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Learning how: ‘Knowing that’ and ‘knowing how’ in
statistical learning of contextual repetitions in a

visual search task

General Introduction

Ryle (1945) famously made the distinction between ‘knowing that and knowing how’:
For instance, knowing the rules and even having been provided with abundant
instructions by an expert, does not make a good chess player. Conversely, a chess
expert may not be able to explicate their method of success, while, notwithstanding,
performing exceptionally (Ryle, 1945).

This principle holds true for many aspects of life, be it for playing chess, gardening or
mathematics. However, there has been little research into the effects of ‘knowing
how’ regarding our core cognitive functions, such as perception and, intricately

related to it, selective attention.



Background and motivation

In fact, theories of visual search, the prevailing framework under which visual
attention is investigated (Treisman & Gelade, 1980; Wolfe et al., 1989; Wolfe, 1994,
Wolfe, 2021) predominantly focus on factors that allow to (learn to) “know that”
something is the target given a set of stable visual objects and events in the sense
that assessing the visuospatial properties of these (with the target covarying) items is
akin to propositional statements whether an item should be considered as the target

of the search (Chun & Jiang, 1999).

In contrast to this, an alternative, and so far, neglected account can be conceived, in
which identifying the target is not a function of e.g., a process of elimination by
performing computations in feature space (for early evidence of overt attention being
placed not according to optimal feature selection, see e.g. see Zelinsky, 1996) but is
instead a direct result of behavior which itself is intelligent (Ryle, 1945). Likewise,
faster identification of the target in statistically informative environments of non-
target, distractor, objects cannot just be thought of as a consequence of learned
associations between the individual layout formed by the distractor elements and the
individual target location (i.e., contextual-cueing effect; e.g., Chun & Jiang, 1998;
Brady & Chun, 2007). Instead, an argument can be made that learning and refining
the process of search itself, i.e. the ability to (learn to) “know how” the target can be
searched for and found in an effective manner, may be a core mechanism in how we

can make use of our environment for adaptive behavior.



The goal of this thesis is to demonstrate how procedural “knowing how” learning
contributes, and moreover, proactively facilitates visual search, demonstrated on the
example of contextual cueing. While it is quite well accepted that procedural learning
aids performance in cognitive tasks (Fitts & Posner, 1967, Anderson, 1982), here,
the argument is made that functions associated with attentional enhancement or
attentional suppression (Geng, 2014) can be explained as an instance of procedural
learning, without involving a rather “etheric”, intangible notion of attention (James,
1980). Further, learning a procedure of the task instead of learning propositional
statements about the goal of the task (i.e. “meta information”, such as the
computation of abstract conditional probability distributions) may often better reflect

the cognitive processes (not) involved.



The Contextual Cueing task

The central paradigm utilized is that of Contextual Cueing (Chun & Jiang, 1998): In
each trial, participants have to search for a target, the letter T, which is rotated by
either 90° or 270°, hidden among a set of rotated L-letters, and have to indicate the
T’s (left vs. right) orientation by pressing one of two buttons, with the response
verifying whether the target was indeed detected. Trials are organized into blocks,
and in each block, target positions (but usually not their orientations) repeat.
Unbeknownst to the participants, for half of those trials, not only the target position
repeats, but also the (at the beginning of the search task randomly generated)
configuration of L-letters. These are termed ‘repeated’ or ‘old’ contexts, in contrast to
‘non-repeated’ or ‘new’ contexts in which the L-configuration is generated anew for
each block. The reason for keeping target positions constant in repeated and non-
repeated contexts is to control for absolute target position learning (Geng &
Behrman, 2005) and therefore allowing to investigate the influence of an invariant
context on the search performance. Typically, the number of repeated and non-
repeated displays is kept identical, and one block has usually 12, ranging from 4
(Schankin & Schubd, 2010; Sewell et al., 2019), 12 (Chun & Jiang, 1998), up to 18
(Jiang & Kramer, 2004) target locations for repeated, as well as for non-repeated
displays. By keeping the target locations constant in non-repeated displays as well
as repeated displays, the effect of context, independently of absolute target position

learning (Shaw & Shaw, 1977; Shaw, 1978; Miller, 1988; Geng & Behrmann, 2005).

The central outcome of these studies is that a repeating context facilitates search in

terms of reduced response times (Chun & Jiang, 1998, Jiang & Chun, 2003).



Furthermore, eye-tracking studies show that targets in repeated contexts are not
only found faster, but also require fewer eye-movements (Peterson & Kramer, 2001;
Tseng & Li, 2004). Also of note, a general decrease in reaction times and the
number of fixations across blocks can be observed which is, however, more
pronounced for repeated than for non-repeated displays, which can be well
approximated by a power function, while the power function of repeated displays
usually has a steeper slope (Jiang & Chun, 2003; Brooks et al., 2010). Power
functions have long been recognized to characterize improvements in human
performance as a consequence of practice in various tasks (Snoddy, 1926; Fitts &
Posner, 1967; Newell & Roesenbloom, 1981, Anderson, 1982), particularly in
association with proceduralization of a cognitive skill (Fitts & Posner, 1967;

Anderson, 1982).

The predominant view of contextual cueing is that, through repeated encounters with
a display layout, observers acquire a contextual memory that associates the
invariant configuration of distractors with a certain target location. Upon re-
encountering a repeated display, this memory is activated and guides attention
towards the target location (Chun & Jiang, 1998). Specifically, this can happen either
via the guidance of individual distractor items’ location towards the target (e.g. see
Jiang & Wagner, 2004, Experiment 1; for a theoretical account, see Brady & Chun,
2007), or, additionally, by the buildup of a ‘scene memory’ for repeated distractor
locations (Beesley et al., 2015; Preuschhof et al., 2019), which subsequently

facilitates target detection through suppression of (learned) distractor locations.



Aim and motivation

The central aim of this thesis is to test an alternative account of CC (which is not
mutually exclusive with the previously introduced view): Instead of display-specific
memories that guide attention, display-general procedural learning, which is a
universal finding in virtually all pertinent studies (e.g., Jiang & Chun, 2003) may itself
be not only the motor behind a general decrease in reaction times and the number of
fixations, but also give rise to the CC effect itself. — Procedural learning refers to the
observation that search speed improves, typically quite substantially, over the course
of practice on the task, that is, across trial blocks. According to this view, observers
learn to optimize the search procedure by which they scan displays. Importantly, as
repeated displays are - by definition - encountered repeatedly, they weigh in stronger
on (the development of) the search procedure as non-repeated displays. As a result,
the search procedure will be optimized towards repeated displays, and
consequently, performance on these displays will be better, compared to non-
repeated displays, akin to the notion of overfitting in machine learning. Three studies
were conducted to assess display generic learning in CC and whether this form of
learning suffices to elicit a contextual facilitation effect (over and above that coming

from display-specific memories).

Not surprisingly, the central measure of these studies are eye-movements. Eye-
movements have long been recognized to reveal attentional processing, with

fixations preferentially being placed at relevant locations and, crucially, in a task-
dependent manner (Yarbus, 1967). Specifically, eye-movements have been the

subject of several studies involving contextual manipulation, showing that repeated



contexts require fewer eye-movements to identify the target (Peterson & Kramer,
2001), and that the length of the oculomotor scanpath is closer to the minimal
scanpath length when compared against non-repeated displays (Brockmole &
Henderson, 2006). Conversely, the number of fixations approaching the target
monotonically does not differ between contexts, however the number of seemingly
random fixations is reduced in repeated contexts, in the sense that fixations are not
monotonically approaching the target (Tseng & Li, 2004): Tseng and Li (2004)
computed distances between each fixation and the target location and based on the
fixation that was maximally distant from the target, they classified fixations preceding
and including the fixation at peak distance as random (or explorative) and
subsequent fixations as monotonic. Taken together, these results were interpreted

as evidence for the activation of a display-specific memory trace.

Somewhat at odds with these interpretations are studies that suggest that fixations
not only serve the purpose of detecting a target, but also to acquire visual
information in general (Zelinsky, 1996), to maximize task-relevant information
(Najemnik & Geisler, 2005) or to avoid costs (Araujo et al., 2001). While
observations such as these are consistent with the idea that there might be good and
less optimal scanning strategies in which the strategy itself (i.e. the knowing how) is
optimized/learned, so far no study has explicitly investigated this aspect of visual
search. Paradoxically, the contextual cueing task, which is generally believed to
illustrate display-specific top-down guidance, is also ideally suited to assess whether
the procedure of scanning is optimized in a display-general manner as a result of

some of them repeating.
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To rephrase: The relationship between eye-movements and attention has been
researched exhaustively in terms of how covert attention affects eye-movements
(Sheliga et al., 1995; Hoffman, 2016). While it is certainly the case that shifts in
attention elicit eye-movements, e.g., when attention is explicitly cued toward a
particular location (Deubel & Schneider, 1996), so far the complement has received
little to no attention, which is how a fixational policy can aid (pre-)attentional
appraisal of an environment when there are no or only relatively weak cues to
attention, that is, when fixations serve the purpose of collecting information and
bringing relevant aspects of an environment into view in the first place. Given that in
the classical contextual cueing task, an L-vs.-T letter search, each element is
composed of identical features and that participants still have to search for the target
even in repeated displays after ample exposure (e.g. see Peterson & Kramer, 2001),

this task lends itself well to the assessment of oculomotor scanning strategies.
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Studies

Study 1 investigates procedural learning in a Contextual Cueing task, by
investigating whether not only the general improvement in visual scanning, as time
progresses, but also the improved performance in repeated over non-repeated
contexts is a function of procedural learning of the search itself: Since repeated
displays have to be searched multiple times, while non-repeated displays are
encountered only once, repeating contexts weight more strongly on the tuning of the
search process. Since the search procedure is hence biased towards repeated
displays, it follows that generic display scanning is adjusted toward and works more
optimally on those repeated contexts.

This goes along with a reduced variability, in response to the general invariances of
the task, and also particularly in response to the additional invariances provided by
the overrepresentation of repeated displays for repeated contexts. As a result, the
search procedure for each repeated display becomes increasingly similar.

The study investigated search behavior in terms of eye movements, and how the
oculomotor scanpaths of participants unfold, conceptualized as a sequence of
fixations over time. Besides replicating measures previously established in literature
(a reduced reaction times, see Chun & Jiang, 1998; reduced number of fixations, see
Peterson & Kramer, 2001; smaller scan-pattern-ratio, see Brockmole & Henderson,
2006 and Henderson et al., 1999) the central finding is an increase in similarity:
Both, within participants (across each participant’s set of repeated and non-repeated
displays, respectively) and within displays (i.e. across all participants for each

individual repeated and each non-repeated display), similarity of scanpaths
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increases as the experiment progresses, and, importantly, similarity is higher for

repeated than for non-repeated displays.

Having established that procedural learning takes place, study 2 aimed at answering
two questions. Firstly, replicating the results from study 1 that procedural learning is
an important source of the CC effect, while also examining the contribution of
alternative, and not mutually exclusive, display-specific learning to search facilitation
in repeated contexts. Secondly, after assessing the relation and interplay between
procedural, that is, display-generic, and display-specific learning, the possible
(evolutionary) advantages need to be explicated: By relying on a mostly procedural
strategy, the perceptual system does not only save energy in terms of the costs of
encoding each display, but also avoids interference from having to represent multiple
similar memory traces.

To this end, oculomotor behavior was investigated before and after relocating the
target to a new position of repeated displays (Manginelli & Pollmann, 2009):
Relocation after having established a stable CC effect usually leads to a cost, i.e. the
CC effect vanishes and only re-emerges slowly (Manginelli & Pollmann, 2009; Zellin
et al., 2014). While CC re-emerges during the relocation phase in the study, the
magnitude remains distinctly smaller than during the learning phase. Critically,
observers’ gaze approaches previous target locations much closer in the relocation
phase than the future, i.e., relocated, target position in the learning phase. Moreover,
the closeness of fixations towards the previous target location explained the reaction
time cost of relocation. These findings indicate that display-specific learning indeed
plays a role in CC. Importantly however, previous targets on the left and on the right
side were not approached equally closely, and reaction times, as well as the number

of fixations, showed significantly different costs between different old-context
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displays (with original targets in left vs. right hemifields). Specifically, acquired visual
(left-right) scanning strategies could explain the pattern of contextual cueing after
target relocation. For instance, a target relocated from the left to the right hemifield
produced a huge cost, amounting up to 4 additional fixations and additional 200 ms
processing time. This contrasts with targets relocated from the right to the left display
half, which even produced slight performance advantages. Taken together, these
findings suggest that while traditional accounts of CC emphasize the acquisition of
search-guiding LT-memory ‘templates’ that are specific to particular target-distractor
contexts, contextual learning also tunes attentional (oculomotor) scanning routines to
the prevailing statistical target-distractor regularities in the display arrangement
encountered, yielding a context-unspecific LT ‘proceduralization’ of search: Although,
on average, search incurred a cost in repeated display after target relocation, the
amount differed, based on whether the target moved from the left to the right, or the
right to the left half, before and after relocation, respectively. Thus, this study
confirmed both mechanisms to contribute to initial contextual learning as well as the
‘distraction’ effect produced by re-location of the target to the opposite side of
repeated-context displays. Hence, it can be theorized that guidance and
misguidance of search by repeated contexts may involve two complementary LT
mechanisms: procedural optimization of broad, i.e., display-generic, oculomotor
scanning routines, and learning of where to expect the target to be located in specific

repeated-context displays.

The third study aimed at investigating whether procedural learning alone can, in
principle, give rise to the CC effect. In order to assess this hypothesis, a
connectionist model was implemented. The advantage of a computational model is

that it allows to analyze explicitly the aptness of procedural learning in isolation, in
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the strict absence of any configurational, i.e., display-specific, learning. Instead, the
model was only able to learn the procedure and was never informed about the
target’s identity or its location.

Nevertheless, the model was able to improve its search performance and develop a
CC effect. Moreover, a central bias (Clarke & Tatler, 2014) developed as an
emergent phenomenon of learning the search procedure. The model outperforms
previous models on various key metrics. This has implications for models of vision to
incorporate procedural learning and procedural strategies, and also for the field of
artificial intelligence in which acquiring procedural strategies that leverage the task
structure can inspire novel learning mechanisms and datasets, as well as alleviate

the need for annotated datasets.
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Study 1 — Seitz et al. (2023)

Seitz, W., Zinchenko, A., Muller, H. J., & Geyer, T. (2023).
Contextual cueing of visual search reflects the acquisition of an
optimal, one-for-all oculomotor scanning strategy.
Communications Psychology, 1(1), 20.
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Contextual cueing of visual search reflects the
acquisition of an optimal, one-for-all oculomotor
scanning strategy
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Visual search improves when a target is encountered repeatedly at a fixed location within a
stable distractor arrangement (spatial context), compared to non-repeated contexts. The
standard account attributes this contextual-cueing effect to the acquisition of display-specific
long-term memories, which, when activated by the current display, cue attention to the target
location. Here we present an alternative, procedural-optimization account, according to which
contextual facilitation arises from the acquisition of generic oculomotor scanning strategies,
optimized with respect to the entire set of displays, with frequently searched displays
accruing greater weight in the optimization process. To decide between these alternatives,
we examined measures of the similarity, across time-on-task, of the spatio-temporal
sequences of fixations through repeated and non-repeated displays. We found
scanpath similarity to increase generally with learning, but more for repeated versus
non-repeated displays. This pattern contradicts display-specific guidance, but supports
one-for-all scanpath optimization.
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tractor, objects can be facilitated by prior knowledge of the

scene, including contextual long-term memory of co-
occurring objects or the position of the target relative to an
invariant (spatial) distractor arrangement (e.g., ref. ). Chun and
Jiang!, in their seminal study, presented participants with search
arrays containing a target letter “I” among a set of distractor
letters “L” (a relatively hard search task that affords little bottom-
up or top-down guidance; cf2.). Critically, in half of the trials, the
spatial arrangements of the distractor and target stimuli were
repeated (i.e., repeated, old contexts); in the other half, the dis-
tractor locations were generated anew on each trial, while keeping
the target position constant (i.e, nonrepeated, new contexts).
Thus, given that the absolute target positions were fixed in both
types of trial, the only difference between them was whether or
not the target location was predictable from the distractor con-
text. The two sets of repeated and nonrepeated displays were
presented randomly intermixed within each block of trials. Chun
and Jiang! observed that the search reaction times (RTs)
decreased with increasing block number for nonrepeated as well
as repeated arrays, attributed to general procedural learning of
how to perform the task. Critically, however, this practice-
dependent improvement was larger for the repeated arrays — an
effect Chun and Jiang! referred to as contextual cueing (CC).
Search RT facilitation by repeated contexts typically emerges
rapidly, after just a few (2-4) encounters of the same visual
arrangement (e.g., ref. 3), and it appears to be implicit (and
automatic) in nature?. Further, in terms of oculomotor search
performance, eye-tracking studies indicate that contextual learn-
ing leads to a reduction in the number of fixations required to
reach the target in repeated, compared to nonrepeated, displays
(e.g., ref. >9).

One intriguing, and, as we will argue below, open question is
how these savings in the number of fixations are actually pro-
duced in repeated search displays. The standard account attri-
butes these savings to search being cued, or guided, more directly
to the target location as a result of having acquired a (long-term)
associative memory representation, or template, of a specific
distractor-target arrangement. This template is activated upon re-
encountering such an arrangement on a given trial, which then
top-down increases the attentional priority of the target location
(e.g., ref. 15 for computationally explicit models, see, e.g., ref. 10-11)
- thus enhancing the target’s potential to summon covert or overt
attention. According to this account, the number of attention
shifts required to detect a target in a repeated search array will
decrease with increasing (re-)encounters of this array, due to the
build-up of a search-guiding contextual memory template for this
array (e.g., ref. 1). Support for this comes from studies of con-
textual cueing that used fixation number as a dependent measure
(e.g., ref. 9,). These studies showed that finding the target in
repeated arrays requires overall fewer eye movements - though
with the guidance effect emerging only after the first few fixations,
suggesting that it may take some time for the template to come
into play. In Tseng and Li’s® terms, search may involve some
‘inefficient’, unguided scanning of the array until an informative
constellation of distractors represented in the template is
encountered. Activation of the template would then lead an
effective, guided search phase: a relatively direct homing in of
attention on the target location after a series of more exploratory
fixations. Accordingly, the savings in the number of eye move-
ments for repeated (vs. nonrepeated) displays would arise from
later fixations in the saccadic scanpaths - perhaps with the
template-based priority signal pointing to the target location
growing increasingly stronger as oculomotor scanning approa-
ches the target item!. This specific-template account is attractive,
not least because it ties in seamlessly with the functional

Visual search for a target object among nontarget, or dis-

architecture assumed by general theories of search guidance, such
as Guided Search!?-14,

However, there may be an alternative, more procedural
account of contextual facilitation that does not rely on the notion
that observers acquire memory representations that are specific to
particular distractor-target arrangements — a conceptually new
account that the present study set out to explore. In fact, proce-
dural learning in CC paradigms is a universal finding in virtually
all pertinent studies (for reviews see, e.g., ref. 1>19)): search speed
improves, typically quite substantially, over the course of practice
on the task, that is, across trial blocks?. Importantly, an
improvement is evident for nonrepeated — as well as repeated -
displays, which is generally attributed to procedural learning,
which optimizes, or automatizes, performance through the
development/refinement of a task-appropriate (search) settings,
akin to the development of a skill (e.g., ref. 17-20,). Critically,
though, the improvement is more marked for repeated (vs.
nonrepeated) displays, which constitutes the contextual-
facilitation effect.

Of note, the extant studies of contextual cueing have almost all
examined the facilitation effect (in terms of RT, fixation/saccade
number, etc. measures) across aggregated sets of repeated vs.
nonrepeated displays. Accordingly, arguably little is known about
how contextual facilitation comes about at the single-display level:
Is it based on attentional guidance by specific LTM templates of
spatial target-distractor relations in individual displays? Or is it
due to the acquisition of more display-generic (i.e., relatively
display-independent) scanning procedures that are mainly shaped
by - and so best adjusted to - the set of repeated displays. On the
latter hypothesis, what is optimized in procedural task learning
may be a search strategy which is increasingly generic in the sense
that it is applicable to all search displays, repeated and non-
repeated (rather than being specific for particular repeated dis-
plays). However, as a result of statistical learning, this strategy is
more tuned to, and so more effective for, those displays that are
encountered frequently (repeated displays), rather than displays
searched only once (nonrepeated displays). Thus, the procedural-
learning hypothesis would provide a unitary account in that it
explains both the general and the specific gains in terms of tuning
and optimization of the oculomotor scanning strategy to the
regularities prevailing in the whole set of displays that observers
encounter over the task. Please note that we evoke a view of
optimization according to which visual search is adjusted toward
a specific goal, namely, finding and responding to a target letter T
in a cluttered array of distractor letters L. Given that this target
differs from the distractors only in the combination of two shape
features and the T vs. L junction, the search as such is likely
inefficient, in terms of producing relatively steep slopes of the
function relating RTs to the number of elements in the search
display (e.g., ref. 14.). Nevertheless, through procedural learning,
performance is optimized to achieve the goal reliably with a
minimum of effort.

In sum, in hard search tasks requiring serial eye movements to
find the target, repeatedly scanning identically composed item
arrays leads to a decrease of RTs and fixation numbers compared
to novel displays. However, the eye-movement savings (likely the
main driver of the RT savings) occur only relatively late during
the trial; and even after a reasonable amount of display repeti-
tions, a considerable number of (some 4-6) fixations is still
needed for the eye to reach the target (cf0.). This suggests that
contextual learning may foremostly aid, or optimize, the selection
of fixation locations along (at least parts of) the oculomotor
scanpath, thereby increasing the likelihood of hitting the target
location relatively early during the search. In other words, con-
textual learning may drive adaptations of participants’ general
scanning strategies that broadly structure their search in a

COMMUNICATIONS PSYCHOLOGY | (2023)1:20 | https://doi.org/10.1038/s44271-023-00019-8 | www.nature.com/commspsychol
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display-generic manner that is adapted to repeatedly encountered
displays collectively, rather than individually (and that is little
influenced by nonrepeated displays, which - by virtue of being
encountered only once - cannot consistently contribute to
shaping this strategy). Of course, such display-generic learning
may operate alongside display-specific learning of the spatial
target-distractor relations in individual repeated displays. Argu-
ably, however, relatively direct, display-specific guidance of
attention and the eye to the target location may only play limited
role at least in hard search tasks requiring serial scanning.

