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Learning how: ‘Knowing that’ and ‘knowing how’ in 

statistical learning of contextual repetitions in a 

visual search task 

 

 

 

 

 

General Introduction 

 

Ryle (1945) famously made the distinction between ‘knowing that and knowing how’: 

For instance, knowing the rules and even having been provided with abundant 

instructions by an expert, does not make a good chess player. Conversely, a chess 

expert may not be able to explicate their method of success, while, notwithstanding, 

performing exceptionally (Ryle, 1945).  

This principle holds true for many aspects of life, be it for playing chess, gardening or 

mathematics. However, there has been little research into the effects of ‘knowing 

how’ regarding our core cognitive functions, such as perception and, intricately 

related to it, selective attention.  
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Background and motivation 

 

In fact, theories of visual search, the prevailing framework under which visual 

attention is investigated (Treisman & Gelade, 1980; Wolfe et al., 1989; Wolfe, 1994, 

Wolfe, 2021) predominantly focus on factors that allow to (learn to) “know that” 

something is the target given a set of stable visual objects and events in the sense 

that assessing the visuospatial properties of these (with the target covarying) items is 

akin to propositional statements whether an item should be considered as the target 

of the search (Chun & Jiang, 1999). 

 

In contrast to this, an alternative, and so far, neglected account can be conceived, in 

which identifying the target is not a function of e.g., a process of elimination by 

performing computations in feature space (for early evidence of overt attention being 

placed not according to optimal feature selection, see e.g. see Zelinsky, 1996) but is 

instead a direct result of behavior which itself is intelligent (Ryle, 1945). Likewise, 

faster identification of the target in statistically informative environments of non-

target, distractor, objects cannot just be thought of as a consequence of learned 

associations between the individual layout formed by the distractor elements and the 

individual target location (i.e., contextual-cueing effect; e.g., Chun & Jiang, 1998; 

Brady & Chun, 2007). Instead, an argument can be made that learning and refining 

the process of search itself, i.e. the ability to (learn to) “know how” the target can be 

searched for and found in an effective manner, may be a core mechanism in how we 

can make use of our environment for adaptive behavior. 
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The goal of this thesis is to demonstrate how procedural “knowing how” learning 

contributes, and moreover, proactively facilitates visual search, demonstrated on the 

example of contextual cueing. While it is quite well accepted that procedural learning 

aids performance in cognitive tasks (Fitts & Posner, 1967, Anderson, 1982), here, 

the argument is made that functions associated with attentional enhancement or 

attentional suppression (Geng, 2014) can be explained as an instance of procedural 

learning, without involving a rather “etheric”, intangible notion of attention (James, 

1980). Further, learning a procedure of the task instead of learning propositional 

statements about the goal of the task (i.e. “meta information”, such as the 

computation of abstract conditional probability distributions) may often better reflect 

the cognitive processes (not) involved.  
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The Contextual Cueing task 

 

The central paradigm utilized is that of Contextual Cueing (Chun & Jiang, 1998): In 

each trial, participants have to search for a target, the letter T, which is rotated by 

either 90° or 270°, hidden among a set of rotated L-letters, and have to indicate the 

T’s (left vs. right) orientation by pressing one of two buttons, with the response 

verifying whether the target was indeed detected. Trials are organized into blocks, 

and in each block, target positions (but usually not their orientations) repeat. 

Unbeknownst to the participants, for half of those trials, not only the target position 

repeats, but also the (at the beginning of the search task randomly generated) 

configuration of L-letters. These are termed ‘repeated’ or ‘old’ contexts, in contrast to 

‘non-repeated’ or ‘new’ contexts in which the L-configuration is generated anew for 

each block. The reason for keeping target positions constant in repeated and non-

repeated contexts is to control for absolute target position learning (Geng & 

Behrman, 2005) and therefore allowing to investigate the influence of an invariant 

context on the search performance. Typically, the number of repeated and non-

repeated displays is kept identical, and one block has usually 12, ranging from 4 

(Schankin & Schubö, 2010; Sewell et al., 2019), 12 (Chun & Jiang, 1998), up to 18 

(Jiang & Kramer, 2004) target locations for repeated, as well as for non-repeated 

displays. By keeping the target locations constant in non-repeated displays as well 

as repeated displays, the effect of context, independently of absolute target position 

learning (Shaw & Shaw, 1977; Shaw, 1978; Miller, 1988; Geng & Behrmann, 2005). 

 

The central outcome of these studies is that a repeating context facilitates search in 

terms of reduced response times (Chun & Jiang, 1998, Jiang & Chun, 2003). 
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Furthermore, eye-tracking studies show that targets in repeated contexts are not 

only found faster, but also require fewer eye-movements (Peterson & Kramer, 2001; 

Tseng & Li, 2004). Also of note, a general decrease in reaction times and the 

number of fixations across blocks can be observed which is, however, more 

pronounced for repeated than for non-repeated displays, which can be well 

approximated by a power function, while the power function of repeated displays 

usually has a steeper slope (Jiang & Chun, 2003; Brooks et al., 2010). Power 

functions have long been recognized to characterize improvements in human 

performance as a consequence of practice in various tasks (Snoddy, 1926; Fitts & 

Posner, 1967; Newell & Roesenbloom, 1981, Anderson, 1982), particularly in 

association with proceduralization of a cognitive skill (Fitts & Posner, 1967; 

Anderson, 1982). 

 

The predominant view of contextual cueing is that, through repeated encounters with 

a display layout, observers acquire a contextual memory that associates the 

invariant configuration of distractors with a certain target location. Upon re-

encountering a repeated display, this memory is activated and guides attention 

towards the target location (Chun & Jiang, 1998). Specifically, this can happen either 

via the guidance of individual distractor items’ location towards the target (e.g. see 

Jiang & Wagner, 2004, Experiment 1; for a theoretical account, see Brady & Chun, 

2007), or, additionally, by the buildup of a ‘scene memory’ for repeated distractor 

locations (Beesley et al., 2015; Preuschhof et al., 2019), which subsequently 

facilitates target detection through suppression of (learned) distractor locations.   
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Aim and motivation 

 

The central aim of this thesis is to test an alternative account of CC (which is not 

mutually exclusive with the previously introduced view): Instead of display-specific 

memories that guide attention, display-general procedural learning, which is a 

universal finding in virtually all pertinent studies (e.g., Jiang & Chun, 2003) may itself 

be not only the motor behind a general decrease in reaction times and the number of 

fixations, but also give rise to the CC effect itself. – Procedural learning refers to the 

observation that search speed improves, typically quite substantially, over the course 

of practice on the task, that is, across trial blocks. According to this view, observers 

learn to optimize the search procedure by which they scan displays. Importantly, as 

repeated displays are - by definition - encountered repeatedly, they weigh in stronger 

on (the development of) the search procedure as non-repeated displays. As a result, 

the search procedure will be optimized towards repeated displays, and 

consequently, performance on these displays will be better, compared to non-

repeated displays, akin to the notion of overfitting in machine learning. Three studies 

were conducted to assess display generic learning in CC and whether this form of 

learning suffices to elicit a contextual facilitation effect (over and above that coming 

from display-specific memories).  

 

Not surprisingly, the central measure of these studies are eye-movements. Eye-

movements have long been recognized to reveal attentional processing, with 

fixations preferentially being placed at relevant locations and, crucially, in a task-

dependent manner (Yarbus, 1967). Specifically, eye-movements have been the 

subject of several studies involving contextual manipulation, showing that repeated 
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contexts require fewer eye-movements to identify the target (Peterson & Kramer, 

2001), and that the length of the oculomotor scanpath is closer to the minimal 

scanpath length when compared against non-repeated displays (Brockmole & 

Henderson, 2006). Conversely, the number of fixations approaching the target 

monotonically does not differ between contexts, however the number of seemingly 

random fixations is reduced in repeated contexts, in the sense that fixations are not 

monotonically approaching the target (Tseng & Li, 2004): Tseng and Li (2004) 

computed distances between each fixation and the target location and based on the 

fixation that was maximally distant from the target, they classified fixations preceding 

and including the fixation at peak distance as random (or explorative) and 

subsequent fixations as monotonic. Taken together, these results were interpreted 

as evidence for the activation of a display-specific memory trace.  

