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Abbreviations 

aTSA  - Anatomic total shoulder arthroplasty 

RSA  - Reverse shoulder arthroplasty 

CT   - Computed tomography 

BMD  - Bone mineral density 

HU   - Hounsfield unit 

AUC  - Area under curve 

ROC  - Receiver operating characteristic curve 

XAI  - Explainable artificial intelligence 
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1. Contribution to Publications I, II, III 

• Conceptualization: Formulation or evolution of research goals and aims. 

• Data Curation: Management activities to produce metadata, scrub data, 

and maintain research data (including software code) for initial use and 

later re-use. 

• Formal Analysis: Application of statistical, mathematical, computational, 

or other formal techniques to analyze or synthesize study data. 

• Investigation: Conducting the research and investigation process, specif-

ically performing the experiments, or data/evidence collection. 

• Methodology: Development or design of methodology. 

• Software: Programming, software development; designing computer pro-

grams; implementation of the computer code and supporting algorithms; 

testing of existing code components. 

• Writing – Original Draft: Preparation, creation and presentation of the pub-

lished work, specifically writing the initial draft, including substantial trans-

lation. 
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2. Introduction 

2.1 Shoulder Arthroplasty 

Total shoulder arthroplasty has historically shown good results in replacing the 

glenohumeral joint with a humeral and glenoid component. While osteoarthritis is 

the most common indication for reconstructing the joint in its anatomic fashion, 

reverse shoulder arthroplasty is commonly the choice of treatment for indications 

concerning the rotator cuff and the range of motion of the shoulder joint. By in-

verting the joint's humeral and glenoid ball-socket architecture, the activation of 

the rotator cuff and deltoid muscles improve postoperative range of motion and 

clinical results.[1] Recently, the humeral components in reverse shoulder arthro-

plasty (RSA) and anatomic total shoulder arthroplasty (aTSA) underwent signifi-

cant design changes.[2, 3] 

2.1.1 Anatomic Total Shoulder Arthroplasty 

In an effort to reduce stem-related complications when restoring the function of 

the glenohumeral joint, humeral components have seen a trend of shortening the 

stem length. The transition towards short-stem and stemless designs aims to re-

duce complications associated with intraoperative periprosthetic fracture, proxi-

mal humeral bone loss due to stress shielding, and significant bone loss in revi-

sion surgery.[4-7] However, bone resorptions still occur from unphysiological 

proximal humeral bone loading which also depend on the design of the prosthe-

sis. Impacted stemless and short stem designs result in bone resorptions, partic-

ularly in the medial calcar region,[7-12] while a cortical supporting design fixed 

with a hollow screw instead showed bone stock reductions in the greater tuber-

osity region.[13, 14] The short-term clinical impact of stress shielding is mini-

mal,[8, 13-16] however, long-term effects may affect survival time, clinical out-

comes, bone loss in revision cases, and periprosthetic fractures.[17] 

While the stemless designs reduce these complications, the fixation of the stem-

less components may rely more on the bone quality in the metaphysis of the 

humerus. A poor bone stock with reduced bone mineral density (BMD) is associ-

ated with unstable humeral implant fixation and at higher risk for complications in 

aTSA.[18-20] As humeral components are mainly loaded in a compression state, 
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stemless implants with sufficient primary support are increasingly used in a wider 

range of bone quality. Nevertheless, large meta-analyses revealed significantly 

increased complication rates in patients with poorer bone densities. [21-23] As 

mechanical loading affects the behavior of autologous trabecular and cortical 

bone, in addition to primary stability measurements, the measurement of bone 

deformations help to understand humeral implant-bone loading.[24-26] The bone 

deformations explicitly evaluated in the medial calcar area could demonstrate the 

differences between implant designs and types and, therefore, to assess devia-

tions compared to the cortical based load transmission known from physiological 

load transfer patterns in the proximal humerus.[27-29] Biomechanical data of the 

effect of variable bone densities on the primary stability and the differing load 

transmissions are lacking but may significantly affect osseointegration and bone 

resorption in the proximal humerus.[30] Biologic and postoperative factors such 

as bony ingrowth or polyethylene wear and the respective effects on the implant 

behavior cannot be investigated in biomechanical and imaging studies. Never-

theless, to understand potential causes for stress shielding and implant micromo-

tion, biomechanical investigations are valuable to analyze the time-zero post-op-

erative implant behavior at the implant-bone interface. 

