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These days the statistician is often asked such questions as “Are you a Bayesian?” “Are
you a frequentist?” “Are you a data analyst?” “Are you a designer of experiments?”. I
will argue that the appropriate answer to ALL of these questions can be (and preferably
should be) “yes”, and that we can see why this is so if we consider the scientific context
for what statisticians do.

George E. P. Box
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scverse, and Tim Kirk, Janne Gesine Thöming, and Adam Z. Rosenthal for supporting
my work on bacterial scRNA-seq with data and biological insights.
Next, I would like to thank all current and former members of the bio-datascience lab.
A special thank you to Mara Stadler for countless discussions about statistical and non-
statistical topics, and for paving the way for me and all other Ph.D. students in this lab
to come. Thank you to Roberto Olayo Alarcon, Oleg Vlasovets, Daniele Pugno, Viet
Tran, Stefanie Peschel, and Medina Feldl for being amazing collaborators and colleagues,
making this time unforgettable to me. Further thanks go to Fabian Schaipp, Luise Rauer,
Aditya Mishra, Jinlong Ru, and Tong Wu. I would further like to thank Helmholtz Munich
for financial support and the staff at the Computational Health Center, as well as the
Statistics department at LMU.
I am also grateful to all people who have supported me during this time outside of my
scientific life. Thank you to my colleagues and teammates at Verein Kulturleben in der
Studentenstadt and VfL Waldkraiburg for keeping my social life in balance and allowing
me to develop so many skills besides statistics. Thank you to all my friends for your
unwavering support and encouragement during the past years and beyond. A very special
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Zusammenfassung

Hochdurchsatz-Sequenzierungsverfahren (HDS) ermöglichen Forschenden, Typ und Funk-
tion von großen Mengen an Zellen zu analysieren - entweder in ihrer Gesamtheit, zum
Beispiel mithilfe von Amplicon-Sequenzierung in der Mikrobiomanalyse, oder individu-
ell durch Einzelzellsequenzierung. Die primäre Datenstruktur für beide Technologien sind
hochdimensionale Matrizen mit Zähldaten: Amplicon-Sequenzierung beschreibt typischer-
weise die Häufigkeit mikrobieller Taxa in jeder Stichprobe, während Einzelzellsequen-
zierung die Expressionslevel von Genen in jeder betrachteten Zelle liefert. Zusätzlich
kann durch Bestimmung des Typs jeder Zelle in einem Einzelzellsequenzierungsexperi-
ment eine Aggregation in eine Datenmatrix mit Stichproben und Zelltypen vorgenommen
werden, welche denen der Amplicon-Sequenzierung ähnelt.

In beiden Fällen sind Veränderungen der Komposition unter demographischen, phäno-
typischen, oder umweltbezogenen Kovariaten von besonderem Interesse, wenngleich eine
solche Analyse der diffenziellen Abundanz (DA) nicht trivial ist. HDS-Abundanzdaten
enthalten oft mehr Komponenten als Stichproben, was besondere Vorsicht bei der Auswahl
statistisch relevanter Effekte erfordert. Weiterhin stellen kleine Stichprobengrößen in der
Einzelzellanalyse und dünnbesetzte mikrobielle Abundanzdaten weitere Herausforderun-
gen für die Entwicklung geeigneter statistischer Methoden dar. Zuletzt rufen technische
Einschränkungen eine Obergrenze in der Sequenzierungstiefe jeder Stichprobe hervor, was
die Berücksichtigung kompositioneller Effekte notwendig macht.

Diese Dissertation besteht aus drei Abschnitten mit Artikeln, von denen jeder einen
oder zwei Beiträge zur Kompositionsanalyse oder genereller statistischer Verarbeitung
von HDS-Daten enthält. Demzuvor steht ein einleitender Teil, welcher die statistischen
Grundlagen für die in den Artikeln verwendeten Methoden darlegt. Der erste Satz an
Artikeln beschäftigt sich mit Bayesscher Modellierung und Tests zur differentiellen Abun-
danz in Hochdurchsatz-Sequenzierungsdaten und umfasst zwei Artikel. Im ersten Ar-
tikel wird scCODA, ein generatives Modell zur DA-Analyse von Zelltyp-Kompositionen aus
der Einzelzellanalyse, vorgestellt. scCODA verwendet ein Dirichlet-Multinomialmodell zur
Berücksichtigung der kompositionellen Bedingungen und führt Modellselektion mittels
spike-and-slab Verteilungen und Schwellenwertsetzung auf deren Inklusionswahrschein-
lichkeiten durch. Zusätzlich garantiert die automatische oder manuelle Auswahl einer
Referenzkomponente volle Identifizierbarkeit. Die zweite Publikation beschäftigt sich mit
den hierarchischen Strukturen von mikrobiellen Taxa und Zelltypen und erweitert scCODA
um aggregierte Effekte auf den inneren Knoten des zugrundeliegenden Baumes. Dieses
Modell, tascCODA genannt, werwendet spike-and-slab LASSO-Verteilungen und hierar-
chisch adaptive Regularisierungsstärken, um sich verändernde Komponenten und Grup-
pen von Komponenten zu identifizieren. Simulationsstudien und Anwendungen auf reelle
Hochdurchsatz-Sequenzierungsdaten zeigen, dass scCODA und tascCODA die Falscherken-
nungsrate in Szenarien mit niedriger bis moderater Dimensionalität besser als vergleich-
bare Methoden kontrollieren und biologisch relevante Effekte erkennen.

Der zweite Abschnitt enthält ein Manuskript zu cosmoDA, eine Methode für DA-Tests auf
HDS-Abundanzdaten unter der Berücksichtigung von Interaktionen zwischen den Kom-
ponenten. Durch die Modellierung von Kompositionsdaten durch a-b Power Interaction
Modelle, eine Generalisierung der multivariaten Logit-Normalverteilung, kann cosmoDA

V



Statistical techniques for sparse compositional count data with applications to high-throughput single-cell RNA and amplicon sequencing

falsch positive Effekte, hervorgerufen durch paarweise Interaktion zwischen Komponen-
ten, erkennen und vermeiden. Zusätzlich ermöglicht Score Matching-Optimierung ef-
fiziente Parameterschätzung des Modells, während regularisierte Schätzung der Interak-
tionen Identifizierbarkeit garantiert. Der Beitrag untersucht desweiteren die Möglichkeit
zur Vermeidung der Imputation von Nulleinträgen durch die Verwendung von Box-Cox-
Transformationen im Zusammenhang mit der a-b Power Interaction-Modellfamilie.
Die Artikel im letzten Teil der Arbeit definieren beste Verfahrensweisen für die Analyse
von Einzelzell-Sequenzierungsdaten. Der erste Beitrag stellt ein Verfahren für die automa-
tisierte statistische Verarbeitung von bakteriellen Einzelzellsequenzierungsdaten mit Na-
men BacSC vor. Das Verfahren kombiniert Ideen aus dem data thinning und Vergleiche mit
negativen Kontrolldaten, um die Selektion von Hyperparametern zur Dimensionsreduk-
tion, Visualisierung und Gruppierung zu automatisieren, sowie die Falscherkennungsrate
unter “double dipping”-Bedingungen in der differentiellen Genexpressionsanalyse zu kon-
trollieren. BacSC berücksichtigt weiterhin die extreme Nullinflation und geringe Sequen-
zierungstiefe bakterieller Einzelzellsequenzierungsdaten während der Varianzstabilisierung
und zeigt Verbesserungen bei der Generierung von Nulldaten unter diesen Bedingungen.
Der zweite Beitrag in diesem Abschnitt definiert beste Vorgehensweisen und Beispielana-
lysen für Forscher bei der Kompositionsanalyse von Einzelzellsequenzierungsdaten mit
scCODA und tascCODA.
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Summary

High-throughput sequencing (HTS) methods enable researchers to analyze the type and
function of large numbers of cells either in bulk, for example by amplicon sequencing for
microbiome analysis, or individually through single-cell RNA sequencing (scRNA-seq).
The primary data structures for both technologies are high-dimensional count matrices:
Amplicon sequencing data typically describes the abundance of microbial taxa in each
sample, while scRNA-seq yields expression counts of genes for each of the sequenced cells.
Additionally, determining the type of each cell in a scRNA-seq experiment with multiple
samples allows aggregation into a sample by cell-type count matrix, similar to amplicon
sequencing.

In both cases, changes in the feature composition under demographic, phenotypical, or
environmental covariates are of particular interest, but such differential abundance (DA)
analysis is not straightforward from a statistical perspective. HTS abundance datasets
often contain more features than samples, warranting specific care in the selection of
statistically relevant effects, while low sample sizes in scRNA-seq and high sparsity in
microbial abundance data pose further challenges for the development of suitable statisti-
cal methods. Finally, technological limitations induce an upper bound on the sequencing
depth for each sample, which makes accounting for compositional effects a necessity.

This dissertation comprises three areas of articles, each providing one or two contributions
in compositional analysis or general statistical processing of HTS data. They are preceded
by an introductory part detailing the statistical foundations for the methods used through-
out the contributions. The first section of articles is concerned with Bayesian modeling
and differential abundance testing of high-throughput sequencing data and consists of
two articles. In the first contribution, scCODA, a generative model for DA testing of cell-
type compositions from scRNA-seq, is introduced. scCODA uses a Dirichlet-Multinomial
model to account for the compositional constraints and performs model selection through
spike-and-slab priors and thresholding on the posterior inclusion probability. Addition-
ally, the automatic or manual selection of a reference feature ensures full identifiability
of the model. The second publication notes the hierarchical structure of microbial taxa
and cell-types alike and extends scCODA to consider aggregated effects on the nodes of
the underlying feature tree. The resulting model, called tascCODA, utilizes spike-and-slab
LASSO priors and hierarchically adaptive regularization penalties to find differentially
abundant features and groups of features over the entire tree. Simulation studies and
applications to scRNA-seq data show that scCODA and tascCODA have better FDR con-
trol than other DA testing methods in low- to moderate sample-size settings and select
biologically relevant effects.

The second section contains a manuscript on cosmoDA, a method for DA testing of HTS
abundance data in the presence of feature-feature correlations. By modeling compositional
data through a-b power interaction models, a generalization of the multivariate logistic
normal distribution, cosmoDA detects and avoids spurious effects caused by first-order
associations between features. In addition, score matching optimization allows for very
efficient parameter estimation of the proposed model, while penalized estimation of the
interaction matrix ensures model identifiability. The contribution further examines the
use of Box-Cox transformations in conjunction with the a-b power interaction model
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family to eliminate the need for zero imputation in compositional data.
The manuscripts in the final part of the thesis define best practices for the analysis of
scRNA-seq data. The first contribution provides a framework for automatic statistical
processing of gene expression data from single-cell sequencing on bacteria, called BacSC.
The pipeline combines ideas from data thinning and comparisons with negative control
data to automate the selection of hyperparameters for dimension reduction, visualization,
and clustering, and guarantees FDR control under “double dipping” conditions in dif-
ferential gene expression testing. BacSC further accounts for the extreme zero inflation
and low sequencing depth of bacterial scRNA-seq data during variance stabilization and
presents improvements to null data generation under these conditions. The second contri-
bution in this section provides best practices and example workflows for researchers when
performing compositional analysis of scRNA-seq data with scCODA and tascCODA.
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1. Introduction

High-throughout sequencing (HTS) experiments enable the dissection of a heterogeneous
population of cells into its individual types, giving new insights into the cellular con-
stituents of a sample [6, 7]. Two of the most popular HTS methods are amplicon se-
quencing [8] and single-cell RNA sequencing (scRNA-seq) [9]. While the former method
is widespread in the analysis of microbial communities, the latter is primarily used on
eukaryotic tissues, but has recently been successfully adapted to bacteria as well [10].
Besides careful collection, treatment, and processing of the physical samples, correct sta-
tistical analysis of the resulting sequencing data is essential to obtain meaningful biological
insights [11]. HTS results are often aggregated into count matrices X̃ ∈ Nn×p

0 , detailing
the abundance of p features (e.g. eukaryotic cell types or microbial taxa) for n samples.
A fact that is often overlooked in HTS datasets is their nature as a collection of size-
constrained snapshots from larger populations (Figure 1.1). Due to limitations on the
amount of cells that can be analyzed in a single sequencing run, the total number of
sequenced cells in a sample is not related to the number of cells in the original tissue
or environment [12, 13, 14]. Despite their apparent count structure, HTS abundance
data should therefore be seen as compositional data, detailing only proportions instead of
absolute values. Following Aitchison’s foundational definition [15], p-dimensional compo-
sitional data vectors possess a natural sum-to-one constraint and are thus located on the
(p− 1)-dimensional probability simplex

∆p−1 =
{
x ∈ Rp : x ⪰ 0, 1⊤

p x = 1
}
. (1.1)

To transform the absolute abundances X̃ into relative abundance data X located on the
simplex, the counts in each sample must be divided by their sum over all features. This
step is known as the closure operation (Figure 1.1):

X i = C(X̃i) =
X̃i∑p

j=1 X̃i,j

∀i = 1 . . . n. (1.2)

The sum-to-one constraint makes the simplex a bounded and thus non-euclidean space,
invalidating many classical statistical principles [15]. Most importantly, the features in
compositional datasets possess an inherent negative correlation [16], which necessitates
joint analysis of all features instead of assuming feature independence.
One central task in the analysis of HTS abundance data is its description through gener-
ative statistical models, which can not only serve as a tool to accurately depict the data
distribution, but also help to elucidate the underlying biological mechanisms and princi-
ples [11]. In larger studies with samples collected from many subjects or environments,
the impact of sample-specific metadata (Y in Figure 1.1) on the feature composition is
of particular interest. This metadata can include clinical covariates such as disease status
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Figure 1.1.: Schematic representation of the HTS data generation process. Rep-
resentative samples (Here: Blood cells) are collected from different environ-
ments. Then, the number of occurrences of each feature (Here: Cell types)
in each sample is determined through HTS. To allow for sample comparison,
the relative abundance must be considered.

and treatment group, information about the subject (age, sex, diet, . . . ), or environmental
factors like temperature, pH value, or collection location. Here, generative models can
serve as a flexible and interpretable foundation to describe a plethora of experimental
scenarios and designs. In addition to modeling the impact of covariates on the feature
composition, the detection of statistically relevant effects is essential, as it reveals im-
portant associations between external factors and the individual components of the cell
population. If the covariate is binary, i.e. when evaluating the compositional differences
between two groups, such analysis is known as differential abundance (DA) testing [8, 17].
The most common example is the determination of compositional differences between a
control group and group with a disease or a specific treatment. The natural anticorrela-
tion between the features plays an essential role when modeling changes in compositional
data, as a shift in the relative abundance of one feature induces changes in the relative
abundance of all other features due to the sum-to-one constraint of the simplex. Ignoring
this property during DA testing can quickly lead to false positive associations [1, 12, 18].

1.1. Compositional Data in Genomics

To gain a better understanding for the characteristics of different kinds of high-through-
put sequencing abundance data and resulting challenges for generative modeling, it is

2
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helpful to take a closer look at the data generation process. Over the last 20 years,
the field of molecular biology was revolutionized by rapid improvements in sequencing
technologies, allowing the parallel analysis of millions of RNA sequences, also known
as transcriptomes, at ever-decreasing costs [19, 20]. These next-generation sequencing
(NGS) methods generally follow an experimental pattern consisting of library preparation,
sequencing, and analysis (Figure 1.2A, B). Library preparation involves extracting the
RNA sequences from the cells in a sample of interest, conversion into stable cDNA, as
well as multiple rounds of cDNA amplification to ensure that enough genetic material
is available to perform next-generation sequencing [21]. The sequencing procedure then
determines the exact nucleotide sequences contained in the sample, which are subsequently
assigned to corresponding genes or taxa. For the contributions to this thesis, two HTS
technologies are especially relevant.

(16S rRNA) Amplicon sequencing. 16S rRNA sequencing is a widespread sequencing
method in microbiome analysis. It examines the highly variable regions of the 16S ribo-
somal RNA to determine the microbial composition of a sample (Figure 1.2A) [22]. 16S
rRNA sequencing processes samples as a whole, pooling together the information about
all microbes in the sample during library preparation. By matching the overlapping pat-
terns of individual NGS reads, they can be clustered into operational taxonomic units
(OTUs) or amplicon sequence variants (ASVs). Aligning the nucleotide patterns from
OTUs or ASVs to known reference sequences then allows to interpret them as biological
taxa. Finally, the abundance of each OTU/ASV/taxon in every sample is determined and
aggregated into a count matrix with n samples and p OTUs/ASVs/taxa (Figure 1.2A) [8].
This matrix corresponds to X̃ from Figure 1.1 and is compositional due to limitations in
the number of cells, or library size, that can be sequenced in each sample [12].

Single-cell RNA sequencing (scRNA-seq). Contrary to microbial analysis, where
each sample contains many different species with individual genomes, the analysis of hu-
man or animal tissues must rely on functional differences to discern between cell types.
This can be achieved by comparing the mRNA expression patterns of individual cells
through single-cell RNA sequencing (scRNA-seq) [9], giving a detailed picture of the
protein synthesis processes inside each cell at the time of analysis. The main biotechno-
logical difference between scRNA-seq and amplicon sequencing is an initial cell isolation
step, where individual cells are separated from each other, usually through microfluidics,
and tagged with a unique identifier (Figure 1.2B) [23, 24]. After mRNA extraction, tran-
scription, amplification, and sequencing, each read can therefore be attributed to a gene
and cell, leading to a matrix that shows the expression of each gene in each cell for
a single sample. Although this gene expression matrix constitutes another instance of
high-dimensional sequencing count data, compositional analysis is generally not seen as
necessary here, as the data details the total mRNA contained in each cell instead of a
representative subset. The idea of using compositional statistics for the analysis of gene
expression data has however been contemplated recently [13].
To determine the function of each cell (e.g. stem cells or types of immune cells) in
scRNA-seq, gene expression data requires careful statistical processing (Figure 1.2C) [5,
17, 25]. After filtering out low-quality reads and other sequencing artifacts, the data
needs to be scaled and variance-stabilized to make reads from individual cells comparable.
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Extracting the relevant information by low-dimensional embedding steps such as singular
value decompositions and UMAP embeddings [26], followed by clustering, can determine
clusters of cells with similar gene expression, which are commonly referred to as cell types
(Figure 1.2C). Analysis of characteristic gene expression patterns can finally elucidate the
biological function of each cell type. By aggregating the cells in each sample by their cell
type, a count matrix with n samples and p cell types, corresponding to X̃ in Figure 1.1,
can be obtained. Again, this data is compositional due to the limited number of cells that
can be processed from each sample [1].

Besides their compositionality, HTS abundance datasets possess some other characteristics
that make statistical modeling challenging [5, 12, 17].

• Dimensionality. The biggest difference between amplicon and scRNA-seq data
is in their dimensionality. While amplicon sequencing produces high-dimensional
count matrices with hundreds or even thousands of features, scRNA-seq data usually
only consists of up to 50 cell types. Nevertheless, both data types often contain more
features than samples, requiring model selection processes to avoid underdetermined
solutions.

• Zero entries and overdispersion. Since the logarithm is undefined for zero val-
ues, they must be replaced in the count matrix before applying logarithmic trans-
formations. Furthermore, amplicon sequencing data often contains disproportional
amounts of zero entries and overdispersed nonzero counts, necessitating the removal
of rare taxa, aggregation to a higher taxonomic rank, or specialized models to com-
bat these characteristics.

• Feature associations. Different types of bacteria or cells interact with each other,
forming relationships that introduce correlation patterns beyond the compositional
constraint. These patterns should be respected in a generative model.

• Feature hierarchies. The microbial taxa or cell types can be grouped hierarchi-
cally according to their taxonomy, phylogeny, or cell lineage. Depending on the level
of aggregation, different insights can be gained from the data, ranging from more
general descriptions of the high-level feature composition to fine-grained analyses of
highly specific cell types or taxa.

Bacterial scRNA-seq. Very recent advancements aim to analyze within-species func-
tional heterogeneity of bacteria through scRNA-seq technologies [10, 27, 28]. Due to
the smaller size and more delicate structure of bacteria, as well as the lower concentra-
tion of bacterial mRNA, protocols for bacterial scRNA-seq alter the processes used for
library preparation and sequencing [29, 30, 31, 32, 33, 34]. This also requires potential
adaptations in the scRNA-seq data processing pipeline (Figure 1.2C).

1.2. Aims of this Work

Respecting compositionality when analyzing HTS data of the forms outlined above has
proven to be a necessity rather than an optional step [12, 35, 36]. My works presented in
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Figure 1.2.: Experimental and data processing steps in high-throughput se-
quencing experiments. A) Schematic representation of 16S rRNA ampli-
con sequencing. B) Schematic representation of single-cell RNA sequencing
(scRNA-seq). C) Essential steps in scRNA-seq data analysis. This figure is
partially adapted from Figure 1 of contribution [4]

this thesis mainly cover the development of generative models and methods for differential
abundance testing for compositional data in light of the characteristics of HTS data
described in the previous section. Hereby, I specifically focus on these challenges:

• How to design approaches that are valid for general low- to moderate-dimensional
HTS data and not restricted to a specific technology or data type.

• How to model the impact of sample-specific metadata on the composition, select
significant effects, and use this approach for differential abundance testing.

• How to include more complex settings, such as feature interactions or hierarchical
ordering of the features.
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Contributions [1] (Appendix A.1), [2] (Appendix A.2), and [3] (Appendix B) each ap-
proach these tasks with different statistical techniques and focus on specific data sources
or characteristics.
A secondary objective of my work is the development of best practices and software
pipelines for proper analysis of HTS data, making these tasks more accessible for re-
searchers without extensive experience and detailed knowledge of the underlying statisti-
cal theory. Contribution [4] (Appendix C.1) is concerned with this exact task, detailing
a pipeline that automatically determines suitable methods and hyperparameters for the
analysis of bacterial scRNA-seq data. Furthermore, contribution [5] (Appendix C.2) dis-
cusses best practices for the analysis of general scRNA-seq data.

1.3. Outline

The following chapters serve as a general overview over the models and techniques used in
the individual manuscripts. To point out the applicability to all kinds of HTS data, I will
largely omit references to concrete technologies or biological connections, except when
highlighting specific results from the contributions [1, 2, 3, 4, 5]. Instead, compositional
HTS data will be presented as a generic matrix X ∈ ∆n

p−1 with n samples and p features.
In practice, these features should be interpreted as cell types, microbial taxa, OTUs/ASVs
or similar, depending on the specific data at hand.
In Chapter 2, I will introduce various distributional families for modeling compositional
data and develop an overarching framework that unites these approaches. In addition,
I will shed light on the relationships between parameters in the particular distributions
and their interpretation. Chapter 3 contains an overview over methods for parameter
estimation used throughout the contributions. In Chapter 4, I will focus on modeling
covariate data, selection of relevant model parameters, and differential abundance testing
in the context of different estimation methods. I will discuss several other topics re-
garding modeling compositional data in Chapter 5, including approaches to handle count
data, zero entries, and hierarchically ordered features. Chapter 6 introduces advanced
techniques for data decomposition and generation, facilitating automatic determination
of hyperparameters and model selection. I will give a short summary of the core results
presented in the manuscripts in Chapter 7, and discuss future ideas beyond the scope of
this thesis in Chapter 8.
The contributing manuscripts are included as appendices. In the first contribution ([1]
in Appendix A.1), I introduce the scCODA model, a hierarchical Bayesian approach to
generative modeling and differential abundance testing for compositional count data,
specifically from scRNA-seq experiments. The second contribution ([2] in Appendix A.2)
presents tascCODA, an extension of scCODA that allows for tree-aggregated differential
abundance testing in general high-throughput sequencing datasets. Appendix B is ded-
icated to manus-cript [3], in which I introduce the cosmoDA model. This model uses a
different approach to compositional generative modeling and DA testing, allowing the
estimation of feature-feature associations, as well as removing the need for zero replace-
ment. In contribution [4] (Appendix C.1), I present BacSC, a computational pipeline for
automated statistical processing of gene expression data from bacterial single-cell RNA
sequencing experiments. The final contribution ([5] in Appendix C.2) gives best practice

6



Statistical techniques for sparse compositional count data with applications to high-throughput single-cell RNA and amplicon sequencing

recommendations for the analysis of scRNA-seq data, where I contributed a section and
an interactive tutorial resource on DA testing with scCODA and tascCODA.

1.4. Notation

These notations will be used throughout chapters 2-6. The notations in the contributions
(Appendices A-C) might differ. Scalar quantities will be denoted in regular font, vectors
in lowercase bold, and matrices with capital bold letters. The i-th element of vector a is
denoted as ai; a−i is obtained by removing the i-th element from a. The i-th row of a
matrix A is denoted as Ai,, the j-th column as A,j, and its element in position (i, j) as
Ai,j. Removing the i-th row and j-th column from A results in A−i,−j. Power operations
on vectors or matrices (an or An) as well as multiplications with a scalar are carried out
element-wise.
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2. Distributions for Compositional Data

This section is an extension of the ideas presented in contribution [3].

Due to their constraint to the (p − 1)-dimensional simplex and resulting dependence
between features, HTS compositions require appropriate generative models that respect
these properties [12, 15]. While the description of spurious correlations between measure-
ments related to the same reference quantity dates back to Pearson [37], the connection of
this phenomenon to proportional data was only made by Mosimann more than 60 years
later [16]. Aitchison, who is often referred to as the “father” of compositional data analy-
sis, provided the first formal description of the simplex as a vector space [15] and defined
many fundamental concepts and principles for compositional statistics [38].

2.1. Parametric Distribution Families on the Simplex

Over the years, a multitude of parametric distributions with support on the simplex have
been proposed [15, 16, 39, 40, 41, 42]. The following sections will introduce multiple
traditional and more recent approaches (Figure 2.1) that follow Aitchison’s ideas, albeit
not always rigorously. To this end, consider a compositional dataset X ∈ Rn×p with n
samples and p features. Because of the compositionality constraint, 0 ⪯ X ⪯ 1 and∑p

j=1Xi,j = 1 ∀i = 1, . . . , n. Let x = X i, for some i ≤ n be an arbitrary sample in the
dataset.

2.1.1. The Dirichlet Distribution

The most straightforward distribution on the simplex is the Dirichlet distribution with
probability density

pD(x|β) ∝
p∏

j=1

x
βj−1
j , (2.1)

where the concentration vector β ≻ 0p is the only parameter and defines the shape of
the distribution. Its simple expectation E(x) = β∑

j βj
makes the Dirichlet distribution

particularly easy to interpret. Furthermore, the Dirichlet distribution is the conjugate
prior to the multinomial distribution (see Section 5.1), making it a popular choice for
modeling compositional count data [1, 2, 43, 44, 45]. On the other hand, its simplicity
also severely limits the flexibility of the Dirichlet distribution, as its covariance structure
is always symmetric around the mode [39].
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2.1.2. The Logistic Normal Distribution and Aitchison’s Ap−1 Family

To combat the inflexibility of the Dirichlet distribution, Aitchison and Shen [46] proposed
the Logistic Normal distribution as an alternative to the Dirichlet. Define the additive
logratio (ALR) transformation with reference component xp as:

ALR(x) = log

(
x−p

xp

)
. (2.2)

The Logistic Normal distribution is then constructed as a multivariate normal distribution
over the ALR-transformed data:

pL(x|µ,Σ) ∝ 1∏p
j=1 xj

exp

(
−1

2

(
log

(
x−p

xp

)
− µ

)T

Σ−1

(
log

(
x−p

xp

)
− µ

))
, (2.3)

with Σ = ΣT ∈ R(p−1)×(p−1) positive semidefinite. This class of distributions allows for
a flexible covariance structure due to the inclusion of Σ, the covariance matrix of the
ALR-transformed data, while the location vector µ is related to the location vector of the
Dirichlet distribution through β−p = Σ−1µ.

Aitchison [39] later combined the Dirichlet and Logistic Normal distributions into one joint
distributional family by observing the similarity between their log-probability densities:

log pD(x|β) ∝
p∑

j=1

(βj − 1) log(xj)

log pL(x|γ,β) ∝
p∑

j=1

(βj − 1) log(xj)−
1

2

p∑

j,k=1
j ̸=k

γj,k(log xj − log xk)
2.

The A(p−1) distribution is then defined equivalent to the log-density of the Logistic Normal
distribution

pA(x|γ,β) ∝
p∑

j=1

(βj − 1) log(xj)−
1

2

p∑

j,k=1
j ̸=k

γj,k(log xj − log xk)
2, (2.4)

where the density is proper if either γ is positive definite and β ⪰ 0p, or γ is positive
semidefinite and β ≻ 0p. It is immediately visible that the log-density of the Dirichlet
distribution, is identical to the density of the A(p−1) distribution with γ = 0. In case of
the Logistic Normal distribution, correspondence between the parameter sets (µ,Σ) and
(β,γ) is shown in Table 2.1. One drawback of the logistic normal and A(p−1) distributions
comes from the fact that the logarithm and ALR transformation are not defined if x
contains zero entries. Therefore, these distributions do not cover the boundary of the
simplex, and require replacement of zero entries before use.
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2.1.3. Polynomially Tilted Pairwise Interaction Models

A more recent effort to combine the Dirichlet and Logistic Normal distributions was
made by Scealy and Wood [40]. Their class of polynomially tilted pairwise interaction
(PPI) distributions tries to unite the flexibility of the logistic normal distribution with
the boundary behavior of the Dirichlet distribution:

pI(x|A∗, c) ∝
p∏

j=1

x
cj−1
j exp(xTA∗x), (2.5)

with A∗ ∈ Rp×p symmetric and c ≻ −1p. Explicitly stating the compositional constraint

as xp = 1 −∑(p−1)
j=1 xj gives an alternative form with p − 1 dimensions in the quadratic

part [47]:

pI(x|AL, bL, c) ∝
p∏

j=1

x
cj−1
j exp(xT

−pALx−p + b
T
Lx−p). (2.6)

Again, AL ∈ R(p−1)×(p−1) must be quadratic. The two parametrizations can easily be

transformed into each other by splitting off the last row and column ofA =

(
A∗

L A∗
p

A∗
p
T A∗

pp

)
.

Then, ALi,j = A
∗
i,j − 2A∗

pi
+A∗

pp and bLi = 2(A∗
pi
−A∗

pp). Since A
∗ has one additional

parameter, assume A∗
pp = 0 for the reverse transformation. Then, A∗

pi
= 1

2
ci, and A

∗
Li,j =

ALi,j + bLi.

2.1.4. The Maximum Entropy Distribution

Another idea of defining a probability density on the simplex comes from the maximum
entropy principle [48]. Maximizing the entropy of a distribution while matching the first
and second moments of the data leads to the following formulation [41]:

pE(x|M ,h) ∝ exp




p∑

j=1


hj +

p∑

k=1
k ̸=j

Mj,kxk


xj




= exp(xTMx+ hTx), (2.7)

whereM ∈ Rp×p is symmetric and has a zero diagonal and hp = 0. The maximum entropy
(ME) distribution differs from the PPI models only in the linear part, while the quadratic
terms are identical, except for the constraints on M and A∗. Furthermore, the ME
distribution also accommodates zero entries in the data without requiring replacement.

2.1.5. a-b Power Interaction Models

The most general class of distributions on the simplex to date is the class of a-b power
interaction models (PIM), introduced by Yu et al. [42]. Their formulation adds two
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hyperparameters a, b ≥ 0 to include different power transformations in the linear and
quadratic parts:

pP(x|K,η, a, b) ∝ exp(
1

2a
xaTKxa +

1

b
ηTxb), (2.8)

with K ∈ Rp×p symmetric and an optional zero-sum constraint, K1p = 0p. If a = 0,
define xa as log(x) and replace 1

2a
with 1, as the logarithm gives a smooth continuation

of 1
a
xa, except for a shift independent of x. Analogously, if b = 0, set xb to log(x) and

replace 1
b
with 1. This makes the PIM the most flexible class of distributions shown here.

If a > 0 and b > 0, PIM distributions also do not require zero replacement.

Note that the density defined for the PIM is always proper if a > 0 and b > 0. If b = 0,
η ≻ −1 is required for equation 2.8 to form a proper density. If a = 0 and b = 0,
log(x)TK log(x) ≻ 0 ∀x ∈ ∆p−1 is necessary [42].

2.2. Connections Between Distributions

Comparing the compositional distribution classes collected above, it is apparent that
their densities all follow the same general quadratic form. All distribution classes have
a location vector (µ, β, η, h, or c) and - except for the Dirichlet distribution - an
interaction matrix (Σ, Γ, K, M , or A∗) as parameters. In fact, a-b power interaction
models are not only the most flexible family, they actually form an overarching framework
that encompasses the Dirichlet, Logistic Normal, A(p−1), Polynomially Tilted Pairwise
Interaction (PPI), and Maximum Entropy (ME) distributions. To achieve equivalence
between the a-b power interaction model (PIM) and the other distributional classes, it is
necessary to fix the powers a and b and apply some constraints on the parameters K and
η of the PIM. An overview over the relationship between all distributions as special cases
of the PIM is given in Figure 2.1. Transformations between parameters and constraints
necessary to achieve equivalence between the distributional classes are shown in Table
2.1.

The Dirichlet and Logistic Normal distributions are connected to the PIM through the
A(p−1) class. Correspondences between A(p−1) models and the Dirichlet and Logistic Nor-
mal distributions were described in [39]. Noting that the A(p−1) class is derived from the
log-density of the other two distributions, all three classes can be transformed into each
other. Almost all of these transformations do not introduce additional restrictions on
the parameters, except for a zero-sum constraint on the location parameter in case of a
transformation from the A(p−1) to the Logistic Normal distribution. On the other hand,
A(p−1) models are a special case of the PIM class with a = 0 and b = 0, corresponding
to a logarithmic transformation of the data. To obtain equivalence between the classes,
some restrictions to the PIM class must be made [42]. All elements of the location vector
η are required to be larger than -1 to fall into the constraints of the Dirichlet distribution.
Apart from the zero-sum constraint described above, K must also be positive definite (or
positive semidefinite if η ≻ −1).
The ME model is obtained by setting a = 1 and b = 1 in the PIM class. Here, no further
restrictions exist, as the density of both models is always proper.
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The PPI models can be seen as a hybrid class between the A(p−1) and ME models, resulting
from the PIM class through a = 1 and b = 0. Here, the constraint η ≻ −1 is necessary
to achieve a proper distribution for the PIM class.
To simplify the notation in the upcoming chapters, the general form of the PIM (Eq. 2.8)
with parameters K and η is used if not stated otherwise. The introduced techniques are
applicable to all compositional models shown in this chapter, though.

2.3. Interpretation of Parameters

Despite their seemingly similar form, the parameters in the different distribution classes
do not model the same quantities if the distribution-specific constraints on the parameters
are not respected. While more investigation on the theoretical properties is necessary to
achieve full interpretability of all distributions, there exist some interpretations of the
parameters in individual classes:

Location. Only the Dirichlet distribution has an analytical solution for its mean, while
the location parameter for the other distributions does not directly depict its expecta-
tion. Nevertheless, the location parameter in the PPI, A(p−1), Logistic Normal, and PIM
(b = 0) classes shows some empirical similarity to the mean if feature associations are not
too strong [3, 39, 40], with each component corresponding to one feature of the composi-
tion. While the quantitative interpretation is not fully clear, a qualitative assessment of
significant changes in the location vector is thus possible.

Feature Associations. The interaction matrix in the Logistic Normal distribution gives
the covariance matrix of the data after an additive logratio (ALR, Equation 2.2) transfor-
mation. While this quantity has no direct correspondence to the untransformed data, the
covariance of the centered logratio (CLR) transformation approaches the empirical data
covariance for large p [49]. Direct correspondence between the ALR and CLR covariance
is achieved through a simple algebraic transformation [50]. In the case of a = 0 and if K
is positive (semi-)definite, i.e. the distribution is proper, the transformations from Table
2.1 allow for an equivalent interpretation in the PIM class. For the other classes and if
a > 0, the quantitative interpretation of the interaction matrix is unclear. Nevertheless,
a qualitative assessment of sparse interaction matrices can detect significant associations
between features [42].
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Figure 2.1.: Overview over compositional distribution families and their
probability densities. Arrows show direct relationships achieved by
reparametrization and setting the exponents in the a-b power interaction
model to the values shown.

13



Statistical techniques for sparse compositional count data with applications to high-throughput single-cell RNA and amplicon sequencing

Distributions Transformations Constraints

LN → A(p−1)

γj,k = −
1

2
Σ−1

j,k γj,p =
1

2

p−1∑

k=1

Σ−1
j,k

β−p = Σ−1µ βp = −
p−1∑

j=1

βj

A(p−1) → LN
Σ−1

j,k = −2γj,k Σ−1
j,j = 2

p−1∑

j,k=1
j ̸=k

γj,k

µ−p = Σβ−p

β1p = 0

PIM → A(p−1)
γj,k = −

1

2
Kj,k

β = η + 1

a = 0; b = 0; η ⪰ −1;
K1p = 0p; x

TKx > 0

A(p−1) → PIM
Kj,k = −2γj,k Kj,j = 2

p∑

j,k=1
j ̸=k

γj,k

η = β − 1

PIM → PPI
A∗ =K

c = η
a = 1; b = 0; η ≻ −1

PPI → PIM
K = A∗

η = c
A∗1p = 0p (optional)

PIM → ME
Mj,k = Kj,k Mj,j = 0

h = η
a = 1; b = 1

ME → PIM
Kj,k =Mj,k Kj,j = −

p∑

j,k=1
j ̸=k

Mj,k

η = h

Table 2.1.: Correspondence between parameters and constraints of different compositional
distribution families. LN denotes the Logistic Normal distribution, PIM the
a-b power interaction models, PPI the polynomially tilted pairwise interaction
models, and ME the maximum entropy distribution.

14



3. Parameter estimation methods for
compositional distributions

The distribution families introduced in Chapter 2 allow to model compositional data with
different degrees of flexibility. This chapter introduces parameter estimation methods
to determine the specific values in the location vector and interaction matrix of these
distributions that best describe a given compositional dataset X ∈ Rn×p, where x =
X i, for some i ≤ n. To this end, assume a general compositional distribution with
probability density p(x|K,η), location vector η, and interaction matrixK. This includes
all distributions introduced in Chapter 2 through Table 2.1 (For a-b power interaction
models, a and b are always fixed before estimation of K and η). Define θ = (vec(K),η)
as the vectorized collection of all entries in K and η.

While the expressions in equations 2.1, 2.3, 2.4, 2.5, 2.7, and 2.8 all define proper probabil-
ity densities (see Section 2.2 for potential conditions on the parameters), they were only
stated proportionally to the actual densities though, missing the normalizing constant
1/
∫
∆
p(x|θ) dx. Indeed, the normalizing constant only has an analytical solution for the

Dirichlet, Logistic Normal, and A(p−1) models. Therefore, maximum likelihood estima-
tion is only possible for these tractable distributions. For the other distribution families
or more complex hierarchical models involving one of the compositional distributions,
other strategies for parameter estimation are necessary. This chapter introduces two such
techniques that I employed in scCODA [1], tascCODA [2], and cosmoDA [3]. scCODA and
tascCODA in Appendix A both use Markov Chain Monte Carlo methods, while cosmoDA

in Appendix B uses score matching optimization.

3.1. Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods are a class of Bayesian inference algo-
rithms that determine the parameters θ of a probability density p(X|θ) by repeatedly
sampling from its unnormalized distribution. Bayes’ theorem [51] states that the posterior
distribution of parameters p(θ|X) is proportional to the product of p(X|θ) and the prior
distribution p(θ) over the parameters:

p(θ|X) ∝ p(X|θ)p(θ). (3.1)

To determine the posterior distribution of θ, it is therefore sufficient to generate samples
from θ such that their distribution is equivalent to f(θ) ≡ p(X|θ)p(θ) [52]. MCMC
methods achieve this goal by constructing a Markov chain Θ = (θ0,θ1, . . . ,θt∗) of length
t∗ with stationary distribution f(θ) [53, 54].
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The simplest way of constructing such a Markov chain is given by the Metropolis-Hastings
algorithm [55, 56]. In every step t = 1, . . . , t∗, the algorithm proposes a new state θ′

according to a proposal distribution q(θ′|θt−1) that depends on the previous state θt−1.
The proposal is then accepted with probability

α = min

(
1,

f(θt)q(θt−1|θt)
f(θt−1)q(θt|θt−1)

)
.

While the Metropolis-Hastings algorithm guarantees to sample from the posterior distri-
bution in the limit, reaching this state may require a large number of iterations. Especially
for high-dimensional problems with involved posterior distributions that have steep lo-
cal maxima, the computational expense for reaching convergence of the Markov chain
can be immense. To combat this issue, different variants of MCMC sampling exist that
explore the posterior space more efficiently and achieve faster convergence as a result.
Here, I briefly introduce two such approaches that I used in manuscripts scCODA ([1], see
AppendixA.1) and tascCODA ([2], see AppendixA.2), respectively.

Hamiltonian Monte Carlo Sampling. Hamiltonian Monte Carlo (HMC) methods
[57, 58] eliminate the choice of a proposal in the Metropolis-Hastings algorithm by using
Hamiltonian dynamics to explore the relevant regions of the parameter space. Betancourt
[59] gives a great introduction, which is summarized here.
In essence, HMC interprets the posterior space as a dynamic system by treating the states
of the Markov chain as locations and introducing a set of latent momentum variables. The
posterior distribution can therefore be interpreted as the potential energy landscape of
this system. To generate a new proposal for the Metropolis-Hastings algorithm, HMC
first randomly samples the momentum variables. Then, the state of the dynamic system
after time ∆t is determined through Hamilton’s equations and used as the new proposal.
Intuitively, the distance between the proposed HMC samples will therefore be close in
regions with high posterior density and further apart when exploring a region of low
posterior density. This process greatly reduces the autocorrelation between states when
compared to a random walk and thus generally requires less sampling steps to obtain a
good posterior sample.

No-U-turn Sampling. HMC is able to efficiently generate posterior samples, but re-
quires tuning of the step size ∆t to reach its full potential. In fact, the ideal step size
depends on the geometry of the posterior distribution around the current state of the
Markov chain. If ∆t is too small, the process might move too slowly in each step, while
a larger step size can cause oscillation around small high-density areas without exploring
the maximum [59]. The No-U-Turn sampler (NUTS) [60] adaptively chooses a suitable
∆t in each iteration. Therefore, exponentially increasing step sizes in both directions
are simulated until a “U-turn”, i.e. a reversal of the simulated trajectory’s direction, is
reached. Through this process, NUTS allows efficient exploration of the parameter space.

3.2. Score Matching Optimization

In contrast to MCMC methods that rely on costly simulations, score matching optimiza-
tion is an analytical approach to parameter estimation of unnormalized distributions.
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Given a family of parametric distributions Pθ(D) defined on a domain D ⊆ Rp with den-
sities p(x|θ) for each sample, score matching minimizes the Hyvärinen divergence [61]
between p and the empirical data distribution p0(x):

J(θ) =
1

2

∫

D
p0(x) ||ψ(x|θ)− ψ0(x)||22 dx. (3.2)

Here, ψ(x,θ) = ∇xp(x|θ) and ψ0(x) = ∇xp0(x) are the Fisher score functions of p and
p0. Score matching is closely related to variational inference methods, which minimize
the Kullback-Leibler (KL) divergence [62] K(θ) =

∫
D p0(x)(log(p0(x)) − log(p(x|θ)))dx

instead. By taking the squared difference between the gradients of the log-densities, the
Hyvärinen divergence has one big advantage over the KL divergence: While the integral
in the KL divergence depends on the normalizing constant and thus requires a tractable
family of distributions, the normalizing constant in the Hyvärinen divergence vanishes
through partial integration [61]:

J(θ) =

∫

D
p0(x)

p∑

j=1

(
∂2 log(q(x,θ))

∂x2j
+

1

2
ψj(x,θ)

2

)
dx+ const, (3.3)

where q(x|θ) is the unnormalized density p(x|θ). Under mild regularity conditions, min-
imizing the Hyvärinen divergence over all possible values of θ provides a consistent esti-
mator for the true parameters [61]. In practice, the integral in equation 3.3 is replaced
with the mean over all samples to estimate θ. An especially convenient simplification
of the optimization problem is possible for exponential-family-type models with densities
log p(x|θ) = θTa(x)+b(x)−c(θ), where a(·) denotes the function for the sufficient statis-
tics, b(·) the logarithm of the base measure, and c(·) the cumulant function. Here, the
objective function reduces to a quadratic optimization problem [63]:

J(θ) =
1

2
θTΓ(X)θ + g(X)Tθ + const, (3.4)

where Γ(X) and g(X) are sample averages of functions inX. This makes score matching
optimization an appealing parameter estimation method for all compositional distribu-
tions from Section 2, as they are all exponential-family-type models.
However, the score matching estimator as described by Hyvärinen [61] is only valid for
unbounded domains D = Rp. Generalizations of this formulation to the positive orthant
[63, 64], oriented Riemannian manifolds [65], and general bounded domains [66] have since
been made. The latter approach allows for score matching optimization of distributions

constrained to the simplex and uses a weighting function h(x) =
(
h̃ ◦ φ

)
(x) to scale the

score matching loss based on the (truncated) distance φ(x) of x to the boundary of D:

J(θ) =
1

2

∫

D
p0(x) ||ψ(x,θ)⊙ h(x)1/2 − ψ0(x)⊙ h(x)1/2||22 dx. (3.5)

Score matching for bounded domains was used for parameter estimation of Polynomially
Tilted Pairwise Interaction models in [40, 47], and for a-b power interaction models (PIM)
in [42]. For the cosmoDA model (Contribution [3], Appendix (Appendix B)), I extended
the score matching on PIM distributions to include a covariate on the location vector.

