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ABSTRACT

Given the impressive technological advances of recent years, artificial intelligence (AI) is
anticipated to enhance human decision-making across various fields, including challenging,
high-stakes ones like healthcare, finance, or aviation. However, recent research shows that
supporting human decision makers with AI is far from straight-forward.

Often, AI decision support is designed to be recommendation-centric, i.e., the AI gives a
closed, end-to-end decision recommendation. Since the human is not involved in generat-
ing the recommendation, they often cannot work effectively with it, particularly when the
AI is wrong. Incorrect recommendations can severely disrupt the human decision maker’s
workflow or, if unnoticed, lead them to adopt the wrong recommendation (overreliance),
which is especially problematic for high-stakes decisions. A common approach to address
this is to explain the AI recommendation, but results have been mixed so far. This thesis
advances the understanding of how AI—despite its imperfection—can effectively support
human decision-making in high-stakes domains, by addressing two major issues:

1) Through experiments on simple, controllable decision tasks with lay users, the thesis
contributes a better understanding of the limitations of recommendation-centric support for
high-stakes decisions. The experiment results reveal that humans are particularly prone to
overrely on AI recommendations in challenging decisions and after repeated interactions
with the AI. Common feature-based explanations could not effectively mitigate overreliance.

2) Through more qualitative studies with domain experts, the thesis explores alternative
approaches to AI decision support to overcome the identified limitations. As explored for
the use case of diversions in aviation, one promising approach is to design AI to support
the process leading up to the final decision, rather than jumping straight to the end of the
process with an end-to-end recommendation. The AI support must be granular and flexible
enough for the decision maker to use it according to their own momentary intention. Instead
of "opening the black box", explanations should help users understand how the AI output fits
their intention. Finally, recommendations can be beneficial, but should be introduced toward
the end of the decision-making process.

Overall, this thesis contributes to a more holistic view of the design space of AI-driven
decision support that goes beyond recommendations and explanations. Discovering these
alternative design opportunities requires a thorough understanding of users’ decision-making
processes and workflows, highlighting that the classic endeavor of human-centered design
to start from human needs remains crucial also in the age of advanced AI technology.
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ZUSAMMENFASSUNG

Angesichts der beeindruckenden technologischen Fortschritte der letzten Jahre wird davon
ausgegangen, dass künstliche Intelligenz (KI) die menschliche Entscheidungsfindung in den
unterschiedlichsten Bereichen verbessern wird, darunter auch in anspruchsvollen und ris-
kanten Bereichen wie dem Gesundheitswesen, dem Finanzwesen oder der Luftfahrt. Jüngste
Untersuchungen zeigen jedoch, dass die Unterstützung menschlicher Entscheidungsträger
durch KI alles andere als einfach ist.

Häufig ist KI-Entscheidungsunterstützung empfehlungsorientiert, d. h., die KI gibt eine ge-
schlossene Entscheidungsempfehlung ab. Da der Mensch nicht an der Erarbeitung der Emp-
fehlung beteiligt ist, kann er oft nicht effektiv damit arbeiten, insbesondere wenn die KI
falsch liegt. Fehlerhafte Empfehlungen können die Arbeit des menschlichen Entscheidungs-
trägers empfindlich stören oder, wenn sie unbemerkt bleiben, dazu führen, dass er die falsche
Empfehlung annimmt (Overreliance), was besonders bei risikoreichen Entscheidungen pro-
blematisch ist. Ein gängiger Lösungsansatz besteht darin, die KI-Empfehlung zu erklären,
doch die Ergebnisse sind bisher durchwachsen. Diese Dissertation erweitert das Verständ-
nis dafür, wie KI trotz ihrer Unvollkommenheit die menschliche Entscheidungsfindung in
risikoreichen Domänen effektiv unterstützen kann, indem sie zwei Hauptthemen behandelt:

1) Durch Experimente an simplen, kontrollierbaren Entscheidungsaufgaben mit Laien trägt
die Dissertation zu einem besseren Verständnis der Limitierungen von empfehlungszentrier-
ter Unterstützung für risikoreiche Entscheidungen bei. Die Ergebnisse zeigen, dass Men-
schen besonders bei schwierigen Entscheidungen und nach wiederholten Interaktionen mit
der KI dazu neigen, sich übermäßig auf KI-Empfehlungen zu verlassen. Übliche merkmal-
basierte KI-Erklärungen konnten das übermäßige Verlassen nicht wirksam eindämmen.

2) Durch qualitative Studien mit Domänenexperten werden in der Dissertation alternati-
ve Ansätze zur KI-Entscheidungsunterstützung untersucht, um die identifizierten Einschrän-
kungen zu überwinden. Wie für den Anwendungsfall der Flugumleitungen in der Luftfahrt
untersucht, besteht ein vielversprechender Ansatz darin, mit KI den Prozess bis zur endgül-
tigen Entscheidung zu unterstützen, anstatt direkt ans Ende des Prozesses zu springen und
eine abgeschlossene Empfehlung abzugeben. Die KI-Unterstützung muss so granular und
flexibel sein, dass der Entscheidungsträger sie je nach seiner momentanen Absicht einsetzen
kann. Anstatt die "Blackbox zu öffnen", sollten KI-Erklärungen den Nutzern helfen zu ver-
stehen, wie die KI-Ausgabe zu ihren Absichten passt. Zudem können Empfehlungen zwar
nützlich sein, sollten aber erst am Ende des Entscheidungsprozesses eingeführt werden.

Insgesamt trägt diese Dissertation zu einer ganzheitlicheren Sicht auf den Gestaltungsraum
für KI-Entscheidungsunterstützung bei, die über KI-Empfehlungen und -Erklärungen hin-
ausgeht. Um diese alternativen Gestaltungsmöglichkeiten zu identifizieren, ist ein gründ-
liches Verständnis der Entscheidungsprozesse und Arbeitsabläufe der Nutzer erforderlich.
Dies zeigt, dass das klassische Bestreben der menschenzentrierten Gestaltung, von den
menschlichen Bedürfnissen auszugehen, auch im Zeitalter fortschrittlicher KI-Technologie
entscheidend bleibt.
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Chapter1
Introduction

1.1 Thesis Statement

Fueled by the rapid technological advances in recent years, artificial intelligence (AI) has
become ubiquitous, permeating more and more aspects of daily life and work. One popular
application of AI is to support human decision-making across various domains [50], often in
high-stakes ones such as human resources [85], finance [15], or healthcare [103]. Common
terms for this field of research include human-AI decision-making or AI-assisted decision-
making. Throughout the thesis, I will use the latter term to emphasize the human-centered
perspective that informs all of the work in this thesis: that it is humans who make the deci-
sions and who are responsible for their decisions, with AI only providing assistance, rather
than being an equal partner.

A common assumption is that AI will augment human decision-making, given the com-
plementary strengths of humans and machines: While humans are better at understanding
context and human values, machines can process far more data [1, 42]. However, AI is im-
perfect, and some argue that it will always be [93]. The question is therefore how to benefit
from AI without AI errors leading to grave consequences in high-stakes applications. A fre-
quently proposed solution is the human-in-the-loop [1, 21, 50, 84], i.e., relying on the human
to override the AI when necessary. But recent empirical results show that this is far from
trivial, since humans frequently override or accept AI recommendations inappropriately, as
discussed in more detail in Section 2.1. As a result, the vision of AI augmenting human
decision-making, especially in high-stakes applications, has proven difficult to realize.

