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Zusammenfassung

Strahlentherapie ist eine der am häufigsten verwendeten Behandlungen in der Krebstherapie und
wird bei etwa 60 % der Patienten angewandt. Während Röntgen- und Gammastrahlen (Photonen-
therapie) den Standardverfahren darstellen, hat sich die Protonentherapie als wertvolle Alternative
erwiesen. Die Protonentherapie ist für ihren Vorzug bekannt, eine konformalere Dosisabgabe zu
ermöglichen. Die Überlegenheit der Protonentherapie gegenüber der Photonentherapie beruht darauf,
dass Protonen ihre maximale Energie direkt im Tumor abgeben und dabei das umliegende gesunde
Gewebe geschont wird. Allerdings ist die Protonentherapie sehr empfindlich gegenüber Reichweit-
enunsicherheiten. Reichweitenunsicherheiten in der Protonentherapie entstehen hauptsächlich, weil
nicht genau bestimmt werden kann, wo der Protonenstrahl zum Stillstand kommt, was zum Risiko
eines Überschießens oder Unterschreitens des Ziels führt. Daher besteht der Bedarf an in vivo-
Reichweitenverifikationsmethoden, um diese Unsicherheiten zu reduzieren. Die beiden Methoden,
die kurz vor dem routinemäßigen klinischen Einsatz stehen, sind die Positronen-Emissions-Tomographie
(PET) und die Prompt-Gamma-Bildgebung (PGI). Die Reichweitenverifikation beruht bei diesen
Methoden auf der Überwachung nuklearer Reaktionsprodukte entlang der Protonenstrahlen. Allerd-
ings korrelieren die PET- und PGI-Methoden das messbare Signal nicht direkt mit der Reichweite
des Strahls oder der Position des Bragg-Peaks (BP). Zudem sind die hierfür benötigten Gerätschaften
sperrig und nicht kosteneffektiv. Daher schlägt die in dieser Arbeit durchgeführte Forschung eine
kosteneffiziente Reichweitenverifikationsmethode vor, die eine direkte Korrelation zwischen dem
Protonenstrahl und ionoakustischen (IA) Signalen herstellt.

Derzeit unterstützen nur zwei kommerzielle Plattformen die Photonentherapie bei Kleintieren, ob-
wohl ihre Bildgebungssysteme für Forschungsstrahllinien angepasst werden können. Protonenthera-
pie bietet gegenüber der Photonentherapie deutliche Vorteile, was zur Entwicklung des “Small An-
imal Proton Irradiator for Research in Molecular Image-guided Radiation-Oncology (SIRMIO)”-
Projekts führte. Dieses Projekt wurde von Prof. Dr. Katia Parodi an der Ludwig-Maximilians-
Universität (LMU) München geleitet und durch den Europäischen Forschungsrat (ERC) im Rahmen
der Fördervereinbarung 725539 finanziert. SIRMIO zielte darauf ab, die erste tragbare, bildgeführte
Forschungsplattform für die Protonentherapie bei Kleintieren zu entwickeln. Im Zuge dieses Vorhabens
wurden verschiedene Reichweitenverifikationsmethoden untersucht. Eine dieser Methoden, die auf
der Lokalisierung des BP mittels IA-Signalen basiert, wird in dieser Arbeit untersucht.

Die hier vorgestellte Forschung untersucht die Lokalisierung des BP unter Verwendung von IA-
Signalen mit dem Ziel, die BP-Position sowohl im zwei-dimensionalen (2D) als auch drei-dimensionalen
(3D) Raum zu bestimmen. Die Lokalisierung wurde in homogenen und heterogenen Medien mit-
tels Laufzeitschätzung (Time-of-Flight, ToF) von verschiedenen Sensorpositionen durchgeführt. Die
Lokalisierung des BP wurde mithilfe einer Technik namens Multilateration bewertet. Die ersten Stu-
dien wurden in silico durchgeführt, wobei ideale Punktquellen verwendet wurden, die die BP-Position
emulierten und die Robustheit von zwei numerischen Optimierungsalgorithmen evaluierten: Nelder-
Mead-Simplex und Levenberg-Marquardt. Daraufhin wurde die Robustheit der Multilaterationstech-
nik für zwei Lokalisierungsmethoden bewertet: Time-of-Arrival (TOA) und Time-Difference-of-
Arrival (TDOA). Durch die Modellierung von zufälligen und systematischen Unsicherheiten in der
geometrischen ToF wurde die Robustheit von TOA und TDOA untersucht. Die Zufälligen Unsicher-
heiten zielten darauf ab, Schwankungen der Schallgeschwindigkeit, ungenaue Kenntnisse der Sensor-
position und Fehler bei der ToF zu modellieren. Die Systematischen Unsicherheiten dienten dazu, die
ungenaue Kenntnis der Messstartzeit eines Protonenstrahlbeschleunigers zu simulieren.
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Nach einem umfassenden Verständnis der numerischen Optimierungsmethoden und der Auswirkun-
gen von Unsicherheiten auf TOA und TDOA wurde der Fokus auf einen realistischen Simulationsfall
mit einem vorklinischen Strahl von 20 MeV gerichtet. Die Multilateration der BP-Position wurde
mit einem Sensornetzwerk von 843 idealen Punktquellen in einer halbkreisförmigen Konfiguration
mit einem Durchmesser von 60 mm durchgeführt. Ebenso wurde der Einfluss verschiedener ToF-
Extraktionsmethoden auf die BP-Lokalisierung bewertet. Die Untersuchungen wurden auch darauf
erweitert, den Einfluss der Anzahl der Sensoren auf die ToF-Schätzung und damit auf die Genauigkeit
der BP-Lokalisierung zu analysieren.

Experimentelle Kampagnen wurden durchgeführt, um die Lokalisierung des BP anhand des in den
Simulationsstudien gewonnenen Vorwissens zu validieren. Diese experimentellen Studien ermittel-
ten die BP-Position im Tandem-Beschleuniger bei zwei verschiedenen Strahlenergien (20 und 22
MeV). Die erste experimentelle Kampagne zielte darauf ab, den BP mit drei Wandlern zu lokalisieren.
Darüber hinaus wurden zwei verschiedene Techniken implementiert, um die räumliche Position der
Wandler zu bestimmen. Die zweite experimentelle Kampagne hatte das Ziel, den BP mit 5 Wan-
dlern zu lokalisieren. Zudem wurden die räumlichen Positionen der Wandler experimentell mithilfe
eines Ansatzes bestimmt, der auf Messungen mit einem optischen Trackingsystem basierte. Für den
SIRMIO-Fall wurde ein dediziertes Lokalisierungssetup mit einer Strahlenergie von 50 MeV in Be-
tracht gezogen. Dieses Setup hatte das Ziel, den BP unter verschiedenen Bedingungen zu lokalisieren,
einschließlich unterschiedlicher Protonenstrahlzeitprofile, Strahlpositionen und Sensoranzahlen. Der
erste Schritt bestand darin, den Fehler in der ToF als Funktion der Protonenzeitprofile zu untersuchen
und dann die Multilaterationsgenauigkeit basierend auf denselben Protonenzeitprofilen zu bewerten.
Nachdem das optimale Protonenzeitprofil identifiziert worden war, wurde der BP durch konstantes
Protonenzeitprofil und variable Sensoranzahlen lokalisiert.

Für die numerischen Methoden zeigte die Levenberg-Marquardt-Methode eine größere Robustheit
im Vergleich zur Nelder-Mead-Simplex-Methode, mit Ausfallraten (FR) von 0.22 % und 0% bei der
Lokalisierung der emulierten BP-Positionen mit TOA bzw. 1.12% und 4.85% bei der Lokalisierung
der Quelle mit TDOA. Bei idealen Punktquellen waren beide Lokalisierungsmethoden in 2D äquivalent.
Ein mittlerer Lokalisierungsfehler von 7.4 × 10−4 mm und 7.8 × 10−4 mm wurde für TOA und
TDOA ermittelt. In 3D variierte der Lokalisierungsfehler zwischen 7.8× 10−4 mm und 1.0× 10−3

mm für TOA und TDOA. Die Schallgeschwindigkeit variiert in vivo je nach Gewebetyp, was die
Genauigkeit der BP-Lokalisierung verringern dürfte. Bei einer konservativen Annahme eines Fehlers
von 5% in der durchschnittlichen Schallgeschwindigkeit entlang des akustischen Pfads (modelliert
durch zufällige Unsicherheiten) wurde festgestellt, dass der Lokalisierungsfehler nach der Multilat-
eration um etwa 2 mm für die untersuchte Geometrie zunahm. Der geringste Fehler bei der ToF-
Schätzung wird bei der Maximalhüllkurven-Extraktionsmethode erzielt, wenn IA-Signale betrachtet
werden. Daher könnte der BP durch optimale Sensorpositionierung, um ToF-Fehler zu minimieren,
in silico mit einer Genauigkeit von über 90 µm (entspricht einem Fehler von 2%) lokalisiert werden.

Der BP wurde für das erste experimentelle Setup mit Fehlern im Bereich von 0.43 mm bis 0.48
mm lokalisiert, abhängig von der Anordnung der Sensoren. Die Lokalisierung erfolgte mit einer
Gesamtdosis von 1.69 Gy in einem einzigen Schuss. Im zweiten experimentellen Setup wurde
die Lokalisierung mit 50 IA-Signalen und einer Gesamtdosis von 29 Gy durchgeführt, wobei ein
Lokalisierungsfehler von 1 mm erzielt wurde. In beiden Setups waren die Hauptursachen für die
Lokalisierungsfehler Ungenauigkeiten in der Sensorpositionierung und ein niedriges Signal-Rausch-
Verhältnis (SNR) aufgrund der schwachen und gerichteten Natur der IA-Emissionen. Die Studien für
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die SIRMIO-Strahllinie zeigten, dass das Protonenzeitprofil einen erheblichen Einfluss auf die ToF-
Schätzung hat, was sich wiederum auf die Genauigkeit der BP-Lokalisierung auswirkt. Die optimale
Lokalisierungsgenauigkeit wurde bei Protonenzeitprofilen im Bereich von 1 µs bis 4 µs erreicht. In
diesem Setup wurde der BP für verschiedene Strahlverschiebungen entlang der x-, y- und z-Achse
lokalisiert. Bei Verschiebungen entlang der Strahlachse (x-Achse) betrug der maximale Fehler 0.48
mm. Im Gegensatz dazu wurde ein maximaler Fehler von 1.23 mm bei einer Querstrahlverschiebung
(z-Achse) erzielt.

Zusammenfassend wird in dieser Arbeit eine Methode zur Reichweitenverifikation unter Verwen-
dung von IA-Signalen im Rahmen des SIRMIO-Projekts vorgestellt. Darüber hinaus wird in weiteren
Diskussionen das Potenzial der in dieser Arbeit vorgestellten Studien für Echtzeit-Anwendungen un-
tersucht.
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Abstract

Radiation therapy is one of the most typically used treatments in cancer care, with around 60% of
patients undergoing this form of treatment. While X-rays and gamma rays (photon therapy) are the
standard approach, proton therapy has emerged as a valuable alternative. Proton therapy is renowned
for its ability to provide a more conformal dose delivery. Proton therapy’s superiority over photon
therapy is due to protons depositing their maximum energy directly within the tumour while spar-
ing surrounding healthy tissues. However, proton therapy is highly sensitive to range uncertainties.
Range uncertainties in proton therapy arise primarily because we cannot precisely determine where
the proton beam will stop, leading to the risk of overshooting or undershooting the target. Thus, there
is a need for in vivo range verification methods to reduce range uncertainties. The two methods near-
ing routine clinical use are positron emission tomography (PET) and prompt gamma imaging (PGI).
Range verification relies on monitoring nuclear reaction products along proton beams for these meth-
ods. However, PET and PGI methods do not directly correlate the measurable signal, beam range, or
Bragg peak (BP) position. Additionally, their equipment is bulky and not cost-effective.
Therefore, the research conducted during this work proposes a range verification method that is both
cost-effective and establishes a direct correlation between the proton beam and ionoacoustic (IA)
signals.

At present, only two commercial platforms support small animal photon radiotherapy, though their
imaging systems can be adapted for research beamlines. Proton therapy offers distinct advantages
over photon therapy, which led to the development of the Small Animal Proton Irradiator for Research
in Molecular Image-guided Radiation-Oncology (SIRMIO) project. It was led by Prof. Dr. Katia
Parodi at Ludwig Maximilians-Universität (LMU) Munich and funded by the European Research
Council (ERC) under grant agreement 725539. SIRMIO aimed to create the first portable, image-
guided research platform for small animal proton therapy. As part of this effort, different range
verification methods are investigated. One of these methods is the one studied in this thesis, which is
based on localising the BP using IA signals.

The research presented here investigates BP localisation using IA signals, aiming to determine the
BP position in both two-dimensional (2D) and three-dimensional (3D) space. The localisation was
performed in homogenous and heterogenous media via time-of-flight (ToF) estimation from different
sensor spatial locations. The localisation of the BP was assessed using a technique called multi-
lateration. The initial studies were performed in-silico, using ideal point sources that emulated the
BP position and evaluated the robustness of two numerical optimisation algorithms: Nelder-Mead
Simplex and Levenberg Marquardt. Secondly, the robustness of the multilateration technique was
assessed for two localisation methods: time-of-arrival (TOA) and time-difference-of-arrival (TDOA).
By modelling random and systematic uncertainties in the geometrical ToF, the robustness of both
TOA and TDOA was evaluated. Random uncertainties aimed to model the speed of sound variations,
inaccurate knowledge of the sensor spatial location and errors on the ToF. On the other hand, the
objective of modelling systematic uncertainties was to simulate the inaccurate knowledge of the mea-
surement starting time from a proton beam accelerator.
After fully understanding the numerical optimisation methods and the impact of uncertainties on TOA
and TDOA, the localisation focus was addressed to a realistic simulation case using a pre-clinical
beam with an energy of 20 MeV. The multilateration of the BP position was performed with a sen-
sor network of 843 ideal point sensors arranged in a semi-circular configuration with a diameter of
60 mm. Similarly, the impact of different ToF extraction methods on BP localisation was evaluated.
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Moreover, the studies were further expanded to investigate the impact of the number of sensors on the
ToF estimation and, consequently, their impact on the accuracy of the BP localisation.

Experimental campaigns were conducted to benchmark the localisation of the BP using pre-knowledge
gained from the simulation studies. These experimental studies retrieved the BP position in the Tan-
dem accelerator with two different beam energies (20 and 22 MeV). The first experimental campaign
aimed to localise the BP using 3 transducers. Furthermore, two different techniques were imple-
mented to localise the spatial location of the transducers. The second experimental campaign aimed
to localise the BP using 5 transducers. Moreover, the spatial locations of the transducers were es-
timated experimental using a single approach based on the measurement performed with an optical
tracking system.
For the SIRMIO case, a dedicated localisation setup with a 50 MeV beam energy was considered.
This setup aimed to localise the BP under various conditions, including different proton beam time
profiles, beam spatial locations, and numbers of sensors. The first step involved studying the error in
ToF as a function of the proton time profiles and then assessing multilateration accuracy based on the
same proton time profiles. After identifying the optimal proton time profile, the BP was localised by
keeping the proton time profile constant while varying the number of sensors.