17



4. Covariates and Differential
Abundance Testing

Inferring the set of parameters (K and η or equivalent) in one of the compositional
distributions from chapter 2 allows to describe a high-throughput sequencing dataset X
with samples collected under the same conditions and circumstances. This approach
is very useful to model the overall composition and associations between features in a
homogeneous cellular population [40, 41, 42]. Many larger studies however do not only
contain compositional abundance data from high-throughput sequencing, but consist of
samples from different hosts or environments and according metadata information for each
sample. The type of information depends on the biological context and can range from
environmental (e.g. collection location, temperature, or pH value [67, 68]) and subject-
specific covariates (e.g. age, sex, or dietary information [69, 70, 71]) to clinical information
such as disease status or medical treatment information [72, 73, 74, 75]. Describing the
impact of these covariates on the composition of cells or microbes can elucidate disease
progression [72, 74], help in drug development [76], or explain evolutionary differences
[77].
Particular interest lies not only in the quantification of compositional changes caused by
a covariate, but also in separating biologically relevant effects from experimental noise.
This chapter introduces a general concept for the description of compositional changes
by incorporating the covariates into the distributions from Chapter 2, describes ways to
select sparse parameter subsets in different modeling contexts, and gives an introduction
to testing for statistical significance of these effects.

4.1. Handling Covariates in Compositional Models

The scCODA ([1], see Appendix A.1), tascCODA ([2], see Appendix A.2), and cosmoDA ([3],
see Appendix B) models all follow the same conceptual design for covariate modeling. Let
the matrix Y ∈ Rn×d denote the values of d covariates for each of the n samples. A linear
model on the location vector can describe the effect of the covariates on the composition
X:

η = η0 +
d∑

k=1

ηT
kY i,k. (4.1)

For one sample x =X i, with i ≤ n, this leads to a compositional model of the form

pP(x|K,η, a, b) ∝ exp


 1

2a
xaTKxa +

1

b

(
η0 +

d∑

k=1

ηT
kY i,k

)T

xb


 . (4.2)
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As stated in Section 2.3, the location vector is directly related to the mean of the com-
position for the Dirichlet, Logistic Normal, and A(p−1) distributions. For the a-b power
interaction model (PIM), polynomially tilted pairwise interaction (PPI), and maximum
entropy (ME) families, no direct association is possible, but the location vector still ap-
proximately represents the mean.

Modeling the influence of the covariates only on the location vector adopts the biolog-
ical interpretation of a global interaction matrix that is not changed by environmental
perturbations. This view is not able to characterize covariate-induced changes in the
association pattern, but keeps the number of parameters at a reasonable level instead,
even in settings where p is not small. In equation 4.1, each covariate introduces only p
new parameters into the model, while an analogous model on the symmetric interaction
matrix would lead to (p(p+1))/2 new parameters per covariate. Because the dimensions
of most high-throughput sequencing datasets are not in the range of n ≫ p (see Section
1.1), the inclusion of covariates in the interaction matrix will often lead to misspecified
models with more free parameters than samples.

Incorporating the covariate setup into the parameter estimation methods presented in
Chapter 3 is straightforward. MCMC methods are particularly suited to accommodate all
kinds of covariate setups through different prior structures in hierarchical Bayesian models
[53, 78]. This in principle includes classes such as mixed or longitudinal models, although
their discussion is beyond the scope of this thesis. For score matching, I developed an
extension of the framework presented in [42] to include one covariate y ∈ Rn in the form
η = η0 + η

T
1 yi in manuscript [3]. In theory, the ideas presented there also extend to

multiple covariates, although this would require significant changes to the computational
implementation of the score matching optimization.

4.2. Model Selection

Model selection in the context of this thesis refers to finding parameter sets for a composi-
tional model that only have few nonzero entries, but still describe the data well. Selecting
only a part of the parameters in a compositional model to be different from zero has
multiple benefits. As seen in Section 1.1, cell type abundance datasets from scRNA-seq
often have n in the same order of magnitude as p, while amplicon sequencing data typ-
ically even has many more features than samples. Inferring an interaction matrix with
(p(p + 1))/2 free parameters can therefore quickly lead to underdetermined models with
more parameters than degrees of freedom [42]. Thus, limiting the number of free param-
eters is necessary to ensure model identifiability. Also, biologically relevant associations
between species in microbial environments are believed to be sparse [79, 80]. Therefore, it
is adequate to focus on the most relevant association effects, setting the rest of the entries
in K to zero.

On the side of the location vector, enforcing sparsity on the covariate effects ηk; k ≥ 1
can select significant changes in the feature composition, providing a parsimonious and
thus interpretable description. Depending on the chosen parameter estimation method,
model selection can be performed with different techniques.
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4.2.1. Penalized Model Estimation

For estimation methods that aim to minimize a loss function L(X,θ) with respect to
a dataset X and the parameters θ, for example the Hyvärinen divergence in the score
matching estimator, L1 (LASSO) regularization [81] is the most common strategy for
enforcing sparsity in the parameters. In its most basic form, the LASSO introduces
a penalty based on the absolute values of all estimated parameters, which results in
parameters being set to zero if their contribution to reduction of the loss does not outweigh
the penalty:

L∗(X,θ, λ) = L(X,θ) + λ||θ||1. (4.3)

The regularization strength λ > 0 must be tuned such that θ is sparse and provides
good out-of-sample predictive performance at the same time [82]. To achieve this goal,
information criteria like the AIC [83], BIC, or eBIC [84, 85], or cross validation [86] are
commonly employed. The information criteria all penalize the likelihood with the number
of nonzero parameters and have the form

AIC(θ) = 2 Supp(θ)− 2 log(L∗(X,θ, λ))

BIC(θ) = Supp(θ) log(n)− 2 log(L∗(X,θ, λ))

eBIC(θ, γ) = Supp(θ) log(n)− 2 log(L∗(X,θ, λ)) + 2γ|θ|,

where |θ| is the number of entries in θ and Supp(θ) is its number of nonzero entries.
Cross validation tries to find a sparse solution that minimizes the prediction error on
unseen data, thus finding a balance between bias and variance [87]. For this, the samples
are first randomly split into k subsetsX1, . . . ,Xk or folds of equal size. Iterating through
each of the i = 1, . . . , k folds, define the test set as the i-th fold X i and the training set
as the union of all other folds, X−i. After obtaining the parameter set θ̂i by minimizing
L∗(X−i,θ, λ), cross validation finds λ∗ such that the cross validation error over all folds
is minimized:

λ∗ = argmin
λ>0

k∑

i=1

L∗(X i, θ̂i, λ). (4.4)

In practice, it is often recommended to select models that are more sparse than the solution
minimizing the cross validation error by selecting the largest λ within one standard error
of the minimum [86].
For compositional distributions, not all parameters should be shrunk towards zero. In the
interaction matrixK, the diagonal elements are related to the variance of each feature and
therefore not expected to be sparse. On the other hand, the off-diagonal pairwise feature
associations Koff can be regularized to obtain a sparse and therefore biologically sound
interaction matrix. A similar argument can be made for the location vector. Shrinkage
on the intercept composition η0 will lead to inaccurate estimations of the mean compo-
sition. Performing model selection on covariate effects ηk can however uncover relevant
perturbations of the composition under some conditions. A possible loss function for a
compositional distribution could therefore be
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L∗(X,K,η, λ1, λ2) = L(X,K,η) + λ1||Koff ||1 + λ2||η1||1. (4.5)

Extending the regularized score matching estimator for PIM distributions [42, 88], I used
regularized estimation for the PIM with covariates in the cosmoDA model ([3], see Ap-
pendixB), selecting the penalty strength λ1 with cross validation.

4.2.2. Bayesian Spike-and-slab Priors

A Bayesian alternative to model selection are spike-and-slab priors which use a mixture of
prior distributions to select between including and removing each variable instead of en-
forcing sparsity by penalizing the likelihood [89, 90]. These priors have the advantage that
the hierarchical Bayesian formulation can easily accommodate prior assumptions, making
them useful in settings with fewer samples, like single-cell experiments. Furthermore,
the MCMC sampling procedure in a fully Bayesian approach allows to explore different
combinations of selected variables rather than iteratively removing parameters from the
model, which can improve model selection for highly correlated variables [91, 92].
The traditional formulation of the spike-and-slab prior, as introduced by Mitchell and
Beauchamp [89], uses a Bernoulli prior τi to describe a parameter βi as a mixture of two
distributions, f1 and f2 (Figure 4.1A):

p(βi|τi) = τif1 + (1− τi)f2. (4.6)

Here, f1 is highly concentrated around 0 (the “spike”) and corresponds to removing βi
from the model, while f2 has a broader distribution (the “slab”) and represents inclusion
of βi. In its most extreme case [89], the spike is chosen as the Dirac delta δ0 at 0, and
the slab is given by a uniform prior over the space of feasible values for βi. Another
common formulation represents both f1 and f2 as Gaussian distributions with low and
high variance, respectively [90] (Figure 4.1A).

Hamiltonian Monte Carlo and Spike-and-slab Priors. Spike-and-slab priors use
a discrete mixture of prior distributions to describe the parameter of interest. While
this poses no problems for Metropolis or Gibbs samplers [93], Hamiltonian Monte Carlo
methods require a fully continuous posterior distribution [59]. Therefore, the Bernoulli
prior needs to be replaced with a continuous approximation when using HMC for param-
eter estimation. Two popular continuous approximations for the Bernoulli distribution
in spike-and-slab priors are the Beta and Logistic Normal distribution [94] (Figure 4.1B).
Spike-and-slab approaches for variable selection in compositional amplicon data were in-
troduced by Wadsworth et al. [45]. In the scCODA model ([1], see AppendixA.1), I
adjusted this approach to be suitable for scRNA-seq data and provided computational
improvements through HMC sampling.

The Spike-and-slab LASSO Prior. This section is adapted from the supplement of
contribution [2].
Another version of spike-and-slab priors was introduced by Ročková and George [95] and
bridges the gap between the LASSO and Bayesian variable selection. This family of priors
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uses a mixture of two double-exponential or Laplace distributions ψ1 and ψ0 to model the
spike and slab portion:

p(βi|τi) = τiψ1(βi) + (1− τi)ψ0(βi) (4.7)

ψ1(βi) =
λ1
2
e−λ1|βi|

ψ0(βi) =
λ0
2
e−λ0|βi|.

Due to the nature of the double-exponential distribution, the mixture assumes a spike-
and-slab form if λ0 ≫ λ1 (Figure 4.1C). Conveniently, the spike-and-slab LASSO can be
reformulated as a penalized likelihood function [95, 96] with penalty:

pen(βi|τi) = −λ1|βi|+ log(
p∗τi(0)

p∗τi(βi)
), (4.8)

where

p∗τi(a) =
τi

λ1

2
e−λ1|a|

τi
λ1

2
e−λ1|a| + (1− τi)λ0

2
e−λ0|a|

. (4.9)

If λ0 = λ1, pen(βi|τi) reduces to −λ1|βi|, the LASSO penalty. In the tascCODA model ([2],
see AppendixA.2), I used this property to achieve LASSO-like behavior of a spike-and-slab
prior by setting λ0 to a large constant value and increasing λ1.

Figure 4.1.: Spike-and-slab priors. A) Components of the spike-and-slab priors by
Mitchell and Beauchamp [89] (red, solid lines) and the normal mixture by
George and McCulloch [90] (blue, dashed lines). B) The Beta and Logistic
Normal distributions both approximate the Bernoulli distribution. C) The
double-exponential prior for different values of λ.
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4.3. Differential Abundance Testing

The central goal in modeling HTS data in light of external perturbations is to perform
differential abundance (DA) testing, i.e. determining the set of covariate-feature associa-
tions that are different from zero with high confidence. During this task, the compositional
nature of HTS abundance data is particularly relevant. Due to the natural negative cor-
relation structure on the simplex, a shift in the abundance of one feature will cause a shift
of all other feature abundances in the other direction. Ignoring this effect can easily lead
to false-positive discoveries, grossly inflating the false discovery rate (FDR) [1, 97, 98].
Standard methods like the t-test or Wilcoxon rank-sum test are therefore infeasible for
DA tests on HTS count data.
There is a multitude of DA testing methods that claim to provide FDR control for dif-
ferent data characteristics, modeling contexts, or sequencing technologies. Among these
approaches, no universally “best” method can be determined, and benchmarking studies
provide contradicting results [99, 100, 101, 102]. While a full description of the features
and assumptions of all approaches is beyond the scope of this work, I want to briefly
mention a few recurring ideas:

• ALR-like compositional approaches with reference features [1, 98, 103, 104]

• Correction of biases caused by the sampling procedure or outliers. This group
includes the ANCOM family [105, 106, 107, 108], LinDA [109], as well as other
methods [110, 111]

• Inclusion of feature associations, as proposed in [3, 112].

• Zero-inflated regression approaches [44, 113, 114] or avoiding zero replacement [3,
115, 116].

• Other ideas, such as differential neighborhoods [117] or tree-based hierarchical test-
ing [2, 118].

At their core, most of these methods use regression-based approaches similar to Section
4.1, but differ in their modeling strategy and testing or variable selection procedure.
Using one of the compositional models presented in Chapter 2 or transforming the data
into unconstrained space, for example through a logratio transformation, ensures that the
compositional constraint is respected.
For simplicity, assume that the binary group indicator is the only modeled covariate, i.e.
d = 1 in equation 4.1. By testing the hypothesis

H0 : η1j,k = 0 vs. H1 : η1j,k ̸= 0, (4.10)

on every entry of η1 from equation 4.1, significant effects on individual features can be
determined. For the test statistic, different types of studentized test statistics that relate
the estimated mean of η1j,k to its estimated variance are commonly used [107, 109]. To
fully control the FDR, the resulting p-values must finally be corrected for multiple testing
[119, 120, 121]. Then, all parameters η1j,k with an adjusted p-value smaller than a FDR
level α are differentially abundant. In the cosmoDA model ([3], see AppendixB), I used this
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exact approach to perform DA testing in light of feature associations. Here, a consistent
estimator for the variance of η1 comes directly from the score matching optimization [40].

Differential Abundance Testing with Spike-and-slab Priors. For approaches using
MCMC methods and variable selection through spike-and-slab priors, hypothesis testing
is not possible due to a lack of appropriate variance estimators. Instead, determination of
credible effects and FDR control is possible through thresholding of the posterior inclusion
probability [122, 123]. Given the parameter estimates βil = τilf1l+(1−τil)f2l, l = 1, . . . , K
in a Markov chain of length K, the posterior inclusion probability (PIP) is the share of
samples where the spike-and-slab prior is in the “slab” portion:

PPI(βi) =
|{l : τil = 0}|

K
. (4.11)

A higher PIP therefore corresponds to a higher probability of βi being nonzero. For the
continuous approximations of a true Bernoulli spike-and-slab prior, one can calculate the
PIP as the of samples where βil is smaller than a certain value instead. For a fixed level
α, a direct posterior probability approach as proposed in [124] can estimate the FDR:

FDR =

∑p
i=1(1− PPI(βi) I(PPI(βi) > α))∑p

i=1 I(PPI(βi) > α)
, (4.12)

where I is the indicator function. Alternatively, a Beta prior on the prior probability of
the selection variable τi leads to automatic FDR control without the need to threshold the
PIP after the MCMC sampling [90]. In the spike-and-slab LASSO prior, this threshold is
given as

δ =
1

λ0 − λ1
log(1/p∗τi(0)− 1), (4.13)

where p∗τi(0) as in equation 4.9 [95]. Only posterior parameter values exceeding this
threshold are deemed as credibly different from 0 and thus the associated effects are
differentially abundant. Because these Bayesian procedures do not produce p-values for
the effects, these are referred to as credible instead of significant.
I implemented the direct posterior probability approach in scCODA ([1], see Appendix
A.1), while I used the Beta prior with a practical significance threshold in tascCODA ([2],
see Appendix A.2).
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5. Further Challenges in Compositional
Abundance Data Modeling

Chapters 2 - 4 provide an extensive toolbox to model compositional high-throughput se-
quencing data with and without covariates, perform efficient parameter estimation, and
test for differential abundances. This framework allows to account for most of the char-
acteristics of compositional HTS data outlined in Section 1.1, including underdetermined
data with p > n through model selection, overdispersion and feature associations through
the inclusion of an interaction matrix, as well as covariates. This chapter discusses how
to approach the remaining challenges from Section 1.1 - zero entries in the data and hi-
erarchical ordering of the features - and outlines strategies to account for the fact that
high-throughput sequencing data comes in the form of count data.

5.1. Handling of Count Data

The compositional modeling framework described so far is based on data located on the
(p−1)-dimensional probability simplex,X ∈

(
∆(p−1)

)n
. However, HTS abundances occur

in the form of count data, i.e. X̃ ∈ N(n×p)
0 . There are two natural approaches to bridge

the gap between compositional count data and proportions defined on the simplex.
The straightforward solution simply uses the closure operation (Equation 1.2) to divide
every sample in the data by its library size, i.e. the number of cells sequenced:

X i, = C(X̃ i,) =
X̃ i,∑p
j=1 X̃i,j

. (5.1)

The closure over X̃ treats every sample purely as relative abundances and allows for a
truly compositional view on the data. I used this approach for a-b power interaction
models in combination with score matching optimization in cosmoDA ([3], see Appendix
A.2). Similarly, gene expression data is usually scaled to a common sum by taking the
closure and then multiplying the resulting proportions with a constant scaling factor s
[5]. This embeds all samples in a scaled standard simplex s∆p−1. I utilized this scaling
in the context of bacterial single-cell sequencing in the BacSC pipeline ([4], see Appendix
6.3).
While the closure makes all samples comparable, it also completely eliminates any in-
formation about each sample’s library size (or sequencing depth) from the data. This
procedure is justified from a biological point of view, as the true absolute cell abundances
of the analyzed populations cannot be recovered through sequencing and only relative
information remains. When viewing high-throughput sequencing as a statistical process
instead of a “black box” method for generating compositional data, the number of cells
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in a sample does carry information about the sample uncertainty though. Assuming no
biases in the sequencing process, a larger average library size can depict the true propor-
tions in each sample more accurately. For very rare features, the sequencing depth can
even significantly impact the probability of being detected at all. A multinomial sampling
step on the proportions determined by the compositional model can account for varying
sample uncertainty [125, 126]. The multinomial distribution takes a p-dimensional vector
of proportions α ∈ ∆(p−1) and draws from this distribution N times:

pM(x|α, N) =
N !∏p
k=1 xk!

p∏

k=1

αxk
k . (5.2)

When modeling a concrete dataset, each sample’s sequencing depth Ni can be directly
determined from the data. Because the multinomial distribution is a conjugate prior to
the Dirichlet distribution [16], the Dirichlet-Multinomial compound distribution is often
used in hierarchical Bayesian models [45, 127]. The scCODA ([1], see Appendix A.1) and
tascCODA ([2], see Appendix A.2) models utilize the Dirichlet-Multinomial distribution
for modeling HTS count data.

5.2. Zero Entries

Virtually all HTS data - abundance as well as gene expression - contains some features
that were not detected in all samples, leading to zero entries in X. These can occur due
to different reasons [106, 128]:

• True absence of a feature in a tissue or environment, also known as biological zeroes.

• Rare features that are present in the tissue or environment, but were not collected
in the sampling process due to the limited depth of sampling. These are also known
as sampling zeroes.

• Technical zeroes - features that were not detected for technical reasons, although
they were present in the sample.

These zero entries pose a problem when applying logarithmic data transformations, as
log(0) is undefined. Any transformation that includes taking the logarithm of entries in
X thus requires replacement of zero entries. This includes all logratio transformations
as well as every distribution from Chapter 2 that can be represented as an a-b power
interaction model with either a = 0 or b = 0. While there exist many different approaches
for zero imputation that often try to distinguish between these cases, their discussion is
beyond the scope of this thesis. Extensive comparisons between zero replacement methods
can e.g. be found in [128]. A simple, yet effective strategy replaces every zero entry in
X with a constant, small value c, also known as a pseudocount. These pseudocounts are
usually chosen to be either 1 or a smaller, positive value, for example 0.5. This strategy
has generally proven to be a good approximation, although it does alter the measured
composition, especially for rare features [128]. I used constant zero replacement with a
value of 0.5 in scCODA ([1], see Appendix A.1), tascCODA ([2], see Appendix A.2), and
cosmoDA ([3], see Appendix B).
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An important relation between the value chosen for the pseudocount and the overdisper-
sion assumed in the data is given by [129] in the context of variance-stabilizing transfor-
mations for scRNA-seq gene expression data. Consider a log-transformation after scaling
the total number of reads in each cell to a constant value, e.g. the median sequencing
depth over all cells:

Zi,j = log(
Z̃i,j

mi

+ cj), (5.3)

where mi =
∑r

j=1 Z̃i,j

medianmk=1(
∑r

j=1 Z̃k,j)
are the cell-specific scaling factors. If the data follows a

Negative-Binomial distribution, choosing the pseudocount as cj = 1
4dj

, where dj is the

feature-specific overdispersion in the data, gives the best approximation to the variance
stabilizing transformation determined through the delta method [130]. I employed the
logarithmic transformation with feature-specific pseudocounts in BacSC ([4], see Appendix
C.1 and Section 6.3).

The remainder of this section is based on contribution [3].

Power transformations of the form Xϕ, 0 < ϕ < 1 are another data transformation
strategy for compositional data. Because they are not undefined on the boundaries of the
simplex, they completely eliminate the need for zero imputation. In fact, the Box-Cox
transformation 1

ϕ
(xϕ−1) [131] approaches the logarithm for decreasing values of the power

ϕ (Figure 5.1):

lim
ϕ→0

1

ϕ
(xϕ − 1) = log(x). (5.4)

The power transformation used in a-b power interaction models (see Equation 2.8) with
equal powers a = b = ϕ is similar to a Box-Cox transformation, albeit not equivalent, as
it is missing a factor 1

a
as well as the subtraction of 1. In cosmoDA ([3], see Appendix B),

I introduced scaling factors in the score matching optimizer to approximate Box-Cox-like
behavior for the estimated parametersK and η and compared how zero replacement and
different power transformations influence differential abundance results in HTS.

Box-Cox-like transformations can also approximate logratio transformations. In particu-
lar, a scaled and closed version of the Box-Cox transformation converges to the centered
logratio (CLR) transformation [132]:

lim
ϕ→0

1

ϕ

(
p

xϕ

∑p
k=1 x

ϕ
k

− 1

)
= log

(
x

g(x)

)
≡ CLR(x), (5.5)

where g(x) is the geometric mean. This result is used by [133] to determine the value
of ϕ that best preserves isometry to the zero-replaced and CLR-transformed data by
maximizing the Procrustes correlation between the PCA embeddings of both matrices.
The results in contribution [3] show that the same strategy can also be used to approximate
the ALR transformation.
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Figure 5.1.: Relationship between the logarithm and Box-Cox transformations.
For decreasing exponents ϕ, the Box-Cox transformation converges to the
logarithm. This figure is part of Figure 1 in contribution [3].

5.3. Tree Structures in HTS Data

This section is based on contribution [2].
Another HTS data characteristic that can be incorporated into generative modeling is
an inherent hierarchical ordering of features. In both amplicon as well as scRNA-seq
analysis, these orderings come in form of a tree that groups the features either based on
expert biological knowledge or through hierarchical clustering algorithms. In microbiome
analysis, these structures are based on taxonomy [134, 135], or phylogenetic similarity
[136]. For scRNA-seq, cell lineage hierarchies or hierarchical clusterings based on gene
expression patterns [137] can generate such tree structures.
These hierarchies can be used to aggregate features into more general groups for a broader
analysis that is easy to interpret, or split them up for more nuanced and less parsimonious
insights. Usually, the level of aggregation is fixed before the analysis and the respective
feature groups are combined through summation. On the other hand, hierarchical feature
selection methods [138, 139] are able to select a sparse set of important effects that is not
confined to a predetermined aggregation level by introducing auxiliary variables for all
aggregation levels of the tree and using adaptive penalized estimation. In the tascCODA

model ([2], see Appendix A.2), I developed such a tree-based feature selection scheme
for simultaneous DA testing on all aggregation levels. The approach uses a hierarchical
Bayesian Dirichlet-Multinomial model with spike-and-slab LASSO priors from Section
4.2.2, employing adaptive penalization strengths for each node based on their position in
the tree.
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6. Statistically Valid Data
Decomposition and Generation
Schemes

This chapter is in large parts based on contribution [4].
Besides distributional parameters that are estimated to fit the data, e.g. through the
methods introduced in Chapter 3, many statistical methods contain additional hyperpa-
rameters that need to be tuned. Common examples of such hyperparameters in high-
throughput sequencing data analysis are the penalization strength of LASSO regular-
ization (see Section 4.2.1), the latent dimensionality in truncated singular value decom-
position [140], or the resolution parameter of a clustering algorithm [141, 142]. Hyper-
parameter selection aims to find a parameter value that fits the data at hand, without
overfitting or producing false discoveries, therefore generalizing well to unseen data [143].
Two such approaches were already touched upon in Section 4.2.1, where cross validation
and information criteria were presented as ways to select the regularization strength of
the LASSO.
This chapter introduces data thinning [140], a data splitting technique that enables hyper-
parameter selection in unsupervised settings. Furthermore, approaches to generate valid
null data for hyperparameter determination and false discovery rate control in hypothesis
testing are discussed. The final section in this chapter describes the use of data thinning
and null data generation within the BacSC pipeline (Contribution [4], Appendix C.1).

6.1. Data Thinning

To illustrate the idea of data thinning, also known as count splitting, it is helpful to show-
case the inadequacy of traditional sample splitting procedures for unsupervised learning
tasks first. For this, consider a dataset Z̃ ∈ Rm×r with m samples and r features. In
supervised learning, an additional ground truth y ∈ Rm is given for each sample. Sample
splitting, such as a single fold of cross validation, can be used to select the value of a hy-
perparameter λ, e.g. the penalization strength in LASSO regression (see Section 4.2.1),
such that the associated solution g∗λ(·) generalizes well to unseen data. For this, randomly
divide the data into a training dataset (Z̃train,ytrain) ∈ (Rm1×r,Rm1) and a test dataset
(Z̃test,ytest) ∈ (Rm2×r,Rm2) with sample sizes m1 +m2 = m (Figure 6.1A). For a fixed
value of λ, the best solution g∗λ(·) on the training dataset is first computed by optimizing
a performance indicator (e.g. a loss function) L(ytrain, gλ(Z̃train)) with respect to gλ. The
test error L(ytest, g

∗
λ(Z̃test)) (c.f. equation 4.4) then examines how well this solution fits

the previously unseen test data. Minimizing this quantity with respect to λ yields a latent
parameter with good generalization ability [54].
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Sample splitting is only possible for supervised learning tasks though, as it requires a
ground truth y to evaluate the performance indicator. In unsupervised hyperparameter
selection settings, no ground truth y independent of Z̃ exists, thus invalidating the pro-
cedure [144]. As an example, consider selecting the rank k of a truncated singular-value
decomposition (SVD) Ẑ of Z̃. To evaluate the quality of an SVD, it must be compared
to the initial data, making Z̃ the ground truth. This creates a scenario where the ground
truth is also used to calculate the solution (Ẑ), which would always lead to the maximal
number of dimensions k = rank(Z̃) being selected [145, 146].

For datasets with a convolution-closed data distribution, Neufeld et al. [140] propose
count splitting as an alternative to sample splitting. A distribution P (θ) is convolution-
closed in θ, if for two independent realizations Z̃1 ∼ P (θ1), Z̃2 ∼ P (θ2), it holds

Z̃1 + Z̃2 ∼ P (θ1 + θ2). (6.1)

Many count distributions, such as the Poisson or negative binomial distribution, fulfill
this condition with respect to their location parameters [147]. A convolution-closed dis-
tribution allows to split the data entry-wise such that Z̃i,j = Z̃i,jtrain + Z̃i,jtest ∀i, j and
both the train and test dataset are part of the same distribution family as the full data
[140] (Figure 6.1B). Because both Z̃train and Z̃test now follow the same distribution and
contain information about the same samples, it is possible to find a solution (e.g. a trun-
cated SVD) on the training data and directly evaluate it on the test data. Therefore,
the test data is unseen before evaluation, which makes hyperparameter selection through
minimization of the test error possible. For Poisson-distributed data, count splitting can
be performed by simple Binomial allocation, while data with a Negative-Binomial distri-
bution requires a Dirichlet-Multinomial sampling process [140, 146]. Following the same
principles, it is also possible to create more than two data splits through count splitting,
enabling multifold or leave-one-out approaches similar to cross validation [140].

I used count splitting for two tasks in the BacSC pipeline in contribution [4], determining
the latent dimensionality k of the principal component embedding as well as the resolution
parameter for Louvain or Leiden clustering [141, 142]. More details on these approaches
follow in Section 6.3.

6.2. Randomized and Synthetic Null Data

Hyperparameter optimization methods commonly use metrics like loss functions or ac-
curacy measures to determine the optimal value of λ by selecting the best average score
over all data points. In some cases, for example when evaluating the quality of a UMAP
embedding [26], the average performance over all data points is of secondary interest
though. Instead, it is more important to minimize the number of data points that pro-
duce unwanted results, i.e. where the performance metric falls under a certain threshold
value [148]. Often, such a threshold is not straightforward to define, since the range and
distribution of values for a performance metric is usually not known beforehand. Instead,
a data-driven approach can be chosen by using the performance metric’s distribution on
a negative control or null dataset without any signal as a baseline (Figure 6.2A). In this
case, a data point produces an unwanted result if the value of its performance metric
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Figure 6.1.: Count splitting. A) Sample splitting divides the samples into train and
test data. B) Count splitting partitions each data entry, thus achieving train
and test data with comparable distributions and equal dimensionality.

lies below a certain quantile of the null distribution on the negative control data. Such
negative control comparisons are closely tied to hypothesis tests, essentially evaluating
the null hypothesis of no difference between the null data and the actual dataset [149].
A valid null dataset must have similar properties as the data of interest, but contains
no signal that is relevant to the performance metric [150]. If no such null data was
generated through a negative control experiment, several synthetic generation options
exist. Analogous to permutation hypothesis tests [151], one strategy to obtain synthetic
null data is permutation of the entries Ẑ1,j, . . . , Ẑm,j for every feature j = 1, . . . , r in the
dataset (Figure 6.2A). This strategy preserves the mean and variance of each feature, but
removes any grouping or correlation structure, making it a valid null dataset for many
tasks, including the evaluation of low-dimensional embeddings or clusterings [148].
In cases where the correlation patterns between features also need to be preserved, for ex-
ample differential gene expression testing [152], other null data generation methods must
be employed. One strategy for synthetic data generation that can preserve the mean,
variance, and correlation patterns of arbitrary data are copula approaches [153] or the
related Normal-to-anything method [154]. In amplicon sequencing, Normal-to-anything
is used in the SPIEC-EASI pipeline [49] to generate synthetic data with specific correla-
tion structures, while the scDesign family [155, 156, 157] provides copula approaches for
generating synthetic gene expression data from scRNA-seq experiments.
At their core, all copula-based data generation methods follow the same principle (Figure
6.2B). First, parametric distributions Pj(·,θj) with parameters θj are fit to the marginal
distribution of each feature j = 1, . . . , r (Genes in Figure 6.2B) in the dataset Z̃ ∈ Rm×r.
Here, the marginal distributions Pj(·,θj) do not need to stem from the same distribution
family. The cumulative density function (CDF) Gj(·,θj) of Pj(·,θj) allows to transform
the measurements for feature Z̃ ,j such that they follow a uniform distribution on the
interval (0, 1): G′

j ≡ G′
j(Z̃ ,j − 1, θj) ∼ U(0, 1). Gaussian copula [153], the variant used in

the scDesign family, then use the inverse CDF F−1(·) of a standard normal distribution
to obtain a transformed data matrixW where every feature follows a marginal Gaussian
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distribution:

W ,j = F−1(G′
j). (6.2)

If Z̃ is discrete, for example in the case of gene expression data, G′
j follows a discrete

uniform distribution. Therefore, G′
j must be distorted to be continuously uniform in order

to obtain a continuous-valued W in Equation 6.2. In scDesign2 [156], this is achieved
through the distributional transform G∗

j = vjG
′
j + (1− vj)G′

j, where each vj is randomly
sampled from a m-dimensional uniform distribution [158].
Simulating new samples with the same correlation structure as the transformed data in the
Gaussian space is now possible through sampling from a multivariate normal distribution:
Ŵ ∼ Nr(0,R). Here, R is the empirical correlation matrix of (F−1(G′

1), . . . , F
−1(G′

r))
T

or (F−1(G∗
1), . . . , F

−1(G∗
r))

T
, respectively. Finally, reversing the transformation from be-

fore, i.e applying a standard Gaussian CDF followed by the inverse CDF of the respective
marginal feature j = 1, . . . , r yields Ẑ ,j = G−1

j (F (Ŵ ,j), θj). Through this process syn-

thetic data Ẑ with the same marginal feature distributions and correlation structure as
Z̃ can be generated.
In the BacSC pipeline (Contribution [4], Appendix C.1), I used the scDEED method
for determining hyperparameters in UMAP embeddings [148], which uses a randomized
negative control dataset. For false discovery rate control in differential gene expression
testing, I employed the ClusterDE method [152], which relies on a synthetically generated
null dataset through scDesign [156, 157].

6.3. Data Decomposition and Synthetic Null Generation
in the BacSC Pipeline

With the recent emergence of different protocols for bacterial scRNA-seq [29, 30, 31, 32,
33, 34], a gold standard for statistical processing of the gene expression data produced
by these methods is essential. Due to the differences between eukaryotic and bacterial
scRNA-seq protocols described in Section 1.1, gene expression matrices obtained from
these procedures can heavily differ in their statistical properties such as dimensionality,
sparsity, or overdispersion [4]. Because of this, statistical processing of bacterial scRNA-
seq data must be adapted to the characteristics of the data at hand. In contribution
[4] (Appendix C.1), I developed BacSC, a computational pipeline for quality control, vari-
ance stabilization, dimension reduction, embedding, clustering, and differential expression
testing (see Figure 1.2C) of bacterial scRNA-seq data. Its main objective is to allow re-
searchers to perform statistically valid processing of bacterial scRNA-seq data without
requiring extensive knowledge about details of the sequencing protocol and theory behind
the statistical methods. To this end, important hyperparameters such as the latent rank
of a singular value decomposition, the number of neighbors in UMAP embeddings [26],
or the resolution of a cell type clustering [141, 142] are chosen automatically based on
the characteristics of the data. Throughout the BacSC pipeline, I repeatedly used count
splitting and synthetic null generation for automatic, data-driven determination of hyper-
parameters and FDR correction in hypothesis testing. This section gives a short overview,
explaining how I applied the techniques described above in each task.
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Figure 6.2.: Synthetic null data generation approaches. A) Randomization can be
used to obtain a null distribution for a performance indicator. Comparing
the quantiles of the null and data performance indicator distributions (the
dashed red lines denote the 5% and 95% quantiles of the null distribution)
indicates whether the method is suited to the dataset at hand. B) Schematic
representation of a Gaussian copula approach to generate synthetic null data
with marginal distributions correlation structure equal to the original data.
Figure adapted from Figures 1 and B1 in contribution [4].

Before processing the data, BacSC first detects and removes cells that do not contain
a sufficient number of reads, as well as outliers that are likely caused by measurement
errors, resulting in a raw gene expression matrix Z̃ ∈ Nm×r

0 with m cells and r genes
[5]. Next, the read counts are variance-stabilized through the log-transformation with
feature-specific pseudocounts, as described in Section 5.2 [129], and subsequently scaled
to have zero mean and unit variance per gene, which yields a variance-stabilized gene
expression matrix Z ∈ Rm×r.

Dimensionality Reduction. The dimensionality reduction step uses the count splitting
approach proposed by Neufeld et al. [140] to select the number of latent dimensions in a
singular value decomposition (SVD) of Z. To this end, BacSC first determines whether
the raw gene expression data Z̃ follows a Poisson- or Negative-Binomial distribution. The
respective count splitting algorithm then constructs training and test datasets, Z̃train and
Z̃test, that both contain information on all cells and genes (Figure 6.3A, panel 1 and 2).
Both training and test data are variance-stabilized and scaled as described above, yielding
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Ztrain and Ztest. Based on the SVD of the training data, Ztrain = UΣV T , the latent
dimensionality kopt is determined by minimizing the difference between k-dimensional
truncations of the training data’s SVD and the test data (Figure 6.3A, panel 3) over a
range k = 1, . . . , k∗ of possible dimensionalities:

Lk = ||Ztest −U ·,1:kΣ1:k,1:kV
T
·,1:k||2F (6.3)

kopt = argmin
k=1,...,k∗

Lk. (6.4)

UMAP Embedding. UMAP embeddings [26] visualize the gene expression data in
two dimensions as a point cloud (Figure 6.3B, panel 3). To this end, a neighborhood
graph detailing the pairwise distances between each cell and its closest neighbors in the
kopt-dimensional truncated SVD of Z is constructed. The two most important hyperpa-
rameters for UMAPs are nneighbors, indicating the number of neighbors considered for each
cell, and mindist, the minimal distance between cells in the visualization. These should be
chosen such that that the distances between similar cells are preserved, while cells with
different gene expression profiles are not placed close to each other. The scDEED method
[148], which I employ in the BacSC pipeline, uses a correlation-based approach to evaluate
this property, categorizing cell embeddings as trustworthy or dubious (Figure 6.3B, panel
3) based on how much the UMAP embedding perturbs distances in the neighborhood of
the cell. Since these correlation patterns are highly dependent on the dataset, no generally
applicable null distribution can be defined. Instead, the correlation values are compared
to the quantiles of a randomized synthetic null dataset (Figure 6.3B, panel 1), calculated
by randomly shuffling the entries in the distance matrix as described in Section 6.2.

Clustering. In BacSC, I use count splitting to select a suitable resolution parameter
in a Leiden [142] clustering. For a given resolution parameter γ, I first determine the
cluster assignment on the training data through Leiden clustering, which maximizes the
modularity:

M(γ) =
1

2et

∑

c

(ec − γ
K2

c

2m
). (6.5)

The modularity is defined in terms of the neighborhood graph used in the UMAP embed-
ding, where et is the total number of edges in the neighborhood graph, ec is the number
of edges within cluster c, and Kc is the sum of degrees over all nodes in cluster c. Because
count splitting preserves the cell identities, it is valid to calculate the modularityMtest(γ)
of the cluster assignment obtained from the training data on the test data (Figure 6.3C,
Panels 1, 2) as a measure of generalization power for γ. As the modularity depends on
the number of clusters in the data, it will be maximal if γ is minimal, i.e. all data points
are assigned to the same cluster, making simple test modularity maximization infeasible.
By calculating the modularity of another random cluster assignment on the test data
with the same number of clusters and size proportions as the the solution found for γ, I
obtain a clustering-specific baseline. The best resolution γopt is then chosen to maximize
the improvement of Mtest(γ) over the modularity of the corresponding random cluster
assignment Mrandom(γ) (Figure 6.3C, Panel 3):
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γopt = argmax
γ=0.01,...,0.5

(Mtest(γ)−Mrandom(γ)). (6.6)

The method is easily adaptable to hyperparameters in other clustering algorithms, such
as the perplexity Louvain clustering [141], by adapting the range of possible parameter
values and the evaluation metric.

Differential Expression Testing. Differential expression testing determines charac-
teristic genes that distinguish each of the cell type clusters from the rest of the cell
population (Figure 6.3D, Panel 1) [17]. Testing for differences in gene expression between
cell clusters that were defined through the very same gene expression profiles can lead
to an inflated false discovery rate though, a phenomenon that is also known as “double
dipping” [159, 160]. To avoid inflated false discovery rates, I use an adapted version of the
ClusterDE method [152] in BacSC. ClusterDE combats double dipping through a strategy
similar to permutation testing, contrasting the p-values obtained by testing each gene in
Z for differential expression with p-values obtained on a synthetic null. To this end, a
synthetic null dataset that has the same marginal moments as the gene expression data
but no apparent cluster structure (Figure 6.3D, Panel 2) is simulated through a copula
approach adapted from scDesign2 [156]. Forcing a clustering on the synthetic null data
can now provide a distribution of p-values that is associated with false discoveries and
thus serve as a baseline to control the FDR (Figure 6.3D, Panel 2). Finally, the clipper
method [161] calculates contrast scores between the real and synthetic p-values, and yields
a threshold that provides FDR control (Figure 6.3D, Panel 3).
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Figure 6.3.: Core concepts in the BacSC pipeline. A) Count splitting divides the
data into train and test data and allows to determine the latent dimensionality
through count splitting. The dashed line in the third panel indicates the
chosen number of dimensions. B) Panel 1: Distribution of reliability scores
and classification cutoffs in scDEED. Panel 2: Selecting the parameters with
the least number of dubiously embedded cells yields the UMAP in panel
3. C) Panel 1/2: Applying the training data clustering to the test data.
Panel 3: Modularities of training, test, and random clustering with chosen
resolution as a dashed line. D) Panel 1/2: UMAP embeddings of real and
synthetic null data with colored clusters. Panel 3: Distribution of contrast
scores with differential expression cutoff. All panels are part of Figures B1-B3
in contribution [4].
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7. Summary of the contributions

In this chapter, I give an overview over the five contributions (Appendices A - C) that
are part of this thesis and outline my contribution to each project. To this end, I connect
the ideas presented in chapters 2-6 to the specific methods developed in the contributions
and highlight concrete applications on experimental data. Overall, the contributions in
this thesis provide new methods and results for the statistical analysis of sparse count
data generated by high-throughput sequencing protocols. The contributions focus on the
analysis of different data modalities from single-cell RNA and amplicon sequencing, in
particular differential analysis of compositional cell type abundances and processing of
gene expression data.

Generative modeling and testing for differences in compositional abundance data, there-
fore deriving statistically accurate and biologically meaningful descriptions of perturba-
tions in cellular compositions, constitutes the first area of contributions, which includes
the scCODA ([1], see Appendix A.1), tascCODA ([2], see Appendix A.2), and cosmoDA ([3],
see Appendix B) models. I mostly restricted my focus to datasets with a low or medium
dimensionality, opening up the possibility to pay more attention to effective parame-
ter estimation and flexible experimental designs. The compositional modeling toolbox
described in chapters 2 - 5 provides an overview over the statistical approaches used in
scCODA, tascCODA, and cosmoDA. Each contribution uses a different set of techniques from
this toolbox, and additionally focuses on incorporating other sources of information into
the modeling and differential testing process (see Table 7.1 for an overview).

scCODA [1] tascCODA [2] cosmoDA [3]

Distribution Dirichlet Dirichlet a-b power interac-
tion model

Parameter esti-
mation method

Hamiltonian Monte
Carlo

Hamiltonian Monte
Carlo (NUTS)

Score Matching

Model selec-
tion/DA Testing

Spike-and-slab pri-
ors

Spike-and-slab
LASSO priors

Hypothesis test

Count data Multinomial Multinomial Relative abundance

Zero handling Constant imputa-
tion

Constant imputa-
tion

Power transforma-
tion

Other features Specialized for
scRNA-seq data

Tree-adaptive DA
testing

Feature associa-
tions

Table 7.1.: Overview over concepts used in differential abundance testing methods devel-
oped in contributions [1], [2], and [3].
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Contribution 1 ([1], Appendix A.1). This contribution presents the scCODA model,
a generative, hierarchical Bayesian model for compositional differential analysis of cell
type abundance data from scRNA-seq. At its base, scCODA uses a Dirichlet-Multinomial
distribution to model the compositional cell type counts (yi in Figure 7.1A, Table 7.1).
The abundance of each cell type is connected to the covariates of interest Xi through a
log-linear model with intercepts αk and effects βk (see Section 4.1). Through the use of
continuous spike-and-slab priors as described in Section 4.2.2 and thresholding of the pos-
terior inclusion probability (Section 4.3), statistically credible effects on βk are selected.
In its initial implementation, scCODA used Hamiltonian Monte Carlo sampling (Section
3.1) for parameter estimation. I further enhanced the computational efficiency through
No-U-Turn sampling in a later reimplementation [162]. To further improve the conver-
gence rate of the HMC sampler, zero entries can be replaced by a constant value (see
Section 5.2), while automatic selection of a reference cell type that is assumed to have no
credible effects guarantees identifiability of the result.
This article is the first work to acknowledge the compositionality of scRNA-seq cell type
abundance data, showing the inadequacy of non-compositional tests for differential abun-
dance on simulated and real scRNA-seq cell type abundances. In extensive synthetic
data simulations, I showed that scCODA achieved superior performance especially in low
sample-size situations, which are characteristic for scRNA-seq experiments (Figure 7.1B).
Notably, scCODA was the only method to adequately control the false discovery rate during
simulations, even outperforming established methods for compositional differential abun-
dance testing of amplicon sequencing data like ANCOM-BC [107] and ALDEx2 [98]. Ap-
plications of scCODA presented in [1] include the detection of decreased B-cell abundances
in peripheral blood mononuclear cells (PBMCs) of supercentenarians [77], description of
diverse changes in the cell type composition of the intestinal epithelium and lamina pro-
pria of subjects with ulcerative colitis [72]. An especially instructive example is shown in
Figure 7.1C, analyzing the intestinal epithelium of mice under infections with Salmonella
and Heligmosomoides polygyrus [73]. Here, scCODA detected significantly less cell types
as differentially abundant than the originally used Poisson regression model, suggesting
that these additional discoveries are false-positive results.
I started work on scCODA during my Master’s thesis under the supervision of Dr. Benjamin
Schubert, Dr. Maren Büttner, and Prof. Dr. Fabian Theis, developing a preliminary
version of the model. During my doctoral studies, I refined the statistical methodology
by adding the algorithms for automatic reference selection, adequate FDR control, and
credible interval calculation with input from Dr. Benjamin Schubert, Dr. Maren Büttner,
and Prof. Dr. Christian L. Müller. During this period, I also conducted the benchmarks
for model comparison, heterogeneous response groups, and runtime analysis, which were
conceived together with the same co-authors, as well as the data application on bacterial
infections of the intestinal epithelium of mice. I also finalized the implementation of a
Python package for scCODA during my PhD studies, and maintained the package over
the following years. I was further responsible for the sections on model description and
benchmarking performance in the main text and supplement of the article.