The aim of this thesis is to contribute toward the realization of this vision through thoughtful
human-AI interaction design. The thesis is grounded in three interrelated observations:

1. Systems for AI-assisted decision-making are usually recommendation-centric, i.e., the
AI system provides end-to-end decision recommendations, as I will elaborate further
in Section 2.2.
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1 Introduction

2. This recommendation-centric support paradigm may be particularly prone to AI mis-
takes, as it depends on the ability of the human decision maker to recognize a bad
recommendation.

3. AI-assisted decision-making does not have to be recommendation-centric. There are
often many more opportunities to support decision-making with AI than end-to-end
recommendations.

Motivated by these observations, I pursued two main lines of research: (1) understanding
the limitations of recommendation-centric decision support, and (2) how alternative support
paradigms might overcome these limitations. The results demonstrate the importance of
understanding human decision-making processes and the potential of approaches beyond
the common recommendation-centric paradigm.

1.2 Contributing Publications

This thesis is a cumulative dissertation that connects and summarizes the contributing pub-
lications listed below and puts them into the context of related work. Throughout the thesis,
I reference these publications with a prefixed “P” (e.g., [P1]). An overview of my own con-
tributions to these publications is given in Table 1.1. More details including clarifications of
my co-authors’ contributions will be given in the respective sections of Chapter 3. This is
meant to improve the reading flow, as the context of each publication should help to better
understand each author’s contribution.

2



Contributing Publications

Table 1.1: Overview of own contributions to the publications. Main contributor means that
these contributions were mostly or entirely mine. Co-contributor means that these contributions
were shared with my co-authors. Note that a lack of entries under co-contributor does not mean
a lack of contribution by my co-authors, but only that there was no shared contribution between
me and my co-authors. More details about my own as well as my co-authors’ contributions are
given in the respective sections in Chapter 3.

Publication Main contributor Co-contributor

Pilot Attitudes Toward AI in the
Cockpit [P1]

study idea, design, and
execution; data analysis;
writing

Forward Reasoning Decision
Support [P2]

idea for position paper;
writing

Resilience Through
Appropriation [P3]

writing study design and execution;
prototype design; data
analysis

Is Overreliance on AI Provoked
by Study Design? [P4]

study idea; data analysis;
writing

study design

You Can Only Verify When You
Know the Answer [P5]

study idea; data analysis;
writing

study design

Beyond Recommendations [P6] study idea, design, and
execution; system design
and implementation; data
analysis; writing;
framework for
process-oriented support

focus group execution

Effect of Mental Workload and
Explanations on Appropriate AI
Reliance [P7]

study idea; implementation
of AI model

study design; data analysis;
writing

[P1] Zelun Tony Zhang, Yuanting Liu, and Heinrich Husmann. Pilot attitudes toward AI in
the cockpit: implications for design. In 2021 IEEE 2nd International Conference on
Human-Machine Systems (ICHMS), pp. 33:1–33:6, Magdeburg, Germany, September
2021. IEEE. DOI: 10.1109/ICHMS53169.2021.9582448.

[P2] Zelun Tony Zhang, Yuanting Liu, and Heinrich Hussmann. Forward reasoning decision
support: toward a more complete view of the human-AI interaction design space. In
CHItaly 2021: 14th Biannual Conference of the Italian SIGCHI Chapter, pp. 18:1–
18:5, Bolzano, Italy, July 2021. ACM. DOI: 10.1145/3464385.3464696.
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1 Introduction

[P3] Zelun Tony Zhang, Cara Storath, Yuanting Liu, and Andreas Butz. Resilience through
appropriation: Pilots’ view on complex decision support. In Proceedings of the 28th
International Conference on Intelligent User Interfaces, IUI ’23, pp. 397–409, Sydney,
NSW, Australia, March 2023. ACM. DOI: 10.1145/3581641.3584056.

[P4] Zelun Tony Zhang, Sven Tong, Yuanting Liu, and Andreas Butz. Is overreliance on AI
provoked by study design? In José Abdelnour Nocera, Marta Kristín Lárusdóttir, Helen
Petrie, Antonio Piccinno, and Marco Winckler, editors, Human-Computer Interaction
– INTERACT 2023, pp. 49–58, York, UK, August 2023. Springer. DOI: 10.1007/978-
3-031-42286-7_3.

[P5] Zelun Tony Zhang, Felicitas Buchner, Yuanting Liu, and Andreas Butz. You can only
verify when you know the answer: Feature-based explanations reduce overreliance on
AI for easy decisions, but not for hard ones. In Proceedings of Mensch und Computer
2024, MuC ’24, pp. 156–170, Karlsruhe, Germany, September 2024. ACM. DOI:
10.1145/3670653.3670660.

[P6] Zelun Tony Zhang, Sebastian S. Feger, Lucas Dullenkopf, Rulu Liao, Lou Süsslin,
Yuanting Liu, and Andreas Butz. Beyond recommendations: From backward to
forward AI support of pilots’ decision-making process. Proceedings of the ACM
on Human-Computer Interaction, 8(CSCW2):485:1–485:32, November 2024. DOI:
10.1145/3687024.

[P7] Zelun Tony Zhang, Seniha Ketenci Argın, Mustafa Baha Bilen, Doğan Ur-
gun, Sencer Melih Deniz, Yuanting Liu, and Mariam Hassib. Measuring the
effect of mental workload and explanations on appropriate AI reliance using
EEG. Behaviour & Information Technology, pp. 1–19, November 2024. DOI:
10.1080/0144929X.2024.2431055. Advance online publication.

Publication [P5] received a Best Paper Award.
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Chapter2
Background and Definitions

2.1 Appropriate Reliance

This thesis focuses on AI-assisted decision-making in high-stakes applications, where bad
decisions can have highly negative consequences. It is therefore crucial that decision makers
are not misled into a bad decision by an inevitable AI error. Conversely, it is desirable that
the decision maker does not erroneously overrule a good AI recommendation. This notion is
captured by the term appropriate reliance, which has already been studied for decades in the
context of traditional automation [51], and has in recent years also gained much attention in
AI-assisted decision-making research [75].

Appropriate reliance is usually defined and measured through decision outcomes on individ-
ual decision instances [32]. The setup is typically such that the AI makes a recommendation
to the human, who has to make the final decision. If the human accepts a correct AI recom-
mendation or rejects a wrong one, the reliance is said to be appropriate. Conversely, reliance
is said to be inappropriate if the human either accepts a wrong AI recommendation (overre-
liance), or rejects a correct recommendation (underreliance). This definition of appropriate
reliance is straightforward to operationalize by recording participants’ decisions conditioned
on the correctness of the AI recommendation.

While this outcome-based definition of appropriate reliance is very common (e.g., [11, 38,
56, 72, 75, 88, 92, 97], it has its shortcomings, as highlighted by Fok and Weld [32]. For
one, relying on AI can be considered an appropriate strategy even if the AI ends up being
wrong, which could be the case for instance when a typically highly reliable AI makes a rare,
unexpected mistake. The reverse of this argument also holds. Second, the outcome-based
definition does not properly consider non-deterministic elements in decision outcomes. For
example, two loan applicants may have the same profiles, resulting in the same AI recom-
mendations, but one may default while the other does not. Fok and Weld therefore propose
a “strategy-graded” definition for appropriate reliance [32], where the appropriateness does
not depend on the outcome of a decision, but on whether the AI is expected to outperform the
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2 Background and Definitions

human for a given decision. However, it is often unclear how to operationalize this definition
in experiments.

Another limitation of the outcome-based definition is that it does not allow to discriminate
different reasons why people do not make optimal use of AI recommendations. To address
this limitation, Guo et al. [37] propose a decision-theoretic framework that differentiates
between an overall reliance level and the recognition whether the human or the AI is better
for a specific decision instance. The framework relies on strong assumptions about people’s
decision-making process with AI, which are yet to be validated and refined in future work.