2.1.2 Reverse Shoulder Arthroplasty 

The effect of variable bone densities and the use of stemless humeral compo-

nents in RSA becomes more critical, as shear loads are added to the biomechan-

ical loading situation of the humeral component. [31-33] Nevertheless, the tran-

sition to stemless designs is ongoing while stemmed humeral implants show good 

long-term results with a low humeral loosening rate. Stress shielding and stem-

related bone adaptions using these implants remain common complications. Par-

ticularly the humeral implant sizing was shown to affect the incidence of stress 

shielding.[11, 34] While more voluminous humeral implants resulted in signifi-

cantly increased stress shielding rates, lowering the implant sizes resulted in lim-

ited primary stability and subsidence and tilt of the implant postoperatively.[35] 

Due to the more demanding loading pattern in reverse shoulder arthroplasty, the 

primary fixation plays a critical role. Primary fixation stability is further affected by 

poor bone quality, which has additional effects on the choice of treatment and 

cementation technique.[19, 36-38]  



Introduction  11 

A higher incidence of osteoporosis with 26.2% in RSA patients was shown by 

Casp et al. which correlates with the higher age in these patients.[19] The osteo-

porosis rates in shoulder arthroplasty are expected to rise due to the increasing 

number of older adults undergoing these procedures, highlighting the demand for 

preoperative identification of patients with a low bone quality.[37, 39]  

Additional complications resulting from poor bone quality are known for the gle-

noid side in shoulder arthroplasty. In fact, implant loosening and acromion stress 

fractures are associated with poor bone densities, especially in higher degree 

lateralized and shifted center of rotation of the glenohumeral joint.[4-7, 19] While 

lateralization improves the clinical outcomes in RSA patients, higher shear loads 

at the glenoid-implant interface require optimized fixation capabilities. In order to 

preserve the glenoid bone from extensive reaming, glenoid baseplate augmenta-

tions offer eased lateral offsets allowing for the correction of the glenoid inclina-

tion and retroversion.[40, 41] Currently bony or metal augmented baseplates are 

mainly used. The bony augmentation procedure allows for bone preservation or 

even formation but bone graft and fixation may require a higher bone density.[42] 

To reduce the influence of variability of the bone density, graft shape and fixation 

metal augments may be preferrable in case the bone density cannot be assessed 

preoperatively.  

Mainly demographic patient and clinical assessment data are used for the treat-

ment selection and assessment of the risk for complications, even though imag-

ing procedures with unused bone density information are routinely performed for 

these patients.[43] A preoperative bone assessment therefore may pay off to sup-

port the surgeons’ decision process, especially with regard to the use of stemless 

implants, commonly used lateralization in RSA, and an increase of osteoporotic 

patients. Incorporation of this information into a preoperative planning tool may 

represent a valuable tool in the clinical surrounding. 

2.2 Preoperative Imaging 

Preoperative planning with computed tomography (CT) imaging has become a 

common tool for assessing glenoid and humeral morphology. These CT data may 

also offer the ability to provide objective measurements of the bone mineral den-

sity. [21-23, 44] However, challenges remain in consistently quantifying gray 
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scale information originating from various scanners, defining relevant regions of 

interest, and objective classification of the patients’ bone quality. 

2.2.1 CT-based Parameters 

In reverse and anatomic total shoulder arthroplasty, the patient's bone density is 

known to affect the treatment decision and complication rates.[19] Preoperative 

CT data therefore may offer improved risk stratification to detect patients with 

potentially poor bone densities. The final bone quality assessment is currently 

performed intraoperatively by the ‘thumb test’. After resection of the humeral 

head, the surgeon compresses the humeral cancellous bone and assesses if the 

bone quality is adequate for stemless implant fixation.[45, 46] However, this sub-

jective measure showed poor performance (48% accuracy) in recognizing poor 

bone quality in shoulder arthroplasty patients.[22] Manual calculation in single CT 

slices, such as the deltoid tuberosity index and circular metaphyseal measured 

Hounsfield Unit (HU) densities have been reported to provide value for predicting 

the ability to place a stemless device or highly lateralized and augmented glenoid 

baseplates.[21-23, 44, 47]  

In case a stemless device is contraindicated, stem sizing poses the subsequent 

question.[48] As introduced previously, the sizing and implantation of different 

volumes into the humeral canal allows for the risk analysis for implant subsidence 

or stress shielding of the bone. Filling ratio calculation of the implant in depend-

ence to the humeral canal result in quantifiable ratios allowing for the assessment 

of the intended stem size before surgery. Volumetric canal fill calculation showed 

promising results in predicting stress shielding caused bone resorptions in short 

and standard stemmed RSA, [34] however the effects on primary fixation were 

not evaluated in a full construct setting, yet. Additionally, inconsistent HU scales 

in a clinical setting make multicentric canal segmentations and filling ratio calcu-

lations more difficult.  