Contribution 2 ([2], Appendix A.2). In this contribution, I developed tascCODA,
an extension of scCODA for tree-aggregated differential abundance testing of general high-
throughput sequencing abundance data. As described in Section 1.2, scRNA-seq cell types
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Figure 7.1.: The scCODA model for compositional analysis of scRNA-seq data
[1]. A) Schematic representation of the hierarchical Bayesian formulation.
B) Matthews correlation coefficient (MCC) of scCODA and other methods
on simulated data. C) Cell type compositions of the intestinal epithelium
of mice under different bacterial infections [73]. The colored horizontal lines
denote differentially abundant cell types detected by scCODA and Poisson
regression. Figure adapted from contribution [1].

and OTUs/ASVs/taxa in amplicon sequencing share many statistical properties and are
usually ordered hierarchically through cell lineage, phylogenetic, or taxonomic trees. Like
scCODA, tascCODA uses a Dirichlet-Multinomial model for describing compositional count
data (y in Figure 7.2A, Table 7.1). By adding additional effects on the internal nodes
of the tree (e.g. N3 in Figure 7.2B), tascCODA can aggregate entire groups of features if
they are effected by a covariate in the same way. An adaptive regularization scheme using
spike-and-slab LASSO priors (Sections 4.2.2, 5.3) with regularization strengths λ0 and
λ1, respectively, ensures model identifiability. Through a user-defined hyperparameter
ϕ, the penalization can be adjusted to prefer general effects near the root of the tree
or more detailed effects near the leaf nodes. This model selection scheme, paired with a
suitable beta prior on the mixture component θ and thresholding of the posterior inclusion
probability to control the FDR (see Section 4.3), also allows for differential abundance
testing. As with scCODA, parameter estimation for tascCODA was performed through
HMC sampling in the initial implementation, replaced by NUTS sampling (Section 3.1)
in a later reimplementation [162]. For handling of zero entries and reference feature
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selection, tascCODA also uses the same strategies as scCODA.
In the synthetic data simulations presented in contribution [2], tascCODA was able to out-
perform other established DA testing methods if a detailed aggregation level was chosen,
and achieved adequate results if higher aggregations were preferred (Figure 7.2C). One ap-
plication on real data analyzes scRNA-seq data from the intestinal epithelium and lamina
propria of subjects with ulcerative colitis and healthy controls [72], where I showed that
biasing the model selection in tascCODA towards the leaves of the tree gradually leads to a
less sparse solution with better out-of-sample prediction performance. For an application
on microbial abundance data, I analyzed changes in the gut microbial composition among
patients with irritable bowel syndrome [163] (Figure 7.2D). Here, tascCODA gave similar
results as scCODA, but was able to additionally detect aggregated effects as well.
For this project, I conceived the statistical model and designed all simulations and out-
of-sample prediction studies with suggestions from Prof. Dr. Christian L. Müller. I
was responsible for the implementation of tascCODA, conducted all simulation studies
and data applications, except for the initial processing of microbiome data, which was
performed by Salomé Carcy. The manuscript was written by me with help from Prof.
Dr. Christian L. Müller. I further developed and maintained the accompanying software
package for Python.

Contribution 3 ([3], Appendix B). The influence of pairwise feature associations and
zero replacement are two other rarely discussed topics in the context of compositional DA
testing. This gap is filled by the cosmoDA model developed in this contribution. If features
interact with each other, i.e. the red and yellow features in Figure 7.3A, their abundances
will be strongly correlated beyond the compositional effect. Differential abundance test-
ing must take these associations into account to avoid false positive results caused by
secondary effects. These are not a direct result of the covariate, but occur on features
that have a strong correlation with a differentially abundant feature (see Figure 7.3A).
The cosmoDA model uses a-b power interaction models (Section 2.1.5) to estimate feature
associations and thus account for their impact when determining covariate-induced effects
η1 through a linear model on the location vector (Figure 7.3A, Table 7.1). Through an
extension of the score matching estimator for a-b power interaction models ([42], Sec-
tion 3.2), efficient parameter estimation of this covariate-extended model is possible. To
avoid model misspecification, cosmoDA uses LASSO regularization on the off-diagonal en-
tries of the interaction matrix (see Section 4.2.1) and selects the regularization strength
through cross validation. Differential abundance on η1 is determined through hypothesis
testing, as described in Section 4.3. Furthermore, counts are simply transformed to rel-
ative abundances by taking the closure (Equation 1.2). As discussed in Section 5.2, the
data transformation used in a-b power interaction models is closely related to Box-Cox
transformations and therefore able to avoid the need for zero replacement. Because of
this, cosmoDA does not rely on a zero imputation strategy, and can instead work with
unperturbed relative abundance data.
As with the previous models, I evaluated cosmoDA on synthetic and real high-throughput
sequencing abundance data. In a simulated data benchmark with correlated features,
cosmoDA showed a better overall performance than other methods, including ANCOM-BC
[107] and CompDA [112], a method that also takes feature associations into account (Fig-
ure 7.3B). Especially when the sample size n was larger, cosmoDA also showed good FDR
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control, although the desired level was not always met. On experimental scRNA-seq data
comparing PBMCs from healthy controls and subjects with systemic lupus erythematosus
(SLE) [74], cosmoDA was the only tested method that did not show a significant associa-
tion of SLE with clonal monocyte abundance, a result that was confirmed by blood count
samples [74]. I also investigated the impact of the power transformation on the differential
abundance results. Comparing microbial abundances in the gut microbiomes obtained by
16S rRNA sequencing from infants in Malawi and the United States [67] showed varying
differential abundance results for different exponents ϕ in the power transformation (Fig-
ure 7.3C). The use of a pseudocount for zero replacement also had considerable impact
on the set of differentially abundant phyla. Notably, results for ANCOM-BC [107], which
implicitly adds pseudocounts to zero entries, and cosmoDA with added pseudocounts and
ϕ selected by Procrustes analysis (see Section 5.2) produced almost identical sets of DA
phyla.
For this project, I conceived the cosmoDA model with input from Prof. Dr. Hongzhe Li
and Prof. Dr. Christian L. Müller. I developed the model, reimplemented and extended
the genscore package for R [64] in Python, and was responsible for design, execution, and
evaluation of all simulation studies and data applications. I further wrote the manuscript
with suggestions from Prof. Dr. Hongzhe Li and Prof. Dr. Christian L. Müller.

The second objective of this thesis, fulfilled by contributions [4] and [5], encompasses
the establishment of best practices and statistically sound pipelines for scRNA-seq data
analysis.

Contribution 4 ([4], Appendix C.1). With the BacSC pipeline described in this
contribution, I facilitate processing of bacterial scRNA-seq gene expression data with only
minimal manual intervention or expert knowledge required, automatically adapting to the
characteristics of datasets from various sequencing protocols. The pipeline starts with a
quality control step to remove empty droplets, doublets, and other outlier measurements,
before performing a variance-stabilizing transform and scaling step (see Sections 5.2, 6.3).
Using the techniques and methods introduced in Chapter 6, BacSC provides solutions for
automatic selection of important hyperparameters in three steps of the scRNA-seq data
processing pipeline:

• The latent dimensionality of a singular-value decomposition of a variance-stabilized
gene expression dataset through count splitting ([140], Section 6.1).

• The number of neighbors in the neighborhood graph and minimal distance in a
UMAP embedding [26] through scDEED [148].

• The resolution of a Leiden [142] or Louvain [141] clustering through a count-splitting
approach.

Finally, BacSC facilitates valid differential expression testing and subsequent cell type
annotation by correcting for inflated false discovery rates caused by double dipping. For
this, I adapted the ClusterDE method [152] to highly sparse gene expression values and
skewed cluster proportions. I discussed the methodology used in the individual steps in
more detail in Section 6.3.
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To show the broad application range of BacSC, contribution [4] contains applications on
13 different datasets, stemming from two different bacterial scRNA-seq protocols [29, 30]
and containing cells from five different species. For Bacillus subtilis grown in minimal
media and sequenced with the ProBac-seq protocol [30, 31], BacSC discovered five differ-
ent cell types, of which some were clearly identifiable as competent cells, spores, and cells
with increased expression of genes relating to structural flagella components after differ-
ential expression testing (Figure 7.4A). Notably, the UMAP embedding shows continuous
transitional states between the cell types, which were not picked up by previous analyses
of the same dataset [30]. Analyzing populations of Klebsiella Pneumoniae subjected to
three different antibiotics and sequenced with the BacDrop protocol [29], BacSC found
clear, replicable separation between the treatments and discovered a population of mobile
genetic elements that was also reported previously (Figure 7.4B). I conducted another
showcase of data integration from different growth conditions on Pseudomonas aerugi-
nosa grown in regular and low-iron environments and sequenced with ProBac-seq. Here,
BacSC found cell type clusters spanning both environments, as well as between-condition
differences in gene expression (Figure 7.4C, panel 1). The set of differentially expressed
(DE) genes between the two conditions found on the scRNA-seq data had considerable
overlap with DE genes detected by different methods on a comparable bulk sequencing
experiment from the Co-PATHOgenex study [164] 7.4 C, panel 2). Furthermore, most
of the genes differentially expressed in both datasets (e.g. PA4514, icmP, phuR, Figure
7.4C, panel 3) are known to be related to iron reception.
This project was carried out in collaboration with Tim Kirk, Dr. Janne Gesine Thöming,
Prof. Dr. Susanne Häußler, and Prof. Dr. Adam Z. Rosenthal, who provided all datasets
generated with the ProBac-Seq protocol. With suggestions from Prof. Dr. Christian L.
Müller, I designed the structure and individual steps of the BacSC pipeline. I conducted
its applications to all datasets and evaluated the results with help from Tim Kirk, Dr.
Janne Gesine Thöming, Prof. Dr. Adam Z. Rosenthal, and Roberto Olayo Alarcon. I was
further responsible for the manuscript, designed all figures and wrote all text with the
exception of the section on biological data generation, which was written by Tim Kirk,
Dr. Janne Gesine Thöming, and Prof. Dr. Adam Z. Rosenthal.

Contribution 5 ([5], Appendix C.2). This contribution provides guidelines and com-
putational pipelines for the statistically sound analysis of single-cell RNA sequencing data.
It serves as an updated and extended version of the best-practice recommendations given
by Lücken and Theis [17] and gives a broad overview over tools and methods for every
step of the scRNA-seq analysis pipeline (see Figure 1.2C), as well as advanced techniques
such as spatial analysis, diffusion pseudotime, or multi-omics analysis. To simplify the
application of these recommendations and allow for constant updating with new methods
and topics, the paper is tied to an online book that consists of interactive notebooks,
detailing every analysis step with code examples on real data.
As a member of the Single Cell best practices consortium, I contributed to the section on
compositional data analysis of cell-type abundance data, covering differential abundance
testing with scCODA and tascCODA (Contributions [1] and [2]) and their aforementioned
reimplementations in the pertpy package for Python [162]. I wrote the corresponding
notebook and section in the publication with suggestions from Lukas Heumos and Prof.
Dr. Christian L. Müller.
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Figure 7.2.: The tascCODA model for tree-aggregated compositional analysis
of HTS data [2]. A) Schematic representation of the hierarchical Bayesian
formulation. B) Example tree structure with internal nodes N1, N2, N3,
and leaves T1, . . . , T6. Joint effects on leaf nodes (e.g. N5 and N6) can be
represented by an aggregated effect on the corresponding internal node (N3).
C) Matthews correlation coefficient (MCC) of tascCODA and other methods
on simulated data. D) Credible changes found by tascCODA, comparing
healthy controls and IBS patients in the genus-aggregated data of [163]. The
circles on nodes of the tree represent credible effects, red genera show the
credible effects found by scCODA (FDR 0.1) on the genus level. The gray
genus Alistipes was used as the reference for tascCODA and scCODA. Figure
adapted from contribution [2].
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Figure 7.3.: The cosmoDA model for compositional differential abundance anal-
ysis of HTS data with interactions [3]. A) Distinction between primary
(red) and secondary (yellow) effects. Through modeling feature interactions,
cosmoDA can distinguish between the two effect types. B) Matthews correla-
tion coefficient (MCC) and false discovery rate (FDR) of cosmoDA and other
methods on simulated data. C) Differential analysis of infant gut microbiota
in Malawi and the US. Left panel: Boxplots of relative phylum abundances.
The stars indicate adjusted p-values for different methods (*: padj < 0.05; **:
padj < 0.01; ***: padj < 0.001). Middle and left panel: Adjusted p-values for
cosmoDA with different power transformations. The yellow box highlights
the adjusted p-values for ϕ determined through Procrustes correlation anal-
ysis. Figure adapted from contribution [3].
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Figure 7.4.: Key findings from processing bacterial scRNA-seq data with the
BacSC pipeline [4]. A) UMAP plot of B. subtilis grown in minimal media
after processing with BacSC. B) UMAP plot of K. pneumoniae after treat-
ment with different antibiotics and scRNA-seq data processing with BacSC.
C) Joint analysis of P. aeruginosa grown in low-iron and regular environ-
ments with BacSC. Left panel: UMAP plot after processing with BacSC.
Middle panel: Venn diagram of differentially expressed genes found in Co-
PATHOgenex and ProBac-seq data. Right panel: Violin plots of differentially
expressed genes in ProBac-seq and Co-PATHOgenex data. Figure adapted
from contribution [4].
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8. Outlook

Thinking beyond the ideas presented throughout this thesis, there are multiple possible
directions for future research.
One major area of interest is the full unification of the compositional distributions in
Chapter 2. While this thesis describes an overarching distribution family using a-b power
interaction models (PIM), understanding the constraints required to achieve full equiva-
lence between individual distributions similar to [39] is a crucial next step to fully bridge
the gaps between these approaches for compositional modeling. Formally connecting the
parameters of the PIM to the moments of the compositional distribution can further lead
to more exact interpretations than the ones given in contribution [3].
Another possible area of extension are more complex experimental setups, such as settings
with multiple covariates, mixed-effect models, or longitudinal data [165, 166]. Simultane-
ous differential abundance testing on multiple covariates is already possible for the scCODA
and tascCODA models, while the cosmoDA model, as presented in contribution [3], only
supports a single covariate. Extending the linear model formulation from (Equation 4.1),
which is used by all three methods, is however straightforward. Possible generalizations
can include generalized linear models [167] of the form η = g−1(Y ψ), or even generalized
additive models [168] of the form

η = η0 +
d∑

l=1

fl(Y,l). (8.1)

Such extensions are however tied to the development of more flexible parameter estima-
tion approaches. In score matching optimization, automatic differentiation algorithms
can provide the desired flexibility [169], while hierarchical Bayesian approaches would
require additional prior structures to model more complex experimental settings. In the
face of constantly increasing sample sizes for all kinds of HTS experiments, even inter-
pretable deep learning approaches [170, 171], augmenting differential abundance testing
with nonlinear estimation of more complex sources of variation, are imaginable.
On the side of best practices for bacterial scRNA-seq data analysis, a more comprehensive
evaluation of other methods than the (relatively basic) ones used in the individual steps
of BacSC could yield even better results than the relatively standard tools used so far.
Considering the enormous and ever-increasing number and variety of available methods [5,
172], a full evaluation and comparison of all available tools may however be a complicated
and time-consuming task.
Finally, multi-omics datasets, jointly measuring multiple sources of information such as
genomics, transcriptomics, metabolomics, proteomics, or epigenomics, allow for even more
detailed analysis of cellular populations [173]. Adapting the methods and frameworks
presented here to consider these additional sources of information is therefore crucial to
ensure their longevity.
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[1] Büttner, M., Ostner, J., Müller, C.L., Theis, F.J., Schubert, B.: scCODA is a
bayesian model for compositional single-cell data analysis. Nat. Commun. 12(1),
6876 (2021) https://doi.org/10.1038/s41467-021-27150-6

[2] Ostner, J., Carcy, S., Müller, C.L.: tascCODA: Bayesian tree-aggregated analysis
of compositional amplicon and single-cell data. Front. Genet. 12, 766405 (2021)
https://doi.org/10.3389/fgene.2021.766405

[3] Ostner, J., Li, H., Müller, C.L.: Score matching for differential abundance testing
of compositional high-throughput sequencing data. bioRxiv (2024) https://doi.

org/10.1101/2024.12.05.627006

[4] Ostner, J., Kirk, T., Olayo-Alarcon, R., Thöming, J., Rosenthal, A.Z., Häussler, S.,
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scCODA is a Bayesian model for compositional
single-cell data analysis
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Compositional changes of cell types are main drivers of biological processes. Their detection

through single-cell experiments is difficult due to the compositionality of the data and low

sample sizes. We introduce scCODA (https://github.com/theislab/scCODA), a Bayesian

model addressing these issues enabling the study of complex cell type effects in disease, and

other stimuli. scCODA demonstrated excellent detection performance, while reliably con-

trolling for false discoveries, and identified experimentally verified cell type changes that were

missed in original analyses.
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Recent advances in single-cell RNA-sequencing (scRNA-seq)
allow large-scale quantitative transcriptional profiling of
individual cells across a wide range of tissues, thus enabling

the monitoring of transcriptional changes between conditions or
developmental stages and the data-driven identification of dis-
tinct cell types.

Although being important drivers of biological processes such
as in disease1, development2, aging3, and immunity4, shifts in
cell-type compositions are non-trivial to detect using scRNA-seq.
Statistical tests need to account for multiple sources of technical
and methodological limitations, including the low number of
experimental replications. The total number of cells per sample is
restricted in most single-cell technologies, implying that cell-type
counts are proportional in nature. This, in turn, leads to a
negative bias in cell-type correlation estimation5 (Fig. 1a). For
example, if only a specific cell type is depleted after perturbation,
the relative frequency of others will rise. If taken at face value, this
would lead to an inflation of differential cell types. Therefore,
standard univariate statistical models that test compositional
changes of each cell type independently may falsely deem certain
population shifts as real effects, even though they were solely
induced by the inherent negative correlations of the cell-type
proportions (Fig. 1b). Yet, common statistical approaches cur-
rently applied in compositional cell-type analysis ignore this
effect. For example, Haber et al.6 applied a univariate test based
on Poisson regression, Hashimoto et al.3 a Wilcoxon rank-sum
test, and Cao et al.7 proposed a method based on a generalized
linear regression framework with a Poisson likelihood, all thus
not addressing the issue of compositionality.

To account for the inherent bias present in cell-type compo-
sitions, we drew inspiration from methods for compositional
analysis of microbiome data8,9 and propose a Bayesian approach
for cell-type composition differential abundance analysis to fur-
ther address the low replicate issue. The single-cell compositional
data analysis (scCODA) framework models cell-type counts with

a hierarchical Dirichlet-Multinomial distribution that accounts
for the uncertainty in cell-type proportions and the negative
correlative bias via joint modeling of all measured cell-type
proportions instead of individual ones (Fig. 1c, Methods—“Model
description”). The model uses a Logit-normal spike-and-slab
prior10 with a log-link function to estimate effects of binary (or
continuous) covariates on cell-type proportions in a parsimo-
nious fashion. Since compositional analysis always requires a
reference to be able to identify compositional changes5, scCODA
can automatically select an appropriate cell type as the reference
(Methods—“Automatic reference selection”) or uses a pre-
specified reference cell type11. This implies that credible chan-
ges detected by scCODA have to be interpreted in relation to the
selected reference. On top, the framework offers access to other
well-established compositional test statistics and is fully inte-
grated into the Scanpy12 ecosystem.

Results
scCODA performs best in a benchmark of synthetic datasets.
We first performed comprehensive benchmarks on synthetic data
across a wide range of scenarios (Methods—“Simulation”) that
focused on scCODA’s primary application: the behavior of a
single binary covariate that models the effect of a perturbation of
interest in the respective scRNA-seq experiment. To detect sta-
tistically credible changes in cell-type compositions, we calculate
the model inclusion probability for each covariate determined by
the spike-and-slab prior (Methods—“Model description”). By
using a direct posterior probability approach, scCODA auto-
matically determines a cutoff on the posterior inclusion prob-
ability for credible effects that controls for the false discovery rate
(FDR, Methods—“Spike-and-slab threshold determination”).

We compared scCODA’s performance to state-of-the-art
differential compositional testing schemes from the microbiome
field as well as all non-compositional tests recently applied to

Fig. 1 Compositional data analysis in single-cell RNA-sequencing data. a Single-cell analysis of control and disease states of a human tissue sample.
Disease states reflect changes in the cell-type composition. b Exemplary realization of the tested scenarios with high compositional log-fold change and
low replicate number (n= 2 samples per group). Colored horizontal lines indicate statistically detected compositional changes between case and control
for different methods. The error bars denote the 95% confidence interval around the mean. c The scCODA model structure with hyperparameters. Blue
variables are observed. DirMult indicates a Dirichlet-Multinomial, N a Normal, logitN a Logit-Normal, and HC a Half-Cauchy distribution.
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single-cell data (Fig. 2), all with a nominal FDR level of 0.05. In
our synthetic benchmarks, we found scCODA to significantly
outperform all non-Bayesian approaches in the regime of low-
sample sizes across a wide variety of effects and experimental
settings with an average Matthews’ correlation coefficient (MCC)
of 0.64. Considering the number of replicates per group, the
Bayesian models (scCODA and a standard Dirichlet-multinomial
modeling approach; red lines in Fig. 2) had a considerable edge
over all other methods in the common scenario with a low
number of replicates per group, and increased their MCC further
with the sample size (Fig. 2c). Other compositional non-Bayesian
models such as ANCOM-BC13, ANCOM14, ALDEx215, and
additive log-ratio (ALR) transformed proportions combined
with a t test (Methods—“Model comparison”) showed similar
behavior, albeit with lower MCC. Non-compositional models,
such as the Beta-Binomial model16, the scDC model7, or
univariate t tests, (purple lines in Fig. 2) included more false
positives with increasing effect size (Fig. 2d, e) and the number of
replicates per group, highlighting the need for a compositional
adjustment when modeling population data from scRNA-seq.

Looking at the false discovery rate (Fig. 2d), we could confirm
recent findings that ANCOM and ANCOM-BC show increased
numbers of false-positive results, especially in the low-sample
setting17,18. Also, the standard Dirichlet-Multinomial model
showed an average false discovery rate at almost twice the nominal
level of 0.05. Only scCODA, ALDEx2, and the ALR-transformed
statistical tests were able to accurately control for the false discovery
rate in all scenarios. Of these methods, scCODA showed the best
sensitivity (true positive rate; Fig. 2e) by a large margin. A more
detailed look at the results in terms of effect size and the number of
cell types is shown in (Supplementary Figs. 1–3).

When increasing the expected FDR level of scCODA to 0.2, the
model sensitivity increased at the cost of a higher false discovery
rate, which is controlled by the nominal FDR level (Fig. 2c–e).

Since non-Bayesian methods are not able to produce any results
for the case of one sample per group due to a lack of degrees of
freedom, we assumed no discoveries on these datasets, resulting in
MCC, TPR, and FDR of 0. In contrast, Bayesian models adjust prior
assumptions by the evidence from the data. Therefore, tests on one-
sample data are possible, albeit with a strong influence from the

e)

a) b)

c) d)

Fig. 2 Comparison of scCODA’s benchmark performance to other differential abundance testing methods. Bayesian models (red), non-standard
compositional models (blue), compositional tests/regression (green), non-compositional methods (purple). Shaded areas represent 95% confidence
intervals. a Receiver-operating curve (n >1 samples per group). AUC scores are reported in (Supplementary Table 1). b Precision-recall curve (n >1 samples
per group). Average precision scores are reported in (Supplementary Table 1). c–e Performance metrics with increasing number of replicates per group
over all tested scenarios. In the case of n= 1 sample per group, only Bayesian methods are applicable, other methods cannot detect any changes. c Overall
performance measured by Matthews’ correlation coefficient (MCC). d Sensitivity measured by true positive rate (TPR). e Precision measured by false
discovery rate (FDR). The nominal FDR level of 0.05 for all methods (except scCODA with FDR 0.2) is indicated with a horizontal black line.
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choice of priors. Because scCODA gives equal prior probability to
exclusion and inclusion of an effect (Methods—“Model descrip-
tion”), the selection of credible effects is driven by the data, even
when the sample size is small. Supplementary Fig. 3 shows that
Bayesian models can still detect some very strong effects
(increase= 2000), even in the one-sample case.

We also performed sensitivity analysis by the receiver-operating
characteristic and precision-recall curve (Fig. 2a, b and Supplemen-
tary Table 1). To allow for a fair comparison of frequentist and
Bayesian methods, we only considered the case of more than one
sample per group for all methods, since frequentist tests are not
applicable in the one-sample case. Furthermore, we excluded the
standard Dirichlet-Multinomial model from the comparison due to
problematic thresholding. In both metrics, scCODA outperformed all
other tested methods (AUC= 0.99; average precision Score=0.94).
Most other compositional methods also showed adequate ability to
accurately recover the true effects, while non-compositional methods
were among the worst-performing methods.

While scCODA performs better than other methods in the low-
sample case, we stress that analyses on datasets with larger sample
sizes will always be less sensitive to outliers and variability in the
data. To determine a reliable sample size for detecting effects of
different strengths, we conducted a power analysis of our method.

Power analysis to detect compositional changes. Since extensive
replication of scRNA-seq experiments is still costly and hence rare,
yet essential for studying compositional changes, we also investi-
gated the sample size dependency of effect size and rarity of affected
cell type on scCODA’s performance (Supplementary Fig. 4d–f). We
performed a power analysis fitting a quasibinomial model
(R2= [0.937, 0.9377, 0.936] for FDR= [0.05, 0.1, 0.2], Methods—
“Power analysis”) on true positive rate values to infer the required
sample size to reach a power of 0.8 with a fixed FDR for varying
log-fold changes (Supplementary Fig. 4d–f). We estimated that a
relative change of 1 (log2 scale) in abundant cell types (e.g., 1000
out of 5000 cells) can be determined with five samples, while the
same relative change requires between 20 and 30 samples in a rare
cell type (e.g., 125 out of 5000 cells) at an FDR level of 0.2. Notably,
large relative changes (log-fold changes of 4) in rare cell types could
be detected with less than ten samples. While this implies that for
many situations only a few replicates are necessary, we would advise
to increase the number of samples when detection of compositional
changes in rare cell types is relevant.

scCODA identifies the FACS-verified decrease of B cells in
supercentenarians. Next, we applied scCODA to a number of
scRNA-seq data examples1,3,4,6,19 (Fig. 3, Supplementary Figs. 5–9,
and Supplementary Data 1). To confirm scCODA’s applicability on
real data with known ground truth, we first considered a recent
study of age-related changes in peripheral blood mononuclear cells
(PBMCs)3, where cellular characteristics of supercentenarians
(n= 7) were compared against the ones of younger controls (n= 5;
Fig. 3a). The original study used a Wilcoxon rank-sum test and
reported a significant decrease of B cells in supercentenarians,
which is known from literature20. Moreover, the result was vali-
dated by FACS measurements. scCODA also identified B-cell
populations as the sole affected cell type using CD16+monocytes
as a reference at an FDR level of 0.2. This suggests that scRNA-seq
data indeed comprise enough information to study compositional
changes, and that scCODA can correctly identify the experimentally
validated age-related decrease of B cells even in low-sample regimes.

scCODA detects staining confirmed increase of disease-
associated microglia in Alzheimer’s disease on few replicates.
Second, we analyzed the compositional changes of three microglia

cell types in an Alzheimer’s disease (AD) mouse model19 (Fig. 3b
and Supplementary Data 2). Here, the number of replicates of
sorted cells from cortex and cerebellum was low (n= 2 per
group), thus challenging standard statistical testing scenarios. In
the cortex, scCODA identified statistically credible changes both
in microglia 2 and disease-associated microglia (DAM) using the
most abundant tissue-resident microglia 1 as reference cell type,
or a credible change in microglia 1 when using one of the other
two types of microglia as the reference. By contrast, scCODA
detected no statistically credible change in the cerebellum, which
is known to be unperturbed in AD. Keren-Shaul et al.19 quanti-
fied the increase of DAM in the cortex of the AD mouse model
via staining. While DAM localize in close proximity to amyloid-
beta plaques and show a distinct inflammatory gene expression
pattern, microglia 2 tend to represent an intermediate state
between DAM and homeostatic microglia 119 (Supplementary
Fig. 6). Therefore, our analysis with scCODA supports the con-
tribution of DAM in AD. For comparison, ANCOM identified all
three types of microglia as significantly changing in the cortex,
and none in the cerebellum.

scCODA scales to large sample sizes and cell-type numbers. We
next analyzed compositional changes of cell types in single-cell data
from patients with ulcerative colitis (UC) compared to healthy
donors1. Here, biopsy samples from the epithelium and the
underlying lamina propria (Fig. 3c, Supplementary Data 3, and
Supplementary Fig. 7) were enzymatically separated and subse-
quently analyzed with scRNA-seq, resulting in 51 cell types from
133 samples. The epithelium and the lamina propria represent two
different compartments and were tested separately. However, some
epithelial cells ended up in the lamina propria samples and vice
versa. For testing, we summarized these cells as nonepithelial in the
epithelium and as epithelial in the lamina propria (Fig. 3d, e). We
then reanalyzed the data with the Dirichlet regression model used in
Smillie et al.1, leading to more statistically significant results com-
pared to the original publication. Similar to the Dirichlet regression
model, scCODA identified several statistically credible cell-type
changes in healthy tissue compared to both non-inflamed and
inflamed tissue in both epithelium and lamina propria at an FDR
level of 0.2, using Immature Goblet cells and CD8+ intraepithelial
lymphocytes (IELs) as automatically selected reference. Notably, we
tested scCODA with different reference cell types (Supplementary
Fig. 8), and did not detect credible changes for CD8+ IELs in the
lamina propria with any reference cell type, backing up that
CD8+ IELs are a good reference that does not change with respect
to any other cell type. In the epithelium, both Dirichlet regression
and scCODA identified significant and statistically credible changes,
respectively, in the absorptive and secretory lineage, but scCODA
also identified an increase in enteroendocrine cells. For comparison,
ANCOM only identified significant changes in M cells (healthy vs
inflamed) and enteroendocrine cells (healthy vs non-inflamed). M
cells are lowly abundant and only 3 out of 16 inflamed samples had
more than ten cells. When we compared the M-cell-positive subset
of inflamed samples to healthy samples, though, M cells were
indeed credibly increased. In the lamina propria, B-cell sub-
populations showed several changes, e.g., a decrease of plasma B
cells with disease (validated with stainings in Smillie et al.1), and an
increase of follicular B cells. Moreover, consistent with our simu-
lation studies demonstrating scCODA’s higher sensitivity for lowly
abundant cell types, scCODA uniquely detected statistically credible
changes in several low-abundant immune cell populations. For
instance, scCODA identified regulatory T cells (Treg) to be more
abundant in UC patients which is consistent with other studies21.
Smillie et al. combined the results of their Dirichlet regression with
two non-compositional tests, Fisher exact test and Wilcoxon rank-
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sum test, to identify absolute changes in each population inde-
pendently. Using such a two-stage procedure, Smillie et al. also
reported changes in the low-abundant cell types such as Treg cells.
For comparison, ANCOM only identified significant changes in
inflammatory fibroblasts (healthy vs inflamed), epithelial cells and
pericytes (healthy vs non-inflamed), while all cell types in non-
inflamed vs inflamed were reported as significantly changing. In

contrast to Dirichlet Regression, scCODA reported credible changes
in inflammatory fibroblasts (IAFs) for the healthy vs. inflamed case.
Similar to M cells in the epithelium, IAFs form a responding sub-
group within the inflamed donor group: While the cell type was
almost absent in the control group, 13 out of 24 UC patient samples
had more than five cells, indicating that ANCOM and scCODA are
more likely to detect lowly abundant or absent cell types, where
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changes manifest in a subset of samples. On the other hand, only 10
out of 24 samples in the non-inflamed group had more than five
IAFs, which was not enough for both methods to detect a credible
change. We tested scCODA’s performance to detect compositional
changes when only a subset of samples exhibits a response (Sup-
plementary Fig. 9). Consistent with the observations on IAFs, lowly
abundant cell types show credible changes only when at least half of
the samples change upon stimulation.

scCODA detects cell-type changes in COVID-19 patients that
were not detected with non-compositional tests but confirmed
in larger-scale studies. Next, we reanalyzed a recent COVID-19
single-cell study comparing compositional changes of major cell
types in bronchoalveolar lavage fluid between healthy controls
(n= 4), severe (n= 6) and moderate (n= 3) COVID-19 cases4

using plasma as manually selected reference (Fig. 3f and Sup-
plementary Data 4). The study originally reported significant
differential changes in pDC’s in healthy vs moderate and mod-
erate vs severe, respectively, depletion in mDCs in severe vs
healthy, and depletion of T cells in severe cases vs. moderate cases
using a t test without multiple testing correction. Correcting for
multiple testing resulted in only pDC’s reported as significantly
changing in healthy vs mild and mild vs severe cases, respectively.
scCODA confirmed the differential change in T cells, and iden-
tified a credible increase in NK cells between mild vs healthy
cases, credible depletions of T cells between moderate vs severe
cases, as well as a credible increase of neutrophils in healthy and
moderate vs severe at an FDR level of 0.2 using Plasma as
reference. For comparison, ANCOM identified significant chan-
ges in mDCs between healthy and moderate, as well as neu-
trophils between healthy and moderate vs severe at alpha=0.2,
respectively. The correlation of T-cell abundances with severity is
well established and has been used as risk factors for severe
cases22,23. A decrease of NK cells with COVID-19 severity was
observed between recovered and diseased patients23 in PBMC
through FACS analysis. Finally, higher neutrophil proportions
have been associated with severe outcomes24 and are suspected to
be the main drivers of the exacerbated host response25, further
confirming scCODA’s findings.

scCODA accounts for the negative correlation structure for
compositional changes and shows fewer false positives. Our
final analysis considered a longitudinal scRNA-seq dataset from

the small intestinal epithelium in mice, studying the effects of
Salmonella and Heligmosomoides polygyrus infection on cell-type
composition6. In contrast to the original Poisson regression data
analysis6, scCODA found only a single statistically credible
increase in Enterocytes in Salmonella infected mice for an FDR
level of 0.2 (Supplementary Fig. 10 and Supplementary Data 5).
In addition, the Poisson model identified Tuft cells to be sig-
nificantly affected after three and ten days of infection with H.
polygyrus, while Enterocytes, Goblet, and early transit-amplifying
cells were found to change significantly only after ten days of
infection (Supplementary Fig. 10). All these changes could not be
confirmed by scCODA at an FDR level of 0.2. For comparison,
ANCOM did not find any significant changes for all three con-
ditions, confirming its lack of power for datasets with few
samples.

Discussion
In summary, using a comprehensive set of synthetic and scRNA-
derived compositional datasets and application scenarios, we
established scCODA’s excellent performance for identifying sta-
tistically credible changes in cell-type compositions, while con-
trolling for the false discovery rate. scCODA compared favorably
to commonly used models for single-cell and microbiome com-
positional analysis, particularly when only a low number of
experimental replicates are available. We believe this is due to the
Bayesian nature of the model as it adequately accounts for the
uncertainty of observed cell counts, automatically performs
model selection, and does not rely on asymptotic assumptions.
scCODA not only correctly reproduced previously discovered
and partially FACS-verified compositional changes in recent
scRNA-seq studies, but also identified additional cell-type shifts
that were confirmed by independent studies, including Treg cell
enrichment in UC patients and neutrophils increase in severe
COVID-19 cases. Using synthetic benchmarks, we confirmed that
standard univariate tests, such as Poisson regression models,
Beta-Binomial regression, or t tests are inadequate for cell-type
analysis, since they do not account for the compositional nature
of the data. While log-ratio transforms from compositional data
analysis (such as the ALR used here) can partially mitigate these
shortcomings, our Bayesian scCODA framework provided sub-
stantial performance improvements across all tested scenarios
and is particularly preferable when only few replicates are avail-
able. Other methods from the field of microbiome data analysis,

Fig. 3 scCODA determines the compositional changes in a variety of examples. References are indicated in bold. a Boxplots of blood samples of
supercentenarians (n= 7, dark blue) have significantly fewer B cells than younger individuals (control, n= 5, light blue), reference was set to CD16+
Monocytes, Hamiltonian Monte Carlo (HMC) chain length was set to 20,000 with a burn-in of 5000. Credible and significant results are depicted as
colored bars (red: scCODA, brown: Wilcoxon rank-sum test (two-sided; Benjamini–Hochberg corrected)3). Results are in accordance with FACS data3.
P values and effect sizes are shown in Supplementary Data 1. b Microglia associated with Alzheimer’s disease (AD) are significantly more abundant in the
cortex, but not in the cerebellum19 (n= 2 in AD (dark blue) and wild-type (light blue) mice, respectively), HMC chain length was set to 20,000 with burn-
in of 5000. P values and effect sizes are shown in Supplementary Data 2. c–e Changes in epithelium and lamina propria in the human colon1 in ulcerative
colitis (UC) (n= 133 from 18 UC patients, 12 healthy donors). Credible and significant results are depicted as colored bars (red: scCODA, green: two-sided
t test of Dirichlet regression coefficients). Stars indicate the significance level (*adjusted P < 0.05, **adjusted P < 0.01, ****adjusted P < 0.001;
Benjamini–Hochberg corrected). c Epithelium and Lamina propria are distinct tissues, which are studied separately. d Compositional changes from healthy
(light blue) to non-inflamed (medium blue) and inflamed (dark blue) biopsies of the intestinal epithelium, HMC chain length was set to 150,000 with burn-
in of 10,000. P values and effect sizes are shown in Supplementary Data 3. e Boxplots of compositional changes from healthy (light blue) to non-inflamed
(medium blue) and inflamed (dark blue) biopsies in the lamina propria, HMC chain length was set to 400,000 with burn-in of 10,000. P values and effect
sizes are shown in Supplementary Data 3. f Boxplots of compositional changes in bronchoalveolar cells in COVID-19 patients (n= 4 healthy (light blue),
n= 3 mild (medium blue), n= 6 severe (dark blue) disease progression)4. Credible and significant results are depicted as colored bars (red: scCODA,
orange: t test (two-sided; Benjamini–Hochberg corrected)), references for scCODA: Plasma (all pairwise comparisons between conditions), FDR at 0.2.
Stars indicate the significance level (*: adjusted P < 0.05, **adjusted P < 0.01, ***adjusted P < 0.001; Benjamini–Hochberg corrected), HMC chain length
was set to 80,000 with a burn-in of 10,000. P values and effect sizes are shown in Supplementary Data 4. a, b, d–f In all boxplots, the central line denotes
the median, boxes represent the interquartile range (IQR), and whiskers show the distribution except for outliers. Outliers are all points outside 1.5 times of
the IQR.
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such as ANCOM and ANCOM-BC, showed similar detection
power, but could not adequately control the false discovery rate in
the low-sample regimes.

While scCODA shows excellent performance in our simulation
studies and applications, the current modeling framework pos-
sesses several limitations. In its present form, the scCODA fra-
mework requires pre-specified cell-type definitions which, in
turn, hinge on statistically sound and biologically meaningful
clustering assignments. In situations where crisp clustering
boundaries are elusive, for instance, due to the presence of the
transient developmental processes underlying the data, joint
modeling of different resolution hierarchies26 or modeling com-
positional processes27,28 may help account for such continuities
changes. Furthermore, scCODA assumes a log-linear relationship
between covariates and cell abundance, which may be mis-
specified in some cases. Thus, scCODA may benefit from
incorporating appropriate transformation models for the covari-
ate data to achieve approximately log-linear relations. In its
current form, scCODA does not model or infer any dependency
structure among the cell compositions beyond the ones induced
by the compositional effects. While more complex dependencies
could, in principle, be included via additional hyperpriors, this
would considerably increase the computational complexity and
would require more efficient inference algorithms. Finally,
scCODA does not model the response variability within a con-
dition and thus cannot detect heterogeneities between samples in
response to treatment or donor variability, as, e.g., in the data of
UC patients1. This could be addressed by adding a novel covariate
to inspect subsets of the data.

Overall, we believe that our scCODA framework offers an ideal
starting point to model such advanced processes thanks to its
hierarchical and extendable nature.

Methods
Model description. We seek to identify the credibly associated covariates XNxM to
observed cell counts YNxK of K cell types measured in a single-cell experiment with
N samples and M covariates. We address this question with a Bayesian generalized
linear multivariate regression framework using a Dirichlet-Multinomial model with
a log-link function to account for the compositional nature and uncertainties in the
observed data. Effects between covariates m and cell types k are hierarchically
modeled using individual, normally distributed effects γm;k with a covariate-specific
scaling factor σ2m

29,30. For automatic model selection and identification of credibly
associated covariates and affected cell types, we utilize a logit-normal prior as a
continuous relaxation of the spike-and-slab prior10 resulting in the following
hierarchical model:

Y � DirMultðϕ;�yÞ ð1Þ

logðϕÞ ¼ αþ Xβ ð2Þ

αk � Nð0; 5Þ 8k 2 ½1; ::;K� ð3Þ

β ¼ τ~β ð4Þ

τm;k ¼
expðtm;kÞ

1þ expðtm;kÞ
8m 2 ½1; ¼ ;M�; 8k 2 ½1; ¼ ;K� ð5Þ

tm;k

50
� Nð0; 1Þ 8m 2 ½1; ¼ ;M�; 8k 2 ½1; ¼ ;K� ð6Þ

~βm;k ¼ σ2γm;k8m 2 ½1; ::;M�; 8k 2 ½1; ::;K� ð7Þ

σ2m � HCð1Þ8m 2 ½1; ::;M� ð8Þ

γm;k � Nð0; 1Þ8m 2 ½1; ::;M�; 8k 2 ½1; ::;K� ð9Þ
with N describing a Normal and HC a Half-Cauchy distribution following Polson
et al.’s suggesting of hyperpriors for global scale parameters31.

To prevent identifiability issues of the covariate parameters, we reparametrize
the model and choose one cell type k as a reference, forcing its covariates βk ¼ 0 as
in Maier et al.11 (Methods—“Automatic reference selection”).

Parameter inference is performed via Hamiltonian Monte Carlo (HMC)
sampling using ten leapfrog steps per iteration with automatic step size adjustment
according to Betancourt et al.32. Per default 20,000 iterations are performed with
5,000 iterations used as burn-in. The parameters αk; γm;k are randomly initiated by
drawing from standard normal priors. tm;k is always initialized with 0 to ensure
unbiased model selection, while σ2 is initialized with 1. If the data contains entries
that are zero, a pseudocount of 0.5 is added to these zero counts to reduce
numerical instabilities.

After parameter inference, we calculate the inclusion probability Pincðβk;mÞ of
the covariates as follows:

Pðβm;kÞ ¼ 1
H ∑

H

h¼1
Iðjβm;k;hj≥ 10�3Þ ð10Þ

with H the number of HMC iterations and I the indicator function. To identify
credibly associated covariates, we compare the calculated inclusion probabilities
with a decision threshold c, which is determined a posteriori to control for the false
discovery rate (Methods—“Spike-and-slab threshold determination”). For credible
effects, we report the effect parameter βm;k as the mean over all MCMC samples
where βm;k was nonzero.

Spike-and-slab threshold determination. To identify statistically credible effects,
scCODA compares the posterior inclusion probability to a threshold c. As noted
previously33,34, Bayesian variable selection methods must control for multiplicity, to
avoid an inflated number of false-positive associations. To this end, we use a direct
posterior probability approach9,35 to estimate the false discovery rate for a threshold
value c.

By taking the posterior inclusion probability Pðβm;kÞ as an approximation for the
certainty of a credible effect for each βm;k , its complementary 1� Pðβm;kÞ approximates
the probability of a type I error. For a threshold c, we now rank all βm;k by their type I
error probability and obtain a set of credible effects JðcÞ ¼ fβm;kj1� Pðβm;kÞ≤ cg:Then,
the approximate false discovery rate for the threshold is

dFDRðcÞ ¼
∑βm;k2JðcÞ1� Pðβm;kÞ

jJðcÞj : ð11Þ

For a desired false discovery rate α, we now set the optimal threshold c0 to
include as many effects as possible, without the approximate FDR exceeding α:

c0 ¼ min
0<c<1;cFDRðcÞ<α

c ð12Þ

Finally, Jðc0Þ is the set of credible effects that is reported by scCODA.

Automatic reference selection. The compositional nature of scRNA-seq popu-
lation data only allows statements about changes in abundance with respect to a
reference group5,8,11. One way of defining such a reference is by selecting one cell
type and interpreting changes to the other cell types with respect to this reference
type. scCODA achieves this by forcing all effects on the reference cell type to be
zero. The reference should therefore be set to a cell type that is known to be
unaffected by the covariates.

However, such a cell type might not be known a priori. To alleviate this
problem, scCODA offers an automatic reference selection that aims at selecting a
cell type that is mostly unchanged in relative abundance, implying that the
abundance of the reference cell type is stable over all samples. This is achieved by
selecting the cell type that has the least dispersion of relative abundance over all
samples, while being present in at least a fraction t of the samples:

Kref ¼ argmink2f1¼KgDispðY 0
:;kÞ s:t:

jfn:Yn;k>0gj
N ≥ t: ð13Þ

Here, Y 0 is the relative abundance of cell counts. The additional condition on
the reference cell type occurring in almost every sample is necessary to prevent very
rare cell types from being selected, where small random changes in cell counts have
a large impact on the relative abundance. Therefore, we recommend setting
t ¼ 0:95, meaning that the reference cell type has to be present in at least 95% of
samples. If no such cell type exists, this constraint can be relaxed by lowering t.

We now show how the choice of the reference cell type can influence the results
of scCODA. As an example, we use the ulcerative colitis Lamina propria data from
Smillie et al.1, comparing healthy and non-inflamed samples. We applied scCODA
to this data 37 times, setting each cell type as the reference once (FDR level 0.05).
Supplementary Fig. 8 shows the credible effects and effect size for each reference.
For reference cell types that were mostly unchanged, i.e., were almost never found
to be differentially abundant in the other runs, the found credible effects are largely
consistent. On the other hand, cell types that were assigned a large negative effect
(CD4+ activated Fos-lo, plasma cells) found significantly less credible effects when
used as the reference, as the null level for the change is already negative. Taking
epithelial cells, the only increasing cell type, as the reference led to the largest
number of credible negative effects in other cell types. This shows that the reference
cell type can have a large impact on the results of scCODA and should therefore be
chosen with care.
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Credible intervals. To measure the certainty of scCODA’s credible
effects, we calculate high-density intervals36 for each effect parameter βm;k .
Due to the spike-and-slab prior formulation, posterior samples of β are
naturally zero-inflated, with the extent depending on each effect’s inclusion
probability.