 

Somewhat at odds with these interpretations are studies that suggest that fixations 

not only serve the purpose of detecting a target, but also to acquire visual 

information in general (Zelinsky, 1996), to maximize task-relevant information 

(Najemnik & Geisler, 2005) or to avoid costs (Araujo et al., 2001). While 

observations such as these are consistent with the idea that there might be good and 

less optimal scanning strategies in which the strategy itself (i.e. the knowing how) is 

optimized/learned, so far no study has explicitly investigated this aspect of visual 

search. Paradoxically, the contextual cueing task, which is generally believed to 

illustrate display-specific top-down guidance, is also ideally suited to assess whether 

the procedure of scanning is optimized in a display-general manner as a result of 

some of them repeating. 
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To rephrase: The relationship between eye-movements and attention has been 

researched exhaustively in terms of how covert attention affects eye-movements 

(Sheliga et al., 1995; Hoffman, 2016). While it is certainly the case that shifts in 

attention elicit eye-movements, e.g., when attention is explicitly cued toward a 

particular location (Deubel & Schneider, 1996), so far the complement has received 

little to no attention, which is how a fixational policy can aid (pre-)attentional 

appraisal of an environment when there are no or only relatively weak cues to 

attention, that is, when fixations serve the purpose of collecting information and 

bringing relevant aspects of an environment into view in the first place. Given that in 

the classical contextual cueing task, an L-vs.-T letter search, each element is 

composed of identical features and that participants still have to search for the target 

even in repeated displays after ample exposure (e.g. see Peterson & Kramer, 2001), 

this task lends itself well to the assessment of oculomotor scanning strategies.  



 12 

Studies 

 

Study 1 investigates procedural learning in a Contextual Cueing task, by 

investigating whether not only the general improvement in visual scanning, as time 

progresses, but also the improved performance in repeated over non-repeated 

contexts is a function of procedural learning of the search itself: Since repeated 

displays have to be searched multiple times, while non-repeated displays are 

encountered only once, repeating contexts weight more strongly on the tuning of the 

search process. Since the search procedure is hence biased towards repeated 

displays, it follows that generic display scanning is adjusted toward and works more 

optimally on those repeated contexts.  

This goes along with a reduced variability, in response to the general invariances of 

the task, and also particularly in response to the additional invariances provided by 

the overrepresentation of repeated displays for repeated contexts. As a result, the 

search procedure for each repeated display becomes increasingly similar.  

The study investigated search behavior in terms of eye movements, and how the 

oculomotor scanpaths of participants unfold, conceptualized as a sequence of 

fixations over time. Besides replicating measures previously established in literature 

(a reduced reaction times, see Chun & Jiang, 1998; reduced number of fixations, see 

Peterson & Kramer, 2001; smaller scan-pattern-ratio, see Brockmole & Henderson, 

2006 and Henderson et al., 1999) the central finding is an increase in similarity: 

Both, within participants (across each participant’s set of repeated and non-repeated 

displays, respectively) and within displays (i.e. across all participants for each 

individual repeated and each non-repeated display), similarity of scanpaths 
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increases as the experiment progresses, and, importantly, similarity is higher for 

repeated than for non-repeated displays. 

 

Having established that procedural learning takes place, study 2 aimed at answering 

two questions. Firstly, replicating the results from study 1 that procedural learning is 

an important source of the CC effect, while also examining the contribution of 

alternative, and not mutually exclusive, display-specific learning to search facilitation 

in repeated contexts. Secondly, after assessing the relation and interplay between 

procedural, that is, display-generic, and display-specific learning, the possible 

(evolutionary) advantages need to be explicated: By relying on a mostly procedural 

strategy, the perceptual system does not only save energy in terms of the costs of 

encoding each display, but also avoids interference from having to represent multiple 

similar memory traces. 

To this end, oculomotor behavior was investigated before and after relocating the 

target to a new position of repeated displays (Manginelli & Pollmann, 2009): 

Relocation after having established a stable CC effect usually leads to a cost, i.e. the 

CC effect vanishes and only re-emerges slowly (Manginelli & Pollmann, 2009; Zellin 

et al., 2014). While CC re-emerges during the relocation phase in the study, the 

magnitude remains distinctly smaller than during the learning phase. Critically, 

observers’ gaze approaches previous target locations much closer in the relocation 

phase than the future, i.e., relocated, target position in the learning phase. Moreover, 

the closeness of fixations towards the previous target location explained the reaction 

time cost of relocation. These findings indicate that display-specific learning indeed 

plays a role in CC. Importantly however, previous targets on the left and on the right 

side were not approached equally closely, and reaction times, as well as the number 

of fixations, showed significantly different costs between different old-context 
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displays (with original targets in left vs. right hemifields). Specifically, acquired visual 

(left-right) scanning strategies could explain the pattern of contextual cueing after 

target relocation. For instance, a target relocated from the left to the right hemifield 

produced a huge cost, amounting up to 4 additional fixations and additional 200 ms 

processing time. This contrasts with targets relocated from the right to the left display 

half, which even produced slight performance advantages. Taken together, these 

findings suggest that while traditional accounts of CC emphasize the acquisition of 

search-guiding LT-memory ‘templates’ that are specific to particular target-distractor 

contexts, contextual learning also tunes attentional (oculomotor) scanning routines to 

the prevailing statistical target-distractor regularities in the display arrangement 

encountered, yielding a context-unspecific LT ‘proceduralization’ of search: Although, 

on average, search incurred a cost in repeated display after target relocation, the 

amount differed, based on whether the target moved from the left to the right, or the 

right to the left half, before and after relocation, respectively. Thus, this study 

confirmed both mechanisms to contribute to initial contextual learning as well as the 

‘distraction’ effect produced by re-location of the target to the opposite side of 

repeated-context displays. Hence, it can be theorized that guidance and 

misguidance of search by repeated contexts may involve two complementary LT 

mechanisms: procedural optimization of broad, i.e., display-generic, oculomotor 

scanning routines, and learning of where to expect the target to be located in specific 

repeated-context displays. 

 

The third study aimed at investigating whether procedural learning alone can, in 

principle, give rise to the CC effect. In order to assess this hypothesis, a 

connectionist model was implemented. The advantage of a computational model is 

that it allows to analyze explicitly the aptness of procedural learning in isolation, in 
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the strict absence of any configurational, i.e., display-specific, learning. Instead, the 

model was only able to learn the procedure and was never informed about the 

target’s identity or its location. 

Nevertheless, the model was able to improve its search performance and develop a 

CC effect. Moreover, a central bias (Clarke & Tatler, 2014) developed as an 

emergent phenomenon of learning the search procedure. The model outperforms 

previous models on various key metrics. This has implications for models of vision to 

incorporate procedural learning and procedural strategies, and also for the field of 

artificial intelligence in which acquiring procedural strategies that leverage the task 

structure can inspire novel learning mechanisms and datasets, as well as alleviate 

the need for annotated datasets. 
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Abstract 

Because our environment is not random, it is beneficial to assimilate the statistics 

of sensory impressions and improve performance, such as visual search for a target 

object in a cluttered array of non-target objects (contextual cueing – CC – effect). 

Computational models of CC have so far focused on predicting the target location 

from a particular configuration of non-target items. This contrasts with recent findings 

according to which display repetitions train human participants’ general procedures 

for the search task. Here, we test the latter idea by employing a connectionist model 

of visual search that exclusively learns a search procedure without acquiring any 

individual display-layout information. We show that an instance of a “learning how” 

mechanism not only proposes a viable alternative account to existing “learning that” 

mechanisms, but also generates more plausible key behavioral metrics and exhibits 

a central bias as an emergent phenomenon of learning-induced plasticity. These 

findings have implications for models of visual search and artificial intelligence: 

Learning a procedure from leveraging a task’s structure alone can mimic the effects 

of top-down modulation of attention, while also reducing the need for supervision in 

learning, thereby making computational models that leverage procedural learning 

behaviorally more plausible and easier to train.  
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Introduction 

Detecting, and responding to, specific objects in a cluttered sensory world is one 

of the most prevalent tasks of the human visual system (Wolfe, 1998; Wolfe & 

Horowitz, 2017). Since environments are typically stable, it is beneficial to extract 

information that is predictive of relevant ‘target’ objects and use this information to 

facilitate search on later occasions. For example, looking for a certain item in a shop 

for the first time is driven by knowledge about the item’s featural (size, colour etc.) 

properties. In subsequent searches for the same item in the same shop, another 

source of information becomes available: knowledge about the location of the target 

item on a certain shelf in the presence of other, distractor (i.e., non-target) items that, 

while not directly relevant for the task at hand, nevertheless provide a helpful context 

for finding the searched-for item.  