For the numerical methods, the Levenberg-Marquardt method demonstrated greater robustness com-
pared to the Nelder-Mead Simplex method, with failure rates (FR) of 0.22% and 0% when localising
the emulated BP positions with TOA and 1.12% and 4.85% when localising the source with TDOA,
respectively. Considering ideal point sources, both localisation methods were equivalent in 2D. A
mean error in localisation of 7.4×10−4 mm and 7.8×10−4 mm for TOA and TDOA was obtained.
In 3D, the localisation error varied from 7.8× 10−4 mm and 1.0× 10−3 mm for TOA and TDOA.
The speed of sound varies in vivo depending on the tissue type, which is expected to reduce the BP
localisation accuracy. With a conservative assumption of a 5% error in the average speed of sound
along the acoustic path (modelled by random uncertainties), it was observed that the localisation error
after multilateration increased by around 2 mm for the examined geometry. The lowest error on the
ToF estimation is obtained for the maximum-envelope extraction method when considering IA sig-
nals. Therefore, through optimal sensor positioning to minimise ToF errors, the BP could be localised
in-silico with an accuracy exceeding 90 µm (equivalent to a 2% error).
The BP was localised for the first experimental setup with errors ranging from 0.43 mm to 0.48 mm,
depending on the sensor arrangement. The localisation was performed with a total dose of 1.69 Gy
with a single shot. In the second experimental setup, the localisation was performed with 50 IA sig-
nals and a total dose of 29 Gy, achieving a localisation error of 1 mm. For both setups, the primary
sources of localisation errors were inaccuracies in sensor positioning and low signal-to-noise ratio
(SNR) due to the weak and directional nature of the IA emissions.
The studies conducted for the SIRMIO beamline demonstrated that the proton time profile signifi-
cantly impacts the ToF estimation, influencing the accuracy of BP localisation. The optimal localisa-
tion accuracy was achieved with proton time profiles ranging from 1 µs to 4 µs. In this setup, the BP
was localised for different beam offsets along the x,y, and z axes. When applying offsets along the
beam axis (x-axis), the maximum error was found to be 0.48 mm. Conversely, a maximum error of
1.23 mm was obtained for a transverse beam offset (z-axis).

In conclusion, this work introduces a range verification method using IA signals within the framework
of the SIRMIO project. Additionally, further discussions explore the potential for transitioning the
studies presented in this thesis toward real-time range verification applications.
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1 Introduction

“Until suddenly one day I felt
beautiful and holy for having had
the courage to hold on to my sanity
after all I’d seen and been through,
body and soul, in too loud a
solitude...”

Bohumil Hrabal
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1.1 Context

Cancer is one of the leading causes of mortality worldwide, mostly in more industrialised countries.
Deaths in those countries are increasing each year [1, 2, 3, 4]. Cancer cases in low and middle-
income countries are also growing exponentially [5, 6, 7], bringing awareness about the pathology
among governments and healthcare providers. In places like Sub-Saharan Africa, the most active
focus was on the mortality caused by malaria [8, 9]. But in recent years, due to the rapid increase
in deaths caused by cancer, many health policies have been implemented specifically to fight cancer
or to support the fight against cancer. Moreover, with increasing curing options for mortality caused
by malaria, cancer comes into focus. A worldwide consciousness exists regarding various forms
of cancer, accompanied by robust efforts in preventive education [10, 11, 12]. One reason for the
increasing number of cancers is that life expectancy is also increasing, and the incidence of some
cancers is also increasing, e.g., breast and prostate cancer [13, 4]. Indeed, other factors go behind this
work’s scope, like cancers related to HIV/AIDS1, obesity, decreasing physical activity, and a lifestyle
more westernised [14, 15, 16]. On average, the number of cancer deaths in industrialised countries
is still higher than in low and middle-income countries [16, 17]. However, we must consider that
more reliable statistics coming from some low or middle-income countries is still an issue [7, 18].
This factor may also be a bias of the overall death incidence caused by cancer in industrialised versus
low and middle-income countries. On this note, it is also important to mention that some low and
middle-income countries are working closely with the World Health Organization to have more robust
epidemiological and bio-statistics facilities to enable more reliable statistics and epidemiological data
collection. The effort to fight cancer is being addressed globally with medical training, technological
advancement, new drug discoveries, etc. However, besides technological advancement, it is also
crucial to increase our awareness that we should rethink our lifestyle since some cancers are caused
by substances we consume daily, like tobacco and alcohol.

There are currently three primary treatment options for patients diagnosed with cancer: surgery,
chemotherapy and radiation therapy. The choice of the treatment modality and combination thereof
depends on the disease’s stage, among other factors. The surgery aims to remove the tumour or incise
a significant portion of it. For cancer that is likely to spread or has already spread, chemotherapy is a
preferable choice. Chemotherapy uses specific drugs (i.e., chemotherapeutic agents) to kill the tumour
cells. The other technique, often used in combination with surgery and/or chemotherapy, is based on
radiation therapy, subdivided into radiation therapy using internal radiation (e.g., brachytherapy) and
radiation therapy using an external beam. Brachytherapy involves implanting radioactive sources into
or near the tumour, delivering high doses of radiation locally while minimising exposure to healthy
tissues. External radiation therapy uses high amounts of radiation originating from a particle accel-
erator (i.e., linear accelerator, synchrotron, cyclotron, and synchrocyclotron). Particle accelerators
propel charged particles using electromagnetic fields. As relevant to the context of this work, proton
therapy employs two common beam types: continuous and pulsed beams [19].
Radiation therapy is the primary modality for cancer treatment; almost 60% of cancer patients are
treated with this modality. In many cases, radiation therapy can be combined with chemotherapy
or surgery or other systemic therapies, depending on the oncologist’s prescription [20, 21]. Among
all the techniques listed before, the objective of this work is centred on radiation therapy, particu-
larly proton therapy. In radiation therapy, photon therapy is the most widespread treatment modality.
Photon therapy uses primarily X-rays (or to a less extent gamma rays) to deliver radiation locally to
tumour-target cells and break their DNA in a complex way, such that cell repair is almost impossible.

1Immunodeficiency Virus/Acquired Immunodeficiency Syndrome.
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The energy deposited by photons in matter decreases almost exponentially with the penetration depth,
as shown in Fig.(1). Another technique increasingly used for external radiation therapy is based on
particle therapy (i.e., protons or other heavier positively charged ions), which may offer advantages
over photon therapy, e.g., due to a more conformal dose delivery (see Fig.(1) next sections). The main
focus of this thesis will be exclusively on proton therapy.

1.2 External Radiotherapy
External radiotherapy uses external sources of ionising radiation to damage tumour cells. To this end,
doctors can recommend the radiation quality, typically photons or protons, for deep-seated tumours.
However, as shown in Fig.(1), even if both modalities use an external radiation source, one could
notice that photon therapy and proton therapy are entirely different. The dose, which is the energy
per unit of mass, refers to the amount of radiation energy delivered to a specific target volume or
tissue in the body. It quantifies the energy deposited per mass by the ionizing radiation in the treated
volume and is typically measured in units such as Gray (Gy) or centigray (cGy), where 1 Gy is
equivalent to 1 J/kg. In Fig.(1), one can note that when normalizing to the same maximum, the
entrance dose for photons is higher than for protons for a single radiation field. As seen, the photon
dose decreases almost exponentially after an initial maximum when passing through the body, i.e.,
proximal tissues are exposed to high radiation doses. Deep-seated tissues are also exposed to a specific
dose that decreases almost exponentially with the depth. Conversely, the maximum energy for protons
is deposited near the end of their range, also known as the BP . Almost no dose is deposited beyond
the BP. Due to its unique depth-dose characteristic, proton therapy can deliver high conformal dose
distributions to target volumes with only a few treatment fields.

Figure 1: Depth-dose curves for photon and proton beams for a single treatment field, illustrating the
cases of a single proton pencil beam (solid blue line), an Spread Out Bragg Peak (SOBP) (in dashed
blue line), and a photon curve (solid red), figure extracted from [22].
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However, proton therapy is more sensitive to uncertainties in the treatment planning phase and dose
delivery. This chapter will discuss the source of uncertainties during the treatment planning phase
in more detail. Uncertainties in proton therapy are more critical than uncertainties in photon therapy
due to the steep gradient of the dose fall-off at the BP region. Understanding uncertainties in proton
therapy is crucial to have a complete picture of the challenges of proton therapy compared to photon
therapy. This will be concisely addressed in section 1.2.1. Multiple proton pencil beams (i.e., narrow,
quasi mono-energetic beams) are commonly used to treat extended tumour volumes. An energy mod-
ulated approach called SOBP produces an extended high dose distribution encompassing the entire
tumour volume, utilizing several individual pencil beams with varying initial energies (see Fig.(1)).
Protons undergo various interactions with matter, resulting in energy loss through inelastic Coulomb
interactions, deflection of proton trajectory via repulsive Coulomb elastic scattering with the nucleus,
removal of primary protons, and generation of secondary particles through non-elastic nuclear inter-
actions. The Bethe-Bloch equation defines the mean energy loss (dE) per distance travelled (dx) of a
charged particle, as shown below (neglecting corrective terms):

− dE
dx

=
4πnde4z2

e f f

mec2
γξ2 ·

 ln

(
2mec2

γξ2

I · (1−ξ2)

)
−ξ

2

 (1.1)

Eq.(1.1) describes the mean energy loss per distance travelled of swift charged particles (protons,
alpha particles, ions) passing through matter (or the linear stopping power of the material). The linear
stopping power is given in MeV/cm, and there are some parameters in eq.(1.1) worth defining, nd is
the electron density of the material, ξ is the ratio between the speed of the particle and the speed of
light in a vacuum (cγ), ze f f is the charge of the projectile, I the mean excitation potential of the atoms
in the absorbing medium, e is the electron charge, and me is the electron rest mass.
Proton imaging systems measure proton energy loss to calculate water equivalent thickness (WET),
which represents the integrated stopping power relative to water. The WET measurement is used
to determine the relative stopping power (RSP) of different tissues, which is crucial, for example, in
reconstructing patient anatomy in proton computed tomography (pCT) and determining proton ranges
based on how protons interact with tissues compared to water [23, 24, 25, 26].

The resting point of protons is defined as the range, which is nothing else than the expectation value of
the distance of a proton with a given incident energy achieved in matter. The range can be described
mathematically using the continuous slowing down approximation (CSDA), as reported in eq.(1.2).
In eq.(1.2) ℜCSDA is the range of a charged particle; for more details see [24].

ℜCSDA ≡
∫ E0

0

(
dE
dx

)−1

dE (1.2)

A clinically more relevant definition of the proton range is the commonly named R80, which is the
depth of the 80% of the maximum dose in the fall-off of the BP [27].
In proton therapy, range uncertainty refers to the case of either under-shooting or over-shooting the
target volume. Under-shooting happens when the distal part of the target volume does not receive
enough radiation due to a shorter range, while over-shooting occurs when a longer range delivers
excessive radiation beyond the target (distally) and not enough coverage to the proximal part of the
tumour. Range uncertainties can be critical when dealing with tumours close to organs at risk (OAR).
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The OAR refers to any anatomical structure that should be spared during radiation, and one example
of OAR is the heart. Therefore, a more conservative beam arrangement avoiding stopping the beam
in front of OARs might be required for critical anatomical structures, as will be apparent during the
discussion in this section. Fig.(2) illustrates the intricacies of a proton pencil beam traversing tissue
in two scenarios: an ideal scenario2 and a scenario where the pencil beam is affected by range er-
rors. In the nominal situation, the pencil beam passes through different tissues and stops in the target
tumour, with almost no extra dose deposited in the distal OAR. In this particular case of a single
treatment field, the superiority of proton therapy over photon is evident because the maximum energy
is deposited in the tumour volume while optimally sparing healthy tissues. The second case is the
so-called uncertain situation, as illustrated in Fig.2(b). Regardless of uncertainties, for individual
photon beams, the maximum dose deposition will always happen in healthy tissue for deep-seated
tumours. A distal OAR will only be subject to a portion of the dose, which will always be lower than
the entrance dose, as shown in Fig.(1). On the contrary, range errors are more crucial for protons, as
shown in Fig.2(b). In the presence of an over-shooting, the BP will stop in the OAR, which may lead
to a risky situation. In synthesis, the most significant limitation of proton therapy compared to photon
therapy is the uncertainty in the range estimation, which will be addressed in section 1.2.1.
The ideal scenario for proton therapy is when the desired dose delivery is entirely confined to the
tumour target volume without providing any extra dose to the OAR. Fig.(3) illustrates different plan-
ning strategies for proton therapy and their inherent sensitivity regarding range uncertainties [28].
The desired radiation plan is the so-called single field plan, as shown in Fig.3(a). In this radiation
planning configuration, the healthy tissue, i.e., lung3 is exposed to a minimal dose. Ideally, the target
tumour volume should receive the maximum dose deposition. However, range uncertainties in proton
beams can result in unintended irradiation of OARs or, in the worst-case scenario, the beam stopping
directly at the OAR. This situation of the beam stopping at an OAR can have disastrous consequences.
Therefore, the single field plan would be the ideal irradiation planning strategy for cases without sys-
tematic or random uncertainties during treatment planning and treatment delivery. Another treatment
plan, the multi-field plan, shown in Fig.3(b), involves irradiating the tumour volume from different
angles to minimize the risk of range uncertainties. In this configuration, the OAR is less sensitive
to range uncertainties because there is no BP directly placed in front of it. Therefore, this is a more
conservative treatment plan because there will be no extra dose in the distal OAR in case of over-
shoot. However, this comes with the cost of more healthy tissues being exposed to radiation and,
consequently, a higher probability of side effects or secondary cancer. The last irradiation strategy
is the so-called patched-field plan, as shown in Fig.3(c). Compared to the other treatment planning
strategies, in this one, the number of beam angles is limited to reduce the dose to healthy tissue, taking
the risk that some pencil beams could be misplaced at the patch line, resulting in cold or hot spots in
the tumour. Therefore, as one can see, strategic treatment planning is of the highest importance. That
is because we do not have the luxury of irradiating a given tumour volume at the expense of an OAR.

2In this case, assuming no range uncertainties and complete dose delivery to the target tumour.
3The healthy tissue could have been something different than the lung. However, in this particular case, the tumour

volume is in the left lung.
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Figure 2: Overview and comparison between two treatment modalities: proton and photon therapy.
(a) Potential advantage of proton therapy compared to photon therapy, ideal case without uncertain-
ties. The dotted line is the photon depth-dose curve; the dashed line is the dose deposited by a pristine
pencil beam; the solid line is the SOBP, which aims to cover the whole tumour volume. (b) Influence
of range uncertainties on the respective depth-dose curves, figure extracted from [28].

Figure 3: Distinct treatment planning strategies for proton therapy and their potential sensitivity to-
wards range uncertainties, figure extracted from [28].
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1.2.1 Sources of Range Uncertainties

Once the clinicians agree that the patient should be treated with proton therapy, the patient goes
through two critical stages: treatment planning and delivery. The treatment plan is defined in a treat-
ment planning system (TPS) that optimises the parameters of the treatment delivery (for pencil beam
scanning: different energy layers, spot positions and irradiation angles) to maximise the tumour cover-
age and minimise the dose in the OARs. The TPS phase is mainly performed with volumetric images
obtained from X-ray computed tomography (CT) scans, which can be eventually supplemented by
additional image modalities such as magnetic resonance imaging (MRI) and positron emission to-
mography (PET) for better tumour visualisation. Last is the treatment phase; in this particular stage,
the patient is treated according to the specifications defined by the TPS. The treatment is typically di-
vided into several fractions, and one could easily imagine that this repetitive process is not error-free
because uncertainties arise at the treatment planning and delivery stage.

