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Abstract 

Understanding the mechanisms of decision-making and learning is fundamental to advancing 

cognitive neuroscience and improving collective decision-making strategies. While extensive 

research has elucidated aspects of individual decision-making, significant gaps remain in our 

understanding of the computational and neurobiological processes underlying social 

decision-making and how decision-making strategies are learned over time. To address these 

gaps, we conducted two complementary studies that leverage computational modelling, 

neurobiological data, and behavioural analysis. 

In our first study, we focused on the neural mechanisms underlying social decision-making, 

specifically how collaborators align their confidence judgments. Despite the importance of 

confidence communication in social contexts, the computational basis for this process has 

remained elusive. We developed a neurobiological model supported by EEG, eye-tracking, 

and behavioural data to investigate confidence matching during perceptual decision-making. 

By combining psychophysical tasks, neural data, and computational modelling, we 

demonstrated how humans utilize information about a collaborator’s confidence to adjust 

their own decisions and confidence levels, providing a robust framework for predicting and 

validating confidence alignment in collaborative tasks. 

Studying social decision-making using methods designed for individual decision-making poses 
unique challenges. Social decision-making often requires a large number of subjects (N~30) 
and individual decision making computational models requires subjects extensive training to 
achieve reliable results, making interdisciplinary studies like ours particularly demanding. 
During this process, we noticed that the computational mechanisms of training itself are 
poorly understood, with many studies discarding training data as noisy or irrelevant. This gap 
motivated our second study, which aimed to explore how decision-making strategies are 
learned. To address this, we developed a reinforcement learning (RL) framework that models 
perceptual decision-making as a dynamic process where the decision boundary is optimized 
over time. Our model learns to balance the cost of waiting with external rewards, offering a 
computational tool to study the evolution of decision thresholds and learning dynamics. 

Together, these studies provide a comprehensive exploration of both social decision-making 
mechanisms and the learning processes that shape decision strategies. The results offer 
insights into how humans align confidence in collaborative settings and how they refine 
decision boundaries through experience. These findings may have broad implications for real-
world applications, such as improving teamwork in high-stakes environments (e.g., medical 
diagnostics, or financial trading) and developing training programs that enhance decision-
making efficiency. By advancing our understanding of these complex processes, this research 
lays the groundwork for more effective individual and collaborative decision-making 
strategies. 
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1 General Introduction 
Decision-making is a critical cognitive process that involves choosing between different courses of 

action based on their potential outcomes. It is a complex process that encompasses everything from 

simple daily choices to high-stakes decisions in business and politics. Social decision-making adds 

another layer of complexity, as it involves navigating interactions with others, understanding their 

intentions, and predicting their behaviour. This type of decision-making is essential in environments 

where cooperation, competition, and communication play a crucial role, such as in team projects, 

negotiations, or any group-based activities. Similarly, learning is a mechanism by which we acquire 

new knowledge or refine existing knowledge and skills through experience. It enables us to adapt to 

new situations, solve problems, and make better decisions based on past experiences.  

What happens in the brain during these seemingly trivial and everyday phenomena has been a key 

focus of cognitive neuroscience (Gold & Shadlen, 2007; Schultz et al., 1997; Shadlen & Kiani, 2013). 

We have achieved great successes in understanding brain mechanisms in these cognitive processes 

(Ratcliff, 1978). Despite these advances, there remains a substantial gap in our comprehension of the 

brain mechanisms behind real-life decision-making and learning (Huettel, 2010). However, 

understanding such complex systems often benefits from an initial focus on simplified scenarios, 

allowing for a clearer grasp of the fundamental processes before scaling to more intricate situations 

(Summerfield & Miller, 2023). This incremental approach is the cornerstone of neuroscience research. 

Consistent with this methodology, this thesis examines simplified scenarios of social decision-making 

and learning in the hope that these findings will enhance our understanding of the broader 

mechanisms involved. 

 

1.1 Perceptual Decision Making 
Perceptual decision making is a fundamental cognitive process by which individuals interpret and act 

upon sensory information from the environment (Gold & Shadlen, 2007; T. Hanks & Summerfield, 

2017). This process underlies our ability to make judgments about the world around us, from the 

simple (e.g., determining the colour of a traffic light) to the complex (e.g., interpreting a facial 

expression). The perceptual decision-making process typically begins with sensory input—data 

collected by our sensory organs, like eyes and ears, from the external environment. This sensory 

information is then processed by the brain's relevant sensory areas, which decode and analyse the 

data to extract meaningful patterns and details (Shadlen & Kiani, 2013). 

One of the long-term objectives of cognitive neuroscience is to elucidate the neural mechanisms that 

underlie decision formation (Beck et al., 2008; Roitman & Shadlen, 2002). The most agreed upon 

mechanism of perceptual decision making suggests that perceptual decision making involves the 

integration of sensory data with prior knowledge (Ratcliff, 1978; Ratcliff & McKoon, 2008). This 

process may stop once a predefined threshold is reached (Ratcliff, 1978; Ratcliff et al., 2006, 2009). 

When the quality of signal (stimulus) is high, we expect that the integration process finished sooner. 

In contrast, when the sensory signal is noisier, the time that is required to make as accurate decision 

increases. For example, imagine a scenario in which you are driving a car in foggy road conditions. The 

fog significantly reduces visibility, making the sensory input—what you can see of the road and its 

surroundings—much noisier and less reliable. In such a scenario, your brain requires more time to 

integrate this unclear sensory data mainly because information per unit of time is low. This additional 
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processing time is necessary to reach the threshold of certainty needed to make safe driving decisions, 

such as determining the safe speed or identifying the right moment to make a turn. This processing 

time could be significantly reduced in a clear, sunny day in which the sensory signal is stronger. The 

relationship between accuracy and processing time may suggest that subjects accumulate information 

to improve performance.  

One of the simplest forms of decision making is decision between two (rather than more) options 

(Britten et al., 1992; Shadlen & Newsome, 2001). Studying these simple decisions may help us to 

understand human (or animal) decision making better and generalize our understanding to more 

complex and realistic scenarios (T. Hanks & Summerfield, 2017). One popular class of these simple 

decision are Two-alternative forced choice (2AFC) tasks (Hautus et al., 2011; Roitman & Shadlen, 

2002). They are commonly used in experimental neuroscience to measure an individual's ability to 

discriminate between two different stimuli (Hautus et al., 2011, 2011). There are numerous instances 

of these tasks in different modalities (Chancel & Ehrsson, 2020; Ganea, 2021; García-Pérez & Alcalá-

Quintana, 2020; Morris, 2022; Simen et al., 2009). 

Britten et al (1992) introduced a Random Dot Motion (RDM) discrimination task, a simple and effective 

2AFC task. Generally, subject is required to decide whether the majority of dots are moving toward 

option 1 (here: up) or option 2 (here: down). The portion of the dots that moves in a “same” direction 

is called coherence (correlation) level. The higher this value, the easier the task. We normally expect 

to see higher accuracy and lower RT with increasing coherence level. This task has been instrumental 

in understanding basic mechanism of perceptual decision making such hierarchical, discrete, social, 

and sequential decision making (Bang et al., 2020; Purcell & Kiani, 2016b, 2016a; Resulaj et al., 2009). 

 

1.1.1 Brain and Perceptual Decision Making 
The simplicity and effectiveness of the RDM task encouraged many researchers to delve deeper into 

how this task parameters affects neural activities, EEG signals and eye data (Kelly & O’Connell, 2013; 

O’Connell et al., 2012; Roitman & Shadlen, 2002; Urai et al., 2017). In one the earliest attempts, Britten 

et al (1992), recorded from neurons in extra striate cortex (areas MT and MST) while the monkey did 

the RDM task. Given that RDM is a “visual” discrimination task and also the rich history of vision 

neuroscience (Haan & Cowey, 2011; Mishkin & Ungerleider, 1983), MT (medial temporal) opted as a 

proper candidate for encoding RDM task information. They indeed showed that MT is actively 

participating in the discrimination of motion based on coherence levels. MT activities were found to 

be predictive of subject decision-making when the subject was indeed instructed to make a decision. 

However, during passive decision-making, MT continued to encode sensory information, suggesting 

that decision-making processes themselves are not encoded within MT. Furthermore, there was no 

indication that MT is involved in evidence accumulation. The MT neurons simply showed an initial 

stimulus dependant raise in the beginning of the stimulus presentations and kept their activities 

persistence afterwards. This indicates a distinct role for MT in sensory processing rather than active 

decision-making or the integration of decision-relevant information. These results implied that there 

may be other areas in the brain that indeed “accumulate” the evidence that has been precisely 

encoded in MT.  

To this end, Shadlen and Newsome (Roitman & Shadlen, 2002; Shadlen & Newsome, 2001) recoded 

neural activities in the lateral intraparietal area (LIP). Many neurons in the lateral intraparietal area 

(LIP) respond to visual stimuli that are the target of a planned saccadic eye movement (Colby et al., 

1996; Gnadt & Andersen, 1988; Platt & Glimcher, 1997). When the direction of random-dot motion 

instructs the choice of a target for a saccade, LIP activity modulates in a way that predicts the monkey’s 
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eye movement response. The gradual evolution of activity during motion viewing and its dependence 

on the difficulty of the discrimination suggests that neurons in LIP may represent the accumulation of 

visual information about motion leading to the formation of the monkey’s decision. This result was 

hailed as a neural signature of evidence accumulation, thereby strengthening the concept of evidence 

accumulation in perceptual decision making literature. This notion, however, was challenged by some 

other studies (Katz et al., 2016; Latimer et al., 2015; Stine et al., 2020). They argue that ramping activity 

observed at the neural population level does not necessarily imply evidence accumulation within 

individual neurons. They showed that a population of neurons, each exhibiting pulse-like activity, can 

collectively produce a ramping pattern of evidence accumulation. Therefore, a single neuron does not 

necessarily accumulate evidence on its own. 

Besides the electrophysiology recording, other studies used EEG and eye tracking to understand the 

decision making processes. Kelly et al (Kelly & O’Connell, 2013; O’Connell et al., 2012) located an 

important area of the brain responsible for perceptual decision making and evidence accumulation. 

The component identified by this group, Centro Parietal Positivity (CPP), shows a significant 

relationship to coherence level. Interestingly, they showed that EEG signals indeed show a ramping 

activity proportional to coherence level, signifying a signature for evidence accumulation. They also 

showed that these pattern of activity is indeed decision dependant and has not modulation to 

coherence level once subjects is passively viewing the stimulus (O’Connell et al., 2012). Other studies 

also provided evidence that there is correlation between CPP and pupil and microsaccades (van 

Kempen et al., 2019). Together, these studies showed that, evidence accumulation is not limited to 

LIP neuron and could be detected via other measurement too.   

 

1.1.2 Confidence in Perceptual Decision Making 
An integral aspect of decision making process is the confidence with which these decisions are made 

(Kiani et al., 2014; O’Connell et al., 2018). Perceptual decision confidence refers to the subjective 

probability that one's choice or judgment is correct, reflecting a meta-cognitive assessment of the 

decision-making process itself. Confidence plays a critical role in behaviours and has significant 

implications for learning, reasoning, and error correction.  

Unlike conventional objective measures of decision-making such as accuracy and reaction time, 

decision confidence is a subjective measure. Researchers have made numerous attempts to model 

and explain decision confidence using objective measures such as task difficulty, accuracy, and 

reaction time (Kepecs et al., 2008; Kiani et al., 2014; Zylberberg et al., 2016). While these measures 

offer some explanatory power, the subjective nature of confidence adds layers of complexity. This 

complexity indicates that confidence formation likely incorporates additional cognitive and perceptual 

factors, making it a distinct and multifaceted component of decision-making (Hagura et al., 2023; Lee 

& Daunizeau, 2021; Turner et al., 2021). As a result, ongoing research continues to explore the 

nuanced mechanisms behind confidence, aiming to uncover how subjective certainty emerges and 

influences behaviour (Esmaily et al., 2024). 

 

Several data modalities were used to enhance our understanding of decision confidence (Balsdon et 

al., 2021; Gherman & Philiastides, 2018; Vafaei Shooshtari et al., 2019). Kiani et al (Kiani & Shadlen, 

2009) investigated how confidence in perceptual decision-making is represented in the brain, 

particularly within the parietal cortex of rhesus monkey. They trained monkeys to make perceptual 

decisions about motion direction and allowed them to opt out for a guaranteed smaller reward if they 

were uncertain. The study found that neural activity in the parietal cortex not only reflected the 
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monkeys' decisions but also their uncertainty levels, suggesting that these neurons encode both the 

choice and the certainty associated with that choice. This insight contributes to understanding the 

neural basis of confidence and decision-making processes. Confidence was also investigated via other 

data modalities such as EEG and eye tracking as well (Pisauro et al., 2017; Vafaei Shooshtari et al., 

2019). Microsaccades, the small unvoluntary movement of gaze, were also linked to perceptual 

confidence as well (Loughnane et al., 2018; van Kempen et al., 2019). In another important study (Urai 

et al., 2017) showed that pupil data can encode decision confidence after feedback and in inter trial 

intervals. Given their non-invasive nature, these EEG and pupil components could help us to 

understand formation of perceptual decision confidence in humans. 

 

1.1.3 Computational Models of Decision Making 
Decision-making processes have long fascinated computational neuroscience (O’Connell et al., 2018). 

Some approaches aim to provide descriptive explanations of these processes, with the Drift Diffusion 

Model (DDM) being a well-known example (Ratcliff, 1978; Ratcliff et al., 2009). Other approaches 

focus on mechanistic explanations, incorporating brain and neural mechanisms to model decision-

making in a manner that mirrors how the brain likely operates (Wang, 2002, 2008; Wong & Wang, 

2006). These models strive to replicate the underlying neural activity and interactions, offering insights 

into the biological basis of decision-making. In the following, we will describe DDM and one simple 

mechanistic model of decision making that is based on attractor neural network. Both models are used 

in this thesis. Note that these models are not exclusive; there are also other competing models that 

attempt to explain the decision-making process (Dubreuil et al., 2022; Latimer et al., 2015; 

Mastrogiuseppe & Ostojic, 2018; Stine et al., 2020). The models mentioned in this thesis are not, by 

any means, the definitive or only models of how the brain makes decisions. Yet, of course, enhance 

our understanding of decision making and learning processes in the brain. 

 

1.1.3.1 Drift Diffusion Model 
The Drift Diffusion Model (DDM) is a mathematical model in the family of sequential sampling models 

that used to explain decision-making processes, particularly in two-choice tasks (Ratcliff, 1978). It 

describes how information is accumulated over time until a decision threshold is reached. The key 

elements of the DDM include drift rate, decision threshold, and starting point. It defines as follows: 

𝑑𝑣(𝑡) =   𝑑𝑡 +  𝜂 𝑑𝑊(𝑡)                           (1) 

where 𝑣(𝑡) is the decision variable at time 𝑡,  is the drift rate, representing the average rate of 

evidence accumulation. 𝜂 is the noise parameter usually set to 1 and 𝑑𝑊(𝑡) is a Wiener process 

(standard Brownian motion). The decision is made when  𝑣(𝑡) reaches one of the boundaries: 𝑣(𝑡) =

𝐵, where 𝐵 - sometimes also denoted by 𝑎 - is the decision threshold. The initial value  𝑣(0) = 𝑧  

(usually set to 𝑧 = 𝐵/2) representing the starting point of the decision process.  

The characteristics of drift term  𝑑𝑡 and diffusion term 𝜂 𝑑𝑊(𝑡) determines the stochastic dynamics 

of 𝑣 over time. In the general form of Fokker Planck equation both drift and diffusion term are partial 

differential equations that could change over both time and space. DDM utilized the 1D version of 

Fokker Planck equation while both drift and diffusion term are time-independent (scaler rather than 

PDEs). Although this treatment may be deemed as a massive simplification, yet DDM has been 

extremely successful in explaining various decision making behaviors (T. Hanks & Summerfield, 2017; 

Kiani et al., 2014; Kiani & Shadlen, 2009; O’Connell et al., 2018; Purcell & Kiani, 2016b, 2016a).  
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In the decision making scenario, the stochastic process 𝑣(𝑡) is terminated when the boundaries is hit. 

Having gone through “first passage” calculation of 𝑣(𝑡) to 𝐵 and also setting  = 𝐾𝑐 where 𝐾 is drift 

coefficient and 𝑐 is task difficulty, we can define the response time (RT) and accuracy as follows: RT is 

characterized as the first time 𝑣(𝑡) = 𝐵. Meanwhile, accuracy is defined as the probability that 𝑣(𝑡) =

𝐵 correctly reflects the true decision outcome. This formulation integrates both the dynamics of 

decision variables and the influence of task difficulty on the decision-making process. Accuracy and RT 

could be solved analytically as follows (Ratcliff, 1978):  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑐)  =  1 / (1 + 𝑒−2𝐾𝑐𝐵)         (2) 

𝑅𝑇(𝑐) =  
𝐵

𝐾𝐶
𝑡𝑎𝑛ℎ(𝐾𝑐𝐵)                  (3) 

Parameters of DDM (𝐾, 𝐵)  have a measurable effect on the output accuracy and reaction time. Higher 

values of 𝐾 lead to faster and more accurate decision-making. Higher thresholds also increase the 

accuracy and RT. The profile of effect of each parameter one accuracy and RT has been nicely shown 

in (Palmer et al., 2005). By adjusting the drift rate, decision threshold, and starting point, the DDM can 

model various types of decision-making behaviours, capturing both the accuracy and reaction time 

distributions observed in empirical data. 

 

1.1.3.2 Neural Attractor Model 
DDM model is a descriptive model that is usually agnostic about neural dynamics and mechanisms 

(Ratcliff & McKoon, 2008). While it excels in illustrating decision-making processes at a cognitive level, 

it does not delve into the detailed neuronal dynamics that govern these processes. In contrast, 

neurobiological models fill this gap by providing a deeper understanding of the neuronal activity. This 

comprehensive detailing of neural mechanisms establishes a foundational bridge from the microscale 

to the macroscale of cognitive phenomena, setting the stage for more integrated models in 

computational neuroscience (O’Connell et al., 2018; Wong & Wang, 2006). 

It all started with The Hodgkin-Huxley (HH) model (Hodgkin & Huxley, 1952), developed in 1952 and 

honoured with a Nobel Prize, that significantly sparked interest in neural dynamics. This model 

provided a mathematical framework for understanding how neurons generate and transmit electrical 

signals through action potentials. By meticulously describing the ionic mechanisms that underlie the 

electrical activity of neurons, specifically through the dynamic properties of sodium and potassium ion 

channels, it laid the foundation for the field of computational neuroscience. This model not only 

deepened our understanding of the physiological basis of neural activity but also influenced the 

development of various applications ranging from drug discovery to the design of neural prosthetics 

and the simulation of neural networks, underscoring its profound impact on both theoretical and 

applied neuroscience. 

The Hodgkin-Huxley model employs four-dimensional nonlinear differential equations to capture the 

dynamics of ion channels and changes in membrane voltage over time (Hodgkin & Huxley, 1952). The 

equations illustrate how the conductance of potassium and sodium ions varies with both membrane 

voltage and time, influencing ion flow across the membrane and thereby affecting the neuron's 

electrical state. The four-dimensional nature of the Hodgkin-Huxley model, however, complicates its 

scalability. As a result, researchers have sought to develop approximated and reduced versions of the 

model, while preserving its essential properties, such as the ability to produce specific spike patterns 

like tonic and phasic firing. Prominent examples of these simplified models are Izhikevich (Izhikevich, 

2003) and LIF models (Burkitt, 2006). The Leaky Integrate-and-Fire (LIF) model is one of the most 
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popular reduced versions of the Hodgkin-Huxley model and continues to be widely used (Gerstner & 

Kistler, 2002). This one-dimensional model forms the foundation of many large-scale spiking neural 

networks (Gerstner et al., 2014; Gerstner & Kistler, 2002). 

Large scale spiking neural network has found its way into perceptual decision making as well (Wang, 

2008; Wimmer et al., 2015, 2016; Wong & Wang, 2006). The most notable one is 2002 model of Wang 

(Wang, 2002). The paper introduces a biophysically realistic model that uses excitatory and inhibitory 

interactions within networks of spiking neurons to support and simulate decision-making dynamics. 

Wang's model specifically illustrates how neural circuits can maintain decision-related information 

over time through synaptic reverberation, even in the absence of continuous input. This framework 

helps to understand the neural basis of decision-making by showing how cortical circuits may encode 

and manipulate decision variables, providing a link between neural activity patterns and cognitive 

functions related to perceptual decisions. 

This insightful model by Wang, although providing deep understanding, proved challenging to 

interpret and directly correlate with behavioural data due to its complexity and numerous free 

parameters (Wong & Wang, 2006). In response to these challenges, subsequent research by Wong & 

Wang (2006) utilized mean field theory alongside a set of plausible approximations to simplify Wang's 

model into a more manageable form. This resulted in a reduced model described by only two 

nonlinear ordinary differential equations. Specifically, the model simulates the average firing rates of 

two neural populations that are crucial in the accumulation of information during perceptual decision-

making tasks. When inputs proportional to the stimulus coherence levels are introduced to the 

network, a competitive interaction emerges between two units, each representing alternative choices. 

This competitive race continues until the firing rates of one of the units reach a high-firing-rate 

attractor state, at which point the decision favoured by that unit is selected. This streamlined model 

not only simplifies the interpretation and fitting of behavioural data but also retains the core dynamics 

essential for understanding decision-making processes in neural circuits. The detail of this model is 

described in project one (Esmaily et al., 2023).  

 

1.1.3.3 Computational Models of Decision Confidence 
The basic models used for decision-making typically focus on modelling reaction time and accuracy 

but do not include a measure of confidence (Ratcliff & McKoon, 2008). To incorporate decision 

confidence, these models require modification. The common approach in the majority of studies that 

attempt to model confidence is to calculate the distance between their measure of "evidence" and 

the decision boundary (Kepecs et al., 2008; Lee et al., 2023; Wei & Wang, 2015). The concept of 

evidence varies across different frameworks (firing rate, one (Kepecs et al., 2008) vs accumulated 

samples (Lee et al., 2023) from a normal distribution), each with its own strengths and limitations. The 

notion of a decision threshold, however, remains largely consistent across all models, usually 

represented as a scalar predefined value. The literature on confidence computation can generally be 

divided into two categories: statistical-based models and neural (brain-plausible) models. Given that 

the nature of confidence is probabilistic, it is not surprising that confidence has been more extensively 

modelled within statistical and probabilistic frameworks (Zylberberg et al., 2012). These models 

typically leverage principles of (Bayesian) statistics to quantify and predict confidence levels in 

decision-making scenarios (Kepecs & Mainen, 2012; Pouget et al., 2016). 

In one of the early efforts, Kepects et al. introduced a mechanism for computing confidence (Kepecs 

et al., 2008). They assume a normal distribution for the stimulus evidence (s, the mean is determined 

by stimulus strength) and the boundary (b, mean is 0 and could change if there is a bias). In each trial, 
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one sample would be randomly drawn from each distribution (si and bi). A choice is then calculated by 

comparing the two samples (si < bi), and a confidence value is estimated by calculating the distance 

between them |si - bi|. If the stimulus has a large mean (indicating a very clear stimulus), then, on 

average, the distance to bi would also be large. Conversely, with a very noisy stimulus, the scenario 

changes; the random sample from si is likely to be very close to bi, resulting in a smaller distance and 

thus a lower confidence scenario. Given that si and bi are stochastic, this framework offers a stochastic 

measurement of confidence.  

In order to incorporate decision confidence, sequential sampling models typically use a framework 

called “race” model. In this model, each choice has an accumulator and each race to reach a 

predefined decision threshold. Confidence computation, however, has a similar approach where they 

compare accumulated evidence to the decision threshold. If the comparison is made at the moment 

of decision, then it effectively involves comparing the evidence for the less favoured option (the "loser 

accumulator") with the decision threshold (Ratcliff & Starns, 2009, 2013). This occurs because the 

winning accumulator has already reached the decision threshold, indicating that a decision has been 

made in its favour. Naturally, when the "loser accumulator" accumulates significantly less evidence, 

the gap to the decision threshold is greater. According to these models, a larger gap suggests higher 

confidence in the decision. These models also implicitly account for the effect of response time (RT). 

A higher RT allows the loser accumulator to gather more evidence, thus reducing the distance to the 

fixed threshold and implying lower confidence in the decision. However, the explicit relationship 

between RT and confidence is not clearly defined in these models. Most importantly, these models do 

not treat RT as a causal element in the formation of confidence, suggesting that while RT influences 

the dynamics of decision-making, it is not seen as directly shaping confidence. 

Kiani et al (Kiani et al., 2014) tried to identify a formal and explicit relationship of RT and confidence. 

They proposed a model where confidence was determined by both decision accuracy and, crucially, 

RT. In their model, RT appeared on the right-hand side of the equation, suggesting a causal relationship 

with confidence. To strengthen this view, they conducted a psychophysical experiment where the 

stimulus duration was deliberately extended while the amount of evidence remained constant. They 

observed a decrease in confidence in the prolonged version of the task, suggesting that RT may play a 

causal role in the formation of confidence. Note that other models of confidence may not predict 

lower confidence in this task. 

Neural models also follow a similar approach in modelling decision confidence (Wei & Wang, 2015). 

In these frameworks, the firing rate of neurons is typically considered to encode "evidence" for 

decision-making. Confidence in these models can be computed by taking the difference (or some 

nonlinear function of difference) between the firing rate of the less favoured (loser) population and a 

designated decision threshold. The greater this difference, the higher the confidence. This method 

effectively uses the magnitude of neural activity as a proxy for the strength of evidence supporting a 

decision, linking neural responses directly to confidence formation. 

 

1.2 Social decision making 
Social perceptual decision-making investigates how groups of individuals integrate sensory 

information to make collective decisions (Bahrami et al., 2010, 2012; Mahmoodi et al., 2022). The 

brain's ability to integrate multiple streams of sensory input, assess the reliability of information, 

consider the perspectives of others, and reach a consensus is crucial for many aspects of social 

behaviour and cooperation. This field of study bridges aspects of cognitive neuroscience, social 
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psychology, and neurobiology to understand how the brain supports interactive decision-making 

among individuals. The big promise in social neuroscience is that by mapping the pathways and 

mechanisms through which our brains undertake joint decision-making, neuroscience not only 

elucidates fundamental aspects of human cognition but also provides insights into the nature of social 

interactions and their impact on individual and group behaviour (Mojzisch & Krug, 2008). 

