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Summary

This research work focuses on advancing the theory and application of finite mixture
models, specifically through the development and modification of algorithms for cluster-
ing and parameter estimation in various complex data scenarios. The overarching theme
is to enhance computational efficiency, accuracy, flexibility and interpretability within
mixture models, particularly where traditional methods fall short.

Our first contribution explores a novel mixture model-based approach for composi-
tional data, often challenging to analyze due to constraints like unit-sum requirements.
Traditional methods rely on data transformation, but we leverage a Dirichlet Mixture
Model (DMM) with a modified Hard EM algorithm to address issues related to rapid
convergence and empty clusters. Through rigorous simulation studies, we compare this
model against popular clustering methods (such as KMeans, PAM, and DBSCAN) and
show that it provides robust clustering performance across diverse scenarios, including two
real-world datasets from business and physical sciences. This work highlights the model’s
adaptability in handling the unique distributional characteristics of compositional data.

In the second study, we tackle the challenge of estimating the Kullback-Leibler (KL)
divergence in Dirichlet Mixture Models, essential for compositional data analysis. Tra-
ditional Monte Carlo-based methods for KL divergence estimation are computationally
intensive, prompting our development of a variational approach with a closed-form so-
lution. This new method enhances computational efficiency and accuracy, allowing for
faster model comparisons. Validation with real and simulated data shows that this ap-
proach outperforms existing methods, paving the way for more efficient exploration of
DMMs in practical applications.

The third study delved into parameter estimation within Dirichlet Mixture Models,
where we introduce an alternative parametrization using mean and precision parame-
ters. This approach offers greater interpretability, where the mean indicates location,
and precision reflects the peakedness of the distribution. We derive maximum likelihood
estimates (MLEs) for various scenarios using the EM algorithm and introduce novel so-
lutions to address high-dimensional data challenges. This includes employing Stirling’s
approximation and moment approximation to provide closed-form solutions, ultimately
enhancing both the computational speed and robustness of parameter estimation. This
work demonstrates the identifiability of the DMM and proposes a closed-form KL diver-
gence approximation for goodness-of-fit evaluation, validated on simulated and real data.

In the fourth study, We revisit the Hard EM algorithm, commonly employed for un-
supervised learning due to its computational simplicity. Despite its perceived limitations,
such as biased estimates and lack of consistency, we propose modifications to Hard EM
tailored for Gaussian Mixture Models to address convergence issues. Using extensive sim-
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ulations across multiple benchmark datasets, we demonstrate that Hard EM can perform
comparably, and sometimes favorably, to standard EM in terms of accuracy and efficiency.
Additionally, the modified Hard EM algorithm is tested on real biological datasets, where
it shows practical utility in cluster analysis.

Lastly, we extend the flexibility of mixture models by constructing mixtures that com-
bine both identical and non-identical multivariate distributions, such as the Multivariate
Skew Normal and Multivariate Generalized Hyperbolic distributions. This innovative
framework broadens the applicability of mixture models by enabling combinations across
diverse distributional types, which conventional models typically do not allow. The pro-
posed framework encompasses traditional mixture models as special cases, showcasing its
utility through applications on simulated and real datasets. The flexibility of this model
allows for more accurate pattern recognition and parameter estimation, proving its ver-
satility across varied data structures.

In summary, our research contributes significantly to the field of statistical modeling
by expanding the versatility and applicability of finite mixture models, enhancing compu-
tational techniques, and improving interpretability in complex data environments. This
work has practical implications across fields such as biological sciences, business, and
marketing, enabling more accurate and efficient data analysis in real-world applications.
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Zusammenfassung

Diese Forschungsarbeit konzentriert sich auf die Weiterentwicklung der Theorie und An-
wendung endlicher Mischmodelle, insbesondere durch die Entwicklung und Modifikation
von Algorithmen für die Clusterbildung und Parameterschätzung in verschiedenen kom-
plexen Datenszenarien. Das übergeordnete Ziel ist es, die Effizienz, Genauigkeit und
Interpretierbarkeit von Mischmodellen zu verbessern, insbesondere in Fällen, in denen
herkömmliche Methoden an ihre Grenzen stoßen.

Unser erster Beitrag untersucht einen neuartigen Ansatz für die Analyse von Kompo-
sitionsdaten basierend auf Mischmodellen, die aufgrund der Restriktion, dass sich die An-
teile zu Eins aufsummieren müssen, oft schwierig zu analysieren sind. Traditionelle Meth-
oden stützen sich auf Datenumwandlungen, aber wir nutzen ein Dirichlet-Mischmodell
(DMM) mit einem modifizierten Hard EM-Algorithmus, um Probleme im Zusammenhang
mit schneller Konvergenz und leeren Clustern zu bewältigen. Durch umfangreiche Simula-
tionsstudien vergleichen wir dieses Modell mit populären Clustermethoden (wie KMeans,
PAM und DBSCAN) und zeigen, dass es in verschiedenen Szenarien, einschließlich zweier
realer Datensätze aus der Unternehmens- und Naturwissenschaft, eine robuste Leistung
bei der Clusterbildung bietet. Diese Arbeit unterstreicht die Anpassungsfähigkeit des
Modells an die spezifischen Verteilungseigenschaften von Kompositionsdaten.

In der zweiten Studie stellen wir uns der Herausforderung, die Kullback-Leibler (KL)-
Divergenz in Dirichlet-Mischmodellen zu schätzen, was für die Analyse von Komposi-
tionsdaten entscheidend ist. Da traditionelle Monte-Carlo-Methoden zur Schätzung der
KL-Divergenz rechnerisch aufwendig sind, haben wir einen neuen variationalen Ansatz
mit einer geschlossenen Lösung entwickelt. Diese Methode verbessert die rechnerische
Effizienz und Genauigkeit, was schnellere Modellvergleiche ermöglicht. Die Validierung
an realen und simulierten Daten zeigt, dass dieser Ansatz bestehende Methoden übertrifft
und somit den Weg für eine effizientere Untersuchung von DMMs in der Praxis ebnet.

Die dritte Studie widmet sich der Parameterschätzung innerhalb von Dirichlet-Misch-
modellen, wobei wir eine alternative Parametrisierung mit Mittelwert- und Präzisions-
parametern einführen. Dieser Ansatz bietet eine größere Interpretierbarkeit, da der Mit-
telwert die Lage und die Präzision die Konzentration der Verteilung um den Mittelw-
ert widerspiegelt. Wir leiten Maximum-Likelihood-Schätzungen (MLE) für verschiedene
Szenarien mithilfe des EM-Algorithmus ab und stellen neuartige Lösungen für Heraus-
forderungen in hochdimensionalen Daten vor. Dazu gehört die Verwendung der Stir-
lingschen Näherung und der Momentenapproximation zur Bereitstellung geschlossener
Lösungen, die sowohl die Rechengeschwindigkeit als auch die Robustheit der Parame-
terschätzung erhöhen. Diese Arbeit zeigt die Identifizierbarkeit des DMM und schlägt
eine geschlossene Approximation für die KL-Divergenz zur Gütebewertung vor, die an
simulierten und realen Daten validiert wurde.
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In der vierten Studie wird der Hard EM-Algorithmus erneut untersucht, der aufgrund
seiner rechnerischen Einfachheit häufig für unüberwachtes Lernen eingesetzt wird. Trotz
seiner bekannten Einschränkungen, wie verzerrten Schätzungen und mangelnder Konsis-
tenz, schlagen wir Modifikationen des Hard EM-Algorithmus vor, die speziell für Gaußsche
Mischmodelle entwickelt wurden, um Konvergenzprobleme zu adressieren. Durch um-
fangreiche Simulationen auf verschiedenen Benchmark-Datensätzen zeigen wir, dass der
Hard EM-Algorithmus in Bezug auf Genauigkeit und Effizienz vergleichbare, teils sogar
bessere Ergebnisse als der Standard-EM-Algorithmus liefern kann. Darüber hinaus wird
der modifizierte Hard EM-Algorithmus an realen biologischen Datensätzen getestet und
zeigt praktische Nützlichkeit bei der Clusteranalyse.

Schließlich erweitern wir die Flexibilität von Mischmodellen, indem wir Mischungen
konstruieren, die sowohl identische als auch nicht identische multivariate Verteilungen,
wie die multivariate schiefe Normalverteilung und die multivariate verallgemeinerte hyper-
bolische Verteilung, kombinieren. Dieses innovative Rahmenwerk vergrößert die Anwend-
barkeit von Mischmodellen, indem es Kombinationen unterschiedlicher Verteilungstypen
ermöglicht, die herkömmliche Modelle typischerweise nicht erlauben. Das vorgeschla-
gene Rahmenwerk umfasst traditionelle Mischmodelle als Spezialfälle und zeigt seine
Nützlichkeit durch Anwendungen auf simulierte und reale Datensätze. Die Flexibilität
dieses Modells ermöglicht eine genauere Mustererkennung und Parameterschätzung und
beweist seine Vielseitigkeit in verschiedenen Datenstrukturen.

Zusammenfassend trägt unsere Forschung maßgeblich zum Bereich der statistischen
Modellierung bei, indem sie die Vielseitigkeit und Anwendbarkeit endlicher Mischmod-
elle erweitert, rechnerische Techniken verbessert und die Interpretierbarkeit in komplexen
Datenumgebungen erhöht. Diese Arbeit hat praktische Implikationen in Bereichen wie
Biowissenschaften, Wirtschaft und Marketing und ermöglicht eine genauere und effizien-
tere Datenanalyse in realen Anwendungen.
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Chapter 1

Introduction

Analyzing complex data structures with inherent clustering remains a significant chal-
lenge across various disciplines, including biology (Balaban et al., 2019; Petegrosso et al.,
2020), finance (Li et al., 2021), image processing (Kim et al., 2020), and social sciences
(Grimmer et al., 2021). Two main approaches dominate the field of clustering: model-
based methods and algorithms based on similarity or distance measures. In model-based
methods, such as the Gaussian Mixture Model (GMM) (McLachlan et al., 2019), clusters
are identified by fitting a mixture of distributions to the data. In contrast, similarity-
based algorithms like hierarchical clustering (Ward Jr, 1963) and K-Means (MacQueen
et al., 1967) create clusters by assessing the relationships or distances between data points.

Among these methods, mixture models have become a highly versatile and widely used
framework for clustering complex datasets. They allow for the detection of latent sub-
populations within diverse datasets by accommodating variations in the observed data
while capturing its underlying distribution. The Gaussian Mixture Model, a prime exam-
ple of mixture models, assumes that each cluster’s data follows a multivariate Gaussian
distribution. However, the applicability of mixture models is not limited to Gaussian
distributions. Increasingly, the literature emphasizes the potential of other multivariate
distributions, such as the multivariate t-distribution, Multivariate Skew Normal (MSN),
and Multivariate Generalized Hyperbolic (MGH) distributions, for modeling intricate data
structures. Browne and McNicholas (2015) demonstrated how to model multivariate data
using mixtures of Multivariate Generalized Hyperbolic distributions, while Lin (2009)
and Abe et al. (2021) provided detailed methods for fitting mixtures of Multivariate Skew
Normal distributions. Other special forms of Multivariate Generalized Hyperbolic dis-
tributions, including mixtures with the Multivariate Normal Inverse Gaussian (MNIG)
distribution (O’Hagan et al., 2016), the Skew t distribution (Vrbik and McNicholas, 2012;
Lee and McLachlan, 2014), and the Variance-Gamma (McNicholas et al., 2013) distribu-
tion, have also been explored. Cabral et al. (2012) examined a flexible class of models that
include finite mixtures of multivariate skew normal independent distributions, specifically
focusing on finite mixtures involving skew normal, skew t, skew slash, and skew con-
taminated normal distributions. Meanwhile, Zehra Doğru et al. (2021) introduced finite
mixtures of multivariate skew Laplace distributions to effectively capture both skewness
and heavy-tailed characteristics in heterogeneous datasets.
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1.1 Research Objectives

The primary goal of this research is to advance the theoretical and practical applications of
finite mixture models, with a particular emphasis on unsupervised learning and clustering.
Given the complexity of real-world datasets in fields such as biology, finance, and social
sciences, this work seeks to develop more flexible and interpretable models that improve
computational efficiency and accuracy. Specifically, this research aims to:

1. Develop a Novel Model-Based Clustering Approach for Compositional
Data Using Dirichlet Mixture Models (DMM):

• Design a clustering algorithm specifically suited for compositional data, which
is constrained by a unit-sum requirement, where traditional clustering methods
like KMeans or GMM are less effective and often require data transformations.

• Construct a Dirichlet Mixture Model (DMM) to naturally accommodate the
unit-sum constraint inherent to compositional data, and apply a modified Hard
EM algorithm for efficient parameter estimation.

• Conduct simulation studies and real data applications to validate the proposed
method’s robustness and adaptability in handling compositional datasets, im-
proving both interpretability and clustering accuracy.

2. Propose a Variational Approach for Efficient KL Divergence Estimation
in DMMs:

• Address the computational challenges in estimating Kullback-Leibler (KL) di-
vergence in Dirichlet Mixture Models, a critical metric for model selection and
evaluation.

• Replace the traditionally intensive Monte Carlo-based estimation methods with
a novel variational approach that yields a closed-form solution for KL diver-
gence, thereby significantly enhancing computational efficiency.

• Validate the variational method’s accuracy and efficiency through comparisons
with Monte Carlo methods, enabling faster and more reliable model evaluations
for clustering compositional data.

3. Enhance Interpretability and Estimation Efficiency in DMMs through
Mean-Precision Parametrization:

• Develop an alternative parametrization of the Dirichlet distribution using mean
and precision parameters, providing a more interpretable framework where the
mean reflects the distribution’s location and precision indicates its concentra-
tion.

• Derive parameter estimates for DMMs under various scenarios, distinguishing
cases where one or both parameters are known and adapting to specific data
constraints.

• Address the computational challenges of high-dimensional DMMs by proposing
special estimates based on Stirling’s approximation and moment approxima-
tion, yielding closed-form solutions that increase computational efficiency.

• Prove the identifiability of Dirichlet Mixture Models, which is crucial for the-
oretical robustness but has not been previously discussed in depth.
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4. Evaluate and Enhance Classification EM (Hard EM) for Gaussian Mix-
ture Models (GMM):

• Assess the clustering performance of the Hard EM algorithm on various bench-
mark datasets to investigate if its performance is genuinely inferior to the stan-
dard EM algorithm, as is commonly assumed.

• Identify specific scenarios where Hard EM could perform comparably or even
favorably due to its computational simplicity.

• Develop tailored modifications to Hard EM to mitigate issues of greedy con-
vergence, thereby improving stability and accuracy when applied to Gaussian
Mixture Models, particularly in complex, high-dimensional data.

5. Extend Flexibility in Mixture Models by Combining Identical and Non-
Identical Distributions:

• Introduce a flexible framework for finite mixture models that allows combina-
tions of identical and non-identical multivariate distributions, such as Multi-
variate Skew Normal, Multivariate Generalized Hyperbolic, and other complex
distributions.

• Explore model selection criteria tailored to this versatile framework to deter-
mine the optimal mixture configuration and provide diagnostics to evaluate
model performance across diverse datasets.

• Demonstrate the practical benefits of this framework in identifying latent clus-
ters and improving parameter estimation accuracy, broadening the applicability
of finite mixture models in unsupervised learning tasks across disciplines.

6. Develop a Python Package for Software Implementation of the Proposed
Models:

• Provide a comprehensive Python package incorporating all developed mixture
models, ensuring accessibility and ease of use for practitioners and researchers.

• Implement efficient algorithms for parameter estimation and clustering, inte-
grating enhancements from the study to maximize computational efficiency.

• Include visualization tools, model selection criteria, and performance diagnos-
tics to facilitate practical application in real-world clustering tasks.

• Encourage broader adoption by ensuring compatibility with popular Python
libraries such as NumPy, SciPy, and scikit-learn, and by providing insightful
examples with motivating datasets.

1.2 Overview of Contributing Papers

Chapter 2. Pal, Samyajoy, and Christian Heumann. ”Clustering compositional data
using Dirichlet mixture model.” Plos one 17, no. 5 (2022): e0268438. https://doi.

org/10.1371/journal.pone.0268438.

This chapter aligns with Research Objective 1, where we introduce a Dirichlet Mix-
ture Model (DMM) for compositional data clustering. We demonstrate how the model
naturally accommodates the unit-sum constraint and propose an adaptation of the Hard
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EM algorithm for efficient parameter estimation. Simulation studies and real-world ap-
plications validate the model’s performance.

Chapter 3. Pal, Samyajoy, and Christian Heumann. ”Gene coexpression analysis with
Dirichlet mixture model: accelerating model evaluation through closed-form KL diver-
gence approximation using variational techniques.” In International Workshop on Sta-
tistical Modelling, pp. 134-141. Cham: Springer Nature Switzerland, 2024. https:

//doi.org/10.1007/978-3-031-65723-8_21.

This chapter corresponds to Research Objective 2, where we focus on efficient estima-
tion of the Kullback-Leibler (KL) divergence for Dirichlet Mixture Models. We develop a
novel variational approach that yields a closed-form KL divergence approximation, signif-
icantly reducing computational costs and enhancing model evaluation for compositional
data.

Chapter 4. Pal, Samyajoy, and Christian Heumann. ”Revisiting Dirichlet Mixture
Model: Unraveling Deeper Insights and Practical Applications.” Statistical Papers 66,
no. 1 (2025): 1-38. https://doi.org/10.1007/s00362-024-01627-0.

This chapter contributes to Research Objective 3 by introducing a mean-precision
parametrization of the Dirichlet distribution for improved interpretability. We derive
efficient parameter estimation techniques, discuss identifiability issues, and propose ap-
proximations that enhance the computational efficiency of DMMs, particularly in high-
dimensional settings.

Chapter 5. Pal, Samyajoy, and Christian Heumann. ”Gaussian mixture model with
modified hard EM algorithm in clustering problems.” In Statistical Modeling and Appli-
cations on Real-Time Problems, pp. 153-179. CRC Press, 2024. https://doi.org/10.

1201/9781003356653-7.

This chapter addresses Research Objective 4, where we analyze the performance of
the Hard EM algorithm for Gaussian Mixture Models (GMM) and propose modifications
to improve convergence and clustering accuracy. Extensive simulations and real data ap-
plications illustrate the effectiveness of the modified Hard EM algorithm.

Chapter 6. Pal, Samyajoy, and Christian Heumann. ”Flexible Multivariate Mixture
Models: A Comprehensive Approach for Modeling Mixtures of Non-Identical Distribu-
tions.” International Statistical Review (2024). https://doi.org/10.1111/insr.12593.

This chapter aligns with Research Objective 5, where we extend traditional mixture
models by allowing combinations of identical and non-identical distributions, including
the Multivariate Skew Normal and Multivariate Generalized Hyperbolic distributions.
We propose a unified framework that broadens the applicability of finite mixture models
and demonstrate its effectiveness on diverse datasets.

In addition to the above chapters, this dissertation includes a software implementation
of the developed models in a Python package, addressing Research Objective 6. The pack-
age provides efficient algorithms for parameter estimation and clustering, along with visu-
alization tools and model selection criteria to facilitate practical applications in unsuper-
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vised learning. The package is available at https://github.com/samyajoypal/fmvmm.

1.3 Brief History of Finite Mixture Model

Finite mixture models have a rich history spanning nearly 140 years. The historical evo-
lution and significant advancements in finite mixture models have been comprehensively
reviewed by McLachlan et al. (2019) and McLachlan (2000). One of the first significant
analyses using mixture models was conducted by Karl Pearson, a renowned biometrician.
In his seminal 1894 paper (Pearson, 1894), Pearson—who was also a statistician and eu-
genicist—applied a mixture of two normal probability density functions, each with distinct
means (µ1 and µ2) and variances (σ2

1 and σ2
2), to a set of crab data provided by evolu-

tionary biologist Weldon (1892, 1894). The concept of breaking down a normal mixture
into its individual components had been suggested in the earlier works of Quetelet (1846,
1852) and explicitly mentioned by Galton (1891). For a detailed overview of these early
contributions to mixture models, see Stigler (1990). Another early contribution came
from Holmes (1892), who introduced the idea of population mixtures by arguing that an
average was insufficient when considering wealth inequality. Prior to Pearson’s work, New-
comb (1886) proposed an iterative reweighting method, which can be viewed as an early
application of the EM algorithm later formalized by Dempster et al. (1977), to calculate
the common mean of a mixture of univariate normal distributions with known variances.
For more detailed discussions on the history of mixture models, refer to McLachlan and
Basford (1988) and McLachlan (2000).

However, aside from contributions by Jeffreys (1932) and Rao (1948), the use of max-
imum likelihood (ML) for fitting mixture models did not gain much traction until the
1960s. Important work on an iterative Maximum Likelihood (ML) fitting scheme for
mixture distributions was published by Day (1969) and Wolfe (1970), who also authored
several technical reports. The formalization of this iterative approach in a broader con-
text by Dempster et al. (1977) through their Expectation Maximization (EM) algorithm
marked a significant theoretical advancement in understanding the convergence properties
of the ML solution for mixture problems. The EM algorithm spurred renewed research
interest in finite mixture models, leading to a surge of subsequent papers in the field,
beginning with works like Ganesalingam and McLachlan (1978) and O’neill (1978).

1.4 EM Algorithm

The Expectation-Maximization (EM) algorithm Dempster et al. (1977) is a widely used
iterative method for finding maximum likelihood estimates (MLE) in models with latent
variables. It alternates between two steps: the Expectation (E)-step, where the expected
complete data log-likelihood is obtained, and the Maximization (M)-step, where the pa-
rameters are updated to maximize this log-likelihood. The EM algorithm is particularly
useful when dealing with incomplete or hidden data.

1.4.1 General Formulation of EM Algorithm

Let XXX1,XXX2, . . . ,XXXN denote an independent random sample of size N , where XXX i is a p di-
mensional random vector with probability density function (p.d.f.) f(xxxi;θθθ) on Rp, where
θθθ = (θ1, . . . , θd)

T is a vector of unknown parameters with parameter space ΘΘΘ. We can
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write XXX = (XXXT
1 , . . . ,XXX

T
N)

T , where the superscript T denotes vector transpose. An ob-
served random sample is denoted by xxx = (xxxT1 , . . . ,xxx

T
N)

T , where xxxi is the observed value of
the random vector XXX i.

In general, the maximum likelihood estimate of θθθ is obtained by maximizing the log-
likelihood function. Let us denote the likelihood function by L(θ;xxxθ;xxxθ;xxx). Then the MLE is

given by, θ̂θθ = argmax
θθθ∈ΘΘΘ

l(θθθ) (Casella and Berger, 2024), where

l(θθθ) = logL(θ;xxxθ;xxxθ;xxx) =
N∑

i=1

log f(xxxi;θθθ) . (1.1)

The Expectation-Maximization (EM) algorithm is a versatile method that provides
an iterative approach for computing maximum likelihood estimates (MLEs) in scenarios
where MLE computation would be simple if additional data were available (McLachlan
and Krishnan, 2008). In this context, the observed data vector xxx is considered incomplete
and viewed as a function of the so-called complete data. The concept of ”incomplete
data” encompasses both cases of missing data in the traditional sense and situations
where complete data represent outcomes from a hypothetical experiment. In the latter
case, the complete data may include variables that are never directly observable. Under
this framework, we use yyy = (xxx,zzz) to represent the complete or augmented data, where
zzz = (zzz1, . . . zzzN) denotes the unobservable or missing data.

Let, fc(yyy;θθθ) be the p.d.f. of the random vector YYY corresponding to the complete data
vector yyy. Then the complete data log-likelihood is given by,

lc(θθθ) = logL(θθθ;yyy) .

The EM algorithm approaches the problem of solving the incomplete data log-likelihood
equation (1.1) indirectly by proceeding iteratively in terms of the complete data log-
likelihood function, lc(θθθ) . As it is unobservable, it is replaced by its conditional expecta-
tion given xxx using the current parameter values for θθθ. The algorithm alternates between
the following steps:

E-step: In the E-step, we compute the expectation of the complete data log-likelihood
with respect to the conditional distribution of the latent variables given the observed data
and current parameter estimates θθθ(t):

Q(θθθ | θθθ(t)) = Eθθθ(t) [lc(θθθ) | xxx] , (1.2)

where the Q function is the expected complete data log-likelihood function.

M-step: In the M-step, we maximize the expected log-likelihood from the E-step with
respect to the model parameters:

θθθ(t+1) = argmax
θθθ∈ΘΘΘ

Q(θθθ | θθθ(t)) (1.3)

The algorithm repeats these two steps until convergence, typically when the change
in the log-likelihood between iterations falls below a certain threshold.
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1.4.2 Monotonicity of EM Algorithm

One of the most important properties of the EM algorithm is that it ensures that the
likelihood is non-decreasing at each iteration.

Theorem 1.4.1 Given a sequence of parameters θθθt, θθθt+1 generated by the EM steps t and
t+ 1, the incomplete data log-likelihood at each step is non-decreasing, that is,

l(θθθt+1) ≥ l(θθθt) . (1.4)

Proof The proof follows the approach established by Dempster et al. (1977). We denote
the conditional p.d.f. of YYY given xxx by g(yyy | xxx;θθθ).

It implies that,

g(yyy | xxx;θθθ) = g(zzz | xxx;θθθ) = fc(y;θθθy;θθθy;θθθ)

f(xxx;θθθ)
(1.5)

Then the log-likelihood is given by,

logL(θθθ | xxx) = log f(xxx;θθθ) (1.6)

= log fc(y;θθθy;θθθy;θθθ)− log g(yyy | xxx;θθθ)
= logLc(θθθ)− log g(yyy | xxx;θθθ) .

On taking the expectations of both sides of the above equation with respect to the
conditional distribution of ZZZ given XXX = x using the fit θθθ(t) for θθθ, we have that,

logL(θθθ | xxx) = Eθθθ(t) [logLc(θθθ) | xxx]− Eθθθ(t) [log g(YYY | xxx;θθθ) | xxx]
= Q(θθθ;θθθ(t))−H(θθθ;θθθ(t)) (1.7)

where,

Q(θθθ;θθθ(t)) = Eθθθ(t)) [logLc(θθθ) | xxx] and (1.8)

H(θθθ;θθθ(t)) = Eg(θθθ(t)) [log g(YYY | xxx;θθθ) | xxx] (1.9)

From eq. (1.7), we have that,

logL(θθθ(t+1))− logL(θθθ(t))

=
[
Q(θθθ(t+1);θθθ(t))−Q(θθθ(t);θθθ(t))

]

−
[
H(θθθ(t+1);θθθ(t))−H(θθθ(t);θθθ(t))

]
(1.10)

The first difference on the right-hand side is non-negative since θθθ(t+1) is chosen so that

Q(θθθ(t+1);θθθ(t)) ≥ Q(θθθ;θθθ(t)), ∀θθθ ∈ ΘΘΘ.

Hence eq. (1.4) holds if the second difference on the right-hand side is nonpositive; that
is, if

H(θθθ(t+1), θθθ(t))−H(θθθ(t), θθθ(t)) ≤ 0 . (1.11)

Now for any θθθ,

H(θθθ,θθθ(t))−H(θθθ(t), θθθ(t))

= Eθθθ(t))

[
log

g(YYY | xxx;θθθ)
g(YYY | xxx;θθθ(t)) | xxx

]
. (1.12)
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Now by Jensen’s inequality (Durrett, 2019),

Eθθθ(t))

[
log

g(YYY | xxx;θθθ)
g(YYY | xxx;θθθ(t)) | xxx

]

≤ logEθθθ(t))

[
g(YYY | xxx;θθθ)
g(YYY | xxx;θθθ(t)) | xxx

]
(1.13)

= log

∫

Y(xxx)

g(yyy | xxx;θθθ(t))dyyy (1.14)

= log 1 (1.15)

= 0 (1.16)

Hence, it is proved that,
l(θθθ(t+1)) ≥ l(θθθ(t)) . (1.17)

1.4.3 Advantages and Criticisms of the EM Algorithm

The EM algorithm offers several advantages over other iterative methods (McLachlan and
Krishnan, 2008), such as the Newton-Raphson and Fisher’s scoring algorithms, which are
traditionally used to find maximum likelihood estimates (MLEs). Some of the key benefits
of the EM algorithm include:

1. The EM algorithm exhibits numerical stability. Each iteration guarantees an in-
crease in the likelihood function.

2. The algorithm demonstrates robust global convergence under broad conditions. It
generally converges to a local maximum even when starting from arbitrary points
in the parameter space, assuming that the initial parameter values are not severely
ill-chosen or affected by some pathological feature of the log-likelihood function.

3. The EM algorithm is relatively simple to implement. This simplicity arises from
the fact that each iteration’s E-step involves taking expectations over complete-data
conditional distributions, and the M-step requires maximum likelihood estimation
(MLE) for the complete data, which often has closed-form solutions.

4. It is computationally efficient since the algorithm avoids directly computing the
likelihood function or its derivatives. As a result, the EM algorithm is easy to
program.

5. The algorithm has low memory requirements, making it feasible to run on machines
with limited computational resources. For example, the algorithm does not need to
store the information matrix or its inverse at any stage of the iterations.

6. In cases where the complete-data problem can be handled using standard statistical
software, the M-step can often be completed using these tools. When the MLE
of the complete data does not exist in closed form, extensions like the Generalized
EM (GEM) or the Expectation-Conditional Maximization (ECM) algorithms can
be used. These methods allow the M-step to be solved iteratively and still maintain
the stable, monotone convergence of the EM algorithm.
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7. The EM algorithm reduces the complexity of analytical work. It only requires max-
imizing the conditional expectation of the log-likelihood function for the complete-
data problem. While the E-step may involve some analytical effort, it tends to be
straightforward for many practical problems.

8. Although the EM algorithm may require more iterations compared to other meth-
ods, each iteration is computationally inexpensive, which often compensates for the
higher iteration count.

9. Monitoring the progress of the algorithm is straightforward. By observing the mono-
tonic increase in the likelihood over iterations (if its evaluation is manageable), one
can easily detect convergence and debug potential errors in the implementation.

10. The EM algorithm can also provide estimates of the missing data, which is partic-
ularly useful in certain applications.

Despite its numerous advantages, the EM algorithm has certain limitations:

1. Unlike Fisher’s scoring method, the EM algorithm does not intrinsically provide an
estimate of the covariance matrix for the parameter estimates. However, this draw-
back can be mitigated by using appropriate extensions or modifications associated
with the EM algorithm.

2. In some cases, the EM algorithm can exhibit slow convergence, particularly in prob-
lems that involve excessive amounts of incomplete information or have relatively
simple structures.

3. Like Newton-type methods, the EM algorithm does not guarantee convergence to
the global maximum when the likelihood function has multiple maxima. Conse-
quently, the final estimate depends on the initial parameter values. It is worth
noting, however, that this issue is not unique to the EM algorithm—most optimiza-
tion procedures share this limitation. More advanced techniques, such as simulated
annealing, can address these challenges, though they are often complex to imple-
ment.

4. In certain scenarios, the E-step of the EM algorithm may be analytically intractable.
In such cases, Monte Carlo methods can be used to approximate the required ex-
pectations, though these techniques introduce additional complexity and increase
the run time.

1.4.4 ECM Algorithm

The Expectation Conditional Maximization (ECM) algorithm (Meng and Rubin, 1993)
is an extension of the EM algorithm that replaces the single M-step with multiple condi-
tional maximization (CM) steps. This allows for greater flexibility in optimizing complex
models, where the M-step may not be easy to compute directly. In ECM, the parameter
updates are performed conditionally on subsets of the parameters, which can lead to faster
convergence.

The ECM algorithm, like the EM algorithm, begins with an E-step, where we compute
the expected value of the complete data log-likelihood. However, instead of a single M-
step, ECM divides the M-step into multiple conditional maximization steps.
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Let θθθ = (θθθ1, θθθ2, . . . , θθθd) represent the partition of the model parameters into d subsets.
The algorithm alternates between the E-step and the following CM steps:

E-step: Compute the expected complete data log-likelihood:

Q(θθθ | θθθ(t)) = Eθθθ(t) [lc(θθθ) | xxx] (1.18)

CM-step 1: Maximize the expected log-likelihood with respect to the first subset of
parameters θθθ1, keeping the others fixed:

θθθ
(t+1)
1 = argmax

θθθ1
Q(θθθ1, θθθ

(t)
2 , . . . , θθθ

(t)
d | θθθ(t)) (1.19)

CM-step 2: Maximize with respect to the second subset of parameters θθθ2, keeping the
rest fixed:

θθθ
(t+1)
2 = argmax

θθθ2
Q(θθθ

(t+1)
1 , θθθ2, . . . , θθθ

(t)
d | θθθ(t)) (1.20)

This process is repeated for all d subsets of parameters until all have been updated.

1.5 General Formulation of Finite Mixture Model

Let XXX1,XXX2, . . . ,XXXN denote a random sample of size N , where XXX i is a p dimensional
random vector with probability density function f(xxxi | ααα) on Rp, where ααα ∈ Rd is the
distribution parameter. An observed random sample is denoted by xxx = (xxxT1 , . . . ,xxx

T
N)

T ,
where xxxi is the observed value of the random vector XXX i.

The density of a mixture model with k mixture components for one observation xxxi is
given by the mixture density

p(xxxi | ααα) =
k∑

j=1

πjf(xxxi | αααj) , (1.21)

where πππ = (π1, . . . , πk) contains the corresponding mixture proportions with
∑k

j=1 πj = 1,
0 < πj < 1. The density component of mixture j is given by f(xxxi | αααj) and αααj,
j = 1, 2, ..., k is the vector of component specific parameters for each density. Then
ααα = (ααα1, . . . ,αααk) denotes the vector of distribution parameters of the model and θθθ = (πππ,ααα)
denotes the the vector of all parameters of the model.

The log-likelihood of the model for a sample of size N is then given by

log p(xxx1, . . . ,xxxN | ααα,πππ) =
N∑

i=1

log

[
k∑

j=1

πjf(xxxi | αααj)

]
. (1.22)

The parameters of the mixture model can be estimated using the EM algorithm
(Dempster et al., 1977). For the E step, we introduce latent categorical variables Zi,
assuming values 1, . . . , k with probabilities π1, . . . , πk such that Pr(XXX i | Zi = j) = f(xxxi |
αααj), j = 1, . . . , k. The posterior probability that the data point i belongs to cluster j is
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computed using Bayes rule as

γij(xxxi) = Pr(Zi = j |XXX i = xxxi,ααα,πππ) =
πjf(xxxi | αααj)∑k
r=1 πrf(xxxi | αααr)

. (1.23)

The expected complete data log likelihood for the current iteration number t can be
decomposed as follows (Murphy, 2022),

Q(ααα,αααt−1) = E

[
N∑

i=1

log(p(xxxi, zi | ααα)) | xxx,αααt−1

]
(1.24)

=
N∑

i=1

E

[
log

[
k∏

j=1

(πjp(xixixi | αααj))
I(zi=j)

]]
(1.25)

=
N∑

i=1

k∑

j=1

E [[I(zi = j)] log[πjp(xxxi | αααj)]] (1.26)

=
N∑

i=1

k∑

j=1

Pr(Zi = j | xxxi,αααt−1) log[πjp(xxxi | αααj)] (1.27)

=
N∑

i=1

k∑

j=1

γij log πj +
N∑

i=1

k∑

j=1

γij log f(xxxi | αααj) (1.28)

The two parts of equation 1.28 can be optimized separately at the M step to estimate
the parameters of the model. We denote

Q(πππ) =
N∑

i=1

k∑

j=1

γij log πj and Q(ααα) =
N∑

i=1

k∑

j=1

γij log f(xxxi | αααj) . (1.29)

Thus, the updates of the parameters are obtained as,

π̂t
j =

Nj

N
(1.30)

α̂ααt
j = argmax

αααj

Q(αααj) , (1.31)

where, Nj =
∑N

i=1 γij.

1.5.1 Classification EM Algorithm

In numerous applications, calculating the Q function during the E-step can be challeng-
ing, particularly when the missing data has a high dimensionality or involves incomplete
observations like censored data. In such cases, the conditional expectation often involves
a high-dimensional integral or an integral over a complex region. To address these diffi-
culties, a variant of the EM algorithm, known as the Classification EM (CEM) or Hard
EM algorithm, can be employed to simplify the computational process.

In the case of a Hard EM, the following objective function is optimized.

θ̂θθ = argmax
θθθ

max
z1,...,zN

pθθθ(xxx1,xxx2, . . . ,xxxN , z1, z2, . . . , zN) , (1.32)

23



where θθθ denotes all parameters. Hard EM maximizes the classification likelihood. It ap-
plies a delta function approximation to the posterior probabilities Pr(Zi = j |X = xX = xX = x,ααα),
where Zi, i = 1, . . . , N are the latent variables representing class labels. For iteration t
the approximation changes the E step as follows,

Pr(Zt
i = j |XXX = xxx,αααt) ≈ III(j = zt∗i ), (1.33)

where, zt∗i = argmax
j

γtij = argmax
j

logPr(xixixi | Zt
i = j,αtαtαt) + logPr(Zt

i = j | αααt) (Murphy,

2012) .

In other words, Hard EM includes a classification step between E and M step, where
data points are assigned to their respective clusters based on the maximum posterior prob-
ability zt∗i . At the M step, parameters are updated by obtaining the MLE of the param-
eters considering only the data points asigned to that respective cluster. Although hard
EM uses an approximation to estimate the MLE, it maximizes the classification likelihood
by obtaining the MAP estimate, i.e. the mode of the distribution of Pr(Zi = j | XXX,ααα).
Celeux and Govaert (1992) have shown that for a mixture of identical distributions at
each iteration the classification likelihood increases and if ML estimates of the mixture
densities are well defined, it converges to a stationary point. Below we discuss the proof
of convergence of of the classification EM algorithm in case of mixtures of identical dis-
tributions as shown by Celeux and Govaert (1992). The proof of convergence in case of
mixtures of non-identical distributions is given in chapter 6.

