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Abstract

The field of natural language processing (NLP) has progressed dramatically with
the rise of deep learning, yet many challenges in learning high-quality semantic
representations remain. This thesis addresses these challenges through a series of
studies focusing on both monolingual and multilingual contexts.

First, to improve transfer learning for low-resource languages, we develop
methodologies utilizing Turkish as a high-resource proxy for related Turkic lan-
guages. By creating and evaluating on the new Kardes-NLU benchmark, we
demonstrate substantial performance gains when Turkish is integrated at both
intermediate training and fine-tuning stages, underscoring the value of leveraging
linguistic relatives in cross-lingual transfer.

Second, we explore the underutilized potential of multiparallel corpora for
enhancing word alignment. By constructing word alignment graphs from over 80
language pairs and applying advanced graph algorithms, including graph neural
networks, we significantly improve alignment accuracy, showcasing the benefits of
community detection techniques in multilingual settings.

Third, we introduce Bilmp, a novel method to enhance the interpretability of
word embeddings by aligning dimensions with semantic concepts derived from
lexical databases like WordNet and Roget’s Thesaurus. This approach enables the
creation of interpretable embeddings that maintain high performance and reduces
biases, such as gender bias.

Finally, we focus on developing robust evaluation measures for language mod-
els. We introduce WDLMPro and CoDA21, two challenging benchmarks that
assess a model’s ability to match words with definitions and align context with
definitions without prior word knowledge, respectively. These benchmarks reveal
significant performance gaps between models and human understanding, highlight-
ing critical areas for improvement in language comprehension.

This thesis significantly contributes to the field by enhancing the quality of
semantic representations in NLP, improving transfer strategies for low-resource
languages, advancing word alignment methods, increasing interpretability of em-
beddings, and developing more nuanced evaluation benchmarks.






Zusammenfassung

Das Gebiet der Verarbeitung natiirlicher Sprache (NLP) hat mit dem Aufstieg des
Deep Learning dramatische Fortschritte gemacht, doch viele Herausforderungen
bei der Erzeugung qualitativ hochwertiger semantischer Reprisentationen bleiben
bestehen. Diese Dissertation adressiert diese Herausforderungen durch eine Reihe
von Studien, die sich sowohl auf monolinguale als auch auf mehrsprachige Kontexte
konzentrieren.

Erstens entwickeln wir, um das Transferlernen fiir ressourcenarme Sprachen
zu verbessern, Methoden, die Tiirkisch als ressourcenreiches Proxy fiir verwandte
tiirkische Sprachen nutzen. Durch die Erstellung und Evaluierung anhand des
neuen Kardes-NLU-Benchmarks zeigen wir erhebliche Leistungssteigerungen,
wenn Tirkisch sowohl in den Zwischen- als auch in den Feinabstimmungsphasen
integriert wird, was den Wert der Nutzung sprachlicher Verwandtschaften im
cross-lingualen Transfer unterstreicht.

Zweitens untersuchen wir das ungenutzte Potenzial multiparalleler Korpora zur
Verbesserung der Wortausrichtung. Durch die Erstellung von Wortausrichtungs-
graphen aus iiber 80 Sprachpaaren und die Anwendung fortgeschrittener Graphenal-
gorithmen, einschlieBlich graphneurale Netzwerke, verbessern wir die Ausrich-
tungsgenauigkeit erheblich und zeigen die Vorteile der Community-Detection-
Techniken in mehrsprachigen Umgebungen.

Drittens fithren wir Bilmp ein, eine neuartige Methode zur Verbesserung der
Interpretierbarkeit von Wort-Embeddings, indem Dimensionen mit semantischen
Konzepten aus lexikalischen Datenbanken wie WordNet und Roget’s Thesaurus
abgeglichen werden. Dieser Ansatz ermdglicht die Erstellung interpretierbarer
Embeddings, die eine hohe Leistung beibehalten und Vorurteile wie Geschlechter-
vorurteile reduzieren.

SchlieBlich konzentrieren wir uns auf die Entwicklung robuster Evaluierungs-
mafBnahmen fiir Sprachmodelle. Wir stellen WDLMPro und CoDA21 vor, zwei
herausfordernde Benchmarks, die die Fihigkeit eines Modells bewerten, Worter
mit Definitionen abzugleichen und den Kontext mit Definitionen ohne vorherige
Wortkenntnis in Ubereinstimmung zu bringen. Diese Benchmarks zeigen sig-
nifikante Leistungsliicken zwischen Modellen und menschlichem Verstdandnis auf
und heben kritische Verbesserungsbereiche im Sprachverstindnis hervor.

Diese Dissertation trigt erheblich zum Feld bei, indem sie die Qualitét semantis-
cher Reprisentationen in der NLP verbessert, Transferstrategien fiir ressourcenarme
Sprachen weiterentwickelt, Methoden zur Wortausrichtung vorantreibt, die Inter-
pretierbarkeit von Embeddings erhoht und nuanciertere Evaluationsbenchmarks
entwickelt.
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Chapter 1

Introduction

1.1 Motivation

Language is arguably humanity’s most significant innovation, an essential tool that
has shaped civilizations, cultures, and personal experiences throughout history. In
the modern era, the digital revolution has amplified the importance of language,
making it the primary channel through which we share information, conduct
transactions, and facilitate interactions around the globe. As technology continues
to advance and become ever more integrated into our daily lives, the ability to
effectively process and understand human language using computational methods
has emerged as a critical challenge and opportunity. This challenge lies at the
heart of natural language processing (NLP), a rapidly evolving field situated at the
crossroads of computer science, linguistics, and artificial intelligence (Jurafsky and
Martin, 2000; Bengio et al., 2003).

Natural language processing endeavors to empower machines with the capacity
to parse, comprehend, and generate human language, mirroring the nuance and
richness of human communication. The motivation driving NLP research is not
only technological but deeply rooted in the desire to bridge the communicative gap
between humans and machines, facilitating interactions that are as seamless and in-
tuitive as possible. From powering search engines and virtual assistants to enabling
sophisticated machine translation and sentiment analysis, NLP technologies are
ubiquitous in today’s digital landscape, transforming how we access and interact
with information and each other.

The journey from the field’s inception to its current state is one of relentless
innovation, punctuated by shifts from rule-based methodologies to statistical mod-
els, and more recently, to the advent of deep learning paradigms (Manning and
Schiitze, 1999; Goldberg, 2017; Goodfellow et al., 2016). These shifts reflect
both advancements in computational capacities and a growing understanding of
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language’s inherent complexities. Notably, the transition towards data-driven tech-
niques, especially through neural networks and the exploitation of large textual
datasets, has significantly reshaped NLP. With motivations rooted in the distribu-
tional hypothesis (Harris, 1954; Firth, 1957), modern approaches excel at learning
powerful, dense semantic representations for linguistic units, such as words, sen-
tences or documents, directly from text, circumventing the need for exhaustive
manual rule crafting. This ability to autonomously discern and utilize intricate
patterns within language has catapulted NLP forward, enabling a broad spectrum
of applications to achieve remarkable levels of performance and flexibility.

Despite the field’s impressive progress, and remarkable performance of learned
language representations on various tasks, numerous challenges remain in learning
high quality representations for NLP applications. The lifecycle of a typical
neural network based NLP model involves several stages, from data collection
and preprocessing to model training and evaluation. At the core of learning a
model with high quality representations is the dependency on large, high quality
textual corpora which are predominantly available for high-resource languages
like English. This poses a significant limitation for low-resource languages, which
are substantial in number and critical for global inclusivity. An essential aspect
of ongoing research involves developing methods to transfer knowledge from
high-resource to low-resource languages effectively (Lauscher et al., 2020; Parovié¢
et al., 2022; Schmidt et al., 2022). However, the effectiveness of these transfer
strategies varies due to the linguistic and typological distances between languages,
necessitating more sophisticated adaptation techniques.

Instead of transferring knowledge from a model that is trained on a high-
resource language, another approach is to leverage the information from multiple
languages simultaneously to learn multilingual representations that can capture the
shared semantic and syntactic properties of the languages. One valuable type of
resource for learning high quality multilingual representations is parallel corpora,
which contain translations of the same text in different languages. These corpora
provide valuable information about the relationships between words in different
languages, enabling models to learn cross-lingual representations that capture the
shared semantic and syntactic properties of the languages which is crucial for many
multilingual NLP tasks such as word alignment and machine translation. Although
parallel corpora have been used extensively in NLP research, it is often overlooked
that most parallel corpora are indeed multi-parallel, containing translations in more
than two languages, exploitation of which can lead to even better quality word
alignments and cross-lingual representations.

Another important issue with modern NLP models is interpretability. The rise
of deep learning in NLP has introduced models that, while delivering state-of-
the-art results, often act as "black boxes." These models provide limited insight
into their decision-making processes, as these models become more sophisticated
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and capable, ensuring their safety and controllability becomes ever more crucial,
especially in sensitive or high-stakes applications. Addressing this, efforts in
making these models more interpretable and transparent continue to be a priority to
ensure their reliability and ethical use (Sydorova et al., 2019; Poerner et al., 2018).

Once models are trained, evaluating their performance is one of the most critical
aspects of NLP research. This is crucial to understand the extent of their capabilities
and to identify their shortcomings in order to develop novel techniques to address
them. Many evaluation benchmarks have been proposed to assess the performance
of NLP models, but they often fail to capture the full range of linguistic phenomena
that models must handle in real-world applications. As a result, the models that
seemingly achieve superhuman performance on these benchmarks often fail to
generalize to more challenging tasks or real-world scenarios. This discrepancy
highlights the need for more comprehensive evaluation resources that can provide
a more nuanced understanding of the capabilities and limitations of NLP models.

1.1.1 Research Questions

In order to have reliable and efficient NLP systems, we need to ensure the high
quality of the learned semantic representations which is a multi-faceted problem.
In this thesis, we aim to address the following research questions, categorized into
4 groups, in order to improve the quality of learned semantic representations and
their applications in NLP:

(i) Transferring to Low-Resource: How can we improve the transfer to low
resource languages? Can we develop more effective strategies to leverage
high-resource languages for better transfer to low-resource languages using
their high resource relatives?

(i) Multiparallelity: How can we use multi-parallel corpora for multilingual
tasks? In particular, is it possible to improve word alignment by using
synergies in multi-parallel corpora?

(iii) Interpretability: How can we learn interpretable word representations? Is it
possible to learn highly interpretable and yet powerful word representations?

(iv) Evaluation: How can we effectively evaluate language understanding ca-
pabilities of language models? Can we design more challenging evaluation
benchmarks that can provide a more nuanced understanding of the models’
capabilities and limitations?
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1.1.2 Approach and Contributions

In this work we tackle some of the important challenges in learning high quality
semantic representations for NLP applications (as identified in Section 1.1.1) by
proposing novel methods and evaluation benchmarks in both monolingual and
multilingual settings.

Within the scope of obtaining high quality representations for low resource
languages, to address (i) we investigate novel transfer strategies. Specifically,
we focus on 5 low-resource Turkic languages: Azerbaijani, Kazakh, Kyrgyz,
Uyghur and Uzbek, and experiment with different transfer strategies by leveraging
Turkish as the high resource relative of the low resource languages. Starting
with the popular multilingual language model XLM-R (Conneau et al., 2020), we
investigate the effectiveness of incorporating the high resource language Turkish
into the (i) continual pretraining and (ii) fine-tuning stages of the model for zero
shot cross-lingual transfer to the low resource languages. Since these low resource
languages lack high quality evaluation resources, we also create new evaluation
benchmarks for these languages by translating popular English benchmarks to
the target languages using machine translation followed by manual curation. We
then evaluate the performance of our transfer strategies on these new evaluation
benchmarks. Our findings show that a related language with higher resources can
facilitate better transfer to low resource languages.

Focusing our attention to resources for learning high quality multilingual
representations, to address (ii), we propose novel methods to exploit multi-parallel
corpora for improving word alignment quality. We start by obtaining bilingual
alignments between pairs of over 80 different languages using the state-of-the-art
word alignment methods and taking bible as the parallel corpus. Then, using the
bilingual alignments between each pair of languages, we construct a graph where
nodes represent words in different languages and edges represent the alignment
between the words. By applying the graph algorithms to this graph, we show that
we can improve the quality of word alignments between languages by leveraging
the information from multiple languages to find missing alignment links. We
further extend this work by proposing a novel method that uses community features
and graph neural networks that can make use of the semantics of the words to
improve the quality of word alignments.

To tackle the challenge of resolving the black box nature of modern NLP mod-
els and have better insights about their nature, in (iii) we focus on interpretability,
specifically interpretability of word representations known as word embeddings.
We propose a novel method for learning interpretable word embeddings by bidi-
rectionally aligning the embedding dimensions with semantic concepts. we make
use of existing lexical resources, namely WordNet (Miller, 1994) and Roget’s The-
saurus (Roget, 2008), to extract any desired number of interpretable and distinct
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semantic concepts as word lists. We, then, using our proposed modification, called
Bilmp, to the training objective of popular word embedding methods, word2vec
(Mikolov et al., 2013a) and GloVe (Pennington et al., 2014), bidirectionally align
the dimensions of word embeddings with semantic concepts during the learning
of the word vectors from corpora. Through comprehensive evaluations, we show
that the proposed method can learn interpretable word embeddings that are aligned
with the desired semantic concepts, while maintaining competitive performance.
We also show that encoding of a concept like gender into one particular dimension
of the word embeddings can help facilitate better removal of gender bias from the
embeddings.

We, finally, shift our focus from enhancing NLP models in various ways to
evaluating their capabilities to tackle (iv). By utilizing the hyponym-hypernym
relationships encoded between the synsets in WordNet, we introduce two new
challenging evaluation benchmarks, Word Definition Language Model Probing
(WDLMPro) and Context-Definition Alignment (CoDA21). WDLaMPro assesses
the model’s understanding of meaning of words by testing whether it can match the
words and their definitions in a challenging setting. CoDA?21 takes a step further
by evaluating the model’s language understanding capabilities by testing whether it
can align the context of a word with its definition without knowing the word itself.
We show that the proposed benchmarks can provide a more nuanced understanding
of the models’ capabilities and limitations compared to existing benchmarks.

1.2 Outline of the Thesis

In this chapter we motivate and introduce our work as well as provide the necessary
background information and foundational notation for the models used in the
subsequent chapters. In Chapter 2, we investigate novel transfer strategies to
low-resource languages by leveraging a related high resource language and we
also introduce a new evaluation benchmarks those low-resource languages. In
Chapter 3 and Chapter 4, we propose novel methods for exploiting multi-parallel
corpora to improve word alignment quality. In Chapter 5, we introduce a novel
method for learning interpretable word embeddings by bidirectionally aligning
the embedding dimensions with semantic concepts. Finally, in Chapter 6 and
Chapter 7, we introduce new evaluation benchmarks for assessing the word and
context understanding capabilities of language models.
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1.3 Background

1.3.1 Mathematical Notation

Scalar quantities are denoted by lowercase italic characters, such as ¢ € R, vectors
are depicted by bold lowercase letters, for example, v € R9, and matrices are
illustrated with bold uppercase letters, such as W € R%*", The i-th component
of a vector v is referred to as v;. The ¢-th row and j-th column of a matrix W
are denoted by W, . and W ; respectively. The element in the ¢-th row and j-th
column of a matrix W is represented by W, ;. The transpose of a vector and a
matrix are represented by x? and X7 respectively. The dot product of two vectors
x and y is denoted either as x”y or x - y. Functions are indicated with lowercase
italic letters, such as f, with f : A — B mapping between the feature space A and
output space B. Pairs like a and b are depicted as tuples (a, b).

1.3.2 Neural Networks and Deep Learning

This section provides a simplified overview of neural networks and deep learning,
focusing on applications related to the thesis. For more comprehensive exploration
and an overall grasp of deep learning, readers are encouraged to refer to LeCun
et al. (2015), and to Goldberg (2016) for insights into deep learning within the
context of Natural Language Processing (NLP).

In machine learning, which neural networks are a subset of, there are three
main learning paradigms: supervised, unsupervised, and reinforcement learning.
Our discussion is framed within the supervised learning paradigm, which under-
pins most of the neural network-based applications and models used in this work.
In supervised learning the model learns from labeled training data, adjusting its
parameters to minimize the error in its predictions. The training data consists of
input-output pairs (x;, y;), where x; represents the input features and y; represents
the corresponding target output; for instance, movie reviews and their correspond-
ing sentiment classes. In a typical supervised learning setting, the dataset is divided
into three parts: training, development (or validation), and test datasets. The model
is trained on the training dataset, its hyperparameters are adjusted based on the
performance on the development dataset, and finally, the model is evaluated on the
test dataset.

Mathematically, the goal of supervised learning can be described as learning a
function f : X — ) that maps an input x € X to an output y € )/, by minimizing
a loss function L(y, f(x)) over the dataset. This process involves optimizing the
parameters 6 of the function f to reduce the difference between the predicted
output f(x; ) and the actual output y across all input-output pairs.
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Neural Networks

At their core, neural networks are computational models inspired by the human
brain’s architecture, designed to recognize patterns from complex data. A neural
network comprises layers of interconnected nodes or neurons, where each connec-
tion has an associated weight. Information flows from the input layer to the output
layer, possibly through multiple hidden layers, transforming the input through a
series of linear and non-linear operations.

Mathematically, neural networks can be described as non-linear mappings
fy : X — ), characterized by a parameter vector ¢ € R*, and are differentiable
with respect to 6. These networks, typically comprising vectors, matrices, or
tensors, involve a series of layers sequentially executing operations on the input
data, transforming it into a form suitable for the desired output.

Neural Network Layers

While there are many important and diverse types of layers in neural networks,
such as convolutional layers (Lecun et al., 1998), recurrent layers (Rumelhart et al.,
1986) and LSTM layers (Hochreiter and Schmidhuber, 1997), here we focus on
essential types that are relevant to the models used in this work.

Embedding Layers For the applications where the input is not in the form of real-
valued vectors, the embedding layer transforms these discrete input tokens from a
vocabulary, typically words, characters or subword units in NLP, into continuous
vectors. Mathematically, it’s represented as a lookup operation in an embedding
matrix E, where E € RV*P. Here, V is the size of the vocabulary, and D is the
dimensionality of the embeddings. For an input token with index 7, the embedding
vector is obtained as e; = E; .. This operation projects sparse, high-dimensional
categorical input features into a lower-dimensional, continuous space, facilitating
subsequent learning tasks in dense format.

Feed-Forward Layers Feed-forward layers, also known as fully connected
layers, consist of linear transformations followed by non-linear activations. Given
an input vector x € R", the output y € R™ of a feed-forward layer is calculated
asy = 0(Wx + b). Here, W € R"™*" is the weight matrix, b € R™ is the
bias vector, and o(+) represents the non-linear activation function such as ReLU
or Sigmoid. Each node in a layer connects to all nodes in the preceding and
subsequent layer, which makes these layers "fully connected".

Attention Layers Originally introduced for neural machine translation (Bah-
danau et al., 2014), the attention mechanism allows the model to focus on different
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parts of the input sequence when predicting an output sequence, essentially weight-
ing the input’s significance dynamically. Consider two sequences of k-dimensional
vectors, q = (qi, ..., Q) and v = (vy,...,v,), where each q; € R¥ and v; € R*
for1 <7< mand1 < j < n. In this context, the elements of q are referred to as
queries and those of v as values. The attention mechanism maps queries q to a new
sequence of vectors w = (w1, ..., w,,) where each w; is derived as a weighted
sum of all vectors v;, specifically:

n
Wi = E i jVj
j=1

where «; ; represents the weight assigned to the j-th value when computing the
new representation for the ¢-th query.

In their ground-breaking “Attention is All You Need" paper, Vaswani et al.
(2017) proposed computing the attention weights using scaled dot-product atten-
tion. Using the matrix notation for the sequences of vectors, queries Q, keys K,
and values V, the attention weights are computed using the formula:

. QK7*
Attention(Q, K, V) = softmax < N ) \%
k
The scaling factor v/dj,, where d, is the dimensionality of the keys, helps prevent the
dot products from growing too large in magnitude, leading to smoother gradients
during training. This scaled attention mechanism ensures that the model can
dynamically prioritize which inputs are most relevant for producing each output
element.

Self-attention, is a variant of the attention layer that allows the model to relate
different positions of a single sequence in order to compute a representation of
the sequence itself. In self-attention, the queries, keys, and values all come from
the same input sequence, transformed into different representations. To allow the
model to jointly attend to information from different representation subspaces at
different positions, the concept of multi-headed attention is utilized. Instead of
performing a single attention operation, the input is linearly transformed multiple
times with different learned projections to queries, keys, and values. This results in
multiple sets of queries, keys, and values, over which scaled dot-product attention
is independently computed. The outputs of these independent attention operations
are then concatenated and linearly transformed into the expected dimensionality.
The multi-headed attention mechanism can be expressed as:

MultiHead(Q, K, V) = Concat(head,, . . ., head;, ) W¢
where each head ¢ is computed as:

head; = Attention(QWY, KWX VW)
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and WO is the output projection matrix.

Each W& ¢ Rimwrxdi WK ¢ Rinxds WV ¢ Rmoaixdv and WO ¢
[RhdvXdmodel are parameters to be learned, with dy, d,, typically being dioge1/ 1. These
projections into dy, d, are meant to decrease the dimensionality for each head,
allowing for efficiency and robustness in learning different aspects of the data in
different subspaces.

Softmax Layers The softmax layer is typically used as the final layer of a neural
network model for classification tasks. It transforms the raw output scores (logits)
from the network into probabilities by taking the exponential of each output and
then normalizing these values by dividing by the sum of all the exponentials.
Mathematically, for a vector of logits z € R” representing K classes, the softmax
function o(z); for each class i is given by:

Zi

e
Eszl e
where z; is the logit corresponding to the i-th class. This transformation ensures

that the output values are non-negative and sum up to 1, making them interpretable
as probabilities.

o(z)i

Training Neural Networks

Training neural networks involves adjusting the weights of connections between
neurons to minimize the loss (or cost) function, which measures the difference
between the actual and predicted outputs. A loss function, L(y, ), measures the
discrepancy between the true labels y and the predicted labels ¢ by the model. The
choice of the loss function depends on the specific task at hand. For example, for
regression tasks, where the goal is to predict continuous values, the Mean Squared
Error (MSE) loss function is commonly used:

N
1
MSE = — i — i)
N;:l(y 9i)

For classification tasks, where the goal is to assign each input into one of
several classes, the Cross-Entropy loss is often used:

N C
1 .
Cross-Entropy = N Z Z Yi.c10g(Jic)
i=1 c=1
where NN is the number of samples, C' is the number of classes, ¥; . is a binary
indicator of whether class c is the correct classification for observation z, and ¥; . is
the predicted probability that observation ¢ is of class c.
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Gradient Descent is the foundational optimization algorithm used in training
neural networks. It adjusts the model’s parameters ¢ iteratively to minimize the loss
function. The model parameters are updated by moving in the negative direction of
the gradient of the loss function with respect to the parameters. The learning rate,
«, 1s a critical hyperparameter that controls the size of the steps taken towards the
minimum of the loss function. The update rule can be represented as:

Qnew - Qold - O{VQL(@)

Choosing the appropriate learning rate is crucial; too small a learning rate leads
to slow convergence, while too large a learning rate can cause the optimization to
overshoot the minimum or even diverge.

Advanced optimization algorithms like Stochastic Gradient Descent (SGD),
Adam, and RMSprop have been developed to address the limitations of the basic
gradient descent algorithm, particularly in terms of speed of convergence and
the ability to escape local minima. These optimizers introduce concepts such as
momentum and adaptive learning rates to improve the training dynamics.

1.3.3 Deep Learning for NLP

When applying deep learning to natural language processing (NLP) tasks, there
are many important details to consider. Here we discuss three key areas that are
most prominent for this thesis. First, we explore fokenization, which involves
breaking down text into individual tokens. Then, we discuss the Transformer
architecture, a type of neural network architecture introduced by Vaswani et al.
(2017). This architecture has been empirically demonstrated to scale very well and
achieve impressive results across a broad spectrum of NLP tasks, as highlighted by
numerous studies (Devlin et al., 2019; Raffel et al., 2020; Brown et al., 2020). We
specifically focus on the transformer architecture as it currently dominates the field
of NLP! and is the basis for many of the models used in this work.

1.3.3.1 Tokenization

When feeding text data into neural networks, a common first step, even before
the embedding layer, is to tokenize the text into smaller units, called tokens. This
process, known as tokenization, is crucial for transforming raw text into a structured
form that can be processed by the model. Tokenization techniques can be broadly
classified into three categories: word, character, and subword tokenization. Each
approach has its strengths and has been applied successfully in various NLP tasks.
Below we discuss the techniques of tokenization in more detail.

!Transformers is becoming the dominant architecture in other Al fields as well as of the writing
of this thesis

10
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Word-Level Tokenization Word-level tokenization involves segmenting text
into words based on spaces and punctuation. This technique is straightforward
and intuitive, aligning well with the human understanding of text. However, one
important problem with word tokenization is it that it does not allow the model
to leverage the apparent similarities in form with other terms. For instance, when
functioning at the word level, a neural network cannot deduce the meanings of
terms like "bakery" or "advertisement" from the words "bake" and "advertise"
since the model processes them completely independently. Consequently, models
that employ word-level tokenization fail to provide meaningful interpretations to
words not encountered during their training, as they lack a method to assimilate
information about these unfamiliar words. To address this, such models typically
employ a unique symbol (such as (UNK)) to denote all unknown terms. Moreover,
word tokenization scales poorly with the size of the vocabulary, as the number
of unique words in a language can be vast, especially in morphologically rich
languages, leading to computational inefficiencies.

Character-Level Tokenization Character-level tokenization decomposes text
into individual characters. This approach is language-agnostic and allows for a
smaller vocabulary size, as the number of unique characters is significantly smaller
than the number of unique words. Character-level tokenization also allows models
to handle rare or unseen words by breaking them down into familiar characters,
thus mitigating the risk of encountering out-of-vocabulary (OOV) words. However,
character-level tokenization can lead to models that require more computational
resources, as the sequences they process are significantly longer than word-level
sequences.

Subword-Level Tokenization To address the limitations of the word and character-
level tokenization, various subword tokenization techniques, such as Byte Pair
Encoding (BPE) (Sennrich et al., 2016), WordPiece (Wu et al., 2016), and Sen-
tencePiece (Kudo and Richardson, 2018), have been developed. The key idea
behind subword tokenization is to segment words into smaller units using the
frequency of character sequences such that the frequent words are kept intact while
the rare words are broken down into subword units (or into individual characters
in the worst case). This technique is shown to be effective in handling rare and
unseen words, while also reducing the size of the vocabulary, thus improving the
computational efficiency of the model.

1.3.3.2 Transformers Architecture

Before the advent of transformers, the dominant architectures in NLP were recur-
rent neural networks (RNNs) (Rumelhart et al., 1986), long short-term memory

11
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networks (LSTMs) (Hochreiter and Schmidhuber, 1997), and gated recurrent units
(GRUs) (Cho et al., 2014). These models processed data sequentially, which
inherently limited parallelization, making training on large datasets computation-
ally expensive. Moreover, RNNs and their variants struggled with long-range
dependencies due to vanishing or exploding gradient problems.

To address these limitations, researchers experimented with various attention
mechanisms, initially as a supplementary component to enhance RNNs (Bahdanau
et al., 2014). The transformer model (Vaswani et al., 2017) was the first to success-
fully use a self-attention mechanism as the central architecture, entirely replacing
recurrent layers with a fully attention-based approach. Although it has been ini-
tially proposed for machine translation, the transformer architecture has since been
adapted and extended to a wide range of NLP tasks, achieving state-of-the-art
performance on many benchmarks (Devlin et al., 2019; Raffel et al., 2020; Brown
et al., 2020) This novel approach has not only enabled models to capture long-range
dependencies more effectively but also significantly improved training time by
allowing for greater parallelization and scalability.

The transformer model is based on a simple yet powerful architecture con-
sisting of an encoder that transforms the input tokens to contextualized vector
representations using self-attention and a decoder that generates the output se-
quence token-by-token by attending to the encoder’s output as well as its own
previous outputs. Figure 1.1 illustrates the transformer architecture.

Transformer Encoder The encoder consists of a stack of L blocks (also referred
as layers). These blocks have an identical structure, each containing two sub-
layers: a multi-headed self-attention mechanism and a position-wise feed-forward
neural network. However, the parameters in each block are unique and learned
independently. Let’s denote the input to the I-th encoder block as H! € R"*¢,
where n is the sequence length and d is the dimensionality of each vector in the
sequence. The output of the I-th encoder block is another matrix H*! ¢ R"*¢,
which becomes the input to the [ + 1-th encoder block.

Inside an encoder block, the input H is first passed through a multi-headed
self-attention mechanism, which allows the model to weigh the importance of each
token in the sequence when computing the representation of each token. Then,
a residual connection (He et al., 2015) combines the output of the self-attention
mechanism with the input to the block, followed by layer normalization (Ba et al.,
2016). Afterward, the output is passed through a feed-forward neural network,
which consists of two linear transformations with a non-linear activation function in
between. Again, the output of the feed-forward network is combined with the input
to the block using a residual connection and normalized using layer normalization,
which creates the final output of the encoder block.

12
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Figure 1.1 — The Transformer architecture. Figure taken from Vaswani et al.

(2017).
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Mathematically, if we denote the function representing the entire encoder block
as f;, we can represent the transformation from input to output for the [-th encoder
as:

H'*' = fi(H)

For the first encoder block, the input H® would typically be the embeddings of
the input tokens (added with positional encodings), and the output H! would feed
into the next block. Hence, we can describe the chaining of the encoder blocks in a
transformer as:

H® = f,(HEY)

where L is the number of encoder blocks in the transformer. HX) is the final
output of the encoder, which contains the contextualized representations of the
input tokens.

Transformer Decoder The transformer decoder is similar to the transformer
encoder but has two key differences. First, the decoder uses a masked self-attention
mechanism in its self-attention layer to prevent tokens from attending to future
tokens during training by setting the attention weights to zero for future tokens.
Second, the decoder has an additional multi-headed attention mechanism that
attends to the encoder’s output, referred as cross-attention, allowing the decoder
to focus on different parts of the input sequence when generating the output
sequence. Note that the cross-attention is not used in decoder only models since
they do not have access to the encoder’s output. Transformer decoder contains m
decoder blocks followed by a linear transformation and a softmax layer to obtain a
probability distribution over the target vocabulary in order to predict the next token
in the output sequence.

Building on the original transformers architecture, many works have proposed
variations and extensions to the different parts of the architecture to improve their
efficiency and address some of their limitations. Parameter sharing (Takase and
Kiyono, 2023), sparse and efficient attention mechanisms (Dao et al., 2022; Liu
et al., 2023, 2022), efficient training and inference strategies (Lepikhin et al., 2021;
Yuan et al., 2024) are some of the main modifications to improve the transformer
architecture.

Positional Encoding Since, unlike recurrent neural networks (RNNs) or long
short-term memory networks (LSTMs), transformers do not inherently process

14
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data in sequence, they require a mechanism to incorporate the order of the input
data. To address this, transformers use positional encodings (Gehring et al., 2017),
which are vectors added to the input embeddings to provide information about the
position of tokens in the input sequence. These vectors can be computed in various
ways. In the original transformers paper, Vaswani et al. (2017) proposed using a
sinusoidal function for generating these vectors, with different frequencies for each
dimension. The mathematical formulation is as follows:

For position pos and dimension 2¢ within the vector (where ¢ is an integer), the
positional encoding is:

PE(po&QZ‘) = sin (—pOS oA )
10000 ¢modet

And for dimension 27 + 1:

pos
PE(pos,2i+1) = COS <—22)
10000 Fmodet

where:

* PE(,s2i) and PE,, »;11) are the positional encoding values for even and
odd dimensions, respectively.

* pos is the position of the token in the sequence.

* dmoder 18 the dimension of the token embeddings and positional encoding
vectors.

* i represents the current dimension.

This formulation ensures that each position generates a unique encoding. More-
over, because the function is periodic, it allows the model to generalize to sequence
lengths unseen during training. However, many of the transformer-based models
used in this work, such as BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and GPT-2 (Raffel et al., 2020), employ positional encodings that are randomly
initialized and learned during training, rather than using the sinusoidal function
used in the original transformer model.

1.3.4 Representation Learning for NLP

Natural Language Processing aims to develop programs that allow machines to
understand human languages, which is challenging due to the unstructured na-
ture of language with its multiple granularities (e.g., words, phrases, sentences,
documents), tasks (e.g., sentiment analysis, translation), and domains (e.g., news,
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literary works). Representation learning offers a solution, allowing for the inte-
gration of various linguistic elements, tasks, and domains into a unified semantic
vector space. This approach not only supports more efficient and robust NLP sys-
tems by facilitating knowledge transfer across different levels, tasks, and domains,
but also enhances the overall effectiveness of NLP performance.

In this work we focus on methods and models that learn representations for
words or subword units, using a self-supervised learning approach where the model
learns from the data itself without requiring labeled data.

1.3.4.1 Static Representations

Static representations, also known as static embeddings, are fixed-size vectors that
represent words or subword units in a continuous vector space. These representa-
tions are pretrained on large corpora in a self-supervised manner by utilizing the
word co-occurrences based on the distributional hypothesis (Harris, 1954; Firth,
1957), which posits that words that appear in similar contexts have similar mean-
ings. Although many different static embedding methods have been proposed, here
we limit our discussion to Word2Vec (Mikolov et al., 2013b), GloVe (Pennington
et al., 2014), and FastText (Bojanowski et al., 2017), the three methods that are
also most relevant to our work.

Word2Vec Word2Vec (Mikolov et al., 2013b) is a popular method for learning
vector representations of words in a continuous vector space. The two main
architectures used in Word2Vec are the Continuous Bag of Words (CBOW) and
Skip-Gram models. Here, we will focus on the mathematical formulation of the
Skip-Gram model, which predicts context words given a target word and is more
widely used due to its better performance on many tasks.

Given a sequence of training words wy, ws, . . . , wr, the objective of the Skip-
Gram model is to maximize the average log probability:

T

1

T Z Z log p(wy.|w:)

t=1 —c<j<c,j#0

where c is the size of the training context (which can be asymmetric). The proba-
bility p(w;|w;) of observing a context word w;, ; given the current word wy is
defined using the softmax function:
exp(vl o Uw ;)

plwolwr) =
(wolr) = S e (vTuw)

Here, u,, and v,,, are the "input" and "output" vector representations of the
words w; and wp, respectively. W is the vocabulary size, and v,, is the output
vector for any word w.
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The objective function involves a computationally expensive calculation of the
denominator in the softmax function over the entire vocabulary for each training
instance. To address this, techniques such as negative sampling or hierarchical
softmax are used.

Negative sampling modifies the objective function by sampling negative words
(words not in the context). For each pair of words (w;, wo), where wg is a context
word of w;, we sample k£ negative words not in the context. The modified objective
function is:

k
log O'(Vz;ouwl) + Z EuwinPo(w) [10g (= Ve Wy, )]
i=1

where o(z) = m is the sigmoid function, and P,(w) is a noise distribution,

typically chosen as the unigram distribution raised to the 3/4 power.

During training, for each word w; in the corpus, the model updates the vectors
u,, and v, for each context word w;, ; and each negative sample by ascending
on the gradient of the log probability of the correct classification of w,;; as a
context word of w; and the negative samples as non-context words.

GloVe GloVe (Pennington et al., 2014) is another widely used static embedding
method that learns word representations by factorizing the word co-occurrence
matrix. One key difference of the GloVe method from word2vec is that it uses
global word-word co-occurrence statistics from a corpus, contrary to the Word2Vec
which uses local context information within a sliding window. GloVe model is
trained to learn word vectors such that their dot product equals the logarithm of
the words’ probability of co-occurrence. Given a corpus, we first construct a
co-occurrence matrix X where X, ; is the number of times word j occurs in the
context of word 7. Let w; and w; be the word vectors for words ¢ and 7, respectively.
Additionally, each word 7 has a bias b; and each word j has a bias b;.
The GloVe model minimizes the following objective function:

v

ij=1

where V' is the vocabulary size, and f is a weighting function that assigns lower
weight to rare and frequent co-occurrences. A common choice for f is:

flz) = {(m/xmax)a if < Tmax

1 otherwise

with a = 0.75 and &,y typically set to 100.