• Treatment Planning Phase: a patient is referred to a CT scan already in the eventual treatment
position during the treatment planning phase. After data acquisition and reconstruction, the
X-ray attenuation coefficients are converted into Hounsfield Units (HU), which describes the
attenuation coefficient of tissue relative to water. The conversion from HU to proton stopping
power relative to water, which is needed for the computation of the treatment plan, is one of
the largest causes of uncertainties in calculating the proton beam stopping position in vivo. Be-
sides that, uncertainties may also arise from the CT imaging acquisition system (i.e., artefacts,
resolution, noise); all these factors are discussed in depth in the literature [29, 30, 28, 31].

• Treatment Delivery Phase: The treatment delivery phase is repetitive, i.e., the patient goes
under more than one treatment fraction in typically a few weeks [32, 33], with schedules that
may change from one proton facility to another and strongly depend on the tumour entity and
stage. During this phase, uncertainties may arise from patient setup errors with respect to the
proton beam. Furthermore, organs in motion, e.g., due to respiration or other physiological
processes, may also be a source of uncertainties. In addition, during the treatment fractions,
the patient’s anatomy can change; for example, the patient may gain or lose weight; hence, this
fluctuation in the weight causes changes in the amount of tissue traversed by the beam, i.e.,
wadding of inner cavities and reduction of tissue mass, which translates into changes of the
beam range and thus a source of treatment delivery uncertainties.

Efforts are being made to properly deal with range uncertainties during the treatment planning and
delivery phase to fully use the potential of proton therapy. One possibility to reduce range uncertain-
ties at the planning stage is by implementing robust treatment planning [34, 35]. Robust treatment
planning is an optimisation method explicitly developed for protons. It incorporates physical (e.g. pa-
tient setup and range errors) and anatomical/biological uncertainties (e.g., tumour shrinkage) directly
into the treatment plan optimisation. The aim is to simultaneously optimise the plan considering all
error scenarios and worst-case deposited dose values. These optimisation techniques do not eliminate
the uncertainties but are typically used to minimise the dosimetric consequences of range and other
sources of uncertainties [36]. Moreover, the current clinical practice to deal with range uncertainty
is to use the so-called safety margins, which can be quantified a priori during the treatment planning
phase. These margins vary from facility to facility, as well as tumour type, location, and irradiation
strategy. Nonetheless, a commonly used approach is to assume an uncertainty in the proton beam
range of 3.5% + 1 or 2 mm [30, 37].



Introduction 27

State-of-the-art imaging technologies like dual-energy computed tomography (DECT) and pCT can
improve the accuracy of treatment planning, replacing the traditionally used single energy X-ray CT
[38]. DECT uses two X-ray energy spectra and can provide more accurate determination of stop-
ping power ratio, besides tissue composition information [39, 40]. pCT directly measures the proton
stopping power of tissues, offering an even more precise method for treatment planning in proton
therapy [41, 42, 43]. These technologies can improve targeting accuracy, dose delivery, and treatment
outcomes while minimising side effects.

1.3 In Vivo Range Verification Methods
The aim of in vivo range verification is to be able to pinpoint the range of charged particles losing their
energy within a material. The initial goal is to be able to perform in vivo range verification during
the treatment fraction and then correct it or adapt the treatment for the following treatment fractions.
The end game would be to have the capability of performing in vivo range verification in real-time.
Several range verification methods have been studied. However, the two methods close to routine
clinical implementation are PET [44] and PGI [45]. Both range verification methods (PET and PGI)
are based on monitoring the reaction products of nuclear interaction along the proton beams.

• PET: the working principle of PET relies on the coincidence detection of electron-positron
annihilation photons (i.e., 511 keV photons) emitted side by side. The positrons are produced
by β+ decay of positron emitters (e.g., 11C, 15O) created via inelastic nuclear interaction of the
proton beam with target nuclei, for more details see [46, 47, 48, 49].

• PGI: it relies on the detection of prompt gamma photons released in the de-excitation stage
after nuclear interactions of the proton beam with the tissue nuclei of a patient. The majority of
such prompt gamma is generated from nuclear reactions of protons with 12C and 16O isotopes4

and the range verification is assessed by their spatial, temporal or energy distributions; for more
detail, see [50, 51, 52].

Notwithstanding the significant advances in PET and PGI techniques for in vivo range verification,
these techniques do not provide a forthright relationship between the measurable signal and the beam
range or BP position. Moreover, the instrumentation required for PET and PGI is bulky and not
cost-effective. This might be an issue for large-scale production, especially if we consider that imple-
menting proton therapy facilities is much more expensive than photon therapy facilities. Therefore,
range verification methods such as PET or PGI scale up the overall cost of proton therapy facilities.
An alternative to the aforementioned techniques is range verification based on IA. In the next section,
the rationale and the potential benefits of the IA range verification method compared to PET and PGI
will be discussed.

1.4 Ionoacoustics
When a pulsed proton beam deposits energy in a medium, it produces thermoacoustic waves, also
known as IA. Using a set of multiple ultrasound (US) transducers placed at different spatial loca-
tions makes it possible to pinpoint the proton beam stopping position in the medium. The feasibility
of IA was initially proven for a clinical proton therapy treatment of a patient with hepatic cancer,

4Carbon-12 is the most abundant of the two stable isotopes of carbon and oxygen-16 is a stable isotope of oxygen.
Both isotopes are the main components in the of human tissue.



28 Introduction

where the authors of the study suggested that the technique could be used for range verification by
improving the hardware (i.e., transducers sensitivity), also offering the possibility of co-registration
with anatomical structures [53]. For tumours that can be easily imaged using ultrasound probes (i.e.,
liver, prostate), IA could play a significant role for in vivo range verification. IA range verification has
many potential advantages compared to the previously mentioned techniques; the ultrasound probes
could be designed to be as compact as possible, cost-effective, and can be used in real-time, providing
almost direct range verification. Furthermore, combining IA and US can allow for anatomical con-
firmation (i.e., the localised BP position can be directly linked to the anatomical imaging when using
the same US probe). All these aspects make IA a promising technique for the future of in vivo range
verification. However, there are some drawbacks compared to PET and PGI, the first one being the
fact that IA is accelerator dependent (i.e., for IA, the proton beam must be pulsed with a specific pro-
ton time profile usually between 3.5−10 µs). Furthermore, for tumours that are not easily accessible
using US imaging, IA as a range verification method will most likely not be feasible. One reason is
that, by imaging complex anatomical structures, the acoustic wave will propagate through different
tissues having multiple reflections and be attenuated; besides the attenuation, the acoustic wave will
be subject to varying sound speeds (i.e., different tissues will have different sound speeds). Therefore,
tumours in less complex anatomies such as the liver and prostate, will be less sensitive to the speed of
sound variation along the US/IA beam path, making it ideal for US/IA image co-registration. More-
over, the IA signals will be less susceptible to attenuation for tissues such as the liver and prostate
since the speed of sound will be almost constant compared to other anatomical locations. For this
reason, in vivo range verification with IA for these tumours might be more easily implementable.

1.5 The SIRMIO Project
The main objective of this thesis is to localise the BP position in the context of the SIRMIO project
[54]. Currently, only two commercial platforms for small animal radiotherapy are for photon radio-
therapy, although their image guidance cabinet is also offered for usage in dedicated and facility-
dependent research beamlines. However, as discussed in section 1.1, proton therapy has some bene-
fits over photon therapy. Therefore, the SIRMIO project aimed at developing the first portable small
animal image-guided research platform for proton therapy. The aim was to have a small animal radio-
therapy platform that can be integrated into the beamlines of existing proton therapy facilities. The
components are a beamline dedicated to small animals, multiple imaging modalities, and a mouse
holding system to have a complete system for precision, image-guided small animal proton irradi-
ation. One of the project’s main features is combining pre-treatment imaging modalities, treatment
planning and in vivo range verification. There have been many challenges to overcome for the project
feasibility. These challenges include designing the dedicated small animal beamline, mouse holder,
pre-treatment imaging system, treatment planning and in vivo range verification modalities. Different
work packages were created to develop and eventually integrate highly complex sub-packages for
each individual work package, which constitute the SIRMIO research platform. The integration of
these work packages brings with it many challenges, which are listed below.

• WP1 (Beam degradation, focusing and monitoring): In proton therapy facilities, the energy
used for human treatment typically varies between 70 to 250 MeV [55]. This energy spectrum
is not feasible for small animal treatment because the energies required for small animals are
normally lower (i.e., for a mouse treatment, it can vary from 20 to 50 MeV [56]). That is
why beam energy degradation is required. The goal of beam energy degradation is to reduce
the energies used for human treatment to energies for small animal treatment. In the SIRMIO
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platform, the beam goes through the process of energy degradation, collimation and focusing
using permanent magnets to achieve beam spot sizes appropriate for small animal treatment.
The main task of this work package is to build the SIRMIO beamline able to degrade a 70
MeV beam energy to a range of 20 to 50 MeV, with a beam spot size (sigma) within 1 mm
[57]. To be able to design and build the beamline, several simulations were conducted using
Monte Carlo simulation (MC). This work package also coordinates the mouse holder design.
The mouse holder is not a single work package but the intersection of all work packages. The
mouse holder main task is to keep the mouse in a sterile environment during the pre-treatment
and irradiation phases.

• WP2-a (Ion radiography/tomography): Proton radiographic and tomographic imaging is ought
for anatomical image guidance for target definition and 3D maps of the RSP for treatment
planning as well as positioning for treatment delivery. The preference for proton over X-ray
imaging is that the range calculation using this imaging technique is more accurate. The pre-
treatment planning phase comprises proton tomography, while proton radiography is employed
for the alignment. This work package aims to image the tumour properly and target it precisely.
For both imaging modalities, a sub-millimetre resolution is expected.

• WP2-b (Ionoacoustics/ultrasound): This work package focuses on detecting ionoacoustic sig-
nals for in vivo range verification, along with US imaging pre-treatment and its co-registration
with IA and any additional pre-treatment imaging (pCT or available X-ray CT). Additionally,
the work package is responsible for developing sensitive ultrasonic detectors (i.e., able to de-
tect acoustic signals with an amplitude << 1 Pa) capable of detecting acoustic signals with
a frequency content ≤ 100 kHz as typical for IA. This work package aims to develop algo-
rithms to localise the BP position for real-time in vivo range verification. The two investigated
methods are based on image reconstruction (i.e., time-reversal image reconstruction (TRR))
and multilateration technique; both ways output the coordinates of the BP position in space.
Nevertheless, the TRR can also output the reconstructed dose in 2D/3D.

• WP2-c (PET): This work package is responsible for in vivo range verification based on PET,
as discussed in the section 1.2.1. The PET approach is suited for continuous-wave cyclotrons
and slow-cycling synchrotrons. Therefore, this work package is responsible for designing and
building high resolution and depth-of-interaction PET detectors, a prototype spherical in-beam
PET scanner and image reconstruction algorithms and analysis for in vivo range verification.
For more detail on PET designing in the context of SIRMIO see [58].

• WP3 (Adaptive treatment workflows and system integration/testing): This work package is
responsible for the TPS. The workflow used for the human TPS was discussed in section 1.2.1,
and it is a bit different to small animal TPS due to the need for daily imaging and replanning.
From the computational point of view, a significant difference is the very low beam energies and
small beam sizes used during the treatment phase, which require a well-validated dose engine
tailored to this unconventional small animal application.
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Figure 4: SIRMIO workflow setup including different work packages, figure extracted from [54].

1.6 Thesis Objective
The main aim of this thesis is to investigate IA multilateration for reliable in vivo range verification in
small animals within the SIRMIO framework. SIRMIO focuses on low-energy proton beams, and our
goal was to achieve sub-millimetre accuracy in quasi-real time while considering space limitations for
the positioning of the sensors and using a minimal number of sensors. The investigation explored two
numerical optimisation methods and two multilateration techniques within ideal scenarios. The ob-
jective was to evaluate the performance of two different algorithms in achieving the desired outcomes.
The primary aims were to assess the impact of source position relative to sensor configuration on lo-
calisation accuracy and understand how errors in ToF estimation affected the results. By analysing
various source positions in relation to sensor configuration, we gained insights into the factors influ-
encing localisation accuracy. Additionally, we studied the effects of ToF estimation errors on overall
multilateration accuracy.

The findings of this first study offer a valuable understanding of the performance and limitations of
the multilateration algorithms, highlighting the importance of source position and ToF estimation er-
rors for achieving accurate localisation. Moreover, the results contribute to optimising and refining
multilateration techniques for in vivo range verification, particularly in the context of SIRMIO and its
emphasis on low-energy proton beams.
Via a follow-up analysis, simulated IA signals were analysed to investigate various methods of ex-
tracting ToF and to assess how the sensor position relative to BP impacted ToF estimation. The
objectives were twofold: first, to assess the accuracy of each ToF extraction method, and second, to
evaluate its impact on BP localisation.
Through comprehensive analysis and comparison, this thesis aimed to identify the most accurate
technique for extracting ToF from IA signals. Furthermore, by examining different sensor configu-
rations, it was investigated how variations in sensor placement affect the accuracy and reliability of
ToF estimation. These findings provide valuable insights into optimal sensor positioning strategies
for achieving accurate BP localisation. The IA simulation studies were also cross-referenced with ex-
perimental observations, presenting their own challenges. These challenges predominantly included
accurately determining the transducer spatial location and mitigating signal degradation caused by the
limited SNR due to dose limitations and filtering imposed by the detectors.
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Lastly, the gathered knowledge was used to support the development of a sensor array designed ex-
plicitly for multilateration in the context of the SIRMIO project. In this context, the impact of clinical
proton pulse shape on ToF estimation and multilateration error was thoroughly examined. The eval-
uation encompassed various arc arrangements, allowing for the variation of sensor numbers while
aiming to minimise their quantity. Furthermore, the beam position within the arc array was consid-
ered to mimic the delivery of a treatment plan, providing comprehensive insights into the performance
of the sensor array in realistic scenarios. The implications of this study are noteworthy for developing
in vivo range verification techniques in proton therapy, particularly in small animal studies conducted
in SIRMIO. Accurate localisation with sub-millimetre precision is crucial for effective treatment plan-
ning and monitoring, and the findings of this study contribute to advancing these techniques in the
field.
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2 Ionoacoustics and Multilateration Theory

Primo segno di un animo
equilibrato è la capacità
di starsene tranquilli in un posto
e in compagnia di sé stessi.

