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 List of abbreviations 
AATBC  Apoptosis associated transcript in bladder cancer 

ADOA   Autosomal dominant optic atrophy 

AIFM2   Apoptosis inducting factor 2 

ATP   Adenosine triphosphate 

BAT   Brown adipose tissue 

CMT2A  Charcot-Marie-Tooth disease type 2A 

CoQ10   Coenzyme Q10 

DDI2   DNA Damage Inducible 1 Homolog 2 

DNA   Deoxyribonucleic acid 

DRP1   Dynamin-related protein 1 

Fer-1   Ferrostatin-1 

FSP1   Ferroptosis suppressor protein 1 

GLP1R  Glucagon-like peptide 1 receptor 

GPX4   Glutathione peroxidase 4 

Lip-1   Liproxstatin-1 

lncRNA  Long non-coding ribonucleic acid 

MFN1/2  Mitofusin-1 and -2 

NFE2L1  Nuclear factor erythroid-2 like bZIP transcription factor 1 

NGLY1  N-glycanase 1 

NST   Non-shivering thermogenesis 

OPA1   Optic atrophy 1 

RNA   Ribolnucleic acid 

SLC7A11  Solute carrier family 7 member 11 

SSMD   Sedaghatian-type spondylometaphyseal dysplasia 

UCP1   Uncoupling Protein 1 

UPS   Ubiquitin Proteasome System 

WAT   White adipose tissue 
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Your contribution to the publications 

1.1 Contribution to paper I 

This is the first publication from the Bartelt Lab on the topic of ferroptosis. I conceptual-
ized the topic of ferroptosis in brown adipose tissue myself and designed all experiments. 
All experiments were performed by myself or under my supervision, including statistical 
analysis. Coauthors assisted in specific techniques (native PAGE) and provided animal 
models. Data in Fig. 6 were collected by AB and analyzed by me. The manuscript was 
created and written by me with revisions from AB and scientific input from all coauthors. 
In addition, I helped to write a successful DFG proposal on this topic with AB. 

1.2 Contribution to paper II 

This manuscript is a joint work by the Herzig Lab and Bartelt Lab. The initial hypothesis 
was formulated by my co-first author, MG. MG was a postdoctoral researcher at the 
Herzig Lab and subsequently moved to Bartelt Lab before leaving in 2021. I joined the 
project in early 2021 and performed several experiments including ex vivo tissue analysis 
and in vitro experiments regarding mitochondrial function.  

A detailed list of my contributions: 

Figure 1: re-analysis of the sequencing data, including generation of 1F, Sup. 1C-F 

Figure 2: generation of replicates for 2E-H, Sup. 2D-K 

Figure 3: data generation of Sup. 3, Sup. 4MN; re-analysis 4D-O 

Figure 4: data generation of 4E-H, M-P 

Figure 5: data generation 5B, L-N, analysis of 5G-K 

Figures 6, 7: data were analyzed by AH in collaboration with me 

 

I wrote the manuscript together with MG, with revisions from SH and AB including input 
from all coauthors. All experiments during the revision period lasting two years were per-
formed by me.  

 

This work includes collaboration of international research groups for specific techniques 
and datasets. Especially in the final phase of the project, the communication between all 
collaborators was mediated by me. 
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2. Introduction 

2.1 Thermogenic adipose tissue 

Cardiovascular diseases are the most common cause of death in Germany1. Obesity is 
a major risk factor for cardiometabolic diseases and Type 2 Diabetes2. Therefore, ade-
quate treatment of obesity is an unmet clinical need with the potential to not only extend 
the lifespan but also increase the quality of life of a large part of the population. The most 
effective treatment options today is still bariatric surgery, but in recent years pharmaco-
logical interventions based on the incretin hormone biology like Glucagon-like peptide 1 
receptor (GLP1R)-agonists (semaglutide) have become promising therapeutic options3,4. 
However, these treatments have side-effects like nausea and vomiting. The activation of 
thermogenic adipose tissue has emerged in the past years as a promising target for the 
treatment of obesity and cardiovascular disease using natural inborn mechanisms that 
consequently should be devoid of side effects5. 