An experimental paradigm that mimics this situation in the laboratory is visual 

search for a target item placed at a stable position within a constant – i.e., repeated 

– spatial arrangement of distractor items – originally introduced by Chun and Jiang 

(1998). The basic task requires participants to search through artificial arrays of 

letter-type stimuli, finding and responding to the orientation of a T-shaped target 

(rotated by either 90° or 270°) among (orthogonally oriented) L-shaped distractor 

items. Critically, search performance for repeated distractor-target arrangements – in 

which the distractor layout, or ‘context’, is predictive of the target location – is 

compared against non-repeated (‘baseline’) arrangements – in which distractor 

locations are arranged anew on each trial. The target locations themselves are fixed 

in both repeated and non-repeated displays, controlling for absolute target-position 

learning (cf. Geng & Behrmann, 2005; Jiang, Swallow, & Rosenbaum, 2013). This 

laboratory task thus allows the isolated study of spatial context learning, 

unconfounded by semantic and syntactic properties of the searched scenes (for 
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evidence that such properties matter, see Vo & Wolfe, 2013). Chun and Jiang (1998; 

2003) found the search reaction times (RTs) to decrease with increasing practice on 

the task not only for repeated but also for non- repeated display arrangements – 

reflecting procedural learning of how to best perform the task, akin to the acquisition 

of a (search) skill (Fitts, 1964; Fitts & Posner, 1967). Critically, the practice-related 

improvement turned out larger for repeated vs. non-repeated displays – which has 

been attributed to the beneficial effect of repeated distractor contexts for finding the 

target. Chun and Jiang (1998) proposed that repeatedly encountered context-target 

spatial relations are stored in spatial long-term (LT) memory. Upon re-encountering a 

repeated display, the appropriate memory is retrieved and guides, or ‘cues’, search 

to the target location – giving rise to the ‘contextual-cueing’ (CC) effect. 

Central to accounts of CC is the more efficient allocation of focal attention to the 

target item in repeated displays (Chun & Jiang, 1998; for reviews, see Goujon et al., 

2015, Sisk et al., 2019). In support of this, oculomotor investigations of CC have 

shown that detecting the target in repeated displays requires fewer eye movements 

(i.e., a reduced number of fixations, NF, where, in a fixation, covert and overt 

attention are assumed to be aligned) compared to the baseline of non-repeated 

displays (Tseng & Li, 2004; Peterson & Kramer, 2001). Relatedly, oculomotor 

scanpaths – i.e., the total distance traversed by sequential eye movements – are 

also shorter for repeated displays (e.g., Manginelli & Pollmann, 2009; Zang et al., 

2015; Brockmole & Henderson, 2006). 

Dominant theoretical accounts of CC attribute this pattern of effects to the build-up 

of contextual memories that associating the location of the target with the distractor 

layout within specific repeated display arrangements (Chun & Jiang, 1998; Tseng & 

Li, 2004; Beesley et al., 2015). In terms of Ryle (1945), such theories of CC may be 
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considered instances of “knowing that”, i.e., what is acquired is some kind of 

(search-guiding) proposition that, given a certain distractor layout, the target is to be 

found at location [x,y]. Complementary to this would be accounts of “knowing how”: 

the capability to optimally perform specific tasks or actions (Ryle, 1945). Arguably, 

the CC paradigm is particularly well suited to investigating the latter type of account, 

which considers the refinement of the requisite – i.e., overall optimal – search 

procedure to be driven more strongly by repeated than by non-repeated displays. In 

line with this notion, recent analyses of the oculomotor scanpaths observers traverse 

to find the target show that procedural learning of how to the search the set (or 

‘world’) of displays encountered is an important determinant of the CC effect (Seitz et 

al., 2023; Seitz et al., 2024): while scanpath similarity increases generally – across 

all types of displays – with training, critically, it increases more for repeated than for 

non-repeated displays. This supports a “knowing-how” account of CC, according to 

which statistical learning optimizes the processes by which the search task is 

accomplished, with repeatedly encountered contexts simply accruing a greater 

weight in tuning these processes than non-repeated contexts which, by definition, 

are searched only once. 

Given this evidence, the motivation of the present study was to test 

computationally whether procedural learning of how to optimally search of a certain 

‘world’ of visual displays can give rise to a CC effect in the absence of any display-

specific learning, i.e., without associating a specific distractor arrangement with a 

specific target location. Along with this, we set out to test whether an only weakly 

supervised model – leveraging the implicit structure of the task rather than relying on 

explicit teaching signal (provided by an external supervisor) – could still exhibit 

adaptive behavior. If so, this would have implications for a “second” type of learning 
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in AI and hold the possibility of designing/collating new datasets with a smaller 

burden on explicit annotation. 

Previous models of CC 

Based on the findings of faster response times (RTs) and fewer fixations required 

for detecting targets in repeated contexts, there have been several attempts to 

model the ‘cueing’, or guidance, of attention to learnt target locations by acquired 

long-term contextual-memory representations. Brady and Chun (2007) proposed a 

two-layer feedforward network which learned to associate a specific context with a 

specific target position. The input layer consisted of an 8 by 6 (location) matrix, with 

‘occupied’ matrix cells encoding the presence of 1 out of a total of 12 display items at 

the respective ‘search-display’ location. Inputs triggered by a specific display 

arrangement then activated (via a bottom-up activation term) spatially corresponding 

neurons in an output layer that was considered to represent a ‘priority map’ (cf. 

Fecteau & Munoz, 2006) for the deployment of attention and eye movements. The 

input and the output layer were connected by weights that were adjusted by the delta 

rule each time the target was detected: weight updating was largest for the target 

location and (exponentially) descending for distractors with increasing spatial 

distance from the target location. The network’s performance was measured in terms 

of the number of activated output-layer units that had to be checked in decreasing 

order prior to arriving at the unit representing the target location. This model was well 

able to generate a CC effect, implying that the effect arises from a reduction in the 

number of fixations required to find the target in repeated display layouts. An 

augmented version of this basic two-layer network was proposed by Beesley et al. 

(2015) to account for the observation of facilitated RTs even when the target location 

is allowed to vary relative to an invariant distractor layout (though the facilitation is 
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smaller than the ‘standard’ CC effect with fixed target locations; e.g., Vadillo et al., 

2021; Kunar & Wolfe, 2011). To accommodate this finding, Beesley et al.’s model 

learns an additional set of ‘auto-associative’ weights between distractors within the 

input layer, reinforcing the distractor configuration.  

Thus, in these modelling attempts, associations are formed – i.e., connections are 

strengthened – between the spatial configuration of items in the input layer and the 

location of the searched-for target in the ‘attentional-priority’ output layer in a 

supervised manner (for an overview, see Dayan & Abbott, 2005); additionally, 

associations may be acquired among repeatedly placed distractor items within the 

input layer using unsupervised learning. From a biological perspective, Goujon et al. 

(2015) put forward the related idea that Spike-Timing-Dependent Plasticity (STDP) – 

the neurobiological mechanism of associative Hebbian learning – alone might 

account for the acquisition of CC.  

Present work 

While associative learning (Goujon et al., 2015) presents a plausible mechanism 

for generating contextual facilitation as a form of statistical learning, the levels at 

which statistical regularities are actually leveraged have as yet not been 

comprehensively investigated, at least in terms of computationally explicit models. 

Empirically, recent work (Seitz et al., 2023; Seitz et al., 2024) has demonstrated that 

contextual facilitation – rather than being simply attributable to the acquisition of 

specific, repeatedly encountered distractor-target relations (display-specific learning) 

– may arise from procedural, oculomotor-scanpath learning adapted to the set of 

encountered display layouts at large (display-generic learning), i.e., the honing of a 

general search ‘skill’ in terms of Fitts and Posner (1967). Of note, display-specific 

learning as such could account only for the acquisition of a search advantage for 
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repeated over non-repeated displays. In contrast, acquiring a generic procedural 

strategy to optimally scan the entire set of encountered displays (including both 

repeated and non-repeated layouts) can provide a parsimonious account of both 

contextual facilitation (i.e., the search advantage for repeated vs. non-repeated 

displays) and the general improvement in performance across time-on-task, which is 

evident with both repeated and non-repeated displays: while scanning is optimized 

for all types of display (accounting for the general improvement in performance), 

repeated displays are encountered multiple times and thus shape the scanning 

strategy more than non-repeated displays that are encountered only once. As a 

result, the similarity of the oculomotor scanpaths becomes higher between pairs of 

(differently composed) repeated displays compared to pairs of (different) non-

repeated displays (see Figure 1A). This proposal of display-generic (rather than 

display-specific) learning is in line with Lashley’s (1951) account of sequential 

behavior, according to which motor actions are not planned de novo each time, but 

instead previously executed movement patterns are modified or updated to fit the 

demands for the task at hand (see also Rosenbaum et al., 2007).  