Lucius Annaeus Seneca
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2.1 Principle and Derivation
The derivation of the acoustic wave that follows is based on Kinsley’s work [59, p. 113-120]. The
theoretical IA principles are derived from the general acoustic wave equations. The acoustic pressure
(p) is given by the difference between instantaneous acoustic pressure (P) and equilibrium pressure
(P0), as described in eq.(2.1). Before discussing the derivation of the acoustic pressure, it is worth
defining another important parameter: condensation (s). It describes the change in density between
the instantaneous density (ρ) and equilibrium density (ρ0) for a given ambient fluid, as described in
eq.(2.2). Considering adiabatic process (i.e., P/P0 = (ρ/ρ0)

χ, where χ is the quotient of specific
heats), the relationship between pressure and density can be described in the equation below:

p = P−P0 (2.1)

s =
(ρ−ρ0)

ρ0
(2.2)

The instantaneous acoustic pressure can be expanded using Taylor’s series, as described below:

P= P0 +

(
∂P

∂ρ

)
ρ0

(ρ−ρ0)+
1
2

(
∂2P

∂ρ2

)
ρ0

(ρ−ρ0)
2 + . . . (2.3)

Assuming small fluctuation, the acoustic pressure can be approximated by:

p ≈B

(
ρ−ρ0

ρ0

)
(2.4)

In eq.(2.4), B is the adiabatic bulk modulus which describes the infinitesimal pressure change in a
medium and it is defined as:

B= ρ0

(
∂P

∂ρ

)
ρ0

(2.5)

The equation of continuity5, which describes the conservation of mass is defined as follows:

∂ρ

∂t
+∇ · (ρuuu) = 0 (2.6)

5The continuity equation equates the shifting of the fluid with its compression or expansion, as discussed by Azhari,
Haim in “Basics of biomedical ultrasound for engineers”and by John Wiley & Sons, 56-115 (2010), and Kinsler, Lawrence
E., et al., in “Fundamentals of acoustics. John Wiley & sons, 116-117 (2000).”
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Where uuu represents the particle velocity of the fluid. The continuity equation can be further expanded
as follows:

ρ0
∂

∂t
(1+ s)+∇ · [ρ0 · (1+ s) ·uuu] = 0 (2.7)

It is worth noting that eq.(2.7) was obtained by rewriting the instantaneous density in eq.(2.2) as
ρ = ρ0(1+ s).

Assuming weak time and space dependence of ρ0 and small variations of s, the continuity equation
can be simplified6 and described as follows:

∂s
∂t

+∇ ·uuu = 0 (2.8)

The relationship between the acoustic pressure, particle velocity, and medium density at equilibrium
can be described by Euler’s equation7, which is expressed as follows:

ρ0
∂uuu
∂t

=−∇p (2.9)

Eq.(2.9) can be expanded as follows:

∇ ·

(
ρ0

∂uuu
∂t

)
=−∇

2 p (2.10)

The continuity equation can be expressed as follows:

∂

∂t
·

(
∂s
∂t

+∇ ·uuu

)
= 0 (2.11)

Combining eqs.(2.4,2.6,2.8 and 2.11), the wave equation at a given position (r) and time instant (t)
for a medium with a speed of sound (vs), and without any external source is obtained as described
below:

∇
2 p(rrr, t) =

1
v2

s

(
∂2 p(rrr, t)

∂t2

)
(2.12)

6The initial density has no dependency on time, which can be rewritten as ∂ρ0
∂t = 0 and ∇ · (s ·uuu) = 0.

7The Euler’s equation describes the simple force equation for acoustic processes of small amplitudes [59, p. 110].
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Where the speed of the sound in the medium is defined as follows:

v2
s =B/ρ0 (2.13)

Previously, the pressure wave equation was derived irrespective of any external source. However,
acoustic waves can also be generated using an external source, i.e., a pulsed proton beam, which is
the main acoustic source used in this thesis. The energy deposition of a pulsed proton beam generates
rapid heating, resulting in a temperature increase and expansion of the medium. Therefore, if the
external source describes the initial temperature rise in a given confined volume, then eq.(2.12) can
be rewritten as:

(
∇

2 − 1
v2

s

∂2

∂t2

)
p(rrr, t) =− b

Cp

(
∂H(rrr, t)

∂t

)
(2.14)

Eq.(2.14) holds only under the stress and thermal confinement conditions. The stress and thermal
confinement time are discussed in section 2.1.1. In eq.(2.14), H(rrr, t) is the heating function derived
from the temperature rise in the medium (T (rrr, t)) [60]. H(rrr, t) can be described as follows:

H(rrr, t) = ρCv
∂T (rrr, t)

∂t
(2.15)

In eqs.(2.14,2.15), Cp and Cv denote the specific heat capacities at constant pressure and volume, b
is the volume thermal expansion coefficient. For eq.(2.14), a unique solution can be formulated in
the presence of an external source using the Green function approach. Therefore, the first step is to
simplify the source (heating function) located at a given position (rrr′′′) at a time instant (t ′) to a new
generalised variable8 and considering the Green’s function operator9. For this reason, eq.(2.14) can
be rewritten as:

(
∇

′2 − 1
v2

s

∂2

∂t ′2

)
p(rrr′, t ′) =−q(rrr′, t ′) (2.16)

If we consider that a Dirac delta distribution gives the initial source, eq.(2.16) can be rewritten as
follows:

(
∇

′2 − 1
v2

s

∂2

∂t ′2

)
G(rrr, t;rrr′, t ′) =−δ(rrr− rrr′)δ(t − t ′) (2.17)

8Generalized source variable q(rrr′, t ′) = b
Cp

∂H(rrr,t)
∂t .

9Green’s function operator G(rrr, t;rrr′, t ′). Which has reciprocal properties i.e., G(rrr, t;rrr′, t ′) = G(rrr′, t ′;rrr, t). A more
detailed and interesting discussion of Green’s function approach for acoustic field calculations can be found in [61, p. 98-
109].
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For simplicity and compactness, the equations are solved without considering the time and space
dependencies for G(rrr, t;rrr′, t ′), q(rrr′, t ′) and p(rrr′, t ′). However, the dependencies will be reinserted in
eq.(2.22). The wave equation can be expanded further by combining eq.(2.16) and eq.(2.17), which
leads to the equation described below:

p(rrr, t)=

∫ t+

0

∫
V ′

Gqdt ′drrr′︸ ︷︷ ︸
I. source term

+

∫ t+

0

∫
V ′

(
G∇

′2 p− p∇
′2G

)
dt ′drrr′︸ ︷︷ ︸

II.boundary condition term

+

∫ t+

0

∫
V ′

(
p

∂2G
∂t ′2

−G
∂2 p
∂t ′2

)
dt ′drrr′

v2
s︸ ︷︷ ︸

III. initial condition term
(2.18)

Where the integration is from time instant 0 to t+ in a volume of interest V ′. The wave equation
described in eq.(2.18) includes three terms10: the source term, the boundary condition term, and the
initial condition term. The boundary and initial conditions can be simplified under the condition that
t ′ →+∞ and t ′ = t+, as described in eq.(2.19) and eq.(2.20).

∫ t+

0

∫
V ′

(
G∇

′2 p− p∇
′2G

)
dt ′drrr′︸ ︷︷ ︸

II.boundary condition term

= 0; t ′ →+∞; (2.19)

∫ t+

0

∫
V ′

(
p

∂2G
∂t ′2

−G
∂2 p
∂t ′2

)
dt ′drrr′︸ ︷︷ ︸

III. initial condition term

= 0; t ′ = t+ (2.20)

We can rewrite eq.(2.18) accounting only for the source term, and it can be described as:

p(rrr, t) =

∫ t+

0

∫
V ′

G(rrr, t;rrr′, t ′)q(rrr′′′, t ′)dt ′drrr′ (2.21)

In eq.(2.21), we assumed that the source is located in a given position (rrr′) at a given time instant (t ′).
The equation can be further expanded considering the heating function as follows:

p(rrr, t) =
b

Cp

∫ t+

0

∫
V ′

G(rrr, t;rrr′, t ′)
∂H(rrr′′′, t ′)

∂t
dt ′drrr′ (2.22)

In an infinite space, without boundary conditions, the Green function is provided by:

10The reader can refer to [62, p. 316-317], where all the details on the eq.(2.18) are reported step by step.
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G(rrr, t;rrr′, t ′) =

δ

(
t − t ′− |rrr−rrr′′′|

vs

)
4π | rrr− rrr′ |

(2.23)

Combining eq.(2.22) and eq.(2.23), the pressure response at a given ultrasonic sensor can be written
as:

p(rrr, t) =
b

4πCp

∂

∂t

[∫
drrr′

1
| rrr− rrr′′′ |

H

(
rrr′, t − | rrr− rrr′′′ |

vs

)]
(2.24)

2.1.1 Ionoacoustic Initial Pressure Derivation

To derive the IA initial pressure, it is important to define two parameters. The first one is the thermal
relaxation time (τth) which characterises the thermal diffusion. The thermal relaxation time quantifies
the heat transfer rate from one point to another in a given material. Thermal relaxation time can be
mathematically described as below:

τth =
d2

c
αth

(2.25)

Where αth describes the thermal diffusivity in [m2/s] and dc is the specific dimension of the heated
region in (m).

The second important parameter is the stress relaxation time (τs), which is the time needed for an
acoustic wave to travel through the heated region, and it is defined as:

τs =
dc

vs
(2.26)

Consequently, for a pulse excitation, the fraction volume expansion of the heated region (dV/V ) can
be described as:

dV
V

=−κp+b∆T (2.27)

In the above equation, κ is the isothermal compressibility (Pa−1), p is the change in pressure, b is
the thermal coefficient of volume expansion (K−1), and ∆T is the change in temperature (K). Under
isothermal conditions, the coefficient of compressibility for a fluid is defined as:
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κ =− 1
V

(
∂V
∂p

)
∆T

=
Cp

ρv2
sCv

(2.28)

The excitation satisfies the thermal and stress confinement condition if the proton pulse is much
shorter than the thermal and stress confinement times, meaning the heating time is short enough to
ignore thermal diffusion and faster than the time it takes for an acoustic wave to pass through, the
irradiated area heats up quickly due to the proton beam’s energy loss. The energy loss is caused
mainly by Coulomb inelastic interactions with electrons in matter. Consequently, the fractional vol-
ume expansion describe in eq.(2.27) is negligible (dV/V = 0), and the local pressure rise (p0) can be
expressed as:

p0 =
b ·η

κ
∆T =

(
b

κρCv

)
ρD = ΓρD (2.29)

In eq.(2.29), p0 was expressed in function of the Grüneisen parameter (Γ) and the deposited dose (D),
which is the amount of energy (E) deposited in a volume of mass (m) and η denotes the efficiency
of converting energy into heat, which is considered to be equal to one for IA applications [63, p. 22].
Furthermore, Γ is a dimensionless11 material-specific constant that indicates the conversion efficiency
between the deposited heat energy and pressure variation [65], and it can be rewritten as:

Γ =
b

κρCv
=

b(
Cp

ρv2
sCv

)
ρCv

=⇒ Γ =
bv2

s
Cp

(2.30)

The heating function can be decomposed into two parts, one spatial Hs(rrr′) and one temporal compo-
nent Ht(t ′), and it can be expressed as:

H(rrr′, t ′) = Hs(rrr′)Ht(t ′) (2.31)

The decomposition of the heating function in eq.(2.31) can be combined with eq.(2.24). Hence, the
pressure wave can be rewritten as:

p(rrr, t) =
b

4πCp

∂

∂t

[∫
drrr′

Hs(rrr′)
| rrr− rrr′′′ |

Ht

(
t − | rrr− rrr′′′ |

vs

)]
(2.32)

When the duration of any excitation pulse is shorter than the stress relaxation time (as defined in
eq.(2.26)), it can be treated as instantaneous. This assumption implies that all the heat energy has been

11Theorie des festen Zustandes einatomiger Elemente [64].
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transferred before any change occurs in the mass density. Consequently, this simplifies the problem
of instantaneous heating to an initial value problem (IVP), a well-known topic in the literature. For
further elaboration, refer to [66, 67]. Thus, when in stress confinement, the temporal heating function
can be approximated to a Dirac-delta function (Ht(t ′)→ δ(t ′))12. Therefore, the acoustic pressure for
an arbitrary object excited with a delta heating response can be expressed as:

p(rrr, t) =
b

4πCp

∂

∂t

[∫
drrr′

Hs(rrr′)
| rrr− rrr′′′ |

δ

(
t − | rrr− rrr′′′ |

vs

)]
(2.33)

Furthermore, the initial pressure located at the position (rrr′) can be written as:

p0(rrr′) = ΓHs(rrr′) (2.34)

p(rrr, t) =
∂

∂t

[
Ht ⊗

1
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s

∫
drrr′

p0(rrr′)
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(
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Pδ(rrr, t)

]
=

∂

∂t

[
Ht ⊗Pδ(rrr, t)

]
(2.35)

The recorded pressure by an ultrasonic sensor is expressed in eq.(2.35), where it has to be noted
that the time profile of the proton beam is already included. In the aforementioned equation, Pδ(rrr, t)
includes the spatial information of the acoustic pressure without accounting for the proton time pro-
file. Hence, from eq.(2.35), the acoustic pressure at a given sensor can be computed by considering
different proton time structures, which Ht describes. The final pressure equation model described in
eq.(2.35), which is given by the convolution (⊗) between Ht and Pδ(rrr, t) can predict the IA signals
for different accelerator facilities via simulation studies.

2.1.2 Shape and Features of Ionoacoustic Signals

The change in the IA signal over time relies on the part of the proton beam detected by the sensor.
Conversely, depending on the sensor position, two predominant acoustic wavefronts are usually ob-
served in homogeneous media [68, 69, 70]. A quasi-spherical wave propagating from the BP region
(γ-wave) and a cylindrical wavefront (α-wave) emanating from the plateau region, which exhibit dif-
ferent dose spatial gradients. Both acoustic wavefronts have different frequencies because they are
emitted from the BP and the plateau region. High-frequency signals are expected for γ-wave com-
pared to α-wave for individual pencil beams. This is typical in most pre-clinical scenarios investigated
in this thesis. The discussion on BP localisation using IA signals will be centred on these two wave-
fronts. For multilateration purposes, the ToF will be estimated from the γ-wave and α-wave. For
sensors placed perpendicular to the beam axis, the recorded IA is expected to have only contributions
from the γ-wave. Conversely, for sensors placed at a certain angle with respect to the beam axis, the
recorded IA signal is expected to have contributions from γ-wave and α-wave. From the ionoacoustic
signals, the BP position will be retrieved after estimating the ToF from different sensor locations. The
classic shape of the ionoacoustic signal was measured in an experimental campaign in water using a

12In eq.(2.33) it was assumed Ht(t ′) = δ(t ′).
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proton beam with an energy of 20 MeV as addressed by Assmann et al., in [71]. In this experimental
study, a sensor was used13 placed perpendicular to the proton beam entrance window (also called
axial sensor), as illustrated in the setup in Fig.(5a). The trace of the IA signal recorded with a 3.5
MHz transducer is illustrated in Fig.(5b).
The IA signal is composed of three main pulses, namely direct signal (signal originating from the
BP), entrance signal, which is produced at the position where the proton beam enters the water phan-
tom, and the reflection signal which is the reflection of the direct signal at the interface between air
and water. For multilateration purposes, only the direct signal is relevant both for sensors placed
on-axis14 or for sensors placed off-axis15. This is because the direct signal provides the most accurate
information about the position of the signal source16 and the BP, which is what we want to localise.
The shape of the ionoacoustic signal depends on the proton time profile. The typical proton time pro-
file shape is rectangular (for research accelerators) or Gaussian (as normally used for clinical beam
energies). Gaussian pulses come from synchrocyclotrons, the only machines providing pulsed beams
clinically. In the aforementioned experimental campaign conducted by Assmann et al., at a research
electrostatic accelerator (Tandem) with artificial pulsing, the IA signal was measured using multiple
rectangular proton time profiles. The shape of the IA signals is expected to change for different proton
pulse widths. As summarised in Fig.(5c), for a proton pulse width of 57 ns and 190 ns, the shape of
the direct signal changes. The relative peak-to-peak amplitude and frequency also change for both
proton pulse widths. The IA signal is still in stress confinement for the two mentioned proton pulse
widths at the considered beam energy and time structure. In the studies conducted by Assmann et
al., the BP full width at half maximum (BPFWHM) was about 300 µm for the 20 MeV proton beam
energy, and the speed of sound in the medium was 1507 m/s at a temperature of 29◦C. Hence, the
stress confinement time τs was estimated to be about 200 ns. For a proton beam and considering an
integral depth dose (IDD17), the stress confinement can be calculated as:

τs =
BPFWHM

vs
(2.36)

For higher proton pulse widths, i.e., 473 ns and 1029 ns, as illustrated in Fig.(5c), the behaviour of the
acquired IA signal changes. For instance, when the proton pulse width is 473 ns, the rarefaction peak
begins to separate from the compression peak. The compression and rarefaction peaks are separate as
the pulse width increases to 1029 ns. This separation occurs because the stress confinement condition
is no longer satisfied for these pulse durations. In simple terms, the distinct separation of the compres-
sion and rarefaction peaks occurs because the waves do not sufficiently overlap in time, allowing the
effects of the compression and rarefaction waves to become visible as they move through the medium.
The study conducted by Assmann and co-workers also confirmed that the proton time profile should
be chosen in such a way as to preserve the essential features of the IA signal. Furthermore, since the
shape, amplitudes and frequency of the IA signals will depend on the proton time profile, it is also
expected to influence the accuracy and precision of the ToF estimation. Therefore, the ToF accuracy
and precision are expected to directly impact the BP position localisation.