Adipose tissue in the human body can be subdivided into three major classes: white, 
beige, and brown adipose tissue. White adipose tissue (WAT) is the most abundant class 
in humans serving as a depot for lipids and the storage of spare energy. In contrast, the 
function of brown adipose tissue (BAT) is to burn calories to generate heat, a process 
known as non-shivering thermogenesis (NST). Beige adipose tissue is an intermediate 
form, which whilst developmental closely related to WAT is also thermogenically active. 
The highest prevalence of BAT, expressed as a fraction of bodyweight, is found in ro-
dents, but also adipose tissue of hibernating mammals contains thermogenic potential6,7. 
The natural stimulus for BAT activation is cold exposure under the point of thermoneu-
trality. In most laboratory mice, thermoneutrality is achieved at approximately 30°C, lead-
ing to NST already at room temperature8. In humans this point is highly variable but is 
rarely fallen below for a longer time due to the advances of civilization like heating and 
clothing9. Therefore, BAT thermogenesis does not markedly contribute to total energy 
expenditure in adult humans. In contrast, a relatively large amount of BAT is found in 
neonates in the interscapular region but undergoes a drastic involution during infancy. In 
adults, remnants of BAT can still be found in the deep cervical, paravertebral, and perire-
nal region, especially during cold exposure or pharmacological stimulation10. Pharmaco-
logical activation of human BAT can be achieved by sympathomimetics, which target β-
receptors on adipocytes, leading to the execution of the thermogenic program11,12. While 
this is showcasing that the remaining tissue is still functional, the therapeutical treatment 
with sympathomimetics is however unsuitable as cardiovascular side effects such as 
tachycardia and hypertension are to be expected. The prevalence of BAT has been 
shown to be positively correlated with cardiometabolic health in large human studies13. 
Activation of BAT in rodents has very strong positive effects on obesity, dyslipidemia and 
overall cardiometabolic health14,15. 

The unique color of BAT stems from its high content of iron-rich mitochondria. Unlike in 
most other tissues, BAT mitochondria contain a specialized protein called Uncoupling 



2 Introduction 11 

Protein 1 (UCP1). UCP1 uncouples the proton gradient over the inner mitochondrial 
membrane, in which it resides. This leads to the catabolism of nutrients without the gen-
eration of adenosine triphosphate (ATP). Heat is produced as a byproduct of the futile 
enzymatic activity of the cell, which is used to regulate the core temperature of most 
mammals.  

Next to the thermogenic activity of BAT in humans, the prevalence of beige adipose 
tissue in fat depots of humans has gained interest in recent years. Unlike BAT, which 
represents as developmental distinct entity to WAT, the term beige adipocyte describes 
a phenomenon of thermogenic activation of white adipocytes. These adipocytes undergo 
morphological changes from the large, univacuolar lipid droplet to a multivaculoar phe-
notype and increase both their mitochondrial content and their UCP1 expression, in a 
process known as browning16. 

 

2.2 Mitochondrial Dynamics 

BAT is characterized by abundant mitochondria and high levels of respiration when fully 
activated. Mitochondria are regarded as the “powerhouse” of the cell, as they are the 
main site of cellular ATP production. The abundance of mitochondria can be regulated 
on the level of biogenesis and removal, a process known as mitophagy, which also 
serves as a quality control. Furthermore, mitochondria can undergo morphological 
changes to adapt to the changing demands of the cell by the processes of mitochondrial 
fission and fusion17. In the process of fusion, two or more mitochondria fuse into one 
bigger organelle, the reversal is referred to as fission. A magnitude of different stimuli 
can influence mitochondrial dynamics, however in the context of adipose tissue biology, 
nutrient availability and demand are next to the thermogenic state the main regulators of 
mitochondrial fission and fusion18, 19. Dynamin-related protein 1 (DRP1) is the main reg-
ulator of mitochondrial fission as it constricts the mitochondrion by forming a ring-like, 
oligomeric structure, which leads to the splitting of the organelle20. During mitochondrial 
fusion, two organelles are tethered to each other by mitofusins-1 and -2 (MFN 1/2) and 
merge their membranes21,22). The merging process is mediated by Optic atrophy 1 
(OPA1)23. Genetic ablation of one of those molecules has been shown to shift mitochon-
drial dynamic to the opposite of their specific function. The full scope of effects of mito-
chondrial dynamics on the cell is not understood yet. It is however clear that it is a fine-
tuned mechanism, which can be exemplified by the detrimental consequences of errors 
in dynamics. The neurological disorders Charcot-Marie-Tooth disease type 2A (CMT2A) 
or autosomal dominant optic atrophy (ADOA) are caused by mutations in the MFN2 and 
OPA1 gene respectively24,25,26. It has become apparent that neither fission nor fusion is 
always preferential to the other, but that both are necessary to keep the cell flexible to 
its challenges. 

