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Abstract

Automatic Software Model Checking has become more and more powerful over the recent years.
While the tools have improved, the means of exchange of information as well as the kind of
information that is exchanged, are lacking behind. This is a limiting factor for progress in the
field, as a lot of potential lies in the exchange and careful dissemination of computed information.

Currently, information about the proof or counterexample can be extracted in the form of
witness automata that refer to the program’s control-flow automaton (CFA). These witnesses
can then be checked by a validator, which is an important step that increases the trust in the
verification result. However, this format suffers from imprecision in its semantics, since the CFA of
a program is usually not defined by the language standard. Furthermore, in its current form, the
format is syntactically limited to invariants that can be written as expressions in the program’s
language. This is in strong contrast to the deductive verification community, where proofs usually
require more elaborate syntactical features. Lastly, the way how this information is (re-)used is
very limited. Until recently, the only use case was the validation of verification results. In case
the validation fails, it is often unclear how to gain insights from that.

We improve upon the state of the art in the following ways: Regarding the exchange format,
we identify the areas in which the established format is imprecise and evaluate whether we can
improve upon this. As solution, we propose an alternative format whose semantics is well-defined.
Using this format, we showcase how extensions can be gradually incorporated by automatic
software verifiers.

With respect to exchanging information between tools, we first show a way how information
from the witnesses can be encoded back into a verification problem. As an extension of this,
we demonstrate how this approach can be used to construct a deductive verifier from existing,
automatic verifiers, using the witnesses as an established interface. This way, verification results
can be reused in an incremental fashion more easily or even complemented via user interaction.
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Zusammenfassung

Automatisches Software-Model-Checking ist in den letzten Jahren immer leistungsfähiger geworden.
Während sich die Tools verbessert haben, haben sich die Austauschformate für Informationen
sowie die Art der ausgetauschten Informationen nicht in selbem Maße weiterentwickelt. Dies ist
ein limitierender Faktor für Fortschritte in diesem Bereich, da gerade jüngste Ansätze zeigen, dass
viel Potenzial im Austausch und der Wiederverwendung der berechneten Informationen liegt.

Derzeit können Informationen über den Beweise oder Gegenbeispiele in Form von Automaten
extrahiert werden, die sich auf den Kontrollflussautomaten (CFA) des Programms beziehen.
Diese Zeugen können dann von einem sogenannten Validator überprüft werden, was ein wichtiger
Schritt ist, um das Vertrauen in das Verifizierungsergebnis zu erhöhen. Dieses Format leidet
jedoch unter einer unvollständigen Spezifikation seiner Semantik, da der CFA eines Programms
in der Regel nicht durch den Sprachstandard definiert ist. Des Weiteren ist das Format in
seiner derzeitigen Form syntaktisch auf Invarianten beschränkt, die als Ausdrücke in der Sprache
des Programms geschrieben werden können. Das steht im starken Kontrast zur Gemeinschaft
rund um die deduktiven Verifikation, wo Beweise normalerweise ausführlichere syntaktische
Merkmale erfordern. Schließlich ist die Art und Weise, wie diese Informationen wiederverwendet
werden, sehr eingeschränkt. Bis vor kurzem war der einzige Anwendungsfall die Validierung von
Verifizierungsergebnissen. Falls die Validierung fehlschlägt, ist es oft unklar, wie man daraus
Erkenntnisse gewinnen kann.

Wir verbessern den Stand der Technik in folgender Weise: Bezüglich des Austauschformats
identifizieren wir die Bereiche, in denen das etablierte Format ungenau ist und untersuchen, in
welcher Weise diese Ungenauigkeit behoben werden kann. Als Lösung schlagen wir ein alternatives
Format vor, dessen Semantik klar definiert ist. Mit diesem Format zeigen wir, wie Erweiterungen
schrittweise von automatischen Programmverifizierern integriert werden können.

In Bezug auf den Informationsaustausch zwischen den Verifikations-Tools zeigen wir zuerst,
wie Informationen aus den Witnesses in ein Verifizierungsproblem zurück kodiert werden kön-
nen. Als Erweiterung davon zeigen wir, wie dieser Ansatz verwendet werden kann, um einen
deduktiven Verifier aus bestehenden automatischen Verifiern zu erstellen, wobei die Witnesses als
etablierte Schnittstelle dienen. Auf diese Weise können Verifizierungsergebnisse leichter schrittweise
wiederverwendet werden oder sogar durch Benutzerinteraktion ergänzt werden.
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1. Introduction
"Computers are incredibly fast, accurate, and stupid.

Human beings are incredibly slow, inaccurate, and brilliant.
Together they are powerful beyond imagination."

– often attributed to Albert Einstein

The quote at the beginning of this chapter offers us a way to explore the kind of dilemma we
want to address in this work. While the quote is often attributed to Albert Einstein, these words
are actually not his. Instead, there are several versions of this quote that evolved over the years
and at some point someone either misremembered the author or deliberately put Einstein as the
author to improve their standpoint.

People use attribution as a way to increase the power of a statement. A clever-sounding quote
is improved by adding a well-known and respected name to it. However, the actual impact a quote
has should only rely on the actual information it brings across. This perfectly carries over to the
contrast the quote in question puts between humans and computers. Just because a computer
is incredibly accurate, how can a human trust its computations to be correct, as it is also very
stupid and only executes the instructions that the human provided? In a way, the computer
cannot be blamed if the human operator writes faulty code since humans are often inaccurate.

A system in which one blindly trusts either side of this equation will inevitably lead to errors.
Nowadays, where computers are used in almost every aspect of our daily lives, from entertainment
and payment systems to healthcare and avionics, it is more important than ever to ensure that
both sides cooperate to ensure the solutions are standing on a sound foundation.

The branch of computer science that investigates ways to ensure that a computer program
works as intended is called formal methods.

1.1 Motivation

In the recent decades, two different approaches emerged in formal methods. On the one hand,
people try to manually – or with the help of a proof assistant – craft proofs of correctness for
certain programs, especially in safety-critical areas [53, 55]. We shall refer to this branch as
deductive verification [49], though sometimes the process will also be described as interactive
verification, due to the nature of the process that revolves around the interaction between the
human and the proof assistant. On the other hand, computer systems have been developed that
can check other computer systems for correctness in a fully automated manner, which we shall
refer to under the name automatic verification.

For ensuring soundness of the computed results, both directions employ different means. In
deductive verification, usually one relies on a small core for the proof system whose soundness can
either be assumed or (at least partially) formally proven. For example, the automated theorem
prover Isabelle has a small logic core based on the LCF approach [67]. For some proof assistants
like Coq, there are even successful efforts to prove at least parts of the kernel correct [63]. Another
approach is to check the proof objects themselves, removing the requirement to trust the proof
assistant all together. For Isabelle, such a proof checker has recently been demonstrated [58].

9
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For automatic verifiers, the picture is a little bit different. While exporting and checking
full proofs in the form of reachability graphs has been shown to be possible, this is highly tool-
dependent and not suitable for an exchange format for validation by another tool. Instead, the
community opted to output partial proof information in the form of so-called verification witnesses,
which take the form of automata and are exported by verifiers in the GraphML format [14]. One
of the problems here is that there is no minimum requirement on which information needs to be
present, so in the worst case such a witness will not provide any more information than claiming
that the program adheres to the specification.

In this thesis, we also attempt to bridge the gap between these two schools of thought and
improve cooperation by concentrating on the crucial bits of information, namely, the invariants.

One important aspect about validating verification results has not been mentioned yet.
It is crucial in software verification to accurately capture the semantics of the underlying
programming language, which is a hard and tedious process. Even if results are formally verified
and independently validated, there is no guarantee that there is not a bug that stems from edge
cases in the semantics of the programming language.

Ideally, validation is well-defined and relatively simple, such that we can concentrate and
argue about soundness issues without having to deal with intricacies of the complicated validation
strategy.

1.2 Objectives

The previous section shed some light on our motivation, but the objectives might hide between
the lines there, and of course, we cannot address everything. For this thesis, we therefore focus on
the following three objectives:

1. We want to leverage the current exchange formats such that we can come up with novel
ways to combine existing tools, leading to inter-tool cooperation (cf. Sect. 2.1)

2. We want to know how the information that is exchanged can be extended to new types of
information (cf. Sect. 2.2)

3. We want to create a new format for verification witnesses that is more extensible, has
clearer semantics, is more readable and concise than the current, GraphML-based format
(cf. Sect. 2.3)

Let us now look into these objectives with a bit more detail:

1. Leverage the Current Exchange Format. We want to determine whether new tools built
using the existing exchange format for interchange of information have the potential to improve
upon the state-of-the-art in automatic software verification and validation. Furthermore, we want
to investigate whether the exchange format is also useful for different domains than automatic
software verification, namely we want to investigate whether interactive verifiers can benefit from
the information provided by automatic verifiers and vice versa.

2. Improve Information That Is Exchanged. In the landscape of software verification, the
content of the information exchanged plays a crucial role in validating and verifying software.
Currently, witnesses primarily contain invariants as C expressions. However, this limits the
expressiveness to a point where complete (e.g. inductive) proofs can sometimes not even be
expressed in the GraphML-based format. Our objective is to explore new types of information
that can both enhance verification and validation.
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3. Improving the Exchange Format. In its current form, the GraphML-based witness format
has the disadvantage that many verifiers choose to simply output a minimal witness that does
not contain actual information [6], presumably because adding full support of the format is hard.
Our aim is to introduce a new format that addresses these issues, making it easier for developers
of automatic verifiers to export their information, in the way they see best fits their verification
approach. The envisioned format shall be more intuitive, extensible, and equipped with clear
semantics. In addition, it should be designed to be more readable and concise, facilitating easier
parsing and comprehension. A standardized format with well-defined semantics can help ensure
the completeness and relevance of the information shared.

1.3 Structure

With these objectives outlined and detailed, the subsequent chapters will delve deeper into
methodologies, experiments, and results to support the pursuit of the aforementioned objectives.
The overarching goal is to push the boundaries of software verification, aiming for more rigorous,
transparent, and collaborative approaches that can cater to the diverse challenges posed by
modern software systems. In Chapter 2 we give a high-level overview of how our contribution fits
into the world of software verification by describing the various approaches with their input/output
characteristics as transformers. Afterwards, we take a step back and describe the research method
that we employ in our publications in Chapter 3, covering the importance of formulating hypotheses
and following good practices of open science. Chapter 4 explains the manuscripts that comprise
this thesis in more detail. Finally, in Chapter 5 we summarize our findings in relation to the
formulated research objectives and give an outlook on the future work that is now enabled by our
contributions.





2. Leveraging Invariant Information

Input Output
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Verification Information Verification Information

Previous Code
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Figure 2.1: Overview of various transformations in software verification; highlighted in color are
the contributions of this thesis [26]

The classical description of the automatic verification problem is that given a program and a
specification the verifier has to compute the so-called verdict, i.e., answer the question whether
the property given by the specification is fulfilled by the program.

In practice, this verification problem is undecidable, hence it is not guaranteed that the answer
can be computed no matter how much time we allow for the computation, i.e., verification will be
a semi-algorithm. In order to get meaningful results, one generally limits the resources, e.g., sets
a timeout, such that the semi-algorithm can be turned into an algorithm. As a result, the allowed
verdicts are either true if the program was proven correct with respect to the specification, false
if a bug was found, or unknown in case the computation was terminated before a definite answer
was found.

This automatic approach has the downside of trust in the computation result mentioned in
Sect. 1.1. After all, there is just the verdict, no artifacts beside this to really understand the
nature of the computation that was performed. In order to improve upon this, we need at least
one additional output next to the verdict, which allows us to –(either manually or) with the help
of a software system – validate whether the verdict can indeed be trusted. We refer to this kind
of artifact as witness, and to the system that performs the validation as validator. Furthermore,
we can distinguish between correctness validation, which is concerned with re-establishing proofs
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from a verifier, and violation validation, which is concerned with re-establishing a concrete
counterexample path to the specified property.

It would not make much sense to perform the validation with the very same algorithmic
components that generated the verdict, as errors in these components would likely not be spotted.
This is a bit like when we proofread text that we wrote ourselves. In case we learned the spelling
of a word incorrectly, we would not spot this word as containing a misspelling, no matter how
often we would proofread our own text. The upside is that for someone else, the wrong spelling
will usually be obvious. If both persons do not spot the wrongly spelled word, this means it is a
common mistake, which unfortunately exist in the English language as well as in the interpretation
of the semantics of computer programs. An example would be whether a term like (INT_MAX+1)*0
contains an integer overflow in the C programming language. These edge cases of program language
semantics are also often not very clearly specified by the language specification.

Our hope is that if we use many different validators, we increase the chance to spot these cases
that turn out to be common pitfalls. This is why it is generally desirable to perform validation
with as many validators as possible.

Previously we described verifiers as (semi-)algorithms using their inputs and outputs to
characterize what the verification problem is. We can now do the same for validation. A validator
takes as input a program, a specification, and a witness, and returns a verdict. For the meaning
of the verdict, we can simply reuse the verdict of the original verification to signal whether a
witness was found to be correct. If the original verdict was reproduced, the witness is successfully
validated.

In fact, we can go one step further and also let the validator output a refined witness, allowing
us to validate the validator [14]. In the end what we have done is looking at the verifiers and
validators from a point of view of transformers, taking their inputs and outputs and connecting
them accordingly. A unifying component framework has been proposed [30] to emphasize this
view on the various approaches that are used in formal methods, and to encourage the systematic
exploration on how these can be used as building blocks to come up with novel approaches that
are based on cooperation of these components.

In order to easily explore possible combinations of tools, we can draw artifacts as both inputs
and outputs and then add transformers by connecting them to the corresponding input and
output artifacts, as shown in Fig. 2.1. This way, once we applied a transformer on some inputs
and generated an output, we can just look for that output in the input column and explore ways
how this input can then be used in another transformation. As a side note, we leave out the
specification in Fig. 2.1 to make it more readable. The specification is usually an input for all the
transformers, and sometimes one transformer might choose to change the specification when its
artifacts are used by the next transformer, but these are details of the transformers for which we
can always consult the corresponding publications if interested.

As example, we can take conditional verification [16]. The idea behind conditional verification
is to instead of returning the verdict unknown in case the resources are exceeded, we at least
produce an artifact, the condition, that marks the parts of the state space that have already been
proven correct. This way, we can run another conditional verifier that accepts a condition as
input, and which then only tries to verify those parts of the state space that are left to explore by
the condition.

A similar approach can be done if we look at two slightly different versions of a program.
This would for example be useful in cases where a piece of software is developed over time in
small increments, and we do not want to verify the whole program from scratch every time. By
identifying the parts of the program that actually need to be verified again using a difference
generator [34], we can generate a condition and hand the task of verifying this changed part to a
conditional verifier.
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When comparing the signatures of a verifier and validator, we notice that both transformers
look very similar. The validator is, in essence, a verifier that has an additional obligation to take
into account. For violation witnesses, it has to restrict the state space according to the information
given in the witness and check whether the specification violation occurs at the part of the state
space that the witness designates. For correctness witnesses, it has to verify the original program
and in addition check whether the provided invariants are correct. A potential benefit here is
that checking invariants is often easier than synthesizing the right invariants from scratch.

Motivated by the fact that verification and validation are so similar, and by the approach
to chain verification tools like conditional verifiers using a shared exchange format, the idea
developed to transform the validation task into a verification task, allowing us to use off-the-shelf
verifiers for validation.

2.1 Exploring Cooperation via the Existing Exchange For-
mat

A first implementation of this approach was MetaVal [26], which for violation witnesses is similar
to reducer-based conditional model checking [17], interpreting the protocol automaton from the
witness as a condition. For correctness witnesses however, instead of reducing the program, we
actually add additional assertions to also check for the invariants from the witness. Technically, in
both cases, we construct a product of the control-flow automaton of the original program and the
protocol automaton of the witness. This product automaton is then converted into a C program.
In Fig. 2.1 this is shown in the transformation block labelled Validation Transformer. MetaVal
consists of such a validation transformer as described above and then hands the generated C
program over to an off-the-shelf verifier for verification.

While MetaVal showed that this approach works and can in principle provide us with a wide
range of validators, there are also some downsides to this approach. One problem that is specific
to the way how the transformation via the automaton product works is that the resulting program
is generally larger and not as nice to read by a human. While this might not be a problem for
software verifiers, fixing bugs in the transformation or understanding why the validation fails
becomes practically infeasible.

While it may seem like we reduced technology bias, we actually still heavily depend on the
implementation of the program transformation. In fact, the validation transformer inside MetaVal
is just one concrete instantiation of such a transformer. In practice one could even consider a
validation transformer that breaks the validation task up into multiple programs. This way one
can pinpoint why the validation fails.

This idea led to the design of LIV [27]. Much like a deductive verifier, we split up the verification
task into multiple verification conditions along the invariants that are provided in the witness. This
is similar to how a human would construct a Hoare-style proof for the program. The verification
conditions, however, are transformed into C programs by LIV, such that they can be verified by
existing, off-the-shelf verifiers. If we demand that the provided invariants suffice for an inductive
proof, these C programs will not contain any loops, so we refer to them as straight-line programs.

Of course the additional requirement of inductive invariants is not something that is required
of the current witness format, but demanding this is something that would make the problem of
correctness witness validation actually decidable, provided the logic used to encode the straight-line
programs’ semantics is also decidable.

While LIV in its current form only supports the specification of loop invariants which can
be expressed in the C language, this approach can easily be extended to also cover other proof
information like function contracts and therefore allowing for a modular, inter-procedural scheme.
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However, when the information cannot be expressed efficiently in the C language anymore, as
would for example be the case for quantified invariants, it would be beneficial if the automatic
verification community extended their tools to add special functions to add support for this.
This could be incentivized by adding new categories to the Competition on Software Verification
(SV-COMP), e.g., a category that provides support for quantifiers in assertions and assumptions.

2.2 Improving Information That Is Exchanged

The description in the previous section is naturally limited by what can be expressed in the
established witness format. Up to now, the format for correctness witnesses only supports C
expressions (without side effects) as invariants, that is, terms that are valid expressions in a C
program at the location they refer to. It becomes quote obvious that this is not enough for a
complete, concise correctness proof when looking at deductive verifiers and what they need to
specify in order to prove more complicated programs.

Improving Exchange via ACSL. A good example to look at is the ANSI/C Specification
Language (ACSL) [4]. This specification language is used by the interactive verifier Frama-C,
but it is designed with a detailed documentation and formal semantics, ideal to borrow from for
automatic software verification.

For specifying proofs for automatic software verification with witnesses in their current form,
things get complicated for example when unbounded data structures are involved, that would
require invariants with quantifiers. Another area of consideration would be function calls. While
we can in principle inline non-recursive function calls, we would ideally want to have contracts with
pre- and post-conditions. For termination, we ideally want to have variants, and the possibility to
refer to program state at different locations, for example, not only at the current location, but
also at the end of a loop.

This shows that both communities probably can benefit from cooperation. Automatic verifiers
might be able to come up with invariants that could then be used in interactive verification, and
vice versa. Using our framework of transformations, we can identify which transformations are
necessary to allow to bridge the gap between both communities. To that end, we construct two
transformers ACSL2WIT and WIT2ACSL which translate loop invariants annotated in ACSL into
correctness witnesses and vice versa. This enables the construction of a lot of combinations, for
example we can use an interactive verifiers like Frama-C as validator, or we can convert correctness
witnesses into annotations that are easily readable by verification engineers and which allows
them to use this as a starting point for interactive verification.

The approach of reusing software verifiers as tools for other verification problems (that they
were not designed for initially) also inspired other approaches, not just the translation from and
to ACSL. For example, Btor2C tries to bridge the gap between hardware and software verification
by converting a hardware verification task written in Btor2 format into a software verification
task that can be solved by an off-the-shelf software verifier.

Generalizing Towards Proof Strategies. While taking inspiration from ACSL for new types
of information to track is interesting, this is in a way only declarative, not constructive. This
means it does not directly describe the way how the proof is carried out. In theorem proving
there are usual several proof strategies that can be tried out. The same is true for software
verification. There are several optimization strategies that can be employed and that – sometimes
even drastically – have an impact on whether a proof can be established or not. To a human these
are often very clear, for example, sometimes exact information about what happens inside a loop
is not necessary, just the information that the loop condition does not hold anymore after the
loop is needed in order to prove the program correct. While this is often immediately obvious to
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a human, many state-of-the-art analysis methods like predicate abstraction are prone to attempt
to unroll this loop in case the crucial information is not determined right away. Strategies to
abstract loops in order to overcome this are generally referred to as loop abstractions [45, 46], while
approaches that precisely express the result of a loop are referred to as loop accelerations [54],
which we treat as a special case of loop abstraction.

Loop abstraction strategies are one nice example of proof strategies that cannot be expressed
in the GraphML-based exchange format. Usually, loop abstractions are implemented by program
transformation of the input program, so the verification engineer has to decide which of these
abstraction strategies to apply before handing the transformed program to the verifier or make an
automated choice. We investigate whether loop abstractions suitable for a proof can be determined
automatically using counterexample-guided abstraction refinement (CEGAR).1 Our approach
is depicted in Fig. 2.1 with the blue box titled “Abstraction Strategies” that interacts with the
CFA generation and the actual model checking routine of the verifier (which in our case is
CPAchecker). We encode different abstraction strategies directly into the CFA of the program,
and modify the model checking algorithm to transparently hide all except the currently selected
loop abstraction strategies from the actual analysis. The set of allowed strategies is tracked
as so-called precision along the abstract states, similar to how predicate abstraction [2] tracks
the current set of predicates. This has the advantage that the approach works transparently on
different analysis domains, and can even be combined with regular CEGAR e.g. for predicate
abstraction.

2.3 Improving the Exchange Format

In this section, we will first have a look at the existing exchange format and shed light on the
areas where we see potential for improvement. Consecutively, we will present our proposal for
our new, improved format. Lastly, we showcase potential of the new format with an application
towards decidable witness validation.

Established GraphML-Based Format. The established, GraphML-based format [14] for
correctness and violation witnesses has improved the trust in the verification results significantly [5].
However, as with every format, there are also some downsides which are hard to fix after such a
format is established.

While it is in principle extensible, so far there had not been any major extension to the format.
The format started out with the goal of providing witnesses for violation [15]. For this task, protocol
automata are a nice way to describe the problem. Initial tool support included CPAchecker and
UAutomizer, and both tools use automata internally, so the GraphML-based violation witness
format was perceived as an encoding that could fit both CPAchecker’s internal specification
automata (which are based on the BLAST query language [12]) as well as UAutomizer’s Floyd-
Hoare automata. One of the major downsides here is that the semantics of the resulting automata
is highly dependent on the choice of how to construct the CFA. Since both CPAchecker and
UAutomizer use the EclipseCDT parser [61] for parsing the input C programs, their choices in
constructing the CFA often match. However, this might not always hold for other tools that want
to provide validation capabilities or even just generate violation witnesses that can be understood
by one of the established validators.

Later on, GraphML-based witnesses for correctness were introduced [13]. Since the format
that encodes protocol automata already existed, the decision was taken to also encode witnesses
for correctness using the same automata. In order to achieve this, the kind of protocol automata

1A discussion of the corresponding publication can be found in Sect. 4.6.
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were limited to observer automata, i.e., they were not allowed to restrict the state space in any
way. A mechanism was added that allowed certain automaton states to be annotated with an
invariant that should hold as long as the automaton is in this state. This can then be used by the
validators, with the main use case being the extraction of loop invariants for re-establishing the
proof of the original verifier. In theory, the rich automata language would allow to encode more
complicated invariants into a correctness witness.

For example, an invariant that holds on every second time when entering a loop could be easily
expressed. This expressiveness is so far however not really exploited by any of the verifiers and
validators, and comes at the cost that correctness witnesses are far less readable and more prone
to errors in the matching of an invariant to the right location. Just to give an example for the
latter, the CPAchecker-based correctness witness validator allows an invariant to be matched to
multiple locations, and only if all of them are ruled out as locations where the provided invariant
holds, it is rejecting the witness [13]. As a consequence of these design decisions, correctness
witnesses can be considered to represent partial proofs, and many verifiers opt to just generate
an essentially empty correctness witness, as this is always guaranteed to be a correct witness in
case the program indeed fulfills the specification. At first glance this might sound useless, but
a validator might still be able to confirm the proof even in the case when the witness is empty.
This will lead to the validator actually performing the complete verification on its own. A similar
shortcoming can be observed for the violation witnesses.

New Format for Verification Witness. Because of the aforementioned points, we saw the
need to propose a new format that solves the most-pressing issues with the old format.2 Instead
of GraphML, which is a format that expresses graphs as XML, we use YAML as format, which is
both easily readable by humans and computer systems alike.