Again, for simplicity, many studies have focused on understanding two-person (dyadic) or paired 

decision-making (Bahrami et al., 2010; Najar et al., 2020). This represents the most basic form of social 

decision-making, allowing researchers to better control extraneous variables compared to larger 

groups. In the meantime, other studies attempt to scale up the social setting by increasing the group 

size gradually, making the environment progressively more reflective of real-life situations (Barrera-

Lemarchand et al., 2024; Navajas et al., 2018). The dyadic studies offer precise control and detailed 

mechanistic insights and larger group studies, though less controllable, provide a more realistic 

reflection of complex social interactions in natural settings. This thesis focuses on dyadic setting. 

A large portion of the literature dedicated to exploring the neural mechanisms that underpin these 

collective processes (Arabadzhiyska et al., 2022; Moore et al., 2021; Y. Shen & Zhou, 2021). Neural 

investigations into joint perceptual social decision-making are motivated by the need to understand 

how humans, as inherently social beings, process information not in isolation but in concert with 

others (Deaner et al., 2005; Klein et al., 2009; Shepherd et al., 2006). Key to this research is the study 

of specific neural circuits and regions involved in decision-making, such as the prefrontal cortex, which 

is known for its role in complex cognitive behaviours including planning, reasoning, and social 

interaction (Labutina et al., 2024; Rilling & Sanfey, 2011; Tremblay et al., 2017).  

Many investigations have sought to uncover the underlying neural mechanisms. Techniques such as 

EEG, eye-tracking, and neural imaging have been pivotal in these explorations (Konovalov & Ruff, 

2022; Moore et al., 2021; Rojas et al., 2020; J. Shen et al., 2022; Valsangiacomo, 2023). Brain 

synchronization, in particular, has emerged as a core area of interest within studies of social 

interactions and decision-making (Hasson et al., 2012; Luft et al., 2022; Mukamel et al., 2005). This 

phenomenon, where neural activities in different regions of the brain or between individuals 

temporally align, creating coordinated brain wave patterns, is believed to be critical for various 

cognitive processes including perception, attention, memory, and social interactions. It is deemed to 

facilitate efficient communication between brain regions, allowing complex cognitive functions to be 

executed smoothly and effectively.  

In social contexts, brain synchronization between individuals is often examined using hyperscanning 

techniques, which reveal how humans align their neural activities during activities such as 

communication, empathy, and cooperative tasks. This area has gained considerable attention; 

however, it is not without controversy. Some research has raised serious doubts about the results and 

implications of brain synchronization studies, questioning the reliability and interpretability of these 

findings (Nam et al., 2020; Shadlen & Movshon, 1999). 

The primary social phenomenon this thesis focuses on is confidence matching (Bang et al., 2017). In 

2017, Bang et al. (Bang et al., 2017) explored how pairs of individuals in group decision-making settings 

adapt their expressed confidence levels to align with each other, a process termed "confidence 

matching." This heuristic strategy involves both parties matching their levels of certainty and 

uncertainty. The robustness of their findings was demonstrated by applying various tasks across 

different demographics (UK, Iran), with confidence matching observed universally 
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1.2.1 Computational Approaches in Social Decision Making 
Computational approaches have primarily focused on adapting individual computational frameworks 

to social settings. Many studies have utilized the Drift Diffusion Model (DDM) to compare the fitted 

parameters between isolated and social contexts. Although these studies provide valuable insights, 

they often lack a clear understanding of the mechanisms by which parameters in isolated settings 

transform under social influences. Some research has advanced further by linking individual models 

to simulate the impact of one person's decisions on another's parameters (Tump et al., 2020, 2022, 

2024). For instance, one study (Tump et al., 2020) connected a person's decision to the drift rate of 

another, effectively making one person's decision a function of another's behaviour. However, due to 

the vast number of possible parameter combinations, it is typically impractical to test every potential 

pair to determine the most data-supported combination. Consequently, researchers often rely on 

plausible intuitions about the connections and combinations to test their assumptions against the 

data. Although this approach is not complete, it significantly enhances our understanding of the 

computational mechanisms underlying social decision-making especially in the larger group sizes. 

Although a diverse array of computational models for social decision-making has been proposed with 

varying degrees of success, these models are often descriptive and fall short in explaining the 

underlying neural mechanisms driving these processes. To address this gap, in this thesis, we introduce 

a brain-plausible computational model based on attractor neural networks. This model is designed to 

capture the communication of uncertainty in social decision-making processes. Our proposed model 

may provides mechanistic insights into how uncertainty is represented and shared between agents 

during social interactions.  

 

1.3 Learning 
Beside decision making, understanding how learning occurs is a fundamental aspect of cognitive 

science. Learning encompasses the biological processes by which new information is acquired, 

processed, and solidified within the brain. It involves the alteration of neural circuits in response to 

experiences, a phenomenon that can lead to lasting changes in behaviour.  

In neuroscience, the study of learning is intimately connected to the principles of reinforcement 

learning (RL) and the role of dopamine as a neuromodulator (O’Doherty et al., 2003; Schultz et al., 

1997). Reinforcement learning, a key concept in both machine learning and cognitive neuroscience, 

involves learning to make decisions based on the rewards or punishments received from previous 

actions (Collins & Cockburn, 2020; Eckstein et al., 2021; Subramanian et al., 2022). In the brain, 

dopamine is central to the RL process, acting as a signal for reward anticipation and influencing the 

synaptic plasticity that underlies learning (Schultz et al., 1997). 

Dopamine neurons, primarily located in the midbrain areas such as the ventral tegmental area (VTA) 

and substantia nigra, are activated in response to rewarding stimuli or events that are better than 

expected (Garritsen et al., 2023; Hegarty et al., 2013). This activation releases dopamine in target 

areas like the striatum and prefrontal cortex, which are crucial for decision-making and learning. The 

dopamine signal helps to reinforce behaviours that lead to rewards through a process known as 

synaptic potentiation. This mechanism enhances the connections between neurons that are active 

during successful actions, making it more likely that these actions will be repeated in the future. 

The interplay between dopamine signalling and synaptic plasticity forms the neural basis for learning 

behaviours that maximize rewards, a direct parallel to the computational models used in RL 
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algorithms. Understanding how dopamine influences learning and decision-making not only sheds 

light on fundamental brain functions but also has implications for addressing neuropsychiatric 

disorders such as addiction and schizophrenia, where dopamine signalling is often disrupted. Thus, 

the neuroscience of learning, through the lens of RL and dopamine, offers a convergence of theory, 

experimental science, and clinical relevance (Garritsen et al., 2023). 

 

1.3.1 Reinforcement Learning 
Reinforcement learning (RL) is a powerful computational framework that teaches agents to make a 

sequence of decisions by interacting with an environment in order to maximize a notion of cumulative 

reward (Sutton & Barto, 2018). This framework has been utilized in neuroscience studies to explain 

the learning process in humans and animals. Neuroscientific research has identified correlations 

between neural activity and the computational principles of RL suggesting that the brain may also 

utilize RL as a model for learning (O’Doherty et al., 2003; Schultz et al., 1997). The three fundamental 

components of RL—states, actions, and rewards—define the structure of the learning problem and 

guide the agent's learning process. 

In reinforcement learning, a state represents the current situation of the environment (Sutton & Barto, 

2018). It encompasses all the information necessary for the agent to make a decision. States can be 

discrete, like the positions on a chessboard, or continuous, like the speed and position of a car. The 

set of all possible states is known as the state space. The complexity of the state space can significantly 

affect the difficulty of the learning task, especially if the state space is very large or infinite. 

Actions are the set of all possible moves or decisions an agent can make in a given state. Just like 

states, actions can be either discrete (e.g., turning left or right) or continuous (e.g., varying the 

pressure applied to a pedal). The choice of action at each step is based on the agent's policy, which is 

essentially a strategy for selecting actions based on the current state and the knowledge the agent 

has acquired so far. The goal of the agent is to learn a policy that maximizes the cumulative reward 

over time. 

Rewards are immediate feedback provided to the agent after it takes an action in a specific state. The 

reward function is crucial as it shapes the learning and behaviour of the agent by telling it what is good 

or bad. It is a scalar feedback signal that indicates the benefit of the action taken in the current state. 

The agent’s objective is to maximize the total amount of reward it receives in the long run, which 

involves not just seeking immediate rewards but also considering the long-term consequences of 

actions. 

Together, states, actions, and rewards create a feedback loop that the agent uses to learn from its 

experiences. The agent observes the state of the environment, takes an action based on its current 

policy, receives a reward and observes the new state resulting from its action, and then updates its 

policy based on the experience gained. This ongoing process, driven by the interaction of these three 

elements, allows the agent to improve its behaviour over time and adapt to complex, dynamic 

environments.  

Within RL, there are two primary approaches: model-based and model-free. Model-based algorithms 

rely on constructing and utilizing a model of the environment to make decisions. Model-free learning 

is a subset of reinforcement learning techniques where the agent learns to make decisions based 

solely on the experience it gains through interacting with the environment, without any explicit 

knowledge or modelling of the environment's dynamics. This approach contrasts with model-based 
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learning, where the agent develops a model of how the environment behaves and uses this model to 

make decisions. In model-free learning, the agent relies entirely on the experiences it accumulates 

from its actions and the resulting outcomes. It updates its policy based on the rewards it receives and 

the states it encounters. This direct approach allows the agent to adapt its strategy incrementally, 

focusing on practical outcomes rather than theoretical predictions. We will focus on model-free 

algorithms, as there is substantial evidence suggesting that human and non-human learning often 

aligns more closely with model-free methods (Miranda et al., 2020). 

The core of model-free learning involves the estimation of value functions or the direct learning of the 

policy: 

 (1) Value Function-Based Methods: These methods estimate the value of being in a given state (or 

taking a particular action in a state). The most common algorithms include Q-learning and SARSA, 

which learn action-value functions that tell the agent how good it is to perform a particular action in 

a specific state.  

(2) Policy-Based Methods: These methods optimize the policy directly without explicitly maintaining 

a value function. Techniques like Policy Gradient methods (Sutton et al., 1999) fall into this category, 

where the policy is adjusted directly based on the gradient of expected reward. Here we focused on 

Q-learning algorithm (Watkins & Dayan, 1992). 

Q-learning is a popular model-free off-policy reinforcement learning algorithm that uses Temporal 

Difference (TD, especially TD(0)) learning to estimate the value of state-action pairs. It enables an 

agent to learn optimal policies without requiring a model of the environment. At the core of Q-learning 

is the Q-value or action-value function, 𝑄(𝑠, 𝑎), which estimates the expected utility of taking action 

𝑎 in state 𝑠 and then following the optimal policy thereafter. The goal of Q-learning is to learn the Q-

value function that accurately reflects these utilities, allowing the agent to make optimal decisions by 

simply favouring the action with the highest Q-value in any given state. Q-learning is a type of 

Temporal Difference (TD) learning, which is characterized by its use of incomplete episodes for 

learning—i.e., the agent doesn't need to wait until the end of an episode to update its value estimates. 

Instead, it updates its estimates based on the reward received and the estimated value of the 

subsequent state, effectively learning from every step taken in the environment. This progression into 

the future can be expanded arbitrarily; for instance, Q-learning considers only one step into the future, 

which is why it is categorized as TD(0), or temporal difference learning with one look-ahead. 

The algorithm starts with an arbitrary Q-value function, typically initialized to zero. At each time step, 

the agent chooses an action 𝑎𝑡 from the current state 𝑠𝑡 based on a policy derived from the current 

Q-value (commonly a SoftMax policy). Then, the model executes the action, observes the reward 𝑟𝑡, 

and transitions to the new state 𝑠𝑡+1. The algorithm then updates the Q-value for the state-action pair 

𝑄(𝑠𝑡 , 𝑎𝑡) using the observed reward and the maximum Q-value of the next state. The update rule is 

given by: 

𝑄(𝑠𝑡 , 𝑎𝑡) ←  𝑄(𝑠𝑡 , 𝑎𝑡) +   (𝑟𝑡 +  𝛾 𝑀𝑎𝑥𝑎′𝑄(𝑠𝑡+1, 𝑎′) −  𝑄(𝑠𝑡 , 𝑎𝑡))            (4) 

 

Where  is the learning rate and 𝛾 is the discount factor. Under certain conditions (such as visiting all 

state-action pairs infinitely often and proper tuning of the learning rate), Q-learning is guaranteed to 

converge to the optimal action-value function (Watkins & Dayan, 1992). 
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1.4 Intersection of Decision Making and Learning 
Decision-making models primarily focus on how we integrate evidence from a noisy environment to 

make optimal or suboptimal decisions. These models often operate under the assumption that the 

decision-making strategy remains constant during learning. To validate this assumption, many studies 

extensively train their subjects to ensure there is no learning effect influencing decision-making 

strategies (Beck et al., 2008; T. Hanks et al., 2014; T. D. Hanks et al., 2011). In essence, traditional 

decision-making models are not designed to account for learning processes. 

On the other hand, learning models are concerned exclusively with how decisions evolve over time as 

a result of learning. These models focus on the mechanisms of learning rather than how evidence and 

information from the environment are initially gathered and utilized. Typically, learning models 

employ very clear and non-noisy stimuli to ensure that the process of information processing and 

evidence accumulation does not complicate the understanding of learning dynamics. This distinct 

focus highlights the separation in the objectives and methodologies between decision-making and 

learning models within cognitive and computational neuroscience. 

One of the fundamental characteristics of models like the Drift Diffusion Model (DDM) is the presence 

of a decision threshold, a concept critical for explaining a wide range of behaviours. One notable 

assumption in nearly all the decision-making models discussed thus far is that the decision threshold 

is explicitly defined. This term must be clearly established before applying the model, and more 

importantly constant in all trials. Although there have been some attempts to elucidate the neural 

mechanisms of decision boundaries through large spiking neural networks (see Lo & Wang (2006) for 

examples), the process by which we arrive at a decision threshold remains largely unknown. In other 

words, the dynamics of how decision boundaries evolve during learning are not well understood.  

Consequently, there is a need for a model that can access an implicit, time-dependent decision 

boundary, where time refers to trials or training progress. Addressing this gap is the primary focus of 

Project II, which aims to develop a computational framework that integrates the principles of both 

decision-making and learning. This model seeks to harness the advantages of each realm, facilitating 

a deeper understanding of how decision thresholds adapt and evolve through ongoing learning and 

decision-making processes. By bridging these two areas, Project II hopes to provide more 

comprehensive insights into the dynamic interplay between learning and decision-making, ultimately 

enhancing our ability to model and predict complex cognitive behaviours. 
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2 Aim of the Thesis 
The aim of this thesis is to enhance our understanding of human decision-making, particularly in social 

settings, and the processes of learning in perceptual decision making. In the first project, we develop 

a brain-plausible computational model to explain how confidence matching arises during social 

decision-making. Our attractor neural network framework was backed by evidence in pupil and EEG 

data. One of the main challenges in this project is obtaining a sufficient number of subjects who have 

undergone extensive training, as this is crucial for model validation. Training of the subjects took a 

significant amount of time and effort while the mechanisms underlying this training phase in 

perceptual decision-making are not well understood, presenting a gap in the research. 

This gap motivated the second project of the thesis, which aims to propose a model that attempts to 

elucidate the training phase of perceptual decision-making. Understanding this phase is critical 

because it involves learning how to process and integrate sensory information to make accurate 

decisions. By modelling the training phase, we hope to uncover the neural and cognitive mechanisms 

that facilitate the transition from novice to expert decision-makers. This model will not only provide 

insights into the training dynamics but may also help optimize training protocols for decision making 

studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 20 

3 Project (1) 
"Confidence is contagious. So is lack of confidence." 

— Vince Lombardi 

 

This chapter includes the research article "Interpersonal alignment of neural evidence accumulation 

to social exchange of confidence," published in eLife. The article investigates the neurocomputational 

mechanisms underlying confidence matching in group decision-making. In this work, we 

comprehensively studied how confidence is communicated between individuals and how it shapes 

individual decisions. Using an interdisciplinary approach, we examined human decision-making in 

social contexts through psychophysics, eye tracking, EEG, and computational modelling. 

We found that individuals tended to adjust their confidence in line with that of their partners, even 

though their objective accuracy remained unchanged. Interestingly, reaction times also shifted in 

accordance with reported confidence. To explain these non-trivial patterns, we introduced a 

biologically plausible attractor neural network model. 

Importantly, we systematically tested and validated the model’s core assumptions using eye-tracking 

and EEG data. First, we assessed whether participants' internal beliefs changed based on their 

partner’s confidence, using pupil data as a proxy for internal belief. Next, we used EEG data to estimate 

the rate of evidence accumulation, a neural measure not directly observable in behavioural data. Both 

analyses supported our computational model’s predictions. 

Together, this work provides a computational framework for understanding how confidence is 

communicated and aligned during group decision-making. 
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Abstract Private, subjective beliefs about uncertainty have been found to have idiosyncratic 
computational and neural substrates yet, humans share such beliefs seamlessly and cooperate 
successfully. Bringing together decision making under uncertainty and interpersonal alignment 
in communication, in a discovery plus pre-registered replication design, we examined the neuro-
computational basis of the relationship between privately held and socially shared uncertainty. 
Examining confidence-speed-accuracy trade-off in uncertainty-ridden perceptual decisions under 
social vs isolated context, we found that shared (i.e. reported confidence) and subjective (inferred 
from pupillometry) uncertainty dynamically followed social information. An attractor neural network 
model incorporating social information as top-down additive input captured the observed behavior 
and demonstrated the emergence of social alignment in virtual dyadic simulations. Electroencepha-
lography showed that social exchange of confidence modulated the neural signature of perceptual 
evidence accumulation in the central parietal cortex. Our findings offer a neural population model 
for interpersonal alignment of shared beliefs.

Editor's evaluation
This important study examines how humans use information about the confidence of collaborators 
to guide their own perceptual decision making and confidence judgements. The study addresses 
this question with a combination of psychophysics, electrophysiological modeling, and computa-
tional modelling that provides a compelling validation of a computational framework that can be 
used to derive and test theory-based predictions about how collaborators use communication to 
align their confidence and thereby optimize their collective performance.

Introduction
We communicate our confidence to others to share our beliefs about uncertainty with them. However, 
numerous studies have shown that even the same verbal or numerical expression of confidence can 
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have very different meanings for different people in terms of the underlying uncertainty (Ais et al., 
2016; Navajas et al., 2017; Fleming et al., 2010). Similar inter-individual diversity has been found at 
the neural level (Fleming et al., 2010; Sinanaj et al., 2015; Baird et al., 2013). Still, people manage 
to cooperate successfully in decision making under uncertainty (Bahrami et al., 2010; Austen-Smith 
and Banks, 1996). What computational and neuronal mechanisms enable people to converge to a 
shared meaning of their confidence expressions in interactive decision making despite the extensively 
documented neural and cognitive diversity? This question drives at the heart of recent efforts to 
understand the neurobiology of how people adapt their communication to their beliefs about their 
interaction partner (Stolk et  al., 2016). A number of studies have provided compelling empirical 
evidence of brain-to-brain coupling that could underlie adaptive communication of shared beliefs 
(Silbert et al., 2014; Honey et al., 2012; Hasson et al., 2004; Dikker et al., 2014; Konvalinka et al., 
2010). These works remain, to date, mostly observational in nature. Plausible neuro-computational 
mechanism(s) accounting for how interpersonal alignment of beliefs may arise from the firing patterns 
of decision-related neural populations in the human brain are still lacking (Hasson and Frith, 2016; 
Wheatley et al., 2019). Using a multidisciplinary approach, we addressed this question at behavioral, 
computational, and neurobiological levels.

By sharing their confidence with others, joint decision makers can surpass their respective indi-
vidual performance by reducing uncertainty through interaction (Bahrami et al., 2010; Sorkin et al., 
2001). Recent works showed that during dyadic decision making, interacting partners adjust to one 
another by matching their own average confidence to that of their partner (Bang et al., 2017). Such 
confidence matching turns out to be a good strategy for maximizing joint accuracy under a range of 
naturalistic conditions, e.g., uncertainty about the partner’s reliability. However, at present there is no 
link connecting these socially observed emergent characteristics of confidence sharing with the elab-
orate frameworks that shape our understanding of confidence in decision making under uncertainty 
(Navajas et al., 2017; Fleming et al., 2010; Pouget et al., 2016; Adler and Ma, 2018; Aitchison 
et al., 2015).

Theoretical work has shown that sequential sampling can, in principle, provide an optimal strategy 
for making the best of whatever uncertain, noisy evidence is available to the agent (Heath, 1984). 
These models have had great success in explaining the relationship between decision reaction time 
(RT) and accuracy under a variety of conditions ranging from perceptual (Hanks and Summerfield, 
2017; Gold and Shadlen, 2007) to value-based decisions (Ruff and Fehr, 2014) guiding the search for 
the neuronal mechanisms of evidence accumulation to boundary in rodent and primate brains (Schall, 
2019). The relation between RT and accuracy, known as speed-accuracy trade-off, has been recently 
extended to a three-way relationship in which choice confidence is guided by both RT and probability 
(or frequency) of correct decision (Pouget et al., 2016; Kiani et al., 2014; Vickers, 1970). Critically, 
these studies have all focused on decision making in isolated individuals deciding privately (Wheatley 
et al., 2019). Little is known about how these computational principles and neuronal mechanisms can 
give rise to socially shared beliefs about uncertainty.

To bridge this gap, we examined confidence-speed-accuracy trade-off in social vs isolated context 
in humans. We combined a canonical paradigm (i.e. dynamic random dot motion [RDM]) extensively 
employed in psychophysical and neuroscientific studies of speed-accuracy-confidence trade-off 
(Hanks and Summerfield, 2017; Gold and Shadlen, 2007; Kelly and O’Connell, 2013) with interac-
tive dyadic social decision making (Bahrami et al., 2010; Bang et al., 2017). We replicated the emer-
gence of confidence matching and obtained pupillometry evidence for shared subjective beliefs in our 
social implementation of the random dot paradigm and we observed a novel pattern of confidence-
speed-accuracy trade-off specifically under the social condition. We constructed a neural attractor 
model that captured this trade-off, reproduced confidence matching in virtual social simulations and 
made neural predictions about the coupling between neuronal evidence accumulation and social 
information exchange that were born out by the empirical data.

Results
We used a discovery-and-replication design to investigate the computational and neurobiological 
substrates of confidence matching in two separate steps: 12 participants (4 female) were recruited in 
study 1 (discovery) and 15 (5 female, age: 28 (mean) ± Std (7)) in study 2 (replication, second study was 
pre-registered: https://osf.io/5zces). In each study, participants reported the direction of a random-dot 
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motion stimulus and indicated their confidence (Figure 1a) while EEG and eye tracking data were 
recorded, simultaneously. After an extensive training procedure (see Materials and methods for the 
recruitment), participants reached a stable behavioral (accuracy and RT) performance level. Then, 
two experimental sessions were conducted: first a private session (200 trials) in which participants 
performed the task alone; then a social session (800 trials for study 1 and 400 for study 2) in which 
they performed the task interactively together with a partner (implied to be another participant in a 
neighboring lab room).

In every trial (Figure 1a), after fixation for 300 ms was confirmed by closed-loop real-time eye 
tracking, two choice-target points appeared at 10° eccentricity corresponding to the two possible 
motion directions (left and right). After a short random delay (200–500 ms, truncated exponential 
distribution), a dynamic RDM (see Shadlen and Newsome, 2001) was centrally displayed for 500 ms 
in a virtual aperture (5° diameter). At the end of the motion sequence, the participant indicated the 
direction of motion and their confidence on a 6-point scale by a single mouse click. A horizontal line 
intersected at midpoint and marked by 12 rectangles (6 on each side) was displayed. Participants 
moved the mouse pointer – initially set at the midpoint – to indicate their decision (left vs right of 
midpoint) and confidence by clicking inside one of the rectangles. Further distance from the midpoint 
indicated more confidence. RT was calculated as the time between the onset of the motion stimulus 
sequence and the onset of deviation of the mouse pointer (see Materials and methods for more 
details) (Resulaj et al., 2009) at the end of stimulus presentation.

Figure 1. Experiment paradigm and behavioral results. (a) Timeline of trials in isolated (top) and social (bottom) conditions. After stimulus presentation, 
subjects reported their decision and confidence simultaneously by clicking on 1 of the 12 vertical bars. In the social condition, decision and confidence 
of participant (white in the experiment, here black for illustration purpose) and partner (yellow) were color coded. (b) Confidence matching. Participants 
confidence against agent confidence show a significant relation in both studies (linear regression p<0.001 for both studies). (c) Under social condition, 
when participants were paired with high (magenta) vs low (dark orange) confidence partner, accuracy (top panel) did not change (horizontal lines, 68% 
confidence interval of bootstrap test with 10,000 repetitions) but confidence (middle panel) and reaction time (RT) (bottom panel) were altered. Curves 
fitted to the accuracy data are Weibull cumulative distribution function. Error bars are standard error of the mean (SEM) across subjects.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Accuracy and confidence of the computer generated partners (CGPs).

Figure supplement 2. Statistical analysis of the confidence matching effect.

Figure supplement 3. Examination of the hypothesis that the partner’s confidence at trial t modulates the participant behavior at trial t+1.

Figure supplement 4. Summary of debriefing results of the second study.
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In the isolated trials, the participant was then given visual feedback for accuracy (correct or wrong). 
In the social trials (Figure 1a, bottom panel), after the response, participants proceeded to the social 
stage. Here, the participants’ own choice and confidence as well as that of their partner were displayed 
coded by different colors (white for participants; yellow for partners). Joint decision was automatically 
arbitrated in favor of the decision with higher confidence. Finally, three distinct color-coded feedback 
messages (participant, partner, and joint decision) were displayed.

Participants were instructed to try to maximize the joint accuracy of their social decisions. In order 
to achieve joint benefit, confidence should be expressed such that the decision with higher probability 
of correct outcome dominates (Bahrami et al., 2010). For this to happen, the participant needs to 
factor in the partner’s behavior and adjust her confidence accordingly. For example, if the participant 
believes that her decision is highly likely to be correct, her confidence should be expressed such that 
joint decision is dominated by the partner only if the probability that the partner’s decision is correct 
is even higher (and not, for example, if the partner expressed a high confidence habitually). This social 
modulation of one’s confidence in a perceptual decision comprises the core of our model of social 
communication of uncertainty.