In this thesis, I resorted to the established outcome-based definition of appropriate reliance.
While I recognize its limitations, work on alternative definitions is still in its infancy and
represents an important area for future research. I addressed the limitations of the outcome-
based definition through the experiment designs, e.g., by choosing deterministic decision
tasks or by carefully selecting the decision instances to include in the experiments. I fur-
ther focused primarily on overreliance. While underreliance is also undesirable, as it means
missed opportunities for potentially critical improvements, overreliance means the AI intro-
duced a change for the worse. Overreliance is arguably also the greater concern both in pub-
lic debates about AI as well as in research on AI-assisted decision-making [11, 47, 88, 89].

2.2 Recommendation-Centric Decision Support

As previously stated in Section 1.1, the most common approach to AI-assisted decision-
making is what I term recommendation-centric decision support. By this I refer to systems
where the primary functionality is to provide end-to-end decision recommendations, which
the human decision maker can either accept or reject. For example, a decision support
tool in healthcare could suggest a likely diagnosis to physicians directly from the patient’s
information. However, numerous studies demonstrate that humans often rely inappropriately
on AI recommendations, with both underreliance [17, 19, 22, 69] and—more frequently—
overreliance [6, 11, 34, 49, 55, 67, 77] being an issue, which can even be the case for expert
decision makers [10, 41].

To help people to rely on AI recommendations appropriately, the recommendations are often
accompanied by explanations about how the AI model arrived at its output. The explainable
AI (XAI) community has contributed numerous approaches to explain the output of an AI
model [53], such as by revealing how individual input features contributed to the output
(feature-based explanations), or by showing examples from the training set that are similar to
the current input (example-based explanations). The rationale is that by “opening the black
box” [36] of AI in this way, humans can judge whether the system is correct or not [74].
However, empirical results have been mixed so far. While explanations are beneficial in
some studies [18, 88, 97], it seems more common that explanations have little effect on the
appropriateness of reliance [7, 75, 92, 106], or even increase overreliance [6, 10, 41, 49, 77].

6



Research Questions

Besides explanations, several other approaches have been proposed to improve appropri-
ate reliance on recommendation-centric decision support. One approach is to provide ad-
ditional information about the AI model to decision makers, such as the model’s test set
accuracy [38, 71] or descriptions about the model performance [14]. One type of model
information that has repeatedly been shown to be effective for calibrating people’s reliance
is model uncertainty about a given recommendation [6, 58, 68, 106]. The challenge for prac-
tical use is that uncertainty is very hard to calibrate, as AI can often be wrong with high
confidence [4].

Another approach is the use of cognitive forcing functions [11], which aim to push decision
makers to engage more deliberately with AI recommendations, e.g. by displaying recom-
mendations only after the user has entered their own initial decision [11, 31] or by introduc-
ing a waiting time before the AI provides a recommendation [11, 65]. While cognitive forc-
ing functions can mitigate overreliance, they are perceived negatively by users [11, 31, 65].

A further line of research is to optimize users’ reliance behavior by adapting which of the
above strategies to use, or even whether to show recommendations at all. Examples of
proposed methods include reinforcement learning based on information such as the user’s
knowledge of a certain concept [12]; modeling the user’s likelihood to make a correct de-
cision in a given task instance [57]; or logically inferring adaptation strategies from sim-
ple assumptions about the user’s reliance behavior [59]. Initial results on simple decision
problems are promising, but the computational inferences introduce additional sources for
mistakes. It is thus unclear how well these approaches translate into complex real-world,
high-stakes applications.

All of the approaches mentioned above target the problem of inappropriate reliance, but re-
main focused on supporting human decision-making through end-to-end recommendations.
However, besides inducing inappropriate reliance, recommendation-centric support also of-
ten proves less helpful to decision makers than expected, as revealed by a growing number
of studies on AI-assisted decision-making under real-world conditions [8, 45, 98]. A recur-
ring complaint of users is that recommendation-centric support does not integrate well into
their existing work and decision-making processes [13, 46, 98]. Rather than a suggested end
result, decision makers often wish for more support of the process leading up to the final
decision [101, 105], which is completely ignored by recommendation-centric support. Such
findings suggest that for many applications, a paradigm shift away from recommendation-
centric support may be necessary for AI-assisted decision-making, although it is often un-
clear what alternative forms of AI support might look like, as concrete examples are rare.

2.3 Research Questions

While inappropriate reliance is a persistent problem in recommendation-centric support,
there are studies showing that it is possible to calibrate human reliance on AI recommenda-
tions in some scenarios [97, 106]. For instance, Vasconcelos et al. [88] showed that explana-
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2 Background and Definitions

tions can reduce overreliance when they lower the cost of verifying the AI recommendation.
However, for most constellations, it is not as clear under which conditions people are able
to rely appropriately on recommendation-centric support and when not. This motivates the
first overarching research question of this thesis:

RQ1: What are the limitations of recommendation-centric support for high-
stakes decisions?

In particular, I focus on the most common form of recommendation-centric support, i.e.,
recommendations plus explanations. I further concentrate on overreliance, as explained in
Section 2.1, and the conditions under which explanations fail to mitigate it.

As outlined in Section 2.2, many researchers attempt to address the issue of inappropriate
reliance while holding on to the recommendation-centric paradigm of AI-assisted decision-
making. Yet, studies on real-world decision contexts often reveal opportunities for AI sup-
port that is not recommendation-centric, even though examples of concrete system designs
are rare. It is even less clear how such alternative support paradigms that do not rely on
end-to-end decision recommendations would compare to recommendation-centric support.
The second research question guiding the work in this thesis is therefore:

RQ2: How can AI support high-stakes decisions without being recommen-
dation-centric to overcome the limitations of recommendation-centric support?

By studying a use case from commercial aviation, my goal is to identify AI decision support
designs that are useful to pilots, but not centered around recommendations, and compare
them against the recommendation-centric approach.

8



Chapter3
Imperfect AI for High-Stakes

Decision Support

This chapter summarizes the contributing publications listed in Section 1.2 and relates them
to the two guiding research questions laid out in Section 2.3. As these publications were
the result of collaborations with my co-authors, I will use the scientific “we” throughout this
chapter when describing the individual studies.

3.1 Limitations of Recommendation-Centric Support

RQ1: What are the limitations of recommendation-centric support for high-
stakes decisions?

I primarily investigated RQ1 through experiments on simple decision tasks (Sections 3.1.1
and 3.1.2), which is the most common way to empirically study AI-assisted decision-
making [50]. While somewhat artificial, such simple decision tasks allow for controlled
investigations of the human factors involved in AI-assisted decision-making. However, they
also tend to conceal challenges that only become apparent in complex real-world use cases. I
therefore also studied commercial aviation as a high-stakes domain to understand limitations
arising in actual use (Section 3.1.3).
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3.1.1 Increasing Overreliance Over Time

This section is based on the publication

“Is overreliance on AI provoked by study design?” [P4].

The established outcome-based definition of appropriate reliance (Section 2.1) requires a
study design where participants have to solve a series of decision tasks. In order to collect
enough data, these task series are often quite long (see Table 3.1), long enough to suspect
that many participants may become complacent and less engaged toward the end of the task
series. At the same time, prior work has shown that overreliance in AI-assisted decision-
making may be caused by a lack of cognitive engagement [11, 33]. We therefore asked
whether observations of overreliance in empirical studies are provoked by the long task
series used in many studies, which may not reflect how decisions are made in many real-
world use cases.

Table 3.1: Examples of research finding overreliance in AI-assisted decision-making, including
the decision tasks and the lengths of the task series participants had to complete in the respective
studies. Adapted from [P4].

