less similar to the reference than b j and b j

is less similar to the reference than bk , then bi should be less similar to the reference
than bk . But it might very well be the case that natural language is not precise enough
to describe its target domain. The use of natural language may be justified in simple
cases, or even in a majority of cases, but whether or not transitivity holds for all
bi , b j , bk ∈ C is, ultimately, an empirical question. For the purpose of this example,
we’re going to assume that transitivity holds as well.

Having checked that the axioms hold—that is, that the proposal is indeed a strict
partial order—we can proceed to check whether the structure is a mathematical struc-
ture of conscious experience according to (MSC). Concerning Condition (S1), there is
one domain C and it consists of color qualities, so this condition is satisfied. Therefore,
only Condition (S2) remains to be checked.

We now show that the relative similarity aspect a, as defined above, is in fact an
S-aspect, where S is the ‘<’ relation on C. That is, it is a <-aspect. To see that this
is true, we have to show that a variation does not preserve < with respect to relata b1
and b2 if and only if the variation changes a relative to b1 and b2.

Consider any variation v : A(e) → A(e′) that does not preserve < with respect
to relata b1, b2 ∈ A(e). Two aspects b1 and b2 are relata of < if either b1 < b2 or
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b2 < b1. We focus on the first case as the other one follows from the first by renaming
b2 and b1 in what follows. By definition of the < relation, b1 < b2 means that b1 is
experienced as less similar to the reference than b2. Therefore, there is also a relative
similarity aspect a ∈ A(e) as defined above. As explained in Sect. 2.3, there can be
two ways in which the variation v might not preserve <. Either v(b1) or v(b2) are
not defined, or, if they are defined, it is not the case that v(b1) < v(b2). In the former
case, there cannot be an a in A(e′) relative to v(b1) or v(b2), simply because the latter
do not both exist. In the latter case, it follows from the definition of < that v(b1) is
not experienced as less similar to the reference than v(b2). So, there is no a ∈ A(e′)
relative to v(b1) and v(b2). Hence, we may conclude that v changes a relative to b1
and b2.

For the other case, let v : A(e) → A(e′) be a variation which preserves < with
respect to relata b1 and b2. As before, this implies that a is in A(e) relative to b1 and b2.
Because v preserves <, v(b1) and v(b2) both exist and we also have v(b1) < v(b2).
Applying the definition of < then implies that a is also in A(e′) relative to v(b1) and
v(b2). Hence v does not change a relative to b1 and b2.

Because in both of these cases, v was arbitrary, it follows that a is indeed a <-
aspect. Therefore, Conditions (S1) and (S2) of (MSC) are both satisfied, and the strict
partial order (C,<) is indeed a mathematical structure of conscious experience; it is
themathematical structure of relative similarity of color experienceswith respect to b0.

4 Phenomenal unity and topological structure

Our second example concerns topological structure. Interestingly, this is intimately
tied to phenomenal unity, the thesis that phenomenal states of a subject at a given time
are unified (Bayne & Chalmers, 2003). Phenomenal unity gives rise to a mathematical
structure of conscious experience.9

Recall that we have introduced the set A(e) to denote aspects of the conscious
experience e, where we have used the term ‘aspect’ as a placeholder for concepts
like qualia, qualities, or (instantiated) phenomenal properties. Most examples of these
concepts are “independent” from the experience in which they occur; they could be
experienced together with a largely different set of aspects in a different experience.
Yet, experiences seem unified; their aspects are experienced as tied together in some
essential way. This raises the question of what underlies this experience of the unity
of a conscious experience? As we will see, somewhat surprisingly, the answer is: a
topological structure of conscious experience.