Following from an earlier study (Bang et al., 2017), for each block the participants were led to 
believe that they were paired with a new, anonymous human partner. In reality, in separate blocks, 
they were paired with four computer generated partners (henceforward, CGPs; see Materials and 
methods) constructed and tuned to parameters obtained from the participant’s own behavior in the 
isolated session: (1) high accuracy and high confidence (HAHC; i.e. this CGP’s decisions were more 
likely to be more confident as well as more accurate); (2) high accuracy and low confidence (HALC); 
(3) low accuracy and high confidence (LAHC); and (4) low accuracy and low confidence (LALC) (see 
Materials and methods for details). For study 2, we used two CGPs (HCA and LCA) while the agent 
accuracy was similar to those of participants (Bang and Fleming, 2018) (Wilcoxon rank sum, p=0.37, 
df = 29, zval = 0.89). See Figure 1—figure supplement 1 for confidence and accuracy data of CGPs. 
Each participant completed 4 blocks of 200 trials cooperating with a different CGP in each block. Our 
questionnaire results also confirmed that our manipulation indeed worked (Figure 1—figure supple-
ment 4) and more importantly none of the subject suspected their partners was an artificial one.

Having observed the confidence matching effect in both studies (Figure 1b), a permutation anal-
ysis confirmed that this effect did not arise trivially from mere pairing with any random partner (Bang 
et al., 2017; Figure 1—figure supplement 2). The difference between the participant’s confidence 
and that of their partner was smaller in the social (vs isolated) condition (Figure 1—figure supple-
ment 2) consistent with the prediction that participants would match their average confidence to that 
of their partner in the social session (Bang et al., 2017).

Having established the socially emergent phenomenon of confidence matching in the dynamic 
RDM paradigm, we then proceeded to examine choice speed, accuracy, and confidence under social 

Table 1. Details of statistical results in behavioral data (Figure 1).

Response Regressors Estimate SE CI t-Stat p-Value Total number

Study 1

Accuracy
(HC vs LC)

Coherency 0.007 0.0006 [0.006 0.008] 11.57 <0.001 9600

Condition –0.002 0.021 [–0.045 0.04] –0.1 0.92 9600

Confidence
(HC vs LC)

Coherency 0.0475 0.0008 [0.046 0.049] 56.5 <0.001 9600

Condition 1.361 0.03 [1.31 1.42] 46.4 <0.001 9600

RT
(HC vs LC)

Coherency –0.005 0.0001 [–0.005 –0.004] –44.4 <0.001 9600

Condition 0.029 0.004 [–0.035 –0.021] 7.85 <0.001 9600

Study 2

Accuracy
(HC vs LC)

Coherency 0.0209 0.0016 [0.017 0.024] 13.23 <0.001 6000

Condition –0.0092 0.0296 [–0.067 0.049] –0.31 0.76 6000

Confidence
(HC vs LC)

Coherency 0.1011 0.1011 [0.097 0.106] 47.47 <0.001 6000

Condition 0.496 0.037 [0.42 0.56] 13.32 <0.001 6000

RT
(HC vs LC)

Coherency –0.009 0.0003 [–0.01 –0.008] –26.22 <0.001 6000

Condition 0.0363 0.006 [0.024 0.048] 6.12 <0.001 6000
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conditions (Figure 1c). We observed that when participants were paired with a high (vs low) confi-
dence partner, there was no significant difference in accuracy between the social conditions (p=0.92, 
p=0.75 for study 1 and 2 respectively, generalized linear mixed model [GLMM], see Supplementary 
materials for details of the analysis [Table 1], Figure 1c top-left panel); confidence, however, was 
significantly higher (p<0.001 for both studies, Table 1, Figure 1c middle panel) and RTs were signifi-
cantly faster (p<0.001 for both, Table 1, Figure 1c bottom panel) in the HCA vs LCA.

This pattern of dissociations of speed and confidence from accuracy is non-trivial because the 
expectations of the standard sequential sampling models would be that a change in confidence should 
be reflected in change in accuracy (Pouget et  al., 2016; Sanders et  al., 2016). Many alternative 
mechanistic explanations are, in principle, possible. The rich literature on sequential sampling models 
in the random-dot paradigm permit articulating the components of such intuitive explanations as 
distinct computational models and comparing them by formal model comparison (see further below).

In order to assess the impact of social context on the participants’ level of subjective uncertainty 
and rule out two important alternative explanations of confidence matching, we next examined the 
pupil data. Several studies have recently established a link between state of uncertainty and baseline 
(i.e. non-luminance mediated) variations in pupil size (Bang et al., 2017; Wei and Wang, 2015; Nassar 
et al., 2012; Eldar et al., 2013; Murphy et al., 2014; Urai et al., 2017). If the impact of social context 
on confidence were truly reflective of a similar change in the participant’s belief about uncertainty, 
then we would expect the smaller pupil size when paired with high (HCA) vs low confidence agent 
(LCA) indicating lower subjective uncertainty. Alternatively, if confidence matching were principally 
due to pure imitation (Rendell et al., 2011; Iacoboni, 2009) or due to some form of social obligation 
in agreeing with others (e.g. normative conformity [Stallen and Sanfey, 2015]) without any change in 
belief, we would expect the pupil size to remain unaffected by pairing condition under social context. 
We found that during the inter-trial interval (ITI), pupil size was larger in the blocks where participants 

Figure 2. Pupil size during inter-trial interval (ITI) under pairing conditions in the social context when participant was paired with a high (HCA) or low 
confidence (LCA) agent. Normalized pupil diameter aligned to start of ITI period (t=0). Vertical dashed lines show average ITI duration. The shaded 
areas are one standard deviation of ITI period in each condition. Inset shows grand average (mean) pupil size during ITI under the two social conditions. 
Error bars are 95% confidence interval across trials. (**) indicates p<0.01 and (***) shows p<0.001. In the interest of clarity, signals were smoothed using 
an averaging filter.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Pupil size correlates with participant’s own confidence in the isolated condition.

Figure supplement 2. Time series analysis of pupil size during inter-trial interval.
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were paired with LCA (vs HCA) (Figure 2, GLMM analysis, p<0.01 and p<0.001 for study 1 and 2 
respectively, see Supplementary materials for details of the analysis; Table 2). We have added a time 
series analysis that demonstrates the temporal encoding of experimental conditions in the pupil signal 
during ITI (see Figure 2—figure supplement 2). It is important to bear in mind that pupil dilation has 
been linked to other factors such as mental effort (Lee and Daunizeau, 2021), level of surprise (Kloos-
terman et al., 2015), and arousal level (Murphy et al., 2014) as well. These caveats notwithstanding, 
the patterns of pupil dilation within the time period of ITI that are demonstrated and replicated here, 
are consistent with the hypothesis that participants’ subjective belief was shaped by interactions with 
differently confident partners. To support this conclusion further, we provide supplementary evidence 
linking the participant’s own confidence to pupil size (Figure 2—figure supplement 1).

To arbitrate between alternative explanations and develop a neural hypothesis for the impact of 
social context on decision speed and confidence, we constructed a neural attractor model (Wong and 
Wang, 2006), a variant from the family of sequential sampling models of choice under uncertainty 
(Bogacz et al., 2006). Briefly, in this model, noisy sensory evidence was sequentially accumulated by 
two competing mechanisms (red and blue in Figure 3a left) that raced toward a common pre-defined 
decision boundary (Figure 3a right) while mutually inhibiting each other. Choice was made as soon as 
one mechanism hits the boundary. This model has accounted for numerous observations of perceptual 
and value-based decision-making behavior and their underlying neuronal substrates in human (Hunt 
et al., 2012) and non-human primate (Wei and Wang, 2015) brain. Following previous works (Wei 
and Wang, 2015; Balsdon et al., 2020; Rolls et al., 2010; Atiya et al., 2019) we defined model confi-
dence as the time-averaged difference between the activity of the winning and losing accumulators 
(corresponding to the shaded gray area between the two accumulator traces in Figure 3a right, for 
the model simulation see Figure 3—figure supplement 2) during the period of stimulus presentation 
(from 0 to 500 ms). Importantly, this definition of confidence is consistent with recent findings that 
computations of confidence continue after a decision has been made as long as sensory evidence is 
available (Ruff and Fehr, 2014; Balsdon et al., 2020; van Kempen et al., 2019; Moran et al., 2015). 
We also demonstrate that our results do not depend on this specific formulation and also replicate 
with another alternative method (Vickers, 1979)(see Figure 3—figure supplement 3).

Earlier works that demonstrated the relationship between decision uncertainty and pupil-related, 
global arousal state in the brain (Murphy et al., 2014; Urai et al., 2017) guided our modeling hypoth-
esis. We modeled the social context as a global, top-down additive input (Figure  3a; Wx) in the 
attractor model. This input drove both accumulator mechanisms equally and positively. The impact of 
this global top-down input is illustrated in Figure 3a right: with a positive top-down drive (Wx>0), the 
winner (thick blue) and the loser (thick red) traces both rise faster compared to zero top-down drive 
(dotted lines). The model’s counterintuitive feature is that the surface area between the winning and 
losing accumulator is larger in the case of positive (dark gray shading) versus zero (light gray shading) 
top-down input. Model simulations show that when 0<Wx, this difference in surface area leads to 
faster RTs and higher confidence but does not change accuracy because it does not affect the decision 
boundary. These simulation results are consistent with our behavioral findings comparing HCA vs LCA 
conditions (Figure 1c).

We formally compared our model to three alternative, plausible models of how social context may 
affect the decision process. Without loss of generality, we used data from study 2 to fit the model. 
The first model hypothesized that partner’s confidence dynamically modulated the decision bound 
(Balsdon et al., 2020) (parameter B in Equation 21). In this model, the partner’s higher confidence 
reduced the threshold for what counted as adequate evidence, producing the faster RTs under HCA 
(Figure 1.c). The second model proposed that partner’s confidence changed non-decision time (NDT) 
(Stine et al., 2020; Equation 22). Here, pairing with high confidence partner would not have any 
impact on perceptual processing but instead, non-specifically decrease RTs across all coherence levels 
without affecting accuracy. Finally, in the third model, the stimulus-independent perceptual gain (Eldar 

Table 2. Details of statistical results in pupil data (Figure 2).

Response Regressors Estimate SE CI t-Stat p-Value Total number

Study 1 Pupil Condition –0.038 0.011 [–0.06 –0.01] –3.30 <0.001 8390

Study 2 Pupil Condition –0.066 0.015 [–0.09 –0.04] –4.37 <0.001 5842
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Figure 3. Neural attractor model. (a) Left: A common top-down (Wx) current drives both populations, each 
selective for a different choice alternative. Right: A schematic illustration of the impact of a positive top-down drive 
on accumulator dynamics. Confidence corresponds to the shaded area between winning (blue) and losing (red) 
accumulators. Solid lines and dark gray shade: positive top-down drive; dashed lines and light gray shade: zero 
top-down drive. With positive top-down current, the winner hits the bound earlier (t1 vs t2) and the surface area 
between the competing accumulator traces is larger (dark vs light gray). (b) Systematic examination of the impact 
of Wx on model behavior. Left panel: Accuracy does not depend on the top-down current but confidence (middle) 
and reaction time (RT) (right) change accordingly. Colors indicate different levels of top-down current. Each curve 
is the average of 10,000 simulations of the model given the top-down current. (c) Dynamic coupling in simulated 
dyadic interaction. Virtual dyads were constructed by feeding one model’s confidence in previous trial to the other 
model as top-down drive and vice versa. (d) Left: Unconnected virtual dyad members (Wx = 0) simulate the isolated 
condition. Right: When the virtual dyad members are connected with top-down drive proportional to one another’s 
confidence in previous trial, dyad members’ confidence converge over time. In the isolated condition, confidence 
matching is not observed even though the pair receive the exact same sequence of stimuli. Shadowed areas of 
the confidence interval 95% resulted from 50 parallel simulations and curves were smoothed by an averaging filter 
for clearer illustration. The correlation with coherence has been removed from the confidence values via residual 
analysis (see Figure 3—figure supplement 1 confidence values).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Confidence matching without removing the correlation with the shared stimulus coherence.

Figure supplement 2. The effect of top-down current on the attractor network.

Figure supplement 3. Model performance regarding different confidence representations.

Figure supplement 4. Model comparison.

Figure supplement 5. Model vs data.

Figure supplement 6. The speed of confidence matching.

Figure supplement 7. Model falsification.

Figure supplement 8. Model predictions for confidence matching are not sensitive to linearity assumptions.
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et al., 2013; Li et al., 2018) parameter of input current (parameter μ0 in Equation 23) was modulated 
by partner confidence. Here, higher partner confidence increased the perceptual gain (as if increasing 
the volume of the radio) leading to increased confidence and decreased RT (Figure 1c) and would 
be consistent with the pupillometry results. In each model, in the social condition, the parameter of 
interest was linearly modulated by the confidence of the partner in the previous trial. Importantly, in 
Figure 1—figure supplement 3, we show that empirically, such trial-by-trial dependence is observed 
in confidence and RTs data in both study 1 and 2. Formal model comparison showed that our top-
down additive current model was superior to all three alternatives (see Figure 3—figure supplement 
4).

Having shown that a common top-down drive can qualitatively reproduce the impact of social 
context on speed-accuracy-confidence and quantitatively excel other alternatives in fitting the 
observed behavior, we then used the winning model to simulate our interactive social experiment 
virtually (Figure 3c). We simulated one decision maker with high confidence (subject 1 in Figure 3d) 
and another one with low confidence (subject 2). To simulate subject 1, we slightly increased the 
excitatory and the inhibitory weights. The opposite was done to simulate subject 2 (see Materials and 
methods for details). We then paired the two simulated agents by feeding the confidence of each 
virtual agent (from trial t–1) (Bang et al., 2017) as top-down input to the other virtual agent (in trial t).

Using this virtual social experiment, we simulated the dyadic exchanges of confidence in the course 
of our experiment and drew a prediction that could be directly tested against the empirical behavioral 
data. Without any fine-tuning of parameters or any other intervention, confidence matching emerged 
spontaneously when two virtual agents with very different confidence levels in isolated condition 
(Figure  3d left) were paired with each other as a dyad (Figure  3d right). Importantly, the model 
could be adapted to show different speed of matching as well (see Figure 3—figure supplement 6). 
However, for simplicity we presented the simplest case in the main text.

To identify the neural correlates of interpersonal alignment of belief about uncertainty, we note 
that previous works using non-invasive electrophysiological recordings in humans engaged in motion 
discrimination (Twomey et al., 2016; Stolk et al., 2013) have identified the signature, accumulate-
to-bound neural activity characteristic of evidence accumulation in the sequential sampling process. 
Specifically, these findings show a centropareital positivity (CPP) component in the event-related 
potential that rises with sensory evidence accumulation across time. The exact correspondence 
between the neural CPP and elements of the sequential sampling process are not yet clear (O’Connell 
et al., 2018). For example, CPP could have resulted from the spatial superposition of the electrical 
activity of both accumulators or be the neural activity corresponding to the difference in accumu-
lated evidence. These caveats notwithstanding, consistent with the previous literature, we found that 
in the isolated condition, our data replicated those earlier findings: Figure  4a shows a clear CPP 
event-related potential whose slope of rise was strongly modulated by motion coherence (GLMM, 
p<0.001 and p=0.01 for study 1 and 2 receptively, see Supplementary file 1d and Figure 4—figure 
supplement 2 for more details). Importantly, we have added the response-locked analysis of the CPP 
signals (see Figure 4—figure supplement 4). We do see that the response-locked CPP waveforms 
converge to one another for high vs low coherence trials at the moment of the response.

Our model hypothesized that under social condition, a top-down drive – determined by the part-
ner’s communicated confidence in the previous trial – would modulate the rate of evidence accumu-
lation (Figure 3a). We tested if the CPP slope were larger within every given coherence bin when the 
participant was paired with an HCA (vs LCA). Indeed, the data demonstrated a larger slope of CPP 
rise under HCA vs LCA (Figure 4c, study 1 for the social condition p=0.15 but for the second study 
p<0.01, see Tables 3 and 4 for more details). These findings demonstrate that interpersonal align-
ment of confidence is associated with a modulation of neural evidence accumulation – as quantified by 
CPP – by the social exchange of information (also see Figure 4—figure supplement 3). It is important 
to note a caveat here before moving forward. These data show that both CPP and confidence are 
different between the HCA and LCA conditions. However, due to the nature of our experimental 
design, it would be premature to conclude from them that CPP contributes causally to the alignment 
of subjectively held beliefs or behaviorally expressed confidence. Put together with the behavioral 
confidence matching (Figure 1b) and the pupil data (Figure 2) our findings suggest that some such 
neural-social coupling could be the underlying basis for the construction of a shared belief about 
uncertainty.
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Figure 4. Coupling of neural evidence accumulation to social exchange of information. (a) Centroparietal positivity 
(CPP) component in the isolated condition: event-related potentials are time-locked to stimulus onset, binned for 
high and low levels of coherency (for study 1, low: 3.2%, 6.4%, 12.8%; high: 25.6% and 51.2%; for study 2 (d), low: 
1.6%, 3.2%, 6.4%; high: 12.8%, 25.6%) and grand averaged across centropatrial electrodes (see Materials and 
methods). Inset shows the topographic distribution of the EEG signal averaged across the time window indicated 
by the gray area. (b) CPP under social condition. Conventions the same as panel (a). (c) A generalized linear mixed 
model (GLMM) model showed the significant relation of centroparietal signals to levels of coherency and social 
condition (high confidence agent [HCA] vs low confidence agent [LCA]). Error bars are 95% confidence interval 
over the model’s coefficient estimates. Signals were smoothed by an averaging filter; shaded areas are SEM across 
trials.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Electrode placement in each study.

Figure supplement 2. Relation of EEG signals from centropartial area of the brain to coherence levels and social 
conditions.

Figure supplement 3. Simulated slope of the accumulator activity in our computational model in low confidence 
agent (LCA) and high confidence agent (HCA) conditions.

Figure supplement 4. Response-locked EEG signal separated for high vs low coherence levels.

Figure supplement 5. Power calculation (Monte Carlo simulation) for EEG slope effect (Figure 4 in the main 
manuscript).
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Discussion
We brought together two so-far-unrelated research directions: confidence in decision making under 
uncertainty and interpersonal alignment in communication. Our approach offers solutions to important 
current problems in each.

For decision science, we provide a model-based, theoretically grounded neural mechanism for 
going from individual, idiosyncratic representations of uncertainty (Navajas et  al., 2017; Fleming 
et al., 2010) to socially transmitted confidence expressions (Bahrami et al., 2010; Bang et al., 2017) 
that are seamlessly shared and allow for successful cooperation. The social-to-neuronal coupling 
mechanism that we borrowed from the communication literature (Hasson and Frith, 2016; Wheatley 
et al., 2019) is crucial in this new understanding of the neuronal basis of relationship between subjec-
tively private and socially shared uncertainty.

For communication science, by examining perceptual decision making under uncertainty in social 
context, we created a laboratory model in which the goal of communication was to arrive at a shared 
belief about uncertainty (rather than creating a look-up table for the meaning of actions [Stolk et al., 
2016; Silbert et al., 2014; Honey et al., 2012]). In this way, we could employ the extensive theo-
retical, behavioral, and neurobiological body of knowledge in decision science (Pouget et al., 2016; 
Adler and Ma, 2018; Aitchison et al., 2015; Hanks and Summerfield, 2017; Gold and Shadlen, 
2007; Ruff and Fehr, 2014; Schall, 2019; Kiani et al., 2014; Kelly and O’Connell, 2013; Shadlen 
and Newsome, 2001; Resulaj et al., 2009; Sanders et al., 2016; Wei and Wang, 2015; Eldar et al., 
2013; Urai et al., 2017; Yeung and Summerfield, 2012; Fleming and Daw, 2017; Kiani and Shadlen, 
2009) to construct a mechanistic neural hypothesis for interpersonal alignment.

Over the past few years, the efforts to understand the ‘brain in interaction’ have picked up 
momentum (Wheatley et al., 2019; Frith and Frith, 1999). A consensus emerging from these works 
is that, at a conceptual level, successful interpersonal alignment entails the mutual construction of a 
shared cognitive space between brains (Stolk et al., 2015; Wheatley et al., 2019; Friston and Frith, 
2015). This would allow interacting brains to adjust their internal dynamics to converge on shared 
beliefs and meanings (Hasson and Frith, 2016; Gallotti and Frith, 2013). To identify the neurobi-
ological substrates of such shared cognitive space, brain-to-brain interactions need to be described 
in terms of information flow, i.e., the impact that interacting partners have on one another’s brain 
dynamics (Wheatley et al., 2019).

The evidence for such information flow has predominantly consisted of demonstrations of align-
ment of brain-to-brain activity (i.e. synchrony at macroscopic level, e.g. fMRI BOLD signal) when 
people process the same (simple or complex) sensory input (Honey et al., 2012; Hasson et al., 2004; 
Breveglieri et al., 2014; Mukamel et al., 2005; Hasson and Honey, 2012) or engage in compli-
mentary communicative (Silbert et al., 2014) roles to achieve a common goal. More recently, dynamic 
coupling (rather than synchrony) has been suggested as a more general description of the nature of 
brain-to-brain interaction (Hasson and Frith, 2016). Going beyond the intuitive notions of synchrony 
and coupling, to our knowledge, no computational framework – grounded in the principles of neural 

Table 3. Details of statistical results in EEG data (Figure 4).

Response Regressors Estimate SE CI t-Stat p-Value Total number

Study 1 EEG slope

Coherency 0.62 0.065 [0.49. 074] 9.64 <0.001 6492

Condition 0.2 0.14 [-0.07 0.49] 1.42 0.15 6492

Study 2 EEG slope

Coherency 0.8 0.29 [0.24 1.37] 2.8 <0.01 5367

Condition 1.52 0.63 [0.27 2.77] 2.39 0.017 5367

Table 4. Details of statistical results in EEG data (Figure 4—figure supplement 2 top row).

Response Regressors Estimate SE CI t-Stat p-Value Total number

Study 1 EEG slope Coherency 0.02 0.005 [0.01 0.03] 4.48 <0.001 1523

Study 2 EEG slope Coherency 0.06 0.02 [0.01 0.11] 2.54 <0.01 2822
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computing – has been offered that could propose a plausible quantitative mechanism for these empir-
ical observations of brain-to-brain coupling.

Combining four different methodologies, the work presented here undertook this task. Behavior-
ally, our participants engaged in social perceptual decision making under various levels of sensory 
and social uncertainty (Bahrami et al., 2010; Bang et al., 2017). Emergence of confidence matching 
(Figure 1b) showed that participants coordinated their decision confidence with their social partner. 
Pupil data (Figure 2) suggested that participant’s belief about uncertainty was indeed shaped by the 
social coordination. A dissociation (Figure 1c) of decision speed and confidence from accuracy was 
reported that depended on the social context. This trade-off, as well as the emergence of confidence 
matching, was successfully captured by a neural attractor model (Figure 3) in which two competing 
neural populations of evidence accumulators – each tuned to one choice alternative – were driven by a 
common top-down drive determined by social information. This model drew predictions for behavior 
(Figure 3d) and neuronal activity (Figure 4, Figure 4—figure supplements 1–5) that were born out 
by the data. Social exchange of information modulated the neural signature of evidence accumulation 
in the parietal cortex.

Although numerous previous works have employed sequential sampling models to explain choice 
confidence, the overwhelming majority (Pouget et  al., 2016; Aitchison et  al., 2015; Hanks and 
Summerfield, 2017; Gold and Shadlen, 2007; Ruff and Fehr, 2014; Schall, 2019; Kiani et al., 2014; 
Sanders et al., 2016; Kiani and Shadlen, 2009; Krajbich and Rangel, 2011) have opted for the drift 
diffusion family of models. Neural attractor models have so far been rarely used to understand confi-
dence (Rolls et al., 2010; Atiya et al., 2019; Wang, 2002). Our attractor model is a reduced version 
(Wong and Wang, 2006) of the original biophysical neural circuit model for motion discrimination 
(Wang, 2002). The specific affordances of attractor models allowed us to implement social context 
as a sustained, tonic top-down feedback to both accumulator mechanisms. More importantly, we 
were able to simulate social interactive decision making by virtually pairing any given two instances 
of the model (one for each member of a dyad) with each other: the confidence produced by each 
in a given trial served as top-down drive for the other in the next trial. Remarkably, a shared cogni-
tive space about uncertainty (i.e. confidence matching) emerged spontaneously from this simulated 
pairing without us having to tweak any model parameters.

At a conceptual level, deconstructing the social communication of confidence into a comprehen-
sion and a production process (Silbert et al., 2014) is helpful. Comprehension process refers to how 
socially communicated confidence is incorporated in the recipient brain and affects their decision 
making. Production process refers to how the recipient’s own decision confidence is constructed to 
be, in turn, socially expressed. It is tempting to attribute the CPP neural activity in the parietal cortex 
to the production process. Comprehension process, in turn, could be the top-down feedback from 
prefrontal brain areas previously implicated in confidence and metacognition (Fleming et al., 2010; 
Fleming and Daw, 2017; De Martino et al., 2017) to the parietal cortex. However, we believe that 
our neural attractor model in particular and the empirical findings do not lend themselves easily to 
this conceptual simplification. For example, the evidence accumulation process can be a part of the 
production (because confidence emerges from the integrated difference between accumulators) as 
well as the comprehension process (because the rate of accumulation is modulated by the received 
social information). As useful as it is, the comprehension/production dichotomy’s limited scope should 
be recognized. Instead, armed with the quantitative framework of neural attractor models (for each 
individual) and interactive virtual pairing (to simulate dyads), future studies can now go beyond the 
comprehension/production dichotomy and examine the neuronal basis of interpersonal alignment 
with a model that have a strong footing in biophysical realities of neural computation.

Several limitations apply to our study. We chose different sets of coherence levels for the discovery 
(experiment 1) and replication (experiment 2). This choice was made deliberately. In experiment 1 we 
included a very high coherence (51%) level to optimize the experimental design for demonstrating the 
CPP component in the EEG signal. In experiment 2, we employed peri-threshold coherence levels in 
order to focus on behavior around the perceptual threshold to strengthen the model fitting and model 
comparison. This trade-off created some marginal differences in the observed effect sizes in the neural 
data across the two studies. The general findings were in good agreement.