13In this experimental study, two axial sensors with central frequencies of 3.5MHz and 10 MHz were used.
14Axial sensor aligned with respect to the proton exit beam. It is sometimes the optimal sensor position to record the

acoustic pressure trace.
15Axial sensor not aligned with respect to the proton exit beam. Some features of the recorded acoustic pressure trace

are expected to change, i.e., signal amplitude and shape.
16i.e., the spatial location of the proton beam.
17The IDD is the total dose on an infinite plane normal to the central axis of abeam, beamlet or an infinitesimal pencil

beam [72].
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(a) (b)

(c)

Figure 5: Ionoacoustic setup with only one axial single element piezoelectric (PZT) transducer. The
single element transducer is in water distal to the expected BP. The experiments were conducted in
water using a pulsed monoenergetic proton beam at an energy of 20 MeV. (a) Schematics of the
water tank setup with a single-element sensor. (b) Illustrates the three main pulses (1-direct signal,
2-entrance signal and 3-reflection signal). (c) Recorded IA signal with different proton time profile
widths (57 ns, 190 ns, 473 ns and 1029 ns).

So far, the IA signal shape has only been discussed in homogeneous media. Tissue heterogeneities,
due to differences in acoustic impedances and speed of sound, are expected to affect the shape of
the IA signal. The differences in tissue acoustic impedances result in multiple reflections along the
beam path, which impact the ToF and pressure shape. Furthermore, variations in the medium cause
changes in Grüneisen parameters and mass density, affecting the pressure magnitude associated with
the absorbed dose. This poses a challenge for accurately estimating ToF. Additionally, peak-to-peak
amplitude and signal frequency changes may occur, further complicating ToF estimation. Fig.(6)
depicts a recorded IA signal in the presence of heterogeneities along the beam path, with water and
silicone having different acoustic impedances. The changes in the signal shape can make it challeng-
ing to estimate ToF accurately and identify different tissues when the signal is composed of multiple
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reflection peaks. The tissue properties will typically be determined from prior imaging data, such
as X-ray CT scans, and tissue identification will help perform the BP localisation by considering the
respective tissue speed of sound. Analysing IA signals for silicone and other simple materials is rela-
tively straightforward18. Despite these challenges, this study aims to localise the BP position in water
and account for heterogeneities through uncertainty models, as described in chapter 3.

Figure 6: Ionoacoustic signal obtained in the presence of heterogeneities along the proton beam path.
The experiment was performed using a phantom consisting of two silicon layers, with thicknesses of
1 mm and 2 mm, positioned near the entrance window of the water tank (shown in Fig.(5a)) such
that the BP stopped between the two layers. The signal shape was significantly altered due to the
multiple reflections along the beam path caused by the different tissue acoustic impedances. For more
information on the experimental setup, see appendix A.

In the scope of this thesis, the BP position was localised primarily19 for pencil beams using pre-
clinical beam energies of 20 and 22 MeV, as well as 50 MeV, which produce ionoacoustic signals
in the range of hundreds of kHz to several MHz with magnitudes estimated to span from a few mPa
to a few Pa20[71, 73, 74]. However, clinical beam energies typically fall between 70 and 230 MeV,
resulting in lower signal amplitudes of a few hundred mPa and a centre frequency between 10 and 100
kHz [75, 76]. The dependence of the IA signal on proton beam energy has important implications for
detecting ionoacoustic signals in both pre-clinical and clinical settings. The decrease in IA signal am-
plitude with increasing beam energy is due to increased range straggling and scattering, which cause
a broadening of the BP and an overall lower peak dose in the BP for the same number of particles per
pulse. Detecting ionoacoustic signals can be challenging, requiring sensors with high sensitivity and
broad frequency bandwidth. These challenges are even more pronounced due to the low signal am-
plitudes and lower frequency range associated with clinical beam energies. Currently, there is a lack
of commercial solutions highlighting the need to develop new sensing technologies. Despite these
challenges, the potential benefits of using ionoacoustic methods to monitor proton therapy delivery
and verify the BP location make developing appropriate detection systems an active area of research.

18In this particular case, the acoustic impedances of silicone and water are relatively close to each other. Hence, we
call it a case of simple heterogeneities. However, tissues with significantly different acoustic impedances, attenuation, and
absorption, such as muscle and bone, are expected to produce a more complex signal pattern.

19For IA signals, the BP localisation was predominantly investigated in the time domain, while investigations were
also conducted in the space domain for idealised sources.

20Sebastian Lehrack, in [63, p. 97-99], demonstrated experimentally for a 20 MeV proton beam stopped in water (same
setup as Fig.(5a)), an ionoacoustic signal could be detected with an absolute pressure of 12 Pa.
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2.2 Multilateration State-of-The-Art
Multilateration is a mature technique in the following areas: wireless sensor networks, satellites using
Global Positioning System (GPS), radar, wireless capsule endoscopy, and indoor localisation. The
most notorious application outside of the telecommunications field is the application of multilateration
for wireless capsule endoscopy [77, 78, 79, 80, 81, 82]. The algorithms used in capsule endoscopy
are mainly angle of arrival (AOA), which determines angular directions (i.e., azimuth and elevation)
of a propagated signal [83], and received signal strength (RSS), which measures the strength of a
given propagated source signal at each sensor [84, 85]. The other two most used algorithms are
the time of arrival (TOA) and the time difference of arrival (TDOA) [86]. The capsule endoscopy
localisation relies on a signal emitted by a transmitter embedded in the capsule. After the ToFs
estimations, the Euclidean distances between the source (i.e., capsule to be localised) and the sensors
are estimated, accounting for the dielectric constant of the medium (εmed) and the speed of light
(vlight ≃ 3 · 1010 cm/s). The Euclidean distance can be written as: di = ToFi · vlight/

√
εmed . The

dielectric constant is required to estimate the Euclidean distance because the capsule travels through
different tissues. It is also shown in the literature that different tissues will have different dielectric
constants [87, 88, 89], hence different tissue’s speed of light. Therefore, tracking a capsule that travels
from the colon to the end of the small intestine in real time is feasible. That is because the dielectric
constant of blood, colon and small intestine are known [90, 91, 92, 93]. Hence, considering the tissue
dielectric properties makes the Euclidean distance calculations between the sensor and source position
more accurate. Furthermore, the tissues where the endoscopic capsule travels to are well known and
adequately characterised, making capsule endoscopy localisation a relatively straightforward problem
in non-homogeneous media. This precise understanding of tissue properties allows for more accurate
predictions of the capsule path and position within the human body.
However, we also aim at non-homogenous media, starting from investigations in water. Differently
from the previous example, instead of considering the speed of light as medium velocity, we will
consider the speed of sound. The latter depends on medium compressibility, which is affected by
temperature21 and medium density. Still, it is not solely reliant on them. Likewise, the Euclidean
distance between the source (i.e., BP position) and the sensors in the network configuration will be
in function22 of the ToF, sensor, and unknown source positions. Notably, the BP position can also be
localised with AOA and RSS, which are not “completely23” distance-based algorithms.
AOA is an angle-based source localisation approach, defined as the angle between an incident source
propagation direction and a reference direction, also called orientation. Orientation is the angle (θi)
between the emitted source at a position xs,ys and the received signals at sensors located at xi,yi, as
shown in Fig.(7). The AOA in 2D can be formulated as follows:

θ̃i = θi +ϒi; i = 1,2, ..,n (2.37)

The orientation can be computed as:

tan(θi) =
ys − yi

xs − xi
=⇒ θi = arctan

(
ys − yi

xs − xi

)
(2.38)

21vs ≈ 1.402 ·103+5.038× T −5.799 ·10−2· T2..., the equation holds for the speed of sound estimated in water, where
T is the temperature in ◦C, for a complete formalism here [94, 95].

22Here we do not have a self-localisation problem [96], technically the only unknown variables are the source positions
(xs,ys,zs) to be estimated. We assume that the transducer spatial locations (xi,yi,zi) and the ToF are known.

23Both algorithms use distances but not as straightforward estimation compared to distance-based algorithms.
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Where θ̃i is the initial AOA estimated for each sensor. One way of estimating θ̃i is to approximate
it to a ratio24 which accounts for the speed of sound in the medium, ToF and the distance between
each sensor (l) [97]. In eq.(2.37), ϒi accounts for the uncertainties on the angle between sensors and
source estimation. An advantage of AOA is that they do not require precise time synchronisation
between the emitted source and sensors. At least two sensors are required to localise the source
in two-dimensional space. The main drawback of this algorithm is that it is highly θi dependent.
Small errors in θi imply substantial errors in the source position localisation [98]. Hence, an accurate
estimation of the angles between the source and sensors is required to retrieve the source position
accurately. Another drawback is that it can be a computationally expensive algorithm for a sensor
network with many sensors. The aim is to solve eq.(2.37) to retrieve xs and ys; the problem could
be easily expanded in 3D by considering the third coordinate for the source and sensors. For more
details on the AOA, the reader is invited to see [99, 100, 101, 102, 97, 98].

Figure 7: Angle of arrival schematic setup in 2D with n sensors. θ1,θ2 ... θn are the orientation angles
between the source and the sensors. The sensors Bs1, Bs2,.., Bsn are located at positions (xi,yi) for
i = 1, ...,n. The source is located at a position xs,ys.

Another localisation method is the RSS, which is the average power received at a sensor originating
from the emitted source, where the average power is the signal strength at each sensor. It is one of
the most used localisation methods in wireless sensor networking due to its cost-effective hardware
implementation [103]. The RSS received power Pr,i at a sensor i-th, can be modelled as:

Pr,i = Ki
Pt

dα
i

; i = 1,2, ...,n (2.39)

The averaged power received at i-th sensor, where it is measured in decibel meters (dBm), Pt is the
emitted source power, α is a power factor which depends on the propagation media, and it can vary
from 2 to 5, whereby for an α = 2 the source is considered to be in free space, Ki is a parameter
accounting for some factors like sensor geometry, which may affect the received signal strength.
Normally, Pt and Ki are known a priori. However, So et al., proposed a relaxation procedure to
estimate α when it is unknown [104]. In eq.(2.39), di is the Euclidean distance between the sensors
and the source. To find a given source position using the RSS approach, the mentioned equation is

24θ̃i ≈ arcsin
(

ToFi·vs
l

)
. Here, l denotes the distance/pitch between Bs1 and Bsn; the distance can also be calculated for

each pair of sensors in the network.
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solved using the log-normal path loss model [105, 104]. In other words, eq.(2.39) can be expanded
to:

−α · ln(di) = ln(Pr,i)− ln(Ki)− ln(Pt) (2.40)

The received signal strength (rssi) measured in (dBm), at any sensor, can be approximated to the
product between power factor (α) and ln(di). Hence, the source position can be localised by solving
the following equation:

rssi =−α · ln(di)+ϒi (2.41)

For ideal scenarios, i.e., without any uncertainties ϒi = 0, eq.(2.41) is solved in function of the source
position, which is encoded in the Euclidean distance (di). For the RSS, the strength of the received
signal is the approximation of the distance travelled by the signal to each sensor in the network con-
figuration. The accuracy of this localisation method will depend on factors like Ki, α and Pt . At least
three sensors are required for the RSS to localise a given source position, and exact time synchroniza-
tion between the emitted source and the sensors is not required.
Algorithms such as AOA or RSS could also be used to localise the BP position. They have some
strengths and drawbacks, as mentioned previously. For instance, AOA is highly orientation depen-
dent, and RSS approximates the estimated received signal power in dependence on the distance and
accounts for several parameters (α,Ki) to be modelled. Conversely, TOA and TDOA algorithms are
uniquely distance-based and usually more accurate than AOA and RSS [106, 107, 108, 109]. For this
reason, the multilateration approach used in this thesis to retrieve the BP position will be exclusively
based on TOA and TDOA.
TOA is an absolute method for estimating a given position based on the difference between the wave
arrival time at a given sensor and the time of emission. It requires accurate and precise time synchro-
nisation between source emission and all receivers. Fig.(8a) illustrates the geometrical interpretation
of the TOA. Each TOA can be interpreted in 2D space as a circle where the centre of each circle cor-
responds to the sensor position, and the radius of each circle corresponds to the distance travelled by
the acoustic source to the sensor [110]. The intersection of the circles will correspond to the position
where the source must lie. In the absence of uncertainties and considering that the source to be lo-
calised is contained in a 2D plane, a minimum of three sensors is required to obtain a unique solution.
The location of the source is illustrated by the intersection of the three solid circles as shown Fig.(8a).
On the other hand, Fig.(8b) illustrates when ambiguity could be an issue for TOA. If only two sensors
are considered, the source can be located in two different spatial locations, in the mentioned figure
denoted as a and a′. This ambiguity is easily solvable in many ways. One of the approaches is to
increase the number of sensors, i.e., to three or more.
Fig.(8c) illustrates the multilateration outcomes in case of uncertainties on the ToF estimation (i.e.,
overestimation or underestimation of its value represented by the dashed lines). In that case, the
circles will not intersect at a single point but will define an area where the source is likely to be.
Therefore, the accuracy of the source location will decrease. Similarly, in 3D space, each TOA can
be interpreted as a sphere, and the intersection of all the spheres will be the position where the source
should lie. It is worth mentioning that the main advantage of TOA compared to other localisation al-
gorithms, i.e., AOA and RSS is its high accuracy due to a straightforward implementation and fewer
parameters25 to include in its mathematical formulation. However, the drawback is that accurate time
synchronisation between the source and all sensors is always required. In other words, if the time

25In TOA, the unknowns are the source position and ToF, as speed of sound and sensor locations are known.
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instant when the proton beam enters the irradiated object is not accurately estimated or not known,
the BP position localisation accuracy and reproducibility will be compromised. As importantly, TOA
can be a computationally expensive localisation algorithm when dealing with complex systems, i.e.,
localisation performed with multiple sensor configurations with a particular geometry [81, 111].

(a) TOA without uncertainties. (b) TOA, solution ambiguity. (c) TOA, in the presence of uncertainties.

Figure 8: 2D geometrical interpretation of the TOA algorithm in the absence (solid circles) and in
the presence (dotted/dashed circles) of uncertainties on the ToF estimation. (a) The solid circles
represent the case where the multilateration is performed in ideal conditions, i.e., no errors on the ToF
estimation. Without uncertainties, the source is located at a single point given by the intersection of the
three circles. (b) TOA without uncertainties but with ambiguity on the source spatial location, the two
squared a and a′ indicate the two possible source spatial locations. (c) The dotted/dot-dashed circles
indicate the cases when the ToF is underestimated or overestimated. In the presence of uncertainties,
the source is no longer located in a single point and can be located in an area defined as a.