Much has been written about the question of phenomenal unity in the literature, for
example Bayne (2012); Bayne and Chalmers (2003); Cleeremans and Frith (2003);
Mason (2021); Prentner (2019); Roelofs (2016); Wiese (2018), and in order to make

9 A connection between topology and phenomenal unity has already been conjectured in Prentner (2019),
where an attempt was made to construct a topological space based on a binary relation that describes the
“overlap” of mental objects. The construction only leads to the weaker notion of a pre-topology, but should
be regarded as an important first step in this direction. For a summary of the formal construction, see Kleiner
(2020, Example3.22).
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use of some of the results, we assume that the term ‘aspect’ denotes an instantiated
phenomenal property or quale. The set of aspects A(e), then, comprises the phenom-
enal properties or qualia which are instantiated in the experience e, also called the
phenomenal states of the experience e.10 Our question, then, is what it means that
“any set of phenomenal states of a subject at a time is phenomenally unified” (Bayne
& Chalmers, 2003, p. 12).

There are various answers one might give to this question. A promising answer is
the so-called subsumptive unity thesis, developed in Bayne and Chalmers (2003):

For any set of phenomenal states of a subject at a time, the subject has a phe-
nomenal state that subsumes each of the states in that set. (Bayne & Chalmers,
2003, p. 20)

According to this thesis, what underlies the experience of the unity of a conscious
experience is that for any set X of phenomenal states in the conscious experience, there
is a further phenomenal state that subsumes each of the states in X . This phenomenal
state characterizes what it is like to be in all of the states of X at once (Bayne &
Chalmers, 2003, p. 20).

Put in terms of aspects, the subsumptive unity thesis says that for any set X ⊂ A(e)
of aspects of an experience, there is an additional aspect in A(e) that subsumes the
aspects in X . This aspect is the experience of what it is like to experience the aspects
in X as part of one experience e together; this aspect is the experience that the aspects
in X are unified, as we will say. Let us call this aspect the phenomenal unity aspect of
X and denote it by aX . It is instantiated relative to the elements of X .

Phenomenal unity gives rise to a mathematical structure of conscious experience.
To see how, let us use the symbol T to denote a collection of subsets of A(e), to be
specified in more detail below. Every subset of A(e) is a unary relation on A(e),11 and
hence also on the set A that comprises all aspects of the experiences in E . Therefore,
(A, T ) is a mathematical structure; it has the domain A and its structures are the
unary relations in T . As we show next, because of the subsumptive unity thesis, the
mathematical structure (A, T ) is a mathematical structure of conscious experience
according to (MSC).

Because A is the set of all aspects of E , Condition (S1) of (MSC) is satisfied.
Therefore, only Condition (S2) remains to be checked. This condition is satisfied
because for every set X ∈ T , the phenomenal unity aspect aX is an S-aspect for
S = X ; an X -aspect for short. To show that this is the case, we need to check that a
variation does not preserve X with respect to relata b1, ..., bm if and only if it changes
aX relative to b1, ..., bm . Let v : A(e) → A(e′) be a variation that does not preserve
X with respect to relata b1, ..., bm . The relata of the subset X are the elements of that
subset. Therefore, we have b1, ..., bm ∈ A(e), so that the subsumptive unity thesis
implies that there is a phenomenal unity aspect aX relative to the b1, ..., bm in A(e).

10 A phenomenal state is an instantiation of a phenomenal property, or quale, by a subject at a given time.
This instantiation constitutes part of the experience of the subject at the time. An experience e, in our
terminology, is an experience of a subject at a given time. Hence, a phenomenal state is an instantiation of
a phenomenal property, or quale, in an experience e.
11 Anm-ary relation on a set X is a subset R of Xm . Hence, a unary relation, wherem=1, is a subset of X .
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The condition that v does not preserve X furthermore implies that either not all of
the v(bi ) exist or that at least one of them is not in the set X . Therefore, there is no
phenomenal unity aspect aX relative to v(b1), ..., v(bm) in A(e′). Hence, the variation
v changes aX relative to b1, ..., bm ∈ X . Vice versa, let v : A(e) → A(e′) be a variation
which preserves X with respect to relata b1, ..., bm . This implies that aX is instantiated
relative to b1, ..., bm in A(e). The condition that v preserves X furthermore implies
that v(b1), ..., v(bm) exist, and that they are elements of X . Therefore, aX is also
instantiated relative to v(b1), ..., v(bm) in A(e′). This shows that the variation does
not change aX relative to b1, ..., bm . Thus, aX is indeed an X -aspect. And because that
is true for any X ∈ T , (A, T ) indeed satisfies Condition (S2) and hence (MSC).