Let, PPP = (P1, P2, . . . , Pk) be the k partitions or clusters. Then a classification maxi-
mum likelihood (CML) criterion can be defined as,

C(PPP ,πππ,ααα) =
k∑

j=1

∑

xixixi∈Pj

log [πjf(xixixi,αjαjαj)] . (1.34)

Theorem 1.5.1 Any sequence (PPP t,πππt,αααt) for iteration t increases the CML criterion
C and the sequence C(PPP t,πππt,αααt) converges to a stationary point. Furthermore, if the
ML estimates of the parameters are well-defined, the sequence (PPP t,πππt,αααt) converges to a
stationary position.

Proof At first we show that CML criterion increases at each iteration step. Since, (πππt,αjαjαj
t)

maximizes
∑

xixixi∈P t
j
log [πjf(xixixi,αjαjαj)], we can directly write from eq. (1.34),

C(PPP t,πππt+1,αααt+1) ≥ C(PPP t,πππt,αααt)

Now, xixixi ∈ P t+1
j is equivalent to γt+1

ij ≥ γt+1
ij′ ∀j′ ̸= j, which implies,

πt+1
j f(xixixi,ααα

t+1
j ) ≥ πt+1

j′ f(xixixi,ααα
t+1
j′ )

Thus, we can write,
C(PPP t+1,πππt+1,αααt+1) ≥ C(PPP t,πππt+1,αααt+1)

Since there is a finite number of partitions of the sample into k clusters, the increasing
sequence C(PPP t,πππt,αααt) takes a finite number of values and as a result it converges to a
stationary value. If the ML estimates of πππt and αααt are well defined, for a t large enough
we can deduce, πππt = πππt+1 and αααt = αααt+1. That directly leads to PPP t = PPP t+1. Thus, for a t
large enough, we can write,

C(PPP t,πππt,αααt) = C(PPP t,πππt+1,αααt+1) = C(PPP t+1,πππt+1,αααt+1)
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1.6 Identifiability of Finite Mixture Model

The identifiability of a statistical model is crucial because it ensures that the model
parameters can be uniquely determined from the observed data, preventing ambiguities
in parameter estimation. A well-identified model is essential for reliable and interpretable
statistical inferences, providing a solid foundation for drawing meaningful conclusions
from empirical observations.
Teicher (1963) has laid down the foundations of identifiability of finite mixture models.

Definition Let, F = {F (xxx,ααα);ααα ∈ Rm
1 ,xxx ∈ Rp} be a family of p dimensional cdf’s

indexed by a point ααα in a Borel subset Rm
1 of the Euclidean m space Rm such that F (xxx,ααα)

is measurable in Rp×Rm
1 . Then H, the set of all finite mixtures of a class of distributions

F is defined as the convex hull of F :

H = {H(xxx) : H(xxx) =
k∑

j=1

πjF (xxx,αααj), πj > 0,
k∑

j=1

πj = 1, F (xxx,αααj) ∈ F , k = 1, 2, . . .} .

(1.35)
F generates indentifiable finite mixtures if and only if H has the uniqueness of represen-
tation property.

k∑

j=1

πjF (xxx,αααj) =

q∑

j=1

π′
jF

′(xxx,αααj) (1.36)

implies, k = q and for each j, 1 ≤ j ≤ k there is some l, 1 ≤ l ≤ k such that πj = π
′

l and
F (xxx,αααj) = F ′(xxx,αααl).

Theorem 1.6.1 The class H, of all finite mixtures of the family F is identifiable if and
only if F is a linearly independent set over the field of real numbers.

Corollary 1.6.2 A necessary and sufficient condition that the class H of all finite mix-
tures of the family F be identifiable is that the image of F under any vector isomorphism
on ⟨F⟩ be linearly independent in the image space.

The proofs of the above theorem and corollary can be found in Yakowitz and Spragins
(1968). In the context of finite mixture model, the theorem and the corollary can be
understood in a simple way as follows. The family F consists of functions f(xxx | αjαjαj). If F
is linearly independent over R, this means that the only way a finite linear combination
of functions from F can be zero for all xxx is if all coefficients are zero.

Mathematically, if

k∑

j=1

πjf(xxx | αjαjαj) = 0, for all xxx,

then it must be that πj = 0 for all j.

If F is not linearly independent, then there exist non-trivial coefficients πj such that
the sum is identically zero. This means different sets of mixture weights πj and component
densities f(xxx | αjαjαj) could lead to the same mixture distribution, causing non-identifiability.

The corollary states that the classH of all finite mixtures of the family F is identifiable
if and only if the image of F under any vector isomorphism on the span ⟨F⟩ is linearly
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independent in the image space. The span ⟨F⟩ is the vector space generated by all finite
linear combinations of the functions in F . A vector isomorphism is a bijective linear
map that preserves the vector space structure. The corollary asserts that for the mixture
model to be identifiable, the transformed functions under any isomorphism (mapping from
the span ⟨F⟩ to another vector space) must be linearly independent in the image space.
Mathematically, this means that if we apply an isomorphism ϕ to each component function
in F , the set of transformed functions {ϕ(f(xxx | ααα1)), ϕ(f(xxx | ααα2)), . . . , ϕ(f(xxx | αααk))} must
be linearly independent in the new space. Specifically, for any linear combination,

k∑

j=1

πjϕ(f(xxx | αααj)) = 0, for all xxx,

the only solution must be π1 = π2 = . . . = πk = 0.

If this condition holds, it implies that no two different finite mixtures of the functions
F can result in the same distribution, and the model is identifiable. If the transformed
set of functions is not linearly independent, different mixtures might produce the same
distribution, leading to non-identifiability. Thus, the linear independence of the image
functions guarantees that each distinct mixture corresponds to a unique set of parameters,
ensuring identifiability.

Identifiability of popular mixture models such as the Gaussian Mixture Model has
been discussed before by many researchers. In chapter 4 we show that the mixtures of
Dirichlet distributions are identifiable as well.

1.7 Mixture of Multivariate Gaussian Distributions

For a p × 1 continuous random vector XXX, the density of p variate multivariate normal
distribution is given by,

f(xxx|µµµ,ΣΣΣ) = 1

(2π)p/2|Σ|1/2 exp[−
1

2
(xxx− µµµ)TΣΣΣ−1(xxx− µµµ)] , (1.37)

where µµµ is a p×1 vector, ΣΣΣ is a p×p symmetric, positive definite matrix and the support
of XXX is Rp.

The density of a gaussian mixture model with k mixture components for one observa-
tion xxxi is given by the mixture density

p(xxxi) =
k∑

j=1

πjf(xxxi | µµµj,ΣΣΣj) , (1.38)

where πππ = (π1, . . . , πk) contains the corresponding mixture proportions with
∑k

j=1 πj = 1,
0 < πj < 1. The density component of mixture j is given by f(xxxi | µµµj,ΣΣΣj) and µµµj,ΣΣΣj,
j = 1, 2, ..., k are the location and shape parameters for each density.

The log-likelihood of the model for a sample of size N is then given by

log p(xxx1, . . . ,xxxN | πππ,µµµ,ΣΣΣ) =
N∑

i=1

log

[
k∑

j=1

πjf(xxxi | µµµj,ΣΣΣj)

]
. (1.39)

26



The posterior probability that the data point i belongs to cluster j is obtained by,

γij(xxxi) = Pr(Zi = j |XXX i = xxxi,πππ,µµµ,ΣΣΣ) =
πjf(xxxi | µµµj,ΣΣΣj)∑k
r=1 πrf(xxxi | µµµr,ΣΣΣr)

. (1.40)

Then the expected complete data log-likelihood can be obtained in a similar way as of
eq. (1.28). The first part of the equation remains the same. The second part is given by,

Q(ααα) =
N∑

i=1

k∑

j=1

γij

[
−p
2
log 2π − 1

2
log |ΣΣΣj| −

1

2
tr
[
(xixixi − µµµj)(xixixi − µµµj)

′ΣΣΣ−1
j

]]

= −Np
2

log 2π
k∑

j=1

Nj

2
log |ΣΣΣj| −

k∑

j=1

Nj

2
tr{SjSjSjΣΣΣ

−1
j } , (1.41)

where, Nj =
∑N

i=1 γij and SjSjSj =
1
Nj

∑N
i=1 γij(xixixi − µµµj)(xixixi − µµµj)

′.

Finally, at the M step the updates of the parameters are obtained as,

π̂j =
Nj

N
(1.42)

µ̂µµj =
1

Nj

N∑

i=1

γijxxxi (1.43)

Σ̂ΣΣj =
1

Nj

N∑

i=1

γij(xxxi − µ̂µµj)(xxxi − µ̂µµj)
′ (1.44)

The Classification EM (CEM) algorithm can be utilized to estimate the parameters of
a Gaussian Mixture Model, particularly in situations where the standard EM algorithm
becomes computationally demanding and slow. As described in the preceding section,
CEM approximates the E-step in such a way that, in the M-step, the Gaussian parame-
ters can be updated directly using their maximum likelihood estimates (MLEs).

In the CEM algorithm, the MLEs for Gaussian parameters are calculated individually
for each cluster by considering only the data points assigned to that specific cluster. The
formulas for these MLEs are provided below and can be directly applied during the M-step
in the classification EM framework. This method streamlines the estimation process by
leveraging the cluster-specific MLEs, making it especially suitable for high-dimensional
or complex datasets where standard EM iterations may be impractical.

The updates of µjµjµj and ΣjΣjΣj are given by

µ̂µµj =
1

#xxxi ∈ Pj

∑

xxxi∈Pj

xxxi (1.45)

Σ̂ΣΣj =
1

#xxxi ∈ Pj

∑

xxxi∈Pj

(xxxi − µ̂µµ)(xxxi − µ̂µµ)T (1.46)

The updates of πj is generally obtained by
#xxxi∈Pj

N
. We can also use a modified hard

EM algorithm, where the updates of πj is obtained as of standard EM. The Hard EM
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algorithm, while computationally efficient, does have certain theoretical drawbacks that
often make it less accurate than the standard EM algorithm (Koloydenko et al., 2007).
Unlike standard EM, which iteratively increases the likelihood of the parameters given
the observed data, Hard EM instead maximizes the joint likelihood of the latent variables
and parameters. This characteristic makes Hard EM inconsistent (Leroux, 1992) and
potentially prone to producing biased estimates (Ephraim and Merhav, 2002). Despite
these limitations, Hard EM is widely applied in practice due to its simplicity and speed.

However, the question of when Hard EM should be preferred over standard EM re-
mains unresolved, warranting further research into the conditions that favor its use. In
Chapter 5, we demonstrate that, for clustering problems, Gaussian Mixture Models esti-
mated using Hard EM can perform comparably to, or even surpass, those estimated with
standard EM in certain scenarios.

Gaussian Mixture Models (GMMs) are effective for clustering data that forms spherical
or elliptical shapes. However, when the data exhibits asymmetry or heavy-tailed distribu-
tions, GMMs are often inadequate. In such cases, mixtures of multivariate t-distributions,
skew-normal distributions, or generalized hyperbolic distributions can provide a better fit
by accommodating the irregularities in the data.

For more specialized data types, such as compositional data, these common alterna-
tives may still fall short. In these instances, a mixture of Dirichlet distributions is a
natural choice, as it inherently respects the constraints and structure of compositional
data. This approach ensures a more appropriate modeling framework that aligns with
the unique characteristics of such data.

1.8 Mixture of Dirichlet Distributions

The Dirichlet distribution is a widely used probabilistic model for compositional data,
where observations lie within the unit simplex, ensuring that values are constrained be-
tween 0 and 1 while summing to unity. Over the years, several modifications and gener-
alizations of the Dirichlet distribution have been proposed to address specific limitations.
Ongaro and Migliorati (2013) introduced the Flexible Dirichlet distribution, which can be
interpreted as a mixture of standard Dirichlet densities with identical precision (Miglio-
rati et al., 2017), allowing for greater modeling flexibility. Tang et al. (2022) developed a
variant of the Dirichlet distribution capable of accommodating zero values, overcoming a
common limitation in traditional Dirichlet modeling. Makgai et al. (2021) proposed the
Kummer–Dirichlet gamma distribution, which enhances robustness against outliers. In
the context of mixture models, Di Brisco et al. (2017) employed Flexible Dirichlet distri-
butions; however, this approach significantly increases the number of parameters, making
it less practical in high-dimensional settings. Wang et al. (2008) introduced a method for
dimensionality reduction of compositional data, yet their approach comes at the cost of
higher computational complexity.

Beyond compositional data, the Dirichlet distribution is extensively utilized as a prior
for the Multinomial distribution in categorical data analysis, where Holmes et al. (2012)
leveraged the Dirichlet-multinomial model within a mixture framework. Dirichlet dis-
tribution is also used in Dirichlet Process Mixture Models (DPMM) (Antoniak, 1974),
where it serves as a nonparametric Bayesian prior to allow for an infinite mixture of
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components, enabling the model to adaptively determine the number of clusters based
on the data rather than requiring a predefined number of components. However, their
computational complexity often necessitates approximation techniques such as Markov
Chain Monte Carlo (MCMC) or variational inference for practical implementation. In
this study, we focus on the Dirichlet Mixture Model (DMM) due to its simpler struc-
ture and reduced number of parameters, thereby improving computational efficiency in
clustering applications. For a detailed discussion on estimation techniques and different
variants of Dirichlet mixture models, refer to Chapter 4.

Let XXX1,XXX2, . . . ,XXXN denote a random sample of size N , where XXX i is a p dimensional
random vector with probability density function f(xxxi) on Rp.

The Dirichlet density is given by

f(xxxi) =
Γ(
∑p

m=1 αm)∏p
m=1 Γ(αm)

p∏

m=1

xαm−1
im , (1.47)

where
∑p

m=1 xim = 1, xim’s > 0 , αm’s > 0 and Γ(·) denotes a gamma function.

The density of a mixture model with k mixture components for one observation xxxi is
given by the mixture density

p(xxxi) =
k∑

j=1

πjf(xxxi | αααj) , (1.48)

where πππ = (π1, . . . , πk) contains the corresponding mixture proportions with
∑k

j=1 πj = 1,
0 < πj < 1.

The log likelihood of the model for a sample of size N is then given by

log p(x1x1x1, . . . ,xNxNxN |ααα, π) =
N∑

i=1

log

[
k∑

j=1

πjf(xixixi|αjαjαj)

]
. (1.49)

The parameters of Dirichlet Mixture Model (DMM) can be estimated using an Expectation-
Maximization (EM) algorithm (Dempster et al., 1977). We can employ both soft and
hard version of EM for estimation purpose. Similar to a GMM, latent variables Zi’s are
introduced, which are categorical variables taking on values 1, . . . , k with probabilities
π1, . . . , πk such that Pr(XiXiXi|Zi = j) = f(xxxi | αααj), j = 1, . . . , k.

For the soft EM version the E and M step can be obtained as follows.

E-Step: The cluster membership probabilities of data point i for cluster j can be ob-
tained by γij like before, where,

γij(xi) = Pr(Zi = j|xixixi,αjαjαj) =
πjf(xixixi|αjαjαj)∑k
j=1 πjf(xixixi|αj)αj)αj)

. (1.50)
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Subsequently the expected complete data log-likelihood is given by,

Q(α, αt−1) = E

[
N∑

i=1

log(p(xi, zi|α))|x, αt−1

]
(1.51)

=
N∑

i=1

k∑

j=1

γij log πj +
N∑

i=1

k∑

j=1

γij log f(xi|αj) . (1.52)

M-Step: Here we maximize the expected complete data log-likelihood obtained from
the E step. The update of πππ is obtained as π̂j =

Nj

N
, where Nj =

∑N
i=1 γij . The update

of αjm is the solution of the following equation (Pal and Heumann, 2025).

Ψ(αjm) = Ψ

(
p∑

m=1

αjm

)
+

1

Nj

N∑

i=1

γij log(xim) , (1.53)

where, Ψ(·) is the di-gamma function. To obtain the updates of all the parameters we
need to solve the equation for allm and all j. As there is no analytically tractable solution
available, it is generally solved using Fixed-Point iteration or Newton-Rahpson Method.

For the hard version of EM the E-step remains unchanged. However, we need to
include an additional classification step.

Classification Step: It applies a delta function approximation that changes the E step
as follows,

Pr(Zi = j|xixixi,αjαjαj) ≈ I(j = z∗i ) , (1.54)

where z∗i = argmax
j

γij .

M-Step: Here we maximize the approximated expected complete data log-likelihood.
The update of πππ is obtained as π̂j =

#xixixiin cluster j
N

. The update of αjm is found by solving
the following equation.

Ψ(αjm) = Ψ

(
p∑

m=1

αjm

)
+

1

#xxxi ∈ Pj

∑

xxxi∈Pj

log(xim) (1.55)

Subsequently, the updates of all the parameters are obtained by solving the equation for
all m and all j. Similar to soft EM there is no analytically tractable solution available.
And that is why it is solved using Fixed-Point iteration or Newton-Rahpson Method.

1.8.1 Mean-Precision Parametrization

The standard parametrization of the Dirichlet distribution is often challenging to inter-
pret, so we propose an alternative parametrization using mean and precision parameters.
The mean parameter dictates the distribution’s location, while the precision parameter
controls its concentration. When precision is high, the Dirichlet random variable clus-
ters around the mean values, but with low precision, the distribution spreads out more.
This parametrization offers clearer insights into the model’s parameters, enhancing inter-
pretability and providing a better understanding of how they influence the distribution.
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By interpreting these parameters, we can also identify scenarios where it may be bene-
ficial to fix one and optimize the other. Notably, the mean and precision parameters show
partial decoupling in the maximum-likelihood framework, allowing for simplifications and
potential speed improvements through alternative optimization strategies. This alterna-
tive parametrization not only improves the interpretability of the Dirichlet Mixture Model
(DMM), but also increases its adaptability to the data, thus expanding the range of fitting
and optimization strategies available. This approach is versatile, accommodating a wide
variety of scenarios with different locations and concentration levels. The parameter esti-
mates vary depending on whether one or both parameters are unknown and can further
differ if the precision is uniform across mixture components.

For component j, we denote the mean parameter as MMM j and the precision parameter
as Sj. Here,MMMJ = (Mj1, . . . ,Mjp) is a p dimensional vector.

Let us consider the following reparameterization of Dirichlet parameters.

Sj =

p∑

m=1

αjm and Mjm = E[Xjm] =
αjm

Sj

.

Hence, we denote αjm = SjMjm . In chapter 4, we provide an in-depth discussion of four
distinct scenarios, along with their respective estimation procedures. The scenarios are
namely,

• Mjm known, Sj unknown

• Mjm unknown, Sj known

• Mjm, Sj both unknown

• Sj’s are identical

1.8.2 Estimates For High Dimensional Data

Estimating Dirichlet parameters becomes challenging with high-dimensional data, as com-
putation time grows with increasing p. Additionally, since there are no closed-form solu-
tions for parameter updates at the M-step, this can lead to computational errors. In our
work, we introduce two approximations that yield closed-form solutions at the M-step,
independent of p. In high-dimensional settings, methods like Newton-Raphson or non-
quadratic approximations at the M-step can fail, with issues such as non-invertible Hessian
matrices or unmet conditions for convergence. Our approximations bypass iterative algo-
rithms at each M-step, thus reducing execution time and avoiding computational errors.
While our parametrization offers clear benefits, optimizing mean and precision separately
increases computation time. This is particularly important in high-dimensional cases
where efficient computation is crucial. Therefore, in chapter 4, we employ the standard
parametrization, using Stirling’s and moment approximations to provide robust estimates
for high-dimensional applications.

Let

p∑

r=1

(1− δr,m)αjr = βjm , where δr,m is the Kronecker delta, defined as:

δr,m =

{
1 if r = m

0 if r ̸= m
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Then we can show that using stirling’s approximation (Artin, 2015), eq. (1.53) becomes,

Ψ(αjm) = log

p∑

r=1

(1− δr,m)αjr +
1

Nj

N∑

i=1

γij log(xim) (1.56)

αjm = Ψ−1

(
log

p∑

r=1

(1− δr,m)αjr +
1

Nj

N∑

i=1

γij log(xim)

)
(1.57)

Furthermore, using moment approximation for iteration t it can be deduced to,

αt
jm = Ψ−1

(
log(Ŝj − αt−1

jm ) +
1

Nj

N∑

i=1

γij log(xim)

)
(1.58)

1.8.3 Kullback-Leibler (KL) Divergence

The Kullback-Leibler (KL) Divergence (Csiszár, 1975) stands as a fundamental measure
in statistics, quantifying the statistical distance between probability distributions. The
Kullback-Leibler (KL) divergence (also recognized as relative entropy) between two prob-
ability density functions f(x) and g(x) is defined by the integral expression:

D(f∥g) def
=

∫
f(x) log

(
f(x)

g(x)

)
dx . (1.59)

It operates as a measure of the dissimilarity between the probability distributions encoded
by f(x) and g(x). In statistical inference, generally f(x) is the distribution with true pa-
rameter values and g(x) is the distribution with estimated parameter values.

The KL divergence adheres to fundamental properties, denoted as the divergence
properties:

• Self Similarity: D(f∥f) = 0

• Self Identification: D(f∥g) = 0 if and only if f = g

• Positivity: D(f∥g) ≥ 0 for all f, g.

These properties underscore the significance of KL divergence in capturing the nuances
of distributional disparities, making it a cornerstone in statistical analyses.

Particularly in the realm of Dirichlet Mixture Models (DMM), the utility of KL Diver-
gence becomes pronounced. While closed-form solutions for KL divergence exist for the
Dirichlet distribution, extending this analytical tractability to Dirichlet Mixture Models
has posed a significant challenge. Past research (Ma et al., 2014) predominantly turned
to Monte Carlo methods to approximate the KL divergence in DMMs. However, these
methods are computationally intensive and time consuming, which presents a substantial
hurdle.

In our study, we address these challenges by proposing a variational approach to ap-
proximate KL divergence in Dirichlet Mixture Models. Unlike previous methods, our ap-
proach provides a closed-form solution, substantially enhancing computational efficiency.
This advancement not only facilitates rapid model comparisons but also ensures a robust
evaluation of estimation quality.
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Theorem 1.8.1 Let XXX be an p× 1 random vector. Assume two Dirichlet distributions u
and v specifying the probability distribution of XXX as,

u : XXX ∼ Dir(α11, . . . , α1p)

v : XXX ∼ Dir(α21, . . . , α2p) .

Then, the Kullback-Leibler divergence of u from v is given by,

D(u || v) = log
Γ (
∑p

i=1 α1i)

Γ (
∑p

i=1 α2i)
+

p∑

i=1

log
Γ(α2i)

Γ(α1i)

+

p∑

i=1

(α1i − α2i)

[
ψ(α1i)− ψ

(
p∑

i=1

α1i

)]
. (1.60)

Proposition 1.8.2 Let fa and gb be two DMMs such that,

fa = f(x) =
∑

a

πaDir(xxx;αααa)

gb = g(x) =
∑

b
ωbDir(xxx;αααb)

Then using a variational approach, an approximated KL divergence can be expressed as,

Dvariational(f∥g) =
∑

a

πa log

∑
a′ πa′e

−D(fa∥fa′ )
∑

b ωbe−D(fa∥gb)
. (1.61)

The proofs of the above theorem and proposition are explained in detail in chapter 3.

1.9 Mixtures of Identical and Non-Identical Distri-

butions

Traditionally, mixture models have adhered to the principle of combining components
from the same distribution family. While the range of distributions has expanded over
time, this core concept remains central to the theory of multivariate finite mixture mod-
els. In their work, Doğru and Arslan (2016) utilized univariate two-component mixtures
within mixture regression models, incorporating combinations of normal and t distribu-
tions, as well as skew-t and skew-normal distributions. However, the use of multivariate
mixtures with both identical and non-identical distributions in unsupervised learning re-
mains unexplored. To address this gap, we propose a novel and flexible framework that
allows for the mixing of diverse distributions in any permutation. This comprehensive
framework encompasses traditional mixture models as special cases, offering a new per-
spective on the flexibility and utility of mixture modeling.

Our framework also tackles the complexities of parameter estimation in setups in-
volving intricate multivariate distributions. By employing Classification EM or Hard EM
(Celeux and Govaert, 1992), we leverage known Maximum Likelihood Estimates (MLEs)
of the component densities to effectively model a wide range of distribution mixtures,
circumventing the challenges of parametric inference. This proposed framework is par-
ticularly useful for addressing practical challenges related to parameter estimation and
pattern recognition, which are common across various real-world applications.

Since we will be using the Classification EM algorithm, we begin by outlining the
process for obtaining the Maximum Likelihood Estimates (MLEs) of the parameters for
the multivariate skew normal and multivariate generalized hyperbolic distributions.
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1.9.1 Multivariate Skew Normal Distribution

The multivariate skew normal distribution (MSN) was first formulated by Azzalini and
Capitanio (1999). Let us first consider the following stochastic representation.

Suppose,

(
YYY
Y0

)
∼ Np+1(000,ΩΩΩ

∗), ΩΩΩ∗ =

(
ΩΩΩ δ0
δ0

T 1

)
, where δ0 ∈ Rp and ΩΩΩ is a p × p

symmetric positive definite matrix. Then, UUU = sgn(Y0)YYY has a density,

f(uuu) = 2Φ(αTαTαTuuu)ϕp(uuu; 000,ΩΩΩ),uuu ∈ Rp, (1.62)

where ααα = ΩΩΩ−1 δ0

(1−δ0
TΩΩΩ−1δ0)

1/2 ,Φ(·) is the cumulative distribution function of the univariate

standard normal distribution and ϕp(uuu; 000,ΩΩΩ) is the p-variate normal density function with
mean vector 000 and covariance matrix ΩΩΩ. Now, XXX = UUU +µµµ, is said to have a p dimensional
multivariate skew normal distribution with location µµµ, which is expressed as SNp(µµµ,ΩΩΩ,ααα).

Before we formulate the mixture of multivariate skew-normal distribution, let us first
look at the parameter estimation procedure of multivariate skew-normal distribution as
it will be required at later stage.

Estimating the parameters of the multivariate skew normal distribution is challenging.
We follow a technique used by Abe et al. (2021), which incorporates an overparameter
into the conventional stochastic representation and then obtains the EM algorithm in a
closed form. The stochastic representation is given below.(
YYY
Y0

)
∼ Np+1(000,ΣΣΣ), ΣΣΣ =

(
ΩΩΩ τΩΩΩ1/2δδδ

τδδδTΩΩΩ1/2 τ 2

)
, where τ ∈ RRR and δδδ ∈ Rp.

Let us now denote, λλλ = δδδ√
1−δδδTδδδ

.

Then, it can be shown that UUU = sgn(Y0)YYY has a multivariate skew normal density with
location 000, given by,

f(uuu) = 2Φ(λTλTλTΩΩΩ−1/2uuu)ϕp(uuu; 000,ΩΩΩ),uuu ∈ Rp . (1.63)

Then we say that XXX = UUU +µµµ, has a p dimensional multivariate skew normal distribution
with location µµµ, which is expressed as SNp(µµµ,ΩΩΩ,λλλ).
To estimate the parameters using an EM algorithm, let us introduce a latent variable ξξξ
which consists of parameters µµµ and ΣΣΣ. For N independent random samples drawn from a
multivariate skew normal distribution, the expected complete data log-likelihood function
for the E step can be written as,

Q(ξξξ;ξ′ξ′ξ′) =
N∑

i=1

E[log f(xxxi, y0i;ξξξ) | xxxi, ξ′ξ′ξ′]

= −N p+ 1

2
log 2π −N/2 log | ΣΣΣ | −1

2
tr

(
N∑

i=1

S(xxxi,µµµ,ξ
′ξ′ξ′)ΣΣΣ−1

)
, (1.64)

where,

S(xxxi,µµµ, ξ
′) =

(
(xixixi − µµµ)(xixixi − µµµ)T (xixixi − µµµ)E [|y0i| | xxxi, ξ′ξ′ξ′]

(xixixi − µµµ)TE [|y0i| | xxxi, ξ′ξ′ξ′] E [y20i | xixixi;ξξξ] .

)
.

Let us denote, cλ = 1/
√
1 + λλλTλλλ, γγγ = ΩΩΩ−1/2λλλ, vi = γγγT (xixixi − µµµ),ρ1(v) =

ϕ(v)
Φ(v)

+ v and

ρ2(v) = 1 + vρ1(v).
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It can be shown that E [|Y0| |XXX] = τcλρ1(γγγ
Txxx) and E [Y 2

0 |XXX] = τ 2c2λρ2(γγγ
Txxx)

Then for the t-th iteration in the M step, the updates of the parameters are given below.

µ̂µµt+1 = x̄xx− cλt

(
Ω̂ΩΩ

t
)1/2

δ̂δδ
t 1

N

N∑

i=1

ρ1(v̂i
t) , (1.65)

Ω̂ΩΩ
t+1

=
1

N

N∑

i=1

(xixixi − µ̂µµt+1)(xixixi − µ̂µµt+1)T , (1.66)

δ̂δδ
t+1

=

[
1

N

N∑

i=1

ρ2(v̂i
t)

]−1/2

×
(
Ω̂ΩΩ

t+1
)1/2

×
[
1

N

N∑

i=1

ρ1(v̂i
t)(xixixi − µ̂µµt+1)

]
. (1.67)

1.9.2 Multivariate Generalized Hyperbolic Distribution

Before delving into the Generalized Hyperbolic Distribution, we first discuss the General-
ized Inverse Gaussian (GIG) Distribution. It was first introduced by Good (1953). Later
many other authors (see Barndorff-Nielsen and Halgreen (1977); Blæsild (1978); Halgreen
(1979); Jorgensen (2012)) discussed its statistical properties which laid down the founda-
tion for the application of the GIG distribution. If W ∼ GIG(ψ, χ, λ), the probability
density function can be written in the form,

f(w | ψ, χ, λ) = (ψ/χ)λ/2wλ−1

2Kλ(
√
ψχ)

exp

[
−ψw + χ/w

2

]
, (1.68)

for w > 0, where ψ, χ ∈ RRR+ and Kλ is the modified Bessel function of the third kind
with index λ. Gamma distribution and inverse Gaussian distribution are special forms
of the GIG distribution. When χ = 0 and λ > 0, the GIG density reduces to a gamma
density. On the other hand, when λ = −1/2, the GIG density can be seen as a density of
an inverse Gaussian distribution.

The Generalized Hyperbolic Distribution has been discussed vividly by McNeil et al.
(2015). If XXX follows a Generalized Hyperbolic Distribution, then its probability density
function is given by

f(xxx | ϑϑϑ) =
[
χ+ δ(xxx,µµµ | ΣΣΣ)
ψ + γ′γ′γ′ΣΣΣ−1γγγ

]λ−p/2
2

× [ψ/χ]λ/2Kλ−p/2(
√
[ψ + γ′γ′γ′ΣΣΣ−1γγγ][χ+ δ(xxx,µµµ | ΣΣΣ)])

(2π)p/2 | ΣΣΣ |1/2 Kλ(
√
χψ) exp[(µµµ− xxx)′ΣΣΣ−1γγγ]

,

(1.69)

where δ(xxx,µµµ | ΣΣΣ) = (xxx − µµµ)′ΣΣΣ−1(xxx − µµµ) is the squared Mahalanobis distance between xxx
and µµµ and ϑϑϑ = (λ, χ, ψ,µµµ,ΣΣΣ, γγγ) denotes the parameter space.

A p × 1 Generalized Hyperbolic random vector XXX can be represented as a variance-
mean mixture, consisting of a Generalized Inverse Gaussian (GIG) random variable W
and a multivariate Gaussian random vector ZZZ. A random vector XXX follows a multivariate
Generalized Hyperbolic (MGH) distribution, if

XXX = µµµ+Wγγγ +
√
WZZZ, (1.70)

where
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1. ZZZ ∼ N(000,ΣΣΣp×p),

2. µµµ,γγγ ∈ Rp,

3. W ≥ 0 is a scalar-valued random variable which is independent of ZZZ and follows
GIG(λ, χ, ψ).

It is important to note that there are other different definitions available that lead to
different parameterizations. We now discuss several limiting cases of the MGH distribu-
tion.

• Multivariate Hyperbolic Distribution: A random vector XXX is said to have
a Multivariate Hyperbolic density (MVH) if it follows an MGH distribution with
λ = p+1

2
. It is to be noted that if λ = 1, its univariate margins follow one-dimensional

hyperbolic distributions.

• Normal Inverse Gaussian Distribution: When a random vector XXX follows an
MGH distribution with λ = −1/2, it is said to have a Multivariate Normal Inverse
Gaussian (MNIG) density .

• Variance-Gamma Distribution: The Variance-Gamma distribution (Barndorff-
Nielsen, 1978) is also known as generalized Laplace distribution or the Bessel func-
tion distribution. A random vector XXX is said to have a Multivariate Variance-
Gamma density if it follows an MGH distribution with λ > 0 and χ→ 0.

• Multivariate Student-t Distribution: The multivariate t-distribution (MVT) is
also a special case of a MGH distribution. When ψ = 0, λ < 0 and γγγ = 0, by setting
the degree of freedom ν = −2λ2, a MGH distribution can be seen as a multivariate
student t distribution.

1.9.3 Mixtures of Non-Identical Distributions

Now we introduce the mixture model with mixture densities from different distributions.

Let XXX1,XXX2, . . . ,XXXN denote a random sample of size N , where XXX i is a p dimen-
sional random vector with probability density function f(xxxi) on Rp. We can write
XXX = (XXXT

1 , . . . ,XXX
T
N)

T , where the superscript T denotes vector transpose and N de-
notes the total number of observations. An observed random sample is denoted by
xxx = (xxxT1 , . . . ,xxx

T
N)

T , where xxxi is the observed value of the random vector XXX i.
The density of a mixture model with k components for one observation xxxi is given by

the mixture density

p(xxxi) =
k∑

j=1

πjfj(xxxi | αααj) , (1.71)

where πππ = (π1, . . . , πk) contains the corresponding mixture proportions with
∑k

i=1 πi = 1
and 0 ≤ πi ≤ 1. fj(xxxi | αααj) is the density component of mixture j and αααj, j = 1, 2, ..., k,
are vectors of component specific parameters for each density. Then ααα = (ααα1, . . . ,αααk)
denotes the vector of all parameters (except πππ) of the model. The log-likelihood of the
model for a sample of size N is then given by

log p(xxx1, . . . ,xxxN | ααα,πππ) =
N∑

i=1

log

[
k∑

j=1

πjfj(xxxi | αααj)

]
. (1.72)
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The parameters can be estimated using a Hard EM algorithm with some modifications.
For that purpose, let us introduce latent variables Zi, which are categorical variables
taking on values 1, . . . , k with probabilities π1, . . . , πk such that Pr(XXX i | Zi = j) = fj(xxxi),
j = 1, . . . , k.

Further probabilities γij are introduced (conditional on the observed data XXX = xxx and
the parameters ααα):

γij(xxxi) = Pr(Zi = j |XXX = xxx,ααα) =
πjfj(xxxi | αααj)∑k
j=1 πjfj(xxxi | αααj)

. (1.73)

Equation 1.73 is the probability of cluster membership j for a data point xxxi.

Given that we are employing Hard EM, the E-step is approximated as previously
discussed. At the M step, we obtain the estimates of π and ααα. For a Hard EM πj is

estimated by
Nj

N
, where, Nj = number of data points in cluster j. αααj’s are estimated by

ML estimation method considering only the assigned observations of cluster j.

Chapter 6 provides an in-depth exploration of various mixtures involving both identical
and non-identical distributions along with appropriate model selection criteria and model
diagnostics.

1.10 Discussion of Contributions

This thesis has made substantial contributions to the field of statistical modeling, partic-
ularly in advancing the theory and application of finite mixture models. Each component
of this work has addressed specific challenges in clustering and parameter estimation,
resulting in a suite of novel methodologies that enhance computational efficiency, model
flexibility, and interpretability in diverse data scenarios. In this section, we reflect on the
key contributions and their implications for research and application.

A significant contribution, shown in Pal and Heumann (2022), lies in the development
of a Dirichlet Mixture Model (DMM) tailored for compositional data, which are inher-
ently constrained by unit-sum requirements. Unlike traditional clustering methods, which
often rely on data transformations that may distort the underlying structure, the DMM
leverages the natural properties of the Dirichlet distribution. By combining this model
with a modified Hard EM algorithm, we address challenges such as empty clusters and
rapid convergence, providing a robust solution for clustering compositional data. Rigor-
ous comparisons with existing clustering methods (e.g., KMeans and DBSCAN) highlight
the effectiveness of the DMM in preserving data characteristics and delivering superior
clustering performance across real-world and simulated datasets.

The research laid down in Pal and Heumann (2024b) addresses computational chal-
lenges associated with estimating the Kullback-Leibler (KL) divergence in DMMs, a crit-
ical measure for model comparison and validation. Traditional Monte Carlo-based ap-
proaches, though accurate, are computationally expensive and impractical for large-scale
applications. To overcome this limitation, we developed a variational approach that pro-
vides a closed-form solution for the KL divergence, significantly improving computational
efficiency without compromising accuracy. This contribution has practical implications
for extending the applicability of DMMs to complex datasets requiring iterative model
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comparisons.

In Pal and Heumann (2025) further advancements were made in parameter estimation
for Dirichlet Mixture Models through the introduction of a mean-precision parametriza-
tion. This innovative approach enhances model interpretability by linking the mean pa-
rameter to the distribution’s location and the precision parameter to its concentration.
By deriving maximum likelihood estimates for a variety of scenarios and proposing novel
estimation techniques for high-dimensional data, this work addresses computational bot-
tlenecks often encountered in high-dimensional settings. The identifiability of the DMM, a
previously unexplored area, was rigorously established, providing theoretical foundations
for its reliable application.

