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Zusammenfassung (Summary in German)

Bei stark korrelierten Materialien bricht das Einteilchen-Bild für Elektronen zusammen und
faszinierende emergente Phänomene treten zutage. Diese Effekte können durch Korrelati-
onsfunktionen erfasst werden. Für Systeme im thermischen Gleichgewicht gibt es zwei gut
etablierte Formalismen. Der Matsubara-Formalismus (MF) baut die Gleichgewichtsbedingung
durch eine Wick-Rotation in Korrelatoren ein. Diese verwandelt sie in Funktionen imaginärer
Zeiten oder Frequenzen. Während MF-Korrelatoren direkten Zugang zu statischen Größen
bieten, erfordern dynamische Observablen eine analytische Fortsetzung auf die reelle Achse,
um sie mit experimentellen Ergebnissen vergleichen zu können. Leider ist die analytische
Fortsetzung numerischer Daten ein äußerst schlecht konditioniertes Problem. Im Keldysh-
Formalismus (KF) sind Korrelatoren Funktionen von reellen Zeiten und Frequenzen, was
einen direkten Vergleich mit experimentellen Daten ermöglicht. Dieser Vorteil geht jedoch auf
Kosten einer zusätzlichen Indexstruktur und kontinuierlicher Frequenzargumente. Das Haupt-
ziel dieser Arbeit ist, eine Reihe von vielversprechenden Methoden der Quantenfeldtheorie
(QFT) voranzutreiben, die im KF mit reellen Frequenzen formuliert sind.

Im ersten Teil stellen wir eine Real- und Imaginärfrequenz-Studie mit zwei verwandten
QFT-Methoden vor: die Parquet-Gleichungen und die funktionale Renormierungsgruppe
(fRG). Die Vorhersagekraft dieser beiden diagrammatischen Methoden wird typischerweise
durch die verwendeten diagrammatischen Trunkierungen beeinträchtigt. In Kombination mit
anderen Methoden sind sie jedoch vielversprechende Kandidaten für die Untersuchung von
stark korrelierten Systemen. Hier liegt unser Schwerpunkt auf algorithmischen Entwicklungen,
für die wir das Anderson-Störstellenmodell als Benchmark-System untersuchen. Die Arbeit im
KF (anstelle des MF) führt zu einer Reihe von numerischen Herausforderungen. Daher wurden
in früheren Arbeiten typischerweise weitere Approximationen für den Vierpunkt-Vertex oder
für die Gleichungen verwendet. Um den Weg für weitere Entwicklungen zu ebnen, zeigen
wir hier, dass es in der Tat möglich ist, auf weitere (als die in den Methoden inhärenten)
Approximationen zu verzichten. In dem Bereich in welchem konvergierte Parquet-Ergebnisse
vorliegen, finden wir eine gute Übereinstimmung mit Referenzdaten aus der numerischen
Renormierungsgruppe. Die 1-Loop-Flussgleichungen der fRG liefern zwar Ergebnisse für
einen größeren Parameterbereich, aber die Abweichungen sind dafür in der Regel größer als
bei den Parquet-Ergebnissen.

Im zweiten Teil gehen wir der Frage nach, wie Matsubara-Korrelatoren analytisch zum
KF fortgesetzt werden können. Unsere Arbeit baut auf der Spektraldarstellung auf, die von
Kugler, Lee und von Delft hergeleitet wurde. Sie fanden heraus, dass Korrelatoren mit forma-
lismusunabhängigen, systemabhängigen partiellen Spektralfunktionen (PSF) und formalismus-
abhängigen Kernen aufgebaut werden können. Unter Verwendung ihrer Ergebnisse entwickeln
wir eine allgemeine Strategie für die analytische Fortsetzung von Mehrpunkt-Korrelatoren.
Wir gewinnen zunächst alle PSFen aus analytischen Fortsetzungen des Matsubara-Korrelators.
Wenn wir diese in die spektrale Darstellung von Keldysh-Korrelatoren einsetzen, erhalten
wir MF-zu-KF-Fortsetzungsformeln. Ähnlich wie bei den bekannten Zweipunkt-Korrelatoren
lassen sich alle Keldysh-Komponenten durch eine Linearkombination analytisch fortgesetzter
MF-Korrelatoren mit statistischen Faktoren ausdrücken. Explizite Formeln werden für die
wichtigsten Fälle vorgestellt, insbesondere allgemeine Dreipunkt-Korrelatoren und fermioni-
sche Vierpunkt-Korrelatoren.
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Summary (Summary in English)

For strongly correlated materials the single-particle picture breaks down for electrons, giving
rise to fascinating emergent phenomena. These effects can be captured using correlation
functions. For systems in thermal equilibrium, two well-established formalisms are available.
The Matsubara formalism (MF) encodes the equilibrium condition into correlators via a
Wick rotation, transforming them into functions of imaginary time or frequency. While MF
correlators provide direct access to static quantities, dynamic observables require analytic
continuation to the real axis to be comparable to experimental results. Unfortunately, despite
recent advances, the analytic continuation of numerical data remains a highly ill-conditioned
problem. In the Keldysh formalism (KF) correlators are expressed in real time or frequency,
allowing direct comparison to experimental data. However, this advantage comes at the cost
of an additional index structure and continuous frequency arguments. The main goal of
this thesis is to advance a set of promising quantum field theory (QFT) methods which are
formulated in the real-frequency KF.

In the first part we present a real- and imaginary-frequency study with two related
QFT methods: the parquet equations and the functional renormalization group (fRG). The
predictive power of these two methods is typically impaired by the employed diagrammatic
truncations. But in combination with other techniques, they hold promise for the study
of strongly correlated systems. Here, our focus is on algorithmic developments, using the
Anderson impurity model as a benchmark. Working in the KF instead of the MF introduces
significant numerical challenges. Hence, previous studies have typically relied on additional
approximations to the four-point vertex or to the underlying equations. To pave the way for
further extensions, we here show that it is indeed possible to avoid approximations beyond
those that are inherent to the methods. In the regime in which converged parquet results are
available we find good agreement with reference data from the numerical renormalization
group. While the 1-loop flow equations of fRG cover a broader range of parameters, the
results generally exhibit larger deviations compared to the parquet method.

In the second part of this thesis we address the problem of analytically continuing
Matsubara correlators to the Keldysh formalism. Our approach builds on the spectral
representation derived by Kugler, Lee, and von Delft, which expresses correlators in terms of
formalism-independent but system-dependent partial spectral functions (PSFs) and formalism-
dependent kernels. Using this foundation, we propose a general strategy for the analytic
continuation of multi-point correlators. We first extract all PSFs via analytic continuation
of the Matsubara correlators. Inserting these into the spectral representation of Keldysh
correlators yields explicit MF-to-KF continuation formulas. As with two-point correlators,
all Keldysh components can be expressed in terms of linear combinations of analytically
continued MF correlators with statistical factors. We provide explicit formulas for the most
relevant cases, including general three-point correlators and fermionic four-point correlators.
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1 Introduction

1.1 Motivation
Strongly correlated materials present both opportunities and challenges for the scientific
community. On one hand, they exhibit remarkable physical phenomena some of which hold
significant technological potential [Ang08]. On the other hand, their theoretical description
is notoriously difficult since strong electron correlations render single-particle approximations
ineffective. In these materials, the interaction and kinetic energy are comparable, such that
electrons are neither fully localized nor fully itinerant. The most prominent discovery on
this field is the phenomenon of high-temperature superconductivity which was found for the
first time in a class of ceramic materials (cuprates) by Bednorz and Müller 1986 [BM86].
Despite all experimental and theoretical efforts the microscopic mechanisms responsible for
the emergence of high-temperature superconductivity are still not fully understood.

The two-dimensional one-band Hubbard model is deemed the ‘minimal’ model for cuprates
and has received much attention in the past decades. It is a tight-binding model with a
single orbital per lattice site. Electrons can hop between sites and experience Coulomb
repulsion only when they occupy the same site. Despite its apparent simplicity, a complete
and quantitatively accurate prediction of the physical regimes and observables remains an
open challenge.

In the presence of strong correlations exact solutions only exist in certain limits. For
example, the Bethe ansatz works for one-dimensional systems [EFG+05] and dynamical mean-
field theory (DMFT) is exact in the limit of infinite dimensions [GKKR96]. However, many
systems of interest are two- or three-dimensional. Indeed, the majority of applicable methods
is of numerical nature, each coming with approximations and algorithmic constraints. A multi-
method study [SWicv+21] recently confirmed that all state-of-the-art methods are limited in
their applicability. For example, purely diagrammatic methods are impaired by diagrammatic
truncations. And while the DMFT is a powerful method to predict local correlations, spatial
fluctuations are beyond reach due to the inherent approximations. However, these limitations
may be overcome by combining multiple methods. A promising class of approaches are
diagrammatic extensions of DMFT [RHT+18] which use input from DMFT and include
non-local correlations with diagrammatic techniques.

The common theme of many numerical methods is their focus on correlation functions.
These encode interesting, experimentally observable quantities such as the single-particle
spectrum, the susceptibility to external perturbations and transport coefficients. Two well-
established frameworks are available for studying systems in thermal equilibrium: the
Matsubara formalism (MF) [Mat55, Abr65] and the Keldysh formalism (KF) [Sch61, Kel,
Kam11]. The MF directly incorporates the equilibrium condition by a Wick rotation t→ −iτ ,
such that correlators are functions of imaginary times or frequencies. The KF is more general
and also works for systems out of equilibrium. KF correlators are functions of real times
and frequencies but have an additional index structure with 2` Keldysh components for
`-point functions. Since the choice of methods is typically guided by the finite amount
of numerical resources, correlators are commonly computed in the MF. Using the formal
equivalence of MF and KF two-point correlators, dynamic observables are then obtained
via analytic continuation to real times or frequencies. However, the analytic continuation of
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numerical data is a difficult problem due to the highly ill-conditioned Matsubara kernel, see
e.g. Ref. [SOOY17]. To circumvent this issue, our strategy focuses on the development of
methods which directly work within the KF.

In fact, real-frequency observables can already be computed for quantum impurity models
for which the numerical renormalization group (NRG) [BCP08] is a well-established method.
Since impurity solvers play a central role in the DMFT scheme, DMFT can also be implemented
in real frequencies. An important recent development was the extension of NRG to the
computation of multipoint vertex functions [KLvD21, LKvD21, LHS+24] which are needed
as input into DMFT extension schemes for including non-local correlations [RVT12].

Building on these advancements, this thesis focuses on the development of quantum
field-theoretic (QFT) methods in both real and imaginary frequencies. Specifically, we cover
the parquet equations and the functional renormalization group (fRG), which both are
promising candidates for diagrammatic extensions of DMFT. While they provide a formally
exact framework, approximations are inevitable and require a ‘reasonably’ chosen external
input. The viability and consequences of various approximations are still subject of current
research. Nevertheless, it is known that these methods can guarantee the fulfillment of
the Pauli principle and an unbiased treatment of all interaction channels by construction
[Bic04]. For a reliable prediction of the physical regimes in the presence of competing ordering
instabilities such properties are highly desirable. However, these approximations may lead
to violations of conservation laws (such as charge conservation) which would undermine the
quantitative reliability of transport calculations. The degree to which conservation laws are
fulfilled gives information on the quality of the obtained results [CGKH+22, P6]. Ensuring
their fulfillment is, however, not our focus.

1.2 Outline and scope
Below we present the specific problems that are addressed in this thesis; detailed introductions
and motivations will be given at the beginning of each section. The remainder of this thesis
is structured as follows:

• In Chapter 2, we first give a general introduction to `-point correlators in the MF and
KF. We give further details in the chapters in which they are needed. As a specific type
of correlator we then introduce Green’s functions and discuss how they encode one- and
two-particle quantities. They can be represented in terms of the self-energy and the
vertex, which are central objects in the QFT methods which we review thereafter: the
parquet equations and the functional renormalization group (fRG). Since the vertex is
a four-point function, an efficient parametrization is required to make it numerically
tractable. Thus, concrete parametrizations of diagrammatic objects and equations are
discussed in a section on the Anderson model.

• The single-boson exchange (SBE) decomposition offers a numerically appealing parame-
trization for the vertex and defines a promising approximation [HLK21]. While parquet-
like equations for SBE components have already been derived [KV19], we complement
them in Chapter 3 with a derivation of the fRG flow equations including the multiloop
extension in different approximations. These have been published in [P1] where we also
review previous results and relate the SBE to other decompositions.

• In Chapter 4, we solve both the one-loop fRG equations and the parquet approximation
for the single-impurity Anderson model and compare their results to those obtained
using the numerical renormalization group (NRG). First we present real-frequency
results from computations in the Keldysh formalism in Ref. [P3]. The implementation
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details are explained in the code publication [P5]. While the Keldysh results have
the advantage that the obtained dynamical observables can be directly compared to
experiment, calculations are more demanding than in the MF. In our real-frequency
study we used Matsubara results to verify the results at zero frequency. For calculations
in the MF Ref. [P2] introduces a Julia library which offers flexible data containers and
standard routines for diagrammatic calculations.

• For real-frequency methods all equations need to be formulated in the KF. However,
also in formal derivations the MF is often more convenient. Unfortunately, for many
years the exact correspondence between multipoint functions in the MF and the KF
was not known (even though partial solutions did exist). In Chapter 5 we therefore
present a general strategy for the analytic continuation of MF `-point correlators to the
KF. While this formal development does not solve the problem of analytic continuation
of numerical Matsubara data, it helps deepen our understanding of correlators in both
formalisms.

• The Hubbard atom is a popular benchmark model, as it can be solved exactly and
has a non-trivial self-energy and vertex. Their MF formulas are therefore presented in
App. A in the asymptotic and single-boson exchange decomposition.

• Lastly, in App. B we investigate the convergence of the multiloop fRG scheme in
the number of loops and self-energy iterations in the MF and KF. We further show
exemplary plots of the multiloop contributions in the KF and discuss the numerical
implications of the study.
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2 Methodological background

In this chapter, we will review some basic concepts in quantum many-body physics which are
relevant for the description of solid state systems and their observables. While these are also
summarized in the publications [P1]-[P5], we find it beneficial to present a general overview
in a streamlined notation for both formalisms.

First, we present the definition and general properties of correlators in the Matsubara
and Keldysh formalisms in Sec. 2.1. This sets the stage for Ref. [P4] where we study how
Matsubara and Keldysh multipoint correlators are related by analytic continuation. For our
diagrammatic studies, we then focus on Green’s functions, which are correlators of creation
and annihilation operators. Their diagrammatic representation is discussed in Sec. 2.2. There,
we also summarize the quantum field theoretic methods for their computation which are
subject of the remaining publications [P1, P2, P3, P5].

2.1 Correlators – definition and basic properties
We are primarily interested in measurable quantities which can be expressed as time-ordered
correlation functions or correlators for short. These objects encode expectation values and
the (auto)correlation of quantum mechanical operators which represent, e.g., the creation
and annihilation of fermionic or bosonic particles, their density or magnetization. In the
following section we define correlators in the Matsubara and Keldysh formalisms. Most of the
following material is well-known in the literature. The purpose of this section is to introduce
the most relevant properties of correlators and to establish notational conventions, mostly
following Ref. [KLvD21] for general correlators and Refs. [JS10, Wal21] for fermionic Green’s
functions and related diagrammatic methods.

In this thesis we consider solid state systems in thermal equilibrium which can be described
by a time-independent Hamiltonian Ĥ. Thus, time-translational invariance and frequency
conservation are fulfilled. The microscopic time evolution of a general quantum state |ψ〉 is
governed by the Schrödinger equation, i.e., given a state at initial time t0 we obtain one at
any time t by

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 , (2.1)

with the unitary time evolution

Û(t, t0) = exp
{
− i
ˆ t

t0

dt̃ Ĥ
}

= exp{−iĤ(t− t0)}. (2.2)

Depending on t0 ≷ t, the evolution is forward or backward in time and consecutive time
evolutions can be combined, e.g., giving Û(t, t1)Û(t1, t0) = Û(t, t0). For the most part,
however, we focus on operators and work in the Heisenberg picture where the states are static
and operators Ô are evolved by

Ô(t) = eiĤtÔe−iĤt. (2.3)
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To keep the discussion general, we do not specify the operators Ô here. In this section we
present a general formulation for correlators. Only later, in Sec. 2.2.3, we specialize in Green’s
functions, which are correlators of creation and annihilation operators and can be expressed
in the functional integral formulation.

2.1.1 Thermal expectation values

For a comprehensive presentation of correlators in the subsequent sections we now introduce
thermal expectation values, which are encoded in so-called partial spectral functions (PSF),
and study their properties. PSFs fully encode the system-specific information and are
formalism-independent. These are then combined with formalism-specific kernels to obtain
Matsubara or Keldysh correlators [KLvD21].

Thermal expectation values 〈. . .〉 are weighted ensemble averages. Explicitly, for a
canonical ensemble with inverse temperature β = 1/T , we have

〈Ô(t)〉 = Tr
[
Ô(t)ρ̂

]
=
∑

1
〈1|Ô(t)ρ̂|1〉 , (2.4)

where the density matrix is defined as ρ̂ = e−βĤ/Z with partition function Z = Tr [e−βĤ ].1
In the last expression the trace is expressed as a sum over a complete set of orthonormal
states |1〉.

We encode thermal expectation values for the product of ` operators Ô = (Ô1, . . . , Ô`) at
times t = (t1, . . . , t`) in the so-called `-point partial spectral functions (PSF)

S[Ô](t) = 〈Ô1(t1) · · · Ô`(t`)〉 , (2.5a)

which in the frequency domain read

S[Ô](ε) = 1
(2πi)`

[ ∏̀
i=1

ˆ
R

dti
]
eiε·tS[Ô](t). (2.5b)

Using the energy eigenbasis, we can provide an explicit formula for the PSFs. We denote
energy eigenstates by |i〉 with corresponding eigenenergies Ei, i.e., Ĥ |i〉 = Ei |i〉 and

∑
i is a

sum over the complete set of orthonormal energy eigenstates. Integers i = 1, . . . , ` are used
to distinguish different sets. By repeated insertion of the identity 1 = ∑

i |i〉 〈i| into Eq. (2.4)
we obtain the Lehmann representation

S[Ô](t) = 1
Z

∑
1,...,`

e−βE1
∏̀
i=1

[
Oiii+1e

iti(Ei−Ei+1)
]
, (2.6a)

S[Ô](ε) = 1
Z

∑
1,...,`

e−βE1
∏̀
i=1

[Oiii+1δ(εi + Ei − Ei+1)], (2.6b)

where we abbreviated the matrix elements Oii+1 = 〈i| Ô |i+ 1〉 and identified `+ 1 with 1.
Now, we are in the position to deduce properties of PSFs which derive from the particular

form of the equilibrium density matrix. Firstly, following Ref. [BM61], we briefly summarize
the analytic properties of the PSF. For this purpose we consider complex-valued times t ∈ C.

1 For a grand-canonical ensemble the density-matrix yields ρ̂ = e−β(Ĥ−µN̂)/Z, Z = Tr [e−β(Ĥ−µN̂)]. The
additional term, −µN̂ , is typically absorbed in the Hamiltonian. In this thesis we will not explicitly consider
it. The necessary modifications for a grand-canonical ensemble can be found in Ref. [JPS10], for instance.
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Focusing on the imaginary parts, t→ −iτ with τ ∈ R, Eq. (2.6a) gives

S[Ô](−iτ ) = 1
Z

∑
1,...,`

O1
12e

(τ1−β−τ`)E1
∏̀
i=2

[
Oiii+1e

(τi−τi−1)Ei
]
. (2.7)

Provided that the ensemble average in Eq. (2.6a) converges absolutely, we can conclude that
the PSF is well-defined and analytic for complex times (see, e.g., [FB06, BM61]) on a region
of C where the imaginary parts, τ = −Im (t), fulfill

τ` + β ≥ τ1 ≥ τ2 ≥ . . . ≥ τ`. (2.8)

Furthermore, by cyclicity of the trace, Tr [ÂB̂Ĉ] = Tr [B̂ĈÂ], and using the formulas in
Eqs. (2.6a) and (2.6b) we find the Kubo–Martin–Schwinger (KMS) relations [Kub57, MS59]
for complex times t or real frequencies ε:

S[Ô1, . . . , Ô`](t1, . . . , t`) = S[Ô2, . . . , Ô`, Ô1](t2, . . . , t`, t1 + iβ)
= S[Ô`, Ô1, . . . , Ô`−1](t` − iβ, t1, . . . , t`−1), (2.9a)

S[Ô1, Ô2, . . . , Ô`](ε1, ε2, . . . , ε`) = eβε1S[Ô2, . . . , Ô`, Ô1](ε2, . . . , ε`, ε1)
= e−βε`S[Ô`, Ô1, . . . , Ô`−1](ε`, ε1, . . . , ε`−1). (2.9b)

These relations imply that PSFs of cyclically permuted operators are not independent. They
are either related by shifts along the imaginary time axis [cf. Eq. (2.9a)] or by an exponential
factor [cf. Eq. (2.9b)].

Having defined PSFs and studied their basic properties we are now ready to combine
them into Matsubara and Keldysh correlators in the following sections.

2.1.2 Matsubara formalism

The Matsubara formalism treats thermal correlation functions and has become widely popular
both in analytical and in numerical works. It relies on the fact that the density matrix
amounts to a time evolution along imaginary times by the inverse temperature β. The special
properties of equilibrium PSFs, Eq. (2.8) and (2.9), are directly incorporated via a Wick
rotation t→ −iτ such that `-point Matsubara correlators are defined as

G[Ô](τ ) = (−1)`−1 〈T [Ô1(−iτ1) · · · Ô`(−iτ`)]〉 . (2.10)

The conventional sign factor (−1)`−1 is introduced for consistency with later sections and
the imaginary-time ordering, T , rearranges the operators Ôi by their time arguments τi.
Explicitly writing out the time ordering, we obtain

G[Ô](τ ) =
∑
p

ζpK(τ p)S[Ôp](−iτ p), (2.11a)

with the Matsubara kernel

K(τ p) =
`−1∏
i=1

[−θ(τi − τi+1)]. (2.11b)

Here, the sum ∑
p runs over all permutations of the indices (1, . . . , `) p7→ (1, . . . , `) where we

abbreviate ī = p(i). Correspondingly, the tuples Ôp = (Ô1, . . . , Ô`) and τ p = (τ1, . . . , τ`)
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contain the permuted operators and times. The sign factor ζp encodes the crossing symmetry:
For an even or odd number of exchanges of fermionic operators it gives ζp = +1 or ζp = −1,
respectively. Using the step function

θ(τ) =
{

1 for τ ≥ 0,
0 else,

(2.12)

the Matsubara kernel K encodes the time ordering, i.e., it ensures that the non-vanishing
permutations p fulfill

τ1̄ ≥ . . . ≥ τ¯̀ . (2.13)

Further, from the KMS condition (2.9a) we conclude that the Matsubara correlator is periodic
(anti-periodic) in its imaginary time argument τi if the corresponding operator Ôi is bosonic
(fermionic). Thus, Matsubara correlators G can be represented by a Fourier series. Note that,
due to Eq. (2.8), MF correlators are only guaranteed to be well-defined for time arguments τi
within an interval of length β. However, we may (anti-)periodically extend the domain with
the Fourier series representation.

The frequency representation of Matsubara correlators reads

G[Ô](iω) =
∏̀
i=1

[ ˆ β

0
dτi eiωi·τi

]
G[Ô](τ ). (2.14)

Due to the (anti-)periodicity in the times τj , the Matsubara frequencies iωj are given by

iωj =
{

i2mjπT for bosonic Ôj ,
i(2mj + 1)πT for fermionic Ôj ,

mj ∈ N. (2.15)

A Lehmann representation for MF correlators on the frequency domain has been derived
in Refs. [KLvD21, HSS23]. The product structure in Eq. (2.11a) becomes a convolution in
the frequency representation,

G[Ô](iω) =
∑
p

ζp
[ ∏̀
i=1

ˆ
R

dεi
]
K(iωp, εp)S[Ôp](εp), (2.16)

where S[Ôp](εp) is the real-frequency PSF (2.5b). More explicit formulas for the MF kernel
will be provided later in Sec. 5 and the particularly relevant case of two-point correlators will
be discussed in Sec. 2.1.5.

2.1.3 Keldysh formalism

The Keldysh formalism is a versatile quantum field-theoretic framework that can treat systems
both in and out of equilibrium. Unlike the MF, it works directly with real times or frequencies,
which comes at the cost of a doubled time contour. While the doubled time contour only
fully unfolds its potential in the path integral formulation (see Sec. 2.2.2), we here illustrate
its origin. Let us revisit the expectation value of operator Ô(t) at time t:

〈Ô(t)〉 = Tr [U(t0, t)ÔU(t, t0)ρ0] = Tr [U(t0,∞)U(∞, t)ÔU(t, t0)ρ0], (2.17)

which can be interpreted as follows (reading from right to left): An initial state, ρ0, is prepared
at initial time t0, evolved forward to time t where the measurement of Ô is done, and then
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Ô1 Ô2

Ô3 Ô4

t1 t2 t3 t4time

c = −

c = +
+∞ −∞

Figure 2.1 Illustration of contour ordering in the KF: Operators are time-ordered T on the forward
branch (c = −) and anti-time-ordered T on the backward branch (c = +). The arrow on the
Keldysh contour indicates the order of operators from right to left. For the above times, t1, . . . , t4, the
contour-ordered expression in Eq. (2.18) reads ζÔ2(t+2 )Ô1(t+1 )Ô3(t−3 )Ô4(t−4 ) where ζ is −1 if fermionic
operators have been exchanged an odd number of times and ζ = +1 otherwise.

is evolved backward to t0. The initial time t0 is typically set to the infinite past, t0 = −∞.
For the last equality we inserted 1 = U(t,∞)U(∞, t). Both forward and backward contour
thus span the entire real axis. Unlike the Matsubara formalism, the Keldysh formalism does
not (directly) employ that the density matrix ρ corresponds to the time evolution by the
imaginary time iβ. Rather, it remains in the real-time representation and has to account for
both forward and backward time evolution by defining a contour ordering: Operators are
ordered along the time contour as indicated in Fig. 2.1. The contour argument tc consists
of time t and contour index c which labels the two time evolution branches, c = − for the
forward and c = + for the backward branch. For the example in Fig. 2.1, we obtain

Tc[Ô1(t+1 )Ô2(t+2 )Ô3(t−3 )Ô4(t−4 )] = T [Ô1(t+1 )Ô2(t+2 )]T [Ô3(t−3 )Ô4(t−4 )]
= ζÔ2(t+2 )Ô1(t+1 )Ô3(t−3 )Ô4(t−4 ), (2.18)

i.e., contour ordering moves operators with contour indices c = + to the left and c = − to
the right. The time ordering T and anti-time ordering operator T then sort the operators by
their time arguments in decreasing and increasing order, respectively. The sign ζ accounts
for the exchanges of fermionic operators, ζ = +1 for an even and ζ = −1 for an odd number
of exchanges.

Thus, the `-point Keldysh correlator is defined in the time domain as

Gc[Ô](t) = (−i)`−1 〈Tc[Ô1(tc11 ) . . . Ôn(tc`` )]〉 , (2.19a)

and in the frequency domain as

Gc[Ô](ω) =
[ ∏̀
i=1

ˆ
R

dti
]
eiω·tGc[Ô](t). (2.19b)

Compared to the MF, every KF correlator obtains an additional contour index structure
with 2` components. There is a slight redundancy due to causality. This can be most easily
seen after a Keldysh rotation. The transformation from contour indices c = −,+ to Keldysh
indices k = 1, 2 is defined by the Keldysh rotation matrix Dk,c = (−c)k/

√
2, giving

Gk[Ô] =
∑
c

n∏
i=1

DkiciGc[Ô]. (2.20)

In the Keldysh basis we can convince ourselves that the G1...1 component vanishes. For fixed
time arguments we can focus on the operator Ô(tc) whose time argument t is strictly larger
than the others’. In the example shown in Fig. 2.1 Ô1 carries the largest time argument
t1. By nature of the contour ordering both choices for the contour index c = ± give the
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same ordering. Keldysh rotation to the Keldysh index k = 1 subtracts these to give zero.
Therefore, the correlator G1...1 vanishes for almost all times t.2

On the frequency domain, the spectral representation of KF functions reads

Gk[Ô](ω) =
∑
p

ζp
[ ∏̀
i=1

ˆ
R

dεi
]
Kk(ωp, εp)S[Ôp](εp), (2.21a)

with Keldysh kernels

Kk(ωp, εp) =
∏̀
i=1

[ˆ
R

dti eiti(ωi−εi)
]
Kk(tp). (2.21b)

Note that the spectral representation of MF and KF correlators only differ by the kernel
[see Eq. (2.16)]. For explicit expressions for `-point kernels, we again refer to Sec. 5 or to
Refs. [KLvD21, HSS23]. The two-point correlators for both formalisms will be discussed in
Sec. 2.1.5.

2.1.4 Note on conventions

Due to the time-independent Hamiltonian, `-point correlators and PSFs are invariant under
time translation. This property implies that the Fourier transforms come with a frequency
conserving factor, ∑`

i=1 ωi = 0, if one keeps an explicit dependence on all ` arguments.
Alternatively, time-translational invariance is typically used to set the last time argument,
τ` = 0, to zero. The Fourier transform is then defined as a function of ` − 1 frequencies,
namely

S[Ô](ε1, . . . , ε`−1) = 1
(2π)`−1

[ `−1∏
i=1

ˆ
R

dtieiωiti
]
S[Ô1, . . . , Ôn](t1, . . . , t`−1, 0), (2.22a)

G[Ô](iω1, . . . , iω`−1) =
[ `−1∏
i=1

ˆ β

0
dτi eiωiτi

]
G[Ô1, . . . , Ôn](τ1, . . . , τ`−1, 0), (2.22b)

Gk[Ô](ω1, . . . , ω`−1) =
[ `−1∏
i=1

ˆ
R

dti eiωiti
]
Gk[Ô1, . . . , Ôn](t1, . . . , t`−1, 0). (2.22c)

Such a choice is useful for explicit parametrizations since an `-point function effectively
depends on ` − 1 times or frequencies. However, the introduced notational asymmetry
complicates many expressions. For the sake of compact formulas, it proves to be beneficial to
retain the dependence on all ` frequencies ω = (ω1, . . . , ω`).

To distinguish functions with explicit dependence on `−1 and ` frequencies, we use roman
(G) and calligraphic (G) symbols. Obviously, they contain the same information and are
related by

S[Ô](ε) = δ(ε1 + . . .+ ε`)S[Ô](ε1, . . . , ε`−1),
G[Ô](iω) = βδ0,ω1+...+ω`G[Ô](iω1, . . . , iω`−1),
Gk[Ô](ω) = 2πδ(ω1 + . . .+ ω`)Gk[Ô](ω1, . . . , ω`−1),

2 The exception for exactly equal time arguments is thoroughly analyzed in Refs. [Kam11, Klö19]. We can
mostly avoid this subtlety by considering non-vanishing (potentially infinitesimal) time shifts. Also, the
exceptions form a set with zero measure and thus have no influence on the correlator in the frequency
representation. A notable example where equal-time correlators are needed is the computation of the
Hartree value, which is discussed in App. E of Ref. [P3].
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where the Kronecker and Dirac delta on the right explicitly encode frequency conservation.
For calligraphic symbols frequency conservation is explicit whereas it is implicit for roman
symbols. The spectral representations can be equally written in terms of the roman symbols
(see Ref. [KLvD21])

G[Ô](iω1, . . . , iω`−1) =
∑
p

[ `−1∏
i=1

ˆ β

0
dεi
]
K(iω1, . . . , iω`−1, ε1̄, . . . , ε`−1)S[Ôp](ε1̄, . . . , ε`−1),

(2.23a)

Gk[Ô](ω1, . . . , ω`−1) =
∑
p

[ `−1∏
i=1

ˆ
R

dεi
]
Kk(ω1, . . . , ω`−1, ε1, . . . , ε`−1)S[Ôp](ε1, . . . , ε`−1),

(2.23b)

in which case one has to consistently use the roman symbols and the `-th frequency is defined
consistently with frequency conservation, i.e., ε` = −∑`−1

i=1 εi. Thereby one may, for example,
write S[Ô2, Ô1](−ε1) instead of S[Ô2, Ô1](ε2). In summary, the distinction between roman
and calligraphic symbols is usually not necessary, and they can be used interchangeably if
frequency conservation is given.

The notation with ` − 1 frequencies is very common for two-point correlators which
effectively depend on one frequency only. These correlators will be presented in the next
section.

2.1.5 Example: Two-point correlators

Two-point correlators, G[Ô1, Ô2], are of particular relevance in physics. They describe a
wide range of observables such as the spectrum of single-particle excitations, the linear
response to an external force or the fluctuation (auto-correlation) of local particle density or
magnetization. They have a rather clear structure and have been extensively studied in the
literature. While we postpone the discussion of physical observables to Sec. 2.2.1, we here
present the general structure of two-point correlators.

First, we present the spectral representation of two-point correlators in the MF and the
KF. We then show how these correlators are connected through analytic continuation and
the fluctuation-dissipation theorem (FDT). For notational convenience we drop the operators
in G[Ô1, Ô2] unless they are ambiguous.

2.1.5.1 Matsubara two-point correlators

For two-point functions the Matsubara kernel reads [KLvD21, HSS23]

K(iω1, iω2; ε1, ε2) = βδ0,ω1+ω2

[ 1
iω1 − ε1

− β

2 δ0,ω1δ0,ε1
]
, (2.24)

where δ0,ω1 only contributes if the Matsubara frequency ω1 vanishes. This is only possible
for bosonic Matsubara frequencies. The δ0,ε1 contribution is only present if the PSF has
finite weight at ε1 = 0, i.e., if the PSF has a Dirac-delta contribution at ε1 = 0. To separate
these contributions, we decompose the PSF into a regular S̃ and an anomalous Ŝ part,
S = S̃ + Ŝ. The anomalous contribution Ŝ(t1, t2) = C is constant in time, and in the
frequency representation it reads Ŝ(ε1, ε2) = Cδ(ε1)δ(ε2). On the other hand, the regular S̃
is free of such contributions. Note that the KMS condition (2.9a) sets the two anomalous
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PSFs to be equal, i.e.,

Ŝ[Ô1, Ô2](t1, t2) = C = Ŝ[Ô2, Ô1](t2, t1). (2.25)

Inserting the kernel (2.24) into the spectral representation (2.16), we obtain the well-known
result

G(iω1) = G̃(iω1) + Ĝ(iω1), (2.26a)

with the regular and anomalous contributions, G̃ and Ĝ, given, respectively, by

G̃(iω1) =
ˆ
R

dε1
Sstd(ε1)
iω1 − ε1

(2.26b)

Ĝ(iω1) = −βδ0,ω1C. (2.26c)

Above we identified the standard spectral function Sstd which is typically used for the spectral
representation of two-point functions [BM61, AS10]. In terms of PSFs it reads

Sstd[Ô1, Ô2](ε1) = S[Ô1, Ô2](ε1)− ζS[Ô2, Ô1](−ε1), . (2.26d)

While anomalous contributions Ĝ are neglected in many texts, Ref. [WFHT22] pointed out
that they encode correlations which persist to arbitrarily large times and, hence, lead to
long-term memory effects. Furthermore, under certain conditions, they indicate degeneracies
in the many-body energy spectrum. In Sec. 2.1.5.3 we show how anomalous contributions
are treated during analytic continuation to Keldysh correlators. While this has been known
for two-point functions, the fate of anomalous contributions during analytic continuation to
higher-point functions had not been fully clarified until recently [P4].

2.1.5.2 Keldysh two-point correlators

For the KF we choose the Keldysh basis in which the two-point correlator reads

Gk1k2 = Dk1c1Gc1c2(DT )c2k2 =
(
G11 G12

G21 G22

)
=
(

0 GA

GR GK

)
. (2.27)

The non-zero Keldysh components are conventionally called retarded GR, advanced GA and
Keldysh GK components. Explicitly, these components give (for t1 6= 0)

G12[Ô1, Ô2](t1, 0) = +i 〈[Ô1(t1), Ô2(0)]ζ〉 θ(−t1), (2.28a)
G21[Ô1, Ô2](t1, 0) = −i 〈[Ô1(t1), Ô2(0)]ζ〉 θ(t1), (2.28b)
G22[Ô1, Ô2](t1, 0) = −i 〈[Ô1(t1), Ô2(0)]−ζ〉 , (2.28c)

where [Â, B̂]ζ = ÂB̂ − ζB̂Â is an (anti)commutator.
To obtain the spectral representation of KF correlators in frequency space we can use

that the Fourier representation of the step function reads

∓iθ(±t) =
ˆ
R

dω
2π

e−iωt

ω ± i0+ = lim
γ↘0

ˆ
R

dω
2π

e−iωt

ω ± iγ , (2.29)
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where we shifted the real frequency ω by an infinitesimal imaginary part i0+. As indicated,
this infinitesimal is understood as a limit. (Note that the order of the limit and the frequency
integral is crucial.) On the other hand, a constant contribution in the time domain amounts
to a Dirac delta in the frequency domain. The latter can be equally written as

∓πδ(ω) = Im 1
ω ± i0+ , (2.30)

where the right-hand side shows an infinitesimally sharp Lorentzian peak. The latter formula
is a direct consequence of the real-line version of the Sokhotski-Plemelj theorem [BB15]

1
ω ± i0+ = ∓iπδ(ω) + P 1

ω
, (2.31)

where the P denotes a principle-value integral which excludes the singularity on the interval
[−0+, 0+].

In frequency space we thus have

Gk1k2(ω1) =
(
G11(ω1) G12(ω1)
G21(ω1) G22(ω1)

)
=
(

0 GA(ω1)
GR(ω1) GK(ω1)

)
, (2.32a)

where the product in the time domain, Eq. (2.28), becomes a convolution, i.e.,

GA(ω1) =
ˆ
R

dε1
Sstd(ε1)

ω1 − ε1 − i0+ , (2.32b)

GR(ω1) =
ˆ
R

dε1
Sstd(ε1)

ω1 − ε1 + i0+ , (2.32c)

GK(ω1) = −i2π[S[Ô1, Ô2](ω1) + ζS[Ô2, Ô1](−ω1)]. (2.32d)

Here, we again identified the standard spectral function (2.26d).
Let us consider the typical case of real standard spectral functions, Sstd(ε) ∈ R. For

example, this is the case if the operators are adjoint, Ô2 = (Ô1)†. Then, we can verify the
well-known relations

GA(ω1) = [GR(ω1)]∗, (2.33a)

Sstd(ω1) = −1
π

ImGR(ω1), (2.33b)

GK(ω1) = −i2π{S[Ô1, Ô2](ω1) + ζS[Ô2, Ô1](−ω1)}
KMS= −i2π(1 + ζe−βω1)S[Ô1, Ô2](ω1)
KMS= −i2π1 + ζe−βω1

1− ζe−βω1
Sstd[Ô1, Ô2](ω1)− i4πŜ[Ô1, Ô2](ω1)

(2.33b)=
[

coth βω1
2

]ζ
2iImGR(ω1)− i4πδ(ω1)C, (2.33c)

where we used Eq. (2.30) for Eq. (2.33b). Equation (2.33c) relates the retarded and Keldysh
component and is known as the fluctuation-dissipation theorem (FDT). For its derivation
we used the KMS condition (2.9b) for the regular PSFs S̃. In contrast, the anomalous Ŝ
needs to be treated separately since the coth-factor would diverge for ζ = +1 and ω1 = 0.
Note that Eqs. (2.33a) and (2.33b) imply that the spectral function can be obtained from the
retarded and advanced component. These components are therefore of particular interest.
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2.1.5.3 Notes on analytic continuation

The spectral representation (2.26b) reveals that the regular MF correlator defines a function
G̃(z) of complex variable z which is analytic away from the real axis, i.e., z 6∈ R. Hence, the
function G̃(z) has two regions of analyticity which are separated by the real axis.

By comparison of Eq. (2.26b), (2.32b) and (2.32c), we further find that the retarded
and advanced correlator can be obtained from the regular Matsubara correlator by analytic
continuation, i.e.,

G̃(iω1) iω1→ω1±i0+
−→ GR/A(ω1). (2.34)

To obtain the Keldysh component, GK , we can use the FDT (2.33c), i.e., we insert Eq. (2.34)
for the retarded component GR and read off the coefficient C from the anomalous Matsubara
correlator Ĝ, see Eq. (2.26c). Thus, the anomalous Matsubara correlator, Ĝ, can only enter
the Keldysh component, GK . In summary, by the relations (2.33c) and (2.34) we see that all
components of the two-point Keldysh correlator can be obtained by analytic continuation of
the Matsubara correlator.

The analytic continuation formula (2.34) is deduced from the spectral representation. It
shows that the retarded and advanced correlator have their domain on the boundaries of the
regions of analyticity of G̃(z). One may wonder whether the reasoning can be inverted: Do
functions with similar analytic properties always have a spectral representation? For general
complex functions, χ(z), which are analytic on the upper half plane, Im (z) > 0, and vanish
for large |z|, the Kramers–Kronig relations [AWH13] can be applied. These relate the real
and imaginary part of χ by

Reχ(ω) = − 1
π
P
ˆ
R

Imχ(ω′)
ω − ω′ dω′ , (2.35a)

Imχ(ω) = 1
π
P
ˆ
R

Reχ(ω′)
ω − ω′ dω′ , (2.35b)

or by the Sokhotski-Plemelj formula (2.31)

χ(ω) = − 1
π

ˆ
R

Imχ(ω′)
ω − ω′ + i0+ dω′ , (2.36)

such that the imaginary part −1
π Imχ can be interpreted as a spectral function for χ. This

relation was deduced in Ref. [Lut61] for self-energies which, unlike correlators, have no native
Lehmann representation.

2.1.6 Comparison of the formalisms

A direct comparison between the Keldysh and Matsubara formalism explains the wide
popularity of the latter. As explicitly shown for two-point functions, both are formally
equivalent. However, `-point correlators have an additional index structure with 2` components
in the KF. Further, Keldysh correlators are functions of continuous times and frequencies.
At finite temperature (β <∞) MF correlators G(iω) are only evaluated on a discrete set of
Matsubara frequencies (2.15). The imaginary time arguments in G(τ ) are also continuous, but
are only needed on an interval of length β. These properties make the Matsubara formalism
much more convenient for numerical implementations.

However, numerically, Matsubara correlators face the problem that their arguments are
imaginary. They have to be analytically continued to obtain physical observables at finite
real times or frequencies. Even though there have been numerous advances in the field of
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analytic continuation [FYG21, ZG24], quantitative results are still strongly impaired by the
ill-conditioned Matsubara kernel. For example, in Ref. [SOOY17] it has been shown that
the singular values of two-point Matsubara kernels decay super-exponentially. This means
that slight errors in the imaginary-frequency data might correspond to large variations in
real frequencies (cf. Ref. [COS18] for a study of the singular values and orthogonal basis
functions for spectra and correlators). The Keldysh formalism circumvents this problem since
it directly works in real times and frequencies. Furthermore, it also allows the treatment of
non-equilibrium systems [Kad18, JS10, Klö19] which are, however, not covered in this thesis.

2.2 Diagrammatic language for fermionic theories
Above we introduced correlators for general operators which can be fermionic, bosonic or
mixed. In this thesis we are mostly interested in a QFT treatment of interacting fermions. For
such systems we aim to introduce the most relevant diagrammatic objects and relations which
are needed in the subsequent sections. To avoid notational redundancies, we will introduce a
multi-index notation. While the details of multi-index contractions depend on the system and
formalism it allows us to write compact and formalism-independent diagrammatic equations.

2.2.1 Green’s functions and observables

Fermionic many-body systems can be described by a second-quantized Hamiltonian, Ĥ[â†, â],
which is expressed in terms of the annihilation and creation operators â(†)

x . These are labelled
by the one-particle quantum numbers x describing the particle’s physical degrees of freedom
which may include spin, lattice site or orbital indices, for instance. Bold symbols â(†) denote
tuples containing all combinations of quantum numbers x. The Hamiltonian takes the general
form

Ĥ = Ĥ0 + Ĥint, (2.37a)
Ĥ0[â†, â] =

∑
x1′x1

â†x1′
(H0)x1′ |x1 âx1 , (2.37b)

Ĥint[â†, â] = −1
4

∑
x1′x2′x1x2

â†x1′
â†x2′

(Γ0)x1′x2′ |x1x2 âx2 âx1 , (2.37c)

where all creation operators are ordered to the left of annihilation operators (normal ordering).
The term (H0)x′|x typically describes a hopping or an external potential and the term
(Γ0)x′y′|xy describes an instantaneous interaction between two particles and is anti-symmetric
under exchange of two primed or unprimed indices.

The diagrammatic methods described in the subsequent sections are used to compute
Green’s functions which are correlators of the creation and annihilation operators. In particular,
we are interested in one-particle Green’s functions (propagators)

Gx1|x1′
= G[âx1 , â

†
x1′

], (2.38a)

and two-particle Green’s functions

G
(4)
x1x2|x1′x2′

= G[âx1 , âx2 , â
†
x2′
, â†x1′

], (2.38b)

where the index convention is chosen consistently with [JPS10, Wal21], i.e., primed/unprimed
indices are used for incoming/outgoing particles. The superscript on G(4) is added here to
distinguish it from the one-particle Green’s function but can be left out if unambiguous.
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One-particle Green’s functions reveal the single-particle spectrum Sstd of a system which
can be read off from the retarded propagator [see Eq. (2.33b)]. In experiments Sstd can be
determined with spectroscopic measurements [Hüf07].

To understand the usefulness of two-particle Green’s functions, note that one can form
composite operators from creation/annihilation operators by setting them to equal times or
contour arguments. Let us consider a single-site electron model for which the spin σ =↑, ↓ is
the only physical index. This is exactly the case for the Anderson impurity model, which
we present in detail in Sec. 2.2.5, and the Hubbard atom, App. A. The number operators
n̂σ = â†σâσ count the number of spin-σ electrons. Correlators of number operators can be
obtained from the two-particle Green’s function by taking the limit (here exemplified in the
MF)

G[n̂↑, n̂↓](τ1, τ2) = lim
τ2′↘τ1

lim
τ1′↘τ2

G[â↑, â↓, â†↓, â
†
↑](τ1, τ2, τ2′ , τ1′), (2.39)

where we take the limits from above to ensure the correct ordering of the composite n̂σ = â†σâσ.
In a suitable frequency parametrization, such as for example

G(τ1, τ2, τ1′ , τ2′) = 1
β3

∑
ω,ν,ν′

G(iω, iν, iν ′)eiν(τ1−τ2′ )+iν′(τ1′−τ2)+iω(τ2−τ2′ ), (2.40)

the limit in Eq. (2.39) amounts to Matsubara frequency sums over the two-particle Green’s
function

G[n̂↑, n̂↓](iω) = 1
β2
∑
ν,ν′

G[â↑, â↓, â†↓, â
†
↑](iω, iν, iν

′), (2.41)

where we used frequency conservation to parametrize `-point correlators with `−1 independent
frequencies.

In the Keldysh formalism we obtain fully analogous results. Since the ordering is de-
termined by contour parameters, tc, we also need to set contour indices ci equal to form
composite operators, i.e.,

Gc1c2 [n̂↑, n̂↓](t1, t2) = − lim
t1′→t1

lim
t2′→t2

Gc1c2c2c1 [â↑, â↓, â†↓, â
†
↑](t1, t2, t2′ , t1′). (2.42)

Later we will work with Keldysh indices ki, for which the index structure becomes slightly
more complicated (see [P3] for details).

In Sec. 4 we further combine number operators to the density d̂ = n̂↑ + n̂↓ and the
magnetization operator m̂ = n̂↑ − n̂↓ which gives us density d = 〈d̂〉 and magnetization
m = 〈m̂〉 as observables on the one-particle level. To gauge the system’s response to external
perturbations we also compute the susceptibilities. For example, the susceptibility in the
density channel reads (here in the MF)

2χd(τ) = G[d̂− d, d̂− d](τ) = −〈T d̂(τ)d̂〉+ 〈d̂〉2 , (2.43)

where we included the factor 2 on the left to match the convention in Sec. 4. The Kubo formula
from linear response theory reveals that retarded susceptibilities encode the system’s reaction
to weak perturbations (see e.g. Ref. [Col15]). Examples for these perturbations are the
application of an electric or magnetic field. For more examples and the related experimental
techniques we refer to, e.g., Ref. [AS10]. In Sec. 2.1.5 we have already mentioned that
Matsubara correlators need to be analytically continued to obtain the retarded correlator, e.g.,
χRd (ω) = χd(iω → ω + i0+). While the retarded component χRd describes the linear response,
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the Keldysh component χKd contains the symmetrized autocorrelation of fluctuations (2.28c).
In thermal equilibrium both quantities are related by the fluctuation-dissipation theorem
(2.33c).

2.2.2 Green’s functions in the functional integral formulation

Next, we present how Green’s functions can be written in the functional integral formulation.
It is the basis for the quantum field theory methods presented in Sec. 2.2.3 and facilitates
derivations of diagrammatic relations. For conciseness, we will merely reference such deriva-
tions and will not go into detail here. A comprehensive introduction to the functional integral
formulation and its versatile tools can be found in Ref. [KBS10]. In the following we introduce
fundamental diagrammatic notions and the compact multi-index notation.

Before presenting detailed formulas for the functional integral formulations in MF and
KF, we anticipate that the time- or contour-ordered expectation value can be written as
coherent state path integral

〈T [. . .]〉 = 1
Z

ˆ
D[φ,φ] . . . eSM [φ,φ], (2.44a)

〈Tc[. . .]〉 = 1
Z

ˆ
D[φ,φ] . . . eiSK [φ,φ], (2.44b)

where all creation and annihilation operators â(†)
x are replaced by Grassmann fields φx and

φx. Hence, e.g., the MF propagator reads Gx1|x1′
(τ1|τ1′) = −〈T [φx1(τ1)φx1′

(τ1′)]〉. Notably,
the action in both formalisms can be written in an abstract multi-index notation

S[φ,φ] = φ1′(G−1
0 )1′|1φ1 + 1

4φ1′φ2′(Γ0)1′2′|12φ2φ1, (2.44c)

where G−1
0 encodes the quadratic and Γ0 the quartic part of the action. The multi-indices

1 = (c1, t1, σ1, ...) parametrize the φ- and φ-fields. Their exact content depends on the
Hamiltonian and the formalism. Using the Einstein notation we sum or integrate over doubly
occurring indices. The details for the multi-index contractions will be presented below.

To derive the path integral in the Matsubara formalism we use that the density matrix can
be expressed as an imaginary time evolution, i.e., ρ̂ = Û(−iβ, 0) = exp{−

´ β
0 Ĥ(τ)dτ}. At

each point along the time evolution we insert a set of coherent states (see e.g., [Neg18]). This
allows us to rewrite the time-ordered thermal expectation value 〈. . .〉 as a path integral over
field configurations where the fields, φx(τ) and φx(τ), are functions of imaginary times. The
trace, Tr [. . .], imposes the boundary condition that the fields φ(τ) and φ(τ) are antiperiodic
on the interval [0, β], i.e., we have φ(β) = ζφ(0). The Matsubara action then reads [Neg18]

SM [φ,φ] =
ˆ β

0
dτ
{
−
∑
x

φx(τ)∂τφx(τ)−H[φ(τ),φ(τ)]
}
. (2.45)

By insertion of the general Hamiltonian (2.37) and comparison with Eq. (2.44c) we read off

(G−1
0 )x1′ |x1(τ1′ |τ1) = δ(τ1′ − τ1)[−∂τ11x1′x1 − (H0)x1′ |x1 ], (2.46a)

(Γ0)x1′x2′ |x1x2(τ1′ , τ2′ |τ1, τ2) = δ(τ1′ = τ2′ = τ1 = τ2)(Γ0)x1′x2′ |x1x2 , (2.46b)
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and the contraction of multi-index i in Eq. (2.44c) amounts to

“
∑
i

” =
ˆ β

0
dτi

∑
xi

. (2.47)

Apart from its compactness, another strength of the multi-index notation is that we can
systematically change the basis for the fields. We demonstrate this by a change to Fourier
space. Since the fields are antiperiodic on the interval [0, β] we can express them as Fourier
series

φ(τ) = 1
β

∑
ω

e−iωτφ(ω), φ(τ) = 1
β

∑
ω

eiωτφ(ω), (2.48)

with ω evaluated on the fermionic Matsubara frequencies. Inserting this into Eq. (2.45) we
obtain a path integral over fields in frequency space and read off

(G−1
0 )x1′ |x1(iω1′ |iω1) = βδω1′−ω1 [iω11x1′x1 − (H0)x1′ |x1 ], (2.49a)

(Γ0)x1′x2′ |x1x2(iω1′ , iω2′ |iω1, iω2) = (Γ0)x1′x2′ |x1x2βδω1′+ω2′ ,ω1+ω2 . (2.49b)

Hence, we can use the multi-index notation equally in the frequency domain if we define the
contraction over a multi-index in Eq. (2.44c) as

“
∑
i

” = 1
β

∑
ωi

∑
xi

, (2.50)

where the sum over Matsubara frequencies comes with the usual factor of 1
β .

By an analogous path integral construction the Keldysh action reads [Kam11]

SK [φ,φ] =
ˆ
C

dtc
{∑

x

φx(tc)i∂tcφx(tc)−H[φ(tc),φ(tc)]
}

(2.51a)

=
ˆ ∞
−∞

dt
∑
c

(−c)
{∑

x

φ
c
x(t)i∂tφcx(t)−H[φc(t),φc(t)]

}
, (2.51b)

where we integrate the contour variable tc along the Keldysh contour in the first line. In the
second line we separated the contour argument tc into time t and contour index c to obtain
the conventional representation of Keldysh functions where the fields read φcx(t), allowing for
Fourier transformation and Keldysh rotation. The density matrix ρ̂ merely enters as a weight
and boundary condition for the fields and is typically absorbed into the measure of the path
integral. By comparison with Eq. (2.44c), we find that the Keldysh action is determined by

(G−1
0 )c1′ |c1x1′ |x1

(t1′ |t1) = −c1δc1′ ,c1δ(t1′ − t1)[i∂t11x1′x1 − (H0)x1′ |x1 ], (2.52a)

(Γ0)c1′c2′ |c1c2x1′x2′ |x1x2
(t1′ , t2′ |t1, t2) = −c1δc1′=c2′=c1=c2δ(t1′ = t2′ = t1 = t2)(Γ0)x1′x2′ |x1x2 , (2.52b)

with multi-index contractions (2.44c) now defined as

“
∑
i

” =
∑
ci

ˆ
R

dti
∑
xi

. (2.53)

While the Keldysh action (2.51) most obviously reveals its origin from contour ordering, we
typically work in the frequency representation and in the Keldysh basis, which requires us to
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change the basis. Again, we can insert the Fourier representation of the fields

φ(t) =
ˆ
R

dω
2π e

−iωtφ(ω), φ(t) =
ˆ
R

dω
2π e

iωtφ(ω), (2.54)

and the Keldysh rotation according to Eq. (2.20) which gives us the multi-index contraction

“
∑
i

” =
∑
ki

ˆ
R

dωi
2π

∑
xi

, (2.55)

while the bare interaction becomes

(Γ0)k1′k2′ |k1k2
x1′x2′ |x1x2

(ω1′ , ω2′ |ω1, ω2) =2πδ(ω1′ + ω2′ − ω1 − ω2)(Γ0)x1′x2′ |x1x2

×
{1

2 for ∑i=1′,2′,1,2 ki odd,
0 else.

(2.56)

For explicit parametrizations one typically uses symmetry relations such as frequency
conservation to reduce the number of arguments (see Sec. 2.2.5.1 for an example). This is
highly convenient for numerical computations. However, the introduced asymmetry typically
leads to rather cumbersome formulas. In the following sections, we will mostly use the
compact multi-index notation. This way, diagrammatic equations can be written concisely for
any formalism. The chosen formalism and parametrization can then be inserted afterwards.

Note on conventions: In the previous section the convention for Fourier transforms in
Sec. 2.1 had to be applicable to arbitrary operators. In contrast, the convention in this section
[see Eqs. (2.48) and (2.54)] facilitates the bookkeeping of frequencies in diagrammatics. As
the fields φx and φx are interpreted as incoming or outgoing particles, their Fourier transforms
are defined with opposite signs. Frequency conservation thus means that the sum of incoming
frequencies equals the sum of outgoing ones. For propagators Gx1|x1′

(iω1), this means that
they can be unambiguously labeled with a single frequency argument which stands both for
the incoming and outgoing frequency.

Note on equal-time Green’s functions: While the ordering of operators at equal contour
arguments was left ambiguous in Sec. 2.1, this ambiguity is resolved for Green’s functions
[Kam11, Klö19]. To see this, note that the operators in the Hamiltonian (2.37) appear at
equal times (or contour arguments in the Keldysh action). The normal-ordering of the
Hamiltonian is essential for the replacement of operators â(†) by fields, φ/φ, in the path
integral construction. For consistency with the path integral formulation we thus choose
normal ordering for operators with the same contour argument.

2.2.3 Diagrammatic representation of one- and two-particle Green’s
functions

In this section we show how the one- and two-particle Green’s functions can be expressed
diagrammatically. We further define self-energy and vertex which are central objects in the
diagrammatic methods presented in Sec. 2.2.4.

First, we review some notions of perturbation theory. While plain perturbation theory is
not our main tool, it helps understand the QFT methods discussed below. Diagrammatic
representations are typically used in perturbative expansions for weak interactions. For a
non-interacting theory (Γ0 = 0), the Gaussian integrals in Eqs. (2.44a) and (2.44b) can be
solved exactly. This bare propagator (G0)1|1′ can indeed be identified with the inverse of
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the (G−1
0 ) in the quadratic part of the action. Starting from the non-interacting system, we

may treat a small interaction Γ0 by Taylor expansion of the interacting part of the action
in orders of Γ0. By Wick’s theorem, we obtain expressions involving the bare propagator,
G0, and bare interaction Γ0. To facilitate the bookkeeping one can represent the resulting
expressions with diagrams. Using the multi-index notation we write (bare) propagators as

G11′ = 1 1′
, G0;11′ = 1 1′

, (2.57)

where the arrow points in the direction of unprimed indices. The bare interaction is represented
as

Γ0;1′2′|12 =
1′

2′

1

2
. (2.58)

Here, the short arrows indicate how a propagator line can be attached. The diagrams resulting
from a perturbative expansion are graphs, containing the vertices Γ0 as nodes and bare
propagators G0 as lines. When a vertex and a propagator touch, the corresponding multi-
index is contracted. Such internal indices are mere summation/integration variables. The
external indices are externally determined function arguments. Hence, there are ` external
indices for a diagram representing an `-point function. Examples for four-point diagrams are
shown in Fig. 2.2.

While Wick’s theorem puts equal emphasis on all types of diagrams, the full set of
diagrams can be deduced from a smaller subset. An important subset are connected diagrams.
A diagram is called connected if all vertices and propagators are linked, i.e., viewing the
diagram as an undirected graph one can start at any vertex/propagator and reach any
vertex/propagator by travelling along the links of the graph. Otherwise, a diagram is
disconnected.

Even more restrictive is the set of one-particle irreducible (1PI) diagrams. A connected
diagram is called 1PI if cutting a single propagator line does not result in a disconnected
diagram. Otherwise, it is called one-particle reducible (1PR). The 1PI `-point vertex diagrams
Γ(`) are the 1PI subset of `-point diagrams. Quite remarkably, the 1PI vertex diagrams are
sufficient to deduce the full set of diagrams for Green’s functions [Neg18]. By the Dyson
equation the propagator G can be expressed as

G1|1′ = G0;1|1′ +G0;1|2′Σ2′|2G2|1′ , (2.59)

1 1′

G
= 1 1′

G0
+ Σ

1 2′ 2 1′

G0 G
,

which is a recursive relation involving the bare propagator G0 and the self-energy Σ. The
latter is equivalent to the 1PI two-point vertex. The Dyson equation can be solved for G
giving

G1|1′ = [G−1
0 − Σ]−1

1|1′ . (2.60)

This equation first seems to be a mere reparametrization of the correlator. But it also implies
that a perturbative approximation of the self-energy Σ is more systematic and economic
than a perturbative expansion of the propagator G. Concretely, for every approximation of
the self-energy the Dyson equation constructs propagator diagrams up to infinite order by
resummation.
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γa =
S

+ . . . γp = 1
2

S

+ . . .

γt = − S + . . . R = + + . . .

Figure 2.2 Illustration of the parquet decomposition. We show the diagrams of the lowest order
in perturbation theory for the 2PR vertices γr. The dashed lines indicate cuts which disconnect
the diagram. In the parquet approximation the 2PI vertex R is approximated by R = Γ0, thereby
truncating diagrams of fourth order in the bare interaction.

Similarly, the two-particle Green’s function can be expressed as [Roh13, JS10]

G
(4)
12|1′2′ = G

(4) dis
12|1′2′ +G

(4) con
12|1′2′ , (2.61a)

G
(4) dis
12|1′2′ = cF

[
G1|1′G2|2′ + ζG1|2′G2|1′

]
, (2.61b)

G
(4) con
12|1′2′ = −G1|3′G2|4′Γ3′4′|34G3|1′G4|2′ , (2.61c)

G(4)

2′ 2

1 1′

=
2′ 2

1 1′

+ ζ

2′ 2

1 1′

− Γ

2′ 2

1 1′

4 4′

3′ 3

,

where G(4) dis is the disconnected part describing propagation without any scattering and
G(4) con is the connected part. The constant cF is introduced for consistency with our
definition of correlators and depends on the formalism and gives cF = −1 for the MF and
cF = −i for the KF. The 1PI four-point vertex Γ(4) encodes the renormalized interaction
between two particles and is typically just called vertex Γ ≡ Γ(4) in this thesis. By virtue
of the tree expansion (2.61c) the vertex is obtained from the connected four-point Green’s
function by amputating the four external propagator legs [KBS10].

2.2.4 Exact diagrammatic equations

Above we introduced diagrams in the context of bare perturbation theory. There are,
however, also exact equations relating the fully renormalized propagator, self-energy and
two-particle interaction vertex. We present two sets of equations: the parquet equations and
the flow equations of the functional renormalization group. However, while they are exact,
approximations are inevitable for finding a solution to them. We discuss the so-called parquet
approximation and the 1-loop truncation which are used for our numerical studies in Sec. 4.

2.2.4.1 Parquet theory

Here we present an overview of the parquet equations without delivering a derivation. A
modern review with derivations from generating functionals can be found in [Bic04, Kug19,
EKKH23].

As explained above, vertex diagrams in Γ are 1PI 4-point diagrams. These can be further
classified by their two-particle (ir)reducibility. A diagram is called two-particle irreducible
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γa = Ia Γ = Γ Ia

γp = 1
2

Ip Γ = 1
2 Γ Ip

γt = −

It

Γ

= −
Γ

It

Figure 2.3 Diagrammatic depiction of the Bethe–Salpeter equations (2.66) for the three channels
r = a, p, t.

(2PI) if cutting two propagator lines does not result in a disconnected diagram. Otherwise, the
diagram is called two-particle reducible (2PR). Figure 2.2 shows examples for 2PR diagrams,
where the dashed lines indicate how a cut can disconnect a diagram. For a fermionic theory,
there are three ways of cutting two lines to disconnect the four external indices. They
correspond to different channels which we here denote by a, p and t. Every 2PR vertex
diagram can be unambiguously classified by one of these channels. This gives us the parquet
decomposition

Γ = R+ γa + γp + γt, (2.62)

where R is fully 2PI and the γr’s are 2PR in channel r = a, p, t. Figure 2.2 illustrates the
parquet decomposition with the diagrams of the lowest orders in perturbation theory.

We can also distinguish two-particle (ir)reducibility with respect to a certain channel.
This gives us the decompositions

Γ = Ia + γa = Ip + γp = It + γt, (2.63)

where γr is reducible and the Ir irreducible in channel r. The latter contains

Ir = R+ γr̄, (2.64a)

where γr̄ denotes the vertices which are 2PR in the other channels, explicitly

γā = γp + γt, γp̄ = γa + γt, γt̄ = γa + γp. (2.64b)

With the above definitions we can write down the three Bethe–Salpeter equations. Fig. 2.3
shows them in the form of diagrams. Explicitly, they can be written in matrix notation

γr = Γ ◦Πr ◦ Ir = Ir ◦Πr ◦ Γ, (2.66)
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Σ = − − 1
2 Γ (2.65)

Figure 2.4 Diagrammatic depiction of the Schwinger–Dyson equation (2.71). The first term on the
right-hand side is the Hartree contribution, which is constant in the frequency domain.

by introducing the pair propagators

Πa;34|3′4′ = cFG3|3′G4|4′ , (2.67a)
Πp;34|3′4′ = 1

2cFG3|3′G4|4′ , (2.67b)
Πt;43|3′4′ = −cFG3|3′G4|4′ , (2.67c)

which contain the channel-dependent prefactors indicated in the diagrams in Fig. 2.3. The
constant cF is a formalism-dependent factor which gives a trivial cF = 1 in the Matsubara
formalism and cF = −i in the Keldysh formalism.3 The ◦-operation contracts the indices
depending on the channel r of the involved pair propagator Πr, explicitly

a : [A ◦B]12|34 = A16|54B52|36 , (2.68a)
p : [A ◦B]12|34 = A12|56B56|34 , (2.68b)
t : [A ◦B]12|34 = A62|54B15|36 , (2.68c)

which amounts to an ordinary matrix multiplication in each channel if the indices are suitably
reordered and grouped, i.e.,

Γ1′,2′|1,2 = Γ
1′

2

1

2′

7→


Γ(1′,2),(1,2′) for a channel,
Γ(1′,2′),(1,2) for p channel,
Γ(2′,2),(1′,1) for t channel.

(2.69)

The Bethe–Salpeter equations are complemented by the Dyson equation (2.59) and
the Schwinger–Dyson equation (SDE) to form the parquet equations. The SDE is shown
diagrammatically in Fig. 2.4 and can be derived from Heisenberg’s equation of motion [RVT12]
or with a functional approach [KBS10]. By defining the loop

L(Γ, G)1′|1 = −cFΓ1′2′|12G2|2′ , (2.70)

we can write the SDE as

Σ = L(Γ0, G) + 1
2L(Γ0 ◦Πa ◦ Γ, G) = L(Γ0, G) + 1

2L(Γ0 ◦Πp ◦ Γ, G), (2.71)

which computes the self-energy from the propagator, the full and the bare vertex.
Note that the parquet equations provide no recipe to determine the 2PI vertex R. However,

for a given R the parquet equations are a closed set of self-consistent equations for the self-
energy and vertex. In our study in Sec. 4 we choose the parquet approximation which sets
R = Γ0 and will be discussed in Sec. 2.2.4.3.

3 Note that this prefactor depends on the conventions chosen in the definition of Green’s functions and vertices
and therefore deviates by a minus sign from [HMPS04, JS10].
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Σ̇ = − Γ

Γ̇ = Γ Γ + 1
2 Γ Γ −

Γ

Γ

+ Γ(6)

Figure 2.5 1-loop flow equations for self-energy and vertex derived from the Wetterich equation.
Propagators and pair propagators crossed by the single line denote a derivative d

dΛ
∣∣
ΣΛ=const. which

ignores the Λ-dependence of the self-energy.

2.2.4.2 Functional renormalization group

The functional renormalization group (fRG) follows a very different strategy [KBS10]: By
introducing a regulator into the bare propagator GΛ

0 the action gains a dependence on the
continuous flow parameter Λ ∈ [Λi,Λf ]. Consequently, also the propagator GΛ, self-energy
ΣΛ, and vertex ΓΛ become Λ-dependent. The regulator is chosen to render the action trivial
for initial Λi and to recover the original action for final Λf . One possibility to obtain a
trivial action is by ensuring GΛi

0 = 0 for which the only non-vanishing diagrams are the bare
interaction Γ0 and the Hartree contribution of the self-energy [JS10]. The theory at Λi and
Λf are connected by a flow, i.e., by flow equations for self-energy Σ̇ = dΣ/dΛ and vertex
Γ̇ = dΓ/dΛ. To obtain the desired quantities one needs to integrate the flow equations with
the given initial condition at Λi. For the self-energy this explicitly reads ΣΛf =

´ Λf
Λi dΛ dΣΛ

dΛ .
One traditional derivation of flow equations introduces the Λ-dependent regulator into the
generating functionals for Green’s functions and vertices to derive the Wetterich equation
which is a flow equation for these functionals [Wet93, KBS10]. The Wetterich equation results
in an infinite hierarchy of flow equations for 1PI vertex diagrams as indicated in Fig. 2.5,
where we see that the flow of the four-point vertex Γ̇Λ depends on the six-point vertex Γ(6).
The latter is a function of 5 independent frequencies. While the Wetterich equation provides
an equation for Γ̇(6) its evaluation is numerically intractable. The flow equations are therefore
typically approximated by neglecting the contribution from the six-point vertex. We call the
truncated version of Fig. 2.5 the 1-loop flow equations. Explicitly these read

Σ̇ = L(Γ, S), (2.72a)
Γ̇ =

∑
r

Γ ◦ Π̇r;S ◦ Γ, . (2.72b)

where the single-scale propagator, SΛ, is defined as the derivative of the propagator GΛ

while ignoring the Λ-dependence of the self-energy ΣΛ. Diagrammatically, we depict it by a
propagator which is crossed by a single line

SΛ
1|1′ =

dGΛ
1|1′

dΛ

∣∣∣∣∣∣
ΣΛ=const.

= 1 1′
, (2.73)
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and analogously the differentiated pair propagator in Eq. (2.72b) is defined as

Π̇Λ
r;S = dΠΛ

r

dΛ

∣∣∣∣∣
ΣΛ=const.

. (2.74)

In Fig. 2.5 Π̇r;S is depicted by a pair of propagators crossed by a single straight line. The
truncation of the equation in Fig. 2.5 introduces a number of problems. When the six-point
vertex is neglected, the flow equation does not contain a full derivative of the vertex. Therefore,
different choices for the regulator lead to different results. This regulator dependence is
sometimes counted as a strength of fRG since it allows the practitioner to make a physically
reasonable choice. In the absence of a clear heuristic it is, however, not possible to tell which
regulator leads to the best approximation.

In recent years, the problem of regulator dependence has been addressed by the multiloop
extension of the flow equations [KvD18b, KvD18c, KvD18a]. Unlike the traditional derivation,
it chooses the parquet equations as starting point. And like in the parquet approach, the 2PI
vertex R has to be supplied as an external input. Therefore, R is assumed to be Λ-independent.
By applying a total Λ derivative to both sides of the parquet equations one then obtains the
multiloop flow equations. Due to the appearance of İr = γ̇r̄ on the right-hand side, the flow
equations for the 2PR vertices need to be inserted iteratively, leading to a loop expansion of
the 2PR vertices

γ̇r =
∞∑
`=1

γ̇(`)
r (2.75)

where the contributions for each ` are given in Fig. 2.6.
The pair propagators crossed by two lines represent a full Λ derivative (as opposed to the

equation in Fig. 2.5)

Π̇Λ
r = d

dΛΠΛ
r , (2.76)

with which the flow equations for the vertices read

Γ̇ =
∑

r=a,p,t

∞∑
`=1

γ̇(`)
r , (2.77a)

γ̇(1)
r = Γ ◦ Π̇r ◦ Γ, (2.77b)

γ̇(2)
r = γ̇

(2)
r;L + γ̇

(2)
r,R, (2.77c)

γ̇(`>2)
r = γ̇

(`)
r,L + γ̇

(`)
r,C + γ̇

(`)
r,R, (2.77d)

with

γ̇
(`)
r,L = γ̇

(`−1)
r̄ ◦Πr ◦ Γ, (2.77e)

γ̇
(`)
r,R = Γ ◦Πr ◦ γ̇(`−1)

r̄ , (2.77f)

γ̇
(`)
r,C = γ̇

(`−1)
r̄;R ◦Πr ◦ Γ = Γ ◦Πr ◦ γ̇(`−1)

r̄;L . (2.77g)

The flow of the self-energy becomes

Σ̇ = Σ̇std + Σ̇t̄ + Σ̇t, (2.77h)
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Σ̇ = − Γ − γ̇t̄,C

Σ̇t̄

− Γ

Σ̇t̄

γ̇
(1)
a = Γ Γ γ̇

(2)
a = γ̇

(1)
ā Γ

γ̇
(2)
a,L

+ Γ γ̇
(1)
ā

γ̇
(2)
a,R

γ̇
(`+2)
a = γ̇

(`+1)
ā Γ

γ̇
(`+2)
a,L

+ Γ γ̇
(`)
ā Γ

γ̇
(`+2)
a,C

+ Γ γ̇
(`+1)
ā

γ̇
(`+2)
a,R

Figure 2.6 Diagrammatic depiction of the mfRG flow equations: The vertex flow is exemplified for
the 2PR vertex γa. The doubly crossed pair propagator denotes that a full Λ derivative is applied to
Πa. Note that the vertex flow at loop order `+ 1 can be computed by insertion of contributions from
loop order `. The ‘center’ contributions γ̇r;C of the vertex flow feeds back into the self-energy flow,
creating a self-consistency condition for ` ≥ 3.
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where the contributions on the right are

Σ̇std = L(Γ, S), (2.77i)

Σ̇t̄ = L(
∑
`

γ̇
(`)
t̄,C
, G), (2.77j)

Σ̇t = L(Γ, GΣ̇t̄G). (2.77k)

A comparison with the conventional flow equations (2.72) reveals striking similarities: The
self-energy flow (2.72a) is identical to Σ̇std (2.77i) and the 1-loop contribution of the mfRG
vertex flow (2.77b) is identical to the vertex flow in (2.72b) after a Katanin substitution
[Kat04], Π̇r;S → Π̇r, which was introduced to improve the fulfillment of Ward identities.
Hence, the truncated equations (2.72) generate the subset of ` = 1 diagrams from mfRG
equations and are therefore referred to as 1-loop equations.

Comparison of parquet and (m)fRG equations: Since the mfRG equations are de-
rived from the parquet equations, a fully converged mfRG result should fulfill parquet
self-consistency [KvD18a]. Hence, the parquet and mfRG equations are formally equivalent if
both apply the same approximation to the 2PI vertex R. For practical purposes, the difference
between the two methods lies in the efficiency of the involved algorithmic procedures.

The convergence of mfRG results to a parquet solution has been thoroughly investigated
for the Anderson impurity model at weak to intermediate coupling in the MF [CGKH+22]. In
App. B a similar investigation is presented in the MF and KF. There we further discuss the
algorithmic differences between the parquet and the mfRG scheme. Most importantly, in both
methods one needs to find a high-dimensional fixed point of coupled non-linear equations.
(For the mfRG scheme the ` ≤ 3-loop contributions introduce a self-consistency condition.)
Hence, they both suffer from the difficulty to find a unique converged fixed point in certain
regimes.

In contrast, to solve the 1- or 2-loop flow equations (2.72) one does not need to solve
self-consistent equations. Instead, the flow of self-energy Σ̇ and vertex Γ̇ is fully determined
by the non-differentiated functions Σ and Γ. Therefore, a wider range of parameters can be
reached. But the solutions suffer from the truncation as discussed in the next section.

2.2.4.3 Approximations

In the following we summarize the different approximations which are made in the parquet
approach and in the fRG. They are inevitable to render the equations closed and solvable.
However, they lead to a number of problems and limit the applicability of the methods.

Firstly, the 1-loop flow equations (2.72) are obtained by neglecting the six-point con-
tribution in Fig. 2.5. As mentioned above, the truncation of the flow equation introduces
a dependence on the regulator. While calculations in the MF are possible for a variety of
regulators (see e.g. Ref. [CGKH+22]), for the KF, Ref. [JS10] found that many regulators
lead to violations of physical relations such as causality and fluctuation-dissipation relations.
Thus, the physical implications and applicability of the approximation in the 1-loop flow
equations depends on the chosen regulator. Furthermore, it is argued in Ref. [KvD18b] that
the 1-loop flow equations are biased towards so-called ladder diagrams which are, however,
particularly prone to divergences. The truncation also leads to ambiguities in the computation
of the susceptibilities [THK+19, KvD18a]. However, if one is not interested in quantitative
reliability, it has been shown that the 1-loop flow equations already capture the leading
logarithmic contributions for the x-ray edge singularity, the interacting resonant level model
and Luttinger liquids [DJ21, KPBM10, MAE+08].
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The parquet and mfRG equations can be discussed together since these methods are
formally equivalent [KvD18a].4 They both require the 2PI vertex R as external input and
therefore involve the same approximations. It is clear that a ‘reasonable’ approximation of
R is crucial. For lattice models one may approximate it with a local vertex R = RDMFT
which is computed from dynamic mean-field theory (DMFT) [GKKR96]. Diagrammatic
methods that rely on DMFT input are summarized under the term diagrammatic extensions
of DMFT [RVT12]. While DMFT only captures local correlations, spatial correlations
are included with diagrammatic methods. Inserting the DMFT vertex into the parquet
equations or the fRG flow equations are the basic ideas of the dynamical vertex approximation
(DΓA) [TKH07] and the DMF2RG [TAB+14]. Indeed, DMFT solvers are available both for
imaginary- and real-frequency vertices. Imaginary frequency vertices can be computed with,
e.g., Quantum Monte-Carlo methods [GML+11] and real-frequency vertices have become
available due to a recently developed multipoint extension of the numerical renormalization
group (NRG) [LKvD21, LHS+24]. Reference [P6] investigates whether NRG vertices fulfill
physical and diagrammatic identities for Anderson impurity model (see Sec. 2.2.5). However,
while diagrammatic extensions of DMFT have shown promising results (see e.g., [EHHK20,
KWK+24]) they are beyond the scope of this thesis. Our goal is to pave the way for these
methods by first developing purely diagrammatic methods which can be extended in the
future.

The R chosen in our purely diagrammatic study in Sec. 4 is given by the parquet
approximation (PA) which sets the 2PI vertex R = Γ0 to the bare vertex. This approximation
neglects diagrams starting at the fourth order in the bare interaction O(Γ4

0) (as indicated
in Fig. 2.2). Nevertheless, the parquet approximation possesses a number of convenient
properties as summarized in Refs. [Bic04, Kug19]. One of them is the fulfillment of crossing
symmetry which is a consequence of the Pauli principle. This also resolves the Fierz ambiguity
for Hubbard-like interactions [KWK+24]. It has been shown that two-particle self-consistency
guarantees the fulfillment of the Mermin–Wagner theorem which is important for two-
dimensional systems [MW66, VT97]. Another property is the unbiased and two-particle
self-consistent treatment of channels in the Bethe–Salpeter equations where all two-particle
channels are coupled by inter-channel feedback. As physical susceptibilities are encoded
in different channels this is particularly important in the presence of competing ordering
instabilities. Furthermore, lower-dimensional quantities such as physical susceptibilities and
three-point vertices are encoded in the high-frequency asymptotics of the vertex [WLT+20].
Using a suitable frequency parametrization of the vertex, these quantities can be directly
read off without further postprocessing. Parquet self-consistency also resolves the ambiguity
in the computation of the susceptibilities [THK+19, KvD18a, WLT+20]. There is numerical
evidence [CGKH+22] that sum rules for susceptibilities and certain Ward identities are
fulfilled while others are violated in the non-perturbative regime. Since Ward identities
are consequences of conservation laws [KBC+10], the violation indicates that the solution
found by the parquet approximation is non-conserving. In fact, it has been shown that the
fulfillment of both conservation laws and parquet self-consistency can only be achieved by
the exact solution [Smi92]. Which of these properties is preferred over the other depends on
the concrete physical problem in question. In our studies in Chapter 4, we prioritize parquet
self-consistency and use Ward identities only to gauge the quality of a result.

4 Note however, to go beyond the parquet approximation the self-energy flow might have to be adapted since
its derivation in Ref. [KvD18a] explicitly assumes the parquet approximation.
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2.2.5 The Anderson impurity model and its diagrammatic description

In this section, we present the Anderson impurity model (AIM) and give an overview of its
diagrammatic ingredients in the MF and KF. The second-quantized Hamiltonian of the AM
reads

Ĥ = Ĥ0 + Ĥhyb + Ĥint, (2.78a)
Ĥ0 = εd

∑
σ=↑,↓

d̂†σd̂σ +
∑
k

∑
σ=↑,↓

εkĉ
†
σkĉσk, (2.78b)

Ĥhyb =
∑
k

∑
σ=↑,↓

V ĉ†σkd̂σ + h.c., (2.78c)

Ĥint = Ud̂†↑d̂↑d̂
†
↓d̂↓. (2.78d)

This model describes an impurity site (d(†)
σ ) that is coupled to a non-interacting bath (c(†)

σk).
The system is occupied by electrons with spin σ =↑, ↓. On the impurity site electrons
experience an instantaneous on-site repulsion U . The chemical potential εd on the impurity
will be set to εd = −U/2 if we want to achieve half filling [Roh13]. The hopping between
impurity and bath is quantified by V .

The (bare) propagator does not depend on the spin index since above Hamiltonian respects
SU(2) spin symmetry [Roh13]. As the c fields appear at most quadratically we can integrate
them out in the functional integral in Eqs. (2.44). The resulting action takes the form of
Eq. (2.44c), but now it is a functional of the d-fields only. The Matsubara and retarded bare
propagator for the d fields read

G0(iν) = 1
iν − εd + ∆(iν) , (2.79a)

GR0 (ν) = 1
ν − εd + ∆R(ν) + i0+ , (2.79b)

where the hybridization ∆ encodes the corrections for hopping from the impurity to the
bath, propagation through the bath and hopping back to the impurity (see e.g., Eq. (2.62) in
Ref. [JS10]). Explicitly, the hybridization reads

∆(iν) =− V g(iν)V ∗, (2.80a)
∆R(ν) =− V gR(ν)V ∗, (2.80b)

where g(ν) is the local propagator of the c fields. Since we are typically not interested in
the specific band structure of the bath we assume a box-shaped spectrum for g(ν), i.e.,
Im (gR(ν)) = −πθ(D − |ν|) where D is the half bandwidth, such that we obtain

g(iν) = −2i arctan(D/ν), (2.81a)

gR(ν) = ln
∣∣∣∣ν +D

ν −D

∣∣∣∣− iπθ(D − |ν|). (2.81b)

To derive g(iν), we inserted the spectrum in Eq. (2.26b) and for gR we used Eq. (2.33b) and
the Kramers–Kronig relations (2.35). In Sec. 4 we take the wide-band limit D → ∞ such
that the hybridization simplifies to

∆(iν) = i∆ sgnν, (2.82a)
∆R(ν) = i∆, (2.82b)
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where we defined the constant ∆ = π|V |2 for convenience.
For the bare interaction Γ0 we can first focus on the spin indices and obtain in the MF

Γ0;σ1σ2|σ1′σ2′
= U [δσ1σ2′ δσ2σ1′ − δσ1σ1′ δσ2σ2′ ]. (2.83)

In the Keldysh formalism, the contour index structure can be read off from the action (2.51)
where we see that only equal times and equal contour indices contribute

Γc1c2|c1′c2′0;σ1σ2|σ1′σ2′
= −c1δc1=c2=c1′=c2′Γ0;σ1σ2|σ1′σ2′

. (2.84)

After a Keldysh rotation this becomes

Γk1k2|k1′k2′
0;σ1σ2|σ1′σ2′

= Γ0;σ1σ2|σ1′σ2′

∑
c=±

(−c)
∏

i=1,2,1′,2′
Dki|c

=
{1

2Γ0;σ1σ2|σ1′σ2′
for ∑i=1,2,1′,2′ ki odd,

0 else.
(2.85)

This concludes the summary of the Anderson impurity model and the quantities defining its
reduced action, i.e., G0 and Γ0.

2.2.5.1 Symmetries and vertex parametrizations

After defining the model and its bare propagator and vertex, we are in a position to solve
the parquet or flow equations within the parquet approximation. However, for our study in
Sec. 4 an efficient evaluation of the Bethe–Salpeter and flow equations is key. Above, we
have written vertices in the compact notation Γ1′2′|12 where each multi-index i runs over all
contour arguments (τi or tcii ) and all one-particle quantum numbers σi. In the presence of
symmetries, the number of non-redundant components can be strongly reduced, which is
particularly important for the parametrization of the vertex Γ. Symmetries reduce both the
number of vertex components that need to be stored and the number of components that need
to be computed. Since each contribution to the vertex flow, Eqs. (2.77b) and (2.77e)–(2.77g),
has the same matrix-product structure as the Bethe–Salpeter equations (2.66) it suffices here
to focus on the latter.

In Ref. [Roh13] the symmetries of the AIM are derived in the Matsubara formalism.
While most results can be carried over to the Keldysh formalism, there are some notable
differences in the formalisms [JPS10]. In this section we will summarize the key findings for
both formalisms. For the sake of conciseness we exclusively present results for the two-particle
correlators in the time domain. Symmetry relations in the frequency domain can be obtained
by inserting the Fourier transformation in the desired frequency convention.

First we discuss properties that can be derived from the definition of correlators, Eqs. (2.10)
and (2.19a): By crossing symmetry the exchange of two operators leads to

G12|1′2′ = −G21|1′2′ = −G12|2′1′ = G21|2′1′ . (2.86)

Under complex conjugation of a correlator, the operators are modified due to the relation

Tr [ÂB̂ . . . D̂]∗ = Tr [D̂† . . . B̂†Â†]. (2.87)
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Applying this to annihilation and creation operators â(†)(−iτ) or â(†)(t) and by suitable
exchange of operators one then finds

[Gσ1σ2|σ1′σ2′
(τ1, τ2|τ1′ , τ2′)]∗ = Gσ1′σ2′ |σ1σ2(−τ1′ ,−τ2′ | − τ1,−τ2), (2.88a)

[Gk1k2|k1′k2′
σ1σ2|σ1′σ2′

(t1, t2|t1′ , t2′)]∗ = (−1)1+
∑

i
kiG

k1′k2′ |k1k2
σ1′σ2′ |σ1σ2

(t1′ , t2′ |t1, t2). (2.88b)

Another property which is quickly confirmed for the AIM is a special behavior under time-
reversal is [RVT12, JPS10], by checking that the second-quantized Hamiltonian exclusively
contains real coefficients in front of the creation and annihilation operators. Inserting a
particle-number basis one finds that all operator matrix elements in the PSFs are real. For
Matsubara correlators we thereby deduce

Gσ1σ2|σ1′σ2′
(τ1, τ2|τ1′ , τ2′) ∈ R, (2.89)

whereas the KF merely uses this property (together with the equilibrium condition) to
obtain generalized fluctuation-dissipation relations (gFDR) which reduce the number of
independent Keldysh components. For a derivation of gFDRs and explicit formulas we refer
to Refs. [WH02, JPS10, P4].

The SU(2)-spin symmetry is a bit more intricate. By explicit calculation, Ref. [RVT12]
confirms that the spin operators Ŝi (i = x, y, z) commute with the Hamiltonian of the AIM.
It follows that the total spin is conserved and the non-vanishing 2-particle Green’s functions
are reduced to the six components

Gσσ|σσ, Gσσ̄|σσ̄, Gσσ̄|σ̄σ, (2.90)

where a barred spin is flipped, i.e., ↑̄ =↓, ↓̄ =↑. Invariance under a global spin flip further
reduces the components to three. Since the last two components in Eq. (2.90) are related
by crossing symmetry, G↑↓|↓↑(τ1, τ2|τ1′τ2′) = −G↑↓|↑↓(τ1, τ2|τ2′τ1′), and the first one can be
obtained from the others [Roh13], i.e.,

G↑↑|↑↑ = G↑↓|↑↓ +G↑↓|↓↑, (2.91)

one could reduce the representation of the vertex to one spin component, for example Γ↑↓|↑↓.
The representation of spin components in terms of single-particle spins σ =↑, ↓ directly

follows from the general multi-index formulas. However, under SU(2)-spin symmetry a
different parametrization is more convenient for the evaluation of Bethe–Salpeter equations.
Indeed, the BSEs become spin-diagonal for SU(2)-symmetric systems if the following spin
combinations are used [Bic04, RVT12]:

GD/M = G↑↑|↑↑ ±G↑↓|↑↓, (2.92)
GT/S = G↑↓|↑↓ ±G↑↓|↓↑, (2.93)

which are called the density, magnetic, triplet and singlet spin channel. The BSE in the t
channel is diagonal in the density, magnetic and G↑↓|↓↑ channel. Since the BSE in the t and
a channel are related by crossing symmetry, the spin diagonal combinations of the latter are
typically not considered. Lastly, the BSE in the p channel is diagonal in the singlet, triplet
and G↑↓|↓↑ channel where the triplet channel is identical to the G↑↑|↑↑ channel by Eq. (2.91).

Above we already mentioned that setting the on-site potential to εd = −U/2 yields a
particle-hole symmetric Hamiltonian which effectively means that correlators are invariant
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(a)

γa

ν2 = νa+ωa ν2′ = ν′
a+ωa

ν1′ = νa ν1 = ν′
a
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p −νp

ωp+νp ωp+ν′
p

γt

νt+ωt νt

ν′
t+ωt ν′

t

(b)

γa

ν2 = νa+dωa

2 e ν2′ = ν′
a+dωa

2 e

ν1′ = νa−bωa

2 c ν1 = ν′
a−bωa

2 c

γp

bωp

2 c−ν′
p bωp

2 c−νp

dωp
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p

γt
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2 c

ν′
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2 e ν′
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Figure 2.7 Frequency conventions (a) without and (b) with bω
2 c-shift. The shown frequency convention

in (b) corresponds to the one chosen in [P3] and is obtained from (a) by subtracting bωr

2 c from all legs.
The Gauss brackets, b·c or d·e , are needed in the Matsubara formalism and here indicate rounding
down or up to the next bosonic frequency. They ensure that all legs carry fermionic Matsubara
frequencies. For the continuous frequencies in the Keldysh formalism no rounding is needed.

under a global replacement of creation by annihilation operators (and vice versa) [Roh13].

Gσ1σ2|σ1′σ2′
= G[d̂σ1 d̂σ2 , d̂

†
σ1′
, d̂†σ2′

] = G[d̂†σ1 d̂
†
σ2 , d̂σ1′ , d̂σ2′ ]. (2.94)

To express the last expression as a Green’s function one can either exchange operators or
apply complex conjugation and use Eq. (2.87). For the latter one obtains

Gσ1σ2|σ1′σ2′
(τ1, τ2|τ1′ , τ2′) = [Gσ1σ2|σ1′σ2′

(−τ1,−τ2| − τ1′ ,−τ2′)]∗, (2.95a)

G
k1k2|k1′k2′
σ1σ2|σ1′σ2′

(t1, t2|t1′ , t2′) = (−1)1+
∑

i
ki [Gk1k2|k1′k2′

σ1σ2|σ1′σ2′
(t1, t2|t1′ , t2′)]∗ . (2.95b)

Lastly, it has been shown that SU(2)-spin symmetry and particle-hole symmetry collude to
provide the additional relation [see Eq. (2.135) in Ref. [Roh13]]

G↑↓|↑↓(z1, z2|z1′ , z2′) = G↑↑|↑↑(z1′ , z1|z2′ , z2) +G↑↓|↑↓(z2′ , z1|z1′ , z2), (2.96)

where zi denotes the imaginary time τi for Matsubara and contour argument tcii for Keldysh
Green’s functions. Inserting Eq. (2.96) into the singlet or triplet channel we obtain

GS/T (z1, z2|z1′ , z2′) = GD/M (z1′ , z1|z2′ , z2)±GD/M (z2′ , z1|z1′ , z2). (2.97)

Above we summarized symmetry relations for the two-particle Green’s function. The
relations can be directly applied to the full vertex Γ due to their close relation to the two-
particle correlator (2.61). Additional subtleties arise when one focuses on individual 2PR
vertices γr which appear on the left-hand side of the BSE, for example. Since the 2PR
channels r = a, p, t correspond to the index pairings according to Eq. (2.69), we can read off
diagrammatic channels by comparing the indices. For instance, crossing symmetry (2.86)
relates the a and t channel, e.g., γt;1′2′|12 = −γa;1′2′|21. Further, Eq. (2.97) relates the p and t
channel on the left- and right-hand side, respectively. These symmetries can thus be used to
reduce the number of channels for which the BSE has to be evaluated.
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2.2.5.2 Frequency parametrization of the vertex

In the following we discuss the frequency parametrization and frequency structure of the full
four-point vertex Γ. For conciseness, we leave out all other arguments and indices and focus
on the frequency arguments. In both the Matsubara and Keldysh formalisms, we now denote
the frequencies by real function arguments, e.g., γa(ωa, νa, ν ′a). We point out the differences
between continuous real frequencies ω and discrete imaginary frequencies iω only when they
arise.

Firstly, due to frequency conservation the four fermionic frequencies of the vertex legs are
related,

ν1′ + ν2′ = ν1 + ν2, (2.98)

and the vertex effectively depends on three frequencies. There is a large variety of frequency
conventions in the literature. The frequency convention in Sec. 2.1.4 parametrizes the vertex
with three fermionic frequencies, e.g., ν1′ , ν2′ and ν1. Another possibility is a parametrization
with three bosonic frequencies as shown in Refs. [KHP+08, P3]. In Fig. 2.7, we show the
conventions where each 2PR vertex γr is parametrized with a bosonic transfer frequency ωr
and two fermionic frequencies νr, ν ′r. These conventions are well suited for the evaluation
of the BSEs (2.66) and flow equations (2.77) which all have the matrix structure according
to Eq. (2.68). Using the above conventions the BSE in the r = a, p, t channel, for example,
reads (here exemplified for the MF)

γr(iωr, iνr, iν ′r) = 1
β

∑
ν̃

Γ(iωr, iνr, iν̃)Πr(iωr, iν̃)Ir(iωr, iν̃, iν ′r), (2.99)

where we suppressed physical quantum numbers. We see that the bosonic transfer frequency
ωr is identical in all functions, which is a consequence of frequency conservation and the
index pairings in Eq. (2.69), i.e.,

ωa = ν2 − ν1′ = ν2′ − ν1, ωp = ν1′ + ν2′ = ν1 + ν2, ωt = ν2 − ν2′ = ν1′ − ν1.
(2.100)

For fixed ωr, the fermionic frequencies ν(′)
r in Eq. (2.99) have a matrix product structure.

Having chosen a frequency convention, we can represent the vertex γr(ωr, νr, ν ′r) with its
values on sampling frequencies. Each frequency direction has a frequency grid, and together
they form a three-dimensional rectilinear grid. In the MF our frequency grids contain the
smallest discrete Matsubara frequencies which are chosen symmetrically around the origin. If
the behaviour outside the frequency box is known, one may extrapolate the data. Since the
frequencies are continuous in the KF, we can distribute the sampling points more densely
around the origin, where vertex typically shows sharp features. Values in between sampling
points have to be determined by interpolation.

In Ref. [P3], we adopt the convention with ω
2 -shifts as depicted in Fig. 2.7(b). In this

convention vertex structures are centered around the origin. By inserting the frequency
conventions into the symmetry relations in Sec. 2.2.5.1, it can be seen that this convention
leads to particularly symmetric formulas which is convenient for the symmetry reduction
of the vertex components. Note that, in the Matsubara formalism the ω

2 -shifts have to be
rounded to ensure that all legs carry fermionic Matsubara frequencies. The Gauss brackets
lead to rather cumbersome expressions for the frequency conversions between the channels.
The opposite is the case for the convention in Fig. 2.7(a). It leads to impractical symmetry
relations between frequencies on and outside a rectilinear grid of sampling points. The
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Figure 2.8 Illustration of asymptotic functions of γa: We show the lowest-order diagrams which
contribute to the asymptotic functions (2.101) of the 2PR vertex γa. The frequency arguments follow
the a-channel convention in Fig. 2.7(a). Note how the dependence on the fermionic frequency ν(′)

a is
lost if the two corresponding external legs connect to the same bare vertex Γ0. Since Γ0 is frequency
independent apart from a frequency conserving term, only the bosonic transfer frequency ωr enters the
arguments of the internal propagator lines. Otherwise, if two left/right external legs connect to two
different bare vertices, the fermionic frequency ν(′)

a does enter the arguments of internal propagator
lines. This leads to a suppression of the diagrammatic contribution for large |ν(′)

a | → ∞.

formulas for cross-channel mapping, however, do not require Gauss brackets for Matsubara
frequencies.

A crucial difference between correlators and vertices lies in their behavior at high fre-
quencies. While correlators decay to zero in all frequency directions the situation is a bit
more complicated for vertices. For example, the bare vertex Γ0 is constant in any frequency
direction. The high-frequency asymptotics and their relations to physical observables have
been thoroughly studied in Ref. [WLT+20]. In the following we summarize the classification
of vertex contributions, but refer to the original paper for further details.

Taking the limit of large fermionic frequencies for the 2PR vertices, γr(ωr, νr, ν ′r), gives
the asymptotic function

K1r(ωr) = lim
|ν′r|→∞

lim
|νr|→∞

γr(ωr, νr, ν ′r), (2.101a)

which exclusively depends on the bosonic transfer frequency ωr. Similarly, the remaining
asymptotic functions are given by

K2r(ωr, νr) = lim
|ν′r|→∞

γr(ωr, νr, ν ′r)−K1r(ωr), (2.101b)

K2′r(ωr, ν ′r) = lim
|νr|→∞

γr(ωr, νr, ν ′r)−K1r(ωr), (2.101c)

where K1r is subtracted to obtain a function that truly depends on two frequencies and decays
to zero when taking the high-frequency limit in the remaining frequencies. The remaining
part of the 2PR vertex is called K3r and decays in any frequency direction. Hence, the
decomposition into high-frequency asymptotics results in the following representation of the
2PR vertex:

γr(ωr, νr, ν ′r) = K1r(ωr) +K2r(ωr, νr) +K2′r(ωr, ν ′r) +K3r(ωr, νr, ν ′r). (2.101d)

This representation shows that, e.g., K1r gives contributions for arbitrarily large ν(′)
r .

The high-frequency behavior of vertex contributions can also be understood by considering
diagrams in perturbation theory. Figure 2.8 shows examples for vertex diagrams with different
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asymptotic contributions to γa. As an example, let us consider the ‘eye diagram’ in Fig. 2.8(b).
The two external lines on the right connect to the same bare vertex Γ0 where the frequency
ωa + ν ′a flows in and ν ′a flows out. The frequency ν ′a never enters as an argument of the
internal propagators since Γ0 is constant apart from a frequency conserving factor. Like
all diagrams belonging K2′r it does not depend on ν ′r. On the left, the two external lines
connect to two different bare vertices, thereby introducing an explicit dependence on νa and
νa +ωa. Furthermore, for large |νa| or |ωa| the diagram has to vanish. If we use the frequency
parametrization of another channel, the diagram vanishes for any high-frequency limit. For
example, using the t-channel parametrization in Fig. 2.7(a) we have ωa = νt − ν ′t and taking
the limit |νt| → ∞ implies |ωa| → ∞, for which all diagrams in γa vanish. Note, that the two
limits in (2.101a) have to be taken one after the other to avoid pathologies such as limits
with constant frequency combinations of the type νt − ν ′t = ωa.