17



1. Introduction

FastText FastText (Bojanowski et al., 2017) is an extension of the Word2Vec
model which incorporates subword information by considering character n-grams
in addition to whole words. This approach was proposed to capture the morpholog-
ical structure of words, especially useful for languages with rich morphology and
for handling out-of-vocabulary (OOV) words.

For a given word w, FastText considers not only the word itself but also its
constituent character n-grams. Let GG, be the set of n-grams for word w. For
example, for the word "cat" and n-gram sizes of 3, G, might include the n-grams:
"<ca", "cat", "at>" (where "<" and ">" are boundary symbols indicating the start
and end of the word).

Each n-gram g has an associated vector z, € R?. The word vector v,, for the

word w is computed as the sum of the vectors of its n-grams:

Vo = E Zg

9€Gw

FastText uses a variant of the skip-gram model, where it predicts context words
based on the current word.

1.3.4.2 Contextualized Representations

One of the main shortcomings of static embeddings is that they do not capture the
context in which a word appears, leading to the same representation for a word
regardless of its meaning in different contexts. For instance, the word “bank" has
different meanings in the context of “river bank" and “financial bank", but static
embeddings would assign the same vector to both instances, failing to capture the
word’s contextual meaning. To address this limitation, contextualized embeddings
has been proposed by the ELMo (Embeddings from Language Models) model (Pe-
ters et al., 2018) where language model pretraining is used to learn contextualized
representations of words. The main idea behind the language model pretraining is
to train a model to predict the next word in a sequence given the previous words,
which forces the model to obtain a deep knowledge and understanding about the
syntax and semantics of the language. This knowledge is stored in the model’s
parameters, which can generate context dependent representations for words that
can be transferred to downstream tasks. Although the learned contextual representa-
tions were kept fixed after the pretraining phase in ELMo, the models that followed,
such as ULMFiT (Howard and Ruder, 2018), GPT (Radford and Narasimhan,
2018), and BERT (Devlin et al., 2019) popularized the approach of fine-tuning
these representations on the downstream tasks using labelled task specific data,
which further improved the performance of the models. Since the self-supervised
language model pretraining only requires unlabelled textual data, which is abun-
dant and easy to collect for most languages, the approach allows for the transfer
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of knowledge from large-scale pretraining to a wide range of downstream tasks,
making it a powerful tool for NLP.

Below we discuss the main language model pretraining methods that have been
proposed in the literature and provide specific examples of models that have been
developed based on these methods.

Masked Language Modeling

In order to learn contextualized representations of words by using their contexts
on both sides of the word, Devlin et al. (2019) introduced the masked language
modeling (MLM) objective. The key idea behind this objective is to mask a subset
of the input tokens and train the model to predict the masked tokens based on
the surrounding tokens. The masking is done by replacing some tokens in a
sequence with a special token (i.e., [MASK]) and training the model to predict
the original tokens using the contextualized representations of the special masked
tokens. Although different masking ratios have been suggested, the most common
choice is to mask 15% of the tokens in the input sequence as proposed by Devlin
et al. (2019).

Mathematically, given a sequence of tokens s = (sq, 9, .. ., S,,) Where each
token s; is an element from a vocabulary V), a subset of tokens in s is randomly
selected and replaced with a special mask token. Let m denote the masked version
of s, where any token s; that is masked is replaced by the mask token.

Each token m; in m is mapped to a vector e; € R? using an embedding
function emb : V — R? Thus, e; = emb(m;). A neural network model (e.g.,
transformer encoder) processes the sequence of embeddings (ej, es,...,e,) to
produce contextualized representations (hy, hy,...  h,), where h; € R For
each masked token m;, the model predicts the original token s; using a prediction
function f (e.g., a linear layer followed by a softmax function). The function f
maps the contextualized representation h; to a probability distribution over the
vocabulary V, i.e., f(h;) € RV, where |V| is the size of the vocabulary.

The model is trained to minimize the loss between the predicted probability
distribution and the actual token. Typically, this is done using cross-entropy loss
(see Section 1.3.2). The parameters of the embedding function emb, the neural
network, and the prediction function f are optimized to minimize the total loss
over all masked tokens in a training dataset.

Masked language models in general use the encoder part of the transformer
architecture to generate contextualized representations of the tokens in the input
sequence which enables them to utilize both left and right context of the tokens to
generate the representations. The obtained contextual representations are shown to
perform well for many classification tasks, especially after task specific finetuning
of the models. However, models trained with masked language modeling are not
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well suited for text generation tasks as they do not have the autoregressive property
to generate text token by token. Below we discuss some of the popular models that
have been developed based on the masked language modeling objective.

BERT BERT (Bidirectional Encoder Representations from Transformers) (De-
vlin et al., 2019) is the first model to introduce the masked language modeling
objective for pretraining transformer models. However, it contains some differ-
ences from the pure masked language modeling objective described above. First,
among the input tokens that are selected for masking, BERT only replaces 80%
of them with the mask token while 10% of them are replaced with a random
token from the vocabulary, and remaining 10% are left unchanged. Moreover,
in addition to the masked language modeling objective, BERT also uses a next
sentence prediction (NSP) objective where the model is trained to predict whether
two sentences are consecutive in the original text. This is done by adding a special
classification token (i.e., [CLS]) at the beginning of each input sequence and a
binary classification head on top of the contextualized representation of this token
to predict whether the second sentence follows the first sentence in the original text.
A special token [SEP] is used to separate the two sentences in the input sequence.
During finetuning on a classification task, the output of the [CLS] token is used as
the representation of the entire input sequence and fed into a task-specific classifier.
Bert is pretrained on combination of a Wikipedia dump and the BooksCorpus (Zhu
et al., 2015) as two variants: BERT-base and BERT-large, with 110M and 336M
parameters, respectively.

RoBERTa RoBERTa (Robustly Optimized BERT Pretraining Approach) (Liu
et al., 2019) is an extension of BERT that modifies the training procedure and
hyperparameters to improve performance. Key differences of RoBERTa from
BERT include: (i) removing the NSP objective which is found to be not helpful, (ii)
using dynamic masking during training instead of static masking used by BERT,
and (ii1) training with larger batches for longer on more data. It is shown that
RoBERTa significantly outperforms BERT on many benchmarks thanks to these
modifications.

XLM-R XLM-R (Cross-lingual Language Model - ROBERTa) (Conneau et al.,
2020) is a multilingual variant of ROBERTa that is pretrained on a large corpus of
100 languages without using any parallel data.

ALBERT ALBERT (Lan et al., 2020) is a version of BERT that aims to reduce
model size and increase training speed without significantly affecting performance.
The key differences of ALBERT from BERT include: (i) using a factorized em-
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bedding parameterization that reduces the size of the vocabulary, (ii) sharing
parameters across layers which reduces the memory footprint of the model, and
(iii) using a sentence order prediction (SOP) objective instead of the NSP objective
used by BERT.

DistilBERT DistilBERT (Sanh et al., 2019) is a smaller, faster, and lighter version
of BERT. It has about 40% fewer parameters than BERT, runs 60% faster, and
retains over 95% of BERT’s performance in most tasks. In order to achieve this,
DistilBERT is trained using knowledge distillation where it learned to mimic the
behavior of a larger teacher model (BERT) during training.

Sequence-to-Sequence Language Modeling

The goal of Sequence to sequence (seq2seq) language modeling is to transform
a given sequence of elements (words, characters, etc.) in one language into another
sequence in the same or a different language. In general, seq2seq models include
both the encoder that processes the input sequence and the decoder that generates
the output sequence. Due to their architecture, seq2seq models are well suited for
both classification and generation tasks, making them versatile for a wide range of
NLP tasks. Before the introduction of pretraining by Devlin et al. (2019), seq2seq
models, including the original transformers model (Vaswani et al., 2017), were
commonly trained directly on supervised datasets for specific tasks like machine
translation, summarization, and question answering.

BART After the popularization of the self-supervised pretraining approach with
BERT, Lewis et al. (2020) introduced BART, a denoising autoencoder for pretrain-
ing sequence-to-sequence models. Bart is trained by corrupting the input sequence
with an arbitrary noising function and then training the model to reconstruct the
original sequence. The key difference from masked language modeling is that the
noising function can be more complex and usually involves sequences of tokens
rather than individual tokens. In their work, Lewis et al. (2020) experimented with
various denoising strategies and found the best performing strategies to be: (i)
randomly shuffling the order of the input sentences, and (ii) replacing spans of text
with a single mask token.

TS5 The T5 (Text-to-Text Transfer Transformer) model (Raffel et al., 2020) is a
popular seq2seq model that is pretrained by replacing spans of text with a single
mask token and training the model to generate the original text. In addition to the
unsupervised pretraining on large unlabeled corpora, TS is also trained on multiple
supervised datasets where the tasks are converted to a text-to-text format to enable
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the model to perform a wide range of tasks using the same architecture.

Autoregressive Language Modeling

Consider a sequence of words w = (w1, ws, . . ., wr), where each w; is a word
from a vocabulary V. The goal of autoregressive language modeling is to estimate
the probability of the sequence w, which can be decomposed using the chain rule
of probability as follows:

P(w) = P(wq)P(we|wy) P(ws|wy, ws) - - - P(wr|wy, ws, ..., wr_q)
Each term P(w;|wq, ws, ..., w,_1) represents the conditional probability of the
word w; given all the previous words wy, ws, . .., w;_1. An autoregressive language

model, such as LSTMs (Peters et al., 2018) or a transformer decoder (Radford and
Narasimhan, 2018; Radford et al., 2019), is trained to maximize the likelihood of
the next word in the sequence given the previous words. The task of predicting
the next word in the sequence is typically done by using a softmax function over
the vocabulary to predict the probability distribution of the next word, where the
cross-entropy loss is used to train the model. The next word prediction task makes
the autoregressive language models inherently suitable for text generation tasks
since they match the pretraining objective of the models. One disadvantage of
autoregressive language modeling is that the contextual representations of a word
can only incorporate the left context of the word, which may limit the model’s
ability to capture the full context of the word. In order to address this, Peters
et al. (2018) proposed training one left-to-right and one right-to-left model and
combining their output representations to obtain a better contextual representation
of the word.

Most of the current state-of-the-art large language models are based on autore-
gressive language modeling. Below we discuss some of the popular autoregressive
language models that have been developed before the rise of large language models
and we investigate the recent large language models in the next section.

XL-Net XL-Net (Yang et al., 2019) is a language model that is based on Trans-
former decoder and trained using an autoregressive language modeling objective.
However, in order to make use of the contexts bidirectionally, XILNet uses a per-
mutation language modeling objective where the model is trained to predict the
next word in a sequence given the previous words, but the previous words are not
necessarily the words that appear before the current word in the sequence. Instead,
the model is trained to predict the next word given a permutation of the input
sequence, which allows the model to capture bidirectional context information.
Yang et al. (2019) showed that XLLNet outperforms BERT on many benchmarks by
using this permutation language modeling objective.
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GPT and GPT-2 Radford and Narasimhan (2018) first introduced the gener-
ative pretraining in their work where they pretrained the first GPT model on
BooksCorpus (Zhu et al., 2015) and then finetuned on several downstream tasks.
Later, Radford et al. (2019) extended and popularized the generative pretraining
approach with the GPT-2 model, which is pretrained on a larger dataset and showed
state-of-the-art performance on many benchmarks.

1.3.4.3 Large Language Models

The current landscape of NLP is dominated by large language models (LLMs),
which are fundamentally based on the transformer architecture and pretrained using
self-supervised learning on massive corpora. While there is no clear boundary
defining how many parameters constitute a large language model, models with at
least several billion parameters are generally considered large. LLMs are created
by scaling existing transformer models and their pretraining corpora to larger sizes.
GPT-3 (Brown et al., 2020), developed by OpenAl, is often considered the first
breakthrough in the realm of large language models, featuring an unprecedented
175 billion parameters. Below we discuss important topics related to the training
and application of large language models. Although these topics are not closely
related the most of the work done in this thesis, they are important to understand the
current landscape of NLP and the challenges and opportunities that large language
models, such as chatGPT which is utilized in this thesis, bring to the field.

Scaling Laws One of the main motivations for scaling the size of language
models is the observation of scaling laws in machine learning, where increasing
the model size and the amount of training data leads to improved performance on
various tasks. This phenomenon is often referred to as the "bitter lesson" in Al
research (Sutton, 2019), where it is observed that larger models trained on more
data tend to perform better, regardless of the specific architectural choices. In
their work Kaplan et al. (2020) showed that as the language models get larger,
in addition to becoming more performant, they also become more data-efficient,
requiring fewer examples to reach a certain level of performance.

In-Context/Few-Shot Learning One of the abilities that large language mod-
els have demonstrated is in-context or few-shot learning. In-context or few-shot
learning is a paradigm where the model leverages a few examples to understand
and execute new tasks, effectively learning from the context provided in the in-
put prompt. This capability is revolutionary because it bypasses the traditional
machine learning requirement of training on large, labeled datasets for each new
task. For example, GPT-3 can generate summaries, answer questions, or translate
languages with minimal to no specific training on these tasks, relying instead on its
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general pretraining. The effectiveness of in-context learning is primarily due to
the distributed representation of knowledge across the model’s many parameters,
which allows it to flexibly apply this knowledge to a wide range of tasks. However,
this method is not without limitations, as the quality of the outcomes can vary
significantly based on how the prompts are structured and the specific examples
provided (Koksal et al., 2023).

Prompting Since the language models are mainly interacted with using text
prompts, the quality of the prompts is crucial for obtaining the desired outputs
from the models. Many studies showed that the output of the language models
can be significantly influenced by the choice of the prompts (Chen et al., 2023;
Gonen et al., 2023; Sclar et al., 2023), and particular prompting strategies such as
chain-of-thought prompting (Wei et al., 2023; Wu et al., 2023) can significantly
improve the performance of the models on various tasks.

Instruction Tuning Language models that are trained only on large corpora
often struggle with following specific instructions or generating outputs that align
with intentions of the humans who interact with them. This is because a model
that is trained with next word prediction objective on generic text data learns the
most likely continuation for its prompt based on the statistical patterns in the
data, and web text is not structured in a way that is conducive to following specific
instructions. To address this issue, instruction tuning is proposed which is a method
where the model is fine-tuned on a dataset structured around following specific
instructions. Several studies focused on creating instructions to solve common
NLP tasks (Wei et al., 2022; Sanh et al., 2022; Wang et al., 2022; Honovich
et al., 2023) and these instructions are usually used to finetune large sequence-
to-sequence language models such as T5 (Raffel et al., 2020) or BART (Lewis
et al., 2020). Several other studies explored instruction-based approaches in more
general settings (Ouyang et al., 2022; Wang et al., 2023; Koksal et al., 2024); others
explored instruction-based approaches in more general settings (Li et al., 2023a;
Sclar et al., 2023; Ouyang et al., 2022). Although instruction tuning significantly
enhanced the practical usability of LLMs in real-world applications, where users
can interact with the model using natural language instructions without needing
to understand the underlying model complexities or having to provide numerous
examples, the models are still shown to be sensitive to how the users phrase their
instructions (Li et al., 2023a; Sclar et al., 2023).

Reinforcement Learning from Human Feedback As the large language models
become more capable, it became increasingly important to ensure that the outputs
generated by these models are aligned with human values and preferences, in order
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to prevent harmful or inappropriate content from being generated. Reinforcement
Learning from Human Feedback (RLHF) is a technique proposed by Christiano
et al. (2017) in order to solve complex RL tasks without access to the reward
function by providing feedback in the form of human preferences between pairs
of actions or outputs for only a small fraction of the agent’s interactions. This
technique is applied to LLMs in (Ouyang et al., 2022) by first training a reward
model to predict human preferences between pairs of model outputs and then
utilizing Proximal Policy Optimization (PPO) Algorithms (Schulman et al., 2017)
to update the model’s parameters based on the reward model’s predictions. RLHF
became a popular method to improve the safety and appropriateness of LLM
outputs. Later techniques such as Direct Preference Optimization (DPO) (Rafailov
et al., 2023) are proposed to further improve the efficiency and stability of RLHF
by directly optimizing the model’s outputs to match human preferences.

LLM Landscape The landscape of large language models is rapidly evolving,
with new models being introduced frequently, each pushing the boundaries of model
size, performance, and capabilities. In recent years, we witnessed a significant shift
from open-source models to proprietary, closed-source systems where the access
to the models is only available through APIs. This transition is largely driven by
the financial incentives because of the escalating costs and complexities associated
with training state-of-the-art models, as well as the competitive advantage that
these models provide to the organizations that develop them.

Another important trend in the LLM landscape is the increasing focus on the
high quality data, both for the pretraining and supervised fine-tuning of the models
as these models rely heavily on the diversity, size, and accuracy of their training
datasets to generate reliable and high quality outputs. While some companies
hire human annotators to create high-quality datasets as well as collecting human
feedback (Stiennon et al., 2020), others rely on semi-supervised approaches to
create useful finetuning datasets from publicly available internet data (Koksal et al.,
2024). There is also an increasing focus on investigating to what extent specific
synthetic data that is generated by the large language models can be used to train
newer models more efficiently (Mitra et al., 2023; Li et al., 2023b).

Looking towards the future, the field of LLMs is poised to evolve into increas-
ingly multimodal domains, integrating text with other data types such as images,
videos, and audio. This evolution will enable more comprehensive and interactive
Al systems, capable of understanding and generating information across various
forms of media, thereby expanding their applicability in real-world scenarios
and enhancing user interactions. As these multimodal capabilities advance, they
promise to redefine the boundaries of what Al systems can achieve, making them
more versatile and integral to digital communication and information processing.
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Popular LLM Families

As the LLM landscape is rapidly evolving, new models are introduced fre-
quently, each pushing the boundaries of model size, performance, and capabilities.
Below we discuss some of the popular LLM families that have been developed in
recent years.

GPT OpenAl continued their scaling of generative transformer models GPT and
GPT-2 with their 175 billion parameter GPT-3 model (Brown et al., 2020), which
demonstrated and popularized the in-context learning capabilities of large language
models. However, the interest in LLMs within NLP community, as well as general
public, increased drastically after the release of GPT-3.5-Turbo (also referred as
ChatGPT), that is followed by the release of GPT-4 (OpenAl et al., 2024). Not
much is known (beyond rumors and leaks) about the training data, training strategy
and model size of these commercial models and they can only be accessed through
APIs or OpenAl’s website?. As of today, GPT-4 versions remain one of the best
performing LLMs in the field.

Gemini One of the leading models in the LLM landscape is the Gemini series
of model developed by Google Research (Team et al., 2024) that succeeded their
PALM series of large language models (Chowdhery et al., 2024). These models
are trained to be multimodal from the start, and their largest versions are deemed
to be compatible with the GPT-4 models. Similar to the GPT models, the Gemini
models are also not open source and not much is known about their training data
and strategies.

Claude Another group of popular large language models that are considered to
be on par with GPT-4 and Gemini models are the Claude series models developed
by Anthrophic. The largest version of their new 3 series models, Claude-3-Opus,
is arguably the strongest model in the field as of the writing of this dissertation as
shown by its superior performance on various benchmarks (Anthropic, 2024).

Llama Contrary to the models mentioned above, Llama series models from
Meta (Touvron et al., 2023) are open-source and can be accessed through Hugging
Face’s model hub®. The most current version of the Llama models, Llama-3, is
available in various sizes (8 and 70 billion parameters) that are trained on 10 Trillion
tokens using publicly available data. The Llama models are often fine-tuned by
other researchers on various tasks and datasets to improve their performance and

https://chat.openai.com/
3https://huggingface.co/models
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instruction following capabilities.

Mistral and Mixtral Mistra-7b (Jiang et al., 2023) is a 7 billion parameter
open source model developed by MistralAl that is shown to perform better than
the comparable sized Llama models. Mistral Al also released Sparse Mixture of
Experts (SMoE) language model called Mixtral (Jiang et al., 2024) that allows for
more efficient inference thanks to Mixture of Experts architecture.

1.3.4.4 Graph Neural Networks

Graph Neural Networks (GNNs) (Scarselli et al., 2009) are a class of deep learning
models designed to perform inference on data represented as graphs. They are par-
ticularly effective in capturing the dependencies of graph-structured data through
the use of node features and edge relationships. At a high level, GNNs are useful
for: (1) Node classification, where they determine the category of a node based
on its features and the graph structure; (i1) Link prediction, where they predict
the existence/likelihood of an edge between two nodes; (iii) Graph classification,
where they classify entire graphs based on their structure and node features; and
(iv) Node regression, where they predict a continuous value for a node based on
its features and the graph structure. In NLP, for a large variety of problems, such
as semantic parsing (Sorokin, 2021), text classification (Zhang et al., 2022; Gu
et al., 2023) and information extraction (Yu et al., 2021), data can be naturally
represented as graphs, making GNNs a powerful tool for these tasks.

GNNs update the representation of a node by aggregating features from its
neighbors, iteratively refining node features to capture both local and global graph
structures. Although there are many different types of GNNs, such as Graph
Attention Networks (GATs) (Velickovi€ et al., 2017), GraphSAGE (Hamilton et al.,
2017), and Dynamic Graph Networks (DyGNN) (Trivedi et al., 2019), here we will
focus on the most popular type of GNNs, Graph Convolutional Networks (GCNs)
(Kipf and Welling, 2017), which is also most relevant to this dissertation.

Graph Convolutional Networks GCNs generalize the convolution operation
from traditional data (like images) to graph data. They aggregate information from
a node’s neighbors using a convolution-like operation. This helps in learning a
node representation that captures both its features and the topology of the graph.
The basic operation in a GCN involves updating the node features by aggregating
features from their neighboring nodes, typically using the following formula:

H = (D 2AD :HOWD)

where H® is the matrix of node features at layer [, W is the weight matrix
for layer I, A = A + I is the adjacency matrix of the graph A with added self-
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connections I, D is the degree matrix of A, o 1s a non-linear activation function,
such as ReLLU.

One specific type of graph convolutional network that is used in this work is
Variational Graph Auto-Encoders (VGAEs) (Kipf and Welling, 2016) which uses
variational auto-encoders to generate latent representations of nodes in a graph.
VGAEs are particularly useful for tasks like link prediction and node clustering.
The VGAE consists of two parts: an encoder and a decoder. The encoder maps
nodes to a latent space:

Z=uX,A)+c(X,A)0¢€
where:

* 1(X,A) and o(X, A) are the mean and standard deviation of the latent
variables, computed by GCNs,

* ¢ is a random noise vector, € ~ N(0, 1),
* © denotes element-wise multiplication.

The decoder reconstructs the graph’s adjacency matrix from the latent repre-
sentations:
A =0(Z2Z")

where o is typically the sigmoid function, ensuring the output values are between
0 and 1, suitable for reconstructing a binary adjacency matrix.

VGAEs are trained by maximizing the variational lower bound, which involves
a reconstruction loss (e.g., cross-entropy between A and A) and a regulariza-
tion term derived from the Kullback-Leibler divergence between the approximate
posterior of the latent variables and their prior distribution.

1.3.5 Evaluation of NLP Models

Evaluation of NLP models is a crucial aspect of the research process, as it provides
insights into the model’s performance, generalization capabilities, and suitability
for specific tasks. Availability of challenging benchmarks is essential for the
progress of the field, as it allows for fair comparison of different models and
methods. Here, we distinguish a task, a dataset and a benchmark as follows:

* A task is a specific problem that the model is required to solve.

* A dataset is a collection of examples that are used to train, validate, and test
the model on a specific task.
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* A benchmark is a standardized evaluation protocol that defines the task,
the dataset, the evaluation metric, and the baseline models that are used to
compare the performance of the models. A benchmark can often include
multiple datasets and tasks. Several benchmarks can also be combined to
form a larger benchmark that cover a wide range of tasks and datasets.

Two main evaluation approaches for NLP models (or machine learning models
in general) are intrinsic and extrinsic evaluation. Intrinsic evaluation assesses the
performance of a model based on the model’s accuracy in executing specific tasks
that are fundamental to the model itself, without considering the final application
in which the model will be used. Examples of intrinsic evaluation tasks for NLP
include measuring the quality of word embeddings, evaluating the performance
of a language model on a language modeling task, or probing of language model
representations for linguistic properties. The main advantage of intrinsic evaluation
is that it directly measures the capabilities and limitations of specific components
of an NLP system, providing detailed insights into the model’s strengths and
weaknesses in controlled settings. However, intrinsic evaluation may not always
correlate well with the model’s performance on real-world tasks, as it does not
consider the complexity and variability of the tasks that the model will encounter
in practice (Chiu et al., 2016). Extrinsic evaluation, on the other hand, assesses
the model’s performance on downstream tasks that are relevant to real-world
applications. It evaluates how well the model contributes to the overall goal
of a larger system. Examples include tasks like machine translation, document
classification, sentiment analysis, or information retrieval. The advantage of
extrinsic evaluation is that it provides a clear indication of how useful a model is in
real-world applications, reflecting its practical utility and impact.

As the field of NLP has advanced the models have become more complex
and capable, the evaluation tasks and benchmarks have also evolved to reflect the
increasing complexity and diversity of the tasks that the models are expected to
perform. Below we discuss some of the tasks and benchmarks that are relevant
to this dissertation as well as some other popular benchmarks and trends in the
evaluation of NLP models.

Word Similarity Word semantic similarity is a popular intrinsic evaluation task
for word embeddings that measures the similarity between pairs of words based
on their embeddings and compares it to human judgments of word similarity.
The performance of models is evaluated using correlation metrics like Pearson
correlation or Spearman’s rank correlation. Some of the popular datasets for word
similarity evaluation include WordSim-353 (Finkelstein et al., 2001), SimLex-999
(Hill et al., 2015), and SimVerb-3500 (Gerz et al., 2016).
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Word Analogy Another popular intrinsic evaluation task for word embeddings is
word analogy. In the word analogy task, the goal is to complete an analogy of the
form: A is to B as C is to ?. For example, for the analogy man is to king as woman
is to ?, the expected answer is “queen”. In the word embedding space, this task
is evaluated using arithmetic operations on word embeddings, such as checking
if the closest word to the vector €ying — €man + Ewoman 18 “queen”. Popular datasets
for word analogy evaluation include the Google Analogy Test Set (Mikolov et al.,
2013b) and BATS (Bigger Analogy Test Set) (Gladkova et al., 2016).

GLUE and SuperGLUE The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018) is a collection of diverse NLP datasets to
evaluate the performance of models on a wide range of tasks, including natural
language inference (NLI), semantic textual similarity (STS), and sentiment analysis.
Some of the datasets included in GLUE are the Stanford Sentiment Treebank
(SST-2) (Socher et al., 2013), the Multi-Genre NLI Corpus (MNLI) (Williams
et al., 2018), and the Corpus of Linguistic Acceptability (Warstadt et al., 2019).
The GLUE benchmark also includes a leaderboard that ranks the performance of
different models on the tasks in the benchmark as well as the human performance
on the tasks. However, shortly after the release of GLUE, many NLP models started
to achieve superhuman performance and a new, more challenging benchmark called
SuperGLUE (Wang et al., 2019) was introduced to address this issue. SuperGLUE
includes more difficult tasks and datasets compared to GLUE, such as Winograd
Schema Challenge (WSC) (Levesque et al., 2012), Reading Comprehension with
Commonsense Reasoning (ReCoRD) (Zhang et al., 2018), Choice of Plausible
Alternatives (COPA) (Gordon et al., 2012), and Word-in-Context (WiC) (Pilehvar
and Camacho-Collados, 2019). Despite the increased difficulty of the tasks in
SuperGLUE, many models have achieved high performance on the benchmark that
exceeded the human performance, demonstrating both the rapid progress in NLP
research, and the limitations of these benchmarks in capturing the full range of
human language understanding capabilities.

BIG-Bench The BIG-Bench benchmark (?) is a large-scale evaluation bench-
mark, that contains 204 tasks, contributed by 450 authors across 132 institutions.
The tasks in Big-Bench are designed to be more challenging and diverse compared
to existing benchmarks, covering a wide range of NLP tasks, including text classi-
fication, question answering, summarization, dialogue generation and many more.
Despite the inclusion of only specifically challenging tasks, several of the recent
state-of-the-art models are shown to surpass average human performance and close
to expert human performance on the benchmark.
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MMLU The Measuring Massive Multitask Language Understanding (MMLU)
benchmark (Hendrycks et al., 2021) is a multiple-choice question answering bench-
mark that covers 57 tasks including elementary mathematics, US history, computer
science, law and more. Achieving a high score on this benchmark requires a
strong world knowledge as well as problem-solving ability, making it a challenging
benchmark for the models. As of the writing of this dissertation, MMLU remains
to be one of the most popular and challanging benchmarks for evaluating the large
language models.

Chatbot Arena The introduction of ChatGPT and other large language models
has led to a surge in public interest and interaction with these Al systems. Whereas
previously these models were primarily used by researchers, the web-based inter-
faces provided by the companies that developed them have made them accessible
to a much broader audience. The tasks that users now ask these models to address
are incredibly diverse and ever-changing. This presents a challenge for traditional
static benchmarks, which can only capture a small portion of the wide range of
real-world queries and problems that humans pose to the models. Even the most
comprehensive benchmark will inevitably fall short of encompassing the full scope
of how these models are being utilized in practice. To address this issue, Chatbot
Arena was introduced (Zheng et al., 2023), a crowdsourced battle platform, where
users get responses to their queries from multiple hidden models and vote on the
best response. Since the models compete head-to-head, their performance is mea-
sured using ELO ratings, which are commonly used in chess to rank players based
on their performance against each other. Due to its dynamic nature and coverage of
virtually unlimited types of real world queries and tasks, Chatbot Arena became a
popular platform to track the progress of the large language models and to evaluate
their performance in real-world scenarios.

1.4 Future Work

Building on the work presented in this thesis, several promising avenues for future
research have emerged. These directions not only aim to extend the current findings
but also address some of the unresolved challenges in the evaluation of language
models and the enhancement of NLP capabilities for low-resource languages.

Exploiting Multi-Parallel Corpora The use of multi-parallel corpora still
presents untapped potential for improving multilingual NLP tasks. In this work,
we showed that leveraging multi-parallel corpora can improve word alignment
quality. Future research could focus on developing more sophisticated algorithms
that can leverage the rich linguistic information available in multi-parallel cor-
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pora to enhance the performance of multilingual language models, especially for
low-resource languages.

New Evaluation Benchmarks The development of more comprehensive and
challenging evaluation benchmarks remains a critical need. As our models become
more sophisticated and capable, they saturate existing benchmarks quickly, making
it challenging to assess their true capabilities. Moreover, despite their impressive
performance, it is shown that the current state-of-the-art models still break and
fail in unexpected ways. It is important to create datasets that can reveal such
limitations and vulnerabilities of the models in order to ensure their safe and
reliable deployment in real-world applications.

Another important direction is creating more evaluation benchmarks for low-
resource languages. The current benchmarks are primarily focused on high-
resource languages, which limits the evaluation of models on languages with
limited resources. Developing benchmarks that are specifically tailored for low-
resource languages can help assess the performance of models on these languages
and guide the development of more effective methods for enhancing their capabili-
ties.

Enhanced Transfer Learning for Low-Resource Languages Despite the
progress made in transferring knowledge from high-resource to low-resource
languages, significant challenges remain due to linguistic diversity and resource
disparities. In this work, we explored the effectiveness of leveraging a high re-
source cousin to improve the multilingual model performance on low-resource
languages in a transfer learning setting. Several other studies also show that joint
training of multiple languages can improve the performance of language models
on low-resource languages if they have high resource cousins in the training data
(ImaniGooghari et al., 2023). A more systematic and detailed investigation of
the impact of the linguistic similarity between languages on the transfer learn-
ing performance can provide valuable insights into how to effectively leverage
high-resource languages to enhance the capabilities of models on low-resource
languages.
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Abstract

Cross-lingual transfer (XLT) driven by mas-
sively multilingual language models (mmLMs)
has been shown largely ineffective for low-
resource (LR) target languages with little (or
no) representation in mmLM’s pretraining, es-
pecially if they are linguistically distant from
the high-resource (HR) source language. Much
of the recent focus in XLT research has been
dedicated to LR language families, i.e., fami-
lies without any HR languages (e.g., families
of African languages or indigenous languages
of the Americas). In this work, in contrast, we
investigate a configuration that is arguably of
practical relevance for more of the world’s lan-
guages: XLT to LR languages that do have a
close HR relative. To explore the extent to
which a HR language can facilitate transfer
to its LR relatives, we (1) introduce Kardes-
NLU,! an evaluation benchmark with language
understanding datasets in five LR Turkic lan-
guages: Azerbaijani, Kazakh, Kyrgyz, Uzbek,
and Uyghur; and (2) investigate (a) intermedi-
ate training and (b) fine-tuning strategies that
leverage Turkish in XLT to these target lan-
guages. Our experimental results show that
both—integrating Turkish in intermediate train-
ing and in downstream fine-tuning—yield sub-
stantial improvements in XLT to LR Turkic
languages. Finally, we benchmark cutting-edge
instruction-tuned large language models on
Kardes-NLU, showing that their performance
is highly task- and language-dependent.

1 Introduction

Transformer-based massively multilingual lan-
guage models (mmLMs), such as mBERT (De-
vlin et al., 2019), XLM-R (Conneau et al., 2020a),
and mT5 (Xue et al., 2021), have substantially ad-
vanced multilingual NLP. These models have en-
abled rapid development of language technologies

*These authors contributed equally.
"https://github.com/lksenel/Kardes-NLU
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for a wide range of low-resource (LR) languages by
means of cross-lingual transfer (XLT) from high-
resource (HR) languages, using zero-shot (Wu and
Dredze, 2019; Karthikeyan et al., 2020) or few-shot
transfer techniques (Lauscher et al., 2020; Schmidt
et al., 2022). mmLMs are, however, biased towards
HR languages and XLT with mmLMs yields es-
pecially poor transfer performance for LR target
languages that are (i) underrepresented in mmLMs’
pretraining corpora and (ii) linguistically distant
from the source language (Lauscher et al., 2020).
Besides these reasons, such poor XLT is also a con-
sequence of the curse of multilinguality (Conneau
et al., 2020a; Pfeiffer et al., 2022), i.e., a reduced
representational quality of supported languages,
stemming from mmLMs’ parameters being shared
by many linguistically diverse languages.

In recent years, a large body of work focused
on improving XLT abilities of mmLMs, ranging
from models that aim to better align representation
subspaces of source and target language with cross-
lingual supervision (Cao et al., 2020; Hu et al.,
2021; Conneau et al., 2020b; Minixhofer et al.,
2022; Wang et al., 2022) to those that improve the
mmLMs’ representational capacity for individual,
mostly LR languages (Pfeiffer et al., 2020; Parovi¢
etal., 2022; Ansell et al., 2021; Pfeiffer et al., 2022).
At the same time, an incredible amount of effort has
also been dedicated to the creation of new multilin-
gual evaluation benchmarks that either encompass
sets of linguistically diverse languages (Clark et al.,
2020; Ponti et al., 2020; Ruder et al., 2021) or fo-
cus on LR languages (Adelani et al., 2021; Muham-
mad et al., 2022; Ebrahimi et al., 2022; Armstrong
et al., 2022; Winata et al., 2023; Khanuja et al.,
2023, inter alia). The vast majority of existing
work, however, assumes (i) zero-shot downstream
transfer from (ii) English as the source. That is
primarily because, on the one hand, for most tasks,
training data is only available in English. On the



other hand, many of the recent benchmarks cover
LR language families, i.e., families without any HR
languages (e.g., some African language families or
indigenous languages of the Americas): this pre-
vents the creation of high-quality silver-standard
training data in a (closely) related HR language
(e.g., via machine translation (MT)), as no such
language exists.