Based on this idea and the evidence from measures of scanpath similarity (Seitz 

et al., 2023, Seitz et al., 2024), we implemented a computational model which, by its 

very architectural constraints, cannot form any contextual associations between – or 

‘representation’ of – the distractor-layout (input-layer pattern) and a target location 

(output layer) at all; rather, it can only learn fixation sequences based on previously 

executed saccades. That is, the model updates prior oculomotor patterns based on 

the current input, as proposed by theories of procedural learning (Lashely, 1951). 

Beyond this theoretical motivation, choosing this simple procedural learning rule was 

also underpinned by a pragmatic consideration: executing stereotypical eye 



 62 

movements driven by locations of relevance in the current input, as well as indirectly 

by those of previously ‘scrutinized’ displays, would, in itself, provide a fairly 

economical way of optimizing where and in which sequence fixations should be 

placed, given that the fixations will be tuned to general characteristics of relevance in 

the set of displays and thus be likely to capture the ‘salient’, evolutionarily informative 

aspects of the input. 

Consequently, the current study was designed to examine the explanatory reach 

of this simple procedural learning mechanism, vis-à-vis the mechanisms 

implemented in previous computational theories of CC (Brady & Chun, 2007; 

Beesley et al., 2015). Importantly, the assumptions underlying the present scheme 

differ fundamentally from those of the previous models, which learn target locations 

as a function of context: the models inspect likely candidate positions guided by 

initially erroneous ‘memory signals’, that, across repeated searches, become 

gradually biased towards the target location. In contrast, the model investigated here 

does not acquire any associations between an item configuration and the target 

location predicted by that configuration; instead, it optimizes its behavior as an 

emergent property of reinforcing previously executed oculomotor patterns. 

Thus, the present modeling attempt present a fundamental departure from 

previous schemes: Employing a computational model which, by design, can only 

learn a scanning procedure and no spatial-layout information at all allows us to 

examine whether contextual facilitation can arise merely as byproduct of an 

acquired, essentially ‘mindless’ generic search procedure. If so, the model results 

would demonstrate that to account for contextual facilitation, it is not necessary to 

assume the build-up of higher-level contextual-memory ‘templates’ in spatial long-

term memory that are activated by the presentation of a specific repeated display 
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and then top-down bias search towards the target location pointed to by the 

distractor configuration. Of note, our model incorporates the notion of CC being a 

mere byproduct of associative learning (cf. Goujon et al., 2015), though with 

associative learning in the model occurring simply between successive fixations, 

rather than extracted regularities in the item arrangement.  

In terms of behavioral indices of CC, following previous studies (Brady & Chun, 

2007; Beesley et al., 2015), we focused on the key measure of the number of 

fixations required by the model to detect the target. Further, for a more 

comprehensive validation of our computational model against the evidence of CC 

being driven by procedural learning (Seitz et al., 2023), we additionally examined the 

model’s search behavior in terms of scanpath-similarity measures, i.e., the 

homogeneity of the scanpaths within ‘participants’ and between displays. If 

procedural learning alone suffices to produce CC, we expected the model’s behavior 

to replicate previous findings diagnostic of procedural learning, in particular: a 

reduced number of fixations as well as a higher similarity of the scanpaths in later vs. 

earlier blocks of learning, especially for repeated vs. non-repeated displays.  

Methods  

Model architecture and learning 

The model was implemented in PyTorch (Paszke et al., 2019), benefitting from 

CUDA (NVIDIA, Vingelmann, P., & Fitzek, F. H. P., 2020) optimized code, and 

trained on an NVIDIA RTX A4000 GPU. The model has two layers, an input (‘search-

display’) layer and an output (‘priority-map’) layer, connected by weights – similar to 

Brady and Chun’s (2007) model. In contrast to their model, however, the current 

model does not associate the activations of a given input display with the target 
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location in the output layer in a supervised learning scheme. Hence, it does not and 

cannot learn to associate a given configuration of display items with the target 

location – in fact, it is never even informed about which item corresponds to the 

target. 

The architecture of the model is illustrated in Figure 1B. While there is full 

connectivity between each neuron in the input layer and each neuron in the output 

layer, there are two distinct sets of weights. The first set are ‘direct’ weights, 

connecting spatially corresponding positions in the input and output layers (i.e., the 

diagonal of the weight matrix): these weights take on a fixed (pre-set) value, which 

does not change as a result of learning. Essentially, they provide a “bottom up” 

signal that represents the item locations in the output layer (with equal “priority”), 

similar to the bottom-up weights in Brady-and-Chun (2007). All other, off-diagonal 

connections (the second set) are learnable, with their weights initially set to zero. 

Thus, initially, each display (distractor and target) item receives an equal amount of 

activation on the output layer. By disabling changes of the diagonal weights, the 

network is prevented from learning to increase the weight between a given target 

location in the input layer and the target location in the output layer, as well as 

between sets of distractor elements and the target. That is, the network cannot use 

target-location information to optimize oculomotor scanning. 

The model computes an oculomotor scanpath, i.e., a sequence of fixation 

coordinates on the output layer, starting at the display center and then successively 

sampling one position after the other until the target is located (similar to the model 

of Koch & Ullman, 1984). On each iteration, the model either selects the output 

neuron (item location) exhibiting the highest activation as the next fixation 

coordinate, or, if there are several output neurons with equal activation (before 
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learning all of them), it randomly selects one of those. Next, if the selected item is not 

the target, the selected item is removed from the input layer (as a result of which it is 

no longer represented on the output layer and, so, its location can no longer be 

selected for fixation) – implementing an ‘inhibition-of-return’ mechanism (e.g., Klein & 

MacInnes, 1999). Scanning is terminated once the model ‘selects’ the target location 

– though, as already stated, the network itself is not informed whether or not the 

selected element is the searched-for target item.  

Initially, before learning becomes effective, the model must sample approximately 

half the number of items in the display to locate the target – as is typical for 

‘unguided’ search tasks, such as (T-type target vs. L-type distractor) letter search 

(e.g., Wolfe, 2021). Critically, as the network is not informed that the target item was 

selected (search is then simply terminated), it has no means to learn that a given 

context implies a certain target location. Following search termination, the next 

display is presented as input to the network. 

Learning takes place in the second set of weights, i.e., the off-diagonal 

connections of the weight matrix. The network increases the weights between the 

current fixation location’s region and the region centered around the location 

selected for the next fixation according to a Hebbian learning rule, i.e., by changing 

of the weights connecting the pre- (input) and postsynaptic (output) neurons 

proportional to the neurons’ activations (for visual illustration, see Figure 1C). Of 

note, for each fixation location, neighboring (output) neurons receive lateral 

activation, too (with the amount of activation scaled by distance; see below). While 

this is physiologically plausible, essentially implementing a kind of population 

encoding (e.g., Behan & Kime, 1996), it enables the network to generalize its 

behavior to similar, rather than only identical, input patterns: if a saccade from a 
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current region to another region is possible, which attracted similar fixations to 

previously executed eye movements, the network will be biased to execute this 

saccade. Specifically, the activations of ‘lateral’ neurons around the current and 

selected-to-be-next fixation locations are scaled by a negative exponential decay 

function of the distance to the respective fixation location, and the change in weights 

is proportional to the activation between each input and output neuron, according to 

the following equation: 

𝛥𝑤𝑖,𝑗 = "𝑒−𝜀!𝑖,𝑓(𝑡)$/𝜏𝑖𝑛# ∗ "𝑒−𝜀(𝑗,𝑓(𝑡)/𝜏𝑜𝑢𝑡# ∗ 𝑙𝑟, 

whereby 

𝜀"𝑘, 𝑓(𝑙)# 	= 	'"𝑥𝑘 − 𝑥𝑓(𝑙)#
2 + (𝑦𝑘 − 𝑦𝑓(𝑙))

2
, 

where 𝛥𝑤𝑖,𝑗 is the change of a particular off-diagonal weight between neuron 𝑖 in the 

input layer and neuron 𝑗 in the output layer and 𝜀"𝑖, 𝑓(𝑡)# is the Euclidean distance of 

neuron 𝑖 to the current fixation location 𝑓(𝑡) in the input layer, while 𝜀"𝑗, 𝑓(𝑡 + 1)# is 

the distance of neuron 𝑗 to the selected next fixation location 𝑓(𝑡 + 1) in the output 

layer. The constant 𝜏/0 denotes a decay constant which regulates the amount of 

lateral activation as a function of the distance 𝜀 of neuron 𝑖 from the current fixation 

location 𝑓(𝑡); analogously, 𝜏123 is a decay constant that regulates the amount of 

lateral activation of neuron 𝑗 as a function of the distance 𝜀 to the selected next 

fixation location 𝑓(𝑡 + 1), while 𝑙𝑟 is the learning rate. Different values of 𝜏 

correspond to different amounts of spatial generalization/selectivity. The amount of 

lateral activation in a layer as a function of distance and its dependence on 𝜏 is 

illustrated in Figure 1D. Critically, the network had no information about which 

element is a distractor and which a target item. It only learned to associate fixation 
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locations based on consecutive fixation events when searching repeated and non-

repeated arrays.  

