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Zusammenfassung

Es gibt kein Patentrezept für die Softwareverifikation: In den letzten Jahrzehnten
wurden viele erfolgreiche Werkzeuge und Techniken entwickelt, jedoch kommen diese
mit ihren eigenen Stärken und Schwächen. Für bestimmte Anwendungsbereiche sind
einige Techniken und Werkzeuge daher besser geeignet als andere.

Deshalb liegt es nahe, verschiedene Kombinationen von bestehenden Verifika-
tionstechniken auszuprobieren. Diese Kombinationen können in bestehende Werk-
zeuge integriert oder direkt aus bereits verfügbaren Komponenten zusammengesetzt
werden. Hierbei tauschen die Komponenten unter Umständen Informationen aus,
um schneller ein Ergebnis zu erzielen.

Diese Arbeit konzentriert sich auf kooperative Verifikation, also die Kombina-
tion von bestehenden Verifikationskomponenten. Dabei arbeiten die Komponenten
als Team; sie tauschen Informationen untereinander aus, um gemeinsam das zugrun-
deliegende Verfikationsproblem zu lösen.

Zu Beginn der Arbeit werden bereits existierende kooperative Techniken in einer
systematischen Literaturstudie eingeordnet, verstanden und kategorisiert. Das Er-
gebnis der Studie legt nahe, dass viele kooperative Techniken ad hoc implementiert
werden. Basierend auf dieser Erkenntnis, wurde CoVeriTeam entwickelt. Es erlaubt,
dass kooperative Ansätze innerhalb eines Frameworks systematisch konstruiert und
ausgeführt werden können. Mithilfe von CoVeriTeam können verschiedene Kombi-
nationen von Techniken auch evaluiert werden. Das Ergebnis: Tatsächlich übertrifft
die Kombination der Techniken die Leistungen der einzelnen Komponenten. Zudem
vereinfacht CoVeriTeam die Nutzung von bestehenden Komponenten durch einen
Webservice, welcher es Nutzern erlaubt, eine Vielzahl von Verifikationswerkzeugen
und - techniken auszuprobieren – ganz ohne diese installieren zu müssen.

Die Ergebnisse dieser Forschungsarbeit werden bereits erfolgreich in wichtigen
Bereichen der formalen Verifikation eingesetzt: (1) CoVeriTeam wurde in einer For-
schungsarbeit für einen komponentenbasierten Ansatz für das sogenannte Counter-
example Guided Abstraction Refinement (CEGAR) eingesetzt, (2) Zwei Werkzeuge,
die mit CoVeriTeam erstellt wurden, haben im elften internationalen Wettbewerb für
Softwareverifikation 2022 (SV-COMP 2022) teilgenommen, (3) Unser CoVeriTeam
Service wurde vor der Ausführung der SV-COMP 2023 benutzt, um teilnehmenden
Teams vorab unkompliziert mitzuteilen, ob die eingereichte Software auf der vorhan-
den Infrastruktur ausgeführt werden kann, (4) Das Huawei Dresden Research Center
auf CoVeriTeam aufbauen eine Schnittstelle für Abgestellte bereitgestellt, welche es
erlaubt Verifikationswerkzeuge ohne vorherige Installation benutzen können.

und im HDRC wurde eine Schnittstelle entwickelt, welche es erlaubt, VWZ oh-
ne vorherige Installation benutzen zu können und die Fähigkeiten von VWZ zu
demonstrieren.



Abstract

No silver bullet exists for software verification: Many successful tools and tech-
niques have been developed over the past few decades, but none of them is sufficient
to tackle the problem on its own. Each of these successful tools and techniques is
strong in some specific areas but weak in others.

With this background, it is natural to try out combinations of verification tech-
niques. These combinations could either be integrated or constructed using off-the-
shelf components, where the components may exchange information.

This thesis explores the area of cooperative verification. A cooperative verification
technique is a combination of verification techniques where different off-the-shelf
components work together, as a team, sharing information with each other with the
goal of solving a verification problem.

As a first step, we reviewed scientific literature to understand and systematize the
knowledge about cooperative verification. We found that most of these combinations
were developed ad hoc. To address this gap, we developed CoVeriTeam, a tool for
systematic construction and execution of combinations of verification tools. We con-
ducted an extensive evaluation of tool combinations constructed using CoVeriTeam
to investigate their performance in comparison to the standalone tools when solv-
ing verification problems. Furthermore, to improve the accessibility of verification
tools, we have developed a web service for CoVeriTeam that allows users to execute
verification tools and their combinations remotely.

Our work is already having an impact: (1) CoVeriTeam was used in research work
to construct an off-the-shelf component-based counterexample-guided abstraction-
refinement tool, (2) two tools constructed using CoVeriTeam participated in the 11th
Competition on Software Verification held in 2022, (3) CoVeriTeam Service was used
in integration scripts for the 2023 competitions on software verification and testing
to check if the submitted tools can be successfully executed, and (4) a user interface
based on an instance of CoVeriTeam Service has been developed at Huawei Dresden
Research Center to demonstrate the capabilities of verification tools and allow other
teams at Huawei to use these tools without needing to install them.
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1 Introduction

Software is ubiquitous in our lives, and our dependence on it is increasing with each
passing day. As a result, a bug or failure in software has the potential to have an adverse
effect on us, ranging from monetary losses to loss of life [81, 100, 126]. These high stakes
make the pursuit of bug-free software important. Software verification is used to prove
that the software behaves as expected or to find bugs, allowing us to fix them in time.

Software verification has been an active area of research for decades [8, 19, 21, 64].
The research community has invented many techniques and developed numerous tools
to tackle the problem [12, 13, 32, 54, 63, 73, 82, 85, 114, 115, 116]. Each of these
techniques and tools handle a part of the problem. Some excel at solving particular kinds
of specification, such as UAutomizer [94] for termination analysis or CPAchecker [92]
and VeriAbs [88] for checking safety, while others extend support for more language
features for a certain specification, such as Deagle [65] for concurrency or Symbiotic [89]
and VeriAbs [88] for loops. The results of the international competition on software
verification (SV-COMP) [20] over the past years show that even the best performing tools
can solve only a subset of the used benchmark set [21], and there are considerable number
of tasks that are solved by one tool but not by others [49]. Each of these techniques and
tools have their own strengths and weaknesses.

It is imperative to combine the strengths of different verification tools and techniques
in order to attempt to solve harder problems. The software verification community em-
ploys various approaches to combine verification techniques. These combinations could
either be integrated or constructed using off-the-shelf components. In an integrated (also
called white box) combination, the techniques are customized and adapted to fit to-
gether in a cohesive unit. A few examples of integrated combinations are: Smash [69],
Synergy [11], CPAchecker [32], Check ’n’ Crash [14], and DyTa [68]. On the other hand,
in an off-the-shelf (also called black box) combination, the components are used as they
were, without any modification. A few examples of off-the-shelf combinations are: portfo-
lios [10], algorithm selection [78], conditional testing [55], and MetaVal [35]. Off-the-shelf
combinations can be further categorized as non-cooperative or cooperative.

In a non-cooperative off-the-shelf combination, the participating components do not
exchange information. Portfolios and algorithm selection based combinations are non-
cooperative off-the-shelf combinations. In a portfolio of verification tools, each tool is
executed in isolation and the results of the one that succeeds in computing a result
are considered, e.g., PredatorHP [104], CPAchecker [113], Ufo [5]. Selection techniques
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extract some features about the verification task (e.g., use of loops, arrays, etc.) and use
them to choose a technique most suited to solve it [26, 78, 91, 109, 123].

In contrast to the above mentioned combinations, solvers would team up in a co-
operative combination to solve the given verification problem. They would exchange
information to help each other. Conditional verification [16, 38, 53, 55] and witness
validation [27, 28, 29] are examples of cooperative verification.

In this thesis, we explore the field of cooperative verification. This exploration com-
prises making the notion of cooperative verification concrete, developing a framework to
construct and execute such combinations, and evaluating tool combinations.

1.1 Contributions

We make the following research contributions:
1. Definition: We make the notion of cooperative verification concrete by giving a

definition (Sections B.1 and B.2).
2. Literature review on cooperative verification [39]: We review scientific literature to

provide an overview of cooperative verification techniques and develop a classifi-
cation for them (Section B.1).

3. CoVeriTeam [40]: We present a conceptual framework and a tool for construction
and execution of tool combinations (Section B.2).

4. Evaluation of tool combinations [49]: We present the results of an extensive eval-
uation of tool combinations to show that these combinations can perform better
than the standalone tools (Section B.3).

5. CoVeriTeam Service [45]: We present a web service for CoVeriTeam allowing users
to remotely execute verification tools and their combinations (Section B.4).

We developed the following tools during the course of this thesis:
1. CoVeriTeam [40, 47] is an open-source tool for construction and execution of tool

combinations based on off-the-shelf components.
2. CoVeriTeam Service [45, 48] is an open-source web service that provides web-based

access to CoVeriTeam allowing users to execute verification tools remotely.

1.2 Impact

Our work already has found use cases in the verification community:
1. CoVeriTeam was used in a research project on decomposing CEGAR [63] into off-

the-shelf components. In this research, component-based CEGAR was constructed
by combining off-the-shelf components using CoVeriTeam [24].

2. CoVeriTeam was used in a research project that generalizes the idea of ranged
symbolic execution [75]. In this work, the path exploration is split into several
ranges (sets of execution paths) and then these ranges are analyzed in parallel [77].
CoVeriTeam was used to orchestrate the execution of these analyses in parallel.
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3. LIV [36] is a validator for safety proofs of programs written in C. It decomposes the
validation problem into several smaller loop-free verification conditions expressed
as programs in C. These smaller problems are then solved in parallel using off-the-
shelf verifiers. CoVeriTeam is used to execute these off-the-shelf verifiers.

4. CoVeriTeam was used in the research work that constructs the unified framework
for control-flow-based loop abstraction by Beyer, Rosenfeld, and Spiessl [33] using
off-the-shelf components [34]. CoVeriTeam was used to provide interfaces to off-
the-shelf verification tools.

5. Two tool combinations, a parallel portfolio of verifiers and a selection based verifier,
created using CoVeriTeam were submitted to the international competition on
software verification 2022 (SV-COMP) [21]. These tools performed very well in
the competition; but were not ranked because the participation was hors concours.

6. Graves-Par [121] combines the ideas of machine learning based selection and par-
allel portfolios. It was constructed using CoVeriTeam and submitted to SV-COMP
2023. It selects a set of verification tools to execute based on the given verification
problem. First, it uses graph representation of the given program and employs a
graph neural network to predict the resource consumption of the tools. Then, it
selects a portfolio of verification tools based on this information and the given
resource constraints. CoVeriTeam was used to execute the selected portfolio of
verifiers.

7. CoVeriTeam Service was used in the integration scripts for tool submission to SV-
COMP and Test-Comp 2023. When a participating team submitted a tool, the
integration scripts called CoVeriTeam Service to check if the tool can be executed
successfully or not. This automation saved manual effort of the organizer.

8. CoVeriTeam Service has been adapted for the purpose of providing web based access
to verification tools developed at Huawei Dresden Research Center. It is used for
demonstrating the capabilities of these verification tools by the team, and allows
other teams at Huawei to experiment with these tools. The service is accessible
only internally at Huawei Technologies.

1.3 Structure
This thesis presents an overview of my PhD research. Chapter 2 defines cooperative
verification and the notions of verification actors and artifacts. Chapter 3 gives a brief
overview of the literature review on cooperative verification. Chapter 4 gives a brief
introduction of CoVeriTeam, while Chapter 5 summarizes the experiments conducted
to evaluate tool combinations. Chapter 6 provides an overview of CoVeriTeam Service.
Finally, Chapter 7 concludes this work with a critical reflection on our achievements and
identifies directions for further research.
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2 Definitions

Cooperative verification aims to harness the synergies of various verification techniques.
A cooperative technique is constructed as an off-the-shelf combination of other verifica-
tion techniques [23].

Cooperative verification requires various verification techniques to work together to
solve a verification problem. The cooperating techniques cooperate through the means of
information exchange. We use the term verification actors for producers and consumers
of this information, and verification artifacts for the exchanged information. Examples of
a verification problem are include a satisfiability check, test generation, feasibility check
of a program path, and refinement check.

2.1 Example
Figure 2.1 shows a cooperative combination of a verifier and a validator. A verifier, e.g.,
a model checker like CPAchecker or Cbmc, takes a program and a specification as input
and outputs if the program satisfies the specification or not. Additionally, it can output
a witness—a justification of the verdict it produced. An example of such a witness is a
counterexample trace reaching the error location if the verifier finds a bug.

Confirmed

Unconfirmed

Program

Specification

Verifier Validator

Figure 2.1: A combination of a verifier and a validator
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Table 2.1: Some example of cooperative verification actors

Actor Subtype
Of

Description Example Tools

Verifier Analyzer Tries to verify whether the given program sat-
isfies the given input specification; produces a
verdict and a witness justifying the verdict

Cbmc [62],
CPAchecker [32],
UAutomizer [94]

Conditional
Verifier

Analyzer A verifier that also explicitly deals with a
condition—a summary of the previously done
verification work

CPAchecker [32]

Tester Analyzer Takes a program and a coverage criterion, and
generates test cases

Klee [12]

Conditional
Tester

Analyzer Analogous to conditional model checker, a con-
ditional tester explicitly considers test goals
representing a subset of the total required work

CondTest [55]

Validator Analyzer Validates the results produced by a verifier CPAchecker [32],
UAutomizer [94]

Reducer Transformer Transforms a program with respect to a condi-
tion such that if the residual program satisfies
the specification, so does the input program;
uses a condition, i.e., a summary of the verifi-
cation work already achieved, to reduce a pro-
gram such that the already accomplished work
need not be repeated

Reducer [38]

Instrumentor Transformer Instruments the program with information
from a given artifact that can be hints from a
witness, or labels applied to program locations
deduced from a test criterion, etc.

MetaVal [35]

The verifier verifies the program and produces a verdict and a witness. The validator
validates the output of the verifier. It tries to re-establish the verdict produced by the
verifier with the help of the witness. The witness is confirmed if the validator is able to
reach the same verdict, otherwise it is unconfirmed.

Verifier and validator are abstract interfaces for tools or techniques performing a
specific function. We use the term verification actors for these interfaces. Witness is
an example of the information passed between verification actors. We use the term
verification artifacts for interfaces representing such information.

We now detail these notions and introduce the definition of cooperative verification.

2.2 Actors and Artifacts

Actor. A cooperative verification actor produces and/or consumes the information for
cooperation. Verification actors are divided between analyzers and transformers. Ana-
lyzers produce new knowledge about the verification task, e.g., a verifier produces the
knowledge if the property is satisfied or not. Transformers would transform the veri-
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Actor

Analyzer Transformer

Verifier ValidatorTester Reducer Instrumentor

Figure 2.2: Simplified classification hierarchy of verification actors (this figure is adapted
from our article on CoVeriTeam [40])

Artifact

ProgramSpecification Justification

CounterExample Proof

Figure 2.3: Simplified classification hierarchy of verification artifacts (this figure is
adapted from our article on CoVeriTeam [40])

fication task, but not produce new knowledge, e.g., a tool transforming code from C
to LLVM [87] such that a model checker for LLVM can be used for verification. Fig-
ure 2.2 shows a simplified classification hierarchy of cooperative verification actors, and
Table 2.1 lists a few examples with explanations.

Artifact. Artifacts for cooperative verification contain information or knowledge about
a verification problem. For example, a C program is an artifact representing a part of the
verification problem. Figure 2.3 shows a simplified classification hierarchy of cooperative
verification artifacts. Verification artifacts are divided between specification, program,
and justification. Specifications include behavioral specifications for formal verification
or for test generation. Programs include code written in various programming languages.
Justifications are the artifacts supporting the result produced by analyzers, e.g., coun-
terexample or proof. More details are available in the article on CoVeriTeam [40].

2.3 Definition of Cooperative Verification
Definition 1. A verification approach is called cooperative, if

1. identifiable verification actors pass information in form of
2. identifiable verification artifacts towards the common objective of
3. solving a verification problem,
4. where at least two of these actors are analyzers.

The above definition is taken from our article on literature review of cooperative
verification techniques [39].
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A cooperative verification technique is a combination of verification techniques, but
not all combinations are cooperative. This definition excludes the following types of
combinations:

1. Portfolio: A sequential or a parallel portfolio of verifiers is not cooperative because
the verifiers do not share information with each other. Each verifier works alone for
solving the verification task, and the result of the one that succeeds is considered.

2. Algorithm selection: Approaches where the first step is to select which algorithm
or tool should be used to solve the given verification problem are not cooperative
because the information is not shared. The selector selects which verifier to execute
and that verifier is executed.

3. Syntactic transformation: Some verification combinations use preprocessing as a
first step to convert the verification problem to a format such that an off-the-shelf
verifier can be used to solve it. These types of approaches are excluded in our
definition because these combinations use only one analyzer.

Our definition tries to formalize the idea that the techniques should cooperate, i.e.,
solve a part of the problem or produce some knowledge that could be helpful to some
other technique for solving the problem. The cooperative verification techniques should
be able to consume and/or produce additional information, other than the initial verifi-
cation problem and the final result, about the verification task.
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3 Literature Review (B.1)

Various literature reviews have been conducted in the area of software verification [6, 7,
22, 106, 107, 118]. However, prior to our work, a literature review focusing on cooperative
verification had not been conducted. To address this gap, we conducted a review of
scientific literature to provide an overview of the cooperative verification techniques and
develop a classification for them.

We developed a methodology to conduct the literature review. During our review,
we followed it to process articles published in leading scientific publications related to
software verification. After following a multi-stage filtering process, we identified the
verification techniques presented in 72 articles as cooperative. Our overview and classi-
fication is based on the findings from these 72 papers.

The article “Cooperative Software Verification: An Exploratory Literature Review” (Sec-
tion B.1) reports on the findings of the conducted literature review.

3.1 Methodology

Figure 3.1 shows the methodology we followed for the literature review.

Stage 0: publication selection. Cooperative verification is related to the research fields
of formal verification, software engineering, and semantics of programming languages.
We selected A or A* ranked conferences based on CORE rankings [18] in these fields.
We then extended this list by a few other conferences that we consider important in the
field. We considered publications by ACM or Springer.

In computer science, conferences are preferred over journals to publish new results [67,
97, 99]. Therefore, we excluded journals from our publication selection.

Stage 1: selection of articles. We considered the articles from 2012 onward from the pub-
lications selected in Stage 0. We selected articles with more than 7 pages for ACE/IEEE
publications and more than 10 pages for Springer.

We got 8 108 papers to start the search after this stage of filtering.

Stage 2: applying search query. We applied a search query to the titles and abstracts
of the articles output by Stage 1. The query was designed to filter articles related to
verification, analysis, and testing.

After this stage of filtering, 4 332 papers remained in consideration.
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Stage Activities No. of papers

Shortlist the publications to select
the articles from

Collect the metadata about articles
in scope, i.e., articles published in se-
lected conferences during the chosen
duration

Search titles and abstracts for se-
lected keywords

Exclude articles after reading the
titles that are clearly not about co-
operative verification

Exclude more articles after reading
the abstracts

Review and classification

0

1

2

3

4

5

8 108

4 332

1 117

381

72

Figure 3.1: Stages of the selection process and number of papers selected in each stage
(this figure is taken from our literature review on cooperative verification [39])

Stage 3: exclusion based on titles. We manually processed the titles of the papers in
consideration. We filtered out the papers that we could confidently rule out as being
cooperative. After this stage of filtering, 1 117 papers remained in consideration.

Stage 4: exclusion based on abtracts. We analyzed the abstracts of the remaining articles
and excluded the ones which were not presenting a verification approach based on a
combination of verification techniques.

As a result of this stage, 381 papers were left for review.

Stage 5: review of selected articles. We applied our definition of cooperative verification
to the techniques presented in the 381 articles from the previous stage.

We identified 72 cooperative verification techniques.

3.2 Classification of the Cooperative Verification
Techniques

We developed a classification for the verification techniques identified as cooperative.
Figure 3.2 shows the class hierarchy of the identified classes, and Table 3.1 gives a brief
overview of these classes. Our literature review [39] contains further details about the
articles in each class.
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Table 3.1: Classification of the cooperative verification techniques (this table is taken
from our literature review on cooperative verification [39])

Class name Explanation Examples Count

Reduction The verification task is reduced such
that it can be solved by another ana-
lyzer.

[57, 101, 111] 12

Guide The artifact produced by an analyzer
acts to guide another analyzer.

Conditional First analyzer tries to solve the verifica-
tion problem and produces an artifact
that summarizes the work done; another
actor then uses this information to focus
only on the unsolved parts of the task.

[53, 55, 90] 12

Hint An analyzer generates hints that are
then used to guide the verification of an-
other analyzer.

[74, 86, 120] 17

Scrutiny The artifact produced is scrutinized by
another analyzer.

Validation The result produced by one analyzer is
validated by another analyzer.

[27, 28] 14

Refinement The artifact produced by one analyzer
is refined by another analyzer.

[1, 83] 3

Iterative Validation
Guided Refinement

The artifact produced is first validated,
and then the result of validation is used
to guide the process of refinement. This
sequence is repeated until a solution is
found.

[24, 60] 14

Reduction

In this class of cooperative verification approaches, an analyzer reduces the verification
problem such that it can be solved by another analyzer. Examples of such reductions
include reducing a concurrent program into a sequential one such that the behavior of
the two is the same with respect to the property under consideration [2, 72, 101], and
a program to program transformation targeting loop behavior [57, 58]. We identified 12
articles in this class.

Guide

In this class of cooperative verification approaches, an analyzer produces knowledge
that is used to guide the verification effort of a subsequent analyzer. This class is further
divided into two classes: Conditional and Hint.
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Cooperative

Reduction Guide Scrutiny

Conditional Hint Validation Refinement

IterativeValidationGuidedRefinement

Figure 3.2: Classes of identified cooperative verification techniques based on the use of
artifacts (this figure is taken from our literature review on cooperative verification [39])

Conditional. In conditional analyses, the first analyzer produces conditions under which
the property under consideration holds. These conditions could be either a summary of
the verification work already done [53, 55], or unsound assumptions made by an analyzer
to progress the verification task [90], or partial typing information [66]. These conditions
are used by a subsequent analyzer to reduce the verification effort by making use of the
knowledge encoded in the conditions. We identified 12 articles in this class.

Hint. Some kinds of analysis of verification tasks can produce knowledge that might
be useful for another analyzer as a hint for solving the task. Examples of such hints
include a seed for fuzzing-based test generators [86, 120, 125], and invariants that can
be injected in a verification procedure [30, 76]. We identified 17 articles in this class.

Scrutiny

In this class of cooperative verification approaches, an analyzer scrutinizes the artifacts
produced by another analyzer. The purpose of this scrutiny could be validation, filtering,
or refinement of the given artifact. We further divide this class into two classes: Validation
and Refinement.

Validation. The results of an unsound analyzer are not trustworthy. In these cases,
it is desirable to validate the results produced by another analyzer. Examples of the
artifacts requiring validation include alarms or warnings produced by a possibly unsound
verifier [28, 79, 96], invariants or a ranking function produced by a machine learning
based tool [70, 93], and a proof of correctness produced by an untrusted verifier [27]. We
identified 14 articles in this class.

Refinement. An analyzer can also scrutinize the artifacts produced by another analyzer
in order to refine them. Examples of such refinements include alarm refinement [83, 122],
and test suite minimization [124]. We identified 3 articles in this class.

Iterative Validation Guided Refinement. In this class of cooperative techniques,
first the result produced by an analyzer is scrutinized, and the result of scrutiny is used
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to guide the refinement. This process is repeated until a solution is found. Examples of
techniques in this class include construction of CEGAR based on off-the-shelf compo-
nents [24], invariant synthesis based on a combination of a learner and a verifier [60,
103], and inference of loop bounds [9, 108]. We identified 14 articles in this class.

3.3 Cooperative Actors and Artifacts
We also found papers that presented a technique or a tool that can be used in a coop-
erative combination.

Examples of such actors include:
• Program transformers can produce an over-approximation or under-approximation

of the given program, which can be given as input to an analyzer. For instance,
Loop shrinking [112] transforms array processing loops in a program into loops with
smaller bounds, over-approximating the program. An off-the-shelf model checker
can be used to verify the transformed program.

• Validators scrutinize the output produced by a verifier, and as a result can confirm
or reject it. One such tool is MetaVal [35], which converts a validation problem
into a verification problem. It first instruments a witness in the program and then
uses algorithm selection to select a background verifier.

• Invariant generators can be employed as cooperative actors in combination with
techniques like k-induction [3]. For example, Dillig et al. [71] propose a technique
for generating inductive invariants using a combination of verification condition
generator and abductive inference.

• Refiners can refine the artifact produced by an analyzer. For example, test suite
reduction refines the test suite by removing redundant test cases, thus producing
a smaller test suite. A tool that reduces the given test suite [4, 110, 117] can be
used in a cooperative combination.
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4 CoVeriTeam (B.2)

The software verification research community employs various combinations of verifi-
cation techniques [10, 15, 26, 51, 78, 84, 94, 95, 105, 109, 123], many of these are co-
operative [24, 28, 37, 53, 55, 76, 90]. However, despite the interest of the verification
community in developing tool combinations, the combinations were developed ad hoc:
we were missing a framework to systematically construct these combinations.

To address this issue, we envisioned a solution based on interfaces for verification
tools and a mechanism to combine these interfaces. Our solution uses the notions of
verification actors and verification artifacts as defined in Section 2.2.

In our solution, each verification actor has two aspects: descriptive and operational.
The descriptive aspect addresses conceptual questions about a verification actor, such
as: what kind of input does it consume?, what output does it produce?, what function does
the actor perform on execution?. The operational aspect deals with concerns regarding
the execution of the actor, including: what command should be executed?, executing
tools in isolation to prevent interference with the host system, and controlling resource
consumption.

CoVeriTeam [40], the tool we developed, brings together both the descriptive and op-
erational aspects of verification actors. It enables a systematic approach for constructing
tool combinations and executing them. Using CoVeriTeam, a user can write a description
for a verification actor in a simple language and execute it. CoVeriTeam is an open-source
tool and publicly available under the Apache 2 license.

CoVeriTeam has already found use cases in the verification community, including:
(1) its use in a modular implementation of CEGAR [24] based on off-the-shelf com-
ponents, (2) a service based on CoVeriTeam (see Chapter 6) being used in the 2023
competitions on software verification and testing to test the execution of the submitted
tool archives, and (3) its use in orchestrating the execution of different analyses in a
generalization of ranged symbolic execution [75, 77].

We present CoVeriTeam in our article “CoVeriTeam: On-Demand Composition of
Cooperative Verification Systems” (Section B.2). CoVeriTeam provides: (1) a language
for describing combinations of verification actors, (2) an execution engine for executing
these combinations, (3) an open-source implementation and a library of verification
actors based on many well-known publicly available verification tools, (4) example case
studies of combinations implemented in CoVeriTeam.
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Listing 1 Example of an actor definition file for the verifier Cbmc [62]
1 actor_name: cbmc
2 toolinfo_module: "cbmc.py"
3 archives:
4 - version: default
5 location: "https://gitlab.com/.../cbmc.zip"
6 options: ['--graphml-witness', 'witness.graphml']
7 resourcelimits:
8 memlimit: "8 GB"
9 timelimit: "2 min"

10 format_version: '1.2'

4.1 Design

There are two main parts of the design of CoVeriTeam: description of actors and artifacts,
and execution of actors.

Actors and Artifacts

Actors in CoVeriTeam can be either atomic—based on a standalone tool, or compos-
ite—based on a combination of multiple actors.

Atomic Actors. In CoVeriTeam, atomic actors are based on tool archives. For example,
an actor based on a model checker like Cbmc or CPAchecker would be an atomic actor in
CoVeriTeam. When executed, an atomic actor triggers the execution of the underlying
tool.