A foundational aspect of the research done in Pal and Heumann (2024c) is the re-
visit and refinement of the Hard EM algorithm for Gaussian Mixture Models (GMMs).
Traditionally overshadowed by the standard EM algorithm, the Hard EM algorithm is
often dismissed due to its perceived limitations, including convergence issues and biased
estimates. This work challenges these preconceptions by demonstrating that, with care-
fully designed modifications, Hard EM can achieve competitive performance in clustering
accuracy and computational efficiency. The proposed modifications address convergence
challenges, yielding a robust algorithm that outperforms standard methods in specific
scenarios. This contribution is particularly valuable for large-scale datasets and applica-
tions requiring rapid analysis, as demonstrated through simulations and applications to
biological data.

Finally, the study done in Pal and Heumann (2024a) broadens the flexibility of fi-
nite mixture models by introducing a framework for mixtures of both identical and
non-identical multivariate distributions. This extension allows for combinations of dis-
tributions, such as Multivariate Skew Normal and Multivariate Generalized Hyperbolic
distributions, providing unparalleled flexibility in modeling diverse data structures. By
including traditional mixture models as special cases, this framework bridges gaps in the
existing literature, enabling more accurate clustering and parameter estimation in com-
plex, real-world datasets.

Collectively, these contributions push the boundaries of finite mixture modeling, offer-
ing theoretical insights and practical tools for analyzing complex datasets. By addressing
long-standing limitations in clustering algorithms, parameter estimation, and model flex-
ibility, this research provides a robust foundation for future advancements in statistical
modeling and data science. The methodologies developed in this work have broad appli-
cability, extending to fields such as biological sciences, finance, marketing, and beyond,
where accurate and interpretable clustering remains a fundamental challenge.

1.11 Concluding Remarks and Outlook

This research has advanced the field of finite mixture models by addressing key challenges
in unsupervised learning and clustering, particularly for complex and heterogeneous data
structures. Through the development of novel algorithms, improved parameter estimation
techniques, and extended model flexibility, this work has expanded the applicability of
finite mixture models to new domains and data scenarios. By revisiting and refining the
Hard EM algorithm for Gaussian Mixture Models, we demonstrated that computation-
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ally simple approaches, when carefully modified, can rival more complex methods in terms
of clustering accuracy and efficiency. These findings open pathways for broader applica-
tions of model-based clustering in real-world problems requiring fast and robust solutions.

Significant progress was also made in clustering compositional data, which often pose
difficulties due to their inherent unit-sum constraint. The introduction of a Dirichlet Mix-
ture Model (DMM) combined with a modified Hard EM algorithm provides a natural,
interpretable, and efficient solution for clustering compositional data without requiring
transformations. Furthermore, the development of a variational approach for estimating
the Kullback-Leibler divergence in DMMs enhanced computational efficiency and accu-
racy, making it feasible to compare and validate models on large and complex datasets.
These innovations contribute to the theoretical understanding and practical utility of mix-
ture models in diverse fields such as biology, business, and the physical sciences.

A key theoretical contribution of this research is the mean-precision parametrization
of the Dirichlet distribution, which improves model interpretability by linking the mean
to the distribution’s location and precision to its concentration. Special estimation tech-
niques tailored for high-dimensional data further enhance the computational feasibility
of these models, enabling their use in modern data-intensive applications. Addition-
ally, the introduction of a framework for mixtures of non-identical multivariate distribu-
tions—such as Multivariate Skew Normal and Multivariate Generalized Hyperbolic distri-
butions—broadens the flexibility of mixture models, allowing for more accurate modeling
of complex, real-world datasets with varied structures.

Looking forward, an exciting direction for future research lies in integrating deep
learning techniques with finite mixture models. Advanced methods like autoencoders
(Rumelhart et al., 1986) and variational autoencoders (VAEs) (Kingma and Welling,
2014) can be employed to extract latent features from high-dimensional or non-linear
data, creating a meaningful low-dimensional representation that preserves the underlying
structure. By combining these latent features with the developed mixture models, it is
possible to achieve more accurate and interpretable clustering results. Additionally, this
hybrid framework holds the potential to enhance clustering performance in datasets with
intricate dependencies or noise, making it particularly useful in domains such as image
analysis, genomics, and social network analysis.

Further extensions could involve using deep generative models (Goodfellow et al.,
2014) for data generation and imputation, addressing challenges such as missing data or
imbalanced datasets. Variational inference algorithms that integrate deep learning ar-
chitectures with the proposed mixture models could provide scalable solutions for large-
scale datasets while maintaining the interpretability of model-based clustering. These
approaches, coupled with advancements in model diagnostics and validation methods,
will pave the way for further innovations in unsupervised learning and data analysis, en-
suring the robustness and reliability of these techniques in diverse real-world applications.

In conclusion, this thesis lays the groundwork for future exploration of finite mix-
ture models, combining methodological rigor with practical innovations. By bridging
traditional statistical techniques with modern computational approaches, the findings
presented here have the potential to inspire a wide range of research endeavors across
multiple scientific disciplines, driving progress in both theory and application.
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F. Zehra Doğru, Y. Murat Bulut, and O. Arslan. Finite mixtures of multivari-
ate skew laplace distributions. REVSTAT-Statistical Journal, 19(1):35–46, Mar.
2021. doi: 10.57805/revstat.v19i1.330. URL https://revstat.ine.pt/index.php/

REVSTAT/article/view/330.

44

https://revstat.ine.pt/index.php/REVSTAT/article/view/330
https://revstat.ine.pt/index.php/REVSTAT/article/view/330


Chapter 2

Clustering compositional data using
Dirichlet mixture model

Summary

This article explores a model-based clustering method tailored for compositional data,
which typically requires data transformation. The proposed method utilizes a Dirichlet
mixture model that naturally adheres to the unit sum constraint of compositional data. To
address issues of rapid convergence leading to empty clusters, the model employs a mod-
ified hard Expectation-Maximization (EM) algorithm. The effectiveness of this approach
is rigorously evaluated through simulations across varying dimensions, cluster numbers,
and overlaps. The method’s performance is compared against other popular clustering al-
gorithms, such as KMeans, Gaussian Mixture Models (GMM), and DBSCAN, using both
simulated data and real-world datasets from business, marketing, and physical sciences.
The results indicate that the proposed method effectively captures the unique distribu-
tional characteristics of compositional data, showing promise for diverse applications.
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Abstract

A model-based clustering method for compositional data is explored in this article. Most

methods for compositional data analysis require some kind of transformation. The proposed

method builds a mixture model using Dirichlet distribution which works with the unit sum

constraint. The mixture model uses a hard EM algorithm with some modification to over-

come the problem of fast convergence with empty clusters. This work includes a rigorous

simulation study to evaluate the performance of the proposed method over varied dimen-

sions, number of clusters, and overlap. The performance of the model is also compared with

other popular clustering algorithms often used for compositional data analysis (e.g. KMeans,

Gaussian mixture model (GMM) Gaussian Mixture Model with Hard EM (Hard GMM), parti-

tion around medoids (PAM), Clustering Large Applications based on Randomized Search

(CLARANS), Density-Based Spatial Clustering of Applications with Noise (DBSCAN) etc.)

for simulated data as well as two real data problems coming from the business and market-

ing domain and physical science domain, respectively. The study has shown promising

results exploiting different distributional patterns of compositional data.

Introduction

In statistics, compositional data are quantitative descriptions of the parts of some whole, which

means that it consists of relative information [1]. Mathematically, compositional data follows

the Aitchison geometry on the simplex [2]. Measurements including probabilities, propor-

tions, percentages, and ppm can all be thought of as compositional data. In general, composi-

tional data is written as,

SD ¼ x ¼ ½x1; x2; :::; xD� 2 R
D
jxi > 0; i ¼ 1; 2; :::;D;

XD

i¼1

xi ¼ c

( )

ð1Þ

In other words, compositional data is a D dimensional real vector, x = [x1, x2, . . ., xD] of

positive components on RD
such that the sum of all components is c. Often, we observe the

sum of all components to be 1; if not, all the components are divided by the sum of all compo-

nents, such that
PD

i¼1
xi ¼ 1. Analysis of such data is widely used in the fields of geochemistry

[3, 4], biology [5–7], ecology [8, 9], finance and business studies [10–12], etc. But it has
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emerged in the literature long before. [13] identified the problem of ‘spurious correlation’

between ratios of variables and [14] later extended the work and showed that some of the cor-

relations between components of the composition must be negative because of the unit sum

constraint. Many transformations have been proposed over the years (e.g. log transformation

[15], log ratio transformation [16]) to overcome the unit sum constraint, but still it is argued

when it comes to choosing the best transformation [17].

Another issue with compositional data refers to the dealing with zero values as both ratios

as well as logarithms are operations that require non-zero elements in the data matrix. Many

researchers have tried different approaches to deal with zero values (see [18–21]), but it

remains as an open problem even today; mostly because, zero values occur in compositional

data for different reasons. Often, the “zero problem” is linked with the missing data problem.

Missing data are generally classified into three categories [22], namely: missing completely at

random (MCAR), missing at random (MAR) and not missing at random (NMAR). In compo-

sitional data analysis, the rounded zeros are considered a NMAR case, where data cannot be

observed because their values are below a known value �. Zero values can also occur when the

count of an element is zero (known as count zero) and when zero signifies some property or

relevant information (known as essential zeros). For our study of compositional data in cluster

analysis, we have encountered round zeros and we have used a method proposed by [20],

where we replace the zeros with a small quantity and adjust others in a multiplicative way

which does not affect the covariance structure of the data. The adjusted values xrij can be writ-

ten as

xrij ¼

dij if xij ¼ 0

xij 1 �

P
kjxik¼0

dik

ci

� �

if xij > 0

8
>><

>>:

ð2Þ

where ci is usually the sum constraint. For row i and component j, the above adjustment in Eq

2 replaces the component xij by a very small quantity δij if xij = 0, else it multiplies a term

1 �

P
kjxik¼0

dik

ci

� �

with xij to maintain the unit sum constraint. Here, xik’s are the zero compo-

nents in row i. The multiplicative term is a fraction by which the non-zero terms to be reduced

in order to accommodate the added values of δik’s and keep the sum of rows fixed at ci.
For clustering compositional data there exists many methods in the literature [23, 24]. We

generally see two kinds of approaches, namely; model based methods, e.g. mixture models [25]

and methods based on dissimilarity distances (e.g. hierarchical clustering [26], KMeans [27].

But most of the time researchers go for Gaussian mixture model or KMeans for clustering pur-

poses [28].

For estimating the parameters of mixture models, the EM algorithm [29–31] is widely used.

In many applications of mixture models, e.g. in image matching [32], and audio and video

scene analysis [33], the EM algorithm is being used regularly. But the EM algorithm is often

not very convenient to apply for other than normal distributions, because it needs to be modi-

fied and adapted for each case. Sometimes, updating the parameters in the M step becomes

impossible for some distributions [34].

The main objectives of our study are to

• develop a clustering method without the need of transformation of compositional data,

• build a mixture model with distribution other than normal,
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• evaluate the performance of the method in different situations (different dimensions, differ-

ent number of clusters and varied overlap).

We are going to propose a model based clustering method without transformation of com-

positional data. We have used a Hard EM [35] with some modifications, to build mixture

models using Dirichlet distribution. For that purpose we need some point estimates of the par-

ent distributions. It is very convenient as it works with both, likelihood based and Bayesian

estimates. But the problem with hard assignment of cluster is that it ignores cluster member-

ship probabilities of less probable clusters. As a result, often the algorithm converges too

quickly with one or more clusters being empty. In our study we have also proposed a way to

deal with that problem. We have done rigorous simulation study to evaluate the performance

of the proposed method over varying dimension, number of clusters and overlap. We have

also used two real dataset from business and physical science domain to illustrate the method.

Methodology

Let X1, X2, . . ., XN denote a random sample of size N, where Xi is a p dimensional random vec-

tor with probability density function f(xi) on Rp
. We can write X ¼ ðXT

1
; . . . ;XTNÞ

T
, where the

superscript T denotes vector transpose. Note that the entire sample is represented by X, i.e. X
is a N—tuple of points in Rp

or an N × p-matrix. x ¼ ðxT
1
; . . . ; xTNÞ

T
denotes an observed ran-

dom sample where xi is the observed value of the random vector Xi.
The density of a mixture model with k components for one observation xi is given by the

mixture density

pðxiÞ ¼
Xk

j¼1

pjfjðxijajÞ ; ð3Þ

where π = (π1, . . ., πk) contains the corresponding mixture proportions with
Pk

i¼1
pi ¼ 1, 0�

πi� 1. fj(xi|αj) is the density component of mixture j and αj, j = 1, 2, . . ., k, are vectors of com-

ponent specific parameters for each density. Then α = (α1, . . ., αk) denotes the vector of all

parameters of the model. The log likelihood of the model for a sample of size N is then given

by

log pðx1; . . . ; xN ja; pÞ ¼
XN

i¼1

log
Xk

j¼1

pjfjðxijajÞ

" #

: ð4Þ

The parameters can be estimated using the EM algorithm with some modifications. For

that purpose, let us introduce latent variables Zi, which are categorical variables taking on val-

ues 1, . . ., k with probabilities π1, . . ., πk such that Pr(Xi|Zi = j) = fj(xi), j = 1, . . ., k. Further,

probabilities γij are introduced (conditional on the observed data X = x and the parameters α):

gijðxiÞ ¼ PrðZi ¼ jjX ¼ x; aÞ ¼
pjfjðxijajÞ

Pk
j¼1
pjfjðxijajÞ

: ð5Þ

Eq 5 can be seen as a cluster membership probability of data point i for cluster j. For an EM

algorithm, we try to optimize the function

Qða; at� 1Þ ¼ E
XN

i¼1

logðpðxi; zijaÞÞjx; a
t� 1

" #

; ð6Þ

where t is the current iteration number. It is nothing but the expected complete data log
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likelihood. It can also be shown that (see [36]),

Qða; at� 1Þ ¼
XN

i¼1

Xk

j¼1

gij logpj þ
XN

i¼1

Xk

j¼1

gij log fjðxijajÞ ; ð7Þ

where the expected complete data log likelihood is expressed as sum of two parts. At the M

step, we optimize Q with respect to π and α. πj is estimated in the usual way by
Nj
N , where, Nj ¼

PN
i¼1
gij and for estimating α, we look at the part in Q (Eq 7) which depends on α, which is

given by,

lðaÞ ¼
XN

i¼1

Xk

j¼1

gij log fjðxijajÞ ð8Þ

Now, we choose αj such that atj ¼ argmax
aj

lðajÞ, which is obtained by the process of assign-

ing data points to respective clusters, given by argmax
j

gij, and estimate αj by some estimation

method based on the assigned observations to that cluster. It can be seen as a Bayesian concept

(although not strictly Bayesian) for learning where Eq 5 provides the cluster membership prob-

ability. The idea of choosing the cluster based on maximum probability is the same as choosing

the MAP estimate, the mode of the distribution of Pr(Zi = j|X, α).

To run the algorithm, at first, some trial values of the distribution parameters α and mixture

proportions π are initialized. Then the initial value of the log likelihood is evaluated. For differ-

ent distributions, different techniques can be used to choose suitable initial values. For exam-

ple, in the case of a GMM, the centroids of KMeans can be used as initial values of μ and the

empirical covariance matrix of each cluster can be taken as an initial value of Sj. On the other

hand, for a Dirichlet Mixture Model, centroids of KMeans can be multiplied with a scalar c
(for our study we have used c = 60) to get the initial values of the α parameters. Please recall

that the mean vector of a Dirichlet distribution consists of the ratios of α parameters and the

sum of all α parameters. Here, the scalar c acts as the sum of α parameter values. The initial val-

ues of π can be obtained by generating a random number from a Dirichlet (1,1,1,. . .,1) distri-

bution. The empirical ratios of the number of cluster members in the KMeans algorithm and

total observations can also be used as the initial values of π. For our study, we have used the

KMeans initialization technique mentioned above for all our experiments.

At the E step, the values of the probabilities γij are evaluated using the current parameter

values. For an usual EM algorithm (e.g. in a GMM), at the M step, a weighted mean and a

weighted covariance matrix are calculated using the γij values. But for other distributions,

where the model parameters are not mean and (co)variance, this technique can not be used.

So, for different distributions, different techniques needs to be used. And also, for such Hard

EM, sometimes the algorithm converges with one or more clusters being empty. Hence, one

might have to force the algorithm to re-iterate if one or more clusters are found to be empty at

each M step. To introduce a flexible, yet convenient solution, we propose a different technique

in our algorithm, where at the M step each data point is assigned to a cluster depending on the

probability of that data point belonging to each cluster. That cluster is assigned for which the

probability is maximum. Now, if one or more clusters are found empty then the initial value of

the parameter αj for empty cluster j is used. And for the non empty clusters, point estimates of

the parameters of each parent distributions are obtained using only the data points available in

each cluster. For faster convergence and convenience, maximum likelihood estimates can usu-

ally be recommended. The mixture component probabilities πj are estimated as mentioned
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above by
Nj
N . The newly set of estimated values of the parameters is then used as an update over

the previous one. After this step, the log likelihood is evaluated again using the updated param-

eter values. The process is then continued until convergence. The convergence properties of

this algorithm follow the properties of the usual EM algorithm, which has been explained in

detail by [37, 38].

Algorithm 1: Clustering algorithm for mixture of Dirichlet distributions with provision for

empty clusters (Hard DMM 1)
Replace zero values in the data, if any, using Eq 2;
Initialize the model parameters, α and π. Evaluate the initial value
of the log likelihood from Eq 4;
while log likelihood difference � � do
Evaluate γij from Eq 5, using the parameter values and data;

pnewj ¼
Nj
N, where, Nj ¼

PN
i¼1
gij;

for i in 1 to N do
cluster ¼ argmax

j
gij;

Assign data point xi to cluster zi;
end
for j in 1 to k do
if cluster j is empty then
Use initial values of αj as an update;

else
anewj ¼ a

MLE
j ;

end
end
Re-evaluate log likelihood using the new estimates of the
parameters.

end
For our experiments, we have used 0.0001 as the value of � in Algorithm 1.

For clustering compositional data, a Dirichlet Mixture Model can be used. The Dirichlet

density component j is given by

fjðxiÞ ¼
Gð
Pp

m¼1
ajmÞ

Qp
m¼1

GðajmÞ

Yp

m¼1

xajm � 1

im ;

where
Xp

m¼1

xim ¼ 1; xim’s > 0 ; ajm’s > 0 :

ð9Þ

If we make a finite mixture with k components, the model is given by Eq 3 and subse-

quently, the log likelihood is given by Eq 4.

The model parameters, can be easily estimated using our generalized approach. For that we

need a good point estimate of the parameters of a Dirichlet distribution to be used in the M

step of our algorithm. [39] has discussed a way to find out the maximum likelihood estimates

of a Dirichlet distribution, where he proposed to perform a fixed point iteration, given an ini-

tial value of the α parameters. The equation is given by

Cðanewjm Þ ¼ C
Xp

m¼1

aoldjm

 !

þ
1

Nj

XNj

i¼1

logðximÞ ð10Þ

At each iteration, for an old value of the parameter aoldjm , a new value anewjm is obtained. This

iteration in the algorithm requires inverting C, which is a digamma function. A suitable initial

value and inversion algorithm is also discussed by [39].
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A special provision of Bayesian estimates for clusters with fewer data

points

It is possible to add a further step in algorithm 1 to consider the case when there are very few

data points in a cluster due to hard assignment. In this situation, Bayesian estimates can be

very useful as they can use some prior information about the model parameters. Also, for

fewer data points, maximum likelihood estimates are known to be less accurate. However,

Bayesian estimation of Dirichlet parameters is tricky due to several reasons. Even though the

Dirichlet distribution has a conjugate prior for being a member of the exponential family, the

posterior distribution is difficult to use in practical problems and not analytically tractable.

Few authors have proposed some approximation to the posterior distribution of Dirichlet

parameters (e.g. [40] have used multivariate Gaussian distribution), but no method seems to

yield satisfactory results. Also, using some Markov Chain Monte Carlo (MCMC) algorithm at

each iteration step of the clustering algorithm makes it too time-consuming, which is not prac-

tically feasible. Considering all these challenges, we are going to propose a suitable solution

that can be adopted in our clustering algorithm.

Let us recall that, if (X1, X2, . . ., Xp) follows a Dirichlet distribution, with parameters

(α1, α2, . . ., αp) then the marginal distribution of Xi follows a Beta distribution with parameters

ðai;
Pp

j¼1
ðaj � aiÞÞ. Now, if we choose the prior distribution of αi as Gamma (a, b), then under

certain assumptions, the posterior distribution of αi can be obtained in closed form. It can be

shown that (see [41]), posterior distribution of αi follows a Gamma distribution with parame-

ters (a + n) and 1

b�
Pn

i¼1
log xi

, where n is the sample size.

Thus, for our clustering problem, the Bayesian estimates of αjm,m = 1, 2, . . .p for cluster j
can be obtained by the posterior mean, which is given by,

a
Bayes
jm ¼ EðajmÞ ¼

aþ Nj

b �
PNj

i¼1 log xim
ð11Þ

For our experiment, we have chosen the values of a and b to be 1. The extended algorithm

with Bayesian estimates for clusters with fewer data points (Hard DMM 2) is explained below.

Algorithm 2: Clustering algorithm for mixture of Dirichlet distributions with special provi-

sion for clusters with fewer data points (Hard DMM 2)
Replace zero values in the data, if any, using Eq 2;
Initialize the model parameters, α and π. Evaluate the initial value
of the log likelihood from Eq 4;
while log likelihood difference � � do
Evaluate γij from Eq 5, using the parameter values and data;

pnewj ¼
Nj
N, where, Nj ¼

PN
i¼1
gij;

for i in 1 to N do
cluster ¼ argmax

j
gij;

Assign data point xi to cluster zi;
end
for j in 1 to k do
if cluster j is empty then
Use initial values of αj as an update;

else
if number of data points in cluster j � 30 then
anewj ¼ a

Bayes
j ;

else
anewj ¼ a

MLE
j ;

end
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end
end
Re-evaluate log likelihood using the new estimates of the
parameters.

end

Simulation study

Comparison with other clustering algorithms

We have done simulation study to check the efficiency of the proposed technique. For a Hard

DMM, algorithm 1 and algorithm 2 can be used without any alteration. The objective of our

simulation study is to compare the performance of Hard DMM 1 and Hard DMM 2 with

other popular clustering algorithms which researchers often use for clustering compositional

data. For our study we have considered hierarchical agglomerative clustering with linkage cri-

teria ward, single, average and complete respectively [42]. We have also used partition around

medoids (PAM) [43], Clustering Large Applications based on Randomized Search (CLAR-

ANS) [44], Fuzzy CMean [45], Kmeans, Gaussian Mixture Model (GMM), Gaussian Mixture

Model with hard EM (Hard GMM), spectral clustering [46] and DBSCAN [47] for compari-

son. We have checked three measures to evaluate the performance.

• Accuracy: The total accurate classifications divided by number of observations.

• Precision: True positives divided by sum of true positives and false positives.

• Recall: True positives divided by the sum of true positives and false negatives.

A detail description of all the measures can be found in [48].

In this section, we have generated data under two schemes.

• Scheme 1: 500 random samples from Dirichlet(30,20,10), 100 random samples from Dirich-

let (10,20,30) and 300 random samples from Dirichlet (15,15,15).

• Scheme 2: 500 random samples from Dirichlet(10,10,3), 100 random samples from Dirichlet

(10,20,50), 300 random samples from Dirichlet (15,15,15) and 400 random samples from

Dirichlet(0.2,0.5,3)

The data has been generated in python programming language using numpy library [49].

The algorithms of Hard DMM 1, Hard DMM 2 and Hard GMM are also written in python

programming language. All the hierarchical clustering algorithms, PAM, KMeans, GMM spec-

tral clustering and DBSCAN algorithm are available in python from scikit-learn, a machine

learning library in python [50]. The algorithm for Fuzzy CMean is available in scikit-fuzzy

python library [51] and CLARAN is available in PyClustering library [52].

We have generated data under two schemes mentioned above and used different clustering

algorithms to find patterns. We have measured the performance of algorithms in terms of

accuracy, precision and recall. Fig 1 shows the data generated under scheme 1 with true clus-

ters. And Fig 2 shows how different algorithms finds pattern on the data. We see that Hard

DMM 1, Hard DMM 2, KMeans, GMM and Hard GMM recognize pattern in the data some-

what similar to the original pattern. Other algorithms fail to recognize the true patterns. The

detailed result can be seen in Table 1. The data generated under scheme 2 is shown in Fig 3.

We can see that the data has more complex patterns than data under scheme 1. From Fig 4, we

see that only Hard DMM 1 and Hard DMM 2 are able to find pattern similar to the true pat-

terns. All other algorithms fail to understand the true patterns of the generated data. The cor-

responding results in detail can be seen in Table 2.
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From Fig 5 we see that Hard DMM 1 and Hard DMM 2 have the highest accuracy, preci-

sion and recall on data generated under scheme 1. On the other hand from Fig 6 also, we see

that Hard DMM 1 and 2 work better than all other algorithms we considered when it comes to

the data generated under scheme 2. Hard DMM 1 and Hard DMM 2 have shown best perfor-

mance in terms of accuracy, precision and recall on our generated dataset. On this note, it is

important to understand the interpretation of precision and recall in classification. Precision

gives the ratio of number of elements correctly classified under a certain class (or cluster) and

all number of elements which actually belong to that class (or cluster). On the other hand,

recall gives the ratio of number of elements correctly classified under a certain class (or cluster)

and total number of elements classified under that class both correctly and incorrectly. Even

though both of these measures are very important, unfortunately we can not maximize both at

the same time. When we have different algorithms with same accuracy, we must choose the

model with better precision and recall. In our simulation study,both versions of Hard DMM

have the best accuracy on both the dataset along with very good precision and recall. Scheme 2

produces a dataset with a complex, non spherical patterns which makes it very difficult to clus-

ter with generic algorithms or mixture model with Gaussian distributions. When composi-

tional data shows asymmetric and non spherical patterns, mixture model using Dirichlet

distribution is expected to give better results as Dirichlet distribution can adopt both symmet-

ric and asymmetric shapes. Our simulation study confirms that Hard DMM can be a suitable

choice for both spherical and non spherical data when it comes to clustering.

Fig 1. Simulated data generated under scheme 1 with true clusters.

https://doi.org/10.1371/journal.pone.0268438.g001
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Fig 2. Outcome of different clustering algorithms on simulated data generated under scheme 1.

https://doi.org/10.1371/journal.pone.0268438.g002

Table 1. Accuracy, precision and recall of different clustering algorithms on data generated under scheme 1.

Methods Accuracy Precision Recall

Hard DMM 1 0.928889 0.897778 0.917724

Hard DMM 2 0.928889 0.897778 0.917724

Ward 0.882222 0.877333 0.883416

Single 0.557778 0.337778 0.852264

Average 0.844444 0.854667 0.818948

Complete 0.711111 0.627111 0.615798

CLARANS 0.824444 0.833778 0.767597

PAM 0.805556 0.834889 0.741326

Fuzzy CMean 0.832222 0.854889 0.767149

KMeans 0.852222 0.869556 0.787949

GMM 0.882222 0.891111 0.891111

Hard GMM 0.921111 0.890444 0.910820

Sprectal 0.616667 0.664667 0.664667

DBSCAN 0.555556 0.333333 0.333333

https://doi.org/10.1371/journal.pone.0268438.t001
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Performance testing

We wanted to test the performance of our proposed model (Hard DMM 1) for varied dimen-

sions, varied number of clusters and varied overlap. We have simulated data with dimensions

5, 10, 20, 35, 50, 70 and 100 with number of clusters 2 to 6. For each dimension and number of

clusters, we have generated data 100 times and used our proposed model to check accuracy.

For clusters 2 to 5, we have set very less to none overlap in the data. And for 6 clusters we have

introduced overlap in the data with increasing dimension. Let us recall that p denotes the

dimension, k denotes the number of cluster and αj = (αj1, . . ., αjp) denotes the parameters of

Dirichlet distribution from mixture component j. The data generating schemes are mentioned

below.

• k = 2: 800 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 1 and 110, sorted in ascending order. 500 random samples from a Dirichlet dis-

tribution, with p parameters drawn randomly from a range 1 and 110, sorted in descending

order.

• k = 3: 500 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 110 and 500, sorted in ascending order. 400 random samples from a Dirichlet

distribution, with p parameters drawn randomly from a range 1 and 110, sorted in descend-

ing order. 300 random samples from a Dirichlet distribution, with all p parameters equal to

50.

• k = 4: 400 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 1 and 100, sorted in ascending order. 300 random samples from a Dirichlet dis-

tribution, with p parameters drawn randomly from a range 1 and 100, sorted in descending

Fig 3. Simulated data generated under scheme 2 with true clusters.

https://doi.org/10.1371/journal.pone.0268438.g003
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Fig 4. Outcome of different clustering algorithms on simulated data generated under scheme 1.

https://doi.org/10.1371/journal.pone.0268438.g004

Table 2. Accuracy, precision and recall of different clustering algorithms on data generated under scheme 2.

Methods Accuracy Precision Recall

Hard DMM 1 0.925385 0.928167 0.909739

Hard DMM 2 0.925385 0.928167 0.909739

Ward 0.830000 0.858625 0.803385

Single 0.385385 0.250625 0.346824

Average 0.464615 0.495000 0.455818

Complete 0.490000 0.581208 0.511178

CLARANS 0.502308 0.531250 0.454768

PAM 0.510769 0.495250 0.512096

Fuzzy CMean 0.846923 0.877417 0.807752

KMeans 0.858462 0.882708 0.816642

GMM 0.726154 0.786875 0.786875

Hard GMM 0.756154 0.800833 0.764774

Sprectal 0.562308 0.632167 0.632167

DBSCAN 0.384615 0.250000 0.250000

https://doi.org/10.1371/journal.pone.0268438.t002
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order. 800 random samples from a Dirichlet distribution, with all p parameters equal to 50.

500 random samples from a Dirichlet distribution with l parameters equals to 110 and rest

p − l parameters drawn randomly from Uniform (1,5) distribution, sorted in ascending

order. l = (2, 3, 5, 8, 12, 15, 18) for p = (5, 10, 20, 35, 50, 70, 100) respectively.

• k = 5: 500 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 110 and 500, sorted in ascending order. 100 random samples from a Dirichlet

distribution, with p parameters drawn randomly from a range 110 and 500, sorted in

descending order. 300 random samples from a Dirichlet distribution, with p parameters

Fig 5. Plot of accuracy, precision and recall of different clustering algorithms on data generated under scheme 1.

https://doi.org/10.1371/journal.pone.0268438.g005

Fig 6. Plot of accuracy, precision and recall of different clustering algorithms on data generated under scheme 2.

https://doi.org/10.1371/journal.pone.0268438.g006
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drawn randomly from a range 1 and 110, sorted in ascending order. 400 random samples

from a Dirichlet distribution, with p parameters drawn randomly from a range 1 and 110,

sorted in descending order. 300 random samples from a Dirichlet distribution, with all p
parameters equal to 50.

• k = 6: 500 random samples from a Dirichlet distribution, with p parameters drawn randomly

from a range 110 and 500, sorted in ascending order. 100 random samples from a Dirichlet

distribution, with p parameters drawn randomly from a range 110 and 500, sorted in

descending order. 300 random samples from a Dirichlet distribution, with p parameters

drawn randomly from a range 1 and 110, sorted in ascending order. 400 random samples

from a Dirichlet distribution, with p parameters drawn randomly from a range 1 and 110,

sorted in descending order. 300 random samples from a Dirichlet distribution, with all p
parameters equal to 50. 500 random samples from a Dirichlet distribution with l parameters

equals to 110 and rest p − l parameters drawn randomly from Uniform (1,5) distribution,

sorted in ascending order. l = (2, 3, 5, 8, 12, 15, 18) for p = (5, 10, 20, 35, 50, 70, 100)

respectively.

The T-SNE [53, 54] plots in Figs 7 and 8 show that with p = 5 there is some overlap in one

cluster and with p = 100 one cluster has completely been overlapped on another. The perfor-

mances of the model for varied dimension, number of clusters and overlap is shown in Figs

9–13 respectively.

From results in Table 3, we see that increasing dimension and increasing number of clusters

do not have much impact on the accuracy of Hard DMM. But increasing overlap has signifi-

cant impact on the accuracy of Hard DMM. It is to be noted that many algorithms suffer from

Fig 7. T-SNE plot of data with p = 5 and k = 6.

https://doi.org/10.1371/journal.pone.0268438.g007

PLOS ONE Clustering compositional data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268438 May 18, 2022 13 / 24

58



“Curse of Dimensionality” with increasing dimension in the data. For example, in case of

GMM, a p dimensional mean vector and p × p symmetric covariance matrix need to be esti-

mated for each k clusters. In other words for a GMM with k clusters and p dimensions, (k − 1)

+ kp(1 + (p/2 + 1/2)) number of parameters need to be estimated. On the other hand, in case

of a DMM with k clusters and p dimensions, we need only (k − 1) + kp parameters to estimate.

So for 10 clusters and 100 dimensional data GMM estimates 51509 parameters, whereas DMM

estimates only 1009 parameters on the same situation. So, DMM has an added advantage over

GMM when it comes to high dimensionality. That is why we have noticed in our study that

increasing dimension has very little to none impact on the performance of Hard DMM. Also

with increasing number of cluster, the number of parameters increase linearly. And with a

good starting value in the EM algorithm, the model converges soon with satisfactory results.

On the contrary, overlap in the data leads to misclassification, which in turn decreases the per-

formance of Hard DMM significantly.

Real data applications

We have applied the proposed methods on two real data problems. Our main idea was to

check how our model works for the given data and not to provide an optimum solution for the

problems. We have checked three measures to evaluate the performance, namely: accuracy,

precision and recall. All measures have been compared with hierarchical agglomerative

Fig 8. T-SNE plot of data with p = 100 and k = 6.

https://doi.org/10.1371/journal.pone.0268438.g008
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clustering with linkage criteria ward, single, average and complete, PAM, CLARANS, Fuzzy

Cmean, KMeans GMM, Hard GMM, Spectral clustering and DBSCAN algorithm. At first we

have checked for missing data. In our study there was no missing data. The class labels were

subsequently label encoded in order to make it compatible with python. Using L1 normaliza-

tion [55] the data was then converted into compositional data and zero values were treated

using multiplicative replacement which is available in scikit-bio [56], a python library.

Wholesale customers data

We have used a data from Marketing and Management domain for our first experiment. [57]

has used this data for logical discriminant models. The dataset can be downloaded from UCI

Machine Learning Repository. The data refers to 440 customers of a wholesale distributor,

where 298 customers are from the Horeca (Hotel/Restaurant/Café) channel and the rest 142

customers are from the Retail channel. The wholesale customers are grouped in above two

classes according to frequency spending degrees of four types:

• low frequency-low spending;

• high frequency-low spending;

• regular frequency-regular spending;

• high frequency-high spending.

Fig 9. Mean accuracy of hard DMM 1 with 2 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g009
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Fig 10. Mean accuracy of hard DMM 1 with 3 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g010

Fig 11. Mean accuracy of hard DMM 1 with 4 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g011
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The first two spending patterns are captured by the class Horeca and the second two pat-

terns are captured by the class Retail. The wholesale data concerning the customers consists of

annual spending in monetary units (m.u.) on different product categories, namely: fresh prod-

ucts, milk products, grocery, frozen products, detergents and paper products and delicatessen.

The summary statistics of the data is shown in Table 4. The aim of the analysis is to find if

there are different spending patterns for the two groups of customers and if so, maybe the

wholesale could differentiate its marketing actions directed to these groups. For our study we

will restrict ourselves to clustering analysis. In this case we have p = 6, k = 2 and N = 440. The

T-SNE plots in Fig 14 shows complex distributional patterns. We have used different algo-

rithms for clustering and checked their performances. The corresponding results are shown in

Table 5.

From Fig 15 we see that both versions of Hard DMM work better than all other algorithms

under consideration in terms of Accuracy. Precision and recall are found to be little better in

GMM and Hard GMM than Hard DMM. As discussed before, when there are different algo-

rithms with same level of accuracy, it is better to choose the algorithm with more precision

and recall. In this experiment Hard DMM has the highest accuracy with comparatively good

precision and recall value. So, Hard DMM can still be considered as a suitable choice in this

situation.

Wine data

The dataset we heve chosen for our second experiment is from physical science domain. These

data are the results of a chemical analysis of wines grown in the same region in Italy but

derived from three different cultivars. The analysis determined the quantities of 13 constitu-

ents found in each of the three types of wines. The 13 components are namely: Alcohol, Malic

acid, Ash, Alcalinity of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenol,

Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines and Proline. This data

Fig 12. Mean accuracy of hard DMM 1 with 5 clusters and varied dimensions.

https://doi.org/10.1371/journal.pone.0268438.g012

PLOS ONE Clustering compositional data

PLOS ONE | https://doi.org/10.1371/journal.pone.0268438 May 18, 2022 17 / 24

62



has been used by many researchers, (see [58–60]). This dataset can also be downloaded from

UCI Machine Learning Repository. The aim of the analysis is to identify the different types of

wines based on its components. But the attributes color intensity and hue do not constitute

chemical components of wine. Hence, we have dropped those two variables for our composi-

tional data analysis. We have used it for clustering purpose. In this case, we have p = 11, k = 3

and N = 178. The summary statistics of the data is shown in Table 6. Fig 16 displays the T-SNE

plot of the data which shows difficult cluster patterns. Like before, we have performed cluster-

ing with different clustering algorithms. The results in detail is shown in Table 7.

From Fig 17, we see that, both versions of Hard DMM work better than all other clustering

algorithms in terms of accuracy, precision and recall. For complex distributional pattern of

compositional data, Hard DMM work better than other models as, compositional data can be

naturally modelled using Dirichlet distribution.