The previous paragraph proves that, if the subsumptive unity thesis holds true for all
sets X in T , then (A, T ) is indeed a mathematical structure of conscious experience.
As we will explain next, this structure is intimately tied to a topological structure.

A topological structure (M, T ) consists of a set M and a collection T of subsets
of M . The collection has to satisfy three axioms, and there are a few different ways of
formulating these axioms. Here, we choose the formulation that corresponds to what
is usually called ‘closed sets’. The axioms are:

– The empty set ∅ and the whole set M are both in T .
– The intersection of any collection of sets of T is also in T .
– The union of any finite number of sets of T is also in T .

Are these axioms satisfied by the structure (A, T ) induced by phenomenal unity?
To answer this question, it is important to note that the subsumptive unity the-

sis does not provide a phenomenal unity aspect aX for every subset of A. It can
only provide such an aspect for a set of aspects that are actually experienced
together. That is, it can only provide such an aspect for a subset X of A(e).
Therefore, T is not the discrete topology introduced in Sect. 1. Second, it also
cannot be the case that it provides a phenomenal unity aspect for every subset of
A(e). That’s because then there would be an infinite regress: for every subset X
of A(e) there would be a new aspect aX in A(e), giving a new subset X ∪ {aX }
that would give a new phenomenal unity aspect aX∪{aX }, and so forth. This prob-
lem is well-known in the literature (Bayne, 2005; Wiese, 2018). Rather, we take
it, the quantifier ‘any set’ in the subsumptive unity thesis must be understood as
‘any set of aspects that are experienced as being unified’. While it is arguably the
case that the whole set of aspects A(e) of an experience is always experienced as
unified—by which we mean: the whole set of aspects is experienced—, introspection
suggests that we consciously experience only a select group of aspects as unified at a
time.12

So, which sets of aspects do we experience as unified? While we cannot give a
general answer to this question here, there is a special casewhere a sufficiently detailed
specification can be given: the case of regions in visual experience. Here, ‘regions’ are

12 This solves the infinite regress problem because, arguably, we do not always experience the phenomenal
unity aspects as unified with the sets they correspond to. So, there is not always a phenomenal unity aspect
aX∪{aX } for the set that consists of aX and X .
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sets of positions of the space that visually perceived objects occupy.13 The positions
in a region are experienced as unified. Therefore, the regions of visual experience are
members of the collection T which is induced by phenomenal unity. Furthermore, they
appear to satisfy the axioms of a topology as stated above: the whole set of positions
in a visual experience is a region; it seems to be the case that intersections of regions in
visual experience are also regions in visual experience; and it seems to be the case that
the union of any two regions in visual experience is also a region in visual experience.
For the empty set, no S-aspect of consciousness is required (there are no relata of the
corresponding unary relation), so we may take the empty set to be a member of T .
Thus, all axioms of a topology are satisfied.

Therefore, if we take M to denote the position aspects of visual experiences, and
chooseT to comprise the regions of visual experience, then (M, T ) is indeed a topolog-
ical structure. And, as shown above, it is a structure of conscious experience as defined
in (MSC). We thus find that, because of the subsumptive unity thesis, this topological
structure is indeed a mathematical structure of conscious experience; much like con-
jectured in Tallon-Baudry (2022), it is a topology of the visual content of subjective
experience.

5 The three problems revisited

In this section, we discuss how the new approach (MSC), which we have developed
in Sect. 2.2, resolves the three problems discovered in Sect. 1.