To counteract this bias, we, therefore, report credible intervals under the
assumption that the effect in question is included in the model by calculating the
high-density interval for each effect only across MCMC samples where the
corresponding spike-and-slab variable was not 0:

dHDIðβm;kÞ ¼ HDIðβm;kjτm;k > 0Þ: ð14Þ
Supplementary Fig. 11 shows how excluding the non-credible samples changes

the 95% HDI for the example of healthy vs. non-inflamed samples of ulcerative
colitis from the Lamina Propria1. While excluding the zero samples from the HDI
calculation influences the HDI of most cell types only marginally, some high-
density intervals become slightly wider (CD69- mast cells) or shift away from zero
(cycling B cells). The average width of 95% HDIs increases only slightly from 0.92
to 0.97, though. Note that generally Bayesian high-density intervals are relatively
large due to the MCMC sampling uncertainty.

Simulation description. We carried out all benchmark studies by repeatedly
generating compositional datasets y 2 Nðn0þn1 ÞxK that have similar properties as the
data from scRNA-seq experiments. For all synthetic datasets, we assumed a case-
control setup with n0 and n1 samples in the two groups and K cell types, as well as a
constant number of cells �y in each sample.

We generated the synthetic datasets rowwise, with each row a sample of a
Multinomial (MN) distribution yi ¼ MNðα;�yÞ, and the probability vector α a
softmax transformation of a multivariate normal (MVN) sample:
α ¼ softmaxðMVNðμ; ΣÞÞ. We always used a covariance matrix of Σ ¼ 0:05 IdK ,
which mimics the variances observed in the experimental data of Haber et al., while
assuming no correlation between the cell types besides the compositional effects6.

In the power, heterogeneous response, and runtime analysis benchmarks, the
mean vector μ for each sample was calculated from the mean abundance of the first
cell type in control samples (no effect) μ0, and the mean change in abundance of
the first cell type between the two groups μ0. All other cell types were modeled to be
equally abundant, leading to μ ¼ logðμ0; �y�μ0

K�1 ;
�y�μ0
K�1 ; ¼ Þ for control samples, and

μ ¼ logðμ0 þ μ0; �y�ðμ0þμ0 Þ
K�1 ;

�y�ðμ0þμ0 Þ
K�1 ; ¼ Þ for samples in the other group.

For the model comparison benchmark, we also included effects on two different
cell types. For this, we assumed μ ¼ logð1000; 1000; ¼ ; 1000Þ for all control
samples, and an increase of μ0 ¼ ðμ01; μ02Þ on the first two cell types, leading to

μ ¼ logð1000þ μ01; 1000þ μ02;
K�1000-ð2000þμ01þμ02 Þ

K�2 Þ.
For all benchmark studies, we defined sets of values for all parameters

mentioned above and generated r datasets for every possible parameter
combination. We then applied scCODA with the last cell type chosen as reference
to each synthetic dataset. For the model comparison benchmark (Methods
—“Model comparison”), we analyzed the results at FDR levels of 0.05 and 0.2. The
overall benchmark (Methods—“Power analysis”), heterogeneous response
benchmark (Methods—“Analysis of heterogeneous response groups”) and runtime
analysis (Methods—“Runtime analysis”) were carried out with an expected FDR
level of 0.05.

The sets of generation parameters were as follows:

● Model comparison (Fig. 2, Methods—“Model comparison”):

K ¼ f5; 10; 15g;

n0 ¼ n1 ¼ f1; 2; 3; 4; 5gðonly balanced setups� n0 ¼ n1Þ;

�y ¼ K � 1000;

μ0 ¼ 1000;

μ0 ¼ ð0; 500Þ; ð0; 1000Þ; ð0; 2000Þ; ð500; 1000Þ; ð500; 2000Þ; ð1000; 2000Þ;

r ¼ 20;
● Power analysis (Supplementary Fig. 4, Methods—“Power analysis”):

K ¼ 5;

n0 ¼ n1 ¼ f1; 2; :::; 10gðalso imbalanced setupsÞ;

�y ¼ 5000;

μ0 ¼ f20; 30; 50; 75; 115; 180; 280; 430; 667; 1000g;

μ0 ¼ f10; 20; 30; 40; 50; 60; 70; 80; 90; 100; 200; 400; 600; 800; 1000g;

r ¼ 10;

● Heterogeneous response groups (Supplementary Fig. 9, Methods—“Ana-
lysis of heterogeneous response groups”):

K ¼ 5;

n0 ¼ n1 ¼ 20;

�y ¼ 5000;

μ0 ¼ f1; 100; 1000g;

μ0 ¼ f500; 1000; 2000g;

r ¼ 20;
● Runtime analysis (Supplementary Fig. 12, Methods—“Runtime analysis”):

K ¼ f5; 10; 15; ¼ 50g;
n0 ¼ n1 ¼ f5; 10; 15; 20gðonly balanced setups� n0 ¼ n1Þ;

�y ¼ 100; 000;

μ0 ¼
1
K
;

μ0 ¼ f1g;

r ¼ 20;

Power analysis. To be able to estimate the required sample sizes for an intended
MCC, we fitted a quasibinomial regression model with log-linker function using
log sample size, log absolute change in cell count, log-fold change, and all pairwise
interactions using the simulation results at different fixed FDR levels (FDR=[0.05,
0.1, 0.2]; Methods—“Simulation description”).

We performed a backward model selection with repeated tenfold cross-
validation to reduce the feature set. The final model consisted of log sample size,
log-fold change, log-fold change, and the interaction effects between log total sample
size and log absolute cell count change as well as log absolute cell count and log-fold
change, which was expected given that we observed an interaction effect between
these two variables in the raw benchmark results (Supplementary Fig. 4d–f).

With the fitted model, we inverse estimated the required log total sample size xss
with fixed TPR ytpr , log-fold change xfc , and log absolute cell count change xcc as:

xss ¼
�ðαþ βfcxfc þ βfc;ccxfcxcc � ytprÞ

ðβss þ βss;ccxccÞ
ð15Þ

With this formula, we estimated the sample size for a fixed power of 0.8 across
changing log-fold changes between [0.01, 5] and the fraction of cell-type sizes to
total cell counts between [0.01, 0.2] for the same fixed FDR levels.

Analysis of publicly available datasets
Single-cell RNA-seq data of PBMCs from supercentenarians. We downloaded the
processed single-cell RNA-seq count matrices comprising PBMCs of seven
supercentenarians and five younger controls from http://gerg.gsc.riken.jp/SC2018/.
Read counts were log-transformed and PCA embedded using the first 50 PCs.
Leiden clustering was used to cluster cells into major groups. Following the
described analysis in Hashimoto et al.3, we annotated the major cell types including
T cells characterized by CD3 and T-cell receptor (TRAC) expression, B cells
characterized by MS4A1 (CD20) and CD19 expression, natural killer cells char-
acterized by KLRF1 expression, monocytes characterized by CD14 and FCGR3A
(CD16) expression, respectively, and erythrocytes characterized by HBA1 expres-
sion, and determined their cell counts per sample (Supplementary Fig. 5). All
analysis steps were carried out using Scanpy v.1.5.1.

Single-cell RNA-seq data of microglia in Alzheimer’s disease (AD) mouse model. We
downloaded the raw single-cell RNA-seq count matrices (deposited at GEO, accession
code GSE98969) comprising immune cells isolated from the mouse brain in wild-type
(WT) and AD mice19. The complete dataset with all samples consists of 37,248 cells.
We filtered out ERCC spike-ins before computing the quality metrics of all cells. We
then excluded 12,053 cells with less than 500 UMI counts and 11,065 genes, which
were not expressed. We subsequently normalized by library size with target sum
10,000 counts (CPM normalization) and log+1 scaled. Following the analysis of
Keren-Shaul et al.19, we selected the samples of six-month-old mice from AD and
WT, which have not been sorted by brain region, resulting in 9,196 cells. It must be
noted that Keren-Shaul et al. reported 8,016 cells when they first annotated immune
cells in 6-month-old mice (see Fig. 1 in Keren-Shaul et al.). We evaluated batch effects
based on the clustering results and visual inspection of the UMAP plots, where none
of the samples clustered separately in any of the clusters, which is, in this case,
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sufficient to obtain cell types. We clustered the data using Louvain clustering with
resolution 1 and annotated cell types using the previously reported marker genes as
microglia 1 (CTSD, CD9, HEXB, CST3), microglia 2–3 (LPL, CST), granulocytes
(CAMP, S100a9), T/NK cells (S100a4, NKG7, Trbc2), B cells (RAG1, CD79b, CD74),
monocytes (S100a4, CD74), perivascular macrophages (CD74, CD163, MRC1) (see
Supplementary Fig. 6). We subsequently sub-clustered the microglia population into
three clusters, assigning the labels microglia 1, 2, and 3, respectively. Similar to Keren-
Shaul et al., we assigned the region-sorted samples of AD and WT mouse model
(n= 2 per region) with a k-nearest neighbor classifier (k= 30). We then evaluated the
number of unassigned cells, performed another round of Louvain clustering, and
assigned the remaining cells based on the majority vote for the clustering result, i.e.,
when unassigned cells clustered predominantly with microglia 1, they were all
assigned to microglia 1. The obtained proportions of microglia subpopulations are in
accordance with the previously reported proportions. All analysis steps were carried
out using Scanpy v.1.5.1.

Single-cell RNA-seq data of ulcerative colitis in human donors. We used the
annotated single-cell RNA-seq data of the colon epithelium from 12 healthy donors
and 18 patients with chronic inflammation1. From healthy donors, samples from
two adjacent locations were taken. From patients, biopsies from inflamed and
adjacent normal tissue (“non-inflamed”) were taken. Further, the biopsies were
separated by enzymatic digestion into the epithelium (“Epi”) and the lamina
propria (“LP”) before single-cell RNA-sequencing. The study comprises a total of
365,492 transcriptomes from 133 samples. The data were downloaded from Single
Cell Portal (accession ID SCP259). The analysis code and description were pro-
vided at https://github.com/cssmillie/ulcerative_colitis.

The original study annotated all cell types together, resulting in 51 different cell
types. However, some cell types that are originally located in the LP have been found
in the epithelial samples and vice versa. For the differential composition analysis of
the Epi and LP, we considered the nonepithelial and epithelial cell types, respectively,
as one group. Therefore, we tested the changes in 16 cell types in the Epi and 37 cell
types in LP. In addition, we reanalyzed the data using the Dirichlet regression model
as in Smillie et al.1 (with R package DirichletReg v.0.7-0 in R v.3.5.2). Importantly, we
realized that Smillie et al. summed up the counts of the same replicates (as described
in the analysis scripts in https://github.com/cssmillie/ulcerative_colitis), while we
consider every replicate as an independent. Overall, we have data from 29 donors
(61 samples, where 24 healthy, 21 non-inflamed, 16 inflamed) in Epi and data from
30 donors (72 samples, where 24 each healthy, non-inflamed, and inflamed,
respectively) in LP. Specifically, we tested chain lengths of 20,000, 40,000, 80,000, and
150,000 iterations with a burn-in of 10,000 in the Epi case, while we tested chain
lengths of 200,000, 400,000, and 800,000 iterations with a burn-in of 10,000 in the LP
case due to the larger number of cell types in LP compared to Epi.

Single-cell RNA-seq data of bronchoalveolar immune cells in patients with COVID-
19. We used the annotated single-cell RNA-seq data of the bronchoalveolar lavage
fluid cells from three patients with moderate COVID-19 progression, six patients
with severe COVID-19 progression, four healthy donors, and a publicly available
sample4. The cell-type annotations of all samples were provided at https://
github.com/zhangzlab/covid_balf.

Single-cell RNA-seq data of small intestinal epithelial cells infected with different
bacteria. Annotated single-cell transcriptomics data of epithelial cells from the
small intestine of mice infected with three different bacterial conditions were
downloaded from Single Cell Portal (accession ID SCP44). The data consisted of a
control group of four mice (3,240 cells total) and three groups of two mice each,
measured after 2 days for Salmonella (1,770 cells total), as well as three (2,121 cells
total) and ten days (2,711 cells total) after H. polygyrus infection, respectively.

Model comparison. We compared scCODA’s ability to correctly identify significant
compositional changes in a setting typical for single-cell experiments to other
methods recently used in scRNA-seq analysis and approaches from the field of
microbial population analysis. We applied all methods to each of the 5,000 datasets
generated for the comparison analysis (Methods—“Simulation description”) and
recorded which of the cell types each method found to be differentially abundant
between the two groups. We then compared these results to the ground truth
assumption from the data-generation process via binary classification metrics (cred-
ible vs. non-credible changes). We chose Matthews’ correlation coefficient as our
primary metric, as it best accounts for the numerical imbalance between the two
groups. Details on the individual differential abundance testing methods can be found
in Supplementary Table 2. We also investigated the False discovery rate and sensitivity
(true positive rate) for each method for a more detailed performance analysis.

Furthermore, we performed sensitivity analysis via the receiver-operating
characteristic and precision-recall curve. The different methods use different
metrics (e.g., P values) that can be thresholded to obtain the sensitivity curves. The
thresholding metric, AUC score, and average precision score for each method are
listed in Supplementary Table 1.

Analysis of heterogeneous response groups. In certain cases, only a fraction of
the samples in a treatment group show a response to the stimulus. To quantify the

sensitivity of scCODA in such scenarios, we conducted another benchmark study. We
simulated datasets as before, assuming that either a rare or an abundant cell type was
increasing by a significant margin in the treatment group (Methods—“Simulation
description”). To mimic a partial response to the covariate, we defined treatment
groups where the affected cell type was increased in (5%, 10%, … 100%) of the
samples, while the rest of the samples followed the distribution of the control group.

Independent of the abundance of a cell type, scCODA detected the effects only if a
relatively large share of the samples was responsive to the condition. For abundant cell
types (base count μ0 ¼ 100 or 1000), a response share of about 40% was enough to
achieve reliable detection, while for very rare cell types (base count μ0 ¼ 1), more than
half of the samples needed to show a response. If the share of responding samples was
70% or higher, scCODA reliably detected the effects (Supplementary Fig. 9).

We therefore conclude that scCODA is robust to small amounts of non-
responding samples within a condition. However, scCODA does not detect
compositional changes that only manifest in a minority share within a condition.
In that case, the changes will be considered as outliers rather than credible effects.

Runtime analysis. To benchmark the execution time and scalability of scCODA
with the size of the data, we generated a collection of 800 datasets with an
increasing number of cell types and samples (Methods—“Simulation description”).
The generation parameters were chosen such that the typical dimensions of
scRNA-seq datasets are covered by the benchmark.

scCODA uses HMC sampling for parameter inference. Therefore, the most
important factor in runtime is the duration of one HMC sampling step. To isolate
the HMC sampling process from the model initialization and post-sampling
analysis steps, we applied scCODA twice to each dataset, sampling chains of length
1,000 and 2,000, respectively. We measured the execution time for both instances
and divided the time difference by 1,000—the difference in chain length—to gain
an estimate for the execution time per sampling iteration (Supplementary Fig. 12).
All operations were executed on an Intel(R) Xeon(R) Gold 6126 processor. The
memory consumption of a single run of scCODA in default settings should not
exceed 2 GB.

For five cell types, datasets of all tested sample sizes require about 0.0025 s per
HMC iteration on average. The time per iteration increased linearly with the
number of cell types for all sample sizes. This effect is more pronounced for larger
sample sizes, with 40 total samples (20 per group) and 50 cell types requiring the
longest average time per step of about 0.0035 s, while the average runtime per step
for datasets with five samples was always below 0.0027 s. Thus, running scCODA
with the default number of 20,000 HMC iterations on any dataset of typical size
should produce results within a few minutes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The synthetic benchmark datasets and results have been deposited on Zenodo at https://
doi.org/10.5281/zenodo.4305907. The single-cell datasets can be found in their respective
public repositories. The supercentenarians PBMC dataset by Hashimoto et al. can be
found at http://gerg.gsc.riken.jp/SC2018, while the Alzheimer’s mouse microglia dataset
by Keren-Shaul et al. can be accessed at GEO under GSE98969. The single-cell ulcerative
colitis dataset by Smillie et al. can be downloaded from the Single-Cell Portal (Accession
ID SCP259) and its accompanying analysis code and description from https://github.com/
cssmillie/ulcerative_colitis. The processed single-cell data of bronchoalveolar immune
cells in patients with COVID-19 by Liao et al. is publicly available at https://github.com/
zhangzlab/covid_balf. The single-cell data of small intestinal epithelial cells infected with
different bacteria is available from Single Cell Portal (accession ID SCP44).

Code availability
The method has been implemented in Python 3.8 using Tensorflow = 2.3.237,
Tensorflow-Probability = 0.1138, ArviZ >= 0.1039, numpy >= 1.19, and Scanpy >=
1.512. The Power Analysis was performed using caret package40 (R 4.1). Source code has
been deposited on Github at https://github.com/theislab/sccoda41. All code to reproduce
the presented analyses can be found on Github at https://github.com/theislab/
scCODA_reproducibility42. All tested methods have been integrated into a unifying
Python API that can directly interact with Scanpy and Anndata.
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Supplementary Figures 

 

Supplementary Figure 1: Comparison of model performance by sample size measured by 

MCC, separated by number of cell types and effect size. The “Increase” value denotes the 

expected absolute change in the first two cell types between control and case samples. Error 

bands denote the 95% confidence interval around the mean. 

 

 

 

 

 

 



 

Supplementary Figure 2: Comparison of model precision by sample size measured by FDR, 

separated by number of cell types and effect size. The “Increase” value denotes the expected 

absolute change in the first two cell types between control and case samples. Error bands denote 

the 95% confidence interval around the mean. The nominal FDR level of 0.05 for all methods 

is indicated with a horizontal black line. The case of 5 cell types and an increase of (1000, 

2000) shows much higher FDR values, because the reference cell type has an expected count 

of 0 in the case samples. 

 

 

 



 

Supplementary Figure 3: Comparison of model sensitivity by sample size measured by TPR, 

separated by number of cell types and effect size. The “Increase” value denotes the expected 

absolute change in the first two cell types between control and case samples. Error bands denote 

the 95% confidence interval around the mean. 



 

Supplementary Figure 4: Benchmark evaluation results for overall benchmark (Methods - 

Simulation description). (a) The performance of scCODA (measured by MCC) depends on 

the amount of change in abundance. The “Base” value represents the mean cell count of the 

only differentially abundant cell type in the control group samples. For cell types with higher 

initial abundance, the absolute (count) change must be higher to reliably detect changes in 

abundance. Error bands denote the 95% confidence interval around the mean. (b) For cell types 

with higher initial abundance, scCODA can detect smaller relative (log2-fold) changes between 

the two groups. Error bands denote the 95% confidence interval around the mean. (c) Example 
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performance of scCODA depending on sample size of both groups. Less abundant cell types 

need a smaller absolute increase to be reliably detected as differentially abundant. The shaded 

areas in (b-c) represent 95% confidence intervals (d-f) Total samples per group needed to 

achieve an expected sensitivity of 0.8, depending on base value and increase of the 

differentially abundant cell type (Methods - Power analysis) for fixed FDR levels of  (d) 

FDR=0.05, (e) FDR=0.1, and (f) FDR=0.2. 

 

 

 

 

 



 

Supplementary Figure 5: Re-analysis of supercentenarian data of Hashimoto et al.3. (a) Final 

annotation of major cell types. (b-g) expression pattern of CDR3 identifying T-cells, MS4A1 

identifying B-cells, KLRF1 natural killer cells (NKT), CD14 and FCGR3A (CD16) Monocyte 

subtypes (CD14+, CD16+, denoted as MK14 and MK16), and HBA1 Erythrocytes (EC).  



 

Supplementary Figure 6: Re-analysis of microglia data in Alzheimer’s disease (AD) mouse 

model19. (a) Joint cell type annotation of cells. (b) Cell distribution in the both wild type (WT) 

and AD mouse models. (c) Distribution of cells from different replicates does not indicate 

strong batch effects. (d) Location of cells sorted from cortex and cerebellum. Location of grey 

cells was not reported. (e) Dot plot of marker gene expression of the annotated cell populations 

(a). 

  



 



 



 

 

Supplementary Figure 7: Convergence of HMC sampling for many cell types (in data of 

Smillie et al.). (a-b) Inclusion probabilities for pairwise tests in the epithelium (a) and lamina 

propria (b) of healthy donors and patients of UC. Colors depict the tested levels; symbols depict 

the credibility of the changes. The effect of the reference is set to zero. (c-d) Density plots (left 

panels) and trace plots (right panels) of different chain lengths for the parameter inference in 

Goblet cells comparing healthy and inflamed samples (reference Immature Goblet) (c) and 

DC2 comparing healthy and inflamed samples (reference CD8+ IELs) (d).  

  



 

Supplementary Figure 8: Credible effects depend on the reference cell type in scCODA. Blue 

and red areas depict positive and negative credible effects, white areas show no credible effect. 

The reference cell type itself is colored black. Using a cell type as the reference that is often 

characterized with a large decrease (CD4+ Activated Fos-lo, Plasma cells) leads to less credible 

decreases being found. Using Epithelial cells, the only credibly increasing cell type, as the 

reference, leads to a larger number of negative effects. Data: Ulcerative colitis data from the 

Lamina propria (Healthy vs. non-inflamed)1 

 



 

Supplementary Figure 9: Benchmarking results on response heterogeneity in a condition 

(Methods - Analysis of heterogeneous response groups). The “Base” value indicates the 

mean count of the affected cell type in the control group, the “Increase” value represents the 

absolute increase between conditions. The x-axis shows the fraction of treatment samples that 

were simulated to respond to the condition. Only if more than half of the samples responded 

to the treatment, scCODA was able to reliably detect the effect, even in very rare cell types. 

 

 

 



 

Supplementary Figure 10: Compositional analysis of Haber et al.6 on the response to 

pathogen infection in the small intestinal epithelium of the mouse. Significant and credible 

results in comparison to the control population (n=4 animals) are depicted as colored bars (Red: 

scCODA, purple: Dirichlet regression), stars depict the significance of the Poisson regression 

model carried out by Haber et al.6 (*: adjusted p<10-5, **: adjusted p<10-10). The reference cell 

type for scCODA was determined automatically to be Endocrine cells (Salmonella (n=2 

animals) and H. polygyrus (Day10) (n=2 animals)), and early transit-amplifying (TA Early) 

cells (H.Polygyrus (Day 3) (n=2 animals)), respectively. In all box plots, the central line 

denotes the median, boxes represent the interquartile range (IQR), and whiskers show values 

within. P-values and effect sizes are shown in Supplementary Data 5. In all box plots, the 

central line denotes the median, boxes represent the interquartile range (IQR), and whiskers 

show the distribution except for outliers. Outliers are all points outside 1.5 times of the IQR. 

 

 

 

 

 



 

Supplementary Figure 11: High (95%) posterior density intervals (HDI) for effect parameters 

on ulcerative colitis data from the Lamina propria (Healthy (n=24 samples) vs. non-inflamed 

(n=24 samples)). We compare two ways of calculating the HDI - with (blue) and without 

(orange) including the MCMC samples where the corresponding spike-and-slab variable is 

zero. (a) Interval range (blue and orange bars) of both methods for each cell type. The grey 

bars show the posterior mean (including zero samples) for each effect. CD8+ IELs have no 

effect, since they were used as the reference. (b) Boxplots of HDI width (difference between 

upper and lower interval boundary) across all cell types. In the box plots, the central line 

denotes the median, boxes represent the interquartile range (IQR), and whiskers show the 

distribution except for outliers. Outliers are all points outside 1.5 times of the IQR. 

 

 

 



 

Supplementary Figure 12: Runtime analysis benchmark (Methods - Runtime analysis). The 

time per HMC step (in seconds) is dependent on the number of cell types and the number of 

samples in the two treatment groups. The shaded areas depict the 95% confidence intervals 

around the mean. Generally, each HMC iteration takes longer for larger datasets. This effect is 

approximately linear in the number of cell types, with a less steep increase in runtime for 

datasets with fewer samples.  



Supplementary Tables 

Supplementary Table 1: Sensitivity analysis of differential abundance testing methods. 

AUC score from Receiver operating characteristic (Fig. 2a), Average precision score from 

precision-recall curve (Fig. 2b). All analyses were performed according to Supplementary 

Table 2. 

Method ROC 
thresholding 
parameter 

AUC Average precision score 

scCODA Inclusion 
probability 

0.99 0.94 

scDC p-value 0.56 0.2 

ANCOM W-statistic 0.77 0.65 

ALDEx2 p-value 0.9 0.77 

ANCOM-BC p-value 0.94 0.70 

ALR+t-test p-value 0.95 0.85 

ALR+Wilcoxon p-value 0.93 0.72 

Dirichlet 
regression 

p-value 0.7 0.31 

Poisson 
regression 

p-value 0.44 0.16 

t-test p-value 0.84 0.44 

Beta-Binomial p-value 0.84 0.41 

 

 

 

  



 

Supplementary Table 2: Methods and configurations used in the benchmark comparison. 

Wrappers around implementations of all methods for easy use are implemented in the scCODA 

package. The Package column denotes the implementation that is called in scCODA. 

Method Implementation details Parameters Package 

scCODA Our proposed method Reference cell 
type always set to 
the last 
component; FDR 
level 5% 

scCODA 
package, 
version 0.1.3 

Standard 
Dirichlet-
Multinomial 

Fully Bayesian model: Log-linear 
model on components of a Dirichlet-
Multinomial distribution. Selection 
of a reference cell type. HMC 
inference setup identical to scCODA. 
Effects are credible if 0 is not 
included in the high-density interval 

Reference cell 
type always set to 
the last 
component; High 
density interval: 
95% 

scCODA 
package, 
version 0.1.3 

scDC Single-cell differential composition 
analysis7 Number of bootstrap 
samples generated for each data set: 
100; no subject effects in linear 
model 
Note: This method did not give 
results for all datasets. The 
erroneous results were left out of the 
analysis 

False discovery 
rate: 5% 

R-package 
scdney7, 
version 0.1.5 

ANCOM Analysis of composition of 
microbiomes14; 
Used test: t-test; Holm-Bonferroni 
multiplicity correction (all 
recommended settings) 

False discovery 
rate: 5% 

Python-
package 
scikit-bio42, 
version 0.5.6 



ALDEx2 ANOVA-Like Differential 
Expression tool for high throughput 
sequencing data43. Reference cell 
type set to the last component instead 
of the geometric mean; testing via t-
test (Benjamini-Hochberg-corrected) 

False discovery 
rate: 5% 

R-package 
ALDEx215, 
version 1.22 

ANCOM-BC Analysis of compositions of 
microbiomes with Bias correction13; 
Holm correction of p-values 
(recommended) 

False discovery 
rate: 5% 

R-package 
ANCOMBC1
3, version 
1.0.5 

ALR+t-test Additive log-ratio transform of data; 
t-test (two-sided) on all components; 
Benjamini-Hochberg correction of p-
values 

Reference 
component: Last 
cell type; False 
discovery rate: 5% 

Python-
package 
scipy44, 
version 1.6.1 

ALR+Wilcoxo
n 

Additive log-ratio transform of data; 
Wilcoxon-rank-sum test (two-sided) 
on all components; Benjamini-
Hochberg correction of p-values 

Reference 
component: Last 
cell type; False 
discovery rate: 5% 

Python-
package 
scipy44, 
version 1.6.1 

Dirichlet 
regression 

Default settings: One-sample t-test of 
Dirichlet regression coefficients 

Significance level 
5% 

R-Package 
DirichletReg 
11, version 0.7 

Poisson 
regression 

Poisson regression model used by 
Haber et al. 6; Benjamini-Hochberg 
correction of p-values 

False discovery 
rate:  (as used by 
Haber et al. 6) 
  

Python-
package 
statsmodels45

, version 
0.12.1 

t-test t-test (two-sided) on all components 
of untransformed data; Benjamini-
Hochberg correction of p-values 

False discovery 
rate: 5% 
  

scipy44, 
version 1.6.1 

Beta-Binomial Variance estimation only for more 
than 2 samples per group possible; 
Test statistic: Likelihood-ratio 
(recommended for small sample 
sizes); Benjamini-Hochberg 
correction of p-values 

False discovery 
rate: 5% 

R-package 
corncob16, 
version 0.2.0 
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tascCODA: Bayesian Tree-Aggregated
Analysis of Compositional Amplicon
and Single-Cell Data
Johannes Ostner1,2, Salomé Carcy2,3† and Christian L. Müller1,2,4*

1Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany, 2Institute of Computational Biology,
Helmholtz Zentrum München, Munich, Germany, 3Department of Biology, École Normale Supérieure, PSL University, Paris,
France, 4Center for Computational Mathematics, Flatiron Institute, New York, NY, United States

Accurate generative statistical modeling of count data is of critical relevance for the
analysis of biological datasets from high-throughput sequencing technologies.
Important instances include the modeling of microbiome compositions from
amplicon sequencing surveys and the analysis of cell type compositions derived
from single-cell RNA sequencing. Microbial and cell type abundance data share
remarkably similar statistical features, including their inherent compositionality and a
natural hierarchical ordering of the individual components from taxonomic or cell lineage
tree information, respectively. To this end, we introduce a Bayesian model for tree-
aggregated amplicon and single-cell compositional data analysis (tascCODA) that
seamlessly integrates hierarchical information and experimental covariate data into
the generative modeling of compositional count data. By combining latent
parameters based on the tree structure with spike-and-slab Lasso penalization,
tascCODA can determine covariate effects across different levels of the population
hierarchy in a data-driven parsimonious way. In the context of differential abundance
testing, we validate tascCODA’s excellent performance on a comprehensive set of
synthetic benchmark scenarios. Our analyses on human single-cell RNA-seq data from
ulcerative colitis patients and amplicon data from patients with irritable bowel syndrome,
respectively, identified aggregated cell type and taxon compositional changes that were
more predictive and parsimonious than those proposed by other schemes. We posit that
tascCODA1 constitutes a valuable addition to the growing statistical toolbox for generative
modeling and analysis of compositional changes in microbial or cell population data.

Keywords: bayesian modeling, dirichlet multinomial, microbiome data, single-cell data, spike-and-slab lasso, tree
aggregation, differential abundance testing

1 INTRODUCTION

Next-generation sequencing (NGS) technologies have fundamentally transformed our ability to
quantitatively measure the molecular make-up of single cells (Shalek et al., 2013), tissues (Regev
et al., 2017; Karlsson et al., 2021), organs (He et al., 2020), as well as microbiome compositions
in and on the human body (Human Microbiome Project Consortium, 2012). Single-cell RNA
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sequencing (scRNA-seq) (Tang et al., 2009; Shalek et al., 2013;
Macosko et al., 2015) has become the key technology for
recording the transcriptional profiles of individual cells across
different tissue types (Regev et al., 2017) and developmental
stages (Griffiths et al., 2018), and for determining cell type
states and overall cell type compositions (Trapnell, 2015). Cell
type compositions provide informative and interpretable
representations of the noisy high-dimensional scRNA-seq
data and are typically derived from clustering characteristic
gene expression patterns in each cell (Duò et al., 2018; Traag
et al., 2019), followed by analysis of the expression levels of
marker genes (Luecken and Theis, 2019). As a by-product,
these workflows also yield a hierarchical grouping of the cell
types, either derived from the clustering procedure or
determined by known cell lineage hierarchies. Determining
changes in cell type populations across conditions can give
valuable insight into the effects of drug treatment (Tsoucas
et al., 2019) and disease status (Smillie et al., 2019), among
others.

Complementary to scRNA-seq data collection, amplicon or
marker-gene sequencing techniques provide abundance
information of microbes across human body sites (Human
Microbiome Project Consortium, 2012; Lloyd-Price et al.,
2017; McDonald et al., 2018). Current estimates suggest
that the human microbiome, i.e., the collection of microbes
in and on the human body, outnumber an individual’s somatic
and germ cells by a factor of 1.3–10 (Turnbaugh et al., 2007;
Sender et al., 2016). Starting from the raw read counts,
amplicon data are typically summarized in count abundance
tables of operational taxonomic units (OTUs) at a fixed
sequence similarity level or, alternatively, of denoised
amplicon sequence variants (ASVs). The marker genes also
allow taxonomic classification and phylogenetic tree
estimation, thus inducing a hierarchical grouping of the
taxa. To reduce the dimensionality of the data set and
guard against noisy and low count measurements, the
taxonomic grouping information is often used to aggregate
the data at a fixed taxonomic rank, e.g., the genus or family
rank. Shifts in the population structure of taxa have been
implicated in the host’s health and have been associated
with various diseases and symptoms, including immune-
mediated diseases (Round and Palm, 2018), Crohn’s disease
(Gevers et al., 2014), and Irritable Bowel Syndrome (IBS) (Ford
et al., 2017).

In the present work, we exploit the remarkable similarities
between scRNA-seq-derived cell type data and amplicon-
based microbial count data and propose a statistical
generative model that is applicable to both data modalities:
the Bayesian model for tree-aggregated amplicon and single-
cell COmpositional Data Analysis, in short, tascCODA. Our
model assumes that count data are available in the form of a
n × p-dimensional count matrix Y containing the counts of p
different cell types or microbial taxa in n samples, a covariate
matrix n × d-dimensional X carrying metadata or covariate
information for each sample, and a tree structure with p leaves
that imposes a hierarchical order on the count data Y. Since
both amplicon and scRNA-seq technologies are limited in the

amount of material that can be processed in one sample, the
total number of counts in rows of Y do not reflect total
abundance measurements of the features but rather relate to
the efficiency of the sequencing experiment itself (Gloor et al.,
2017). This implies that the counts only carry relative
abundance information, making them essentially
compositional data (Aitchison, 1982).

tascCODA is a fully Bayesian model for tree-aggregated
modeling of count data and is a natural extension of the
scCODA model, recently introduced for compositional
scRNA-seq data analysis (Büttner et al., 2020). At its core,
tascCODA models the count data Y via a Dirichlet
Multinomial distribution and associates count data and
covariate information via a log-link function. To encourage
sparsity in the underlying associations between the covariates
and the hierarchically grouped features, tascCODA exploits
recent ideas from tree-guided regularization and the spike-
and-slab LASSO (Ročková and George (2018)). This allows
tascCODA to perform tree-guided sparse regression on
compositional responses with any type or number of
covariates. In particular, in the presence of a single binary
covariate, e.g., a condition indicator, tascCODA allows to
perform Bayesian differential abundance testing. More
generally, however, tascCODA enables to determine how host
phenotype, such as disease status, host covariates such as age,
gender, or an individual’s demographics, or environmental
factors jointly influence the compositional counts. Finally,
incorporating tree information into the inference allows
tascCODA to not only identify associations between individual
features, but also entire groups of features that form a subset of
the tree.

tascCODA complements several recent statistical
approaches, in particular, from the field of microbiome data
analysis, some of which also use the concept of tree-guided
models. Chen and Li (2013) were among the first to use the
sparse Dirichlet-Multinomial model to connect compositional
count data with covariate information in a penalized
maximum-likelihood setting. Wadsworth et al. (2017) were
the first to use a similar model in a Bayesian setting. Both
adaANCOM (Zhou C. et al. (2021)) and the Logstic-tree
normal model (Wang et al. (2021)) use the Dirichlet-tree
(multinomial) model (Wang and Zhao (2017)) to determine
differential abundance of microbial taxa via a product of
Dirichlet distributions at each split. The PhILR model
(Silverman et al., 2017) uses the phylogenetic tree of a
microbial community to compute an isometric logratio
transform with interpretable balances. Furthermore, there
are recent advances in constructing optimal hierarchical
partitions of HTS data and to predict variables of interest
from them (Quinn and Erb, 2019; Gordon-Rodriguez et al.,
2021), that do not rely on pre-defined trees, but rather
structure the data in the best way to be predictive of the
outcome. These methods restrict themselves, however, to
fully binary trees. On the other hand, the trac method (Bien
et al., 2021) uses tree-guided regularization (Yan and Bien,
2021) in a maximum-likelihood-type framework to predict
continuous outcomes from compositional microbiome data.
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In its present form, the Bayesian model behind tascCODA is
ideally suited for data sets of moderate dimensionality, typically
p < 100, yet can handle extremely small sample sizes n. Since
amplicon datasets are usually high-dimensional in the number of
taxa and exhibit high overdispersion and excess number of zeros,
we focus on the analysis of genus-level microbiome data. In the
context of cell type compositional data, on the other hand, often
only very few replicate samples are available (Büttner et al., 2020).

Here, tascCODA can leverage well-calibrated prior information
to operate in low-sample regimes where frequentist methods
likely fail.

The remainder of the paper is structured as follows. In the next
section, we introduce the tascCODA model and describe the
computational implementation. In Section 3, we describe and
discuss synthetic data benchmarks and provide two real-world
applications, on human single-cell RNA-seq data from ulcerative

FIGURE 1 | Intuition behind tascCODA. (A) A multifurcating tree structure T with internal nodes N1, N2, N3, and tips T1 . . .T6. tascCODA decides whether
modeling the change of abundance of a subtree (e.g. nodes T5, T6 - gold). as a common effect at their common ancestor (e.g., N3 - red) is preferable. The blue nodes T1,
N1, and N2 are reference nodes in this example. (B) Ancestor matrix of the tree in (A). (C) Example dataset where the abundances of T5 and T6 increase in the same way
between conditions (relative to the reference T1). Here, a group-level effect on N3 would be the preferred option. (D) Plate representation of the tascCODAmodel.
Grey squares indicate fixed parameters and input variables that are either part of or directly calculated from the data. The grey circle represents the output count matrix,
white circles show latent variables.
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colitis patients and amplicon data from patients with irritable
bowel syndrome. Finally, we summarize the key points in Section
4 and present considerations about future extensions of the
method. A flexible and user-friendly implementation of
tascCODA is available in the Python package tascCODA2. All
results in this paper are fully reproducible and available on
Zenodo3.

2 MATERIALS AND METHODS

2.1 Model Description
We start with formally describing the problem at hand. Let
Y ∈ Rn×p be a count matrix describing n samples from p
features (e.g., cell types, microbial taxa, etc.), and X ∈ Rn×d be
a matrix that contains the values of d covariates of interest for
each sample. Due to the technical limitations of the sampling
procedure, the sum of counts in each sample, �Yi � ∑p

j�1Yi,j must
be seen as a scaling factor, making the data compositional (Gloor
et al. (2017)). Additionally, the features described by Y are
hierarchically ordered by a tree T with p leaves and t internal
nodes, resulting in a total number of v � p + t nodes in T
(Figure 1A). Such tree structures are usually motivated by
taxonomy (McDonald et al., 2012; Quast et al., 2013),
determined by phylogenetic similarities (Schliep, 2010), or
obtained via serial binary partitions (Quinn and Erb, 2019).
The tree can further be bifurcating or multifurcating, thus
internal nodes may have two or more descendants.

T can be fully characterized by a binary ancestor matrix A ∈
{0,1}p×v. Hereby, each row of A stands for a feature or leaf node of
T , the first p columns also denote the leaves of the tree, and the
last t columns represent the internal nodes. The entries Aj,k are 1,
if column k corresponds either to feature j (j � k) or to one of its
parents, otherwise it is 0 (Figure 1B):

Aj,k � 1 if j � k or k is ancestor of j
0 else.

{
Our goal is to determine how changes in abundance of features

(leaves of T ) are associated with the covariates in X, and select a
sparse set of the most important covariate-feature effects. To
achieve an even more parsimonious result, we further determine
whether groups of features that form subtrees of T are affected by
the conditions in the same manner (Figure 1A), and model them
with a common effect if possible. This group-wise modeling step
not only gives an accurate, yet easy to interpret description of the
changes in the feature composition, but can also reveal shared
traits among structural subgroups of features that might be
missed in analyses that do not take the tree structure into account.

2.1.1 Core Model With Tree Aggregation
tascCODA posits a Dirichlet-Multinomial model for Yi,· for each
sample i ∈ 1. . ., n, thus accounting for the compositional nature of

the count data. The covariates are associated with the features
through a log-linear relationship. We put uninformative Normal
priors on the base composition α, which describes the data in the
case Xi,· � 0:

Yi ∼ DirMult �Yi, a X( )i( ) (1)

log a X( )( )i � α +Xi,·β (2)

αj ∼ N 0, 10( ) ∀j ∈ p[ ]. (3)

The total count �Yi is directly inferred from the data for each
sample. The effect of the lth covariate on the jth feature is
therefore given by βl,j.

We now use a variant of the tree-based penalty formulation of
Yan and Bien (2021) to model common effects at each internal
node of T in addition to the effects on the leaves. We define a
node effect matrix β̂ ∈ Rd×v and associate aggregations on
internal nodes with the correct tips by multiplying with the
ancestor matrix A:

β � β̂AT (4)

To illustrate the intuition behind this step, we consider an
example based on the tree in Figure 1A. In a binary covariate
setting, the features T1-T6 are uniformly distributed in the
control population, while in the case population, the
abundance of features T5 and T6 (with respect to feature T1)
is greatly increased by the same relative amount (Figure 1C).
Instead of having two equally-sized effects on the components of
β̂ corresponding to T5 and T6, the same can be achieved in
tascCODA with only one parameter by placing an effect on the
internal node N3. Through Eq. 4, this effect is propagated to the
leaves T5 and T6 in β in order to model the population.

While this aggregation step can significantly reduce the
number of parameters needed to describe the changes in the
data, the solution is not unique. An effect on an internal node
is equivalent to effects of the same size on all its descendant
leaves. Therefore, the number of nonzero entries in β̂ must be
controlled, raising the need for a sparse selection of the most
important effects. While in the example above, the reduction of
nonzero effects by using a group aggregation on node N3
clearly outweighs the loss in accuracy by assuming that
features T5 and T6 behave in the same manner, this trade-
off might not be as clear in real datasets. We thus also need a
way to adjust the model towards selecting either more sparse
and generalizing, or more detailed and less parsimonious
solutions.

2.1.2 Spike-And-Slab Lasso Prior
To ease model interpretability, many statistical models provide a
mechanism for obtaining sparse model solutions. In high-
dimensional linear regression, this can be achieved via the
lasso (Tibshirani, 1996), which adds an L1-penalty on the
regression coefficients. In Bayesian modeling, spike-and-slab
priors are a popular choice to perform automatic model
selection. Recently, Ročková and George (2018), developed a
connection between the two approaches in the form of the
spike-and-slab lasso prior, which provides a Bayesian
equivalent to penalized likelihood estimation. The spike-and-

2https://github.com/bio-datascience/tascCODA.
3https://zenodo.org/record/5302136.
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slab lasso prior describes each component of β̂l,k as a mixture of
two double-exponential priors with different rates λ0,l,k, λ1,l,k and
a shared mixture coefficient θ:

β̂l,k � θ~β1,l,k + 1 − θ( )~β0,l,k ∀k ∈ v[ ], l ∈ d[ ] (5)

~βm,l,k � σm,l,kpbm,l,k ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (6)

σm,l,k ∼ Exp λ2m,l,k/2( ) ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (7)

bm,l,k ∼ N 0, 1( ) ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (8)

θ ∼ Beta 1, 1/v( ) (9)

This prior can be reformulated as a likelihood penalty function
that represents a combination of weak penalization of larger
effects by λ1,l,k and strong penalization of effects close to zero by
λ0,l,k, respectively (See Supplementary Material Section 1.2). As
recommended by Ročková and George (2018), we use the non-
separable version of the spike-and-slab lasso prior, which
provides self-adaptivity of the sparsity level and an automatic
control for multiplicity via a Beta prior on θ (Bai et al. (2020a);
Scott and Berger (2010)). We further set λ0,l,k � 50 ∀l, k to achieve
a strong penalization in the “spike” part of the prior, leaving λ1,l,k
as our only parameter that controls the total amount of penalty
applied at larger effect values.

2.1.3 Node-Adaptive Penalization
We use a variant of the strategy proposed by Bien et al. (2021) to
make the strength of the regularization penalty dependent on the
corresponding node’s position in the tree. We introduce the
following sigmoidal scaling:

λ1,l,k � 2λ1
1

1 + e−ϕ Lk/p−0.5( ) ∀l, (10)

where λ1 � 5 is the default value for the penalty strength, Lk is
the number of leaves that are contained in the subtree of node k,
and ϕ acts as a scaling factor based on the tree structure. If ϕ � 0,
the default in tascCODA, all nodes are penalized equally with λ1,
while for ϕ < 0, effects on nodes with larger subtrees, located
closer to the root of the tree, are penalized less and are therefore
more likely to be included in the model. If ϕ > 0, a solution that
comprises more diverse effects on leaf nodes will be preferred.
Thus, the parameter ϕ provides a way to trade off model accuracy
with the level of aggregation. We discuss the behavior of the
spike-and-slab LASSO penalty and the choice of λ0,1 in more
detail in the Supplementary Material.

2.1.4 Reference Feature
Since the data at hand is compositional, model uniqueness and
interpretability are only guaranteed with respect to a reference.
Popular choices include picking one of the p features or the
(geometric) mean over multiple or all groups (Fernandes et al.,
2014). Following the scCODA model, we pick a single reference
feature prior to analysis (Büttner et al., 2020). Technically, this is
achieved by choosing one feature p̂ that is set to be unchanged by
all covariates. Let v̂ be the set of ancestors of p̂. By forcing
β̂l,k � 0 ∀k ∈ v̂, l ∈ [d], we ensure that the reference is not
influenced by the covariates through any of its ancestor nodes.
If no suitable reference feature is known a priori, tascCODA

provides an automatic way of selecting the feature with minimal
dispersion across all samples among the features that are present
in at least a share of samples t (default t � 0.95; this value can be
lowered if no suitable feature exists).

p̂ � arg min
j�1,...,p

Disp Y·,j′( ) s.t. |i: Yi,j > 0|/n≥ t

The restriction to large presence avoids choosing a rare feature
as the reference where small changes in terms of counts lead to
large relative deviations. The least-dispersion approach is aimed
at reducing the bias introduced by the choice of reference. Eqs.
1–9 together with the reference feature yields the tascCODA
model (Figure 1D):

Yi ∼ DirMult �Yi, a X( )i( )
log a X( )( )i � α +Xi,·β

αj ∼ N 0, 10( ) ∀j ∈ p[ ]
β � β̂AT

β̂l,k � 0 ∀k ∈ v̂, l ∈ d[ ]
β̂l,k � θ~β1,l,k + 1 − θ( )~β0,l,k ∀k ∈ v[ ]\v̂{ }, l ∈ d[ ]

~βm,l,k � σm,l,kpbm,l,k ∀k ∈ v[ ]\v̂{ }, m ∈ 0, 1{ }, l ∈ d[ ]
σm,l,k ∼ Exp λ2m,l,k/2( ) ∀k ∈ v[ ]\v̂{ }, l ∈ 0, 1{ }, l ∈ d[ ]
bm,l,k ∼ N 0, 1( ) ∀k ∈ v[ ]\v̂{ }, l ∈ 0, 1{ }, l ∈ d[ ]

θ ∼ Beta 1,
1

| v[ ]\v̂{ }|( )

with the default choices of λ0,l,k � 50 and λ1,l,k set according to
(10) with hyperparameters ϕ and λ1 � 5 (Supplementary
Material Section 1.2).

