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...und alles was man weiß, nicht bloß rauschen und brausen gehört hat, läßt
sich in drei Worten sagen.

—Ferdinand Kürnberger, attributed by Ludwig Wittgenstein in the Tractatus
Logico-Philosophicus



Zusammenfassung

Quanten Feld Theorien (QFTen) haben sich in der Hochenergiephysik als außerordentlich
erfolgreich erwiesen, obgleich unser derzeitiges Verständnis dieser Theorien stark begrenzt
ist. Während die perturbative Beschreibung von QFTen inzwischen auf einem rigorosen
mathematischen Fundament steht, fehlt für nicht-perturbative QFTen bis zum heutigen
Tage eine umfassende mathematische Beschreibung. Nichtsdestotrotz gibt es spezielle
nicht-perturbative QFTen die eine solche mathematische Formulierung aufweisen. Es
handelt sich hierbei um die topologischen und konformen Feldtheorien, welche mit Hilfe
der Sprache der Kategorien in einer funktoriellen Weise axiomatisiert werden können.

Eine wichtige Quelle von Beispielen für diese funktoriellen Feldtheorien stellt die String-
theorie dar. Die Stringtheorie, welche ursprüglich zur Beschreibung der starken Kernkraft
dienen sollte, entwickelte sich später zu einem potentiellen Kandidaten für eine verein-
heitliche Theorie der Grundkräfte, einschließlich der Gravitation. Über die phänomenolo-
gischen Implikationen hinaus erwies sich die Stringtheorie im Laufe ihrer Geschichte immer
wieder als ein fruchtbarer Boden für neue Ideen in der theoretischen Physik und der Math-
ematik.

Die namensgebenden Strings der Stringtheorie können durch sogenannte geeichte li-
neare Sigma-Modelle (GLSMe) beschrieben werden. GLSMe besitzen topologische Unter-
sektoren, welche durch sogenannte topologisch konforme Feldtheorien beschrieben werden.
Bei niedrigen Energien verfügen GLSMe über eine reichhaltige Phasenstruktur, dieser Um-
stand macht sie zum idealen Versuchsumfeld zur Studie von Defekten und Phasenübergängen.

In dieser Dissertation präsentieren wir einen neuartigen Ansatz für die Konstruktion
von Defekten, die Orbifaltigkeitsphasen in ihr entsprechendes GLSM funktoriell hochheben.
Hierzu betrachten wir ausschließlich topologische Untersektoren von abelschen GLSMen.
Insbesondere erlaubt unser Ansatz den Transport von Randbedingungen d.h. Branen von
Orbifaltigkeitphasen in das GLSM. Wir präsentieren einen Überblick über topologische
Feldtheorien, führen das topologische B-Modell für GLSMe ein und diskutieren unsere
Konstruktion für Hochhebungsdefekte. Abschließend demonstrieren wir, dass unser Ansatz
bekannte Ergebnisse für Branentransport und Flüsse in minimalen Modellen reproduziert.



Abstract

Quantum field theories (QFTs) have proven to be immensely successful in high energy
physics, however, our present understanding of them is quite limited. While the per-
turbative approach to QFT is by now standing on a rigorous mathematical foundation,
a comprehensive mathematical formulation of non-perturbative QFT is still missing to
this date. Still, there are special kinds of non-perturbative QFTs that do admit such a
mathematical formulation. These are topological and conformal field theories that can be
axiomatized in a functorial manner, employing the language of categories.

An important source for examples of such functorial field theories is string theory.
String theory, originally intended to describe the strong nuclear force, later on developed
into a potential candidate for a unified QFT of the fundamental forces including gravity.
Beyond its phenomenological implications, throughout its history string theory served as
a fertile ground for new ideas in theoretical physics and mathematics.

The eponymous strings in string theory can be described by so called gauged linear
sigma models (GLSMs). GLSMs admit topological subsectors which are captured by so
called topological conformal field theories. At low energies GLSMs exhibit a rich phase
structure making them an ideal testing ground to study defects and phase transitions.

In this thesis we present a novel approach for the construction of defects lifting so
called orbifold phases to their respective GLSM in a functorial manner. To this end we
restrict our attention to a topological subsector of GLSMs with Abelian gauge groups.
Our construction in particular allows us to transport boundary conditions i.e. branes
from orbifold phases to the GLSM. We present an overview of topological field theories,
introduce the topological B-model for GLSMs and discuss our construction for lift defects.
Finally we demonstrate that our approach reproduces known results for brane transport
and for flows in minimal models.
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1 Introduction

The framework of quantum field theories (QFTs) has been applied with great success to a
wide range of problems in high energy physics and condensed matter theory. However, in
particle physics only the perturbative approach to QFT is supported by a rigorous math-
ematical framework cf. [23]. Even though there is no general mathematical framework on
the non-perturbative side, there are still some non-perturbative QFTs which admit a pre-
cise mathematical definition. Most notably conformal field theories (CFTs) and topological
field theories (TQFTs) can be defined in a functorial manner [76] utilizing the powerful
language of category theory. The former is scale invariant1, while the latter’s defining char-
acteristic is metric independence. Other than in their metric dependence the functorial
definition of CFTs and TQFTs are identical. For this reason on may think of CFTs as a
refinement of TQFTs. Since their inception, TQFTs have been an active area of research
in physics and mathematics.

TQFTs in Mathematics

Initially, mathematicians were interested in the classification and study of TQFTs, as
they yielded new topological invariants which allowed for insights into knot theory, the
categorification program and representation theory cf. [4, 5, 58, 79, 71]. Later on, even
more branches of TQFT research formed in mathematics, for instance homological mirror
symmetry and the geometric Langlands program [63, 57].

TQFTs in Physics

In physics, the applications of TQFTs are too plentiful to list them all, so we will just
mention some notable examples. First off, TQFTs serve as testing ground to study general
properties of QFTs and implement various physical ideas. TQFTs are prime candidates
for such investigations, since they are mathematically well-defined, exactly solvable, and
easily accessible. This approach dates back to early studies in the field e.g. in [74]. Later
on, in condensed matter theory, it was realized that certain many body systems–subject
to the fractional qunatum Hall-effect–can be described by TQFTs [83, 67]. In high energy
physics, theorists were interested in Witten-type TQFTs which brought about new results

1Technically speaking conformal invariance is a slightly stronger notion than that of scale invariance
cf. e.g. [73].
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including two- and three-dimensional mirror symmetry and tests for non-abelian S-duality
[15, 52, 81].

In recent years, new developments once again put the spotlight on TQFTs in the physics
community. It was discovered that TQFTs allowed for a new conceptual understanding of
and insights into structures of QFTs, namely symmetries and anomalies. This lead to the
understanding of anomalies as invertible TQFTs and that of higher form symmetries as
symmetry topological field theories (SymTFTs) [38, 39, 2].

Gauged Linear Sigma Models as TQFTs

In this thesis, we employ the techniques of functorial TQFTs to study defects in two-
dimensional N = (2, 2) abelian gauge linear sigma models (GLSMs) [86]. More specifically,
we consider the topological B-model of GLSMs which is a topological subsector of the full
theory. These types of theories originated in string theory or, more specifically, in the
study of topological strings.

String theory describes the dynamics of strings i.e. one-dimensional degrees of free-
dom. In string theory, open strings–as apposed to closed strings with periodic boundary
conditions–can obey either Neumann or Dirichlet boundary condition cf. e.g. [46]. Dur-
ing the early days of string theory, Dirichlet boundary conditions were discarded, since
they explicitly break supersymmetry. Later on, however, it was realized that they can be
consistently implemented giving rise to D-branes–higher dimensional dynamical degrees of
freedom on which the open strings can end–and, in turn, gauge symmetries [70]. Strings
may be described by a GLSM. Mathematically speaking a GLSM describes how the world
sheet of a propagating string, charged under some gauge symmetry, embeds into a tar-
get spacetime. By performing a topological B-twist we end up with the B-model of the
GLSM meaning that we restrict our attention to the topological string. In this setting, it
is possible to organize the B-type boundary conditions–the D-branes compatible with the
B-twist–into a category. This category has as objects the D-branes and as morphisms the
BRST-cohomology of string states between two D-branes [3]. The resulting category of
B-type D-brane encodes the entire respective string theory and mathematically represents
a so-called topological conformal field theory (TCFT).

At low energies, GLSMs admit a rich phase structure captured by the Fayet-Iliopoulos-
and θ-parameters, which are part of the datum defining a GLSM. These parameters form
a moduli space–which parametrize the theory space of low energy phases–in the non-
anomalous case, but are subject to RG-flow in the anomalous case. The phases of a GLSM
are characterized by breaking of the gauge symmetry. A discrete gauge symmetry remains
unbroken in orbifold phases, while it is completely broken in geometric phases. Notably,
on each phase boundary there is an unbroken U(1). The moduli space of a non-anomalous
model contains singular codimension-two-loci and different phases can be connected by
homotopically different paths avoiding these singularities.

Mathematicians are interested in GLSMs for similar reasons as physicists. In toric
geometry, they serve as a common framework to study various geometrical subspaces (the
phases of the GLSM) and their relations to each other cf. [48].
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Defects and Orbifold Lifts in GLSMs

The goal of this thesis is to use defects to devise a novel approach to constructing lifts from
orbifold phases to the GLSM in a functorial manner. Here, by lift we mean a mapping in
the opposite direction of the RG-flow. Thus, a lift is an identification of low energy degrees
of freedom in the phase with the high energy ones in the GLSM. Flowing from the GLSM to
a different phase subsequent to a lift then yields a defect between two different phases. The
defects we will construct lie entirely within the sector protected by B-type supersymmetry
and are, thus, applicable to both the non-anomalous and anomalous setting.

A defect is a codimension one subspace separating an ambient space into two subre-
gions. They feature gluing conditions for the physical data attached to the two regions
adjacent to the defect cf. e.g. [18]. In a TQFT, defects can be moved arbitrarily close
to each other to fuse two separate defects into one. Defects are of particular interest,
as they may implement various different concepts such as–by definition–operator inser-
tions, boundaries, phase transitions and symmetry operations: Firstly, a boundary can
be thought of as a defect between a theory and trivial theory which has no physical data
attached to it. Secondly, phase transitions can be characterized by defects separating two
adjacent phases. Lastly, symmetry operations can be represented by a defect whose gluing
conditions implement the symmetry action on the fields. Defects can act on boundary
conditions via fusion. Thus, defects describing phase transitions yield, in particular, brane
transports.

We focus on defects to describe phase transitions. To be concise, we utilize the idea
that defects can relate the physics at different points in moduli space cf. [13, 32, 59, 40,
41]. These defects are domain walls, separating two theories at different points in moduli
space. One can think of them as originating from a trivial defect line in one of the theories.
Upon perturbing the theory at one side of the defect, one obtains a defect between initial
and perturbed theory. As this defect depends on the specific perturbation, one expects
different defects for different paths in moduli space. Indeed, we have to make various
choices when constructing a brane transport. Part of the data required to specify GLSM
D-branes consists of a choice of representation on the Chan-Paton degrees of freedom,
encoding the gauge sector. Consider the brane transport between a GLSM and a orbifold
phase. Flowing from the GLSM with a continuous gauge symmetry U(1)n to an orbifold
phase, the representation of the initial gauge group simply restricts to a representation of
the subgroup. On the other hand, a lift from an orbifold phase to the GLSM involves a
choice of lift of the representation. Additionally, further restrictions on the possible lifts
arise in the case that the lift of the D-brane to the GLSM can be completed by a flow to
another phase, describing a path in moduli space from one phase to another [47].

In the approach we present in this thesis, lifts compatible with subsequent flows to other
phases are implemented in a manifestly functorial way by defects. On general grounds,
lift and deformation defects have some defining properties [59], one of which is semi-
invertibility. This implies that one can associate, to any such defect, a projector that
singles out a subcategory of the GLSM D-branes. We propose a concrete construction that
yields defects that satisfy all expected properties. The starting point is the identity defect
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of the GLSM which is U(1)n × U(1)n equivariant. Pushing the theory on one side of this
defect into an orbifold phase breaks the symmetry to U(1)n×G, where G is the remaining,
unbroken gauge symmetry in the orbifold phase. The Chan-Paton representations on the
defect transform to the respective induced representations of the subgroup U(1)n×G. This
however is not the whole story: we find that, in order to obtain consistent defects, we have
to impose additional truncations of the representations. The truncation depends on the
path of deformation in the GLSM parameter space. For each crossed phase boundary, we
introduce an upper bound on the charges under the distinguished U(1) gauge symmetry
preserved on this phase boundary. The choice of upper bounds, which we call cutoff
parameters, characterizes our defect completely. It specifies to which subcategory of GLSM
branes any brane of the phase can be lifted.

The question how D-branes are transported in GLSMs was previously addressed in the
program initiated in [47]. Based on an analysis of the gauge sector, one of the proposals
put forward in [47] is the band restriction rule for higher rank Abelian gauge theories. It
states that for a smooth brane transport from an orbifold phase to a (partially) resolved
phase, there is a restriction on the possible lifts from the phase to the GLSM, singling
out subcategories of the GLSM. The possible choices compatible with the band restriction
rule correspond to the different homotopy classes of paths in moduli space. In subsequent
work, the result was confirmed by arguments using analyticity of the hemisphere partition
function [50], extended to the non-Calabi-Yau case in [22] and to hybrid models in [62],
see also [64, 61] for some results on the non-Abelian case. The grade restriction rule also
inspired mathematicians to construct equivalences between D-brane categories, see [75, 31].
Our results are in complete agreement with the band restriction rule, where our choice of
cutoff parameters precisely match with the bands appearing in [47].

Structure of this Dissertation

This thesis is structured as follows: The main part consists of two chapters. In Chapter 2
we review the theoretical framework we will be building on and introduce our construction
of lifting defects. We then apply our construction to various examples in Chapter 3.

Chapter 2 begins in Section 2.1 with a review of TQFTs starting with oriented, closed
TQFTs and ending with TCFTs, which are the TQFTs we will be studying in this thesis.
We kick off this review with a brief retrospective of the field theoretic perspective on TQFTs
followed by the axiomatic approach. Next, we introduce defects in two-dimensional TQFTs
which formalize phase transitions in GLSMs. The topological subsectors of GLSMs we will
look at are not captured by plain TQFTs, but by TCFTs which can be understood as
a particular type of fully extended TQFT. We discuss the necessity of extended TQFTs
for higher dimensional TQFTs which, in turn, leads to fully extended TQFTs as their
generalization. By considering a homotopical version of CFTs we end up with TCFTs
which can be understood as a special kind of fully extended TQFT. These are the formal
frameworks describing the A- and B-model of a GLSM.

Following our discussion on TQFTs is an overview of the topological B-model for
GLSMs in Section 2.2. Here, we discuss how B-branes in a GLSM can be described by
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a TCFT. We begin by giving a lightning review on the field theoretic perspective of the
GLSM. In this discussion we will see how a GLSM serves as a common UV description of
various IR phase. We follow up the discussion of the GLSM by introducing the topologi-
cal A- and B-twists which yield the A- and B-models for GLSMs, respectively. Next, we
present a class of GLSMs which individually encompass all minimal models up to a fixed
level k. Later on, we use these GLSMs to construct all flows between minimal models. We
then discuss B-type boundary conditions in GLSM and their phases and describe how they
are captured by TCFTs.

Afterwards in Section 2.3, defects are introduced and we describe their general prop-
erties and how they are able to capture phase transitions in QFTs. We then explain the
construction for defects lifting orbifold phases. They are obtained by pushing down the
GLSM identity defect to the orbifold phase on its right and subsequently introducing a
charge cut off. Concluding this chapter, we compare our construction to the grade- and
band restriction rules from [47].

In Chapter 3, we apply our construction to a number of examples and compare our
results to the ones from [47] and [13]. First, we discuss non-anomalous GLSMs in Sec-
tion 3.1. We begin by investigating two GLSMs with gauge group U(1)2: the A2 model
and a model with C5/Z8-orbifold phase. We then study the general AN−1 model.

Finally, in Section 3.2 we turn our attention to the class of anomalous GLSMs which
capture all minimal models. Applying our construction for lifting defects, we reproduce all
flows between minimal models from [13].

Relevant Publications

Most of this thesis builds upon or is adopted with minor changes from [14] with permission
of the coauthors. Parts of the Introduction are taken from [14]. In Chapter 2, parts of
Sections 2.2 and 2.3 can be found in a similar form in [14]. Chapter 3 is mostly taken from
[14] with minor changes to the text and presentation.



2 Topological Quantum Field Theories and

Gauged Linear Sigma Models

In this chapter, the notion of a topological quantum field theory is introduced. We discuss
the ‘hands-on definition’ of a TQFT originating from theoretical physics on the one hand, as
well as the mathematical axiomatic definition of a TQFT on the other hand and sketch how
the former motivates the latter. Subsequently, we discuss alterations and generalizations
of TQFTs such as defect, (fully)-extended TQFTs and TCFTs.

Next, the concept of a gauged linear sigma model is introduced which is the main focus
of this thesis. Performing a topological twist of a GLSM yields a topological theory whose
low energy phases are realizations of a certain type of the aforementioned TQFTs, namely
TCFTs. We discuss how minimal models–here, a certain type of superconformal field
theory–can be described within the framework of GLSMs. Then, we describe the brane
categories for GLSMs. Subsequently, we introduce defects in GLSMs and present the main
result of this thesis: the construction of orbifold lifts in GLSMs. To finish this chapter,
we contextualize our construction by comparing it to the grade- and band restriction rules
introduced in [47].

2.1 Topological Quantum Field Theories

Before getting to the axiomatic definition of a topological quantum field theory we begin by
rather informally discussing the ‘hands-on definition’. In physics, a classical field theory
describes the dynamics of classical fields in a fixed spacetime M1. A classical field is a
smooth section of a bundle E

π→ M i.e.

ϕ ∈ Γ(M,E).

In case of a trivial bundle E = X ×M for some space X the sections and, therefore, the
fields can be identified with maps ϕ ∈ Hom(M,X). Such a theory is called a sigma model.
We will exclusively be concerned with sigma models in this thesis. In the Lagrangian
description, the dynamics of the fields are determined by the choice of a density

L : J∞(E) → Ωdim(M)M,

1For simplicities sake, in the following we will omit giving precise definitions for spaces here and just
take them to be some kind of smooth manifold.
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where J∞(E) denotes the jet bundle on E and L is called the Lagrangian. The equations
of motion are then obtained via optimization of the action functional

S : Γ(M,E) → R, ϕ 7→
∫
M

L(ϕ, ∂ϕ, ∂2ϕ, . . . ).

Quantum field theories are theories that arise from classical field theories through the
process of quantization. Given a classical field theory we may quantize it by introducing
the path integral

Z :=

∫
Γ(M,E)

Dϕe
i
ℏS[ϕ],

which is called the partition function on M . The idea here is that when calculating expec-
tation values in a quantum theory we need to account for all contributions of intermediate
states i.e. field configurations by integrating the appropriate ‘measure’ Dϕe

i
ℏS[ϕ] over all

field configurations. This expression is merely symbolic and can in general only be made
sense of in perturbation theory–as an asymptotic series in ℏ → 0–or for particularly sim-
ple or constrained theories. However, whenever it is possible to assign meaning to this
symbolic expression we can calculate correlation functions

⟨O1 . . .Om⟩ :=
1

Z

∫
Γ(U,J∞(E|U ))

DϕO1 . . .Ome
i
ℏS[ϕ]

for dimension-n operators i.e. functionals on Γ(U, J∞(E|U)) where U ⊆ M is a n-
dimensional subspace (e.g. n = 1 for line operators).

A quantum field theory is called topological iff all correlation functions are invariant
under isomorphisms ofM . Thus, in a TQFT correlation functions are topological invariants
of M and we may think of a TQFT as a framework to either calculate correlation functions
or to determine topological invariants.

2.1.1 Atiyah-Segal Quantum Field Theories

The ideas leading towards the modern axiomatic definition of a TQFT were first put
forward in the seminal papers by Atiyah and Segal [5, 76]. We will proceed by giving a
heuristic motivation of the axiomatic definition from the path integral approach to QFT.
A more thorough and technical discussion of this matter can be found in [20].

Consider a QFT on a spacetime M with boundary i.e. ∂M = B ̸= ∅. To calculate the
path integral we need to specify the boundary conditions of the fields by fixing them to be
some boundary field φ ∈ Γ(B,E|B). The path integral then reads

Z(M,φ) =

∫
ϕ∈Γ(M,E), ϕ|B=φ

Dϕe
i
ℏS[ϕ].