Publication Study task # Tasks

Bansal et al. [6] Sentiment classification 50
Law School Admission Test 20

Buçinca et al. [11] Nutrition assessment 26

Green and Chen [34] Recidivism risk assessment 40
Loan risk assessment 40

Lai and Tan [49] Deception detection 20

Liu et al. [55] Recidivism prediction 20
Profession classification 20

Schmidt and Biessmann [77] Sentiment classification 50

Wang and Yin [92] Recidivism prediction 32
Forest cover prediction 32

To answer this question, we designed an online experiment with 47 participants based on
a profession classification task that had been used in several other studies on AI-assisted
decision-making [18, 55, 66, 78]. Participants had to read a short biography and decide with
the help of recommendation-centric AI assistance which profession the described person
has. The core idea was to design a study condition in which the 50 decision tasks were split
into ten short sessions of five tasks each, which were sent to participants with a minimum
break of one hour between two sessions. Participants were free to choose when they would
complete the new session once they received the link to it. This condition (multiple session
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group—MSG) was meant to induce less complacency among participants than the typical
setup where all 50 tasks had to be completed in a single session (single session group—SSG).

The results showed that for both MSG and SSG, participants’ agreement with the AI and
their overreliance increased significantly as they progressed through the task series, while
the decision time decreased significantly, indicating decreasing effort with ongoing time.
This implies that typical study designs with long task series indeed favor the occurrence of
overreliance. However, overreliance may increase over time even in settings like the MSG
condition where people do not have to solve a large amount of decision tasks in a short time
period. One reason could be that our MSG condition was not effective enough at reducing
complacency. On the other hand, we ensured that participants could conveniently solve the
tasks at their own schedule. Therefore, our findings potentially suggest a more fundamental
limitation of recommendation-centric support, i.e., as people become more familiar with
such a system, they become more likely to overrely on it, irrespective of whether they interact
with it in long, tiring sessions, or in shorter sessions embedded into their daily context.

Author contributions: This publication is the result of the master thesis of my student Sven
Tong. I provided the study idea, conducted the statistical analysis in the form found in the
publication, and wrote the paper. Sven designed the study under my guidance, implemented
the machine learning model, the explanations, and the study interface, and conducted the
study. Yuanting Liu and Andreas Butz provided guidance and feedback and edited the final
version of the submission.

3.1.2 Inappropriate Reliance in Difficult Decisions

This section is based on the following publications:

“You can only verify when you know the answer: Feature-based explanations
reduce overreliance on AI for easy decisions, but not for hard ones” [P5],

“Measuring the effect of mental workload and explanations on appropriate
AI reliance using EEG” [P7].

As shown by an increasing number of empirical studies, countless factors can influence
whether people can rely appropriately on recommendation-centric decision support, such as
users’ personality traits [11, 77], their domain expertise [39, 92], model performance [61, 64,
102], or the type [89, 92] and design [97] of explanations. We were interested in the effect of
task characteristics, in particular decision difficulty, as AI-assisted decision-making is often
aimed at difficult decisions in high-stakes domains like healthcare [79] or finance [15], where
overreliance is especially undesirable. At the same time, given their high stakes, the call for
explainability is particularly prominent in these domains [2, 5]. We therefore conducted
two experiments to investigate how decision difficulty affects the appropriateness of human
reliance on AI, and how the effectiveness of explanations to mitigate overreliance depends
on decision difficulty.
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Figure 3.1: Task interfaces used in the decision difficulty experiments. Left: profession classi-
fication task used in [P5]. Right: image recognition task used in [P7]. Top: AI support without
explanations. Bottom: AI support with explanations.

The two experiments covered two different types of tasks (see Figure 3.1): the text-based
profession classification task [P5] which we also used in [P4], as described in Section 3.1.1,
and an image recognition task [P7]. Both experiments had one condition where the AI only
gave a recommendation, and one condition where it in addition gave feature-based expla-
nations that are typical for the respective task. In [P5], we conducted an online experiment
with 200 participants. We measured decision difficulty through the agreement among par-
ticipants, where lower agreement indicated higher decision difficulty. In [P7], we used elec-
troencephalography (EEG) with 34 participants to measure mental workload as an indicator
for decision difficulty. Both approaches had complementary strengths and weaknesses, as
shown in Table 3.2.

We found in both studies that participants’ reliance on AI was significantly less appropriate
in more difficult decisions. In [P5], explanations helped to mitigate overreliance for easy
decisions, but became less effective with increasing decision difficulty, with a tendency to
even increase overreliance in the most difficult decisions. In [P7], the explanations had no
significant effect, but we found indications that in principle, they could be helpful for easy
decisions, but not for difficult ones.

We conclude that recommendation-centric support is helpful for easy decisions, where hu-
mans often know the answer themselves or at least have an intuition about the decision.
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Table 3.2: Advantages and disadvantages of the two approaches used in this thesis for measuring
decision difficulty.

Advantages Disadvantages

Agreement-based
measure [P5]

Assesses decision difficulty
on a continuous scale.

Does not account for
subject dependency of
decision difficulty.

EEG-based
measure [P7]

Measures decision difficulty
as subjectively experienced
by each participant.

Only allows for binary
distinction between easy
and difficult decisions.

Here, recommendations and explanations can occasionally provide a useful second opin-
ion. However, for difficult decisions where humans are highly uncertain about the correct
answer, recommendation-centric support may be inappropriate, since the end-to-end recom-
mendations and the technical explanations mostly do not help with forming a better intuition
about the task. Consequently, decision makers have few other clues to work with than the
recommendation and are likely to overrely on the AI.

Author contributions for [P5]: This publication is the result of the master thesis of my
student Felicitas Buchner. I provided the study idea, conducted the statistical analysis in the
form found in the publication, and wrote the paper. Felicitas designed the study under my
guidance, implemented the machine learning model, the explanations, and study interface,
and conducted the study. Andreas Butz contributed to the statistical analysis. Yuanting Liu
and Andreas provided guidance and feedback and edited the final version of the submission.

Author contributions for [P7]: I contributed the study idea for this publication and led
the collaboration. The experiment design was a joint effort, with Mariam Hassib and I
focusing on the requirements from the perspective of AI-assisted decision-making, while
the colleagues from TUBITAK—Seniha Ketenci Argın, Mustafa Baha Bilen, Doğan Urgun,
and Sencer Melih Deniz—ensured that the experiment was compatible with the constraints
of EEG data acquisition. I trained the neural network and implemented the explanations. The
study interface and EEG data acquisition pipeline were implemented by the colleagues from
TUBITAK, who also conducted the experiment and derived mental workload measures from
the EEG data. Mariam and I performed the statistical analysis. Writing was a joint effort by
Mariam, Doğan, Sencer, and me. Yuanting Liu provided guidance and feedback and edited
the final submission.
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3.1.3 Helpful When Correct, but a Burden When Wrong

This section is based on the following publications:

“Pilot attitudes toward AI in the cockpit: implications for design” [P1],

“Resilience through appropriation: Pilots’ view on complex decision sup-
port” [P3].

To understand what hinders the adoption of AI-assisted decision-making in high-stakes do-
mains, it is important to study real-world use cases in addition to experiments like those in
Sections 3.1.1 and 3.1.2. We considered a use case from commercial aviation, which will
be explained in more detail in Section 3.2.2. We conducted an initial exploratory interview
study with four professional pilots [P1] to understand their perspective on the introduction
of AI in the cockpit. We found that pilots’ primary concern is not the black box nature of
AI systems, as is often assumed when explanations are added to AI recommendations. Our
participants were more concerned that AI may not be able to properly handle complex situa-
tions. A recurring example was that aviation relies on well-defined procedures that cover the
majority of events; but in extraordinary situations, pilots may need to flexibly deviate from
usual procedures. Our interviewees feared that an AI system may lack this flexibility and
judgment, and become a burden rather than a help in such situations.