2.2 Computational Aspects
Before performing Bayesian inference with the tascCODAmodel,
several data preprocessing steps are applied. Singular nodes,
i.e., internal nodes that have only one child node, are removed
from the tree, since their effect only propagates to one node and is
therefore redundant. We also add a small pseudo-count of 0.5 to
all zero entries of Y to minimize the frequency of numerical
instabilities in our tests. Finally, we recommend normalizing all
covariates to a common scale before applying tascCODA to avoid
biasing the model selection process toward the covariate with the
largest range of values.

Because tascCODA is a hierarchical Bayesian model, we use
Hamiltonian Monte Carlo sampling (Betancourt and Girolami,
2015) for posterior inference, implemented through the
tensorflow (Abadi et al., 2016) and tensorflow-probability
(Dillon et al., 2017) libraries for Python, solving the gradient
in each step via automatic differentiation. By default, tascCODA
uses a leapfrog integrator with Dual-averaging step size
adaptation (Nesterov, 2009) and 10 leapfrog steps per
iteration, sampling a chain of 20,000 posterior realizations and
discarding the first 5,000 iterations as burn-in, which was also the
setting for all applications in this article, unless explicitly stated
otherwise. As an alternative, No-U-turn sampling (Homan and
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Gelman, 2014) is available for use with tascCODA. The initial
states for all αj and bm,l,k are randomly sampled from a standard
normal distribution. All σm,l,k and θ values are initialized at 1 and
0.5, respectively.

To determine the credible effects of covariates on nodes from
the chain of posterior samples, we calculate the threshold of
practical significance δk, introduced by Ročková and George
(2018), for each node:

δk � 1

λ0 − λ1,k log
1

pp
θ,k 0( ) − 1( ) (11)

pp
θ,k β( ) � θp

λ1,k
2
e−λ1,k |β|

θp
λ1,k
2
e−λ1,k |β| + 1 − θp( ) λ0

2
e−λ0 |β|

(12)

Here, θ* is the posterior median of θ. More details on δ are
available in the Supplementary Material. We compare the

posterior median effects β̂
p

l,k to the corresponding δk and select
all effects where |β̂pl,k|> δk as credible, otherwise they will be set to
0, resulting in β̂

(C)
, the matrix with only credible effects,

β̂
C( )
l,k � β̂

p

l,k if |β̂pl,k|> δk
0 else.

{ (13)

Inmost applications, the nonzero entries of β̂
(C)

are of primary
interest, which directly show how the covariates influence sets of
features defined by the tree structure. Their sign indicates

whether the effect corresponds to an increase (β̂
(C)
l,k > 0) or a

decrease (β̂
(C)
l,k < 0). Due to the compositional data properties

introduced by the Dirichlet-Multinomial, its expectation

E Yi ∼ DirMult �Yi, a x( )i( )[ ] � �Yi
a x( )i)∑p
j�1a x( )i)j (14)

can not be separated by the individual features. Because the
shifts in E[Yi] caused by effects β̂ are dependent on the total sum

∑p
j�1eαj+X(β̂AT)j through Eqs. 2, 4, 14, a credible effect on any

feature or aggregation has an impact on the posterior mean
counts of all features, i.e. a relative increase in one feature will
also induce a decrease of all other features (Gloor et al., 2017).
Therefore, a quantitative interpretation of effect sizes is only
possible in a limited sense.Within the samemodel, larger changes
will correspond to larger absolute values |β̂l,k|, but they are not
comparable across multiple runs of tascCODA.

In the context of differential abundance testing, we can
additionally obtain the set of differentially abundant features D
by multiplying β̂

(C)
with AT, and get

D � l, j( ) ∈ d[ ] × p[ ]: β̂
C( )
l,k A

T( )
j
≠ 0{ } (15)

as the set of features that are part of at least one credible effect.
A Python package for tascCODA is available at https://github.

com/bio-datascience/tascCODA. Building upon the scCODA
package, the software provides methods to seamlessly integrate
scRNA-seq data from scanpy (Wolf et al., 2018) or microbial

population data via pandas (McKinney, 2010). The package also
allows to perform differential abundance testing with tascCODA
and visualize tascCODA’s results through tree plots from the
toytree package. All results were obtained using Python 3.8 with
tensorflow � 2.5.0 (Abadi et al. (2016)), tensorflow-probability �
0.13 (Dillon et al. (2017)), arviz � 0.11 (Kumar et al. (2019)),
numpy � 1.19.5, scanpy � 1.8.1 (Wolf et al. (2018)), toytree � 2.0.
1, and sccoda � 0.1.4 (Büttner et al. (2020)).

3 RESULTS

3.1 Simulation Studies
3.1.1 Model Comparison
To test the performance of tascCODA in a differential abundance
testing scenario, we generated compositional datasets with an
underlying tree structure and compared how well several models
could detect the changes introduced by a binary covariate. For
compositional models that do not account for the tree structure,
we used the state-of-the art methods ANCOM-BC (Lin and
Peddada (2020)), ANCOM (Mandal et al. (2015)), and
ALDEx2 (Fernandes et al. (2014)) from the field of
microbiome data analysis, as well as scCODA (Büttner et al.,
2020) from scRNA-seq analysis. Based on the recommendations
by Aitchison (1982), we also analyzed the data with the additive
log-ratio (ALR) transformation in combination with t- or
Wilcoxon rank-sum tests. We also included the recent
adaANCOM (Zhou C. et al., 2021), a differential abundance
testing method that accounts for the tree structure. Furthermore,
we applied tascCODA with different values for the aggregation
parameter, ϕ � (−10, −5, −1, 0, 1, 5, 10), setting λ1 � 5.

We first defined four different data sizes p � (10, 30, 50, 100)
and randomly generated a multifurcating tree with depth five for
each value of p. We then chose three nodes (one internal on the
level directly above the leaves, two leaves) from each tree, whose
child leaves, denoted by p′, are set to be differentially abundant
under a binary (control-treatment) condition (Supplementary
Figures S2–S5). Similar toWadsworth et al. (2017), we generated
n � n0 + n1 compositional data samples from two groups of equal
size n0 � n1 � (5, 20, 30, 50). Each sample Yi is a realization of a
Dirichlet-Multinomial distribution with a total sum of �Yi �
10, 000 and a parameter vector c*. For extra dispersion in the
data, we set c*i � ci∑j

cj

1−ψ
ψ with ψ � 0.002. The parameters for the

first (control) group were generated via c0,i � exp(αi); αi
∼Unif(−2, 2). In the second (treatment) group, we added an
effect β � (0.3, 0.5, 0.7, 0.9) to the components in p′:
c1,i � exp(αi + βI(i∈p′)). For each parameter combination (p,
n0, β), we randomly generated 20 replicates, resulting in a
total of 1280 datasets.

Since the adaANCOM method assumes a bifurcating tree
structure, we transformed each tree node to a series of
bifurcating splits via the multi2di and collapse.singles methods
from the ape package for R (Paradis et al. (2004)) before applying
the method. For the methods that require a reference category
(ALR, scCODA, tascCODA, ALDEx2), we used the last
component, which was always designed to be unaffected by
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the condition, as the reference. After applying each method to a
dataset, we corrected the resulting p-values by the Benjamini-
Hochberg procedure, where applicable, except for ANCOM-BC,
where we used the recommended Holm correction of p-values,
and determined the significant results at an expected FDR level of
0.05. The Bayesian methods scCODA and tascCODA do not
produce p-values and identify credible effects as previously
described.

For an overall indicator of how well the different methods
could determine differentially abundant features, we
considered Matthews correlation coefficient (Figure 2A).
Here, adaANCOM showed poor performance especially on
small datasets, while ALDEx2 struggled when p was larger.
Only scCODA and ANCOM-BC performed well in
comparison for all data and effect sizes. For tascCODA,
varying the aggregation level ϕ had a strong influence on
the performance. With larger values of ϕ, tascCODA prefers
less generalizing effects, resulting in a more detailed solution
and larger MCC. At a high resolution level (ϕ � 5), tascCODA
was on par with or even better than scCODA and ANCOM-
BC, showing almost no sensitivity to the size of the dataset.
Because the trees in our simulation contained only effects on
leaf nodes or the level directly above, preferring generalizing
effects (ϕ � − 5) resulted in worse performance, while the

unbiased case of ϕ � 0 gave slightly worse results than
scCODA and ANCOM-BC. All methods shown in
Figure 2B except adaANCOM controlled the FDR
reasonably well, although ANCOM-BC and scCODA could
not always hold the nominal level of 0.05. Only ALDEx2,
which is known to be very conservative (Hawinkel et al., 2019;
Büttner et al., 2020), produced almost no false positives, at the
cost of larger type 2 error. tascCODA had a slightly inflated
FDR ( < 0.25) for smaller values of ϕ in some cases, which
became more apparent when analyzing the ability of each
method to exactly recover the true effects (Figure 2C).
Increasing the effect size resulted in a reduced Hamming
distance between the ground truth and tascCODA with ϕ �
5, which consistently outperformed all other models.
tascCODA in the misspecified setting ϕ � − 5 showed an
inflated Hamming distance, especially for p � 30. This is,
however, expected since tascCODA is forced to infer small-
sized effects at the top level, resulting in many falsely detected
features and thus a large deviation from the true sparse
solution. In practice, this highlights the need to perform
cross-validation over different levels of ϕ to reduce false
discoveries due to misspecification. We further found that
ANCOM detected many false positives in all of our
simulations, while the ALR-based methods were similarly

FIGURE 2 | Performance comparison of tascCODA and other methods on simulated data with one binary covariate (differential abundance testing). Plots are
grouped by the number of simulated components p and the effect size β. For tascCODA, different values of ϕwere tested (dashed blue lines). The areas around each line
represent the standard deviation. Performance measured by (A)Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between
ground truth and determined effects.
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conservative as ALDEx2 (Supplementary Figures S8–S10).
Increasing the sample size generally improved the recovery
performance of all methods except for tascCODA with
misspecified ϕ (Supplementary Figure S10).

3.1.2 Effect Detection at High Tree Levels
In the next benchmark scenario, we evaluated the effect of the
tuning parameter ϕ in tascCODA to detect effects on larger
groups of features through aggregation at higher levels of the
tree. To this end, we considered the p � 30 setting with the tree
structure from Supplementary Figure S5, and defined an effect
on a node near the root, influencing almost all features
(Supplementary Figure S6). We simulated datasets in the
same manner as for the previous benchmark, with n � 10, β �
(0.3, 0.5, 0.7, 0.9), and 20 replicates per effect size. We then
compared tascCODA with different levels of ϕ using the same
performance metrics as before.

With a correctly specified parametrization ϕ < 0, favoring
effects near the root, tascCODA recovered almost all relevant
effects, as indicated by a small Hamming distance and highMCC,
without producing false positive results (Figure 3). With
increasing ϕ, however, tascCODA favors effects on the leaves,
thus entering the misspecified regime. As predicted, tascCODA
was able to only recover a small portion of the true effects, while
producingmore false positive results. This highlights tascCODA’s
ability to consistently uncover effects on larger groups of features
which would be missed when not taking into account tree
information.

3.1.3 Simulation With Multiple Covariates
In our third benchmark scenario, we simulated data with two
covariates to showcase how tascCODA is able to distinguish
effects from two different sources. Taking the tree from the
method comparison study with p � 30 (Supplementary
Figure S3), we first defined a binary covariate x0 with
effect sizes β0 � (0.3, 0.5, 0.7, 0.9) as before, and n � 10
samples per group. We also included a second covariate x1 ∼
Unif(0, 1) with effect size β1 � 3 that affects node 39 and
therefore features 13–23 in all samples. For each effect size, we
simulated 10 datasets and applied tascCODA with ϕ � (−5, 0,
5) and two different design matrices X. For the first design
matrix, we used only x0, while the second design matrix
contained both x0 and x1 as covariates. We compared how

well both configurations could recover the effects introduced
by x0 in terms of MCC, FDR, and Hamming distance to the
ground truth.

Ignoring x1 in the model design resulted in an overall worse
performance of tascCODA for all metrics, all effect sizes for x0,
and all values of ϕ (Figure 4). In every case it proved beneficial to
include the second covariate in the model, resulting in almost no
false positive detections of changes caused by the first covariate.
Further, the two-covariate model achieved an MCC and
Hamming distance that were similar to our simulations where
only one covariate acted on the data (Figure 2). This proves that
tascCODA is able to reliably identify the influence of multiple
covariates on the count data.

3.2 Experimental Data Applications
3.2.1 Single-cell Sequencing Analysis of Ulcerative
Colitis in Humans
Ulcerative colitis is one of the most common manifestations of
inflammatory bowel disease. The disease alternates between
periods of symptomatic flares and remissions. The flares are
due to the surge of an inflammatory reaction in the colon,
causing superficial to profound ulcerations, which manifests
with bloody stool, diarrhea and abdominal pain. The patients
will thus have part of their colon referred to as “inflamed”,
while colonic tissue still seemingly intact will be called “non-
inflamed”. To show how tascCODA can be applied to cell
population data from scRNA-seq experiments, we used data
collected by Smillie et al. (2019) from a study of the colonic
epithelium on ulcerative colitis (UC). In the study, a total of
133 samples from 12 healthy donors, as well as inflamed and
non-inflamed tissue from 18 patients with UC, were obtained
via single-cell RNA-sequencing, divided into epithelial
samples and samples from the Lamina Propria
(Supplementary Data 1.3.1).

We applied tascCODA to six different subsets of the data,
comparing two of the three health conditions in one type of
tissue at a time, and then compared our findings with the
results of scCODA and the Dirichlet regression model used by
Smillie et al. (2019), implemented in the DirichletReg package
for R (Maier (2014)). For tascCODA and scCODA, we used
the automatically determined reference cell types, which are
identical for both models in all cases, and applied scCODA

FIGURE 3 | Performance comparison of different bias settings for tascCODA on simulated data with the effect being located near the root of the tree, depending on
effect size. Performance measured by (A) Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and
determined effects.
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with an FDR level of 0.05. In the Dirichlet regression model,
we adjusted the p-values by the Benjamini-Hochberg
procedure, and selected differentially abundant cell types at
a level of 0.05.

The cell lineage tree inferred from Smillie et al. (2019) is divided
into epithelial, stromal and immune cells at the top level (Figure 5).
While the biopsies from the Epithelium contain mostly epithelial
cells, and samples from the Lamina Propria consist of cells mostly
from the other two lineages, both groups also include considerable
amounts of cells from the other major lineages. We first compared
scCODA and Dirichlet regression, which both do not take the tree
structure into account, to tascCODA with ϕ � 5 (Figure 6), thus
preferring a detailed solution with effects mainly located on leaf
nodes, which approaches the leaf-only solutions of the other two
methods. In this setting, tascCODA, scCODA and Dirichlet
regression all determined mostly epithelial cells to shift in
abundance between pairwise comparisons of healthy, non-
inflamed, and inflamed tissue samples from the intestinal
Epithelium (Figure 6A), and most changes in the Lamina
Propria to be among stromal and immune cells (Figure 6B).
When propagating the node effects of tascCODA with ϕ � 5 to
the leafs via Eq. 15, the differentially abundant cell types determined
by tascCODA, scCODA, and Dirichlet regression were largely
identical (Figure 6).

To further investigate the predictive and sparsity-inducing
powers of tascCODA, we performed out-of-sample prediction
with the results obtained from tascCODA and scCODA on 5-
fold cross validation splits of each of the six data subsets. For
both models, we determined cell type-specific effect vectors β*

(tascCODA: βp � Aβ̂
(C)
j , as in Eq. 15; scCODA: Model output)

as well as the posterior mean of the base composition α* on the
training splits, and used them to predict cell counts for each
health status label Xl in the corresponding test split as

ŷj,l � e
α*
j
Xlβ

*
j

∑p

j�1e
α*
j
Xlβ

*
j

1
ntrain

∑ntrain
i�1 �Yi. We measured the predictive

power of tascCODA and scCODA as the mean squared
logarithmic error (MSLE) between the actual and predicted
cell counts, and sparsity as the average number of nonzero
effects over all five splits (Table 1). For small ϕ, tascCODA
determined very few or no credible effects, while the MSLE was
usually slightly higher than the MSLE from scCODA. In

unbiased setting ϕ � 0, tascCODA found credible effects in
three scenarios, which considerably reduced the MSLE. With a
small bias towards the leaves (ϕ � 1), tascCODA even
outperformed scCODA in terms of MSLE in one case, while
for ϕ � 5, tascCODA achieved a lower MSLE and similar
number of credible effects in three scenarios, and a lower
number of credible effects and similar MSLE in the other
three scenarios. We observed a curious result when
comparing non-inflamed and inflamed epithelial samples.
Here, the MSLE increased with rising ϕ, indicating that the
mean model over all samples described the data better than
trying to determine variation between the two groups. This
confirms the intuition that the aggregation bias ϕ in tascCODA
acts as a trade-off between generalization level and prediction
accuracy. For smaller ϕ, tascCODA will select fewer, more
general effects, which might miss subtle changes at a lower
level of the lineage tree, while with increasing ϕ, tascCODA’s
results will approach the ones discovered without taking tree
aggregation into account.

For a more detailed comparison between tascCODA and
scCODA, we compared healthy to non-inflamed biopsies of
control and UC patients. When choosing ϕ � 5, thus biasing
tascCODA towards the leaf nodes, tascCODA detected the
differences in cell composition in the Epithelium as changes
in abundance of the same 3 cell types as scCODA
(Figure 5A). In the Lamina Propria, tascCODA detected
credible changes on six different groups of cell types,
including T and B cells, which were previously linked to
UC (Holmén et al. (2006); Smillie et al. (2019)), as well as
eight single cell types (Figure 5B). Notably, tascCODA
amplified the decrease of Plasma B-cells induced by the
group effect on B-cells by an additional negative effect on
the cell type level. A strong decrease of Plasma cells was also
confirmed by Smillie et al. (2019) through FACS stainings.
Importantly, tascCODA described the data with only 14
nonzero effects, whereas with scCODA, 21 credible effects
were produced.

As a contrast, we also examined the unbiased setting with ϕ �
0, treating all nodes equally. Here, the cell type-specific changes in
the Epithelium were not picked up anymore by tascCODA
(Figure 5C). In the Lamina Propria, only seven effects, almost
all on groups of cell types, were detected by tascCODA

FIGURE 4 | Performance comparison for tascCODA on simulated data with two covariates. The setups including both or only one covariate in the model are shown
as x0 + x1 and x0, respectively. Simulations were evaluated for different effect sizes and aggregation levels ϕ. Performance measured by (A) Matthews correlation
coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and determined effects.
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FIGURE 5 |Behavior of tascCODAonscRNA-seqdata for different valuesofϕ. All plots show the comparisonof healthy control samples to non-inflamed tissue samples ofUC
patients in thedata fromSmillie et al. (2019).White andblack circles on the cell lineage tree show the effects foundby tascCODA,which are also shownasbluebarson the right side of
eachplot. Thebarsbelow the treedepict effects on internal nodes,with lowerpositions in thediagramcorresponding tonodes closer to the root. For comparison, the redbars indicate
effects found by scCODA, which only operates on the tips of the tree. The green-shaded area shows the reference cell type that was used for both models. (A)When ϕ � 5,
tascCODA prefers placing effects near the tips of the tree and finds the exact same solution as scCODA for the Epithelium data. (B) In the Lamina Propria, tascCODA places some
effects on internal nodes, resulting in a sparser solution than the one obtained by scCODA (14 vs. 21 credible effects). (C)When ϕ � 0, tascCODA finds no credible effects in samples
from the Epithelium, and (D) only seven effects are necessary to summarize the large number of effects found by scCODA when looking at samples from the Lamina Propria.

Frontiers in Genetics | www.frontiersin.org December 2021 | Volume 12 | Article 76640510

Ostner et al. tascCODA: Tree-Aggregated Analysis of Compositional Data



FIGURE 6 | Comparison of differentially abundant cell types found by tascCODA (blue, ϕ � 5), scCODA (red, FDR � 0.05), and Dirichlet regression (green, adjusted
padj < 0.05) between biopsies of healthy, non-inflamed and inflamed tissue. Colored bars for eachmethod indicate that a credible changewas found. (A) Among samples
from the intestinal epithelium, tascCODA and Dirichlet regression detect effects on lowly abundant epithelial cell types (Tuft, Goblet, Enteroendocrine) that were not
detected by scCODA. (B) In the Lamina Propria, only tascCODA detects a number of effects on some of the T and B cell types.
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(Figure 5D). Again, B and T cells were found as the cell lineages
that undergo the largest change between healthy and non-
inflamed UC biopsies. When testing healthy versus inflamed,
and non-inflamed versus inflamed biopsies, tascCODA also
detected more detailed results when ϕ � 5, and found fewer,
more generalizing effects with ϕ � 0 (Supplementary Figures
S11, S12; Supplementary Tables S1–S3).

3.2.2 Analysis of the HumanGutMicrobiome
Under Irritable Bowel Syndrome
We next considered a microbiome data example and focused on
another chronic disorder of the human gut, the Irritable Bowel
Syndrome (IBS). IBS is a functional bowel disorder characterized
by frequent abdominal pain, alteration of stool morphology and/
or frequency, with the absence of other gastrointestinal diseases
(i.e. colorectal cancer, inflammatory bowel disease). It is
estimated that about 10% of the general population experience
symptoms that can be classified as a subtype of Irritable Bowel
Syndrome, which include IBS-C (constipation), IBS-D (diarrhea),
IBS-M (mixed), or unspecified IBS (Ford et al. (2017)). While the
exact sources of the disease can be manifold, it has been
hypothesized that the gastroenterological symptoms may be
caused by a disturbed composition of the gut microbiome
(Duan et al. (2019); Ford et al. (2017)).

In particular, we analyzed 16S rRNA sequencing data of stool
samples collected from IBS patients and healthy controls, which
were obtained by Labus et al. (2017). The dataset consists of n �
52 samples, with 23 healthy controls, and 29 IBS patients
separated into 11 subjects with constipation (IBS-C), 10
subjects with diarrhea (IBS-D), 6 subjects with mixed
symptoms (IBS-M), and 2 subjects with unspecified symptoms.
Further, metadata information about age, sex and BMI of most
subjects is available. We re-processed the raw 16S rRNA
sequences with DADA2, version 1.21.0 (Callahan et al. (2016))
and did taxonomic assignment via the Silva database, version
138.1 (Quast et al. (2013); Yilmaz et al. (2014)), yielding a final
count table with 709 ASVs along with a taxonomic tree
(Supplementary Data 1.3.2). This data was then aggregated at
the genus level, resulting in a total of p � 91 known genera.

We applied tascCODA to the genus-level data, comparing
healthy and IBS subjects. To showcase the flexibility of
tascCODA, we analyzed the data with different covariate
setups, by including the other available metadata variables. As
a reference genus for scCODA and tascCODA, we chose Alistipes,
since it is a genus with relatively high presence and rather low
dispersion. For all analyses on this dataset, we decreased the mean
shrinkage in tascCODA to λ1 � 1, allowing us to find more subtle
effects.

We first used tascCODA to analyze the differences in the
gut microbial composition between healthy controls and IBS
patients (Figure 7, Supplementary Table S4). Favoring
generalization with ϕ � − 5, we found only a small decrease
of the phylum Firmicutes (Figure 7A). In the unbiased setting
(ϕ � 0), the previous effect on the phylum level was
substantiated to the Oscillospirales order. Additionally,
decreases of the Parabacteroides and Bacteroides genera are
found (Figure 7B). Setting ϕ � 5, thus favoring detailed
results, we discovered a decrease of the Ruminococcaceae
family, a subgroup of Oscillospirales, and multiple
decreasing genera with the strongest effects on
Parabacteroides and Bacteroides (Figure 7C). For
comparison, we also applied scCODA (FDR � 0.1) to the
same dataset, which also discovered a decrease of
Parabacteroides and Bacteroides, as well as three genera in
the Ruminococcaceae family. A decrease of Parabacteroides in
a subset of IBS patients was also found by Labus et al. (2017).
Also, a relative decrease of the order Bacteroidales, which
includes Parabacteroides and Bacteroides, was reported by
Nagel et al. (2016) and Jeffery et al. (2012). Decreasing shares
of Ruminococcaceae were also connected to IBS in multiple
studies (Durbán et al., 2012; Pozuelo et al., 2015).

To highlight the flexibilty of tascCODA, we next tried to
discover changes in the gut microbiome related to age, BMI,
gender, and IBS subtype. Before applying tascCODA, we
min-max normalized the two former covariates to obtain a
common scale for all covariates. We excluded three samples
with missing information on BMI. We conducted every
analysis three times with ϕ � − 5, 0, 5. When testing for
changes related to one of age, gender, or BMI alone, tascCODA

TABLE 1 | Mean squared logarithmic error (MSLE) and number of selected effects over five cross-validation splits for tascCODA with different parametrizations ϕ and
scCODA. Abbreviations for scenarios: Healthy (H), Non-inflamed (N), and Inflamed (I). With increasing ϕ, tascCODA selects more effects and on average improves its
predictive power. At ϕ � 5, tascCODA has equal or lower MSLE than scCODA and a similar number of selected effects.

Model tascCODA scCODA

Scenario ϕ −5 −1 0 1 5 -

Epithelium - H vs. N MSLE 142.22 142.16 142.18 138.56 134.36 134.96
Effects 0.0 0.0 0.0 1.2 3.2 2.4

Epithelium - H vs. I MSLE 167.46 163.60 160.68 158.06 154.64 154.44
Effects 0.0 1.6 2.6 3.2 8.2 10.8

Epithelium - N vs. I MSLE 173.94 174.10 174.10 175.86 177.26 174.78
Effects 0.0 0.0 0.0 0.2 3.6 5.2

LP - H vs. N MSLE 162.76 157.62 155.16 152.80 149.58 154.02
Effects 0.4 1.8 3.0 6.2 16.0 14.4

LP - H vs. I MSLE 188.58 182.96 178.88 176.02 173.32 173.40
Effects 0.0 1.8 4.8 7.8 17.8 17.4

LP - N vs. I MSLE 219.72 219.70 219.66 219.68 216.76 218.62
Effects 0.0 0.0 0.0 0.0 1.4 0.4
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FIGURE 7 | Credible changes found by tascCODA (λ1 � 1), comparing healthy controls and IBS patients in the genus-aggregated data of Labus et al. (2017). The
circles on nodes of the tree represent credible effects. (A) High-level aggregation with ϕ � − 5. (B) Unbiased aggregation (ϕ � 0). (C) Aggregation with bias towards the
leaves (ϕ � 5). Red genera show the credible effects found by scCODA (FDR � 0.1) on the genus level. The grey genus Alistipeswas used as the reference for tascCODA
and scCODA.
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was not able to discover any credible differences for any
aggregation bias. When testing on all four covariates
together, excluding interactions, tascCODA only reported
credible changes in the microbiome with respect to the IBS

subtype. Finally, including all possible variables, interactions
revealed that while a general negative effect was found
independent of gender, male IBS-D patients had a larger
depletion of Bacteroides than female patients.

FIGURE 8 | Credible changes found by tascCODA (λ1 � 1, ϕ � 5), simultaneously comparing healthy controls to all IBS subtypes in the genus-aggregated data of
Labus et al. (2017). The circles on nodes of the tree represent credible effects. The grey genus Alistipeswas used as the reference for tascCODA. (A) IBS-C (n � 11). (B)
IBS-D (n � 10). (C) IBS-M (n � 6). (D) IBS-unspecified (n � 2).
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Next, we restricted our analysis to testing for changes between
the four IBS subtypes and all other samples. The results shown in
Figure 8 and Supplementary Table S5 were obtained with ϕ � 5.
For patients experiencing constipation (IBS-C, Figure 8A),
decreases of Agathobacter, Bacteroides, Ruminococcus, and
Faecalibacterium, as well as an increase of Anaerostipes were
found by tascCODA. Conversely, diarrhea (IBS-D, Figure 8B)
was associated with a decrease in Parabacteroides, as well as a
large decrease in Bacteroides. Patients with mixed symptoms
(IBS-M, Figure 8C) were found to have increased numbers of
Blautia, in addition to a decrease of Parabacteroides and
Faecalibacterium, which each match with the observations
related to one of the two previous conditions. Finally, only a
small increase of Romboutsia was associated to IBS with
unspecified symptoms (IBS-unspecified, Figure 8D).

4 DISCUSSION

Associating changes in the structure of microbial communities or cell
type compositions with host or environmental covariates are
commonly investigated with amplicon or single-cell RNA
sequencing. With tascCODA, we have presented a fully Bayesian
method to determine such compositional changes that acknowledges
the hierarchical structure of the underlying microbial or cell type
abundances and simultaneously accounts for the compositional
nature of the data. By introducing tree-based penalization that
adapts to the structure of the tree, the tascCODA model is able to
accurately identify group-level changes with fewer parameters than
traditional individual feature-based approaches. Thanks to a scaled
variant of the spike-and-slab lasso prior (Ročková and George
(2018)), we were able to obtain sparse solutions that can favor
high-level aggregations or more detailed effects on a dynamic
range characterized by a single scaling parameter ϕ. The
tascCODA Python package seamlessly integrates into the scanpy
environment for scRNA-seq (Wolf et al. (2018)) and allows Bayesian
regression-like analyses with flexible covariate structures.

Through its ability to favor general trends or more detailed
solutions, tascCODA is able to provide a trade-off between model
sparsity and accuracy, which can be adjusted to reveal credible
associations on different levels of the hierarchy. We recapitulated
this behavior in synthetic benchmark scenarios, where focusing on
low aggregation levels allowed tascCODA to outperform state-of-
the-art methods in a differential abundance testing setup, while
effects that influenced the majority of features were recovered with
greater accuracy when we favored generalizing solutions. The
aggregation property further allows for more interpretable
models, detecting group-specific changes in the cell lineage or
microbial taxonomy. For instance, tascCODA determined B and
T cells as the main factors in cell composition changes of the
Lamina Propria of Ulcerative Colitis patients, while inflamed
epithelial tissue biopsies showed a depletion of Enterocytes.

Second, tascCODA can accommodate any linear combination
of normalized covariates, allowing for multi-faceted analysis of
complex relationships, while still producing highly sparse and
interpretable solutions. On synthetic data, we showed that
tascCODA was able to accurately distinguish the influence of

two covariates that perturbed the data in different ways. While we
did not detect credible relationships with the covariates age, sex
and BMI, tascCODA was also able to simultaneously identify
characteristic shifts in the gut microbiome for each subtype of
Irritable Bowel Syndrome.

The application range of tascCODA extends beyond the
taxonomic or expert-derived cell lineage tree structures used in
our real data applications. Genetically driven orderings such as
phylogenetic trees or cell type hierarchies obtained from clustering
algorithms, or approaches aimed at optimizing the predictiveness
of the hierarchical grouping (Quinn and Erb, 2019) may provide
more accurate results in differential abundance testing (see, e.g.,
Bichat et al. (2020) for further information).

While tascCODA provides a hierarchically adaptive extension
of a classical compositional modeling framework based on a fixed
aggregation level, extensions of the method could increase the
application range of tascCODA. First, tascCODA does not
account for the zero-inflation and overdispersion that is
common in microbial abundance data on the OTU/ASV level.
We avoided this challenge here by aggregating the amplicon data
to the genus level. Accounting for these properties within the
model, for example by using a zero-inflated Dirichlet-
Multinomial model (Tang and Chen (2019)), the Tweedie
family of distributions (Mallick et al. (2021)), or hard
thresholding on latent weights (Ren et al. (2020)), would allow
for even more fine-grained analyses. Second, the tascCODA
model currently places a sparsity-inducing spike-and-slab lasso
prior on all included covariates. A natural next step would be to
consider some covariates as confounding variables similar to
Zhou H. et al. (2021), reducing the number of latent
parameters, while restricting results to a few core influence
factors. Third, extending known efficient computational
methods for inference of spike-and-slab lasso priors (Bai et al.
(2020b); Ročková and George (2018)) to be used with our
compositional modeling framework could greatly reduce the
computational resources required for running tascCODA.

We believe that tascCODA, together with its implementation
in Python, represents a valuable addition to the growing toolbox
of compositional data modeling tools by providing a unifying
statistical way to model and analyze microbial and cell population
data in the presence of hierarchical side information.
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1 SUPPLEMENTARY DATA
1.1 Notation overview

This section gives an overview over the inputs and parameters used by tascCODA:

Data inputs

• Y ∈ Rn×p is the count matrix of features j = 1 . . . p in samples i = 1 . . . n. Ȳi =
∑p

j=1 Yi,j is the
sequencing depth of sample i.

• X ∈ Rn×d is the covariate matrix of covariates l = 1 . . . d for samples i = 1 . . . n.
• T is a multifurcating tree structure with p leaves and t internal nodes defined by the ancestor matrix
A ∈ {0, 1}p×v, with v = p+ t

Latent parameters

• ai = (a1,i, . . . ap,i); aj,i ≥ 0 is the probability vector of the Dirichlet-Multinomial distribution for
sample i.

• αj is the base (intercept) parameter for feature j.
• βl,j is the effect of covariate l on feature j.

• β̂l,k is the effect of covariate l on tree node k.
• β̃0,l,k is the spike portion of the spike-and-slab LASSO prior for covariate l and tree node k with

parameters σ0,l,k and b0,l,k.
• β̃1,l,k is the slab portion of the spike-and-slab LASSO prior for covariate l and tree node kwith

parameters σ1,l,k and b1,l,k.
• θ is the mixture coefficient of the spike-and-slab LASSO prior.

Tuning parameters/hyperparameters

• λ0 is the shrinkage parameter for the spike portion, default λ0 = 50.
• λ1,k is the node-specific shrinkage parameter for the slab portion of the prior on node k, with mean

value λ1, default λ1 = 5.
• φ is the aggregation bias parameter for scaling the slab shrinkage λ1,k

1.2 Hyperparameters for the spike-and-slab LASSO prior
We want to shed some additional light on the role of the hyperparameters λ0, λ1, θ in the spike-and-slab

LASSO prior (Ročková and George (2018)). For simplicity and because the model is symmetric with
respect to the covariates, we assume d = 1 and thus refrain from indexing parameters with the covariate.
For one node β̂k, the prior is a mixture of two double-exponential distributions ψ0(β̂k) and ψ1(β̂k) (Figure
S1A) whose share is determined by θ:
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p(β̂k|θ) = θψ1(β̂k) + (1− θ)ψ0(β̂k) (S1)

ψ1(β̂k) =
λ1
2
e−λ1|β̂k| (S2)

ψ0(β̂k) =
λ0
2
e−λ0|β̂k| (S3)

The double-exponential density (S2) has a peak at zero for large values of λ, which decreases with λ (Bai
et al. (2020)). Thus, setting λ0 � λ1 in the mixture density (S1) results in a product of a peaked ”spike”
(ψ0) and a diffuse ”slab” (ψ1) component (Figure S1B). Interestingly, Ročková and George (2018) showed
that the spike-and-slab LASSO prior can be reformulated as a penalized likelihood method that is, for fixed
θ:

pen(β̂k|θ) = −λ1|β̂k|+ log(
p∗θ(0)

p∗θ(β̂k)
) (S4)

where

p∗θ(b) =
θλ12 e

−λ1|b|

θλ12 e
−λ1|b| + (1− θ)λ02 e−λ0|b|

(S5)

In the case of λ0 = λ1, the log-term in (S4) vanishes, and the penalty is equivalent to the standard LASSO
(Tibshirani (1996)).

After making the weight θ data-adaptive by a Beta prior (Equation (9)), we turn our attention to the
double-exponential parameters. We show the influence of each parameter on the solution by simulations
on one of the randomly generated datasets from the simulation study with p = 10 features. From Figure
S2, we can see that the ground truth assumption are effects on nodes 0, 4, and 12, with the latter node
affecting features 7 and 8. We first fix λ1 = 1, and vary λ0 on a scale between 1 and 1000. Figure S1C
shows that the effects β̂ quickly stabilize with the three true effects being clearly separated from all other
effects, which are close to zero. This stabilization was also explained by Ročková and George (2018) and
is rooted in the fact that larger values of λ0 only narrow the spike, which does not affect the solution after
some point. We can thus simply set λ0 to a relatively large value, the default in tascCODA is λ0 = 50.
When λ0 = λ1, we can see the typical parameter curve of a LASSO model, where the true effects are the
last to approach zero (Figure S1D).

Because λ1 → λ0 approaches the L1 penalty of the LASSO, which will eventually force all effects
towards zero, leaving λ0 = 50 and increasing λ1 shows a similar behavior (Figure S1E). Only the true
effects are significantly larger than zero once λ1 reaches a value of approximately 0.1. After a certain
point (λ1 ≈ 10), the penalty becomes so large that all effects vanish. We utilize the regularizing behavior
by scaling λ1 depending on the number of leaves that a node influences to put a preference on nodes on
different levels of the tree (Equation 10). The direction and steepness of the preference is expressed by the
parameter φ, with φ = 0 giving equal treatment to all nodes. The default overall size of the penalty, λ1 = 5,
is chosen in a way that the parameters λ1,k ∈ (0, 10] stay in the range of values that were recommended by
Ročková and George (2018) for all k. Figure S1F shows how the results change with different values of φ.
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For φ <= 0, favoring high-level aggregations, the model selects the three ground truth nodes. When φ > 1,
tips are penalized considerably less than internal nodes and the effect on node 12 is replaced by equal-sized
effects on its children, nodes 7 and 8. Also, for φ < 0, effects on nodes that are high in the tree (large k)
are different from zero, but smaller than the significance threshold (dashed line), while for φ > 0, this is
the case for leaf nodes.
1.3 Experimental data preprocessing
1.3.1 Single-cell RNA-seq analysis of ulcerative colitis in humans

We obtained the data on ulcerative colitis from from Single Cell Portal (accession ID SCP259) and the
analysis code from github. In total, the data consists of 365,492 transcriptomes from 12 healthy donors
and 18 donors with UC providing non-inflamed and inflamed tissue samples. We used the 51 different cell
types found in the original analysis, but considered every replicate as an independent sample, as done in a
re-analysis by Büttner et al. (2020) on the same dataset. Biopsies from two different tissue regions, the
Epithelium (’Epi’ - 24 healthy, 21 non-inflamed, 16 inflamed samples) and the underlying Lamina Propria
(’LP’ - 24 healthy, non-inflamed, and inflamed samples each), were divided by enzymatic digestion. We
inferred the cell lineage tree from the Methods section of Smillie et al. (2019) (Figure S11).
1.3.2 Analysis of the human gut microbiome under Irritable Bowel Syndrome

The raw 16S rRNA sequences (avilable at the Short Read Archive, accession number PRJNA373876)
were re-processed using DADA2, version 1.21.0 (Callahan et al. (2016)). After primer and quality filtering
(minimum read length: 150bp, maximum errors per read: 3, reads trimmed at first base with quality below:
10), inference of ASVs and removal of chimeras, the taxonomy of the inferred ASVs was determined with
the Silva database, version 138.1 (Quast et al. (2013); Yilmaz et al. (2014)). Samples with a total read count
of less than 500 (n=0) were discarded and ASVs assigned to Eukaryota (n=0) or belonging to an unknown
Phylum (n=1) were removed, yielding a final count table with 709 ASVs along with a taxonomic tree.
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2 SUPPLEMENTARY TABLES AND FIGURES

Figure S1. Parameters in the spike-and-slab LASSO penalty. (A) The double exponential density ψ(β, λ)
for different values of λ. The density becomes more peaked with increasing λ. (B) The likelihood penalty
(Equation (S4)) introduced by different parametrizations of the spike-and-slab LASSO prior (θ = 0.1).
For larger effect sizes β, the penalty is driven by the slab parameter λ1 (lines with the same style are
close together). For smaller effect sizes β, the penalty is driven by the spike parameter λ0 (lines with the
same color are close together). If λ0 = λ1, the penalty is linear and equivalent to the LASSO penalty λ0β.
(C-F) Effect of different parameters on the effects β̂k determined by tascCODA. For all simulations, a
realization of the dataset in Supplementary Figure S2 was used. The nodes 13, 16 and 17 are singularities
and were thus deleted before model application. (C) Solutions found by tascCODA when varying values of
λ0 and constant λ1 = 1. The effects β̂k stabilize and increasing λ0 has no effect. (D) Solutions found by
tascCODA in a LASSO-equivalent setting when varying values of λ0 = λ1 = λ. With increasing λ, more
effects β̂k go to 0. (E) Solutions found by tascCODA when varying values of λ1 and constant λ0 = 50.
With increasing λ1, a similar effect to the LASSO can be seen, where all effects are eventually approaching
0. (F) Solutions found by tascCODA when varying the tree level bias φ. λ0 = 50, λ1,k as in Equation 10.
The dashed black lines show the significance threshold (Equation 11).
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Figure S2. Randomly generated tree structure for synthetic data benchmark, p = 10 tips. The red nodes
were selected to be affected by the condition, causing the red tips to be differentially abundant. The blue tip
is the reference feature, which forces the effects on all blue nodes to be 0.
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Figure S3. Randomly generated tree structure for synthetic data benchmark, p = 30 tips. The red nodes
were selected to be affected by the condition, causing the red tips to be differentially abundant. The blue tip
is the reference feature, which forces the effects on all blue nodes to be 0.
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Figure S4. Randomly generated tree structure for synthetic data benchmark, p = 50 tips. The red nodes
were selected to be affected by the condition, causing the red tips to be differentially abundant. The blue tip
is the reference feature, which forces the effects on all blue nodes to be 0.
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Figure S5. Randomly generated tree structure for synthetic data benchmark, p = 100 tips. The red nodes
were selected to be affected by the condition, causing the red tips to be differentially abundant. The blue tip
is the reference feature, which forces the effects on all blue nodes to be 0.
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Figure S6. Randomly generated tree structure for synthetic data benchmark with one effect near the root
of the tree, p = 30 tips. The red nodes were selected to be affected by the condition, causing the red tips to
be differentially abundant. The blue tip is the reference feature, which forces the effects on all blue nodes
to be 0.
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Figure S7. Matthews correlation coefficient (MCC) of tascCODA and other methods on simulated data
with one binary covariate (differential abundance testing). Plots are grouped by the number of simulated
components p, the number of samples per group and the effect size β. For tascCODA, different values of φ
were tested (dashed blue lines).
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Figure S8. False discovery rate (FDR) of tascCODA and other methods on simulated data with one binary
covariate (differential abundance testing). Plots are grouped by the number of simulated components p,
the number of samples per group and the effect size β. For tascCODA, different values of φ were tested
(dashed blue lines).
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Figure S9. True positive rate (TPR) of tascCODA and other methods on simulated data with one binary
covariate (differential abundance testing). Plots are grouped by the number of simulated components p,
the number of samples per group and the effect size β. For tascCODA, different values of φ were tested
(dashed blue lines).
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Figure S10. Hamming distance between ground truth and affected features determined by tascCODA
and other methods on simulated data with one binary covariate (differential abundance testing). Plots are
grouped by the number of simulated components p, the number of samples per group and the effect size β.
For tascCODA, different values of φ were tested (dashed blue lines).
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(A) (B)

(C) (D)

Figure S11. Behavior of tascCODA on scRNA-seq data. All plots show the case of comparing healthy
control samples to inflamed tissue samples of UC patients in the data of Smillie et al. (2019). White and
black circles on the cell lineage tree show the effects found by tascCODA, which are also shown as blue
bars on the right side of each plot. The bars below the tree depict effects on internal nodes, with lower
positions in the diagram corresponding to nodes closer to the root. For comparison, the red bars indicate
effects found by scCODA, which only operates on the tips of the tree, on the same data. The green-shaded
area shows the reference cell type that was used for both models. (A) φ = 5, Epithelium. (B) φ = 5,
Lamina Propria. (C) φ = −3, Epithelium. (D) φ = −3, Lamina Propria.
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(A) (B)

(C) (D)

Figure S12. Behavior of tascCODA on scRNA-seq data. All plots show the case of non-inflamed to
inflamed tissue samples of UC patients in the data of Smillie et al. (2019). White and black circles on the
cell lineage tree show the effects found by tascCODA, which are also shown as blue bars on the right side
of each plot. The bars below the tree depict effects on internal nodes, with lower positions in the diagram
corresponding to nodes closer to the root. For comparison, the red bars indicate effects found by scCODA,
which only operates on the tips of the tree, on the same data. The green-shaded area shows the reference
cell type that was used for both models. (A) φ = 5, Epithelium. (B) φ = 5, Lamina Propria. (C) φ = −3,
Epithelium. (D) φ = −3, Lamina Propria.
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Table S1. Credible effects, highest density intervals, standard deviations and credibility threshold δ determined by tascCODA on epithelial biopsies from

Smillie et al. (2019), φ = 5. Abbreviations for scenarios: Healthy (H), Non-inflamed (N), and Inflamed (I).