In adipocytes both fission and fusion seem to be necessary to execute the thermogenic 
program, with mitochondrial fission being associated with thermogenesis in humans27,28. 
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On the other hand, fused mitochondria are also correlated with thermogenic activation 
and the abrogation of fusion events can attenuate thermogenic capacity29,30. When BAT 
is quiescent, for example when animals are adapted to thermoneutrality, mitochondrial 
content is diminished. This raises the question how cells deal under these conditions 
with excess iron liberated from the mitochondria. 

 

2.3 Ferroptosis 

Ferroptosis has emerged as a novel form of regulated cell death, yet it is distinct from 
the best described form of programmed cell death, apoptosis. It is mainly dependent on 
lipid peroxidation, a process which can be catalyzed by free intracellular iron by Fenton 
chemistry31. Whereas the term ferroptosis was only coined in 2012, the mechanisms 
protecting the cell against lipid peroxidation have been described in detail years be-
fore32,33,34.  

The enzyme Glutathione Peroxidase 4 (GPX4) has been proven to be the main anti-
ferroptotic player, as its genetic deletion will cause ferroptotic cell death in various tis-
sues35. GPX4 uses glutathione (GSH), a reductive agent highly abundant in the cytosol, 
to reduce and thereby detoxify lipid peroxides. Genetic deletion of the enzyme or phar-
macological inhibition of GPX4 by the small molecule RSL3 causes ferroptosis in a dose-
dependent manner, even though the precise molecular mechanism of RSL3 function has 
been disputed32,36, 37. The molecular mechanism by which the small molecule erastin 
causes ferroptosis, shows the dependency of GPX4 on GSH availability. Erastin inhibits 
the cysteine/glutamate antiporter system Xc- (encoded by solute carrier family 7 member 
11 (SLC7A11)), thereby diminishing intracellular cysteine levels32. Cysteine levels be-
come limiting for GSH synthesis, resulting in reduced GPX4 activity and ferroptosis. Next 
to the GPX4 system, coenzyme Q10 (CoQ10) can be used as an antioxidant in mem-
branes. Ferroptosis suppressor protein 1 (FSP1, formerly also known as apoptosis in-
ducing factor 2 (AIFM2)) can utilize CoQ10 to reduce lipid peroxides38, 39. Direct pharma-
cological inhibitors of FSP1 have only been described recently, at the time I conducted 
the experiments for our study, FIN56 was the gold standard to test this anti-ferroptotic 
axis40, 41. FIN56 activates squalene synthase, thereby redirecting the mevalonate path-
way towards cholesterol synthesis and away from CoQ10 synthesis, reducing CoQ10 
availability and causing ferroptosis42. Pharmacological inhibition of ferroptosis can be 
achieved by lipid antioxidants, which chemically defuse lipid peroxides. Next to the nat-
urally occurring Vitamin E, the small molecules ferrostatin-1 and liproxstatin-1 have been 
shown to be potent inhibitors of ferroptosis43.  

The clinical relevance of ferroptosis is poorly understood, but it has been implicated both 
as a risk factor, e.g. in neurodegenerative diseases an ischemia-reperfusion injury, and 
as potential therapeutic target for tumor therapy44. Sedaghatian-type spondylometaph-
yseal dysplasia (SSMD) is an autosomal-recessive rare genetic disorder caused by mu-
tations in the GPX4 gene, leading to a reduced GPX4 activity45. It presents with skeletal 
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malformations, as wells as cardiovascular and neurological abnormalities leading to a 
severely shortened life expectancy of a few days to a few years, depending on the re-
sidual activity of GPX446.  