These findings highlight an important requirement for AI systems in high-stakes applica-
tions that is often not sufficiently addressed: Imperfect AI outputs, which are unavoidable
in a complex domain such as aviation, should have minimal negative impact on users, a
property Gu et al. [35] call AI-resilient. Recommendation-centric support tends to violate
this requirement especially for complex decisions, as discussed by participants in a second
study [P3], which will be explained in more detail in Section 3.2.2. While pilots stated that
they would not blindly trust AI, they rejected the notion that they have to question case-by-
case whether the AI recommendation is correct or not. Yet, this is the assumption driving
most research on appropriate reliance in AI-assisted decision-making. Pilots emphasized
that such a system would burden them more than it would help.

The seeming contradiction of not blindly trusting AI, but also not wanting to question it on a
case-by-case basis, points to what makes recommendation-centric support difficult to work
with: It diverts users’ cognitive resources away from their own decision-making process
and toward the review of a recommendation in which they have not been involved. Instead
of augmenting users’ decision-making process, reviewing the recommendation creates extra
effort, especially when the decision is a complex one.

Author contributions for [P1]: The study idea was mine, and I also conducted the inter-
views, analyzed the data, and wrote the paper. Yuanting Liu and Heinrich Hußmann provided
guidance and feedback and edited the final version of the submission.

Author contributions for [P3]: Given in Section 3.2.2, where the publication is described
in more detail.
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3.2 Exploration of Alternatives to Recommendation-
Centric Support

RQ2: How can AI support high-stakes decisions without being recommen-
dation-centric to overcome the limitations of recommendation-centric support?

Similar to Section 3.1.3, studies of AI-assisted decision-making in real-world applica-
tions, such as in healthcare [9, 40, 98], social work [46], or sales [8], frequently find
how recommendation-centric support does not fit well into users’ decision-making pro-
cess. However, concrete examples for alternative, not recommendation-centric ways to
support human decision-making are rare; the few existing examples are mostly found in
healthcare [54, 99, 105]. It is even less clear how such alternative designs compare to
recommendation-centric support.

For RQ2, my objective was therefore to identify concrete ways for AI decision support that
are not focused on recommendations, and compare them against typical recommendation-
centric support. To this end, I studied a use case from commercial aviation.

3.2.1 Backward and Forward Reasoning

This section is based on the publication

“Forward reasoning decision support: toward a more complete view of the
human-AI interaction design space” [P2].

In this position paper, we laid out the conceptual groundwork for the following studies de-
scribed in Sections 3.2.2 and 3.2.3. We argued that recommendation-centric support intro-
duces a secondary task on top of users’ primary decision-making task, namely the review
of the AI’s recommendation. This review task requires users to reason backward from the
AI-recommended end result, which is error-prone and leads to inappropriate reliance [91].
In addition, for complex decisions, reasoning backward to validate an AI recommendation
can be an effortful “research task”, as Burgess et al. [9] put it. Users are unlikely to accept
this extra effort on top of their demanding primary task [9, 40] [P3].

As an alternative, we proposed that rather than trying to solve the task for users end-to-end
via a decision recommendation, AI could provide more incremental support. The goal is to
avoid introducing a secondary task, and instead to support users to reason forward through
their primary decision-making task.

On the surface, this incremental support seems less ambitious than recommendation-centric
support because it appears to do less for users. Our key insight was that in reality,
recommendation-centric support does not necessarily lead to less effort than more incremen-
tal support. Rather, the difference is that recommendation-centric support induces backward
reasoning, while incremental support encourages forward reasoning, which can potentially
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address the limitations of recommendation-centric support as identified in Section 3.1. This
insight guided the studies in the following sections, where we aimed to identify ways to sup-
port pilots’ reasoning in a forward direction (Section 3.2.2) and to compare this approach to
recommendation-centric support (Section 3.2.3).

Author contributions: The idea for this position paper was mine, and I also wrote the paper.
Yuanting Liu and Heinrich Hußmann provided guidance and feedback and edited the final
version of the submission.

3.2.2 Continuous Support

This section is based on the publication

“Resilience through appropriation: Pilots’ view on complex decision sup-
port” [P3].

For the studies in this and the following section, we considered diversions in commercial
aviation as a real-world use case for AI-assisted decision-making. Diversions are when a
flight cannot reach its planned destination and has to divert to another airport, e.g. due
to a medical emergency on board, a technical failure, or adverse weather conditions at the
destination. Diversion decisions are in the responsibility of the pilots and are one of the
primary use cases where pilots can imagine AI support [94].

To understand how AI can assist with diversion decisions, we designed two click-dummy
prototypes and discussed them with eight professional pilots. The Global Suggestions pro-
totype represents a typical recommendation-centric concept, where the system ranks the
surrounding airports and recommends up to three of them. To make the recommendations
transparent, the underlying decision criteria speaking for and against a particular airport are
provided with a color coding in a table view. The idea behind the Local Hints prototype
(Figure 3.2) on the other hand is to give hints about potential constraints at the surrounding
airports, without explicitly recommending an airport. Crucially, the system is meant to be
permanently displayed to pilots, even in normal flight when no diversion is imminent. This
is supposed to improve pilots’ situation awareness and to support their reasoning in a for-
ward direction. During an emergency, pilots can enter an emergency mode to get hints that
are tailored to the specific situation.

We found that diversion decisions involve much more than merely the point at which pilots
choose the diversion airport. Before this point, during normal flight, pilots constantly aim
to maintain situation awareness to be prepared for a possible diversion. They also ensure
that there is always a valid plan B to avoid running out of options. After the decision point,
pilots continue to check that their current plan is valid. Recommendation-centric support
disregards this process nature of diversion decisions and only addresses the point where the
actual decision is made. Our findings reveal the importance of continuously supporting the
entire decision-making process, as exemplified by our Local Hints concept.
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EDOG EDDF EDTY ETDU EDRY ETAR EDFH

Flight time 20 min 25 min 30 min 30 min 30 min 35 min 40 min

Fuel at destination 40 min 35 min 30 min 30 min 30 min 25 min 20 min

Fuel at alternate 20 min 25 min Not possible 20 min 20 min 15 min 5 min

Runway length 2.6 km 3 km 3 km 2.1 km 2.8 km 3.3 km 2.6 km

Runway width 45 m 60 m 45 m 60 m 45 m 60 m 60 m

Braking action Good Good Medium Good to medium Null Good Medium

Approach type ILS CAT II Visual Visual NPA ILS CAT III ILS CAT I NPA

Tailwind component H 3 kts H 8 kts H 10 kts H 12 kts H 17 kts H 2 kts H 1 kts

Weather margin 0 km 23 km 100 km 240 km 4 km 5 km 0 km

Weather at destination Good Good Good Heavy wind Good Heavy rain Snow storm

Landing dist. margin 400 m 700 m 1000 m 100 m 500 m 1000 m 600 m

Crosswind component H 4 kts H 4 kts H 2 kts H 6 kts H 7 kts H 12 kts H 16 kts

Risks on route - - - Storm approaching Storm on route Storm arpproaching -

Technical maintenance Available Available Available Available Available Available Available

Average wait. time 15 min 35 min 14 min 22 min 20 min 16 min 24 min

Refueling possible Yes Yes No Yes No Yes Yes

PAX handling Available Available Not available Not available Partly Available Available Available

Special. hospital avail. not applicable not applicable not applicable not applicable not applicable not applicable not applicable

Dist. airport - hospital 22 km 3 km 3.2 km 3.5 km 2.7 km 2.9 km 4 km

HEMS avail. (2/10) (8/10) (3/10) (6/10) No (7/10) (8/10)

Perform. capab. ATC Good Good Good Medium Low Medium Good

Attributes

Airports Search airport

View details

Review calculation

Warning

There might be heavy rain at the time of arrival. Please review the weather condition continuously.