Lets consider a use case in which a user wants to verify a C program using the
verifier Cbmc. To achieve this, the user needs to have Cbmc installed, construct the
command, execute it, and understand its output. Similarly, CoVeriTeam requires the
following to execute an atomic actor and extract the produced artifacts: the tool archive,
the command to invoke the tool, and a function to process the tool output and extract
artifacts. Additionally, we enforce resource limitations on the execution of tools and
execute them in isolation.

To fulfill some of these requirements, we use features from BenchExec [52]. We use
tool-info modules from BenchExec to assemble the command and process the tool output,
and RunExec to execute the tools in isolation and enforce resource limitations. A tool-info
module is a few lines of Python code containing functions to create the command to be
executed and to process the output produced by the tool. RunExec uses control groups
and namespaces features from the Linux kernel to measure and control the resource
consumption and execute tools in isolation.

CoVeriTeam uses YAML configuration files, called actor definitions, to configure the
atomic actors. Listing 1 shows an example of such an actor definition for the verification
tool Cbmc. It specifies the tool-info module to be used for executing this actor, the
parameters to be passed to it, and resource limitations to be enforced. CoVeriTeam uses
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Figure 4.1: Types of combinations in CoVeriTeam (this figure is taken from our article
on CoVeriTeam [40])

this information to download the tool, assemble the command, execute the command,
and process the output produced by the execution.

Composite Actors. Verification actors can be combined to create a composite actor.
The combination of a verifier and a validator presented in Fig. 2.1 is an example of a
composite actor. Figure 4.1 shows the combinations available in CoVeriTeam: SEQUENCE
executes the actors in sequence, providing the artifacts generated by the first one as input
to the second one; PARALLEL executes the actors in parallel, waiting for each actor to
finish execution; ITE chooses the actor to execute based on the value of a condition;
REPEAT executes the actor repeatedly until the termination condition is satisfied. The
article on CoVeriTeam contains more details on these combinations [40].

In addition to these combinations, we have also developed PARALLEL-PORTFOLIO
combination. Actors in a PARALLEL-PORTFOLIO are executed until one of them pro-
duces an acceptable result, and then all the remaining actor executions are terminated.
We have presented this combination in the article on evaluation [43, 49].

Artifacts. The artifacts in CoVeriTeam are based on files or strings. For example, an
artifact for a C program would contain the path to the underlying C file, a test suite
would contain the path of the directory containing test cases, a verdict would be a string
like SUCCESS or FAIL.

Execution

We have developed a simple domain specific language to describe creation of actors
and artifacts. A user needs to provide this description file as input to CoVeriTeam.
CoVeriTeam then creates the actors and their combination as described in the input
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Table 4.1: Tool combinations implemented in CoVeriTeam (this table is adapted from
our article on CoVeriTeam [40])

Technique Year Case Study More Info

Witness Validation [27, 28] 2015, 2016 3 Section B.2
Execution-Based Validation [31] 2018 3 More info

Reducer [38] 2018 3 More info
CondTest [55] 2019 3 More info
MetaVal [35] 2020 3 More info

description file, and executes them on the provided artifacts. The execution engine of
CoVeriTeam orchestrates the execution of the combinations managing the flow of artifacts
between actors; and prepares commands for the execution of atomic actors and delegates
the execution of these commands to RunExec.

4.2 Case Studies
We have implemented some tool combinations and cooperative verification techniques
in CoVeriTeam demonstrating that our tool can be used to create and execute tool
combinations. Table 4.1 lists these examples and case studies.

https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/README.md#execution-based-validation
https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/README.md#reducer-based-construction-of-a-conditional-model-checker
https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/CondTest/README.md
https://gitlab.com/sosy-lab/software/coveriteam/-/blob/0.9/examples/MetaVal/README.md
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5 Evaluation (B.3)

Software verification tools specialize in solving specific types of verification problems.
This specialization can be related to the specification, such as reachability analysis or
termination analysis, or to the features of the program, like the usage of unbounded
loops, arrays, floats, etc. The results of the software verification competition [20] in the
past years consistently confirm this observation.

In our study, we investigate the effectiveness of tool combinations in comparison to
standalone tools. We conducted extensive experiments to determine if the combinations
of verifiers in a sequential portfolio, a parallel portfolio [10], or using an algorithm se-
lection mechanism [78] could yield better results than any of the standalone verifiers.
We used CoVeriTeam to systematically construct combinations of verification tools and
evaluated them on a large benchmark set to find the answer.

We present the details of this construction and results of the experimental evalua-
tion in the article “Construction of Verifier Combinations From Off-the-Shelf Compo-
nents” (Section B.3). This article is an extended version of the article “Construction of
Verifier Combinations Based on Off-the-Shelf Verifiers” [43].

5.1 Combinations of Verifiers

We evaluated the following three types of verifier combinations (Figure 5.1):
1. Sequential portfolio of verifiers: Verifiers are executed one after another in sequence

until one of them produces a result. If a verifier is not able to produce a result
within the allotted time, it is terminated and the next verifier is executed. Available
CPU time is equally divided between the verifiers.

2. Parallel portfolio of verifiers: All verifiers run simultaneously until one of them
produces a result that meets the termination condition. The remaining verifiers
are then terminated. Available memory is equally divided between the verifiers.

3. Algorithm selection: First, a selection algorithm is executed to determine which
verifier to use. Then, all available resources are allocated to that verifier. In our
combination, we used a machine learning based algorithm selector [109].

We used CoVeriTeam to construct these combinations using off-the-shelf components.

In our previous experiments [43], we found that both sequential and parallel portfo-
lios produced more incorrect results in contrast to the standalone tools and algorithm
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Figure 5.1: Combinations used in the experiments (this figure is taken from our article
on the evaluation of combinations [49])

selection. The portfolios are biased towards fast tools, and coincidentally there was a
tool in our combinations that was more unsound than others and produced results fast.1
To address this issue, we included a validation step in our experiments. The validation
step executes a parallel portfolio of validators (as shown in Fig. 5.2). This combination
serves as a verifier itself. We combine this construction of verifier+validator based on
different verifiers in sequential portfolio, parallel portfolio, and algorithm selection.

5.2 Experiment setup

Selection of Verifiers. We selected the verifiers for our combinations based on the results
of the 11th software verification competition (2022) [21]. We sorted the best 8 tools from
the ReachSafety category based on their scores in SV-COMP 2022. For creating com-
binations of n tools, we chose the top n tools from this sorted list. Figure 5.3 illustrates

1If the unsound tool had also been inefficient in terms of resource consumption, the portfolios would
have produced fewer incorrect results.
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Figure 5.2: Construction of a verifier+validator combination (this figure is taken from
our article on the evaluation of combinations [49])

the sets of verifiers that we used in different types of combinations. We selected the fol-
lowing verifiers: CPAchecker [92], Esbmc [98], Symbiotic [89], UAutomizer [94], Cbmc [59],
Pinaka [61], UTaipan [56], 2ls [119].
Selection of Validators. Similar to the verifiers, we chose the validators based on the re-
sults of the 11th software verification competition (2022) [21]. We chose the most effective
validators for confirming witnesses in the competition as reported in [25]. For violation
witness validation (alarm validation), we chose four validators: CPAchecker-based viola-
tion witness validator [28], FShell-w2t [31], Symbiotic-Witch [102], and NitWit [80]. For
the validation of proofs, we chose two correctness witness validators (proof validators):
CPAchecker-based and UAutomizer-based correctness witness validators [27].
Benchmark Set. For our experiments, we considered all the verification tasks that were
used in the software verification competition 2022 in the competition category titled
ReachSafety. Each verification task consists of a program written in C and a specifi-
cation. The specification for our experiments is a safety property stating that an error
location should never be reached. The complete benchmark set is publicly available [17].
The benchmark set for our experiments consisted of 5 400 verification tasks in total.
Execution Environment. We executed the experiments on the same infrastructure and
with same resource limits as SV-COMP 2022. The details are:

• Machine configuration: one 3.4GHz CPU (IntelXeon E3-1230 v5) with 8 processing
units (virtual cores), 33GB RAM, Ubuntu 20.04 operating system

• Resource limits: 8 processing units, 15min of CPU time, and 15GB memory for
each verification run

Benchmark Execution. We used the state-of-the-art benchmarking framework BenchExec [52]
for executing our benchmarks. We computed the scores and data for our plots based on
the measurements generated by BenchExec. We used the same scoring schema as used
by SV-COMP [21].
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Figure 5.3: Subsets of verification tools used in the combinations (this figure is taken
from our article on the evaluation of combinations [49])

5.3 Results

The results of our experiments show that each combination has a configuration that
performs better than the best standalone tool.

However, the effectiveness of portfolios starts to decrease as the number of tools in
the portfolio increases. As the number of tools grows and the total available resources
remain constant, the resources available to each tool decrease. This, in turn, means that
at some point, a verification tool does not get enough resources to solve non-trivial tasks.

Algorithm selection, on the other hand, performs better as the number of available
tools to select from increases. As the resources are not shared between the verifiers, the
chosen verifier gets all the available resources, irrespective of the number of verifiers
available. This increases the available choices without sacrificing resource availability.

Introducing a validation step makes portfolios more competitive. Our findings in
the previous experiments [43] showed that the presence of an unsound but fast tool
can have a strong adverse effect on the qualitative performance of portfolios by making
them produce a higher number of incorrect results. This is because portfolios are biased
towards tools that finish fast (for sequential portfolio the position of the tool in the
sequence is also important). Using validators mitigates this issue and relieves the user
from the worry of choosing only those tools that have a very low rate of incorrect results.

5.4 Threats

Our experiments show that tool combinations can improve the effectiveness of verifiers,
but this does not imply that tool combinations always improve performance. The results
of our experiments are strongly influenced by the setup of our experiments. Keeping
these factors in consideration can help a user design combinations that perform better.

Resource Availability and Complexity of Tasks. Our experiments benefited from the fact
that the benchmark set was diversified, and the resource limitations were generous. The
portfolios were helped by the fact that there were sets of tasks that were difficult for
one verifier but easy for another. In a portfolio, by its nature, each of the verifiers is
allocated fewer resources than any standalone tool. However, there was some verifier
in the portfolio that succeeded in producing a result even with the reduced resources.
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Algorithm selection exploited this situation even further by selecting the best suited
verifier and giving it all the available resources.

Knowledge about the Verification Task. The choice of our tools was based on their per-
formance on the same benchmark set. This was even more pronounced with the machine
learning based algorithm selector. If a user is given a set of verification tasks about which
there is no knowledge, then it would be difficult to create a winning combination. In this
case, the user still has to make some assumptions about the given verification task and
decide whether to use a standalone tool or a combination based on these assumptions.
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6 CoVeriTeam Service: Verification
as a Service (B.4)

CoVeriTeam provides an interface for verification actors and allows users to create and
execute combinations of these actors. However, CoVeriTeam executes the verification
tools and their combinations on the machine of the user.

Some users might prefer to avoid executing a verification tool on their machine.
Some of them might have security concerns about a tool downloaded from an untrusted
location. The local machine might not be powerful enough to execute a computation-
ally heavy tool. There could be a mismatch between the available and required system
configuration. Some verifiers might require permissions that the user does not have.

We addressed these challenges to make verification tools more accessible by develop-
ing a web service for CoVeriTeam. The article “CoVeriTeam Webservice: Verification
as a Service” (Section B.4) introduces this idea.

6.1 Service Design

Figure 6.1 shows an abstract view of CoVeriTeam Service. The service is designed as
a REST API. To use the service, a user has to send the actor definitions, description

RE
ST

A
PI

• downloads tools
• executes tools

CoVeriTeam

• prepare environment
• invoke CoVeriTeam
• bundle results

CoVeriTeam Service

• actor definitions
• CoVeriTeam program
• verification task

Request

• tool output
• generated files

Response

Figure 6.1: Abstract view of CoVeriTeam Service (this figure is taken from our article on
CoVeriTeam Service [45])
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Figure 6.2: Clients of CoVeriTeam Service (this figure is taken from our article on
CoVeriTeam Service [45])

of the combination to execute, and the verification task to the service. CoVeriTeam
Service then prepares the environment for execution, prepares the command and invokes
CoVeriTeam, packages the results produced by CoVeriTeam, and sends them back to the
user. The user receives the log and artifact files generated by the execution of tools or
their combinations.

6.2 Use cases
CoVeriTeam Service can be called from CoVeriTeam by appending the --remote flag to
a CoVeriTeam command or by using a cURL request.

CoVeriTeam Service has been used in the continuous integration process of the 2023
competitions on software verification (SV-COMP) and testing (Test-Comp). It is called
upon submission of a tool to test if the tool can be successfully executed. Furthermore,
we developed a web user interface to execute verification tools participating in SV-COMP
2023. Figure 6.2 shows some of the clients of the CoVeriTeam Service.

CoVeriTeam Service allows users to execute verification tools remotely and bene-
fits tool developers by making it easier for them to provide access to their verification
tools. Additionally, development of a generic API like this one for verification tools may
facilitate commercial companies in integrating their tools as a service.

CoVeriTeam Service is developed as an open-source project [48], and we also provide
instructions to host an instance. The service is available for experimentation at https:
//coveriteam-service.sosy-lab.org.

https://coveriteam-service.sosy-lab.org
https://coveriteam-service.sosy-lab.org
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7 Conclusion

7.1 Critical Reflection

There are two orthogonal aspects of cooperative verification: 1) decomposition of a prob-
lem into smaller problems and solving them with the best suited solvers, and 2) orchestra-
tion of the execution of these specialized solvers, enabling them to exchange knowledge.

The major part of this thesis focuses on the second aspect, i.e., developing a mecha-
nism to enable various cooperative actors to cooperate. This mechanism is essential for
cooperative verification, but it assumes the availability of cooperative actors and artifacts
required by them. The full potential of cooperative verification can only be achieved with
more research on problem decomposition and the development of specialized solvers.

Moreover, CoVeriTeam, our tool, currently supports combinations of only those ver-
ification actors that run to completion and can be executed on the same machine. This
limits the combinations available for experimentation. For example, we cannot currently
construct and execute a combination in CoVeriTeam that is based on two actors that
require different system configurations.

Additionally, the effectiveness of cooperative verification techniques would be incon-
clusive if evaluated solely on academic benchmarks. We cannot arrive at a definitive
conclusion unless we evaluate these techniques on more complex real-world problems.

7.2 Future Research

Policies for Cooperation

Up until now, our focus has been on studying cooperation between tools and developing
a framework to construct tool combinations and orchestrate their execution. We assumed
that the user is allowed or willing to execute all available tools.

However, a user might have preferences or be bound by some constraints about the
tools to execute. We need a mechanism to express these constraints in the form of a
policy. Once the user has specified a policy, we can check if the given policy allows a
combination of tools to be executed. Examples of such constraints include the source
of the tool archive, system configuration required by the actor, permitted licenses, etc.
CoVeriTeam can be extended to support specification and checking of such policies.
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Provisioning Environment

Currently, CoVeriTeam supports execution only on the host machine. However, the sys-
tem configuration of a user may not always support execution of a given tool archive.
CoVeriTeam Service partially addresses this issue by allowing a user to execute a tool
remotely, but it still requires the server to match the required system configuration.

To address this issue, we can extend CoVeriTeam to support execution of tools in
docker (or podman) containers. A user can specify the container image providing the
required execution environment, and CoVeriTeam can provision a container based on
the image and run the given verification tool in it.

Concurrently Communicating Actors

At present, CoVeriTeam is limited to cooperation between tools that run-to-completion.
The next step is to extend it to support concurrently executing actors that can commu-
nicate with each other. Also, we need to investigate which architecture design is better
suited for this kind of cooperation. Two possibilities are: a service oriented architecture
or a publisher-subscriber model. This improvement would open opportunities for the
design of more flexible systems employing various cooperative verification techniques
making use of large distributed infrastructure.

Porting Ideas from Model Based Software Engineering

The design of CoVeriTeam is inspired by model-based software engineering. At the core
of CoVeriTeam is a component model that serves as the basis for its domain specific
language, combinations, and their execution. More ideas from the area of model-based
software engineering can be integrated in CoVeriTeam such as generating diagrams of
CoVeriTeam combinations and providing support for a graphical language to create
combinations. Some of these features would improve usability, whereas others could
strengthen the theoretical aspects of cooperation.

Artifacts for Cooperation

Cooperative verification actors achieve cooperation by using artifacts. For cooperation to
be successful, cooperating actors must agree on the content and format of the information
they exchange. Our research has identified the following artifacts as the most commonly
used for cooperation: witnesses for alarms, invariants, (partial) proofs, program paths,
and program slices. However, we expect that there are many more artifacts that could
be identified for cooperation. Further research is necessary to reach a consensus on what
knowledge is valuable to exchange and in what format.

Standardization of Interfaces for Cooperation

Cooperation in verification requires common information exchange formats and inter-
faces for verification tools. Our work identifies and classifies many existing information
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exchange formats and tools. However, further work is needed to identify additional co-
operative actors and artifacts. Once we have a significant corpus of such actors and
artifacts, we can move towards developing a standardization of interfaces for coopera-
tion. Such standardization will help to integrate these tools across the industry, making
cooperative verification more accessible in practice.

7.3 Conclusion
This research explores the field of cooperative verification from the perspective of soft-
ware engineering. We view verification tools as interfaces and investigate and address
the challenges arising from this perspective.

(1) We systematically reviewed the scientific literature to provide an overview and
develop a classification of cooperative verification techniques.

(2) We developed a conceptual framework, supported by the tool CoVeriTeam, pro-
viding interfaces for cooperation through the means of various cooperative verification
actors and artifacts. CoVeriTeam allows researchers to create and execute combinations
of actors enabling them to experiment with cooperative verification techniques.

(3) We conducted large-scale experiments to demonstrate the effectiveness of tool
combinations compared to standalone tools.

(4) We developed CoVeriTeam Service, a web service built on top of CoVeriTeam that
allows users to remotely execute a verification tool.

Our work systematizes knowledge about cooperative verification, enables experimen-
tation with combinations of verification actors, and creates opportunities for further re-
search in the area of cooperative verification. CoVeriTeam, the tool developed as part of
this thesis, has already been used and accepted in the verification community.

Our research begins the process of standardizing interfaces for cooperation between
verification tools. This step is crucial in bringing cooperative verification to practice.

Availability

All of the papers in the scope of this thesis are (or will be) published as open access. Both
CoVeriTeam and CoVeriTeam Service are open source projects; their code is available on
GitLab [47, 48]. Additionally, we have uploaded the reproduction packages for the articles
on Zenodo for long term availability [41, 42, 44, 46, 50].
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Abstract Cooperative verification comprises verifica-
tion approaches in which multiple verification compo-
nents are employed, and the employed verification com-
ponents exchange information to solve a verification task
together. In addition to exploiting synergies between
different verification approaches, cooperative verifica-
tion focuses on the interaction between components,
highlighting their roles and the exchanged information.

The literature on software verification has not been
reviewed from this perspective. We aim to fill this gap by
providing an overview of cooperative verification tech-
niques. We have systematically reviewed the scientific
literature to identify combination techniques and classify
them based on the role of the exchanged information,
with an emphasis on cooperative approaches. We focus
on automated-reasoning techniques that analyze source
code.

Keywords Cooperative Verification · Software
Verification · Automatic Verification · Collaborative
Verification

1 Introduction

The verification of computer programs is an important
problem, because the correct functioning of our society
and economy depends on the correct functioning of
computer programs that are ubiquitous in our lives,
including transportation, energy, and financial systems.
However, the verification of computer programs is an
undecidable problem [228]. As a result, we cannot expect
a general solution: we need to use heuristic approaches
and exploit available techniques.

LMU Munich, Munich, Germany

In the past decades, numerous algorithms, tools,
and techniques have been developed to solve spe-
cific classes of the software-verification problem (e.g.,
[31, 53, 67, 68, 74, 125, 144, 190]). Each of these tools and
techniques is strong in some areas and limited in others,
which makes it imperative to consider combinations to
address the problem. According to a recently proposed
schema [38], these combinations can be classified into
integrated combinations (e.g., [14, 23, 78, 106, 118]) and
combinations of off-the-shelf components. The latter
can be further classified into portfolios [133, 148, 238],
algorithm selection [36, 203, 204], and cooperative ap-
proaches. The key idea in a cooperative combination
is to make use of the capabilities of a tool or a tech-
nique to complement the capabilities of another. In a
cooperative combination, participating actors exchange
information, helping each other to solve the given ver-
ification task. Examples of cooperative techniques are
conditional model checking [24], conditional testing [33],
and cooperative verification via externally generated
invariants [123]. In contrast, in a non-cooperative combi-
nation, participating tools do not exchange information.

The primary difference between a cooperative and
a non-cooperative combination is the use of informa-
tion produced by one participant in the combination by
other participants in the combination. This information
is exchanged through the means of artifacts. Identifying
the information that can be used for cooperation and
exporting it in an exchangeable format enables the reuse
of analysis tools as components. Ideally, one should be
readily able to replace any component in a cooperative
combination by other components with the same inter-
face. This survey aims to provide an overview of such
approaches in the published literature.

Cooperation between verification tools and tech-
niques has the potential to improve the performance
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and effectiveness of software verification. During our
research in the past few years, we have found that co-
operative verification has been addressed by a number
of researchers. Several combination approaches focusing
on off-the-shelf combinations and information exchange
have been published in the scientific literature in the
last decade [22, 24, 64, 65, 95, 123]. These articles may
use different terms (e.g. collaborative verification, tool
combination, etc.) instead of cooperative verification,
but they are essentially combination approaches that
are based on information exchange.

Although there have been various literature reviews
for software verification [12, 35, 138, 141, 142, 173], a thor-
ough literature review on cooperative verification had
yet to be conducted. We aim to address this gap with
our literature review. Our goal is to provide an overview
of cooperative verification techniques published in the
scientific literature and organize this knowledge by de-
veloping a classification of these techniques.

We systematically searched the articles published
in leading scientific publications related to the area of
software verification. We followed a multi-stage selection
process. First, we filtered the articles based on keyword
searches on the titles and abstracts. Then, we pruned our
selection by manually processing the titles and abstracts
of these articles. At last, we analyzed the relevant articles
to decide if they present a cooperative technique.

Following the above-mentioned multi-stage search
process, we identified 72 articles that present a coopera-
tive verification technique, according to our definition.
We then developed a classification for these selected
techniques based on the role that the exchanged in-
formation has in the verification process. Our survey
focuses on automated reasoning techniques that analyze
source code.

We make the following contributions:

1. a definition of cooperative verification, making the
abstract concept more concrete,

2. an overview of cooperative verification techniques
published in the scientific literature during the period
of 2012–2022,

3. a classification of cooperative verification techniques
based on the role of the exchanged information, and

4. an artifact containing the data used and produced
by the stages of our selection methodology.

2 Related Work

We have divided the related work into three parts: (1) lit-
erature published before the considered time frame,
(2) non-cooperative combinations, (3) literature reviews

related to software verification, and (4) frameworks for
tool combinations.

2.1 Literature Published Before the Considered Time
Frame

The research on software model checking became indus-
trially relevant in the first decade of this century [35]. As
standalone techniques started to mature, combinations
of techniques began to emerge, starting around 2005.
Such combinations include using dynamic analysis to
validate the results of a static checker [78, 79, 106], an
approach by Majumdar and Sen [172] that combines
random testing and concolic testing [112, 211], Syn-
ergy [118] combining testing and verification, Dash [14]
building on and advancing Synergy by using the infor-
mation from failed tests to refine the abstraction, an ap-
proach combining abstract interpretation and bounded
model checking [197], and Smash [113] combining pred-
icate abstraction [116] and testing. Furthermore, sev-
eral approaches mentioned in Section 2.4 were published
before the considered time frame.

2.2 Memoization and (De-) Composition

We are investigating those combinations in which more
than one component exchange information in form of
artifacts. We differentiate cooperation from decompo-
sition and memoization approaches, both of which are
used to improve performance.

Memoization approaches attempt to improve scalabil-
ity in inter-procedural analysis by saving and reusing an
over-approximation of a block of code called function (or
procedure) summaries [7, 19, 20, 111, 130, 212, 213, 240].
In most of the cases, it is the same analysis that is sav-
ing information for future use. We have excluded most
of these approaches due to this reason. We found one
case in which such summaries were used by some other
analysis and have included it in our review [160].

Some verification approaches structurally decompose
the given program into several smaller instances, and
then analyze these smaller instances using an off-the-
shelf verifier [59, 189, 216]. Also, some works propose to
run several instance of an analysis in parallel and to
share information (e.g., clauses, lemmas) among these
parallel instances [189, 243]. The shared information is
implementation-specific. Intuitively, all the above ideas
can be called self-cooperation, whereas this survey is con-
cerned with cooperation among different components.

Assume-Guarantee reasoning [9, 139, 196] is a well
known approach where the proof obligations for the
complete system are decomposed into proof obligations
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for smaller components. These specifications are often
called contracts and expressed in the form of assump-
tions and guarantees, i.e., the behavior of a given com-
ponent satisfies the guarantees if it is executed in an
environment that satisfies the assumptions. Contracts
for atomic components are verified against the imple-
mentation and these contracts are then hierarchically
composed and checked, resulting in the verification result
for the complete system. These contracts are written and
decomposed manually, so these approaches in general
do not fit in our definition.

There is a line of research proposing to automate
the process by inferring or learning the assumptions
(and guarantees) of components [10, 57, 60, 70, 90, 107].
However, many of these articles were published before
the time-frame we considered, and others were filtered
out by our process.

Integrated Approaches. Since the invention of abstract
interpretation [74], various attempts have been made
to combine different abstract domains [71, 75, 119, 162].
These techniques attempt to use information from mul-
tiple abstract domains to solve a verification task and
aim to improve the efficiency of the analysis.

Later, combinations of data-flow analysis and model
checking were developed [67, 97, 127]. The key idea in
these approaches was to traverse the state space in the
abstract domain for efficiency and use the concrete states
to increase the precision for dealing with spurious coun-
terexamples. Then the above-discussed types of composi-
tions —abstract domains and analysis techniques (data
flow and model checking)— were unified [21, 25, 26].

These are typically well defined mathematical com-
positions guaranteeing soundness of the composition.
However, the components in these compositions are
tightly coupled and typically share information through
implementation dependent data structures. The benefit
of exporting all the information exchanged through the
means of artifacts is unclear. We have excluded these
type of compositionns. We are interested in combina-
tions that are loosely coupled and exchange information
through standardized interfaces.

2.3 Literature Reviews Related to Software Verification

Numerous literature reviews on different aspects of soft-
ware verification have been conducted. However, we
review the scientific literature from a novel perspective
of cooperative verification. Jhala and Majumdar [138]
review the techniques for analyzing software systems.
Kaleeswaran, Nordmann, Vogel, and Grunske [141] pro-
vide an overview of the state of the art for counterexam-
ple explanation. Karna, Chen, Yu, Zhong, and Zhao [142]

review the role of model checking in software engineer-
ing. The overview of the development of software model
checking in the last two decades [35] includes a descrip-
tion of the history of software model checking and gives
details about the raising attention that the topic at-
tracted, in terms of published literature and in terms of
developed tools for software verification. Fraser, Wotawa,
and Ammann [100] survey the use of model checkers for
generating tests. Baldoni, Coppa, D’Elia, Demetrescu,
and Finocchi [12] survey symbolic-execution [144] tech-
niques. D’Silva, Kröning, and Weissenbacher [89] review
scientific literature for automated static-analysis tech-
niques, focusing on abstract interpretation, model check-
ing, and bounded model checking. Manès, Han, Han,
Cha, Egele, Schwartz, and Woo [173] present a unified
model of fuzzing and a taxonomy of the literature on
fuzzing.

Beyer and Lee [32] survey the transformations used
in modular verification approaches and advocate use
of transformations and standard exchange formats for
development of verification tools.

2.4 Frameworks for Tool Combinations

Computer scientists have discussed the advantages and
disadvantages of developing modular systems by reusing
components [109, 157, 215, 221, 222]. The verification com-
munity has also developed various frameworks and web
services for creating tool combinations and orchestrating
their execution.