Effect HDI 3% HDI 97% SD δ
Scenario Node

Epithelium - H vs. N ImmatureEnterocytes1 -0.647 -0.984 -0.309 0.181 0.148
Enterocytes -0.211 -0.637 0.054 0.211 0.148
TA1 0.280 -0.022 0.475 0.134 0.148

Epithelium - H vs. I Stem -0.518 -1.000 0.004 0.286 0.135
CyclingTA -0.855 -1.144 -0.592 0.146 0.135
Best4+Enterocytes -0.163 -0.893 0.141 0.303 0.135
TA2 -0.229 -0.802 0.129 0.282 0.135
TA1 0.240 -0.159 0.730 0.265 0.135
SecretoryTA -0.889 -1.334 -0.477 0.228 0.135
CD8+IELs -0.481 -1.024 0.018 0.303 0.135
Immaturecells -0.343 -0.951 0.091 0.317 0.132
SecretoryMaturecells -0.138 -0.526 0.082 0.177 0.132
Bcells 0.149 -0.068 0.525 0.178 0.130
Absorptive -0.717 -1.209 -0.110 0.299 0.126

Epithelium - N vs. I CyclingTA 0.591 0.302 0.907 0.161 0.144
Enterocytes -0.152 -0.856 0.121 0.294 0.144
SecretoryTA 0.174 -0.075 0.677 0.227 0.144
Absorptive 0.413 -0.031 0.742 0.247 0.135
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Table S2. Credible effects, highest density intervals, standard deviations and credibility threshold δ determined by tascCODA on Lamina Propria biopsies from

Smillie et al. (2019), φ = 5. Abbreviations for scenarios: Healthy (H), Non-inflamed (N), and Inflamed (I). For the N vs. I scenario, no credible effects were

found.

Final Parameter HDI 3% HDI 97% SD Delta
Scenario Node

LP - H vs. N ImmatureGoblet 0.154 -0.161 0.787 0.270 0.131
Microvascular -0.354 -0.899 0.089 0.292 0.131
Glia -0.351 -0.867 0.083 0.278 0.131
ILCs -0.189 -0.710 0.125 0.242 0.131
CD4+ActivatedFos-hi -0.144 -0.544 0.100 0.184 0.131
CD4+ActivatedFos-lo -0.608 -1.048 -0.162 0.233 0.131
CD8+LP -0.169 -0.655 0.105 0.220 0.131
Plasma -0.472 -0.895 0.006 0.238 0.131
TAcells 0.469 -0.038 0.952 0.281 0.129
WNT2B+ -0.402 -0.772 0.043 0.245 0.126
WNT5B+ -0.458 -0.935 0.067 0.296 0.129
Tcells -0.438 -0.778 0.043 0.263 0.117
Bcells -0.601 -1.047 -0.163 0.229 0.126
Monocytes -0.421 -0.817 0.044 0.258 0.124

LP - H vs. I Microvascular -0.612 -1.188 0.040 0.352 0.126
Glia -0.935 -1.558 -0.240 0.341 0.126
InflammatoryFibroblasts 0.397 -0.155 1.425 0.481 0.126
WNT2B+Fos-lo1 -0.403 -1.030 0.097 0.332 0.126
WNT2B+Fos-hi -0.160 -0.838 0.165 0.292 0.126
ILCs -0.261 -0.820 0.104 0.272 0.126
NKs -0.491 -0.964 0.025 0.277 0.126
MT-hi -0.186 -0.813 0.170 0.280 0.126
CD4+ActivatedFos-hi -0.830 -1.333 -0.310 0.272 0.126
CD4+ActivatedFos-lo -1.167 -1.686 -0.654 0.276 0.126
CD8+IL17+ -0.127 -0.685 0.129 0.237 0.126
CD8+LP -0.732 -1.044 -0.409 0.168 0.126
Plasma -0.925 -1.217 -0.580 0.174 0.126
Macrophages -0.259 -0.811 0.097 0.266 0.126
CD4+T -0.331 -0.693 0.027 0.213 0.118
WNT2B+ -0.683 -1.360 0.073 0.453 0.122
WNT5B+ -0.803 -1.551 0.051 0.489 0.125
Bcells -0.125 -0.474 0.089 0.162 0.122
Monocytes -0.365 -0.848 0.068 0.283 0.120
Fibroblasts -0.136 -1.052 0.125 0.362 0.116
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Table S3. Credible effects, highest density intervals, standard deviations and credibility threshold δ determined by tascCODA on biopsies from Smillie et al.

(2019), φ = 0. Abbreviations for scenarios: Healthy (H), Non-inflamed (N), and Inflamed (I). Credible effects were only found for one of six scenarios.

Effect HDI 3% HDI 97% SD δ
Scenario Node

Epithelium - H vs. I CyclingTA -0.394 -0.669 0.010 0.193 0.074
TA1 0.151 -0.023 0.496 0.176 0.074
Immaturecells -0.117 -0.500 0.026 0.177 0.074
Absorptive -0.553 -0.853 -0.205 0.179 0.074
Immune 0.149 -0.015 0.324 0.108 0.074

LP - H vs. N Plasma -0.086 -0.524 0.037 0.185 0.066
Tcells -0.612 -0.796 -0.425 0.100 0.066
Bcells -0.761 -1.011 -0.380 0.173 0.066
Monocytes -0.315 -0.618 0.024 0.216 0.066
Myeloid -0.113 -0.511 0.035 0.184 0.066
Epithelial 0.145 -0.013 0.322 0.106 0.066
Stromal -0.303 -0.483 0.007 0.143 0.066

LP - H vs. I CD4+ActivatedFos-lo -0.463 -0.967 0.034 0.316 0.063
Plasma -0.747 -0.963 -0.528 0.117 0.063
CD4+T -0.425 -0.708 -0.055 0.164 0.063
Monocytes -0.269 -0.568 0.019 0.197 0.063
Fibroblasts -0.154 -0.638 0.038 0.222 0.063
Stromal -0.525 -0.835 -0.148 0.184 0.063

Table S4. Credible effects found by tascCODA comparing the gut microbiome of healthy controls and IBS patients from Labus et al. (2017) for varying

aggregation levels φ.

φ Kingdom Phylum Class Order Family Genus Effect

-5 Bacteria Firmicutes -0.313

0 Bacteria Bacteroidota Bacteroidia Bacteroidales Tannerellaceae Parabacteroides -0.156
0 Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides -0.662
0 Bacteria Firmicutes Clostridia Oscillospirales -0.232

5 Bacteria Bacteroidota Bacteroidia Bacteroidales Tannerellaceae Parabacteroides -0.845
5 Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides -1.001
5 Bacteria Bacteroidota Bacteroidia Bacteroidales Prevotellaceae Prevotella -0.413
5 Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Agathobacter -0.610
5 Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Subdoligranulum -0.224
5 Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Faecalibacterium -0.252
5 Bacteria Firmicutes Negativicutes Acidaminococcales Acidaminococcaceae Phascolarctobacterium -0.250
5 Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae -0.340
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Table S5. Credible effects found by tascCODA (φ = 5) comparing the gut microbiome of four different subtypes of IBS to all other samples. Original data by

Labus et al. (2017).

Subtype Kingdom Phylum Class Order Family Genus Effect

IBS-C Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides -0.426
IBS-C Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Anaerostipes 0.438
IBS-C Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Agathobacter -0.819
IBS-C Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Ruminococcus -0.262
IBS-C Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Faecalibacterium -0.320

IBS-D Bacteria Bacteroidota Bacteroidia Bacteroidales Tannerellaceae Parabacteroides -0.392
IBS-D Bacteria Bacteroidota Bacteroidia Bacteroidales Bacteroidaceae Bacteroides -1.405

IBS-M Bacteria Bacteroidota Bacteroidia Bacteroidales Tannerellaceae Parabacteroides -0.424
IBS-M Bacteria Firmicutes Clostridia Lachnospirales Lachnospiraceae Blautia 0.799
IBS-M Bacteria Firmicutes Clostridia Oscillospirales Ruminococcaceae Faecalibacterium -0.285

IBS-unspecified Bacteria Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae Romboutsia 0.259
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Abstract

The class of a-b power interaction models, proposed by Yu et al. (2024), pro-
vides a general framework for modeling sparse compositional count data with
pairwise feature interactions. This class includes many distributions as special
cases and enables zero count handling through power transformations, making
it especially suitable for modern high- throughput sequencing data with excess
zeros, including single-cell RNA-Seq and amplicon sequencing data. Here, we
present an extension of this class of models that can include covariate information,
allowing for accurate characterization of covariate dependencies in heterogeneous
populations. Combining this model with a tailored differential abundance (DA)
test leads to a novel DA testing scheme, cosmoDA, that can reduce false posi-
tive detection caused by correlated features. cosmoDA uses the generalized score
matching estimation framework for power interaction models Our benchmarks
on simulated and real data show that cosmoDA can accurately estimate fea-
ture interactions in the presence of population heterogeneity and significantly
reduces the false discovery rate when testing for differential abundance of corre-
lated features. Finally, cosmoDA provides an explicit link to popular Box-Cox-type
data transformations and allows to assess the impact of zero replacement and
power transformations on downstream differential abundance results. cosmoDA is
available at https://github.com/bio-datascience/cosmoDA.

Keywords: Compositional data, Score matching, Differential abundance, Generative
model, Single-cell RNA sequencing, Microbiome
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1 Introduction

Count matrices, detailing the compositional makeup of cellular constituents in a sam-
ple, are an important data modality derived from modern high-throughput sequencing
(HTS) experiments, including amplicon sequencing (Quinn et al., 2018; Tsilimigras
and Fodor, 2016) and single-cell RNA-Sequencing (scRNA-Seq) (Büttner et al., 2021;
Heumos et al., 2023). These matrices commonly have the form X̃ ∈ Nn×p

0 and show the
abundance of p features (cell types or microbial taxa) in n tissues (Regev et al., 2017),
bacterial communities (McNulty et al., 2023), or microbial habitats (Turnbaugh et al.,
2007). Because sequencing capacity of HTS experiments is technically limited, each
sample only represents a small part of a larger population, rendering the sum of counts
in a row non-quantitative and making the data compositional (Gloor et al., 2017).
Dividing each sample by its total sum yields relative abundance data, which is pro-
portionally equivalent to the original data and constrained to the (p− 1)-dimensional
probability simplex (Aitchison, 1982):

∆ ≡ ∆p−1 =
{
x ∈ Rp : x ⪰ 0, 1⊤

p x = 1
}
. (1)

Generative models for HTS-derived compositional data commonly respect compo-
sitionality either by transforming the data into Euclidean space through log-ratio or
similar transformations (Love et al., 2014; Mishra and Müller, 2022), or by using dis-
tributions directly defined on the probability simplex. The Dirichlet distribution is a
popular choice due to its relatively simple structure and interpretability (Hijazi and
Jernigan, 2009; Wadsworth et al., 2017; Büttner et al., 2021; Ostner et al., 2021). The
assumption of independent features (apart from the compositional effect) is, however,
a major limitation of the Dirichlet distribution. To allow for more complex dependency
structures, Aitchison and Shen (1980) proposed the class of logistic normal distri-
butions, which include the estimation of feature-feature interactions. Several lines of
research make successful use of logistic normal models (and extensions thereof) for
HTS data (see, e.g., Xia et al. (2013); Zeng et al. (2022)) and address the compu-
tational challenges in scaling parameter inference to large-scale datasets (Silverman
et al., 2022).

Another challenge in generative HTS data modeling is the presence of zeroes.
Since the logistic normal distribution requires the underlying data to be positive due
to logarithmic transformations, zero entries in the primary data need to be replaced
by positive values (Lubbe et al., 2021; Greenacre et al., 2023). Any such proce-
dure inevitably distorts the measured data compositions, especially for rare features
with many zero entries (Lubbe et al., 2021), resulting in another source of modeling
inaccuracy.

In his seminal work, Aitchison (1985) provided a general class of distribution, the
Ap−1 class, that includes the logistic normal and the Dirichlet distribution as special
case. This class forms the basis for more recent models that extend the Ap−1 class and
do not require zero imputation. For low-dimensional data, Scealy and Wood (2022)
and Scealy et al. (2024) introduced the polynomially tilted pairwise interaction (PPI)
model, which has properties similar to the Dirichlet distribution at the boundaries of
the simplex. The class of a-b power interaction models, introduced by Yu et al. (2024),
achieves validity on the simplex boundaries by replacing the logarithm with power
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transformations. These works further use score matching estimation (Hyvärinen, 2005)
for computationally efficient parameter inference, reducing the estimation problem to
solving a (regularized) quadratic optimization problem. However, both the PPI and
the a-b power interaction model currently only allow to model a homogeneous sample
population and cannot describe differences between groups of samples.

A central task in HTS data analysis is the detection of significant differences in
the feature composition, given environmental, clinical, or host-specific perturbations
or variations. This problem, also known as differential abundance (DA) testing, faces
the same challenges as generative modeling (Gloor et al., 2017; Tsilimigras and Fodor,
2016). While compositionality and zero handling are discussed in most state-of-the-art
DA testing methods (Lin and Peddada, 2020; Zhou et al., 2022; Nearing et al., 2022),
only few methods explicitly include interactions between compositional features in
their testing procedure (Ma et al., 2024). Such interactions, however, may contribute
to the false discovery of certain features that are not directly impacted by the per-
turbations or covariate changes, but simply strongly correlate with the differentially
abundant feature. Consider a composition of five microbial taxa a, b, c, d, e, where a
and b have a symbiotic relationship and their abundances are highly correlated (Figure
1a). A treatment now targets taxon a and causes a decline in its population. This will
in turn cause the abundance of taxon b to also decrease, although it was not directly
influenced by the treatment. Classical DA testing methods will not be able to discern
between these primary and secondary effects caused by the treatment, detecting both
a and b as differentially abundant.

In this work, we present a new DA framework, termed cosmoDA (compositional
score matching optimization for Differential Abundance analysis), that addresses the
challenge of feature interactions in DA testing. cosmoDA is based on the a-b power
interaction models from Yu et al. (2024) and introduces a linear covariate effect on
the location vector, thus enabling the inclusion of sample group indicators or con-
tinuous covariates of interest. We provide a framework for assessing the significance
of the estimated covariate effects, which, in the case of group indicator variables,
allows principled compositional differential abundance testing. A similar covariate-
extended model was introduced for low-dimensional compositional data by Billheimer
et al. (2001), albeit only for the special case of the logistic normal model. In the a-
b power interaction models, maximum likelihood estimation is not possible due to
the intractability of computing the normalzing constant. We thus resort to the score
matching framework (Hyvärinen, 2005). By carefully studying the structural proper-
ties of the underlying score matching objective, our extended estimation framework
retains the favorable quadratic nature of the underlying optimization problem with
negligible computational overhead. Regularization on the interaction effects further
ensures model identifiability and selection of the most important correlation patterns.
The characteristics of the a-b power interaction model thus ensure that feature inter-
actions are adequately considered and zero entries in the underlying data do not need
to be replaced or imputed.

The remainder of the paper is structured as follows. In the next section, we intro-
duce cosmoDA as an extension of the a-b power interaction model, describe the score
matching estimation framework, and explain how the power transformation makes zero
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replacement obsolete. We then describe the model regularization framework, sketch
the computational implementation, and introduce the differential abundance testing
framework cosmoDA. Section 3 provides several simulated data benchmarks that show-
case the ability of cosmoDA to (i) correctly estimate sparse interaction matrices in
the presence of covariates and (ii) reduce the false discovery rate in differential abun-
dance testing compared to other state-of-the-art methods. We investigate the impact
of different power transformations on differential abundance in real scRNA-seq and
16S rRNA sequencing data in section 4 and provide a data-driven method to select
the power exponents in practice. Section 5 discusses the results, highlights strengths
and limitations of the work, and provides guidelines for future research. cosmoDA is
available as a Python package at https://github.com/bio-datascience/cosmoDA.
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2 Methods

We consider to model compositional matricesX where each row x(i) ∈ ∆, i = 1, . . . , n,
represents a sample, and each column xj , j = 1, . . . , p, represents the jth com-
positional feature. We are motivated by the large number of available biological
“compositional” count matrices X̃ ∈ Nn×p

0 derived from HTS experiments. Important
instances include 16S rRNA amplicon sequencing data, where each feature represents
read counts associated with a microbial taxon Gloor et al. (2017) and scRNA-Seq
experiments, where each feature represents a certain cell-type proportion, as derived
from clustered transcriptional profiles (Büttner et al., 2021; Heumos et al., 2023). Due
to the compositional nature of the derived count data, a common approach is to scale

each observation x̃(i) by its library size S(i) =
∑p

j=1 x
(i)
j to obtain relative abundance

samples x(i) = x̃(i)/S(i) ∈ ∆ (Gloor et al., 2017).

2.1 The covariate-extended a-b power interaction model

Following the proposal in Yu et al. (2024), we model samples in X through the a-
b power interaction model on the (p − 1)-dimensional simplex ∆. The unnormalized
probability density for one sample x ≡ x(i) reads:

pη,K(x) ∝ exp

(
− 1

2a
xa⊤Kxa +

1

b
η⊤xb

)
, x ∈ ∆; K =KT ; K1p = 0p . (2)

Here, interactions between features are modeled through the interaction matrix K ∈
Rp×p, and the location vector η ∈ Rp describes the base composition of the individual
features. This model belongs to the class of exponential family models. Using the
conventions in Yu et al. (2024), xa ≡ log(x); 1/a ≡ 1 if a = 0, and xb ≡ log(x); 1/b ≡ 1
if b = 0, power interaction models encapsulate several probability distributions as
special cases.

With parameter settings a = b = 0, the model includes the Dirichlet distribu-
tion with the additional constraints K = 0, η ≻ −1, the logistic normal distribution
(Aitchison and Shen, 1980) with the constraintsK1p = 0p,x

TKx > 0 ∀x,1T
p η = −p,

and Aitchison’s Ap−1 family of distributions Aitchison (1985) with xTKx > 0 ∀x,η ⪰
−1. For the logistic normal case, the interaction matrix K is equivalent to the
inverse covariance matrix of logratio-transformed data, given specific linear trans-
formations (Erb, 2020). With parameter settings a = 1 and b = 0, the model is
equivalent to the PPI distribution (Scealy and Wood, 2022; Scealy et al., 2024) (see
Appendix A), and with parameter settings a = b = 1, the power interaction model is
equivalent to the maximum entropy distribution on the simplex with the constraints
K1p = 0p,x

TKx > 0 ∀x, as derived in Weistuch et al. (2022).
As stated in Theorem 1 from Yu et al. (2024), the probability density in Eq. (2) is

proper if either

• a > 0, b > 0;
• a > 0, b = 0, ηj > −1 ∀j;
• a = 0, b = 0, log(x)TK log(x) > 0 ∀x ∈ ∆;
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• a = 0, b > 0, log(x)TK log(x) ≥ 0 ∀x ∈ ∆.

We next extend the original proposal of the a-b power interaction model by includ-
ing a (continuous or binary) covariate vector y ∈ Rn (or y ∈ {0, 1}n, respectively) in
the model. The covariate describes, e.g., a concurrently measured quantity of interest
for each sample, or, more relevant in our context, a condition-specific indicator vec-
tor. We model the influence of y ≡ y(i) on x(i) by introducing a linear model on the
location vector η:

η = η0 + yη1 . (3)

Plugging this model into Eq. (2) results in the covariate-extended a-b power
interaction model:

pη,K(x) ∝ exp

(
− 1

2a
xa⊤Kxa +

1

b
(η0 + yη1)

⊤xb

)
, x ∈ ∆; K1p =KT1p = 0p .

(4)
This formulation of the model assumes that all samples stem from an overall

population with fixed interaction matrix K, but allows the proportions of features,
described by η, to be dependent on the measured covariate y. For the probability
density of the covariate-extended a-b power interaction model to be proper, the same
conditions hold as for the model in Eq. (2), replacing η with η0 + yη1.

The model in Eq. (4) forms the basis for our differential abundance testing
framework cosmoDA (compositional score matching optimization for Differential
Abundance analysis). In case where y represents a binary group indicator, e.g., case
vs. control samples, cosmoDA fits the data to the model and tests for significant
changes of the individual components of η1. Figure 1 provides a conceptual overview
of cosmoDA. Before detailing the specific test statistics, we describe the underlying
parameter estimation framework.

2.2 Model estimation

2.2.1 Score matching for power interaction models

Efficient parameter estimation for the a-b power interaction models (Eq. 2) through
generalized score matching (Hyvärinen, 2005, 2007; Yu et al., 2019) was proposed by
Yu et al. (2024). Given an (unknown) true data distribution P0 with density p0 and a
family of distributions of interest P(D), score matching tries to find P ∈ P(D) with
density p such that the Hyvärinen divergence between the gradients of the logarithm
of the densities of P0 and P is minimized:

1

2

∫

D
p0(x)

∥∥∥∇ log p(x)⊙ h̃1/2
(x)−∇ log p0(x)⊙ h̃

1/2
(x)
∥∥∥
2

2
dx , (5)

where h̃(x) = (h̃1(x1), . . . , h̃p(xp)) is a weight function. Yu et al. (2022) show that
score matching can be performed on domains with positive Lebesgue measure in Rp

by setting h̃ such that ∇ log p(x)⊙ h̃1/2
(x) does not vanish at the boundaries of the

domain.
Yu et al. (2024) adapted the generalized score matching framework for the a-b

power interaction models on the (p − 1)-dimensional probability simplex in Rp by
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Fig. 1 cosmoDA allows to perform generative modeling and differential abundance test-
ing on compositional data with feature interactions. (a) Interactions between features can
alter the abundance of features although they are not directly associated with the condition. cosmoDA
is able to accurately distinguish primary from secondary effects by inferring pairwise feature inter-
actions in addition to the effects associated with the condition. (b) Power transformations allow to
analyze compositional data without imputation of zero values. For decreasing exponents, the Box-Cox
transformation converges to the logarithm. (c) cosmoDA uses regularized score matching for param-
eter inference. The optimization problem therefore reduces to a quadratic function with parameters
Γ and g defined by averaging over all samples. (d) Differential abundance testing in cosmoDA uses a
studentized test statistic. Only the feature primarily associated with the condition (Feature a) has a
small adjusted p-value.

profiling out the last coordinate xp ≡ 1 −∑m−1
j=1 xj , similar to the additive log-ratio

transformation. We follow this approach, setting h̃j(x) = (hj ◦φj)(x) with hj(x) = xcj
and φj(x) = min{xj , xp, Cj} and fixing Cj = 1 and c = 2, as recommended by Yu

et al. (2024). This results in a weight function h̃j(x) = min{xj , xp}2. With p(x) from
the family of a-b power interaction models, the following mild assumptions hold (Yu
et al., 2024):

1. p0(xj ;x−j)hj(φ(x)j)∂j log p(xj ;x−j)
∣∣∣xj↗bk(x−j)

−

xj↘ak(x−j)+
= 0

for all k = 1, . . . ,Kj(x−j) and x−j ∈ S−j,D for all j = 1, . . . , p;
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2.
∫
D p0(x)

∥∥∇ log p(x)⊙ (h ◦φ)1/2(x)
∥∥2
2
dx < +∞,∫

D p0(x)
∥∥[∇ log p(x)⊙ (h ◦φ)(x)]′

∥∥
1
dx < +∞.

3. ∀j = 1, . . . , p and almost everywhere x−j ∈ S−j,D,, the component function hj of
h is absolutely continuous in any bounded sub-interval of the section Cj,D(x−j).

Therefore, a consistent estimator of the loss function (Eq. 5) follows as a sample-
and feature-wise sum over the entire dataset:

L̂h(P ) =
1

2

p∑

j=1

n∑

i=1

1

2
(hj ◦ φj)

(
X(i)

)
·
[
∂j log p

(
X(i)

)]2
+

∂j

[
(hj ◦ φj)

(
X(i)

)
· ∂j log p

(
X(i)

)]
, (6)

where X(i), 1 ≤ i ≤ n, form an i.i.d. sample from the unknown data distribution P0

and P is an a-b power interaction model with unnormalized density as described in
Eq. (2). Aggregating K and η to θ = (vec(K),η) and defining Pθ and its density pθ
accordingly shows that the power interaction model without covariate (Eq. 2) follows
an exponential-family-type model

log pθ(x) = θ
⊤t(x)− ψ(θ) + b(x) ,x ∈ ∆ , (7)

where the function t(·) denotes the function for the sufficient statistics, ψ(·) the
cumulant function, and b(·) the logarithm of the base measure, respectively.

Then, L̂h can be reformulated as a quadratic optimization problem:

L̂h(Pθ) =
1

2
θ⊤Γ(x)θ − g(x)⊤θ + const. (8)

with Γ(x) ∈ Rr×r and g(x) ∈ Rr are sample averages of known functions in x
only. Analogously, the same considerations hold for the covariate-extended a-b power
interaction model (Eq. 4), substituting η with η0+yη1. This substitution does not yet
provide individual estimates of η1 and η0 though, which are required for differential
abundance testing. To obtain these individual estimates, a look at the exact derivation
of Γ and g, as described by Yu et al. (2024), is necessary. We first split the location
vector into its two parts η0 and η1, and set θ = (vec(K),η0,η1). After dropping the
last coordinate by assuming xp ≡ 1− 1⊤

p−1x−p as above, the first and second partial
derivatives for the covariate-less model (Eq. 4.1 and 4.2 in Yu et al. (2024)) can easily
be adapted to the covariate-extended model:

∂j log p(x−p) =−
(
κ⊤
,jx

a
)
xa−1
j +

(
κ⊤
,px

a
)
xa−1
p + ηjx

b−1
j − ηpxb−1

p , (9)

=−
(
κ⊤
,jx

a
)
xa−1
j +

(
κ⊤
,px

a
)
xa−1
p

+ η0,jx
b−1
j − η0,pxb−1

p + yjη1,jx
b−1
j − ypη1,pxb−1

p

∂jj log p(x−p) =− (a− 1)
[(
κ⊤
,jx

a
)
xa−2
j +

(
κ⊤
,px

a
)
xa−2
p

]
(10)

− a
[
κjjx

2a−2
j + κppx

2a−2
p + 2κjpx

a−1
j xa−1

p

]
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+ (b− 1)
[
ηjx

b−2
j + ηpx

b−2
p

]

=− (a− 1)
[(
κ⊤
,jx

a
)
xa−2
j +

(
κ⊤
,px

a
)
xa−2
p

]

− a
[
κjjx

2a−2
j + κppx

2a−2
p + 2κjpx

a−1
j xa−1

p

]

+ (b− 1)
[
η0,jx

b−2
j + η0,px

b−2
p

]

+ (b− 1)
[
yjη1,jx

b−2
j + ypη1,px

b−2
p

]

Plugging these definitions into the loss function in Eq. (6) and rearranging the
individual terms in the same way as in Yu et al. (2024) yields Γ and g as follows
(Figure 1c):

Γ ≡




ΓK ΓK,η0 ΓK,η1

Γ⊤
K,η0

Γη0 Γη0,η1

Γ⊤
K,η1

Γ⊤
η0,η1

Γη1


 ∈ R(p2+2p)×(p2+2p), g ≡

(
vec(gK), gη0

, gη1

)
∈ Rp2+2p,

(11)

where Γ and g have a block structure with ΓK ∈ Rp2×p2

, ΓK,η0 ∈ Rp2×p, ΓK,η1 ∈
Rp2×p, Γη0 ∈ Rp×p, Γη0,η1 ∈ Rp×p, Γη1 ∈ Rp×p, and gK ∈ Rp2

, gη0
∈ Rp, gη1

∈ Rp.
The exact derivations are shown in Appendix B. By recognizing that each entry

of Γ and g can be written as a mean over all samples, the elements related to η1 can
be computed directly from the elements related to η0:

ΓK,η1 =
1

n

n∑

i=1

yΓ
(i)
K,η0

Γη0,η1 =
1

n

n∑

i=1

yΓ(i)
η0

Γη1 =
1

n

n∑

i=1

y2Γ(i)
η0

gη1
=

1

n

n∑

i=1

yg(i)η0
.

Therefore, the computational overhead for computing the additional sub-matrices
and sub-vectors related to η1 is negligible. Still, the addition of p dimensions to the
optimization problem (Eq. 8) increases the problem dimensionality from p2 + p to
p2 + 2p compared to the covariate-less model.
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2.2.2 Model Identifiability through Regularization

Since the number of parameters in the power interaction model scales quadratic with
p, real HTS data applications are in the high-dimensional regime with more param-
eters than samples, i.e., p2 + 2p > n. To enable model identification, we place a ℓ1
regularization penalty on the off-diagonal elements Koff of K:

L̂h,C,λ1,δ(Pθ) =
1

2
θ⊤Γδ(x)θ − g(x)⊤θ + λ1||vec(Koff)||1 . (12)

As defined in section 2.2.1, θ = (vec(K),η0,η1) comprises all model parameters,
and Pθ denotes the power interaction model with probability density pθ defined in
Eq. 4. Following Yu et al. (2024), we multiply the diagonal entries of Γ(x) correspond-
ing to K by a factor δ > 1 to avoid an unbounded loss function. We denote Γ(x) with
scaled diagonal entries as Γδ(x). Here, we use the default value from the implementa-
tion of Yu et al. (2024), δ = 2 − 1

1+4emax(6 log(p)/n,
√

6 log(p)/n)
. In cases where p ≫ n,

the entries of η0 and η1 can be penalized as well with a regularization parameter λ2:

L̂h,C,λ1,λ2,δ(Pθ) =
1

2
θ⊤Γδ(x)θ−g(x)⊤θ+λ1||vec(Koff)||1+λ2||η0||1+λ2||η1||1 (13)

Furthermore, assuming K to be sparse matches the widely popular view of sparse
association networks between microbial features or cell types (see, e.g., (Kurtz et al.,
2015)). In the following, we will focus our attention on models without regularization
on the location parameter.

Algorithm 1

Input: Initial estimate θ̂(0)

Input: tmax, maximum number of iterations
Input: ϵ, the maximal tolerance level
1: Initialize t← 1
2: Initialize C ← ϵ+ 1 (C stands for convergence criteria)
3: while C > ϵ or t < tmax do
4: θ̂(t) ← θ̂(t−1)

5: for j ← 1, 2, . . . , s do

6: θ̂
(t)
j ← Soft

(
−(Γδ(x)−j,j)

T θ̂
(t)
−j−g(x)j

Γδ(x)jj
, λ
Γδ(x)jj

)
.

7: end for
8: C ← ∥θ̂(t) − θ̂(t−1)∥1
9: t← t+ 1

10: end while

2.2.3 Computational implementation

The regularized score matching loss L̂h,C,λ,δ(Pθ) (Eq. 12) represents a (large-scale)
ℓ1-penalized quadratic optimization problem that can be numerically solved with
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a variety of optimization methods. Here, we follow Yu et al. (2024) and employ
a proximal coordinate descent scheme (see also Algorithm 2 in Lin et al. (2016)).
This algorithm also covers the covariate-extended a-b power interaction model and is
described in Algorithm 1. Here, s is the dimensionality of θ and Soft(·) is the softmax
function. The default settings in cosmoDA are ϵ = 10−1 and tmax = 1000.

At its core, our Python implementation of Algorithm 1 uses the C implementation
from the genscore package Yu et al. (2019, 2024) and included in the cosmoDA Python
package. The cosmoDA package also provides an interface for a-b power interaction
models that is equivalent to the R interface in the genscore package.

2.3 Differential Abundance Testing

One of the key objectives of cosmoDA is to determine the statistical significance of the
covariate effects η1,j for every feature j = 1 . . . p. Here, we combine results from Zhou
et al. (2022) and Scealy and Wood (2022) to test the null hypothesis

H0 : η1,j = 0 against the alternative H1 : η1,j ̸= 0 .

Let θ̂ = (vec(K̂), η̂0, η̂1) be the parameter estimates obtained from the score matching
estimation framework. Scealy and Wood (2022) show that, under certain technical
conditions and assumptions (see Theorem 1 and 2 in (Scealy and Wood, 2022)) the

quantity Ŝ = Γ−1(x)Σ̂0Γ
−1(x) yields a consistent estimator for Var(θ̂). In cosmoDA,

we estimate Σ̂0 as follows:

Σ̂0 =
1

n

n∑

i=1

(Γ̃
(i)

δ (x)θ̂ − g̃(i)(x))(Γ̃(i)

δ (x)θ̂ − g̃(i)(x))T , (14)

where Γ̃
(i)

δ (x) and g̃(i)(x) are the components of Γ̃δ(x) and g(x) corresponding
to the i-th sample. By selecting the components of Ŝ corresponding to η1,j , we derive
the studentized test statistic

Tj = η̂1,j/Ŝη1,j
, (15)

which approximately follows a t-distribution with n − 3 degrees of freedom. The
corresponding asymptotic p-values read:

pj = 2Ft,n−3(−|Tj |) , (16)

where Ft,n−3 is the cumulative distribution function of the t-distribution with n−3
degrees of freedom (Zhou et al., 2022). In cosmoDA, raw p-values are adjusted for
multiple testing using the Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995) (see Figure 1d for illustration).

2.4 Model selection and hyperparameter tuning

To make cosmoDA fully data-adaptive, we provide several strategies to select the hyper-
parameters of the framework. We first describe regularization parameter selection,
followed by a novel data-driven approach to select the exponents a and b in a-b power
interaction models.
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2.4.1 Regularization parameter selection

cosmoDA provides several model selection methods to determine the regularization
parameter λ1 (and λ2, respectively). The default strategy is k-fold cross-validation
(k = 5) with the 1SE rule (Hastie et al., 2009). Here, the largest λ1 value is chosen
that lies within one standard error band of the λ1 that minimizes the cross-validated
regularized score matching loss (Eq. 12). The range of the λ1-path is chosen to cover
the whole range of possible sparsity of K, i.e., from a fully dense K to a diagonal K
(see Fig. E16b). This range depends on the dimensions of the dataset at hand and
the chosen power transformation (see Appendix C). Per default, our implementation
considers 100 λ1-values log-linearly spaced in the interval

[
10−6, 1

]
.

cosmoDA also allows λ1 to be selected via the extended Bayesian Information Cri-
terion (eBIC, Foygel and Drton (2010)). Following Yu et al. (2019), the eBIC for the
a-b power interaction model reads:

eBICγ(vec(Koff)) = S(vec(Koff)) log(n)−2 log(L̂h,C,λ1,δ(Pθ)+2γ||vec(Koff)||1 , (17)

where S(vec(Koff)) denotes the size of the support of vec(Koff). The default γ value
is γ = 0.5.

2.4.2 Data-driven selection of a-b powers

A key strength of a-b power interaction models is their seamless applicability to
compositional data with excess zeros. While the limiting case a = b = 0 (i.e., log-
transforming the data) requires a strategy for zero replacement or zero imputation
(Lubbe et al., 2021; Greenacre et al., 2023) with potentially detrimental effects for
downstream analysis (Te Beest et al., 2021), we propose a data-driven tuning strategy
for power interaction models with powers a > 0 and b > 0 that keeps the original data
unaltered. For simplicity, we consider the setting a = b.

We first note that the power transformations in the models 2 and 4 are similar to
the Box-Cox transformation (Box and Cox, 1964) of the form:

xϕ =

{
1
ϕ (x

ϕ − 1), if ϕ > 0

log x, if ϕ = 0 ,
(18)

with limϕ→0
1
ϕ (x

ϕ− 1) = log(x) (see also Fig. 1b for illustration). The Box-Cox trans-

formation and the power transformation used in a-b power interaction models (Eqs. 2,
4) are, however, not equivalent due to the −1 term in the Box-Cox transformation. By
introducing scaling factors for the score matching elements in Eq. 11, we can never-
theless achieve the same asymptotic approximation to the logarithm as the Box-Cox
transformation (see Appendix C for details).

While ϕ is typically tuned to make the transformed data approach normality, we
follow a geometric strategy inspired by the one presented in Greenacre (2024). Specif-
ically, we determine ϕ = a = b to let the resulting “geometry” of transformed data be
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as similar as possible to the appropriate log-ratio geometry. This is achieved by maxi-
mally aligning the principal component (PC) embedding of log-ratio transformed data
with imputed zeros and the PC embedding of a power transformation with parameter
ϕ of the data with zero entries Tsagris et al. (2016). Maximal alignment is defined as
the highest Procrustes correlation of both embeddings over a range of values ϕ ∈]0, 1[.
In the case of power interaction models, it is natural to select a power that closely
matches the geometry of data after the additive log-ratio (ALR) transform, since a-
b power interaction models with ϕ = a = b = 0 are a generalization of Aitchison’s
Ap−1 distributions after ALR transformation of the data (Aitchison and Shen, 1980).
Since equal dimensionality of the ALR and power-transformed data is required, we
append the column log(

Xp

Xp
) = 0p to the ALR transformation of X before performing

PC analysis.
The original procedure to obtain maximal Procrustes correlation is outlined in

Greenacre (2024). We use the same procedure, but with different input matrices. Let
Xϕ be the Box-Cox-like transformed data with

Xϕ,j =
1

ϕ
(p

Xϕ
j∑p

k=1X
ϕ
k

− 1) , (19)

and XALR is the ALR-transformed data (with pseudocount 0.5 for all zeros) with
column 0p appended.

We compute the Procrustes correlation rϕ between the two data matrices as follows:

(i) Matrix normalization: X∗
ϕ =Xϕ/

√
trace(XT

ϕXϕ)

X∗
ALR =XALR/

√
trace(XT

ALRXALR)

(ii) SVD of cross product: S =X∗
ϕ
T
X∗

ALR = UΣV T

(iii) Optimal rotation matrix: Q = V UT

(iv) Sum of squared errors: Eϕ = trace((X∗
ϕ −X∗

ALRQ)T (X∗
ϕ −X∗

ALRQ))

(v) Procrustes correlation: rϕ =
√

1− Eϕ

For a given dataset, the optimal power ϕ∗ is determined by ϕ∗ := argmaxϕ rϕ for
ϕ ∈]0, 1[.
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3 Simulation benchmarks

We next provide two simulation studies that benchmark two key features of cosmoDA:
(i) sparse recovery of feature interactions in the covariate-extended a-b power inter-
action model and (ii) identification of differentially abundant features in the presence
of feature correlations. The first benchmark complements the extensive covariate-free
simulation benchmarks of Yu et al. (2024), the second one provides a new realistic
semi-synthetic simulation and evaluation setup, incorporating scRNA-Seq data Perez
et al. (2022).

3.1 Sparse recovery of feature interactions in the presence of a
covariate

One of the core strengths of a-b power interaction models is their ability to recover
(potentially) sparse feature interaction matrices K. Yu et al. (2024) provide an exten-
sive simulation framework that evaluates the influence of hyperparameters, sample
size, and interaction topologies on recovery performance of the a-b power inter-
action model. We focus here on evaluating the influence of covariate inclusion on
the model’s ability to identify sparse feature interactions. Specifically, we expect
interaction recovery to be independent of covariate inclusion.

Following Yu et al. (2024), we generated compositional data X ∈ ∆n
p−1 from an

Ap−1 model with p = 100 features using the model in Eq. 4 with the constraint that
xTKx > 0 ∀x,η ⪰ −1. To probe sample size dependencies, we used two scenarios n =
80 and n = 1000, respectively. We set η0 = −1p, and considered banded interaction
matrices K with bandwidths s = 2 if n = 80 and s = 7 if n = 1000, as suggested by
Yu et al. (2024). We further defined the nonzero off-diagonal entries of K as Ki,j =
|i − j|/(s + 1) − 1 for all i ̸= j, 1 ≤ |i − j| ≤ s, and the diagonal entries as the
negative sum of the off- diagonals, to ensure the sum-to-zero constraint on the rows
of K (Figure E2). This definition slightly deviates from the definition in Yu et al.
(2024), as the sign of all entries in K is flipped, but ensures positive definiteness of K.
This modification allows the efficient use of the adaptive rejection sampler for data
generation, as provided in the genscore R package (Yu et al., 2019). For both sample
sizes, we generated R = 50 replicates of the data.

We applied three different methods for regularized estimation of the underlying
interaction matrix K to all datasets:

1. The a-b power interaction model (a = b = 0) without covariate (Eq. 2). This
model allows the estimation of K and η0. We estimated these models through the
implementation in cosmoDA.

2. The covariate-extended a-b power interaction model (a = b = 0) (Eq. 4). Here, we
used a misspecified y where each entry is drawn uniformly at random from {0, 1}.
The model allows the estimation of K,η0, and η1. We used the implementation in
cosmoDA.

3. The graphical lasso model on CLR-transformed data, as introduced in SPIEC-
EASI (Kurtz et al., 2015). The non-zero entries of the resulting sparse inverse
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covariance matrix serve as a (mis-specified) proxy for K. We used the implementa-
tion from the gglasso package (Schaipp et al., 2021). Model selection was performed
with the extended BIC (eBIC) criterion (Foygel and Drton, 2010) with γ = 0.25.

For all three models, we used nλ = 100 values for the regularization parameter,
log-spaced in the range 10−6 < λ1 < 1, and k = 5 cross-validation folds. All score
matching estimation parameters were set to the defaults recommended by Yu et al.
(2024) (see also Section 2.2.3).

To measure recovery performance, we compared the support of the off-diagonal
elements of the estimated K̂ and the ground truth K by calculating the true posi-
tive rate (TPR) and true negative rate (TNR), and assessing them through Receiver
operating characteristic (ROC) curves.

Fig. 2 Recovery of K improves with sample size and is not impacted by covariate
inclusion. Receiver operating curves for cosmoDA with and without covariate effect estimation, as
well as CLR transform and graphical lasso for with (a) n = 80 and (b) n = 1000. The solid lines
depict the mean ROC over all 50 generated datasets, the shaded areas show the standard error.

Figure 2 summarizes the average ROC curves for the two different sample sizes.
For n = 80 (Figure 2a), we observed that both a-b power interaction models showed
almost equivalent ability to reconstruct the interaction matrix (mean AUC 0.782 vs.
0.794). Their performance was slightly worse that the graphical lasso (mean AUC
0.806), especially for false positive rates smaller than 0.2. When increasing the sample
size to n = 1000, all three methods showed improvements in recovery performance,
improving the mean average AUC as well as reducing the variance in results (Figure
2b). As expected, including a covariate in the a-b power interaction model had only
marginal impact on the mean AUC (0.965 vs. 0.968). Contrary to the low sample size
case, both a-b power interaction models significantly outperformed the (misspecified)
graphical lasso (mean AUC 0.84) across the entire range of regularization strengths.
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3.2 Differential abundance testing in the presence of
correlated features

To test the effectiveness of cosmoDA in detecting differentially abundant features in
the presence of realistic feature interactions, we designed the following semi-synthetic
simulation benchmark.

We considered a scRNA-seq data set from Perez et al. (2022) that derived relative
abundance values of p = 11 types of peripheral blood mononuclear cells (PBMCs)
from overall n = 352 samples. The samples come from 260 unique subjects, 162 of
which are patients with with systemic lupus erythematosus (SLE) (208 samples) and
98 healthy controls (144 samples). We used these data to estimate realistic base values
for the interaction matrix K and the location vector η, respectively. The base model
is the a-b power interaction model without covariate (Eq. 2). We set a = b = 0 and
used λ1 = 0.043 as sparsity parameter. We considered the NK cell type as the pth
reference component for all power interaction models due to their high abundance and
low variance between groups. The resulting interaction matrix KB and location vector
η0,B are shown in Figure 3.

Fig. 3 Data generation parameters used for the Differential abundance testing bench-
mark, p = 11. Parameters were generated by running the power interaction model without covariate
on the dataset from Perez et al. (2022). The names of the cell types from the original dataset are
shown in brackets. (a) Interaction matrix (KB). (b) Location vector (η0,B).

To generate ground-truth differentially abundant cell types, we defined the effect
vector η1,B = τiη0,B , where i is a p-dimensional binary vector that indicates the
cell types that are influenced by the condition (i.e., are differentially abundant), and
τ = (−0.5,−0.3, 0.3, 0.5, 1) controls the relative effect size.

Using this model, we considered three differential abundance scenarios: (i) Esti-
mation when the effect is on a rare cell type with (pDC), (ii) effect estimation on an
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abundant cell type (T4), and (iii) effects on both cell types (pDC and T4). Two differ-
ent sample sizes (n = 100 and n = 1000) were considered for each case. For each of the
resulting 30 scenarios, we generated five datasets with n/2 control samples (K = KB ,
η = η0,B) and n/2 case samples (K = KB , η = η0,B + η1,B). To simulate these
semi-synthetic data sets, we used the adaptive rejection sampler from the genscore R
package (Yu et al., 2019).

To showcase the performance of cosmoDA for higher dimensional datasets, we
conducted another set of simulations with p = 99 features. We constructed the corre-
sponding interaction matrix as a block-diagonal matrix, using the original KB matrix
in each of the nine blocks (see Figure E4a). Likewise, we stacked the scenario-specific
location vectors η0,B and η1,B nine times to obtain the high-dimensional location
vectors (Figure E4b).

We compared the ability of four different DA testing methods to recover differen-
tially abundant features at an expected FDR level of α = 0.05:

• DA testing with cosmoDA (a = b = 0). We used nλ = 20 values between 10−3 and
2 for λ1 and 5-fold cross validation with the 1SE rule for model selection. All other
parameters were set to default values described in Section 2.2.3).

• ANCOM-BC (Lin and Peddada, 2020) with default parameters as an example for
a common DA testing method without feature interactions. Since ANCOM-BC
assumes count data instead of relative abundances, we scaled the simulated data by
the median sequencing depth over all samples in the original dataset and rounded
to the nearest integer to obtain comparable counts.

• A Dirichlet regression model and subsequent significance test on the regression coef-
ficients, as implemented by Maier (2014). This model serves as a simple baseline
that does not respect feature interactions.

• CompDA (Ma et al., 2024), a recent DA testing method for compositional data,
respecting feature interactions via conditional dependency modeling.

Figure 4 summarizes the results for the simulation scenario with the original num-
ber of features (p = 11). Here, cosmoDA showed the overall best ability to recover the
true effects (Matthews’ correlation coefficient, Figure 4a), especially when the sample
size was larger and for the more abundant cell type T4 (see Figure E5). Importantly,
cosmoDA showed the lowest FDR value in all scenarios (Figure 4b). Although cosmoDA

was not able to control the FDR at the expected level of 0.05 in every scenario, the
methods without consideration of interactions (ANCOM-BC and Dirichlet) detected
more false positive features, with FDR levels averaging between 0.2 and 0.7 in most
scenarios. Surprisingly, CompDA did not achieve lower FDR values than ANCOM-
BC and performed worse than Dirichlet regression in all cases. We observed slightly
elevated FDR levels of cosmoDA in cases where the DA cell types were not detected,
resulting in FDR values of 1 where one feature was falsely discovered (see Figure E6).
While Dirichlet regression and ANCOM-BC struggled with FDR control in all scenar-
ios (see Figure E6), CompDA produced much higher FDR values for the abundant cell
type (T4). For smaller sample sizes (n = 100) and small effects, cosmoDA was not able
to consistently detect the differentially abundant features, resulting in lower power for
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these scenarios. With increasing sample size, the power of cosmoDA was on par with
the other methods (Figures 4c, E7).