The use of the HU scale from CT scans and two dimensional measurements have 

demonstrated high variability due to the use of different devices, exposure pa-

rameters, differing position of the measurement, and variable mass inside and 

outside the field of view.[49, 50] Patient-specific calibration of the grayscale val-

ues on a bone mineral density scale have been reported to reduce inaccura-

cies.[51-53] To set a baseline for differing scales of retrospectively gathered CT 
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scans, patient-specific air-muscle-fat calibration helps to reduce outliers and un-

wanted variability.[51-53] In combination with three-dimensional implantation rel-

evant regions of interest, more informative features could be extracted from clin-

ical preoperative CT scans comparable to imaging studies in non-clinical set-

tings.[32, 54] 

2.2.2 Preoperative Classification 

The high subjectivity and variability in currently used bone assessment methods 

depend on differing surgeon’s experience of the minimal force applied and differ-

ing bone areas.[21] First studies used objective univariate prediction analyses to 

assess the classification capability using x-rays and two-dimensional regions of 

interest as input data.[21] These statistical models performed with moderate-to-

good accuracy when predicting poor bone density.[23] Additional to the tuning 

and training of predictive models, potential for optimization can be found in fea-

ture extraction methods. Improving the integrity and quality of the input variables 

for statistical modelling generally can be achieved by procedures to improve data 

consistency, for example through previously described patient specific calibration 

and the use of three-dimensional regions interest. 

Predictive models are often used for group classification based on specified input 

variables. Conventional statistical models can be improved by adapting these 

models as tailored solutions for the problems to be solved. Generally, these ma-

chine learning models require labeled or unlabeled data sets to respectively clas-

sify or cluster them into distinct subgroups. A labeled data set allows to train a 

model using the input parameters marked with the respective ground true labels 

(Supervised), e.g. treatment decisions. If no data labels are present, the data can 

be separated into subgroups in multidimensional data space based on specified 

distance measures, variance, or distributions (Unsupervised).  

As no osteoporosis screening is commonly performed in shoulder arthroplasty, 

the surgeon's decision could represent a potential prediction aim, for example to 

predict implantation of a stemless humeral implant originally determined by a pos-

itive thumb test. As a high subjectivity is hidden in such labels, unsupervised ma-

chine learning algorithms using unlabeled data can improve the objectivity of re-

spective predictions. The performance of these predictions is assessed by apply-
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ing the programmed model independently in training and testing data sets. Su-

pervised models allow for comparison with the ground true label in the data set, 

while unsupervised models can be assessed regarding intra- and intercluster 

quality measures. A comparison to conventional statistical methods can deliver 

additional understanding, if the classification or clustering algorithm works ade-

quately. To support the users of such models the field of explainable artificial 

intelligence (XAI) focuses on the explainability of predicted decisions. [55, 56] A 

breakdown of the impact of respective variables on the overall model or a demon-

stration of a single prediction and respective contribution of the variables help to 

reduce the black box characteristics of these applications. Additionally, these in-

sights provide information of the performance of the model and can be used for 

another optimization iteration. Trained and tested models including an explana-

tion of the decision could provide preoperative suggestions to surgeons treating 

patients with potentially poor bone quality.  

2.3 Research Questions and Aims 

This work focuses on the investigation of preoperative imaging and primary sta-

bility in anatomic and reverse total shoulder arthroplasty and suggests opportun-

istic applications in routinely performed imaging procedures. The utility of pre-

operative CT imaging to assess the bone density and morphology in aTSA and 

RSA cohorts and the effects on primary stability and bone loading were analyzed 

in five studies (Figure 1). Applying these approaches in a preoperative planning 

process may provide an objective prediction tool to improve preoperative plan-

ning criteria to alert the surgeons for upcoming patients at risk for complications.  
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Figure 1 Schematic overview of the sub studies in this work. CT based bone density as-
sessments including machine learning based predictions combined with biomechanical 
testing resulted in the five publications for this dissertation. 

 

Within the first study, the use of patient-specific calibration in combination with 

three-dimensional bone volumes was validated in cadaveric CT scans. Signifi-

cantly improved accuracy in retrospective bone density analyses resulted from 

more consistent input data for objective bone density quantification. Standardiza-

tion of the gray scale allowed for significant reduction of unwanted biases and 

variance. In comparison to multiple imaging studies in clinical [21-23, 44, 57] and 

non-clinical settings, [32, 43, 54, 58] this work focuses on the variations in multi-

centric data with the primary goal to improve the use of quantified bone densities.  