Fig 13. Mean accuracy of hard DMM 1 with 6 clusters, varied dimensions and increasing overlap.

https://doi.org/10.1371/journal.pone.0268438.g013

Table 3. Mean accuracy of hard DMM 1 with varied dimensions and number of clusters.

k p = 5 p = 10 p = 20 p = 35 p = 50 p = 70 p = 100

2 1.000000 1.000000 1.000000 1.00000 1.00000 1.000000 1.000000

3 0.991658 0.999992 1.000000 1.00000 1.00000 1.000000 1.000000

4 0.993945 0.999925 1.000000 1.00000 1.00000 1.000000 1.000000

5 0.980044 0.997838 0.999994 1.00000 1.00000 1.000000 1.000000

6 0.942976 0.849214 0.695095 0.65829 0.65009 0.655305 0.683252

https://doi.org/10.1371/journal.pone.0268438.t003
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Conclusion

In this paper we have shown a convenient way to build Dirichlet mixture model to cluster

compositional data. The model can be used without any transformation. In this case, Dirichlet

distribution is a natural choice as it works with the unit sum constraint. Researchers generally

use generic algorithms for clustering compositional data, whereas Hard DMM offers an exclu-

sive solution specially for compositional data considering both the spherical and non spherical

cluster patterns. Dirichlet distribution is well known for modelling symmetric and asymmetric

data. This advantage can be exploited using Hard DMM.

We wanted to use a distribution other than normal in the mixture model and check

whether it works as par with predominantly used methods such as GMM and KMeans. From

the simulation study and two real data problems we see that when there is a pattern in the

composition (proportions), both versions of Hard DMM are able to identify the clusters with

quite a satisfactory result. For clustering purpose we had to be cautious while using data used

for classification, as not always classification and clustering done on same ground. For exam-

ple, if images are classified based on presence of a dog in it and the data contains values of red,

green and blue channel, clustering algorithm tries to find completely a different pattern.

Table 4. Summary statistics of wholesale customers data.

Channel Region Fresh Milk Grocery Frozen Detergents_Paper Delicassen

count 440.000 440.000 440.000 440.000 440.000 440.000 440.000 440.000

mean 1.322 2.543 12000.297 5796.265 7951.277 3071.931 2881.493 1524.870

std 0.468 0.774 12647.328 7380.377 9503.162 4854.673 4767.854 2820.105

min 1.000 1.000 3.000 55.000 3.000 25.000 3.000 3.000

25% 1.000 2.000 3127.750 1533.000 2153.000 742.250 256.750 408.250

50% 1.000 3.000 8504.000 3627.000 4755.500 1526.000 816.500 965.500

75% 2.000 3.000 16933.750 7190.250 10655.750 3554.250 3922.000 1820.250

max 2.000 3.000 112151.000 73498.000 92780.000 60869.000 40827.000 47943.000

https://doi.org/10.1371/journal.pone.0268438.t004

Fig 14. T-SNE plot of wholesale customer data.

https://doi.org/10.1371/journal.pone.0268438.g014
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We have also done an extensive simulation study to evaluate the performance of our pro-

posed method. We see that increasing number of dimensions (upto 100) and increasing num-

ber of clusters do not seem to have much effect on the performance. But increasing overlap

makes the accuracy decrease accordingly. DMM can also be advantageous in high dimensional

setting as it requires relatively less number of parameters to be estimated when compared to

other mixture model. Due to the complexity of maximum likelihood (ML) estimation for

Dirichlet parameters, Dirichlet distribution has long been ignored for clustering purpose. In

our study, we have shown a novel way to use ML estimates of dirichlet parameters conve-

niently in mixture set up which can be used to cluster compositional data.

In our study, we have considered the number of clusters to be known in advance. But in

reality, sometimes we need to estimate k before we can start clustering. We have also not

Table 5. Performance comparison of different model based clustering methods on wholesale customers data.

Methods Accuracy Precision Recall

Hard DMM 1 0.770455 0.780769 0.750448

Hard DMM 2 0.770455 0.780769 0.750448

Ward 0.756818 0.757798 0.732705

Single 0.675000 0.498322 0.338269

Average 0.768182 0.764344 0.741682

Complete 0.406818 0.320612 0.319944

CLARANS 0.718182 0.744021 0.713506

PAM 0.740909 0.755270 0.725436

Fuzzy CMean 0.731818 0.748558 0.718779

KMeans 0.731818 0.748558 0.718779

GMM 0.740909 0.790292 0.790292

Hard GMM 0.754545 0.789300 0.752955

Sprectal 0.734091 0.750236 0.750236

DBSCAN 0.677273 0.500000 0.500000

https://doi.org/10.1371/journal.pone.0268438.t005

Fig 15. Plot of accuracy, precision and recall of different algorithms on on wholesale customers data.

https://doi.org/10.1371/journal.pone.0268438.g015
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Table 6. Summary statistics of wine data.

0 1 2 3 4 5 6 7 8 9 10 11

count 178.000 178.0000 178.000 178.000 178.000 178.000 178.000 178.000 178.000 178.000 178.000 178.000

mean 1.938 13.000 2.336 2.366 19.494 99.741 2.295 2.029 0.361 1.590 2.611 746.893

std 0.775 0.811 1.117 0.274 3.339 14.282 0.625 0.998 0.124 0.572 0.709 314.907

min 1.000 11.030 0.740 1.360 10.600 70.000 0.980 0.340 0.130 0.410 1.270 278.000

25% 1.000 12.362 1.602 2.210 17.200 88.000 1.742 1.205 0.270 1.250 1.937 500.500

50% 2.000 13.050 1.865 2.360 19.500 98.000 2.355 2.135 0.340 1.555 2.780 673.500

75% 3.000 13.677 3.082 2.557 21.500 107.000 2.800 2.875 0.437 1.950 3.170 985.000

max 3.000 14.830 5.800 3.230 30.000 162.000 3.880 5.080 0.660 3.580 4.000 1680.000

https://doi.org/10.1371/journal.pone.0268438.t006

Fig 16. T-SNE plot of wine data.

https://doi.org/10.1371/journal.pone.0268438.g016

Table 7. Performance comparison of different model based clustering methods on wine data.

Methods Accuracy Precision Recall

Hard DMM 1 0.674157 0.693130 0.749177

Hard DMM 2 0.674157 0.693130 0.749177

Ward 0.646067 0.642660 0.689409

Single 0.398876 0.389671 0.427611

Average 0.584270 0.532527 0.521509

Complete 0.516854 0.490513 0.404811

CLARANS 0.612360 0.597660 0.591908

PAM 0.668539 0.672008 0.692386

Fuzzy CMean 0.511236 0.487177 0.490715

KMeans 0.511236 0.487177 0.486869

GMM 0.528090 0.494173 0.494173

Hard GMM 0.539326 0.521899 0.545030

Sprectal 0.612360 0.594180 0.594180

DBSCAN 0.331461 0.333333 0.333333

https://doi.org/10.1371/journal.pone.0268438.t007
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explored the situation when the data is very high dimensional and sparse. Both the issues

would require further research and we keep that for our future work.

Compositional data is getting very popular in biology domain. We hope to see more future

applications of Dirichlet distribution and DMM in compositional data analysis.
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Chapter 3

Gene Coexpression Analysis with Dirich-
let Mixture Model: Accelerating Model
Evaluation Through Closed-Form KL
Divergence Approximation Using Vari-
ational Techniques

Summary

This study introduces a novel application of the Dirichlet Mixture Model (DMM) for
clustering compositional data, with a focus on improving the efficiency and accuracy of
model evaluation. The research addresses the computational challenges of using Kullback-
Leibler (KL) Divergence in DMMs by proposing a new variational approach that offers
a closed-form solution. This method significantly enhances computational speed and
robustness compared to traditional Monte Carlo methods. Although applied to gene
coexpression analysis, the statistical advancements presented can be broadly applied to
various fields requiring efficient clustering of compositional data.
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Abstract. Gene coexpression analysis poses unique challenges, partic-
ularly in clustering normalized gene profiles where dedicated algorithms
are lacking. Compositional in nature, normalized gene profiles find a fit-
ting solution in the Dirichlet Mixture Model (DMM). This study pioneers
the application of DMM for clustering normalized gene profiles, recogniz-
ing the necessity for efficient model evaluation. Central to this evaluation
is the Kullback-Leibler (KL) Divergence, a critical metric for DMMs.
In addressing the computational challenges associated with KL Diver-
gence in DMMs, we introduce a novel variational approach. This method
provides a closed-form solution, markedly improving computational effi-
ciency for rapid model comparisons and robust estimation evaluations.
Through validation on real and simulated data, our approach demon-
strates superior efficiency and accuracy compared to traditional Monte
Carlo-based methods. This innovation opens new frontiers for expedi-
tious exploration of diverse DMM models, propelling advancements in
the statistical analysis of compositional gene expression data.

Keywords: Gene Coexpression · Dirichlet Mixture Model (DMM) ·
Normalized Gene Profiles · Kullback-Leibler Divergence · Variational
Approach

1 Introduction

RNA-sequence (RNA-seq) data often come with read counts or pseudo-counts,
representing the number of reads aligned to specific genes or genomic regions.
When using normalized expression profiles, which indicate the proportion of
normalized counts for each feature, the data become compositional. Dirichlet
Mixture Model (DMM) has proven to be more effective than other clustering
algorithms for compositional data [1]. The Kullback-Leibler (KL) Divergence [2]

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
J. Einbeck et al. (Eds.): IWSM 2024, CONTRIB.STAT., pp. 134–141, 2024.
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stands as a fundamental measure in statistics, quantifying the statistical distance
between probability distributions. The Kullback-Leibler (KL) divergence (also
recognized as relative entropy) between two probability density functions f(x)
and g(x) is defined by the integral expression:

D(f‖g)
def
=

∫
f(x) log

(
f(x)

g(x)

)
dx . (1)

It operates as a measure of the dissimilarity between the probability distribu-
tions encoded by f(x) and g(x). In statistical inference, generally f(x) is the
distribution with true parameter values and g(x) is the distribution with esti-
mated parameter values. The KL divergence exhibits fundamental properties
known as divergence properties: self-similarity, self-identification, and positiv-
ity. These properties underscore the significance of KL divergence in capturing
the nuances of distributional disparities, making it a cornerstone in statistical
analyses. While closed-form solutions for KL Divergence exist for the Dirichlet
distribution, there is no analytically tractable solution available for DMM. This
study addresses these challenges by proposing a variational approach to approxi-
mate KL Divergence in DMMs. Unlike other methods such as Monte Carlo based
approximation [3], our approach provides a closed-form solution, substantially
enhancing computational efficiency. Validation using real and simulated data
demonstrates its superiority in efficiency and accuracy over traditional Monte
Carlo-based approaches. The results underscore the potential of our variational
approximation to accelerate the estimation process while improving the quality
of estimates.

2 Methods

Let X1,X2, . . . ,XN denote a random sample of size N , where Xi is a p dimen-
sional random vector with probability density function f(xi) on Rp.

The Dirichlet density is given by

f(xi) =
Γ (

∑p
m=1 αm)∏p

m=1 Γ (αm)

p∏

m=1

xαm−1
im , (2)

where
∑p

m=1 xim = 1, xim’s > 0 , αjm’s > 0 and Γ (·) denotes a gamma function.
The density of a mixture model with k mixture components for one observation
xi is given by the mixture density

p(xi) =

k∑

j=1

πjf(xi | αj) , (3)

where π = (π1, . . . , πk) contains the corresponding mixture proportions with∑k
j=1 πj = 1, 0 < πj < 1. The density component of mixture j is given by

f(xi | αj) and αj , j = 1, 2, ..., k is the vector of component specific parameters
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for each density. Then α = (α1, . . . ,αk) denotes the vector of all parameters of
the model.

The parameters of Dirichlet mixture model, can be estimated using an
Expectation-Maximization (EM) algorithm [4]. In our previous work [1] we pre-
sented a Hard version [5] of the EM algorithm to estimate the parameters. The
log likelihood of the model for a sample of size N is then given by

log p(x1, . . . ,xN |α, π) =

N∑

i=1

log

⎡
⎣

k∑

j=1

πjf(xi |αj )

⎤
⎦ . (4)

Latent variables Zi’s are introduced, which are categorical variables taking
on values 1, . . . , k with probabilities π1, . . . , πk such that Pr(Xi |Zi = j) = f(xi |
αj), j = 1, . . . , k. The cluster membership probabilities of data point i for cluster
j can be obtained by γij , where,

γij(xi) = Pr(Zi = j|xi ,αj ) =
πjf(xi |αj )∑k
j=1 πjf(xi |αj )

. (5)

Hard EM maximizes the classification log likelihood; it applies a delta func-
tion approximation to the posterior probabilities Pr(Zi = j|X = x,α), where
Zi, i = 1, . . . , N are the latent variables representing class labels. The approxi-
mation changes the E step as follows,

Pr(Zi = j|xi ,αj ) ≈ I(j = z∗
i ), (6)

where, z∗
i = argmax

j
γij . γij ’s are nothing but the responsibilities (probabilities)

for each data point that belongs to different clusters. In other words, it introduces
a classification step, where all the data points are classified into different clusters
based on the posterior probability. Let Nj be the number of data points in cluster

j. Then, the ML estimates of πj is obtained as
Nj

N
. And estimates of αj ’s are

obtained by finding the MLE using Nj data points in cluster j. However, as the
solution is not analytically tractable, some numerical methods need to be used.
It is generally done by fixed-point iteration. The iterative equation that needs
to be solved is given by

Ψ(αnew
jm ) = Ψ(

p∑

m=1

αold
jm) +

1

Nj

Nj∑

i=1

log(xim) , (7)

where, Ψ is the digamma function. The inverse of diggama function is used to
get the estimates of αjm. Now, let’s explore various approximations to compute
the KL distance for DMM.

2.1 KL Divergence: Monte Carlo Approach

Monte Carlo sampling is frequently employed by researchers to compute KL
divergence. Let fa and gb be two DMMs (see Eq. 3). The approach involves
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drawing a sample xi from the probability density function fa such that,

Efa
[log fa(xi)/gb(xi)] = D(fa‖gb) .

Utilizing N independent and identically distributed samples {xi}N
i=1, the esti-

mation is expressed as follows:

DMC(fa‖gb) =
1

N

N∑

i=1

log fa(xi)/gb(xi) → D(fa‖gb) , (8)

as N → ∞. The variance of the estimation error is 1
N Varfa

[log fa/gb]. To
compute DMC(f‖g), it is necessary to generate the independent and identically
distributed samples {xi}N

i=1 from fa. Drawing a sample xi from the DMM fa

involves initially drawing a discrete sample ai according to the probabilities πa.
Subsequently, a continuous sample xi is drawn from the resulting Dirichlet com-
ponent fai

(x). The Monte Carlo method satisfies the similarity property; how-
ever, the positivity property does not hold. The identification property is likely
to fail only under highly artificial circumstances and with very low probability.

2.2 KL Divergence: Variational Approach

Let us denote 〈.〉 as the inner product. In our context 〈.〉x means expectation
with respect to x.

Theorem 1. Let X be an p × 1 random vector. Assume two Dirichlet distribu-
tions u and v specifying the probability distribution of X as,

u : X ∼ Dir(α11, . . . , α1p)

v : X ∼ Dir(α21, . . . , α2p) .

Then, the Kullback-Leibler divergence of u from v is given by,

D(u || v) = log
Γ (

∑p
i=1 α1i)

Γ (
∑p

i=1 α2i)
+

p∑

i=1

log
Γ (α2i)

Γ (α1i)

+

p∑

i=1

(α1i − α2i)

[
ψ(α1i) − ψ

(
p∑

i=1

α1i

)]
. (9)

Proof. For Dirichlet distributions KL divergence is,

D(u || v) =

∫

X p

Dir(x;α11, . . . , α1p) log
Dir(x;α11, . . . , α1p)

Dir(x;α21, . . . , α2p)
dx

=

〈
log

Dir(x;α11, . . . , α1p)

Dir(x;α21, . . . , α2p)

〉

u(x)

(10)
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We can do some algebraic manipulations using the probability density func-
tion of the Dirichlet distribution to get,

D(u || v) =

〈
log

Γ(
∑p

i=1 α1i)∏p
i=1 Γ (α1i)

∏p
i=1 xi

α1i−1

Γ(
∑p

i=1 α2i)∏p
i=1 Γ (α2i)

∏p
i=1 xi

α2i−1

〉

u(x)

= log
Γ (

∑p
i=1 α1i)

Γ (
∑p

i=1 α2i)
+

p∑

i=1

log
Γ (α2i)

Γ (α1i)
+

p∑

i=1

(α1i − α2i) · 〈log xi〉u(x) .

Moreover,

〈log xi〉 = ψ(αi) − ψ

(
p∑

i=1

αi

)
.

Thus the Kullback-Leibler divergence of u from v becomes:

D(u || v) = log
Γ

(∑p
i=1 α1i

)

Γ
(∑p

i=1 α2i

)+

p∑

i=1

log
Γ (α2i)

Γ (α1i)
+

p∑

i=1

(α1i − α2i)

[
ψ(α1i) − ψ

(
p∑

i=1

α1i

)]
.

Proposition 1. Let fa and gb be two DMMs such that,

fa = f(x) =
∑

a

πaDir(x;αa)

gb = g(x) =
∑

b

ωbDir(x;αb)

Then using a variational approach, an approximated KL divergence can be
expressed as,

Dvariational(f‖g) =
∑

a

πa log

∑
a′ πa′e−D(fa‖fa′ )

∑
b ωbe−D(fa‖gb)

. (11)

Proof. [6] has provided a similar proof for Gaussian Mixture Models. That app-
roach can be adopted for DMMs as well. We can define the log-likelihood,Lf (g)
as, Lf (g) = 〈[log g(x)]〉f(x). Then KL divergence can be written in terms of
log-likelihood in the following way.

D(f‖g) = Lf (f) − Lf (g) . (12)

We define variational parameters,φb|a > 0 such that Σbφb|a = 1. Using Jensen’s
inequality we can show,
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Lf (g)
def
= 〈log g(x)〉f(x)

=

〈
log

∑

b

ωbgb(x)

〉

f(x)

=

〈
log

∑

b

φb|a
ωbgb(x)

φb|a

〉

f(x)

≥
〈∑

b

φb|a log
ωbgb(x)

φb|a

〉

f(x)

def
= Lf (g, φ) . (13)

The above is a lower bound on Lf (g). We can get the best bound by maximizing
Lf (g, φ) with respect to φ. The maximum value is obtained with:

φ̂b|a =
ωbe

−D(fa‖gb)

∑′
b π′

be
−D(fa‖gb′ )

. (14)

Likewise, we define ,

Lf (f, ψ)
def
=

〈∑

a′

ψa′|a log
πa′fa′(x)

ψa′|a

〉

f(x)

. (15)

The optimal ψa′|a is given by,

ψ̂a′|a =
πa′e−D(fa‖fa′ )

∑
â πâe−D(fa‖fâ)

(16)

Now, like Eq. 12, we can define Dvariational(f‖g) = Lf (f, ψ̂) − Lf (g, φ̂). After

substituting φ̂b|a and ψ̂a′|a, we finally get,

Dvariational(f‖g) =
∑

a

πa log

∑
a′ πa′e−D(fa‖fa′ )

∑
b ωbe−D(fa‖gb)

.

Dvariational(f‖g) satisfies the self similarity and self identification property.
However, it may not always satisfy the positivity property. In that case we may
use the absolute value of the divergence.

3 Results

We conducted extensive experiments using both simulated and real data sets,
including three simulated data sets (Data Set 1, Data Set 2, Data Set 3) drawn
from different Dirichlet distributions and a real gene expression data set (Mod-
encodefly Data [7]). Data Set 3 and Modencodefly Data are highdimensional in
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nature. The Modencodefly Data has been pre-processed and top 75 genes were
chosen based on variation. Each experiment was conducted only once. The pri-
mary metrics for comparison were the Kullback-Leibler (KL) Divergence and
the time taken for each approach.

Table 1. Comparison of KL Divergence and Time Taken for Different Data Sets

Data Set (N, p, k) Metric Variational Monte Carlo
n = 10000

Monte Carlo
n = 100000

Monte Carlo
n = 1000000

Data Set 1 (4200, 3,3) KL Div 0.0017 0.0024 0.0021 0.0017

Time 0.0004 1.7 17.3391 181.3682

Data Set 2 (4200, 3,3) KL Div 0.0022 0.0024 0.0024 0.0022

Time 0.0005 1.7283 17.4883 180.9482

Data Set 3 (230, 75,6) KL Div 6.2723 6.1737 6.1815 6.1824

Time 0.0014 3.6702 37.4568 384.2183

Modencodefly (147, 75,6) KL Div 34.7652 33.5581 33.5471 33.5579

Time 0.0014 3.6353 36.0671 375.7836

From Table 1, it is evident that our proposed variational approach consis-
tently provided faster solutions for all data sets. Notably, the Monte Carlo
method yielded KL Divergence values closer to the variational method as we
increase the number of samples, which increases the execution time to a great
extent. When N → ∞ Monte Carlo technique offers accurate KL divergence, as
the variance of the estimation error becomes zero. From our results we see that
with increasing N , the KL divergence obtained using Monte Carlo technique
approaches that of variational technique, implying that variational technique
offers more accurate results than Monte Carlo technique for moderate N with
much less execution time, indicating that our solution is more robust and appli-
cable for practical applications.

4 Conclusion

This study addresses the efficient estimation of Kullback-Leibler (KL) Diver-
gence in Dirichlet Mixture Models (DMM). Despite the analytical tractability
of KL Divergence for Dirichlet distributions, extending it to DMMs has been
challenging, leading past research to rely on computationally intensive Monte
Carlo methods. In response, we propose a novel variational approach, providing
a closed-form solution that significantly enhances computational efficiency. The
method is validated using both simulated and real-world datasets, demonstrat-
ing superior efficiency and accuracy over traditional Monte Carlo-based meth-
ods. Notably, our approach exhibits robustness by providing accurate solutions
which can be achieved only by a very large number of samples using Monte Carlo
based methods. This transformative solution opens avenues for rapid exploration
of diverse DMM models, advancing statistical analyses of RNA-seq data in gene
co-expression analysis.
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Chapter 4

Revisiting Dirichlet Mixture Model:
Unraveling Deeper Insights and Prac-
tical Applications

Summary

This article enhances the Dirichlet Mixture Model (DMM) by proposing a new parametriza-
tion based on mean and precision, improving the interpretability and flexibility of pa-
rameter estimation. The study explores four estimation scenarios, deriving maximum
likelihood estimates (MLE) using the Expectation-Maximization (EM) algorithm. For
high-dimensional data, it introduces an innovative technique using Stirling’s and moment
approximations for faster, closed-form solutions. The article also demonstrates the iden-
tifiability of the DMM and uses a Kullback-Leibler (KL) divergence approximation to
evaluate model fit, showcasing its practical utility through simulated and real datasets.
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Abstract
This study revisits the Dirichlet Mixture Model (DMM), offering comprehensive
insights into specific facets of parameter estimation. Estimating parameters of the
DMM is challenging, with previous approaches focusing on standard parametriza-
tion, which lacks interpretability. We propose an alternative parametrization of the
Dirichlet distribution using mean and precision, which provides critical insights into
the distribution’s location and peakedness. This parametrization is versatile, cover-
ing a wide range of scenarios with varying locations and precision levels, making
it applicable to diverse datasets. Depending on whether one or both parameters are
unknown, the estimation procedure varies, and estimates also differ when precision
is identical across mixture components. In this article, we introduce this alternative
parametrization and meticulously explore four distinct scenarios, deriving maximum
likelihood estimates (MLE) for each using the Expectation-Maximization (EM) algo-
rithm.For high-dimensional data,where standardmethods often falter due to additional
challenges, we present an innovative estimation approach utilizing Stirling’s approxi-
mation and moment approximation, which provides closed-form solutions and faster
execution times. Our study demonstrates the identifiability of the DMM and employs
a closed-form approximation for Kullback–Leibler (KL) divergence to evaluate good-
ness of fit. Practical applications are illustrated through the analysis of both simulated
and real datasets, showcasing the practical utility of the DMM.
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1 Introduction

Unsupervised learning, a pivotal domain inmachine learning, has proven indispensable
across diverse applications such as gene coexpression analysis (Van Dam et al. 2018;
Ficklin et al. 2017), chemical analysis (Ghezelbash et al. 2020; Zhu et al. 2021), image
segmentation (Rosyadi and Suciati 2020; Deeparani and Sudhakar 2021), and business
studies (van Leeuwen and Koole 2022). Clustering techniques, a fundamental aspect
of unsupervised learning, play an important role in organizing and structuring data
without explicit labels. Among these techniques, two overarching categories stand
out: those relying on similarity or distance measures, such as k-means clustering
(MacQueen et al. 1967), hierarchical clustering (Nielsen 2016) etc., and model-based
approaches (Wang et al. 2020; Liu et al. 2023; Zhan and Young 2023) typified by
the Gaussian Mixture Model (GMM) (Peel and MacLahlan 2000). Methods based on
similarity measures aim to group data points based on their proximity in the feature
space,making themparticularly useful for applicationswhere the notion of similarity is
well-defined.On theother hand,model-based approaches, as exemplifiedby theGMM,
seek to represent the underlying structure of the data through probabilistic models,
offering a different perspective on clustering by capturing the inherent distributional
characteristics of the data.

Within the realm of model-based clustering, the Dirichlet Mixture Model (DMM)
has emerged as a powerful tool with applications ranging from image processing
(Bouguila et al. 2004) and text analysis (Blei 2004) to speech processing (Ma et al.
2013) and data mining (Fan et al. 2012). It finds application in audio data analy-
sis (Miotto and Lanckriet 2011) and context modeling (Rasiwasia and Vasconcelos
2012) as well. It is worth mentioning that the DMM is particularly well-suited for
compositional data analysis (Greenacre 2021; Fačevicová et al. 2023). Compositional
data, which consist of quantitative descriptions of the parts of a whole, inherently
contain relative information and adhere to the Aitchison geometry (Aitchison 1982)
on the simplex. Measurements such as probabilities, proportions, percentages, and
parts per million (ppm) can all be considered as compositional data. Compositional
data analysis presents several challenges. One primary issue is the ’spurious correla-
tion’ between ratios of variables, initially identified by Pearson (Pearson 1896) and
later expanded upon by Chayes (Chayes 1960). They demonstrated that some corre-
lations between components of the composition must be negative due to the unit sum
constraint. Over the years, various transformations, such as log transformation and
log-ratio transformation, have been proposed to address the unit sum constraint. How-
ever, the debate continues regarding the optimal transformation. Typically, clustering
compositional data is performed using distance or similarity-based algorithms (e.g.,
KMeans, hierarchical clustering) following some transformation (Comas-Cufí et al.
2020). One significant advantage of the DMM is that it inherently works with the unit
sum constraint without requiring additional transformations. Furthermore, the DMM
has demonstrated superior performance in certain scenarios when compared tomodels
like the KMeans, hierarchical clustering and Gaussian Mixture Model (GMM) (Pal
and Heumann 2022).
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Estimating the parameters of the Dirichlet Mixture Model (DMM) poses a
formidable challengedue to its analytical intractability, stemming from integral expres-
sions involving the gamma function and its derivatives. Previous attempts to tackle this
challenge have taken different paths. Ma et al. (2014) implemented a Bayesian esti-
mation strategy to determine the posterior distribution of the parameters of a DMM.
By employing a gamma distribution as the prior for each Dirichlet parameter, they
were able to approximate both the prior and posterior distributions as products of
several mutually independent gamma distributions. Typically, in variational infer-
ence techniques, the factorized approximation (FA) method (Blei et al. 2017) is used
for Bayesian estimation. However, for the DMM, the FA method does not yield an
analytically tractable solution. Consequently, the extended factorized approximation
(EFA) method (Jordan et al. 1999; Jaakkola 2001) is utilized to achieve an analytically
tractable solution. Despite its utility, this approach, which we denote as VDMM, has
a significant limitation: it assumes that the parameters in a Dirichlet distribution are
mutually independent. This assumption overlooks the inherent correlations among the
parameters. Furthermore, the approximations employed may result in discrepancies
between the true posterior distribution and its approximation.

Rasiwasia and Vasconcelos (2012) utilized the Expectation-Maximization (EM)
algorithm to estimate the parameters of the Dirichlet MixtureModel (DMM). The EM
algorithm introduces a latent variable, representing the cluster labels, and during the E
step, the cluster membership probabilities are computed. In the M step, the complete
data log-likelihood function is decomposed into two parts: one containing the mixture
proportion parameters and the other containing the Dirichlet parameters. These two
parts are maximized separately. Given the lack of an analytically tractable solution
for estimating the Dirichlet parameters, the authors employed the Newton-Raphson
technique to numerically find the solution. We denote this method as NDMM.

Miotto and Lanckriet (2011) employed a generalized Expectation-Maximization
(GEM) algorithm to estimate the parameters of the DMM. Instead of maximizing
the log-likelihood at the M step, it can be shown that convergence is ensured by
merely updating the parameter values in a way that increases the log-likelihood at
each step. This approach, known as the generalized EM algorithm, is particularly
advantageous when maximizing the log-likelihood at the M step is challenging. The
E steps remain unchanged from the standard EM algorithm. The authors used an
approximation similar to the Newton–Raphson method, but without the need to invert
the Hessian matrix, thereby providing an efficient means to update the parameters at
each M step. We denote this method as GDMM.

In our previous work, we contributed to the understanding of the DMM by present-
ing a variant using a Hard EM approach (Pal and Heumann 2022). In this approach,
we introduced an additional classification step following the E step, where each data
point is assigned to respective clusters based on their cluster membership probabili-
ties. Subsequently, during the M step, the maximum likelihood (ML) estimates of the
Dirichlet component parameters are obtained for each cluster separately, using only
the data points available in that cluster, through standard ML estimation techniques.
This Hard EM method is significantly faster than the usual EM algorithm and offers
an innovative solution by utilizing readily available ML estimates of the distribution
parameters. We denote this method as Hard DMM.
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Building upon this foundation, the present study delves deeper into the complexities
of the DMM. Since the standard parametrization of the Dirichlet distribution lacks
interpretability, we introduce an alternative parametrization using mean and precision
parameters. The mean parameter controls the location of the distribution, whereas
the precision parameter determines the pickedness. When the precision is large, the
dirichlet random variable is likely to be near the means and for a small precision, the
dirichlet variable is distributed more diffusely. This parametrization offers a clearer
interpretation of the model parameters, enabling amore comprehensive understanding
of the distribution based on the parameter values. A nuanced interpretation of these
parameters provides insights into situations where fixing one and optimizing the other
may be advantageous. Notably, mean and precision exhibit a degree of decoupling in
the maximum-likelihood objective, allowing for simplifications and speedups through
alternate optimization. This alternative parametrization not only augments themodel’s
interpretability, but also offers increased flexibility in fitting the DMM to the data,
providing a broader spectrum of options for model fitting and optimizations. This
parametrization is versatile, encompassing a broad spectrum of scenarios with varying
locations and precision levels, making it applicable to diverse datasets. The estimates
differ depending on whether one or both parameters are unknown, and the estimates
also vary when precision is uniform across mixture components.

To facilitate parameter estimation, we employ the Expectation Maximization (EM)
algorithm, deriving maximum likelihood estimates (MLE) under four distinct sce-
narios: mean unknown, precision unknown, both mean and precision unknown, and
identical precision across clusters. On the other hand, high-dimensional data presents
additional challenges where standard methods often fail, as the curse of dimension-
ality significantly increases the time required to fit mixture models. Recognizing
these demands, we propose an innovative estimation approach utilizing Stirling’s
approximation and moment approximation, offering closed-form solutions and faster
execution times. Our research brings novel perspectives to previously unexplored
topics, particularly in addressing the identifiability of the DMM. In a noteworthy con-
tribution, our study conclusively establishes the identifiability of the DMM, shedding
light on a dimension that has received limited attention in prior research.

Additionally, our investigation extends to the use of Kullback–Leibler (KL) diver-
gence for DMM, a crucial measure in information theory. Traditionally, obtaining KL
divergence for DMM involved the resource-intensive Monte Carlo method, known for
its time-consuming nature. In contrast, we take advantage of an innovative variational
approach, providing a closed-form approximation of KL divergence. This method not
only enhances computational efficiency but also presents a more accessible and prac-
tical alternative to the laboriousMonte Carlo based techniques. By doing so, our study
not only expands the discourse on DMM but also enables fast comparison between
different DMM variants.

Practical applications are demonstrated through the analysis of both simulated and
real datasets, showcasing the versatility and effectiveness of the proposed DMM in
capturing intricate structures in complex data. The remaining sections of the paper are
as follows. In Sect. 2 we discuss MLE of DMM with the new parameterization under
4 scenarios. Section3 provides estimates for high dimensional data. Sections4 and 5
deal with identifiability and KL divergence respectively. Section6 displays the results
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of simulated and real data experiments, Sect. 7 lays down the limitations and finally
Sect. 8 concludes our contribution.

2 Methods

Let XXX1, XXX2, . . . , XXXN denote a random sample of size N , where XXXi is a p dimensional
random vector with probability density function f (xxxi ) on Rp. An observed random
sample is denoted by xxx = (xxxT1 , . . . , xxxTN )T , where xxxi is the observed value of the
random vector XXXi . Throughout this paper, vectors are represented in bold font.

The density of a mixture model with k mixture components for one observation xxxi
is given by the mixture density

p(xxxi ) =
k∑

j=1

π j f (xxxi | ααα j ) , (1)

where πππ = (π1, . . . , πk) contains the corresponding mixture proportions with∑k
j=1 π j = 1, 0 < π j < 1. The density component of mixture j is given by

f (xxxi | ααα j ) and ααα j , j = 1, 2, ..., k is the vector of component specific parameters
for each density. Then ααα = (ααα1, . . . ,αααk) denotes the vector of all parameters of the
model.

The log-likelihood of the model for a sample of size N is then given by

log p(xxx1, . . . , xxxN | ααα,πππ) =
N∑

i=1

log

⎡

⎣
k∑

j=1

π j f (xxxi | ααα j )

⎤

⎦ . (2)

The parameters of mixture model can be estimated using EM algorithm (Dempster
et al. 1977). For the E step, we introduce latent categorical variables Zi , assuming
values 1, . . . , k with probabilities π1, . . . , πk such that Pr(XXXi | Zi = j) = f (xxxi ),
j = 1, . . . , k. The posterior probability that the data point i belongs to cluster j is
computed using Bayes rule as

γi j (xxxi ) = Pr(Zi = j | XXXi = xxxi ,ααα,πππ) = π j f (xxxi | ααα j )∑k
r=1 πr f (xxxi | αααr )

. (3)

The expected complete data log likelihood for the current iteration number t can
be decomposed as follows (Murphy 2022),

Q(ααα,αααt−1) = E

[
N∑

i=1

log(p(xxxi , zi | ααα)) | xxx,αααt−1

]

=
N∑

i=1

k∑

j=1

γi j logπ j +
N∑

i=1

k∑

j=1

γi j log f (xxxi | ααα j ) . (4)
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The two parts of Eq. 4 can be optimized separately at the M step to estimate the
parameters of the model. We denote

Q(πππ) =
N∑

i=1

k∑

j=1

γi j logπ j and Q(ααα) =
N∑

i=1

k∑

j=1

γi j log f (xxxi | ααα j ) . (5)

The Dirichlet density component j is given by

f (xxxi | ααα j ) = �(
∑p

m=1 α jm)
∏p

m=1 �(α jm)

p∏

m=1

x
α jm−1
im , (6)

where
∑p

m=1 xim = 1, xim’s > 0 , α jm’s > 0 and �(·) denotes a gamma function.
Thus, for mixture component j, j = 1, . . . , k, the parameter ααα j = (α j1, . . . , α j p)

is a p-dimensional vector. In our study, we employ an alternative parametrization of
Dirichlet parameters using mean and precision. For component j , we denote the mean
parameter as MMM j and the precision parameter as S j . Here, MMMJ = (Mj1, . . . , Mjp) is
a p dimensional vector.

Let us consider the following reparameterization of Dirichlet parameters.

S j =
p∑

m=1

α jm and Mjm = E[X jm] = α jm

S j
.

Hence, we denote α jm = S j M jm .

• Case 1. Mjm known, S j unknown:
Let the known value of Mjm be M∗

jm . We rewrite Q(ααα) from Eq.5 as

Q(S j ) =
N∑

i=1

k∑

j=1

γi j log f (xxxi | S j )

=
N∑

i=1

k∑

j=1

γi j log

[
�(S j )∏p

m=1 �(S j M∗
jm)

p∏

m=1

x
S j M∗

jm−1

im

]
. (7)

The first and second derivatives with respect to S j can be obtained subsequently.

Q′(S j ) = N j�(S j ) − N j

p∑

m=1

M∗
jm�(S j M

∗
jm) +

N∑

i=1

p∑

m=1

M∗
jmγi j log xim

Q′′(S j ) = N j�
′(S j ) − N j

p∑

m=1

M∗
jm

2
� ′(S j M

∗
jm)

(8)

Here N j = ∑N
i=1 γi j , �(·) is the di-gamma function and � ′(·) is the tri-gamma

function. When Q′′(S j ) < 0, the estimates of S j can be obtained using Newton’s
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method (Isaacson and Keller 2012).

Snewj = Soldj − Q′(S j )

Q′′(S j )
(9)

The Newton’s method maximizes a local quadratic approximation to the objective
function.When Newton’s method fails, we can use a non-quadratic approximation
(Minka 2000a). If Q′(S j ) + S j Q′′(S j ) < 0 the updates are given as

1

Snewj
= 1

Soldj

+ 1

Soldj
2

Q′(S j )

Q′′(S j )
. (10)

• Case 2. Mjm unknown, S j known:
Let the known value of S j be S∗

j . We can estimate Mjm in the following way.

Q(Mjm) ∝
N∑

i=1

k∑

j=1

γi j log

[ p∏

m=1

exp(S∗
j M jm log xim)

�(S∗
j M jm)

]
. (11)

The first derivative of Q(Mjm) is given below.

Q′(Mjm) =
(

1

N j

N∑

i=1

γi j log(xim)

)
− �(S∗

j M jm)

−
p∑

m=1

Mjm

(
1

N j

N∑

i=1

γi j log xim − �
(
S∗
j M jm

))
+ Constant .