In the large-dimensional case (p = 99), the performance of all methods decreased
in the small sample size scenario, while Matthews’ correlation coefficient was similar
to the case of p = 11 for larger sample sizes (Figures 5a, E11). Again, cosmoDA always
showed the lowest FDR, albeit with slightly elevated levels for n = 1000, and mean
FDR levels between 0.1 and 0.4 for n = 100 (Figure 5b). The FDR levels for cosmoDA
did not show a trend across feature rarity and effect size, while the other methods
were not able to produce average FDR levels below 0.5 for effects on rare pDC cells
(Figure E12). In terms of power, only ANCOM-BC and Dirichlet regression were
able to correctly detect some differentially abundant features for n = 100, while all
methods showed good power for larger sample sizes (Figure 5c). Breaking these results
down by cell type revealed a good power of ANCOM-BC and Dirichlet regression for
abundant features, while effects on rare features could not be reliably detected by
any method (Figure E13). The unsuitability of cosmoDA and CompDA for the case of
p = 99, n = 100 is not surprising, as both models need to estimate pairwise feature
interactions in the high-dimensional regime.
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Fig. 4 Performance comparison for recovering differentially abundant features across
different scenarios, p = 11. (a) Matthews’ correlation coefficient. (b) False discovery rate. The
dashed line shows the nominal FDR for all methods. (c) True positive rate (power).
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Fig. 5 Performance comparison for recovering differentially abundant features across
different scenarios, p = 99. (a) Matthews’ correlation coefficient. (b) False discovery rate. The
dashed line shows the nominal FDR for all methods. (c) True positive rate (power).
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4 Applications to single-cell and microbiome data

To showcase the DA testing capabilities of cosmoDA on real data, we considered two
compositional datasets: PBMC abundances derived from scRNA-seq data of SLE
patients (as used in the semi-synthetic benchmarks Perez et al. (2022)) and infant gut
microbiome data from 16S rRNA sequencing (Yatsunenko et al., 2012). Apart from
comparing the empirical results with other state-of-the-art methods, we also evaluated
the impact of power transformations (a = b = ϕ ̸= 0) on the downstream DA results.

4.1 DA analysis of cell type compositions in patients with
systemic lupus erythematosus

We used the scRNA-Seq-derived PBMC data from Perez et al. (2022) (n = 352, p = 11,
see Section 3.2) to estimate differences in cell type composition between subjects with
systemic lupus erythematosus (SLE) (n=208) and healthy controls (n=144).

To tune the parameters in cosmoDA, we considered the power values ϕ =
(0.01, 0.02, 0.03, . . . 0.99), as well as the log-log model (ϕ = 0) for comparison. We set
the range of λ1 values between 1.5 and 10−7 to ensure full coverage of the range of sup-
ports ofK for every value of ϕ. As before, we used NK cells as the reference cell type for
cosmoDA and selected the regularization strength via 5-fold cross-validation with the
1SE rule. We used ANCOM-BC, Dirichlet regression, and CompDA for comparison.

We first investigated the influence of our power value tuning schemes for DA anal-
ysis. The Procrustes correlation analysis showed that the ALR-transformed PBMC
data (with zeros replaced by a pseudocount of 0.5) and the power-transformed data
had the highest alignment for a power of ϕ∗ = 0.22 (see Figure 6a). To investigate
the impact of zero replacement and the power transform on differential abundance,
we also compared the DA testing results of cosmoDA for all values of ϕ with and with-
out zero entries (Figure 6c, d). Due to the low number of zeroes (4.5%), the impact
of zero imputation was negligible for this dataset, making the adjusted p-values with
and without zero imputation almost identical. Below a value of 0.8, the exponent of
the power transformation only impacted the differential abundance of CD14+ classi-
cal monocytes (cM). For higher exponents, almost all cell types showed no differential
abundance. Comparing the results of cosmoDA with ANCOM-BC, Dirichlet regression,
and CompDA (all implemented as described in section 3.2) showed that all meth-
ods selected different sets of differentially abundant cell types (Figure 6b). CompDA
produced the most conservative results, only finding four DA cell types at an FDR
level of 0.05. On the other hand, Dirichlet regression found all cell types to be dif-
ferentially abundant. Interestingly, cosmoDA was the only method that did not select
classical monocytes as differentially abundant (Figure 6b). The latter finding is in
agreement with a control experiment performed by Perez et al. (2022) that found
absolute monocyte abundances to be not differentially abundant in SLE patients.

4.2 DA analysis in microbiome data

To showcase the suitability of cosmoDA for microbial 16S rRNA sequencing, we used
gut microbiome data from infants in Malawi and the United States (Yatsunenko et al.,
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Fig. 6 Differential abundance testing with cosmoDA on the lupus dataset. (a) Procrustes
correlation between power transformation and ALR transformation with zero replacement. The yellow
line (ϕ∗ = 0.22) indicates the maximal Procrustes correlation. (b) Boxplot of relative abundance
data without zero replacement. The colored stars indicate the significance level for each method (*:
padj < 0.05; **: padj < 0.01; ***: padj < 0.001). Differential abundance results on NK cells (reference
in cosmoDA) are omitted. (c) Adjusted p-values for testing differential abundance with cosmoDA on
zero-replaced data with different power transformations. Red entries denote differential abundance
at a level of α = 0.05, blue entries denote no differential abundance. The yellow box highlights
the adjusted p-values for ϕ∗ determined in a. (d) Same as c, but using the raw data without zero
replacement.

2012). We followed the pre-processing in the original ANCOM-BC study Lin and
Peddada (2020) and aggregated the data to the Phylum level. We selected all sam-
ples from subjects aged less than two years old in Malawi and the United States.
Following Lin and Peddada (2020), we next discarded all phyla where more than
90% of samples contained zero entries, resulting in n = 97 samples of p = 13
phyla. We selected Bacteroidetes as the reference phylum and applied cosmoDA with
ϕ = (0.01, 0.02, 0.03, . . . 0.99), and the log-log model (ϕ = 0) to the relative abundances
with and without zero replacement. The range of values for λ1 was set to

[
10−12, 1.5

]
,

and we used 5-fold cross-validation with the 1SE rule to select λ1 for each value of ϕ.
For this dataset, our power selection scheme identified ϕ∗ = 0.13 to result in the

best Procrustes alignment (see Figure 7a). The larger proportion of zero entries in this
dataset (28.6%) caused more differences in downstream DA testing results, both on
the original and zero-imputed data (Figure 7c, d). While the DA pattern of taxa with
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no zero entries (Firmicutes, Actinobacteria, Tenericutes, and Proteobacteria) was not
impacted by zero imputation, the phyla with at least 20% zero entries (Cyanobacte-
ria, Elusimicrobia, Euryarchaeota, Lentispherae, Spirochaetes, and TM7) were deemed
differentially abundant at a smaller power values. Similar to the analysis of the scRNA-
seq data, the four DA methods produced different sets of DA taxa at an FDR level
of 0.05 (Figure 7b). Dirichlet regression and CompDA seemed to be only sensitive to
taxa with high average abundance, while ANCOM-BC and cosmoDA were able to also
detect differential abundance in rare phyla. The set of DA taxa discovered by cosmoDA

at ϕ∗ = 0.13 on the data with zero entries was smaller than the set discovered on
the same dataset by ANCOM-BC. Nevertheless, cosmoDA found multiple phyla that
are associated with rural lifestyles (Elusimicrobia, Euryarchaeota, Spirochaetes) to be
increased in infants from Malawi (Herlemann et al., 2007; Obregon-Tito et al., 2015).
Notably, the ANCOM-BC algorithm involves the replacement of zeros by a small pseu-
docount (Lin and Peddada, 2020). Indeed, the set of DA phyla discovered by cosmoDA

on the zero-replaced data with the exponent ϕ∗ = 0.13 (Figure 7c) almost perfectly
matched the DA phyla found by ANCOM-BC (except Firmicutes and Proteobacte-
ria). Overall, this confirms that replacement of zero entries in microbial abundance
data has significant impact on differential abundance.
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Fig. 7 Differential abundance testing (US vs. Malawi) with cosmoDA on infants (age < 2
years) in the the human gut dataset. (a) Procrustes correlation between power transformation
and ALR transformation with zero replacement. The yellow line (ϕ∗ = 0.13) indicates the maxi-
mal Procrustes correlation. (b) Boxplot of relative abundance data without zero replacement. The
colored stars indicate the significance level for each method (*: padj < 0.05; **: padj < 0.01; ***:
padj < 0.001). Differential abundance results on Bacteroidetes (reference in cosmoDA) are omitted.
(c) Adjusted p-values for testing differential abundance with cosmoDA on zero-replaced data with dif-
ferent power transformations. Red entries denote differential abundance at a level of α = 0.05, blue
entries denote no differential abundance. The yellow box highlights the adjusted p-values for ϕ∗ deter-
mined in a. (d) Same as c, but using the raw data without zero replacement.

24



5 Conclusion

Tissues and bacterial communities are complex biological environments, governed by
interactions between individual cell types or microbial taxa. The prevailing high-
throughput sequencing (HTS) data sets probing these complex mixtures are often
compositional in nature. Statistical generative modeling as well as differential abun-
dance testing schemes for such compositional datasets can therefore suffer from
inaccuracies if interactions between cells or microbes are not considered in the analy-
sis. Extending the class of a-b power interaction models (Yu et al., 2024) by a linear
effect on the location vector, our new method cosmoDA allows to accurately model
HTS data with pairwise feature interactions in the presence of covariate information.
The covariate formulation in cosmoDA also seamlessly integrates into the generalized
score matching optimization framework (Hyvärinen, 2005; Lin et al., 2016; Yu et al.,
2022), facilitating fast and accurate parameter inference. L1 regularization on the
interaction matrix further avoids model complexity explosion and allows to select par-
simonious interaction patterns. Compared to the a-b power interaction model without
covariates from Yu et al. (2024), the addition of a covariate did not reduce its abil-
ity to detect significant feature interactions in our synthetic data simulations. Both
the covariate-less and covariate-extended a-b power interaction models outperformed
other established procedures for identifying sparse interactions in compositional HTS
data when the sample size was sufficiently large.

In the presence of a binary condition, testing for significance of the covariate-related
parameters in the location vector acts as a form of differential abundance testing. Here,
the parallel estimation of feature interactions helps to avoid false positive detections
which are only indirectly related to the condition. In our realistic simulation experi-
ments, cosmoDA was the only method to approximately control the false discovery rate
in the presence of feature interactions, while no other tested method could distinguish
between direct and indirect compositional changes. cosmoDA showed reduced power
when the sample size was small, but was on par with methods like ANCOM-BC (Lin
and Peddada, 2020) for larger numbers of observations. One exception where cosmoDA
was not able to adequately control the FDR was for misspecified models with more
features than samples. We further demonstrated the ability of cosmoDA to find biolog-
ically meaningful differential abundances on two experimental datasets from human
single-cell RNA sequencing and microbiome 16S rRNA sequencing.

The use of power transformations instead of the logarithm in a-b power interaction
models allows to keep zero measurements in the data as-is, avoiding distortions caused
by imputation of these values. Through a small adjustment in the score matching opti-
mizer, we were able to approximate the log-transformation for exponents approaching
zero. Applying cosmoDA to real-world single-cell and microbiome datasets, we dis-
covered that zero replacement and the exponent of the power transformation had a
considerable impact on downstream DA results in data with excess zeros (Gloor et al.,
2017). We further demonstrated that selecting an exponent for the power transfor-
mation that approximates the data geometry after an ALR transformation generally
produces sensible differential abundance results.

While cosmoDA successfully tackles multiple challenges in generative modeling and
differential abundance testing, it also has some limitations. Currently, cosmoDA can
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only accommodate a single binary or continuous covariate. Extending the linear model
formulation would allow to model more complex scenarios and adjust for confounders
in DA testing. For this, the score matching estimator would also have to be extended
to multiple covariates. The implementation of such a flexible model could be simplified
by using automatic differentiation for determining the elements of Γ and g (Kassel
et al., 2024). In addition, we believe that approximation of the logarithm for small
exponents can be solved more elegantly by changing the general definition of a-b power
interaction models to utilize a true Box-Cox transformation rather than using our
proposed adjustments in the score matching optimizer. Estimation of our model also
relies on selecting a good reference, which is profiled out in the model formulation.
Looping over multiple references and averaging the results, as described by Yu et al.
(2024), could avoid this dependency at the cost of computational efficiency.

While we empirically showed the feasibility of cosmoDA, we did not provide any
guarantees for goodness of fit and convergence. A formal reevaluation and extension of
the theoretical considerations provided by Yu et al. (2024) would give more justification
to our approach.

Overall, we believe that cosmoDA with its abilities to include feature interac-
tions and seamless handling of excess zeros represents a valuable addition to the
growing family of differential abundance testing methods. A Python implementa-
tion of cosmoDA and the power interaction model without covariates is available at
https://github.com/bio-datascience/cosmoDA.
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B., Hacohen, N., Haniffa, M., Hemberg, M., Kim, S., Klenerman, P., Kriegstein,
A., Lein, E., Linnarsson, S., Lundberg, E., Lundeberg, J., Majumder, P., Mari-
oni, J.C., Merad, M., Mhlanga, M., Nawijn, M., Netea, M., Nolan, G., Pe’er, D.,
Phillipakis, A., Ponting, C.P., Quake, S., Reik, W., Rozenblatt-Rosen, O., Sanes,
J., Satija, R., Schumacher, T.N., Shalek, A., Shapiro, E., Sharma, P., Shin, J.W.,
Stegle, O., Stratton, M., Stubbington, M.J.T., Theis, F.J., Uhlen, M., Oudenaar-
den, A., Wagner, A., Watt, F., Weissman, J., Wold, B., Xavier, R., Yosef, N.,
Human Cell Atlas Meeting Participants: The human cell atlas. Elife 6 (2017)
https://doi.org/10.7554/eLife.27041

Scealy, J.L., Hingee, K.L., Kent, J.T., Wood, A.T.A.: Robust score matching for
compositional data. Stat. Comput. 34(2), 93 (2024) https://doi.org/10.1007/
s11222-024-10412-w

Silverman, J.D., Roche, K., Holmes, Z.C., David, L.A., Mukherjee, S.: Bayesian multi-
nomial logistic normal models through marginally latent matrix-t processes. Journal
of Machine Learning Research 23(7), 1–42 (2022)

Schaipp, F., Vlasovets, O., Müller, C.: GGLasso - a python package for general
graphical lasso computation. J. Open Source Softw. 6(68), 3865 (2021) https:
//doi.org/10.21105/joss.03865

Scealy, J.L., Wood, A.T.A.: Score matching for compositional distributions. J. Am.
Stat. Assoc. 118(543), 1811–1823 (2022) https://doi.org/10.1080/01621459.2021.
2016422
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Appendix A Connection between a-b power
interaction models and PPI models

The class of polynomially tilted pairwise interaction (PPI) models, introduced by
Scealy and Wood (2022), is another class of flexible distributions with feature
interactions on the simplex. This class includes distributions of the form

pA∗,ν(x) ∝
(

p∏

i=1

xνi
i

)
exp(xTA∗x)

with ν ≻ −1 ∈ Rp, and A∗ ∈ Rp×p symmetric with A∗1p = 0. Through(∏p
i=1 x

νi
i

)
= exp(νT log(x)), it is easy to see that this class of distributions repre-

sents a special case of a-b power interaction models (Eq. 2) with a = 1 and b = 0.

Profiling out the last coordinate, i.e. xp = 1−∑p−1
i=1 xi, leads to an alternative formu-

lation (Scealy et al., 2024), with parameters ν ≻ −1 ∈ Rp, AL ∈ R(p−1)×(p−1), and
cL ∈ R(p−1):

pAL,cL,ν(x) ∝
(

p∏

i=1

xνi
i

)
exp(xTALx+ cTLx).

In particular, the transition between the two forms can be achieved by splitting

off the last row and column of A∗ =

(
A∗

L A∗
p

A∗
p
T
A∗

pp

)
. Then, ALi,j = A

∗
i,j − 2A∗

pi
+A∗

pp

and cLi = 2(A∗
pi
−A∗

pp). Since A
∗ has one additional parameter, assume A∗

pp = 0 for

the reverse transformation. Then, A∗
pi

= 1
2cLi, and A

∗
Li,j = ALi,j + cLi.

Applying the equivalent transformations to an a-b power interaction model with
a = 1 can help with parameter interpretation, as the matrix AL usually has full rank.

Appendix B Derivation of the parameters in the
quadratic form of the score matching
optimizer

This section details the derivation of the parameters Γ and g in the quadratic for-
mulation of the score matching loss (Eq. 8) and explains their block structure shown
in Eq. 11. The elements of g can be directly derived from the second derivative of
log p(x) (Eq. 10):
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Further, the elements of Γ follow from the first derivative of log p(x) (Eq. 9) and
have the same structure as in Yu et al. (2024):

ΓK ≡




ΓK,1 0 · · · 0 ΓK,(1,p)

0 ΓK,2 · · · 0 ΓK,(2,p)

...
...

. . .
...

...
0 0 · · · ΓK,p−1 ΓK,(p−1,p)

Γ⊤
K,(1,p) Γ⊤

K,(2,p) · · · Γ⊤
K,(p−1,p) ΓK,p



∈ Rp2×p2

,

with each block of size p× p, and

ΓK,ηi ≡




γK,ηi,1 0 · · · 0 γK,ηi,(1,p)

0 γK,ηi,2 · · · 0 γK,ηi,(2,p)

...
...

. . .
...

...
0 0 · · · γK,ηi,p−1 γK,ηi,(p−1,p)

γK,ηi,(p,1) γK,ηi,(p,2) · · · γK,ηi,(p,p−1) γK,ηi,p



∈ Rp2×p for i ∈ {1, 2},

with each block a vector of size p, and

Γηi ≡




γηi,1 0 · · · 0 γηi,(1,p)

0 γηi,2 · · · 0 γηi,(2,p)

...
...

. . .
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...
0 0 · · · γηi,p−1 γηi,(p−1,p)
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∈ Rp×p for i ∈ {1, 2},
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, and

Γη0,η1 ≡
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These blocks have the following specific forms. For j = 1, . . . , p− 1,

Γj ≡




ΓK,j γK,η0,j γK,η1,j

γ⊤
K,η0,j

γη0,j γη0,η1,j

γ⊤
K,η1,j

γ⊤η0,η1,j
γη1,j




≡ 1

n

n∑

i=1

h̃j

(
X(i)

)


X

(i)
j

a−1
X(i)a

−X(i)
j

b−1

−yX(i)
j

b−1






X

(i)
j

a−1
X(i)a

−X(i)
j

b−1

−yX(i)
j

b−1




⊤

,

Γp ≡




ΓK,p γK,η0,p γK,η1,p

γ⊤
K,η0,p

γη0,p γη0,η1,p

γ⊤
K,η1,p

γ⊤
η0,η1,p γη1,p




≡ 1

n

n∑

i=1

p−1∑

k=1

h̃k

(
X(i)

)


X

(i)
p

a−1
X(i)a

−X(i)
p

b−1

−yX(i)
p

b−1






X

(i)
p

a−1
X(i)a

−X(i)
p

b−1

−yX(i)
p

b−1




⊤

,

Γ(j,p) ≡




ΓK,(j,p) γK,η0,(j,p) γK,η1,(j,p)

γK,η0,(p,j) γη0,(j,p) γη0,η1,(j,p)

γK,η1,(p,j) γη0,η1,(p,j) γη1,(j,p)




≡ − 1

n

n∑

i=1

h̃j

(
X(i)

)


X

(i)
j

a−1
X(i)a

−X(i)
j

b−1

−yX(i)
j

b−1






X

(i)
p

a−1
X(i)a

−X(i)
p

b−1

−yX(i)
p

b−1




⊤

.

Appendix C Scaling score matching elements to
approximate Box-Cox transformations

As described in Section 2.4.2, the power transformation used for a-b power interaction
models (Eqs. 4 and 2) bears striking resemblance to the Box-Cox transformation
1
ϕ (x

ϕ − 1). Both transformations are not equivalent though due to the subtraction
of 1 in the Box-Cox transformation. This difference causes the a-b power interaction
transformation to lose one key property of the Box-Cox transformation - its asymptotic
approximation of the logarithm as ϕ approaches 0.
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Looking at the density of the covariate-extended a-b power interaction model makes
this disparity clear:

pη,K(x) ∝ exp

(
− 1

2a
xa⊤Kxa +

1

b
(η0 + yη1)

⊤xb

)

For the terms concerning η0 and η1, the subtraction of 1 in the Box-Cox trans-
formation is not dependent on x and can therefore be absorbed into the normalizing
constant. For the interaction term, replacing xa with the Box-Cox transformation in
Eqs. 2 or 4 would introduce a scaling factor of order 1/a2 instead of 1/a, leading to a
discontinuity of the estimated K when approaching the log-log model, for which the
convention 1

2a ≡ 1 is used (Yu et al., 2024).
We counteract this effect by introducing scaling factors of 1/a and 1/a2 on the

components of Γ and g (Eq. 11), based on the matrix multiplication θ⊤Γ(x)θ from
Eq. 8. In particular, we scale ΓK by a factor of 1

a2 and ΓK,η0 ,ΓK,η1 , and gK by a
factor of 1

a each. This leads to a smooth transition in the estimation ofK when ϕ→ 0,
and also holds for general a-b power interaction models without covariates (Yu et al.,
2024).

We showcase the effectiveness of our scaling approach with an example on the
scRNA-seq data of SLE patients and healthy controls Perez et al. (2022). For sim-
plicity, we estimate the whole dataset through the covariate-less a-b power interaction
model without differentiating between the two groups, use no regularization on the off-
diagonal entries ofK, and always replace zeros with a value of 0.5. Without the scaling
factor, the pattern of the estimated K approaches the log-solution (ϕ = 0), but the
scale of the entries is not the same (Figure E14, left column). On the other hand, the
entries of η approach the log-solution also in magnitude (Figure E14, right column).
For increasing values of ϕ, both the pattern and magnitude of K and η gradually
diverge, as the power transformation gradually distorts the composition differently.

The median entry of the ratio Kϕ=0/Kϕ=ϕ′ also does not approach 1 as ϕ′ → 0
(Figure E15, bottom right). Looking at the components of Γ and g, one can see that
the median entry of the above ratio follows a log-linear trend for larger values of ϕ, but
not for smaller exponents if the component is associated with K (Figure E15, other
panels). The scaling factors introduced above correct this trend, such that the ratio
is log-linear across the full spectrum of ϕ. This causes the estimated K to approach
the solution for ϕ = 0 in magnitude (Figure E15, bottom right) without impacting
the estimated interaction pattern (Figure E14, middle column) or the estimation of η
(Figure E14, right column).

When combining regularization and power transforms, the dependency between ϕ
and the scale of entries in K will lead to different optimal regularization strengths
for different exponents (Figure E16a). In fact, a larger exponent and therefore larger
scale of K will require smaller values of λ1 to cover the whole range between K with
full support and a diagonal K (Figure E16b). Therefore, the range of values for λ1
should always be adapted to the current data and power transform.
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Appendix D Testing for differential abundance
without feature interactions

We also compared the methods on simulated data without feature interactions to show
the suitability of cosmoDA if no significant feature associations are present. To this end,
we applied the a-b power model solution with a = b = 0 and λ1 = 2 to the dataset
from Perez et al. (2022), resulting in ground truth parameters of KB = 011×11, and
η0,B as shown in Figure E3. We used the same setup as before to select differentially
abundant cell types and effect sizes and again chose n = 100 and n = 1000, simulating
five replicates for each of the 30 scenarios as described above.

If no significant feature interactions were simulated, cosmoDA and CompDA showed
similar overall performance as before, while the MCC of ANCOM-BC and Dirichlet
regression significantly improved (Figures D1a, E8). This improvement was due to a
reduction in falsely discovered effects by these methods (Figure D1a), which shows that
the high FDR of ANCOM-BC and Dirichlet regression in the previous simulation were
caused by secondary effects due to feature interactions. In terms of power, all methods
showed similar strength as before (Figures D1c, E10). Nevertheless, cosmoDA was the
only model to consistently produce a FDR close to the nominal level, while CompDA
was not able to avoid false discoveries if the effect was placed on the abundant cell
type T4 (Figure E9). The superior performance of cosmoDA in this case was due to
the fact the the data was simulated by an a-b power interaction model, which is not
used by the other methods.
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Fig. D1 Performance comparison for recovering differentially abundant features across
different scenarios, K = 0. (a) Matthews’ correlation coefficient. (b) False discovery rate. The
dashed line shows the nominal FDR for all methods. (c) True positive rate (power).

Appendix E Supplementary Figures
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Fig. E2 Interaction matrices used for data generation in the benchmark testing recovery
of K (Section 3.1). (a) n = 80, (b) n = 1000.

Fig. E3 Data generation parameters used for the differential abundance testing bench-
mark (Section 3.2), K = 0. (a) Interaction matrix (KB). (b) Location vector (η0,B).
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Fig. E4 Data generation parameters used for the differential abundance testing bench-
mark (Section 3.2), p = 99. (a) Interaction matrix (KB). (b) Location vector (η0,B).

Fig. E5 Detailed breakdown of Matthews’ correlation coefficient for the differential
abundance testing benchmark (Section 3.2), p = 11.
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Fig. E6 Detailed breakdown of false discovery rate for the differential abundance testing
benchmark (Section 3.2), p = 11. The dashed lines denote the nominal FDR for all methods.

Fig. E7 Detailed breakdown of power (true positive rate) for the differential abundance
testing benchmark (Section 3.2), p = 11.

40



Fig. E8 Detailed breakdown of Matthews’ correlation coefficient for the differential
abundance testing benchmark (Section 3.2), K = 0.

Fig. E9 Detailed breakdown of false discovery rate for the differential abundance testing
benchmark (Section 3.2), K = 0. The dashed lines denote the nominal FDR for all methods.
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Fig. E10 Detailed breakdown of power (true positive rate) for the differential abundance
testing benchmark (Section 3.2), K = 0.

Fig. E11 Detailed breakdown of Matthews’ correlation coefficient for the differential
abundance testing benchmark (Section 3.2), p = 99.
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Fig. E12 Detailed breakdown of false discovery rate for the differential abundance test-
ing benchmark (Section 3.2), p = 99. The dashed lines denote the nominal FDR for all methods.

Fig. E13 Detailed breakdown of power (true positive rate) for the differential abundance
testing benchmark (Section 3.2), p = 99.
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Fig. E14 Impact of scaling Γ and g on the estimation of K and η. Results shown for the
SLA scRNA-seq data Perez et al. (2022). Rows show selected values of the exponent ϕ in the power
transformation. Left column: Values of K without scaling. Middle column: Values of K with scaling.
Right column: Values of η with and without scaling.
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Fig. E15 Impact of scaling factor for power transforms on the score matching param-
eters Γ and g and the interaction matrix K. All plots except bottom right show the median
entry of Eϕ=0/Eϕ=ϕ′ for E being one of the score matching elements in Eq. 11. Bottom right: Same
quantity for the estimated interaction matrix K.
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Fig. E16 Relationship between power and regularization strength for the SLA scRNA-
seq data Perez et al. (2022). (a) Value of λ1 selected through cross validation in relation to
exponent ϕ of the power transform. (b) Number of nonzero entries in K for every λ1 and ϕ.
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Abstract

Bacterial single-cell RNA sequencing has the potential to elucidate within-
population heterogeneity of prokaryotes, as well as their interaction with host
systems. Despite conceptual similarities, the statistical properties of bacterial
single-cell datasets are highly dependent on the protocol, making proper process-
ing essential to tap their full potential. We present BacSC, a fully data-driven
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computational pipeline that processes bacterial single-cell data without requir-
ing manual intervention. BacSC performs data-adaptive quality control and
variance stabilization, selects suitable parameters for dimension reduction, neigh-
borhood embedding, and clustering, and provides false discovery rate control in
differential gene expression testing. We validated BacSC on a broad selection
of bacterial single-cell datasets spanning multiple protocols and species. Here,
BacSC detected subpopulations in Klebsiella pneumoniae, found matching struc-
tures of Pseudomonas aeruginosa under regular and low-iron conditions, and
better represented subpopulation dynamics of Bacillus subtilis. BacSC thus sim-
plifies statistical processing of bacterial single-cell data and reduces the danger
of incorrect processing.

Keywords: bacterial single-cell RNA sequencing, phenotypic heterogeneity, statistical
analysis, data processing, computational pipeline, data thinning, synthetic data
generation, scanpy
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized genetic analysis of eukaryotic cell compendia
by allowing researchers to extract individual cells’ gene expression profiles and obtain new insights on
intracellular mechanisms, as well as the structure and dynamics within entire populations of cells [1–
3]. These advances have led, among others, to a better understanding of immune responses [4], disease
progression [5], or advancements in drug development [6]. Consequently, similar insights into microbial
heterogeneity are expected from scRNA-seq of bacterial populations, opening up new avenues for assessing
antimicrobial resistance, evolutionary pathways, or within-population differences in response to external
conditions [7]. In addition, bacterial scRNA-seq yields new ways to analyze interactions between the
isogenic microbiome and host systems, for example in toxin regulation [8, 9], formation of metabolic
niches [10], and the analysis of microbial spatial heterogeneity [11].

Applying scRNA-seq technologies to bacteria has however proven to be challenging, e.g. due to low
overall transcript abundance, the short half-life of bacterial mRNA, and difficulties in cell lysis due to
sturdier cell walls [12–15]. Recently, multiple protocols have been developed that enable scRNA-seq of
bacteria on larger scales by tackling these challenges in different ways [13, 14, 16–19]. For example,
ProBac-seq [18] uses a library of oligonucleotide probes to target mRNAs, while BacDrop [13] uses a
two-stage cell barcoding procedure to increase cell numbers.

Datasets from scRNA-seq contain gene expression counts for each UMI (unique molecular identifier)
and are typically sparse, high-dimensional and noisy, requiring specialized methods and particular care
in their statistical processing to obtain biologically meaningful representations [20, 21]. This process has
been extensively discussed for eukaryotic cells, leading to well-documented benchmarks [22, 23], best
practices [24–26], and methods to select adequate hyperparameters [27–29] for each step of the statistical
analysis pipeline. For bacterial scRNA-seq, no such guidelines exist yet, prompting the use of default
parameters and methods without prior assessment of their statistical validity and suitability for the data
at hand. This may, however, lead to suboptimal or even flawed representations of the data, which can
severely impact the quality of biological insights gained from downstream analyses.

Each step in a typical statistical processing pipeline developed for the analysis of eukaryotic scRNA-seq
[24, 26] poses new statistical challenges when applied to bacterial scRNA-seq data:

• In quality control, differences in sparsity and sequencing depth have to be accounted for when filtering
out low-quality genes or cells [30].

• Variance stabilization is a crucial step to ensure comparability for all sequenced cells, but scaling the
data to a common sequencing depth and the choice of an imputation value for zero replacement must
be done with the statistical properties of the data in mind [21, 22].

• The number of principal components used for low-dimensional data representation, as well as the
number of neighbors and minimal distance used in UMAP embeddings, are hyperparameters that are
commonly chosen in a heuristic fashion, but have a significant impact on downstream analysis and
visual representation of the data [27, 31].

• The resolution parameter in cell type clustering is also often determined by visual trial-and-error
procedures [32].

• Finally, recent studies show that differential expression testing between cell types suffers from a double-
dipping issue that inflates the false discovery rate [29] if not accounted for.

In this study, we address these challenges by developing a standard workflow for processing bacterial
scRNA-seq gene expression data that does not require the selection of modeling choices or manual tuning
of parameters. We introduce BacSC, a computational pipeline for automatic processing of scRNA-seq
data that is applicable to datasets generated by various bacterial scRNA-seq protocols. BacSC reevaluates
the validity of methods used in each of the steps outlined above in the context of bacterial scRNA-seq,
adjusts methods if necessary, and automatically chooses suitable hyperparameters in a data-driven way.
To this end, BacSC provides tools for data integration and quality control of bacterial scRNA-seq data,
and performs a simple, yet powerful variance stabilizing transform that is suitable for scRNA-seq data
with varying sequencing depth and high zero inflation. Using techniques from data thinning [31, 33] and
knockoff generation [27, 34], BacSC is able to select suitable parameters and perform dimensionality
reduction, neighborhood embedding, and cell-type clustering without requiring user intervention. BacSC
also offers FDR control for differential expression testing of bacterial scRNA-seq data through contrasting
p-values with synthetic null data[29, 35].

To validate the steps taken in BacSC, we compared the statistical properties of 13 datasets generated
with ProBac-seq [18, 36] and BacDrop [13], emphasizing their low sequencing depth, high zero inflation,
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and differences in marginal gene distribution. As a proof of concept, BacSC was able to distinguish the
same cell types as previously shown through analysis with default or manually chosen parameters for all
datasets with known biological structure. BacSC additionally showed improved ability to describe the
transitional nature of cell competence in B. subtilis, was able to give a more clear distinction of cells
expressing mobile genetic elements in K. pneumoniae, and discovered new cellular subpopulations in K.
pneumoniae and P. aeruginosa. When applied to a combination of P. aeruginosa cells grown under regular
and iron-reduced conditions, BacSC was able to simultaneously integrate cells from both conditions based
on their gene expression profiles and detect differential expression of genes related to iron acquisition.

BacSC is available as a modular framework in Python that seamlessly integrates into the scanpy
[37] workflow and allows for direct downstream analysis with other tools from the scverse [38]. BacSC is
available on GitHub (https://github.com/bio-datascience/BacSC).
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2 Results

2.1 Explorative comparison of bacterial scRNA-seq technologies reveals
differences in key statistical properties

To ensure the cross-platform and cross-species applicability of BacSC, we gathered a total of 13 bacterial
scRNA-seq datasets that were generated with two different sequencing protocols, ProBac-seq [18, 36], and
BacDrop [13] (see section 3). The datasets encompass five bacterial species (Pseudomonas aeruginosa,
Bacillus subtilis, Klebsiella pneumoniae, Escherichia coli, Enterococcus faecium), further distinguished
by strain, growth environment, or treatment condition (Table 1).

Dataset Species/strain Condition Protocol Source

Pseudomonas balanced PB P. aeruginosa PAO1 balanced growth ProBac-seq This study

Pseudomonas li PB P. aeruginosa PAO1 Low Iron environment ProBac-seq This study

Ecoli balanced PB E. coli MG1655 balanced growth ProBac-seq This study

Bsub minmed PB B. subtilis 168 minimal media ProBac-seq McNulty et al. [18]

Bsub damage PB B. subtilis 168 DNA damage induced by
Mitomycin C

ProBac-seq This study

Bsub MPA PB B. subtilis 168 MPA energy stress ProBac-seq This study

Klebs antibiotics BD K. pneumoniae MGH66 6 samples, treated with one
of 3 antibiotics (2 samples
each): Meropenem, Gen-
tamicin, Ciprofloxacin

BacDrop Ma et al. [13]

Klebs untreated BD K. pneumoniae MGH66 Untreated culture (2 sam-
ples)

BacDrop Ma et al. [13]

Klebs BIDMC35 BD K. pneumoniae BIDMC35 Untreated culture BacDrop Ma et al. [13]

Klebs 4species BD K. pneumoniae MGH66 Untreated culture BacDrop Ma et al. [13]

Ecoli 4species BD E. coli 10ß Untreated culture BacDrop Ma et al. [13]

Efaecium 4species BD E. faecium EnGen0052 Untreated culture BacDrop Ma et al. [13]

Pseudomonas 4species BD P. aeruginosa PAO1 Untreated culture BacDrop Ma et al. [13]

Table 1 Description of datasets used to benchmark BacSC. All datasets are named by the convention
species condition protocol. Datasets from ProBac-seq are marked with the suffix ” PB”, datasets from BacDrop are marked
with ” BD”

The number of genes per dataset was mostly dependent on the species (Figure 2A), and ranged between
5,572 (P. aeruginosa) and 2,350 (E. faecium). The sequencing depth per cell was highly dependent on
the sequencing method, with data from BacDrop showing a median sequencing depth between 2 and 43,
while all datasets generated with ProBac-seq had at least a median sequencing depth of 150 (Figure 2B).
In contrast, datasets generated with BacDrop generally encompassed a higher number of cells (median
9,936) than datasets from ProBac-seq (median 3,773).

After filtering out cells with abnormally low or high expression and genes without reads in more than
one cell (See section 2.2), both protocols could be easily distinguished by the number of genes detected,
with all datasets from ProBac-seq encompassing at least 2,922 genes, while datasets from BacDrop con-
tained a maximum of 2,500 genes (Figure 2C, Table E1). This was in part due to the subsetting to 2,500
highly variable genes, which was only performed on the Klebs antibiotics BD, Klebs untreated BD, and
Klebs BIDMC35 BD datasets. The BacDrop data from the four species comparison comprised a much
lower numbers of genes (628 - 1606) without selection of highly variable genes. The number of cells gen-
erally differed more within the BacDrop data (103 - 48,511), while the ProBac-seq datasets had much
more stable cell numbers (1,910 - 13,801; Figure 2C, Table E1).

BacDrop only detected between 24 and 47 unique genes per cell on average, while ProBac-seq covered
at least 49 genes for each cell in every dataset (Figure 2D). Consequently, ProBac-seq had less zero entries
in the filtered read count matrices, with zeroes making up between 86% and 97% of all entries, while
BacDrop showed zero inflation numbers between 95% and 99.2% (Figure 2E). After quality control, we
observed similar discrepancies between protocols in sequencing depth. ProBac-seq not only covered more
genes per cell, but was also able to capture more transcripts, with median sequencing depths ranging from
103 to 794.5. BacDrop datasets only had a median sequencing depth of 45 or less after quality control
(Figure 2F; Table E1). We therefore reasoned that the usage of multiple probes per gene and subsequent
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aggregation through max-pooling in ProBac-seq (see Methods, [36]) leads to higher genome coverage and
sequencing depth for each cell.

2.2 Description of the BacSC pipeline

At its core, statistical processing of scRNA-seq data extracts information from raw transcriptome reads by
filtering, normalization, dimension reduction, and clustering steps [24, 26]. BacSC selects suitable methods
and automates the choice of hyperparameters for each step without the need for manual intervention
(except for quality control; Figure 1). Section 2.2 briefly describes each step, while we give more detailed
descriptions in the ”QUANTIFICATION AND STATISTICAL ANALYSIS” part of the STAR methods.

First, the data is subjected to quality control to filter out barcodes with abnormally low or high gene
expression (Figure 1A). Because our exploratory analysis showed that bacterial single-cell data differs
heavily in terms of average sequencing depth, number of expressed genes, and zero inflation, this step is
highly dependent on the experimental protocol used. Therefore, BacSC leaves this step as the only point
where manual intervention is necessary, but provides tools for outlier detection through median absolute
deviation (MAD) statistics [30] and aggregating probe-based data from ProBac-seq. As with eukaryotic
scRNA-seq data, the main data object after quality control in each dataset is a n× p-dimensional count
table X, containing the read counts of p features for n cells.

Next, the read count data must be normalized and scaled. Because bacterial scRNA-seq data shows
greatly reduced sequencing depth and increased zero inflation compared to eukaryotic scRNA-seq, special
care has to be taken in this step [39, 40]. BacSC first scales each cell individually to have the same number
of reads, and subsequently log-transforms the data. The pseudocount introduced in this step is gene-
specific [22], with overdispersion parameters calculated through sctransform [41] (Figure 1A). Finally,
each gene is scaled to have zero mean and unit variance over all cells.

After variance stabilization, the data is reduced to a lower-dimensional representation by singular
value decomposition (SVD) on the data. The embedding dimensionality k in this step of the scRNA-seq
processing workflow is often set manually, e.g. by finding an ”elbow” in the plot of SVD loadings [25].
BacSC instead uses a count-splitting approach to find a good value for k, which was described by Neufeld
et al. [31]. For this, the raw counts after quality control are split into a training and test dataset, and
the variance-stabilizing transform is applied to both datasets. Then, the latent dimensionality k with
minimal reconstruction error between the k-dimensional embedding of the training data and the full test
data is chosen (Figures 1A, B1).

UMAP (Uniform Manifold Approximation and Projection) plots [42] are a popular tool for two-
dimensional visualization of scRNA-seq data to preserve the local structure and point out global
differences in higher-dimensional data. The algorithm is largely dependent on three parameters - the
latent dimensionality k, the number of neighbors nneighbors considered for each cell, as well as the mini-
mal distance mindist between points. These parameters are often adjusted manually until a satisfactory
picture arises. To eliminate this manual step, BacSC uses the negative-control approach described by
scDEED [27] to determine the latter two latent parameters. scDEED calculates a reliability score - the
correlation between the distance vectors from a cell to its neighbors before and after UMAP embedding
- and compares them to the distribution of contrast scores on a randomly permuted dataset (Figures
1A, B1). It then selects the parameter combination for which the amount of cells with abnormally low
reliability scores is minimized.

Cell clusters in scRNA-seq data are typically detected through the the Louvain [43] and Leiden [44]
algorithms. Both algorithms aim to maximize the modularity of partition over all cells with respect
to a resolution parameter res. Once again, this parameter is usually chosen manually to fit the struc-
ture observed in the UMAP or PCA embeddings. Computational determination of a feasible resolution
parameter that robustly detects cell clusters without creating too many subclusters is, however, not
straightforward. BacSC uses the train and test dataset obtained from count splitting and introduces a
new gap statistic based on the difference in modularity between two clusterings on the test data - one
calculated on the train data and one assigned randomly. Maximizing this gap statistic allows to find a
value for res for which the obtained clustering on the train data also generalizes well to the structure of
the test data Figures 1A, B2).

Bacterial single-cell sequencing allows to characterize heterogeneity within bacterial populations in
unprecedented detail. The discovery of subpopulations and the description and interpretation of different
cell types in bacterial populations is therefore still at an early stage. To characterize previously unknown
cell types, automatic selection of signature genes for each cluster is often achieved through differential
expression (DE) testing [24]. For this task, BacSC provides capabilities for DE testing that takes the
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recently popularized problem of ”double dipping” for DE testing of cell types into account [29, 45, 46].
In short, using the same information (gene expression) to define a clustering as well as the subsequently
determining DE genes to characterize these clusters results in an inflated false discovery rate (FDR).
BacSC solves this issue by adapting the ClusterDE method [29] for FDR control. Due to the highly
sparse nature of bacterial single-cell data, BacSC uses a modified version of scDesign2 [47] to generate
the synthetic null data. Further, BacSC also adapts ClusterDE to achieve better results for highly uneven
cluster proportions (Figures 1B, , B3).

To validate our pipeline, we applied BacSC to all datasets described in Table 1. For quality control, we
manually set dataset-specific filtering parameters on minimal sequencing depth and MAD cutoff (Table
E2), based on visual inspection of the distribution of sequencing depth and number of unique genes per
cell. After variance stabilization, we further reduced the Klebs antibiotics BD, Klebs untreated BD, and
Klebs BIDMC35 BD datasets to 2,500 highly variable genes based on their standardized variances [48].
All other steps of BacSC do not require any manual intervention, and were thus performed automatically.
The determined data distribution, as well as parameters for latent dimensionality, number of neighbors,
minimal distance, and clustering resolution are shown in Table E2.

2.3 BacSC uncovers new biological structures in datasets obtained from
different bacterial scRNA-seq protocols

2.3.1 Transitions between cellular states in B.subtilis are pronounced by BacSC

To show the validity of the transformations and parameters selected in BacSC, we first investigated the
Bsub minmed PB dataset (Figures 3, D18). This data was generated by [18] to validate the ProBac-seq
method. The original analysis with default parameters in Seurat [48] discovered four distinct subpop-
ulations with multiple subclusters and different functionality. In the first two dimensions of the PCA
embedding suggested by BacSC, three larger subpopulations were immediately apparent (Figure 3A),
while a fourth cluster with only 20 cells emerged in the UMAP embedding with BacSC’s selected parame-
ters (Figure 3B). Clustering with the automatically determined resolution resulted in five cell type clusters
(Figure 3B).

Because of the ”double-dipping” issue described above, DE testing produced large numbers for genes
with very small p-values for each cell type (Figure D18I). Counteracting this through the p-value correc-
tion in BacSC revealed characteristic genes for each cell type (Figure 3E-G), but only the two smallest
clusters (3 and 4) had genes significant at a FDR level of α = 0.05 (Figure D18J, Table E4).

Cell type 4 showed increased expression of many sporulation genes (spoIVA, spoVID, spoIID), while
the marker genes in cell type 3 contained many genes associated with cell competence (comFA, comGD,
comGB, comGA, comGC, comFC ). These subpopulations were also found as clusters 9, respectively 6/8
in [18]. Cell type 0 contained cells with very low sequencing depths (Figure 3C, D), and many genes were
significantly underexpressed at an FDR level of 0.1 (Table E4). The genes with the highest contrast scores
for this cell type partially overlapped with genes found in clusters 0 and 3 in the original publication.
Similarly, cell type 1 contained many upregulated genes at an FDR of 0.2. For cell type 2, many structural
flagella components (fliY, fliD, fliK, fliI, fliT ) were among the genes with the highest contrast scores,
but only differentially expressed at an FDR level of 0.26. The region containing cell types 1 and 2 from
BacSC therefore corresponds to clusters 1, 2, 3, and 5 from [18].

Notably, the UMAP from BacSC showed continuous streams of cells between the cell types, especially
between cell types 0, 1, and 3 (Figure 3B), which were not visible in the original analysis [18]. We suspected
these cells to be in a transitional phase between two cell states. The development of competent cells (cell
type 3) is known to be procedural [49], which explains the transition of cells in and out of this cell type.