By identifying the space of states on the boundary with the Hilbert space HB of (linear)
functionals on the fields on B we find that the path integral actually defines a vector

Z(M, •) ∈ HB.
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Now, assume that the boundary can be decomposed into ‘ingoing’ and ‘outgoing’ boundary
components ∂M = Bin ⊔ Bout. In this case we expect that Z(M, •) ∈ HBin

⊗HBout since
the Hilbert spaces are ought to be independent for disjoint subspaces–in fact this holds true
for local action functionals. Thus, we may identify the path integral with a (anti-)linear
map2

Z(M, •) : HBin
→ HBout .

Suppose M is a closed manifold being composed of two manifolds M1 and M2 glued along
a common codimension one manifold N , i.e. M = M1∪N M2 we expect to get the following
partition function

Z(M) =

∫
φ∈Γ(N,E|N )

DφZ(M1, φ)Z(M2, φ).

Summarizing, given a space M a QFT assigns to each of its boundary components a
Hilbert space of boundary states (by abuse of notation, to the empty boundary it assigns
H∅ := C), to the disjoint union of boundaries the tensor product of the respective state
spaces and to M a linear map between the respective spaces of states. Additionally gluing
of different spacetime patches amounts to composition of the corresponding linear maps.

These features can be repackaged into the Atiyah-Segal type axiomatic definition of a
TQFT. We also refer to this as the functorial definition of a TQFT. Note that there are
also other axiomatic approaches to defining QFTs such as factorization algebras coined by
Costello and Gwilliam [26].

Definition 2.1.1 (Oriented Closed TQFT)
An n-dimensional oriented closed TQFT is a symmetric monoidal functor Z : Bordn → Vectk
from the category of oriented n-bordisms to the category of k-vector spaces, for some field
k.

To unpack the definition of an oriented closed TQFT we will now describe the categories
Bordn and Vectk.

The category of k-vectors spaces Vectk has as objects k-vector spaces and as morphisms
k-linear maps. Composition of morphisms is given by composition of k-linear maps. The
monoidal structure of Vectk is given by the tensor product of vector spaces with monoidal
unit k and the obvious associator, left and right unitors and symmetric structure.

The category of oriented n-bordisms Bordn has as objects real smooth oriented closed
(n − 1)-manifolds. Morphisms in Bordn are bordisms up to orientation-preserving diffeo-
morphisms of bordisms. Composition of a pair of morphisms B1 → B2 and B2 → B3

is given by gluing along the common boundary B2. The monoidal structure is given by
disjoint union with monoidal union given by the empty boundary ∅ and the obvious associ-
ator, left and right unitors and symmetric structure. For more details on these definitions
cf. [20].

Note that by considering bordisms up to orientation-preserving diffeomorphisms we
omit the geometrical structure of the bordisms as is required for the theory to be called

2The map is anti-linear due the opposite orientation of in- and outgoing boundaries.



2.1 Topological Quantum Field Theories 9

topological. From now on we will be only considering oriented TQFTs and therefore drop
the prefix ‘oriented’.

With the functorial definition of a TQFT we essentially applied the idea of Feynman
diagrams, which is to translate diagrams into mathematical expressions for correlation
functions. In order to classify TQFTs we may now ask what algebraic properties the
definition of a TQFT entails. We do so by investigating how (n−1)-dimensional manifolds
are related and paired via bordisms i.e. Feynman ‘graphs’.

It turns out that two-dimensional TQFTs are completely classified in terms of Frobenius
algebras. This observation is captured by the following classification originally described
by Dijkgraaf [30], more details on this can again be found in [20].

Theorem 2.1.1 (2D Closed TQFTs are Frobenius Algebras)
There is an equivalence of groupoids

Fun⊗,Sym(Bord2,Vectk) → comFrobk

between the category of TQFTs and the category of commutative frobenius algebras.

We state this result here merely to familiarize us with classification results of functorial
field theories in this simple setting before discussing generalizations which are relevant to
this thesis.

There are different possibilities to generalize or alter the definition of a TQFT to account
for various features that a QFT might exhibit. For instance one can equip the bordisms
with additional structures such as a Riemannian structure or a conformal structure to
describe euclidean QFTs or conformal field theories (CFTs) respectively cf. [76]. One
can also consider higher categorical generalizations to probe homotopical or homological
properties cf. [65]. We will explore examples for both these possibilities in the subsequent
subsections.

2.1.2 Two-Dimensional Defect TQFTs

In the previous subsection we introduced the notion of a closed TQFT. However, for our
purposes we need to familiarize ourselves with defects. To this end we will now introduce
defect TQFTs. We will follow [17] but omit all technical details.

A defect is a codimension one subspace separating an ambient space into two subregions
together with gluing conditions for the physical data attached to the two regions adjacent
to the defect. Note that in general there can also be defects on defects which leads to a
stratification of the ambient space. Defects conceptually unify various different concepts:
operator insertion, symmetries, phase transitions and boundaries–which can be thought of
as being defects separating spacetime from an space with no physical data attached to it.
We will elaborate on some of these later on.

To incorporate defects into the definition of a TQFT we have to consider the category
of stratified bordisms and decorate it according to the defect data D. The defect data
consists of labels for the strata encoding some physical data attached to it and information
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on how labeled strata are allowed to meet. More formally for two-dimensional TQFTs i.e.
n = 2 we have that D is given by a tuple

D = (D1, D2, s, t),

where D1 and D2 are sets labeling defect-lines and two-dimensional regions respectively.
The source- and target maps s, t : D1 → D2 signify which regions labeled by D2 may
border D1 labeled defect-lines. Resulting from this procedure we get the category of two-
dimensional defect bordisms Borddef

2 (D). For the precise definition of Borddef
2 (D) cf. [17].

We then have the following definition [28].

Definition 2.1.2 (2D Defect TQFT)
A two-dimensional defect TQFT is a symmetric monoidal functor Z : Borddef

2 (D) → Vectk
from the category of two-dimensional defect bordisms to the category of k-vector spaces.

If we choose for the defect data D1 = ∅ and for D2 a singleton, we recover the definition
of a two-dimensional closed TQFT. Similarly to the case of closed TQFTs we may again
ask whether there is an algebraic structure of the state spaces to represent defect TQFTs.
Indeed we have the classification.

Theorem 2.1.2 (2D Defect TQFTs are Pivotal 2-Categories)
For every two-dimensional defect TQFT Z : Borddef

2 (D) → Vectk one can construct a piv-
otal 2-category BZ.

We will now introduce pivotal 2-category categories and string diagrams which will be
used later on in this thesis to describe defects in gauged linear sigma models. By definition
a (strict) 2-category C is a category enriched over the category of small categories. This
means for any two objects A,B there is a category C(A,B) whose objects are called 1-
morphisms and whose morphisms are called 2-morphisms. Being enriched over the category
of small categories, C exhibits functors

⊗ : C(B,C)× C(A,B) → C(A,C)

which are called horizontal composition or composition along objects. The composition
in C(A,B) is called vertical composition or composition along 1-morphims. There is a
graphical calculus for morphisms in 2-categories given by string diagrams. A string diagram
is a two-dimensional depiction in which regions represent objects of C edges represent 1-
morphisms and nodes 2-morphisms. For instance

AB

f

α

g
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depicts the 2-morphism α : (f : A → B) ⇒ (g : A → B) and

=A ABC C

fg g ⊗ f

depicts horizontal composition of 1-morphisms, where we adopt the convention to read
from right to left and from bottom to top. Note that these diagrams already look like they
describe defects–as well as their fusion–except that the edges do not have an orientation.
This additional data of the string diagrams follows from the pivotality of C. In a pivotal
2-category every 1-morphism f has a left and right adjoint †f and f † giving rise to the
evaluation and coevaluation 2-morphisms

evf : f ⊗ †f → idA and coevf : idA → †f ⊗ f

with corresponding string diagrams given by

†f f

idA

AA

B

evf

†ff

idA

AA

B

coevfand

where dashed lines represent the identity 1-morphism, which by definition is the identity
under fusion and is also part of the datum of a pivotal category. The evaluation and
coevaluation are subject to the conditions

(idf ⊗ evf ) ◦ (coevf ⊗ idf ) = idf and (evf ⊗ id†f ) ◦ (id†f ⊗ coevf ) = id†f

which translate to the so called Zorro moves

=

f

f

A

A

f

AA
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and

=

†f

†f

A

A

†f

AA

in the diagrammatical language, where we neglected the identity 1-morphisms.
There are similar maps for the right adjoints, however in a pivotal category left and right

adjoints are identical which reflects the fact that taking the adjoint merely corresponds to
orientation reversal on the defect line.

We have stated that there is various ways of composing morphisms in a pivotal 2-
category. From the perspective of a TQFT composition of these morphisms amounts to
moving the corresponding defects arbitrarily close together, which can be done due the
fact that the theory is topological. Merging two defects in this manner is called fusion.

2.1.3 (Fully)-Extended TQFTs

In this subsection we will briefly discuss extended TQFTs which will not be of immediate
relevance for this thesis but serve as a bridge from TQFTs to TCFTs.

So far we have exemplified TQFTs only by two-dimensional theories. For the classi-
fication of these theories we asked for the algebraical structure on the state spaces. This
analysis utilized that in two-dimensions the objects in Bord2 are tensor-generated by just
a single object, the circle S1. Thus, the state spaces are as well generated by a single
space H := Z(S1). The algebraic structure on these spaces is then given by a finite set of
conditions on these generators.

Considering 3D TQFTs for contrast we observe that there are infinitely many connected
closed 2-manifolds. Accordingly the objects in Bord3 are not tensor generated by a finite
set of objects and thus we cannot hope to describe the algebraic structure on the state
spaces by a finite amount of data3. This observation indeed remains true in any dimension
≥ 3.

To deal with this complication we may however extend the category Bordn to a higher
category. In three dimensions we do this by introducing the category Bord3,2,1, whose ob-
jects are oriented closed 1-manifolds, 1-morphisms are compact oriented bordisms between
objects and 2-morphisms are compact oriented bordisms with corners between 1-morphisms
up to diffeomorphisms.

3Note however that it is still possible to classify these TQFTs by more sophisticated algebraic
structures–so called J-algebras–cf. [53].
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For the target category there are several choices for a generalization of Vectk, we simply
call these 2-vector spaces and denote them by 2Vectk.

We have the following classification result due to Theorem 2 in [7], for more details see
there.

Theorem 2.1.3 (Extended 3D TQFTs are MTCs)
Extended 3D TQFTs Z : Bord3,2,1 → 2Vectk are classified by non-anomalous modular
tensor categories.

Modular tensor categories can be constructed from 3D TQFTs by different means. The
Turaev Viro method [80] relies on the fact that under mild conditions any n-manifolds
admits a triangulation. It assigns a state space to each 1-simplex and infers their algebraic
structure from homeomorphisms of the triangulations–the so called Pachner moves. In
fact this procedure can in principle be performed in arbitrary dimensions, albeit being
increasingly difficult with growing number of dimensions.

Generally speaking in higher dimensions the category of bordisms and the target cate-
gory of Z becomes harder to define. It turns out that performing an additional extension of
these categories actually leads to a setting which is better manageable and allows for a gen-
eral classification conjecture. We perform this extension by considering the top-dimensional
bordisms only up to homotopy i.e. passing to (∞, n)-categories.

The (∞, n)-category of bordisms Bord(∞,n) can be thought of as having disjoint unions
of oriented points as objects, bordisms of (m − 1)-manifolds as m-morphisms for m ≤ n
and diffeomorphisms between n-bordisms, smooth homotopies of diffeomorphisms and so
forth as m-morphisms for m > n. Note that Bord(∞,n) also admits a symmetric monoidal
structure.

This is an informal definition but the advantage of working with (∞, n)-categories
is that such definitions can be made precise by models of well controlled mathematical
structures such as n-fold complete Segal spaces. A fully extended TQFT is then defined as
follows.

Definition 2.1.3 (Fully Extended TQFT)
Let C be a symmetric monoidal (∞, n)-category, a fully extended TQFT is a symmetric
monoidal functor Z : Bord(∞,n) → C.

A proper definition of Bord(∞,n) and Z can be found in [65]. The classification of fully
extended TQFTs was conjectured by Baez and Dolan [6] and goes by the name cobordism
hypothesis.

Theorem 2.1.4 (Cobordism Hypothesis)
Every fully extended TQFT Z : Bord(∞,n) → C is equivalent to a fully dulizable object in
C given by evaluation of Z on a point.

We will not be working with these results but only use them to contextualize the notion
of TCFTs which will be introduced in the next subsection.
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2.1.4 TCFTs

We will now introduce topological conformal field theories (TCFTs), we mainly follow [24].
In terms of physics TCFTs formalize A- and B-twisted superconformal field theories to
be defined in Section 2.2.2. As their name suggest, TCFTs are topological field theories
derived from CFTs. This is done by considering said CFTs ‘up to homotopy’.

According to [76] we have following definition.

Definition 2.1.4 (Closed CFT)
A closed CFT is a symmetric monoidal functor Z : Rpunct → Vectk from the category of
punctured Riemann surfaces to the category of k-vector spaces.

The objects of Rpunct are finite sets. For a pair (I, J) of objects morphisms are punc-
tured Riemann surfaces with ‘ingoing’ and ‘outgoing’ punctures being labeled by I and
J respectively. We additionally impose that each connected component has at least one
ingoing puncture. Composition in Rpunct is given by gluing.

To pass to a homotopical version of a CFT first consider the symmetric monoidal
functor C∗ : Top → Chk from the category of topological spaces to the category of chain
complexes of k-vector spaces. The functor C∗ maps topological spaces to their homology
chain complexes. Define the category RCh

punct to be the category whose objects are the
objects of Rpunct and whose hom-sets are given by

HomRCh
punct

(I, J) = C∗(HomRpunct(I, J)).

We then have the following definition due to [44].

Definition 2.1.5 (Closed TCFT)
A closed TCFT is a symmetric monoidal functor Z : RCh

punct → Chk.

For more details on the definition of a TCFT cf. [24]. This definition can also be
modified by allowing intervals for boundaries of the Riemann surfaces to describe open
TCFTs. One then introduces a set Λ of D-branes labeling these boundaries. In [24]
following classification result was proven.

Theorem 2.1.5 (Open TCFTs are Calabi-Yau A∞-Categories)
The category of open TCFTs with D-branes Λ is homotopy equivalent to the Calabi-Yau
A∞-category with objects Λ. Given a open TCFT Z this equivalence is given by evaluating
Z([0, 1]).

We make two remarks to put this result into context. Firstly, being Calabi-Yau is
a weaker notion than the one of fully dualizability, meaning that we cannot obtain this
classification from the cobordism hypotheses mentioned above. It is however possible to
formulate a generalized ‘noncompact version’ of the cobordism hypotheses to account for
this circumstance and view TCFTs as a special type of fully extended TQFT [65].

Secondly, prototypical examples of Calabi-Yau A∞-categories arise from the derived
category of coherent sheaves on algebraic varieties. As we will describe in Section 2.2.4
derived categories naturally relate to D-branes in the B-model. Another class of examples
is given by Fukaya categories associated to symplectic manifolds. These categories describe
D-branes in the A-model.
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2.2 The Topological B-Model for GLSMs

In this section we give a lightning review of N = (2, 2) gauged linear sigma models in 1+1
dimensions. We discuss the moduli spaces of GLSMs which provide a common framework
for certain types of QFTs as their UV-completion [86], in particular this does also include
minimal models.

Subsequently we review the topological A- and B-twists of N = (2, 2) theories in 1 + 1
dimensions. In case of the GLSMs these twists yield a description of topological strings.

We then introduce a class of GLSMs which encompasses all minimal model up to a
fixed level k.

Lastly we will discuss the boundary conditions in the B-twisted GLSM and in the
theories that constitute IR limits of the former.

2.2.1 Gauged Linear Sigma Models

For the subsequent discussion we mainly follow [51, 48], for a thorough introduction to
supersymmetric field theories see [29]. Throughout this thesis we consider 1+1 dimensional
N = (2, 2) gauged linear sigma models (GLSM for short). These theories can be considered
as the worldsheet description of a superstring.

Since we are ultimately interested in a topological sector of the theory, the topology–
and by extension the geometry–of the worldsheet does not enter the datum of the GLSM.
For the discussion of general features of the theory we may therefore always restrict our
attention to the flat Minkowski space R1,1. Having developed the general structure of the
theory then allows for the computation of correlation functions on arbitrary surfaces.

The bulk theory of a GLSM is specified by the data

(G, V, (r, θ),W ),

where

– G is a compact Lie group

– ρ : G → GL(V ) is a faithful unitary representation of G

– (r, θ) ∈ Rdim(G)×Rdim(G) are parameters such that exp(rj+iθj) ∈ Hom(π1(G),C∗)AdG

– W ∈ Sym(V ∨)G is a G-invariant polynomial.

We may identify (r, θ) ∈ z∨C × t∨C, where z and t are the Lie-algebras of the center ZG and
that of a maximal torus T ⊂ G respectively. Define t := r+ iθ, this yields a linear twisted
superpotential W̃ := −t ∈ Sym(g∨C)

AdG . In terms of physics, this data has the following
interpretation
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– G is the gauge group

– V is the chiral matter content

– (r, θ) are the Fayet-Iliopoulos- (FI) and θ-parameters, the former determining the
IR-behavior of the theory the latter singularities of the moduli space

– W is the superpotential.

The definition of a Lagrangian also necessitates the choice of a G-invariant norm 1
e2
⟨., .⟩AdG

on g and a G-invariant hermitian inner product on V , where e is the coupling constant.
The inner product on V induces a G-invariant smyplectic structure with momentum map
µ : V → g∨. We assume that there is a vector R-symmetry R : U(1)V → GL(V ) such that
the superpotential has R-charge 2.

The classical vacua of a GLSM are determined by the vanishing locus of the scalar
potential

U(σ,X) =
1

8e2
[σ, σ̄]2 +

1

2

(
|σX|2 + |σ̄X|2

)
+

e2

2
(µ(X)− r)2 + |dW (X)|2

where σ is the scalar component of the vector multiplet–which we later on assume to be
decoupled–and X is the scalar component of the chiral superfield. In this thesis we will be
working exclusively with abelian gauge groups. Picking G = U(1)n and V = Ck the scalar
potential reads

U(σ,X) =
k∑

i=1

∣∣∣∣∣
n∑

a=1

QaiσaXi

∣∣∣∣∣
2

+
e2

2

n∑
a=1

(
k∑

i=1

Qai|Xi|2 − ra

)2

+
k∑

i=1

∣∣∣∣∂W∂Xi

∣∣∣∣2 ,
where Qai ∈ u(1)∨C are the gauge charges of Xi. Since each term in U(σ,X) is positive they
have to vanish independently. Vanishing of the first term in U(σ,X) requires σ to lie in
the stabilizer subgroup of X, whereas the vanishing locus of the last two terms defines the
vacuum manifold given by

Crit(W ) ∩ {Ck −∆r}/GC.

Here, Crit(W ) is the vanishing locus of the F-term
∑k

i=1 |∂W/∂Xi|2 = 0. The expression
{Ck −∆r}/GC is the the GIT quotient where GC is the complexified gauge group and ∆r

is the set of GC-orbits that do not contain solutions to the D-term equation.
A phase of a GLSM is a domain in the FI-parameter space where the space of solutions

to the D-term equation
k∑

i=1

Qai|Xi|2 − ra = 0

is of maximal dimension n. Accordingly r lies on a phase boundary if the space of solutions
to the D-term equation is (n− 1)-dimensional. More generally, it is n−m-dimensional at
the intersection of m phase boundaries.



2.2 The Topological B-Model for GLSMs 17

The boundaries between different phases in parameter space can be described by posi-
tive cones of charge vectors: For any I ⊂ {1, . . . , k} we can associate the positive cone

ConeI =

{∑
i∈I

λiQi | λi ∈ R≥0 ∀i ∈ I

}
⊂ Rn (2.1)

inside the FI parameter space. The cones associated to sets I of cardinality |I| = n−1 such
that the Qi, i ∈ I are linearly independent (at least classically) describe the boundaries
between different phases, see e.g. [22]. Along each such phase boundary the unbroken
gauge group, which is the stabilizer of all the Xi, i ∈ I contains a single U(1).

Non-zero vaccum expectation values of the fieldsXi give masses to the scalar component
of the vector multiplet via the term

k∑
i=1

∣∣∣∣∣
n∑

a=1

QaiσaXi

∣∣∣∣∣
2

.

As a consequence, in a phase the gauge group is broken to a discrete subgroup via the
Higgs mechanism.

On the phase boundary there are Coulomb branches which render the phase bound-
aries singular. However on the quantum level these singularities get lifted and only discrete
points on the phase boundary–whose locations are determined by the θ-parameter–remain
singular [47]. We will elaborate further on this when discussing the grade and band re-
striction rules later on.