Problem 1: Incompatible structures

The first problem was that the condition (MDC), which has been applied in previous
approaches, admits incompatible structures to conscious experience. Is this also true
of (MSC)?

If two structures are incompatible, then there exists at least one automorphism of
one structure that is not an automorphismof the other structure.14 Aswe explain below,
this condition implies that two incompatible structures cannot have all S-aspects in
common. Therefore, it is not possible for two incompatible structures to pertain to
conscious experience in the exact same way; so, (MSC) indeed resolves the problem
of incompatible structures.

Let S and S′ denote two incompatible structures (in the narrow sense of the term)
with the same domains. Then, there is at least one automorphism of one structure that
is not an automorphism of the other structure. Let us denote such an automorphism

13 It is also plausible to think that visual experiences do not contain positions as aspects, but only regions.
However, assessing whether or not this is the case goes beyond the scope of this paper. Here, we assume
that positions are aspects of visual experiences.
14 Automorphisms are structure-preserving mappings from a structure to itself. Put in terms of the termi-
nology we have introduced in Sect. 2.2, automorphisms are mappings v that map the domains of a structure
to themselves. These mappings have to be bijective, and they have to preserve the structure, meaning that
they have to satisfy (P1) for all elements of the domain in case of relations, and (P2) for elements of the
domains in the case of functions.
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by v and assume that it is an automorphism of S but not of S′. Because v is not an
automorphism of S′, it follows that there is at least one set of relata b1, ..., bm of S′
in some A(e), such that the variation v : A(e) → A(e) induced by the automorphism
does not preserve S′ with respect to these relata. On the other hand, because v is an
automorphism of S, it follows that this variation preserves S with respect to b1, ..., bm .
If an aspect a is an S′-aspect, then, applying the definition of S′-aspects, we find that
the variation v needs to change it. In contrast, if an aspect a is an S-aspect, then,
applying the definition of S-aspects, we find that the variation v must not change it;
either because the b1, ..., bm do not constitute relata of S, or because the variation v

preserves S with respect to relata b1, ..., bm . Because an aspect cannot be both changed
and not changed under a single variation, there cannot be an aspect a that is both an
S-aspect and an S′-aspect.

Problem 2: Arbitrary re-definitions

The definition (MSC) also resolves the problem of arbitrary re-definitions. That’s
because any re-definition changes the relations or functions of the respective structure,
and therefore generates an own, independent condition for something to be an S-aspect
of the redefined structure. Whether or not this new S-aspect is a part of conscious
experience is a substantive question that depends on the actual experiences of the
subject under consideration; it is not automatically the case.

Consider, as examples, the cases of rescaling a metric, which we have introduced in
Sect. 1. If, per assumption, (M, d) were a structure of conscious experience, then for
any relata (b1, b2, d(b1, b2)), the condition for d-aspects would have to be satisfied.
Rescaling this to (M,C · d) generates a new condition because now, the relata to be
considered are (b1, b2,C · d(b1, b2)). These are different relata, and correspondingly,
different experiences and different variations will enter the definition of a C·d-aspect.
The same is true for an ( f (a)+ f (b))·d(a, b)-aspect. Whether or not these structures
satisfy (MSC) depends on the details of the conscious experiences under consideration;
but they do not automatically satisfy (MSC) just because (M, d) does.

Problem 3: Indifference to consciousness

The third problem is resolved, finally, because of the introduction of S-aspects
in (MSC), which are a counterpart “in” conscious experience to the structure in the nar-
row sense of the term. S-aspects introduce a connection between functions or relations
in a mathematical structure, on the one hand, and aspects (qualia, qualities, or phe-
nomenal properties) of conscious experiences, on the other hand. Because S-aspects
are part of the definition of (MSC), any application of (MSC) requires engaging with
details of the conscious experiences of the subject under consideration; (MSC) is not
indifferent to conscious experience in the sense of Problem 3 of Sect. 1.