To test this alternative, proceduralization account, we set out to,
first of all, establish (and thus replicate) contextual facilitation in
terms of the standard summary RT and eye-movement measures
that have informed theorizing in the extant contextual-cueing lit-
erature. Then, we went on to examine oculomotor-scanpath-
similarity measures — in particular, Dynamic Time Warping,
Discrete Fréchet Distance, and Area Between Curves - that are
diagnostic of similarity in the spatio-temporal sequence of fixations
across individual (repeated and nonrepeated) displays, as well as
the sequences produced by individual participants. These analyses
were designed to reveal detailed information about the procedur-
alization of search performance, which is lost in the standard
averaging of dependent measures both across individual repeated
and, respectively, nonrepeated displays and across individual
observers.

According to the procedural-optimization hypothesis, (1)
scanpaths should become more homogeneous for individual
displays across participants over trial blocks, with scanpaths for
repeated displays becoming more similar compared to those for
nonrepeated displays. Given that (any acquired) display-specific
contextual-memory templates take time to become (fully) acti-
vated to provide direct guidance (e.g.%°,), higher scanpath
homogeneity would particularly reflect display-generic eye-fixa-
tion sequences during the earlier, unguided parts of the search.
(2) There should be an increased similarity when scanpaths for
different displays are compared within individual participants:
similarity measures should be higher for pairs of (differently
composed) repeated displays compared to pairs of (different)
nonrepeated displays. In contrast, the display-specific hypothesis
of contextual-cueing would predict that scanpaths become more
dissimilar for pairs of repeated (relative to nonrepeated) displays.

Methods

Participants. The sample size was determined based on Vadillo
et al’s?! meta-analytical study of contextual cueing (i.e., which
reported a rather large effect-size score of Cohen’s d =1.00). A
power analysis based on this meta-analysis indicated that to find a
main effect of contextual cueing on RT performance with 85%
power, a minimum sample size of N = 11 participants would be
needed. Based on this estimate, when analyzing contextual-
facilitation effects at the level of each of our 4 individual repeated
displays, this would require at least a 4 times larger sample size. In
fact, a sample size of N> 40 participants is comparable with other,
relevant studies of contextual cueing that have examined con-
textual facilitation at the level of individual learning blocks/
epochs (e.g.22) or of single displays (e.g.2324,). Based on these
considerations, we recruited N =46 participants for the present
experiment (38 identifying themselves as female, the remaining 8
as male; 3 left-handed; mean age = 23.28 [SD =5.62, range =
19-43] years; no data on ethnic identity was collected). Written
consent was obtained from each participant; with an ethics
approval by the German Research Council (DFG; under GE 1889/
4-2). Note that for nonsignificant effects, we additionally report
Bayes statistics, where we used the Bayesian Information Criter-
ion as approximation to the Bayes factor (BF,; see ref. 2:26).

General approach. Our goal was to bring together established RT
and oculomotor measures of the contextual-cueing effect, which
focus on group mean values, with oculomotor-scanpath measures
that quantitatively describe search behavior in a more fine-
grained manner, in particular, at the levels of individual displays
or individual participants (see Fig. 1A and B). Additionally, by
replicating established measures from the literature (ref. >6:27:28),
we aimed to ensure the representativeness of our own data for
contextual-cueing studies at large, thus increasing the confidence
in the generality of our analyses and findings. Please note that our
study was not preregistered as we had a particular - exploratory -
focus that seeks to find primary evidence for an alternative,
procedural, account of statistical learning in search tasks, by also
demonstrating the applicability and potential of scanpath com-
parison techniques to visual search in repeated versus non-
repeated target-distractor arrays and thus generating ideas that
justify further research.

For our analysis approach to be feasible, we adjusted the
experimental design in two respects: First, and motivated by a
previous study of contextual cueing?®, we reduced the number of
learnable, repeated target locations, as well as the number of
target locations in nonlearnable, nonrepeated displays to four
each, with one target location per display quadrant; this was
meant to ensure that the memory signals for the respective target
location and the corresponding (possibly display-specific)
scanpath would have as little interference from other repeated
displays as possible and that allocation of attention over space
and time would be maximally different. Second, we presented the
same repeated and non-repeated display arrangements to all
participants, in the same trial order. Using the same set of
displays allowed us to control the perceptual content of the
display set throughout the experiment; in particular, using the
same arrangements for non-repeated displays ensured a “fair”
comparison between scanpaths, eliminating confounds originat-
ing from, across participants, variably composed distractor-target
configurations in non-repeated displays. Methodologically, these
adjustments made it possible to compare pairs of scanpaths at
different levels and relating to (1) the similarity of fixation
sequences through an individual display when viewed by pairs of
different participants and (2) the similarity of scanpaths for an
individual participant viewing (pairs of) different displays. These
design measures enabled us to perform a thorough test of the
contrasting predictions made by the specific and the generic
procedural-optimization accounts.

We acknowledge that the number of (4) consistently arranged
target-distractor displays employed here is relatively low
compared to the 8-12 repeated arrays typically used in the
relevant studies (see, e.g., ref. 21,). Assuming that having to deal
with fewer repeated displays fosters the acquisition of contextual
regularities, the facilitation effect generated under the present
conditions may turn out more robust than the meta-analytical
effect reported by Vadillo et al.2!, with a Cohen’s d effect-size
score of 1.00. However, this is not supported by the present RT
data (see below), which revealed a Cohen’s d = 0.90 (95% CI: 0.30
— 1.51) - rendering it unlikely that contextual facilitation is a
simple function of the number of different repeated displays
encountered in an experiment. Nevertheless, our participants
were presented with identical sets of repeated (and nonrepeated)
displays. While this was a necessity for our scanpath analysis to
work (in particular, for permitting scanpaths to be compared
between different participants searching the same displays), it
remains a possibility that the results are bound to these displays.
To address this, we used linear mixed models, in which we
explicitly took into account the random variability coming from
individual nonrepeated displays (as well as individual partici-
pants) when estimating the effects of our fixed factors of context
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Fig. 1 Design, analytic approach and results from the current study A and B illustrate the trial schedule: Each of our N = 46 participants viewed the same
set of (repeated and nonrepeated) displays, allowing us to compare the scanpath similarities within displays and within participants. C shows an example
display used in the search task, with a right-oriented T target letter located in the lower right quadrant; and (D) illustrates participants’ scanpaths when
searching for Ts (in displays with the target position in the lower-right quadrant marked by a violet cross) in repeated and nonrepeated displays. E shows
the reaction-time benefit for repeated over nonrepeated displays (in ms) as a function of block; and (F) outlines more effective processing in repeated vs.
nonrepeated displays when oculomotor parameters are examined: number of fixations, scanpath length, and means and standard deviations of saccadic
amplitudes. The data (except for fixation number) represent pixel values: 52 pixels correspond to 1 degree of visual angle. G shows blockwise differences
between repeated and nonrepeated displays in scanpath similarity measures when computed using the metrics of Dynamic Time Warping, Fréchet

Distance, and Area Between Curves, both within displays and within participants. The data are given in pixel values (or, respectively, squared pixel values

for ABC). The shaded areas in (E-G) depict the standard error of the mean.

and block (the specific structure of our models is presented in the
Supplementary Methods).

Apparatus and stimuli. The experimental routine was pro-
grammed in Matlab with Psychtoolbox extensions (ref., 30-31) and
run on an Intel PC under the Windows-7 operating system.
Participants were seated in a dimly lit laboratory booth in front of
a 19-inch CRT monitor (AOC, Amsterdam; display resolution
1024 x768 pixels; refresh rate: 85Hz) at a viewing distance of
60 cm (controlled by a chin rest). The search displays consisted of
12 gray items (luminance: 1.0 cd/m?; 1 target and 11 distractors)
presented against a black background (0.11 cd/m2). All stimuli
extended 0.35° of visual angle in both width and height. As
depicted in Fig. 1C, the items were arranged on three (invisible)
concentric circles around the display center (with radii of 91, 182,
and, 273 pixels for circles 1, 2, and 3, respectively). In repeated
displays, the locations and orientations of the distractors were
held constant across trials; in non-repeated displays, all distractors

(i.e., their locations and orientations) were generated anew on
each trial. Note that in all presented displays, the location of the
target was repeated but the (left/right) orientation of the target
was determined randomly and was, thus, unpredictable. As a
result, a repeated context could only be associated with a specific
(repeated) target location, but not with a specific target identity.
Following Chun and Jiang!, this approach is used in most CC
studies to ensure that contextual facilitation of RTs is owing to
the repeated context guiding attention/the eyes, rather than
facilitating the selection of the manual response (invariably)
associated with a given repeated display. Importantly, both the set
of N=4 repeated displays and the set of N= 128 randomly
generated nonrepeated displays were kept constant across all 46
participants, so that each participant encountered identical
repeated and non-repeated configurations. Note, however, that
trial order was randomly chosen within each block of N=4
repeated plus N = 4 nonrepeated trials for individual participants.
This enabled us to keep low-level, individual display properties
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constant across participants and thus compute dependent -
scanpath — measures for each individual display (with variations
between participants providing the error term).

There were overall 8 possible target locations, 4 of which were
used for repeated displays (with constant distractor layouts) and
the other 4 for non-repeated displays (with random distractor
arrangements). Keeping the target locations constant in non-
repeated as well as repeated displays is a standard procedure in
studies of contextual cueing, to permit the learning of invariant
target-distractor contexts to be dissociated from absolute target-
position learning (i.e., target-location probability cueing; e.g.,
ref. 3233)): absolute target-location learning is effectively con-
trolled for by maintaining constant target positions in both
repeated and nonrepeated displays. All targets, in both types of
display, were located on the second ring, controlling for the
distance of the target from to the display center in all conditions.
Furthermore, the targets were placed in all four quadrants with
equal probability. Specifically, the (12) display items were
randomly assigned to 12 out of a total of 40 possible locations
(4, 8, 12, and 16 locations on ring 1, 2, 3, and 4, respectively), the
only constraint being that each quadrant contained an equal
number of items (either 3 distractors or 1 target and 2
distractors). This means that in principle, there were more than
2.07%10° variants for generating individually unique search
displays. Selecting our repeated (and non-repeated) displays
randomly from this large space of possible configurations
rendered it quite unlikely that they were structurally highly
similar.

Importantly, participants were not informed about the fact that
some of the search arrays were presented repeatedly. The “I”
target was rotated randomly by 90° to either the left or the right.
The 11 remaining items were L-shaped distractors rotated
randomly at orthogonal orientations (0°, 90°, 180° or 270°).
Figure 1C presents example display layouts (see also Supplemen-
tary Fig. 1) To record eye movements, a video-based eye-tracker
was used (EyeLink 1000; SR Research Ltd., Mississauga, Ontario,
Canada; version 4.594), monitoring participants’ right eye. A
standard 9-point (grid) calibration of the eye tracker was
performed initially and validated at the beginning of each fourth
block of (32) trials. Calibration was considered accurate when
fixation positions fell within ~1.0° (=diameter) of visual angle for
all calibration points. The average calibration error was 0.52°, the
average of the maximal errors was 0.86. No data had to be
removed due to poor calibration. Calibration accuracy was
further checked by the experimenter on each trial. The default
psychophysical sample configuration of the eye-tracking system
(i.e., saccade velocity threshold set at 35°/s, saccade acceleration
threshold set at 9500°/s%) was adopted for identifying saccadic eye
movements.

Trial sequence. A trial started with the presentation of a central
fixation cross (0.10° x 0.10° luminance: 1.0 cd/m2) for 500 ms.
Next, the fixation cross was removed from the screen, and, fol-
lowing a blank interval of 200 ms, the search display was pre-
sented. Observers were instructed to find the target “I” and
respond as quickly and accurately as possible to its (left vs. right)
orientation, while being allowed to move their eyes freely. Each
search display stayed on the screen until a manual response was
elicited. If the “T” was rotated to the right (left), observers
responded by pressing the right (left) arrow button on a computer
keyboard with their right (left) index finger. Following a response
error, the word “Wrong” appeared in the screen center for
1000 ms. Each trial was followed by a blank inter-trial interval of
1000 ms. The experiment consisted of 256 trials (32 blocks x 8
trials each, 50% repeated displays in each block). Participants

were free to proceed to the next block at their own pace. The
search task took some 30 min to complete.

Recognition test. At the end of the experiment, observers per-
formed a yes/no (repeated/nonrepeated display) recognition test,
permitting us to assess whether they had acquired any explicit
memory of repeated configurations presented in the preceding
search task (a standard procedure in contextual-cueing experi-
ments; see e.g., ref., 1). To this end, observers were presented with
4 repeated displays and 4 newly composed displays. The task was
to indicate whether or not a given display had been shown pre-
viously, by pressing the left or the right mouse button, respec-
tively. The 4 repeated and the 4 newly generated displays were
presented in random order. Observers’ responses in the recog-
nition task were nonspeeded and no error feedback was provided.

Statistical analysis. Comparisons of scanpaths were carried out in
Python3%. Statistical analysis was performed using Python34, as
well as R (version 3.4.3, ref. 3>36), We analyzed our dependent
measures of reaction times, error rates, and oculomotor variables
using the Ime4 package in R for linear mixed effect modeling,
including target quadrant and participant as random factors in
addition to the fixed factors of block and context. All tests
reported in this study were conducted as two-sided parametric
tests and the aptness of these tests was checked by visualization
and formal methods.

Previous studies of contextual cueing reported substantial
target-quadrant- and participant-dependent variations in baseline
RTs (e.g., ref. 3738). Accordingly, we used linear random-
intercept models (for the numerical dependent variables of RTs,
error rates, oculomotor measures) to account for unwanted
variability deriving from individual displays (with different target
locations/quadrants) and individual participants. Also, by con-
sidering target quadrant and participant as random factors, we
ensured that our results would be as generalizable as possible to
other studies of contextual cueing. Note that the analyses of the
scanpath metrics (see below) required specific variability coming
from comparisons of individual displays and, respectively, of
individual participants. For this reason, target quadrant and
participant were not included as random factors in these analyses.
Our model fits (ie., effect sizes) were quantified in terms of
Nakagawa’s R*38 using the package “performance” in R.

Dependent measures. To establish comparability between the
present investigation and previous contextual-cueing studies, as
well as to validate our dataset as being representative for visual-
search paradigms, we begin our analysis with an examination and
replication of established measures of the contextual-facilitation
effect: RT, fixation number, and saccade amplitude (see, ref. ©,
or’). We then proceed to the presentation of scanpath measures
of contextual facilitation, including the total length of the scan-
paths (ref. 2-3%) and the standard deviation of the lengths of the
saccades constituting each scanpath. The latter essentially pro-
vides a new measure of the variability of saccade lengths across
individual observers and displays, where a decrease in variability
can be considered a measure of automaticity*. This is followed
by overlay-plot visualizations of individual participants’ spatio-
temporal sequence of oculomotor behavior (which are also meant
to demonstrate the usefulness of our scanpath approach to eye-
tracking investigations of visual search in general). From these
visualizations, a quantitative measure of contextual cueing,
namely: scanpath similarity or consistency, is derived.

Analysis of scanpath similarity. The similarity of scanpaths was
computed using established measures in the field (cf*1:42), in
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particular, Dynamic Time Warping, Discrete Fréchet Distance,
and Area Between Curves.

Dynamic Time Warping is a measure of similarity between two
fixational series of different lengths. Two individual scanpaths
may be highly similar with regard to the placing (i.e., the spatial
coordinates) of individual fixations, but the temporal alignment
of these sequences may be less consistent across individual trials.
The strength of Dynamic Time Warping is that it can quantify
the similarity of the shapes of scanpaths with distinct time series.
Specifically, this metric compares two fixational series by aligning
them in the time domain, thus minimizing the Euclidean distance
between the aligned series. Concerning the Discrete Fréchet
Distance: this metric can also deal with fixational time series of
different length (and tempo). The Fréchet Distance considers
both the location and ordering of the individual fixations along
two scanpath curves and can be defined with regard to an
analogy: a person that is walking a dog on a leash, with the person
walking on one (scan-) path/curve and the dog on another path/
curve. The discrete version of the Fréchet Distance only compares
distances between fixations and not points in between. Hence, the
Discrete Fréchet Distance corresponds to the length of the
shortest leash possible for traversing both curves. Finally, we
computed scanpath similarity based on Area Between Curves,
which, like Dynamic Time Warping and the Discrete Fréchet
Distance, permits comparisons of scanpaths with different
lengths, although the particular scanpath measure is based on
the area that falls between two scanpath curves. As Area Between
Curves is well-suited to quantify hysteresis*3, this measure should
be particularly sensitive to capture scanpath similarity when
trajectories have the same start and end points (initial fixation
point and target location).

We chose to explore three scanpath metrics, rather than just
one, in order to provide a maximally precise and unbiased
measurement of the effects of search task training on oculomotor
behavior (as there is not yet a consensus which one of the
scanpath measures is to be preferred over the others?l. Our
specific trial schedule (see Fig. 1A and B) allowed us to examine
the similarity of scanpaths in multiple ways (see Supplementary
Table). First, we compared each possible pair of gaze patterns
arising from identical displays over different participants. This
approach enabled us to compute scanpath similarity for each
experimental block (each consisting of 4 repeated and 4
nonrepeated arrays), thereby addressing the important question
of how the consistency of viewing patterns changes as a function
of practice on the task. Second, we computed similarity of
oculomotor trajectories between each pair of different displays
viewed by the same participant. This analysis was intended as a
strong test of the display-specific vs. general-procedural accounts
of contextual repetitions on search-task training.

To more formally examine whether these observations
represent meaningful effects, we computed scanpath similarity
for each experimental block (1-32). To recap our hypothesis: if
participants are learning a generic search procedure that is
increasingly effective, then similarity of scanpaths should increase
over time for both repeated and nonrepeated arrays, though this
effect should be more pronounced for the former displays which,
due to being repeated, accrue a greater weight in shaping the
generic search procedure. But the prediction would be funda-
mentally different for the display-specific hypothesis of contextual
cueing, according to which experience with individual repeated
displays leads to the build-up of display-specific memories and
associated scanning behavior. Accordingly, scanpath similarity
obtained for pairs of individual repeated displays with different
spatial composition should decrease with increased search-task
training (and similarity measures should effectively be lower than
those for nonrepeated displays). Two analyses were conducted

(see Fig. 1A and B and Supplementary Table). In the first, within-
display analysis, similarity of eye-movement sequences was
calculated from each pair of different participants when viewing
a given, individual (repeated or nonrepeated) display. Second, in
the within-participant analysis, similarity measures were gener-
ated from eye-movement sequences in pairs of different displays
when searched by an individual participant. Both analyses were
conducted for three similarity measures: Dynamic Time Warping,
Discrete Fréchet Distance, and Area Between Curves. Statistical
inference was based on linear mixed models with the fixed factors
of Context and Block and the random factors of Target Quadrant
(in the analysis of within-display similarity) and Participant
(within-participant scanpath analysis).

Validity check of scanpath measures. Taking the distance of
each fixation from the target position into account, search can be
divided into an initial inefficient and a subsequent efficient phase
(ref. 6 see also ref. $39): only in the latter does the distance of a
given fixation from the target decrease monotonically with each
successive fixation. That is, in hard search tasks requiring ocu-
lomotor scanning, high-resolution (foveal) vision ultimately ends
in the target region. Moreover, these studies found that the RT
advantages for repeated over nonrepeated displays were accom-
panied by fewer fixations in the ineffective, but not the effective,
search phase. Based on these observations, we expected higher
scanpath similarity - indicative of display-generic scanning pro-
cedures - to manifest particularly in the initial 50% of the
scanpath trajectories — as compared to the final 50%, as the eye
eventually approach the unique target regions in individual
repeated and nonrepeated displays (which would lower the
within-participant display similarity). A 50/50 comparison of the
scanpath-similarity scores confirmed this prediction: when mea-
suring scanpath similarity across all repeated and nonrepeated
displays encountered by individual participants, we found simi-
larity (as measured by all three scanpath metrics) to be overall
higher in the initial vs. the final scanpath parts: Dynamic Time
Warping, DTW, t(45) = 45.39, p < 0.001, % (partial) = 0.98, 95%
CI: 0.97, 0.99; Discrete Fréchet Distance, DFD, t(45)=37.98,
P <0.001, n? (partial) = 0.97, 95% CI: 0.95, 0.98; Area Between
Curves, ABC, t(45) = 33.81, p < 0.001, n? (partial) = 0.96, 95% CI:
0.94, 0.97;. At the same time, the average distance of fixations
from the individual-unique target location in repeated and non-
repeated arrays were reliably shorter for the final vs. the initial
fixations, t(45) =43.37, p<0.001, n? (partial) = 0.98, 95% CIL:
0.96, 0.98. This indicates that scanpath similarity decreases as the
eye homes in on physically different target locations in the var-
ious displays. Most importantly, our theoretical scanpath and
empirical distance measures showed a correlation. To examine
this, we calculated a scanpath-similarity difference measure by
subtracting the similarity scores in the final from those in the
initial scanpath parts; accordingly, higher (i.e., positive) difference
values indicate higher similarity in the initial part. Likewise, we
computed a difference measure for the average physical distance
of initial and final fixations in the scanpath part from the target
position (i.e., distance initial fixations minus distance final fixa-
tions); accordingly, higher (i.e., positive) values indicate larger
target-fixation distances in the first part. These scanpath-
difference and fixation-distance measures were computed for
each individual participant and then correlated in the complete
sample. We found significant positive correlations between the
two measures for each scanpath metric, ranging from r=0.29
(ABC, 95% CI: 0.002, 0.54, p = 0.049) over r = 0.37 (DFD; 95%
CI: 0.092, 0.60, p = 0.0011) to r=0.56 (DTW, 95% CI: 0.32, 0.73,
p<0.001). These findings indicate that our three scanpath-
similarity measures are consistently precise in capturing basic

COMMUNICATIONS PSYCHOLOGY | (2023)1:20 | https://doi.org/10.1038/544271-023-00019-8 | www.nature.com/commspsychol

22



COMMUNICATIONS PSYCHOLOGY | https://doi.org/10.1038/s44271-023-00019-8

ARTICLE

Table 1 The table presents summary and inference statistics
for the four computed oculomotor measures of fixation
number, scanpath length, average saccade amplitude, and
standard deviation of saccade amplitude (the three latter in
pixels).