A geometric phase is characterized by a complete breaking of the gauge group and the
fact that all modes transverse to the vacuum manifold U(σ,X) = 0 are massive. If the
superpotential is non-vanishing some of the modes transverse to the vacuum manifold are
massless. At sufficiently low energies the massive fields decouple and the theory reduces to a
non-linear sigma model on the vacuum manifold. All non-vanishing masses are proportional
to e

√
|r|, thus large e and |r| can be considered to be describing the low energy regime.

For non-vanishing superpotentials W ̸= 0 some modes transverse to the vacuum man-
ifold are massive, a Landau-Ginzburg phase is a phase where the vacuum manifold is a
single point and all transverse modes are massless. At low energies a Landau-Ginzburg
phase is described by a Landau-Ginzburg theory or a Landau-Ginzburg orbifold theory in
case there is a residual discrete gauge group.

Even though we so far only made classical considerations the statements regarding
the phase structure asserted above remain valid in the quantum theory. However, the FI
parameter may be subject to renormalization. To be more precise in case the Calabi-Yau
condition

k∑
i=1

Qai = 0 ∀a

is met the FI parameters are not affected by renormalization and are thus genuine param-
eters of the theory. In this ‘non-anomalous’ case the FI parameters are exactly marginal
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and capture honest deformations. The theory comes with a Kähler moduli space, and a
phase transition corresponds to a marginal deformation. If the Calabi-Yau condition is
not satisfied the FI parameters undergo a non-trivial renormalization group flow and the
respective perturbations are relevant.

2.2.2 A- and B-Twists in (2,2) Models

As alluded to above we are ultimately interested in topological sectors of GLSMs and
we may therefore restrict our attention to Minkowski space R1,1, which we will do in
the following discussion. The topological sector is attained by the means of a so called
topological twist, the procedure presented here was first introduced in [87]. In the following
we will discuss this twist formally in the general case of N = (2, 2) theories in 1 + 1
dimensions, we follow [51]. An introduction to this topic can be found in [82].

The super Poincaré algebra of R1,1 consists of the symmetry operators summarized in
Table 2.1 below acting on the Hilbert space of states.

Z2-degree 0 1
H,P,M,FV , FA Q+, Q−, Q̄+, Q̄−

Table 2.1: Operators of the N = (2, 2) super Poincaré algebra of R1,1 and their Z2-degree.

The Hamiltonian H and momentum P form a vector with respect to Lorentz transforma-
tions M

[iM,H ± P ] = ∓2(H ± P ),

where the imaginary unit enters due to Wick rotation and the supercharges Q±, Q̄± are
spinors

[iM,Q±] = ∓Q±

[iM, Q̄±] = ∓Q̄±.

FV and FA are vector- and axial R-charges, at least one of which has to be a symmetry
of the theory for the purpose of twisting as we will see subsequently. The supercharges
satisfy

{Q±, Q̄±} = H ± P,

with all other brackets among them vanishing. The R-charges act on the supercharges via
phase rotation

[FV , Q±] = −Q±

[FV , Q̄±] = Q̄±

[FA, Q±] = ∓Q±

[FA, Q̄±] = ±Q̄±.

Now, define
QA := Q̄+ +Q− and QB := Q̄+ + Q̄−.
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We have that the pairs (QA, FA) and (QB, FV ) satisfy

Q2
A/B = 0

[FA/V , QA/B] = QA/B

[iM,QA/B] = −QA/B.

The nilpotency of QA/B implies that this linear combination of supercharges defines a dif-
ferential on the space of states and by extension on the space of local operators. Since the
supercharges generate spacetime translations taking the cohomology with respect to this
differential therefore renders the theory topological. There is however a caveat to this con-
struction. On an arbitrary spacetime there does not necessarily exist covariantly constant
spinors meaning that the supercharges would be subject to coordinate transformations.
However, by modifying the Lorentz transformations according to

iM 7→ iM + FA/V

we find that the supercharges become Lorentz-scalars and thus the algebra is independent
of the spacetime background. This procedure is called topological twisting and we call
the twist of a GLSM by FA the topological A-model and the twist by FV the topological
B-model.

Now, to describe spacetimes with boundaries consider a half-plane in Minkowski space
R1,1. It turns out that the supercharges QA and QB together with their complex con-
jugates respectively comprise the maximal sets of supercharges that can be preserved by
boundary conditions. Boundary conditions preserving QA and Q†

A are called A-branes and
B-branes if they preserve QB and Q†

B. The supercharges QA and QB act as differential
on local operators on the boundary as well as on local operators insertions between two
boundary components. We can then define the categories of boundary conditions CA/B

for A-branes and B-branes whose objects are boundary conditions and morphisms are
cohomology classes of operator insertions between objects.

In fact the categories CA/B encode the entire theory at hand and it turns out that
they carry a Calabi-Yau A∞-structure and thus represent TCFTs by Theorem 2.1.5.
Conversely–on Riemann surfaces–TCFTs give rise to the A- and B-model. Namely in
[84] it was argued that Chern-Simons theories are the effective background theories ob-
tained from the A- and B-model and in [25] it was shown how to obtain Chern-Simons
theories as effective background theories from a given TCFT.

The A- and the B-model are in one-to-one correspondence via a duality called homo-
logical mirror symmetry first conjectured by Kontsevich [63]. By now mirror symmetry is
proven for various spaces cf. e.g. [45, 36, 1].

In this thesis we will restrict our attention to the B-model. We will discuss examples
of categories of B-branes relevant for this thesis in Section 2.2.4.

2.2.3 Minimal Models

One notable observation about the structure of GLSMs is that it allows for the description
of minimal models as low energy phases. In fact, as we will see, for every k there is a GLSM
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whose low energy phase structure encompasses all minimal models up to level k. We will
exploit this fact later on when constructing all flow defects between minimal models.

The minimal models we are considering here are 1 + 1-dimensional N = (2, 2) theories
which are minimal with respect to the superconformal algebra. This means they carry
specific types of representations of the N = (2, 2) superconformal algebra [54].

Minimal models admit a ADE classification cf. [16, 43, 42]. Here, we will restrict
our attention to the A series of minimal models which are classified by a single number
k ∈ N0, the level specifying the conformal weight. In [85] Witten demonstrated that A
series minmal models can be obtained as the IR-fixed points of the RG flow of Landau-
Ginzburg models Mk with a single chiral field X and superpotential W = Xd for d ∈ Z≥2,
where the level is given by k = d− 2.

Minimal models exhibit relevant perturbations, which are captured by deformations of
the superpotential of the respective Landau-Ginzburg model by lower degree monomials
in X, i.e. they are given by

W = Xd + λ1X
d−1 + λ2X

d−2 + ...+ λd−2X
2.

This implies that all minimal modelsMk can be obtained as IR fixed points of relevant flows
starting in minimal models Mk0 at levels k0 > k. Along the flows, supersymmetric vacua
become massive and decouple together with the A-type supersymmetric branes carrying
the respective charges cf. [49, 66, 12]. Mirror symmetry interchanges A-type and B-type
branes, so in the mirror model B-type branes decouple.

The mirror dual of a minimal model Mk is the Zd-orbifold of Mk. Hence, mirror duals
of minimal models can be obtained as IR fixed points of Zd-orbifolds of Landau-Ginzburg
models with a single chiral field X and superpotential W = Xd. Here, the orbifold group
acts on X by phase multiplication.

As we have seen the phases of a GLSM may be given by Landau-Ginzburg models or
Landau-Ginuburg orbifolds. Thus, GLSMs can also capture minmal model. In fact for
each k there exists a GLSM which contains the mirror duals to all minimal models up to
level k as its phases [14]. This GLSM is given by

GLSMMd−2
:=

(
U(1)d−2,Cd−1, (r, θ),W =

d−2∏
i=0

Xd−i
i

)
,

where the representation Cd−1 can be read of from the charge assignment of the chiral
matter fields specified in Table 2.2 below.
Note that U(1)0 is anomalous, whereas the other U(1)i, i > 0 are non-anomalous. Hence
the FI parameter of U(1)0 has a non-trivial RG flow, whereas the other ones are honest
parameters of the theory.

We observe that GLSMMd−2
exhibits (d−1) phases. In each of these phases all but one

of the chiral fields assume a non-trivial vacuum expectation value (VEV). We call the phase
in which only the field Xi does not assume a VEV Phasei. In the effective field theory
describing this phase, only that field remains, the superpotential becomes W = Xd−i

i and
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X0 X1 X2 X3 . . . . . . Xd−3 Xd−2

U(1)0 (d− 1) −d 0 . . . . . . . . . . . . 0
U(1)1 1 −2 1 0 . . . . . . . . . 0
U(1)2 0 1 −2 1 0 . . . . . . 0
U(1)3 0 0 1 −2 1 0 . . . 0

...
...

. . . . . . . . . . . . . . .
...

U(1)d−4 0 . . . . . . 0 1 −2 1 0
U(1)d−3 0 . . . . . . . . . 0 1 −2 1

Table 2.2: Charges of the chiral matter fields of GLSMMd−2
.

the gauge group is broken to Zd−i. Thus, Phasei is given by the Landau-Ginzburg orbifold
whose IR fixed point is the mirror dual of the minimal model Mk at level k = d − i − 2.
Therefore, GLSMMd−2

contains as phases all the minimal model orbifolds of levels up to
k = d− 2.

Every such phase is separated from any other by a codimension-one phase boundary.
The one separating phases i and j are located at the cones Cone{k/∈{i,j}} consisting of the
positive linear combinations of the charge vectors of all chiral fields Xk, k /∈ {i, j}.

2.2.4 B-Branes in GLSMs

In this subsection we proceed by discussing the categories of B-branes for GLSMs and
their phases. We begin by briefly discussing geometric phases i.e. non-linear sigma models
followed up by a more detailed discussion of Landau-Ginzburg models and end up by
describing the auxiliary definition of GLSM B-branes we employ in this thesis.

B-Branes in Non-Linear Sigma Models

For non-linear sigma models with target X the B-brane category is given by the (bounded)
derived category of coherent sheaves

CB = Db(X).

The B-brane category for non-linear sigma models was first discussed in [63], even though
at the time it was examined in the context of mirror symmetry and its connection to branes
was not established. Later in [78] D-branes were described as objects in derived categories
of coherent sheaves and in [27] the B-model was realized with derived categories of coherent
sheaves at all genera.

The derived category of coherent sheaves being the prototypical example for a Calabi-
Yau A∞-category makes it apparent that CB in fact represent a TCFT by Theorem 2.1.5.

From the physics perspective–to lowest order–a D-brane is given by a submanifold
together with Chan-Paton data encoded in a vector bundle supported on that submanifold.



22 2. Topological Quantum Field Theories and Gauged Linear Sigma Models

The idea of the derived category is to represent these vector bundles by–complexes of–
coherent sheaves. This correspondence by itself is not one to one but localization with
respect to quasi-isomorphisms identifies branes in the same universality class of the RG-
flow. For a more detailed discussion of this point cf. [77].

B-Branes in Landau-Ginzburg Models

For Landau-Ginzburg models the category of B-branes was proposed by Kontsevich [55].
It is given by the homotopy category of matrix factorizations

CB = HMF(R,W ),

for a Landau-Ginzburg model with superpotential W ∈ R. For our purposes R will always
be a polynomial ring over C but the statements discussed in this section generalize to
regular rings of finite Krull dimension [34]. The category HMF(R,W ) will be the main
object of interest in this thesis and we will discuss its properties and features subsequently.
The physics derivation of HMF(R,W ) as the category of B-type boundary conditions in
Landau-Ginzburg models is worked out in [9].

For our present review we mainly follow [34]. We start our discussion by giving the
definition of a matrix factorization.

Definition 2.2.1 (Matrix Factorization)
Let R be a ring and W ∈ R. A matrix factorization of W is a Z2-graded R-module
P = P0 ⊕ P1 equipped with an odd endomorphism d such that d2 = W idP .

Note that we may view matrix factorizations as two-periodic twisted complexes

. . . P0
d0→ P1

d1→ P0
d0→ P1 . . . =: P1

d1
⇄
d0

P0

with differential

d =

(
0 d1
d0 0

)
.

Matrix factorizations admit a tensor product. Given two matrix factorizations P of W ∈ R
and P ′ of W ′ ∈ R′ their tensor product is given by the tensor product of the respective
two-periodic twisted complexes

P ⊗C P ′ := (P0 ⊗C P ′
0)⊕ (P1 ⊗C P ′

1)︸ ︷︷ ︸
(P⊗P ′)0

⊕ (P1 ⊗C P ′
0)⊕ (P0 ⊗C P ′

1)︸ ︷︷ ︸
(P⊗P ′)1

,

with the twisted differential

d :=


0 0 d1 −d′1
0 0 d′0 d0
d0 d′1 0 0
−d′0 d1 0 0

 .
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Note that the twists add under the tensor product and thus P⊗CP
′ is a matrix factorization

of the sum W +W ′.
Morphisms of matrix factorizations are given by the following definition.

Definition 2.2.2 (Morphisms of Matrix Factorizations)
Let P and P ′ be matrix factorizations of W ∈ R. A morphism between the matrix factor-
izations P and P ′ is a Z2-graded R-linear map.

The differential has an induced action on morphisms of matrix factorizations

d : Hom(P, P ′) → Hom(P, P ′), f 7→ dP ′f − (−1)|f |fdP .

Having the definition of matrix factorizations and their morphisms–together with a differen-
tial acting on them–at hand we can define the homotopy category of matrix factorizations.

Definition 2.2.3 (Homotopy Category of Matrix Factorizations)
Let R be a ring and W ∈ R the homotopy category of matrix factorizations HMF(R,W )
has as objects matrix factorizations of W and morphisms of matrix factorizations up to
d-homotopy as morphisms.

From the physics perspective, matrix factorizations correspond to B-branes and the
hom-sets in HMF(W,R) correspond to state spaces of strings stretched between them.

Note that in the light of Theorem 2.1.5 we expect the category of Landau-Ginzburg
B-branes to admit a Calabi-Yau A∞-structure and indeed in [56] such a structure was
found on the category of matrix factorizations HMF(R,W ).

In [37] it was shown that for R a regular local ring matrix factorizations are equivalent
to maximal Cohen-Macaulay Modules over the the hypersurface ring R/W . In fact there
is a equivalence of categories furnished by the cokernel: For every matrix factorization of
W

P1

d1
⇄
d0

P0

we have that coker(d1) is a maximal Cohen-Macaulay module over the the hypersurface
ring R/W . Conversely, every Cohen-Macaulay R/W -module admits a resolution that
turns two-periodic after the first step and this two periodic part of the resolution yields
the associated matrix factorization. This leads to the equivalence first proven for regular
local rings in [37].

Theorem 2.2.1 (Matrix Factorizations are Cohen-Macaulay Modules)
Let be a regular ring of finite Krull dimension and W ∈ R. There is an equivalence of
categories

coker : HMF(R,W ) → MCM(R/W ),

induced by the cokernel, where MCM(R/W ) is the stable category of maximal Cohen-
Macaulay R/W -modules.



24 2. Topological Quantum Field Theories and Gauged Linear Sigma Models

The stable category of maximal Cohen-Macaulay R/W -modules is obtained from the
category of maximal Cohen-Macaulay R/W -modules MCM(R/W ) by taking the quotient
of the morphisms by the set of R/W -linear homomorphisms factoring through some free
R/W -module.

So far we have discussed matrix factorizations which describe theories with trivial gauge
group. In the case of a Landau-Ginzburg model with non-vanishing gauge group the ring
of chiral fields R and the matrix factorization P carry representations ρR : G → GL(R)
and ρP : G → GL(P ) and we have to require compatibility of the matrix factorization with
these representations. This means that

ρPi
(g)(rp) = ρR(g)(r)ρPi

(g)(p), ∀ g ∈ G, r ∈ R, p ∈ Pi

and that the differential d has to be ρ-equivariant i.e.

ρP0(g)d1ρ
−1
P1
(g) = p1, and ρP1(g)d0ρ

−1
P0
(g) = p0, ∀ g ∈ G.

A matrix factorization satisfying these properties is called equivariant. In the case G =
U(1)n the representations ρi can be specified by means of the weights (charges) of the
respective representations. Indeed, U(1)n-equivariant matrix factorizations can be regarded
as Zn-graded matrix factorizations. In [56], where it was shown that the category of matrix
factorizations admit a Calabi-Yau A∞-structure it was also discussed how to extend this
result to the orbifold i.e. equivariant case. A proof for the existence of a Calabi-Yau
structure on the category of equivariant matrix factorization can be found in [21]. This
establishes that Landau-Ginzburg orbifold theories are also mathematically described by
TCFTs via Theorem 2.1.5.

The correspondence between matrix factorizations and Cohen-Macaulay 2.2.1 modules
can be extended to the equivariant, respectively graded case [37]. In particular, Zn-graded
matrix factorizations are related to Zn-graded Cohen-Macaulay modules. This circum-
stance allows us to exploit the correspondence of matrix factorizations and Cohen-Macaulay
modules also in the case of Landau-Ginzburg orbifold models.

We will use the fact that matrix factorizations can be represented by modules through-
out this thesis. In particular we will also use this fact for the degenerate case of matrix
factorizations of R ∋ W = 0. By a matrix factorization of W = 0 we mean a Z2-graded
module equipped with an odd differential. The category of B-branes can then essentially
be thought of as something like the homotopy category of chain complexes of R-modules.
To be more concise we may take the category of B-branes to be the triangulated category
of singularities

CB = Dsg(ModR) := Db(ModR)/Perf(ModR),

where Db(ModR) denotes the bounded derived category of R-modules and Perf(ModR)
is the full subcategory comprised of perfect complexes i.e. complexes consisting of only
projective modules. Just as in the non-degenerate case there is an equivalence between
matrix factorizations and modules due to a theorem by Rickard [72].
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Theorem 2.2.2 (Singularity Categories are Categories of Stabilized Modules)
Let A be a self-injective algebra then there is an equivalence of categories

Dsg(ModA) → ModA,

where ModA is the stable category of A-modules.

Note that in the non-degenerate case Orlov showed in [69] that there is an equivalence
between the category of matrix factorizations and the triangulated category of singularities.
Thus we may identify

CB = Dsg(ModR/W )

which covers both the non-degenerate and degenerate case.

B-Branes in GLSMs

As will be further elaborated on in the following sections, we are interested in constructing
defects between various phases of GLSMs. To this end we will construct RG-type defects
from the GLSM to its phases and defects lifting phases to the GLSM as an intermediate
step. As such–from a mathematical point of view–these defects are ought to yield funtors
between categories with the same kind of structures i.e. TCFTs. This necessitates a
categorical description of the GLSM in terms of a TCFT which is at present not available
to us.

As an auxiliary construction we will be treating the GLSM similar to the case of non-
linear sigma models. We define the category of B-branes of a GLSM (G = U(1)n, V, (r, θ),W )
as the (bounded) derived category of Zn-graded coherent sheaves on the subspace W = 0
of Spec(R) with R = Sym(V ∨)

CB := Db(R/W,G).

Since R ∼= C[X1, . . . , Xdim(V )] we have that Spec(R) = An
C and the category of B-branes is

equivalent to the derived category of Zn-graded R/W -modules

CB ∼= Db(ModZn

R/W ).

It can be shown that for any D-brane in an arbitrary phase a lift to this category does
indeed always exist cf. section 8.2 in [47], justifying our definition as an auxiliary tool and
a common framework for all the low energy phases of the GLSM.

2.3 Defects in GLSMs

We now have gathered all the ingredients needed to discuss our main objects of interest,
defects in GLSM. As was briefly mentioned above we aim to construct RG-type defects R
from the GLSM to its phases and defects T lifting phases to the GLSM. By fusing these
types of defects we may construct transition defects between the phases of a GLSM. In
this section we will be discussing the abstract approach of attaining RG-type and lifting
defects and some of their properties and subsequently give the explicit constructions. We
then compare our results to the grade- and band restriction rules from [47].
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2.3.1 Generalities on GLSM Defects

We take the following approach. Starting out with a GLSM we choose a codimension one
submanifold separating spacetime into two disjoint subspaces. Next we insert a invisible or
trivial defect–the identity defect–gluing together both sides of the defect in a trivial manner,
which leaves correlation functions unaffected. Subsequently we perform a deformation in
the form of a relevant perturbation of the theory on one side of the defect by applying the
RG flow. This is procedure is depicted in (2.2) below.

GLSM

IGLSM

GLSM perturbation
// GLSM

T

Phase

(2.2)

Lifting a phase to the GLSM via a defect T amounts to embedding it into the GLSM. This
procedure is not unique as will be discussed at length below.