Contributions. 1) In this work, we contribute
to the body of evaluation resources for LR XLT
with Karde§—NLU,2 an evaluation benchmark cov-
ering three natural language understanding (NLU)
tasks—natural language inference (NLI), semantic
text similarity (STS), and commonsense reason-
ing, in particular choice of plausible alternatives
(COPA)—for five Turkic languages—Azerbaijani
(az), Kazakh (kk), Kyrgyz (ky), Uyghur (ug), and
Uzbek (uz). We focus on Turkic languages be-
cause, unlike most concurrent work, we aim to
explore a highly underinvestigated XLT research
question: to what extent can LR languages that
do have a linguistically and genealogically (close)
HR relatives profit from those relatives (Snab-
jarnarson et al., 2023). 2) We extend a number
of established (i) intermediate training and (ii) fine-
tuning approaches (covering both zero-shot and
few-shot XLT) for improving LR XLT by incor-
porating Turkish as the HR sibling of the Kardes-
NLU languages; and show that the mixture of in-
corporating Turkish in intermediate training and in
task-specific fine-tuning results in substantial per-
formance gains. 3) Given the praised generalization
abilities of large instruction-based language mod-
els (LLMs) (Chung et al., 2022; Ahuja et al., 2023;
Asai et al., 2023), we additionally evaluate (zero-
shot) two multilingual LLMs on Kardes-NLU—the
open mTO (Muennighoff et al., 2023) and commer-
cial ChatGPT—showing that their performance is
highly task- and language-dependent and in some
cases substantially trails that of XLT with tradition-
ally fine-tuned “small” mmLM:s.

2 Kardes-NLU Benchmark

Language and Task Selection. We selected lan-
guages for Kardes-NLU based on two criteria: (i)
linguistic and genealogical diversity within the Tur-
kic language family and (ii) availability of native

2kardes is a Turkish gender-neutral word for sibling. Refer-

ring to a brother (erkek kardes) or sister (kiz kardes), requires
an additional gender denotation: kiz (girl) or erkek (boy).

speakers of those languages who are also fluent
in English.> Our final selection contains five lan-
guages from the Common Turkic branch, covering
three different sub-branches: Western Oghuz lan-
guages (Azerbaijani; Turkish, as the HR language
in our experiments, also belongs to this branch),
Kipchak languages (Kazakh and Kyrgyz) and Kar-
luk languages (Uzbek and Uyghur). Moreover,
Kardes-NLU covers languages with two different
scripts: Latin (Azerbaijani and Uzbek) and Cyrillic
(Kazakh, Kyrgyz, and Uyghur).*

We select three tasks that are (i) among the most
prominent NLU tasks, included in popular NLU
benchmarks (Wang et al., 2018, 2019), and (ii) al-
ready have existing evaluation datasets in a number
of languages (commonly translations of an origi-
nal English dataset): NLI (Conneau et al., 2018;
Aggarwal et al., 2022; Ebrahimi et al., 2022), STS
(Ceret al., 2017), and COPA (Gordon et al., 2012;
Ponti et al., 2020).

Dataset Translation. We adopt a widely used two-
step translation approach to obtain translations in
which a native speaker of the target language, fluent
in English, post-edits the output of MT.> This way,
we translated English instances from the follow-
ing datasets: XNLI (Conneau et al., 2018) (2000
instances from the test portion and 1000 instances
from the validation portion), STS-Benchmark (Cer
et al., 2017) (800 test instances and 200 validation
instances), and XCOPA (Ponti et al., 2020) (500
test instances and 100 validation instances). We ini-
tially manually compared, on a small subsample of
instances from all three datasets, translation (i) with
Google Translate (GT) vs. the open Turkic Inter-
lingua MT models (Mirzakhalov et al., 2021) and
(ii) from English vs. from Turkish (with Turkish in-
stances that were, in turn, machine translated from
English) and have found that GT from English pro-
duces the best output. Due to MT in the first step,
we instructed the annotators to pay special atten-
tion to the idiomaticity of the source English sen-
tences during post-editing. This particularly refers
to finding suitable translations for culture-specific
concepts that do not have a direct translation (e.g.,

3For example, we wanted to include Chuvash, the only
living language of the Oghur branch of Turkic languages, but
we could not find annotators native in that language.

*While Uyghur is more commonly written in the Arabic
script (e.g., in CC-100 or Wikipedia), our Uyghur annotator
was unfamiliar with it and was only able to produce Uyghur
translations in the Cyrillic script.

>We hired one annotator per target language.

35



“passing for white” has no direct translation in our
target languages since racial passing is not a native
concept in respective cultures). Table 1 displays
several instances from Kardes-NLU.

Annotation Costs. Given the high post-editing
costs, Kardes-NLU contains only subsets of the
original English development and test portions of
STS-B and XNLI. All of our annotators were uni-
versity students who were paid the equivalent of
14$ per hour for their effort. On average, post-
editing took 92 hours per language, bringing the
total cost of creating Kardes-NLU to 6,4408$.

3 Kardes Transfer: Leveraging Turkish

We next attempt to improve XLT to LR Kardes-
NLU languages by explicitly incorporating Turkish
as the close HR relative into the process. We try
to (1) increase mmLMs’ capacity for the target lan-
guages as well as their alignment with Turkish via
intermediate LM training and (2) leverage Turkish
as an additional source language in downstream
zero-shot and few-shot transfer.

3.1 Intermediate Language Modeling

Adapting  pretrained mmLMs to target
distributions—different languages, domains,
or datasets—through further LM-ing can bring
significant performance gains (Howard and Ruder,
2018; Gururangan et al., 2020; Muller et al.,
2021; Wang et al., 2022; Hung et al., 2022).
Building upon these findings, we investigate
the benefit of additional LM-ing in transfer to
LR Kardes-NLU languages. Specifically, we
explore the potential benefits of incorporating
Turkish into the mmLM adaptation process and
the extent to which this inclusion can improve the
downstream performance for LR Turkic languages.
We experiment with three different intermediate
training strategies detailed below: in all cases, we
(1) use the standard masked language modeling
(MLM) as the training objective and (2) update all
of the mmLM'’s pretrained weights.

Target Language LM-ing (TLLM). In this case,
we perform additional MLM-ing only on the
limited-size corpora of the target language. Turk-
ish, as the HR relative, is not leveraged in TLLM.

Bilingual Alternating LM-ing (BALM). Here we
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alternately update the mmLM by MLM-ing on
one batch of target language data, followed by
one batch of Turkish data. BALM is similar to
the bilingual training procedure of Parovi¢ et al.
(2022): they, however, opt for parameter-efficient
training with adapters, whereas we update all of
the mmLM’s parameters.

Bilingual Joint LM-ing (BJLM). Like BALM,
in BJLM we perform bilingual MLM-ing on both
the LR target language and the related HR lan-
guage (Turkish). However, while in BALM mono-
lingual batches are alternated, in BJLM batches
are bilingual, i.e., they consist of instances of both
languages. Importantly, both languages have the
same number of instances in each batch (i.e., B/2
with B as the batch size). Although such balanc-
ing leads to frequent repetition of instances from
the LR language corpus, these repeating instances
are, in different batches, “regularized” with dif-
ferent source-language instances, which prevents
overfitting to small-sized corpora of LR languages.
Schmidt et al. (2022) demonstrate the effectiveness
of BJLM in task-specific few-shot fine-tuning; here,
we test it in intermediate MLM-ing.

Parameter-Efficient LM-ing. Besides full fine-
tuning, we also carried out intermediate training
(for TLLM and BALM) in a parameter-efficient
manner with adapters (Houlsby et al., 2019) in
the vein of prior work on XLT (Pfeiffer et al.,
2020; Parovic et al., 2022). Adapter-based variants
yielded consistently weaker performance compared
to tuning all mmLM’s parameters. For brevity, we
report these results in the Appendix (§C).

3.2 Downstream Cross-Lingual Transfer

We investigate two common setups for downstream
cross-lingual transfer: (1) zero-shot XLT, in which
we assume that we do not have any labeled task
instances in the target language, and (2) few-shot
transfer, in which a small number of labeled in-
stances in the target language exists. We follow
the fair XLT evaluation procedure of Schmidt et al.
(2022), which does not allow for model selection
based on target-language validation data. Relying
on target-language validation violates the assump-
tion of true zero-shot XLT. Moreover, Schmidt
et al. (2022, 2023a) show that any labeled target-
language instances are better leveraged for training.
We thus use the validation portions of Kardeg-NLU



Language Task  Instance Label
Premise: Biitiin hallarda miistorinin iddialarina xolol gotirmomak ticiin miihiim addimlar atilmahdir.
Azerbaijani  NLI  (In all cases, significant steps would have to be taken to avoid prejudicing the client’s claims.) Neutral
Hypothesis: Bu addimlara miistorilorin hoqiqi soxsiyyotinin miistontiqlordon gizlodilmasi daxildir
(These steps include hiding the real identity of clients from investigators.)
Sent. I: Bip amaM Ka3saHra Kypil ciablil >KaTbIp. (A man pours rice into a pot.)
Kazakh STS Sent. 2: Ep agam tabakka Kypiln caJiblil »KareIp. (A man is putting rice in a bowling pot.) 42
Premise: Kbz konny »xarran kasunsl. (The girl memorized the code.) .
Kyrgyz COPA  Choice 1 (Cause): An e3yne e3y okymy. (She recited it to herself.) Choice 1
Choice 2 (Cause): Ayt MyHy »Ka3yyHy yHYTYI KaJyiabl. (She forgot to write it down.)
Sent. 1: Okapi daraxtdan yemoqda. (An okapi is eating from a tree.)
Uzbek STS Sent. 2: Sichqon suv purkagichﬁan ichadi. (A moose drinks from a sprinkler.) 03
Premise: Hopox ttionypmakymmpunn TokTu. (The tree shed its leaves.) .
Uyghur COPA  Choice 1 (Effect): IZIonpraK paurura Gosau. (The leaves turned colors.) Choice 2
Choice 2 (Effect): Nonypmaksiap tepro #urunun xKaiaau. (The leaves accumulated on the ground.)
Table 1: Examples from Kardes-NLU one for each language and at least one for each task.
only for training in few-shot XLT. | az kk ky ug uz
script | Latin  Cyrillic Cyrillic Arabic Latin
Zero-Shot Transfer. We explore three zero-shot — T
. . o« e . monolingual corpus sizes (1In tes
XLT setups: (i) monolingual training on English £ P (in bytes)
data, (ii) monolingual training on Turkish data, ma- CC-100 | 1.3G ~ 889M  173M  46M  155M
> (1) & & ’ Wiki 315M  354M 126M 36M 136M

chine translated from the original English training
data, and (iii) bilingual training on both English
and machine-translated Turkish data, with joint
bilingual batches.

Few-Shot Transfer. In few-shot fine-tuning, we
additionally train on a small number of instances
in the target language. We evaluate two different
few-shot fine-tuning strategies: (1) in sequential
transfer (Lauscher et al., 2020; Zhao et al., 2021),
large(r)-scale fine-tuning on data from the source
language(s)—in our case, English, Turkish, or bilin-
gually English and Turkish—is followed by effi-
cient target-language fine-tuning on the few shots;
(2) in joint fine-tuning, we follow Schmidt et al.
(2022) and, after initial source-only training, inter-
leave source- and target-language instances at the
batch level—the final batch loss is then the macro-
average of the language-specific losses. Note that
this results in joint trilingual fine-tuning when the
source datasets are both English and Turkish.

4 Experimental Setup

Data. We carry out intermediate training for
five Kardes-NLU languages, monolingually (i.e.,
TLLM) or bilingually with Turkish (BALM and
BAIJM, see §3.1) using Wikipedias of the respec-
tive languages. Table 2 summarizes the base statis-
tics of Wikipedias of Kardes-NLU languages.® to-

®The Wikipedia dumps were obtained from https://
dumps.wikimedia.org/ on 10.12.2022. The text is extracted
using the standard wikiextractor script.

Avg no. tokens in test instances (XLM-R tokenizer)

NLI 44 46 47 79 52
COPA 22 24 24 34 26
STS 34 36 36 56 40

Table 2: Dataset statistics for Wikipedias and CC-100
portions of Kardes-NLU languages along with average
no. tokens in the test instances of Kardes-NLU (as per
XLM-R tokenizer)

gether with the size of their corresponding mono-
lingual corpora in CC-100.7 The sizes of the Turk-
ish Wikipedia and Turkish CC-100 portions are
631MB and 5.4GB, respectively. Table 2 addi-
tionally shows the average number of tokens in
test instances after XLLM-R tokenization. Uyghur
yields substantially more tokens than the other four
languages. This is because most of Uyghur’s pre-
training corpus in XLLM-R’s is in the Arabic script,
whereas Uyghur instances in Kardeg-NLU are writ-
ten in Cyrillic.

In downstream XLT, we use the existing train-
ing data in English and respective automatic trans-
lations to Turkish. For NLI, we train on MNLI
(Williams et al., 2018) and (automatically trans-
lated) Turkish training data from XNLI (Conneau
et al., 2018). For STS, we train on the English
training portions of STS-B (Cer et al., 2017) and its
existing (automatic) translation to Turkish.® Due to

"We report CC-100 portions, as XLM-R—the mmLM that
we use in our experiments—was pretrained on it.

8https://huggingface.co/datasets/emrecan/
stsb-mt-turkish
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the small size of the English training data for COPA
(400 instances) (Gordon et al., 2012), reported to
hinder convergence of mmLM-based models (Sap
etal., 2019; Ponti et al., 2020), we follow this prior
work and first fine-tune on (English) SociallQa
(SIQA)—a closely related causal commonsense
reasoning dataset (Sap et al., 2019) before fine-
tuning on (English and/or Turkish) COPA data’.

Intermediate Training Details. In all our main
experiments, we use XLM-R (Base size) (Con-
neau et al., 2020a) as our mmLM. For the bilin-
gual intermediate training procedure (e.g., BALM
and BJLM), we train for a full epoch on Turkish
Wikipedia: this results in multiple passes over the
target language Wikipedias, given that those are
substantially smaller. Thus, in the interest of fair
evaluation, we train TLLM for multiple epochs:
2 for Azerbaijani and Kazakh, 5 for Kyrgyz and
Uzbek, and 18 for Uyghur. We set the batch size to
32 and limit the sequence length to 128 tokens. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) with a fixed learning rate of 5e—5.

Downstream Training Details. We adopt standard
fine-tuning and add a task-specific classifier on top
of the mmLM. Unless explicitly said otherwise, we
perform full fine-tuning updating all parameters of
the encoder together with the classifier’s parame-
ters. For NLI and STS, we encode the pair of sen-
tences with the mmLM and feed the transformed
representation of the [CLS] token to the classifier.
For the multiple-choice tasks—COPA and SIQA
(which we use as a “pre-fine-tuning” task to stabi-
lize COPA training)—we face a varying number of
answer choices per dataset (i.e., there are 3 possi-
ble answers in SIQA and 2 in COPA). We follow
prior work Sap et al. 2019; Ponti et al. 2020 and en-
code the premise together with each answer choice.
We feed the resulting output [CLS] token into a
feed-forward regressor that produces a single score
for each answer choice. Afterwards, the individual
scores of all choices are concatenated and fed to
the softmax classifier.

We train the models for 10 epochs with mixed
precision using AdamW (Loshchilov and Hutter,
2019) with a weight decay of 0.05 and the initial
learning rate set to 2e—5. We use a linear scheduler
with 10% linear warm-up and decay. We deviate
from this configuration (i) in the joint few-shot

We translate the COPA training set to Turkish with GT.
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fine-tuning, where we train for 50 epochs without a
scheduler, following recommendations of (Schmidt
et al., 2022), and (ii) for all NLI experiments, where
we train for 5 epochs due to the size of the MNLI
training data (ca. 400K instances). The sequence
length is limited to 128 tokens for all tasks, match-
ing the input size of the intermediate MLM-ing. We
fine-tune with a batch size of 32, except in the trilin-
gual joint few-shot fine-tuning (English-Turkish-
target language), where we sample 10 instances per
language (i.e., batch size 30). For each experiment,
we execute three runs with different random seeds
and report the average performance (accuracy for
NLI and COPA and Pearson correlation for STS).
In zero-shot XLT, we report the performance of the
last checkpoint obtained at the end of the training.
In few-shot XLT, we start training from the last
snapshot of the source training (English, Turkish,
or English and Turkish) and select the last snapshot
of the second—sequential or joint—training step.

5 Results and Discussion

Zero-Shot Transfer. Table 3 displays the zero-
shot XLT performance for all five Kardes-NLU
languages on NLI, COPA and STS. Generally,
we reach the best performance when Turkish is
integrated into both intermediate training (rows
BALM and BAJM) and as the source language
in fine-tuning (columns TR and EN,TR). On av-
erage, across all five languages, BJLM combined
with source fine-tuning on concatenated English
and Turkish instances (EN,TR) yields a 6.6% and
2.1% boost over zero-shot XLT from English only
with the vanilla XLM-R (Base) on NLI and COPA,
respectively. On these two tasks, this observation
holds for all individual languages except Kazakh.
The gains over the vanilla zero-shot XLT for STS,
however, are much smaller, with only BALM com-
bined with English and Turkish fine-tuning sur-
passing the default zero-shot XLT performance of
XLM-R (Base, EN) and that by a narrower mar-
gin (+0.6). We speculate that this is because (i)
fine-grained sentence similarity is more sensitive
to slight semantic misalignment and (ii) while our
bilingual intermediate training improves the seman-
tic links between Turkish and the target language, it
is not of an adequate scale to establish alignments
of such semantic precision.

Including Turkish as a fine-tuning source lan-
guage (TR and EN,TR) brings consistent gains



over transfer from English only, regardless of the
intermediate training strategy. The best results are
almost always obtained when we fine-tune on both
English and Turkish (EN,TR): we hypothesize that
such fine-tuning establishes task-specific represen-
tational associations between the two languages
and allows the transfer to benefit from both (i)
XLM-R’s unmatched representational quality for
English and (ii) proximity of Turkish to the tar-
get languages. The effect is then further amplified
when intermediate training (BALM and BJLM)
increases the XLLM-R’s capacity for Turkish and
the target language and strengthens the alignments
between them. This is confirmed by the fact that
intermediate training on the target language alone
(TLLM) brings downstream gains (compared to
Base) for NLI but not for the other two tasks.

Looking at individual languages, we observe
the least (and smallest) gains for Azerbaijani and
Kazakh, the two most-resourced Kardes-NLU lan-
guages, and the most (and largest) gains for the
three less-resourced languages: Uyghur, Uzbek,
and Kyrgyz (e.g., compared to Base transfer from
EN on NLI, BJLM with transfer from EN, TR leads
to gains of 5.0% for Kyrgyz, 5.1% for Uzbek, and
17.2% for Uyghur). We see the largest gains (by
a wide margin) for Uyghur, despite the script mis-
match between the intermediate training (Arabic
script) and evaluation (Uyghur in Cyrillic script).
The intermediate bilingual training for Uyghur,
which improves representations of Arabic-script
tokens, would thus likely yield even larger gains if
the Uyghur test instances were in the Arabic script.

Few-Shot Transfer. Table 4 summarizes the few-
shot XLT results. We observe mixed results com-
pared to the strongest zero-shot approaches: while
there is a small improvement on STS (+1.0% ), we
see virtually no gains for COPA (+0.1%) and NLI
(-0.3%). Consistent with zero-shot XLT findings,
few-shot XLT yields best results when we start
the few-shot target language training from mod-
els trained on both English and Turkish (EN,TR).
Additionally, we observe that few-shot XLT with
models that were intermediately trained on Turkish
and the target languages (BALM, BAIM) yields
stronger performance than with those MLM-ed on
the target language alone (TLLM). Nonetheless,
there is no bilingual intermediate training strategy
that is consistently best: BJLM yields better scores
on COPA, whereas BALM reaches better STS per-

formance; on NLI, both strategies perform compa-
rably. Concerning the number of target language
shots, we observe that we typically need at least 50
shots to match or surpass the zero-shot XLT perfor-
mance. Comparing few-shot transfer procedures,
we observe task-dependent variability. On NLI, se-
quential fine-tuning substantially outperforms the
joint approach. Conversely, on COPA and STS,
joint few-shot transfer shows better performance,
with a more pronounced gap on STS.

Kardes-NLU: A Difficult Few-Shot XLT Bench-
mark. Not only does the comparison of zero-shot
and few-shot results in Table 4 render Kardeg-NLU
as a difficult few-shot XLT benchmark but also
does Kardes-NLU involve two tasks—STS and
COPA—that are underrepresented in the current
body of work on (few-shot) XLT (Lauscher et al.,
2020; Zhao et al., 2021; Schmidt et al., 2022). This
makes Kardes-NLU a valuable evaluation resource
for XLT research.

Instruction-Based LLLMs on Kardes-NLU. Given
the recent popularity of instruction-tuned LL.Ms
as competent “generalizers” (Ouyang et al., 2022;
Ahuja et al., 2023), we additionally evaluate (zero-
shot) two state-of-the-art multilingual LLMs on
Karde§—NLU:10 mTO0 (Muennighoff et al., 2023),
as the open model tuned on instructions derived
from NLP tasks, and ChatGPT, as the commercial
model tuned from human instructions and feedback.
To this end, we slightly modify the instructions
and prompts proposed by Ahuja et al. (2023): we
provide further details in the Appendix §A.

Figure 1 compares the best zero-shot XLT perfor-
mance (based on XLM-R) for each language from
Table 3 against zero-shot inference with mTO and
ChatGPT. The NLI results, in which both LLMs
dramatically underperform our language-adapted
zero-shot XLT (-23.9% and -15.1% for ChatGPT
and mTO, respectively), diametrically oppose those
on COPA, where both LLMs (and especially mTO0)
excel and surpass our best zero-shot XLT (the gap
is full 10% in favor of mTO, albeit only 1.1% for
ChatGPT). We believe that this is because mTO
was instruction-tuned, multilingually, on a large
number of different multi-choice QA datasets (in-
cluding, e.g., SIQA). ChatGPT, in contrast, being
fine-tuned based on open-ended instruction-reply

Regression (i.e., score prediction) tasks are inherently
difficult to cast as text generation tasks; we thus omit STS
from this evaluation.
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Azerbaijani Kazakh

Kyrgyz

Uyghur Uzbek Average

EN TR EN,TR‘ EN TR EN,TR‘ EN

TR EN,TR ‘ EN

TR EN,TR‘ EN TR EN,TR‘ EN TR EN,TR

76.5 80.1 79.6 |73.8
773 79.0 79.2 |75.3
773 788 793 |74.4
764 78.4 793 |74.9

763 713 |70.4
76.3 76.8 |72.4
753 71.0 |71.6
75.1 76.8 |71.9

73.9
74.1
73.4
74.3

NLI

74.1
74.4
74.0
75.5

422
56.7
57.4
57.2

444 429 |70.7
57.1 56.9 |73.1
58.7 58.0 |73.1
59.2 594 |734

720 71.8 |66.7 69.4 69.1
743 748 |71.0 722 724
745 75.0 |70.8 72.1 72.7
74.6 757 |70.7 723 1733

60.7
55.7
59.1
58.4

60.8 59.9 [59.7
558 56.1 |57.5
59.5 59.7 |56.1
58.6 57.7 |56.8

COPA

59.4
58.9
59.1
62.0

51.8
49.9
51.1
50.9

57.3
62.9
60.5
61.7

59.5 57.9 58.6
63.2 57.6 571
61.7 56.8 58.5
60.5 57.9 60.0

STS

78.4
73.8
74.1
70.9

Table 3: Zero-Shot XLT results on Kardes-NLU for three intermediate LM-ing strategies (TLLM, BALM, and
BJLM) and source fine-tuning datasets (English only, Turkish only, and English and Turkish combined). The best
results for each language-task pair are shown in bold. The evaluation metrics are accuracy (%) for NLI and COPA,

and Pearson correlation for STS.

Zero-Shot

Few-Shot

Sequential

Joint

EN TR EN,TR EN TR

EN,TR EN TR EN,TR

Shots | - - - |10 50 100] 10 50

100| 10

50 100| 10 50 100| 10 50 100| 10 50 100

66.7
71.0
70.8
70.7

69.4
72.2
72.1
72.3

69.1
72.4
72.7
73.3

63.5
68.1
67.9
67.5

67.9
70.7
70.9
71.0

68.1(65.7
71.7(69.3
71.2169.0
71.3[69.2

69.0
71.9
71.8
71.7

69.3
72.3
72.0
71.5

Base
TLLM
BALM
BILM

NLI

66.0
70.6
70.0
69.9

69.5
72.6
72.6
72.7

70.1(65.0
72.5(69.3
73.0(69.1
73.0|69.4

66.2
70.3
70.0
70.3

66.4|67.0
70.7(70.1
70.4(70.5
69.9(70.7

67.4
71.3
71.5
71.3

67.5(66.7
70.7(70.4
71.3(70.5
71.2(70.6

68.0
71.2
71.0
71.5

69.0
71.9
71.6
71.8

57.9
57.6
56.8
57.9

58.8
58.2
58.6
59.2

58.6
57.7
58.5
60.0

56.4
56.8
56.6
57.2

57.9
574
572
58.6

58.8(56.8
58.4(57.1
58.1(56.8
59.3|58.0

57.6
57.9
58.0
59.3

58.2
59.5
58.5
59.7

Base
TLLM
BALM
BILM

COPA

57.0
56.7
57.6
58.0

57.8
58.0
58.0
59.8

58.3(57.6
58.9(57.2
58.4(56.8
59.8|58.1

57.9
57.5
57.8
58.8

59.0(58.7
58.3(58.1
57.2159.0
58.8(58.9

58.5
58.7
58.7
59.9

58.5[59.0
58.6(58.6
58.2|59.1
59.3|60.1

59.0
59.0
59.4
59.9

59.5
59.8
583
59.8

78.4
73.8
74.1
70.9

76.6
72.7
77.8
75.8

77.1
76.5
79.0
71.3

73.5
73.6
74.5
72.8

75.5
75.3
76.0
74.9

75.4|74.5
75.6(74.9
76.3(76.2
75.4|75.2

76.5
76.1
77.6
76.9

75.7
76.2
77.8
76.8

Base
TLLM
BALM
BILM

STS

754
76.4
71.3
76.1

77.1
71.3
78.6
7.7

77.1|76.3
77.6(75.1
78.4|77.1
78.1|74.0

77.6
76.8
77.2
76.2

77.6|71.0
76.9(75.2
76.9(78.3
76.6|76.8

78.9
77.0
79.4
78.3

78.9(717.1
77.6(77.2
79.6(79.4
78.5(71.9

79.0
78.5
80.0
79.3

79.3
78.8
80.0
79.4

Table 4: Results of sequential and joint few-shot XLT on Kardes-NLU: performance with 10, 50, and 100 target-
language shots. The best zero-shot result per task is shown in bold, the best few-shot result is underlined. The
evaluation metrics are accuracy (%) for NLI and COPA, and Pearson correlation for STS.

pairs, has a weaker inductive bias for both COPA
and NLI. The two LLMs yield the best performance
on both tasks for Azerbaijani, the most resourced
language in Kardes-NLU—the performance drops
for the remaining languages are drastic, especially
for ChatGPT. This is in line with findings from con-
current work (Ahuja et al., 2023; Asai et al., 2023)
and shows that even the largest instruction-tuned
LLMs are bound by the language distribution of
their (pre)training data, indicating that there is still
a long way to go to enable truly multilingual NLP.

6 Related Work

Multilingual Evaluation Benchmarks. Reliable
evaluation of the multilingual abilities of mmLMs
requires that they are tested against a large set
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of diverse languages (Joshi et al., 2020). On the
one hand, multilingual benchmarks that encom-
pass many tasks, such as XGLUE (Liang et al.,
2020) and XTREME (Hu et al., 2020; Ruder et al.,
2021), comprise diverse but predominantly highly
or moderately resourced languages: their coverage
of LR languages is small and varies across tasks.
On the other hand, many recent efforts introduce
dedicated benchmarks for specific families of LR
languages (Armstrong et al., 2022; Adelani et al.,
2022; Ebrahimi et al., 2022; Winata et al., 2023,
inter alia). While these target truly underrepre-
sented languages, they typically focus on a single
task only, e.g., NLI or NER. With Kardes-NLU we,
(i) cover multiple languages from an underrepre-
sented language family while (ii) including various
tasks (NLI, COPA, and STS) that require different
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Figure 1: Performance of mT0-XXL, chatGPT, and our best performing zero-shot XLT strategy on NLI and COPA.

degrees of precision in language understanding.

Cross-Lingual Transfer with mmLMs. mmLMs
still play an important role in multilingual NLU
and XLT, exhibiting good performance in zero-shot
XLT (Wu and Dredze, 2019; Hu et al., 2020) to HR
languages. They, however, perform much worse in
XLT to LR languages distant from English (as the
common source). The body of work on improving
XLT is threefold. The first line of work seeks to
improve XLT via post-hoc alignment of represen-
tational subspaces of individual languages, guided
by parallel data (Cao et al., 2020; Conneau et al.,
2020b; Hu et al., 2021; Wang et al., 2022; Minix-
hofer et al., 2022, inter alia) and driven by cross-
lingual supervision. These efforts, however, offer
little gain for LR languages, whose representational
subspaces are of low semantic quality, to begin
with. The second line of work seeks to improve the
representational quality for LR languages through
additional language modeling training (Pfeiffer
et al., 2020; Ansell et al., 2021; Parovic et al., 2022;
Pfeiffer et al., 2022), resulting in moderate down-
stream performance gains. Finally, the third line of
work (Lauscher et al., 2020; Zhao et al., 2021; Xu
and Murray, 2022; Schmidt et al., 2022, 2023a,b)
focuses on the actual downstream transfer, rather
than the task-agnostic adaptation of mmLMs, inves-
tigating how to best utilize the limited number of
annotated task-specific target-language instances
(Lauscher et al., 2020; Schmidt et al., 2022, 2023a)
or tailor source-language instances to resemble tar-
get language ones (Xu and Murray, 2022).

In this work, we adopt the latter two ideas and
seek to improve XLT to Turkic LR languages via
both intermediate LM-ing and few-shot XLT: un-
like most existing work, however, we seek to lever-

age a close HR language (Turkish) to facilitate the
transfer. The work of Snabjarnarson et al. (2023)
is conceptually most similar; they, however, target
a single LR language (Faroese) from a HR family
(Germanic branch of the Indo-European family)
with many HR relatives (Scandinavian languages).

The three mentioned lines of work typically pro-
pose methods to improve XLT starting from a sin-
gle, given source language (usually EN). Comple-
mentary to these lines of work, the work of Lin et al.
(2019) and Glavas and Vuli¢ (2021) instead focus
on identifying the best source languages to transfer
from for a given target language. Their work con-
siders linguistic and dataset related factors beyond
the sole language family. Their findings are com-
plementary to our work, suggesting that even for
LR languages that do not have a closely related HR
language within their family, it might still be pos-
sible to infer such a closely related HR language
from another language family.

7 Conclusion

In this work, we contribute to the body of evalua-
tion resources for low-resource (LR) cross-lingual
transfer (XLT) by introducing Kardes-NLU, an
evaluation benchmark covering three NLU tasks
(NLI, STS, and COPA)—for five Turkic languages:
Azerbaijani, Kazakh, Kyrgyz, Uyghur, and Uzbek.
Kardeg-NLU allows investigation of an understud-
ied XLT approach: leveraging a high-resource (HR)
language to improve transfer to linguistically and
genealogically related LR languages. We extend
existing intermediate training and fine-tuning ap-
proaches for improving LR XLT to integrate Turk-
ish as the HR “sibling” of the Kardes-NLU lan-
guages. Through comprehensive experimentation
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and analysis, we demonstrated that adding Turkish
in task-specific fine-tuning can provide significant
XLT gains for Kardes-NLU languages that are fur-
ther amplified by incorporating Turkish in bilingual
intermediate training strategies. What is more, we
also find that Kardes-NLU is a difficult benchmark
for few-shot XLT, observing that established few-
shot transfer methods are not effective. Finally,
we evaluated two cutting-edge instruction-tuned
large language models—mTO and chatGPT—on
Kardes-NLU, showing that their (zero-shot) perfor-
mance is inferior on lower-resourced Kardes-NLU
languages (Uyghur, Uzbek, Kyrgyz) and greatly
varies across tasks. This proves that there is still a
long way to (truly) multilingual NLP. In our sub-
sequent efforts, we will not only seek to extend
Kardes-NLU with additional LR Turkic languages,
but also explore how to leverage HR siblings in LR
XLT for other language families.

8 Limitations

We strove for both a representative NLU bench-
mark for Turkic languages and a comprehensive
study of XLT to LR target languages with the help
of a closely related HR language. Nonetheless, our
work is limited in several aspects. Out of 23 live
Turkic languages, Kardes-NLU covers only five.
Two main factors determined the set of initially
included languages: a limited annotation budget
and the ability to find native speakers. The latter is
why we ended up with languages that are among
the largest Turkic languages in terms of number
of native speakers (Kyrgyz, as the smallest, has
ca. SM native speakers). Further, there is a mis-
match between the more common Arabic script
used for Uyghur and the Cyrillic script we use for
it in Kardes-NLU because our Uyghur annotator
was unfamiliar with the Arabic script.

The Kardes-NLU benchmark is obtained
through automatic translations from the existing
English test sets to the target languages. This is fol-
lowed by manual annotation and curation through
native speakers to ensure high quality. In order to
have suitable translations for culture specific con-
cepts, we instructed our annotators to pay special
attention to the idiomaticity of the English sen-
tences during the editing. Despite our best efforts,
the resulting datasets might not perfectly reflect
the cultural and social elements of the target low-
resource languages since their content is tied to
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original English datasets.

Next, we employed Wikipedias as corpora
for our intermediate pretraining. Albeit curated,
Wikipedia content is subject to biased, missing or
simply incorrect information that can lead to unde-
sired behavior in the resulting models.

Concerning the methodology, we limited our
study exclusively to mainstream approaches: (i)
intermediate LM-ing for improving the representa-
tional quality of mmLMs for a language of inter-
est and (ii) established protocols for downstream
zero-shot and few-shot XLT. We acknowledge the
existence of more sophisticated (and more recent)
XLT methods based, e.g., on gradient manipulation
(Wang and Tsvetkov, 2021; Xu and Murray, 2022)
or dedicated representational alignment of lexical
units (i.e., embedding spaces) (Minixhofer et al.,
2022). We hope the research community will use
Kardes-NLU to evaluate and profile existing and
future state-of-the-art XLT approaches.

Finally, for the prompt-based evaluation of
LLMs, we experiment only with a single instruc-
tion (i.e., prompt) adapted from Ahuja et al. (2023).
It is reasonable to expect that some prompt engi-
neering effort yields better results.
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A LLMs: mT0 and ChatGPT

For mTO, we only use the instance-based prompts,
without the task instruction, following Ahuja et al.
(2023) (and accept exact matches as correct an-
swers only):

NLI. {PREMISE} Question:
True, False, or Neither?

{HYPOTHESIS}

COPA. {PREMISE} {% if question == “cause"”
9%} This happened because... {% else %} As a

consequence... {% endif %} Help me pick the more
plausible option: -{ CHOICE1 }-{ CHOICE2}

For ChatGPT, we slightly modify the prompts
from Ahuja et al. (2023) due to the fact that they
perform in-context few-shot learning, whereas we
carry out zero-shot prediction:

NLI. You are an NLP assistant whose purpose is
to solve Natural Language Inference (NLI) prob-
lems. NLI is the task of determining the inference
relation between two (short, ordered) texts. For
the given two sentences, you need to predict one
of the following: 1. Entailment, 2. Contradiction,
or 3. Neither (Neutral). Sentence 1: {PREMISE}.
Sentence 2: {HYPOTHESIS}. Answer:

COPA. You are an Al assistant whose purpose is
to perform open-domain commonsense causal rea-
soning. You will be provided a premise and two
alternatives, where the task is to select the alter-
native that more plausibly has a causal relation
with the premise. Answer as concisely as possible.
PREMISE {% if question == “cause" %} This hap-
pened because... {% else %} As a consequence...
{% endif %}: Alternative 1: CHOICE1 Alternative
2: CHOICE2

For NLI, the model’s output is compared directly
against the target label (True, False, or Neither).
For COPA, it is compared against the correct alter-
native ({CHOICE1} or {CHOICE2}). Since the
models are free to generate any text, they can theo-
retically perform below the random baseline (33%
for NLI and 50% for COPA).

Table 5 displays per language and average re-
sults for zero-shot evaluations on NLI and COPA
for the XLM-R base versions that we experiment
with, mTO of various sizes, and ChatGPT. We also
experiment with the templates that are translated to
the target language using Google Translate. How-
ever, those versions overall performed worse than

the English versions, most likely because of the
low translation quality. We can see that mTO’s
performance on COPA improves drastically when
it is scaled to XL and XXL versions. It should
be noted that mTOQ’s instruction tuning dataset in-
cludes the Social IQA dataset, which is similar to
the COPA dataset. This might explain the larger
model’s strong performance on this dataset outper-
forms zero-shot XLM-R variants.