The main strength of our work was to put together many ingredients (behavioral data, pupil and 
EEG signals, computational analysis) to build a picture of how the confidence of a partner, in the 
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context of joint decision making, would influence our own decision process and confidence eval-
uations. Many of the effects that we describe here are well described already in the literature but 
putting them all together in a coherent framework remains a challenge. For example, our study did 
not directly examine neural alignment between interaction partners. We measured the EEG signal one 
participant at a time. The participant interacted with an alleged (experimenter-controlled) partner in 
any given trial. Our experimental design, however, permitted strict experimental control and allowed 
us to examine the participants’ social behavior (i.e. choices and confidence), pupil response, and brain 
dynamics as they achieved interpersonal alignment with the partner. Moreover, while the hypotheses 
raised by our neural attractor model did examine the nature of brain dynamics involved in evidence 
accumulation under social context, testing these hypotheses did not require hyper-scanning of two 
participants at the same time. We look forward to future studies that use the behavioral and compu-
tational paradigm described here to examine brain-to-brain neural alignment using hyper-scanning.

We have interpreted our findings to indicate that social information, i.e., partner’s confidence, 
impacts the participants’ beliefs about uncertainty. It is important to underscore here that, similar 
to real life, there are other sources of uncertainty in our experimental setup that could affect the 
participants’ belief. For example, under joint conditions, the group choice is determined through the 
comparison of the choices and confidences of the partners. As a result, the participant has a more 
complex task of matching their response not only with their perceptual experience but also coordi-
nating it with the partner to achieve the best possible outcome. For the same reason, there is greater 
outcome uncertainty under joint vs individual conditions. Of course, these other sources of uncertainty 
are conceptually related to communicated confidence, but our experimental design aimed to remove 
them, as much as possible, by comparing the impact of social information under high vs low confi-
dence of the partner.

Our study brings together questions from two distinct fields of neuroscience: perceptual deci-
sion making and social neuroscience. Each of these two fields have their own traditions and prac-
tical common sense. Typically, studies in perceptual decision making employ a small number of 
extensively trained participants (approximately 6–10 individuals). Social neuroscience studies, on 
the other hand, recruit larger samples (often more than 20 participants) without extensive training 
protocols. We therefore needed to strike a balance in this trade-off between number of partici-
pants and number of data points (e.g. trials) obtained from each participant. Note, for example, 
that each of our participants underwent around 4000 training trials. Importantly, our initial study 
(N=12) yielded robust results that showed the hypothesized effects nearly completely, supporting 
the adequacy of our power estimate. However, we decided to replicate the findings in a new sample 
with N=15 participants to enhance the reliability of our findings and examine our hypothesis in a 
stringent discovery-replication design. In Figure 4—figure supplement 5, we provide the results of 
a power analysis that we applied on the data from study 1 (i.e. the discovery phase). These results 
demonstrate that the sample size of study 2 (i.e. replication) was adequate when conditioned on 
the results from study 1.

Finally, one natural limitation of our experimental setup is that the situation being studied is very 
specific to the design choices made by the experimenters. These choices were made in order to 
operationalize the problem of social interaction within the psychophysics laboratory. For example, the 
joint decisions were not an agreement between partners (Bahrami et al., 2010; Bahrami et al., 2012). 
Instead, following a number of previous works (Bang et al., 2017; Bang et al., 2020), joint decisions 
were automatically assigned to the most confident choice. In addition, partner’s confidence and choice 
were random variables drawn from a distribution prespecified by the experimenter and therefore, by 
design, unresponsive to the participant’s behavior. In this sense, one may argue that the interaction 
partner’s behavior was not ‘natural’ since they did not react to the participant’s confidence communi-
cations (note however that the partner’s response times and accuracy were not entirely random but 
matched carefully to the participant’s behavior prerecorded in the individual session). How much of 
the findings are specific to these experimental setting and whether the behavior observed here would 
transfer to other real-life settings is an open question. For example, it is plausible that participants 
may show some behavioral reaction to the response time variations since there is some evidence indi-
cating that for binary choices like here, response times also systematically communicate uncertainty 
to others (Patel et al., 2012). Future studies could examine the degree to which the results might be 
paradigm-specific.
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Materials and methods
Participants
A total of 27 participants (12 in experiment 1 and 15 in experiment 2; 10  females; average age: 
24 years; all naïve to the purpose of the experiment) were recruited for a two-session experiment 
– isolated and social session. All subjects reported normal or corrected-to-normal vision. The partici-
pants did several training sessions in order to become familiar with the procedure and reach a consis-
tent pre-defined level of sensitivity (see Materials and methods for more details).

Recruitment
Participants volunteered to take part in the experiment in return for course credit for study 1. For 
study 2, a payment of 80,000 Toman equivalent to 2.5€ per session was made to each participant. 
On the experiment day, participants were first given the task instructions. Written informed consent 
was then obtained. The experiments were approved by the local Ethics Committee at Shaheed Rajaei 
University’s Department of computer engineering.

Task design
In the isolated session, each trial started with a red fixation point in the center of the screen (diam-
eter 0.3°). Having fixated for 300 ms (in study 1, for a few subjects with eye monitoring difficulty this 
period shortened), two choice-target points appeared at 10° eccentricity corresponding to the two 
possible motion directions (left and right) (Figure 1). After a short random delay (200–500 ms, trun-
cated exponential distribution), a dynamic RDM stimulus was displayed for 500 ms in a virtual aperture 
(5° diameter) centered on the initial fixation point. These motion stimuli have been described in detail 
elsewhere (Shadlen and Newsome, 2001). At the end of the motion stimulus a response panel (see 
Figure 1a) was displayed on the screen. This response panel consisted of a horizontal line extending 
from left to the right end of the display, centered on the fixation cross. On each side of the horizontal 
line, six vertical rectangles were displayed side by side (Figure 1a) corresponding to six confidence 
levels for each decision alternative. The participants reported the direction of the RDM stimulus and 
simultaneously expressed their decision and confidence using the mouse.

The rectangles on the right and left of the midpoint corresponded to the right and left choices, 
respectively. By clicking on the rectangles further the midpoint participants indicated higher confi-
dence. In this way, participant indicated their confidence and choice simultaneously (Kiani et  al., 
2014; Mahmoodi et al., 2015) For experiment 1, response time was defined as the moment that the 
marker deviated (more than one pixel) from the center of the screen. However, in order to rule out the 
effect of unintentional movements, for the second study we increased this threshold to one degree of 
visual angle. The participants were informed about their accuracy by a visual feedback presented in 
the center of the screen for 1 s (correct or wrong).

In the social session, the participants were told they were paired with an anonymous partner. In fact, 
they were paired with a CGP tailored to the participant’s own behavior in their isolated session. The 
participants did not know about this arrangement. Stimulus presentation and private response phase 
were identical to the isolated session. After the private response, the participants were presented with 
a social panel right (Figure 1). In this panel, the participant’s own response (choice and confidence) 
were presented together with that of their partner for 1 s. The participant and the partner responses 
were color-coded (white for participants; yellow for partners). Joint decision was determined by the 
choice of the more confident person and displayed in green. Then, three distinct color-coded feed-
backs were provided.

In both isolated and social sessions, the participants were seated in an adjustable chair in a semi-
dark room with chin and forehead supported in front of a CRT display monitor (first study: 17 inches; 
PF790; refresh rate, 85 Hz; screen 164 resolution, 1024×768; viewing distance, 57 cm, second study: 
21 inches; Asus VG248; refresh rate, 75 Hz; screen resolution, 1024×768; viewing distance, 60 cm). All 
the code was written in PsychToolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

Training procedure
Each participant went through several training sessions (on average 4) to be trained on RDM task. They 
first trained in a response-free (i.e. RT) version of the RDM task in which motion stimulus was discon-
tinued as soon as the participant responded. They were told to decide about the motion direction of 
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dots as fast and accurately as possible (Kiani et al., 2014). Once they reached a stable kevel of accu-
racy and RT, they proceeded to the main experiment. Before participating in the main experiment, 
they performed another 20–50 trials of warm-up. Here, the stimulus duration was fixed and responses 
included confidence report. For the social sessions, participants were told that in every block of 200 
trials, they would be paired with a different person, seated in another room, with whom they would 
collaborate. They were also instructed about the joint decision scheme and were reminded that the 
objective in the social task was to maximize collective accuracy. Data from training and warm-up trials 
were included in the main analysis.

Procedure
Each participant performed both the isolated and the social task. In the isolated session, they did one 
block containing 200 trials. Acquired data were employed to construct four computer partners for the 
first study and two partners for the second study. We used the procedure introduced in a previous 
works to generate CGPs (Bang et al., 2017; Bang et al., 2022). In the first study, the four partners 
were distinguished by their level of average accuracy and overall confidence: HAHC, HALC, LAHC, 
and finally LALC. For the second study partners only differed in confidence: HCA and LCA. Each 
participant performed one block of 200 trials for each of the paired partners – 800 overall for study 1 
and 400 overall for study 2.

In the social session, participants were told to try to maximize the joint decision success (Bang 
et al., 2017). They were told that their payment bonus depended on by their joint accuracy (Bang 
et al., 2020). While performing the behavioral task, EEG signals and pupil data were also recorded.

Computer generated partner
In study 1, following Bang et al., 2017, four partners were generated for each participant tuned to the 
participant’s own behavioral data in the isolated session. Briefly, we created four simulated partners by 
varying their mean accuracy (high or low) and mean confidence (high or low). First, in the isolated session, 
the participant’s sensory noise (σ) and a set of thresholds that determined the distribution of their confi-
dence responses were calculated (see Materials and methods also). Simulated partner’s accuracy was 
either high (0.3×σ) or low (1.2×σ). Mean confidence of simulated partners were also set according to the 
participant’s own data. For low confidence simulated partner, average confidence was set to the average 
of participant’s confidence in the low coherence (3.2% and 6.4%) trials. For the high confidence simulated 
partners, mean confidence was set to the average confidence of the participant in the high coherence 
(25.6% and 51.2%) trials. RTs were chosen randomly by sampling from a uniform random distribution 
(from 0.5 to 2 s). Thus, in some trials the participant needed to wait for the partner’s response.

Having thus determined the parameters of the simulated partners, we then generated the 
sequence of trial-by-trial responses of a given partner using the procedure introduced by Bang et al., 
2017. To produce the trial-by-trial responses of a given partner, we first generated a sequence of 
coherence levels with given directions (+ for rightward and – for leftward directions). Then we created 
a sequence of random values (sensory evidence), drawn from a Gaussian distribution with mean of 
coherence levels and variance of σ (sensory noise). Then, via applying the set of thresholds taken 
from the participant’s data in isolated condition, we mapped the sequence of random values into 
trial-by-trial responses to generate a partner with a given confidence mean. Finally, to simulate lapses 
of attention and response errors, we randomly selected a response (from a uniform distribution over 
1–6) on 5% of the trials (see Figure 1—figure supplement 1 for the accuracy and confidence of the 
generated partners).

For study 2, we used the same procedure as study 1 and simulated two partners. These partners’ 
accuracy was similar to the participant but each had a different confidence means (high confidence 
and low confidence partners). Therefore, we kept the σ constant and only change the confidence. For 
low confidence simulated partner, average confidence was set to the average of participant’s confi-
dence in the low coherence (1,6%, 3.2%, and 6.4%) trials. For the high confidence simulated partners, 
mean confidence was set to the average confidence of the participant in the high coherence (12.8% 
and 25.6%) trials.

Signal detection theory model for isolated sessions
In study 1 and 2, we simulated 4 and 2 artificial partners, respectively. We followed the procedure 
described by Bang et al., 2017. Briefly, working with the data from the isolated session, the sensory 
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noise (σ) and response thresholds (θ) for each participant were calculated using a signal detection 
theory model. In this model, the level of sensory noise (σ) determines the participant’s sensitivity and 
a set of 11 thresholds determines the participant’s response distribution, which indicate both decision 
(via its sign) and confidence within the same distribution (see below).

On each trial, the sensory evidence, x, is sampled from a Gaussian distribution, x ∈N(s, σ2). The 
mean, s, is the motion coherence level and is drawn uniformly from the set s∈S = {−0.512, −0.256, 
−0.128, −0.064, −0.032, 0.032, 0.064, 0.128, 0.256, 0.512} (for the second study S = {−0.256, −0.128, 
−0.064, −0.032, –0.016, 0.016, 0.032, 0.064, 0.128, 0.256}). The sign of s indicates the correct direc-
tion of motion (right = positive) and its absolute value indicates the motion coherency. The standard 
deviation, σ, describes the level of sensory noise and is the same for all stimuli. We assumed that the 
internal estimate of sensory evidence (z) is equal to the raw sensory evidence (x). If z is largely positive, 
it denotes high probability of choosing right direction and vice versa for largely negative values.

To determine the participant’s sensitivity and the response thresholds, first, we calculated the distri-
bution of responses (r, ranging from –6 to 6, where the participant’s confidence was (c = |r|), and her 
decision was determined by the sign of r). Equation 1 shows the response distribution.

	﻿‍
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Using θ and σ, we mapped z to participants response (r). We found thresholds θi over S where i = 
−6,–5, −4,–3, −2, –1, 1, 2, 3, 4, 5 such that:
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where Φ is the Gaussian cumulative density function. For each stimulus, s∈S, the predicted response 
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From here, the model’s accuracy could be calculated by S4:

	﻿‍
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Given participant’s accuracy, we could find a set of θ and σ.

Confidence estimation
Once we had determined θ and σ, we could produce a confidence landscape with a specific mean. In 
order to generate one high confidence and another low confidence partner, we needed to alter mean 
confidence by modifying the θ. There could be an infinite number of confidence distribution with the 
desired mean. We were interested in the maximum entropy distribution that satisfied two constraints: 
mean confidence should be specified, and the distribution must sum to 1. Using Lagrange multiplier 
(λ) the response distribution was calculated as:

	﻿‍
pi = eiλ

∑6
j=1 eiλ

‍�
(5)

with λ chosen by solving the constraint
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	﻿‍
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We transformed confidence distributions (1–6) to response distributions (−6 to –1 and 1–6) by 
assuming symmetry around 0. Figure 1—figure supplement 1 shows the accuracy and confidence of 
generated agents.

Computational model
We employed a previously described attractor network model (Wong and Wang, 2006) which is 
itself the reduced version of an earlier one (Wang, 2002) inspired by the mean field theory. The 
model consists of two units simulating the average firing rates of two neural populations involved in 
information accumulation during perceptual decisions (Figure 3a). When the network is given inputs 
proportional to stimulus coherence levels, a competition breaks out between two alternative units. 
This race would continue until firing rates of one of the two units reaches the high-firing-rate attractor 
state at which point the alternative favored by the unit is chosen. The details of this model have been 
comprehensively described elsewhere (Wong and Wang, 2006).

Each unit was selective to one choice (Equations 7; 8) and received an input as follows:

	﻿‍ x1 = JN11S1 − JN12S2 + I0 + I1 + Inoise1‍� (7)

	﻿‍ x2 = JN22S2 − JN21S1 + I0 + I2 + Inoise2‍� (8)

where JN11 and JN22 indicated the excitatory recurrent connection of each population and JN12 and JN21 
showed the mutual inhibitory connection values. For the simulation in Figure 3b we set the recurrent 
connections to 0.3157 nA and inhibitory ones to 0.0646 nA. I0 indicated the effective external input 
which was set to 32.55 nA. Inoise1/Inoise2 stood for the internal noise in each population unit. This zero 
mean Gaussian white noise was generated based on the time constant of 2 ms and standard deviation 
of 0.02 nA. I1/I2 indicated the input currents proportional to the motion coherence level such that:

	﻿‍
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)
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	﻿‍
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where ‍JA.ext‍ was the average synaptic coupling from the external source and set to 0.0002243 (nA 
Hz–1), c was coherence level and ‍µ0‍ , a.k.a. perceptual gain, was the input value when the coherence 
was zero (set to 45.8 Hz).

S1 and S2 were variables representing the synaptic current of either population and were propor-
tional to the number of active NMDA receptors. Whenever the main text refers to accumulated 
evidence, we refer to S1 and S2 variables. Dynamics of these variables were as follows:
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where ‍τs‍ , the NMDA receptor delay time constant, was set to 100 ms, ‍γ‍ set to 0.641 and the time 
step, ‍dt‍, was set to 0.5 ms. Dynamical Equations 11; 12 were solved using forward Euler method 
(Wong and Wang, 2006). (H), the generated firing rates of either populations, was calculated by:

	﻿‍
H
(
x
)

= ax − b
1 − e−d

(
ax−b

)
‍�

(13)

where a, b, and d were set to 270 Hz nA–1, 108 Hz, and 0.154 s, respectively. These constants indicated 
the input-output relationship of a neural population.

The model’s choice in each trial was defined as the accumulated evidence of either population 
that first touched a threshold, and the decision time was defined as the time when the threshold was 
touched. Notably, the decision threshold was set to Sthreshold = 0.32. Moreover, the confidence was 
defined as the area between two accumulators (S1 and S2 in Equations 11; 12), in the time span of 
0–500 ms, which was defined as:
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which was normalized by following logistic function (Wei and Wang, 2015):

	﻿‍
Normalized Confidence = b1 + a

e(kConfidence−b0) ‍� (15)

where the values of ‍b1‍ , a, k, and ‍b0‍ were set to 1.32, –0.99, 5.9, and 0.16 respectively for model on 
entire trials of subjects in isolated sessions; confidence is calculated in Equation 14 in time period of 
[0–500]ms.

In line with previous studies, we calculated the absolute difference between accumulators (Equa-
tion 14; Wei and Wang, 2015; Rolls et al., 2010). In this formulation, confidence is calculated from 
model activity during the stimulus duration (Atiya et al., 2019). Notably, in our confidence definition, 
we integrated the accumulators’ difference even when the winning accumulator hit the threshold 
(post-decision period) (Balsdon et al., 2020; Navajas et al., 2016; Yu et al., 2015). This formula-
tion of confidence provided a successful fit to subjects’ behaviors (Figure 3—figure supplement 5). 
To demonstrate that our key findings do not depend on this specific formulation, we implemented 
another alternative method (Vickers, 1979) and showed qualitatively similar results (Figure 3—figure 
supplement 3) are obtained.

We calibrated the model to the data from the isolated condition to identify the best fitting param-
eters that would describe the participants’ behavior in isolation. In this procedure decision threshold, 
inhibitory and excitatory connections, NDT (set 0.27 s) and ‍µ0‍ were considered as the model variables 
(see Supplementary file 1h for parameter values).

In order to explain the role of social context on participant’s behavior, we added a new input 
current to the model. Importantly we kept all other parameters of the model identical to the best fit 
to the participants’ behavior in the isolated situation:

	﻿‍ x1 = JN11S1 − JN12S2 + I0 + I1 + Inoise1 + Wx‍� (16)

	﻿‍ x2 = JN22S2 − JN21S1 + I0 + I2 + Inoise2 + Wx‍� (17)

In order to evaluate the effect of Wx on the RT, accuracy, and confidence, we simulated the model 
while systematically varying the values of Wx (Figure 3b).

Having established the qualitative relevance of Wx in providing a computational hypothesis for the 
impact of social context, then we defined Wx proportional to the confidence of partner as follows:

Table 5. Details of statistical results for the impact of previous trial (Figure 1—figure supplement 
3).

Response Regressors Estimate SE CI t-Stat p-Value Total number

Study 1

Accuracy
(HC vs LC)

Coherency 0.007 0.0006 [0.006 0.008] 11.58 <0.001 9600

Conf (t–1) –0.0017 0.005 [–0.01 0.01] –0.28 0.77 9600

Confidence
(HC vs LC)

Coherency 0.047 0.001 [0.045, 0.049] 54.7 <0.001 9600

Conf (t–1) 0.32 0.008 [0.3 0.33] 38.31 <0.001 9600

RT
(HC vs LC)

Coherency –0.005 0.0001 [–0.0048 0.0044] –44.36 <0.001 9600

Conf (t–1) –0.0055 0.001 [–0.007 –0.003] –5.44 <0.001 9600

Study 2

Accuracy
(HC vs LC)

Coherency 0.02 0.002 [0.02 0.024] 13.23 <0.001 6000

Conf (t–1) 0.003 0.008 [–0.012 0.018] 0.37 0.7 6000

Confidence
(HC vs LC)

Coherency 0.1 0.002 [0.097 0.0106] 47.2 <0.001 6000

Conf (t–1) 0.09 0.01 [0.07 0.11] 8.6 <0.001 6000

RT
(HC vs LC)

Coherency –0.009 0.0003 [–0.001 –0.008] –26.2 <0.001 6000

Condition 0.005 0.001 [0.001 0.008] 2.98 <0.01 6000
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	﻿‍ Wx = α.Cpartner
(

t−1
)
‍� (18)

where ‍t‍ was the trial number. The model inputs were identical to isolated situation expect for the top-
down current of ‍Wx‍ which indicates the social input where ‍α‍ was a normalization factor (or coupling 
coefficient) and 

‍Cpartner
(

t−1
)
‍
 indicates the partner’s confidence in the previous trial. Thus, we added a 

social input based on the linear combination of the partner’s confidence in the previous trial. Impor-
tantly the model performance is not sensitive to linearity assumptions (see Figure 3—figure supple-
ment 8). Notably, the behavioral effect reported in the main script is also evident respect to the 
confidence of the agent in the previous trial (Figure 1—figure supplement 3 and Table 5).

For simulations reported in Figure 3d, we created high and low confident models by altering the 
inhibitory and excitatory connections of the original model. For the high confident model, excitatory 
and inhibitory connections were set to 0.3392 and 0.0699. For the low confident model excitatory and 
inhibitory connections were set to 0.3163 and 0.0652 respectively. For the simulation of social inter-
action (Figure 4f), we coupled two instances of the model using Equation 20 with ‍α‍ set to –0.0008 
and 0.005 for high confident and low confident models, respectively. We ran the parallel simulations 
50 times and reported the average results.

In order to remove the effect of coherence levels from models’ confidence, we measured the resid-
uals of models’ confidence after regressing out the impact of coherence. Using this simple regression 
model:

	﻿‍ Model Confidence = β0 + β1Coh + ϵ‍� (19)

where Coh is the motion coherence level and ‍ϵ‍ is the error term, we removed the information explain-
able by motion coherence levels from confidence data as following. Confidence residuals were 
therefore:

	﻿‍ Confidence Residuals = β0 + ϵ‍� (20)

All the simulations of model in the text – and parameters reported in the method – are related to 
the model calibrated on the collapsed data of all subjects (n=3000 for isolated sessions of study 2).

Alternative formulations for confidence in the computational model
In our main model, confidence is formalized by Equation 14. We calculated the integral of difference 
between the losing and the winning accumulator during the stimulus presentation. This value would 
then be fed into a logistic function (Equation 15) to produce the final confidence reported by the 
model (Figure 3b middle panel). To demonstrate the generality of our findings, we used another alter-
native (but similar) formulation in the previous literature for confidence representation. In Figure 3—
figure supplement 3, we compare the resulting ‘raw’ confidence values (i.e. confidence values before 
they are fed to Equation 15).

Alternative formulations for confidence are:

1.	 For comparison we plot our main formulation (Equation 14) in Figure 3—figure supplement 
3a.

2.	 By calculating the difference between winning and losing accumulator at the END of stimulus 
duration (Navajas et al., 2016; Figure 3—figure supplement 3b, we call this End method).

Our simulations showed that our formulation (Figure 3—figure supplement 3a) shows an expected 
modulation to top-down currents. Figure 3—figure supplement 3b also shows a similar pattern which 
indicates our results are not different from End method. Therefore, our computational results could be 
generalized to different confidence representation methods.

Model comparison
For model comparison, we used the fitted parameters from the isolated session (study 2 only without 
loss of generality). The model parameters for the isolated condition were extracted for each partic-
ipants in their own respective isolated session (n=3000 across all participants). Then we compared 
all ‘alternative’ models with a ‘single free parameter’ to determine the model with the best account 
to behavioral data in social sessions (n=6000 across all participants). We considered three alterna-
tive models for the comparison. Note that in all models a is the normalization factor and the free 
parameter.
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Bound model
We hypothesized that partner’s confidence modulates the participant’s decision boundary according 
to:

	﻿‍ B = BIsolated + aConft−1‍� (21)

B determines the threshold applied on the solution of the Equations 11; 12 (see Materials and 
methods). ‍BIsolated‍ denotes the threshold in the isolated model. In this model, in social condition the 
bound depends on the value of the agent’s confidence in the previous trial. Note that the optimum 
value of a, normalization or coupling factor, is most likely to be negative since it generates lower RTs 
in social vs isolated situation.

NDT model
We hypothesized that NDT would be modulated by confidence of agent in the previous trial. Here,

	﻿‍ NDT = NDTIsolated + aConft−1‍� (22)

‍NDTIsolated‍ was the NDT fitted on the isolated data. Similarly, the optimum a was expected to be 
negative.

Gain model
We hypothesized that social information modulated the perceptual gain defined as:

	﻿‍ µ0 = µ0Isolated + aConft−1‍� (23)

where μ0 denotes the input value of the model when motion coherence is zero (Equations 9; 10, 
Materials and methods) and ‍µ0Isolated‍ was calculated based on isolated data. If a is positive, then μ0 
would be greater under social condition vs isolated condition, which in turn generates lower RTs and 
higher confidence.

In order to incorporate the accuracy, RT, and confidence in model comparison, we calculated the 
RT distribution of trials in each of the 12 confidence levels, 6 for left decision (−6 to –1) and 6 for right 
decision (1–6). The RT in each level was further divided into two categories (Ratcliff and McKoon, 
2008) (less than 700 ms and larger than 700 ms). We tried to maximize the likelihood of behavioral RT 
distribution in each response level (confidence and choice) given the model structure and parameters. 
The probability matrix was defined as follows:

	﻿‍ Pmat =
[
pi
(
RT < 700

)
, pi

(
RT > 700

)]
− 6 ≤ i ≤ 6‍� (24)

where i is confidence levels ranging from –6 to 6. Note, the probability was calculated based on all 
trials in our behavioral data set (6000 trials). The model’s probability matrix was also calculated in a 
similar manner. Hence, we derived a probability matrix of 12 response levels and 2 RT bins. The likeli-
hood function was defined as follows:

	﻿‍ JointPmat = |PmatBehave − PmatModel|‍� (25)

	﻿‍
Cost =

12∑
i=1

2∑
j=1

JointPmat(i,j
)
‍�

(26)

Since we used similar parameters for the models (all models had one free parameter, a) we could 
directly compare cost values corresponding to each model. The model with the lowest cost is the 
preferred model; the parameters were found via MATLAB fmincon function. As is often the case, 
there was some variability across participants (see Figure 3—figure supplement 4). To strengthen the 
conclusions about model comparison, we also provide evidence from a model falsification exercise 
that we performed. We simulated the models between two different social conditions (HCA and LCA) 
to see which model could, in theory, follow the behavioral pattern (Figure 1c). Indeed, we attempted 
to numerically falsify the alternative models. Figure 3—figure supplement 7 shows the alternative 
model fails to reproduce the effect observed in Figure 1c.
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Eye monitoring and pupilometery
In both studies, the eye movements were recorded by an EyeLink 1000 (SR- Research) device with 
a sampling rate of 1000 Hz which was controlled by a dedicated host PC. The device was set in a 
desktop and pupil-corneal reflection mode while data from the left eye was recorded. At the begin-
ning of each block, for most subjects, the system was recalibrated and then validated by 9-point 
schema presented on the screen. One subject was showed a 3-point schema due to the repetitive 
calibration difficulty. Having reached a detection error of less than 0.5°, the participants were led to 
the main task. Acquired eye data for pupil size were used for further analysis. Data of one subject in 
the first study was removed from further analysis due to storage failure.