Oculomotor measures

Number of fixations

Main effect of Context
Mean repeated = 8.44
Mean nonrepeated = 9.62
F(1, 8701.8) =136.62

Scanpath length

Main effect of Context

Mean repeated = 1349.26
Mean nonrepeated = 1611.78
F(1, 8702.3) =158.04

p<0.001 p<0.001
n? (partial) = 0.02 (95% Cl: 0.01, n? (partial) = 0.02 (95% ClI: 0.01, 0.02
0.02)

Main effect of Block
Mean fist block = 11.29
Mean jast block = 8.36
F(31, 8701.7) =6.73

Main effect of Block
Mean first block = 1903.37
Mean last block = 1387.34
F(31, 8702.1) = 5.50

p <0.001 p<0.001
12 (partial) = 0.02 (95% Cl: 0.01, 1?2 (partial) = 0.02 (95% Cl: 0.01, 0.02
0.03)

Interaction Block x Context
F(31, 8703.0) =1.00

Interaction Block x Context
F(31, 8702.3) =1.04

p=0.41 p=0.46
n2 (partial) = 3.69*103 (95% Cl: 12 (partial) = 3.55*10-3 (95% Cl: 0.00,
0.00, 0.00) 0.00)

BF = 4.43*10°%°

Variance explained

R2conditional = 0.10 (95% Cl: 6.8*10°2,
0.13)

BF =7.74*107%5

Variance explained

R2conditional = 013 (95% CI: 0.11,
0.17)

R2 argingl = 37102 (95% Cl: R2 margingl = 3.7°10°2 (95% Cl: 3.6*1072,

3.710%2, 5.1*10°2) 5.2*1072)
Average saccade amplitude Standard deviation of saccade
amplitude

Main effect of Context
Mean repeated = 107.02
Mean nonrepeated = 112.24
F(1, 8702.4) = 42.59

Main effect of Context
Mean repeated = 151.72
Mean nonrepeated = 160.01
F(1, 8701.8) = 84.73

p<0.001 p<0.001
n? (partial) = 9.64*103 (95% Cl:  n?2 (partial) = 4.87*10-3 (95% Cl: 0.00,
0.01, 0.01) 0.00)

Main effect of Block
Mean first block = 162.55
Mean last block = 155.63
F(31, 8701.7) =1.48

Main effect of Block
Mean fist block = 118.17
Mean jast block = 109.95
F(31, 8702.2) =1.82

p=0.041 p=0.0036
n? (partial) = 5.24*1073 (95% Cl:  n2 (partial) = 6.44*10°3 (95% Cl: 0.00,
0.00, 0.00) 1.00)

Interaction Block x Context
F(31, 8703.2) = 0.88

Interaction Block x Context
F(31, 8702.3) =0.97

p=0.52 p=0.66
n2 (partial) = 3.44*103 (95% Cl:  n?2 (partial) = 3.12*103 (95% Cl: 0.00,
0.00, 0.00) 0.00)

BF = 6.36*10756

Variance explained Variance explained

R?onditional = 0.12 (95% Cl: 9.9*10°  R%.snditional = 8.2*1072 (95% Cl: 6.1*1072,
2.017) 0.12)

R? arginal = 16102 (95% Cl: R? marginal = 1.3*1072 (95% Cl: 1.4*1072,
1.6"1072, 2.8*1072) 2.5*102)

BF =2.52*10"55

properties of serial visual search: they decrease in the later, effi-
cient parts of the scanpath, as the eyes move nearer the different
target regions - providing a validity check (vis-a-vis established
effects) for our analysis approach.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results

To preview our results: (1) we replicate previous findings of more
efficient visual search in terms of expedited RTs and reduced
fixation number (and other established oculomotor measures) for
repeated vs. nonrepeated search arrays. (2) Individual

participants exhibit scanpath patterns that are increasingly similar
across blocks of repeated and nonrepeated displays — both within
displays and within participants. Repeated displays nevertheless
exhibit a higher consistency within displays and within partici-
pants, reflected in a higher degree of scanpath similarity across
repeated displays.

Reaction times. For the RT analyses, error trials and extreme RTs
three standard deviations below and above the mean were
excluded from the data. This outlier criterion led to the removal
of ~3% of all trials. Overall, observers had an average error rate of
~1.5%, without any indication of a speed-accuracy trade-off.
Regarding error rates, no main effect (context: F(I,
2810.2) =0.13, p=10.72, nz (partial) = 4.63e*107>, 95% CI: 0.00,
0.00, BF = 1.97*10~81; block: F(31, 2811.0) = 1.10, p =0.32, n?
(partial) = 3.91e*1074, 95% CI: 0.00, 0.00, BF = 9,97*107164)
nor interaction effect (F(31,2810.2) = 0.97, p = 0.51, n? (partial)
= 001, 95% CL 0.00, 0.1, BF=555%10"78) reached
significance.

The analysis of the mean RTs revealed a main effect of Context:
participants responded faster to repeated relative to nonrepeated
displays (1359 vs. 1574 ms, F(1, 8701.6) = 268.0207, p < 0.001, 12
(partial) = 0.03, 95% CI: 0.02, 0.04). The main effect of Block was
also significant, reflecting a decrease in RTs with increasing block
number (block 1=1960 ms; block 32=1345ms, F(31,
8701.5) = 13.00, p<0.001, n? (partial) = 0.04 (95% CI: 0.03,
0.05). The Context x Block interaction was nonsignificant (F(31,
8701.9) = 0.88, p = 0.67, n? (partial) = 3.13*10~> (95% CI: 0.00,
0.00), BF =5.86%1075%), indicative of a stable contextual-
facilitation effect across blocks (cf. Figure 1E and Supplementary
Fig. 2), corresponding to an overall explained variance of
R’ onditional = 0.19 (95% CI: 0.16, 0.23) and, removing the random
effects, an R%pargina = 6.4¥1072 (95% CI: 5.9%1072, 7.5%1072),
respectively.

Recognition performance. Participants’ comparison of the hit
rates against the 50% baseline - chance - performance yielded a
nonsignificant result, t(45) = 1.09, p=0.28, n? (partial) = 0.03
(95% CI: 0.00, 0.17), BF = 0.28. Thus, there was little indication of
explicit, above-chance recognition of displays that had been
encountered repeatedly over the course of the search task.

Oculomotor performance. Fig. 1F (see also Supplementary
Fig. 3) presents a series of oculomotor measures, derived from
fixations and saccades, as a function of block number aggregated
over trials, separately for repeated and nonrepeated displays;
Table 1 summarizes the respective descriptive and inference
statistics when submitting the data to a linear mixed model with
Block and Context as fixed factors and Participant and Target
Quadrant as random factors. The upper left subplot of Fig. 1F
illustrates the second classical finding: a decline in the number of
fixations across blocks, with overall fewer fixations made in
repeated vs. nonrepeated displays. The upper right plot of Fig. 1F
depicts scanpath length. Since target positions were placed at
equal distance from the screen center, the scanpath length also
coincides with the so-called scan-pattern ratio?’: the total dis-
tance (in pixels) that the eyes traversed across a given search
display until arriving at the target location, divided by the shortest
distance possible between the initial fixation and the target
location - essentially quantifying how directly the eyes approa-
ched the target (see, e.g.”,). This measure turned out significantly
smaller for repeated compared to nonrepeated displays. More-
over, as can be seen in the lower left plot of Fig. 1F, repeated
configurations showed a smaller mean saccade amplitude. Of
note, the average standard deviation of the saccade amplitudes
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Table 2 Summary inference statistics for the two levels of
analysis - within display and, respectively, within
participant - for the three scanpath similarity measures of
Dynamic Time Warping (DTW), Discrete Fréchet Distance
(DFD), and Area Between Curves (ABC).

Similarity within display

DTW

Main effect of Context

Mean (epeatea = 1613.82

Mean nonrepeated = 1987.74

F(1,2760.0) =154.62

p<0.001

n? (partial) = 0.05 (95% Cl: 0.04, 0.07)
Main effect of Block

Mean first block = 2329.61

Mean last block = 1657.38

F(1,2760.1) = 6.48

p<0.001

n? (partial) = 2.34*10-3 (95% ClI: 0.00, 0.01)
Interaction Block x Context

F(1,2760.1) =1.10

p=0.32

1?2 (partial) = 3.98*10~4 (95% ClI: 0.00, 0.00)
BF = 4.12*10-33

Variance explained

R conditional = 0.50 (95% Cl: 0.46, 0.66)
R?marginal = 0.40 (95% Cl: 0.35, 0.54)

DFD

Main effect of Context

Mean (epeated: 291.7

Mean ,onrepeated: 314.64

F(12760.0) =14.90

p<0.001

12 (partial) = 5.37*10-3 (95% Cl: 0.00, 0.01)
Main effect of Block

Mean first block: 337.8

Mean ja¢t block: 292.78

F(1,2760.1) = 2.1

p=0.001

n? (partial) = 7.64*10~4 (95% ClI: 0.00, 0.01)
Interaction Block x Context

F(1,2760.0) = 0.71

p=0.88

1?2 (partial) = 2.57*10~4 (95% Cl: 0.00, 0.00)
BF =1.44*10—32

Variance explained

R conditional = 0.47 (95% Cl: 0.46, 0.66)

R marginal = 0.38 (95% Cl: 0.34, 0.57)

ABC

Main effect of Context

Mean repeated = 149860.73

Mean hon-repeated = 202522.02

F(1,2760.0) =193.54

p <0.001

n? (partial) = 0.07 (95% Cl: 0.05, 0.08)
Main effect of Block

Mean first block = 2527335

Mean jast block = 153740.48

F(1,2760.1) = 5.80

p<0.001

n? (partial) = 2.10*10~3 (95% ClI: 0.00, 0.01)
Interaction Block x Context

F(1,2760.0) =1.06

p=0.37

n? (partial) = 3.84*10~% (95% ClI: 0.00, 0.00)
BF =7.64*10-33

Variance explained

R onditional = 0.52 (95% Cl: 0.49, 0.69)

R2 arginal = 0.41 (95% Cl: 0.33, 0.57)

was also significantly reduced for repeated vs. nonrepeated dis-
plays — see lower right plot of Fig. 1f. For all measures, the block x
context interaction was not significant (see Table 1).

Scanpath analysis. In a first, qualitative analysis, we visualized
scanpaths across blocks and target positions. In more detail, we
plotted the scanpath representations for each of the four target
positions in repeated and, respectively, nonrepeated displays (i.e.,

the four repeated and nonrepeated trials within a block). As can
be seen from Fig. 1A (see also Supplementary Fig. 4), in the last
block of the search task — after ample opportunity for contextual
adaptation - there was a higher degree of similarity between
scanpaths for repeated relative to nonrepeated contexts. Specifi-
cally, in the repeated condition for each display, saccades tended
to be more often and more closely executed in parallel direction
across observers, indicative of systematic biases in observers’
oculomotor behavior. Also, in the repeated compared to the
nonrepeated condition, the color of the lines connecting succes-
sive fixation locations (with green denoting the initial and blue
the final saccade on a given trial, and intermediate colors
denoting saccades in between) tended to be more clustered spa-
tially, indicating that saccades were executed in a more systematic
order as well.

Similarity analysis. The main finding of this study is that scan-
path similarity is increasing throughout the experiments, with
repeated displays gaining a significant advantage early on which
remains throughout the experiment. These findings are indicative
of the convergence towards an optimal search strategy on the
level of the set of displays (see discussion). For both analyses,
within displays (Table 2) and within participants (Table 3)
respectively (also, see Fig. 1G and Supplementary Fig. 5), we
found significant main effects of Context and Block, while the
Context x Block interactions were nonsignificant. The pattern
reflects a steady increase in scanpath similarity (corresponding to
smaller numerical values in Dynamic Time Warping, Discrete
Fréchet Distance, and Area Between Curves) over the course of
the experiment (main effect of Block), which was however higher
in repeated vs. nonrepeated displays (main effect of Context) with
a stable context effect emerging early on (no significant interac-
tion). Of note, the three similarity measures yielded qualitatively
similar results, despite being sensitive to slightly different aspects
of the scanpaths, attesting to a high reliability of our findings.
Thus, our scanpath similarity measures provide strong support
for a procedural-optimization hypothesis, according to which
participants, over time on task, learn a generic search procedure
that is increasingly effective for all - repeated and nonrepeated -
displays, though repeated displays weigh more highly in the
optimization as a result of being searched more often.

Discussion

To gain an in-depth understanding of contextual facilitation, we
analyzed established measures of the contextual-facilitation effect
that focus on aggregate oculomotor indices, as well as new
measures based on spatio-temporal scanpath sequences. Con-
cerning individual eye-movement patterns: replicating prior
reports, we found that detecting a target involves fewer fixations
in repeated compared to nonrepeated target-distractor arrange-
ments (e.g. ref. >43)), as well as a shorter scanpath length and,
accordingly, a smaller scan-pattern ratio (ref. 7:?7). We also found
the saccade amplitudes to be significantly shorter for repeated
displays (in contrast to®). In addition, we established a aggregate
oculomotor index of contextual facilitation (that hitherto had not
been reported in the literature): a reduced standard deviation of
the saccade amplitudes for repeated vs. nonrepeated displays.

Contextual-cueing of visual search: general procedural gui-
dance of the eyes. Having established comparability of the pre-
sent findings with those reported in prior studies of contextual
cueing, we went on to examine the oculomotor scanpaths in order
to differentiate between a template-based, display-specific and a
procedural, display-generic scanning account of acquired con-
textual facilitation that may drive the gains in the aggregate eye-

COMMUNICATIONS PSYCHOLOGY | (2023)1:20 | https://doi.org/10.1038/s44271-023-00019-8 | www.nature.com/commspsychol

24



COMMUNICATIONS PSYCHOLOGY | https://doi.org/10.1038/s44271-023-00019-8

ARTICLE

Table 3 Summary inference statistics for the two levels of
analysis - within display and, respectively, within
participant - for the three scanpath similarity measures of
Dynamic Time Warping (DTW), Discrete Fréchet Distance
(DFD), and Area Between Curves (ABC).

Similarity within participant

DTW

Main effect of Context

Mean (epeated = 2247.55

Mean nonrepeated — 262875

F(1,189) = 99.32

p<0.001

n? (partial) = 0.34 (95% CI: 0.24, 0.44)
Main effect of Block

Mean first block = 3119.54

Mean jast block = 2180.57

F(31,189) = 2.80

p<0.001

n? (partial) = 0.31 (95% Cl: 0.11, 0.34)
Interaction Block x Context

F(31,189) = 0.58

p=0.96

12 (partial) = 0.09 (95% Cl: 0.00, 0.01)
BF = 8.73*1047

Variance explained

R2 onditional = 0.34 (95% Cl: 0.29, 0.43)
R2 arginal = 8.9*1072 (95% Cl: 8.5*1072, 0.12)
DFD

Main effect of Context

Mean (epeated: 419.14

Mean ,onrepeated: 427.24

F(1,189) =91.22

p<0.001

1?2 (partial) = 0.33 (95% Cl: 0.22, 0.42)
Main effect of Block

Mean st plock: 458.01

Mean ja¢t block: 415.03

F(31,189) = 2.84

p<0.001

n? (partial) = 0.32 (95% Cl: 0.12, 0.35)
Interaction Block x Context

F(31,189) = 0.64

p=0.93

1?2 (partial) = 0.10 (95% Cl: 0.00, 0.03)
BF =1.81"10—4°

Variance explained

R? onditional = 0.28 (95% Cl: 0.21, 0.36)
R®marginal = 2.6*1072 (95% Cl: 3.2*10~2, 5.2*10-2)
ABC

Main effect of Context

Mean repeated: 188,744.43

Mean ,onrepeated: 242078.25

F(1,189) =107.64

p <0.001

n? (partial) = 0.36 (95% Cl: 0.26, 0.46)
Main effect of Block

Mean first block: 2971431

Mean jast plock: 190412.32

F(31,189) = 2.87

p<0.001

n? (partial) = 0.01 (95% Cl: 0.00, 0.07)
Interaction Block x Context

F(31,189) = 0.61

p=0.95

n? (partial) = 3.22*10—3 (95% Cl: 0.00, 0.04)
BF = 4.72*10—47

Variance explained

R onditional = 0.30 (95% Cl: 0.26, 0.37)
R?marginal = 0.10 (95% Cl: 0.2*1072, 0.13)

movement indices (such as the reduced total fixation number) for
repeated displays. Using two distinct approaches - of comparing
eye movement sequences between pairs of identical displays when
viewed by different participants, and, respectively, individual
participants viewing different displays - and three metrics of
scanpath similarity (Dynamic Time Warping, Discrete Fréchet
Distance, and Area Between Curves), we found that, while the
consistency of the scanpaths increased overall with increasing

time on task for both repeated and nonrepeated displays, these
practice-dependent gains were more strongly driven by displays
sampled repeatedly (vs. displays sampled only once). This effect
pattern is indicative of common regularities shared between the
(statistical) sample of search displays, which influence scanpaths
in a way that is independent of the particular arrangement
encountered on a trial or even the individual participant - akin to
generic, one-for-all procedural learning. Had there been display-
specific learning of individual repeated displays, the similarity
measures obtained from any two such displays should have been
reduced, relative to nonrepeated (baseline) displays, as each
repeated array should have come to elicit its unique scanning
pattern. However, at variance with this prediction from display-
specific learning accounts of contextual cueing, we found the
similarity measures to be actually different.

Of note, this pattern of scanpath-similarity effects does not rule
out that the scanpaths become tuned to specific displays at some
point along their progression, for instance, when the eye finally
homes in on the target location;® nor do we take this to rule out
the possibility of display-specific learning under all circumstances
(considered further below). Rather, we take our findings to
demonstrate that, over the course of a hard search task, the
notion of display-general learning provides an apt account of
contextual facilitation. In line with this%; (see also ref. 8:3%) have
proposed that the (efficient) phase, in which the eyes come closer
to the target with each successive fixation, does not differ
significantly between repeated and nonrepeated displays; but the
two display types differ with respect to the number of fixations in
the preceding inefficient phase (with reduced fixation numbers in
repeated displays). However, in contrast to Tseng and Li°, our
scanpath-similarity analyses, which take into account the entire
spatio-temporal series of fixation events, show that eye move-
ments in the so-called ineffective phase are, in fact, not (in terms
of Tseng & Li® p. 1371) “wasted”. Instead, our findings of
increasing scanpath homogeneity with extended time on task
suggest that what may look an ineffective phase actually
constitutes an important period during which procedural learning
of a general scanning scheme becomes functional.

In terms of skill acquisition!8, when participants perform a
new task of searching displays with novel, as yet to-be-discovered
statistical properties, one would expect that they learn to adapt
and optimize their oculomotor scanning behavior with respect to
the display statistics in rather generic terms - as opposed to
acquiring search-guiding memory representations tailored to
specific, individual display arrangements, as assumed by standard
accounts of contextual cueing. These scanning strategies are
optimal in the sense that they save cognitive effort: they do not
require memorizing arbitrary distractor-target configurations and
expensively checking a given display arrangement against a set of
representations in contextual memory. As an unavoidable side
effect, developing a strategy that is optimally adjusted to the
statistical search environment at large (with repeated displays
having a greater weight in shaping this strategy due to their
increased frequency of occurrence) would also optimize the
scanning of nonrepeated displays (which, due to their random
variation, have little weight in determining the strategy). Finally,
based on evolutionary considerations, learning the overall
statistics of a scene environment would not only be more
efficient, but also be more robust to environmental changes (in
old scenes as well as the addition of new repeated scenes, which
could be more easily incorporated in an environment-generic
strategy) compared to learning highly specific display-target
configurations.

Consistent with these functional considerations, there is also
evidence from an fMRI study (including eye movements), by
Manelis and Reder?, in line with a procedural-learning account
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of contextual cueing: When comparing the first with the last
epoch of the experiment, Manelis and Reder#* found a significant
decrease in functional connectivity between hippocampus and
sensory-procedural areas (which they did, however, not expressly
attribute to mechanisms related to procedural oculomotor
learning). Of note, hippocampal activity is not only involved in
motor-sequence learning (e.g., in finger-tapping tasks?®), but also
in other statistical learning tasks, such as serial RT tasks (e.g.,
ref. 4647)) particularly in the initial stages, with a decrease in
activity later on*8. This is consistent with a critical, but (over the
course of practice) diminishing role of the hippocampus in
procedural motor learning and would go some way to explain
why patients with damage to the hippocampus do not display a
contextual-cueing benefit®. Thus, a procedural-learning account
involving the hippocampus could explain the phenomenon of
contextual cueing without assuming the acquisition of display-
specific contextual representations.

Such a display-generic, procedural account of oculomotor
contextual cueing would also explain why participants usually do
not explicitly recognize repeatedly encountered display
arrangements:! hippocampal involvement would revolve around
procedural aspects of search performance, rather than explicit
(episodic) memory. This view is not necessarily incompatible
with existing functional accounts of long-term memory, accord-
ing to which hippocampus contributes to the formation of inter-
element associations: for the present investigation, these associa-
tions would involve the binding of individual eye fixation - thus
making procedural memory a specific instance of a more general,
associative hippocampal memory system (e.g., ref. 49°0,).

Limitations. While our results suggest that display-unspecific,
procedural learning of saccadic trajectories plays an important
role in oculomotor contextual facilitation, it is important to note
that if oculomotor scanning is allowed or encouraged, these
developing strategies might look different from conditions in
which observers are instructed to search the display without eye
movements (e.g., ref. °1,). In line with this, electrophysiological
(EEG) studies report evidence of display-specific contextual
cueing - more precisely: target-side-specific lateralizations of
event-related potentials indicative of attentional resource alloca-
tion - as early as around 200 ms post display onset>? (see also
ref. 33). Arguably, disallowing eye movements would impede the
evolution of generic scanning procedures, in particular, when
brief exposure times prevent extended search. In contrast, more
natural scenarios that require/allow oculomotor scanning foster
the acquisition of display-unspecific routines adapted to the sta-
tistical regularities in the set of search displays encountered,
which is dominated by repeated display arrangements. A some-
what related idea is that participants may have acquired specific
memory representations of the display arrangement, but do not
use them when they can scan the display freely>*. The ERP task
design, by contrast, likely forces display-specific learning, perhaps
due to the need of holding individual display arrangements in
working memory in order to solve the task®. Thus, there might
be dual mechanisms underlying contextual facilitation, with the
relative dominance of the display-generic over the display-specific
mechanism being determined by the task demands, that is, the
extent to which eye movements are possible/required or dis-
couraged/dis-allowed.