For a more rigorous analysis we refer to the derivation of improved estimators for the
vertex Γ in Ref. [LHS+24]. There it has been shown that the asymptotic functions Kir with
i = 1, 2, 2′ and the so-called vertex core can be written as a sum of two-, three- or four-point
correlators (multiplied with self-energies). The vertex core (or asymptotic rest-function) is
defined as

ϕasy = R− Γ0 +K3a +K3p +K3t, (2.102)

and is the ‘truly’ three-dimensional part of Γ which vanishes for any high frequency limit.
In the asymptotic decomposition (2.101d) diagrammatic equations (such as parquet

equations and symmetry relations) for all contributions can be conveniently derived by taking
high-frequency limits on both sides. For example, by taking the limits |ν(′)

r | → ∞ in the
r-channel BSE we obtain

lim
|νr|→∞

[Γ ◦Πr ◦ Ir](ωr, νr, ν ′r) = [(Γ0 +K1r +K2r′) ◦Πr ◦ Ir](ωr, ν ′r), (2.103a)

lim
|ν′r|→∞

[Γ ◦Πr ◦ Ir](ωr, νr, ν ′r) = [Γ ◦Πr ◦ Γ0](ωr, νr). (2.103b)

For a full set of explicit formulas in the asymptotic decomposition (for the parquet equations
and mfRG flow equations), we refer to Refs. [P1, Wal21].

Lastly, we point out a technical hurdle due to the inter-channel feedback in the parquet
and the flow equations. We discuss it for the example of the BSE in Eq. (2.99): The BSE
for γr requires input from the other channels γr̄. While the r-channel BSE is conveniently
parametrized in the r-channel frequency convention, each 2PR vertex is stored in its own
convention. Mapping a grid point to different channels might result in frequencies outside
the frequency grid which requires inter- or extrapolation. This is particularly the case for
non-equidistant grids. While we can optimize the parametrization to capture the relevant
features (e.g., asymptotic functions) for each γr, these features get shifted and rotated by the
cross-channel mapping. Hence, the cross-channel mapping complicates the representation
of vertices and the evaluation of frequency integrals in the BSE. In our study in Sec. 4 we
therefore use an adaptive quadrature algorithm which is agnostic of the sampling grids in its
integrand.
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3 Multiloop flow equations for the single-boson
exchange decomposition

3.1 Overview
In Secs. 2.2.4.1 and 2.2.5.2 we described the parquet decomposition and asymptotic decompo-
sition. In this section, we work with the single-boson exchange (SBE) decomposition, which
was introduced in Ref. [KVC19]. It can be used as an alternative vertex parametrization, but
also defines the so-called SBE approximation.

Unlike the parquet theory, the SBE decomposition distinguishes vertex diagrams by their U
reducibility. Here, U is used as a synonym for the bare interaction Γ0 since the decomposition
is typically applied to systems with Hubbard interaction U , which is instantaneous and local.
A vertex diagram is called U -reducible if ‘cutting’ a bare vertex results in a disconnected
diagram. For the bare vertex, a ‘cut’ splits the attached indices into pairs. Since cutting U -
reducible diagrams disconnects the external indices identically to the parquet decomposition,
(almost) all U -reducible diagrams are 2PR (see Fig. 5 in [P1] for details). The bare vertex is the
only exception, being U -reducible in all channels despite being 2PI. The SBE decomposition
of the full vertex reads

Γ = ϕU irr +∇a +∇p +∇t − 2U, (3.1)

where ϕU irr is the fully U -irreducible contribution, and the ∇r are U -reducible in channel
r = a, p, t. Since each ∇r contains the bare vertex U we subtract U twice in the end.

The SBE decomposition shares many traits with the asymptotic decomposition. Firstly, it
provides a convenient parametrization. The U -reducible terms ∇r can be expressed in terms
of two- and three-point functions. Only the fully U -irreducible contribution ϕU irr has a ‘truly’
three-dimensional frequency dependence and vanishes for large frequencies. Secondly, these
functions have physical interpretations, namely as screened interactions and renormalized
Yukawa couplings between fermions and fermion bilinears such as c̄σcσ′ [KVC19]. In fact,
the SBE and the asymptotic functions are related, as described in Ref. [P1].

Most importantly, the SBE decomposition defines the SBE approximation, which sets
ϕU irr = 0. There is numerical evidence [HLK21] that the SBE approximation gives qualita-
tively reasonable results even for strong coupling, unlike the parquet approximation (R = U)
and the asymptotic approximation. The latter sets the asymptotic rest function (2.102) to
zero, i.e., ϕasy = 0. In the context of diagrammatic extensions of DMFT (cf. Sec. 4.1), one
correspondingly has the choice which vertex component is approximated as local. While the
dynamical vertex approximation [TKH07] originally approximated R = RDMFT, Ref. [KV19]
derived a set of self-consistent parquet-like equations which are closed by approximating the
fully U -irreducible ϕU irr = ϕU irr

DMFT.
In [P1] we complement the parquet-like equations [KV19] with the derivation of multiloop

flow equations for SBE objects in different approximations. These may be used for approaches
in the spirit of DMF2RG [BTH+22], which start the flow with a local vertex computed with
DMFT and solve the fRG equations to arrive at a lattice system. Such an approach would
offer the benefits of mfRG, such as regulator independence.



38 Multiloop flow equations for the single-boson exchange decomposition

Multiloop flow equations for single-boson exchange fRG

by

M. Gievers,1,2 E. Walter,1 A. Ge,1 J. von Delft,1 and F. B. Kugler3

1 Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and

Munich Center for Quantum Science and Technology,

Ludwig-Maximilians-Universität München, 80333 Munich, Germany
2 Max Planck Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching,

Germany
3 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

reprinted on pages 39–60

Reproduced under terms of the CC-BY license.

Eur. Phys. J. B 95, 108 (2022),

doi: 10.1140/epjb/s10051-022-00353-6.

© 2024, The Authors, The European Physical Journal (EPJ).

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjb/s10051-022-00353-6


Eur. Phys. J. B (2022) 95 :108
https://doi.org/10.1140/epjb/s10051-022-00353-6

THE EUROPEAN
PHYSICAL JOURNAL B

Regular Article - Computational Methods

Multiloop flow equations for single-boson exchange fRG
Marcel Gievers1,2, Elias Walter1 , Anxiang Ge1, Jan von Delft1 , and Fabian B. Kugler3,a

1 Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science
and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany

2 Max Planck Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
3 Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA

Received 13 January 2022 / Accepted 12 May 2022 / Published online 6 July 2022
© The Author(s) 2022

Abstract. The recently introduced single-boson exchange (SBE) decomposition of the four-point vertex of
interacting fermionic many-body systems is a conceptually and computationally appealing parametrization
of the vertex. It relies on the notion of reducibility of vertex diagrams with respect to the bare interaction
U , instead of a classification based on two-particle reducibility within the widely used parquet decom-
position. Here, we re-derive the SBE decomposition in a generalized framework (suitable for extensions
to, e.g., inhomogeneous systems or real-frequency treatments) following from the parquet equations. We
then derive multiloop functional renormalization group (mfRG) flow equations for the ingredients of this
SBE decomposition, both in the parquet approximation, where the fully two-particle irreducible vertex
is treated as an input, and in the more restrictive SBE approximation, where this role is taken by the
fully U -irreducible vertex. Moreover, we give mfRG flow equations for the popular parametrization of the
vertex in terms of asymptotic classes of the two-particle reducible vertices. Since the parquet and SBE
decompositions are closely related, their mfRG flow equations are very similar in structure.

1 Introduction

The understanding of strongly correlated many-body
systems like the two-dimensional Hubbard model
remains an important challenge of contemporary
condensed-matter physics [1]. For this, it is desirable to
gain profound understanding of two-body interactions
which are described by the full four-point vertex Γ .

A powerful technique for calculating the four-point
vertex Γ is the functional renormalization group (fRG)
[2,3]. There, a scale parameter Λ is introduced into the
bare Green’s function G0 → GΛ

0 in such a way that for
an initial value Λ → Λi the theory (specifically, the cal-
culation of the self-energy ΣΛ and the four-point vertex
ΓΛ) becomes solvable, and after successively integrat-
ing out higher energy modes Λ → Λf , the fully renor-
malized objects Σ and Γ are obtained.

Traditionally, fRG is formulated as an infinite hierar-
chy of exact flow equations for n-point vertex functions.
However, since already the six-point vertex is numeri-
cally intractable, truncations are needed. A frequently-
used strategy employs a one-loop (1�) truncation of the
exact hierarchy of flow equations by completely neglect-
ing six-point and higher vertices. This can be justified,
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.
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e.g., from a perturbative [2] or leading-log [4] perspec-
tive. Another truncation scheme is given by the mul-
tiloop fRG approach, mfRG, which includes all contri-
butions of the six-point vertex to the flow of the four-
point vertex and self-energy that can be computed with
numerical costs proportional to the 1� flow [5–7]. In
doing so, it sums up all parquet diagrams, formally
reconstructing the parquet approximation (PA) [8,9]
if loop convergence is achieved. Converged multiloop
results thus inherit all the properties of the PA. These
include self-consistency at the one- and two-particle
level (in that the PA is a solution of the self-consistent
parquet equations [9]); the validity of one-particle con-
servation laws (but not of two-particle ones); and the
independence of the final results on the choice of reg-
ulator (since the parquet equations and PA do not
involve specifying any regulator). The mfRG approach
was recently applied to the Hubbard model [10,11],
Heisenberg models [12,13], and the Anderson impurity
model [14].

A full treatment of the frequency and momentum
dependence of the four-point vertex generally requires
tremendous numerical resources. Hence, it is important
to parametrize these dependencies in an efficient way,
to reduce computational effort without losing informa-
tion on important physical properties. One such scheme
expresses the vertex as a sum of diagrammatic classes
distinguished by their asymptotic frequency behavior
[15,16]: Asymptotic classes which remain nonzero when
one or two frequency arguments are sent to infinity do
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not depend on these arguments, while the class depend-
ing on all three frequency arguments decays in each
direction.

A related strategy is to express parts of the vertex
through fermion bilinears that interact via exchange
bosons [17,18]. Partial bosonization schemes, which
approximate the vertex through one [19–21] or several
boson-exchange channels [22–24], have been employed
within the dual boson formalism, used in diagrammatic
extensions of dynamical mean field theory (DMFT)
aiming to include nonlocal correlations.

A decomposition of the full vertex into single-boson
exchange (SBE) parts, involving functions of at most
two frequencies, and residual parts depending on three
frequencies was developed in Refs. [25–30]. The guiding
principle of the SBE decomposition is reducibility in
the bare interaction U [25]. This criterion distinguishes
SBE contributions, that are U -reducible, from multi-
boson exchange and other contributions, that are not.
The SBE approximation retains only the U -reducible
part while neglecting all U -irreducible terms [26]. The
SBE terms are expressible through bosonic fluctuations
and their (Yukawa) couplings to fermions—the Hedin
vertices—and thus have a transparent physical interpre-
tation. Numerically, two- and three-point objects can be
computed and stored more easily than a genuine four-
point vertex.

Studies of the two-dimensional Hubbard model have
shown that the SBE decomposition is a promising tech-
nique for computing the frequency and momentum
dependences of the vertex [28–30]. In a 1� fRG cal-
culation, it was found that some of its essential fea-
tures are already captured by its U -reducible parts,
which are much easier to compute numerically than
the U -irreducible ones [31]. Reference [31] also obtained
results at strong interaction using DMF2RG, a method
that makes use of a DMFT vertex as the starting point
for the fRG flow [32–34]. Here, a very interesting aspect
of the SBE decomposition is that the SBE approxima-
tion (neglecting U -irreducible contributions) remains a
meaningful approximation also in the strong-coupling
regime [35], which is not the case for a similar approx-
imation scheme based on the parametrization through
asymptotic classes while using functions of at most two
frequency arguments.

Given these encouraging developments, it is of inter-
est to have a strategy for computing the ingredients of
the SBE approach—the bosonic propagators, the Hedin
vertices, and the remaining U -irreducible terms—not
only in 1� fRG [31] but also in mfRG. In this paper,
we therefore derive multiloop flow equations for the
SBE ingredients. To this end, we start from the parquet
equations to derive a general form of the SBE decompo-
sition where the structure of non-frequency arguments
is not specified. We then derive multiloop flow equations
for the SBE ingredients, and finally illustrate the rela-
tion of these objects to the parametrization of the ver-
tex in terms of two-particle reducible asymptotic classes
[16,31]. The numerical implementation of the resulting

SBE multiloop flow equations goes beyond the scope of
this purely analytical paper and is left for the future.

The paper is organized as follows: In Sect. 2, we
recapitulate the parquet equations, the corresponding
mfRG flow equations, and the frequency parametriza-
tion of the four-point vertex adapted to each two-
particle channel. In Sect. 3, we deduce the SBE decom-
position from the parquet equations and derive mul-
tiloop flow equations for the SBE ingredients in two
different ways. We also discuss the SBE approximation
and its associated mfRG flow. In Sect. 4, we recall the
definition of the asymptotic vertex classes and derive
multiloop equations for these. We outline the relation
between SBE ingredients and asymptotic classes and
their respective mfRG equations. We conclude with a
short outlook in Sect. 5. Appendices A and B illustrate
the SBE ingredients and asymptotic vertex classes dia-
grammatically, while Appendix C describes the relation
between our generalized notation of the SBE decom-
position to that of the original papers. Finally, Appen-
dices D and E give details on different definitions of cor-
relators and susceptibilities and show their close rela-
tion to the SBE ingredients.

2 Recap of parquet and mfRG equations

The parquet equations and the associated multiloop
fRG equations form the basis for the main outcomes of
this paper. For ease of reference and use in future sec-
tions, we recapitulate the notational conventions and
compactly summarize the main ingredients and results
of the mfRG approach [5–7]. To make the presenta-
tion self-contained, we also recall from the literature
the motivation for some of the definitions and conven-
tions presented below.

2.1 Parquet equations

The action of a typical fermionic model reads

S = − c̄1′ [G−1
0 ]1′|1c1 − 1

4U1′2′|12 c̄1′ c̄2′c2c1, (1)

with the bare propagator G0. The Grassmann fields
ci are labeled by a composite index i describing fre-
quency and other quantum numbers, such as posi-
tion or momentum, spin, etc. Throughout this paper,
repeated i-indices are understood to be integrated over
or summed over. Furthermore, U is the crossing sym-
metric bare interaction vertex, U1′2′|12 = −U2′1′|12
(called Γ0 in Refs. [6,7]). We assume it to be energy-
conserving without further frequency dependence, as
in any action derived directly from a time-independent
Hamiltonian. Our expression for the action (1) and later
definitions of correlation functions are given in the Mat-
subara formalism [36] and for fermionic fields. However,
our analysis can easily be transcribed to the Keldysh
formalism [37], and/or to bosonic fields, by suitably
adapting the content of the index i on ci and adjust-
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ing some prefactors. Such changes do not modify the
structure of the vertex decomposition and flow equa-
tions that are the focus of this paper.

The time-ordered one- and two-particle correlators,

G1|1′ = −〈c1c̄1′〉 and G
(4)
12|1′2′ = 〈c1c2c̄2′ c̄1′〉, can be

expressed in standard fashion [3] through the self-
energy and the four-point vertex,

Σ1′|1 = Σ
1′ 1

, Γ1′2′|12 = Γ

2 2′

1′ 1

.

(2)

These contain all one-particle irreducible one- and two-
particle vertex diagrams, respectively. Hence, these are
(amputated connected) diagrams that cannot be split
into two pieces by cutting a single bare propagator line.

The one-particle self-energy is related to the two-
particle vertex via the Schwinger–Dyson equation (SDE)
[9]. We do not discuss this equation much further
because its treatment is similar for both vertex decom-
positions discussed below. On the two-particle level, the
starting point of parquet approaches [9] is the parquet
decomposition,

Γ = R + γa + γp + γt. (3)

It states that the set of all vertex diagrams can be
divided into four disjoint classes: the diagrams in γr,
r = a, p, t, are two-particle reducible in channel r, i.e.,
they can be split into two parts by cutting two antipar-
allel (a), parallel (p), or transverse antiparallel (t) prop-
agator lines, respectively. The diagrams in R do not fall
apart by cutting two propagator lines and are thus fully
two-particle irreducible. This classification is exact and
unambiguous [16,38]. In the literature, the diagram-
matic channels are also known as crossed particle–hole
(ph ↔ a), particle–particle (pp ↔ p), and particle–hole
(ph ↔ t) channel.

Since the four classes in the parquet decomposition
are disjoint, one can decompose Γ w.r.t. its two-particle
reducibility in one of the channels r, Γ = Ir + γr.
Here, Ir comprises the sum of all diagrams irreducible
in channel r and fulfills Ir = R + γr̄ with γr̄ =∑

r′ �=r γr′ . The Bethe–Salpeter equations (BSEs) relate
the reducible diagrams to the irreducible ones and can
be summarized by

γr = Ir ◦ Πr ◦ Γ = Γ ◦ Πr ◦ Ir. (4)

The Πr bubble, defined as

Πa;34|3′4′ = G3|3′G4|4′ , (5a)

Πp;34|3′4′ = 1
2G3|3′G4|4′ , (5b)

Πt;43|3′4′ = −G3|3′G4|4′ , (5c)

represents the corresponding propagator pair in chan-
nel r, see Fig. 1. (Note that Πa;34|3′4′ = −Πt;43|3′4′

Fig. 1 Bethe–Salpeter equations in the antiparallel (a),
parallel (p) and transverse (t) channels

is consistent with crossing symmetry.) The connector
symbol ◦ denotes summation over internal frequencies
and quantum numbers (5, 6 in Eqs. (6) below) and its
definition depends on the channel r ∈ {a, p, t}: When
connecting Πr (or other four-leg objects labeled by r)
to some vertex, it gives

a : [A ◦ B]12|34 = A16|54B52|36, (6a)

p : [A ◦ B]12|34 = A12|56B56|34, (6b)

t : [A ◦ B]12|34 = A62|54B15|36. (6c)

By combining Γ = Ir + γr with the BSEs (4), one can
eliminate γr to get the “extended BSEs” [7] needed
later:

1r + Πr ◦ Γ = (1r − Πr ◦ Ir)
−1, (7a)

1r + Γ ◦ Πr = (1r − Ir ◦ Πr)
−1. (7b)

Here, the channel-specific unit vertices 1r, defined by
the requirement Γ = 1r ◦ Γ = Γ ◦ 1r, are given by

1a;12|34 = δ13δ24, (8a)

1p;12|34 = 1
2 (δ13δ24 − δ14δ23), (8b)

1t;12|34 = δ14δ23. (8c)

(For the p channel, the internal sum in 1p ◦ Γ = Γ ◦1p

runs over both outgoing (or ingoing) legs of Γ . There-
fore, the crossing symmetry of the vertex, i.e., Γ12|34 =
−Γ21|34 = −Γ12|43, is transferred to 1p, resulting in an
expression more involved than for the other two chan-
nels.)

The combination of the Dyson equation G = G0(1 +
ΣG), the SDE, the parquet decomposition (3), the
three BSEs (4), and the definitions Ir = Γ − γr con-
stitutes the self-consistent parquet equations. The only
truly independent object is the fully irreducible vertex
R. If R is specified, everything else can be computed
self-consistently via the parquet equations. However,
R is the most complicated object: its diagrams con-
tain several nested integrals/sums over internal argu-
ments, whereas the integrals in reducible diagrams par-
tially factorize. A common simplification, the parquet
approximation (PA), replaces R by U , closing the set
of parquet equations.
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2.2 Parquet mfRG

The conventional mfRG flow equations can be derived
from the parquet equations by introducing a regula-
tor Λ into the bare propagator G0, thus making all
objects in the parquet equations Λ-dependent [7]. The
fully irreducible vertex R is treated as an input and
is thus assumed to be Λ-independent, RΛ ≈ R. For
instance, this assumption arises both in the PA where
R ≈ U or in the dynamical vertex approximation DΓA
[39,40] where R ≈ RDMFT is taken from DMFT—here,
we will not distinguish these cases explicitly. Taking the
derivative of the SDE and the BSEs w.r.t. Λ then yields
flow equations for Σ and Γ . Within the context of this
paper, we will call this mfRG approach parquet mfRG,
to distinguish it from an SBE mfRG approach to be
discussed in Sect. 3.2.

When computing γ̇r = ∂Λγr via the BSEs, one
obtains terms including İr =

∑
r′ �=r γ̇r′ . Thus, one has

to iteratively insert the flow equation for γr into the
equations of the other channels r′ 	= r, yielding an infi-
nite set of contributions of increasing loop order:

Γ̇ = γ̇a + γ̇p + γ̇t, γ̇r =

∞∑

�=1

γ̇(�)
r . (9)

The individual �-loop contributions read [5,7]

γ̇(1)
r = Γ ◦ Π̇r ◦ Γ, (10a)

γ̇(2)
r = γ̇

(1)
r̄ ◦ Πr ◦ Γ + Γ ◦ Πr ◦ γ̇

(1)
r̄ (10b)

γ̇(�+2)
r = γ̇

(�+1)
r̄ ◦ Πr ◦ Γ +Γ ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Γ

+ Γ ◦ Πr ◦ γ̇
(�+1)
r̄ . (10c)

where γ̇
(�)
r̄ =

∑
r′ �=rγ̇

(�)
r′ and Eq. (10c) applies for �+2 ≥

3. In general, all terms at loop order � contain � − 1
factors of Π and one Π̇ (i.e., � loops, one of which is
differentiated), connecting � renormalized vertices Γ .

We have Π̇r ∼ GĠ + ĠG, where

Ġ = S + GΣ̇ G, (11)

with the single-scale propagator S = Ġ|Σ=const. Fig-
ure 2 illustrates Eqs. (10) diagrammatically in the a
channel.

The flow equation for the self-energy, derived in Ref.
[7] by requiring Σ to satisfy the SDE throughout the
flow, reads

Σ̇ = − Γ − γ̇t̄,C

︸ ︷︷ ︸
Σ̇t̄

− Γ

Σ̇t̄

︸ ︷︷ ︸
Σ̇t

.

(12)

Fig. 2 Diagrammatic depiction of the mfRG flow equa-
tions (10) in the a channel. The double-dashed bubble

Π̇a represents a sum of two terms, GĠ + ĠG, where
double-dashed propagators Ġ are fully differentiated ones
(cf. Eq. (11))

It has Γ and γ̇t̄,C =
∑

� Γ ◦Πr◦γ̇
(�)
t̄ ◦Πr◦Γ as input and

holds irrespective of the choice of vertex parametriza-
tion. For this reason, we do not discuss the self-energy
flow further in this paper, but it should of course be
implemented for numerical work.

The 1� contribution (10a) of the vertex flow, with

the fully differentiated Ġ replaced by the single-scale
propagator S in Π̇r is equivalent to the usual 1� flow
equation. Using Ġ instead of S, as done in Eq. (10a),
corresponds to the so-called Katanin substitution [41]:
it contains the feedback of the differentiated self-energy
into the vertex flow and already goes beyond the stan-
dard 1� approximation. By adding higher-loop contri-
butions until convergence is reached, one effectively
solves the self-consistent parquet equations through an
fRG flow. On the one hand, this ensures two-particle
self-consistency and related properties mentioned in the
introduction. On the other hand, it also provides a
way of reaching a solution of the parquet equations by
integrating differential equations. This may be numer-
ically favorable compared to an iteration of the self-
consistent equations. Particularly, when computing dia-
grammatic extensions of DMFT via DMF2RG, one then
needs only the full DMFT vertex as an input, and
not the r-(ir)reducible ones entering the parquet equa-
tions. This is helpful in the Matsubara formalism, where
the r-(ir)reducible vertices sometimes exhibit diver-
gences [42–46], and even more so when aiming for real-
frequency approaches [47,48].

2.3 Frequency parametrization

The four-point vertex Γ is a highly complicated object
and must be parametrized efficiently. In this section,
we summarize the frequency parametrization of the
vertex adapted to the three diagrammatic channels.
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a

b

c

Fig. 3 Definition of the three channel-specific frequency parametrizations of the four-point vertex. a The vertex is nonzero
only if the four fermionic frequencies satisfy ν′

1 + ν′
2 = ν1 + ν2. In that case, they can be expressed in three different

ways through one bosonic transfer frequency, ωr, and two fermionic frequencies, νr, ν′
r. Of course, each term can also be

expressed through the frequencies (ωr, νr, ν
′
r) of any of the three channels, as indicated here for R. b The choice of frequency

arguments in each channel γa, γp, and γt is motivated by the structure of their BSEs (4). c Diagrammatic depiction of
1r ◦ Πr ◦ Γ =

∑
ν′′

r
Πr • Γ (Eqs. (22), third line), a four-leg object obtained by inserting 1r between U and Πr (Eq. (21c)).

The multiplication of 1r◦ onto Πr ◦ Γ carries two instructions: draw Πr such that the endpoints of the lines connected to
1r lie close together (awaiting being connected to U), and perform the sum over the fermionic frequency ν′′

r of Πr

This parametrization is the building block for the SBE
decomposition discussed in Sect. 3.

Focusing on the frequency dependence, we switch
from the compact notation Γ1′2′|12 to the more elabo-
rate Γ1′2′|12(ν′

1ν
′
2|ν1ν2), with frequency arguments writ-

ten in brackets, and the subscripts now referring to non-
frequency quantum numbers (position or momentum,
spin, etc.). As mentioned earlier, we assume the bare
vertex U to have the form

U1′2′|12(ν
′
1ν

′
2|ν1ν2) = δν′

1+ν′
2,ν1+ν2

U1′2′|12, (13)

with U1′2′|12 independent of frequency. If U is
momentum-conserving without further momentum
dependence, our treatment of frequency sums below
may be extended to include momentum sums. To keep
the discussion general, we refrain from elaborating this
in detail. Note that, e.g., in the repulsive Hubbard
model, our sign convention in Eq. (1) is such that
Uσσ̄|σσ̄ = −U σ̄σ|σσ̄ < 0 (where, as usual, σ ∈ {↑, ↓},
↑̄ =↓, ↓̄ =↑).

Due to frequency conservation, one-particle correla-
tors depend on only one frequency,

G1′1(ν
′
1, ν1) = δν′

1,ν1
G1′1(ν1). (14)

Likewise, three frequencies are sufficient to parametrize
the vertex. For each channel γr, we express the four
fermionic frequencies ν′

1, ν
′
2, ν1, ν2 at the vertex legs

through a choice of three frequencies, a bosonic trans-
fer frequency, ωr, and two fermionic frequencies, νr and
ν′

r. These are chosen differently for each channel (see
Fig. 3a) and reflect its asymptotic behavior [16] as dis-
cussed in Sect. 4.1. We have

γr;1′2′|12(ν
′
1ν

′
2|ν1ν2) = δν′

1+ν′
2,ν1+ν2

γr;1′2′|12(ωr, νr, ν
′
r),

(15)

with ωr, νr, ν′
r related to ν′

1, ν1, ν2 through

ν′
1 = νa − ωa

2 = νp +
ωp

2 = ν′
t + ωt

2 ,

ν1 = ν′
a − ωa

2 = ν′
p +

ωp

2 = ν′
t − ωt

2 ,

ν2 = νa + ωa

2 = −ν′
p +

ωp

2 = νt + ωt

2 . (16)
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This parametrization symmetrically assigns ±ωr

2 shifts
to all external legs. (In the Matsubara formalism, the
bosonic Matsubara frequency closest to ±ωr

2 is chosen
for the shift.) With these shifts, crossing symmetries
ensure that prominent vertex peaks are centered around
ωr = 0, which is convenient for numerical work. How-
ever, other conventions are of course possible, too.

Though the frequencies ωr, νr, ν
′
r are tailored to a

specific channel γr, one may also use them to define
the r parametrization of the full vertex, writing

Γ1′2′|12(ν
′
1ν

′
2|ν1ν2) = δν′

1+ν′
2,ν1+ν2

Γ1′2′|12(ωr, νr, ν
′
r).

(17)

Likewise, R, γa, γp, γt can each be expressed as a δ
symbol times a function of any of the variable sets
(ωr, νr, ν

′
r). The r parametrization of Γ ◦Πr or Πr ◦Γ is

obtained by inserting Eqs. (14) and (17) into Eqs. (6).
The summations

∑
ν5ν6

over internal frequencies can be
collapsed using frequency-conserving δ symbols, leading
to

[Γ ◦ Πr](ωr, νr, ν
′′
r ) = Γ (ωr, νr, ν

′′
r ) • Π(ωr, ν

′′
r ), (18a)

[Πr ◦ Γ ](ωr, ν
′′
r , ν′

r) = Π(ωr, ν
′′
r ) • Γ (ωr, ν

′′
r , ν′

r), (18b)

where the bubble factors Πr(ωr, ν
′′
r ) are given by

Πa;34|3′4′(ωa, ν′′
a ) = G3|3′

(
ν′′

a − ωa
2

)
G4|4′

(
ν′′

a + ωa
2

)
, (19a)

Πp;34|3′4′(ωp, ν′′
p ) = 1

2
G3|3′

(ωp

2
+ν′′

p

)
G4|4′

(ωp

2
−ν′′

p

)
, (19b)

Πt;43|3′4′(ωt, ν
′′
t ) = −G3|3′

(
ν′′

t − ωt
2

)
G4|4′

(
ν′′

t + ωt
2

)
. (19c)

In Eqs. (18), the connector • by definition denotes
an internal summation analogous to ◦, except that
only non-frequency quantum numbers (position, spin,
etc.) are summed over. Correspondingly, the bubble

Γ̃ ◦ Πr ◦ Γ , involving two ◦ connectors, has the r
parametrization

[Γ̃ ◦ Πr ◦ Γ ](ωr, νr, ν
′
r)

=
∑

ν′′
r

Γ̃ (ωr, νr, ν
′′
r ) • Πr(ωr, ν

′′
r ) • Γ (ωr, ν

′′
r , ν′

r), (20)

see Fig. 3b. Here, one frequency sum survives, running
over the fermionic frequency ν′′

r associated with Πr.
For future reference, we define unit vertices for non-

frequency quantum numbers, 1r, by Γ = 1r •Γ = Γ •1r.
(For a bare vertex with momentum conservation and
no further momentum dependence, one could include a
momentum sum,

∑
k′′

r
, in Eq. (20) and exclude momen-

tum indices from the • summation and 1r.) The dis-
tinction between ◦, 1 and •, 1, indicating if connectors
and unit vertices include summations and δ symbols
for frequency variables or not, will be needed for the
SBE decomposition of Sect. 3. There, we will encounter
bubbles involving one or two bare vertices, U ◦ Πr ◦ U ,
Γ̃ ◦ Πr ◦ U , or U ◦ Πr ◦ Γ . Expressing these in the form
(20), the bare vertex U , since it is frequency indepen-
dent, can be pulled out of the sum over ν′′

r . To make

this explicit, we insert unit operators 1r next to U :

U ◦ Πr ◦ U = U • 1r ◦ Πr ◦ 1r • U, (21a)

Γ̃ ◦ Πr ◦ U = Γ̃ ◦ Πr ◦ 1r • U, (21b)

U ◦ Πr ◦ Γ = U • 1r ◦ Πr ◦ Γ. (21c)

We suppressed frequency arguments for brevity, it being
understood that equations linking Πr and 1r use the r
parametrization. Making the frequency sum involved in
◦Πr◦ explicit, we obtain four-leg objects,

[1r ◦ Πr ◦ 1r](ωr) =
∑

ν′′
r

Πr(ωr, ν
′′
r ),

[Γ̃ ◦ Πr ◦ 1r](ωr, νr) =
∑

ν′′
r

Γ̃ (ωr, νr, ν
′′
r ) • Πr(ωr, ν

′′
r ),

[1r ◦ Πr ◦ Γ ](ωr, ν
′
r) =

∑

ν′′
r

Πr(ωr, ν
′′
r ) • Γ (ωr, ν

′′
r , ν′

r)

(22)

that depend on only one or two frequency arguments
(cf. Figure 3c) and are thus numerically cheaper than
Γ . Note that, in general, 1r is not the unit operator
w.r.t. the ◦ connector, i.e., 1r ◦ Γ 	= Γ 	= Γ ◦ 1r since ◦
involves a frequency summation which does not affect
1r.

3 SBE decomposition

We now turn to the SBE decomposition. It also yields
an exact, unambiguous classification of vertex dia-
grams, now according to their U -reducibility in each
channel. This notion of reducibility, introduced in Ref.
[26], is very analogous to Π-reducibility, i.e., two-
particle reducibility. A diagram is called U -reducible
if it can be split into two parts by splitting apart a bare
vertex U (in ways specified below) in either of the three
channels. Otherwise, it is fully U -irreducible.

The SBE decomposition was originally formulated
in terms of physical (charge, spin, and singlet pairing)
channels which involve linear combinations of spin com-
ponents. For our purposes, it is more convenient not to
use such linear combinations (the relation between both
formulations is given in Appendix C). Moreover, the
original SBE papers considered models with transla-
tional invariance, with vertices labeled by three momen-
tum variables. We here present a generalization of the
SBE decomposition applicable to models without trans-
lational invariance, requiring four position or momen-
tum labels. Starting from the BSEs, we use arguments
inspired by Ref. [26] to arrive at a set of self-consistent
equations for SBE ingredients which will also enable us
to derive multiloop flow equations directly within this
framework. In terms of notation, we follow Ref. [26]
for the objects ∇r, wr, λ̄r, λr—with ϕfirr there denoted
ϕU irr here—while we follow Ref. [30] for Mr and Tr (the
latter instead of ϕr from Ref. [26]).
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Fig. 4 Illustration of U -r-reducibility, analogous to Fig. 4 of [26]. A and B can be any vertex diagram or simply 1r

3.1 Derivation of SBE decomposition from BSEs

As mentioned earlier, a vertex diagram is called two-
particle reducible in a specified channel r ∈ {a, p, t},
or Π-r-reducible for short, if it can be split into two
parts by cutting the two lines of a Πr bubble (to
be called linking bubble); if such a split is not possi-
ble, the diagram is Π-r-irreducible. The two-particle
reducible vertex γr is the sum of all Π-r-reducible dia-
grams. Following Ref. [26], we now introduce a further
channel-specific classification criterion. A Π-r-reducible
diagram is called U -r-reducible if a linking bubble Πr

has two of its legs attached to the same bare vertex in
the combination U◦Πr or Πr◦U . Then, that bare vertex
U , too, constitutes a link that, when “cut out”, splits
the diagram into two parts. (To visualize the meaning of
“cutting out U” diagrammatically, one may replace U
by 1r•U •1r and then remove U . This results in two pairs
of legs ending close together, ready to be connected
through reinsertion of U , see Figs. 3c and 4.) The low-
est order U -r-reducible contribution to γr is U ◦Πr ◦U .
The lowest-order term of Γ , the bare vertex U (which is
Π-r-irreducible), is viewed as U -r-reducible in all three
channels, corresponding to the three possible ways of
splitting its four legs into two pairs of two. All U -r-
reducible diagrams describe “single-boson exchange”
processes, in the sense that each link U connecting two
otherwise separate parts of the diagram mediates a sin-
gle bosonic transfer frequency, ωr (as defined in Fig. 3),
across that link, as will become explicit below.

All vertex diagrams that are not U -r-reducible are
called U -r-irreducible. These comprise all multi-boson
exchange (i.e., not single-boson exchange) diagrams
from γr, and all Π-r-irreducible diagrams except the
bare vertex (which is trivially U -r-reducible), i.e., all
diagrams from Ir − U = R − U +

∑
r′ �=r γr′ .

Next, we rewrite the parquet equations in terms of
U -r-reducible and U -r-irreducible parts. We define ∇r

as the sum of all U -r-reducible diagrams, including
(importantly) the bare vertex U , and Mr as the sum of
all diagrams that are Π-r-reducible but U -r-irreducible,
thus describing multi-boson exchange processes. Then,
the Π-r-reducible vertex γr, which does not include U ,
fulfills

γr = ∇r − U + Mr. (23)

Inserting Eq. (23) for γr into the parquet decompo-
sition (3) yields

Γ = ϕU irr +
∑

r∇r − 2U, (24a)

ϕU irr = R − U +
∑

rMr , (24b)

where ϕU irr is the fully U -irreducible part of Γ . The
U subtractions ensure that the bare vertex U , which
is contained once in each ∇r but not in ϕU irr, is not
over-counted. Some low-order diagrams of ∇r, Mr, and
R are shown in Fig. 5.

Just as γr, its parts ∇r and Mr satisfy Bethe–
Salpeter-type equations, which we derive next. Insert-
ing Eq. (23) into the full vertex Γ = Ir + γr, we split
it into a U -r-reducible part, ∇r, and a U -r-irreducible
remainder, Tr:

Γ = ∇r + Tr, (25a)

Tr = Ir − U + Mr. (25b)

The relation between the different decompositions of
the full vertex implied by Eqs. (23)–(25) is illustrated
in Fig. 6. Inserting Eqs. (23) and (25a) into either of
the two forms of the BSEs (4) for γr, we obtain

∇r − U + Mr = Ir ◦ Πr ◦ ∇r + Ir ◦ Πr ◦ Tr

= ∇r ◦ Πr ◦ Ir + Tr ◦ Πr ◦ Ir. (26)

This single set of equations can be split into two sep-
arate ones, one for ∇r − U , the other for Mr, contain-
ing only U -r-reducible or only U -r-irreducible terms,
respectively. The first terms on the right are clearly
U -r-reducible, since they contain ∇r. For the second
terms on the right, we write Ir as the sum of U and
Ir − U , yielding U -r-reducible and U -r-irreducible con-
tributions, respectively. We thus obtain two separate
sets of equations,

∇r − U = Ir ◦ Πr ◦ ∇r + U ◦ Πr ◦ Tr

= ∇r ◦ Πr ◦ Ir + Tr ◦ Πr ◦ U, (27)

Mr = (Ir − U) ◦ Πr ◦ Tr

= Tr ◦ Πr ◦ (Ir − U), (28)

the latter of which corresponds to Eq. (17) in Ref. [30].
In Eqs. (27), we now bring all ∇r contributions to the
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Fig. 5 Low-order diagrams for ∇r, Mr, and R, illustrating Π-r-reducibility (blue dashed lines) and U -r-reducibility (red
dotted lines; their meaning is made explicit in Fig. 4). ∇r contains all U -r-reducible diagrams; except for the bare vertex,
they all are Π-r-reducible, too. Ma contains all diagrams that are Π-a- but not U -a-reducible. All diagrams in R are neither
Π-r- nor U -r-reducible, except for the bare vertex, which is U -a-, U -p- and U -t-reducible (as indicated by three red dotted
lines)

U−R

aM pM

tM

U
U−t∇

U−a∇ U−p∇ a∇
U

aT

U−R

UU

aI

aγ aγpγ

tγ

aγ+aIΓ =

a∇+aTΓ =

rγr+RΓ =

)rM+U−r∇(r+RΓ =

a b

dc

Fig. 6 Venn diagrams illustrating various ways of splitting
the full vertex into distinct contributions. Panel a depicts
the parquet decomposition (3), b the Π-a-reducible part γa

and its complement Ia, c the SBE decomposition (24) (mim-
icking Fig. 6 of [26]), and d the U -a-reducible part ∇a and
its complement Ta. For r = p, t, the Π-r- and U -r-reducible
parts and their complements can be depicted analogously

left,

(1r − Ir ◦ Πr) ◦ ∇r = U ◦ (1r + Πr ◦ Tr),

∇r ◦ (1r − Πr ◦ Ir) = (1r + Tr ◦ Πr) ◦ U, (29)

and solve for ∇r by evoking the extended BSEs (7):

∇r = (1r + Γ ◦ Πr) ◦ U ◦ (1r + Πr ◦ Tr)

= (1r + Tr ◦ Πr) ◦ U ◦ (1r + Πr ◦ Γ ). (30)

This directly exhibits the U -r-reducibility of ∇r.
We now adopt the r parametrization and note a key

structural feature of Eq. (30) for ∇r: it contains a
central bare vertex U , connected via ◦Πr ◦ to either
Γ or Tr or both. We may thus pull the frequency-
independent U out of the frequency summations, so
that ◦Πr ◦ leads to •1r ◦ Πr ◦ or ◦Πr ◦ 1r•, where the
multiplication with 1r includes a sum over an internal
fermionic frequency (recall Eqs. (21), (22) and Fig. 3).

Fig. 7 Diagrammatic depiction of Eq. (33) (exemplified for
the a channel), expressing the U -r-reducible vertex ∇r =
λ̄r •wr •λr through two Hedin vertices, λ̄r, λr, and a screened
interaction, wr. The dashed boxes emphasize that λ̄r, wr,
λr all have four fermionic legs; those of wr and the outer
legs of λ̄r and λr are amputated. Still, wr depends on just
a single, bosonic frequency and can hence be interpreted
as an effective bosonic interaction. Its four legs lie pairwise
close together since each pair stems from a bare vertex (see
Eq. (43) and Fig. 3c). The two inward-facing legs of both
λ̄r and λr, connecting to wr, are therefore also drawn close
together, whereas the outward-facing legs are not. To depict
this asymmetry in a compact manner, triangles are used
on the right. For explicit index summations for all three
channels, see Fig. 12 in Appendix A

Thus, Eq. (30) leads to

∇r = (1r + Γ ◦ Πr ◦ 1r) • U • (1r + 1r ◦ Πr ◦ Tr)

= (1r + Tr ◦ Πr ◦ 1r) • U • (1r + 1r ◦ Πr ◦ Γ ).
(31)

In the first or second line, the expressions on the right
or left of • U •, respectively, are U -r-irreducible. These
factors are the so-called Hedin vertices [49] (cf. Ref. [30],
Eq. (5)),

λ̄r(ωr, νr) ≡ 1r + [Tr ◦ Πr ◦ 1r](ωr, νr), (32a)

λr(ωr, ν
′
r) ≡ 1r + [1r ◦ Πr ◦ Tr](ωr, ν

′
r). (32b)

In our notation, the Hedin vertices have four fermionic
legs, but (importantly) depend on only two frequencies.
Indeed, regarding their frequency dependence, they can
be viewed as the U -irreducible, amputated parts of
three-point response functions (see Appendix D and
Ref. [26]). Then, Eqs. (32) have the structure of SDEs
for a three-point vertex with a bare three-point vertex
1r (cf. Refs. [3,7]). Via the Hedin vertices, ∇r factorizes
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Fig. 8 SBE decomposition of the vertex Γ into U -r-irreducible and U -r-reducible contributions, with r = a, p, t. When
connecting Hedin vertices to other objects, the two fermionic legs require a ◦ connector, the bosonic leg a • connector

into functions of at most two frequency arguments and
is thus computationally cheaper than, e.g., γr. Follow-
ing Refs. [26,30], we write

∇r = λ̄r • wr • λr, (33)

where two U -r-irreducible Hedin vertices sandwich a
U -r-reducible object, wr(ωr) (see Fig. 7). The object wr

depends only on the bosonic frequency ωr and can be
interpreted as a screened interaction. To find wr explic-
itly, we first express Eq. (31) through Hedin vertices,

∇r = (1r + Γ ◦ Πr ◦ 1r) • U • λr

= λ̄r • U • (1r + 1r ◦ Πr ◦ Γ ). (34)

Then, Γ = Tr + ∇r leads to implicit relations for ∇r:

∇r = (λ̄r + ∇r ◦ Πr ◦ 1r) • U • λr

= λ̄r • U • (λr + 1r ◦ Πr ◦ ∇r). (35)

Next, we insert Eq. (33) for ∇r on both sides to obtain

λ̄r • wr • λr = λ̄r • (U + wr • λr ◦ Πr ◦ U) • λr

= λ̄r • (U + U ◦ Πr ◦ λ̄r • wr) • λr. (36)

This implies that wr satisfies a pair of Dyson equations,

wr = U + wr • λr ◦ Πr ◦ U

= U + U ◦ Πr ◦ λ̄r • wr, (37)

which can be formally solved as

wr = U • (1r − λr ◦ Πr ◦ U)−1

= (1r − U ◦ Πr ◦ λ̄r)
−1 • U. (38)

As desired, the screened interaction wr is manifestly
U -r-reducible, and depends on only a single, bosonic
frequency, ωr. To emphasize this fact, Eq. (38) can be
written as

wr = U • (1r − Pr • U)−1

= (1r − U • Pr)
−1 • U, (39)

where Pr(ωr) is the polarization [30],

Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r. (40)

Regarding frequency dependencies, wr can be viewed
as a bosonic propagator and Pr as a corresponding self-
energy; Eq. (40) then has the structure of a SDE for Pr

involving the bare three-point vertex 1r [3,7].
Inserting Eq. (33) for ∇r into Eq. (24a) for Γ , we

arrive at the SBE decomposition of the full vertex of
Ref. [26] in our generalized notation,

Γ= ϕU irr +
∑

rλ̄r • wr • λr − 2U, (41a)

depicted diagrammatically in Fig. 8. For ease of refer-
ence, we gather all necessary relations for its ingredi-
ents:

wr = U + U • Pr • wr = U + wr • Pr • U, (41b)

Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r, (41c)

λ̄r = 1r + Tr ◦ Πr ◦ 1r, (41d)

λr = 1r + 1r ◦ Πr ◦ Tr, (41e)

Tr = Γ − λ̄r • wr • λr, (41f)

ϕU irr = R − U +
∑

rMr, (41g)

Mr =(Tr−Mr)◦ Πr ◦ Tr =Tr◦ Πr◦ (Tr−Mr). (41h)

We collectively call Eqs. (41) the SBE equations.
Together with the SDE for the self-energy and an input
for the two-particle irreducible vertex R, the SBE equa-
tions are a self-consistent set of equations and thus
fully define the four-point vertex Γ . They can either be
solved self-consistently (as by Krien et al. in Refs. [27–
30], where an analogous set of equations was set up),
or via multiloop flow equations, derived in Sect. 3.2.

To conclude this section, let us point out the physical
meaning of λ̄r, wr, λr by showing their relation to three-
point vertices and susceptibilities. For this, a symmetric
expression for wr is needed, which can be obtained by
comparing Eqs. (33) and (34) to deduce

λ̄r • wr = U + Γ ◦ Πr ◦ U, (42a)

wr • λr = U + U ◦ Πr ◦ Γ, (42b)
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and inserting these into the Dyson equations (37):

wr = U + U ◦ Πr ◦ U + U ◦ Πr ◦ Γ ◦ Πr ◦ U. (43)

Equations (42) and (43) can be expressed as

[λ̄r • wr](ωr, νr) = Γ̄ (3)
r (ωr, νr) • U, (44a)

[wr • λr](ωr, ν
′
r) = U • Γ (3)

r (ωr, ν
′
r), (44b)

wr(ωr) = U + U • χr(ωr) • U, (44c)

where Γ̄
(3)
r , Γ

(3)
r represent full three-point vertices and

χr susceptibilities, defined by

Γ̄ (3)
r (ωr, νr) = 1r + [Γ ◦ Πr ◦ 1r](ω, νr), (45a)

Γ (3)
r (ωr, ν

′
r) = 1r + [1r ◦ Πr ◦ Γ ](ωr, ν

′
r), (45b)

χr(ωr) = [1r ◦ Πr ◦ 1r](ωr)

+ [1r ◦ Πr ◦ Γ ◦ Πr ◦ 1r](ωr). (45c)

(The bare vertices were pulled out in front of the fre-
quency sums, exploiting their frequency independence.)

The relation of Γ̄
(3)
r and Γ

(3)
r to three-point correlators

and response functions is described in Appendix D; the
relation of χr to physical susceptibilities for a local bare
interaction U is discussed in Appendix E.

3.2 SBE mfRG from parquet mfRG

Having defined all the SBE ingredients, we are now
ready to derive mfRG flow equations for them—the
main goal of this work. Our strategy is to insert the
SBE decomposition of Eqs. (23) and (24) into the par-
quet mfRG flow equations (10) for the Π-r-reducible
vertices γr. An alternative derivation, starting directly
from the SBE equations (41), is given in Sect. 3.3.

We begin by differentiating the decomposition of the
Πr-reducible vertex γr = λ̄r •wr •λr −U +Mr (Eq. (23))

w.r.t. the flow parameter. Since U̇ = 0 (the bare vertex
does not depend on the regulator), we obtain

γ̇r = ˙̄λr • wr • λr+λ̄r • ẇr • λr+λ̄r • wr • λ̇r+Ṁr. (46)

The loop expansion γ̇r =
∑

� γ̇
(�)
r implies similar expan-

sions for ẇr,
˙̄λr, λ̇r, and Ṁr. Each term at a given

loop order � can be found from the mfRG flow (10) for

γ̇
(�)
r , by inserting the decomposition of the full vertex,

Γ = λ̄r •wr •λr+Tr (Eq. (25a)) on the right of Eqs. (10).

The 1� flow equation (10a) for γ̇
(1)
r has four contri-

butions (shown diagrammatically for γ
(1)
a in Fig. 9):

γ̇(1)
r =

(
λ̄r • wr • λr + Tr

)
◦ Π̇r ◦

(
λ̄r • wr • λr + Tr

)

= Tr ◦ Π̇r ◦ λ̄r • wr • λr

+ λ̄r • wr • λr ◦ Π̇r ◦ λ̄r • wr • λr

+ λ̄r • wr • λr ◦ Π̇r ◦ Tr + Tr ◦ Π̇r ◦ Tr. (47)

By matching terms in Eqs. (46) and (47) containing
factors of λ̄r and λr or not, we obtain the 1� SBE flow:

ẇ(1)
r = wr • λr ◦ Π̇r ◦ λ̄r • wr,

˙̄λ(1)
r = Tr ◦ Π̇r ◦ λ̄r,

λ̇(1)
r = λr ◦ Π̇r ◦ Tr,

Ṁ (1)
r = Tr ◦ Π̇r ◦ Tr. (48a)

This reproduces the 1� SBE flow derived in Ref. [31]
(their Eq. (18)). The higher loop terms can be found

similarly from γ̇
(2)
r and γ̇

(�+2)
r of Eqs. (10b) and (10c).

For each loop order �, the γ̇
(�)
r̄ factors on the right side

of these equations can be expressed through the already

known flow of ẇ
(�)
r′ , ˙̄λ

(�)
r′ λ̇

(�)
r′ and Ṁ

(�)
r′ . We obtain the

flow equations (� + 2 ≥ 3)

ẇ(2)
r = 0,

˙̄λ(2)
r = γ̇

(1)
r̄ ◦ Πr ◦ λ̄r,

λ̇(2)
r = λr ◦ Πr ◦ γ̇

(1)
r̄ ,

Ṁ (2)
r = γ̇

(1)
r̄ ◦ Πr ◦ Tr + Tr ◦ Πr ◦ γ̇

(1)
r̄ , (48b)

ẇ(�+2)
r = wr • λr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ λ̄r • wr,

˙̄λ(�+2)
r = γ̇

(�+1)
r̄ ◦ Πr ◦ λ̄r + Tr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ λ̄r,

λ̇(�+2)
r = λr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Tr + λr ◦ Πr ◦ γ̇

(�+1)
r̄ ,

Ṁ (�+2)
r = γ̇

(�+1)
r̄ ◦ Πr ◦ Tr + Tr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Tr

+ Tr ◦ Πr ◦ γ̇
(�+1)
r̄ . (48c)

Here, γ̇
(�)
r̄ , required for the flow at loop orders � + 1

and � + 2, can directly be constructed from the SBE
ingredients using Eq. (46). Similarly as in Eqs. (10), all
terms at loop order � contain �−1 factors of Π and one
Π̇, now connecting the renormalized objects wr, λ̄r, λr,
Tr.

The SBE mfRG flow equations (48) are the most
important result of this work. For the a channel,
they are depicted diagrammatically in Fig. 10. Equa-
tions (48) can be condensed into more compact ones,
giving the full flow (summed over all loop orders, ẇr =∑

�≥1 ẇ
(�)
r , etc.) of the SBE ingredients; see the next

section. The multiloop flow equation for the self-energy
[5,7] is given in Eq. (12).

3.3 SBE mfRG from SBE equations

In the previous section, we derived the SBE mfRG flow
equations by inserting the SBE decomposition into the
known parquet mfRG flow equations of the two-particle
reducible vertices γr. They can also be derived without
prior knowledge on the flow of γr, using the techniques
of Ref. [7].

In the parquet setting of Ref. [7], one can view the
Π-r-irreducible vertex Ir as the key ingredient for all
equations related to channel r. In step (i), one uses Ir
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Fig. 9 SBE decomposition of the left and right sides of the 1� flow equation (10a) (Fig. 2) in the a channel. The first line
depicts Eq. (46), the second Eq. (47). Equating terms with matching structure yields Eq. (48a), depicted in Fig. 10, first
line

Fig. 10 Multiloop flow equations (48) for the ingredients of the SBE decomposition in the a channel

to generate γr and thus Γ through a BSE. Then, a
post-processing of attaching and closing external legs

yields (ii) (full) three-point vertices Γ̄
(3)
r , Γ

(3)
r and (iii)

a susceptibility χr. The SBE setting can be under-
stood in close analogy, with the only exception that
one purposefully avoids generating U -r-reducible con-
tributions, because these can (more efficiently) be con-
structed via ∇r = λ̄r • wr • λr. To exclude U -r-reducible
contributions, one uses in step (i) Ir −U to generate Mr

and thus Tr through a BSE. The same post-processing
as before yields (ii) λ̄r, λr and then (iii) wr or Pr.

Because of this structural analogy, the SBE mfRG
flow equations can be derived in the exact same fashion
as the parquet mfRG flow equation of Ref. [7]. One
merely has to replace the variables according to the
dictionary

Ir → Ir − U, γr → Mr, Γ → Tr,

Γ̄ (3)
r → λ̄r, Γ (3)

r → λr, χr → Pr. (49)

For clarity, we now spell out the structural analogies
between the original parquet formalism and its SBE
version, presenting similarly-structured expressions in
pairs of equations, (a) and (b). For both approaches,
the full vertex can be decomposed in several ways:

Γ = R +
∑

r

γr = Ir + γr, (50a)

Γ =R+
∑

r

Mr+
∑

r

(∇r−U)=Tr + ∇r. (50b)

Here, γr and Mr satisfy analogous BSEs,

γr = Ir ◦ Πr ◦ Γ, (51a)

Mr = (Ir − U) ◦ Πr ◦ Tr, (51b)

where the objects on the left reappear on the right
through

Γ = Ir + γr, (52a)

Tr = (Ir − U) + Mr. (52b)

Relations (51) and (52) are used for step (i). Differ-
entiation of Eq. (51a) yields the mfRG flow of γ̇r as
in Eq. (10) and Fig. 2a of Ref. [7]. Here, we replace
the variables as above and start by differentiating
Eq. (51b):

Ṁr = İr ◦ Πr ◦ Tr + (Ir − U) ◦ Π̇r ◦ Tr

+ (Ir − U) ◦ Πr ◦ İr + (Ir − U) ◦ Πr ◦ Ṁr

⇒ Ṁr = (1r − (Ir − U) ◦ Πr)
−1 ◦

[
İr ◦ Πr ◦ Tr

+(Ir − U) ◦ Π̇r ◦ Tr + (Ir − U) ◦ Πr ◦ İr

]
.

(53)

For the first argument of Eq. (53), we used ∂Λ(Ir−U) =

İr, as U̇ = 0. Next, we use the extended BSE 1r + Tr ◦
Πr = (1r − (Ir − U) ◦ Πr)

−1
for Mr, cf. Eqs. (7) and
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(51). Recollecting the terms, we obtain the flow of Ṁr

as

Ṁr = Tr ◦ Π̇r ◦ Tr + İr ◦ Πr ◦ Tr

+ Tr ◦ Πr ◦ İr ◦ Πr ◦ Tr + Tr ◦ Πr ◦ İr. (54)

A loop expansion with İr = γ̇r̄ =
∑

� γ̇
(�)
r̄ then yields

our Eqs. (48) and Fig. 10.
For step (ii), we have the analogous relations

Γ̄ (3)
r = 1r + Γ ◦ Πr ◦ 1r, Γ (3)

r = 1r + 1r ◦ Πr ◦ Γ,
(55a)

λ̄r = 1r + Tr ◦ Πr ◦ 1r, λr = 1r + 1r ◦ Πr ◦ Tr.
(55b)

Differentiation of Eq. (55a) yields the mfRG flow of

Γ
(3)
r as in Eq. (42) and Fig. 7 of Ref. [7]. Here, we

again replace the variables as above and differentiate
Eq. (55b):

˙̄λr = Ṫr ◦ Πr ◦ 1r + Tr ◦ Π̇r ◦ 1r,

λ̇r = 1r ◦ Π̇r ◦ Tr + 1r ◦ Πr ◦ Ṫr. (56)

As Ṫr = İr+Ṁr (cf. Eq. (52b)), we insert the flow equa-

tion (54) for Ṁr into Eq. (56) and use again Eq. (55b)
This yields the flow equations

˙̄λr = Tr ◦ Π̇r ◦ λ̄r + İr ◦ Πr ◦ λ̄r + Tr ◦ Πr ◦ İr ◦ Πr ◦ λ̄r,

λ̇r = λr ◦ Π̇r ◦ Tr + λr ◦ Πr ◦ İr + λr ◦ Πr ◦ İr ◦ Πr ◦ Tr.
(57)

Their loop expansion reproduces Eqs. (48) and Fig. 10.
Finally, in step (iii), we have the relations

χr = Γ (3)
r ◦ Πr ◦ 1r = 1r ◦ Πr ◦ Γ̄ (3), (58a)

Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r. (58b)

Differentiation of Eq. (58a) yields the mfRG flow
of χr as in Eq. (44) and Fig. 8 of Ref. [7]. Replacing
the variables as above one more time, we differentiate
Eq. (58b):

Ṗr = 1r ◦ Πr ◦ ˙̄λr + 1r ◦ Π̇r ◦ λ̄r. (59)

After inserting Eqs. (55b) and (57), we eventually
obtain

Ṗr = λr ◦
(
Π̇r + Πr ◦ İr ◦ Πr

)
◦ λ̄r. (60)

The relation between Ṗr and ẇr follows from the
Dyson equation (41b) as

ẇr = U • Ṗr • wr + U • Pr • ẇr. (61)

Solving this for ẇr yields

ẇr = (1r − U • Pr)
−1 • U • Ṗr • wr = wr • Ṗr • wr,

(62)

having inserted the inverted Dyson equations (39). A
loop expansion of Eq. (60) yields:

Ṗ (1)
r = λr ◦ Π̇r ◦ λ̄r,

Ṗ (2)
r = 0,

Ṗ (�+2)
r = λr ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ λ̄r. (63)

Inserting the loop expansion Ṗ
(�)
r into Eq. (62) for ẇr

yields the same flow equation for wr as in our Eqs. (48)
and Fig. 10.

Depending on the specific model, it can be more effi-
cient to calculate the flow of the polarization, Ṗr, by
Eqs. (63) instead of the flow of the screened interac-
tion, ẇr, by Eqs. (48). The screened interaction on the
contrary can be obtained by the inverted Dyson Eqs.
(39).

Altogether, Eqs. (54), (57), (60) and (62) (with
Tr given by Γ − ∇r̄, Eq. (50b)) build a system of
closed fRG equations, as full derivatives of the SBE
equations (41). Hence, combined with an appropri-
ate self-energy flow (cf. Eq. (12) and Ref. [7]), they
yield regulator-independent results. To integrate the
flow equations in practice, one employs the mfRG loop
expansions (48) and (63).

3.4 mfRG flow of the SBE approximation

To reduce numerical costs, it may sometimes be desir-
able to approximate the flow of the vertex treating only
objects with less than all three frequency arguments.
The simplest choice is to restrict the flow to functions
depending on a single frequency. In the present context,
this corresponds to keeping all objects except wr con-

stant. With ˙̄λr = 0 = λ̇r, the flow of the polarization
(59) is simply

Ṗr = λr ◦ Π̇r ◦ 1r = 1r ◦ Π̇r ◦ λ̄r. (64)

Hence, the flow equations of Pr and wr completely
decouple, and one effectively obtains a vertex consisting
of three independent series of ladder diagrams. Never-
theless, such a flow may be helpful for code-developing
purposes.

An approximation of the vertex with objects of at
most two frequency arguments is given by the SBE
approximation [26], which sets ϕU irr = 0. More gen-
erally, one may also keep ϕU irr 	= 0 constant during the
flow, e.g., as obtained from DMFT (called SBE-DΓA
in Ref. [26]). This was used in a 1� implementation of
DMF2RG in Ref. [31]. In the following, we will refer to
the approximation of using a non-flowing U -irreducible
part, ϕ̇U irr = 0, as SBE approximation, regardless of
whether ϕU irr is set to zero or not.
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We now derive mfRG flow equations for the SBE
approximation, so that Ṙ = 0, as before, and fur-
thermore Ṁr = 0. For the most part, the SBE equa-
tions (41) remain unchanged. Only the BSE for Mr

(41h) is not considered anymore, since now ϕU irr =
R − U +

∑
r Mr is used as an input. The correspond-

ing flow equations can be obtained as in Sect. 3.3. The
flow of the polarization, the screened interaction and
the Hedin vertices, prior to any transformation, is still
given by Eqs. (59), (62) and (56) (collected here for
convenience)

Ṗr = 1r ◦ Π̇r ◦ λ̄r + 1r ◦ Πr ◦ ˙̄λr

= λ̇r ◦ Πr ◦ 1r + λr ◦ Π̇r ◦ 1r, (65a)

ẇr = wr • Ṗr • wr, (65b)

˙̄λr = Tr ◦ Π̇r ◦ 1r + Ṫr ◦ Πr ◦ 1r, (65c)

λ̇r = 1r ◦ Π̇r ◦ Tr + 1r ◦ Πr ◦ Ṫr. (65d)

However, the flow of Tr = Ir − U + Mr now has no Ṁr

contribution. It is induced solely by İr = ∇̇r̄, the flow
of the U -reducible contributions from complementary
channels,

Ṫr = ∇̇r̄, (65e)

and thus is fully determined by ˙̄λr̄, λ̇r̄ and ẇr̄.
Equations (65) can be rewritten by inserting the flow

of the higher-point objects into the lower-point objects:

˙̄λr = Tr ◦ Π̇r ◦ 1r + ∇̇r̄ ◦ Πr ◦ 1r, (66a)

λ̇r = 1r ◦ Π̇r ◦ Tr + 1r ◦ Πr ◦ ∇̇r̄, (66b)

Ṗr = 1r ◦ Π̇r ◦ λ̄r + 1r ◦ Πr ◦ Tr ◦ Π̇r ◦ 1r

+ 1r ◦ Πr ◦ ∇̇r̄ ◦ Πr ◦ 1r

= 1r ◦ Π̇r ◦ λ̄r + λr ◦ Π̇r ◦ 1r

− 1r ◦ Π̇r ◦ 1r + 1r ◦ Πr ◦ ∇̇r̄ ◦ Πr ◦ 1r. (66c)

In the last line, we expressed 1r ◦ Πr ◦ Tr in terms
of the Hedin vertex λr − 1r. Equations (66) are simi-
lar to the previous flow equations (57) and (60) of the
more general case, but some occurrences of the Hedin
vertices λ̄r, λr on the right there are here replaced by
their zeroth-order term 1r. Evidently, the contributions
needed to upgrade these 1r to λ̄r, λr are omitted when
setting Ṁr = 0.

A loop expansion of the above equations then yields

Ṗ (1)
r = 1r ◦ Π̇r ◦ λ̄r + λr ◦ Π̇r ◦ 1r − 1r ◦ Π̇r ◦ 1r,

˙̄λ(1)
r = Tr ◦ Π̇r ◦ 1r,

λ̇(1)
r = 1r ◦ Π̇r ◦ Tr, (67a)

Ṗ (2)
r = 0,

˙̄λ(�+1)
r = ∇̇(�)

r̄ ◦ Πr ◦ 1r,

λ̇(�+1)
r = 1r ◦ Πr ◦ ∇̇(�)

r̄ , (67b)

Ṗ (�+2)
r = 1r ◦ Πr ◦ ∇̇(�)

r̄ ◦ Πr ◦ 1r,

ẇ(�)
r = wr • Ṗ (�)

r
• wr. (67c)

Apart from the fact that Ṁr is not needed here, the
other flow equations are also simpler than Eqs. (48)

without Ṁr, obtained from the full SBE equations. To
be specific, Eqs. (48) contain λ̄r or λr on the right of

the flow equations for ˙̄λ
(�)
r or λ̇

(�)
r , whereas the simplified

Eqs. (67) contain 1r there, and, for � ≥ 2, only one term
where Eqs. (48) had two.

When using the above flow equations for the SBE
approximation, the self-energy flow (12) should also be
re-derived from either the SDE or the Hedin equation
for Σ (e.g. Eq. (23) in Ref. [27]). Since the present paper
focuses on vertex parametrizations, we leave a deriva-
tion of a suitably modified self-energy flow for future
work. Here, it suffices to note that, when used together
with such a modified self-energy flow, Eqs. (67) are
again total derivatives of a closed set of equations. So,
integrating the flow until loop convergence would yield
the regulator-independent solution of the SBE approx-
imation.

Transforming the self-consistent equations of the
SBE approximation on the vertex level to an equiva-
lent mfRG flow reveals its simplistic nature, with rela-

tions like λ̇
(1)
r = 1r •Π̇r •Tr, and demonstrates how fRG

offers an intuitive way to go beyond that, using, e.g.,

λ̇
(1)
r = λr • Π̇r • Tr (still treating only functions of at

most two frequencies). However, the latter flow would
be regulator-dependent per se. It remains to be seen
how severe the lack of regulator independence for this
flow, as used, e.g., in Ref. [31], is.

The simplified schemes presented in this section [i.e.,
Eqs. (64) and (67)] are closed flow equations on the ver-
tex level and thus offer an appealing way for approach-
ing the full SBE mfRG equations (48). Thereby, SBE
ingredients with more complicated frequency depen-
dence can be taken into account successively during
code development. To what extent they can succeed
in actually capturing the essential physics of a given
problem will have to be investigated on a case-by-case
basis. Generally, we showed that mfRG offers a way to
make the choice of a certain approximation regulator
independent, either for the simplistic flow of the SBE
approximation or for the full SBE mfRG flow reproduc-
ing the PA.

4 Asymptotic classes

In numerical implementations of parquet mfRG [10–14],
it is useful to handle the numerical complexity of the
vertex by decomposing it into asymptotic classes with
well-defined high-frequency behaviors. It is convenient
to compute the flow of these asymptotic classes using
their own flow equations; here, we recapitulate their
derivation. We also elucidate the close relation between
vertex parametrizations using the parquet decomposi-
tion with asymptotic classes or the SBE decomposition,
deriving explicit equations relating their ingredients.
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These equations may facilitate the adaption of codes
devised for parquet mfRG to SBE mfRG applications.

4.1 Definition of asymptotic classes

The parametrization of two-particle reducible vertices
γr via asymptotic classes was introduced in Ref. [16] to
conveniently express their high-frequency asymptotics
through simpler objects with fewer frequency argu-
ments. One makes the ansatz

γr(ωr, νr, ν
′
r)

= Kr
1(ωr)+Kr

2(ωr, νr)+Kr
2′(ωr, ν

′
r)+Kr

3(ωr, νr, ν
′
r).

(68)

Here, Kr
1 contains all diagrams having both νr legs con-

nected to the same bare vertex and both ν′
r legs con-

nected to another bare vertex. (For a diagrammatic
depiction, see Appendix B, Fig. 14.) These diagrams
are thus independent of νr, ν′

r and stay finite in the
limit |νr| → ∞, |ν′

r| → ∞,

lim
|νr|→∞

lim
|ν′

r|→∞
γr(ωr, νr, ν

′
r) = Kr

1(ωr). (69a)

Kr
2 (or Kr

2′) analogously contains the part of the vertex
having both ν′

r (or νr) legs connected to the same bare
vertex while the two νr (or ν′

r) legs are connected to
different bare vertices. Hence, it is finite for |ν′

r| → ∞
(or |νr| → ∞) but vanishes for |νr| → ∞ (or |ν′

r| → ∞):

lim
|ν′

r|→∞
γr(ωr, νr, ν

′
r) = Kr

1(ωr) + Kr
2(ωr, νr),

lim
|νr|→∞

γr(ωr, νr, ν
′
r) = Kr

1(ωr) + Kr
2′(ωr, ν

′
r). (69b)

Kr
3 exclusively contains diagrams having both νr legs

connected to different bare vertices, and likewise for
both ν′

r legs. Such diagrams depend on all three fre-
quencies and thus decay if any of them is sent to infin-
ity. When taking the above limits for bubbles involving
channels r′ different from r, we obtain zero,

lim
|νr|→∞

γr′ �=r = lim
|ν′

r|→∞
γr′ �=r = 0, (69c)

as each Πr′ in γr′ has a denominator containing ωr′ �=r,
which is a linear combination of ωr, νr and ν′

r.
Since R explicitly depends on all frequencies, it

decays to the bare vertex U at high frequencies, and
the asymptotic classes can be obtained by taking limits
of the full vertex. Explicitly, Kr

1 can be obtained from

lim
|νr|→∞

lim
|ν′

r|→∞
Γ (ωr, νr, ν

′
r) = U + Kr

1(ωr), (70a)

taking the double limit in such a way that νr ±ν′
r is not

constant, to ensure that all bosonic frequencies |ωr′ �=r|
go to ∞ [16]. Similarly, Kr

2, Kr
2′ can be obtained from

objects Γ r
2 , Γ r

2′ defined via the limits

Γ r
2 (ωr, νr)= lim

|ν′
r|→∞

Γ (ωr, νr, ν
′
r)=U + Kr

1+Kr
2, (70b)

Γ r
2′(ωr, ν

′
r)= lim

|νr|→∞
Γ (ωr, νr, ν

′
r)=U + Kr

1+Kr
2′ . (70c)

For each of the latter two limits, we denote the com-
plementary part of the vertex (vanishing in said limit)
by

Γ̄ r
2 (ωr, νr, ν

′
r)=Γ −Γ r

2 = Kr
2′ + Kr

3 + γr̄+R−U, (70d)

Γ̄ r
2′(ωr, νr, ν

′
r)=Γ −Γ r

2′ = Kr
2 + Kr

3 + γr̄+R−U. (70e)

By taking suitable limits in the BSEs (4), the asymp-
totic classes can be expressed through the full vertex Γ
and the bare interaction U [16]:

Kr
1(ωr) = U ◦ (Πr + Πr ◦ Γ ◦ Πr) ◦ U, (71a)

Kr
2(ωr, νr) = Γ ◦ Πr ◦ U − Kr

1, (71b)

Kr
2′(ωr, ν

′
r) = U ◦ Πr ◦ Γ − Kr

1. (71c)

Hence, they are directly related to the three-point

vertices Γ̄
(3)
r , Γ

(3)
r and susceptibilities χr (cf. Eqs. (45)

and Ref. [16]) as

χr(ωr) = U−1 • Kr
1(ωr) • U−1, (72a)

Γ̄ (3)
r (ωr, νr) = [U + Kr

1 + Kr
2](ωr, νr) • U−1, (72b)

Γ (3)
r (ωr, ν

′
r) = U−1 • [U + Kr

1 + Kr
2′ ](ωr, ν

′
r). (72c)

Kr
1 diagrams are therefore mediated by the bosonic

fluctuations described by the susceptibility χr, whereas
Kr

2 and Kr
2′ describe the coupling of fermions to these

bosonic fluctuations via the three-point vertices Γ̄
(3)
r

and Γ
(3)
r . This hints at the close relation between

asymptotic classes and SBE components which is fur-
ther discussed in Sec. 4.3.

4.2 mfRG equations for asymptotic classes

When the vertex is parametrized through its asymp-
totic classes, it is convenient to compute the latter
directly during the flow, without numerically sending
certain frequencies to infinity. This facilitates system-
atically adding or neglecting higher asymptotic classes.
Therefore, we now derive explicit mfRG flow equations
for the asymptotic classes, starting from the general
multiloop flow equations (10), similar to the derivation
of the mfRG flow equations for the SBE ingredients
in Sect. 3.2. (For a diagrammatic derivation, see Refs.
[50,51].)

The parametrization (68) of γr in terms of asymptotic
classes holds analogously at each loop order,

γ̇(�)
r = K̇r(�)

1 + K̇r(�)
2 + K̇r(�)

2′ + K̇r(�)
3 . (73)
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Then, each summand can be obtained from Eqs. (10)

for γ̇
(�)
r by taking suitable limits of the fermionic fre-

quencies νr, ν
′
r, as specified in Eqs. (69). For example,

consider a bubble of type Γ ◦Π̇r ◦Γ̃ , in the r representa-
tion of Eq. (20). In the limit |νr| → ∞, the first vertex
reduces to Γ r

2′ (Eq. (70c)), while for |ν′
r| → ∞, the sec-

ond vertex reduces to Γ̃ r
2 (Eq. (70b)). Using Eq. (20),

we thus obtain

lim
|νr|→∞

Γ ◦ Π̇r ◦ Γ̃ = Γ r
2′ ◦ Π̇r ◦ Γ̃ , (74a)

lim
|ν′

r|→∞
Γ ◦ Π̇r ◦ Γ̃ = Γ ◦ Π̇r ◦ Γ̃ r

2 . (74b)

By contrast, when taking these limits for bubbles
involving channels r′ different from r, we obtain zero,

lim
|νr|→∞

Γ ◦ Π̇r′ �=r ◦ Γ̃ = 0, lim
|ν′

r|→∞
Γ ◦ Π̇r′ �=r ◦ Γ̃ = 0,

(74c)

by similar reasoning as that leading to Eq. (69c). In

this manner, the 1� flow equation (10a) for γ̇
(1)
r readily

yields

K̇r (1)
1 = Γ r

2′ ◦ Π̇r ◦ Γ r
2 ,

K̇r (1)
2 = Γ̄ r

2′ ◦ Π̇r ◦ Γ r
2 ,

K̇r (1)
2′ = Γ r

2′ ◦ Π̇r ◦ Γ̄ r
2 ,

K̇r (1)
3 = Γ̄ r

2′ ◦ Π̇r ◦ Γ̄ r
2 . (75a)

Similarly, the two-loop contribution γ̇
(2)
r , Eq. (10b),

yields

K̇r (2)
1 = 0,

K̇r (2)
2 = γ̇

(1)
r̄ ◦ Πr ◦ Γ r

2 ,

K̇r (2)
2′ = Γ r

2′ ◦ Πr ◦ γ̇
(1)
r̄ ,

K̇r (2)
3 = γ̇

(1)
r̄ ◦ Πr ◦ Γ̄ r

2 + Γ̄ r
2′ ◦ Πr ◦ γ̇

(1)
r̄ . (75b)

Due to Eq. (69c), K̇r (2)
1 vanishes and K̇r (2)

2 or K̇r (2)
2′

contain no terms with γ̇
(1)
r̄ on their right or left sides,

respectively. Finally, Eq. (10c) for γ̇
(�+2)
r , with � ≥ 1,

yields

K̇r (�+2)
1 = Γ r

2′ ◦ Πr ◦ γ̇
(�)
r̄ ◦ Πr ◦ Γ r

2 ,

K̇r (�+2)
2 = γ̇

(�+1)
r̄ ◦ Πr ◦ Γ r

2 + Γ̄ r
2′ ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Γ r

2 ,

K̇r (�+2)
2′ = Γ r

2′ ◦ Πr ◦ γ̇
(�)
r̄ ◦ Πr ◦ Γ̄ r

2 + Γ r
2′ ◦ Πr ◦ γ̇

(�+1)
r̄ ,

K̇r (�+2)
3 = γ̇

(�+1)
r̄ ◦ Πr ◦ Γ̄ r

2 + Γ̄ r
2′ ◦ Πr ◦ γ̇

(�)
r̄ ◦ Πr ◦ Γ̄ r

2

+ Γ̄ r
2′ ◦ Πr ◦ γ̇

(�+1)
r̄ . (75c)

Here, K̇r(�+2)
1 	= 0 since γ̇

(1)
r̄ appears in the middle in

the central term of Eq. (10c); hence, Eq. (69c) does not
apply.

Note that these equations can also be used in the con-
text of DMF2RG [32,33]. There, only the full vertex Γ is
given as an input. While Kr

1, Kr
2 and Kr

2′ can be deduced
from Γ by sending certain frequencies to infinity (cf.
Eqs. (70)) or using Eqs. (71), it is not possible to sim-
ilarly extract Kr

3 in a given channel as some frequency
limit of the full vertex Γ . However, the classes Kr

3 do
not enter the right-hand sides of the flow equations
(75) individually, but only the combination R + K3 =
R +

∑
r Kr

3. This is already clear from the general for-
mulation of the mfRG flow equations (10). Consider,

e.g., the 1� contribution K̇r(1)
2 of Eq. (75a). There, Γ̄ r

2′

contains R+Kr
3+γr̄ = R+K3+

∑
r′ �=r(Kr′

1 +Kr′
2 +Kr′

2′),
and hence only requires knowledge of the full R + K3.
This holds equivalently for all insertions of the full ver-
tex into flow equations at any loop order. Now, inser-
tions of the differentiated vertex in loop order � into
the flow equations of order � + 1 and � + 2 do require
a channel decomposition K̇3 =

∑
r K̇r

3. For example,

the two-loop contribution K̇r (2)
2 of Eq. (75b) contains

γ̇
(1)
r̄ , which, by Eq. (73), involves differentiated vertices

K̇r′ �=r (1)
3 . These are available via Eq. (75a). Therefore,

in the DMF2RG context, one would start with Kr
1, Kr

2,
Kr

2′ and the full R + K3 from DMFT, compute the dif-

ferentiated vertices K̇r
i independently (including K̇r

3),
successively insert them in higher loop orders, and even-

tually update K3 using K̇3 =
∑

�,r K̇r (�)
3 in each step of

the flow (recall that R does not flow, Ṙ = 0). The same
reasoning also applies to the multi-boson terms Mr.

4.3 Relating SBE ingredients and asymptotic classes

The asymptotic classes and SBE ingredients are closely
related [31]. This is not surprising as the properties of
both follow from the assumption that the bare vertex
contains no frequency dependence, except for frequency
conservation. For convenience, we collect these relations
below.

Comparison of Eqs. (43) and (71a) yields

wr(ωr) = U + Kr
1(ωr). (76)

Similarly, using Eqs. (42), (43), (71b), and (71c), we can
write the products of Hedin vertices and the screened
interaction as

λ̄r • wr = U + Γ ◦ Πr ◦ U = U + Kr
1 + Kr

2, (77a)

wr • λr = U + U ◦ Πr ◦ Γ = U + Kr
1 + Kr

2′ . (77b)

We now insert Eq. (76) for U+Kr
1 and solve for λr, λ̄r,

formally defining w−1
r through wr•w−1

r = w−1
r

•wr = 1r.
Thus, we obtain

λ̄r = 1r + Kr
2

• w−1
r , λr = 1r + w−1

r
• Kr

2′ , (78)
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Fig. 11 Overview over vertex decompositions: The par-
quet decomposition (second line) can be grouped by asymp-
totic classes (third line) or U -r-reducibility (fourth line),
highlighting the relation between these two notions. Arrows
link terms that can be identified: Kr

3 = Mr + Kr
2 • w−1

r • Kr
2′

and Kr
1 +Kr

2 +Kr
2′ +Kr

2 • w−1
r • Kr

2′ = λ̄r • wr • λr −U for the
Π-r-reducible contributions, and ϕU irr = R − U +

∑
r Mr

for the fully U -r-irreducible contributions. The colors indi-
cate whether the objects depend on 1, 2, or 3 frequency
arguments

which, when inserted into Eq. (33), yields

∇r =
(
1r + Kr

2
• w−1

r

)
• wr •

(
1r + w−1

r
• Kr

2′
)

= U + Kr
1 + Kr

2 + Kr
2′ + Kr

2
• w−1

r
• Kr

2′ . (79)

Depending on model details, it may happen that not all
components of w−1

r are uniquely defined. However, the
right-hand sides of Eqs. (78)–(79) are unambiguous as
the SBE ingredients are well defined through Eqs. (41).

Recalling that γr = ∇r − U + Mr, we conclude that

Mr = Kr
3 − Kr

2
• w−1

r
• Kr

2′ . (80)

Hence, ∇r contains a part of Kr
3, namely Kr

2
• w−1

r
• Kr

2′ ,
which can be fully expressed through functions that
each depend on at most two frequencies. Mr con-
tains the remaining part of Kr

3, which must be explic-
itly parametrized through three frequencies and thus
is numerically most expensive. A recent study of the
Hubbard model showed that

∑
r Mr is strongly local-

ized in frequency space, particularly in the strong-
coupling regime [31]. This allows for a cheaper numer-
ical treatment of the vertex part truly depending on
three frequencies and constitutes the main computa-
tional advantage of the SBE decomposition.

Equations (76)–(79) fully express the SBE ingredi-
ents through asymptotic classes. Analogous results were
obtained by similar arguments in Appendix A of Ref.
[31]. Figure 11 summarizes the relation between the two
vertex decompositions and their ingredients.

Conversely, the asymptotic classes can also be
expressed fully through the SBE ingredients. Using
Eqs. (23), (68), (76), and (78), one finds

Kr
1 = wr − U (81a)

Kr
2 = (λ̄r − 1r) • wr, (81b)

Kr
2′ = wr • (λr − 1r), (81c)

Kr
3 = Mr + (λ̄r − 1r) • wr • (λr − 1r). (81d)

Moreover, Eqs. (25a), (70b), (70c), and (77) imply

Γ r
2 = λ̄r • wr, (82a)

Γ r
2′ = wr • λr, (82b)

Γ̄ r
2 = λ̄r • wr • (λr − 1r) + Tr (82c)

Γ̄ r
2′ = (λ̄r − 1r) • wr • λr + Tr. (82d)

For the latter two equations, we used Eq. (25a) in the
form Γ = λ̄r • wr • λr + Tr. Equivalently, using the
definitions of the Hedin vertices in Eqs. (32), we can
express Kr

2, Kr
3, and Eqs. (82) as

Kr
2 = Tr ◦ Πr ◦ wr, (83a)

Kr
2′ = wr ◦ Πr ◦ Tr, (83b)

Kr
3 = Mr + Tr ◦ Πr ◦ wr ◦ Πr ◦ Tr, (83c)

Γ r
2 = wr + Tr ◦ Πr ◦ wr, (83d)

Γ r
2′ = wr + wr ◦ Πr ◦ Tr, (83e)

Γ̄ r
2 = Tr + wr ◦ Πr ◦ Tr + Tr ◦ Πr ◦ wr ◦ Πr ◦ Tr, (83f)

Γ̄ r
2′ = Tr + Tr ◦ Πr ◦ wr + Tr ◦ Πr ◦ wr ◦ Πr ◦ Tr.(83g)

Since the asymptotic classes and SBE ingredients are
closely related, the same is true for their mfRG flow.
Indeed, it is straightforward to derive the mfRG SBE
flow equations (48) from the flow equations (75) for

K̇r (�)
i . We briefly indicate the strategy, without pre-

senting all details.
We differentiate the equations (81) expressing Kr

i
through SBE ingredients, and subsequently use Eqs. (32)
to eliminate λ̄r − 1r and λr − 1r. Thereby, we obtain

K̇r
1 = ẇr, (84a)

K̇r
2 = ˙̄λr • wr + Tr ◦ Πr ◦ ẇr, (84b)

K̇r
2′ = ẇr ◦ Πr ◦ Tr + wr • λ̇r, (84c)

K̇r
3 = ˙̄λr • wr ◦ Πr ◦ Tr + Tr ◦ Πr ◦ ẇr ◦ Πr ◦ Tr

+ Tr ◦ Πr ◦ wr • λ̇r + Ṁr. (84d)

Now, we use Eqs. (75) to express the K̇r (�)
i on the left

through Γ r
2 , Γ r

2′ , Γ̄ r
2 , Γ̄ r

2′ , and Eqs. (82) to express the
latter through SBE ingredients. By matching terms on
the left and right in each loop order, we obtain flow

equations for ẇ(�), ˙̄λ
(�)
r , λ̇

(�)
r and Ṁ

(�)
r . For example, at

1� order, Eqs. (75a) and (84a) for K̇r (1)
1 yield

ẇ(1)
r = Γ r

2′ ◦ Π̇r ◦ Γ r
2 = wr • λr ◦ Π̇r ◦ λ̄r • wr, (85)

consistent with Eq. (48a). Similarly, for K̇r (1)
2 , we

obtain

˙̄λ(1)
r

• wr + Tr ◦ Πr ◦ ẇ(1)
r = Γ̄ r

2′ ◦ Π̇r ◦ Γ r
2

= Tr ◦ Π̇r ◦ λ̄r • wr + Tr ◦ Πr ◦ wr • λr ◦ Π̇r ◦ λ̄r • wr.
(86)
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The second terms on the left and right cancel due to
Eq. (85). The remaining terms, right-multiplied by w−1

r ,

yield ˙̄λ
(1)
r = Tr ◦ Π̇r ◦ λ̄r, consistent with Eq. (48a). All

of the equations (48) can be derived in this manner.

5 Conclusions and outlook

The SBE decomposition of the four-point vertex was
originally introduced in Hubbard-like models respect-
ing SU(2) spin symmetry and was written in terms of
physical (e.g., spin and charge) channels [26]. Inspired
by Refs. [25–30], we here formulated the SBE decompo-
sition without specifying the structure of non-frequency
arguments (such as position or momentum, spin, etc.)
starting from the parquet equations for general fermionic
models. The only restriction on the structure of the
bare vertex U is that, apart from being frequency-
conserving, it is otherwise constant in frequency. Our
formulation can thus be used as a starting point for
a rather general class of models. It can also be easily
extended to the Keldysh formalism or to other types of
particles such as bosons or real fermions.

In this generalized framework, we re-derived self-
consistent equations for the ingredients of the SBE
decomposition ∇r = λ̄r • wr • λr, the so-called SBE
equations, by separating the BSEs for the two-particle
reducible vertices regarding their U -reducibility. The U -
reducible ∇r have a transparent interpretation through
bosonic exchange fluctuations and Hedin vertices,
describing the coupling of these bosonic fluctuations
to fermions. As our main result, we derived multiloop
flow equations for the SBE ingredients in two differ-
ent ways: first by inserting the SBE decomposition into
parquet mfRG and second by differentiating the SBE
equations. Thereby, we presented the multiloop gener-
alization of the 1� SBE flow of Ref. [31]. In addition,
we gave a detailed discussion of the relation between
the SBE ingredients, Mr and ∇r = λ̄r • wr • λr, and
the asymptotic classes Kr

i of the two-particle reducible
vertices. Finally, we also presented multiloop flow equa-
tions for the Kr

i and thus provided a unified formulation
for the mfRG treatment of the parquet and the SBE
vertex decompositions.

A numerical study of the SBE mfRG flow for relevant
model systems, such as the single-impurity Anderson
model or the Hubbard model, is left for future work.
Below, we outline some open questions to be addressed.

The numerically most expensive SBE ingredient is
the fully U -irreducible vertex ϕU irr, involving the multi-
boson exchange terms Mr, because these all depend
on three frequency arguments. One may hope that, for
certain applications, it might suffice to neglect ϕU irr (as
done in Ref. [35] for a DMFT treatment of the Hubbard
model), or to treat it in a cheap fashion, e.g., by not
keeping track of its full frequency dependence or by not
letting it flow (cf. Ref. [31]). This spoils the parquet

two-particle self-consistency while retaining SBE self-
consistency. It is an interesting open question which of
the main qualitative features of the parquet solution,
such as fulfillment of the Mermin–Wagner theorem [52],
remain intact this way.

One formal feature, namely regulator independence,
is maintained if multiloop flow equations in the SBE
approximation are used. These equations are derived
by setting ϕU irr = 0 and Ṁr = 0 from the beginning
(Sect. 3.4) and are actually simpler than those obtained

by setting Ṁr = 0 in the full SBE mfRG flow. We
left the derivation of a self-energy flow directly within
the SBE approximation for future work. The combina-
tion of such a self-energy flow with the vertex flow of
Sect. 3.4 would constitute the total derivative of the
SBE approximation. Therefore, if loop convergence can
be achieved when integrating these simplified flow equa-
tions, the results will be regulator independent, just as
for the full SBE mfRG flow with ϕU irr =

∑
r Mr and

Ṁr 	= 0, reproducing the PA.
Even if it turns out that a full treatment of ϕU irr

is required for capturing essential qualitative features
of the vertex, this might still be numerically cheaper
than a full treatment of K3. The reason is that each
Kr

3 contains a contribution, the Kr
2

• w−1
r

• Kr
2′ term in

Eq. (79), which is included not in Mr but in ∇r, and
parametrized through the numerically cheaper Hedin
vertices and screened interactions, see Fig. 11. If these
terms decay comparatively slowly with frequency, their
treatment via the Kr

i decomposition would be numeri-
cally expensive, and the SBE decomposition could offer
a numerically cheaper alternative. A systematic com-
parison of the numerical costs required to compute the
multiloop flow of the two decompositions should thus
be a main goal of future work.
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Fig. 12 Illustration of the structure of ∇r using wr = U + Kr
1 (Eq. (76)), including an exemplary sixth-order diagram.

While λ̄r, wr, λr factorize w.r.t. their frequency dependence (since they are connected by bare vertices in ∇r), they are
viewed as four-point objects w.r.t. the other quantum numbers (the internal indices 3, 3′, 4, 4′ have to be summed over,
cf. Eqs. (6))
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A Diagrams of SBE ingredients

Figure 12 illustrates which parts of the U -r-reducible dia-
grams ∇r belong to the Hedin vertices λ̄r, λr and which
parts belong to the screened interactions wr (for exemplary
low-order diagrams, see Fig. 5).

B Diagrams of asymptotic classes

We illustrate the channel-specific frequency parametrizations
of the vertex (Fig. 3) in second-order perturbation theory
in Fig. 13.

The bosonic frequency ωr is transferred through the bub-
ble in which each diagram is reducible, while the fermionic
frequencies νr, ν

′
r parametrize the frequency dependence on

each side of the bubble. Evidently, the internal propaga-
tor lines only depend on the bosonic transfer frequency of
the corresponding channel (and the internal integration fre-
quency). The external fermionic frequency νr flows in and
out at the same bare vertex, and so does ν′

r at another bare
vertex, such that the value of each diagram is independent
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Fig. 13 Diagrams in second-order perturbation theory including the channel-specific frequency parametrization

Fig. 14 Illustration of the decomposition of the two-particle reducible vertices γr into asymptotic classes, Kr
1+Kr

2+Kr
2′ +Kr

3

of νr, ν
′
r. This notion can be generalized [16], leading to

the decomposition of each Π-r-reducible vertex γr into four
different asymptotic classes, Kr

1 + Kr
2 + Kr

2′ + Kr
3, depicted

diagrammatically in Fig. 14. A formal definition is given by
Eqs. (69) in the main text.

C Relation to SBE in physical channels

The SBE decomposition was originally defined in terms of
the charge, spin, and singlet pairing channels [26]. These
involve specific linear combinations of the spin components,
chosen to diagonalize the spin structure in the BSEs for
SU(2)-symmetric systems [9]. Assuming SU(2) spin symme-
try, we show below how these “physical” SBE channels are
related to the “diagrammatic” SBE channels used in the
main text.

By spin conservation, each incoming spin σ ∈ {↑, ↓} must
also come out of a vertex. The nonzero components thus are

Γ σσ̄ = Γ σσ̄|σσ̄, Γ̂ σσ̄ = Γ σσ̄|σ̄σ, Γ σσ = Γ σσ|σσ. (87)

Furthermore, crossing symmetry relates Γ ↑↓ and Γ̂ ↑↓, and
SU(2) spin symmetry yields Γ σσ = Γ σσ̄ + Γ̂ σσ̄ [53].

On the level of the full vertex, one defines the charge,
spin, and singlet or triplet pairing channels as [9,38]

Γ ch/sp = Γ ↑↑ ± Γ ↑↓, Γ tr/si = Γ ↑↓ ± Γ̂
↑↓

. (88)

This notation carries over to all vertex objects like ∇α
r , λα

r

and wα
r , with α denoting ch, sp, si, or tr.

The bare vertex has U↑↑ = 0 and U↑↓ = −Û↑↓, so that

Uch/sp = U↑↑ ± U↑↓ = ±U↑↓, (89a)

U si = U↑↓ − Û↑↓ = 2U↑↓. (89b)

The bare interaction U tr in the triplet pairing channel van-
ishes and does not give a U -reducible contribution [26].

We now show that, if the ingredients of the SBE decom-
position Eq. (41a) are expressed through the physical charge
and spin components (ch, sp) rather than the diagrammatic
components (↑↑, ↑↓) used here, one indeed obtains the orig-
inal form of the SBE decomposition depicted in Fig. 1 of
Ref. [26].
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This is trivial to see for the fully U -irreducible part ϕU irr

(analogous to Eq. (88)) and the bare vertex U (Eqs. (89)).
It remains to show that for the U -r-reducible terms ∇r =
λ̄r •wr •λr, the components ∇α

r have the form given in Fig. 1
of Ref. [26], with α = ch or sp.

We start with the t channel. Defining sign factors for
charge and spin channels, sch = 1 and ssp = −1, we have

∇α
t = ∇↑↑

t + sα∇↑↓
t

= λ̄
σ↑|σ↑
t w

σ′σ|σ′σ
t λ

↑σ′|↑σ′
t + sαλ̄

σ↓|σ↓
t w

σ′σ|σ′σ
t λ

↑σ′|↑σ′
t .

(90)

Here, we sum as usual over spin indices σ, σ′. Making use
of w↑↑

t = w↓↓
t , w↓↑

t = w↑↓
t , and similarly for λ̄t, λt, we can

collect the summands as

∇α
t = (λ̄↑↑

t + sαλ̄↑↓
t )(w↑↑

t + sαw↑↓
t )(λ↑↑

t + sαλ↑↓
t )

= λ̄α
t wα

t λα
t , (91)

which is equivalent to ∇ph in Ref. [26]. (Note that in our
convention of depicting diagrams, all diagrams are mirrored
along the diagonal from the top left to bottom right (i.e.,
the bottom left and top right legs are exchanged) compared
to the convention used in Ref. [26]: The ph (ph) channel
corresponds to the t (a) channel.)

We continue with the a channel, which is related to the t
channel by crossing symmetry,

Γ̂
↑↓

(ωa, νa, ν′
a) = −Γ ↑↓(ωt = ωa, νt = νa, ν′

t = ν′
a). (92)

The frequency arguments on the right are defined according
to the t-channel conventions (ωt, νt, ν

′
t), and then evaluated

at the a-channel frequencies occurring on the left. In partic-
ular, we have (cf. Eq. (11) of Ref. [26])

Γ α(ωa, νa, ν′
a)

= − 1
2

[
Γ ch + (1 + 2sα)Γ sp

]
(ωt = ωa, νt = νa, ν′

t = ν′
a).

(93)

The U -a-reducible diagrams ∇a can therefore be expressed
through the U -t-reducible diagrams ∇t:

∇α
a (ωa, νa, ν′

a)

=−1
2

[
λ̄ch

t wch
t λch

t +(1 + 2sα)λ̄sp
t wsp

t λsp
t

]
(ωa, νa, ν′

a), (94)

reproducing ∇ph in Ref. [26]. The frequency arguments on
the right have the same meaning as in Eq. (92).

Last, we consider the p channel. With SU(2) symmetry,

∇↑↑
p = ∇↑↓

p + ∇̂↑↓
p , we have

∇α
p = ∇↑↑

p + sα∇↑↓
p = ∇̂↑↓

p + (1 + sα)∇↑↓
p

= λ̄↑↓|σσ̄
p wσσ̄|σ′σ̄′

p λσ′σ̄′|↑↓
p

+ (1 + sα)λ̄↑↓|σσ̄
p wσσ̄|σ′σ̄′

p λσ′σ̄′|↓↑
p . (95)

Note that the spins in the first and second pair of spin
indices of wp have to be opposite, σσ̄ and σ′σ̄′, since they
connect to the same bare vertex (cf. Fig. 12), and Uσσ = 0.

Furthermore, the crossing relation U↑↓ = −Û↑↓ implies

w↑↓
p = −ŵ↑↓

p . By use of this, we can combine the terms
in the spin sums as

∇α
p = sα

2
(λ̄↑↓

p − ˆ̄λ↑↓
p )(w↑↓

p − ŵ↑↓
p )(λ↑↓

p − λ̂↑↓
p )

= sα

2
λ̄si

p wsi
p λsi

p , (96)

which gives ∇pp in Ref. [26].
In summary, we thus reproduce the decomposition of Ref.

[26]:

Γ α = ϕU irr,α + ∇α
a + ∇α

p + ∇α
t − 2Uα, (97a)

where the U -r-reducible parts are defined as

∇α
a (ωa, νa, ν′

a) = − 1
2
∇ch

t (ωa, νa, ν′
a)

− ( 3
2

− 2δα,sp)∇sp
t (ωa, νa, ν′

a), (97b)

∇α
p (ωp, νp, ν′

p) = ( 1
2

− δα,sp)[λ̄si
p wsi

p λsi
p ](ωp, νp, ν′

p), (97c)

∇α
t (ωt, νt, ν

′
t) = [λ̄α

t wα
t λα

t ](ωt, νt, ν
′
t). (97d)

D Correlators and susceptibilities

Reference [26] established that the SBE ingredients λ̄r, wr,
λr are related to three-point correlators and generalized sus-
ceptibilities. For completeness, we illustrate here how these
relations arise within the present framework. The starting
point is the general relation between the four-point correla-
tor G(4) and the four-point vertex Γ ,

G
(4)

12|1′2′ = 〈c1c2c̄2′ c̄1′〉 = G1|1′G2|2′ − G1|2′G2|1′

+ G1|5′G2|6′Γ5′6′|56G5|1′G6|2′ .
(98)

By combining two fermionic fields, one obtains the bosonic
exchange field ψ, the pairing field φ, and its conjugate φ̄,

ψ12′(ω) =
∑

ν

c1(ν − ω
2
)c̄2′(ν + ω

2
) = ψ̄2′1(−ω), (99a)

φ12(ω) =
∑

ν

c1(
ω
2

+ ν)c2(
ω
2

− ν), (99b)

φ̄1′2′(ω) =
∑

ν′
c̄2′(ω

2
− ν′)c̄1′(ω

2
+ ν′). (99c)

Three-point correlators and bosonic two-point correlators
involving these fields can be obtained from G(4) by summing

over the frequency ν
(′)
r in the channel-specific parametriza-

tion (cf. Equation (17) and Fig. 3):

Ḡ
(3)

r;12|1′2′(ωr, νr) =
∑

ν′
r

G
(4)

12|1′2′(ωr, νr, ν
′
r), (100a)

G
(3)

r;12|1′2′(ωr, ν
′
r) =

∑

νr

G
(4)

12|1′2′(ωr, νr, ν
′
r), (100b)

Dr;12|1′2′(ωr) =
∑

νr,ν′
r

G
(4)

12|1′2′(ωr, νr, ν
′
r). (100c)

For example, in the p channel, we have

Ḡ
(3)

p;12|1′2′ =
〈
c1c2φ̄1′2′

〉
, Dp;12|1′2′ =

〈
φ12φ̄1′2′

〉
. (101)

The four-point correlator G(4) is closely related to the

generalized susceptibilities χ
(4)
r [38]:
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χ
(4)

a;12|1′2′(ωa, νa, ν′
a)

= G
(4)

12|1′2′(ωa, νa, ν′
a) + δωa,0G1|2′(νa)G2|1′(ν′

a)

= δνaν′
a
Πa;12|1′2′(ωa, νa) + [Πa◦Γ ◦Πa]12|1′2′(ωa, νa, ν′

a),

(102a)

χ
(4)

p;12|1′2′(ωp, νp, ν′
p) = 1

4
G

(4)

12|1′2′(ωp, νp, ν′
p)

= δνpν′
p

1
2
Πp;12|1′2′(ωp, νp) − δνp,−ν′

p

1
2
Πp;12|2′1′(ωp, νp)

+ [Πp◦Γ ◦Πp]12|1′2′(ωp, νp, ν′
p), (102b)

χ
(4)

t;12|1′2′(ωt, νt, ν
′
t)

= G
(4)

12|1′2′(ωt, νt, ν
′
t) − δωt,0G1|1′(ν′

t)G2|2′(νt)

= δνtν′
t
Πt;12|1′2′(ωt, νt) + [Πt◦Γ ◦Πt]12|1′2′(ωt, νt, ν

′
t).