Pupil data were divided into separate epochs and data from ITI were selected for analysis. ITI 
interval was defined as the time between offset of trial (t) feedback screen and stimulus presentation 
of trial (t+1). Then, blinks and jitters were detected and removed using linear interpolation. Values of 
pupil size before and after the blink were used for this interpolation. Data was also mid-pass filtered 
using Butterworth filter (second order, [0.01, 6] Hz) (van Kempen et al., 2019). The pupil data was 

Table 6. The rate of trial rejection of eye tracking (only data of social) and EEG data (visual 
inspection) per participant.

Participants Eye tracking rejection % (social) EEG trial rejection % (visual)

Study 1 (Discovery)

1 12.25 4.6

2 12.87 31.1

3 0.5 22.1

4 4 14.8

5 1.37 34.4

6 0 4.6

7 7.75 8.8

8 0.37 24.4

9 6.37 7.6

10 0 46

11 0.12 NA

12 NA NA

Study 2 (Replication)

1 0 4

2 1.25 1

3 5.75 8.5

4 0.5 3

5 1 16

6 1.5 2.5

7 0 0.5

8 1.5 9

9 0 2

10 1 4

11 1 7.5

12 0.5 0

13 0.75 10.5

14 2.5 12

15 14.75 4.5
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z-scored and then was baseline corrected by removing the average of signal in the period of [–1000 0] 
ms interval (before ITI onset). Importantly, trials with ITI >3 s were excluded from analysis (365 out of 
8800 for study 1 and 128 out 6000 for study 2; also see Table 6 and Selection criteria for data analysis 
in Supplementary materials).

EEG signal recording and preprocessing
For the first study, a 32-channel eWave32 amplifier was used for recording which followed the 10–10 
convention of electrode placement on the scalp (for the locations of the electrodes, see Figure 4—
figure supplement 1; right mastoid as the reference). The amplifier, produced by ScienceBeam 
(http://www.sciencebeam.com/), provided a 1 K sampling rate (Vafaei Shooshtari et al., 2019). For 
the second study we used a 64-channel amplifier produced by LIV team (http://lliivv.com/en/) with 
250 Hz sampling rate (see the electrode placement in Figure 4—figure supplement 1).

Raw data were analyzed using EEGLAB software (Delorme and Makeig, 2004). First, data were 
notch filtered in the range of 45–55 Hz in order to remove the line noise. Using an FIR filter in the 
range of 0.1–100 Hz, high-frequency noise was also removed from data. Artifacts were removed by 
visual inspection using information from independent component analysis. Noisy trials were also 
removed by avisual inspection. Noisy channels were interpolated using EEGLAB software. The signals 
were divided into distinct epochs aligned to stimulus presentation ranging from 100 ms pre-stimulus 
onset until 500 ms post-stimulus offset. After preprocessing, EEG data in the designated epochs that 
had higher (lower) values than 200 (–200) μV were excluded from analysis (see Table 6 and Materials 
and methods for detailed data analysis) (Kelly and O’Connell, 2013). We used CP1, CP2, Cz, and Pz 
electrodes for further analysis. In the first study, EEG recording was not possible in two participants 
due to unresolvable impedance calibration problems in multiple channels.

Relation of CPP to coherence and social condition
Activities of centroparietal area of the brain is shown to be modulated with coherence level. Here, we 
showed that CPP activities are statistically related to the coherence levels (Figure 4—figure supple-
ment 2, top-row) in both studies. Furthermore, we tested how much this relationship is dependent 
to social condition (HCA, LCA, Figure 4—figure supplement 2, bottom-row). Our analysis showed 
that the slope (respect to coherence levels) is different in HCA vs LCA (also see Table 6). Notably, this 
effect is in line with our neural model prediction (see Figure 4—figure supplement 3, next section).

Selection criteria for data analysis
The data included in both studies could be classified into three main categories: behavioral, eye 
tracking, and EEG. For the behavioral analysis, data from all participants were included. In study 1, eye 
tracking data from one participant was lost due to storage failure. For pupil analysis, we excluded the 
trials with ITI longer than 3 s (~4% of trials in study 1 and ~2% for study 2).

Table 7. Generalized linear mixed model (GLMM) including interaction terms (p-values are 
reported).

Response Coherence Condition (LC vs HC) Condition* coherence

Study 1

Accuracy p<0.001 p=0.92 p=0.96

Confidence p<0.001 p<0.001 p<0.001

RT p<0.001 p<0.001 p<0.05

Pupil p=0.43 p=0.20 p=0.31

EEG slope p<0.01 p=0.15 p=0.91

Study 2

Accuracy p<0.001 p=0.75 p=0.87

Confidence p<0.001 p<0.001 p<0.001

RT p<0.001 p<0.001 p=0.34

Pupil p=0.35 p=0.06 p=0.17

EEG slope p=0.62 p<0.05 p=0.68
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We also analyzed brain data of participants in both studies. For the ERP analysis, we excluded 
trials with an absolute amplitude greater than 200 microvolts (overall less than 1% for both trials) as 
this data was deemed as outlier. Moreover, noisy trials and ICA components (around 5% of compo-
nents in study 2) were rejected by visual inspection. Noisy electrodes were also interpolated (~8% of 
electrodes in study 2); see Table 6 for more details. In study 1, EEG data from two participants were 
lost due to a technical failure. All data (behavioral, eye tracking, and EEG) for study 2 were properly 
stored, saved, and made available at https://github.com/JimmyEsmaily/ConfMatch (copy archived at 
Esmaily, 2023; MathWorks Inc, 2023).

Statistical analysis
For hypothesis testing, we employed a number of GLMM. Unless otherwise stated, in our mixed 
models, participant was considered as random intercept. Details of each model is described in 
Tables 1–6 in the Supplementary materials. This approach enabled us to separate the effects of coher-
ency and partner confidence. For RT and confidence, we assumed that the data is normality distrib-
uted. For the accuracy data we assumed the distribution is Poisson. We used a maximum likelihood 
method for fitting. All p-values reported in the text were drawn from the GLMM method, unless stated 
otherwise. For completeness, for each analysis we have added interaction terms as well (see Tables 7 
and 8).

Table 8. Attractor model’s parameters.

Parameter Parameter value Reference, remarks

JN,ii 0.3157 nA
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

JN,ij 0.0646 nA
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

µ0 45.8 Hz
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

NDT 0.27 s
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

Bound 0.32 nA
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

a (Equation 15) –0.99
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

b0 (Equation 15) 1.32
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

b1 (Equation 15) –0.165
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

k (Equation 15) 5.9
Calibrated based on pool of isolated data, also fitted on individual 
subjects’ data

I0 0.3255 nA From Wang, 2002; Wong and Wang, 2006

JA.ext 0.00022 nA Hz–1 From Wang, 2002; Wong and Wang, 2006

τs 0.1 s From Wang, 2002; Wong and Wang, 2006

dt 0.0005 s From Wang, 2002; Wong and Wang, 2006

a (Equation 13) 270 (V nC)–1 From Wang, 2002; Wong and Wang, 2006

b (Equation 13) 108 Hz From Wang, 2002; Wong and Wang, 2006

d (Equation 13) 0.154 s From Wang, 2002; Wong and Wang, 2006

γ 0.641 From Wang, 2002; Wong and Wang, 2006

Noise_std 0.025 From Wang, 2002; Wong and Wang, 2006

I_noise 0.02 From Wang, 2002; Wong and Wang, 2006
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Permutation test to confirm confidence matching
A key null hypothesis (‍p(ϑ)‍ where ‍ϑ‍ is the measure of interest: confidence matching) that we ruled 
out was that confidence matching was forced by the experimental design limitations and, there-
fore, would be observed in any random pairing of participants within our joint decision making 
setup. To reject this hypothesis, we performed a permutation test following Bang et  al., 2017 
(see their Supplementary Figure 3 for further details). For each participant and corresponding 
CGP pair, we defined |c1–c2| where ci is the average confidence of participant i in a given pair. We 
then estimated the null distribution for this variable by randomly re-pairing the participant with 
other participants and computing the mean confidence matching for each such re-paired set (total 
number of sets 1000). In Figure 1—figure supplement 2 (bottom row), the red line shows the 
empirically observed mean of confidence matching in our data. The null distribution is shown in 
black. Proportion of values from the null distribution that were less than the empirical mean was 
P~0.

In addition, we defined an index for measuring the confidence matching (Figure 1—figure supple-

ment 2, first row): 
‍
∆m =

∣∣∣Cisolated
(

Subject
) − Cagent

∣∣∣−
∣∣∣Csocial

(
Subject

) − Cagent
∣∣∣
‍
 . The larger the ‍∆m‍ the 

higher is the confidence matching. Although we did not observe a significant effect of ‍∆m‍, we showed 
that this index is significantly different from zero in the HCA condition.
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"Anyone who has never made a mistake has never learned anything new."  

— Albert Einstein 

 

This chapter includes the research article "Sequential sampling without comparison to boundary 

through model-free reinforcement learning." This article investigates the computational mechanisms 

underlying perceptual decision-making during the training phase. We introduced a model-free 

reinforcement learning (RL) model capable of making perceptual decisions. In our framework, the 

state is defined as the accumulated evidence up to the current time step. The actions include: choosing 

"left," "right," or "wait." The reward structure provides positive rewards for correct decisions, negative 

rewards for incorrect ones, and a small penalty for waiting. 

The objective of the RL agent is to learn the optimal policy that determines when to terminate the 

decision process (by choosing left or right), effectively balancing external reward (accuracy) with the 

internal cost of waiting. Unlike traditional decision-making models that rely on explicit decision 

boundaries, our model can arrive at decisions with an implicit boundary learned through experience. 

We conducted extensive analyses and tested our model across various scenarios. Our model 

successfully replicated hallmark behavioural signatures of standard decision-making paradigms, as 

well as several additional scenarios explored in the literature. Together, this work offers new insights 

into the often-overlooked initial learning phase of perceptual decision-making, a phase typically 

discarded or underexplored in existing studies. 
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Abstract

Although evidence integration to the boundary model has successfully explained a wide range
of behavioral and neural data in decision making under uncertainty, how animals learn and op-
timize the boundary remains unresolved. Here, we propose a model-free reinforcement learning
algorithm for perceptual decisions under uncertainty that dispenses entirely with the concepts of
decision boundary and evidence accumulation. Our model learns whether to commit to a deci-
sion given the available evidence or continue sampling information at a cost. We reproduced the
canonical features of perceptual decision-making such as dependence of accuracy and reaction time
on evidence strength, modulation of speed-accuracy trade-off by payoff regime, and many others.
By unifying learning and decision making within the same framework, this model can account for
unstable behavior during training as well as stabilized post-training behavior, opening the door to
revisiting the extensive volumes of discarded training data in the decision science literature.

1 Introduction

Sequential sampling models have had great success in explaining the decision dynamics that govern
the relationship between choice reaction time and accuracy under a variety of conditions spanning
perceptual [1, 2, 3] , value-based [4, 5] and even moral decisions [6]. The general principle of these
models is that to make the best of the noisy, uncertainty-ridden information that an agent (e.g., rodent,
monkey, human, etc) gets from its environment, one could accumulate the sequentially arriving noisy
samples across time and compare the sum to a certain designated decision criterion. These models have
been instrumental in interpreting the neurophysiological investigations of the mechanisms of decision
making in humans [7, 8], and non-human animals [1, 9].

These models have often been applied to empirical data collected after extensive training when per-
formance has already stabilized at a predefined benchmark level and is unlikely to change with more
practice. However, a number of previous works examined the evolution of the drift-diffusion model
(DDM) parameters in the course of learning [10, 11, 12, 13, 14, 15, 16]. Typically, these studies fit
an instance of DDM to the empirically observed reaction time and choice data across the stages of
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learning. These results show that decision bounds decrease and/or drift rates increase during learning
without explaining what mechanism could be implementing these changes. However, sequential sam-
pling models are often kept agnostic about the process of how the agent comes to learn the decision
criteria in the first place leaving open a question of how drift rates and/or thresholds are updated
during learning.

With adequate opportunity for practice, agents’ behavior stabilizes in a given experimental context, for
example under a specific payoff structure that relates choices to accuracy and rewards. Many studies
have shown that agents are capable of changing their decision strategy, trading off speed and accuracy,
when payoff structure is changed (see [17] for a review; [18, 19];). Similar findings have documented
decisional flexibility under other types of changes of context such as frequency of choice categories [20]
or the asymmetric physical effort needed for executing different choice options [21]. These behavioral
adjustments to change of context have been attributed to the dynamic shifting of the decision boundary
raising theoretical and empirical problems.

Theoretically, once the agent has learned a given decision boundary, it is not clear through what mecha-
nism the boundary is subsequently adjusted in response to new contexts. A number of previous studies
built on principles of model-based Reinforcement Learning (RL) [22, 23] to derive normative, “ideal-
observer” solutions for what the boundary should be in order to maximize rewards or reward-rates,
considering cognitive and opportunity costs associated with postponing a decision. These solutions
assume that the agent has a ”model” representing the statistical structure of the environment (e.g., the
distribution of task difficulty). This model provides a transition structure that predicts the prospective
amounts of evidence that would be accumulated if the decision were to be postponed. Based on such
transition structures the agent can derive the optimal, reward-maximizing choice-threshold(s). This re-
ward optimization problem was solved using the Markov decision process in one case [22] and Dynamic
programming in another [23]. The key advantage of such model-based solutions is that they are highly
flexible in that when the environment changes, they can quickly update their transition structure and
readily recalculate the optimal choice threshold, without needing any elaborate experience with the
new environment. However, a limitation of this model-based approach is that it relies on complex
calculations that require a deep knowledge of the environment and the task at hand. It is unclear
whether animals have access to such knowledge and can perform such demanding calculations. As a
result, these approaches leave open the question of how to learn the boundary when such knowledge
is not (yet) available.

Empirically, the search for the neurobiological correlates of context-dependent shifting of decision
boundaries has faced considerable difficulty. Numerous studies have identified specific neurons in the
prefrontal and parietal cortex of various animals that show the hallmarks of the accumulation process
during perceptual decision making under uncertainty. These neurons’s activity rises during the period
of stimulus observation. The rate of this rise is proportional to the strength of the sensory signal and
reflects an accumulation of noisy evidence. This is at least the case in macaque area LIP where in trials
with similar reaction times, these neurons reach a stereotyped firing rate shortly before action initiation;
see [1, 3, 9, 24] for comprehensive review. The boundary shift hypothesis would predict that these
stereotyped firing rates should covary with behavioral changes observed in speed-accuracy trade-off.
This does not seem to be the case. Instead, Heitz et al. [17] observed several heterogeneous phenomena
(e.g., changes of baseline firing rate, sensory gain, and the duration of perceptual processing) in the
activity of boundary neurons in the macaque monkey’s frontal eye field during speed-accuracy trade-
off. They noted that these observations were quite distinct from and in some cases even contradictory
to the elegant and parsimonious predictions of a shift in the activity of the boundary neurons. Another
study by Hank et al [24] examined the neural activity in the macaque LIP with the hypothesis that
this bound changes dynamically in response to different speed-accuracy trade-off conditions. They
observed different results: the terminating threshold levels of neural activity were similar across all
regimes even though the animal behavior adjusted dynamically to the different regimes.

To address these problems, here we introduce a theory for learning how to make perceptual decisions
under uncertainty based on model-free (temporal difference) RL principles. Our approach is simple
and minimizes the required foreknowledge of the statistical structure of the environment compared to
the model-based approaches discussed before. Our model also employs simpler calculations, but likely
at the expense of flexibility [25]. Most importantly, our model dispenses with the concept of a decision
boundary altogether.

2



While standard RL models employ two actions corresponding to the two choice alternatives, our model
adds to this an overtly simple innovation: besides the standard two actions, a Wait action permits
the agent to stay undecided and continue sampling the environment, albeit at a cost. We show that
this minimal innovation creates a fundamentally new type of sequential sampling model that learns
to make decisions under uncertainty and could dynamically change its strategy in response to changes
of environment context. We demonstrate that this simple model reproduces the hallmark features of
much more sophisticated evidence accumulation models.

2 Results

2.1 The setup

In Fig. 1, we show a schema of the model tailored to the two-alternative – left vs right decisions–
random dot motion discrimination paradigm; see [2, 3] for more details about the the task. In this
model, time is defined from the agent’s perspective. This description is agnostic to distinct notions of
time (e.g., trial number, block number, trial onset, ...) that are meaningful only to the experimenter
who is studying the agent. To simplify communication and avoid misunderstandings, in Fig. 1 and
the model description that follows, we make this distinction explicit. We use separate notations to
refer to the time – that we consider to be discrete – at the level of trial number and specific moments
of time within each trial, denoted by u and t, respectively.

We consider a Q-learning agent trained over U trials. In each trial u, a random dot motion stimulus is
presented whose coherence level cu is sampled uniformly and independently from the set C ⊆ [−1, 1].
Positive values of coherence indicate rightward motion and negative values indicate leftward motion.
At any given time, the agent can choose an action from the set A = {Right,Left,Wait}. If either
actions Right or Left are chosen, then the agent receives a reward Rcorrect or Rwrong depending on
whether the decision was correct or wrong, the current trial is terminated and a new trial begins. If
the agent chooses the action Wait, it receives Rwait and the trial continues. Although for simplicity
we refer to all these feedbacks as rewards, their values can indeed be negative and thus embody a
cost. In what follows we assume Rwrong < 0, Rwait < 0 and Rcorrect > 0 unless stated otherwise;
we often denote the set of reward values as R ≡ [Rcorrect, Rwrong, Rwait]. Unless stated otherwise,
R ≡ [Rcorrect = 20, Rwrong = −50, Rwait = −1]

The agent is endowed with a set of states S = {−M,−M+∆ · · · , 0, · · · ,M−∆,M}. Here ∆ indicates
the resolution of the state of the model. At time t in trial u, the state of the system is denoted by sut
system. At the beginning of each trial the system starts at state 0, that is su0 = 0. As time progresses
from t to t + δt within a trial, where δt is the time step, that is while the agent chooses the Wait
action, the state of the system is updated as

sut+δt = ⌊(sut + Et)δt⌉S , (1)

where ⌊x⌉S indicated the closest element of S to x, Et ∼ N (Kcu, σ2) models noisy sensory evidence
received at time t and is taken to be a sample from a normal distribution with mean Kcu and variance
σ2. Unless otherwise stated, we use ∆ = 1, δt = 1ms (Therefore, the units of Reaction Time in our
simulation are in milliseconds).

Unless otherwise stated, in all simulations reported here, we have K = 0.4, and σ = 1. In principle, one
can absorb K into the range of stimuli coherence C, but to be consistent with previous studies where K
had to be fit to data, we employ the above notation. We also reiterate that the Left and Right actions
lead to the termination of the existing trial, the start of a new trial, and are thus terminating actions.
Before we proceed forward, we would like to note that although in Eq. (1), we used the addition of the
current state sut and sensory input Et for updating the state and for accumulation of evidence, this
specific choice is not mandatory and the model can perform reasonably without accumulation too; see
section 6.

At any given time t, during the trial u, associated with every state s ∈ S and every action a ∈ A, there
is a Q-value denoted by Qu

t (s, a). At the beginning of each trial, the Q-values for trial u are copied
from the end of trial u − 1 with Q0

0(s, a) = 0. The resulting Q-table is used to determine, in a given
state s, which action, a, is selected at time t in trial u. This is done via a softmax function yielding

3



Figure 1. Schematic illustration of the perceptual stimulus, trial structure, and model
components. The structure of the task and three consecutive trials (u− 1, u, u+ 1) are illustrated
with time progression taking place from left to right (horizontal arrow) both during the trials and
from one trial to the next. The variable widths of the white gaps between trials depict the random
duration of inter-trial intervals. We assume that no update happens during these periods. In each
trial, a random dot motion stimulus moves towards the left or right. The evidence (Et in Eq. (1)) is
sampled every time the agent chooses to wait (i.e., Wait action) and the state variable is updated by
accumulating the evidence. This within-trial updating continues until the agent chooses one of the
terminating actions (L, R) at which point the state and evidence variables are then set to zero and
remain zero until the beginning of the presentation of the new motion stimulus in the next trial. The
states at which these terminating actions are taken are the terminal state, indicated by the red circle
in the plots denoted by States. At each time point, the agent receives a reward based on the action
that it has taken. Unlike sequential sampling models, no comparison to any threshold is explicitly
formalized in the model and taken by the model.
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probabilistic action selection as follows

put (a|s) =
eβQ

u
t (s,a)∑

a′∈A eβQ
u
t (s,a

′)
, (2)

where β controls the degree of stochasticity in action selection and is set to 50, unless otherwise stated.

Once an action aut ∈ {Right,Left,Wait} has been taken, the corresponding reward Ru
t has been

collected and the transition to the new state has occurred, the Q-table is updated as

Qu
t+1(s

u
t , a

u
t ) = Qu

t (s
u
t , a

u
t ) + ϵ

[
Ru

t + γmax
a∈A

(Qu
t (s

u
t+1, a))−Qu

t (s
u
t , a

u
t )

]
, (3)

where ϵ is the learning rate (set to 0.1 unless stated otherwise) and γ is the discount factor of the
temporal difference (TD) term. Unless otherwise stated, we use γ = 0.9 except when the trial is
terminated and γ = 0. For the systematic study of the effect of parameters on the terminal state, see
S.5.

2.2 Evolution of the Q-table during learning

In this section, we examine the evolution of the Q-table in the course of learning. A more detailed
intuition about the dynamic of the model is provided in the Supplemental material (see S.1).

In Fig. 2(a), we see three snapshots of the model Q-table at different stages of training. After 400
trials, there is an island of states around 0, where the Q values of the Wait action (green) are the
largest, and those of Right and Left are considerably more negative. As the learning proceeds (middle
and right panels), this island expands. At the right boundary of this island, one can see a blue bump
(c.f., blue arrows) indicating a number of states for which the corresponding Q-value for the Right
action exceeds that for the other two.

Similarly, a red bump is visible on the left side, indicating those states for which the Left action is
more likely to be chosen. How quickly in training these bumps appear depends on the learning rate, ϵ;
see Fig. S.2. By the end of the training, the Q-value for each of the terminating actions has exceeded
that of the Wait action on its corresponding side, that is, red on the left and blue on the right. Note
that, for the the peaks to arise stably by the end of the learning phase, the number of available states
(i.e., M) should be large enough. With insufficient M , the Wait island (Green lines) expands to the
whole range of available states, freezing the agent in a state of perpetual anticipation and paralysis.

We define the state in which a terminating action is chosen as the terminal state. If β = ∞, the
terminal states correspond to the peak of the bumps in the Q-table. For lower values of β, those peaks
are merely more probable to be a terminal state. In Fig. 2(b)-(c), we see the evolution of the terminal
states in the course of training. They start near zero and progressively move away. This trend is not
monotonic, implying that the Q-learning algorithm searches for and ends up fluctuating around some
Q-table that strikes a balance between the cost of waiting, the costs and benefits of wrong and correct
decisions.
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Figure 2. Evolution of the Q-table. (a) Snapshots of Q-values of each action at each state shown at
the beginning of the learning (Trial number= 0) where all Q-values are set to zero. The Q-values shown
are averaged over 30 simulations with the same parameters. In each trial, u, the coherence level cu is
chosen randomly and with equal probability from the set C = [−51.2%,−25.6%, ...0, ...25.6%, 51.2%].
As training proceeds, the Q-values associated with the Wait action (green) in the states around zero
stay higher but those for the terminating actions (Left, and Right) drop to lower values. The Q-value
for each terminating action exceeds that of the Wait on the side corresponding to the correct choice
(i.e., red on the left and blue on the right - see arrows). (b) Terminal states initially emerge near
zero and then, with training, move away from it toward rightward (blue) and leftward (red). Each
thin lines show the results for one of the 30 simulations, and the tick line represents the average over
those simulations. (c) Histograms showing the fraction of times that a state had the largest Q-value
(when averaged over 30 simulations) during 4 different periods of learning, each comprising 600 trials.
As training progresses, the histograms shift away from zero and become narrower in spread; the solid
curves are fitted to the histograms. In the simulations reported in this figure, U = 2400 trials were
used.
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Figure 3. Model performance after training. The psychometric curve showing choice Accuracy
(a), and the chronometric curve showing Reaction Time (RT) (b), both plotted as a function of the
coherence level, c. Data from the simulations are denoted by black points and the lines in (a) and (b)
show Eqs. (4a) and (4b). To plot these lines we fixed B in Eq. (4b) and (4a) to the average of the
model’s terminal state over 2400 test trials during which the Q-table was left unchanged. The error
bars show SEM over these trials. (c) Two examples of the states taken by the model as time progresses
through the test trials where Q-table is fixed for two stimuli with opposing directions. (d) Q-values
of the trained model for different actions in different states. The bumps appearing at states ∼ 20 and
∼ −20 indicate the location of the terminal states. All other parameters are the same as Fig. 2.

2.3 Model’s behavior in perceptual decision making

Having described some of the main features of the model above, here we showed that the trained RL
model’s behavior matches the hallmarks of perceptual decision making under uncertainty observed
in empirical studies in humans, non-human primates, and rodents; c.f. [1, 26] for reviews of these
empirical findings.

Fig. 3(a)-(b) shows the psychometric and chronometric functions that describe the relationship between
decision accuracy and reaction time with motion coherence. As can be seen in this figure, increasing
coherence increases accuracy and decreases reaction time, replicating extensive previous empirical
findings. Perhaps more surprisingly, the simulation results (black symbols) are also in decent agreement
with predictions obtained directly from the closed-form solutions to the bounded accumulation process
[27]:

Accuracy(c|B,K) =
1

1 + exp[−2KcB]
(4a)

RT(c|B,K) =
B

Kc
tanh(KcB), (4b)
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where K and c were already introduced in Eq. (1), and B is the terminal state of the RL model at
the end of learning, defined in the section 2.2. Previous empirical studies that employ the sequential
sampling models often interpret the behavior using the above two equations for which K and B are
fitted to the data. In the language of sequential sampling, K and B are known as the drift rate
coefficient and the decision bound/threshold, respectively.