TDOA is the difference between the wave arrival time at each sensor and that of a reference sen-
sor. This method is also known as hyperbolic localisation because it uses time differences (refer to
eq.(2.44)), to form hyperbolas26 that represent possible locations of the source. By intersecting these
hyperbolas from multiple sensor pairs, the location of the BP source can be determined. It is a rela-
tive localisation method which always requires a reference sensor. Nonetheless, the TDOA algorithm
does not need accurate time synchronisation between the emitted source and the sensors. For the
TDOA algorithm, at least three sensors are required to localise the source in 2D, and a minimum of
four sensors are required to localise the source in 3D.

Fig.(9a) illustrates the geometrical interpretation of TDOA in 2D without uncertainties. The inter-
section of the two hyperbolas27 gives the source position. However, depending on the sensor config-
uration, a unique TDOA solution is not always guaranteed, as illustrated in Fig.(9b). Three sensors
make it possible to obtain three hyperbolas28 intersecting in two different positions (i.e., a and a′). In
this case, there is an ambiguity regarding the TDOA solution. This ambiguity can be easily solved by
increasing the number of sensors to four. Usually, it is more than enough to localise the source in 2D,
with only three sensors. However, it is essential to keep in mind that ambiguity might occur in the
TDOA solution. For simplicity, in the presence of uncertainties, only the TDOA with two hyperbolas
will be discussed, as shown in Fig.(9c). If the ToF is overestimated or underestimated, the hyperbolas

26We can derive the general hyperbola equation using the Euclidean distances from the sensors in eq.(2.44).
27The source and sensors are placed at (xs,ys) ̸= (0,0) mm, and Bs1(x1,z1) = (0,0) mm, and Bsi(xi,zi)i=2,3 ̸= (0,0) mm.
28The source and sensors are placed at (xs,ys) ̸= (0,0) mm, and Bsi(xi,zi)i=1,2,3 , ̸= (0,0) mm.
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will no longer intersect in a single point. Therefore, the source position to be retrieved will be located
in an area (a) as illustrated in Fig.(9c).

(a) TDOA without uncertainties.
(b) TDOA without uncertainties, solution ambi-
guity.

(c) TDOA, in the presence of uncertainties with-
out solution ambiguity.

Figure 9: Geometrical interpretation of the TDOA in 2D in the absence and presence of uncertainties.
(a) TDOA with three sensors without uncertainties. The intersection of the two hyperbolas gives the
source position. (b) TDOA with three sensors without modelling uncertainties. The sensor config-
uration has changed compared to the previous figure. There is an ambiguity in the solution of the
source position. The hyperbolas intersect at two different spatial locations (a and a′). (c ) TDOA in
the presence of uncertainties, the source is not located in a single position but in an area (a).

Both the TOA and TDOA algorithms utilise a set of nonlinear equations, detailed in section 2.2.1,
that express the relationship between the sensor positions and the unknown source positions. Two
approaches are used primarily to solve the nonlinear equations: the linear least squares (LLS) and
weighted linear least squares (WLLS) approach [112, 113, 114]. LLS transforms the set of nonlinear
equations into linear ones by introducing extra variables and using the least squares approach. How-
ever, the main drawback of this method is that the solution is suboptimal. LLS is suboptimal due to
the support variables used to linearise the TOA and TDOA nonlinear equations. The support variables
might have different powers or different weights, which might affect the localisation accuracy. For
this reason, the weighted linear least squares approach is usually preferred. In conclusion, the LLS
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and WLLS approaches linearise the nonlinear equations by not accounting for the uncertainties in
the TOA and TDOA mathematical models. The linearized equations are expressed in terms of cost
functions using the matrix approach. LLS will have an unimodal distribution, guaranteeing a global
solution for retrieving the desired source position. The LLS method also includes the subspace ap-
proach, which decomposes the linearised equations into a multidimensional similarity matrix using
multidimensional scaling (MDS) [115, 116, 117, 118].
Another common approach to locating the source position is based on nonlinear methods such as non-
linear least squares (NLS) [119, 120, 121] and maximum likelihood (ML) [122, 123]. The idea behind
NLS or ML is that after expressing the TOA and TDOA equations in terms of cost functions, both
NLS and ML methods attempt to minimise the cost functions by using some well-known numerical
optimisation methods, i.e., Gauss-Newton, Newton-Raphson, Nonlinear Simplex, steepest descent
and Levenberg–Marquardt [124, 125, 126, 127, 128]. Compared to LLS and WLLS, NLS and ML do
not require the linearisation step of the cost function. Their accuracy is usually higher because they are
not suboptimal29 optimisation algorithms [111, 129]. For NLS or ML, a global solution is not always
guaranteed, and it depends on the numerical optimisation method, among other factors, which are not
the aim of this work. For more insights on global optimisation, refer to [130, 131]. The choice of NLS
compared to LLS or WLS approaches is motivated by the high accuracy and the more straightforward
implementation. There is no need to linearise the cost functions or use support variables compared
to LLS or WLLS. However, NLS algorithms sometimes require the analytical gradients of the cost
functions to increase the optimisation accuracy. The analytical gradients are calculated from the TOA
and TDOA cost functions and then fed into the solver of any programming language. One drawback
of NLS is that they are computationally demanding since several iterations are required to reach con-
vergence. Another disadvantage is that a global solution, i.e., global maximum or minimum, is not
always guaranteed.

2.2.1 Multilateration Optimisation TOA and TDOA

There are several multilateration methods, as already discussed in section 2.2. However, this section
will only discuss the TOA and the TDOA methods in greater detail. As already defined, TOA relies on
estimating the one-way propagation time of the signal travelling between a source and a receiver. To
estimate a given source position, evaluating the time-of-flight and knowing when the source is emitted
(t0) is crucial. Thus, time synchronisation between source emission and all receivers is needed. The
ToF is converted to distance, requiring knowledge of the speed of sound in the medium. Therefore,
accurate knowledge of the speed of sound in the medium and all the sensor positions in the network is
crucial for the localisation algorithm. Mathematically, the distance between the source and all sensors
in the network can be computed as follows:

di = vs · (ToFi +ϒi) =
√

(xi − xs)2 +(yi − ys)2 +(zi − zs)2; i = 1,2...n (2.42)

Where in eq.(2.42), di is the Euclidean distance between the source and the sensors, (xi,yi,zi) are the
sensor positions, (xs,ys,zs) are the unknown source positions and ϒi are the uncertainties on the ToF
estimation. The ToF encodes a time instant t0, which is the starting time of any measurement. When
the proton beam pulse enters the water tank, it may experience delays, such as those caused by the
length of cables used in the chopping system of the particle accelerator, as observed in some cases in

29There is no need to use support variables to retrieve the source position compared to the LLS and WLLS approaches.
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this study. Eq.(2.42) can be expressed as a cost function and be solved using the NLS approach as
described in eq.(2.43). The described cost function includes the uncertainty in the ToF estimation and
synchronization error (ϒi).

min
xs,ys,zs

fTOA(xs,ys,zs) = min
xs,ys,zs

n

∑
i=1

(
vs · (ToFi +ϒi)−

√
(xi − xs)2 +(yi − ys)2 +(zi − zs)2

)2

(2.43)

The second multilateration method is TDOA, which is the time difference between the arrival time
estimated from each sensor and a reference sensor. The TDOA between all the sensors (Bsi) and a
given reference sensor (Bsre f ), can be mathematically expressed as follows:

di −dre f = vs · (ToFi +ϒi)− vs · (ToFre f +ϒre f ); i = 1,2,3...n; re f ̸= i (2.44)

Eq.(2.44) can be rewritten as follows:

di −dre f = vs · (ToFi −ToFre f +ϒi −ϒre f ); (2.45)

ToFi and ToFre f contain information about the time instant (t0) when the proton beam pulse enters
the water. While the sensors still need to be synchronized (i.e., time must evolve synchronously), the
exact start signal (t0) becomes irrelevant. From equation eq.(2.45), t0 cancels out due to the time-of-
flight difference (ToFi−ToFre f ), eliminating the need for precise synchronization when using TDOA.

Any sensor in the network can be chosen as a reference sensor if the difference in eq.(2.45) is not zero.
Using an auxiliary variable w to simplify the mathematical expression, the TDOA can be written in
terms of a cost function as shown in eq.(2.46).

min
xs,ys,zs

fT DOA(xs,ys,zs) = min
xs,ys,zs

n

∑
i=1

∑
re f ̸=i

(
vs ·w−

√
(x− xs)2 +(y− ys)2 +(z− zs)2 +

∥∥dre f
∥∥

2

)2
(2.46)

With :

w = (ToFi +ϒi)− (ToFre f +ϒre f ); (2.47)

∥∥dre f
∥∥

2 =
√
(xre f − xs)2 +(yre f − ys)2 +(zre f + zs)2 (2.48)

During the work conducted in this thesis, the multilateration was performed using the NLS approach.
In concrete, the TOA and TDOA were solved using the Levenberg and Nonlinear Simplex. This will
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sometimes be referred to as Simplex and not be mistaken for the linear Simplex algorithm, com-
monly used in linear programming [132]. Therefore, the two mentioned algorithms to solve the cost
functions described in eq.(2.43) and eq.(2.46) will be described in the section 2.2.2 and 2.2.3.

2.2.2 Levenberg–Marquardt Algorithm

The Levenberg algorithm is derived from the least-squares curve fitting problem, which involves
minimising the sum of the squares. Mathematically, it is defined as:

min
x̂s,ŷs,ẑs

∥di, j − f j(x)∥
2

2
(2.49)

In eq.(2.49), di, j is the distance component from the BP position and the sensor position, and f j(x) is
the function encoding the TOA and TDOA information.

Another key equation is described by the Gauss-Newton algorithm, which is defined as:

(x̂s, ŷs, ẑs) =
(

JT
f , jJ f , j

)−1
JT

f , j

(
di, j − f j(x)

)
(2.50)

From eq.(2.50), it is possible to derive the Levenberg algorithm with minor changes, as shown in
eq.(2.51). The objective of this work is not in numerical optimisation. For more detail, the reader is
invited to see [127, 133, 134]. However, tt is worth noting that the Levenberg algorithm employs a
trust-region strategy. The trust region method offers better convergence than the line search method,
especially in cases where the Jacobian is rank-deficient or nearly rank-deficient [131, p. 258].
The initialisation of the Levenberg comes from an initial guess set by the user (i.e., setting x̂s, ŷs, ẑs
to a value), which will later allow us to discuss the choice and impact of the initial guess on the
multilateration of the BP position outcome.

(x̂s, ŷs, ẑs) =
(

JT
f , jJ f , j +λ

Ddiag(JT
f , jJ f , j)

)−1
JT

f , j

(
di, j − f j(x)

)
;


J f , j =

(
∇ f T

j (xs,ys,zs)
)

;

di, j = vs ·ToFi

j = (TOA,T DOA)
(2.51)

In eq.(2.51), JT
f , j is the Jacobian matrix of f (x) j, and λD is the damping factor of the Levenberg

algorithm. The choice of the damping factor can increase or decrease the convergence of the method.

2.2.3 Nelder-Mead Simplex Algorithm

The Nelder-Mead algorithm, also called nonlinear Simplex, is a gradient-free algorithm that relies
on simplices (i.e., polytopes of dimension n+ 1). The algorithm is commonly used for NLS prob-
lems, especially acoustic source localisation problems, for nondestructive testing [110]. The Simplex
Algorithm is based on six steps: order, centroid, reflection, expansion, contraction, and shrink, as



Ionoacoustics and Multilateration Theory 51

illustrated in Fig.(10) to Fig.(13). The algorithm objective in a single iteration is to pull out the vertex
with the worst function value and restore it with another point with a better value. The algorithm
will iterate on a simplex, with dimension n+ 1; in 2D, it is a triangle, and in 3D, it is a tetrahedron.
For simplicity, only the 2D case will be considered. The Simplex algorithm starts by considering the
vertices of a triangle, as illustrated in Fig.(10). Each vertex of the triangle corresponds to a specific
point and number. The points are named; first, xh → worst, second xs → next to worst, last xl → best,
as illustrated in Fig.(10). All the steps performed by the algorithm are listed below.

1. Sort the values of the cost function f (x), according to the values at the vertices30:

f (x)(1) < f (x)(2) < f (x)(3) ≤ ...≤ f (x)(n+1) (2.52)

rxs

r
xh

r
xl

�
�
�
�
��

A
A

A
A
AA

Figure 10: Simplex algorithm starting point.

2. Compute the centroid of all points except xh:

O =
1
n ∑

i ̸=h
xi (2.53)

3. Reflection :

xr = O+aR(O− xh); aR > 0; where aR is the reflection factor (2.54)

(a) If f (xs)< f (xr)≤ f (xl)→ xr is better than xs

(b) xs is replaced by xr, and the next iteration is computed

30The function f (x) representing the cost function for TOA or TDOA algorithms can be thought as f (x) = f j(x) were
j = (TOA,T DOA). However, even if the Simplex Algorithm is being applied to both TOA and TDOA, we will keep the
notation of the cost function as f (x), only for simplicity.
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xh xl

xs

O

xr

Figure 11: Simplex algorithm, reflection including computation of the centroid (O).

4. Expansion :

(a) If f (xr)> f (xl)→ xe = O+g(xr −O); g > 1; where g is the expansion parameter

(b) If f (xe)< f (xr)→ xh is replaced by xe

(c) xs is computed by xr, and the next iteration is computed

xh xl

xs

xr

xe

O

Figure 12: Simplex algorithm expansion step.

5. Contraction:

xc = O+ k(xh −O); aR > 0 where k is the contraction factor (2.55)

(a) If f (xc)> f (xh)→ xh is replaced by xc

(b) If the condition above is not verified, the contraction is shrinked

6. Shrink:

The Shrink phase is defined by the j-th new point in the triangle. These points are defined as:
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xh xl

xs

xr

xc

O

Figure 13: Simplex algorithm, contraction step.

x j = xl +σ(x j − xl); where σ is the shrinking factor (2.56)

xh xl

xs

xc

Figure 14: Simplex algorithm shrink step.
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2.3 State of the Art on Ionoacoustic Reconstruction Methods
This section discusses the two primary algorithmic approaches utilised to reconstruct the BP position
using acoustic signals in this thesis. Both algorithms aim to reconstruct the BP position by leveraging
the unique properties of ionoacoustic signals. The first approach utilises multilateration to output the
spatial coordinates of the reconstructed source, which spatially localises the strongest position of the
acoustic emission (source). The second algorithm relies on pressure reconstruction, which relies for
instance on using time reversal and iterative time reversal techniques to reconstruct the BP position.
The key difference between the first and second approaches is that the first pinpoints the position of the
source, while the latter reconstructs the 3D pressure distribution correlated to the dose. By comparing
the two techniques, we can determine which algorithm yields the most reliable and accurate results
for BP localisation.