For correctness witnesses, our approach is an easy and great simplification of the existing
format. We provide a way to store location invariants or loop invariants in separate entries. Each
of these entries maps the invariant to its location in the source code. A correctness witness in
the YAML format then consists of a (potentially empty) array of these entries. Each entry also
contains meta data about the verification task, the producer of the witness, and other important
information that is also present in the GraphML-based format. In case a verifier generates multiple
invariants for a program, this metadata would be highly redundant, so we offer a way to specify a
set of invariants that share the same metadata, improving readability and size of the witnesses.
Regarding expressiveness, one would assume that the new format loses generality over the old
format, which might even be the case, but does not play a role for the current validators. In our
evaluation, we were able to show that correctness witness validation using the new format achieves
practically identical performance to the old format. As explained before, current validators do
only use the GraphML-based format to extract location and loop invariants. We argue that more
complicated invariants, e.g. those that would only hold at each other visit of a loop location, is
hard for a human to understand and could either be converted into a real invariant that always
holds at this location or will turn out to not be useful for most validation approaches anyway.

For violation witnesses, we want to mainly address the problem of the semantics determining
on the choice of the CFA of the program. While the GraphML-based violation witnesses focus
on transitions in the CFA, we focus on sequence points in the program’s AST. In a way, our
violation witness specification fits better with the actual language semantics as defined by the
C standard [51], since we focus on only using concepts that are also found there. Instead of
allowing arbitrary automata, our violation witnesses are constructed as an ordered list of so-called
segments, while each segment consistis of one follow waypoint and optionally as many avoid
waypoints as required. The last segment ends in a special follow waypoint that marks the violation

2A discussion of the corresponding publication can be found in Sect. 4.6.
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as being reached. The follow waypoints can be thought of as a similar feature to breakpoints in
debugging. With each reached follow waypoint, we come one step closer to the violation. While in
debugging, we cannot easily specify which paths not to follow, for verification we generally can
give more abstract information. This is why we have the additional concept of avoid waypoints.
Inside a segment, a validator shall disregard all paths through avoid waypoints. Similarly, we
offer a way to attach assumptions to a follow waypoint. The validator only needs to keep those
paths that fulfill the assumption. These assumptions shall hold at the sequence point that the
waypoint points to, and not like with the GraphML witnesses after the next transition, because
the transition concept is not part of the C standard, while sequence points are. For our first
iteration of the new YAML-based format for violation witnesses, we limit allowed sequence points
to those at the beginning of full expressions, expression statements, as well as those before a
function is entered and after it is exited. In the future, we might support more sequence points,
but this would also make adding support for the new format more complex, and might actually
not be needed in terms of expressiveness, much like with a debugger one usually cannot add
breakpoints at every location one would like, but it is usually precise enough to just specify a
certain line or statement in the execution. The new violation witness format is easier to read for
humans and also smaller in size, though of the reduction is not as drastic as with the correctness
witnesses, as we still need to encode information that is proportional in size to the length of the
counterexample path that would also be present in the GraphML-based format.

Decidable Witness Validation. So far, the new format does not address the problem that
validation is still undecidable and therefore one cannot expect validation to terminate quickly,
very much in contrast to how a proof would be checked inside an interactive verifier. Once all the
information for the proof is present, checking the proof should not be as complicated as coming
up with the proof. A similar argument can be made for violation witnesses, as recently logics that
make it possible to prove the presence of bugs, like the infamous incorrectness logic [59] have
been proposed [44, 68].

We will look at correctness witnesses first, as the picture there is very clear. For correctness
witnesses even in the new YAML-based format, an empty set of invariants is in principle also a
valid correctness witness. This is something that can be addressed outside the exchange format, by
defining a different semantics for the validation. We follow this idea by constructing a Hoare-style
proof and demanding that all information (i.e., invariants) necessary for the proof is present.
In other words, we pose the additional constraint that apart from being safe, meaning that the
invariants rule out the presence of specification violations, the invariants shall also be inductive
in relation to each other. We investigate this approach in a prototype tool called LIV.3 While
for the publication, LIV had to use the GraphML-based format, as the YAML-based exchange
format was not yet published, LIV supports the YAML format from the start, as this is much
simpler to support than the GraphML-based format. The support for the GraphML-based format
is only very basic and is limited to extracting the invariant locations, otherwise ignoring the
graph structure present in the witness. We are able to show that complete proofs can already
be established with this approach for a significant fraction of the invariants currently produced
by the verifiers. In LIV, we generate verification conditions from the proof obligations in the
Hoare-style proof and convert them back into C programs, such that they can easily be checked
by the very same verifiers that are producing the verification witnesses in the first place, greatly
simplifying the complexity of the validation tool chain.

For violation witnesses, an approach that would allow checking of violations in a similar
manner has not yet been proposed. In practice, this problem is also not that present as for
correctness, since in case a violation was found, the error path is indeed finite, so also checking

3A discussion of the corresponding publication can be found in Sect. 4.5.
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the counterexample is in general faster than the verification [15]. A verifier could decide to output
a minimal violation witness, in which case the validator would need to explore the unrestricted
state space and potentially run into a timeout. This is because in the Competition on Software
Verification(SV-COMP) the available CPU time is usually reduced from 900 s to 90 s to incentivize
verifiers to output meaningful violation witnesses.

As with correctness, our format does not contribute to improving this aspect of validation. In
principle, there could be an unbounded loop unrolling between two waypoints in the new format,
much like there could be cycles in the violation witness automaton of the GraphML-based format.
One could pose additional constraints, e.g. that there are no infinite executions between two
waypoints, but proving this would itself be as hard as the halting problem. Another option would
be to demand that there is a waypoint for every time an iteration statement like a loop is visited,
however this would negatively affect the size of a witness and force us to document each loop
unrolling even for trivial loops. In order to avoid the shortcomings of these two options, actually
encoding a proof of violation in the witness is a promising future research direction, and would
require to prove the termination of loops e.g. using a loop variant. Information like loop variants
can more naturally be expressed in the YAML format for correctness witnesses. We currently
plan to look into incorrectness logic [59] to achieve this as part of our future work.



3. Research Method
"The method of science, as stodgy and grumpy as it may seem,

is far more important than the findings of science."

– Carl Sagan, 1995 [62]

Apart from the scientific findings that we presented in the previous chapter, it is also worthwhile
to look at the scientific method that we employ. After all, it is clear that an ill-intended researcher
could almost always tailor their results in a way to support the outcome they want to present.
Such a behavior would of course be highly unethical, but it does not always require ill intent to
draw scientific conclusions that are far off. For example, there could be unconscious biases or
decisions that influence the outcome of experiments in a way that lacks scientific scrutiny.

3.1 Hypothesis-Driven Approach

Sometimes, we can observe publications that present an interesting approach, but it is unclear
what the actual contributions are. Even if the contributions are stated, it might remain unclear
to which extent the performed experiments – if any – back up the claimed contributions.

To avoid this problem, we always perform experiments and formulate research questions
beforehand for all our publications, posting hypotheses that can be quantified and clearly decided.
We use reliable benchmarking [23] via BenchExec to make sure the experiments are performed to
the highest standards of reproducibility. BenchExec makes use of certain features from the Linux
kernel such as namespaces and cgroups to ensure that resource consumption is reliably monitored
and restricted to the specified limits. For benchmarks we mainly concentrate on an established
set of C programs [11]. These programs are curated by the community of the Competition on
Software Verification (SV-COMP), in a way that ensures that a consensus exists about their
semantics.

3.2 Open Science

"Arts and sciences, research and teaching shall be free."

– Article 5 (3) of the German Grundgesetz

The above quote from the German constitution makes it clear that it is desirable to grant
science special freedoms. In addition, our scientific research is usually paid for by public funds.
As such, it seems imperative that we also allow the public to access all our findings as freely as
possible.

We achieve this by making our publications openly accessible, together with a reproduction
artifact. In addition, the software where we implement our approaches is licensed under a permissive
open-source license. Table 3.1 lists the corresponding open-source software and reproduction
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Publication Open-Source Software Artifact DOI
MetaVal (Sect. 4.1) gitlab.com/sosy-lab/software/metaval 10.5281/zenodo.3831417
Frama-C Wrapper (Sect. 4.2) gitlab.com/sosy-lab/software/frama-c-sv 10.5281/zenodo.5959149
Loop Abstraction (Sect. 4.3) gitlab.com/sosy-lab/software/cpachecker 10.5281/zenodo.6793834
ACSL (Sect. 4.4) gitlab.com/sosy-lab/software/cpachecker 10.5281/zenodo.6541544
LIV (Sect. 4.5) gitlab.com/sosy-lab/software/liv 10.5281/zenodo.8289101
YAML Witnesses (Sect. 4.6) gitlab.com/sosy-lab/software/cpachecker1 10.5281/zenodo.10826204

Table 3.1: Overview of publications with openly accessible software and reproduction artifacts

artifact for each of the publications presented in this thesis. In the following, we will explain the
different aspects of open science and give some context as to why this is important.

Open Source Software. All components that were created as part of this thesis are available
as open-source software under a permissive license (Apache 2.0). This is important because it
allows other researchers to check the implementations for potential errors and bugs, but also to
build upon existing work and compare to the state-of-the-art. We found during our own research
that more than often, a fair comparison with the state-of-the art would be desirable, but is not
possible because the corresponding software is not under a permissive license that allows at least
execution in a scientific context. Sometimes it is even the case that existing implementations are
not available anymore.

In order to improve the situation for researchers that want to inspect or build upon our work,
we follow good practice and publish an artifact along with every publication.

Open Reproduction Artifacts. A reproduction artifact is a collection or package of materials,
data, code, and documentation, that allows for the consistent reproduction and thus validation of
experimental results.

In order to guarantee that the results can be reproduced on the long run, ideally the artifact is
self-contained. For that reason, virtual machine or container images are often a good choice. Inside
these containers, the complete execution environment and dependencies as well as additional
documentation can be stored such that it will be executable as long as a suitable hypervisor or
operating system to run the images on is available.

In order to ensure that the artifacts will not eventually vanish, we cannot trust privately
held companies like github or gitlab, even established services might eventually end up being
taken down. To just name one example, Google Code stopped its service on January 25th, 2016,
only 10 years after the service’s initial launch.2 For this reason, we choose to publish artifacts
on Zenodo, an open repository initiated by the European OpenAIRE program and operated by
CERN. According to Zenodo’s General Policies v1.03, data will be retained for the lifetime of
the (Zenodo) repository, in other words, it is currently planned that older data on Zenodo will
not expire, at least not as long as Zenodo exists. The existence of the Zenodo repository itself is
ensured by the current host laboratory (CERN), which already has a planning horizon spanning
the next 20 years.

While gathering experience with creating reproduction artifacts, we discovered the need to
make the creation of reproduction artifacts itself reproducible. Usually, there are very specific
steps required to compile an artifact, with all its dependencies in such a way that the final artifact

1CPAchecker is listed here as an example, for a full list of open-source software related to the YAML witnesses,
have a look at the list of tools in the Zenodo artifact

2https://opensource.googleblog.com/2015/03/farewell-to-google-code.html, accessed on 2023-10-01
3https://about.zenodo.org/policies/, accessed on 2024-12-03
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will work in isolation. This can be a tedious process, and the knowledge how to create the artifact
can be lost very quickly, even for the individual that created the artifact in the first place.

As a result of this, we developed a process of continuous artifact creation, where the artifact
creation is itself completely tracked and versioned. All steps necessary to prepare and execute the
experiment are tracked in a Makefile [64]. In case an artifact VM is desired, we use Vagrant [60]
and its so-called Vagrantfile for managing the VM creation and export. The repository for the
artifact together with the Makefile is copied inside the virtual machine, from where necessary
dependencies can be resolved as set up in the Makefile. An example can be found in the repository
for the artifact of the publication about Loop Abstractions (Sect. 4.3)4 or LIV (Sect. 4.5)5.

Open Access Publications. It is important for other researchers to be able to freely access our
publications. Otherwise, especially people that are not backed by a financially robust institution
might be cut off from the newest achievements, hindering their ability to contribute to scientific
progress. Fortunately, it is generally possible to negotiate open access conditions with a publisher
either upon publication or even at a later time after publication.

We are glad to be able to state that all publications in this dissertation are available under
open access conditions. This has several advantages, both of altruistic and self-interest-driven
nature. On the one hand, it levels the playing field for other researchers, not discriminating
researchers whose institution cannot pay for access to a certain journal. On the other hand, it
also improves the chance of our work being discovered, read, and cited by other researchers.

4https://gitlab.com/sosy-lab/research/data/loop-abstraction
5https://gitlab.com/sosy-lab/research/data/liv
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4. Discussion of Manuscripts
In this chapter, we briefly discuss each of the publications that are attached to this thesis in
chronological order. We briefly explain the problem and background behind each publication
followed by a description of the approach and experimental findings determined in the evaluation

4.1 MetaVal: Witness Validation via Verification

The article MetaVal: Witness Validation via Verification, which is reprinted in Appendix A, pages
42–54 of this dissertation, was authored by Dirk Beyer and Martin Spiessl, and published by
Springer in the Proceedings of CAV 2020, pages 165–177 [26].

MetaVal is the first approach that leverages off-the-shelf verifiers for witness validation, and
allows to use verifiers that understand the verification task conventions of the Competition on
Software Verification [7] to be used for validation. This helps to reduce technology bias, especially
on the side of correctness-witness validation, where only two tools (CPAchecker and UAutomizer)
existed before MetaVal was presented. That being said, there is still some technology bias towards
CPAchecker, as this is the tool used to perform the transformation from a validation task into a
verification task.

This works by constructing a product automaton between the CFA of the input program
and the witness automaton. The resulting automaton is mapped back to a CFA, which is
ultimately converted into a C program, similar to what is done in reducer-based conditional
model checking [17]. For correctness witnesses, the witness automaton has to be modified slightly
from the original version [13] in order to express that the invariants shall not be violated.

In the evaluation, MetaVal is executed on witnesses from SV-COMP 2020. As backend
verifiers, CPAchecker, UAutomizer, and Symbiotic were selected. The result shows that MetaVal
can complement existing validators, especially when it comes to correctness-witness validation,
where there are only the aforementioned two other tools.

The concrete implementation of the transformer in MetaVal is not ideal, for the following two
reasons. Firstly, the generated programs are hard to read, making inspection of failed validation
attempts by a user very hard and sometimes practically impossible. Secondly, even if the generated
program were simple enough, there is no guarantee that the employed transformation via the
product automaton is indeed soundly encoding the validation problem. Neither the implementation
of the transformation nor an abstract description thereof has been formally proven to be correct.
These are however shortcomings of the implementation, and could be addressed by providing a
different transformer with an easier transformation and additional soundness proofs. Currently, the
transformer is based on CPAchecker, which introduces additional tool bias. Ideally, an improved
transformer comes as a separate tool that does not bias towards a specific verifier.

A reproduction package is available which makes it possible to reproduce all results from the
article [25].

Martin Spiessl is the main author of the article. His contributions are (1) the formalization of
the approach in terms of an automaton product between the CFA of the input program and the
witness automaton, (2) the development of the presented tool MetaVal, and (3) drafting of the
motivating example together with the illustrations.
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4.2 The Static Analyzer Frama-C in SV-COMP (Competi-
tion Contribution)

The article The Static Analyzer Frama-C in SV-COMP (Competition Contribution), which is
printed in Appendix A, pages 55-60 of this dissertation, was authored by Dirk Beyer and Martin
Spiessl, and published by Springer in the Proceedings of TACAS 2022, pages 429-434.

The article is about a wrapper around Frama-C called Frama-C-SV that allows this interactive
verifier to analyze verification tasks from the SV-Benchmarks set and therefore participate in the
Competition on Software Verification(SV-COMP).

In order to achieve this, the SV-COMP specific conventions are adapted in such a way that
they can be understood by Frama-C by a so-called input transformer. For example, a harness
is provided along the original program file that implements the SV-COMP specific functions
and expresses them in terms of special functions used by Frama-C. Another important step is to
interpret the results of Frama-C with a so-called output transformer. Since a static analyzer in
general cannot prove the definite presence of specification violations, we concentrate on cases
where Frama-C proves the input program correct, focusing on soundness over number of proofs,
since Frama-C is considered a sound static analyzer [38]. Since SV-COMP requires the generation
of correctness witnesses for proofs, we also generate a minimal correctness witness along with
the verdict, as many other participating verifiers do. Exporting useful information like found
invariants is still something that is planned to be investigated as part of future work.

As Frama-C provides several different analyses and configuration options influencing the
performance, part of this work consists in making a suitable choice and documenting the findings.
We decide to use the EVA analysis [40], a value analysis with tuneable precision, over the weakest
precondition module, as the latter would require extensive annotations to the input program
in order to succeed with any proof. While we choose a certain set of options for SV-COMP,
Frama-C-SV and its tool-info module inside of BenchExec are designed in such a way that these
options can easily be adapted depending on the property that shall be verified, allowing other
researchers to easily perform experiments with a different set of options.

The results for Frama-C in the 11th Competition on Software Verification (SV-COMP
2022) [9, 10] show that it is indeed possible for a static analyzer to successfully participate.
However, as a static analyzer is designed to be fast and work on large codebases, Frama-C
generally finishes quickly and thus does not take full advantage of the available CPU time per
verification task. Another way to look at this is that Frama-C could most-likely scale to verification
tasks that far exceed the size of the benchmarks currently present in the SV-Benchmarks.

Martin Spiessl is the main author of the article. His contributions are (1) implementation,
technical conception and optimization of Frama-C-SV for the SV-COMP-specific requirements
and (2) description of the approach in the competition contribution publication.

4.3 A Unifying Approach for Control-Flow-Based Loop Ab-
straction

The article A Unifying Approach for Control-Flow-Based Loop Abstraction, which is reprinted in
Appendix A, pages 79–95 of this dissertation, was authored by Dirk Beyer, Marian Lingsch-Rosenfeld,
and Martin Spiessl, and published by Springer in the Proceedings of SEFM 2022, pages 3–19 [35].

The article describes a novel approach to explore different combinations of loop abstraction
techniques using a CEGAR [41] pattern. Verification of loops poses one of the main challenges
in program verification, and in many cases, it is possible to replace a loop by a much simpler

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
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but over-approximative version that still is sufficiently precise to allow for proving the specified
property. So far, approaches applied the most promising of these loop abstraction strategies as a
program transformation before the actual verification [1].

The novel approach in this article weaves multiple loop abstraction strategies transparently
into the CFA of the input program. Along with the abstract states of the actual analysis that
performs the state space exploration, we track for each loop location the set of available loop
abstractions (the precision) and limit the transitions of the analysis to only allow one version at
a time. In case a counterexample is found that contains on its path abstract states belonging
to a strategy that is over-approximating, we consider the counterexample to be spurious and
exclude that strategy from the precision and recompute the reachability graph using the next
best strategy that can be applied. If all over-approximating strategies have been ruled out, the
analysis defaults back to the original version of the loop, so in the end, the approach can solve
any task that the unmodified verifier can solve. The overhead of checking the loop abstractions is
usually negligible, since loop abstractions remove loops from the program and therefore either
succeed or fail quickly in general.

We implement our approach in the software verification framework CPAchecker. While we
concentrate on four basic loop abstractions, the approach can easily be extended with more
complicated loop abstractions. As an edge case we also include constant propagation, where
loops containing linear arithmetics with easily computable results are replaced by assignments
of the final values to the corresponding variables. This is a precise acceleration strategy, so
counterexamples found with this strategy applied are actually considered to be concretizable. In
order to increase reusability of the generated abstractions and for determination of the external
validity we make the successful loop abstractions available in the form of program patches.

In the evaluation, we are able to show that our CEGAR-based loop abstraction approach
can indeed solve more verification tasks than the plain analyses inside CPAchecker, while only
requiring an acceptable, small overhead in computation time. We further show that for those cases
where we solve additional tasks, also other verifiers like Cbmc can benefit from the abstractions
that we export as patches, increasing the trust in our verification procedure. Indeed, bounded
model checking approaches (Cbmc and the CPAchecker-internal BMC approach) seem to especially
benefit from loop abstractions, which is not surprising, given that this enables them to prove
programs correct that would otherwise be unrolled indefinitely.

A reproduction package is available which makes it possible to reproduce all results from the
article [21].

Martin Spiessl and Marian Lingsch-Rosenfeld are the main authors of this article. Martin
Spiessl’s contributions are (1) theoretical description of the approach including the Hoare proofs
for selected loop abstraction strategies, (2) generation of patches from the abstractions in the
implementation, and (3) conduction of the experiments and creation of the artifact in a reproducible
way.

4.4 Cooperation between Automatic and Interactive Soft-
ware Verifiers

The article Cooperation between Automatic and Interactive Software Verifiers, which is reprinted
in Appendix A, pages 61–78 of this dissertation, was authored by Dirk Beyer, Martin Spiessl, and
Sven Umbricht, and published by Springer in the Proceedings of SEFM 2022, pages 111–128 [37].

The article describes an approach that transfers information between automatic and interactive
software verifiers. Automatic verifiers are those that do not require input from the user (despite
initial instrumentation of the verification task) and try to come up with a proof or counterexample
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of the specified property automatically. Examples include well-known tools participating in
the Competition on Software Verification (SV-COMP) such as Cbmc [42], CPAchecker [20], or
UAutomizer [50].

In contrast, interactive (or sometimes also referred to as deductive) verifiers are built in such a
way that they require frequent interaction with the user, e.g., to provide information such as loop
invariants, function contracts, auxiliary predicates. Examples include well-known state-of-the-art
static analyzers like Frama-C [43], VeriFast [52], or VerCors [39].

Until the publication of this article, the communities around both of these approaches acted
separately, and the question whether cooperation could be achieved was still open. To change this,
we focus on Frama-C as example for the interactive verifiers, because it features a well-documented
specification language called ACSL [4] (which is based on JML [56]). For the automatic verifiers,
we use the correctness witness format that the automatic verifiers participating in SV-COMP
support, allowing us to use a wide variety of tools. We implement transformers between these
two formats and construct new tool combinations using an approach inspired by the unifying
component framework for cooperative verification [30].

We are able to show that Frama-C can reuse information present in the verification witnesses
from automatic verifiers and prove more verification tasks correct than without this information.
Moving into the other direction, we can show that ACSL annotations crafted by users can
successfully be translated into GraphML-based witnesses, which can help a validator establish
a proof. Since the number of automatic validators is far lower than the number of verifiers, we
implement a different component that turns ACSL annotations into plain assertions inside the
input program and evaluate how this affects verification with automatic verifiers.

A reproduction package is available which makes it possible to reproduce all results from the
article [28].

Martin Spiessl is the main author of the article. His contributions are (1) preparation of the
evaluation and artifact in a reproducible fashion (2) instrumentation of Frama-C for enabling its
use in the evaluation (3) conceptual work on the approach (together with the co-authors).

4.5 LIV: Invariant Validation using Straight-Line Programs

The article LIV: Invariant Validation using Straight-Line Programs, which is reprinted in Ap-
pendix A, pages 96–99 of this dissertation, was authored by Dirk Beyer and Martin Spiessl, and
is published by Springer in the Proceedings of ASE 2023.

The article describes a new correctness-witness verifier called LIV which is inspired by Hoare-
style proofs. The main idea is to demand that the invariants in the witness are sufficient to
establish a full proof, then slice the program into several C programs (so-called straight-line
programs) that encode the verification conditions from the Hoare-style proof. These can then be
validated by an off-the-shelf verifier.

Similar approaches like VST-A [66] already exist and show that the transformation into
straight-line programs can be proven to be correct. However, with LIV we focus on the abstract
syntax tree (AST) of the program, whereas in VST-A the actual transformation is still performed
on the control-flow graph (CFG). Many other tools transform their verification conditions into
an internal format [3, 43, 47, 48, 52, 57]. The novelty introduced in LIV is that we output the
verification conditions in the same format as the input programs, leveraging the conventions of
the Competition on Software Verification.

The main philosophy is that the splitting based on the AST is simple and prevents bugs that
come from the exact implementation of the CFG. As such, a tool that performs the splitting does
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not need to deal with all the exact semantics of a C program, it just needs to understand as much
as to soundly split the program into conditions.

An additional benefit of the splitting is that it is easier to locate the reason as to why the
validation fails, so users can get additional feedback upon validation. Since the generated straight-
line programs do not contain loops, the validation task becomes decideable if the underlying
theory is decideable. Since witnesses only support C expressions as invariants, the verification
tasks corresponding to the straight-line programs are decideable. This might change in a future
witness format that e.g. also supports quantified invariants. Also the support for further proof
information like function contracts might further improve the usefulness of LIV.

For execution of the verifier backend, we use CoVeriTeam [18] as an abstraction layer to
delegate verification of the straight-line programs to any of the verifiers participating in SV-COMP
transparently, and benchmarks are executed using reliable benchmarking with BenchExec. In
the experiments of the article, we show that existing witnesses from verifiers already contain
invariants that are sufficient for an (inductive) proof, despite the fact that verifiers are not (yet)
tuned to output inductive, safe invariants, as this is currently not a requirement. As benchmark
set, we use a subset of the SV-Benchmarks which is annotated with supposedly inductive and
safe invariants, and are able to successfully detect cases in which these annotations are not yet
enough to establish a proof. Determining the reason because of which the proof fails is shown to
be easy because of the decompositional approach of LIV.

A reproduction package is available which makes it possible to reproduce all results from the
article [27].

Martin Spiessl is the main author of the article. His contributions are (1) formalization of the
approach, (2) implementation of the tool, and (3) experimental evaluation and artifact creation.