The Electronic Tools Integration platform
(ETI) [50, 175, 178, 223] was designed with the vi-
sion to allow users to access tools over the internet
without needing to install them on the local machine.
A user can also execute these tools in combinations.
The information is exchanged between the tools with
the help of taxonomic specifications and LTL synthesis.
jETI [176, 177], a redesign of ETI platform, reduces the
effort for integrating and updating tools. It uses web
services to provide lightweight remote integration and
coordination of verification tools.

The Evidential Tool Bus (ETB) [76, 77, 208] uses a
variant of Datalog [4, 56] for integration of tools. Its
primary use case is building and maintaining assurance
cases for the purpose of certification. It maintains a
store of proven claims for files and their versions, which
can later be reused as partial results in regression verifi-
cation.

CoVeriTeam [29] supports the creation and exe-
cution of tool combinations. It is based on the notions
of actors and artifacts. Actors are interfaces of verifica-
tion tools and artifacts are interfaces of the information
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objects exchanged between the actors. An actor based
on a concrete tool is defined with the help of config-
uration information like its type (type of its inputs
and outputs), the location from where to download the
tool, and tool-info module (a Python module used to
prepare the command and parse the tool output), and
resource limits to enforce. With the help of this informa-
tion, CoVeriTeam uses BenchExec [34] to execute
the tools in isolation, enforcing the resource limitations.
A user can also create combinations of various actors in
CoVeriTeam.

SeaHorn [122] is an Llvm-based verification frame-
work for checking safety properties of programs. It first
converts a program to Llvm bitcode, generates veri-
fication condition as costrained Horn clauses (CHC),
and then uses various off-the-shelf verifiers to discharge
verification conditions.

3 Methodology

In this section, we define cooperative verification, our
research goals, and the process for the literature selec-
tion.

3.1 Definition of Cooperative Verification

We are interested in tools and approaches for analyzing
source code that are themselves are combinations of
other tools and approaches.

Figure 1 shows a layering of tools and libraries used
in analysis. On top there are analyzers that reason
about behavior of a system. Example of a system are:
source code, an android app, a probabilistic model, or a
theory. The analyzers typically encode the problem in a
formalism such as BDD or SMT formula, or constraints
and delegate the solving to solvers. An analyzer could
either directly call the solver, or use an interface to the
solver.

One can see the interaction between these layers
as cooperation (e.g., an analyzer and a solver). There
could also be cooperation among solvers. However, in
this work, we focus explicitly on the cooperation between
analyzers. With this in mind, we introduce a definition
of cooperative verification.

Cooperative verification is an approach to verifica-
tion in which multiple tools work together to solve a
verification task by exchanging information. Verification
actors produce and consume this information, and verifi-
cation artifacts encapsulate and represent the exchanged
information. In the following, we list a few examples
for each of the notions defined above:

• verification actor: off-the-shelf tool, agent, web ser-
vice, executable

• verification artifact: program, alarm, invariant, test
• verification problem: safety check, termination check,

test generation, feasibility check, refinement
• analyzer: verifier, validator, test generator

We define cooperative verification as follows:

Definition 1 A verification approach is called coop-
erative, if

1. identifiable verification actors pass information in
form of

2. identifiable verification artifacts towards the com-
mon objective of

3. solving a verification problem,
4. where at least two of these actors are analyzers.

We impose the restriction of at least two analyzers
to focus on the combinations comprising of components
where each component can independently analyze (a
part of) the problem. This restriction automatically
excludes preprocessing, translations, and structural de-
composition.

Cooperation is about making use of different tools
and techniques. This automatically excludes standalone
approaches (e.g., [250]), extensions to an existing
approach (e.g., [45, 120]), tightly coupled combina-
tions (which we call integrated combinations) (e.g.,
[31, 41, 126, 168]), and memoization mechanisms (e.g.,
[19, 232]).

3.2 Research Goals

Our research objective is to review cooperative verifi-
cation techniques published in the scientific literature,
provide an overview, and systematically arrange the
knowledge by classifying these techniques. We aim to
address two concrete research goals:

RG 1. Identify the cooperative verification techniques
from the chosen sample of the published scientific
literature.

RG 2. Develop a classification for the identified cooper-
ative verification techniques based on the role played
by the exchanged information.

3.3 Selection of Literature for Review

3.3.1 Stage 0: Publication Selection

Cooperative verification is related to (1) formal meth-
ods (formal verification), (2) software engineering, and
(3) semantics of programming languages. Table 1 lists
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Model Checker
Examples: Blast [23],
CPAchecker [31],

Cbmc [69]

Test Generator
Examples: Klee [53],

AFL [114], CREST [51]

Theorem Prover
Examples: Coq [15],

Isabelle [190],
KeYmaera X [101]

Static Analysis
Examples: Astrée [42],

Infer [55]

Invariant Synthesis
Examples: Houdini [98],

Daikon [92]

Reduction
Examples: Lazy-CSeq [134],

Impulse [149]

BDD interfaces?
SMT Interfaces

JavaSMT [11],
PySMT [105],

SMT-switch [174]

Constraint solver
interfaces

BDD Libraries
Examples: CUDD [219],

BuDDy [72],
Sylvan [86]

SMT Solvers
Examples: Z3 [182],

cvc5 [13],
MathSAT5 [66]

Constraint Solvers [4]

Fig. 1: Intuition for a cooperative approach

Table 1: Shortlisted publlication outlets (conference proceedings) for the review

Abbreviation Name Publisher

Conferences in Software Engineering
ASE International Conference on Automated Software Engineering ACM/IEEE
ESEC/FSE Joint European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering
ACM

ICSE International Conference on Software Engineering ACM/IEEE
ISSTA International Symposium on Software Testing and Analysis ACM
FASE Fundamental Approaches to Software Engineering Springer
SEFM International Conference on Software Engineering and Formal Methods Springer

Conferences in Formal Methods
CAV Computer Aided Verification Springer
TACAS Tools and Algorithms for the Construction and Analysis of Systems Springer
ATVA Automated Technology for Verification and Analysis Springer
VMCAI Verification, Model Checking, and Abstract Interpretation Springer
FM International Symposium on Formal Methods Springer

Conferences in Programming Languages
PLDI Programming Language Design and Implementation ACM
POPL Principles of Programming Languages ACM
OOPSLA Object-Oriented Programming, Systems, Languages, and Applications ACM
ESOP European Symposium on Programming Springer

the shortlisted publications. We considered the proceed- ings of the conferences in these fields that are ranked A
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or A* according to the CORE rankings [2] and published
by ACM or Springer.1

We added four conferences to this list which are not
A or A* according to CORE rankings: ATVA, FASE,
VMCAI, and SEFM.

Conferences are considered the first choice in com-
puter science for publishing new results [129, 231, 234].
Therefore, we considered only conference proceedings
for our survey. This means that journals were excluded
from our consideration.

3.3.2 Stage 1: Study Selection

We considered the articles that satisfied all the following
three conditions:

1. The article was published in the proceedings of the
conferences listed in Table 1.

2. The year of publication is ≥ 2012.
3. The length of the article is more than 7 pages for

ACM/IEEE publications (i.e., two columns); and
more than 10 pages for Springer (i.e., single column).

This gave us a corpus of 8 108 articles in total that
were published in the last 10 years and were not short
papers or extended abstracts. These papers comprised
our search universe.

Justifications for the used heuristics.
We focused on research papers and long tool papers

as these articles are more likely to contain a detailed
description of a new technique. As a heuristic, we settled
on more than 10 pages for one-column articles and more
than 7 pages for two-column articles.

We considered last ten years (from the time when
we started working on this survey) because we wanted
to focus on the recent literature.

3.3.3 Stage 2: Search Query

We searched the abstracts and titles of the selected
articles for the terms listed in Listing 1. This reduced
the the number of articles to 4 332. This search was
automated using a Python script.

The term cooperative verification was invented by
Beyer and Wehrheim [37, 38] in 2019. When we search
for this term in the complete text of papers in our
search space, only a few pass. Therefore, we broadened
our search by keeping the search terms more general
(Listing 1). However, the terms testing and verification
are so broad that the filter is ineffective.

1 Both ASE and ICSE alternate with ACM and IEEE as pub-
lishers. This includes the important conferences relevant to this
survey.

We experimented with our search query on a small
subset of the articles. It showed that an article discussing
a verification technique is highly likely to have at least
one of these keywords in the title or abstract.

Listing 1 shows the search terms. Our search was
conducted case-insensitive and using stems instead of
complete words. This allows us to include different forms
of a given word, e.g., search for verif would include verify,
verification, verified, verifier, etc.

cooper OR collabor OR verif OR test OR
model check OR theorem prov OR program
analy OR data flow analy OR data−flow
analy OR static analy

Listing 1: Search query

3.3.4 Stage 3: Exclusion based on title

During this stage, we manually processed the titles of
the papers. We pruned our search space to eliminate
the studies that we were confident were not about co-
operative verification. As mentioned before, our search
query is too permissive; this results in many titles and
abstracts passing the filter even if these articles do not
present a verification technique. We kept the articles
in consideration about which we could not confidently
make this decision. The stage reduced the number of
articles in consideration to 1 117.

3.3.5 Stage 4: Exclusion based on abstract

We analyzed the abstracts of the remaining papers and
excluded the ones not discussing verification approaches
employing two or more techniques. This further reduced
the number of articles in consideration to 381.

3.3.6 Stage 5: Review and Classification

We reviewed the 381 articles that passed the filter from
the previous stage. We applied our definition of coop-
erative verification to the techniques proposed in these
articles. As a result of this process, we found that 72

articles present a cooperative verification technique.

Review Process. First, we weed out the papers not in
scope e.g., not dealing with source code [?, 233], not
fully automated approaches [214], etc. Then we decide
if it is a combination of the kind we are interested
in. This excludes standalone approaches (e.g., [250]),
extensions to an approach (e.g., [183]), memoization
techniques (e.g., [19, 232]), tightly coupled combinations
(e.g., [61, 126]). We achieve this by trying to identify the
actors and artifacts in the approach presented in a paper,
identifying the information represented by the artifact,
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Stage Activities No. of papers

Shortlist the publication outlets to
select the articles from

Collect the metadata about articles
in scope, i.e., articles published in
selected conferences during the
chosen duration

Search titles and abstracts for se-
lected keywords

Exclude articles after reading the
titles that are clearly not about
cooperative verification

Exclude more articles after reading
the abstracts

Review and classification

0

1

2

3

4

5

8 108

4 332

1 117

381

72

Fig. 2: Stages of the selection process and number of papers selected in each stage

Table 2: Classification of the cooperative verification techniques

Class name Explanation Examples Count

Reduction The verification task is reduced such that it can be solved by
another analyzer.

[134, 150, 155] 12

Guide The artifact produced by an analyzer acts to guide another
analyzer.

Conditional First analyzer tries to solve the verification problem and
produces an artifact that summarizes the work done; another
actor then uses this information to focus only on the unsolved
parts of the task.

[24, 33, 65] 12

Hint An analyzer generates hints that are then used to guide the
verification of another analyzer.

[62, 171, 241] 17

Scrutiny The artifact produced is scrutinized by another analyzer.
Validation The result produced by one analyzer is validated by another

analyzer.
[16, 17] 14

Refinement The artifact produced by one analyzer is refined by another
analyzer.

[5, 165] 3

Iterative Validation
Guided Refinement

The artifact produced is first validated, and then the result
of validation is used to guide the process of refinement. This
sequence is repeated until a solution is found.

[22, 185] 14
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inferring its relation to the input verification problem,
and its role for the actor that consumes it. At last, we
group them together resulting in our classification.

Ideally, all of these would have been easily identifiable
with standardized exchanged format. However, that was
not the case. If we restrict ourselves only to the papers
that clearly state and import/export the artifacts in a
standardized format then only a handful of papers would
qualify. We were liberal in our interpretation and also
included the papers where the artifact can be exported
in an exchangeable format with some engineering effort.

Exclusions. We focus on the combination of analyzers
that analyze source code. This excludes analysis of hard-
ware, probabilistic models, binaries, and hybrid systems.
Moreover, we focus on automated approaches, which
excludes interactive methods.

Testing is a broad area covering different types of
systems to many methods for generating test inputs. We
include symbolic execution and generating tests using
a model checker in consideration for analyzers. This
results in exclusion of random testing, fuzzing, model-
based testing, and evolutionary approaches for testing.

In the next two sections, we present the results of
our survey. Section 4 presents the classification of the 72
articles describing cooperative verification techniques.
During our review, we also found articles that were not
cooperative techniques in themselves but presented a
tool or a technique that could be used as a cooperative
actor. Section 5 reports these cooperative actors.

4 Classification of Selected Techniques

We classify the cooperative verification techniques based
on the role of the exchanged information, i.e., the role
of the artifact that is shared between the actors. Table 2
summarizes these classes, providing a brief description
and the number of articles in each class. Figure 3 shows
the class diagram for these classes.

4.1 Reduction: Verification Task is Reduced

In this class of cooperative techniques, the given ver-
ification task is reduced by an analyzer such that an
off-the-shelf analyzer can be used for its verification.

Concurrent systems. Various techniques targeting the
verification of concurrent systems reduce the given con-
current system to a sequential one such that their be-
havior is the same concerning the property in question.
An off-the-shelf verifier for sequential programs can then
be used for the verification of the reduced program.

Lazy-CSeq [134] reduces a multi-threaded C pro-
gram into a non-deterministic sequential program and
then employs an off-the-shelf bounded model checker for
its verification. Alglave, Kröning, Nimal, and Tautschnig [6]
present a combination that reduces the given program
such that the verifiers assuming sequential consistency
can be used to verify the program for weak memory. Dan,
Meshman, Vechev, and Yahav [82] propose a reduction
of a program and a relaxed memory model to a pro-
gram under sequential consistency. The reduced program
over-approximates the behavior of the given program
running on the provided relaxed memory model. Then
an off-the-shelf state of the art analyzer is used to ana-
lyze the reduced program. Chaki, Gurfinkel, Kong, and
Strichman [58] sequentialize a time-bounded periodic
program2 and then use Cbmc [69] for model checking.

Regression. The task of checking regressions can also be
reduced to a verification task that can be handled by an
off-the-shelf verifier. Differential assertion checking [155]
checks for regressions concerning a given set of asser-
tions. The approach considers the previous version of a
program as a specification and checks the newer version
against it. It reduces the problem to a safety-checking
task by producing a composed program from the newer
and the previous version of the program. PEQtest [136]
tests for functional equivalence after refactoring. The
technique produces a new program that encodes the
equivalence and then uses an off-the-shelf test generator
to find differences.

Loop transformations. Impulse [149] first reduces a
C program and then verifies it using Cbmc [69] or
LAwI [179] as an off-the-shelf verifier. The proposed re-
duction under-approximates the loop behavior, thereby,
preventing the subsequent verifier from exploring numer-
ous spurious counterexamples. Kroenig, Lewis, and Weis-
senbacher [150] provide a reduction that enables the use
of bounded model checking for sound verification. This
reduction produces a shallow program that preserves the
reachable states of the original program allowing the use
of bounded model checking for safety verification. The
technique employs loop acceleration [44] and then uses
trace abstraction [124] to remove redundant execution
paths.

Loop shrinking [152] is a program-to-program trans-
formation for reducing bounds of loops that process
arrays. The output program is an over-approximation
of the original one, resulting in reducing the complexity
of the verification problem. After this transformation
an off-the-shelf model checker is used for verification.

2 A set of asynchronous tasks that are executed periodically.
Each task is scheduled according to its priority.
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Cooperative

Reduction Guide Scrutiny

Conditional Hint Validation Refinement

IterativeValidationGuidedRefinement

Fig. 3: Classes of cooperative verification techniques

Program Simplification. Trimmer [95] is a program
simplification technique that generates an equi-safe pro-
gram but with fewer execution paths. An off-the-shelf
safety checker can then be used to verify this program.

QueryMax [230] is a tool that aims to increase the
precision of a whole-program analysis without affecting
its speed. It computes the part of the library that is
relevant for the analysis of the given program and spec-
ification and provides it as an input to an off-the-shelf
verifier. As a result, the verifier is not required to over-
approximate the library and hence can produce results
faster without losing precision.

Simic, Inverso, and Tribastone [217] propose a trans-
formation to reduce the problem of checking if a given
error bound can be violated in a code with fixed-point
arithmetic to a reachability problem. The transforma-
tion is implemented in the CSeq [96] and the verifier
used for reachability check is Cbmc [69].

4.2 Guide: Artifact Acts as a Guide

In this class of cooperative techniques, an analyzer pro-
duces an artifact that guides the next analyzer in verifi-
cation. This artifact could be a summary of the verifi-
cation work that has been completed, a hint to guide
state space exploration, or a counterexample to guide
the refinement of an abstract.

4.2.1 Conditional: Artifact Represents a Condition

Conditional verification allows complementary analy-
ses to cooperate. A conditional analyzer analyzes the
program under an assumption which is termed as a con-
dition. A condition could be provided as input or can
be inferred by a formal analysis [24]. The key idea is
to make progress in solving the verification task even if

by making some compromises and explicitly document
them by the means of a condition. This allows the later
analyzers to concentrate only on these compromises
instead of solving the complete verification task.

Conditional model checkers [24] output a condition,
usually a state predicate, if they cannot finish the veri-
fication within the allocated resources. This condition
summarizes the work done by the model checker. Con-
ditional model checkers can also take a condition, in
addition to the given program and specification, as an
input and process it to save effort by focusing the search
only on the unexplored state space.

Czech, Jakobs, and Wehrheim [80] propose a cooper-
ation between a conditional model checker and a tester.
Their approach uses the exported condition to generate
a residual program which is then given as input to a
test generator.

Christakis, Müller, and Wüstholz [65] combine static
analysis and testing. The idea is to let a verifier progress,
even if by making some unsound assumptions, and later
test these unsound assumptions. The authors later im-
proved this technique by adapting dynamic symbolic ex-
ecution to abort tests leading to verified executions [64].

CoVeriTest [27] iteratively applies conditional
model checking and generates tests from the counterex-
ample traces produced by model checking. It encodes
test goals as targets for reachability specifications and
executes various analyses with specific time budgets. At
each step, one analysis executes and generates counterex-
ample traces if it finds a violation of the reachability
specification. CoVeriTest then generates tests from
these traces. When the time budget of the executing
analysis is exhausted, a condition representing the ex-
plored state space is passed on to the next conditional
model checker. This sequence continues until tests are
generated for all the test goals.
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Conditional testing [33] ports the idea of conditional
model checking to testing. A conditional tester, in addi-
tion to generating a test suite, outputs a set of test goals
that are covered by the test suite. This information can
be used by another conditional tester to save effort.

Abstraction driven concolic testing [81] iteratively
combines concolic testing and model checking. Concolic
testing generates tests covering as many goals as it
can in the given time budget. Then, the model checker
is executed with the remaining goals marked as error
locations. The model checker tries to reach as many
error locations as it can and generates tests from the
error traces. It removes goals from the set that it finds
unreachable. It then refines the abstraction with respect
to the remaining goals. The program is reduced using
this refined abstraction and given again to the concolic
tester. The combination uses Crest [51] for concolic
testing and CPAchecker [31] for model checking. DES-
CEGAR [224] use a combination of dynamic symbolic
execution and CEGAR-based model checking for data
flow testing [128, 200].

Lanzinger, Weigl, Ulbrich, and Dietl [158] aim to
complement type checking with deductive verification.
The technique assumes the use of advanced type systems.
In the first step, the type checker executes and checks
the program. In case type checking fails, it outputs
partial typing information and errors, which are then
encoded in the given program as specification clauses,
and the instrumented program is given to a deductive
verifier.

MPI-SV [244] combines symbolic execution and
model checking for the verification of message passing
interface [117] programs. The technique iteratively calls
a symbolic executor and a model checker for commu-
nicating sequential processes. The symbolic executor
explores the path and generates a test if a violation is
found. Otherwise, MPI-SV converts the violation-free
path to a communicating sequential processes model
and calls the model checker. Again, a test is generated
if a violation is found, otherwise, the program is pruned
and fed back to the symbolic executor.

4.2.2 Hint: Artifact Acts as a Hint for the Verification
Process

In this set of cooperative techniques, an analyzer pro-
duces a hint that guides the subsequent verification
process. This hint could serve as either a starting point
for the verification process or provide computed knowl-
edge that guides a verification actor in exploration. In
contrast to the class conditional, the first analyzer in
this case is playing a supporting role. In conditional,
the first analyzer tries to solve the verification task by

itself, and the second analyzer is executed only if it is
not able to do so.

Testing. Map2Check [206] uses claims from a bounded
model-checker to generate assertion for test cases. The
authors provide an implementation based on Esbmc [73]
and CUnit testing framework [1].

Concurrent Software. AutoConTest [226] is a coverage-
driven approach to generate test code for concurrent
classes. It iteratively executes a sequence of three steps.
The first step computes coverage requirements and gen-
erates sequential tests. The second step assembles con-
current tests from the sequential ones, and the third
step explores newly covered interleavings and selects the
failing tests.

Assertion guided abstraction [153] presents a coop-
eration between static and dynamic analysis techniques.
The employed static analysis calculates predicate de-
pendence and the dynamic analysis (stateless model
checking [110]) uses this knowledge to reduce the inter-
leaving space to be explored.

Deng, Zhang, and Lu [84] propose a new coverage
metric to approximate the overlapping of interleavings
for a set of inputs. The first step in their combination
uses this coverage metric to select test inputs to give to
off-the-shelf data-race or atomicity-violation detectors.

Narada [210] is an approach that generates tests
triggering race condition based on the given seed of
sequential tests. It is a three-stage approach. The first
stage analyzes the execution traces of a sequential seed
test-suite, the second stage uses this information to
generate constraints applicable to method calls, and the
third stage synthesizes racy tests.

Hong, Ahn, Park, Kim, and Harrold [131] propose
a technique that tries to achieve high coverage for con-
currency testing for a given test case and program. It
is a combination of two phases: estimation and testing.
The estimation phase produces synchronization-pair cov-
erage requirements. The test phase executes the test,
measures coverage, and iteratively changes the thread
schedule to achieve more coverage.

Invariant Injection. Beyer, Dangl, and Wendler [18]
present a technique to boost k -induction [88] with the
help of a data-flow-analysis-based invariant generator.
The generated invariants are continuously injected in
the k -induction engine, which uses them to strengthen
the hypothesis for the next iteration. CoVEGI [123]
employs various off-the-shelf tools to generate invari-
ants which are used by the main verifier to solve the
verification problem.

Pegasus [218] generates invariants for deductive
verification of hybrid and continuous systems. It is in-
tegrated with the theorem prover KeYmaera X [101].
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KeYmaera X asks Pegasus for invariants when it
cannot solve a continuous safety verification problem.
KeYmaera X validates the returned invariants and
proof hints and uses them to find the safety proof.

IcE/FiRE [43] is based on the cooperation of in-
ductive checking engine (IcE) and finite reachability
checking engine (FiRE). Both these components pass in-
formation to each other and are executed iteratively. IcE
tries to decide the safety problem using k-induction [88].
If it is not able to find proof, it asks FiRE a bounded
reachability query. FiRE either returns a bounded in-
variant which is used to guide IcE to prove safety, or a
trace. This is repeated until the problem is solved.

Bouillaguet, Bobot, Sighireanu, and Yakobowski [46]
present a cooperation between a static analysis support-
ing pointer analysis and a deductive verification engine
based on the first-order logic. The static analyzer pro-
duces state invariants and sound memory partitioning.
The deductive verifier uses this information to produce
verification conditions, which are discharged by auto-
matic solvers. This approach is implemented inside the
Frama-C [145] platform.

Miscellaneous. Segate [220] implements a test gener-
ation technique for structured string input combining
static analysis and test generation. Static analysis ana-
lyzes the implementation and infers a regular expression
to be given as input to the test generator. This inferred
regular expression is given along with the regular expres-
sion (human-annotated or machine-generated) based on
the specification of the test generator. The test genera-
tor generates tests based on the difference between these
two regular expressions.

Lee, Lee, and Ryu [160] present a static analysis tech-
nique for software where different parts of the software
are written in different languages. The analysis is based
on the cooperation between static analyzers of the host
language and the guest language. The technique first
extracts the summaries of the code written in the guest
language, then converts them to the summaries in the
host language, injects them into the host language code,
and finally uses a static analyzer of the host language
to analyze the modified program.

iDiscovery [248] combines invariant generation and
symbolic execution to improve the quality of the gener-
ated invariants. It is a sequence of four actors: invariant
generator, assertion synthesizer, instrumentor, and sym-
bolic executor. It first generates candidate invariants
based on the given test suite using Daikon [92], then it
generates assertions based on the candidate invariants,
then it instruments the assertions into the program, and
then uses symbolic execution to generate test inputs
which are then fed back into Daikon again.

Zhang, Groce, and Alipour [247] present the idea
of minimizing and prioritizing a set of given seed test
cases to improve symbolic execution. The test cases are
prioritized to maximize the efficiency of exploration.

Busse, Gharat, Cadar, and Donaldson [52] present
an approach combining static analysis with dynamic
symbolic execution. The static analysis produces a par-
tial trace annotated with conditions it deems important.
Dynamic symbolic execution takes this partial trace as
a guide for its search. This may allow the bug to be
confirmed quickly.

Period [237] implements a controlled concurrency
testing technique. First, a schedule generator generates
schedules to be tested for potential bugs, then these
schedules are executed to check for the presence of bugs,
and then the output of the execution is analyzed to
guide the generation of schedules in the next iteration.

Lohar, Jeangoudoux, Sobel, Darulova, and Chris-
takis [170] present a two-phase cooperative approach
for floating-point analysis. The first phase is based on
a dynamic analysis that identifies small parts of the
program performing complex numerical computations
called numerical kernels and the corresponding input
ranges. The second phase runs off-the-shelf verifiers to
verify these kernels. The first phase uses abstract inter-
pretation to infer input ranges. If abstract interpretation
cannot infer finite ranges then it uses fuzzing, which
might produce unsound results.

4.3 Scrutiny: Artifact is Scrutinized

In this class of cooperative techniques, an analyzer pro-
duces an artifact and another analyzer is employed to
scrutinize or examine it. As an outcome, the artifact
can be validated or rejected, filtered, or refined.

4.3.1 Validation: Artifact is Validated by a Subsequent
Actor

In this class of cooperative techniques, an analyzer pro-
duces, in addition to the result of analysis, an artifact
as potential evidence for the result. Another analyzer is
then employed to examine and scrutinize the potential
evidence. The scrutinizing analyzer either validates the
potential evidence, or if the artifact is a set of potential
evidences then the actor filters out the spurious ones.

Alarm Validation. Static analysis tools can produce
alarms quickly. However, they are also known to produce
false alarms because they analyze an abstract model
of the given program. To tackle this problem, another
analyzer can be used to validate these alarms.
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One such work uses a GraphML [49] based format
to export the alarms and then employ another analyzer
to validate them [17]. Li, Chen, Wang, and Xu [167]
propose a cooperative technique to validate memory
leak warnings. First, a static analysis tool generates
memory leak warnings. In the next step, these warnings
are instrumented in the given program. Then the tech-
nique uses a modified concolic testing engine to generate
tests for the instrumented program. The runtime trace
produced by executing these tests is used to validate
and classify the warnings.

Concurrent Software. Analysis tools can detect potential
races in software. These races can only be triggered
when some conditions are met, e.g., methods are called
in specific order, or interrupts occur at specific points.
Specialized analysis tools can try to trigger these poten-
tial races and validate their feasibility.

SDRacer [236] uses a combination of static analysis
and symbolic execution to generate test input for po-
tential races and dynamically validates these potential
races. Vindicator [207] uses an imprecise analysis to
predict possible races and then a validation step to filter
out the false positives, thus creating a sound analysis.
Ganai [102] presents a predictive testing approach that
generates witness schedules for potential data races and
then employs an independent component to validate if
they can indeed cause a data race. SimRacer [245] is
a tool for detecting process-level races. Similar to the
above techniques, it first produces potential races based
on the execution of existing tests and then validates
them.