(102c)

In analogy to Eqs. (100), we then obtain three-point func-

tions χ̄
(3)
r , χ

(3)
r and physical susceptibilities χr by summing

over frequencies:

χ̄
(3)

r;12|1′2′(ωr, νr) =
∑

ν′
r

χ
(4)

r;12|1′2′(ωr, νr, ν
′
r), (103a)

χ
(3)

r;12|1′2′(ωr, ν
′
r) =

∑

νr

χ
(4)

r;12|1′2′(ωr, νr, ν
′
r), (103b)

χr;12|1′2′(ωr) =
∑

νr,ν′
r

χ
(4)

r;12|1′2′(ωr, νr, ν
′
r). (103c)

The prefactor 1
4

in Eq. (102b) ensures that the susceptibility
χr in Eqs. (103c) is consistent with its counterpart in the
main text (cf. Eq. (45c)).

To make a connection between χ̄
(3)
r , χ

(3)
r , χr and SBE

objects, we use Eqs. (102), multiply by the bare interaction
U , and express the result in terms of the four-point vertex:

χ̄(3)
r • U = Πr ◦ (U + Γ ◦ Πr ◦ U), (104a)

U • χ(3)
r = (U + U ◦ Πr ◦ Γ ) ◦ Πr, (104b)

U • χr • U = U ◦ Πr ◦ U + U ◦ Πr ◦ Γ ◦ Πr ◦ U. (104c)

Finally, comparing these expressions to Eqs. (42)–(44)
shows their relation to the SBE ingredients:

χ̄(3)
r = Πr ◦ λ̄r • wr • U−1 = Πr ◦ Γ̄ (3)

r , (105a)

χ(3)
r = U−1 • wr • λr ◦ Πr = Γ (3)

r ◦ Πr, (105b)

χr = U−1 • (wr − U) • U−1. (105c)

These relations are analogous to those given in Eqs. (6), (8)
and (15) in Ref. [26]. Relations between the bosonic correla-

tors Ḡ
(3)
r , G

(3)
r , Dr from Eqs. (100) and the SBE ingredients

λ̄r, wr, λr are analogous up to disconnected terms and can
be readily constructed from Eqs. (103), (102), and (105).
For example, in the a channel, we have

Ḡ
(3)

a;12|1′2′(ωa, νa) = [Πa ◦ λ̄a • wa • U−1]12|1′2′(ωa, νa)

− δωa,0G1|2′(νa)
∑

ν′
a

G2|1′(ν′
a),

Da;12|1′2′(ωa) = [U−1 • (wa − U) • U−1]12|12′(ωa)

− δωa,0

∑

νa

G1|2′(νa)
∑

ν′
a

G2|1′(ν′
a).

(106)

E Susceptibilities for Hubbard interaction

The susceptibilities defined in Eq. (45c) and in Appendix D
exhibit general dependencies w.r.t. their non-frequency
indices 12|1′2′. In the following, we show how they are
related to physical charge, spin, and pairing susceptibilities.
To this end, we focus on models with a local (momentum-
independent) bare interaction, which has only spin degrees
of freedom subject to the Pauli principle. In the a and t
channel, Eq. (44c) with Kr

1 = wr − U then reads

Ka;σσ′|σσ′
1 = Uσσ̄|σ̄′σ′

χσ̄′σ̄|σ̄′σ̄
a U σ̄′σ′|σσ̄, (107a)

Kt;σσ′|σσ′
1 = U σ̄′σ′|σ̄′σ′

χ
σ̄σ̄′|σ̄σ̄′
t Uσσ̄|σσ̄. (107b)

We further specify Uσσ̄|σ̄′σ′
= u(δσσ′ − δσσ̄′), with the

(scalar) bare interaction strength u. With SU(2) symmetry,

χ
σ1σ′

1|σ2σ′
2

r = χ
σ̄1σ̄′

1|σ̄2σ̄′
2

r , Eqs. (107) thus simplify to

χ
σσ′|σσ′

a/t = Ka/t;σσ′|σσ′
1 /u2. (108)

In the p channel, we have

Kp;σσ′|σσ′
1 =

∑

σ1σ2

Uσσ′|σ1σ̄1 χσ1σ̄1|σ2σ̄2
p Uσ2σ̄2|σσ′

(109a)

= Uσσ′|σσ′
χ̃σσ′|σσ′

p Uσσ′|σσ′
. (109b)

Here, the second line (109b) follows from SU(2) and crossing
symmetry. It employs

χ̃p(ωp) = [1p ◦ Π̃p ◦ 1p](ωp)

+ [1p ◦ Π̃p ◦ Γ ◦ Π̃p ◦ 1p](ωp), (110)

where Π̃p;34|3′4′ = G3|3′G4|4′ = 2Πp;34|3′4′ does not include
a prefactor 1/2 (introduced in Eq. (5b) to avoid double
counting within internal spin sums), since there are no spin
sums in Eq. (109b). (This definition of the p susceptibil-
ity agrees with the related literature, e.g., Ref. [38].) With

Uσσ′|σσ′
= −uδσσ̄′ , we can write

χ̃σσ′|σσ′
p = δσσ̄′ Kp;σσ′|σσ′

1 /u2, (111)

in analogy to Eq. (108).
The relation between these “diagrammatic” susceptibil-

ities χr and their “physical” counterparts can be made
explicit by means of the bilinears

ρσσ′ = c̄σcσ′ , δρσσ′ = ρσσ′ − 〈ρσσ〉δσσ′ (112a)

ρ−
σσ′ = cσcσ′ , ρ+

σσ′ = c̄σ′ c̄σ. (112b)

Then, we have in the imaginary-time domain

χσσ′|σσ′
a (τ) = −〈δρσ′σ(τ)δρσσ′(0)〉, (113a)

χ̃σσ′|σσ′
p (τ) = 〈ρ−

σσ′(τ)ρ+
σσ′(0)〉, (113b)

χ
σσ′|σσ′
t (τ) = 〈δnσ(τ)δnσ′(0)〉. (113c)

with nσ = ρσσ. Choosing the spin arguments as χ↑↓
r =

χ
↑↓|↑↓
r , we furthermore get
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χ↑↓
a (τ) = −〈S−(τ)S+〉, (114a)

χ̃↑↓
p (τ) = 〈Δsi(τ)Δ†

si(0)〉, (114b)

χ↑↓
t (τ) = 〈δn↑(τ)δn↓(0)〉. (114c)

Hence, χ↑↓
a describes spin fluctuations (S− = c̄↓c↑, S+ =

c̄↑c↓) and χ̃↑↓
p singlet pairing fluctuations (Δsi = c↑c↓). By

SU(2) spin symmetry, 1
2
χ↑↓

a (τ) = −〈Sz(τ)Sz〉, with Sz =
1
2
(n↑ − n↓) = 1

2
(δn↑ − δn↓). It then follows that

χ↑↓
t (τ) − 1

2
χ↑↓

a (τ) = 1
2
(〈δn↑(τ)δn↑〉 + 〈δn↑(τ)δn↓〉)

= 1
4
〈δn(τ)δn〉 (115)

describes charge fluctuations with n = n↑ + n↓.
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vanni, A. Toschi, Phys. Rev. Lett. 119, 056402 (2017)

45. P. Chalupa, P. Gunacker, T. Schäfer, K. Held, A. Toschi,
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3.3 Notes on implementations
The implementation of an mfRG solver in the SBE formulation has been left for future work.
However, previous experience and intermediate results can presumably be transferred to
such a project. These do not replace thorough profiling, but may guide the first steps to the
development of a code.

To begin with, an implementation in the MF at finite temperature is numerically far
less challenging than an implementation with continuous frequencies. The SBE parquet
solver1 that was published with [P2] may serve as reference (cf. Ref. [GSvDK24] for a
further development of the code for systems without SU(2) spin symmetry). By comparison
of the parquet and flow equations (see Eqs. (41), (48) in Ref. [P1]) one finds that many
operations are similar. Hence, optimizations may benefit both methods. As explained in
[P2], the computation of the U -r-irreducible vertex, Tr, is a major bottleneck. It involves the
combination of SBE contributions ∇r̄ = λ̄r̄ •wr̄ •λr̄ which are given in the r̄-channel frequency
convention and have to be rotated to the r-channel convention. Several optimizations were
implemented to accelerate the computation: Firstly, since the • -product implies a contraction
over spin indices, physical spin channels were used in which the operation is diagonal. Secondly,
even though the data in all contributions, wr and λr, could be reduced by symmetry relations,
all values were prepared to be directly accessible in memory. While this leads to higher
memory consumption, it sped up the retrieval of data.2 Lastly, Tr is precomputed and reused
in the BSE for λr and Mr. This optimization, again, improved computation time at the cost
of higher memory consumption. The Ṫr in the mfRG equations consist of even more terms.
As explained in Eq. (46) of Ref. [P1], the product structure of the SBE terms ∇r leads to
three terms in the differentiated SBE term ∇̇r. Hence, it is expected that such optimizations
are even more valuable for an implementation of the mfRG equations.

In the Keldysh formalism further complications arise due to the continuous frequencies
and the additional index structure. For an implementation analogous to that in Ref. [P3],
KF functions are sampled on a non-linear grid in each frequency direction. Function values
are determined by multi-linear interpolation. While the SBE terms ∇r and ∇̇r definitely
can be precomputed in the r-channel frequency convention, sampling ∇r on the grid of a
different frequency convention might impair its resolution. Furthermore, the • -product also
implies a contraction over Keldysh indices. For a complete analogy to our implementation
in [P3], wr and λr would each carry four Keldysh indices. After suitable ordering of the
Keldysh indices [see Eq. (2.69)], these contractions amount to matrix products. However,
the Keldysh structure can be further simplified in the SBE formulation: Since wr and λr
effectively are two-point or three-point functions, the number of Keldysh indices can be
reduced to two or three, respectively. The resulting SBE diagram ∇r = λ̄r • wr • λr is a
four-point object again and can be inserted into the BSE for λr′ or Mr′ . This is an advantage
of the SBE decomposition over the asymptotic decomposition where the 2PR vertex is the
sum of asymptotic contributions γr = ∑

iKir. Therefore, the asymptotic functions, Kir,
always carry four Keldysh indices while SBE components, wr and λr, can be consistently
treated with two or three indices, respectively.

1 https://github.com/dominikkiese/MBEsolver.jl
2 Symmetries were used to reduce the number of points which have to be computed via the BSE. The
symmetry-reduced data also facilitated the task for some solvers for non-linear equations by reducing the
number of parameters.

https://github.com/dominikkiese/MBEsolver.jl
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4 Quantum field-theoretic study of the Anderson
impurity model

4.1 Overview
This chapter presents an imaginary- and real-frequency study with two diagrammatic methods:
the parquet equations and the functional renormalization group. As a physical benchmark
system we consider the single-impurity Anderson impurity model (AIM) as described in
Sec. 2.2.5. This model is well studied and understood, e.g. with the numerical renormalization
group [BCP08] which provides the benchmark results for our project. The AIM describes
a single (magnetic) impurity in a metal. This model hosts interesting physical behavior
such as the spontaneous formation of a local magnetic moment or the Kondo effect [Kon64]
at low temperatures and strong interactions [And61, Hew97]. It has also been used to
study transport through quantum point contacts [JPS10]. Furthermore, while the AIM is
interesting on its own, it also serves as an auxiliary model for dynamic mean-field theory
(DMFT) [GKKR96] where it is used to study lattice models such as the Hubbard model
and the periodic Anderson model, for instance. DMFT has proven to accurately describe
phases of matter with local correlations. To incorporate long-range correlations one could use
diagrammatic methods. For instance, the dynamic vertex approximation (DΓA) [TKH07]
solves the parquet equations for a lattice model using a local approximation of the 2PI vertex
R = Rloc which is taken as an input from DMFT. Similarly, the DMF2RG uses the full vertex
of an impurity model as a starting point for an fRG flow from an impurity to a lattice model
[TAB+14].

Our study uses the mentioned diagrammatic methods, i.e., the parquet equations and the
functional renormalization group. Previous diagrammatic studies of the AIM were often per-
formed in the Matsubara formalism, e.g., Refs. [KHP+08, CGKH+22]. Matsubara functions
directly reveal static and thermodynamic properties which are evaluated at zero time or zero
frequency. However, dynamical observables can only be obtained by an ill-conditioned analytic
continuation of the numerical data, as detailed in Sec. 2.1.6. Diagrammatic calculations
in the Keldysh formalism come at the cost of increased numerical complexity. Previous
real-frequency studies either made strong approximations to the frequency dependence of
the vertex [JS10] or solved a simplified set of equations, e.g. [KWC97]. In our studies we
aim to pave the way for methods such as DMF2RG or DΓA. Hence, we seek to demonstrate
that diagrammatic calculations involving the full Keldysh- and frequency structure of the
four-point vertex are feasible. While many recent applications of these methods make further
approximations, e.g., to the inter-channel feedback in the Bethe–Salpeter equations or relin-
quish parquet self-consistency, we also show that full parquet self-consistency can be reached
within the parquet approximation. As discussed in Sec. 2.2.4.2, parquet self-consistency (and
regulator-independence) can also be reached in fRG by including multi-loop corrections. In
App. B we show that – within the parquet approximation – both parquet equations and
multi-loop fRG (mfRG) indeed lead to the same results. However, the multi-loop expansion
of real-frequency vertices seems to develop structures which are more difficult to resolve than
those in the actual full vertex obtained from summing up all multi-loop contributions.
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In terms of quantitative results, the studied methods suffer from our diagrammatic
approximations which already introduce truncations at fourth order in perturbation theory.
Thus, we cannot hope to outperform specialized impurity solvers. To evaluate the accuracy of
the methods we compare two-point functions with results from the numerical renormalization
group (NRG) which yields numerically exact real-frequency results for low temperatures
and arbitrary interaction strenghts. Recently, an extension of the NRG even allows the
computation of the vertex [LKvD21, LHS+24].

The following papers present the results of the project. While Ref. [P3] focuses on a
comparison of the computed observables and checks the fulfillment of physical identities, the
code publication in Ref. [P5] details the technical aspects of our work. In Ref. [P2] we further
present a Julia library for diagrammatic calculations in the Matsubara formalism.
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A major challenge in the field of correlated electrons is the computation of dynamical correlation functions.
For comparisons with experiment, one is interested in their real-frequency dependence. This is difficult to
compute because imaginary-frequency data from the Matsubara formalism require analytic continuation, a
numerically ill-posed problem. Here, we apply quantum field theory to the single-impurity Anderson model
using the Keldysh instead of the Matsubara formalism with direct access to the self-energy and dynamical
susceptibilities on the real-frequency axis. We present results from the functional renormalization group (fRG)
at the one-loop level and from solving the self-consistent parquet equations in the parquet approximation. In
contrast with previous Keldysh fRG works, we employ a parametrization of the four-point vertex which captures
its full dependence on three real-frequency arguments. We compare our results to benchmark data obtained
with the numerical renormalization group and to second-order perturbation theory. We find that capturing
the full frequency dependence of the four-point vertex significantly improves the fRG results compared with
previous implementations, and that solving the parquet equations yields the best agreement with the numerical
renormalization group benchmark data but is only feasible up to moderate interaction strengths. Our methodical
advances pave the way for treating more complicated models in the future.

DOI: 10.1103/PhysRevB.109.115128

I. INTRODUCTION

Strongly correlated electrons are of central interest in
condensed-matter physics and a prime application for quan-
tum field theory (QFT). Two current frontiers in this context
are (i) dealing with two-particle correlations on top of the
familiar one-particle correlations, and (ii) obtaining real-
frequency information relevant to experiments, as opposed
to imaginary-frequency information popular in theoretical
analyses. Indeed, much attention has recently been devoted
to the two-particle—or four-point (4p)—vertex of correlated
systems, e.g., regarding efficient representations [1–7] or
the divergences of two-particle irreducible vertices [8–22].
Moreover, new algorithms have emerged, such as diagram-
matic Monte Carlo for real-frequency 2p functions (one
frequency argument) working with analytic Matsubara sum-
mation [23–29] or real-time integration [30–33], as well
as numerical renormalization group (NRG) computations
of real-frequency 4p functions (three frequency arguments)
[34,35].

Here, we combine aspects (i) and (ii) and study real-
frequency two-particle correlations in a QFT framework
within the Keldysh formalism (KF) [36–38]. We employ
two related methods: functional renormalization group (fRG)
flows at one-loop level [39] and solutions of the self-consistent
parquet equations [40]. These approaches are promising
candidates for real-frequency diagrammatic extensions [41] of

*These authors contributed equally to this work.

dynamical mean-field theory [42], where the self-consistently
determined impurity model is solved with NRG [43]. In prac-
tice, this means using the NRG 4p vertex [34,35] as input for
fRG [44,45] or the parquet equations [46,47]. Fully exploiting
this nonperturbative input requires taking the full frequency
dependence of the 4p vertex into account. The present work is
a proof-of-principle study showing that it is indeed possible to
track the three-dimensional real-frequency dependence of the
4p vertex with fRG and parquet methods.

To demonstrate our capability of handling 4p vertices
in real frequencies, we choose the well-known [48] single-
impurity Anderson model (AM) [49] as a test case. Its 4p
vertex depends only on frequency and spin arguments, orbital
or momentum degrees of freedom are not involved. Moreover,
we can benchmark our results against numerically exact data
obtained with NRG [43].

On a historical note, we mention some early pioneer-
ing works on the AM where multipoint functions depending
on multiple real frequencies were computed using various
diagrammatic methods [50–53]. Anders and Grewe [50,51]
computed the finite-temperature impurity density of states and
spin-fluctuation spectra up to order O(1/N2) in a large-N ex-
pansion using a resummation that included skeleton diagrams
of the crossing variety up to infinite order. This approach
involved the analytic continuation of 2p and 3p functions
from imaginary to real frequencies. Kroha, Wölfle, and Costi
[52,53] studied the AM in the strong-coupling limit using
a slave-boson treatment of local fermions and a conserving
T -matrix approximation. They computed the auxiliary
(pseudofermion and slave boson) spectral functions in the

2469-9950/2024/109(11)/115128(24) 115128-1 ©2024 American Physical Society
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Kondo regime. Their approach involved the analytic continua-
tion of T matrices (4p objects depending on three frequencies)
from imaginary to real frequencies. This was possible due to
two simplifications arising in their approach. First, the Bethe–
Salpeter equations for the T matrices were simplified via
ladder approximations that neglect interchannel feedback but
are sufficient to capture the leading and subleading infrared
singularities. Second, the auxiliary propagators involve pro-
jection factors that cause their contributions to vanish along
the branch cuts encountered during the analytic continuation
of the T matrices. As a result, only integrations along branch
cuts of the conduction-electron propagators contribute to the
auxiliary-particle self-energies. In particular, only one of the
fifteen Keldysh components of the T matrices were involved
in these computations.

In the present paper, we consider a more general setting.
We compute the full 4p (impurity-electron) vertex, which
requires a treatment of the complete Keldysh structure. Fur-
thermore, the diagrammatic methods considered here—the
fRG and the parquet equations—treat all three channels of
two-particle fluctuations (density, magnetic, pairing) in an
equitable manner, fully including interchannel feedback. The
latter causes severe technical complications: each channel
has its own frequency parametrization; hence, interchannel
feedback involves interpolations between different frequency
parametrizations, which in turn demand great care when
working with discrete frequency grids. One of our goals is
to develop numerical strategies for conquering these com-
plications in a general, robust manner, as a first step toward
studying more complicated models in future work.

Keldysh fRG flows with dynamic 2p and 4p functions
were pioneered by Jakobs and collaborators [54–56] and
subsequently used in Refs. [57–59]. In all of these works,
the dependence of the 4p vertex on three frequencies was
approximated by a sum of three functions, each depending
on only one (bosonic) frequency. Here, we present Keldysh
one-loop fRG flows with the full, three-dimensional frequency
dependence of the vertex, finding remarkable improvement
compared with previous implementations [54,55]. We also
solve the parquet equations in the parquet approximation
(PA) in this setting, yielding results closest to NRG in the
regime where the parquet self-consistency iteration converges.
This regime corresponds rather accurately to the condition
u < 1, where u = U/(π�) is the dimensionless coupling
constant that controls the (convergent bare) zero-temperature
perturbation series [60]. For completeness, we also discuss
second-order perturbation theory (PT2). Although the PT2
self-energy in the particle-hole symmetric AM (sAM) yields
strikingly good results (for known reasons, see Sec. II E), the
susceptibilities or the results in the asymmetric AM (aAM)
clearly show the benefits of the infinite diagrammatic resum-
mations provided by fRG and the PA.

A conceptual equivalence between truncated fRG flows
and solutions of the parquet equations has been established via
the multiloop fRG [61–63]. For the AM treated in imaginary
frequencies, this equivalence was analyzed numerically in
Ref. [64], and multiloop convergence was demonstrated up
to moderate interaction strengths. We refrain from presenting
a similar study in real frequencies here, leaving that for future
work.

The rest of the paper is organized as follows: In Sec. II,
we give a minimal introduction to the KF (Sec. II A) and
summarize the methodical background for fRG and the PA
(Secs. II B and II C). The AM is briefly introduced in Sec. II D,
followed by a concise description of our benchmark meth-
ods for this model (Sec. II E). In Sec. III, we present our
results, beginning with dynamical correlation functions com-
puted directly on the real-frequency axis (Sec. III A). We
then turn to various static properties in Sec. III B and check
the fulfillment of zero-temperature identities between them
(Sec. III C). The frequency-dependent two-particle vertex is
shown in Sec. III D. We conclude in Sec. IV and give a brief
outlook on possibilities for future work.

Nine Appendixes are devoted to technical matters.
Appendix A summarizes our parametrization of the 4p vertex
and its symmetry relations. Appendix B shows the frequency
dependence of all vertex components, as obtained in the PA.
The fully parametrized parquet and fRG flow equations are
stated in Appendix C, and Appendix D discusses a channel-
adapted evaluation of the Schwinger–Dyson equation for the
self-energy in the PA. Appendix E deals with a known equal-
time subtlety in the KF, relevant for computing, e.g., the
Hartree self-energy in the aAM. In Appendix F, we give a
concise definition of all diagrammatic contributions to PT2.
We provide more details on the actual fRG and PA implemen-
tation in Appendix G and comment on the numerical costs in
Appendix H. Finally, Appendix I scrutinizes the fRG static
magnetic susceptibility at u � 1 for different settings of the
frequency resolution.

II. BACKGROUND

A. Keldysh formalism

The Keldysh formalism [36–38] is a suitable framework
for studying systems out of equilibrium, as well as systems
in thermal equilibrium if aiming for a finite-temperature real-
frequency description. An extensive introduction can be found
in Ref. [65]; more compact introductions in the context of
fRG are also given in related Ph.D. theses [54,57,66,67]. Here,
we only give a short summary of the concepts needed in this
paper.

Consider a (potentially time-dependent) Hamiltonian H (t )
and a density matrix known at time t0, ρ0 = ρ(t0). The expec-
tation value of an operator Ô at time t reads

〈Ô(t )〉 = Tr
[
T̃ e−i

∫ t0
t dt ′H (t ′ )ÔT e−i

∫ t
t0

dt ′H (t ′ )
ρ0

]
. (1)

Here, T is the time-ordering operator, and T̃ denotes antitime
ordering. In the KF, one rewrites Eq. (1) as

=
Ô

t t0time

−

+

〈Ô(t)〉 = Tr TC e−i
t0
t dt′H+(t′) Ô e

−i t
t0

dt′H−(t′)
ρ0

(2)

The Hamiltonian, and all operators in it, acquire an addi-
tional contour index c = ∓, indicating whether they sit on the

115128-2



REAL-FREQUENCY QUANTUM FIELD THEORY APPLIED … PHYSICAL REVIEW B 109, 115128 (2024)

forward (−) or backward (+) branch of the Keldysh double-
time contour. The contour-ordering operator TC puts all
operators on the backward branch left of those on the forward
branch, and antitime orders (time orders) them on the back-
ward (forward) branch.

In the above equation, Ô, inserted at time t , can be placed
on either branch. However, if Ô is a product of multiple
operators, they also come with contour indices to ensure the
correct ordering. It follows that an n-point correlator generi-
cally has 2n Keldysh components. For example, the two-point
correlator in terms of the creation (ψ†) and the annihilation
operator (ψ) reads

Gc|c′
(t, t ′) = −i〈TCψc(t )ψ†c′

(t ′)〉. (3)

Resolving the contour indices c, c′ yields the matrix

Gc|c′ =
(

G−|− G−|+

G+|− G+|+

)
=

(
GT G<

G> GT̃

)
. (4)

Using the redundancy G< + G> − GT − GT̃ = 0, which
holds as long as t �= t ′ (see Appendix E for the case t = t ′),
the Keldysh structure of G can be simplified. The Keldysh
rotation invokes the Keldysh indices k = 1 and 2, where

ψ1 = 1√
2

(ψ− − ψ+), ψ2 = 1√
2

(ψ− + ψ+), (5)

and equivalently for ψ†. We can thus define a basis transfor-
mation matrix D via ψk = Dkcψc:

D = 1√
2

(
1 −1
1 1

)
, D−1 = 1√

2

(
1 1

−1 1

)
. (6)

Rotating G as Gk|k′ = DkcGc|c′
(D−1)c′k′

yields

Gk|k′ =
(

G1|1 G1|2

G2|1 G2|2

)
=

(
0 GA

GR GK

)
, (7)

where G1|1 = 0 follows from the redundancy mentioned
above. We find the retarded propagator

GR(t1, t2) = −i�(t1 − t2)〈{c(t1), c†(t2)}〉, (8)

where {·, ·} denotes the anticommutator, and its advanced
counterpart GA(t1, t2) = [GR(t2, t1)]∗, as well as the Keldysh
propagator GK (t1, t2) = −[GK (t2, t1)]∗ [54].

For a time-independent problem, we have G(t1, t2) =
G(t1 − t2) and frequency conservation with

G(ν) =
∫

dteiνt G(t ), G(t ) =
∫

dν

2π
e−iνt G(ν). (9)

In the following, we consider thermal equilibrium at tempera-
ture T and chemical potential μ, set to zero. Then, the density
matrix is ρ0 = e−H/T /Z (with kB = 1 and Z = Tr e−H/T ),
and the Keldysh components of G fulfill the fluctuation-
dissipation theorem (FDT) [54,65]

GK (ν) = 2i tanh
(

ν
2T

)
ImGR(ν). (10)

B. Diagrammatic framework

The one-particle propagator can be expressed through the
bare propagator G0 and the self-energy � via the Dyson

equation. Using multi-indices 1, 1′, etc., we have

(11)

where the internal arguments 2, 2′ are summed over. This
equation is solved by G = (G−1

0 − �)−1. The self-energy has
a Keldysh structure similar to Eq. (7),

�k′
1|k1 =

(
�1|1 �1|2

�2|1 �2|2

)
=

(
�K �R

�A 0

)
, (12)

and �K (ν) = 2i tanh( ν
2T )Im�R(ν), cf. Eq. (10).

The two-particle (or four-point) correlation function G(4)

can be expressed through the four-point vertex 	,

(13)

where the internal arguments (3, 3′, 4, 4′) are again summed
over. From G(4), one obtains susceptibilities by contracting
pairs of external legs (see Appendix C for details).

The bare vertex, as the full vertex, is fully antisymmetric in
its indices. Thus, a purely local and instantaneous interaction
is of the type

(	0)σ ′
1σ

′
2|σ1σ2

(t ′
1, t ′

2|t1, t2)

= −Uδ(t ′
1 = t ′

2 = t1 = t2)δσ1,σ̄
′
2
(δσ ′

1,σ2δσ ′
2,σ1 − δσ ′

1,σ1δσ ′
2,σ2 ),

(14)

with U > 0 for a repulsive interaction. This corresponds to a
Hugenholtz diagram (single dot) [68]

(15)

As the bare vertex is part of either H+ or H− in Eq. (2), all
its contour indices must be equal [54],

(	0)1′2′|12 = −c1δc′
1=c′

2=c1=c2 (	0)σ ′
1σ

′
2|σ1σ2

(t ′
1, t ′

2|t1, t2). (16)

It acquires a minus sign when moved from the forward (c1 =
−) to the backward (c1 = +) branch of the Keldysh contour.
After Keldysh rotation, one obtains

(	0)k′
1k′

2|k1k2

σ ′
1σ

′
2|σ1σ2

=
{

1
2 (	0)σ ′

1σ
′
2|σ1σ2

,
∑

i ki odd

0, else,
(17)

where
∑

i ki is short for k′
1 + k′

2 + k1 + k2.
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C. Many-body approaches

So far, we defined the basic objects of interest, namely,
one- and two-particle correlation functions in the KF, encap-
sulated in the self-energy � and the 4p vertex 	,

(18)

One can derive a diagrammatic perturbation series for each of
them. However, to extend our description from weak to inter-
mediate coupling, we want to resum infinitely many diagrams.
We use two strategies achieving this: fRG [39,69] and the PA
[40]. We summarize both schemes in turn and then comment
on their relation.

In fRG, one introduces a scale parameter � into the bare
propagator G0, such that the theory is solvable at an initial
value � = �i, while the original problem is recovered at a
final value � = � f (i.e., G

� f

0 = G0). Here, we choose G�i
0

very small, so that ��i and 	�i can be obtained by perturba-
tion theory or by iterating the parquet equations (see below)
until convergence. The final results �� f = � and 	� f = 	

are obtained by solving a set of flow equations. In fact, the
fRG provides an infinite hierarchy of flow equations, which
is in principle exact but must be truncated in practice. The
flow equations for �̇ = ∂�� and 	̇ = ∂�	 in diagrammatic
notation are

(19a)

(19b)

The propagator with a dash is the single-scale propaga-
tor S = ∂�G|�=const; propagator pairs with a dash indicate
�̇S = SG + GS. We adopt the one-loop fRG scheme where
the truncation consists of 	(6) ≈ 0. As is commonly done, we
then employ the so-called Katanin substitution [70] where �̇S

is replaced by �̇ = ĠG + GĠ.

The parquet formalism consists of solving a self-consistent
set of equations on the one- and two-particle level. It involves
the Schwinger–Dyson equation (SDE)

(20a)

where the first term is the Hartree self-energy �H, as well as
the Bethe–Salpeter equations (BSEs)

(20b)

(20c)

(20d)

Here, γr is the two-particle reducible vertex in a given channel
r ∈ {a, p, t}, while Ir = 	 − γr is the corresponding two-
particle irreducible vertex. The parquet equation

	 = R + γa + γp + γt (20e)

gives the full vertex in terms of the two-particle reducible
vertices as well as the fully irreducible vertex R. The set
of equations (20) is exact. However, R in Eq. (20e) is not
determined by an integral equation itself and serves as an
input, for which an approximation must be used in practice.
The PA is the simplest such approximation:

R = 	0 + O[(	0)4] ≈ 	0. (21)

Thus, the set of equations (20) closes and can be solved by
standard means.

The truncated (one-loop) fRG flow and the PA are closely
related but differ in details. An equivalence between them
is established by the multiloop fRG [61–63] (see also
Refs. [64,71–76]): By incorporating additional terms into the
flow equations, which simulate part of the intractable six-
point vertex in the fRG hierarchy of flow equations, the scale
derivative of the self-energy and vertex is completed to a
total derivative of diagrams, which are precisely the diagrams
contained in the PA. Hence, if multiloop convergence can
be achieved, the regulator dependence of the truncated fRG
flow is eliminated, and one obtains results equivalent to the
PA. Here, we restrict ourselves to one-loop fRG flows. Our
numerical explorations with multiloop fRG for the AM in the
KF have so far shown that the additional terms are numerically
less well behaved, requiring a prohibitively high numerical
resolution. This task is therefore left for future work, where
compression techniques such as the new quantics tensor cross
interpolation scheme [7,33,77] could be used to keep the
needed numerical resources manageable.
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D. Single-impurity Anderson model

The formalism introduced above is completely general
and can be applied, e.g., to lattice or impurity models alike.
Comparing Keldysh to Matsubara approaches, the spatial or
momentum degrees of freedom of lattice models are treated
similarly in both cases. By contrast, the temporal or frequency
dynamics are naturally very different. In impurity models, the
frequency dynamics are isolated, saving the cost of including
momentum variables. Hence, we consider in this paper the
AM [49] in thermal equilibrium. Its physical behavior is well
understood [48], and NRG [43] can be used to obtain highly
accurate real-frequency benchmark data.

The model is defined by the Hamiltonian

H =
∑
εσ

εc†
εσ cεσ + (εd + h)n↑ + (εd − h)n↓ + Un↑n↓

+
∑
εσ

(Vεd†
σ cεσ + H.c.), (22)

with spinful bath electrons, created by c†
εσ , and a local level

(d†
σ ). The latter has an on-site energy εd and Coulomb repul-

sion U acting on nσ = d†
σ dσ . Although we consider h = 0, we

include the magnetic field in Eq. (22) for a simple definition of
the magnetic susceptibility. The bath electrons are integrated
out, yielding the frequency-dependent retarded hybridization
function −Im�R(ν) = ∑

ε π |Vε |2δ(ν − ε). We consider a flat
hybridization in the wide-band limit, �R

ν = −i�, so that the
bare impurity propagator reads

GR
0 (ν) = 1

ν − εd + i�
. (23)

We use the dimensionless parameter u = U/(π�) for the in-
teraction strength on the impurity in units of the hybridization
strength to the bath. We focus on two choices of the on-site
energy: one with particle-hole symmetry, εd = −U/2, and
one without, εd = 0. We refer to these as the symmetric AM
(sAM) and asymmetric AM (aAM), respectively.

For the sAM, �H = U/2 is conveniently absorbed into the
bare propagator,

GR
0 → GR

H = 1

ν − εd + i� − �H
= 1

ν + i�
. (24)

For perturbative calculations in the aAM (as in PT2 or to
initialize the parquet iterations), we also replace G0 by GH

(see Appendix E for details).
For the fRG treatment, we use the hybridization flow [54],

where � acts as the flow parameter and is decreased from a
very large value to the actual value of interest. This is con-
venient because every point of the flow describes a physical
system, at the given values of �, U , T . In other words, the
fRG flow provides a complete parameter sweep in �, while
the other parameters (U , T ) remain fixed. Then, the fRG
single-scale propagator is

SR(ν) = ∂�GR(ν)|�=const = −i[GR(ν)]2. (25)

In the limit � → ∞, the values of 	 and � are [54]

	|�=∞ = 	0, �R|�=∞ = �H = U 〈nσ 〉. (26)

Note that while all vertex diagrams of second order or higher
vanish as � → ∞, the first-order contribution of �R/A (the
Hartree term �H) is finite. As discussed in Appendix E, �H is
given by an integral over G<, which gives a finite value U 〈nσ 〉
even in the limit � → ∞. In practice, we start the flow at a
large but finite value of �, and use the self-consistent solution
of the parquet equations as the initial conditions for � and 	,
as they can be easily obtained for sufficiently large �.

E. Benchmark methods

As a real-frequency benchmark method, we use NRG in
a state-of-the-art implementation based on the QSpace ten-
sor library [78–80]. We employ a discretization parameter
of � = 2, average over nz = 6 shifts of the logarithmic dis-
cretization grid [81], and keep up to 5000 SU(2) multiplets
during the iterative diagonalization. Dynamical correlators are
obtained via the full density-matrix NRG [82,83], using adap-
tive broadening [84,85] and a symmetric improved estimator
for the self-energy [86]. We also extract zero-temperature
quasiparticle parameters from the NRG low-energy spec-
trum [87–93]. Dividing the quasiparticle interaction Ũ by the
square of the quasiparticle weight Z2 yields the 4p vertex at
vanishing frequencies 	↑↓(0). Thereby, we obtain 	↑↓(0) =
−Ũ/Z2 at T = 0 very efficiently and accurately. For a finite-
temperature estimate, we divide Ũ by the finite-temperature Z
deduced from the dynamic self-energy as opposed to the zero-
temperature Z following from the low-energy spectrum. We
also compute the dynamical 4p vertex in the Keldysh formal-
ism, exploiting the recent advances described in Refs. [34,35].

For completeness, we also compare our results to PT2.
Perturbation theory of the AM is known to work well when
expanding around the nonmagnetic Hartree–Fock solution
[60,94–97]. PT2 famously and fortuitously (cf. the iterated
perturbation theory in the DMFT context [42]) gives very
good results for the self-energy of the sAM, where εd =
−U/2 and �H cancel exactly. The reason is that �PT2 is
correct in the limits u→0 and u→∞. In the latter case,
the spectrum − 1

π
ImGR consists of two discrete peaks, and,

in the sAM, the resulting expression for �R = 1/GR
0 − 1/GR

is (U/2)2/(ν + i0+), coinciding with PT2. One may further
note that corrections to �PT2 start at order u4, as only even
powers contribute to the expansion of � for the sAM, and
that the expansion converges very quickly (see Figs. 3.6 and
3.7 in Ref. [95]). Additionally, the high-frequency asymptote
limν→∞ ν(�R − �H) is fully captured by PT2, as the general
expression U 2〈nσ 〉(1 − 〈nσ 〉) reduces to (U/2)2 (with 〈nσ 〉 =
1/2 in the sAM), i.e., the second-order result.

For the aAM, �H must first be determined in a self-
consistent way. This is crucial because 〈nσ 〉 is not well
approximated by a few orders in u [recall the Friedel sum
rule at T = 0 [98], 〈nσ 〉 = 1

2 − 1
π

arctan{[εd + �(0)]/�}].
The self-consistent Hartree propagator fulfills the Friedel sum
rule at T = 0, but the resulting 〈nσ 〉 for given εd is of course
not exact. When using PT2, we compute quantities of interest,
such as �PT2, using the Hartree propagator (see Appendix F
for details). However, in contrast with the sAM, �PT2 is not
exact at u→∞ (cf. Ref. [99]), odd powers in u contribute to
�, and the high-frequency asymptote of �PT2, involving 〈nσ 〉,
is not reproduced exactly.
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Finally, we also compare our fRG and PA results to
“K1SF calculations” mimicking the previous state of the art
in Keldysh fRG. References [54,55,58] used a scheme where
the full vertex is decomposed into the three channels [cf.
Eq. (20e)] and, for each two-particle reducible vertex γr , only
the dependence on the bosonic transfer frequency is retained
[see Eq. (76) in Ref. [55]]:

	 ≈ 	0 +
∑

r=a,p,t

γr (ωr ). (27)

Note that, within Matsubara fRG, Ref. [100] compared
this simplification (called “Appr. 1” therein) to the full
parametrization. When inserting the vertex parametrized ac-
cording to Eq. (27) into the self-energy flow (19a), no further
approximations are needed. However, when inserting the
vertex on the right of the vertex flow equation (19b), the
interchannel contributions are approximated by their static
values [in thermal equilibrium with μ = 0, see Eq. (83) in
Ref. [55]]:

	|RHS(γr ) ≈ 	0 + γr (ωr ) +
∑
r′ �=r

γr′ (ωr′ )|ωr′ =0. (28)

With this approximation the only frequency dependence of the
integrands lies in the propagator pair. By contrast, an exact
decomposition of each γr has the form [2]

γr (ωr, νr, ν
′
r ) = K1r (ωr ) + K2r (ωr, νr )

+ K2′r (ωr, ν
′
r ) + K3r (ωr, νr, ν

′
r ). (29)

(The frequency arguments ωr , νr , ν ′
r are defined in

Appendix A, Fig. 12.) Thus, the above approximation
can be understood by retaining only the K1r contributions
while ensuring a static feedback (SF) between the differ-
ent channels—hence the abbreviation K1SF. Within K1SF,
there are different ways of treating the feedback from the
self-energy. Previous works found better results at T = 0
by inserting only the static rather than full dynamic � into
the propagator [56]. We confirm this finding at T = 0 but
observed that the static � feedback has problems at T �= 0,
failing, e.g., the requirement Im� < 0. Instead, we obtained
much better results (particularly fulfilling Im� < 0) by using
the full dynamic � feedback together with the Katanin substi-
tution [70].

F. Note on the numerical implementation

Compared with the more common Matsubara formalism
(MF), the KF entails notable differences in the numerical
implementation that we summarize here (see Appendix G
for details). Most importantly, while finite-temperature Mat-
subara computations employ a discrete set of (imaginary)
frequencies, Keldysh functions depend on continuous (real)
frequencies. Furthermore, the Keldysh index structure in-
creases the number of components of the correlators (to be
computed and stored) by a factor of 4 and 16 for 2p and
4p objects, respectively. Hence, working in the KF requires
considerably higher effort in terms of implementational com-
plexity and numerical resources.

To minimize systematic numerical errors, a faithful
representation of the vertex functions is essential. The de-

composition (29) of the reducible vertices [2] is beneficial
for capturing the high-frequency asymptotics. Indeed, the
lower-dimensional asymptotic functions, K1 and K2(′) , allow
for a good resolution at comparably low numerical cost. A
good resolution of the continuous Keldysh functions further
necessitates a suitable choice of sampling points. We use a fre-
quency grid with high resolution at small frequencies, where
the vertices show sharp features, and fewer points at higher
frequencies. In fRG with the hybridization flow, the frequency
grids also have to be rescaled to account for changes scaling
with �; for fully adaptive grids (which were not required in
this work, cf. Appendix G) see also Refs. [73,74,76].

Continuous-frequency computations also require efficient
integration routines. We use an adaptive quadrature routine
to capture the essential features of sharply peaked functions
(cf. Appendix G). The additional numerical costs due to the
Keldysh index structure can be mitigated by vectorization,
i.e., by exploiting the matrix structure of the summation
over Keldysh components. Storing all Keldysh components
contiguously in memory allows for efficient access to matrix-
valued vertex data, which can be combined to matrix-valued
integrands via linear algebra operations. (Note that vectoriza-
tion over Keldysh components requires a quadrature routine
that accepts matrix-valued integrands.) Symmetries are used
to reduce the data points that are computed directly, and most
resulting symmetry relations are compatible with vectoriza-
tion over Keldysh indices (see Appendix A).

Lastly, the fRG and the parquet solver generally have the
advantage that computations can be parallelized efficiently
over all combinations of external arguments. We use OMP and
MPI libraries to parallelize execution across multiple CPUs
and compute nodes.

III. RESULTS

In the results, we focus on retarded correlation functions
like GR, �R, and χR. For brevity, we denote the real and
imaginary parts of, say, GR by G′ and G′′, respectively, i.e.,
GR = G′ + iG′′. Since the fRG flow varies � at fixed U and T ,
we consider a temperature of T/U = 0.01. Most plots show
results both for the sAM (εd = −U/2) and aAM (εd = 0).
Recall that u = U/(π�).

A. Dynamical correlation functions

As a first quantity that is directly measurable in ex-
periment, we show in Fig. 1 the spectral function Ã(ν)≡
π�A(ν) = −�G′′(ν). The absorbed factor of π� ensures
Ã(0) = 1 for the sAM and T →0. We consider three values
of u ∈ {0.75, 1, 1.5}, referred to as “small,” “intermediate,”
and “large” in the following (although truly large interactions
in the AM rather are u � 2 [60]). There are no PA results
for large u, as we could not converge the real-frequency self-
consistent parquet solver there.

At small u, the curves produced by all methods are almost
indistinguishable. Small but noticeable deviations occur for
the aAM at intermediate u, and pronounced deviations are
found at large u. At u = 1.5 in the sAM, only the methods ex-
act in the u→∞ limit (cf. Sec. II E), NRG and PT2, produce
notable Hubbard bands centered at ν = ±U/2, while fRG also
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FIG. 1. Spectral functions Ã(ν ) ≡ π�A(ν ) for three interaction
values u in the symmetric AM (sAM, left) and the asymmetric AM
(aAM, right). Deviations between the methods appear with increas-
ing u. Here and in all subsequent figures, we consider a temperature
of fixed T/U = 0.01. At u = 1.5 in the sAM, the onset of Hubbard
bands centered at ν = ±U/2 is only captured by NRG and (for
reasons explained in Sec. II E) PT2. At this interaction strength,
fRG underestimates the quasiparticle peak, and we were unable to
converge the PA results.

underestimates the height of the quasiparticle peak. Neverthe-
less, one may come to the conclusion that all methods agree to
a reasonable degree of accuracy. Note, although, that at small
u, where � is small, GR = 1/([GR

0 ]−1 − �R) and thus also
A(ν) are dominated by the bare propagator. As all nontrivial
features of

A(ν) = 1

π

� − �′′(ν)

[ν − εd − �′(ν)]2 + [� − �′′(ν)]2

come from �, we can gain more insight by looking at �

directly.
In Fig. 2, we plot the negative imaginary part of the

retarded self-energy −�′′(ν) in units of the hybridization
strength �. This quantity is strictly non-negative [86], which
is a useful and nontrivial consistency check for all our meth-
ods. Here, deviations between the methods are visible at each
value of u. At small u, the results mostly agree, albeit better for
the sAM than for the aAM. At small and intermediate u in the
aAM, the PA matches NRG most closely and also captures the
peak position correctly, in contrast with fRG, K1SF, and PT2.
Strikingly, though, for intermediate u in the sAM (which is
the more strongly correlated setting with lower quasiparticle
weight Z , see Fig. 7), the PA shows considerable deviations
from NRG: �′′ has a “deformation” in that its maxima are
misplaced outward. We performed a separate PA calculation
in the MF to confirm that the corresponding MF result per-

FIG. 2. Imaginary part of the retarded self-energy, organized as
in Fig. 1. The limitations of PT2 in the aAM are clearly exposed. The
PA results are closest to NRG at u = 0.75 for both sAM and aAM,
and at u = 1 for the aAM (this corresponds to the regime of not too
strong correlation, Z � 0.8, see Fig. 7). Artifacts appear at u = 1 in
the sAM (where Z ≈ 0.65, see Fig. 7). Throughout, the fRG results
with full frequency dependence match NRG better than those in the
K1SF simplification.

fectly matches the “trivial” analytic continuation from KF
to MF, − 1

π

∫
dν ′ �′′(ν ′ )

iν−ν ′ , see Fig. 3. Hence, we conclude that
the Keldysh self-energy did not acquire artifacts during the
real-frequency self-consistent parquet iteration. Instead, the
deformations are a deficiency of the PA solution at u = 1,

FIG. 3. Imaginary part of the Matsubara self-energy in NRG and
the PA. The PA results stem from an independent solver imple-
mented in the MF and from the “trivial” analytic continuation of �′′

obtained in the KF. The qualitative difference between NRG and PA
observed in the real-frequency results of Fig. 2 at u = 1 can hardly
be guessed from these imaginary-frequency results.
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FIG. 4. Hartree self-energy �H = U 〈nσ 〉 in the aAM. PT2 cor-
responds to self-consistent solutions of the Hartree term. Only fRG
and PA agree well with NRG.

which are obvious in our Keldysh results, but could not have
been guessed from the more benign Matsubara self-energy
(Fig. 3).

We also observe from Fig. 2 that the PT2 results become
much worse as soon as one leaves the special case of particle-
hole symmetry (see Sec. II E). The results from fRG with
full frequency dependence are better than those from K1SF,
showing that the frequency dependence of � is only generated
correctly if the dependence of the 4p vertex on its three fre-
quencies is kept [39]. In fact, for large u in the aAM, the K1SF
result becomes negative (with values on the order of 10−5)
at around ν/� � ±2, thus failing the previously mentioned
consistency check.

The inadequacies of a constant vertex manifest themselves
even in the constant Hartree part of the self-energy, �H =
U 〈nσ 〉, shown in Fig. 4. The fRG and PA calculations produce
the NRG value almost exactly, but the K1SF curve starts to
deviate early. We attribute this to the fact that diagrammatic
contributions beyond the K1 level are neglected, introducing
an error of O(U 3) into the flow of �, including �H, see
Eq. (E5). The PT2 curve shows the converged values obtained
from self-consistent evaluations of the Hartree diagram (see
Appendix E), which enters the Hartree propagator used in all
PT2 computations. The self-consistency is likely the reason
why PT2 performs better than K1SF (which does not obey
such a self-consistency) for small and intermediate u.

Apart from Ã and �, other dynamical quantities of interest
are susceptibilities. In the diagrammatic methods, these are
derived directly from the 4p vertex (see Appendix C). We
consider the imaginary part of the retarded magnetic and den-
sity dynamical susceptibilities χ̃m/d(ω)≡π�χm/d(ω), paying
special attention to the peak position and height. The peak
position of χ̃m shown in Fig. 5 is proportional to the Kondo
temperature and decreases with increasing u in the sAM. All
methods apart from K1SF produce good results at small u with
only minor deviations from NRG. The deviations are smallest
in PA from small to intermediate u, until the PA results are no
longer available at large u. fRG produces reasonable curves
but, at large u, under- or overestimates the peak in the sAM
and aAM, respectively. K1SF does not produce sensible re-
sults for any u considered, while PT2 performs well for the
aAM but yields worse results than fRG in the sAM.

The density susceptibility shown in Fig. 6 is centered at
larger frequencies and has smaller magnitude than its mag-
netic counterpart. Indeed, while χ̃m and χ̃d are equal at u = 0,
increasing interaction values discriminate between spin fluc-

tuations (enhanced) and charge fluctuations (reduced). Here,
fRG and the PA both produce acceptable results. However, the
PA data at intermediate u and in the sAM show a deformation
around ω/� � 5, reminiscent of the deformation in �′′ (cf.
Fig. 2). The K1SF curve for χ̃d (as for χ̃m) is not sensible,
this time lying far above (rather than below) the NRG curve.
PT2 for χd, differently from χm, is unreliable, yielding a
qualitatively wrong double-peak structure.

In summary, we find that the PA results generically repro-
duce the NRG benchmark best, but are available only up to
intermediate u. Our new fRG computations with the full fre-
quency dependence of the vertex drastically improve upon the
K1SF results in almost every case, but become quantitatively
off with increasing u.

B. Static properties

We now turn to static quantities, obtained from � and 	

by setting all frequency arguments to zero. Although these
can also be obtained using the imaginary-frequency MF (see
Ref. [100] for an early MF fRG treatment of the AM), they
serve as important consistency checks for our Keldysh compu-
tations. The zero-frequency fermion objects can be used for an
effective low-energy description, and, by rescaling, converted
to quasiparticle parameters as in Hewson’s renormalized per-
turbation theory [101]. For the AM in the wide-band limit
at T = 0, the static fermionic quantities can also be deduced
from the static susceptibilities. We hence consider the static
magnetic and charge susceptibilities as well, before analyzing
the zero-temperature identities in the next section.

By virtue of the � flow, see Sec. II D, a single fRG com-
putation suffices to obtain the entire dependence of, e.g., Z (u)
(at fixed T/U ). By contrast, the PA requires separate compu-
tations for every value of u, resulting in a significantly bigger
numerical effort. The top row of Fig. 7 shows the quasiparticle
weight

Z = (
1 − ∂ν�

′∣∣
ν=0

)−1
, (30)

as extracted from the slope at ν = 0 of the real part of the
retarded self-energy, �′. In all cases, the PA reproduces the
NRG benchmark best, but is again only available up to u � 1.
The fRG curve follows NRG for small u but starts to deviate
already at intermediate u. K1SF performs very well in the
sAM, but deviates from NRG in the aAM earlier than fRG.
Since PT2 reproduces the NRG full self-energy very well for
the sAM (cf. Fig. 2), the same applies to Z . In the aAM, PT2
also produces reasonable results for Z , in contrast with �′′(ν)
in Fig. 2.

The second row of Fig. 7 displays the scattering rate
−�′′(0) on a logarithmic scale. In the sAM, all methods
agree reasonably well up to intermediate u. Beyond that, fRG
significantly overestimates −�′′(0) (cf. Fig. 2). In the aAM,
the fRG results are slightly better. The PA yields the best
agreement with NRG, except for u � 1 in the aAM where
numerical artifacts appear. K1SF shows large deviations early
on, matching the observations in Fig. 2. PT2 reproduces NRG
almost exactly, even though this is not the case for �′′(ν)
(Fig. 2) in the aAM.

The last row of Fig. 7 shows the effective interaction.
The PA accurately reproduces the NRG results. In strik-
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FIG. 5. Imaginary part of the dynamical magnetic susceptibility,
χ̃m(ω)≡π�χm(ω). At small to intermediate u, all methods (except
K1SF) produce good results, while PA matches NRG best. Toward
large u, fRG does not capture the peak correctly. PT2 performs well
for the aAM but not the sAM; K1SF is off in all cases.

ing contrast, fRG overestimates the effective interaction very
strongly. (This can also be seen in Fig. 11 below, third
row, columns four to six, where the frequency-dependent
vertex is plotted.) PT2 and K1SF yield only very weak
renormalizations of the bare vertex (none at all in PT2 in
the sAM).

Figure 8 shows the static magnetic and density susceptibil-
ities,

χm = 1
4∂h〈ñ↑ − ñ↓〉|h=0, χd = 1

4∂εd 〈ñ↑ + ñ↓〉, (31)

where ñσ = nσ − 〈nσ 〉. Again, the PA results, where available,
reproduce the NRG benchmark best. The fRG results are
reasonable up to intermediate u for χ̃ ′

m/d(0) = π�χm/d. A
comparison with the results obtained by an independent MF
computation (dashed lines in Fig. 8) reveals that the KF data
at the largest u values is not fully converged in the size of
the frequency grid (see Appendix I for details). As for the
dynamical susceptibilities, K1SF does not produce sensible
results at all. PT2 gives fairly good results, in particular for
χ̃ ′

m in the aAM (see also Fig. 5), but χ̃ ′
d in the sAM quickly

deviates from NRG rather strongly (as it did in Fig. 6).
In summary, for all the static properties shown in Figs. 7

and 8, the PA results agree very well with NRG for all u for
which the parquet solver converged, i.e., up to u � 1. By con-
trast, fRG results begin to deviate from NRG somewhat earlier
than PA, sometimes even much earlier. This difference is most
striking for the effective interaction in the bottom panels of
Figs. 7, where the performance of fRG is surprisingly (even
shockingly) poor.

This comparatively poor performance of fRG may be due
in part to the well-known fact that one-loop fRG results de-

FIG. 6. Imaginary part of the dynamical density susceptibility,
χ̃d(ω)≡π�χd(ω). Both fRG and the PA produce good results. The
artifact in the PA solution at u = 1 in the sAM observed in Fig. 2 is
also seen here, while it was not apparent in Fig. 5. Neither PT2 nor
K1SF produce sensible results for χ̃d.

pend on the choice of the fRG regulator. Figure 9 illustrates
this in the present context by comparing our KF results with
independent calculations in the MF. For the latter, we used

FIG. 7. Static fermionic properties as a function of u: quasipar-
ticle weight Z , scattering rate −�′′(0) on a logarithmic scale, and
effective interaction (k = 12|22) in units of the bare interaction.
Overall, the PA (available for u � 1) matches NRG best, except for
�′′(0) at u � 1 in the aAM. All other methods agree reasonably
well (except for Z and �′′(0) in the aAM in K1SF). Strikingly, fRG
strongly overestimates the effective interaction.
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FIG. 8. Static susceptibilities as a function of u. fRG yields
sensible results until χ̃ ′

m has a maximum at u ≈ 1.3. PA data are
available only for u � 1, but show excellent agreement with NRG
there. Results from K1SF and PT2 (for χ̃d) are rather bad.

three different regulators, called � flow (same as for our KF
computations), U flow, and ω flow. [See Eqs. (3) and (4) in
Ref. [64] for definitions of the U and ω flow. The ω and U
flows require many more separate computations than the �

flow, since the former two hold T/� fixed (the ω flow also
T/U ), while the latter holds T/U fixed.] From Fig. 9, we note
three salient points. First, the MF and KF results for the �

flow match. This is expected for numerically converged calcu-
lations and serves as a useful consistency check. Second, the
U flow deviates from the NRG benchmark very early. Third,
the best MF result is obtained from the ω flow (similarly as
observed in Ref. [64]). Regrettably, though, this advantage of
the MF ω flow is not relevant for the KF: there, the ω flow
would violate causality [54] and hence cannot be used. This,
and the poor performance of the U flow, is the reason why we
chose the � flow for all our KF computations.

FIG. 9. Effective interaction (k=12|22) of the sAM in units of
the bare interaction, including fRG results in the MF obtained with
three different regulators. The MF result in the � flow perfectly
matches its KF counterpart. The U flow performs considerably
worse, as it quickly deviates from NRG. By far the best result is
obtained using the ω flow, which can however not be used in the KF
(see the main text for details). In the MF, we approximate vanishing
frequencies by averaging over the lowest Matsubara frequencies,
γr (0) ≈ 1

4

∑
ν,ν′=±πT γr (0, ν, ν ′).

C. Zero-temperature identities

As an internal consistency check for each method, we
consider four Fermi-liquid identities. These hold T = 0 and,
more generally, at T � TK, where TK is the Kondo tem-
perature. We deduce TK as TK = 1/[4χ ′

m(0)]|T =0 [see, e.g.,
Eq. (20) in Ref. [102]] from zero-temperature NRG calcula-
tions. The resulting values for u∈{0.75, 1, 1.5} are TK/U ∈
{0.31, 0.18, 0.07} for the sAM and TK/U ∈{0.58, 0.45, 0.32}
for the aAM. Note that the Kondo regime of the sAM corre-
sponds to u � 2 [101].

First, for a constant hybridization function in the wide-
band limit, we have the following two “Yamada–Yosida
(YY) identities” generalized to arbitrary εd [see Eq. (6.1) in
Ref. [95] and Eq. (7) in Ref. [97], Eqs. (24)–(25) in Ref. [101],
or Eqs. (4.30)–(4.33) in Ref. [103]]:

Z−1 = [χm(0) + χd(0)]/ρ(0), (32a)

−ρ(0)	↑↓(0) = [χm(0) − χd(0)]/ρ(0). (32b)

Here, ρ(0)≡A(0)|T =0 is the spectral function evaluated at
ν = 0 and T = 0,

ρ(0) = 1

π

�

[εd + �′(0)]2 + �2

= 1

π�

{
1 for εd = −U/2

1
1+[�′(0)/�]2 for εd = 0.

(33)

Next, 	↑↓(0) is the full Matsubara 4p vertex evaluated at van-
ishing frequencies (in the zero-temperature limit). The minus
sign in Eq. (32b) stems from our convention of identifying,
e.g., the bare Matsubara vertex 	0,↑↓ with −U . The analytic
continuation of �p functions between Matsubara and retarded
Keldysh components involves a factor 2�/2−1 [see Eq. (69) in
Ref. [34]]. Hence,

	↑↓(0) = 2	k
↑↓(0),

k ∈ {(12|22), (21|22), (22|12), (22|21)}. (34)

Another identity derived by YY [see Eqs. (13)–(15) and
(18) in Ref. [97], Eqs. (31) and (34) in Ref. [101], or Eq. (4.37)
in Ref. [103]] implies

−�′′(ν) = 1
2πρ(0)3[	↑↓(0)]2(ν2 + π2T 2) (35)

for |ν|, T � TK. We check this relation by fitting �′′ ∝
(ν2 + π2T 2). Finally, the Korringa–Shiba (KS) identity [see
Eq. (1.4) in Ref. [104]] reads

lim
ω→0

χ ′′
m(ω)/ω = 2π [χ ′

m(0)]2. (36)

To check the fulfillment of these identities, we analyze
the relative difference 2(LHS − RHS)/(LHS + RHS) [LHS
(RHS) = left- (right-) hand side] of Eqs. (32a), (32b), (35),
(36), referred to as YY1, YY2, YY3, KS, respectively. These
zero-temperature identities of the AM only hold if T � TK.
As we keep T/U = 0.01 constant, the temperatures increase
with u, and T � TK is no longer fulfilled for u � 1 in the
sAM. Accordingly, there, the identities are violated even in
NRG.

As can be seen in Fig. 10, the PA fulfills most identities
very well (below 8% throughout), but is again available only
up to u � 1. The fRG results obey YY1 up to u � 1, but show
clear deviations in all other identities, setting in already for
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FIG. 10. Relative difference between the left- and right-hand
sides of the four zero-temperature identities as a function of u.
All calculations have finite T/U = 0.01; thus, even NRG violates
the identities if T � TK is no longer fulfilled. Apart from NRG,
the PA shows the smallest violations of these identities (below 8%
throughout), but is only available for u � 1. The fRG data fulfill YY1
relatively well, but show clear deviations otherwise, setting in already
for very small values of u. For YY2, e.g., the deviations become
significant already at u � 0.25. PT2 obeys the identities (except
KS) in the sAM but not the aAM. K1SF shows major deviations
throughout.

very small values of u. Except for the KS relation in the fourth
row, PT2 mostly fulfills the identities for the sAM but less so
for the aAM, while K1SF shows major deviations, even for
small u.

D. Frequency dependence of the 4p vertex

Finally, we show fRG and PA results for the frequency
dependence of the 4p vertex in the sAM and compare them
to corresponding results from NRG. We restrict ourselves
to a fully retarded Keldysh component [34] and show both
the same-spin (↑↑) and the opposite-spin (↑↓) components.
We plot the vertex in the two-dimensional frequency plane
(ωt = 0, νt = ν, ν ′

t = ν ′) in the natural parametrization of the
t channel for zero transfer frequency. Physically, this corre-
sponds to the effective interaction of two electrons on the
impurity with equal or opposite spins, respectively, and en-
ergies ν, ν ′ without energy transfer [69]. The NRG 4p results
are computed with the scheme introduced in Refs. [34,35],
utilizing the symmetric improved estimator of Ref. [105].

In Fig. 11, we compare results from fRG, the PA, and NRG
for two values of the interaction u ∈ {0.5, 1}. We observe good

qualitative agreement throughout, as all methods capture all
nontrivial features. At u = 1, however, we observe a qualita-
tive discrepancy in the data: Re	↑↓ is strictly positive in fRG
and slightly negative in NRG (bottom part, top row, first panel
from the right in Fig. 11). The PA result reaches even larger
negative values and retains them for a large range of ν values.
This strong negative signal appears to be an artifact of the PA;
it would likely be canceled by additional contributions missed
in the PA.

IV. CONCLUSIONS AND OUTLOOK

In this work, we have shown that real-frequency QFT cal-
culations with full frequency resolution of the 4p vertex are
feasible. We chose the AM for a proof-of-principle study and
employed one-loop fRG flows and solutions of the parquet
equations in the PA, benchmarked against NRG. We com-
pared dynamical correlation functions as well as characteristic
static quantities and performed a detailed numerical check of
zero-temperature identities. We found that keeping the full
frequency dependence of the 4p vertex in fRG strongly im-
proves the accuracy compared with previous implementations
using functions with at most one-dimensional frequency de-
pendencies. Note that the present study is performed at finite
temperature, T/U = 0.01, in contrast with previous work on
spectral functions at T = 0 [55].

The numerical challenges imposed by the fully
parametrized real-frequency 4p vertex were overcome
via a suitably adapted frequency grid, vectorization over the
Keldysh matrix structure, and a parallelized evaluation of the
fRG or parquet equations (see Appendix G). We employed
frequency grids with up to 1253 data points, and our most
expensive calculation consumed about 25 000 CPU hours for
a single data point in the PA.

The PA results could be converged only for u = U/(π�) in
the range u � 1, but there gave the best agreement with NRG
(except at the boundary of the accessible u range). The PA also
gave very good results for the effective interaction. However,
by looking at 	k

↑↓ in a frequency range around the origin, it
appears that the mechanism by which the PA achieves low
values of |	k

↑↓(0)| (compared with, say, fRG) is different from
that of NRG, as the PA data have a spuriously large regime of
strongly negative values in Re	k

↑↓.
The fRG calculations in the present context were compara-

tively economical, since a single run with the “� flow” yields
an entire parameter sweep in �. The flow could be followed
to large values of u, well beyond 1, i.e., far beyond the regime
where we could converge the PA. However, for u � 0.5 these
one-loop fRG results are significantly less accurate than the
PA (as compared with NRG). Strikingly, fRG strongly over-
estimates the effective interaction 	k

↑↓(0) by factors of three
to four for u in the range 1 to 1.5. We compared the Keldysh to
Matsubara fRG data obtained using three different regulators,
and we found that, for u > 0.5, the latter strongly depend on
the choice of regulator: For the � flow, the Matsubara results
agree with the Keldysh results, while performing better than
the U flow but worse than the ω flow. Regrettably, the ω flow
is not available in the KF, where it violates causality. It would
hence be worthwhile to find Keldysh fRG regulators akin to
the ω flow but compatible with the KF requirements regarding
causality and FDTs [54].
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FIG. 11. Fully retarded (k = 12|22) Keldysh component of the full vertex, [	k
σσ ′ (ωt = 0, νt = ν, ν ′

t = ν ′) − 	k
0,σσ ′ ]/	k

0↑↓, for u = 0.5 (top
panel) and u = 1 (bottom), computed using fRG, PA, and NRG (following Refs. [34,35]). We observe very good agreement for u = 0.5, which,
qualitatively, mostly persists for higher interaction. However, Re	↑↓ at u = 1 and low frequencies differs significantly between the methods:
it is strictly positive in fRG, slightly negative in NRG, but much more strongly negative up to fairly large values of ν in the PA. Generally, the
PA shows more complicated features than NRG for larger u, despite being numerically converged, indicating the breakdown of the PA.

The regulator dependence in fRG can be eliminated in the
multiloop fRG framework, yielding results equivalent to the
PA upon convergence in the number of loops [61–63]. This
has been demonstrated numerically in imaginary frequencies
for the AM [64] (and in Refs. [71,72] for the Hubbard model).
Yet, using a multiloop extension of our Keldysh fRG code, we
found the computation of multiloop contributions consider-
ably harder for Keldysh vertices than for Matsubara vertices.
The reason seems to be that, for real-frequency Keldysh ver-
tices, the higher-loop contributions for increasing u show a
considerably more complicated frequency structure than the
original fRG vertex itself (similarly to how the PA vertex has
more structure than its fRG counterpart in the bottom panel
of Fig. 11). A more detailed analysis along these lines is,
however, left for future work.

Our work paves the way for many follow-up studies.
For instance, one can exploit the power of the KF to study
nonequilibrium phenomena, and the AM with a finite bias
voltage is tractable with only minor increase in the numerical
costs [55,106]. Furthermore, we here considered moderate
interaction strengths u � 1.5 because it is known that fRG
and the PA are unable to access the nonperturbative regime
of the AM [20,64] or, e.g., the Hubbard model [72,107]. An
important future direction is, therefore, to use these methods

in a more indirect manner, as real-frequency diagrammatic
extensions [41] of dynamical mean-field theory [42]. The first,
established building block for this is the nonperturbative input,
namely, 2p and 4p vertices, from NRG [34,35]. The present
work presents another building block: real-frequency QFT
with full frequency resolution of the 4p vertex. An important
next step will be to use our diagrammatic framework to study
the consistency of the NRG results for the 2p and 4p vertices,
e.g., by checking whether they fulfill the SDE. The final build-
ing block will then be to include momentum degrees of free-
dom in real-frequency QFT approaches built on top of NRG.

Keeping track of the momentum dependence will lead to
a major increase in numerical complexity. This can be ad-
dressed using economical implementations and compression
algorithms such as truncated-unity approaches [108–111] or
the new quantics tensor cross interpolation scheme [7,33,77].
The latter can be used to obtain highly compressed tensor
network representations of multidimensional functions, po-
tentially leading to exponential reductions in computational
costs. First investigations have shown that the objects encoun-
tered in diagrammatic many-body approaches may indeed
have strongly compressible quantics representations [7].

All raw data required to reproduce the plots as well as the
full data analysis and the plotting scripts are available online
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[112]. A separate publication of the fully documented source
code used to generate the raw data is in preparation.
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APPENDIX A: THE TWO-PARTICLE VERTEX

In compact notation, we denote the vertex by 	1′2′|12 where
each leg carries a multi-index i = (ki, σi, νi ) with Keldysh
index ki, spin σi, and fermionic frequency νi. Generic sym-
metries of the full Keldysh vertex are derived in Ref. [56]
and other symmetries (such as spin or particle-hole symmetry)
are given in Ref. [113]. In the following, we recap these
symmetries and detail the parametrization in our implementa-
tion. First, we work with Keldysh indices rather than contour
indices. In this basis, the 11 · · · 1 (22 · · · 2) component of a
multipoint correlator (vertex) vanishes [56]. This simplifies,
e.g., the Dyson equation, GR = [(GR

0 )−1 − �R]−1 and implies
	22|22 = 0. Furthermore, crossing symmetry gives

	1′2′|12 = −	2′1′ |12 = −	1′2′|21 = 	2′1′|21, (A1)

and complex conjugation

	1′2′|12 = (−1)1+∑
i ki	∗

12|1′2′ . (A2)

Thermal equilibrium entails (generalized) fluctuation-
dissipation relations between different Keldysh components.
However, we choose to vectorize the code over Keldysh
components and thus do not use these relations (see
Appendix G for details on the vectorization). For a
comprehensive list of multipoint fluctuation-dissipation
relations, we refer to Refs. [56,114,115]. They are very well
fulfilled (percent level) by our numerical results.

In the absence of a magnetic field, spin conservation and
the invariance under a global spin flip reduce the number of
independent spin components. The remaining components are
related by the SU(2) relation [113]

	σσ |σσ = 	σσ̄ |σ σ̄ + 	σσ̄ |σ̄ σ , (A3)

where ↑̄ =↓ and vice versa. Hence, the spin dependence of
the vertex can be parametrized by

	σ ′
1σ

′
2|σ1σ2 = 	↑↓δσ ′

1,σ1δσ ′
2,σ2 + 	↑↓δσ ′

1,σ2δσ ′
2,σ1 . (A4)

The components on the right-hand side are related by crossing
symmetry. It thus suffices to compute a single one of them. At
particle-hole symmetry, we further have

	1′2′|12(ν ′
1, ν

′
2|ν1, ν2) = 	12|1′2′ (−ν1,−ν2| − ν ′

1,−ν ′
2)

(A2)= (−1)1+∑
i ki	1′2′|12(−ν ′

1,−ν ′
2| − ν1,−ν2)∗, (A5)

with the multi-indices i = (ki, σi ), reducing the number of
independent frequency components even more.

By frequency conservation, ν ′
1 + ν ′

2 = ν1 + ν2, the vertex
depends on only three independent frequencies. These are
chosen differently for each two-particle reducible vertex γr

(see Fig. 12), with the bosonic transfer frequency ωr and
the fermionic frequencies νr and ν ′

r . The vertices γr have
nontrivial asymptotics in the limits ν (′)

r →∞. One can de-
compose the reducible vertex γr in asymptotic classes, see
Eq. (29) [2]. Since the bare interaction is frequency indepen-
dent, the asymptotic classes Kir can be identified with certain
diagrams that are reducible in channel r [2,73]. Connecting
two external legs to the same bare interaction vertex reduces
the dependence by one external frequency argument. K1r (ωr )
consists of all diagrams where the two external legs carrying
frequency νr connect to the same bare vertex and the external
legs carrying ν ′

r connect to another one. Hence, K1r only
depends on ωr . K2r (ωr, νr ) consists of all diagrams where
the ν ′

r legs connect to the same bare vertex while each of the
other two legs connect to different bare vertices. K2′r (ωr, ν

′
r )

is analogous to K2r with the roles of νr and ν ′
r interchanged.

For K3r (ωr, νr, ν
′
r ) all external legs connect to different bare

vertices. The bare vertices simplify not only the dependence
of K1, K2, and K2′ on frequencies but also on Keldysh indices.
If a bare vertex connects to two external legs, flipping their
Keldysh indices, 1̄ = 2 (2̄ = 1), leaves the function invariant,
see Eq. (17). This gives, e.g.,

Kk1′ k2′ |k1k2

1p = Kk̄1′ k̄2′ |k1k2

1p = Kk1′ k2′ |k̄1 k̄2

1p

= Kk̄1′ k̄2′ |k̄1 k̄2

1p , (A6a)

Kk1′ k2′ |k1k2

2p,σ1′ σ2′ |σ1σ2
= Kk1′ k2′ |k̄1 k̄2

2p,σ1′ σ2′ |σ1σ2
. (A6b)

Note that the diagrammatic channels a and t flip under
crossing symmetry, i.e., γa,1′2′|12 = −γt,1′2′|21, while channel
p is crossing symmetric itself. The symmetry relations in
Eqs. (A1)–(A5) are formulated for full vertices. They can
be adapted to the asymptotic classes Kir by inserting the
decomposition on both sides of each relation and taking the
appropriate limits ν (′)

r →∞. For instance, K↑↓,2′ p is related to
K↑↓,2p by

Kk1′ k2′ |k1k2

↑↓,2′ p (ωp, ν
′
p)

(A2)= (−1)1+∑
i ki Kk1k2|k1′ k2′

↑↓,2p (ωp, ν
′
p). (A7)

For a formulation of the parquet and fRG equations in terms
of asymptotic classes, we refer to Ref. [2] and to Eqs. (75) in
Ref. [75].

As we vectorize over Keldysh indices, we explicitly keep
track of all Keldysh components. The symmetry relations
are then used to reduce the spin and frequency components
[Eqs. (A1), (A2), and (A5) for 	↑↓]. To implement these
symmetries for the K3r class, it is convenient to express the
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FIG. 12. We show the frequency conventions for the two-particle reducible vertices γr with r = a, p, t . Symmetric parametrizations with
± ω

2 ensure that vertex structures are centered around the frequency axis. The irreducible vertex R is shown in bosonic frequencies for
completeness.

relations in terms of the three bosonic frequencies [100],
giving

	
k1′ k2′ |k1k2

↑↓;ωa,ωp,ωt

(A2)= [
	

k1k2|k1′ k2′
↑↓; ωa,ωp,−ωt

]∗
(−1)1+∑

i ki ,

(A1)= 	
k2′ k1′ |k2k1

↑↓; −ωa,ωp,−ωt

(A5)= [
	

k1′ k2′ |k1k2

↑↓; −ωa,−ωp,−ωt

]∗
(−1)1+∑

i ki ,

(A8)

such that the sign of the bosonic frequencies define sectors
that are related by symmetry.

APPENDIX B: FREQUENCY DEPENDENCE
OF VERTEX COMPONENTS

Figures 13 and 14 show plots for the frequency dependence
of the asymptotic classes K2 and K3 for each of the three
two-particle channels r ∈{a, p, t}, computed in the PA for
u = 0.5 and u = 1, respectively. We use the natural frequency
parametrization for each channel r and set the bosonic transfer
frequency ωr = 0 in the plots for K3. The figures instructively
show what types of nontrivial structures emerge during such
calculations. In particular, one can clearly see that the fre-
quency resolution needs to be very high throughout to resolve
all sharp features (many occurring on scales much smaller
than �). Moreover, the weak-coupling results may serve as
benchmarks for future computations of Keldysh vertices using
other methods, such as NRG or QMC.

APPENDIX C: FULLY PARAMETRIZED EQUATIONS

We can write the parquet equations (20) and one-loop fRG
flow equations (19) entirely in terms of two functions, bubbles
and loops. A bubble Br in channel r = a, p, t combines two
vertices via a propagator pair

�34|3′4′
a,ωaνa

= G3|3′
νa−ωa/2G4|4′

νa+ωa/2, (C1a)

�34|3′4′
p,ωpνp

= G3|3′
ωp/2+νp

G4|4′
ωp/2−νp

, (C1b)

�
43|3′4′
t,ωt νt

= G3|3′
νt −ωt /2G4|4′

νt +ωt /2, (C1c)

where we use the natural frequency parametrization for
each channel (see Fig. 15) and superscripts indicate Keldysh
indices (34|3′4′) = (k3k4|k3′k4′ ). In the following, we give ex-
plicit formulas for the ↑↓-spin component of bubble diagrams
that combine vertices V and W :

Ba[V,W ]1′2′|12
↑↓,ωaνaν ′

a
=

∫
ν̃

V 1′4′|32
↑↓,ωaνa ν̃

�
34|3′4′
a,ωa ν̃

W 3′2′|14
↑↓,ωa ν̃ν ′

a
, (C2a)

Bp[V,W ]1′2′|12
↑↓,ωpνpν ′

p
=

∫
ν̃

V 1′2′|34
↑↓,ωpνpν̃

�
34|3′4′
p,ωpν̃

W 3′4′|12
↑↓,ωpν̃ν ′

p
, (C2b)

with
∫
ν̃

= ∫ ∞
−∞ dν̃/2π i (the internal spin sum and crossing

symmetry in Bp cancel the prefactor of 1/2), and

Bt [V,W ]1′2′|12
↑↓,ωt νt ν

′
t

= −
∫

ν̃

�
43|3′4′
t,ωt ν̃

[
V 4′2′|32

↑↓,ωt ,νt ,ν̃
W 1′3′|14

↑↑,ωt ν̃ν ′
t
+ V 4′2′|32

↑↑,ωt νt ν̃
W 1′3′ |14

↑↓,ωt ν̃ν ′
t

]
,

(C2c)

where the ↑↑-spin component is obtained via Eq. (A4).
For the loop, we parametrize the vertex in the t-channel

convention with ωt = 0 and write

L[	, G]1′|1
ν = −

∫
ν̃

G2|2′
νt

[	↑↓ + 	↑↑]1′2′ |12
0νt ν

. (C3)

Using the loop L and bubbles Br , the parquet equations (20)
read

γr = Br[Ir, 	], (C4a)

� = L[	0, G] + 1
2 L[Ba[	0, 	], G]. (C4b)

In the SDE, the internal spin sum can be performed, can-
celing the factor of 1/2 in Eq. (C4b) by crossing symmetry to
give

�
1′|1
SDEν

= −
∫

νt

G2|2′
νt

[
	0,↑↓ + Ba[	0, 	]1′2′|12

↑↓,0νt ν

]
. (C5)

The one-loop fRG flow equations [cf. Eq. (19)] are

�̇ = L(	, S), γ̇r = Ḃr (	,	), (C6)

where the dot on Ḃr denotes a differentiated propagator pair,
∂��r = ĠG + GĠ, including the Katanin substitution S →
Ġ = S + G�̇G [70].

Susceptibilities are obtained from G(4), Eq. (13), by con-
tracting pairs of external legs and subtracting the disconnected
parts [116,117]. For the spin-↑↓ and spin-↑↑ components, we
get

χ
12|1′2′
a,σσ ′,ωa

=
∫

ν

�12|1′2′
a,ωaν

+
∫

ν

∫
ν ′

�14|1′4′
a,ωaν

	
34|3′4′
σσ ′,ωaνν ′�

32|3′2′
a,ωaν ′ ,

(C7a)

χ
12|1′2′
p,σσ ′,ωp

=
∫

ν

�12|1′2′
p,ωpν

(1 − δσ,σ ′ )

+
∫

ν

∫
ν ′

�12|3′4′
p,ωpν

	
34|3′4′
σσ ′,ωpνν ′�

34|1′2′
p,ωpν ′ , (C7b)

χ
12|1′2′
t,σσ ′,ωt

= −
∫

ν

�
12|1′2′
t,ωt ν

δσ,σ ′

+
∫

ν

∫
ν ′

�
12|3′4′
t,ωt ν

	
34|3′4′
σσ ′,ωt νν ′�

34|1′2′
t,ωt ν ′ . (C7c)
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FIG. 13. Real (left) and imaginary (right) parts of K2 (top) and K3 (bottom) vertex components in the PA for u = 0.5. The three rows of
each subfigure show results for the three two-particle channels r ∈ {a, p, t}. The columns show all independent Keldysh components. Natural
frequency parametrizations were used and for K3 the bosonic transfer frequency ωr was set to zero. Consequently, some components of ReK3

vanish.

From these functions, we obtain physical susceptibilities
as χd/m = χt,↑↑ ± χt,↑↓, or after exploiting spin and crossing
symmetry, Eqs. (A1) and (A3),

χ
12|1′2′
d = 2χ

12|1′2′
t,↑↓ − χ

21|1′2′
a,↑↓ , (C8a)

χ12|1′2′
m = −χ

21|1′2′
a,↑↓ . (C8b)

These functions have the Keldysh structure of 4p functions.
To identify the retarded susceptibilities χR(ω) in terms of 2p
functions [analogous to the propagator, Eq. (7)], we use the
bare three-leg Hedin vertex λ

(k1k2 )k3
0 [118] where the Keldysh

indices k1, k2 belong to χ12|1′2′
and k3 to χR. In terms of

contour indices, it reads λ
(c1c2 )c3
0 = −c1δc1=c2=c3 ; in Keldysh

indices, the nonzero components are

λ
(kk)2
0 = 1√

2
= λ

(kk̄)1
0 . (C9)

Hence, two (un-)equal fermionic Keldysh indices translate to
a “2” (“1”) for the bosonic line. We thus identify

χR
r = χ2|1

r = 2χ11|12
r , r = a, p, t . (C10)

In the parquet formalism, it was shown that the suscep-
tibilities χr (r ∈{a, p, t}) are related to asymptotic functions
via [2]

(K1a)1′2′ |12 = −(	0)1′4′|32(χa)34|3′4′ (	0)3′2′|14, (C11a)(
K1p

)
1′2′ |12 = −(	0)1′2′|34

(
χp

)
34|3′4′ (	0)3′4′|12, (C11b)

(K1t )1′2′ |12 = −(	0)4′2′ |42(χt )34|3′4′ (	0)1′3′|13. (C11c)

For the retarded spin-↑↓-component, we have

KR
1r↑↓ = −U 2χR

r↑↓. (C12)

Although one-loop fRG does not fulfill the BSEs (20b)–(20d),
Eq. (C12) can still be used as an estimate for susceptibili-
ties. In the present context, these are often called “flowing”
susceptibilities, while Eq. (C7) defines the “postprocessed”
susceptibilities. The PA, fRG, and K1SF results for χm and
χd shown in the main text were computed using Eqs. (C11).

APPENDIX D: CHANNEL-ADAPTED
SCHWINGER–DYSON EQUATION

In the parquet formalism, the frequency dependence of the
self-energy �(ν) enters via the second term in the SDE (20a).
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FIG. 14. Same vertex components as in Fig. 13, computed in the PA for u = 1.

FIG. 15. Diagrammatic representation of the bubble functions in
Eq. (C2).

In the following, we discuss three options for the numerical
evaluation of this diagram.

First, using the parquet decomposition [Eq. (20e)], the
second term of the SDE can be written in terms of bubbles
Br and loop L as (see Fig. 16) [72,107]

�SDE1 = L(Ba(	0, 	0), G) +
∑

r

L(Br (	0, γr ), G). (D1)

Here and below, a loop, L, acting on a t bubble, Bt , contracts
the two right legs, as opposed to the two top legs for all other
vertex types (cf. Fig. 16).

FIG. 16. Rewriting of the SDE, where crossing symmetry was
used for the γt part. The red line indicates which propagator enters
the loop L in Eq. (D1).
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FIG. 17. Imaginary part of the retarded self-energy at ν = 0,
computed with the parquet solver and different versions of the SDE,
shown as a function of NK3 (u = 0.1/π , T/U = 0.01). The dashed
line is the NRG result. For low NK3 , SDE2 and SDE3 give the wrong
sign. With increasing resolution, all results approach the correct
value.

Second, the SDE in Eq. (20a), without further manipula-
tion, reads

�SDE2 = L(Br (	0, 	), G), r ∈ {a, p, t}, (D2)

where the channel r can be freely chosen. Third, using
Br (	0, γr ) = K1r + K2′r [2], the SDE equivalently reads

�SDE3 = L(K1r + K2′r, G). (D3)

Even though the above versions of the SDE are analytically
equivalent, they vary in numerical accuracy and cost. Eval-
uating �SDE3 is cheaper than the others since it skips the
computation of bubbles Br . However, we found that Eq. (D1)
is most accurate, since the γr are inserted into bubbles Br of
the same channel r. Using the natural frequency parametriza-
tion for the reducible vertices γr (ωr, νr, ν

′
r ), �SDE1 also has

the benefit that one only needs to interpolate along the νr

direction.
To illustrate this point, we consider a third-order contribu-

tion to the self-energy:

L(Bt (	0, K1t ), G) = L(Ba(	0, K1t ), G), (D4)

(D5)

Inserting K1t into Ba as done on the right results in diagrams
that belong to the asymptotic class K2′a. However, on the left,
K1t is inserted into Bt , resulting in diagrams belonging to K1t .
The latter can be treated with higher resolution and thus lead
to better results for �, see Fig. 17. Note that the question how
to best parametrize the SDE also arises in the context of the
truncated-unity formalism for momentum-dependent models,
where this choice was found to affect the quality of the results
even more strongly due to the additional approximation from
the truncation of the form-factor expansion [72,107].

APPENDIX E: EQUAL-TIME CORRELATORS
AND HARTREE SELF-ENERGY

Parts of the following discussion can be found in previous
works, see Refs. [54,59,66]. We reiterate some of the points
made there and extend on them to the context of this work.

The definitions of G+|+ and G−|−, Eqs. (3) and (4), are
ambiguous at t1 = t2 because �(t1 − t2 = 0) is not uniquely
defined. If two operators ψ,ψ† are placed at the same point
on the Keldysh contour, it is a priori not clear how to order
them. The ambiguity is resolved by demanding that ψ† be
put left of ψ (“normal ordering”), which implies G−|−(t, t ) =
G<(t, t ) = G+|+(t, t ). Then, G< + G> − GT − GT̃ = 0 does
actually not hold, and care is due with Keldysh-rotated quan-
tities. Since the point t1 = t2 is of zero measure in time
integrals, which occur when computing diagrams in frequency
space, this subtlety is irrelevant for most practical purposes.
However, there is one important exception of equal-time na-
ture, namely, diagrams with loops that begin and end at the
same bare vertex. With an instantaneous bare interaction, both
incoming and outgoing legs have the same time argument,
so that these diagrams involve the frequency-integrated (i.e.,
equal-time) propagator.

The equal-time propagator determines the Hartree self-
energy of the AM (e.g., in PT2 calculations),

(E1)

Recall that, for the sAM (εd = −U/2), the Hartree term is
constant, �H = U/2, and can be absorbed into the bare prop-
agator GR

0 → GR
H, see Eq. (24). Subsequently, GR

H is used
for all computations involving bare propagators. In analogy,
in the aAM, the bare propagator is replaced by the Hartree
propagator, too. However, here, �H is not constant and must
be computed self-consistently (using, e.g., a simple bracketing
algorithm), as it enters both sides of Eq. (E1). Now, a naive
computation of the retarded component of this diagram after
the Keldysh rotation (and in the frequency domain) would
yield

(E2)

This is, however, incorrect since G1|1(t |t ) �= 0 after Keldysh
rotation. The correct result can be found by staying in the
contour basis, using that, at equal times, only �

−|−
H (t, t ) =

−�
+|+
H (t, t ) is nonzero. Keldysh rotation yields �R

H(t, t ) =
�

−|−
H (t, t ), for which one has

(E3)

To compute Eq. (E3) in thermal equilibrium, one can relate
G< to GR using the inverse Keldysh rotation and the FDT
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[Eq. (10)]:

G<(ν) = 1
2 [−GR(ν) + GA(ν) + GK (ν)]

= −2inF (ν)ImGR(ν), (E4)

with the Fermi function nF (ν) = 1/(1 + eν/T ). This discus-
sion of �H also applies to the PA via the first term of the SDE
(20a) (the second vanishes for |ν| → ∞).

In fRG, �H is generally renormalized throughout the flow,
according to Eq. (19a) for �̇. In the limit |ν| → ∞, relevant
for extracting the Hartree contribution, only those diagrams
survive for which the in- and outgoing lines are attached to
the same bare vertex:

(E5)

In practice, the Hartree contribution �̇H is not computed sepa-
rately but is part of the full self-energy flow. There, equal-time
propagators are single-scale propagators, occurring in the fol-
lowing contributions:

(E6)

However, in the context of this work, it turns out that these
specific equal-time loops can be computed from just the
Keldysh-component of the single-scale propagator, as in the
naive calculation Eq. (E2). The reason is that, in the hy-
bridization flow, the retarded component of the single-scale
propagator asymptotically scales as ≈1/ν2 for ν → ±∞, see
Eq. (25). Using the FDT in the forms of Eqs. (E4) and (10),
we can write

SK (ν) = 2i[1 − 2nF (ν)]ImSR(ν)

= 2iImSR(ν) + 2S<(ν). (E7)

When computing
∫

dνSK (ν), one can apply Cauchy’s theorem
to the first term, using its asymptotic behavior (see above).
Closing the integration contour by an infinite semicircle in
the upper half plane, avoiding the pole in the lower half
plane, gives zero. Hence, in the hybridization flow, we have∫

dνSK (ν) = 2
∫

dνS<(ν), and the subtlety discussed previ-
ously is irrelevant. Note that this argument may not apply to
other regulators, where S has a different expression.

APPENDIX F: DIAGRAMMATIC DEFINITION
OF SECOND-ORDER PERTURBATION THEORY

Following the previous discussion, the Hartree term in PT2
is determined self-consistently. The resulting Hartree propa-

gator GH then fulfills the Dyson equation

(F1)

In these and the following diagrams, the Hartree propagator
GH is represented by a black line, whereas the light gray line
denotes the bare propagator G0. The dynamical part of the
self-energy is computed from the first nontrivial term of the
SDE, using GH,

(F2)

The vertex in PT2 is given by the three diagrams

(F3)

again evaluated with GH in the internal lines. Susceptibilities
are then computed from this vertex via the standard formula;
for χa, e.g., (again using GH throughout)

(F4)

To obtain exactly the second-order contribution to the suscep-
tibility, one insertion of the dynamical part of the self-energy
into each line of the bubble term is required, which gives rise
to the second and third diagrams shown.

We checked that, in the sAM at sufficiently low tempera-
tures, our numerical PT2 solution matches the analytic T = 0
results of Ref. [95] [Eqs. (3.14) and (3.6)–(3.8) therein]

Z = 1 − (
3 − 1

4π2)u2, (F5a)

−�′′(ν)/� = 1
2 u2(ν2 + π2T 2)/�2, |ν|, T � �, (F5b)

χ̃m/d = 1
2

[
1 ± u + (

3 − 1
4π2

)
u2

]
. (F5c)

APPENDIX G: IMPLEMENTATION DETAILS

Below, we describe our choices for the implementation
of the parquet and fRG solver, the sampling of continuous
functions, and the performance-critical quadrature routine. In
the process, we also discuss the numerical accuracy of our
results.

The evaluation of bubble diagrams, Eq. (C2), is a major
bottleneck in our methods. However, computations for dif-
ferent external arguments can be distributed efficiently over
multiple threads and compute nodes. It also proved ben-
eficial to vectorize the sum over internal Keldysh indices
by reordering and combining Keldysh indices ki to Keldysh
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FIG. 18. Nonlinear frequency grid {ω j}N
j=1 obtained via a trans-

formation fA(�), Eq. (G2), from an auxiliary linear grid {� j}N
j=1

of size N .

multi-indices (km, kn)

	k1′ ,k2′ ,k1,k2 �→
⎧⎨
⎩

	(k1′ ,k2 ),(k2′ ,k1 ) for a channel
	(k1′ ,k2′ ),(k1,k2 ) for p channel
	(k2′ ,k2 ),(k1′ ,k1 ) for t channel,

(G1)

turning the Keldysh sum into an ordinary matrix product
(which is optimized in common linear algebra libraries).
This preprocessing step enables us to efficiently fetch matrix-
valued integrands and to perform sums over Keldysh indices
and spins in an optimized manner. It requires all Keldysh
components to be present in the data, and, therefore, all of
them are included in our computations. Consequently, FDTs
could not be exploited to gain performance benefits as they
merely relate different Keldysh components.

For the integrals over internal frequencies in Eqs. (C2)
and (C3), we implemented an adaptive quadrature algorithm
which picks sampling points based on a local error estimate
and tolerance (εrel = 10−5). With various vertex components,
the evaluation of a vertex at a certain frequency is rather
expensive. Therefore, we choose a quadrature algorithm that
reuses the previous function evaluations when it refines the
quadrature value on a subinterval (4-point Gauss–Lobatto rule
with 7-point Kronrod extension) [119]. Due to fine structures
in the integrands, we found a higher-order quadrature rule to
be beneficial for the convergence of the routine. To help the
algorithm find the structure in the integrand, we subdivide the
integration interval at the expected positions of structure in
the vertices or the propagators. Quadrature of the integrand’s
tails at high frequency is performed numerically by means
of a suitable substitution of the integration variable [120].
For matrix-valued integrands, we use the sup norm ‖ · ‖∞ to
compute the error estimate for the quadrature.

Since Keldysh functions depend on continuous frequen-
cies, a reliable and efficient representation is vital. We choose
a nonuniform set of sampling points and obtain function val-
ues by (multi-)linear interpolation. The overall behavior of
our functions is known: The self-energy and the asymptotic
functions Kir can have sharp structures at smaller frequencies
while, at large frequencies, they decay to a constant value with
an approximate ω−k with k ∈ N. To capture this behavior, we
map an equidistant grid of an auxiliary variable � ∈ [−1, 1]

FIG. 19. Illustration of the resolution of vertex data for a slice
through ReK11|12

3a and ImK11|12
3a . The left panels show the data on

the equidistant auxiliary grid, the right panels show the data on
real frequencies. Many sampling points are placed around the center
where structures are peaked, while the tails are treated with very few
points. Here, we also see an artifact due to our choice of the grid
function (G2): since the grid function has a discontinuity at second
order, we see a saddle point in the bottom left panel even though the
function is linear there. The good resolution of the central peak in the
real part comes at the cost of a saddle point in the imaginary part.

to a nonuniform one via the function

ω = fA(�) = A�|�|√
1 − �2

, (G2)

with constant A > 0, see Figs. 18 and 19. The resulting sam-
pling points are dense around ω = 0. At large frequencies, the
function fA(�) captures a 1/ω2 decay effectively for |�| � 1.
Furthermore, the structures in the AM scale approximately
with the hybridization �. Therefore, we choose the frequency-
grid parameter A as multiples of � and ωmax = 100A. With a
fixed maximal frequency ωmax, the variable A determines the
interval [−�max,�max] used to construct the frequency grid
via Eq. (G2). Our choices for A are given in Table I.

It is also possible to adapt the frequency-grid parameter
A automatically. Interpolating the vertex linearly, we can ap-
proximate the error by the maximal curvature in the space
of the linearly sampled auxiliary variable �. Hence, we can
use the curvature as an error function to optimize the param-
eter A in Eq. (G2). The direction-dependent curvature of a
multivariate function f is encoded in the Hessian, Hi j =
∂i∂ j f (x). We can efficiently compute a scalar measure for the
curvature via the Frobenius norm of the Hessian, giving

‖H‖2
F =

∑
i, j

|Hi, j |2 = TrH2 =
∑

i

|λi|2, (G3)

where λi are the eigenvalues of H . An approximation of the
partial derivatives can be obtained with the finite differences
method. However, for the studied parameter regime of the
AM, we found (using Brent’s method [121] as the minimizer)
that optimizing the grid parameters A did not make a big dif-
ference compared with a simple rescaling according to Table I.

TABLE I. Frequency-grid parameter A for Eq. (G2).

� K1 K2,ω K2,ν K3,ω K3,ν

A/� 10 5 15 20 10 10
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FIG. 20. Convergence with respect to frequency resolution for
the static susceptibilities as in Fig. 8 from parquet solvers in the KF
and the MF for u = 0.75 (a setting where K2 and K3 are relevant). The
numbers of frequency points for K1 and K2 are chosen proportional to
NK3 . In the MF, we used NK3 = 33, 49, 73, 129, 257, 513, 701, 801,
in the KF NK3 = 33, 51, 75, 125. The KF and MF results agree very
well; the shaded region marks 0.1% deviation.

To verify convergence in the number of sampling points, we
compared the static susceptibilities between implementations
in the KF and the MF and found agreement up to 1‰, see
Fig. 20.

To solve the fRG equations (19) we employ a Runge–
Kutta solver with adaptive step size control (Cash–Carp).
The step size is chosen according to an error estimate and
tolerance (here: relative error εrel = 10−6). Furthermore, we
reparametrize the flow parameter �(t ) = fA=5(t ) to provide
a good first guess for the step sizes, using the same function
fA(t ) as for frequencies ω, Eq. (G2), with A = 5. It provides
large steps for high � and small steps for small � for equidis-
tant t . As initial condition of ��i and 	�i at large �i, we use
the converged parquet solution. As discussed in Sec. III, the
PA gives good results in the perturbative regime.

To solve the self-consistent parquet equations fPA in
Eqs. (20), which constitute a fixed-point equation for the
state � = (�,	), i.e., � = fPA(�), we perform fixed-point
iterations until the result meets a tolerance criterion, here
‖� − fPA(�)‖∞ < 10−6‖�‖∞. For intermediate to higher
u � 1, it proves beneficial to stabilize the algorithm with a
partial update scheme, i.e.,

� ← (1 − m)� + m fPA(� ), (G4)

with mixing factor 0 < m � 1 (here typically m = 0.5). For
faster convergence in the vicinity of the fixed point, we use
Anderson acceleration [122,123].

APPENDIX H: NUMERICAL COSTS

The numerically most complex objects in all calculations
are the K3 components of the two-particle reducible vertices,
as they depend on three continuous frequency arguments
independently. The numerical cost of a parquet or fRG com-
putation is therefore O(N3

K3
), where NK3 is the number of grid

points per frequency used for K3. This applies to memory (as
all this data has to be stored) and to computation time (as
BSEs or fRG flow equations are evaluated for all external

TABLE II. Number of frequency points for different diagram-
matic classes and methods. We use the same number of points for �

as for K1. In most PA computations, NK3 = 51, except for the largest
values of u, which required NK3 = 101 for converging the parquet
solver.