(12)

There is no analytically tractable solution to obtain the estimate of Mjm . The
estimate can be obtained using a fixed-point iteration. The iterative equation that
needs to be solved can be written as,

�(S∗
j M

new
jm ) = 1

N j

N∑

i=1

γi j log(xim)

−
p∑

m=1

Mold
jm

(
1

N j

N∑

i=1

γi j log xim − �
(
S∗
j M

old
jm

))
.

(13)

Let us denote the obtained solution as,�(S∗
j M̂ jm), which can be further written as

�(α̂ jm). Subsequently, after inverting the di-gamma function the updates of Mjm

can be obtained as

Mnew
jm = α̂ jm∑p

m=1 α̂ jm
. (14)
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• Case 3. Mjm , S j both unknown:
If Mjm and S j are both unknown, we first estimate S j considering Mjm as fixed
and then estimate Mjm using the estimated value of S j . We continue the process
until convergence. For this method, we would need an initial guess of Mjm . Let
that initial guess be Minit

jm . Then we can write,

Q(S j ) =
N∑

i=1

k∑

j=1

γi j log f (xxxi | S j )

=
N∑

i=1

k∑

j=1

γi j log

[
�(S j )∏p

m=1 �(S j Minit
jm )

p∏

m=1

x
S j Minit

jm −1

im

]
. (15)

Now, S j is estimated using Eqs. 9 and 10. Let the estimated value of S j be Ŝ j .
Thus,

Q(Mjm) ∝
N∑

i=1

k∑

j=1

γi j log

[ p∏

m=1

exp(Ŝ j M jm log xim)

�(Ŝ j M jm)

]
. (16)

Mjm is then estimated using Eq. 14.
• Case 4. S j ’s are identical:
When S j ’s are identical for all j, j = 1, . . . , k, we can denote S j = S. In this
scenario, we estimate S only once and estimate Mjm’s for all j using that value.

Q(S) =
N∑

i=1

k∑

j=1

γi j log f (xxxi | S)

=
N∑

i=1

k∑

j=1

γi j log

[
�(S)

∏p
m=1 �(SMinit

jm )

p∏

m=1

x
SMinit

jm −1

im

]
. (17)

S is estimated using Eqs. 9 and 10. Using the estimated value of S, Mjm’s are
estimated as in case 3.

For all the above scenarios, π j is estimated as follows,

Q(πππ) =
N∑

i=1

k∑

j=1

γi j logπ j . (18)

Maximizing Q(πππ), we get,

π̂ j = N j

N
, (19)

where N j = ∑N
i=1 γi j .
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3 Estimates for high-dimensional data

When we have high-dimensional data, estimating Dirichlet parameters becomes dif-
ficult. As p becomes very large, the time required to estimate the parameters also
increases.Moreover, as there are no closed form solutions for the updates of the param-
eters at the M-step, it often leads to computational errors. In our study, we introduce
two approximations, which provide closed form solution at theM-step such that it does
not depend on p.When employing numericalmethods such as theNewton–Raphson or
non-quadratic approximations at the M step of the EM algorithm in high-dimensional
settings, these methods may fail. For instance, the Hessian matrix might become
non-invertible, or the specific conditions required for non-quadratic approximations
might not be satisfied. Our proposed approximations bypass the iterative algorithm at
eachM step, significantly reducing execution time and avoiding computational errors.
While our proposed parametrization offers distinct advantages, optimizing mean and
precision separately incurs a notable increase in execution time. This becomes espe-
cially critical in high-dimensional settings,where efficient computational strategies are
paramount for practical applications. As such, we opt for the standard parametrization,
leveraging Stirling’s approximation and moment approximation to provide estimates
tailored for high-dimensional scenarios.

3.1 Stirling’s approximation

When, p increases, we can say that
∑p

m=1 α jm also increases as α jm > 0 for all j, j =
1, . . . , k and m,m = 1, . . . , p. Thus, we can assume that as p → ∞,

∑p
m=1 α jm →

∞, where α jm’s are not necessarily large in value. Let us first look at a result regarding
Stirling’s approximation of gamma function.

Result 1 When x → ∞, �(x + α) = �(x)xα , α ∈ C.

Proof Using, Stirling approximation Artin (2015):

�(x + α) ∼
x→+∞

√
2π(x + α)

( x+α
e

)x+α

∼
x→+∞

√
2πx

( x+α
e

)x
xαe−α

Moreover,

(x + α)x e−α = xx exp
(
x log

(
1 + α

x

)
− α

)

= xxeo(1)

∼
x→+∞ xx

Thus,

�(x + α) ∼
x→+∞

√
2πx

( x
e

)x
xα
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∼
x→+∞ �(x)xα


�
Using the above result, we provide estimates of ααα, suitable for high-dimensional data.
From Eq.4, we can write,

Q(ααα) =
N∑

i=1

k∑

j=1

γi j log f (xxxi | ααα j ) . (20)

Maximizing Q(ααα) we get,

�(α jm) = �

( p∑

m=1

α jm

)
+ 1

N j

N∑

i=1

γi j log(xim) , (21)

Let
p∑

r=1

(1 − δr ,m)α jr = β jm , where δr ,m is the Kronecker delta, defined as:

δr ,m =
{
1 if r = m

0 if r �= m

Then,

�

( p∑

m=1

α jm

)
= ∂

∂α jm
log�

( p∑

m=1

α jm

)

= ∂

∂α jm
log�

(
β jm + α jm)

)

∼
β jm→+∞

∂

∂α jm
log

(
�(β jm)β

α jm
jm

)

= ∂

∂α jm

[
log�(β jm) + α jm logβ jm

]

= logβ jm

= log
p∑

r=1

(1 − δr ,m)α jr (22)

Now, Eq.21 becomes,

�(α jm) = log
p∑

r=1

(1 − δr ,m)α jr + 1

N j

N∑

i=1

γi j log(xim) (23)
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α jm = �−1

(
log

p∑

r=1

(1 − δr ,m)α jr + 1

N j

N∑

i=1

γi j log(xim)

)
(24)

3.2 Moment approximation

We can now use moment approximation, to estimate
p∑

r=1

(1− δr ,m)α jr . We know that

for cluster j ,

E[Xm] = α jm∑p
m=1 α jm

E[X2
m] = E[Xm] 1 + α jm

1 + ∑p
m=1 α jm

It can be shown that (Minka 2000b) for cluster j ,

p∑

m=1

α jm = E[X1] − E[X2
1]

E[X2
1] − E2[X1]

(25)

Let us denote, S j = ∑p
m=1 α jm . Then, S j can be written as,

S j = μ j1 − [σ 2
j1 + μ2

j1]
σ 2
j1

. (26)

where, μ j1 = E[X1] and σ 2
j1 = E[X2

1] − E2[X1] for cluster j . Now, μ j1 and σ 2
j1

can be estimated by,

ˆμ j1 = 1

#xi1 ∈ j

∑

xi1∈ j

xi1

ˆσ 2
j1 = 1

#xi1 ∈ j

∑

xi1∈ j

(xi1 − ˆμ j1)
2

Thus, the estimate of S j is given by,

Ŝ j = ˆμ j1 − [ ˆσ 2
j1 + ˆμ2

j1]
ˆσ 2
j1

(27)

Now, for iteration t , Eq. 24 can be rewritten as,

αt
jm = �−1

(
log(Ŝ j − αt−1

jm ) + 1

N j

N∑

i=1

γi j log(xim)

)
(28)
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For visualization purposes, we employ T-SNE (Hinton and Roweis 2002; Hin-
ton and van der Maaten 2008) plots to project the high-dimensional data into two
dimensions. From a clustering standpoint, especially for high-dimensional data, using
domain knowledge or data-driven dimensionality reduction techniques prior to clus-
tering is a pragmatic approach. As the dimensionality increases, models such as
the Gaussian Mixture Model (GMM) face an exponential increase in the number
of parameters to estimate. In contrast, one advantage of the DMM is that the number
of parameters to estimate increases linearly with the number of dimensions.Moreover,
we develop estimates specifically tailored for high-dimensional scenarios to avoid ana-
lytical intractability and reduce execution time. In our analysis of both simulated and
real high-dimensional datasets, we utilize DMMwithout any dimensionality reduction
techniques.

4 Identifiability

The identifiability of a statistical model is crucial because it ensures that the model
parameters can be uniquely determined from the observed data, preventing ambigu-
ities in parameter estimation. A well-identified model is essential for reliable and
interpretable statistical inferences, providing a solid foundation for drawing meaning-
ful conclusions from empirical observations. Although DMM has been used by many
researchers, identifiability of DMM has not been discussed before. In this section, we
show that DMMs are identifiable.

Definition 1 A random variable X follows an exponential family (Andersen 1970) of
distribution if its probability density function can be written in the following form,

p(x |ηηη) = h(x)exp
{
ηηηT T (x) − A(ηηη)

}
(29)

where,

• ηηη is a vector of parameters
• T (x) is the sufficient statistics
• A(ηηη) is the cumulant function

Remark 1 Dirichlet distribution follows an exponential family of distributions.

Proof The Dirichlet density can be written as,

f (xxx |ααα) =
�

(∑
p αp

)

∏
p �(αp)

∏

p

x
αp−1
p

= exp

{ ∑

p

(αp − 1) log xp −
[ ∑

p

log�(αp) − log�

(∑

p

αp

)]}
(30)

Thus, Dirichlet distribution is an exponential family of distributions with
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• ηηη = ααα − 1
• A(ηηη) = ∑

p log�(αp) − log�(
∑

p αp)

• T (xxx) = log xxx


�
Definition 2 Let, F = {F(xxx,ααα);ααα ∈ Rm

1 , xxx ∈ Rp} be a family of p dimensional
cdf’s indexed by a point ααα in a Borel subset Rm

1 of the Euclidean m space Rm such
that F(xxx,ααα) is measurable in Rp × Rm

1 . Then H, the set of all finite mixtures of a
class of distributions F is defined as the convex hull of F :

H =
{
H(xxx) : H(xxx) =

k∑

j=1

π j F(xxx,ααα j ), π j > 0,

k∑

j=1

π j = 1, F(xxx,ααα j ) ∈ F , k = 1, 2, . . .

}
. (31)

F generates identifiable finite mixtures if and only if H has the uniqueness of
representation property.

k∑

j=1

π j F(xxx,ααα j ) =
q∑

j=1

π ′
j F

′(xxx,ααα j ) (32)

implies, k = q and for each j, 1 < j < k there is some l, 1 < l < k such that π j = π
′
l

and F(xxx,ααα j ) = F ′(xxx,αααl).

Theorem 1 The classH, of all finite mixtures of the familyF is identifiable if and only
if F is a linearly independent set over the field of real numbers.

Proof The proof is given by Yakowitz and Spragins (1968). 
�
Proposition 1 If F is the family of Dirichlet distributions, then the class of all finite
mixtures of F is identifiable.

Proof From Eq. 30 we can write,

f (xxx,aaa) = C(ααα)eaaa
T log xxx

where,C(ααα) = e−
[∑

p log �(αp)−log �(
∑

p αp)
]
and aaa = α − 1α − 1α − 1. Let us assume a linear

relation in F ,

k∑

j=1

π j f (xxx,aaa j ) = 0 ,aaa j ∈ Rp . (33)
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Now, aaaT log xxx can be regarded as a linear functional on log xxx . Moreover, we can say
that,

[aaa1 − aaal ]T log xxx =
p∑

m=1

(a1m − alm) log xm (34)

is a non-zero linear functional if l �= 1. As, the kernel of a non-zero linear functional
is a hyper-plane, there is some point uuu ∈ Rp, ul > 0, l = 1, . . . , p such that 0 <

aaaTj uuu ≡ ξ j and ξ j �= ξ1 > 0, j = 2, . . . , k. Thus for all vectors buuu, b > 0 Eq. 33 can
be written as,

k∑

j=1

π jC(aaa j )e
bξ j = 0 , (35)

where, ξ j �= ξ1 if j �= 1. Now,as ξ j �= ξ1 > 0, j > 1, the relationship in Eq. 35
does not hold if π1 �= 0. Continuing like this, we can show that Eq. 33 has only trivial
solution π1 = · · · = πk = 0. Thus, F is a linearly independent set over the field of
real numbers. Hence, F is identifiable. 
�

5 Kullback–Leibler divergence

The KL divergence, also known as relative entropy, serves as a widely adopted statis-
tical metric to assess the similarity between two probability density functions. Let us
assume that we have two pdfs f (x) and g(x), then its formulation is expressed as:

D( f ‖g) def=
∫

f (x) log
f (x)

g(x)
dx. (36)

This divergence, commonly employed in statistics, adheres to three key properties
known as divergence properties:

• Self similarity: D( f ‖ f ) = 0
• Self identification: D( f ‖g) = 0 only if f = g
• Positivity: D( f ‖g) ≥ 0 for all f , g.

For Dirichlet distributions, KL divergence can be derived in closed form (Rezek
and Roberts 2005). However, for DMM there is no closed form solution available. In
our previous research (Pal and Heumann 2024), we introduced an innovative closed-
form solution for computing KL divergence through a variational approach. Through
an extensive array of simulations and real-world data analyses, our findings consis-
tently affirm the reliability and robustness of the variational approach in accurately
estimatingKL divergence. Notably, ourmethod boasts significantly reduced execution
times compared to conventionalMonte Carlo techniques, offering a compelling advan-
tage in computational efficiency. Intriguingly, our investigations reveal an interesting
trend: as sample sizes increase, the Monte Carlo method gradually converges to KL
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divergence values akin to those obtained through the variational approach. However,
this convergence comes at the expense of exponentially escalating execution times.
Consequently, our findings unequivocally advocate for the adoption of the variational
approximation over Monte Carlo-based methods, providing researchers with a swift
and reliable means for model comparison and goodness-of-fit evaluation.

Theorem 2 Let XXX be an p × 1 random vector. Assume two Dirichlet distributions u
and v specifying the probability distribution of XXX as,

u : XXX ∼ Dir(α11, . . . , α1p)

v : XXX ∼ Dir(α21, . . . , α2p).

Then, the KL divergence of u from v is given by,

D(u || v) = log
�

(∑p
i=1 α1i

)

�
(∑p

i=1 α2i
) +

p∑

i=1

log
�(α2i )

�(α1i )

+
p∑

i=1

(α1i − α2i )

[
ψ(α1i ) − ψ

( p∑

i=1

α1i

)]
. (37)

Proposition 2 Let fa and gb be two DMMs such that,

fa = f (x) =
∑

a

πaDir(xxx;αααa)

gb = g(x) =
∑

b
ωbDir(xxx;αααb)

Then using a variational approach, an approximated KL divergence can be expressed
as,

Dvariational( f ‖g) =
∑

a

πa log

∑
a′ πa′e−D( fa‖ fa′ )

∑
b ωbe−D( fa‖gb) . (38)

For the proof of the aforementioned theorem and proposition, please refer to Pal and
Heumann (2024). Dvariational( f ‖g) satisfies the self similarity and self identification
property. However, it may not always satisfy the positivity property. In that case we
may use the absolute value of the divergence.

6 Results

In this section, we present a comprehensive exploration encompassing both simulation
studies and real data analyses, providing a robust evaluation of our proposedmethodol-
ogy. For the simulation study,wemeticulously examine four distinct scenarios utilizing
the mean-precision parametrization, comparing true and estimated parameter values.
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Additionally, we assess the goodness-of-fit through the computation of KL divergence
(KL Div.) using Eq. 38.

To validate the efficacy of our proposed model, we conduct thorough comparisons
with alternativeDMMvariants, includingHardDMM,VDMM,NDMM, andGDMM.
We denote our proposed model as Soft DMM. The evaluation involves a diverse set of
metrics, such as Accuracy (ACC) (Sokolova and Lapalme 2009), Adjusted Rand Index
(ARI) (Hubert and Arabie 1985), Normalized Mutual Information (NMI) (Ana and
Jain 2003; Kreer 1957), and Homogeneity Score (HMS) (Rosenberg and Hirschberg
2007), offering a comprehensive understanding of the model’s performance across
various criteria.

Furthermore, our exploration extends to high-dimensional data, wherewe conduct a
dedicated simulation study. In the realm of real data analyses, we utilize a geochemical
dataset and a wine chemical composition dataset, providing practical insights into the
model’s application in distinct domains. For high-dimensional real datasets, we delve
into twoRNA-sequence (RNA-seq) datasets, characterized by different types of cancer
cells, further showcasing the versatility and relevance of our proposed methodology
across diverse data landscapes. The entirety of the data analysis is conducted using
the Python programming language (Van Rossum and Drake 2009).

6.1 Simulation study

Now we provide comprehensive exploration involving three experiments for each
of the four scenarios, including a dedicated examination in a high-dimensional set-
ting which consists of six experiments. A detailed exposition of the data generation
techniques employed in these experiments can be found in the appendix section A,
providing transparency to our methodology. In our comparisons with other DMM
variants, we use Soft DMM considering both mean and precision to be unknown.
While there are no existing high-dimensional variants of DMM (Bouguila and Ziou
(2006) has provided high dimensional estimates for mixture models that use general-
ized Dirichlet density) for direct comparisons, we rigorously investigated our model’s
performance using diverse metrics, enhancing our understanding of its efficacy in var-
ious scenarios. The results of the experiments, as presented in the following tables,
are conducted on different data sets, precluding direct comparisons across different
scenarios. However, in Table 5, we provide a comparison of the performance of the
Soft DMM under various scenarios using the same data sets. This allows for a direct
comparison of performance across different scenarios, providing clearer insights into
the efficacy of the Soft DMM under each condition.

The results presented in Tables 1 to 6 provide a detailed examination of various
experiments within the simulation study. In Table 1, where precision is known and the
mean is unknown, the comparison of estimated and true parameter values reveals a
close alignment, accompanied by minimal KL divergence, indicating a robust fit. The
notably high Adjusted Rand Index (ARI) further attests to the effectiveness of cluster-
ing. Similarly, Tables 2, 3, and 4 showcase comparable findings across experiments
with different configurations of mean and precision parameters such as known mean,
both mean and precision unknown and identical precision; consistently demonstrating
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Table 6 Comparison of different models on simulated data sets

Data set Model KL Div ACC ARI NMI HMS Time

Experiment 1 Soft DMM 0.0013 0.9988 0.9963 0.9917 0.9918 14.9006

Hard DMM 0.0014 0.9988 0.9963 0.9917 0.9918 1.5703

VDMM 9.0399 0.4762 0.2131 0.3355 0.2324 24.2679

NDMM 9.1063 0.4762 0.0 0.0 0.0 0.0615

GDMM 0.0508 0.9969 0.9905 0.9833 1.0 7.9452

Experiment 2 Soft DMM 0.0026 0.9905 0.9796 0.9526 0.9516 41.0311

Hard DMM 0.0026 0.9907 0.98 0.9535 0.9524 4.6035

VDMM 1.5742 0.8167 0.8224 0.7992 0.7693 40.9632

NDMM 5.2682 0.4545 0.0 0.0 0.0 0.0044

GDMM 19.6616 0.4545 0.0 0.0 0.0 7.5183

Experiment 3 Soft DMM 0.0013 0.8991 0.8569 0.824 0.8171 139.5918

Hard DMM 0.0808 0.7991 0.8314 0.8406 0.7917 24.9419

VDMM 0.0041 0.7558 0.8542 0.8264 0.8151 89.9295

NDMM 4.604 0.3125 0.0 0.0 0.0 0.0086

GDMM 26.8711 0.3126 0.0 0.0002 0.0 8.3075

close alignment, low KL divergence, and strong clustering performance shown by
high ARI.

Table 5 presents the comparison of Soft DMM performance under different scenar-
ios. As expected, a better fit is observed when either mean or precision is unknown
rather than when both mean and precision are unknown, as indicated by the KL diver-
gence. Clustering performance is generally better when either mean or precision is
unknown (except in Experiment 1). When both mean and precision are unknown, Soft
DMM needs to estimate a greater number of parameters, resulting in the longest exe-
cution time. However, when precision is assumed to be identical across clusters, the
execution time is shorter compared to the scenario where both mean and precision are
unknown,while still providingmoderately good results. In this case, theKLdivergence
is relatively higher, indicating a less accurate fit to the data. Thus, we can conclude
that when some information about mean or precision is available, it is preferable to
use estimates tailored to that specific scenario. When no information about mean and
precision is available, the estimates for the scenario where bothmean and precision are
unknown should be used. However, if precise estimation is not critical and execution
time is a concern, the estimates assuming identical precision can be employed.

Table 6 extends the analysis to a comparison of different DMMvariants across three
simulation experiments.Notably, SoftDMMconsistently exhibits the lowestKLdiver-
gence across all experiments, suggesting superior model fit. In the first experiment,
both Soft and Hard DMMyield the highest values for Accuracy (ACC), ARI, and Nor-
malized Mutual Information (NMI), while GDMM achieves the highest homogeneity
score. Despite NDMM’s comparatively poor performance in the chosen metrics, it
stands out as the fastest in terms of execution time. For the second experiment, Hard
DMM stands out with the highest ACC, ARI, NMI, and homogeneity score. NDMM
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excels in terms of speed. In the third experiment, Soft DMM again shows the lowest
KL divergence, highest ACC, ARI, and homogeneity score, while Hard DMM leads
in NMI, and NDMMmaintains its status as the fastest variant. These detailed compar-
isons provide a nuanced understanding of the performance characteristics of different
DMM variants across varied simulation scenarios.

In our investigation, we conduct six high-dimensional simulation experiments,
where random numbers were drawn from distinct Dirichlet distributions with 10,000
dimensions. The parameter values are randomly sampled from a uniform distribution.
We compare the performance of the method described in Sect. 2 (without approxima-
tion) with the method described in Sect. 3 (with approximation). Table 7 summarizes
the outcomes of these experiments, revealing perfect scores (1.0) for Accuracy (ACC),
Adjusted Rand Index (ARI), Normalized Mutual Information (NMI), and Homo-
geneity Score across first four experiments. This exceptional performance can be
attributed to the nature of high-dimensional space, where clusters being far apart often
yield such results. For experiments 5, and 6, we deliberately drew random samples
from Dirichlet distributions with very small parameter values to induce more chal-
lenging cluster structures. Despite these increased challenges, the metrics indicate
commendable results.

As expected, we observe that the method without approximation provides a better
goodness of fit for all the experiments compared to themethodwith approximations, as
indicated by the Kullback-Leibler (KL) divergence. However, there is no significant
pattern in the different clustering metrics between the two methods. In four out of
six experiments, the clustering results are similar. In experiment 5, the results are
better with the approximation, while in experiment 6, the results are better without the
approximation.

Although theKLdivergencewith approximation appears relatively high, it is impor-
tant to note that in high-dimensional spaces, small deviations from the true distribution
can accumulate across numerous dimensions. The outstanding scores in ARI, ACC,
NMI, and Homogeneity Score validate the effectiveness of the clustering results. The
use of approximation for high-dimensional data may contribute to the higher KL
divergence. Examining the execution times of the method with approximation, we
observe duration of 144.8051s, 162.1839s, and 164.3652s, respectively. The next
three experiments, with smaller data points, resulted in even lesser time taken, record-
ing duration of 45.1354, 44.8841, and 67.7365s. Given the substantial dimensionality
of the datasets, these results are reasonable. Conversely, the method without approx-
imation requires significantly more execution time. It takes several hours to fit the
DMM to the high-dimensional datasets, posing a significant concern for practical
applications. The challenges associated with high dimensions make it impractical to
apply other Dirichlet Mixture Model (DMM) variants in such situations, even if we
overlook potential computational errors. The fitting of the model could take several
hours, highlighting the efficiency of our approach. The exceptional clustering results
achieved on simulated datasets pave the way for a broad spectrum of applications in
real-world scenarios.
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6.2 Real data analysis

Dirichlet Mixture Model demonstrates optimal performance when applied to compo-
sitional data, characterized by expressions as parts or proportions of a whole. RNA-seq
data generally comes with read counts (Anders et al. 2015; Liao et al. 2014) or pseudo
counts (Liao et al. 2014; Li and Dewey 2011), which represent the number of reads
that align to specific genes or genomic regions. When we use normalized expres-
sion profiles (Rau and Maugis-Rabusseau 2018; Godichon-Baggioni et al. 2019) for
each feature which is nothing but the proportion of normalized counts observed for a
given feature, it makes the data compositional. In our real data analysis section, we
focus on two distinct real datasets, comparing various DMM variants. Furthermore,
we delve into the complexities of two high-dimensional datasets, employing special-
ized estimates tailored for high-dimensional data. Brief descriptions of these datasets
are provided below.

• Geochemical Data: Bachmann et al. (2019) studied major elements and PGE
concentrations of LG andMG chromitites from the Bushveld Complex, renowned
as the largest layered mafic-ultramafic intrusion globally. This complex hosts
numerous chromitite layers that are laterally continuous and chemically simi-
lar. In geochemical data analysis, these layers are generally classified into lower
(LG), middle (MG), and upper (UG) groups based on their stratigraphic posi-
tion, which serve as the focal point. However, the studied data set only contains
two stratigraphic layers LG and MG. The dataset comprises 13 chemical compo-
nents, including ‘Cr2O3’, ‘FeO’, ‘SiO2’, ‘MgO’, ’Al2O3’, ‘CaO’, ‘P’, ‘Au ICP’,
‘Pt ICP’, ‘Pd ICP’, ‘Rh ICP’, ‘Ir ICP’, and ‘Ru ICP’. The objective is to cluster
these elements accurately within their respective stratigraphic layers. The dataset,
encompassing two stratigraphic layers, is available for download on Kaggle. In
this context, N=1123, p=13, and k=2.

• Wine Data:Aeberhard et al. (1994) studied one data set among others specifically
focusing on the results of a chemical analysis of wines. These wines originate from
the same region in Italy but are derived from three different cultivars. The dataset
includes the quantities of 13 constituents found in each type of wine, including
attributes like Alcohol, Malic acid, Ash, Alcalinity of ash, Magnesium, Total phe-
nols, Flavanoids, Nonflavanoid phenol, Proanthocyanins, Color intensity, Hue,
OD280/OD315 of diluted wines, and Proline. This well-known dataset, widely
used by researchers, is accessible from the UCI Machine Learning Repository
(Aeberhard and Forina 1991). The primary goal of our analysis is to identify the
different types of wines based on their components (Basu 2004), with a focus on
clustering. Notably, the attributes Color intensity and Hue, not constituting chem-
ical components, have been excluded from our compositional data analysis. The
dataset involves 178 instances, with 11 variables (p) and 3 clusters (k).

• Brain Cancer Data (Highdimensional):Griesinger et al. (2013) studied this data
set revealing an uncharted territory concerning the characteristics of immune cell
infiltration in pediatric brain tumors. A profound comprehension of these traits
serves as a fundamental step towards developing immunotherapy for pediatric
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brain tumors. The study employed gene expression profiles to pinpoint differ-
entially expressed immune marker genes across various brain tumor types. The
overall design involved generating gene expression profiles from 130 surgical
tumor and normal brain samples, utilizing Affymetrix HG-U133plus2 chips (Plat-
form GPL570). Filtering gene expression profiles of different brain tumors and
normal brain yielded key immune cell marker expressions. Comparative analyses
between diverse brain tumors and normal brain sampleswere conducted to identify
the differential immune characteristics of these tumors. The dataset encompasses
five types of tumors, implying k=5. After eliminating zero values and features
with low variance, 8776 genes were retained (p=8776). With 130 tumor samples
we have N=130. The dataset can be accessed at Gene Expression Omnibus with
accession number GSE50161.

• Breast cancer data (high-dimensional): Gruosso et al. (2016) studied expres-
sion data derived from various subtypes of Breast cancer. Within a cohort study
focusing on primary invasive breast cancer, encompassing TN, HER2, Luminal A,
and Luminal B subtypes, along with normal tissue samples and cell lines, tumor
specimens were acquired during surgery before any patient treatment. Total RNA
extraction was performed on all samples, and the entire transcriptome was quan-
tified using Affymetrix U133 Plus 2.0 Chips. The dataset encompasses six types
of cells, denoted by k=6. After the removal of zero values and features exhibiting
low variance, the dataset retains 11,816 genes, corresponding to p=11,816. There
are a total of 151 tumor samples, resulting in N=151. The dataset can be accessed
at Gene Expression Omnibus with accession number GSE45827.

Given the additional challenges of using labeled real datasets (typically used for clas-
sification) for clustering purposes, we incorporate an additional metric, the F-score
(Van Rijsbergen 1979), for our evaluation. The F-score, which is the harmonic mean
of precision and recall, is a robust metric for evaluating classification performance.
For multi-class classification problems, there are three popular methods for calculat-
ing the F-score: macro, micro, and weighted. In the macro approach, the F-score is
calculated for each class independently and then averaged. This method assumes that
all classes are equally important, which may not always be the case. In the micro
approach, the contributions of all classes are aggregated to compute the average F-
score, making it useful for datasets with class imbalance as smaller classes are given
equal weight as larger classes. The weighted F-score calculates the F-score for each
class independently and then averages them using aweight that depends on the number
of true instances for each class. This approach accounts for class imbalance, thus offer-
ing a more realistic and representative metric. For our study, we have employed the
weighted approach to ensure a balanced and accurate evaluation of our classification
performance. To apply the F-score in the context of clustering, it is essential to address
the label switching problem. This issue is efficiently managed using the Hungarian
algorithm, also known as the Kuhn-Munkres algorithm (Kuhn 1955). Similarly, we
have used Cohen’s kappa (Cohen 1960) and Jaccard score (Jaccard 1912) to accurately
assess classification performance. Cohen’s kappa measures inter-rater agreement for
categorical items, accounting for the possibility of agreement occurring by chance.
The Jaccard score, also known as the Jaccard index, evaluates the similarity between
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Fig. 1 True clusters and clusters predicted by different DMM algorithms on geochemical data

finite sample sets by comparing the intersection and union of the predicted and true
classes.

Table 8 presents the comprehensive results for both Geochemical (D1) and Wine
(D2) datasets. In the context of Geochemical data, the Hard DMM exhibits superior
performance across key metrics such as ACC, ARI, NMI, and HMS compared to other
models. However, Soft DMM demonstrates the best classification result as shown by
the F-score, Cohen’s kappa measure and Jaccard score. Notably, NDMM provides the
fastest execution time. Figure1 showcases a two-dimensional T-SNE plot depicting
the true and predicted clusters by different models. Remarkably, the patterns identified
by Soft DMM, Hard DMM, and NDMM closely resemble the true cluster pattern.

Shifting focus to the Wine dataset, results indicate that Hard DMM performs better
than other models, in terms of ACC, ARI, and NMI, while GDMM excels in HMS. On
the other hand, Soft DMM provides the best classification performance as revealed by
the F-score, Cohen’s kappa measure and Jaccard score. NDMM, once again, proves to
be the fastest for this dataset. However, the observations from Fig. 2 reveal that Hard
DMM, VDMM, and NDMM struggle to accurately capture the true cluster patterns.
Despite ranking second in terms of clusteringmetrics, SoftDMMemerges as themodel
providing the most faithful representation of cluster patterns. The highest F-score,
Cohen’s kappa measure and Jaccard score of the Soft DMM further justify this obser-
vation.WhileHard EMmaximizes the classification log likelihood, potentially leading
to improved clustering outcomes, Soft EMmaximizes the mixture log-likelihood dur-
ing model fitting and estimation. As a result, Soft DMM is recommended over Hard
DMM for enhanced accuracy and robust parameter estimation.

Table 9 presents the outcomes forBrainCancer andBreastCancer datasets.Notably,
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Fig. 2 True clusters and clusters predicted by different DMM algorithms on wine data

Table 9 Performance of DMM
on high-dimensional real data
sets

Brain cancer data Breast cancer data

ACC 0.7846 0.7152

F-Score 0.7378 0.6684

ARI 0.6127 0.6187

NMI 0.6810 0.7753

HMS 0.6162 0.7456

Cohen 0.7042 0.6464

Jaccard 0.6395 0.5852

Time 107.5818 167.2218

Soft DMM, leveraging high-dimensional estimates, demonstrated commendable per-
formance across ACC, ARI, NMI, HMS, F-score, Cohen’s kappa measure and Jaccard
score. The execution time, despite the high dimensions of the data, remains quite rea-
sonable. Additionally, Figs. 3 and 4 showcase 2D T-SNE plots for Brain Cancer and
Breast Cancer data, depicting the alignment of predicted cluster patterns with the true
ones. This visual representation reinforces the effectiveness of Soft DMM in capturing
accurate cluster structures. It is worth highlighting that traditional DMM faces limi-
tations in its application to high-dimensional RNA-seq data. However, our proposed
approximation now enables the utilization of DMM in high-dimensional scenarios,
unlocking its potential for broader applications.
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Fig. 3 True clusters and predicted clusters on brain cancer data

Fig. 4 True clusters and predicted clusters on breast cancer data

7 Limitations

While our study brings forth several strengths, including the provision of estimates
for a diverse range of scenarios involving mean and precision parameters, capabilities
for high-dimensional settings, and a closed-form approximation of KL divergence,
it is imperative to recognize certain limitations. The adoption of Soft EM, though
yielding accurate estimates, does come at the cost of increased computational time
in comparison to alternatives such as Hard EM and Generalized EM. Researchers
operating under constraints related to computational resources may find this aspect
noteworthy.

A significant challenge arises in scenarios where both mean and precision parame-
ters are unknown. The numerical optimization required at every M step contributes to
prolonged execution times, particularly because closed form solutions are not readily
available. Furthermore, while our mean-precision optimization theoretically extends
to high-dimensional cases, practical implementation becomes intricate due to the
considerable time it demands. The utilization of DMM for compositional data in
high-dimensional scenarios introduces additional challenges, such as the presence of
very small data values, potentially leading to computational errors. Our study also
acknowledges the impact of zero values inside logarithmic functions, a common chal-
lenge in many clustering algorithms. Additionally, the use of approximation for KL
divergence, althoughproviding closed-formsolutions, introduces potential limitations,
including imprecise results at times and the risk of negative values that violate expected
properties.
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In our study, we utilized datasets with available labels commonly employed for
testing supervised learningmethods. These labels are often treated as a form of ground
truth, providing a reference for model training and evaluation. However, it is crucial
to highlight that labels used to train supervised models may not necessarily serve as a
true ground truth when applied to clustering methods. The distinction arises from the
nature of the learning objectives in supervised versus unsupervised scenarios.

Labels used for supervised learning are typically assigned with a specific class or
category in mind, focusing on the discriminative aspects of the data. In contrast, clus-
tering methods aim to identify inherent structures or patterns within the data itself,
without the guidance of predefined categories. Consequently, while labeled datasets
can be beneficial for certain aspects of model development, they may not accurately
capture the intrinsic groupings or associations that clustering methods seek to unveil.
The assumptions underlying supervised and unsupervised learning objectives differ,
leading to a potential mismatch between labeled ground truth and the underlying struc-
tures that clustering algorithms attempt to reveal. This emphasizes the importance of
cautious interpretation when applying labeled datasets traditionally used for super-
vised tasks to the evaluation of clustering methods. One advantage of using mixture
models for clustering is that they provide a probability for each observation to belong
to a cluster, enabling a nuanced interpretation of the results.

Despite these limitations, our work contributes valuable insights into the DMM,
paving the way for further exploration and refinement across various applications.

8 Conclusion

In conclusion, our revisit of the DMM has contributed valuable insights, introducing
an alternative parametrization that incorporates mean and precision parameters. The
exploration of four distinct scenarios, coupled with the derivation of MLEs through
the ExpectationMaximization (EM) algorithm, has enhanced our understanding of the
model’s flexibility and applicability. Our study delves into specific facets, addressing
challenges in estimating DMM parameters, particularly in high-dimensional settings.
The introduction of an estimate tailored for high-dimensional scenarios, leveraging
Stirling’s approximation and moment approximation, signifies a crucial advancement.
This adaptation extends the utility of DMM to a broader range of datasets, showcasing
its adaptability to complex, real-world applications.

Our proposed model enjoys good convergence properties. Soft DMM uses an EM
algorithm which is guaranteed to converge to a local optimum (Dempster et al. 1977).
At the M step, it requires inversion of the digamma function. The digamma inversion
algorithm is based on Newton’s method (Goldstine 2012). Furthermore, the mean pre-
cision optimization technique usesNewton’smethod andnon-quadratic approximation
to obtain the estimates of S j . Newton’s method is said to have quadratic convergence
(Hamming 2012). Although all of the algorithms mentioned above have good conver-
gence properties, they suffer when a zero value occurs inside the logarithms during
calculation. Moreover, if the initial value is far from the true value, the algorithm may
fail to converge within some specified number of iterations. Thus, it is recommended
to use k-means clustering for initializing the starting values of the parameters.
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The identifiability of the DMM, elucidated in our study, underscores the model’s
robustness in capturing underlying patterns within diverse datasets. This finding con-
tributes to the theoretical foundation of DMM, offering clarity on its parameter
identifiability, a critical aspect in statistical modeling. Furthermore, our utilization of
a closed-form approximation for KL divergence addresses a longstanding challenge
in DMM analysis. This closed-form solution, in contrast to computationally inten-
sive methods such as Monte Carlo, enhances the efficiency of DMM applications,
facilitating faster and more accessible analyses.

The culmination of our study is exemplified in the comprehensive analysis of both
simulated and real datasets. Through meticulous examination of simulated scenarios,
we have demonstrated the model’s performance across different conditions, showcas-
ing the robustness of our proposed parametrization. The application of DMM to real
datasets, spanning geochemical,wine, brain cancer, and breast cancer data, emphasizes
the practical utility and versatility of the model. Our simulation studies have unraveled
insights into DMM’s behavior under various scenarios, shedding light on its strengths
and potential limitations. The comparison with other DMM variants, including Hard
DMM, VDMM, NDMM, and GDMM, has provided a comprehensive understanding
of our proposed model’s relative advantages. The promising results from the real data
analyses further bolster the practical significance of our study. From the geochemical
dataset to the diverse range of cancer datasets, including brain cancer and breast cancer
data, our proposed DMM variant has consistently exhibited competitive performance,
capturing underlying structures in the data effectively.