ExceptionNULL [93] analyzes test executions to
predict interleavings that can cause null-pointer deref-
erences and then schedule them to validate the bug.
intAtom [163] detects interrupt atomicity violation
bugs. It identifies candidates for atomicity violation us-
ing data flow analysis and then checks their feasibility.

Android. Event-based race detectors for Android apps
can produce false positives. ERVA [132] applies a vali-
dation phase for the potential event-based race reports.
It further classifies the confirmed races into benign or
harmful.

Regression. Verification-aided regression testing [195] is
a cooperative approach that aims to augment regression
testing. In the first phase, it uses Daikon [91, 92] to infer
properties from a test suite for the base version of the
program and verifies them using a model checker. In
the second phase, it uses these properties to identify
regressions. The technique also makes use of the tests
created for the changes made to the program to filter
out the properties intentionally violated by the change.

ReConTest [227] identifies the interleavings that
are caused by the changes in the code, selects those
that have the potential to cause regression, and finally,
validate them to report any regression bugs found.

Infer and Validate. Zhu, Nori, and Jagannathan [249]
propose a combination of random testing and template
inference to infer array invariants. They then use a
verifier to validate these invariants.

Neural termination analysis [108] uses neural net-
works as ranking functions for termination analysis. In
the first step, it generates test inputs and collects ex-
ecution traces for these test inputs. The second step
uses the execution traces to train neural networks that
behave like a ranking function over the collected execu-
tion traces. The authors use the term neural ranking
functions for such neural networks. In the last step, a
verifier tries to prove termination with the help of the
neural ranking function. The verifier encodes both the
program and the neural ranking function symbolically
and uses an SMT solver to decide termination.

Proof Validation. A verifier can also produce a safety
proof in case it finds the program to be safe. Such proofs
can be exported in a GraphML [49] based format and
then validated by another analyzer [16]. In the first step,
a verifier exports a correctness witness as proof when
it proves the program to be safe. In the second step,
another analyzer validates the proof.

4.3.2 Refinement: Artifact is Refined by the Subsequent
Actor

Static analyzers are imprecise (even unsound) but fast.
This class of cooperative techniques aims to benefit from
the speed of the fast but potentially imprecise analysis
tools by refining the artifacts produced by them.

Alarm Refinement. Residual investigation [165] refines
the errors reported by static analysis. Instead of simply
replaying the error, it tries to identify general conditions
under which the error reported by static analysis is
confirmed. As a result, it acts as a filter for the errors
reported by the static analysis.

Peahen [54] is a combination-based technique for
detecting deadlocks. The first step constructs a context-
insensitive lock-graph of the program. The second step
employs three refinement techniques for refining dead-
lock cycles in the lock graph.

Concurrent Software. DoubleChecker [40] combines
an imprecise but fast and a precise but slow analysis to
check for atomicity violations. The imprecise analysis
over-approximates the dependence edges, hence produc-
ing a set of potential cycles. The precise analysis refines
these potential cycles.
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Android. TCM [146] first uses a test generator (An-
droFrame [147]) to generate test cases, then mini-
mizes this test suite, and then applies mutation on the
minimized test suite to get a richer test suite.

4.3.3 Iterative Validation Guided Refinement

Computing a result with the available insufficient in-
formation, validating it, and then using the results of
the validation to guide the refinement of the result is a
sequence that is well known in software verification [67].
This sequence is generally executed iteratively until the
result is found or the computation runs out of resources.

Invariant Synthesis. Neider, Garg, Madhusudan, Saha,
and Park [185] present a data-driven invariant synthesis
approach that is guided by the non-provability informa-
tion provided by the verifier. It is an iterative process
where the invariant generator proposes invariants, and
the verifier tries to use them to verify the program. In
case the verifier is unsuccessful, it communicates the
non-provability information to the invariant generator,
which is used to refine the invariant in the next iteration.

Garg, Neider, Madhusudan, and Roth [104] present
a cooperative technique for generating inductive invari-
ants by combining a verifier and an invariant learner. A
decision-tree-based learning algorithm synthesizes and
proposes invariant hypotheses, and a verifier checks
them. In case the invariant is invalid, the verifier re-
turns a counterexample, which is then used to revise
the hypothesis by the learner.

Danger invariants [83] are a compact representation
of counterexample traces. The proposed technique is
an iterative process of synthesizing a danger invariant,
verifying it using an off-the-shelf verifier, and then feed-
ing back the counterexample from the verifier to the
invariant synthesizer that uses it to refine the invariant.

NumInv [186] infers candidate invariants using al-
gorithms from DIG [188] and uses Klee to validate
them.

Zilu [164] uses learning and verification to generate
loop-invariants. It collects states by executing randomly
generated test cases, and generates a candidate invariant
from these states. It uses selective sampling to refine
the candidate and then uses a verifier to check it. In
case of failure, the counterexample is used to refine the
candidate invariant.

SymInfer [187] generates symbolic states using a
symbolic executor, generates concrete states from them
and uses DIG [188] to generate candidate invariants,
and checks if the candidate invariants are consistent with
respect to the symbolic states. This process is repeated
till the invariants can be refuted or timeout occurs. This
approach might produce unsound invariants.

ImplCheck [205] uses various off-the-shelf tools to
iteratively strengthen the set of inductive invariants until
the program is found to be safe. Initially, it employs
off-the-shelf invariant generators based on syntax-guided
synthesis [8] or data learning to generate the initial set of
candidate invariants. Then, it uses a Houdini [98] based
algorithm to compute an inductive subset of invariants
from the initially computed set of candidate invariants.
It then attempts to prove the program safe with the help
of this inductive subset of invariants. If it fails to prove
the program safe, it selects a non-inductive invariant
from the initial set of candidate invariants and weakens
it. This process is repeated until either the program
is proven safe or the algorithm runs out of candidate
invariants to check.

Code2RelInv [235] is a relational invariant genera-
tor based on a combination of an invariant synthesizer
and a program verifier. The synthesizer is based on
reinforcement learning [140] and uses syntax-guided syn-
thesis [8]. The program verifier validates the synthesized
candidate invariants and provides the synthesizer with
feedback in case a given candidate invariant is found to
be non-inductive or insufficient. The synthesizer uses log-
ical reasoning to prune search space and reinforcement
learning to prioritize search.

Abstraction Refinement. Ufo [5] brings together over-
approximation driven and under-approximation driven
analysis approaches to model checking. It executes over-
approximation-driven analysis to construct a completely
explored abstract reachability graph. If this graph con-
tains an error location, then the under-approximation-
driven analysis is used to check the feasibility of the
potential error and refine it. This combination is exe-
cuted iteratively.

C-CEGAR [22] decomposes CEGAR into three off-
the-shelf components. The three components are: ab-
stract model explorer that generates potential counterex-
amples, feasibility checker that checks these counterex-
amples, and precision refiner that uses the infeasible
counterexample to refine the precision of the abstract
model. This process continues iteratively until the pro-
gram is proven correct or a bug is found.

Abdulla, Atig, and Diep [3] propose a technique for
program verification that first constructs an abstract
model of the given program, then uses an off-the-shelf
model checker for model checking, and then refines the
abstraction using the counterexample returned by the
model checker. This sequence is executed iteratively
until either the model checker finds the abstract model
to be safe or a feasible counterexample is found.

Inferring Loop Bounds. TpT [192] and ddlTerm [242]
use machine-learning-based techniques to infer loop
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bounds, validate them, and use the counterexample
information to refine the candidate loop bound in the
next iteration. TpT [192] uses the existing test-suite
for a sequential program to infer loop bounds and em-
ploys linear regression for inference. ddlTerm [242]
uses various data-driven algorithms to infer different
kinds of loop bounds. It can infer simple, conjunctive,
and lexicographic bounds.

CoMuS [201] reduces the verification of a concur-
rent program to a series of verification problems for a
sequential verifier. It considers one thread for verification
and abstracts all the remaining threads as environment.
It then uses an off-the-shelf model checker for verifi-
cation and checks if the counterexamples produced by
the model checker are feasible. If not, then it refines
the environment, modifying the sequential program as
a result. This process is repeated until the verification
succeeds or a valid counterexample is found.

5 Cooperative Verification Actors and Artifacts

5.1 Cooperative Actors

During our review, we found some articles that did not
present a cooperative verification technique themselves
but rather presented algorithms and tools that can act
as a cooperative actor. These techniques could be used in
combination with other cooperative actors to construct
a cooperative combination.

5.1.1 Reducers

TInA [202] reduces the given C program containing
inline assembly code to a semantically equivalent pure
C program. Most off-the-shelf verifiers for the C language
do not support inline assembly code. TInA enables a
user to use an off-the-shelf verifier for a program. One
can create a cooperative combination by chaining TInA
and an off-the-shelf verifier.

DroidRA [166] reduces the code of an Android
app such that it does not contain reflective calls. The
results could be analyzed by static analyzers which do
not support reflection.

A conditional model checking [24] problem can be
reduced that of model checking with the help of reduc-
ers [28]. The proposed reducer takes a program and
a condition produced by a conditional model checker
representing the explored state space and produces a
program that contains only the unexplored parts of the
state space. Then, an off-the-shelf model checker can be
used for verification.

5.1.2 Validators

A validator is an analyzer that validates the result pro-
duced by another analyzer. For example, a verification
tool can produce a witness along with the verdict when
it succeeds in computing the result. A validator in this
case tries to reconstruct the solution of the verification
problem with the help of the witness, and as a result,
confirms or rejects the given witness.

MetaVal [36] transforms a given validation prob-
lem into a verification problem. It embeds the original
program with hints for validation available in the given
witness. Then, it employs an off-the-shelf verifier for
verification. The verification result of the transformed
program corresponds to the validation of the initial
program and the provided witness.

NitWit [250] is an interpretation-based validator
for alarms. It combines a C interpreter and a witness
automaton constructed from the violation witness and
tries to reach the error label.

Lee, Lee, and Yi [161] present a sound clustering al-
gorithm for alarms produced by abstract-interpretation-
based static analysis techniques. A transformer-based [199, 225]
machine learning approach has also been used to identify
false alarms [143].

5.1.3 Refiners

A refiner refines the artifact produced by an analyzer.

Refining alarms. Another approach refines the output of
a static analyzer using call graph pruning [229]. It uses
a machine-learning-based classifier to select the edges to
prune in the generated call graph. This approach reduces
the false positives but also reduces the true positives.
AutoPruner [159] prunes call graphs to eliminate false
positives using both statistical semantic and structural
analysis.

AVFilter [246] filters the error predictions made
by an over-approximating analysis. It improves the pre-
cision of an over-approximate analysis.

Test suite reduction. Test suite reduction can be seen as
a refinement. One can create a cooperative combination
by using a test suite generator that might produce some
redundant test cases and then calling a tool that reduces
the generated test suite to produce a smaller test suite.
During our review, we found articles presenting test
suite reduction techniques that can act as cooperative
actors. FLOWER [115] uses network maximum flow,

Reducing assertions. One approach to software verifica-
tion is to automatically generate assertions for a program
and then checking them using software analysis tools.
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However, assertion generators can generate many redun-
dant assertions. Fedyukovich, D’Iddio, Hyvärinen, and
Sharygina [94] propose an algorithm that finds out the
redundant assertions, thereby reducing the number of
assertions to be checked by a model checker.

5.1.4 Invariant Generators

A tool that generates invariants can also act as a cooper-
ative actor. It can feed invariants to a verification algo-
rithm, such as k -induction [88]. PIE [194] is a learning-
based tool for inferring preconditions that can be used
to generate candidate invariants. Hola [87] implements
a method for generating inductive invariants based on
a combination of verification condition generator and
abductive inference to guess candidate invariants.

5.1.5 Abstraction Generators

Naik, Yang, Castelnuovo, and Sagiv [184] propose a tech-
nique that uses concrete tests to generate abstractions
that can then be used by a static analysis tool.

5.2 Cooperative Artifacts

Witnesses [16, 17] (as used in SV-COMP) are based on
GraphML [49]. Witnesses can represent either error
traces or proof of safety. Witnesses in this format have
found acceptance in the verification community and
have been used in SV-COMP for a few years.

A succinct representation of concurrent trace sets [121]
aims to reduce the size of an artifact representing a set
of concurrent traces. This succinct representation can
be used to exchange information.

PARTPW [135] is a technique that can generate
proofs from the results of complementary analyses. It is
used in conjunction with conditional model checking [24]
to generate proofs in addition to alarms.

6 Threats to Validity

We conducted a literature review that provides an overview
and classification of cooperative verification techniques.
We now discuss the threats we identified in our work.

Number of authors. This study was conducted by two
authors. This type of study would have benefited with
the involvement of more authors. However, the authors
of this study are experts in the field of cooperative verifi-
cation: one author is a pioneer in this area and the other
has been working on it for a few years. We claim that
this fact mitigates the threat a little. Additionally, we

restrained ourselves from making a stronger claim: it is
an exploratory survey, not an exhaustive one. We expect
the results of this survey to be useful in developing an
understanding of cooperative verification.

Selection of publications. The corpus of literature we
reviewed is a small subset of all the available scien-
tific literature as we limited ourselves to the selected
publications and time duration. As a result, some arti-
cles discussing cooperative verification techniques might
have been excluded. However, the publications and the
period we selected gave us a corpus of publications
sufficient to mine a representative set of cooperative
verification techniques for developing an overview and a
classification.

Filtering process. We executed our search query only
on the titles and abstracts. Since the search was con-
ducted only on a small portion of the article, it has
the potential to leave out many articles. We chose this
strategy because our search terms are too permissive.
We could not leave out terms like test and verify be-
cause these are important for software verification. This
choice made our filter weak when we tried to search for
the complete text of chosen publications. Moreover, we
found it reasonable to assume that a publication about
software verification would contain at least one of the
terms allowed by our search query in the title or the
abstract.

Bugs and oversight. A part of the filtering process was
automated. There is a potential for bugs to be present
in our scripts. During the development of these scripts,
we manually validated the results on a small sample size.
We executed the scripts on the complete corpus when
we were confident about the correctness of our scripts.

Another part of our filtering process was manual.
There is a potential for oversight. We provide an artifact
containing the data corresponding to the different stages
of our methodology. The data is available for review.

Definition. We developed a definition for cooperative
verification that provides a decision process for identify-
ing a cooperative technique. This definition formalizes
the intuitive notion of a cooperative technique from var-
ious articles [24, 29, 33, 38, 65, 123]. One can argue about
the level of permissiveness of our definition. Some might
find it too restrictive, some too permissive. However,
this is a threat that accompanies developing definitions.

Identification of an approach as cooperative. Although
we had a decision procedure based on our definition,
we still faced challenges in identifying some coopera-
tive approaches. Publications from different areas give
importance to different aspects of an approach: some
publications focus more on theory, while others more
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on implementation. It was easier to decide on an ar-
ticle that focused more on the implementation aspect
than the one focusing more on theory. We chose to be
permissive when in doubt instead of being restrictive.
As a result, the set of cooperative techniques we have
identified might be an over-approximation.

7 Discussion

7.1 Insights

Our classification of cooperative techniques resonates
with the ideas commonly used during software analysis:
reduction of a problem to another problem, validation
of the computed result, refinement of an abstraction
to reach the level of precision required to solve the
verification task, conditionality to prune away the un-
interesting part of the state space, and guide the state
space exploration using hints.

Our survey shows that researchers have been working
on the specific parts of the above-mentioned commonly
performed tasks during verification, and combining them.
With this survey, we aim to push forward the idea of
decoupling the tools and development of formats for
information exchange.

7.2 Use of clearly specified interfaces in the reviewed
literature

The cooperative approaches benefit from information
exchange in a standardized format. This allows for inde-
pendent development of ideas by relieving dependency
on a specific technology or a tool. It allows to reuse the
available tools and technologies, thereby, saving time
and effort,

Ideally, one should be able to discern the following
information from such a paper: (1) Actors or compo-
nents, (2) Kind and mechanism of information exchange,
and (3) Arrangement of actors (e.g., are they executed
one after another or in a loop).

However, this information was not highlighted in
many papers. This survey would have contained only a
handful of papers if we would have been strict in our
interpretation. We think that highlighting the above
mentioned information will advance development of co-
operative techniques and foster reuse.

7.3 Benefits of using standardized interfaces

Development and use of standardized interfaces for in-
formation exchange for the purpose of verification will

have the following benefits: (1) Easy identification of ac-
tors (reusable and replaceable components) and artifacts
(means of information exchange), (2) Faster development
of new cooperative ideas because of ease of reuse of ac-
tors and artifacts, (3) Ease of reuse will foster easily
portable techniques, and (4) Replaceable components
will allow to measure effect of a specific type of actor in
a combination.

7.4 Call to action

Information exchange is at the heart of cooperative ver-
ification. We need a consensus on which information
to share and how. The development of standardized
formats for information exchange would help propel this
field. This development would also make it easier to de-
fine the interface of a cooperative verification actor. We
envision this as community effort which would benefit
from experience of experts with different backgrounds.

8 Conclusion

Cooperative verification brings together different ap-
proaches to combinations that can achieve more than
just the sum of the individual approaches. It requires
us to consider verification approaches as components
with clear interfaces. Those interfaces are not (yet) stan-
dardized and the roles of the participating objects were
not yet classified. We have used the notions of actors
and artifacts and tried to characterize what the vari-
ous roles are. We have presented an overview of the
verification techniques that we identified as cooperative
and a classification of these techniques. We hope that
our review helps to develop a deeper understanding
of cooperative verification. As the field of cooperative
verification advances, we expect to see more and more
combination approaches for software verification being
presented as combinations of cooperating actors that
exchange information.
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Abstract. There is no silver bullet for software verification: Different
techniques have different strengths. Thus, it is imperative to combine
the strengths of verification tools via combinations and cooperation.
CoVeriTeam is a language and tool for on-demand composition of cooper-
ative approaches. It provides a systematic and modular way to combine
existing tools (without changing them) in order to leverage their full
potential. The idea of cooperative verification is that different tools help
each other to achieve the goal of correctly solving verification tasks.
The language is based on verification artifacts (programs, specifications,
witnesses) as basic objects and verification actors (verifiers, validators,
testers) as basic operations. We define composition operators that make it
possible to easily describe new compositions. Verification artifacts are the
interface between the different verification actors. CoVeriTeam consists
of a language for composition of verification actors, and its interpreter.
As a result of viewing tools as components, we can now create powerful
verification engines that are beyond the possibilities of single tools, avoid-
ing to develop certain components repeatedly. We illustrate the abilities
of CoVeriTeam on a few case studies. We expect that CoVeriTeam will
help verification researchers and practitioners to easily experiment with
new tools, and assist them in rapid prototyping of tool combinations.

Keywords: Cooperative Verification · Tool Development · Software Verification
· Automatic Verification · Verification Tools · Tool Composition · Tool Reuse

1 Introduction

As research in the field of formal verification advanced, the complexity of the
programs under verification also kept on increasing. As a result, despite its
successful application to the source code of large industrial and open-source
projects [2, 3, 23, 27, 36], the current techniques fall short on solving many im-
portant verification tasks. It seems essential to combine the strengths of dif-
ferent verification techniques and tools to solve these tasks.

The verification community successfully applies different approaches to com-
bine ideas: integrated approaches (source-code-based), where different pieces
of source code are integrated into one tool [28], and off-the-shelf approaches
(executable-based), where different executables from existing tools are combined
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without changing them. The latter can be further classified into sequential and
parallel portfolio [33], algorithm selection [37], and cooperative approaches [22].

The integrated approaches require development effort for adaptation or im-
plementation of integrated components instead of building on existing mature
implementations—the combination is very tight. On the other hand, the standard
off-the-shelf approaches (portfolio [33] and selection [37]) let the tools run in
isolation and the individual tools do not cooperate at all. The components do not
benefit from the knowledge that is produced by other tools in the combination—
the combination is very loose. In this work, we focus on cooperative verification,
which is neither as tight as source-code integration nor as loose as portfolio
and selection approaches—somewhere in between the two extremes.

Cooperative verification [22] is an approach to combine different tools for
verification in such a way that they help each other solving a verification task,
where the combinations are neither too tight nor too loose. Implementations
include using a shared data base to exchange information (e.g., there are co-
operative SAT solvers that use a shared set of learned clauses [34], and coop-
erative software verifiers that use a shared set of reached abstract states [14])
or pass information from one tool to the other (e.g., conditional model check-
ers [13, 25]). Cooperative verification aims to combine the individual strengths
of these technologies to achieve better results. Our thesis is that programming
(meta) verification systems based on combination and cooperation could be a
promising solution. CoVeriTeam provides a framework to achieve this.

Developing such a tool is not straightforward. Various concerns that need
to be addressed for developing a robust solution can be broadly divided in
two categories: concepts and execution. (1) Concepts deal with defining the
interfaces for tools, and with the mechanism for their combination. Before tools
can cooperate, we need a common definition of tools based on their behavior.
We need to categorize what a tool does, what inputs it consumes, and what
outputs it produces, before we can use it in a cooperative framework with ease.
In CoVeriTeam, we categorize tools in various types of verification actors, and
the inputs and outputs produced by these actors in verification artifacts. The
actors can be combined with the help of composition operators that define the
mechanism of cooperation. (2) Execution is concerned with all issues during
the execution of a tool. Actors first need to execute to cooperate. This opens
another dimension of challenges and opportunities to improve the cooperation.
To give two examples: a tool might have a too high resource consumption, thus,
resources must be controlled and limited, and tools might interfere with other
executing processes, thus, tools must be executed in isolated containers.

This paper presents CoVeriTeam, a language and tool for on-demand com-
position of cooperative verification systems that solves the above mentioned
challenges. We contribute a domain-specific language and an execution engine. In
the CoVeriTeam language, we can compose new actors based on existing ones
using built-in composition operators. The existing components are not changed,
but taken off-the-shelf from actor providers (technically: tool archives). We do
not change existing software components: the composition is done on-demand
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(when needed by the user) and on-the-fly (it does not compile a new tool from the
components). In other words, existing verification tools are viewed as off-the-shelf
components, and can be used in a larger context to construct more powerful
verification compositions. Our approach does not require writing code in program-
ming languages used to develop the underlying components. In the CoVeriTeam
language, the user can execute tools without fearing that they interact with the
host system or with other tools in an unspecified way. The execution environment,
as well as input and output, are controlled using the Linux features cgroups,
name spaces, and overlay file systems. We use the BenchExec [20] system as
library for convenient access to those OS features via a Python API.
Contributions. We make the following contributions:

1. a language to compose new verification tools based on existing ones,
2. an execution engine for on-the-fly execution of these compositions,
3. case studies implementing combinations in CoVeriTeam that were previously

achieved only via hard-wired combinations, and
4. an open-source implementation and an artifact for reproduction.

In addition to the above mentioned contributions, CoVeriTeam provides the
following features to the end user: (1) CoVeriTeam takes care of downloading
and installing specified verification tools on the host system. (2) There is no need
to learn command-line parameters of a verification tool because CoVeriTeam
takes care of translating the input to the arguments for the underlying tool. This
provides a uniform interface to a number of similar tools. (3) The off-the-shelf
components (i.e., tools) are executed in a container, with resource limits, such
that the execution cannot change (or even damage) the host system.

These features in turn enable a researcher or practitioner to easily exper-
iment with new tools, and rapidly prototype new verification combinations.
CoVeriTeam liberates the researcher who uses tool combinations from main-
taining scripts that combine tools executions, and worrying about downloading,
installing, and figuring out the command to execute a verification tool.
Impact. CoVeriTeam has already found use cases in the verification community:
(1) It was used in a modular implementation of CEGAR [26] using off-the-shelf
components [12]. (2) It was used for construction and evaluation of various veri-
fier combinations [17]. (3) CoVeriTeam (wrapped in a service) was used in the
software-verification competition 2021 and 2022 to help the participants debug is-
sues with their tools (see Sect. 3 in [7]). Also, according to SV-COMP rules, a team
is granted points only for those tasks whose result can be validated using a valida-
tor. Thus, a verifier-validator combination might be interesting for participants.
With the help of CoVeriTeam such combinations can be easily constructed.

Also, the advent of many high-quality verifiers should lead to a certain
level of standardization of the API and provided features. For example, tools
for SMT or SAT solving are easy to use because of their standardized input
language (e.g., SMTLIB for SMT solvers [4]). Consequently, such tools can be
easily integrated into larger architectures as components. Our vision is that soon
verifiers will be seen also as components that can be used in larger architectures
just like SMT solvers are now integrated into verification tools.
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Example 1 Witness Validation
Input: Program p, Specification s
Output: Verdict
1: verifier := Verifier(“Ultimate Automizer”)
2: validator := Validator(“CPAchecker”)
3: result := verifier.verify(p, s)
4: if result.verdict ∈ {True, False} then
5: result = validator.validate (p, s, result.witness)
6: return (result.verdict, result.witness)

2 Running Example

We explain the idea of CoVeriTeam using a short example. Verifiers are complex
software systems and might have bugs. Therefore, for more assurance a user
might want to validate the result of a verifier based on the verification witness
that the verifier produces [10]. Such a procedure is sketched in Example 1.

The user wanting to execute the procedure sketched in Example 1 would
need to download the tools (verifier and validator), execute the verifier, check
the result of the verifier, and then if needed connect the outputs of the verifier
with the inputs of the validator. The user would quite possibly write a shell
script to do this, which is cumbersome and difficult to maintain.

CoVeriTeam takes care of all the above issues. In the next section, we discuss
the types, namely artifacts and actors, that are used in the CoVeriTeam language.
After this, we explain the design and usage of the CoVeriTeam execution engine,
and discuss the CoVeriTeam program for our validating verifier in Listing 1.

3 Design and Implementation of CoVeriTeam

We now explain details about the design and implementation of CoVeriTeam.
First we discuss conceptual notions of actors, artifacts, and compositions; then
we discuss execution concerns that a cooperative verification tool needs to
handle. Then we delve deeper into implementation details where we discuss
how an actor is created and executed. Last, we briefly explain the API that
CoVeriTeam exposes and extensibility of this API.

3.1 Concepts

This section describes the language that we have designed for cooperative verifica-
tion and on-demand composition. At first we describe the notion of artifacts and
actors, and then the composition language to compose components to new actors.
Artifacts and Actors. Verification artifacts provide the means of information
(and knowledge) exchange between the verification actors (tools). Figure 1 shows
a hierarchy of artifacts, restricted to those that we have used in the case stud-
ies for evaluating our work. On a high level we divide verification artifacts in
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Artifact

Program SpecificationVerdictJustification

ConditionTestSuite Witness BehaviorSpec TestSpec

CoveredGoals CoveredSpace SafetyTermination Overflow CoverageCriterionTestGoal

Fig. 1: Hierachy of Artifacts (arrows indicate an is-a relation)
Actor

Analyzer Transformer

Verifier ValidatorTester ReducerTestGoalExtractor Instrumentor WitnessToTest

ConditionalVerifier ConditionalTester WitnessValidator TestValidator Pruner Annotator WitnessIns TestSpecIns

Fig. 2: Hierachy of Actors (arrows indicate an is-a relation)

the following kinds: Programs, Specifications, Verdicts, and Justifications. Pro-
grams are behavior models (can be further classified into programs, control-flow
graphs, timed automata, etc.). Specifications include behavioral specifications
(for formal verification) and test specifications (coverage criteria for test-case
generation). Verdicts are produced by actors signifying the class of result ob-
tained (True, False, Unknown, Timeout, Error). Justifications for the
verdict are produced by an actor; they include test suites to justify an obtained
coverage, or verification witnesses to justify a verification result.

Verification actors act on the artifacts and as a result either produce new arti-
facts or transform a given artifact for consumption by some other actor. Figure 2
shows a hierarchy of actors, restricted to those that we have used in the case stud-
ies for evaluating our work. We divide verification actors in the following types:
Analyzers and Transformers. Analyzers create new knowledge, e.g., verifiers, val-
idators, and test generators. Transformers instrument, refine, or abstract artifacts.

Composition. Actors can be composed to create new actors. Our language
supports the following compositions: sequence, parallel, if-then-else, and repeat.