2.3.1 Source Localisation Based on Multilateration

Recently, acoustic BP localisation using the TOA algorithm with LLS has been suggested as a method
for range verification [135, 136]. The localisation of the BP position was estimated using triangula-
tion. The triangulation technique uses angles afterwards converted into distance to retrieve the un-
known source position [137, 110]. In the simulation studies conducted by Patch et al., the BP position
was localised for prostate cancer using four sensors. The ToF was estimated using the Fourier shift
theorem algorithm [138]. Meanwhile, in the simulation studies conducted by Jones et al., the BP was
localised with twelve sensors for liver cancer and nine sensors for prostate cancer. For both cases,
the ToF was estimated from the maximum signal amplitude [70]. These preliminary investigations
showed the first evidence of acoustic source localisation feasibility for in in vivo range verification.
Acoustic BP localisation in a homogeneous medium based on NLS optimisation and the TDOA algo-
rithm has been proposed recently [139]. In the studies conducted by Otero et al., the optimisation was
performed using the Newtown-Rapson method, which is one of the most used algorithms in acoustic
source localisation. The study involved both simulations and experiments to emulate the BP position.
In the simulations, a 100 MeV proton beam with a 50 µs Gaussian proton time profile was used. For
the experimental study, a hydrophone served as a source to replicate the BP. In the mentioned study,
the source was localised with multiple sensors. The acoustic source was placed in the centre of the
phantom for all the sensor configurations. The phantom volume was changed to assess the time per-
formance for the multilateration [139]. The conclusion reached by Otero and co-workers was that the
accuracy of the source localisation improves by increasing the number of sensors (i.e., localisation
with 12 sensors) and for source localisation with only four sensors it is preferable to have the source
inside the volume covered by the sensors. Another introductory remark by Otero and co-workers is
that multilateration can be used for real-time in vivo range verification. Their study demonstrated
that the multilateration computational time does not increase considerably by increasing the volume
of interest. With a volume of interest of 0.35 m3, the time required to localise the source position
with four sensors was around 450 µs. In the same study, there was room for improvement for the
computational resources31 used to retrieve the BP position. A complementary in-silico study from
the same authors [140] showed that BP could be located in the brain with an accuracy of 1 mm using
a 100 MeV proton beam with a 10 µs Gaussian proton time profile. For all investigations conducted
by Otero and co-workers, the ToF was estimated based on the generalised cross-correlation [141].
Still, the effect of the ToF estimation method on the localisation accuracy was not discussed.

31The calculations were not performed using the most recent computer processors. With modern processors, it is
expected to decrease the 450 µs further.
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Most studies on the BP position localisation using multilateration presented in the literature were
based on simulation studies. The only exceptions were those performed by Otero and co-workers
[139]. Nonetheless, the experimental studies conducted by the mentioned author did not use a proton
beam. Furthermore, the source used to emulate the BP positions had a frequency bandwidth of 50 kHz
to 800 kHz. However, for an ion beam, the expected ionoacoustic frequency bandwidth goes from
hundreds of kHz to a few MHz depending on beam energy and time pulsing structure [75, 76, 73].

2.4 Pressure Reconstruction
In recent years, there has been significant work on BP range verification using image reconstruction
[142, 143, 74, 144, 145]. One of the most interesting algorithms is the so-called time reversal recon-
struction (TRR32). In chapter 5, we will briefly discuss about the implementation of multilateration
and TRR into pre/clinical applications. The conceptual idea behind TRR is quite simple; it is based
on the re-transmission of the measured acoustic pressure waves into the medium (i.e., homogeneous
or heterogeneous) in inverted temporal order (t → t−). The time reversal reconstruction workflow is
illustrated in Fig.(51)33, the initial reconstruction step consists on the recorded p(rrr, t) by a set of sen-
sors (BBBsssi), it is then inverted in temporal order p(rrr, t → t−), and then re-propagated into the medium
from the sensor locations. This additional step is normally called backward propagation. After the
re-propagation of the inverted pressure, the initial pressure is finally reconstructed (the reconstructed
pressure here is denoted as pR

0 (rrr, t). An interesting feature of the TRR is the ability to visualise the
initial pressure distribution and at the same time the spatial location of the BP (i.e., intended as the
coordinates in space x,y,z).

Source
p0(rrr′)

Reconstruction
pR

0 (rrr, t)

BBBsssi
Recorded pressure, p(rrr, t)

Medium
p(rrr, t → t−)

Forward propagation

p(rrr, t → t−)

Backword propagation

Figure 15: Time reversal reconstruction workflow.

The literature demonstrates that TRR is sensitive to the number of sensors and their respective ge-
ometry [142, 148, 149]. In other words, the accuracy of the reconstruction will depend on the sensor
placement (i.e., covering the irradiated volume) and the capability of the sensors to capture the ionoa-
coustic wavefront34. It is also important to note that in the context of ionoacoustic, TRR provides

32French physicist Mathias Fink conducted one of the most notorious works in the field of time reversal in acoustics.
Most of his initial work focused on time-reversal mirrors [146], and time-reversed acoustics [147].

33The forward propagation step does not belong to the TRR reconstruction algorithm, is only the acoustic simulation
step generating the initial source p0(rrr′) which is propagated in the medium and then recorded by a set of ultrasound
sensors.

34Pratik Kumar Dash conducted extensive studies on various sensor geometries and their impact on final BP position
reconstruction using TRR. For more details, refer to [148]. Additionally, all the work on TRR presented in this thesis is
part of Pratik Dash’s PhD research within the context of the SIRMIO project.
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the pressure associated with the energy deposition density. To determine the dose, the Grüneisen
parameter must also be known, as it links pressure to energy deposition. When the sensors cannot
fully grasp the ionoacoustic wavefront, the TRR would be compromised, which implies an inaccurate
reconstruction of the initial pressure and, consequently, the BP position. Therefore, the accuracy of
the reconstructed BP position will be lower. To improve the accuracy and mitigate the discrepancies
between the initial pressure and the reconstructed one, iterative time reversal reconstruction (ITRR35)
it is usually considered. The ITRR steps are illustrated in Fig.(16); the ITRR adds an iterative pro-
cess to the reconstruction step. Each iteration will perform the difference between the initial and
reconstructed pressure, followed by an update of the pressure.

Figure 16: Time reversal and iterative time reversal reconstruction, figure extracted from [74]. The
reconstruction workflow is performed in two stages. First, the TRR is performed, and then the ITRR
is performed for a certain number of iterations. For more details, refer to the mentioned publication.

In the following sections, more will be discussed on BP localisation using multilateration, from sim-
ulation to experimental studies. It is essential to mention that both algorithms share a common source
of uncertainties. Such as sensor position with respect to BP position, proton accelerator synchronisa-
tion time (i.e., the exact time that the protons start irradiating a given tissue) and speed of sound, to
cite a few sources of uncertainties. Therefore, for multilateration studies, we will model and discuss
the source of uncertainties and their impact on BP localisation.

35Discussed intensively in the work of the French physicist Mathias Fink, “Time-reversal mirrors”, [146].
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3 Material and Methods

Your purpose... should always be
to know...the whole that was
intended to be known.

Maimonides
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3.1 Simulation Studies
This section presents the simulation setup used in this thesis, except for the simulations conducted for
the SIRMIO beamline, which will be discussed in section 3.3. The aim is to localise the BP position
using a dedicated beamline for small animals. To start with, the optimal reference sensor selection
for multilateration using the TDOA algorithm will be introduced. Then, the multilateration will be
performed in two sets of simulations. In the first simulation, the aim will be to assess the dependency
of the initial guess condition on the Levenberg and Simplex algorithms based on the outcome of the
multilateration results. This simulation will use an ideal point source to emulate the spatial locations
of the BP positions. In another localisation setup, the accuracy and precision of the multilateration,
where the BP will be localised only considering the ideal point sources, will be evaluated. Afterwards,
the localisation will be performed by modelling random and systematic errors on the ToF estimation.
The studies that consider ideal point sources will be conducted in 2D and 3D. After an extensive study
considering ideal point sources, a realistic scenario will be considered where the BP position will be
localised using simulated ionoacoustic signals with pre-clinical beam energies of 20 and 22 MeV. The
knowledge gained during the localisation of the BP position, considering ideal point sources, will be
used to properly understand and contextualise some of the results of the BP localisation, considering
realistic ionoacoustic signals.

3.1.1 TDOA Optimal Reference Sensor

With performing the multilateration with the TDOA, a selection of a reference sensor is required. The
reference sensor selection might influence the outcome of the multilateration. Eq.(2.45) describes
the mathematical formulation of the TDOA assuming any reference sensor. Therefore, as mentioned
earlier, the equation does not consider any specifications about the reference sensor. Hence, two ref-
erence sensor sets were considered for the study based on ideal scenarios (point sources at different
spatial locations) using TDOA. The study aimed to determine the optimal reference sensor selection.
The first set was labelled as static, and the second one was referred to as a dynamic reference sen-
sor. The static reference sensor is used independently of the source location; i.e., estimating the ToF
to select a reference sensor is unnecessary. Instead, the reference sensor is selected based on prior
knowledge of the number of sensors, sensor arrangement and expected source position. The static
selection of the reference sensor may require precise and accurate knowledge of the overall localisa-
tion setup. In the dynamic sensor scenario, the reference sensor was modified in accordance with the
ToF data captured by each sensor in the network. Three dynamic partitioning strategies were utilised
to define the reference sensor set: the minimum ToF, the maximum ToF, and the average ToF. In the
latter instance, the reference sensor was chosen to match the sensor whose ToF measurement was the
closest (with the minimum difference) to the average ToF measurement across all sensors. For a com-
pact and concise notation, all the reference sensors based on the minimum, maximum and average
ToF estimation will labelled as lRe f ,min, lRe f ,max and lRe f ,mean.

3.1.2 Optimisation Failure and Acceptance Rate

As discussed at the beginning of this thesis, it is known that different NLS optimisation methods are
sensitive to the initialisation value because they are mainly based on search algorithms. The initial
guess is a mathematical condition that sets the algorithm’s starting condition, and several iterations are
performed till the solution is reached. Different approaches are used to define an optimal initial guess
condition; it is a common practice to use the solution of LLS methods as an initial guess condition for
the NLS algorithms. We conducted a study on the algorithm’s performance between the Simplex and
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Levenberg algorithms in the presence of different initial guess positions. The aim was to assess and
compare the influence of the initial guess on the multilateration results (convergence and accuracy)
of the Simplex and Levenberg algorithms. For that, a 2D setup with an area of 30×50.5 mm2, with
three ideal point sensors, was considered, as shown in Fig.(17a). The setup dimension illustrated
in Fig.(17a) was chosen to have a comparable size with the setup used for the experimental studies,
as shown in Fig.(19a) and discussed in the section 3.2.1. In this particular setup, the initial guess
was sampled from a uniform pseudorandom integers distribution once and kept constant for all the
multilateration cases. The sample intervals along the x and y-axis were given by the width and length
of the 2D simulation setup. For this particular setup, only the ideal point source varied in space. The
number of initial guesses was set to be equal to the number of source positions; in total, 66 initial
guesses and source positions. Fig.(17a) illustrates the setup used for the robustness analysis of the
Simplex and Levenberg algorithms for a fixed source position.

(a) 2D initial guess setup. (b) 3D initial guess setup.

Figure 17: 2D and 3D initial guess setup, sampled from uniformly distributed pseudorandom integers.
(a) 2D Initial guess position (in magenta) with three sensor positions (in blue), Bs1 and Bs2, Bs3, with
a given source position (in red). For this particular setup, different source locations were considered.
However, for simplicity, only one source position is illustrated. (b) 3D initial guess position (in
magenta) with four sensor positions (in blue) Bs1, Bs2, Bs3 and Bs4, and with a given source position
(in red).

The same study between the Levenberg and Simplex was conducted in 3D. The main difference now is
that the source was not scanned along the x,y and z-axis. The source position was placed in the centre
of the grid. In this setup, the dimension was expanded to 50×43×50 mm3, as described in Fig.(17b).
For the 3D setup, chosen to be similar to the one discussed in the section 3.2.1, a coplanarity check
was performed to have the sensors not lie on the same plane. The coplanarity was performed by
calculating the determinant of the sensor’s volume. Here the volume is given by the coordinates of
the sensors (xi,yi,zi, i = 1,2, ..,4), as shown in eq.(3.1), and in this case, det(volume) ̸= 0 means that
the sensors are not coplanar.

volume =


x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

 =⇒ if


det(volume) = 0 sensors are coplanar

det(volume) ̸= 0 sensors are not coplanar
(3.1)
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The same sampling procedure as for the 2D case was used. However, in this case, the source location
was kept fixed inside the cuboid because we would expect to have a similar result between the 2D
and 3D. Hence, the point source emulating the BP position was placed in the centre of the cuboid
to assess the failure and acceptance rate between Levenberg and Simplex only for a central source
position. Two metrics (in 2D and 3D) were used for both algorithms to assess convergence and
accuracy. The first metric was the failure rate (FR), which refers to the percentage of the reconstructed
source positions above a certain threshold. The second metric was the acceptance rate (AR), which
refers to the percentage of reconstructed source positions below a given threshold. The two described
metrics will be mathematically defined in section 3.4.1.

3.1.3 Robustness Evaluation in Ideal Conditions (TOA, TDOA)

To assess the robustness of multilateration localisation outputs in ideal scenarios, two geometries were
employed for the purpose of investigating the effect of ToF error. These geometries are illustrated
in Fig.(18). For these studies, the localisation of the BP in the spatial domain was performed in
the absence and presence of uncertainties. Multilateration algorithms were first analysed in a two-
dimensional context. The spatial BP position was mimicked by an ideal point source, which was
subsequently moved to 126 positions on a 56×36 mm2 orthogonal grid with 4 mm increments (see
Fig.18a). The setup is close to the previous 2D setup, but the volume was increased by a factor of
1.33. The geometrical ToFs were assessed from the Euclidean distance between every single source
and the sensor positions, assuming a speed of sound of 1500 m/s, which is relatively close to the
speed of sound in water. As shown in Fig.(18a), only three sensors (Bs1, Bs2, and Bs3) were utilised.
The selection of sensor positions was determined by the ionoacoustic experiment setup, which is
introduced in section 3.2.1. The simulation geometry was further expanded to three dimensions, as
shown in Fig.(18b). In this configuration, a fourth sensor (Bs4) was added on top, and the grid size
was increased to 56×36×48 mm3 with a 4 mm spacing. To streamline the analysis of the results and
focus on a realistic configuration, the concept of the field-of-view (FOV) of the sensor network was
defined as the surface36 encompassed by the sensors, as shown in Fig(18).
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(a) 2D Setup. (b) 3D Setup.

Figure 18: Multilateration setups used for robustness analysis in ideal conditions: (a) 2D setup with
three sensors Bs1, Bs2, and Bs3; (b) 3D setup with four sensors Bs1, Bs2, Bs3, and Bs4. The blue
points represent the sensor positions, and the red points indicate the source positions. The FOVs of
the sensor networks are shown in green (triangle in 2D and tetrahedron in 3D). For more details on
the 3D setup configuration, see Figs. (54,53b) in appendix B. Plots extracted from [150].

36It can also be defined as the 3D volume.
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Second, random uncertainties in the geometrical ToF computation were considered to assess the ro-
bustness of the localisation. The purpose behind modelling this type of uncertainty was to evaluate
the influence of the speed of sound variations, incorrect knowledge of the detector’s spatial location
and error on the ToF and to determine how they affect the multilateration performance. Therefore,
the ToF error for each sensor was sampled from a multivariate normal distribution N (µµµ,ΣΣΣ) with a
mean of zero and a standard deviation (σrandom) set to 5% of the absolute ToF, to replicate the in vivo
variability in the speed of sound. It should be emphasised that the random uncertainties of individual
sensors were uncorrelated, so the off-diagonal elements in N (µµµ,ΣΣΣ) were zero. The multilateration
was performed in 2D and 3D, as was the case when uncertainties were not modelled.