In addition to demonstrating the model’s summary behavior through psychometric and chronometric
functions, we also studied the inner workings of the model within the course of each trial, as shown in
Fig. 3(c). We see the state transitions (Eq. (1)) in two example trials. The blue trace shows a trial in
which a weak rightward (c = +6.4%) stimulus was presented to the model. The model took its time,
collecting evidence and switching states for a fairly long number of time (≈ 500) steps. In comparison,
the red trace shows another trial where a similarly weak but leftward stimulus was presented to the
model. Here the model took a shorter time, arriving at the correct terminal state before the 400 time
steps. These two examples suggest that our RL model performs similarly to the sequential sampling
models. This is particularly remarkable because at no point in the model description and training
did we introduce any explicit boundary. This is where our model diverges from the ideal observer
approaches [23, 22, 28] that calculate the boundary based on their a priori knowledge of the structure
of the environment.

In S.6, we demonstrate the replication of a number of other, related empirical observations such as
the difference between error and correct reaction times (Fig. S.11), post-error slowing (Fig. S.12) and
the impact of volatility on decisions accuracy and reaction times (Fig. S.13). We encourage interested
readers to utilize the model code and try out replicating other empirical findings in perceptual decision-
making.

3 Decision dynamics during learning

A key problem with previous RL models of perceptual decision making [29, 30] is that they did not
produce any predictions about the development of reaction times during training. Our model, however,
is naturally apt to address this problem. We, therefore, proceeded to examine how model reaction
times and accuracy change in the course of learning.

Fig. 4(a) illustrates the changes in model decision accuracy with progress in learning. Consistent with
numerous empirical observations, model accuracy starts around the chance level and progressively
improves. We draw a direct comparison between the model behavior in Fig. 4(b) and empirical data
reproduced from a previous study [31] in the inset. Adopting that study’s terminology, the threshold
was defined as the coherence level at which the model performed at 82% accuracy, and the lapse rate
was defined as the residual error rate at the highest level of coherence (100%). Our model’s choice
behavior shows qualitative consistency with those empirical observations.

In Fig. 4(c) the RL model’s reaction times in the course of perceptual learning are plotted. Reaction
times start fast and slow down with more training. This pattern of reaction times is indeed a direct
consequence of the Q-learning algorithm: since the Q-table is initialized to zero, actions have similar
values at the onset of learning. Therefore, in the early phases of learning, the terminating Right or Left
actions are chosen with a high probability of ∼ 66.6% before any evidence is accumulated. The model
learns to wait by committing frequent quick errors and decreasing the value of all three actions for the
states around zero, albeit to different degrees. In other words, the consequence of starting the Q-table
with such a blank slate is that the model would be barely exposed to the stimulus early in training.
Consequently, early trials provide little opportunity for the model to learn the association between
coherence and terminal actions. This profile of behavior, however, is different from several previous
empirical observations where training usually starts with slower reaction times that progressively get
faster [10, 11, 12, 13, 14, 15, 16]. Since this divergence is largely a consequence of the initial symmetry
of the actions embodied in the initial blank slate Q-table, in S.3, we offer two alternative solutions to
this issue based on the initialization of the Q-table differently.
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Figure 4. Changes in decision Accuracy and RT during training. (a) Accuracy increases as
training progresses. Light grey curves show this for 30 individual simulations, with the same model
parameters, smoothed through convolution with a unity array of size of 50. The solid black line shows
the average over these simulations. (b) Changes in psychometric threshold (black) and lapse rate (red
) during training. The psychometric threshold is defined as the coherence level at which the model
performs at 82% accuracy (e.g. α in Weibull CDF [3, 31]) and the lapse rate is the error rate in trials
with 100% coherence. Think curves are fits to the data points via similar functions used in [31]. The
inset shows empirical data from macaque monkeys [31]. (c) Same as (a) but for the reaction times.

4 The impact of payoff structure on Speed-Accuracy Trade-off

Having examined the dynamics of Speed-Accuracy Trade-off (SAT) during learning, we then proceeded
to examine whether the model could flexibly trade-off speed and accuracy under various payoff con-
ditions. This demonstration is critical for two reasons. First, previous reinforcement learning models
have never been employed to explain the variations in choice reaction time in response to character-
istics of the environment. Second, the extensive previous literature on speed-accuracy tradeoff [32,
33, 34] in experiments involving human [35, 36] and non-human [17] primates provides a strong set of
constraints to test our model with.

Here, we focus on previous empirical works in humans demonstrating that increasing the cost of errors
relative to the reward for correct choice prolongs reaction times and prioritizes accuracy; conversely,
speed was prioritized when the reward for correct choice was increased [35, 37, 36]. These empirical
observations were explained by changes of bound in sequential sampling models with a fixed drift rate.
Several other studies that examined SAT in humans in a variety of decision tasks have also argued
that SAT is best explained by changes in decision bound [38, 39]; c.f. Discussion).

To examine if our modeling framework could account for these empirical observations, we examined the
following hypothesis: as long as the cost of waiting is kept low, increasing the cost of mistakes (vs the
benefit of correct responses) should tip the balance towards accuracy. We tested our model under vari-
ous payoff regimes, systematically altering the Cost-Benefit Ratio (CBR), defined as |Rwrong/Rcorrect|,
over a wide range without imposing or assuming any decision threshold beforehand. The results in
Fig. 5 show that when CBR is high (red curves in Fig. 5(a)-(b)), the model reaction times are longer
and accuracy is higher. In contrast, when CBR is low, decisions are faster and mistakes are more fre-
quent (purple curves in Fig. 5(a)-(b). These findings confirm our hypothesis. To further understand
how these results arise from the RL dynamics, we investigated the relationship between CBR and the
position of terminal states in the Q-table. Fig. 5(c) shows a direct relation between the position of
the terminal state and the CBR, depending on the learning rate ϵ. For any given ϵ, the position of
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Figure 5. Speed accuracy trade-off (SAT) of the trained model (a) Choice Accuracy and
(b) RT for different values of CBR: Large (4), Intermediate (3), and Small (2) indicated by different
colors. (c) The terminal state for different values of CBR and different learning rates ϵ. Increasing
CBR pushes the terminal state further away from zero, producing the dependence shown in (a)-(b).
Curves are smoothed using a moving average filter and U = 900. CBR values were changed from 0.01
to 105 in equal logarithmic steps, by fixing Rcorrect = 20 and changing Rwrong. Choice Accuracy (d)
and RT (e) versus coherence level the cost of the Wait action is changed while CBR is kept constant.
RT values are smaller and Accuracy is lower compared to the cost of the Wait action, as can be seen
by comparing black and gray curves corresponding to Rwait = −2 andRwait = −1, respectively. Error
bars are SEMs across trials; The simulation involved 1200 trials.

the terminal state remains relatively constant for CBRs beyond a certain critical value. This value
obviously depends on M and also other parameters of the model, e.g. the total number of trials (see
Fig. S.7 for more details).

One caveat of examining SAT as a function of CBR is that CBR is independent of the cost of the
Wait action. However, any plausible mechanistic explanation of SAT should factor in this cost [23].
To examine the impact of changing the cost of the wait (W) action on SAT balance, we tested the
hypothesis that with equal cost of error and benefit of correct response, increasing the cost of waiting
should prioritize speed. Fig. 5(d)-(e) show that indeed, when waiting is more costly (black curve),
reaction times decrease and accuracy is diminished. Reducing the cost of waiting (gray curve in Fig.
5(d)-(e)) reverts the trade-off in favor of accuracy. Together, the results in this section indicate that
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our model-free RL is able to learn how long to wait before committing to a definitive choice in a way
that balances the cost of evidence accumulation against the cost and benefit of choice outcomes.

Figure 6. Comparison of our model with the optimal model forc = 6.4% (a) Optimal
terminal state and reward regime for the optimal model Eq. (5). We studied the relation of optimal
terminal state (colors) to Rcorrect and Rwrong. The red dot denotes a reward regime that has been used
in Fig. 7. (b) same as (a) but for models simulations (N=10 iteration, ϵ = 0.01, β = 50,∆ = 0.1, γ =
1, U = 3000). (c) Difference between optimal terminal state (a) and model’s terminal state (b). (d)
same as (c) but with the normalized difference. The payoff regime that we chose (500, -1200) has a
small distance to the optimal model.

5 Comparison with Optimizing Expected Reward

Setting a decision threshold on evidence accumulation in perceptual decision making under uncertainty
can be thought of as an optimization of a cost function. One reasonable choice for such a function is
the expected reward defined as

ER(B,K) = RcorrectAccuracy(c|B,K)−Rwrong[1−Accuracy(c|B,K)]−RwaitRT(c|B,K) (5)

where Accuracy, RT are the same as those in Eq. (4). Since in Eq. (5), B can take continuous values,
in the simulations reported in this section, we have also used ∆ = 0.1, so as to make the discrimination
of the states of the model finer. We consider the case of ∆ = 1 which is used in the other results
reported so far in S.4. We call the value of B for which ER(B,K) is maximized as optimal terminal
state. Note that we used the simple grid search over Eq. (5) to obtain the optimal B.

In Fig. 6, we show the value of the optimal terminal state (Fig. 6(a)) and those reached by the model
(Fig. 6(b)), as well as the difference between the two, Fig. 6(c), for different choices of Rcorrect and
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Rwrong and fixed Rwait = −1. It is clear from these figures, that there is a region in the (Rcorrect, Rwrong)
plane that the optimal terminal state and that of the model are quiet close to each other (e.g. within
10%). Fig. 7 shows the relationship between the optimal terminal state and that of the model when
Rcorrect and Rwrong correspond to a point in this region, specifically the point denoted by the red dot
in Fig. 6, with R = {500,−1200,−1}.

Figure 7. Optimality of the terminal states. (a) Expected Reward (Eq. (5)) as a function of B
for R = [500,−1200,−1], γ = 1 and c = 0.064; the maximum is denoted by the red dot. (b) Position
of the terminal state reached by the model for different learning rates ϵ, compared to the optimum
(dashed line). (c) Optimal terminal states and those reached by the model with ϵ = 0.01 and after
3000 trials, plotted versus the cost-benefit ratio (CBR). The model’s terminal states in taken as the
average of the terminal states over the last 300 trials. CBR corresponding to the parameters in (b) are
indicated by a dashed line. (d) Similar to (b) but for different coherence levels; ϵ = 0.05 and U = 6000
were used. In the case of simulations in (b)-(d) the solid curves are averages and the shaded are the
STD over 5 simulations. In all simulations here we used ∆ = 0.1.

In Fig. 7(a), we first plot the expected reward as a function of the terminal state B; the optimal
terminal state is denoted by a red dot. Fig. 7(b) shows when trained on a fixed coherence c, how the
terminal state reached by the model compares with the optimal terminal state. For large values of ϵ
(blue curve in Fig. 7(b)), the model overshoots the optimal. This means that, across training, the
model keeps accumulating more and more evidence, increasing its reaction time, without the accuracy
changing significantly: large ϵ constrains accuracy but not reaction time. The model can, however,
arrive at a terminal state close to an optimal one (dashed line) as long as the learning rate ϵ is
adequately small. In sum, the model that is not explicitly designed to optimize the expected reward
can indeed be close to optimal in the sense of the cost function in Eq. (5) for some pay-off regimes.

In Fig. 7(c) we examine the concordance between the terminal state reached by the model and the
optimal one in more detail. Interestingly, when plotted as a function of the cost-benefit ratio, the
terminal state found by the the model follows that of the optimal solution closely, with the difference
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between the two remaining relatively constant as the the cost-benefit ratio changes. Combined with
the fact that the actual position of the model and optimal terminal states increase linearly with CBR,
for larger CBR, the terminal state of the model can get to only a few percent of the optimal solution;
the red dashed line, corresponding to the CBR of the reward values used in Fig. 7(b).

Fig. 7(d) shows how changing the coherence level affects the optimal terminal state and the terminal
state reached by the model. We can see that although the concordance is not always great, the terminal
state reached by the model follows similar trends as the optimal. Firstly, in both cases, the terminal
state initially increases with coherence. They both then reach a maximum, before decreasing with
c. Although the terminal state of the model is consistently smaller than the optimal one for larger c
increases, they have comparable slopes of decay with c.

In S.4 we show that the results described above are also true when we discretize the states of the model
with ∆ = 1. We discuss the differences between the two choices of ∆ in more detail in that section. We
also note that, for the simulations in this section, the coherence level was fixed because the expected
reward in Eq. (5) was defined for fixed c. Extending this definition to a more general case in which c
changing during training is possible, but finding the corresponding optimum is a non-trivial task. Yet,
the results of Fig. 7 discussed here indicate that even in such a scenario, the model does not diverge
far from the optimal solution.

6 Deciding without evidence accumulation

Up to this point, our model dispensed with the assumption of a decision boundary. Yet, it still relied
on accumulating the moment-to-moment sensory evidence: in Eq. (1) Et is added to st. Reasonable
as it may be, it is important to see whether this operation is a necessary condition for the model to
function. In this section, we show that indeed it is not. Even when state dynamics that do not involve
accumulation of evidence, action selection and Q-learning, namely, Eq. (3)) and Eq. (2), are sufficient
for decision making.

We set the dynamics of the state variable to follow exterma detection [40, 41], and we have

sut = ⌊Et⌉S . (6)

An example of the resulting dynamics is shown in Fig. 8, with ϵ = 0.1, reward set R = [20,−50,−1]
and M = 100 and the resolution of state space, as before, is set to ∆ = 1. Starting with the same
parameters with which the evidence accumulation (Eq. (1)) model yielded reasonable performance
previously, we see (Fig. 8(a)-(b)) that, the success of Eq. (6) depends critically on the value of sensory
gain parameter K. When K value is in the range used in the evidence accumulating simulations
(K = 0.4), then Et in Eq. (6) is rarely sufficiently large to move the model towards higher states.
Consequently, for such a small K, the system practically gets stuck in a few states around zero. This
change, though, when we consider larger K and the model performs satisfactorily.

Increasing K leads to larger values of Et for the same coherence level cµ. Even though the model with
Eq. (6) does not accumulate the momentary evidence it receives, it nonetheless achieves very reasonable
performance if we set (for example) K = 5: the psychometric and chronometric curves shown in Fig.
8(a) and (b), respectively, now reflect the same canonical features that we previously observed in Fig.
3 and in empirical studies. Note that although the accuracy of the extrema detection model matches
that of the accumulation model, the reaction time (RT) is consistently longer for extrema detection,
especially at lower coherence levels. As can be seen by comparing Fig. 8(c) and e.g. Fig. 3(d), the
Q-values associated with the actions in each state after training show the same prominent feature,
namely, that terminating states develop on the left and right sides of 0, corresponding to (correct) Left
and Right actions. With Eq. (6), the Q-values of the actions, however, depend more strongly on the
states compared to Eq. (1).

To compare the the state dynamics of the two approaches quantitatively, we kept all the parameters
including the trial sequence identical between the two and simulated 20 simulations for each case. Fig.
8(d), demonstrates that the accuracy of the accumulation model is higher than that of the extrema
detection for all values of K. Variability across simulation runs is also larger for extrema detection.
For large K, however, these differences diminish. Similarly, Fig. 8(e) shows that the RT of the
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Figure 8. Decision making in the model without accumulating evidence. (a) The Accuracy
of the extrema detection model (Eq. (6)) with K = 0.4 (light red) and K = 5 (dark red) and that of
the evidence accumulation model (Eq. (1)) with K = 0.4 (black). The extrema detection model with
small K (light red) performs near chance level but increasing K leads to accuracy similar, although
with more variance, compared to the evidence accumulation model. (b) Similar to (a) but for reaction
time. The exterma model with small K stays around the maximum in most simulations (maximum
time of stimulus sequence was set to 1000 samples) with few reaching lower values, hence the larger
variability. (c) The Q-values after training for the extrema detection model with small K (top) and
large K (bottom); compare this to Fig. 3. (d) Systematic study of the effect of K on the accuracy of
extrema detection (red) and evidence accumulation models (black), averaged over all tested coherence
levels. The dots correspond to the simulations depicted in (a) using the same color conventions. (e)
same as (d) but for RT. Error bars in (a) and (b) and the shaded area in (d) and (e) are SEM across
20 simulations, each including 900 training and test trials.
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accumulation model, for all values of K, is consistently shorter than those of the extrema detection
although this difference shrinks significantly with higher values of K. As a side note for interested
readers, increasing the resolution of states by decreasing ∆ can produce similar results. This is not
depicted here but made available for examination in the shared code.

7 Discussion

Sequential sampling with integration to bound models has been extensively influential in our under-
standing of decision making under uncertainty [42, 43]. These models, however, have not produced
a compelling explanation for two crucial issues. First, it is not clear how, when the animals are in-
troduced to a new task, they learn the decision boundary given that they know very little about the
experiment and the requirements of the task. Second, the way these models explain how agents adapt
to changes in context is not consistent with empirical evidence. Studies of speed-accuracy trade-off in
humans and other animals have shown that once the agent has learned the task and performs ade-
quately, they can adapt to the new context. accumulation to bound models explain this by proposing
a change in the decision bound, but empirical investigations in primate brains have not found evidence
for such a proposal [17, 44, 32]. By introducing a new, simple Q-learning model we addressed both of
these issues.

Two key innovations distinguish our Q-learning algorithm: an action repertoire with an extra, Wait
alternative and a state variable that accumulated noisy samples of information from the environment.
The combination of these two innovations allowed the model to learn to decide via sequential sampling
without, at any point, comparing the accumulated evidence with a decision boundary. The resulting
model provides clear answers to the two outlined above. Regarding the first issue, that learning to
decide, our model goes beyond earlier works that used model-based approaches for the determination
of boundaries in perceptual decision making under uncertainty [23, 36]. Departing from those earlier
works, our model-free approach does not require detailed explicit knowledge of the underlying statistical
structure of the task. The model qualitatively reproduces the canonical hallmarks of chronometric and
psychometric behavior observed in perceptual decision making under uncertainty. Earlier applications
of model-free RL to perceptual decision making [29, 30] did not account for reaction times. By naturally
accounting for reaction times, our model thus goes one step beyond those earlier models.

Furthermore, our model performed reasonably even without accumulating evidence showing that se-
quential sampling is sufficient, by itself, for perceptual decision making under uncertainty. As long
as the internal states are arranged such that larger coherence levels push the model to states further
away from zero and do so more rapidly than lower coherence levels, psychophysically plausible deci-
sion making needs neither boundary nor accumulation. The key challenge of reinforcement learning
here, therefore, is to exploit that correspondence between the external noisy sensory information and
internal states. How that correspondence is implemented in the agent’s brain could be a combination
of evolutionary, genetic, and developmental processes. This is a fundamental question that is beyond
the scope of the work presented here but calls for revisiting the tenets of the commonly held beliefs
about the neural mechanism underlying decision making under uncertainty.

Regarding the second issue, that of context, by studying the effect of CBR, we demonstrated that
our model could adapt and trade off speed with an accuracy consistent with the requirements of
the payoff table: asymmetric payoff tables with a higher reward for correct or higher punishment
for incorrect decisions shifted the model’s psychometric and chronometric functions consistent with
empirical observations [36]. Moreover, when rightwards and leftward movement stimuli were not
present with equal probability, the Q-table dynamically changed to adapt to the new distribution
producing faster reaction times for the more likely option. Our model thus successfully adapts to
changes in both payoff and probability contexts.

A number of previous studies have utilized evidence accumulation models to investigate the dynamics
of value-based choice in reinforcement learning [45, 46, 47]. It is important to highlight the differences
between our work and those previous approaches. In short, whereas they relied on sequential sampling
models to characterize the within-trial dynamics of choice in an RL task, we relied on RL to characterize
how the sequential sampling process evolves within and across trials. In those previous works, the RL
agent’s aim is to find out which choice option (e.g., ”bandit”) yields the higher reward by iteratively
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choosing among the options, comparing the outcome to its expectations, and updating its options’
values. At any given trial, the choice is made stochastically through a diffusion process (towards
a predefined boundary) whose drift rate is a function of the latest update of the option values. In
these models, the rate of evidence accumulation is determined by value learning. Here we opted for a
much simpler approach by adopting a constant drift rate (c.f. Eq. (1)) and dispensing altogether with
boundary, regulating the evidence accumulation process by model-free RL instead. Integrating the
concurrent learning of the drift rate into our model could be a promising avenue for future research.

A key strength of the sequential sampling framework is that it treats decision making under uncertainty
as an optimization problem whose aim is to find the decision boundary that maximizes the reward
rate given a combination of signal coherence, payoff regime, average accuracy, and average reaction
time. Our simulations revealed that the position of the terminal state in the Q-table in some cases
matches that of the optimal solution, and in general the way it changes with the parameters of the
task, reflects features similar to those of the optimal solution. Optimizing the expected reward could,
of course, be a consequence of Q-learning, but to meet the sufficient conditions for this to be the case,
each state-action pair must be tried ”many times,” and the learning rates must be allowed to decay
(see [48]). However, our simulations do not meet these conditions: the model does not explore all
state-action pairs and uses a constant learning rate. Even if these conditions are met, convergence
to optimality can take an extremely long time due to the complex nature and large expanse of the
state space. This may explain the consistent underestimation of the decision threshold observed in
model simulations. It is thus encouraging to see that while our model is not geared to any of these
requirements it still behaves consistently with the optimal solution.

A longstanding tradition in the investigation of perceptual decision making is to have subjects (be
they human or non-human animals) undergo extensive training to reach a stable, asymptotic level of
performance before they participate in the experiment proper. In this tradition, which includes many of
the current authors’ previous works too, hundreds and thousands of such training trials are discarded
because these data (behavioural and/or physiological) are deemed too unstable for interpretation.
Another justification for discarding training data was that, up to now, there was no simple and general
model for interpreting behavior during learning in perceptual decisions making under uncertainty.
Future studies will be able to use our model to revisit those discarded data and compare them to
model predictions.
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Figure S.1. Cartoon depicting different stages of the Q-table for the toy model. The Q-
values of the different actions are shown for each state for each of the stages of the dynamics discussed
in the text.

Supplementary Material

S.1 A toy example scenario

To gain some insight into why the emergence of the terminal states discussed in section 2.2 makes sense,
it is imperative to consider the simplest version of the model: when at each trial u, the coherence level
cu can be either +1 or -1 and σ = 0, ϵ = 1, γ = 0 and β = ∞. In this case, the Q-table evolves
deterministically and the actions are also taken deterministically, thus making understanding the
evolution of the Q-values considerably easier. As will be shown below, in this case after a number of
trials the Q-table converges to a configuration, whereby in state 0 the Wait action will have the largest
Q-value while in states -1 and 1, Left and Right actions will have the largest Q-values, respectively.
Starting from state, 0, the agent will start with Wait then move to state 1 or state -1 depending on
the coherence level, and then respectively choose the Right or the Left action.

The Left/Right Symmetry of the Q-table breaks. Without loss of generality, suppose c1 = 1.
The agent makes a Right or Left actions by chance after a number, Γ, of Wait actions. Since the
Q-values are initialized at zero, this happens with probability (1/3)Γ+1 and the trial ends with the
agent in state sΓ = Γ. Assuming Γ ≥ 1, at the end of the first trial, we have Q(s, :) = (0, 0, Rwait) for
s = 0, · · · ,Γ−1. For sΓ = Γ at which the terminating action is taken, two possibilities exist: Q(Γ, :) =
(Rcorrect, 0, 0) with probability 1/2 when the final action is correct (Right), or Q(Γ, :) = (0, Rwrong, 0)
with probability 1/2, when it is incorrect (Left). In both cases the Right action ends up being the
preferred action in s = Γ. The important point now is that the symmetry between between s > 0 and
s < 0 is now broken, as a consequence of performing the first trial. This is shown in Fig. S.1a.

One of Left or Right actions becomes the preferred action at s = 0. At the beginning of this
trial, Q(0,Wait) < Q(0,Left) = Q(0,Right) = 0, so Left or Right actions will be chosen with equal
chance, and the trial ends. If c2 = 1, taking the Left action is incorrect and turns Q(0,Left) = Rwrong,
while taking the Right actions is correct, turning Q(0,Right) = Rcorrect. In both cases, the Q-values
of the remaining two actions do not change, and, since Rwrong < Rwait < Rcorrect, the Right action
will have the largest Q-value at state zero; see Fig. S.1b. Similarly, if c2 = −1, then the Left action
will have the largest Q-value at state zero.

At the beginning of the next trial, then, the Right action will always be immediately taken. Note that
if we had Γ = 0 in Trial 1, the agent would end up in this situation at the beginning of Trial u = 2
and the following would ensue.

Wait becomes the preferred action at s = 0. Suppose that c2 = 1. If c3 = 1, this will
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be the correct decision, and Q(0,Right) will further increase. This continues to be the case in all
subsequent trials until a trial with c = −1 is encountered. When the first c = −1 trial is observed, the
Right decision that the agent takes in state zero is incorrect, and thus Q(0,Right) decreases. After a
number of trials, which depends on how many of the preceding trials had c = 1, as well as how large
|Rwrong|− |Rcorrect| is, eventually, Q(0,Right) < Q(0,Wait). If c3 = −1, this happens at the third trial
itself.

In other words, after a sufficient number of trials, not only the symmetry between s > 0 and s < 0 is
broken (Q(s,Wait) < Q(s,Right) = Q(s,Left) for s = 1, ·,Γ − 1, and Q(s, :) = 0 for s = −Γ, · · · , 1),
the Wait action is now the preferred action at s = 0; see Fig. S.1c. This is also the case if c2 = −1.

Right action becomes preferred at s = 1. In the trial that follows the formation of this structure
in the Q-table, the agent first Waits, and if c = 1, moves to state +1. Here it will take Right
and Left actions with equal chance leading to Q(1,Right) = Rcorrect > Q(1,Left) > Q(1,Wait), or
Q(1,Right) = 0 > Q(1,Wait) > Q(1,Left) = Rwrong: the Right action will end up having the largest
Q-value in state s = 1; see Fig. S.1d. If c = −1, the agent moves to state −1, where all actions have
Q-value zero, and then everything will be similar to the case of Trial u = 1 above but with Right and
Left actions reversed. Eventually, the Left action becomes the preferred action in state −1.