Figure 1. Figure 1A shows real human data (from Seitz et al., 2023) performing 
visual search in repeated and non-repeated target-distractor layouts and a practice-, 
i.e., block-, related increase in scanpath similarity (measured by Dynamic Time 
Warping – DTW; see, e.g., Fahimi & Bruce, 2020), which increased with increasing 
time-on-task (learning), with a greater increase for repeated displays. Figure 1B 
illustrates the architecture of the network examined in the present investigation, 
which consisted of two layers that are connected by two sets of (fixed and, 
respectively learnable) weights. Figure 1C outlines the overall dynamics of the 
model: The initial fixation is set at the center and a particular item is selected as the 
next fixation (location), which is then ‘removed’ from the input prior to determining a 
new fixation location; this iterative selection and rejection process is terminated upon 
a fixation falling on the target. Figure 1D visualizes the amount of weight change 
resulting from Hebbian learning between laterally activated neurons around the 
current fixation (in the input layer) and those of the selected next fixation (output 
layer). Figure 1F illustrates the decreasing amount of lateral activation of a given 
neuron as a function of its distance from the fixation location. Smaller values of 𝜏 
yield a faster decrease in activation. 
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Training procedure 

The network was initialized 25 times with a different (randomly generated) set of 

displays, corresponding to 25 “participants”. Each network underwent 32 training 

blocks, each consisting of 12 repeated/old-context and 12 non-repeated/new-context 

trials – mimicking Chun and Jiang’s (1998) original study of CC. The display matrix 

consisted of 31×31 possible locations, where, in each trial display, 11 locations were 

occupied by L-shaped distractor items and 1 location by a T-shaped target item. 

Target locations were distributed randomly, except that three (of the 12) repeated 

and three (of the 12) non-repeated displays had targets in each of the four display 

quadrants, and thus avoiding target-quadrant effects attributable to absolute target-

location probability cueing (e.g., Jiang et al., 2013). Both the target and the distractor 

items activated the matrix element corresponding to the respective item location to 

the value of 1 in the input map. Note that we choose a relatively large 31×31 matrix 

to ensure that the network had sufficient degrees of freedom to produce variability in 

the spatiotemporal profile that its ‘eyes’ traverses within a given repeated and non-

repeated display layout. This was a departure from Brady and Chun (2007), who 

only had 8×6 possible display locations to model selection of individual target and 

non-target items.  

Results  

We investigated whether learning idiosyncratic oculomotor scanning strategies 

suffice to elicit a CC effect both in terms of the number of fixations required to detect 

the target item and the consistency, or similarity, of the oculomotor scanpaths 

traversed, using Dynamic Time Warping (DTW) computed between each pair of 

individual repeated-display and, respectively, pairs of non-repeated-display 

scanpaths (each display containing a unique target position) in each block, using 
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Python’s similarity-measure library (see Jekel et al., 2019). DTW quantifies the 

similarity of the shapes of the scanpaths with distinct time series by aligning them in 

the time domain, thus minimizing the Euclidean distance between the aligned series. 

Analyses were performed using repeated-measures ANOVAs with the factors 

Context (repeated, non-repeated) and Block (1-32) – consistent with Seitz et al. 

(2023; 2024). For comparisons to existing data from the literature (see section: 

“Comparison to empirical data”), we collapsed 8 blocks of trials into 1 single Epoch, 

yielding a total of 4 epochs (as the studies considered also analyzed/ presented their 

data across 4 epochs). The results reported below were obtained from a network 

with a 𝜏/0 = 2.5 and 𝜏123 = 4.5 and a learning rate of 5*10-7. The specific values of  

𝜏/0 and 𝜏123 were determined empirically (by selecting from simulations according to 

a grid-search scheme), so as to obtain behaviorally plausible values for the number 

of fixations typically observed in eye-movement studies of CC with stimuli generated 

analogously to the procedure implemented here (e.g., Peterson & Kramer, 2001; 

Manginelli & Pollmann, 2009; Zhao & Ren, 2020): collectively, these studies found 

that even after a reasonable amount of practice with repeated displays, the number 

of fixations required by human learners to home in on the target remained relatively 

high (typically some 4–6 fixations), rather than the target being among the very first 

items to attract an eye movement. 

Analysis of simulated oculomotor parameters 

The network showed a significant improvement in the number of fixations required 

to reach the target for both repeated and non-repeated displays (main effect of 

Block, F(31, 744) = 19.85, p < 0.001, 𝜂𝑝2 = 0.45, 95% CI[0.39, 0.49]). Additionally, 

the network required significantly fewer fixations, on average, to reach the target in 

repeated vs. non-repeated displays (5.06 vs. 6.18 fixations; main effect of Context, 
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F(1, 24) = 34.32, p < 0.001, 𝜂𝑝2 = 0.59, 95% CI = [0.31, 0.75]). Further, there was a 

significant interaction between Context and Block (F(31,744) = 5.35, p < 0.001, 𝜂𝑝2 = 

0.18, 95% CI = [0.11, 0.20]; see Fig. 2A, left panel), due to the Context, or 

contextual-facilitation, effect increasing with practice (as a result of a more marked 

improvement of performance across blocks for repeated vs. non-repeated displays). 

Previous research (Seitz et al., 2023) has shown that repeated displays not only 

require fewer fixations, but also that the oculomotor scanpaths become more similar 

as the experiment progresses, and more so for repeated than for non-repeated 

displays. This effect pattern arises because the oculomotor search strategy itself is 

being adapted, with repeated displays weighing in stronger on the optimization of the 

search strategy than non-repeated displays (Seitz et al., 2023, Seitz et al., 2024). 

Since our model only learns a procedure – namely, to produce a stereotypical 

sequence of saccades based on previous fixational patterns –, we tested whether 

the scanpaths would become more similar in our network across blocks and, 

importantly, whether this effect would be more pronounced for the repeated displays. 

The results revealed (DTW) scanpath similarity to increase as the experiment 

progressed (main effect of Block: F(31, 744) = 42.82, p < 0.001, 𝜂𝑝2 = 0.64, 95% CI 

= [0.60, 0.67]), and the scanpaths for repeated displays to become more similar than 

those for non-repeated displays (main effect of Context, F(1, 24) = 43.82, p < 0.001, 

𝜂𝑝2 = 0.65, 95% CI = [0.39, 0.78]). Additionally, there was a significant Context × 

Block interaction (F(31, 744) = 4.39, p < 0.001, 𝜂𝑝2 = 0.15, 95% CI = [0.09, 0.17]; 

Fig. 2A, right panel), evidencing a more marked increase in scanpath similarity 

across blocks for repeated vs. non-repeated displays. Of note, we obtained the same 

result pattern in a second run (see Fig. 2B) when generating a new set of non-

/repeated displays, thus rendering it unlikely that the first set of results was driven by 
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specific properties inherent in the displays in the first run. This pattern mirrors the 

human data. 

Comparison to empirical data 

We went on to examine how well our model fits to empirical data. For repeated 

displays, the median number of fixations was above 4, while it was above 5 for non-

repeated displays. These numbers match previous reports fairly well, including 

Peterson and Kramer’s (2001) ‘benchmark’ oculomotor study of CC. Figure 2B gives 

the median number of fixations of the simulation as well as that reported by Peterson 

and Kramer (2001). To assess the fit quantitatively, we computed the Mean Absolute 

Error between the model’s results and Peterson and Kramer’s data for both runs, 

which was 0.3 fixations (largest deviation = 0.5, relative error = 5%) for run 1 and 0.2 

fixations (largest deviation = 0.6, relative error = 3%) for run 2. 

Next, we fitted a curve to the contextual-facilitation effect produced by the model 

(see Brady & Chun, 2007, for a similar procedure), which was best described by a 

power function (see Chun & Jiang, 2003). The variance explained was 98%. 