4.6 Improved Witnesses for Software Verification

The article Improved Witnesses for Software Verification, which is reprinted in Appendix A,
pages 100–119 of this dissertation, was authored by Paulína Ayaziová, Dirk Beyer, Marian
Lingsch-Rosenfeld, Martin Spiessl, and Jan Strejček, and published by Springer in the Proceedings
of SPIN 2024.

This article introduces a new format for verification witnesses that offers some improvements
over the existing, GraphML-based format that encodes witnesses as protocol automata. This
encoding into automata is based on CPAchecker’s specification automata and UAutomizer’s
Floyd-Hoare-Automata, i.e., it is designed to capture their semantics well. However, this might
hinder adoption by other tools that have a different interpretation of the program’s CFA (or are
not CFA-based at all).

One major drawback of this automata-based format is that the semantics is only specified
with relation to the CFA, i.e., it is under-specified in certain edge cases where the meaning is
different depending on how exactly the CFA looks. Since the C standard does not explicitly
specify that there is a CFA or how it looks, the format proposed in this article focuses more
on syntactical features of the C language and on features directly defined in the C standard,
most importantly sequence points. These are points in between full expressions in the program at
which all side effects have been resolved. As such, these are natural points in the execution of a
program that are both easy for humans to grasp and for validators to reason about. While the
GraphML-based format matches information to certain transitions in the CFA, the new format
attaches this information to certain states in the program’s execution.

The new format is based on YAML and designed to be more easily readable by humans.
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For correctness witnesses, the GraphML-based format is in theory more powerful than the
YAML-based one, this power was never actually used by the validators. This is why the new
format which just stores the loop invariants together with their location instead of encoding this
into an automaton is shown to closely reproduce the same validation results. As a side effect, the
size of witnesses is reduced while without sacrificing validation power.

For violation witnesses, the new format defines a sequence of so-called waypoints that lead
to the violation. This notion is designed to be intuitive and similar to how a human would use
a debugger, setting breakpoints along the program execution until the desired program state is
reached. Readability is increased, though witness sizes are not reduced in the same way as for
correctness witnesses.

The new format is also designed with extensibility in mind. Every YAML witness consists of
a sequence of entries that are of a specified entry type. If a verifier or validator developer wants
to add a different kind of information that would be useful for validation, they can simply extend
the format by a new entry type.

The implementation inside CPAchecker converts between the GraphML-based and YAML-
based witnesses, further performance gains can be achieved in future work by leveraging the new
format directly.

A reproduction package with DOI 10.5281/zenodo.10826204 is available which makes it possible
to reproduce all results from the article.

All authors contributed equally to the text of the article. Martin Spiessl’s contributions are
(1) guiding the design of the new format (together with all co-authors), (2) implementation of the
new format into CPAchecker (together with Marian Lingsch-Rosenfeld, who took care mainly of
the support for correctness witnesses), and (3) creation of the experiment pipeline and artifacts
in a reproducible fashion.

https://doi.org/10.5281/zenodo.10826204


5. Conclusion and Future Directions
After having discussed all manuscripts that comprise this dissertation, we will summarize what
has been achieved and give some outlook on the future work and logical next steps that became
apparent during the current state.

5.1 Summary

We have seen that the existing exchange format allows the composition of novel tools and
approaches, both inside the domain of automatic software verification, like in the case of MetaVal
where we construct a validator from off-the-shelf verifiers, as well in discovering new approaches
and bridging the gap to other areas of formal methods, like when converting between verification
witnesses and ACSL annotations. We have also seen that there are some limitations posed by the
format, which are improved by a new format, like a well-defined semantics, better readability,
and overall size.

With LIV, we investigated whether a more strict correctness-witness validation approach
can lead to better understandability of the validation results and make validation of correctness
witnesses truly simpler and faster than verification. Regarding the kinds of information that can
be exchanged between tools, we focused on loop abstraction strategies and were able to show that
these proof strategies can be used in a CEGAR-style approach to guide the automatic verifiers
towards a successful proof.

5.2 Future Directions

Despite the fact that we presented several novel applications of the existing exchange format and
proposed a new, improved format, the presented publications only lay the groundwork for even
more potential future work, which we want to quickly present in this section.

LIV and MetaVal: Towards a General Program Transformation Framework. In its
current form, LIV is very simple and tailored towards one specific use case, namely (a more strict
definition of) verification-witness validation. However, during the design, it became apparent that
it would also be ideal as a framework to implement a variety of different program transformation
approaches. For example, the MetaVal approach could easily be added to LIV. Instead of splitting
the input program into multiple parts, we would just add assertions for the loop invariants there.
To truly extend on this approach, the new semantics of the new segment-based violation witnesses
could be soundly encoded as program transformation using some additional global variables to
track the current segment. This is more straightforward as with the GraphML-based format,
as waypoints are generally defined at positions (sequence points) where it is possible to insert
instrumentation code.

Regarding loop abstractions, it seems natural to implement these program transformations
into a tool like LIV that is focused on syntactic transformations over the input program. Indeed, it
has been shown that the CEGAR-style approach of the unifying approach for control-flow-based
loop abstractions [24] that we presented can also be constructed as a black-box approach [22] that
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just works on patches generated for each loop abstraction application. The support of various
program transformations would be possible in a similar fashion.

In order to achieve the above additions, we would need to develop LIV further past the current
prototype stage to support a wide variety of C programs. For this, participation in Competition on
Software Verification (SV-COMP) – either as a validator or together with an invariant generator
even as verifier – would be an ideal way to achieve this, as the SV-Benchmarks used in SV-COMP
cover a wide range of features of the C language.

Another direction that could be explored with LIV is to add support for other form of pre-
and postconditions for the generated straight-line programs. So far, we rely on the conventions of
SV-COMP and express these conditions in C, but other tools, especially interactive/deductive
verifiers like VerCors [39] or VeriFast [52] feature their own annotation language, so these could be
easily supported if pre- and postconditions were to be generated using these annotation languages.

More Strict Witness Validation. Recently, more effort has been put into giving incentive
to authors of witness validators to improve their tools and to get more visibility and credit.
For example, in SV-COMP 2023, a new validator track has been added where there is a score
computation and medals for validators similar to the established verifier track [29]. While this
is an effort that is long overdue, there are also some practical issues with this new addition.
Because the semantics of the GraphML-based witnesses is not always clear, only witnesses that
are generated with a verdict conflicting with the ground truth, i.e., the verdict of the verification
task that has been assigned by the verification experts from the community, are used as invalid
witnesses in the validator competition. But even if the witness and the verification task share
the same verdict, a witness might be faulty and needs to be rejected, e.g. because it contains
a wrong invariant. This case cannot currently be handled well, and the YAML witness format
together with a more strict definition of witness validation might make it possible to address this
problem in the future. Also, from a practical standpoint, looking at validator results for witnesses
that can sometimes be several hundreds of MB in size is, simply put, infeasible for validator
authors. With verification tasks, the tasks tend to be stable and not change too much over time.
With verification witnesses however, these could change at any moment during the competition’s
preruns, making it especially hard for validator designers to check their results, and without any
guarantee that the witnesses will be similar in the final run of the competition.

Support for New Kinds of Information. The new witness format laid the groundwork for
extensions towards different kinds of information apart from invariants given as C expression.
With loop abstractions, we presented only one type of such information, while we did not yet add
this as extension to the new format. This seems like a logical first step towards this direction.
Especially for verification of properties other than reachability, it seems natural that the need for
other types of information will arise soon, especially in case the more strict witness validation
approach will gain momentum, as there one needs to define what a full proof of correctness would
look like. As an example, for memory safety, information like lock sets or happens-before relations
might be something to investigate. Here a cooperation with the developers of the static analysis
tool goblint [65] is especially promising, since one of the strengths of goblint is the verification of
concurrent C programs and their tool cannot easily support violation witnesses in the way that the
GraphML-based format intends, since they generally do not have full paths to counterexamples.

Continuous Artifacts. In Sect. 3.2 we briefly described the artifact setup pipeline that allows us
to create an artifact VM for reproduction of our experimental results at any given time and in a
reproducible manner. It would be interesting to investigate how this approach can be generalized
and whether it is also useful to other researchers. Since experiments on software verification
(especially if a large benchmark set like the SV-Benchmarks is used) tend to take up a significant
amount of time, adding a way to transparently execute these experiments on a distributed cluster
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of virtualized nodes would improve reproducibility of the experimental results. We currently
use a custom-made system for distributing BenchExec run collections of our experiments on a
cluster of compute nodes, the same system that is used to conduct the Competition on Software
Verification [8]. Ideally, this system would be made available to run on a set of VMs that are
described e.g. using Vagrant, in a similar manner as the artifact VM currently is for most of our
artifacts.
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A. Manuscripts
This appendix presents the complete manuscripts of the publications referenced in Chapter 4,
arranged in the same chronological order as covered there. For clarity and reference, the original
page numbers from each publication are retained. Consequently, readers will notice two sets of
page numbers: one for this dissertation and another denoting the original pages of the reprinted
article.
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Abstract. Witness validation is an important technique to increase trust
in verification results, by making descriptions of error paths (violation
witnesses) and important parts of the correctness proof (correctness wit-
nesses) available in an exchangeable format. This way, the verification
result can be validated independently from the verification in a second
step. The problem is that there are unfortunately not many tools avail-
able for witness-based validation of verification results. We contribute to
closing this gap with the approach of validation via verification, which is
a way to automatically construct a set of validators from a set of existing
verification engines. The idea is to take as input a specification, a program,
and a verification witness, and produce a new specification and a trans-
formed version of the original program such that the transformed program
satisfies the new specification if the witness is useful to confirm the result
of the verification. Then, an ‘off-the-shelf’ verifier can be used to validate
the previously computed result (as witnessed by the verification witness)
via an ordinary verification task. We have implemented our approach in
the validator MetaVal, and it was successfully used in SV-COMP 2020
and confirmed 3 653 violation witnesses and 16 376 correctness witnesses.
The results show that MetaVal improves the effectiveness (167 uniquely
confirmed violation witnesses and 833 uniquely confirmed correctness
witnesses) of the overall validation process, on a large benchmark set. All
components and experimental data are publicly available.

Keywords: Computer-aided verification · Software verification · Program
analysis · Software model checking · Certification · Verification witnesses ·
Validation of verification results · Reducer

1 Introduction

Formal software verificationbecomesmore andmore important in the development
process for software systems of all types. There are many verification tools
available to perform verification [4]. One of the open problems that was addressed
only recently is the topic of results validation [10–12,37]: The verification
work is often done by untrusted verification engines, on untrusted computing
infrastructure, or even on approximating computation systems, and static-analysis
tools suffer from false positives that engineers in practice hate because they are
tedious to refute [20]. Therefore, it is necessary to validate verification results,
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ideally by an independent verification engine that likely does not have the same
weaknesses as the original verifier. Witnesses also help serving as an interface to
the verification engine, in order to overcome integration problems [1].

The idea to witness the correctness of a program by annotating it with
assertions is as old as programming [38], and from the beginning of model checking
it was felt necessary to witness counterexamples [21]. Certifying algorithms [30]
are not only computing a solution but also produce a witness that can be used by
a computationally much less expensive checker to (re-)establish the correctness
of the solution. In software verification, witnesses became standardized1 and
exchangeable about five years ago [10,11]. In the meanwhile, the exchangeable
witnesses can be used also for deriving tests from witnesses [12], such that an
engineer can study an error report additionally with a debugger. The ultimate
goal of this direction of research is to obtain witnesses that are certificates and
can be checked by a fully trusted validator based on trusted theorem provers,
such as Coq and Isabelle, as done already for computational models that are
‘easier’ than C programs [40].

Yet, although considered very useful, there are not many witness validators
available. For example, the most recent competition on software verification
(SV-COMP 2020)2 showcases 28 software verifiers but only 6 witness validators.
Two were published in 2015 [11], two more in 2018 [12], the fifth in 2020 [37], and
the sixth is MetaVal, which we describe here. Witness validation is an interesting
problem to work on, and there is a large, yet unexplored field of opportunities. It
involves many different techniques from program analysis and model checking.
However, it seems that this also requires a lot of engineering effort.

Our solution validation via verification is a construction that takes as input
an off-the-shelf software verifier and a new program transformer, and composes a
witness validator in the following way (see Fig. 1): First, the transformer takes the
original input program and transforms it into a new program. In case of a violation
witness,whichdescribes apath through theprogramto a specific program location,
we transform the program such that all parts that are marked as unnecessary
for the path by the witness are pruned. This is similar to the reducer for a
condition in reducer-based conditional model checking [14]. In case of a correctness
witness, which describes invariants that can be used in a correctness proof, we
transform the program such that the invariants are asserted (to check that they
really hold) and assumed (to use them in a re-constructed correctness proof).
A standard verification engine is then asked to verify that (1) the transformed
program contains a feasible path that violates the original specification (violation
witness) or (2) the transformed program satisfies the original specification and
all assertions added to the program hold (correctness witness).

MetaVal is an implementation of this concept. It performs the transformation
according to the witness type and specification, and can be configured to use
any of the available software verifiers3 as verification backend.

1 Latest version of standardized witness format: https://github.com/sosy-lab/sv-witnesses
2 https://sv-comp.sosy-lab.org/2020/systems.php
3 https://gitlab.com/sosy-lab/sv-comp/archives-2020/tree/master/2020
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Fig. 1. Validator construction using readily available verifiers

Contributions. MetaVal contributes several important benefits:

• The program transformer was a one-time effort and is available from now on.
• Any existing standard verifier can be used as verification backend.
• Once a new verification technology becomes available in a verification tool, it

can immediately be turned into a validator using our new construction.
• Technology bias can be avoided by complementing the verifier by a validator

that is based on a different technology.
• Selecting the strongest verifiers (e.g., by looking at competition results) can

lead to strong validators.
• All data and software that we describe are publicly available (see Sect. 6).

2 Preliminaries

For the theoretical part, we will have to set a common ground for the concepts
of verification witnesses [10,11] as well as reducers [14]. In both cases, programs
are represented as control-flow automata (CFAs). A control-flow automaton
C = (L, l0, G) consists of a set L of control locations, an initial location l0 ∈ L,
and a set G ⊆ L × Ops × L of control-flow edges that are labeled with the
operations in the program. In the mentioned literature on witnesses and reducers,
a simple programming language is used in which operations are either assignments
or assumptions over integer variables. Operations op ∈ Ops in such a language
can be represented by formulas in first order logic over the sets V ,V ′ of program
variables before and after the transition, which we denote by op(V, V ′). In order to
simplify our construction later on, we will also allow mixed operations of the form
f(V ) ∧ (x′ = g(V )) that combine assumptions with an assignment, which would
otherwise be represented as an assumption followed by an assignment operation.

44 MetaVal: Witness Validation via Verification
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1 void fun(uint x, uint y, uint z) {
2 if (x > y) {
3 z = 2*x-y;
4 } else {
5 z = 2*y-x+1;
6 }
7 if (z>y || z>x) {
8 return;
9 } else {

10 error();
11 }
12 }

Fig. 2. Example program for both correctness
and violation witness validation

2

53

7

8 10

x<=yx>y

z=2*x-y; z=2*y-x+1;

z>x||z>y !(z>x||z>y)

Fig. 3. CFA C of example program
from Fig. 2

The conversion from the source code into a CFA and vice versa is straight
forward, provided that the CFA is deterministic. A CFA is called deterministic if
in case there are multiple outgoing CFA edges from a location l, the assumptions
in those edges are mutually exclusive (but not necessarily exhaustive).

Since our goal is to validate (i.e., prove or falsify) the statement that a program
fulfills a certain specification, we need to additionally model the property to
be verified. For properties that can be translated into non-reachability, this can
be done by defining a set T ⊆ L of target locations that shall not be reached.
For the example program in Fig. 2 we want to verify that the call in line 10
is not reachable. In the corresponding CFA in Fig. 3 this is represented by the
reachability of the location labeled with 10. Depending on whether or not a
verifier accounts for the overflow in this example program, it will either consider
the program safe or unsafe, which makes it a perfect example that can be used
to illustrate both correctness and violation witnesses.

In order to reason about the soundness of our approach, we need to also
formalize the program semantics. This is done using the concept of concrete
data states. A concrete data state is a mapping from the set V of program
variables to their domain Z, and a concrete state is a pair of control location
and concrete data state. A concrete program path is then defined as a sequence

π = (c0, l0)
g1−→ . . .

gn−→ (cn, ln) where c0 is the initial concrete data state,
gi = (li−1, opi, li) ∈ G, and ci−1(V ), ci(V

′) � opi. A concrete execution ex(π) is
then derived from a path π by only looking at the sequence (c0, l0) . . . (cn, ln)
of concrete states from the path. Note the we deviate here from the definition
given in [14], where concrete executions do not contain information about the
program locations. This is necessary here since we want to reason about the
concrete executions that fulfill a given non-reachability specification, i.e., that
never reach certain locations in the original program.

Witnesses are formalized using the concept of protocol automata [11]. A proto-
col automaton W = (Q,Σ, δ, q0, F ) consists of a set Q of states, a set of transition
labels Σ = 2G × Φ, a transition relation δ ⊆ Q × Σ × Q, an initial state q0, and
a set F ⊆ Q of final states. A state is a pair that consists of a name to identify
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the state and a predicate over the program variables V to represent the state
invariant.4 A transition label is a pair that consists of a subset of control-flow
edges and a predicate over the program variables V to represent the guard
condition for the transition to be taken. An observer automaton [11,13,32,34,36]
is a protocol automaton that does not restrict the state space, i.e., if for each
state q ∈ Q the disjunction of the guard conditions of all outgoing transitions is
a tautology. Violation witnesses are represented by protocol automata in which
all state invariants are true. Correctness witnesses are represented by observer
automata in which the set of final states is empty.

3 Approach

3.1 From Witnesses to Programs

When given a CFA C =(L, l0, G), a specification T ⊆ L, and a witness
automaton W =(Q,Σ, δ, q0, F ), we can construct a product automaton
AC×W = (L × Q, (l0, q0), Γ, T × F ) where Γ ⊆ (L × Q) × (Ops × Φ) × (L × Q).
The new transition relation Γ is defined by allowing for each transition g in the
CFA only those transitions (S, ϕ) from the witness where g ∈ S holds:

Γ =
{(

(li, qi), (op, ϕ), (lj , qj)
) ∣∣ ∃S :

(
qi, (S, ϕ), qj

)
∈ δ, (li, op, lj) ∈ S

}

We can now define the semantics of a witness by looking at the paths
in the product automaton and mapping them to concrete executions in
the original program. A path of the product automaton AC,W is a se-

quence (l0, q0)
α0−→ . . .

αn−1−−−→ (ln, qn) such that
(
(li, qi), αi, (li+1, qi+1)

)
∈ Γ and

αi = (opi, φi).
It is evident that the automaton AC×W can easily be mapped to a new

program CC×W by reducing the pair (op, ϕ) in its transition relation to an
operation op. In case op is a pure assumption of the form f(V ) then op will
simply be f(V ) ∧ ϕ(V ). If op is an assignment of the form f(V ) ∧ (x′ = g(V )),
then op will be (f(V )∧ϕ(V ))∧ (x′ = g(V )). This construction has the drawback
that the resulting CFA might be non-deterministic, but this is actually not
a problem when the corresponding program is only used for verification. The
non-determinism can be expressed in the source code by using non-deterministic
values, which are already formalized by the community and established in the
SV-COMP rules, and therefore also supported by all participating verifiers. The
concrete executions of CC×W can be identified with concrete executions of C by
projecting their pairs (l, q) on their first element. Let projC(ex(CC×W )) denote
the set of concrete executions that is derived this way. Due to how the relation Γ
of AC×W is constructed, it is guaranteed that this is a subset of the executions
of C, i.e., projC(ex(CC×W )) ⊆ ex(C). In this respect the witness acts in very
much the same way as a reducer [14], and the reduction of the search space is
also one of the desired properties of a validator for violation witnesses.

4 These invariants are the central piece of information in correctness witnesses. While
invariants that proof a program correct can be hard to come up with, they are usually
easier to check.
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qE
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Fig. 4. Violation witness WV
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Fig. 5. Product automaton AC×WV

3.2 Programs from Violation Witnesses

For explaining the validation of results based on a violation witness, we consider
the witness in Fig. 4 for our example C program in Fig. 2. The program CC×WV

resulting from product automaton AC×WV
in Fig. 5 can be passed to a verifier.

If this verification finds an execution that reaches a specification violation, then
this violation is guaranteed to be also present in the original program. There
is however one caveat: In the example in Fig. 5, a reachable state (10, q0) at
program location 10 (i.e., a state that violates the specification) can be found
that is not marked as accepting state in the witness automaton WV . For a strict
version of witness validation, we can remove all states that are in T ×Q but not
in T × F from the product automaton, and thus, from the generated program.
This will ensure that if the verifier finds a violation in the generated program, the
witness automaton also accepts the found error path. The version of MetaVal

that was used in SV-COMP 2020 did not yet support strict witness validation.

3.3 Programs from Correctness Witnesses

Correctness witnesses are represented by observer automata. Figure 6 shows a
potential correctness witness WC for our example program C in Fig. 2, where
the invariants are annotated in bold font next to the corresponding state. The
construction of the product automaton AC×WC

in Fig. 7 is a first step towards
reestablishing the proof of correctness: the product states tell us to which control
locations of the CFA for the program the invariants from the witness belong.

The idea of a result validator for correctness witnesses is to

1. check the invariants in the witness and
2. use the invariants to establish that the original specification holds.

We can achieve the second goal by extracting the invariants from each state in the
product automaton AC×WC

and adding them as conditions to all edges by which
the state can be reached. This will then be semantically equivalent to assuming
that the invariants hold at the state and potentially make the consecutive proof
easier. For soundness we need to also ensure the first goal. To achieve that, we
add transitions into a (new) accepting state from T × F whenever we transition
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Fig. 6. Correctness witness WC
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Fig. 7. Product automaton AC×WC

into a state q and the invariant of q does not hold, and we add self-loops such
that the automaton stays in the new accepting state forever. In sum, for each
invariant, there are two transitions, one with the invariant as guard (to assume
that the invariant holds) and one with the negation of the invariant as guard
(to assert that the invariant holds, going to an accepting (error) state if it does
not hold). This transformation ensures that the resulting automaton after the
transformation is still a proper observer automaton.

4 Evaluation

This section describes the results that were obtained in the 9th Competition
on Software Verification (SV-COMP 2020), in which MetaVal participated as
validator. We did not perform a separate evaluation because the results of SV-
COMP are complete, accurate, and reproducible; all data and tools are publicly
available for inspection and replication studies (see data availability in Sect. 6).

4.1 Experimental Setup

Execution Environment. In SV-COMP 2020, the validators were executed in
a benchmark environment that makes use of a cluster with 168 machines, each
of them having an Intel Xeon E3-1230 v5 CPU with 8 processing units, 33 GB
of RAM, and the GNU/Linux operating system Ubuntu 18.04. Each validation
run was limited to 2 processing units and 7 GB of RAM, in order to allow up to
4 validation runs to be executed on the same machine at the same time. The time
limit for a validation run was set to 15 min for correctness witnesses and to 90 s
for violation witnesses. The benchmarking framework BenchExec 2.5.1 was used
to ensure that the different runs do not influence each other and that the resource
limits are measured and enforced reliably [15]. The exact information to replicate
the runs of SV-COMP 2020 can be found in Sect. 3 of the competition report [4].

Benchmark Tasks. The verification tasks5 of SV-COMP can be partitioned
wrt. their specification into ReachSafety, MemSafety, NoOverflows, and Termina-
tion. Validators can be configured using different options for each specification.

5 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
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Table 1. Overview of validation for violation witnesses in SV-COMP 2020

Specification Measure CPAchecker CPA-wtt FShell-wtt MetaVal NITWIT UAutomizer

ReachSafety
(35 652

witnesses)

executed on 35 652 25 812 25 812 35 652 21 636 25 812
uniquely confirmed 3 043 42 175 44 398 547
jointly confirmed 8 019 6 010 6 740 1 566 8 055 3 802

Termination
(9 720

witnesses)

executed on 3 043 9 720 9 720
uniquely confirmed 566 9 235
jointly confirmed 1 539 256 1 493

NoOverflow
(3 149

witnesses)

executed on 3 149 3 149 3 149 3 149 3 149
uniquely confirmed 6 1 31 1 89
jointly confirmed 1 668 1 067 1 267 1 186 1 590

MemSafety
(2 681

witnesses)

executed on 2 681 2 213 2 681 2 681 2 681
uniquely confirmed 278 0 21 113 44
jointly confirmed 737 250 364 478 372

Table 2. Overview of validation for correctness witnesses in SV-COMP 2020

Specification Measure CPAchecker MetaVal UAutomizer

ReachSafety
(66 435 witnesses)

executed on 66 435 66 435 66 435
uniquely confirmed 1 750 391 708
jointly confirmed 17 592 13 862 16 834

NoOverflow
(3 179 witnesses)

executed on 3 179 3 179
uniquely confirmed 44 74
jointly confirmed 870 870

MemSafety
(4 426 witnesses)

executed on 4 426 4 426
uniquely confirmed 398 173
jointly confirmed 811 811

Validator Configuration. Since our architecture (cf. Fig. 1) allows for a
wide range of verifiers to be used for validation, there are many interesting
configurations for constructing a validator. Exploring all of these in order to
find the best configuration, however, would require significant computational
resources, and also be susceptible to over-fitting. Instead, we chose a heuristic
based on the results of the competition from the previous year, i.e., SV-COMP
2019 [3]. The idea is that a verifier which performed well at verifying tasks for a
specific specification is also a promising candidate to be used in validating results
for that specification. Therefore the configuration of our validator MetaVal

uses CPA-Seq as verifier for tasks with specification ReachSafety, Ultimate

Automizer for NoOverflow and Termination, and Symbiotic for MemSafety.