NK1 NK2 NK3

fRG 401 201 101
PA 401 201 51–101
PT2 801 0 0
K1SF 401 0 0

arguments). We give in Table II the number of frequency
points used for each diagrammatic class. The self-energy was
resolved on a grid with the same number of points as the K1

class.
The numerical cost is further determined by the accu-

racy (or the convergence criteria) chosen for the iterative
parquet solver or the Runge–Kutta solver in fRG flow (see
Appendix G). Finally, the accuracy of the integrator also af-
fects the numerical cost strongly (see again Appendix G). Our
most costly computations were 150 iterations of the parquet
solver with NK3 = 101 (required for convergence in the region
u � 1). On the KCS cluster at the Leibniz-Rechenzentrum der
Bayerischen Akademie der Wissenschaften (LRZ), equipped
with chips of the type Intel� Xeon� Gold 6130 CPU @ 2.10
GHz capable of hyperthreading, one such computation took
about two days on 32 nodes, running 32 threads each.

APPENDIX I: CONVERGENCE OF χ̃m(0)

Figure 21 shows the static magnetic susceptibility of the
sAM obtained with fRG, zooming into the regime u � 1
(where deviations between MF and KF results become notice-
able) and scrutinizing convergence with respect to frequency
resolution. Compared with Fig. 8, there is an additional KF
(MF) line with higher (lower) resolution, as determined by
the number of frequency points used to resolve the K3 class,
NK3 (cf. Fig. 20). The MF result appears converged in NK3 ,
whereas the KF result is slightly improved by increasing NK3 .
The improvement is minor, however, and does not justify the
additional numerical cost: The computation for NK3 = 125
consumed roughly 30 000 CPU h, while the computation for
NK3 = 101 took only half that time. Nevertheless, one should
keep in mind that these computations yield a full parameter
sweep in u and are thus more economical than individual PA

FIG. 21. Static magnetic susceptibility of the sAM obtained with
fRG. Compared with Fig. 8, there is an additional KF (MF) line with
higher (lower) resolution. The MF result appears converged in NK3 ;
the KF result is slightly improved by increasing NK3 from 101 to 125.
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computations. Further analysis, including line plots through
all vertex components and asymptotic classes, is provided in
the dataset attached to this paper. This analysis shows that the

resolution of fine structures in some Keldysh components of
the K3 class could still be improved using even higher values
of NK3 .
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ABSTRACT

We provide a detailed exposition of our computational framework designed for the accurate calculation of real-frequency dynamical correla-
tion functions of the single-impurity Anderson model in the regime of weak to intermediate coupling. Using quantum field theory within the
Keldysh formalism to directly access the self-energy and dynamical susceptibilities in real frequencies, as detailed in our recent publication
[Ge et al., Phys. Rev. B 109, 115128 (2024)], the primary computational challenge is the full three-dimensional real-frequency dependence
of the four-point vertex. Our codebase provides a fully MPI+OpenMP parallelized implementation of the functional renormalization group
(fRG) and the self-consistent parquet equations within the parquet approximation. It leverages vectorization to handle the additional com-
plexity imposed by the Keldysh formalism, using optimized data structures and highly performant integration routines. Going beyond the
results shown in the previous publication, the code includes functionality to perform fRG calculations in the multiloop framework, up to
arbitrary loop order, including self-consistent self-energy iterations. Moreover, implementations of various regulators, such as hybridization,
interaction, frequency, and temperature, are supplied.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0221340

I. INTRODUCTION

In the study of strongly correlated electrons, dynamical cor-
relation functions are quantities of major interest, as they provide
insights into the collective behavior and emergent phenomena
arising from electronic interactions. Capturing the effects of
two-particle (or four-point) correlations is one of the current major
frontiers in the field. Their dynamical properties are inherently
difficult to compute, as they involve three independent frequency
arguments.

While most previous works on this subject focused on
four-point functions in imaginary frequencies in the Matsubara

formalism2,3 (MaF), obtaining real-frequency information is cru-
cial for direct comparisons to experiments. The extraction of
real-frequency data from the results of a calculation in the MaF
is, in principle, possible via analytic continuation.4 However,
it is hard to do so reliably in practice, as the conditions
for the procedure outlined in Ref. 4 are not met by finite
amounts of numerical data. This renders analytic continuation
an ill-defined problem, despite numerous attempts.5–7 Further-
more, it had not been worked out in full detail until very
recently8 how analytic continuation of four-point functions could
be achieved even under the assumption of analytically available
results.

J. Chem. Phys. 161, 054118 (2024); doi: 10.1063/5.0221340 161, 054118-1
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Pioneering attempts to directly compute real-frequency
dynamical four-point correlation functions using simplified
approaches made use of diagrammatic ladder approximations9,10

or were restricted to a simplified frequency dependence.11–13 The
first fully unbiased treatment of the fluctuations contributing to
the four-point vertex was achieved only a few years ago using
a multipoint extension of the numerical renormalization group
(NRG).14,15

Even more recently, we presented a similarly unbiased treat-
ment of the four-point vertex of the single-impurity Anderson
model using a QFT framework within the Keldysh formalism
(KF), employing two related diagrammatic methods: the functional
renormalization group (fRG) and the self-consistent parquet equa-
tions in the parquet approximation.1 While we focused on the
conceptual aspects and discussed the performance of the methods
in great detail in the previous publication, here we wish to provide
a detailed exposition of the computational framework for the
numerical calculations of self-energies and vertex functions. In
addition to what was shown in Ref. 1, the code discussed in this
paper is capable of performing fRG calculations in the multiloop
framework up to an arbitrary loop order, which connects the fRG
to the parquet formalism.16–18

This paper aims to serve as a reference for future extensions or
revisions of the code. The codebase discussed here was developed
by several people over the course of multiple years, during which
some goals and priorities changed and the code had to be adapted
accordingly. This paper will document how the code works and what
was learned during its development.

Some general design choices made during development
resulted in convenient features of the code and are recommended
for future projects. In the following, we briefly discuss the most
important features:

a. Modularity. Every main building block of the code and each
functionality is implemented individually, using classes and func-
tions that serve one purpose only. As a consequence, a developer can
keep an overview of the functionality. It is also comparatively easy to
reuse existing features and combine them into new functionality. For
example, for both the computation of the Schwinger–Dyson equa-
tion during parquet computations and the evaluation of the flow
equation for the self-energy during the solution of an mfRG flow,
the same classes for vertices, propagators, self-energies, and the same
function for contracting a loop are used, as described in Secs. II C
and II D. In addition, modularity enables unit-testing of each
functionality, something too often ignored during research software
development. Modularity is probably the most important feature
that should be prioritized in developing any research software.

b. Flexibility. A modular design makes the code flexible, too.
Some additional choices were made to improve its flexibility even
further. Most importantly, the code enables computations in three
different formalisms: the finite-temperature Matsubara formalism
(MaF), the zero-temperature Matsubara formalism, and the Keldysh
formalism (KF), which works at any temperature and generalizes to
systems out of thermal equilibrium. Consequently, some function-
ality had to be implemented multiple times, such as contractions,
which require summations over discrete Matsubara frequencies
in the finite-temperature MaF but integrations over continuous
frequencies in the zero-temperature MaF and the KF. Additionally,

in the KF, all quantities are complex-valued, whereas they are
real-valued in the MaF for particle–hole symmetry. Template
parameters were introduced to enable the same functions to work
with objects of different types. Despite the resulting additional com-
plexity, this conveniently enables computations in each of these
three formalisms in the same codebase, still using much of the same
functionality.

c. Performance. Computing dynamical correlation functions is
a computationally demanding task, especially for four-point func-
tions that depend on three frequency arguments. Depending on
the desired resolution, this requires both excessive memory to store
these functions during computations and central processing unit
(CPU) power to perform computations for each combination of
arguments. Concerning the latter, using optimized data structures
for efficient readouts of data as well as an efficient but still precise
algorithm for integrating over frequencies (the numerical bottle-
neck) improved matters significantly. In addition, using a compiled
programming language is basically a must, and keeping track of
constant variables and member functions helps the compiler
optimize the code.

d. Scalability. Apart from the simplest calculations, most dia-
grammatic calculations would not be feasible without paralleliza-
tion. This is because practically all calculations in parquet formalism,
or mfRG, require computations for all possible combinations of
external arguments of the correlation functions. As those are inde-
pendent from each other, it is possible and advisable to parallelize
the demanding computations of bubbles and loops (see Sec. II D)
in the external arguments. Using the OpenMP and MPI interfaces,
this can easily be achieved for parallelization across different threads
on the same node and across multiple nodes, respectively (for more
details, see Sec. II G 1). As long as the memory requirements are
met, the performance of the code scales almost perfectly with the
computational resources.

At this point, we disclose that the present code also has a num-
ber of weaknesses that evolved over the course of development. If the
reader intends to set up a new codebase for the purpose discussed
here, we recommend considering the following points:

a. Too many preprocessor macros (“flags”). The code contains
far too many preprocessor macros, used to specify different para-
meters and settings before compilation (see Sec. II I). This not only
hampers readability but also increases the risk of errors, as it is never
possible to test the full functionality of the code because one would
have to compile and test all possible configurations independently.
With simple combinatorics, this quickly becomes an overwhelming
task. Using preprocessor macros is, however, useful for quick imple-
mentations of new functionality, which is why they accumulate over
time.

b. Too many overly complicated structures. The code contains
several classes that are way more complicated than they need to be,
such as the different vertex classes or the data buffer (see Secs. II C 1
and II G 8). When they were set up, the goal was to keep them as
general as possible, such that they could be used for all kinds of
models in all kinds of formalisms. For this purpose, templates are
used excessively as well. As a consequence, they are indeed flexible,
but they are cumbersome to use in any specific context, and their
implementations are difficult to grasp. In addition, the code takes a
long time to compile and link, which is inconvenient for everyday
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development. Ultimately, as a developer, one has to find the right
trade-off between flexibility and simplicity.

c. Too little use of existing implementations. Several textbook
algorithms, such as the Gauβ-Lobatto routine for frequency integra-
tions or the Cash–Karp routine for solving ODEs (see Secs. II G 5
and III C 1), were implemented by hand. The reason for this was
the desire to comprehend and track the inner workings of the
algorithms at every point during a calculation. In hindsight, much
time and effort could have been saved if existing implementations of
these algorithms had been used as “black boxes.”

d. Language. C++ is a very versatile language that runs on
essentially any computer and can produce very fast code. However,
a codebase written in C++ requires a lot of work to write and main-
tain. Initially, C++ was chosen for performance reasons. By now,
however, there are established alternative programming languages
that are easier to use, less error-prone, and (almost) as fast, such as
Julia,19 Rust,20 or Mojo.21

e. Priorities. Driven by the desire to obtain data with maximal
resolution and precision, the top priority has always been perfor-
mance. While this is very typical for codes written by physicists, it is
not in line with the typical recommendation in software engineering,
which would prioritize correctness and maintainability over perfor-
mance.22 While we are confident that the code produces correct
results after extensive benchmarks,1 the code is not written in the
simplest way and is not easily readable and maintainable. While we
acknowledge that generating results quickly is deemed to be the most
important aspect of research at present, we advocate for reconsider-
ing the priorities during research software development for future
projects.

The rest of the paper is structured as follows: In Sec. I A,
we briefly introduce the single-impurity Anderson model (AM). In
Sec. I B, we briefly recapitulate the main concepts of diagrammatic
many-body theory. In Sec. I C, we comment on the complica-
tions that arise by performing computations in the very general
Keldysh formalism, which is the main selling point of the present
codebase.

In the second part of the paper, we give details on the code itself,
introducing the main objects in Sec. II C and explaining the main
functionality in Sec. II D. We list several options for postprocessing
the raw data obtained after a completed calculation in Sec. II E
and briefly explain how the data are organized in Sec. II F. Special
emphasis is placed on performance-critical aspects of the code in
Sec. II G. We comment on how the code is tested in Sec. II H. Finally,
we provide an overview of the most important options for parameter
choices that can be performed in Sec. II I, illustrating the versatility
of the codebase.

In the third main part of the paper, we elaborate on how three
different diagrammatic algorithms, perturbation theory, the parquet
equations, and the mfRG, are implemented. In particular, we list the
different flow schemes that are available in mfRG. Finally, Sec. IV
presents a conclusion.

Before the end of this introduction, a disclaimer is in order: This
paper does not mention every single class or function in the code
but focuses on the most important aspects and functionalities. In
addition, while the code enables computations in the KF and the
MaF at both finite and zero temperatures, we focus our specific
descriptions mainly on the KF functionality, as this is a unique
feature of our codebase.

A. Model
We consider the single-impurity Anderson model (AM) in

thermal equilibrium, one of the most studied models in all of con-
densed matter physics. Its physical behavior is well understood,
and numerically exact benchmark data for single-particle correlation
functions is available from NRG,23 as are exact analytical results for
static quantities at zero temperature from the Bethe ansatz.24,25 This
makes it an ideal candidate for studies focused on reliable method
development.

The AM is a minimal model for localized magnetic impurities
in metals introduced by Anderson to explain the physics behind the
Kondo effect.26 It is defined by the Hamiltonian

H =∑
εσ

εc†εσcεσ +∑
σ

εdnσ +Un↑n↓ +∑
εσ
(Vεd†

σ cεσ +H.c.), (1)

describing a local impurity d level with on-site energy εd, hybridized
with spinful conduction electrons, created by c†εσ , of the metal
via a matrix element Vε. Hence, it qualifies as an open quantum
system. The electrons in the localized d state, where nσ = d†

σ dσ ,
interact according to the interaction strength U, whereas the c elec-
trons of the bath are non-interacting. The bath electrons are hence
formally integrated out, yielding the frequency-dependent retarded
hybridization function −Im ΔR(ν) = ∑ε π∣Vε∣2δ(ν − ε). We consider
a flat hybridization in the wideband limit, ΔR(ν) = −iΔ, so that the
bare impurity propagator reads GR

0 (ν) = (ν − εd + iΔ)−1.
The code can treat all choices for the on-site energy εd. For

the special choice εd = −U/2, the model has particle–hole symme-
try and is referred to as the symmetric Anderson model (sAM).
This setting simplifies the calculations somewhat. For instance, in
this case, the Hartree-term of the self-energy is constant ΣH = U/2
(see also Sec. III A 1). In addition, in the MaF, all quantities become
real-valued, whereas they are complex-valued otherwise. Hence, the
code supplies a parameter flag to make use of these properties
(see Sec. II I). For general εd ≠ −U/2, we speak of the asymmetric
Anderson model (aAM).

Some physical applications require an additional external
magnetic field h, described by an additional term h(n↑ − n↓) in
the Hamiltonian. At present, the codebase is, however, not appli-
cable in this setting, as this would break SU(2) symmetry, which
is heavily used and hard-coded into the codebase (see Sec. II G 3).
A generalization to h ≠ 0 is possible but would require major
effort.

While the present implementation is restricted to the AM, the
code in principle can also treat other models: all data structures pos-
sess an additional internal index suitable for encoding additional
dependencies and quantum numbers of more complicated models,
such as a momentum dependence or multiple orbitals. Indeed, the
first attempts to study the 2D Hubbard model had been started; how-
ever, the simplest KF perturbation theory calculations turned out to
be too demanding at the time. The corresponding functionality is,
therefore, not included in this release.

B. Diagrammatic many-body theory
The basic objects of interest in all our calculations are one- and

two-particle correlation functions. Their non-trivial contributions
due to interaction effects are contained in the self-energy Σ and the
four-point vertex Γ,
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(2)

The self-energy is used together with the bare propagator G0 to
express the one-particle propagator G via the Dyson equation

(3)

which is formally solved by G = 1/(G−1
0 − Σ). The vertex is the

connected and amputated part of the two-particle correlation
function G(4),

(4)

from which physical susceptibilities can be obtained by contracting
pairs of external legs (see. Appendix C of Ref. 1 for details). The first-
order contribution to the vertex is given by the fully antisymmetric,
local, and instantaneous bare vertex, represented as a single dot,

(5)

in standard Hugenholtz notation. Using the bare vertex and the
bare propagator G0, diagrammatic perturbation series for both the
self-energy and the vertex can be derived, which will be the sub-
ject of Sec. III A. A perturbation series up to finite order in Γ0 is,
however, only appropriate for weak coupling strengths. In order to
reach larger couplings, an infinite number of diagrams have to be
summed. This is the purpose of two related formalisms, the parquet
formalism and the multiloop functional renormalization group, to
be discussed in Secs. III B and III C, respectively. Both formalisms
employ the parquet decomposition to organize all diagrammatic
contributions to Γ into one of four distinct categories: Two-particle
reducible diagrams in one of the three two-particle channels a, p,
and t, included in the three two-particle reducible vertices γr∈ {a,p,t} or
two-particle irreducible diagrams, included in the fully irreducible
vertex R,

(6a)

(6b)

Any specific diagram is said to be two-particle reducible if it can be
disconnected by splitting a propagator pair. Otherwise, it is said to be
two-particle irreducible. The parquet decomposition is exact, as it in
essence just provides a classification of all diagrams that contribute
to Γ. However, neither the parquet formalism nor the mfRG provide
equations for R. In practice, some approximation is required. The
simplest one is the parquet approximation (PA)

R = Γ0 +O[(Γ0)4] ≈ Γ0, (7)

which approximates the fully irreducible vertex R by the bare vertex
Γ0. As it introduces an error in the fourth order in perturbation
theory, it fails for large coupling strengths and is hence applicable
only up to intermediate couplings. The PA was applied throughout
in Ref. 1 and is the only one so far implemented in the codebase (see
Sec. II C 1 for a comment on other possibilities).

C. Keldysh formalism
The following section assumes familiarity with the KF and

describes challenges arising for computations with the KF rather
than the more widespread MaF (for a more extensive discussion of
the KF, see Refs. 27 and 28).

The KF29–31 works both out of equilibrium and in thermal
equilibrium at arbitrary temperature, in a real-frequency descrip-
tion. This is an advantage over the more popular MaF, which works
at imaginary (“Matsubara”) frequencies, requiring analytical con-
tinuation, a mathematically ill-defined problem if one works with
a finite amount of imperfect numerical data. Still, the KF is seldomly
used because practical calculations are more complicated for two
main reasons.

In the KF, all operators acquire an additional contour index,
which specifies whether they sit on the forward or backward branch
of the Keldysh double-time contour. It follows that the four-point
vertex, for example, has 24 = 16 different components. While some
of these components can be eliminated by causality or related
to other components by fluctuation–dissipation relations in ther-
mal equilibrium or symmetries, this additional index structure
complicates the implementation and the numerics.

In thermal equilibrium, energy conservation can be leveraged
by Fourier-transforming all correlation functions into frequency
space. In contrast to the MaF at finite temperatures, this dependence
is continuous. Hence, contractions over frequency arguments
require numerically more expensive integrations instead of
summations. The integrations become more costly at lower
temperatures as the frequency dependence of the correlation
functions becomes more sharply peaked. The four-point functions,
which depend on three continuous frequency arguments, are the
numerical bottleneck for which arbitrarily high resolutions are
out of reach due to both computation and memory demands.
Discretizing the frequency dependence in a clever way and using
adaptive integration routines is, therefore, key, as discussed in
Secs. II G 4 and II G 5.

Finally, the KF also allows for computations outside of thermal
equilibrium. However, the present discussion is restricted to thermal
equilibrium. Extending the code out of equilibrium is possible with
moderate effort.

II. THE CODE

In part II of the paper, we describe the main building blocks
of the code—the classes representing correlation functions and
other functions for combining them in diagrammatic computations.
Furthermore, we describe post-processing schemes and emphasize
aspects important for performance. More information on the
technical details of individual code pieces can be found in the doc-
umentation attached to the source code (see the code availability
statement at the end of this paper).
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A. Prerequisites
The code itself is written in C++1732 and is built using CMake,33

demanding at least version 3.10. It requires the GSL,34 boost,35

and Eigen336 libraries, as well as the HDF537 library for input and
output. For parallelization, the OpenMP38 and MPI39 interfaces are
used. Notably, we do not supply precompiled executables that could
be run directly, for several reasons: First, the code makes heavy use
of preprocessor flags that must be set before compilation and that are
in part used to specify the concrete problem at hand (see Sec. II I).
Second, special compilers for the particular architecture at hand
might be available, which could optimize the code during compila-
tion and linking, improving the performance. The user should hence
adapt the file CMakeLists.txt accordingly, such that the required
libraries are included and linked properly and all compiler settings
are as desired.

The technical documentation supplied with the code is gener-
ated automatically using the tools Doxygen,40 Sphinx,41 Breathe,42

and CMake.

B. Basic structure
The structure of the main part of the codebase is depicted in

Fig. 1. The main objects of interest are the SelfEnergy Σ and the
four-point Vertex Γ. Separate classes have been implemented for
both, discussed in detail below. Both classes use instances of the class
that defines suitably chosen FrequencyGrids, to be discussed in
Sec. II G 4, for discretizing the continuous frequency dependence. A
self-energy and a vertex always come together in any practical calcu-
lation, representing data for a step of an mfRG flow or an iteration
of the parquet solver. The self-energy and vertex classes are hence
combined in a State class Ψ = (Σ, Γ). The algorithms discussed
in Sec. III require computing bubble- and loop-type diagrams, the
main functionality of the codebase. As detailed in Sec. II D 1 below,
the bubble_function contracts two input vertices with a pair of
propagators in one of the three two-particle channels to yield a new
four-point vertex, which is stored as an instance of the Vertex class.
For example, contracting two vertices Γ1 and Γ2 in the a channel is
denoted as

(8)

see also Appendix C in Ref. 1 for a fully parametrized version.
The required propagator pair Π belongs to a separate Bubble

FIG. 1. Schematic depiction of the main parts of the codebase.

class, ensuring the correct combination of propagators and their
parametrization. The propagators themselves are defined in the
Propagator class, which essentially implements the Dyson equa-
tion, Eq. (3), combining G0 and Σ. The former contains all the system
parameters, including the regulator in mfRG; the latter encodes
the interaction effects. Both the Propagator and Bubble classes
can handle differentiated objects arising in mfRG (see Sec. III C).
Finally, the loop function is used to contract two external legs of a
four-point Vertex with a Propagator, yielding an instance of the
SelfEnergy class, for example,

(9)

These types of diagrams are required, e.g., for the mfRG flow equa-
tion of the self-energy or for the evaluation of the SDE after a
previous bubble diagram computation.

C. Correlation function classes
In the following, we discuss the main building blocks of the

code in more detail. We begin by outlining the self-energy and vertex
classes. In addition, there are two helper classes: the first represents
propagators, combining the bare propagator and the self-energy; the
second combines a pair of propagators as needed for bubble-type
diagrams.

1. The Vertex classes
In total, the code contains the four classes irreducible,

rvert, fullvert, and GeneralVertex to store different types of
four-point vertices.

The irreducible class contains the two-particle irreducible
part of the vertex, R. In the PA, its 16 Keldysh components are just
constants. It can easily be extended to hold nontrivial input data, for
example, in the context of diagrammatic extensions43 of dynamical
mean-field theory44 such as DΓA45 or DMF2RG.46

The rvert class stores the two-particle reducible vertices
γr∈ {a,p,t}. Each of them is split up into their asymptotic classes,47 K1,
K2, and K3, where the K2′ class is inferred from K2 by crossing
symmetry. Being one-, two-, and three-dimensional objects, respec-
tively, each of those naturally has its own frequency grid. The rvert
supplies several methods to store and read out data, either directly
or interpolated. Conveniently, it can return all vertex parts where
external legs either do or do not meet at the same bare vertex
on the left or on the right-hand side by suitably combining the
K1, K

2(′) , or K
2(′) and K3 classes, respectively. This turned out to

be very handy for keeping track of contributions for the differ-
ent asymptotic classes during calculations. In addition, the rvert
class can track and, if desired, enforce symmetries in the Keldysh-,
spin-, and frequency domains (see Sec. II G 3 for details). For
debugging purposes, functionality not using symmetries is provided
as well.

The fullvertex class combines one instance of the
irreducible class and three instances of the rvert class, one for
each two-particle channel a, p, t. It can then return the value of the
full vertex, which is the sum of the four contributions for a given
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Keldysh and spin component, interpolated at a given combination
of frequencies. As each individual rvert instance, it can collect all
those parts of the vertex where the external legs either do or do not
meet at the same bare vertex on the left or on the right-hand side and
includes functionality to exploit various symmetries. In addition, it
can compute the p-norm of each asymptotic contribution, which
is useful for debugging purposes and convergence criteria, e.g., in
parquet computations.

While instances of the fullvertex class hold the data of
the symmetry-reduced sector of a full vertex, certain diagrammatic
equations involve subsets of vertex diagrams. One example is the
r-channel-irreducible vertex used in the Bethe–Salpeter equations
outlined in Sec. III B. Such diagrams do not necessarily obey all the
symmetries of a full vertex, so they must be treated differently. These
asymmetric cases are, therefore, encoded in the GeneralVertex
class. It uses multiple instances of fullvertex, which together
cover the symmetry-reduced sector of the asymmetric vertex data.
Let us comment here that, while this approach is feasible, it turned
out to be inconvenient in practice, as one always has to make
sure that all sectors are covered, i.e., that all required fullvertex
instances are provided. This is a source of logical errors that can
sometimes be hard to find. In retrospect, it would have been better
to pay the increased cost in memory to store all vertex contribu-
tions in the same object, making the code easier to read and to
work with.

All vertex classes allow adding or subtracting two instances of
the respective classes or multiplying a number with a vertex instance.

Splitting up the vertex functionality into so many different
classes was made at the beginning of developing the code to provide
enough flexibility, in particular regarding symmetries and a possible
non-trivial input for the irreducible vertex. In hindsight, it turned
out that for the computations performed in Ref. 1, this structure
would not have been required in this generality.

2. The SelfEnergy class
The SelfEnergy class comes with a dataBuffer that stores

the discrete values of the retarded and Keldysh components of the
self-energy on a given frequency grid (see Secs. II G 4 and II G 8).
When instantiating an object of the SelfEnergy type, a given
frequency grid can either be supplied or a suitable one is generated
automatically based on the value of the regulator Λ. In addition,
the asymptotic value of the retarded component of the self-energy
has to be set. Most of the time, this should be the Hartree value
ΣH, as the SelfEnergy inside the code is supposed to be used
only for the dynamical, i.e., frequency-dependent, contributions of
the self-energy, which excludes the constant Hartree value. For the
sAM, the Hartree value is constant, ΣH = U/2; in the asymmetric
case, it has to be computed self-consistently beforehand. This can
be performed inside the code using the HartreeSolver class (see
Sec. III A 1).

The SelfEnergy class provides a host of methods used
throughout the code. Most importantly, it can return the value of
the self-energy either directly at a given input on the frequency grid
(fast) or return an interpolated value at a given continuous frequency
(not so fast). It can also set the value of Σ for a given input. In addi-
tion, one can compute the p-norm of Σ and the relative deviation
to a different SelfEnergy instance using the maximum norm. This

is used to check convergence in parquet computations detailed in
Sec. III B.

Finally, multiple operators are defined for the SelfEnergy
class, which are used to add or subtract two SelfEnergy instances
or to multiply some number with a SelfEnergy instance.

3. The State class
Instances of the State class are the high-level objects that are

mainly used by the high-level algorithms discussed in Sec. III. The
State class combines a GeneralVertex and a SelfEnergy, which
together contain all non-trivial information that one might wish to
compute. In that sense, it suffices to completely specify the “state”
of the calculations. For the purpose of fRG calculations, the State
class also holds the value of the flow parameter Λ.

As with the vertex classes and the SelfEnergy class, the State
class also comes with operators that can be used to add and subtract
states from one another and to multiply a number with a state.
Under the hood, these operators just invoke the corresponding
operators previously defined for the vertex and self-energy. Hence,
all high-level algorithms can manipulate instances of the State class
directly, e.g., by combining several iterations of the parquet solver in
a mixing scheme.

4. The Propagator class
The Propagator class is special in the sense that it stores

almost no data itself. Instead, it references instances of the
SelfEnergy class and combines the analytical form of the bare
propagator G0 with the self-energy via the Dyson equation,
G = 1/[(G0)−1 − Σ]. To that end, it can return the value of a given
propagator at some point, interpolated on the frequency grid of the
referenced self-energy. This can be performed either directly for a
given Keldysh component at some continuous frequency or vector-
ized over all Keldysh components. As G0 depends on the formalism
used and in mfRG on the choice of the regulator, separate methods
for a variety of choices are provided. In addition, one can specify
whether the full propagator G shall be computed, or the single-scale
propagator S, the differentiated propagator including the Katanin
extension,48 or just the Katanin extension by itself (see Sec. III C).
Note that the Katanin extension requires the self-energy differen-
tiated with respect to the flow parameter Λ; hence, the propagator
class references two SelfEnergy instances, one non-differentiated
and one differentiated.

5. The Bubble class
Finally, the Bubble class combines two propagators to yield a

bubble in one of the three two-particle channels a, p, and t, according
to Eqs. (C1a)–(C1c) in Ref. 1. For evaluating differentiated bubbles
in mfRG, one of the propagators can be chosen to be the single-
scale propagator S or the fully differentiated one Ġ. In that case,
the bubble already takes care of the product rule, giving (sym-
bolically) Π̇ S = GS + SG or Π̇ = GĠ + ĠG. Otherwise, it just yields
Π = GG. The Bubble class provides functions for obtaining the
value of a bubble in a given channel at specified bosonic and
fermionic frequencies, either for one specific Keldysh compo-
nent directly or vectorized over the Keldysh structure. This class
simplifies bubble computations using the bubble_function (see
Sec. II D 1).
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D. Main functions for diagrammatic computations
Computing bubbles and loops involves contractions over quan-

tum numbers and Keldysh indices, including integrations over
frequencies for all possible combinations of external arguments, and
is by far the most costly part for the numerics. A clean and efficient
implementation of this functionality is, therefore, paramount and
should be of the highest priority when setting up a new code. In the
following, we provide technical details on this most important part
of the code.

1. The bubble_function
The bubble_function implements Eqs. (C2a)–(C2c) from

Ref. 1. It takes references to three vertices as arguments, one to
store the result of the computation and two others to be connected
by a Bubble object. This Bubble object can either be supplied
as well or is initialized by an overload of the bubble_function,
which in addition requires the two propagators that shall be used
for the Bubble. The main work is then performed by an instance
of the class BubbleFunctionCalculator, which performs the
bubble contractions for each diagrammatic class separately. This is
performed for every possible combination of external arguments,
i.e., Keldysh indices and frequencies. At this point, the calculations
are parallelized as outlined in Sec. II G 1. For each set of argu-
ments, an Integrand object is instantiated, which puts together
the two vertices and the bubble and performs the contraction over
Keldysh indices if the flag SWITCH_SUM_N_INTEGRAL is set to 1. The
Integrand class provides an operator that reads out the integrand
at a given frequency. It is called by the integrator, invoked subse-
quently, and described in detail in Sec. II G 5. The results of all the
frequency integrations are finally collected and added to the vertex
object that was given as the first argument to the bubble_function.
The choice not to output a completely new vertex but instead to add
the result to an existing vertex has historical reasons to save memory.
This increased the risk of logical errors during high-level algorithm
implementations, though, and in hindsight, the bubble_function
should better have been designed to output a completely new vertex
object.

2. The loop function
The loop function implements Eq. (C3) from Ref. 1 and is

structured similarly to the bubble_function. It takes a reference
to self-energy for storing the result as well as references to a ver-
tex and a propagator as arguments for the loop. For each external
fermionic frequency, in which the computation is parallelized again,
it invokes the integrator to perform a frequency integration using the
IntegrandSE class. For the aAM, the asymptotic value of the just
computed self-energy is extracted from the Hartree- and the K1,t and
K2′ ,t terms after the calculation. For the sAM, the asymptotic value
of the self-energy is a known constant.

E. Postprocessing
The code provides a host of postprocessing functions. These

are not required for the actual calculations themselves but are
useful to extract additional information from their results, either
as consistency checks or to infer derived quantities for later
analysis.

1. Causality check for the self-energy
By causality, the imaginary part of the retarded component

of the self-energy is strictly non-positive;49 Im ΣR(ν) ≤ 0 for all fre-
quencies ν ∈ R. A violation of this condition not only constitutes an
unphysical result but often leads to numerical instabilities. The code,
therefore, provides the function check_SE_causality that checks
this condition for a supplied instance of SelfEnergy. Typically, this
function is invoked after each ODE step during an mfRG calculation
or after each iteration of the parquet solver.

2. Fluctuation dissipation relations
In thermal equilibrium at temperature T, one has

a fluctuation–dissipation relation (FDR)11,27 between the
retarded and the Keldysh components of the propagator,
GK(ν) = 2i tanh ( ν

2T ) Im GR(ν), and the self-energy, ΣK(ν)= 2i tanh ( ν
2T ) Im ΣR(ν). This relation can be used to infer the

Keldysh components of the self-energy from the retarded compo-
nent or vice versa; hence, it would in principle suffice to compute
only one of the components. However, in the vectorized form of the
code, both components of the self-energy are computed anyway.
The FDR can hence be used as an internal consistency check,
provided by the function check_FDTs_selfenergy. It computes
ΣK from ΣR via the FDR and compares it to the independently
computed Keldysh-component of the self-energy by computing the
2-norm of the difference.

As an additional consistency check, the fulfillment of
fluctuation–dissipation relations for the K1 classes, reading

Im KR
1 (ω) = − i

2
tanh( ω

2T
)KK

1 (ω), (10)

can be examined. One may also want to check generalized FDRs for
three-point and four-point contributions of the vertex.50

3. Kramers–Kronig relation
For functions f(ω) that are analytic in the upper half plane, like

retarded single-particle correlation functions, the Kramers–Kronig
transform relates the real and imaginary parts via

Re f (ω) = 1
π
𝒫∫ ∞

−∞ dω′ Im f (ω′)
ω′ − ω

, (11)

where 𝒫 denotes the Cauchy principal value. Inside the code, the
function check_Kramers_Kronig can be used to test how well this
generic analytic property is fulfilled.

4. Sum rule for the spectral function
The fermionic spectral function A(ν) = −Im GR(ν)/π must

obey the sum rule

∫ ∞
−∞ dν A(ν) = 1. (12)

The function sum_rule_spectrum implements this integral as a
consistency check.
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5. Susceptibilities
Susceptibilities, which are of significant physical relevance,

are derived from the vertex by contracting pairs of external legs.
Diagrammatically, the formula for the a-channel susceptibility reads

(13)

and similarly for the susceptibilities in the p and t channel.
The fully parametrized equations are provided in Eq. (C7)
of Ref. 1. Linear combinations of these diagrammatic sus-
ceptibilities yield the physical susceptibilities [see Eq. (C8) of
Ref. 1]. The code computes susceptibilities using the func-
tion compute_postprocessed_susceptibilities, which can
be invoked after a completed calculation using the name of the file
that stores the results. It iterates through all layers that correspond
to ODE steps or parquet iterations (see Sec. II F), evaluates Eq. (C7)
using the vertex and self-energy for each, and stores the results as a
new dataset in the same file.

It was found in Ref. 47 that for converged parquet computa-
tions, susceptibilities can more easily be extracted directly from the
K1 class. As discussed in Refs. 1 and 51, one can also choose to com-
pute susceptibilities that way during fRG computations, even though
the two schemes are inequivalent if multiloop convergence is not
reached. The two different schemes of computing susceptibilities can
then be used to gauge the quality of the truncation.

6. Vertex slices
Finally, the function save_slices_through_fullvertex

can be used to read out two-dimensional “slices” of the full
vertex. It takes the filename corresponding to the results of a fin-
ished calculation as an argument, iterates through all layers, and
saves a two-dimensional cut of all Keldysh components of the full
vertex in the t-channel parametrization for zero transfer frequency(ωt = 0, νt , ν′t) for a given spin component. While this function does
not perform any non-trivial calculations, it is useful for visual-
ization purposes. If desired, the function can be straightforwardly
adapted to store vertex slices at finite transfer frequencies, enabling
full scans through the three-dimensional structure of the four-point
vertex.

F. I/O
We use the HDF5 file format37 for input and output pur-

poses throughout. To organize the data for output, the contents of
a state are split into different datasets that correspond, e.g., to all the
asymptotic classes of the vertex in each channel, the self-energy, the
frequency grids, and the most important parameters of the calcula-
tion. The output file is then organized on a high level in terms of
“Λ layers,” the idea being that each layer enables access to a differ-
ent state stored in the same file. Thereby, a single file contains, e.g.,
the results of a full mfRG flow, where each “Λ layer” corresponds
to a different value of the regulator. Alternatively, this structure
can be used to store the results of all iterations needed for solving
the parquet equations. Of course, one can equally well use just a
single layer to store the end result of a computation, such as a
converged solution of the parquet equations or the result of a PT2
computation.

The function write_state_to_hdf creates a new file with
a fixed number of layers and saves an initial state into the first
layer. Additional states generated during subsequent computations
can be added to the same file (but into a different layer to be
specified) using the function add_state_to_hdf. In effect, these
functions are wrappers of a host of additional functions that are
able to store various data structures, such as scalars, vectors, or even
Eigen-matrices, in an HDF file.

When using parallelization, as detailed in Sec. II G 1, one has to
ensure that only one single process writes data into the output file.
Collisions, where multiple processes simultaneously try to write to
the same location in memory, will cause the program to crash.

It is possible to read data from an existing HDF file to gener-
ate a new state for subsequent computations. For this purpose, the
function read_state_from_hdf reads a state from a specified layer
of a provided HDF file. One can thus do checkpointing: If all steps
of an mfRG flow or all iterations of the parquet solver are stored
separately, a computation that was interrupted can be continued
from the last step stored. This design feature is useful for large
computations that have to be split over several separate jobs or
in the case of a hardware error causing a job to crash. Setting up
checkpointing functionality is, therefore, strongly recommended.

G. Performance
In the following, we discuss parts of the code of special

importance for performance. Of course, there is always a trade-
off between accuracy and performance, as, e.g., an arbitrary high
frequency resolution quickly becomes prohibitive. Nevertheless,
efficient implementations are necessary for challenging compu-
tations.52 For the precision-focused calculations for which this
codebase was developed, these parts are, therefore, of utmost
importance.

1. MPI+OpenMP parallelization
As mentioned in the beginning, mfRG and parquet compu-

tations can be heavily parallelized since the correlation functions
are (repeatedly) evaluated independently for every possible combi-
nation of external arguments. Parallelization is especially advisable
for computing bubbles of two four-point vertices, as outlined in
Sec. II D 1. We use the OpenMP interface for parallelization across
multiple threads on a single node and the MPI interface for paral-
lelization across multiple nodes. While OpenMP parallelization works
with shared memory, meaning that all threads have access to the
same data on the node that they are running on, one has to be careful
with MPI parallelization working on distributed memory. Processes
that run on different nodes to compute, say, a four-point vertex for
different sets of external arguments cannot write their results into
the same instance of a four-point vertex. Hence, we introduce addi-
tional buffers distributed across the nodes. After the computation
of, say, a four-point vertex is finished, these buffers are collected,
and their contents are put together to yield the full result. While
this scheme is initially somewhat cumbersome to set up, it pays
off tremendously, as the code’s performance scales well with the
computational resources, including multiple nodes. This is because,
first, computations for different external arguments are independent
from each other, so there is minimal communication between the
nodes. Second, the number of external arguments required for
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precision-focused calculations is large, so individual threads have
little downtime waiting for other threads to finish. For example, the
most expensive calculations in Ref. 1 involved 125 points along each
of the three frequency axes, which were parallelized across 32 nodes
running 32 threads each. Provided enough CPU power, the resolu-
tion could, in principle, be increased further but is ultimately limited
by memory.

2. Vectorization
As outlined in Sec. I C, KF calculations require computing

2n Keldysh components of n-point functions. These components
can be arranged into a matrix, yielding, e.g., a 4 × 4 matrix for the
four-point vertex. This structure can be exploited for summing over
Keldysh indices by using vectorization and the data structures of the
Eigen library,36 significantly improving performance. This works
because all Keldysh components are stored in contiguous sections of
memory. Of course, the other parts of the code have to be able to use
these data structures properly, which is why all functions that enable,
e.g., access to the correlation functions (see Sec. II C) have two
versions: one that can handle matrix-valued data when vectorization
is used, and another used otherwise.

When using vectorization, all Keldysh components have to be
stored explicitly. As a consequence, identities that relate different
Keldysh components, such as certain symmetries or FDRs, cannot be
used to reduce the numerical effort. Although maximal exploitation
of symmetries initially was one of our main objectives, we later found
that vectorization over Keldysh components is preferential despite
the larger memory costs.

In the finite-T MaF, we use vectorization to represent the
Matsubara frequency dependence of all correlation functions. This
leads to massive speedups when performing Matsubara sums as
matrix-multiplications.

3. Symmetries
Many symmetries for reducing the number of data points to

be computed directly can still be used together with vectorization
over Keldysh indices. These include crossing symmetry of the vertex,
which relates a vertex to itself with one pair of external fermionic
legs exchanged; complex conjugation of the vertex; SU(2) symmetry
in the absence of a magnetic field (which, in combination with cross-
ing symmetry, reduces the number of independent spin components
to 1); and frequency symmetries in the presence of particle–hole
symmetry. For explicit details on these symmetries, see Appendix
A in Ref. 1.

Since frequency integrations are the most costly part of the
computations, symmetry operations are not used for evaluating
integrands on the fly. Instead, they are used to reduce the num-
ber of vertex components to be computed. Since the vectorized
version of the code performs sums over Keldysh indices by matrix
multiplication, the result of the integration contains all Keldysh
components. Hence, we use the symmetry relations to reduce the
other arguments, i.e., spin and frequency. Information about the
symmetry-reduced components is encoded in symmetry tables.
These contain entries for every channel, asymptotic class, spin com-
ponent, and frequency sector and indicate whether a data point
belongs to the symmetry-reduced sector or, otherwise, how to
retrieve a value via symmetry relations.

4. Frequency grids
For numerical calculations, the continuous frequency depen-

dence of correlation functions in the KF (and in the MaF at
T = 0) must be discretized. Since these functions can become sharply
peaked around certain frequencies, especially at lower temperatures,
but simultaneously decay only slowly asymptotically (typically ∼1/ν2

or even ∼1/ν for some components), finding a suitable discretization
that resolves all sharp structures but still captures the asymptotic
decay is hard. Since the sharp features mostly occur at smaller
frequencies (measured relative to the hybridization Δ), we use a fre-
quency grid that provides high resolution at small frequencies and
fewer points at high frequencies. To achieve this, an equidistant
grid of an auxiliary variable Ω ∈ [−1, 1] is mapped to frequencies
according to ν(Ω) = AΩ∣Ω∣/√1 −Ω2. The parameter A > 0 can be
suitably chosen automatically or by hand for all quantities, as further
explained in Appendix G of Ref. 1. However, we do not recom-
mend optimizing A automatically, as this can become expensive and
unreliable in the presence of numerical artifacts.

The frequency grid is implemented in the FrequencyGrid
class. It specifies the grid parameters such as the number of grid
points or the scale factor A, and can access both continuous frequen-
cies ν and auxiliary variables Ω corresponding to a given discrete
index. Crucially, this also works the other way around, yielding the
discrete index that corresponds to the frequency closest to a given
continuous frequency. This is needed for interpolations, discussed
in Sec. II G 7.

An instance of the FrequencyGrid class is instantiated in
every instance of one of the correlation function classes to param-
eterize their respective frequency dependencies. The vertex classes
naturally require up to three instances of the FrequencyGrid
each.

The frequency grids are rescaled during mfRG flow calcula-
tions, which use the hybridization flow scheme (see Sec. III C). The
FrequencyGrid class provides all the functionality required for that
purpose.

As a side note, two alternative frequency grids have been imple-
mented. One is a hybrid grid, which consists of a quadratic part
at small frequencies, a linear part at intermediate frequencies, and
a rational part at large frequencies. The other uses polar coordi-
nates to parametrize the two-dimensional frequency dependence of
three-point functions, i.e., the K2 and K2′ classes. Which grid is to be
used is controlled by the GRID flag (see Sec. II I). In our experience,
the non-linear grid explained at the beginning of this section is the
most useful if the scale parameters A are chosen suitably.

5. Frequency integration
The following passage is taken almost verbatim from the Ph.D.

thesis of E. Walter.28

Computing numerical integrals with high accuracy is a cru-
cial ingredient for obtaining correct results in the context of the
diagrammatic calculations discussed here. At the same time, the
integrator is also critical for the performance of the computa-
tion, since evaluating integrals constitutes the computationally most
expensive part of the code. For these reasons, we use an adaptive
integration routine that automatically determines where to evaluate
the integrand within the integration domain. Regions with sharp fea-
tures require many evaluation points in order to get high accuracy,
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while in regions where the integrand is smooth, fewer evaluations
suffice, which increases the performance of the computation. Such
an adaptive integrator is really indispensable for the problem at
hand. Non-adaptive routines like a simple trapezoidal or Simpson
rule on an equidistant grid often lead to systematically wrong
results.

We use n-point integration rules that approximate integrals of
the kind ∫ b

a F(x) dx ≈ ∑n
j=1 F(x j)w j with nodes xj and correspond-

ing weights wj. The integrator we use and which is implemented in
the Adapt class in the code is an adaptive 4-point Gauss–Lobatto
routine with a 7-point Kronrod extension and a 13-point Kronrod
extension as an error estimate, as detailed in Ref. 53. The ben-
efit of Gauss–Lobatto rules, compared to, e.g., the widely used
Gauss–Kronrod rules, is that the nodes include the endpoints of
the integration domain. This allows us to subdivide the domain at
the nodes of the integration rule and reuse points that have been
computed previously, which is preferential in terms of performance.
Similarly, the Kronrod extensions of a Gauss–Lobatto rule reuse
all points from a corresponding lower-point rule and simply add
additional points, which effectively allows us to get two different
rules from one set of evaluation points.

The nodes xj of the 4-point Gauss–Lobatto rule with 7-point
and 13-point Kronrod extensions are distributed as shown in Fig. 2.
There, the lower row indicates the values of the nodes for integra-
tion boundaries a = −1, b = 1 (for other values of a, b, the values
have to be rescaled correspondingly). The four-point Gauss–Lobatto
rule (GL4) and four-point Gauss–Lobatto with seven-point Kronrod
extension (GLK7) use the following points:

GL4(x0, x6) = ∑
j∈{0,2,4,6}F(xj)wj , (14a)

GLK7(x0, x6) = 6∑
j=0

F(xj)wj . (14b)

The smaller marks between the nodes x0, . . . , x6 in the graphical
representation above indicate the additional 6 points that are
added in the 13-point Kronrod extension (GLK13), which are
only known numerically (these and the weights wj are found in
Ref. 53).

The recursive algorithm of the integrator then works as shown
in Fig. 3. Note that the error estimate Is is determined only once
for the full integral and then reused for each subinterval in order
to avoid infinite recursions in subintervals. A typical recommended
value for the relative accuracy is ε = 10−5, which is set by the global
variable integrator_tol (see Table II).

FIG. 2. Distribution of the nodes xj of the 4-point Gauss–Lobatto rule with 7-point
and 13-point Kronrod extensions. The lower row indicates the values of the nodes
for integration boundaries a = −1, b = 1.

FIG. 3. Schematic illustration of the integration algorithm: an adaptive 4-point
Gauss–Lobatto routine with a 7-point Kronrod extension and a 13-point Kronrod
extension as an error estimate.

6. Asymptotic corrections to frequency integrals
In Sec. II G 5, it was explained how frequency integrations over

a finite interval [a, b] are performed. Since diagrammatic calcula-
tions require integrations over the full frequency axis (or summa-
tions over an infinite set of discrete Matsubara frequencies for the
finite-T MaF), the contributions to the integral resulting from the
high-frequency asymptotics of the integrands have to be treated as
well. This is particularly relevant for slowly decaying integrands,
which occur often, as the correlation functions arising in the present
context typically only decay as ∼1/ν or ∼1/ν2.

In the KF and the zero-T MaF, involving continuous frequency
integrations, a naïve treatment turned out to be sufficient: Since
the frequency axes are discretized non-uniformly, as described in
Sec. II G 4, the largest discrete frequency grid point is always so
large that the high-frequency tails can be treated via quadrature,
ignoring the minuscule contributions of even larger frequencies. For
finite-T MaF computations, which involve infinite sums, the code
provides two options for the treatment of high-frequency tails in
the integrand: (i) The tails can be treated via quadrature by approx-
imating the sum with an integral and then following the same logic
as in the KF. (ii) For bubble computations, the lowest order con-
tribution from the bare bubble, which is known analytically, can
be used. This is justified by the fact that in the high-frequency
asymptotic limit, the non-trivial contributions due to interactions
encoded in the self-energy have decayed, and only the bare contri-
bution is responsible for the asymptotic behavior. The first or second
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option is chosen with the ANALYTIC_TAILS parameter flag (see also
Sec. II I).

7. Interpolation routines
Whenever the value of a correlation function at some

continuous frequency argument is required, in particular during
frequency integrations, the data stored on discrete frequency grids
has to be interpolated. In addition, the diagrammatic algorithms dis-
cussed here have feedback between the three two-particle channels,
which all have their own channel-dependent parametrizations. This
necessitates accurate interpolations between different frequency
parametrizations; otherwise, errors accumulate over the course of a
computation.

To handle the interpolation of multidimensional correla-
tion functions, we implemented multilinear interpolation and
cubic spline interpolation using cubic Hermite splines. While
spline interpolation is robust against minor inaccuracies of the
data points and offers faster convergence in the number of
frequency points for smooth functions, multilinear interpolation
is generally faster numerically. Having tried out both options,
we prefer linear interpolation, as spline interpolation only really
becomes useful for better precision if the function is already well
resolved.

Regarding linear interpolation, the code offers options: One
can either interpolate on the grid of frequencies ν or on the grid of
auxiliary frequencies Ω, which are equidistantly spaced on the inter-
val [−1, 1] (see Sec. II G 4). We found the latter option to be more
accurate. The global parameter INTERPOLATION specifies which
type of interpolation shall be used (see also Sec. II I).

8. Data structures
The central low-level data structure used for storing and

retrieving numerical data inside the code is the dataBuffer class.
It was devised with the two main intentions of efficiency and
flexibility in mind (see also our discussion of the main design
choices for the codebase in the introduction, Sec. I). On the one
hand, it should enable building integrands that return scalar- or
vector-valued entries as efficiently as possible, particularly avoiding
conditional (“if-else”) statements during runtime, as these prevent
optimizations such as loop-vectorization or function inlining. On
the other hand, it should be useable in all parts of the codebase, e.g.,
for both calculations with interpolations on continuous frequency
grids and for finite-T MaF calculations, which only require indexing
of discrete data points.

The dataBuffer class is structured as follows. It builds
upon the dataContainerBase class, which is used to represent
multi-dimensional tensors, allowing scalar and vector-valued access
to contiguous elements. The DataContainer class then inher-
its dataContainerBase, adding frequency information. It con-
tains a multi-dimensional frequency grid (see Sec. II G 4) to
parameterize all its associated frequency arguments and provides
functions to analyze the resolution of frequency grids. Inheriting
the DataContainer class, the Interpolator classes then imple-
ment the different interpolation routines outlined in Sec. II G 7.
Multilinear cubic spline interpolations require pre-computation and
storage of interpolation coefficients, whereas linear interpolations
happen on the fly. Finally, the dataBuffer class inherits both the

Interpolator and the DataContainer classes and can be used
in actual computation. In addition, it can update and optimize grid
parameters as required.

9. Template arguments
Another performance-critical aspect of the codebase is its heavy

use of templates. In particular, the propagation of template argu-
ments as specified by preprocessor flags enables the determination
of the required diagrammatic combinations for any given computa-
tion at compile time. Selecting and combining the necessary vertex
contributions this way, e.g., for contributions to specific asymptotic
classes, enables further optimization by the compiler. However, the
ubiquity of template arguments comes at the expense of readability
in many places.

H. Tests
The code includes a large number (178 as of writing) of self-

explanatory unit tests that run checks on the low-level parts of the
codebase. They are implemented using the popular Catch2 library54

and are invoked from a separate C++ source file, unit_tests.cpp,
which should be built separately from the main source file. From
inside this file, more involved and expensive tests can be started if
desired. These include detailed tests of the ODE solver or pertur-
bation theory, which are too expensive to be part of the unit test
suite. Finally, the code includes functionality to produce reference
data that can be used later to compare the results of a calcula-
tion after changes to the code have been made. We have found it
immensely useful to include many unit tests in the codebase, as they
can tell almost immediately if a single technical part of the code
has broken. Moreover, having a way to compare the results of very
involved computations that involve large parts of the codebase at
once is useful to catch logical errors. We wholeheartedly recommend
both.

I. Parameters
Before any individual calculation can be started, a number of

parameters have to be set. As the code provides a large degree of
flexibility, the number of possible parameter choices is large. Most
of these parameters are set inside the corresponding header files
before compilation. The reason for this is that, depending on these
choices, often different functionality of the code is invoked, depend-
ing, e.g., on the choice of formalism. This is achieved by defining
preprocessor macros accordingly, which makes the correspond-
ing functionality accessible. As discussed previously in too many
preprocessor macros (“flags”), while this approach was useful for
implementing new functionality quickly, in the long run, it turned
out to be problematic with regard to the readability and maintain-
ability of the code. Table I provides a list (albeit incomplete) of the
most important preprocessor flags used in the code with a short
description of each.

In addition, global parameters have to be set, which specify
settings like the resolution of the frequency grid, convergence
criteria, or start- and end-points of an mfRG flow. Table II provides
a non-exhaustive list of those.

Finally, it should be mentioned that once the code has been
compiled and the resulting executable is to be called, it requires
three run-time arguments: The first one invokes an mfRG run if it
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TABLE I. Incomplete list of the most important preprocessor macros to be set before compilation.

Macro name Possible values Description

ADAPTIVE_GRID ⋅ ⋅ ⋅ If defined, use the optimization routine to find the best scale factor A of the
frequency grid; if undefined, just rescale the grid. Warning: Can be expensive
and unreliable in the presence of numerical artifacts

ANALYTIC_TAILS 0, 1 0 for false; 1 for true. If true, the analytic expression for the bare bubble is
used to treat the high-frequency asymptotics during bubble computations in
the finite-T MaF

BARE_SE_FEEDBACK ⋅ ⋅ ⋅ If defined, only bare selfenergy is used. It only makes sense if
STATIC_FEEDBACK is defined. Useful for benchmarks with previous Keldysh
fRG schemes

CONTOUR_BASIS 0, 1 0 for false, 1 for true: If true, no Keldysh rotation is performed, and the
contour basis is used instead to parameterize the Keldysh components of
all correlation functions. It is useful for comparisons with results that use
this convention. Not as well tested and, therefore, not recommended for
production runs

DEBUG_SYMMETRIES 0, 1 0 for false; 1 for true. Performs computations without the use of symmetries,
if true. Useful for debugging purposes

GRID 0, 1, 2 Controls which frequency grid is to be used. 0 for the non-linear grid, 1
for the hybrid grid, and 2 for the polar grid. Recommendation: 0. See also
Sec. II G 4

KATANIN ⋅ ⋅ ⋅ If defined, the Katanin extension is used during fRG computations
KELDYSH_FORMALISM Determines whether calculations shall be performed in the Keldysh or

Matsubara formalism. 0 for Matsubara formalism (MaF); 1 for Keldysh
formalism (KF)

MAX_DIAG_CLASS 1, 2, 3 Defines the diagrammatic classes that will be considered: 1 for only K1,
2 for K1 and K2, and 3 for the full dependencies. Useful for debugging
purposes and for computations in second-order perturbation theory, or if
STATIC_FEEDBACK is defined, when only K1 is required

NDEBUG ⋅ ⋅ ⋅ If defined, assert functions are switched off. Recommended setting for
production runs

PARTICLE_HOLE_SYMM 0, 1 0 for false; 1 for true. If true, particle–hole symmetry is assumed
PT2_FLOW ⋅ ⋅ ⋅ If defined, only compute the flow equations up to O(U2). Only makes sense

for pure K1 calculations. It is useful as a consistency check together with
independent PT2 calculations

REG 2, 3, 4, 5 Specifies the mfRG flow regulator to be used. 2: Δ-flow, 3: ω-flow, 4: U-flow,
5: T-flow. For details, see Sec. III C 2

REPARAMETRIZE_FLOWGRID ⋅ ⋅ ⋅ If defined, the flow parameter is reparametrized according to Sec. III C 1.
Only recommended for the Δ-flow

SBE_DECOMPOSITION 0, 1 0 for false; 1 for true. If true, the SBE decomposition is used to parameterize
the vertex and the flow equations. Only implemented in the MaF!

SELF_ENERGY_FLOW_CORRECTIONS 0, 1 0 for false; 1 for true. If true, corrections to the flow equations for the vertex
from the self-energy, starting at ℓ = 3, are included

STATIC_FEEDBACK ⋅ ⋅ ⋅ If defined, use static K1 inter-channel feedback as performed in 11. Only
makes sense for pure K1 calculations

SWITCH_SUM_N_INTEGRAL 0, 1 0 for false; 1 for true. If true, the sum over internal Keldysh indices is
performed before the frequency integration. Recommended setting: 1

USE_ANDERSON_ACCELERATION 0, 1 0 for false; 1 for true. If true, Anderson acceleration is used to converge
parquet iterations and self-energy iterations in mfRG faster

USE_MPI ⋅ ⋅ ⋅ If defined, MPI is used for parallelization across multiple nodes
USE_SBEb_MFRG_EQS 0, 1 Determines which version of the SBE approximation shall be used. 0 for

SBEa, 1 for SBEb. Only implemented in the MaF!
VECTORIZED_INTEGRATION 0, 1 0 for false; 1 for true. If true, integrals are performed with vector-valued

integrands. For Keldysh, vectorization over Keldysh indices. For Matsubara
at finite T, vectorization over the Matsubara sum

ZERO_TEMP 0, 1 0 for false; 1 for true. If true, temperature T = 0 is assumed
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TABLE II. Incomplete list of global parameters to be set before compilation.

Parameter name Type Description

converged_tol double Tolerance for loop convergence in mfRG
COUNT int Used to set the number of frequency points in the MaF. For details,

see the definitions in the file frequency_parameters.hpp
Delta_factor_K1 int Scale factor for the frequency grid of the K1 vertex class
Delta_factor_SE int Scale factor for the frequency grid of the self-energy
Delta_factor_K2_w int Scale factor for the frequency grid of the bosonic frequency of the

K2 and K2′ vertex classes
Delta_factor_K2_v int Scale factor for the frequency grid of the fermionic frequency of the

K2 and K2′ vertex classes
Delta_factor_K3_w int Scale factor for the frequency grid of the bosonic frequency of the

K3 vertex class
Delta_factor_K3_v int Scale factor for the frequency grid of the fermionic frequencies of

the K3 vertex class
EQUILIBRIUM bool If true, use equilibrium FDRs for propagators
glb_mu double Chemical potential – w.l.o.g. ALWAYS set to 0.0 for the AM!
integrator_tol double Integrator tolerance
inter_tol double Tolerance for closeness to grid points when interpolating
INTERPOLATION linear, linear_on_aux, cubic Interpolation method to be used. linear: linear interpolation on

the frequency grid. linear_on_aux: linear interpolation on the
grid for the auxiliary frequency Ω. cubic: Interpolation with cubic
splines (warning: expensive!)

Lambda_ini double Initial value of the regulator Λ for an mfRG flow
Lambda_fin double Final value of the regulator Λ for an mfRG flow
Lambda_scale double Scale of the log substitution, relevant in the hybridization flow
dLambda_initial double Initial step size for ODE solvers with adaptive step size control
nBOS int Number of bosonic frequency points for the K1 vertex class
nFER int Number of fermionic frequency points for the self-energy
nBOS2 int Number of bosonic frequency points for the K2 and K2′ vertex

classes
nFER2 int Number of fermionic frequency points for the K2 and K2′ vertex

classes
nBOS3 int Number of bosonic frequency points for the K3 vertex class
nFER3 int Number of fermionic frequency points for the K3 vertex class
U_NRG std::vector<double> Vector with the values of U in units of Δ that an mfRG flow should

cover. Serve as checkpoints for the flow. It is useful for bench-
marking purposes if data from other methods at precise parameter
points are available

VERBOSE bool If true, detailed information about all computational steps is writ-
ten into the log file. Recommended setting for production runs:
false

nmax_Selfenergy_iterations int Maximal number of self-energy iterations to be performed during
an mfRG flow for ℓ ≥ 3. Default value: 10

tol_selfenergy_correction_abs double Absolute tolerance for self-energy iterations in mfRG. Default
value: 10−9

tol_selfenergy_correction_rel double Relative tolerance for self-energy iterations in mfRG. Default
value: 10−5

is a positive integer, specifying the maximal number of loop orders
calculated during the mfRG flow. Alternatively, if it is set to 0 or−1, a parquet or PT2 calculation is started, respectively. The second
is a positive integer and specifies the number of nodes to be
utilized. The third runtime argument defines the temperature for the

calculation and was introduced to easily enable parameter sweeps
without having to recompile the code every time. Note that its value
is irrelevant for calculations that have the flag ZERO_TEMP set to 1
or if an mfRG run is performed with the flag REG set to 5, which
employs the temperature flow.
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III. ALGORITHMS

In the third main part of the paper, we finally describe three
diagrammatic algorithms that have been implemented. These are
second-order perturbation theory (PT), a self-consistent solution
of the parquet equations, and the flow equations provided by the
multiloop functional renormalization group (mfRG). For all three
methods, we first give some theoretical background before describ-
ing schematically how the algorithms are implemented and what
functions are being used.

A. Perturbation theory
The simplest computations that can be performed with the

code are perturbation theory calculations. While these are easy to
implement in the second order, going to higher orders involves an
increasing number of diagrams, which can in principle be evalu-
ated separately. This is, however, not always straightforward, e.g.,
if symmetries are to be exploited: individual diagrams of the pertur-
bation series do not all have the same symmetries as a full vertex,
such that symmetry-related diagrams have to be provided, which
can become tedious. Alternatively, the flag DEBUG_SYMMETRIES can
be set to 1, see Sec. II I, in which case the code does not attempt
to exploit symmetries. As higher-order perturbation theory has
so far only been performed for testing purposes and consistency
checks (see, e.g., Chap. 7 in Ref. 28), we refrain from going into
further detail here. Instead, we focus just on the second-order
case and on Hartree–Fock theory for the self-energy relevant to
the aAM.

1. Hartree–Fock
As elaborated in Ref. 1, it is helpful to replace the bare prop-

agator G0 by the Hartree-propagator GH, which is shifted by the
Hartree-term of the self-energy,

GR
0 → GR

H = 1
ν − εd + iΔ − ΣR

H
. (15)

For the sAM, this is almost trivial, as the retarded component of the
Hartree term reads ΣR

H = U/2, which simply yields GR
H = (ν + iΔ)−1.

For the aAM, on the other hand, the Hartree-term can be computed
self-consistently.

For this purpose, the class Hartree_Solver provides
the function compute_Hartree_term_bracketing. It computes
ΣR

H via

ΣR
H = U ∫ dν′

2πi
G<H(ν′), (16)

where in thermal equilibrium, the relation G<(ν)= −2i nF(ν)Im GR(ν) is used with the Fermi function nF(ν)= 1/(1 + eν/T). As ΣR
H enters both sides of Eq. (16), this calculation is

performed self-consistently using a simple bracketing algorithm.
In addition, the Hartree_Solver class provides the func-

tion compute_Hartree_term_oneshot, which evaluates Eq. (16)
just once, given a provided self-energy for GR(ν). This function is
invoked in the context of parquet iterations and evaluations of mfRG
flow equations to update the Hartree term of the aAM.

FIG. 4. Schematic depiction of the function sopt_state.

Finally, the Hartree_solver class provides function-
ality to check the fulfillment of the Friedel sum rule55⟨nσ⟩ = 1

2− 1
π arctan [(εd + Σ(0))/Δ], which the self-consistent

Hartree term fulfills at T = 0.

2. Second order perturbation theory (PT2)
The self-energy and vertex in second-order perturbation the-

ory are computed via the function sopt_state, which works as
depicted in Fig. 4. It first initializes a bare state (see Sec. II C 3),
given the system parameters and the current value of the regulator
Λ. For the aAM, this already includes a self-consistent calculation
of the Hartree term (see Sec. III A 1). Then, it invokes the func-
tion selfEnergyInSOPT, which computes the single diagram for
the dynamical part of the self-energy in PT2 by first computing
a bare bubble in the a-channel using the bubble_function (see
Sec. II D 1), with two bare vertices, and then closing the loop
over that bare bubble with the Hartree-propagator using the loop
function (see Sec. II D 2).

Thereafter, the vertex is computed using the function
vertexInSOPT, which simply invokes the bubble_function three
times, once for each of the three two-particle channels a, p, and t,
using two bare vertices, adding each result to the vertex.

In total, this procedure yields all diagrams for the dynamical
part of the self-energy and the vertex in PT2, using the Hartree-
propagator GH. For the precise diagrammatic definition of PT2, see
Appendix F in Ref. 1.

B. Parquet equations
The parquet formalism56 provides a self-consistent set of equa-

tions for the self-energy Σ and the three two-particle reducible ver-
tices γr with r ∈ {a, p, t}. The latter are given by the Bethe–Salpeter
equations (BSEs)

(17a)

(17b)
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FIG. 5. Schematic depiction of the parquet_solver function.

(17c)

where Ir = Γ − γr is the two-particle irreducible vertex in channel r.
The self-energy is given by the Schwinger–Dyson equation (SDE),

(18)

which includes the Hartree term discussed in Sec. III A 1. Together,
these equations close once the fully irreducible vertex R is provided,
for example, by employing the PA, as discussed in Sec. I B.

In practice, these equations are solved iteratively. The code pro-
vides functions to evaluate the right-hand sides of the BSEs and
the SDE, called compute_BSE and compute_SDE. Schematically,
the parquet solver works as depicted in Fig. 5. Inside the code,
a parquet computation is started by the function run_parquet.
It first initializes a state using PT2, as detailed in Sec. III A 2,
before the parquet_solver function is called. Internally, the
parquet_solver calls parquet_iteration, which evaluates the
BSEs and the SDE, given a provided input state, and combines them
into an output state. The corresponding functions compute_BSE
and compute_SDE use the machinery described in Secs. II C and II D
to evaluate Eqs. (17) and (18). In practice, symmetrizing Eq. (17),
i.e., computing the sum of the right-hand side as is and with Ir and Γ
interchanged and dividing by two, has proven beneficial for stability.

In addition, we found it helpful to combine all three ways to evaluate
the SDE, Eq. (18) (see Appendix D in Ref. 1).

The parquet_solver can either proceed directly from one
iteration to the next, or it can combine multiple results from pre-
vious iterations using mixing schemes to improve convergence. For
example, one can combine the two most recent iterations with a mix-
ing factor as outlined in Eq. (G4) of Ref. 1. One may start with a
mixing factor of around 0.5, which can be reduced automatically if
the convergence properties of the calculation are poor. In addition,
one can use Anderson acceleration57,58 to combine multiple previ-
ous iterations for a prediction of the next iteration. We have found
that this leads to faster convergence in the vicinity of the solution
but does not extend the parameter range where convergence can be
reached.

The parquet solver can also be used for calculations in the ran-
dom phase approximation (RPA). Switching off the BSEs in two of
the three two-particle channels readily yields the RPA-ladder in the
other channel.

C. mfRG
In fRG,59 the self-energy and vertex are interpolated between

the initial and final values of a single-particle parameter Λ intro-
duced into the bare propagator G0. The initial value Λ = Λi should
be chosen such that the theory is solvable at that point; in practice,
it typically suffices that very good approximations of ΣΛi and ΓΛi can
be obtained by PT2 or by converging the parquet equations. The fRG
then provides a set of differential “flow” equations in Λ for ΣΛ and
ΓΛ, which yield the final results ΣΛ f and ΓΛ f at the actual point of
interest Λ = Λ f . In the multiloop fRG framework, these flow equa-
tions are derived from the parquet equations by differentiation with
respect to the flow parameter Λ, as detailed in Ref. 18. This yields an
infinite set of contributions of increasing “loop order” ℓ,

Γ̇ = ∑
r∈{a,p,t} γ̇r , (19a)

γ̇r = ∞∑
ℓ=1

γ̇(l)r , (19b)

where a dot represents a derivative with respect to Λ. Diagrammati-
cally, the ℓ-loop contributions in the a channel read

(20a)

(20b)

(20c)
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and analogously in the other two channels p and t. Here,
γ(ℓ)r̄ = ∑r′≠r̄ γ(ℓ)r′ , and Eq. (20c) applies for all higher loop orders
ℓ + 2 ≥ 3. The double-dashed bubble in Eq. (20) corresponds to
a sum of two terms, Π̇ = ĠG +GĠ, where Ġ = S +GΣ̇G with the
single-scale propagator S = ∂ΛG∣Σ=const. and the Katanin substitu-
tion.48

The multiloop flow equation for the self-energy reads

(21a)

(21b)

with γ̇t̄,C = ∑ℓ (γ̇(ℓ)a,C + γ̇(ℓ)p,C ), where the single-dashed line denotes
the single-scale propagator S from above.

Historically, fRG flow equations have been derived from a
generating functional, yielding an exact hierarchy of flow equations
which couple n-point vertices of increasing order.60 As the six-point
vertex, which contributes to the flow equation of Γ, see Eq. (19) in
Ref. 1, is inaccessible numerically, its contribution is often neglected
completely, resulting in the so-called “one-loop” flow equations.
This, however, results in an unphysical dependence of the final result
of the flow on the choice of regulator (as the flow equations no longer
constitute total derivatives) and also introduces a bias toward ladder
diagrams.16,61

The multiloop framework builds upon the one-loop scheme
by iteratively adding precisely those two-particle reducible dia-
grammatic contributions to the flow equations that are required to
reinstate total derivatives with respect to Λ and thereby reproduce
the solution of the parquet equations. In that sense, it provides an
alternative scheme for solving the parquet iterations via differen-
tial equations. From a computational standpoint, the mfRG flow
equations introduce a complication compared to the one-loop flow
equations, in that the right-hand sides of the flow equations for both
Γ and Σ involve the differentiated self-energy and vertex. In order to
still be able to use standard algorithms for ordinary differential equa-
tions, a scheme was outlined in Ref. 16 to include those differentiated
quantities iteratively. Starting from the one-loop term Eq. (21a) to
evaluate the flow Eq. (20) for Γ, these are then iterated with the
multiloop corrections (21b) at every step of the flow until conver-
gence is reached. The number of iterations required for convergence
at this point can again be reduced using Anderson acceleration, as
described in Sec. III B.

From the code, an mfRG-flow computation can be started with
the function n_loop_flow, which requires only the string for the
name of the output file and a set of parameters. It is overloaded
to enable checkpointing, i.e., it is possible to continue a previ-
ously started computation from a given iteration. This is particularly
useful for demanding jobs that take a long time, and it is highly
recommended to any user.

FIG. 6. Schematic depiction of the function n_loop_flow.

The function n_loop_flow works as shown in Fig. 6. It first
initializes a state using PT2 with the function sopt_state, see
Sec. III A 2, and then uses this result as a seed for a full parquet
computation at the initial value of the regulator Λi with the
parquet_solver function, see Sec. III B. This provides a suitable
starting point for the following mfRG calculation.

The ode_solver function carries out the actual calcula-
tion of solving the mfRG flow. It uses an instance of the
rhs_n_loop_flow_t class, which provides a wrapper to the
function rhs_n_loop_flow, which in turn evaluates the right-
hand side of the flow equations given an input state at a
given value of Λ. This is performed iteratively by loop order
according to flow Eq. (20), including self-consistent iterations for
the self-energy starting at the three-loop level, as outlined ear-
lier. The function rhs_n_loop_flow is structured as shown in
Fig. 7. Starting from the self-energy and vertex from the previ-
ous step of the ODE-solver, it evaluates the right-hand sides of
the flow equations by first computing the one-loop term of the
flow equation for the self-energy, Eq. (21a), with the function
selfEnergyOneLoopFlow. The result is then used to evaluate the
one-loop term of the flow equation for the two-particle reducible
vertices γ̇r and Eq. (20), involving a fully differentiated bubble.
Then, the one-loop result is used to evaluate the two-loop con-
tribution, Eq. (20b), which consists of two terms: one where the
differentiated one-loop contribution γ̇(1)r is used as the left part
of a bubble contraction with the full vertex, and one where it
is used on the right side. These two terms are computed using
the functions calculate_dGammaL and calculate_dGammaR,
respectively. Next, the three-loop contribution is computed,
which involves both the one-loop and the two-loop results
[see Eq. (20c)]. Again, the functions calculate_dGammaL and
calculate_dGammaR are invoked, and in addition, the function
calculate_dGammaC is invoked to compute the “center term”
involving two bubble contractions of γ̇(1)r with the full vertex, once
to the left and once to the right. As the structure of the flow
equations does not change from this point on, this part is iterated
until the maximally desired loop number n (which is given as a
runtime parameter; see Sec. II I) is reached. The resulting cen-
ter terms of the a and p channels are then used to evaluate the
multiloop corrections to the self-energy, according to Eq. (21b).
This updates the differentiated bubble used in the computation
of the one-loop terms γ̇(1)r , such that the whole process is finally
iterated from that point on until convergence is reached, as deter-
mined by the parameters tol_selfenergy_correction_abs and
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FIG. 7. Structure of the function rhs_n_loop_flow, including multiloop itera-
tions up to loop order ℓ = n and self-consistent self-energy iterations due to the
multiloop corrections.

tol_selfenergy_correction_rel (see Sec. II I). All functions
invoked by rhs_n_loop_flow, of course, make heavy use of the
main functionality outlined in Sec. II D.

As a side note, it is possible to parameterize the vertex using the
single-boson exchange (SBE) decomposition62–67 and to rewrite the
mfRG flow equations in this language, as outlined in Ref. 68. This is
achieved by setting the flag SBE_DECOMPOSITION to 1. Two versions
of the SBE approximation can be used, known as “SBEa” and “SBEb”
in the literature.69 Which version is to be used is controlled by the
flag USE_SBEb_MFRG_EQS (see Sec. II I). This functionality is, so far,
only implemented in the MaF. We, therefore, refrain from providing
further details here.

In the final two parts of this section, we discuss the ODE-solver
and the different flow schemes.

1. Details on the ODE-solver
To solve the mfRG flow equations accurately, a Cash–Karp

routine70 is implemented, which constitutes a fourth-order
Runge–Kutta solver with adaptive step size control. An adaptive
step-size control is crucial for obtaining accurate results and is
hereby strongly recommended for solving fRG flow equations
precisely. For a good first guess of the step size in the Δ-flow
(see Sec. III C 2 a), the flow parameter is reparametrized as Λ(t)= 5t∣t∣/√1 − t2. For equidistant t, this parametrization provides
large steps for large Λ and small steps for small Λ. This is sensible in
the context of the Δ-flow, where Λ is gradually reduced to enter ever
more challenging parameter regimes.

2. Flow schemes
In fRG, one chooses a regulator introduced into the bare prop-

agator G0 → GΛ
0 , i.e., the flow scheme. While the solution of a

truncated set of fRG flow equations will depend on this choice,
a converged multiloop flow will not, as it reproduces the self-
consistent solution of the parquet equations. It is generally advisable
to choose the most convenient flow scheme for the problem at hand.
In particular, the fRG flow can be used to compute a full parameter
sweep in one go by choosing a physical parameter as the regulator.
Compared to direct solutions of the parquet equations, which have
to be computed individually at every point in parameter space, this
makes mfRG computations more economical, provided they can be
quickly converged in the loop order. In the following, we outline the
flow schemes that have been implemented and can be used by set-
ting the REG flag and the Lambda_ini and Lambda_fin parameters
accordingly (see Tables I and II).

a. Δ-flow. The hybridization flow11 uses Δ as the flow para-
meter, starting at a very large value and decreasing Δ to a smaller
value, keeping the other parameters U and T fixed. The hybridiza-
tion flow thus performs a parameter sweep in U/Δ for fixed T/U.
The Keldysh fRG single-scale propagator reads

SR(ν) = ∂Δ GR(ν)∣Σ=const.
= −i[GR(ν)]2.

In practice, we start the fRG flow from a solution of the par-
quet equations at large Δ (small U/Δ), where that solution can
be easily obtained. For historical reasons, the hybridization flow is
implemented as

GR
Λ(ν) = 1

ν − εd + i(Γ +Λ)/2 − ΣR
Λ(ν) , (22)

inside the code, where Γ is fixed to some arbitrary value and Λ is used
to fix the hybridization Δ = (Γ +Λ)/2. Note that keeping T/U fixed
during the Δ-flow is a somewhat unconventional choice, as in most
works on the AM, the scale T/Δ is kept constant. As explained in
Ref. 28, keeping T/Δ fixed during the Δ-flow would lead to addi-
tional sharply peaked terms in the single-scale propagator and has
hence not been pursued yet.

b. U-flow. An alternative to the Δ-flow is the following flow
scheme, first introduced in Ref. 71,

GR
Λ(ν) = Λ

ν − εd + iΔ −Λ ΣR
Λ(ν) , (23)

starting at Λi = 0 (or very small, in practice) and flowing toward
Λ f = 1. The corresponding single-scale propagator then reads

SR(ν) = ∂Λ GR(ν)∣Σ=const.
= ν − εd + iΔ[ν − εd + iΔ −Λ ΣR

Λ(ν)]2 . (24)

This flow scheme is called interaction- or U-flow because increasing
Λ effectively amounts to increasing U. This can be shown by a simple
rescaling argument: A bare diagram for Σ (or Γ) at order n has n fac-
tors of U and 2n − 1 (or 2n − 2) factors of G0,Λ, each contributing
one factor of Λ. The same scaling behavior in Λ can be achieved
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without a Λ-dependent G0 by multiplying U with Λ2 and dividing
out an extra Λ (or Λ2). It hence holds that

ΣΛ(U) = Σ(Λ2U)/Λ, (25a)

ΓΛ(U) = Γ(Λ2U)/Λ2. (25b)

Note that at zero temperature, the two flow schemes discussed so far
should be equivalent: For T = 0, the only energy scales of the AM
in the wideband limit are U and Δ, so there is only one external
parameter U/Δ and it does not matter whether U is increased or
Δ is decreased.

Historically, the U-flow has not been very popular, as it does
not regulate IR divergences.59 Nevertheless, it can be used for the
AM. In Ref. 1, we found that, for a truncated 1-loop Keldysh fRG
flow at finite T, this scheme produces inferior results compared to
the Δ-flow when benchmarked against numerically exact NRG data.
Still, the U-flow has the nice property that it keeps T/Δ fixed.

c. T-flow. Using temperature as the fRG flow parameter has
been popular in the past when performing fRG computations in the
MaF.72,73 It has been argued that temperature cannot be used for
this purpose in Keldysh fRG computations,11 the reason being that
a truncated fRG flow does not preserve fluctuation–dissipation rela-
tions (FDRs). However, solutions to the parquet equations do fulfill
the FDRs. If the FDRs are not used explicitly during mfRG calcula-
tions (as this would mix FDRs at different temperatures and hence
introduce an inconsistency), it should also be possible to obtain these
solutions by converging an mfRG flow. Instead of the standard FDR,
which relates GK and GR, in this scheme, the general expression for
the Keldysh component of the propagator should be used, which
reads28

GK(ν) = GR(ν)[ΣK(ν) − 2iΔ tanh( ν
2T
)]GA(ν). (26)

The Keldysh component of the single-scale propagator is then

SK(ν) = ∂TGK(ν)∣Σ=const.
= iΔν

T2 cosh2( ν
2T ) ∣G

R(ν)∣2. (27)

Note that its retarded component is zero; SR(ν) = 0, as GR(ν) does
not depend explicitly on T. While preliminary numerical results
suggest that this scheme indeed performs well, a systematic study
of the temperature flow in Keldysh fRG is left for future work. So
far, at the time of writing, the temperature flow described earlier can
only be used in the KF; corresponding regulators in the MaF, as in
Refs. 72 and 73, have not been implemented.

d. ν-flow. Using a frequency regulator of the form G0,Λ(iν)= G0(iν)ΘΛ(iν) with ΘΛ(iν) = ν2/(ν2 +Λ2) has been a popular
choice in the literature for (m)fRG calculations in the Matsubara
formalism.74,75 However, in this form, the frequency regulator can-
not be used in the Keldysh formalism, as the analytical continuation
of ΘΛ(iν) gives ΘR

Λ(ν) = ν2/(ν2 −Λ2 + 2∣ν∣i0+) with a branch cut

for ν < 0. One can, however, change the form of the regulator to
ΘΛ(iν) = ∣ν∣/(∣ν∣ +Λ), for which the retarded counterpart reads

ΘR
Λ(ν) = ν

ν + iΛ
, (28)

which is a well-behaved function. This choice is implemented as

GR
Λ(ν) = ΘR

Λ(ν)
ν − εd + iΔ −ΘR

Λ(ν)ΣR
Λ(ν) . (29)

The corresponding single-scale propagator then reads

SR(ν) = − i
ν

[ΘR
Λ(ν)]2(ν − εd + iΔ)[ν − εd + iΔ −ΘR

Λ(ν)ΣR
Λ(ν)]2 . (30)

With this choice, all causality relations and FDRs are satisfied. How-
ever, this regulator has two drawbacks compared to the other flow
schemes: First, it does not produce a parameter sweep, as Λ does not
directly correspond to a physical parameter. Second, computations
become ever more challenging for smaller Λ: Even if all correla-
tion functions are reasonably smooth in frequency space for Λ = 0,
for small but finite Λ, they exhibit sharp features. While this is not
an issue for finite-temperature Matsubara calculations, where only
sums over discrete Matsubara frequencies are performed, it turns
out to be a major inconvenience in the Keldysh context.

IV. CONCLUSION

In this paper, we outline the structure and design of our C++
codebase for diagrammatic calculations of the AM in the Keldysh
formalism. We explained the building blocks for representing real-
frequency correlation functions and the central routines used to
compute them. We elaborated on all performance-critical aspects,
allowing one to handle the three-dimensional frequency dependence
of the four-point vertex, and summarized the implementation of the
parquet and mfRG equations. By discussing the most convenient
features of the codebase—modularity, flexibility, performance, and
scalability—but also some of its design flaws in detail, we hope to
provide guidance and inspiration to others who plan to write code
for similar purposes.

Our codebase forms the basis for numerous future projects
involving the dynamical correlation functions of electronic many-
body systems. Since the AM is very well understood, we want to gen-
eralize our treatment to more complicated models with unexplored
physics, like lattice models, possibly including multiple bands. The
main problem in that regard is the numerical complexity. In addi-
tion to their real-frequency Keldysh structure, all functions would
acquire momentum dependencies and orbital indices. Parametriz-
ing those naively appears prohibitively costly. Fortunately, the new
quantics tensor cross interpolation (QTCI) scheme76–78 is cur-
rently being developed, which can be used to obtain highly com-
pressed tensor network representations of correlation functions and
promises exponential reductions in computational costs. It remains
to be seen how efficiently the Keldysh four-point vertex can be com-
pressed using this method. If it turned out to be highly compressible,
one could combine the diagrammatic approaches outlined here with
non-perturbative results from dynamical mean-field theory to access
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truly strongly correlated parameter regimes (see related works79–81

in the MaF). In particular, computing non-local real-frequency
dynamical vertex corrections beyond DMFT for observables like
optical conductivities with high precision is a formidable long-term
goal.

Another possible future direction relates to nonequilibrium
phenomena, for example, the influence of the full four-point vertex
on observables like differential conductivities.12,82 Nonequilibrium
physics has been the most popular application of the KF in the past,
and the AM with a finite bias voltage is tractable with only a minor
increase in both the numerical costs and the implementation effort.

In order to leverage ongoing efforts in the QTCI framework,
an interface to the corresponding Julia package83 would be required.
Given that, in recent years, multiple Julia codes have been developed
to perform calculations of two-particle correlation functions,84–87 it
would be natural to switch to that language in the future, especially
since it allows much simpler structures and, in general, performs
almost as well as C++.
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Abstract

The Matsubara Green’s function formalism stands as a powerful technique for com-
puting the thermodynamic characteristics of interacting quantum many-particle sys-
tems at finite temperatures. In this manuscript, our focus centers on introducing
MatsubaraFunctions.jl, a Julia library that implements data structures for general-
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face. This encompasses avenues for accessing Green’s functions, techniques for extrap-
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1 Motivation

In condensed matter physics, strongly correlated electrons emerge as paradigmatic examples
of quantum many-body systems that defy a description in terms of simple band theory, due to
their strong interactions with each other and with the atomic lattice. Their study has led to
a cascade of discoveries, ranging from high-temperature superconductivity in copper oxides
(cuprates) [1, 2] to the Mott metal-insulator transition in various condensed matter systems
such as, e.g., transition metal oxides or transition metal chalcogenides [3–5] and the emer-
gence of quantum spin liquids in frustrated magnets [6,7], to name but a few.

The study of correlated electron systems is equally exciting and challenging, not only be-
cause the construction of accurate theoretical models requires the consideration of many dif-
ferent degrees of freedom, such as spin, charge, and orbital degrees of freedom, as well as
disorder and frustration, but also because of the scarcity of exactly solvable reference Hamil-
tonians. The single-band Hubbard model in more than one dimension, for example, has re-
mained at the forefront of computational condensed matter physics for decades, although it
in many respects can be regarded as the simplest incarnation of a realistic correlated electron
system [8,9]. It is therefore not surprising that a plethora of different numerical methods have
been developed to deal with these models [10].

However, no single algorithm is capable of accurately describing all aspects of these com-
plex systems: each algorithm has its strengths and weaknesses, and the choice of algo-
rithm usually depends on the specific problem under investigation. For example, some al-
gorithms, such as exact diagonalization (ED) [11–13] or the density matrix renormalization
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group (DMRG) [14, 15] are better suited for studying ground-state properties, while others
(quantum Monte Carlo (QMC) simulations [16–19], functional renormalization group (fRG)
calculations [20–22], ...) perform better when one is interested in dynamic properties such as
transport or response functions.

Another popular method, dynamical mean-field theory (DMFT) has been immensely suc-
cessful; in particular it correctly predicts the Mott transition in the Hubbard model [23]. By
approximating the electron self-energy to be local, it however disregards non-local correlation
effects, leading to a violation of the Mermin-Wagner theorem [24, 25] as well as a failure to
predict the pseudo-gap in the Hubbard model [10]. Non-local (e.g. cluster [26–29] or dia-
grammatic [30]) extensions of DMFT improve on that front, but are computationally much
more expensive. Ultimately, the choice of algorithm is guided by the computational resources
available and the trade-off between accuracy and efficiency, as well as by physical insights into
which approximations may be justified more than others.

A common motif of many of these algorithms is that they rely on the computation of n-
particle Green’s functions, where usually n= 1, 2. Roughly speaking, these functions describe
correlations within the physical system of interest, such as its response to an external perturba-
tion. In thermal equilibrium, Green’s functions are usually defined as imaginary-time-ordered
correlation functions, which allows the use of techniques and concepts from statistical me-
chanics, such as the partition function and free energy. In Fourier space, the corresponding
frequencies take on discrete and complex values. This Matsubara formalism is widely used
to study strongly correlated electron systems, where it provides a powerful tool for calculat-
ing thermodynamic quantities, such as the specific heat and magnetic susceptibility, as well as
dynamical properties, such as the electron self-energy and optical conductivity [31,32].

In this manuscript, we present MatsubaraFunctions.jl, a software package written
in Julia [33] that implements containers for Green’s functions in thermal equilibrium. More
specifically, it provides a convenient interface for quickly prototyping algorithms involving
multivariable Green’s functions of the form Gi1...in(ω1, ...,ωm), with lattice/orbital indices ik
(k = 1, ..., n) and Matsubara frequenciesωl (l = 1, ..., m). In an attempt to mitigate monilithic
code design and superfluous code reproduction, our goal is to promote a common interface
between algorithms where these types of functions make up the basic building blocks. We
implement this interface in Julia, since some more recently developed methods, such as the
pseudofermion [34–41] and pseudo-Majorana fRG [42–45], seem to have been implemented
in Julia as the preferred programming language. In the spirit of similar software efforts, such as
the TRIQS library for C++ [46], this package therefore aims to provide a common foundation
for these and related codes in Julia that is fast enough to facilitate large-scale computations
on high-performance computing architectures [47], while remaining flexible and easy to use.

2 Equilibrium Green’s functions

In this section, we give a brief introduction to equilibrium Green’s functions and their proper-
ties. In its most general form, an imaginary time, n-particle Green’s function G(n) is defined
as the correlator [48]

G(n)i1...i2n
(τ1, ...,τ2n) = 〈T̂ c†

i1
(τ1)ci2

(τ2)...c
†
i2n−1
(τ2n−1)ci2n

(τ2n)〉 , (1)

where T̂ is the imaginary-time-ordering operator and 〈Ô〉 = 1
Z Tr(e−βĤÔ) denotes the ther-

mal expectation value of an operator Ô with respect to the Hamiltonian Ĥ at temperature
T = 1/β . Note that natural units are used throughout, in particular we set kB ≡ 1. Here, c(†)

are fermionic or bosonic creation and annihilation operators and Z = Tr(e−βĤ) is the partition
function. The indices ik represent additional degrees of freedom such as lattice site, spin and
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orbital index. In order for the right-hand side in Eq. (1) to be well defined, it is necessary
to restrict the τ arguments to an interval of length β , as can be seen, for example, from a
spectral (Lehmann) representation of the expectation value [48]. Furthermore, the cyclicity
of the trace implies that the field variables are anti-periodic in β for fermions, or periodic in
β for bosons, respectively. This allows us to define their Fourier series expansion

ci(τ) =
1
β

∑
νk

ci,k e−iνkτ , c̄i(τ) =
1
β

∑
νk

c̄i,k eiνkτ , (2)

ci,k =

∫ β

0

dτ ci(τ) e
iνkτ , c̄i,k =

∫ β

0

dτ c̄i(τ) e
−iνkτ , (3)

where νk =
π
β

¨
2k+ 1 ,

2k ,
with k ∈ Z are the fermionic or bosonic Matsubara frequencies.1

These definitions carry over to the n-particle Green’s function G(n), giving

G(n)i1...i2n
(τ1, ...,τ2n) =

1
β

∑
ν1

eiν1τ1 ... 1
β

∑
ν2n

e−iν2nτ2n G(n)i1...i2n
(ν1, ...,ν2n) , (4)

G(n)i1...i2n
(ν1, ...,ν2n) =

∫ β

0

dτ1 e−iν1τ1 ...

∫ β

0

dτ2n eiν2nτ2n G(n)i1...i2n
(τ1, ...,τ2n) . (5)

3 Code structure

MatsubaraFunctions.jl is an open-source project distributed via Github [49] and licensed
under the MIT license. Using Julia’s built-in package manager, the code can be easily installed
using

1 $ julia
2 julia> ]
3 pkg> add https://github.com/dominikkiese/MatsubaraFunctions.jl

from the terminal. Here, ] activates the package manager from the Julia REPL, where add
downloads the code and its dependencies. The following is an overview of the functionality
of the package, starting with a discussion of its basic types and how to use them. A full
documentation of the package is available from the github repository.

3.1 Basic types

The package evolves around three concrete Julia types: MatsubaraFrequency,
MatsubaraGrid and MatsubaraFunction. A Matsubara frequency can be either fermionic
or bosonic, that is, νk =

π
β (2k + 1) or νk =

2π
β k. For a given temperature T = 1/β and

Matsubara index k they can be constructed using

1 v = MatsubaraFrequency(T, k, Fermion)
2 w = MatsubaraFrequency(T, k, Boson)

Basic arithmetic operations on these objects include addition, subtraction and sign reversal,
each of which creates a new MatsubaraFrequency instance.

1This way, eiβνk = −1 for fermions and eiβνk = +1 for bosons such that anti-periodicity or periodicity, respec-
tively, of ci(τ) are ensured.
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1 v1 = v + v # type(v1) = :Boson
2 v2 = w - v # type(v2) = :Fermion
3 v3 = -v # type(v3) = :Fermion

MatsubaraGrids are implemented as sorted collections of uniformly (and symmetrically)
spaced Matsubara frequencies. To construct them, users need only specify the temperature,
number of positive frequencies, and the particle type.

1 T = 1.0
2 N = 128
3 g1 = MatsubaraGrid(T, N, Fermion) # total no. frequencies is 2N
4 g2 = MatsubaraGrid(T, N, Boson) # total no. frequencies is 2N - 1

Note that the bosonic Matsubara frequency at zero is included in the positive frequency count.
Grid instances are iterable

1 for v in g1
2 println(value(v))
3 println(index(v))
4 end

and can be evaluated using either a MatsubaraFrequency or Float64 as input.

1 idx = rand(eachindex(g1))
2 @assert g1(g1[idx]) == idx
3 @assert g1(value(g1[idx])) == idx

Here, we first select a random linear index idx and then evaluate g1 using either the corre-
sponding Matsubara frequency g1[idx] or its value. In the former case, g1(g1[idx]) returns
the corresponding linear index of the frequency in the grid, whereas g1(value(g1[idx]))
finds the linear index of the closest mesh point.2 The package supports storage of grid instances
in H5 file format.

1 using HDF5
2 file = h5open("save_g1.h5", "w")
3 save_matsubara_grid!(file, "g1", g1)
4 g1p = load_matsubara_grid(file, "g1")
5 close(file)

Finally, a MatsubaraFunction is a collection of Matsubara grids with an associated tensor
structure Gi1...in for each point (ν1, ...,νm) in the Cartesian product of the grids. The indices
ik could, for example, represent lattice sites or orbitals. To construct a MatsubaraFunction
users need to provide a tuple of MatsubaraGrid objects, as well as the dimension of each ik.

1 T = 1.0
2 N = 128
3 g = MatsubaraGrid(T, N, Fermion)
4

5 # 1D grid, rank 1 tensor with index dimension 1 (scalar valued)
6 f1_complex = MatsubaraFunction(g, 1)
7 f1_real = MatsubaraFunction(g, 1, Float64)
8

9 # 1D grid, rank 1 tensor with index dimension 5 (vector valued)

2In both cases the argument must be in bounds, otherwise an exception is thrown.
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10 f2_complex = MatsubaraFunction(g, 5)
11 f2_real = MatsubaraFunction(g, 5, Float64)
12

13 # 1D grid, rank 2 tensor with index dimension 5 (matrix valued)
14 f3_complex = MatsubaraFunction(g, (5, 5))
15 f3_real = MatsubaraFunction(g, (5, 5), Float64)
16

17 # 2D grid, rank 2 tensor with index dimension 5 (matrix valued)
18 f4_complex = MatsubaraFunction((g, g), (5, 5))
19 f4_real = MatsubaraFunction((g, g), (5, 5), Float64)

In addition, a floating point type can be passed to the constructor, which fixes the data type
for the underlying multidimensional array.3 Similar to the grids, MatsubaraFunctions can
be conveniently stored in H5 format.

1 using HDF5
2 file = h5open("save_f1_complex.h5", "w")
3 save_matsubara_function!(file, "f1_complex", f1_complex)
4 f1p = load_matsubara_function(file, "f1_complex")
5 close(file)

3.2 Accessing and assigning Green’s function data

The library provides two possible ways to access the data of a MatsubaraFunction, using
either the bracket ([]) or parenthesis (()) operator. While the notion of the former is that
of a Base.getindex, the latter evaluates the MatsubaraFunction for the given arguments
in such a way that its behavior is well-defined even for out-of-bounds access. The bracket
can be used with a set of MatsubaraFrequency instances and tensor indices ik, as well as
with Cartesian indices for the underlying data array. It returns the value of the data exactly
for the given input arguments, throwing an exception if they are not in bounds. In addition,
the bracket can be used to assign values to a MatsubaraFunction as shown in the following
example.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 # if there is only one index of dimension 1, it does not need
9 # to be specified, i.e. f[v] can be used instead of f[v, 1]

10 # (also works for the '()' operator)
11 f[v] = 1.0 / (im * value(v) - y)
12 end
13

14 # access MatsubaraFunction data
15 v = g[rand(eachindex(g))]
16 println(f[v]) # fast data access, throws error if v is out of bounds

When f is evaluated using Matsubara frequencies within its grid, it returns the same result
as if a bracket was used. However, if the frequencies are replaced by Float64 values, a
multilinear interpolation within the Cartesian product of the grids is performed. If the fre-
quency / float arguments are out of bounds, MatsubaraFunctions falls back to extrapola-
tion. The extrapolation algorithm distinguishes between one-dimensional and multidimen-
sional frequency grids. In the 1D case, an algebraic decay is fitted to the high-frequency tail of

3By default, ComplexF64 is used.

6



SciPost Phys. Codebases 24 (2024)

the MatsubaraFunction, which is then evaluated for the given arguments. The functional
form of the asymptote is currently restricted to f (ν) = α0 +

α1
ν +

α2
ν2 (with α0,α1,α2 ∈ C),4

which is motivated by the linear or quadratic decay that physical Green’s functions typically
exhibit. For multidimensional grids, a constant extrapolation is performed from the boundary.
Different modes of evaluation are illustrated in an example below.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # access MatsubaraFunction data
12 v = g[rand(eachindex(g))]
13 println(f(v)) # fast data access, defined even if v is out of bounds
14 println(f(value(v))) # slow data access, uses interpolation
15

16 # polynomial extrapolation in 1D, constant term set to 0 (the default)
17 vp = MatsubaraFrequency(T, 256, Fermion)
18 println(f(vp; extrp = ComplexF64(0.0)))

3.3 Extrapolation of Matsubara sums

A common task when working with equilibrium Green’s functions is the calculation of Matsub-
ara sums 1

β

∑
ν f (ν), where we have omitted additional indices of f for brevity. However, typi-

cal Green’s functions decay rather slowly (algebraically) for large frequencies, which presents a
technical difficulty for the accurate numerical calculation of their Matsubara sums: they may
require some regulator function to control the convergence5 (difficult to implement) and a
large number of frequencies to sum over (expensive). In contrast, there exist analytical results
for simple functional forms of f even in cases where a straightforward numerical summation
fails. MatsubaraFunctions provides the sum_me function, which can be used to calculate
sums over complex-valued f (ν), if f (z) (with z ∈ C) decays to zero for large |z| and is repre-
sentable by a Laurent series in an elongated annulus about the imaginary axis (see App. A for
details). An example for its use is shown below. Note that this feature is experimental and its
API as well as the underlying algorithm might change in future versions.

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)
6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # evaluate the series and compare to analytic result
12 rho(x, T) = 1.0 / (exp(x / T) + 1.0)
13 println(abs(sum_me(f) - (rho(+y, T) - 1.0)))

4Note that α0 has to be provided by the user.
5For example, a factor eiν0± might be necessary in cases where f decays linearly in ν.
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3.4 Padé approximants

Although the Matsubara formalism provides a powerful tool for the calculation of thermody-
namic quantities, it lacks the ability to directly determine, for example, dynamic response func-
tions or transport properties associated with real-frequency Green’s functions, which facilitate
comparison with experiments. There have been recent advances in the use of real-frequency
quantum field theory [50–53], yet the calculation of dynamic real-frequency Green’s functions
remains a technically challenging endeavor. In many applications, therefore, one resorts to
calculations on the imaginary axis and then performs an analytic continuation in the complex
upper half-plane to determine observables on the real-frequency axis. The analytic continu-
ation problem is ill-conditioned, because there may be significantly different real-frequency
functions describing the same set of complex-frequency data within finite precision. Never-
theless, there has been remarkable progress in the development of numerical techniques such
as the maximum entropy method [54–56] or stochastic analytical continuation [57,58]. These
methods are particularly useful when dealing with stochastic noise induced by Monte Carlo
random sampling. A corresponding implementation in Julia is, for example, provided by the
ACFlow toolkit [59]. On the other hand, if the input data are known with a high degree of
accuracy (as in the fRG and related approaches), analytic continuation using Padé approxi-
mants is a valid alternative. Here, one first fits a rational function to the complex frequency
data which is then used as a proxy for the Green’s function in the upper half-plane. If the
function of interest has simple poles this procedure can already provide fairly accurate results,
see e.g. Ref. [60]. In MatsubaraFunctions we implement the fast algorithm described in the
appendix of Ref. [61], which computes an N -point Padé approximant for a given set of data
points {(x i , yi)|i = 1, ..., N}. A simple example of its use is shown below. Note that it might
be necessary to use higher precision floating-point arithmetic to cope with rounding errors in
the continued fraction representation used for calculating the Padé approximant.