In essence, our study not only contributes to the theoretical advancement of the
DMM but also establishes its practical efficacy in diverse applications. The maximum
likelihood estimation using the alternative parametrization including four different
scenarios, mathematical proof of identifiability, and adaptability to high-dimensional
data sets collectively position our proposed DMM variant as a valuable tool for statis-
ticians, data scientists, and researchers across various domains. The insights gained
from this study pave the way for future refinements and extensions of the DMM,
enhancing its applicability to an even broader spectrum of data analysis challenges.

Appendix A: Simulation study

Here we provide detailed description of the simulated data sets. Let us denote,
n j =number of data points in cluster j, j = 1, 2, . . . , k. Here S andMMM are the precision
and mean respectively.πππ is the mixture proportion. For highdimensional experiments
we provide the data generation mechanisms rather than the true parameter values.

A.1: S known,M unknown

The corresponding results are shown in Table 1.

• Experiment 1: S1 =10, S2 =50, S3 =100.
MMM1 = (0.6, 0.3, 0.1),MMM2 = (0.1, 0.7, 0.2),MMM3 = (0.3, 0.4, 0.3).
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πππ =(0.3333, 0.3, 0.3667).
n1 = 1000, n2 = 900, n3 = 1100.

• Experiment 2: S1 =60, S2 =50, S3 =10.
MMM1 = (0.7, 0.2, 0.1),MMM2 = (0.1, 0.7, 0.3),MMM3 = (0.4, 0.1, 0.5).
πππ =(0.4762, 0.2857, 0.2381).
n1 = 2000, n2 = 1200, n3 = 1000.

• Experiment 3: S1 =60, S2 =60, S3 =20.
MMM1 = (0.8, 0.1, 0.1),MMM2 = (0.1, 0.7, 0.2),MMM3 = (0.3, 0.2, 0.5).
πππ =(0.4444, 0.3333, 0.2222).
n1 = 2000, n2 = 1500, n3 = 1000.

A.2: S unknown,M known

The corresponding results are shown in Table 2.

• Experiment 1: S1 =60, S2 =80, S3 =20.
MMM1 = (0.8, 0.1, 0.1),MMM2 = (0.1, 0.7, 0.2),MMM3 = (0.3, 0.2, 0.5).
πππ =(0.4444, 0.3333, 0.2222).
n1 = 2000, n2 = 1500, n3 = 1000.

• Experiment 2: S1 =60, S2 =40, S3 =100.
MMM1 = (0.7, 0.2, 0.1),MMM2 = (0.1, 0.8, 0.1),MMM3 = (0.4, 0.4, 0.2).
πππ =(0.4762, 0.2857, 0.2381).
n1 = 2000, n2 = 1200, n3 = 1000.

• Experiment 3: S1 =50, S2 =40, S3 =200.
MMM1 = (0.7, 0.1, 0.2),MMM2 = (0.3, 0.4, 0.3),MMM3 = (0.5, 0.4, 0.1).
πππ =(0.4444, 0.3333, 0.2222).
n1 = 2000, n2 = 1500, n3 = 1000.

A.3: S,M both unknown

The corresponding results are shown in Table 3.

• Experiment 1: S1 =80, S2 =90, S3 =100.
MMM1 = (0.1, 0.1, 0.8),MMM2 = (0.2, 0.2, 0.6),MMM3 = (0.3, 0.3, 0.4).
πππ =(0.5556, 0.2222, 0.2222).
n1 = 2500, n2 = 1000, n3 = 1000.

• Experiment 2: S1 =50, S2 =40, S3 =150.
MMM1 = (0.7, 0.1, 0.2),MMM2 = (0.2, 0.5, 0.3),MMM3 = (0.5, 0.4, 0.1).
πππ =(0.4444, 0.3333, 0.2222).
n1 = 2000, n2 = 1500, n3 = 1000.

• Experiment 3: S1 =60, S2 =40, S3 =10.
MMM1 = (0.7, 0.2, 0.1),MMM2 = (0.1, 0.8, 0.1),MMM3 = (0.4, 0.1, 0.5).
πππ =(0.4762, 0.2857, 0.2381).
n1 = 2000, n2 = 1200, n3 = 1000.
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A.4: Identical S

The corresponding results are shown in Table 4.

• Experiment 1: S =50.
MMM1 = (0.7, 0.1, 0.2),MMM2 = (0.3, 0.4, 0.3),MMM3 = (0.5, 0.4, 0.1).
πππ =(0.4444, 0.3333, 0.2222).
n1 = 2000, n2 = 1500, n3 = 1000.

• Experiment 2: S =80.
MMM1 = (0.1, 0.1, 0.8),MMM2 = (0.2, 0.2, 0.6),MMM3 = (0.3, 0.3, 0.4).
πππ =(0.5556, 0.2222, 0.2222).
n1 = 2500, n2 = 1000, n3 = 1000.

• Experiment 3: S =35.
MMM1 = (0.1, 0.2, 0.7),MMM2 = (0.3, 0.3, 0.4),MMM3 = (0.4, 0.5, 0.1).
πππ =(0.4167, 0.3333, 0.25).
n1 = 2500, n2 = 2000, n3 = 1500.

A.5: Comparison of soft DMMunder different scenarios

The corresponding results are shown in Table 5.

• Experiment 1: S1 =80, S2 =90, S3 =100.
MMM1 = (0.1, 0.1, 0.8),MMM2 = (0.2, 0.2, 0.6),MMM3 = (0.3, 0.3, 0.4).
πππ =(0.5556, 0.2222, 0.2222).
n1 = 2500, n2 = 1000, n3 = 1000.

• Experiment 2: S1 =50, S2 =40, S3 =150.
MMM1 = (0.7, 0.1, 0.2),MMM2 = (0.2, 0.5, 0.3),MMM3 = (0.5, 0.4, 0.1).
πππ =(0.4444, 0.3333, 0.2222).
n1 = 2000, n2 = 1500, n3 = 1000.

• Experiment 3: S1 =60, S2 =40, S3 =10.
MMM1 = (0.7, 0.2, 0.1),MMM2 = (0.1, 0.8, 0.1),MMM3 = (0.4, 0.1, 0.5).
πππ =(0.4762, 0.2857, 0.2381).
n1 = 2000, n2 = 1200, n3 = 1000.

A.6: Comparison of different models

The corresponding results are shown in Table 6.

• Experiment 1: k =3, p=3.
ααα1 = (42.0, 15.0, 3.0), ααα2 = (2.0, 36.0, 2.0), ααα3 = (4.0, 1.0, 5.0).
πππ =(0.4762, 0.2857, 0.2381)
n1 = 2000, n2 = 1200, n3 = 1000.

• Experiment 2: k =4, p=4.
ααα1 = (30.0, 15.0, 0.3, 14.7), ααα2 = (0.2, 20.0, 2.0, 17.8), ααα3 = (0.6, 0.2850, 0.015,
2.1),ααα4 = (2.5, 2.5, 2.5, 2.5).
πππ =(0.45454545, 0.27272727, 0.09090909, 0.18181818)
n1 = 2500, n2 = 1500, n3 = 500, n4 = 1000.
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• Experiment 3: k =6,p=4.
ααα1 = (30.0, 15.0, 0.3, 14.7), ααα2 = (0.2, 20.0, 2.0, 17.8), ααα3 = (0.6, 0.285, 0.015,
2.1),ααα4 = (2.5, 2.5, 2.5, 2.5), ααα5 = (0.5, 0.5, 0.5, 3.5), ααα6 = (7.5, 7.5, 9.0, 6.0).
πππ =(0.3125, 0.1875, 0.0625, 0.125, 0.15, 0.1625)
n1 = 2500, n2 = 1500, n3 = 500, n4 = 1000, n5 = 1200, n6 = 1300.

A.7: High-dimensional

The corresponding results are shown in Table 7.

• Experiment 1: p=10,000.
ααα1 = randomly drawn from uniform (10,20), ααα2 = randomly drawn from uniform
(20,200), ααα3 = randomly drawn from uniform (10,100).
πππ =(0.4762, 0.2857, 0.2381)
n1 = 500, n2 = 300, n3 = 250.

• Experiment 2: p=10,000.
ααα1 = randomly drawn from uniform (10,40), ααα2 = randomly drawn from uniform
(10,40), ααα3 = randomly drawn from uniform (10,100).
πππ =(0.4762, 0.2857, 0.2381)
n1 = 500, n2 = 300, n3 = 250.

• Experiment 3: p=10,000.
ααα1 = randomly drawn from uniform (10,40), ααα2 = randomly drawn from uniform
(10,70), ααα3 = randomly drawn from uniform (50,100).
πππ =(0.4762, 0.2857, 0.2381)
n1 = 500, n2 = 300, n3 = 250.

• Experiment 4: p=10,000.
ααα1 = randomly drawn from uniform (10,20), ααα2 = randomly drawn from uniform
(19,32), ααα3 = randomly drawn from uniform (19,22), ααα4 = randomly drawn from
uniform (10,22).
πππ =(0.3125, 0.1875, 0.15625, 0.34375)
n1 = 50, n2 = 30, n3 = 25, n4 = 55.

• Experiment 5: p=10,000.
ααα1 = randomly drawn from uniform (0.5,6), ααα2 = randomly drawn from uniform
(19,32), ααα3 = randomly drawn from uniform (19,22), ααα4 = randomly drawn from
uniform (0.5,10).
πππ =(0.3125, 0.1875, 0.15625, 0.34375)
n1 = 50, n2 = 30, n3 = 25, n4 = 55.

• Experiment 6: p=10,000.
ααα1 = randomly drawn from uniform (0.1,6), ααα2 = randomly drawn from uniform
(10,15), ααα3 = randomly drawn from uniform (10,22), ααα4 = randomly drawn from
uniform (0.5,5).
πππ =(0.3226, 0.2581, 0.1935, 0.2258)
n1 = 50, n2 = 40, n3 = 30, n4 = 35.
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Chapter 5

Gaussian mixture model with modi-
fied hard EM algorithm in clustering
problems

Summary

This article revisits the use of the Hard Expectation-Maximization (EM) algorithm, also
known as Viterbi Training, for cluster analysis, particularly in the context of Gaussian
Mixture Models (GMMs). While Hard EM is less computationally intensive and easier
to implement than standard EM, it is generally viewed as inferior due to issues like bi-
ased estimates and lack of consistency. The study addresses these concerns by proposing
modifications to the Hard EM algorithm to mitigate the problem of convergence to lo-
cal optima. The modified algorithm’s performance is evaluated across various scenarios,
including different numbers of clusters, dimensions, overlaps, and data imbalances, using
five benchmark datasets. The results are compared to those of the standard EM algo-
rithm to assess whether Hard EM performs as poorly as often assumed. Additionally,
the study includes an analysis of two real-world biological datasets to demonstrate the
practical utility of the proposed modifications.
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Chapter 7 

Gaussian mixture model with 
modified hard EM algorithm  
in clustering problems 

Samyajoy Pal and Christian Heumann      

7.1 INTRODUCTION 

In many modern-day statistical and machine learning problems the expecta-
tion maximization (EM) algorithm [1] is widely used. Applications of the EM 
algorithm in unsupervised learning often involve mixture models [2,3]. Use of 
mixture models can be seen in many fields such as image matching [4] and 
audio and video scene analysis [5]. But there exists an alternative approach 
for estimating parameters of mixture models, which is known as Hard EM. 
Hard EM or Viterbi Training (VT) was first introduced by [6] for speech 
recognition technique. Since then, many researchers have used Hard EM for 
speech recognition problems [7–11]. In other fields such as natural language 
processing (NLP) [12–18], bioinformatics [19–21] and image analysis [22], it 
is also extensively used. 

Hard EM is an unsupervised learning technique, which can be seen as a 
coordinate ascent procedure that locally optimizes a function. In the case of 
mixture models, Hard EM is often described as Classification EM (CEM) as 
CEM maximizes the classification likelihood instead of the mixture 
likelihood [23,24]. Neal, Hinton [25] has called another version of Hard 
EM as Sparse EM where, in the E step, the algorithm, instead of finding the 
marginals like standard EM, finds the modes of the hidden variables. Hard 
EM is also linked with KMeans [26] clustering algorithm. KMeans can be 
seen as a special case of Hard EM for a mixture of Gaussians with a 
common covariance matrix of the form σ2I and unknown σ [24,27]. 

In many situations, the EM algorithm becomes slow and computationally 
expensive. On the other hand, Hard EM provides an easy and computa-
tionally less intensive solution by an appropriate maximization step [28]. It 
is also known for being more robust and faster than standard EM [29]. 
Despite having all these desired qualities, Hard EM has some theoretical 
disadvantages for which it is assumed to be less accurate than standard EM 
[30]. Contrary to standard EM, Hard EM does not increase the likelihood 
of the parameters given the observed data x. Instead, it increases the joint 
likelihood of latent variables and parameters. And that is why it lacks 
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consistency [31] and, in fact, can produce biased estimates [32]. Even with 
the above drawbacks, Hard EM still enjoys a fair share of applications in 
practice [33]. However, when and under what circumstances, Hard EM 
should be preferred over standard EM remains an open problem even today 
[29], which calls for further investigation. Another issue with EM algorithm 
is that sometimes it converges to local optimum instead of a global one [34]. 
To overcome the issue, generally two techniques are used. One involves 
using repeated random initialization and another uses KMeans centroids 
and empirical standard Deviations as starting values [35]. However, 
repeated run of EMs with random initialization consumes more time and 
in many situations (e.g., imbalanced data sets) KMeans work poorly. As a 
result, using values obtained from poorly fitted models lead to poor 
performance of EM algorithm. 

In our study, we have revisited the problem of Hard EM in the case of 
mixture models, more precisely for its applications in clustering. Despite 
having theoretical disadvantages over standard EM, we wanted to investi-
gate if Hard EM really performs worse than standard EM for clustering 
problems in different situations. The main objectives of our study are to:  

• provide a modification to Hard EM to stop fast convergence to local 
optimums with one or more clusters being empty.  

• assess the performance of Hard EM in clustering for different 
situations (e.g., increasing number of clusters, increasing dimensions, 
increasing overlap of clusters, imbalance in data points, etc.) 

• compare the performance of Hard EM with standard EM to investi-
gate if it really works worse as assumed. 

We have used Hard EM with some modifications to build a Gaussian 
mixture model (Hard GMM). The model has been used on five benchmark 
data sets for Gaussian mixtures [36] which are often preferred to test novel 
clustering methods. We have evaluated the performance of the model in 
different situations and compared it with the standard EM (Usual GMM) at 
each stage. We have also used two real data sets from biology to evaluate its 
performance. 

7.2 METHODOLOGY 

In this section, we would like to introduce the mixture model in general 
using Hard EM. 

Let X1, X2  … , XN denote a random sample of size N, where Xi is a 
p dimensional random vector with probability density function f(xi) on Rp. 
We can write X = (X , …, X )1

T
N
T T, where the superscript T denotes vector 

transpose. 
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Note that, the entire sample is represented by X, i.e., X is a N – tuple of 
points in Rp or an N × p-matrix. X = (x ,…,x )1

T
N
T T denotes an observed 

random sample where xi is the observed value of the random vector Xi. 
The density of a mixture model with k components for one observation xi 

is given by the mixture density 

p x f x( ) = |i j
k

j j i j=1 (7.1)  

where π = (π1, … , πk) contains the corresponding mixture proportions with 
= 1i

k
i=1 and 0 ≤ πi ≤ 1. fj(xi|αj) is the density component of mixture j and 

αj, j = 1,2, … , k, are vectors of component specific parameters for each 
density. Then α = (α1, … , αk) denotes the vector of all parameters (except π) 
of the model. The log likelihood of the model for a sample of size N is then 
given by 

p x x f xlog ( ,…, | , ) = log | .N i
N

j
k

j j i j1 =1 =1 (7.2)  

The parameters can be estimated using the EM algorithm with some 
modifications. For that purpose, let us introduce latent variables Zi, which 
are categorical variables taking on values 1, … , k with probabilities π1, … , 
πk such that Pr(Xi|Zi = j) = fj(xi), j = 1, … , k. 

Further, probabilities γij are introduced (conditional on the observed data 
X = x and the parameter α): 

x Pr Z j X x
f x

f x
( ) = ( = | = , ) =

|

|
.ij i i

j j i j

j
k

j j i j=1

(7.3)  

Equation 7.3 can be seen as the probability of cluster membership j for a 
data point xi. Now, we must note that, Hard EM and standard EM 
optimize two different objective functions. In case of a Hard EM the 
following objective function is optimized. 

ˆ P x x z z= argmax max ( , , …, )
z

N n1, …, 1
zN1, …,

(7.4)  

where, Θ denotes all parameters (π,α). But in case of a standard EM, the 
objective function is 

ˆ P x x z z= argmax ( , ,…, )z N n1, …, 1
zN1, …,

(7.5)  
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Hard EM does not maximize the likelihood; instead it applies a delta 
function approximation to the posterior probabilities Pr(Zi = j|X = x,α), 
where Zi,i = 1, … ,N are the latent variables representing class labels. X and 
α are the data and model parameters, respectively. The approximation 
changes the E step as follows, 

Pr Z j X x I j z( = | = , ) =i i( ) (7.6)  

where, zi
∗ = argmax γij. γij’s are nothing but the responsibilities (probabilities) 

for j, each data point belonging to different clusters. After this step, for a 
standard hard EM, the ratio of empirical cluster members and total observa-
tions serve as the new estimates of πj . However, for our modified hard EM we 
do not propose to use that estimate. Instead, we optimize the expected 
complete data log likelihood with respect to πj as usual like a standard EM. 
Our proposed technique to obtain the estimates of αj is explained below. 

The expectation of complete data log likelihood is given by 

Q E p x z x( , ) = log( ( , | ))| , ,t

i

N

i i
t1

=1

1 (7.7)  

where t is the current iteration number. It can also be shown that [37] 

Q f x( , ) = log + log |t

i

N

j

k

ij j
i

N

j

k

ij j i j
1

=1 =1 =1 =1
(7.8)  

At the M step, we optimize Q with respect to π and α. πj is estimated in the 
usual way by 

N

N
j , where, N =j i

N
ij=1 and for estimating α, we look at the 

part in Q which depends on α, which is given by 

l f x( ) = log |
i

N

j

k

ij j i j
=1 =1

(7.9)  

Now, we choose αj such that αj
t = argmax l(αj), which is obtained by the 

process of αj assigning data points to respective clusters, given by argmax 
γij, and estimate αj by j some estimation method based on the assigned 
observations to that cluster. It can be seen as a Bayesian concept (although 
not strictly Bayesian) for learning where equation 7.3 provides the cluster 
membership probability. In that equation, πj can be viewed as the prior 
probability of Zi = j and the quantity γij as the corresponding posterior 
probability once x is observed. Hence, it is computed using Bayes rule. The 
idea of choosing the cluster based on maximum probability is the same as 
choosing the MAP estimate, the mode of the distribution of Pr(Zi = j|X,α). 
The MAP estimate is given by 

156 Statistical modeling and applications on real-time problems 

122



p Z j p Z jZ = argmax = argmax log (x | = , ) + log ( = | )
j

ij
j

i i ii (7.10)  

In addition to the general setting of a Hard EM, we include an extra step at 
the M step of the algorithm as a modification. Instead of obtaining the MLE 
right away at M step, we propose to do a quality check of the model. For 
cluster j, j = 1, … ,k we denote 

if cluster j is empty

otherwise
=

,

,
j
new j

init

j
MLE

(7.11)  

where αj
init is the initial value of the parameter αj. Hard EM is well known 

for its greedy convergence; as a result, often, the algorithm converges with 
one or more clusters being empty. Hence, we would like to force the 
algorithm to re-iterate if one or more clusters are found to be empty at 
each M step. 

At first, some trial values of the distribution parameters α and mixture 
proportions π are initialized to start the algorithm. Then the initial value of 
the log likelihood is evaluated. For different distributions, different 
techniques can be used to choose suitable initial values. It is known that 
EM algorithm is very sensitive to the choice of initial values [38]. Hard EM 
is no different in this regard. However, with proper initialization tech-
niques, Hard EM can provide a robust performance. In the literature, we 
find different techniques of choosing starting values such as random 
initialization [39], iteratively constrained EM [40], KMeans clustering 
[41], Sum scores [42], etc. However, for better performance KMeans 
initialization and iteratively constrained EM with random initialization are 
most preferred [43]. There exist some robust versions of EM algorithm (see 
[44]) which take into account the number of clusters as well. For our study, 
we have taken, the centroids of KMeans as initial values of µ, and the 
empirical covariance matrix of each cluster is taken as an initial value of Σj. 
The initial values of π is computed using the ratio of cluster members 
obtained by KMeans algorithm and total observations. 

At the E step, the values of the probabilities γij are evaluated using the 
current parameter values. For a usual EM algorithm (e.g., in a GMM), at 
the M step, a weighted mean and a weighted covariance matrix are 
calculated using the γij values. But for other distributions, where the model 
parameters are not mean and (co)variance, this technique can not be used. 
So, for different distributions, different techniques need to be used. Hard 
EM provides an easy and convenient solution where at the M step, each 
data point is assigned to a cluster depending on the probability of that data 
point belonging to each cluster. That cluster is assigned for which the 
probability is maximum. Now, if one or more clusters are found empty, 
then the initial value of the parameter αj for cluster j is used. And for the 
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non-empty clusters, point estimates of the parameters of each parent 
distribution are obtained using only the data points available in each 
cluster. For faster convergence and convenience, maximum likelihood 
estimates can usually be recommended. The mixture component probabili-
ties πj are estimated as mentioned above by 

N

N
j . The new set of estimated 

values of the parameters is then used as an update over the previous one. 
After this step, the log likelihood is evaluated again using the updated 
parameter values. The process is then continued until convergence. Hard EM 
enjoys good convergence properties, which have been explained in detail by 
[45]. It is to be noted that, although estimates obtained through modified Hard 
EM can be seen as an approximated MLE and it means that MLE estimates 
from standard should be better, it is not guaranteed that standard EM would 
give better accuracy for assignments of data points to correct clusters. As Hard 
EM finds the MAP estimate i.e., the mode of the distribution of Pr(Zi = j|X,α) 
to optimize the classification likelihood, which version of EM gives better 
accuracy should be investigated for a case-to-case basis. 

Algorithm 1: Modified Hard EM Algorithm for Mixture Models 

Initialize the model parameters, α and π. Evaluate the initial value of the 
log likelihood from equation (7.2); 

while loglikelihood difference ≥ do 
Evaluate γij From equation (7.3), using the parameter values and data 

=j
new N

N
j , where, N = P ;j i

N
ij=1

for i in1 to N do 
cluster zi = argmax ;

j
ij

Assign data point xi to cluster Zi; 
end 
for j in1 to k do 

if Cluster j is empty then 
Use initial values of αj as an update; 

else 
= ;j

new
j
MLE

end 
end 
Re-evaluate log likelihood using the new values of the parameters. 

end 

For our experiments, we have used 0.0001 as the value of ϵ in 
Algorithm 1. 

In case of a Gaussian mixture model, normal distribution can be used as 
the base distribution fj(.) in the model shown in equation 7.1. 
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For a p × 1 continuous random vector X, the density of p variate 
multivariate normal distribution is given by 

f x exp x x( | , ) =
1

(2 )
1
2

( ) ( ) ,
p

T
/2 1/2

1 (7.12)  

where µ is a p × 1 vector, Σ is a p × p symmetric, positive definite matrix and 
the support of X is Rp. 

The maximum likelihood estimates of µ and Σ are given by 

N
x=

1
MLE

i

N

i
=1

(7.13) 

N
x x=

1
MLE i i MLE i MLE

T (7.14)  

The mixture model can be built the usual way and the model parameters 
can be estimated using the MLEs of a Gaussian distribution at the M step. 

7.3 COMPARISON ON BENCHMARK DATA SETS 

We have done an extensive experiment to observe the performance of Hard 
GMM in different conditions. Many authors [46] have argued that it may 
not be the best idea to test the clustering model only on synthetic data as the 
model is supposed to perform on real data problems. That is why we have 
decided to check the performance of our proposed method on both 
synthetic and real data. In this section, we are going to evaluate the 
performance of Hard GMM on basic benchmark data sets as proposed by 
[36]. The data sets are chosen in such a way that the sets are challenging 
enough for most typical heuristics to fail but easy enough for good 
clustering algorithms to identify the correct clusters. These data sets have 
been previously used by many other authors as well. A brief description of 
the data sets is given below in Table 7.1. 

Figure 7.1, Figure 7.2 and Figure 7.3 show plots of data in data set A. In 
data set A, we have three sets of data containing distinct, separate clusters 
with the number of clusters 20, 35, and 50, respectively. We have four sets 
of data containing 15 clusters each in data set S, but with increasing overlap 
among clusters. Overlap has been increased by increasing the standard 
deviation of data points in each cluster. It is done in such a way that a good 
algorithm should still be able to identify the clusters. Figure 7.5, Figure 7.6,  
Figure 7.7 and Figure 7.8 show plots of data in data set S. Dim data sets 
contain six sets of data, each with distinct, separate clusters but with 
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Table 7.1 Descriptions of five basic benchmark data sets        

Data set Variation Size Clusters Dimension Source  

A (3 sets) Number of Clusters 3000–7500 20,30,50 2 Kärkkäinen, Fränti [ 47] 
S (4 sets) Overlap 5000 15 2 Fränti, Virmajoki [ 48] 
Dim (6 sets) Dimensions 1024 16 32–1024 Franti et al., [ 49] 
G2 (100 sets) Dimensions and 

overlap 
2048 2 2–1024 Fränti et al., [ 50] 

Unbalance 
(1 set) 

Balance 6500 8 2 Rezaei, Fränti [ 51]     
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Figure 7.1 A1 data set.    

Figure 7.2 A2 data set.    

Figure 7.3 A3 data set.    
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increasing dimensions. The data sets have data with dimensions 32, 64, 
128, 256, 512 and 1024, respectively. The G2 data sets have 100 sets of 
data with increasing dimensions and overlap of clusters. With an increase of 
dimension, the standard deviation of data points of each cluster has also 
been increased to introduce increasing overlap. The dimension of data sets 
ranges from 2 to 1024; at the same time, the standard deviation ranges from 
10 to 100. For the data set Unbalance, we have eight clusters with an 
imbalance of data points in each cluster. In other words, a few clusters 
contain more data points, and a few clusters contain very few data points.  
Figure 7.4 shows the unbalanced data set. 

We have run Hard GMM and Usual GMM algorithms 100 times on each 
data to measure and compare the mean performance of both models. The 

Figure 7.4 Unbalance data set.    

Figure 7.5 S1 data set.    
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algorithm for usual GMM is available in Scikit-learn [52], a machine 
learning library in Python. The algorithm for hard GMM is also written in 
Python. The experiments were done on a machine with 32 gigabytes of 
RAM and multi-threaded CPU. We have checked three measures to 
evaluate the performance.  

• Accuracy: The total accurate classifications, divided by the number of 
observations.  

• Precision: True positives, divided by sum of true positives and false 
positives.  

• Recall: True positives, divided by the sum of true positives and false 
negatives. 

Figure 7.6 S2 data set.    

Figure 7.7 S3 data set.    
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A detailed description of all the measures can be found in [53]. 
Additionally, we have also provided computational run-time (in seconds) 
of the models where applicable. The results of the experiments on data sets 
A and S are given below. For datasets Dim, G2 and unbalance, both Hard 
GMM and Usual GMM are found to have given 100% success in terms of 
accuracy, precision and recall. Table 7.2, Table 7.3 and Table 7.4 display 
the detailed results of data sets A1, A2 and A3, respectively. Whereas the 
results of data sets S1, S2, S3 and S4 are shown in Table 7.5, Table 7.6,  
Table 7.7 and Table 7.8. 

From the above results in Figure 7.9 and Figure 7.10, we see that Hard 
GMM works better than Usual GMM on Data sets A and S in terms of 
accuracy, precision, and recall. We have also observed that Hard GMM is 
much more consistent for data sets A and S on 100 runs, as the standard 
deviation is much less for Hard GMM for the data sets A and S. From 
Figure 7.9 we see that, with an increasing number of clusters, the performance 
of Hard GMM degrades in terms of accuracy, precision, and recall. However, 
Usual GMM does not show any significant pattern in performance in terms of 
accuracy, precision and recall when it comes to the increasing number of 
clusters in the data. From Figure 7.10 we see that the performance of both 
Hard GMM and Usual GMM drops significantly with increasing overlap of 
clusters in terms of accuracy, precision, and recall. But, we have seen no effect 
of increasing dimension in the performance of both Hard GMM and Usual 
GMM, as every time over 100 runs, the models have shown 100% success in 
terms of accuracy, precision, and recall on dim data sets. It is evident that 
increasing dimension has very little to do in terms of performance if the clusters 
are distinct. For G2 data sets, we had 100 sets of data with both increasing 
dimensions and overlap. But, in this case, also, we have observed 100% 
success of both models to identify the clusters on all 100 runs. 

Figure 7.8 S4 data set.    
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Table 7.2 Performance of Hard GMM and Usual GMM on dataset A1           

Measures AHG AUG PHG PUG RHG RUG RTHG RTUG  

Mean  0.996920  0.875690  0.996878  0.976668  0.996977  0.959366  0.178015  0.077974 
Standard Deviation  0.000143  0.116462  0.000151  0.014935  0.000131  0.030430  0.032193  0.007880 
Minimum  0.996667  0.626000  0.996610  0.942585  0.996745  0.882558  0.161511  0.062025 
First Quartile  0.997000  0.796000  0.996962  0.966382  0.997050  0.938932  0.166006  0.074326 
Median  0.997000  0.873333  0.996962  0.972818  0.997050  0.942855  0.168327  0.077453 
Third Quartile  0.997000  0.992333  0.996962  0.992125  0.997050  0.992760  0.176055  0.083743 
Maximum  0.997000  0.992333  0.996962  0.992125  0.997050  0.992760  0.443339  0.100296   

AHG: Accuracy of Hard GMM, AUG: Accuracy of Usual GMM, PHG: Precision of Hard GMM, PUG: Precision of Usual GMM, RHG: Recall of Hard GMM, RUG: Recall 
of Usual GMM RTHG: Runtime of Hard GMM, RTUG: Run-time of Usual GMM.  
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Table 7.3 Performance of Hard GMM and Usual GMM on dataset A2           

Measures AHG AUG PHG PUG RHG RUG RTHG RTUG  

Mean  0.977640  0.863086  0.994175  0.977943  0.991563  0.957694  1.502774  0.185822 
Standard Deviation  0.045927  0.073965  0.006402  0.008992  0.012301  0.018494  0.152975  0.033539 
Minimum  0.783238  0.689143  0.973484  0.951427  0.961736  0.905962  1.356514  0.128678 
First Quartile  0.996762  0.807000  0.996731  0.971669  0.996865  0.936981  1.427737  0.167785 
Median  0.996952  0.869333  0.996916  0.978609  0.997036  0.963351  1.468551  0.177822 
Third Quartile  0.997143  0.915571  0.997116  0.983020  0.997209  0.965244  1.524925  0.193811 
Maximum  0.997333  0.993524  0.997305  0.993429  0.997393  0.993822  2.650507  0.394115   

AHG: Accuracy of Hard GMM, AUG: Accuracy of Usual GMM, PHG: Precision of Hard GMM, PUG: Precision of Usual GMM, RHG: Recall of Hard GMM, RUG: Recall 
of Usual GMM RTHG: Runtime of Hard GMM, RTUG: Run-time of Usual GMM.  
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Table 7.4 Performance of Hard GMM and Usual GMM on dataset A3           

Measures AHG AUG PHG PUG RHG RUG RTHG RTUG  

Mean  0.934595  0.872537  0.990532  0.980345  0.983551  0.960637  1.786347  0.280679 
Standard Deviation  0.056556  0.063956  0.005756  0.007250  0.010908  0.015886  0.315283  0.070037 
Minimum  0.817733  0.680667  0.980392  0.959247  0.972147  0.909704  1.478938  0.196710 
First Quartile  0.889633  0.835833  0.985925  0.976154  0.974674  0.952880  1.556423  0.240818 
Median  0.929133  0.877400  0.988208  0.981027  0.977209  0.955084  1.683763  0.259527 
Third Quartile  0.997467  0.919100  0.997456  0.985758  0.997513  0.974323  1.891815  0.298878 
Maximum  0.997867  0.995333  0.997851  0.995275  0.997906  0.995483  3.232524  0.718938   

AHG: Accuracy of Hard GMM, AUG: Accuracy of Usual GMM, PHG: Precision of Hard GMM, PUG: Precision of Usual GMM, RHG: Recall of Hard GMM, RUG: Recall 
of Usual GMM RTHG: Runtime of Hard GMM, RTUG: Run-time of Usual GMM.  
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Table 7.5 Performance of Hard GMM and Usual GMM on dataset S1           

Measures AHG AUG PHG PUG RHG RUG RTHG RTUG  

Mean  0.998200  0.974388  0.998186  0.995816  0.998180  0.988442  1.560566  0.165872 
Standard Deviation  0.000000  0.063192  0.000000  0.005272  0.000000  0.023293  0.209326  0.041186 
Minimum  0.998200  0.715400  0.998186  0.970759  0.998180  0.930539  1.304745  0.093759 
First Quartile  0.998200  0.997800  0.998186  0.997787  0.998180  0.997793  1.445687  0.147343 
Median  0.998200  0.997800  0.998186  0.997787  0.998180  0.997793  1.483772  0.151386 
Third Quartile  0.998200  0.997800  0.998186  0.997787  0.998180  0.997793  1.593771  0.159478 
Maximum  0.998200  0.997800  0.998186  0.997787  0.998180  0.997793  2.342927  0.347596   

AHG: Accuracy of Hard GMM, AUG: Accuracy of Usual GMM, PHG: Precision of Hard GMM, PUG: Precision of Usual GMM, RHG: Recall of Hard GMM, RUG: Recall 
of Usual GMM RTHG: Runtime of Hard GMM, RTUG: Run-time of Usual GMM.  
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Table 7.6 Performance of Hard GMM and Usual GMM on dataset S2           

Measures AHG AUG PHG PUG RHG RUG RTHG RTUG  

Mean  0.992364  0.939530  0.992504  0.980173  0.992340  0.959469  1.678559  0.182416 
Standard Deviation  0.000230  0.070728  0.000224  0.007245  0.000231  0.032618  0.378828  0.054915 
Minimum  0.991400  0.703600  0.991574  0.950935  0.991350  0.908707  1.369272  0.117463 
First Quartile  0.992200  0.908900  0.992336  0.977107  0.992189  0.920079  1.482488  0.157468 
Median  0.992400  0.984600  0.992542  0.984818  0.992380  0.984725  1.543244  0.161766 
Third Quartile  0.992600  0.984800  0.992733  0.985023  0.992571  0.984927  1.690107  0.180889 
Maximum  0.992800  0.984800  0.992953  0.985038  0.992767  0.984927  3.640522  0.440569   

AHG: Accuracy of Hard GMM, AUG: Accuracy of Usual GMM, PHG: Precision of Hard GMM, PUG: Precision of Usual GMM, RHG: Recall of Hard GMM, RUG: Recall 
of Usual GMM RTHG: Runtime of Hard GMM, RTUG: Run-time of Usual GMM.  
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Table 7.7 Performance of Hard GMM and Usual GMM on dataset S3           

Measures AHG AUG PHG PUG RHG RUG RTHG RTUG  

Mean  0.973476  0.850652  0.973608  0.936191  0.973091  0.905184  1.817396  0.240185 
Standard Deviation  0.000627  0.092452  0.000622  0.014524  0.000655  0.038538  0.352305  0.118835 
Minimum  0.972200  0.532600  0.972323  0.900290  0.971763  0.774384  1.417350  0.132710 
First Quartile  0.973000  0.794100  0.973146  0.924001  0.972592  0.879216  1.532039  0.173736 
Median  0.973400  0.846100  0.973554  0.938519  0.973041  0.891337  1.685317  0.206736 
Third Quartile  0.974000  0.948000  0.974109  0.949817  0.973637  0.947924  2.026184  0.235066 
Maximum  0.974800  0.949800  0.974872  0.951637  0.974501  0.949731  3.048964  0.718240   

AHG: Accuracy of Hard GMM, AUG: Accuracy of Usual GMM, PHG: Precision of Hard GMM, PUG: Precision of Usual GMM, RHG: Recall of Hard GMM, RUG: Recall 
of Usual GMM RTHG: Runtime of Hard GMM, RTUG: Run-time of Usual GMM.  
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Table 7.8 Performance of Hard GMM and Usual GMM on dataset S4           

Measures AHG AUG PHG PUG RHG RUG RTHG RTUG  

Mean  0.967522  0.846350  0.967441  0.907800  0.966902  0.887625  1.615013  0.230549 
Standard Deviation  0.002470  0.066463  0.002502  0.010089  0.002422  0.028414  0.186901  0.046512 
Minimum  0.962200  0.709000  0.961969  0.868938  0.961627  0.835819  1.397856  0.174893 
First Quartile  0.965400  0.784150  0.965274  0.908700  0.964847  0.863440  1.504002  0.202314 
Median  0.967700  0.903000  0.967633  0.909992  0.967221  0.912310  1.564790  0.213907 
Third Quartile  0.969600  0.904600  0.969546  0.912384  0.968908  0.913579  1.643767  0.251595 
Maximum  0.972000  0.908400  0.972176  0.925609  0.971375  0.916840  2.434432  0.434772   

AHG: Accuracy of Hard GMM, AUG: Accuracy of Usual GMM, PHG: Precision of Hard GMM, PUG: Precision of Usual GMM, RHG: Recall of Hard GMM, RUG: Recall 
of Usual GMM RTHG: Runtime of Hard GMM, RTUG: Run-time of Usual GMM.  
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Figure 7.9 Mean accuracy, mean precision, mean recall and mean run-time with increasing 
number of clusters on A data sets.    