4.2 Results

The results of the validation phase in SV-COMP 2020 [5] are summarized in
Table 1 (for violation witnesses) and Table 2 (for correctness witnesses). For each
specification, MetaVal was able to not only confirm a large number of results
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that were also validated by other tools, but also to confirm results that were not
previously validated by any of the other tools.6

For violation witnesses, we can observe that MetaVal confirms significantly
less witnesses than the other validators. This can be explained partially by
the restrictive time limit of 90 s. Our approach not only adds overhead when
generating the program from the witness, but this new program can also be
harder to parse and analyze for the verifier we use in the backend. It is also the
case that the verifiers that we use in MetaVal are not tuned for such a short
time limit, as a verifier in the competition will always get the full 15 min. For
specification ReachSafety, for example, we use CPA-Seq, which starts with a
very simply analysis and switches verification strategies after a fixed time that
happens to be also 90 s. So in this case we will never benefit from the more
sophisticated strategies that CPA-Seq offers.

For validation of correctness witnesses, where the time limit is higher, this
effect is less noticeable such that the number of results confirmed by MetaVal is
more in line with the numbers achieved by the other validators. For specification
MemSafety, MetaVal even confirms more correctness witnesses than Ultimate

Automizer. This indicates that Symbiotic was a good choice in our configuration
for that specification. Symbiotic generally performs much better in verification
of MemSafety tasks than Ultimate Automizer, so this result was expected.

Before the introduction of MetaVal, there was only one validator for correct-
ness witnesses in the categories NoOverflow and MemSafety, while constructing
a validator for those categories with our approach did not require any addi-
tional development effort.

5 Related Work

Programs from Proofs. Our approach for generating programs can be seen as a
variant of the Programs from Proofs (PfP) framework [27,41]. Both generate
programs from an abstract reachability graph of the original program. The
difference is that PfP tries to remove all specification violations from the graph,
while we just encode them into the generated program as violation of the
standard reachability property. We do this for the original specification and
the invariants in the witness, which we treat as additional specifications.

Automata-Based Software Model Checking. Our approach is also similar to that of
the validator Ultimate Automizer [10]. For violation witnesses, it also constructs
the product of CFA and witness. For correctness witnesses, it instruments the
invariants directly into the CFA of the program (see [10], Sect. 4.2) and passes the
result to its verification engine, while MetaVal constructs the product of CFA
and witness, and applies a similar instrumentation. In both cases, MetaVal’s
transformer produces a C program, which can be passed to an independent verifier.

Reducer-Based Conditional Model Checking. The concept of generating programs
from an ARG has also been used to successfully construct conditional verifiers [14].

6 In the statistics, a witness is only counted as confirmed if the verifier correctly stated
whether the input program satisfies the respective specification.
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Our approach for correctness witnesses can be seen as a special case of this
technique, where MetaVal acts as initial verifier that does not try to reduce the
search space and instead just instruments the invariants from the correctness
witness as additional specification into the program.

Verification Artifacts and Interfacing. The problem that verification results are
not treated well enough by the developers of verification tools is known [1] and
there are also other works that address the same problem, for example, the work
on execution reports [19] or on cooperative verification [17].

Test-Case Generation. The idea to generate test cases from verification coun-
terexamples is more than ten years old [8,39], has since been used to create
debuggable executables [31,33], and was extended and combined to various
successful automatic test-case generation approaches [24,25,29,35].

Execution. Other approaches [18,22,28] focus on creating tests from concrete and
tool-specific counterexamples. In contrast, witness validation does not require
full counterexamples, but works on more flexible, possibly abstract, violation
witnesses from a wide range of verification tools.

Debugging and Visualization. Besides executing a test, it is important to un-
derstand the cause of the error path [23], and there are tools and methods to
debug and visualize program paths [2,9,26].

6 Conclusion

We address the problem of constructing a tool for witness validation in a system-
atic and generic way: We developed the concept of validation via verification,
which is a two-step approach that first applies a program transformation and
then applies an off-the-shelf verification tool, without development effort.

The concept is implemented in the witness validator MetaVal, which has
already been successfully used in SV-COMP 2020. The validation results are
impressive: the new validator enriches the competition’s validation capabilities by
164uniquely confirmedviolation results and834uniquely confirmedcorrectness re-
sults, based on the witnesses provided by the verifiers. This paper does not contain
an own evaluation, but refers to results from the recent competition in the field.

The major benefit of our concept is that it is now possible to configure a
spectrum of validators with different strengths, based on different verification
engines. The ‘time to market’ of new verification technology into validators is
negligibly small because there is no development effort necessary to construct
new validators from new verifiers. A potential technology bias is also reduced.

Data Availability Statement. All data from SV-COMP 2020 are publicly
available: witnesses [7], verification and validation results as well as log files [5], and
benchmark programs and specifications [6]7. The validation statistics in Tables 1
and 2 are available in the archive [5] and on the SV-COMP website8. MetaVal 1.0
is available on GitLab9 and in our AEC-approved virtual machine [16].

7 https://github.com/sosy-lab/sv-benchmarks/tree/svcomp20
8 https://sv-comp.sosy-lab.org/2020/results/results-verified/validatorStatistics.html
9 https://gitlab.com/sosy-lab/software/metaval/-/tree/1.0
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The Static Analyzer Frama-C in SV-COMP
(Competition Contribution)

Dirk Beyer B and Martin Spiessl

LMU Munich, Munich, Germany

Abstract. Frama-C is a well-known platform for source-code analysis of
programs written in C. It can be extended via its plug-in architecture by
various analysis backends and features an extensive annotation language
called ACSL. So far it was hard to compare Frama-C to other software
verifiers. Our competition participation contributes an adapter named
Frama-C-SV, which makes it possible to evaluate Frama-C against other
software verifiers. The adapter transforms standard verification tasks
(from the well-known SV-Benchmarks collection) in a way that can be
understood by Frama-C and produces a verification witness as output.
While Frama-C provides many different analyses, we focus on the Evolved
Value Analysis (EVA), which uses a combination of different domains to
over-approximate the behavior of the analyzed program.

Keywords: Software verification · Program analysis · Formal methods · Compe-
tition on Software Verification · Comparative Evaluation · SV-COMP · Frama-C

1 Approach

This competition contribution is based on Frama-C [12], a program-analysis
platform for C programs. The purpose of the participation in the comparative
evaluation SV-COMP is to show the strengths of Frama-C when applied to
the problem of verifying C programs from the SV-Benchmarks [4] collection of
verification tasks.

2 Architecture

Although Frama-C has a large configuration space, it does not support standard
specifications as used in SV-COMP, and it does not produce verification witnesses
as default. In order to overcome this obstacle we implemented an adapter for
Frama-C using input and output transformers, and the adaption architecture
is illustrated in Fig. 1. In the following, we describe the artifacts and actors of
the participating verifier: in Sect. 2.1 we describe all the components that are
developed as part of the adapter, while in Sect. 2.2 we describe in more detail
how the used EVA analysis of Frama-C works.

c© The Author(s) 2022
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Fig. 1: Architecture of Frama-C-SV: the inputs and outputs of Frama-C are
translated to interface with the established standards as used by SV-COMP; the
components that are necessary to adapt Frama-C for comparison with other
verifiers amount to 678 lines of code mostly written in Python

2.1 Frama-C-SV

Input Transformer. The input transformer takes the program p and speci-
fication s and creates a new program p′ in which the specification s has been
expressed as Frama-C-specific annotations. Frama-C uses ACSL [1] as language
to specify annotations. The input transformer also selects configuration param-
eters for Frama-C that are best suited for the verification task. Currently we
encode reachability tasks into signed integer overflows by adding an artificial
overflow to the body of the function reach_error. This works well in practice
and is also sound, since if there were any other overflows, the task would contain
undefined behavior and would not be a valid reachability task in the first place.

Configuration Options. Depending on the input program and specification, we
can choose different options that are passed to Frama-C. In essence, this acts like
an algorithm selection [14] and, e.g., allows us to choose a different configuration
of Frama-C depending on the specified property.

Harness. Some programs in the SV-Benchmarks collection use specific func-
tions to model non-determinism. We provide implementations for those functions
(__VERIFIER_*) in a separate C program such that the semantics of those func-
tions can be understood by Frama-C. This separate C program is passed to
Frama-C together with the transformed program p′.

Output Transformer. The output of Frama-C needs to be interpreted regard-
ing the original specification, and depending on the outcome, a verification witness
needs to be generated. Thus, we need an output transformer for (a) providing a
verdict for the verification task and (b) providing a verification witness. Regard-
ing (a), the output transformer interprets the CSV report that can be generated
by Frama-C to determine whether the program was proven to be safe (verdict
TRUE), whether a specification violation occurred (verdict FALSE), or whether
no such statement can be made (verdict UNKNOWN). We also generate a minimal
correctness or violation witness for the verdicts TRUE and FALSE, respectively.
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The witness automata consist of only one node, which for violation witnesses is
marked as violation node. In the future we plan to augment these witnesses with
information such as invariants that have been found by Frama-C.

2.2 Frama-C

One of the strengths of Frama-C is its modular architecture [10], which allows
a configuration of the best possible analysis backends for a certain verification
problem. We choose the plug-in EVA [9], which is well suited for an automatic
analysis. Other plug-ins such as the Weakest-Preconditions (WP) plug-in require
hints from the user in order to be effective. In the following we will briefly describe
the most important aspects of the EVA analysis configuration that we use. For a
more detailed description, we refer the reader to the relevant literature [7, 8, 9].

Frama-C provides a meta-option called -eva-precision for the EVA plug-in
with possible values ranging from 0 to 11. With higher values for this option more
precise domains and thresholds are used, at the cost of increased computation
time. We currently use the maximum value of 11 in order to make the best use
of the 900 s CPU time limit. In the future we might want to iteratively increase
this value starting at lower precisions.

Domains. The EVA analysis always uses the domain cvalue, which tracks values
of variables either as constant values, sets, or intervals of possible values (including
modular congruence constraints). For pointer addresses, these are either tracked
as addresses with offsets or as so-called garbled mix, which overapproximates the
set of possible memory locations. In addition, depending on the precision level,
various other domains are used that we describe in the following. The domain
symbolic-locations tracks a map of symbolic locations to values, which is, e.g.,
helpful for analyzing expressions containing array accesses such as a[i]<a[j].
The equality domain tracks equalities of C expressions found in the code, whereas
the gauges domain tracks relations between variables in a loop with the goal
to discover linear inequality invariants [16]. Lastly the octagon domain tracks
certain linear constraints between pairs of variables [13]. As we use the highest
precision level, all of these domains are used in our contribution.

Precision of the State-Space Exploration. Apart from the domains, the
precision of state-space exploration in Frama-C is affected by various options. We
will describe some of these in the following; a complete list of affected settings and
values is always printed by Frama-C when the option eva-precision is specified
by the user. Option slevel (set to 5 000) determines how many separate states
are kept before new states will be joined into existing ones. Option ilevel (set
to 256) determines how many different values are tracked per variable before
overapproximating the value range. Option plevel (set to 2 000) affects the size
up to which arrays are tracked. The option auto-loop-unroll (set to 1 024) will
determine up to which bound a loop is considered for unrolling.
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3 Strengths and Weaknesses

The competition contribution shows the strengths of Frama-C in checking C pro-
grams for overflows and also —in the currently supported sub-categories 1— for
reachability. Here we are able to show that our results are comparable and often
surpass those of other tools based on abstract interpretation [11] such as Gob-
lint [15]. While the EVA analysis of Frama-C that we use is based on abstract
interpretation, the precision options described in Sect. 2.2 allow for a more precise
state-space exploration, which behaves more like model checking. More details
about the results can be found in the competition report [2] and artifact [3].

The approach that we describe in this paper creates a compatibility
layer between the abilities used by Frama-C and the standards used in the
SV-Benchmarks collection. While still a work in progress, we have shown that
it is possible to bridge this gap while preserving overall soundness. It is also
interesting to consider the results on verification tasks from the SV-Benchmarks
collections for a tool that did not participate before.

Although our approach is sound in general, we are likely not showcasing the full
potential of Frama-C. One aspect to consider here is the large configuration space,
which means there might be ways to verify more tasks with a better heuristic
for selecting the configuration options. The other aspect is that Frama-C also
provides different plug-ins such as the WP plug-in, which requires more (manual)
annotations, but can also potentially solve more tasks than the more automatic
EVA plug-in.

4 Software Project and Contributors

The software project Frama-C is developed at https://git.frama-c.com/
pub/frama-c/ and our adapter Frama-C-SV is developed at https://gitlab.
com/sosy-lab/software/frama-c-sv, both being released under open-source
licenses. The exact version of the adapter that participated in SV-COMP 2022
is also archived in the competition’s tool-archive repository 2 [6]. Frama-C was
funded by the European Commission in program Horizon 2020. The adapter
Frama-C-SV was funded by the DFG. We thank the Frama-C authors 3 for their
contribution to the software-verification community.

Data Availability Statement. All data of SV-COMP 2022 are archived as described
in the competition report [2] and available on the competition web site. This includes
the verification tasks [4], competition results [3], verification witnesses [5], scripts, and
instructions for reproduction. The version of Frama-C-SV as used in the competition is
archived together with other participating tools [6].

Funding Statement. This work was funded in part by the Deutsche Forschungsge-
meinschaft (DFG) – 378803395 (ConVeY).
1 We opted out of subcategories with unsound results caused by Frama-C making
assumptions that are different from the conventions of SV-COMP.

2 https://gitlab.com/sosy-lab/sv-comp/archives-2022/blob/svcomp22/2022/frama-c-sv.zip
3 https://frama-c.com/html/authors.html
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Cooperation Between Automatic and Interactive
Software Verifiers

Dirk Beyer , Martin Spiessl , and Sven Umbricht

LMU Munich, Munich, Germany

Abstract. The verification community develops two kinds of verification
tools: automatic verifiers and interactive verifiers. There are many such
verifiers available, and there is steady progress in research. However,
cooperation between the two kinds of verifiers was not yet addressed in
a modular way. Yet, it is imperative for the community to leverage all
possibilities, because our society heavily depends on software systems
that work correctly. This paper contributes tools and a modular design to
address the open problem of insufficient support for cooperation between
verification tools. We identify invariants as information that needs to
be exchanged in cooperation, and we support translation between two
‘containers’ for invariants: program annotations and correctness witnesses.
Using our new building blocks, invariants computed by automatic veri-
fiers can be given to interactive verifiers as annotations in the program,
and annotations from the user or interactive verifier can be given to
automatic verifiers, in order to help the approaches mutually to solve the
verification problem. The modular framework, and the design choice to
work with readily-available components in off-the-shelf manner, opens up
many opportunities to combine new tools from existing components. Our
experiments on a large set of programs show that our constructions work,
that is, we constructed tool combinations that can solve verification tasks
that the verifiers could not solve before.

Keywords: Software verification, Program analysis, Invariant genera-
tion, Automatic verification, Interactive verification, CPAchecker,
Frama-C

1 Introduction

Software verification becomes more and more important, and large IT companies
are investing into this technology [5,25,29]. There was a lot of progress in
the past two decades and many software-verification tools exist [7,8,15,34,42].
But there are also obstacles that hinder the application of new technology in
practice [3,35]. The verification tools can roughly be divided into two different
flavors: automatic verifiers, which are more suited for automatic settings such
as continuous-integration checks, and interactive verifiers, which can be fed
with proof hints to solve verification tasks. These different tools have different
strengths and often one verifier alone is not able to prove the correctness. Yet, the
c© The Author(s) 2022
B.-H. Schlingloff and M. Chai (Eds.): SEFM 2022, LNCS 13550, pp. 111–128, 2022.
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potential from cooperation between different kinds of verifiers is a largely unused
technology, although it is expected to significantly improve the state of the art.

In this paper, we contribute ideas to bridge the gap between automatic and
interactive verifiers by introducing cooperation between tools of both kinds. As a
starting point, we identify invariants as the objects that we need to exchange.
Then we investigate which interfaces are supported by different verification
tools. As a result, we choose verification witnesses [12] and annotations [6] as
containers for the invariants. We implement various transformers for exchanging
invariants between the different interfaces. This results in a modular composition
framework that is based on off-the-shelf components (in binary format). We
can use existing components because we base our work on existing interfaces
(witnesses and annotations).

Automatic verifiers, such as Cbmc [28], CPAchecker [18], Goblint [49],
Korn [32], PeSCo [48], Symbiotic [26], Ultimate Automizer [39],
and VeriAbs [1] (alphabetic order, just to name a few, for a larger list we refer
to a competition report [8]), usually take as input a program and a specification
(a.k.a. verification task) and compute invariants, in order to prove correctness.
The above-mentioned verifiers can save the computed invariants into a standard
witness file for later use (e.g., for result validation).

Interactive verifiers, such as Dafny [46], Frama-C [30], KeY [2], KIV [33],
and VeriFast [43] (alphabetic order, just to name a few, for a larger list we
refer to a competition report [34]), usually take as input a program with an
inlined specification (contracts, asserts), and during the verification process, the
verification engineer can interact with the verifier by providing invariants and
other information as annotations in the program.

The automatic verifiers use a standardized exchange format for verification
witnesses [12], and thus, we can easily plug-in all of them. The interactive verifiers
come each with their own annotation language. We decided to consider only
ACSL [6], which is supported by Frama-C [30], as a starting point for our study,
because it is well documented. In practice, many of these annotation languages
are similar, so our results apply to other annotation languages as well.

Contributions. This paper contributes the following in order to enable new
verification technology:

• We develop a novel compositional design to construct new tools for software
verification from existing ‘off-the-shelf’ components:
1. We construct interactive verifiers from automatic verifiers and validators.
2. We construct result validators from interactive verifiers.
3. We improve interactive verifiers by feeding them with invariants computed

by automatic verifiers.
• We identified an appropriate benchmark set of verification tasks with verifica-

tion witnesses that contain provably useful invariants. We also created second
benchmark set with manually added ACSL annotations containing (inductive)
loop invariants and assertions. In order to make our evaluation reproducible
and to offer the invariants to other researchers for further experiments, we
make both benchmark sets available.
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• We make all components and transformations available as open source, such
that other researchers and practitioners can reuse and experiment with them,
and verify our results (see Sect. 5 for the data-availability statement).

• We perform a sound experimental evaluation on a large benchmark set to
investigate the effectivity of the new compositions. The results are promising
and suggest that such compositions are worth to be considered in practice.

Combinations like the proposed cooperation approach can significantly impact
the way in which verification tools are used in practice. Currently, engineers need
to use both kinds of verifiers, automatic and interactive, in isolation, but our
study has shown that there is much potential in leveraging cooperation.

Related Work. In the following we discuss the most related existing approaches.

Transform Programs. This is not the first work to convert the semantics of witness
validation into a program. Some existing approaches [14] focus on violation
witnesses, while we solely focus on correctness witnesses. Most similar in this
regard is MetaVal [21]. The main difference is that we preserve the program
structure while MetaVal does an automaton product between the control-flow
automaton (CFA) of the program and witness automaton, and turns the result
back into a C program, which will result in a different syntactic structure.

Interact via Conditions. The approach conditional model checking [16] also
achieves cooperation between verifiers, but is limited to automatic verifiers
that support the condition format and the verifier that comes second uses the
condition to restrict the part of the state space that is explored. Our framework
supports more tools via the usage of standardized exchange formats, also considers
interactive verifiers, and the second verifier still performs a full proof. Another
approach that builds on conditions is alternating conditional analysis [36,37].
Here, the witness format is also used as standardized exchange format and multiple
verifiers are supported. However, the focus is on violation witnesses whereas we
are focussing on correctness witnesses. Instead of removing parts of the state
space, we actually extend the property that needs to be checked, such that it is
(potentially) easier to be proven. The same holds if we compare our component
Witness2Assert to reducer-based conditional model checking [17]. While both
approaches encode the important information into the original program, we
actually would need to assume the invariants instead of asserting them in order
to act as a reducer. Conditions are also used to improve testing [19,27,31].

Store and Exchange Proofs. Another parallel can be drawn to proof-carrying
code [44,45,47], where the proof of correctness is stored alongside the program.
We do the same here in cases where the added annotations actually suffice for
a full proof by Frama-C, but we also have the possibility to generate partial
proofs. Correctness witnesses are used to store intermediate results and to
validate results [11]. Proofs are also stored in the area of theorem provers [38]
(https://www.isa-afp.org/) and SAT solvers [40,41].
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1

2 int main() {
3 unsigned int x = 0;
4 unsigned int y = 0;
5

6 while (nondet_int()) {
7 x++;
8

9 y++;
10 }
11 assert(x==y);
12 return 0;
13 }

Fig. 1. Example program with
loop invariant x==y

1 //@ensures \return==0;
2 int main() {
3 unsigned int x = 0;
4 unsigned int y = 0;
5 //@loop invariant x==y;
6 while (nondet_int()) {
7 x++;
8 //@assert x==y+1;
9 y++;

10 }
11 assert(x==y);
12 return 0;
13 }

Fig. 2. Example program with
ACSL annotations

2 Preliminaries

For our framework that enables cooperation between automatic and interactive
verifiers we need to take into account the interfaces that each of them provide, i.e.,
how the information important for the verification process is communicated. For
automatic verifiers there exists a common exchange format [12] in which verifiers
export the program invariants they found. For interactive verifiers, we look at
ACSL [6], the specification language that is e.g. usedbyFrama-C. In the following,
we will quickly introduce these formats and the general verification problem we
are looking at using a small example program that is depicted in Fig. 1.

For the rest of the paper, we will focus on reachability properties, though our
approach can also be extended to work for other properties as well.1 The crucial
part of verifying reachability properties is to find the right loop invariants. In the
example program this would be the fact that x==y always holds before each loop
iteration. Please note that while this invariant is also present in the assertion
in line 11, for more complicated programs it is generally not the case that we
can find the invariants written in the code. Also, since there might be more than
one loop in a program, a verifier might only partially succeed and therefore only
be able to provide invariants for some of these loops, or only invariants that are
not yet strong enough to prove the program correct. This is why cooperation by
exchange of these discovered invariants can potentially lead to better results.

2.1 Verification Witnesses

In case an automatic verifier can prove our example program correct, information
like a discovered invariant is normally made available as shown in Fig. 3a in
the standard witness exchange format (described in [12], maintained at https://
github.com/sosy-lab/sv-witnesses) as correctness witness. There are also

1 Also, we will concentrate only on intraprocedural analysis, though our approach
works for interprocedural analysis as well.
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1 . . .
2 <node id="q1">
3 <data key=" inva r i an t ">( y == x )</data>
4 <data key=" inva r i an t . scope ">main</data>
5 </node>
6 <edge source="q0" ta rg e t="q1">
7 <data key="enterLoopHead">true </data>
8 <data key=" s t a r t l i n e ">6</data>
9 <data key=" end l i n e ">6</data>
10 <data key=" s t a r t o f f s e t ">157</data>
11 <data key=" endo f f s e t ">165</data>
12 </edge>
13 . . .

(a) Encoding of an invariant in a GraphML-based correctness witness

(b) Example witness automaton for the program from Fig. 1

Fig. 3. Example of the witness format and automaton; o/w stands for otherwise, i.e.,
all other possible program transitions

violation witnesses in case a violation has been found, but since we are mainly
interested in the invariants, we will focus on correctness witnesses and omit the
prefix “correctness” for the rest of the paper.

Such a witness contains a graph representation of an observer automaton.
Invariants can be given for nodes if they always hold when the witness automaton
is in the corresponding state. The semantics of the witness is given by constructing
the product of the witness automaton and the CFA of the program. This might
lead to edge cases where the exact semantics depends on how the tool interpreting
the witness constructs a CFA from the program, but in practice a witness
can be written such that it is mostly robust against those differences. For
further details on the semantics of the witness automata we refer the reader
the existing literature [12].

There are currently some restrictions on the contents of an invariant: An
invariant has to be a valid C expression that can be evaluated to an int at
the current scope in the program. It may contain conjunctions and disjunctions
but no function calls.

2.2 ACSL

Interactive verifiers rely on the user to provide the (non-trivial) invariants for
the proof. An example can bee seen in Fig. 2, where the loop invariant has been
added as ACSL annotation in line 5. Only when this information is externally
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provided (usually by the user), an interactive verifier like Frama-C is able to
prove that the assertion in line 11 can never be violated.