On the level of the B-brane categories, following the RG flow to a phase via a defect R
amounts to either one of the following operations–assuming we are in the non-anomalous
setting. Flowing to a Landau-Ginzburg phase corresponds to taking the quotient by perfect
complexes to arrive at the triangulated category of singularities whereas for a geometric
phase taking the quotient by appropriate torsion modules eliminates the deleted set ∆r

Db(ModZn

R/W )

Dsg

(
ModR/W

)
Db
(
Crit(W ) ∩

{
Ck −∆r

}
/GC

)
.

perfect torsion

Just as for T the defects R are not uniquely defined. Notably, due to a theorem by Orlov
[68] we have the following equivalence of categories

Db
(
Crit(W ) ∩

{
Ck −∆r

}
/GC

) ∼= Dsg(ModR/W ),

for an accessible explanation of this theorem see also Section 10.6 in [47]. Indeed the
categories of B-branes are equivalent for every pair of phases in the non-anomalous case.

In the anomalous setting certain branes decay along the RG flow and get projected out
by the respective functor.

Since we are restricting our attention to a topological sector of the GLSM we may also
fuse defects which in particular allows us to lift boundary conditions from a phase to the
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GLSM as illustrated in (2.3). The thick lines in (2.3) represent boundary conditions i.e.
defects with the empty theory to its right and the symbol ⊗ denotes the fusion which
we will use from now on for the fusion product of defects. Fusion of defects is functorial
and thus expressing bulk deformations via defects implies functoriality of the behavior of
boundary conditions under bulk deformations.

Phase 7−→

B

GLSM

T

Phase

B

fusion
// GLSM

T ⊗B
(2.3)

Just as in the case of two-dimensional defect TQFTs, in the present setting the deformation
defects are ought to constitute 1-morphisms in a 2-category where fusion is the horizontal
composition, with the identity defect being the identity with respect to fusion. We expect
the following properties for deformation defects. Every lift Tk admits a adjoint Rk such
that

Rk ⊗ Tk = IPhase,

where IPhase is the identity defect of the phase and the index implies some choice which
stems from finiteness conditions that we will impose. As a consequence, in the opposite
direction we have that

(Tk ⊗Rk)
2 = Tk ⊗Rk ⊗ Tk ⊗Rk = Tk ⊗Rk

so Pk = Tk ⊗Rk is a idempotent defect in the GLSM. In fact Pk is supposed to be a defect
projecting onto the IR degrees of freedom in the UV. More details on the properties of
deformation defects and further applications can be found in [59].

We may also incorporate deformations in the form of perturbations that are marginal
into our construction to attain transition defects between different phases of the GLSM.
To do so we start out with a lift T i

k of a phase Phasei and perform the deformation to
flow to a different phase Phasej via Rj

l . The transition defect is then given by the fusion
Rj

l ⊗ T i
k. This procedure is depicted in Figure 2.1 below, taken from [10].
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GLSM branes

P j
l -invariant

subcategory

P i
k-invariant

subcategory

Phasej
branes

Phasei
branes

push down Ri
kpush down Rj

l

deformation

lift T j
l lift T i

k

transition Rj
l ⊗ T i

k

⊂ ⊂

Figure 2.1: Lifts, RG-flows and phase transitions in a GLSM.

Two phases in a GLSM can generically be connected via different homotopy classes of paths
in moduli space–in particular including monodromies–and we expect that the choices in
picking T i

k and Rj
l can be associated with the choices of homotopy classes. Indeed we will

be able to make such an identification via matching our defects with the so called grade-
and band restriction rules from [47] to be introduced in the next section.

2.3.2 Constructing GLSM Defects

When constructing transition defects in this thesis we will be exclusively concerned with
Landau-Ginzburg phases to avoid technicalities4. As such it will be sufficient to study the
subcategories of the GLSM given by the embeddings of matrix factorizations. We will thus
take the category of boundary conditions for a GLSM (G = U(1)n, V, (r, θ),W ) to be the
category of G-equivariant matrix factorizations of W

CGLSM
B := HMF(Sym(V ∨),W )G.

In case of Landau-Ginzburg models all physical data, including defect data, can be encoded
in a bicategory with adjunctions LGC under mild assumptions on the superpotential cf. [19]
for the precise statement. Note that the bicategory LGC is graded pivotal cf. [19]. This
fits with our discussion in Section 2.1.2, where we have seen that plain two-dimensional
defect TQFTs admit a pivotal structure. In contrast to the the pivotal case, in the graded
pivotal case the left- and right adjoints may differ by a shift5. For Landau-Ginzburg
orbifolds one would need to perform a orbifold construction as described in e.g. [8] to find
the adjunction data on the respective bicategory cf. [20]. In this thesis we assume this
structure to exist. We will not go into the technical details of this bicategory here and just
proceed by describing its relevant aspects needed for our discussion of defects in GLSMs.

4Transitions between geometric phases have been considered in [11] for the case of a rank-1 abelian
gauge group.

5That is, a shift with respect to the triangulated structure of the category of matrix factorizations,
which we have not introduced in this thesis.
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Given two GLSMs

(G1,Ck(1) , (r(1), θ(1)),W (1)) and (G2,Ck(2) , (r(2), θ(2)),W (2)),

a B-type defect between the two can be represented by a G1 × G2-equivariant matrix
factorization of the difference W (1) −W (2) of the respective superpotentials over the ring
of chiral bulk fields of the two models given by

R(1,2) := R(1) ⊗C R(2) = C[X(1)
1 , . . . , X

(1)

k(1)
, X

(2)
1 , . . . , X

(2)

k(2)
],

where R(i) := Sym(Ck(i)
∨
) ∼= C[X(i)

1 , . . . , X
(i)

k(i)
] is the ring of chiral bulk fields for the model

i. This means the category of 1-morphims of the bicategory of Landau-Ginzburg models
is given by

LGC((Ck(1) ,W (1)), (Ck(2) ,W (2))) = HMF(R(1,2),W (1) −W (2))G1×G2 .

Note that in the case that (G2,Ck(2) , (r(2), θ(2)),W (2)) is trivial i.e. G2 = {e}, k(2) = 0, W =

0 a defect between the two GLSM is a boundary condition of (G1,Ck(1) , (r(1), θ(1)),W (1))
as is expected.

Next we will have a look at the horizontal composition of 1-morphisms which amounts
to fusion of the corresponding defects. We start by considering the non-equivariant case
i.e. we restrict our attention to trivial gauge groups. Suppose we are given three models

({e},Ck(a) , (r(a), θ(a)),W (a)), a = 1, 2, 3,

defects P (1) between model 2 and model 1 and P (2) between model 3 and model 2 as
depicted in (2.4) below. Then P (1) is represented by a matrix factorization of W1(X

(1)
i )−

W2(X
(2)
i ) over R(1,2) and P (2) by a matrix factorization of W2(X

(2)
i )−W3(X

(3)
i ) over R(2,3).

W1(X
(1)
i )W2(X

(2)
i )W3(X

(3)
i )

P (1)P (2) (2.4)

The fusion P (1) ∗ P (2) of P (1) and P (2) over the model 2 squeezed in between them is then
given by the tensor product

P (1) ∗ P (2) = P (1) ⊗R(2) P (2),

over the ring of bulk fields of model 2, regarded as matrix factorization over the ring R(1,3).
Note that this matrix factorization still involves the chiral bulk fields X

(2)
i –now as defect

degrees of freedom–of the model squeezed in between the defects. Thus, the resulting
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matrix factorization is a priori of infinite rank. The fusion P (1) ∗ P (2) can however be
shown to be equivalent to a matrix factorization of finite rank cf. [12].

The equivariant setting requires a slight modification of the fusion product. Here the
tensor product of the respective matrix factorization still carries a representation of the
squeezed in model. The fusion is then given by the sub matrix factorization invariant
under the intermediate gauge group. To be concise, now suppose that the model a has
non-trivial gauge group Ga for a = 1, 2, 3. Then, the matrix factorizations P (1) and P (2)

representing defects between the models are equivariant with respect toG1×G2 andG2×G3

respectively. The tensor product P (1) ⊗R(2) P (2) then carries a representation of G2, and
the fusion of the respective defects is given by the G2-invariant sub matrix factorization

P (1) ∗ P (2) =
[
P (1) ⊗R(2) P (2)

]G2
.

More details on fusion in the equivariant setup can be found in [13].
On the level of Cohen-Macaulay modules, fusion is represented in a similar fashion,

by taking the invariant part with respect of the intermediate gauge group of the tensor
product of Cohen-Macaulay modules over the intermediate ring.

GLSM Identity Defects

To construct the identity defect consider two copies of the same GLSM

(G1,Ck(1) , (r(1), θ(1)),W (1)) = (G2,Ck(2) , (r(2), θ(2)),W (2)).

The identity defect in the GLSM acts as the identity with respect to fusion by enforcing
trivial gluing conditions X

(1)
i = X

(2)
i on the fields on either side. In the case of a trivial

gauge group G1 = G2 = {e}, it is represented by a matrix factorization of Koszul-type

with factors (X
(1)
i −X

(2)
i )–i.e. it is a tensor product of rank-1 matrix factorizations with

d1 = (X
(1)
i −X

(2)
i ) for each chiral bulk field Xi. In this case the Cohen-Macaulay module6

IGLSM =
S(1,2)

⟨(X(1)
i −X

(2)
i )i=1,...,k⟩ ,

(2.5)

acts as the identity on the GLSM, by identifying the fields X
(1)
i with the fields X

(2)
i , where

S(1,2) = R(1,2)/⟨W (X
(1)
i )−W (X

(2)
i )⟩.

Therefore, we can associate the functor IGLSM with the identity defect IGLSM. From now on
we will denote defects by italic letters and the corresponding 1-morphism in the bicategory
of Landau-Ginzburg models with calligraphic letters. We will be somewhat sloppy when
referring to the 1-morphism and just call them defects for the most part.

6Note that if the model has more than one chiral field, this module is not maximal Cohen-Macaulay–the
resolution is not two-periodic from the start, but only after the number of chiral fields minus one steps.
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When considering models with non-trivial gauge group G, the matrix factorization
representing the identity defect has to be modified. This is due to the fact that the factors
(X

(1)
i −X

(2)
i ) are not equivariant with respect to the action of the productG1×G2 = G×G of

the gauge groups on the left, respectively right side of the defect. The factors (X
(1)
i −X

(2)
i )

facilitates the identification of the fields X
(1)
i with the fields X

(2)
i but does not map G1

representations to G2 representations. So to make them equivariant one has to translate
the G1 representation labels of X

(1)
i to G2 representations. To this end, we first tensor the

Koszul factorization by the regular representation of the gauge group. For G = U(1), the
regular representation is given by

V U(1)
reg =

C[α, α−1]

⟨αα−1 − 1⟩ .

Here α corresponds to a defect field which has charges 1 and −1 under the U(1) gauge
groups on the left, respectively right of the defect. The field α−1 is a formal inverse of α
i.e. its charges are inverse to those of α.

For G = U(1)n, one such field αi has to be introduced for every U(1)-factor, i.e. the
regular representation is given by the module

V U(1)n

reg =
C[α1, α

−1
1 , . . . , αn, α

−1
n ]

⟨(αaα−1
a − 1)a=1,...,n⟩ .

αa has charges 1 and −1 under the left, respectively right ath U(1) and is uncharged with
respect to all the other U(1)s. The fields α−1

a are formal inverses and thus have inverse
charges to the ones of αa. These fields now serve as intertwiners to render the Koszul
factors in (2.5) equivariant by setting them to

α−Q1 i
1 . . . α−Qn i

n X
(1)
i −X

(2)
i ,

here Qa i is the charge matrix specifying the gauge representations on the chiral matter
fields.

The Cohen-Macaulay module associated to the identity defect in the GLSM

(U(1)n,Ck, (r, θ),W )

is then represented by

IGLSM :=
S(1,2) ⊗C V

U(1)n

reg

⟨(α−Q1 i
1 . . . α−Qn i

n X
(1)
i −X

(2)
i )i=1,...,k, ⟩ .

(2.6)

The construction of the identity defect in Landau-Ginzburg orbifold models is com-
pletely analogous. One only has to replace the regular representation of the gauge group
G = U(1)n in (2.6) by the regular representation of the respective finite orbifold group.
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For instance, in the important case of cyclic orbifold groups Zd, the regular representation
is given by

V Zd
reg =

C[α]
⟨αd − 1⟩ .

For more details on the representation of the identity defect by means of matrix factoriza-
tions and Cohen-Macaulay modules see [12] for the non-equivariant case, [13] for the case
of finite gauge groups and [10] for the case of gauge group U(1).

Orbifold Lifts

With the GLSM identity defect at hand we now may proceed to construct orbifold lifts.
To this end consider a GLSM

(G = U(1)n,Ck, (r, θ),W )

which admits a Landau-Ginzburg orbifold phase. In such a phase the D-term equations
require that some of the chiral fields of the GLSM obtain a non-trivial vacuum expectation
value, which in turn breaks the gauge symmetry to a finite subgroup H ⊂ G.

We choose a labeling such that XN+1, . . . , Xk are the fields acquiring a non-trivial
VEV in the Landau-Ginzburg phase and denote the stabilizer of these fields by H. The
Landau-Ginzburg model then has chiral fields given by X1, . . . , XN and superpotential
WLG obtained by inserting the vacuum-expectation values for the fields XN+1, . . . , Xk into
the superpotential W of the GLSM.

Our aim is to construct the defects Tγ, where γ labels the homotopy class of a path
in the GLSM parameter space, which lift the Landau-Ginzburg phase to the GLSM. Such
defects are B-type defects mediating between the Landau-Ginzburg model and the GLSM,
and can therefore be represented by objects in

HMF (W −WLG)
G×H .

Let us first remark on the relationship between the identity defect of the GLSM and
the one in the phase. Setting all the fields Xi, N < i ≤ k to their vevs (which w.l.o.g. we
choose to be 1) on both sides of the GLSM identity defect yields the identity defect of the

Landau-Ginzburg phase. Namely, setting X
(1)
i = X

(2)
i = 1 for N < i ≤ k in (2.6) changes

the respective Koszul factors to

α−Q1 i
1 . . . α−Qn i

n − 1, i ∈ {N + 1, . . . k} .

Dividing out V
U(1)n

ref by this relation precisely yields the regular representation V H
reg of H.

Thus quotienting by X
(1)
i = X

(2)
i = 1 for N < i ≤ k in IGLSM produces the module

associated to the identity defect in the Landau-Ginzburg phase ILG.
Conversely, starting with the identity defect of the LG phase, one may ask how to

lift to a defect of the GLSM. This can be done by re-introducing the variables Xi with
N < i ≤ k on both sides of the defect and lifting the respective representations of H to
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representations of G. Indeed, there are many different such lifts which we refer to as “lifted
identities”, none of which are however GLSM identity defects.

We now turn to the construction of defects T i
γ and Ri

γ for Landau-Ginzburg phases.
These defects have to satisfy

Rγ ⊗ Tγ = ILG.

Our starting point is the module (2.6) representing the identity defect of the GLSM.
Motivated by the observation that setting the fields to their expectation values on both
sides yields the identity of the phase, we factorize the identity defect of the phase over the
GLSM according to

R∞ ⊗ T∞ = ILG.

The defects R∞ and T∞ are obtained by setting the fields Xi, N < i ≤ k to their VEVs,
but only on one side of the GLSM identity defect. For example, to obtain T∞ we set

X
(2)
i = 1, N < i ≤ k (2.7)

in the GLSM identity defect and arrive at the setting depicted in (2.8).

W (X
(1)
i )

IGLSM

W (X
(2)
i ) (2.7)

// W (X
(1)
i )

T∞

WLG(X
(2)
i )

(2.8)

On the level of modules, imposing (2.7) in (2.6) yields a new module T∞ with relations

α−Q1 i
1 . . . α−Qn i

n X
(1)
i = X

(2)
i , 1 ≤ i ≤ N

α−Q1 i
1 . . . α−Qn i

n X
(1)
i = 1, N < i ≤ k. (2.9)

Thus, we have

T∞ =
S(1,2) ⊗ Vreg

⟨(α−Q1 i
1 . . . α−Qn i

n X
(1)
i −X

(2)
i )i=1,...,N⟩⟨(α−Q1 i

1 . . . α−Qn i
n X

(1)
i − 1)i=N+1,...,k)⟩ .

Similarly, we obtain a module R∞ by setting fields on the left hand side of the defect to
their expectation value i.e. by setting

X
(1)
i = 1, N < i ≤ k.

The resulting module T∞ however does not have the desired properties for lift defects.
For one thing, T∞ is not finitely generated and hence cannot be obtained by lifting the
identity defect of the Landau-Ginzburg phase on the left side to the GLSM. What is more,
T∞ is unique and hence does not depend on a homotopy class of paths in moduli space.
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For the case of U(1) gauge groups, this problem was solved in [10]. There it was shown
that the lift defects are obtained from T∞ by a cutoff procedure which renders the module
finitely generated. The choice involved in the cutoff procedure exactly corresponds to the
choice of homotopy class of paths in parameter space. In the following, we will generalize
this to higher rank abelian gauge groups and give a concrete construction of the desired
transition defects.

Let γ be a path in parameter space such that it crosses a number of phase boundaries
associated to cones ConeIs , s = 1, . . . ,m as defined in (2.1) but not intersect or encircle
any singular point. On each phase boundary, a U(1)-subgroup U(1)Is is preserved. To
construct the lift defects, we now impose cutoffs

QL
Is ≤ NIs (2.10)

in T∞ for the respective charges QL
Is
of the gauge group on the left of the defect for each such

transition. More precisely, one considers the submodule TNI1
,...,NIm

⊂ T∞ generated by all
the generators whose charges satisfy (2.10). We claim that the associated defects TNI1

,...,NIm

are the respective lift defects. While this does not offer an a priori assignment of defects
to homotopy classes of paths, we observe that the choice of cutoff parameters NI1 , . . . , NIm

are in one-to-one correspondence with the homotopy classes of paths with the chosen phase
transitions. For each transition, the different paths must avoid the singular locus (2.12),
and a homotopy class is specified by a connected component of R\(2πZ + πSI). Thus,
our construction provides a lift defect for every homotopy class of paths not encircling the
singular points on the phase boundaries.

Indeed, the lift defects satisfy

R∞ ⊗ TNI1
,...,NIm

= idLG

and hence are “lifted identities” from the perspective of the orbifold phase. Moreover,
when the path crosses n phase boundaries (n being the rank of the gauge group), the
respective cutoffs render the module finitely generated. Indeed, due to the relations (2.9)
in T∞, any cutoff (2.10) automatically leads to a lower limit on the respective charges of
necessary generators of TNI1

,...,NIm
namely

NIs −MIs < QL
Is ≤ NIs . (2.11)

Here MIs is an integer associated to Is. This will be explained in more detail in the
examples in the main body of this thesis. As will be outlined in the subsequent section,
this exactly reproduces the band restriction rule for D-brane transport as put forward in
[47].

From the lift defects TNI1
,...,NIm

constructed in this way, one can then obtain the defects
describing the transition between the LG phase and any other phase crossed by the path γ.
This is done by pushing the GLSM to the respective phase on the left of the defect, which
is the same as fusion with the respective defect R∞. If the target phase is another Landau-
Ginzburg phase, this just involves setting fields to their VEVs. For geometric phases, this is
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somewhat more complicated. It involves expanding the lift defect TNI1
,...,NIm

into a complex
of matrix factorizations and interpreting it as a hybrid between a matrix factorization and
a complex of coherent sheaves on the target space. These steps were performed for one
parameter models in [11]. We omit them here, focussing on the construction of the lift
defects.

2.3.3 Grade- and Band Restriction Rules

As discussed earlier, on the classical level the emergence of Coulomb branches render the
phase boundaries of a GLSM singular. On the quantum level, it turns out that the Coulomb
branch only emerges at very specific values of θ on the classical phase boundaries defined
by the cone ConeI . This leads to codimension-two-loci of singular points in the Kähler
moduli space (or rather the space parametrized by the complexified FI parameters ra+iθa).
Indeed, on any such classical phase boundary, the singular loci are given by

θI ∈ {2πZ+ πSI}, with SI =
∑

QI i>0

QI i, (2.12)

where θI is the θ-parameter in the direction of the U(1)-subgroup U(1)I unbroken on the
phase boundary associated to ConeI , and QI i is the respective U(1)I-charge of the chiral
field Xi. For more details see [47].

To put our construction into perspective, we would like to compare it to results on
D-brane transport on the Kähler moduli space of non-anomalous GLSMs in [47]. Indeed,
fusion of transition defects with D-branes (boundary conditions) describes the behavior of
the latter under the respective phase transitions. In this way, the defects constructed above
can be used to describe D-brane transport between different phases in Kähler moduli space.
Fusion of D-branes in the LG phase with the defects TNI1

,...,NIm
lifts these D-branes to the

GLSM in a way compatible with transport along a path associated to the choice of cutoff
parameters. It turns out that this matches precisely with the band restriction rule–which
is called grade restriction rule in special case of GLSMs with gauge group U(1)–proposed
in [47].