1 # some dummy function
2 as = ntuple(x -> rand(BigFloat), 4)
3 f(x) = as[1] / (1.0 + as[2] * x / (1.0 + as[3] * x / (1.0 + as[4] * x)))
4

5 # generate sample and compute Pade approximant
6 xdata = Vector{BigFloat}(0.01 : 0.01 : 1.0)
7 ydata = f.(xdata)
8 PA = PadeApprox(xdata, ydata)
9

10 @assert length(coeffs(PA)) == 5
11 @assert PA.(xdata) ≈ ydata

3.5 Automated symmetry reduction

In many cases, the numerical effort of computing functions in the Matsubara domain can be
drastically reduced by the use of symmetries. For one-particle fermionic Green’s functions
Gi1 i2(ν), for example, complex conjugation implies that Gi1 i2(ν) = G∗i2 i1

(−ν), relating positive
and negative Matsubara frequencies. Our package provides an automated way to compute the
set of irreducible MatsubaraFunction components,6 given a list of one or more symmetries
as is illustrated in the following example

1 y = 0.5
2 T = 1.0
3 N = 128
4 g = MatsubaraGrid(T, N, Fermion)
5 f = MatsubaraFunction(g, 1)

6These are all elements of the underlying data array which cannot be mapped to each other by symmetries.
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6

7 for v in g
8 f[v] = 1.0 / (im * value(v) - y)
9 end

10

11 # complex conjugation acting on Green's function
12 function conj(
13 w :: Tuple{MatsubaraFrequency},
14 x :: Tuple{Int64}
15 ) :: Tuple{Tuple{MatsubaraFrequency}, Tuple{Int64}, MatsubaraOperation}
16

17 return (-w[1],), (x[1],), MatsubaraOperation(sgn = false, con = true)
18 end
19

20 # compute the symmetry group
21 SG = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], f)
22

23 # obtain another Green's function by symmetrization
24 function init(
25 w :: Tuple{MatsubaraFrequency},
26 x :: Tuple{Int64}
27 ) :: ComplexF64
28

29 return f[w, x...]
30 end
31

32 InitFunc = MatsubaraInitFunction{1, 1, ComplexF64}(init)
33 h = MatsubaraFunction(g, 1)
34 SG(h, InitFunc)
35 @assert h == f

Here, one first constructs an instance of type MatsubaraSymmetry by passing a function that
maps the input arguments of f to new arguments extended by a MatsubaraOperation. The
latter specifies whether the evaluation of f on the mapped arguments should be provided with
an additional sign or complex conjugation. Next, the irreducible array elements are computed
and an object of type MatsubaraSymmetryGroup7 is constructed from a vector of symmetries
provided by the user. Here, the length of the vector is one (we only considered complex con-
jugation), but the generalization to multiple symmetries is straightforward (see Ref. [62] for
more examples). A MatsubaraSymmetryGroup can be called with a MatsubaraFunction
and an initialization function.8 This call will evaluate the MatsubaraInitFunction for all
irreducible elements of the symmetry group of f, writing the result into the data array of h. Fi-
nally, all symmetry equivalent elements are determined without additional calls to the (costly)
initialization function. Symmetry groups can be stored in H5 format as shown below.

1 using HDF5
2 file = h5open("save_SG.h5", "w")
3 save_matsubara_symmetry_group!(file, "SG", SG)
4 SGp = load_matsubara_symmetry_group(file, "SG")
5 close(file)

3.6 Running in parallel

To simplify code parallelization when using MatsubaraFunctions.jl, the package has some
preliminary MPI support based on the MPI.jl wrapper and illustrated in an example below.

1 using MatsubaraFunctions
2 using MPI

7A MatsubaraSymmetryGroup contains all groups of symmetry equivalent elements and the operations
needed to map them to each other.

8A MatsubaraInitFunction takes a tuple of Matsubara frequencies and tensor indices and returns a floating
point type.
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3

4 MPI.Init()
5 mpi_info()
6 mpi_println("I print on main.")
7 ismain = mpi_ismain() # ismain = true if rank is 0
8

9 y = 0.5
10 T = 1.0
11 N = 128
12 g = MatsubaraGrid(T, N, Fermion)
13 f = MatsubaraFunction(g, 1)
14

15 for v in g
16 f[v] = 1.0 / (im * value(v) - y)
17 end
18

19 # simple loop parallelization for UnitRange
20 for vidx in mpi_split(1 : length(g))
21 println("My rank is $(mpi_rank()): $(vidx)")
22 end
23

24 # simple (+) allreduce
25 mpi_allreduce!(f)

Calls of MatsubaraSymmetryGroup with an initialization function have an opt-in switch
(mode) to enable parallel evaluation of the MatsubaraInitFunction (by default
mode = :serial). If mode = :polyester, shared memory multithreading as provided
by the Polyester Julia package [63] is used.9 This mode is recommended for initialization
functions that are cheap to evaluate and are unlikely to benefit from Threads.@threads
due to the overhead from invoking the Julia scheduler. For more expensive functions,
users can choose between mode = :threads, which simply uses Threads.@threads, and
mode = :hybrid. The latter combines both MPI and native Julia threads and can therefore
be used to run calculations on multiple compute nodes.

3.7 Performance note

By default, types in MatsubaraFunctions.jl perform intrinsic consistency checks when
they are invoked. For example, when computing the linear index of a MatsubaraFrequency
in a MatsubaraGrid, we make sure that the particle types and temperatures match between
the two. While this ensures a robust modus operandi, it unfortunately impacts performance,
especially for larger projects. To deal with this issue, we have implemented a simple switch,
MatsubaraFunctions.sanity_checks(), which, when turned off10 disables @assert ex-
pressions. It is not recommended to touch this switch until an application has been thoroughly
tested, as it leads to wrong results on improper use. For the MBE solver discussed in Sec. 4.3.2,
we found runtime improvements of up to 10% when the consistency checks were disabled.

4 Examples

4.1 Hartree-Fock calculation in the atomic limit

As a first example of the use of MatsubaraFunctions.jl we consider the calculation of the
one-particle Green’s function G using the Hartree-Fock (HF) approximation in the atomic limit
of the Hubbard model, i.e., we consider the Hamiltonian

Ĥ = Un̂↑n̂↓ −µ(n̂↑ + n̂↓) , (6)

9Here, the batchsize argument can be used to control the number of threads involved.
10MatsubaraFunctions.sanity_checks() = false.
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where U denotes the Hubbard interaction and n̂σ are the density operators for spin up and
down. In the following, we fix the chemical potential to µ= 0, i.e., we consider the system in
the strongly hole-doped regime.

The Hartree-Fock theory [64–66] is a widespread method in condensed matter physics
used to describe, e.g., electronic structures and properties of materials [67,68]. It is a mean-
field approximation as it treats the electrons in a solid as independent particles being subject
to an effective background field due to all the other particles.

In an interacting many-body system, the bare Green’s function G0 has to be dressed by
self-energy insertions, here denoted by Σ, in order to obtain G, which is summarized in the
Dyson equation

G = G0[1−Σ G0]
−1 = G0 +G0ΣG0 +G0ΣG0ΣG0 + . . . , (7)

where G0, G and Σ in general are matrix-valued. In HF theory one only considers the lowest
order term contributing to the self-energy, which is linear in the interaction potential. For the
spin-rotation invariant single-site system at hand, Σ = Σσ = Σ and the HF approximation for
the self-energy reads

Σ(ν)≈ U
β

∑
ν′

G(ν′)eiν′0+ = Un , (8)

where n is the density per spin. The Dyson equation then takes the simple form

G(ν)≈ [G−1
0 (ν)− Un]−1 . (9)

Below, we demonstrate how to set up and solve Eqs. (8) & (9) self-consistently for the density
n using Anderson acceleration [69, 70] as provided by the NLsolve Julia package [71] in
conjunction with MatsubaraFunctions.jl.

1 using MatsubaraFunctions
2 using NLsolve
3

4 const T = 0.3 # temperature
5 const U = 0.9 # interaction
6 const N = 1000 # no. frequencies
7

8 # initialize Green's function container
9 g = MatsubaraGrid(T, N, Fermion)

10 G = MatsubaraFunction(g, 1)
11

12 for v in g
13 G[v] = 1.0 / (im * value(v))
14 end
15

16 # set up fixed-point equation for NLsolve
17 function fixed_point!(F, n, G)
18

19 # calculate G
20 for v in grids(G, 1)
21 G[v] = 1.0 / (im * value(v) - U * n[1])
22 end
23

24 # calculate the residue
25 F[1] = density(G) - n[1]
26

27 return nothing
28 end
29

30 res = nlsolve((F, n) -> fixed_point!(F, n, G), [density(G)], method = :anderson)
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Figure 1: Exemplary Hartree-Fock results. (a) Comparison of the bare Green’s
function G0 with the HF result GHF for T/U = 1

3 . (b) Hartree-Fock density n as a
function of temperature.

Here, we first build the MatsubaraFunction container for G and initialize it to G0(ν) =
1
iν .

This container is then passed to the fixed-point equation using an anonymous function, which
mutates G on each call to incorporate the latest estimate of n.11 Fig. 1 shows exemplary results
for the full Green’s function and HF density. As can be seen from Fig. 1(b) the latter deviates
from its bare value n0 =

1
2 when the temperature is decreased and approaches n= 0 for T → 0,

as expected.

4.2 GW calculation in the atomic limit

In this section, we extend our Hartree-Fock code to include bubble corrections12 in the calcula-
tion of the self-energy. The resulting equations, commonly known as the GW approximation,
allow us to exemplify the use of more advanced library features, such as extrapolation of
the single-particle Green’s function and the implementation of symmetries. Therefore, they
present a good starting point for the more involved application discussed in Sec. 4.3.1.

The GW approximation is a widely used method in condensed matter physics and quan-
tum chemistry for calculating electronic properties of materials [72–74]. In addition to the
Hartree term ΣH = Un, which considers only the bare interaction, the mutual screening of
the Coulomb interaction between electrons is partially taken into account. For spin-rotation
invariant systems it is common practice to decouple these screened interactions η13 into a
density (or charge) component ηD and a magnetic (or spin) component ηM (see App. B), such
that

Σ(ν)≈ Un
2 − 1

β

∑
ν′

G(ν′)
�1

4η
D(ν− ν′) + 3

4η
M (ν− ν′)� , (10)

for the atomic limit Hamiltonian. The η are computed by summing a series of bubble diagrams
in the particle-hole channel, i.e.,

ηD/M (Ω) =
±U

1∓ U P(Ω)
, (11)

where the polarization bubble P is given by

P(Ω) = 1
β

∑
ν

G(Ω+ ν)G(ν) . (12)

A diagrammatic representation of these relations is shown in Fig. 2. Finally, the set of equations
is closed by computing G from the Dyson equation. Since the Green’s function transforms as

11Here, we make use of the density function, which calculates the Fourier transform f (τ → 0−) given a
complex-valued input function f (ν).

12That is, Feynman diagrams formed by a closed loop of two single-particle Green’s functions.
13Here, we denote the screened interactions by η instead of W to avoid conflicting notation with the code

examples in Sec. 4.3.2.
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Figure 2: Diagrammatic representation of spin-conserving GW equations in the
atomic limit. Wavy lines denote the screened interactions in the density (red) and
magnetic (blue) channel. They are obtained by dressing the respective bare interac-
tions with a series of bubble diagrams P(Ω), as illustrated in the second and third
line from the top.

G∗(ν) = G(−ν) under complex conjugation [48], we also have that

P(−Ω) = 1
β

∑
ν

G(−Ω+ ν)G(ν) = 1
β

∑
ν

G(−Ω− ν)G(−ν) = 1
β

∑
ν

G∗(Ω+ ν)G∗(ν)

= P∗(Ω) , (13)

and likewise Σ∗(ν) = Σ(−ν). Thus, the numerical effort for evaluating Eqs. (10) and (12)
can be reduced by a factor of two using a MatsubaraSymmetryGroup object. To structure
the GW code, we first write a solver class which takes care of the proper initialization of the
necessary MatsubaraFunction instances.

1 using MatsubaraFunctions
2 using HDF5
3

4 conj(w, x) = (-w[1],), (x[1],), MatsubaraOperation(sgn = false, con = true)
5

6 struct GWsolver
7 T :: Float64
8 U :: Float64
9 N :: Int64

10 G :: MatsubaraFunction{1, 1, 2, ComplexF64}
11 Sigma :: MatsubaraFunction{1, 1, 2, ComplexF64}
12 P :: MatsubaraFunction{1, 1, 2, ComplexF64}
13 η_D :: MatsubaraFunction{1, 1, 2, ComplexF64}
14 η_M :: MatsubaraFunction{1, 1, 2, ComplexF64}
15 SGf :: MatsubaraSymmetryGroup
16 SGb :: MatsubaraSymmetryGroup
17

18 function GWsolver(T, U, N)
19

20 # fermionic containers
21 gf = MatsubaraGrid(T, N, Fermion)
22 G = MatsubaraFunction(gf, 1)
23 Sigma = MatsubaraFunction(gf, 1)
24

25 # bosonic containers
26 gb = MatsubaraGrid(T, N, Boson)
27 P = MatsubaraFunction(gb, 1)
28 η_D = MatsubaraFunction(gb, 1)
29 η_M = MatsubaraFunction(gb, 1)
30

31 # symmetry groups
32 SGf = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], G)
33 SGb = MatsubaraSymmetryGroup([MatsubaraSymmetry{1, 1}(conj)], P)
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34

35 return new(T, U, N, G, Sigma, P, η_D, η_M, SGf, SGb)
36 end
37 end

As a second step, we implement the self-consistent equations, which we solve using Anderson
acceleration. Note that we have rewritten the GW equation for the self-energy as

Σ(ν)≈ Un− 1
β

∑
ν′

G(ν′)
�1

4η
D(ν− ν′) + 3

4η
M (ν− ν′) + U

2

�
, (14)

which is beneficial since the product of G with the constant contributions to ηD/M simply shifts
the real part of the self-energy by Un

2 such that Σ= ΣH +O(U2).

1 function fixed_point!(F, x, S)
2

3 # update Sigma
4 unflatten!(S.Sigma, x)
5

6 # calculate G
7 for v in grids(S.G, 1)
8 S.G[v] = 1.0 / (im * value(v) - S.Sigma[v])
9 end

10

11 sum_grid = MatsubaraGrid(S.T, 4 * S.N, Fermion)
12

13 # calculate P using symmetries
14 function calc_P(wtpl, xtpl)
15

16 P = 0.0
17

18 for v in sum_grid
19 P += S.G(v + wtpl[1]) * S.G(v)
20 end
21

22 return S.T * P
23 end
24

25 S.SGb(S.P, MatsubaraInitFunction{1, 1, ComplexF64}(calc_P))
26

27 # calculate η_D and η_M
28 for w in S.P.grids[1]
29 S.η_D[w] = +S.U / (1.0 - S.U * S.P[w])
30 S.η_M[w] = -S.U / (1.0 + S.U * S.P[w])
31 end
32

33 # calculate Sigma using symmetries
34 function calc_Sigma(wtpl, xtpl)
35

36 Sigma = S.U * density(S.G)
37

38 for v in sum_grid
39 Sigma -= S.T * S.G(v) * (
40 0.25 * S.η_D(wtpl[1] - v; extrp = ComplexF64(+S.U)) +
41 0.75 * S.η_M(wtpl[1] - v; extrp = ComplexF64(-S.U)) +
42 0.50 * S.U)
43 end
44

45 return Sigma
46 end
47

48 S.SGf(S.Sigma, MatsubaraInitFunction{1, 1, ComplexF64}(calc_Sigma))
49

50 # calculate the residue
51 flatten!(S.Sigma, F)
52 F .-= x
53

14



SciPost Phys. Codebases 24 (2024)

54 return nothing
55 end
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Figure 3: Exemplary GW results. (a) The complex-valued self-energy ΣGW with its
real part offset by the Hartree shift ΣH = UnGW for T/U = 1

3 . (b) GW and Hartree-
Fock densities as a function of U/T .

Here, we make use of the flatten! and unflatten! functions which allow us to parse
MatsubaraFunction data into a one dimensional array.14 The fixed-point can now easily be
computed with, for example,

1 const T = 0.3 # temperature
2 const U = 0.9 # interaction
3 const N = 1000 # no. frequencies
4

5 S = GWsolver(T, U, N)
6 init = zeros(ComplexF64, length(S.Sigma))
7 res = nlsolve((F, x) -> fixed_point!(F, x, S), init, method = :anderson, m = 8, beta =

0.5, show_trace = true),→

In Fig. 3 we show exemplary results for the self-energy and density obtained in GW . In con-
trast to the Hartree-Fock calculations in the previous section, Σ is now a frequency-dependent
quantity, whose real part asymptotically approaches UnGW . As can be seen from Fig. 3(b),
these GW densities agree quantitatively with the HF result for weak interactions U/T ≲ 1

2 ,
but yield larger densities for higher values of U as expected when the local interaction is par-
tially screened.

4.3 Multiboson exchange solver for the single impurity Anderson model

Note: Readers who are not interested in the formal discussion presented below should feel
free to skip this section and proceed directly to Section 5 on future directions.

In the following, we extend upon the previous computations for the Hubbard atom by
coupling the single electronic level to a bath of non-interacting electrons. Specifically, we con-
sider the single-impurity Anderson model, a minimal model for localized magnetic impurities
in metals introduced by P.W. Anderson to explain the physics behind the Kondo effect [75]. It
is defined by the Hamiltonian

H =
∑
σ

εdd†
σdσ + Und,↑nd,↓ +

∑
k,σ

�
Vkd†

σck,σ + V ∗k c†
k,σdσ
�
+
∑
k,σ

εk,σc†
k,σck,σ , (15)

describing an impurity d level εd, hybridized with conduction electrons of the metal via
a matrix element Vk. The electrons in the localized d state, where nd,σ = d†

σdσ, in-
teract according to the interaction strength U , whereas the c electrons of the bath are

14We also export flatten which will allocate a new 1D array from the MatsubaraFunction.
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non-interacting. Following [76], in a path-integral formulation for the partition function

Z =
∫ ∏

σD
�
d̄σ
�
D (dσ)D
�
c̄k,σ

�
D
�
ck,σ

�
e−S with the action S =

∫ β
0 L(τ)dτ, the Lagrangian

for the model is given by

L(τ) =
∑
σ

d̄σ(τ) (∂τ + εd) dσ(τ) +
∑
k,σ

c̄k,σ(τ) (∂τ + εk) ck,σ(τ)

+ Un↑(τ)n↓(τ) +
∑
k,σ

Vk

�
d̄σ(τ)ck,σ(τ) + c̄k,σ(τ)dσ(τ)

�
, (16)

where nσ(τ) = d̄σ(τ)dσ(τ). Integrating over the only quadratically occurring Grassmann
variables for the bath electrons, one formally obtains Z =

∫ ∏
σD
�
d̄σ
�
D (dσ)e−Sred with the

reduced action given by

Sred =

∫ β

0

dτ

∫ β

0

dτ′
∑
σ

d̄σ(τ)
�−G(0)σ
�
τ−τ′��−1

dσ
�
τ′
�
+ U

∫ β

0

dτn↑(τ)n↓(τ) . (17)

Switching to Matsubara frequencies as described in section 2, the non-interacting Green’s func-
tion for the localized d electrons reads

G(0)σ (νn) =
1

iνn − εd +∆(νn)
. (18)

Following [77] we choose an isotropic hybridization strength Vk ≡ V and a flat density of
states with bandwidth 2D for the bath electrons, leading to the hybridization function15

∆(νn) = i V 2

D arctan D
νn

. In the following, we set V = 2, measure energy in units of V/2= 1 and
set the half bandwidth to D = 10. In the context of this work, we focus on the particle-hole
symmetric model, setting εd = −U/2. Then, the Hartree term of the self-energy, ΣH = U/2 is
conveniently absorbed into the bare propagator,

G(0)σ (νn)→ GH
σ(νn) =

1
iνn − εd +∆(νn)−ΣH

=
1

iνn +∆(νn)
. (19)

Consequently, the Hartree propagator is used instead of the bare propagator throughout.

4.3.1 Single boson exchange decomposition of the parquet equations

Following [78], we now reiterate the single-boson exchange (SBE) decomposition of the four-
point vertex and, subsequently, of the parquet equations. The starting point for the SBE de-
composition, which was originally developed in [79–84], is the unambiguous classification of
vertex diagrams according to their U-reducibility in each channel. In order to introduce this
concept in the context of the parquet equations, we first have to discuss the similar concept of
two-particle reducibility, which provides the basis for the parquet decomposition of the vertex,

Γ = Λ2PI + γa + γp + γt . (20)

This decomposition states that all diagrams which contribute to the two-particle vertex Γ can be
classified as being part of one of four disjoint contributions: γr with r ∈ {a, p, t} collects those
diagrams which are two-particle reducible (2PR) in channel r, i.e., they can be disconnected
by cutting a pair of propagator lines, which can either be aligned in an antiparallel (a), parallel
(p) or transverse antiparallel (t) way. All remaining diagrams, which are not 2PR in either
of the three channels, contribute to Λ2PI, the fully two-particle irreducible (2PI) vertex. One
can equally well decompose Γ w.r.t. its two-particle reducibility in one of the three channels,

15Note that we use a different sign convention for the hybridization function compared to [77].
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Figure 4: Illustration of U-reducibility in the three two-particle channels a, p and t. The Figure is
analogous to Fig. 4 of [79] and adapted from [77]. �1 and �2 can be any vertex diagram or the unit vertex.

antiparallel (a), parallel (p) or transverse antiparallel (t) way. All remaining diagrams, which
are not 2PR in either of the three channels, contribute to ⇤2PI, the fully two-particle irreducible
(2PI) vertex. One can equally well decompose � w.r.t. its two-particle reducibility in one of
the three channels, � = Ir + �r, which defines Ir = ⇤2PI +

P
r0 6=r �r0 , collecting all diagrams

that are 2PI in channel r. The Bethe-Salpeter equations (BSEs) then relate the reducible
diagrams to the irreducible ones,

�r = Ir �⇧r � � = � �⇧r � Ir. (21)

This short-hand notation introduces the ⇧r bubble, i.e., the propagator pair connecting the
two vertices, see [77] for their precise channel-dependent definition, as well as for the connec-
tor symbol �, which channel-dependently denotes summation over internal frequencies and
quantum numbers. The self-energy ⌃, which enters the propagator via the Dyson equation
G = G0 + G0⌃G, is provided by the Schwinger-Dyson equation (SDE),

⌃ = � (U + U �⇧p � �) · G = �
�
U + 1

2U �⇧a � �
�

· G , (22)

where U is the bare interaction and the symbol · denotes the contraction of two vertex
legs with a propagator. Together, equations (20), (21) and (22) are known as the parquet
equations [84, 85] and can be solved self-consistently, if the 2PI vertex ⇤2PI is provided [86–
89]. Unfortunately, ⇤2PI is the most complicated object, as its contributions contain nested
contractions over internal arguments. Often, the parquet approximation (PA) is therefore
employed, which truncates ⇤2PI beyond the bare interaction U . In the context of the SBE
decomposition relevant to this work, U -reducibility is an alternative criterion to the concept
of two-particle reducibility for the classification of vertex diagrams. A diagram that is 2PR
in channel r is also said to be U -reducible in channel r if it can be disconnected by removing
one bare vertex that is attached to a ⇧r bubble, as illustrated in Fig. 4. Furthermore, the
bare vertex U is defined to be U -reducible in all three channels. The U -reducible diagrams
in channel r are in the following denoted rr and are said to describe single-boson exchange
processes, as the linking bare interaction U , which would disconnect the diagram if cut,
mediates just a single bosonic transfer frequency. The diagrams which are 2PR in channel
r but not U -reducible in channel r are called multi-boson exchange diagrams and denoted
Mr. With these classifications, the two-particle reducible vertices can be written as �r =
rr �U +Mr, making sure to exclude U , which is contained in rr but not in �r. The parquet
decomposition (20) yields in this language,

� = 'U irr +
P

rrr � 2U, 'U irr = ⇤2PI � U +
P

rMr , (23)

18

Figure 4: Illustration of U-reducibility in the three two-particle channels a, p
and t . The Figure is analogous to Fig. 4 of [80] and adapted from [78]. Γ1 and Γ2
can be any vertex diagram or the unit vertex.

Γ = Ir +γr , which defines Ir = Λ2PI+
∑

r ′ ̸=r γr ′ , collecting all diagrams that are 2PI in channel
r. The Bethe-Salpeter equations (BSEs) then relate the reducible diagrams to the irreducible
ones,

γr = Ir ◦Πr ◦ Γ = Γ ◦Πr ◦ Ir . (21)

This short-hand notation introduces the Πr bubble, i.e., the propagator pair connecting the
two vertices, see [78] for their precise channel-dependent definition, as well as for the connec-
tor symbol ◦, which channel-dependently denotes summation over internal frequencies and
quantum numbers. The self-energy Σ, which enters the propagator via the Dyson equation
G = G0 + G0ΣG, is provided by the Schwinger-Dyson equation (SDE),

Σ= − �U + U ◦Πp ◦ Γ
� · G = − �U + 1

2 U ◦Πa ◦ Γ
� · G , (22)

where U is the bare interaction and the symbol · denotes the contraction of two vertex legs
with a propagator. Together, equations (20), (21) and (22) are known as the parquet equa-
tions [85, 86] and can be solved self-consistently, if the 2PI vertex Λ2PI is provided [87–90].
Unfortunately, Λ2PI is the most complicated object, as its contributions contain nested contrac-
tions over internal arguments. Often, the parquet approximation (PA) is therefore employed,
which truncates Λ2PI beyond the bare interaction U . In the context of the SBE decomposition
relevant to this work, U-reducibility is an alternative criterion to the concept of two-particle
reducibility for the classification of vertex diagrams. A diagram that is 2PR in channel r is
also said to be U-reducible in channel r if it can be disconnected by removing one bare vertex
that is attached to a Πr bubble, as illustrated in Fig. 4. Furthermore, the bare vertex U is
defined to be U-reducible in all three channels. The U-reducible diagrams in channel r are
in the following denoted ∇r and are said to describe single-boson exchange processes, as the
linking bare interaction U , which would disconnect the diagram if cut, mediates just a single
bosonic transfer frequency. The diagrams which are 2PR in channel r but not U-reducible in
channel r are called multi-boson exchange diagrams and denoted Mr . With these classifica-
tions, the two-particle reducible vertices can be written as γr =∇r − U +Mr , making sure to
exclude U , which is contained in ∇r but not in γr . The parquet decomposition (20) yields in
this language,

Γ = ϕU irr +
∑

r∇r − 2U , ϕU irr = Λ2PI − U +
∑

r Mr , (23)

where ϕU irr is the fully U-irreducible part of Γ . For a diagrammatic illustration of the
first equation, see Fig. 8 in [78]. The channel-dependent decomposition of the vertex
Γ = Ir + γr =∇r + Tr can also be split into U-reducible and U-irreducible parts in channel r,
defining the U-irreducible remainder Tr = Ir −U +Mr in channel r. Inserting all these defini-
tions into the BSEs (21) and separating U-reducible and U-irreducible contributions gives the
two sets of equations,
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∇r − U = Ir ◦Πr ◦∇r + U ◦Πr ◦ Tr =∇r ◦Πr ◦ Ir + Tr ◦Πr ◦ U , (24)

Mr = (Ir − U) ◦Πr ◦ Tr = Tr ◦Πr ◦ (Ir − U) , (25)

for each channel r. From equation (24) one can derive (see [78] for details) that the single-
boson exchange terms can be written as ∇r = λ̄r • ηr • λr , where λ̄r ,λr denote the Hedin
vertices [72] and ηr the screened interaction in channel r. The former are related to the
U-irreducible vertex in channel r via λ̄r = 1r + Tr ◦ Πr ◦ 1r = 1r + 1r ◦ Πr ◦ Tr and can
be understood as U-irreducible, amputated parts of three-point functions, as they depend on
only two frequencies. In contrast to the GW approximation discussed in Sec. 4.2, the screened
interaction ηr is now defined in terms of a Dyson equation, ηr = U+U •Pr •ηr = U+ηr •Pr •U ,
with the polarization Pr = λr ◦ Πr ◦ 1r = 1r ◦ Πr ◦ λ̄r dressed by vertex corrections. In the
previous expressions, the connector • denotes an internal summation similar to ◦, the only
difference being that summation over frequencies is excluded. The corresponding unit vertex
is denoted 1r .

Lastly, one can rewrite the SDE in terms of the screened interaction and the Hedin vertex
in channel r which yields, for example, −Σ= (ηp •λp) ·G = (λ̄p •ηp) ·G if one chooses r = p.

In summary, the SBE-equations to be solved read

ηr = U + U • Pr •ηr = U +ηr • Pr • U , (26a)

Pr = λr ◦Πr ◦ 1r = 1r ◦Πr ◦ λ̄r , (26b)

λ̄r = 1r + Tr ◦Πr ◦ 1r , (26c)

λr = 1r + 1r ◦Πr ◦ Tr , (26d)

Tr = Γ − λ̄r •ηr •λr , (26e)

Γ = ϕU irr +
∑

r λ̄r •ηr •λr − 2U , (26f)

ϕU irr = Λ2PI − U +
∑

r Mr , (26g)

Mr = (Tr−Mr) ◦Πr ◦ Tr = Tr ◦Πr ◦ (Tr−Mr) , (26h)

−Σ= (ηp •λp) · G = (λ̄p •ηp) · G . (26i)

As before, they require only the fully two-particle irreducible vertex Λ2PI as an input. No-
tably, if one employs the so-called SBE approximation [80], which amounts to setting Λ2PI = U
as in the parquet approximation and neglecting multi-boson exchange contributions Mr = 0,
all objects involved depend on at most two frequencies. This scheme is therefore numerically
favorable compared to the PA if the SBE approximation can be justified [91] . In the context
of this paper, we do not employ the SBE approximation, but include multi-boson exchange
(MBE) contributions.

4.3.2 Implementation in MatsubaraFunctions.jl

In this section, we present the implementation of the PA in its MBE formulation using
MatsubaraFunctions.jl. In doing so, we build upon the code structure developed in
Sec. 4.2, i.e. we first define a solver class for which we later implement the self-consistent
equations, as well as an interface to solve for the fixed point using Anderson acceleration,
see Fig. 5. In order to keep the discussion concise, we refrain from showing all of the code
and, instead, focus on computational bottlenecks and point out tricks to circumvent them. For
completeness, however, we also make the entire code available via an open-source repository
on Github, see Ref. [62] and provide additional implementation details in App. B.
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flattenx0 = (S)
Solver construction

Physical parameters
temperature , interaction ,

hybridization , bandwidth 

Grid parameters

Solver parameters
size of memory kernel ,

relaxation parameter ,
error tolerance ,

max. no. iterations 

T U
V D

NG(ν), NΣ(ν), NP(ν), Nλ(Ω,ν), NM(Ω,ν,ν)

mem
α

tol
maxiter

Initialization
G = GH0 , Σ = Σ2PBT, Pr = 0,

ηr = Ur, λr = 1, Mr = 0

Precomputation
SG[λp], SG[λt],

SG[MS
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p ], SG[Mt]

Root finding

unflatten!(S, x)

G(G0, Σ)

precompute
Tr(ηr, λr, Mr)

λr(G, Tr, SG[λr])

Mr(G, Tr, Mr, SG[Mr])

Pr(G, λr)

ηr(Pr, ηr)

Σ(G, ηr, λr)

flatten  - xF = (S)

MBE loop

NLsolve

|F | < tol

Save to HDF5

solve!

solver object S

Figure 5: Structure of the MBE code. First, an instance S of type MBEsolver is
constructed by passing the SIAM parameters T , U , V and D and the sizes for the
Matsubara grids. The self-energy Σ is initialized using second order perturbation
theory (PT2), while all other MatsubaraFunctions are set to their bare values. In
an optional step, MatsubaraSymmetryGroups for λr and Mr (here denoted by SG)
can be precomputed. Next, the solve! function is used to find the fixed-point of
the MBE equations using Anderson acceleration. To interface with NLsolve, the
fields Σ, ηr , λr and Mr of S (which are sufficient to determine all other involved
quantities) are flattened into a single one-dimensional array. After convergence, S is
finally written to disk in H5 file format.

Extending the GWsolver from Sec. 4.2 to the MBEsolver needed here is a straightforward
endeavor, since we just have to add containers and symmetry groups for the Hedin and multi-
boson vertices. Furthermore, we extend the solver to include buffers which store the result
of evaluating Eqs. (26c), (26d) and (26h), such that repetitive allocations of the multidimen-
sional data arrays for λr and Mr are avoided. Note that, due to the symmetries of the SIAM
studied here, it suffices to include either λr or λ̄r , since λr = λ̄r . In addition, all containers
can be implemented as real-valued.16

1 function calc_T(
2 w :: MatsubaraFrequency,
3 v :: MatsubaraFrequency,
4 vp :: MatsubaraFrequency,
5 η_S :: MatsubaraFunction{1, 1, 2, Float64},
6 λ_S :: MatsubaraFunction{2, 1, 3, Float64},
7 η_D :: MatsubaraFunction{1, 1, 2, Float64},
8 λ_D :: MatsubaraFunction{2, 1, 3, Float64},
9 η_M :: MatsubaraFunction{1, 1, 2, Float64},

10 λ_M :: MatsubaraFunction{2, 1, 3, Float64},
11 M_S :: MatsubaraFunction{3, 1, 4, Float64},
12 M_T :: MatsubaraFunction{3, 1, 4, Float64},
13 M_D :: MatsubaraFunction{3, 1, 4, Float64},
14 M_M :: MatsubaraFunction{3, 1, 4, Float64},
15 U :: Float64,
16 :: Type{ch_D}
17 ) :: Float64
18

19 # bare contribution
20 T = -2.0 * U
21

22 # SBE contributions
23 w1 = w + v + vp
24 η1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(η_D, 1))
25 λ1_idx1 = MatsubaraFunctions.grid_index_extrp(w1, grids(λ_D, 1))
26 λ1_idx2 = MatsubaraFunctions.grid_index_extrp(vp, grids(λ_D, 2))

16The Green’s function G and the self-energy Σ are purely imaginary, such that G = −iG̃ and Σ = −iΣ̃. After
plugging this factorization into Eqs. (26a)-(26i), all factors of i are cancelled out such that the resulting equations
are entirely real.
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27 λ1_idx3 = MatsubaraFunctions.grid_index_extrp( v, grids(λ_D, 2))
28

29 w2 = vp - v
30 v2 = w + v
31 η2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(η_D, 1))
32 λ2_idx1 = MatsubaraFunctions.grid_index_extrp(w2, grids(λ_D, 1))
33 λ2_idx2 = MatsubaraFunctions.grid_index_extrp(v2, grids(λ_D, 2))
34

35 T += +0.5 * λ_S[λ1_idx1, λ1_idx2, 1] * η_S[η1_idx, 1] * λ_S[λ1_idx1, λ1_idx3, 1]
36 T += -0.5 * λ_D[λ2_idx1, λ1_idx3, 1] * η_D[η2_idx, 1] * λ_D[λ2_idx1, λ2_idx2, 1]
37 T += -1.5 * λ_M[λ2_idx1, λ1_idx3, 1] * η_M[η2_idx, 1] * λ_M[λ2_idx1, λ2_idx2, 1]
38

39 # MBE contributions
40 w_idx = MatsubaraFunctions.grid_index_extrp( w, grids(M_S, 1))
41 v_idx = MatsubaraFunctions.grid_index_extrp( v, grids(M_S, 2))
42 vp_idx = MatsubaraFunctions.grid_index_extrp(vp, grids(M_S, 2))
43

44 w1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(M_S, 1))
45 w2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(M_S, 1))
46 v2_idx = MatsubaraFunctions.grid_index_extrp(v2, grids(M_S, 2))
47

48 T += M_D[w_idx, v_idx, vp_idx, 1]
49 T += +0.5 * M_S[w1_idx, v_idx, vp_idx, 1]
50 T += +1.5 * M_T[w1_idx, v_idx, vp_idx, 1]
51 T += -0.5 * M_D[w2_idx, v_idx, v2_idx, 1]
52 T += -1.5 * M_M[w2_idx, v_idx, v2_idx, 1]
53

54 return T
55 end

Profiling the MBE code reveals that most of the time is spent calculating the irreducible vertices
Tr , which are needed to compute both λr and Mr . In the former case, two legs of Tr are
closed with a propagator bubble, while in the latter case, Tr enters both to the left and to
the right of the respective (Bethe-Salpeter-like) equation. When optimizing the code, it is
therefore crucial to find an efficient way to evaluate Eq. (26e). In the example above, an
exemplary implementation of Tr in the density channel is shown. Here, we make use of the
grid_index_extrp function, which given a Matsubara frequency and a grid g finds the
linear index of the frequency in g or, if it is out of bounds, determines the bound of g that
is closest. This function is normally used internally to perform constant extrapolation for
MatsubaraFunction objects with grid dimension greater than one.17 Here, however, it can
be used to precompute multiple linear indices at once, allowing us to exclusively use the []
operator and thus avoid unnecessary boundary checks. Note that we could have used tailfits
for the screened interactions ηr but opt to utilize constant extrapolation instead.18

Furthermore, when Tr is inserted into the equations for the Hedin and multiboson vertices,
it is summed up along one fermionic axis. Therefore, some frequencies, e.g. w1 = w + v +
vp in line 23 of the code snippet above, will assume the same value for many different external
arguments. Hence, to circumvent repeated (but superfluous) grid_index_extrp calls, it is
beneficial to precompute Tr on a finite grid, which needs to be large enough to maintain the
desired accuracy. To this end, we add buffers for the irreducible vertices to our solver class,
such that we can compute e.g. the density T D and magnetic contributions T M inplace and in
parallel, as shown in the example below.

1 function calc_T_ph!(
2 T_D :: MatsubaraFunction{3, 1, 4, Float64},
3 T_M :: MatsubaraFunction{3, 1, 4, Float64},
4 η_S :: MatsubaraFunction{1, 1, 2, Float64},
5 λ_S :: MatsubaraFunction{2, 1, 3, Float64},

17Therefore it is not exported into the global namespace.
18Since ηr depends only on one frequency argument, it can be stored on a rather large grid, such that its asymp-

totic behavior is well-captured even without polynomial extrapolation.
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6 η_D :: MatsubaraFunction{1, 1, 2, Float64},
7 λ_D :: MatsubaraFunction{2, 1, 3, Float64},
8 η_M :: MatsubaraFunction{1, 1, 2, Float64},
9 λ_M :: MatsubaraFunction{2, 1, 3, Float64},

10 M_S :: MatsubaraFunction{3, 1, 4, Float64},
11 M_T :: MatsubaraFunction{3, 1, 4, Float64},
12 M_D :: MatsubaraFunction{3, 1, 4, Float64},
13 M_M :: MatsubaraFunction{3, 1, 4, Float64},
14 U :: Float64
15 ) :: Nothing
16

17 Threads.@threads for vp in grids(T_D, 3)
18 λ1_idx2 = MatsubaraFunctions.grid_index_extrp(vp, grids(λ_D, 2))
19 vp_idx = MatsubaraFunctions.grid_index_extrp(vp, grids(M_S, 2))
20

21 for v in grids(T_D, 2)
22 w2 = vp - v
23 λ1_idx3 = MatsubaraFunctions.grid_index_extrp( v, grids(λ_D, 2))
24 η2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(η_D, 1))
25 λ2_idx1 = MatsubaraFunctions.grid_index_extrp(w2, grids(λ_D, 1))
26 v_idx = MatsubaraFunctions.grid_index_extrp( v, grids(M_S, 2))
27 w2_idx = MatsubaraFunctions.grid_index_extrp(w2, grids(M_S, 1))
28

29 for w in grids(T_D, 1)
30 w1 = w + v + vp
31 v2 = w + v
32 η1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(η_D, 1))
33 λ1_idx1 = MatsubaraFunctions.grid_index_extrp(w1, grids(λ_D, 1))
34 λ2_idx2 = MatsubaraFunctions.grid_index_extrp(v2, grids(λ_D, 2))
35 w_idx = MatsubaraFunctions.grid_index_extrp( w, grids(M_S, 1))
36 w1_idx = MatsubaraFunctions.grid_index_extrp(w1, grids(M_S, 1))
37 v2_idx = MatsubaraFunctions.grid_index_extrp(v2, grids(M_S, 2))
38

39 # compute SBE vertices
40 p1 = λ_S[λ1_idx1, λ1_idx2, 1] * η_S[η1_idx, 1] * λ_S[λ1_idx1, λ1_idx3, 1]
41 p2 = λ_D[λ2_idx1, λ1_idx3, 1] * η_D[η2_idx, 1] * λ_D[λ2_idx1, λ2_idx2, 1]
42 p3 = λ_M[λ2_idx1, λ1_idx3, 1] * η_M[η2_idx, 1] * λ_M[λ2_idx1, λ2_idx2, 1]
43

44 # compute MBE vertices
45 m1 = M_S[w1_idx, v_idx, vp_idx, 1]
46 m2 = M_T[w1_idx, v_idx, vp_idx, 1]
47 m3 = M_D[w2_idx, v_idx, v2_idx, 1]
48 m4 = M_M[w2_idx, v_idx, v2_idx, 1]
49

50 T_D[w, v, vp] = -2.0 * U + M_D[w_idx, v_idx, vp_idx, 1] + 0.5 * (p1 + m1 -
p2 - m3) + 1.5 * (m2 - p3 - m4),→

51 T_M[w, v, vp] = +2.0 * U + M_M[w_idx, v_idx, vp_idx, 1] - 0.5 * (p1 + m1 +
p2 + m3) + 0.5 * (m2 + p3 + m4),→

52 end
53 end
54 end
55

56 return nothing
57 end

Here, we also make use of the fact that many frequency arguments (and their respective linear
indices) are shared between different channels, which speeds up the calculation of T even
further. The implementation of, say, Eq. (26h) is now rather straightforward. M D, for example,
can be computed as shown below.

1 function calc_M!(
2 M :: MatsubaraFunction{3, 1, 4, Float64},
3 Pi :: MatsubaraFunction{2, 1, 3, Float64},
4 T :: MatsubaraFunction{3, 1, 4, Float64},
5 M_D :: MatsubaraFunction{3, 1, 4, Float64},
6 SG :: MatsubaraSymmetryGroup,
7 :: Type{ch_D}
8 ) :: Nothing
9
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10 # model the diagram
11 function f(wtpl, xtpl)
12

13 w, v, vp = wtpl
14 val = 0.0
15 v1, v2 = grids(Pi, 2)(grids(T, 3)[1]), grids(Pi, 2)(grids(T, 3)[end])
16 Pi_slice = view(Pi, w, v1 : v2)
17 M_D_slice = view(M_D, w, v, :)
18 T_L_slice = view(T, w, v, :)
19 T_R_slice = view(T, w, vp, :)
20

21 vl = grids(T, 3)(grids(M_D, 3)[1])
22 vr = grids(T, 3)(grids(M_D, 3)[end])
23

24 for i in 1 : vl - 1
25 val -= (T_L_slice[i] - M_D_slice[1]) * Pi_slice[i] * T_R_slice[i]
26 end
27

28 for i in vl : vr
29 val -= (T_L_slice[i] - M_D_slice[i - vl + 1]) * Pi_slice[i] * T_R_slice[i]
30 end
31

32 for i in vr + 1 : length(T_L_slice)
33 val -= (T_L_slice[i] - M_D_slice[vr - vl + 1]) * Pi_slice[i] * T_R_slice[i]
34 end
35

36 return temperature(M) * val
37 end
38

39 # compute multiboson vertex
40 SG(M, MatsubaraInitFunction{3, 1, Float64}(f); mode = :hybrid)
41

42 return nothing
43 end

Here, we utilize the corresponding MatsubaraSymmetryGroup object with the hybrid MPI
+ Threads parallelization scheme. In addition, we make use of views for the bubble and
vertices to avoid repeated memory lookups in the Matsubara summation.

4.3.3 Benchmark results

In this section, we benchmark the presented implementation of the MBE parquet solver against
an independent implementation in C++. Our motivation for this comparison is twofold:
Firstly, we want to verify the overall correctness of both implementations and, secondly, we
want to test how robust the multiboson formalism is to implementation details. This regards,
for example, the treatment of correlation functions at the boundaries of their respective fre-
quency grids. While the Julia code relies on (polynomial or constant) extrapolation, the C++
code replaces correlators with their asymptotic value instead. Ideally, these details should be
irrelevant, except in the most difficult parameter regimes. Both codes used the physical pa-
rameters as stated after Eq. (18) and the frequency parameters according to Tab. 1. We begin
by examining the static properties of the model including the quasiparticle residue Z given by

Z−1 = 1− dIm[Σ(ω)]
dω

����
ω→0

, (27)

as well as the susceptibilities in the density (D) and magnetic (M) channels. The latter can be
obtained from the screened interactions analogous to Ref. [92], that is

χD/M =
ηD/M − U D/M

(U D/M )2
. (28)

The corresponding results are summarized in Fig. 6. Both codes are in quantitative agreement
and predict a strong enhancement of magnetic fluctuations at low temperatures. However, as
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Table 1: Frequency parameters for the benchmark results in Figs. 6-9. We show
the total number of frequencies used for the various Matsubara functions. Since
the boxes are symmetric around zero there is an even (odd) number of Matsubara
frequencies along fermionic (bosonic) directions.

total no. frequencies
G 4096
Σ 512
η 1023
λ 575 × 512
M 383 × 320 × 320

has been noted in Ref. [77], the characteristic signature for the formation of a local magnetic
moment at the impurity, a decrease of χD for temperatures T ≲ 2 (for the specific choice
of numerical parameters used here), is not captured by the parquet approximation. Instead,
χD increases monotonically over the entire range of temperatures considered and the system
remains in a metallic state with well-defined quasiparticles (i.e. 0< Z < 1).

Figure 7 shows a direct comparison of the MBE vertices and their evolution with decreasing
temperature within both codes. As can be seen from the middle column, showing the screened
interaction, Hedin and multiboson vertex in the magnetic channel, most of the long-lived
magnetic correlations are already captured by the screened interaction itself and thus by the
corresponding single-boson exchange diagrams. In contrast, low-energy scattering processes
mediated by multiple bosons seem to be less relevant, as indicated by a comparatively small
M M contribution. This picture is somewhat reversed in the other channels (left and right
column in Fig. 7). In the density channel, for example, the largest contribution originates
from short and also long-lived multiboson fluctuations, especially at low temperatures.

Figure 8 presents further results for M X as a function of its two fermionic frequencies ν and
ν′ (with fixed Ω = 0). Remarkably, the structure of these objects is dominated by cross-like
structures similar to those discussed in Ref. [92], which become more pronounced when T is
decreased. A comparison of the data obtained with both codes (shown in the second row of
Fig. 8), reveals that it is precisely these structures that seem difficult to capture in numerical
calculations, and where small differences in the implementation can have a significant effect.
However, the relative difference between the results from both codes is still small (≲ 0.01).

As a final benchmark of the codes, we have considered their respective serial and paral-
lel performance for a single evaluation of the parquet equations in SBE decomposition (see
Fig. 9). Surprisingly, the Julia code based on MatsubaraFunctions.jl outperforms the
C++ implementation by about a factor of four when run in production mode (i.e., with in-
ternal sanity checks disabled). We would like to note that this is most likely not due to a
fundamental performance advantage of Julia over C++, but simply the result of several op-
timizations (such as those presented in Sec. 4.3.2) that were more easy to implement using
MatsubaraFunctions.jl.
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Note that we approximated the derivative in Eq. (27) by a fourth order finite differ-
ences method.
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Figure 8: Slice through multi-boson contributions MD, M M and MS. The upper
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number of frequency points. The agreement of the data persists to the lowest tem-
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5 Future directions

We have presented a first version of the MatsubaraFunctions.jl library and its basic func-
tionality. Although the library already offers many features, most notably an automated inter-
face for implementing and exploiting symmetries when working with Green’s functions (in-
cluding several options for parallel evaluation), as well as high performance for larger projects
(see Sec. 4.3.1 and the discussions therein), several generalizations of the interface and fur-
ther optimizations are currently under development. In addition, we will add more support
for generic grid types other than just Matsubara frequency grids. These could include, for
example, momentum space grids and support for continuous variables (such as real frequen-
cies). Note, however, that calculations in momentum or real space are already feasible with
the current state of the package, if a suitable mapping from, say, wavevectors to indices is
provided. Accuracy improvements for fitting high-frequency tails and more advanced extrap-
olation schemes for Matsubara sums are also in the works.

In the future, it will be very valuable to extend the ecosystem surrounding
MatsubaraFunctions.jl. For example, many state-of-the-art diagrammatic solvers rely on
the efficient evaluation of similar diagrams such as vertex-bubble-vertex contractions, which
are a common feature of Bethe-Salpeter-type equations. These operations could be developed
independently of the main library, providing even more quality-of-life options for the user.
Moreover, such a toolkit would allow for the swift deployment of different types of solvers,
including fRG solvers for quantum spin systems and self-consistent impurity solvers such as the
MBE code presented in Sec. 4.3.2, to name but a few. With many new and exciting correlated
materials becoming available, fast and flexible solvers are of utmost importance to facilitate
scientific progress, and we strongly believe that a package like MatsubaraFunctions.jl
could be a useful tool for their rapid development.
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A Extrapolation of Matsubara sums

Suppose we want to compute the fermionic Matsubara sum f (τ → 0+) = 1
β

∑
ν f (ν)e−iν0+ .

We assume that f (z) with z ∈ C has a Laurent series representation in an elongated annulus
about the imaginary axis which decays to zero for large |z|. If the poles and residues of f in the
complex plane are known, this problem can in principle be solved by rewriting the Matsubara
sum as a contour integral and applying Cauchy’s residue theorem after deforming the contour.
Unfortunately, these poles are usually unknown and we have to resort to numerical calculations
instead. There, however, we can only compute the sum over a finite (symmetric) grid of
Matsubara frequencies, which converges very slowly if at all.

To tackle this problem, let us assume that f is known on a grid with sufficiently large
maximum (minimum) frequency ±Ω, such that we can approximate

f (ν)≈
N∑

n=1

αn

(iν)n
, (A.1)

for |ν| > Ω. Neglecting the factor e−iν0+ for brevity, this allows us to split up the expression
for f (τ→ 0+) as

1
β

∑
ν

f (ν) =
1
β

∑
ν<−Ω

f (ν) +
1
β

∑
−Ω≤ν≤Ω

f (ν) +
1
β

∑
ν>Ω

f (ν)

≈ 1
β

∑
ν<−Ω

N∑
n=1

αn

(iν)n
+

1
β

∑
−Ω≤ν≤Ω

f (ν) +
1
β

∑
ν>Ω

N∑
n=1

αn

(iν)n
, (A.2)

where (A.1) was used to approximate the semi-infinite sums. In many cases, the dominant
asymptotic behavior of single-particle Green’s functions and one-dimensional slices through
higher-order vertex functions is already well captured by an algebraic decay (iν)−q with q = 1, 2.
Therefore, by truncating the asymptotic expansion at N = 2, we can rewrite the right-hand
side as

1
β

∑
ν

f (ν)≈ 1
β

∑
−Ω≤ν≤Ω

f (ν) +
2∑

n=1

�
1
β

∑
ν

αn

(iν)n
− 1
β

∑
−Ω≤ν≤Ω

αn

(iν)n

�
. (A.3)

The series in the bracket can be computed straightforwardly using Cauchy’s residue theorem
and we find

1
β

∑
ν

f (ν)e−iν0+ ≈ 1
β

∑
−Ω≤ν≤Ω

�
f (ν)− α2

(iν)2

�
− α1

2
− β α2

4
. (A.4)

Thus, if the coefficients αn are known (for example by fitting the high-frequency tails), this
formula can provide a quick and dirty approximation to the infinite Matsubara sum.
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B Implementation details for the MBE solver

In this section we provide additional information on the implementation of the MBE equations,
which were introduced on a general basis in Sec. 4.3.1 of the main text. As for any application
involving many-body Green’s functions, it is crucial to choose an appropriate parametrization
of the self-consistent equations that reflects the symmetries of the field theory under consider-
ation. Here, we deal with the implementation of SU(2) symmetry (spin rotation invariance)
as well as time translation invariance (energy conservation) for the MBE equations of the im-
purity model defined in Sec. 4.3.

B.1 SU(2) symmetry

Consider an SU(2) transformation U = eiεσ, where ε ∈ R3 andσ is the vector of Pauli matrices.
Under U , the fermionic creation and annihilation operators transform into

cs→ Uss′ cs′ , c†
s → c†

s′(U
†)s′s , (B.1)

where we have omitted all indices except the spin s = {↑,↓}. For SU(2) symmetric actions it
can be shown that single-particle Green’s functions G(1)ss′ are diagonal and also invariant under

spin flips, i.e. G(1)ss′ = G(1)δss′ [48]. Two-particle correlators G(2)s1′ s1s2′ s2
, on the other hand, can

be decomposed into two components G(2)|= and G(2)|×, which preserve the total spin between
incoming and outgoing particles

G(2)s1′ s1s2′ s2
= G(2)|=δs1′ s1

δs2′ s2
+ G(2)|×δs1′ s2

δs2′ s1
. (B.2)

Furthermore, the Bethe-Salpeter-like equations (24) can be diagonalized by introducing a sin-
glet (S) and a triplet (T ) component

G(2)|Sp = G(2)|=p − G(2)|×p ,

G(2)|Tp = G(2)|=p + G(2)|×p ,
(B.3)

in the p channel, and a density (D) and magnetic (M) contribution

G(2)|Dt = 2G(2)|=t + G(2)|×t ,

G(2)|Mt = G(2)|×t ,
(B.4)

in the t channel. Moreover, this change of basis has the advantage that physical response
functions can be obtained directly from the screened interaction in the respective channel. The
spin susceptibility χM , for example, is simply given by −U2χM = ηM + U for a local Hubbard
U . For this reason, the {S, T, D, M} basis is sometimes called the physical spin basis, whereas
the decomposition into parallel (=) and crossed terms (×) is known as the diagrammatic spin
basis [48]. In the implementation of the MBE solver, the former is used.

B.2 Time translation invariance

The interacting part of the impurity action from Sec. 4.3 is static, i.e. the bare interaction U
is τ-independent. Consequently, one and two-particle Green’s functions are invariant under
translations in imaginary time, which implies conservation of the total Matsubara frequency
between incoming and outgoing legs [48] and, thus,

G(1)(ν,ν′) = G(1)(ν)× βδν|ν′ ,
G(2)(ν1′ ,ν1,ν2′ ,ν2) = G(2)(ν1′ ,ν1,ν2′)× βδν1′+ν2′ |ν1+ν2

. (B.5)
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Figure 10: Mixed frequency conventions. In mixed notation, each 2PR channel is
described in terms of one bosonic argument Ω and two fermionic frequencies ν,ν′ as
opposed to the purely fermionic notation shown on the left.

Note that we have suppressed additional indices, such as spin, for brevity. For two-particle
quantities, it is convenient to adopt a mixed frequency convention for the 2PR channels, where,
instead of three fermionic arguments, one bosonic transfer frequency Ω and two fermionic
frequencies ν,ν′ are used. The convention used for the MBE solver is shown in Fig. 10.
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5 Analytic Continuation – Relations between
imaginary- and real-frequency functions

5.1 Overview
The Matsubara formalism is extremely convenient for calculations and derivations since the
Keldysh counterpart of an `-point Matsubara correlator has an additional index structure
with 2` components. However, real-frequency correlators encode interesting observables such
as the spectrum and dynamic susceptibilities.

Reference [BM61] has already shown that the analytic continuation of two-point correlators
in the frequency representation is mathematically justified. The relevant relations are textbook
knowledge and have been presented in Sec. 2.1.5. The equivalence between MF and KF relies
on the analyticity of the regular MF correlator G̃(z) in the upper and lower half of C. The
connection between MF and KF correlator becomes particularly apparent by comparison
of the spectral representations in Eqs. (2.26) and Eq. (2.32c), revealing that the retarded
and advanced correlators GR/A can be obtained from the regular Matsubara correlator G̃(iω)
by a simple substitution GR/A(ω) = G̃(iω → ω ± i0+). Hence, the retarded and advanced
correlators have their domain on the boundary of the regions of analyticity. The discontinuity
at the boundary, GR −GA, (almost) fully encodes the spectral information in Sstd (2.33b).
The Keldysh component, GK , in turn, is obtained from the fluctuation-dissipation theorem
(2.33c).

Unfortunately, the situation is more complicated for higher-point functions: For four-
point functions there are 16 Keldysh components and the generalized fluctuation-dissipation
relations can only reduce the number of independent Keldysh components to 8 [WH02]. The
number of analytic continuations grows to 32 [Eli62]. Out of these, four can be directly
identified with fully-retarded Keldysh components. The other analytic continuations have no
direct correspondence to a Keldysh component [Wel05]. Hence, a completely new strategy is
needed. In the following, we provide one in [P4].

The starting point for our derivation in Ref. [P4] is the spectral representation derived
in Refs. [KLvD21, HSS23]. There, it is shown that system-specific information is fully
encoded in the PSFs S. The kernels K, on the other hand, are formalism-dependent but
system-independent. Thus, our strategy is to express all PSFs in terms of suitable analytic
continuations of the Matsubara correlator. The resulting formulas can then be inserted into
the spectral representation for Keldysh correlators to express all Keldysh components with
analytically continued Matsubara functions. While the presented calculations are rather
long, the final formulas can be checked in a concise calculation by repeated use of the KMS
condition (2.9b).

In [P4], it is assumed that the Matsubara correlators are known analytically. The analytic
continuation of numerical Matsubara data is a related problem that is, however, outside
the scope of this thesis. It additionally poses the difficulty that data may be incomplete
or contain errors. Despite numerous improvements in the past years [FYG21, ZG24] this
problem prevails due to the ill-conditioned Matsubara kernel.



150 Analytic Continuation – Relations between imaginary- and real-frequency functions

Analytic Continuation of Multipoint Correlation Functions

by

A. Ge,1 J. Halbinger,1 S.B. Lee,2,3 J. von Delft,1 and F. B. Kugler4,5

1 Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and

Munich Center for Quantum Science and Technology,

Ludwig-Maximilians-Universität München, 80333 Munich, Germany
2 Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of

Korea
3 Center for Theoretical Physics, Seoul National University, Seoul 08826, Republic of Korea
4 Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York,

New York 10010, USA
5 Department of Physics and Astronomy and Center for Materials Theory, Rutgers

University, Piscataway, New Jersey 08854, USA

reprinted on pages 151–196

Reproduced under terms of the CC-BY license.

Ann. Phys. 536, 2300504 (2024),

doi: 10.1002/andp.202300504.

© 2024, The Authors, Annalen der Physik published by Wiley-VCH GmbH.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/andp.202300504


RESEARCH ARTICLE
www.ann-phys.org

Analytic Continuation of Multipoint Correlation Functions

Anxiang Ge,* Johannes Halbinger, Seung-Sup B. Lee, Jan von Delft, and Fabian B. Kugler

Conceptually, the Matsubara formalism (MF), using imaginary frequencies,
and the Keldysh formalism (KF), formulated in real frequencies, give
equivalent results for systems in thermal equilibrium. The MF has less
complexity and is thus more convenient than the KF. However, computing
dynamical observables in the MF requires the analytic continuation from
imaginary to real frequencies. The analytic continuation is well-known for
two-point correlation functions (having one frequency argument), but, for
multipoint correlators, a straightforward recipe for deducing all Keldysh
components from the MF correlator had not been formulated yet. Recently, a
representation of MF and KF correlators in terms of formalism-independent
partial spectral functions and formalism-specific kernels was introduced by
Kugler, Lee, and von Delft [Phys. Rev. X 11, 041006 (2021)]. This
representation is used to formally elucidate the connection between both
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KF counterpart is shown. The procedure is illustrated for various correlators of
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1. Introduction

Multipoint correlation functions, or cor-
relators for short, are central objects of
investigation in many-body physics. The
fermionic one-particle or two-point (2p)
correlator describes the propagation of
a single particle, containing information
on the spectrum of single-particle excita-
tions. The two-particle or four-point (4p)
correlator is associated with the effective
interaction between two particles. Inter-
esting observables, like optical and mag-
netic response functions, can be deduced
from it. Additionally, the closely related
4p vertex, obtained by amputating all four
external legs, is an essential ingredient in
numerous many-body methods such as
the functional renormalization group,[1]

the parquet formalism,[2] and diagram-
matic extensions of dynamicalmean field
theory.[3]

The most common framework for
studying systems in thermal equilibrium

at temperature T = 1∕𝛽 is the imaginary-timeMatsubara formal-
ism (MF).[4] It exploits the cyclicity of the trace and the fact that
the statistical weight of a thermal state for aHamiltonianH, e−𝛽H,
corresponds to a time-evolution e−iHt along the imaginary axis of
the time argument. After a so-called Wick rotation, t → −i𝜏, the
correlators are well-defined on the interval 𝜏 ∈ [−𝛽, 𝛽] and there
satisfy (anti)periodicity relations with period 𝛽. Correspondingly,
they can be expressed through a Fourier series using a discrete
set of imaginary frequencies, the so-called Matsubara frequen-
cies, ensuring this (anti)periodicity. Due to this periodicity, the
Fourier transform of a MF correlator is a function defined on
a discrete set of imaginary frequencies, so-called Matsubara fre-
quencies. To obtain a correlator of real times or real frequencies,
one has to “unwind” the Wick rotation by performing a suitable
analytic continuation. Numerically, however, the analytic contin-
uation to real frequencies is a highly challenging problem.[5,6]

The Keldysh formalism (KF) is another established
framework.[7] Unlike the MF, it is not restricted to thermal
equilibrium. It directly works with real times and frequencies,
obviating the need for an analytic continuation. However, this
comes at the cost of an increased complexity: the KF is formu-
lated on a doubled time contour, and an 𝓁-point (𝓁p) function
has 2𝓁 components.[8,9] By contrast, every MF correlator is just a
single function.
In thermal equilibrium, both MF and KF must in principle

yield identical results for exact computations of any physical
observable—the two formalisms only differ in the computational
route to arrive at the result. In practice, though, it may be useful
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to transition from one formalism to the other, in order to exploit
advantages from one or the other. The connection between the
MF and KF by means of analytic continuation is well known for
2p functions, which effectively depend on a single time or fre-
quency argument, see e.g., refs. [10–12]. For higher-point func-
tions, progress has beenmade by various authors: Eliashberg dis-
cussed the analytic continuation of a specific 4p correlator from
the MF to real frequencies.[13] Evans[14] and Kobes[15,16] studied
the correspondence between both formalisms for 3p correlators
in refs. [14–16]. Evans then considered 𝓁 ≥ 4 multipoint correla-
tors and showed that fully retarded and fully advanced Keldysh
components can be obtained from analytic continuations of MF
correlators.[17] Weldon conducted a thorough analysis of real-
frequency 𝓁p functions and proved that these KF components
are in fact the only ones that can be identified with an analyti-
cally continued MF function.[18,19] Taylor extended Evans’ results
to arbitrary Keldysh components of the fermionic 4p correlator,
assuming the absence of so-called anomalous terms in the MF
correlator.[20] (Anomalous terms can arise if the Lehmann rep-
resentation of a correlator involves vanishing eigenenergy differ-
ences and zero bosonic Matsubara frequencies.) Guerin derived
analogous results from diagrammatic arguments.[21,22]

In this paper, we solve the problem of analytic continuation of
multipoint functions from theMF to the KF in full generality: We
develop a strategy for analytically continuing an arbitrary MF 𝓁p
correlator G (including anomalous terms) to all 2𝓁 components
of the corresponding KF correlator Gk as functionals of G, i.e.,
Gk = Gk[G]. We exemplify the procedure for the most relevant
cases 𝓁 ∈ {2, 3, 4}.
Our strategy builds upon the spectral representation of gen-

eral 𝓁p correlators introduced in ref. [23]. There, the computa-
tion of MF and KF correlators is split into two parts: the cal-
culation of formalism-independent but system-dependent par-
tial spectral functions (PSFs), and their subsequent convolution
with formalism-dependent but system-independent kernels. The
mainmessage of the present paper is that individual PSFs can be
retrieved from the MF correlator, demonstrating the direct link
between both formalisms.
In a nutshell, both MF and KF correlators have spectral repre-

sentations involving sums over permutations of their constituent
operators of the form

G(i𝝎) =
∑
p

Gp(i𝝎p), Gp(i𝝎p) = (K ∗ Sp)(i𝝎p) (1a)

Gk(𝝎) =
∑
p

G
kp
p (𝝎p), G

kp
p (𝝎p) = (Kkp ∗ Sp)(𝝎p) (1b)

Here, the summandsGp andG
kp
p are real-frequency convolutions

(denoted by ∗) of MF or KF kernels, K or Kkp , with PSFs Sp. Im-
portantly, the MF and KF correlators depend on the same PSFs,
G = G[Sp] and Gk = Gk[Sp]. The key insight of this work is that
the so-called regular part of the partialMF correlatorGp, denoted
G̃p, can be expressed as an imaginary-frequency convolution (de-
noted by ⋆) of a kernel and the fullMF correlator:

G̃p(i𝝎p) = (K̃ ∗ Sp)(i𝝎p) = (K ⋆G)(i𝝎p) + ( 1
𝛽
) (1c)

(The ( 1
𝛽
) terms can be identified analytically and discarded.)

From this, we can extract Sp as a functional of G, thus inverting
the relationG[Sp] → Sp[G]. That enables us to express KF through
MF correlators, Gk = Gk[G].
Our analysis not only provides relations between functions

in the MF and the KF, but also between different Keldysh com-
ponents of the KF correlator. As an application of our general
results, we derive a complete set of generalized fluctuation-
dissipation relations (gFDRs) for 3p and 4p functions. These
reproduce the results of Wang and Heinz[24] for real fields
and the generalization to fermionic ones.[25] Moreover, we give
a comprehensive discussion of the role of anomalous terms
during analytic continuation and in gFDRs. Prior discussions
of these topics have often neglected anomalous terms; indeed,
their presence is acknowledged only in few works, such as
refs. [26–28]. As an example of their physical importance, we
mention that ref. [28] analyzed anomalous terms for the Mott–
Hubbardmetal–insulator transition in theHubbardmodel using
the dynamical mean-field theory and detected a degeneracy in
the insulating regime by means of a finite anomalous term.
Conceptually, theMatsubara formalism (MF), using imaginary

frequencies, and the Keldysh formalism (KF), formulated in real
frequencies, give equivalent results for systems in thermal equi-
librium. TheMFhas less complexity and is thusmore convenient
than the KF. However, computing dynamical observables in the
MF requires the analytic continuation from imaginary to real fre-
quencies. The analytic continuation is well-known for two-point
correlation functions (having one frequency argument), but, for
multipoint correlators, a straightforward recipe for deducing all
Keldysh components from the MF correlator had not been for-
mulated yet. Recently, a representation of MF and KF correlators
in terms of formalism-independent partial spectral functions and
formalism-specific kernels was introduced by Kugler, Lee, and
von Delft. Regarding the number of independent components
in the KF, one observes a general trend, obeyed by the known
results for 𝓁 ∈ {2, 3, 4}: Due to the doubled time contour, there
are 2𝓁 Keldysh components. In the Keldysh basis, 2𝓁 − 1 of them
are nonzero, and 𝓁 are fully retarded components. Now, there
are 2𝓁−1 gFDRs (2, 4, 8 for 𝓁 = 2, 3, 4). Thus, the number of inde-
pendent Keldysh components is 2𝓁−1 − 1 (1, 3, 7 for 𝓁 = 2, 3, 4).
It follows that, for 𝓁 ≥ 4, the fully retarded components do not
suffice to encode the entire information of the Keldysh correlator.
The rest of the paper is organized as follows: In Section 2, we

summarize the most important points of the spectral represen-
tation of 𝓁p MF and KF correlators introduced in ref. [23] (Sec-
tions 2.1–2.3) and then introduce our general recipe for the an-
alytic continuation of arbitrary 𝓁p correlators (Sections 2.4 and
2.5). This recipe is applied to the 2p case in Section 3 and, after
the investigation of analytic properties of regular 𝓁p MF correla-
tors in Section 4, also to the 3p and 4p cases in Sections 5 and 6.
The results also lead to gFDRs between different Keldysh com-
ponents of the KF correlator. In Section 7, we perform explicit
analytic continuations from MF to KF correlators for the Hub-
bard atom. The Hubbard atom is a good example for a system
with anomalous contributions and, here, serves as a simple, ex-
actly solvable model with just the right degree of complexity for
illustrating our approach. Section 8 presents another application
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Table 1.Overview of notation for correlators and their contributions. In the
top, we list symbols for the MF correlator and its contributions, then, no-
tation for analytic continuations and discontinuities, and, lastly, notation
for Keldysh correlators.

Symbol Description

G full MF correlator, Equations (9)

Gp partial MF correlator, Equation (11b)

G̃, Ĝ regular and anomalous part of the MF correlator, Equations (14a)
and (A5)

G̃p regular part of the partial MF correlator, Equation (14c)

Ĝi, Ĝ
Δ
i , Ĝ

–Δ
i further decomposition of the anomalous MF correlator,

Equations (A5b) and (73)

G̃ž, Ĝi;ž shorthand for analytic continuations of the regular/anomalous
MF correlator, see Section 4.1

G̃𝜔žr , Ĝ
𝜔
i;žr discontinuities of the regular/anomalous MF correlator,

Equation (67)

Gk , G[𝜂1…𝜂𝛼 ] Keldysh correlator, Equations (19)

G′k , G′[𝜂1…𝜂𝛼 ] primed Keldysh correlator, Equations (25)

of our continuation formulas, namely for the computation of ver-
tex corrections to susceptibilities. We conclude in Section 9.
In Appendix A and B, we give details on the MF kernels and

PSFs used in calculations throughout the paper. Appendix C is
devoted to detailed calculations concerning the analytic continu-
ation of 3p correlators. In Appendix D, we extend insights from
2p and 3p results to deduce the relation between 4p PSFs and an-
alytically continued MF correlators. The spectral representations
of various useful combinations of analytically continued MF cor-
relators and anomalous parts are presented in Appendix E. Ap-
pendix F expresses the spectral representation of KF correlators
in a form especially suited for deriving their connection to MF
functions. In Appendix G, we check the consistency of our results
for PSFs by using equilibrium properties. Finally, Appendix H
gives details about simplifications used for the analytic continu-
ation of Hubbard atom correlators and includes full lists of the
especially important fermionic 4p KF correlators.

2. Spectral Representations of Matsubara and
Keldysh Correlators

To make our presentation self-contained, we summarize the
key elements of the conventions and results of ref. [23] for
common notions (Section 2.1), the MF (Section 2.2), and the KF
(Section 2.3). Table 1 provides an overview of our symbols for
correlators and their contributions. Our general strategy for the
analytic continuation from MF to KF correlators is described in
Sections 2.4 and 2.5.

2.1. Formalism-Independent Expectations Values

Consider a tuple of 𝓁 operators O = (O1,… , O𝓁) at real times
t = (t1,… , t𝓁), obeying the Heisenberg time evolution Oi(ti) =
eiHtiOie−iHti for a given Hamiltonian H. O may include an even
number of fermionic operators and any number of bosonic op-
erators. Time-ordered products of such tuples, defined below,

involve permuted tuples Op = (O1,… , O𝓁) and tp = (t1,… , t𝓁),

where p = (1…𝓁) denotes the permutation of indices that re-
places i by p(i) = i. If 𝓁 = 3 and p = (123) is chosen as (312), e.g.,
then tp = (t1, t2, t3) = (t3, t1, t2). Thermal expectation values of per-
muted tuples are denoted by

p[Op](tp) = 𝜁p
⟨ 𝓁∏

i=1
Oi(ti)

⟩
(2)

For later convenience, the definition includes a sign factor 𝜁p
which equals −1 if the permutation from O to Op involves an
odd number of transpositions of fermionic operators; otherwise
𝜁p = 1. We will often suppress the operator arguments [Op] for
brevity, since the subscript on p specifies their order. The real-
frequency Fourier transform of p(tp) defines the so-called partial
spectral function (PSF)

p(𝜺p) = ∫
∞

−∞

d𝓁tp
(2𝜋)𝓁

ei𝜺p⋅tpp(tp) (3a)

Here, 𝜺p = (𝜀1,… , 𝜀𝓁) is a permuted version of 𝜺 = (𝜀1,… , 𝜀𝓁),
a tuple of continuous, real-frequency variables. We strictly asso-
ciate each (integration) variable, such as ti, 𝜀i, with the operatorOi

carrying the same index. Time-translational invariance of p(tp)
implies energy conservation for p(𝜺p), which is expressed as

p(𝜺p) = 𝛿(𝜀1…𝓁)Sp(𝜺p) (3b)

Here, 𝜀1…i = 𝜀1 +⋯ + 𝜀i is a shorthand for a frequency sum.
We call it bosonic/fermionic if the frequencies (𝜀1,… , 𝜀i) are
associated with an even/odd number of fermionic operators,
i.e., if the sign 𝜁 1…i = 𝜁1 … 𝜁 i equals ±1 (with 𝜁 j = ±1 for
bosonic/fermionic operators Oj). The function p (calligraphic
type) on the left of Equation (3b) is non-zero only if its arguments
satisfy “energy conservation”, 𝜀1…𝓁 = 0; for Sp (italic type) on the
right, this condition on 𝜺p is understood to hold by definition,
e.g., by setting 𝜀𝓁 = −𝜀1…𝓁−1. This convention for frequency ar-
guments of functions typeset in calligraphics or italics also holds
for the correlators,  vs. G, and kernels,  vs. K, defined below.
PSFs whose arguments are cyclically related are proportional

to each other. For two cyclically related permutations, say p =
(1… 𝜆 − 1 𝜆…𝓁) and p𝜆 = (𝜆…𝓁 1… 𝜆 − 1), the cyclicity of the
trace of operator products ensures the equilibrium condition
(called cyclicity relation in ref. [23])

Sp(𝜺p) = 𝜁p𝜁p𝜆e
𝛽𝜀1…𝜆−1Sp𝜆 (𝜺p𝜆 ), 𝜁p𝜁p𝜆 = 𝜁

1…𝜆−1 (4)

Explicit Lehmann-type representations for PSFs in terms of a
complete set of eigenenergies and eigenstates of H are given in
refs. [23, 29] and exploited for numerical computations; however,
they are not needed in this work. Here, it suffices to assume that
Sp(𝜺p) may contain sums over Dirac delta functions and a part
that is (piece-wise) continuous in its arguments. For future refer-
ence, we split it into regular and anomalous parts,

Sp(𝜺p) = S̃p(𝜺p) + Ŝp(𝜺p) (5)

where the anomalous part, Ŝp, comprises all terms containing
bosonicDirac 𝛿(𝜀1…i) factors (i.e. ones having bosonic arguments)
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Figure 1. a) MF imaginary-time ordering: operators are arranged such that they are time-ordered (larger times to the left). b) KF real-time Keldysh
ordering: operators are arranged such that all (forward-branch) times t− appear to the right of all (backward-branch) times t+, with t− times time-
ordered (larger ones to the left) and t+ times anti-time-ordered (smaller ones to the left). c) Depiction of imaginary shifts of frequencies 𝜔[𝜂]i = 𝜔i + i𝛾 [𝜂]i
with i ∈ {1, 2, 3, 4} and 𝜂 = 4 according to Equation (21).

setting 𝜀1…i = 0, while S̃p contains everything else (including
fermionic Dirac deltas). We will see later that Ŝp gives rise to
anomalous contributions to MF correlators, whereas S̃p does not.
In the ensuing analysis, we make no assumptions on the be-

havior of the PSFs (apart from cyclicity). Thus, our analysis is
equally applicable to finite systems or infinite systems in the
thermodynamic limit, and whether or not an ordered phase is
present. Any such information is fully encoded in the PSFs.

2.2. Matsubara Formalism

A 𝓁p MF correlator  is defined as a thermal expectation value of
time-ordered operator products of the form

(𝝉) = (−1)𝓁−1
⟨ 𝓁∏

i=1
Oi(−i𝜏i)

⟩
(6)

where  denotes time-ordering along the imaginary time axis
(see Figure 1a). This time-ordering ensures that (𝝉) is periodic
under 𝜏i → 𝜏i + 𝛽 if Oi is bosonic, and anti-periodic if Oi is
fermionic. Therefore, it suffices to confine all times to the
interval 𝜏i ∈ [0, 𝛽), and the Fourier transform of a MF correlator
is defined as

(i𝝎) = ∫
𝛽

0
d𝓁𝜏 ei𝝎⋅𝝉(𝝉) = 𝛽𝛿i𝜔1…𝓁

G(i𝝎) (7)

where 𝝎 = (𝜔1,… ,𝜔𝓁) is a tuple of discrete Matsubara frequen-
cies (as indicated by the i in the argument of (i𝝎)), with 𝜔i
bosonic/fermionic if Oi is bosonic/fermionic. On the right, 𝛿
is the Kronecker delta for Matsubara frequencies, 𝛿i𝜔=0 = 1 and
𝛿i𝜔≠0 = 0. In Equation (7), it enforces “energy conservation”,
i𝜔1…𝓁 = 0. This condition originates from time translation invari-
ance of (𝝉); it is understood to hold for the argument of G(i𝝎)
by definition.
As shown in ref. [23], it is possible to cleanly separate the ana-

lytical properties of correlators from the dynamical properties of
the physical system of interest by expressing time-ordered prod-
ucts as sums over 𝓁! parts, reflecting the 𝓁! possible ways of or-
dering the time arguments:

(𝝉) = ∑
p

p(𝝉p) (8a)

p(𝝉p) = (𝝉p)p(−i𝝉p) (8b)

(𝝉p) =
𝓁−1∏
i=1

[
−𝜃(𝜏i − 𝜏i+1)

]
(8c)

Each partial correlatorp(𝝉p) is a product of two factors:p(−i𝝉p), a
thermal expectation value of imaginary-time operators obtained
by Wick rotation of Equation (2); and a kernel (𝝉p), a product
of Heaviside step functions enforcing time ordering: for given 𝝉 ,
only that partial correlator p(𝝉p) in Equation (8a) is nonzero for
which the permuted tuple 𝝉p is time-ordered. is independent of
the system and operators under consideration; all system-specific
dynamical information is encoded in the PSFs p. Note that the
(anti)periodic properties of (𝝉) under 𝜏i → 𝜏i + 𝛽 do not hold for
the individual partial correlators p(𝝉p); they emerge only once
these are summed over all permutations, Equation (8a).
The product form of Equation (8b) for p(𝝉p) in the time do-

main implies that, in the Fourier domain, (i𝝎) can be expressed
as a sum over convolutions:

(i𝝎) = ∑
p

p(i𝝎p) (9a)

p(i𝝎p) = ∫
𝛽

0
d𝓁𝜏p e

i𝝎p⋅𝝉pp(𝝉p) (9b)

=
[ ∗ Sp

]
(i𝝎p) (9c)

Here, the convolution ∗ is defined as

[ ∗ Sp
]
(i𝝎p) = ∫

∞

−∞
d𝓁𝜀p 𝛿(𝜀1…𝓁)(i𝝎p−𝜺p)Sp(𝜺p) (9d)

where 𝜺p satisfies 𝜀1…𝓁 = 0 (due to Equation (3b)), and the trans-
formed kernel is defined as follows, with 𝛀p = i𝝎p−𝜺p:

(𝛀p) = ∫
𝛽

0
d𝓁𝜏p e

𝛀p⋅𝝉p(𝝉p) (10a)

= 𝛽𝛿Ω1…𝓁
K(𝛀p) +(𝛀p) (10b)

In the second line, has been split into two contributions: 𝛽𝛿Ω1…𝓁

times a primary part K, with Ω1…𝓁 = 0 understood for its argu-
ment, and a residual part, not containing 𝛽𝛿Ω1…𝓁

. Using 𝛿Ω1…𝓁
=

𝛿i𝜔1…𝓁
(since 𝜀1…𝓁 = 0), each partial correlator p(i𝝎p) can corre-

spondingly be split into primary and residual parts,

p(i𝝎p) = 𝛽𝛿𝜔1…𝓁
Gp(i𝝎p) + 

p (i𝝎p) (11a)

Gp(i𝝎p) =
[
K ∗ Sp

]
(i𝝎p) (11b)

with i𝜔1…𝓁 = 0 understood for the argument ofG(i𝝎p), and 
p =

[ ∗ Sp]. Since(𝝉p) and p(𝝉p) lack the (anti)periodicity proper-
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ties of (𝝉), the residual parts(𝛀p) and 
p (i𝝎p) are nonzero per

se. However, inserting Equation (11a) into Equation (9a) and not-
ing from Equation (7) that (i𝝎) is proportional to 𝛽𝛿i𝜔1…𝓁

, one
concludes that

G(i𝝎) =
∑
p

Gp(i𝝎p) (12)

and
∑

p 
p (i𝝎p) = 0. Thus, the full (summed over p) MF correla-

torG involves only primary partsGp; the residual parts 
p cancel

out in the sum over all permutations. In the discussions below,
we will therefore focus only on the primary parts K and Gp (as
done in ref. [23]), ignoring the residual parts  and 

p for now.
They will make a brief reappearance in Section 2.4, where we es-
tablish the connection between MF and KF correlators.
Explicit expressions for the primary kernel K were derived in

refs. [23, 30] and are collected in Appendix A. Here, we just re-
mark that K can be split into a regular kernel K̃ and an anomalous
kernel K̂:

K(𝛀p) =

{
K̃(𝛀p) if

∏𝓁−1
i=1 Ω1…i ≠ 0

K̂(𝛀p) else
(13a)

K̃(𝛀p) =
𝓁−1∏
i=1

1
Ω1…i

(13b)

The regular kernel K̃ will play a crucial role for the analytic con-
tinuation of MF to KF correlators, since the latter can be ex-
pressed through kernels having the same structure as K̃ (see
Equation (19(d)) below). The anomalous kernel K̂ is nonzero only
if we have Ω1…i = 0 for one or more values of i < 𝓁, requiring
both i𝜔1…i = 0 and 𝜀1…i = 0. The first condition requires i𝜔1…i

to be bosonic (with 𝜁 1…i = +1). The second condition requires
the PSF Sp(𝜺p) to have an anomalous contribution Ŝp(𝜺p) contain-
ing terms proportional to a bosonic Dirac 𝛿(𝜀1…i); then (and only
then), the 𝜀p integrals in the convolution K ∗ Sp receive a finite
contribution from the point 𝜀1…i = 0. (See Appendix B.1 for a fur-
ther discussion of this point.)
The regular/anomalous distinction made for the kernel im-

plies, via Equations (11b) and (12), a corresponding decomposi-
tion of the full MF correlator G into regular (G̃) and anomalous
(Ĝ) parts:

G(i𝝎) = G̃(i𝝎) + Ĝ(i𝝎) (14a)

G̃(i𝝎) =
∑
p

G̃p(i𝝎p) (14b)

G̃p(i𝝎p) =
[
K̃ ∗ Sp

]
(i𝝎p) (14c)

= ∫
∞

−∞
d𝓁𝜀p 𝛿(𝜀1…𝓁)

𝓁−1∏
i=1

Sp(𝜺p)
i𝜔1…i − 𝜀1…i

(14d)

The regular partial correlators G̃p, constructed via the regular ker-
nel K̃, will be the central objects for the analytic continuation
from MF to KF correlators, as discussed in Section 2.4 below.
Their sum over all permutations defines the regular full correlator
G̃. The anomalous full correlator Ĝ collects all other contributions

toG; these contain one (or multiple) factors 𝛽𝛿i𝜔1…i
with i < 𝓁, i.e.

they involve vanishing partial frequency sums (see Appendix A.2
for details). The contribution of Ĝ to MF-to-KF analytical contin-
uation has been rather poorly understood to date. In this work,
we fully clarify how it enters: not directly, but indirectly, in that
the central objects G̃p(i𝝎p) can be expressed explicitly through the
fullG = G̃ + Ĝ via imaginary-frequency convolutions of the form
[K ⋆G](i𝝎p) (see Equation (31) below). There, Ĝ must not be
neglected.

2.3. Keldysh Formalism

A KF 𝓁p correlator in the contour basis is defined as

c(t) = (−i)𝓁−1
⟨c

𝓁∏
i=1

Oi(tcii )
⟩

(15a)

=
∑
p

cp (tp)(tp) (15b)

Here, c denotes contour ordering on the Keldysh contour (see
Figure 1b), and tcii are real times. They carry a tuple of contour
indices c = (c1,… , c𝓁) with ci = − or + if operator Oi resides on
the forward (upper) or backward (lower) branch of the Keldysh
contour, respectively. Equation (15b) is a permutation decompo-
sition of the KF correlator c(t), analogous to Equation (8b) for(𝝉) in the MF. Importantly, it employs the same PSFs (tp) as
there (which is why the KF and MF formalisms have the same
physical information content). The Keldysh kernelcp (tp) by def-
inition (see ref. [23] for details) singles out that p for which the
operators in p(t) are contour ordered.
The Fourier transform of the KF correlator is

c(𝝎) = ∫ d𝓁t ei𝝎⋅t c(t) = 2𝜋𝛿(𝜔1…𝓁)G
c(𝝎) (16)

Here, the Dirac 𝛿(𝜔1…𝓁), following from time translation invari-
ance, enforces 𝜔1…𝓁 = 0; this condition is understood for the ar-
gument of Gc(𝝎) by definition.
We now switch to the Keldysh basis. There, correlators k(𝝎)

carry a tuple of Keldysh indices, k = k1 … k𝓁 , with ki ∈ {1, 2}.
They are obtained by applying a linear transformation D to each
contour index,

k(𝝎) = 1
2

∑
c1 ,…,c𝓁

𝓁∏
i=1

[Dkici ]c(𝝎), Dkici = (−1)ki𝛿ci ,+ (17)

(This convention differs by a prefactor from ref. [23], with k
here =

2𝓁∕2−1k
there, to avoid a proliferation of factors of 2𝓁∕2−1 in later

sections.) One thus obtains

Gk(𝝎) =
∑
p

G
kp
p (𝝎p) (18a)

G
kp
p (𝝎p) =

(
Kkp ∗ Sp

)
(𝝎p) (18b)

= ∫ d𝓁𝜀p𝛿(𝜀1…𝓁)K
kp (𝝎p − 𝜺p)Sp(𝜺p) (18c)

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (5 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Remarkably, the same convolution structure emerges as for
the MF correlator G(i𝝎) (Equation (11b)), for the same reason
(Fourier transforms of products yield convolutions). But now
the frequency arguments are real, and the kernel Kkp (𝝎p) carries
Keldysh indices, with kp = k1 … k𝓁 a permuted version of the ex-
ternal Keldysh index k on Gk.
An explicit expression for this kernel, derived in ref. [23], is

given in Equations (19) below. There, an alternative notation
for Keldysh indices is employed. Each Keldysh index k, being
a list with entries 1 or 2, is represented as a list k = [𝜂1 … 𝜂𝛼 ],
where 𝛼 is the total number of 2’s in k and 𝜂i ∈ {1,… ,𝓁} de-
notes the position of the ith 2 in k in increasing order; e.g.,
k = 1212 = [24]. Similarly, permuted Keldysh indices are repre-
sented as kp = [�̂�1 … �̂�𝛼 ], where �̂�i denotes the position of the
ith 2 in kp. Its values can be deduced from the old 𝜂j’s as fol-
lows: a 2 in slot 𝜂j of k is moved by the permutation p to the
new slot 𝜇j = p−1(𝜂j); denoting the list of new 2-slots by [𝜇1…𝜇𝛼 ]
and arranging it in increasing order yields the desired [�̂�1 … �̂�𝛼 ].
Note also that since �̂�j ∈ {p−1(𝜂1),… , p−1(𝜂𝛼)}, we have �̂�1 ∈
{𝜂1,… , 𝜂𝛼}; hence, �̂�j is an element of the list specifying the ex-
ternal Keldysh index k = [𝜂1… 𝜂𝛼 ]. This will be crucial below. We
illustrate these conventions for the permutation p = (4123) and
k = 1212 = [24]. Then, kp = 2121, [𝜇1𝜇2] = [31] and kp = [�̂�1�̂�2] =
[13]; moreover, �̂�1 = 1 = 4 and �̂�2 = 3 = 2 are both elements of
k = [24].
Expressed in this notation, Equations (18) read

G[𝜂1…𝜂𝛼 ](𝝎) =
∑
p

G[�̂�1…�̂�𝛼 ]
p (𝝎p) (19a)

G[�̂�1…�̂�𝛼 ]
p (𝝎p) =

[
K [�̂�1…�̂�𝛼 ] ∗ Sp

]
(𝝎p) (19b)

with the permuted Keldysh kernel K [�̂�1…�̂�𝛼 ] given by [23]

K [�̂�1…�̂�𝛼 ](𝝎p) =
𝛼∑
j=1
(−1)j−1K [�̂�j ](𝝎p) (19c)

K [𝜂](𝝎p) =
𝓁−1∏
i=1

1

𝜔[𝜂]
1…i

(19d)

Equations (19) compactly express all partial correlators G
kp
p =

G[�̂�1…�̂�𝛼 ]
p , and hence also the full KF correlator Gk = G[𝜂1…𝜂𝛼 ],

through a set of 𝓁 so-called fully retarded kernels K [𝜂]. These are
defined by Equation (19d) and depend on just a single index 𝜂,
which takes the value �̂�j in Equation (19c). The superscript on
the frequencies occurring therein denotes imaginary shifts 𝜔i →
𝜔[𝜂]i = 𝜔i + i𝛾 [𝜂]i , with 𝛾

[𝜂]
i ∈ ℝ chosen such that 𝛾 [𝜂]i≠𝜂 < 0, 𝛾

[𝜂]
𝜂 > 0,

and 𝜔1…𝓁 = 𝜔[𝜂]1…𝓁 = 0. Shifts of precisely this form are needed
to regularize the Fourier integrals expressing kp (𝝎p) throughkp (tp). Indeed, for infinitesimal 𝛾 [𝜂]i each factor in Equation (19d)
is the Fourier transform of a step function,

±i∫ℝ
dt 𝜃(±t)ei𝜔t = 1

𝜔 ± i0+
= P

( 1
𝜔

)
∓ i𝜋𝛿(𝜔) (20)

giving the kernels both principal-value P and Dirac-𝛿 contribu-
tions. We choose the same convention as in ref. [23],

𝛾 [𝜂]i≠𝜂 = −𝛾0, 𝛾 [𝜂]𝜂 = (𝓁 − 1)𝛾0 (21)

see Figure 1c, with 𝛾0 taken to be infinitesimal, 𝛾0 = 0+, for ana-
lytical considerations. Below, we also use the shorthand 𝜔±i…j =
𝜔i…j ± i0+ to indicate infinitesimal imaginary shifts for sums
of frequencies.
Comparing the fully retarded kernelK [𝜂] of Equation (19d) with

the regularMatsubara kernel K̃ of Equation (13b), we find that the
former is the analytic continuation of the latter:

K [𝜂](𝝎p) = K̃
(
i𝝎p → 𝝎[𝜂]

p

)
(22)

This remarkable relation betweenMF and KF kernels constitutes
the nucleus fromwhichwewill develop our strategy for obtaining
KF correlators via analytic continuation of MF correlators. Here,
we just note that, by Equations (13b) and (20), the analytical con-
tinuation of the regular MF kernel on the right of Equation (22)
generally yields both principal-value and Dirac-𝛿 contributions.
By contrast, we will find below that the analytic continuation of
anomalous MF kernels yields solely Dirac-𝛿 contributions in KF
correlators [cf. Equations (84) and (101)].
Two well-known statements on general 𝓁p correlators fol-

low immediately from Equations (19). First, for 𝛼 = 0, they im-
ply G[] = G1…1 = 0. Second, for 𝛼 = 1, we have �̂�1 = 𝜂1. Thus,
K [�̂�](𝝎p) = K̃(𝝎[𝜂]

p ) by Equation (22), and Equation (19b) yields

G[�̂�]
p (𝝎) = [K̃ ∗ Sp](𝝎[𝜂]

p ) = G̃p(i𝝎p → 𝝎[𝜂]
p ) (23)

For the second step, we evoked Equation (14c). Importantly, the
superscript on 𝝎[𝜂]

p on the right, which specifies its imaginary fre-
quency shifts, is fully determined by the external Keldysh index
𝜂 and not dependent on p. It thus remains unchanged through-
out the sum on p in Equation (18a) for the full correlator G[𝜂](𝝎),
which hence can be expressed as

G[𝜂](𝝎) = G̃(i𝝎 → 𝝎[𝜂]) (24)

The fully retarded (𝛼 = 1) components of KF correlators are
therefore fully determined, via analytic continuation, by the reg-
ular parts of MF correlators. Conversely, anomalous parts of MF
correlators can only influence Keldysh components with 𝛼 ≥ 2.
For later use, we also define primed partial correlators

G′[𝜂1…𝜂𝛼 ](𝝎) =
∑
p

G′[�̂�1…�̂�𝛼 ]
p (𝝎p) (25a)

G′[�̂�1…�̂�𝛼 ]
p (𝝎p) =

[(
K [�̂�1…�̂�𝛼 ]

)∗ ∗ Sp
]
(𝝎p) (25b)

They differ from the unprimed correlators of Equation (19b) by
the complex conjugation of the kernel, replacing 𝜔i + i𝛾 [𝜂]i by
𝜔i − i𝛾 [𝜂]i , with 𝛾

[𝜂]
i still determined by the rule Equation (21). For

𝛼 = 1, the corresponding G′[𝜂] will be called fully advanced corre-
lators. For fully retarded or advanced correlators, G[𝜂] or G′[𝜂], all
frequencies 𝜔i≠𝜂 acquire negative or positive imaginary shifts,
respectively. Note that primed correlators G′k may differ from

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (6 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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complex conjugated correlators G∗k as the complex conjugation
generally affects the PSFs, too.
This concludes our summary of the results of ref. [23] needed

for present purposes. In the next section, we introduce a gen-
eral strategy for expressing KF correlators through analytically-
continued MF correlators. It is well-known how to do this for all
components of 2p correlators, and, as discussed above, for the
fully retarded and advanced components of 𝓁p correlators. Our
goal is a strategy applicable for all components of 𝓁p correlators.

2.4. The Bridge between the MF and KF Formalisms

Equation (23), expressing KF partial correlators through MF par-
tial correlators for 𝛼 = 1, has a counterpart for arbitrary 𝛼, ob-
tained via Equations (19), (22), and (14c):

G[�̂�1…�̂�𝛼 ]
p (𝝎p) =

𝛼∑
j=1
(−1)j−1

[
K̃ ∗ Sp

](
𝝎[�̂�j ]
p

)
(26a)

=
𝛼∑
j=1
(−1)j−1 G̃p

(
i𝝎p → 𝝎[�̂�j ]

p

)
(26b)

with �̂�j ∈ {𝜂1,… , 𝜂𝛼}. This is already one of our main results:
The partial correlators serve as a bridge between the MF and

KF. All components of the partial KF correlator G
kp
p = G[�̂�1…�̂�𝛼 ]

p

can be obtained by taking linear combinations of analytic con-

tinuations of partial regular MF correlators, G̃p(i𝝎p → 𝝎[�̂�j ]
p ). The

external Keldysh indices k = [𝜂1… 𝜂𝛼 ] and the permutation p to-

gether specify the imaginary frequency shifts, encoded in 𝝎[�̂�j ]
p , to

be used.
Equation (23), expressing the full (p-summed) KF correlators

throughMF ones for 𝛼 = 1, does not have a counterpart for 𝛼 > 1.
Then, the full correlators, given by

G[𝜂1…𝜂𝛼 ](𝝎) =
∑
p

[
K [�̂�1…�̂�𝛼 ] ∗ Sp

](
𝝎p

)
(27a)

=
∑
p

𝛼∑
j=1
(−1)j−1 G̃p

(
i𝝎p → 𝝎[�̂�j ]

p

)
(27b)

involve a sum
∑

j. The �̂�j indices on the right now depend on p,
so that the imaginary frequency shifts vary from one permutation
to the next. As a result, the full G[𝜂1…𝜂𝛼 ], unlike G[𝜂], does not de-
pend on a single set of frequency shifts and cannot be directly ex-
pressed through a mere analytic continuation of G̃(i𝝎). Instead,
Equation (27b) requires separate knowledge of each individual
G̃p(i𝝎p). Most computational methods capable of computing the
full MF correlatorG(i𝝎) do not have access to the separate partial
MF correlators G̃p(i𝝎p). In the following, we therefore develop a
strategy for extracting the partial MF correlators G̃p(i𝝎p) from a
full MF correlator G(i𝝎) given as input, assuming the latter to be
known analytically. By writing the resulting functions G̃p(i𝝎) in
the form [K̃ ∗ Sp](i𝝎), one can deduce explicit expressions for the
PSFs Sp[G] as functionals of the input G. By inserting these Sp
into Equation (27a), one obtains G[𝜂1…𝜂𝛼 ][G] as a functional of G,
thereby achieving the desired MF-to-KF analytic continuation.