Loop annotations are only one of many kinds of annotation in ACSL. For
example we can see a function contract in line 1 and an assertion in line 8. These
annotations usually represent specifications which the implementation should
adhere to, but they can also be seen as invariants, since they should hold for
every possible program execution.

The basic building blocks of ACSL annotations are logic expressions that repre-
sent the concrete properties of the specification, e.g., a + b > 0 or x && y == z.
Logic expressions can be subdivided into terms and predicates, which behave
similarly as terms and formulas in first-order logic. Basically, logic expressions
that evaluate to a boolean value are predicates, while all other logic expressions
are terms. The above example a + b > 0 is therefore a predicate, while a + b
is a term. We currently support only logic expressions that can also be expressed
as C expressions, as they may not be used in a witness otherwise. Finding ways
to represent more ACSL features is a topic of ongoing research.

ACSL also features different types of annotations. In this paper we will only
present translations for the most common type of annotations, namely function
contracts, and the simplest type, namely assertions. Our implementation also
supports statement contracts and loop annotations.

All types of ACSL annotations when placed in a C source file must be given
in comments starting with an @ sign, i.e., must be in the form //@ annotation
or /*@ annotation */. ACSL assertions can be placed anywhere in a program
where a statement would be allowed, start with the keyword assert and contain
a predicate that needs to hold at the location where the assertion is placed.

3 A Component Framework for Cooperative Verification

The framework we developed consists of three core components that allow us to
improve interaction between the existing tools.
Witness2ACSL acts as transformer that converts a program and a correctness
witness given as witness automaton where invariants are annotated to certain
nodes, into a program with ACSL annotations.
ACSL2Witness takes a program that contains ACSL annotations, encodes
them as invariants into a witness automaton and produces a correctness witness
in the standardized GraphML format.
Witness2Assert is mostly identical to Witness2ACSL. The main difference
is that instead of adding assertions as ACSL annotations to the program, it
actually encodes the semantics of the annotations directly into the program such
that automatic verifiers will understand them as additional properties to prove.
On the one hand, this component enables us to check the validity of the ACSL
annotations forwhichACSL2Witness generated awitness, with tools that do not
understand the annotation language ACSL. On the other hand, this component is
also useful on its own, since it allows us to validate correctness witnesses and give
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(e) Interactive Verifier from Automatic Verifier

Fig. 4. Graphical visualization of the developed components to improve coop-
eration; we use the notation introduced in previous work [24]: p represents a
program, φb a behavior specification, ω a witness, and r a verification result

witness producers a better feedback on how their invariants are interpreted and
whether they are useful (validator developers can inspect the produced program).

These three components now enable us to achieve cooperation in many
different ways. We can utilize a proposed component framework [24] to visualize
this as shown in Fig. 4. The use case shown in Fig. 4a is to use Frama-C as a
correctness witness validator. This is interesting because it can further reduce
the technology bias (the currently available validators are based on automatic
verifiers [4,11,13,21], test execution [14], and interpretation [50]). By using
Witness2Assert instead of Witness2ACSL as shown in Fig. 4b we can also
configure new correctness witness validators that are based on automatic verifiers,
similar to what metaval [21] does, only with a different transformer. Figure 4c
illustratestheuseofWitness2ACSL(orsimilarlyforWitness2Assert)toinspect
the information fromthewitness as annotations in theprogramcode.

The compositional framework makes it possible to leverage existing correctness
witness validators and turn them into interactive verifiers that can understand
ACSL, as shown in Fig. 4d. Since we also have the possibility now to construct a
validator from an automatic verifier (Fig. 4b) we can turn automatic verifiers
into interactive ones as depicted in Fig. 4e. While automatic verifiers can already
make use of assertions that are manually added to the program, this now also
allows us to use other types of high-level annotations like function contracts
without having to change the original program.
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3.1 Witness2ACSL

To create an ACSL annotated program from the source code and a correctness
witness, we first need to extract location invariants from the witness, i.e., in-
variants that always hold at a certain program location (with program locations
we refer to the nodes of the CFA here). We can represent location invariants as
a tuple (l, φ) consisting of a program location l and an invariant φ. In general
there is no one-to-one mapping between the invariants in the witness and this
set of location invariants, since there might be multiple states with different
invariants in the witness automaton that are paired with the same program
location in the product with the CFA of the program. For extracting the set of
location invariants, we calculate this product and then take the disjunctions of
all invariants that might hold at each respective location.

3.2 ACSL2Witness

In order to convert the ACSL annotations present in a given program, we
transform each annotation into a set of ACSL predicates that capture the
semantics of those annotations and use the predicates as invariants in a witness.
This mode of operation is based on two observations: Firstly, for a given ACSL
annotation it is usually possible to find a number of ACSL assertions that are
semantically equivalent to that annotation. For example, a loop invariant can
be replaced by asserting that the invariant holds at the loop entry, i.e., before
each loop iteration. Secondly, most ACSL assertions are logically equivalent
to a valid invariant and can therefore be used in a witness. As mentioned in
Sect. 2.2, we currently only support those predicates which can be converted
into C expressions, which is a limitation of the witness format and might be
lifted in future versions of the format.

3.3 Witness2Assert

This component is very similar to Witness2ACSL. The main difference is that
instead of generating ACSL annotations we generate actual C code that encodes
the invariants as assertions (i.e., additional reachability properties). This transla-
tion is sound since assertions added this way do not hide violations, i.e., every
feasible trace that violates the original reachability property in the program
before the modification will either still exist or have a corresponding trace that
violates the additional reachability properties of the modified program. It is worth
mentioning that this is an improvement compared to existing transformations
like the one used in MetaVal [21], where the program is resynthesized from
the reachability graph and the soundness can therefore easily be broken by a
bug in MetaVal’s transformation process.
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4 Evaluation

We implemented the components mentioned in Sect. 3 in the software-verification
framework CPAchecker. In our evaluation, we attempt to answer the follow-
ing research questions:

• RQ1: Can we construct interactive verifiers from automatic verifiers, and
can they be useful in terms of effectiveness?

• RQ2: Can we improve the results of, or partially automate, interactive
verifiers by annotating invariants that were computed by automatic verifiers?

• RQ3: Can we construct result validators from interactive verifiers?
• RQ4: Are verifiers ready for cooperation, that is, do they produce invariants

that help other verifiers to increase their effectiveness?

4.1 Experimental Setup

Our benchmarks are executed on machines running Ubuntu 20.04. Each of
these machines has an Intel E5-1230 processor with 4 cores, 8 processing units,
and 33GB of RAM. For reliable measurements we use BenchExec [20]. For the
automatic verifiers, we use the available tools that participated in the ReachSafety
category of the 2022 competition on software verification (SV-COMP) in their
submission version2. Frama-C will be executed via Frama-C-SV [22], a wrapper
that enables Frama-C to understand reachability property and special functions
used in SV-COMP. Unless otherwise noted we will use the EVA plugin of Frama-
C. We limit each execution to 900 s of CPU time, 15GB of RAM, and 8 processing
units, which is identical to the resource limitations used in SV-COMP.

4.2 Benchmark Set with Useful Witnesses

In order to provide meaningful results, we need to assemble an appropriate
benchmark set consisting of witnesses that indeed contain useful information,
i.e., information that potentially improves the results of another tool.

As a starting point, we consider correctness witnesses from the final runs of
SV-COMP 2022 [8,10]. This means that for one verification task we might get
multiple correctness witnesses (from different participating verifiers), while for
others we might even get none because no verifier was able to come up with a
proof. We select the witnesses for tasks in the subcategory ReachSafety-Loops,
because this subcategory is focussed on verifying programs with challenging
loop invariants. This selection leaves us with 6242 correctness witnesses (without
knowing which of those actually contain useful information).

For each of the selected witnesses we converted the contained invariants into
both ACSL annotations (for verification with Frama-C) and assertions (for verifi-
cation with automatic verifiers from SV-COMP 2022). Here we can immediately
drop those witnesses that do not result in any annotations being generated, which
results in 1931 witnesses belonging to 640 different verification tasks.
2 https://gitlab.com/sosy-lab/sv-comp/archives-2022/-/tree/svcomp22/2022
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Table 1. Impact of cooperation: in each row, a ‘consuming’ verifier is fed with
information from witnesses of our benchmark set; ‘Baseline’ reports the number
of programs that the verifier proved correct without any help; ‘Improved via
coop.’ reports the number of programs that the verifier can prove in addition, if
the information from the witness is provided

Consuming Benchmark tasks (434 total) Projection on programs (230 total)
verifier Baseline Improved via coop. Baseline Improved via coop.

2ls 157 179 83 111
UAutomizer 360 47 186 31
Cbmc 281 53 142 28
CPAchecker 300 69 149 53
Dartagnan 280 82 139 51
Esbmc 239 133 121 76
gazer-theta 266 118 135 64
Goblint 38 106 21 47
UKojak 191 134 97 76
Korn 183 46 98 27
PeSCo 180 162 87 99
Pinaka 258 105 127 59
Symbiotic 349 51 174 32
UTaipan 334 65 172 37
VeriAbs 343 31 186 28
Frama-C 211 31 105 20

We then run each verifier for each program where annotations have been
generated, once with the original, unmodified program, and n times with the
transformed program for each of the n witnesses. This allows us determine whether
any improvement was achieved, by looking at the differences between verification
of the unmodified program versus verification of a program that has been enhanced
by information generated from some potentially different tool. Using this process,
we further reduce our benchmark set of witnesses to those that are useful for
at least one of the verifiers and thus enable cooperation. This leads to the final
set of 434 witnesses that evidently contain information that enables cooperation
between verifiers. These witnesses correspond to 230 different programs from the
SV-Benchmarks repository (https://github.com/sosy-lab/sv-benchmarks).
We made this benchmark set available to the community in a supplementary
artifact of this paper [23].

4.3 Experimental Results

RQ1. For the first research question, we need to show that we can construct
interactive verifiers from automatic verifiers, and that they can be useful in
terms of effectiveness. By “interactive verifier”, we mean a verifier that can verify
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more programs correct if we feed it with invariants, for example, by annotating
the input program with ACSL annotations. Using our building blocks from
Sect. 3, an interactive verifier can be composed as illustrated in Fig. 4e (that
is, configurations of the formACSL2Witness|Witness2Assert|Verifier). For
a meaningful evaluation we need a large number of annotated programs, which
we would be able to get if we converted the witnesses from SV-COMP using
Witness2ACSL in advance. But since the first component ACSL2Witness in
Fig. 4e essentially does the inverse operation, we can generalize and directly
consider witnesses as input, as illustrated in Fig. 4b (that is, configurations of
the form Witness2Assert|Verifier).

Now we look at the results in Table 1: The first row reports that cooperation
improves the verifier 2ls in 179 cases, that is, there are 179 witnesses that contain
information that helps 2ls to prove a program that it could not prove without
the information. In other words, for 179 witnesses, we ran Witness2Assert
to transform the original program to one in which the invariants from the
witness were written as assertions, and 2ls was then able to verify the program.
Since there are often several witnesses for the same program, 2ls verified in
total111uniqueuniqueprogramsthatitwasnotabletoverifywithouttheannotated
invariants as assertion.

In sum, the table reports that many programs that could not be proved
by verifiers when ran on the unmodified program, could be proved when the
verifier was given the program with invariants. Since we were able to show the
effect using generated witnesses, it is clear that manually provided invariants
will also help the automatic verifiers to prove the program. We will continue
this argument in Sect. 4.4.

RQ2. For the second research question, we need to show that our new design
can improve the results of interactive verifiers by annotating invariants that
were computed by automatic verifiers. Using our building blocks from Sect. 3,
we assemble a construction as illustrated in Fig. 4a (i.e., configurations of the
formWitness2ACSL|Verifier).Wetakeaprogramandawitness and transform
the program to a new program that contains the invariants from the witness
as ACSL annotations.

Let us consider the last row in Table 1: Frama-C is able to prove 20 programs
correct using invariants from 31 witnesses. Those 31 witnesses were computed by
automatic verifiers, and thus,we can conclude that our newdesign enables using re-
sults of automatic verifiers to help the verification process of an interactive verifier.

RQ3.For the third research question,we need to show thatwe can construct result
validators from interactive verifiers and that they can effectively complement
existing validators. A results validator is a tool that takes as input a verification
task, a verdict, and a witness, and confirms or rejects the result. In essence,
due to the modular components, the answer to this research question can be
given by the same setup as for RQ2: If the interactive verifier (Frama-C) was
able to prove the program correct, then it also has proved that the invariants
provided by the witnesses were correct, and thus, the witness should be confirmed.
Frama-C has confirmed 31 correctness witnesses.

Cooperation between Automatic and Interactive Software Verifiers 71



122 D. Beyer, M. Spiessl, and S. Umbricht

Table 2. Proof of cooperation: for each ‘producing’ verifier, we report the number
of correctness witnesses that help another verifier to prove a program which it
otherwise could not; we also list the number of cases where this cooperation
was observed (some witnesses improve the results of multiple verifiers); we omit
producers without improved results

Producing verifier Useful witnesses Cases of cooperation

2ls 1 1
Cbmc 20 22
CPAchecker 148 533
Goblint 2 3
Graves-CPA 151 823
Korn 10 15
PeSCo 78 271
Symbiotic 5 10
UAutomizer 19 70

Sum 434 1748

New validators that are based on a different technology are a welcome com-
plement because this reduces the technology bias and increases trust. Also, the
proof goals for annotated programs might be interesting for verification engineers
to look at, even or especially when the validation does not succeed completely.

RQ4. For the fourth research question, we report on the status of cooperation-
readiness of verifiers. In other words, the question is if the verifiers produce
invariants that help other verifiers to increase their effectiveness.

In Table 2 we list how many useful witnesses each verifier contributed to
our benchmark set of useful witnesses. The results show that there are several
verifiers that produce significant amounts of witnesses that contain invariants
that help to improve results of other verifiers.

4.4 Case Study on Interactive Verification with Manual Annotations

So far, we tested our approach using information from only the SV-COMP
witnesses. For constructing interactive verifiers, we would also like to evaluate
whether our approach is useful if the information is provided by an actual human
in the form of ACSL annotations.

ACSL Benchmark Set. To achieve this, we need a benchmark set with tasks
that contain sufficient ACSL annotations and also adhere to the conventions of
SV-COMP. Since to our knowledge such a benchmark set does not exist yet, we
decided to manually annotate assertions and loop invariants to the tasks from
the SV-Benchmarks collection ourselves. While annotating all of the benchmark
tasks is out of scope, we managed to add ACSL annotations to 125 tasks from
the ReachSafety-Loops subcategory. This subcategory is particularly relevant,
since it contains a selection of programs with interesting loop invariants. The loop
invariants we added are sufficient to proof the tasks correct in a pen-and-paper,
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Table 3. Case study with 125 correct verification tasks where sufficient, inductive
loop invariants are manually annotated to the program; we either input these to
Frama-C or automatically transform the annotations into witnesses and try to
validate these witnesses using CPAchecker’s k -induction validator (with k fixed
to 1); the listed numbers correspond to the number of successful proofs in each
of the sub-folders; we also list the number of successful proofs if no invariants
are provided to the tools

Subfolder Tasks
Frama-C k -induction

with invs. without invs. with invs. without invs.
loop-acceleration 17 3 1 11 4
loop-crafted 2 0 0 2 2
loop-industry-pattern 1 0 0 1 1
loop-invariants 8 3 0 8 0
loop-invgen 5 0 0 2 0
loop-lit 11 6 0 10 2
loop-new 5 1 0 5 2
loop-simple 6 6 0 1 1
loop-zilu 20 9 0 19 7
loops 23 13 6 17 15
loops-crafted-1 27 0 0 12 1
total 125 41 7 88 35

Hoare-style proof. Our benchmark set with manually added ACSL annotations is
available in the artifact for this paper [23].3

Construction of an Interactive Verifier. With our ACSL benchmark set, we
can now convert a witness validator into an interactive verifier as depicted in
Fig. 4d. For the validator we use CPAchecker, which can validate witnesses by
using the invariants for a proof by k -induction. By fixing the unrolling bound of
the k -induction to k = 1, this will essentially attempt to prove the program correct
via 1-induction over the provided loop invariants. If we do not fix the unrolling
bound, the k-induction validation would also essentially perform bounded model
checking, so we would not know whether a proof succeeded because of the
provided loop invariants or simply because the verification task is bounded to
a low number of loop iterations.

Since this 1-induction proof is very similar to what Frama-C’s weakest-
precondition analysis does, we can directly compare both approaches. As some
tasks from the benchmark set do not require additional invariants (i.e., the

3 Our benchmark set is continuously updated and can also be found at: https://
gitlab.com/sosy-lab/research/data/acsl-benchmarks

Cooperation between Automatic and Interactive Software Verifiers 73

https://gitlab.com/sosy-lab/research/data/acsl-benchmarks
https://gitlab.com/sosy-lab/research/data/acsl-benchmarks


124 D. Beyer, M. Spiessl, and S. Umbricht

property to be checked is already inductive) we also analyze how both tools
perform on the benchmark set if we do not provide any loop invariants.

The experimental setup is the same described in Sect. 4.1, except that we use
a newer version of Frama-C-SV in order to use the weakest-precondition analysis
of Frama-C. The results are shown in Table 3, which lists the number of successful
proofs by subfolder. We can observe that both Frama-C and our constructed
interactive verifier based on CPAchecker can make use of the information from
the annotations and prove significantly more tasks compared to without the
annotated loop invariants. This shows that the component described in Fig. 4d
is indeed working and useful.

5 Conclusion

The verification community integrates new achievements into two kinds of tools:
interactive verifiers and automatic verifiers. Unfortunately, the possibility of
cooperation between the two kinds of tools was left largely unused, although
there seems to be a large potential. Our work addresses this open problem,
identifying witnesses as interface objects and constructing some new building
blocks (transformations) that can be used to connect interactive and automatic
verifiers. The new building blocks, together with a cooperation framework from
previous work, make it possible to construct new verifiers, in particular, automatic
verifiers that can be used interactively, and interactive verifiers that can be fed
with information from automatic verifiers: Our new program transformations
translate the original program into a new program that contains invariants in
a way that is understandable by the targeted backend verifier (interactive or
automatic). Our combinations do not require changes to the existing verifiers:
they are used as ‘off-the-shelf’ components, provided in binary form.

We performed an experimental study on witnesses that were produced in the
most recent competition on software verification and on programs with manually
annotated loop invariants. The results show that our approach works in practice:
We can construct various kinds of verification tools based on our new building
blocks. Instrumenting information from annotations and correctness witnesses
into the original program can improve the effectivity of verifiers, that is, with the
provided information they can verify programs that they could not verify without
the information. Our results have many practical implications: (a) automatic
verification tools can now be used in an interactive way, that is, users or other
verifiers can conveniently give invariants as input in order to prove programs
correct, (b) new validators based on interactive verifiers can be constructed in
order to complement the set of currently available validators, and (c) both kinds
of verifiers can be connected in a cooperative framework, in order to obtain more
powerful verification tools. This work opens up a whole array of new opportunities
that need to be explored, and there are many directions of future work. We hope
that other researchers and practitioners find our approach helpful to combine
existing verification tools without changing their source code.
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A Unifying Approach for
Control-Flow-Based Loop Abstraction

Dirk Beyer , Marian Lingsch Rosenfeld , and Martin Spiessl

LMU Munich, Munich, Germany

Abstract. Loop abstraction is a central technique for program analysis,
because loops can cause large state-space representations if they are
unfolded. In many cases, simple tricks can accelerate the program analysis
significantly. There are several successful techniques for loop abstraction,
but they are hard-wired into different tools and therefore difficult to
compare and experiment with. We present a framework that allows us
to implement different loop abstractions in one common environment,
where each technique can be freely switched on and off on-the-fly during
the analysis. We treat loops as part of the abstract model of the program,
and use counterexample-guided abstraction refinement to increase the
precision of the analysis by dynamically activating particular techniques
for loop abstraction. The framework is independent from the underlying
abstract domain of the program analysis, and can therefore be used for
several different program analyses. Furthermore, our framework offers a
sound transformation of the input program to a modified, more abstract
output program, which is unsafe if the input program is unsafe. This allows
loop abstraction to be used by other verifiers and our improvements are
not ‘locked in’ to our verifier. We implemented several existing approaches
and evaluate their effects on the program analysis.

Keywords: Software verification · Program analysis · Loop abstraction
· Precision adjustment · Counterexample-guided abstraction refinement ·
CPAchecker

1 Introduction

Software programs are among the most complex systems that mankind produces.
Programs tend to have a complex state space and hence verifying the correctness
of software programs is a difficult task. Abstraction is a key ingredient to every
successful approach to prove the correctness of large programs. Let us look at
a few examples: Constant propagation [21] abstracts from concrete values for
a variable if the value of the variable is not constant. Counterexample-guided
abstraction refinement (CEGAR) [14] is an algorithm to incrementally refine
the level of abstraction until the abstract model is detailed enough to prove
the correctness, while the abstract model is still coarse enough to make the
analysis feasible. Predicate abstraction [18,20] uses an abstract domain where
the abstract state is described as a combination of predicates from a certain
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given precision [8] (a set of predicates). The precision is refined with CEGAR
by adding new predicates to the precision. Shape analysis [25] abstracts from
concrete data structures on the heap and stores only their shape for the analysis.

Finally, loop abstraction is a technique to abstract the behavior of a program
with a loop in such a way that the correctness of the abstract program implies
the correctness of the original program. There are several approaches for loop
abstraction proposed in the literature [15,16,19,22]. While we will concentrate
on reachability here, this technique can also be applied to other properties.

We contribute a formalism that treats loop abstraction as an abstraction
in the sense of CEGAR: The precision is a choice of a certain approach to
loop abstraction (level of abstraction of the loop). If the abstract model of the
program defined by this precision (= loop abstraction) is too coarse to prove
correctness, then we refine the abstract model by setting the precision to a
different (more precise) loop abstraction.

Example. Let us consider the small program in Fig. 1a. The program uses one
variable x, which is initialized with some large, even value and decreased by 2
in a loop. The specification requires that the value of x is even after the loop
terminates. It is easy for a human to see that an even number, decreased by an
even number, always yields an even number, no matter how often this is done. In
other words, we discover the invariant that x is even and check if it is preserved.
However, in this example there exists an even simpler invariant: The data type of
x is unsigned int, which means values greater or equal to zero. The control flow
cannot leave the loop as long as x is greater than 0. Once the control flow leaves
the loop, we know that the value is 0, and thus, even. The loop-exit condition,
together with the above argument, implies the specification. A program analysis
that cannot discover this (e.g., bounded model checking, explicit-value analysis,
interval analysis) has to unroll the loop many times.

But we can construct the loop abstraction in Fig. 1b, which executes the new
body only if the loop condition x > 0 is fulfilled, and the new body models all
behaviors that occur when the original program enters the loop. The new body
havocs (sets to an arbitrary value) the variable x. Then it constrains the values
of x by blocking the further control flow if the loop condition still holds, i.e.,
the original program would stay in the loop. Surprisingly, since the loop-exit
condition now implies the specification, this overapproximation of the original
program still satisfies the specification.

Contributions. This paper makes the following contributions:

• We propose a framework that can express several existing approaches for
loop abstraction and makes it possible to compare those different approaches.

• The framework allows to switch dynamically, on-the-fly, between different
loop-abstraction techniques, selecting different abstraction levels.

• The framework is independent from the underlying abstract domain of the
program analysis. The loop abstractions work using transformations of the
control flow. Once implemented, a strategy for loop abstraction is applicable
to several abstract domains.

80 A Unifying Approach for Control-Flow-Based Loop Abstraction
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1 unsigned int x = 0x0ffffff0;
2 while (x > 0) {
3 x −= 2;
4 }
5 assert(!(x % 2)));

(a) Original program

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 x = nondet_uint();
4 if (x > 0) {
5 return 0;
6 }
7 }
8 assert(!(x % 2)));

(b) Havoc abstraction

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 long long iterations = x/2;
4 x −= 2∗iterations;
5 if (x > 0) {
6 x −= 2;
7 }
8 }
9 assert(!(x % 2)));

(c) Constant extrapolation

1 unsigned int x = 0x0ffffff0;
2 if (x > 0) {
3 x = nondet_uint();
4 if (x <= 0) {
5 return 0;
6 }
7 x −=2;
8 if (x > 0) {
9 return 0;

10 }
11 }
12 assert(!(x % 2)));

(d) Naive abstraction

Fig. 1. Application of various loop abstraction strategies on the benchmark
program simple 4-2.c from the SV-Benchmarks set; only the body of the main
function is shown here

• We export the modified C program, such that the loop-abstraction techniques
can be used by other verifiers.

• The framework is publicly available as an extension of the open-source
verification framework CPAchecker.

• We evaluate the effectiveness and efficiency of the framework on a benchmark
set from the publicly available collection of verification tasks SV-Benchmarks,
and compare it with state-of-the-art tools.

Related Work. In the following we discuss the most related existing approaches.