The band restriction rule states the following: A path between two adjacent phases
has to avoid the singular locus (2.12) in Kähler moduli space, i.e. it crosses the phase
boundary at θI ∈ R\{2πZ+ πSI}. The choice of any such θI gives rise to a window

Z ∩
{
− θI
2π

+

(
−SI

2
,
SI

2

)}
of consecutive integers, which only depends on the connected component of possible θI and
hence on the homotopy class of paths from one phase to the adjacent one. According to
the band restriction rule (see Section 7.3.2. of [47]), D-branes built from Wilson line branes
W(q) can be transported straightforwardly along a chosen path in Kähler moduli if and
only if their charges q under the U(1)s unbroken at all phase boundaries traversed lie in
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the respective windows. That is, for a path crossing the phase boundary given by ConeI
where U(1)I is unbroken the charge qI of a Wilson line brane has to satisfy

−SI

2
<

θI
2π

+ qI <
SI

2
.

The matrix factorizations associated to the lift defects TNI1
,...,NIm

have the property that
the generators of their underlying modules have charges (under the gauge group on the left
of the defect) lying in the band (2.11). This means that fusing any boundary condition
(D-brane) in the LG phase with TNI1

,...,NIm
produces only GLSM branes whose charges

lie in this charge band. Thus, lifting LG-branes into the GLSM with TNI1
,...,NIm

produces
GLSM branes in that charge band. As we will see concretely in the examples discussed in
the next chapter, the charge bands singled out by the defect construction precisely match
those of the band restriction rule in [47]. Note that while our construction requires the
introduction of the upper bounds on the charges, the lower bounds automatically follow
from it. In particular, the size of the bands is completely determined from the construction.

Note that a path from the small volume phase (ri << 0 for all i) to the large volume
phase (ri >> 0 for all i) crosses at least r phase boundaries, where r is the rank of the
gauge group. Hence, the corresponding band restriction rule restricts to a finite set of
possible charges. In the language of defects and corresponding modules, this matches the
fact that T∞ gets truncated to a finite submodule in this case.

For the anomalous case, a generalization of the grade restriction rule has been discussed
in [50, 35, 22]. Starting from the UV phase, D-branes are lifted into a ‘large window’, and
D-branes with charges in a ‘small window’ that is a subset of the large window survive
the flow to an IR phase. The location of the small window inside the large window can be
shifted by symmetry and monodromy. Our defect construction applies to the anomalous
case as well, the lift defects lift D-branes into the large window, and the small window
arises automatically when pushing to the IR phase on the other side of the defect. We will
confirm this for a class of examples, the Landau-Ginzburg models

GLSMMd−2
:=

(
U(1)d−2,Cd−1, (r, θ),W =

d−2∏
i=0

Xd−i
i

)
,

encompassing all minimal model orbifolds up to level k = d− 2 as their respective phases.
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In this chapter we discuss the application of the main result of this thesis–the prescription
for the construction of defects T and R–to various examples of GLSMs. The Results
discussed here are the ones put forward in [14].

We begin by discussing orbifold lifts in three non-anomalous examples which where also
considered in [47] and compare the results. First we consider the GLSM encoding the A2

singularity and its resolution. Next, we study a Two Parameter Model with C5/Z8-orbifold
phase before discussing the GLSM describing the AN−1 singularity for arbitrary N .

We then turn our attention to the construction of flow defects between minimal models
via GLSMs. To this end we make use of the fact that there is a GLSM whose phases are
precisely describing all minimal models up to a certain level. This allows us to exploit our
construction of orbifold lifts and subsequently push down the defect to another phase on
the left side of the defect. We demonstrate that this way we can reproduce the flow defects
from [13].

3.1 Non-Anomalous Examples

In this section we will apply the construction of lift defects described in the previous chapter
to two concrete examples of non-anomalous GLSMs with higher-rank abelian gauge groups.
For simplicity we will choose examples with zero superpotential. The relevant defects are
described by matrix factorizations of 0, which correspond to honest (as opposed to twisted)
complexes as discussed in Section 2.2.4, and hence there is a direct connection with modules
over polynomial rings.

The first example we will be studying is the AN−1-model. It is a GLSM with U(1)N−1

gauge group, whose orbifold phase is associated to the orbifold C2/ZN . Here ZN acts by
opposite phase multiplication on the two coordinates of C2 such that the Calabi-Yau con-
dition is satisfied. The geometric phase of this model is the sigma model on the resolution
of the corresponding AN−1-singularity by a chain of N − 1 Riemann spheres P1 intersecting
according to the An Dynkin diagram. The volumes of the Riemann spheres are determined
by the FI parameters.

The second example is a GLSM with gauge group U(1)2 which has four phases, one of
which is a C5/Z8-orbifold phase and one which is a non-linear sigma model on the total
space of the line bundle O(−8) over the weighted projective space P(11222).
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These models are well studied. In particular, the D-brane transport between different
phases in these models has been investigated in [47] (where the two models are referred to
as example (D) and example (C), respectively). Now, D-brane transport is easy to describe
in our framework, since it is just given by fusion of the D-branes with the transition defects
between the respective phases. So after constructing the lift defects of the orbifold phases
in these examples, we will show that fusion of D-branes with these defects reproduces the
results on D-brane transport from [47]. The latter are formulated in terms of the grade
restriction (for rank 1 gauge theories) or band restriction (higher rank) rule.

This section is organized as follows: We will start by studying two different two-
parameter models, the A2-model and the model with orbifold phase C5/Z8. In both cases
we compare our results with the band restriction rule and find agreement. Subsequently,
we will generalize the discussion of the A2-model to the N − 1-parameter AN−1-model for
arbitrary N .

Throughout this section, we will distinguish variables on the left and right of the defect
by adding a prime, while the respective gauge groups are distinguished by a superscript
L/R.

3.1.1 The A2 Model

We start out by studying lifts of the orbifold phase of the A2-GLSM. The latter is specified
by the data

GLSMA2
:= (U(1)1 × U(1)2, V, (r, θ), W = 0),

where the representation V , can be read off from the charge assignment of the chiral matter
fields specified in Table 3.1 below.

X1 X2 X3 X4

Q1 1 -2 1 0
Q2 0 1 -2 1

Table 3.1: Matter content of the A2-model. Qj denotes the respective U(1)j-charge.

This model exhibits an orbifold phase for r1, r2 → −∞. In this phase the fields X2 and X3

acquire a vev and the low energy theory is the orbifold theory C2/Z3 with fields X1 and
X4 whose Z3-charges are 1 and −1 respectively. The model also exhibits a large volume
phase in the opposite limit r1, r2 → ∞. This limit is described by a sigma model on the
resolution of the C2/Z3 singularity, where both of the 2-spheres in the exceptional divisor
are blown up. Apart from these there are two mixed phases related to partial resolutions
of the singularity, where only one of the two 2-spheres is blown up.

The phase diagram of GLSMA2 is depicted in Figure 3.1 below. Here (11) denotes the–
unresolved–orbifold phase and (00) denotes the large volume phase, where both 2-spheres
in the exceptional divisor are blown up. The intermediate phases in which only one of the
two 2-spheres is blown up are denoted by (01) and (10), respectively.
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X1

X2

X3

X4
(00)

(11) (10)

(01)

Figure 3.1: Phase diagram of GLSMA2 . Phases are denoted by (i1i2) where ij = 0 if the
jth exceptional 2-sphere is blown up, and ij = 1 if it is blown down. The phase boundaries
denoted by Xi are located at Cone{i}.

The phase boundary (11) ↔ (01) is located at

Cone{2} =

{
r = λ

(
−2
1

) ∣∣∣ λ ∈ R>0

}
.

The D-term equation forces X2 to acquire a vev on this phase boundary, and the isotropy
group of the latter is given by

{(g, g2)|g ∈ U(1)} ∼= U(1).

This is the U(1) unbroken on the entire phase boundary. Analogously one obtains the
unbroken gauge groups at the other phase boundaries which can be read of from Table 3.2.

phase boundary location unbroken gauge group
(11) ↔ (01) Cone{2} {(g, g2) | g ∈ U(1)}
(11) ↔ (10) Cone{3} {(g2, g) | g ∈ U(1)}
(00) ↔ (01) Cone{4} U(1)1
(00) ↔ (10) Cone{1} U(1)2

Table 3.2: Unbroken subgroups of U(1)1 × U(1)2 at the phase boundaries of GLSMA2 .

A more detailed discussion on the A2-model can be found in [47]1.

The GLSM Identity Defect

The identity defect of GLSMA2 is associated to the C[X1, . . . , X4, X
′
1, . . . , X

′
4]-module

IGLSMA2
:= C[X1, . . . , X4, X

′
1, . . . , X

′
4, α1, α

−1
1 , α2, α

−1
2 ]/⟨(α−Q1 i

1 α−Q2 i
2 Xi −X ′

i), (αiα
−1
i − 1)⟩.

1It is example (D) with N = 3.
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Here the fields Xi and X ′
i denote the chiral fields of the model on the left, respectively the

right of the defect. We also introduced auxiliary defect fields αi and α−1
i , for each of the

U(1) gauge groups satisfying αiα
−1
i = 1. The αi are charged under both, the gauge groups

on the left and the right of the defect. The gauge-charges of the various fields are given by
Table 3.3 below.

X1 X2 X3 X4 X ′
1 X ′

2 X ′
3 X ′

4 α1 α−1
1 α2 α−1

2

QL
1 1 -2 1 0 0 0 0 0 1 -1 0 0

QL
2 0 1 -2 1 0 0 0 0 0 0 1 -1

QR
1 0 0 0 0 1 -2 1 0 -1 1 0 0

QR
2 0 0 0 0 0 1 -2 1 0 0 -1 1

Table 3.3: Fields of the identity defect of the A2-model. QL
j denotes the charges of the

fields under the left gauge group U(1)Lj and QR
j denotes the charges of the fields under the

right gauge group U(1)Rj .

As an aside note that pushing the GLSM identity defect to the orbifold on both sides
requires settingX2 = X ′

2 = X3 = X ′
3 = 1 in IGLSMA2

. This imposes the relations α−2
1 α2 = 1

and α−2
2 α1 = 1, thereby realizing the gauge symmetry breaking to the subgroup

Z3 ⊂ U(1)1 × U(1)2

on the level of rings describing the regular representation. The result is the module

Iorb = C[X1, X4, X
′
1, X

′
4, α1]/⟨(α3

1 = 1), (X1α
−1
1 −X ′

1), (X4α
−2
1 −X ′

4)⟩

associated to the identity defect in the orbifold model C2/Z3. It is built on 3 generators
ei = αi−1

1 , of ZL
3 × ZR

3 -charges
2 ([i− 1]3, [−i+ 1]3) satisfying relations

X ′
1e1 = X1e2, X ′

1e2 = X1e3, X ′
1e3 = X1e1, X ′

4e1 = X4e3, X ′
4e2 = X4e1, X ′

4e3 = X4e2.

Orbifold lift

In order to attain the defects that lift the orbifold phase to the GLSM we first have to push
the GLSM on the right side of the GLSM identity defect to the orbifold phase. To do this,
we set w.l.o.g. X ′

2 = X ′
3 = 1 in IGLSMA2

. This yields the C[X1, . . . , X4, X
′
1, X

′
4]-module

T∞ =
C[X1, . . . , X4, X

′
1, X

′
4, α1, α

−1
1 , α2, α

−1
2 ]

⟨(α−Q1 i
1 α−Q2 i

2 Xi −X ′
i)i=1,4, (X2 − α−2

1 α2), (X3 − α1α
−2
2 ), (αiα

−1
i − 1)⟩ .

(3.1)

The gauge symmetry of the theory on the right of the defect is broken from U(1)R1 ×U(1)R2
to {(

e
2πin
3 , e−

2πin
3

)
|n ∈ Z

}
∼= Z3.

2Here, [•]d denotes the Zd-reduction of the integer written in brackets.
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This symmetry breaking is realized by the relations

X2 = α−2
1 α2 and X3 = α1α

−2
2

in (3.1). As expected, T∞ is not a finitely generated C[X1, . . . , X4, X
′
1, X

′
4]-module. To

construct the lift defects, we now proceed according to our prescription presented in Sec-
tion 2.3.2 by introducing cutoffs to charges of the U(1)s unbroken at all the phase bound-
aries traversed by the chosen path. For the transition (11) ↔ (01) ↔ (00) we obtain the
cutoff

QL
1 + 2QL

2 ≤ N

from the phase boundary (11) ↔ (01) and the cutoff

QL
1 ≤ M

from (01) ↔ (00). Instead of the module T∞ we consider the submodule TN,M generated
by only those generators whose charges satisfy these inequalities. The choice of cutoff
parameters N and M corresponds to the choice of homotopy class of path between the
respective phases.

Note that the relations

X3α
−1
1 α2

2 = 1 and X2α
2
1α

−1
2 = 1,

in (3.1) can be used to write any generator e as

e =
(
X3α

−1
1 α2

2

)r (
X2α

2
1α

−1
2

)s
e = Xr

3X
s
2

(
α−1
1 α2

2

)r (
α2
1α

−1
2

)s
e =: Xr

3X
s
2 e

′. (3.2)

Now, the charges under the unbroken U(1)s of α−1
1 α2

2 and α2
1α

−1
2 are given by Table 3.4

below.

α−1
1 α2

2 α2
1α

−1
2

QL
1 + 2QL

2 3 0
QL

1 -1 2

Table 3.4: Charges of α−1
1 α2

2 and α2
1α

−1
2 under the gauge groups {(g, g2) | g ∈ U(1)} and

U(1)1 unbroken at the phase boundaries (11) ↔ (01) and (00) ↔ (10) respectively.

Thus, any generator of TN,M can–via (3.2)–be written as a generator whose charges lie in
the band

N − 3 < QL
1 + 2QL

2 ≤ N

M − 2 < QL
1 ≤ M.

(3.3)

Thus, TN,M is generated by generators with charges in this band. In particular it is finitely
generated.
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Indeed, this matches precisely with the analysis of D-brane transport in [47]. The
charge bands above are the range of charges of D-branes lifted from the orbifold phase to
the GLSM by fusion with the respective lift defects. They precisely match with all band
restriction rules for this model from [47] (example (D)):

− 3

2
<

θ1 + 2θ2
2π

+QL
1 + 2QL

2 <
3

2

− 1 <
θ1
2π

+QL
1 < 1,

where the choice of cutoff parameters M and N corresponds to the choice of homotopy
class of paths determined by θ1 and θ2.

It is very easy to determine the module TN,M from the charge bands. For N −M even
the independent generators satisfying (3.3) are

e1 := αM
1 α

N−M
2

2 , e2 := αM
1 α

N−M
2

2 α−1
1 , e3 := αM

1 α
N−M

2
2 α−1

2 .

They are subject to the relations

X ′
1e1 = X1e2

X ′
1e2 = X1X2e3

X ′
1e3 = X1X2X3e1

X ′
4e1 = X4e3

X ′
4e3 = X3X4e2

X ′
4e2 = X2X3X4e1.

The U(1)L1 × U(1)L2 × ZR
3 -charges of the generators are given by

e1 :
(
M, N−M

2
,
[
1
2
(N − 3M)

]
3

)
e2 :

(
M − 1, N−M

2
,
[
1
2
(N − 3M) + 1

]
3

)
e3 :

(
M, N−M

2
− 1,

[
1
2
(N − 3M) + 2

]
3

)
.

For N −M odd the independent generators satisfying (3.3) are

e′1 := αM−1
1 α

N−M−1
2

2 , e′2 := αM−1
1 α

N−M−1
2

2 α1 , e′3 := αM−1
1 α

N−M−1
2

2 α2 .

They satisfy the relations
X ′

1e
′
1 = X1X2X3e

′
3

X ′
1e

′
3 = X1X2e

′
2

X ′
1e

′
2 = X1e

′
1

X ′
4e

′
1 = X2X3X4e

′
2

X ′
4e

′
2 = X3X4e

′
3

X ′
4e

′
3 = X4e

′
1

(3.4)
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and their U(1)L1 × U(1)L2 × ZR
3 -charges are given by

e′1 :
(
M − 1, N−M−1

2
,
[
1
2
(N + 1− 3M)

]
3

)
e′2 :

(
M, N−M−1

2
,
[
1
2
(N + 1− 3M) + 1

]
3

)
e′3 :

(
M − 1, N−M+1

2
,
[
1
2
(N + 1− 3M) + 2

]
3

)
.

(3.5)

Brane Lift to the GLSM

Lifting D-branes from the orbifold phase to the GLSM is described by fusing the D-branes
with the respective lift defects.

In order to illustrate this, we will fuse the lift defects with the fractional D0 branes in
the orbifold phase. The latter correspond to the R′ := C[X ′

1, X
′
4]-modules

C[X ′
1, X

′
4]/⟨X ′

1, X
′
4⟩{[n]3}. (3.6)

The lift of (3.6) is given by the fusion with TN,M

TN,M ∗R′/⟨X ′
1, X

′
4⟩{[n]3} = (TN,M ⊗R′ R′/⟨X ′

1, X
′
4⟩{[n]3})Z3 ,

For concreteness let us consider the case N −M odd and 1
2
(N + 1− 3M) + n = 0 mod 3.

Then the Z3-invariant generator in TN,M ⊗R′ R′/⟨X ′
1, X

′
4⟩{[n]3} is e′1 ⊗ 1. Therefore, re-

placing the variables X ′
1 and X ′

4 according to the relations (3.4) we find the lift

T (N,M) ∗R′/⟨X ′
1, X

′
4⟩{[n]3} = C[X1, X2, X3, X4]/⟨X1X2X3, X2X3X4⟩

{(
M − 1, N−M−1

2

)}
.

This module can be expressed equivalently by its Koszul resolution

R⊗
∧2 V ∨ {(M − 1, N−M−1

2

)} d1→ R⊗ (V ∨
4

{(
M − 1, N−M+1

2

)}
⊕ V ∨

1

{(
M, N−M−1

2

)} d2→ R
{(

M − 1, N−M−1
2

)}
,

where V := span{π1, π4} =: V1⊕V4 is a two-dimensional vector space, R := C[X1, X2, X3, X4]
and

d1 =

(
X1

−X4

)
, d2 =

(
X2X3X4 X1X2X3

)
.

Indeed, we may arrive at the same result by taking a slightly different route, first
determining the resolution of the fractional brane (3.6) and then performing the fusion
with TN,M . The fractional brane (3.6) can be represented by the Koszul resolution

A• := R′ ⊗
∧2

V ∨{[n]3} → R′ ⊗ (V ∨
4 {[n+ 1]3} ⊕ V ∨

1 {[n− 1]3}) → R′{[n]3},

with differential d :=
∑

iX
′
iπi⌟. To compute the lift

TN,M ∗ A• = (TN,M ⊗R′ A•)Z3

of (3.6) we have to determine the Z3-invariant part of TN,M ⊗R′ R′{[n]3}. This can be
accomplished by using the charges (3.5) of the generators e′i of TN,M . One obtains

R⊗
∧2 V ∨ {(M − 1, N−M−1

2

)} d1→ R⊗ (V ∨
4

{(
M − 1, N−M+1

2

)}
⊕ V ∨

1

{(
M, N−M−1

2

)} d2→ R
{(

M − 1, N−M−1
2

)}
.
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Here

d1 =

(
A
−B

)
, d2 =

(
C D

)
with

A = X1 , B = X4 , C = X2X3X4 , D = X1X2X3 ,

which has been obtained by replacing X ′
i variables with the Xi variables according to the

relations (3.4).
Of course, one can perform the calculations also for the other fractional branes. The

lifts for these cases are given by

R⊗
∧2 V ∨ {(M − 1, N−M+1

2

)} d1→ R⊗ (V ∨
4

{(
M, N−M−1

2

)}
⊕ V ∨

1

{(
M − 1, N−M−1

2

)} d2→ R
{(

M − 1, N−M+1
2

)}
,

for 1
2
(N + 1− 3M) + n = −1 mod 3 where now

A = X1X2X3 B = X3X4 C = X4 D = X1X2

and

R⊗
∧2 V ∨ {(M, N−M−1

2

)} d1→ R⊗ (V ∨
4

{(
M − 1, N−M−1

2

)}
⊕ V ∨

1

{(
M − 1, N−M+1

2

)} d2→ R
{(

M, N−M−1
2

)}
,

for 1
2
(N + 1− 3M) + n = −2 mod 3 with

A = X1X2 , B = X2X3X4 , C = X3X4 , D = X1 .