B Computational Resources

All the experiments were run on a single V100
with 32GB VRAM. We roughly estimate that total
GPU time accumulates to 2800 hours across all
experiments.

C Adapter Fine-Tuning Experiments

In preliminary experiments, we investigated the
adapter-based equivalents to TLLM and BALM
(on STS and NLI) (Pfeiffer et al., 2020; Parovié
et al., 2022). We report per-language and averaged
scores in Table 6. Full fine-tuning of the mmILM
outperformed the adapter-based tuning, especially
on lower-resourced languages.

Target Language LM-ing Adapters (TLLM-
AD). We first train monolingual language adapters
on target languages via MLM-ing. We then stack
a task adapter on top and fine-tune it on the corre-
sponding downstream data—English, Turkish or
English and Turkish jointly—while keeping the
language adapter frozen.

Bilingual Alternating LM-ing Adapters (BALM-
AD). Here, we stick to Parovic et al. 2022 and up-
date the language adapter s parameters alternately
by one batch on the target language data followed
by one batch on Turkish data. Afterwards, we
fine-tune task adapters on either English, Turkish
or English and Turkish jointly, while keeping the
language adapter frozen.

Adapter Training Details. We trained monolin-
gual language adapters for 25000 steps and bilin-
gual ones for 50000. We set the learning rate to
le—4 and the batch size to 64. For task adapters,
we applied the same hyperparameters used for our
full fine-tuning experiments explained in section 4
but lowered the learning rate to 1le—4, as suggested
by Pfeiffer et al. 2020.
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Azerbaijani Kazakh Kyrgyz Uyghur Uzbek Average
EN TR ENJTR|EN TR ENTR|EN TR ENTR|EN TR EN,TR|EN TR ENJTR|EN TR EN,TR

Base 76.5 80.1 79.6 |73.8 763 773 |70.4 739 74.1 |422 444 429 |70.7 720 71.8 [66.7 69.4 69.1
TLM 773 79.0 79.2 |753 763 76.8 |72.4 741 744 |56.7 57.1 569 |73.1 743 748 |71.0 722 724
BALM |77.3 78.8 793 |744 753 77.0 |71.6 73.4 740 |57.4 587 58.0 |73.1 745 750 |70.8 72.1 72.7
BJILM 76.4 784 793 |749 751 76.8 |71.9 743 755 |572 592 594 |734 746 75.7 |70.7 723 733

NLI  [mTOsman 353 34.9 36.8 36.6 35.3 35.8
mT0pase 40.5 403 39.8 383 40.4 39.8
mT0rarge 40.8 4.5 42.0 41.9 412 417
mTOx, 56.9 55.7 53.0 49.4 55.6 54.1
mTOx x 1 60.7 59.4 58.1 543 58.9 582

| chatGPT | 56.4 \ 48.0 \ 47.1 \ 417 \ 47.9 \ 49.4

Base 60.1 61.1 609 |60.7 60.8 59.9 |59.7 60.0 594 |51.8 52.7 52.7 |57.3 59.5 60.1 |57.9 58.8 58.6
TLM 62.1 62.1 61.5 |55.7 558 56.1 |57.5 59.7 589 [49.9 503 493 |629 632 625 |57.6 582 57.7
BALM [57.2 583 59.4 |59.1 59.5 59.7 |56.1 59.9 59.1 |51.1 539 525 |60.5 61.7 619 |56.8 58.6 579
BJILM 61.8 63.3 633 |58.4 58.6 57.7 |56.8 61.5 62.0 |50.9 52.2 539 |61.7 60.5 629 |57.9 59.2 60.0

COPA | mTO04mau 342 7.6 3.4 5.6 43.6 18.8
mT0pase 32,0 3.6 5.8 42 39.8 17.1
mT0rarge 38.0 382 30.4 242 38.4 338
mTOx 60.4 62.8 50.4 476 632 56.9
mTOx x 1 81.2 74.6 57.8 61.4 80.6 71.1
| chatGPT | 73.0 \ 63.4 \ 56.6 \ 57.0 \ 55.6 \ 61.1

Table 5: Zero-Shot results for the target languages and the average results across the five languages for XLM-R
base, mTO and chatGPT models. The best results for each language-task pair are shown in bold.

Azerbaijani Kazakh Kyrgyz Uyghur Uzbek Average
EN TR ENJTR|EN TR ENTR|EN TR ENJTR|EN TR ENTR|EN TR EN,TR|EN TR EN,TR

773 79.0 792 |753 763 768 |72.4 74.1 744 |56.7 57.1 56.9 |73.1 743 748 |71.0 722 724
773 788 793 |744 753 77.0 |71.6 734 740 |57.4 587 58.0 |73.1 745 75.0 |70.8 72.1 72.7

TLLMAD 77.1 782 80.3 |74.0 74.8 76.8 |70.1 72.7 745 |483 47.0 483 |71.1 71.1 734 |68.1 68.8 70.6
BALM-AD|77.9 78.0 80.1 |733 752 77.6 |70.7 732 74.7 |47.8 464 46.8 |70.5 71.8 73.1 |68.1 69.0 70.5

‘TLLM ‘758 755 78.1 ‘80.6 80.1 81.9 ‘71.3 71.8 742 ‘70.6 69.3 71.3 ‘70.6 67.0 76.9 ‘73.8 727 76.5

727 7877 79.7 |81.4 832 839 |71.1 77.3 783 |72.8 723 73.5 |725 77.6 793 |74.1 77.8 79.0

TLLM-AD |76.1 77.5 79.5 |82.0 814 843 |74.0 754 77.8 |69.7 684 705 |752 755 774 |754 75.6 779
BALM-AD|76.2 77.5 799 |823 81.6 84.1 |732 755 773 |68.2 673 70.0 |75.1 750 773 |75.1 754 71.7

Table 6: Zero-Shot XLT results on Kardes-NLU (NLI and STS) for two adapter strategies (TLLM-AD and BALM-
AD) and source fine-tuning datasets (English only, Turkish only, and English and Turkish combined). The best
results for each language-task pair are shown in bold.
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D Few-Shot Results

Zero-Shot Few-Shot
Sequential Joint
EN TR EN,TR EN TR EN, TR EN TR EN,TR

Shots | - - - |10 50 100] 10 50 100] 10 50 100| 10 50 100] 10 50 100| 10 50 100
Base [76.5 80.1 79.6 |73.3 76.6 76.3|74.9 78.5 77.9|75.2 78.8 79.0|75.0 74.7 74.1|77.7 76.9 76.8|76.7 77.1 71.3
Agerbaiiani | TEM | 77:3 790 792|757 77.7 77.8|75.7 78.7 79.3|769 79.1 789|76.4 77.0 76.7|77.8 71.7 772|78.0 78.3 78.2
Zerbaljant | pAT M [77.3 79.0 79.2 |75.4 77.2 77.3|76.5 78.1 78.1|76.7 78.9 79.2|74.8 76.0 76.3|78.0 78.4 78.1|77.6 71.5 78.0
BJLM |77.3 78.8 79.3 |72.3 77.5 77.3|75.8 78.7 783|773 79.1 79.2|76.6 76.9 75.7|77.8 78.2 77.3|78.3 18.4 71.7
Base |73.8 763 77.3 |69.7 73.6 73.5|72.0 75.0 753|733 75.5 76.0|71.1 71.5 71.4|74.3 73.0 72.7|74.6 T4.4 743
Kagakh | TLM |75.3 763 768 724 755 763|75.1 759 757|748 768 76.1|73.8 752 74.8/75.2 75.6 746|760 75.8 76.4
aza BALM |74.4 753 77.0 |72.8 75.3 74.7|72.9 75.8 75.7|75.1 76.4 76.9|73.8 73.8 74.5|74.6 74.8 74.2|74.9 74.7 758
BILM |74.9 75.1 76.8 |73.2 74.8 75.0|73.0 74.5 74.6|74.5 76.8 76.4|73.3 74.1 73.6|74.1 75.0 74.3|75.2 752 74.7
Base |70.4 739 74.1 |66.6 70.6 70.5|69.4 72.3 72.7|70.3 73.1 73.6|68.9 69.7 69.2|70.7 69.4 69.5|70.8 70.5 71.7
K LM |72.4 74.1 744 |71.0 73.6 73.1|72.2 73.6 74.0|72.9 75.4 75.4|71.4 71.6 71.9|72.4 73.4 72.6|72.8 73.0 73.2
YIEYZ  IBALM|71.6 734 74.0 |69.2 732 72.6|71.2 73.4 73.0|73.0 74.5 74.7|71.0 71.4 71.8|71.7 72.3 71.9|73.0 73.2 73.0
BILM |71.9 743 755 |71.7 73.1 73.3|72.9 74.0 73.5|73.7 75.8 75.7|72.0 72.8 72.0|73.4 72.8 73.6|72.6 73.6 73.8
Base [42.2 444 429 [41.5 49.2 50.1|45.0 47.9 50.5|43.5 48.6 49.6|43.2 47.8 49.9|43.8 48.4 49.8(42.2 47.9 483
Uveh LM [56.7 57.1 56.9 |50.1 53.7 58.0(52.1 57.3 58.8|55.3 56.8 57.9|52.6 54.6 56.6|52.9 56.5 56.2|52.4 55.7 58.1
YEUL IBATM|57.4 58.7 58.0 |51.4 57.0 58.3|53.0 58.0 59.5|51.9 58.3 59.4|53.7 56.3 55.8|54.9 57.9 58.9|54.0 56.4 57.4
BILM [57.2 592 59.4 |51.1 56.4 57.8|52.8 57.3 57.3|51.6 57.0 58.8|52.8 54.4 55.9|54.5 56.4 57.1|54.0 56.1 57.9
Base [70.7 72.0 71.8 |66.5 69.5 69.8|67.1 71.6 70.2|67.6 71.3 72.3]66.5 67.5 67.4|68.6 69.0 68.6|67.9 68.6 69.0
Usbek TLM |73.1 743 74.8 |71.3 733 73.4|71.3 74.1 73.9|73.1 749 74.4|72.4 73.1 73.3|72.4 732 72.9|72.7 732 735
BALM |73.1 74.5 75.0 |70.9 71.6 73.4|71.4 73.9 73.8|73.3 74.7 75.1|72.1 72.4 73.5|73.4 73.9 73.2|73.1 732 73.7
BILM |73.4 74.6 757 |69.3 73.1 73.3|71.4 74.0 74.0|722 74.8 75.0|72.4 73.4 72.3|73.4 74.1 73.7|73.1 74.0 75.1

Table 7: Per-language results of sequential and joint transfer on Kardeg-NLI.

Zero-Shot Few-Shot
Squential Joint
EN TR EN,TR EN TR EN, TR EN TR EN,TR

Shots | - - - |10 50 100] 10 50 100] 10 50 100| 10 50 100| 10 50 100| 10 50 100
Base [60.1 61.1 609 [62.3 62.5 63.8|61.5 61.3 62.5|61.9 62.3 62.5]60.3 62.2 61.9|62.3 62.8 62.7|61.7 62.8 62.9
Agerbaiiani | TEM 621 621 615 |60.1 60.7 60.6/60.3 60.3 62.1/59.9 60.8 61.1{60.8 61.2 62.1|623 608 60.6|61.6 61.7 62.6
zZerbaljant | g a1 M [57.2 58.3 59.4 |58.5 58.3 59.2/58.8 58.0 59.2|60.1 58.7 59.8(59.5 59.8 57.7|58.9 59.3 59.1|62.7 60.6 59.3
BILM [61.8 633 63.3 |61.1 62.4 62.1|62.5 61.9 62.9/61.0 62.1 61.7]62.0 62.8 61.9|62.1 63.7 61.9|61.9 62.3 62.4
Base [60.7 60.8 59.9 |55.6 59.3 60.1|57.6 60.7 60.3|56.7 60.4 60.3|58.7 59.2 60.8|60.2 60.7 60.9|60.7 60.8 61.9
Kazakh | TEM [55.7 558 561 |54.4 561 57.2|54.8 555 57.9|54.9 56.5 57.9(55.4 564 56.5|56.3 57.6 58.4|56.6 583 59.5
BALM |59.1 59.5 59.7 |58.6 59.4 60.3|55.9 59.5 59.5|57.1 58.7 59.9|57.5 57.9 60.3|60.0 59.3 59.8|59.9 60.7 59.3
BILM |58.4 58.6 57.7 |56.0 57.9 60.1|58.3 58.9 60.5(58.3 59.5 60.5|57.5 59.8 58.9|58.5 59.5 59.2|59.6 59.8 59.7
Base [59.7 60.0 59.4 |56.6 59.0 59.7|58.0 58.5 59.0(59.3 59.3 59.7]60.1 60.1 61.1|61.1 60.5 60.2|61.3 61.1 61.1
Kravg | TEM |S7.5 597 589 |585 589 61.2/59.7 60.9 61.9|58.7 60.0 60.2|58.7 582 59.7|60.1 60.6 59.5|61.3 61.5 61.7
yrey BALM |56.1 59.9 59.1 |57.6 58.1 58.3|58.1 61.7 60.7|57.6 59.8 60.3|56.1 58.1 57.7|60.7 61.7 60.1|58.5 60.9 58.9
BILM [56.8 61.5 62.0 |57.3 59.5 60.8|60.5 63.1 61.3|60.1 62.4 62.1]59.5 59.3 60.1|61.3 61.9 62.3]62.2 62.9 60.9
Base [51.8 52.7 52.7 |51.7 50.7 52.5|51.3 50.3 51.9]50.7 51.3 51.7|51.3 50.9 52.4|51.1 50.5 50.1|51.5 50.6 51.7
Uvehur | TEM [49.9 503 493 1509 48.1 50.5(48.6 49.1 52.7|48.7 49.7 S1.1|49.2 49.9 50.2149.9 49.9 50.4|49.5 49.8 52.3
ye BALM |51.1 539 52.5 |51.1 49.4 50.7|53.3 512 51.7|52.9 51.2 50.7|50.8 50.9 49.6|54.2 52.5 51.5|52.5 52.5 51.7
BJLM [50.9 522 53.9 [50.7 49.9 51.5|49.7 50.6 51.6|49.5 50.7 52.4|50.6 50.1 50.5|51.0 51.9 51.4|52.9 51.9 51.7
Base [57.3 59.5 60.1 |55.9 57.9 57.6|55.7 57.1 57.1|56.6 55.9 57.1|57.3 57.2 58.7|58.9 58.0 58.6|59.5 59.6 59.7
Usbek TLM |62.9 632 62.5 |59.9 63.1 62.7]62.1 63.5 63.1|61.1 62.8 64.1|62.1 61.7 63.1[61.9 64.7 64.1|63.9 63.7 62.8
zbe BALM [60.5 61.7 61.9 |56.9 60.7 62.3|58.2 59.8 61.3|60.3 61.4 61.2]60.3 62.3 60.6|61.3 60.9 60.3|61.7 62.3 62.1
BILM [61.7 60.5 62.9 |60.7 63.3 62.1]59.3 61.9 62.4|61.2 64.2 62.3]60.9 61.9 62.7|61.5 62.3 61.7|63.9 62.7 64.4

Table 8: Per-language results of sequential and joint few-shot transfer on Kardes-COPA.
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Zero-Shot Few-Shot

Squential Joint
EN TR EN,TR EN TR EN,TR EN TR EN,TR
Shots | - - - |10 50 100| 10 50 100| 10 50 100| 10 50 100| 10 50 100| 10 50 100

Base [80.3 78.9 804 |74.5 76.7 76.9|75.7 77.2 77.0|77.6 78.8 78.2|79.3 78.8 79.2|79.7 80.2 80.0|80.4 80.8 80.8
TLM |75.8 75.5 78.1 |75.0 76.2 76.3|75.1 76.6 77.2|77.5 78.0 78.9|77.5 77.4 78.0|76.2 77.4 77.9|78.8 79.2 79.7
BALM (727 78.7 79.7 |75.6 76.3 76.3|76.0 77.2 78.1|77.6 78.7 79.4|75.8 76.4 77.1|79.4 79.6 80.1|80.1 80.6 80.5
BJLM |69.3 77.0 783 |73.9 74.8 75.6|76.6 77.5 77.9|77.3 78.2 78.5|753 75.9 76.4|78.1 79.1 79.5|79.6 80.2 80.5

Azerbaijani

Base |[85.8 84.1 84.8 [81.6 82.1 82.4|81.2 82.3 82.3|82.5 83.1 83.8(84.5 84.4 84.9(84.5 85.1 85.4|85.0 85.6 85.6
TLM [80.6 80.1 81.9 |81.1 82.0 82.2|81.2 81.2 81.9|82.5 84.0 83.8|81.8 83.2 83.5|80.9 82.6 83.3|82.6 84.0 84.3
BALM (81.4 83.2 839 |81.5 82.7 82.6/82.0 83.2 84.3|82.5 84.6 84.4|82.6 83.7 84.2|83.9 84.7 85.0(84.7 85.6 85.9
BJLM |78.6 83.2 84.6 |79.6 81.5 82.0|80.9 83.1 83.3|82.4 83.7 84.5|80.5 82.3 82.6|83.9 84.5 84.9|85.1 85.6 85.8

Kazakh

Base |782 77.9 787 |71.3 72.1 73.3|73.7 74.7 73.4|74.0 75.1 75.9|76.4 76.0 75.8|78.7 79.5 79.4|78.8 79.8 79.5
Kyrayz TLM |71.3 71.8 742 |71.2 70.8 71.6|72.5 73.6 73.4|73.4 732 73.6|72.7 73.8 73.8|74.1 75.7 76.8|76.0 77.2 77.1

BALM |71.1 77.3 783 [69.4 71.3 72.3|74.5 76.5 75.5|75.7 77.0 75.4|72.3 72.8 73.6|77.7 78.6 78.4|78.1 78.7 79.3
BJLM [69.9 75.1 773 |68.8 70.6 72.4|73.6 75.0 74.1|74.8 75.8 76.1|71.7 73.3 74.3|76.4 772 76.9|77.4 77.9 78.0

Base [69.2 64.8 642 657 71.2 69.2|67.4 71.8 69.7|66.1 71.1 70.9|64.7 71.1 71.3|64.2 70.9 70.9|63.7 70.0 71.5
TLM [70.6 69.3 713 |68.4 71.8 72.4|71.5 72.6 72.0|71.9 73.0 73.8|69.3 72.5 72.6|69.6 72.1 72.7|70.8 73.2 73.6

Uyghur BALM |72.8 723 73.5 |71.5 74.1 74.3|72.8 74.2 74.2|73.2 74.5 74.8|71.3 74.7 74.6|71.7 749 75.0|72.9 753 75.6
BIJLM |65.7 66.9 69.0 [69.0 72.7 71.7|70.5 72.1 71.4|70.4 73.2 73.1|68.5 73.3 73.2|68.3 72.4 72.4|69.8 73.7 73.7
Base |78.3 772 77.1 |742 754 75.2|74.6 76.2 75.7|76.6 77.6 76.7|76.7 71.5 77.1|77.9 78.7 78.5|77.8 78.8 78.9
Uzbek TLM |70.6 67.0 76.9 |72.5 75.6 75.5|74.2 75.6 76.1|77.0 78.2 78.0|74.1 77.0 76.7|75.4 77.2 77.2|77.8 79.0 79.2

BALM |72.5 77.6 79.3 |74.4 75.7 76.1|75.9 76.9 76.9|77.4 78.1 78.1|75.4 77.2 77.6|78.6 79.3 79.3|79.9 80.3 80.5
BJLM |71.1 76.8 773 |72.6 74.7 75.2|74.5 76.8 77.3|75.7 77.8 78.1|74.0 76.1 76.4|77.1 78.5 78.7|77.8 79.0 79.1

Table 9: Per-language results of sequential and joint few-shot transfer on Kardes-STS.
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Chapter 3

Graph Algorithms for Multiparallel
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Abstract

With the advent of end-to-end deep learning
approaches in machine translation, interest in
word alignments initially decreased; however,
they have again become a focus of research
more recently. Alignments are useful for ty-
pological research, transferring formatting like
markup to translated texts and can be used
in the decoding of machine translation sys-
tems. At the same time, massively multilin-
gual processing is becoming an important NLP
scenario and pretrained language and machine
translation models that are truly multilingual
are proposed. However, most alignment algo-
rithms rely on bitexts only and do not leverage
the fact that many parallel corpora are multi-
parallel. In this work, we exploit multiparal-
lelity of corpora by representing an initial set
of bilingual alignments as a graph and then
predicting additional edges in the graph. We
present two graph algorithms for edge predic-
tion: one inspired by recommender systems
and one based on network link prediction. Our
experimental results show absolute improve-
ments of F; of up to 28% over the baseline
bilingual word aligner in different datasets.

1 Introduction

Word alignment is a challenging NLP task that
plays an essential role in statistical machine trans-
lation and is useful for neural machine translation
(Alkhouli and Ney, 2017; Alkhouli et al., 2016;
Koehn et al., 2003). Other applications of word
alignments include bilingual lexicon induction, an-
notation projection, and typological analysis (Shi
et al., 2021; Rasooli et al., 2018; Miiller, 2017;
Lewis and Xia, 2008). With the advent of deep
learning, interest in word alignment initially de-
creased. However, recently a new wave of publica-
tions has again drawn attention to the task (Jalili Sa-
bet et al., 2020; Dou and Neubig, 2021; Marchisio
et al., 2021; Wu and Dredze, 2020).

* Eaual contribution - random order.
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the journey of a thousandmiles beginswith one step

un voyage de mille milles commence par un seul pas

Figure 1: Bilingual alignments of a verse in English,
German, Spanish, and French. Two of the alignment
edges not found by the bilingual method are German
“Schritt” to French “pas” and Spanish “largo” to En-
glish “thousand miles”. By looking at the structure of
the entire graph, one can infer the correctness of these
two edges.

In this paper we propose MPWA (MultiParal-
lel Word Alignment), a framework that employs
graph algorithms to exploit the information latent
in a multiparallel corpus to achieve better word
alignments than aligning pairs of languages in iso-
lation. Starting from translations of a sentence
in multiple languages in a multiparallel corpus,
MPWA generates bilingual word alignments for all
language pairs using any available bilingual word
aligner. MPWA then improves the quality of word
alignments for a target language pair by inspect-
ing how they are aligned to other languages. The
central idea is to exploit the graph structure of an
initial multiparallel word alignment to improve the
alignment for a target language pair. To this end,
MPWA casts the multiparallel word alignment task
as a link (or edge) prediction problem. We explore
standard algorithms for this purpose: Adamic-Adar
and matrix factorization. While these two graph-
based algorithms are quite different and are used in
different applications, we will show that MPWA ef-
fectively leverages them for high-performing word
alienment.



Link prediction methods are used to predict
whether there should be a link between two nodes
in a graph. They have various applications like
movie recommendations, knowledge graph comple-
tion, and metabolic network reconstruction (Zhang
and Chen, 2018). We use the Adamic-Adar index
(Adamic and Adar, 2003); it is a second-order link
prediction algorithm, i.e., it exploits the informa-
tion of neighbors that are up to two hops aways
from the starting target nodes (Zhou et al., 2009).
We use a second-order algorithm since a set of
aligned words in multiple languages (representing
a concept) tends to establish a clique (Dufter et al.,
2018). This means that exploring the influence of
nodes at a distance of two in the graph provides
informative signals while at the same time keeping
runtime complexity low.

Matrix factorization is a collaborative filtering
algorithm that is most prominently used in rec-
ommender systems where it provides users with
product recommendations based on their interac-
tions with other products. This method is especially
useful if the matrix is sparse (Koren et al., 2009).
This is true for our application: Given two transla-
tions of a sentence with lengths M and N, among
all possible alignment links (M x ), only a few
(O(M + N)) are correct. This is partly due to fer-
tility: words in the source language generally have
only a few possible matches in the target language
(Zhao and Gildea, 2010).

A multiparallel corpus provides parallel sen-
tences in more than two languages. This type of
corpus facilitates the study of multiple languages
together, which is especially important for research
on low resource languages. As far as we know, out
of all available multiparallel corpora, the Parallel
Bible Corpus (Mayer and Cysouw, 2014) (PBC)
provides the highest language coverage, supporting
1334 different languages, many of which belong to
categories 0 and 1 (Joshi et al., 2020) — that is, they
are languages for which no language technologies
are available and that are severely underresourced.

MPWA has especially strong word alignment
improvements for distant language pairs for which
existing bilingual word aligners perform poorly.
Much work that addresses low resource languages
relies on the availabiliy of monolingual corpora.
Complementarily, MPWA assumes the existence
of a very small (a few 10,000s of sentences in our
case) parallel corpus and then takes advantage of
information from the other laneuages in the paral-

lel corpus. This is an alternative approach that is
especially important for low resource languages for
which monolingual data often are not available.

The PBC corpus does not contain a word align-
ment gold standard. To conduct the comparative
evaluation of our new method, we port three exist-
ing word alignment gold standards of Bible trans-
lations to PBC, for the language pairs English-
French, Finnish-Hebrew and Finnish-Greek. We
also create artificial multiparallel datasets for four
widely used word alignment datasets using ma-
chine translation. We evaluate our method with
all seven datasets. Results demonstrate substantial
improvements in all scenarios.

Our main contributions are:

1. We propose two graph-based algorithms for
link prediction (i.e., the prediction of word
alignment edges in the alignment graph), one
based on second-order link prediction and one
based on recommender systems for improving
word alignment in a multiparallel corpus and
show that they perform better than established
baselines.

2. We port and publish three word alignment
gold standards for the Parallel Bible Corpus.

3. We show that our method is also applicable,
using machine translation, to scenarios where
multiparallel data is not available.

4. We publish our code' and data.

2 Related Work

Bilingual Word Aligners take different ap-
proaches. Some are based on statistical analysis,
like IBM models (Brown et al., 1993), Giza++ (Och
and Ney, 2003a), fast-align (Dyer et al., 2013) and
Eflomal (Ostling and Tiedemann, 2016). Another
more recent group, including SimAlign (Jalili Sa-
bet et al., 2020) and Awesome-align (Dou and Neu-
big, 2021), utilizes neural language models. The
last group is based on neural machine translation
(Garg et al., 2019; Zenkel et al., 2020). While neu-
ral models outperform statistical models, for cases
where only a small parallel dataset is available, sta-
tistical models are still superior. In this paper we
use PBC, a corpus with 1334 languages, of which
only about two hundred are supported by multilin-
gual language models like Bert and XLM-R (De-
vlin et al., 2019; Conneau et al., 2020). MPWA can

"https://aithub.com/cisnlp/araph-alian

53



leverage multiparallelism on top of any bilingual
word aligner; in this paper, we use Eflomal and
SimAlign.

Multiparallel corpus alignment. Most work
on word alignment has focused on bilingual cor-
pora. To the best of our knowledge, only one
method specifically designed for multiparallel cor-
pora was previously proposed: (Ostling, 2014).2
However this method is outperformed by a “bipar-
allel” method by the same author, Eflomal (Ostling
and Tiedemann, 2016). We compare with Eflomal
in our experiments.

Cohn and Lapata (2007) make use of multipar-
allel corpora to obtain more reliable translations
from small datasets. Kumar et al. (2007) show
that multiparallel corpora can be of benefit to reach
better performance in phrase-based statistical ma-
chine translation (SMT). Filali and Bilmes (2005)
present a multilingual SMT-based word alignment
model, extending IBM models, based on HMM
models and a two step alignment procedure. Since
the goal of this research is to tackle word alignment
directly without considering machine translation,
these works are not considered here.

In another line of research, Lardilleux and Lep-
age (2008a) introduce a corpus splitting method to
come up with a perfect alignment of multiwords.
Lardilleux and Lepage (2008b), and Lardilleux and
Lepage (2009) suggest to rely only on low fre-
quency terms for a similar purpose: sub-sentential
alignment. These methods solve a somewhat differ-
ent problem than what is addressed by us. Other us-
ages of multiparallel corpora are language compar-
ison (Mayer and Cysouw, 2012), typology studies
(Ostling, 2015; Asgari and Schiitze, 2017; Imani-
Googhari et al., 2021) and SMT (Nakov and Ng,
2012; Bertoldi et al., 2008; Dyer et al., 2013)

Matrix factorization and link prediction. Ma-
trix factorization is a technique that factors, in the
most typical case, a matrix into two lower-ranked
matrices in which the latent factors of the original
matrix are represented. Matrix factorization ap-
proaches have been widely used in document clus-
tering (Xu et al., 2003; Shahnaz et al., 2006), topic
modeling (Kuang et al., 2015; Choo et al., 2013)
information retrieval (Zamani et al., 2016; Deer-
wester et al., 1990) and NLP tasks like word sense
disambiguation (Schiitze, 1998). In 2009, Netflix’s
recommender system competition revealed that this

https://github.com/robertostling/
eflomal
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technique effectively works for collaborative filter-
ing (Koren et al., 2009). Since then it has been a
state of the art method in recommender systems.

Link prediction algorithms are widely used in
different areas of science since many social, biolog-
ical, and information systems can be described as
networks with nodes and connecting links (Zhou
et al., 2009). Link prediction algorithms compute
the likelihood of links based on different heuris-
tics. One can categorize available methods based
on the maximum number of hops they consider
in their computations for each node (Zhang and
Chen, 2018). First order algorithms, such as com-
mon neighbors (CN), only consider one hop neigh-
borhoods, e.g., (Barabasi and Albert, 1999). Sec-
ond order methods consider two hops, e.g., (Zhou
et al., 2009). Finally, higher order methods take
the whole network into account for making predic-
tions (Brin and Page, 1998; Jeh and Widom, 2002;
Rothe and Schiitze, 2014). In this paper, we use
a two-hop method since it offers a good tradeoff
between effectiveness and efficiency.

3 Methods
3.1 The MPWA framework

While a bilingual aligner considers each language
pair separately, MPWA utilizes the synergy be-
tween all language pairs to improve word align-
ment performance. In Figure 1, Eflomal alignments
of a sentence from PBC in four different languages
are depicted. Although Eflomal has failed to find
the link between German “Schritt” and French
“pas”, we can easily find this relation by observ-
ing that the four nodes “step”, “Schritt”, “paso”,
and “pas” are fully connected, except for the edge
from “Schritt” to “pas”. In this case, the inference
amounts to a completion of a clique. However,
most cases are not that simple. In the figure, En-
glish “thousand miles” is mistakenly aligned to
Spanish “siempre” although its alignments to Ger-
man “lange” and French “mille” are correct. We
would like to infer that “thousand miles” should be
aligned to “largo”, but in this case creating a fully
connected subgraph, i.e., a clique (which would in-
clude “siempre”), would add many incorrect edges.
Given the complexity and error-proneness of ini-
tial bilingual alignments, inferring an alignment
between two languages from a multiparallel align-
ment in general is a complex problem.

Starting from a multiparallel corpus, we first gen-
erate bilingual alienments for all laneuage pairs.



MPWA then employs a prediction algorithm to find
and add new alignment links. In this paper, we
focus on two prediction algorithms: non-negative
matrix factorization and Adamic-Adar link predic-
tion.

3.2 Non-negative matrix factorization

Non-negative matrix factorization (NMF) has been
used in many different applications. After discov-
ery of its effectiveness for collaborative recommen-
dation (Koren et al., 2009), it was widely accepted
as a standard method for recommender systems.
In a standard recommender system with m users
and n items, ratings (a number from 1 to 5) from
each user for the items they have seen so far are
known. The aim is to predict the ratings the user
would give to unseen items and, based on these
predictions, recommend new items to the user. As
described by (Luo et al., 2014), let W = [w, ;] €
R™*™ be the matrix of ratings. For NMF to work
it is essential that the matrix be sparse, thus if a
user’s rating for an item is unknown, the corre-
sponding cell is zeroed. The matrix W is then
decomposed into two low-rank non-negative ma-
trices, T' = [t, 1) € R™*" and V = [y, ;] € R™"
such that TV ~ W and r < min(m,n). ris a
hyperparameter. By multiplication of these two ma-
trices we end up with a reduced matrix W/ = TV
in which each zeroed cell w,, ; from matrix W is
replaced with a value wiu that represents a predic-
tion for the rating that user © would give to item .
NMF solves the following optimization program:

argmin (||W — TV ||?)
TV
subjectto T,V >0

This optimization problem can be solved by gra-
dient descent using the following updates:

tuk < tuk + Uu,k((WVT)u,k - (TVVT)u,k)
Vki < Vi + i (TTW)gs — (TTTV)1)

In this equation, 7 is the learning rate. To guar-
antee non-negativity, it is defined as:

_ ek o Uki
N,k (TVVT)ng’ Nk, (TTTV)kﬂ

Note that the objective function only takes ac-
count of non-zero cells. Luo et al. (2014) propose
an approach that takes advantage of the sparseness
of the matrix for faster computation. In addition.

S 0 <= E E -2

-3 22 28 2 2 8
1 5 15 1 5 1
can 5 1 5 1
see 115 1 5 1 5
ich 51 5 5 1
kann 15 1 5
es 5 1
sehen 1 5 1 5 1
je 51 5 1 5 1
vois 1 51 5 1 5

Figure 2: An example of how the original matrix is
filled for a sentence in three languages. Zero entries
are left blank for readability.

Tikhonov regularization is integrated to improve
precision, recall, and convergence rate.

We use the implementaion of NMF provided by
the Surprise? library, with default hyperparameters
(r = 15, n_epochs = 50).

3.2.1 NMF in MPWA framework

We create a separate matrix W for each sentence
in the multiparallel corpus. Tokens in the sentence
play the role of both users and items, i.e., we con-
sider each token both as a row and as a column.
Figure 2 shows an example of a sentence in a toy
English-German-French multiparallel corpus. If
two tokens are aligned using the bilingual aligner,
we fill the corresponding cell with the highest rat-
ing (5). To give a few negative examples to the
algorithm, if a token x from language L, is aligned
to token y in language Lo, we pick another ran-
dom token z from Ly and fill the corresponding
cell of x to z with the lowest rating (1). We zero
out all other cells. Next we apply the matrix fac-
torization algorithm to this matrix and then com-
pute the reduced matrix W' from the factors. Now
we grab the predicted alignment scores between
source and target languages from W’. To extract
new alignment edges we apply the Argmax algo-
rithm (Jalili Sabet et al., 2020). Argmax creates an
alignment edge between word w; from language
Ly and word w; from language Lo if among all
words from Lo, w; has the highest alignment score
with w;, and among all words from L1, w; has the
highest alignment score with w;.

3.3 Link Prediction

A multiparallel sentence annotated with bilingual
word alignments can be considered to be a graph
with words from all translations as nodes and the

Shttp://surpriselib.com/
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word alignments as edges. Link prediction al-
gorithms such as Common Neighbors (CN) and
Adamic-Adar (AdAd) estimate the likelihood of
having an edge between two nodes z and y in the
graph based on the similarity of their neighbor-
hoods. The CN index weights all common neigh-
bors equally. In contrast, AdAd gives higher weight
to neighbors with low degrees because sharing a
neighbor that in turn has few neighbors is more
significant. Therefore, we use the AdAd index. It
is defined as:

1
AdAd,, = ) S 1
— o)
Yy

zel(x)NI(

where I'(z) is the neighborhood of x.

If we use a word aligner that produces a score for
each alignment edge, we can use Weighted Adamic-
Adar (Lii and Zhou, 2010):

S w@d) buG) o

WAdAd, = log(1 1 5(2))

z€l(z)NT(y)

where w(x, z) is the similarity score of z and z gen-
erated by the aligner and S(z) = 3_,cp(,) w(z, 2).
For embedding-based aligners we use embedding
similarity as the score w(z, z). If an aligner does
not provide scores, we set all weights to 1.0.

Given a scored word alignment, we create a mul-
tilingual word alignment matrix W for each sen-
tence as shown in Figure 2. Each cell contains 0
or 1 for Adamic-Adar or the alignment score for
Weighted Adamic-Adar. We again apply Argmax
to extract new alignment edges and then add them
to the original alignment.

4 Experimental setup

41 PBC

The PBC corpus (Mayer and Cysouw, 2014) con-
tains 1758 editions of the Bible in 1334 languages.
The editions are aligned at the verse level and to-
kenized. A verse can contain more than one sen-
tence, but we treat it as one unit in the parallel
corpus since a true sentence level alignment is not
available. There are some errors in tokenization
(e.g., for Tibetan, Khmer and Chinese), but the
overall quality of the corpus is good. For the ma-
jority of languages one edition is provided, while a
few languages (in particular, English, French and
German) contain up to dozens of editions. The
verse coverage also differs from language to lan-
guage. Some languages have translations of both
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New Testament and Hebrew Bible while others
contain only one. Table 2 gives corpus statistics.