Consider, for example, the two topological structures of Sect. 1. While (MDC) only
required us to check whether the structures address aspects and satisfy the axioms,
(MSC) also requires us to check whether there is an S-aspect in conscious experience
that corresponds to the topological structures. As we have seen in Sect. 4, this involves
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a careful investigation of conscious experience and relies on intricate notions such as
phenomenal unity.

6 Conclusion

In this article, we investigated mathematical structures and mathematical spaces of
conscious experience. We were not concerned with questions of type or explicit form
of these structures or spaces, butwith thequestionofwhat itmeans to speak aboutmath-
ematical structures or mathematical spaces of conscious experiences in the first place.
We answer this question by providing a definition of what mathematical structures of
conscious experience are. This definition provides a foundation for the construction,
investigation and identification of concepts like phenomenal spaces, quality spaces,
qualia spaces and Q-structures.

Our definition of mathematical structures of conscious experiences is grounded in
a foundational understanding of mathematical structures and spaces as laid out by
mathematical logic. And it is axiomatic in the sense that it can be applied to any
conceptualization of conscious experiences, and any choice of aspects thereof (e.g.
qualia, qualities, phenomenal properties, phenomenal distinctions), which satisfy the
formal requirement that for every conscious experience there is a well-defined set of
aspects.

Our definition rests on the notion of variations, which are changes of one conscious
experience to another. Because variations can be induced introspectively (for example,
as in Husserl’s imaginary variations), stimulated in a laboratory by change of stimuli,
or studied theoretically based on a proposed theory of consciousness, our definition
constitutes a general method to identify and study structures of conscious experience.

The grounding of mathematical structures of conscious experiences proposed here
is methodologically neutral in the sense that it can be combined with many methods,
practices, and procedures that are used to investigate conscious experience, spanning
empirical, analytical, and phenomenological research. Furthermore, it is conceptually
neutral in the sense that it can be applied to any conception of ‘conscious experience’
and ‘aspects’ thereof, as long as every conscious experience comes with a well-defined
set of aspects. This includes common conceptions using qualities, qualia, or phenom-
enal properties, but also less common ideas based on atomistic conceptions of states
of consciousness or phenomenal distinctions.

Our definition complements recent approaches that study quality spaces, qualia
spaces, or phenomenal spaces, because it retains the abstract condition that these
proposals apply—Condition (MDC) in Sect. 1—as a necessary part. This abstract
condition is extended by our proposal, so as to avoid three problems that interfere
with recent approaches, see Sect. 1.

In light of the increasing interest in usingmathematical structures to model and rep-
resent conscious experiences in the scientific study of consciousness and philosophy
of mind, the investigation of how to define and understand mathematical structures of
conscious experience is important, in our view. This work contributes to this inves-
tigation. It highlights issues with previous ways of understanding structural claims
and offers an improved conception that rests on meaningful desiderata. Hence, we
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hope, it contributes to building a foundation for structural research for both theory and
experimental practice.

As a first application, and to illustrate our definition, we considered relative similar-
ity and topological spaces. We found that relative similarity, which plays an important
role in several constructions of quality spaces, is indeed a mathematical structure of
conscious experience, see Sect. 3. Topological spaces also qualify as mathematical
structures of conscious experience, but for a surprising reason: they are intimately
related to phenomenal unity, see Sect. 4.

We view the results presented here as one further step in a long journey to investigate
conscious experience mathematically. This step raises new questions and creates new
opportunities, both ofwhich canonlybe explored in an interdisciplinarymanner.Anew
question, for example, iswhether our result onmathematical structuresmight open new
perspectives on measurements of consciousness (Irvine, 2013), as arguably promised
by the Representational Theory of Measurement (Krantz et al., 1971) whenever an
axiomatic structure on a target domain is available.We hope that, ultimately, our result
provides a basis for developing a common formal language to study consciousness
across domains.
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