Figure 7.10 Mean accuracy, mean precision, mean recall and mean run-time with 
increasing overlap of clusters on S data sets.    
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The result occurs mostly because, in higher dimensional space, the data 
becomes sparse, and clusters keep on moving far away from each other. 
Surprisingly, on the unbalanced data set also, we have seen 100% success 
for both models. It is to be noted that the very popular KMeans algorithm 
works poorly if the data is imbalanced. Nevertheless, the Gaussian Mixture 
model, both with hard EM and Usual EM, seems to work very well on 
imbalanced data. When it comes to computational run time, we see that 
usual GMM is slightly faster. The clustering strategy of modified Hard EM 
stops early convergence of the algorithm with non-occupied clusters. From 
the results, we see that Hard EM offers better results in some situations 
with a little more run time. 

7.4 REAL DATA APPLICATION 

We have compared the performance of Hard GMM and Usual GMM on two 
real data sets. Please note that our study aims to compare the performance of 
the two methods and not to provide an optimum solution for the problems. 

7.4.1 Breast cancer data 

The relationship between several risk factors and breast cancer was studied 
by [54] by assessing hyperresistinemia and metabolic dysregulation in 
breast cancer. Between 2009 and 2013, women who had been newly 
diagnosed with breast cancer were recruited from the University Hospital 
Centre of Coimbra (CHUC). For each patient, the diagnosis was made by 
positive mammography, and it was histologically confirmed. Before surgery 
and treatment, all samples were collected, and all the patients with 
treatment before the consultation were excluded. Healthy female volunteers 
were selected and enrolled in the study as controls. All patients had no prior 
cancer treatment, and all participants were free from any infection or other 
acute diseases or comorbidities at the time of enrollment in the study. Later, 
[55] also used the data to build supervised learning models and provided an 
idea for a cheap and effective biomarker for breast cancer. In the dataset, 
we have nine clinical and biochemical factors, namely: Age (years), BMI 
(kg/m2),Glucose (mg/dL), Insulin (µU/mL), HOMA, Leptin (ng/mL), 
Adiponectin (µg/mL), Resistin (ng/mL) and MCP-1(pg/dL). The data can 
be downloaded from UCI Machine Learning Repository. 

7.4.2 Yeast cell cycle data 

The fluctuation of expression levels of approximately 6,000 genes over two 
cell cycles (17-time points) was shown by [56]. Later, [57] studied a subset 
of 384 genes where they had expression levels peaking at different times 
corresponding to the five phases of the cell cycle, namely: Early G1, Late 
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G1, S, G2, and M. This data set has been previously used by other authors 
as well (see [58]). This data is also available at UCI Machine Learning 
Repository. The aim of the study is to cluster the gene expressions into five 
categories. In this case k = 5, p = 17 and N = 384. 

From the above result in Table 7.9, we see that Hard GMM works better 
than Usual GMM on both data sets in terms of accuracy and precision. In 
terms of recall, Usual GMM works better in Breast Cancer data, and Hard 
GMM works better in cell cycle data. From the results, we understand that 
the performance of GMM depends mostly on overlap of data in different 
clusters than a number of clusters or dimensions. In terms of run time, we 
see that Hard EM was faster than Usual GMM with better results. 

7.5 CONCLUSION 

In our study, we wanted to address the question if Hard EM really works 
worse as it is assumed due to its theoretical disadvantages. We also wanted to 
verify how Hard EM performs with respect to Usual EM in different 
situations in clustering problems. In our study, we have implemented Hard 
EM with some modifications, and we have compared the performance of 
Hard EM and Usual EM on both basic benchmark data sets and real data 
sets. Furthermore, from our experiments, we have found that it can not be 
said that Hard EM works worse than Usual EM for clustering analysis. In 
fact, on many occasions, like an increasing number of clusters and increasing 
overlap, Hard EM has been found to perform better than Usual EM. 

We have already discussed that Hard EM is computationally less 
intensive, and it is easy to implement, which fulfills the important criteria 
of choosing a suitable algorithm [59,60]. However, if the limitations of a 
suitable algorithm are not known, people tend to choose a less accurate 
algorithm whose limitations are well known beforehand. We have proposed 

Table 7.9 Performance of Hard GMM and Usual GMM on Real Data      

Breast cancer data Yeast cell cycle data  

Accuracy of Hard GMM  0.543103  0.731771 
Accuracy of Usual GMM  0.534482  0.559896 
Precision of Hard GMM  0.578726  0.726260 
Precision of Usual GMM  0.572716  0.623411 
Recall of Hard GMM  0.642159  0.725608 
Recall of Usual GMM  0.651250  0.585197 
Run-time of Hard GMM  0.016630  0.075423 
Run-time of Usual GMM  0.021233  0.076323   

The aim of our study is to build a Gaussian Mixture Model using these features and cluster the data 
points into two categories, namely: healthy controls and patients. In this case, k = 2, p = 9 and N = 116.  
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some modifications to Hard EM which stops faster convergence with poor 
results. Nevertheless, from our experiment we have seen that the difference 
in run time is not significant. On real data sets the run time of Hard EM was 
found to be less than that of Usual EM. Moreover, the performance of Hard 
EM has been enhanced due to the modifications. We have done an extensive 
experiment on different situations and ran the algorithm on each data 100 
times. We have noticed that the performance of Hard EM is very consistent. 
The robustness of the algorithm can be seen in a varied range of situations. 
It is often assumed that increasing dimension has an inverse effect on the 
performance of clustering algorithms [61]. We have found that increasing 
dimension has almost nothing to do with the performance of Hard GMM if 
the clusters are distinct and separated. However, proper initialization 
technique must be observed in order to produce good results. 

It is known that KMeans works poorly for imbalanced data [36]. 
However, for Gaussian Mixture Model, both hard and usual EM are 
found to work well for imbalanced data points in the cluster. The condition 
which affects the performance of Hard EM the most is the overlap of 
clusters. We have seen that the performance drops significantly for both 
Hard and Usual GMM when the overlap is increased. We have also noticed 
that for an increasing number of clusters, the performance of Hard GMM 
drops, whereas Usual GMM shows no significant pattern. 

Our study has shown that despite having some disadvantages, Hard EM 
works at par with Usual GMM. The results on real data sets involving gene 
expression and biochemical analysis confirm the same. Thus, our study 
recommends the use of Modified Hard EM for clustering purposes. The 
proposed model is expected to yield a result at least as good as a standard 
EM algorithm in the situations we have considered in our study. 
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Chapter 6

Flexible Multivariate Mixture Mod-
els: A Comprehensive Approach for
Modeling Mixtures of Non-Identical
Distributions

Summary

This paper introduces a novel and flexible approach to constructing mixture models that
incorporate both identical and non-identical distributions, such as combinations of mul-
tivariate skew normal and multivariate generalized hyperbolic distributions. Unlike tra-
ditional models, which use mixtures of only identical distributions, this new framework
allows for all possible permutations of distributions. It demonstrates that conventional
mixture models are specific cases within this broader framework. The effectiveness of the
proposed model is validated through its application to both simulated and real-world data,
showing its ability to identify underlying patterns and accurately estimate parameters.
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Summary

The mixture models are widely used to analyze data with cluster structures and the mixture of
Gaussians is most common in practical applications. The use of mixtures involving other multivar-
iate distributions, like the multivariate skew normal and multivariate generalised hyperbolic, is also
found in the literature. However, in all such cases, only the mixtures of identical distributions are
used to form a mixture model. We present an innovative and versatile approach for constructing
mixture models involving identical and non-identical distributions combined in all conceivable per-
mutations (e.g. a mixture of multivariate skew normal and multivariate generalised hyperbolic). We
also establish any conventional mixture model as a distinctive particular case of our proposed
framework. The practical efficacy of our model is shown through its application to both simulated
and real-world data sets. Our comprehensive and flexible model excels at recognising inherent pat-
terns and accurately estimating parameters.

Key words: EM algorithm; maximum likelihood estimates; mixture model; mixture of non-identical
distributions; multivariate generalised hyperbolic distribution; multivariate skew normal distribution.

1 Introduction

The analysis of complex data structures exhibiting inherent clustering has been a persistent
challenge across various fields, spanning from biology (Balaban et al., 2019; Petegrosso
et al., 2020) and finance (Li et al., 2021) to image processing (Kim et al., 2020) and social sci-
ences (Grimmer et al., 2021). There are two prominent paradigms in clustering: model-based
approaches and algorithms rooted in similarity or distance measures. In the former, such as
the Gaussian mixture model (GMM) (McLachlan et al., 2019), the focus is on extracting clus-
ters by fitting a mixture of distributions to the data. Meanwhile, similarity-based algorithms
such as hierarchical clustering (Ward Jr, 1963) and KMeans (MacQueen et al., 1967) create
clusters by quantifying the relationships or distances between data points.
The mixture models, in particular, have emerged as a versatile and widely adopted framework

for addressing the challenge of clustering complex data sets. These models enable the identifi-
cation of latent sub-populations within heterogeneous data sets, accommodating variations in
observed data points while capturing the underlying distribution of the data. The Gaussian mix-
ture model, a quintessential representative of mixture models, assumes that data within each
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cluster follows a multivariate Gaussian distribution. Despite its prevalence, the practicality of
mixture models extends beyond Gaussian distributions. The literature increasingly highlights
the potential of alternative multivariate distributions, such as the multivariate t-distribution
(MVT), the multivariate skew normal (MSN) and multivariate generalised hyperbolic (MGH)
distributions, as promising candidates for modeling complex data structures. Browne &
McNicholas (2015) have shown how to model multivariate data with mixtures of multivariate
generalised hyperbolic distributions. On the other hand, Lin (2009) and Abe et al. (2021) pro-
vided vivid descriptions for fitting mixtures of multivariate skew normal distributions. We find
mixture models with different special forms of multivariate generalised hyperbolic distribution
as well. Mixtures involving the multivariate normal inverse Gaussian (MNIG) distribution
(O’Hagan et al., 2016), the skew t distribution (Lee & McLachlan, 2014; Vrbik &
McNicholas, 2012) and the variance-Gamma distribution (McNicholas et al., 2013) have also
been used. Cabral et al. (2012) explored a versatile class of models comprising finite mixtures
of multivariate skew normal independent distributions. Their investigation specifically
emphasised finite mixtures encompassing skew normal, skew t, skew slash and skew contami-
nated normal distributions. Conversely, Zehra Doru et al. (2021) introduced finite mixtures of
multivariate skew Laplace distributions as a means to effectively capture both skewness and
heavy-tailedness within heterogeneous data sets.

However, the evolution of mixture models extends beyond the choice of a distribution. His-
torically, mixture models have adhered to the principle of combining components of the same
underlying distribution. Despite the expanding array of distribution choices, this foundational
concept remains the core of multivariate finite mixture model theory. In their study, Doğru &
Arslan (2016) employed univariate two-component mixtures within the context of mixture
regression models. Specifically, their analysis incorporated a combination of normal and
t distributions, as well as skew t and skew normal distributions. However, within unsupervised
learning scenarios, the utilisation of multivariate mixtures comprising both identical and
non-identical distributions remains undone. Addressing this, we present an innovative and
versatile framework that overcomes traditional boundaries, enabling the mixture of diverse
distributions in all possible permutations. Hence, we create a single framework that includes
traditional mixture models as specific examples, prompting a fresh perspective on the extent
of flexibility and utility offered by mixture modeling. Moreover, our framework tackles the
difficult task of estimating parameters in mixture set up involving complex multivariate distri-
butions. We do so by using classification EM or hard EM (Celeux & Govaert, 1992), which
exploits known maximum likelihood estimates (MLEs) of the parameters of the mixing
densities to efficiently model various distribution mixtures, avoiding the complications of para-
metric inference. We also provide proof of convergence for hard EM involving non-identical
distributions. Secondly, the suggested framework is incredibly useful in addressing real-world
challenges related to estimating model parameters and recognising patterns. These challenges
are common in various applications. Our flexible framework enhances the precision and
strength of model-based analyses.

To validate the usefulness of our suggested model, we thoroughly assess its performance
using both simulated and real-world data sets. These empirical investigations provide evidence
of the framework’s effectiveness in capturing the complexities of intricate data patterns, ad-
dressing tasks like clustering, parameter estimation and fitting distributions to multivariate data.
We explore an appropriate criterion for selecting the optimum model from various mixtures.
Additionally, we offer methods to validate the chosen model through goodness-of-fit
evaluations.

The remainder of the paper is organised as follows. Section 2.1 discusses briefly the multivar-
iate distributions used in our proposed mixture models. Section 2.2 details how to formulate
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mixture models using these different mixture densities. Section 3 presents the data sets used in
our applications, and the results of our proposed model are discussed. Section 4 states the lim-
itations of our study, and finally, Section 5 summarises the primary findings and examines po-
tential avenues for further exploration.

2 Methods

In this section, we begin by giving a quick overview of the types of multivariate distributions
we use in our proposed mixture models. After that, we explain how to set up mixture models
using these different mixture densities.

2.1 Multivariate Distributions

Below are concise descriptions of the multivariate distributions considered in our study. We
provide a summary of each distribution and highlight any special forms, where relevant.

2.1.1 Generalised hyperbolic distribution

Before delving into the generalised hyperbolic distribution, we first discuss the generalised
inverse Gaussian (GIG) Distribution. It was first introduced by Good (1953). Later many other
authors (see Barndorff-Nielsen & Halgreen, 1977; Blæsild, 1978; Halgreen, 1979;
Jorgensen, 2012) discussed its statistical properties which laid down the foundation for the ap-
plication of the GIG distribution. IfW ∼ GIGðψ; χ; λÞ, the probability density function can be
written in the form

f ðwjψ; χ; λÞ ¼ ðψ=χÞλ=2wλ � 1

2Kλ
ffiffiffiffiffiffi
ψχ

p� � exp �ψwþ χ=w
2

� �
; (1)

forw > 0, whereψ; χ ∈ Rþ andKλ is the modified Bessel function of the third kind with index
λ. Gamma distribution and inverse Gaussian distribution are special forms of the GIG distribu-
tion. When χ ¼ 0 and λ > 0, the GIG density reduces to a gamma density. On the other hand,
when λ ¼ �1=2, the GIG density can be seen as a density of an inverse Gaussian distribution.
The generalised hyperbolic distribution has been discussed vividly by McNeil et al. (2015). If

X follows a generalised hyperbolic distribution, then its probability density function is given by

f ðxjϑÞ ¼ χ þ δðx; μjΣÞ
ψ þ γ0Σ�1γ

� �λ � p=2
2

�
½ψ=χ�λ=2Kλ � p=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ þ γ0Σ�1γ
� �

χ þ δðx; μjΣÞ½ �
q	 


ð2πÞp=2jΣj1=2Kλ
ffiffiffiffiffiffi
χψ

p� �
exp½ðμ � xÞ0Σ�1γ�

;

(2)

where δðx; μjΣÞ ¼ ðx � μÞ0Σ�1ðx � μÞ is the squared Mahalanobis distance between x and μ
and ϑ ¼ ðλ; χ; ψ; μ; Σ; γÞ denotes the parameter space.
A p� 1 generalised hyperbolic random vector X can be represented as a variance-mean mix-

ture, consisting of a generalised inverse Gaussian (GIG) random variable W and a multivariate
Gaussian random vector Z. A random vector X follows a multivariate generalised hyperbolic
(MGH) distribution, if

X ¼ μþW γþ
ffiffiffiffiffi
W

p
Z; (3)

where
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(i) Z ∼ Nð0; Σp � pÞ,
(ii) μ; γ ∈ ℝp,
(iii) W ≥ 0 is a scalar-valued random variable, which is independent of Z and follows

GIGðλ; χ; ψÞ.

It is important to note that there are other different definitions available that lead to different
parameterisations. We now discuss several limiting cases of the MGH distribution.

• Multivariate hyperbolic distribution: A random vector X is said to have a multivariate hy-

perbolic (MVH) density if it follows an MGH distribution with λ ¼ pþ 1

2
. It is to be noted

that if λ ¼ 1, its univariate margins follow one-dimensional hyperbolic distributions.
• Normal inverse Gaussian distribution:When a random vectorX follows an MGH distribu-
tion with λ ¼ �1=2, it is said to have a multivariate normal inverse Gaussian (MNIG) density.

• Variance-Gamma distribution: The variance-Gamma distribution (Barndorff-Nielsen, 1978)
is also known as generalised Laplace distribution or the Bessel function distribution. A ran-
dom vector X is said to have a multivariate variance-Gamma density if it follows an MGH
distribution with λ > 0 and χ→0.

• Multivariate Student-t distribution: The multivariate t-distribution (MVT) is also a special
case of a MGH distribution. Whenψ ¼ 0; λ < 0 and γ ¼ 0, by setting the degree of freedom
ν ¼ �2λ2, a MGH distribution can be seen as a multivariate student t distribution.

• Multivariate skew t distribution: It is also possible to derive a multivariate skew t Distribu-
tion (MST) using a MGH distribution. A random vectorX is said to have a multivariate skew t
density if it follows a MGH distribution with ψ ¼ 0.

2.1.2 Multivariate normal distribution

For a p� 1 continuous random vector X, the density of a p variate multivariate normal dis-
tribution (MVN) is given by

f ðxjμ; ΣÞ ¼ 1

ð2πÞp=2jΣj1=2
exp �1

2
ðx � μÞTΣ�1ðx � μÞ

� �
; (4)

where μ is a p� 1vector,Σ is a p� p symmetric, positive definite matrix and the support ofX is
IRp.

The maximum likelihood estimates of μ and Σ are given by μ̂ ¼ 1

N

X
N
i¼1xi; Σ̂ ¼ 1

N

X
i

ðxi � μ̂Þðxi � μ̂ÞT .

2.1.3 Multivariate skew normal distribution

The multivariate skew normal distribution (MSN) was first formulated by Azzalini &
Capitanio (1999). Let us first consider the following stochastic representation.

Suppose,
Y

Y 0

� �
∼ Np þ 1ð0; Ω∗Þ; Ω∗ ¼ Ω δ0

δ0T 1

� �
, where δ0 ∈ ℝp andΩ is a p� p sym-

metric positive definite matrix. Then, U ¼ sgnðY 0ÞY has a density

f ðuÞ ¼ 2ΦðαTuÞϕpðu; 0; ΩÞ; u ∈ ℝp; (5)
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where α ¼ Ω�1 δ0
ð1 � δ0TΩ�1δ0Þ1=2

; Φð · Þ is the cumulative distribution function of the univar-

iate standard normal distribution and ϕpðu; 0; ΩÞ is the p-variate normal density function with
mean vector 0 and covariance matrix Ω. Now, X ¼ U þ μ, is said to have a p dimensional mul-
tivariate skew normal distribution with location μ, which is expressed as SNpðμ; Ω; αÞ.
Themethodology for derivingmaximum likelihood estimates for the parameters governing the

multivariate generalised hyperbolic distribution and the multivariate skew normal distribution is
outlined in the appendix section. Additionally, pertinent properties of the generalised inverse
Gaussian distribution are also presented for comprehensive understanding.

2.2 Mixtures of Non-Identical Distributions

In this section, we introduce the mixture model with mixture densities from different
distributions.
Let X1; X 2; …; XN denote a random sample of size N, where X i is a p dimensional random

vector with probability density function f ðxiÞ on ℝp. We can write X ¼ ðXT
1 ; …; XT

N ÞT , where
the superscript T denotes vector transpose and N denotes the total number of observations. An
observed random sample is denoted by x ¼ ðxT1 ; …; xTN ÞT, where xi is the observed value of the
random vector X i.
The density of a mixture model with k components for one observation xi is given by the mix-

ture density

pðxiÞ ¼
Xk
j¼1

πjf jðxijαjÞ ; (6)

where π ¼ ðπ1; …; πkÞ contains the corresponding mixture proportions with
X

k
i¼1πi ¼ 1 and

0 ≤ πi ≤ 1. f jðxijαjÞ is the density component of mixture j and αj; j ¼ 1; 2; …; k, are vectors of
component specific parameters for each density. Then α ¼ ðα1; …; αkÞ denotes the vector of all
parameters (except π) of the model. The log-likelihood of the model for a sample of size N is
then given by

log pðx1; …; xN jα; πÞ ¼
XN
i¼1

log
Xk
j¼1

πjf jðxijαjÞ
" #

: (7)

The parameters can be estimated using a hard EM algorithm with some modifications. For
that purpose, let us introduce latent variablesZi, which are categorical variables taking on values
1; …; k with probabilities π1; …; πk such that PrðX ijZi ¼ jÞ ¼ f jðxiÞ; j ¼ 1; …; k.
Further probabilities γij are introduced (conditional on the observed data X ¼ x and the pa-

rameters α):

γijðxiÞ ¼ PrðZi ¼ jjX ¼ x; αÞ ¼ πjf jðxijαjÞP
k
j¼1πjf jðxijαjÞ

: (8)

Equation (8) is the probability of cluster membership j for a data point xi. In the case of a hard
EM, the following objective function is optimised.

Θ̂ ¼ argmax
Θ

max
z1; …; zN

pΘðx1; x2; …; xN ; z1; z2; …; zN Þ ; (9)
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where Θ denotes all parameters ðπ; αÞ. Hard EM maximises the classification likelihood. It ap-
plies a delta function approximation to the posterior probabilities PrðZi ¼ jjX¼x; αÞ, where
Zi; i ¼ 1; …; N are the latent variables representing class labels. For iteration t the approxima-
tion changes the E step as follows:

PrðZt
i ¼ jjX ¼ x; αtÞ ≈ Iðj ¼ zt∗i Þ; (10)

where zt∗i ¼ argmax
j

γtij ¼ argmax
j

logPrðxijZt
i ¼ j; αtÞþlogPrðZt

i ¼ jjαtÞ (Murphy, 2012).

In other words, hard EM includes a classification step between E and M step, where data
points are assigned to their respective clusters based on the maximum posterior probability zt∗i .

At the M step, we obtain the estimates of π and α. For a hard EM, πj is estimated by
Nj

N
, where

Nj ¼ number of data points in cluster j. αj’s are estimated by ML estimation method considering
only the assigned observations of cluster j.

In addition to the general setting of a hard EM, we include an extra step at the M step of the
algorithm as a modification proposed by Pal & Heumann (2022). Instead of obtaining the MLE
right away at the M step, we can do a quality check of the model. For cluster j; j ¼ 1; …; k we
denote

αnewj ¼
αinitj if cluster j is empty

αMLE
j otherwise

(
(11)

where αinitj is the initial value of the parameter αj. Hard EM is well known for its greedy conver-
gence; as a result, often, the algorithm converges with one or more clusters being empty. Hence,
we would like to force the algorithm to re-iterate if one or more clusters are found to be empty at
each M step. This adjustment becomes particularly crucial when we do not estimate the number
of clusters and consider that the number of clusters (k) to be pre-specified. After this step, the
log-likelihood is obtained using the updated parameter values. And the entire process is contin-
ued till convergence. The algorithm is displayed below.

6 PAL AND HEUMANN

International Statistical Review (2024)
© 2024 International Statistical Institute.

 17515823, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/insr.12593 by L

udw
ig-M

axim
ilians-U

niversität, W
iley O

nline L
ibrary on [12/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

152



For our experiments, we used 0.0001 as the value of ϵ in Algorithm 1. The algorithm is writ-
ten in Python programming language (Van Rossum & Drake, 2009) for further data analysis.
Initialisation of the EM algorithm requires some starting values of the parameters. As we are

using different mixture densities, different techniques need to be used for different combinations
of densities. It is well known that the EM algorithm is quite sensitive to the choice of the starting
value (Melnykov &Melnykov, 2012). In this regard, hard EM is not any different. However, hard
EM can offer reliable performance with the right initialisation methods. Various methods of
selecting starting values are found in the literature, including random initialisation (Hipp &
Bauer, 2006), iteratively constrained EM (Lubke &Muthén, 2007), KMeans clustering (Steinley
& Brusco, 2011) and sum scores (Bartholomew et al., 2011). However, KMeans initialisation
and iteratively constrained EM with random initialisation are more favored for improved perfor-
mance (Shireman et al., 2017). There are certain robust versions of the EM algorithms that also
take into account the number of clusters as well (Yang et al., 2012). For our study, we propose to
perform KMeans clustering first, and then obtain the maximum likelihood estimates of the pa-
rameters for each cluster by the techniques mentioned in the appendix section. For example, if
we want to fit a mixture of a multivariate skew normal and a multivariate generalised hyperbolic
distribution, at first, we perform a KMeans clustering to divide the data points into two clusters.
And then we obtain theMLE of a multivariate skew normal and a multivariate generalised hyper-
bolic distribution using the data points available in those two respective clusters. These values of
the estimated parameters serve as the initial guess of the parameters to be used in our proposed
EM algorithm. The initial values ofπ are computed using the ratio of the number of cluster mem-
bers obtained by the KMeans algorithm and the number of total observations.
We can formulate mixture models with different mixture densities described in the Section

2.1. Distributions that are not considered in our study can also be used if the maximum likeli-
hood estimates of the distribution parameters can be obtained. In this way, any specific combi-
nation of mixtures becomes a special case of our proposed model. Although we can fit the mix-
ture model for any combination of densities, for practical purposes, it can be of interest to know
which combination of mixture densities yields the optimum result. We can fit all combinations
of mixture densities and then choose the best option by some criterion like Akaike information
criterion (AIC) (Akaike, 1974) or Bayesian information criterion (BIC) (Schwarz, 1978). How-
ever, it is enough in most cases if we use different combinations of multivariate generalised hy-
perbolic and multivariate skew normal distributions, as these distributions can be used to model
a wide variety of data types (e.g. symmetric and asymmetric).

2.2.1 Convergence

Our proposed model uses a hard EM algorithm to estimate the parameters of the mixture
model. Although hard EM uses an approximation to estimate the MLE, it maximises the clas-
sification likelihood by obtaining the MAP estimate, that is, the mode of the distribution of
PrðZi ¼ jjX ; αÞ. Celeux & Govaert (1992) have shown that for a mixture of identical distribu-
tions at each iteration the classification likelihood increases and if ML estimates of the mixture
densities are well defined, it converges to a stationary point. It can be easily extended for a mix-
ture of non-identical distributions.
Let, P ¼ ðP1; P2; …; PkÞ be the k partitions or clusters. Then a classification maximum like-

lihood (CML) criterion can be defined as

CðP; π; αÞ ¼
Xk
j¼1

X
xi ∈ Pj

log πj fj ðxi; αjÞ
h i

: (12)
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Proposition: Any sequence ðPt; πt; αtÞ for iteration t increases the CML criterion C and the
sequence CðPt; πt; αtÞ converges to a stationary point. Furthermore, if the ML estimates of the
parameters are well-defined, the sequence ðPt; πt; αtÞ converges to a stationary position.

Proof At first we show that CML criterion increases at each iteration step. Since, ðπt; αj tÞ max-
imises

P
xi

∈ Pt
jlog πjf jðxi; αjÞ
h i

, we can directly write from Equation (12)

CðPt; πt þ 1; αt þ 1Þ ≥ CðPt; πt; αtÞ
Now, xi ∈ Pt þ 1

j is equivalent to γt þ 1
ij ≥ γt þ 1

ij0 ∀j0 ≠ j, which implies

πt þ 1
j f jðxi; αt þ 1

j Þ ≥ πt þ 1
j0 f j0 ðxi; αt þ 1

j0 Þ
Thus, we can write

CðPt þ 1; πt þ 1; αt þ 1Þ ≥ CðPt; πt þ 1; αt þ 1Þ
Since there is a finite number of partitions of the sample into k clusters, the increasing sequence
CðPt; πt; αtÞ takes a finite number of values, and as a result, it converges to a stationary value. If

the ML estimates of πt and αt are well defined, for a t large enough we can deduce, πt ¼ πt þ 1

and αt ¼ αt þ 1. That directly leads to Pt ¼ Pt þ 1. Thus, for a t large enough, we can write

CðPt; πt; αtÞ ¼ CðPt; πt þ 1; αt þ 1Þ ¼ CðPt þ 1; πt þ 1; αt þ 1Þ
As mentioned above, the algorithm requires well defined ML estimates of αj ’s. The ML estimates of
a multivariate skew normal and a multivariate generalised hyperbolic distributions are obtained
using the usual EM algorithm, which again enjoys good convergence properties (Dempster
et al., 1977). The EM algorithm has a reliable global convergence under fairly general conditions.
Unless the initial values of the parameters are not too bad, it converges nearly always to a local max-
imum (McLachlan & Krishnan, 2007). □

2.2.2 Computation of standard error

A common critique of the EM algorithm is its failure to automatically furnish an estimate of
the maximum likelihood estimate’s (MLE) covariance matrix, a feature provided by certain other
methods like Newton-type techniques. Typically, the asymptotic covariance matrix of the ML es-
timates is estimated using the inverse of the observed information matrix. While the direct as-
sessment of the observed information matrix after MLE computation seems straightforward, an-
alytically evaluating second-order derivatives of the incomplete-data log-likelihood can prove
challenging and laborious, especially contingent upon the underlying distribution. In practice,
many researchers employ an approximation (Basford et al., 1997) tailored for independent data
to derive the Fisher information matrix. Let lðαjxiÞ be the complete data log-likelihood function
when x ¼ xi. Then an approximated empirical information matrix is given by

Iðα̂; xiÞ ¼
XN
i¼1

sðxi; α̂ÞsT ðxi; α̂Þ ; (13)

where sðxi; α̂Þ ¼ ∂lðαjxiÞ
∂α






α¼α̂

are the individual scores for i ¼ 1; …; N . An advantage of

employing classification EM algorithm lies in its capability to directly utilise the maximum
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likelihood estimates (MLE) of the parameters of the mixture component densities, along with
their respective information matrices. This eliminates the need for additional computations. Af-
ter model fitting, for each cluster j, the information matrix of parameter αj can be calculated
using established formulas only considering the data points assigned to cluster j. Many re-
searchers (Cabral et al., 2012; Lin, 2009) have provided formulas for the observed information
matrices for the parameters in a mixture of identical distributions. These can be readily used by
setting γij ¼ 1 and k ¼ 1. Thus, the information matrix of αj is given by Iðα̂j ; xi ∈ PjÞ. Then the
standard errors are obtained using the square root of the diagonal elements of the matrix
I�1ðα̂j ; xi ∈ PjÞ. It is to be noted that this relies on an approximate estimate of the observed
Fisher information matrix. It is data driven and is contingent upon the number of elements
assigned to each cluster. Consequently, it serves as a means of acquiring conditional uncertainty.
The description above outlines the general approach for computing standard errors in the

context of mixtures of non-identical distributions. However, in practice, obtaining the score
vectors can be computationally demanding, particularly for certain distributions like the multi-
variate generalised hyperbolic distribution where they are not readily available. Addressing this
challenge would necessitate further research to develop a more comprehensive practical
solution.

2.2.3 Identifiability

For finite mixture models, two types of identifiability problems might occur, such as generic
problem and supposedly trivial problem (see Frühwirth-Schnatter, 2006). The trivial
identifiability problem refers to issues that arise as a result of empty mixture proportionsπj, mix-
ture densities with the same parameters, and invariability of the likelihood of permutations of
the mixture components (also known as label switching). By limiting the viable parameter
space, these issues can be avoided. Let us constrain the whole parameter space Ω to Ω∗ ⊂ Ω
such that:

• πj > 0∀j ¼ 1; …; k,
• αj ≠ αl ∀ j ≠ l; j; l ∈ 1; …; k,
• πj < πl ∀1 < j < l < k.

These constraints can provide solutions for trivial identifiability issues. For the generic
identifiability problem, we must consider a specific combination of mixture densities. Our pro-
posed model considers multivariate generalised hyperbolic distributions, including five limiting
cases (see Section 2.1.1), multivariate normal and multivariate skew normal distributions. Al-
though multivariate normal and multivariate skew normal distributions are identifiable, the mul-
tivariate generalised hyperbolic distribution is not identifiable when we use the parametrisation
ðλ; χ; ψ; μ; Σ; γÞ (Browne & McNicholas, 2015). It can be easily seen that
MGHðλ; χ; ψ; μ; Σ; γÞ and MGHðλ; χ=r; rψ; μ; rΣ; rγÞ have the same density for any r >
0. This problem is solved by introducing a suitable constraint, for example, ensuring that the
determinant of the dispersion matrix Σ is 1. However, this restriction can reduce the flexibility
of model fitting. Instead, we can simply ensure that the expected value of the generalised inverse
Gaussian distributed mixing variable W is 1. Thus, the parametrisation ðλ; α; μ; Σ; γÞ (see appen-
dix section) is seen as a better option to deal with the identifiability issue, which makes use of
the mixture properties of the MGH distribution mentioned in the appendix section. However, we
must also note that this parametrisation is not valid whenα¼0 and λ ∈ ½�1; 0�which corresponds
to a Student-t distribution with non-existing variance.

9Flexible Multivariate Mixture Models: A Comprehensive Approach for
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2.2.4 Model diagnostics

The Kolmogorov–Smirnov (KS) goodness of fit test is a tool used to evaluate how well a
model fits multivariate data. In the case of univariate data, the test compares the empirical cu-
mulative distribution function (ECDF) of the data with the model’s cumulative distribution
function (CDF). The standard univariate Kolmogorov–Smirnov test statistic is given by

D ¼ sup
x

FN ðxÞ � F̂ ðxÞ

 

 ;
where FN ðxÞ represents the empirical cumulative distribution function (ECDF) and F̂ ðxÞ is the
cumulative distribution function (CDF) of the fitted model (Massey Jr, 1951). However, for
multivariate data, constructing the ECDF is not problematic in principle, but challenges arise
when calculating the multivariate KS statistic and its null distribution. The empirical cumulative
distribution function (ECDF) for multivariate data can be defined as

FN ðx1; x2; …; xpÞ ¼ PðX 1 ≤ x1; X 2 ≤ x2; …; Xp ≤ xpÞ :
In other words, it represents the proportion of observations that satisfy all p inequalities.

An innovative alternative approach generally used by researchers (see O’Hagan et al., 2016)
involves log density values to assess model fit. This method uses the model’s log density values,
effectively reducing the problem’s complexity to univariate density values and eliminating the
need for complicated numerical integration techniques.

To elaborate, for hypothesis testing, the KS statistic compares an empirical distribution func-
tion to a fully specified hypothesised distribution function. In simpler terms, the KS statistic rep-
resents the maximum absolute difference between the two cumulative distributions. In our
study, we follow an alternative approach where we assume that the original data (whether real
or simulated) stems from a fully specified distribution. Post model fitting, we calculate the
ECDF by ordering data points based on their log density values. We consider these ECDFs
as the representative of the reference or hypothesised distribution. Subsequently, employing
the estimated parameter values, we generate multiple data sets and their corresponding ECDFs.
Our objective is to assess whether the underlying distribution of these simulated data sets, gen-
erated by the estimated parameter values, aligns with the hypothesised distribution. To achieve
this, we compare the ECDFs derived from the original data with those of the simulated data sets.
A well-fitted model should exhibit ECDF patterns of the hypothesised distribution, closely
matching those incorporating estimated parameter values. Thus we can visually compare the
ECDFs and gauge the model’s goodness of fit. This visual diagnostic helps determine how ef-
fectively the model captures the distribution of the underlying data in a multivariate setting. This
alternative approach forms the basis of our simulation study and real data analysis, providing
valuable insights into model performance and goodness of fit. Please note that we do not derive
a test statistic and compare it with a critical value at a predetermined significance level. Instead,
our approach draws inspiration from the Kolmogorov–Smirnov statistic, serving as a graphical
diagnostic tool to evaluate the goodness of fit of the model.

3 Results

We apply our proposed model to both simulated and real data sets. For our simulation study,
our main objective is to find out if our proposed model provides a good fit in terms of parameter
estimation and goodness of fit evaluation. On the other hand, for our real data sets, we try to find
out which combination of mixtures provides the best fit and whether that chosen mixture ex-
hibits a good fit. For all the goodness of fit evaluations we use 100 simulations using the esti-
mated parameter values. Details of the data sets and the results are described below.
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3.1 Simulated Data Sets

Mixture models serve as invaluable tools for unsupervised learning, particularly in scenarios
where true class labels are unknown. However, in simulation studies, we often have access to
the true class labels, providing a unique opportunity to evaluate clustering performance. To con-
duct thorough assessments, we employ metrics such as adjusted Rand index (ARI) (Hubert &
Arabie, 1985), normalised mutual information (NMI) (Ana & Jain, 2003; Kreer, 1957) and ho-
mogeneity score (HMS) (Rosenberg & Hirschberg, 2007). These metrics offer comprehensive
insights into the efficacy of clustering algorithms, enabling robust evaluations of their perfor-
mance. Higher scores of these metrics indicate a better performance. In our simulation study,
whenever we evaluate the ARI, NMI, HMS or execution time, we conduct 20 repetitions of
the experiments and obtain the mean and standard deviation. We use nine different data sets
for our simulation study. A brief description of the data sets are given below along with the true
data generating process (DGP) in Table 1.
For our first experiment, we draw 3 000 random samples with different proportions from a

multivariate skew normal distribution, a multivariate generalised hyperbolic distribution and a
multivariate normal inverse Gaussian distribution. A mixture model with the same mixing dis-
tributions (MSN, MGH and MNIG) has been fitted. We also fit four other mixture models with
identical mixing distributions to compare the clustering patterns. The resulting data set with true
clusters and predicted clusters is shown below.
Figure 1 shows how different mixture models find pattern in the data we simulated. We see

that mixture of skew normal, multivariate generalised hyperbolic and multivariate normal in-
verse Gaussian distribution resembles the most with the true cluster patterns. Although other
mixture models such as mixture of multivariate generalised hyperbolic and mixture of Gaussian
also perform well, the difference is seen in clustering the outlier data points. We see that in this
case, mixture of non identical distributions (MSN, MGH and MNIG) provides a better result.
For our next experiment we simulate 3 000 random samples with different proportions from
multivariate skew normal, multivariate generalised hyperbolic and multivariate skew normal
distribution. Like before we compare the clustering patterns of different mixture models. The
result is shown below.
From Figure 2, we can see how different mixture models work on simulated data set 2. Here,

we see that the cluster pattern shown by mixture of multivariate skew normal, multivariate gen-
eralised hyperbolic and multivariate skew normal distribution comes closest to the original one.
Other mixture models also performed well, however those struggled to detect the correct clus-
ters for the data points which are further away from the centre. Nevertheless to be certain if a
mixture model performs well, it is necessary to perform a goodness of fit evaluation. We

Table 1. Description of the simulated data sets.