4.2 Word alignment datasets

PBC does not provide gold word alignments. To
evaluate MPWA, we port two word alignment gold
datasets of the Bible to PBC: Blinker (Melamed,
1998) and the recently published HELFI (Yli-Jyrd
et al., 2020). We further experiment with bilin-
gual datasets, using Machine Translation (MT) to
create multiparallel corpora. Table 1 gives dataset
statistics.

The HELFI dataset consists of the Greek New
Testament, the Hebrew Bible and translations of
both into Finnish. In addition, morpheme align-
ments are provided for Finnish-Greek and Finnish-
Hebrew. We reformatted this dataset to the format
used by PBC. In more detail, we added three new
editions for the three languages to PBC. We iden-
tified the PBC verse identifier for each verse of
HELFI to ensure proper verse alignment of these
three new editions. The Finnish-Hebrew dataset
has 22,291 verses and the Finnish-Greek dataset
7,909. We split these datasets 80/10/10 into train,
validation and test.

The Blinker Bible dataset provides word level
alignments of 250 Bible verses between English
and French. The French side of this dataset matches
with the edition Louis Segond 1910 in PBC. How-
ever, the tokenizations (Blinker vs PBC) are differ-
ent. We therefore create a mapping of the tokens
using character n-gram matching.  For English,
we created and added a new edition to PBC.

MT datasets. To more broadly evaluate MPWA,
we also create multiparallel datasets for four non-
Bible word alignment gold standards; these are
listed in Table 1 as “Non-Bible” corpora. For these
gold standards, we translate from English to all lan-
guages available in Google Translate, using their
APIL* For the added languages, we create align-
ments for the gold standard sentences using SimA-
lign.

4.3 Initial word alignments

We compare with two state of the art models, one
statistical, one neural. Eflomal (Ostling and Tiede-
mann, 2016) is a Bayesian statistical word aligner
using Markov Chain Monte Carlo inference. SimA-
lign (Jalili Sabet et al., 2020) obtains word align-

“https://cloud.google.com/translate/
docs/basic/translatina-text



Language Pair ||

Name # Sentences (train/valid./test)

FIN-HEB HELFI (Yli-Jyri et al., 2020) 22291 (17832/2229/2230)
Bible FIN-GRC HELFI (Yli-Jyri et al., 2020) 7909 (6327/791/791)
ENG-FRA BLINKER (Melamed, 1998) 250
ENG-DEU EuroParl-based® 508
Non- ENG-FAS (Tavakoli and Faili, 2014) 400
Bible  ENG-HIN WPT2005° 90
ENG-RON WPT2005° 203

* www—16.informatik.rwth—aachen.de/goldAlignment/
®http://web.eecs.umich.edu/~mihalcea/wpt05/

Table 1: Overview of datasets. We use ISO 639-3 language codes. # Sentences: the number of available verses
(i.e., sentences). FIN-HEB and FIN-GRC datasets split into train, validation and test.

# editions 1758
# languages 1334
# verses 20,470,892
# verses / # editions 11,520
# tokens / # verses 28.6

Table 2: PBC corpus statistics

ments from multilingual pretrained language mod-
els with no need for parallel data. For the sym-
metrization of Eflomal, we use grow-diag-final-and
(GDFA) and intersection, and for SimAlign we use
Argmax and Itermax. Intersection and Argmax gen-
erate accurate alignments while GDFA and Itermax
are less accurate but have better coverage (Jalili Sa-
bet et al., 2020).

We evaluate on a rarget language pair parallel
sentence as follows: First, we create the matrix
(Figure 2) for this sentence for all languages in the
multiparallel corpus. Then we run link prediction
on the matrix — this accumulates evidence from a
set of languages in the multiparallel corpus. Finally,
we take the predictions for the target language pair
and add them to the original (bilingual) alignment.

NMF works best if it starts with high-accuracy
(i.e., non-noisy) bilingual alignments — errors can
result in incorrectly predicted alignment edges. We
therefore use SimAlign Argmax and Eflomal In-
tersection, two word alignment methods with high
precision, to create the initial alignments that are
then fed into NMF. We then add the predictions to
any desired original alignments; e.g., NMF (GDFA)
uses Eflomal Intersection as the initial alignments
and adds the predictions to Eflomal GDFA. See the
Appendix for more details.

SimAlign offers high quality word alignments
for well-represented languages from pretrained lan-
guage models; however, our experiments show
that its performance is far behind Eflomal for less
well resourced languages like Biblical Hebrew and
Koine Greek. Also. Eflomal is a better match for

MPWA because it can provide word alignments
for all languages available in a multiparallel cor-
pus. In contrast, SimAlign is limited to languages
supported by pretrained multilingual embeddings.

To feed Eflomal with enough training data for a
target language pair, we use all available data from
different translations of the language pair. For ex-
ample if one language has two translations and the
other one has three translations, Eflomal’s training
data will contain six aligned translation pairs for
these two languages.

We use the standard evaluation measures for
word alignment: precision, recall, F; and Align-
ment Error Rate (AER) (Och and Ney, 2003b;
Ostling and Tiedemann, 2016; Jalili Sabet et al.,
2020).

5 Results

5.1 Multiparallel corpus results

We perform the first set of experiments on the
Blinker Bible and the HELFI gold standards in
the PBC. The baseline results are calculated on the
original language pairs. MPWA can be applied
to both Eflomal and SimAlign alignments. Since
the default version of SimAlign can only generate
alignments for the 84 languages that multilingual
BERT supports,” for a better comparison, we use
the same set of languages in the alignment graph
for both SimAlign and Eflomal.

Table 3 shows the results for our methods ap-
plied on SimAlign and Eflomal baselines.® AdAd,
NMF and WAdAGJ substantially improve the per-
formance for all language pairs. SimAlign gener-
ates high-quality alignments for the English-French
dataset, but cannot properly align underresourced
languages like Biblical Hebrew and Koine Greek.

Shttps://github.com/google-research/
bert/blob/master/multilingual.md

®We only consider SimAlign IterMax, not SimAlign
AregMax. because IterMax performed better throughout.
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FIN-HEB FIN-GRC ENG-FRA

Method Prec. Rec. Fi AER |Prec. Rec. F; AER|Prec. Rec. Fi AER

Eflomal (intersection) || 0.818 0.269 0.405 0.595 | 0.897 0.506 0.647 0.353|0.971 0.521 0.678 0.261

Baselin Eflomal (GDFA) 0.508 0.448 0476 0.524 |0.733 0.671 0.701 0.300 | 0.856 0.710 0.776 0.221

4SeNe | SimAlign 0.190 0.113 0.142 0.858 | 0.366 0.265 0.307 0.693 | 0.886 0.692 0.777 0.221

AdAd 0.199 0.127 0.155 0.845|0.402 0.289 0.336 0.664 | 0.878 0.731 0.798 0.200

Init SimAlign | WAdAd 0.186 0.165 0.175 0.825 | 0.353 0.350 0.351 0.649 | 0.856 0.752 0.801 0.197

NMF 0.122 0.100 0.110 0.890 | 0.396 0.337 0.364 0.636 | 0.835 0.700 0.762 0.236

WAJA (intersection) || 0.781 0.612 0.686 0.314 | 0.849 0.696 0.765 0.235|0.938 0.689 0.794 0.203

. NMEF (intersection) 078 0.576 0.663 0.337 | 0.864 0.669 0.754 0.248|0.948 0.624 0.753 0.245
Init Eflomal

WAJAd (GDFA) 0.546 0.693 0.611 0.389 |0.707 0.783 0.743 0.257|0.831 0.796 0.813 0.186

NMF (GDFA) 0.548 0.646 0.593 0.407 | 0.72 0759 0.739 0.261 | 0.844 0.767 0.804 0.195

Table 3: Comparison of results from different methods on PBC. The best results in each column are in bold. The
three methods exploiting multiparallelism (AdAd, WAdAd, NMF) generally outperform the baselines on £} and

AER.

In such cases, MPWA uses the accumulated infor-
mation from all other language pairs in the graph
to improve the performance. When starting with
the SimAlign alignment (“Init SimAlign”), both
methods improve the result for both FIN-HEB and
FIN-GRC.

Eflomal generates better alignments for FIN-
HEB and FIN-GRC. This means that Eflomal also
generates better alignments between FIN, HEB and
GRC on the one hand and the other languages in
the graph on the other hand and therefore can pro-
vide a better signal for MPWA. The improvements
of our models applied on Eflomal are higher than
the ones applied on SimAlign for these language
pairs.

When changing the initial alignments from Eflo-
mal (intersection) to Eflomal (GDFA), we see dif-
ferent behaviors: GDFA improves the results for
Blinker while it does not help for HELFI. We be-
lieve this is caused by the different ways the two
datasets were annotated. In Blinker, many phrases
are “exhaustively” aligned: if a phrase DE in En-
glish is aligned with FG in French then all four
alignment edges (D-F, D-G, E-F, E-G) are given as
gold edges.’

So Blinker contains a lot of many-to-many links.
In contrast, most alignments are one-to-one in
HELFI. This partially explains why intersection
as initial alignment works much better for HELFI
than GDFA and vice versa for Blinker.

In summary, compared to the baselines, we see
very large improvements through exploiting mul-
tiparallelism for one type of alignment methodol-
ogy (HELFI, F} improved by up to 20% for FIN-

"For example, the alignment of the phrases “trembled vio-
lently” and “fut saisi d’und grande, d’une violente émotion”
consists of 2 - 8 eold edees.
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HEB) and improvements of up to 3.5% for the other
(ENG-FRA).

5.2 MT dataset results

We perform the second set of experiments on gold
standard alignments for language pairs that are not
part of a multiparallel corpus such as PBC. To this
end, we create artificial multiparallel corpora by
translating the English side to all languages avail-
able in the Google Translate API. The main goal
is to give broader evidence for the effectiveness of
our method, beyond the specialized domain of the
Bible.

Eflomal’s alignments generally have good qual-
ity. However, they get worse when less parallel
data is available (Jalili Sabet et al., 2020). Since
the size of the multiparallel corpus created by ma-
chine translation is rather small, we use SimAlign
for generating initial alignments. SimAlign has
been shown to have good performance even for
very small parallel corpora; in fact, it does not need
any parallel data at all.

Table 4 shows the results of the experiments.
Both NMF and WAdAd, improve the performance
of the baseline by using the alignment graph. Im-
provements range from 0.8% (ENG-DEU) to 3.3%
(ENG-HIN). This again demonstrates the utility of
exploiting multiparallelism for word alignment. It
is worth mentioning that in this case the translations
are noisy since they were automatically generated.
But even with these noisy translations (instead of a
“true” multiparallel corpus), our models effectively
leverace multiparallelism.



ENG-PES ENG-HIN ENG-RON ENG-DEU
Method Prec. Rec. Fi AER|Prec. Rec. Fi AER |Prec. Rec. Fi AER|Prec. Rec. Fi; AER
Baseline ‘ SimAlign H 0.756 0.645 0.696 0.304 ‘ 0.709 0.493 0.582 0418 ‘ 0.807 0.663 0.728 0.272 ‘ 0.829 0.795 0.812 0.188
AdAd 0.751 0.700 0.725 0.276 | 0.693 0.544 0.610 0.390 | 0.799 0.696 0.744 0.256 | 0.818 0.823 0.820 0.179
Init SimAlign | WAdAd 0.705 0.740 0.722 0.278 | 0.643 0.574 0.607 0.394|0.725 0.717 0.721 0.279|0.749 0.844 0.794 0.207
NMF 0.734 0.698 0.716 0.284 | 0.684 0.559 0.615 0.385 | 0.780 0.696 0.736 0.265 | 0.804 0.827 0.815 0.185

Table 4: Results with gold standards translated into other languages using machine translation. The best results in
each column are in bold. The three methods exploiting multiparallelism (AdAd, WAdAd, NMF) outperform the

baselines on F; and AER.

= Eflomal (gdfa) == WAJAd (Inter) NMF

25 50 75 100 125 150

Figure 3: F; of MPWA for the target language pair
FIN-HEB as a function of the number of additional lan-
guages. There is a clear rise initially. The curve flattens
around 75.

5.3 Analysis
5.3.1 Effect of number of languages

The effect of adding more languages to the align-
ment graph is depicted in Figure 3. This plot shows
F, for FIN-HEB. As seen in the figure, the slope
is pretty steep up to 25 languages, but even adding
just three languages can still improve the results.
For 75 languages we have almost reached the peak
and after 100, adding more languages is not im-
proving the results. This means that MPWA can
also be helpful for corpora with a smaller number
of languages — a massively parallel corpus with
thousands of languages is not required.

5.3.2 Size of the training set

To assess the effect of dataset size on the perfor-
mance of MPWA, we perform a set of experiments
on ENG-FRA and NMF. To this end, we take the
training data for ENG-FRA and train models on
subsets of it. The training data consists of 6.4M
sentence pairs — this number is so high because we
use the crossproduct of all editions in English and
French (§4.3).

The results are shown in Figure 4. Eflomal per-
formance increases with training set size initiallv

0.80

—— Eflomal (gdfa)
—— NMF (gdfa)

T T T T T T T
o] 1 2 3 4 5 ©

# of parallel verses led

Figure 4: Word alignment F; on ENG-FRA as a func-
tion of the size of the training set, ranging from 30K to
6.4M training sentence pairs

and is then less predictable. NMF consistently im-
proves the scores.

5.3.3 Effect of task difficulty

Table 3 shows large improvements for all datasets,
and especially for FIN-HEB and FIN-GRC. To get
more insight into the reasons for this improvement,
we stratify FIN-HEB verses by dividing the interval
[0, 1] of initial F; performance of Eflomal into five
equal-sized subintervals: [0,0.2], ..., (0.8,1].
Figure 5 indicates that MPWA is most effective
for difficult verses, but brings little improvement
for easy verses. We attribute this to two reasons:

1. An easy to align verse in a language pair can-
not use help from other languages since it al-
ready has good alignment links (although the
language pair would still be of benefit in im-
proving alignments for the sentence in other
languages). So there is no way for MPWA to
get better results in this scenario.

2. MPWA only tries to get better results by
adding new alignments, and as an easy verse
already has many alignment links, adding new
links almost inevitablv results in a droo in pre-
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W Efomal W NMF
1.00

0.50

0.00

0=F1=02 0.2<F1=04

0.4<F1=0.6

0.6<F1=08 0.B<F1=1

Figure 5: How helpful is MPWA for different difficulty
levels? For this analysis, FIN-HEB verses were strat-
ified according to Eflomal F} (x-axis). We see that
MPWA brings the largest improvements for difficult
sentences.

ENG-FRA FIN-HEB FIN-GRC
Lang. A | Lang. A | Lang. A
SPA +2.0% TGL +17.7% LAT +7.5%
ITA +1.9% FRY,ELL +17.3% ELL +6.6%

DEU +1.8% SWE
NLD +1.4% NLD
AFR +1.3% YOR

+17.3% ENG
+16.8% FRY
+14.2% BEL

+6.1%
+5.8%
+5.7%

Table 5: The five most helpful languages and WAdAd’s
absolute improvements in F over the initial bilingual
aligner SimAlign. For example, MPWA improves the
bilingual FIN-GRC alignment by 7.5% if applied to
the trilingual corpus FIN-GRC-LAT, i.e., Latin can be
viewed as the best bridge between Finnish and Greek.

cision. It may also be possible to inspect and
prune existing Eflomal links using MPWA to
get better results in this scenario.

5.3.4 Most helpful languages

For each dataset, the five most helpful languages
with their corresponding improvements are listed
in Table 5. We hypothesize that these languages
serve to bridge the typological gap between the two
target languages. Table 5 suggests one should be
able to achieve excellent results — even for a corpus
with a small number of languages — if we utilize an
intelligent selection of languages.

5.3.5 Multiple translations in two languages

There are some datasets that contain few languages,
but many translations of a text in one language.
PBC is one example of such a dataset, many liter-
ary works another (e.g., many novels have many
translations in English). To see whether MPWA
can also help in this scenario, we picked all avail-
able 49 English and French editions from PBC and
used them as additional translations for the ENG-
FRA dataset. The outcome of this exneriment is
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Prec. Rec. Fy AER

Eflomal (intersection) 0.971 0.521 0.678 0.319
Eflomal (GDFA) 0.856  0.710  0.776  0.221
NMF (target languages) ~ 0.830  0.749  0.787  0.213

NMEF (other languages) 0.837 0.753 0.793 0.205

Table 6: F} for ENG-FRA. MPWA can exploit a mul-
tiparallel corpus with languages different from the tar-
get languages (“other languages”) better than one that
contains additional translations in the target languages
(“target languages”).

compared with the outcome of the same setup, but
with translations from languages other than French
and English in Table 6. From this table we can
conclude that translations from the target language
pair can also assist, but not as much as translations
from other languages.

6 Conclusion and Future Work

We presented MPWA, a framework for leverag-
ing multiparallel corpora for word alignment. We
used two prediction methods, one based on recom-
mender systems and one based on link prediction
algorithms. By adding new alignment edges to the
output of bilingual aligners, both methods show
large improvements over the bilingual baselines,
with absolute improvements of F; of up to 20%.
We have also ported Blinker and HELFI word align-
ment gold standards to the Parallel Bible Corpus
in the hope that this will help foster more work on
exploiting multiparallel corproa.

Future work. In this paper, we have mainly fo-
cused on adding new alignment edges to baseline
word alignments based on properties of the mul-
tiparallel alignment graph. This increases recall,
but can harm precision. In future work, we plan to
expand on the possibility of deleting edges based
on evidence from the multiparallel alignment graph
(cf. 5.3.3), thereby potentially improving both pre-
cision and recall.
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A Pipeline Details

There are several elements of the MPWA pipeline
that can be configured by the user, e.g., depending
on whether precision or recall are more important
for an application. Here we show in Figures 6 and
7 the two pipeline configurations we used for the
results in the paper.

Initial Alignments

GDFA
Eflomal intersection

NMF

|

NMF (GDFA)

o NMF
(intersection)

SimAlign | O NMF

Figure 6: The pipeline for NMF alignments



Initial Alighments o (W)AdAd
(GDFA)

o (W)AdAd
(intersection)

GDFA
Eflomal intersection

Figure 7: The pipeline for AdAd and WAdAJ align-
ments
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Chapter 4

Graph Neural Networks for
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Abstract

After a period of decrease, interest in word
alignments is increasing again for their use-
fulness in domains such as typological re-
search, cross-lingual annotation projection and
machine translation. Generally, alignment al-
gorithms only use bitext and do not make
use of the fact that many parallel corpora are
multiparallel. Here, we compute high-quality
word alignments between multiple language
pairs by considering all language pairs to-
gether. First, we create a multiparallel word
alignment graph, joining all bilingual word
alignment pairs in one graph. Next, we use
graph neural networks (GNNs) to exploit the
graph structure. Our GNN approach (i) uti-
lizes information about the meaning, position
and language of the input words, (ii) incorpo-
rates information from multiple parallel sen-
tences, (iii) adds and removes edges from the
initial alignments, and (iv) yields a prediction
model that can generalize beyond the training
sentences. We show that community detec-
tion provides valuable information for multi-
parallel word alignment. Our method outper-
forms previous work on three word alignment
datasets and on a downstream task.

1 Introduction

Word alignments are crucial for statistical machine
translation (Koehn et al., 2003) and useful for many
other multilingual tasks such as neural machine
translation (Alkhouli and Ney, 2017; Alkhouli
et al., 2016), typological analysis (Lewis and Xia,
2008; Ostling, 2015; Asgari and Schiitze, 2017) and
annotation projection (Yarowsky and Ngai, 2001;
Fossum and Abney, 2005; Wisniewski et al., 2014;
Huck et al., 2019).  The rise of deep learning
initially led to a temporary plateau, but interest in
word alignments is now increasing, demonstrated
by several recent publications (Jalili Sabet et al.,
2020; Chen et al., 2020; Dou and Neubig, 2021).
While word alignment is usually considered for
bilineual corpora. our work addresses the nroblem
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Figure 1: Alignment graph for the verse “It will pro-
duce thorns and thistles for you, and you will eat the
plants of the field.” in a 12-way multiparallel corpus.
Colors represent languages. Each English (yellow)
node is annotated with its word. Red dashed lines cut
links that incorrectly connect distinct concepts. We ex-
ploit community detection algorithms to detect distinct
concepts. This provides valuable information for our
GNN model and improves word alignments.

of word alignment in multiparallel corpora, con-
taining sentence level parallel text in more than two
languages. Examples of multiparallel corpora are
JW300 (Agi¢ and Vuli¢, 2019), PBC (Mayer and
Cysouw, 2014) which covers the highest number
of languages (1334), and Tatoeba.! While the per-
language amount of data provided in such corpora
is less than bilingual corpora, they support highly
low-resource languages, many of which are not
covered by existing language technologies (Joshi
et al., 2020). Therefore, these corpora are essen-
tial for studying many of the world’s low-resource
languages.

We consider the task of word alignment for mul-
tiparallel sentences. The basic motivation is that
the alignment between words in languages U and

"https://tatoeba.ora



V' can benefit from word-level alignments of U
and V with a translation in a third language W'.
Following up on the work of Imani Googhari et al.
(2021), we model multilingual word alignments
with tools borrowed from graph theory (commu-
nity detection algorithms) combined with neural
network based models, specifically, the graph neu-
ral network (GNN) model of Scarselli et al. (2009).

GNNs were proposed to extend the powerful
current generation of neural network models to the
processing of graph-structured data and they have
gained increasing popularity in many domains (Wu
et al., 2020; Sanchez-Gonzalez et al., 2018; He
et al., 2020). GNNs can incorporate heterogeneous
sources of signal in the form of node and edge
features. We use this property to take into account
properties of the whole alignment graph, notably its
tendency to cluster into communities, see Figure 1.

With our new proposed methods, we obtain im-
proved results on word alignment for three lan-
guage pairs: English-French, Finnish-Hebrew and
Finnish-Greek. As a demonstration of the im-
portance of high-quality alignments, we use our
word alignments to project annotations from high-
resource to low-resource languages. We improve
a part-of-speech tagger for Yoruba by training it
over a high-quality dataset, which is created using
annotation projection.

Contributions: i) We propose a graph neural
network model to enhance word alignments in a
multiparallel corpus. The model incorporates a
diverse set of features for word alignments in mul-
tiparallel corpora and an elegant way of training it
efficiently and effectively. ii) We show that commu-
nity detection improves multiparallel word align-
ment. iii) We show that the improved alignments
improve performance on a downstream task for
a low resource language. iv) We propose a new
method to infer alignments from the alignment
probability matrix. v) We will make our code pub-
licly available.

2  MultiParallel Word Alignment Graphs

2.1 Building MultiParallel Word Alignment
Graphs

Our starting point is the work of Imani Googhari
et al. (2021), who introduce MPWA (MultiParallel
Word Alignment), a framework that utilizes the syn-
ergy between multiple language pairs to improve
bilingual word alignments for a target language pair.
The rationale is that some of the missine alienment

edges between a source and a target language can
be recovered using their alignments with words in
other languages.

An MPWA graph is constructed using the fol-
lowing two steps:

1. create initial bilingual alignments for all lan-
guage pairs in a multiparallel corpus using a
bilingual word aligner;

2. represent the bilingual alignments for each
multiparallel sentence in a graph containing
one vertex for each token occurring in any lan-
guage and one edge for each initial bilingual
word alignment link.

Potentially missing alignment links are then added
based on the graph structure in an inference step,
casting the word alignment task as an edge pre-
diction problem. Figure 1 gives an example of a
multiparallel word alignment graph for a 12-way
multiparallel sentence.

Imani Googhari et al. (2021) use two traditional
graph algorithms, Adamic-Adar and non-negative
matrix factorization, for predicting new alignment
edges from the MPWA graph. However, these
graph algorithms are applied to individual multipar-
allel sentences independently and therefore cannot
accumulate knowledge from multiple sentences.
Moreover, their edge predictions are solely based
on the structure of the graph and do not take ad-
vantage of other beneficial signals such as a word’s
language, relative position and meaning. Another
limitation of this work is that it only adds links
and does not remove any, which is important to
improve precision.

This work addresses these shortcomings by us-
ing GNNSs to predict alignment edges from MPWA
graphs.

2.2 Community Detection in Alignment
Graphs

One important advantage of GNNs over traditional
graph algorithms is that they can directly incor-
porate signals from different sources in the form
of node and edge features. We utilize this by tak-
ing into account the following observation: The
nodes in the alignment graph are words in paral-
lel sentences that are translations of each other. If
the initial bilingual alignments are of good qual-
ity, we expect words that are mutual translations
to form densely connected regions or communities;
see Figure 1. These communities should not be
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linked to each other, each corresponding to a dis-
tinct connected component. In other words, ideally,
words representing a concept should be densely
connected, but there should be no links between
different concepts. While, this intuition will not be
true for all concepts between all possible language
pairs, we nonetheless hypothesize that identifying
distinct concepts in a multiparallel word alignment
graph can provide useful information.

To examine to what extent these expectations
are met, we count the components in the original
Eflomal-generated (Ostling and Tiedemann, 2016)
graph (see §4.2 for details on the initial alignments).
Table 1 shows that the average number of com-
ponents per sentence is less than three (“Eflomal
intersection”, columns #CC). But intuitively, the
number of components should roughly correspond
to sentence length (or, more precisely, the num-
ber of content words). This indicates that there
are many links that incorrectly connect different
concepts. To detect such links, we use community
detection (CD) algorithms.

CD algorithms find subnetworks of nodes that
form tightly knit groups that are only loosely con-
nected with a small number of links (Girvan and
Newman, 2002). One well-known approach to
CD attempts to maximize the modularity measure
(Newman and Girvan, 2004). Modularity assesses
how beneficial a division of a community into two
communities is, in the sense that there are many
links within communities and only a few between
them. Given a graph GG with n nodes and m edges
and G’s adjacency matrix A € R™*", modularity
is defined as:

1 d;d;
mod = o ; (Aij - om > I(Civcj) (D

where d; is the degree of node i. I(c;,cj) is 1
if nodes ¢ and j are in the same community, 0
otherwise.

As exact modularity maximization is intractable,
we experiment with two CD algorithms implement-
ing different heuristic approaches:

* Greedy modularity communities (GMC). This
method uses Clauset-Newman-Moore greedy
modularity maximization (Clauset et al.,
2004). GMC begins with each node in its
own community and greedily joins the pair of
communities that most increases modularity
until no such pair exists.
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FIN-HEB FIN-GRC ENG-FRA
#CC Fy  #CC F,  #CC Fy

Eflomal intersection || 22 0.404 1.6 0.646 22 0.678
GMC 13.7 0.396 10.1 0.375 13.5 0411
LPC 415 0.713 37.1 0.754 46.0 0.767
Sentence length I 25.7 23.2 27.4

Table 1: Effect of community detection algorithms
(GMC and LPC) on alignment prediction. #CC: aver-
age number of connected components. F: word align-
ment performance.

* Label propagation communities (LPC). This
method finds communities in a graph using
label propagation (Cordasco and Gargano,
2010). It begins by giving a label to each node
of the network. Then each node’s label is up-
dated by the most frequent label among its
neighbors in each iteration. It performs label
propagation on a portion of nodes at each step
and quickly converges to a stable labeling.

After detecting communities, we link all
nodes inside a community and remove all inter-
community links. GMC (LPC) on average removes
3% (7%) of the edges. Table 1 reports the average
number of graph components per sentence before
and after running GMC and LPC, as well as the
corresponding F for word alignment (see §4.1 for
details on the evaluation datasets). We see that the
number of communities found is lower for GMC
than for LPC; therefore, LPC identifies more can-
didate links for deletion.” Comparing the number
of communities detected with the average sentence
length, GMC seems to have failed to detect enough
communities to split different concepts properly.
The F} scores confirm this observation and show
that LPC performs well at detecting the communi-
ties we are looking for.

This analysis shows that CD algorithms com-
pute valuable information for word alignments. To
exploit this in our GNN model, we add node com-
munity information as a node feature; see §3.1.3.

3 Predicting and using MultiParallel
Word Alignments (MPWASs)

3.1 GNNs for MPWA

GNNs can be used in transductive or inductive set-
tings. Transductively, the final model can only be

2LPC may detect more communities than average sentence
length because of null words: words that have no translation
in the other languages. giving rise to separate communities.



used for inference over the same graph that it is
trained on. In an inductive setting, which we use
here, nodes are represented as feature vectors, and
the final model has the advantage of being applica-
ble to a different graph in inference.

Below is the step-by-step overview of our GNN-
based approach for an MPWA graph:

1. run community detection algorithms on the
initial graph (§2.2);

2. obtain features for the nodes of the graph
(83.1.3);

3. compute node embeddings from node features
and initial alignment links in the GNN encod-
ing step (§3.1.2);

4. learn to distinguish between nodes that are
aligned together and that are not aligned to-
gether in the GNN decoding step (§3.1.2);

After the GNN model is trained on multiple MPWA
graphs, it is used to infer an alignment probabil-
ity matrix between tokens in a source language
and tokens in a target language for a multiparal-
lel sentence, see §3.1.4. Our method predicts new
alignment links from this matrix, independently of
initial edges. Therefore, given an initial bilingual
alignment, it is not limited to adding edges, but it
can also remove them.

3.1.1 Model Architecture

Our model is inspired by the Graph Auto Encoder
(GAE) model of Kipf and Welling (2016) for link
prediction. A GAE model consists of an encoder
and a decoder. The encoder creates a hidden rep-
resentation for each node of the graph and the
decoder predicts the links of the graph given the
nodes’ representations. Using the graph of word
alignments, the model will learn the word align-
ment task. Therefore it will be able to predict word
alignments that are missed by the original bilingual
word aligner and also detect incorrect alignment
edges.

We make changes to this model to improve the
model’s quality and reduce its computational cost.
We use GATConv layers (Velickovic et al., 2018)
for the encoder instead of GCNConv (Kipf and
Welling, 2017) and a more sophisticated decoder
instead of simple dot product for a stronger model.
We also introduce a more efficient training proce-
dure.

The encoder is a graph attention network (GAT)
(Velickovi¢ et al., 2018) with two GATConv layers
followed by a fully connected layer. Layers are
connected by RELU non-linearities. A GATConv
layer computes its output x; for a node 7 from its
input x; as

X;- = Oém‘WXZ‘ + Z Oéi,jWXj7 2)
JEN(D)

where W is a weight matrix, N (4) is some neigh-
borhood of node ¢ in the graph, and «; ; is the
attention coefficient indicating the importance of
node j’s features to node 7. ¢ ; is computed as

exp (g (a’ [Wx; | Wx;]))
D ken(iyufiy e (g (2T [Wx; [ Wxy]))
3)
where || is concatenation, g is LeakyReLU, and a
is a weight vector. Given the features for the nodes
and their alignment edges, the encoder creates a
contextualized hidden representation for each node.
Based on the hidden representations of two
nodes, the decoder predicts whether a link con-
nects them. The decoder architecture consists of a
fully connected layer, a RELU non-linearity and a
sigmoid layer.

Qj =

3.1.2 Training

By default, GAE models are trained using full
batches with random negative samples. This ap-
proach requires at least tens of epochs over the
training dataset to converge and a lot of GPU mem-
ory for graphs as large as ours. We train our model
using mini-batches to decrease memory require-
ments and improve the performance. Using our
training approach the model converges after one
epoch. We take care to select informative nega-
tive samples (as opposed to random selection) as
described below.

Figure 2 displays our GNN model and the train-
ing process. The training set contains one graph for
each sentence. Each graph is divided into multiple
batches. Each batch contains a random subset of
the graph’s edges as positive samples. The nega-
tive samples are created as follows. Given a sen-
tence ujus . . . Uy in language U and its translation
V12 . . . Up, in language V', for each alignment edge
u;:v; in the current batch, two negative edges uizvg»
and u}:v; (j' # j, ¢ # 1) are randomly sampled.

For each training batch, the encoder takes the
batch’s whole eraph (i.e.. node features for all
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Figure 2: GNN training. At each training step, node features and links of a multiparallel sentence are fed to a graph
attention network (GAT) that creates hidden representations for all nodes. On the decoder side, at each step, one
batch of alignment links and hidden node representations is used to create positive and negative samples, which
are then processed and classified by a multi-layer perceptron (MLP). Parameters of GAT and MLP are updated for

each batch. FC = fully connected.

graph nodes and all graph edges) as input and com-
putes hidden representations for the nodes. On the
decoder side, for each link between two nodes in
the batch, the hidden representations of the two
nodes are concatenated to create the decoder’s in-
put. The decoder’s target is the link class: 1 (resp.
0) for positive (resp. negative) links. We train with
a binary classification objective:

b 2b
1 1 _
L=—3 log(p!) + 55 D log(;) 4
i=1 i=1

where b is the batch size and p;" and p; are the
model predictions for the 7" positive and negative
samples within the batch. Parameters of the en-
coder and decoder as well as the node-embedding
feature layer are updated after each training step.

3.1.3 Node Features

We use three main types of node features: (i) graph
structural features, (ii) community-based features
and (iii) word content features.

Graph structural features. We use degree,
closeness (Freeman, 1978) , betweenness (Bran-
des, 2001), load (Newman, 2001) and harmonic
centrality (Boldi and Vigna, 2014) features as addi-
tional information about the graph structure. These
features are continuous numbers, providing infor-
mation about the position and connectivity of the
nodes within the graph. We standardize (i.e., z-
score) each feature across all nodes, and train an
embedding of size four for each feature.?

Community-based features. One way to incor-
porate community information into our model is to

3Learning a size-four embedding instead of a single num-

ber gives the feature a weight similar to other features — which
have a feature vector of about the same size.
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train the model based on a refined set of edges after
the community detection step. This approach hob-
bles the GNN model by making decisions about
many of the edges before the GNN gets to see
them. Our initial experiments also confirmed that
training the GNN over CD refined edges does not
help. Therefore, we add community information
as node features and let the GNN use them to im-
prove its decisions. We use the community de-
tection algorithms GMC and LPC (see §§2.2) to
identify communities in the graph. Then we repre-
sent the community membership information of the
nodes as one-hot vectors and learn an embedding
of size 32 for each of the two algorithms.

Word content features. We train embeddings
for word position (size 32) and word language (size
20). We learn 100-dimensional multilingual word
embeddings using Levy et al. (2017)’s sentence-
ID method on the 84 PBC languages selected by
Imani Googhari et al. (2021). Word embeddings
serve as initialization and are updated during GNN
training.

After concatenating these features, each node
is represented by a 236 dimensional vector that is
then fed to the encoder.

3.1.4 Inducing Bilingual Alignment Edges

Given a source sentence & = x1, 2, ..., Ty, inlan-
guage X and a target sentence § = y1,Y2, ...,
in language Y, we feed all possible alignment links
between source and target to the decoder. This pro-
duces a symmetric alignment probability matrix S
of size m x [ where .S;; is the predicted alignment
probability between words x; and y;. Using these
values directly to infer alignment edges is usually
subontimal: therefore. more sonhisticated methods



have been suggested (Ayan and Dorr, 2006; Liang
etal., 2006). Here we propose a new approach: it
combines Koehn et al. (2005)’s Grow-Diag-Final-
And (GDFA) with Dou and Neubig (2021)’s proba-
bility thresholding. We modify the latter to account
for the variable size of the probability matrix (i.e.,
length of source/target sentences). Our method is
not limited to adding new edges to some initial
bilingual alignments, a limitation of prior work. As
we predict each edge independently, some initial
links can be discarded from the final alignment.

We start by creating a set of forward (source-
to-target) alignment edges and a set of backward
(target-to-source) alignment edges. To this end,
first, inspired by probability thresholding (Dou and
Neubig, 2021), we apply softmax to S, and zero
out probabilities below a threshold to get a source-
to-target probability matrix SXY:

o

SXY — S« (softmax(S) > 7) )

Analogously, we compute the target-to-source prob-
ability matrix S*X:

SYX = 8T « (softmax(S ") > %) (6)
where « is a sensitivity hyperparameter, e.g., « = 1
means that we pick edges with a probability higher
than average. We experimentally set o = 2. Next,
from each row of SXY (SYX), we pick the cell
with the highest value (if any exists) and add this
edge to the forward (backward) set.