Conclusions

Contextual cueing is an important predictive-coding mechanism
characterized by facilitation of search performance in repeated
search arrays. As such, this facilitatory effect can be accom-
modated equally by accounts assuming associative learning of

individual target locations in individual distractor arrangements
(and the reproduction of individual scanpaths for these arrays) or,
respectively, the acquisition of generic oculomotor patterns that
optimize the scanning of the (for the participants initially overall
new) set of search displays. The current study was designed to test
the latter (display-generic) against the former (display-specific)
account, by systematically investigating participants’ eye-
movement trajectories in repeated displays and comparing
them against nonrepeated displays. Our findings are in line with a
display-general scanning account of contextual facilitation: over
time on task, scanpath sequences became increasingly similar
across participants and displays, with total scanpath similarity
being higher for repeated displays. We propose that at least under
natural search conditions, contextual facilitation largely or
exclusively derives from the acquisition of procedural oculomotor
scanning programs, which become operational quite early during
a given search trial. Conceptualizing contextual cueing as pro-
cedurally optimized oculomotor trajectories also offers new ways
(1) for understanding the difficulty to update established con-
textual memories following consistent target-position changes
within otherwise unchanged distractor arrangements (ref. I,
Experiment 3, ref. 7°6°7); as well as (2) for understanding the
apparent high capacity of contextual memory (see, e.g., ref. 5;
after being presented with 12 different target-distractor arrange-
ments per day over a 5-day period, Jiang et al.*8s participants
showed contextual facilitation for the total number of 60
arrangements when tested at the end); and (3), it provides a
possible explanation as to why contextual cueing leads to fMRI
activations in sensory brain areas contributing to procedural
learning (e.g., ref. 44 see also ref. >, for confirmatory evidence
using MEG). Moreover, a display-generic account of contextual
learning would provide a coherent and, in terms of Occam’s
razor, the simplest explanation: it explains the search advantage
for repeated versus nonrepeated displays, as well as the practice-
dependent improvement of search in novel displays! in terms of
procedural learning or skill acquisition!8. Finally, given our evi-
dence that oculomotor search is optimized independently of a
particular configuration as a skill of performing a visual search
task in general, we propose to use the more neutral term con-
textual facilitation (instead of display-specific contextual cueing)
to describe the effects of procedural spatial learning in visual
search. Repeated displays merely have a stronger influence in the
optimization process, bringing about the facilitation effect.
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ABSTRACT

Participants can learn to faster detect targets embedded in repeatedly encountered spatial
arrangements of distractors — termed the “contextual cueing” (CC) effect. However, cueing is
severely compromised following target relocation in an otherwise unchanged distractor
arrangement. Previous research demonstrated that this re-location cost is due to persistent
misguidance of search towards the original location. Since CC reflects top-down guidance of
contextual memory, this misguidance is an instance of a “distraction” effect that operates from
acquired memory, rather than being driven by salient but irrelevant stimuli in the display. While
traditional accounts of CC emphasize the acquisition of search-guiding memory “templates”
specific to particular displays, contextual learning also tunes attentional (oculomotor) scanning
routines to the overall statistics of the display arrangements, yielding a context-unspecific LT
“proceduralization” of search. Using reaction-time and oculomotor-scanning measures, we
confirmed both mechanisms to contribute to initial contextual learning as well as the
“distraction” effect produced by relocating the targets of repeated displays. We suspect that
guidance and misguidance of search by repeated contexts involve two complementary LT
mechanisms: procedural optimization of broad, i.e., display-generic, scanning routines, and
learning of where to expect the target in specific repeated-context displays.
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Highlights arrays and display-specific representations (“tem-

plates”) of repeated target-context relations
o Visual search is facilitated by statistical learning of

the spatial target-distractor relations (“contexts”)
in repeatedly encountered display layouts, due to
more effective eye guidance towards repeated
target locations

e This contextual-learning effect is associated with a

The present study is concerned with an unusual type
of “distraction” of visual search: mis-direction of
search processes by different types of long-term (LT)
memory acquired as a result of repeatedly searching

cost following consistent relocation of the target to
the opposite hemifield in an otherwise unchanged
(repeated) distractor layout

e This relocation cost results from an acquired atten-
tional bias to preferentially scan displays in left-
right direction, in addition to ongoing, top-down
attentional prioritization of the originally learnt
target locations

» This suggests that search experience with repeated
target-distractor contexts trains both display-general
procedures about how to optimally scan the search

for a target predictably positioned within a constant
spatial array of non-target, or distractor, items. The
“distraction”, or interference, happens when, after
learning these spatial target-distractor relations, the
target is consistently repositioned to a different
location within the same distractor array (or distractor
“context”). On the surface, this interference effect
appears similar to attentional capture by a salient
but task-irrelevant distractor in the search display
(e.g., Chelazzi et al., 2019) - just that the displays do
not contain any such item that could divert search
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away from the new target location.' Instead, the
source of the interference must lie in the activation
of search-guiding LT-memory mechanisms, whose
predictions about the location of the target or,
respectively, procedures of how to find it most
efficiently are no longer applicable. The present
study was designed to investigate this phenomenon
of LT-memory generated distraction in more detail,
the aim being to elucidate the LT-memory mechan-
isms that bring about the interference. - To render
the background of our study, in the next two sections,
we provide a brief review of the phenomenon of
“contextual cueing” of visual search and the dominant
and emerging conceptual models proposed to
account for it. This informs the rationale of our
study, which we develop in the third section.

Contextual cueing

Visual search is facilitated, that is, search reaction
times (RTs) are expedited, when the searched-for
target item is consistently located within a stable
configuration, or context, of non-target, or distractor,
elements. There are two accounts of the RT benefits
deriving from experience with repeated displays.
One assumes that display repetitions facilitate
response-selection and/ or motor-execution stages
of processing, when participants make a decision
about which motor (hand) effector is required for a
correct response (e.g., Hout & Goldinger, 2010;
Kunar et al.,, 2007; Schankin & Schubd, 2010). The
other, attentional account assumes that contextual
cueing arises because the acquired target-distractor
spatial associations (stored in long-term memory,
LTM) come to guide search, predicting or “cueing
attention to” the target location (e.g., Chun & lJiang,
1998; Geyer et al, 2010; for reviews, see, e.g.,
Goujon et al., 2015; or Sisk et al., 2019). Note that in
visual search, statistical contingencies can be based
also on other environmental properties, such as learn-
ing to associate the repeated target location with con-
stant background colours, textures, or scene
backgrounds (e.g., Kunar et al, 2014
Rosenbaum & lJiang, 2013). Further, if the target
location is allowed to vary across trials in a neverthe-
less constant distractor array, participants can learn to
ignore the repeated distractor locations, which leads
to RT facilitation even with unpredictable targets
(though the effect is smaller than the “standard” CC

effect; e.g., Kunar & Wolfe, 2011; Vadillo et al., 2021).
- In the present study, we examine statistical learning
under “standard” conditions when both the target
location and the spatial layout formed by the non-
target, distractor, elements are repeated across trials
(as in Chun & Jiang'’s, 1998, original study). Specific
emphasis is given to participants’ overt scanning
strategies and how experience with the repeated dis-
plays modifies these strategies. We distinguish
between template-based and procedural LT mem-
ories, that is, learning about where and how to
focus visual search.

In more detail, we examine the attentional account
of contextual cueing (CC) using eye-fixation measures
that index the focus of attention, with emphasis on
eye movements following an unexpected change of
the target location in an otherwise unchanged dis-
tractor arrangement. As is known from the literature:
while the initial acquisition of context-target map-
pings requires just a few (~3) repetitions of each indi-
vidual search display, changes of the target location
from a learnt target position in one half of the
display to a different position in the other half, in an
otherwise unchanged distractor layout, greatly
diminishes the CC effect, and it takes ~80 repetitions
of each repeated display for contextual-cueing to be
fully re-established (Zellin et al., 2014; see also Yang
et al, 2021). Thus, while contextual regularities are
acquired fast and efficiently, established context
memories are rather inflexible: they resist updating,
and prolonged practice is required for a new target
location to be integrated within an existing represen-
tation (Conci & Zellin, 2022; Makovski & Jiang, 2010;
Manginelli & Pollmann, 2009; Zellin et al., 2013; see
also Geyer et al.,, 2021). The loss of CC after target
location changes is unlikely due to restrictions in
memory capacity (Jiang et al., 2005) or general limit-
ations in acquiring invariant contextual information
(Brockmole & Henderson, 2006; Brockmole & Le-Hoa
Vo, 2010; Jiang & Wagner, 2004; Zang et al., 2017).
However, the previous target re-location studies
were mainly concerned with the adaptability of
acquired LTM representations per se (using RT
summary measures of CC). Accordingly, they tell us
little about what the information is that is extracted
from experience with repeated target-distractor
arrangements and represented in contextual LTM,
which needs to be updated following target reloca-
tion within otherwise unchanged contexts.
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The attentional account of contextual learning
assumes that display repetitions lead to the build-
up of representations, or templates, in LTM, likely
located in the medial temporal lobes (MTL; Chun &
Phelps, 1999; Manns & Squire, 2001), of specific
display arrays. When re-encountering such a
display on later occasions, the corresponding tem-
plate is activated and top-down guides search
towards the target location (e.g., Chun & lJiang,
1998). For instance, activated contextual templates
may raise the priority of the target location on the
search-guiding “attentional-priority map” (e.g.,
Fecteau & Munoz, 2006) - complementing any
bottom-up-/stimulus- or top-down-/knowledge-
driven guidance signals. Accordingly, the loss of
contextual cueing after the re-location of the
target would be attributable to LTM-induced distrac-
tion: attention continues to be misguided to the old
target location, until this persistent bias can be over-
come by incorporating the new target position in
the originally acquired contextual template (e.g.,
Zinchenko et al., 2020a).

However, at odds with an exclusive role of MTL
mechanisms, evidence from imaging and patient
studies suggests that statistical context learning
induces training-related changes also in visuo-per-
ceptual regions directly involved in encoding the
search arrays (e.g., Chaumon et al.,, 2009; Manelis &
Reder, 2012). From a theoretical perspective, these
findings lend support to process-based accounts of
the acquisition and automatization of search skills
(e.g., Fitts, 1964; Fitts & Posner, 1967; Shiffrin & Schnei-
der, 1977), according to which statistical learning
directly optimizes the processes by which (visual-
search) tasks are actually accomplished, with repeat-
edly encountered search displays eventually accruing
a greater weight in shaping these processes than
those encountered only once (e.g., Seitz et al., 2023).

The aim of the present study was to investigate the
interplay of these two mechanisms of contextual
facilitation - that is, acquired context-based guidance
and procedural optimization of search - in repeated
search arrays, with a particular focus on how these
processes relate to attentional misguidance - or
memory-based distraction - following target re-
location within an otherwise unchanged distractor
context. This is an important question as the available
studies agree on the idea that CC is a form of top-
down scene guidance of attention (e.g., Wolfe, 2020).

VISUAL COGNITION (&)

Contextual cueing as skill acquisition

Searching a repeated display several times triggers
learning about where to find the search target,
leading to the acquisition of contextual search tem-
plates in LTM (e.g., Ort & Olivers, 2020) that point to
the target position within the spatial context of distrac-
tor items. Activation of such a contextual template by a
given (repeated) search display renders target localiz-
ation (and, thus, responses to the target) more
efficient compared non-repeated (never before
encountered) displays - constituting the contextual-
cueing effect (Chun & lJiang, 1998). Typically, in
studies of contextual cueing, the target is a (left- or
right-oriented) T-shaped letter embedded in an array
of (orthogonally oriented) L-shaped distractor letters
- a hard task requiring serial scanning. Expedited local-
ization of such a target in repeated search displays is
evidenced by the number of eye movements required
to detect the target (and select an appropriate
response) decreasing over the course of learning
(e.g., Peterson & Kramer, 2001; Tseng & Li, 2004; Zinch-
enko et al.,, 2020b), consistent with the idea of more
efficient guidance of the (overt) attention towards
the target position — for instance, by a template-
based (top-down) raising of the attentional priority
assigned to this position within the distractor context
(Wolfe & Horowitz, 2017). Interestingly, unexpected
(but consistent) changes of the target location in an
otherwise unchanged distractor context lead to an
increase in the number of eye fixations needed to
find the relocated target (though the number is still
reduced compared to non-repeated displays; e.g.
Brockmole & Henderson, 2006; Manginelli & Pollmann,
2009). This increase in fixation number has been attrib-
uted to the persistence of misleading attentional
biases induced by the originally learnt (but after the
change no longer applicable) target position.

Of note, though, even after a reasonable amount of
practice with repeated displays (with a stable target
location), the number of fixations needed to reach
the target remains relatively high (amounting to
some 4-6 fixations), rather than the target being
among the very first items to attract an eye movement.
This may suggest that, in hard search, tasks requiring
serial oculomotor scanning, display-specific learning
of spatial target-distractor relations actually plays
only a limited role in guiding search toward the
display region that may contain the critical item on
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future occasions. Instead, contextual learning may aid,
or optimize, the selection of fixation locations along (at
least parts of) the oculomotor scanpath, thereby
increasing the likelihood of “hitting” the target location
relatively early during the search (Kroell et al., 2019;
Tseng & Li, 2004). In other words, in addition to acquir-
ing relatively direct, display-specific guidance to the
target location, contextual learning may drive adap-
tations of participants’ general scanning strategies
that broadly structure their search (e.g., Wolfe, 2021)
in a display-generic manner, that is: a manner that is
adapted to repeatedly encountered displays collec-
tively, rather than individually (and that is little
influenced by non-repeated displays, which - by
virtue of being encountered only once - cannot con-
sistently contribute to shaping this strategy).

Now, in relation to the target relocation effect (i.e.,
the increased number of fixations required after an
unexpected change of the target position within an
otherwise unchanged distractor context): the assump-
tion that experience with repeated displays promotes
automaticity of broad, display-generic scanning behav-
iour would predict an increase in the number of
fixations needed to find the re-positioned target if
the new target location, albeit display-dependent, is
not fully compatible with individuals’ proceduralized
scanning strategy, such as a preference to move the
eyes initially to the left half of a display. This is in con-
trast with the display-specific template account of CC,
which predicts an increase in fixations following target
relocation for each individual (initially learnt) target-
distractor arrangement, which is dependent on the
specific position of the target in the left or, respectively,
right half of this display.

In the present study, we adopted a contextual
learning/re-learning design and used the difficult T
vs. L's letter search for studying statistical learning
and re-learning in this task. During the initial learning
phase, we expected attention, and the eyes, to land
increasingly faster at the target location in repeated
vs. non-repeated arrays; in the subsequent re-learning
phase, upon the re-location of the target to another
position within repeated displays, we expected this
CC effect to turn into a cost. While this would replicate
prior studies using the contextual learning/re-learn-
ing design, our main aim was to examine how the
target relocation cost actually comes about, that is:
Is it attributable to a persistent display-specific mis-
guidance of attention to the originally learnt target

location, which would be in line with the standard
explanation of contextual cueing (as a relatively
direct memory-based elevation of the selection pri-
ority assigned to the originally learnt target location)?
Or is it due to the relocated target being positioned
(relatively) away from the fixation locations making
up some proceduralized, display-generic scanpath.
Of course, the relocation cost may also arise from a
combination of both mechanisms acquired as a
result of contextual learning. The present study was
designed to address this question.

Rationale of the present study

To this end, in the current study, we recorded eye
movements to examine visual search through
repeated vs. non-repeated (T vs. L's) letter arrays in
an initial learning phase and a subsequent target-re-
location phase (with constant distractor contexts in
repeated displays). Our particular focus was on (quan-
titatively) investigating participants’ broad scanning
behaviours and whether and how these change
with repeated encounters of (repeated) search
arrays (i.e., learning experience). This would reveal
information relevant to answering the question at
issue, namely, whether, or to what extent, the “dis-
traction” caused by target re-location in repeated dis-
plays (evidenced by an increase in search RTs and
fixation number following target re-location) is a con-
sequence of a proceduralized scanning bias (estab-
lished during the initial learning phase) or the direct
misguidance of (overt) attention to the initial target
location. For instance, initial contextual learning
may reinforce participants’ tendency to scan search
displays in a particular, idiosyncratic way, such as in
left-right direction (e.g., Zelinsky, 1996; for reviews,
see, e.g., Clarke et al., 2019; Husain & Rorden, 2003).
Such a, for example, left-to-right strategy would
predict that targets consistently presented in a (top,
bottom) left display quadrant in the initial learning
phase would require more fixations when they are
re-positioned to a right quadrant in the re-location
phase. To our knowledge, such display- (i.e., target-
location) specific re-location effects have never been
examined before. Importantly, such effects would
go beyond those predicted by current LT-template-
based accounts of contextual cueing, which attribute
search guidance (in the initial learning phase), and
consequently misguidance (in the re-location
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phase), to template activation by a repeated display
top-down biasing attention towards the initial
target location (by raising its priority on the atten-
tional-priority map). According to these accounts,
contextual repetitions should increase the “attend-
to-me” signal for each repeated target position in
each display quadrant (or hemifield) to a similar
degree, leading to comparable search-guidance and
misguidance effects for the specific target positions
in individual repeated display arrangements.

To test these competing accounts, we set out, first
of all, to replicate contextual facilitation in terms of
the standard summary RT and eye-movement
measures (e.g., the average number of saccades/
fixations) that have informed theorizing in the extant
contextual-cueing literature. Then, in order to investi-
gate (i.e., to either corroborate or refute) the alternative
account, we went on to examine oculomotor-scanpath
measures that are diagnostic of fixations toward the
original and re-located target positions. These analyses
were designed to reveal detailed information about (i)
the proceduralization of search performance with
experience from repeated search arrays, which is lost
in the “standard” averaging of dependent measures
(such as RT and fixation number); and (i) to pinpoint
the source/s of contextual cueing as arising from the
acquisition of display-generic scanning regimes or,
respectively, adjustments of display-specific target pri-
ority coding; as both these contextual learning effects
are expected to persist into the re-location phase (e.g.,
turning template-based guidance into misguidance),
we can examine whether and to what extent they
would explain the RT/fixation costs.

For our approach to be feasible, we adjusted our
experimental design in two respects: First, and motiv-
ated by a previous study of contextual cueing (Sewell
et al, 2018), we reduced the number of learnable,
repeated target locations, as well as the number of
target locations in non-learnable, non-repeated dis-
plays to four each, with one target location per
display quadrant; this was meant to ensure that the
memory signals for the respective target location
would have as little interference from other repeated
displays as possible, thus give the display- (i.e.,
target-location-) specific template accounts the fairest
chance to show their explanatory value. Second, we
presented the same repeated and non-repeated
display arrangements to all participants, however,
with a randomized order within blocks. Using the
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same display arrangements allowed us to control the
perceptual content of the display set throughout the
experiment; in particular, by using the same arrange-
ments for repeated displays, we were able to detect
display-generic (i.e., display-independent), broad ocu-
lomotor scanning strategies by minimizing confounds
deriving from display composition (which typically
varies across individual participants). And using identi-
cal non-repeated displays ensured a fair measure of
contextual cueing, defined as the difference in per-
formance between repeated and non-repeated dis-
plays, further eliminating confounds originating from,
across participants, variably composed distractor-
target configurations in non-repeated displays.

To preview our results: (i) We replicate previous
findings of the speeding of visual search in terms of
improved RTs and reduced fixation numbers in
repeated displays. (ii) We find slowing of search fol-
lowing target relocation events, although savings
were still evident compared to non-repeated displays.
(i) Disruption of search was not constant across all
previous target positions. Instead, targets presented
in a left display quadrant initially and a right quadrant
after relocation led to pronounced slowing of search.
(iv) But even when controlling for quadrant-specific
variation of RTs (and fixation numbers), there was
still contextual guidance toward original, i.e.,
learned, target positions, which led to misguidance
after repositioning of the target to another location
within the learned display layout. We take these
findings to argue that expedited search in repeated
displays is due to both the acquisition of search-
guiding context memories (template-based LT
memory) for specific displays (target locations) and
the development of display-generic strategies of
how to optimally scan the displays encountered (pro-
cedural LT memory). However, both these display-
specific and general procedural mechanisms persist
into a relocation phase, contributing to the disruption
of search following the repositioning of targets within
otherwise unchanged distractor contexts.

Methods
Participants

46 participants took part in the study (38 identifying
themselves as female, the remaining 8 as male; 3 left-
handed; mean age =23.28 [SD =5.62, range = 19-43]
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years). The sample size was determined on the basis of
previous comparable (large-sample) studies of CC that
used a learning-phase/re-location-phase design (~50
participants per experiment; e.g., Peterson et al,
2022; Geyer et al., 2023). We considered high statistical
power to be necessary because the abolishment, or
even reversal, of contextual facilitation is most pro-
nounced in the block of trials immediately following
target re-location (e.g., Manginelli & Pollmann, 2009;
Yang et al, 2021). Worth telling is that this sample
size was also supported by a priori power analysis,
based on a mean Cohen’s d=.75 for a context X
phase interaction effect and coming from 24 published
studies that investigated the adaptation of contextual
cueing across separate experimental (training and relo-
cation) phases in altogether 31 different cases (for
details see Zinchenko et al., 2023). Accordingly, a
sample size of N =46 participants was appropriate to
detect this effect size with 81% power (groups=2,
number of measurements =32) given an alpha level
of .05 and a nonsphericity correction of 1 using the R
library “WebPower.”

Note that although we carried out only a single
experiment, the results are not unusual or surprising:
in critical respects, they replicate those from several
previous target-relocation studies, which all failed to
show successful relearning following the change in
the target position within otherwise unchanged dis-
tractor contexts (e.g., Annac et al, 2017; Conci &
Zellin, 2022; Geyer et al, 2023; Makovski & Jiang,
2010; Yang et al, 2021). The replication of key
findings from prior studies thus validates our (in
relation to these studies somewhat changed) display-
design features and the large sample of participants.
Importantly, however, the present study goes beyond
the pattern of results established in previous studies
in that it allowed us to test critical hypotheses that
were motivated by the existing findings: beyond repli-
cating these patterns in generic, summary-statistical
measures of search performance, our innovative ana-
lyses of individual trial blocks and individual (repeated)
displays — which were made possible by our changed
design features and the large sample size - yield new
insights into the mechanisms underlying CC.

Apparatus and stimuli

The experimental routine was programmed in
Matlab with Psychtoolbox extensions (Brainard,

1997; Pelli & Vision, 1997) and was run on an Intel
PC under the Windows 7 operating system. Partici-
pants were seated in a dimly lit booth in front of a
19-inch CRT monitor (AOC, Amsterdam; display resol-
ution 1024 x 768 pixels; refresh rate: 85 Hz) at a
viewing distance of 60 cm (controlled by a chin
rest). The search displays consisted of 12 grey
items (luminance: 1.0 cd/m? 1 target and 11 distrac-
tors) presented against a black background (0.11 cd/
m?). All stimuli extended 0.35° of visual angle in both
width and height. As depicted in Figure 1, the items
were arranged on three (invisible) concentric circles
around the display centre (with a radius of 1.74°,
3.48° and 5.22° for circles 1, 2, and 3, respectively).
The position of each item was static, i.e., there was
no trial-wise jitter in repeated displays, etc., within
the circular array. The “T” target was rotated ran-
domly by 90° to either the left or the right. The 11
remaining items were L-shaped distractors rotated
randomly at cardinal orientations (0°, 90°, 180°, or
270°).