Add emergency

ETAR

EFOB 3,457 kg ILD 2239m FLD 2575 m LDA 3300 m

Weather

NOTAM

METAR ETAR 221121Z AUTO 04014KT 9999 BKN026 07/07 A3018 RMK AO2 SLP231

TAF ETAR 221000Z 2210/2316 05010G20KT 9999 SCT015 BKN025 620302 510004 QNH3015INS

RUNWAY 27 GLIDESLOPE UNSERVICEABLE. 11 NOV 18:09 2021 UNTIL 31 DEC 23:59 2021.

CREATED: 11 NOV 18:12 2021

 BECMG 2220/2221 05009KT 9999 FEW025 QNH3029INS 

 BECMG 2300/2301 VRB06KT 3200 BR BKN010 QNH3032INS 

 BECMG 2308/2309 06010G15KT 9999 NSW FEW015 QNH3033INS TX08/2215Z TNM02/2305ZETAR

EDRY

EDTY

ETDU

EDOG
EDFH

DINKU

DILUG

GULKO

Airport details

There is a storm on the 
route to EDRY and the 

braking action at the 

destination is Null. Please 
consider another airport.

There is high traffic 
expected at EDDF, this 

could prolong waiting 

times.

flight timeRanked by

Available Available

35 min 14 min

Yes No

Available Not available

not applicable not applicable

3 km 3.2 km

(8/10) (3/10)

There is high traffic 
expected at EDDF, this 
could prolong waiting 
times.

An “Add emergency” button enables 
configuration of the system for an 
emergency case (»emergency mode«).

Summary box: A summary of the hints 
and warnings is displayed for the 
selected airport.

Airports are selectable for further 
information and system evaluation.

Icons hint at warnings and alerts given  
by the system.

By clicking on the hinting 
icon, pilots can retrieve 
additional explanation 
for why the system is 
raising an alert or 
warning.

Information that has been 
reevaluated due to the 
emergency are highlighted in 
blue. An “info i” offers 
additional explanation for the 
reevaluation.

In an emergency situation, 
new information becomes 
relevant and worth hinting at. 
It is again marked and 
explained by the system.

5 min 0 kmEDFH

Local Hints »default mode«

Local Hints »emergency mode«

Good Good

700 m 1000 m

H 4 kts H 2 kts

- -

Available Available

35 min 14 min

Yes No

Due to your medical 
emergency the traffic 
situation was considered 
of less importance, since 

you can declare an 
emergency.

Dist. airport - hospital 22 km

HEMS avail. (2/10)

Perform. capab. ATC GoodHelicopter service often 

unreliable. Please check 
with ATC or consider 
another airport.

Figure 3.2: Overview of the Local Hints concept. Source: [P3].

We further found that pilots would not blindly trust an AI decision support tool, but they
also do not want to be burdened with constantly questioning the correctness of the AI, as
mentioned in Section 3.1.3. We found appropriation [23] to be a useful lens to make sense
of this seeming contradiction. Pilots want to appropriate the AI support according to their
current intention, such that the AI complements their reasoning, instead of creating a review
task that is not integrated into pilots’ decision-making. A more open form of support like the
continuous provision of local hints might be easier to appropriate than closed, end-to-end
recommendations.

Author contributions: Cara Storath and I contributed equally to this publication. Cara
provided the study idea, and I contributed the writing of the paper. The study design and
execution, prototype design, and data analysis were joint efforts by the two of us. Yuanting
Liu and Andreas Butz provided guidance and feedback and edited the final version of the
submission.
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3.2.3 Comparison With Recommendation-Centric Support

This section is based on the publication

“Beyond recommendations: From backward to forward AI support of pilots’
decision-making process” [P6].

The results described in Section 3.2.2 showed that continuous support through local hints
is a promising approach to support diversion decisions that is viewed favorably by pilots.
However, it remained unclear how this approach compares to recommendation-centric sup-
port. Clarifying this question by conducting an empirical comparison was the aim of the
work described in this section. We designed four versions of an AI-based diversion assis-
tance tool for this mixed-methods study (see Figure 3.3): a recommendation-centric version
(Rec), similar to the Global Suggestions concept described in Section 3.2.2; a continuous
support version (Cont), similar to the Local Hints concept described in Section 3.2.2; a com-
bined version that continuously provides local hints during normal flight and recommenda-
tions during emergency (Rec+Cont); and a baseline version that only presents surrounding
airports and their data without AI elements.

Select diversion optionAbnormal happensNormal flight

Recommendations 

(Rec)

Continuous Support 

(Cont)

Recommendations +

Continuous Support 

(Rec+Cont)

Baseline 

Local hints

Local hints

Select emergency type

Select emergency type

Select emergency type

Recommendations Edit rec. criteria

(+ )

Recommendations Edit rec. criteria

(+ )

Table w/o AI elements

Normal flight Emergency occurs

1

1

2

2

3

3

5

5

5

6

Adjusted local hints

4

Figure 3.3: Study conditions for empirical comparison between recommendation-centric and
continuous support. Source: [P6].

The study was based on three flight simulator scenarios that we validated and refined through
a focus group with four professional pilots. Of particular interest was the third scenario, in
which one airport—Hanover—would appear to be the best diversion option based on the AI
evaluation. However, due to heavy traffic at that airport, which the AI does not consider in
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its evaluation, Hanover would not be an optimal choice. We recruited 32 professional pilots
for the study, with the diversion assistance version as between-subjects variable. Each pilot
had to complete all three scenarios.

We found that the Rec version pushed pilots to reason backward, resulting in strong overre-
liance, as significantly more pilots chose Hanover in the third scenario than with the baseline
version. In contrast, continuous support helped pilots to reason more in a forward direc-
tion, even when combined with recommendations. Consequently, pilots using the Cont and
Rec+Cont versions where more likely than with the Rec version to think beyond the limits
of the system in the third scenario and avoid Hanover. However, pilots were prone to fall
back into backward reasoning in case of disruptions between normal flight and emergency,
which also showed in that Cont and Rec+Cont participants were still more likely to choose
Hanover than those using the baseline version.

Surprisingly, the Rec version did not lead to faster decisions than the Cont version, as the
efficiency gain of directly receiving a recommendation was negated by the need to review the
recommendation (backward reasoning). Yet, recommendations did lead to faster decisions
in the second scenario with the Rec+Cont version, as the continuous support during normal
flight allowed pilots to prepare a plan, which was then confirmed by the recommendation.
As the recommendation fitted into pilots’ reasoning (forward reasoning), there was no need
to spend extra effort and time to review it.

Participants’ statements in the exit interviews further revealed that pilots’ biggest challenge
during diversions is not to choose a suitable airport once they have the necessary information.
Rather, the challenge is to gather and to integrate the information from multiple sources.
Hence, even the baseline version was praised by participants since it conveniently displays
the information at a glance. But due to the overwhelming amount of information, participants
welcomed AI elements like recommendations or local hints to help them focus on what is
relevant. However, recommendations were controversial among participants since some felt
that recommendations would disengage them from the decision-making process. Continuous
provision of local hints on the other hand was unanimously seen as positive.

Taken together, the results show that continuous support has advantages over the recommen-
dation-centric support paradigm in terms of appropriate reliance, efficiency, and user accep-
tance. Recommendations can be beneficial, but rather than being the primary functionality
of the AI system, recommendations should be embedded such that users engage with them
while reasoning forward.