Moreover, to assess how well the characteristics of the obtained curve translate into 

empirical reaction times, we compared the model to the data reported by Geyer et al. 

(2023), who tested a large sample of (N=45) participants, yielding a robust measure 

of CC. Assuming that the benefit of one fixation corresponds to a reaction-time 

speed-up of 25 ms (Wolfe, 1994; Brady & Chun, 2007), the saturation curve explains 

58% of the variance in the RT data of Geyer et al. (2023), further validating our 

model. The curve is defined by: 

𝑦 = 16.30 ∗ <1 − 𝑒 (45/6.89)= − 14.97, 
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where 𝑦 corresponds to the magnitude of the CC effect per epoch, denoted as 𝑥. 

Assuming that contextual facilitation approaches an asymptotic value across epochs 

is also more plausible compared to a (monotonically increasing) logarithmic 

relationship (Brady & Jiang, 2007). Fixation numbers and reaction times have a 

natural lower bound (i.e., ≥ 0) and their characteristics over time are best described 

by power functions (e.g., Fitts & Posner, 1967; Anderson, 1982; Chun & Jiang, 

2003). Consequently, rather than growing unboundedly, the difference between 

increasingly smaller values must approach some asymptotic value. Figure 2D 

summarizes our findings. 

Central Bias as emergent phenomenon of procedural learning 

Finally, we examined where our models ‘looks’ after training, by summing up the 

learnt weights for individual (output) locations across displays and participants. While 

one might have expected the network to display a strong bias towards individual 

target locations, surprisingly, it actually developed a bias to scan particularly central 

display locations (not necessarily coinciding with target locations) – an emergent 

behavior that resembles human visual exploration (e.g., Clarke & Tatler, 2014). This 

is illustrated in Figure 2D, which shows the summed weights of randomly selected 

“participants”. As can be seen, the weights do not project in a 1:1 fashion to single 

target locations in repeated and non-repeated arrays; instead, they cluster around 

the central display region. We found such a bias also in other (control) simulations, in 

which we had the model start search on each trial at a peripheral (rather than the 

central) display location, e.g., the location in the top-left display quadrant 

(coordinates: 𝑥 = 3,𝑦 = 3 in the 31	×	31 matrix). It is thus unlikely that the central 

bias is a particular consequence of our training procedure, with search, by default, 

starting at the display center (coordinates:𝑥 = 15,𝑦 = 15). Rather, the central bias is 
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likely to reflect training-induced plasticity in the process of visual search akin to 

human behavior.  

I support of this, fitting a bivariate Gaussian (with a least-squares approximation) 

to the average bias of all “participants”, along the lines of Clarke and Tatler (2014), 

we found that a truncated Gaussian could indeed describe the computational data 

well, with the center of the Gaussian located at the display-center coordinates 𝑥 =

15.4, 𝑦 = 14.5, with a standard deviation of 10.5 and 10.1 in the x and y directions, 

respectively. To assess the goodness of fit, we computed the mean average error 

between the bias values and the fitted Gaussian, divided by the mean bias value, 

which yielded a relative error of 1.7%. 
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Figure 2. Figure 2A depicts the mean number of fixations (left panel) and the (DTW) 
similarity (right panel) of the scanpaths generated by the network, showing a Block x 
Context interaction for both measures. The lines in Figure 2B show the median 
number of fixations of the model (“Run 1”), as well as a second, independent version 
of the experiment (“Run 2”) conducted to validate our findings. The circular and 
triangular markers show the median number of fixations from Experiment 1 of 
Peterson and Kramer (2001). The left plot of Figure 2C depicts the empirical RT data 
from Geyer et al.’s (2023) large sample of participants; the middle panel of Figure 2C 
depicts simulated fixations of our model and the right panel shows the CC effect 
rendered by the model and human participants (from Geyer et al., 2023), 
respectively, as well as the curve fitted to the model data. Individual model 
“participants” are visualized in light blue. Figure 2D illustrates the bias of the weights 
towards the display center, as an emergent property of procedural learning. The 
upper panel shows the weights of 11 randomly selected “participants”, while the 
middle and lower panels show the bias in the x- and y-direction, respectively. Note: 
Projections of the fitted 2D Gaussian are not shown, because, due to the good fit, 
they would visually occlude the mean central-bias curves. 



 75 

Discussion 

The present study demonstrates that acquiring a display-general oculomotor 

scanning procedure in a visual search task can yield a CC effect even in the 

absence of any configural learning, i.e., associating a specific target location with a 

specific configuration of the distractor elements. Our model merely learns a simple 

procedure: if a saccade from a given fixation location to another location (among 

several alternatives) is possible and the model has previously executed a similar 

saccade, the model is biased to execute that saccade. While this limits performance, 

in that non-target elements will inevitably also be visited during search, the saccades 

ultimately terminate at the task-critical target locations. The network thus learns to 

generalize its search behavior in such a way that many saccades are biased towards 

target locations – in line with previous computational models of the CC effect (Brady 

& Chun, 2007; Beesley et al., 2015). Critically, though, our network focuses on the 

learning of entire series of scanpaths, rather than learning to prioritize individual 

display locations.  

While our results demonstrate that procedurally learnt, display-general oculomotor 

scanning routines go a long way to account for CC, they do not rule out other 

mechanisms – of top-down search ‘guidance’ – proposed in the CC literature: these 

assume associative learning of specific, repeatedly encountered spatial distractor-

target relations (LTM ‘templates’), which, when activated by a given repeated 

display, bias the deployment of attention towards the target location (e.g., Wolfe, 

2020), possibly augmented by facilitated response-selection and/or -execution 

processes (e.g., Kunar et al., 2007). 

Of note, our network does not claim neurobiological plausibility (such as 

endeavoring to model the cellular operation of neurons in the superior colliculus; 

e.g., van Opstal & van Gisbergen, 1990). Rather, it was designed to provide a 
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computationally explicit implementation of a hypothesis according to which the mere 

acquisition of a simple, “mindless” procedure suffices to generate a CC effect – thus, 

casting doubt on the necessity to assume (learnt) display-specific LTM 

representations to account for contextual facilitation. Of importance in this regard, 

our model produces a reasonable fit to empirical data obtained from human 

participants; in particular, at the end of learning, the number of fixations required to 

find the target remains above 4 or 5 for repeated and non-repeated displays, 

respectively – rather than the empirically implausible 1 or 2 fixations estimated by 

Brady and Chun’s (2007) model for repeated displays. Further, we observed a 

central bias as an emergent property of procedural learning. While it is thought that a 

central bias can arise from training with specific target locations (Parkhurst et al., 

2002), our model suggests that just performing “mindless” scanning of the visual 

displays may suffice for the bias to emerge – in line with the observation of a central 

bias even in (“target-less”) free-viewing tasks (Carnosa et al., 2003).  

Crucially, here, we provide a procedural account of learning which can render 

performance improvements in visual search that are not contingent on the learning 

of, and attendant ‘cueing’ of search towards, specific target locations. Procedural 

learning, in particular of oculomotor trajectories, thus appears to be an important 

factor that has so far not been explicitly considered in models of visual search such 

as Guided Search (e.g.; Wolfe, 2021). This also implies that eye movements, rather 

than being just the consequence of ‘targeted’ shifting of attention, actually promote 

the orienting of attention toward display regions that most likely contain relevant 

information for attentional processing – prior to the selection of specific 

locations/items based on bottom-up or top-down ‘cues’. Following from this, we 

propose that procedural learning plays an active role in visual search in the sense 

that convenient, general search procedures optimally adapted to the ‘world’ of 
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displays encountered constitute another factor – besides the allocation of attention 

based on acquired target-distractor LT memories – that aid the allocation of attention 

in a manner unguided by other feature-based (i.e., bottom-up or more short-term top-

down) factors.  

Arguably, this type of learning is applicable to skill acquisition in general, which 

constitutes a universal characteristic of human behavior (Luchins, 1942; Ryle, 1946; 

Fitts, 1964; Fitts & Poser, 1967; Willingham et al., 1989). Although here we explore 

its potential with regard to accounting for a particular phenomenon – namely, CC –, 

we believe that the notion of skill acquisition has implications for a model-based 

understanding of oculomotor behavior in visual exploration and scene viewing in 

general. 