In repeated displays, the locations and orientations
of the distractors were held constant across trials; in
non-repeated displays, all distractors (i.e., their
locations and orientations) were generated anew on
each trial. Note that in all presented displays, the
location of the target was repeated but the (left/

Figure 1. Example search display with a T target letter rotated
by 270° relative to the vertical and 11 L distractor letters
rotated 0°, 90°, 180°, or 270°. The red dashed circles, depicting
the three concentric rings on which the search items were
arranged, were not shown in the actual search displays.
Targets in repeated and non-repeated displays were always pre-
sented at the second (middle) ring at a total of N =12 different
positions distributed equally across the four display quadrants.
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right) orientation of the target was determined ran-
domly, rendering it unpredictable. As a result, a
repeated context could only be associated with a
specific (repeated) target location, but not with a
specific target identity. Following Chun and Jiang
(1998), this approach is used in most contextual-
cueing studies to ensure that contextual facilitation
of RTs is owing to the repeated context guiding atten-
tion/the eyes, rather than facilitating the selection of
the manual response (invariably) associated with a
given repeated display. Importantly, both the set of
(N = 4) repeated displays and the set of (N =256) ran-
domly generated non-repeated displays were kept
constant across all 46 participants (though trial
order was random in each block, consisting of N=4
repeated plus N=4 non-repeated trials), so that
each participant encountered identical repeated and
non-repeated configurations. This enabled us to
keep low-level, individual display properties constant
across participants and thus compute dependent —
scanpath - measures for each individual display
(with variations between participants providing the
error term).

There were overall 12 possible target locations: 2 x
4 of these were used for repeated displays: 4 positions
in the learning phase and 4 other positions in the re-
location phase; the remaining 4 locations were used
for non-repeated displays. That is: non-repeated dis-
plays had random non-target layouts in each trial
together with a set of 4 unique target locations in
the learning phase and the same set of 4 identical
target locations in the subsequent re-location phase.
All targets, in both repeated and non-repeated dis-
plays, were located on the second ring, controlling
for the distance of the target from the display
centre in all conditions. Furthermore, the targets
were placed in all four quadrants with equal prob-
ability in all context (repeated, non-repeated) and
phase (learning, re-location) conditions. At the tran-
sition from the initial learning to the re-location
phase, the target in a repeated display swapped its
position with that of a distractor in the opposite
hemifield (e.g., a target on the left replaced a distrac-
tor on the right, with the distractor “moving” to the
original target location). Of note, participants were
not informed about the fact that some of the search
arrays were presented repeatedly.

To monitor and record eye movements, a video-
based eye-tracker was used (EyeLink 1000; SR
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Research Ltd., Mississauga, Ontario, Canada; version
4.594). Eye-movement recordings were calibrated at
the start of the experiment and after every four
blocks (of 64 trials). Calibration was considered accu-
rate when fixation positions fell within ~1° for all cali-
bration points. The default psychophysical sample
configuration of the eye-tracking system (i.e.,
saccade velocity threshold set at 35°/s, saccade accel-
eration threshold set at 9500°/s%) was adopted for the
eye-data samples.

Trial sequence

A trial started with the presentation of a central
fixation cross (0.10° x 0.10°, luminance: 1.0 cd/m2)
for 500 ms. Next, the fixation cross was extinguished
and a blank interval was presented for 200 ms, after
which the search display was presented. Participants
were instructed to respond as quickly and accurately
as possible to the orientation of the target “T” (left vs.
right) and were permitted to move their eyes freely.
Each search display stayed on the screen until a
manual response was elicited. If the “T" was rotated
to the right (left), observers responded by pressing
the right (left) arrow button on a computer keyboard
with their right (left) index finger. Following a
response error, the word “Wrong” appeared on the
screen for 1000 ms. Each trial was followed by a
blank inter-trial interval of 1000 ms. The experiment
consisted of 512 trials (2 phases x 32 blocks x 8
trials each, 50% repeated displays in each block). Par-
ticipants were free to continue with the next block at
their own pace. The experiment took overall some
50 min to complete.

Recognition test

At the end of the experiment, participants were given
a recognition test in which they had to identify
whether they had previously seen a given configur-
ation or not (a “standard” procedure in contextual-
cueing experiments; cf. Chun & Jiang, 1998). Partici-
pants were shown 4 displays that had been previously
presented (with the original target positions) and 4
new ones and were asked to press a button indicating
whether a given display was new or old. Participants
judged the repeated and non-repeated displays
twice, yielding a total of 16 recognition trials, to
increase the accuracy and statistical power of the
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test (cf. Vadillo et al, 2016). Participants were not
timed and were not given feedback on their
responses.

Results

Individual mean error rates and reaction times (RTs)
were calculated for each factorial (Block x Context x
Phase) combination. For the RT analysis, error trials
and RTs above and below 3 standard deviations
from the mean were excluded from analysis, leading
to the removal of < 2% of all trials. To take care of
the likely dependence of our results on the, across
participants, constant sets of repeated and non-
repeated search displays, we employed linear
mixed-effects models that explicitly take into
account the random variability deriving from individ-
ual non-/ repeated displays when estimating the
effects of the fixed factors of context, block, and
phase. In more detail, we formalized the relationship
between the dependent variables and the fixed/
random factors in our general mixed-effects model
as follows (using the Ime4 package in R, version
3.4.3; R Core Team, 2018):

generalmixed — effectsmodel
= Imer(dependentvariable ~ contextxphasexblock
+(1|participant) + (1|targetquadrant), data = .. )

where the dependent variable is either reaction time,
number of fixations, or fixation direction; context
refers to repeated vs. non-repeated target-distractor
arrangements; phase is the initial learning vs. the re-
location period; and block reflects time on task (L1-
L32 in the learning and R1-R32 in the relocation
phases). The random factor participant, which refers
to individual participants, allows our general mixed-
effect model to incorporate per-participant adjust-
ments in the intercept of the functions relating our
dependent variables to our fixed factors. The
random factor target quadrant refers to position-
specific intercepts, that is, the intercepts for the
display quadrant in which a target is located at learn-
ing and relocation, respectively, allowing for per-
quadrant adjustments of our averaged dependent
measures.

Additionally, since we were also interested in
how our dependent measures would vary as a func-
tion of individual repeated displays, we built more

specific mixed-effects models in which we explicitly
considered target quadrant as fixed effect and par-
ticipant as random effect. These models are pre-
sented in greater detail in the respective result
sections.

Result 1: contextual cueing expedites search, but
diminishes after target relocation

Figure 2 depicts mean RTs and fixation number for
repeated and non-repeated displays in individual
blocks of the learning and re-location phases. The
mean RT across all experimental conditions was
1,423 ms. The (block x context x phase) mixed-
effect model revealed a main effect of block and a
main effect of context (Fs >= 10.31, ps < 0.001).
Importantly, there was an interaction between
context and phase, F(1, 17446)=63.81, p < 0.001,
reflecting a substantial contextual-facilitation effect
(i.e., faster search RTs for repeated vs. non-repeated
displays) in the learning phase (207 ms); this com-
pares with a (by 66%) reduced, but still significant
facilitation effect (of 72 ms) in the relocation phase
(F(1, 8697.4) =42.23, p < 0.001).

The mean number of fixations required for the eyes
to land at the target location was 8.68. Analysing this
number by another (block x context x phase) mixed-
effect model revealed main effects of block and
context (Fs >= 5.70, ps < 0.001). The theoretically
important context X phase interaction was significant,
too, F(1,17446)=32.72, p < 0.001. Fewer fixations
were required to detect the target in repeated than
in non-repeated displays (7.29 vs. 8.13 fixations), but
contextual facilitation in terms of eye movements
was greater in the learning phase (CC effect: 1.2
fixations) than in the relocation phase (CC effect:
0.48 fixations; reduction: 60%), though CC remained
reliable in the latter phase (F(1, 8697.5)=17.54, p <
0.001).

Result 2: the reduction of CC during re-location is
due to misguidance of the eyes toward previous
target positions

Given our search task was a hard one (involving serial
scanning), we expected fixations to approach each
display item with some probability (independently
of their status as a target or non-target, i.e., distractor,
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Figure 2. Mean reaction times in milliseconds and fixation number (upper and lower panels, respectively), with associated standard
error bars, for repeated and non-repeated contexts (dashed and solid lines, respectively) in the learning and relocation phases. Each

phase consisted of 32 blocks.

element). However, if a given repeated display acti-
vates an acquired bias toward a particular - target —
item, fixations should approach its locations with a
higher probability. Importantly, this bias should
persist during the target relocation phase. One
measure to quantify misguidance then is to deter-
mine the distance that each fixation on the entire
scanpath has (directly) relative to the original - that
is, learnt - target location in the relocation phase
and compare this measure to the “baseline” distance
that each fixation has from the future, relocated
target in the initial learning phase (in which the rel-
evant location contained a distractor). Specifically,
we computed the distribution of minimal distances
of any fixation to the “other” target for (i) the last
learning block, (ii) the first relocation block, and (iii)
the last relocation block, the latter to assess how a
scanning bias toward the original target location per-
sisted during the relocation phase. Average trends in

fixational distances in these blocks are illustrated in
Figure 3.

As can be seen, the distance plots are bimodal,
with one peak centred around 270 px — which corre-
sponds to the distance between the display centre
(containing the fixation marker, where the search
begins) and the locations of the original (L32) and
the relocated (R1, R32) targets. Here, distances with
a peak of 270 px (pixels) therefore correspond to
those scanpaths for which the closest distance to
the “other” target was likely to be the initial fixation,
i.e., those scanpaths which monotonically diverged
from the “other” target. The second peak centres
around an average distance of 100 px (relative to
the future, relocated target) in the last block of learn-
ing (L32), while it centres around 0 px (relative to the
original target) in both the first and the last block in
the relocation phase. The peak corresponding to a
distance of 100 px to future targets can be thought
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Figure 3. The left panel presents an adaptation of the example search display from Fig. 1, now highlighting an original and a relocated

target (in the left and right display halves, respectively) in an otherwi

portion of distances (in pixels, px) of any fixation within a scanpath fr
learning (block L32) and from the original, i.e., learnt, target location
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se unchanged distractor array. The right panel presents the pro-
om the future (relocated) target location during the last block of
in the first and last relocation blocks (R1 and R32, respectively).
reing around the display centre (marked with an “X") and around

the positions of learnt (“Learning Phase”) and relocated (“Relocation Phase”) targets.

of as a baseline when compared to the closest dis-
tance (with a peak of roughly 0 px) to previous
target positions as both would incorporate differ-
ences arising as a consequence of relocation. Direct
t tests of the fixational distances in the three (L32,
R1, R32) blocks revealed the distances to the original
targets to be significantly shorter than those to the re-
located targets (all t's > 3.53, p's < .01).

This finding may reflect a visual exploration strategy
that enables participants to better work through
“difficult” T- (target) vs. L- (distractor) type search
arrays, involving occasional visits of future target pos-
itions — a strategy that is operating even after 32
blocks of repetition and continuing in the relocation
phase, though it leads to misguide of search in the
form of eye fixations towards original, i.e., learned
target positions. Alternatively, visual exploration may
have been influenced by factors specific to our
display design. Recall that all targets, in repeated and
non-repeated arrays, were presented on the second
ring around the central fixation cross (to equate
target eccentricity effects between the two types of
displays). It is thus possible that participants detected
this regularity and so preferentially fixated near these
(target) locations. Nevertheless, the learning of this
regularity offers no ready (or at a best a partial)
account of the present findings. Learning of, and
attendant search guidance from, the additional ring-2
regularity would predict that fixations should land at

future (during the learning phase) and previous
(during the relocation phase) target locations to a
similar extent. Critically, however, there was an
average fixational distance of 100 px relative to a dis-
tractor item when this distractor “only” became a
future, relocated, target (L32), compared to a fixational
distance of 0 px relative to a distractor item in the relo-
cation phase, when this distractor appeared at the
original - that is, contextually learnt - target position
(R1, R32). Thus, the pattern of distance effects shown
in Figure 3 could at most reflect a combination of
target position learning (happening with both future
and original target locations) and contextual learning,
the latter making it particularly likely that the eyes
move in the direction of the original target positions
(in a target relocation phase). Accordingly, a compari-
son of fixation locations between future vs. original
target positions (100 vs. 0 px distances in green vs.
blue distributions in Figure 3) would provide a conser-
vative approach to estimating the pure effect of con-
textual learning, controlling for potential effects
arising from the learning of (ring-2) target positions.
Worth noting is that the fixational bias toward original
target positions remains evident even after extensive
practice with the relocated displays (in relocation
block R32): statistically, CC was comparable between
the first and the last relocation block, in terms of
both RTs, t(45) =0.26, p =0.80, and fixation number, t
(45)=0.64, p=0.53.
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Another way to look at the data is to use gaze plots
of our individual participants’ closest fixations to
future target locations in the last block of the learning
phase (L32) and their closest fixations to the original
target locations in the first block of the relocation
phase (R1), for each individual repeated display. As
can be seen from Figure 4, there is a strong clustering
of fixations toward the original target positions. Here,
distance is colour-coded (from warm to cold colours),
showing a marked cluster of orange dots for relocated
displays, but a more or less constant gradient of
colours during the learning phase. Interestingly,
rather than being spatially even, the clustering is
more pronounced for original target locations in (pre-
vious) left-side display quadrants. This observation
was supported by a DBSCAN cluster analysis (Birant
& Kut, 2007), which estimates clusters by “just”
looking at the local density of fixations without the
requirement to set the number of clusters or their
size in advance. As a measure of clustering, we com-
puted the Davies Boudin Score (DBS), which yields
low values for well-defined clusters and high values
otherwise. Note that all DBS values for the learning
phase were above 1, while those of the relocation
phase were substantially below 1. For visualization,
Figure 4 also includes a circle with a radius of 135
px: neither cluster in the last block of learning is rep-
resented exclusively within this boundary, while one
and only one cluster is always represented within
this region in the first relocation block (reminiscent
of the “valley” at 145 px between the two peaks in
Figure 3). In more detail, clustering scores were
overall lower (indicative of higher spatial clustering/
regularity) for fixations towards the original target
locations compared to fixations toward future
locations (mean DBS values of 6.99 and 0.33, respect-
ively). While this suggests that search was misguided
toward previous target positions, this negative bias
was not constant but rather varied as a function of
the quadrant of the original target: clustering scores
were particularly low for fixations toward (original)
targets in the left display half compared to targets
in the right half (DBS of 0.24 and 0.43, respectively),
indicative of previous targets in a left-side display
quadrant decelerating search after their re-location
to a right-side quadrant. To quantify this observation,
we built a specific mixed-effect model on the RT costs
(i.e., the RT difference between learning and reloca-
tion), with minimal fixation distance at relocation
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and target quadrant as fixed effects and participant
as random effect. This model yielded a main effect
of distance (F(1,89)=32.85, p < 0.001) and a main
effect of target quadrant (F=3.31, p < 0.05). Of
note, the interaction between distance and target
quadrant was also significant, F(3, 89)=2.78, p <
0.05, indicating that the effect of fixation distance
on RTs was greater for targets relocated to the right
display half.

To further assess eye directions on a given trial, we
computed the ordinal number of the fixation that was
closest to the future target location for the last learn-
ing block and the closest fixation to the original target
location in the first re-location block, as well as the
relative position of fixations toward future/original
targets along the complete series of fixations on a
given trial. The relative position was quantified by
dividing the ordinal number of the fixation by the
total number of fixations on a given scanpath, yielding
scores between 0 and 1. Note that we assigned the
first fixation in a scanpath an index of zero. Figure 5
plots average trends in ordinal fixation number
when fixations were closest to the “other” target
(i.e., future target in learning and original target in
re-location). As can be seen, not all fixations within
a sequence of fixations had equal propensity to land
in close proximity of the “other” target. Specifically,
there was a stronger tendency for early fixations to
approach the “other” target location. Notably, this
effect was seen for both future and original targets.
To test this, we submitted the ordinal number and
relative position of the closest fixation (within a scan-
path) to the “other” target as dependent variable to
separate mixed-effect models (one for the ordinal
number and one for the relative position), each with
block (last block in learning, first block in relocation)
and individual repeated display (1-4) as independent
variable and participants (1-46) as random factor. The
two-way, block x display interaction turned out sig-
nificant (Fs >= 5.10, ps< .002): during the learning
phase, close fixations to future target locations
(which, in the learning phase, were occupied by a dis-
tractor) occurred earlier for repeated displays that had
a future target in a left-side quadrant (and thus the
original target in a right-side quadrant); by contrast,
in the relocation phase, original target locations in a
left-side quadrant (which, in the relocation phase,
were occupied by a distractor) led to earlier close
fixations. That is, the pattern of close fixations was
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Figure 4. Visual-exploration scanpaths through each of the four repeated display configurations during the last block of learning (L32)
and the first block of relocation (R1); the many blue lines in the left panel represent our N =46 individual participants. The actual
target is marked by a blue x, and the respectively “other” target (i.e., future target during learning and the previous target during
relocation) by an orange x, while the rows show each (context matched) repeated display. The fixation on each scanpath that is
closest to the “other” target is highlighted by a coloured dot; in the two columns on the left, the colour changes according to distance
from warm to cold colours, while blue lines outline saccades between the other fixations (here the corners between the lines). During
the learning phase, the colours show a gradient, while in the relocation phase, mainly two extremes can be seen, which indicates that
these fixations are clustered. The right two columns show the outcome of a DBSCAN cluster analysis (Birant & Kut, 2007). Here, colour
represents members belonging to a cluster. A circle of a radius of 135 px highlights an area which covers one (and in each case only
one) well-defined cluster for the relocation phase (while this is never the case in the learning phase).

predictable from the placement of the original and
relocated targets in individual display quadrants,
rather than individual “contextual-cueing” displays.
This conclusion was supported by two additional
mixed-effects models (on the ordinal fixation
number and relative scanpath position), with block
and target quadrant (top-right, top-left, bottom-left,
and bottom-right) as fixed effects and participant as
random effect. Here, only the main effects of target
quadrant were significant (Fs > = 4.12, ps <.007).

In sum, we carried out an analysis of the temporal
sequence of fixations by assuming that individual

participants display a visual-exploration strategy
that explains a large proportion of the variation in
fixational placements towards the original and relo-
cated target positions. An analysis of the ordinal pos-
ition of each fixation that was closest to the other
target showed that when search begins, fixations
that depart from the display centre (towards the
“true” target) will necessarily diverge from the other
target - so, these early fixations (marked by an
ordinal position of 0) will inevitably constitute those
closest to the “other” target. As such, the finding of
comparable peaks of nearest fixations for both
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Figure 5. Ordinal number and relative position of fixations near the future and the original target location in the sequence of fixations
making up the complete scanpath for the last learning block (L32) and the first relocation block (R1). The top panels on the right side
show original and, respectively, relocated targets appearing in the left display half (quadrants 2 and 3), and the bottom panels on the
right side show original and, respectively, relocated targets appearing in the right display half (quadrants 1 and 4). Dashed/dotted
lines indicate the mean for illustration purposes. Note: ordinal numbers are counted from 0 onwards in order to maintain consistency
with the relative position, for which the first fixation should be 0/n instead of 1/n, where n is the number of fixations on each scanpath.

future and relocated targets constitutes important
piece of evidence for the operation of a display-
general visual-exploration strategy, without necessi-
tating the assumption of oculomotor guidance from
display-specific target-context templates in LTM
coming into play. Critically, the temporal pattern of
near fixations was nevertheless predictable from the
placement of the original and relocated targets in
individual - that is, left-side - display quadrants. We
take this to suggest that participants work through

“difficult” T vs. L's search displays preferentially
employing a left-to-right scanning strategy.

Next, adopting a procedure used in previous
studies of contextual cueing (Brockmole & Hender-
son, 2006; Manginelli & Pollmann, 2009), we exam-
ined the average eye direction for the first five
fixations from the beginning of search and across all
32 blocks of the learning phase and all 32 blocks of
the relocation phase. These studies found that follow-
ing target relocation, fixations are reliably (mis-)
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guided towards the original target location, an effect
that was seen during the initial five fixations in the
trial. Accordingly, the effects of experience with
repeated arrays should become measurable with
these initial fixations.

Figure 6 shows the x-coordinates of fixations 1-5
relative to the centre of the display. As can be seen,
there is a “leftness” of fixations that increases almost
linearly with practice on the task — an effect that is
seen for each individual fixation 1-5 and that persists
even in the relocation phase. Each fixation's “leftness”
was submitted to our general mixed-effects model,
with context, block, and phase as fixed effects and
target quadrant and participant (intercepts) as
random effects in a crossed design - the latter permit-
ting us to estimate the effects of our fixed factors in
the development of a leftward scanning preference,
independently of our specific individual displays
(and participants).

This model revealed significant main effects of
phase for all fixations (Fs > 16.35, ps < 0.001). For
fixations #2 and #3, the main effect of block was
also significant, Fs > 2.07, ps < 0.001. Critically, there
was a significant main effect of context for fixation
#2 (F(1,16132)=5.8247, p=0.016): scanning of
repeated versus non-repeated contexts was associ-
ated with an increased leftness of fixation #2. A
similar numerical (albeit statistically non-significant)
difference was also evident for fixation #3 (F
(1,14100) = 2.17, p=0.14) and fixation #4 (F(1,11993)
=3.65, p=0.056), while the context effect was again
significant for fixation #5 (F(1,10197)=4.43, p=
0.035). Thus, initial oculomotor scanning becomes
increasingly left-directed with practice on the task
(an effect seen with both repeated and non-repeated

Leftness

Fixation 1 Fixation 2

Fixation 3

arrays, indicated by main effects of phase/block),
though repeated displays carry greater weight in
shaping this “leftness” strategy due to their increased
frequency of occurrence (indicated by a main effect of
context).