CoVeriTeam infers types and type-checks the compositions, and then either
constructs a new actor or throws a type error. In the following, we use the nota-
tion Ia for the input parameter set of an actor a and Oa for the output parameter
set of a. A parameter is a pair of name and artifact type. A name clash between
two sets A and B exists if there is a name in A that is mapped to a different
artifact type in B, more formally: ∃(a, t1) ∈ A, (a, t2) ∈ B : t1 6= t2. The actor
type is a mapping from input parameter set to output parameter set (Ia → Oa).

Sequential. Given two actors a1 and a2, the sequential composition SEQUENCE
(a1, a2) (Fig. 3a) constructs an actor that executes a1 and a2 in sequence,
i.e., one after another. The composition is well-typed if there is no name clash
between Ia1 and (Ia2 \ Oa1). This means that we allow same artifact to be
passed to the second actor in sequence, but disallow the confusing scenario
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Actor a1 Actor a2

(a) SEQUENCE

Actor a1

Actor a2

(b) PARALLEL

Actor a1

Actor a2

?

true

false

(c) ITE

Actor a ?

(d) REPEAT

Fig. 3: Compositions in CoVeriTeam

where both actors expect an artifact with the same name but different type.
The inferred type of the composition is Ia1 ∪ (Ia2 \ Oa1) → Oa2.
Parallel. Given two actors a1 and a2, the parallel composition PARALLEL (a1,
a2) (Fig. 3b) constructs an actor that executes the actors a1 and a2 in par-
allel. The composition is well-typed if (a) there is no name clash between
Ia1 and Ia2 and (b) the names of Oa1 and Oa2 are disjoint. The inferred
type of the composition is Ia1 ∪ Ia2 → Oa1 ∪ Oa2.
ITE. Given a predicate cond and two actors a1 and a2, the if-then-else com-
position ITE (cond, a1, a2) (Fig. 3c) constructs an actor that executes the
actor a1 if predicate cond evaluates to true, and the actor a2 otherwise. The
composition is well-typed if (a) there is no name clash between cond, Ia1, and
Ia2, and (b) the output parameters are the same (Oa1 = Oa2). The inferred
type of the composition is Ia1 ∪ Ia2 ∪ vars(cond) → Oa1, where vars maps the
variables used in a predicate to their artifact types. This allows us to define the
condition cond using artifacts other than the inputs of Ia1 and Ia2.

There are situations where a2 is not required and its explicit specification only
increases complexity. So, we have relaxed the type checker and made a2 optional.
Repeat. Given a set fp and an actor a, the repeat composition REPEAT(fp, a)
(Fig. 3d) constructs an actor that repeatedly executes actor a until a fixed-
point of set fp is reached, that is, fp did not change in the last execution
of a. The repeat composition feeds back the output of a from iteration n to a
for iteration n + 1. Let us partition Ia ∪ Oa into three sets: Ia \ Oa, Oa \ Ia,
and Ia ∩ Oa. The parameters in Ia \ Oa do not change their value and the
parameters in Oa \ Ia are accumulated if accumulatable, otherwise their value
after the execution of the composition is the value from the last iteration. The
composition is well-typed if fp ⊆ dom(Ia ∩ Oa), where dom returns the names
of a parameter set. The inferred type of the composition is Ia → Oa.
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verifier validator?
true

false

Fig. 4: CoVeriTeam implementation of the validating verifier from Example 1

Figure 4 shows the pictorial representation of our running example using
these compositions. First a verifier is executed, then the validator is executed if
the verifier returned True or False, otherwise (in case of Unknown, Timeout,
Error) the validator is not executed and the output of the verifier is forwarded.

3.2 Execution Concerns

A tool for cooperative verification orchestrates the execution of verification tools.
This means it needs to assemble the command for the tool, as well as handle the
output produced by the tool. A verification tool might consume a lot of resources
and a user might want to limit this. It might crash during execution, might
interfere with other processes. CoVeriTeam needs to handle all these concerns.

Instead of developing our own infrastructure to handle these concerns, we
reuse some of the features provided by BenchExec [20]: we use tool-info modules
to assemble command lines and parse log output, RunExec (a component of
BenchExec) to execute tools in a container and limit resource consumption.

Tool-Info modules are integration modules of the benchmarking framework
BenchExec [20]. A typical tool-info module is a few lines of code used for
assembling a command line and parsing the log output produced by the tool. It
takes only a few hours to create one.1 CoVeriTeam uses tool-info modules to
pass artifacts to atomic actors (assemble command-line) and extract artifacts
from the output produced by the atomic actor. Using tool-info modules gave
us integration of more than 80 tools without effort, because such integration
modules exist for most well-known verifiers, validators, and testers (as many
researchers use BenchExec and provide such integration modules for their tools).

CoVeriTeam uses runexec to isolate tool execution to prevent interference
with the execution environment and enforce resource limits. We also report back to
the user the resources consumed by the tool execution as measured by runexec.

3.3 CoVeriTeam

Figure 5 provides an abstract view of the system. CoVeriTeam takes as input
a program written in the CoVeriTeam language and artifacts. At first, the
code generator converts this input program to Python code. This transformed
1 We claim this based on our experience with tool developers creating their tool-info
modules, which is a prerequisite for participating in SV-COMP or Test-Comp.
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CoVeriTeam

CoVeriTeam

program
and inputs

Code
Generator

Actor
Executor

Output
Artifacts

Fig. 5: Abstract view of the CoVeriTeam tool

1 verifier = ActorFactory.create(ProgramVerifier,
"actors/uautomizer.yml");

2 validator = ActorFactory.create(ProgramValidator,
"actors/cpa-validate -violation -witnesses.yml");

3

4 // Use validator if verdict is true or false
5 condition = ELEMENTOF(verdict, {TRUE, FALSE});
6 second_component = ITE(condition, validator);
7 // Verifier and second component to be executed in sequence
8 validating_verifier = SEQUENCE(verifier, second_component);
9

10 // Prepare example inputs
11 prog = ArtifactFactory.create(CProgram, prog_path);
12 spec = ArtifactFactory.create(BehaviorSpecification, spec_path);
13 inputs = {’program’:prog, ’spec’:spec};
14 // Execute the new component on the inputs
15 res = execute(validating_verifier, inputs);
16 print(res);

Listing 1: CoVeriTeam implementation of the validating verifier from Example 1

code uses the internal API of CoVeriTeam. Then this Python code is executed,
which means the actor executor is called on the specified actor. This in turn
produces output artifacts on successful execution of the actor.

There are four key parts of executing a CoVeriTeam program: creation of
atomic actors, composition of actors (atomic or composite), creation of arti-
facts, and execution of the actors. We now give a brief explanation of these
parts with the help of our running example. Listing 1 shows a CoVeriTeam
implementation of the running example (Example 1).

Creation of an Atomic Actor. Atomic actors in CoVeriTeam provide an in-
terface for external tools. CoVeriTeam uses the information provided in an actor-
definition file to construct an atomic actor. Lines 1 and 2 in Listing 1 show the cre-
ation of atomic actors verifier and validator using the ActorFactory by provid-
ing the ActorType and the actor-definition file. Once constructed, this actor can be
executed.

An actor definition is specified in a file in YAML format. It contains the
information necessary for executing the actor: location from where to download
the tool, the name of the tool-info module to assemble the command line and parse
tool output, additional command-line parameters for the tool, resource limitations
to enforce, etc. Listing 2 shows the actor definition file for UAutomizer [32]: the
actor name is uautomizer, the identifier for the BenchExec tool-info module is
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1 actor_name: uautomizer
2 toolinfo_module: "ultimateautomizer.py"
3 archive:
4 doi: "10.5281/zenodo.3813788"
5 spdx_license_identifier: "LGPL-3.0-or-later"
6 options: [’--full-output’, ’--architecture’, ’32bit’]
7 resourcelimits:
8 memlimit: "15 GB"
9 timelimit: "15 min"

10 cpuCores: "8"
11 format_version: ’1.1’

Listing 2: Definition of atomic actor in YAML format

ultimateautomizer, the DOI of the tool archive (or the URL for obtaining the
tool archive), the SPDX license identifier, the options passed by CoVeriTeam to
UAutomizer, and resource limits for the execution of the actor. Once an atomic
actor has been constructed using an actor definition, CoVeriTeam has all the
information necessary to execute the underlying tool with the provided artifacts.
Composition of an Actor. The second key part is the composition of an actor.
Lines 6 and 8 in Listing 1 create composite actors using ITE and SEQUENCE,
respectively. It is these compositions that create the validating verifier of our
running example. Verification actors in CoVeriTeam can exchange information
(artifacts) with other actors and cooperate through compositions.
Creation of an Artifact. The notion of artifact in CoVeriTeam is a file
wrapped in an artifact type. The underlying files are the basis of an artifact—
exchangeable information. Lines 11 and 12 in Listing 1 create artifacts using the
ArtifactFactory by providing the ArtifactType and the artifact file. These artifacts
would then be provided to the executor that then executes the actors on them.
Code Generation. The code generator of CoVeriTeam translates the input pro-
gram to Python code that uses the internal API of CoVeriTeam. It is a canonical
transformation in which the statements for creation of actors and artifacts are
converted to Python statements instantiating corresponding classes from the API.
Similarly, statements for composition and execution of actors are also transformed.
Execution. Analogously to the construction of actors, the execution of an actor
in CoVeriTeam is also divided in two: atomic and composition. Line 15 in
Listing 1 executes the actor validating_verifier on the given input artifacts.

Figure 6 shows the actor executor for both atomic and composite actors. It
executes an actor on the provided artifacts. At first it type checks the inputs, i.e.,
check if the input types provided to actor comply with the expected input types of
the actor. It then calls the executor for atomic or composite actor depending on the
actor type. Thereafter, it type checks the outputs, and at last returns the artifacts.

Execution of an atomic actor means the execution of the underlying tool
on the provided artifacts. At first, the executor downloads the tool if necessary.
CoVeriTeam downloads and unzips the archive that contains the tool on the
first execution of an atomic actor. It keeps the tool available in cache for later
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Fig. 6: Abstract view of an actor execution in CoVeriTeam

executions. After this step, the command line for the tool is prepared using the
tool-info module. It then executes the tool in a container, and then processes the
tool output, i.e., extracts the artifacts from the tool output and saves them.

Execution of a composition means executing the composed actors—making
information produced by one available to other during the execution—as per
the rules of composition. The composite-actor executor at first selects the next
child actor to execute. It then computes the inputs for this selected actor. Then
it executes this actor, which can be atomic or another composite actor, on
these inputs. It then processes the outputs produced by the execution of the
selected child actor. This processing could be temporarily saving, filtering, or
modifying the produced artifacts. If needed, it then proceeds to execute the
next child actor, otherwise exits the composition execution.

Output. CoVeriTeam collects all the artifacts produced during the execution of
an actor, and saves them. The output can be divided into three parts: execution
trace, artifacts, and log files. An execution trace is an XML file containing infor-
mation about the artifacts consumed and produced by each actor, and also the
resources consumed by atomic actors (as measured by BenchExec) during the ex-
ecution. CoVeriTeam also saves the artifacts produced during the execution of an
actor. Additionally, for each atomic actor execution, it also saves a log file contain-
ing the command which was actually executed and the messages printed on stdout.

3.4 API

In addition to the above described features, CoVeriTeam exposes an API that is
extensible. We expose actors, artifacts, utility actors, and compositions through
Python packages. In this section, we briefly discuss this API.

Library of Actors and Compositions. CoVeriTeam provides a library of
some actors and a few compositions that can be instantiated with suitable
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actors. We considered actors based on the tools participating in the compe-
titions on software verification and testing [5, 6] (available in the replication
archives), because those are known to be mature and stable.

The library of compositions contains a validating verifier, an execution-based
validator [11], a reducer-based construction of a conditional model checker [15],
CondTest [18], and MetaVal [21]. These are present in the examples/ directory
of the CoVeriTeam repository. We discuss some of these constructions in Sect. 4.1.
New Actors, Artifacts, and Tools. New actors, artifacts, and tools can be
integrated easily in CoVeriTeam. The integration of a new atomic actor requires
only creating a YAML actor definition and, if not already available, implementing
a tool-info module. The integration of a new actor type in the language requires
(1) creating a class for the actor specifying its input and output artifact types,
(2) preparing the parameters to be passed to tool-info module, that in turn
would create a command line for the tool execution, using the options from
the YAML actor definition, and (3) creating output artifacts from the output
files produced by the execution of an atomic actor of that type.

Integration of a new artifact requires creating a new class for the artifact.
A basic artifact requires a path containing the artifact. Some artifacts support
special features, for example, a test suite is a mergeable artifact (i.e., two test
suites for a given input program can be merged into one test suite).

Integrating a new tool in the framework requires: (1) creating the tool-info
module for it, (2) creating an actor definition for the tool, (3) providing a
self-contained archive that can be executed on a Ubuntu machine.

At present, CoVeriTeam supports all verifiers and validators that are listed
on the 2021 competition web sites of SV-COMP2 and Test-Comp3. One needs
only a few hours to create a new tool-info module and an actor-definition
file. Within a couple of hours we were able to create the actor definitions for
about 40 tools participating in SV-COMP and Test-Comp.

4 Evaluation

We now present our evaluation of CoVeriTeam. It consists of a few case studies,
and insights from the experiments to measure performance overhead.

4.1 Case Studies

We evaluated CoVeriTeam on four more case studies, as indicated in the fourth
column of Table 1. We now explain two of these case studies using figures for
compositions. The programs and explanations for all of the case studies are also
available in our project repository (linked from the last column of Table 1).
Conditional Testing à la CondTest. Conditional testing [18] allows coop-
eration between different test generators (testers) by sharing the details of the
2 https://sv-comp.sosy-lab.org/2021/systems.php
3 https://test-comp.sosy-lab.org/2021/systems.php
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Table 1: Examples of cooperative techniques in the literature
Technique Year Reference Case Study More Info

Counterexample Checking [38] 2012 Sect. 5
Conditional Model Checking [13] 2012 Sect. 5

Precision Reuse [19] 2013 Sect. 5
Witness Validation [8, 10] 2015, 2016 Figure 4 3 Sect. 3.3

Execution-Based Validation [11] 2018 Sect. 5 3 More info
Reducer [15] 2018 Sect. 5 3 More info

CoVeriTest [14] 2019 Sect. 5
CondTest [18] 2019 Figures 7 and 8 3 More info
MetaVal [21] 2020 Figure 9 3 More info

already covered test goals. A conditional tester outputs a condition, in addition to
the generated test suite, representing the work already done. Then this condition
is passed as an input to another conditional tester, in addition to the program
and test specification. This tester can then focus on only the uncovered goals.

Condional Tester

Instrumentor Pruning
Reducer Tester Extractor Joiner

Fig. 7: Design of a conditional tester in CoVeriTeam

Conditional testers can be constructed from off-the-shelf testers [18] with
the help of three tools: a reducer, an extractor, and a joiner. A reducer used
in conditional testing (Program× Specification× Condition→ Program) produces
a residual program with the same behavior as the input program with respect
to the remaining test goals. A set of test goals represents the condition. An
extractor (Program×Specification×TestSuite→ Condition) extracts the condition
—a set of test goals— covered by the provided test suite.

Figure 7 shows the composition of a conditional tester. First, the reducer
produces the reduced program. The composition here uses a pruning reducer,
which prunes the program according to the covered goals. Second, the tester
generates the test cases. Third, the extractor extracts the goals covered in these
test cases. Forth, the joiner merges the previously and newly covered goals. The
reducer that we used expects the input program to be in a format containing
certain labels for the purpose of tracking test goals. So, we put an instrumentor
that instruments the test specification into the program, by adding these labels.

The conditional-testing concept can also be used iteratively to generate a test
suite using a tester based on a verifier [18]. Such a composition uses a verifier as a
backend and transforms a counterexample generated by the verifier to a test case.

Figure 8 shows the construction of a cyclic conditional tester. In this case, the
tester itself is a composition of a verifier and a tool, Witness2Test, which generates
test cases based on a witness produced by a verifier. This tester, in composition
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Conditional Tester

Tester

Instrumentor Annotating
Reducer Verifier

Witness
2Test Extractor Joiner ?

Fig. 8: Design of a cyclic conditional tester in CoVeriTeam

with a reducer, extractor, and a joiner is our conditional tester. This construction
uses an annotating reducer, which (i) annotates the program with error labels
for the verifier to find the path to and (ii) filters out the already covered goals,
i.e., the condition, from the list of goals to be annotated. We put the conditional
tester in the REPEAT composition to execute iteratively. The composition tracks
the set ‘covered_goals’ to detect the fixed point to decide termination of the
iteration. This composition will keep on accumulating the test suite generated in
each iteration and finally output the union of all the generated test suites (see
Sect. 3.1). As above, an instrumentor is placed before the conditional tester.

Verification-Based Validation à la MetaVal. MetaVal [21] uses off-the-
shelf verifiers to perform validation tasks. A validator (Program× Specification×
Verdict×Witness→ Verdict×Witness) validates the result produced by a verifier.
MetaVal employs a three-stage process for validation. In the first stage, MetaVal
instruments the input program with the input witness. The instrumented program
—a product of the witness and the original program— is equivalent to the original
program modulo the provided witness. This means that the instrumented program
can be given to an off-the-shelf verifier for verification; and this verification
functions as validation. In the second stage, MetaVal selects the verifier to use
based on the specification. It chooses CPAchecker for reachability, UAutomizer
for integer overflow and termination, and Symbiotic for memory safety.4 In
the third stage, the instrumented program is fed to a verifier along with the
specification for verification. If the verification produces the expected result,
then the result is confirmed and the witness valid, otherwise not.

Selector
Witness

Instrumentor Verifier

Fig. 9: Design of MetaVal in CoVeriTeam

Figure 9 shows the construction of MetaVal. First, the selector is executed
that selects the backend verifier to execute. After this step, the program is

4 These were the best performing tools for a property according to SV-COMP results.
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instrumented with the witness, and then the instrumented program is given
to the selected verifier for checking the specification.

4.2 Performance

CoVeriTeam is a lightweight tool. Its container mode causes an overhead of
around 0.8 s for each actor execution in the composition, and the tool needs
about 44MB memory. This means that if we run a tool 10 times in a sequence
in a shell script unprotected and compare this to using the sequence composition
in CoVeriTeam in protected container mode on the same input, the execution
using CoVeriTeam will take 8 s longer and requires 44MB more memory. In our
experience, this overhead is not an issue for verification as, in general, the time
taken for verification dominates the total execution time. For short-running, high-
performance needs, the container mode can be switched off. We have conducted
extensive experiments for performance evaluation of CoVeriTeam and point the
reader to the supplementary webpage for this article for more details.

5 Related Work

We divide our literature overview into two parts: approaches for tool combinations,
and cooperative verification approaches.

Approaches for Tool Combinations. Evidential Tool Bus (ETB) [29, 30, 39]
is a distributed framework for integration of tools based on a variant of Data-
log [1, 24]. It stores the established claims along with the corresponding files and
their versions. This allows the reuse of partial results in regression verification.
ETB orchestrates tool interaction through scripts, queries, and claims.

Our work seems close to ETB on a quick glance, but on a closer look there
are profound differences. Conceptually, ETB is a query engine that uses claims,
facts, and rules to define and execute a workflow. Whereas, CoVeriTeam has
been designed to create and execute actors based on tools and their compositions.
We give some semantic meaning, arguably simplistic, to the tools using (i)
wrapper types of artifacts for the files produced and consumed by a tool and
(ii) the notion of verification actors that allows us to see a tool as a function.
This allows us to type-check tool compositions and allow only well-defined
compositions. On the implementation side, we support more tools. This task was
simplified by our design choice to use the integration mechanisms provided by
BenchExec (as used in SV-COMP and Test-Comp). Most well known automated
verification tools already have been integrated in CoVeriTeam.

Electronic Tools Integration platform (ETI) [40] was envisioned as a “one stop
shop” for the experimentation and evaluation of tools from the formal-methods
community. It was intended to serve as a tool presentation, tool evaluation,
and benchmarking site. The idea was to allow users to access tools through the
internet without the need to install them. An ETI user is expected to provide an
LTL based specification, based on which an execution scheme is synthesized.
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The key focus of ETI and its incarnations has been remote tool execution,
and their integration over internet. The tools are viewed agnostic to their func-
tion. We, in contrast, (i) have tackled local execution concerns and (ii) see a
tool in its function as an actor that consumes and produces certain kinds of
artifacts. The semantic meaning of a tool is given by this role.

Cooperative Verification Approaches. Our work targets developing a frame-
work to express and execute cooperative verification approaches. In this section
we describe some of these approaches from literature. We have implemented some
of these combinations in CoVeriTeam, some of which are described in Sect. 4.

A reduction of the input program using the counterexample produced by
a verifier was discussed [38], where the key idea is to use the counterxam-
ple to provide the variable assignments to the program.

Conditional model checking (CMC) [13] outputs a condition —a summary
of the knowledge gained— if the model checker fails to produce a verdict. The
condition allows another model checker to save the effort of looking into already
explored state space. Reducers [15] can turn any off-the-shelf model checker into
a conditional model checker. Reducers take a source program and a condition
and produce a residual program whose paths cover the unverified state space
(negation of the condition). Conditional testing [18] applies the principle of
conditional model checking to testing. A conditional tester outputs, in addition
to the generated test cases, the goals for which test cases have been generated.

The idea of reusing the knowledge about already done work to reduce the
workload of another tool was also applied to combine program analysis and
testing [25, 31, 35]. One of these approaches [31] is based on conditional model
checking [13]. In this case, the condition is used to construct a residual program,
which is then fed to a test-case generator. Another approach [25] instruments
the program with assumptions and assertions describing the already completed
verification work. Then a testing tool is used to test the assumptions. Program par-
titioning [35] first performs the testing and then removes the satisfactorily tested
paths and verifies the rest. CoVeriTest [14], cooperative verifier-based testing, is
a tester based on cooperation between different verification-based test-generation
techniques. CoVeriTest uses conditional model checkers [13] as verifier backends.

Precision reuse [19] is based on the use of abstraction precisions. The precision
of an abstract domain is a good candidate for cooperation because it is small
in size, and represents important information, i.e., the level of abstraction at
which the analysis works. A model checker in addition to producing a verdict
also produces a file containing information specifying precision, e.g., predicates.

Model checkers can also produce a witness, in addition to the verdict, as
a justification of the verdict. These witnesses could be counterexamples for
violations of a safety property, invariants as a proof of a safety property, a lasso
for non-termination, a ranking function for termination, etc. These witnesses can
be used later to help validate the result produced by a verifier [8, 9, 10].

Execution-based result validation [11] uses violation witnesses to generate
test cases. A violation witness of a safety specification is refined to a test case.
The test case is then used to validate the result of the verification.
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6 Conclusion

Due to the free availability of many excellent verifiers, the time is ripe to view
verification tools as components. It is necessary to have standardized interfaces,
in order to define the inputs and outputs of verification components. We have
identified a set of verification artifacts and verification actors, and a programming
language for on-demand construction of new, combined verification systems.

So far, the architectural hierarchy ends mostly at the verifiers: verifiers are
based on SMT solvers, which are based on SAT solvers, which are based on
data-structure libraries. CoVeriTeam wants to change this and use verification
artifacts as first-class objects in specifying new verifiers. We show on a few
selected examples how easy it is to construct some verification systems that
were so far hard-coded using glue code and wrapper scripts. We hope that many
researchers and practitioners in the verification community find it interesting
and stimulating to experiment on a high level with verification technology.
Future Work. The approach of CoVeriTeam opens up a whole new area of
possibilities that yet needs to be explored. We have identified three key areas
for the further work: (i) remote execution of tools, (ii) policy specification
and enforcement, and (iii) more compositions and combinations. CoVeriTeam
provides an interface for a verification tool based on its behavior. A web service
wrapped around CoVeriTeam can be used to delegate execution of an actor,
hence verification work, to the host of the service. The client for such a service can
be transparently integrated in CoVeriTeam. In fact, we already provide client
integration for a restricted and experimental version of such a service. Also, a user
executing a combination of tools might want to have some restrictions on which
tools should be allowed to execute. For example, a user might want to execute
only those tools that comply with a certain license, or only those tools that are
downloaded from a trusted source. A cooperative verification tool should support
the specification and enforcement of such user policies. Further, we plan to support
more compositions for cooperative verification in CoVeriTeam as we come across
them. Recently, we were working on a parallel-portfolio composition [17].
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Abstract
Software verifiers have different strengths and weaknesses, depending on the characteristics
of the verification task. It is well-known that combinations of verifiers via portfolio- and
selection-based approaches can help to combine their strengths. In this paper, we investi-
gate (a) how to easily compose such combinations from existing, ‘off-the-shelf’ verifiers
without changing them and (b) how much performance improvement each combination can
yield, regarding the effectiveness (number of solved verification tasks) and efficiency (con-
sumed resources). First, we contribute a method to systematically and conveniently construct
verifier combinations from existing tools using CoVeriTeam. We consider sequential port-
folios, parallel portfolios, and algorithm selections. Second, we perform a large experiment to
show that combinations can improve the verification resultswithout additional computational
resources. Our benchmark set is the category ReachSafety as used in the 11th Competition
on Software Verification (SV-COMP 2022). This category contains 5400 verification tasks,
with diverse characteristics. The key novelty of this work in comparison to the conference
version of the article is to introduce a validation step into the verifier combinations. By vali-
dating the output of the verifier, we can mitigate the adverse effect of unsound tools on the
performance of portfolios, especially parallel portfolios, as observed in our previous experi-
ments. We confirm that combinations employing a validation process are significantly more
robust against the inclusion of unsound verifiers. Finally, all combinations are constructed
from off-the-shelf verifiers, that is, we use the verification tools as published. The results of
our work suggest that users of combinations of verification tools can achieve a significant
improvement at a negligible cost, andmore robustness by using combinationswith validators.
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1 Introduction

Automatic software verification has been an active area of research since two decades [1],
and various tools and techniques have been developed to solve the problem of verifying
software [2–8]. The research has also been adopted in practice [9–12]. Each tool and tech-
nique has its own strengths in specific areas. In fact, an analysis of the results of category
ReachSafety of SV-COMP 2022 [5] shows that even though high-performing tools such as
CPAchecker [13, 14] and Esbmc [15] share tasks that both tools can solve, there is a signif-
icant number of tasks solved uniquely by one of the two tools (see Fig. 1). In such a scenario,
it becomes obvious to combine these tools to benefit from the strengths of individual tools,
leading to a ‘meta verifier’ that solves more verification tasks (e.g., up to 692 tasks more
for a combination of CPAchecker and Esbmc). Most current combination approaches are
hard-coded, that is, the choice of the tools to combine is fixed and the glue-code required to
combine them is specifically programmed.

We contribute amethod to construct combinations in a systematicway, independently from
the set of tools to use.We considered the following three types of combinations: sequential and
parallel portfolio [16], and algorithm selection [17]. In a sequential portfolio, the components
are executed in sequence (one after another) until one of them succeeds (split time; full cores
and memory; split risk). In a parallel portfolio, the components are executed in parallel until
one of them solves the task (full time; split cores and memory; split risk). In algorithm
selection, first, a selector selects a component that is most likely to solve the given task, and
then only the chosen component is executed (full time; full cores and memory; full risk).

We useCoVeriTeam [18–20] to construct and execute the combinations.CoVeriTeam is
a tool that is based on off-the-shelf atomic actors, which are executable units based on tool
archives. It provides a simple language to construct tool combinations, and manages the
download and execution of the existing tools on the provided input.CoVeriTeam provides a
library of atomic actors for many well-known and publicly available verification tools. A new
verification tool can be easily integrated into CoVeriTeam within a few minutes of effort.

This paper is an extended version of an article presented at FASE2022 [21],with an attempt
to mitigate its limitations. One of the limitations was that parallel portfolios are biased toward
faster tools and would produce incorrect results if there is a fast but unsound tool included
in the portfolio. We had mentioned two remedies for this issue: (i) add a validation step after
the verification and (ii) carefully select the verifiers to include in a portfolio.