 

Summary and Outlook 

The key finding from our modeling work is that a network employing solely 

procedural learning can give rise to what looks like memory-based ‘cueing’ of 

attention to the target location in a hard visual-search task. Importantly, the model is 

never informed about the identity of individual items, nor does it learn to associate a 

target location with the distractor layout. Hence, it does not acquire any “knowing 

that” (Ryle, 1945). Rather, it just learns to adapt, and hone, its previously executed 

fixation patterns, with optimization occurring incidentally, simply as a byproduct of 

repeatedly searching a certain set of displays. The network thus acquires “knowing 

how” to best solve the task. Although here a motor procedure is learned, we suggest 

that the findings generalize to other forms of procedural learning. 

While the model does not acquire specific context-target associations (‘templates’ 

in long-term memory) that top-down guide attentional selection (‘contextual cueing’), 
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it nevertheless facilitates search by learning a display-generic oculomotor procedure. 

This raises the question whether the findings from other statistical learning 

paradigms (e.g., Theeuwes et al., 2022; Bogaerts et al., 2022) may also be 

explained by the acquisition of (oculo-)motor routines (i.e., “learning how”), rather 

than pre-attentive guidance processes (i.e., “learning that”). We hypothesize that if a 

simple procedure can be readily set up to solve the task at hand (e.g., visual search), 

attentional guidance may actually not be the dominant mechanism driving the 

learning-dependent performance gains. Accordingly, future research would need to 

factor in participants’ capacity for procedural learning across a range of cognitive 

domains and tasks, which would require innovative experimental designs to separate 

procedural and attentional-guidance effects and/or establish to what extent 

procedural learning interacts with statistical learning of attentional guidance. 

Leveraging scenarios in which acquired procedures render performance errors 

whereas “cognitive” strategies would yield the correct outcome might be particularly 

insightful in investigating the interaction between “learning how” and “learning what” 

in an adaptive manner.  

With regard to conceptual and computational models of (foveated) vision that 

have traditionally emphasized guidance by bottom-up and/or top-down information: 

we argue that, in light of our empirical and modeling results, these models might 

profitably consider whether procedural strategies may not equally well explain 

existing findings, or in what way the models may be augmented by incorporating 

procedural learning. Cases in point would be considering whether the central bias is 

an emergent property of a statistical “learning-how” mechanism, or whether 

architectures operating on selecting “glimpses” (e.g., Mnih et al., 2014) would benefit 

from procedurally learnt stable fixation policies. Of particular theoretical as well as 
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practical interest is that, in our model, learning a simple procedure rendered an 

advantage in finding the target without any explicit “teaching signal” informing the 

network about target identity or location. This finding may hold potential for the 

domain of machine learning and artificial intelligence, namely, by employing learning 

strategies requiring less supervision by (e.g., developing loss functions or training 

schemes) focusing on “learning how” instead of “learning that”, directly leveraging 

the task structure itself rather than the outcome of single trials. Generally, we believe 

it profitable tested whether some tasks, particularly involving statistical learning, may 

be explained and successfully modelled as instances of procedural learning. 
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General Discussion 

 

In summary, three studies have investigated the role of procedural learning - that is, 

“learning how” in visual search under invariant contexts. Learning a procedural 

scanning routine may be helpful in bringing the likely relevant aspects of a visual 

environment into view and enable subsequent (pre-)attentional processing. Hence, 

procedural learning might be a so far neglected “filter”, even before attentional 

selection takes place: Wolfe & Horowitz (2017) identify five factors that guide 

attention - bottom-up salience, top-down feature guidance, scene structure and 

meaning, search history and reward. These findings are in line with evolutionary 

mechanisms, as they are cost-effective and avoid unnecessary interference between 

encoded memories. 

While, semantically, our findings coincide with the terms of ‘scene structure’ and 

‘search history’, these factors usually refer to the learned syntactic/semantic 

properties of scenes, such as things adhering to gravity or birds sitting in trees 

(Biederman, 1976; Biederman et al., 1982), whereas search ‘history’ usually implies 

a statistical learning of e.g. a region with a high probability of containing the target 

position (Geng & Behrmann, 2005) or display-specific learning of targets (Chun & 

Jiang, 1998), the presented studies offer a novel view on how the statistical structure 

of scenes can be utilized in an agnostic way by learning useful procedures that apply 

to task-generic demands and make use of the task's specific structure. 

Hence, the present work extends the current notions of attentional guidance, which 

is a procedure that acts ‘blindly’, before attentional selection has taken place bringing 

potentially relevant portions of a display into view and making them available for 
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(pre-)attentional processing. However, this process itself is not guided by 

mechanisms of attention, but by procedural routines. 
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Studies 

 
Study 1 identifies procedural learning and illustrates how procedural learning acts as 

a motor behind the contextual cueing effect. While contextual ueing has previously 

been believed to be a display-specific top-down memory effect on attentional 

guidance (i.e. an instance of “knowing that”), learning of optimized oculomotor 

scanpaths along the set of the entire display (i.e. an instance of "knowing how") 

presents an alternative mechanism to bring about the effect.  

The central finding of the study is that scanpath similarity is higher when pairs of 

different participants process identically composed old-context displays, as opposed 

to scanning itentical new-context displays. Even more importantly, scanpath 

similarity is increased in individual participants when encountering different repeated 

displays with different spatial composition compared to non-repeated displays. In 

other words, the display-generic search procedure is more invariant for the spatially 

invariant repeated displays, compared to the spatially variable non-repeated 

displays. This can be thought of a result of tuning the scanning strategy to the bulk of 

all displays, with repeated displays weighing in more strongly as a direct 

consequence of repetition, that is, multiple exposures, whereas novel displays are by 

definition only encountered once. 

 

Study 2 supports the novel view according to which there is guidance and also 

misguidance of search from experience with repeated display layouts, which arises 

from both long-term memory for specific distractor-target arrangements and, 

alongside, long-term memory for generic oculomotor procedures. With this, study 2 

thus complements study 1 by demonstrating that learnable display-generic scanning 
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strategies actively aid search even before attentional selection takes place. This 

happens by learning a procedural strategy that brings locations with a higher task 

relevance into view earlier, as well as by minimizing costs associated with the 

encoding and recall of (a large number of) display-specific contextual memories: 

Faithfully encoding entire display configurations would not only go along with higher 

costs, but also increase interference between display arrangements. Thus, a 

procedural strategy is not only cost efficient but is also minimizing potential 

interference at the same time. 

Our findings suggest that procedural learning might play a significant role in various 

forms of visual statistical learning, such as probability cueing. Here, learning an 

optimal scanning strategy might lead to findings similar to those of top-down 

attentional guidance and hence, further research is needed. 

 

Study 3 aimed at implementing a connectionist model of contextual cueing. Using a 

computational model allowed full control in terms of what kind of learning is enabled 

or disabled. The current model merely learns to associate fixatated regions of 

previosly executed saccades as it searches through the displays of a contextual 

cueing experiment. 

Hence, the model can only learn a simplistic procedure and never learns to 

associate a specific context to a specific target location. In fact, the model is never 

informed about having found the target at a specific location, and moreover, 

configurational learning of display-target associations is disabled. Instead, search is 

terminated upon finding the target and search begins anew with a new display. 

Nevertheless, the model not only shows a contextual cueing effect in terms of the 

number of simulated fixations, it also replicates the findings of a higher scanpath 
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similarity for repeated displays versus non-repeated displays within 'participants' of 

Study 1. 

Furthermore, the model can quantitatively predict findings from other studies, such 

as a biologically plausible number of fixations (e.g., Peterson & Kramer, 2001) and 

its performance beats the current benchmark models by a large margin. Also, as a 

consequence of learning, the model develops a central bias as an emergent 

phenomenon.  

These findings illustrate that learning a simplictic oculomotor procedure on self-

reinforcing previous oculomotor behavior is sufficient to elicit a contextual cueing 

effect. Moreover, the learning of such a procedure might give rise to generally 

observed effects, such as the central bias. Additionally, the findings suggest that 

enabling a model to leverage task structure might be beneficial not only for visual-

search models, but also for the field of machine learning and artificial intelligence by 

exploring new perspectives on learning and lower demands on labeling.  
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Hippocampal involvement 

 

Studies 1-3 show that contextual cueing is caused less by display-specific memories 

but rather by procedural learning. Instead, display-generic oculomotor scanning 

procedures are optimized with respect to the entire set of displays in which the 

influence of repeated displays weighs in more strongly. 