We create the final set of alignment edges by ap-
plying the GDFA symmetrization method (Koehn
et al., 2005) to forward and backward sets. The
gist of GDFA is to use the intersection of forward
and backward as initial alignment edges and add
more edges from the union of forward and back-
ward based on a number of heuristics. We call this
method TGDFA (Thresholding GDFA).

We also experiment with combining TGDFA
with the original bilingual GDFA alignments. We
do so by adding bilingual GDFA edges to the union
of forward and backward before performing the
GDFA heuristics. We refer to these alignments as
TGDFA+orig.

We evaluate the resulting alignments using F
score and alignment error rate (AER), the standard
metrics in the word alignment literature.

3.2 Annotation Projection

Annotation projection automatically creates lin-
ouisticallv annotated cornora for low-resource lan-

guages. A model trained on data with “annotation-
projected” labels can perform better than a com-
pletely unsupervised method. Here, we focus on
universal part-of-speech (UPOS) tagging (Petrov
et al., 2012) for the low resource target language
Yoruba; this language only has a small set of anno-
tated sentences in Universal Dependencies (Nivre
et al., 2020) and has poor POS results in unsuper-
vised settings (Kondratyuk and Straka, 2019).

The quality of the target annotated corpus de-
pends on the quality of the annotations in the source
languages and the quality of the word alignments
between sources and target. We use the Flair (Ak-
bik et al., 2019) POS taggers for three high re-
source languages, English, German and French
(Akbik et al., 2018), to annotate 30K verses whose
Yoruba translations are available in PBC. We then
transfer the POS tags from source to target using
three different approaches: (i) We directly trans-
fer annotations from English to the target. (ii)
For each word in the target, we get its Eflomal
bilingual alignments in the three source languages
and predict the majority POS to annotate the tar-
get word. (iii) The same as in (ii), but we use
our GNN (TGDFA) alignments (instead of Eflomal
alignments) to project from source to target. In all
three approaches, we discard any target sentence
from the POS tagger training data if more than 50%
of its words are annotated with the "X" (other) tag.

We train a Flair SequenceTagger model on the
target annotated data using mBERT embeddings
(Devlin et al., 2019) and evaluate on Yoruba test
from Universal Dependencies.*

4 Experimental Setup

4.1 Word Alignment Datasets

Following Imani Googhari et al. (2021), we use
PBC, a multiparallel corpus of 1758 sentence-
aligned editions of the Bible in 1334 languages.

Evaluation data. For our main evaluation, we
use the two word alignment gold datasets for PBC
published by Imani Googhari et al. (2021): Blinker
(Melamed, 1998) and HELFI (Yli-Jyri et al., 2020).
The HELFI dataset contains the Hebrew Bible,
Greek New Testament and their translations into
Finnish. For HELFI, we use Imani Googhari et al.
(2021)’s train/dev/test splits. The Blinker dataset
provides word level alignments between English
and French for 250 Bible verses.

“httos://universaldevendencies.ora/
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FIN-HEB FIN-GRC ENG-FRA
Method Prec. Rec. Fi AER|Prec. Rec. Fi AER|Prec. Rec. Fi AER
Eflomal (intersection) || 0.818 0.269 0.405 0.595|0.897 0.506 0.647 0.353/0.971 0.521 0.678 0.261
Eflomal (GDFA) 0.508 0.448 0.476 0.524]0.733 0.671 0.701 0.300|0.856 0.710 0.776 0.221
WAJAJ (intersection) || 0.781 0.612 0.686 0.314|0.849 0.696 0.765 0.235|0.938 0.689 0.794 0.203
NMF (intersection) 0.780 0.576 0.663 0.337]0.864 0.669 0.754 0.248 10.948 0.624 0.753 0.245
WAdJAd (GDFA) 0.546 0.693 0.611 0.389|0.707 0.783 0.743 0.257(0.831 0.796 0.813 0.186
NMF (GDFA) 0.548 0.646 0.593 0.407|0.720 0.759 0.739 0.261|0.844 0.767 0.804 0.195
GNN (TGDFA) 0.811 0.648 0.720 0.280|0.845 0.724 0.780 0.220|0.926 0.711 0.804 0.192
GNN (TGDFA+orig) |0.622 0.683 0.651 0.349|0.738 0.780 0.758 0.242]0.863 0.789 0.824 0.174

Table 2: Word alignment results on PBC for GNN and baselines. The best result in each column is in bold. GNN
outperforms the baselines as well as the graph algorithms WAdAd and NMF on F} and AER.

Training data. The graph algorithms used by
Imani Googhari et al. (2021) operate on each mul-
tiparallel sentence separately. In contrast, our
approach allows for an inductive setting where
a model is trained on a training set, accumulat-
ing knowledge from multiple multiparallel sen-
tences. We combine the verses in the training sets
of Finnish-Hebrew and Finnish-Greek for a com-
bined training set size of 24,159

4.2 Initial Word Alignments

We use the Eflomal statistical word aligner to ob-
tain bilingual alignments. We train it for every
language pair in our experiments. We do not con-
sider SimAlign (Jalili Sabet et al., 2020) since it
is shown to perform poorly for languages whose
representations in the multilingual pretrained lan-
guage model are of low quality. We use Eflomal
asymmetrical alignments post-processed with the
intersection heuristic to get high precision bilingual
alignments as input to the GNN. We use the same
subset of 84 languages as Imani Googhari et al.
(2021).

4.3 Training Details

We use PyTorch Geometric® to construct and train
the GNN. The model’s hidden layer size is 512
for both GATConv and Linear layers. We train
for one epoch on the training set — a small portion
of the training set is enough to learn good embed-
dings (see §5.1.1). For training, we use a batch
size of 400 and learning rate of .001 with AdamW
(Loshchilov and Hutter, 2017). The whole training

Note that we do not use any gold alignments for training
the GNN. Using the verses from HELFI train split as our train-
ing set is for convenience. Our ablation experiment (Figure 3)
show that a smaller subset of the training set is sufficient to
achieve good performance

®5vtorch-aeometric.readthedocs.io
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process takes less than 4 hours on a GeForce GTX
1080 Ti and the inference time is on the order of
milliseconds per sentence.

5 Experiments and Results

51

Table 2 shows results on Blinker and HELFI for
our GNNs and the baselines: bilingual alignments
and two graph-based algorithms WAdAd and NMF
from Imani Googhari et al. (2021). Our GNNs
yield a better trade-off between precision and re-
call, most likely thanks to their ability to remove
edges, and achieve the best /| and AER on all
three datasets, outperforming WAdAd and NMF.

GNN (TGDFA) achieves the best results
on HELFI (FIN-HEB, FIN-GRC) while GNN
(TGDFA+orig) is best on Blinker (ENG-FRA).
As argued in Imani Googhari et al. (2021), this
is mostly due to the different ways these two
datasets were annotated. Most HELFI alignments
are one-to-one, while many Blinker alignments are
many-to-many: phrase-level alignments where ev-
ery word in a source phrase is aligned with ev-
ery word in a target phrase. This suggests that
one can choose between GNN (TGDFA) and GNN
(TGDFA-+orig) based on the desired characteristics
of the alignment.

Multiparallel corpus results

5.1.1 Effect of Training Set Size

To investigate the effect of training set size, we
train the GNN on subsets of our training data with
increasing sizes. Figure 3 shows results. Perfor-
mance improves fast until around 2,000 verses;
then it stays mostly constant. Using more than
6,400 samples does not change the performance
at all. Therefore, in the other experiments we use
6,400 randomly sampled verses from the training
set to train GNNs.
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Figure 3: F; of GNN (TGDFA) and GNN
(TGDFA+orig) on Blinker as a function of train size

5.1.2 Ablation Experiments

To examine the importance of node features, we
ablate language, position, centrality, community
and word embedding features. Table 3 shows that
removal of graph structural features drastically re-
duces performance. Community features and lan-
guage information are also important. Removal of
word position information and word embeddings
— which store semantic information about words —
has the least effect. Based on these results, it can be
argued that the lexical information contained in the
initial alignments and in the community features
provides a strong signal regarding word related-
ness. The novel information that is crucial is about
the overall graph structure which goes beyond the
local word associations that are captured by word
position and word embeddings.

5.1.3 Effect of Word Frequency

We investigate the effect of word frequency on
alignment performance where frequency is calcu-
lated based on the source word in the PBC; the first
bin has the highest frequency. Figure 4 shows that
the performance of Eflomal drops with frequency
and it struggles to align very rare words. In con-
trast, GNN is not affected by word frequency as
severely and its performance gains are even greater
for rare words. WAdad which is the multilingual
baseline from (Imani Googhari et al., 2021) has
the same trend as the GNN method, but the GNN
method is more robust.

5.2 Annotation Projection

Table 4 presents accuracies for POS tagging in
Yoruba. Unsunervised baseline nerformance is

B Eflomal (GDFA)

(a) ENG-FRA (b) FIN-HEB

B WAJAd (Intersection) GNN (GDFA)

Figure 4: F; for different frequency bins.

|| FIN-HEB FIN-GRC ENG-FRA

GNN (TGDFA) | 0.720 0.780 0.804
- language -0.323 -0.280 -0.370
— position -0.068 -0.045 -0.066
— centrality -0.636 -0.730 -0.772
- community -0.204 -0.238 -0.253
- word-embedding -0.139 -0.103 -0.129
GNN (TGDFA+orig) || 0.651 0.758 0.824
- language -0.238 -0.077 -0.162
— position -0.088 +0.029 -0.032
- centrality -0.556 -0.530 -0.617
- community -0.156 -0.039 -0.083
— word-embedding -0.135 +0.002 -0.058

Table 3: F; for GNNs and A F} for five ablations

50.86%. Supervised training using pseudo-labels
mostly outperforms the unsupervised baseline. Pro-
jecting the majority POS labels to Yoruba improves
over projecting English labels. Using the GNN
model to project labels works best and outperforms
Eflomal-GDFA-majority (resp. the unsupervised
baseline) by 5% (resp. 15%) absolute improvement.

6 Related Work

Bilingual Word Aligners. Much work on bilin-
gual word alignment is based on probabilistic mod-
els, mostly implementing variants of the IBM mod-
els of Brown et al. (1993): e.g., Giza++ (Och and
Ney, 2003), fast-align (Dyer et al., 2013) and Eflo-
mal (Ostling and Tiedemann, 2016). More recent
work, including SimAlign (Jalili Sabet et al., 2020)
and SHIFT-ATT/SHIFT-AET (Chen et al., 2020),
uses pretrained neural language and machine trans-
lation models. Although neural models achieve
superior performance compared to statistical align-
ers, they can only be used for fewer than two hun-
dred high-resource languages that are supported by
multilingual language models like BERT (Devlin
et al., 2019) and XLM-R (Conneau et al., 2020).
This makes statistical models the only option for
the maioritv of the world’s languaces.
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Model || Yoruba YTB
Unsupervised (Kondratyuk and Straka, 2019) || 50.86
Eflomal Inter — eng 43.45
Eflomal GDFA - eng 55.13
Eflomal Inter — majority 54.13
Eflomal GDFA — majority 60.27
GNN (TGDFA) — majority 65.74
GNN (TGDFA-+torig) — majority 64.55

Table 4: POS tagging with annotation projection for
Yoruba. Apart from “Unsupervised”, all lines show a
sequence tagger trained on pseudo-labels induced by
word alignments. GNN-based pseudo-labels outper-
form prior work by 5% absolute.

Multiparallel Corpora. Prior applications of
using multiparallel corpora include reliable transla-
tions from small datasets (Cohn and Lapata, 2007),
and phrase-based machine translation (PBMT) (Ku-
mar et al., 2007). Multiparallel corpora are also
used for language comparison (Mayer and Cysouw,
2012), typological studies (Ostling, 2015; Asgari
and Schiitze, 2017) and PBMT (Nakov and Ng,
2012; Bertoldi et al., 2008; Dyer et al., 2013).
ImaniGooghari et al. (2021) provide a tool to
browse a word-aligned multiparallel corpus, which
can be used for the comparative study of languages
and for error analysis in machine translation.

To the best of our knowledge Lardilleux and
Lepage (2008) and Ostling (2014)7 are the only
word alignment methods designed for multiparal-
lel corpora. However, the latter method is outper-
formed by Eflomal (Ostling and Tiedemann, 2016),
a bilingual method from the same author. Recently,
Imani Googhari et al. (2021) proposed MPWA,
which we use as our baseline.

Graph Neural Networks (GNNs) have been
used to address many problems that are inherently
graph-like such as traffic networks, social networks,
and physical and biological systems (Liu and Zhou,
2020). GNNs achieve impressive performance
in many domains, including social networks (Wu
etal., 2020) and natural science (Sanchez-Gonzalez
et al., 2018) as well as NLP tasks like sentence
classification (Huang et al., 2020), question gener-
ation (Pan et al., 2020), summarization (Fernandes
et al., 2019) and derivational morphology (Hof-
mann et al., 2020).

"github.com/robertostlina/eflomal
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7 Conclusion and Future Work

We introduced graph neural networks and commu-
nity detection algorithms for multiparallel word
alignment. By incorporating signals from diverse
sources as node features, including community fea-
tures, our GNN model outperformed the baselines
and prior work, establishing new state-of-the-art
results on three PBC gold standard datasets. We
also showed that our GNN model improves down-
stream task performance in low-resource languages
through annotation projection.

We have only used node features to provide sig-
nals to GNNs. In the future, other signals can be
added in the form of edge features to further boost
the performance.
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A.1 Languages
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Afrikaans
Basque
Catalan
Czech
French
Hebrew
Italian
Korean
Malagasy
Norwegian (B.)
Punjabi
Spanish
Tamil
Uzbek
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Albanian
Belarusian
Cebuano
Danish
Georgian
Hindi
Japanese
Latin
Malay
Norwegian (N.)
Romanian
Swahili
Tatar
Vietnamese

Arabic
Bengali
Chechen
Dutch
German
Hungarian
Javanese
Latvian
Malayalam
Punjabi
Russian
Sundanese
Telugu

Armenian
Breton
Chinese
English
Greek
Icelandic
Kannada
Lithuanian
Marathi
Persian
Serbian
Swedish
Turkish

Waray-Waray Welsh

Azerbaijani
Bulgarian
Chuvash
Estonian
Gujarati
Indonesian
Kazakh
Low Saxon
Minangkabau
Polish
Slovak
Tagalog
Ukrainian
West Frisian

Table 5: List of the 84 languages we used in our experiments.

Bashkir
Burmese
Croatian
Finnish
Haitian
Irish
Kirghiz
Macedonian
Nepali
Portuguese
Slovenian
Tajik

Urdu
Yoruba
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ARTICLE INFO ABSTRACT

Keywords: We propose bidirectional imparting or Bilmp, a generalized method for aligning embedding
Word embeddings dimensions with concepts during the embedding learning phase. While preserving the semantic
Interpretability

structure of the embedding space, Bilmp makes dimensions interpretable, which has a critical
role in deciphering the black-box behavior of word embeddings. Bilmp separately utilizes both
directions of a vector space dimension: each direction can be assigned to a different concept.
This increases the number of concepts that can be represented in the embedding space. Our
experimental results demonstrate the interpretability of Bilmp embeddings without making
compromises on the semantic task performance. We also use Bilmp to reduce gender bias
in word embeddings by encoding gender-opposite concepts (e.g., male—female) in a single
embedding dimension. These results highlight the potential of Bilmp in reducing biases and
stereotypes present in word embeddings. Furthermore, task or domain-specific interpretable
word embeddings can be obtained by adjusting the corresponding word groups in embedding
dimensions according to task or domain. As a result, Bilmp offers wide liberty in studying word
embeddings without any further effort.

Word semantics

1. Introduction

Developments in machine learning lead to interdisciplinary studies and merge different research areas. An example can be
observed in the natural language processing (NLP) based information science studies. There are increasingly improving information
science studies that utilize NLP methods, especially word embeddings, while focusing on processing textual information. The scope of
NLP-based studies can range from event detection (Qian et al., 2019; Tuke et al., 2020) to document retrieval (Bagheri et al., 2018).
Computational studies on social media also frequently utilize NLP tools in various topics such as author profiling (Lopez-Santillan
et al., 2020), content processing (Moudjari et al., 2021; Roy et al., 2021) and hate speech detection (Pamungkas et al., 2021; Pronoza
et al., 2021). What is common among these studies is that they all heavily depend on textual data. In representing and processing
text, word embeddings play a key role and are used ubiquitously. Word embeddings are pre-trained semantic representations of
words that hold numerous semantic features of natural languages. However, one disadvantage of word embeddings is that they learn
language features as black-box schemes, unlike methods directly extracting determined and desired features. Therefore, studies on

* Corresponding author.
E-mail address: lksenel@cis.Imu.de (L.K. Senel).

https://doi.org/10.1016/j.ipm.2022.102925
Received 26 October 2021; Received in revised form 6 February 2022; Accepted 1 March 2022
0306-4573/© 2022 Elsevier Ltd. All rights reserved.

80



LK. Senel et al. Information Processing and Management 59 (2022) 102925

their interpretability are of importance (Chen et al., 2016; Levy & Goldberg, 2014) for developing explainable NLP methods to be
used in higher level information science applications.

Word embeddings (Bojanowski et al., 2017; Mikolov, Corrado et al., 2013; Mikolov, Sutskever et al., 2013; Pennington et al., 2014)
- continuous dense vector representations — capture semantic and syntactic features of words. These embeddings are shown to be
useful in a broad range of NLP applications involving topic modeling (Zhao et al., 2021), text classification (Elnagar et al., 2020),
key-phrase extraction (Papagiannopoulou & Tsoumakas, 2018), document retrieval (Bagheri et al., 2018), named entity recognition
(NER) (Nozza et al., 2021), query performance prediction (Roy et al., 2019), and extracting semantic features of words (Sahinuc &
Koc, 2021). Although contextualized word embeddings and transformer-based architectures (Devlin et al., 2019; Radford et al., 2019;
Vaswani et al., 2017) are becoming more and more prevalent due to their impressive performance on many NLP tasks, these models
still use a static word embedding layer to represent input. Therefore, improvements to static word embeddings can potentially be
transferred to contextual models as well (Schick & Schiitze, 2020).

In addition to the traditional NLP tasks, word embeddings are frequently used in many other interdisciplinary domains. In
neuroscience, they are employed to analyze the representation of semantics in brain activity (Huth et al., 2016; Ruan et al., 2016;
Zhang et al., 2020) and as part of a decoder that extracts linguistic meaning from measured brain activity (Pereira et al., 2018).
In psychiatry, they are used to detect incoherent speech for diagnosing schizophrenia (Iter et al., 2018; Voppel et al., 2021). In
legal domain, they are used to predict outcomes of courts (Mumcuoglu et al., 2021), evidence extraction from court records (Ji,
Tao et al., 2020) and coreference resolution in legal texts (Ji, Gao et al., 2020). In the social domain, based on word, sentence
and document embeddings polarization in social media can be analyzed (Demszky et al., 2019) and users of social media can be
profiled (Lépez-Santillan et al., 2020). Evolutionary linguists track historical changes in word meaning with embeddings (Hamilton
et al., 2016; Kutuzov et al., 2018; Yiiksel et al., 2021). Recent studies suggest that embeddings capture and quantify gender and
ethnic biases in language (Bolukbasi et al., 2016; Caliskan et al., 2017; Garg et al., 2018) and their evolution over time (Agarwal
et al., 2019).

Despite a large body of work on improved word embeddings (Bollegala et al., 2016; Celikyilmaz et al., 2015; Liu et al., 2015;
Mrksi¢ et al., 2016; Yang & Mao, 2016; Yu & Dredze, 2014; Yu et al., 2017), a central limitation is their lack of interpretability:
dimensions of the dense vector space do not individually represent semantic concepts (Chen et al., 2016; Levy & Goldberg, 2014)
or other directly interpretable distinctions. Yet interpretability of word embeddings is highly desirable for several reasons. (i) It will
enable researchers to make sense of embeddings of individual words, which are currently meaningful only in relation to other
embeddings. (i) Word embeddings serve as base representation in many deep learning models, so their interpretability is key
for interpretable deep learning models. (iii) In interpretable embedding models, it is easier to remove redundant or nonrelevant
dimensions, resulting in reduced computation and memory requirements. (iv) Interpretability also facilitates removal of gender,
race and other biases (Dufter & Schiitze, 2019).

Previous studies have put forth several important approaches to address limitations on interpretability of word embeddings. A
group of studies proposed to use sparsity constraints such as non-negative matrix factorization (Fyshe et al., 2014; Luo et al., 2015;
Murphy et al., 2012), sparse coding (Arora et al., 2018; Faruqui et al., 2015) and sparse auto-encoders (Subramanian et al., 2018) that
yield sparse word representations. Since each word is represented by only a few dimensions, it is easier to understand what semantic
features the dimensions capture. However, larger vocabulary requires higher dimensionality to achieve a desired sparsity level which
increases memory and computation requirements. In addition, evaluations on common benchmark tests suggest that the resulting
sparse embeddings often perform poorly compared to the dense embeddings that have distributed word representations. Another
group of studies proposed to instead use orthogonal transformations over the high performing dense embeddings (Dufter & Schiitze,
2019; Park et al., 2017; Zobnin, 2017) in order to preserve task performance. Yet, the level of improvement in interpretability
that orthogonal transformations can achieve is relatively limited. Recently, in Senel et al. (2020), we proposed an offline imparting
approach to obtain interpretable word embeddings by modifying the objective function of GloVe (Pennington et al., 2014) to align
each dimension of the vector space with a single pre-defined concept. However, this unidirectional imparting method does not
utilize the full capacity of the embedding space (negative directions are ignored) and is limited to the training setting of the GloVe.

In this paper, we introduce Bilmp (read as “bimp”), a generalized imparting approach that is capable of bidirectional imparting
and online learning, hence more efficient and adaptable to new training data. Bilmp utilizes both directions along each dimension
of the vector space separately to encode two different concepts. The two concepts can be chosen arbitrarily or chosen as opposites
(e.g., good — bad, male — female) as a special case (see Fig. 1), providing a more efficient use of the embedding space while increasing
encoding flexibility. We demonstrate Bilmp by modifying the word2vec skip-gram model (Mikolov, Corrado et al., 2013; Mikolov,
Sutskever et al., 2013); concepts are selected from Roget’s Thesaurus and WordNet. A hyperparameter can be tuned to achieve a good
tradeoff between interpretability on the one hand and preservation of semantic structure on the other. We perform comprehensive
experiments and demonstrate that interpretability of word embeddings improves while performance stays about the same. Inspired
by Bolukbasi et al. (2016), we also demonstrate that Bilmp can concentrate gender information in a single embedding dimension,
the gender dimension, as a continuum. This supports efficient capture of gender bias and debiasing through removal of the gender
dimension. In short, main outcomes of this study can be summarized as: (i) Bilmp provides interpretable word embeddings by using
both positive and negative directions of word embeddings; (ii) Bilmp is compatible to different word embedding learning types; (iii)
Bilmp can be utilized to remove human biases from embeddings without compromising task performance.
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Fig. 1. Illustration of bidirectional imparting, the main idea underlying Bilmp. The method increases interpretability of word embeddings by linking embedding
dimensions to concepts. The concepts are taken from a conceptual resource that provides concepts along with word sets that are associated with them. Bilmp
“imparts” two concepts to each embedding dimension, one for the positive, one for the negative direction. E.g., the concepts “male” and “female” are associated
with positive and negative directions of the polar dimension in the figure. Imparting is achieved by modifying the embedding training objective: during training,
words associated with a concept are constrained to have high (or low) values on the dimension linked to the concept. As a result, the embedding vector of a
word is directly interpretable: the value of each coordinate can be seen as a weight that the associated concept (positively or negatively associated concept)
has in the representation of the meaning of the word. We study both polar dimensions (positive/negative concepts are opposites) and nonpolar dimensions
(positive/negative concepts are unrelated). Solid arrow: word from resource. Dashed arrow: word not from the resource inferred to be related to the concept.
We show that Bilmp increases interpretability without impacting task performance and that it supports more effective debiasing.

2. Related work
2.1. Interpretability of word embeddings

Benefits of interpretable word embeddings have motivated several previous efforts to improve interpretability. Most of these
studies introduce a sparsity constraint to learn sparse representations where each word is represented by only a few non-zero
dimensions. The motivation behind sparsity is that by investigating the words that correspond to non-zero values in a dimension, one
can infer which semantic features are encoded in that dimension. Based on this idea, Murphy et al. (2012) propose non-negative
sparse embeddings (NNSE) to perform non-negative matrix factorization (NMF) on word co-occurrence variant matrices. As an
extension to NNSE, Fyshe et al. (2014) proposed joint non-negative sparse embeddings (JNNSE) to incorporate additional knowledge
on word similarity as measured by the similarity of cortical activity patterns. To address the memory and scale issues of NNSE-based
methods, Luo et al. (2015) proposed an online learning method, where sparse embeddings were obtained using a modified skip-
gram model (Mikolov, Sutskever et al., 2013). Several other studies proposed to learn sparse transformations that map pretrained
state-of-the-art embeddings to sparse, more interpretable vector spaces instead of learning them from corpora (or co-occurrence
matrices) directly. Arora et al. (2018) and Faruqui et al. (2015) use sparse coding methods and Subramanian et al. (2018) train a
sparse auto-encoder. Inspired by research in topic modeling, Panigrahi et al. (2019) proposed a method named Word2Sense based on
the Latent Dirichlet Allocation (LDA) to extract distributions of difference word senses from a corpus, which are then used to learn
sparse interpretable word embeddings. While the above-mentioned approaches can increase interpretability to a certain degree, they
do not exercise control over the specific concepts or word senses that are captured in the embedding dimensions.

Sparse representations typically have higher dimensionality than dense embeddings since only a few words are encoded in
each dimension. Thus, they can suffer from memory and scaling issues especially for tasks that require a large vocabulary. To
strictly preserve the dimensionality and semantic structure of word embeddings, several researchers proposed orthogonal instead
of sparse transformations. Park et al. (2017) experimented with rotation algorithms based on exploratory factor analysis (EFA)
with orthogonality constraints. Zobnin (2017) used orthogonal transformations to improve clustering of words along individual
embedding dimensions. However, increases in clustering along a subset of embedding dimensions come at the expense of reduced
clustering (i.e., interpretability) along the remaining dimensions (Zobnin, 2017). Dufter and Schiitze (2019) and Rothe and Schiitze
(2016) use orthogonal transformations to align a linguistic signal (e.g., a collection of words) to an embedding dimension to obtain an
interpretable subspace. However, this method has only been demonstrated in a low-dimensional subspace to date, so its performance
in higher dimensional subspaces remains unclear. In a concurrent, independent study (Mathew et al., 2020), the transformation
method POLAR was proposed to map an existing embedding space to a polar space where each embedding dimension corresponds
to a pair of antonyms (i.e., polar opposites). In a recent study (Senel et al., 2020), an imparting method was proposed in which
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individual dimensions of the model were aligned with concepts defined a priori based on an external resource. Senel et al. (2020)
demonstrated the effectiveness of this method only for the offline GloVe method, and only the positive direction of each dimension
was matched up with a concept.

2.2. Gender bias

Ensuring the fairness of mathematical models is one of the most crucial issues in machine learning based information processing.
The roles of machine learning and artificial intelligence have an increasing momentum in many real-world applications such as job
hiring, granting loans, college applications (Makhlouf et al., 2021). Therefore, algorithms, model parameters, or model features
must not include gender, race, ethnic or any other unwanted bias. In Makhlouf et al. (2021), important notions of fairness related
to real-world scenarios are extracted, and necessary fairness notions are recommended for each specific setup that includes machine
learning.

Bolukbasi et al. (2016) is one of the pioneering studies that investigate gender bias in word embeddings. Authors realize that
some occupations that are supposed to be gender-neutral are mapped in favor of one gender by word embeddings. For example,
word man is closer to programmer than woman in semantic space. To eliminate this problem, the authors propose two different
debiasing methods named soft debiasing and hard debiasing, respectively (Bolukbasi et al., 2016). Caliskan et al. (2017) show that
training datasets can unintentionally involve not only gender bias but also morally neutral biases. They also propose the Word
Embedding Association Test (WEAT) and the Word Embedding Factual Association Test (WEFAT) to quantify the bias present in
texts. In the diachronic study of Garg et al. (2018), it is shown that word embeddings that are trained on different texts from
different timelines can reflect social, demographic, and cultural features of the corresponding period. On the other hand, Gonen
and Goldberg (2019) approach this issue in a critical way by claiming that the proposed debiasing methods in the literature are
not sufficient to remove the bias completely, and that the debiasing methods provide superficial cleaning, and this problem should
be dealt with in-depth. The recent advances come with the requirement of detecting and removing biases in contextualized word
embeddings and language models. To this end, Liang et al. (2020) propose SENT-DEBIAS method that reduces the social biases in
sentence level representations. The proposed method is performed in BERT and ELMO models as an extension of hard debasing
in Bolukbasi et al. (2016).

Gender bias is not limited to exist only in word embeddings. Recommender systems and search engines also host gender bias
in various ways. Melchiorre et al. (2021) investigate the gender fairness in recommendation algorithms in the music domain. The
authors demonstrate the gender inequality in the recommendation performance in favor of the male user group. In addition, they
also show that applying debiasing algorithms are beneficial for the improvement of gender fairness. On the other hand, Fabris et al.
(2020) propose a measure named ‘Gender Stereotype Reinforcement’ to evaluate the tendency of search engines to support gender
stereotypes. The effect of the embedding debiasing methods on search engines is also inspected.

Detecting gender discrimination is also as important as eliminating gender bias. There exist many kinds of hate speech in social
media (Kocon et al., 2021). Identifying such expressions that contain hatred and biased patterns is also a significant subject of
information processing. For instance, Pamungkas et al. (2020) present a review of the state-of-the-art misogyny detection. The
most predictive language features for distinguishing hatred and biased content are also presented. Learning these features takes an
important part in both detecting and eliminating gender bias in machine learning-based information processing models.

3. Research objectives

Our main contributions and research objectives are as follows:

We propose Bilmp, a bidirectional imparting algorithm to improve interpretability of word embeddings that utilizes both
directions of each embedding dimension separately to encode different concepts.

We demonstrate that the bidirectional imparting of arbitrary concepts offers superior performance compared to encoding of
polar opposites to each embedding dimension, in terms of interpretability, intrinsic and downstream evaluation tasks.

We perform comprehensive evaluations and provide comparison with previous work, showing that Bilmp achieves greater
interpretability without sacrificing performance.

We propose for the first time an imparting method to concentrate gender information to a designated embedding dimension,
along with an hybrid method that achieves concurrent gender and interpretability imparting. We show that this dimension
effectively captures gender information and improves the performance of gender debiasing methods, in terms of gender bias
metrics and high-level evaluation tasks.

4. Methods
4.1. Imparting

Unidirectional imparting (Unilmp) is a method that enhances interpretability in GloVe word embeddings by forcing words related
to predefined concepts to project more strongly onto individual embedding dimensions (Senel et al., 2020). To achieve this, GloVe’s
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cost is modified as follows:
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where ; and :u5 denote word and context vectors, w; . and 0; . denote the cth components of word and context vectors, b; and b ;
denote word and context biases, X;; denotes co-occurrence of the ith and jth words in the vocabulary, V' denotes vocabulary size,
and f(-) is a weighting function to prevent bias from rare words. The first term in the cost is GloVe’s original cost function. It aims
to capture semantic structure in the embedding model based on word co-occurrences. The second term aims to align embedding
dimensions with word-groups. In this latter term, C denotes the number of word-groups (C < dim(i0)), 1,y is the indicator variable
for the inclusion x € S, F, denotes the indices of words that belong to the cth group, k, controls the relative weighting of the second
term, and g(-) is a monotone decreasing function that adjusts the size of the updates during training. g(-) is defined as:

1/2 - exp(—2x), if x<0.5
gx) = ;
1/(4ex), otherwise.

@

4.2. Generalized bidirectional imparting

In this paper, we propose Bilmp, a generalized imparting framework that is capable of online learning and bidirectional imparting.
To alleviate computation and memory limitations, we focus on the skip-gram model of word2vec with negative sampling. The
objective that the skip-gram model aims to maximize for a word pair (i, j) is given as:
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Although the learning mechanisms of GloVe and word2vec are different, unidirectional imparting can still be implemented by
maximizing the following modified objective:
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In objectives (2) and (3), o is the sigmoid function, m is number of negative samples and P,(w) is the unigram distribution (U (w))
raised to the power 3/4, and z, is the index of the word from the tth draw from the unigram word distribution. Although the
additional terms in (1) and (3) look identical, throughout the training process, their relative influence over the original embedding
loss can be significantly different. To account for these differences, different weighting factors k¢ and k" are defined.

Imparting was previously only performed for the positive direction of embedding dimensions. But negative directions are equally
suitable to encode semantic, interpretable concepts. Based on this argument, we extend the imparting method to both directions of
the embedding dimensions. Given a fixed number for embedding dimensions, Bilmp doubles the concept capacity compared to the
unidirectional case. Moreover, by aligning opposite concepts such as good and bad or male and female with opposing directions of
the same dimension, these concepts can be represented in a continuum.

The proposed objective for Bilmp, the bidirectionally imparted word2vec model is as follows:

m
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where C* and C~ are the number of word-groups associated with positive and negative directions respectively (C* < dim(0),
C~ < dim(w)). Ff and F; denote the indices of words that belong to the cth group in the positive and negative directions,
respectively.

Here word-groups encoded in opposing directions of a given dimension are referred to as word—group pairs. Ideally, the word-
group pairs should not contain overlapping words (F,"nF, = @ Vc) to prevent weak word representations. In practice, this problem
can be alleviated by rearrangement of word—group pairs. In this study, we apply the following simple rearrangement procedure to
prevent overlap. For a given embedding dimension, we first select two random word-groups. When overlap is present, the second
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word-group is reselected from the set of remaining unpaired word-groups. This procedure is iterated until all word-groups are
paired.!

4.3. Lexical resources

The imparting method requires an external lexical resource that constitutes a basis for interpretability. A trivial interpretation
of an embedding model is possible if each embedding dimension is aligned with a distinct concept, (i.e., a word-group). Since
practical embedding models can have variable dimensionality, a broad lexical resource that can be used to flexibly extract an
arbitrary number of concepts is desirable. To this end, we utilized two lexical resources which are the Roget’s Thesaurus (Roget,
2008) and the WordNet (Miller, 1995).

In Senel et al. (2020), Roget’s Thesaurus is utilized as an external resource. Roget’s Thesaurus follows a tree structure, where
the actual words and phrases are grouped under 1,000 categories making the leaves of the tree structure. We extract word-groups
from the thesaurus by partitioning the tree structure starting at the root node from which all other nodes descend. A threshold
Al . 18 set for the maximum size of a node. Size of a given node is defined as the number of unique descendant words. During
partitioning, each node with size less than the threshold is selected to define a word-group, which consists of descendant words for
that node. For an above-threshold node without any children nodes, the word-group was defined as the 4/  descendant words with
the highest-frequency ranks. Among the resulting word-groups, the ones that contain less than A7 words are discarded. Finally,
word-groups are constructed after discarding the groups with the largest median frequency ranks (i.e., groups that contain more
rare words on average).

In addition to the Roget’s Thesaurus, we investigate another important lexical resource that can be used to extract semantic
word-groups, the WordNet (Miller, 1995). WordNet is a popular lexical database for English in which nouns, verbs, adjectives and
adverbs are grouped together into synsets. Each synset expresses a distinct concept. Synsets are interlinked based on their semantic
and lexical relations creating a network of related words and concepts. WordNet is similar to a thesaurus since it can be used to
group words together based on meaning. However, there are two important differences between WordNet and a thesaurus. First,
the network in WordNet is not based on word forms (i.e., sequence of letters) but on specific senses of words. As such, different
senses of a word are represented by different synsets providing semantic disambiguation. Second, semantic relations between words
are labeled in WordNet to describe the relation types, unlike a thesaurus where words are grouped merely based on similarity
in meaning. WordNet is a comprehensive lexical resource containing 117,000 synsets each of which is linked to other synsets. The
most frequently encoded relation between synsets is the super-subordinate relation (also known as hyper-hyponymy) that links more
general synsets like furniture to increasingly specific synsets like bed and bunkbed. In other words, the category furniture includes
bed, the category bed includes bunkbed and so on. In the hierarchical structure of WordNet, all noun synsets ultimately go up the
root node entity.