Given a sufficient number of trials with right- or left-wards stimuli with similar frequency, converges
to a Q-table where the largest Q-values for the -1, 0, and 1 correspond to those of the Left, Wait, and
Right actions, respectively.

S.2 Effect of the Learning Rate ϵ and number of states M

The trajectory that Q-values take during training and consequently the development of the terminal
states shown in Fig. 2 (see section 2.2) is of course dependent on the learning rate, ϵ. Fig. S.2
this dependence, showing that for the model with a higher learning rate, the states that become the
terminal states are further to the right or left of those with smaller learning rates, of course, is such
states exist. Naturally, then, the accuracy and reaction time achieved by the model after a fixed
number of trials depends on both M and ϵ as shown in Fig. S.3 for U = 900. For any given learning
rate, ϵ, average reaction time (Fig. S.3(a)) and average accuracy (Fig. S.3(c)) quickly asymptotic
as M is increased. Fig. S.3(b)-(d) show the same data re-plotted with the learning rate, ϵ, on the
x-axis and the number of states M determining the color code. For very small values of M , average
reaction times show a nonlinear relationship to the learning rate and accuracy remains very low. As
M is increased to ≳ 40, however, average reaction time shows progressively more linear relationship
to the learning rate.

S.3 SAT During learning: Observation Learning and Time Dependent
Waiting

As discussed in section 3, when the Q-values are all initialized at zero, the reaction times at the
beginning of training are small while they increase as training progresses. This pattern is not consistent
with several previous empirical studies and in this section, we propose two alternative ways to resolve
this inconsistency.

S.3.1 Observational learning

To explain this inconsistency between empirical observations and theoretical observations, we reiterate
that our RL model starts with a blank slate, i.e., without any experience of what the stimulus consists
of and how it relates to action and outcome. This is not the case in empirical studies of decision
making neither in human nor in animal experiments. Human participants are often given a set of
“instructions” explaining to them, often verbally, what they are about to experience and what they
are expected to do. Moreover, in nearly all psychophysical experiments, before starting the experiment,
participants get a few “warm up” trials in which the experimenter demonstrates the stimuli, the correct
choices, the actions, and the corresponding rewards. In animal studies too, experiments are preceded
by extensive and elaborate acclimatization and habituation procedures to familiarize the animal with
the environment and its affordances such as the stimuli, and the available actions. These procedures
are necessary to reduce the animal’s anxiety in the novel environment and to draw its attention to
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Figure S.2. The effect of learning rate on q-values during learning. The thick lines are for
ϵ = 0.36. The thin lines indicate q-values under ϵ = 0.08 (other parameters are kept the same). For
clarity of terminal state positions, the zoomed-in versions are depicted on top of the middle and right
panels. For a given number of training trials, larger ϵ spans wider over state space. Model parameters
are U = 900.
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Figure S.3. Effect of learning rate and the available number of states on Model’s be-
haviour (RT and Accuracy) during training (a) Average RT (y axis) decreases with increasing
the number of available states (x axis). The exact shape of this relationship depends on the learning
rate (color bar). (b) Average RT (y axis) does not have a monotonic relationship to learning rates
(x-axis). Here, colors represent the number of available states. (c) Same as (a) but for accuracy. (d)
Same as (b) but for accuracy. In both (a) and (c), the shaded areas are standard deviations over
interactions (n=5). Here, we used a version of the model with no TD and with hard max (namely,
γ = 0, β = ∞)
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Figure S.4. Model behaviour following a period of observational learning. (a) Observational
Learning paradigm. Following [49] the model observes the stimulus and the behaviour of a demon-
strator in 8 trials. In each trial, a highly coherent stimulus (51.2%) is presented for a fixed duration
of 300 time steps followed by the execution of the correct action and reception of the corresponding
reward. The model updates its state and Q-table accordingly. (b) Q-value at the end of observational
learning, averaged over 100 simulations. The Q-values at the end of the observational learning is used
as the initial condition for the model going through 400 trials of learning similar to those the main text
(Eqs. (1), (2), (3)). (c) The reaction times, (d) terminal states and (e) choice Accuracy as learning
progresses. In (c)-(e) Solid curves depicts averages over 50 simulations, each smoothed as in Fig. 4,
and grey areas indicate SEM. The rewards set used for this analysis is R = {100,−50,−1}.

the relevant components of the experimental setup. These procedures are often specific to the lab,
animal species, experimental question, and the experimenter’s personal style and experience. The
impact of these informal procedures, both in humans as well as other animals, on behavior is unknown
and often ignored under the convenient assumption that the scientific question of the study must be
more interesting and important than issues as trivial as the impact of instructions. Indeed, our own
formulation of the RL model described so far did not take this issue into account. To close this gap, we
simulate the instructions that human participants receive in psychophysical experiments on decision
making by giving the model a short “warm-up” with observational learning before embarking on its
instrumental learning task.

In addition to learning by doing, one can acquire new behaviors, skills, or information by watching
the actions and outcomes of others. In the RL framework, the observational learner can update its
value function (for example, the Q-table in our formulation here) by observing a demonstrator’s chosen
actions and their outcomes [49, 50, 51]. We had the model with the blank slate initial Q-table observe
a demonstrator going through several demonstration trials of the random dot motion task Fig. S.4(a).
In each trial, the stimulus had high coherence (%51.2). The demonstrator chose the Wait action at
consecutive time steps of the trial while the observing learner updated its state variable and Q-table.
When the stimulus duration came to its end, the demonstrator chose the correct terminal action and
received the reward Rcorrect, again with the observing learner updating its Q-table. Fig. S.4(b) shows
the observer’s Q-table after 8 demonstration trials, each of them comprised of 400-time steps. This
instructed model was then tasked with learning to make its own decisions. Here, the model started
with long reaction times and became progressively faster without losing accuracy (Fig. S.4(e)), via
lowering the terminal state (Fig. S.4(d)).
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Figure S.5. Effect of time-dependant cost of waiting. (a) Cost of waiting increases (that is
Rwait < 0 decreases) as trials progress (Eq. (7)). (b)-(e) Same as Fig. S.4(b)-(e) but for the the case
time-dependent Rwait and and 50 simulations.

S.3.2 Time Dependant Waiting

Another plausible solution for the discrepancy between the results of Fig. 4 is making the cost of the
Wait action, Rwait time-dependent, e.g. by using the following

Rwait(u) =
R∞

wait

1 + eλ(τ−u)
(7)

where R∞
wait defines the asymptotic value of Rwait(u) as time approaches infinity, λ determines how

quickly Rwait(u) approaches this value and τ determines the point at which Rwait(u) is halfway to
R∞

wait.

In the simulations in this section, we used R∞
wait = −1.5, λ = 0.004 and τ = 600, resulting in Rwait(u)

as plotted in Fig. S.5(a) with the cost of waiting at the start of the experiment to be Rwait(0) = −0.12.

In the beginning, since the cost of waiting is not significant, the model tends to move toward higher
states as lower states are perceived as less rewarding. This results in an increase in both response time
(RT) and accuracy. This behavior is also typically observed in the base model (see Fig. 4). However,
as the cost of waiting progressively increases (Fig. S.5(a)), the model ceases to advance to larger states.
Instead, it is enforced to make decisions more quickly by reducing the terminal state. Consequently,
after an initial rise, the model begins to decide faster (see Fig. S.5(c)). This reduction in the terminal
state, however, is not substantial enough to affect accuracy. Therefore, after an initial rise, accuracy
remains unchanged (see Fig. S.5(e)).

S.4 Comparison with optimal terminal state for ∆ = 1

In section 5 of the main text, we defined optimal terminal state as the value of B that maximizes
ER(B,K) in Eq. (5) with other parameters fixed. Since Eqs. (4), and Eq. (5), are often defined over
a continuous range for B, in that section we considered the case of of finer discretization of the state
space by assuming ∆ = 0.1 in Eq. (1).

Here in Fig. S.6, we show what happens if the discretization is not as fine: we choose ∆ = 1, a value
that we have used in our other simulations. Everything here is the same as Fig. 7, except for ∆. One
can see that, overall, the results do not qualitatively change.
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Quantitatively, however, there are some small differences. Firstly, as expected, the terminal state of
the model reaches the optimal after fewer learning trials (Fig. S.6(b) vs Fig. 7(b)). Perhaps more
noteworthy is the fact that when plotted versus CBR, the variability in the terminal state reached by
different simulations of the model is larger for ∆ = 1 than ∆ = 0.1 (shaded magenta Fig. S.6(c) vs
Fig. 7(c) but that the average is still close but mostly smaller than the optimal terminal state. Since,
similar to the corresponding figure in the main text (Fig. 7(b)-(c)), these results are for c = 0.064, in
Fig. S.6(d) we also compare the terminal state reached by the model with the optimal terminal state
for different coherence levels. Although the overall pattern is the same as Fig. 7(d), with ∆ = 0.1, the
model terminal state typically is at higher values and in fact overshoots that of the optimal states for
a range of c.

Figure S.6. Optimality of the terminal states for ∆ = 1. Everything is the same as Fig. 7,
except that we now have ∆ = 1.

S.5 The effect of various parameters on the terminal state

For the majority of the analyses shown in this work, we used parameter values reported in section
2.1. In Fig. S.8, we report a systematic study of the impact of each parameter on the terminal state
reached by the model. We used a fixed set of parameters for each analysis while systemically changing
the parameter of interest. The number of training trials was fixed at U = 900 and the terminal states
at the last 100 of these were averaged.

S.6 Replication of previous empirical findings

Similar to any other cognitive computational model, our model could serve as a virtual participant in
numerous empirical studies found in the literature of perceptual and value-based decision making and
test whether one could ”replicate” those findings. Importantly, our model could be tested at the level
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Figure S.7. Sensitivity of the model’s optimal terminal state to the number of trials. If
we simulate the model for U = 1000 the models lose its sensitivity to high values of CBR (inset, left).
Yet, if U = 3000 the model will be more sensitive to CBR and show a behavior similar to the optimal
model.

Figure S.8. Systematic study of parameters respect to the terminal state. The shared
parameters that have been used in this study are as follows R = {20,−− 50,−1}, γ = 0.9, β = 50, ϵ
= 0.1, the maximum number of samples per trial = 1000. In each panel, the parameter of the interest
(x-axis) was systematically altered while the other parameters were fixed as above. (a) study of β
(Eq. (2). The shaded area is STD over simulations (N=30). Inset is the zoomed-in version of (a) for
smaller values of β. (b) Same as (a) but for ϵ in Eq. (3). (c) Same as (a) but for reward of waiting.
(d) Same as (a) but for the reward of being correct. (e) Same as (a) but for reward of being wrong.
(f) Same as (a) but for γ in Eq. (3).
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of its behavior (i.e., reaction time and accuracy) as well as at its ”mechanistic” level, for example via
examining the model’s Q-table structure and the dynamics of its state transitions.

Building up from our basic model (Eq. (1)-(3) and section 2.3), we present three successful replications
and one important failed but instructive replication attempt. Brefily, we replicated the effects of
disproportionate training sets ([20], Fig. S.9), reverse pulse ([44], Fig. S.10) and volatility ( [52], Fig.
S.13). Our basic model could not replicate the effect of differences in RTs for correct vs error trials
(Fig. S.11(a)). Motivated by this failure, we introduced a more sophisticated version of the model
with an urgency component. This new model replicated the error vs correct RT effects (Fig. S.11(b))
as well as the post-error slowing effect (Fig S.12) as reported in [53].

S.6.1 The impact of disproportionate training set on choice bias and reaction time

To study the role of prior expectations on perceptual decision-making, Hanks et al [20] examined human
and macaque monkey motion discrimination behaviour under two different schedules differentiated by
the frequency of stimulus categories. In balanced blocks, the two stimulus categories (e.g., leftward
and rightward) were equally (50:50) likely. In the disproportionate blocks, one motion direction was
4 times more likely than the other (i.e., 80:20). The results showed that in these latter blocks, after
300-400 trials, choices favored the more frequent category (Fig. S.9(a)-(b) inset) for which RT was
also faster.
We compared our basic model’s behaviour (Eq. (1), (2) and (3)) under the two schedules (i.e., 50:50
and 80:20). We began by training two instances of the model in the same balanced schedule (3600
trials). Then, one instance went through another 900 trial of learning in the same balanced schedule.
The other instance, however, received 900 trials of the disproportionate schedule. The results did
produce the choice (Fig. S.9(a)) and RT bias (Fig. S.9(b)) favoring the more frequent category,
replicating the empirically reported findings (Fig. S.9(a)-(b) inset). Examining the evolution of the
terminal states in the two instances (50:50 in Fig. S.9.c and 80:20 in Fig. S.9(d)) showed that after the
initial balanced schedule, the terminal states of the two instances were positioned in identical positions
and as expected, did not change in the subsequent 900 test trials. In the 80:20 schedule, (Fig. S.9(d))
however, the terminal state corresponding to the more probable category drifted slowly closer and
closer towards zero. The opposite observation was made for the terminal state corresponding to the
less probable category.
This replication is also important for another related reason. Following the standard practice empirical
studies of decision making (see Introduction), Hanks and colleagues discarded the first 300-400 trials
of the disproportionate blocks in their experimental data. In these initial trials, the behavior was
deemed too unstable for the DDM models to cope with. Here, the results in panels a-b of Fig. S.9 by
follow [20] and do not include the initial 300 trials of the test phase. But, and here is the important
point, the model can also be interrogated during that initial window (the blue areas in Fig. S.9(c)-(d)),
thus drawing very specific predictions for the very same discarded period. As such, our model gives
unprecedented insights into processes that decision neuroscience, especially in animal studies, has so
far discarded as uninterpretable and therefore uninteresting.

S.6.2 Reverse pulse effect

The standard drift diffusion model predicts that if a perceptual stimulus is arranged such that statis-
tically zero evidence is presented to the observer, the process of evidence accumulation should prolong
and decision be postponed such that reaction times increase without any measurable effect on accuracy.
This prediction was tested empirically by the so-called reverse pulse paradigm [44]. Specifically, in this
paradigm, at some point during the presentation of the random dot motion stimulus, a brief (200 ms)
period of zero evidence is surreptitiously inserted into the motion stimulus. In the first 100ms of this
period, the random motion stimulus follows the statistics dictated by the coherence level of the trial.
In the second 100ms of this period, motion stimulus was constructed by reversing the first half. In
this way the motion evidence in the first and second half should cancel the accumulated evidence from
one another. Importantly, this trick was only feasible to test in the low coherence trials otherwise the
subjects could clearly notice the motion reversal in the middle of the trial. Behavioral results (Fig.
S.10(b)-(c) insets) confirmed the predictions: insertion of the reverse pulse increased the reaction times
but did not affect the accuracy.
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Figure S.9. The impact of disproportionate training schedule on choice bias and reaction
time. Choice (a) and RT (b) in different training regimes (Solid line: 50-50 prior, dashed line: 80:20
prior, each condition is simulated with 900 trials). Model behaviour becomes more biased (in both
decision and RT) toward more frequent (here: rightward) decision under 80:20 regime. Insets are
previous findings from by [20]. Error bars in (a) and (b) are SEM over simulations (N = 30). (c)
Evolution of terminal states during 50:50 prior training schedule. The highlighted area is where the
data are deemed to be unstable in ref [20]. Grey-shaded areas are SD over simulations (N = 30).
the green dashed line shows the terminal state of the model before entering balanced or unbalanced
conditions. (d) same as (c) but for 80:20. Here, the terminal state is significantly lower than the initial
terminal state (green dashed line)

.
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Figure S.10. Replication of the reverse pulse effect. (a) Accuracy and (b) reaction times draw
from simulation that compared the basic model performance with (grey) and without (white) reverse
pulse. Inset show the previous finding from ref. [44]. Error bars are 95% Confidence Interval across
trails (U = 2400).

To replicate this finding, after training two identical instances of our basic model (learning rate=0.1;
reward set = 20, -50, -1), we tested one instance with and the other without reverse pulse inserted
into their stimulus sequence (Fig. S.10). Except for the reverse pulse window, the sequences of motion
stimuli in the two conditions were carefully matched and coherence was restricted to very low values
(0% and 3.2%) trials. The trained model (Fig. S.10) replicated the empirically observed behavior (Fig.
S.10(b)-(c)) of longer RTs and no change in accuracy.

S.6.3 Reaction times in correct and error trials: the role of urgency signal

A common observation in perceptual decision making is that, controlling for task difficulty, error
reaction times are longer than those of correct decisions [26]. This intuitive empirical fact has proven
to be a critical challenge for many models of decision dynamics. The canonical form of the drift-
diffusion model, for example, cannot account for the longer error reaction times [26, 27, 54]. Our
basic model (Eq. (1)-(3)) too is unable to reproduce (Fig. S.11(a)) this widely reported empirical
observation.
To address this challenge, previous works have proposed a number of different solutions including
collapsing boundaries, urgency signal, and drift rate variability. One idea is inspired by the intuition
that in the absence of convincing evidence, we may lower our bar for what counts as acceptable [55].
Under high uncertainty, this idea suggests, the boundary come closer to the starting point as time
elapses. The longer the evidence accumulation continues, the lower the decision threshold and thus,
the higher the probability of erroneous decisions. In simulations, collapsing boundaries could reproduce
the difference between correct vs. error RT [55]. Physiological evidence, however, has not supported
this proposition. For example, [53, 3] showed that the maximum firing rate of decision-boundary
neurons in macaque lateral intraparietal (LIP) area do not differ between error and correct trials. An
alternative that shares some mathematical similarity to collapsing boundaries is the urgency signal.
The intuition behind this idea is that the agent prefers to make faster decisions and when the trial
takes longer, some sort of internal urgency builds up in the agent, eventually compelling it to commit
to one of the choice alternatives even when evidence is not particularly great. This urgency signal has
been implemented as an additive term that added to the accumulated evidence. This urgency term
monotonically increases with time does not depend on stimulus uncertainty and has been supported
by recent neurobiological evidence [56, 54, 24].

Inspired by the idea of the urgency signal [54], we modified our basic model by adding an urgency
term to the stimulus evidence, replacing Et in Eq. (1) by Ut defined such that:

Ut = Et + sgn(Et)ρt (8)
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Figure S.11. The urgency effect (a) In the basic model, average error and correct RT are identical.
(b) In the urgency model, however, error RTs are longer. The level of coherence is fixed at 12.8% for
this simulation. (inset): Average and STD (error bar) of terminal state for correct (black) and error
(red) trials. The difference is not significant (t(2399)=1.5, p=0.13).

where Et = N (Kcu, σ2), ρ is the normalization factor (set to 0.005), sgn is the sign function and t
is time within a trial [54]. In this formulation, the second term is a time-dependant signal that is
added to the stimulus evidence (Et). Replacing Eq. (1) with Eq. (8), we obtained a new model
in which the state variable accumulates both time and evidence. Our simulations showed that this
urgency model does reproduce the predicted longer error RT (Fig. S.11(b)). Importantly, comparing
the position of terminal states in the Q-tables in correct and error trials we observe that terminal
states are similar (Fig. S.11(b) inset). Given that the position of the terminal states corresponds to
what DDM literature calls the decision boundary, our simulation results are in line with the previous
physiological findings [53, 55, 3] that reported identical level of neural firing for boundary neurons in
correct and error trials.

S.6.4 Post Error Slowing

Post Error slowing (PES) is one of the oldest and most well-known behavioural observations in decision
sciences [57]. After an error, reaction time in the next trial is slower compared to a trial of the same
level of difficulty that follows from a correct outcome. This intuitively understandable and well-known
behavioural effect has presented substantial challenges to the computational and neurobiological studies
of decision making.

In one study, Purcell et al [53], investigated PES using the same RDK paradigm that we have focused on
here and reported that although post-error reaction times were longer than post-correct, accuracy was
not different between them. They also examined the monkey LIP’s firing rates at the time of response
in order to compare the decision threshold in post-error and post-correct trials and did not observe any
difference between them. These two sets of findings are problematic because, within the framework of
sequential sampling models including DDM, PES is clearly explained as an adjustment of the decision
threshold in the current trial based on the previous outcome. This prediction entails that accuracy
should also be higher after an error vs after a correct choice. Purcell et al’s empirical observations do
not fit this prediction, neither at the level of behavior nor neural activity. An alternative suggestion
that has been proposed to explain PES is that following an error, sensitivity (i.e., drift rates in DDM)
could be modified. However, the empirical observations do not fit this idea either. To account for
their findings, Purcell et al. proposed a model in which changes in urgency (implemented as collapsing
bound) were combined with changes in sensitivity to obtain a model that delivers a change in reaction
time but preserves accuracy in post-error trials (see figure 2 of their study [53]).

Earlier, in S.6.3 we introduced urgency in our framework. Here we show that the same formulation,
when combined with the outcome from the previous trial provides a more parsimonious account that
is consistent with [53] without having to assume any changes in sensitivity. Following [53], we define
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Figure S.12. Replication the Post Error Slowing. (a) Distribution of terminal states in post-
error (red) vs post-correct (black) trials. (b) Accuracy of post error vs post correct trials. The accuracy
did not change, similar to a previous study. (c) Same as (b) but for RT. Post error trials are significantly
slower than the post correct trials; in line with what has been reported before (inset). Error bars are
SEM across simulations (U = 2400). Insets show empirical data from [53]

the level of urgency (Eq. (8), also see S.6.3) as a function of outcome in the previous trial as follows:

ρu =

{
0.001 if Ru−1 < −1

0.003 if Ru−1 > 0
(9)

Where Ru−1 is the reward in trial u− 1 and ρt is the normalization factor, in trial u in equation (8).

The results of the model simulation (number of trials U = 2400; learning rate = 0.1; reward set
{20,−50,−1} for correct, error and wait, respectively) are plotted in (Fig. S.12). Data from the
second part of the simulation (i.e., trial 1200 to 3600) is shown here. Each trial has been labeled
according to its preceding outcome. Several observations are evident. Fig. S.12(a) shows that the
terminal states (i.e., decision threshold) do not differ between the post-error and post-correct trials.
As would be expected from this fact, at the level of behaviour, no difference is observed in accuracy
(Fig. S.12(b)). RTs, however, are longer in post-error trials (Fig. S.12(c)). These findings are in line
with previous empirical observations e.g., ref. [53] . The key difference here is that the model proposed
here is simpler and more parsimonious involving outcome-dependent modulation of urgency without
requiring any modulation of sensitivity.

S.6.5 Impact of evidence volatility on behavior

Studies examining perceptual decision making under uncertainty most often look at the relationship
between the first moment, i.e., mean of the perceptual evidence (e.g., coherence level in random dot
motions, luminance contrast in oriented gratings, vibration amplitude in somatosensory psychophysics)
and the behavior [26, 1, 2]. This relationship is indeed captured by our basic model too (3(a)-(b)).
Fewer studies have examined the role of the second moment i.e., variance (but see here for a review of
second-order perception [58]). A recent study [59] examined human behavior (accuracy and reaction
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Figure S.13. Replication of the volatility effect. (a) Depiction of the distribution of evidence
in two volatility conditions in 0% coherence level. Both conditions have a similar mean (zero) but the
variance (volatility) is higher in the high-volatility condition (red) than in the low-volatility condition
(blue). (b) The procedure of our simulations. In both volatility conditions, we first trained the model
on low-volatility evidence. Then we test the model based on high (red) and low (blue) volatility trials.
(c-d) Model behaviors in different volatility conditions. Test accuracy (c) and RT (d) of the model are
lower in high volatility condition (red) similar to previous findings [59] (insets). Error bars are SEM
across trials (U = 2400).

times) when the mean perceptual evidence was kept constant but its volatility was systematically
manipulated. Under high volatility, both accuracy and RT were, reduced (Fig. S.13.c-d inset).

Following [59], we first created two volatility conditions (Fig. S.13(a), low volatility (blue): σ = 1
in Et in Eq. (1), high volatility (red): σ = 1.3). Then, we trained our basic model on low volatility
conditions (Fig. S.13(b)) (learning rate = 0.1, U=2400 and tested the trained model under two different
conditions of volatility (Fig. S.13(b)). Our simulations showed that under high volatility testing
conditions, reaction times and accuracy both decreased (Fig. S.13(c)-(d)) thereby neatly replicating
the empirical findings of [59].

34
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5 Discussion 
The main contributions of this thesis are twofold. First, we propose a brain-plausible biophysical 

computational model based on attractor neural networks to explain the neuro-mechanisms 

underlying social decision-making. Second, we provide a computational framework for understanding 

and modelling the learning processes involved in making perceptual decisions. 

To achieve the first contribution, we employed a fixed duration random dot motion (RDM) task with 

varying levels of coherence. Subjects participated in two sessions of data collection: (1) Isolated and 

(2) Social. In the social setting, they were paired with a computer-generated partner whose behaviour 

was modelled on the subject's behaviour in the isolated session. Subjects were instructed to maximize 

joint accuracy, which was determined by the decision of the party with higher confidence. 

Behavioural, eye-tracking, and EEG data were collected from the subjects. The prominent behavioural 

effect observed and expected was that subjects matched their confidence levels to those of their 

partners, a phenomenon known as confidence matching (Bang et al., 2017, 2020; Esmaily et al., 2023). 

We developed an attractor neural network framework (Wong & Wang, 2006) to account for this effect. 

Through two studies, we demonstrated that a simple confidence-dependent top-down modulation 

could explain confidence matching. Importantly, we validated and strengthened our model using eye-

tracking and EEG data. The model underwent extensive validation checks, including model 

comparisons and testing different alternative hypotheses. 

Second, we address the challenge of understanding the training phase of perceptual decision-making. 

This effort led to the development of a model aimed at elucidating the mechanisms underlying the 

training process in perceptual decision-making tasks. By focusing on this training phase, we aimed to 

uncover the neural and cognitive mechanisms that facilitate the transition from novice to expert 

decision-makers. This model provides insights into training dynamics and may help optimize training 

protocols in decision-making studies.  

Specifically, we combined reinforcement learning (RL) and the drift diffusion model (DDM) 

frameworks to simulate perceptual decision-making during training. In our model, the RL component 

is responsible for learning the decision boundary, which was previously assumed to be a fixed or 

explicit parameter. By allowing the decision boundary to be learned, we can better explain the 

decision dynamics during training. Through extensive experiments and analyses, we demonstrated 

that our model could effectively learn how to make nearly optimal (Watkins & Dayan, 1992) 

perceptual decisions through time. This may open up new avenues for analysing and utilizing training 

data that may have previously been considered too messy or useless. Our approach not only enhances 

the theoretical understanding of decision-making but also has practical applications in improving 

training methodologies and decision-making strategies across various fields. By addressing these 

challenges and providing robust solutions, our work may pave the way for future research and 

applications that can leverage these insights to achieve more effective and efficient training outcomes. 