As brown adipocytes largely consist of iron-rich mitochondria and lipids, they offer in 
theory a ferroptosis-prone environment. At the time of publication, no conclusive studies 
were available on the role of ferroptosis in adipose tissue or thermogenesis. Interestingly, 
it was previously shown that degenerated BAT due to loss of proteostasis is character-
ized by high levels of labile iron47. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Mechanisms of ferroptosis 
Ferroptosis describes cell death by peroxidation of polyunsaturated fatty acids in phospholipids 
(PUFA-PL). This process is mediated by free iron (Fe2+) and reactive oxygen species (ROS). 
Reduction of the peroxides (PL-OOH -> PL-OH) is catalyzed by GPX4 by oxidation of glutathione 
or by FSP1 which uses CoQ10 as a substrate. The glutathione pool is limited by cysteine abun-
dance which is regulated by the cysteine/glutamate antiporter System Xc-. Ferroptosis can be 
pharmacologically inhibited by lipid antioxidants such as ferrostatin-1 (Fer-1) and liproxstatin-1 
(Lip-1). Amongst the inducers of ferroptosis are RSL3, which is a GPX4-inhibitor, and erastin 
which blocks cysteine import via System Xc-. Created with Biorender.com. 
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2.4 Ubiquitin Proteasome System (UPS) 

The UPS is essential for the cell to maintain homeostasis between protein synthesis and 
protein degradation, a process known as proteostasis. To facilitate specific targeted re-
moval, unwanted proteins are tagged with a ubiquitin chain by E3 ligases and degraded 
by the proteasome into small peptides48. The proteasome is a large molecular complex 
made up of a 20S core and a 19S regulatory unit, however, the constitution of the pro-
teasome can be adapted to cellular conditions and stress (e.g. immunoproteasome)49,50. 
Further adaptation of proteasomal activity can be achieved by regulating the number of 
proteasomes in a cell. A key regulatory component for this is the transcription factor 
nuclear factor erythroid-2 like bZIP transcription factor 1 (NFE2L1, also known as 
NRF1/TCF11). NFE2L1 is translated into the membrane of the endoplasmic reticulum, 
undergoes cleavage by DNA Damage Inducible 1 Homolog 2 (DDI2) and deglycosylation 
by N-glycanase 1 (NGLY1), and is released into the cytosol where it is immediately de-
graded by the proteasome. However, when proteasomal activity is compromised or the 
rate of ubquitination is increased, NFE2L1 escapes degradation and translocates to the 
nucleus where it positively regulates the expression of proteasomal subunits51.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: NFE2L1 as master regulator of the proteasome 
NFE2L1 gets translated in the endoplasmic reticulum, processed by DDI2 and NGLY1 and is 
released into the cytoplasm. During homeostasis, NFE2L1 gets constantly degraded by the pro-
teasome. If proteasomal activity is impaired, NFE2L1 gets translocated to the nucleus where it 
acts as a transcription factor for proteasomal subunit genes. This leads to an enhanced assem-
bly of proteasomes to regain the equilibrium. Created with Biorender.com. Adapted from 52. 
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Nfe2l1 has been shown to be essential for the remodeling of BAT during cold adaptation, 
as this process is dependent on an adaptive increase of proteasomal activity. Genetic 
depletion renders BAT incapable of heat production and phenocopies the inactive state 
of BAT during thermoneutrality53,47.  

In paper 1, we elucidate the role of the UPS in ferroptosis54. As proteasomal activation 
has been shown to be highly relevant for BAT adaptation, we used brown adipocytes as 
a model. We observed in multiple in vivo and in vitro models a drastic reduction of pro-
teasomal activity during the early stages of ferroptosis where cell death does not occur 
yet. Furthermore, we were able to expand this observation to other cell types, such as 
the human fibrosarcoma cell line HT-1080 and primary fibroblasts from a patient with 
SSMD. As NFE2L1 is a master regulator of the proteasome, we investigated if ferroptosis 
is modulated by NFE2L1. Induction of ferroptosis lead to a strong increase of NFE2L1 
activity and genetic inhibition of NFE2L1 made cells more sensitive to ferroptosis. 

Our results on the role of NFE2L1 in ferroptosis were largely replicated by another study 
published shortly after our manuscript55. 