Searching T/L letter arrays repeatedly aid the visual system in developing new 

capabilities and learning more effective scanning strategies. This also means that 

eye movements are not just the consequence of a focused shifting of attention, but 

that they proactively support the orienting of attention toward objects that will most 

likely contain relevant information for further processing – before the actual 

attentional selection takes place. Somewhat at odds with these findings are studies 

that link the hippocampus - a locus associated with explicit memories to contextual 

cueing, and hippocampal lesions to an impairment in eliciting the contextual cueing 

effect (Chun & Phelps, 1999). However, hippocampal activity is not only indicative of 

explicit, but also implicit motor-sequence learning (e.g., in finger-tapping tasks, 

Albouy et a., 2013, as well as other, statistical-learning paradigms, such as serial 

reaction-time task; e.g., Hazeltine, Grafton & Ivry, 1997; Müller et al., 2002), 

particularly in the initial stages, with a subsequent decrease in activity later on 

(Albouy et al., 2008). This is consistent with a critical (but over the course of practice 

diminishing) role of the hippocampus in procedural motor learning (Albouy et al., 

2013). Moreover, hippocampal invovement does not necessarily imply the presence 

of explicit learning and it is possible that the hippocampus supports implicit forms of 

learning in CC (Chun, 2000). 
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In fact, there is direct evidence from a contextual cueing study using fMRI by Manelis 

and Reder (2012), consistent with a procedural-learning account of contextual 

cueing: With progression of the task, Manelis and Reder (2012) found a significant 

decrease in functional connectivity between hippocampus and the particular the left 

superior parietal lobule. One possible interpretation is that encoding the spatial 

context of a target is a necessary step in forming context-target associations 

(Manelis & Reder, 2012); however, another possibility is that in the initial blocks, 

display-generic (i.e. “domain general relational”; see Davici, 2006) information is 

learned.  
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Explicit vs. implicit learning 

 

Following a similar argumentation, several studies argue for a unitary memory 

system in contextual cueing, suggesting that contextual cueing is possibly driven by 

explicit memories that are below the threshold of awareness (e.g. see Vadillo et al., 

2016; Kroell et al., 2019; Meyen et al., 2023). Although these studies do not provide 

evidence for the absence of other memory systems involved (Meyen et al., 2023), 

they do not strictly rule out the involvement of other memory systems either. In fact, 

an analysis of a very large sample size implies that it it unlikely that explicit 

recognition of distractor-target associations is the motor behind contextual facilitation 

of search, as even sensitive measures of awareness for display repetition are 

uncorrelated with a benefit in reaction times for those displays, while the large 

sample size of about 700 participants makes power issues unlikely (Colagiuri & 

Livesey, 2016).  

One possible reason why procedural learning may not have been considered as a 

driving force behind the contextual cueing effect in these studies is the fact that it is 

present in virtually all studies (Jiang & Chun, 2003), and has not been overlooked, 

but not assumed to contribute to the effect, i.e. the context-dependent difference 

itself, instead of merely the general decrease in reaction time. Therefore, strong 

claims about the memory system underlying the CC effect require more evidence 

than what is currently presented using, e.g., Yes/No recognition tasks that query 

display-specific knowledge. Based on the results of studies 1-3 presented, one can 

make the argument that more fine-grained memory tests for contextual cueing 

should also consider participants’ procedures for solving the search task in 

particular. 
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In favor of an implicit learning account of CC, initial studies of attributed the effect to 

implicit learning (Chun & Jiang, 1998; Chun, 2000; Jiang & Chun, 2003), driven by 

the observation that learning seemed incidental, with anecdotal reports of difficulties 

in memorizing displays while performing visual search even when attempting so and 

no above-chance recognition in a forced-choice test (Chun & Jiang, 1998). Further 

evidence comes from studies in which, after a learning period of multiple blocks, the 

target of repeated displays is relocated to a different position, showing poor 

adaptation to the new target location (Manginelli & Pollmann, 2009), which is 

consistent with strong retroactive interference typically observed in implicit learning 

tasks (see Goujon et al., 2015). Beyond these observations, CC conforms to a 

multitude of implicit learning principles (for a review, see Goujon et al., 2015), such 

as strong resistance to extinction (Jiang et al., 2005, Zellin et al., 2014) and e.g. an 

independence of IQ (Merill et al., 2014). Also, CC does not seem to rely on a fully 

matured hippocampus, suggesting that explicit learning may not be necessary to 

elicit CC (Jiang et al., 2019). 

Here, a procedural learning account may reconcile the debate about the memory 

systems involved in the effect. While explicit, i.e. display-specific learning of context-

target associations may occur in CC, it is conceivable that there is a scanning 

strategy that is procedural and display-independent. Under this assumption, 

procedural scanning strategies and display-specific learning would be attributable to 

two different systems complementing each other. 
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Relation to scene-based contextual cueing and explicit learning 

 

Interrelated to the question of the memory system/s involved in CC is the choice of 

stimuli employed. In contrast to the controversial L-vs.-T stimuli, there is wide 

consensus that CC paradigms employing naturalistic stimuli lead to explicit 

recognition (Brockmole & Henderson, 2006a, Brockmole & Henderson, 2006b). 

Evidence using eye-tracking in a visual search task using repeating naturalistic 

contexts further supports this notion by showing that oculomotor scanpaths almost 

directly approach the target after some repetitions (Summerfield et al., 2011). In 

contrast, in conventional (L vs. T) array-based studies, the number of fixations 

necessary to reach the target remains above 4, even after being exposed to a 

repeated context 12-16 times (see, e.g., Peterson & Kramer, 2001; Tseng & Li, 

2004; study 3 of this thesis).  

One possible mediating factor could be something described as "meaningfulness": 

Scenes can be argued to convey more meaningful to observers than letters. In fact, 

chess experts have a profoundly higher CC effect scores compared to novices, when 

chess configurations - which are more meaningful for chess experts than novices - 

are used as stimuli. Importantly, this effect is stronger for plausible over implausible 

configurations of chess pieces in experts (Brockmole et al., 2008). Further, the 

“overshadowing account” provided by Rosenbaum and Jiang (2013) suggests that 

scene-based information with rather explicit cueing characteristics dominates 

contextual cueing even when combined with array-based stimuli as well. This finding 

could be interpreted as evidence for the existence of (at least) two dissociable 

cognitive systems that contribute to CC. The notion that in less meaningful, array-

based scenes, participants predominantly use a procedural “one for all” search 
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strategy, whereas in meaningful scenes explicit recognition is possible, provides a 

novel and testable account that could resolve the differential findings for varying 

stimuli.  
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Summary and outlook 

The present studies have shown that procedural learning plays an important role in 

visual search with L- and T-letter stimuli under invariant spatial contexts. While there 

is some evidence from empirical and theoretical studies that procedural learning may 

play a rather central role, particularly when rather "meaningless", L-vs.-T letter arrays 

are used as stimuli, beyond that, there are evolutionary arguments in favor of 

optimizing a search procedure rather than forming explicit (albeit maybe weak and 

"subthreshold") memories about previously encountered displays: A procedural 

strategy may incur smaller costs in encoding memories, while at the same time avoid 

interference from multiple, similar memories.  

Investigating procedural scanning strategies by means of fixational eye movements 

may therefore yield new insights into visual search, as they are currently not part of 

the major theoretical frameworks (such as Guided Search; Wolfe, 2021). This is of 

particular interest, as procedures may extend beyond eye-movements, i.e. (oculo-

)motor behavior in general: In visual search with and without eye-movements, almost 

identical activations are found in fMRI (De Haan, 2008).  

Further, eye tracking may offer specific insights into the process of procedural 

learning. For instance, eye-movements to different locations may be associated with 

incurrding different costs (Araujo, 2001) which may play a crucial role in shaping 

procedural scanning strategies that are display-generic and therefore "agnostic" to 

the specific yet to be explored content of a display.  

Finally, exploring procedural scanning strategies may offer a new way to understand 

attention: Because simplistic and in mathematical terms precisely definable 

procedures can mimic the effects of a rather elusive term of attention, they might be 

one of “the many systems that implement” a “behaviorally relevant selection process” 
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that could replace or at least clarify the currently inconsistent and not too well-

defined concepts of (visual) attention (see Hommel et al., 2019). 

 

As a consequence, these findings might pave the way for more comprehensive 

neuroimaging studies, shedding light on procedural learning and how it integrates 

with other types of learning, such as explicit learning. Studies such as these will be 

of particular importance of lifting psychological research away from an artificial notion 

of a “cognitive” agent evaluating and appraising sensory inputs and then 

subsequently acting on those, towards understanding cognition and behavior as 

tightly coupled, interdependent processes, such that behavior itself can be 

considered e.g. ‘smart’ and not the appraisal of a behavior (see Ryle, 1945).   
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