This agrees with the results in 8.4.2 (D) of [47], where a lift of the fractional branes was
determined for the homotopy class of paths given by θ1 = −π, θ2 = −π

2
. This corresponds

to the choice of our cutoff parameters (N,M) = (2, 1).

3.1.2 A Two Parameter Model with C5/Z8-orbifold phase

Next we will apply our construction to another two parameter model, which is defined by
the following data

GLSMC5/Z8
= (U(1)1 × U(1)2, V, (r, θ),W = 0),

this is example (C) in [47]. Here the representation V , can be read off from the charge
assignment of the chiral matter content given by table 3.5 below.

X0 X1 X2 X3 X4 X5 X6

Q1 -4 0 0 1 1 1 1
Q2 0 1 1 0 0 0 -2

Table 3.5: Matter content of the two parameter model. Qj denotes the U(1)j-charge of
the field Xi.
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The phase structure of this model is similar to the one of the A2-model. It exhibits an
orbifold phase for r1, r2 → −∞. In this phase the fields X0 and X6 aquire a vev and the
low energy theory is the orbifold theory C5/Z8. We call this phase III. It also features
a geometric, or large volume phase–labeled I–in the regime r1, r2 → ∞. This phase has
an effective description by a non-linear sigma model on the total space of the line bundle
O(−8) over the weighted projective space P(11222). Beyond these, there are two mixed
phases labeled II and IV.

The phase diagram of GLSMC5/Z8
is depicted in Figure 3.2 below.

X3

X0

X6

X1
I

III II

IV

Figure 3.2: Phase diagram of GLSMC5/Z8
. Here, I is the large volume phase, III is the

orbifold phases and IV and II are mixed phases.

The locations of the phase boundaries and the respective unbroken gauge groups are given
by Table 3.6 below.

phase boundary location unbroken gauge groups
(III) ↔ (IV) Cone{0} Z4 × U(1)2
(IV) ↔ (I) Cone{1} U(1)1
(III) ↔ (II) Cone{6} {(g2, g) | g ∈ U(1)}
(II) ↔ (I) Cone{3} U(1)2

Table 3.6: Unbroken subgroups of U(1)1 × U(1)2 at the phase boundaries of GLSMC5/Z8
.

GLSMC5/Z8
Identity Defect

The identity defect of GLSMC5/Z8
is associated to the C[X0, . . . , X6, X

′
0, . . . , X

′
6]-module

IGLSMC5/Z8
:= C[X0, . . . , X6, X

′
0, . . . , X

′
6, α1, α

−1
1 , α2, α

−1
2 ]/⟨(α−Q1 i

1 α−Q2 i
2 Xi −X ′

i), (αiα
−1
i − 1)⟩,

where an additional copy of the fields of GLSMC5/Z8
as well as auxiliary fields αi and α−1

i

were introduced. The gauge-charges of the various fields are given by Table 3.7 below.
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X0 X1,2 X3,4,5 X6 X ′
0 X ′

1,2 X ′
3,4,5 X ′

6 α1 α−1
1 α2 α−1

2

QL
1 -4 0 1 1 0 0 0 0 1 -1 0 0

QL
2 0 1 0 -2 0 0 0 0 0 0 1 -1

QR
1 0 0 0 0 -4 0 1 1 -1 1 0 0

QR
2 0 0 0 0 0 1 0 -2 0 0 -1 1

Table 3.7: Fields of the identity defect of GLSMC5/Z8
. QL

j and QR
j denote the charge under

the gauge groups U(1)Lj , respectively U(1)Rj on the left and right of the defect.

Orbifold Lift

Starting from IGLSMC5/Z8
we push down the GLSM on the right side of the defect to the

C5/Z8 orbifold phase by setting X ′
0 = X ′

6 = 1. This yields

T∞ :=
C[X0, . . . , X6, X

′
1, . . . , X

′
5, α

±1
i ]

⟨(X0 − α−4
1 ), (α−Q1 i

1 α−Q2 i
2 Xi −X ′

i), (X6 − α1α
−2
2 ), (αiα

−1
i − 1)⟩ .

(3.7)

The gauge symmetry on the right of the defect is broken according to

U(1)R1 × U(1)R2 → {(g2, g)|g8 = 1} ∼= Z8.

This symmetry breaking is realized by the relations

X0 = α−4
1 and X6 = α1α

−2
2 .

Next, according to our prescription presented in Section 2.3.2 we have to introduce
charge cutoffs in this module to obtain the modules associated to the lift defects. Let
us first consider paths (III) ↔ (IV) ↔ (I) from the orbifold to the large volume phase
transversing phase IV. The unbroken U(1)s on the phase boundaries traversed are U(1)2
and U(1)1 respectively. Thus, we have to impose charge cutoffs

QL
2 ≤ N

and
QL

1 ≤ M

for a choice of integers M and N . The submodule T III-IV-I
N,M ⊂ T∞ with generators whose

charges satisfy these inequalities corresponds to the desired lift defect. Here the choice of
cutoff parameters corresponds to a choice of homotopy class of paths from phase III to
phase I traversing phase IV.

As in the A2-example discussed above, the relations in T∞ render T III-IV-I
N,M finitely gen-

erated. More precisely, we have the relations

X6α
−1
1 α2

2 = 1 and X0α
4
1 = 1. (3.8)

The charges under the unbroken U(1)s of α−1
1 α2

2 and α4
1 are given by Table 3.8 below.
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α−1
1 α2

2 α4
1

QL
2 2 0

QL
1 -1 4

Table 3.8: Charges of α−1
1 α2

2 and α4
1 under the groups U(1)2 and U(1)1 unbroken at the

phase boundaries (III) ↔ (IV) and (IV) ↔ (I) respectively.

Hence–by the same argument we made for the A2 model–the charges of independent gen-
erators of the truncated module T III-IV-I

N,M are also bounded from below and lie in the bands

N − 2 < QL
2 ≤ N

M − 4 < QL
1 ≤ M.

(3.9)

It is not difficult to determine all the generators of T III-IV-I
N,M . The independent generators

satisfying (3.9) are given by

αM−3
1 αN−1

2 {e1 := 1, e2 := α3
1α2, e3 := α3

1, e4 := α2
1α2 e5 := α2

1, e6 := α1α2, e7 := α1, e8 := α2}.

As for the paths (III) ↔ (II) ↔ (I) from phase III to phase I traversing the other interme-
diate phase II, the respective unbroken U(1)s are given by {(g2, g) | g ∈ U(1)} and U(1)2.
Therefore, the corresponding cutoffs read

2QL
1 +QL

2 ≤ N and QL
2 ≤ M.

By virtue of the relations (3.8), one again finds that the truncated modules T III-II-I
N,M are

finitely generated. The charges of α−1
1 α2

2 and α4
1 under the unbroken U(1)s are given by

Table 3.9 below.

α−1
1 α2

2 α4
1

2QL
1 +QL

2 0 8
QL

2 2 0

Table 3.9: Charges of α−1
1 α2

2 and α4
1 under the groups {(g2, g) | g ∈ U(1)} and U(1)2

unbroken at the phase boundaries (III) ↔ (II) and (II) ↔ (I) respectively.

Therefore, the independent generators of T III-II-I
N,M are the ones whose charges lie in the band

N − 8 < 2QL
1 +QL

2 ≤ N

M − 2 < QL
2 ≤ M.

(3.10)

The independent generators of T III-II-I
N,M are given by

α
N−M−7

2
1 αM−1

2 {e′1 := α4
1, e′2 := α3

1α2, e′3 := α3
1, e′4 := α2

1α2 e′5 := α2
1, e′6 := α1α2, e′7 := α1, e′8 := α2}
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for N −M odd and

α
N−M−6

2
1 αM−1

2 {e1, e2, e3, e4 e5, e6, e7, e8}

for N −M even.
As for the A2-model we find complete agreement with [47]. The charge bands (3.9)

and (3.10) of the lift defects associated to paths (III) ↔ (IV) ↔ (I), respectively (III) ↔
(II) ↔ (I) match with the respective band restriction rules. For (III) ↔ (IV) ↔ (I) the
band restriction rules read

− 1 <
θ2
2π

+ 2QL
2 < 1

− 2 <
θ1
2π

+QL
1 < 2

and

− 4 <
2θ1 + θ2

2π
+ 2QL

1 +QL
2 < 4

− 1 <
θ2
2π

+QL
2 < 1.

for (III) ↔ (II) ↔ (I).
To be more concrete, let us briefly list the charges of the modules for specific choices

of cutoff parameters. The U(1)L1 ×U(1)R2 ×ZR
8 charges of the generators of TIII-IV-I(1, 3) as

well as TIII-II-I(7, 1) are given by Table 3.10 below, whereas the generators of TIII-II-I(8, 1)
have charges given by Table 3.11 below.

e1 e2 e3 e4 e5 e6 e7 e8
(0, 0, [0]8) (3, 1, [1]8) (3, 0, [2]8) (2, 1, [3]8) (2, 0, [4]8) (1, 1, [5]8) (1, 0, [6]8) (0, 1, [7]8)

Table 3.10: Charges of the generators of TIII-IV-I(1, 3) and TIII-II-I(7, 1).

e1 e2 e3 e4 e5 e6 e7 e8
(4, 0, [0]8) (3, 1, [1]8) (3, 0, [2]8) (2, 1, [3]8) (2, 0, [4]8) (1, 1, [5]8) (1, 0, [6]8) (0, 1, [7]8)

Table 3.11: Charges of the generators of TIII-II-I(8, 1).

This agrees with the band restrictions

Cw1
III,II ∩ Cw′

II,I = Cw′

III,IV ∩ Cw′′

IV,I ={(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1)},
Cw0
III,II ∩ Cw′

II,I ={(0, 1), (1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0)},

determined in [47] Section 8.4.2. (C), where the roman numerals label the phases and

w0 : −10π < 2θ1 + θ2 < −8π

w1 : −8π < 2θ1 + θ2 < −6π

w′ : −2π < θ2 < 0.
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Brane Lift to the GLSM

In [47] Section 8.4.2. (C) a lift of the fractional brane

C[X ′
1, . . . , X

′
5]/⟨X ′

1, . . . , X
′
5⟩{[0]8}

from the C5/Z8-phase to the GLSM is performed. For comparisons sake we briefly outline
the lift of this brane via fusion with the transition defects constructed above. The fractional
brane can be represented by the R′ := C[X ′

1, . . . , X
′
5]-free resolution

Λ3V ∨ ⊗R′{[2]8}

Λ4V ∨ ⊗R′{[1]8} Λ2V ∨ ⊗R′{[4]8}

0 Λ5V ∨ ⊗R′{[0]8} Λ3V ∨ ⊗R′{[3]8} V ∨ ⊗R′{[6]8}

Λ4V ∨ ⊗R′{[2]8} Λ2V ∨ ⊗R′{[5]8} R′{[0]8} 0,

Λ3V ∨ ⊗R′{[4]8} V ∨ ⊗R′{[7]8}

Λ2V ∨ ⊗R′{[6]8}

YX

Y Y

Y

X X

Y YX

Y

X

X

Y

X

X

where V := span{π1, . . . , π5} is a five-dimensional vector space and

X =
2∑

i=1

X ′
iπi⌟

Y =
5∑

i=3

X ′
iπi ⌟ .

We lift this brane via fusion with TIII-IV-I(1, 3), this yields the band restricted brane

Λ3V ∨ ⊗R{(1, 0)}

Λ4V ∨ ⊗R{(0, 1)} Λ2V ∨ ⊗R{(2, 0)}

0 Λ5V ∨ ⊗R{(0, 0)} Λ3V ∨ ⊗R{(1, 1)} V ∨ ⊗R{(3, 0)}

Λ4V ∨ ⊗R{(1, 0)} Λ2V ∨ ⊗R{(2, 1)} R{(0, 0)} 0.

Λ3V ∨ ⊗R{(2, 0)} V ∨ ⊗R{(3, 1)}

Λ2V ∨ ⊗R{(3, 0)}

YXX6

Y Y

Y

X XX6

Y Y X0X

Y

XX6

X

Y

XX0X6

X

Just as for the A2-model considered in the previous section this agrees with the respective
lift in [47].
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3.1.3 The AN−1-Model

Next, we will generalize the treatment of the A2-model from Section 3.1.1 to the GLSMs
associated to AN−1-singularities for general N . This GLSM is given by the data

GLSMAN−1
:= (U(1)N−1, V, (r, θ), W = 0),

where the representation V , can be read off from the charge assignment of the chiral matter
content given by table 3.12 below.

X1 X2 X3 X4 . . . XN−1 XN XN+1

Q1 1 -2 1 0 . . . 0 0 0 0
Q2 0 1 -2 1 . . . 0 0 0 0
...

...
...

QN−2 0 0 0 0 . . . 1 -2 1 0
QN−1 0 0 0 0 . . . 0 1 -2 1

Table 3.12: Matter content of the AN−1-model. Qj denotes the charge under U(1)j.

Just as the A2-model the AN−1-model for general N also exhibits an orbifold phase for
r1, . . . , rN−1 → −∞. In this phase, the fields X2, . . . , XN aquire a non-trivial vacuum
expecation value, and the low energy theory is given by the orbifold model C2/ZN with
fields X1 and XN+1 whose ZN -charges are 1 and −1 respectively. In the opposite limit
r1, . . . , rN−1 → ∞ the theory is effectively described by a non-linear sigma model on the
resolution of the AN−1-singularity. This is the geometric or large volume phase. In total,
the model has 2N−1 phases associated to the various partial resolutions of the singularity.
The AN−1 singularity has an exceptional divisor of N − 1 2-spheres intersecting according
to the AN−1-Dynkin diagram, and a partial resolution is determined by which of these
2-spheres is blown up. We label the different phases by an N − 1-tuple, whose ith entry is
either 0 or 1 according to whether the ith 2-sphere in the exceptional divisor is blown up,
or down. In particular (00 . . . 0) corresponds to the full resolution of the singularity and
therefore to the large volume phase, whereas (11 . . . 1) denotes to the unresolved singularity
and hence the orbifold phase. For more details on the AN−1-model, see e.g. example (D)
in [47].

GLSMAN−1
Identity Defect

To write down the identity defect of GLSMAN−1
we introduce a pair of auxiliary defect

fields for each U(1)-factor of the gauge group denoted αi, α−1
i , i = 1, . . . , N − 1. The

fields αi carry U(1)Li × U(1)Ri -charge (1,−1) and are uncharged under all other U(1)s
whereas the fields α−1

i carry U(1)Li × U(1)Ri -charge (−1, 1) and are likewise uncharged
with respect to the other U(1)s. The GLSMAN−1

identity defect is associated to the



3.1 Non-Anomalous Examples 51

C[X1, . . . , XN+1, X
′
1, . . . , X

′
N+1]-module

IGLSMAN−1
:=

C[X1, . . . , XN+1, X
′
1, . . . , X

′
N+1, α1, . . . , αN−1, α

−1
1 , . . . , α−1

N−1]

⟨(α−Q1 i
1 . . . α

−QN−1 i

N−1 Xi −X ′
i)i=1,...,N+1, (αiα

−1
i − 1)i=1,...,N−1⟩ ,

where the fields X1, . . . , XN−1 and X ′
1, . . . , X

′
N−1 are the bulk fields of the GLSM on the

left, respectively right of the defect.

Orbifold Lift

To construct the defects lifting the orbifold phase to GLSMAN−1
for arbitrary N we pro-

ceed in an analogous fashion to the case N = 3 discussed in Section 3.1.1 above. We
start out by pushing down the right side of the GLSM identity defect to the orbifold
phase. This is accomplished by setting X ′

2 = · · · = X ′
N = 1 in IGLSMAN−1

and yields the

C[X1, . . . , XN+1, X
′
1, X

′
N+1]-module

T∞ :=
C[X1,...,XN+1,X

′
1,X

′
N+1,α1,...,αN−1,α

−1
1 ,...,α−1

N−1]

⟨(α−1
1 X1−X′

1),(α
−1
N−1XN+1−X′

N+1),(α
−Q1 i
1 ...α

−QN−1 i
N−1 Xi−1)i=2,...,N ,(αiα

−1
i −1)i=1,...,N−1⟩ .

(3.11)

The gauge group on the right side of the defect is broken according to

U(1)R1 × · · · × U(1)RN−1 −→ {(g, g2, . . . , gN−1)|g ∈ ZN}.

This symmetry breaking is realized by the relations

α−Q1 i
1 . . . α

−QN−1 i

N−1 Xi = 1, i = 2, . . . , N.

The Case N = 4

We proceed by first discussing the A3 case and then generalizing to arbitrary AN−1. The
phase structure of the A3-model is depicted in Figure 3.3 below.

To exemplify our construction, we will derive the lift defects associated to paths from
the orbifold phase (111) to the geometric phase (000) along two different classes of paths

(111) ↔ (011) ↔ (001) ↔ (000)

and
(111) ↔ (101) ↔ (001) ↔ (000).

We start out with the first one, (111) ↔ (011) ↔ (001) ↔ (000). The relevant unbroken
U(1)s at the traversed phase boundaries are given by Table 3.13 below.

phase boundary location unbroken U(1)
(111) ↔ (011) Cone{2,3} {(g, g2, g3) | g ∈ U(1)}
(011) ↔ (001) Cone{2,5} {(g, g2, 1) | g ∈ U(1)}
(001) ↔ (000) Cone{4,5} {(g, 1, 1) | g ∈ U(1)}

Table 3.13: Unbroken subgroups of U(1)3 at the phase boundaries (111) ↔ (011), (011) ↔
(001) and (001) ↔ (000) of GLSMA3 .
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(111)

(011)

(101)

(110)

(001)

(010)

(100)

(000)

(23)

(25)

(12)

(14)

(34)

(45)

(24)

(15)

(12)

(35) (13)

(45)

Figure 3.3: Phase diagram of GLSMA3 . Here, phases are depicted by vertices, and phase
boundaries by edges between them. The orbifold phase is labeled by (111) and the large
volume phase where the singularity is fully resolved is labeled by (000). The phase bound-
aries (ij) are located at Cone{i,j}.

Thus, to obtain the modules describing the lift defects for this type of path, our construction
requires to introduce charge cutoffs

QL
1 + 2QL

2 + 3QL
3 ≤ N

QL
1 + 2QL

2 ≤ M

QL
1 ≤ K.

(3.12)

in the module T∞. Let T (111)−(011)−(001)−(000)
N,M,K be the submodule of T∞ generated by all

generators whose charges satisfy (3.12). Due to the relations

X2α
2
1α

−1
2 = 1

X3α
−1
1 α2

2α
−1
3 = 1

X4α
−1
2 α2

3 = 1

(3.13)

in T∞ the module T (111)−(011)−(001)−(000)
N,M,K is in fact finitely generated. Namely, the charges

under the unbroken U(1)s at the phase boundaries of α2
1α

−1
2 , α−1

1 α2
2α

−1
3 and α−1

2 α2
3 are

given by Table 3.14 below.
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α2
1α

−1
2 α−1

1 α2
2α

−1
3 α−1

2 α2
3

QL
1 + 2QL

2 + 3QL
3 0 0 4

QL
1 + 2QL

2 0 3 -2
QL

1 2 -1 0

Table 3.14: Charges of α2
1α

−1
2 , α−1

1 α2
2α

−1
3 and α−1

2 α2
3 under the groups {(g, g2, g3) | g ∈

U(1)}, {(g, 1, 1) | g ∈ U(1)} and U(1)1 unbroken at the phase boundaries (111) ↔
(011), (011) ↔ (001) and (001) ↔ (000) respectively.

Hence, T (111)−(011)−(001)−(000)
N,M,K is in fact generated by all the generators of T∞ whose charges

lie in the finite band

N − 4 < QL
1 + 2QL

2 + 3QL
3 ≤ N

M − 3 < QL
1 + 2QL

2 ≤ M

K − 2 < QL
1 ≤ K.

This matches with the band restriction rules for all homotopy classes of paths along (111) ↔
(011) ↔ (001) ↔ (000), from [47].

It is not difficult to describe T (111)−(011)−(001)−(000)
N,M,K concretely. For instance for K ∈ 2Z

and M ∈ 3Z a set of independent generators is given by

αK
1 α

M−K
2

2 α
N−M

3
3 {1, α−1

1 , α−1
2 , α−1

3 }.

For the second type of paths (111) ↔ (101) ↔ (001) ↔ (000) we proceed in the same
fashion. The relevant unbroken gauge groups at the traversed phase boundaries in that
case are given by Table 3.15 below.

phase boundary location unbroken gauge group
(111) ↔ (101) Cone{2,4} {(g, g2, ga) | g ∈ U(1), a ∈ Z2}
(101) ↔ (001) Cone{1,2} {(1, 1, g) | g ∈ U(1)}
(001) ↔ (000) Cone{4,5} {(g, 1, 1) | g ∈ U(1)}

Table 3.15: Unbroken subgroups of U(1)3 at the phase boundaries (111) ↔ (011), (101) ↔
(001) and (001) ↔ (000) of GLSMA3 .