Author contributions: I provided the study idea and designed and conducted the main
study. Sebastian Feger had the idea of the focus group and we conducted it together. Lucas
Dullenkopf supported me with the design and implementation of the flight simulator scenar-
ios. I designed and implemented most of the diversion assistance system, with support from
my students Rulu Liao (interface design) and Lou Süsslin (implementation). I performed the
data analysis, with Sebastian supporting as a second coder for the qualitative analysis. I also
contributed the writing of the paper and the process-oriented support framework described
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in Section 3.2.4. Sebastian, Yuanting Liu and Andreas Butz provided guidance and feedback
and edited the final version of the submission.

3.2.4 Piecing It All Together: Process-Oriented Support

Decision-making process

Help user to solve the task
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Decision
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for appropriation
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through control
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Figure 3.4: Comparison between recommendation-centric and process-oriented decision sup-
port. The yellow highlights signify the primary role of the AI in both paradigms. The dashed
arrow indicates that recommendations are optional in process-oriented support. The italicised
text describes examples for concrete implementations of process-oriented support for the diver-
sion use case. Source: [P6].

Based on the results of Sections 3.2.1–3.2.3, we propose process-oriented support as a
framework for designing AI decision support that is not recommendation-centric (see Fig-
ure 3.4). The framework is not limited to diversions or aviation, but meant to be widely ap-
plicable for AI-assisted decision-making in high-stakes applications, where it is crucial that
humans remain fully in control. Continuous support can be seen as a concrete implementa-
tion of process-oriented support for the diversion use case. Figure 3.4 shows additional pos-
sibilities to implement process-oriented support, based on participants’ suggestions in [P6].

Core to process-oriented support is to keep users engaged in the decision-making process
in a forward direction. The primary functionality of the AI system is not to recommend a
finished solution, but to provide support for the major challenges in users’ decision-making
process, which depend on the concrete application. In the diversion use case for instance,
pilots’ major challenge is to obtain a quick overview of a large amount of information. The
goal is to help users make the decision, rather than making the decision for users.
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To make the system resilient against imperfect AI inferences, a key component of the frame-
work is to enable users to appropriate the system according to their momentary intentions.
Appropriation can be facilitated through both transparency and control. Transparency is re-
quired to help users understand how well the system actions are aligned with their current
intentions. As we discuss in more detail in [P6], this differs from the common notion of
transparency for reliance calibration. Control is needed to steer the system when its actions
do not fully align with users’ intentions. This prevents a situation where the system is useful
when it is correct, but useless when not. Note that this notion of control differs from interac-
tive machine learning [3, 25], where users provide feedback that the system can learn from.
Control for appropriation on the other hand is about users’ momentary intentions that are
heavily context-dependent and not necessarily learnable.

Process-oriented support might be able to address all of the limitations of recommendation-
centric support identified in Section 3.1. In Section 3.1.1, we found that with recommen-
dation-centric support, overreliance tends to increase over time, likely because users become
less engaged as they familiarize with the AI system. This might be less of a problem with
process-oriented support. Since the AI does not make the decision for users, users necessar-
ily have to remain engaged in the decision-making process.

The results in Section 3.1.2 showed that users are able to rely appropriately on recommen-
dation-centric support in easy decisions, but not in hard decisions where they are highly
uncertain about the correct answer. The problem is that recommendation-centric support
often does not help users to reduce their uncertainty and to develop a better intuition for
the decision at hand. With process-oriented support, the decision-making is led by users’
intuition and intentions. Ideally, any AI inference should build upon and help users develop
their intuition about the decision task. In turn, this might help users to make better sense of
how the AI’s outputs fit into the decision context, leading to more appropriate reliance, as
with the Cont and Rec+Cont variants in Section 3.2.3.

Lastly, in Section 3.1.3, we found that recommendation-centric support can be a burden for
users due to the need to review the recommendations, which is especially effortful when
the decision is complex. The problem is that users are not involved in the generation of
end-to-end recommendations, meaning they have to reconstruct the recommendation from
an external perspective. With process-oriented support, the aim is to integrate AI inferences
into users’ own decision-making process, which minimizes the extra effort of reviewing AI
outputs. We observed this in Section 3.2.3 with the Rec+Cont version, where the recommen-
dation served as a confirmation of users’ own reasoning and led to a faster decision, while in
the Rec version, pilots had to first review the recommendation, which slowed them down.
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Chapter4
Discussion

4.1 Related Concepts and Ideas

While the majority of research in AI-assisted decision-making takes a recommendation-
centric approach, there is also a small, but growing body of work that explores alternative
approaches. For instance, Lindvall et al. [54] designed a system for cancer assessment which,
instead of marking images as containing cancer or not, helps pathologists to quickly iden-
tify and navigate to potentially interesting areas of an image to review. Zhang et al. [105]
redesigned an existing tool for sepsis diagnosis to make actionable recommendations such
as specific laboratory tests that can reduce the uncertainty of the diagnosis, instead of clas-
sifying whether a patient is septic or not. Studies like these give concrete examples for how
AI can support human decision-making by other means than end-to-end recommendations
and demonstrate the viability of these solutions. However, they represent point designs that
can be hard to apply to other settings, and it is unclear how their effectiveness compares to
recommendation-centric support.

In an attempt to move beyond point designs, Miller [60] proposed the concept of Evaluative
AI, where the goal is to help users generate and evaluate different hypotheses, while leaving
the choice between the candidate hypotheses to users. Evaluative AI can be considered
a special case of process-oriented support, specifically for decision tasks where the main
challenge is to compare several hypotheses, such as making medical diagnoses. So far,
the concept has only been proposed as a position paper, without implemented systems and
empirical studies to back it up.

Lately, another stream of work that aims to overcome the limitations of recommendation-
centric support emerged under the term human-centered explainable AI (HCXAI) [27]. The
goal with HCXAI is to shift away from explaining how the AI model technically generated
its recommendation, toward providing explanations that are meaningful to the decision task
itself. For example, Yang et al. [100] supplemented AI recommendations with references to
evidence in the medical literature that supports or contradicts the recommendation. Ehsan
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et al. [26] explored including socio-organizational factors into explanations in a sales use
case. These approaches give users more context for their decision and help them to better
reconcile the AI recommendation with the decision context. The recommendations become
one part of a more holistic support instead of the primary functionality of the system. I con-
sider HCXAI and approaches like process-oriented support that aim to identify alternative
roles for AI support to be complementary on the path toward AI decision support that truly
complements and augments human reasoning.

4.2 Positioning Within the Broader Human-Centered
AI Landscape

Beyond AI-assisted decision-making, this thesis can be situated within the more general
research field of human-centered AI (HCAI) [81]. Calls for developing AI that is human-
centered have become commonplace [48, 52, 63, 76, 95, 96], but the understanding of what
human-centeredness means in AI systems can diverge considerably [16]. For some, “human-
centered” may primarily mean interacting with humans and seeking technical solutions to
address human needs, while others emphasize the importance of human-centered design of
AI applications. With the work in this thesis, I strongly subscribe to the latter understand-
ing of HCAI, mostly informed by my study of a complex, high-stakes domain like aviation,
where tolerance for mistakes is low, but potential for mistakes is high. In such a domain, ad-
dressing shortcomings of AI systems with more AI inferences (e.g., detection of user states,
or interpretation of user context) is likely to introduce even more sources of error, especially
given that today’s machine learning-based AI systems are essentially pattern recognizers
without real understanding of our world [30].