In this work, we apply the first remedy: we add a validation step to validate the results
produced by a verifier. The verifiers that we use in our experiments also produce witnesses,

Fig. 1 Overlap of tasks solved by CPAchecker and Esbmc in SV-COMP 2022
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in addition to the verdict, if the verification succeeds. Producing witnesses is a requirement
to participate in SV-COMP, as the competition grants points only to those verifiers whose
results can be validated.We use a subset of validators used in SV-COMP. For each verifierwe
construct a verifierVal: a sequence of a verifier and a validator.We then put this combination
in sequential portfolios, parallel portfolios, and algorithm selections.

Our experiments are based on tools and benchmark verification tasks from the 11th Com-
petition on Software Verification (SV-COMP 2022) [5].
Contributions. We make the following contributions:

1. We show how to conveniently construct combination approaches from off-the-shelf veri-
fication tools in a modular manner, without changing the tools.

2. We perform an extensive comparative evaluation of combination approaches based on
sequential portfolios, parallel portfolios, and algorithm selections.

3. We provide a reproduction package containing tools and experiment data [22].

2 Overview of Combination Types for Off-the-Shelf Verifiers

In this study, we explore different types of combining verifiers to improve the overall ver-
ification effectiveness. We focus on the most common types of combinations that do not
require any changes to the existing tools (off-the-shelf) or communication between the
tools, which are: sequential portfolio [13, 23, 24], parallel portfolio [16, 25, 26], and algo-
rithm selection [17, 27–30]. We now briefly describe these combination types and give an
illustration in Fig. 2.
Sequential Portfolio. Portfolios combine several verifiers by executing them either sequen-
tially or in parallel. A sequential portfolio (Fig. 2a) executes a set of verifiers in sequence,
running them one after another. In this setting, each verifier is assigned a specific time limit
and the verifier runs until it finds a solution or reaches the time limit. If the current verifier
can solve the given verification task within the allocated time, the portfolio is stopped and
the solution is emitted. Otherwise, if the current verifier runs into a timeout without solving
the given task, it is terminated and the next one is started. CPA-Seq [13, 23] and Ultimate
Automizer [24] are examples of a sequential portfolio.
Parallel Portfolio. In contrast to a sequential portfolio, a parallel portfolio (Fig. 2b) executes
all verifiers in parallel, sharing all system resources like CPU cores and memory. As soon
as one algorithm solves the given verification task, the portfolio is stopped and the solu-
tion is emitted. Since the physical computing resources are shared in a parallel portfolio, a
tool may use up all its memory quota sooner than when running alone, and be terminated.
PredatorHP [25, 26] is an example of a parallel portfolio.
Algorithm Selection. To reduce spending resources on unsuccessful verifiers, algorithm
selection (Fig. 2c) is designed to select the verifier that is likely well suited to solve the given
verification task. More precisely, algorithm selection first analyzes the given verification task
for common characteristics, e.g., program features like the existence of a loop or an array. It
then selects a verifier that is most likely to solve verification tasks with those characteristics.
Then the selected verifier is executed. Algorithm selectionwas recently explored for selecting
from a set of verification algorithms, e.g., in PeSCo [27, 28], or from a set of sequential
portfolios of verification algorithms, e.g., in CPAchecker [29].

The above combination types have their own advantages and limitations when applied in
real-world scenarios. While algorithm selection gives the full resources to one verifier, and
thus, increases the chances that the verifier succeeds, it also takes the full risk of selecting
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Fig. 2 (a) A sequential portfolio runs each verifier for a certain maximal amount of time in a sequence.
If a verifier stops with a result, the portfolio finishes. The available CPU time is split among the verifiers.
(b) A parallel portfolio runs all verifiers simultaneously. If a verifier stops with a result, the portfolio finishes.
The available CPU cores and memory are split among the verifiers. (c) An algorithm selection first selects a
verifier and then executes it. The result produced by this verifier is taken. The selected verifier gets all available
resources, and also the risk that the verifier does not deliver a result is not split

a sub-optimal verifier. If the selection algorithm is not powerful enough or the selection
task is too difficult (i.e., the selection cannot be decided based on high-level features), the
selector might fail to identify a verifier that is appropriate for the given task. Although
portfolios omit this problem by assigning the verification task to several verifiers,
each verifier gets fewer resources.
Validation of the Verifier Results. Verifiers can have bugs, hence, it is desirable to validate
the result of the verification. One of the proposed options in the literature is that the verifier
produces a justification of its verdict in the form of a verification witness in an exchangeable
format [31–34]. A user can either inspect the witness manually [35] or use a tool to validate
the result produced by the verifier.

Verification followed by result validation can also be achieved by a combination of a
verifier and a validator. First, a verifier is executed to solve a verification task, then a validator
is executed to validate the result of the verifier. We refer to such a combination as validating
verifier (or verifierVal). A validating verifier has the advantage that each emitted verification
result is validated by an external validator.

Therefore, we can avoid emitting wrong results, which in turn can positively impact the
effectiveness of verifier combinations.
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Validators have been used in the competition on software verification since 2015 [36].
Intuitively, one can expect that the validationof a bugconsumesmuch less resources compared
to finding the bug,whereas the proof validation is still resource intensive because the full state-
space must be considered. This intuition is supported by the resource-consumption data of
the validators in the software-verification competitions. Moreover, in the competition, alarm
validation is allocated 10% (= 1.5 min) of the CPU time of a verification run (15 min),
whereas proof validation gets the same CPU time as verification. Both the alarm and proof
validation are allocated about half the memory as verification (7 GB).

3 Constructing Combinations with COVERITEAM

CoVeriTeam [18] is a tool for creating and executing tool combinations. It consists of a
language to describe combinations of tools and an execution engine for their execution. Tools,
e.g., verifiers, validators, testers, transformers, and their combinations, are called verification
actors in CoVeriTeam. The inputs consumed and outputs produced by the verification
actors, e.g., programs, specifications, witnesses, and results, are called verification artifacts.
Verification artifacts are seen as basic objects, verification actors as basic operations, and
tool combinations as compositions of these operations.

Verification actors in CoVeriTeam are of two kinds: atomic and composite. Atomic
actors are based on off-the-shelf tool archives. CoVeriTeam uses features provided by
BenchExec [37] to configure the command line, execute the tool in isolation, enforce
resource limits, and process the output produced by the tool. Atomic actors are con-
structed using the information provided in a YAML configuration file, which specifies the
BenchExectool-info module, parameters to pass to the tool, resource limits, and the location
to download the tool archive from. Many publicly available tools for automatic verification
are supported by CoVeriTeam, and their YAML configuration files are available in the
CoVeriTeam repository [19].

Composite actors are created by combining CoVeriTeam actors using the following
composition operators: SEQUENCE, PARALLEL, REPEAT, ITE, and PARALLEL-PORTFOLIO.
SEQUENCE executes the composed actors sequentially, PARALLEL in parallel, REPEAT repeat-
edly until the termination condition is satisfied, ITE (if-then-else) executes one actor if the
provided condition is true, otherwise, the other actor, PARALLEL-PORTFOLIO executes the
actors in parallel until one of them finishes with a result that satisfies the success condition,
and then terminates all remaining actors [18, 21, 38]. The work in this paper uses SEQUENCE,
PARALLEL, ITE, and PARALLEL-PORTFOLIO.

Fig. 3 Construction of a verifierVal using CoVeriTeam
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3.1 ValidatingVerifier

Figure 3 shows the construction of a combination verifierVal for a verifier verifier and a val-
idator validator. This construction uses theCoVeriTeam composition operators SEQUENCE
and ITE. The combination first executes the verifier. Then, it checkswhether the verifier solved
the verification task (i.e., finishes with a verdict true or false) or not. A verifier might not
always succeed; it can finish the execution with an error or be terminated when it runs
out of resources. If the verifier solved the verification task, then the combination executes
the validator on the result of the verifier, otherwise, the verdict error or unknown is for-
warded. This construction can be generalized to use combinations of validators as validator.
For our experiments (see Sect. 4.3), we created validating verifiers using a portfolio of
validators instead of one validator.

3.2 Verifier Based on Sequential Portfolio

Figure 4a shows the construction of a sequential portfolio for two verifiers verifier1 and
verifier2. This construction is similar to verifier

Val, with the difference that the second
actor in this combination is also a verifier instead of a validator. This construction uses the
CoVeriTeam composition operators SEQUENCE and ITE. The combination first executes
verifier1. If the execution of verifier1 successfully solves the task, then the combination
finishes with the result of verifier1, otherwise, verifier2 is executed and the combination
finishes with the result of verifier2.

This construction can be generalized to create sequential portfolios of arbitrary sizes. For
our experiments, we created sequential portfolios of 2, 3, 4, and 8 verifiers.

Fig. 4 Construction of verifiers based on sequential portfolio, parallel portfolio, and algorithm selection using
CoVeriTeam(the incoming arrow from the left always represents the verification task; the outgoing arrow on
the right always represents the verification result)
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3.3 Verifier Based on Parallel Portfolio

Figure 4b shows the construction of a parallel portfolio for two verifiers verifier1 and veri-
fier2. This construction uses theCoVeriTeam composition operator PARALLEL-PORTFOLIO,
which combines a set of actors of the same type (verifiers, testers, etc.) based on a success
condition. The success condition is defined over the artifacts produced by these actors, and
is evaluated whenever an actor finishes its execution. In this combination, both the verifiers
are executed concurrently. When one verifier finishes, its verdict is checked for the success
condition (i.e., verdict ∈ {T , F}). If the success condition holds, then the combination fin-
ishes (terminating all remaining executing verifiers) and returns the verdict, otherwise, the
verdict is discarded and the combination waits for the second verifier to finish. If none of the
verifiers produces a result that satisfies the success condition, then the combination returns
the result of the last verifier. This construction can be generalized to create parallel portfolios
of arbitrary sizes. For our experiments, we created parallel portfolios of 2, 3, 4, and 8 verifiers.

3.4 Verifier Based on Algorithm Selection

Figure 4c shows the construction of an algorithm selection for two verifiers verifier1 and
verifier2. This construction uses the CoVeriTeam composition operators SEQUENCE and
PARALLEL, and some CoVeriTeam actors for feature encoding, classifiers, and comparator.
The combination consists of two parts, the selector to determine an appropriate verifier
based on the given verification task and the execution of the selected verifier. In more detail,
the combination first executes the feature encoder on the verification task, in which a set
of predefined features is extracted and encoded from a given verification task (i.e., certain
characteristics that are believed to indicate difficulty for a verifier). The output is passed
on to a set of classifiers (classifier1 and classifier2), one for each verifier that is considered
for selection. Each classifier predicts the hardness (or difficulty) of the given verification
task for the corresponding verifier. The comparator then compares the hardness scores and
determines the verifier with the least value, which is predicted to be the most appropriate
verifier for the given verification task based on the extracted features, i.e., the verifier that is
most likely to solve the task. The last step is to execute only the verifier that was selected (for
example, execute verifier1, do not execute verifier2). This construction can be generalized
to create algorithm selections of arbitrary sizes. For our experiments, we created algorithm
selections of 2, 3, 4, and 8 verifiers.
Feature Encoder. The first component of our construction is the feature encoder. The goal of
the feature encoder is to encode the verification task into a meaningful feature-vector (FV )
representation that can later be used to select a verification tool. Typically, the representation
encodes certain features of a programwhichmight correlatewith the performance of a verifier
such as the occurrence of specific loop patterns [30] or variable types [39, 40].

In this study, we encode verification tasks via a learning-based feature encoder by employ-
ing a pre-trained CSTTransformer [28]. The CSTTransformer first parses a given program
P into a simplified abstract syntax tree (AST) representation. Afterward, a graph-based
neural network processes the AST structure and produces a vector representation. The
encoding step is learned by pre-training the neural network on selecting various verifica-
tion tools. While this approach was originally developed to learn a vector representation
optimized for a specific verifier combination, the authors have shown that the learned
encoder can be effectively reused across many new selection tasks, often outperforming
other hand-crafted feature encoders.
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Selection of Verifiers Based on the Individual Difficulty of the Tasks. One verification
tool might be able to solve a given verification task quickly, whereas another tool might fail
to solve it even using all given resources. Therefore, to avoid wasting resources on tools
that are not well suited for a given task, the algorithm selector aims to predict the
difficulty of a task before executing a tool. Then, the tool that is predicted to be the best-suited
tool for the task is executed.

Similar to previous work [28], we learn to predict the difficulty of a task with hardness
models [41]. A hardness model learns to predict the difficulty, also called hardness, of a
given task for a specific tool based on the previously computed vector representation of the
task. In our case, we define the hardness of a task for a given tool similar to the PAR10
score [42]: It is either the consumed CPU time if the task is solved correctly or ten
times the maximal runtime. A low hardness score means that a verifier solves a task cor-
rectly in a short amount of time.

Since our hardness score is based on the CPU time consumed by the verifier, the problem
of training our hardness model reduces to a regression problem. We address this problem
with regression by classification [43] by training multinomial logistic-regression classifiers.

Given a set of hardness models—each assessing the hardness of a verification task for a
specific tool—a verification tool is selected forwhich the task is likely easy, i.e., the respective
model outputs the lowest hardness score.

3.5 Extensibility

To facilitate future research and the design of novel combinations, we implemented all com-
bination types such that they can be easily configured and extended. Extending a combination
with a new verifier requires only an actor definition for that verifier in CoVeriTeam. After-
wards, this verifier can be easily added to a sequential or parallel portfolio.

While our algorithm selector can be easily used with all tools employed during our exper-
iments, extending a combination based on algorithm selection with a new verifier requires a
bit more effort. However, the task of configuring algorithm selection has been simplified by
using hardness models together with a common feature representation.

One can modify the set of verifiers to select from by simply adding or removing individual
hardness models. While previous approaches to verifier selection often require training the
complete selector from scratch, our combination can be extended by training a single hardness
model. A single hardness model can be trained within a few minutes on a modern CPU. The
accompanying artifact contains all the training scripts that we used for training our hardness
models, a pre-computed dataset of vector representations for SV-COMP 2022, and instructions
to train a newmodel. It is also possible to train and employ custom hardness models based on
a custom vector representation. In this case, one needs to replace the feature encoder, which
can easily be done as it is a CoVeriTeam actor in our construction.

Finally, to integrate a new tool in our algorithm selector, one is only required to
run the respective verifier once on (a subset of) the benchmark set. The results then
act as training examples.
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Fig. 5 Subsets of 2, 3, 4, and 8 verification tools as used in our combinations

4 Experiment Setup

Our goal is to investigate if combinations can yield better results than standalone tools. To
achieve this goal, we have chosen the following measures for comparison: number of solved
verification tasks, normalized score1, and resource consumption. For each combination, we
compared the best-performing standalone verifier against the combination using these mea-
sures. We derived the following three research questions from our research goal:

RQ 1. Can aCoVeriTeam-based sequential portfolio of verifiers performsignificantly better
than standalone tools with respect to

(a) number of solved verification tasks,
(b) normalized score, and
(c) resource consumption?

RQ 2. Can a CoVeriTeam-based parallel portfolio of verifiers perform significantly better
than standalone tools with respect to

(a) number of solved verification tasks,
(b) normalized score, and
(c) resource consumption?

RQ 3. Can aCoVeriTeam-based algorithm selection of verifiers perform significantly better
than standalone tools with respect to

(a) number of solved verification tasks,
(b) normalized score, and
(c) resource consumption?

To address the above research questions, we performed an extensive experimental evalu-
ation. This section explains the setup of our experiment.

4.1 Selection of ExistingVerifiers

We considered the results of the Competition on Software Verification 2022 [5] for selecting
the verification tools for our combinations.We chose the 8 best tools from the ReachSafety
category, and sorted them according to their scores in SV-COMP 2022. Then we took the top
n tools for a combination of size n. Figure5 illustrates the sets of verifiers that we used in
different types of combinations.

1 The benchmark set is partitioned into categories of different sizes. The number of solved verification tasks
is biased towards performance in large benchmark sets. Using a normalized score mitigates this bias.
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Exclusions.We excluded the following verification tools from consideration:VeriAbs [49],
because its license does not allow us to use it for scientific evaluation, PeSCo [50],
because it would not contribute to the diversity of technologies in the combinations as
it is based on CPAchecker configurations, Graves- CPA [51], for the same reason as
PeSCo, and CoVeriTeam- Verifier- ParallelPortfolio and CoVeriTeam- Verifier-
AlgoSelection, because they are themselves combinations of verifiers similar to the ones
we evaluate in this paper.

4.2 Selection of ExistingValidators

We chose the validators also based on the results of the competition on software verifi-
cation 2022 [5]. We took the validators that were most effective in validating witnesses
in the competition as reported in a case study [52]. We took four validators for viola-
tion witnesses (alarm validation): CPAchecker-based violation-witness validator [32],
FShell-witness2test [34], Symbiotic- Witch [53], and NitWit [54]; and two valida-
tors for correctness witnesses (proof validation): CPAchecker- and UAutomizer-based
correctness-witness validators [33]. We have excluded MetaVal [55], because it was not
adopted to a new rule of SV-COMP 2022 [52].

4.3 Construction of VERIFIERVal Combinations

Figure 6 shows the construction that validates the results of a verifier.We have used portfolios
of validators of different sizes: 2 for validating proofs, and 4 for validating alarms.

The combination first executes the verifier. Then, if the produced verdict is true, it executes
the portfolio of proof validators. If the produced verdict is false, it executes the portfo-
lio of alarm validators. If the produced verdict is neither true nor false, i.e., the verifier
did not succeed in its verification effort, then the verdict error or unknown is simply for-
warded. The proof and alarm validators are combined in parallel portfolios, respectively.
(The figure shows a simplified presentation of the combination, using a verdict check with

Fig. 6 Construction of our verifierVal combination
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three outcomes instead of two ite operators, and omitting the check of success conditions
in parallel portfolios.)

We instantiated the verifier
Val combination for all eight selected verifiers and refer to

them as single verifiers because they are combined only with validators. We executed the
resulting combinations on the chosen benchmark set. The obtained results were also used to
train the hardness models used by the algorithm selector.

4.4 Training of the Algorithm Selector

Our selectionmechanism is based on the use of hardness models.We trained several hardness
models that predict the difficulty of a given verification task for a specific verifier. The
algorithm selector then selects the verifier that is most likely to solve a given task, i.e.,
for which the task is the easiest. In the following, we describe the process for training the
individual hardness models used in our evaluation in detail.
Construction of Training Datasets. Hardness models learn from prior observations of the
verifier’s performance to predict the difficulty of future tasks. Therefore, we trained the hard-
nessmodels on a dataset of verification tasks labeledwith the results of the individual verifiers.

We employed a random subset of the benchmark set used in SV-COMP 2022 [5] as the
training dataset of verification tasks. Therefore, the training dataset partly overlapped with
the benchmark set (up to 90%) used in our evaluation. We maintain a fair comparison
between algorithm selectors by training them on the same train/test split. To obtain the
results of the individual verifiers on the verification tasks, we executed all the single verifiers
on the benchmark set. We recorded whether the verifier solves the task correctly
and the execution time in CPU seconds.

Finally, since our hardness models operate on feature-vector representations, we employ
our feature encoder to map each verification task to a feature vector. As a result, we obtain n
datasets (n is the number of verifiers) where each entry maps a feature-vector representation
of a verification task to the correctness and execution time of a verifier on that task.
Training Hardness Models. The hardness models are trained to predict the hardness of a
task for a given verifier. Similar to the PAR10 score, we define the hardness score (h-score)
of a given task for a specific verifier as the CPU time if the task can be solved within a certain
time limit, or ten times the time limit if the task cannot be solved. For the prediction, we split
the range of our h-scores into four intervals2: [0, 10), [10, 100), [100, 900), [900, 9000]. If
the verifier solves the task correctly, the hardnessmodel predicts whether solving the task was
easy ([0, 10)), intermediate ([10, 100)) or difficult ([100, 900)). In the case that the verifier
fails, the hardness model should predict that the task was too hard ([900, 9000]).

Motivated by the idea of regression by classification [43], we address this problem by
training a multinomial-logistic-regression classifier. Then, for each interval, the classifier
predicts the probability that it contains the h-score of the verifier for the given task. Finally,
to obtain a predicted hardness score which we can use to select a verifier, we make the
following observation for the hardness score:

h-score(x) ≤
k∑

i=0

p
(
h-score(x) ∈ [li , ui )

) ∗ ui ,

where x is the given verification task, k is the number of disjoint intervals [li , ui ). In other
words, if we can correctly estimate the probability p of a hardness score to be included in an

2 The verification timeout is typically set to 900s and we found splitting intervals logarithmically works best.
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interval [li , ui ), we can compute an upper bound to the hardness score. We train the logistic-
regression classifier to estimate the probability and use the upper bound as the predicted
hardness score to select a verifier, i.e., we select the verifier whose hardness score is likely
bounded by the smallest constant.We compared our approachwith alternative approaches that
predict the likelihood of solving an instance [28], solvability and runtime independently [30],
or the hardness score via linear-regression models. However, in our experiments, we found
that predicting hardness-score intervals leads to the best algorithm-selection performance.
Selecting a Verifier. After training, the hardness models predict the difficulty of a given
task for a specific verifier. Given a new verification task, the feature encoder is executed
followed by the classifiers (hardness models). As a result, we obtain a hardness score for
each verifier in our combination. Then, the verifier obtaining the smallest hardness score
is selected and executed.

Since the predictions are made independently, our algorithm-selection framework is mod-
ular. In other words, we can simply extend or shrink the size of the combination by adding
or removing verifiers and their respective hardness models.

4.5 Construction of Portfolio and Selection Combinations

We evaluated twelve verifier combinations. For each sequential portfolio, parallel port-
folio, and algorithm selection, we constructed a combination of 2, 3, 4, and 8 verifiers.
This gave us four combinations for each combination type. These variants of combinations
with different numbers of verifiers allowed us to quantify the influence of the number
of verifiers on the performance.

4.6 Resource Allocation

Resource Allocation for Actors inside VERIFIERVAL. Fig. 7 shows the resource limits
for the actors inside a verifier

Val composition. Given the resource limits T (time) and M

Fig. 7 Resource allocation for the verifierVal combination
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(memory) for the complete verifier
Val, we define the resource limits for the actors in the

verifier
Val composition as follows:

• Verifier <T,M>: We give the same resource limits to the verifier. It is the first actor to
be executed in the combination. As no other tool executes when the verifier is executing,
it is fair to allow the verifier to use as much memory as is available. Moreover, as the
validation can only start after the verifier finishes execution and produces a result, we
give it all the available time.

• Proof-Validator <T,M/2>: We divide the available memory but pass on the same time
limit to the proof-validator. During the validation stage, two proof-validators are running
simultaneously. To allow fair distribution of memory we divide the memory limit equally
among the two proof-validators.We do not divide the CPU time because this combination
is a parallel portfolio of validators and we do not limit CPU time in parallel portfolios.

• Alarm-Validator <T,M/4>: Analogous to the proof-validators, we divide the available
memory but pass on the same time limit to the alarm-validators.

Resource Allocation for the Combinations of VERIFIERVAL. The resource limits of the
combinations of single verifiers (of the form verifier

Val) to a sequential portfolio, parallel
portfolio, or algorithm selection are as follows:

• Sequential portfolio: We divide the available CPU time equally among all actors in a
sequential portfolio, but allow them to use all the available memory.3

• Parallel portfolio: We divide the available memory equally among all actors in a parallel
portfolio, but allow them to use all the available CPU time.

• Algorithm selection: We pass on the available resource limits to the feature encoder and
the verifier. For classifiers, we divide the memory limit equally and give them a constant
time limit of 20 s. We enforce resource limits on the classifiers because classifiers in our
experiments take just a couple of seconds to execute. If one of them behaves unexpectedly
and consumes too much time, we proceed without waiting for its execution to finish. We
select the verifier to execute based on the results of the remaining classifiers.

4.7 Benchmark Selection

We evaluated the tool combinations on a benchmark set from the open-source collection of
verification tasks [56]. The benchmark sets for SV-COMP are also selected from this collection.
Our benchmark set consisted of all the verification tasks in the category ReachSafety used
in SV-COMP 2022. It is the largest category, contains 5400 verification tasks, and is the
most popular one with 21 participants in SV-COMP 2022. Each verification task consists of a
program written in C and a specification. The specification is a safety property describing
that an error function should never be called. Thus, we had a total of 5400 verification tasks
in our benchmark set. We evaluated our combinations on the version of the benchmark set
that was used in SV-COMP 2022 (tag svcomp22) [57].

3 Technical detail:We assign a little bit lessmemory to the actors of the sequential portfolio because otherwise,
if one of them starts consumingmorememory than the providedmemory limit, then it wouldmake the complete
sequential portfolio exceed thememory limit. This would in turn trigger BenchExec to terminate the complete
sequential portfolio.
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4.8 Execution Environment

Our experiments were executed on machines with the following configuration: one 3.4 GHz
CPU (IntelXeon E3-1230 v5) with 8 processing units (virtual cores), 33 GB RAM, and
operating system Ubuntu 20.04. Each verification run (execution of one tool or combination
on one verification task) was limited to 8 processing units, 15 min of CPU time, and 15 GB
memory. This configuration is the same as the configuration used in SV-COMP 2022 allowing
us to use the competition results of the standalone tools for comparison.

4.9 Scoring Schema

We report three measures of success for each combination. First, we count the number of
results of each kind, i.e., either claims of program correctness or alarms of specification
violations for the verification tasks.

Second, we report the scores as per the scoring scheme used in the competition SV-
COMP [5]. A verifier is rewarded with score points as follows: 2 score points for each
correct proof, 1 score point for each correct alarm, -32 score points for each wrong proof,
and -16 score points for each wrong alarm. We have used this scoring scheme because it is
accepted in the community as amodel of quality. The benchmark set is partitioned into several
sub-categories, and we calculate the score for each sub-category and apply normalization as
in SV-COMP based on the size of the sub-category. The normalization of scores has been
used in SV-COMP [58] for many years and has been established as a standard for judging the
quality of results by the verification community.

Although the inclusion of a validation step alleviates the issue of using an unsound verifier
to a large extent, it does not eliminate it, because validators could also be unsound and could
validate incorrect witnesses. Due to this reason, we still need to use negative scores as well.

The scoring scheme used in our previous work [21] employed the same reward scheme
but it did not consider normalization. This resulted in scores being biased towards tools
that perform well in the larger sub-categories of the benchmarks. In this article, we
report the normalized scores addressing the issue of bias towards the results of the large
sub-categories of the benchmarks.Wehave used the same scripts thatwere used in SV-COMP to
calculate these scores.

4.10 Resource Measurement and Benchmark Execution

We used the state-of-the-art benchmarking framework BenchExec [37] for executing our
benchmarks. It executes tools in isolation, reports the resource consumption, and enforces
the resource limitations. It provides measurements of the consumption of CPU time, wall
time, memory, and CPU energy during the execution of a tool.

4.11 Reporting Results: Tables and Plots

We present a table and two plots for each set of experiments.
Tables. We report the normalized score, correctly solved instances of both proofs and alarms,
total resource consumption, median resource consumption, and resource consumption per
score point for each executed combination.
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The tables report the resource consumption only for the correctly solved tasks. It is similar
to how the results are presented in the competition reports [5, 59]. Using this approach encour-
ages verifiers to try as hard as possible to solve a verification task without worrying about
how it affects the resource consumption. Otherwise, one could, in principle, considerably
improve this measure by simply terminating early with the output unknown.
Score-Based Quantile Plots. For each set of experiments, we also present quantile plots
based on the normalized score. Each point (x, y) in these plots represents the score x
accumulated for the executions that finished below the CPU time y. The CPU time con-
sumption of only those executions that produce a correct result is considered. The time
consumption of executions producing incorrect and inconclusive verdicts are not considered.
These plots use a linear scale for the CPU time range between 0 and 1s, and a logarithmic
scale for 1 s to 1000s.