2.5 Long non-coding ribonucleic acid (lncRNA) 

The first discovered function of RNA56,57 was as a messenger from genomic deoxyribo-
nucleic acid (DNA) to ribosomes for protein synthesis. Next to this coding form of RNA, 
in later years a multitude of RNA species that are not encoding proteins have been dis-
covered, amongst them ribosomal RNA, transfer RNAs, and micro RNAs. Even though 
most of the research is conducted on mRNA, non-coding RNA are with 98% of all tran-
scripts the more abundant species58. Among those species are long non-coding RNA, 
defined as molecules longer than 200 nucleotides, even though their potential for encod-
ing peptides or short-lived proteins has been topic of discussion59, 60. The conservation 
of lncRNA between species is limited, therefore they are hypothesized to be a large con-
tributor to inter-species variability60. lncRNA are implicated in several cellular processes 
such as the regulation of transcription and translation, but the knowledge about exact 
mechanisms is limited and large number of interaction partners have been identified61.  

The research about lncRNA in metabolism and adipocyte biology is limited, but multiple 
candidates have been implied in major pathways of browning62, 63,64. Most of those stud-
ies were conducted in mouse models. To address distinct human adipose tissue physi-
ology, in paper 2 we are however characterizing a human-specific lncRNA65. 

Using a combination of transcriptional profiles of human thermogenic adipose tissues, 
we identified the lncRNA Apoptosis associated transcript in bladder cancer (AATBC) to 
be consistently upregulated in thermogenic conditions. Modulation of AATBC levels in 
models of human thermogenic adipocytes was positively correlated with thermogenic 
markers, mitochondrial activity, and mitochondrial fission. In both a mouse model with 
exogeneous expression of AATBC and humans, AATBC was correlated with lower leptin 
levels and higher markers of metabolic health. 
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3. Summary 
Obesity is a major risk factor for cardiovascular diseases, the most common cause of 
death in Germany. Studies in rodents have shown that the activation of BAT is a prom-
ising way to fight obesity and cardiovascular disease utilizing the inborn mechanism of 
NST. Among the many unanswered questions about BAT biology are the mechanisms 
of involution of the tissue during infancy and how to translate findings in rodents to hu-
mans. 

In the first publication I investigated the role of the recently discovered cell death mech-
anism “ferroptosis” in brown adipose tissue. I discovered that ferroptosis compromises 
the UPS in brown adipocytes, a pathway that has been shown to be essential for brown 
adipose tissue homeostasis. NFE2L1 acts as a master regulator of the UPS and can 
restore proteasomal activity during proteotoxic stress. Surprisingly, NFE2L1 is strongly 
activated by inducers of ferroptosis. Genetic depletion of NFE2L1 lead to increased sen-
sitivity towards ferroptosis in brown adipocytes and tumor cell lines. On top of that pa-
tient-derived fibroblasts carrying a mutation in the anti-ferroptotic enzyme GPX4 repli-
cated this phenotype, proving the relevance of NFE2L1 in ferroptosis protection in mul-
tiple models. Mice lacking Nfe2l1 in BAT present whitening of the tissue with a loss of 
thermogenic capacity. Signatures of ferroptosis were also observed in brown adipose 
tissue of mice lacking Nfe2l1, hinting at a possible role of ferroptosis in BAT involution. 
In summary, we discovered a novel anti-ferroptotic mechanism in brown adipocytes, in 
which NFE2L1 promotes proteasomal activity to prevent ferroptosis. 

Adipose tissue research is usually performed using the mouse as a model organism. 
Due to the vastly reduced prevalence of BAT in humans it is necessary to find mecha-
nisms in thermogenic adipose tissue that are functional in humans. 