4.4. Interpretability evaluation

Following Senel et al. (2020), we evaluate the interpretability of the word embeddings based on SEMCAT categories (Senel,
Utlu et al., 2018) and subcategories (Senel, Yiicesoy et al., 2018). SEMCAT (sub)categories are taken as an approximation for the
semantic concepts that humans can use to interpret embedding dimensions. Based on SEMCAT, we calculate the Interpretability Score
IS, which is a measure of how strongly these (sub)categories are represented in embedding dimensions. This metric is low-cost, fast,
reproducible and was shown to correlate well with human judgement (Senel et al., 2020). However, it cannot capture the difference
between interpretability changes in the positive and negative directions of an embedding dimension because it performs maximum
pooling over the opposite directions of each dimension. To capture this information, we propose a new directional interpretability
score:

IS NV (Axn)|
— x 100
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IS,A’k =, m<a;,x<nk ——  x 100
min =""= (5)
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In Eq. (5), I S;_rk and I S, represent the interpretability scores in the positive and negative directions of the /th dimension
(I € {1,2,...,D}, D = dim()) for the kth category (k € {1,2,...,K}, K = 110) in SEMCAT, respectively. .S, is the set of words
in the kth category in SEMCAT and n,, is the number of words in S}. n,,, is the minimum number of words required to construct
a semantic category (i.e., to represent a concept). V;(4 X n) represents the set of 1 x n words that have the highest (V,*) and lowest
(VI‘) values in the /th dimension of the embedding space. For all evaluations we use 4 = 5.

1 For cases when word-groups have a substantial proportion of overlapping words, more sophisticated matching algorithms might be necessary. However,
here, we were able to find a non-overlapping pairing after a few trials (less than 5).
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4.5. Gender bias

4.5.1. Intrinsic bias evaluation

Bilmp matches each dimension with concepts and thereby makes it interpretable: it now clearly represents specific concepts.
As Dufter and Schiitze (2019) argue, this important property can facilitate removal of unwanted information from the model. A
common example of such undesirable information is the inherent gender bias in corpora that is reflected in learned embedding
models. Bolukbasi et al. (2016) report that embedding models often contain gender bias, particularly for occupation related words.

As discussed in Section 4.2, an important advantage of Bilmp over unidirectional imparting is that two concepts with opposite
meanings can be represented in a single dimension as a continuum. Since the concepts male and female are opposites, they can
be encoded in the opposite directions of the same dimension, creating a continuous gender dimension. The gender components of
words can then be inferred directly from their projections onto the gender dimension. To create a gender dimension, we construct
two word-groups corresponding to male and female concepts using (Bolukbasi et al., 2016)’s gender-specific word set S of 291
professions.

Bolukbasi et al. (2016) proposed two different measures to assess level of gender bias in word embeddings, namely direct bias
and indirect bias. Here, we use the direct bias measure:

bdirect — L COS(II), *) K (6)
" |N| weN l ¢ |

where N is the set of gender neutral words, § = W, — W0y, is the gender vector and « is a parameter that controls the relative
weighting of high vs. low bias levels; we set k = 1. Gender neutral words were obtained by taking the complement of Bolukbasi
et al. (2016)’s gender-specific word set .S such that N = W\S where W is the set of all words.

To evaluate Bilmp on gender bias, we use the stereotypical gender bias levels »° provided by Bolukbasi et al. (2016) for .S (the
set of 291 profession words), which were obtained by human assessment.? We calculate the correlation B¢ between stereotypical
biases »* and the biases »9"*! based on Eq. (6):

B = corr(b*, brect) %)
as well as the correlation B8¢ between the stereotypical biases b° and the biases »%¢ from the gender dimension:
B& = corr(b*, b59) ®)
where b%¢ is calculated as:
min (1, ﬂ) if w, 20,
Hm
—min <l, ﬂ) if w, < 0,
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M and u, are the average values of the words in the male and female word-groups in the gender dimension (gd), respectively. w,
stands for the value of the pth profession in the gender dimension. The intuition behind Eq. (9) is that we want a value between —1
and 1 (the range of »*) to indicate level of bias. We could map the entire range of values on the dimension to the interval [—1, 1],
but that would give too much weight to outliers. We therefore use u,,/u, as upper/lower bounds for w,. B#? (resp. B?) indicate
how well the Bilmp gender dimension (resp. the gender vector g) captures stereotypical gender bias.

gd _
b,

©)]

4.5.2. Reducing gender bias

Bolukbasi et al. (2016) proposed two methods for gender debiasing: namely hard debiasing (neutralize and equalize), and soft bias
correction. Here, we consider the hard debiasing method, where the gender subspace is first identified via the principal component
analysis (PCA). To do this, difference between word vectors of 10 pairs of gender words (i.e., female-male, she-he, girl-boy, etc.)
were computed, and PCA was then performed on these 10 difference vectors. The principal component with the largest eigenvalue
predominantly captures variance among the difference vectors (around 60% of total variance), suggesting that gender bias primarily
lies along a single direction in the embedding space. In the neutralize stage, vectors for the gender-neutral words are updated to
ensure that their projections onto the first principal component (i.e., gender subspace) is zero. Equality sets are then defined where
each set contains a gender pair such as {men, women}. In the equalize stage, vectors of the words in the equality sets are updated
such that the gender pair in each set becomes equidistant to the gender subspace. Therefore, following the equalization stage, each
gender-neutral word becomes equidistant to both men and women vectors.

In this work, we investigate the effect of concentrating gender information in a single dimension of the embedding model via
bidirectional imparting. We employ a two-stage approach for reducing gender bias in imparted embedding models. First, we remove
the gender dimension from the embedding model to cancel out gender bias as suggested in Dufter and Schiitze (2019). Since creation
of a gender dimension concentrates gender information in a single dimension, removal of this dimension is expected to remove
gender bias from the entire model. Next, we perform hard debiasing as described in Bolukbasi et al. (2016) on the reduced embedding
model. Quantitative comparisons of bias level are performed on imparted and reduced embedding models both prior to and after
debiasing procedures.

2 https://github.com/tolga-b/debiaswe/blob/master/data/professions.json Professions that were not in our vocabulary were filtered out.
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Table 1
Summary statistics of the word-group datasets.
Word counts Roget’s Thesarus WordNet
(300 grp.) (600 grp.) (300 grp.) (600 grp.)
Total 20978 40350 26964 18965
Unique 12289 19870 18123 13853
Average 69.9 + 53.7 67.3 + 54.6 89.9 + 74.2 31.6 + 15.9

4.5.3. Bias in classification

Prost et al. (2019) argue that lower gender bias levels as measured by Eq. (6) do not always translate to reduced gender bias
in classification. We therefore also evaluate on BiosBias (De-Arteaga et al., 2019), a classification dataset of 397,907 biographies
extracted from CommonCrawl. Each biography is annotated as male or female and as being one of 28 different occupations. The
task is to classify each subject’s occupation given their biography. The train/dev/test split is 258,640,/39,790/99,477.

For occupation classification based on an embedding model, single words in a given biography are first projected to the
embedding space. Each biography is thereby represented as the average vector of words within the biography. A linear classifier
with softmax output is used, and hyperparameters are tuned based on validation set performance. Classification accuracy is used
as the performance measure. As a latent measure of gender bias in embedding models, fairness of the classifier to the two genders
are examined as described in Hardt et al. (2016) as equality of opportunity. Specifically, we measure the True Positive Rate Gender

Gap (TPR,,,) and True Negative Rate Gender Gap (TNR,,,) for the classifier. TPRg,p for a given occupation is measured as:

8ap 8ap

TPR, gap = |Pr{B, =1|B,=1,B, = f}-

X 10)
Pr{B,=1|B,=1,B, =m}|,

where o is an occupation, B, (1§0) is the (estimated) occupation of a biography and B, its gender (m/f = male/female). TPRyqp
(resp. TNRy,,) is the difference in accuracy between the two genders of detecting the presence (resp. absence) of an occupation. We
interpret this as a measure of the gender fairness of the word embeddings for 0. We compute TPRy,,/TNRg,, as the average over

8ap
all TPR, ,,,/TNR,

0,8ap 0,gap*

5. Experiments and results®

In this section, we describe our experiments and present our findings. Section 5.1 describes how we extract word groups from
lexical resources. Section 5.2 describes our main experiments for improving interpretability and presents our findings. Section 5.3
presents our gender debiasing experiments. Section 5.4 evaluates the performance of gender de-biased embeddings, and Section 5.5
presents a hybrid gender and interpretability imparted model.

5.1. Word-group extraction

We investigate two lexical resources to extract word groups for imparting: Roget’s Thesaurus (Roget, 2008) and WordNet (Miller,
1995). To extract word groups from Roget’s Thesaurus, we follow the extraction procedure in Senel et al. (2020) and extract 300
and 600 word groups by taking Ay, =20 and iy, = 15, respectively. To extract word-groups from WordNet, we follow a similar
procedure and partition the hierarchical structure starting from the root node. We follow an iterative approach, where the largest
node is divided to its hyponyms in each iteration. Node size is taken as the number of unique words descending from a node after
filtering based on the vocabulary extracted from Wikipedia. We discard the nodes with size less than A}, . Iterations are stopped
when the number of nodes exceeds the desired word—group count. Note that the desired word-group count may not be achieved
if Alv. is selected too large. The groups with the smallest number of member words are discarded to achieve desired word-group.
We take A", = 25 and A = 15 for 300 and 600 WordNet word groups, respectively. Table 1 summarizes the statistics for the
constructed word-groups.

5.2. Interpretability enhancement

Our training corpus is the English Wikipedia. To pre-process the Wikipedia dump, all document numbers, URLs, HTML syntax
and non-alphanumeric characters are cleared. Remaining words are lower-cased. Resulting corpus consists of 2,127,511,369 tokens.
Words with less than 100 occurrences are discarded from the corpus. The final vocabulary contains 229,922 unique words (types).
To test generalizability of imparting approach, using the 300 Roget word groups and the objectives Eq. (1) and (3), we train two
sets of 300-dimensional unidirectionally imparted embeddings (one for GloVe one for word2vec) for different k8 and k" values.
We measure their interpretability using IS* (Eq. (5)). Fig. 2 shows interpretability scores for unidirectionally imparted GloVe and
word2vec in the positive direction for n,,;, = 5 and n,,,, = 10. These results suggest that regularization term for imparting is viable
for word2vec algorithm as well. However, original word2vec embeddings have lower interpretability values than original GloVe
embeddings and word2vec requires stronger regularization than GloVe (k' > k¢) to achieve similar interpretability.

3 Data and codes are provided at: https://github.com/lksenel/biimp.
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Fig. 2. Interpretability scores in the positive direction (/.S*) using n,,, = 5 (top row) and n,,, = 10 (bottom row) for unidirectionally imparted GloVe (left

column) and word2vec (right column) algorithms for k¢ € [0.0005,0.05] and k“ € [0.025,1.00], respectively. Interpretability scores for original embeddings and a
random baseline are displayed for comparison as orange and green dashed lines, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Then, using the 600 word-groups from Roget’s Thesaurus and WordNet, we investigate the viability of bidirectional imparting for
Word2Vec. Using the objective Eq. (4), we train two sets of 300-dimensional Bilmp vectors (one for Roget’s and WordNet each) for
different k* values. We additionally train word2vec vectors without bidirectional imparting. For the training all imparted models
and the original word2vec model, we use VOCAB_MIN_COUNT = 100, MAX_ITER = 15, WINDOW_SIZE = 8, NEGATIVE = 15,
SAMPLE = 1074

We evaluate the resulting embeddings on two measures: interpretability scores ISt and IS~ (Eq. (5)) and intrinsic performance,
based on word similarity* (Faruqui & Dyer, 2014) and word analogy® (Mikolov, Corrado et al., 2013) tests. Fig. 3 shows
interpretability values of the unidirectionally and bidirectionally imparted word2vec embeddings using Roget and WordNet word-
groups for n,,;, = 5 and n,,;, = 10 in both of the positive and negative directions. Bidirectional imparting achieves considerably
improved interpretability compared to unidirectional imparting in the negative direction with minimal compromise in the positive
direction.

Fig. 4 presents the performances of the embeddings on word similarity and word analogy tests. Performance decreases with
increasing k. However, for bidirectional imparting of WordNet word-groups, performance is on par with original embeddings for
k" < 0.2. While WordNet word-groups somewhat reduce interpretability compared to Roget word-groups in bidirectional setting,
they are much better at preserving the semantic structure of the embedding space as suggested by similarity and analogy tests.
Taken together, results in Figs. 3 and 4 suggest that bidirectional imparting of WordNet word-groups at relatively low k,, is the
optimal setting for word2vec. Therefore, we use WordNet-based Bilmp in the rest of the paper.

5.2.1. Interpretability comparison

We compare Bilmp with six state-of-the-art methods for interpretability enhancement: OIWE-IPG (Luo et al., 2015), SOV (Faruqui
et al., 2015), Parsimax (Park et al., 2017), Word2Sense (Panigrahi et al., 2019) POLAR (Mathew et al., 2020) and Unilmp (Senel
et al., 2020). We do not consider SPINE (Subramanian et al., 2018) because it scaled poorly for large vocabularies in our experiments.

OIWE-IPG was trained on the same corpus as the word2vec embeddings using the default parameters reported in Luo et al. (2015),
yielding 300 dimensional vectors. SOV and Parsimax that work on pretrained embeddings were performed on the original word2vec
embeddings, again using suggested parameters in Faruqui et al. (2015) and Park et al. (2017), resulting in 1000 and 300 dimensional
vectors, respectively. For Word2Sense, we used the publicly available 2250 dimensional pretrained vectors® due to computational

4 Word similarity results were averaged across 13 datasets: WS-353-ALL, SIMLEX-999, VERB-143, SimVerb-3500, WS-353-REL, RW-STANFORD, YP-130,
MEN-TR-3k, RG-65, MTurk-771, WS-353-SIM, MC-30, MTurk-287.

5 http://download.tensorflow.org/data/questions-words.txt.

6 https://github.com/abhishekpanigrahil996,/Word2Sense.
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Fig. 3. Positive (top) and negative (bottom) direction interpretability scores for unidirectionally imparted word2vec embeddings using Roget’s Thesaurus (Roget-
Uni) and WordNet (WordNet-Uni) and their bidirectionally imparted versions (Bilmp (Roget), Bilmp (WordNet)) for k* € [0.025,1.00] along with the original
word2vec embedding and a random baseline for n,,, =5 (left) and n,,, = 10 (right).
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Fig. 4. Performance of unidirectionally imparted word2vec embeddings using Roget’s Thesaurus (Roget-Uni) and WordNet (WordNet-Uni) and their bidirectionally
imparted versions (Roget-Bi, WordNet-Bi) for k* & [0.025,0.500] along with the original word2vec embedding on word similarity (left) and word analogy (right)
tests. Word similarity results are presented as the average correlations from 13 different word similarity test sets.

restrictions. For POLAR, we trained two different versions. First, we obtained 1465 dimensional POLAR-large embeddings that were
reported in Mathew et al. (2020), by applying polar transformation on Google’s pretrained word2vec embeddings’ using all 1465
antonym pairs. Note that these embeddings were originally trained on a much larger corpus (Google News) with a substantially larger
vocabulary (3 million) than our word2vec embeddings. Therefore, POLAR-large embeddings are considerably more expensive than
our imparted embeddings in terms of computational and linguistic resources. Second, we obtained 500 dimensional POLAR-small
embeddings that are more comparable to imparted embeddings in terms of model dimensionality and resource usage, by performing
the polar transformation on our original word2vec embeddings using the default parameters.® Unilmp embeddings are trained on
English Wikipedia (same as Bilmp) using Eq. (1) (k8 = 0.1 as suggested in Senel et al. (2020)) and 300 word-groups extracted from
Roget’s Thesaurus.

Table 2 presents interpretability scores of Bilmp for k* € {0.1,0.2,1}, OIWE-IPG, SOV, Parsimax, Word2Sense, POLAR,,,.;;,
POLAR,,,,, and Unilmp along with the original word2vec embeddings in positive and negative directions separately for n,,, = 5.

7 https://drive.google.com/file/d/0B7XkCwpISKDYNINUTTISS21pQmM.
8 https://github.com/Sandipan99,/POLAR.
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Table 2
Interpretability scores (cf. Eq. (5), n,,;, =5) of Bilmp are higher than all baselines.
Embedding Size Interpretability
pos. neg.
word2vec 300 12.80 12.88
OIWE-IPG 300 35.50 -
SOV 1000 14.28 13.98
Parsimax 300 18.55 17.66
Word2Sense 2250 34.11 -
POLAR,,, 500 23.89 20.8
POLAR,,,,, 1465 28.60 25.91
Unilmp 300 57.49 11.38
Bilmp,._ 300 36.24 39.10
Bilmp,._, 300 42.04 46.77
Bilmp,.._; 300 52.90 57.80
Table 3
Results on the performance evaluation tests. For Bilmp, results are averaged across £ € {0.025,0.050, ...,0.200}.
Task w2v IPG SOV Parsimax W2s POLAR| POLAR, Unilmp Bilmp
Sem. Anlg. 79.9 32.6 52.6 79.6 12.9 70.5 60.0 80.2 79.7
Syn. Anlg. 67.6 25.6 41.6 67.5 19.4 56.1 70.8 63.4 66.3
Word Sim. 60.7 48.6 56.1 60.7 57.0 54.9 60.0 56.9 60.3
Sent. Anly. 80.3 74.5 81.8 80.3 81.2 79.1 81.8 79.0 80.00
Quest. CIf. 85.8 79.0 87.8 85.8 77.2 84.6 82.4 81.0 84.9
Sports News 95.9 95.5 96.9 96.0 86.6 94.7 91.8 96.0 95.7
Relig. News 87.0 85.8 88.6 86.9 85.1 84.1 84.9 84.9 87.4
Comp. News 81.6 78.5 86.3 81.7 73.4 77.6 72.9 80.3 80.3

Note that non-negative embeddings inherently do not have any interpretability in the negative direction. Bilmp embeddings are
clearly the most interpretable in the negative direction, even for small £ (k" = 0.1). For the positive direction, interpretability of
Bilmp is comparable with OIWE-IPG and Word2Sense and is higher than all baselines except Unilmp for small k. For larger k%,
interpretability of Bilmp is only slightly lower than that of Unilmp.

5.2.2. Preservation of semantic structure
In addition to the intrinsic evaluation, we also evaluate the embeddings on three classification tasks:

» Sentiment Analysis: A sentence-level binary classification task using the Stanford Sentiment Treebank consisting of thousands
of movie reviews (Socher et al., 2013) and their sentiment scores. The development and training sets in the original dataset
were aggregated, and reviews with neutral scores were removed (i.e., scores between 0.4 and 0.6). The resulting dataset
contained 7407 training and 1751 test samples.

Question Classification (TREC): A question-level multinomial classification task using the TREC dataset (Li & Roth, 2006)
consisting of six different types of questions (person, location, entity, number, description, abbreviation). This dataset consisted
of 5452 training and 500 test questions.

News Classification: Following Faruqui et al. (2015), three news-level binary classification tasks were considered using the
20 Newsgroup dataset.” The following news topics were considered (training/test sample counts): (1) Religion: atheism vs.
christian (1079/716); (2) Sports: baseball vs. hockey (1192/796); (3) Computers: IBM vs. Mac (1162/775).

For these high-level NLP tasks, we took the average of the word vectors in input text (can be a sentence, question or news) as input
features and trained an SVM classifier that was tuned using 5 fold cross-validation on the training sets.

Table 3 shows results. For Bilmp, results are averaged across k* € {0.025,0.050,...,0.200}. For analogy and similarity tasks,
Bilmp, Unilmp, Parsimax and word2vec have similar scores, suggesting that Bilmp does not reduce the quality of word embeddings
while improving interpretability. Both POLAR models perform slightly worse than the original embeddings (except for syntactic
analogy and sentiment analysis for POLAR-large). OIWE-IPG, SOV and Word2Sense suffer from considerable performance loss in
most cases, implying a reduction in the semantic information captured.

For text classification (last five lines), differences between methods are minor, except for Word2Sense embeddings, which perform
poorly on question and news classification. SOV (Faruqui et al., 2015) has the best performance on classification, but recall that
it has low interpretability (Table 2). Bilmp performs comparably to Unilmp, Parsimax and word2vec in all tasks. These results
demonstrate that Bilmp meets both requirements: interpretability and good task performance.

9 http://qwone.com/~jason/20Newsgroups.
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Fig. 5. Correlation of human judgments with the gender dimension in Bilmp (blue, B¢, Eq. (8)), with the gender vector in Bilmp (orange, B¢, Eq. (7)), and
with the gender vector in the original embedding space (dashed green line, Bjﬂgm,). The Bilmp gender dimension clearly has the highest correlation with human
judgments. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Direct bias (bf’"”, see Eq. (6)) of the Bilmp (dashed lines) and reduced (dotted lines) embeddings as a function of k. Solid lines: b’li””“ of the original
embeddings. Blue/red: Results before/after hard debiasing. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

5.3. Gender debiasing

5.3.1. Intrinsic bias
We calculate B$ (Eq. (7)) and Bg&d (Eq. (8)) for Bilmp. Additionally, we calculate B¢ for the original word2vec embeddings
friginnl)' Fig. 5 shows that Pearson’s correlation coefficients of human judgments with the Bilmp gender dimension (blue, B¢,
Eq. (8)) is higher than their correlation with the gender vector w,;,, — i, of Bilmp (orange, B¢, Eq. (7)) and also higher than the
correlation with the original word2vec gender vector (dashed green line). This result suggests that Bilmp’s gender dimension densely
captures gender information. Interestingly, B¢ is much higher for Bilmp than for the original embeddings (Bfriginal)’ indicating that
Bilmp improves the quality of the gender vector as well.

We investigate the effect of (i) gender imparting, (ii) removing the gender dimension from the embeddings (iii) hard debias-
ing (Bolukbasi et al., 2016) on the gender bias level of the embedding spaces. Specifically, we measure the bias level of the original,
imparted and reduced embeddings before and after hard debiasing using Eq. (6). Fig. 6 shows the bias levels. Naturally, imparting
a single dimension with gender information does not alter the overall bias in the word embeddings, but rather concentrates most of
the bias on a single dimension as implied by Fig. 5. Removing this dimension from the embedding space then considerably reduces
the bias, especially for larger k. After hard debiasing, b‘I’ irect of the full and reduced imparted models (red dashed and dotted lines)
are closer, and substantially lower than that of word2vec. These results show that learning an embedding space with an explicit
gender dimension enhances the performance of hard debiasing.

5.3.2. Bias in classification

Prost et al. (2019) give evidence that hard debiasing introduces elevated gender bias in high-level classification tasks when
compared with the original embedding model. We therefore also use strong debiasing (Prost et al., 2019), a method that alleviates
this issue by taking N (Eq. (6)) as the entire vocabulary as opposed to just gender neutral words.

Table 4 compares original embeddings, hard debiasing, strong debiasing and the combination of Bilmp and strong debiasing
(B+S) on accuracy (to measure task performance) and TPR/TNR (Eq. (10), to measure classification fairness). The dataset is BiosBias.
Hard debiasing has relatively high TPR/TNR, suggesting it reduces classification fairness. Strong debiasing on original word2vec
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Table 4
Accuracy and True Positive/Negative Rate (TPR/TNR) on the occupation classification task. B + S
= Bilmp + strong debiasing.

Embedding Acc. TPRg,, TNRg,,
word2vec 717 .094 .0034
Hard debiasing .700 .105 .0037
Strong debiasing .699 .087 .0033
B+ Spu_y 697 .066 .0022
B+ Spu_s 699 .067 .0024
Table 5
Results of embeddings from gender bias experiments on the performance evaluation tests.
Task Before debias After debias
word2vec Imparted Reduced word2vec Imparted Reduced
Sem. Anlg. 79.87 79.00 + 0.50 79.16 + 0.50 78.65 78.92 + 0.57 78.99 + 0.61
Syn. Anlg. 67.63 66.39 + 0.99 66.48 + 1.01 67.46 66.42 + 0.96 66.43 + 1.00
Word Sim. 60.68 60.08 + 0.66 60.21 + 0.52 60.64 60.12 + 0.67 60.28 + 0.53
Sent. Anly. 80.30 79.95 + 0.36 79.94 + 0.33 79.84 79.99 + 0.37 79.98 + 0.41
Quest. CIf. 85.80 84.63 + 0.59 86.00 + 0.92 86.20 86.27 + 0.74 86.03 + 0.80
Sports News 95.85 95.33 + 0.27 95.34 + 0.25 95.10 95.33 + 0.27 95.33 + 0.29
Relig. News 87.01 86.19 + 0.61 86.10 + 0.57 86.03 86.24 + 0.59 86.18 + 0.59
Comp. News 81.55 78.74 + 0.84 78.73 + 0.99 78.84 78.68 + 0.83 78.63 + 0.81
Table 6
Results of evaluation tests for the hybrid gender and interpretability imparted embeddings.
Task k" =0.1 k" =0.2 kY =1
Semantic Anlg. 79.07 78.13 73.25
Syntactic Anlg. 66.61 65.17 45.58
Word Sim. 60.62 59.11 48.94
Sentiment Anly. 80.41 79.55 79.84
Question CIf. 84.60 85.00 84.20
Sports News 96.11 95.73 95.73
Religion News 85.89 87.43 88.55
Comput. News 81.42 81.03 79.74
Interp.! . 36.88 41.22 54.28
Interp., _, 38.47 44.79 58.50
Interp} _ o 22.41 24.17 34.07
Interp., _, 22.49 23.89 35.43
Gender B. . ,c.q 0.0470 0.0403 0.0441
Gender B.,,iq5eq 0.0168 0.0122 0.0148

results in a relatively limited change in classification fairness. Yet when Bilmp and strong debiasing are combined (B+S), TPRy,, and
TNRy,, are substantially lowered without a major compromise in accuracy. These results provide further evidence that concentration
of gender information on an embedding dimension improves performance of debiasing methods.

5.4. Performance of gender biased embeddings

A potential risk of debiasing on gender-imparted models is undesirable loss of semantic structure in the embedding space that
might compromise task performance. To rule out this risk, we evaluate the embeddings in the gender-bias experiments on intrinsic
tests and downstream classification tasks. For the imparted and reduced embeddings, we averaged the results across k. Table 5
shows that all the evaluated embeddings perform nearly as good as the original embeddings on all tasks, except a slightly reduced
performance on computer news classification task. These results indicate that debiasing of gender-imparted embeddings successfully
preserves semantic structure of the embedding space.

5.5. Hybrid gender and interpretability imparted embeddings

We demonstrate the feasibility of Bilmp for concurrent gender and interpretability imparting. To do this, we obtain a hybrid
model where the first dimension was encoded with gender word-groups and the remaining 299 dimensions were bidirectionally
imparted with word-groups extracted from WordNet. Evaluation on gender bias, interpretability and task performance were repeated

on this hybrid model. Table 6 shows the evaluation results. Hybrid model performs similarly to only WordNet imparted Bilmp
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(Sections 4.4 and 5.2.2) in interpretability and task performance evaluations, and performs similarly to only gender imparted
Bilmp (Section 5.3.1) in gender bias evaluations. These results indicate that Bilmp enables gender debiasing and interpretability
enhancement simultaneously in embedding models without compromising task performance.

6. Discussion of results and implications

The implications of the presented results can be organized under three main folds as follows.

+ Bilmp generates interpretable word embeddings by disclosing the hidden encoded structure of word embedding models without
performance degradations on semantic tasks: Producing interpretable word embeddings has a critical role in deciphering the
black-box behavior of language models extensively used in NLP-based information processing. Studies generating interpretable
embeddings mostly give up some of the semantic properties captured by word vectors. Our experimental results show that
Bilmp brings interpretable word embeddings without making compromises on the semantic task performances.

Bilmp has a flexibility to be adapted to distinctive learning scenarios and semantic tasks: Aside from the main objective, Bilmp
is also compatible for different training schemes for word embeddings. Bilmp can be easily adapted to both online learning-
based and co-occurrence matrix-based training procedures. In addition, different lexical sources can be utilized without any
additional cost. One can infer that Bilmp presents a large spectrum of interpretable embeddings with a performance at the
state-of-the-art level in various tasks ranging from word analogy to text classification.

Bilmp can also be deployed to capture and mitigate any kind of human biases that exist in word embeddings: On the other
hand, imparting interpretability to word embeddings enables us to enhance word embeddings in various ways. As shown in
the experimental results, capturing human biases in a dimension and removing that dimension lead to better debiasing results.
This feature of Bilmp embeddings can be extended to other bias types without any difficulty. Furthermore, task or domain-
specific interpretable word embeddings can be obtained by adjusting the corresponding word groups assigned to embedding
dimensions according to the task or domain. As a result, Bilmp offers wide liberty in studying word embeddings without any
further computational efforts.

7. Conclusion

We introduced Bilmp, a new method for enhancing interpretability of word embeddings by bidirectional imparting of concepts
extracted from lexical resources. Bilmp was implemented for the scalable word2vec algorithm, and semantic concepts were extracted
from Roget’s Thesaurus and WordNet. In contrast to prior work, Bilmp uses both directions along each dimension of the vector space
separately, enabling encoding of two different concepts; the two concepts can be chosen arbitrarily or chosen as opposite concepts
as a special case. As a result, Bilmp makes more efficient use of the embedding space while increasing encoding flexibility.

We showed that Bilmp achieves higher interpretability of word embeddings compared to state-of-the-art methods, particularly
in the negative direction. At the same time, evaluation on word similarity/analogy tests as well as sentiment, news and question
classification showed that Bilmp does not sacrifice task performance. Thus, Bilmp offers a favorable trade-off between the goals of
enhancing interpretability and maintaining task performance.

Bilmp represents opposite concepts in a single dimension on a continuum. As an important demonstration, we used Bilmp
to concentrate gender information in a single gender dimension. We showed that this gender dimension has a high correlation
with stereotypical gender bias as measured by human judgments. Furthermore, we showed that this gender dimension is useful for
reducing gender bias when coupled with debiasing. The combination of Bilmp and debiasing achieved lower levels of gender bias
and improved classification fairness. These results highlight the potential of Bilmp in reducing biases and stereotypes present in
word embeddings.

Here, the imparting method was demonstrated to improve interpretability and reduce gender bias in word2vec embedding
models, using concepts from two common lexical sources. That said, imparting through modification of the learning objective is
easily adaptable to different embedding algorithms, and to different lexical resources. The imparting framework can also be adopted
for goals beyond interpretability enhancement, such as improvement of task performance. If imparting is used to encode task-relevant
concepts, similar task performance can be achieved using simpler models with fewer dimensions. In turn, this can offer benefits in
terms of memory requirements and computational load.

Lastly, we studied Bilmp in the scope of static word embeddings. Extending Bilmp to the contextualized word embeddings can
be further investigated as a future work.
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Abstract

Recent progress in pretraining language mod-
els on large corpora has resulted in large per-
formance gains on many NLP tasks. These
large models acquire linguistic knowledge dur-
ing pretraining, which helps to improve per-
formance on downstream tasks via fine-tuning.
To assess what kind of knowledge is acquired,
language models are commonly probed by
querying them with ‘fill in the blank’ style
cloze questions. Existing probing datasets
mainly focus on knowledge about relations
between words and entities. We introduce
WDLMPro (Word Definition Language Model
Probing) to evaluate word understanding di-
rectly using dictionary definitions of words. In
our experiments, three popular pretrained lan-
guage models struggle to match words and
their definitions. This indicates that they un-
derstand many words poorly and that our new
probing task is a difficult challenge that could
help guide research on LMs in the future.

1 Introduction

Natural language processing (NLP) has advanced
drastically in the last decade with the design of
larger and more sophisticated models, availabil-
ity of larger corpora and increasing computational
power. Pretrained word embeddings (Mikolov
et al., 2013; Pennington et al., 2014) popularized
the use of distributed word representations, which
became a fundamental building block for NLP
systems. Peters et al. (2018a) introduced LSTM-
based deep contextual representations and obtained
large performance gains by fine-tuning on tasks af-
ter unsupervised pretraining (Radford et al., 2018;
Howard and Ruder, 2018). More recently, the at-
tention based transformer architecture was shown
to use context more effectively (Vaswani et al.,
2017) and several subsequent models achieved state
of the art results in many NLP tasks by combin-
ing the transformer architecture with unsupervised
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pretraining and task specific fine-tuning (Devlin
et al., 2019; Liu et al., 2019). Radford et al. (2019)
showed that language models can be applied to a
variety of tasks without task specific fine tuning.
This is demonstrated on a much larger scale by
Brown et al. (2020).

Deep models improve performance. However,
what they actually learn about language and word
meaning is still to a large extent unclear due to
their uninterpretable nature. For static word embed-
dings, researchers used word similarity (Hill et al.,
2015) and word analogy (Gladkova et al., 2016)
tests to shed light on what information is captured
in these dense vector spaces. For language models,
a great amount of linguistic knowledge is stored
in the model parameters (Peters et al., 2018b).
Several studies proposed using ‘fill in the blank’
type cloze statements to test knowledge learned
by these models during unsupervised pretraining.
Petroni et al. (2019) proposed the LAMA (LAn-
guage Model Analysis) probe to test the factual
and common sense knowledge stored in language
models. Similarly, Schick and Schiitze (2020) in-
troduced WNLaMPro (WordNet Language Model
Probing) to assess the ability of language models to
understand words based on their frequency. In WN-
LaMPro, cloze style questions are generated based
on antonym, hypernym and cohyponym relations
among words extracted from WordNet.

The existing probing datasets mainly focus on in-
vestigating the knowledge about relations between
words or entities. However, a more direct way of
testing whether a language model understands the
meaning of a word is to use its dictionary definition.
If a pretrained language model truly understands
the meaning of a word, then it should be able to
match it with its dictionary definition. Based on
this motivation, we introduce the Word Definition



synset definition

a_cappella_singing.n.01
caroling.n.01
crooning.n.01
singalong.n.01
bel_canto.n.01

singing without instrumental accompaniment

singing joyful religious songs (especially at Christmas)
singing in a soft low tone

informal group singing of popular songs

a style of operatic singing

Table 1: Five candidates from G(t) for t= a_cappella_singing.n.0I and their definitions

Noun Verb
# of Synset Groups 51260 8487
Average # of Candidates 50.2 47.7
min / max # of Candidates | 5/404 5/593

Table 2: WDLMPro statistics

Language Model Probing (WDLMPro) dataset;! it
is a challenging benchmark for testing NLP models
for their ability to understand words. WDLMPro
is essentially a set of thousands of synset groups;
each synset group consists of a target word (with
its definition) and its taxonomic sisters (with their
definitions). Using taxonomic sisters, rather than
random word groups, makes the task more chal-
lenging for statistical models that are based on the
distributional hypothesis since these words have
similar distributional characteristics (Lenci, 2008).
We evaluate two masked language models, BERT
and RoBERTa, and the auto-regressive model GPT-
2 on WDLMPro using two different probing tests:
(i) match definition to word (D2W) (ii) match word
to definition (W2D). We also provide a baseline
using static fastText embeddings (Mikolov et al.,
2018). We find that all three language models per-
form clearly better than the baseline. Nevertheless,
they have great difficulty matching words and their
definitions, implying a poor understanding of word
meaning. This is an important result that could
help guide research on LMs in the future.

2 WDLMPro

In this section, we introduce WDLMPro (Word
Definition Language Model Probing), a dataset to
test how well NLP models can match nouns and
verbs with their definitions. We view this as a test
of how well the models understand lexical mean-
ing.

2.1 Dataset

WordNet (Miller, 1995) is the basis for construct-
ing WDLMPro. A WordNet synset contains a set

'WDLAMPro and evaluation scripts are available at
https://www.cis.Imu.de/definition_benchmark/WDLAMPro.zip

of synonyms along with a short definition of the
synset. Different senses of polysemous words are
represented in different synsets providing disam-
biguation. WordNet connects synsets with each
other via semantic relations.

Based on a rarget synset t and the semantic rela-
tion hyponymy <, we construct a synset group G
for the target as follows.

gty ={z|qy:t<yrz <y}

that is, G contains all synsets that are “sister hy-
ponyms” to ¢ with respect to a hypernym of ¢. G(¢),
along with the definitions of the synsets in G(¢),
will be used to set up the WDLMPro tasks that
require matching of words and definitions. We
discard groups G(t) that have a size of less than 5.