Thus, the truncation of T∞ describing the lift defects for this type of path is given by

QL
1 + 2QL

2 +QL
3 ≤ N

QL
3 ≤ M

QL
1 ≤ K.

(3.14)

We denote the submodule of T∞ generated by generators whose charges satisfy the in-
equalities (3.14) by T (111)−(101)−(001)−(000)

N,M,K . Using the relations (3.13) we again find that the
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latter module is generated by generators of charges in a finite charge band. Namely, the
charges of α2

1α
−1
2 , α−1

1 α2
2α

−1
3 and α−1

2 α2
3 under the unbroken U(1)s for this type of path are

given by Tabel 3.16 below.

α2
1α

−1
2 α−1

1 α2
2α

−1
3 α−1

2 α2
3

QL
1 + 2QL

2 +QL
3 0 2 0

QL
3 0 -1 2

QL
1 2 -1 0

Table 3.16: Charges of α2
1α

−1
2 , α−1

1 α2
2α

−1
3 and α−1

2 α2
3 under the groups {(g, g2, g3) | g ∈

U(1)}, U(1)3 and U(1)1 unbroken at the phase boundaries (111) ↔ (011), (101) ↔ (001)
and (001) ↔ (000) respectively.

and hence the charges of the generators of T (111)−(101)−(001)−(000)
N,M,K lie in the band

N − 2 < QL
1 + 2QL

2 +QL
3 ≤ N

M − 2 < QL
3 ≤ M

K − 2 < QL
1 ≤ K.

Again, this reproduces all band restriction rules for these type of paths from [47].

Also in this case the modules can be concretely described. For instance for M+K ∈ 2Z
a set of independent generators is given by

αK
1 α

N−M+K
2

2 αM
3 {1, α−1

1 , α−1
3 , α−1

1 α−1
2 α3}.

General N

Since the phase structure of the AN−1 model becomes increasingly more complicated for
higher values of N we will restrict our discussion of orbifold lifts to those associated to
classes of paths

(00 . . . 000) ↔ (00 . . . 001) ↔ (00 . . . 011) ↔ · · · ↔ (01 . . . 111) ↔ (11 . . . 111).

The unbroken gauge group at the i-th phase boundary traversed by such a path is given
by

{(g, g2, g3, . . . , gi, 1, 1, . . . , 1)|g ∈ U(1)}.

By our construction, the respective lift defects are associated to the truncated submod-
ule TM1,...,MN−1

which is generated by those generators in T∞, whose charges satisfy the
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inequalities

QL
1 + 2QL

2 + 3QL
3 + · · ·+ (N − 3)QL

N−3 + (N − 2)QL
N−2 + (N − 1)QL

N−1 ≤ MN−1

QL
1 + 2QL

2 + 3QL
3 + · · ·+ (N − 3)QL

N−3 + (N − 2)QL
N−2 ≤ MN−2

QL
1 + 2QL

2 + 3QL
3 + · · ·+ (N − 3)QL

N−3 ≤ MN−3

...

QL
1 + 2QL

2 ≤ M2

QL
1 ≤ M1.

These implement the cut offs for the charges of generators with respect to the U(1)’s
unbroken at the phase boundaries crossed by the paths in the homotopy class we are
considering. As in the A2 and A3 cases, we can use the relations

X2α
2
1α

−1
2 = 1

X3α
−1
1 α2

2α
−1
3 = 1

X4α
−1
2 α2

3α
−1
4 = 1

...

XN−1α
−1
N−3α

2
N−2α

−1
N−1 = 1

XNα
−1
N−2α

2
N−1 = 1

(3.15)

in T∞ to show that the generators of TM1,...,MN−1
have charges in a finite charge band.

For this, we observe that the charges of the relevant monomials in the αi are given by
Table 3.17 below.

α2
1α

−1
2 α−1

1 α2
2α

−1
3 α−1

2 α2
3α

−1
4 . . . α−1

N−2α
2
N−1

QL
1 2 -1 0 . . . 0

QL
1 + 2QL

2 0 3 -2 . . .
...

QL
1 + 2QL

2 + 3QL
3 0 0 4 0 0

...
...

. . . . . . . . . −(N − 2)∑N−1
i=1 iQL

i 0 . . . 0 0 N

Table 3.17: Charges of the relevant monomials under the U(1)1 groups unbroken at the
phase boundaries (00 . . . 000) ↔ (00 . . . 001) ↔ (00 . . . 011) ↔ · · · ↔ (01 . . . 111) ↔
(11 . . . 111).
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Therefore, TM1,...,MN−1
is generated by generators of T∞ whose charges lie in the band

MN−1 − (N − 1) ≤ QL
1 + 2QL

2 + · · ·+ (N − 1)QL
N−1 ≤ MN−1

MN−2 − (N − 2) ≤ QL
1 + 2QL

2 + · · ·+ (N − 2)QL
N−2 ≤ MN−2

MN−3 − (N − 3) ≤ QL
1 + 2QL

2 + · · ·+ (N − 3)QL
N−3 ≤ MN−3

...

M2 − 2 ≤ QL
1 + 2QL

2 ≤ M2

M1 − 1 ≤ QL
1 ≤ M1.

(3.16)

Note that here, for convenience in solving the inequalities, we slightly changed the presen-
tation of the charge bands as compared to the treatment of the A2 and A3 cases above, in
that we added one to the lower bound and replaced the strict inequality with a ≤.

The inequalities (3.16) can be solved iteratively from bottom to top plugging in the
solutions of the previous inequalities into the next. By induction we find that there are
N solutions (QL

1 , Q
L
2 . . . , Q

L
N−1) to (3.16) and that

∑n
j=1 jQ

L
j assumes n + 1 consecutive

integer values on the solutions for all 1 ≤ n < N . Starting from the last line we have that

QL
1 = M1 − 1,M1.

Thus QL
1 assumes two consecutive integer values on all solutions of the inequalities. The

solutions for QL
1 can then be plugged into the second to last line, which yields

M2 −QL
1 − 2

2
≤ QL

2 ≤ M2 −QL
1

2
.

Thus, if 2 does not divide (M2 −QL
1 ) we have that QL

2 has only one solution namely

QL
2 =

M2 −QL
1 − 1

2
.

However, since QL
1 runs through 2 consecutive integers, for one of them 2 does divide

M2 −QL
1 . For this Q

L
1 there are two solutions for QL

2 :

QL
2 =

M2 −QL
1 − 2

2
,
M2 −QL

1

2
.

This yields 3 solutions, on which QL
1 + 2QL

2 assumes 3 consecutive integer values. We can
now go on inductively. For QL

n we have the inequality

Mn − n−
∑n−1

j=1 jQ
L
j

n
≤ QL

n ≤
Mn −

∑n−1
j=1 jQ

L
j

n
.

Thus, if n does not divide Mn−
∑n−1

j=1 jQ
L
j we find that QL

n has only one solution. However∑n−1
j=1 jQ

L
j assumes n consecutive integers. So for one of the solutions, Mn −

∑n−1
j=1 jQ

L
j is
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divisible by n, in which case there are two solutions. So the last n inequalities have n+ 1
solutions, on which

∑n
j=1 jQ

L
j take n + 1 consecutive integer values. T herefore all the

inequalities have N solutions.

For concreteness, let us pick Mi = i. Then the solutions to (3.16) are given by

(QL
1 , Q

L
2 . . . , Q

L
N−1) ∈ {(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} ,

i.e. either all the QL
i are 0, or one of them is 1 and all the others are 0. The corresponding

generators are

{α0 := 1, α1, α2, α3, . . . , αN−1},

and they satisfy relations

X ′
1αn =

{
X1X2 . . . Xnαn−1, n = 2, 3, . . . , N

X1αN , n = 1

and

X ′
N+1αn =

{
Xn+2Xn+3 . . . XN+1αn+1, n = 1, 2, . . . , N − 1

X2X3 . . . XN+1αN , n = N.

Also for this model we find agreement with [47]. The charge bands (3.16) of the lift
defects match with the band restriction rules, and the fusion of fractional branes of the
form C[X1, XN+1]/⟨X1, XN+1⟩{[n]N} with T1,2,...,N−1 agrees with the lifts of the respective
D-branes derived in 8.4.2. in [47].

3.2 Flows Between Minimal Models from GLSMs

In this section, we will apply our construction introduced in 2.3.2 to attain flows between
minimal models, and in particular re-derive the flow defects of [13]. This is possible,
because we can model the mirror duals of minimal models in GLSMs. For single flow lines
this was explained in [10], but indeed the entire parameter spaces of the mirror dual of
Mk=d−2 can be described in a single GLSM

GLSMMd−2
:=

(
U(1)d−2,Cd−1, (r, θ),W =

d−2∏
i=0

Xd−i
i

)
,

as discussed in Section 2.2.3. One can also consider the case with zero superpotential,
where the respective GLSM can then be used to describes flows between C/Zd-orbifold
models. For convenience let us recall the charges of the chiral fields under the gauge group
in Table 3.18 below. For a discussion of the phase structure of GLSMMd−2

c.f. Section 2.2.3.
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X0 X1 X2 X3 . . . . . . Xd−3 Xd−2

U(1)0 (d− 1) −d 0 . . . . . . . . . . . . 0
U(1)1 1 −2 1 0 . . . . . . . . . 0
U(1)2 0 1 −2 1 0 . . . . . . 0
U(1)3 0 0 1 −2 1 0 . . . 0

...
...

. . . . . . . . . . . . . . .
...

U(1)d−4 0 . . . . . . 0 1 −2 1 0
U(1)d−3 0 . . . . . . . . . 0 1 −2 1

Table 3.18: Charges of the chiral matter fields of GLSMMd−2
.

Before proceeding with our discussion we would like to point out the apparent similarity
between GLSMMd−2

and GLSMAd−2
c.f. Section 3.1.3. This should not come as an surprise

as GLSMAd−2
is tailored to describe the physics of the singularity, and our model is in turn

related to that one by mirror symmetry. Apart from the existence of the anomalous U(1)0,
the two models GLSMMd−2

and GLSMAd−2
only differ by their superpotential. Setting the

superpotential of GLSMMd−2
to zero yields a GLSM describing the parameter space of the

C/Zd orbifold model, which has very similar properties to the minimal model GLSM.
Having realized the entire parameter spaces of minimal models in an abelian GLSM, we

can apply the strategy outlined in Section 2.3.2 to construct defects lifting the phases of
the GLSM given by Landau-Ginzburg orbifolds to the GLSM. These can in particular be
used to obtain the flow defects between different minimal model orbifolds. The procedure is
exactly the same as in the non-anomalous case, namely we start out from the GLSM identity
defect, then push the model down to a phase by setting fields to their VEVs on one side of
the defect. Subsequently we introduce charge truncations for every phase boundary to be
traversed by a chosen path, which then gives rise to a charge band. While the procedure is
completely the same in anomalous and non-anomalous cases, there is a notable difference in
the outcome however. In contrast to the non-anomalous case, one obtains different charge
bands from lifting the UV and the IR phases3 of a given flow. Indeed, lifting IR phases
yields bands which are strictly smaller than the ones from the respective UV lifts. This
is in qualitative agreement with the discussion of D-brane transport in other anomalous
GLSMs in [50, 22], where it was found that the D-brane transport is goverend by a ‘large’
and a ‘small’ charge window. D-branes in the large window can be transported along the
flow, but the ones which are not in the small window undergo some kind of decay.

Before giving the general construction, we will first spell out the details in a “truncated”
example. RG flows of minimal models come in a hierarchy. The respective perturbations
can be restricted to the i least relevant ones for 1 ≤ i ≤ d − 2. On the level of Landau-
Ginzburg models this corresponds to restricting the deformation of the superpotential to
W = Xd+λ1X

d−1+· · ·+λiX
d−i. The respective flow drives the minimal model at level k =

d−2 at most to the one at level k = d−2− i, we call this the i-step perturbations. Indeed,

3Here, UV and IR refers to the energy hierarchy between the minimal models and not the one between
GLSM and its phases. Given GLSMMd−2

The model of the highest level d− 2 is the UV theory.
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one can easily obtain GLSMs capturing these restricted parameter spaces by freezing the
fields Xj, j > i by setting them to their VEVs in the GLSMs describing the general
perturbations. This procedure breaks the gauge groups U(1)j for j > i− 1. The resulting
GLSM has chiral fields X0, . . . , Xi, superpotential W = Xd

0X
d−1
1 . . . Xd−i

i and gauge group
U(1)i. The charges of the fields Xi under the gauge group are given by Table 3.19 below.

X0 X1 X2 X3 . . . . . . Xi−1 Xi

U(1)0 (d− 1) −d 0 . . . . . . . . . . . . 0
U(1)1 1 −2 1 0 . . . . . . . . . 0
U(1)2 0 1 −2 1 0 . . . . . . 0
U(1)3 0 0 1 −2 1 0 . . . 0

...
...

. . . . . . . . . . . . . . .
...

U(1)i−2 0 . . . . . . 0 1 −2 1 0
U(1)i−1 0 . . . . . . . . . 0 1 −2 1

Table 3.19: Charges of the chiral matter fields of GLSMMd−2
truncated at 1 ≤ i ≤ d− 2.

Note that one can indeed construct GLSMs describing other subspaces of the minimal
model parameter space by freezing arbitrary combinations of fields to VEVs in the GLSM
containing the entire parameter space. Freezing for instance all but the fields X0 and Xi,
one arrives at a U(1)-GLSM describing a specific one-parameter flow from the the minimal
model of level k = d− 2 to the one at level k = d− 2− i.4

Below we will give the concrete construction of the defects embedding the phases into
the GLSM for two-step perturbations and derive the respective flow defects between the
minimal models. Subsequently we will be discussing the lift- and flow defects for general
perturbations.

3.2.1 The Two-Step Minimal Model Flows

As discussed above, the two-step flows starting in the minimal model of level k = d − 2
can be modelled in the gauged linear sigma model with gauge group U(1)2, chiral fields
X0, X1, X2 and superpotential W = Xd

0X
d−1
1 Xd−2

2 . The charges of the chiral fields can
be read of from Table 3.20 below.

X0 X1 X2

U(1)0 (d− 1) −d 0
U(1)1 1 -2 1

Table 3.20: Charges of the chiral matter fields of GLSMMd−2
truncated at i = 2.

This model exhibits three Landau-Ginzburg orbifold phases. In each of those two of the
three chiral fields assume a non-trivial vaccum expectation value, and only one field remains

4These are the models studied in [10].
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part of the effective low energy theory. The gauge group is broken to a finite subgroup. The
phases are respectively described by the Zd−i-orbifolds of the Landau-Ginzburg theories
with one chiral field Xi and superpotential W = Xd−i

i , where i ∈ {0, 1, 2}. The orbifold
group acts by phase multiplication on the field Xi.

QX0

QX1

QX2

phase 1:

Xd−1
1 /Zd−1

phase 2:

Xd−2
2 /Zd−2

phase 0:
Xd

0/Zd

Figure 3.4: Phase diagram of the GLSM describing the two-step minimal model flows.

The phase boundary between phases i and j is located at the ray Cone{k} = R≥0Qk in the
direction of the charge of the chiral field Xk, k /∈ {i, j} which assumes a non-trivial vev in
both phases i and j. The phase diagram is given by Figure 3.4.

The preserved U(1)-gauge groups on the phase boundaries are the stabilizers of the
respective fields having non-trivial VEV in both the adjacent phases and are given in
Table 3.21 below.

phase boundary preserved gauge group
(01) {(g, 1)|g ∈ U(1)} = U(1)0
(12) {(g, g−(d−1))|g ∈ U(1)}
(02) {(g2, g−d)|g ∈ U(1)}

Table 3.21: Unbroken subgroups of U(1)0 × U(1)1 at the phase boundaries of GLSMMd−2

truncated at i = 2.

Lift Defects for the Two-Step Model

In the following we will construct the defects lifting the Landau-Ginzburg orbifold model
(W = Xd

0/Zd) of phase 0 to the GLSM. Starting point is the GLSM identity defect, the
respective module is given by

IGLSM =
S ⊗ V

⟨(X0 − αd−1βX ′
0), (X1 − α−dβ−2X ′

1), (X2 − βX ′
2)⟩ .
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Here,

R = C[X0, X1, X2, X
′
0, X

′
1, X

′
2]

S =
R

⟨Xd
0X

d−1
1 Xd−2

2 − (X ′
0)

d(X ′
1)

d−1(X ′
2)

d−2⟩

V =
C[α, α−1, β, β−1]

⟨(αα−1 − 1), (ββ−1 − 1)⟩ .

The charges of the auxiliary fields α, α−1, β, β−1 under the gauge groups of the left, respec-
tively right of the defect are given by Table 3.22 below.

α α−1 β β−1

QL
0 1 -1 0 0

QR
0 -1 1 0 0

QL
1 0 0 1 -1

QR
1 0 0 -1 1

Table 3.22: Charges of the auxiliary fields of the GLSM identity defect.

In phase 0 the fields X1 and X2 both have non-trivial vacuum expectation value. Hence,
to obtain the defect embedding this phase into the GLSM, we have to set X ′

1 = 1 = X ′
2 in

IGLSM. This yields the module

T∞ =
S̃ ⊗ V

⟨(X0 − αd−1βX ′
0), (X1 − α−dβ−2), (X2 − β)⟩ .

with

R̃ = C[X0, X1, X2, X
′
0]

S̃ =
R̃

⟨Xd
0X

d−1
1 Xd−2

2 − (X ′
0)

d⟩ .

Next we have to impose the cutoffs they correspond to the chosen homotopy class of paths
in parameter space. We would like to construct embeddings valid for flows from the UV
phase (phase 0) all the way to the IR phase (phase 2). But there are two possibilities to
go from phase 0 to phase 2. Either one can pass phase 1 on the way, or one can avoid it,
crossing directly from phase 0 to phase 2. We will first discuss the case, in which phase 1 is
passed, hence two phase boundaries, (01) and (12) are crossed. For each phase boundary,
a cutoff is introduced.

On the phase boundary (01) U(1)0 is preserved, implying a cutoff

QL
(01) := QL

0 ≤ N(01) (3.17)
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for a choice of N(01) ∈ Z. On the phase boundary (12) the group {(g, g−(d−1))|g ∈ U(1)} is
preserved leading to the additional cutoff

QL
(12) := QL

0 − (d− 1)QL
1 ≤ N(12) (3.18)

for a choice of N(12) ∈ Z.
Introduction of the cutoffs means that one considers the submodule

TN(01),N(12)
⊂ T∞

generated over the algebra S̃ by only those generators whose charges satisfy the inequalities
(3.17) and (3.18). Due to the relations

X1α
dβ2 = 1, X2β

−1 = 1 . (3.19)

holding in the module T∞ all generators in the truncated submodule can be obtained by
applying the algebra S̃ on generators whose charges lie in the band

N(01) − d < QL
(01) := QL

0 ≤ N(01)

N(12) − d+ 1 < QL
(12) := QL

0 − (d− 1)QL
1 ≤ N(12).

(3.20)

Namely, using the first relation in (3.19) any generator e of TN(01),N(12)
of charges QL

(01)(e) ≤
N(01) − d can be written as

e = (X1α
dβ2)e =: X1e

′

where e′ ∈ TN(01),N(12)
has charges

QL
(01)(e

′) = QL
(01)(e) + d and QL

(12)(e
′) = QL

(12)(e)− (d− 2).

Hence, successively, e = Xm
1 e′′ with e′′ ∈ TN(01),N(12)

and N(01)− d < QL
(01)(e

′′) ≤ N(01). One

can now use the second relation in (3.19) in a similar fashion to write

e′′ = (X2β
−1)ne′′ =: Xn

2 e
′′′

for some n ∈ N0, such that

N(01) − d < QL
(01)(e

′′′) ≤ N(01)

N(12) − d+ 1 < QL
(12)(e

′′′) ≤ N(12).

Hence, any generator of TN(01),N(12)
can be obtained by applying an element of S̃ on a

generator whose charges satisfy (3.20). Thus, the truncated module TN(01),N(12)
is generated

by generators in this charge band.
In the following we will describe this submodule in more detail. It depends on the

choice of the two integers N(01) and N(12). Define z ∈ Z and n ∈ {1, . . . d− 1} such that

N(01) −N(12) = z(d− 1) + n. (3.21)
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The first line of (3.20) implies that the charge Q0 ∈ {1, . . . d− 1} of generators is given by

Q0 ∈ {1, . . . d− 1} = N(01) − i, i ∈ {0, . . . d− 1}.