Interpretation: The higher the score of a tool, the farther on the right its plot goes. As our
scoring scheme penalizes incorrect results, the abscissa of the starting point of each plot line
is the total penalty a tool has received. The more unsound a tool is, the farther on the left its
plot graph starts. The length of the projection of the plot graph on the horizontal axis loosely
corresponds to the total number of correctly solved tasks (because 2 points are awarded for a
correct proof, and 1 point for a correct alarm). The height of a plot represents the maximum
time required by the corresponding tool to correctly solve a verification task. The area under
the graph loosely corresponds to the total time taken by the tool for the executions that
resulted in correct results. In essence: the plot graph of a sound, effective, and efficient tool
would start at zero on the x-axis, go far towards the right, and remain low. More details about
these plots are given in [58].
Parallel-Coordinates Plots. In addition to the tables and quantile plots, we present parallel-
coordinates plots for showing the resources consumed per score point. Parallel-coordinates
plots are used to display multivariate data points, where each variable gets its own axis and
each graph represents one data point. They provide a visual aid to compare many variables
and see the relation between them.

Another possibility to show the resource consumption per score point was to use spider
charts (also known as radar or web charts). In a spider chart, linear differences in values of a
variable scale to a quadratic change in the area, which may give an incorrect impression to
a viewer. Therefore, we chose to use parallel-coordinate plots instead of spider charts.

The plots show resource consumption per score point, as well as the number of unsolved
tasks per score point. The lower the plot graph remains the better it is.

5 Evaluation Results

5.1 Results for VERIFIERVal Standalone Compositions

Table 1 shows the summary of results for executing the verifier
Val compositions, that is,

combinations of an existing verifier with a validator portfolio as a standalone composition
(referred to as single verifiers). The scores and ranking are roughly comparable to the results of
SV-COMP 2022.4 Introducing the validation step decreased the scores by about 10%. Figure8
shows the score-based quantile plot of the results, and Fig. 9 shows the parallel-coordinates
plot for unsolved tasks and resource consumption per score point.

4 https://sv-comp.sosy-lab.org/2022/results/results-verified.
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Fig. 8 Single verifiers: Score-based quantile plot for results of verifierVal combinations

Fig. 9 Single verifiers: Unsolved tasks and resource consumption per score point of verifierVal combinations

5.2 RQ 1: Evaluation of Sequential-Portfolio Verifiers

We now present the results of the sequential-portfolio verifiers against the standalone veri-
fier

Val combination with the highest score: CPAcheckerVal.
Table 2 shows the summary of results for the sequential portfolio. Three of our sequential

portfolios achieve a better score than CPAchecker
Val. The portfolio with 8 tools performs

worst, which is expected because the amount of time allocated to each verifier decreases
as we increase the size of the portfolio. As a result, verifiers cannot solve hard tasks that
take long to solve. The table also shows that the portfolios require more resources to solve
the tasks. This is a side effect of the sequential portfolio, as all the resources consumed by
unsuccessful attempts by the verifiers in a sequence are still counted towards the overall
resource consumption.5

Figure 10 shows the quantile plot of normalized scores for the best and worst performing
sequential portfolios, and CPAcheckerVal. All graphs start from the same abscissa because
all of them have the same number of incorrect results (a negligible value of 2). The sequential
portfolio of 4 tools goes farthest to the right because it has the highest score. Figure11 shows

5 This may change with a change in the order of tools in the sequence. One could try to come up with an
optimum order by analyzing the results of the standalone CPAcheckerVal. But we kept our approach simple
and put the tools in the order of the SV-COMP scores.
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Table 2 Sequential portfolios: comparison different sizes with CPAchecker
Val

Verifier CPAchecker
Val Sequential Portfolio of

2 3 4 8

Score, normalized 5 016 5 224 5 230 5 265 4 984

Correct results 3 129 3 239 3 298 3 292 3 048

Correct proofs 1 574 1 621 1 587 1 601 1 385

Correct alarms 1 555 1 618 1 711 1 691 1 663

Wrong results 2 2 2 2 2

Wrong proofs 0 0 0 0 0

Wrong alarms 2 2 2 2 2

Total resource consumption for correct results

CPU time(h) 170 190 190 190 120

Wall time (h) 110 130 130 130 88

Memory (GB) 4 900 5 400 5 600 5 300 4 400

CPU Energy (KJ) 6 200 7 000 7 200 7 300 4 900

Median resource consumption for correct results

CPU time(s) 150 160 170 160 120

Wall time (s) 86 96 110 110 77

Memory (MB) 1 100 1 100 1 100 1 000 950

CPU Energy (J) 1 500 1 600 1 800 1 700 1 300

Resource consumption of correct results per score point

CPU time (s/sp) 120 130 130 130 90

Wall time (s/sp) 78 88 93 92 64

Memory (MB/sp) 980 1 000 1 100 1 000 890

CPU Energy (J/sp) 1 200 1 300 1 400 1 400 980

Fig. 10 Sequential portfolios: Score-based quantile plot comparing CPAcheckerVal, the best and the worst-
performing sequential portfolios (SeqPortfolio-4 and SeqPortfolio-8, respectively)

that sequential portfolios can be less resource-efficient in comparison toCPAcheckerVal. In
general, as we increase the size of the sequential portfolio and thereby increase its effective-
ness, we also decrease its resource efficiency. The trend of increased effectiveness is visible
for all sequential portfolios, except for the sequential portfolio of 8 tools. In this case, the
verifiers in the portfolio of 8 tools are not provided with enough resources to solve some of
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Fig. 11 Sequential portfolios: Unsolved tasks and resource consumption per score point of CPAcheckerVal,
the best and the worst-performing sequential portfolios (SeqPortfolio-4 and SeqPortfolio-8, respectively)

the given tasks, which reduces the effectiveness of the portfolio but also increases its resource
efficiency for computing correct results.

This is also visible in the plot graph for the sequential portfolio of 8 tools in Fig. 10.
Here the plot graph goes most toward the right in three steps and after that its slope
increases considerably, showing that the later verifiers did not contribute much to the number
of correctly solved tasks.
Difference to previous results [21]. A key observation of our previous work [21] is that
portfolios are negatively affected by wrong results produced by unsound tools. As a conse-
quence, sequential portfolios often perform worse overall even though they can achieve a
higher number of correct results. In this work, we mitigate the impact of wrong results by
employing validating verifiers. As a consequence, our sequential portfolios do not produce
more incorrect results than the best standalone verifier

Val composition CPAchecker
Val.

As a side effect, sequential portfolios are now able to achieve a higher score.

5.3 RQ 2: Evaluation of Parallel-Portfolio Verifiers

We now present the results for the parallel portfolio. Table 3 shows the summary of results
for the parallel portfolios. Similar to the sequential portfolio, the parallel portfolio solves
a higher number of verification tasks in comparison to CPAchecker

Val and thereby also
achieves a higher score. Initially, the score increases with the size of a parallel portfolio.
However, as the size becomes too large to give each verifier reasonable resources,
the performance starts to decrease.

Figure 12 shows the quantile plot of normalized scores for the best and worst-performing
parallel portfolios, and CPAchecker

Val. All graphs start from nearly the same abscissa
because all of them have the very low number of incorrect results. The portfolio of size 4
goes farthest to the right because it has the highest score.

Figure 13 shows that the best-performing parallel portfolio performs better than
CPAchecker

Val in terms of resource efficiency except for memory consumption. Higher
memory consumption is expected as several tools are running in parallel. A lower
wall-time is expected for the same reason. The reduction in CPU time is interesting,
which we attribute to the diversity of the benchmark set: some tasks are simple for one
tool but harder for another, and vice versa.

The resource consumption of the worst-performing parallel portfolio is worse than for
CPAchecker

Val. Portfolios of large sizes do not provide enough resources for any verifier
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Table 3 Parallel portfolios: Comparison of different size with CPAchecker

Verifier CPAchecker
Val Parallel Portfolio of

2 3 4 8

Score, normalized 5 016 5 300 5 309 5 334 4 849

Correct results 3 129 3 311 3 384 3 351 2 977

Correct proofs 1 574 1 620 1 596 1 614 1 322

Correct alarms 1 555 1 691 1 788 1 737 1 655

Wrong results 2 2 2 2 1

Wrong proofs 0 0 0 0 0

Wrong alarms 2 2 2 2 1

Total resource consumption for correct results

CPU time(h) 170 150 160 180 230

Wall time (h) 110 56 43 36 32

Memory (GB) 4 900 7 200 8 400 9 500 11 000

CPU Energy (KJ) 6 200 4 500 4 100 4 000 4 000

Median resource consumption for correct results

CPU time(s) 150 91 83 130 200

Wall time (s) 86 17 16 21 27

Memory (MB) 1 100 1 400 1 500 1 800 3 100

CPU Energy (J) 1 500 550 530 740 1 000

Resource consumption of correct results per score point

CPU time (s/sp) 120 100 110 120 170

Wall time (s/sp) 78 38 29 24 24

Memory (MB/sp) 980 1 400 1 600 1 800 2 200

CPU Energy (J/sp) 1 200 840 770 750 830

Fig. 12 Parallel portfolios: score-based quantile plot comparing CPAchecker
Val, the best and the worst-

performing parallel portfolios (ParPortfolio-4 and ParPortfolio-8, respectively)

to compute a result. As a result, only those verification tasks get solved that are easy for at
least one verifier in the portfolio. Nonetheless, since several tools are running in parallel, the
CPU time and memory are still accounted for even this short execution time. We can see that
the wall time for the parallel portfolio of size 8 is the least.
Difference to previous results [21]. In addition to producing a high number of wrong results,
unsound tools often produce wrong results quickly [21]. For parallel portfolios, this impacts
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Fig. 13 Parallel portfolios: Unsolved tasks and resource consumption per score point of CPAcheckerVal, the
best and the worst-performing parallel portfolios (ParPortfolio-4 and ParPortfolio-8, respectively)

the performance negatively as wrong results that are produced quickly are selected before a
correct result can be computed. Therefore, similar to sequential portfolios, parallel portfolios
based on validating verifiers did not produce a higher number of wrong results than the single
best tool CPAcheckerVal. (Interestingly, the parallel portfolio of size 8 produces even fewer
incorrect results. This was due to timeout.)

5.4 RQ 3: Evaluation of Algorithm-Selection Verifiers

Table 4 shows the summary of results for algorithm selection: There is a clear trend towards
better results with more verifiers. This is expected because our selector has more options
to choose from, including verifiers that are more effective for some tasks. Also, algorithm-
selection-based verifiers do not need to share resources between verifiers. Therefore, they
can benefit from multiple verifiers without wasting resources on unsuccessful verification
attempts. The number of wrong results is, as expected, relatively low.

In Fig. 14, all plots start from around similar scores but at different times. Algorithm-
selection-based verifiers have a higher startup time than the standalone CPAchecker

Val

because of the overhead of the selection process. This difference in CPU time consumption
is much more pronounced for the verification tasks that were solved quickly by the chosen
verifier, but as the verifier starts dominating the CPU time consumption on more difficult
tasks, this overhead of selection starts to pay off. We can observe that CPAcheckerVal

performs initially better with respect to CPU time, but after around the midpoint, algorithm
selection starts to be more efficient.

Figure 15 shows that algorithmselection is alsomore resource-efficient thanCPAcheckerVal

except for peak memory consumption. By design, the algorithm selector aims to predict the
fastest verifier that solves the given task successfully.

There is a linear increase in CPU time and memory overhead with the number of choices
the algorithm selector is given. We attribute this to using an off-the-shelf combination (see
Fig. 4c) instead of an integrated one for the selection algorithm. Our construction allows
adding a verifier just by adding the classifier based on hardness models. Increasing the
number of tools for selection also increases the number of classifiers called. And since each
of them is used as an off-the-shelf tool, the overhead of starting the classifier is added to
the resource consumption. This explains the relatively high startup time for the algorithm
selection with size 8. The quantile plot for peak memory consumption (Fig. 16) also shows
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Table 4 Algorithm Selections: Comparison of different sizes with CPAchecker

Verifier CPAchecker
Val Algorithm Selection of

2 3 4 8

Score, normalized 5 016 5 268 5 420 5 563 5 577

Correct results 3 129 3 399 3 511 3 596 3 604

Correct proofs 1 574 1 632 1 647 1 716 1 726

Correct alarms 1 555 1 767 1 864 1 880 1 878

Wrong results 2 2 1 1 1

Wrong proofs 0 0 0 0 0

Wrong alarms 2 2 1 1 1

Total resource consumption for correct results

CPU time(h) 170 140 140 150 170

Wall time (h) 110 94 92 92 86

Memory (GB) 4 900 4 500 4 600 5 000 6 000

CPU Energy (KJ) 6 200 5 200 5 200 5 500 5 400

Median resource consumption for correct results

CPU time(s) 150 77 74 83 110

Wall time (s) 86 30 33 33 32

Memory (MB) 1 100 920 850 850 1 200

CPU Energy (J) 1 500 640 630 690 770

Resource consumption of correct results per score point

CPU time (s/sp) 120 97 94 99 110

Wall time (s/sp) 78 64 61 60 56

Memory (MB/sp) 980 860 840 890 1 100

CPU Energy (J/sp) 1 200 1 000 960 980 980

Fig. 14 Algorithm selections: Score-based quantile plot comparing CPAchecker
Val, the best and the worst

performing algorithm selection based verifier
Val (AlgoSelection-8 and AlgoSelection-2, respectively)

this: it starts with higher memory consumption relative to CPAcheckerVal but then the line
remains horizontal for most of the graph.6

6 The version of CoVeriTeam used in our previous work [21] did not execute the classifiers concurrently so
the peak memory consumption was not high. The (conceptually) parallel composition was implemented by
executing the tools one after another and then combining the results. The newer version of CoVeriTeam exe-
cutes tools concurrently. Due to this reason, we did not notice the increase in memory consumption in the
results for algorithm selection of size 8 in our previous work [21].
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Fig. 15 Algorithm selections: Unsolved tasks and resource consumption per score pointCPAcheckerVal, the
best and the worst performing algorithm selection based verifier

Val (AlgoSelection-8 and AlgoSelection-2,
respectively)

Fig. 16 Algorithm selections: Score-based quantile plot for memory consumption comparing
CPAchecker

Val, the best and the worst performing algorithm selection based verifier
Val (AlgoSelection-8

and AlgoSelection-2, respectively)

Difference to Previous Results. [21] . The main results for the algorithm-selection-based
verifiers confirm the results presented in our previous work [21]. There is one improve-
ment though: In our previous work, we employed a simpler algorithm selector that did
not consider the resource consumption of individual verifiers during selection. In contrast,
our new algorithm selector prioritizes verifiers that solve a verification task not only cor-
rectly but also quickly. This change in design is visible in our experimental results. The
algorithm-selection-based verifiers consume significantly fewer resources, which is visible
for both CPU and wall time.

5.5 Discussion

Our experiments show that each combination can on average perform
better than any standalone verifier

Val in terms of correctly solved tasks. This is
also true for the normalized scores.

We were expecting that portfolios would be less effective in comparison to the standalone
tools because of higher resource consumption. In particular, we were expecting that they
would be unable to solve hard tasks as less resources would be allocated to each partici-
pating tool. However, the experimental data demonstrate the opposite. A portfolio would be
unable to solve tasks that are hard for each tool in the portfolio. Our benchmark set had few
such tasks. But for most of the tasks that were hard for one tool, there was some
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other tool in the portfolio that could solve it in the allocated time. This was especially
pronounced in the parallel portfolio.

The outcome regarding resource consumption is in agreement with our expectations. In
comparison to the best performing standalone verifierVal, sequential portfolios requiremore
time but perform better with respect to memory consumption. Whereas, parallel portfolios
perform better with respect to wall-time but have higher memory consumption. It seems that
the portfolios are more energy-efficient when more cores are being used.

Our algorithm selection is based on a model trained using machine learning. The train-
ing penalizes the tools that produce more incorrect results and also considers the resource
consumption in terms of CPU time. In comparison to both portfolios, the verifier based on
algorithm selection solved more tasks.

Our verifier combinations can be constructed by simply selecting tools that perform well
in a comparative evaluation, such as the Competition on Software Verification. We found
that it leads to successful combinations for all evaluated combination types. Nevertheless,
the combinations can be further fine-tuned to achieve even better results.

The portfolio combinations are easy to construct and can perform well if the set of tools
to combine is diverse (different strengths). Also, the portfolios should not be too large
unless we are willing to increase the resources. Training the algorithm selector requires
more preliminary work, but with limited resources and enough choices (number of tools),
the selection-based verifier becomes more effective.
Difference to Previous Results [21]. A key observation of our previous work [21] is that
portfolios prefer fast results and unsound toolsmay producewrong results quickly. Therefore,
the soundness of portfolios can be affected by fast unsound tools. Since this could partially
be addressed by the execution order in sequential portfolios, this effect was more pronounced
in parallel portfolios than in sequential portfolios. To mitigate this problem in general, we
suggested to introduce a validation step. In this work, we adopted the proposed mitigation
strategy and updated our experiment setup to include validation. Our results show that it
achieves the intended effect as the number of incorrect results decreases significantly.
Correct vs. Wrong Results. Interestingly, and in line with our previous work [21], we
can observe a tradeoff between correct results and wrong results. By combining tools,
we can easily increase the number of solved tasks but we also risk increasing the num-
ber of wrong results. The validation step introduced in this work effectively reduces the
number of wrong results but also limits the number of tasks that can be correctly verified by
the individual verifiers.

In the end, our works present three types of easy-to-deploy combinations of software
verifiers, both with and without validation. A user can choose to include validation if the user
prefers to ensure correct results, otherwise, the user can choose to omit the validation step.
Furthermore, we are convinced that investigating combination types with a better tradeoff of
correct vs. wrong results is an exciting research direction.
Type of Verification Tools.CoVeriTeam supports only automated verification tools, there-
fore, all the tools in a combination must be automated. For our combinations, we have
considered tools based on their performance in SV-COMP. These happen to be model check-
ers, instead of deductive software verifiers like Dafny [60], Frama- C [61], KeY [62],
VerCors [63], VeriFast [64], etc.

Any automated verifier that runs on a Linux system can be integrated in CoVeriTeam.
To integrate a new tool, one needs to create a self-contained archive that is available online,
write a tool-info module to assemble the command line and process the output, an actor
definition for CoVeriTeam to orchestrate the execution of the tool and process artifacts,
and have a corresponding actor in CoVeriTeam. CoVeriTeam already contains a library of
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verification actors and actor definitions for many publicly available verification tools. More
details on how to integrate a new tool are available in the article on CoVeriTeam [18].
ComparisonBetweenDifferentTypes ofCombinations.Our evaluation compares different
types of combinations with the best-performing standalone tool. Although it is enticing,
interesting, and valuable to investigate how different combinations perform in comparison
to each other, this paper focuses only on how they compare to standalone tools.

A comparative evaluation of different combinations would require a different experiment
setup. Different factors influence the performance of each of these combinations, e.g., the
position of a verifier in a sequential portfolio, the training set for the learning-based selector,
set of chosen verifiers in portfolios. Our experiment setup uses the top n verifiers based on
a list and used them in these combinations. This setup is inadequate to conclude how these
combinations would perform against each other. We leave the optimal configuration of our
combination types and the comparison between combinations open for future work.

6 Threats to Validity

6.1 External Validity

Selection of verifiers. The effectivity of a combination of tools depends on the effectivity of
its parts. Therefore, the performance of a concrete instantiation of our tool combinations is
influenced by the selected tools and their configuration, and our results might not generalize
to other selections of tools. We have selected the eight most powerful verification tools of
the category ReachSafety based on the results of the competition SV-COMP and executed
them in their original configuration as submitted to the competition. Our procedure to select
the verifiers to include in the combination is described in Sect. 4.1.
Applicability to other verification tasks. Our evaluation results are based on experiments
with a given benchmark set. While we have evaluated our tool combinations on programs
taken from the largest and most diverse set of publicly available verification tasks for C pro-
grams, the performance of the evaluated combinations may be different on other sets of
verification tasks. The selection of the benchmark set is described in Sect. 4.7.
Training of the algorithm selectorThe choice of the benchmark set also impacts the training
of our algorithm selector. Training a learning-based selector requires a large and diverse set of
verification tasks. Each task has to be labeled with the execution results of each verifier used
in our combinations. The used benchmarks repository [56, 57] was created and improved by
the verification community over many years. We are not aware of any other benchmark set
of verification tasks that is as diverse and of the same quality as this one. As a result, we had
to train our algorithm selector on the same dataset that we later used for benchmarking the
tool combinations. Therefore, our evaluation shows that algorithm selection improves the
performance of verification on the given benchmark set and the selector might generalize
only to benchmark sets with similarly distributed verification tasks. For a fair comparison,
we (1) restricted the training to linear models, which are known to generalize well, (2) trained
only on a random subset of the benchmark set, and (3) cross-validated ourmodel overmultiple
benchmark splits. The variance of selection performance between different splits was less
than 1%. Therefore, the performance of our trained algorithm selector is likely independent
of the random subset selected for training.
Design of the algorithm selector The evaluation of algorithm selection is also dependent on
the chosen selection technique. Choosing alternative selection methods, e.g., based on hand-
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crafted rules, might impact the evaluation. However, the design of hand-crafted methods is
not straightforward, it might require expert knowledge about the tool implementations of
the components. This design process might in addition be biased in favor of certain tool
combinations, which could also impact the experimental results.
Experiment environment. The setup of our experiments is influenced by SV-COMP: bench-
mark set, tool selection, the configuration in which tools are used, execution environment,
and resource limitations. On the one hand, it gives us the benefit that our results could be
compared with the evaluation of many publicly available well-known verification tools, on
the other hand, it affects the generalizability of our results. However, over the last decade, the
setup used by SV-COMP has become standard in the verification community for the evaluation
of verification tools and this was the best choice available to us. Also, using the SV-COMP
setup allows us to compare the results of our combinations with the results of the standalone
tools from SV-COMP 2022.
Sequential portfolios. The order of the verifiers in sequential portfolios may impact its
performance. We ordered the verifiers in sequence according to their performance in SV-

COMP 2022, that is, the best performing tool is executed first, and so on. Changing the order of
the toolsmight change the results concerning resource consumption.We noted in our previous
work [21] that changing the order of verifiers can impact the soundness of the combination.
This was happening if an unsound and fast verifier was put early in the sequence. We now
mitigate this issue by validating the results produced by the verifiers.
Validation step. The results of our evaluation are dependent on the quality of employed
validators and witnesses produced by the verifiers. We have used the validators participating
in SV-COMP 2022. The selection of the validators to include in the combination is described in
Sect. 4.2. We used a portfolio of validators because no standalone validator could effectively
validate the results produced by most of the verifiers. Each validator was more effective for
some subset of verifiers. Our results could change with a different selection of validators or
a different quality of witnesses produced by the verifiers.

6.2 Internal Validity

Experiment setup. We have used the same verifier archives, benchmark set, benchmark-
ing framework, resource limits, and infrastructure to execute our experiments as was used
for SV-COMP 2022. The unchanged execution setup ensures that there are no unintended
side effects in our experiments. Also, since we did not change any component of the
verifiers and executed them with the same parameters inside the combination and when
executed as a standalone verifier, we exclude the possibility that we could have used the
verifiers in a sub-optimal way.
Memory and time overhead. CoVeriTeam induces an overhead of about 0.8 s for each
actor in the combination and around 44 MB memory overhead [18]. It is possible to reduce
this overhead by using shell scripts, but we decided in favor of using CoVeriTeam for
composing tools because it supports modular design. This is especially pronounced in our
algorithm-selector combination. We could have saved a few seconds if we were using a
monolithic algorithm selector instead of composing one.
Measurement and control of resources. We have used BenchExec [37] to measure CPU
time and memory consumption, and to enforce the resource limits. Since BenchExec is
based on the modern features of the Linux kernel and thus the most accurate measurement
technology, we eliminate the measurement-related confounding factors in our evaluation
according to the state of the art.
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Distribution of CPU cores. We rely on the operating system for a fair distribution of CPU
usage during the execution of parallel portfolios. In general, there might be a tool that uses
multi-processing and as a result would consume more CPU time as compared to a tool using
only one process. In such a portfolio, where some tools heavily use multi-processing and
others use only one process, the actors using multi-processing would unfairly consume more
CPU time and deliver more results. CoVeriTeam can only control the limits. A user of a
portfolio can limit the CPU time available to each tool, resulting in the termination of tools
that consumed the allocated CPU time, but whether CPU time is consumed sooner or later
by a process is decided by the operating system. In our experiments with parallel portfolios,
we allow tools to use the CPU time left by tools that terminated earlier.

6.3 Construct Validity

Our experiments are designed to assess whether combinations of verifiers can improve effec-
tivity and efficiency compared to standalone verifiers. The measures that we use to quantify
the quality are the community-agreed scoring schema, the number of solved tasks, and the
resource measures memory, CPU time, wall time, and CPU energy. These measures are all
standards accepted by the verification community and have also been used in the competition
on software verification for many years.

7 Related work

Combination Types Used in Software Verification. Combining verifiers to increase
the verification performance is a well-established technique in the domain of software
verification [14, 23, 24, 27, 29, 50, 51, 65–68]. The top three winning entries of the software-
verification competition SV-COMP 2022 all combine various verification techniques to achieve
their performance [5].CPAchecker [29] combines up to six different verification approaches
into three sequential portfolios that are task-dependently selected with an algorithm selector.
VeriAbs [49] employs up to nine different verification approaches that are combined into four
verification strategies and task-dependently selected by an algorithm selector. PeSCo [50]
ranks individual verification algorithms according to their predicted likelihood of solving a
given task and then executes them sequentially in descending order. PredatorHP [65] and
Ufo [66] demonstrate that parallel portfolios can also be a promising strategy when running
multiple specialized algorithms at the same time. Even though previous work showed that
internal combinations can be successfully applied to improve the effectiveness of a single tool,
we show that similar combinations can be effectively employed to combine ‘off-the-shelf’
verifiers. This gives us the unique opportunity to further increase the number of verifiable
programs by simply combining state-of-the-art verification tools.

Cooperative methods [67] distribute the workload of a single verification task amongmul-
tiple algorithms to combine their strengths. For example, conditionalmodel checking [69–72]
runs two or more verifiers in sequence, while the program is reduced after every step to the
state space of the program that is left unexplored by the previous algorithm.CoVeriTest [73,
74], a tool for test-case generation based on verification, interleaves multiple verifiers, while
(partially) sharing the analysis state between algorithms.MetaVal [55] integrates verifica-
tion tools for witness validation (i.e., to check whether a verifier had produced a valid result)
by instrumenting the produced witness into the verified program.While cooperative methods
are effective for reducing the workload of a verification task, employing cooperative methods
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at the tool level requires the exchange of analysis information between tools. In general, exist-
ing verification tools are notwell suited for this type of combination, which leads us to explore
off-the-shelf verifier combinations. In addition, we showed that non-cooperativemethods can
improve the verification effectiveness without the need to adapt the employed tools.
Combining Algorithms Beyond Software Verification. The idea of combining algorithms
to improve performance has been successfully applied in many research areas including SAT
solving [75–77], constraint-satisfaction programs [78–80], and combinatorial-search prob-
lems [81]. The employed approaches traditionally focused on portfolio-based approaches [75,
76, 79], but recent techniques started to integrate algorithm selectors for either select-
ing single algorithms [77, 78] or portfolios of algorithms [80, 82]. For example, earlier
works in SAT solving [75, 76] focused on parallel-portfolio solvers, while later works
such as SATzilla [77] further improve the solving process by selecting a task-dependent
solver. However, existing techniques often employ hybrid strategies between portfolios
and algorithm selection to achieve state-of-the-art performance. Therefore, Kashgarani and
Kothoff [83] have recently shown that parallel portfolios are generally bottlenecked by the
available resources and that a pure algorithm selector that selects a single algorithm performs
better. While we observed that portfolios of software verifiers are also restricted by available
resources (i.e., the performance generally stops to improve after a certain portfolio size), we
found that all evaluated combination types can yield performance gains.