Result 3: misguidance of search towards previous
target positions emerges from acquired left-right
scanning and ongoing prioritization of original -
that is, learnt - target positions in individual CC
arrays

Finally, we computed RTs and the number of
fixations in the last block of learning (L32) and the
first block of re-location (R1) for each target pos-
ition/display quadrant in each of our four repeated
displays. See the “context-matched” and “target-
matched” conditions in Figure 7, which shows RTs/
fixations to original and re-located targets in
different quadrants of identical repeated-context
arrays (context-matched condition) and RTs/
fixations to original and re-located targets presented
in identical quadrants, but in different repeated-
context arrays (target-matched condition). The last
learning block is shown in green and the first re-
location block in blue. Individual lines represent indi-
vidual participants and larger lines indicate the mean
of each block and quadrant, while the large grey
lines indicate the overall mean for that quadrant
(across the two blocks). Worth noting is that gui-
dance and misguidance of search almost entirely
depended on the target's display quadrant: while
original targets located in the second and third
quadrants (corresponding to the left display half)
have an advantage in terms of both RT and fixation

Fixation 4 Fixation 5
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Figure 6. Average eye direction in repeated arrays for the first five fixations from the beginning of search in the all 32 blocks of the
initial learning phase and all 32 blocks of subsequent re-location phase (green and blue lines, respectively). Negative values indicate
that a fixation is to the left from the display centre (marked by the horizontal line). Grey lines indicate fixation direction in non-

repeated search layouts.
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Figure 7. Reaction times and number of fixations of our N = 46 participants when searching for targets in repeated displays in the last
block of the learning phase and the first block of the re-location phase (green and blue colours), respectively, separately for the four
display quadrants (L = learning, R = relocation; first, second, third, and fourth corresponds to the top-right, top-left, bottom-left, and
bottom-right quadrants, respectively). The left-hand panels show performance for the original and re-located targets when analysed
for identical repeated-context displays (but when the respective targets occur in different display quadrants; = context-matched
analysis) or identical display quadrants (with the respective targets being presented in different repeated-context displays arrays;

= target matched).

number in the initial learning phase, search is par-
ticularly disrupted when these targets changed
their positions to the first and fourth quadrant (on
the right display half) during the re-location phase.
Specifically, re-locating a target from the second
and third, i.e., left-side, quadrants to the first and
fourth, right-side, quadrants in an otherwise identical
contextual array resulted in a rather large average
cost (over 200 ms and over 4 fixations), while
changes in the reverse order led to hardly any
slowing of search. Separate mixed-models for RTs
and fixation number with the fixed factors block
(last block in the learning phase, first block in the
relocation phase) and target quadrant (1-4) and the
random factor participant (1-46) revealed the theor-
etically important block x quadrant interactions to
be significant (Fs > 3.29, ps < 0.021).

Of note, quadrant-specific differences in search
also come to the fore when matching the target
quadrants between learning and re-location (in

which case the “target-matched” displays are necess-
arily different in terms of spatial composition/individ-
ual distractor contexts). This can be seen from the
right-hand panels of Figure 7, which illustrate how
search unfolds with original and re-located targets
presented in the very same quadrants (though
within different repeated-context displays). Here,
targets presented in the second and third (i.e., left-
side) quadrants “outperform” those appearing in the
first and fourth (right-side) quadrants. In other
words, targets located in the second and third (left)
quadrants are associated with the fastest RTs and
lowest fixation numbers — importantly, independently
of block.

However, as can also be seen, RTs were faster and
fewer fixations were required to find original relative
to re-located targets - critically, even when display
quadrants were equated between the two (original,
re-located) target types. In other words, a target in a
given display quadrant is processed differently
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depending on whether (or not) there was display-
specific training for that particular (original) target
location.

Nevertheless, display-specific learning was not
constant across quadrants, as is indicated by more
pronounced differences when targets were relocated
from the left two quadrants to right quadrants (see
Figure 7, upper and lower left plots). Corresponding
to each of these plots, we computed mixed-effects
models, with the fixed factors block (last block of
learning and first block of relocation), as well as
target quadrant (“target matched”; upper and lower
right plot for RT and NF, respectively) and display
(i.e., “context matched”; upper and lower left plots
for RT and NF) and the random factor participant.
These models revealed a significant (RT: F(1, 230.52)
=9.70, p=0.0021) and marginally significant (NF: F
(1,231.40) = 2.84, p=0.094) main effect of block, in
line with the hypothesis of a general cost. Impor-
tantly, in the models with display as a fixed effect (cor-
responding to the left two plots in Figure 7), there was
a significant block x display interaction (Fs >= 5.21,p
< 0.022), while the main effect of display was not sig-
nificant (Fs <= 0.26, ps >= 0.86). This means that
before and after relocation, the cost differed signifi-
cantly in magnitude between contexts. Conversely,
in models with target quadrant as fixed effect (corre-
sponding to the two plots on the right side of Figure
7), there was a main effect of target quadrant (Fs > =
3.17, ps <.025), whereas the interaction between
target quadrant and block was non-significant (Fs <
= 0.67, ps >=.57). This suggests that the overall
number of fixations and reaction times were deter-
mined by identical quadrants, with different contexts
(rather than by context per se), and that the magni-
tude of the relocation cost was not influenced by
the target quadrant.

Accordingly, the analysis of reaction times and the
number of fixations illustrates that the relocation cost
is a result of both, broad scanning strategies, with a
bias to inspect the left half of the display first, and
display-specific mechanisms, worsening overall per-
formance by continuing prioritization of the previous
target location (even) after target relocation. In other
words, the pattern of guidance and misguidance of
search acquired through experience with repeated-
context arrays results from the joint operation of
two — display-specific and display-unspecific - learn-
ing mechanisms.

Result 4: participants lack explicit knowledge
about display repetitions.

Participants’ mean hit rate (repeated displays cor-
rectly identified as repeated) was 52.5%, which com-
pares with a mean false-alarm rate (non-repeated
display incorrectly judged as repeated) of 47.5%, t
(45)=0.88, p=0.38. Thus, there was little indication
of explicit, above-chance recognition of displays
that had been encountered repeatedly over the
course of the search task.

Discussion

The goal of this study was to evaluate whether the
guidance and misguidance of search, the latter fol-
lowing target re-location in an otherwise unchanged
distractor layout, arise as a consequence of up-modu-
lations of the attentional priority assigned to the
(original) target location within a specific distractor
context (contextual-template-based LT memory) or
from the development of oculomotor scanning rou-
tines that are optimally adjusted to the set of displays
encountered, with repeated displays shaping the
routine more than non-repeated displays (oculomo-
tor procedural LT memory). Looking at two distinct
- reaction-time and oculomotor scanning (e.g.,
number of fixations) - measures, we found consistent
evidence that display repetitions shape participants’
broad, (relatively) display-independent, scanning pro-
cedures. Overall, practice with repeated search arrays
led to a bias to start scanning the displays on the left.
The bias of the eyes to return to the previous target
location in the left half (rather than going towards
the right half, where the new target appears) could
explain the slowing of RTs to re-located targets after
the change and can be seen in the large costs for dis-
plays in which the target was originally located on the
left and then relocated to the right, compared to prac-
tically no cost for contexts with the original target
position on the right (although here, a learnt
context with the original target on the right yielded
comparable RTs and numbers of fixations to a
display in which the relocated target is positioned
on the left, i.e., appearing at a position that is prefer-
entially scanned earlier). Moreover, processing differ-
ences remained even when equating the quadrants
of original and re-located targets (i.e., when compar-
ing different repeated-context displays with the
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original and, respectively, re-located target in the
same, left quadrants). Since these differences cannot
be explained by a proceduralized general scanning
routine (which would be the same for the two types
of display), they indicate instead that practice with
repeated displays (also) leads to context-specific, tem-
plate-driven changes in the coding of attentional pri-
ority for individual target locations. Further, we find
that participants have a strong bias to visit the pre-
vious target location after relocation, indexed by the
distance to previous target locations being signifi-
cantly smaller than would be expected (i.e., when
compared to future target locations) from search in
general. Additionally, the distance of the closest
fixation to the previous target location in relocation
predicts the relocation cost. Thus, these findings
favour an account that proposes two qualitatively
different components of contextual cueing: learning
to broadly structure the search in (initially) leftward
direction and learning of individual target locations
within individual repeated-context displays. Critically,
these mechanisms continue to operate after target
relocation events, constituting two sources under-
lying the misguidance of search towards previous
target locations.

Contextual cueing involves the development of
oculomotor scanning routines

One intriguing and new finding of the present study is
how the savings in RTs and fixation number actually
come about in repeated search displays. The currently
dominant account attributes these savings to the
search being “cued”, or “guided”, (more or less)
directly to the target location by acquired (long-
term) memory representations, or “templates,” of
specific distractor-target arrangements. Templates
are activated by re-encountering, on a given trial,
the corresponding arrangement. This then top-
down raises the attentional priority of the target
location (e.g., Beesley et al., 2015; Brady & Chun,
2007; Chun & Jiang, 1998; Geyer et al., 2010), enhan-
cing its potential to summon attention. According
to this proposal, the number of attention shifts
required to detect a target in a particular item
arrangement will decrease with increasing re-encoun-
ters of this arrangement, due to the build-up of a
search-guiding memory template for this particular
display. Support for this comes from studies that
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examined fixation number (e.g., Peterson & Kramer,
2001) and/or (across repeated displays) aggregated
oculomotor-scanpath indices (e.g., Manginelli & Poll-
mann, 2009; Tseng & Li, 2004) as a dependent
measure, which showed that finding the target in
repeated (vs. non-repeated) displays required overall
fewer eye movements. However, while this “specific-
template” account is attractive (not least because it
ties in seamlessly with the functional architecture
assumed by general theories of search guidance,
such as Guided Search; Wolfe, 2021), the results
from our non-aggregated measures support an
additional, and alternative, “procedural” account of
the savings that does not rely on the notion that
observers acquire contextual memories specific to
particular distractor-target arrangements. In fact,
that there is procedural learning in contextual-
cueing paradigms is a universal finding in virtually
all pertinent studies (for reviews, see, e.g., Goujon
etal., 2015; Sisk et al., 2019): search RTs decrease, typi-
cally quite substantially, over the course of practice on
the task (i.e., across consecutive trial blocks). Impor-
tantly, this improvement is evident in non-repeated
(as well as repeated) displays — which is why it is
attributed to general procedural learning, which opti-
mizes task performance through the development of
an automatic (search) routine (e.g., Fitts, 1964; Fitts &
Posner, 1967; Shiffrin & Schneider, 1977). The fact that
this improvement is more marked for repeated (vs.
non-repeated) distractor-target arrangements is
simply attributable to repeatedly searched displays
accruing greater weight in shaping this scanning
routine compared to non-repeated arrangements
which, by definition, are encountered only once
(Seitz et al.,, 2023). Accordingly, there is no need to
assume qualitative difference in search performance
between repeated and non-repeated displays to
account for (at least part of) the contextual-cueing
effect. - With the search displays implemented in
the present study, generic optimization of oculomo-
tor scanning is evidenced by participants developing
a leftward bias in initial saccade direction.

Broad display scanning and high-fidelity memory
templates

While our results indicate that procedurally learnt,
display-general oculomotor scanning routines play a
significant role in contextual cueing, they also
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highlight the importance of display-specific learning.
In particular, we found indications (in the re-location
phase) of persistent search biases towards original
target positions even when we matched the (original,
re-located) target quadrants. This is consistent with
the idea that contextual cueing involves associative
learning of specific spatial distractor-target relations
(e.g., Geyer et al,, 2021; Goujon et al., 2015). Perhaps
the strongest support for this idea comes from elec-
trophysiological studies that examined lateralized
event-related potential (ERP) components, such as
the N2pc (e.g., Luck, 2014), to track the (lateralized)
allocation of covert attention (e.g., Liesefeld et al.,
2017). These studies provided evidence that focal
attention is deployed rapidly and directly to the
target location in repeated displays (e.g., Johnson
et al., 2007; Schankin & Schubo, 2009; Stokes et al.,
2012; Zinchenko et al., 2020a), with the lateralized
ERP markers correlating well with the RT-cueing
effects exhibited by the individual participants (e.g.,
Chen et al., 2022; see also Schankin & Schubo, 2009).

An important aspect of the present findings, which
we have not emphasized up to now, is that partici-
pants frequently oriented their eyes to different
display regions before eventually reaching the
target item. Even with targets in the top-left display
quadrant, which yielded the fastest reaction times,
participants on average required more than five
fixations to land in the target region (see Figure 7).
This contrasts with the above-mentioned ERP
studies, which used only limited presentation times
(e.g., 700 ms in Zinchenko et al, 2020a; see also
Schankin & Schubd, 2010) and, importantly, disal-
lowed eye movements (which would produce arte-
facts in EEG studies).> Arguably, disallowing eye
movements would impede the evolution of generic
scanning procedures, in particular, when the short
exposure time does not permit extended search.
Applied to the present idea of dual mechanisms
underlying contextual cueing, the task demands in
these electrophysiological studies are quite different
to those under natural viewing, and eye-movement,
conditions. In particular, the ERP task design likely
forces display-specific learning (perhaps due to the
need of holding individual display arrangements in
working memory in order to solve the task; e.g.,
Ballard et al., 1995). In contrast, more natural scen-
arios, by allowing oculomotor scanning under con-
ditions of unlimited display presentation, foster the

acquisition of display-unspecific routines adapted to
the statistical regularities in the set of search displays
encountered (which is dominated by repeated display
arrangements) — possibly because scanning a display
is simply more efficient in terms of energy than mem-
orizing all of them (for a similar argument about not
utilizing a learned context, see Wolfe & Horowitz,
2017). Accordingly, the amount and ease of pro-
cedural learning is likely to be one of the factors
that mediate if and to what extent the learnt
context is constrained to the spatial vicinity of the
target item, versus being rather global in scope (see,
e.g., Brady & Chun, 2007, for a local hypothesis;
Olson & Chun, 2002; Peterson & Kramer, 2001; Shi
et al, 2013, for a global hypothesis; for a review;
Tseng & Li, 2004, see Goujon et al., 2015).

LTM-based attentional capture

Our results also have implications regarding the
mechanisms underlying attentional capture: they
support accounts according to which capture is a
function of participants’ statistical learning experi-
ences (for review, see, e.g., Chelazzi et al,, 2019). The
central observation is that capture is minimal, or
even entirely prevented, when bottom-up salient dis-
tractors appear in display regions, or at specific
locations, where they occur frequently as compared
to only rarely, which has been attributed to the acqui-
sition of pro-active distractor suppression mechan-
isms that curtail the attentional priority achievable
by items at frequent distractor locations (e.g., Ferrante
et al, 2018; Goschy et al,, 2014; Sauter et al., 2018;
Wang & Theeuwes, 2018). However, while these
mechanisms reduce the potential of distractors at fre-
quent locations to interfere with search, they may also
yield a disadvantage in that targets presented at de-
prioritized (i.e., frequent distractor) locations would
require extended time to be found and further pro-
cessed (e.g., Sauter et al., 2021; Wang & Theeuwes,
2018). An analogous, though in terms of effect direc-
tion, reversed pattern is also evident in contextual-
cueing studies using a learning/re-location design:
an initial search advantage for targets presented at
original locations in repeated distractor arrangements
turns into a disadvantage in a subsequent target re-
location phase, as search continues to be biased
toward original target locations. That is, there is a dis-
traction - or “attentional capture” - effect that does
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not arise from the item at the original target location
being bottom-up (physically) salient (the T vs. L's
search task affords little bottom-up guidance; see,
e.g., Moran et al., 2013), but rather by this item
being in some way top-down preferred by acquired
LT-memories. Here, we show that this distraction
effect involves persistent contributions from two
types of acquired LT-memory: spatial template-
based memory attentionally prioritizing the (learnt)
target location within specific distractor contexts,
and procedural memory, i.e., oculomotor scanning
routines adapted to statistical regularities in the set
of visual scenes encountered.

In summary, our results suggest that oculomotor
scanning strategies are adaptable to general statisti-
cal regularities prevailing in scenic environments
and act as a kind of “hinge” between the abundance
of visual information contained in the scene and
attentional selection. That is, rather than just being
the passive consequence of shifts of attention, eye
movements can proactively support attentional
orienting towards locations that most likely contain
information to be processed further (for accomplish-
ing the task at hand) - before the actual attentional
selection takes place. Proceduralization of oculomo-
tor scanning may be an efficient default strategy
because it minimizes the (resource-costly) need to
encode and retrieve scene-specific memories while
also minimizing interference from other displays by
reducing the amount of learned information, as well
as being more adaptive to changes at locations of
the scenes which are not target-relevant, thus redu-
cing “distraction” by potentially misleading cues
from scene-specific memories (in line with Olson &
Chun, 2002; and Brady & Chun, 2007).

Somewhat paradoxically, the present study shows
that generically optimized scanning strategies can
facilitate attentional selection of target locations
when a layout of non-target items is repeatedly
encountered, manifesting in an effect that resembles
“attentional capture” after a relocation of the target,
originating from contextual LTM. Although we
demonstrated this with respect to statistical target
location learning in a hard (T vs. L's) search scenario,
we conjecture that the same mechanism would be
at play in similar scenarios with either frequent and
infrequent target locations, or designs in which a
moderately bottom-up salient “distractor” item is
placed consistently within repeated arrangements of
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the other, non-target and target, items (where the
target is positioned randomly within this arrange-
ment, while being of a similar, low saliency as the
non-target items).* In the first case, participants may
learn generic scanpaths that seek out frequent
target locations earlier or, in the second case, circum-
vent the locations of such frequently encountered dis-
tractor items. This would predict that when the target
is then consistently “relocated” to the distractor pos-
ition (effectively removing the distractor) in a given
display, search performance should be impaired -
because such locations are deprioritized in the
generic scanpaths acquired in the preceding learning
phase. A new study would be necessary to test this
prediction in a paradigm that is closer to the “stan-
dard” additional-singleton paradigm employed in
most extant studies of distractor handling.

Conclusion

Our results support the novel view according to which
there is guidance and also misguidance of search
from experience with repeated display layouts,
which arises from both LT memory for specific distrac-
tor-target arrangements and LT memory for generic
oculomotor procedures. We conjecture that both
components aid the search-guiding, attentional-
priory map (e.g., Wolfe, 2020). Our findings extend
current notions of visual search by demonstrating
that learnable display-generic scanning strategies
actively aid search even before attentional selection
takes place, by bringing locations with a higher task
relevance into view earlier, as well as by minimizing
costs associated with the encoding and recall of (a
large number of) display-specific contextual mem-
ories while also minimizing potential interference.
We conjecture that procedural scanpath learning
also extends to the deprioritization of locations con-
sistently occupied by relatively salient “distractor”
items, which remains to be tested in future research.

Notes

1. Here, we just use an analogy for illustrating our new idea
- of mis-guidance of visual search being an instance of a
visual distraction effect that operates from acquired
long-term memory (LTM). This is not to imply that
necessarily the same mechanisms are at play in atten-
tional capture by salient but task-irrelevant stimuli and
attentional capture from contextual LTM.
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2. Although there was a numerical difference between
repeated and non-repeated displays from block 1
onwards, the CC effect was fairly unstable in blocks 1-
4 and stabilized only during the subsequent blocks.

3. Of note, to make the task performable without eye move-
ments within the brief display duration, the display items
were increased in size compared to the stimulus sizes
used in standard contextual-cueing experiments.
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Abstract

Because our environment is not random, it is beneficial to assimilate the statistics
of sensory impressions and improve performance, such as visual search for a target
object in a cluttered array of non-target objects (contextual cueing — CC — effect).
Computational models of CC have so far focused on predicting the target location
from a particular configuration of non-target items. This contrasts with recent findings
according to which display repetitions train human participants’ general procedures
for the search task. Here, we test the latter idea by employing a connectionist model
of visual search that exclusively learns a search procedure without acquiring any
individual display-layout information. We show that an instance of a “learning how”
mechanism not only proposes a viable alternative account to existing “learning that”
mechanisms, but also generates more plausible key behavioral metrics and exhibits
a central bias as an emergent phenomenon of learning-induced plasticity. These
findings have implications for models of visual search and artificial intelligence:
Learning a procedure from leveraging a task’s structure alone can mimic the effects
of top-down modulation of attention, while also reducing the need for supervision in
learning, thereby making computational models that leverage procedural learning

behaviorally more plausible and easier to train.
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Introduction

Detecting, and responding to, specific objects in a cluttered sensory world is one
of the most prevalent tasks of the human visual system (Wolfe, 1998; Wolfe &
Horowitz, 2017). Since environments are typically stable, it is beneficial to extract
information that is predictive of relevant ‘target’ objects and use this information to
facilitate search on later occasions. For example, looking for a certain item in a shop
for the first time is driven by knowledge about the item’s featural (size, colour etc.)
properties. In subsequent searches for the same item in the same shop, another
source of information becomes available: knowledge about the location of the target
item on a certain shelf in the presence of other, distractor (i.e., non-target) items that,
while not directly relevant for the task at hand, nevertheless provide a helpful context
for finding the searched-for item.

An experimental paradigm that mimics this situation in the laboratory is visual
search for a target item placed at a stable position within a constant —i.e., repeated
— spatial arrangement of distractor items — originally introduced by Chun and Jiang
(1998). The basic task requires participants to search through artificial arrays of
letter-type stimuli, finding and responding to the orientation of a T-shaped target
(rotated by either 90° or 270°) among (orthogonally oriented) L-shaped distractor
items. Critically, search performance for repeated distractor-target arrangements — in
which the distractor layout, or ‘context’, is predictive of the target location — is
compared against non-repeated (‘baseline’) arrangements — in which distractor
locations are arranged anew on each trial. The target locations themselves are fixed
in both repeated and non-repeated displays, controlling for absolute target-position
learning (cf. Geng & Behrmann, 2005; Jiang, Swallow, & Rosenbaum, 2013). This
laboratory task thus allows the isolated study of spatial context learning,

unconfounded by semantic and syntactic properties of the searched scenes (for
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evidence that such properties matter, see Vo & Wolfe, 2013). Chun and Jiang (1998;
2003) found the search reaction times (RTs) to decrease with increasing practice on
the task not only for repeated but also for non- repeated display arrangements —
reflecting procedural learning of how to best perform the task, akin to the acquisition
of a (search) skill (Fitts, 1964, Fitts & Posner, 1967). Critically, the practice-related
improvement turned out larger for repeated vs. non-repeated displays — which has
been attributed to the beneficial effect of repeated distractor contexts for finding the
target. Chun and Jiang (1998) proposed that repeatedly encountered context-target
spatial relations are stored in spatial long-term (LT) memory. Upon re-encountering a
repeated display, the appropriate memory is retrieved and guides, or ‘cues’, search

to the target location — giving rise to the ‘contextual-cueing’ (CC) effect.

Central to accounts of CC is the more efficient allocation of focal attention to the
target item in repeated displays (Chun & Jiang, 1998; for reviews, see Goujon et al.,
2015, Sisk et al., 2019). In support of this, oculomotor investigations of CC have
shown that detecting the target in repeated displays requires fewer eye movements
(i.e., a reduced number of fixations, NF, where, in a fixation, covert and overt
attention are assumed to be aligned) compared to the baseline of non-repeated
displays (Tseng & Li, 2004; Peterson & Kramer, 2001). Relatedly, oculomotor
scanpaths —i.e., the total distance traversed by sequential eye movements — are
also shorter for repeated displays (e.g., Manginelli & Pollmann, 2009; Zang et al.,

2015; Brockmole & Henderson, 2006).