We start in the MF time domain. There, a specific partial MF
correlator p(𝝉p) can be obtained from the full (𝝉) = ∑

p p(𝝉p)
(Equations (8)) using the projector property of MF kernels in the
time domain, (𝝉p)(𝝉p′ ) = (−1)𝓁−1(𝝉p) if p = p′ and 0 other-
wise. Hence, we can express the partial correlator as

p(𝝉p) = (−1)𝓁−1(𝝉p)(𝝉) (28)

Computing the discrete Fourier transform of Equation (28) ac-
cording to Equation (9b), we obtain

p(i𝝎p) = [ ⋆G] (i𝝎p) (29a)

with the imaginary-frequency convolution ⋆ defined as

[ ⋆G] (i𝝎p) =
1

(−𝛽)𝓁−1

∑
i𝝎′

p

𝛿i𝜔′
1…𝓁

(i𝝎p − i𝝎′
p)G(i𝝎

′) (29b)

We will typically sum over the 𝓁 − 1 independent Matsubara
frequency variables i𝜔′1…i, with i ∈ {1,… ,𝓁 − 1}. Note that the
arguments of G(i𝝎′) appear in unpermuted order, but are to
be viewed as functions of the summation variables, i.e., i𝝎′ =
i𝝎′(𝝎′

p). We will oftenmake this explicit using the notationGi𝝎′
p
=

G(i𝝎′(𝝎′
p)), where the subscript is a label indicating the 𝓁 − 1

independent frequencies chosen to parametrize i𝝎′. Consider,
e.g., 𝓁 = 3 and choose i𝜔1, i𝜔12 as summation variables. For
the permutation p = (132), the correlator is then represented as
Gi𝜔1 ,i𝜔12

= Gi𝜔1 ,i𝜔13 = G(i𝝎(i𝜔1, i𝜔13)) = G(i𝜔1,−i𝜔13, i𝜔13 − i𝜔1).
Using Equation (11a) for p(i𝝎p) and Equation (10b) for(i𝝎p)

in Equation (29a), we obtain

𝛽𝛿i𝜔1…𝓁
Gp(i𝝎p) +G

p (i𝝎p)

= 𝛽𝛿i𝜔1…𝓁
[K ⋆G](i𝝎p) + [ ⋆G](i𝝎p) (30)

By construction, neither G
p nor contain an overall factor of 𝛽;

in this sense, they are(𝛽0). Likewise, ⋆G is(𝛽0), for reasons
explained below. Moreover, recall that MF-to-KF continuation via
Equation (27b) requires only the regular part G̃p(i𝝎p). We avoid
anomalous contributions to Gp(i𝝎p) in Equation (30) by impos-
ing the condition i𝜔1…i ≠ 0 on the external frequencies. Setting
i𝜔1…𝓁 = 0, we conclude that

G̃p(i𝝎p) + ( 1
𝛽

)
= [K ⋆G](i𝝎p), (i𝜔1…i ≠ 0, ∀i < 𝓁)

= 1
(−𝛽)𝓁−1

∑
i𝝎′

p

𝛿i𝜔′
1…𝓁

K(i𝝎p − i𝝎′
p)Gi𝝎′

p
(31)

To find G̃p(i𝝎p), we should thus compute K ⋆G with i𝜔1…i ≠ 0
and retain only the (𝛽0) terms, ignoring all (1∕𝛽 j≥1) contri-
butions. Note, however, that the full information on K and G,
including both regular and anomalous terms, is needed on the
right-hand side to obtain G̃p on the left.
Equation (31) is an important intermediate result. It provides a

recipe for extracting partial regular MF correlators from the full
MF correlator by performing Matsubara sums

∑
i𝝎′

p
. After per-

forming the sums, the final results will be analytically continued
to yield G̃p(i𝝎p → 𝝎[𝜂]

p ) through which all Keldysh correlators can
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be expressed (Equation (27b)). However, we choose to fully evalu-
ate the Matsubara sums before performing this analytic continu-
ation. The reason is that we will evaluate the sums using contour
integration and contour deformation. For the latter step, it is con-
venient if the arguments of G̃p(i𝝎p) all lie safely on the imaginary
axis, where they do not impede contour deformation.

2.5. Converting Matsubara Sums to Contour Integrals

Next, we discuss three technical points relevant for performing
Matsubara sums explicitly. To be concrete, we illustrate our gen-
eral statements for the case 𝓁 = 2. Other cases are discussed in
subsequent sections.

2.5.1. Singularity-Free Kernels

The argument of the kernel K(𝛀p) in Equation (31) has the
form𝛀p = i𝝎p − i𝝎′

p. This is always bosonic, being the difference
of two same-type Matsubara frequencies. The Matsubara sums∑

i𝝎′
p
will thus contain terms with Ω1…i = 0. To facilitate deal-

ing with these, we assume that the kernel has been expressed
in “singularity-free” form, where case distinctions ensure that
factors of 1∕Ω1…i occur only if Ω1…i ≠ 0. This is possible for the
presented correlators, as shown in ref. [30] and discussed in Ap-
pendix A.1. These case distinctions are expressed via the symbol

ΔΩ1…i
=

{ 1
Ω1…i

if Ω1…i ≠ 0

0 if Ω1…i = 0
(32)

Thus, K(𝛀p) is assumed to contain 1∕Ω1…i only via ΔΩ1…i
. A sum

over aΔ symbol becomes a restricted sum, lacking the summand
for which Δ = 0. For 𝓁 = 2, e.g., we have K(𝛀p) = ΔΩ1

− 1
2
𝛽𝛿Ω1

(see Equation (A2a)), so that Equation (31) yields

G̃p(i𝝎p)
i𝜔1≠0

+ ( 1
𝛽

) 𝓁=2
= 1

(−𝛽)

≠i𝜔1∑
i𝜔′

1

Gi𝜔′
1

i𝜔1 − i𝜔′
1

+
Gi𝜔1

2
(33)

This involves a restricted sum and an (𝛽0) term resulting from
𝛽𝛿Ω1

collapsing the sum 1
(−𝛽)

∑
i𝜔′

1

in Equation (31).

2.5.2. 𝛽𝛿 Expansion of G

To facilitate the identification of the leading-in-𝛽 contributions
to Equation (31), we assume that the anomalous Ĝ contribu-
tion to Gi𝝎′

p
= (G̃ + Ĝ)i𝝎′

p
has been expressed as an expansion in

powers of 𝛽𝛿i𝜔′
1…i
. Such a 𝛽𝛿 expansion is always possible for

the correlators under consideration in this work, as discussed
in Appendix A.2. Whenever 𝛽𝛿i𝜔′ appears in a Matsubara sum
1

(−𝛽)

∑
i𝜔′ , the sum collapses and their 𝛽 factors cancel. (This can-

cellation is why ⋆G in Equation (30) is (𝛽0), as stated above,
even if G contains anomalous terms.) For 𝓁 = 2, e.g., we have
Gi𝜔′

1
= G̃i𝜔′

1
+ 𝛽𝛿i𝜔′

1
Ĝ1, with G̃i𝜔′

1
singularity-free at all Matsub-

ara frequencies i𝜔′
1
and Ĝ1 a constant (see Equation (40)). Thus,

Equation (33) becomes

G̃p(i𝝎p)
i𝜔1≠0

+ ( 1
𝛽

) 𝓁=2
= 1

(−𝛽)

≠i𝜔1∑
i𝜔′

1

G̃i𝜔′
1

i𝜔1 − i𝜔′
1

+
G̃i𝜔1

2
−

Ĝ1

i𝜔1
(34)

Here, the condition i𝜔1 ≠ 0 on the left was evoked to replace
1
2
Gi𝜔1

by 1
2
G̃i𝜔1

on the right.

2.5.3. Converting Sums to Integrals

By restricting or collapsing Matsubara sums containing Δ or 𝛿
factors, one can ensure that the remaining sums are all of the
form 1

(−𝛽)

∑
i𝜔′ f (i𝜔′) or

1
(−𝛽)

∑≠i𝜔
i𝜔′ f (i𝜔

′), where f (z), viewed as a

function of z ∈ ℂ, is analytic at each i𝜔′ visited by the sum. (More
precisely, for each i𝜔′ in the sum, f (z) is analytic in an open do-
main containing that i𝜔′.) We express such sums in standard
fashion as contour integrals:

1
(−𝛽)

∑
i𝜔′

f (i𝜔′) = ∳z
nzf (z) (35a)

1
(−𝛽)

≠i𝜔∑
i𝜔′

f (i𝜔′) = ∳z
nzf (z) − Res

z=i𝜔

(
nzf (z)

)
(35b)

Here, ∳z = ∳ dz
2𝜋i

denotes counterclockwise integration around all
points i𝜔′ visited by the sum, and nz is a Matsubara weighting
function (MWF). We choose it as

nz =
𝜁

e−𝛽z − 𝜁
= 1
(−𝛽)

1
z − i𝜔′

− 1
2
+ (z − i𝜔′) (36)

with 𝜁 = ± for bosonic/fermionic i𝜔′. (nz is related to standard
Fermi and Bose distribution functions by −𝜁 (1 + nz) = 1∕(e𝛽z −
𝜁 ).) The Laurent expansion on the right of Equation (36) shows
that nz has first-order poles with residues 1∕(−𝛽) at all Matsub-
ara frequencies i𝜔′. Therefore, the integral ∳z along a contour
including all i𝜔′ frequencies recovers the unrestricted Matsub-
ara sum of Equation (35a) (see left parts of Figure 2b,c). For the
restricted sum of Equation (35b), the first term on the right rep-
resents an unrestricted sum, i.e. the restricted sum plus a con-
tribution from i𝜔′ = i𝜔, and the residue correction subtracts the
latter. For example, consider the case, needed below, that f (i𝜔′) =
f̃ (i𝜔′)∕(i𝜔 − i𝜔′), with f̃ (z) analytic at z = i𝜔. Then, nzf (z) has a
pole of second order at i𝜔, with

Res
z=i𝜔

(
nzf̃ (z)
i𝜔 − z

)
=

(
𝜕z
[
(i𝜔 − z)nzf̃ (z)

])
z→i𝜔

= 1
2
f̃ (i𝜔) + 1

𝛽

(
𝜕zf̃ (z)

)
z→i𝜔

(37)

Note that Equations (35) remain valid under shifts of theMWF
by a constant, nz → nz + c. We purposefully exploited this free-
dom to choose nz to have −

1
2
as the second term in the Laurent

expansion. The reason is that this leads to a convenient cancel-
lation between terms arising from a 𝛿 in K and residue correc-
tions arising from Δ restrictions. For example, when evaluating

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (8 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Figure 2. a) Analytic regions of a regular 2p MF correlator as a function of a complex frequency 𝜔1 + i𝛾1 with 𝜔1, 𝛾1 ∈ ℝ. The thick, red line on the real
axis depicts a possible branch cut of the correlator. b,c) Contours to evaluate the Matsubara summation in the (b) fermionic and (c) bosonic case, see
Equations (43) and (44), respectively. Crosses indicate the poles of the MWF nz1

at the Matsubara frequencies on the imaginary axis. The dashed blue

contours, initially enclosing all Matsubara frequencies, are deformed away from the imaginary axis to run infinitesimally above and below the real axis.
In the bosonic 2p case (c), the branch cut does not extend to z1 = 0 as the correlator, by definition, is free of any singularities at vanishing Matsubara
frequencies.

the Matsubara sum in Equation (34) using Equations (35b) with
f (i𝜔′) = G̃i𝜔′ ∕(i𝜔 − i𝜔′), we obtain:

G̃p(i𝝎p)
i𝜔1≠0

+ ( 1
𝛽

)

𝓁=2
= ∳z1

nz1G̃z1

i𝜔1 − z1
− Res

z1=i𝜔1

(
nz1G̃z1

i𝜔1 − z1

)
+
G̃i𝜔1

2
−

Ĝ1

i𝜔1
(38a)

= ∳z1

nz1G̃z1

i𝜔1 − z1
− 1
𝛽

(
𝜕z1G̃z1

)
z1→i𝜔1

−
Ĝ1

i𝜔1
(38b)

The 1
2
G̃i𝜔1

term in Equation (38a) conveniently cancels a con-
tribution from the residue correction, evaluated using Equa-
tion (37). This cancellation results from our choice of nz hav-
ing − 1

2
in its Laurent expansion. (Similar cancellations occur for

𝓁 > 2; see, e.g., Appendix C.2.1.) The− 1
𝛽
(𝜕zG̃z)z→i𝜔 term in Equa-

tion (38b) is an example of an( 1
𝛽

)
contribution that arises from

K ⋆G but is not part of G̃p.
Having worked through the example of 𝓁 = 2, we conclude

this section with some general remarks about Equation (31) for
G̃p. Once the Matsubara sums from the imaginary-frequency
convolution K ⋆G have been expressed through contour inte-
grals, one obtains the general form[31]

G̃p(i𝝎p)
i𝜔1…i≠0

+ ( 1
𝛽

)

= ∳z1

⋯∳z1…𝓁−1

K̃(i𝝎p − zp) nz1 … nz1…𝓁−1
G̃z1 ,…,z1…𝓁−1

+ contributions from Ĝ (39)

Here, the (𝓁 − 1)-fold contour integrals involve only the regular
part, G̃, of the full MF correlator. Its anomalous part, Ĝ, comes
with factors 𝛽𝛿 that collapse one or multiple sums in Equa-
tion (31). Therefore, contributions from Ĝ to G̃p contain at most
𝓁 − 2 contour integrals.
The next step, discussed in detail in Section 3.2, is to deform

the integration contour in such a way that it runs infinitesimally
above and below the real axis. The anomalous contributions from
Ĝ can then be reincorporated into the real integrals using bosonic
Dirac delta functions. As a result, one recovers precisely the form
G̃p = K̃ ∗ Sp of the spectral representation (14d): regular kernels
K̃ convolved with other functions, built fromMWFs and analytic
continuations of the various components of G̃ and Ĝ, the latter
multiplied by bosonic Dirac 𝛿 functions. These other functions
can thus be identified with the PSFs Sp = S̃p + Ŝp, now expressed
through analytic continutions ofG. This clarifies, on a conceptual
level, how the information contained in the full MF correlator G
needs to be repackaged to obtain PSFs, and the explicit formulas
for 𝓁 = 2, 3, 4 in Equations (47), (74), and (88) constitute themain
results of this paper. These, in turn, can then be used to obtain
KF correlators via Equation (27a).
To summarize, theMF-to-KF analytic continuation of arbitrary

𝓁p correlation functions can be achieved via the following three-
step strategy:

Step 1. Matsubara summation through contour integration: Insert
theMF kernel K (expressed in singularity-free form) and
the MF correlator G (expressed as a 𝛽𝛿 expansion), in-
cluding all regular and anomalous contributions, into
Equation (31) for G̃p. Restrict or collapse Matsubara
sums containing Δ or 𝛽𝛿 factors and express the re-
maining sums through contour integrals using Equa-
tions (35), to arrive at Equation (39).

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (9 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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Step 2. Extraction of PSFs: Deform the contours away from the
imaginary axis to run along the real axis, while care-
fully tracking possible singularities of the MF correla-
tors. Reincorporate anomalous contributions via bosonic
Dirac delta functions. This results in a spectral represen-
tation of the form G̃p = K̃ ∗ Sp. From this, read off the
PSFs Sp[G], expressed through products of MWFs and
MF correlators, analytically continued to real frequencies
(see, e.g., Equation (47)).

Step 3. Construction of KF correlators: Construct the full KF cor-
relator G[𝜂1…𝜂𝛼 ], involving a sum

∑
p over terms of the

form
[
K [�̂�1…�̂�𝛼 ] ∗ Sp

]
(i𝝎p) (Equation (27a)). Simplify the

kernels K [�̂�1…�̂�𝛼 ] via a set of kernel identities (see, e.g.,
Equations (57)) and combine terms with similar struc-
ture from the sum

∑
p. Insert into the resulting expres-

sions the PSFs from Step 2, and then compute the inte-
grals involved in the ∗ convolution. This leads to equa-
tions expressing KF correlators through analytically con-
tinued MF correlators, G[𝜂1…𝜂𝛼 ][G].

The result of Step 2 already constitutes an analytic continuation
since the PSFs Sp suffice to construct the KF correlators via the
spectral representation. Step 3 serves to give direct relations be-
tween both formalisms.
In Appendix G.2, we follow an independent approach and use

the equilibrium condition to explicitly perform the following con-
sistency check: given an arbitrary set of PSFsSp as input, compute
the MF correlator G =

∑
p K ∗ Sp and verify that the formulas

Sp[G] correctly recover the input PSFs from G, giving Sp[G] = Sp.
This consistency check is presented for general 2p and 3p and for
fermionic 4p correlators.
The next sections are devoted to explicitly working out the de-

tails of this strategy. To demonstrate its basic ideas, we first revisit
the well-known 2p case in the following section. Though that is
textbook material, we present it in a manner that readily general-
izes to the higher-point correlators discussed in subsequent sec-
tions: 3p correlators in Section 5 and 4p correlators in Section 6.

3. Analytic Continuation of 2p Functions

In this section, we carry through the strategy outlined in Sec-
tion 2.5 to obtain the MF-to-KF analytic continuation in the well-
known 2p case. While our strategy may seemmore cumbersome
than traditional textbook discussions (see, e.g., ref. [32]), it has
the merit of readily generalizing to 𝓁 > 2. We first recapitulate
the spectral representation and analytic properties of general 2p
MF correlators (Section 3.1). Then, we express the PSFs in terms
of analytically continued MF correlators (Section 3.2). Finally, we
use these to recover familiar expressions for the retarded, ad-
vanced, and Keldysh components of the KF 2p correlator (Sec-
tion 3.3).

3.1. Analytic Properties of the 2p MF Correlator

We begin by reviewing well-known analytical properties of the 2p
MF correlator. This also serves to give concrete examples for our
notational conventions.

G(i𝝎) = G(i𝜔1, i𝜔2) explicitly depends on one Matsubara fre-
quency, i𝜔1 or i𝜔2, while the other frequency is fixed by energy
conservation, i𝜔12 = 0. Since we want to compute Equation (31)
for arbitrary permutations p = (12), it proves useful to develop
an unbiased notation for the frequency dependence. The cho-
sen explicit frequency dependence is indicated by a subscript
in Gi𝜔1

, such that Gi𝜔1 = G(i𝝎(𝜔1)) = G(i𝜔1,−i𝜔1) and Gi𝜔2 =
G(i𝝎(𝜔2)) = G(−i𝜔2, i𝜔2). The most general form of Gi𝜔1

, cover-
ing both fermionic and bosonic cases, reads

G(i𝝎(𝜔1)) = Gi𝜔1
= G̃i𝜔1

+ 𝛽𝛿i𝜔1 Ĝ1 (40)

in agreement with the general form Equation (A5). The regular
part, G̃i𝜔1

, is singularity-free for all i𝜔1, including 0. Ĝ1 denotes
the anomalous part, a constant, contributing only for i𝜔1 = 0.
The relation Gi𝜔1 = Gi𝜔2 enforces Ĝ1 = Ĝ2.
One of the next steps involves the deformation of the integra-

tion contour ∳z1 from the imaginary axis toward the real axis. This
requires knowledge of the analytic structure of the MF correla-
tor. It can be made explicit via the spectral representation of Gz1
(Equations (14)), with the PSFs Sp viewed as input. For the regu-
lar part, we obtain

G̃z1
=∫ d2𝜀 𝛿(𝜀12)

[S(12)(𝜀1)
z1 − 𝜀1

+
S(21)(𝜀2)
−z1 − 𝜀2

]
=∫ d𝜀1

Sstd(𝜀1)
z1 − 𝜀1

(41)

Here, we introduced the “standard” spectral function Sstd, given
by a commutator of PSFs resulting from the sum over the two
permutations p = (12) and (21):

Sstd(𝜀1) = S[1,2]− (𝜀1,−𝜀1) = S(12)(𝜀1) − S(21)(−𝜀1) (42a)

S[1,2]± (𝜺) = S(12)(𝜀1) ± S(21)(𝜀2) (42b)

Here, 𝜀12 = 0 is understood for the argument of S[1,2]± (𝜺). For PSF
(anti)commutators, we always display the unpermuted 𝜺 and in-
sert the permuted 𝜺p only for individual PSFs, as done on the
right of Equation (42b). Evidently, G̃z1

has poles (or branch cuts
for continuous spectra) whenever the denominator z1 − 𝜀1 van-
ishes. This can happen only if Im(z1) = 0 (or, more generally,
Im(z1) = 0), indicated in Figure 2 by thick, red lines on the real
axis. Hence, the upper and the lower complex half plane are an-
alytic regions of G̃z1

, separated by a branch cut at Im(z1) = 0.

3.2. Extraction of PSFs from Partial MF Correlators

In Section 2.5, we expressed the regular partial MF correlators
G̃p(i𝝎p) for 𝓁 = 2 in terms of a contour integral ∳z1 involving the
regular MF correlator G̃z1

, see Equation (38b). That amounted
to Step 1 of the three-step strategy. Turning to Step 2, we write
G̃p(i𝝎p) in the form of a convolution [K̃ ∗ Sp](i𝝎p), from which
we then read out expressions for the PSFs Sp[G].
To this end, we exploit the analyticity of G̃z1

in the upper and
lower half-plane to deform the contours in ∳z1 from enclosing the
imaginary axis to running infinitesimally above and below the
branch cut. We denote the corresponding integration variables

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (10 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH
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along the branch cut by 𝜀±
1
= 𝜀1 ± i0+, with 𝜀1 = Re(z1) now being

a real variable and ±i0+ infinitesimal shifts.
We discuss the cases of fermionic or bosonic frequencies sep-

arately. For fermions, the contour deformation of ∳z1 in Equa-
tion (38b) is straightforward and yields (see Figure 2b)

∳
dz1
2𝜋i

nz1G̃z1

i𝜔1 − z1
= ∫

∞

−∞

d𝜀1
2𝜋i

n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
(43)

Here, we defined G̃
𝜀1 = G̃𝜀+

1
− G̃𝜀−

1
as the discontinuity of G̃z1

across the branch cut at Im(z1) = 0. Moreover, we extended the
subscript notation introduced after Equation (29b) to real fre-
quencies with infinitesimal imaginary shifts. (This notation is
further discussed after Equation (47).)
In the bosonic case, the pole at z1 = 0 has to be treated sepa-

rately (see Figure 2c):

∳
dz1
2𝜋i

nz1G̃z1

i𝜔1 − z1
= P∫

∞

−∞

d𝜀1
2𝜋i

n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
+ Res

z1=0

(
nz1G̃z1

i𝜔1 − z1

)

= P∫
∞

−∞

d𝜀1
2𝜋i

n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
+ ( 1
𝛽

)
(44)

Here, P∫ indicates a principal-value integral. The residue evalu-
ates to a contribution of order ( 1

𝛽
) as the bosonic MWF nz1 is

the only factor having a pole at z1 = 0, with residue 1∕(−𝛽) there
(remember that i𝜔1 ≠ 0). Combining Equations (43), (44), and
(38b), and omitting ( 1

𝛽

)
terms, we finally find

G̃p(i𝝎p) = ∫𝜀1
n𝜀1G̃
𝜀1

i𝜔1 − 𝜀1
−

Ĝ1

i𝜔1
= ∫𝜀1

n𝜀1G̃
𝜀1 + 𝛿(𝜀1)Ĝ1

i𝜔1 − 𝜀1
(45)

On the right, we absorbed the anomalous Ĝ contribution into the
integral, defining 𝛿(𝜀1) = −2𝜋i 𝛿(𝜀1). Moreover, we introduced
the symbol ∫𝜀i as

∫𝜀i … =

⎧⎪⎪⎨⎪⎪⎩

∫
∞

−∞

d𝜀i
2𝜋i

… for fermionic 𝜀i or anomalous frequency,

P∫
∞

−∞

d𝜀i
2𝜋i

… for bosonic 𝜀i and regular frequency.

(46)

We call a frequency 𝜀i anomalous if it is directly set to zero by
a Dirac 𝛿(𝜀i) in the integrand, and regular otherwise. Since the
anomalous contribution arose from a Kronecker 𝛿i𝜔1 , we arrive at
a rule of thumb: when performing Matsubara sums via contour
integration and contour deformation to the real axis, Kronecker
deltas withMatsubara arguments lead to Dirac deltas with real ar-
guments.
Importantly, Equation (45) has precisely the same form as

Equation (14d) for 𝓁 = 2, with the correspondence

(2𝜋i)Sp(𝜀1) = n𝜀1G̃
𝜀1 + 𝛿(𝜀1)Ĝ1 (47)

This remarkable formula is the first central result of this section:
it shows that a suitable analytic continuation of the MF correla-

tor G(i𝝎), combined with a MWF, fully determines the PSF and
thus, via the spectral representation Equations (27a), the KF cor-
relatorGk. It also clarifies the role of anomalous contributions. In
subsequent sections, we will find analogous results for 𝓁 = 3, 4.
To conclude this section, we elaborate on the meaning of the

super- and supscript notation used above. The discontinuity in
Equation (47), G̃

𝜀1 = G̃𝜀+
1
− G̃𝜀−

1
, consists of analytically continued

MF correlators, G̃(i𝝎) → G̃(z). Here, the entries of z = (𝜀±1 , 𝜀
∓
2 )

are infinitesimally shifted by +i0+ or −i0+, but constrained by
energy conservation, 𝜀12 = 0. The subscript on G̃𝜀±

1
has the same

meaning as for imaginary frequencies (see paragraph after Equa-
tion (29b)): it indicates the chosen explicit (real-)frequency de-
pendence of G̃(z), i.e., G̃𝜀±

1
= G̃(z(𝜀±

1
)), uniquely determining the

imaginary shifts in each entry of z. To be explicit, we have

G̃𝜀1 = G̃(𝜀+1 ,−𝜀
+
1 ) − G̃(𝜀−1 ,−𝜀

−
1 ) (48a)

G̃𝜀2 = G̃(−𝜀+2 , 𝜀
+
2 ) − G̃(−𝜀−2 , 𝜀

−
2 ) (48b)

Since 𝜀2 = −𝜀1 (energy conservation) and hence 𝜀+2 = −𝜀−1 ,
we have G̃

𝜀1 = −G̃𝜀2 = G̃
−𝜀2 . (Check for negative superscripts:

G̃
−𝜀2 = G̃(−𝜀2)+ − G̃(−𝜀2)− = G̃−𝜀−2

− G̃−𝜀+2
= −G̃𝜀2 .)

For illustration, we give explicit formulas for Sp for the permu-
tations p = (12) and p = (21),

(2𝜋i)S(12)(𝜀1) = n𝜀1 [G̃(𝜀
+
1 ,−𝜀

+
1 ) − G̃(𝜀−1 ,−𝜀

−
1 )] + 𝛿(𝜀1)Ĝ1

(2𝜋i)S(21)(𝜀2) = n𝜀2 [G̃(−𝜀
+
2 , 𝜀

+
2 ) − G̃(−𝜀−2 , 𝜀

−
2 )] + 𝛿(𝜀2)Ĝ2 (49)

where we inserted Equation (48) for the discontinuities. The
anomalous contributions satisfy Ĝ1 = Ĝ2 (as explained after
Equation (40)) and exist only for bosonic correlators (𝜁 = 1). En-
ergy conservation 𝜀2 = −𝜀1 then gives

(2𝜋i)S(21)(−𝜀1) = n−𝜀1 [G̃(𝜀
−
1 ,−𝜀

−
1 ) − G̃(𝜀+1 ,−𝜀

+
1 )] + 𝛿(𝜀1)Ĝ2

= 𝜁e−𝛽𝜀1 (2𝜋i)S(12)(𝜀1) (50)

For the last step, we used the identity −n−𝜀1 = 𝜁e
−𝛽𝜀1n𝜀1 . As a use-

ful consistency check, we note that Equation (50) corresponds to
the equilibrium condition Equation (4) for PSFs (with p = (21),
p𝜆 = (12) there, implying 𝜁p = 𝜁 , 𝜁p𝜆 = +1 and 𝜀1 = 𝜀2 = −𝜀1,
𝜀p𝜆(1) = 𝜀1).
Expressing the standard spectral function Sstd(𝜀1) from Equa-

tion (42a) in terms of Equation (47), we find

(2𝜋i)Sstd(𝜀1) = n𝜀1G̃
𝜀1 + 𝛿(𝜀1)Ĝ1 − n−𝜀1G̃

−𝜀1 − 𝛿(−𝜀1)Ĝ2

= n𝜀1G̃
𝜀1 − n−𝜀1G̃

−𝜀1 = (n𝜀1 + n−𝜀1 )G̃
𝜀1

= −G̃𝜀1 (51)

where we used G̃
−𝜀1 = −G̃𝜀1 . Thus, the discontinuity G̃𝜀1 in the

PSFs (47) encodes Sstd(𝜀1). Conversely, however, Sstd(𝜀1) retains
only the discontinuity G̃

𝜀1 in the PSFs (47), while the informa-
tion on the MWF and the anomalous part, both contained in the
Sp (49), is lost. In Appendix G.2, we use Equation (51) and the
equilibrium condition to explicitly perform the following consis-
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Figure 3. a) Analytic continuation of theMatsubara frequency i𝜔1 → 𝜔
[1]
1 = 𝜔1 + i𝛾0 in Equations (52) for fermionic frequencies. The imaginary part of the

external frequency 𝜔[1]1 has to be larger than the imaginary parts of 𝜀±1 used to integrate infinitesimally above and below the real axis. The transition from
(a) to (b) illustrates the closing of the contour in the upper/lower half-planes to evaluate the integral in Equation (53). As the integrand is independent
of the fermionic MWF n𝜀1 , the only contribution to the integral originates from the simple pole at z1 = 𝜔

[1]
1 .

tency check: given an arbitrary set of PSFs as input, compute the
MF correlator G =

∑
p K ∗ Sp and verify that Equation (47) for Sp

correctly recovers the input PSFs.

3.3. Keldysh Correlator

Next, we turn to Step 3 of our three-step strategy: we use the PSFs
obtained above to explicitly construct the Keldysh components
G[1], G[2], and G[12], expressed through analytically continued MF
correlators. As the structure of KF correlators becomes more in-
tricate with an increasing number of 2’s in the Keldysh compo-
nent, denoted by 𝛼 in Equations (19), we discuss the different
values of 𝛼 separately in the following and throughout the rest of
the paper.

3.3.1. Keldysh Components G[𝜂]

For 𝛼 = 1, the fully retarded or fully advanced Keldysh compo-
nentsG[𝜂] can be deduced from the regular part of MF correlators
alone (Equation (23)). Here, we follow the alternative and equiv-
alent strategy of Step 3: we insert the PSFs from Equation (47)
into the spectral representation (27a):

G[𝜂](𝝎) =
∑
p

[
K [�̂�] ∗ Sp

]
(𝝎p) =

∑
p

[
K̃ ∗ Sp

](
𝝎[𝜂]
p

)
(52a)

= ∫ d2𝜀 𝛿(𝜀12)

(
S(12)(𝜀1)

𝜔[𝜂]1 − 𝜀1
+

S(21)(𝜀2)

𝜔[𝜂]2 − 𝜀2

)
(52b)

= ∫ d𝜀1
S[1,2]− (𝜀1,−𝜀1)

𝜔[𝜂]1 − 𝜀1
(52c)

Here, we used 𝜔[𝜂]2 = −𝜔[𝜂]1 (Equation (21)) and that the sum over
both permutations, p = (12) and (21), leads to the appearance of
the PSF commutator S[1,2]− (equalling Sstd, cf. Equation (42)).
Before proceeding, a general remark is in order: When the ex-

ternal variables 𝝎[𝜂]
p appear in ∗ convolution integrals such as∫𝜀1 in Equations (52), it is essential to maintain the hierarchy

𝛾0 ≫ 0+ for the infinitesimal imaginary shifts ±i𝛾0 and ±i0± con-
tained in the external frequencies 𝝎[𝜂]

p and the integration vari-
ables 𝜀±1 , respectively. The reason is that the contour deformation

from ∳z1 to ∫𝜀1 has been performed before the analytic continu-

ation i𝝎p → 𝝎[𝜂]
p underlying Equations (27) and leading to Equa-

tion (52) (see Figure 3a). This hierarchy is particularly relevant for
principle-value integrals P∫ (needed below); these exclude an in-
terval [−0+, 0+] around the origin, and 𝛾0 must lie outside this in-
terval.
Inserting S[1,2]− (𝜀1,−𝜀1) = Sstd(𝜀1) = G̃

𝜀1∕(−2𝜋i) (from Equa-
tions (42a) and (51)), we find

G[𝜂](𝝎) = −∫𝜀1
G̃
𝜀1

𝜔[𝜂]1 − 𝜀1
= −∫𝜀1

G̃𝜀+1 − G̃𝜀−1
𝜔[𝜂]1 − 𝜀1

= G̃𝜔[𝜂]1
(53)

Importantly, no MWFs n𝜀1 occur in Equation (53). For the last
step, we were thus able to close the forward (backward) inte-
gration contour involving G̃𝜀+1 (G̃𝜀−1 ) in the upper (lower) half-
plane. We then used Cauchy’s integral formula for the simple
pole at 𝜔[𝜂]1 (see Figure 3b). Equation (53) expresses the fully re-
tarded Keldysh correlators through analytic continuations of MF
correlators, G[𝜂][G], as desired. To make contact with standard
notation, we recall that the retarded and advanced 2p compo-
nents are given by GR = G21 = G[1] and GA = G12 = G[2]. Rein-
stating frequency dependencies, with 𝜔[1]1 = 𝜔1 + i𝛾0 ≡ 𝜔+1 and
𝜔[2]1 = 𝜔1 − i𝛾0 ≡ 𝜔−1 , we get
GR(𝝎) = G̃(𝜔+1 ,𝜔

−
2 ), GA(𝝎) = G̃(𝜔−1 ,𝜔

+
2 ) (54)

This implies the well-known relation

G′R(𝝎) = GA(𝝎), G′A(𝝎) = GR(𝝎) (55)

3.3.2. Keldysh Component G[12]

For 𝛼 = 2, both Keldysh indices equal 2, G22 = G[12]. Then, the
spectral representation in Equation (27a) requires the kernel
(Equation (19c))

K [�̂�1 �̂�2](𝝎p) =
(
K [�̂�1]−K [�̂�2]

)
(𝝎p) = K̃

(
𝝎[ ̄̂𝜂1]
p

)
−K̃

(
𝝎[ ̄̂𝜂2]
p

)
(56)
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for the case [𝜂1𝜂1] = [12] = [�̂�1�̂�2]. Evaluating this for p = (12) and
(21), we find

K [12](𝝎(12)) = K̃(𝝎[1]
(12)) − K̃(𝝎[2]

(12))

= 1

𝜔[1]1
− 1

𝜔[2]1
=

−2i𝛾0
𝜔21 + 𝛾

2
0

= 𝛿𝛾0 (𝜔1) (57a)

K [12](𝝎(21)) = K̃(𝝎[2]
(21)) − K̃(𝝎[1]

(21))

= 1

𝜔[2]2
− 1

𝜔[1]2
=

−2i𝛾0
𝜔22 + 𝛾

2
0

= 𝛿𝛾0 (𝜔1) (57b)

On the right, we introduced a Lorentzian representation of a
broadened Dirac delta function:

𝛿𝛾0 (x) =
−2i𝛾0
x2 + 𝛾20

, lim
𝛾0→0+
𝛿𝛾0 (x) = −2𝜋i𝛿(x) = 𝛿(x) (58)

Finally, we obtain G[12] by convolving the kernels (57) with the
PSFs (47) according to Equation (27a):

G[12] =
∑
p

[
K [1̂2̂] ∗ Sp

]
(𝝎p)

= ∫𝜀1 (2𝜋i)S[1,2]+ (𝜀1,−𝜀1) 𝛿𝛾0 (𝜔1 − 𝜀1)

= ∫𝜀1
[
(1 + 2n𝜀1 )G̃

𝜀1 + 2𝛿(𝜀1)Ĝ1

]
𝛿𝛾0 (𝜔1 − 𝜀1)

= N𝜔1G̃
𝜔1 + 4𝜋i 𝛿(𝜔1)Ĝ1 (59)

For the last step we defined

N𝜔i = −1 − 2n𝜔i = coth[𝛽𝜔i∕2]𝜁
i

(60)

For bosonic correlators, N𝜔1 is singular at 𝜔1 = 0, so that a
principle-value integral is implied in Equation (59). Then, the
product N𝜔1G̃

𝜔1 should be evaluated via the limit (N𝜔1G̃
𝜔1 )𝜔1→0.

More precisely, three limits are involved: 0+, 𝛾0, and 𝜔1 should all
be sent to zero, while respecting 0+ ≪ 𝛾0 ≪ |𝜔1| (see discussion
after Equation (52)). In the following, we suppress the subscript
𝛾0 in Equation (58) and always take 𝛾0 → 0+ after evaluating a
principal-value integral (if present).
Summarizing, all Keldysh components can be expressed

through analytically continued MF functions. Comparing Equa-
tions (59) and (40), we find that the anomalous part, Ĝ1, en-
ters G[12] with a prefactor of 4𝜋i𝛿(𝜔1). Using our previous results
from Equation (54), yielding G̃

𝜔1 = GR(𝜔1) −GA(𝜔1), and defin-
ing G[12] = GK , the above relation (59) can be identified as the
FDR

GK (𝜔1) = N𝜔1
[
GR(𝜔1) −GA(𝜔1)

]
+ 4𝜋i 𝛿(𝜔1) Ĝ1 (61)

Hence, the way in which anomalous MF terms appear in KF cor-
relators is via Keldysh correlator GK . The anomalous term con-
tributes only if 𝜔1 is bosonic and vanishes.
We will refer to general relations between components of

KF correlators in thermal equilibrium as generalized fluctuation-

dissipation relations (gFDRs). Equations (55) and (61) constitute
the two gFDRs available for 𝓁 = 2. In the absence of anomalous
contributions, they reduce the three nonzero KF components to
a single independent one (typically chosen as GR).

4. Analytic Regions and Discontinuities of the MF
Correlator

Step 2 of our three-step strategy, the extraction of PSFs, requires
knowledge of possible singularities of the MF correlators. In the
2p case, for G̃z1

, a branch cut divides the complex z1 plain into two
analytic regions (see Figure 2a), and the discontinuity across the
branch cut is given by the difference of the analytic continuations
G̃𝜔±1 . In this section, we generalize the concepts of and notations
for branch cuts, analytic regions, and discontinuities to general𝓁,
enabling a concise discussion of the analytic continuation of 3p
and 4p MF correlators in Sections 5 and 6, respectively. We focus
on the regular parts G̃ of theMF correlators; the anomalous parts
will be discussed separately in the sections for 𝓁 = 3 and 4.

4.1. Analytic Regions of G̃(z)

Possible singularities of the regular part can be inferred from the
spectral representation in Equation (14d)

G̃(z) = ∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)
∑
p

Sp(𝜺p)∏𝓁−1
i=1 (z1…i − 𝜀1…i)

(62)

with zi = 𝜔i + i𝛾i and z1…𝓁 = 0. Singularities can be located at the
points where the imaginary part of the denominator vanishes,
defining branch cuts by the condition

Im(zI) = 𝛾I = 0 (63)

where zI =
∑

i∈I zi denotes a frequency sum over the elements
of a non-empty subset I ⊆ {1,… ,𝓁}. In total, condition (63) de-
fines 2𝓁−1 − 1 distinct branch cuts since frequency conservation
implies Im(zI) = −Im(zIc ) where I

c = {1,… ,𝓁}∖I is the comple-
ment of I, so that Im(zI) = 0 and Im(zIc ) = 0 describe the same
branch cut. The branch cuts divide ℂ𝓁 into regions of analyticity
(regions without singularities), each corresponding to one partic-
ular analytic continuation of G̃.
We henceforth focus on the case, needed for Equation (27b),

that all arguments of G̃(z) are real, up to infinitesimal shifts. To
be specific, we take the imaginary shifts of the frequency sums zI
to be infinitesimal, |𝛾I| = 0+ (with signs determined via conven-
tions described below). Then, G̃(z) is a function of 𝓁 − 1 indepen-
dent real frequencies 𝜔i, and the analytic region is indicated by
including the 2𝓁−1 − 1 shift directions 𝛾I = ±0+ in the argument
of G̃(z). Thus, for 2p, 3p, and 4p correlators, we need 1, 3, and 7
imaginary parts, respectively (see examples below for 𝓁 = 3, 4 in
Equations (65) and (66)).
For a compact presentation of our results, it is convenient to

introduce notation that specifies all imaginary shifts via a (𝓁 − 1)-
tuple ž whose components ži = �̌�i + i�̌�i are frequency sums of
the form ži = zI. Then, the argument of G̃(z) is expressed as z(ž),
and the imaginary shifts of z are determined by those chosen for

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (13 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300504, W

iley O
nline L

ibrary on [05/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.ann-phys.org

Figure 4. Regions of analyticity of regular 3p MF correlators. Lines with
𝛾i = 0 denote possible branch cuts of the correlators. (Figure adapted
from ref. [17].) We label each region by that specific Keldysh correlator,
G[𝜂] or G′[𝜂], whose imaginary shifts 𝛾i lie within that region: For G[1], only
𝜔1 has a positive imaginary shift, i.e., 𝛾1 > 0, 𝛾2 < 0, and 𝛾3 < 0, imply-
ingG[1](𝝎) = G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 ). Primed correlators (Equations (25)) have in-

verted imaginary shifts, such that G′[1](𝝎) = G̃(𝜔−1 ,𝜔
+
2 ,𝜔

+
3 ).

ž. We will specify the 𝓁 − 1 independent frequencies ž chosen
to parametrize z(ž) using subscripts, G̃ž = G̃(z(ž)), extending the
subscript notation developed in Section 3.1 for 𝓁 = 2 to the regu-
lar parts of 𝓁p correlators. To uniquely determine the imaginary
shifts in zI(ž), and hence the analytic region for G̃ž, we implicitly
assign imaginary shifts to all ži via the rule

2|�̌�i−1| ≤ |�̌�i|, for 1 < i < 𝓁 (64)

It ensures that the imaginary part of any ImzI is always nonzero,
and that its sign is specified uniquely through the sign choices
made for the shifts ±|�̌�i|. We specify these sign choices using
superscripts on the corresponding real frequencies �̌�i, writing
ži = �̌�±i = �̌�i ± i|�̌�i|.
Examples for 𝓵 = 3: For 𝓁 = 3, the branch cuts are given by
𝛾1 = 0, 𝛾2 = 0, and 𝛾3 = 0, see Figure 4. Therefore, three imagi-
nary parts are required to uniquely identify one analytic region
for a regular MF correlator G̃(z), with z = (z1, z2, z3) and zi = 𝜔±i .
Consider, e.g., the set of independent frequencies ž = (𝜔+1 ,𝜔

−
2 )

with infinitesimal imaginary shifts fulfilling Equation (64). It
yields the analytic continuation (see Figure 4 for the labels of an-
alytic regions):

G̃𝜔+1 ,𝜔−2 = G̃(𝜔+1 ,𝜔
−
2 ,−𝜔

−
12) = G̃(𝜔+1 ,𝜔

−
2 ,𝜔

+
3 ) = G′[2](𝝎) (65a)

The third argument, z3 = −z12 = −ž1 − ž2 = −𝜔+1 − 𝜔−2 , has a
positive imaginary shift since Im(z3) = −Im(|�̌�1| − |�̌�2|) > 0, by
Equation (64). By contrast, for ž = (𝜔−2 ,𝜔

+
1 ), we obtain

G̃𝜔−2 ,𝜔+1 = G̃(𝜔+1 ,𝜔
−
2 ,−𝜔

+
12) = G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 ) = G[1](𝝎) (65b)

Evidently, G̃𝜔−2 ,𝜔+1 ≠ G̃𝜔+1 ,𝜔−2 , because switching 𝜔
+
1 → 𝜔−2 in the ar-

gument list of ž also switches the relative magnitudes of their
imaginary parts, due to Equation (64).
Note that the representation via subscripts is not unique.

For instance, G[1](𝝎) can also be written as G̃𝜔+12 ,𝜔+1 , since
the subscript ž = (𝜔+12,𝜔

+
1 ) yields z(ž) = (𝜔+1 ,𝜔

+
12 − 𝜔

+
1 ,−𝜔

+
12) =

(𝜔+1 ,𝜔
−
2 ,𝜔

−
3 ), matching the arguments found in Equation (65b).

For the last step, the sign of the imaginary shift of the second
argument follows from Im(z2) = Im(𝜔+12 − 𝜔

+
1 ) = |�̌�1| − |�̌�2| < 0.

Example for 𝓵 = 4: For 𝓁 = 4, the branch cuts are located at
vanishing 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾12, 𝛾13, and 𝛾14, see Figure 5. Thus, seven
imaginary parts are needed to uniquely identify one analytic re-
gion for a regular MF correlator G̃(z). We therefore write its ar-
gument as z = (z1, z2, z3, z4; z12, z13, z14), with zI = 𝜔±I , also list-
ing the arguments after the semicolon since the signs of their
imaginary parts are needed to fully specify the analytic region.
Consider, e.g., ž = (𝜔+13,𝜔

−
2 ,𝜔

+
3 ). Then, z4 = −z123 = −ž1 − ž2 =

−𝜔+13 − 𝜔
−
2 = −𝜔−123 = 𝜔

+
4 , z12 = ž1 + ž2 − ž3 = 𝜔+13 + 𝜔

−
2 − 𝜔+3 =

𝜔−12, and z14 = −z23 = −z2 − z3 = −𝜔−2 − 𝜔+3 = −𝜔+23; the signs of
the imaginary shifts on the right sides follow via Equation (64).
We thus obtain

G̃𝜔+13 ,𝜔−2 ,𝜔+3 = G̃(𝜔−1 ,𝜔
−
2 ,𝜔

+
3 ,−𝜔

−
123;𝜔

−
12,𝜔

+
13,−𝜔

+
23)

= G̃(𝜔−1 ,𝜔
−
2 ,𝜔

+
3 ,𝜔

+
4 ;𝜔

−
12,𝜔

+
13,𝜔

−
14) = C(34)

IV (66)

In the last line, the frequency arguments were expressed through
those used to label the analytic regions in Figure 5.

4.2. Discontinuities of G̃(z)

The discontinuity of G̃(z) across a given branch cut, defined by
ImzI = 𝛾I = 0, quantifies the difference between two neighbor-
ing analytic regions, R+ and R−, separated by 𝛾I = 0. We denote
this discontinuity by G̃(zR+ ) − G̃(zR− ). Explicitly, we have opposite
imaginary shifts 𝛾I in the analytic regions, 𝛾

R+
I = 0+ = −𝛾R−

I , and
equivalent shifts for all other 𝛾R+

J = 𝛾R−
J with J ⊊ {1,… ,𝓁} and

J ≠ I. To describe this discontinuity using ž notation, we write
žR± = (žR±

1 , žr), where the first variable is chosen as the one whose

imaginary part changes sign across the branch cut, žR±
1 = 𝜔±I , and

žr denotes a tuple of 𝓁 − 2 other, independent frequencies, with
imaginary shifts given by the prescription (64). Then, extending
the superscript notation from Section 3.1, we can express the dis-
continuity of G̃(z) across ImzI = 0 as

G̃
𝜔I
žr = G̃𝜔+I ,žr − G̃𝜔−I ,žr = G̃žR+ − G̃žR− (67)

Similarly, we define consecutive discontinuities across two
branch cuts, 𝛾I = 0 and 𝛾J = 0, to be evaluated as

G̃
𝜔I ,𝜔J
ž3 ,…,ž𝓁−1

= G̃
𝜔I
𝜔+J ,ž3 ,…,ž𝓁−1

− G̃
𝜔I
𝜔−J ,ž3 ,…,ž𝓁−1

(68)

where we have ž1 = 𝜔±I and ž2 = 𝜔
±
J .

Examples for 𝓵 = 3: For a discontinuity across 𝛾2 = 0 and
žr = 𝜔+1 , we find

G̃
𝜔2
𝜔+1

= G̃𝜔+2 ,𝜔+1 − G̃𝜔−2 ,𝜔+1

= G̃(𝜔+1 ,𝜔
+
2 ,−𝜔

+
12) − G̃(𝜔+1 ,𝜔

−
2 ,−𝜔

+
12)

= G̃(𝜔+1 ,𝜔
+
2 ,𝜔

−
3 ) − G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 )

= G′[3](𝝎) −G[1](𝝎) (69)
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Figure 5. Regions of analyticity of regular 4p MF correlators (analogous to ref. [13]). Lines with Im zi = 𝛾i = 0 and Im zij = 𝛾ij = 0 denote possible branch
cuts. The rectangular regions are labeled by arabic numbers indicating which 𝛾i are positive; e.g., for region (124), we have 𝛾1, 𝛾2, 𝛾4 > 0 but 𝛾3 < 0.
Consequently, regions composed of one or three arabic numbers correspond to fully retarded or advanced Keldysh components. Regions with two of
the 𝛾i positive, like region (12), are further divided into four subregions by the branch cuts in 𝛾ij and are distinguished by roman numbers I − IV.

Two consecutive discontinuities across, e.g., 𝛾1 = 0 and 𝛾2 = 0
yield

G̃
𝜔1 ,𝜔2 = G̃

𝜔1
𝜔+2

− G̃
𝜔1
𝜔−2

= G̃𝜔+1 ,𝜔+2 − G̃𝜔−1 ,𝜔+2 − G̃𝜔+1 ,𝜔−2 + G̃𝜔−1 ,𝜔−2

= G̃(𝜔+1 ,𝜔
+
2 ,−𝜔

+
12) − G̃(𝜔−1 ,𝜔

+
2 ,−𝜔

+
12)

− G̃(𝜔+1 ,𝜔
−
2 ,−𝜔

−
12) + G̃(𝜔−1 ,𝜔

−
2 ,−𝜔

−
12)

= G′[3] −G[2] −G′[2] +G[3] (70)

Example for 𝓵 = 4: The discontinuity for, e.g., 𝛾123 = 0 and
žr = (𝜔+3 ,𝜔

−
1 ) evaluates to

G̃
𝜔123
𝜔+3 ,𝜔

−
1
= G̃𝜔+123 ,𝜔+3 ,𝜔−1 − G̃𝜔−123 ,𝜔+3 ,𝜔−1

= G̃(𝜔−1 ,𝜔
+
2 ,𝜔

+
3 ,−𝜔

+
123;𝜔

−
12,𝜔

−
13,−𝜔

−
23)

− G̃(𝜔−1 ,𝜔
+
2 ,𝜔

+
3 ,−𝜔

−
123;𝜔

−
12,𝜔

−
13,−𝜔

−
23)

= C(23)
I − C(234) (71)

5. Analytic Continuation of 3p Correlators

The notation introduced in the previous section enables a concise
discussion of the analytic continuation of 3pMF correlators in the
following. Section 5.1 is devoted to the general structure of these
correlators and the connection of their analytical continuations to
3p PSFs. In contrast to the 2p case, the derivation of these PSFs,
constituting Steps 1 and 2 of our three-step strategy, is discussed
in Appendix C.2; in themain text, wemerely state the final result.
In Section 5.2, we show that the PSFs yield all components of
the KF correlator as linear combinations of analytically continued
MF correlators.

5.1. Extraction of PSFs

A general 3p correlator can be decomposed into a regular and
various anomalous parts (see Equation (A5) and Appendix C.1):

G(i𝝎(𝜔1,𝜔2)) = Gi𝜔1 ,i𝜔2

= G̃i𝜔1 ,i𝜔2
+ 𝛽𝛿i𝜔1 Ĝ1;i𝜔2

+ 𝛽𝛿i𝜔2 Ĝ2;i𝜔1

+ 𝛽𝛿i𝜔12 Ĝ12;i𝜔1
+ 𝛽2 𝛿i𝜔1 𝛿i𝜔2 Ĝ1,2 (72)

Here, G̃ denotes the regular part, whereas Ĝi represents the
anomalous part w.r.t. frequency i𝜔i, i.e., Ĝi comes with a factor
of 𝛽𝛿i𝜔i and is independent of i𝜔i. Ĝ1,2 is anomalous w.r.t. all fre-
quencies and is a frequency-independent constant. (Note that,
e.g., 𝛽𝛿i𝜔3 Ĝ3 can be written as 𝛽𝛿i𝜔12 Ĝ12 in the 𝛽𝛿 expansion in
Equation (72), implying relations like Ĝ12 = Ĝ3. This unbiased
notation allows us to write formulas that hold for any permuta-
tion p.)
The full correlator G as well as the components G̃ and Ĝi are,

by definition, singularity-free for all Matsubara frequencies. For
the anomalous contributions, we further have the decomposi-
tion

Ĝ3;i𝜔1 = Ĝ
–Δ
3;i𝜔1

+ Δi𝜔1 Ĝ
Δ
3;1 (73)

where Δi𝜔i is defined in Equation (32) for a purely imaginary

Ωi = i𝜔i. Here, Ĝ
Δ
3;1 comprises all terms proportional to a Δi𝜔1

symbol, and Ĝ
–Δ
3;i𝜔1

contains the rest. Analogous definitions hold

for all anomalous terms Ĝi, see Appendix C.1 for a detailed dis-

cussion. The distinction between Ĝ
–Δ
i and ĜΔ

i is only needed if all
three operators are bosonic, in which case all anomalous terms
in Equation (72) can occur. For two fermionic and one bosonic
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operator, all following results equally hold by replacing Ĝ
–Δ
i → Ĝi

and Ĝ
Δ
i → 0.

In Appendix C.2, we show that the PSFs can be expressed via
analytic continuations of the general constituents of the 3p cor-
relator [Equation (72)]:

(2𝜋i)2Sp(𝜀1, 𝜀2)

= n𝜀1n𝜀2G̃
𝜀2 ,𝜀1 + n𝜀1n𝜀12G̃

𝜀12 ,𝜀1 + 𝛿(𝜀1)n𝜀2Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀2)n𝜀1Ĝ
–Δ;𝜀1
2

+ 𝛿(𝜀3)n𝜀1Ĝ
–Δ;𝜀1
3

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ

Δ
3;1

)
(74)

This is ourmain result for 𝓁 = 3. Explicit expressions of the PSFs
for individual permutations are obtained by inserting the per-
muted indices into the above equation. In Equations (C26), we
provide an overview of all possibly occurring discontinuities ex-
pressed through the analytic regions in Figure 4. As for 2p PSFs,
we provide a consistency check of Equation (74) in Appendix G.

5.2. 3p Keldysh Correlators

In the following two sections, we demonstrate how to construct
KF correlators as linear combinations of analytically continued
MF correlators using the PSFs in Equation (74), corresponding to
Step 3 of our strategy. For 𝛼 = 1, Equation (23) gives the analytic
continuation of G to fully retarded components G[𝜂] for general
𝓁. Therefore, we directly consider the more challenging cases of
𝛼 = 2, 3 in Sections 5.2.1 and 5.2.2, respectively. Lastly, in Sec-
tion 5.2.3 we provide an overview of all Keldysh components and
present gFDRs.

5.2.1. Keldysh Components G[𝜂1𝜂2]

To recapitulate, in Section 3.3.2 we performed manipulations on
the level of the Keldysh kernels for 𝓁 = 2 and 𝛼 = 2 by using
the identity (58), which directly allowed us to evaluate the con-
volution with the PSFs. Even though the kernels for 𝓁 = 3 are
more complicated due to an additional factor in the denomina-
tor (see Equation (19d)), similar manipulations are presented in
Appendix C.3.1 for the Keldysh component G212 = G[13]. There,
it is shown that simplifications of the 3p KF kernel K [�̂�1 �̂�2] (Equa-
tion (19c)) yield

G[13](𝝎) = ∫𝜀1 ,𝜀2 𝛿(𝜔1 − 𝜀1)
(2𝜋i)2

𝜔−2 − 𝜀2
S[1,[2,3]− ]+ (𝜀1, 𝜀2,−𝜀12)

− ∫𝜀1 ,𝜀2 𝛿(𝜔12 − 𝜀12)
(2𝜋i)2

𝜔−2 − 𝜀2
S[[1,2]− ,3]+ (𝜀1, 𝜀2,−𝜀12) (75)

Similarly to the 2p case, we always display the unpermuted 𝜺 for
PSF (anti)commutators and insert permuted 𝜺p only for individ-
ual PSFs, implying, e.g., S2[3,1]± (𝜺) = S(231)(𝜀2, 𝜀3) ± S(213)(𝜀2, 𝜀1).
For the integrations in Equation (75), we fixed the two indepen-
dent frequencies 𝜀1 and 𝜀2 as integration variables. We thus ob-

tain, e.g.,

S[1,[2,3]− ]+ (𝜺) = S1[2,3]− (𝜺) + S[2,3]−1(𝜺)

= S(123)(𝜀1, 𝜀2) − S(132)(𝜀1, 𝜀3) + S(231)(𝜀2, 𝜀3)

− S(321)(𝜀3, 𝜀2) (76)

with 𝜀3 = −𝜀12 being understood.
To relate the KF to the MF correlator, we insert Equation (74)

into the PSF (anti)commutators of Equation (76) and simplify
the results using relations for the discontinuities such as G̃

𝜀2 ,𝜀3 =
−G̃𝜀2 ,𝜀1 . Such identities follow by explicitly expressing the dis-
continuities in terms of G[𝜂] and G′[𝜂] correlators (see Equa-
tions (C26)). Then, the PSF (anti)commutator in Equation (76),
e.g., reads

(2𝜋i)2S[1,[2,3]− ]+ (𝜀1, 𝜀2,−𝜀12) = N𝜀1 G̃
𝜀1 ,𝜀2 − 2𝛿(𝜀1)Ĝ

–Δ;𝜀2
1

− 2𝛿(𝜀1)𝛿(𝜀2)Ĝ
Δ
1;2 (77)

Inserting Equation (77) (and a similar expression for S[[1,2]− ,3]+ ,
see Equation (C31b)) into Equation (75) and evaluating one of
the integrals via the 𝛿-function, we find

G[13](𝝎) = −N𝜔1 ∫𝜀2
G̃
𝜔1 ,𝜀2

𝜔−2 − 𝜀2
+ 2𝛿(𝜔1)

⎛⎜⎜⎝∫𝜀2
Ĝ
–Δ;𝜀2
1

𝜔−2 − 𝜀2
−
Ĝ

Δ
1;2

𝜔−2

⎞⎟⎟⎠

− N𝜔12 ∫𝜀2
G̃
𝜔12 ,𝜀2

𝜔−2 − 𝜀2
+ 2𝛿(𝜔12)

⎛
⎜⎜⎝∫𝜀2

Ĝ
–Δ;𝜀2
3

𝜔−2 − 𝜀2
−
Ĝ

Δ
3;2

𝜔−2

⎞
⎟⎟⎠
(78)

Here, it becomes apparent why collecting PSFs in terms of
(anti)commutators is beneficial. The integrands in Equation (78)
do not contain any MWFs depending on the integration variable
𝜀2, so that the only pole away from Im(z2) = 0 comes from the de-
nominators. Consequently, the integrals over 𝜀2 can be evaluated
by closing the forward/backward integration contours in the up-
per/lower half-planes. Then, only the pole at z2 = 𝜔−2 contributes
(as illustrated in Figure 3 for the integral in Equation (53)), and
the final result for the Keldysh correlator G[13] reads

G[13] = N𝜔1G̃
𝜔1
𝜔−2

+ N𝜔12G̃
𝜔12
𝜔−2

+ 4𝜋i 𝛿(𝜔1)Ĝ1;𝜔−2
+ 4𝜋i 𝛿(𝜔12)Ĝ3;𝜔−2

= N𝜔1
(
G′[2] −G[3]

)
+ N𝜔3

(
G′[2] −G[1]

)

+ 4𝜋i 𝛿(𝜔1)Ĝ
[3]

1 + 4𝜋i 𝛿(𝜔3)Ĝ
[1]

3 (79)

Here, we used N𝜔12 = −N𝜔3 , expressed G̃
𝜔1
𝜔−2

and G̃
𝜔12
𝜔−2

in terms of
the analytic regions in Figure 4, and defined the shorthand

Ĝi;𝜔±
j
= Ĝ

–Δ
i;𝜔±

j
+
Ĝ

Δ
i;j

𝜔±j
(80)

We emphasize that Equation (80) should not be interpreted as
a direct analytic continuation of Equation (73). Rather, it can
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be obtained from Equation (73) by replacing Δi𝜔j → 1∕(i𝜔j) and
only afterwards analytically continuing the resulting expression
i𝜔j → 𝜔

±
j . Additionally, we defined the shorthand Ĝ

[𝜂]
i = Ĝi(𝝎[𝜂]),

such that, e.g., Ĝ1;𝜔−2
= Ĝ1;𝜔+3

= Ĝ
[3]

1 . The other two Keldysh com-
ponents with 𝛼 = 2, G[12] and G[23], can be derived similarly, and
their results are shown in Equations (84a) and (84c), respectively.

5.2.2. Keldysh Component G[123]

In this section, we relate the Keldysh componentG[123] to the ana-
lytic continued MF correlator. In the derivation of Equation (78),
using the identity (58) for the 𝛼 = 2 kernel K [�̂�1 �̂�2] was essential.
However, the Keldysh kernel for G[123], K [�̂�1 �̂�2 �̂�3], involves three re-
tarded kernels according to Equation (19c), impeding the direct
application of Equation (58).
In Appendix C.3.2, we show that this problem can be circum-

vented by subtracting a fully retarded component, say, G[3]. An
analysis of the spectral representation of G[123] −G[3] then leads
to

1
(2𝜋i)2

(G[123] −G[3])(𝝎)

= ∫𝜀1 ,𝜀2 𝛿(𝜔1 − 𝜀1) 𝛿(𝜔2 − 𝜀2)S[[1,2]+ ,3]+ (𝜀1, 𝜀2,−𝜀12)

+ ∫𝜀1 ,𝜀2 𝛿(𝜔1 − 𝜀1)
1
𝜔−2 − 𝜀2

S[1,[2,3]− ]− (𝜀1, 𝜀2,−𝜀12)

+ ∫𝜀1 ,𝜀2 𝛿(𝜔2 − 𝜀2)
1
𝜔−1 − 𝜀1

S[2,[1,3]− ]− (𝜀1, 𝜀2,−𝜀12) (81)

Similiar to Equations (76) and (78), we evaluate the PSF
(anti)commutators by inserting Equation (74) (see Equa-
tion (C36)), and subsequently evaluate the integrals either via
the 𝛿-functions or via Cauchy’s integral formula, yielding

(G[123] −G[3])(𝝎)

= (1 + N𝜔1N𝜔2 )G̃
𝜔2 ,𝜔1 + N𝜔12N𝜔1G̃

𝜔12 ,𝜔1 + G̃
𝜔1
𝜔−2

+ G̃
𝜔2
𝜔−1

+ 4𝜋i 𝛿(𝜔1)N𝜔2Ĝ
–Δ;𝜔2
1 + 4𝜋i 𝛿(𝜔2)N𝜔1 Ĝ

–Δ;𝜔1
2

+ 4𝜋i 𝛿(𝜔12)N𝜔1Ĝ
–Δ;𝜔1
3 + (4𝜋i)2𝛿(𝜔1)𝛿(𝜔2)Ĝ1,2 (82)

Amore symmetric form of this result (see Equation (84d)) can be
obtained by expressing all discontinuities in terms of the analytic
regions in Figure 4 and applying the identity

1 + N𝜔1N𝜔2 + N𝜔1N𝜔3 + N𝜔2N𝜔3 = 0 (83)

which holds for 𝓁 = 3 due to frequency conservation.

5.2.3. 3p Generalized Fluctuation-Dissipation Relations

Expressing all Keldysh components with 𝛼 ≥ 2 through analytic
continuations of MF correlators is equivalent to relating them to

fully retarded and advanced components. Indeed, as in the 2p
case, knowledge of the fully retarded and advanced components
and the anomalous terms suffices to obtain all Keldysh compo-
nents, as brought to bear by the 3p gFDRs (where Ni = N𝜔i )

G[12] = N1

(
G̃′[3] − G̃[2]

)
+ N2

(
G̃′[3] − G̃[1]

)

+ 4𝜋i 𝛿(𝜔1)Ĝ
[2]

1 + 4𝜋i 𝛿(𝜔2)Ĝ
[1]

2 (84a)

G[13] = N1

(
G̃′[2] − G̃[3]

)
+ N3

(
G̃′[2] − G̃[1]

)

+ 4𝜋i 𝛿(𝜔1)Ĝ
[3]

1 + 4𝜋i 𝛿(𝜔3)Ĝ
[1]

3 (84b)

G[23] = N2

(
G̃′[1] − G̃[3]

)
+ N3

(
G̃′[1] − G̃[2]

)

+ 4𝜋i 𝛿(𝜔2)Ĝ
[3]

2 + 4𝜋i 𝛿(𝜔3)Ĝ
[2]

3 (84c)

G[123] = N2N3G
[1] + N1N3G

[2] + N1N2G
[3]

+ (1 + N2N3)G
′[1] + (1 + N1N3)G

′[2] + (1 + N1N2)G
′[3]

+ 4𝜋i
[
𝛿(𝜔1)N2

(
Ĝ
–Δ;[2]
1 − Ĝ

–Δ;[3]
1

)
+ 𝛿(𝜔2)N3

(
Ĝ
–Δ;[3]
2 − Ĝ

–Δ;[1]
2

)

+ 𝛿(𝜔3)N1

(
Ĝ
–Δ;[1]
3 − Ĝ

–Δ;[2]
3

)]
+ (4𝜋i)2𝛿(𝜔1)𝛿(𝜔2)Ĝ1,2 (84d)

These gFDRs agree with the results in ref. [24], and generalize
those by also including anomalous contributions. Applications of
these formulas to the Hubbard atom are presented in Section 7.

6. Analytic Continuation of 4p Correlators

In this section, we demonstrate the MF-to-KF analytic con-
tinuation of fermionic 4p correlators. In Section 6.1, we first
discuss our convention for labelling analytic regions and provide
the expression of PSFs in terms of analytically continued MF
correlators. In Section 6.2, we then generalize the key concept
for the construction of 3p KF correlators, namely rewriting
the KF spectral representation using kernel identities and PSF
(anti)commutators, to arbitrary 𝓁, and apply it to the relevant
case 𝓁 = 4.

6.1. Analytic Regions and Extraction of PSFs

As discussed in Section 4.1, the possible singularities of a reg-
ular 4p MF correlator are located at seven branch cuts, splitting
the complex plane into a total of 32 regions (see Figure 5). Impor-
tantly, for 𝓁 ≥ 4, only few of these regions correspond to fully re-
tarded or advanced Keldysh components, in contrast to 𝓁 = 2, 3.
We label analytic continuations of MF correlators by C, e.g.,

G̃(𝜔+1 ,𝜔
−
2 ,𝜔

+
3 ,𝜔

−
4 ;𝜔

−
12,𝜔

+
13,𝜔

−
14) = C(13)

III (85)

The superscript of C(13)
III indicates which 𝜔i (with 1 ≤ i ≤ 4) have

a positive imaginary shift. Analytic regions with two 𝜔i’s having
positive shifts are further divided into four subregions, denoted
by romannumbers I − IV in the subscripts ofC. This is necessary
because forC(13)

III , e.g., the superscripts do not uniquely determine
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the imaginary parts of 𝜔+1 + 𝜔−2 = 𝜔±12 and 𝜔
+
1 + 𝜔−4 = 𝜔±14. Fully

retarded or advanced Keldysh components, on the other hand,
are directly related to analytic regions, G[𝜂] = C(i) with i = 𝜂 and
G′[𝜂] = C(ijk) with i, j, k ≠ 𝜂, as depicted in Figure 5.
Priming correlators, i.e., complex conjugation of the imagi-

nary parts of frequencies (Equation (25)), is directly applicable to
the analytic regions. Consider, e.g., C(1), where only 𝜔1 has a pos-
itive imaginary part; then, priming C(1) yields (C(1))′ = (G[1])′ =
G′[1] = C(234), where only𝜔1 has a negative imaginary part. The ro-
man subscripts are chosen such that they are unaffected by com-
plex conjugation of imaginary parts, so that, e.g., (C(14)

II )′ = C(23)
II .

Finally, we note that double bosonic discontinuities, e.g.,
G̃
𝜔13 ,𝜔14
𝜔+1

, vanish since the fermionic 4p kernel contains only one

bosonic frequency, see Appendix E.1.2. This implies that not all
analytic regions displayed in Figure 5 are independent, since the
following relations hold:

C(ij)
I − C(ij)

II + C(ij)
III − C(ij)

IV = 0, with 1 ≤ i < j ≤ 4 (86)

The identity for (ij) = (12), e.g., follows from G̃
𝜔13 ,𝜔14
𝜔+1

= 0.

After establishing our convention for labeling analytic re-
gions, we now apply our strategy for the analytic continua-
tion to fermionic 4p MF correlators. Anomalous terms, requir-
ing bosonic Matsubara frequencies, only occur for sums of two
fermionic Matsubara frequencies, implying the general form
(Equation (A5))

G(i𝝎(𝜔1,𝜔2,𝜔3)) = Gi𝜔1 ,i𝜔2 ,i𝜔3

= G̃i𝜔1 ,i𝜔2 ,i𝜔3
+ 𝛽𝛿i𝜔12 Ĝ12;i𝜔1 ,i𝜔3

+ 𝛽𝛿i𝜔13 Ĝ13;i𝜔1 ,i𝜔2
+ 𝛽𝛿i𝜔14 Ĝ14;i𝜔1 ,i𝜔2

(87)

The anomalous terms need not be further distinguished by fac-
tors of Δi𝜔 as in Equation (73), since the remaining frequency
arguments are fermionic (i𝜔i ≠ 0).
Using Equation (87), Steps 1 and 2 of our three-step strategy

are discussed in Appendix D; they yield the PSFs

(2𝜋i)3Sp(𝜀1, 𝜀2, 𝜀3)

= n𝜀1 n𝜀2 n𝜀3 G̃
𝜀3 ,𝜀2 ,𝜀1 + n𝜀1 n𝜀2 n𝜀123 G̃

𝜀123 ,𝜀2 ,𝜀1

+ n𝜀1 n𝜀2 n𝜀13 G̃
𝜀13 ,𝜀2 ,𝜀1 + n𝜀1 n𝜀2 n𝜀23 G̃

𝜀23 ,𝜀2 ,𝜀1

+ n𝜀1 n𝜀12 n𝜀3 G̃
𝜀3 ,𝜀12 ,𝜀1 + n𝜀1 n𝜀12 n𝜀123 G̃

𝜀123 ,𝜀12 ,𝜀1

+ n𝜀1 n𝜀3 𝛿(𝜀12) Ĝ
𝜀3 ,𝜀1
12

+ n𝜀1 n𝜀2 𝛿(𝜀13) Ĝ
𝜀2 ,𝜀1
13

+ n𝜀1 n𝜀2 𝛿(𝜀14) Ĝ
𝜀2 ,𝜀1
14

(88)

This is our main result for 𝓁 = 4. Equations (D11) give an
overview over all possibly occurring discontinuities expressed
through the analytic regions in Figure 5. As for the 2p and 3p
cases, we provide a consistency check of Equation (88) in Ap-
pendix G.
To conclude this section, we further comment on properties of

the anomalous parts. As discussed in Appendix D.2, the anoma-

lous contribution Ĝ13;i𝜔1 ,i𝜔2 , e.g., can only depend on the frequen-
cies i𝜔1 and i𝜔2 separately, but not on i𝜔12. For anomalos parts,
the complex frequency plane is thus divided into only four ana-
lytic regions corresponding to the imaginary parts of 𝜀±1 and 𝜀

±
3 , in

contrast to the six analytic regions for 3p correlators. This directly
implies symmetries for discontinuities, such as Ĝ

𝜀2 ,𝜀1
13

= Ĝ
𝜀1 ,𝜀2
13

.
Similarly as for the regular parts, we label analytic continuations
of anomalous parts with Ĉ, e.g.,

Ĝ12;𝜔+1 ,𝜔
−
3
= Ĉ

(14)

12 (89)

with the difference that subscripts indicate the anomalous con-
tributions. Since Ĝ12;𝜔+1 ,𝜔

−
3
is always multiplied by 𝛿(𝜔12), the re-

maining frequencies must have imaginary parts 𝜔−2 and 𝜔
+
4 . Ac-

cordingly, the superscript of Ĉ
(14)

12 indicates the positive imaginary
shifts of 𝜔1 and 𝜔4.

6.2. 4p Keldysh Correlators

In this section, we discuss the construction of KF correlators as
linear combinations of analytically continued MF correlators. In
Equations (59), (75), and (81), we expressed various Keldysh com-
ponents via a convolution of PSF (anti)commutators with mod-
ified KF kernels, which originated from kernel identities pre-
sented in Equations (57) and Appendix C.3. To generalize these
insights to arbitrary 𝓁p correlators and to present our results in a
concise way, we now introduce further notation. The goal of this
notation is to collect terms which are related to discontinuities,
each expressible via a sum over restricted permutations, such as
the

∑
I
1|I2 terms in Equation (93).

The set of all indices L = {1,… ,𝓁} can be partitioned into 𝛼
subsets Ij of length |Ij|, such that L =

⋃𝛼
j=1 I

j with Ij ∩ Ij′ = ∅
for j ≠ j′ and 𝓁 =

∑𝛼
j=1 |Ij|. For a general Keldysh component

[𝜂1 … 𝜂𝛼 ], we define the subsets Ij to contain at least the element
𝜂j ∈ Ij for all j ∈ {1,… , 𝛼}, implying |Ij| ≥ 1. For example, a pos-
sible choice of the subsets for 𝓁 = 4 and [𝜂1𝜂2] = [12] is given by
I1 = {1, 3} and I2 = {2, 4}. With

∑
I
1|I2 , we denote sums over re-

stricted permutations p = I
1|I2 for which all indices in subset I1

appear to the left of those in subset I2. Then, in the previous

example,
∑

I
1|I2 sums over I

1|I2 ∈ {(1324), (3124), (1342), (3142)}.

Consequently, we always find |Ij| = |Ij| and 𝜂j ∈ I
j
for all j ∈

{1,… , 𝛼}. In the following, we denote the elements of I
j
by I

j

i
with i ∈ {1,… , |Ij|}.
We further define the retarded product kernel

K̃
I
1|…|I𝛼

(
𝝎[𝜂1]…[𝜂𝛼 ]

I
1|…|I𝛼

)
=
𝛼−1∏
j=1

[
𝛿(𝜔

I
j )
] 𝛼∏

j=1

[
K̃
(
𝝎[𝜂j ]

I
j

)]
(90a)

K̃
(
𝝎
I
j

)
=

|Ij|−1∏
i=1

1
𝜔
I
j
1…I

j
i

(90b)

The regular kernel in the last line is defined according to
Equation (19d) but restricted to the subtuple of frequencies
𝝎
I
j = (𝜔

I
j
1
,… ,𝜔

I
j

|Ij |
). Additionally, we defined the shorthand
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𝛿(𝜔
I
j ) = −2𝜋i 𝛿(𝜔

I
j ) and 𝜔

I
j = 𝜔Ij =

∑
i∈Ij 𝜔i. The superscript

on 𝝎[𝜂1]…[𝜂𝛼 ]

I
1|…|I𝛼

indicates that the frequencies carry imaginary parts

𝜔i + i𝛾
[𝜂j ]
i for i ∈ I

j
and j ∈ {1,… , 𝛼}, such that 𝛾

[𝜂j ]
𝜂j > 0 and

𝛾
[𝜂j ]
i≠𝜂j < 0. The Dirac delta function also ensures conservation of
imaginary parts, 𝛾Ij = 0.

As an example, consider again 𝓁 = 4 and [𝜂1𝜂2] = [12] with I
1
=

{3, 1} and I
2
= {2, 4}. Then, we find

K̃
I
1|I2

(
𝝎[𝜂1][𝜂2]

I
1|I2

)
= 𝛿

(
𝜔
I
1

)
K̃
(
𝝎[𝜂1]

I
1

)
K̃
(
𝝎[𝜂2]

I
2

)

= 𝛿(𝜔13)
1

𝜔[1]3

1

𝜔[2]2
(91)

The retarded product kernels, together with PSF (anti)commu-
tators, constitute the central objects for expressing Equations (19)
in a form particularly suitable for relating KF components to an-
alytically continued MF correlators.

6.2.1. Keldysh Components G[𝜂1𝜂2]

In Equations (42b) and (76), we introduced PSF
(anti)commutators for 𝓁 = 2 and 𝓁 = 3, respectively. We gener-
alize this notation to arbitrary subsets by defining

S
[I
1
,I
2
]±
(𝜺) = S

I
1|I2

(
𝜺
I
1|I2

)
± S

I
2|I1

(
𝜺
I
2|I1

)
(92)

where the PSF (anti)commutator takes unpermuted variables 𝜺
as its argument. In Appendix F.2, we then show that Keldysh
components with 𝛼 = 2 can be rewritten as

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12
∑
I
1|I2

(
K̃

I
1|I2⋄ S[I1 ,I2]+

)(
𝝎[𝜂1][𝜂2]

I
1|I2

)
(93)

Here, 12 = {(I1, I2)| 𝜂1 ∈ I1, 𝜂2 ∈ I2, I1 ∪ I2 = L, I1 ∩ I2 = ∅} is
the set of all possibilities to partition L = {1,… ,𝓁} into two non-
empty subsets, I1 and I2, such that 𝜂1 ∈ I1 and 𝜂2 ∈ I2. The con-
volution of a kernel with a PSF (anti)commutator is defined as

(
K̃

I
1|I2⋄ S[I1 ,I2]±

)(
𝝎[𝜂1][𝜂2]

I
1|I2

)
(94)

= ∫ d𝓁𝜀 𝛿(𝜀1…𝓁)K̃I
1|I2

(
𝝎[𝜂1][𝜂2]

I
1|I2

− 𝜺
I
1|I2

)
S
[I
1
,I
2
]±
(𝜺)

Further, as shown in Equation (F10), Equation (93) can be ex-
pressed in terms of analytically continuedMatsubara correlators,

G[𝜂1𝜂2](𝝎) =
∑
I1∈1

[
N𝜔I1 G̃

𝜔I1
𝝎∗ + 4𝜋i 𝛿(𝜔I1 )ĜI1;𝝎∗

]
(95)

with 1 = {I1 ⊊ L|𝜂1 ∈ I1, 𝜂2 ∉ I1} the set of all subtuples of L
containing 𝜂1 but not 𝜂2. The 𝓁 − 2 frequencies in 𝝎∗ = {𝜔−i | i ≠
𝜂1, i ≠ 𝜂2} all carry negative imaginary shifts, in accordance with
the definition of 𝝎[𝜂1𝜂2]. The anomalous part ĜI1;𝝎∗ = ĜI1 (z(𝝎∗))
for complex z, which is independent of the anomalous frequency

𝜔I and parametrized via 𝝎∗, is defined as

ĜI1;𝝎∗ =
[
ĜI1 (i𝝎)

]
Δi𝜔→

1
i𝜔

,i𝝎→z(𝝎∗)
(96)

We first replaced the symbol Δi𝜔 by 1∕(i𝜔) to obtain a functional
form that we can analytically continue, and then continue it as
i𝝎 → z(𝝎∗). Remarkably, Equation (95) holds for arbitrary 𝓁, 𝜂1,
and 𝜂2, and elucidates how anomalous terms enter the Keldysh
components with 𝛼 = 2. Examples are found in Equation (59) for
𝓁 = 2, where [𝜂1𝜂2] = [12], 1 = {1}, and 𝝎∗ is an empty set, or
in Equation (79) for 𝓁 = 3, where [𝜂1𝜂2] = [13], 1 = {1, 12}, and
𝝎∗ = 𝜔−2
For 𝓁 = 4, consider [𝜂1𝜂2] = [12], implying the set 1 =

{1, 13, 14, 134} and 𝝎∗ = 𝜔−3 ,𝜔
−
4 . Then, Equation (95) directly

yields

G[12](𝝎) = N1G̃
𝜔1
𝜔−3 ,𝜔

−
4
+ N13G̃

𝜔13
𝜔−3 ,𝜔

−
4
+ N14G̃

𝜔14
𝜔−3 ,𝜔

−
4
+ N134G̃

𝜔134
𝜔−3 ,𝜔

−
4

+4𝜋i 𝛿(𝜔13)Ĝ13;𝜔−3 ,𝜔
−
4
+ 4𝜋i 𝛿(𝜔14)Ĝ14;𝜔−3 ,𝜔

−
4

(97)

An expression for G[12] expressed in terms of analytic regions
is given in Equation (102). Additionally, a full list of all G[𝜂1𝜂2]

is provided in Equations (101a)–(101f) (with relations such as
N134G̃

𝜔134
𝜔−3 ,𝜔

−
4
= −N2G̃

−𝜔2
𝜔−3 ,𝜔

−
4
= N2G̃

𝜔2
𝜔−3 ,𝜔

−
4
used).

6.2.2. Other Keldysh Components

The derivation of G[123] −G[3] in Section 5.2.2 can be extended to
arbitray 𝓁 and [𝜂1𝜂2𝜂3] by keeping track of permutations that are
cyclically related, generalizing Equation (81) to (see Appendix F.3
for details)

(G[𝜂1𝜂2𝜂3] −G[𝜂3])(𝝎)

=
∑

(I1 ,I23)∈1|23
∑
I
1|I23

[
K̃

I
1|I23 ⋄ S[I1 ,I23]−

](
𝝎[𝜂1][𝜂3]

I
1|I23

)

+
∑

(I2 ,I13)∈2|13
∑
I
2|I13

[
K̃

I
2|I13 ⋄ S[I2 ,I13]−

](
𝝎[𝜂2][𝜂3]

I
2|I13

)

+
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

[
K̃

I
1|I2|I3 ⋄ S[[I1 ,I2]+ ,I

3
]+

](
𝝎[𝜂1][𝜂2][𝜂3]

I
1|I2|I3

)
(98)

Here, 123 = {(I1, I2, I3)| 𝜂1 ∈ I1, 𝜂2 ∈ I2, 𝜂3 ∈ I3, Ij ∩ Ij′ =
∅ for j ≠ j′} is the set of all possibilities to partition L = {1,… ,𝓁}
into three subsets, each of which contains one of the indices
𝜂j ∈ Ij. The remaining sets are defined as

1|23 ={(I1, I23)| 𝜂1 ∈ I1, 𝜂2, 𝜂3 ∈ I23, I1 ∩ I23 = ∅} (99a)

2|13 ={(I2, I13)| 𝜂2 ∈ I2, 𝜂1, 𝜂3 ∈ I13, I2 ∩ I13 = ∅} (99b)

Then, Equation (81) provides an example for 𝓁 = 3 and
[𝜂1𝜂2𝜂3] = [123], where 1|23 = {(1, 23)}, 2|13 = {(2, 13)} and123 = {(1, 2, 3)}.
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For 𝓁 = 4, consider [𝜂1𝜂2𝜂3] = [123]. Compared to
the 3p case, the additional index allows for larger sets1|23 = {(1, 234), (14, 23)}, 2|13 = {(2, 134), (24, 13)}, and123 = {(1, 2, 34), (1, 24, 3), (14, 2, 3)}, resulting in (suppress-
ing the frequency arguments of PSF (anti)commutators)

(G[123] −G[3])(𝝎) = G̃
𝜔1
𝜔−2 𝜔

−
4
+ G̃
𝜔14
𝜔−2 𝜔

−
4
+ G̃
𝜔2
𝜔−1 𝜔

−
4
+ G̃
𝜔24
𝜔−1 𝜔

−
4

+ ∫𝜀1𝜀2𝜀3
[
𝛿(𝜔1 − 𝜀1)𝛿(𝜔2 − 𝜀2)

(2𝜋i)3

𝜔+3 − 𝜀3
S[[1,2]+ ,[3,4]− ]+

+ 𝛿(𝜔1 − 𝜀1)𝛿(𝜔3 − 𝜀3)
(2𝜋i)3

𝜔+2 − 𝜀2
S[[1,[2,4]− ]+ ,3]+

+ 𝛿(𝜔2 − 𝜀2)𝛿(𝜔3 − 𝜀3)
(2𝜋i)3

𝜔+1 − 𝜀1
S[[[1,4]− ,2]+ ,3]+

]
(100)

Here, we identified the terms in the first line of Equa-
tion (98) with discontinuities (see Appendix E.1). After insert-
ing the PSFs (see Equations (F15)) and performing the remain-
ing integrations using Cauchy’s integral formula, we obtain
Equation (101g).
For 𝛼 ≥ 4, expressing the spectral representation of G[𝜂1…𝜂𝛼 ] in

terms of retarded product kernels and PSF (anti)commutators be-
comes increasingly challenging. Nevertheless, we provide a for-
mula for G[1234] and 𝓁 = 4 in Equation (F16), with a list of all
relevant PSF (anti)commutators given in Equation (F17). Equa-
tion (101k) then displays the result after evaluating all convolu-
tion integrals.

6.2.3. Overview of Keldysh Components

To summarize the results of the previous sections, we give an
overview of all Keldysh components with 𝛼 > 1:

G[12](𝝎) = N1G̃
𝜔1
𝜔−3 ,𝜔

−
4
+ N2G̃

𝜔2
𝜔−3 ,𝜔

−
4
+ N13G̃

𝜔13
𝜔−3 ,𝜔

−
4
+ N14G̃

𝜔14
𝜔−3 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−3 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−3 ,𝜔

−
4

(101a)

G[34](𝝎) = N3G̃
𝜔3
𝜔−1 ,𝜔

−
2
+ N13G̃

𝜔13
𝜔−1 ,𝜔

−
2
+ N14G̃

𝜔14
𝜔−1 ,𝜔

−
2
+ N4G̃

𝜔4
𝜔−1 ,𝜔

−
2
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−1 ,𝜔

−
2
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−1 ,𝜔

−
2

(101b)

G[13](𝝎) = N1G̃
𝜔1
𝜔−2 ,𝜔

−
4
+ N12G̃

𝜔12
𝜔−2 ,𝜔

−
4
+ N14G̃

𝜔14
𝜔−2 ,𝜔

−
4
+ N3G̃

𝜔3
𝜔−2 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−2 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−2 ,𝜔

−
4

(101c)

G[24](𝝎) = N2G̃
𝜔2
𝜔−1 ,𝜔

−
3
+ N12G̃

𝜔12
𝜔−1 ,𝜔

−
3
+ N14G̃

𝜔14
𝜔−1 ,𝜔

−
3
+ N4G̃

𝜔4
𝜔−1 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−1 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔14)Ĝ14;𝜔−1 ,𝜔

−
3

(101d)

G[14](𝝎) = N1G̃
𝜔1
𝜔−2 ,𝜔

−
3
+ N12G̃

𝜔12
𝜔−2 ,𝜔

−
3
+ N13G̃

𝜔13
𝜔−2 ,𝜔

−
3
+ N4G̃

𝜔4
𝜔−2 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−2 ,𝜔

−
3
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−2 ,𝜔

−
3

(101e)

G[23](𝝎) = N2G̃
𝜔2
𝜔−1 ,𝜔

−
4
+ N12G̃

𝜔12
𝜔−1 ,𝜔

−
4
+ N13G̃

𝜔13
𝜔−1 ,𝜔

−
4
+ N3G̃

𝜔3
𝜔−1 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔12)Ĝ12;𝜔−1 ,𝜔

−
4
+ 4𝜋i𝛿(𝜔13)Ĝ13;𝜔−1 ,𝜔

−
4

(101f )

(G[123] −G[3])(𝝎) =
(
N1N2 + 1

)
G̃
𝜔2 ,𝜔1
𝜔+3

+ N1N12G̃
𝜔12 ,𝜔1
𝜔+3

+ N1N3G̃
𝜔3 ,𝜔1
𝜔+2

+ (N1N13 − 1)G̃
𝜔13 ,𝜔1
𝜔+2

+ N2N3G̃
𝜔3 ,𝜔2
𝜔+1

+ (N2N23 − 1)G̃
𝜔23 ,𝜔2
𝜔+1

+G̃𝜔1𝜔−2 ,𝜔+3 − G̃
𝜔23
𝜔+1 ,𝜔

−
2
+ G̃
𝜔2
𝜔−1 ,𝜔

+
3
− G̃
𝜔13
𝜔+2 ,𝜔

−
1
+ 4𝜋i 𝛿(𝜔12)N1 Ĝ

𝜔1
12;𝜔+3

+ 4𝜋i 𝛿(𝜔13)N1 Ĝ
𝜔1
13;𝜔+2

+ 4𝜋i 𝛿(𝜔14)N2 Ĝ
𝜔2
14;𝜔+1

(101g)

(G[124] −G[4])(𝝎) =
(
N1N2 + 1

)
G̃
𝜔2 ,𝜔1
𝜔+4

+ N1N12G̃
𝜔12 ,𝜔1
𝜔+4

+ N1N4G̃
𝜔4 ,𝜔1
𝜔+2

+ (N1N14 − 1)G̃
𝜔14 ,𝜔1
𝜔+2

+ N2N4G̃
𝜔4 ,𝜔2
𝜔+1

+ (N2N24 − 1)G̃
𝜔24 ,𝜔2
𝜔+1

+G̃𝜔1𝜔−2 ,𝜔+4 − G̃
𝜔24
𝜔+1 ,𝜔

−
2
+ G̃
𝜔2
𝜔−1 ,𝜔

+
4
− G̃
𝜔14
𝜔+2 ,𝜔

−
1
+ 4𝜋i 𝛿(𝜔12)N1 Ĝ

𝜔1
12;𝜔+4

+ 4𝜋i 𝛿(𝜔13)N2 Ĝ
𝜔2
13;𝜔+1

+ 4𝜋i 𝛿(𝜔14)N1 Ĝ
𝜔1
14;𝜔+2

(101h)

(G[134] −G[4])(𝝎) =
(
N1N3 + 1

)
G̃
𝜔3 ,𝜔1
𝜔+4

+ N1N13G̃
𝜔13 ,𝜔1
𝜔+4

+ N1N4G̃
𝜔4 ,𝜔1
𝜔+3

+ (N1N14 − 1)G̃
𝜔14 ,𝜔1
𝜔+3

+ N3N4G̃
𝜔4 ,𝜔3
𝜔+1

+ (N3N34 − 1)G̃
𝜔34 ,𝜔3
𝜔+1

+G̃𝜔1𝜔−3 ,𝜔+4 − G̃
𝜔34
𝜔+1 ,𝜔

−
3
+ G̃
𝜔3
𝜔−1 ,𝜔

+
4
− G̃
𝜔14
𝜔+3 ,𝜔

−
1
+ 4𝜋i 𝛿(𝜔12)N3 Ĝ

𝜔3
12;𝜔+1

+ 4𝜋i 𝛿(𝜔13)N1 Ĝ
𝜔1
13;𝜔+4

+ 4𝜋i 𝛿(𝜔14)N1 Ĝ
𝜔1
14;𝜔+3

(101i)

(G[234] −G[4])(𝝎) =
(
N2N3 + 1

)
G̃
𝜔3 ,𝜔2
𝜔+4

+ N2N23G̃
𝜔23 ,𝜔2
𝜔+4

+ N2N4G̃
𝜔4 ,𝜔2
𝜔+3

+ (N2N24 − 1)G̃
𝜔24 ,𝜔2
𝜔+3

+ N3N4G̃
𝜔4 ,𝜔3
𝜔+2

+ (N3N34 − 1)G̃
𝜔34 ,𝜔3
𝜔+2

+G̃𝜔2𝜔−3 ,𝜔+4 − G̃
𝜔34
𝜔+2 ,𝜔

−
3
+ G̃
𝜔3
𝜔−2 ,𝜔

+
4
− G̃
𝜔24
𝜔+3 ,𝜔

−
2
+ 4𝜋i 𝛿(𝜔12)N3 Ĝ

𝜔3
12;𝜔+2

+ 4𝜋i 𝛿(𝜔13)N2 Ĝ
𝜔2
13;𝜔+3

+ 4𝜋i 𝛿(𝜔14)N2 Ĝ
𝜔2
14;𝜔+4

(101j)

G[1234](𝝎) = N1G̃
𝜔1
𝜔−2 ,𝜔

−
3
+ N2G̃

𝜔2
𝜔−3 ,𝜔

−
4
+ N3G̃

𝜔3
𝜔−1 ,𝜔

−
4
+ N4G̃

𝜔4
𝜔−1 ,𝜔

−
2
+ N3G̃

𝜔3 ,𝜔4
𝜔+2

+ N2G̃
𝜔2 ,𝜔3
𝜔+1

+ N4G̃
𝜔4 ,𝜔1
𝜔+3

+ N1G̃
𝜔1 ,𝜔2
𝜔+4

+ N2G̃
𝜔2 ,𝜔4
𝜔+3

+N4G̃
𝜔4 ,𝜔2
𝜔+3

+ N1G̃
𝜔1 ,𝜔3
𝜔+4

+ N3G̃
𝜔3 ,𝜔1
𝜔+4

+ (N1N2N3 + N1 + N3)G̃
𝜔3 ,𝜔2 ,𝜔1 + (N1N2N4 + N4 + N2)G̃

𝜔4 ,𝜔2 ,𝜔1

+ (N1N2N13 + N1 − N2)G̃
𝜔13 ,𝜔2 ,𝜔1 + (N1N2N23)G̃

𝜔23 ,𝜔2 ,𝜔1 + N1(1 + N12N3)G̃
𝜔3 ,𝜔12 ,𝜔1 + N1N12N4G̃

𝜔4 ,𝜔2 ,𝜔1

+ 4𝜋iN1N3𝛿(𝜔12)Ĝ
𝜔1 ,𝜔3
12 + 4𝜋iN1N2

[
𝛿(𝜔13)Ĝ

𝜔1 ,𝜔2
13 + 𝛿(𝜔13)Ĝ

𝜔1 ,𝜔2
14

]
(101k)
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These equations constitute the main results of the MF-to-KF an-
alytic continuation: They relate all components of a fermionic KF
4p correlator to linear combinations of analytically continued reg-
ular and anomalous parts of the correspondingMF correlator, ex-
pressed in terms of discontinuities and statistical factors Ni.

6.2.4. 4p gFDRs

For 4p correlators, there are several regions of analyticity that can-
not be identified with a KF correlator. Therefore, in contrast to
𝓁 ≤ 3, fully retarded and advanced Keldysh components do not
suffice to determine all other Keldysh components. Nevertheless,
different Keldysh components can be related to each other. We
nowpresent the strategy for deriving these gFDRs for the Keldsyh
component G[12].
Since every Keldysh component can be represented as a linear

combination of analytically continued MF correlators, the ana-
lytic regions can serve as a basis to find relations among differ-
ent Keldysh components. Expressing the discontinuities in Equa-
tion (101a) via analytic regions, the KF correlator G[12] reads

G[12] = N1

(
C(12)
III −G[2]

)
+ N13

(
C(12)
II − C(12)

III

)

+ N14

(
C(12)
IV − C(12)

III

)
+ N2

(
C(12)
I −G[1]

)

+ 4𝜋i 𝛿(𝜔13) Ĉ
(12)

13 + 4𝜋i 𝛿(𝜔14) Ĉ
(12)

14 (102)

where we inserted G[1] = C(1) and G[2] = C(2). Evidently, G[12] can-
not be expressed in terms of fully retarded and advanced com-
ponents only (modulo anomalous terms) due to the occurrence
of C(12)

I∕III∕IV. However, these analytic regions and the same anoma-
lous contributions appear in the primed KF correlator G′[34] as
well:

G′[34] = N3

(
C(12)
II −G′[4]

)
+ N13

(
C(12)
III − C(12)

II

)

+ N14

(
C(12)
III − C(12)

IV

)
+ N4

(
C(12)
IV −G′[3]

)

− 4𝜋i 𝛿(𝜔13)Ĉ
(12)

13 − 4𝜋i 𝛿(𝜔14)Ĉ
(12)

14 (103)

Note that priming the i𝛿(… ) factors amounts to complex con-
jugation, as these arise from the identity (58), i.e., [i𝛿(… )]′ =
−i𝛿(… ). Therefore, we make the ansatz of expressing G[12] as a
linear combination of G′[34], G[1], G[2], G′[3], and G′[4], where the
coefficients are determined by comparing terms proportional to
the same analytic regions. Even though the resulting set of equa-
tions is overdetermined (including anomalous contributions, we
have ten equations for five coefficients), we find the gFDR

G[12] = − N1G
[2] − N2G

[1]

+
N1 + N2

N3 + N4

[
G′[34] + N3G

′[4] + N4G
′[3]] (104a)

The anomalous terms enter the right-hand side only implicitly via
G′[34]. However, using N1+N2

N3+N4
𝛿(𝜔13) = −𝛿(𝜔13) and

N1+N2

N3+N4
𝛿(𝜔14) =

−𝛿(𝜔14), it is straightforward to show that the Ĉ
(12)

13 and Ĉ
(12)

14 con-
tributions in the last line of Equation (102) are recovered by the
corresponding terms in Equation (103) via Equation (104a). Con-
versely, the gFDR for G[34] can be derived from Equation (104a)
by solving for G′[34] and priming all correlators.
The gFDRs for all other Keldysh components with 𝛼 ≥ 2 follow

from the same strategy: Express Keldysh components in terms of
linearly independent analytic regions and find relations between
different components by solving a set of equations to determine
coefficients. In addition to Equation (104a), we then obtain for
𝛼 = 2

G[13] = − N1G
[3] − N3G

[1]

+
N1 + N3

N2 + N4

[
G′[24] + N2G

′[4] + N4G
′[2]] (104b)

G[14] = − N1G
[4] − N4G

[1]

+
N1 + N4

N2 + N3

[
G′[23] + N2G

′[3] + N3G
′[2]] (104c)

for 𝛼 = 3

G[234] = (1 + N2N4 + N2N3 + N3N4)G
′ [1] − N3N4G

[2] − N2N4G
[3]

− N2N3G
[4] − N4G

[23] − N3G
[24] − N2G

[34] (104d)

G[134] = (1 + N1N4 + N1N3 + N3N4)G
′ [2] − N3N4G

[1] − N1N4G
[3]

− N1N3G
[4] − N4G

[13] − N3G
[14] − N1G

[34] (104e)

G[124] = (1 + N1N2 + N1N2 + N2N4)G
′ [3] − N2N4G

[1] − N1N4G
[2]

−N1N2G
[4] − N4G

[12] − N2G
[14] − N1G

[24] (104f )

G[123] = (1 + N1N2 + N1N3 + N2N3)G
′ [4] − N2N3G

[1] − N1N3G
[2]

− N1N2G
[3] − N1G

[23] − N2G
[13] − N3G

[12] (104g)

and for 𝛼 = 4

G[1234] = 2N2N3N4G
[1] + (N2N3N4 + N2 + N3 + N4)G

′ [1]

+ 2N1N3N4G
[2] + (N1N3N4 + N1 + N3 + N4)G

′ [2]

+ 2N1N2N4G
[3] + (N1N2N4 + N1 + N2 + N4)G

′ [3]

+ 2N2N3N4G
[4] + (N1N2N3 + N1 + N2 + N3)G

′ [4]

+ N3N4G
[12] + N2N4G

[13] + N2N3G
[14]

+ N1N4G
[23] + N1N3G

[24] + N1N2G
[34] (104h)

These results agree with the FDRs found in ref. [24], and there-
fore provide a consistency check for our approach. Moreover, we
checked that the anomalous parts fulfill the same gFDRs. They
enter Equations (104) only implicitly through G[𝜂1𝜂2] and G′[𝜂1𝜂2]

on the right-hand sides, which contain anomalous parts via Equa-
tions (101a)–(101f). This is in contrast to the 2p and 3p cases in
Equations (61) and (84), respectively. There, only fully retarded
and advanced Keldysh correlators, which solely depend on the
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Figure 6. a) Degenerate energy levels of the half-filled Hubbard atom for u > 0. b) Relevant analytic regions of the regular part of the 3p electron-density
correlator in Equation (113). As the correlator is independent of i𝜔3 = −i𝜔12, there are are no poles on the line 𝛾3 = 0 in Figure 4, resulting inG′[1] = G[2]

and G′[2] = G[1]. The dashed arrows indicate the relevant discontinuities for the different Keldysh components with 𝛼 = 2, see Equation (84). c) Reduced
analytic regions of the regular part of the fermionic 4p correlator in Equation (119). The regions labeled by (3), (4), (34), (134), and (234) in Figure 5 are
missing.

regular part G̃ of the corresponding MF correlator (see Equa-
tion (23)), occur on the right-hand side, and thus the anomalous
parts have to enter the gFDRs explicitly.