It appears more promising to me, at least in the short term, but likely also in the long
term [93], to address the imperfections of AI through careful design informed by a deep
understanding of human needs. The high-level ideas underlying the work in this thesis have
been well articulated by Shneiderman [81]. First, when designing AI applications, it is
helpful to break away from the urge to replicate human capabilities with AI. In successful
applications, AI frequently assumes a well-defined, clearly scoped functionality that can dif-
fer significantly from human work [80]. Second, the widespread call for human-in-the-loop
solutions reflects a thinking where AI systems are designed with as much autonomy as pos-
sible as a starting point; the human is then placed back into the loop to act as a fallback
for the AI’s limitations [29]. This often results in AI-centered systems, despite claims of
pursuing human-centered AI, as Woods eloquently put it: “The road to technology-centered
systems is paved with user-centered intentions.” [73]. As Shneiderman argues, it may be
more useful to think of AI-in-the-loop, where the starting point is the human work and how
AI can fit in there [81]. Both ideas—AI functionality beyond replicating human capabilities,
and AI-in-the-loop—are reflected in the continuous support concept in Sections 3.2.2 and
3.2.3. Rather than mimicking a human co-pilot, the system continuously displays helpful
information in a way that fits into pilots’ decision-making process.
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4.3 On Trust and Reliance

The attentive reader might have noticed that I did not address trust in this thesis; instead, I
focused on reliance. As trust is one of the most prominent constructs in AI-assisted decision-
making [90] and HCAI in general [20, 82], a dedicated section about my reasons for this
decision seems appropriate. The first reason, as argued by Dorsch and Deroy [24], is that in
high-stakes applications, trustworthiness may be a misguided objective for the development
of AI systems, since AI does not posses moral agency and accountability. Instead, reliability
is what is required. The second reason is that a central aspect of common definitions of trust
is a situation of vulnerability as precondition for trust to exist [90]. Yet, I argue that for
high-stakes applications, one should strive to minimize users’ vulnerability to imperfections
of AI, which implies that essentially trust should not be required.

To elaborate on the second reason, I suggest that rather than asking users to trust AI, high-
stakes AI applications should be resilient against AI mistakes (see Section 3.1.3). Ideally,
the cost to the user should be minimal when AI makes mistakes. If that is not possible, users
should be able to judge when they want to rely on AI to perform certain tasks, based on an
understanding of whether the cost of imperfect AI performance is acceptable in a specific
situation. For instance, if an imperfect result is good enough or easily correctable for the
user, the user may still want to rely and iterate on the imperfect AI output. Conversely, if the
cost of an AI mistake is too high, the user should be able to easily recognize this and dismiss
the AI. This puts users in control and never leaves them vulnerable to the possibility of AI
mistakes. To put it a little provocatively: trust is good, control is better.

4.4 Limitations and Future Work

When exploring alternatives to recommendation-centric support (Section 3.2), I mostly fo-
cused on the roles AI could assume in AI-assisted decision-making. While the diversion
assistance system provided transparency and control mechanisms, they were not the focus
of my work. Yet, the results emphasized the importance of enabling appropriation of AI tools
through transparency and control. Future work should investigate further how to facilitate
appropriation in AI-assisted decision-making.

Another obvious direction for future work is to study how process-oriented support applies
to other use cases and domains than diversions in aviation. Related studies, especially in
the healthcare domain, point to very similar concerns to those expressed by pilots around
recommendation-centric support [9, 40], as well as users’ desire for AI to support more in-
termediary stages of their decision-making process [101, 105]. Therefore, and given that the
process-oriented support framework is kept fairly general, I argue that the framework also
applies to other high-stakes decision tasks. While I am confident that the framework can al-
ready be useful in its general form presented in Section 3.2.4 by emphasizing appropriation
and supporting the decision-making process, future work can explore how it can be con-
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cretized for specific use cases. In addition, there is a wealth of other helpful AI support roles
that future work can explore, as other decision tasks may offer different opportunities for AI
support. Future work should further aim to better understand when either recommendation-
centric or process-oriented support is preferable. For example, the results in Section 3.1.2
suggest that for easy decisions, recommendation-centric support may very well be an effec-
tive form of support.

As a third line of future work, it is important to recognize that in this thesis, I take a highly
positive view of human expertise. However, as evidenced by the rich body of work on hu-
man cognitive heuristics and biases [43, 87], human decision-making can be flawed, which
can also manifest when humans take the lead in interactions with AI [62, 70]. An interesting
research question, therefore, is how AI can help mitigate human decision errors. For in-
stance, AI can be used to detect and understand sources of human error [104]. Research on
human decision-making has also uncovered conditions delineating when humans are likely
to make mistakes or to display true expertise [44]. Building on these results is crucial to un-
derstand how AI can mitigate human errors while promoting human expertise in AI-assisted
decision-making.

Finally, the work in this thesis remains relevant with the current surge in large language
models and generative AI. On the one hand, the recent breakthroughs in generative AI could
enable powerful novel capabilities for AI-assisted decision-making [28]. On the other hand,
generative AI could aggravate the problems identified in this thesis, for example through
end-to-end recommendations for even more complex problems [83], or through even more
complex failure modes [86]. It remains to be seen how the potential of generative AI can
be effectively leveraged for AI-assisted decision-making, but I expect that appropriation and
aiming to help users solve their task, rather than solving the task for them, will remain
important strategies.
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Chapter5
Conclusion

In this thesis, I investigated the limitations of recommendation-centric support in minimizing
the impact of imperfect AI performance in AI-assisted decision-making. I further explored
how reconsidering the role of AI from solving the task for users, to helping users to solve
the task, is a promising path to benefit from imperfect AI in high-stakes decisions. Rather
than sophisticated algorithms, this approach, which I captured in my framework for process-
oriented support, first and foremost requires a deep understanding of users’ decision-making
processes and challenges.

My research contributes to the growing, but still small, body of work that challenges the
assumption that AI-assisted decision-making should be recommendation-centric. In con-
trast to related work, which is mostly concerned with the healthcare domain, I studied a
use case from aviation, a domain that is rarely studied in HCI. By finding that pilots share
many of the same concerns as clinicians, I contribute to the generalizability of recent re-
sults beyond the healthcare domain. Related work is also often formative, in that studies
uncover problems with recommendation-centric support and identify opportunities for alter-
native forms of support at an abstract level, but concrete solutions that exploit these oppor-
tunities are rare. I contribute such a concrete solution for the diversion use case in the form
of continuous support, and captured the generalizable elements of it in the process-oriented
support framework. Most importantly, I conducted an empirical comparison between con-
tinuous and recommendation-centric support, contributing some of the first evidence that
alternative forms of support may be more effective at supporting human decision-making
than recommendation-centric support in certain use cases.

I argue that my results are also relevant for the broader field of human-centered AI. Despite
its impressive capabilities, AI is always imperfect. We cannot ignore this and design AI-
driven systems as if AI was perfect. Yet, this seemingly trivial statement is often not given
enough attention, which usually shows in that an AI system is designed to solve users’ tasks
for them. Solving tasks for users is desirable if you can always solve them perfectly, but
that is rarely the case. Due to the focus on the expected gains when AI performs well, the
potential for imperfect AI performance becomes an afterthought, addressed by assigning
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5 Conclusion

users the difficult role of a fallback for AI. In AI-assisted decision-making, this approach
is embodied by the predominant recommendation-centric support paradigm, and the goal
of calibrating users’ reliance on end-to-end decision recommendations. A similar tendency
can be observed for other human-centered AI applications. Based on my research, I suspect
that for other AI applications as well, it might be helpful to explore more carefully designed
incremental AI support that keeps users engaged in their tasks, rather than using AI to solve
tasks end-to-end by default.
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