Data set Sample size (N) Number of clusters (k) Dimension (p) True DGP

Simulated data set 1 3 000 3 2 MSN, MGH and MNIG
Simulated data set 2 3 000 3 2 MSN, MGH and MSN
Simulated data set 3 2 200 2 2 MSN and MGH
Simulated data set 4 2 200 2 2 MSN and MVN
Simulated data set 5 3 000 3 7 MSN, MSN and MVT
Simulated data set 6 3 000 3 7 MSN, MNIG and MNIG
Simulated data set 7 300 3 3 MSN, MGH and MGH
Simulated data set 8 300 3 3 MSN, MGH and MNIG
Simulated data set 9 400 2, 3, 4, 5, 6 2, 4, 6, 8, 10, 12 See Table 9
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provide the goodness of fit evaluations for mixture of MSN, MGH and MNIG and mixture of
MSN, MGH and MSN for simulated data set 1 and 2 respectively.

Figures 3 and 4 show the goodness of fit evaluation of the ground truth models. We see that
the ECDFs on the original data and 100 simulated data sets drawn using the estimated param-
eter values are completely superimposed on each other; which implies a very good fit. It is con-
sistent with the visual resemblance of the true cluster patterns shown for the respective data sets.
Moreover, as demonstrated in Table 2, the mixture models comprising MSN, MGH and MNIG
distributions, as well as those combining MSN, MGH and MSN, exhibit superior performance
compared to mixtures of identical distributions across simulated data sets 1 and 2. This superi-
ority is evident across various clustering metrics, including adjusted rand index (ARI), normal-
ised mutual information (NMI) and homogeneity score (HMS), further reinforcing the robust-
ness of the goodness-of-fit results.

It is also of our interest to compare the estimated parameter values with the true values. For
that purpose, we conduct two more experiments (simulated data sets 3 and 4) with simpler
structures. For case 1, we draw random samples from a multivariate skew normal distribution
and a multivariate generalised hyperbolic distribution. For case 2, we draw random samples
from a multivariate skew normal distribution and a multivariate normal distribution. The de-
tailed parameter values are given below.

FIGURE 1. True and predicted clusters by different mixture models for simulated data set 1 (one among 20 repeated exper-
iments), true DGP: MSN, MGH and MNIG.
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Tables 3 and 4 show the true and estimated values of the parameters from a mixture of a mul-
tivariate skew normal and a multivariate generalised hyperbolic distribution and a mixture of a
multivariate skew normal and a multivariate normal distribution, respectively. We see that the
estimated values are very close to the true values implying an evident good fit. However to vi-
sualise the performance goodness of fit evaluations for the above cases are conducted. The re-
sults are shown below.
From Figures 5 and 6, we see that, both for case 1 and 2, the model exhibits good fit. Addi-

tionally, we evaluate the clustering performance of the fitted models on simulated data sets 3 and
4. Figure 7 illustrates scatter plots of these data sets with the predicted clusters. Analysis pre-
sented in Table 5 reveals exemplary performance of the fitted models, as evidenced by high
scores in terms of ARI, NMI and HMS metrics. The minimal overlap observed between clusters
further bolsters the efficacy of the clustering algorithm.
We systematically investigate the bias and mean squared error (MSE) of our model parame-

ters using simulated data set 3, where the sample size ranges from 220 to 2 200. Figures 8 and 9
depict the bias-MSE plots specifically for the location and skewness parameters. Notably, our
analysis reveals consistently minimal bias and MSE across the range of sample sizes, indicating
robust estimation performance. Furthermore, with increasing sample size, we observe a consis-
tent trend of decreasing MSE across all situations. This phenomenon underscores the advantage

FIGURE 2. True and predicted clusters by different mixture models for simulated data set 2 (one among 20 repeated exper-
iments), true DGP: MSN, MGH and MSN.
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of larger sample sizes in enhancing estimation precision. The asymptotic properties of the
expectation-maximisation (EM) algorithm suggest that, under certain regularity conditions, pa-
rameter estimates converge to their true values as sample size increases. Our findings align with
this theoretical framework, providing empirical validation of increasingly accurate parameter
estimation with larger sample sizes.

Furthermore, we undertake two more simulation experiments where we fit all possible com-
binations of mixture models and verify the chosen model using BIC values. At first, we draw
3 000 random samples in different proportions from multivariate skew normal distribution, mul-
tivariate skew normal distribution and multivariate t distribution. For the later, we draw 3000
random samples in different proportions from multivariate skew normal distribution, multivar-
iate normal inverse Gaussian distribution and multivariate normal inverse gaussian distribution.
The top 10 performing mixture models based on BIC values are given below.

FIGURE 4. Goodness of fit evaluation for simulated data set 2.

FIGURE 3. Goodness of fit evaluation for simulated data set 1.
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From Table 6, we see that the correct mixture models are chosen by the BIC values. We also
see many mixtures of non identical distributions among the top performers. Furthermore, we
perform goodness of fit evaluation to verify if the models provide a good fit.

Table 2. Clustering performance on simulated data sets 1 and 2.

Data set Model ARI NMI HMS

Simulated data set 1 MSN, MGH and MNIG (true DGP) 0:79 ± 0:04 0:75 ± 0:03 0:75 ± 0:03
MSN, MSN and MSN 0:76 ± 0:04 0:72 ± 0:03 0:72 ± 0:03
MVN, MVN and MVN 0:77 ± 0:04 0:73 ± 0:03 0:73 ± 0:03
MGH, MGH and MGH 0:78 ± 0:04 0:74 ± 0:03 0:74 ± 0:03
MNIG, MNIG and MNIG 0:78 ± 0:04 0:74 ± 0:03 0:73 ± 0:03

Simulated data set 2 MSN, MGH and MSN (true DGP) 0:82 ± 0:04 0:80 ± 0:03 0:80 ± 0:03
MSN, MSN and MSN 0:80 ± 0:02 0:78 ± 0:01 0:78 ± 0:01
MVN, MVN and MVN 0:81 ± 0:02 0:78 ± 0:01 0:78 ± 0:01
MGH, MGH and MGH 0:81 ± 0:01 0:79 ± 0:02 0:79 ± 0:02
MNIG, MNIG and MNIG 0:81 ± 0:02 0:79 ± 0:01 0:79 ± 0:02

Table 3. True and estimated parameter values for the mixture of a multivariate skew normal and a multivariate generalised
hyperbolic distribution for simulated data set 3.

Distribution Parameter True value Estimated value

π (0.5454, 0.4546) (0.5454, 0.4546)
MSN μ (4, 7, 9) (3.9889, 6.8482, 9.0319)

Ω 2:3 0:5 0:1

0:5 3:8 0:3

0:1 0:3 2:5

0
B@

1
CA

2:2136 0:4899 0:1765

0:4899 3:8455 0:5023

0:1765 0:5023 2:2842

0
B@

1
CA

δ (2, 1, 7) (2.1779, 1.3875, 6.8092)
MGH λ �3 �4.1121

χ 2 6.2243
ψ 0.5 0.0001
μ (10, 14, 18) (10.1093, 14.0981, 18.0926)
Σ 1:0 0:2 �0:1

0:2 0:8 0:4

�0:1 0:4 1:2

0
B@

1
CA

0:5709 0:1275 �0:0621

0:1275 0:4879 0:2643

�0:0621 0:2643 0:7811

0
B@

1
CA

γ (0.25, 0.5, 0.75) (0.0101, 0.1885, 0.3858)

Table 4. True and estimated parameter values for the mixture of a multivariate skew normal and a multivariate normal
distribution for simulated data set 4.

Distribution Parameter True value Estimated value

π (0.5454, 0.4546) (0.5456, 0.4544)
MSN μ (4, 2, 8) (4.0774, 2.0663, 7.9239)

Ω 2:0 1:5 0:3

1:5 2:0 1:0

0:3 1:0 7:0

0
B@

1
CA

1:6646 1:2363 0:2913

1:2363 1:7686 0:9626

0:2913 0:9626 6:9902

0
B@

1
CA

δ (10, 13, 6) (5.4748, 7.2886, 3.5454)
MVN μ (10, 12, 15) (9.9290, 11.9344, 14.9817)

Σ 2:0 1:5 0:3

1:5 2:0 1:0

0:3 1:0 7:0

0
B@

1
CA

2:1027 1:5855 0:2212

1:5855 4:0346 0:8855

0:2212 0:8855 6:5112

0
B@

1
CA
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From Figures 10 and 11, we see that the chosen mixtures exhibits very good fit. First the
choice of optimum mixture by BIC values and then verifying the goodness of fit provide a com-
prehensive strategy for fitting mixtures of non-identical or identical distributions to multivariate
data. The BIC score consistently excels in model selection, demonstrating a propensity to iden-
tify the true model with high probability when it is among the considered options, especially
with large sample sizes. However, a critical inquiry arises concerning the performance of BIC
when the true mixture densities are absent among the fitted models. To explore this, we exhaus-
tively fit all possible combinations of mixture densities, deliberately excluding the true ones.
Table 7 showcases the top 10 performing mixture models alongside their corresponding BIC
scores. Interestingly, Figures 12 and 13 reveal the goodness-of-fit outcomes of the

FIGURE 6. Goodness of fit evaluation for data set 4.

FIGURE 5. Goodness of fit evaluation for data set 3.
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highest-ranking models when true densities are absent, demonstrating a notably poor fit despite
its low BIC scores. This highlights a crucial caveat: while BIC effectively selects the best model
when true densities are present, in the absence of true densities the model chosen as optimal by
BIC may yield unsatisfactory results.
Utilising the ‘mixsmsn’ R package (Prates et al., 2013), we leverage the implementation of

finite mixtures of scale mixtures of skew normal (SMSN) distributions for comparative analysis
against our proposed model. To facilitate this comparison, we generate two additional data sets,
namely, simulated data sets 7 and 8. The former comprises 300 random samples drawn from
MSN, MGH and MGH distributions with varying proportions, while the latter consists of
300 random samples, drawn in different proportions from MSN, MGH and MNIG distributions.
Figures 14 and 15 visually present these data sets, showcasing both true and predicted clusters
by different models. Table 8 complements this analysis, providing metrics including ARI, NMI,
HMS, BIC and execution time in seconds. Mean values along with standard deviations over 20
repetitions are provided. Additionally, we include in parentheses the percentage of times the
model was selected as the best model based on the corresponding metric. Here, ‘mixsmsn:
MSN’ refers to the mixture of multivariate skew normal, ‘mixsmsn:MST’ denotes the mixture
of multivariate skew t, ‘mixsmsn:MVN’ represents the mixture of multivariate normal, and
‘mixsmsn:MVT’ stands for the mixture of multivariate t distributions, all available within the
‘mixsmsn’ package.
Our findings reveal the superior performance of our proposed model across various metrics in

both data sets, demonstrating higher ARI, NMI, HMS and lower BIC scores compared with the

FIGURE 7. Simulated data sets 3 and 4 with predicted clusters (one among 20 repeated experiments).

Table 5. Clustering performance on simulated data sets 3 and 4.

Metric Simulated data set 3 Simulated data set 4

ARI 0:99 ± 0:01 0:99 ± 0:01
NMI 0:99 ± 0:01 0:97 ± 0:01
HMS 0:99 ± 0:01 0:97 ± 0:01
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alternative models. Out of the 20 repetitions, mixtures of non-identical distributions are consis-
tently chosen as the best model more frequently than any other models across all metrics except
for execution time. Notably, the simplicity of ‘mixsmsn:MVN’ translates into faster execution
times, as anticipated. However, it is evident that mixtures of identical distributions struggle to
capture the true underlying patterns, particularly in data sets with significant long tails and clus-
ter overlap. While ‘mixsmsn:MSN’ and ‘mixsmsn:MST’ exhibit commendable performance in
simulated data set 8 due to their ability to model skewed data, the slight increase in execution
time for mixtures of non-identical distributions is justified by their capacity to accommodate
complex distributions. Ultimately, the notable superiority of non-identical distribution mixtures
underscores their appeal in accurately modeling multivariate data with intricate cluster
structures.

Our assessment of model performance extends to scenarios where both the number of clus-
ters and the data dimensionality vary. To achieve this, we undertake a comprehensive simulation
study (simulated data set 9), encompassing an expanding range of clusters (k) from 2 to 6 and
dimensions (p) from 2 to 12. Initially, from the myriad of possible mixture combinations, we
randomly select a mixture model. Subsequently, parameter values are drawn randomly from
the permissible ranges. Finally, utilising these parameters and mixing densities, we generate ran-
dom samples of size 400 (N ) with varying proportions. Table 9 presents the randomly chosen
mixture models corresponding to each k.

FIGURE 8. Bias-MSE plot of location parameters on simulated data set 3 with increasing sample size over 100 repetitions.
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Our model evaluation is based on multiple criteria, including ARI, NMI, HMS and execution
time in seconds. Figure 16 depict the mean ARI, NMI and HMS scores across increasing num-
bers of clusters and dimensions, while Figure 17 illustrates the corresponding execution times.
The results unveil consistently high ARI, NMI and HMS scores alongside rapid execution
times. Notably, no discernible pattern emerges with increasing dimensions and numbers of clus-
ters, underscoring the robustness of our proposed model across diverse scenarios. Moreover, the
clustering performance, often influenced by cluster overlap, remains exemplary.
By generating random samples from a wide spectrum of mixture densities in various combi-

nations, covering a broad range of data scenarios, the exceptional performance of our proposed
model underscores its practical applicability and flexibility in fitting finite mixture models to
multivariate data.

3.2 Real Data Sets

We consider four real data sets, often used for testing mixture models. We try all possible
combinations of different distributions considered in Section 2, to fit mixture models. The best
mixture model is chosen based on BIC scores. Furthermore, for the chosen mixture models, a
goodness of fit evaluation is performed. A brief description of the data sets is given below
and in Table 10.

FIGURE 9. Bias-MSE plot of skewness parameters on simulated data set 3 with increasing sample size over 100 repetitions.
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• Wine Data: These data comprise the outcomes of a chemical assessment conducted on wines
grown in the same region in Italy but originating from three distinct cultivars. The evaluation
measured the quantities of 13 elements present in each of the three wine types. These 13 el-
ements are specifically: alcohol, malic acid, ash, alkalinity of ash, magnesium, total phenols,
flavanoids, non-flavanoid phenol, proanthocyanins, color intensity, Hue, OD280/OD315 of
diluted wines and proline. This data set has been utilised by numerous researchers
(Basu, 2004; Fischer & Poland, 2005; Zhong & Fukushima, 2007) and is accessible for
download from the UCI Machine Learning Repository (Aeberhard & Forina, 1991). The pri-
mary goal of the analysis is to differentiate between the various wine types based on their con-
stituent elements. We employ this data set for fitting different mixture models, where we have
13 dimensions, 3 clusters, and a total of 178 data points.

• Seeds data: The data set comprises kernels from three wheat varieties: Kama, Rosa and Ca-
nadian, with 70 kernels per variety. Utilising a non-destructive soft X-ray technique, the data
set provides visual insights into the internal kernel structures, a cost-effective alternative to
more advanced imaging methods. The X-ray images were captured on 13� 18 cm X-ray

Table 6. Top 10 best performing mixture models for simulated data sets 5 (true DGP: MSN, MSN and MVT) and 6 (true
DGP: MSN, MNIG and MNIG).

Simulated data set 5 Simulated data set 6

Mixture model BIC Mixture model BIC

MSN, MSN and MVT �37 332.9446 MSN, MNIG and MNIG �16 207.3807
MSN, MSN and MNIG �37 308.6252 MSN, MGH and MNIG �16 201.3589
MSN, MSN and MGH �37 303.1705 MSN, MGH and MGH �16 193.9610
MVN, MNIG and MVT �37 066.4260 MSN, MNIG and MVT �16 181.4745
MSN, MNIG and MVT �37 062.7835 MSN MGH and MVT �16 175.4527
MNIG, MNIG, and MVT �37 057.7873 MSN, MVT and MVT �16 152.4272
MSN, MGH and MVT �37 055.8779 MSN, MGH and MVN �16 149.0625
MGH, MNIG and MVT �37 050.2629 MSN, MSN and MNIG �16 148.4191
MGH, MGH and MVT �37 043.3570 MSN, MSN and MGH �16 141.0230
MVN, MVN and MVT �37 042.8184 MSN, MSN and MVT �16 122.5057

FIGURE 10. Goodness of fit evaluation for simulated data 5.
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Table 7. Top 10 best performing mixture models for simulated data sets 5 and 6 when true mixture densities are not present.

Simulated data 5 Simulated data 6

Mixture model BIC Mixture model BIC

MNIG, MNIG and MNIG �36 898.6569 MVH, MVH and MVH �16 044.7550
MGH, MVN and MNIG �36 894.7674 MGH, MVH and MVH �16 036.7451
MGH, MNIG and MNIG �36 889.9839 MGH, MVH and MVH �16 032.5343
MGH, MVH and MNIG �36 889.9011 MGH, MGH and MGH �16 025.2476
MGH, MVH and MVH �36 889.6472 MVH, MVH and MVT �16 018.9459
MGH, MGH and MNIG �36 882.7258 MGH, MVH and MVT �16 010.9358
MGH, MGH and MVH �36 882.4719 MGH, MGH and MVT �16 006.7248
MGH, MGH and MGH �36 875.8112 MVN, MVT and MVT �16 004.9640
MGH, MVN and MVN �36 870.0378 MVH, MVH and MVN �15 992.7282
MVH, MVN and MNIG �36 865.4834 MVH, MVT and MVT �15 991.7078

FIGURE 11. Goodness of fit evaluation for simulated data 6.

FIGURE 12. Goodness of fit evaluation for simulated data 5 for model MNIG, MNIG and MNIG.
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KODAK plates. The study sourced wheat grains from experimental fields at the Institute of
Agrophysics of the Polish Academy of Sciences in Lublin. The data set’s key features include
seven continuous geometric parameters of the wheat kernels, facilitating analysis and distinc-
tion among the wheat varieties: area, perimeter, compactness, length of the kernel, width of
the kernel, asymmetry coefficient and length of kernel groove. These parameters enable pre-
cise characterisation of the wheat kernels and differentiation across the three wheat varieties,
as stated by many researchers previously (see Fillbrunn & Berthold, 2015). We use this data
set for fitting mixture models, where we have seven dimensions, three clusters and a total of
210 data points. This data set can also be accessed via UCI Machine Learning Repository
(Charytanowicz & Lukasik, 2012).

• Rice data: The rice data set chosen for this study focuses on two specific rice species,
Osmancik and Cammeo, both of which are certified varieties cultivated in Turkey. Osmancik,
which has been widely planted since 1997, is characterised by its broad, elongated, glossy
and muted appearance. On the other hand, Cammeo, introduced in 2014, shares similar fea-
tures, being broad, elongated, glossy and muted in appearance. In total, 3 810 images of rice
grains were captured for these two species, subsequently processed and subjected to feature
analysis. For each rice grain, seven morphological characteristics were extracted as part of
the study. This data set is available for download from UCI Machine Learning Repository
(mis, 2019). Previously other researchers (Cinar & Koklu, 2019) have used this data set for
classification tasks. We use this data set for fitting mixture models with different identical
and non-identical mixture components. Here, we have 7 dimensions, 2 clusters and 3 810 data
points.

• Olive Data: The Olive Oil data set (Forina et al., 1983) comprises seven independent vari-
ables, representing the levels of fatty acids present in the oils, and three categories denoting
different regions in Italy. The primary objective of this analysis is to establish a robust crite-
rion for accurately distinguishing oils originating from the three distinct geographical regions.
This problem holds practical significance due to variations in the perceived quality of oils
from specific regions, leading to instances of fraudulent claims regarding their origin by un-
scrupulous suppliers. Furthermore, the composition of these oils is a subject of independent
research, given their high nutritional value and the varying benefits associated with different

FIGURE 13. Goodness of fit evaluation for simulated data 6 for model MVH, MVH and MVH.
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constituent fatty acids. Additionally, it is crucial to recognise that fatty acid concentrations are
influenced by regional climates, which carries implications for informed decisions regarding
the cultivation of specific olive varieties in particular geographic areas. This data set can be
accessed via a book originally written for data analysis using R and ggobi (Cook
et al., 2007). We have used this data set for fitting mixture models. Here, we have 3 clusters,
7 dimensions and 572 data points.
The top 10 best-performing mixture models based on BIC scores are given below for all the

data sets.
From Table 11, we see the best-performing model is a mixture of multivariate skew normal,

multivariate skew normal and multivariate normal inverse Gaussian for wine data. On the other
hand for the seeds data, the best model is a mixture of multivariate skew normal, multivariate

FIGURE 14. True and predicted clusters by different mixture models for simulated data set 7 (one among 20 repeated
experiments).
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skew normal and multivariate t. It is seen in Table 12 that for rice data mixture of multivariate
generalised hyperbolic and multivariate normal inverse gaussian distribution is chosen as the
best mixture model. Furthermore, for Olive data, mixture of multivariate skew normal, multivar-
iate generalised hyperbolic and multivariate t distribution is found to be optimum. We also find
many mixtures with non-identical mixture components in the tables. It shows that mixture
models with different densities give an wide range of options for model selection. Fitting data
with this variety of models provides more flexibility and can yield better results.

Figures 18, 19, 20 and 21 illustrate that ECDFs on original data and 100 simulated data with
estimated parameter values are superimposed on each other, which implies a very good fit. It
further supports the choice of optimum mixture models using BIC scores.

FIGURE 15. True and predicted clusters by different mixture models for simulated data set 8 (one among 20 repeated
experiments).
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4 Limitations

While our proposed framework offers numerous advantages, it is not without limitations. Ini-
tially, our approach relied on a predetermined number of clusters, yet practical scenarios often
demand estimation of this parameter. One effective strategy involves employing algorithms
such as KMeans or Gaussian mixture models (GMM) across varying cluster numbers and
selecting the model with the lowest Bayesian information criterion (BIC) value.

The estimation of parameters in the M step poses a notable challenge due to its lack of ana-
lytical tractability. Absence of closed-form solutions necessitates multiple iterations of EM or
MCECM algorithms at each M step, resulting in computationally intensive and

Table 9. Fitted models with increasing number of clusters.

Number of clusters Fitted models

2 MSN and MVT
3 MSN, MVT and MVN
4 MSN, MGH, MNIG and MVT
5 MVT, MVN, MVH, MNIG and MVSN
6 MVN, MNIG, MVT, MVH, MSN and MSN

FIGURE 16. Mean ARI, NMI and HMS for data set 9 when number of clusters and dimensions both changes.
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FIGURE 17. Mean execution time for data set 9 when number of clusters and dimensions both changes.

Table 10. Description of the real data sets.

Data set Sample size (N) Number of clusters (k) Dimension (p)

Wine data 178 3 13
Seeds data 210 3 7
Rice data 3 810 2 7
Olive data 572 3 7

Table 11. Top 10 best performing mixture models for wine and seeds data.

Wine data Seeds data

Mixture model BIC Mixture model BIC

MSN, MSN and MNIG 5 931.4065 MSN, MSN and MVT �2 523.2987
MSN, MSN and MGH 5 938.2819 MSN, MVN and MVT �2 511.5568
MSN, MSN and MSN 5 942.9507 MSN, MSN and MSN �2 510.2317
MSN, MSN and MVN 5 960.8441 MSN, MNIG and MVT �2 507.2438
MSN, MSN and MNIG 5 965.6589 MSN MSN and MNIG �2 505.4540
MSN, MSN and MVT 5 969.2698 MSN, MVT and MVT �2 502.1123
MSN, MVN and MVT 5 970.1388 MVN, MVT and MVT �2 500.8528
MGH, MGH and MGH 5 971.6882 MSN, MSN and MGH �2 498.0489
MSN, MVN and MVN 5 976.5649 MVN, MNIG and MVT �2 496.5398
MSN, MNIG and MNIG 5 979.9558 MSN, MVN and MVN �2 496.3614
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Table 12. Top 10 best performing mixture models for rice and olive data.

Rice data Olive data

Mixture model BIC Mixture model BIC

MGH and MNIG 107 964.0822 MSN, MGH and MVT 38 285.1227
MGH and MGH 107 975.2304 MSN, MSN and MVT 38 288.9038
MNIG and MNIG 107 975.3681 MSN, MNIG and MNIG 38 326.9283
MVN and MNIG 118 066.8532 MNIG, MNIG and MNIG 38 329.3443
MGH and MVN 118 086.6512 MGH, MNIG and MNIG 38 339.9092
MSN and MSN 144 581.9866 MGH, MNIG and MVT 38 346.1153
MSN and MVN 147 000.1895 MSN, MNIG and MVT 38 349.2046
MSN and MVT 148 417.9704 MNIG, MNIG and MVT 38 354.3180
MVN and MVN 149 446.4086 MSN, MGH and MGH 38 360.4696
MVN and MVT 152 399.1557 MSN, MSN and MSN 38 362.3696

FIGURE 18. Goodness of fit evaluation for wine data.

FIGURE 19. Goodness of fit evaluation for seeds data.
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time-consuming processes. Moreover, as the number of clusters increases, the myriad of poten-
tial combinations of mixing distributions expands. This calls for exhaustive exploration of nu-
merous mixture models to identify the optimal fit for the data set.
In addition to these challenges, clustering algorithms commonly encounter certain limita-

tions. Computational errors may arise when no data points are assigned to a cluster or when
only one data point is assigned to a cluster. Furthermore, poor ML estimates may result when
clusters contain very few data points. Hence, enhancement in estimation quality is observed
with increasing sample size. Furthermore, it is worth noting that our current framework has
not been tailored for high-dimensional data sets. As we endeavor to extend our framework to
accommodate such data, we must address the escalating complexity inherent in
high-dimensional spaces. The number of parameters for the covariance matrix increases

FIGURE 20. Goodness of fit evaluation for rice data.

FIGURE 21. Goodness of fit evaluation for Olive data.
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exponentially with the dimensionality of the data (known as the curse of dimensionality), pos-
ing significant challenges. To overcome this issue, further research may be required to develop
penalisation techniques or other strategies capable of mitigating the adverse effects of
high-dimensional data on our framework’s performance.

In our study, we have outlined a general method for computing standard errors within the
framework of mixtures of non-identical distributions. However, obtaining the score vectors
can pose computational challenges, especially for distributions like the multivariate generalised
hyperbolic distribution where they are not readily accessible. In our simulation study and real
data applications, we have not calculated the standard errors. We need to carefully assess the
suitability of the simple score approximation approach, which requires further research.

5 Conclusion

In this study, we presented a flexible method for fitting mixture models that surpasses the tra-
ditional limits of using identical underlying distributions for each mixture component. Our pro-
posed methodology provided an innovative framework to model mixtures with any combination
of different distributions, thereby significantly enhancing the flexibility and applicability of
mixture models. By employing the expectation-maximisation (EM) algorithm, we demonstrated
how this framework could seamlessly incorporate diverse distributions into the mixture model
construction process. We have also provided proofs of convergence for the hard EM algorithm
involving mixtures of non-identical distributions. The model inherits promising convergence
properties, ensuring its effectiveness in real-world applications.

An essential aspect of our study involved discussing the issues of identifiability and model
diagnostics related to these flexible mixture models. We explored the utility of goodness-of-
fit evaluations to validate the chosen combinations of mixture models, revealing a compelling
level of agreement between our model and the observed data. This validation process reinforced
the robustness and credibility of our chosen mixture distributions.

Through an extensive simulation study and applications on real data, we noticed a noteworthy
pattern. The mixtures of non-identical distributions consistently outperformed mixtures of the
identical distribution, as reflected in the Bayesian information criterion (BIC) scores. This ob-
servation underscored the significance of our framework in providing a broader spectrum of op-
tions for modeling multivariate data with intricate cluster structures. It accommodates mixtures
of both identical and non-identical distributions which makes any conventional mixture model a
special case of our framework. The best mixture model can be chosen using BIC values from an
wide range of mixture models such that it provides the optimum fit. Mixtures of identical dis-
tribution can also provide good fit in some cases, which is covered by our framework. Further-
more, we successfully showcased the efficacy of our model in parameter estimation through
simulated data experiments. The estimated parameter values demonstrated remarkable proxim-
ity to the true values, illustrating the model’s precision and reliability.

In conclusion, our proposed approach has shown great potential for analyzing multivariate
data with inherent cluster patterns. By offering a flexible framework to construct mixture
models with varying distributions, our model aids researchers and practitioners with a powerful
tool to unravel complex data patterns and structures.
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APPENDIX A

A.1 Properties of GIG Distribution

We now give some properties of the GIG distribution, which are required for parameter es-
timation in the later stage.

E½W � ¼
ffiffiffiffi
χ
ψ

r
Kλ þ 1

ffiffiffiffiffiffi
ψχ

p� �
Kλ

ffiffiffiffiffiffi
ψχ

p� � ; (A1)

E
1

W

� �
¼

ffiffiffiffi
ψ
χ

r
Kλ þ 1

ffiffiffiffiffiffi
ψχ

p� �
Kλ

ffiffiffiffiffiffi
ψχ

p� � � 2λ
χ
; (A2)

E½logW � ¼ log

ffiffiffiffi
ψ
χ

r
þ 1

Kλ
ffiffiffiffiffiffi
ψχ

p� � ∂
∂λ
Kλ

ffiffiffiffiffiffi
ψχ

p� �
: (A3)

A.2 Estimation of MGH Distribution Parameters

It is possible to show that the conditional distribution ofX jW ¼ w follows a multivariate nor-
mal distribution:

ðX jW ¼ wÞ ∼ Nðμþ wγ; wΣÞ : (A4)

For all the limiting distributions of MGH distributions, it is enough if we estimate the param-
eters of a MGH distribution. In this regard, let us now parameterise
ðλ; χ; ψ; μ; Σ; γÞ→ðλ; α; μ; Σ; γÞ . The formulas to switch between these two parametrisations
are given below.

• ðλ; χ; ψ; μ; Σ; γÞ→ðλ; α; μ; Σ; γÞ:
Set K ¼

ffiffiffiffi
χ
ψ

r
Kλ þ 1

ffiffiffiffiffiffi
χψ

p� �
Kλ

ffiffiffiffiffiffi
χψ

p� �
α ¼ ffiffiffiffiffiffi

χψ
p

; Σ≡KΣ; γ≡Kγ : (A5)

• ðλ; α; μ; Σ; γÞ→ðλ; χ; ψ; μ; Σ; γÞ:

ψ ¼ α
Kλ þ 1ðαÞ
KλðαÞ and χ ¼ α

KλðαÞ
Kλ þ 1ðαÞ : (A6)

Using the parametrisation ðλ; α; μ; Σ; γÞ , the parameters can be estimated using a multi-
cycle, expectation, conditional maximisation (MCECM) algorithm (Meng & Rubin, 1993). A
ECM algorithm replaces the original M-step of EM with several computationally simpler con-
ditional maximisation (CM) step. Each CM-step maximises the expected complete data
log-likelihood found on the preceding E-step subject to the constraints on the parameter space.
In other words, here, we perform one E-step before each CM-step. This technique was previ-
ously used by Breymann & Lüthi (2013) for estimating the parameters of a MGH distribution.
The algorithm is explained below.
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Let us assume an iid data ðx1; …; xN Þ and the parameter space Θ ¼ ðλ; α; μ; Σ; γÞ. The
log-likelihood function is given by

logLðΘjx1; …; xN Þ ¼
XN
i¼1

logf X ðxi; ΘÞ : (A7)

As it is not possible to maximise the log-likelihood function directly let us introduce a latent
variableW which has a GIG distribution. Now using Equation (A4), the log-likelihood function
can be written in an augmented form as follows:

log LðΘjx1; …; xN ; w1; …; wN Þ ¼
XN
i¼1

logf X jW ðxijwi; μ; Σ; γÞ

þ
XN
i¼1

logf W ðwi; λ; αÞ :
(A8)

Now these two summands of the log-likelihood function can be maximised easily. The first
part is a log of normal density and for the second part, the log density of the GIG distribution
is given as

logf W ðwÞ ¼ λ
2
logðψ=χÞ � log 2Kλ

ffiffiffiffiffiffi
χψ

p� �þ ðλ � 1Þlogw � χ
2

1

w
� ψ

2
w : (A9)

To estimate the parameters:

(i) Some starting values of the parameters are initialised. A reasonable choice is λ ¼ 1; α ¼
1; andγ ¼ ð0; …; 0Þ. The values for μ and Σ are chosen as the sample mean and sample
covariance, respectively.

(ii) Compute the values of χ½t� and ψ½t� in terms of α½t� for t-th iteration using Equation (A6).
(iii) Let η½t�i ¼ E½wijxi; Θ½t��; δ½t�i ¼ E½w�1

i jxi; Θ½t��andξ ½t�i ¼ E½logwijxi; Θ½t�� . These values
can be calculated using Equations (A1), (A2), and (A3). Now, taking the averages,

η
½t� ¼

XN
i¼1

η½t�i andδ
½t�
¼
XN
i¼1

δ½t�i : (A10)

(iv) Get an update of γ½t þ 1� by setting,

γ½t þ 1� ¼ 1

N

P
N
i¼1δ

½t�
i ðx � xiÞ

η½t�δ
½t� þ 1

: (A11)

(v) The update of μ½t þ 1� and Σ ½t þ 1� then obtained as

μ½t þ 1� ¼ 1

N

P
N
i¼1δ

½t�
i xi � γ½t þ 1�

δ
½t� : (A12)

Σ ½t þ 1� ¼ 1

n

XN
i¼1

δ½t�i ðxi � μ½t þ 1�Þðxi � μ½t þ 1�Þ0 � η½t�γ½t þ 1�γ½t þ 1�0 : (A13)
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(vi) Set Θ½t; 2� ¼ ðλ½t�; α½t�; μ½t þ 1�; Σ ½t þ 1�; γ½t þ 1�Þ such that λandα have the old values from t
-th iteration and μ; Σ; andγ have the updated value from the ðt þ 1Þ-th iteration. Using

these values, calculate the values of η½t; 2�i ; δ½t; 2�i and ξ ½t; 2�i .
(vii) The second summand of the log-likelihood function can be maximised with respect to

λ; χ , and ψ by replacing w; 1=w and logw with the respective expected values using
Equations (A1), (A2), and (A3) to obtain λ½t þ 1�; χ½t þ 1�; ψ½t þ 1� and subsequently

α
½t þ 1�

.
(viii) After that, the same process is repeated from step (ii) until convergence to get the final

estimation of the parameters.

A.3 Estimation of MSN Distribution Parameters

Estimating the parameters of the multivariate skew normal distribution is challenging. We
follow a technique used by Abe et al. (2021), which incorporates an overparameter into the con-
ventional stochastic representation and then obtains the EM algorithm in a closed form. The sto-

chastic representation is given below.
Y

Y 0

� �
∼ Np þ 1ð0; ΣÞ; Σ ¼ Ω τΩ1=2δ

τδTΩ1=2 τ2

 !
,

where τ ∈ R and δ ∈ ℝp.

Let us now denote, λ ¼ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � δTδ

p .

Then, it can be shown that U ¼ sgnðY 0ÞY has a multivariate skew normal density with loca-
tion 0, given by

f ðuÞ ¼ 2ΦðλTΩ�1=2uÞϕpðu; 0; ΩÞ; u ∈ ℝp : (A14)

Then we say thatX ¼ U þ μ, has a p dimensional multivariate skew normal distribution with
location μ, which is expressed as SNpðμ; Ω; λÞ.
To estimate the parameters using an EM algorithm, let us introduce a latent variable ξ which

consists of parameters μ and Σ. For N independent random samples drawn from a multivariate
skew normal distribution, the expected complete data log-likelihood function for the E step can
be written as

Qðξ; ξ 0 Þ ¼
XN
i¼1

E½log f ðxi; y0i; ξÞjxi; ξ 0�

¼ �N
pþ 1

2
log2π � N=2logjΣj � 1

2
tr
XN
i¼1

Sðxi; μ; ξ 0ÞΣ�1

 !
; (A15)

where

Sðxi; μ; ξ 0Þ ¼
ðxi � μÞðxi � μÞT ðxi � μÞE jy0ijjxi; ξ 0½ �

ðxi � μÞTE jy0ijjxi; ξ 0½ � E y20ijxi; ξ
� �

:

0
@

1
A :

Let us denote, cλ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λTλ

p
; γ ¼ Ω�1=2λ; vi ¼ γT ðxi � μÞ; ρ1ðvÞ ¼

ϕðvÞ
ΦðvÞ þ v and

ρ2ðvÞ ¼ 1þ vρ1ðvÞ.
It can be shown that E jY 0jjX½ � ¼ τcλρ1ðγTxÞ and E Y 2

0jX
� � ¼ τ2c2λρ2ðγTxÞ

Then for the t-th iteration in the M step, the updates of the parameters are given below.
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μ̂t þ 1 ¼ x � cλt Ω̂t
� �1=2

δ̂t
1

N

XN
i¼1

ρ1ðv̂i tÞ ; (A16)

Ω̂t þ 1 ¼ 1

N

XN
i¼1

ðxi � μ̂t þ 1Þðxi � μ̂t þ 1ÞT ; (A17)

δ̂t þ 1 ¼ 1

N

XN
i¼1

ρ2ðv̂i tÞ
" #�1=2

� Ω̂t þ 1
� �1=2 � 1

N

XN
i¼1

ρ1ðv̂i tÞðxi � μ̂t þ 1Þ
" #

: (A18)
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