Application of the bone density classifications on CT scans of cadaveric speci-

mens in the additional studies four and five (Attachment A& B) and the subse-

quent biomechanical testing showed that preoperatively analyzed bone densities 

have significant effects on the time-zero biomechanical behavior of respective 

implants. A cortical rim-supported stemless implant effectively maintains proximal 
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bone loading across variable bone densities compared to a press-fit short stem 

implant. A context of XAI was included within this study to reduce the black box 

characteristic of the prediction model.[55, 56]  

Further biomechanical investigations in study two and three of this work in com-

bination with preoperative analyzable bone parameters demonstrated significant 

effects on the primary stability and bone loading when using short and standard 

stemmed humeral implants and differently augmented glenoid baseplates. Lower 

humeral canal fill ratios are at higher risk for implant subsidence but increased 

proximal humeral bone loading similarly to the native humeral bone, in this spe-

cific loading setup and implant design. On the glenoid side, higher degree of aug-

mentations showed increased micromotions particularly when associated with 

lower bone densities and a bone graft augmentation.  

All approaches have in common that preoperative CT imaging provided objective 

classifications or quantifications using the respective implantation-relevant re-

gions of interest. Prospective validation studies or intraoperative verification may 

allow a clinical implementation of the concepts of these studies to improve pre-

operative planning tools. These studies combined the benefits of various ap-

proaches by using patient-specific calibration to recalibrate multicentric CT scans 

[51-53], using standardized three-dimensional density analyses [32, 43, 54, 57, 

58] and the prediction using machine learning tools [59]. 
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3. Zusammenfassung 

Hintergrund: Die präoperative Auswertung von CT-Daten hat signifikante Ein-
flüsse auf die Patientenversorgung und potenzielle spätere Komplikationen bei 
Schulterarthroplastik Patienten. Eine objektive Klassifizierung der Knochenpara-
meter und die Auswirkungen auf das biomechanische und postoperative Verhal-
ten verschiedener Implantattypen können im präoperativen Entscheidungspro-
zess des Chirurgen unterstützen. Ziel dieser Studien war es, objektive und kon-
sistente Knochendichteanalysen durchzuführen und die Auswirkungen auf das 
biomechanische Verhalten von Implantaten zu bewerten. 

Methoden: Die Auswertung der CT-Bilddaten umfasste Genauigkeits- und Zu-
verlässigkeitsanalysen der jeweiligen Parameter, sowie die retrospektive Anwen-
dung in einer multizentrischen CT-Bilddatenbank aus klinischen Kohorten. CT-
Scans von Schulterpräparaten wurden mit Mikro-CT-Daten, kalibrierten CT-Da-
ten und postoperativen Röntgenbildern verifiziert. Diese Methoden wurden retro-
spektiv auf klinische aTSA- (n=150) und RSA-Kohorten (n=345) angewendet. 
Maschinelles Lernen wurde eingesetzt, um konventionelle statistische Modelle 
zu verbessern, indem Cluster- und Klassifizierungsalgorithmen verwendet wur-
den, um präoperative CT-Daten in niedrige und hohe Knochendichten einzutei-
len. In biomechanischen Studien wurden die Schulterkadaver zyklisch belastet 
und in Korrelation zu den präoperative Bilddaten ausgewertet. Die humeralen 
Implantationen umfassten die Einbringung eines schaftlosen anatomischen Im-
plantats und unterschiedliche Schaftgrößen mit respektiven Knochenkanalfüll-
verhältnissen sowie verschiedene Augmentierungsmethoden auf der glenoidalen 
Seite. Zur räumlichen Auswertung der Mikrobewegung der Implantate und zur 
Quantifizierung kortikaler Knochendeformationen wurden optische Messungen 
während zyklischen Belastungen durchgeführt. 