7. Hubbard Atom

To illustrate the use of our analytic continuation formulas, we
consider the Hubbard atom (HA) with the Hamiltonian

H = Un↑n↓ − 𝜇(n↑ + n↓) (105)

It describes an interacting system of spin– 1
2
electrons on a single

site, created by d†𝜎 , with n𝜎 = d†𝜎d𝜎 the number operator for spin
𝜎 ∈ {↑, ↓}. The chemical potential 𝜇 is set to the half-filling value
𝜇 = u = U∕2 for compact results, where U is the interaction pa-
rameter. The Hilbert space of the HA is only four-dimensional,
with the site being either unoccupied, |0⟩, singly occupied, |↑⟩
or |↓⟩, or doubly occupied, |↑↓⟩. The eigenenergies are (see
Figure 6a)

E0 = E↑↓ = 0, E↑ = E↓ = −u (106)

The partition sum evaluates to Z = tr(e−𝛽H) = 2 + 2e𝛽u.
This very simple model is interesting as it is accessible via ana-

lytically exact computations. It describes the Hubbard model and
the single-impurity Anderson model in the atomic limit (where
the interaction U dominates over all other energy scales) and
can thus serve as a benchmark for numerical methods.[23,33–35]

Several correlators of the Hubbard atom were computed in the
MF and studied extensively, like fermionic 2p (one-particle)
and 4p (two-particle) correlators.[36–40] Also its 3p MF functions
have been computed and applied in previous works.[41–43] The
vertex of the Hubbard atom, obtained from the fermionic 4p
correlator by dividing out external legs, was used as a starting
point for an expansion around strong coupling.[37,38,44,45] Addi-
tionally, it was found that (despite the simplicity of the model)
the two-particle irreducible (2PI) vertices display a complicated
frequency dependence, and their divergencies are subject to
ongoing research.[46–49] Such divergencies have been related

to the breakdown of the perturbative expansion due to the
multivaluedness of the Luttinger–Ward functional[46,50–52] and to
the local moment formation in generalized susceptibilities.[53,54]

2p and 3p bosonic correlators have gained interest in recent
years as well. They describe not only the asymptotic behaviour of
the 4p vertex for large frequencies[40] or the interaction of elec-
trons via the exchange of effective bosons,[55,56] but they are also
the central objects of linear and non-linear response theory.[57,58]

KF correlators for theHA (beyond 𝓁 = 2) were of smaller inter-
est due to the lack of numerical real-frequency studies. However,
substantial progress has been made in this direction.[23,29,59–61]

Hence, we exemplify the analytic continuation from MF to KF
correlators on the example of theHA for various correlators of in-
terest.
One further comment is in order: The following MF corre-

lators are derived by first computing the PSFs, followed by a
convolution with the MF kernels. From our experience, a direct
insertion of these PSFs into the spectral representation of KF
correlators yields cluttered expressions, cumbersome to simplify
due to the infinitesimal imaginary shifts 𝛾0. With the analytic
continuation formulas, on the other hand, terms are conve-
niently preorganized, collecting those contributions with the
same imaginary shifts. Additionally, the discontinuities conve-
niently yield Dirac delta contributions, as we will show below.
In order to derive, e.g., our first results for the 4p correlator,
Equations (H18), it is much more convenient to start from the
analytic continuation formulas, Equations (101), than from the
original KF Equation (19).
For a compact presentation of our results, we distin-

guish different correlators with operators in subscripts, e.g.,
G[O1, O2](i𝝎) = GO1O2 (i𝝎). Furthermore, we will make use of the
identities (proven in Appendix H.1)

𝜔+

(𝜔+)2 − u2
− 𝜔−

(𝜔−)2 − u2
= 𝜋

i
[𝛿(𝜔 + u) + 𝛿(𝜔 − u)] (107a)

1
(𝜔+)2 − u2

− 1
(𝜔−)2 − u2

= 𝜋i
u
[𝛿(𝜔 + u) − 𝛿(𝜔 − u)] (107b)

All following correlators refer to the connected part.

Ann. Phys. (Berlin) 2024, 536, 2300504 2300504 (22 of 46) © 2024 The Authors. Annalen der Physik published by Wiley-VCH GmbH

 15213889, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/andp.202300504, W

iley O
nline L

ibrary on [05/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.ann-phys.org

7.1. Examples for 𝓁 = 2

7.1.1. Fermionic 2p Correlator

To begin with, we consider the fermionic 2p correlator (propa-
gator), with O = (d↑, d

†
↑). By SU(2) spin symmetry, reversing all

spins leaves the correlator invariant. As the nonzero matrix el-
ements are ⟨↑ |d†↑|0⟩ = ⟨↑↓ |d†↑| ↓⟩ = 1 and ⟨0|d↑| ↑⟩ = ⟨↓ |d↑| ↑↓⟩
= 1, we can readily compute the PSFs, Sp, via Equation (22b) in
ref. [23]. Evaluating the spectral representation yields

Gd
↑
d†
↑
(i𝜔) = i𝜔

(i𝜔)2 − u2
= G̃(i𝜔) (108)

By construction, there is no anomalous part Ĝ1 = 0. The re-
tarded and advanced component are directly obtained fromEqua-
tion (54):

G[1∕2]
d
↑
d†
↑

(𝜔) = 𝜔±

(𝜔±)2 − u2
(109)

The Keldysh component involves the difference of the retarded
and advanced component. Via Equation (107a), one gets

G[12]

d
↑
d†
↑

(𝜔) = 𝜋i t
[
𝛿(𝜔 + u) − 𝛿(𝜔 − u)

]
(110)

where we used N−𝜔 = −N𝜔 and defined t = tanh(𝛽u∕2).

7.1.2. Density–Density Correlator

Our second example is the density–density correlator O =
(n↑, n↓). The spectral representation in the MF yields a purely
anomalous result

Gn↑n↓
(i𝜔) = 𝛽𝛿i𝜔

1
4
t = 𝛽𝛿i𝜔Ĝ1 (111)

The correlator Gn↑n↓
discussed above describes the linear re-

sponse of the spin-up occupation to a shift of the spin-down
energy level, which lifts the degeneracy of the singly-occupied
energy levels in Figure 6a. For decreasing temperatures, the
system becomes increasingly susceptible to such perturbations.
This is reflected by the 𝛽 = 1∕T divergence for T → 0 in the
MF correlator of Equation (111), and the 𝛿(𝜔) behavior in
Equation (112) for its Keldysh counterpart.
Using Equations (54) and (61), the Keldysh components read

G[1]
n
↑
n
↓
(𝜔) = G[2]

n↑n↓
(𝜔) = 0,

G[12]
n
↑
n
↓
(𝜔) = 4𝜋i 𝛿(𝜔) 1

4
t (112)

We again emphasize the importance of the anomalous term in
the gFDR. If it were discarded, the Keldysh component G[12]

n
↑
n
↓

would falsely vanish entirely.

7.2. Examples for 𝓁 = 3

7.2.1. 3p Electron-Density Correlator

Our first example for𝓁 = 3 involves the operatorsO = (d↑, d
†
↑, n↑).

As only the third operator is bosonic, there is at most one anoma-

lous term if i𝜔3 = −i𝜔12 = 0. Indeed, the spectral representation
evaluates to

Gd↑d
†
↑n↑
(i𝝎) =

u2 − i𝜔1 i𝜔2[
(i𝜔1)2 − u2

][
(i𝜔2)2 − u2

] + 𝛽𝛿i𝜔12 ,0
u t
2

1
(i𝜔1)2 − u2

= G̃(i𝝎) + 𝛽𝛿i𝜔12 Ĝ3(i𝜔1). (113)

Since the fully retarded and fully advanced components of the
correlator trivially follow from the regular part, we focus on the
𝛼 ≥ 2 components in the following. We begin with the Keldysh
component G[13] in Equation (84b): The regular part is inde-
pendent of i𝜔3 = −i𝜔12, such that the discontinuity across 𝛾3 =
−𝛾12 = 0 vanishes, implying G′[2] −G[1] = 0 (see Figure 6b). The
discontinuity G′[2] −G[3], on the other hand, is nonzero and can
be easily evaluated using Equations (107), leading to (see Ap-
pendix H.2)

G[13]

d↑d
†
↑n↑
(𝝎) = N1

(
G̃(𝜔+1 ,𝜔

−
2 ) − G̃(𝜔−1 ,𝜔

−
2 )
)
+ 4𝜋i 𝛿(𝜔12)Ĝ3(𝜔

+
1 )

= 𝜋i t
[
𝛿(𝜔1 − u)
𝜔−2 + u

−
𝛿(𝜔1 + u)
𝜔−2 − u

]

+ 4𝜋i 𝛿(𝜔12)
u t
2

1
(𝜔+1 )2 − u2

(114)

Similarly, the remaining components with 𝛼 = 2, as well as the
Keldysh component with 𝛼 = 3, read

G[23]

d↑d
†
↑n↑
(𝝎) = 𝜋i t

[
𝛿(𝜔2 − u)
𝜔−1 + u

−
𝛿(𝜔2 + u)
𝜔−1 − u

]

+ 4𝜋i 𝛿(𝜔12)
u t
2

1
(𝜔−1 )2 − u2

,

G[12]

d↑d
†
↑n↑
(𝝎) = 𝜋i t

[
𝛿(𝜔1 − u)

𝜔+2 + u
−
𝛿(𝜔1 + u)

𝜔+2 − u

]

+ 𝜋i t
[
𝛿(𝜔2 − u)

𝜔+1 + u
−
𝛿(𝜔2 + u)

𝜔+1 − u

]
,

G[123]

d↑d
†
↑n↑
(𝝎) =

u2 − 𝜔+1 𝜔
+
2[

(𝜔+1 )2 − u2
][
(𝜔+2 )2 − u2

] (115)

Here, G[12]

d
↑
d†
↑
n
↑

includes two discontinuities across 𝛾1 = 0 and 𝛾2 =

0, but no contribution from Ĝ3, leading to the different structure
compared to the other two Keldysh components with 𝛼 = 2. Sur-
prisingly, G[123]

d
↑
d†
↑
n
↑

is directly determined by G′[3]. All other contri-

butions from regular and anomalous parts mutually cancel, see
Appendix H.2.

7.2.2. Three-Spin Correlator

3p bosonic correlators are the central objects in non-linear re-
sponse theory. Here, we consider the correlator for the spin op-
erators O = (Sx, Sy, Sz), describing second-order changes in the
magnetization by applying an external magnetic field. The spin
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operators are given by

Sx = 1
2

(
d†↑d↓ + d†↓d↑

)
, Sy = − i

2

(
d†↑d↓ − d†↓d↑

)
,

Sz =
1
2

(
n
↑ − n↓

)
(116)

The spectral representation, using the MF kernel in Equa-
tion (A4b), then yields

GSxSySz
(i𝝎) = −𝛽𝛿i𝜔1 Z̃Δi𝜔2 + 𝛽𝛿i𝜔2 Z̃Δi𝜔1 − 𝛽𝛿i𝜔12 Z̃Δi𝜔1

= 𝛽𝛿i𝜔1 Ĝ
Δ
1 (i𝜔2) + 𝛽𝛿i𝜔2 Ĝ

Δ
2 (i𝜔1) + 𝛽𝛿i𝜔3 Ĝ

Δ
3 (i𝜔1)

(117)

where Z̃ = ie𝛽u∕(2Z).
From Equations (84a)–(84d), we deduce the only nonzero

Keldysh components as

G[12]
SxSySz

(𝝎) = −4𝜋i 𝛿(𝜔1)
Z̃
𝜔+2

+ 4𝜋i 𝛿(𝜔2)
Z̃
𝜔+1
,

G[13]
SxSySz

(𝝎) = −4𝜋i 𝛿(𝜔1)
Z̃
𝜔−2

− 4𝜋i 𝛿(𝜔12)
Z̃
𝜔+1
,

G[23]
SxSySz

(𝝎) = 4𝜋i 𝛿(𝜔1)
Z̃
𝜔−1

− 4𝜋i 𝛿(𝜔12)
Z̃
𝜔−1

(118)

Even though anomalous parts contribute to G[123] as well, they

solely originate from the Ĝ
–Δ
i terms, such that G[123] vanishes in

this case.

7.3. Example for 𝓁 = 4: Fermionic 4p Correlator

Finally, we consider the 4p correlatorG𝜎𝜎′ involving the operators
O = (d𝜎 , d

†
𝜎 , d𝜎′ , d

†
𝜎′ ). Let us showcase the analytic continuation for

G↑↓, which evaluates in the MF to

G↑↓(i𝝎) =
2u

∏4
i=1(i𝜔i) + u3

∑4
i=1(i𝜔i)

2 − 6u5
∏4

i=1

[
(i𝜔i)2 − u2

]

+
u2

[
𝛽𝛿i𝜔12 t + 𝛽𝛿i𝜔13 (t − 1) + 𝛽𝛿i𝜔14 (t + 1)

]
∏4

i=1(i𝜔i + u)

= G̃(i𝝎) + 𝛽𝛿i𝜔12 Ĝ12(i𝝎) + 𝛽𝛿i𝜔13 Ĝ13(i𝝎)

+ 𝛽𝛿i𝜔14 Ĝ14(i𝝎) (119)

We study the analytic continuation to the Keldysh component
G[12], expressed in terms of the analytic regions from Equa-
tion (102). Since the regular part only depends on the frequen-
cies i𝜔i individually, the discontinuities across 𝛾12 = 0, 𝛾13 = 0,
and 𝛾14 = 0 vanish (Figure 6c), resulting in

G[12]
↑↓ (𝝎) = N1

(
C(12)
III − C(2)

)
+ N2

(
C(12)
I − C(1)

)

+ 4𝜋i 𝛿(𝜔13) Ĉ
(12)

13 + 4𝜋i 𝛿(𝜔14) Ĉ
(12)

14 (120)

The remaining discontinuities can be computed without fur-
ther complications. From Equation (119), we can already infer

some of their structures. Since the regular part has poles at
i𝜔1 → z1 = ±u (or i𝜔2 → z2 = ±u), we expect the discontinuity
across 𝛾1 = 0 (or 𝛾2 = 0) to select these poles. Indeed, we find
(see Appendix H.3)

G[12]
↑↓ (𝝎) = 2𝜋i u t

𝛿(𝜔1 − u) − 𝛿(𝜔1 + u)

(𝜔+2 )2 − u2

(
1
𝜔−13

+ 1
𝜔−14

)

+ (1 ↔ 2) + 4𝜋i u2
𝛿(𝜔13)(t − 1) + 𝛿(𝜔14)(t + 1)[
(𝜔+1 )2 − u2

][
(𝜔+2 )2 − u2

] (121)

where 1 → 2 indicates that indices 1 and 2 are exchanged com-
pared to the first term. This expression can be simplified even
further by collecting terms proportional to t and rewriting the
𝛿-functions in the resulting prefactor using Equations (58) and
(107b). We eventually obtain

G[12]
↑↓ (𝝎) = 4𝜋i u2

𝛿(𝜔14) − 𝛿(𝜔13)[
(𝜔+1 )2 − u2

][
(𝜔+2 )2 − u2

]

+ 2u2t
[

1
(𝜔+1 )2 − u2

1
(𝜔−2 )2 − u2

(
1
𝜔−23

+ 1
𝜔−24

)
− c.c.

]

(122)

where c.c. is the complex conjugate. The other Keldysh compo-
nents follow by similar calculations, see Appendix H.4.
This concludes the section on HA examples for the analytic

continuation of multipoint correlators. We again stress the sim-
plicity of the analytic continuation procedure using our results
for the Keldysh components expressed through analytic regions.

8. Vertex Corrections to Conductance

In this section, we consider a specific application of the analytic
continuation of 4p functions regarding vertex corrections to the
conductivity. One can deduce vertex corrections to real-frequency
susceptibilities either by working directly in the KF or by using
the MF and the analytic continuation method. The latter strategy
was pursued by Eliashberg,[13] converting Matsubara sums into
contour integrals and thereby obtaining various vertex contribu-
tions which consist of linear combinations of the MF vertex ana-
lytically continued to specific regions. For the special case of the
linear conductance through an interacting region coupled to two
noninteracting leads, Oguri[62] subsequently found that only one
of these many vertex corrections contributes to the final result. A
very similar formula for the linear conductance was later derived
by Heyder et al.[63] with a different line of argument, working en-
tirely in the KF.With our insights on 4p analytic continuation and
gFDRs, we can demonstrate the equivalence between the results
by Oguri and Heyder et al. and connect the MF and KF deriva-
tions.
A general susceptibility 𝜒 can be expressed as in Figure 7. The

first (“bubble”) term merely comprises two 2p correlators. We
thus focus on the second term, the vertex correction, which in
the MF reads

𝜒F(i𝜔) =
1
𝛽2

∑
i𝜈,i𝜈′

G(i𝜈)G(i𝜈+i𝜔)F(i𝜈, i𝜈′, i𝜔)G(i𝜈′)G(i𝜈′+i𝜔) (123)
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Figure 7. Diagrammatic representation of the susceptibility 𝜒 consisting
of a bubble and a vertex contribution. Lines represent propagators G, and
the square is a vertex F.

Definitions of the propagator G and vertex F can be found in
Section III A of ref. [23]. The summand in Equation (123) is the
connected 4p correlator. Due to their close relation, the vertex F
inherits its analytic properties from the correlator. In fact, by a
transformation of Keldysh correlators to the R∕A basis,[64,65] it
can be easily shown that our formulas in Equation (101) identi-
cally hold for F, and we thus use the same symbols C to denote
analytic continuations of F (see, e.g., Equation (124b)). Note that
the Keldysh indices 1 and 2 exchange their meaning for F, such
that, e.g., a fully retarded component reads F[1] = F1222 (while
G[1] = G2111).
In ref. [13], Eliashberg converted theMatsubara sums in Equa-

tion (123) to contour integrals, thereby analytically continuing the
MF functions and picking up contributions from all regions of
analyticity (see Figure 5). In ref. [62], Oguri showed that the 𝜔-
linear part, needed for the linear conductance (lc), stems from
only one function, F(O), see Equation (2.34) in ref. [62]. The cor-
responding vertex correction to the retarded susceptibility reads

𝜒RF,lc(𝜔) = −∫ ∫ d𝜈d𝜈′

(4𝜋i)2
GR(𝜈 + 𝜔)GA(𝜈)GA(𝜈′)GR(𝜈′ + 𝜔)

×
[
tanh

(
𝜈+𝜔
2T

)
− tanh

(
𝜈
2T

)]
FO(𝜈, 𝜈

′,𝜔) (124a)

FO = −N𝜔3C
(12)
II − N𝜔4C

(12)
IV + N𝜔13 [C

(12)
II − C(12)

III ]

+ N𝜔14 [C
(12)
IV − C(12)

III ] (124b)

where we used

(𝜔1,𝜔2,𝜔3,𝜔4) = (𝜈 + 𝜔,−𝜈, 𝜈′,−𝜈′ − 𝜔) (125)

as frequency parametrization. Note that the results by Oguri and
Eliashberg differ in their choice of the MWF; Equation (124b)
corresponds to 22 in Equation (12) of ref. [13].
An analogous result with an independent KF derivation was

obtained in Equations (11) and (17) of ref. [63] by Heyder et al.
There, the vertex correction to the linear conductance corre-
sponds to

𝜒RF,lc(𝜔) = ∫ ∫ d𝜈d𝜈′

(4𝜋i)2
GR(𝜈 + 𝜔)GA(𝜈)GA(𝜈′)GR(𝜈′ + 𝜔)

×
[
tanh

(
𝜈′+𝜔
2T

)
− tanh

(
𝜈′

2T

)]
FH(𝜈, 𝜈

′,𝜔) (126a)

FH = −
(
F[12] + N𝜔1F

[2] + N𝜔2F
[1]
)

(126b)

For an easier comparison with Equation (124a), we here used the
tanh function instead of the Fermi distribution function. We also

absorbed a factor of 2 due to our choice of convention for the
Keldysh rotation of multipoint functions (cf. Equation (17)).
To show that Equations (124a) and (126a) are equivalent, we

translate the analytic continuations of the MF vertex in Equa-
tion (124b) to Keldysh components. First, we note that the linear
combination of terms comprising FO in Equation (124b) can also
be expressed as follows, using (103):

F′[34] + N𝜔3F
′[4] + N𝜔4F

′[3]

= N𝜔3C
(12)
II + N𝜔4C

(12)
IV + N𝜔13 [C

(12)
III − C(12)

II ]

+ N𝜔14 [C
(12)
III − C(12)

IV ] = −FO (127)

where we assumed vanishing anomalous parts. Next, we use the
gFDR in Equation (104a) for vertices,

(N𝜔3 + N𝜔4 )
(
F[12] + N𝜔1F

[2] + N𝜔2F
[1]
)

= (N𝜔1 + N𝜔2 )
(
F′[34] + N𝜔3F

′[4] + N𝜔4F
′[3]) (128)

Together with Equation (125), this implies the equivalence of
Equations (124a) and (126a) as

(N𝜔3 + N𝜔4 )FH = (N𝜔1 + N𝜔2 )FO (129)

With the analytic continuation formulas and the gFDRs, we have
thereby shown that both results agree and provided a direct tran-
scription between two independent MF and KF derivations.

9. Conclusion

We showed how to perform the analytic continuation of mul-
tipoint correlators in thermal equilibrium from the imaginary-
frequency MF to the real-frequency KF. To this end, we used
the spectral representation derived in ref. [23], separating the
correlator into formalism-independent partial spectral functions
(PSFs) and formalism-specific kernels. From this analytical start-
ing point, we showed that it is possible to fully recover all 2𝓁 com-
ponents of the 𝓁p KF correlator from the one 𝓁p MF correlator.
Our main result is that each of the (𝓁!) PSFs can be obtained by
linear combinations of analytic continuations of the MF correla-
tor multiplied with combinations of Matsubara weighting func-
tions (MWFs). Explicit formulas are given in Equations (47) and
(74) for arbitrary 2p and 3p correlators, respectively, and Equa-
tion (88) for fermionic 4p correlators. For these cases, we addi-
tionally derived direct MF-to-KF continuation formulas in Equa-
tion (61) (𝓁 = 2), Equations (84) (𝓁 = 3), and Equations (101)
(𝓁 = 4), complementing the general Equation (23) for any 𝓁.
We approached the problem of analytic continuation by com-

paring the spectral representations of general 𝓁p MF (G) and KF
(G[𝜂1…𝜂𝛼 ]) correlators and by identifying the regular partialMF cor-
relators, G̃p, as the central link between them. A key insight was
that the partial MF correlators can be obtained by an imaginary-
frequency convolution of MF kernels with the full MF correla-
tor, G̃p(i𝝎p) + ( 1

𝛽

)
= (K ⋆G)(i𝝎p). Building on this formula, we

developed a three-step strategy for the MF-to-KF analytic contin-
uation, applicable to arbitrary 𝓁p correlators and explicitly pre-
sented in the aforementioned cases 𝓁 ≤ 4. In the first step, we
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used the kernel representation of ref. [30] to express the Mat-
subara sums, inherent in the imaginary-frequency convolution,
through contour integrals enclosing the imaginary axis. In the
second step, we deformed the contours toward the real axis, care-
fully tracking possible singularities of the MF correlator. This re-
sulted in a spectral representation G̃p(i𝝎p) = (K̃ ∗ Sp)(i𝝎p), which
allowed us to extract the PSFs, Sp[G], as functionals of the regular
and the various anomalous parts of Gmultiplied with MWFs. In
the third and final step, we simplified the spectral representation
for the KF components G[𝜂1…𝜂𝛼 ], inserted the PSFs from the sec-
ond step, and evaluated all real-frequency integrals to express the
KF correlators as linear combinations of analytically continued
MF correlators.
In our analysis, we explicitly considered so-called anomalous

parts of the MF correlator which can occur, e.g., for conserved
quantities or in finite systems with degenerate energy eigen-
states. The analytical continuations of these terms do not con-
tribute to fully retarded correlators, but they do contribute to
other components of the KF correlator. In the KF, the notion
of “anomalous terms” is not needed; instead, the corresponding
contributions are included via 𝛿-terms in the kernels, see Equa-
tion (20) and Equations (57)–(59) for 𝓁 = 2.
Exploiting the relations between KF correlators and an-

alytically continued MF functions, we derived generalized
fluctuation-dissipation relations (gFDRs) for 3p and 4p correla-
tors, Equations (84) and (104), establishing relations between the
different KF components. We thereby reproduced the results of
refs. [24, 25], while additionally including the anomalous terms.
We expect that similar results can be obtained for multipoint

(𝓁 > 2) out-of-time-ordering correlators (OTOCs)[66] which gen-
eralize the KF by additional copies of the Keldysh contour. Multi-
point OTOCs, too, can be written as a sum over permutations of
PSFs and kernels which encode the ordering on the desired num-
ber of branches. Importantly, the PSFs arising in this manner are
precisely the same as those used in this work. Hence, the steps
presented in Sections 3.3, 5.2 and 6.2 should be generalizable to
multipoint OTOCs. Expressing the PSFs in terms of analytically
continued MF correlators, analogous calculations would then re-
veal direct MF-to-OTOC continuation formulas. We leave this to
future work.
As an application of our results, we considered various corre-

lators of the Hubbard atom. Starting from their MF expressions,
we calculated all components of the corresponding KF correla-
tors using analytic continuation. For the fermionic 4p correlator,
a full list of all Keldysh components for the two relevant spin con-
figurations is given in Equations (H18) and (H20).
We further used our formulas to find KF expressions of the

MF results derived in refs. [13, 62] for the linear conductance
through an interacting system. There, the authors showed that
only few analytic continuations of the vertex function are re-
quired for the vertex corrections to the linear conductance. Sim-
ilar results were derived in ref. [63] working entirely in the KF.
We reproduced their real-frequency results by analytic continu-
ation and could thus provide a direct transcription between two
independent derivations in the MF and the KF.
For future investigations, it would be interesting to apply

our formulas in conjunction with the algorithmic Matsubara
integration technique.[60] There, the evaluation of Feynman
diagrams yields an exact symbolic expression for G(i𝝎) that can

be readily continued to full Keldysh correlators or to PSFs. If, by
contrast, the Matsubara results are only available as numerical
data, the numerical analytic continuation is an ill-conditioned
problem. Nevertheless, recent advances suggest that it can pos-
sibly be tamed to some extent by exploiting further information
on mathematical properties of the function.[67–69]

Numerically representing multipoint MF correlators is an-
other fruitful direction to explore. References[70,71] showed that
2pMF functions can be represented compactly by a suitable basis
expansion. Yet, for multipoint functions, ref. [33] found that the
overcompleteness of the basis hinders an extraction of the basis
coefficients by projection. Here, a numerical counterpart of our
method for recovering individual PSFs Sp (or partial correlators
Gp) from a full correlatorG(i𝝎) might be helpful. Finally, our for-
mulasmight also be useful for evaluating diagrammatic relations
typically formulated for correlators while using the PSFs as the
main information carriers. For recent developments regarding
the numerical computation of MF or KF multipoint correlators
using symmetric improved estimators, see ref. [61].

Appendix A: MF Kernels

This appendix is devoted to a discussion of the full primaryMF kernel K, in-
cluding both regular and anomalous terms. It is defined via Equation (10a)
for the MF kernel(𝛀p). In ref. [23], it was shown that it can be computed
via

(𝛀p) = ∫
𝛽

0
d𝜏′

𝓁
e
Ω
1…𝓁
𝜏′
𝓁

1∏
i=𝓁−1

[
−∫
𝛽−𝜏′

i+1…𝓁

0
d𝜏′

i
e
Ω
1…i
𝜏′
i

]

= 𝛽𝛿Ω
1…𝓁

K(𝛀p) +(𝛀p) (A1)

The residual part  is not of interest, for reasons explained after Equa-
tion (12). The primary part K(𝛀p) is obtained

[72] by collecting all contribu-
tions multiplying 𝛽𝛿Ω

1…𝓁
, and its argument satisfies Ω1…𝓁 = 0 by defini-

tion. Before presenting explicit expressions for K, let us briefly recall where
it is needed in the main text.

The analytical continuation ofMF to KF correlators, based on G̃p(i𝝎p →

𝝎[𝜂j ]) (Equation (26)), utilizes regular partial MF correlators, G̃p(i𝝎p) =
[K̃ ∗ Sp](i𝝎p) (Equation (14c)). These are expressed through regular MF

kernels K̃(𝛀p) having a simple product form,
∏𝓁−1

i=1 Ω−1
1…i

, with Ω1…𝓁 = 0

understood. The more complicated primary kernel K(𝛀p) is defined im-
plicitly via Equation (10a). It includes both regular and anomalous parts,
the latter involving vanishing partial frequency sums,Ω1…i = 0 with i < 𝓁.
The primary kernel arises in two distinct contexts, involving either (i)
imaginary-frequency convolutions ⋆ or (ii) real-frequency convolutions ∗,
with different requirements for the bookkeeping of anomalous contribu-
tions. We discuss them in turn.

(i) For a specified permutation p, the regular partial G̃p(i𝝎p) can be ex-
tracted from the full MF correlator G(i𝝎′) via a imaginary-frequency
convolution, [K ⋆ G](i𝝎p) (Equation (31)). There, the argument of
K(𝛀p) has the form𝛀p = i𝝎p − i𝝎′

p. This is always bosonic, being the
difference of two same-type Matsubara frequencies. The convolution
⋆ involves Matsubara sums

∑
i𝝎′

p
, generating many anomalous con-

tributionswithΩ1…i = 0. For these sums to bewell-defined, the kernel
K(𝛀p) must thus be represented in a form that (in contrast to K̃(𝛀p))
is manifestly singularity-free for all values of Ω1…i, including 0.

(ii) In Equation (31), G̃p is given by that part of [K ⋆ G] that is(𝛽0); sub-
leading powers of 𝛽 are not needed. Therefore, we seek theMFG(i𝝎′)
in the form of an 𝛽𝛿 expansion, i.e. an expansion in powers of 𝛽𝛿𝜔′

1…i
.
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Then each of them can collapse one Matsubara sum 1∕(−𝛽)
∑
𝜔′
1…i

while their 𝛽 factors cancel. To obtain a 𝛽𝛿 expansion for G(i𝝎′), it is
convenient to express it via a permutation sum of real-frequency con-
volutions,

∑
p[K ∗ Sp](i𝝎′

p) (Equation (11b)), and represent the kernel
K(𝛀p), with argument𝛀p = i𝝎′

p − 𝜺p, as a 𝛽𝛿 expansion in powers of
𝛽𝛿Ω′

1…i
.

Fortunately, suitable representations of K satisfying the respective require-
ments of either (i) or (ii) are available in the literature.[23,30,73,74] We dis-
cuss them for 𝓁 ≤ 4 in Appendices A.1 and A.2, respectively.

A.1. Singularity-Free Representation of K

Consider case (i), involving K ⋆ G, where the argument of K(𝛀p) is a
bosonic Matsubara frequency. We seek a singularity-free (sf) represen-
tation for K, to be denoted Ksf for the purpose of this appendix. That
such a representation exists is obvious from the form of integrals in Equa-
tion (A1): inserting Ω1…i = 0 there reduces an exponential function to 1,
so no contributions singular in Ω1…i can arise. To find Ksf , one simply
has to perform the integrals explicitly, treating the cases Ω1…i ≠ 0 or = 0
separately and distinguish them using Kronecker symbols.

Such a direct computation of Equation (A1) has been performed in
ref. [30] for arbitrary 𝓁 and an arbitrary number of vanishing partial fre-
quency sums, Ω1…i = 0. The following equations summarize their results
for 𝓁 ≤ 4:

Ksf (𝛀p)
𝓁=2
= ΔΩ1

− 𝛽
2
𝛿Ω1

(A2a)

Ksf (𝛀p)
𝓁=3
= ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
− 𝛿Ω12

(
Δ2
Ω1

+ 𝛽
2
ΔΩ1

− 𝛽
2

6
𝛿Ω1

)
(A2b)

Ksf (𝛀p)
𝓁=4
= ΔΩ123

[
ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
− 𝛿Ω12

(
Δ2
Ω1

+ 𝛽
2
ΔΩ1

− 𝛽
2

6
𝛿Ω1

)]

− 𝛿Ω123

[
ΔΩ12

ΔΩ1

(
ΔΩ12

+ΔΩ1
+ 𝛽

2

)
− 𝛽

2
ΔΩ12
𝛿Ω1

(
ΔΩ12

+ 𝛽
3

)

− 𝛿Ω12
ΔΩ1

(
Δ2
Ω1

+ 𝛽
2
ΔΩ1

+ 𝛽
2

6

)
+ 𝛽

3

24
𝛿Ω12
𝛿Ω1

]
(A2c)

Equations (A2) are manifestly singularity-free for all values of their fre-
quency arguments—including thosewithΩ1…i = 0, for whichΔΩ

1…i
terms

vanish by definition (Equation (32)).

A.2. 𝜷𝜹 Expansion for K

Next, consider case (ii), involving G =
∑

p K ∗ Sp (Equations (11b) and
(12)), where the argument of K(𝛀p) has the form 𝛀p = i𝝎p − 𝜺p, and we
seek a 𝛽𝛿 expansion for G. For this purpose, the kernels Ksf of Equa-
tions (A2) are inconvenient, because they contain some 𝛿 factors not ac-
companied by 𝛽. Instead, G can be expressed through an alternative ker-
nel, to be denoted Kalt, which constitutes a 𝛽𝛿 expansion itself and hence
differs from Ksf , but yields the same result for G when summed over all
permutations, so that

G(i𝝎) =
∑
p

[
Ksf ∗ Sp

]
(i𝝎) =

∑
p

[
Kalt ∗ Sp

]
(i𝝎) (A3)

Explicit expressions for Kalt were given in ref. [23] for up to one poten-
tially vanishing frequency (general 2p correlators, 3p correlators with one
bosonic operator, and fermionic 4p correlators). By also allowing general
3p correlators, these results are extended to

Kalt(𝛀p)
𝓁=2
= 1

Ω1

− 𝛽
2
𝛿Ω1

(A4a)

Kalt(𝛀p)
𝓁=3
= 1

Ω1Ω12

− 𝛽
2

(
𝛿Ω12

ΔΩ1
+ 𝛿Ω1

ΔΩ12

)
+ 𝛽

2

6
𝛿Ω1
𝛿Ω12

(A4b)

Kalt(𝛀p)
𝓁=4
= 1

Ω1Ω12Ω123

− 𝛽
2
𝛿Ω12

1
Ω1Ω123

(A4c)

The kernels (A4) have the form Kalt = K̃ + K̂
alt
, with regular part K̃

as given in Equation (13b), while the anomalous part, K̂
alt
, comprises

terms multiplied by one or multiple factors 𝛽𝛿Ω
1…i

. (We remark that the

nomenclature regular and anomalous is used non-uniformly in the litera-
ture and our usage here may differ from refs. [23, 30, 73].) Whether or
not Ω1…i = i𝜔1…i − 𝜀1…i can vanish at all depends on the fermionic or
bosonic nature of the Matsubara frequencies. Take, e.g., 𝓁 = 4 and all op-
erators fermionic. Then, in Equation (A2c), all terms multiplied by 𝛿Ω123
evaluate to 𝛿Ω123

= 0, since i𝜔123 ≠ 0 is a fermionic Matsubara frequency.

For the computation of fermionic 4p correlators, all terms proportional to
𝛿Ω1

and 𝛿Ω123
can thus be dropped. Even if i𝜔1…i is bosonic and vanishes,

Ω1…i = 0 additionally requires 𝜀1…i = 0, enforced by a Dirac 𝛿(𝜀1…i) in the
PSFs; see Appendix B.1 for further discussion of this point.

For a specified permutation p, the kernels Kalt are not singularity-free. In
particular, the regular part K̃ diverges if one (or multiple) Ω1⋯ī → 0. How-
ever, that singularity is canceled by 1∕Ωi+1…𝓁 = −1∕Ω1…i from a cyclically
related permutation in the sum over permutations in Equation (A3). This
can be shown explicitly by treating nominally vanishing denominators as
infinitesimal and tracking the cancellation of divergent terms while exploit-
ing the equilibrium condition (4) (see Appendix B of ref. [23]).

The kernels Kalt, inserted into Equation (A4), result in the general form
for MF correlators given in Equation (14):

G(i𝝎) = G̃(i𝝎) + Ĝ(i𝝎) (A5a)

Ĝ(i𝝎) =
𝓁−1∑
j=1
𝛽𝛿i𝜔j Ĝj(i𝝎) +

𝓁−1∑
j=1

𝓁−1∑
k>j

(
𝛽𝛿i𝜔jk Ĝjk(i𝝎) + 𝛽2𝛿i𝜔j𝛿i𝜔k Ĝj,k(i𝝎)

)

(A5b)

As for Equation (A4), this form of the anomalous part of the correla-
tor applies to general 2p and 3p correlators as well as fermionic 4p cor-
relators. The subscripts of Ĝ indicate the frequency in which they are
anomalous. Even though their arguments nominally include all frequen-
cies i𝝎, they are independent of their respective anomalous frequency;
e.g., Ĝ1(i𝜔1, i𝜔2) = Ĝ1(i𝜔2) for 𝓁 = 3. Note that this decomposition of the
correlator is convenient for the analytic continuation because the compo-
nents, such as G̃ and Ĝi, have a functional form that allows their argu-
ments to be analytically continued, i𝜔i → zi. In anomalous components
this functional form is obtained by symbolically replacing all Δi𝜔 by

1
i𝜔

(see, e.g., Equation (80) and the discussion thereafter).

Appendix B: Discussion of PSFs

In Appendix B.1, we clarify the functional structure of PSFs and moti-
vate their decomposition into regular and anomalous contributions, Sp =
S̃p + Ŝp (Equation (5)), analogous to that for MF correlators. This decom-
position aids investigations in subsequent appendices. As an immediate
application of the decomposition, we present an analysis of the effect of
fully anomalous PSFs on 3p MF correlators in Appendix B.2.

B.1. Decomposition of PSFs

Interacting thermal systems typically have a continuum of energy levels.
Ref. [27] argues that, in general, PSFs may contain contributions which
diverge as P( 1𝜀 ) for vanishing bosonic frequencies 𝜀, with P the princi-
pal value. As our derivations do not make assumptions on the shape
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of continuous PSF contributions, such terms require no further consid-
eration. However, Dirac delta contributions in Sp can arise for finite sys-
tems or in the presence of conserved quantities. When these are present,
MF partial correlators Gp = K ∗ Sp (Equation (11b)) can contain anoma-

lous terms, Ĝp, containing at least one factor 𝛿i𝜔
1…i

, with i < 𝓁. These
arise from anomalous 𝛿Ω

1…i
terms in the MF kernel K(𝛀p), with argu-

ment 𝛀p = i𝝎p − 𝜺p (Equations (A3), (A4)). Such terms can contribute
if Ω1…i = 0, requiring i𝜔1…i = 0 and 𝜀1…i = 0. The first condition requires

that i𝜔1…i is bosonic. This is the case if the sign 𝜁
1…i = 𝜁1 … 𝜁 i equals +1

(with 𝜁 j = ±1 for bosonic/fermionic operators Oj). Then, the associated
𝜀1…i is bosonic, too, according to the nomenclature introduced after Equa-
tion (3b). The second condition is met if the PSF Sp(𝜺p) contains a term
proportional to a bosonic Dirac delta, i.e. one having a bosonic 𝜀1…i as ar-

gument, e.g. 𝛿(𝜀1…i)Š1…i. Then, the 𝜀p integrals in the convolution K ∗ Sp
receive a finite contribution from the point 𝜀1…i = 0. We summarize these
conditions via the symbolic notation

𝛿Ω
1…i

= 𝛿i𝜔
1…i
𝛿𝜀

1…i
(B1)

needed only for bosonic Ω1…i. Here 𝛿𝜀1…i
, carrying a continuous variable

as subscript, is defined only for bosonic 𝜀1…i and by definition “acts on”
Sp(𝜀p) by extracting only those parts (if present) containing bosonic Dirac
𝛿(𝜀1…i) factors. For the example above, 𝛿𝜀

1…i
acts on Sp(𝜺p) as

𝛿𝜀
1…i

Sp(𝜺p) = 𝛿𝜀
1…i

Ŝp(𝜺p) ∼ 𝛿(𝜀1…i) (B2)

As we always assume an even number of fermionic operators, 𝜁1…𝓁 =
+1 follows.

The motivation for splitting PSFs as Sp = S̃p + Ŝp is now clear. The

anomalous Ŝp comprises all terms containing bosonic Dirac 𝛿(𝜀1…i) fac-
tors, the regular S̃ everything else. The regular part of the MF correlator,
G̃, receives contributions from both S̃p and Ŝp; the anomalous part, Ĝ,

receives contributions only from Ŝp, i.e. if Ŝp = 0 for all p, then Ĝ = 0.
For 𝓁 = 2, the anomalous contribution consists of one term,

Ŝp(𝜺p) = 𝛿(𝜀1)Šp;1 (B3)

where Šp;1 is a constant. Due to the equilibrium condition (4), we can fur-

ther conclude Š(12);1 = Š(21);2.

For 𝓁 = 3, the anomalous Ŝp reads

Ŝp(𝜺p) = 𝛿(𝜀1)Šp;1(◦, 𝜀2, 𝜀3) + 𝛿(𝜀3)Šp;3(𝜀1, 𝜀2, ◦) + 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (B4)

Here, we inserted ◦’s to emphasize that functions do not depend on these
arguments, and Šp;1,2 is a constant. For bosonic 3p functions, Šp;1 and

Šp;3 do not contain further 𝛿–factors that lead to anomalous parts, e.g.,

𝛿𝜀3 Šp;1(◦, 𝜀2, 𝜀3) = 0.

To further illustrate the symbolic 𝛿𝜀
1…i

notation introduced in Equa-

tion (B1), it yields the following relations when applied to the above defi-
nitions, for bosonic 𝜀i:

𝛿𝜀1Sp(𝜺p) = 𝛿(𝜀1)Šp;1(𝜺p) + 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (B5a)

𝛿𝜀1𝛿𝜀2Sp(𝜺p) = 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (B5b)

For fermionic 𝓁 = 4, we only need

Ŝp(𝜺p) =𝛿(𝜀12)Šp;12(𝜺p) (B6)

since, e.g., terms in the kernel proportional to 𝛿i𝜔1−𝜀1 do not lead to

anomalous contributions by the fermionic nature of i𝜔1.

B.2. Effect of Fully Anomalous PSFs on 3p MF Correlators

In the Appendix C.1 below, we discuss the general structure of 3p MF cor-
relators inferred by the decomposition of the PSFs. The regular PSFs, S̃p,
can only contribute to the regular part of the correlator. However, the ef-
fect of anomalous PSFs, Ŝp, is more involved and is studied in detail in
the following.

To this end, we consider PSFs with finite weight at vanishing fre-
quency arguments. In particular, we assume the maximally anomalous
form Sma

p (𝜀1, 𝜀2) = 𝛿(𝜀1)𝛿(𝜀2)Šp;1,2 (see Equation (B5b)). Then, the equi-
librium condition Equation (4) implies Š(123);1;2 = Š(231);2;3 = Š(312);3;1 and

Š(132);1;3 = Š(321);3;2 = Š(213);2;1, since 𝜁p = 𝜁p𝜆 = 1 for purely bosonic cor-
relators. For such PSFs, the 3p correlator evaluates to

Gma(i𝝎) =
∑
p
[K ∗ Sma

p ](i𝝎p)

=
[
𝛽
2

(
𝛿i𝜔1Δi𝜔12 + Δi𝜔1𝛿i𝜔12

)
+ 𝛽

2

6
𝛿i𝜔1𝛿i𝜔12

]
Š(123);1,2

+
[
𝛽
2

(
𝛿i𝜔2Δi𝜔23 + Δi𝜔2𝛿i𝜔23

)
+ 𝛽

2

6
𝛿i𝜔2𝛿i𝜔23

]
Š(231);2,3

+
[
𝛽
2

(
𝛿i𝜔3Δi𝜔31 + Δi𝜔3𝛿i𝜔31

)
+ 𝛽

2

6
𝛿i𝜔3𝛿i𝜔31

]
Š(312);3,1

+ (2 ↔ 3)

= 𝛽
(
𝛿i𝜔1Δi𝜔2 + 𝛿i𝜔2Δi𝜔3 + 𝛿i𝜔3Δi𝜔1

)(
Š(123);1,2 − Š(132);1,3

)

+ 𝛽
2

2
𝛿i𝜔1𝛿i𝜔2

(
Š(123);1,2 + Š(132);1,3

)
(B7)

where (2 ↔ 3) exchanges the indices of the frequencies and PSFs. The
contribution of the regular kernel in Equation (A4b) vanishes due to

1
i𝜔1 i𝜔12

+ 1
i𝜔2 i𝜔23

+ 1
i𝜔3 i𝜔31

= 0 with i𝜔3 = −i𝜔12.
For later reference (see Appendices C.1 and E.2), we define the con-

stants

Ĝ1,2 =
1
2

(
Š(123);1,2 + Š(132);1,3

)
(B8a)

Ĝ
Δ
1;2 = Ĝ

Δ
2;3 = Ĝ

Δ
3;1 = Š(132);1,3 − Š(123);1,2 (B8b)

such that Gma reads

Ĝ
ma
(i𝝎) = 𝛽

(
𝛿i𝜔1Δi𝜔2 Ĝ

Δ
1;2 + 𝛿i𝜔2Δi𝜔3 Ĝ

Δ
2;3 + 𝛿i𝜔3Δi𝜔1 Ĝ

Δ
3;1

)

+ 𝛽2𝛿i𝜔1𝛿i𝜔2 Ĝ1,2 (B8c)

We emphasize that Ĝ
Δ
i;j and Ĝ1,2 are nonzero only if the full PSFs Sp contain

fully anomalous contributions Sma
p , which is only the case for all operators

being bosonic. In the next section, the most general form of 3p correlators
is discussed.

Appendix C: Calculations for 3p Correlators

This appendix is devoted to computations for the analytic continuation of
3p correlators, complementing the discussions in Section 5. First, in Ap-
pendix C.1, we discuss the general structure of MF correlators, needed in
Appendix C.2 for the derivation of an explicit formula for partial MF cor-
relators and the subsequent extraction of PSFs. In Appendix C.3, we then
present manipulations needed to construct KF correlators from analyti-
cally continued MF correlators.
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C.1. Structure of 3p Correlators

For 3p correlators, Equation (A5) implies the general form

Gi𝜔1 ,i𝜔2 = G̃i𝜔1 ,i𝜔2 + Ĝi𝜔1 ,i𝜔2

Ĝi𝜔1 ,i𝜔2 = 𝛽𝛿i𝜔1 Ĝ1;i𝜔2 + 𝛽𝛿i𝜔2 Ĝ2;i𝜔1 + 𝛽𝛿i𝜔3 Ĝ3;i𝜔1 + 𝛽
2 𝛿i𝜔1 𝛿i𝜔2 Ĝ1,2

(C1)

Here, we used the subscript notation introduced in Section 4.
For the conversion of Matsubara sums to contour integrals we distin-

guish restricted from unrestricted sums (see e.g. Equation (35b)). There-
fore we explicitly distinguish terms with Δi𝜔 factors, writing (cf. Equa-
tion (73))

Ĝi;i𝜔j = Ĝ
–Δ
i;i𝜔j

+ Δi𝜔j Ĝ
Δ
i;j (C2)

In Equation (B8b), we have identified the constants Ĝ
Δ
with (maximally

anomalous) PSFs. For alternative frequency parametrizations in Equa-
tions (B8), the constants in Equation (C2) read

Ĝ
Δ
1;2 = −ĜΔ

1;3 = −ĜΔ
2;1 = Ĝ

Δ
2;3 = Ĝ

Δ
3;1 = −ĜΔ

3;2 (C3)

such that, e.g., 𝛿i𝜔1Δi𝜔2 Ĝ
Δ
1;2 = −𝛿i𝜔1Δi𝜔3 Ĝ

Δ
1;2 = 𝛿i𝜔1Δi𝜔3 Ĝ

Δ
1;3, which fol-

lows from frequency conservation, i𝜔1…𝓁 = 0, and the 𝛿i𝜔i factor multi-

plying Ĝi.

C.2. Partial MF 3p Correlators

In this appendix, we present explicit calculations concerning Steps 1 and
2 of our 3-step strategy. First, we introduce two identities used for simpli-
fications in Step 1.

Consider the restricted Matsubara sum of Equation (35b) for f (i𝜔′) =
f̃ (i𝜔′)∕(i𝜔 − i𝜔′). Using Equation (37) for the residue term, one obtains

1
(−𝛽)

∑
i𝜔′

(
Δi𝜔−i𝜔′ −

𝛽
2
𝛿i𝜔−i𝜔′

)
f̃ (i𝜔′) = ∳z

nzf̃ (z)
i𝜔 − z

+ ( 1
𝛽

)
(C4)

Here, the restriction of the sum is implicit in theΔ symbol (Equation (32)),
and the first term of Equation (37) was incorporated into the sumusing the
Kronecker 𝛿. We can identify the summand on the left of Equation (C4) as
the singularity-free 2p kernel of Equation (A2a), and therefore this identity
constitutes the convenient cancellation in Equations (38) already on the
level of kernels. Following the same line of arguments, one can show that

1
(−𝛽)2

∑
i𝜔′

(
Δ2
i𝜔−i𝜔′ +

𝛽2

12
𝛿i𝜔−i𝜔′

)
f̃ (i𝜔′) = ( 1

𝛽

)
(C5)

In the following, we focus on evaluating

G̃(123)(i𝝎(123)) + ( 1
𝛽

)
= [K ⋆ G](i𝝎(123)) (C6)

using the 3p kernel given in Equation (A2b) (with 𝛀(123) = i𝝎(123) −
i𝝎′

(123)), and the general form of the 3p correlator displayed in Equa-
tion (C1). For convencience, we focus on the identity permutation p =
(123); all other permutations can be obtained by replacing indices with
their permuted ones, i → ī. We split the calculation of Equation (C6) into
regular (r) and anomalous (a) contributions from G:

G̃r
(123)(i𝝎(123)) + ( 1

𝛽

)
=

[
K ⋆ G̃

]
(i𝝎(123)) (C7a)

G̃a
(123)(i𝝎(123)) + ( 1

𝛽

)
=

[
K ⋆ Ĝ

]
(i𝝎(123)) (C7b)

The computations are presented in Appendices C.2.1 and C.2.2, re-
spectively, with the final result G̃(123) = G̃r

(123) + G̃a
(123) discussed in Ap-

pendix C.2.3. Additionally, we will use the super- and subscript notation
introduced in Section 4 and suppress the frequency argument of G̃r

(123)

and G̃a
(123).

C.2.1. Contributions from Regular Part

Step 1. Matsubara summation through contour integration: First, we con-
centrate on evaluating Equation (C7a):

G̃r
(123) + ( 1

𝛽

)
= K ⋆ G̃

= 1
(−𝛽)2

∑
i𝜔′1 ,i𝜔

′
12

[
ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)

+𝛿Ω12

(
−Δ2

Ω1
− 𝛽
2
ΔΩ1

+ 𝛽
2

6
𝛿Ω1

)]
G̃i𝜔′1 ,i𝜔

′
12

= 1
(−𝛽)2

∑
i𝜔′1

≠i𝜔12∑
i𝜔′12

1
i𝜔12 − i𝜔′12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
G̃i𝜔′1 ,i𝜔

′
12

+ 1
(−𝛽)2

∑
i𝜔′1

∑
i𝜔′12

𝛿Ω12

(
−Δ2

Ω1
− 𝛽
2
ΔΩ1

+ 𝛽
2

6
𝛿Ω1

)
G̃i𝜔′1 ,i𝜔

′
12

(C8)

The restricted sum over i𝜔′12 can be rewritten using Equation (C4), and
collecting all resulting terms ∼ 𝛿Ω12

yields

G̃r
(123) + ( 1

𝛽

)

= 1
(−𝛽)

∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
∳z12

nz12 G̃i𝜔′1 ,z12

i𝜔12 − z12

+ 1
(−𝛽)2

∑
i𝜔′1

∑
i𝜔′12

𝛿Ω12

(
−Δ2

Ω1
− 𝛽

2

12
𝛿Ω1

)
G̃i𝜔′1 ,i𝜔

′
12

(C9)

The i𝜔′1 sums can be further simplified with the help of Equations (C4) and
(C5) for the second and third line, respectively, reproducing Equation (39)
for 𝓁 = 3,

G̃r
(123) + ( 1

𝛽

)
=∳z1 ,z12

nz1nz12 G̃z1 ,z12

(i𝜔1 − z1)(i𝜔12 − z12)
+ ( 1
𝛽

)
(C10)

with ∳z1 ,z12 = ∳z1 ∳z12 .
Step 2. Extraction of PSFs: Next, we deform the contours away from the

imaginary axis, beginning with the contour integral over z12. During the
contour deformation, we have to carefully track possible singularities of
G̃z1 ,z12 = G̃(z1, z12 − z1,−z12). As explained in Section 4, possible branch
cuts in the complex z12 plane lie on the lines defined by Im(z12) = 0 or
Im(z12 − z1) = 0, see Figure C1a. The branch cut at Im(z12) = 0 is taken
into account by integrating infinitesimally above and below the real z12
axis, denoted by 𝜀±12 with Re(z12) = 𝜀12.

The second branch cut Im(z12 − z1) = 0 is included by substituting
z12 → z2 = z12 − z1, with z2 being the new integration variable. Therefore,
the contour is shifted onto the line Im(z12 − z1) = 0 → Im(z2) = 0, i.e.,
onto the real axis of the complex z2 plane, and integrating infinitesimally
above and below the real axis of z2, denoted by 𝜀±2 with Re(z2) = 𝜀2. The
substitution also affects the argument of the MWF in Equation (C10).
However, since the z1 contour encloses only the poles of nz1 , z1 can be
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Figure C1. a) Contour deformation used in Equation (C12) for fermionic z1 and z2, therefore bosonic z12. Black crosses denote the poles of nz12 on the
imaginary axis given by bosonic Matsubara frequencies. The blue, solid contour encloses all the poles on the imaginary axis. It is deformed into the blue,
dashed contour to integrate along the possible branch cuts of G̃z1 ,z12 denoted by the red, thick lines, located at Im(z12) = 0 and Im(z12 − z1) = 0. (b)
Contour deformation used to obtain Equation (C15). The branch cut at Im(z1 + 𝜀+2 ) = 0 lies infinitesimally close to the branch cut Im(z1) = 0. Therefore,
we integrate along the deformed blue, dashed contour, infinitesimally above and below the real axis, where the infinitesimal imaginary part of 𝜀−1 , with
Re(z1) = 𝜀1, has to be larger than that of 𝜀+2 , i.e., |Im(𝜀−1 )| > |Im(𝜀+2 )|. The thick, red, dashed line denotes the pole at Im(i𝜔12 − z1 − 𝜀2) coming from

the kernel. However, these poles only contribute at ( 1
𝛽

)
and can be neglected, see the discussion after Equation (C17).

treated as a Matsubara frequency, implying e−𝛽z1 = 𝜁1 and therefore

nz12 = 𝜁12

e−𝛽z12 − 𝜁12
z12→z1+z2= 𝜁1𝜁2

e−𝛽z1e−𝛽z2 − 𝜁1𝜁2

= 𝜁2

e−𝛽z2 − 𝜁2
= nz2 (C11)

Adding the contributions from both branch cuts, the z12 dependent terms
in Equation (C10) evaluate to

∳z12

nz12 G̃z1 ,z12

i𝜔12 − z12
= ∫𝜀12

n𝜀12 G̃
𝜀12
z1

i𝜔12 − 𝜀12
+ ∫𝜀2

n𝜀2 G̃
𝜀2
z1

i𝜔12 − z1 − 𝜀2
+ ( 1
𝛽

)
(C12)

see also Figure C1a. The term ( 1
𝛽

)
comes from the possible poles at

z12 = 0 or z2 = 0 (if z12 or z2 are bosonic) which do not contribute at(1),
see Equation (44).

Inserting Equation (C12) into Equation (C10) yields

G̃r
(123) + ( 1

𝛽

)
=∳z1

nz1
i𝜔1 − z1 ∫𝜀2

n𝜀2 G̃
𝜀2
z1

i𝜔12 − z1 − 𝜀2

+ ∳z1

nz1
i𝜔1 − z1 ∫𝜀12

n𝜀12 G̃
𝜀12
z1

i𝜔12 − 𝜀12
(C13)

Next we focus on the contour deformation of z1. For the first term, we
have illustrated possible branch cuts and the contours before and after
the deformation in Figure C1b. As the z1 contour is deformed away from
theMatsubara frequencies, we merely have to consider the singularities in
the integrand of the 𝜀2 integral. After Equation (C17), we will show that the
singularities at z1 = i𝜔12 − 𝜀2 contribute at order( 1

𝛽

)
. We can thus focus

on the branch cut in G̃𝜀2z1 . Previously we have taken the infinitesimal limit

for the imaginary shifts of 𝜀±2 . Thus, during the z1 contour deformation
we have to ensure |Im(𝜀±2 )| < |Im(𝜀±1 )|, see Figure C1b. The z1 contours
infinitesimally above and below Re(z1) are summarized in a discontinuity

G̃𝜀2 ,𝜀1 = G̃𝜀2
𝜀+1

− G̃𝜀2𝜀−1
(C14)

and we thus find for the first term in Equation (C13):

∳z1

nz1
i𝜔1 − z1 ∫𝜀2

n𝜀2 G̃
𝜀2
z1

i𝜔12 − z1 − 𝜀2
=∫𝜀1 ∫𝜀2

n𝜀1n𝜀2 G̃
𝜀2 ,𝜀1

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
+ ( 1
𝛽

)

(C15)

Repeating an analogous z1 contour deformation for the second term in
Equation (C13), we finally obtain

G̃r
(123) = ∫𝜀1 ,𝜀2

n𝜀1n𝜀2 G̃
𝜀2 ,𝜀1 + n𝜀1n𝜀12 G̃

𝜀12 ,𝜀1

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
(C16)

which resembles the spectral representation in Equation (14d) for 𝓁 = 3.
The term ( 1

𝛽

)
on the right of Equation (C15) originates from the pole

at z1 = i𝜔12 − 𝜀2 in the denominator on the left, yielding

( 1
𝛽

)
= −∫𝜀2

n𝜀2n−𝜀2 G̃
𝜀2
i𝜔12

i𝜔2 − 𝜀2
(C17)

with G̃𝜀2i𝜔12
= G̃(i𝜔12 − 𝜀+2 , 𝜀

+
2 ,−i𝜔12) − G̃(i𝜔12 − 𝜀−2 , 𝜀

−
2 ,−i𝜔12). That the

integral on the right indeed is ( 1
𝛽

)
, although it lacks an explicit prefactor

1∕𝛽, can be seen by the following argument: The product of two MWFs
n𝜀2n−𝜀2 has finite support on an interval 𝜀2 ∈ [−1∕𝛽, 1∕𝛽]. Therefore, the
integral scales as 1∕𝛽.

To demonstrate this claim more explicitly, we proceed as follows. We
note that we evaluated the imaginary-frequency convolution in Equa-
tion (C8) by evaluating first the𝜔′12 and then the𝜔

′
1 sum. Due to frequency

conservation, we could have also evaluated the convolution by first sum-
ming over, e.g., 𝜔′2 and then 𝜔

′
12, or 𝜔

′
1 and then 𝜔

′
2, yielding

𝜔′2, then 𝜔
′
12: K ⋆ G̃ = G̃r

(123) − ∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔1

i𝜔2 − 𝜀2
+ ( 1
𝛽

)

𝜔′1, then 𝜔
′
2: K ⋆ G̃ = G̃r

(123) − ∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔12

i𝜔2 − 𝜀2

+ ∫𝜀12
n𝜀12n−𝜀12 G̃

𝜀12
i𝜔1

i𝜔12 − 𝜀12
+ ( 1
𝛽

)
(C18)
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Equating the two expressions yields a proof for Equation (C17):

∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔12

i𝜔2 − 𝜀2

= ∫𝜀2
n𝜀2n−𝜀2 G̃

𝜀2
i𝜔1

i𝜔2 − 𝜀2
+ ∫𝜀12

n𝜀12n−𝜀12 G̃
𝜀12
i𝜔1

i𝜔12 − 𝜀12
+ ( 1
𝛽

)

= ∳z2

nz2n−z2 G̃i𝜔1 ,z2
i𝜔2 − z2

+ ( 1
𝛽

)

= − 1
(−𝛽)2

≠i𝜔2∑
i𝜔′2

G̃i𝜔1 ,i𝜔′2

(i𝜔2 − i𝜔′2)
2
− 1
12

G̃i𝜔1 ,i𝜔2 + ( 1
𝛽

)

= ( 1
𝛽

)
(C19)

We obtained the third line by a contour deformation in analogy to the
derivation of Equation (C12). Here, the second line can be expressed as a
contour integral along the branch cuts at Im(z2) = 0 and Im(z12) = 0 (blue
dashed lines in Figure C1a) and the contour in the third line encloses the
Matsubara frequencies (blue solid lines in Figure C1a). For the last step,
we used Equation (C5).

C.2.2. Contributions from Anomalous Parts

Step 1. Matsubara summation through contour integration: To evaluate
Equation (C7b), we first focus on 𝛽𝛿i𝜔′3 Ĝ3;i𝜔′1

, yielding G̃a
3;(123) in a decom-

position G̃a
(123) =

∑3
i=1 G̃

a
i;(123); the contributions from G̃a

1;(123) and G̃
a
2;(123)

follow from analogous calculations. Then, the imaginary-frequency convo-
lution of the 3p kernel with 𝛽𝛿i𝜔′3 Ĝ3;i𝜔′1

can be rewritten as

G̃a
3;(123) + ( 1

𝛽

)
= K ⋆ Ĝ3

= 1
(−𝛽)2

∑
i𝜔′1 ,i𝜔

′
12

[
ΔΩ12

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)

+ 𝛿Ω12

(
−Δ2

Ω1
− 𝛽
2
ΔΩ1

+ 𝛽
2

6
𝛿Ω1

)]
𝛽𝛿i𝜔′12 Ĝ3;i𝜔′1

= − 1
i𝜔12

1
(−𝛽)

∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
Ĝ3;i𝜔′1

= − 1
i𝜔12

1
(−𝛽)

∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

)
Ĝ
–Δ
3;i𝜔′1

− 1
i𝜔12

1
(−𝛽)

≠0∑
i𝜔′1

(
ΔΩ1

− 𝛽
2
𝛿Ω1

) Ĝ
Δ
3;1

i𝜔′1
(C20)

In the second step, we carried out the sum over i𝜔′12 and used 𝛿Ω12
𝛿i𝜔′12 =

𝛿i𝜔12 𝛿i𝜔′12 = 0, since we enforce the external Matsubara frequencies to be

nonzero. In the third step, we further split the anomalous part according
to Equation (C2).

The sums can be evaluated using Equation (C4) and yield

G̃a
3;(123) + ( 1

𝛽

)
= − 1

i𝜔12 ∳z1

nz1 Ĝ
–Δ
3;z1

i𝜔1 − z1
− 1
i𝜔12 ∳z1

nz1
(i𝜔1 − z1)

Ĝ
Δ
3;1

z1

+ 1
i𝜔12

Res
z1=0

⎛
⎜⎜⎝

nz1
(i𝜔1 − z1)

Ĝ
Δ
3;1

z1

⎞
⎟⎟⎠
+ ( 1
𝛽

)
(C21)

where we excluded the contribution from i𝜔′1 → z1 = 0 by subtracting
the residue.

Step 2. Extraction of PSFs: The first contour integral in Equation (C21)
can be deformed analogously to the 2p case in Section 3.2. The integrand
of the second contour integral only has poles on the imaginary axis since

Ĝ
Δ
3;1 is a constant. Thus, the integral vanishes by closing the contour in the

left and right half of the complex z1 plane. Further evaluating the residue,
we then obtain

G̃a
3;(123) = − 1

i𝜔12 ∫𝜀1
n𝜀1 Ĝ

–Δ;𝜀1
3

i𝜔1 − 𝜀1
− 1
2

Ĝ
Δ
3;1

i𝜔1 i𝜔12

= ∫𝜀1 ,𝜀2
𝛿(𝜀12)n𝜀1 Ĝ

–Δ;𝜀1
3 − 1

2
𝛿(𝜀1)𝛿(𝜀12)Ĝ

Δ
3;1

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
(C22)

where we recovered the form of the spectral representation in Equa-
tion (14d) by introducing Dirac delta functions.

Similarly, the contributions from Ĝ1, Ĝ2, and also Ĝ1,2 to Equa-
tion (C7b) can be derived, leading to the general result

G̃a
(123) = ∫𝜀1 ,𝜀2

1
(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)

×
[
𝛿(𝜀1)n𝜀2 Ĝ

–Δ;𝜀2
1 + 𝛿(𝜀2)n𝜀1 Ĝ

–Δ;𝜀1
2 + 𝛿(𝜀12)n𝜀1 Ĝ

–Δ;𝜀1
3

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ
Δ
3;1

)]
(C23)

Here, only Ĝ
Δ
3;1 enters, since contributions from Ĝ

Δ
1;2 and Ĝ

Δ
2;1 cancel to

due Equation (C3).

C.2.3. Final Result

The main results of the previous sections are Equations (C16) and (C23),
yielding the spectral representation for G̃(123) = G̃r

(123) + G̃a
(123). The par-

tial MF correlator G̃p = G̃r
p + G̃a

p for a general permutation p is then ob-

tained by replacing any index by its permuted counterpart, i → p(i) = ī.
Thus, we obtain our final result

G̃p(i𝝎p) = ∫𝜀1 ,𝜀2
(2𝜋i)2Sp(𝜀1, 𝜀2)

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)
(C24)

with the PSFs given by

(2𝜋i)2Sp(𝜀1, 𝜀2)

= n𝜀1
n𝜀2

G̃𝜀2 ,𝜀1 + n𝜀1
n𝜀12

G̃𝜀12 ,𝜀1 + 𝛿(𝜀1)n𝜀2 Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀2)n𝜀1 Ĝ
–Δ;𝜀1
2

+ 𝛿(𝜀3)n𝜀1 Ĝ
–Δ;𝜀1
3

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ
Δ
3;1

)
(C25)

PSFs for all six permutations are recovered by inserting the respective
i into above equation. They can be expressed in terms of analytic regions
(cf. Figure 4) using

G̃𝜀2 ,𝜀1 = −G̃𝜀13 ,𝜀1 = −G̃𝜀2 ,𝜀3 = G̃𝜀13 ,𝜀3 = G̃′[3] − G̃[1] − G̃′[1] + G̃[3] (C26a)

G̃𝜀1 ,𝜀2 = −G̃𝜀23 ,𝜀2 = −G̃𝜀1 ,𝜀3 = G̃𝜀23 ,𝜀3 = G̃′[3] − G̃[2] − G̃′[2] + G̃[3] (C26b)

G̃𝜀3 ,𝜀1 = −G̃𝜀12 ,𝜀1 = −G̃𝜀3 ,𝜀2 = G̃𝜀12 ,𝜀2 = G̃′[2] − G̃[1] − G̃′[1] + G̃[2]

(C26c)
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Ĝ
–Δ;𝜀2
1 = −Ĝ–Δ;𝜀3

1 = Ĝ
–Δ;[2]
1 − Ĝ

–Δ;[3]
1 (C26d)

Ĝ
–Δ;𝜀1
2 = −Ĝ–Δ;𝜀2

2 = Ĝ
–Δ;[1]
2 − Ĝ

–Δ;[3]
2 (C26e)

Ĝ
–Δ;𝜀1
3 = −Ĝ–Δ;𝜀2

3 = Ĝ
–Δ;[1]
3 − Ĝ

–Δ;[2]
3 (C26f )

Ĝ
Δ
1;2 = −ĜΔ

1;3 = −ĜΔ
2;1 = Ĝ

Δ
2;3 = Ĝ

Δ
3;1 = −ĜΔ

3;2 (C26g)

Ĝ1,2 = Ĝ1,2 (C26h)

with the definitions introduced in Section 5

G[1] = G̃(𝜀+1 , 𝜀
−
2 , 𝜀

−
3 ), G′[1] = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 ) (C27a)

G[2] = G̃(𝜀−1 , 𝜀
+
2 , 𝜀

−
3 ), G′[2] = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 ) (C27b)

G[3] = G̃(𝜀−1 , 𝜀
−
2 , 𝜀

+
3 ), G′[3] = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 ) (C27c)

Ĝ
–Δ;[2]
1 = Ĝ

–Δ
1 (◦, 𝜀

+
2 , 𝜀

−
3 ), Ĝ

–Δ;[3]
1 = Ĝ

–Δ
1 (◦, 𝜀

−
2 , 𝜀

+
3 ) (C27d)

Ĝ
–Δ;[1]
2 = Ĝ

–Δ
1 (𝜀

+
1 , ◦, 𝜀

−
3 ), Ĝ

–Δ;[3]
2 = Ĝ

–Δ
1 (𝜀

−
1 , ◦, 𝜀

+
3 ) (C27e)

Ĝ
–Δ;[1]
3 = Ĝ

–Δ
1 (𝜀

+
1 , 𝜀

−
2 , ◦), Ĝ

–Δ;[2]
3 = Ĝ

–Δ
1 (𝜀

−
1 , 𝜀

+
2 , ◦) (C27f )

Here, we have inserted a ◦ at the position of the frequency arguments on
which the function does not depend. Note that Equations (C26a)–(C26c)
also imply, e.g., G̃𝜀2 ,𝜀1 = G̃𝜀1 ,𝜀2 + G̃𝜀3 ,𝜀1 . Relations of this form can be used
to simplify PSF (anti)commutators, which appear in Section 5.2.

One additional comment is in order for the regular contributions in
Equation (C25). Consider, e.g., permutation p = (123) and n𝜀1 a bosonic
MWF. Then, if the regular contributions G̃𝜀2 ,𝜀1 and G̃𝜀12 ,𝜀1 contain terms
proportional to Dirac 𝛿(𝜀1), the combination n𝜀1𝛿(𝜀1) is ill-defined as the
MWF diverges for vanishing frequencies. For their evaluation, however, we
can use Equations (C26a)–(C26c) to rewrite

(2𝜋i)2S̃(123)(𝜀1, 𝜀2)

= n𝜀1n𝜀2 G̃
𝜀2 ,𝜀1 + n𝜀1n𝜀12

(
G̃𝜀1 ,𝜀12 − G̃𝜀2 ,𝜀1

)

= −n−𝜀2n𝜀12 G̃
𝜀2 ,𝜀1 + n𝜀1n𝜀12 G̃

𝜀1 ,𝜀12 (C28)

Here, the first term does not include n𝜀1 , and the discontinuity G̃
𝜀1 ,𝜀12 in

the second term does not contain 𝛿(𝜀1) contributions (see, e.g., Equa-
tions (G10) and discussion thereafter), circumventing the occurrence of
bosonic n𝜀1𝛿(𝜀1) contributions.

C.3. Simplifications for KF Correlators for 𝓁 = 3

In the following, we show that the spectral representation of Keldysh com-
ponents can be recast into a form that is formally equivalent to Equa-
tions (19), but more convenient for the purpose of analytic continuation.
The new representation enables us to insert the PSFs in Equation (C25)
and obtain expressions for the Keldysh components in terms of analytic
continuations of MF correlators. This constitutes Step 3 of our three-
step strategy.

While the following calculations are demonstrated for explicit examples
of 3p KF components, they can be generalized to arbitrary KF components
and even to arbitrary 𝓁p functions (see Appendix F).

Table C1. 𝓁 = 3: Simplification of the Keldysh kernel (19c) for the KF cor-
relator G[13] for all permutations by application of the identity (58). For
permutations p = (123) and p = (321), manipulations presented in Equa-
tion (C30) were performed. Additionally, energy conservation and the con-
straints enforced by the 𝛿-functions allow us to express all denominators
through 𝜔−2 .

p kp [�̂�1 �̂�2] [�̂�1 �̂�2] K [�̂�1 �̂�2](𝝎p) = K̃(𝝎[�̂�1]
p ) − K̃(𝝎[�̂�2]

p )

(123) 212 [13] [13] K̃(𝝎[1]
(123)) − K̃(𝝎[3]

(123)) = 𝛿(𝜔1)
1
𝜔−2

− 𝛿(𝜔12)
1
𝜔−2

(132) 221 [12] [13] K̃(𝝎[1]
(132)) − K̃(𝝎[3]

(132)) = −𝛿(𝜔1)
1
𝜔−2

(213) 122 [23] [13] K̃(𝝎[1]
(213)) − K̃(𝝎[3]

(213)) = 𝛿(𝜔12)
1
𝜔−2

(231) 122 [23] [31] K̃(𝝎[3]
(231)) − K̃(𝝎[1]

(231)) = 𝛿(𝜔1)
1
𝜔−2

(312) 221 [12] [31] K̃(𝝎[3]
(312)) − K̃(𝝎[1]

(312)) = −𝛿(𝜔12)
1
𝜔−2

(321) 212 [13] [31] K̃(𝝎[3]
(321)) − K̃(𝝎[1]

(321)) = −𝛿(𝜔1)
1
𝜔−2

+ 𝛿(𝜔12)
1
𝜔−2

C.3.1. Simplifications for KF Correlator G[𝜂1𝜂2]

We begin with outlining the necessary steps to express the KF component
G[𝜂1𝜂2] in terms of analytically continued MF correlators on the example
G[13]. The simplifcations rely on repeated application of identity (58).

The spectral representation in Equations (19) serves as our starting
point. As a first step, we bring the Keldysh kernel K [�̂�1 �̂�2] in a more conve-
nient form, starting with permutation p = (123), where [�̂�1�̂�2] = [𝜂1𝜂2] =
[13] and therefore

K [13](𝝎(123)) = K̃(𝝎[1]
(123)) − K̃(𝝎[3]

(123)) =
1

𝜔[1]1 𝜔
[1]
12

− 1

𝜔[3]1 𝜔
[3]
12

(C29)

In the first term, all frequency combinations in the denominator acquire a
positive imaginary shift, whereas in the second term they obtain a negative
imaginary shift. Adding and subtracting 1∕(𝜔[1]1 𝜔

[3]
12), identity (58) leads to

K [13](𝝎(123)) =

(
1

𝜔[1]1
− 1

𝜔[3]1

)
1

𝜔[3]12
+

(
1

𝜔[1]12
− 1

𝜔[3]12

)
1

𝜔[1]1

= 𝛿(𝜔1)
1
𝜔−2

+ 𝛿(𝜔12)
1
𝜔+1

(C30)

The kernels for all other permutations can be simplified in a similar man-
ner, and the results are summarized in Table C1. Collecting all contribu-
tions proportional to either 𝛿(𝜔1)∕𝜔−2 or 𝛿(𝜔12)∕𝜔−2 yields Equation (75).
The PSF (anti)commutators therein are evaluated using the relations in
Equations (C26) and result in

S[1,[2,3]− ]+ = S(123) − S(132) + S(231) − S(321) (C31a)

= N𝜀1 G̃
𝜀1 ,𝜀2 − 2𝛿(𝜀1)Ĝ

–Δ;𝜀2
1 − 2𝛿(𝜀1)𝛿(𝜀2)Ĝ

Δ
1;2

S[[1,2]− ,3]+ = S(123) − S(213) + S(312) − S(321) (C31b)

= −N𝜀12 G̃
𝜀12 ,𝜀2 + 2𝛿(𝜀12)Ĝ

–Δ;𝜀2
3 + 2𝛿(𝜀1)𝛿(𝜀2)Ĝ

Δ
3;2

where we suppressed the frequency arguments of the PSFs.

C.3.2. Simplifications for KF Correlator G[𝜂1𝜂2𝜂3]

In Section 5.2.2 it was pointed out that the Keldysh component G[123] can
be computed by subtracting a fully retarded correlator, e.g. G[3], in order
to reuse identity (58).
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Table C2. 𝓁 = 3: Keldysh kernel for G[123] − G[3] in Equation (C32), evalu-
ated for all permutations.

p Kernel of G[123] − G[3]

(123) K [123](𝝎(123)) − K̃(𝝎[3]
(123)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔1)

1
𝜔−2

(132) K [123](𝝎(132)) − K̃(𝝎[3]
(132)) = −𝛿(𝜔1)

1
𝜔−2

− 𝛿(𝜔2)
1
𝜔−1

(213) K [123](𝝎(213)) − K̃(𝝎[3]
(213)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔2)

1
𝜔−1

(231) K [123](𝝎(231)) − K̃(𝝎[3]
(231)) = −𝛿(𝜔2)

1
𝜔−1

− 𝛿(𝜔1)
1
𝜔−2

(312) K [123](𝝎(312)) − K̃(𝝎[3]
(312)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔2)

1
𝜔−1

(321) K [123](𝝎(321)) − K̃(𝝎[3]
(321)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔1)

1
𝜔−2

The kernel of G[3] is simply given by K [3̂](𝝎p) = K̃(𝝎[3]
p ) and there-

fore permutation independent, as discussed before Equation (23). Since
G[123] = G222 implies kp = 222 and consequently [�̂�1�̂�2�̂�3] = [123] for any
permutation, the kernel for G[123] − G[3] reads

K [123](𝝎p) − K [3̂](𝝎p) = K̃(𝝎[1]
p ) − K̃(𝝎[2]

p ) + K̃(𝝎[3]
p ) − K̃(𝝎[3]

p ) (C32)

and therefore the effect of subtracting G[3] is permutation dependent.
We first consider permutation p = (123), for which the difference of ker-

nels simplifies to

K [123](𝝎(123)) − K [3](𝝎(123)) = K̃(𝝎[1]
(123)) − K̃(𝝎[2]

(123))

= 1

𝜔[1]1 𝜔
[1]
12

− 1

𝜔[2]1 𝜔
[2]
12

= 𝛿(𝜔1)
1
𝜔+2

(C33)

In the last step, we were able to use Equation (58) again, set 𝜔[1]12 = 𝜔
[2]
12 =

𝜔+12, and reduced 𝜔12 = 𝜔2 due to the 𝛿-function. For the comparison to
kernels of other permutations, it is convenient to additionally add and sub-
tract 𝛿(𝜔1)∕𝜔−2 to obtain

K [123](𝝎(123)) − K [3](𝝎(123)) = 𝛿(𝜔1)𝛿(𝜔2) + 𝛿(𝜔1)
1
𝜔−2

(C34)

For permutation p = (132), Equation (C32) yields

K̃(𝝎[1]
(132)) − K̃(𝝎[3]

(132)) + K̃(𝝎[2]
(132)) − K̃(𝝎[3]

(132))

= 𝛿(𝜔1)
1
𝜔+3

− 𝛿(𝜔13)
1
𝜔−1

(C35)

Using 𝜔+3 = −𝜔−2 due to energy conservation and the 𝛿–function, the
first term matches the second term in Equation (C34). Therefore,
PSFs of permutations p = (123), (132) can be expressed through PSF
(anti)commutators as in the previous section, motivating the manipula-
tion from Equation (C33) to (C34).

A summary of the kernels for all permutations is given in Table C2. In
these kernels, a total of three unique terms occur, given by 𝛿(𝜔1)𝛿(𝜔2),
𝛿(𝜔1)∕𝜔−2 , or 𝛿(𝜔2)∕𝜔

−
1 . Collecting all PSFs convoluted with the same ex-

pressions gives Equation (81), with the PSF (anti)commutators evaluating
to

S[[1,2]+ ,3]+ (𝜀1, 𝜀2) = (1 +N𝜀1N𝜀2 )G̃
𝜀2 ,𝜀1 +N𝜀12N𝜀1 G̃

𝜀12 ,𝜀1

− 2𝛿(𝜀1)N𝜀2 Ĝ
–Δ;𝜀2
1 − 2𝛿(𝜀2)N𝜀1 Ĝ

–Δ;𝜀1
2

− 2𝛿(𝜀12)N𝜀1 Ĝ
–Δ;𝜀1
3 + 4𝛿(𝜀1)𝛿(𝜀2)Ĝ1,2,

S[1,[2,3]− ]− (𝜀1, 𝜀2) = G̃𝜀1 ,𝜀2 ,

S[2,[1,3]− ]− (𝜀2, 𝜀1) = G̃𝜀2 ,𝜀1 (C36)

This concludes our appendix on additional computations for the ana-
lytic continuation of 3p correlators.

Appendix D: Partial MF 4p Correlators

In this appendix, we discuss purely fermionic partial MF 4p correlators.
However, we do not display explicit calculations here. Rather, we intro-
duce an iterative procedure to derive the structure of 4p PSFs from 3p
PSFs, based on our insights from 2p and 3p calculations. For a general
fermionic MF 4p correlator, only the sums of two fermionic frequencies
result in bosonic frequencies, which, in turn, might lead to anomalous
terms. According to Equation (A5), the general form of the correlator thus
reads

Gi𝜔1 ,i𝜔2 ,i𝜔3 = G̃i𝜔1 ,i𝜔2 ,i𝜔3 + 𝛽𝛿i𝜔12 Ĝ12;i𝜔1 ,i𝜔3

+ 𝛽𝛿i𝜔13 Ĝ13;i𝜔1 ,i𝜔2 + 𝛽𝛿i𝜔23 Ĝ23;i𝜔1 ,i𝜔2 (D1)

D.1. Regular Contributions

Step 1. Matsubara summation through contour integration: To derive par-
tial MF 4p correlators, we insert Equation (D1) and the singularity-free 4p
kernel (Equation (A2c)) into Equation (31):

G̃(1234)(i𝝎(1234)) + ( 1
𝛽

)
= [K ⋆ G](i𝝎(1234)) (D2)

Here,we again consider the permutation p = (1234) first, before obtain-
ing the general result by replacing all indices i → ī. By repeated use of
the identities in Equations (C4) and (C5), together with the analogously
proven new identity

1
(−𝛽)3

∑
i𝜔′

Δ3
i𝜔−i𝜔′ f̃ (i𝜔

′) = ( 1
𝛽

)
(D3)

the imaginary-frequency convolution can again be expressed through con-
tour integrals. Focusing on the regular contribution to the correlator, G̃,
first, we indeed recover Equation (39) for 𝓁 = 4:

G̃r
(1234)(i𝝎(1234)) + ( 1

𝛽

)
=

[
K ⋆ G̃

]
(i𝝎(1234))

= ∳z1
∳z12

∳z123

nz1nz12nz123 G̃z1 ,z12 ,z123

(i𝜔1 − z1)(i𝜔12 − z12)(i𝜔123 − z123)
(D4)

Step 2. Extraction of PSFs: For the deformation of the contour, it is in-
structive to recapitulate the 2p and 3p results for the regular contributions
to the PSFs. As a function of complex frequencies, a general 2p MF corre-
lator G̃z1 = G̃(z1,−z1) has one possible branch cut defined by Im(z1) = 0,
resulting in

(2𝜋i)Sr(12)(𝜀1) = n𝜀1 G̃
𝜀1 (D5)

In the 3p case, the additional frequency dependence of G̃z1 ,z12 =
G̃(z1, z12 − z1,−z12) introduces two further branch cuts at Im(z12) = 0 and
Im(z12 − z1) = Im(z2) = 0, additionally to Im(z1) = 0. According to Equa-
tion (C10), the contour of ∳z12 is deformed first, taking account of the latter
two out of the three branch cuts. This yields a sum of the discontinuities
G̃𝜀12z1

and G̃𝜀2z1 , multiplied with the respective MWFs (Equation (C12)). The
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subsequent contour deformation of ∳z1 reduces to an effective 2p calcula-
tion, i.e., only the branch cut at Im(z1) = 0 remains, resulting in

(2𝜋i)2Sr(123)(𝜀1, 𝜀2) = n𝜀2n𝜀1 G̃
𝜀2 ,𝜀1 + n𝜀12n𝜀1 G̃

𝜀12 ,𝜀1 (D6)

with the discontinuity in 𝜀1 to the right of 𝜀2 and 𝜀12.
In the 4p case, the new frequency z123 generates four additional

branch cuts (see discussion in Section 4.1), defined by vanishing Im(z123),
Im(z123 − z1), Im(z123 − z12) or Im(z123 − z12 + z1), yielding a total of
seven possible branch cuts together with Im(z12) = 0, Im(z12 − z1) = 0,
and Im(z1) = 0 from the 3p case. Since ∳z123 is deformed first according to
Equation (D4), the four new branch cuts are taken into account via a sum
of the discontinuities G̃𝜀3z12 ,z1 , G̃

𝜀123
z12 ,z1

, G̃𝜀13z12 ,z1
, and G̃𝜀23z12 ,z1

, multiplied with
the respective MWFs. For each of these discontinuities, the subsequent
contour deformations of ∳z12 and ∳z1 reduces to an effective 3p calcula-
tion. Consequently, we obtain

(2𝜋i)3Sr(1234)(𝜀1, 𝜀2, 𝜀3)

= n𝜀3n𝜀2n𝜀1 G̃
𝜀3 ,𝜀2 ,𝜀1 + n𝜀123n𝜀2n𝜀1 G̃

𝜀123 ,𝜀2 ,𝜀1 + n𝜀13n𝜀2n𝜀1 G̃
𝜀13 ,𝜀2 ,𝜀1

+ n𝜀23n𝜀2n𝜀1 G̃
𝜀23 ,𝜀2 ,𝜀1 + n𝜀3n𝜀12n𝜀1 G̃

𝜀3 ,𝜀12 ,𝜀1 + n𝜀123n𝜀12n𝜀1 G̃
𝜀123 ,𝜀12 ,𝜀1

+ n𝜀13n𝜀12n𝜀1 G̃
𝜀13 ,𝜀12 ,𝜀1 + n𝜀23n𝜀12n𝜀1 G̃

𝜀23 ,𝜀12 ,𝜀1 (D7)

We have also checked this result by explicit contour deformations in Equa-
tion (D4). There, the poles of the denominators can be ignored since
they only contribute at order ( 1

𝛽

)
, similarly to Equation (C17) in the 3p

case. To further simplify Equation (D7), we note that, for fermionic 4p
correlators, two consecutive bosonic discontinuities have to vanish, i.e.,
G̃𝜀13 ,𝜀12 ,𝜀1 = G̃𝜀23 ,𝜀12 ,𝜀1 = 0, since their kernels carry one bosonic argument
only (see Appendix E.1 for further details).

D.2. Anomalous Contributions

We do not present the derivations of the anomalous contributions of G to
Equation (D2) explicitly here, as these correspond to 3p calculations. There
is one crucial difference, however. The anomalous kernel in Equation (A4c)
for the fermionic 4p case reduces to

K̂
alt
(𝛀p) = − 𝛽

2
𝛿i𝜔12−𝜀12

1(
i𝜔1 − 𝜀1

)(
i𝜔3 − 𝜀3

) (D8)

and thus only depends on fermionic Matsubara frequencies. Therefore,
anomalous terms such as Ĝ13;i𝜔1 ,i𝜔2 only depend on the frequencies i𝜔1
and i𝜔2 separately, but not on their sum i𝜔12. In the complex frequency
plain, this implies that Ĝ13;z1 ,z2 has branch cuts only for Im(z1) = 0 and
Im(z2) = 0, but not for Im(z12) = 0, in contrast to the regular 3p case.
Additionally, since the denominators in Equation (D8) are non-singular
due to the fermionic Matsubara frequencies, we need not distinguish the

anomalous contributions by factors ofΔi𝜔, e.g., splitting Ĝ13, into Ĝ
–Δ
13 and

ĜΔ
13 terms, as was the case for 3p functions (Equation (C2)).

D.3. Final Result

Finally, the fermionic partial 4p correlators for general permutations p is
obtained from the full correlator via

G̃p(i𝝎p) = ∫𝜀1 ,𝜀2 ,𝜀3
(2𝜋i)3Sp(𝜀1, 𝜀2, 𝜀3)

(i𝜔1 − 𝜀1)(i𝜔12 − 𝜀12)(i𝜔123 − 𝜀123)
(D9)

with the PSFs given by

(2𝜋i)3Sp(𝜀1, 𝜀2, 𝜀3)

= n𝜀3
n𝜀2

n𝜀1
G̃𝜀3 ,𝜀2 ,𝜀1 + n𝜀123

n𝜀2
n𝜀1

G̃𝜀123 ,𝜀2 ,𝜀1

+ n𝜀13
n𝜀2

n𝜀1
G̃𝜀13 ,𝜀2 ,𝜀1 + n𝜀23

n𝜀2
n𝜀1

G̃𝜀23 ,𝜀2 ,𝜀1

+ n𝜀3
n𝜀12

n𝜀1
G̃𝜀3 ,𝜀12 ,𝜀1 + n𝜀123

n𝜀12
n𝜀1

G̃𝜀123 ,𝜀12 ,𝜀1

+ n𝜀3
n𝜀1
𝛿(𝜀12) Ĝ

𝜀3 ,𝜀1
12

+ n𝜀2
n𝜀1
𝛿(𝜀13) Ĝ

𝜀2 ,𝜀1
13

+ n𝜀2
n𝜀1
𝛿(𝜀23) Ĝ

𝜀2 ,𝜀1
23

(D10)

For the anomalous parts, the order of discontinuities does not matter, as,
e.g., Ĝ

𝜀3 ,𝜀1
12

= Ĝ
𝜀1 ,𝜀3
12

.

For completeness, we express the discontinuities in Equation (D10) in
terms of analytic regions according to their definition in Section 6.1. This
gives

G̃𝜀1 ,𝜀2 ,𝜀3 = −G̃𝜀234 ,𝜀2 ,𝜀3 = −G̃𝜀1 ,𝜀2 ,𝜀4 = G̃𝜀234 ,𝜀2 ,𝜀4

= −G̃𝜀1 ,𝜀34 ,𝜀3 = G̃𝜀234 ,𝜀34 ,𝜀3 = G̃𝜀1 ,𝜀34 ,𝜀4 = −G̃𝜀234 ,𝜀34 ,𝜀4

= C(3) − C(4) + C(123) − C(124) − C(13)
III + C(14)

III − C(23)
III + C(24)

III (D11a)

G̃𝜀1 ,𝜀3 ,𝜀2 = −G̃𝜀234 ,𝜀3 ,𝜀2 = −G̃𝜀1 ,𝜀3 ,𝜀4 = G̃𝜀234 ,𝜀3 ,𝜀4

= −G̃𝜀1 ,𝜀24 ,𝜀2 = G̃𝜀234 ,𝜀24 ,𝜀2 = G̃𝜀1 ,𝜀24 ,𝜀4 = −G̃𝜀234 ,𝜀24 ,𝜀4

= C(2) − C(4) + C(123) − C(134) − C(12)
III + C(14)

III − C(23)
III + C(34)

III (D11b)

G̃𝜀1 ,𝜀4 ,𝜀2 = −G̃𝜀234 ,𝜀4 ,𝜀2 = −G̃𝜀1 ,𝜀4 ,𝜀3 = G̃𝜀234 ,𝜀4 ,𝜀3

= −G̃𝜀1 ,𝜀23 ,𝜀2 = G̃𝜀234 ,𝜀23 ,𝜀2 = G̃𝜀1 ,𝜀23 ,𝜀3 = −G̃𝜀234 ,𝜀23 ,𝜀3

= C(2) − C(3) + C(124) − C(134) − C(12)
III + C(13)

III − C(24)
III + C(34)

III (D11c)

G̃𝜀2 ,𝜀1 ,𝜀3 = −G̃𝜀134 ,𝜀1 ,𝜀3 = −G̃𝜀2 ,𝜀1 ,𝜀4 = G̃𝜀134 ,𝜀1 ,𝜀4

= −G̃𝜀2 ,𝜀34 ,𝜀3 = G̃𝜀134 ,𝜀34 ,𝜀3 = G̃𝜀2 ,𝜀34 ,𝜀4 = −G̃𝜀134 ,𝜀34 ,𝜀4

= C(3) − C(4) + C(123) − C(124) − C(13)
II + C(14)

II − C(23)
II + C(24)

II (D11d)

G̃𝜀3 ,𝜀1 ,𝜀2 = −G̃𝜀124 ,𝜀1 ,𝜀2 = −G̃𝜀3 ,𝜀1 ,𝜀4 = G̃𝜀124 ,𝜀1 ,𝜀4

= −G̃𝜀3 ,𝜀24 ,𝜀2 = G̃𝜀124 ,𝜀24 ,𝜀2 = G̃𝜀3 ,𝜀24 ,𝜀4 = −G̃𝜀124 ,𝜀24 ,𝜀4

= C(2) − C(4) + C(123) − C(134) − C(12)
II + C(34)

II + C(14)
IV − C(23)

IV (D11e)

G̃𝜀4 ,𝜀1 ,𝜀2 = −G̃𝜀123 ,𝜀1 ,𝜀2 = −G̃𝜀4 ,𝜀1 ,𝜀3 = G̃𝜀123 ,𝜀1 ,𝜀3

= −G̃𝜀4 ,𝜀23 ,𝜀2 = G̃𝜀123 ,𝜀23 ,𝜀2 = G̃𝜀4 ,𝜀23 ,𝜀3 = −G̃𝜀123 ,𝜀23 ,𝜀3

= C(2) − C(3) + C(124) − C(134) − C(12)
IV + C(13)

IV − C(24)
IV + C(34)

IV (D11f )

G̃𝜀2 ,𝜀3 ,𝜀1 = −G̃𝜀134 ,𝜀3 ,𝜀1 = −G̃𝜀2 ,𝜀3 ,𝜀4 = G̃𝜀134 ,𝜀3 ,𝜀4

= −G̃𝜀2 ,𝜀14 ,𝜀1 = G̃𝜀134 ,𝜀14 ,𝜀1 = G̃𝜀2 ,𝜀14 ,𝜀4 = −G̃𝜀134 ,𝜀14 ,𝜀4

= C(1) − C(4) + C(123) − C(234) − C(12)
I + C(34)

I − C(13)
II + C(24)

II (D11g)
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G̃𝜀3 ,𝜀2 ,𝜀1 = −G̃𝜀124 ,𝜀2 ,𝜀1 = −G̃𝜀3 ,𝜀2 ,𝜀4 = G̃𝜀124 ,𝜀2 ,𝜀4

= −G̃𝜀3 ,𝜀14 ,𝜀1 = G̃𝜀124 ,𝜀14 ,𝜀1 = G̃𝜀3 ,𝜀14 ,𝜀4 = −G̃𝜀124 ,𝜀14 ,𝜀4

= C(1) − C(4) + C(123) − C(234) − C(12)
II + C(34)

II − C(13)
I + C(24)

I (D11h)

G̃𝜀2 ,𝜀4 ,𝜀1 = −G̃𝜀134 ,𝜀4 ,𝜀1 = −G̃𝜀2 ,𝜀4 ,𝜀3 = G̃𝜀134 ,𝜀4 ,𝜀3

= −G̃𝜀2 ,𝜀13 ,𝜀1 = G̃𝜀134 ,𝜀13 ,𝜀1 = G̃𝜀2 ,𝜀13 ,𝜀3 = −G̃𝜀134 ,𝜀13 ,𝜀3

= C(1) − C(3) + C(124) − C(234) − C(12)
I + C(34)

I − C(14)
II + C(23)

II (D11i)

G̃𝜀4 ,𝜀2 ,𝜀1 = −G̃𝜀123 ,𝜀2 ,𝜀1 = −G̃𝜀4 ,𝜀2 ,𝜀3 = G̃𝜀123 ,𝜀2 ,𝜀3

= −G̃𝜀4 ,𝜀13 ,𝜀1 = G̃𝜀123 ,𝜀13 ,𝜀1 = G̃𝜀4 ,𝜀13 ,𝜀3 = −G̃𝜀123 ,𝜀13 ,𝜀3

= C(1) − C(3) + C(124) − C(234) − C(12)
IV + C(34)

IV − C(14)
I + C(23)

I (D11j)

G̃𝜀3 ,𝜀4 ,𝜀1 = −G̃𝜀124 ,𝜀4 ,𝜀1 = −G̃𝜀3 ,𝜀4 ,𝜀2 = G̃𝜀124 ,𝜀4 ,𝜀2

= −G̃𝜀3 ,𝜀12 ,𝜀1 = G̃𝜀124 ,𝜀12 ,𝜀1 = G̃𝜀3 ,𝜀12 ,𝜀2 = −G̃𝜀124 ,𝜀12 ,𝜀2

= C(1) − C(2) + C(134) − C(234) − C(14)
IV + C(23)

IV − C(13)
I + C(24)

I (D11k)

G̃𝜀4 ,𝜀3 ,𝜀1 = −G̃𝜀123 ,𝜀3 ,𝜀1 = −G̃𝜀4 ,𝜀3 ,𝜀2 = G̃𝜀123 ,𝜀3 ,𝜀2

= −G̃𝜀4 ,𝜀12 ,𝜀1 = G̃𝜀123 ,𝜀12 ,𝜀1 = G̃𝜀4 ,𝜀12 ,𝜀2 = −G̃𝜀123 ,𝜀12 ,𝜀2

= C(1) − C(2) + C(134) − C(234) − C(14)
I + C(23)

I − C(13)
IV + C(24)

IV (D11l)

G̃𝜀12 ,𝜀1 ,𝜀3 = −G̃𝜀34 ,𝜀1 ,𝜀3 = G̃𝜀12 ,𝜀3 ,𝜀1 = −G̃𝜀34 ,𝜀3 ,𝜀1

= −G̃𝜀12 ,𝜀2 ,𝜀3 = G̃𝜀34 ,𝜀2 ,𝜀3 = −G̃𝜀12 ,𝜀3 ,𝜀2 = G̃𝜀34 ,𝜀3 ,𝜀2

= −G̃𝜀12 ,𝜀1 ,𝜀4 = G̃𝜀34 ,𝜀1 ,𝜀4 = −G̃𝜀12 ,𝜀4 ,𝜀1 = G̃𝜀34 ,𝜀4 ,𝜀1

= G̃𝜀12 ,𝜀2 ,𝜀4 = −G̃𝜀34 ,𝜀2 ,𝜀4 = G̃𝜀12 ,𝜀4 ,𝜀2 = −G̃𝜀34 ,𝜀4 ,𝜀2

= C(13)
II − C(13)

III − C(14)
II + C(14)

III + C(23)
II − C(23)

III − C(24)
II + C(24)

III (D11m)

G̃𝜀13 ,𝜀1 ,𝜀2 = −G̃𝜀24 ,𝜀1 ,𝜀2 = G̃𝜀13 ,𝜀2 ,𝜀1 = −G̃𝜀24 ,𝜀2 ,𝜀1

= −G̃𝜀13 ,𝜀3 ,𝜀2 = G̃𝜀24 ,𝜀3 ,𝜀2 = −G̃𝜀13 ,𝜀2 ,𝜀3 = G̃𝜀24 ,𝜀2 ,𝜀3

= −G̃𝜀13 ,𝜀1 ,𝜀4 = G̃𝜀24 ,𝜀1 ,𝜀4 = −G̃𝜀13 ,𝜀4 ,𝜀1 = G̃𝜀24 ,𝜀4 ,𝜀1

= G̃𝜀13 ,𝜀3 ,𝜀4 = −G̃𝜀24 ,𝜀3 ,𝜀4 = G̃𝜀13 ,𝜀4 ,𝜀3 = −G̃𝜀24 ,𝜀4 ,𝜀3

= C(12)
II − C(12)

III + C(14)
III − C(14)

IV − C(23)
III + C(23)

IV − C(34)
II + C(34)

III (D11n)

G̃𝜀14 ,𝜀1 ,𝜀2 = −G̃𝜀23 ,𝜀1 ,𝜀2 = G̃𝜀14 ,𝜀2 ,𝜀1 = −G̃𝜀23 ,𝜀2 ,𝜀1

= −G̃𝜀14 ,𝜀4 ,𝜀2 = G̃𝜀23 ,𝜀4 ,𝜀2 = −G̃𝜀14 ,𝜀2 ,𝜀4 = G̃𝜀23 ,𝜀2 ,𝜀4

= −G̃𝜀14 ,𝜀1 ,𝜀3 = G̃𝜀23 ,𝜀1 ,𝜀3 = −G̃𝜀14 ,𝜀3 ,𝜀1 = G̃𝜀23 ,𝜀3 ,𝜀1

= G̃𝜀14 ,𝜀4 ,𝜀3 = −G̃𝜀23 ,𝜀4 ,𝜀3 = G̃𝜀14 ,𝜀3 ,𝜀4 = −G̃𝜀23 ,𝜀3 ,𝜀4

= −C(12)
III + C(12)

IV + C(13)
III − C(13)

IV − C(24)
III + C(24)

IV + C(34)
III − C(34)

IV (D11o)

Here, the analytic continuations of G̃ are labeled according to the analytic
regions in Figure 5

C(1) = G̃(𝜀+1 , 𝜀
−
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(2) = G̃(𝜀−1 , 𝜀
+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(3) = G̃(𝜀−1 , 𝜀
−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(4) = G̃(𝜀−1 , 𝜀
−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(12)
I = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(12)
II = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(12)
III = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(12)
IV = G̃(𝜀+1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(13)
I = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(13)
II = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(13)
III = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(13)
IV = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(14)
I = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

+
14),

C(14)
II = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(14)
III = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(14)
IV = G̃(𝜀+1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(23)
I = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14),

C(23)
II = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(23)
III = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(23)
IV = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(24)
I = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14),

C(24)
II = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(24)
III = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(24)
IV = G̃(𝜀−1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

−
14),

C(34)
I = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14),

C(34)
II = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

+
14),

C(34)
III = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(34)
IV = G̃(𝜀−1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

−
14),

C(123) = G̃(𝜀+1 , 𝜀
+
2 , 𝜀

+
3 , 𝜀

−
4 ; 𝜀

+
12, 𝜀

+
13, 𝜀

−
14),

C(124) = G̃(𝜀+1 , 𝜀
+
2 , 𝜀

−
3 , 𝜀

+
4 ; 𝜀

+
12, 𝜀

−
13, 𝜀

+
14),

C(134) = G̃(𝜀+1 , 𝜀
−
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

+
13, 𝜀

+
14),

C(234) = G̃(𝜀−1 , 𝜀
+
2 , 𝜀

+
3 , 𝜀

+
4 ; 𝜀

−
12, 𝜀

−
13, 𝜀

−
14) (D12)
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The discontinuities in the anomalous parts Equation (D10) read

Ĝ
𝜀1 ,𝜀3
12 = −Ĝ𝜀2 ,𝜀312 = −Ĝ𝜀1 ,𝜀412 = Ĝ

𝜀2 ,𝜀4
12 = Ĉ

(13)
12 − Ĉ

(14)
12 − Ĉ

(23)
12 + Ĉ

(24)
12

(D13a)

Ĝ
𝜀1 ,𝜀2
13 = −Ĝ𝜀3 ,𝜀213 = −Ĝ𝜀1 ,𝜀413 = Ĝ

𝜀3 ,𝜀4
13 = Ĉ

(12)
13 − Ĉ

(14)
13 − Ĉ

(23)
13 + Ĉ

(34)
13

(D13b)

Ĝ
𝜀1 ,𝜀2
14 = −Ĝ𝜀4 ,𝜀214 = −Ĝ𝜀1 ,𝜀314 = Ĝ

𝜀4 ,𝜀3
14 = Ĉ

(12)
14 − Ĉ

(13)
14 − Ĉ

(24)
14 + Ĉ

(34)
14

(D13c)

with

Ĉ
(13)
12 = Ĝ12(𝜀

+
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ), Ĉ

(24)
12 = Ĝ12(𝜀

−
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ),

Ĉ
(14)
12 = Ĝ12(𝜀

+
1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ), Ĉ

(23)
12 = Ĝ12(𝜀

−
1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ),

Ĉ
(12)
13 = Ĝ13(𝜀

+
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ), Ĉ

(34)
13 = Ĝ13(𝜀

−
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ),

Ĉ
(14)
13 = Ĝ13(𝜀

+
1 , 𝜀

−
2 , 𝜀

−
3 , 𝜀

+
4 ), Ĉ

(23)
13 = Ĝ13(𝜀

−
1 , 𝜀

+
2 , 𝜀

+
3 , 𝜀

−
4 ),

Ĉ
(12)
14 = Ĝ14(𝜀

+
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

−
4 ), Ĉ

(34)
14 = Ĝ14(𝜀

−
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

+
4 ),

Ĉ
(13)
14 = Ĝ14(𝜀

+
1 , 𝜀

−
2 , 𝜀

+
3 , 𝜀

−
4 ), Ĉ

(24)
14 = Ĝ14(𝜀

−
1 , 𝜀

+
2 , 𝜀

−
3 , 𝜀

+
4 ) (D14)

The remaining terms follow from Ĝ34 = Ĝ12, Ĝ24 = Ĝ13, and Ĝ23 = Ĝ14.