Loop Acceleration. As this is an obvious way to speed up verification, many
different approaches have been proposed to calculate the effects of a loop execu-
tion [17,19,26]. We present only a very basic form where we accelerate variables
that are incremented by a fixed value in loops with a known number of itera-
tions, since our interest is rather into gaining insights into how different existing
approaches can be combined to further improve their usefulness. As such we are in-
terested in implementing other approaches for loop acceleration as strategies into
our framework, rather than coming up with new ways of accelerating single loops.
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Loop Abstraction. While loop acceleration is useful also in other areas, e.g., for
compiler optimizations, verifiers have the possibility of using loop abstractions
(i.e., overapproximatons) instead, for aiding the generation of correctness proofs.
Since loop abstraction is closely related to invariant generation, and this is the
main challenge in software verification, there is a large body of literature. We
will therefore look at only those publications that also make use of the idea to
encode the abstractions into the source code. The abstraction techniques we
describe in this paper are taken taken from existing publications [15,16]. As with
loop accelerations, our goal is not to invent new strategies, but rather investigate
how existing strategies can be combined. Also VeriAbs [1] uses a variety of
loop-abstraction techniques, but only statically generates a program that is then
checked by a third-party verifier. As fallback, the original program is verified.

Encoding Loop Abstractions into the Program. We found one publication that also
encodes loop accelerations into a modified program [23]. Here, the accelerated loop
variant is added in such a way that the alternative code will be entered based on
non-deterministic choice. The main motivation is to investigate how this can cre-
ate synergies with invariant generation, i.e., whether existing invariant generators
can be improved by also providing the results of the acceleration in the program.
Compared to that, our approach is more general, as we also consider overapprox-
imating loop abstractions. Instead of non-deterministic choice, we present an
approach to determine which strategies to use automatically using CEGAR.

2 Preliminaries

We quickly introduce some notation and common concepts that will later be
used in Sect. 3.1.

Program Semantics. For simplicity we will consider a programming language
where the set Ops of possible program operations consists of simple assignments
and assumptions. We represent the programs as control-flow automata (CFA).
A CFA C = {L, l0, G} consists of a set L of program locations (modeling the
progam counter), an initial program location l0, and a relation G ⊆ L×Ops ×L
that describes the control-flow edges (each modeling the flow from one program
location via a program operation to a successor program location). The concrete
semantics of such a CFA is given by the (labeled) transition relation → ⊆ C×G×C

over the set C of concrete program states. We will write c1
g→ c2 if the concrete

state c2 can be reached from c1 via the control-flow edge g ∈ G.

Program Analysis. Our approach will work for many different kinds of program
analysis. Typically, a program analysis is characterized by some abstract domain
D that defines a set E of abstract states as well as an abstract transfer relation
�⊆ E × G × E, which determines which abstract states can be reached from the
initial state e0 ∈ E. One common way to design a program analysis is to determine
the set of reachable abstract states by keeping track of a set reached ⊆ E of
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already reached abstract states and a set (or list) waitlist ⊆ E of abstract
states that still need to be explored.1

CEGAR. Whenever a program analysis finds a counterexample, there are two
possibilities. Either this turns out to correspond to an actual execution trace of the
original program, and we have shown that the program violates the specification,
or the counterexample is infeasible, meaning that it is only found because the
abstraction level of the analysis is too coarse. This has led to the development of
counterexample-guided abstraction refinement, or CEGAR for short [14]. The idea
here is that one can extract information from the counterexample with which the
abstract domain can be refined. For example with predicate abstraction[2], one
can use the counterexample to compute predicates that —if tracked— rule out
the infeasible counterexample. In order to formalize CEGAR, we will introduce
the refinement operator:

refine : (reached, waitlist) �→ (reached’, waitlist’)

Once an infeasible counterexample is found, the refinement operator is called
with the current set of reached abstract states and the waitlist. This operator
then extracts information from its inputs and returns a new set of reached states
and a new waitlist which will then be used for further state-space exploration.
In case the counterexample is feasible, the refinement operator will not remove
the violation state(s) from the set of reached abstract states, which signals that
the analysis found a bug and can terminate.

3 Loop Abstractions

We propose the approach of multi-strategy program analysis, which enables one
tool to use several different loop-abstraction strategies simultaneously in one
state-space exploration. In the following, we will first look at the theory behind
loop abstractions and some practical examples for such strategies. After that, we
will introduce our CEGAR refinement approach for loop abstractions in Sect. 3.2.

3.1 Theory

For verification, we usually use overapproximations if the goal is to find a proof
of correctness. For loop control flow, such an overapproximation is called a loop
abstraction, while precise methods are called loop acceleration. Whenever it is
not important whether the technique is precise or overapproximating, we will
just refer to the techniques as loop abstraction.

It is common to apply loop abstractions by replacing the loop statement S with
some alternative program statement S′ [1,23]. Intuitively, it is often clear whether
this will overapproximate the program behavior, but we can also formalize this

1 In the literature, this is also know as a worklist algorithm [24]; here we will adhere
to the terminology used in the Handbook of Model Checking [6].
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using strongest postconditions. We write sp(S, P ) for the strongest postcondition
of a program statement S and a predicate P . Assume we have a program
statement S that contains a loop, i.e., S = while (C) do B, where the body B

inside S may itself contain loops. For a loop abstraction, the goal is to find an
alternative program statement S′ such that {P}S{sp(S′, P )} is a valid Hoare
triple. If this requirement is fulfilled, then we can soundly replace S by S′ in the
program for the purpose of verification. In other words, S′ is an abstraction of S
if sp(S, P ) ⇒ sp(S′, P ). It is possible to find such rewriting schemes for a loop
without knowing the exact form of the loop. This is best shown by two examples.

Havoc Abstraction. Let us look at the rather simple loop abstraction that
served as example in Sect. 1, which we call havoc abstraction. Here we replace the
loop while C do B by a havoc statement havoc(mod(B)) that is guarded in such
a way to ensure it is only executed if the loop condition holds, and after it is exe-
cuted, the loop condition does not hold anymore. The havoc statement discards
any information about the values of a set of variables. Here we use the set mod(B)
of variables that are modified in the loop body B. We denote the strongest postcon-
dition of this havoc statement by HB,P = sp(havoc(mod(B)), P ). We can easily
prove soundness of the havoc abstraction by establishing that HB,P is actually a
loop invariant and therefore the Hoare triple {P} while C do B {HB,P ∧ ¬C}
holds.2

It is obvious that we can find an alternative statement S′ for the while-loop
that has the same post condition:

sp(havoc(mod(B));assume(!C), P ) = HB,P ∧ ¬C

We therefore have found a statement whose strongest post is an overapproximation
of the strongest post of the while loop.

Naive Abstraction. Another way to abstract a loop is the so-called naive
loop abstraction [16]. An application to the example program from Fig. 1a is
shown in Fig. 1d. Here one assigns non-deterministic values to all the variables
that are modified in the loop (provided the loop condition holds when reaching
the loop). Then the loop body is executed once, after which the negated loop
condition is added as assumption. This essentially encodes the information that
if the loop was entered, there is a “last” iteration of the loop after which the
loop condition does not hold anymore and the loop therefore terminates. This is
overapproximating the behavior of the original loop, since a loop, in general, is
not guaranteed to terminate. From the Hoare proof of the naive abstraction, we
get that sp(B,C ∧ HB,P ) ∨ P is an invariant of the while loop.3

The postcondition (sp(B,C ∧ HB,P ) ∨ P ) ∧ ¬C that is shown in the proof is
also the post condition of the alternative code for the loop described above:

sp(if C then {havoc(mod(B));assume(C);B;assume(!C)}, P ) =

(sp(B,C ∧ HB,P ) ∨ P ) ∧ ¬C

2 Proof can be found at: https://www.sosy-lab.org/research/loop-abstraction/
3 Proof can be found at: https://www.sosy-lab.org/research/loop-abstraction/
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Observations. We can make three interesting observations by looking at these
proofs. Firstly, we eliminated the outermost loop from the statement S, at the
cost of overapproximation. If this can be achieved iteratively until no loops
are left, the resulting overapproximation can be quickly checked by a (possibly
bounded) model checker, as no loops need to be unrolled anymore.

Secondly, in the proof we actually used an invariant for applying the while-
rule. Every loop-abstraction strategy can therefore be seen as a way to generate
invariants for a loop based on some structural properties of the loop. In the
example of the havoc abstraction, we used the fact that for a precondition P ,
HB,P is always preserved by a loop (provided there is no aliasing). The invariant
depends on the precondition P , so for every precondition with which the loop
can be reached, the loop abstraction yields a different state invariant. Without
knowing P it can only be expressed as a transition invariant that may refer to
the “old” values of variables before entering the loop. One can compute a state
invariant by assuming the most general precondition P = true, but this will
often eliminate most of the useful information from the invariant. As transition
invariants can often be expressed precisely by program statements, this explains
why for loop abstraction, we choose to replace the loop statement with alternative
program statements that capture the corresponding transition invariant. This
invariant view on loop abstraction works in both ways, meaning that if an
invariant is provided for a loop, we can use this invariant for abstracting the loop.
It is even possible to construct an inductive proof this way, i.e., transforming the
loop in such a way that model checking of the resulting program will essentially
carry out a combined-case (k-)inductive proof [15].

The third observation is that the invariant of one loop abstraction might
sometimes imply the invariant of another loop abstraction. This is the case in the
two examples: the invariant for havoc loop abstraction is implied by the invariant
we use in the naive loop abstraction. This means we can build a hierarchy, where
naive loop abstraction overapproximates the original loop, and havoc abstraction
overapproximates naive abstraction. We will exploit the idea of this abstraction
hierarchy later in Sect. 3.2 for an abstraction-refinement scheme.

Constant Extrapolation. For loops where we can calculate the exact number
of iterations as well as the final values of the variables assigned in the loop
(e.g., because the loop is linear or otherwise easily summarizable) we can simply
accelerate the loop by replacing it with assignment statements for the final variable
values. The application of constant extrapolation to the program from Fig. 1a is
shown in Fig. 1c. For the program in Fig. 2, this would replace the loop with a
statement that increments the variable i by N. For programs like the one shown
in Fig. 3 that contains a potential property violation inside the loop, one has to
be careful to preserve those violations that can occur in any of the loop iterations.

3.2 Combining Strategies for Loop Abstraction

In Sect. 3.1 we already introduced various ways to abstract loops, which we will
in the following refer to as strategies. Intuitively, a strategy is a way to compute
an abstraction of a loop that is helpful to verify a program.
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Since there are often many different strategies that could be applied to a loop
in the program, we need to make some choice about which strategies to use. The
simplest approach that is used in the state-of-the-art verification tool VeriAbs
is to choose the most promising that can be applied for each loop, generate a
program where the loops are rewritten according to these strategies, and hand
this program over to a (possibly bounded) verifier for verification.

This has the downside that in cases where the program contains multiple
loops, the chosen approximations might be either not abstract enough for the
verifier to calculate the proof efficiently or too abstract, such that the proof of
the property does not succeed. Choosing a good abstraction level is one of the
key challenges in software verification. One successful way how this can be solved
is counterexample-guided abstraction refinement (CEGAR) [14].

Our idea is therefore to use CEGAR in order to refine the abstraction of
the program dynamically during the program analysis, which allows us to try
multiple strategies for the same loop in the program, and even different strategies
for the same loop at different locations in the state-space exploration. Because
a program analysis operates on the CFA, and loop abstractions correspond to
transition invariants that can often be expressed naturally as a sequence of
progam instructions, we choose to encode the loop abstractions directly into
the CFA. This allows us to realize the CEGAR approach for loop abstractions
independently of the details of the exact program analysis that is used.

Encoding of Strategies. We encode strategies that are to be considered directly
into the CFA of the program. The CFA for a program statement S such as a
loop has a unique entry node α and a unique exit node ω. The application of
a strategy to this statement results in the statement S′ and a CFA with an
entry node α′ and an exit node ω′. We attach the CFA for the statement S′ of a
strategy with two dummy transitions α → α′ and ω′ → ω, as depicted in Fig. 4.
Here, we explicitly denoted the entry edge for the strategy application with the
keyword enter followed by an identifier that makes clear which strategy was
applied (here, h stands for havoc). The resemblance to function call and return
edges is not a coincidence. By keeping track of the currently entered strategy
applications, e.g. in form of a stack, it will always be clear which parts of the
execution trace correspond to executions in the original program, and which
parts are part of some —potentially overapproximating— strategy application.
For nested loops, we can apply the strategies starting from the inner-most loop
and construct alternatives in the CFA for all possible strategy combinations.

A CFA that is augmented with strategies in this way contains all program
traces of the original program, and can non-deterministically branch into any of
the strategy applications. In order to make use of this modified CFA, the analysis
needs to be able to distinguish between the original control flow and nodes in
the CFA at which we start to apply a particular strategy. The important nodes
for this are the entry nodes for each of the strategy applications, so we augment
the modified CFA C = (L, linit, G) with a strategy map σ : L → N that maps
each CFA node l ∈ L to a strategy identifier σ(l) ∈ N and call the resulting
tuple Γ = (C, σ) a strategy-augmented CFA. The set N of strategy identifiers
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1 void main() {
2 int i = 0;
3 while (i<N) {
4 i=i+1;
5 }
6 assert (i==N);
7 }

Fig. 2. Example program 1: potential
property violation outside the loop

1 void main() {
2 int i = 0;
3 while (i<N) {
4 i=i+2;
5 assert(i%2==0);
6 }
7 }

Fig. 3. Example program 2: potential
property violation inside the loop

2

3 4

6

7

8

9

err

α

ω

α′

ω′

i:=0 [i<N]

i:=i+1

enter<h>

if(i<N) {
i:=nondet_int()
assume(i>=N)

}
leave<h>

[i>=N]

[i!=N][i==N]

Fig. 4. CFA C of example program from Fig. 2, with an additional application
of the havoc strategy

contains a special strategy b, which we call the base strategy. The strategy map σ
maps the entry node for each strategy application to the corresponding strategy’s
identifier, while all other nodes are mapped to the base strategy b.

In a program analysis, we can now use the strategy map for selecting exactly
the transitions we want to follow. For example, we can always follow the original
program by excluding all transitions to CFA nodes with an associated strategy
identifier that is different from the base strategy. By using a more general
selection function, we have fine-grained control over which strategies we are
applying, which we will describe in the following. As this modifies only the
transition relation of the state-space exploration, it can be seamlessly applied
to a wide variety of such algorithms.

Selection of Strategies. At any node l in an augmented CFA, we can calculate
the set A ⊆ N of available strategies as:

A = {σ(l′) | ∃g ∈ G : l
g→ l′}

In order to define which strategies should be applied (e.g., because others overap-
proximate too much and lead to false alarms), we define a precision set πS ⊆ N
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which we call the strategy precision. This precision can be tracked along each
abstract state of the program analysis. In practice this precision is tracked for each
program location separately, but for simplicity of presentation, we will only con-
sider a global precision here. Semantically the precision expresses which strategies
are allowed to be taken from the current abstract state. We can now express differ-
ent selection approaches by defining a function select : P(N) × P(N) → P(N),
which needs to fulfill the property select(A, πS) ⊆ A ∩ πS .

The exact choice of the function select depends on the use case and the set
of available strategies. One possibility which we will use is to define a partial
order � over the set of available strategy identifiers, and derive the selection
function in the following way:

select(A, πS) = {s ∈ A ∩ πs |� ∃s′ ∈ A ∩ πs : s � s′} (1)

Such a partial order can be based on the invariant hierarchy of the loop-
abstraction strategies, as motivated in Sect. 3.1. It is of course not guaranteed
that deciding whether one invariant implies the other is actually decidable. But
depending on the strategies considered, one can also just take some design
decisions regarding the partial order. In general it is desirable to have the base
strategy as greatest lower bound, since as long as only overapproximation is
considered, this is the most precise strategy.

The selection function above will return the most abstract strategies, i.e.,
that overapproximate most. Once we rule those out by removing their strategy
identifier from the precision, more and more precise strategies will be returned.

CEGAR Refinement Chaining. We can now define the refinement operator
refine for precision-based loop acceleration on top of any refiner of an existing
analysis, which we will call the wrapped refiner refineW. This can be done by
composing the refinement operator refineW with the strategy-refinement op-
erator refineS, which updates the strategy precision with information from
the error path:

refine = refineS ◦ refineW (2)

Since the wrapped refinement operator is executed first, it gets the possibility
to remove all error states from the reached set, in which case refineS has nothing
to do and will just return its inputs. If there are still error states left in the
reached set after refineW was executed, this means that the inner refinement
has discovered a feasible error path for the augmented CFA. Now it depends on
whether any overapproximating strategies were used on the error paths that are
present in the reached set. If there are none, then the error path is indeed also
present in the real program and refineS returns the reached set with the error
state(s), indicating that a bug has been found. An example for this would be the
case where only constant extrapolation has been used along the path. If there are
overapproximating strategies such as the havoc abstraction on an error path, we
can adapt the strategy precision in order to rule out that we will find the same
error path again after the refinement. For that, we locate the first abstract state
on the path whose successor enters an overapproximating strategy (the so-called
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pivot state) and adapt the strategy precision such that this strategy can not be
selected in the future. We then remove all (transitive) successor abstract states
of that pivot state from the set of reached abstract states.

Example. The chaining of the refinement operators is best visualized by looking
at an example. Using the running example from Fig. 2, we can look at the key
steps in the CEGAR refinement. Let us assume we are only using the havoc
strategy, i.e., the augmented CFA will look like shown in Fig. 4. Based on this CFA,
an example for how a generic state-space exploration could look like is depicted
in Fig. 5. In Fig. 5a we start at an abstract state with three components. The first
one encodes the program location and is set to 2, since program location 2 is the
initial progam location in the CFA. Component e0 encodes the analysis-specific
domain part of the abstract state, e.g., for predicate abstraction this could be
a set of predicates. The last component is the strategy precision. It contains
the base strategy (b) as well as the havoc strategy (h). From this state, the
state-space exploration continues to program location 3, where the selection of
strategies in the transition relation only allows us to proceed into the application
of the havoc abstraction. From there, we eventually reach the error location.

This is where the CEGAR refinement operator is first called. Since the path
formula to the error location is actually feasible, the wrapped refinement operator
return the inputs unchanged, and our strategy refinement operator takes over.
Here we discover that an overapproximating strategy was used on the path. We
update the strategy precision of the second state (the one at program location 3)
such that the havoc strategy cannot be chosen anymore. We then remove all
successors of the pivot state from the set of reached abstract states (and the
waitlist), add the modified state to the waitlist, and return both sets.

The resulting reachability graph will look like in Fig. 5b. From there, the
state-space exploration can continue as shown in Fig. 5c. We again discover an
error path, this time however the wrapped refinement operator can determine
that this error path is infeasible. In case of a predicate abstraction, a predicate like
i < N would be discovered and added to the predicate precision of e′

1 at program
location 3. All successors after location 3 are removed again and the wrapped
refinement operator returns. Since there is no error state present anymore in
the set of reached states, the strategy refinement operator returns its inputs
unchanged. The state-space exploration then continues by adding a new abstract
state for program location 4 and so on, as depicted in Fig. 5d.

Transformation into Source Code. We also provide functionality to convert
the loop abstractions we found back into source code, such that our findings can
be used and validated by others. For that, we provide two different mechanisms.
The first is that whenever we are able to generate a proof using some loop-
abstraction strategy, we generate a modified version of the input program where
just the loops are changed to reflect the effect of the loop abstraction. The second
mechanism is that we provide a way to analyze a C program such that for each
loop in the program and each loop-abstraction strategy, we create a patch file
for the program (in case the strategy is applicable) that —when applied— will
apply the loop abstraction on the source-code level.
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2, e0, {b, h}

3, e1, {b, h}

. . .

6, e5, {b, h}

err, e6, {b, h}
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[i !=N]

(a)

2, e0, {b, h}

3, e1, {b}
i:=0

(b)

2, e0, {b, h}

3, e1, {b}

4, e7, {b}6, e8, {b}

. . .err, e6, {b}

i:=0

[i<N][i>=N]

[i !=N]

(c)

2, e0, {b, h}

3, e′
1, {b}

4, e′
7, {b}

. . .

i:=0

[i<N]

(d)

Fig. 5. Example for constructing a reachability graph of a program analysis
on Fig. 4 using chained CEGAR refinements: (a) initial ARG until first re-
finement, (b) strategy precision updated after refinement (strategy h removed
from precision), (c) state-space exploration on the original program continues,
(d) exploration continues after a regular CEGAR refinement (e1 replaced by e′

1)

4 Evaluation

As a first step, we implemented the three loop-abstraction strategies that we de-
scribed in Sect. 3.1 into the state-of-the-art verification framework CPAchecker:
havoc abstraction (h), naive abstraction (n), and constant extrapolation (c).
In addition, we also implemented so-called output abstraction (o) [15]. For
the evaluation, we define the following (partial) order on which the function
select will be based:

b � o � c � n � h (3)

We are interested in answering the following research questions:

• RQ1: Can our CEGAR-style loop-abstraction scheme soundly improve a
verifier like CPAchecker independently of the underlying analysis?

• RQ2: Are these abstractions also useful for other verifiers?

We conduct an experiment for each RQ in Sect. 4.2 to abtain answers.

4.1 Benchmark Environment

For conducting our evaluation, we use BenchExec to ensure reliable bench-
marking [12]. All benchmarks are performed on machines with an Intel Xeon
E5-1230 CPU (4 physical cores with 2 processing units each), 33GB of RAM,
and running Ubuntu 20.04 as operating system. All benchmarks are executed
with resources limited to 900 s of CPU time, 15 GB of memory, and 1 physical
core (2 processing units).
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Fig. 6. Quantile plots comparing performance of plain analyses with their versions
that use loop-abstraction strategies; only correct results are considered

4.2 Experiments

For our experiments we use verification tasks taken from the SV-Benchmarks set
of SV-COMP 2022 [3,4]. Here we selected only the 765 reachability tasks from
the subcategory ReachSafety-Loops, as these cover a wide range of interesting
loop constructs while at the same time only using a limited set of features of the
programming language C, which allows us to focus on the algorithms instead
of having to deal with lots of special cases.

RQ1. In a first experiment, we evaluate whether our approach can improve the
overall results, and whether our new framework introduces significant overhead,
for three analyses of CPAchecker: (1) predicate analysis (PA) [5] configured to
use predicate abstraction [7,9,18], (2) value analysis (VA) [6,11], which is an
extension of constant propagation [21], and (3) predicate analysis configured to
work as bounded model checking (BMC) [13]. For improvements we will look at
effectiveness as well as efficiency. By effectiveness we mean an increase in the
number of solved verification tasks while at the same time preserving soundness
of the results, i.e., no increase of the number of wrong proofs or wrong alarms.
For efficiency we will take a look at how our approach affects the verification
time of successfully verified tasks.
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Table 1. Results for predicate abstraction (PA), value analysis (VA), and bounded
model checking (BMC), without vs. with loop abstraction (LA)

PA PA-LA VA VA-LA BMC BMC-LA

Total 765 765 765 765 765 765

Total proofs 533 533 533 533 533 533

Correct proofs 164 163 33 35 235 248

Incorrect proofs 0 0 0 0 0 0

Total alarms 232 232 232 232 232 232

Correct alarms 58 62 76 81 144 144

Incorrect alarms 0 0 0 0 0 0

Table 2. Impact of loop abstractions on solving capabilities of the software verifiers
UAutomizer (UA), Cbmc, and Symbiotic, without vs. with loop abstraction (LA)
via generated abstracted programs

UAutomizer UAutomizer-la Cbmc Cbmc-la Symbiotic Symbiotic-la

Total 18 18 18 18 18 18

Total proofs 14 14 14 14 14 14

Correct proofs 12 13 0 13 12 13

Incorrect proofs 0 1 0 1 0 1

Total alarms 4 4 4 4 4 4

Correct alarms 0 3 1 3 1 3

Incorrect alarms 0 0 0 0 0 0

The quantile plots in Fig. 6 show that we are able to slightly improve the
results for all analyses. Both effectiveness and efficiency is improved, and thus,
there is no noticeable overhead. We use PA-LA, VA-LA, and BMC-LA to refer to
the variants of the analyses that use our CEGAR-style loop-abstraction scheme.
As expected, the overhead of applying loop abstraction in cases where this does
not help with solving the verification task does not add a significant overhead
to the verification time. Table 1 shows that our approach is also sound, i.e., it
does not increase the number of incorrect results.

Another observation is that there are more proofs as well as property violations
found this way. The latter is possible because constant extrapolation is a precise
abstraction, meaning that a counterexample found using this strategy corresponds
to a feasible error path in the program.

The experimental data so far suggests that if loop abstraction helps with
verification, the verification will usually succeed very quickly. For all tasks where
the verdict improves, the application of loop abstraction reduces the verification
time from a timeout, i.e., more than 900 seconds, to less than 10 seconds. On closer
inspection, we find a total of 18 verification tasks where the loop abstraction is
essential in proving the program correct with the used analyses. When comparing
the different analyses, the effect is most noticeable with bounded model checking,
which is not surprising given the fact that BMC alone can not prove programs
with unbounded loops. There are 6 tasks where predicate analysis improved, 5
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tasks for value analysis, and 17 tasks for BMC.4 Since our framework supports
exporting the accelerated loops into the source code, we can use the 18 abstracted
programs that improved CPAchecker’s results in the next experiment, where we
check whether these are also useful for other software verifiers.