In the following sections, we will discuss the considerations and limitations of each project separately. 

5.1 Considerations 
Here, we provide some challenges and considerations that we addressed in each study. These 

challenges and considerations are important to highlight as they offer a clearer and more 

comprehensive understanding of the processes and intricacies each study encountered. We have 

made concerted efforts to design our experiments, analyses, and computational models to ensure 

that our findings are reliable and robust. This involved carefully considering the experimental design, 

the types of data collected, and the ways in which these data could be integrated into our 
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computational models. By addressing these challenges head-on and incorporating a range of 

considerations into our approach, we aimed to introduce models that not only reflect the complexities 

of human decision-making and learning but also stand up to rigorous scientific scrutiny. 

5.1.1 Project (1) 

5.1.1.1 Extensive training 
Social neuroscience studies in humans, often involves studies with a large number of participants (N 

> 30) to ensure the robustness and generalizability of the findings (Bahrami et al., 2010, 2012; Bang et 

al., 2017; Najar et al., 2020). These studies aim to understand complex social behaviours and 

interactions, which typically require diverse and extensive data sets to capture the variability in human 

behaviour and social cognition (Tump et al., 2020, 2022). The larger sample sizes help in achieving 

statistical power and detecting subtle effects that might be lost in smaller samples. This approach 

aligns with the field's focus on understanding broad, population-wide phenomena. 

In contrast, perceptual decision-making neuroscience focuses on the neural mechanisms underlying 

decision-making processes by recruiting only few subjects (T. Hanks et al., 2014; Kiani et al., 2014; 

Purcell & Kiani, 2016a; Vafaei Shooshtari et al., 2019). These studies often involve extensive training 

of a small number of subjects (N < 10) to ensure consistent and reliable data. The emphasis here is not 

on learning per se but on understanding how decisions are made, based on experimental condition of 

interest, once the task is well-learned. This approach allows researchers to collect detailed neural 

data, such as neuroimaging or electrophysiological recordings, from highly trained individuals (T. D. 

Hanks et al., 2011; Okazawa & Kiani, 2023; Resulaj et al., 2009; Zylberberg et al., 2016).  

Many of the computational models employed in individual decision-making studies typically do not 

account for learning processes (Kiani et al., 2014; Ratcliff et al., 2006; Ratcliff & Starns, 2013; Wang, 

2002; Wong & Wang, 2006). Thus, it is advisable to apply these models to subjects who have 

completed their learning phase, ensuring that no further learning affects their decision-making during 

the study. To effectively adapt these perceptual models for use in social decision-making research, it 

is essential to conduct training with a large number of subjects (N > 30). This approach helps to 

mitigate the influence of learning variables and allows for the assessment of a broad range of subject 

variability. Addressing this challenge was a critical aspect of the research presented in this thesis, 

highlighting the complexities involved in adapting individual decision-making models to social 

contexts. 

Through two studies, we recruited more than 30 subjects, of whom 27 successfully passed the training 

phase. Each individual underwent at least 3,000 trials to ensure that decision-making variables such 

as reaction time (RT) and accuracy were stable. Notably, we did not impose any instructions or 

limitations on confidence reporting. Each subject participated in at least five sessions of data 

collection, which led to some attrition as a few subjects did not show up after the initial sessions. Once 

we were satisfied with the stability of their behaviour, we began the data collections presented in 

Project 1. This demanding approach was necessary to ensure that there were no perceptual learning 

effects in our data. By rigorously training the subjects, we aimed to eliminate the impact of learning 

variables and achieve a consistent level of decision-making performance. This rigorous preparation 

ensured that our subsequent analyses could reliably reflect the underlying cognitive processes without 

being confounded by ongoing learning dynamics. 
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5.1.1.2 Using EEG and Eye tracker 
In the first study, we used eye-tracking and EEG data to validate and strengthen our findings. 

Specifically, pupil data was used to test whether subjects' beliefs about their decisions are influenced 

by their partner's confidence. In our attractor neural network model, the partner's confidence altered 

the firing rate of the model, which may imply that decision evidence, and thus certainty, could also 

change. Therefore, the model predicts that subjects' beliefs about their decisions should be affected 

by their partner's confidence. This prediction was confirmed by our analysis of pupil data, which 

showed changes in pupil size corresponding to the partner's confidence levels. 

Similarly, the model also predicts that the ramping of the firing rate, a proxy for evidence accumulation 

rate, is dependent on the partner's confidence. EEG data, particularly the central-parietal positivity 

(CPP) component, can measure the rate of evidence accumulation. Our EEG analysis supported the 

model's prediction, showing that the rate of evidence accumulation was higher when subjects were 

paired with a high-confidence partner compared to a low-confidence partner. This alignment between 

EEG data and model predictions further validates our model, indicating that the confidence of a 

partner influences both the neural mechanisms and subjective beliefs involved in social decision-

making. 

Importantly, we used pupil and EEG data as complementary measurements to behavioural data. We 

were particularly interested in measurements relevant to the model but not directly observable 

through behaviour alone, such as the rate of evidence accumulation and subjective belief about 

decisions. In our approach, the modelling part was assumed to be the main focus, with EEG and eye-

tracking data used to inform and enhance the model. Unlike some studies that aim to find neural 

correlates to model parameters (Bang et al., 2020; Mahmoodi et al., 2022), Project 1 seek to 

understand what additional insights neural data can provide to the model that behavioural data alone 

cannot. 

Neural correlates studies are undoubtedly important; model parameters are implicit and varied 

measurements of behavioural data, and their correlation to neural data is not trivial at all (Gold & 

Shadlen, 2007; T. Hanks & Summerfield, 2017; Okazawa & Kiani, 2023). We, however, chose to use 

EEG and eye-tracking as explicit measurements of decision-making processes, verifying and guiding 

our model with these data. This approach allows us to leverage the strengths of neural measurements 

to add depth and validation to our computational model, beyond what behavioural data can achieve 

alone. 

 

5.1.2 Project (2) 
The first version of our model was based on zero-step Q-learning (e.g., no temporal difference (TD) 

term) (Sutton & Barto, 2018) and the action selection method was set to greedy (hardmax) (Sutton & 

Barto, 2018). The entire analysis and results presented in Project 2 were initially conducted using zero-

step Q-learning. Logically, for a new model like this, it made sense to start with the simplest form and 

then expand it. This incremental approach allows for a clear understanding of the model's basic 

mechanics before adding complexity. However, without the TD term, conducting optimality analysis 

was difficult because the optimality theory of Q-learning necessitates the presence of the TD term 

(Watkins & Dayan, 1992). 

To address this, we re-analysed the entire results using a general Q-learning algorithm that included 

the TD term. Moreover, we changed the action selection policy to SoftMax to allow for exploration 

(Sutton & Barto, 2018), which may help find optimal solutions. Our initial analysis showed that our Q-
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learning algorithm drastically failed to follow the normative model when using the original reward set. 

This observation convinced us to conduct an exhaustive search over the reward landscape to pinpoint 

a reward set where our model could indeed exhibit behaviour similar to the normative model. 

Upon identifying a compatible reward set, we re-analysed everything with this new set of rewards. 

This was done successfully, and we demonstrated that the model could reproduce all results with the 

new parameter sets. However, we also aimed to emphasize that even the old reward set could 

simulate the decision behaviours observed during learning. It remains unclear why the old dataset did 

not follow the normative model. Potential reasons for this discrepancy include the discretization of 

the state, the number of trials, lack of sufficient exploration, and the initial values of the Q-table. Yet, 

the actual reason for this discrepancy is not entirely understood. 

To highlight this discrepancy, we chose to use the old reward set for the majority of the analysis (to 

show it works) and contrasted that with the optimality analysis parameter set. This approach allowed 

us to clearly demonstrate the differences and provide insights into the conditions under which our 

model aligns with normative models. By doing so, we underscored the importance of the parameter 

set, an area we did not fully explore. Future work is needed to study these parameters extensively to 

identify the range and boundaries that should be used for fitting the model to actual data. This 

thorough examination will help ensure that the model can be robustly applied across various 

scenarios, improving its accuracy and reliability in representing real-world decision-making and 

learning processes. 

 

5.1.2.1 Cost of Waiting 
One of the major differences between our RL model and conventional RL models is the presence of a 

waiting action. While the inclusion of waiting actions is not entirely new (Drugowitsch et al., 2012), 

our framework may offer a novel procedure for extracting the cost of waiting from data. Intuitively, 

we can expect that different individuals perceive the cost of waiting differently. By using our model to 

measure this "hastiness" in individuals, we may provide a pathway for connecting these low-level 

measurements to high-level psychological traits obtained through questionnaires. 

This approach could bridge the gap between quantitative model outputs and qualitative psychological 

assessments, offering a more comprehensive understanding of decision-making behaviours. Although 

there is a long and challenging journey ahead to fully grasp these extremely complex phenomena, our 

model may help advance our understanding by providing a method to quantify and analyse the cost 

of waiting. This can potentially lead to insights into individual differences in decision-making processes 

and how they relate to broader psychological traits, paving the way for future interdisciplinary 

research in this area. 

 

5.2 Future Directions and Limitations: 
Here, we provide an overview of the limitations encountered in each study and outline future 

directions for research building on our findings. These limitations and future directions are important 

to highlight as they offer a clearer and more comprehensive understanding of the constraints in our 

research and potential areas for improvement and exploration. Throughout our studies, we 

meticulously designed our methodologies to ensure the robustness and reliability of our findings. 

However, it is equally important to acknowledge the inherent limitations that may have impacted our 
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results and to discuss the pathways for advancing our understanding and addressing the gaps 

identified in our current work. 

By discussing these limitations, we aim to provide a balanced perspective on our research, 

emphasizing the need for cautious interpretation and identifying potential for future work to address 

these issues. As with any scientific endeavor, there are always new questions and avenues to explore 

that can further deepen our understanding. The proposed future directions are not only logical 

extensions of our current work but also represent critical steps toward a more comprehensive and 

nuanced understanding of these cognitive processes. Embracing these future directions will help to 

refine existing models and address current limitations. By discussing both limitations and future 

directions, we aim to encourage continued exploration and innovation in the field, building on our 

initial findings and pushing the boundaries of what is known. 

 

5.2.1 Project (1) 
 

The confidence recorded in the first study is clearly a combination of the stimulus and the partner's 

response (both their decision and confidence). Our computational model integrates information about 

both the stimulus (bottom up) and the partner's response (top down) to compute confidence. 

However, the measurement of confidence in our model is entirely dependent on neural activity or the 

decision variable. This approach assumes that the reported confidence of the subject is solely based 

on their neural activity or decision evidence, without accounting for the subjects’ strategic behaviour. 

For instance, a subject might strategically report high confidence in one trial to influence the collective 

decision, even if they do not genuinely feel highly confident about their own decision. In this scenario, 

they might have the same firing rate as they would when reporting low confidence, but their readout 

of the decision variable differs due to strategic considerations. This indicates that their true certainty 

based on neural evidence may not always be accurately reflected in their reported confidence. 

Although our analysis of pupil data and the model's fit to behavioural data support the model's 

assumptions to some extent, a comprehensive framework should account for different types of 

confidence: belief-based confidence and strategic confidence. Belief-based confidence is directly tied 

to the neural decision evidence, whereas strategic confidence involves a higher-level decision process 

where subjects might adjust their reported confidence to influence group outcomes or fulfil other 

objectives. These objectives might be highly context-dependent, with subjects applying different 

functions to read out neural activities in each context. Our primary focus in Project 1 was to provide a 

context- and strategy-independent notion of group confidence formation. However, expanding our 

model to incorporate more context-dependent scenarios could be an interesting avenue for future 

research.  

5.2.1.1 Dynamic Pairs 
Project 1 used computer-generated partners to simulate static partners for each subject. This 

approach provided us with substantial control over designing the partners in a way that could precisely 

manipulate the variables of interest. However, in real life, partners are not static. Although Bang et al. 

demonstrated that confidence matching occurs in both static and dynamic settings (Bang et al., 2017), 

extending our computational framework to include two dynamically interacting individuals is not 

trivial. 
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A dynamic partner can adapt and change its behaviour based on the subject's actions, creating a more 

complex interaction pattern that must be accounted for in the model. This complexity introduces 

additional variables and dependencies that need to be considered, such as real-time adjustments in 

confidence levels and strategies based on ongoing feedback. Therefore, while our current model 

provides valuable insights, future work should aim to develop and validate frameworks that can 

handle dynamic interactions. 

Similar to our current approach, EEG and pupil data could provide insights into the neural mechanisms 

underlying these dynamic processes. A dynamic social decision-making setting with hyperscanning 

(Nam et al., 2020), which allows simultaneous recording of neural activity from both interacting 

individuals, could be an excellent direction for future research. This approach would enable a deeper 

understanding of how real-time adjustments and mutual influences occur in social decision-making, 

offering a more comprehensive view of the underlying neural dynamics. 

 

5.2.2 Project (2) 
 

5.2.2.1 The RT Effect 
Our models' simulations demonstrate a notable phenomenon: reaction time (RT) tends to increase 

over time. Initially, decisions are fast, but as the model refines its decisions for accuracy, and longer 

RTs —an observation contrary to human and rat data. These studies indicate that during initial 

training, agents often exhibit slower, less precise responses that progressively accelerate and become 

more accurate.  

We have explored several modifications to our model to better align with these observed behaviours. 

However, a critical question remains: could this behavioural profile be context-dependent? Might 

instructional cues influence RT profiles? Could external factors like starvation (as seen in monkey 

studies compared to rat studies) also impact RT during learning? Currently, data is insufficient to 

provide definitive answers. 

To address these gaps, we designed an experiment where subjects perform a perceptual decision-

making task with a reward incentive, aiming to maximize their total reward. Crucially, subjects receive 

no specific instructions beyond the task requirement and can only interact using two keys. The sole 

communication about the task is: "Maximize your reward." 

The key question is whether subjects will opt for rapid, albeit less accurate key presses, or if they will 

take more time to carefully observe stimuli before responding. Insights gained from this experiment 

may shed light on the potential impact of instruction on RT. 

 

5.2.2.2 RL and the Attractor Model 
 

In Project 2, we used one of the most widely adopted models of decision-making: the Drift Diffusion 

Model (DDM). As discussed in Project 1, while the DDM is a highly convenient and interpretable 

framework, it lacks biological plausibility. This raises an important question: how can our 

reinforcement learning (RL) framework be adapted to more biologically plausible models of decision-

making, such as attractor neural networks? 
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We have already demonstrated that our RL framework can be seamlessly integrated with non-

accumulation-based models. Extending this to the attractor model is both feasible and promising. 

Similar to other decision-making models we used within our framework, the key variable of interest 

remains the decision boundary. In the context of an attractor network, the state could be defined as 

the level of activity across two neural populations—one coding for left decisions and the other for 

right. As in our model, the state could be encoded as a discrete variable (e.g. positive values indicating 

dominance of the rightward population, and negative values indicating the leftward population). The 

available actions would still be "left" and "right" to terminate the trial, and a "wait" action to continue 

the dynamical evolution of neural activity, effectively allowing evidence accumulation to proceed. The 

reward function could be defined analogously, reinforcing correct decisions, penalizing incorrect ones, 

and assigning a small cost to waiting. In this way, the RL agent would learn the dynamics of the decision 

boundary in a setting that is fundamentally different from DDM, yet more biologically grounded. 

A future direction worth exploring is the comparison of how the learned decision boundary evolves in 

the attractor model versus in the DDM. Such a comparison could yield insights into both the behavioral 

and neural signatures of decision-making, and inform the development of more unified models of 

learning and decision processes. 

 

5.2.2.3 Model Fitting 
The entire results of Project 2 were derived from model simulations. Our approach was to first 

understand the model, its dynamics, and theoretical underpinnings, and then move to experimental 

validation; simply put: theory first, then experiment. However, many open questions cannot be 

answered solely through model simulations: In a given set up, what would happen to subjects’ decision 

dynamics during learning? These questions require empirical data to answer and cannot be resolved 

through theoretical analysis alone. 

To address these questions, the model needs to undergo a model fitting procedure. This involves 

defining free parameters, establishing a cost function, and implementing a fitting procedure. Model 

recovery is essential to ensure the validity of our approach before fitting the model to actual data. We 

have attempted this procedure, but the nature of our model, which updates at each time step, makes 

the fitting process more challenging than fitting a simple RL or DDM model alone (Gherman & 

Philiastides, 2018; Ratcliff & McKoon, 2008). Future work must tackle this problem to make the 

model's implications clearer. Without fitting, the practical applicability of our model remains 

uncertain. The ability to fit the model to empirical data is crucial for validating its predictions and 

understanding its real-world relevance. Solving this fitting challenge will enable us to provide more 

concrete answers to the open questions and enhance the model's utility in explaining and predicting 

human decision-making behaviour. 

To this end, we designed an experiment in which subjects would go through two separate sessions, 
spaced weeks apart, with different cost-to-benefit ratios (2 and 3). The core idea is to assess whether 
we can accurately explain a participant's data from one session using a model fitted on data from the 
other session. Specifically, we aim to determine how well parameters such as the cost of waiting, 
learning rate, and exploration coefficient generalize across different reward sets. Our primary focus is 
on the generalization of the cost of waiting. If we can successfully recover the cost of waiting in each 
session, it would indicate that this measurement is inherently subject-dependent and orthogonal to 
the context (reward set). Conversely, if the recovery of the cost of waiting is unsuccessful, it may 
suggest that the cost of waiting is influenced by the reward set.  This study will provide valuable 
insights into the notion and nature of the cost of waiting, enhancing our understanding of whether 
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this parameter is an intrinsic trait of the subject or contextually driven by the specific reward 
conditions. 

We have already collected data from 10 subjects across two sessions and observed that both accuracy 

and reaction time (RT) increase with the cost-to-benefit ratio (CBR), consistent with our model's 

predictions. However, a more formal evaluation of the model and a thorough inspection of the cost 

of waiting require a proper fitting procedure. 

 

5.2.2.4 Drift Rate During Learning 
Our RL model is designed to model the decision boundary. It assumes that the agent already knows 

how to accumulate evidence but does not know where to place the decision boundary on the 

accumulated evidence. This assumption might not be entirely correct. Indeed, many studies that 

model perceptual learning focus on modelling the drift rate (Fontanesi et al., 2019, 2019); this means 

the agent is exposed to evidence but does not know how to use or accumulate it effectively. There is 

also neural evidence to support this assumption. For instance, Law et al. (Law & Gold, 2008, 2009) 

showed that the supposed evidence accumulation area of the brain (LIP) does not show any 

decodability to different amounts of evidence at the beginning of training, while MT decoding remains 

well and unchanged by training. This might imply that while evidence is encoded in the brain (MT) 

consistently, the agent does not initially know how to accumulate it. Therefore, several studies model 

the drift rate (as a proxy for evidence accumulation) while keeping the decision threshold explicitly 

defined (Fontanesi et al., 2019).  

On the other hand, the same studies that provide evidence for learning in evidence accumulation (Law 

& Gold, 2008, 2009) may also suggest that the decision threshold increases over time. This aspect has 

been neglected by previous studies but has been addressed in our research (Masís et al., 2023). To 

sum up, previous models have typically modelled the drift rate while keeping the decision boundary 

explicit (either constant or explicitly defined). Our model takes the opposite approach by modelling 

the decision threshold while keeping the drift rate constant. This approach allows us to explore how 

the decision threshold evolves with learning, providing insights into how individuals adjust their 

decision-making criteria over time. By focusing on the decision threshold, we aim to capture a 

different dimension of the decision-making process that has been overlooked (Masís et al., 2023). This 

shift in focus helps us understand the balance between the cost of waiting and the benefits of accurate 

decision-making, as individuals learn to optimize their thresholds to maximize rewards. 

Considering both neural and behavioural studies, it is reasonable to assume that an agent might 

neither know how to accumulate evidence nor where to set the decision boundary initially. Therefore, 

extending our model to include the evolution of the drift rate is a necessary future step. This extension 

could help create a more complete picture of perceptual learning by addressing both aspects of the 

decision-making process. 

 

5.2.2.5 Analytical Understanding 
As we discussed earlier, our results in Project 2 are based on simulations. We started with a set of 

assumptions, ran the model, and gathered the results. Ideally, we would have an analytical 

understanding of the model, where the decision threshold is explicitly defined as a function of the 

learning rate, coherence, reward set, and time. While simulations are very helpful, they do not provide 
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the complete picture. It is only through an analytical understanding of our model that we can fully 

grasp its function, dynamics, and behaviour. 

There is one study that attempted to analytically explain how the Q-table for a bandit task evolves 

over time using path integral analysis (Li & Yeung, 2023). Adapting this methodology to our model 

may be a promising approach for future research. By applying path integral analysis or similar 

analytical techniques, we could potentially derive explicit equations that describe the evolution of the 

decision threshold as a function of various parameters. This would significantly enhance our 

theoretical understanding. Analytical insights would allow us to better interpret the simulation results 

and refine the model to capture the complexities of perceptual learning and decision-making more 

accurately. 

 

5.2.2.6 Decision Making Model of Learning 
Our model can learn decision making. But what kind of decision making? The precise mechanisms 

underlying decision-making remain a topic of debate, both theoretically and empirically. Empirical 

evidence suggests that boundary neurons do not always follow a simple accumulation process. 

Instead, they exhibit a range of heterogeneous patterns that challenge the traditional accumulation 

assumptions of drift diffusion models (Heitz & Schall, 2012). Crucially, we have shown that our model 

can seamlessly adapt to an extreme detection decision-making framework and still produce the 

canonical behavioral features we expect from a decision-making agent. This flexibility highlights the 

model's robustness, yet it also underscores a key limitation: the decision-making framework itself—

whether based on accumulation or extreme detection—needs to be explicitly defined within our 

computational architecture. Specifically, the model requires an explicit definition of the transition 

probability 𝑃(𝑠′|𝑠, 𝑎) which represents the probability of transitioning to a new state s′ given the 

current state s and action a. Interestingly, the primary distinction between an accumulation model 

and an extreme detection model lies in the definition of 𝑃(𝑠′|𝑠, 𝑎) and nothing more. If we extend 

our framework to allow 𝑃(𝑠′|𝑠, 𝑎) to be learned rather than predefined, we could unlock the potential 

to address more fundamental questions about how decision-making processes are acquired. This 

extension would allow the model to dynamically infer the most appropriate transition dynamics based 

on the observed behavior of decision-making agents during learning. 

By investigating the properties of 𝑃(𝑠′|𝑠, 𝑎) within such an adaptive framework, we may gain critical 

insights into which decision-making model—accumulation or extreme detection—aligns more closely 

with empirical observations of human and animal behavior. This approach could ultimately help 

resolve long-standing debates about the true nature of decision-making mechanisms in the brain. 

Moreover, enabling the model to learn 𝑃(𝑠′|𝑠, 𝑎) could reveal how decision-making strategies evolve 

in response to different contexts and uncertainties. This adaptability may offer a deeper 

understanding of the cognitive flexibility observed in real-world decision-making, where agents must 

navigate complex and changing environments. Advancing our computational framework to include 

learning-based representations of 𝑃(𝑠′|𝑠, 𝑎) holds promise for bridging the gap between theoretical 

models and empirical data. It may provide a unified explanation for the diversity of decision-making 

behaviors and shed light on the fundamental principles governing decision-making in the brain. 

 

5.2.2.7 Confidence 
In Project 2, we defined methods to extract accuracy and reaction time (RT) from our model. Accuracy 

is determined by comparing the chosen terminating action of the model with the ground truth 
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experimental direction. RT is defined as the number of wait actions chosen before any terminating 

action is taken. Note that our model inherently represents decision time. Similar to the Drift Diffusion 

Model (DDM), RT can be defined as the sum of decision time and non-decision time (usually estimated 

during fitting). 

Our main focus was to model RT and decision-making, similar to traditional decision-making models, 

while accounting for the learning effect. However, one of the most important and interesting aspects 

of decision-making is confidence. Confidence in learning is a crucial aspect that has been the subject 

of several studies (Balsdon et al., 2020; Drugowitsch et al., 2019). How confidence is defined in our 

model and how it evolves over time could be a very interesting and important subject for future 

research. One plausible option for defining confidence could be the accumulated value of the Q-value 

of waiting action during one trial. However, the precise function this value to confidence needs to be 

articulated, analysed accurately, and extensively. Future research could explore different formulations 

and their implications, ultimately enhancing our understanding of confidence in the context of 

learning and decision-making. This could provide deeper insights into how confidence evolves with 

experience and how it influences decision-making processes, offering a more comprehensive 

framework for studying perceptual learning and decision-making. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93 

6 Conclusion and Remarks 
 

In this thesis, we presented two studies related to social decision-making and learning. The first study 

focused on developing a neurobiological model for social decision-making, particularly elucidating the 

neural mechanisms that may explain how confidence matching occurs in the brain. We employed EEG 

and eye-tracking data alongside behavioural data to validate our computational model 

comprehensively. This study examines how humans use information about the confidence of 

collaborators to guide their own perceptual decision-making and confidence judgments. We 

addressed this question through a combination of psychophysics, neural and eye data, and 

computational modelling, resulting in a compelling validation of a framework that can be used to 

derive and test theory-based predictions about how collaborators use communication to align their 

confidence and thereby optimize their collective performance. 

Studying social decision-making using methods proposed for individual decision-making can be 

challenging. It requires a large number of subjects (N~30) who undergo extensive training, which is a 

significant undertaking. In many perceptual decision-making studies, data from the training phase are 

often discarded because they are considered noisy, messy, and sometimes useless. Our second project 

aimed to address this blind spot by providing a computational model that attempts to explain decision 

dynamics during learning. 

We developed a perceptual decision-making model embedded within a reinforcement learning (RL) 

framework that learns how to make decisions over time. Specifically, we created a framework that 

learns where the decision boundary should be. Through trial and error, the model seeks to find the 

optimal decision threshold that balances the cost of waiting against external rewards. Our framework 

allows decision-making and learning variables to be altered, studied, and extended, providing a tool 

for exploring these processes. 

These studies, although conducted in simplistic and controlled scenarios, aim to enhance our 

understanding of how humans make decisions and learn. Our research offers a pathway for better 

understanding the intricate processes underlying human decision-making and learning. By advancing 

these models and methodologies, we hope to contribute to the development of more effective 

strategies for enhancing decision-making performance in both individual and collaborative settings. 
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