Appendix E: Additional Spectral Representations

In this appendix, we derive spectral representations for discontinuities
(Appendix E.1) and for anomalous parts (Appendix E.2) for general 𝓁.
These are used in Appendix F.2 to relate Keldysh components G[𝜂1𝜂2] to
discontinuities of regular parts and analytic continuations of anomalous
parts, resulting in Equation (95) in Section 6.2.1. Additionally, they serve
as a key ingredient in Appendix G for consistency checks performed on our
results for the 2p, 3p, and 4p PSFs, where we express all occurring discon-
tinuities through PSF (anti)commutators. We use the notation introduced
in the beginning of Section 6.2 throughout this appendix.

E.1. Spectral Representation of Discontinuities

Here, we focus on the discontinuities of the regular MF correlator G̃, as
introduced in Section 4. The results carry over to anomalous contributions
Ĝ, as presented in Appendix E.2. We first consider discontinuities of 3p
correlators (Appendix E.1.1) and then their generalization to arbitrary 𝓁
(Appendix E.1.2).

E.1.1. Example for 𝓁 = 3

Let us consider the discontinuity in Equation (69) as an example for 𝓁 = 3.
Inserting the spectral representation in Equations (14) yields

1

(2𝜋i)2
G̃𝜔2
𝜔+1

= 1

(2𝜋i)2
(
G̃𝜔+2 ,𝜔

+
1
− G̃𝜔−2 ,𝜔

+
1

)

= ∫𝜀1 ∫𝜀2 ∫𝜀3 𝛿(𝜀123)

× 1
𝜔+1 − 𝜀1

[
1
𝜔−13 − 𝜀13

− 1
𝜔+13 − 𝜀13

]
S(132)(𝜀1, 𝜀3)

+ 1
𝜔+12 − 𝜀12

[
1
𝜔+2 − 𝜀2

− 1
𝜔−2 − 𝜀2

]
S(213)(𝜀2, 𝜀1)

+ 1
𝜔−23 − 𝜀23

[
1
𝜔+2 − 𝜀2

− 1
𝜔−2 − 𝜀2

]
S(231)(𝜀2, 𝜀3)

+ 1
𝜔−3 − 𝜀3

[
1
𝜔−13 − 𝜀13

− 1
𝜔+13 − 𝜀13

]
S(312)(𝜀3, 𝜀1)

]

= ∫𝜀1 ∫𝜀2 ∫𝜀3 𝛿(𝜀123)
[
𝛿(𝜔2 − 𝜀2)

1
𝜔+1 − 𝜀1

S[2,13]− (𝜀1, 𝜀2, 𝜀3)

+ 𝛿(𝜔2 − 𝜀2)
1
𝜔−3 − 𝜀3

S[2,31]− (𝜀1, 𝜀2, 𝜀3)

]

= −∫𝜀1
1
𝜔+1 − 𝜀1

S[2,[1,3]− ]− (𝜀1,𝜔2,−𝜀1 − 𝜔2) (E1)

where we used the identity (58) and energy conservation. The permuta-
tions p = (123), (321) do not contribute to the discontinuity as their ker-
nels only depend on the external frequencies 𝜔+1 and 𝜔−3 with imaginary
parts independent of 𝜔±2 .

For the discontinuity G̃𝜔2 ,𝜔1 = G̃𝜔2
𝜔+1

− G̃𝜔2𝜔−1
, Equation (E1) yields

G̃𝜔2 ,𝜔1 = (2𝜋i)2S[2,[1,3]− ]− (𝝎) ,

G̃𝜔12 ,𝜔1 = (2𝜋i)2S[[1,2]− ,3]− (𝝎) (E2)

The second identity for G̃𝜔12 ,𝜔1 follows from a similar derivation as for
G̃𝜔2 ,𝜔1 . Note that the above relations hold for permuted indices as well
(see Equation (G11)). Thus, consecutive discontinuities eventually give a
(nested) commutator of PSFs. For 𝓁 = 2, this corresponds to the standard
spectral function, −G̃𝜔1 = (2𝜋i)S[1,2]− = (2𝜋i)Sstd.

E.1.2. Generalization to Arbitrary 𝓁

For general 𝓁p functions, the discontinuity in Equation (67) can be com-
puted analogously by inserting the spectral representation. Then, only
those permutations survive the difference for which the frequency com-
binations 𝜔I or 𝜔Ic appear in the kernel K̃(zp), leading to

G̃𝜔I
žr

= G̃𝜔+I ,ž
r − G̃𝜔−I ,ž

r =
∑
I|Ic

[K̃
I|Ic ⋄ S[I,Ic ]− ]

(
z
I|Ic (𝜔I, ž

r)
)

(E3a)

K̃
I|Ic (zI|Ic (𝜔I, ž

r)) = K̃
(
z
I|Ic (𝜔

+
I , ž

r)
)
− K̃

(
z
I|Ic (𝜔

−
I , ž

r)
)

= 𝛿(𝜔I)K̃
(
zI(ž

r)
)
K̃
(
z
I
c (žr)

)
(E3b)

K̃(zĪ) =
∏|I|−1

i=1

1
𝜔Ī1⋯Īi

(E3c)

The set Ic = L∖I is complementary to I. Here, zp(𝜔I, ž
r) expresses the per-

muted vector zp in terms of 𝜔I and the remaining 𝓁 − 2 independent fre-
quencies žr, and similarly zI(ž

r) for the subtuple zI. Equation (E3c) defines
a regular kernel for the subtuple zI. In Equation (E3b), the difference of reg-
ular kernels leads to the Dirac delta factor due to 1∕𝜔+I − 1∕𝜔−I = 𝛿(𝜔I)
and 1∕𝜔+Ic − 1∕𝜔−Ic = −𝛿(𝜔I) (using Equation (58)). The definition of the
regular product kernel in Equation (E3b) implies K̃

I|Ic = K̃
I
c|I; thus, the cor-

responding PSFs from permutations I|Ic and I
c|I have been combined in

an PSF commutator in Equation (E3a).
Consider, e.g., the 3p discontinuity G̃𝜔2

𝜔+1
from Appendix E.1.1, where the

sets in Equation (E3) are given by I = {2}, Ic = {1, 3}, and žr = 𝜔+1 . Then,
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the sum over permutations p = I|Ic includes I|Ic ∈ {2|13, 2|31}, and we
obtain the PSF commutator contribution S[2,13]− in Equation (E1) from
Equation (E3).

For 𝓁 = 4, let us consider G̃𝜔13z1 ,z2
as an example. Then, the sets I = {1, 3}

and Ic = {2, 4} yield the permutations {13|24, 13|42, 31|24, 31|42}, result-
ing in

G̃𝜔13z1 ,z2
= ∫ d4𝜀

𝛿(𝜀1234)𝛿(𝜀13)
(z1 − 𝜀1)(z2 − 𝜀2)

S[[1,3]− ,[2,4]− ]− (𝜺) (E4)

where we summarized all terms with the same kernels.
To compute consecutive discontinuities, such as G̃𝜔2 ,𝜔1 (see Equa-

tion (E2)), we can iterate the above procedure: By analyzing the spec-
tral representation of the first discontinuity, we determine the branch cuts
which lead to non-vanishing second discontinuities, and then compute
these second discontinuities by use of identity (58). For fermionic 4p cor-
relators, this iterative procedure implies that double bosonic discontinu-
ities must vanish, e.g., G̃𝜔13 ,𝜔14

𝜔+1
= 0. This follows from the spectral rep-

resentation of G̃𝜔13z1 ,z2
in Equation (E4), where the kernels only depend

on fermionic frequencies z1, z2 in the denominators. Hence, there is no
Imz14 = 0 branch cut, and therefore G̃𝜔13 ,𝜔14

𝜔+1
must vanish.

E.2. Spectral Representation of Anomalous Parts

In this appendix, we focus on the spectral representation for contributions
to the MF correlator anomalous w.r.t. one frequency. We again start with
an example for 𝓁 = 3 (Appendix E.2.1), before generalizing to arbitrary 𝓁
(Appendix E.2.2).

E.2.1. Example for 𝓁 = 3

Consider 𝛽𝛿i𝜔1 Ĝ1(i𝝎) for 𝓁 = 3. Only those terms in the 3p kernel Equa-
tion (A4b) proportional to 𝛿Ω1

= 𝛿i𝜔1𝛿𝜀1 and 𝛿Ω23
= 𝛿i𝜔23𝛿𝜀23 = 𝛿i𝜔1𝛿𝜀1

can contribute to Ĝ1. Hence, the anomalous PSFs Sp must contain fac-
tors 𝛿(𝜀1), i.e.,

𝛽𝛿i𝜔1 Ĝ1(i𝝎)

= − 1
2
𝛽𝛿i𝜔1 ∫ d3𝜀 𝛿(𝜀123)

[
𝛿𝜀1S(123)(𝜀1, 𝜀2)Δi𝜔12−𝜀12

+ 𝛿𝜀1S(132)(𝜀1, 𝜀3)Δi𝜔13−𝜀13 + 𝛿𝜀23S(231)(𝜀2, 𝜀3)Δi𝜔2−𝜀2

+ 𝛿𝜀23S(321)(𝜀3, 𝜀2)Δi𝜔3−𝜀3

]

= − 1
2
𝛽𝛿i𝜔1 ∫ d3𝜀 𝛿(𝜀123)

[
𝛿𝜀1S[1,23]+ (𝜀1, 𝜀2, 𝜀3)Δi𝜔2−𝜀2

+ 𝛿𝜀1S[1,32]+ (𝜀1, 𝜀2, 𝜀3)Δi𝜔3−𝜀3

]

= − 1
2
𝛽𝛿i𝜔1 ∫ d3𝜀 𝛿(𝜀123)𝛿𝜀1S[1,[2,3]− ]+ (𝜀1, 𝜀2, 𝜀3)Δi𝜔2−𝜀2 (E5)

where we used the symbolic Kronecker notation fromAppendix B.1. The re-
maining contributions p = (213), (312) can only contribute to the anoma-
lous terms Ĝ2 and Ĝ3, as they are not proportional to 𝛿i𝜔1 .

Note that, in the spectral representation (E5), the decomposition of

Ĝ1;i𝜔2 = Ĝ
–Δ
1;i𝜔2

+ Δi𝜔2 Ĝ
Δ
1;2 follows from the PSF decomposition. Only PSF

terms proportional to 𝛿(𝜀2), 𝛿𝜀1𝛿𝜀2S[1,[2,3]− ]+ , contribute to Ĝ
Δ
1;2. In the ab-

sence of such 𝛿(𝜀2) contributions, we can evaluate Δi𝜔2−𝜀2 → 1∕(i𝜔2 −

𝜀2) and compute the discontinuity Ĝ
–Δ;𝜔2
1 = Ĝ

–Δ
1;𝜔+2

− Ĝ
–Δ
1;𝜔−2

:

𝛿(𝜔1)𝛿(𝜔2)Ĝ
Δ
1;2 = −𝛿𝜔1𝛿𝜔2S1[2,3]− (𝜔1,𝜔2,−𝜔12),

𝛿(𝜔1)Ĝ
–Δ;𝜔2
1 = (2𝜋i)𝛿𝜔1 (1 − 𝛿𝜔2 )S1[2,3]− (𝜔1,𝜔2,−𝜔12) (E6)

Here, we used 𝛿𝜔1S[1,[2,3]− ]+ = 2𝛿𝜔1S1[2,3]− due to the equilibrium condi-
tion (4). These commutator representations will be used for the 3p con-
sistency check in Appendix G.2.2.

E.2.2. Generalization to Arbitrary 𝓁

Now, we generalize the insights from the 𝓁 = 3 example to arbitrary 𝓁.
The result will be used in Appendix F to provide a general formula for the
construction of KF components G[𝜂1𝜂2] from MF functions.

In the 𝛽𝛿 expansion of the MF kernel K = K̃ + K̂
𝛽𝛿 + (𝛿2), the 𝛽𝛿 term

reads (see Equation (45) in ref. [23])

𝛽K̂𝛽 (𝛀p) = − 𝛽
2

𝓁−1∑
i=1
𝛿Ω

1…i

𝓁−1∏
j=1
j≠i

ΔΩ
1…j

(E7)

which was originally derived for 𝓁 ≤ 4, but can be extended to arbitrary 𝓁
with the same line of arguments, starting from the results in ref. [30]. For
general 𝓁p functions and terms anomalous w.r.t. the frequency i𝜔I = 0,
with I ⊂ L = {1,… ,𝓁}, only permutations of the form p = I|Ic and p = I

c|I,
with Ic = L∖I again the complementary set to I, can lead to the 𝛽𝛿i𝜔I factor
coming from the anomalous kernel in Equation (E7), yielding

𝛽𝛿i𝜔I ĜI(i𝝎)

= − 1
2
𝛽𝛿i𝜔I

∑
I|Ic

∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)
|I|−1∏
i=1

ΔΩI
1
…I

i

|Ic|−1∏
i=1

ΔΩIc
1
…Ic

i

× 𝛿𝜀IS[I,Ic ]+ (𝜺(𝜺I|Ic )) (E8)

Equation (E5) is a direct application of this formula for 𝓁 = 3, I = {1}, and
Ic = {2, 3}, where the permutations p = I|Ic run over I|Ic ∈ {1|23, 1|32}.

To make the connection to Keldysh correlators in the next appendix, we
replace any Δi𝜔 → 1∕(i𝜔) in the final expression for ĜI, which amounts to
replacing ΔΩ → 1∕Ω in the kernels, such that

ĜI;žr ≡ [
ĜI(i𝝎)

]
Δi𝜔→

1
i𝜔 ,i𝝎→z(žr)

= − 1
2

∑
I|Ic

∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)K̃(zI(ž
r) − 𝜺I)

× K̃(z
I
c (žr) − 𝜺

I
c ) 𝛿𝜀IS[I,I

c
]+
(𝜺(𝜺

I|Ic )) (E9)

where we identified a product of regular kernels (see Equation (E3c)).
The subscript žr again denotes 𝓁 − 2 independent frequencies parametriz-
ing the 𝓁 − 1 arguments z of ĜI(z(ž)) = ĜI;ž, with z independent of the
anomalous frequency 𝜔I.

The anomalous parts ĜI typically enter the Keldysh components with
prefactors depending on 4𝜋i 𝛿(𝜔I). Including this factor, the spectral rep-
resentation turns out to be particularly convenient, as we can make use of
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the definition in Equation (90a), leading to

4𝜋i 𝛿(𝜔I)ĜI;žr = −2 𝛿(𝜔I)ĜI;žr

=
∑
I|Ic

∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)𝛿(𝜔I − 𝜀I)K̃
(
zI(ž

r) − 𝜺I
)
K̃
(
z
I
c (žr) − 𝜺

I
c

)

× 𝛿𝜀IS[I,Ic ]+ (𝜺(𝜺I|Ic ))

=
∑
I|Ic

∫ d𝓁𝜀p 𝛿(𝜀1…𝓁)K̃I|Ic
(
z
I|Ic (𝜔I, ž

r) − 𝜺
I|Ic

)
𝛿𝜀IS[I,I

c
]+
(𝜺(𝜺

I|Ic )). (E10)

In the second step, we used 𝜔I = 𝜔I and

𝛿𝜀IS[I,I
c
]+
(𝜺

I|Ic )𝛿(𝜔I) = 𝛿𝜀IS[I,Ic ]+ (𝜺I|Ic )𝛿(𝜔I − 𝜀I) (E11)

In the last line, we inserted the definition of the regular product kernel
(E3b). Equation (E10) is the representation needed in Equation (F10) to
express Keldysh components G[𝜂1𝜂2] in terms of analytically continued
anomalous parts of MF correlators.

Appendix F: Simplifications for KF Correlators

In this appendix, we derive reformulations of the spectral representa-
tion of KF components, presented in Sections 6.2.1 and 6.2.2, which are
amenable to finding relations between KF correlators and analytically con-
tinued MF correlators. First, we derive a convenient identity for particular
KF kernels for general 𝓁p correlators in Appendix F.1. This identity is then
applied in Appendix F.2 to obtain an alternative representation of KF com-
ponents G[𝜂1𝜂2], yielding a general analytic continuation formula (Equa-
tion (F10)) for these components (using the results from Appendix E).
This constitutes a generalization of Equation (23) for G[𝜂1] (𝛼 = 1) to
𝛼 = 2. An analogous procedure is then applied to KF componentsG[𝜂1…𝜂𝛼 ]

for 𝛼 = 3 and 𝛼 = 4 in Appendices F.3 and F.4, respectively (see Equa-
tions (98) and (F16)). In the following, we will use the notation introduced
in the beginning of Section 6.2 repeatedly.

F.1. Identity for K [�̂�1 �̂�2] for General 𝓁p Correlators

For 𝛼 = 2, Keldysh correlators G[𝜂1𝜂2] are determined by the KF kernel
K [�̂�1 �̂�2] = K [�̂�1] − K [�̂�2] in Equation (19d). For 𝛼 ≥ 2, such differences of fully
retarded kernels occur repeatedly in the spectral representation. In the fol-
lowing, we therefore derive a convenient identity for the kernel K [�̂�1 �̂�2].

According to Equations (19c) and (22), the kernel K [�̂�1 �̂�2] takes the form

K [�̂�1 �̂�2](𝝎p) = K [�̂�1](𝝎p) − K [�̂�2](𝝎p) = K̃(𝝎[�̂�1]
p ) − K̃(𝝎[�̂�2]

p ) (F1)

Note that �̂�1 < �̂�2, which holds by definition, does not imply �̂�1 < �̂�2.
For simplicity, we rename 𝜇 = �̂�1 and 𝜈 = �̂�2. Using Equations (19d)

and (21), the retarded kernels generally read

K [𝜇](𝝎p) =

(𝜇−1∏
i=1

1
𝜔−
1…i

)⎛
⎜⎜⎝

𝓁−1∏
i=𝜇

1
𝜔+
1…i

⎞
⎟⎟⎠
= K−

1𝜇K
+
𝜇𝓁 ,

K±
xy =

y−1∏
i=x

1
𝜔±
1…i

(F2)

From this definition of K±
xy, the identities

K±
xyK

±
yz = K±

xz, K±
xx = 1, K [𝜇] = K−

1𝜇K
+
𝜇𝓁 (F3)

directly follow, which allow us to rewrite K [𝜇𝜈](𝝎p) as

K [𝜇𝜈] = K [𝜇] − K [𝜈] = K−
1𝜇

(
K+
𝜇𝜈 − K−
𝜇𝜈

)
K+
𝜈𝓁

=
𝜈−1∑
y=𝜇

K−
1𝜇

(
K+
𝜇y+1K

−
y+1𝜈 − K+

𝜇yK
−
y𝜈

)
K+
𝜈𝓁

=
𝜈−1∑
y=𝜇

K−
1𝜇K

+
𝜇y

⎛
⎜⎜⎝

1
𝜔+
1…y

− 1
𝜔−
1…y

⎞
⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝛿(𝜔1…y)

K−
y+1𝜈K

+
𝜈𝓁 (F4)

In the second line, the terms y = 𝜇 and y = 𝜈 − 1 represent the first line,
the remaining contributions 𝜇 < y < 𝜈 − 1 cancel pairwise. In the last line,
we used identity (58) to obtain 𝛿(𝜔1…y), enforcing𝜔

±
1…i

= 𝜔±
y+1…i

for i > y.

Inserting this identity into the arguments of K−
y+1𝜈K

+
𝜈𝓁 yields

K [𝜇𝜈](𝝎p) =
𝜈−1∑
y=𝜇

K [𝜇](𝝎1…y)𝛿(𝜔1…y)K
[𝜈](𝝎y+1…𝓁)

=
𝜈−1∑
y=𝜇

K̃(𝝎[𝜇]
1…y

)𝛿(𝜔1…y)K̃(𝝎
[𝜈]

y+1…𝓁
)

=
𝜈−1∑
y=𝜇

K̃1…y|y+1…𝓁(𝝎
[𝜇][𝜈]

1…y|y+1…𝓁
) (F5)

The last equality follows from the definition (90a), with 𝛼 = 2, 𝜂1 = 𝜇,
𝜂2 = 𝜈, I

1
= 1… y, and I

2
= y + 1…𝓁. Note that, for 𝓁 = 3, Equation (F5)

readily yields the results of Table C1.

F.2. Simplifications for G[𝜼1𝜼2] for 𝓁p Correlators

After the preparations in Appendices E and F.1, we can now derive an al-
ternative representation of the Keldysh correlators G[𝜂1𝜂2], equivalent to
the spectral representation in Equation (19b) but more convenient for the
analytic continuation. This generalizes the concepts of Section C.3.1 from
𝓁 = 3 to arbitrary 𝓁.

We start by inserting Equation (F5) into the spectral representation in
Equation (19b),

G[𝜂1𝜂2](𝝎) =
∑
p
[K [�̂�1 �̂�2] ∗ Sp](𝝎p)

=
∑
p

�̂�2−1∑
y=�̂�1

(
K̃1…y|y+1…𝓁 ∗ Sp

)
(𝝎[�̂�1][�̂�2]

1…y|y+1…𝓁
) (F6)

Since �̂�1 ≤ y < �̂�2, the subtuples I = (1… y) and I
c
= (y + 1…𝓁) always

contain �̂�1 and �̂�2, respectively. Each of these in turn equals either 𝜂1 or 𝜂2,
since �̂�i ∈ {p−1(𝜂1), p−1(𝜂2)}, hence �̂�i ∈ {𝜂1, 𝜂2}. Correspondingly, we will
denote the subtuple containing 𝜂1 as I

1
, and that containing 𝜂2 as I

2
. The

sum over y can then be interpreted as a sum over all possible partitions
of (1,… ,𝓁) for which each of the two subtuples contains either 𝜂1 or 𝜂2.
Defining 12 = {(I1, I2)|𝜂1 ∈ I1, 𝜂2 ∈ I2, I1 ∪ I2 = L, I1 ∩ I2 = ∅} as the set
of all possibilities to partition L = {1,… ,𝓁} into subsets I1 and I2 contain-
ing 𝜂1 and 𝜂2, respectively, we find

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12
⎡
⎢⎢⎣
∑

I
1|I2

(
K̃
I
1|I2 ⋄ SI1|I2

)
(𝝎[𝜂1][𝜂2]

I
1|I2

)

+
∑

I
2|I1

(
K̃
I
2|I1 ⋄ SI2|I1

)
(𝝎[𝜂2][𝜂1]

I
2|I1

)
⎤⎥⎥⎦

(F7)
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Table F1. Keldysh kernel of G[𝜂1𝜂2𝜂3] − G[𝜂3] (Equation (F11)) for different permutation classes depending on the order of the 𝜇i = p−1(𝜂i). Manipulations
similar to Equations (F12) and (F13) result in the alternative spectral representation in the third column, which can be further rewritten as Equation (98)
using Equation (F14) (and equivalent identities).

p K [�̂�1 �̂�2 �̂�3] − K [𝜇3] (G[𝜂1𝜂2𝜂3] − G[𝜂3])(𝝎) =
∑

p[(K
[�̂�1 �̂�2 �̂�3] − K [𝜇3]) ∗ Sp](𝝎p)

=
∑

(I1 ,I2 ,I3)∈123
𝜇1 < 𝜇2 < 𝜇3 K [𝜇1𝜇2] {

∑
I
1 |I2 |I3 [(K̃I

1 |I2 |I3 ⋄ S
I
1 |I2 |I3 )(𝝎

[𝜂1][𝜂2][𝜂3]

I
1 |I2 |I3

) + (K̃
I
1 |I2|3 ⋄ SI1 |I2|3 )(𝝎

[𝜂1][𝜂3]

I
1 |I2|3

)]

𝜇1 < 𝜇3 < 𝜇2 K [𝜇1𝜇3] − K [𝜇3𝜇2] +
∑

I
1 |I3 |I2 [(K̃I

1 |I3|2 ⋄ SI1 |I3|2 )(𝝎
[𝜂1][𝜂3]

I
1 |I3|2

) + (K̃
I
1|3 |I2 ⋄ S

I
1|3 |I2 )(𝝎

[𝜂3][𝜂2]

I
1|3 |I2

)]

𝜇2 < 𝜇1 < 𝜇3 K [𝜇2𝜇1] +
∑

I
2 |I1 |I3 [(K̃I

2 |I1 |I3 ⋄ S
I
2 |I1 |I3 )(𝝎

[𝜂2][𝜂1][𝜂3]

I
2 |I1 |I3

) + (K̃
I
2 |I1|3 ⋄ SI2 |I1|3 )(𝝎

[𝜂2][𝜂3]

I
2 |I1|3

)]

𝜇2 < 𝜇3 < 𝜇1 K [𝜇2𝜇3] − K [𝜇3𝜇1] +
∑

I
2 |I3 |I1 [(K̃I

2 |I3|1 ⋄ SI2 |I3|1 )(𝝎
[𝜂2][𝜂3]

I
2 |I3|1

) + (K̃
I
2|3 |I1 ⋄ S

I
2|3 |I1 )(𝝎

[𝜂3][𝜂1]

I
2|3 |I1

)]

𝜇3 < 𝜇1 < 𝜇2 −K [𝜇1𝜇2] +
∑

I
3 |I1 |I2 [(K̃I

3 |I1 |I2 ⋄ S
I
3 |I1 |I2 )(𝝎

[𝜂3][𝜂1][𝜂2]

I
3 |I1 |I2

) − (K̃
I
3|1 |I2 ⋄ S

I
3|1 |I2 )(𝝎

[𝜂3][𝜂2]

I
3|1 |I2

)]

𝜇3 < 𝜇2 < 𝜇1 −K [𝜇2𝜇1] +
∑

I
3 |I2 |I1 [(K̃I

3 |I2 |I1 ⋄ S
I
3 |I2 |I1 )(𝝎

[𝜂3][𝜂2][𝜂1]

I
3 |I2 |I1

) − (K̃
I
3|2 |I1 ⋄ S

I
3|2 |I1 )(𝝎

[𝜂3][𝜂1]

I
3|2 |I1

)]}

Here, we collected all terms in Equation (F6) proportional to 𝛿(𝜔
I
1 ) and

summed over all allowed partitions. Using the symmetry of the kernels
(90a) and the (anti)commutator notation from Equation (92), we finally
obtain

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12
∑

I
1|I2

(
K̃
I
1|I2 ⋄ S[I1 ,I2]+

)
(𝝎[𝜂1][𝜂2]

I
1|I2

) (F8)

Building on this expression, the KF component can be related to MF
functions for arbitrary 𝓁. For this purpose, we use the equilibrium condi-
tion to replace PSF commutators with anticommutators,

S
[I,I

c
]+
(𝜺

I|Ic ) = N𝜀I
S
[I,I

c
]−
(𝜺

I|Ic ) + 𝛿𝜀I S[I,Ic ]+ (𝜺I|Ic ) (F9)

N𝜀I
= 𝜁

Ie𝛽𝜀I + 1

𝜁 Ie𝛽𝜀I − 1
= coth(𝛽𝜀I∕2)

𝜁 I

where N𝜀I
is identical to the statistical factor in Equation (60), and we

used the symbolic Kronecker notation from Appendix B.1. The sign factor

is given by 𝜁 I = ±1 for an even/odd number of fermionic operators in the
set I. Inserting Equation (F9) into the representation (F8), we thus obtain

G[𝜂1𝜂2](𝝎) =
∑

(I1 ,I2)∈12
∑

I
1|I2

∫ d𝓁𝜀 K̃
I
1|I2 (𝝎

[𝜂1][𝜂2]

I
1|I2

− 𝜺
I
1|I2 )

×
(
N𝜀

I
1
S
[I
1
,I
2
]−
(𝜺

I
1|I2 ) + 𝛿𝜀I1

S
[I
1
,I
2
]+
(𝜺

I
1|I2 )

)
𝛿(𝜀1…𝓁)

=
∑

(I1 ,I2)∈12
(
N𝜔I1 G̃

𝜔I1
ž

+ 4𝜋i 𝛿(𝜔I1 ) ĜI1;ž

)

with ž = {𝜔−i | i ≠ 𝜂1, i ≠ 𝜂2} (F10)

This remarkable formula generalizes Equation (23) for G[𝜂1], i.e. for 𝛼 = 1
and arbitrary 𝓁, to G[𝜂1𝜂2] (𝛼 = 2). To obtain its final form, we used that
the retarded product kernel (Equation (90a)) in the second line is propor-
tional to 𝛿(𝜔

I
1 − 𝜀

I
1 ) and thereby setsN𝜀

I
1
= N𝜔

I
1
= N𝜔I1 independent of

the integration variables. In the second step, we then identified the spec-
tral representations of discontinuities of the regular MF correlator G̃

𝜔I1
ž

(Equation (E3)) and of the anomalous contribution ĜI1;ž (Equation (E10)).
Note that the retarded product kernel coincides with the kernel (E3b) with
a suitably continued ž. In Equation (F10), the 𝓁 − 2 frequencies in ž carry
negative imaginary shifts, in accordance with the definition of 𝝎[𝜂1][𝜂2]

I
1|I2

.

F.3. Simplifications for G[𝜼1𝜼2𝜼3] for 𝓁p Correlators

The calculation in Appendix C.3.2, too, can be generalized to arbitrary 𝓁p
correlators, in particular for the spectral representation ofG[𝜂1𝜂2𝜂3] − G[𝜂3].
The Keldysh kernel forG[3] is given by K̃(𝝎[𝜂3]

p ) = K [𝜇3](𝝎p) for arbitrary per-
mutations p, with 𝜇3 = p−1(𝜂3). Then, the corresponding Keldysh kernel
for G[𝜂1𝜂2𝜂3] − G[𝜂3] reads

K [�̂�1 �̂�2 �̂�3] − K [𝜇3] = K [�̂�1] − K [�̂�2] + K [�̂�3] − K [𝜇3] (F11)

such that the effect of subtracting K [𝜇3] depends on the permutation. The
permutations can be divided into six categories, depending on the order
in which the 𝜇j = p−1(𝜂j) occur, see Table F1. This is important since plac-
ing the 𝜇j in increasing order yields [�̂�1�̂�2�̂�3], see discussion before Equa-
tions (19).

Here, we focus on the key steps in rewriting permutations with
𝜇1 < 𝜇2 < 𝜇3, denoted by

∑
p|𝜇1<𝜇2<𝜇3 . Defining 123 = {(I1, I2, I3)| 𝜂1 ∈

I1, 𝜂2 ∈ I2, 𝜂3 ∈ I3, Ib ∩ Ib
′ = ∅ for b ≠ b′} as the set of all possibilities to

partition L = {1,… ,𝓁} into three blocks, each of which contains one of
the indices 𝜂j ∈ Ij, we have

∑
p|𝜇1<𝜇2<𝜇3

[(
K [�̂�1 �̂�2 �̂�3] − K [𝜇3]

)
∗ Sp

]
(𝝎p)

=
∑

p|𝜇1<𝜇2<𝜇3

(
K [𝜇1𝜇2] ∗ Sp

)
(𝝎p)

=
∑

p|𝜇1<𝜇2<𝜇3

𝜇2−1∑
y=𝜇1

(
K̃1…y|y+1…𝓁 ∗ Sp

)
(𝝎[𝜂1][𝜂2]

1…y|y+1…𝓁
)

=
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂2]

I
1|I2|3

) (F12)

In the first step, we used that [�̂�1�̂�2�̂�3] = [𝜇1𝜇2𝜇3]. In the second step, we
inserted the kernel expansion Equation (F5) with 𝜇j = 𝜂j. In the third step,
we identified the sum over y as a sum over all possibilities to subdivide the

permutations into the form p = I
1|I2|I3 (which guarantees 𝜇1 < 𝜇2 < 𝜇3),

with the concatenation of I
2
and I

3
denoted by I

2|3
= I

2
1 … I

2
|I2|I

3
1 … I

3
|I3|.

Further, we use

∑
(I1 ,I2 ,I3)∈123

∑

I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂2]

I
1|I2|3

)
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−
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂3]

I
1|I2|3

)

=
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I2|I3

(
K̃
I
1|I2|I3 ⋄ SI1|I2|I3

)
(𝝎[𝜂1][𝜂2][𝜂3]

I
1|I2|I3

) (F13)

which again follows by inserting Equation (F5), to arrive at the result in
Table F1.

Contributions of different permutations can be further simplified, e.g.,
the second term of p|𝜇1 < 𝜇2 < 𝜇3 and the first term of p|𝜇1 < 𝜇3 < 𝜇2
can be collected, yielding

∑
(I1 ,I2 ,I3)∈123

∑

I
1|I2|I3

(
K̃
I
1|I2|3 ⋄ SI1|I2|3

)
(𝝎[𝜂1][𝜂3]

I
1|I2|3

)

+
∑

(I1 ,I2 ,I3)∈123
∑

I
1|I3|I2

(
K̃
I
1|I3|2 ⋄ SI1|I3|2

)
(𝝎[𝜂1][𝜂3]

I
1|I3|2

)

=
∑

(I1 ,I23)∈1|23
∑

I
1|I23

[
K̃
I
1|I23 ⋄ SI1|I23

]
(𝝎[𝜂1][𝜂3]

I
1|I23

) (F14)

with 1|23 defined in Equation (99a). Using the symmetry of retarded prod-
uct kernels, e.g., K̃

I
1|I23 = K̃

I
23|I1 , the spectral representation of G

[𝜂1𝜂2𝜂3] −
G[𝜂3] finally results in Equation (98). Unlike for 𝛼 = 2 we don’t have a gen-
eral formula for the analytic continuation to G[𝜂1𝜂2𝜂3].

Equation (100) shows an example for 𝓁 = 4. Inserting Equation (88)
into the PSF (anti)commutators and abbreviating S′p = (2𝜋i)3Sp, we obtain
the following relations:

S′
[[[1,2]− ,3]+ ,4]+

= −N4

(
N3G̃
𝜀3 ,𝜀12 ,𝜀1 +N12G̃

𝜀12 ,𝜀3 ,𝜀1 − 2𝛿(𝜀12)Ĝ
𝜀3 ,𝜀1
12

)
,

S′
[[1,2]− ,[3,4]+ ]+

= N12

(
N4G̃
𝜀4 ,𝜀3 ,𝜀2 +N3G̃

𝜀3 ,𝜀4 ,𝜀2
)
− 2𝛿(𝜀12)N3Ĝ

𝜀1 ,𝜀3
12

(F15)

Inserting these into the alternative spectral representation (98), we can
evaluate the convolution integrals and obtain the relations in Equa-
tions (101g)-(101j), which express KF components in terms of MF func-
tions and MWFs.

F.4. Simplifications for G[1234] for 𝓁 = 4

For 𝛼 = 4, we can directly apply Equation (F5) on the Keldysh kernel, and
a straightforward calculation gives

G[1234](𝝎) =
∑
234

[K̃234|1 ⋄ S[234,1]+ ](𝝎
[4][1]

234|1)

+
∑
134

[K̃134|2 ⋄ S[134,2]+ ](𝝎
[4][2]

134|2)

+
∑
124

[K̃124|3 ⋄ S[124,3]+ ](𝝎
[2][3]

124|3)

+
∑
123

[K̃123|4 ⋄ S[123,4]+ ](𝝎
[3][4]

123|4)

+ [K̃4|12|3 ⋄ S[[4,[1,2]− ]− ,3]+ ](𝝎
[4][2][3]
4|12|3 )

+ [K̃3|14|2 ⋄ S[[3,[1,4]− ]− ,2]+ ](𝝎
[3][1][2]
3|14|2 )

+ [K̃1|23|4 ⋄ S[[1,[2,3]− ]− ,4]+ ](𝝎
[1][3][4]
1|23|4 )

+ [K̃2|34|1 ⋄ S[[2,[3,4]− ]− ,1]+ ](𝝎
[2][4][1]
2|34|1 )

+ [K̃4|2|13 ⋄ S[[4,2]+ ,[1,3]− ]− ](𝝎
[4][2][3]
4|2|13 )

+ [K̃1|3|24 ⋄ S[[1,3]+ ,[2,4]− ]− ](𝝎
[1][3][4]
1|3|24 )

+ (−2𝜋i)3
(
S[[[2,3]+ ,1]− ,4]− + S[[[3,4]+ ,2]− ,1]−

− S[[[3,4]− ,2]− ,1]+ − S[[[4,1]− ,3]− ,2]+ + S[[4,2]+ ,[1,3]+ ]+

)
(𝝎) (F16)

where
∑

I denotes a sum over permutations of the subset I ⊂ {1,… ,𝓁}.
All occuring PSF (anti)commutators can be identified with one of the fol-
lowing four forms,

S′
[[[1,2]− ,3]− ,4]+

= N4G̃
𝜀4 ,𝜀3 ,𝜀2 (F17a)

S′
[[1,2]− ,[3,4]+ ]−

= N4G̃
𝜀4 ,𝜀3 ,𝜀2 +N3G̃

𝜀3 ,𝜀4 ,𝜀2 (F17b)

S′
[[[1,2]+ ,3]−4]−

= N1G̃
𝜀2 ,𝜀4 ,𝜀3 +N2G̃

𝜀1 ,𝜀4 ,𝜀3 +N13G̃
𝜀13 ,𝜀1 ,𝜀2

+ N14G̃
𝜀14 ,𝜀1 ,𝜀2 − 2𝛿(𝜀13)Ĝ

𝜀1 ,𝜀2
13

− 2𝛿(𝜀14)Ĝ
𝜀1 ,𝜀2
14

(F17c)

S′
[[1,2]+ ,[3,4]+ ]+

= N1N3Ĝ
𝜀1 ,𝜀3
12

− (1 +N1N2)(Ĝ
𝜀1 ,𝜀2
13

+ Ĝ
𝜀1 ,𝜀2
14

)

− (1 +N1N2)(N3G̃
𝜀3 ,𝜀2 ,𝜀1 +N4G̃

𝜀4 ,𝜀2 ,𝜀1

+ N13G̃
𝜀13 ,𝜀2 ,𝜀1 +N23G̃

𝜀23 ,𝜀2 ,𝜀1 )

− N1N12(N3G̃
𝜀3 ,𝜀12 ,𝜀1 +N4G̃

𝜀4 ,𝜀2 ,𝜀1 ) (F17d)

where we abbreviated S′p = (2𝜋i)3Sp and Ni = N𝜀i , and we used Equa-
tion (88) to evaluated above expressions. Inserting these into Equa-
tion (F16) and after application of Cauchy’s integral formula, one obtains
Equation (101k).

Appendix G: Consistency Checks

In Equations (47), (74), and (88), we expressed the 2p, 3p and 4p PSFs in
terms of analytically continuedMF functions. While the derivation of these
important results extends over several pages, some consistency checks
can be presented compactly. In Appendix G.1, we first show that our for-
mulas fulfill the equilibrium condition (4). Since this was not explicitly im-
posed during the derivations, it serves as a strong test for our results. In
Appendix G.2, we further show, for 𝓁 = 2, 3, 4, that our formulas for Sp[G],
when expressing that G through PSFs, recover the input PSFs.

G.1. Fulfillment of the Equilibrium Condition

Here, we show that the results in (74) and (88) fulfill the equilibrium condi-
tion (4) (for the 2p case, this was already demonstrated in (50)). It suffices
to show that they are fulfilled for p𝜆 with 𝜆 = 2, i.e., that for p = (1…𝓁)
we have

S(1…𝓁)(𝜺(1…𝓁)) = 𝜁
1e𝛽𝜀1S(2…𝓁1)(𝜺(2…𝓁1)) (G1)

The result for general 𝜆 follows by induction.
We start with 𝓁 = 3 and separate the contributions to the PSFs in Equa-

tion (74) from the regular G̃ (denoted by Srp) and the anomalous Ĝ terms
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(denoted by Sap), Sp = Srp + Sap. Inserting Equation (74) into Equation (G1)
first yields

𝜁1e𝛽𝜀1 (2𝜋i)2Sr
(231)

= 𝜁1e𝛽𝜀1
[
n𝜀2

n𝜀3
G̃𝜀3 ,𝜀2 + n𝜀2

n𝜀23
G̃𝜀23 ,𝜀2

]

= 𝜁1e𝛽𝜀1
[
n𝜀2

(n𝜀3
− n𝜀23

)G̃𝜀3 ,𝜀2 − n𝜀2
n𝜀23

G̃𝜀2 ,𝜀1
]

= 𝜁1e𝛽𝜀1
[
−n𝜀12n−𝜀1 G̃

𝜀12 ,𝜀1 − n𝜀2
n−𝜀1

G̃𝜀2 ,𝜀1
]

= (2𝜋i)2Sr
(123)

(G2)

where we used in the second line G̃𝜀23 ,𝜀2 = −G̃𝜀3 ,𝜀2 − G̃𝜀2 ,𝜀1 (following
from Equations (C26)), in the third line n𝜀2

(n𝜀3
− n𝜀23

) = −n𝜀12n−𝜀1 , and
in the fourth line

𝜁1e𝛽𝜀1n−𝜀1 = 𝜁
1e𝛽𝜀1

𝜁1e𝛽𝜀1 − 1
= −n𝜀1 (G3)

For the Ĝ terms, we similarly obtain

𝜁1e𝛽𝜀1 (2𝜋i)2Sa
(231)

= 𝜁1e𝛽𝜀1
[
𝛿(𝜀2)n𝜀3 Ĝ

–Δ;𝜀3
2

+ 𝛿(𝜀3)n𝜀2 Ĝ
–Δ;𝜀2
3

+ 𝛿(𝜀1)n𝜀2 Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀2)𝛿(𝜀3)
(
Ĝ2,3 −

1
2
Ĝ
Δ
1;2

)]

= 𝜁1e𝛽𝜀1
[
−𝛿(𝜀2)n−𝜀1 Ĝ

–Δ;𝜀1
2

− 𝛿(𝜀3)n−𝜀1 Ĝ
–Δ;𝜀1
3

+ 𝛿(𝜀1)n𝜀2 Ĝ
–Δ;𝜀2
1

+ 𝛿(𝜀1)𝛿(𝜀2)
(
Ĝ1,2 −

1
2
Ĝ
Δ
3;1

)]

= (2𝜋i)2Sa
(123)

(G4)

In the last step, we used that Ĝ1 ≠ 0 and Ĝ1,2 ≠ 0 imply 𝜁1 = +1. Thus,
we find that our 3p formula (74) indeed fulfills the equilibrium condition.

For 4p PSFs, we confirmed the fulfillment of the equilibrium condition
by inserting the analytic regions (D11) for the discontinuities and by com-
paring the coefficients.

G.2. Full Recovery of Spectral Information

Equations (47), (74), and (88) contain formulas for PSFs, Sp[G], as func-
tionals of the MF correlator G for 𝓁 = 2, 3, 4. In this section, we explic-
itly perform the following consistency check: given an arbitrary set of
PSFs Sp as input, compute the MF correlator G =

∑
p K ∗ Sp and verify

that Sp[G] correctly recovers the input PSFs. To this end, we insert re-
sults from Appendix E to express the discontinuities in the formulas via
PSF (anti)commutators. From the resulting expressions, we then show
Sp[G] = Sp by use of the equilibrium condition (4).

G.2.1. For 𝓁 = 2

We first examine the relations between the MF correlator and the PSF con-
tributions. Using the decomposition of PSFs from Appendix B.1, the stan-
dard spectral function reads

Sstd(𝜀1) =S[1,2]− (𝜀1,−𝜀1) = S̃[1,2]− (𝜀1,−𝜀1) (G5)

For bosonic functions, 𝜁 = +1, there may be anomalous contributions
𝛿(𝜀1)Šp;1. However, the equilibrium condition implies Š(12);1 = Š(21);2, so
that the anomalous contributions cancel in the PSF commutator. Instead,
they solely enter the anomalous correlator, Ĝ(i𝜔1) = 𝛽𝛿i𝜔1 Ĝ1, via the spec-
tral representation with kernel (A4a), yielding

Ĝ1 = − Š(12);1 (G6)

Now, we can show that Equation (47) recovers the input PSFs from the
MF correlator. Inserting G̃𝜀1 = −G̃𝜀2 = (−2𝜋i)Sstd(𝜀1) (Equation (51)) and
Equation (G6) into Equation (47) yields

Sp[G] =
1
2𝜋i

[
n𝜀1

G̃𝜀1 + 𝛿(𝜀1)Ĝ1

]
= −n𝜀1 S̃[1,2]− + 𝛿𝜀1S(12) (G7)

(Here and in the following, we suppress frequency arguments of PSFs.) To
simplify the PSF commutator, we can use the equilibrium condition (4) to
obtain

−n𝜀1 S̃[1,2]− = −1
𝜁1e−𝛽𝜀1 − 1

[S̃(12) − 𝜁
1e−𝛽𝜀1 S̃(12)]

= S̃(12) = (1 − 𝛿𝜀1 )S(12) (G8)

For bosonic 2p functions, the MWF n𝜀1
is undefined for 𝜀1 = 0. But since

S̃p then has no 𝛿(𝜀1) contribution, the left and right side of Equation (47)
can only differ by zero spectral weight. We can nevertheless recover the
correct value for S̃p(𝜀1) at 𝜀1 = 0 if we demand that continuum contri-
butions are (piece-wise) continuous. Then, the correct value at 𝜀1 = 0
is obtained from the formula in Equation (47) by taking the appropriate
limit.

Inserting Equation (G8) into Equation (G7) results in

Sp[G] = (1 − 𝛿𝜀1 )S(12) + 𝛿𝜀1S(12) = S(12) (G9)

concluding our proof.

G.2.2. For 𝓁 = 3

Following the line of argument for 𝓁 = 2 from the previous section, we
now check that the formula Sp[G] recovers the input PSF Sp also for 𝓁 =
3. Analogously to Equation (G8), the MWFs can be eliminated using the
identity (suppressing frequency arguments)

S(123) = − n𝜀1
S[1,23]− + 𝛿𝜀1S(123) (G10a)

S(231) = n−𝜀1
S[1,23]− + 𝛿𝜀1S(231) (G10b)

Note that 𝛿(𝜀1) contributions cancel in S[1,23]− for 𝜁1 = + due to the equi-
librium condition (as before), i.e., S[1,23]− = (1 − 𝛿𝜀1 )S[1,23]− . Hence, such
terms must be treated separately to obtain the PSF on the left.

In Appendix E.1, we have already shown that the discontinuities in the
3p PSF are proportional to nested PSF commutators. Analogously to the
derivations for Equations (B8a), (E6), and (E2), we obtain the following
relations:

𝛿(𝜀1)𝛿(𝜀2)Ĝ1,2 = (2𝜋i)2 1
2
𝛿𝜀1𝛿𝜀2S1[2,3]+

𝛿(𝜀1)𝛿(𝜀2)Ĝ
Δ
3;1 = −(2𝜋i)2𝛿𝜀1𝛿𝜀2S1[2,3]− ,

𝛿(𝜀1)Ĝ
–Δ;𝜀2
1

= −(2𝜋i)2𝛿𝜀1 (1 − 𝛿𝜀2 )S1[2,3]− ,

𝛿(𝜀2)Ĝ
–Δ;𝜀1
2

= −(2𝜋i)2𝛿𝜀2 (1 − 𝛿𝜀1 )S2[1,3]− ,

𝛿(𝜀3)Ĝ
–Δ;𝜀1
3

= −(2𝜋i)2𝛿𝜀3 (1 − 𝛿𝜀1 )S[1,2]−3,
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G̃𝜀2 ,𝜀1 = (2𝜋i)2S[2,[1,3]− ]− ,

G̃𝜀12 ,𝜀1 = −(2𝜋i)2S[3,[1,2]− ]− (G11)

Inserting these into Equation (74) yields

Sp[G]

=
[
n𝜀1

(
n𝜀2

G̃𝜀2 ,𝜀1 + 𝛿(𝜀2)Ĝ
–Δ;𝜀1
2

+ n𝜀12
G̃𝜀12 ,𝜀1 + 𝛿(𝜀3)Ĝ

–Δ;𝜀1
3

)

+ 𝛿(𝜀1)n𝜀2 Ĝ
–Δ;𝜀2
1

− 1
2
𝛿(𝜀1)𝛿(𝜀2)

(
Ĝ
Δ
3;1 − 2Ĝ1,2

)]
1

(2𝜋i)2 (G12a)

= n𝜀1

(
n𝜀2

S[2,[1,3]− ]− − 𝛿𝜀2 (1 − 𝛿𝜀1 )S2[1,3]− − n𝜀12
S[3,[1,2]− ]−

− 𝛿𝜀3 (1 − 𝛿𝜀1 )S[1,2]−3
)
− n𝜀2
𝛿𝜀1 (1 − 𝛿𝜀2 )S1[2,3]−

+ 𝛿𝜀1𝛿𝜀2S(123) (G12b)

We can now checkwhether Equation (G12b) reproduces the full PSF, S(123),
by repeated application of Equations (G10). For this purpose, we use the
PSF decomposition in Appendix B.1 to separately consider the contribu-
tions in the PSF proportional to 𝛿(𝜀1), and those which are not. Note that
S[2,[1,3]− ]− and S[[1,2]− ,3]− in the first line of Equation (G12b) contribute to
both of these cases.

For PSF contributions not proportional to 𝛿(𝜀1), the last line of Equa-
tion (G12b) can be omitted (due to 𝛿𝜀1 ), so that

(1 − 𝛿𝜀1 )Sp[G]

= −(1 − 𝛿𝜀1 )n𝜀1

(
−n𝜀2S[2,[1,3]− ]− + 𝛿𝜀2S2[1,3]−

+ n−𝜀3
S[3,[1,2]− ]− + 𝛿𝜀3S[1,2]−3

)

= −(1 − 𝛿𝜀1 )n𝜀1

(
S2[1,3]− + S[1,2]−3

)

= −(1 − 𝛿𝜀1 )n𝜀1S[1,23]− = (1 − 𝛿𝜀1 )S(123) (G13)

Here, we used Equations (G10) in the first and third step.
For PSF contributions proportional to 𝛿(𝜀1), the MWF n𝜀1

multiplying

S[2,[1,3]− ]− and S[[1,2]− ,3]− in Equation (G12b) seems to diverge in the
bosonic case. This issue was already discussed in Equation (C28) (for
unpermuted indices): There, G̃𝜀1 ,𝜀12 = (2𝜋i)2S[1,[2,3]− ]− does not contain
factors 𝛿(𝜀1) due to the equilibrium condition, and therefore only the first
term, expressed as −n𝜀12n−𝜀2S[2,[1,3]− ]− , needs to be considered. As this

PSF commutator does not contain factors 𝛿(𝜀2) due to the equilibrium
condition, we obtain (using n𝜀2

= n𝜀12
= n−𝜀3

and 𝛿𝜀2 = 𝛿𝜀12 = 𝛿𝜀3 due
to 𝛿𝜀1 )

𝛿𝜀1Sp[G]

= 𝛿𝜀1

(
−n𝜀2n−𝜀2S[2,[1,3]− ]− − n𝜀12

(1 − 𝛿𝜀2 )S1[2,3]− + 𝛿𝜀2S(123)
)

= 𝛿𝜀1

(
−n𝜀2 (1 − 𝛿𝜀2 )S[1,3]−2 − n𝜀12

(1 − 𝛿𝜀2 )S1[2,3]− + 𝛿𝜀2S(123)
)

= 𝛿𝜀1

(
n−𝜀3

(1 − 𝛿𝜀3 )S[3,12]− + 𝛿𝜀3S(123)
)

= 𝛿𝜀1

(
(1 − 𝛿𝜀3 )S(123) + 𝛿𝜀3S(123)

)

= 𝛿𝜀1S(123) (G14)

Here, Equation (G10b) was applied in the first and the third step.

Therefore, we conclude that Equation (G12b) indeed recovers the input
PSF S(123), including terms proportional to 𝛿(𝜀1) in Equation (G14) and
those which are not in Equation (G13).

G.2.3. For 𝓁 = 4

Now, the same consistency check can be performed for fermionic 4p cor-
relators. Similarly to Equation (G10), for 4p PSFs, we have

S(1234) = −n𝜀1S[1,234]− (G15a)

S(1234) = −n𝜀12S[12,34]− + 𝛿𝜀12S(1234) (G15b)

Here, the symbolic Kronecker 𝛿 only arises in the latter case, since 𝜀1 is
the energy difference for a fermionic operator. Starting from the formula
in Equation (88), we obtain

Sp[G]

=
n𝜀

1
(2𝜋i)3

[
n𝜀2

(
n𝜀3

G̃𝜀3 ,𝜀2 ,𝜀1 + n𝜀123
G̃𝜀123 ,𝜀2 ,𝜀1 + n𝜀13

G̃𝜀13 ,𝜀2 ,𝜀1

+ n𝜀23
G̃𝜀23 ,𝜀2 ,𝜀1

)
+ n𝜀12

(
n𝜀3

G̃𝜀3 ,𝜀12 ,𝜀1 + n𝜀123
G̃𝜀123 ,𝜀12 ,𝜀1

)

+ n𝜀3
𝛿(𝜀12) Ĝ

𝜀3 ,𝜀1
12

+ n𝜀2
𝛿(𝜀13) Ĝ

𝜀2 ,𝜀1
13

+ n𝜀2
𝛿(𝜀23) Ĝ

𝜀2 ,𝜀1
23

]

= − n𝜀1

[
n𝜀2

(
n𝜀3

S[3,[2,[1,4]− ]− ]− + n𝜀123
S[[2,[1,3]− ]− ,4]−

+ n𝜀13
S[[1,3]− ,[2,4]− ]− − 𝛿𝜀13S[1,3]− [2,4]−

+ n𝜀23
S[[2,3]− ,[1,4]− ]− − 𝛿𝜀23S[1,4]− [2,3]−

)

+ n𝜀12

(
n𝜀3

S[3,[[1,2]− ,4]− ]− + n𝜀123
S[[[1,2]− ,3]− ,4]−

)
− n𝜀3
𝛿𝜀12S[1,2]− [3,4]−

]

(G16)
= n𝜀1

[
n𝜀2

(
S3[2,[1,4]− ]−

+ S[2,[1,3]− ]−4
+ S[1,3]− [2,4]−

+ S[2,3]− [1,4]−

)
+ n𝜀12

(1 − 𝛿𝜀12 )
(
S3[[1,2]− ,4]−−

+ S[[1,2]− ,3]−4

)

− n𝜀3
𝛿𝜀12

(
S4[[1,2]− ,3]−

− S[1,2]− [3,4]−

)]

= n𝜀1

[
n𝜀2

S[[34,1]− ,2]−
+ n𝜀12

S[[1,2]− ,34]−
− 𝛿𝜀12 S[1,2]−34

]

= −n𝜀1S[1,234]

= S(1234) (G17)

In the first step, we inserted expressions for the discontinuities, de-
rived analogously to Equations (B8a), (E6), and (E2). We apply relations
(G15) to eliminate the MWFs in the remaining steps. For the second
step, we note that S[3,[[1,2]− ,4]− ]− and S[[[1,2]− ,3]− ,4]− contain terms with
and without 𝛿(𝜀12) factor. For the 𝛿(𝜀12) terms, the prefactor of n𝜀12

is

undefined at 𝜀12. Analogously to the 3p calculation, we evaluate Equa-
tion (G16) using 𝛿𝜀12 (S[3,[[1,2]− ,4]− ]− + S[[[1,2]− ,3]− ,4]− ) = 0 and n−𝜀34

(−n𝜀3 +
n−𝜀4

) = n−𝜀3
n−𝜀4

:

n𝜀12

(
n𝜀3

S[3,[[1,2]− ,4]− ]− + n𝜀123
S[[[1,2]− ,3]− ,4]−

)

= n𝜀12
(1 − 𝛿𝜀12 )

(
n𝜀3

S[3,[[1,2]− ,4]− ]− + n𝜀123
S[[[1,2]− ,3]− ,4]−

)

+ 𝛿𝜀12n−𝜀3n−𝜀4S[[[1,2]− ,3]− ,4]− (G18)
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To simplify the 𝛿𝜀12 terms in the third step, remember that the Kronecker
symbol extracts those PSF contributions proportional to a 𝛿(𝜀12), such
that the equilibrium condition allows for manipulations like 𝛿𝜀12S(1234) =
𝛿𝜀12S(3412). Finally, Equation (G17) shows that the formula in Equation (88)
fully recovers the input PSFs from 4p MF correlators.

Appendix H: Additional Hubbard Atom Material

H.1. Useful Identities

In this section, we prove the identities given in Equations (107a) and
(107b). The first identity follows from

lim
𝛾0→0+

(
𝜔 + i𝛾0

(𝜔 + i𝛾0)2 − u2
−
𝜔 − i𝛾0

(𝜔 − i𝛾0)2 − u2

)

= −i lim
𝛾0→0+

(
𝛾0

(𝜔 + u)2 + 𝛾20
+
𝛾0

(𝜔 − u)2 + 𝛾20

)

= −i𝜋[𝛿(𝜔 + u) + 𝛿(𝜔 − u)] (H1)

where we used Equation (58). Identity (107b) is derived via

lim
𝛾0→0+

(
1

(𝜔 + i𝛾0)2 − u2
− 1
(𝜔 − i𝛾0)2 − u2

)

= i
u

lim
𝛾0→0+

(
𝛾0

(𝜔 + u)2 + 𝛾20
−
𝛾0

(𝜔 − u)2 + 𝛾20

)

= i𝜋
u
[𝛿(𝜔 + u) − 𝛿(𝜔 − u)]. (H2)

H.2. Simplifications for 3p Electron-Density Correlator

In Section 7.2.1, we introduced the 3p electron-density correlator with reg-
ular and anomalous parts

G̃(i𝜔1, i𝜔2) =
u2 − i𝜔1 i𝜔2[

(i𝜔1)2 − u2
][
(i𝜔2)2 − u2

]

Ĝ3(i𝜔1) =
u t
2

1
(i𝜔1)2 − u2

(H3)

Here, we derive the explicit expressionG′[2] − G[3] given in Equation (114),

G′[2] − G[3] = G̃(𝜔+1 ,𝜔
−
2 ) − G̃(𝜔−1 ,𝜔

−
2 )

= u2

(𝜔−2 )
2 − u2

(
1

(𝜔+1 )
2 − u2

− 1
(𝜔−1 )

2 − u2

)

−
𝜔−2

(𝜔−2 )
2 − u2

(
𝜔+1

(𝜔+1 )
2 − u2

−
𝜔−1

(𝜔−1 )
2 − u2

)
(H4)

Using both identities (H1) and (H2), this expression can be further sim-
plified to

G′[2] − G[3] = 𝜋i
u + 𝜔−2

(𝜔−2 )
2 − u2
𝛿(𝜔1 + u) + 𝜋i

𝜔−2 − u

(𝜔−2 )
2 − u2
𝛿(𝜔1 − u) (H5)

Additionally multiplying both sides with N1 = N𝜔1 and using N−𝜔1 =
−N𝜔1 , we recover the first term in the second line of Equation (114),

N1
(
G′[2] − G[3]) = 𝜋i t

[
𝛿(𝜔1 − u)
𝜔−2 + u

−
𝛿(𝜔1 + u)
𝜔−2 − u

]
(H6)

Next, we consider the Keldysh component G[123]

d
↑
d†
↑
n
↑

. Since the regu-

lar part in Equation (H3) is independent of i𝜔3, we can set G′[1] = G[2]

and G′[2] = G[1] (see Figure 6b). Additionally using Equation (83) as well
as Ĝ1 = Ĝ2 for the 3p electron-density correlator, the last FDR in Equa-
tion (84) reduces to

G[123]

d
↑
d†
↑
n
↑

= G′[3] +N1N2
(
G′[3] − G[2] − G[1] + G[3])

+ 4𝜋i 𝛿(𝜔12)N1

(
Ĝ
[1]
3 − Ĝ

[2]
3

)
(H7)

Here, we show that all terms except G′[3] cancel out. To this end, we can
reuse Equation (H5) to obtain

G′[3] − G[2] − G[1] + G[3]

= G̃(𝜔+1 ,𝜔
+
2 ,𝜔

−
3 ) − G̃(𝜔−1 ,𝜔

+
2 ,𝜔

−
3 ) − G̃(𝜔+1 ,𝜔

−
2 ,𝜔

−
3 ) + G̃(𝜔−1 ,𝜔

−
2 ,𝜔

+
3 )

= 𝜋i 𝛿(𝜔1 + u)

(
1
𝜔+2 − u

− 1
𝜔−2 − u

)

+ 𝜋i 𝛿(𝜔1 − u)

(
1
𝜔+2 + u

− 1
𝜔−2 + u

)

= 2𝜋2[𝛿(𝜔1 + u)𝛿(𝜔2 − u) + 𝛿(𝜔1 − u)𝛿(𝜔2 + u)]

= 2𝜋2𝛿(𝜔12)[𝛿(𝜔1 + u) + 𝛿(𝜔1 − u)] (H8)

The discontinuity of Ĝ3 is easily evaluated with identity (H2)

Ĝ
[1]
3 − Ĝ

[2]
3 =u t

2

(
1

(𝜔+1 )
2 − u2

− 1
(𝜔−1 )

2 − u2

)

=𝜋i t
2
[𝛿(𝜔1 + u) − 𝛿(𝜔1 − u)] (H9)

Inserting all terms (exceptG′[3]) in Equation (H7) and using againNi =
N𝜔i = −N−𝜔i , we find

N1N2
(
G′[3] − G[2] − G[1] + G[3]) + 4𝜋i 𝛿(𝜔12)N1

√
2
(
Ĝ
[1]
3 − Ĝ

[2]
3

)

= −2𝜋2t2𝛿(𝜔12)[𝛿(𝜔1 + u) + 𝛿(𝜔1 − u)]

+ 2𝜋2t2𝛿(𝜔12)[𝛿(𝜔1 + u) + 𝛿(𝜔1 − u)] = 0 (H10)

Thus, Equation (H7) reduces to

G[123]

d
↑
d†
↑
n
↑

= G′[3] (H11)

corresponding to the last equality in Equation (115).
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H.3. Simplifications for Fermionic 4p Correlator

In this section, we present the steps needed to obtain the Keldysh compo-
nent G[12]

↑↓ in Section 7.3. The discontinuities can be easily evaluated after
rewriting the regular part in terms of general complex frequencies as

G̃(z) = − u
z22 − u2

[
1

z1 + u

(
1

z3 − u
+ 1

z4 − u

)

+ 1
z3 + u

(
1

z1 − u
+ 1

z4 − u

)
+ 1

z4 + u

(
1

z1 − u
+ 1

z3 − u

)]
(H12)

The discontinuity C(12)
III − C(2) in Equation (120) then reduces to

C(12)
III − C(2) = G̃(𝜔+1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 ) − G̃(𝜔−1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 )

= 2𝜋i u
(𝜔+2 )

2 − u2

[
𝛿(𝜔1 + u)

(
1
𝜔−3 − u

+ 1
𝜔−4 − u

)

+𝛿(𝜔1 − u)

(
1
𝜔−3 + u

+ 1
𝜔−4 + u

)]
(H13)

The second discontinuity C(12)
I − C(1) follows by exchanging𝜔1 → 𝜔2. Us-

ing the 𝛿-functions to replace u by𝜔1 andmultiplying withN1, the Keldysh
component G[12]

↑↓ takes the form

G[12]
↑↓ = 2𝜋i u t

(𝜔+2 )
2 − u2

[𝛿(𝜔1 − u) − 𝛿(𝜔1 + u)]

(
1
𝜔−13

+ 1
𝜔−14

)

+ 2𝜋i u t
(𝜔+1 )

2 − u2
[𝛿(𝜔2 − u) − 𝛿(𝜔2 + u)]

(
1
𝜔−23

+ 1
𝜔−24

)

+ 4𝜋i u2
𝛿(𝜔13)(t − 1) + 𝛿(𝜔14)(t + 1)[
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
] (H14)

Collecting terms proportional to t and replacing the 𝛿-functions of its co-
efficient using the identities in Equations (58) and (H2) yields

G[12]
↑↓ =

4𝜋i u2[𝛿(𝜔14) − 𝛿(𝜔13)][
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
]

− 2u2t

[
1

(𝜔+2 )
2 − u2

(
1

(𝜔+1 )
2 − u2

− 1
(𝜔−1 )

2 − u2

)(
1
𝜔−13

+ 1
𝜔−14

)

+ 1
(𝜔+1 )

2 − u2

(
1

(𝜔+2 )
2 − u2

− 1
(𝜔−2 )

2 − u2

)(
1
𝜔−23

+ 1
𝜔−24

)

+ 1[
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
]
(

1
𝜔+13

− 1
𝜔−13

+ 1
𝜔+14

− 1
𝜔−14

)]

(H15)

By energy conservation, 𝜔1234 = 0, many terms in the bracket cancel, and
we obtain the final result

G[12]
↑↓ =

4𝜋i u2[𝛿(𝜔14) − 𝛿(𝜔13)][
(𝜔+1 )

2 − u2
][
(𝜔+2 )

2 − u2
]

+ 2u2t

[
1[

(𝜔+1 )
2 − u2

][
(𝜔−2 )

2 − u2
]
(

1
𝜔−23

+ 1
𝜔−24

)
− c.c.

]
(H16)

where c.c. denotes the complex conjugate.

H.4. Results for Fermionic 4p Correlator

In this section, we summarize results for all Keldsyh components of the
four-electron correlator for both the G↑↓ and G↑↑ component. They can be
derived following similar calculations presented in the previous section.
Defining

G̃↑↓(z) =
2u

∏4
i=1(zi) + u3

∑4
i=1(zi)

2 − 6u5
∏4

i=1
[
(zi)2 − u2

] (H17)

the results for G↑↓ read

G[]
↑↓(𝝎) = 0 (H18a)

G[1]
↑↓(𝝎) = G̃↑↓(𝜔

+
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

−
4 ) (H18b)

G[2]
↑↓(𝝎) = G̃↑↓(𝜔

−
1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 ) (H18c)

G[3]
↑↓(𝝎) = G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

+
3 ,𝜔

−
4 ) (H18d)

G[4]
↑↓(𝝎) = G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

+
4 ) (H18e)

G[34]
↑↓ (𝝎) =

2𝜋iu2[𝛿(𝜔14) − 𝛿(𝜔13)]
[(𝜔−1 )

2 − u2][(𝜔−2 )
2 − u2]

+ u2t

[
1

[(𝜔+3 )
2 − u2][(𝜔−4 )

2 − u2]

(
1
𝜔−24

+ 1
𝜔−14

)
− c.c.

]
(H18f )

G[24]
↑↓ (𝝎) =

2𝜋iu2𝛿(𝜔14)
[(𝜔−1 )

2 − u2][(𝜔−3 )
2 − u2]

+ u2t

[
1

[(𝜔+2 )
2 − u2][(𝜔−4 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−14

)
− c.c.

]
(H18g)
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G[23]
↑↓

(𝝎) =
−2𝜋iu2𝛿(𝜔13)

[(𝜔−1 )
2 − u2][(𝜔−4 )

2 − u2]
+ u2t

[
1

[(𝜔+2 )
2 − u2][(𝜔−3 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−13

)
− c.c.

]
(H18h)

G[14]
↑↓ (𝝎) =

−2𝜋iu2𝛿(𝜔13)
[(𝜔−2 )

2 − u2][(𝜔−3 )
2 − u2]

+ u2t

[
1

[(𝜔+1 )
2 − u2][(𝜔−4 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−24

)
− c.c.

]
(H18i)

G[13]
↑↓ (𝝎) =

2𝜋iu2𝛿(𝜔14)
[(𝜔−2 )

2 − u2][(𝜔−4 )
2 − u2]

+ u2t

[
1

[(𝜔+1 )
2 − u2][(𝜔−3 )

2 − u2]

(
1
𝜔−34

+ 1
𝜔−23

)
− c.c.

]
(H18j)

G[12]
↑↓ (𝝎) =

2𝜋iu2[𝛿(𝜔14) − 𝛿(𝜔13)]
[(𝜔−3 )

2 − u2][(𝜔−4 )
2 − u2]

+ u2t

[
1

[(𝜔+1 )
2 − u2][(𝜔−2 )

2 − u2]

(
1
𝜔−24

+ 1
𝜔−23

)
− c.c.

]
(H18k)

G[234]
↑↓

(𝝎) = G̃↑↓(𝜔
−
1 ,𝜔

+
2 ,𝜔

+
3 ,𝜔

+
4 ) + 2𝜋2u t [𝛿(𝜔2 − u) + 𝛿(𝜔2 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−1

)2 − u2
(H18l)

G[134]
↑↓ (𝝎) = G̃↑↓(𝜔

+
1 ,𝜔

−
2 ,𝜔

+
3 ,𝜔

+
4 ) + 2𝜋2u t [𝛿(𝜔1 − u) + 𝛿(𝜔1 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−2

)2 − u2
(H18m)

G[124]
↑↓ (𝝎) = G̃↑↓(𝜔

+
1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

+
4 ) + 2𝜋2u t [𝛿(𝜔4 − u) + 𝛿(𝜔4 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−3

)2 − u2
(H18n)

G[123]
↑↓

(𝝎) = G̃↑↓(𝜔
+
1 ,𝜔

+
2 ,𝜔

+
3 ,𝜔

−
4 ) + 2𝜋2u t [𝛿(𝜔3 − u) + 𝛿(𝜔3 + u)][𝛿(𝜔14) − 𝛿(𝜔13)]

1(
𝜔−4

)2 − u2
(H18o)

G[1234]
↑↓ (𝝎) = t

u

[
𝜔+1 G̃↑↓(𝜔

+
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

−
4 ) + 𝜔

+
2 G̃↑↓(𝜔

−
1 ,𝜔

+
2 ,𝜔

−
3 ,𝜔

−
4 ) + 𝜔

+
3 G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

+
3 ,𝜔

−
4 ) + 𝜔

+
4 G̃↑↓(𝜔

−
1 ,𝜔

−
2 ,𝜔

−
3 ,𝜔

+
4 )

]

− 4𝜋3i t2 𝛿(𝜔12)[𝛿(u + 𝜔1) − 𝛿(u − 𝜔1)][𝛿(u + 𝜔3) − 𝛿(u − 𝜔3)] (H18p)

The same-spin correlator in the MF turns out to be purely anomalous

G↑↑(i𝝎) =
u2

(
𝛽𝛿i𝜔14 − 𝛽𝛿i𝜔12

)

∏4
i=1(i𝜔i) − u

(H19)

Therefore, the derivation of the corresponding Keldysh correlators is
straightforward and yields

G[]
↑↑(𝝎) = G[1]

↑↑(𝝎) = G[2]
↑↑(𝝎) = G[3]

↑↑(𝝎) = G[4]
↑↑(𝝎) = 0 (H20a)

G[34]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14)
[(𝜔−2 )

2 − u2][(𝜔+4 )
2 − u2]

(H20b)

G[24]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14) − 𝛿(𝜔12)
[(𝜔+2 )

2 − u2][(𝜔+4 )
2 − u2]

(H20c)

G[23]
↑↑ (𝝎) = 2𝜋iu2

−𝛿(𝜔12)
[(𝜔+2 )

2 − u2][(𝜔−4 )
2 − u2]

(H20d)

G[14]
↑↑ (𝝎) = 2𝜋iu2

−𝛿(𝜔12)
[(𝜔−2 )

2 − u2][(𝜔+4 )
2 − u2]

(H20e)

G[13]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14) − 𝛿(𝜔12)
[(𝜔−2 )

2 − u2][(𝜔−4 )
2 − u2]

(H20f )

G[12]
↑↑ (𝝎) = 2𝜋iu2

𝛿(𝜔14)
[(𝜔+2 )

2 − u2][(𝜔−4 )
2 − u2]

(H20g)

G[234]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−1 )
2 − u2

[𝛿(𝜔3 − u) + 𝛿(𝜔3 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20h)

G[134]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−2 )
2 − u2

[𝛿(𝜔4 − u) + 𝛿(𝜔4 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20i)

G[124]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−3 )
2 − u2

[𝛿(𝜔1 − u) + 𝛿(𝜔1 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20j)

G[123]
↑↑ (𝝎) = 2𝜋2u t 1

(𝜔−4 )
2 − u2

[𝛿(𝜔2 − u) + 𝛿(𝜔2 + u)] [𝛿(𝜔14) − 𝛿(𝜔12)]

(H20k)

G[1234]
↑↑ (𝝎) = −4𝜋3i t2 [𝛿(𝜔12) − 𝛿(𝜔14] [𝛿(𝜔1 + u)

− 𝛿(𝜔1 − u)] [𝛿(𝜔3 + u) − 𝛿(𝜔3 − u)]. (H20l)
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6 Conclusion and outlook

In this thesis we studied the analytic structure of multipoint correlators in the Matsubara
and Keldysh formalism and showed how they are related. We further applied quantum field-
theoretic methods both in the MF and KF. The latter computes dynamical observables which
can be directly compared to experiment. After a general introduction to correlators, one-
and two-particle observables, their computation with the parquet equations and functional
renormalization group in Chapter 2, we presented the projects published in Refs. [P1]-[P5].

In Chapter 3, we first recapitulated the single-boson exchange (SBE) decomposition
[KVC19] of the four-point vertex which was originally introduced for Hubbard-like models
with SU(2)-spin symmetry. Using a multi-index notation we generalized the SBE notion
to arbitrary instantaneous interactions and rederived the parquet equations. The main
result of [P1] is the derivation of multiloop flow equations for the SBE components in
different approximations. For completeness, we also showed the relation to the asymptotic
decomposition [WLT+20] and the parquet and mfRG equations for the asymptotic functions.

The asymptotic decomposition was then used in our QFT study of the Anderson impurity
model in Chapter 4, which we performed both in the MF and the KF. We solved the
parquet equations (in the parquet approximation) and the flow equations of the functional
renormalization group (in the one-loop approximation with Katanin substitution [Kat04]).
Our study finds that real-frequency calculations with the full frequency dependence of
the four-point vertex are indeed feasible even in the KF. The numerical challenges were
addressed by suitably adapted non-linear frequency grids, vectorization over the matrix
structure of the Keldysh indices, exploitation of symmetries, and massive parallelization.
Real-frequency results were compared to analogous Matsubara results at zero frequency,
finding good convergence in numerical parameters. We find that the full three-dimensional
treatment of the vertex also improves accuracy compared to previous implementations, where
strong approximations were made. Static and dynamic observables were also compared to
reference data from the numerical renormalization group (NRG) [BCP08]: For the regime in
which converged parquet results could be obtained (u = U/(π∆) . 1) we found that these
give good agreement. While fRG data could be obtained for a wider range of parameters,
they typically showed larger discrepancies already starting at u & 0.5. The physical results
of our study were presented in Ref. [P3] whereas the code release Ref. [P5] then explained
the implementation details of our real-frequency solvers. A separate code release Ref. [P2]
introduces a Julia package for calculations with Matsubara functions. It contains useful
data structures, standard routines and code examples. The package aims to accelerate the
prototyping of diagrammatic solvers in the MF.

For future projects, the presented real-frequency methods may be used for diagrammatic
extensions of dynamical mean-field theory [GKKR96] to study lattice models with strong
correlations such as the Hubbard model. For this purpose, the multipoint generalization of
NRG [LKvD21, LHS+24] may be used as real-frequency impurity solver. In an upcoming
publication [P6] we therefore study the fulfillment of physical relations by the NRG self-energy
and vertex components. A direct generalization of our diagrammatic solvers to lattice models
would lead to a major increase in the numerical effort, both in terms of memory consumption
and computation time. For this purpose a more efficient representation will be needed. The
quantics tensor train representation is a promising representation that can employ efficient
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tensor network algorithms [NnFJD+22, SWM+23, RNnFW+24]. As a first step Ref. [P7]
therefore studies the compressibility of vertices in the KF.

Another interesting direction for future explorations might be the incorporation of Ward
identities into the parquet scheme. Ward identities are consequences of conservation laws
and are not necessarily fulfilled when the parquet equations are approximated. Simultaneous
fulfillment of parquet self-consistency and conservation laws is a very difficult task. After all,
it is known that only the exact solution can fulfil both exactly. However, an approximate
fulfillment of Ward identities might be achieved by a suitable ansatz for the fully two-particle
irreducible vertex R, the fully U -irreducible vertex ϕU irr or the asymptotic rest function ϕasy.

The formal equivalence of Matsubara and Keldysh correlators is well-known for two-
point functions. This is typically exploited in derivations to avoid the additional index
structure in the KF. Retarded correlators are then recovered via analytic continuation. As a
generalization, in Chapter 5 we present an approach for the analytic continuation of multipoint
correlators. The starting point of our derivations are the spectral representations introduced
in [KLvD21, HSS23] which separate correlators into formalism-independent partial spectral
functions (PSFs) and formalism-specific kernels. We find that it is actually possible to
recover all partial spectral functions from a Matsubara correlator. These fully encode the
physical information and thereby allow to construct all Keldysh components in terms of linear
combinations of analytically continued Matsubara functions. Furthermore, the formulas reveal
that the Keldysh components are related by generalized fluctuation-dissipation relations. As
another application of our formulas we derive expressions for three- and four-point correlators
of the Hubbard atom in the KF, based on the corresponding formulas in the MF. Another
promising direction for future explorations is the numerical representation of multipoint
MF correlators. References [SOOY17, KCP22] demonstrated that two-point Matsubara
correlators can be approximated compactly with a suitable set of basis functions. However,
for multipoint functions, Ref. [WSK21] found that the overcompleteness of the basis prevents
an extraction of the basis coefficients by projection. Instead, a fitting procedure with many
basis functions is required, which limits the method’s applicability. Therefore, a numerical
counterpart of our method for recovering individual PSFs Sp (or partial correlators Gp) from
a full correlator G(iω) would be valuable. Finally, our formulas might also be useful for
evaluating diagrammatic relations typically formulated for correlators while using the PSFs
as the main information carriers.
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Appendix A

Hubbard atom

The Hubbard atom is a popular toy model which can be obtained from the Hubbard model or
Anderson model (2.78d) by taking the so-called atomic limit (V → 0). It also has an analytic
solution and has non-trivial multipoint contributions. Therefore, it serves as a good test bed
for numerical implementations. The Hamiltonian of the half-filled Hubbard atom without
magnetic field reads

ĤHA = Ud̂†↑d̂↑d̂
†
↓d̂↓ − U

2
∑
σ=↑,↓

d̂†σd̂σ. (A.1)

It describes a single site which can be occupied by an electron of spin σ =↑, ↓. When two
electrons occupy the site they experience an instantaneous repulsive interaction of strength
U .

In this section we present, for ease of reference, formulas for the four-point vertex of the
Hubbard atom which partly have been computed and published in the Matsubara formalism
[Roh13, WLT+20]. For the Keldysh formalism we refer to Ref. [P4]. Alternatively, one may
compute them by inserting the operators d̂(†) into the spectral representation [KvD18b]. For
this purpose, we describe the Hilbert space as vectors in the basis (|∅〉 , |↑〉 , |↓〉 , |↑↓〉) where
|∅〉 is an empty, |↑↓〉 a doubly occupied and |σ〉 singly occupied site. The corresponding
eigenenergies are (0,−U

2 ,−U
2 , 0) and the creation and annihilation operators can be written

as

d̂†↑ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , d̂↑ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , d̂†↓ =


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 , d̂↓ =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 ,
(A.2)

where the matrices are obtained from the Jordan–Wigner transformation [Col15].
In the following we use the parametrization and conventions in Sec. 2.2.5.1. The frequency

convention is summarized in Fig. 2.7(a), or explicitly reads

(ν1′ , ν2′ , ν1, ν2)=(νa, ν ′a+ωa, ν ′a, νa+ωa)=(νp+ωp,−νp, ν ′p+ωp,−ν ′p)=(ν ′t+ωt, νt, ν ′t, νt+ωt).
(A.3)

For notational convenience, we write the interaction parameter in terms of

u = U

2 , (A.4)
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to avoid proliferation of factors of 1
2 . Thus, 1-particle quantities read

G(iω) = 1
iω − Σ(iω) , (A.5a)

Σ(iω) = u2

iω . (A.5b)

For the spin components of the vertex we further abbreviate

Γ↑↓ = Γ↑↓|↑↓, Γ↑↓ = Γ↑↓|↓↑, Γ↑↑ = Γ↑↑|↑↑. (A.6)

By SU(2)-spin symmetry (2.91) and crossing symmetry (2.86), these spin components are
related, and it suffices to give the following formula for the Γ↑↓ component [WLT+20, Roh13]

Γ↑↓ = Γ↑↓reg + Γ↑↓ano,a + Γ↑↓ano,p + Γ↑↓ano,t, (A.7a)

where the regular part can be written in terms of the frequencies of the four fermionic legs

Γ↑↓reg(iν1′ , iν2′ , iν1, iν2) = −2u+ u3
∑
i ν

2
i∏

i νi
+ 6u5∏

i

1
νi
, (A.7b)

with i ∈ {1, 2, 1′, 2′}. The anomalous parts are most conveniently expressed in terms of the
corresponding r-channel frequencies (ωr, νr, ν ′r)

Γ↑↓ano,a(iωa, iνa, iν ′a) = −βδωa,0Dνa,ν
′
au22n(−u), (A.7c)

Γ↑↓ano,p(iωp, iνp, iν ′p) = +βδωp,0Dνp,ν
′
pu22n(u), (A.7d)

Γ↑↓ano,t(iωt, iνt, iν ′t) = +βδωt,0Dνt,ν
′
tu2[n(u)− n(−u)], (A.7e)

where we abbreviated n(ε) = 1
1+eβε and Dν,ν′ = (ν2+u2)(ν′2+u2)

ν2ν′2 . For the distribution function
we use the identity n(ε) = 1− n(−ε).

A.1 Asymptotic decomposition
For the asymptotic components we obtain

K↑↓1a(iωa) = −u2βδω,02n(−u), (A.8a)
K↑↓1p(iωp) = +u2βδω,02n(u), (A.8b)

K↑↓1t (iωt) = +u2βδω,0[n(u)− n(−u)]. (A.8c)

It so happens that we can summarize all the K2(′) functions in terms of

Kσσ′

2(′)r(iωr, iν
(′)
r ) = fλ(ωr, ν(′)

r )wσσ′r (iωr), (A.9a)

with

fλ(ω, ν) = u2

ν(ν + ω) , (A.9b)

wσσ
′

r (iωr) = −Γσσ′0 +Kσσ′
1r (iωr). (A.9c)
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Conveniently fλ does not depend on the spin index or on the diagrammatic channel, which is
partly due to the chosen frequency convention. This allows us to focus on the K1r components.
In the physical channels they give

KD
1t(iωt) = u2βδωt,02n(u), (A.10a)

KM
1t (iωt) = u2βδωt,02n(−u), (A.10b)

KS
1p(iωp) = 2KD

1 (iωp), (A.10c)
KT

1p(iωp) = 0. (A.10d)

With these components we can express all other spin and diagrammatic components, thereby
revealing all asymptotically non-trivial functions of the full vertex. The remaining part of
the full vertex is collected in the asymptotic rest function

ϕasy = Γ− Γ0 −
∑
r

(K1r +K2r +K2′r), (A.11)

which reads

ϕasy;σσ′ =
∑

r=a,p,t
fλ(ωr, νr)wσσ

′
r (ωr)fλ(ωr, ν ′r) (A.12)

where we expressed the right-hand side in the corresponding r-channel frequency convention
(ωr, νr, ν ′r) for each summand.1 In the same notation, we can even express the full vertex as

Γσσ′ = 4Γσσ′0 +
∑

r=a,p,t
[1 + fλ(ωr, νr)]wσσ

′
r (iωr)[1 + fλ(ωr, ν ′r)]. (A.13)

This expression is even more concise than previously published formulas (cf. Ref. [RVT12,
WLT+20, KLvD21]). It encodes all spin channels in a clear manner and asymptotic functions
can be read off easily. Interestingly, the three summands for r = a, p, t factorize and can
be written as products of one- and two-dimensional functions. While the second term
in Eq. (A.13) is highly reminiscent of the SBE terms ∇r which also factorize into lower-
dimensional functions, it actually differs in details which we will see in the following.

A.2 SBE decomposition
To obtain the Hedin vertices we have to divide K2r by the screened interaction wr. This is
done most conveniently in the physical spin channels which are diagonal in the t or p channel,
respectively. Hence, the Hedin vertices read

λ
D/M
t (ωt, νt) = fλ(ωt, νt)

w
D/M
t (iωt)

w
D/M
t (iωt)

, (A.14a)

λSp (ωp, νp) = fλ(ωp, νp)
wSp (iωp)
wSp (iωp)

. (A.14b)

Since for the triplet component we have KT
2p = 0 the corresponding Hedin vertex vanishes.

1 In Ref. [WLT+20] the expression for the asymptotic rest function has a typo and misses the Kronecker-delta
contributions.
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Knowing the exact formulas for the SBE terms ∇r we also obtain the SBE rest-function

ϕU irr = Γ−
∑
r

∇r + 2Γ0, (A.15)

which reads

ϕU irr;X =
∑
r

fλ(ωr, νr)
[
wr − wr • (wr)−1 • wr

]X
fλ(ωr, ν ′r), (A.16)

for any spin component X. Here, the • -operator represents summation over spin indices in
the respective channels which again is most conveniently performed in the physical channels
X = D,M,S.
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Appendix B

Multiloop convergence in Matsubara and Keldysh
formalism

In Sec. 2.2.4 we summarized the parquet approach and the fRG with multiloop extension
[KvD18a]. Both parquet and mfRG equations require the fully 2PI vertex R as external
input. If the solution of the parquet equations is unique both methods should give the same
result by construction. In this appendix we investigate the convergence of mfRG results in
the parquet approximation (R = Γ0) for the Anderson model. Using the hybridization flow
∆(Λ) = Λ/2 every value of the flow parameter Λ corresponds to a different hybridization ∆.
Hence, for any Λ along the flow we can solve the parquet equations with hybridization ∆(Λ)
for comparison.

While the solution of parquet and (loop-order-converged) mfRG equations must coincide,
they are obtained in very different ways. The parquet equations can be solved by finding
the vector-valued fixed-point of a non-linear equation, i.e., summarizing self-energy and
vertex into the vector ψ = (Σ,Γ) the parquet equations have the form ψ = fPA(ψ). For
increasing coupling u = U/(π∆) it becomes more and more difficult to obtain a converged
self-consistent solution (see Chapter 4). The mfRG arrives at a result by integrating a flow
equation. However, the mfRG equations (2.77) have the form ψ̇ = fmfRG(ψ, ψ̇), i.e., they
involve self-consistency in the self-energy flow Σ̇ which is solved by self-energy iterations
as described by Algorithm 1 in Ref. [KvD18b]. They further require a loop expansion of
differentiated vertices γ̇r = ∑

` γ̇
(`)
r until contributions from higher ` are negligible. Since a

large number of loops and self-energy iterations would be numerically expensive, the analysis
of convergence with loop order indicates whether and where the mfRG method is applicable
in practice.

An analysis of multiloop convergence for the Anderson model has already been performed
in the Matsubara formalism [CGKH+22]. There, the final result ψf of an mfRG flow from
initial Λi to final Λf was compared with the expected parquet solution. Loop convergence was
analyzed by limiting the maximal loop order and the maximal self-energy iterations. Figures 4-
6 in Ref. [CGKH+22] show that convergence to the parquet solution is indeed achieved. The
required loop order depends on the choice of regulator and the physical parameters (about
15 - 61 loop orders and 3 - 9 self-energy iterations, see Tab. II in [CGKH+22]) . Interestingly,
the convergence slows down for increasing u which coincides with the difficulty of finding a
parquet solution.

Here we follow a slightly different strategy to investigate the convergence of mfRG to
parquet results. For a fixed flow parameter Λ∗ we compare the Λ-derivative ψ̇ obtained
from the parquet method and the mfRG (starting from a converged parquet solution ψ∗).
First, ψ̇mfRG is determined by evaluation of the mfRG flow equations up to various loop-
orders Nloops and various numbers of self-energy iterations. The reference values ψ̇parquet
are computed with a finite-differences method using parquet solutions for ∆ ≈ ∆(Λ∗). As
finite-differences method we use the one described in Ref. [For88]. We choose an equidistant
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Figure B.1 We investigate multiloop convergence for the AIM in the MF at couplings (a) u = 0.5
and (b) u = 0.75. The three rows display the different asymptotic functions comprising γ̇t. (K2′ is
identical to K2 by symmetry.) The dotted line shows the numerical derivative of the parquet result
and the blue shaded region indicates deviations within 0.1%. For u = 0.5 (perturbative regime) we
find that five loops are sufficient to obtain a reasonably converged result. At u = 0.75 we see that
loop convergence is achieved at 9 loops. The first self-energy iteration gives visibly better results. For
fermionic Matsubara frequencies we approximate the value at zero frequency by averaging over the
lowest points ±πT .

set of Λ-values symmetrically around Λ∗. Here the step size δΛ = 0.01 is chosen. With five
points we approximate the derivative up to fourth order in δΛ.

This strategy effectively isolates systematic errors (due to truncation of the mfRG equa-
tions) from numerical errors which can accumulate and create feedback when integrating a
flow. Furthermore, it greatly reduces the required numerical resources, since the analysis
of multiloop convergence requires us to sweep through various values for the number of
self-energy iterations NΣ and maximal loop order Nloops. For a rough comparison of the
numerical effort of the mfRG and parquet scheme, we may assume that each multiloop
contribution γ̇(`)

r;L/C/R in Eqs. (2.77) comes approximately at the same cost as a BSE (2.66).
For NΣ self-energy iterations and maximal loop order Nloops, a single evaluation of the mfRG
equations corresponds to NΣ(Nloops − 1) BSE evaluations. In our scheme we need several
parquet results. But this quickly pays off, since it reduces the number of evaluations of mfRG
equations.

In Fig. B.1 we first analyze the convergence of the multiloop approximation ∑Nloops
`=1 γ̇t

(`)

in the Matsubara formalism. For comparison we show the parquet result (dotted line) and
the region with 1‰deviation (blue shaded area). The figure shows results for (a) u = 0.5
and (b) u = 0.75, respectively. For comparability, we focus on the point at zero frequency for
which Matsubara functions have to coincide with the corresponding fully retarded Keldysh
functions at zero frequency. Similar to [CGKH+22] we find that loop convergence is slower
for stronger coupling. Convergence to the parquet result is reached within 6 or 9 loops,
respectively. In both cases the first self-energy iteration gives visibly better results.

In Figs. B.2 and B.3, we then show real-frequency results. As expected from the cal-
culations in the MF, we also confirm multiloop converge in the right column of Fig. B.2.
Most interestingly, however, we can analyze the frequency structure of individual multiloop
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contributions (as shown in the left column of Figs. B.2 and B.3). The non-differentiated
vertex Γ, one-loop contribution γ̇(1)

r and multiloop contributions γ̇(`)
r;L/R/C enter the integrand

of higher-loop contributions γ̇(`+1)
r;L/R/C . Therefore, a good resolution of all vertex contributions

is necessary to minimize propagation of numerical errors for an implementation of the mfRG
flow equations with continuous frequencies.

As shown on the left side of Fig. B.2 the non-differentiated vertex (blue curve) tends to be
the easiest to resolve. It is less sharpy peaked and has less sign changes than the other curves.
Among all components the ‘center’ contribution γ̇(`)

r;C has the sharpest structures, demanding
a particularly dense frequency grid. However, while the individual multiloop contributions
develop sharp structures, their sum ∑Nloops

`=1 γ̇
(`)
r is rather well-behaved. Summed multiloop

contributions for Nloops = 1, 2, 3 are shown in the right column of Fig. B.2. We observe that
after combination of all contributions most structures cancel out and give a docile curve
again.

We conclude that a calculation of the mfRG equations in the Keldysh formalism requires
a higher resolution than a comparable parquet solver. This is partly due to the sharp features
in the higher-loop contributions, partly to the iterative nature of the mfRG scheme which
accumulates errors during the iterative loop expansion in the mfRG equations and during
the iterative quadrature steps in Runge–Kutta methods. In addition, the mfRG equations do
not fully circumvent the necessity of solving a self-consistent equation since the differentiated
self-energy Σ̇ and differentiated vertex γ̇r;C also appear on the right-hand side of the mfRG
equations. In comparison, the parquet equations directly compute the vertex Γ and self-
energy Σ by self-consistency iterations. They thereby avoid the sharply peaked multi-loop
contributions. Furthermore, fixed-point iterations suffer less from the propagation of errors.
Therefore, for the chosen system and parameters the parquet approach tends to be more
efficient than solving the mfRG equations.
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Multi-loop contributions for SIAM at u = 0.5, T/U = 0.01 (↑↓-component)

Figure B.2 We show multiloop contributions (2.77) to the fully retarded Keldysh vertex γ̇2221
t at

small coupling u = 0.5. Each row shows a slice through the asymptotic functions Kit (i = 1, 2, 3). The
lines in the left column show the non-differentiated parquet result Γ (blue), the one-loop contribution
dΓ(1) (2.77b), the ’left‘ dΓ(`)

L (2.77e), the ’right‘ dΓ(`)
R (2.77f) and the ’center‘ dΓ(`)

C (2.77g) contribution
at different loop orders. We find good agreement with the Matsubara results (circles) at zero frequency.
For better visibility all lines have been divided by the largest absolute value of the function. In the
right column the red dashed line shows the numerical derivative (‘num’) computed from parquet
results. We further show the summed multiloop contributions

∑`max
`=1 γ̇

(`)
t up to order `max = 1, 2, 3

(labeled by ‘sum`maxl’). With increasing loop order `max the curves approach the full derivative.
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Figure B.3 Similar comparison as in the left column of Fig. B.2 for a different value of u = 0.75.
Also here we find good agreement between Keldysh and Matsubara at zero frequency.
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