In the second study we found the human specific long non-coding RNA AATBC to be a 
modulator of thermogenesis. Using transcriptomic analysis from human adipose tissue 
and cell lines we found AATBC to be enriched in thermogenic conditions. Modulating the 
expression levels of AATBC revealed a positive correlation with markers of thermogen-
esis and mitochondrial activity. As mitochondrial abundance was unaltered, we observed 
changes in mitochondrial dynamics with AATBC promoting mitochondrial fission, which 
is associated with thermogenesis. Since AATBC is only expressed in humans, we used 
virus-mediated overexpression in mouse adipose tissue to study the effects of the 
lncRNA in vivo. We found leptin levels to be suppressed in animals expressing AATBC, 
which could also be observed in independent human cohorts. In humans, AATBC ex-
pression is furthermore negatively correlated with bodyweight and body mass index, and 
positively correlated with markers of adipose tissue browning. In conclusion, we describe 
a novel human-specific lncRNA that promotes adipose tissue browning my shifting mito-
chondrial dynamics to fission-like phenotype. 
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4. Zusammenfassung 
Adipositas ist ein Risikofaktor für kardiovaskuläre Erkrankungen, die häufigste Todesur-
sache in Deutschland. Studien im Tiermodell haben gezeigt, dass die Aktivierung von 
braunem Fettgewebe (BAT) eine vielversprechende Methode zur Bekämpfung von Adi-
positas und kardiovaskulären Erkrankungen darstellt, indem sie den angeborenen Me-
chanismus der zitterfreien Thermogenese nutzt. Zu den vielen unbeantworteten Fragen 
gehören die Mechanismen der BAT-Involution des Gewebes im Säuglingsalter und wie 
sich Erkenntnisse aus dem Tiermodell auf den Menschen übertragen lassen. In der ers-
ten Publikation untersuchte ich die Rolle des kürzlich entdeckten Zelltodmechanismus 
"Ferroptose" im braunen Fettgewebe. Ich stellte fest, dass Ferroptose das UPS in brau-
nen Adipozyten beeinträchtigt, welches für die Homöostase des braunen Fettgewebes 
als wesentlich gilt. NFE2L1 fungiert als Hauptregulator des UPS und kann die proteaso-
male Aktivität während proteotoxischem Stress wiederherstellen. Überraschenderweise 
lässt sich bei Induktion von Ferroptose eine substanzielle Aktivierung von NFFE2L1 fest-
stellen. Die genetische Depletion von NFE2L1 führte zu erhöhter Empfindlichkeit gegen-
über Ferroptose in braunen Adipozyten und Tumorzelllinien. Dieses Phänomen konnte 
in Fibroblasten eines Patienten mit einer Mutation im anti-ferroptotischen Enzym GPX4 
repliziert werden, was die Relevanz von NFE2L1 im Schutz vor Ferroptose in mehreren 
Modellen beweist. Mäuse ohne Nfe2l1 im BAT zeigen eine Aufhellung des Gewebes und 
einen Verlust der thermogenen Kapazität. In diesen lassen sich ebenfalls Anzeichen von 
Ferroptose beobachten, was auf eine mögliche Rolle der Ferroptose bei der Involution 
von BAT hindeutet. Zusammenfassend haben wir einen neuartigen anti-ferroptotischen 
Mechanismus in braunen Adipozyten entdeckt, bei dem NFE2L1 durch Aufrechterhal-
tung der proteasomalen Aktivität Ferroptose verhindert.Die Forschung an Fettgewebe 
wird üblicherweise am Mausmodell durchgeführt. Aufgrund der stark reduzierten Prä-
valenz von BAT beim Menschen ist es notwendig, Mechanismen im thermogenen Fett-
gewebe zu finden, die beim Menschen funktional sind. In der zweiten Studie fanden wir, 
dass die, spezifisch im Menschen exprimierte, long non-coding RNA AATBC ein Modu-
lator der Thermogenese ist. Mittels Transkriptomanalyse von menschlichem Fettgewebe 
und Zelllinien stellten wir fest, dass AATBC vermehrt unter thermogenen Bedingungen 
vorliegt. Durch Modulation der Expression von AATBC zeigte eine positive Korrelation 
mit Markern der Thermogenese und mitochondrialer Aktivität. Da die Anzahl an Mito-
chondrien unverändert war, untersuchten wir Veränderungen in der mitochondrialen Dy-
namik. AATBC förderte die mitochondriale fission, die mit Thermogenese assoziiert ist. 
Da AATBC nur im Menschen exprimiert ist, nutzten wir virusvermittelte Überexpression 
im Mausfettgewebe, um die Effekte der lncRNA in vivo zu untersuchen. Wir stellten fest, 
dass die Leptin-Spiegel in Tieren mit AATBC verringert waren, was wir auch in unabhän-
gigen Patientenkohorten beobachten konnten. In klinischen Studien korreliert die 
AATBC-Expression negativ mit dem Körpergewicht und Body-Mass-Index und positiv 
mit Markern der Thermogenese des Fettgewebes. Zusammenfassend beschreiben wir 
eine neuartige, menschenspezifische lncRNA, die die Thermogenese fördert, indem sie 
die mitochondriale Dynamik hin zu einem fission-ähnlichen Phänotyp verschiebt. 
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