In this study, we focus on nouns and verbs,
i.e., we create synset groups G for the nouns and
verbs in WordNet. Table 1 displays five mem-
bers from G(¢) and their definitions for the target
a_cappella_singing.n.01 (see appx. for the target
beckon.v.01.) Table 2 shows statistics of the dataset.

2.2 Probing Tests

We define two probing tests that are converses of
each other:

¢ Match definition to word (D2W). Given a
definition and a set of words, the task is to
find the word that the definition defines.

e Match word to definition (W2D). Given a
word and a set of definitions, the task is to
find the definition that defines the word.

Each synset group G () gives rise to one instance
of D2W by providing the definition of ¢, and all
words in G(t). The word from G(t) that matches
the definition has then to be identified. (Note that
t is a member of G(t).) Similarly, each synset
group G(t) gives rise to one instance of W2D by
providing ¢ and the definitions of all words in G(t).
The correct definition of ¢ has then to be identified
among all definition candidates. Note that WordNet
definitions by construction do not contain the word
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Masked Language Model (MLM)
i <DEF>

Noun _ means <DEF>
__is defined as <DEF>
definition of __ is to <DEF>
Verb -

to <DEF> is the definition of __

Autoregressive Language Model (ALM)
Noun <DEF> is the definition of
Verb to <DEF> is the definition of

Table 3: Patterns used for querying language models
for nouns and verbs. <DEF> refers to the definition,
is the mask or missing word that the language model
has to predict.

to be defined. So there are no instances where the
two tasks are trivial.

2.2.1 Application to language models

In principle, any NLP model can be tested on D2W
and W2D. In this paper, we are particularly in-
terested in testing language models. To this end,
we convert the data to a format that is suitable for
language models, i.e., to cloze-style questions as
shown in Table 3. The basic quantity that allows
us to assess the compatibility of a word ¢ and a
definition is the probability of ¢ being generated for
“_” when the definition is substituted for <DEF>.

More precisely, we compute the probability that
the string representation of ¢ is being generated.
We will denote the string representation of synset ¢
by t. We obtain the string representation by remov-
ing the word type and sense information from the
name of the synset and replacing underscores with
white space. For example, synset warm _up.v.04 is
represented by the string “warm up”.

Table 3 shows that we define different templates
for masked and autoregressive language models.
For the masked language models, we average the
prediction scores across patterns before ranking the
candidates.

2.3 Baselines

For a masked language model (MLM) M, the prob-
ability of a candidate ¢ € G(t) on W2D is calcu-
lated as:

[t]

PY2(c|t) = H P(t'1Q(c, [t]))
i=1

where t = [t!,t2, ..., t!!l] is the tokenization pro-
duced by M. Q(c,|t|) is the input query created
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from one of the patterns (Table 3) with __replaced
with |t| consecutive mask tokens. For an autore-
gressive language model (ALM) A, we decompose
P(t'|Q(c), t) in the standard way:

1t
Py =T P#|Qe), t, ...t 1)
=1

For D2W, we need to compare, given a definition,
the probabilities of different candidate words that
are generally of different lengths. To ensure a fair
comparison, we follow Xiong et al. (2020). For
MLMs, we match the number of mask tokens in an
input query to the token count of each candidate.
The final score is the average log-probability of the
masked tokens:

d

1 ,
PPV (c|t) = T Zlog P(c'|Q(t,]c]))
i=1

For ALMs, we use the probability of the first token:
PO (clt) = P(c'Q(t))

Considering further tokens does not make sense
since they are often easily predictable from the first
token.

We apply our probing test to two different pre-
trained MLMs (BERT and RoBERTa) and one
ALM (GPT-2). To investigate the effect of model
size on the performance, we experiment with both
base and large versions of BERT and RoBERTa
along with all four sizes of GPT-2 (small, medium,
large, x1). For RoBERTa, we capitalize the
first letter of the candidate noun since pretrained
RoBERTa models are case sensitive and expect a
capital letter at the beginning of a sentence.’

In addition to the deep contextual language mod-
els, we also provide fastText static word embed-
dings3 (Mikolov et al., 2018) as a baseline.* For
fastText embeddings, we tokenize the candidates
and their definitions using the NLTK tokenizer and
represent them with their average vector. We rank
candidates based on their cosine similarity to the
target embedding.

%Not using capitalization resulted in poor performance for
single token target words for D2W.

*We use the crawl-300d-2M-subword model from
https://fasttext.cc/docs/en/english-vectors.html

“A reviewer suggests that it would also be interesting to
investigate the performance of supervised approaches, e.g.,
ranking models. Our main focus here is the lexical knowledge
acquired in pretraining, so we leave this for future work.



2.4 Measures

We use two measures: precision at 1 (P@1) and
a rank score (RS), both based on a ranked results
list, either of words or of definitions. P@1 is the
percentage of top-ranked items that is correct. We
define RS as follows:
L—k
RS(L,k) = -1
where L = |G(t)] is the number of candidates and
k is the rank of the correct item, 1 < k < L. Table
2 shows that the size of G(¢) is highly variable; in
contrast to P@1, RS is less affected by this and the
random baseline (cf. Tables 4 and 5) is always 0.5.

3 Results

Tables 4 and 5 present W2D and D2W results for
BERT, RoBERTa and GPT-2 along with fastText
and random baselines. Language models perform
clearly better than both baselines. Larger mod-
els perform generally better than smaller ones and
RoBERTa consistently outperforms BERT. This
might be an indication for the correlation between
performance on WDLAMPro and downstream per-
formance. However, further investigation is neces-
sary to show the correlation more clearly. For W2D,
best performance is achieved by GPT-2,; for nouns
(47.3 P@1, 0.81 RS) and by RoBERTa large for
verbs (50.8 P@1, 0.84 RS). Performance on D2W
is much lower than for W2D for all models. For
nouns, RoBERTa large and GPT-2,; perform simi-
larly (28.8 and 29.8 P@1, 0.70 and 0.73 RS) while
RoBERTa large achieves the best results for verbs
(38.6 P@1, 0.80 RS). Poor performance on D2W
compared to W2D might be due to language mod-
els’ ability to distinguish different definitions better
than individual words since definitions are more
informative than individual words. Overall GPT-2
models perform better than masked language mod-
els (with the exception of Roberta large for verbs),
despite using a single pattern as opposed to the
multiple patterns used by masked language models.
This might indicate that the ALM objective is better
at learning word meaning than the MLLM objective.

To investigate the effect of frequency, we strat-
ify words into rare (fewer than 10 occurrences),
medium (10 to 99 occurrences) and frequent (100 or
more occurrences), based on occurrences in WWQCS
(Westbury Wikipedia Corpus, Shaoul (2010)),

STargets that have more than 3 tokens (based on NLTK
tokenization) are taken as rare without counting.

Noun Verb
Model | pa1 RS P@i RS
Bert;, 352 0.74 353 0.74
Bert; 351 0.73 33.6 0.73
Roberta, | 37.1 0.75 42.7 0.79
Roberta; | 42.1 0.78 50.8 0.84
GPT-2, 387 0.76 45.0 0.80
GPT-2,, | 41.8 0.77 43.6 0.80
GPT-2, 457 080 484 0.83
GPT-2,; | 473 0.81 48.6 0.83
fastText | 22.5 0.66 29.1 0.69
Random 7.6 0.50 7.8 0.50

Table 4: P@1 and rank score (RS) on W2D

Noun Verb

Model | 1,61 RS P@l RS

Bert;, 237 0.65 193 0.65
Bert; 254 0.65 193 0.65
Roberta, | 25.7 0.67 32.6 0.74
Roberta; | 28.8 0.70 38.6 0.80
GPT-2, 232 0.68 292 0.71
GPT-2,, | 25.3 070 27.8 0.72
GPT-2; 284 0.72 315 0.74
GPT-2,; | 29.8 0.73 32.8 0.76
fastText 165 0.63 203 0.69
Random 7.6 0.50 8.0 0.50

Table 5: P@1 and rank score (RS) on D2W

where we use WWC frequency as a substitute for
the models’ training corpora. We focus on nouns
since most verbs in our dataset are relatively fre-
quent. Table 7 shows that, for W2D, all models
have a poor understanding of the meaning of rare
and medium words. (See appx. for D2W results.)
Even for frequent words, P@1 is never above 55.

We additionally break down the results based
on the depth of the synsets in the WordNet hierar-
chy. Specifically, we investigate the performance
of the GPT-2,; model on W2D for WordNet nouns,
where we take the depth of a synset group as the
length of the shortest path from the target synset
to the root synset (i.e., entity.n.0l). Table 6 shows
that performance drops steadily as we go deeper in
the hierarchy. Lower levels of the WordNet hier-
archy contain many scientific terms and names of
(sub)species such as types of cattle (e.g., cattalo,
hereford, galloway). These results suggest that
even very large LMs lack the knowledge necessary
to distinguish these terms.
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Depth | #synsets #cand. RS P@1
3-5 2106 110 094 629
6-8 25,232 53 0.83 49.0
9-11 18,521 45 081 46.6
12-14 4473 19 074 374
15-19 928 13 067 315

Table 6: RS and P@1 results for GPT-2,; on W2D for
nouns from different depths of the WordNet hierarchy.
# of candidates, RS and P@1 are given as the average
across all synsets within the given depth range.

Model rare medium frequent all

Bert,, 26.0 31.1 40.7 35.2
Bert; 23.6 29.8 42.0 35.1
Roberta;, | 30.8 34.7 40.7 37.1
Roberta; | 33.2 38.7 472 421
GPT-2, | 329 35.2 42.6 38.7
GPT-2,, | 344 374 46.7 41.8
GPT-2; 37.0 414 51.1 45.7
GPT-2,; | 37.7 42.7 533 473
Random 6.6 7.0 82 7.6

Table 7: P@1 scores on W2D for nouns of different
frequency ranges

Analysis. The correct definition of the medium
frequency verb ‘beckon’ is ‘signal with the hands
or nod’. GPT-2,; predicts ‘signal by winking’. The
correct definition of the frequent noun ‘roleplaying’
is ‘acting a particular role (as in psychotherapy)’
GPT-2,, predicts ‘acting the part of a character on
stage’. So GPT-2,; understands that beckoning is
signaling and that roleplaying is acting, but it has
not learned to distinguish between different types
of signaling and acting. This points to an important
future goal for LMs: they should be developed to
gain an understanding of words that goes beyond
the current superficial state of the art.

Human performance on WDLAMPro. It is
beyond the scope of this paper to evaluate human
performance on the entirety of WDLAMPro. How-
ever, we provide a comparison with human perfor-
mance on a small subset to provide an intuition
about the difficulty of the task. For each of the
two tasks, 20 synset groups that have a maximum
of 10 candidates are randomly sampled from WD-
LAMPro. Then two native English speakers are
asked to rank the candidates. Table 8 displays the
average performance of the human participants and
the language models on this subset. For both tasks,
performance of the best model is comparable to the
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W2D D2W
Model | Loy Rs P@l RS
Bert, 600 084 350 0.64
Bert; 650 0.74 350 0.69
Roberta, | 50.0 078 60.0 0.81
Roberta; | 550 0.80 450 0.69
GPT-2, | 350 069 450 0.1
GPT2,, | 500 080 50.0 0.73
GPT-2, | 600 084 450 0.75
GPT2,; | 500 076 450 0.79
Human | 625 088 575 0.77

Table 8: LM and human performance on 20 random
samples of WDLAMPro.

average human performance.

Human performance is the upper bound for many
NLP tasks. We believe that this is not the case for
WDLAMPro: arguably, we should aim for models
with an excellent understanding of the meanings
of words even if it is better than average human
understanding. Knowledge based tasks are an anal-
ogous case: we should strive for models that know
as many facts as possible even if that performance
is above average human performance.

4 Conclusion

We introduced WDLMPro, a probing test that helps
analyze how well a model understands word mean-
ing. WDLMPro is complementary to existing prob-
ing tests that are about relations between words
or entities. We evaluated three popular pretrained
language models on the W2D (word to definition)
and D2W (definition to word) tasks. Our findings
show that, despite their remarkable performance
on many downstream tasks, these models struggle
to match a word and its true definition, suggest-
ing an insufficient understanding of word mean-
ing. Relatively poor performance of these powerful
models on WDLMPro can be seen as evidence
for the limitations of purely distributional systems
and the need for incorporating external knowledge.
WDLMPro provides an important evaluation bench-
mark, encouraging design and training of models
with precise word understanding.
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A Appendix

synset definition

beckon.v.01 | signal with the hands or nod
applaud.v.01 | clap one’s hands or shout after performances to indicate approval

bow.v.01 bend one’s knee or body, or lower one’s head

shrug.v.01 raise one’s shoulders to indicate indifference or resignation
exsert.v.01 thrust or extend out

wink.v.01 signal by winking

nod.v.01 express or signify by nodding

Table 9: Seven candidates of G(t) for t= beckon.v.01
and their definitions

Model rare medium frequent all

Berty, 14.7 20.6 28.7 23.7
Bert; 12.0 20.1 33.1 254
Roberta;, | 17.7 242 29.5 25.7
Roberta; | 17.9 25.8 345 288
GPT-2, 17.3 20.7 26.7 232
GPT-2,, | 17.0 21.1 306 253
GPT-2; 19.2 243 33.9 284
GPT-2,; | 19.3 24.8 36.3 29.8
Random 6.7 7.1 83 7.6

Table 10: P@1 scores on D2W for nouns based on tar-
get word frequency.
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Chapter 7

CoDA21: Evaluating Language
Understanding Capabilities of NLP
Models With Context-Definition
Alignment
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Abstract

Pretrained language models (PLMs) have
achieved superhuman performance on many
benchmarks, creating a need for harder
tasks. We introduce CoDA21 (Context Def-
inition Alignment), a challenging benchmark
that measures natural language understanding
(NLU) capabilities of PLMs: Given a defini-
tion and a context each for k words, but not the
words themselves, the task is to align the & def-
initions with the & contexts. CoDA21 requires
a deep understanding of contexts and defini-
tions, including complex inference and world
knowledge. We find that there is a large gap
between human and PLM performance, sug-
gesting that CoDA21 measures an aspect of
NLU that is not sufficiently covered in exist-
ing benchmarks.'

1 Introduction

Increasing computational power along with the de-
sign and development of large and sophisticated
models that can take advantage of enormous cor-
pora has drastically advanced NLP. For many tasks,
finetuning pretrained transformer-based language
models (Vaswani et al., 2017; Devlin et al., 2019;
Radford et al., 2018) has improved the state of
the art considerably. Language models acquire
knowledge during pretraining that is utilized dur-
ing task-specific finetuning. On benchmarks that
were introduced to encourage development of mod-
els that do well on a diverse set of NLU tasks
(e.g., GLUE (Wang et al., 2018) and SuperGLUE
(Wang et al., 2019)), these models now achieve
superhuman performance (He et al., 2020). The
pretrain-then-finetune approach usually requires a
great amount of labeled data, which is often not
available or expensive to obtain, and results in spe-
cialized models that can perform well only on a
single task. Recently, it was shown that genera-
tive language models can be applied to many tasks

'Our dataset and code are available at https://
agithub.com/lksenel/CoDA21
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Contexts Definitions

Definition
his horse kicking up . of <xxx>  humus and disinte-

C1 clouds of <xxx> ., s /' grated rock

D1

these bees love a fine- \x\/ a hard crystalline
C2 grained <xxx> thatis 7 \ + metamorphic rock that D2

moist \ takes a high polish
\
. //\
Pels [..] had a white " structure forming the
C3 <xxx> monument ’ \  + external covering of D3
erected on his grave /\( birds
s\
e \
fine broody hen, with // ' fine powdery material
C4 [..] a striking abun- 4 * such as dry earth or D4

dance of <xxx> pollen

Figure 1: The CoDA?21 task is to find the correct align-
ment between contexts and definitions: C1-D4, C2-
D1, C3-D2, C4-D3. The target words (C1:“dust”,
C2:“s0il”, C3:“marble”, C4:“feathers”; not provided
to the model) are replaced with a placeholder <xxx>.

without finetuning when the task is formulated as
text generation and the PLM is queried with a natu-
ral language prompt (Radford et al., 2019; Brown
et al., 2020).

Motivated by recent progress in zero-shot learn-
ing with generative models as well as the need for
more challenging benchmarks that test language
understanding of language models, we introduce
CoDA21 (Context Definition Alignment), a diffi-
cult benchmark that measures NLU capabilities of
PLMs for the English language. Given a defini-
tion and a context each for k£ words, but not the
words themselves, the task is to align the % def-
initions with the k contexts. In other words, for
each definition, the context in which the defined
word is most likely to occur has to be identified.
This requires (i) understanding the definitions, (ii)
understanding the contexts, and (iii) the ability to
match the two. Since the target words are not given,
a model must be able to distinguish subtle meaning
differences between different contexts/definitions
to be successful. To illustrate the difficulty of the
task, Figure 1 shows a partial example for k = 4
(see Table 5 in the supnlementarv for the full ex-



ample). We see that both complex inference (e.g.,
<XXX> can give rise to a cloud by being kicked up
= <XXX> must be dry = <XXX> can be dust, but
not soil) and world knowledge (what materials are
typical for monuments?) are required for CoDA21.

We formulate the alignment task as a text pre-
diction task and evaluate, without finetuning, three
PLMs on CoDA21: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019) and GPT-2 (Radford
et al., 2019). Poor performance of the PLMs and a
large gap between human and PLM performance
suggest that CoDA21 is an important benchmark
for designing models with better NLU capabilities.

2 CoDA21

2.1 Dataset

We construct CoDA21 by first deriving a set G of
synset groups {G1, Ga, ...} from Wordnet (Miller,
1995). A synset group G; is a group of synsets
whose meanings are close enough to be difficult to
distinguish (making the task hard), but not so close
that they become indistinguishable for human and
machine. In a second step, each synset group G;
is converted into a CoDA21 group G;r —a set of
triples, each consisting of the synset, its definition,
and a corpus context. A CoDA21 group can be
directly used for one instance of the CoDA21 task.

Synset groups. Each synset group G consists
of 5 < k < 10 synsets. To create a synset group,
we start with a parent synset § and construct a co-
hyponym group G/(3) of its children:

G(3)={s|s<3s¢ D}

where < is the hyponymy relation between synsets
and D is the set of synsets that have already been
added to a synset group. The intuition for grouping
synsets with a common parent is that words sharing
a hypernym are difficult to distinguish (as opposed
to randomly selected words).

We iterate 5 through all nouns and verbs in Word-
Net. At each iteration, we get all hyponyms of §
that have not been previously added to a synset
group; not reusing a synset ensures that different
CoDAZ21 subtasks are not related and so no such
relationships can be exploited.

We extract synset groups from co-hyponym
groups by splitting them into multiple chunks of
size k. In an initial exploration, we found that
the task is hard to solve for human subjects if
two closelv related hvbonvms are included. e.e..

“clementine” and “tangerine”. We therefore em-
ploy clustering to assemble a set of mutually dis-
similar hyponyms. We first compute a sentence
embedding for each hyponym definition using the
stsb-distilbert-base Sentence Transformer model”.
We then cluster the embeddings using complete-
link clustering, combining the two most dissimilar
clusters in each step. We stop merging before the
biggest cluster exceeds the maximum group size
(k = 10) or before the similarity between the last
two combined clusters exceeds the maximum simi-
larity (6 = 0.8). The largest cluster G is added to
the set G of synset groups. We then iterate the steps
of (i) removing the synsets in the previous largest
cluster G from G(3) and (ii) running complete-link
clustering and adding the resulting largest cluster
G to G until fewer than five synsets remain in G (3)
or no cluster can be formed whose members have
a similarity of less than 6.

CoDAZ21 groups. For each synset s, we extract
its definition d(s) from WordNet and a context ¢(s)
in which it occurs from SemCor? (Miller et al.,
1994). SemCor is an English corpus tagged with
WordNet senses. Let C'(s) be the set of contexts
of s in SemCor. If |C(s)| > 1, we use as c(s)
the context in which bert-base-uncased predicts s
with the highest log probability when it is masked,
where s is the word tagged with the sense s* — this
favors contexts that are specific to the meaning of
the synset. Finally, we convert each synset group
G;in G to a CoDA21 group G :

GF ={(sjd(sj),c(s5)) | 55 € Gi}

That is, a CoDA21 group Gj is a set of triples of
sense, definition and context. In PLM evaluation,
each CoDA21 group G;r gives rise to one context-
definition alignment subtask.

We name the resulting dataset CoDA21-noisy-
hard: noisy because if |C'(s)| is small, the selected
context may not be informative enough to identify
the matching definition; hard because the synsets in
a CoDAZ21 group are taxonomic sisters, generally
with similar meanings despite the clustering-based
limit on definition similarity. We construct a clean
version of the dataset by only using synsets with
|C(s)| > 5. We also construct an easy version by

https://huggingface.
co/sentence-transformers/
stsb-distilbert-base

3We do not consider synsets without contexts in SemCor.

*We average the probabilities when s is tokenized to multi-
ple tokens.
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noun verb
#of G USC #ofG USC

CoDA21-clean-hard 106 740 102 711
CoDA21-clean-easy 274 1999 103 758
CoDA21-noisy-hard 691 4633 350 2527
CoDA21-noisy-easy 1188 8910 370 2766

Dataset

Table 1: CoDA21 group (G) statistics, USC: Unique
Synset Count

taking the “hyponym grandchildren” s of a parent
synset § (s < [ Al < 8) instead of its hyponym
children. This reduces the similarity of synsets in
a CoDA21 group, making the task easier. Table 1
gives dataset statistics.

2.2 Alignment

Recall the CoDA21 task: given a definition and a
context each for k£ words (but not the words them-
selves), align the k definitions with the £ contexts.
That is, we are looking for a bijective function (a
one-to-one correspondence) between definitions
and contexts. Our motivation in designing the task
is that we want a hard task (which can guide us in
developing stronger natural language understand-
ing models), but also a task that is solvable by
humans. Our experience is that humans can at
least partially solve the task by finding a few initial
“easy” context-definition matches, removing them
from the definition/context sets and then match the
smaller remaining number of definitions/contexts.

The number of context-definition pairs scales
quadratically (O(k?)) with k and the number of
alignments factorially (O(k!)). We restrict & to
k < 10 to make sure that we do not run into com-
putational problems and that humans do not find
the task too difficult.

In order to connect contexts to definitions with-
out using the target words, we replace the target
words by a made-up word. This setup resembles
the incidental vocabulary acquisition process in hu-
mans. Let ¢ be a target word, c a context in which
t occurs and m a made-up word. To test PLMs on
CoDA21, we use the following pattern’:

Q(e, m) = ¢y, Definition of m is

where ¢, is ¢ with occurrences of ¢ replaced by m.

We calculate the match score of a context-
definition pair (c,d) as log P(d | Q(c,m)), i.e.,

SWhen the target word is a verb (i.e., verb subset of a
CoDAZ21 dataset). we add “to” at the end of our pattern.
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log generation probability of the definition d con-
ditioned on Q(c, m). Our objective is to maximize
the sum of the k£ match scores in an alignment. We
find the best alignment by exhaustive search. Accu-
racy for a CoDA21 group G;r is then the accuracy
of its best alignment, i.e., the number of contexts
in G;r that are aligned with the correct definition,
divided by the total number of contexts |G-

2.3 Baselines

We calculate P(d | Q(c,m)) for a masked lan-
guage model (MLM) M and an autoregressive lan-
guage model (ALM) A as follows:

Py(d| Q) =TI, P(di | @, d-y)
Pa(d| Q) =TI P(d; | Q' da, ..

where Q' = Q(c, m), d; is the i"™ word in definition
d and d_; is the definition with the i™ word masked.

We evaluate the MLMs BERT and RoBERTa
and the ALM GPT-2. We experiment with both
base and large versions of BERT and RoBERTa
and with all four sizes of GPT-2 (small, medium,
large, x1), for a total of eight models, to investigate
the effect of model size on performance.

The made-up word m should ideally be unknown
so that it does not bias the PLM in any way. How-
ever, there are no truly unknown words for the
models we investigate due to the word-piece to-
kenization they apply to the input. Any made-up
word that is completely meaningless to humans will
have a representation in the models’ input space
based on its tokenization. To minimize the risk
that the meaning of the made-up word may bias
the model, we use m = bkatuhla, a word with
an empty search result on Google that most likely
never appeared in the models’ pretraining corpora.

In addition to PLMs, we also evaluate 2 re-
cent sentence transformer models® (Reimers and
Gurevych, 2019), paraphrase-mpnet-base-v2 (mp-
net) and paraphrase-MiniLM-L6-v2 (MiniLM),
and fastText static embeddings’(Mikolov et al.,
2018). To calculate the match score of a context-
definition pair, we first remove the target word from
the context and represent contexts and definitions
as vectors. For sentence transformers, we obtain
these vectors by simply encoding the input sen-
tences. For fastText, we average the vectors of the

) di—l)

*https://www.sbert .net/docs/
pretrained_models.html

"We use the crawl-300d-2M-subword model from https:
//fasttext .cc/docs/en/enalish-vectors.html



words in contexts and definitions. We then cal-
culate the match score as the cosine similarity of
context and definition vectors.

3 Results

Table 2 presents average accuracy of the investi-
gated models on the four CoDA21 datasets. As
can be seen, fastText performs only slightly bet-
ter than random. MLMs also perform better than
random chance by only a small margin. This poor
performance can be partly explained by the gener-
ation style setup we use, which is not well suited
for masked language models. Even the smallest
GPT-2 model performs considerably better than
RoBERTa-large, the best performing MLM. Perfor-
mance generally improves with model size. GPT-
2, achieves the best results among the LMs on
almost all datasets. Interestingly, sentence trans-
former all-mpnet-base-v2 performs comparably
to GPT-2,; on most datasets despite its simple,
similarity based matching compared to generation
based matching of GPT-2 models. Based on this
observation it can be argued that current state-of-
the-art language models fail to perform complex,
multi-step reasoning and inference which are nec-
essary to solve the CoDA21 tasks. Overall, MLMs
perform slightly better on verbs than nouns while
the converse is true for GPT-2. As expected, all
models perform better on the easy datasets. Perfor-
mance on noisy and clean datasets are comparable;
this indicates that our contexts are of high quality
even for the synsets with only a few contexts.

Human performance on CoDA21. We asked
two NLP PhD students® to solve the task on S20,
a random sample of size 20 from the noun part of
CoDAZ21-clean-easy. Table 2 shows results on S20
for these two subjects and our models. Human per-
formance is 0.86 — compared to 0.48 for GPT-2,,,
the best performing model. This difference indi-
cates that there is a large gap in NLU competence
between current language models and humans and
that CoDA21 is a good benchmark to track progress
on closing that gap.

To investigate the effect of the made-up word
m, we experiment with several other words on the
noun part of CoDA21-clean-easy. Specifically, we
investigate another nonce word “opyatzel”, a single
letter “x” and two frequent words “orange” and
“cloud”. Table 3 shows the results of the mod-
els for different made-up words. MLMs do not

$Both are proficient (though not native) Enelish speakers.

clean clean noisy  noisy $20

hard easy hard easy
Model NV NV NV NV N
BERT, 2021 2225 2122 2224 24
BERT; 2222 1921 .19.20 .20.20 .22

RoBERTa;, .24 .26 .26.32 .25.25 .28.27 .29
RoBERTa; .26.30 .30.30 .27.29 .30.33 .29

GPT-2, 31.32 4240 3532 40.36 .35
GPT-2,, 37.35 4539 3835 4339 .39
GPT-2; 38.34 4742 .39.37 46 .41 47

GPT-2,; 42 .36 4942 .40.36 .46 .43 48

mpnet 42. 48. . 46 . .
MiniLM 3534 40.36 .34.30 .38.32 .34
fastText 18.17 20.20 .18.18 .18.18 .17
Random 15.15 14.14 16.15 .14.14 .14

Human - - - - - - - - .86

Table 2: Average accuracy on the noun (N) and verb
(V) subsets of CoDA21 for eight PLMs, two sentence
transformers, fastText embeddings and (on S20) for hu-
mans

Model bkatuhla opyatzel x cloud orange
BERT, 22 22 22 023 22
BERT; .19 .19 200 .20 .19
RoBERTa, 26 27 26 .28 28
RoBERTy .30 .30 29 .30 29
GPT-2, 42 43 41 .39 .39
GPT-2,, 45 42 43 40 41
GPT-2, 47 46 47 41 42
GPT-2,; 49 44 45 .40 41

Table 3: Average accuracy of eight PLMs on the noun
subsets of CoDA21-clean-easy using various words as
the made-up word.

show significant variability in performance, and
perform comparably poor for all words tried. GPT2
versions, which perform considerably better than
MLMs on CoDAZ21, perform similarly for the two
nonce words and single letter “x”, which do not
have a strong meaning. Their performance drops
significantly when the two frequent words are used
as the made-up word, due to the effect of prior
knowledge models have about these words.

To investigate the effect of the pattern, we com-
pared our pattern Q)(c, m) with two alternative pat-
terns by evaluating GPT-2,; on the noun part of
CoDA21-clean-easy. Patterns and the evaluation
results are shown in Table 4. The results suggest
that the effect of the pattern on performance is min-
imal.

Effect of the alignment setup. We constructed
CoDAZ21 as an alignment dataset which uses the
fact that matching between the definitions and con-
texts is one-to-one. This setun makes the task
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Pattern Acc

¢m Definition of mis  0.49
¢m m is defined as 0.51
Cm M is 0.49

Table 4: Effect of the pattern on the performance of
GPT2-,; on the noun part of CoDA21-clean-easy

more intuitive and manageable for humans. How-
ever, context-definition match scores can be used
to evaluate models on CoDA21 samples also with-
out the alignment setup by simply picking context-
definition pairs with the highest match score for
each definition. We additionally evaluated GPT-
2,; model on CoDA21-clean-easy dataset using
this simple matching approach which yielded 0.38
average accuracy compared to the 0.49 accuracy
achieved with the alignment setup. This result sug-
gests that language models can also make use of
the alignment style evaluation, similar to humans.

Table 5 (in the Appendix) presents a sample
of size 7 from the noun part of the CoDA21-
clean-easy dataset. Figure 2 displays all 49 match
scores of the context-definition pairs for this sam-
ple obtained using GPT-2,;. 5 of the 7 definitions
(2,3,4,5,7) are matched with correct contexts with
the alignment setup while 4 definitions (4,5,6,7) are
matched correctly for the simple matching setup.
Alignment setup enabled the model to match sec-
ond and third definitions with their corresponding
contexts even though their match scores are not the
highest ones.

To get a better sense of why the task is hard
for PLMs, we give an example, from the CoDA21
subtask in Figure 1 (also Figure 2 and Table 5
refer to the same subtask), of a context-definition
match that is scored highly by GPT-2,;, but is not
correct. Context: “these bees love a fine-grained
<XXX> that is moist”. Definition: “fine powdery
material such as dry earth or pollen”. (context 6 and
definition 1 in Figure 2) GPT-2,; most likely gives
a high score because it has learned that bees and
pollen are associated. It does not understand that
the mutual exclusivity of “moist” and “powdery”
makes this a bad match.

4 Related Work

There are many datasets (Levesque et al., 2012; Ra-
jpurkar et al., 2016; Williams et al., 2018) for eval-
uating language understanding of models. Many
adont a text nrediction setun: Lambada (Panerno
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Figure 2: Match scores from GPT2-xl model for the
context definition pairs for the sample given in Table
5. Match scores shown in bold correspond the context-
definition pairs that are in the predicted alignment by
the model that yields maximum total match score.

et al., 2016) evaluates the understanding of dis-
course context, StoryCloze (Mostafazadeh et al.,
2016) evaluates commonsense knowledge and so
does HellaSwag (Zellers et al., 2019), but exam-
ples were adversarially mined. LAMA (Petroni
et al., 2019) tests the factual knowledge con-
tained in PLMs. In contrast to this prior work,
CoDAZ21 goes beyond prediction by requiring the
matching of pieces of text. WIC (Pilehvar and
Camacho-Collados, 2019) is also based on match-
ing, but CoDA21 is more complex (multiple con-
texts/definitions as opposed to a single binary
match decision) and is not restricted to ambigu-
ous words. WNLaMPro (Schick and Schiitze,
2020) evaluates knowledge of subordinate rela-
tionships between words, and WDLaMPro (Senel
and Schiitze, 2021) understanding of words using
dictionary definitions. Again, matching multiple
pieces of text with each other is much harder and
therefore a promising task for benchmarking NLU.

5 Conclusion

We introduced CoDA21, a new challenging bench-
mark that tests natural language understanding ca-
pabilities of PLMs. Performing well on CoDA21
requires detailed understanding of contexts, per-
forming complex inference and having world
knowledge, which are crucial skills for NLP. All
models we investigated perform clearly worse than
humans, indicating a lack of these skills in the cur-
rent state of the art in NLP. CoDA21 therefore is a
promising benchmark for guiding the development
of models with stronger NLLU competence.
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feather.n.01
fraction.n.01
soil.n.02
card.n.01

Hidden word | Context

dust 1. He came spurring and whooping down the road , his horse kicking up clouds of
<XXX>, shouting :

marble 2. Pels also sent a check for $ 100 to Russell ’s widow and had a white <XXX>
monument erected on his grave .

wastewater 3. The high cost of land and a few operational problems resulting from excessive
loadings have created the need for a <XXX> treatment system with the operational
characteristics of the oxidation pond but with the ability to treat more organic matter
per unit volume .

feathers 4. It was a fine broody hen , white , with a maternal eye and a striking abundance of
<XXX> in the under region of the abdomen .

fraction 5. It was then distilled at least three times from a trap at - 78 * to a liquid air trap with
only a small middle <XXX> being retained in each distillation .

soil 6. The thing is that these bees love a fine-grained <XXX> that is moist ; yet the water
in the ground should not be stagnant either .

cards 7. And the coffee shop on Drexel Street , where the men spent their evenings and
Sundays playing <XXX> , had a rose hedge beneath its window .

Synset Definition

dust.n.01 1. fine powdery material such as dry earth or pollen that can be blown about in the air

marble.n.01 2. a hard crystalline metamorphic rock that takes a high polish; used for sculpture and
as building material

effluent.n.01 3. water mixed with waste matter

4. the light horny waterproof structure forming the external covering of birds

5. a component of a mixture that has been separated by a fractional process

6. the part of the earth’s surface consisting of humus and disintegrated rock

7. one of a set of small pieces of stiff paper marked in various ways and used for
playing games or for telling fortunes

Table 5: A sample CoDA21 question taken from the noun part of the CoDA21-clean-easy dataset. The synsets
are grandchildren of the parent synset ‘material.n.01’ whose definition is “the tangible substance that goes into the
makeup of a physical object”.
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Hidden word Context

suggestion 1. This was Madden ’s <XXX> ; the police chief shook his head over it .

concept 2. The <XXX> of apparent black-body temperature is used to describe the radiation
received from the moon and the planets .

ideals 3. Religion can summate , epitomize , relate , and conserve all the highest <XXX>
and values - ethical , aesthetic , and religious - of man formed in his culture .

reaction 4. That much of what he calls folklore is the result of beliefs carefully sown among
the people with the conscious aim of producing a desired mass emotional <XXX>
to a particular situation or set of situations is irrelevant .

feeling 5. He had an uneasy <XXX> about it .

programs 6. The Federal program of vocational education merely provides financial aid to
encourage the establishment of vocational education <XXX> in public schools .

meaning 7. Indefinite reference also carries double <XXX> where an allusion to one person
or thing seems to refer to another .

theme 8. Almost nothing is said of Charles ’ spectacular victories , the central <XXX>
being the heroic loyalty of the Swedish people to their idolized king in misfortune
and defeat .

Synset Definition

suggestion.n.01 | 1. an idea that is suggested

concept.n.01 2. an abstract or general idea inferred or derived from specific instances

ideal.n.01 3. the idea of something that is perfect; something that one hopes to attain

reaction.n.02 4. an idea evoked by some experience

impression.n.01 | 5. a vague idea in which some confidence is placed

plan.n.01 6. a series of steps to be carried out or goals to be accomplished

meaning.n.02 7. the idea that is intended

theme.n.02 8. a unifying idea that is a recurrent element in literary or artistic work

Table 6: A sample CoDA21 question taken from the noun part of the CoDA21-clean-hard dataset. The synsets
are children of the parent synset ‘idea.n.01’ whose definition is “the content of cognition; the main thing you are

thinking about”.
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