2.3.2 BacSC shows clear differences in response of K. pneumoniae to different
antibiotics

To showcase the applicability of BacSC to data from different bacterial scRNA-seq protocols, we
revisited an analysis of six samples of Klebsiella pneumoniae generated with BacDrop [13]. The
Klebs antibiotics BD dataset contains two replicates for each of three antibiotic treatments, ciprofloxacin,
meropenem, and gentamicin.

Despite the high sparsity of the data (99.2%, Table E1), BacSC was able to successfully integrate all
six samples. The first two principal components already showed heterogeneity in the data in the form of
three clear subpopulations (Figure 4A). This was enhanced through the UMAP plot and data clustering
(Figure 4B), which revealed two major clusters of cells that split up into two, respectively three cell
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types, and three small cell clusters. For all cell types, a subset of genes was differentially expressed at
FDR levels of 0.2 or lower (Table E5).

The cell types contained in the largest cellular subpopulation (0, 1, and 2) almost perfectly matched
the separation by antibiotics shown in Figure 4D. Within these clusters, cells from both samples were
distributed evenly, suggesting no residual batch effects. Cell types 3 and 5 made up all cells in the
second large subpopulation, which contained a higher number of unique expressed genes than the rest
of the dataset (Figure 4C). Both of these clusters showed significant differential expression of IS903B
transposase-related genes (RS09075, RS22855 ), which matches the subpopulation of mobile genetic ele-
ments (MGE) described by [13]. Contrary to the original analysis, this subpopulation separated more
from the bulk of the cells in BacSC’s UMAP embedding (Figure 4B). The small subpopulations (Cell
types 4, 6, 7) were all characterized by a few genes that were barely expressed in other cells.

2.4 Processing with BacSC discovers a distinct response of P. aeruginosa to
a low-iron environment

2.4.1 Bacterial cell types of exponentially grown P. aeruginosa are similar in
growth conditions with differing iron availability

We next tested if BacSC could recover environment-specific microbial cell types from bacterial cultures
grown under different external conditions. For this, we investigated the Pseudomonas balanced PB and
Pseudomonas li PB datasets. Both datasets contain cells from P. aeruginosa in exponential growth in
minimal media, and sequenced with ProBac-seq. For the first sample, cells were grown in regular minimal
media (MOPS with 10 µM FeSO4), while for the second sample, bacteria were exposed to a mild iron
limitation (0.5 µM FeSO4), which resembles a growth condition mimicking competition between host and
pathogen for the essential trace element during infection.

We first processed each dataset individually with BacSC. The diagnostic plots for both datasets (D22,
D23) showed that normalized sequencing depths, as well as latent dimensionality, neighborhood embed-
ding, and clustering resolution parameters found by BacSC were very similar. The PCA and UMAP
embeddings for both datasets also showed similar patterns (Figures 5A, B, C6A, B, C7A, B). The sequenc-
ing depth vs. genome coverage plots (Figures 5D, E) revealed that in both populations, a subset of cells
had lower coverage at high sequencing depths. This subgroup was identified as cluster 1 in the cell type
clustering. Both datasets further contained two larger subpopulations (cell types 0 and 2), and one smaller
cluster (cell type 3).

The lower-coverage cell types in both datasets were characterized by 51 and 82 genes respectively,
that were differentially expressed at an FDR of 0.05 (Tables E6, E7) when compared to the rest of the
population. Of the 95 genes differentially expressed in either of the two datasets, 38 genes appeared in
both, including 22 genes encoding components of the 30S and 50S subunits of the ribosome (rpsA, rpsB,
rplQ, rpsKD, rplFO, rplDWBCP, rpmC, rplEN, rpsJ, rpsG, rplJ, rplK, rpsRI, Figures C6E-G, C7E-G),
indicating increased translation activity. Cell type 3 also showed considerable overlap between DE genes at
the 5%-level. Here, all 22 genes that were DE in the balanced growth sample were also among the 34 genes
detected in the low-iron culture. Many of these genes encode the R-type pyocin R2 (PA0617, PA0618,
PA0619, PA0620, PA0622, PA0623, PA0640, Figures C6E-G, C7E-G), a phage tail-like bacteriocin that
specifically targets and kills competing bacteria by puncturing their cell membranes [50, 51]. For cell type
2, which contained cells with a large number of expressed genes, a large number of genes was detected
to be DE at an FDR of 0.05, with underexpressed ribosomal genes showing the highest contrast scores,
complementary to the set of DE genes in the low-coverage cell type. The remaining cell type 0 contained
cells with low sequencing depth and showed no statistically significant DE genes.

2.4.2 Combined data processing allows for the detection of genes related to iron
acquisition

To analyze the differences between the cell populations from balanced and low-iron growth conditions, we
created a combined dataset by concatenating the raw count matrices of both experiments. Processing with
BacSC revealed a similar common structure as in the individual datasets (Figures Figure 5C, F, C8A-
D), confirming the similarities detected in the previous section. While the R2 pyocin cluster (cell type 5)
showed good mixing between both conditions, the cell populations with high expression of ribosomal genes
distinctly separated and were even clustered into different cell types (2 and 3, (Figure 5C)). Additionally,
a new cell type (cluster 4) emerged in the combined dataset, which was not detected in either of the
individual datasets. Similar to cell type 0, this cluster showed reduced expression of ribosomal genes (rplF,
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rplP, rplD, rplB), as well as genes encoding for ATP-synthase and the TCA cycle component succinate
dehydrogenase (atpA, atpD, atpH, sdhA, sdhC, Figure C8E-G), suggesting a low energy state. For cell
types 0 and 1, a within-cluster shift of cells by condition was also visible (Figure 5J). As in the individual
data set analyses, marker genes for all cell types except cell type 1 were detected by BacSC at FDR levels
smaller than 0.2.

Plotting the cell type proportions for each sample showed that cell types 2 and 3 almost exclusively
contained cells from one condition, while the other cell types showed no notable changes in proportionality
between the balanced and low-iron conditions (Figure 5M). We confirmed this visual result by differential
abundance testing with scCODA [52] and detected cell types 2 and 3 as differentially abundant at an
FDR level of 0.2.

Finally, we examined the differences in gene expression between cells from both growth conditions.
For this, we first performed DE testing between the balanced growth and low-iron cell populations with a
Wilcoxon rank-sum test. Since this test setup does not suffer from double-dipping, we used the Benjamini-
Hochberg correction [53] to account for multiple comparisons, revealing 186 genes with corrected p-values
of less than 0.05. To verify our findings, we used bulk sequencing results from the Co-PATHOgenex study
[54], also testing differential expression between cells grown in balanced and iron-reduced conditions.
Of note, in this study an abrupt iron limitation was artificially induced by the addition of the iron
chelator 2,2’-bipyridine shortly before harvest. We compared the gene set found by BacSC on the bacterial
scRNA-seq data with three gene sets detected on the Co-PATHOgenex data with different DE tests - the
method described in the Co-PATHOgenex paper, a logistic regression model, and DESeq2 [55], each at
a significance level of 0.05. The gene set from BacSC had good overlap with the gene sets found in bulk
data, as 42 of the 186 genes were detected by at least one other DE test, and the intersection of all four
gene sets contained 20 genes (Figure 5K). Furthermore, 26 of the 42 genes detected in the bulk data were
among the top 50 genes with the lowest adjusted p-values in the DE test on the bacterial scRNA-seq
data (Table E3). Investigating the gene expression levels and function of these 42 genes, we found most
of them to be overexpressed in the low-iron sample (Figure 5G-I, L). Furthermore, most of these genes
(e.g. PA4514, icmP, phuR) are known to be related to iron reception (Table E3).
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3 Discussion

The emergence of protocols for scRNA-seq of bacterial populations is about to transform microbiology
research by allowing to evaluate the transcriptional profiles of bacteria at an unprecedented combination
of scale and resolution. Despite their technological similarity, bacterial scRNA-seq datasets at their cur-
rent state differ significantly from eukaryotic scRNA-seq data in terms of sparsity and sequencing depth.
To facilitate the statistically sound processing of bacterial scRNA-seq data, we present BacSC, a compu-
tational pipeline that allows for easy, dataset-specific quality control and automatic variance stabilization,
low-dimensional representation, neighborhood embedding, clustering, and differential expression analysis
of such data.

By using a variance-stabilizing transform with gene-wise zero imputation parameters [22], BacSC
is able to adequately normalize gene expression data with very large amounts of zero entries and low
sequencing depth. We show that train-test splitting through data thinning [28, 33] and comparison to
negative control data in scDEED [27] provides ways to select suitable parameters for dimensionality
reduction, and neighborhood embedding. Furthermore, selecting a clustering resolution through our newly
defined gap statistic based on count splitting of the raw expression data reveals biologically distinct
subpopulations. To counteract FDR inflation when testing differential gene expression of bacterial cell
types, we extend the ClusterDE method [29] to highly disproportionate cluster sizes. Additionally, our
copula-based simulation setup adapts the approach from scDesign [47, 56] to bacterial scRNA-seq data. To
this end, we add correlation shrinkage [57, 58] and an adjustment for underestimation of small gene-gene
correlations.

Overall, BacSC is a highly flexible framework that performs statistical analysis of bacterial scRNA-
seq data independent of the underlying sequencing protocol, while avoiding common statistical pitfalls.
Through its capabilities for automated parameter selection, BacSC further allows for a set-and-forget
approach to bacterial scRNA-seq data processing, greatly simplifying these tasks. We demonstrated this
flexibility through application to 13 bacterial scRNA-seq datasets from two protocols across five different
species. Despite large differences in size and sequencing depth per cell even after manual quality control,
BacSC was able to integrate, cluster, and perform differential expression testing on each dataset without
needing any further user intervention.

The detected cell types and their marker genes showed remarkable overlap with the clusters previously
found through processing with default or manually selected parameters in multiple datasets [13, 18],
confirming the correctness of BacSC’s findings. BacSC was further able to better depict dynamics between
cellular subpopulations in B. subtilis and found new bacterial cell types in K. pneumoniae. Analyzing two
datasets from P. aeruginosa grown in environments with different iron availability, BacSC found similar
cell types, highlighting its robustness. After joint processing of both datasets with BacSC, differential
expression testing correctly detected various genes related to iron acquisition.

Its modular structure and seamless integration in scanpy [37] allow users to easily apply the entire
BacSC pipeline or parts of it to their own data, and perform downstream analysis with other methods
provided in the scverse [38]. In our studies, we used these capabilities to test for differential abundance
between cell type proportions with scCODA [52].

In addition to the described features, there are multiple areas where further improvements and exten-
sions to BacSC are possible. While we developed and evaluated BacSC with bacterial scRNA-seq data
in mind, the techniques used were designed for eukaryotic scRNA-seq analysis. Therefore, BacSC is in
principal also suited for this type of data, expanding its application range beyond the usecases shown here.

In its current state, BacSC uses methods that are seen as the baseline in scRNA-seq analysis [25].
While we adapted these techniques here to fit the properties of bacterial scRNA-seq data, there exist
a plethora of approaches, each with their own assumptions, that often show improved capabilities on
eukaryotic data [59]. Careful evaluation of these methods in the context of bacterial scRNA-seq requires
further efforts.

Finally, our improvements on the synthetic data generation algorithm for differential expression testing
currently only cover simulation of one homogeneous cell population. An extension to match the capabilities
of scDesign2 and scDesign3 [47, 56] in simulating multiple cell types, batches, trajectories, and spatial
information is an open challenge.

By eliminating the need to manually select suitable techniques and parameters, BacSC removes sources
of errors and allows for more efficient data processing. We therefore believe that BacSC provides an easily
applicable framework that facilitates proper statistical analysis of bacterial scRNA-seq data.
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STAR Methods

RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by
the lead contact, Johannes Ostner (johannes.ostner@stat.uni-muenchen.de).

Materials Availability

Materials generated in this study are freely available at public repositories (see key resources table) or
by contacting the lead contact.

Data and Code Availability

Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of
publication. Accession numbers are listed in the key resources table. Intermediate datasets have been
deposited at zenodo and are publicly available as of the date of publication. DOIs are listed in the
key resources table. This paper analyzes existing, publicly available data. The accession numbers for
these datasets are listed in the key resources table. All original code has been deposited at GitHub
(https://github.com/bio-datascience/BacSC) and is publicly available as of the date of publication. DOIs
are listed in the key resources table. (additional citations in the key resources table: [60–62])

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

For validating the performance of BacSC, we analyzed previously published scRNA-seq datasets.
For ProBac-seq data analysis, we used the Bsub minmed PB dataset from the original publica-
tion (GEO: GSE223752) [18]. For BacDrop data analysis, we selected seven datasets provided in
the original publication [13], and used the read count matrices published by the authors (GEO:
GSE180237). The Klebs BIDMC35 BD, Klebs 4species BD, Ecoli 4species BD, Efaecium 4species BD,
and Pseudomonas 4species BD datasets were used as provided. For the Klebs untreated BD, and
Klebs antibiotics BD datasets, we concatenated the count matrices from multiple samples before analysis
wth BacSC.

Furthermore, in this study we generated additional datasets using ProBac-seq, encompassing two
experiments on Bacillus subtilis, two samples of Pseudomonas aeruginosa, as well as one sample of
Escherichia coli.

ProBac-seq of B. subtilis

For the Bsub damage PB dataset, cells were grown to mid-log phase in spizizen’s minimal media (SMM)
and Mitomycin C (MMC, 0.5µg/ml final concentration) was added to wildtype B.subtilis (strain 168) as
reported by [63]. The Bsub MPA PB data contains B.subtilis cells grown in SMM as described by [64, 65]
to mid-log phase and challenged with Mycophenolic acid (MPA, 40µg/ml final concentration).

ProBac-seq of E. coli and P. aeruginosa

For the samples Ecoli balanced PB, Pseudomonas balanced PB and Pseudomonas li PB MOPS (morpho-
linepropanesulfonic acid) minimal medium (supplemented with 100 ng/µl thiamine) with 0.2 % glucose as
the sole carbon source was used [66]. To induce a mild iron limitation on Pseudomonas li PB, the FeSO4

concentration was lowered to 0.5 µM instead of the regular 10 µM. Single colonies of E. coli MAS1081
[67, 68] and PAO1 were used to inoculate precultures with regular MOPS and were grown for 11-12 hours
at 37°C with shaking at 180 rpm. After washing, main cultures in MOPS with normal iron or reduced
iron content were inoculated at an OD600 of 0.00002 and grown for 10-14 generations. Bacteria were
harvested in balanced growth conditions in early exponential phase (OD600 of 0.2-0.3).

METHOD DETAILS

ProBac-seq of B. subtilis

For all B. subtilis datasets, ProBac-seq was performed as described in the original method [18, 36].
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ProBac-seq of E. coli and P. aeruginosa

Further sample preparation for ProBac-seq was performed as previously described [18, 36], with slight
modifications. In brief, 1 ml of each culture was used for fixation with 1 % formaldehyde for 30 min at
room temperature. To increase the cell yield, all centrifugation steps were carried out at 7,000 x g for
up to 5 min. Overnight storage in MAAM (4:1 V:V dilution of methanol to acetic acid) was omitted.
All further steps were performed according to the protocol of the original method [18, 36]. PAO1-specific
probes were designed and generated as previously described without additional UMI extension. The
single-cell sequencing libraries were quality-checked and sequenced by the GMAK sequencing facility
(HZI, Braunschweig, Germany) on a NovaSeq SP flow cell (100 cycles, 28-10-10-90) resulting in up to
170 million reads per sample. Raw fastq files were processed with CellRanger v7.1.0 [69] with the option
–expect-cells 10000.

QUANTIFICATION AND STATISTICAL ANALYSIS

This section describes statistical details for the individual steps in the BacSC pipeline. Statistical details
and results from application of the BacSC pipeline to all datasets described in table 1 can be found in
supplementary figures D18-D31 and supplementary tables E1-E17.

Processing starts with a raw counts matrix X0 ∈ Nn0×p0

0 , which contains read counts of p0 genes for
n0 droplets.

Quality control

For datasets generated with ProBac-seq, multiple probe reads for each gene are available. As described in
the original publications [18, 36], we aggregated the probes by max-pooling. Furthermore, most datasets
from ProBac-seq were already quality-controlled in CellRanger [69] and therefore needed less additional
filtering. For all ProBac-seq datasets, we chose a minimum sequencing depth cutoff of 100. For data from
BacDrop, we used the minimum sequencing depth cutoff of 15, as provided in the original publication
[13]. For the three largest datasets (Klebs untreated BD, Klebs antibiotics BD, Klebs BIDMC35 BD), we
also selected 2,500 highly variable genes after variance stabilization. BacSC further removes genes that
were expressed in only a single cell, as variance stabilization for these genes is not possible. In contrast to
eukaryotic scRNA-seq datasets, removal of mitochondrial genes is not required for bacterial scRNA-seq,
as bacteria do not contain mitochondria. Still, other highly abundant types of RNA, such as rRNA and
tmRNA, can be removed at this point. For the analysis presented here, we did not perform any removal
of features beyond the preprocessing in CellRanger [69] for ProBac-seq or UMI-tools [70] for BacDrop.

Further outliers are detected by filtering cells based on median absolute deviations (MAD) of their
log-transformed total counts and number of expressed genes [30]: MAD(S) = mediann

i=1(| log(Si) −
median(log(S))|) where S is either the vector of sequencing depths

∑p0

j=1 X·,j or number of expressed
genes over all cells. A cell is considered an outlier if for either of the two metrics, |Si − median(S)| >
nmads ∗MAD(S), where nmads is the factor defined in table E2.

Table E2 gives an overview over the filtering parameters chosen for each dataset. After filtering, X0

is reduced to a matrix X ∈ Nn×p
0 of p genes and n cells.

Variance stabilization

For variance-stabilizing transformation (VST) of the filtered read counts, we follow the results from [22].
Assuming potential overdispersion of the count distribution, we use an approximation to the ideal VST
determined by the delta method, a log-transformation in combination with common-sum scaling of the
counts:

X̃i,j = log(
Xi,j

mi
+ ν) (1)

where mi =
∑p

j=1 Xi,j

mediann
k=1(

∑p
j=1 Xk,j)

scales each cell’s counts to the median value of all sequencing depths. We

chose the median sequencing depth as a scaling factor to gain robustness to outliers in sequencing depth.
Adding a pseudocount ν before log-transformation is necessary to handle zero entries in X. As

described in [22], we set νj =
θj
4 for each gene j = 1 . . . p, where θj denotes the gene’s overdispersion

factor. Calculating this overdispersion factor is not straightforward for genes with very low numbers of

expressed genes, as the relation θj =
mean(X·,j)

2

V ar(X·,j−mean(X·,j))
becomes very sensitive to single entries in X.

Instead, we make use of the gene overdispersion estimates provided by sctransform [41], which jointly
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models all genes, and thus produces more robust estimates of θj . To this end, we apply sctransform to
the count matrix X, extract the overdispersion estimates, and use them in equation 1.

After VST, we scale each gene individually to zero mean and unit variance by applying scanpy’s scale
function [37], clipping large values at 10. This results in a normalized gene expression matrix Y ∈ Rn×p.

Dimension reduction

The selection of the best embedding dimensionality kopt through data thinning was described for Poisson-
distributed data in [31]. There, data thinning [33] is used to split the raw count data X into two n ×
p-dimensional datasets Xtrain and Xtest by a random binomial split on each individual entry in X. The
resulting train and test matrices are then both Poisson-distributed again. Because eukaryotic single-cell
data is typically assumed to follow a Negative Binomial (NB) distribution for each gene, [28] extended
the data-thinning approach to NB-distributed data. However, the lower read counts in bacterial scRNA-
seq suggest that the data might follow a linear instead of a quadratic mean-variance pattern and are
therefore Poisson-distributed.

To determine the distributional assumption for count splitting, we first calculate the mean µj and
variances σ2

j of X·,j for each gene j = 1 . . . p. We then compare Pearson correlation coefficients r of a

linear and a quadratic relation between µ and σ2. If rquadratic > rlinear, we assume X to be Negative
Binomial distributed, otherwise it is Poisson-distributed. The raw data distribution for each dataset is
shown in Table E2.

Depending on the chosen data distribution, X is split into two datasets by Poisson or NB count
splitting (Figure B1A, B). In both cases, we set the split ratio ϵ = 0.5 to ensure an even split between
train and test data and maximize the probability of obtaining a nonzero entry in train and test data if
Xi,j > 1. We then determine all genes or cells that have only one nonzero entry in Xtrain or Xtest, and
remove them from both data splits. In line with [31], we apply the VST described in section 3 to both
Xtrain and Xtest, using the θ parameters determined on the whole data to speed up computation, and
obtain transformed matrices Ytrain and Ytest.

To determine kopt, we perform a singular value decomposition (SVD) Ytrain = UΣV T on the training
data. For each k = 1 . . . 20, we then calculate the reconstruction loss as sum of squared differences between
the test data and the k-dimensional approximation of the SVD of the train data (Figure B1C):

Lk = ||Ytest − U·,1:kΣ1:k,1:kV
T
·,1:k||2F

kopt = argmin
k=1...20

L(k)
(2)

Data visualization

BacSC selects the latent parameters nneighbors and mindist for constructing a UMAP embedding of the
data through scDEED [27]. For every combination of nneighbors (the number of neighbors for each cell in
the neighborhood graph) and mindist (the effective minimum distance between points), scDEED defines
a reliability score for each cell as the Pearson correlation between the euclidean distances to the 50%
closest cells in PCA space and the euclidean distances to these cells after UMAP embedding. To obtain
a baseline distribution, another set of reliability scores is calculated on a permuted dataset where each
gene’s expression values are shuffled. scDEED then classifies the embedding of cells in the original dataset
as ”trustworthy”, ”undefined”, or ”dubious” based on the 95% and 5% quantiles of the distribution
of reliability scores in the permuted data (Figure B1D). Finally, the parameter combination with the
smallest number of dubiously embedded cells is selected (Figure B1E, F).

As scDEED is only available in R, the BacSC pipeline includes a Python implementation of
the method. For every dataset, we considered all pairwise combinations of parameters: nneighbors :
(10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250); mindist : (0.05, 0.1, 0.3, 0.5, 0.7).

Clustering

The resolution parameters in Louvain and Leiden clustering are essential for defining the granularity of
the resulting partition [44, 71]. Both algorithms aim to optimize the modularity or a similar metric of a
partition on the neighborhood graph defined during UMAP generation:

Modularity =
1

2m

∑

c

(ec − γ
K2

c

2m
) (3)
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where m is the total number of edges in the neighborhood graph, ec is the number of edges within cluster
c, and Kc is the sum of degrees over all nodes in cluster c, and γ is the resolution parameter. Generally, a
higher resolution parameter will lead to a more fine-grained clustering. While both algorithms effectively
approximate an optimal clustering for a given value of γ, the choice of a ”good” resolution parameter is
highly dependent on the structure and biological source of the data at hand [32, 72]. Larger datasets or
datasets from more complex communities generally contain more subclusters and thus warrant a larger
value of γ to detect all relevant subpopulations. On the other hand, choosing the resolution too large
will result in non-robust clusterings that are highly sensitive to small perturbations of the data [73].
Furthermore, cluster assignments and the number of subpopulations are not monotonic in γ, complicating
the evaluation of clustering quality [32]. In BacSC, we aim to automatically find a resolution parameter
that results in an informative, but stable clustering of the cells.

To this end, we adapt the idea from [28] and use the train and test datasets obtained through count
splitting for clustering evaluation. Starting with the variance-stabilized train and test data from dimen-
sionality reduction, we generate the neighborhood graph for both datasets with the k and nneighbors

parameters determined earlier. For each value of γ in a set of possible resolutions, we then perform Lei-
den or Louvain clustering on the training data, resulting in a cluster assignment ctrain. Since training
and test data contain the same cells, we can now obtain a measure for the robustness of the clustering
by calculating the modularity (3) for ctrain on the neighborhood graph of the test data (Figure B2A).
We denote this value with Mtest. Since modularity generally decreases with the number of clusters, we
cannot select the value of γ for which Mtest is maximal. Instead, we need to compare the test data reso-
lution to a baseline score for each resolution value. Therefore, we generate a random cluster assignment
on the test data by permuting the labels from ctrain and calculate Mrandom, the modularity of the ran-
dom clustering on the neighborhood graph of the test data. Finally, we select the resolution where the
gap statistic between test modularity and random modularity is maximal (Figure B2B, C):

resopt = argmax
γ

(Mtest −Mramdom) (4)

and perform a clustering with resopt on the full dataset to obtain cell type clusters (Figure B2D).
For processing the datasets in this manuscript, we used the Leiden algorithm and modularity score and
tested possible resolutions γ = (0.01, 0.03, 0.05, . . . 0.49). The same procedure is however also applicable
to Louvain clustering or other measures, e.g. the Constant Potts model [74].

Even though the resolution value determined by maximizing our gap statistic provides improvement
over random cluster assignment while being robust to small data perturbations, it is by no means the
only ”correct” resolution value. For some datasets, more fine-grained clusterings can give further insights
into subpopulations of the data. Rather, resopt may serve as a baseline clustering resolution that gives
an adequate first insight into the data.

Differential expression testing

Identifying genes with characteristic expression for cell clusters defined by the same gene expression
values is an instance of reusing information, or ”double dipping” [46], and controlling the false discovery
rate under such conditions is essential to achieve adequate results. The ClusterDE method [29] provides
FDR control for DE testing of cell types in eukaryotic scRNA-seq by contrasting the p-values of interest
with p-values calculated on a synthetically generated negative control dataset. In BacSC, we implement
a modified version of the algorithm that takes the characteristics of bacterial single-cell data into account
and allows for testing of highly disproportionate cell populations. The following description assumes a
DE test of cell type C with nC cells against the union of all other cell types, containing nC̄ = n − nC

cells (Figure B3A). Tests of differential gene expression between two cell types are possible in the same
manner, but the data needs to be subsetted to the clusters of interest first.

ClusterDE first generates negative control data with the same marginal gene distributions and gene-
gene correlations as the original data, but no intrinsic cluster structure. This synthetic data generation
is done with scDesign2 [47] or scDesign3 [56], which both use a Gaussian copula approach to generate
synthetic scRNA-seq data. To account for the high sparsity and low sequencing depth of bacterial scRNA-
seq data, we adapted the approach from scDesign2 in BacSC. In a first step, the marginal distribution
of raw counts is determined for every gene j. As in scDesign2, we consider four possible distributions -
Poisson (Poi), zero-inflated Poisson (ZIP), Negative Binomial (NB), and zero-inflated Negative Binomial
(ZINB). If the gene’s empirical variance σ2

j is larger than its empirical mean µj , we determine the gene
to be NB- or ZINB-distributed, otherwise its distribution is Poi or ZIP. We then fit the Poisson or NB
distribution with and without zero-inflation to X·,j through maximum likelihood estimation via BFGS,
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as implemented in the statsmodels package [75]. Because of the large number of zeros, we experienced
frequent convergence problems with NB estimation. To counteract this, we set the initial mean and
dispersion parameters for both NB and ZINB to the mean and dispersion of all nonzero entries in X·,j ,
and the initial zero inflation in the ZINB model to the proportion of zeros in X·,j . If both the NB and
ZINB models still do not converge, we instead use the estimates from the NB model with default starting
parameters, regardless of convergence. We then perform a likelihood-ratio test between the log-likelihoods
of the zero-inflated and regular model. If the null hypothesis of no difference in log-likelihood between
both models is rejected at the α = 0.05 level, we model the gene with zero-inflation, otherwise we use
the non-zero-inflated estimate. Denote the chosen distribution for gene j with its estimated parameters
as as Dj(ϕj)

As in scDesign2, we now transform the discrete counts for each gene to continuous quantiles through
a uniform approximation with the corresponding cumulative distribution function (CDF) D̂j(ϕj):

U·,j = VjD̂j(X·,j , ϕj) + (1− Vj)D̂j(X·,j + 1, ϕj) (5)

with Vj ∼ Uniform(0, 1)n. We then transform these quantiles by the inverse CDF (denoted Φ−1) of
a standard normal distribution and calculate their empirical correlation matrix R ∈ Rp×p.

Contrary to eukaryotic scRNA-seq, where current datasets contain many more cells than genes, most
of our bacterial scRNA-seq data is underdetermined, with n < p (Table E1). Therefore, the entries of the
empirical covariance matrix must be shrunk to obtain a good estimate for R [57, 58]. To this end, we use
a Python reimplementation of the covariance shrinkage proposed in [76].

The uniform approximation 5 in the copula transformation is necessary to allow the use of Gaussian
copula for discrete count data, but shifts the count matrix by an average of 0.5. Since bacterial scRNA-
seq data contains mostly zero or very small entries, this leads to considerably lower gene-gene correlations
and gene variances in the generated data. To counteract this, we introduce a scaling factor δ on off-
diagonal entries of R where the absolute absolute value of the original data’s gene-gene correlation S is
larger than 0.1:

R̂i,j(δ) =

{
δRi,j , if |Si,j | > 0.1

Ri,j , otherwise
(6)

The scaled correlation matrix R̂(δ) is not guaranteed to be positive definite though. To obtain a
positive definite matrix R̃(δ) that is close to R̂(δ), we calculate the eigendecomposition (λ, v) of R̂(δ),
increase all eigenvalues by −λmin + 10−12 if the smallest eigenvalue λmin is negative, and set R̃(δ) =
v diag(λ̃) v−1 with the shifted eigenvalues λ̃. We then determine the ideal δ through a golden ratio
optimizer [77] with initial bracket (1, 2) that minimizes the sum of squared differences between the scaled
entries of R̃(δ) and S:

δ∗ = argmin
δ

∑

(i,j):|Si,j |>0.1

(Si,j − R̃(δ)i,j)
2 (7)

Scaling of the entries in R will slightly overestimate the gene means of the generated data (Figure
B3B), but gives better results for large gene variances and gene-gene correlations (Figure B3C, D). To
simulate synthetic null data with n′ samples and no apparent cluster structure, we generate n′ samples
Ẑ from a Normal(0, R̃(δ∗) distribution, and transform them back into the original space by the standard
normal CDF and the inverse CDF of Dj(ϕj):

X̂·,j = D̂−1
j (Φ(Ẑ·,j)) ∈ Nn′×p

0 (8)

Using this procedure, we can obtain a synthetic null dataset with marginal distributions and gene-
gene correlations similar to the target data, but no cluster structure. To allow for generation of negative
control data that has the same numbers of cells in both groups as the original data, we set n′ = 2n and
subset X̂ after processing. Analogous to ClusterDE, we process the synthetic null data in the same way
as the original data. We use the same parameters for dimension reduction and neighborhood embedding
as determined for the target data, but re-run sctransform on the null data to get new estimates for the
gene-wise overdispersion θ. By finding a suitable resolution for the Leiden algorithm, we cluster X̂ into
exactly two parts, and randomly draw nC and nC̄ cells from both clusters, respectively (Figure B3E).

FDR control in ClusterDE and BacSC is performed through contrast scores and the Clipper method
[35]. We first obtain two sets of n p-values by performing the same DE test (e.g. Wilcoxon rank-sum) on
the original data and on the drawn subset of the synthetic null data (Figure B3F, G). Next, we calculate
the contrast score
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Γi = (−log10(pdata,i)− (−log10(pnull,i))) (9)

for each pair of p-values. Given a FDR level α, Clipper then finds a threshold T on the contrast scores

T = min

{
0 < t < max(Γ) :

|{i : Γi ≤ −t}|+ 1

|{i : Γi ≥ t}| ∨ 1
≤ α

}
(10)

For genes with Γi > T , the expected FDR is less than α [34] and we denote them as differentially
expressed (Figure B3H).

While differential expression testing with contrast scores is not computationally intensive, the gen-
eration of synthetic null data does require some computational power. Fortunately, a series of tests of
each cell type’s gene expression against the union of all other cell types only requires generation of the
synthetic null data once, as the same set of cells is included in every test and therefore marginal gene
distributions and correlations are identical. Only the selection of nC and nC̄ cells from X̂ and subsequent
steps have to be performed individually for each cell type.
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Appendix A Additional dataset analysis

This section contains biological interpretation of selected datasets that were not discussed in the main
text.

A.1 BacSC reveals effects of DNA damage in B.subtilis

One more impression on how external factors can change the composition of bacterial cell types is pro-
vided by the Bsub damage PB dataset by comparing this data to the same species grown in minimal
media without DNA damage. First, the PCA plot of the DNA-damaged population did not exhibit the
characteristic separation into three subpopulations as observed in the Bsub minmed PB dataset (Figure
C10A). Instead, the UMAP embedding showed a much more homogeneous population structure C10B)
with six different subclusters, and one separate cell type (cluster 6).

This cell type again contained competent cells, as indicated by an overexpression of com genes
(FDR=0.1, Figure C10E, F, Table E10) although in a much lower concentration than in the experiment
without DNA damage (0.9% vs. 9.4% of analyzed population). For cell types 1 and 2, BacSC found many
genes to be up- or downregulated, respectively, at an FDR level of 0.1. Cell type 4 showed an overex-
pression of genes related to subtilosin A production (albE, albF, albC, albA, albD), while cell types 3
and 5 showed an overexpression of genes related to the SPbeta prophage (yomS, yomP, yomR, ...), and
prophage PBSX (xtmA, xtmB, xkdE, xkdC, etc.), albeit only at FDR levels larger than 0.5.

A.2 BacSC discovers a new cell type in K. pneumoniae

The Klebs untreated BD data contains 48,511 cells after quality control and is thus the largest experiment
of our analyzed datasets, but also one of the most sparse (99.1% zero entries, Table E1). The PCA plot
generated by BacSC (Figure C12A) showed a separation of many cells that were later clustered as cell
type 1 (Figure C12B). This cell type showed higher sequencing depth (Figure C12D) and a larger number
of unique expressed genes per cell on average (Figure C12C).

Clustering revealed three distinct subpopulations (Figure C12B). Cell type 1 showed a distinct set of
genes that were upregulated at an FDR of 0.05 (Figure C12E, G; Table E12). This cell type comprised
2,194 cells and was characterized by IS903B transposase genes (RS22855, Figure C12F). This MGE
subpopulation was already described in the original publication, but separated more clearly from the rest
of the population in the UMAP generated by BacSC (Figure C12B).

Cell type 0 made up the bulk of the cell population (44,236 cells) and was distinguished from the other
cell types by no expression of IS903B transposase genes. The analysis with BacSC also found another
cell type (Cluster 2), which was not described by [13]. Similar to the high-ribosomal cell type discovered
in P. aeruginosa, this subpopulation was mostly characterized by a higher expression of ribosomal genes
(rplP, rplC, rpoC ).
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Appendix D Diagnostic plots for all datasets

This section contains a selection of diagnostic plots from BacSC for each dataset from table 1.
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Appendix E Supplementary tables
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Dataset Cells Genes Minimum
seq. depth

Maximum
seq. depth

Median seq.
depth

Zero counts
(percentage)

Maximum
count

95% quantile 99% quantile

Pseudomonas balanced PB 1544 5553 413 5704 794.5 0.862 136.0 1.0 3.0

Pseudomonas li PB 1255 5540 360 4464 647.0 0.881 80.0 1.0 2.0

Ecoli balanced PB 3386 3968 103 495 163.0 0.963 14.0 0.0 1.0

Bsub minmed PB 2784 2952 141 1289 325.0 0.911 45.0 1.0 2.0

Bsub damage PB 13801 2959 268 1839 555.0 0.861 110.0 1.0 3.0

Bsub MPA PB 6703 2937 136 948 267.0 0.940 105.0 1.0 2.0

Klebs anitbiotics BD 19638 2500 14 275 21.0 0.992 13.0 0.0 0.0

Klebs untreated BD 48511 2500 12 728 21.0 0.991 30.0 0.0 0.0

Klebs BIDMC35 BD 9168 2500 15 371 45.0 0.990 26.0 0.0 0.0

Klebs 4species BD 315 1265 9 196 19.0 0.978 10.0 0.0 1.0

Ecoli 4species BD 983 1301 10 556 21.0 0.981 35.0 0.0 1.0

Pseudomonas 4species BD 103 628 8 137 18.0 0.953 7.0 0.0 1.0

Efaecium 4species BD 2113 1606 12 289 22.0 0.985 19.0 0.0 1.0

Table E1 Dimensionality and summary statistics of datasets after quality control with BacSC. If not stated otherwise, statistics are in terms of counts/absolute values.
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Dataset Minimum
sequencing
depth

Minimum cells
per gene

Median abso-
lute deviation
cutoff (nmads)

Number of
removed bar-
codes

Data distribu-
tion

Latent dimen-
sion (kopt)

n neighbors min dist clustering reso-
lution

Pseudomonas balanced PB - 2 5 108 NB 3 150 0.30 0.15

Pseudomonas li PB - 2 5 71 NB 3 50 0.30 0.13

Ecoli balanced PB 100 2 5 1376 Poi 2 50 0.05 0.07

Bsub minmed PB 100 2 5 0 Poi 4 20 0.50 0.15

Bsub damage PB 100 2 5 61 Poi 8 150 0.30 0.37

Bsub sporulation PB 50 2 30 10204 Poi 4 250 0.30 0.29

Bsub MPA PB 100 2 10 197 Poi 2 10 0.05 0.03

Klebs anitbiotics BD 15 2 15 1214846 Poi 5 150 0.10 0.17

Klebs untreated BD 15 2 15 409547 Poi 3 70 0.05 0.01

Klebs BIDMC35 BD 15 2 5 768 Poi 3 15 0.10 0.09

Klebs 4species BD 15 2 10 8335 Poi 4 10 0.70 0.21

Ecoli 4species BD 15 2 10 8671 NB 7 25 0.50 0.25

Pseudomonas 4species BD 15 2 10 8089 Poi 1 15 0.05 0.15

Efaecium 4species BD 15 2 10 7862 Poi 3 25 0.05 0.09

Table E2 Overview over filtering thresholds used for quality control, number of removed barcodes, and hyperparameters determined during the course of BacSC in each dataset. Both P.aeruginosa
datasets generated with ProBac-seq were already quality-controlled in CellRanger and therefore needed no further cell filtering for minimal sequencing depth. The ”Data distribution” column denotes
the data distribution determined for count splitting (see Methods). ”NB” stands for the Negative Binomial distribution, ”Poi” denotes the Poisson distribution.
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Gene Symbol Name PGFam Rank
(Wilcoxon
test)

PA4514 NaN iron transport outer membrane recep-
tor

NaN 1

PA4370 icmP insulin-cleaving metalloproteinase
outer membrane protein

NaN 2

PA4515 NaN hydroxylase NaN 4

PA5531 tonB1 transporter TonB NaN 6

PA4709 NaN hemin degrading factor NaN 9

PA4710 phuR heme/hemoglobin uptake outer mem-
brane receptor PhuR

NaN 10

PA4516 NaN hypothetical protein NaN 11

PA4707 NaN ABC transporter permease NaN 13

PA0472 NaN RNA polymerase sigma factor RNA polymerase ECF-type sigma fac-
tor

14

PA0672 hemO heme oxygenase Heme oxygenase HemO, associated
with heme uptake

16

PA2468 foxI ECF sigma factor FoxI FIG006045: Sigma factor, ECF sub-
family

17

PA2426 pvdS extracytoplasmic-function sigma-70
factor

Sigma factor PvdS, controling
pyoverdin biosynthesis

18

PA4371 NaN hypothetical protein NaN 19

PA4513 NaN oxidoreductase NaN 20

PA0929 NaN two-component response regulator Two-component transcriptional
response regulator, LuxR family

21

PA2467 foxR anti-sigma factor FoxR Iron siderophore sensor protein 24

PA4468 sodM superoxide dismutase NaN 26

PA3530 NaN hypothetical protein NaN 28

PA0931 pirA outer membrane receptor FepA TonB-dependent receptor; Outer
membrane receptor for ferric enter-
obactin and colicins B, D

31

PA5217 NaN iron ABC transporter substrate-
binding protein

NaN 34

PA3899 NaN RNA polymerase sigma factor NaN 36

PA4470 fumC1 fumarate hydratase NaN 39

PA4708 phuT heme-transporter PhuT NaN 40

PA4227 pchR transcriptional regulator PchR NaN 42

PA1911 femR sigma factor regulator FemR Iron siderophore sensor protein 43

PA4168 fpvB second ferric pyoverdine receptor FpvB NaN 45

PA0930 NaN two-component sensor two-component sensor 55

PA1912 femI ECF sigma factor FemI FIG006045: Sigma factor, ECF sub-
family

59

PA3900 NaN transmembrane sensor NaN 71

PA1300 NaN ECF subfamily sigma-70 factor FIG006045: Sigma factor, ECF sub-
family

73

PA0471 NaN transmembrane sensor Putative transmembrane sensor 79

PA4706 NaN hemin importer ATP-binding subunit NaN 81

PA2033 NaN hypothetical protein Siderophore-interacting protein 86

PA1365 NaN siderophore receptor Ferrichrome-iron receptor @ Iron
siderophore receptor protein

99

PA4471 NaN hypothetical protein NaN 105

PA4705 NaN hypothetical protein NaN 108

PA1802 clpX ATP-dependent protease ATP-binding
subunit ClpX

ATP-dependent Clp protease ATP-
binding subunit ClpX

113

PA1301 NaN transmembrane sensor Iron siderophore sensor protein 137

PA4467 NaN hypothetical protein NaN 153

PA0800 NaN hypothetical protein FIG024006: iron uptake protein 154

PA4469 NaN hypothetical protein NaN 155

PA5148 NaN hypothetical protein NaN 158

Table E3 Description of genes and rank of p-value from DE testing balanced growth versus low-iron in the combined
Pseudomonas balanced PB and Pseudomonas li PB dataset. Only genes that are DE in the Copathogenex dataset for at least one of the
three DE tests performed on that data are shown
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Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 1219 0.059649 0 1804 2195

1 897 0.148019 0 0 1517

2 386 0.257908 0 0 0

3 262 0.027027 47 50 50

4 20 0.035714 28 34 62

Table E4 Description of clusters for the Bsub minmed PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 7954 0.076923 0 13 25

1 5960 0.102564 0 0 111

2 3262 0.052632 0 62 667

3 1843 0.016129 96 122 673

4 255 0.111111 0 0 41

5 223 0.029412 69 83 113

6 74 0.016667 102 121 160

7 67 0.012987 102 118 133

Table E5 Description of clusters for the Klebs antibiotics BD dataset. The table shows number of cells, minimal FDR
(q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 571 0.273290 0 0 0

1 484 0.020833 51 71 81

2 415 0.028825 5056 5209 5209

3 74 0.045455 22 23 27

Table E6 Description of clusters for the Pseudomonas balanced PB dataset. The table shows number of cells, minimal
FDR (q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 516 0.014925 82 4462 4850

1 446 0.798621 0 0 0

2 239 0.030303 5105 5210 5210

3 54 0.029412 34 35 36

Table E7 Description of clusters for the Pseudomonas li PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 777 0.041667 24 31 44

1 773 1.000000 0 0 0

2 576 0.025000 43 54 66

3 396 0.120000 0 0 34

4 194 0.025000 50 66 71

5 124 0.029412 34 36 36

Table E8 Description of clusters for the combined Pseudomonas balanced PB and Pseudomonas li PB dataset. The
table shows number of cells, minimal FDR (q value) over all genes, and number of differentially expressed genes at three
different FDR levels.
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Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 1132 0.416667 0 0 0

1 796 0.006452 1423 1821 2374

2 729 1.000000 0 0 0

3 729 0.055556 0 281 562

Table E9 Description of clusters for the Ecoli balanced PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 5166 0.263282 0 0 0

1 3734 0.086339 0 2694 2694

2 3246 0.083924 0 2049 2467

3 576 1.000000 0 0 0

4 526 0.778626 0 0 0

5 422 0.500000 0 0 0

6 131 0.100000 0 0 11

Table E10 Description of clusters for the Bsub damage PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 2275 0.388889 0 0 0

1 1940 0.019231 66 245 649

2 1602 0.008163 926 1634 2158

3 886 0.200000 0 0 0

Table E11 Description of clusters for the Bsub MPA PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 44236 0.007299 148 161 362

1 2194 0.005988 324 412 676

2 2081 0.095238 0 21 21

Table E12 Description of clusters for the Klebs untreated BD dataset. The table shows number of cells, minimal FDR
(q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 2504 0.050000 0 20 26

1 1892 1.000000 0 0 0

2 1807 0.125000 0 0 8

3 1589 0.066667 0 15 86

4 914 0.008696 1047 1237 1561

5 255 0.142857 0 0 41

6 207 0.142857 0 0 7

Table E13 Description of clusters for the Klebs BIDMC35 BD dataset. The table shows number of cells, minimal FDR
(q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 137 0.071429 0 14 53

1 96 0.019608 62 86 111

2 42 0.041667 24 31 36

3 26 0.333333 0 0 0

4 14 0.062500 0 29 30

Table E14 Description of clusters for the Klebs 4species PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.
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Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 592 0.258621 0 0 0

1 107 0.062500 0 97 148

2 83 0.030303 33 41 82

3 56 0.040000 43 72 84

4 33 0.025641 39 58 69

5 30 0.018519 56 62 72

6 29 0.021277 52 54 63

7 28 0.027027 37 37 53

8 25 0.043478 43 47 53

Table E15 Description of clusters for the Ecoli 4species PB dataset. The table shows number of cells, minimal FDR (q
value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 42 0.206897 0 0 0

1 32 1.000000 0 0 0

2 29 0.043478 23 65 144

Table E16 Description of clusters for the Pseudomonas 4species PB dataset. The table shows number of cells, minimal
FDR (q value) over all genes, and number of differentially expressed genes at three different FDR levels.

Cell Type Number of cells minimal q DE genes, FDR = 0.05 DE genes, FDR = 0.1 DE genes, FDR = 0.2

0 943 0.755102 0 0 0

1 589 1.000000 0 0 0

2 488 0.571429 0 0 0

3 36 0.018868 63 73 99

4 33 0.022727 48 53 89

5 24 0.100000 0 0 11

Table E17 Description of clusters for the Efaecium 4species PB dataset. The table shows number of cells, minimal
FDR (q value) over all genes, and number of differentially expressed genes at three different FDR levels.
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Statistical techniques for sparse compositional count data with applications to high-throughput single-cell RNA and amplicon sequencing
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Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig, ohne uner-
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