RQ2. In the second experiment we take a look at whether our approach has
the potential to improve the results of other state-of-the-art verification tools as
well. In order to be able to do so without having to modify the existing tools, we
take those programs where loop-abstraction strategies were able to improve the
results for CPAchecker and automatically generate the abstracted programs
that can then be fed to other verifiers. In our case, we use the three well-known
verifiers Cbmc, Symbiotic, and UAutomizer.

The results of all three verifiers improve if loop abstraction is applied, as
shown in Table 2. The table shows the results for the verifiers on the original
verification tasks (columns without suffix LA) and on the abstracted programs
(column with suffix LA). Note that this will not be the case in general, but for the
selected verification tasks, we know that one of our implemented loop abstraction
strategies is actually sufficient to prove the program correct. In general, if a loop
abstraction over-approximates too much, the verifier will quickly find an error
path, in which case we would execute the verifier on the original program. There
is also one program for which our loop abstraction leads to a wrong proof, which
is due to a bug in our translation back into source code.

The main observation here regarding our research question is that the results
of all three verifiers can be improved by applying loop abstraction. We get the
largest improvement for the bounded model checker Cbmc. This is not surprising
and in line with the results from the bounded model checking with CPAchecker.

5 Conclusion

Loop abstraction is a technique for program verification that is currently not
used by many of the state-of-the-art verification tools. In our experiments we
have shown that mature verifiers can still benefit even from very simple loop
abstractions. By adding more sophisticated loop-abstraction strategies in the
future, we hope to achieve even better results that further improve the state-of-
the-art. We make the loop abstractions that we implemented available to other
tools by generating modified versions of the input programs, such that also other
tools can benefit from loop abstractions in the future.

In this paper, we have also addressed the problem of how to select the right
combination of loop abstractions for programs with multiple loops. Instead of
deciding upfront which combination to choose, we use a novel approach based on
CEGAR to automatically refine the loop abstractions as the analysis progresses.
By using the control flow as interface for program analyses, we are able to apply
our approach to a wide range of existing analyses and abstract domains, without
additional implementation overhead.

4 Detailed results at: https://www.sosy-lab.org/research/loop-abstraction/
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Abstract—Validation of program invariants (a.k.a. correctness
witnesses) is an established procedure in software verification.
There are steady advances in verification of more and more
complex software systems, but coming up with good loop invariants
remains the central task of many verifiers. While it often requires
large amounts of computation to construct safe and inductive
invariants, they are more easy to automatically validate. We
propose LIV, a new tool for loop-invariant validation, which
makes it more practical to check if the invariant produced
by a verifier is sufficient to establish an inductive safety proof.
The main idea is to apply divide-and-conquer on the program
level: We split the program into smaller, loop-free programs
(a.k.a. straight-line programs) that form simpler verification tasks.
Because the verification conditions are not encoded in logic syntax
(such as SMT), but as programs in the language of the original
program, any off-the-shelf verifier can be used to verify the
generated straight-line programs. In case the validation fails,
useful information can be extracted about which part of the proof
failed (which straight-line programs are wrong). We show that
our approach works by evaluating it on a suitable benchmark.
Supplementary website: https://www.sosy-lab.org/research/liv/

I. INTRODUCTION

Constructing and validating program invariants is the main
task of many verification approaches. Since invariants can
be proposed by imprecise approaches, it is imperative to
validate whether each candidate invariant is indeed an inductive
and safe program invariant. Verification witnesses have been
proposed as an exchange format for program invariants [1],
but there is a shortage of validators of correctness witnesses
in software verification. It is extremely important to not only
confirm invariants that can be used for the proof of correctness,
but also to reliably reject invariants that are not helpful for
constructing the correctness proof (they might be not inductive
or not implying the safety property). Recently, an approach
was proposed to split the verification task (C program and
specification) to a set of C programs (with assertions inlined)
such that the original program is correct if all generated
C programs are correct [2]. We adopt and implement this
approach in LIV, and explore its potential for the use case of
validation of correctness witnesses.

Contributions. We contribute the following results:
• the open-source tool LIV, which is a witness validator
that implements the approach of generating straight-line
programs in the language of the original program,

• using off-the-shelf verifiers to establish correctness, and
• an evaluation on programs from the SV-Benchmarks
repository [3], demonstrating the effectiveness of LIV.

II. APPROACH

For ease of presentation, we consider a basic programming
language where a program is a sequence of statements (which
can consist of other statements). Let Σ denote the set of all
possible statements, then the set of all programs is denoted
by Σ∗. For the empty program we will use the symbol ε.
Each statement can either be an atomic statement (denoted
by a), a compound statement (denoted by S), or a special
statement. Special statements are statements that affect the
control flow, such as the break and continue statements which
are frequently used in loops and the goto statement1. Iteration
statements like while C do B and branching statements
like if C then S else T are compound statements.
We support the iteration statements to be annotated by a

loop invariant γ, and write whileγ C do B. If no invariant
is annotated, we will implicitly assume the weakest possible
invariant, that is, true. Location invariants can be added to
every statement in the same manner, i.e., Sγ is a statement
with a location invariant that holds whenever that statement
is reached and before it is executed. A straight-line program
is a program that does not contain any loop statement (and
therefore also no loop-invariant annotations).
A Hoare triple consists of a precondition {P} from the

set Pred of predicates, a program from Σ∗, and a post-
condition {Q} from Pred . A straight-line Hoare triple is a
Hoare triple where the program does not contain any iteration
statements.

Example. The program from Fig. 1a has the following
statement structure:

s0 (if C1 (whileγ C2 do B) else s1) s2

From the structure of the program, we can construct the
following four straight-line Hoare triples that correspond to
the straight-line programs shown in Figs. 1b, 1c, 1d, and 1e:

• {P}s0[C1]{γ}
• {γ ∧ C2}B{γ}
• {γ ∧ ¬C2}s2{Q}
• {P}[!C1]s1s2{Q}

The brackets around an expression, for example in [C1],
indicate an assume statement. The predicates P and Q are
both true in the example.

1We will not focus on goto statements in this paper, but plan to add support
for this, which should be straight-forward.
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1 int x = nondet();
2 if (x>=0) {
3 while (x>0) { // loop invariant: x>=0
4 x--;
5 }
6 } else x++;
7 y = x;

(a) Original program with a loop invariant

1 assume(1);
2 int x = nondet();
3 assume(x>=0);
4 assert(x>=0);

(b) SLP 1: loop invariant
holds after initialization

1 int x = nondet();
2 assume(x>=0);
3 assume(x>0);
4 x--;
5 assert(x>=0);

(c) SLP 2: loop
invariant is inductive

1 int x = nondet();
2 int y = nondet();
3 assume(x>=0);
4 assume(x<=0);
5 y = x;
6 assert(1);

(d) SLP 3: continuing after
the loop

1 int x = nondet();
2 int y = nondet();
3 assume(1);
4 assume(x<0);
5 x++;
6 y = x;
7 assert(1);

(e) SLP 4: covering the else
branch

Fig. 1: Example for splitting an original program into straight-
line programs (SLPs) using a loop invariant; initializations in
SLPs before the first assume are to produce valid C programs

Soundness. In general it is possible to prove the soundness of
splitting procedures like the one we present here, which was
done for VST-A [2], the main inspiration for LIV.

Our splitting procedure is implemented on top of the abstract
syntax tree, and kept very simple on purpose. In addition,
soundness bugs in our implementation can be expected to be
discovered when applying LIV to the extensive benchmark set
from the Competition of Software Verification, which covers
many corner cases of the C language.

A. Tool Architecture

LIV is implemented in Python 3, using a modified version
of pycparser-ext2 as a frontend for parsing C programs. The
splitting of the input program is done by traversing the
abstract syntax tree of the input program. In addition, global
variable and function definitions are collected and added
to all generated straight-line programs. Verification of the
generated straight-line programs is delegated to a backend
verifier using COVERITEAM [4]. The choice of the backend
verifier can be configured (from a set of more than 45 verifiers
for C programs [5]).

III. EVALUATION

Our evaluation addresses the following research questions:
RQ 1 Can an (efficient) validator be constructed via splitting

the original program into straight-line programs?
RQ 2 Can the validator give additional feedback to the user?
RQ 3 To which extent are the invariants provided by automatic

software verifiers via correctness witnesses already enough
to establish a complete, inductive proof?

2https://github.com/inducer/pycparserext

TABLE I: Results of running LIV on the benchmark set, using
three off-the-shelf verifiers as backend

Verifier
Backend

Correct (18 total) Wrong (3 total)
Confirmed Rejected Confirmed Rejected

CBMC 18 0 0 3
CPACHECKER 18 0 0 3
CPA-LIA 17 1 1 2

A. Experiment Setup

We conduct two experiments to show the usefulness of LIV,
the first targeting RQ1 and RQ2, the second targeting RQ3.
For both experiments, we will look at the subset of verification
tasks from the SV-Benchmarks repository3 called loop-zilu,
consisting of 22 C programs. For the first experiment, we
will take invariants for the benchmark tasks from the ACSL-
Benchmarks repository4 where inductive loop invariants that
should be sufficient to prove the assertion of the programs are
annotated to the programs in various formats. For the second
experiment, we use correctness witnesses that were produced
by verifiers participating in SV-COMP 2022 [6].
We run our experiments on compute nodes with an Intel

Xeon E3-1230 CPU. Each experimental run uses all 8 available
processing units and is limited to use 15GB of memory and
900 s of CPU time.

We configure LIV to run with different off-the-shelf verifiers
as backend. For the first experiment we limit ourselves to
CBMC [7] and CPACHECKER [8]. In addition, we use a special
configuration of CPACHECKER which we refer to as CPA-LIA.
This configuration uses linear integer arithmetic (LIA) as
internal encoding, which is imprecise by design and allows
us to observe cases in which the internal encoding makes a
difference for validation.
For the second experiment, we only use CBMC as backend.

Since the generated programs do not contain loops, a mature,
bounded model checker like CBMC will allow us to quickly
check the generated verification tasks while supporting a large
subset of the C language.
In order to compare this to state-of-the art correctness

validators, the second experiment also contains a comparison
with CPACHECKER’s correctness-witness validation, which is
based on incremental k-induction, and which we refer to
as CPA-KIND. Since the approach of LIV is more similar to
1-induction, we also compare with a modified version of
CPAchecker’s k-induction, where the induction bound k is
fixed to 1, hence we refer to it as CPA-1IND.

B. Evaluation Results

RQ 1. Table I shows the results for the first experiment. For our
benchmark set, all correct witnesses are confirmed by the off-
the-shelf verifiers CBMC and CPACHECKER. These also correctly
reject three witnesses for which the invariant is actually not
sufficient. One such example of an inductive invariant that is not

3https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
4https://gitlab.com/sosy-lab/research/data/acsl-benchmarks
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1 int main() {
2 int k = __VERIFIER_nondet_int();
3 int j = __VERIFIER_nondet_int();
4 int n = __VERIFIER_nondet_int();
5

6 if (!(n>=1 && k>=n && j==0)) return 0;
7 //@ loop invariant j <= n && n <= k + j;
8 while (j<=n-1) {
9 j++;
10 k--;
11 }
12 //@ assert k >= 0;
13 __VERIFIER_assert(k>=0);
14 return 0;
15 }

(a) benchmark04_conjunctive.c: Inductive but unsafe invariant (invariant
holds after initialization, is inductive, but does not imply the assertion)

1 int main() {
2 int i = __VERIFIER_nondet_int();
3 int c = __VERIFIER_nondet_int();
4 if (!(c==0 && i==0)) return 0;
5 //@ loop invariant 2 * c == (i-1) * i

↪→ && 0 <= i && i <= 100;
6 while (i<100) {
7 c = c+i;
8 i = i+1;
9 if (i<=0) break;
10 }
11 //@ assert c >= 0;
12 __VERIFIER_assert(c>=0);
13 return 0;
14 }

(b) benchmark10_conjunctive.c: Invariant not inductive (integer
variable c can have negative values due to overflow)

Fig. 2: Example for benchmarks with insufficient invariants
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Fig. 3: Scatter plots comparing LIV with CPACHECKER-based correctness-witness validation; all results are shown, independent of
the verification result

sufficient to prove the assertion is shown in Fig. 2a. CPA-LIA
misses rejecting one incorrect witness and instead rejects one
witness that is actually correct. The incorrect invariant that is
accepted by CPA-LIA is shown in Fig. 2b.
Regarding efficiency, Fig. 3a shows that the execution of

LIV is also efficient, i.e., it finishes after a few seconds in
the majority of cases and never runs into a timeout for the
given benchmark set. This is also mostly true for CPA-1IND

(Fig. 3b); there are only a few outliers and timeouts caused
by the employed SMT solver. The fact that CPA-1IND confirms
more witnesses than LIV is due to the fact that CPA-1IND unrolls
the loop body one additional time (to encode assertions inside
the loop body) before checking the assertion after the loop.
CPA-KIND completely unrolls the loops in several programs that
have a finite loop bound, which is why it confirms significantly
more witnesses.
In sum, RQ1 can be answered positively.

RQ 2. Initially we expected all the witnesses from the bench-
mark set to be confirmed. Surprisingly, upon inspection of the
witnesses that LIV rejected, we indeed confirmed that some
invariants are not strong enough to establish the specified safety
property. We show two such examples in Fig. 2.
Upon failure, existing validators would at most output

information about whether a specific invariant was confirmed
or not. LIV can give more fine-grained reports, as we can
distinguish between whether the invariant holds after the
initialization, whether it is inductive, or whether the invariant

does not ensure the safety property (assertion after the loop).
The two programs in Figs. 2a and 2b are examples in which
LIV tells us why the proof of correctness cannot be established.
In sum, LIV’s feedback is for each proof step by construction.

RQ 3. The results for the second experiment are shown in
Table II. We show only the results for verifiers that created non-
trivial correctness witnesses in SV-COMP 2022, i.e., witnesses
that actually contain at least one syntactically valid invariant.
We can observe that a significant fraction of the invariants

reported by the verifiers are actually sufficient for an inductive
proof by LIV. Upon closer inspection of the output of the
two CPACHECKER-based variants, we can observe that it often
happens that they ignore the provided invariants, leading
to confirmed results even if the provided invariants are not
sufficient. Also, neither of the CPACHECKER-based approaches
rejected any witness due to a wrong invariant.

For RQ3, while there are significantly many witnesses that
help proving correctness, we also report that there is still room
for improvement in the invariants provided from the verifiers.

IV. RELATED WORK

Witness Validation. There are only few approaches for validat-
ing correctness witnesses [9, 10]. The closest to our approach
is METAVAL [9]. METAVAL encodes additional proof goals for
the invariants provided via the witness into a C program, but
does not split programs up into multiple, simple sub-programs.
The C program is constructed as automaton product of the
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TABLE II: Results for LIV and CPACHECKER-based witness validation on the SV-COMP witnesses from each verifier
Verifier # Tasks LIV CPA-KIND CPA-1IND

total non-trivial confirmed rejected unknown error confirmed unknown confirmed unknown

2LS 13 12 6 7 0 0 11 2 7 6
CBMC 7 7 1 5 1 0 7 0 3 4
CVT-ALGOSEL 16 11 2 13 1 0 9 7 5 11
CVT-PARPORT 19 5 4 15 0 0 14 5 9 10
CPACHECKER 21 6 5 14 0 2 15 6 10 11
GRAVES 22 9 5 14 2 1 12 10 10 12
PESCO 21 16 11 5 1 4 15 6 15 6
UAUTOMIZER 22 22 9 12 1 0 11 11 7 15
UKOJAK 21 21 10 10 1 0 10 11 7 14
UTAIPAN 22 22 6 16 0 0 11 11 7 15

witness automaton and the CFA of the original program, and
as such it is not immediately clear whether this construction
is sound, and less likely to be faster to validate. In case the
validation fails, it is not clear to the user where exactly the
proof goes wrong, and loops are still present.

Verification-Condition Generation. Our design can also be
seen as a variation of deductive verification, where verification
conditions are generated from the (user-)provided invariants,
which are then typically handed off to a backend solver. For
example, Dafny [11] translates to Boogie [12, 13] as an inter-
mediate representation. Other examples include VERIFAST [14]
and FRAMA-C [15]. The automatic verifier KORN [16] translates
to constrained Horn clauses. While for existing deductive and
automatic verifiers, the verification conditions usually use a very
specific representation that is bound to the particular backend
and cannot easily be reused, LIV uses the original programming
language to encode the verification conditions and off-the-shelf
verifiers as backend to solve them. Our approach is closely
motivated by VST-A [2, 17], which is an annotation verifier
for C programs. The main difference is that our transformation
is purely AST-based, while for VST-A the actual splitting is
defined over the CFA of the program. In general, algorithms
for verification-condition generation are tool-specific and not
described in detail in literature, with few exceptions [18].

V. CONCLUSION

There is a demand for invariant-validation tools in order to
ensure the correctness of the results of verification tools. LIV is
a new validator for correctness witnesses. The unique feature of
this tool is that it reads the invariants from correctness witnesses,
and reduces the validation problem to the verification of a set of
straight-line programs. This enables the application of arbitrary
off-the-shelf verification tools for C programs, including
bounded verifiers, for establishing a proof of correctness.
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Abstract. Verification witnesses are now widely accepted objects used
not only to confirm or refute verification results, but also for general
exchange of information among various tools for program verification. The
original format for witnesses is based on GraphML, and it has some known
issues including a semantics based on control-flow automata, limited tool
support of some format features, and a large size of witness files. This
paper presents version 2.0 of the witness format, which is based on YAML
and overcomes the above-mentioned issues. We describe the new format,
provide an experimental comparison of various aspects of the original
and the new witness format showing that both witness formats perform
similarly, and report on its adoption in the community.

Keywords: Verification Witness · Software Verification · Validation ·
Exchange Format · Invariant · Counterexample

1 Introduction

Software verification is a process that detects bugs in computer programs or
proves their absence. Unfortunately, software verifiers can also contain bugs and
their verdicts can thus be incorrect. To increase the reliability of the verifica-
tion process, starting eight years ago, software verifiers have accompanied their
verification results with witnesses that justify the verdict and can be indepen-
dently analyzed by witness validators developed by various teams and based on
different techniques.

The first generic format for witnesses of verification results [1] was introduced
in 2015. It supported only violation witnesses (also called counterexamples)
produced when a verifier reports that a given program violates a considered
safety specification. In 2016, the format was extended to accommodate also
witnesses for the cases when a verifier decides that a given program satisfies a
given specification [2]. Such witnesses are called correctness witnesses, and they
should contain invariants that help to prove that the program is correct. The
format was soon adopted by the verification community and by the Competition
on Software Verification (SV-COMP) [3], which led to fast adoption of the format
by many verification tools and to the development of numerous witness validators.
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The overview of existing validators can be found in a recent survey [4]. Since
2023, SV-COMP has a new track on witness validation [5].

While the format was originally intended for validation of verification results,
some witness validators can also refute a witness [4, 5]. The format soon found
also some applications that were not intended at the time of its development.
In particular, it is used to exchange information between different verifiers in
the context of cooperative verification [6, 7], as a way to provide feedback to
a software developer [8, 9], or as a way to combine automatic and interactive
verifiers [10]. In 2022, the authors of the format published a paper [11] with its
detailed description and with an extensive experimental study on its applications.

Despite the indisputable success of the format, it has also some weaknesses.
The format is based on GraphML [12] and witnesses have the form of automata,
which makes them easy to visualize, but also lengthy and unsuitable for reading
in their textual form. More importantly, the semantics of the format is formally
defined over programs represented by control-flow automata (CFA). Unfortunately,
there is no standardized translation of programs written in common programming
languages like C or Java to CFA. As a result, the semantics of the format over
programs in standard languages has some ambiguities. The SV-COMP community
even found a part of the semantics related to implicit loop edges as inappropriate
and decided to change it. Another issue of the original witness format is connected
to the high number of features it provides. For example, if an invariant or an
assumption uses variables that appear in different functions or scopes, the format
allows to specify the scope for their interpretation. Another example is that the
location of some witness event can be specified very loosely by an interval of
lines. Practical experience shows that some of these features are not used in any
witness generated by verifiers and, what is more alarming, unsupported or even
ignored by witness validators. In fact, there is probably no witness validator
fully implementing the format. This can lead to the situation in which a valid
verification witness employing some less frequent feature is not confirmed or even
refuted, or an invalid witness is confirmed.

This paper presents a new generation of the witness format that avoids the
mentioned weaknesses. In particular, we use a concise format that is based on
YAML, which makes the witnesses shorter in general. Further, the format provides
only features that were really used by verification witnesses in the original format.
As the format is significantly simpler, it is easy to fully support it by validators.
Finally, the semantics of the format is formulated over programming languages
using terms and concepts from their standards.

The format itself is described in Sect. 2 and referred to as version 2.0. In
its current state, the format supports only sequential programs written in C
and basic program properties, namely unreachability of a given error function,
unreachability of signed integer overflow, and unreachability of invalid pointer
dereference and deallocation. We have adopted two verification tools, namely
CPAchecker [13] and Symbiotic [14], to produce verification witnesses in the new
format. We have also developed two witness validators, namely CPAchecker [11]
(as an extension of the exiting tool) and Witch3 (new validator based on the
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concept of Witch3 [15]) to validate witnesses in this format. Using these tools
and other tools from the competition, Sect. 3 evaluates the impact of the new
format on the witnesses and their validation. Sect. 4 summarizes the differences
between the original and the new format and shows the current adoption of the
new format by verification and witness validation tools.

Contributions. In this paper, we contribute:

– a new generation of the format for verification witnesses that solves most
problems that were present in the previous format,

– a preliminary evaluation of the impact of the new format on the effectivity
and performance of witness validation, and

– an overview of a few measures that characterize the new witnesses.

Related Work. Our work certainly stands on the shoulders of the original format
for verification witnesses [1, 2], but we claim to provide a substantial improvement
over the original format by addressing its weaknesses (see Sect. 4). Witnesses are
used ubiquitously in areas where algorithms have a high computational complexity.
For example, witnesses are used for certifying graph algorithms [16]. Turing used
assertions [17] already and argued that one should justify the correctness of
programs. In the area of logic solvers, witnesses for the results are of essence for
competitions, and important competitions require witnesses and their validation.
For example, the Termination Competition (termCOMP) [18] uses the format
CPF [19], the competition of SAT solvers [20] uses the DRAT format [21] together
with the validator DRAT-trim [22], and the competition on SMT solving verifies
models with Dolmen [23].

Witnesses are not only important to certify the correctness of a solver’s
answer, it is also important for the goal of explainability: The true / false answers
alone are not as valuable compared to also providing the reasons to understand
the answer. For example, witnesses can be used to derive test cases [9] and
to aid debugging with visualizations [8]. Execution reports [24] help organize
the analysis results, and the format SARIF [25] is used by static analyzers to
represent results.

2 Witness Format 2.0

The witness format 2.0 is an extension of the YAML format, version 1.2. Individual
verification witnesses are represented by entries. Each entry has three key-value
pairs. The key entry_type has the value invariant_set or violation_sequence
corresponding to the type of the witness: a correctness witness is represented by
one or more entries of type invariant_set , while a violation witness is represented
by a single entry of type violation_sequence . Further, the key metadata refers
to a mapping that describes mainly the context of the witness: the format version
used by the entry, the unique identifier of the entry, the creation time of the
entry, the tool that produced the entry, and the verification task the witness
relates to. Finally, the value of the key content represents the semantical content
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Table 1: Structure of entries common for violation and correctness witnesses;
some nodes are nested; optional items are marked with ∗; the term scalar in
YAML refers also to strings
Key Value Description

entry_type invariant_set the entry type of a correctness witness
violation_sequence the entry type of a violation witness

metadata mapping the context of the witness; see below
content sequence the witness content; see Tables 2 and 3

content of metadata
format_version 2.0 the used version of the format

uuid scalar a unique identifier of the entry; it uses
the UUID format defined in RFC4122

creation_time scalar the date and time of the entry creation;
it uses the format given by ISO 8601

producer mapping the tool that produced the entry;
see below

task mapping the verification task to which the entry
is related; see below

content of producer
name scalar the name of the tool
version scalar the version of the tool
configuration ∗ scalar the configuration in which the tool ran

command_line ∗ scalar the command line with which the tool ran;
it should be a bash-compliant command

description ∗ scalar any additional information
content of task

input_files sequence
the list of files given as input to the verifier,
e.g. ["path/f1.c", "path/f2.c"]

input_file_hashes mapping
SHA-256 hashes of all files in input_files ,
e.g. {"path/f1.c": 511...,
"path/f2.c": f70...}

specification scalar
the property considered by the verifier;
it uses the SV-COMP format given at
https://sv-comp.sosy-lab.org/2024/rules.php

data_model ILP32 or LP64 the data model considered for the task

language C the programming language of the input
files; the format currently supports only C

of the entry. The key-value pairs are presented in a structured way in Table 1.
The table also presents the key-value pairs of the nested mapping metadata and
its nested mappings producer and task . We describe the possible values of the
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1 void reach_error (){}
2 extern unsigned char __VERIFIER_nondet_uchar(void);
3 int main() {
4 unsigned char n = __VERIFIER_nondet_uchar ();
5 if (n == 0) {
6 return 0;
7 }
8 unsigned char v = 0;
9 unsigned int s = 0;

10 unsigned int i = 0;
11 while (i < n) {
12 v = __VERIFIER_nondet_uchar ();
13 s += v;
14 ++i;
15 }
16 if (s < v) {
17 reach_error ();
18 return 1;
19 }
20 if (s > 65025) {
21 reach_error ();
22 return 1;
23 }
24 return 0;
25 }

Specification:
G ! call(reach_error()),
i.e., all calls of reach_error()
are unreachable

q1true

q2

s ≤ i · 255
∧ 0 ≤ i ≤ 255
∧ n ≤ 255

q3true q4 true

10,enterLoopHead

o/w

o/w

11,then 11,else

o/w

14,enterLoopHead

o/w

1 - entry_type: invariant_set
2 metadata: <...>
3 content:
4 - invariant:
5 type: loop_invariant
6 location:
7 file_name: "inv -a.c"
8 line: 11
9 column: 1

10 function: main
11 value: "s <= i*255 && 0 <=

↪→ i && i <= 255 && n <= 255"
12 format: c_expression

Fig. 1: Example C program inv-a.c taken from [11] (top left) satisfying the given
specification (bottom left) and equivalent correctness witnesses in format 1.0
(top right, visualized as automaton) and format 2.0 (bottom right), with a single
nontrivial invariant

key content in the following subsections separately for correctness witnesses and
violation witnesses as they are conceptually different.