Ergebnisse: Die Bildverarbeitung und die patientenspezifische Kalibrierung der 
klinischen CT-Bilder zeigten eine gute bis ausgezeichnete Genauigkeit für die 
zylindrische Spongiosadichte sowie der volumetrischen Auswertung des Kno-
chenkanals (Intraklassen-Korrelationskoeffizienten >0,75). Die patientenspezifi-
sche Kalibrierung standardisierte die Dichtevariablen und ermöglichte damit ei-
nen Mehrfachvergleich der multizentrischen Daten. RSA-Patienten wiesen eine 
signifikant geringere Knochendichte auf als zuvor untersuchte Patienten mit ana-
tomischer Arthroplastik. Die Klassifizierung der RSA-Knochenqualität zeigte im 
Vergleich zur konventionellen Statistik im Trainings- (Genauigkeit=91,2 %; 
AUC=0,967) und Testdatensatz (Genauigkeit=90,5 %; AUC=0,958) eine verbes-
serte Vorhersagegenauigkeit. Biomechanische Stabilität und dynamische Kno-
chenbelastung korrelierten mit den präoperativen CT-Daten. Größere Schaftgrö-
ßen resultierten in höherer Stabilität, aber reduzierte ebenfalls die Krafteinleitung 
im proximalen Humerus. Auf der glenoidalen Seite korrelierten niedrigere Kno-
chendichten mit höheren Mikrobewegung besonders bei der Nutzung eines Kno-
chenaugments. 

Schlussfolgerung: Die Auswertung präoperativer CT-Bildgebung resultierte in 
optimierten Methoden zur Bestimmung der Schaftgrößen und Augmentierungs-
methoden, sowie in Klassifizierungen der Knochenqualität unter Verwendung ob-
jektiver Ansätze mit dreidimensionalen patientenspezifisch kalibrierter Ergebnis-
variablen. Signifikante Auswirkungen auf die biomechanische Stabilität und die 
Lastübertragung wurden bei den jeweiligen Behandlungsoptionen nachgewie-
sen.  
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4. Abstract  

Background: Preoperative image processing of CT data can improve planning 
and treatment of patients undergoing shoulder arthroplasty. Reproducible and 
objective methods are lacking, even though preoperative CT imaging is com-
monly performed for planning purposes. Objective evaluation of CT based bone 
parameters and the impact on biomechanical behavior of different implant types 
help to understand current clinical findings regarding bone resorptions and com-
plications. The aims of these studies were to perform objective analyses of re-
spective regions of interest to opportunistically use preoperative CT imaging and 
to evaluate the effects on biomechanical implant behavior. 

Methods: The imaging-based approaches included accuracy and reliability anal-
yses of the three-dimensional regions of interest and patient specific calibration, 
before the retrospective application in clinical cohorts of a multi centric CT image 
data base. Cadaveric clinical CT scans were compared to micro-CT data and 
comparatively evaluated with phantom calibrated scans as well as postoperative 
X-rays to verify these methods. Bone density methods were then retrospectively 
applied to clinical aTSA (n=150) and RSA (n=345) cohorts. Machine learning was 
used to improve conventional statistical models by using clustering and classifi-
cation algorithms to categorize preoperative CT data into low and high bone den-
sities. In biomechanical studies, shoulder cadavers were cyclically loaded and 
analyzed in correlation to the preoperative image data. The humeral implanta-
tions included a stemless anatomic implant and different stem sizes with respec-
tive canal filling ratios as well as different augmentation methods on the glenoid 
side. Optical measurements were performed during cyclic loading to spatially 
evaluate the micromotion of the implants and to quantify cortical bone defor-
mations.  

Results: Image processing and patient-specific calibration of the clinical CT im-
ages showed good to excellent accuracy for cylindrical cancellous bone density 
and volumetric evaluation of the humeral bone canal (intraclass correlation coef-
ficients >0.75). The patient-specific calibration standardized the density variables 
and thus enabled a multiple comparison of multicentric data. RSA patients 
showed a significantly lower bone density than previously examined patients with 
anatomic arthroplasty. The classification of RSA bone quality showed improved 
prediction accuracy compared to conventional statistics in the training (accu-
racy=91.2 %; AUC=0.967) and test data set (accuracy=90.5 %; AUC=0.958). Bio-
mechanical stability and dynamic bone loading correlated with the preoperative 
CT data. Larger stem sizes resulted in higher stability, but also reduced force 
transmission in the proximal humerus. On the glenoid side, lower bone densities 
correlated with higher micromotions particularly when using a bony increased off-
set. 

Conclusion: The utility of preoperative CT imaging resulted in optimized meth-
ods for determining stem sizes and bone quality classifications using objective 
approaches with three-dimensional patient-specific calibrated outcome variables. 
Significant effects on biomechanical stability and load transfer were demon-
strated for the respective treatment options. The application of these methods in 
the preoperative planning process may provide objective prediction tools to im-
prove preoperative planning criteria to alert the surgeons for upcoming patients 
at risk for complications. 
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