Dominant theoretical accounts of CC attribute this pattern of effects to the build-up
of contextual memories that associating the location of the target with the distractor
layout within specific repeated display arrangements (Chun & Jiang, 1998; Tseng &

Li, 2004; Beesley et al., 2015). In terms of Ryle (1945), such theories of CC may be
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considered instances of “knowing that”, i.e., what is acquired is some kind of
(search-guiding) proposition that, given a certain distractor layout, the target is to be
found at location [x,y]. Complementary to this would be accounts of “knowing how”:
the capability to optimally perform specific tasks or actions (Ryle, 1945). Arguably,
the CC paradigm is particularly well suited to investigating the latter type of account,
which considers the refinement of the requisite — i.e., overall optimal — search
procedure to be driven more strongly by repeated than by non-repeated displays. In
line with this notion, recent analyses of the oculomotor scanpaths observers traverse
to find the target show that procedural learning of how to the search the set (or
‘world’) of displays encountered is an important determinant of the CC effect (Seitz et
al., 2023; Seitz et al., 2024): while scanpath similarity increases generally — across
all types of displays — with training, critically, it increases more for repeated than for
non-repeated displays. This supports a “knowing-how” account of CC, according to
which statistical learning optimizes the processes by which the search task is
accomplished, with repeatedly encountered contexts simply accruing a greater
weight in tuning these processes than non-repeated contexts which, by definition,

are searched only once.

Given this evidence, the motivation of the present study was to test
computationally whether procedural learning of how to optimally search of a certain
‘world’ of visual displays can give rise to a CC effect in the absence of any display-
specific learning, i.e., without associating a specific distractor arrangement with a
specific target location. Along with this, we set out to test whether an only weakly
supervised model — leveraging the implicit structure of the task rather than relying on
explicit teaching signal (provided by an external supervisor) — could still exhibit

adaptive behavior. If so, this would have implications for a “second” type of learning
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in Al and hold the possibility of designing/collating new datasets with a smaller

burden on explicit annotation.

Previous models of CC

Based on the findings of faster response times (RTs) and fewer fixations required
for detecting targets in repeated contexts, there have been several attempts to
model the ‘cueing’, or guidance, of attention to learnt target locations by acquired
long-term contextual-memory representations. Brady and Chun (2007) proposed a
two-layer feedforward network which learned to associate a specific context with a
specific target position. The input layer consisted of an 8 by 6 (location) matrix, with
‘occupied’ matrix cells encoding the presence of 1 out of a total of 12 display items at
the respective ‘search-display’ location. Inputs triggered by a specific display
arrangement then activated (via a bottom-up activation term) spatially corresponding
neurons in an output layer that was considered to represent a ‘priority map’ (cf.
Fecteau & Munoz, 2006) for the deployment of attention and eye movements. The
input and the output layer were connected by weights that were adjusted by the delta
rule each time the target was detected: weight updating was largest for the target
location and (exponentially) descending for distractors with increasing spatial
distance from the target location. The network’s performance was measured in terms
of the number of activated output-layer units that had to be checked in decreasing
order prior to arriving at the unit representing the target location. This model was well
able to generate a CC effect, implying that the effect arises from a reduction in the
number of fixations required to find the target in repeated display layouts. An
augmented version of this basic two-layer network was proposed by Beesley et al.
(2015) to account for the observation of facilitated RTs even when the target location

is allowed to vary relative to an invariant distractor layout (though the facilitation is
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smaller than the ‘standard’ CC effect with fixed target locations; e.g., Vadillo et al.,
2021; Kunar & Wolfe, 2011). To accommodate this finding, Beesley et al.’s model
learns an additional set of ‘auto-associative’ weights between distractors within the

input layer, reinforcing the distractor configuration.

Thus, in these modelling attempts, associations are formed —i.e., connections are
strengthened — between the spatial configuration of items in the input layer and the
location of the searched-for target in the ‘attentional-priority’ output layer in a
supervised manner (for an overview, see Dayan & Abbott, 2005); additionally,
associations may be acquired among repeatedly placed distractor items within the
input layer using unsupervised learning. From a biological perspective, Goujon et al.
(2015) put forward the related idea that Spike-Timing-Dependent Plasticity (STDP) —
the neurobiological mechanism of associative Hebbian learning — alone might

account for the acquisition of CC.

Present work

While associative learning (Goujon et al., 2015) presents a plausible mechanism
for generating contextual facilitation as a form of statistical learning, the levels at
which statistical regularities are actually leveraged have as yet not been
comprehensively investigated, at least in terms of computationally explicit models.
Empirically, recent work (Seitz et al., 2023; Seitz et al., 2024) has demonstrated that
contextual facilitation — rather than being simply attributable to the acquisition of
specific, repeatedly encountered distractor-target relations (display-specific learning)
— may arise from procedural, oculomotor-scanpath learning adapted to the set of
encountered display layouts at large (display-generic learning), i.e., the honing of a
general search ‘skill’ in terms of Fitts and Posner (1967). Of note, display-specific

learning as such could account only for the acquisition of a search advantage for
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repeated over non-repeated displays. In contrast, acquiring a generic procedural
strategy to optimally scan the entire set of encountered displays (including both
repeated and non-repeated layouts) can provide a parsimonious account of both
contextual facilitation (i.e., the search advantage for repeated vs. non-repeated
displays) and the general improvement in performance across time-on-task, which is
evident with both repeated and non-repeated displays: while scanning is optimized
for all types of display (accounting for the general improvement in performance),
repeated displays are encountered multiple times and thus shape the scanning
strategy more than non-repeated displays that are encountered only once. As a
result, the similarity of the oculomotor scanpaths becomes higher between pairs of
(differently composed) repeated displays compared to pairs of (different) non-
repeated displays (see Figure 1A). This proposal of display-generic (rather than
display-specific) learning is in line with Lashley’s (1951) account of sequential
behavior, according to which motor actions are not planned de novo each time, but
instead previously executed movement patterns are modified or updated to fit the

demands for the task at hand (see also Rosenbaum et al., 2007).

Based on this idea and the evidence from measures of scanpath similarity (Seitz
et al., 2023, Seitz et al., 2024), we implemented a computational model which, by its
very architectural constraints, cannot form any contextual associations between — or
‘representation’ of — the distractor-layout (input-layer pattern) and a target location
(output layer) at all; rather, it can only learn fixation sequences based on previously
executed saccades. That is, the model updates prior oculomotor patterns based on
the current input, as proposed by theories of procedural learning (Lashely, 1951).
Beyond this theoretical motivation, choosing this simple procedural learning rule was

also underpinned by a pragmatic consideration: executing stereotypical eye
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movements driven by locations of relevance in the current input, as well as indirectly
by those of previously ‘scrutinized’ displays, would, in itself, provide a fairly
economical way of optimizing where and in which sequence fixations should be
placed, given that the fixations will be tuned to general characteristics of relevance in
the set of displays and thus be likely to capture the ‘salient’, evolutionarily informative

aspects of the input.

Consequently, the current study was designed to examine the explanatory reach
of this simple procedural learning mechanism, vis-a-vis the mechanisms
implemented in previous computational theories of CC (Brady & Chun, 2007;
Beesley et al., 2015). Importantly, the assumptions underlying the present scheme
differ fundamentally from those of the previous models, which learn target locations
as a function of context: the models inspect likely candidate positions guided by
initially erroneous ‘memory signals’, that, across repeated searches, become
gradually biased towards the target location. In contrast, the model investigated here
does not acquire any associations between an item configuration and the target
location predicted by that configuration; instead, it optimizes its behavior as an

emergent property of reinforcing previously executed oculomotor patterns.

Thus, the present modeling attempt present a fundamental departure from
previous schemes: Employing a computational model which, by design, can only
learn a scanning procedure and no spatial-layout information at all allows us to
examine whether contextual facilitation can arise merely as byproduct of an
acquired, essentially ‘mindless’ generic search procedure. If so, the model results
would demonstrate that to account for contextual facilitation, it is not necessary to
assume the build-up of higher-level contextual-memory ‘templates’ in spatial long-

term memory that are activated by the presentation of a specific repeated display
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and then top-down bias search towards the target location pointed to by the
distractor configuration. Of note, our model incorporates the notion of CC being a
mere byproduct of associative learning (cf. Goujon et al., 2015), though with
associative learning in the model occurring simply between successive fixations,

rather than extracted regularities in the item arrangement.

In terms of behavioral indices of CC, following previous studies (Brady & Chun,
2007; Beesley et al., 2015), we focused on the key measure of the number of
fixations required by the model to detect the target. Further, for a more
comprehensive validation of our computational model against the evidence of CC
being driven by procedural learning (Seitz et al., 2023), we additionally examined the
model’s search behavior in terms of scanpath-similarity measures, i.e., the
homogeneity of the scanpaths within ‘participants’ and between displays. If
procedural learning alone suffices to produce CC, we expected the model’s behavior
to replicate previous findings diagnostic of procedural learning, in particular: a
reduced number of fixations as well as a higher similarity of the scanpaths in later vs.

earlier blocks of learning, especially for repeated vs. non-repeated displays.

Methods

Model architecture and learning

The model was implemented in PyTorch (Paszke et al., 2019), benefitting from
CUDA (NVIDIA, Vingelmann, P., & Fitzek, F. H. P., 2020) optimized code, and
trained on an NVIDIA RTX A4000 GPU. The model has two layers, an input (‘search-
display’) layer and an output (‘priority-map’) layer, connected by weights — similar to
Brady and Chun’s (2007) model. In contrast to their model, however, the current

model does not associate the activations of a given input display with the target
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location in the output layer in a supervised learning scheme. Hence, it does not and
cannot learn to associate a given configuration of display items with the target
location — in fact, it is never even informed about which item corresponds to the

target.

The architecture of the model is illustrated in Figure 1B. While there is full
connectivity between each neuron in the input layer and each neuron in the output
layer, there are two distinct sets of weights. The first set are ‘direct’ weights,
connecting spatially corresponding positions in the input and output layers (i.e., the
diagonal of the weight matrix): these weights take on a fixed (pre-set) value, which
does not change as a result of learning. Essentially, they provide a “bottom up”
signal that represents the item locations in the output layer (with equal “priority”),
similar to the bottom-up weights in Brady-and-Chun (2007). All other, off-diagonal
connections (the second set) are learnable, with their weights initially set to zero.
Thus, initially, each display (distractor and target) item receives an equal amount of
activation on the output layer. By disabling changes of the diagonal weights, the
network is prevented from learning to increase the weight between a given target
location in the input layer and the target location in the output layer, as well as
between sets of distractor elements and the target. That is, the network cannot use

target-location information to optimize oculomotor scanning.

The model computes an oculomotor scanpath, i.e., a sequence of fixation
coordinates on the output layer, starting at the display center and then successively
sampling one position after the other until the target is located (similar to the model
of Koch & Ullman, 1984). On each iteration, the model either selects the output
neuron (item location) exhibiting the highest activation as the next fixation

coordinate, or, if there are several output neurons with equal activation (before
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learning all of them), it randomly selects one of those. Next, if the selected item is not
the target, the selected item is removed from the input layer (as a result of which it is
no longer represented on the output layer and, so, its location can no longer be
selected for fixation) — implementing an ‘inhibition-of-return’ mechanism (e.g., Klein &
Maclnnes, 1999). Scanning is terminated once the model ‘selects’ the target location
— though, as already stated, the network itself is not informed whether or not the

selected element is the searched-for target item.

Initially, before learning becomes effective, the model must sample approximately
half the number of items in the display to locate the target — as is typical for
‘unguided’ search tasks, such as (T-type target vs. L-type distractor) letter search
(e.g., Wolfe, 2021). Critically, as the network is not informed that the target item was
selected (search is then simply terminated), it has no means to learn that a given
context implies a certain target location. Following search termination, the next

display is presented as input to the network.

Learning takes place in the second set of weights, i.e., the off-diagonal
connections of the weight matrix. The network increases the weights between the
current fixation location’s region and the region centered around the location
selected for the next fixation according to a Hebbian learning rule, i.e., by changing
of the weights connecting the pre- (input) and postsynaptic (output) neurons
proportional to the neurons’ activations (for visual illustration, see Figure 1C). Of
note, for each fixation location, neighboring (output) neurons receive lateral
activation, too (with the amount of activation scaled by distance; see below). While
this is physiologically plausible, essentially implementing a kind of population
encoding (e.g., Behan & Kime, 1996), it enables the network to generalize its

behavior to similar, rather than only identical, input patterns: if a saccade from a
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current region to another region is possible, which attracted similar fixations to
previously executed eye movements, the network will be biased to execute this
saccade. Specifically, the activations of ‘lateral’ neurons around the current and
selected-to-be-next fixation locations are scaled by a negative exponential decay
function of the distance to the respective fixation location, and the change in weights
is proportional to the activation between each input and output neuron, according to

the following equation:
AWij = (e_f(irf(t))/'[in) * (e_g(j'f(t)/"—'out) * lr’

whereby

e(k, f()) = J(xk —xp) + (7~ yf(l))z’

where Aw;; is the change of a particular off-diagonal weight between neuron i in the
input layer and neuron j in the output layer and (i, f(t)) is the Euclidean distance of
neuron i to the current fixation location f(¢) in the input layer, while &(j, f(t + 1)) is
the distance of neuron j to the selected next fixation location f(t + 1) in the output
layer. The constant t;,, denotes a decay constant which regulates the amount of
lateral activation as a function of the distance ¢ of neuron i from the current fixation
location f(t); analogously, 7., is a decay constant that regulates the amount of
lateral activation of neuron j as a function of the distance ¢ to the selected next
fixation location f(t + 1), while Ir is the learning rate. Different values of z
correspond to different amounts of spatial generalization/selectivity. The amount of
lateral activation in a layer as a function of distance and its dependence on t is
illustrated in Figure 1D. Critically, the network had no information about which

element is a distractor and which a target item. It only learned to associate fixation
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locations based on consecutive fixation events when searching repeated and non-

repeated arrays.
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Figure 1. Figure 1A shows real human data (from Seitz et al., 2023) performing
visual search in repeated and non-repeated target-distractor layouts and a practice-,
i.e., block-, related increase in scanpath similarity (measured by Dynamic Time
Warping — DTW, see, e.g., Fahimi & Bruce, 2020), which increased with increasing
time-on-task (learning), with a greater increase for repeated displays. Figure 1B
illustrates the architecture of the network examined in the present investigation,
which consisted of two layers that are connected by two sets of (fixed and,
respectively learnable) weights. Figure 1C outlines the overall dynamics of the
model: The initial fixation is set at the center and a particular item is selected as the
next fixation (location), which is then ‘removed’ from the input prior to determining a
new fixation location; this iterative selection and rejection process is terminated upon
a fixation falling on the target. Figure 1D visualizes the amount of weight change
resulting from Hebbian learning between laterally activated neurons around the
current fixation (in the input layer) and those of the selected next fixation (output
layer). Figure 1F illustrates the decreasing amount of lateral activation of a given
neuron as a function of its distance from the fixation location. Smaller values of ©
yield a faster decrease in activation.
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Training procedure

The network was initialized 25 times with a different (randomly generated) set of
displays, corresponding to 25 “participants”. Each network underwent 32 training
blocks, each consisting of 12 repeated/old-context and 12 non-repeated/new-context
trials — mimicking Chun and Jiang’s (1998) original study of CC. The display matrix
consisted of 31x31 possible locations, where, in each trial display, 11 locations were
occupied by L-shaped distractor items and 1 location by a T-shaped target item.
Target locations were distributed randomly, except that three (of the 12) repeated
and three (of the 12) non-repeated displays had targets in each of the four display
quadrants, and thus avoiding target-quadrant effects attributable to absolute target-
location probability cueing (e.g., Jiang et al., 2013). Both the target and the distractor
items activated the matrix element corresponding to the respective item location to
the value of 1 in the input map. Note that we choose a relatively large 31x31 matrix
to ensure that the network had sufficient degrees of freedom to produce variability in
the spatiotemporal profile that its ‘eyes’ traverses within a given repeated and non-
repeated display layout. This was a departure from Brady and Chun (2007), who
only had 8x6 possible display locations to model selection of individual target and

non-target items.

Results

We investigated whether learning idiosyncratic oculomotor scanning strategies
suffice to elicit a CC effect both in terms of the number of fixations required to detect
the target item and the consistency, or similarity, of the oculomotor scanpaths
traversed, using Dynamic Time Warping (DTW) computed between each pair of
individual repeated-display and, respectively, pairs of non-repeated-display

scanpaths (each display containing a unique target position) in each block, using
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Python’s similarity-measure library (see Jekel et al., 2019). DTW quantifies the
similarity of the shapes of the scanpaths with distinct time series by aligning them in

the time domain, thus minimizing the Euclidean distance between the aligned series.

Analyses were performed using repeated-measures ANOVAs with the factors
Context (repeated, non-repeated) and Block (1-32) — consistent with Seitz et al.
(2023; 2024). For comparisons to existing data from the literature (see section:
“Comparison to empirical data”), we collapsed 8 blocks of trials into 1 single Epoch,
yielding a total of 4 epochs (as the studies considered also analyzed/ presented their
data across 4 epochs). The results reported below were obtained from a network
with a t;,, = 2.5 and 7,,; = 4.5 and a learning rate of 5*107. The specific values of
7;n and t,,,; were determined empirically (by selecting from simulations according to
a grid-search scheme), so as to obtain behaviorally plausible values for the number
of fixations typically observed in eye-movement studies of CC with stimuli generated
analogously to the procedure implemented here (e.g., Peterson & Kramer, 2001;
Manginelli & Pollmann, 2009; Zhao & Ren, 2020): collectively, these studies found
that even after a reasonable amount of practice with repeated displays, the number
of fixations required by human learners to home in on the target remained relatively
high (typically some 4-6 fixations), rather than the target being among the very first

items to attract an eye movement.

Analysis of simulated oculomotor parameters

The network showed a significant improvement in the number of fixations required
to reach the target for both repeated and non-repeated displays (main effect of
Block, F(31, 744) = 19.85, p < 0.001, np? = 0.45, 95% CI[0.39, 0.49]). Additionally,
the network required significantly fewer fixations, on average, to reach the target in

repeated vs. non-repeated displays (5.06 vs. 6.18 fixations; main effect of Context,
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F(1, 24) = 34.32, p < 0.001, np? = 0.59, 95% Cl = [0.31, 0.75]). Further, there was a
significant interaction between Context and Block (F(31,744) = 5.35, p < 0.001, np? =
0.18, 95% CI =[0.11, 0.20]; see Fig. 2A, left panel), due to the Context, or
contextual-facilitation, effect increasing with practice (as a result of a more marked

improvement of performance across blocks for repeated vs. non-repeated displays).

Previous research (Seitz et al., 2023) has shown that repeated displays not only
require fewer fixations, but also that the oculomotor scanpaths become more similar
as the experiment progresses, and more so for repeated than for non-repeated
displays. This effect pattern arises because the oculomotor search strategy itself is
being adapted, with repeated displays weighing in stronger on the optimization of the
search strategy than non-repeated displays (Seitz et al., 2023, Seitz et al., 2024).
Since our model only learns a procedure — namely, to produce a stereotypical
sequence of saccades based on previous fixational patterns —, we tested whether
the scanpaths would become more similar in our network across blocks and,
importantly, whether this effect would be more pronounced for the repeated displays.
The results revealed (DTW) scanpath similarity to increase as the experiment
progressed (main effect of Block: F(31, 744) = 42.82, p < 0.001, np? = 0.64, 95% CI
=[0.60, 0.67]), and the scanpaths for repeated displays to become more similar than
those for non-repeated displays (main effect of Context, F(1, 24) = 43.82, p < 0.001,
np? = 0.65, 95% CI = [0.39, 0.78]). Additionally, there was a significant Context x
Block interaction (F(31, 744) = 4.39, p < 0.001, np? = 0.15, 95% Cl = [0.09, 0.17];
Fig. 2A, right panel), evidencing a more marked increase in scanpath similarity
across blocks for repeated vs. non-repeated displays. Of note, we obtained the same
result pattern in a second run (see Fig. 2B) when generating a new set of non-

Irepeated displays, thus rendering it unlikely that the first set of results was driven by
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specific properties inherent in the displays in the first run. This pattern mirrors the

human data.
Comparison to empirical data

We went on to examine how well our model fits to empirical data. For repeated
displays, the median number of fixations was above 4, while it was above 5 for non-
repeated displays. These numbers match previous reports fairly well, including
Peterson and Kramer’s (2001) ‘benchmark’ oculomotor study of CC. Figure 2B gives
the median number of fixations of the simulation as well as that reported by Peterson
and Kramer (2001). To assess the fit quantitatively, we computed the Mean Absolute
Error between the model’s results and Peterson and Kramer’s data for both runs,
which was 0.3 fixations (largest deviation = 0.5, relative error = 5%) for run 1 and 0.2

fixations (largest deviation = 0.6, relative error = 3%) for run 2.

Next, we fitted a curve to the contextual-facilitation effect produced by the model
(see Brady & Chun, 2007, for a similar procedure), which was best described by a
power function (see Chun & Jiang, 2003). The variance explained was 98%.
Moreover, to assess how well the characteristics of the obtained curve translate into
empirical reaction times, we compared the model to the data reported by Geyer et al.
(2023), who tested a large sample of (N=45) participants, yielding a robust measure
of CC. Assuming that the benefit of one fixation corresponds to a reaction-time
speed-up of 25 ms (Wolfe, 1994; Brady & Chun, 2007), the saturation curve explains
58% of the variance in the RT data of Geyer et al. (2023), further validating our

model. The curve is defined by:

y=1630x(1—e (*/03D)_-1497,
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where y corresponds to the magnitude of the CC effect per epoch, denoted as x.
Assuming that contextual facilitation approaches an asymptotic value across epochs
is also more plausible compared to a (monotonically increasing) logarithmic
relationship (Brady & Jiang, 2007). Fixation numbers and reaction times have a
natural lower bound (i.e., > 0) and their characteristics over time are best described
by power functions (e.g., Fitts & Posner, 1967; Anderson, 1982; Chun & Jiang,
2003). Consequently, rather than growing unboundedly, the difference between
increasingly smaller values must approach some asymptotic value. Figure 2D

summarizes our findings.