2.1 Correctness Witnesses

Correctness witnesses provide invariants that should help to prove the program
correct. In the old format (1.0), invariants are tied to automata nodes and these
nodes can correspond to multiple program locations and various moments of
program executions. The new format (2.0) simply assigns invariants to program
locations. Figure 1 provides an example of a correctness witness in the old format
and in the new format.

Syntax. In entries of type invariant_set which represent a correctness witness,
the key content contains a sequence of zero or more invariants. An invariant
is a mapping with the following four keys.

type has the value loop_invariant if the invariant is assigned to a loop head
and the value location_invariant if it is assigned to another location.
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Table 2: Structure of the content part of entries representing correctness witnesses;
optional items are marked with ∗

Key Value Description

content sequence a sequence of one or more invariant elements
description of invariant

invariant mapping a basic building block of correctness witnesses;
see below

content of invariant
type loop_invariant the invariant type for iteration statements

location_invariant the invariant type for arbitrary statements
location mapping the location of the invariant; see below
format c_expression the invariant is a C expression
value scalar the actual invariant

content of location
file_name scalar the file of the location
line scalar the line number of the location
column ∗ scalar the column of the location
function ∗ scalar the name of the function containing the location

location of a loop_invariant must point to the first character of a keyword
at the beginning of a loop (i.e., for, while, or do). The location of a
location_invariant must point to the first character of a statement or a
declaration that is within a compound statement.

format has the value c_expression as the format currently supports only
invariants that are C expressions.

value holds the actual invariant string (e.g., "s <= i*255 && i > 0" ), which is
a side-effect-free C expression over variables in the scope where the invariant
is placed.

The location is a mapping with mandatory keys file_name that holds the name
of the file and line representing the line number (the first line has the number 1).
Additionally, there are two optional keys called column and function . The key
column specifies the column number of the location (value 1 is the position of
the first character on the line ). If the column is not given, then it is interpreted
as the leftmost suitable position on the line, where suitability is given by type
and the restrictions given above. The key function provides the name of the
function containing the location. Technically, this information is superfluous as it
is determined by the file_name , line , and column . It is therefore not intended for
any algorithmic processing of the witness, but only to improve human readability
of the witness.

The structure of content and its nested items are summarized in Table 2.

Semantics. The correctness witness is valid if it fulfills the following requirements.
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– Each loop_invariant must always hold immediately before evaluating the
condition of the corresponding loop.

– Each location_invariant must always hold immediately before evaluating
the corresponding statement or declaration.

– The specification must be satisfied for all program executions.
– No invariant evaluation causes undefined behavior and no undefined behavior

occurs during any execution of the program.

Note that the order of invariants in an invariant_set or their division into
several entries of type invariant_set is not important. The semantics also reveals
the difference between the two types of invariants: if we replace loop_invariant
with location_invariant , then the invariant has to hold only before the loop is
executed, but not after each loop iteration.

2.2 Violation Witnesses

A violation witness should describe a program execution violating the considered
property. For brevity, the violating execution is described loosely and the witness
thus represents a set of such executions. In the old format (1.0), a violation witness
is an automaton with edges prescribing consecutive restrictions on program
executions. The automaton can contain various branches and loops. In the new
format (2.0), a violation witness is a sequence of waypoints that have to be passed
by the executions. To make the witness validation more efficient, the format
also allows specifying waypoints that have to be avoided. Figure 2 provides an
example of a violation witness in the old format and in the new format.

Syntax. The basic building blocks of violation witnesses in the new format are
waypoints. Technically, a waypoint is a mapping with four keys, namely type ,
location , constraint , and action . The values of the first three keys specify a
requirement on a program execution to pass a waypoint: type describes the type
of the requirement, location ties the requirement to some program location, and
constraint gives the requirement itself. The key action then states whether the
executions represented by the witness should pass through the waypoint (value
follow ) or avoid it (value avoid ). The format currently supports five possible
values of type with the following meanings:

assumption The location has to point to the first character of a statement
or a declaration within a compound statement. A requirement of this type
says that a given constraint holds before evaluating the pointed statement or
declaration. The constraint is a mapping with two keys: format specifies the
language of the assumption and value contains a side-effect-free assumption
over variables in the current scope. The value of format is c_expression as
C expressions are the only assumptions currently supported. In the future,
we plan to support also assumptions in ACSL [26].

branching A requirement of this type says that a given branching is evaluated in
a given way. The location points to the first character of a branching keyword
like if, while, switch, or to the character ? in the ternary operator (?:).
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1 void reach_error (){}
2 extern unsigned char
↪→ __VERIFIER_nondet_uchar(void);
3 int main() {
4 unsigned char n = __VERIFIER_nondet_uchar ();
5 if (n == 0) {
6 return 0;
7 }
8 unsigned char v = 0;
9 unsigned char s = 0;

10 unsigned int i = 0;
11 while (i < n) {
12 v = __VERIFIER_nondet_uchar ();
13 s += v;
14 ++i;
15 }
16 if (s < v) {
17 reach_error ();
18 return 1;
19 }
20 if (s > 65025) {
21 reach_error ();
22 return 1;
23 }
24 return 0;
25 }

Specification:
G ! call(reach_error()),
i.e., all calls of reach_error()
are unreachable

ble qi

q1

q2

q4

qE

11,then

o/w

11,then

o/w

11,else

o/w

16,then

o/w

o/w

1 - entry_type:
↪→ violation_sequence
2 metadata: <...>
3 content:
4 - segment:
5 - waypoint:
6 action: follow
7 type: branching
8 location:
9 file_name:

↪→ "inv -b.c"
10 line: 11
11 constraint:
12 value: true
13 - segment:
14 - waypoint:
15 action: follow
16 type: branching
17 location:
18 file_name:

↪→ "inv -b.c"
19 line: 11
20 constraint:
21 value: true
22 - segment:
23 - waypoint:
24 action: follow
25 type: branching
26 location:
27 file_name:

↪→ "inv -b.c"
28 line: 11
29 constraint:
30 value: false
31 - segment:
32 - waypoint:
33 action: follow
34 type: target
35 location:
36 file_name:

↪→ "inv -b.c"
37 line: 17

Fig. 2: Example C program inv-b.c taken from [11] (top left) violating the given
specification (bottom left) and similar violation witnesses in format 1.0 (middle,
visualized as automaton) and format 2.0 (right)

The constraint is then a mapping with only one key value . For binary
branchings, value can be either true or false saying whether the true
branch is used or not. For the keyword switch, value can be an integer
constant or default . The integer constant specifies the value of the controlling
expression of the switch statement. The value default says that the value
of this expression does not match any case of the switch with the exception
of the default case (if it is present).

function_enter The location points to the right parenthesis after the function
arguments of a function call. The requirement says that the called function
is entered. The key constraint has to be omitted in this case.
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function_return Such a requirement says that a given function call has been
evaluated and the returned value satisfies a given constraint. The location
points to the right parenthesis after the function arguments at the function call.
The constraint is a mapping with keys format and value . We currently sup-
port only ACSL expressions of the form \result <op> <const_expression> ,
where <op> is one of == , != , <= , < , > , >= and <const_expression> is a
constant expression. The value of format has to be acsl_expression .

target This type of requirement can be used only with action follow and it
marks the program location where the property is violated. More precisely,
the location points at the first character of the statement or full expression
whose evaluation is sequenced directly before the violation occurs, i.e., there
is no other evaluation sequenced before the violation and after the sequence
point associated with the location . This also implies that it can point to a
function call only if it calls a function of the C standard library that violates
the property or if the function call itself is the property violation. The key
constraint has to be omitted.

Waypoints are organized into segments. Each segment is a sequence of zero or
more waypoints with action avoid and exactly one waypoint with action follow
at the end. A segment is called final if it ends with the target waypoint and it
is called normal otherwise.

Finally, we can describe the content part of violation_sequence entries
which represent violation witnesses. The value of content is a sequence of zero or
more normal segments and exactly one final segment at the end. The structure
of content and its nested items are summarized in Table 3.

Semantics. Each violation witness represents a set of some program executions
violating the specified property. The witness is considered to be valid if the set is
nonempty.

Let us consider a violation witness with n ≥ 1 segments. An execution is
represented by this witness, if the execution can be divided into n parts such
that, for each 1 ≤ i ≤ n, the i-th part matches the corresponding segment of the
witness. An execution part matches a normal segment if

– it does not pass any avoid waypoint of the segment,
– it ends in the moment when the sequence point corresponding to the follow

waypoint of the segment is entered for the first time in the execution part,
and

– the follow waypoint is passed in this moment.

The final execution part matches the final segment if

– it does not pass any avoid waypoint of the segment and
– it violates the considered property during execution of the statement identified

by the target waypoint.

Moreover, the execution must not contain any instruction that causes un-
defined behavior. An exception to this are witnesses of undefined behavior, in
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Table 3: Structure of the content part of entries representing violation witnesses
Key Value Description

content sequence a sequence of zero or more normal segment
elements and one final segment at the end

description of segment

segment sequence

a sequence of zero or more waypoint elements
with action: avoid and one waypoint with
action: follow at the end; the final segment
ends by waypoint with type: target

description of waypoint
waypoint mapping a basic building block of violation witnesses

content of waypoint
action follow the waypoint should be passed through

avoid the waypoint should be avoided
type assumption restriction on variable values given by an expression

branching restriction specifying the result of a branching
function_enter restriction saying that a function is entered
function_return restriction on the result of a function call
target identification of a location of the property violation

location mapping the location of the waypoint; see Table 2

constraint mapping the constraint of the waypoint; not allowed with
type: function_enter and type: target

content of constraint
format c_expression for type: assumption , constraints are C expressions

acsl_expressions for type: function_return , constraints are specific
ACSL expressions; not allowed for other type values

value scalar the actual constraint

which case the only instruction that causes undefined behavior must be the one
represented by the target waypoint.

In each execution part, only the waypoints of the corresponding segment are
evaluated. An assumption waypoint is evaluated at the sequence point immedi-
ately before the waypoint location. The evaluation must not lead to undefined
behavior; otherwise the witness is incorrect. The waypoint is passed if the given
constraint evaluates to true. A branching waypoint is evaluated at the sequence
point immediately after evaluation of the controlling expression of the corre-
sponding branching statement. The waypoint is passed if the resulting value of
the controlling expression corresponds to the given constraint. A function_enter
waypoint is evaluated at the sequence point immediately after evaluation of all
arguments of the function call. The waypoint is passed without any additional
constraint. A function_return waypoint is evaluated immediately after evalua-
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tion of the corresponding function call. The waypoint is passed if the returned
value satisfies the given constraint.

3 Evaluation

This section presents experiments with validation of verification results using
both formats (1.0 and 2.0) to answer the following research questions:

– RQ 1: How does the performance of the validation of the new witness format
compare to the old witness format?

– RQ2: Does the new format improve attributes related to readability when
compared to the old format?

In the experiments, the following tools were used.

– CPAchecker [13, 27] is a verifier and witness validator that can produce
and validate both correctness and violation witnesses in both formats. The
experiments are based on version 0af0e41240.

– Symbiotic [28] is a verifier that can produce violation witnesses in both
formats. We use version 9c278f9.

– Symbiotic-Witch2 [15] is a witness validator for violation witnesses in the
old format (1.0). The experiments are based on version svcomp24.

– Witch3 [29] is a new witness validator based on similar principles as Symbiotic-
Witch2, but designed for violation witnesses in format 2.0. The tool is made
of Symbiotic in version b011ec9 and Witch-Klee in version 6dabb94.

– UAutomizer [30] is a verifier and witness validator that can produce both
correctness and violation witnesses in both formats and validate correctness
witnesses in both formats and violation witnesses only in format 1.0. We use
version 0.2.4-?-8430d5a-m and version 0.2.4-dev-0e0057c for validation
of YAML and GraphML correctness witnesses respectively.

Note that the support of the new witness format in all mentioned tools except
UAutomizer has been implemented by authors of this paper.

For the experiments, we used all verification tasks of SV-COMP 2024 where the
property to be verified is unreachabilty of error function, i.e., the specification used
in Figs. 1 and 2. We did not use the witnesses produced during the competition [31],
but rather based our experiments on fresh witnesses produced by the latest
versions of Symbiotic and CPAchecker; the results are much better compared
to the results from SV-COMP 2024 [32].

Benchmark Environment. For conducting our evaluation, we use BenchExec
to ensure reliable benchmarking [33]. All benchmarks are performed on machines
with an Intel Xeon E5-1230 CPU (4 physical cores with 2 processing units each),
33 GB of RAM, and running Ubuntu 22.04 as operating system. Each verification
and witness validation task is executed with resource limits used in SV-COMP,
i.e., 900 s of CPU time3, 15 GB of memory, and 1 physical core (2 processing
units).
3 Except violation witness validation, where the convention is to use 90 s of CPU time.
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Fig. 3: Correctness witnesses produced by CPAchecker: Quantile plots for the
time taken for validation of the old and new witnesses for two different validators

3.1 Evaluation Results for RQ 1 (Validation Performance)

One of the most important questions is whether the validation using the new
format is as effective and efficient as with the old witness format.

Correctness Witnesses. CPAchecker can generate correctness witnesses
in both formats. The witnesses from CPAchecker were then validated by
CPAchecker and UAutomizer. This allows for a direct comparison as shown
in Fig. 3. We can observe in Fig. 3a that the validation performance of CPAchecker
is largely identical when comparing both formats. This is to be expected, as
the only thing that CPAchecker extracts from the GraphML witnesses are the
invariants and their locations, and this is also the information that is present in
and extracted from the witnesses in format 2.0.

For UAutomizer, the new format 2.0 substantially improves both the speed
of validation and the number of witnesses that can be validated. Besides aiding
in verification of the original property during validation, a witness can also add
additional obligations for the validator to validate. This is the case here, where the
extensive automaton that is embedded into CPAchecker’s witnesses in format
1.0 is harder to prove correct for UAutomizer than the much simpler set of
invariants that is present in the witnesses in format 2.0. Table 4 shows numbers
of confirmed and refuted witnesses.

Violation Witnesses. We present the results of our evaluation regarding RQ 1
for violation witnesses in Fig. 4, which is complemented by Table 5 with the
concrete number of validated and refuted witnesses. For witnesses generated
by CPAchecker (cf. Fig. 4a), Witch3 is able to confirm significantly more
witnesses in the new format than Symbiotic-Witch2 is able to confirm in the old
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Table 4: Correctness witnesses produced by CPAchecker: Validation with
CPAchecker and UAutomizer

Witnesses v1.0 Witnesses v2.0

Validator Witnesses Confirmed Refuted Confirmed Refuted

CPAchecker 6 729 4 685 0 4 741 0
UAutomizer 6 729 2 478 109 2 959 2
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Fig. 4: Violation witnesses: Quantile plots for the time taken for validation of the
old and the new witnesses generated by two different verifiers for two different
validators

format. Due to the large number of features and underspecified semantics of the
GraphML format, Symbiotic-Witch2 does not support all the attributes used
in the GraphML witnesses. Ignoring these features leads to a larger state-space
that needs to be explored during validation, which results in more timeouts, or
misinterpreting information in the witness and missing the described error. This
is not the case for Witch3 as it supports the full set of features of the new format
and makes use of all the information provided in the witness. For CPAchecker
there is still a relatively small performance gap between validation with the new
and old format. This is not surprising, as the GraphML-based format is inspired
by the specification-automata language that CPAchecker uses internally, so
achieving a similar performance requires still some more engineering.

For witnesses generated by Symbiotic (cf. Fig. 4b), we can observe that
the number of new witnesses confirmed by Witch3 is almost the same as the
number of old witnesses confirmed by Symbiotic-Witch2. Thus, both validation
approaches are very close when it comes to effectiveness. This is also the case for
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Table 5: Results of validating CPAchecker’s and Symbiotic’s violation witnesses
with different validators; Witch stands for Symbiotic-Witch2 when validating
old witnesses, and for Witch3 when validating new witnesses.

Witnesses v1.0 Witnesses v2.0

Verifier Validator Produced Confirmed Refuted Confirmed Refuted

CPAchecker CPAchecker 2 011 1 880 35 1 657 9
CPAchecker Witch 2 011 798 0 1 312 17
Symbiotic Witch 1 556 1 533 5 1 516 0
Symbiotic CPAchecker 1 556 1 319 29 1 315 27

Table 6: Different attributes of correctness witnesses in version 1.0 and 2.0
generated by CPAchecker

Witnesses v1.0 Witnesses v2.0

Attribute Min Median Max Min Median Max

Length in Lines of Code 53 1 536 1 014 533 18 28 1 058
Size in kB 3 52 35 573 1 1 965
Number of Nodes 3 114 26 899 - - -
Number of Edges 2 198 142 016 - - -
Number of Invariants 0 1 162 0 1 104

CPAchecker, which manages to confirm almost the same number of witnesses
in both formats.

The new format for correctness witnesses does not reduce validation perfor-
mance, for UAutomizer it shows a significant advantage over the old format.
For violation witnesses, Witch3 handling the new format performs better than
Symbiotic-Witch2 on the old format, while there is still room for improvement
of CPAchecker as it performs slightly better on the old format.

3.2 Evaluation results for RQ 2 (Witness Readability)

Another important question is concerned with the attributes corresponding to
the readability of the files encoding the witnesses. In particular, we are interested
in the size and length of the witnesses, since this has a large effect on how easy
they are to be read and understood by humans and machines.

Table 6 provides an overview of different attributes of the two versions of
witnesses produced by CPAchecker for correctness. Table 7 does the same for
violation witnesses produced by CPAchecker and Symbiotic. Some attributes
are only applicable to one of the two versions of witnesses.

For correctness witnesses we can see that the new witnesses are usually very
small in comparison to the old witnesses. This is because the new witnesses encode
only the invariants, while the old witnesses encode information about the control-
flow of the program. One explanation for the difference is that witnesses in version
1.0 roughly scale with the size of the program. While witnesses in version 2.0 scale
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Table 7: Different attributes of violation witnesses in version 1.0 and 2.0 generated
by CPAchecker and Symbiotic

Witnesses v1.0 Witnesses v2.0

Attribute Min Median Max Min Median Max

Length in Lines of Code 12 372 258 730 27 171 114 460
Size in kB 2 14 9 098 1 6 3 071
Number of Nodes 1 38 28 304 - - -
Number of Edges 0 42 28 793 - - -
Number of Waypoints - - - 1 13 9 537

only with respect to the amount of invariants, which for CPAchecker is roughly
correlated to the amount of function calls and loops. As we saw in Sect. 3.1, this
extra information is not necessarily relevant for validation.

For violation witnesses, we see that, apart from a small factor due to over-
head in describing the automaton, both formats are similar in all metrics. This
is not surprising, as both formats encode similar information about an error
path. Therefore, they both roughly scale with the amount of assumption for
nondeterministic variables and the amount of branching decisions in the error
path.

The tables show that the new witnesses are usually much shorter than the old
witnesses. As we have seen in Sect. 3.1, this does not have a negative impact on
the validation performance, since the information most relevant for validation is
retained. Having less information makes it much easier for a verification engineer
to understand the witness and use it in some further processing steps.

In summary, witnesses in version 2.0 are generally much smaller and easier to
read than witnesses in version 1.0, while retaining all important data.

3.3 Threats to Validity

Internal Validity. We used the benchmarking framework BenchExec [33] to
run the experiments, which uses the most modern Linux features for reliable
benchmarking. This tool also makes sure to never run two different executions
on the same physical core, in order to avoid interference of shared computing
resources. Our validation tools might contain bugs, which could lead to wrong
conclusions, however, our claim is that the new format works already sufficiently
well to serve as an alternative format.

External Validity. The conclusions about the validators might not hold for other
validators that will be developed in the future, also, witnesses generated by
other verifiers might have different characteristics. However, other tools are not
expected to deviate much from the presented witnesses, because they would serve
the same purpose of testifying the bug or proof. Our experiments were done on a
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large benchmark set, which is also used in competitions, but it could still be the
case that there are witnesses and programs for which the results presented are
not applicable. Since extending and improving the witness format is an ongoing
process, we expect that if this is the case, it will be adequately addressed in the
future.

4 Version 1.0 vs. Version 2.0

The witness format 2.0 is closely tied to the actual program syntax. While the
format 1.0 uses an automaton largely independent of the program syntax and
closely tied to the program representation as control-flow automata internally
used by some verifiers. Due to this, the format 2.0 is more succinct, has well-
defined semantics, and is easier to understand by humans. On the other hand,
format 1.0 is more expressive, for example it can define different loop invariants
for the same loop, when two different paths are taken to reach the loop.

Currently, the format 2.0 has the same practical limitations as the format 1.0.
In the case of correctness witnesses, they have not yet been defined for concurrency
safety, memory safety and for termination. Violation witnesses have not yet been
defined for concurrency safety. There are also features which are not yet supported
by the new format but which are straightforward extensions, such as support
for Java and violation termination witnesses. Extending witnesses to be able
to validate more programs and specifications is ongoing work, we expect that
the simplification of the syntax and clarification of the semantics with format
version 2.0 will make it easier to extend the format in the future.

In order to validate our concept of the new format, we reported our initiative
to the SV-COMP community, and the jury made a decision to immediately
include the new format as an alternative to the existing format, in order to
quickly adopt it and improve the state of the art. This was seen in SV-COMP
2024 [32], where 8 verifiers and 4 validators supported the correctness witnesses
v2.0 and 2 verifiers and 2 validators supported the violation witnesses v2.0.
Table 8 shows all these tools and their support of witnesses formats in detail.

This also shows the large interest the software verification community has in
the new format, since the first mention of the format for correctness witnesses
was only in September 20214 and the work on the violation witnesses part of the
new format started only in April 2023.

5 Conclusion

Verification witnesses are an important part of the software-verification ecosystem.
Just like verification tools, specification formats, and witness validators, there
is also a need to improve the format for verification witnesses. This paper
introduces the witness format version 2.0, which changes the container format
from GraphML to YAML, has more concise data representation, and has a clearly
4 https://gitlab.com/sosy-lab/benchmarking/sv-witnesses/-/merge_requests/44
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Table 8: Tools with some support of witnesses format 2.0 and their abilities to gen-
erate/verify correctness/violation witnesses in format 1.0/2.0 in SV-COMP 2024;
tools where the support of witness format 2.0 was implemented by the authors
of this paper are typeset in bold

Witness Generation Witness Validation

Correctness Violation Correctness Violation

Tool v1.0 v2.0 v1.0 v2.0 v1.0 v2.0 v1.0 v2.0

CPAchecker • • • • • • • •
Symbiotic • • •
Symbiotic-Witch2 •
Witch3 •
UAutomizer • • • • • •
UKojak • • •
UTaipan • • •
UGemCutter • • •
Mopsa • • •
CPV • • •
Goblint • • •

defined semantics independent from control-flow automata. Besides describing
the syntax and semantics of the new format, we also evaluated the effectiveness
and efficiency induced by the new format. In sum, the new witnesses are much
smaller and the experimental results show a significantly improved confirmation
rate for some validators: using the new format, UAutomizer can confirm 481
more correctness witnesses (Table 4) and Witch3 can confirm 514 more violation
witnesses (Table 5). Furthermore, shortly after we proposed this new format,
already seven other tools support the format, which is an indicator that the
developers value the new format.

Data-Availability Statement. A reproduction package (that includes all soft-
ware and data that we used for our experiments) is available on Zenodo [34].
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which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
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