8 Conclusion

This paper describes a method to construct combinations of verification and validation tools
in a systematic and modular way. The method does not require any changes to the tools that
are used to construct the combinations. Given the large number of freely available verifiers
and validators for C programs, there is a huge potential for improvement in effectivity and
efficiency (a total of 50 verifiers and 13 validators were evaluated in SV-COMP 2024 [84]).
Our experimental evaluation shows that all three considered combinations—sequential port-
folio, parallel portfolio, and algorithm selection—can lead to performance improvements.
The improvements can be significant although the construction does not require significant
development effort, because we use CoVeriTeam for the combination and execution of
verification tools. Our contribution is to offer an easy way for practitioners to benefit from
the available verification tools and leverage better performance from the latest research and
development efforts in software verification.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was funded in part by
Deutsche Forschungsgesellschaft (DFG)—378803395 (ConVeY) and 418257054 (Coop).

Data availability A reproduction package including all our results is available at Zenodo [22]. Additionally,
the result tables are also available on a supplementary web page for convenient browsing: https://www.sosy-
lab.org/research/coveriteam-combinations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

B.3. COVERITEAM-COMBINATIONS-EVALUATION-FMSD 113



Formal Methods in System Design

References

1. Beyer D, Podelski A (2022) Software model checking: 20 years and beyond. In: Principles of systems
design. LNCS, vol 13660. Springer, pp 554–582. https://doi.org/10.1007/978-3-031-22337-2_27

2. Hoare CAR (2003) The verifying compiler: a grand challenge for computing research. J. ACM 50(1):63–
69. https://doi.org/10.1145/602382.602403

3. Clarke EM, Henzinger TA, Veith H, Bloem R (2018) Handbook of model checking. Springer, Berlin.
https://doi.org/10.1007/978-3-319-10575-8

4. Jhala R, Majumdar R (2009) Software model checking. ACM Comput Surv. doi
10(1145/1592434):1592438

5. BeyerD (2022) Progress on software verification: SV-COMP2022. In: Proceedings of TACAS (2), LNCS,
vol 13244. Springer, pp 375–402. https://doi.org/10.1007/978-3-030-99527-0_20

6. Beckert B, Hähnle R (2014) Reasoning and verification: state of the art and current trends. IEEE Intell
Syst 29(1):20–29. https://doi.org/10.1109/MIS.2014.3

7. Beyer D, Gulwani S, Schmidt D (2018) Combining model checking and data-flow analysis. In: Handbook
of model checking. Springer, pp 493–540. https://doi.org/10.1007/978-3-319-10575-8_16

8. Garavel H, ter Beek MH, van de Pol J (2020) The 2020 expert survey on formal methods. In: Proceedings
of FMICS. LNCS, vol 12327. Springer, pp 3–69.https://doi.org/10.1007/978-3-030-58298-2_1

9. Ball T, Rajamani SK (2002) The Slam project: debugging system software via static analysis. In: Pro-
ceedings of POPL. ACM, pp 1–3.https://doi.org/10.1145/503272.503274

10. Khoroshilov AV, Mutilin VS, Petrenko AK, Zakharov V (2009) Establishing Linux driver verification
process. In: Proceedings of Ershov memorial conference. LNCS, vol 5947. Springer, pp 165–176. https://
doi.org/10.1007/978-3-642-11486-1_14

11. Chong N, Cook B, Eidelman J, Kallas K, Khazem K, Monteiro FR, Schwartz-Narbonne D, Tasiran S,
Tautschnig M, Tuttle MR (2021) Code-level model checking in the software development workflow at
Amazon Web Services. Softw Pract Exp 51(4):772–797. https://doi.org/10.1002/spe.2949

12. Calcagno C, Distefano D, Dubreil J, Gabi D, Hooimeijer P, Luca M, O’Hearn PW, Papakonstantinou I,
Purbrick J, Rodriguez D (2015) Moving fast with software verification. In: Proceedings of NFM. LNCS,
vol 9058. Springer, pp 3–11. https://doi.org/10.1007/978-3-319-17524-9_1

13. Beyer D, Keremoglu ME (2011) CPAchecker: a tool for configurable software verification. In:
Proceedings of CAV. LNCS, vol 6806. Springer, pp 184–190.https://doi.org/10.1007/978-3-642-22110-
1_16

14. Dangl M, Löwe S, Wendler P (2015) CPAchecker with support for recursive programs and floating-
point arithmetic (competition contribution). In: Proceedings of TACAS. LNCS, vol 9035. Springer,
pp 423–425.https://doi.org/10.1007/978-3-662-46681-0_34

15. Gadelha MYR, Monteiro FR, Cordeiro LC, Nicole DA (2019) Esbmc v6.0: verifying C programs using
k-induction and invariant inference (competition contribution). In: Proceedings of TACAS (3). LNCS,
vol 11429. Springer, pp 209–213.https://doi.org/10.1007/978-3-030-17502-3_15

16. Huberman BA, Lukose RM, Hogg T (1997) An economics approach to hard computational problems.
Science 275(7):51–54. https://doi.org/10.1126/science.275.5296.51

17. Rice JR (1976)The algorithmselectionproblem.AdvComput 15:65–118. https://doi.org/10.1016/S0065-
2458(08)60520-3

18. Beyer D, Kanav S (2022) CoVeriTeam: on-demand composition of cooperative verifi-
cation systems. In: Proceedings of TACAS. LNCS, vol 13243. Springer, pp 561–579.
https://doi.org/10.1007/978-3-030-99524-9_31

19. Beyer D, Kanav S, Wachowitz H. Source-code repository of CoVeriTeam. https://gitlab.com/sosy-lab/
software/coveriteam. Accessed 09 Feb 2023

20. Beyer D, Kanav S, Wachowitz H (2023) CoVeriTeam service: verification as a service. In: Proceedings
of ICSE, companion. IEEE, pp 21–25.https://doi.org/10.1109/ICSE-Companion58688.2023.00017

21. Beyer D, Kanav S, Richter C (2022) Construction of verifier combinations based on off-the-shelf verifiers.
In: Proceedings of FASE. Springer, pp 49–70. https://doi.org/10.1007/978-3-030-99429-7_3

22. Beyer D, Kanav S, Kleinert T, Richter C (2023) Reproduction package for FMSD article ‘Construction of
verifier combinations from off-the-shelf components’. Zenodo. https://doi.org/10.5281/zenodo.7838348

23. Wendler P (2013) CPAchecker with sequential combination of explicit-state analysis and predicate
analysis (competition contribution). In: Proceedings of TACAS. LNCS, vol 7795. Springer, pp 613–615.
https://doi.org/10.1007/978-3-642-36742-7_45

24. Heizmann M, Chen YF, Dietsch D, Greitschus M, Hoenicke J, Li Y, Nutz A, Musa B, Schilling
C, Schindler T, Podelski A (2018) Ultimate Automizer and the search for perfect interpolants
(competition contribution). In: Proceedings of TACAS (2). LNCS, vol 10806. Springer, pp 447–451.
https://doi.org/10.1007/978-3-319-89963-3_30

123

114 APPENDIX B. ORIGINAL MANUSCRIPTS



Formal Methods in System Design

25. Kotoun M, Peringer P, Šoková V, Vojnar T (2016) Optimized PredatorHP and the SV-COMP heap
and memory safety benchmark (competition contribution). In: Proceedings of TACAS. LNCS, vol 9636.
Springer, pp 942–945.https://doi.org/10.1007/978-3-662-49674-9_66

26. Holík L, Kotoun M, Peringer P, Šoková V, Trtík M, Vojnar T (2016) Predator shape analysis tool suite.
Proceedings of HVC. LNCS 10028:202–209. https://doi.org/10.1007/978-3-319-49052-6_13

27. Richter C, Hüllermeier E, Jakobs MC, Wehrheim H (2020) Algorithm selection for software validation
based on graph kernels. Autom Softw Eng 27(1):153–186. https://doi.org/10.1007/s10515-020-00270-x

28. Richter C, Wehrheim H (2020) Attend and represent: a novel view on algorithm selection for software
verification. In: Proceedings of ASE, pp 1016–1028. https://doi.org/10.1145/3324884.3416633

29. Beyer D, Dangl M (2018) Strategy selection for software verification based on boolean features: a simple
but effective approach. In: Proceedings of ISoLA. LNCS, vol 11245. Springer, pp 144–159. https://doi.
org/10.1007/978-3-030-03421-4_11

30. Demyanova Y, Pani T, Veith H, Zuleger F (2017) Empirical software metrics for benchmarking of veri-
fication tools. Formal Methods Syst Des 50(2–3):289–316. https://doi.org/10.1007/s10703-016-0264-5

31. Beyer D, Dangl M, Dietsch D, Heizmann M, Lemberger T, Tautschnig M (2022) Verification witnesses.
ACM Trans Softw Eng Methodol 31(4):57:1-57:69. https://doi.org/10.1145/3477579

32. Beyer D, Dangl M, Dietsch D, Heizmann M, Stahlbauer A (2015) Witness validation and
stepwise testification across software verifiers. In: Proceedings of FSE. ACM, pp 721–733.
https://doi.org/10.1145/2786805.2786867

33. Beyer D, DanglM, Dietsch D, HeizmannM (2016) Correctness witnesses: exchanging verification results
between verifiers. In: Proceedings of FSE. ACM, pp 326–337. https://doi.org/10.1145/2950290.2950351

34. Beyer D, Dangl M, Lemberger T, Tautschnig M (2018) Tests from witnesses: execution-based
validation of verification results. In: Proceedings of TAP. LNCS, vol 10889. Springer, pp 3–23.
https://doi.org/10.1007/978-3-319-92994-1_1

35. Beyer D, Dangl M (2016) Verification-aided debugging: an interactive web-service for exploring error
witnesses. In: Proceedings of CAV (2). LNCS, vol 9780. Springer, pp 502–509.https://doi.org/10.1007/
978-3-319-41540-6_28

36. Beyer D (2015) Software verification and verifiable witnesses (Report on SV-COMP 2015). In: Proceed-
ings of TACAS. LNCS, vol 9035. Springer, pp 401–416.https://doi.org/10.1007/978-3-662-46681-0_31

37. Beyer D, Löwe S, Wendler P (2019) Reliable benchmarking: requirements and solutions. Int J Softw
Tools Technol Transf 21(1):1–29. https://doi.org/10.1007/s10009-017-0469-y

38. Kleinert T (2022) Developing a verifier based on parallel portfolio with CoVeriTeam. Bachelor’s Thesis,
LMU Munich, Software Systems Lab

39. Demyanova Y, Veith H, Zuleger F (2013) On the concept of variable roles and its use in software analysis.
In: Proceedings of FMCAD. IEEE, pp 226–230. https://doi.org/10.1109/FMCAD.2013.6679414

40. Apel S, Beyer D, Friedberger K, Raimondi F, Rhein A (2013) Domain types: abstract-domain selec-
tion based on variable usage. In: Proceedings of HVC. LNCS, vol 8244. Springer, pp 262–278.
https://doi.org/10.1007/978-3-319-03077-7

41. Xu L, Hoos HH, Leyton-Brown K (2007) Hierarchical hardness models for SAT. In: Interna-
tional conference on principles and practice of constraint programming. Springer, pp 696–711.
https://doi.org/10.1007/978-3-540-74970-7_49

42. Kadioglu S, Malitsky Y, Sabharwal A, Samulowitz H, Sellmann M (2011) Algorithm selection and
scheduling. In: Proceedings of CP. Springer, pp 454–469.https://doi.org/10.1007/978-3-642-23786-7_35

43. Torgo L, Gama J (1996) Regression by classification. In: Brazilian symposium on artificial intelligence.
Springer, pp 51–60.https://doi.org/10.1007/3-540-61859-7_6
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Abstract—The research community has developed numerous
tools for solving verification problems, but we are missing a
common web interface for executing them. This means, users
have to commit to install and execute each new tool (version) on
their local machine. We propose to use COVERITEAM SERVICE to
make it easy for verification researchers to experiment with
new verification tools. COVERITEAM has already unified the
command-line interface, and reduced the burden by taking
care of tool installation and isolated execution. The new web
service in addition enables tool developers to make their tools
accessible on the web and users to include verification tools
in their work flow. There are already further applications of
our service: The 2023 competitions on software verification and
testing used the service for their integration testing, and we
propose to use COVERITEAM SERVICE for incremental verification
as part of a continuous-integration process.
Demonstration video: https://youtu.be/0Ao0ZogSu1U
Demonstration service: https://coveriteam-service.sosy-lab.org

Index Terms—Cooperative Verification, Tool Development,
Incremental Verification, Software Verification, Automatic Verifica-
tion, Verification Tools, Web Service, API, Continuous Integration

I. INTRODUCTION

Numerous automated verification and testing tools have been
developed in the last few decades. This is attested by the
growing number of participants in the competitions on software-
verification (SV-COMP) [5] and testing (Test-Comp) [4].

Consider a verification researcher or student who wants to
experiment with a verification tool. On the one hand, a larger
number of tools provides more opportunities to such a user.
On the other hand, it requires considerable effort to figure out
how to execute each tool and interpret the results. Additionally,
there might be a mismatch between the configuration of the
user’s system and the required configuration to execute the
tool. Or, the user might not want to execute an untrusted
verification tool locally due to security concerns. Even with
numerous choices available for the verification tools, it is
not straightforward to use them.

There are arguments regarding the developers of verification
tools pointing in the same direction. A lot of effort goes in
developing the tools; but even after spending so much effort in
developing excellent tools, the tools are not easily accessible.

This work aims at improving the accessibility of automated
verification tools. We propose a web service that enables
remote execution of verification tools. The solution is based on
COVERITEAM [7], which provides already a common command-
line interface to verification tools. A common web interface
makes it easier for users to experiment with arbitrary verifica-
tion tools, as well as for tool developers to benefit from making
their tools more accessible to new users. The web service
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COVERITEAM

• prepare environment
• invoke COVERITEAM
• bundle results

COVERITEAM SERVICE

• tool information
• verification task

Request

• tool output
• generated files

Response

Fig. 1: Abstract view of the COVERITEAM SERVICE

liberates users from the concerns of configuring the local
system. Additionally, running tools remotely eliminates security
concerns arising from local execution of untrusted code.

COVERITEAM [7] provides a common interface to verification
tools through the means of verification actors and artifacts. It
manages download, execution, and processing input and output
of these tools. It provides a library of actors for many publicly
available verification and testing tools. Also, it provides means
to integrate a new tool easily via BENCHEXEC [16].

Developing a web service for COVERITEAM allows us to
reuse the infrastructure that was developed for COVERITEAM. If
users want to execute a verification tool remotely, they can
simply invoke COVERITEAM with the required inputs and the
option for remote execution, and COVERITEAM manages the rest.
Alternatively, the service can be called directly via its REST
API, making it suitable for integration into other applications.
Figure 1 shows the abstract view of our solution. A user
sends the information about the tool and the verification task
to the service; the service prepares the environment, invokes
COVERITEAM, and bundles the results of the execution; and
COVERITEAM manages tool download and its execution.

Contributions. We make the following contributions:
1) Remote execution: a web service to remotely execute

publicly available verification tools and their combinations,
2) Incremental verifier: a web service for incremental verifica-

tion using COVERITEAM SERVICE as a micro-service,
3) Easy access to verification tools: a solution allowing tool

developers to provide easy access to their verification tools,
4) Reuse: an open-source Python implementation and a repro-

duction package [11, 12].

Impact. This service was part of the continuous-integration
pipeline of the competitions SV-COMP and Test-Comp 2023.
The service was used to make sure that a (new version of a)
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tool is only integrated if it can be successfully executed in the
specified competition environment. This makes it possible to
find issues with the participating tool archive early on, thus
saving the effort required by the competition organizer and
participants to locate and solve the issues by manual inspection.

Related Work. Electronic Tools Integration (ETI) [23, 25]
was conceived as a platform to allow users to access tools
through the internet. It was intended to serve as a site for
testing, presenting, evaluation, and benchmarking tools.

Model Checking as a Service (MCaaS) [21] aims to hide
the model checking entirely from engineers. The authors aim
to provide a ready made solution for a specific engineering
workflow with limited configuration.

The (deprecated) RiSE4Fun [3] service is a web front-end
to web services on formal methods. CoVeriTeam Service is
not a web front-end, but a backend service. It could have
been integrated as one of the backend services in RiSE4Fun,
acting as a generic interface to many verification tools, similar
to our own web UI.

Unite [26] aims to provide easier access to analysis tools
by converting them to web services. It uses open services for
lifecycle collaboration (OSLC) to create web services from
software-analysis tools. While ETI, MCaaS, and our service
provide a remote interface to analysis tools, the focus of Unite
is to provide a framework to setup a web service for one
tool at a time. This requires manual setup and configuration
of the tool and it’s arguments. Once configured, the OSLC
endpoint integrates with respective OSLC clients that are
able to mirror the tool’s interface.

Our approach decouples (a) integrating a new tool from
(b) providing a web service: (a) COVERITEAM integrates the anal-
ysis tools and provides the interface to the tools; (b) COVERITEAM

SERVICE provides a web-service interface using a REST API.
The interface to our web service is uniform, regardless of
the tool a user wants to execute.

Many verification tools have implemented some form of
web front-end [6, 18, 20, 22], stating a clear demand for web-
accessibility. With COVERITEAM SERVICE, we provide one uniform
interface for all tools. We present a web UI in Sect. IV,
where users can already select from 21 verification tools
and run them remotely.

Running Example. Users want to verify a program. They want
to use a verification tool to achieve it; but they do not want to
execute the tool locally. There could be multiple reasons for
the aversion to the local execution of the tools, e.g., ease of use:
the user does not want to install the tool and its dependencies,
or the tool might require different packages than available on
the local machine, or security concerns: the user does not want
to run an untrusted tool on the local machine. Our running
example considers the case that our user wants to execute
the verification tool CPACHECKER remotely.

II. BACKGROUND: COVERITEAM

COVERITEAM SERVICE uses COVERITEAM as execution backend.
COVERITEAM [7, 10] provides a common interface to verification

// Create verifier from an actor definition
verifier = ActorFactory.create(ProgramVerifier,

"cpachecker.yml", "2.1");
// Prepare inputs
prog = ArtifactFactory.create(Program,

"test02.c", ILP32);
spec =

ArtifactFactory.create(BehaviorSpecification,
"unreach-call.prp");

inputs = {"program":prog, "spec":spec};

// Execute the verifier on the inputs
result = execute(verifier, inputs);

Listing 1: A COVERITEAM program to execute a verifier

actor_name: "cpachecker"
toolinfo_module: "cpachecker.py"
archives:
- version: "2.1"
doi: "10.5281/zenodo.5720557"
options: ["-svcomp22", "-timelimit", "900 s"]

Listing 2: An example verification actor in YAML format

tools. It considers verification tools as verification actors, and
the input and output of these tools as verification artifacts.
The behavior of COVERITEAM is defined by a COVERITEAM

program, written in a simple domain-specific language for
the construction and execution of tool combinations.

Listing 1 shows an example COVERITEAM program (.cvt
file), which constructs first an actor of type ProgramVerifier

from an external-actor definition that is provided in file
cpachecker.yml. Then it creates two artifacts of types
Program and BehaviorSpecification that are prepared as
input mapping for the execution of the verifier on these inputs.
COVERITEAM downloads the tool, assembles the command for
the tool execution, executes the tool (in a controlled and isolated
BENCHEXEC [16] container), and processes the output generated
by the tool to extract the output artifacts.

Listing 2 shows the external-actor definition (.yml file)
that was used in the above COVERITEAM program. (Internal
actors are not considered here: they are the combinations
constructed in the COVERITEAM program.) An external-actor
definition specifies the name of the actor, the BENCHEXEC [16]
tool-info module that is used to assemble the tool command
line and parse the output produced by the tool, the version,
the tool archive (by DOI or URL), command-line options, and
resource limits to enforce during the execution.

External-actor definitions can be defined by the developers of
the external verification tools and serve as the interface to their
verification tools (see COVERITEAM’s library of external actors).

III. APPROACH: COVERITEAM SERVICE

COVERITEAM SERVICE and the service for incremental verifica-
tion are based on a REST API. The client communicates
with the services using HTTP.

COVERITEAM SERVICE. There are three ways to execute a job
using COVERITEAM SERVICE: (1) via COVERITEAM, by using the
same command line, just with an additional option --remote

appended, (2) via HTTP, by writing a job specification in a
JSON file (Listing 3) and send a POST request to COVERITEAM
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{
"cvt_program": "verifier.cvt",
"coveriteam_inputs": {
"verifier_path": "cpachecker.yml",
"program_path": "test02.c",
"specification_path": "unreach-call.prp",

},
"working_directory": "coveriteam/examples",

}

Listing 3: Example JSON showing the input for the service

curl \
--form "args=<listing3.json" \
--form cpachecker.yml=@cpachecker.yml \
--form test02.c=@test02.c \
--form verifier.cvt=@verifier.cvt \
--form unreach-call.prp=@unreach-call.prp \
--output cvt_remote_output.zip \
https://coveriteam-service.sosy-lab.org/execute

Listing 4: Example CURL request for the service

SERVICE, e.g., via CURL (Listing 4), or (3) via the web UI, by vis-
iting the service using a web browser and completing the form.

COVERITEAM SERVICE receives the input via one of the three
ways, performs consistency checks on the input, assembles
the command for COVERITEAM, executes the given COVERITEAM

program on the server, and sends back the output artifacts.

Service for Incremental Verification. While tests and
lightweight linters are regularly used in continuous integration
(CI), verification tools are more difficult to integrate, due to
their resource requirements. Our service makes it possible
to delegate the verification load from the CI machine to a
dedicated machine for the verification service via COVERITEAM

SERVICE. Furthermore, incremental verification (IV) aims at
speeding up the verification of the current program version by
reusing knowledge from verifying a previous version [15, 24].

We offer a solution that combines the two approaches: a
service for incremental verification. The solution is based on
the following components: (1) a verifier that can export and
import the knowledge learned during a verification run, (2) a
store to save and retrieve this information, and (3) a manager to
connect the above two. In our solution, COVERITEAM SERVICE is
used as a micro-service to execute the verifier; and the service
for IV manages the store and interacts with COVERITEAM SERVICE.

Figure 2 illustrates the data flow of our solution. The service
for incremental verification stores and retrieves the knowledge

•get stored information
•prepare arguments
•call COVERITEAM SERVICE

•store result information

Service for IV

•download incremental
verifier

•execute verifier

COVERITEAM SERVICE

DatabaseP, P ′, S

P ′, S, I

I′

Store I′

I

Input

Fig. 2: Architecture of the service for incremental verification
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· · ·

COVERITEAM SERVICE

COVERITEAM

Service Client

Fig. 3: Various clients of the COVERITEAM service

exported by the verification tool so that it can be reused later
to assist in verification. The service takes as input a current
program P ′, its previous version P , and the specification S. It
first checks if some reusable verification information I for P
and S is stored in the database. If available, it retrieves the
stored information and calls COVERITEAM SERVICE passing it the
current program P ′, the specification S, and the verification in-
formation I . If the information is absent, then the task is treated
as a fresh verification task. COVERITEAM SERVICE then executes
the verifier, and returns the result. Before returning this result
to the user, the service for incremental verification extracts
and stores relevant information obtained from the result.

We explain an instantiation of this construction in Sect. IV
using CPACHECKER as the verifier. It is straightforward to adapt
this to another verifier that supports export and import of
any information reusable for verification.

IV. APPLICATIONS AND USE CASES

A detailed evaluation of COVERITEAM through case studies
and experiments has been presented in our previous work [7, 8].
Here we present some applications and use cases of the service.

Remote Execution of Verification Tools. Using our publicly
available installation of a COVERITEAM SERVICE instance at https://
coveriteam-service.sosy-lab.org, a user can execute verification
tools and their combinations remotely without the need to install
and execute them locally. The service can be called using (1) the
client integrated in COVERITEAM, by simply adding the option
--remote to a command (this option instructs COVERITEAM to
execute remotely via the service, whereas without this option
execution happens locally), (2) a CURL command (Listing 4),
or (3) a web page allowing users to execute tools that are
included in COVERITEAM’s library of external actors. Figure 3
shows the currently implemented clients of the service.

This service has been hit more than 930 times within a month
of going online. Many of these hits were from the participants
of SV-COMP and Test-Comp who wanted to test their tools on
a machine similar to the ones used in the competition.

Continuous Integration for Competitions. The service has
been used in SV-COMP and Test-Comp this year as part of
the continuous-integration (CI) pipeline of the competition
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Fig. 4: Workflow of CI for incremental verification

repositories. Submitting a zipped tool archive triggers the
CI pipeline, which calls COVERITEAM SERVICE to execute the
tool on test programs. The feedback from the CI enables
the participants to fix issues with their tool archives without
asking the competition organizer for test runs. This CI has
helped reducing the workload of the competition organizer and
participants for debugging issues with tool executions.

Additionally, tool developers can integrate a call to this
service in their own CI. This ensures that the tool archive of
the latest version is readily executable on a different machine
(e.g., a competition environment), thus reducing the effort
required for packaging and testing the tool for reproducibility.

CI for Incremental Verification. Software is developed incre-
mentally. It is a common practice to integrate tests and linters
in CI scripts that are triggered either on each commit to the
source code or in regular intervals, to control software quality.

Formal verification is a candidate for inclusion in the CI as
well, but generally it is too resource-intensive to be executed
frequently. Moreover, many open-source projects execute their
CI using free service plans, which provide limited compu-
tational resources. COVERITEAM SERVICE and our service for
incremental verification can address this problem by delegating
resource-intensive computations to a separate service.

To evaluate our approach, we used CPACHECKER as a backend
verifier in the service for incremental verification. Figure 4
illustrates the workflow of this use case. A user commits some
changes to program P , yielding the modified program P ′. The
CI script first prepares the incremental verification task, i.e.,
assembles a request containing P , P ′, and the specification S,
and second calls the service for incremental verification to
solve this incremental-verification task.

V. INTEGRATION OF TOOLS

Easy Integration of Verification Tools. To integrate a new
verification tool into COVERITEAM SERVICE, one only needs to
integrate it into COVERITEAM, i.e., create a tool-info module and
an external-actor definition. Many tools are already integrated
because they are readily available in COVERITEAM [7].

Construct Service for Verification Tools. We envision
COVERITEAM SERVICE to be instantiated by tool developers to
provide easy access to their own tools, on their own server,
independently from our instance of COVERITEAM SERVICE. To
achieve this, one needs to create a container image or a virtual

machine with the required operating system and packages, and
host COVERITEAM SERVICE in it. This would allow an arbitrary
user to connect to their new instance of COVERITEAM SERVICE

to execute the verification tool under consideration. We have
tried to make hosting the service straightforward, and provide
instructions and the required configuration files (see Sect. VI).

Limitations. Our service is based on COVERITEAM [7] and
BENCHEXEC [16], which require a GNU/Linux-based system
providing access to cgroups. The tools from SV-COMP and
Test-Comp are only a few examples of the supported tools.

VI. HOSTING AN INSTANCE

We provide three different options to create and host an
instance of COVERITEAM SERVICE:
1) Launching a virtual machine (VM): The repository includes

a Vagrantfile, which can be used by Vagrant [19] to
create a fresh VM with the service installed. Additionally,
we provide a ready-to-use VM as artifact.

2) Launching a container: We provide a Containerfile and
launch scripts in the repository. Using a container manager
like PODMAN [2] (or DOCKER [1]), an image containing
COVERITEAM SERVICE can quickly be created and started.

3) Integrating with an existing web server: The service can
be integrated with WSGI-compatible web servers [17]. The
repository contains an example integrating the service with
an Apache web server.

VII. CONCLUSION

Many excellent verification tools are publicly available,
but installation requirements as well as resource limitations
hinder the integration of verification tools into development
processes. We presented COVERITEAM SERVICE, a web service
for software verification. Our solution aims to ease the effort
required by a user to start working with a verification tool,
supports continuous integration by enabling delegation to a
service, and provides a mechanism to tool developers to make
their tools easily accessible. The service has already found a
user group: 930 hits within the first month of service. The
continuous-integration pipeline of the competitions SV-COMP
and Test-Comp is based on our new web service.
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