Substituting this into the second line in (3.20) and using the parametrization (3.21) one
obtains

(z + 1−QL
1 )(d− 1) + n > i ≥ (z −QL

1 )(d− 1) + n.

The solutions to the inequalities (3.20) can now be read off as

i ∈ {0, 1, . . . , n− 1} for QL
1 = z + 1

i ∈ {n, n+ 1, . . . , d− 1} for QL
1 = z.

The truncated module TN(01),N(12)
is therefore generated by

αN(01)βz
{
β, βα−1, βα−2, . . . , βα−(n−1), α−n, α−n−1, . . . , α−(d−1)

}
Denote the generators by

ei := αN(01)βzα−i ·
{

β, if 0 ≤ i < n
1, if n ≤ i < d.

Using the relations in the module T∞ it is not difficult to find the relations in the truncated
module TN(01),N(12)

. For i ∈ {1, . . . , n− 1, n+ 1, . . . , d− 1} one obtains

X ′
0ei = X0α

−(d−1)β−1ei = X0X1αβei = X0X1X2αei = X0X1X2ei−1 ,

and
X ′

0en = X0α
−(d−1)β−1en = X0X1αβen = X0X1en−1

X ′
0e0 = X0α

−(d−1)β−1e0 = X0ed−1.

The module TN(01),N(12)
can be obtained as the cokernel of the matrix

p1 =



X ′
0 −X0X1X2

−X0 X ′
0

−X0X1X2
. . .
. . . X ′

0

−X0X1X2 X ′
0

−X0X1 X ′
0

−X0X1X2
. . .
. . .

. . .

−X0X1X2 X ′
0


on a free module of rank d whose generators have the same charges as the ei. Note that in
this matrix the elements on the secondary diagonal are −X0X1X2 except in two places in



64 3. Lift- and Flow Defects in Abelian GLSMs

one of which it is −X0 and in the other one −X0X1. The positions of these two entries is
determined by the cutoff parameters N(01) and N(12).

This module corresponds to the defect lifting phase 0 into the GLSM in a way com-
patible with flows from phase 0 via phase 1 to phase 2. In fact, one can find a suitable
d × d-matrix p0 which completes p1 to a U(1)d × Zd-equivariant matrix factorization of
Xd

0X
d−1
1 Xd−2

2 − (X ′
0)

d.

Indeed, these lift defects are consistent with what is known about flows between minimal
models. Pushing the GLSM to phase 2 on the left of the defect should reproduce the flow
defects between minimal models, which have been constructed in [13]. Indeed, this is
accomplished by just setting X0 = 1 = X1 in the truncated module TN(01),N(12)

. In this way
one obtains the cokernel of the matrix

X ′
0 −X2

−1 X ′
0

−X2
. . .
. . . X ′

0

−X2 X ′
0

−1 X ′
0

−X2
. . .
. . .

. . .

−X2 X ′
0


.

(3.22)

Note that this matrix contains two entries −1 on the secondary diagonal. These can be
used to reduce the presentation of the respective module. It can be written as a cokernel of
a (d−2)×(d−2)-matrix whose only non-zero entries are on the diagonal and the secondary
diagonal. The entries on the diagonal are X2 and the ones on the secondary diagonal are
−X0 except that depending on the choices of cutoff parameters either in two places we
have −X2

0 instead of −X0, or in one place −X3
0 instead of −X0. These are exactly the

defects describing the flows from the minimal model orbifold at level k = d− 2 to the one
at level k = d − 4 [13]. Thus, the lift defects provide all the flow defects from phase 0 to
phase 2.

As alluded to above, one can also cross over directly from phase 0 to phase 2 in the
GLSM. Before constructing the lift defects associated to such paths, let us briefly step back
and discuss the action of the lift defects on D-branes. To this end, let us determine the
lifts of the elementary D-branes associated to the S ′ := C[X ′

0]/⟨(X ′
0)

d⟩-modules

Mm := S ′/X ′
0S

′{[m]d} , m = 0, . . . d− 1.

The lifts are given by the Zd-invariant parts of the tensor products TN(01),N(12)
⊗S′ Mm.

They are straight-forward to calculate, the Zd-projection singles out a single generator
for each m. Let i := N(01) − mmod d ∈ {0, . . . , d − 1}. Then, one obtains the S ′′ =
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C[X0, X1, X2]/⟨Xd
0X

d−1
1 Xd−2

2 ⟩-module

S ′′/X0X1X2S
′′{(N(01) − i, z + 1)} if 0 ≤ i < n− 1

S ′′/X0X1S
′′{(N(01) − i, z + 1)} if i = n− 1

S ′′/X0X1X2S
′′{(N(01) − i, z)} if n ≤ i < d− 1

S ′′/X0S
′′{(N(01) − i, z)} if i = d− 1 .

(3.23)

Under the flow to the IR phase, which is implemented by setting X0 = 1 = X1 d − 2,
the elementary D-branes in the UV phase are mapped to elementary D-branes in the IR,
and two (i = n − 1, d − 1) are mapped to trivial D-branes and the respective D-branes
decouple5.

After this aside about D-branes, let us return to the construction of lift defects. The lift
defects associated to paths directly crossing from phase 0 to phase 2 are obtained from T∞
by only a single truncation in the direction of the U(1) preserved along the phase boundary
(02). The latter is given by {(g2, g−d)|g ∈ U(1)} ∼= U(1) leading to the truncation

QL
(02) := 2QL

0 − dQL
1 ≤ N(02). (3.24)

As before, via the relations (3.19), all generators in the truncated module are obtained by

action of S̃ on generators whose charges lie in the band

N(02) − d < QL
(02) := 2QL

0 − dQL
1 ≤ N(02). (3.25)

Since this is only a restriction in one direction on a rank-2 lattice of charges, there are still
infinitely many generators. Writing

N(02) = zd+ n for z ∈ Z and n ∈ {0, . . . , d− 1},

one can easily find the set of charges (QL
0 , Q

L
1 ) satisfying (3.25), there are given by

{(−i−md,−2m− z) | 0 ≤ i < d−n
2
, m ∈ Z}

∪ {(−i−md,−2m− z − 1) | d−n
2

≤ i < 2d−n
2

, m ∈ Z}
∪ {(−i−md,−2m− z − 2) | 2d−n

2
≤ i < d, m ∈ Z}.

Thus, the generators of the truncated module TN(02)
are given by ei,m for i ∈ {0, . . . , d− 1}

and m ∈ Z with

ei,m := β−z(αdβ2)−mα−i ·


1, if 0 ≤ i < d−n

2

β−1, if d−n
2

≤ i < 2d−n
2

β−2, if 2d−n
2

≤ i < d.

The relations in TN(02)
can be written as

X1ei,m = ei,m+1 , and X ′
0ei,m =


X0X1X2 ei−1,m if i /∈ {0, ⌈d−n

2
⌉, ⌈2d−n

2
⌉}

X0X1 ei−1,m if i ∈ {⌈d−n
2
⌉, ⌈2d−n

2
⌉}

X0X2 ei−1,m if i = 0,

5All the lifts of UV D-branes in (3.23) lie in the large window, but only the ones with i /∈ {n− 1, d− 1}
lie in the small window.
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where ⌈r⌉ denotes the ceiling of r, i.e. the smalles integer ≥ r. In contrast to the lift
compatible with the flow from phase 0 via phase 1 to phase 2, this module corresponds
to a matrix factorization of infinite rank. Pushing to phase 2 on the left side of the
corresponding defect amounts to setting X0 = 1 = X1. This renders the rank of the module
(resp. the matrix factorization) finite. Indeed, as for the case of flows passing phase 1, the
resulting module can be written as a cokernel of a matrix of the form (3.22), which however
is not as general as in the case of the flows passing through phase 1. Namely, the spacing
of the positions of the scalars −1 on the secondary diagonal is fixed by d, whereas in the
case of the flow passing through phase 1 it depends on the choice of cutoff parameter, and
thereby on the chosen path in the parameter space. Thus, one only gets some flow defects
between phases 0 and 2.

Indeed, there is another GLSM describing the direct flow between phases 0 and 2–the
GLSM obtained from the two-step model by giving X1 a vaccum expectation value. This
GLSM has only the fields X0, X2, its gauge group is the stabilizer of X1, and hence exactly
the U(1) in the two-step model which is preserved on the phase boundary between phases
0 and 2. The model has two phases, corresponding to phase 0 and 2 of the two-step model.
We can now similarly lift phase 0 to this model, this requires the choice of a single cutoff.
The resulting defects are of finite rank, and easy to construct. Fusing these lift defects with
the defect between the GLSM with only fields X0, X2 and the two-step GLSM obtained
by setting X1 = 1 in the identity defect of the two-step GLSM, we obtain exactly the lift
defects in the two-step model which are compatible with the direct crossover from phase 0
to phase 2.

3.2.2 Lift Defects for the Full Model

In an analogous fashion one can construct lift defects for the GLSM describing the full
parameter space of minimal model orbifolds. We will briefly discuss the construction of
defects lifting the UV phase Xd/Zd into the full model, the field content of which is given
in Table 3.18. Our construction works for all possible paths in parameter space, but we will
restrict the discussion to paths crossing all the phase boundaries (i, i+1), i = 0, . . . , d− 3.
Those are paths which traverse all possible phases starting in the UV phase 0 and then
step by step passing phases 1, 2, etc. going all the way down to the trivial phase (d− 2).

As before, the construction starts with the GLSM identity defect. The associated
module is given by

IGLSM =
S ⊗ V〈

(X0 − αd−1
0 α1X

′
0), (X1 − α−d

0 α−2
1 α2X

′
1),

(X2 − α1α
−2
2 α3X

′
2), . . . , (Xd−4 − αd−5α

−2
d−4αd−3X

′
d−4),

(Xd−3 − αd−4α
−2
d−3X

′
d−3), (Xd−2 − αd−3X

′
d−2)

〉
.
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Here

R = C[X0, . . . , Xd−2, X
′
0, . . . , X

′
d−2]

S =
R

⟨Xd
0X

d−1
1 · . . . ·X2

d−2 − (X ′
0)

d(X ′
1)

d−1 · . . . · (X ′
d−2)

2⟩

V =
C[α0, α

−1
0 , . . . , αd−3, α

−1
d−3]

⟨(α0α
−1
0 − 1), . . . , (αd−3α

−1
d−3 − 1)⟩

.

The αi have charges 1 and −1 with respect to U(1)i to the left, respectively right of the
defect, and are not charged under the other U(1)j, j ̸= i.

Going down to phase 0 on the right of the defect amounts to setting X ′
i = 1 for i ̸= 0

in this module. This yields

T∞ =
S̃ ⊗ V〈

(X0 − αd−1
0 α1X

′
0), (X1 − α−d

0 α−2
1 α2),

(X2 − α1α
−2
2 α3), . . . , (Xd−4 − αd−5α

−2
d−4αd−3),

(Xd−3 − αd−4α
−2
d−3), (Xd−2 − αd−3)

〉 (3.26)

with

R̃ = C[X0, . . . , Xd−2, X
′
0]

S̃ =
R̃

⟨Xd
0X

d−1
1 · . . . ·X2

2 − (X ′
0)

d⟩ .

Next, we have to impose a cutoff in this module, for every phase boundary (i, i+1) traversed
by the chosen path. The U(1) gauge group preserved on this phase boundary is just the
stabilizer of all the chiral fields Xj, j /∈ {i, i + 1} obtaining a VEV in both phases i and
(i+ 1). It is given by

U(1) ∼= {(g, g−(d−1), g−(d−2), . . . , g−(d−i), 1, . . . , 1) | g ∈ U(1)} ⊂ U(1)d−2.

The respective cutoff reads

QL
(i i+1) := QL

0 −
i∑

j=1

(d− j)QL
j ≤ N(i i+1)

for a choice of cutoff parameter N(i i+1). We denote the submodule generated by all gener-
ators of T∞ satisfying these bounds by TN(0 1),...,N(d−3 d−2)

.

By virtue of the relations for Xi, i > 0 in (3.26) the charges of generators of the
truncated module actually lie in a band. The size of the band can be read off from the
charges of the Xi, i > 1 which can be read of from Table 3.23 below.
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X1 X2 X3 . . . Xd−3 Xd−2

QL
(01) −d 0 0 . . . . . . 0

QL
(12) (d− 2) −(d− 1) 0 . . . . . . 0

QL
(23) 0 (d− 3) −(d− 2)

. . . . . . 0
...

...
...

. . . . . . . . .
...

QL
(d−4 d−3) 0 . . . . . . 0 -4 0

QL
(d−3 d−2) 0 . . . . . . 0 2 -3

Table 3.23: Charges of the chiral fields Xi, i > 0 with respect to the U(1) groups unbroken
at the phase boundaries (i, i+ 1), i = 0, . . . , d− 3.

Namely, one obtains that TN(01),...,N(d−3 d−2)
is generated by generators whose charges satisfy

N(01) − d < QL
(01) ≤ N(01)

N(12) − (d− 1) < QL
(12) ≤ N(12)

...
N(d−3 d−2) − 3 < QL

(d−3 d−2) ≤ N(d−3 d−2).

Indeed, these inequalities can be solved successively. The inequality for QL
(01) can be rewrit-

ten as
−d < QL

(01) −N(01) = QL
0 −N(01) ≤ 0

which has solutions
QL

0 = N(01) − a , a ∈ {0, . . . , d− 1}.

The inequality for QL
(12) can be brought into the form

(d− 1)(QL
1 − 1) < QL

0 −N(12) ≤ (d− 1)QL
1 .

Hence QL
1 is determined by QL

0 according to

QL
1 =

⌈
QL

0 −N(12)

d− 1

⌉
.

In a similar way, the inequality for QL
(23) determines QL

2 in terms of QL
0 and QL

1 according
to

QL
2 =

⌈
QL

0 − (d− 1)QL
1 −N(23)

d− 2

⌉
.

Going all the way we find d solutions for the inequalities given by

QL
0 = N(01) − a =: QL

0 (a) , a ∈ {0, . . . , d− 1}

Qi =

⌈
QL

0 −
∑i−1

j=1(d−j)QL
j −N(i i+1)

d−i

⌉
=

⌈
N(01)−N(i i+1)−a−

∑i−1
j=1(d−j)QL

j

d−i

⌉
=: QL

i (a) , for i > 0.
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Thus, the truncated module has d generators

ea := α
QL

0 (a)
0 · . . . · αQL

d−3(a)

d−3 , a ∈ {0, . . . , d− 1}.

These satisfy relations

X ′
0ea = X

ma
0

0 · . . . ·Xma
d−2

d−2 ea−1,

where the ma
i can take values 0 or 1 such that

∑
a m

a
i = (d − i). In particular, ma

0 = 1
for all a, ma

1 = 1 for all but one a, ma
2 = 1 for all but two a’s etc. Which of the ma

i are
zero is determined by the choice of N(i i+1) in a rather complicated manner depending on
divisibility properties. In fact, TN(01),...,N(d−3 d−2)

is a free module divided by these relations.
For concreteness we will present the solution for the choice N(i i+1) = 0 for all i. In this

case
QL

i (a) = −δa,d−i , for i > 0.

In particular, the generators read

ea =

{
α−a
0 , 0 ≤ a ≤ 2

α−a
0 α−1

d−a, 3 ≤ a ≤ d− 1.

They satisfy the relations

X ′
0e0 = X0ed−1

X ′
0e1 = X0 · . . . ·Xd−2e0

X ′
0ea = X0 · . . . ·Xd−aea−1 for 2 ≤ a ≤ d− 1

and TN(01),...,N(d−3 d−2)
can be presented as the cokernel of the matrix

p1 =



X ′
0 −X0

−X0 · . . . Xd−2 X ′
0

−X0 · . . . ·Xd−2 X ′
0

−X0 · . . . ·Xd−3 X ′
0

−X0 · . . . ·Xd−4

. . .
. . .
. . . X ′

0

−X0X1 X ′
0


which is one of the matrices of the matrix factorization representing the lift defect. Setting
all but the Xj = 1 for j ̸= i one obtains the defect describing the transition between
phase 0 and phase j along the chosen path. Again we find agreement with the flow defects
constructed in [13].



4 Conclusion and Outlook

In this thesis we presented the findings of [14], where a novel functorial construction–
presented in 2.3.2–for orbifold lift defects in GLSM was introduced. We demonstrated
that our approach reproduces known results for brane transport from [47] and for flows
in minimal models from [13]. The advantage of our construction is that it yields defects
which completely describe the relation between two adjacent phases, rather than just their
boundary conditions. Furthermore the rigid mathematical framework of TQFTs allows
us to utilize mathematical properties of our defects–such as semi-invertibility–to constrain
and refine our construction. There are various ways to build upon, explore and further
deepen the understanding of the results of this thesis in greater detail.

We have only explored lifts in a limited class of examples, it would be interesting to
apply our construction to a wider range of examples and in particular to different types of
anomalous GLSMs. A good starting point would be the Hirzebruch-Jung models already
discussed in [22] as this would allow for a direct comparison to their results concerning
band restriction rules.

In Section 3.2 we noted the similarities between the models GLSMMd−2
encompassing

all minimal models of levels k ≤ d− 2 as its phases and the models GLSMAd−2
describing

the Ad−2 singularity. A more thorough investigation of these similarities may lead to
interesting insights.

Our construction has the advantage of being functorial. This in particular allows for
the application of defects not only to boundary conditions, as was discussed int his thesis,
but also to morphisms between them. In particular this would also allow for the lift of
bound states, which can be expressed as (chains) of maps between boundary conditions.
To this end one may e.g. start by considering lifting the branes from the C3/Z3 orbifold
which appear in [33].

Other than in our discussion of minimal models we never pushed down our lift defects
to another phase of the GLSM we are considering. We have avoided this purely to simplify
matters, for geometric phases we could perform the push down by considering mixtures
of matrix factorizations and complexes of coherent sheaves as was discussed in [11]. The
generalization to mixed phases would then be the logical next step. By performing such
push downs one would be able to construct flow defects between arbitrary pairs of orbifold
phases on the one hand and geometric or mixed phases on the other. Furthermore one may
get a better understanding of lifting geometric or mixed phases by attempting to replicate
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our approach of truncating the charge lattice of a näıve lift defect. Being able to construct
lift- and RG type defects for arbitrary phases would then open the door to constructing
arbitrary flow defects between phases including monodromies.

Lastly we note that the introduction of cut offs in our construction while leading to a
consistent way of attaining lifting defects is ad hoc. It would be desirable to derive our
approach purely from defect properties. From the conceptual point of view this is the most
important hurdle to overcome in order to gain a complete understanding and contextual-
ization of our construction. To be more concise we would like to better characterize the
lifting- and RG defects T and R.

Consider the lifting defects T . We may construct them by either lifting the identity of
a phase to the GLSM on its left or by pushing down the identity of a GLSM to a phase on
its right. In this thesis we considered the latter, the ansatz for the former approach would
entail lifting the representation of the gauge group H of the phase to the full gauge group
G ⊃ H of the GLSM. To this end one might have a look at the induced representation of
G from the regular representation of H appearing in the module representing the identity
defect of the phase. A consistent way of implementing this could necessitate additional
choices which might coincide with the choices of cut offs.

Utilizing the properties of defects such as discussed in e.g. [60] may also impose certain
constraints on the lifting defects which might match with the choices of cut offs. Namely
one may attempt to understand the modules representing T and R as adjoints to define
and characterize projection defects P = T ⊗R as discussed in Section 2.3.1. In particular
we would need to check certain properties of graded pivotal categories such as the existence
of evaluations and coevaluations as discussed in Section 2.1.2. The fact that T and R are
adjoint may imply some kind of finiteness condition potentially explaining our cut offs.
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	Introduction
	Topological Quantum Field Theories and Gauged Linear Sigma Models
	Topological Quantum Field Theories
	Atiyah-Segal Quantum Field Theories
	Two-Dimensional Defect TQFTs
	(Fully)-Extended TQFTs
	TCFTs

	The Topological B-Model for GLSMs
	Gauged Linear Sigma Models
	A- and B-Twists in (2,2) Models
	Minimal Models
	B-Branes in GLSMs

	Defects in GLSMs
	Generalities on GLSM Defects
	Constructing GLSM Defects
	Grade- and Band Restriction Rules


	Lift- and Flow Defects in Abelian GLSMs
	Non-Anomalous Examples
	The A2 Model
	A Two Parameter Model with C5/Z8-orbifold phase
	The AN-1-Model

	Flows Between Minimal Models from GLSMs
	The Two-Step Minimal Model Flows
	Lift Defects for the Full Model


	Conclusion and Outlook
	Bibliography