Central Bias as emergent phenomenon of procedural learning

Finally, we examined where our models ‘looks’ after training, by summing up the
learnt weights for individual (output) locations across displays and participants. While
one might have expected the network to display a strong bias towards individual
target locations, surprisingly, it actually developed a bias to scan particularly central
display locations (not necessarily coinciding with target locations) — an emergent
behavior that resembles human visual exploration (e.g., Clarke & Tatler, 2014). This
is illustrated in Figure 2D, which shows the summed weights of randomly selected
“participants”. As can be seen, the weights do not project in a 1:1 fashion to single
target locations in repeated and non-repeated arrays; instead, they cluster around
the central display region. We found such a bias also in other (control) simulations, in
which we had the model start search on each trial at a peripheral (rather than the
central) display location, e.g., the location in the top-left display quadrant
(coordinates: x = 3,y = 3 in the 31 x 31 matrix). It is thus unlikely that the central
bias is a particular consequence of our training procedure, with search, by default,

starting at the display center (coordinates:x = 15,y = 15). Rather, the central bias is
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likely to reflect training-induced plasticity in the process of visual search akin to

human behavior.

| support of this, fitting a bivariate Gaussian (with a least-squares approximation)
to the average bias of all “participants”, along the lines of Clarke and Tatler (2014),
we found that a truncated Gaussian could indeed describe the computational data
well, with the center of the Gaussian located at the display-center coordinates x =
15.4, y = 14.5, with a standard deviation of 10.5 and 10.1 in the x and y directions,
respectively. To assess the goodness of fit, we computed the mean average error
between the bias values and the fitted Gaussian, divided by the mean bias value,

which yielded a relative error of 1.7%.
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Figure 2. Figure 2A depicts the mean number of fixations (left panel) and the (DTW)
similarity (right panel) of the scanpaths generated by the network, showing a Block x
Context interaction for both measures. The lines in Figure 2B show the median
number of fixations of the model (“Run 1”), as well as a second, independent version
of the experiment ("“Run 2”) conducted to validate our findings. The circular and
triangular markers show the median number of fixations from Experiment 1 of
Peterson and Kramer (2001). The left plot of Figure 2C depicts the empirical RT data
from Geyer et al.’s (2023) large sample of participants; the middle panel of Figure 2C
depicts simulated fixations of our model and the right panel shows the CC effect
rendered by the model and human participants (from Geyer et al., 2023),
respectively, as well as the curve fitted to the model data. Individual model
“participants” are visualized in light blue. Figure 2D illustrates the bias of the weights
towards the display center, as an emergent property of procedural learning. The
upper panel shows the weights of 11 randomly selected “participants”, while the
middle and lower panels show the bias in the x- and y-direction, respectively. Note:
Projections of the fitted 2D Gaussian are not shown, because, due to the good fit,
they would visually occlude the mean central-bias curves.
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Discussion

The present study demonstrates that acquiring a display-general oculomotor
scanning procedure in a visual search task can yield a CC effect even in the
absence of any configural learning, i.e., associating a specific target location with a
specific configuration of the distractor elements. Our model merely learns a simple
procedure: if a saccade from a given fixation location to another location (among
several alternatives) is possible and the model has previously executed a similar
saccade, the model is biased to execute that saccade. While this limits performance,
in that non-target elements will inevitably also be visited during search, the saccades
ultimately terminate at the task-critical target locations. The network thus learns to
generalize its search behavior in such a way that many saccades are biased towards
target locations — in line with previous computational models of the CC effect (Brady
& Chun, 2007; Beesley et al., 2015). Critically, though, our network focuses on the
learning of entire series of scanpaths, rather than learning to prioritize individual
display locations.

While our results demonstrate that procedurally learnt, display-general oculomotor
scanning routines go a long way to account for CC, they do not rule out other
mechanisms — of top-down search ‘guidance’ — proposed in the CC literature: these
assume associative learning of specific, repeatedly encountered spatial distractor-
target relations (LTM ‘templates’), which, when activated by a given repeated
display, bias the deployment of attention towards the target location (e.g., Wolfe,
2020), possibly augmented by facilitated response-selection and/or -execution
processes (e.g., Kunar et al., 2007).

Of note, our network does not claim neurobiological plausibility (such as
endeavoring to model the cellular operation of neurons in the superior colliculus;

e.g., van Opstal & van Gisbergen, 1990). Rather, it was designed to provide a
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computationally explicit implementation of a hypothesis according to which the mere
acquisition of a simple, “mindless” procedure suffices to generate a CC effect — thus,
casting doubt on the necessity to assume (learnt) display-specific LTM
representations to account for contextual facilitation. Of importance in this regard,
our model produces a reasonable fit to empirical data obtained from human
participants; in particular, at the end of learning, the number of fixations required to
find the target remains above 4 or 5 for repeated and non-repeated displays,
respectively — rather than the empirically implausible 1 or 2 fixations estimated by
Brady and Chun’s (2007) model for repeated displays. Further, we observed a
central bias as an emergent property of procedural learning. While it is thought that a
central bias can arise from training with specific target locations (Parkhurst et al.,
2002), our model suggests that just performing “mindless” scanning of the visual
displays may suffice for the bias to emerge — in line with the observation of a central
bias even in (“target-less”) free-viewing tasks (Carnosa et al., 2003).

Crucially, here, we provide a procedural account of learning which can render
performance improvements in visual search that are not contingent on the learning
of, and attendant ‘cueing’ of search towards, specific target locations. Procedural
learning, in particular of oculomotor trajectories, thus appears to be an important
factor that has so far not been explicitly considered in models of visual search such
as Guided Search (e.g.; Wolfe, 2021). This also implies that eye movements, rather
than being just the consequence of ‘targeted’ shifting of attention, actually promote
the orienting of attention toward display regions that most likely contain relevant
information for attentional processing — prior to the selection of specific
locations/items based on bottom-up or top-down ‘cues’. Following from this, we
propose that procedural learning plays an active role in visual search in the sense

that convenient, general search procedures optimally adapted to the ‘world’ of
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displays encountered constitute another factor — besides the allocation of attention
based on acquired target-distractor LT memories — that aid the allocation of attention
in a manner unguided by other feature-based (i.e., bottom-up or more short-term top-
down) factors.

Arguably, this type of learning is applicable to skill acquisition in general, which
constitutes a universal characteristic of human behavior (Luchins, 1942; Ryle, 1946;
Fitts, 1964; Fitts & Poser, 1967; Willingham et al., 1989). Although here we explore
its potential with regard to accounting for a particular phenomenon — namely, CC —,
we believe that the notion of skill acquisition has implications for a model-based
understanding of oculomotor behavior in visual exploration and scene viewing in

general.

Summary and Outlook

The key finding from our modeling work is that a network employing solely
procedural learning can give rise to what looks like memory-based ‘cueing’ of
attention to the target location in a hard visual-search task. Importantly, the model is
never informed about the identity of individual items, nor does it learn to associate a
target location with the distractor layout. Hence, it does not acquire any “knowing
that” (Ryle, 1945). Rather, it just learns to adapt, and hone, its previously executed
fixation patterns, with optimization occurring incidentally, simply as a byproduct of
repeatedly searching a certain set of displays. The network thus acquires “knowing
how” to best solve the task. Although here a motor procedure is learned, we suggest

that the findings generalize to other forms of procedural learning.

While the model does not acquire specific context-target associations (‘templates’

in long-term memory) that top-down guide attentional selection (‘contextual cueing’),
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it nevertheless facilitates search by learning a display-generic oculomotor procedure.
This raises the question whether the findings from other statistical learning
paradigms (e.g., Theeuwes et al., 2022; Bogaerts et al., 2022) may also be
explained by the acquisition of (oculo-)motor routines (i.e., “learning how”), rather
than pre-attentive guidance processes (i.e., “learning that”). We hypothesize that if a
simple procedure can be readily set up to solve the task at hand (e.g., visual search),
attentional guidance may actually not be the dominant mechanism driving the
learning-dependent performance gains. Accordingly, future research would need to
factor in participants’ capacity for procedural learning across a range of cognitive
domains and tasks, which would require innovative experimental designs to separate
procedural and attentional-guidance effects and/or establish to what extent
procedural learning interacts with statistical learning of attentional guidance.
Leveraging scenarios in which acquired procedures render performance errors
whereas “cognitive” strategies would yield the correct outcome might be particularly
insightful in investigating the interaction between “learning how” and “learning what”

in an adaptive manner.

With regard to conceptual and computational models of (foveated) vision that
have traditionally emphasized guidance by bottom-up and/or top-down information:
we argue that, in light of our empirical and modeling results, these models might
profitably consider whether procedural strategies may not equally well explain
existing findings, or in what way the models may be augmented by incorporating
procedural learning. Cases in point would be considering whether the central bias is
an emergent property of a statistical “learning-how” mechanism, or whether
architectures operating on selecting “glimpses” (e.g., Mnih et al., 2014) would benefit

from procedurally learnt stable fixation policies. Of particular theoretical as well as
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practical interest is that, in our model, learning a simple procedure rendered an
advantage in finding the target without any explicit “teaching signal” informing the
network about target identity or location. This finding may hold potential for the
domain of machine learning and artificial intelligence, namely, by employing learning
strategies requiring less supervision by (e.g., developing loss functions or training
schemes) focusing on “learning how” instead of “learning that”, directly leveraging
the task structure itself rather than the outcome of single trials. Generally, we believe
it profitable tested whether some tasks, particularly involving statistical learning, may

be explained and successfully modelled as instances of procedural learning.
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General Discussion

In summary, three studies have investigated the role of procedural learning - that is,
“‘learning how” in visual search under invariant contexts. Learning a procedural
scanning routine may be helpful in bringing the likely relevant aspects of a visual
environment into view and enable subsequent (pre-)attentional processing. Hence,
procedural learning might be a so far neglected “filter”, even before attentional
selection takes place: Wolfe & Horowitz (2017) identify five factors that guide
attention - bottom-up salience, top-down feature guidance, scene structure and
meaning, search history and reward. These findings are in line with evolutionary
mechanisms, as they are cost-effective and avoid unnecessary interference between
encoded memories.

While, semantically, our findings coincide with the terms of ‘scene structure’ and
‘search history’, these factors usually refer to the learned syntactic/semantic
properties of scenes, such as things adhering to gravity or birds sitting in trees
(Biederman, 1976; Biederman et al., 1982), whereas search ‘history’ usually implies
a statistical learning of e.g. a region with a high probability of containing the target
position (Geng & Behrmann, 2005) or display-specific learning of targets (Chun &
Jiang, 1998), the presented studies offer a novel view on how the statistical structure
of scenes can be utilized in an agnostic way by learning useful procedures that apply
to task-generic demands and make use of the task's specific structure.

Hence, the present work extends the current notions of attentional guidance, which
is a procedure that acts ‘blindly’, before attentional selection has taken place bringing

potentially relevant portions of a display into view and making them available for
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(pre-)attentional processing. However, this process itself is not guided by

mechanisms of attention, but by procedural routines.
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Studies

Study 1 identifies procedural learning and illustrates how procedural learning acts as
a motor behind the contextual cueing effect. While contextual ueing has previously
been believed to be a display-specific top-down memory effect on attentional
guidance (i.e. an instance of “knowing that”), learning of optimized oculomotor
scanpaths along the set of the entire display (i.e. an instance of "knowing how")
presents an alternative mechanism to bring about the effect.

The central finding of the study is that scanpath similarity is higher when pairs of
different participants process identically composed old-context displays, as opposed
to scanning itentical new-context displays. Even more importantly, scanpath
similarity is increased in individual participants when encountering different repeated
displays with different spatial composition compared to non-repeated displays. In
other words, the display-generic search procedure is more invariant for the spatially
invariant repeated displays, compared to the spatially variable non-repeated
displays. This can be thought of a result of tuning the scanning strategy to the bulk of
all displays, with repeated displays weighing in more strongly as a direct
consequence of repetition, that is, multiple exposures, whereas novel displays are by

definition only encountered once.

Study 2 supports the novel view according to which there is guidance and also
misguidance of search from experience with repeated display layouts, which arises
from both long-term memory for specific distractor-target arrangements and,
alongside, long-term memory for generic oculomotor procedures. With this, study 2

thus complements study 1 by demonstrating that learnable display-generic scanning
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strategies actively aid search even before attentional selection takes place. This
happens by learning a procedural strategy that brings locations with a higher task
relevance into view earlier, as well as by minimizing costs associated with the
encoding and recall of (a large number of) display-specific contextual memories:
Faithfully encoding entire display configurations would not only go along with higher
costs, but also increase interference between display arrangements. Thus, a
procedural strategy is not only cost efficient but is also minimizing potential
interference at the same time.

Our findings suggest that procedural learning might play a significant role in various
forms of visual statistical learning, such as probability cueing. Here, learning an
optimal scanning strategy might lead to findings similar to those of top-down

attentional guidance and hence, further research is needed.

Study 3 aimed at implementing a connectionist model of contextual cueing. Using a
computational model allowed full control in terms of what kind of learning is enabled
or disabled. The current model merely learns to associate fixatated regions of
previosly executed saccades as it searches through the displays of a contextual
cueing experiment.

Hence, the model can only learn a simplistic procedure and never learns to
associate a specific context to a specific target location. In fact, the model is never
informed about having found the target at a specific location, and moreover,
configurational learning of display-target associations is disabled. Instead, search is
terminated upon finding the target and search begins anew with a new display.
Nevertheless, the model not only shows a contextual cueing effect in terms of the

number of simulated fixations, it also replicates the findings of a higher scanpath
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similarity for repeated displays versus non-repeated displays within 'participants' of
Study 1.

Furthermore, the model can quantitatively predict findings from other studies, such
as a biologically plausible number of fixations (e.g., Peterson & Kramer, 2001) and
its performance beats the current benchmark models by a large margin. Also, as a
consequence of learning, the model develops a central bias as an emergent
phenomenon.

These findings illustrate that learning a simplictic oculomotor procedure on self-
reinforcing previous oculomotor behavior is sufficient to elicit a contextual cueing
effect. Moreover, the learning of such a procedure might give rise to generally
observed effects, such as the central bias. Additionally, the findings suggest that
enabling a model to leverage task structure might be beneficial not only for visual-
search models, but also for the field of machine learning and artificial intelligence by

exploring new perspectives on learning and lower demands on labeling.

94



Hippocampal involvement

Studies 1-3 show that contextual cueing is caused less by display-specific memories
but rather by procedural learning. Instead, display-generic oculomotor scanning
procedures are optimized with respect to the entire set of displays in which the
influence of repeated displays weighs in more strongly.

Searching T/L letter arrays repeatedly aid the visual system in developing new
capabilities and learning more effective scanning strategies. This also means that
eye movements are not just the consequence of a focused shifting of attention, but
that they proactively support the orienting of attention toward objects that will most
likely contain relevant information for further processing — before the actual
attentional selection takes place. Somewhat at odds with these findings are studies
that link the hippocampus - a locus associated with explicit memories to contextual
cueing, and hippocampal lesions to an impairment in eliciting the contextual cueing
effect (Chun & Phelps, 1999). However, hippocampal activity is not only indicative of
explicit, but also implicit motor-sequence learning (e.g., in finger-tapping tasks,
Albouy et a., 2013, as well as other, statistical-learning paradigms, such as serial
reaction-time task; e.g., Hazeltine, Grafton & Ivry, 1997; Muller et al., 2002),
particularly in the initial stages, with a subsequent decrease in activity later on
(Albouy et al., 2008). This is consistent with a critical (but over the course of practice
diminishing) role of the hippocampus in procedural motor learning (Albouy et al.,
2013). Moreover, hippocampal invovement does not necessarily imply the presence
of explicit learning and it is possible that the hippocampus supports implicit forms of

learning in CC (Chun, 2000).
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In fact, there is direct evidence from a contextual cueing study using fMRI by Manelis
and Reder (2012), consistent with a procedural-learning account of contextual
cueing: With progression of the task, Manelis and Reder (2012) found a significant
decrease in functional connectivity between hippocampus and the particular the left
superior parietal lobule. One possible interpretation is that encoding the spatial
context of a target is a necessary step in forming context-target associations
(Manelis & Reder, 2012); however, another possibility is that in the initial blocks,
display-generic (i.e. “domain general relational”; see Davici, 2006) information is

learned.
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Explicit vs. implicit learning

Following a similar argumentation, several studies argue for a unitary memory
system in contextual cueing, suggesting that contextual cueing is possibly driven by
explicit memories that are below the threshold of awareness (e.g. see Vadillo et al.,
2016; Kroell et al., 2019; Meyen et al., 2023). Although these studies do not provide
evidence for the absence of other memory systems involved (Meyen et al., 2023),
they do not strictly rule out the involvement of other memory systems either. In fact,
an analysis of a very large sample size implies that it it unlikely that explicit
recognition of distractor-target associations is the motor behind contextual facilitation
of search, as even sensitive measures of awareness for display repetition are
uncorrelated with a benefit in reaction times for those displays, while the large
sample size of about 700 participants makes power issues unlikely (Colagiuri &
Livesey, 2016).

One possible reason why procedural learning may not have been considered as a
driving force behind the contextual cueing effect in these studies is the fact that it is
present in virtually all studies (Jiang & Chun, 2003), and has not been overlooked,
but not assumed to contribute to the effect, i.e. the context-dependent difference
itself, instead of merely the general decrease in reaction time. Therefore, strong
claims about the memory system underlying the CC effect require more evidence
than what is currently presented using, e.g., Yes/No recognition tasks that query
display-specific knowledge. Based on the results of studies 1-3 presented, one can
make the argument that more fine-grained memory tests for contextual cueing
should also consider participants’ procedures for solving the search task in

particular.
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In favor of an implicit learning account of CC, initial studies of attributed the effect to
implicit learning (Chun & Jiang, 1998; Chun, 2000; Jiang & Chun, 2003), driven by
the observation that learning seemed incidental, with anecdotal reports of difficulties
in memorizing displays while performing visual search even when attempting so and
no above-chance recognition in a forced-choice test (Chun & Jiang, 1998). Further
evidence comes from studies in which, after a learning period of multiple blocks, the
target of repeated displays is relocated to a different position, showing poor
adaptation to the new target location (Manginelli & Pollmann, 2009), which is
consistent with strong retroactive interference typically observed in implicit learning
tasks (see Goujon et al., 2015). Beyond these observations, CC conforms to a
multitude of implicit learning principles (for a review, see Goujon et al., 2015), such
as strong resistance to extinction (Jiang et al., 2005, Zellin et al., 2014) and e.g. an
independence of 1Q (Merill et al., 2014). Also, CC does not seem to rely on a fully
matured hippocampus, suggesting that explicit learning may not be necessary to
elicit CC (Jiang et al., 2019).

Here, a procedural learning account may reconcile the debate about the memory
systems involved in the effect. While explicit, i.e. display-specific learning of context-
target associations may occur in CC, it is conceivable that there is a scanning
strategy that is procedural and display-independent. Under this assumption,
procedural scanning strategies and display-specific learning would be attributable to

two different systems complementing each other.
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Relation to scene-based contextual cueing and explicit learning

Interrelated to the question of the memory system/s involved in CC is the choice of
stimuli employed. In contrast to the controversial L-vs.-T stimuli, there is wide
consensus that CC paradigms employing naturalistic stimuli lead to explicit
recognition (Brockmole & Henderson, 2006a, Brockmole & Henderson, 2006b).
Evidence using eye-tracking in a visual search task using repeating naturalistic
contexts further supports this notion by showing that oculomotor scanpaths almost
directly approach the target after some repetitions (Summerfield et al., 2011). In
contrast, in conventional (L vs. T) array-based studies, the number of fixations
necessary to reach the target remains above 4, even after being exposed to a
repeated context 12-16 times (see, e.g., Peterson & Kramer, 2001; Tseng & Li,
2004; study 3 of this thesis).

One possible mediating factor could be something described as "meaningfulness":
Scenes can be argued to convey more meaningful to observers than letters. In fact,
chess experts have a profoundly higher CC effect scores compared to novices, when
chess configurations - which are more meaningful for chess experts than novices -
are used as stimuli. Importantly, this effect is stronger for plausible over implausible
configurations of chess pieces in experts (Brockmole et al., 2008). Further, the
“overshadowing account” provided by Rosenbaum and Jiang (2013) suggests that
scene-based information with rather explicit cueing characteristics dominates
contextual cueing even when combined with array-based stimuli as well. This finding
could be interpreted as evidence for the existence of (at least) two dissociable
cognitive systems that contribute to CC. The notion that in less meaningful, array-

based scenes, participants predominantly use a procedural “one for all” search
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strategy, whereas in meaningful scenes explicit recognition is possible, provides a
novel and testable account that could resolve the differential findings for varying

stimuli.
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Summary and outlook

The present studies have shown that procedural learning plays an important role in
visual search with L- and T-letter stimuli under invariant spatial contexts. While there
is some evidence from empirical and theoretical studies that procedural learning may
play a rather central role, particularly when rather "meaningless”, L-vs.-T letter arrays
are used as stimuli, beyond that, there are evolutionary arguments in favor of
optimizing a search procedure rather than forming explicit (albeit maybe weak and
"subthreshold") memories about previously encountered displays: A procedural
strategy may incur smaller costs in encoding memories, while at the same time avoid
interference from multiple, similar memories.

Investigating procedural scanning strategies by means of fixational eye movements
may therefore yield new insights into visual search, as they are currently not part of
the major theoretical frameworks (such as Guided Search; Wolfe, 2021). This is of
particular interest, as procedures may extend beyond eye-movements, i.e. (oculo-
)motor behavior in general: In visual search with and without eye-movements, almost
identical activations are found in fMRI (De Haan, 2008).

Further, eye tracking may offer specific insights into the process of procedural
learning. For instance, eye-movements to different locations may be associated with
incurrding different costs (Araujo, 2001) which may play a crucial role in shaping
procedural scanning strategies that are display-generic and therefore "agnostic" to
the specific yet to be explored content of a display.

Finally, exploring procedural scanning strategies may offer a new way to understand
attention: Because simplistic and in mathematical terms precisely definable
procedures can mimic the effects of a rather elusive term of attention, they might be

one of “the many systems that implement” a “behaviorally relevant selection process”
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that could replace or at least clarify the currently inconsistent and not too well-

defined concepts of (visual) attention (see Hommel et al., 2019).

As a consequence, these findings might pave the way for more comprehensive
neuroimaging studies, shedding light on procedural learning and how it integrates
with other types of learning, such as explicit learning. Studies such as these will be
of particular importance of lifting psychological research away from an artificial notion
of a “cognitive” agent evaluating and appraising sensory inputs and then
subsequently acting on those, towards understanding cognition and behavior as
tightly coupled, interdependent processes, such that behavior itself can be

considered e.g. ‘'smart’ and not the appraisal of a behavior (see Ryle, 1945).
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