As a third step, systematic uncertainties were included in the study. The focus was on modelling
uncertainties related to the imprecise determination of the measurement start time. Especially the
time instant when the proton beam irradiates the target. A multivariate Normal distribution modelled
systematic uncertainties. Based on studies previously conducted on our chair37, a standard deviation
(σsyst) of 1 µs was chosen accordingly [76, 151]. The assumption made in the study was that there
existed a perfect correlation between the systematic uncertainties on the ToF for all sensors considered
(off-diagonal elements in N (µµµ, ΣΣΣ) were > 0).

Lastly, in order to reproduce realistic scenarios, the study incorporated both random and systematic
uncertainties simultaneously to account for variations in the speed of sound, imprecise knowledge of
the sensor spatial location, error on the ToF, imprecise determination of the measurement start time.
As a result, 150 samples were selected for each type of uncertainty, with Nrand and Nsyst both set to
150, resulting in a total of 22500 samples for every source position. The number of samples was
chosen to ensure enough samples to represent the multilateration error distribution comprehensively.
Throughout this thesis, the word robustness will be used frequently, especially for both algorithms
(TOA and TDOA). Therefore, the two algorithms are defined as robust based on accuracy and preci-
sion. This definition is valid for either the case of an ideal point source in the absence of uncertainties
or when uncertainties are modelled.

3.1.4 Ionoacoustic Simulations38

In a homogeneous water phantom, the performance of multilateration algorithms (TOA and TDOA)
was assessed through in-silico evaluation of realistic ionoacoustic signals. The study aimed to analyse
the impact of sensor positioning on the ToF error. The three-dimensional dose distribution, D(r), for
a 20 MeV monoenergetic proton beam was generated using the FLUKA Monte Carlo code (version
2020.0.4, with PRECISIOn defaults) [152, 153]. Further details regarding the simulation setup can be
found in the supplementary material in Lascaud et al. [154]. The initial pressure (p0(r)) was derived
from the deposited energy (D(r) ·ρ, where ρ represents the density of water, which is equivalent to
998 kg m−3 at the considered temperature), which is then multiplied by the Grüneisen parameter
(Γ = 0.11 in water, see eq.(2.30)). The propagation of the initial pressure in three dimensions was
performed on an anisotropic grid. The grid resolution along the propagation axis was 75 µm, and
a lateral grid resolution of 150 µm. The acoustic simulation was performed using the MATLAB k-
Wave toolbox (MATLAB R2019a, MathWorks, Natick, MA) [155]. It is worth noting that due to
the sharpness of the BP (300 µm BPFWHM) relative to the lateral beam dimensions (2.5 mm BPFWHM

37Chair of Medical Physics (LMU). For more details see https://www.med.physik.uni-muenchen.de/research/
range-verification/ionoacoustics/index.html

38FLUKA and k-wave simulations courtesy of Dr Julie Lascaud and Dr Hans-Peter Wieser.

https://www.med.physik.uni-muenchen.de/research/range-verification/ionoacoustics/index.html
https://www.med.physik.uni-muenchen.de/research/range-verification/ionoacoustics/index.html


62 Material and Methods

at the phantom entrance, as estimated experimentally from a Gafchromic film measurement), higher
frequencies are transmitted along the proton beam axis, thus requiring the finer grid in this direction.
To accurately simulate the acoustic emission at the interface between air and water, a 1 mm-thick air
gap was included downstream of the proton beam in the k-Wave simulation setup39 (Fig.(19b)). The
pressure waves were captured using 843 ideal point sensors arranged in a semi-circular configuration
with a diameter of 60 mm. The sensor network was placed such that the centre of the arc coincided
with the maximum of the proton dose, and the arc dimension was chosen to match the experimental
setup depicted in Fig.(19a). Lastly, each ionoacoustic signal recorded was convolved with a 200 ns
square pulse to account for the proton pulse shape from the accelerator configuration used in the
measurements (refer to section3.2).

3.2 Experimental Studies
Throughout this study, multiple experimental investigations were carried out to determine the loca-
tion of the BP position. The two most relevant experiments will be presented in sections 3.2.1 and
3.2.3. Experimental campaigns aimed to benchmark the multilateration experimentally with simula-
tion studies, meaning to localise the BP position under realistic scenarios. The first experiment was
performed using the 3D I-BEAT detector [156], and only considering the sensors located in the same
plane40; for this particular setup, the multilateration was assessed in 2D with three sensors, as de-
scribed in section 3.2.1. For the second setup, a specific sensor housing was designed in this thesis
work to be able to localise the BP in 3D with five sensors configured in such a way as to record the
ionoacoustic signal from different spatial locations and at different angles. The complete setup is dis-
cussed in more detail in section 3.2.3. For both experimental studies, particular attention was paid to
defining a suitable method to localise the transducer’s spatial location. As discussed in section 3.2.1,
two methods for the transducer’s spatial location were proposed for the BP localised with only three
sensors and in a two-dimensional plane. For the second setup described in section 3.2.3, transducers
were localized using an optical tracking system, a widely-used technique in various clinical prac-
tices such as transrectal ultrasound-guided prostate biopsy and image-guided transcranial ultrasound
[157, 158, 159]. However, this localisation technique carries some constraints that will be further
discussed.

3.2.1 Setup 1: 3-Sensors Configuration

The experiments were carried out at the Maier-Leibnitz-Laboratory in Munich, Germany, using a
20 MeV monoenergetic pulsed proton beam impinging in a water-filled aluminium box. The proton
beam entered the setup through an air channel, which was terminated by a 50 µm-thick polyimide
foil acting as the entrance window, as illustrated in Fig.(19a). During this first experiment, the beam
was transmitted in pulses lasting 200 ns and occurring at a rate of 4.9 kHz. In addition, the beam’s
current was set to 3 nA, causing a dose of 1.69 Gy to be deposited at the BP with each pulse. To
record the ionoacoustic wavefront, three detectors were positioned on the proton beam axis (z-axis,
axial sensor) and on an axis perpendicular to it (lateral sensors). The detectors were chosen based
on the expected frequency spectrum at the respective positions and were directly mounted into the
aluminium box. Water-sealed apertures in the box wall ensured that the detectors were at the focus
of the beam profile (BP) and maintained a fixed position relative to the entrance window through-
out the experimental campaign. Notably, all the single-element detectors were focused piezoelectric

39k-Wave simulations courtesy Dr Hans-Peter Wieser.
40See the experimental setup of the 3D-IBEAT in appendix C.
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transducers manufactured by Olympus-Parametric (3.5 MHz centre frequency with a 73 % fractional
bandwidth and a diameter of 12.7 mm). The experimental setup was placed on a motorised three-axis
stage for alignment. For this purpose, ionoacoustic measurements were taken by moving the setup
to various positions along the x- and y-axes, as shown in Fig.(19a), in 1 mm increments. The posi-
tion where the maximum signal amplitude was recorded on Bs1 was considered the on-axis position,
aligned with the proton beam. The phantom was shifted 5 mm along the x-axis to acquire additional
measurements, resulting in an off-axis position.

The ionoacoustic signals were amplified by 60 dB using a low-noise amplifier (HVA-10M-60-B,
FEMTO Messtechnik GmbH, Germany) before being acquired with a digital oscilloscope (6404D
PicoScope, Pico Technology Ltd., GB) at a sampling frequency of 156.25 MHz. A synchronisation
signal delivered by the chopping system of the Tandem was employed to initiate the signal acquisition.
As a result of this trigger, there was a time delay of 1.43 µs between the beginning of the measurement
and the time when the first protons collided with the target, which had been previously characterised
[76, 151], and was later subtracted from the time of arrival to estimate the ToF. To perform the mea-
surements, 1000 consecutive acquisitions were systematically made, with each acquisition consisting
of 1000 proton pulses. Throughout the experiment, the temperature of the water was monitored with
a PT1000 probe submerged in it. The average temperature recorded was 21.92 ◦C, which was then
used to calculate the speed of sound in the water as 1488.1 ms−1. The speed of sound in water was
later used to estimate the BP position from the signal ToF. For each acquired signal, a noise reduction
technique was implemented in post-processing using the Daubechies wavelet family with 5 decom-
position levels [160, 161, 162, 163]. The location of the Bragg Peak was identified with a single shot,
resulting in a peak dose of 1.69 Gy deposited precisely at the Bragg Peak.

(a) IA experimental setup. (b) In-silico simulation setup.

Figure 19: The experimental setup comprised three sensors, as shown in the top view schematic (a).
The two lateral sensors (B2 and Bs3) were positioned 54.7 mm apart, while the axial sensor (Bs1) was
situated 30 mm from the entrance window. The acoustic simulation setup, depicted in (b), involved
a water-based setup with a superimposed dose. The simulation geometry consisted of a white semi-
circle of 843 individual point sensors. Black represented the air in the entrance channel, and light
grey indicated the water medium. In the simulation setup, the sensor indexes began at Bs1 (the lateral
sensor visible in the top view schematic in (b)) and concluded with Bs843, as highlighted by the orange
dots, figures extracted from [150].
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3.2.2 Transducer’s Spatial Localisation Setup 1

As stated in previous sections, to localise the BP position, it is crucial to know the spatial location
of the transducers with a certain accuracy because, among other factors, the localisation of the BP
position depends on it. The transducer’s spatial location was initially determined for this experimental
setup using two approaches. The first one was based on the construction drawings41 used to design
the 3D I-BEAT detector. This approach estimated the distances between the sensors and the phantom
entrance window, assuming that the phantom entrance window was at the origin. This geometrical
approach was relatively simple. However, it is not uncertainty-free, especially if the sensors’ curvature
is not considered. The curvature of the sensor is accounted for by considering the depth of the sensor
(h), which is calculated in eq.(3.2), where r is the sensor radius. Another important aspect is that the
transducer’s spatial location estimated from the drawings may differ slightly from the positions of the
transducers mounted into the setup, e.g., due to the screwing of transducers, supports used to fixate
the transducers into the phantom, etc.

h =
√

r2 + f 2
l − fl (3.2)

The second approach was more elaborate, attempting to retrieve the transducer’s spatial location
experimentally. For this study, three transducers were mounted into the aluminium box system42,
and an aluminium cylinder with a diameter of 4 mm was used as a target. The objective was to
define the position of the sensors relative to the cylinder. That was achieved by recording the acoustic
signals emitted by the sensors and reflected from the cylinder target at different spatial locations w.r.t
the transducers. The cylinder target was moved by a motorised linear stage, and its position was
kept constant along the y-axis. The recorded signal was then used to estimate the transducer’s spatial
central position, as described in eq.(3.3). In the aforementioned equation, P(R, t) is the recorded
pressure and Ci(R) is the central position integrated into a time interval from t0 to t f , and R is the
variable encoding the cylinder coordinates (R =(x,y,z)). In eq.(3.3), t0 represents the initial time
instant for the acoustic signal, while t f corresponds to the final time instant. This temporal window
was carefully chosen to eliminate artefacts associated with the integrated pressure wave. It is worth
noticing that Ci(R)43 corresponds to the position where the maximum recorded pressure is achieved.

Ci(R) = max

(∫ t f

t0
P(R, t)dt

)
; R = (x,y,z) (3.3)

The central position was then used to align the target inside the phantom. The complete experimental
setup is depicted in Fig.(20), and the transducer’s spatial location was calculated as follows:

• The first step was to turn the proton beam off, and the I-BEAT44 entrance window (ew) was
unmounted to have a wider scanning range for the cylinder target. The single-element ultrasonic
detectors were securely mounted to prevent water leakage, and the cylinder target was fixed at a

41The schematic drawings were implemented in Inventor.
42See the sensors mounted on the 3D-IBEAT detector in appendix C.
43i is the number of sensors ranging from 1 to 3, i = (Bs1,Bs2,Bs3).
44Sometimes the names 3D I-BEAT and I-BEAT will be interchanged.
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specific location on a motorized stage within the I-BEAT detector. Finally, the I-BEAT detector
was loaded with distilled water, as shown in Fig.(20). Next, the target was placed at a distance
(d) equal to the transducer focal length and scanned along the x-axis with a step of 0.5 mm
while the transducer Bs1 transmitted and received pulse-echo signals. Once the cylinder was
fully scanned, a 2D pressure profile was recorded, as illustrated in Fig.(21a). For the recorded
pressure, a post-processing technique was applied to better estimate the transducer’s spatial
location. Fig.(21b) illustrates the steps used in the post-processing. To begin with, the recorded
pressure P(R, t) was windowed to avoid unwanted reflected signals. Afterwards, the signal
was detrended to have a zero mean, and consequently, the signal envelope (H{P(R, t)}) was
computed, and then the transducer central position Ci(R) was estimated.

• Second, the cylinder target was scanned on the z-axis while the transducer Bs2 transmitted and
received pulse-echo signals. Finally, the same procedure performed for the axial transducer
Bs1 was applied to Bs2 and Bs3, and the cylinder was placed at Ci(x,0,z). If the setup is per-
fectly aligned and there are no uncertainties on the mounting process of both lateral transducers
(Bs2 and Bs3), we would expect the centre spatial location of both transducers to match, i.e.,
CBs2(x,0,z) =CBs3(x,0,z).

• Third, the cylinder target was deemed aligned for all the sensors because it was placed in a
new spatial location, which is now the coordinate origin (x,0,z) = (0,0,0) mm. From this
new spatial location, a pulse-echo is computed with all sensors. From the recorded pulse-echo
signals, the spatial location of all transducers is estimated by calculating the distance from the
cylinder to each transducer.

(a) Experimental setup, top view. (b) Experimental setup, left-side view.

Figure 20: Transducer’s spatial localisation setup. (a) Top view with three transducers Bs1,Bs2 and
Bs3, located at distances d1, d2 and d3 from the centre of the cylinder target (represented by the orange
circle), (ew) is the position of the beam entrance window (which was removed); (b) left-side cross
view, with the axial transducer Bs1 and the cylinder target mounted on a motor stage.

The relative distances d1, d2 and d3 were computed from the recorded pressure. The calculation of the
relative distances took into consideration the radius (r) of the cylindrical target. For each pulse-echo
measurement, the ToF was estimated. The relative distances were calculated using the speed of sound
vs in water. The origin has been placed at the centre of the cylinder target, and the spatial location of
the transducers was expressed mathematically as:
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Bs1(x,0,z)
Bs2(x,0,z)
Bs3(x,0,z)

=

d1 0 0
0 0 d2

0 0 −d3

=
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2 + r

)
0 0

0 0
(

vs · ToF2
2 + r

)
0 0 −

(
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2

)
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(3.4)

(a) 2D raster scan pressure profile.

(b) Post-processing pipeline to retrieve the centre position.
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(c) Integrated pressure in the time domain for the
acoustic signal recorded with the Bs1 transducer. The
cylinder was scanned along the x-axis.

Figure 21: Transducer central position estimation for the cylinder target alignment. (a) 2D raster scan
pressure profile recorded with the axial transducer Bs1 moving the cylinder along the x-axis; (b) signal
post-processing technique to improve the signal quality; (c) Integrated pressure in the time domain,
which enables to estimate the central position.
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3.2.3 Setup 2: 5-Sensors Configuration

In a water tank, a 5-sensor arrangement was assembled using a dedicated holder (horseshoes) de-
veloped in this work to conduct additional experiments, as depicted in Fig.(22). In this particular
configuration, the proton beam energy was raised to 22 MeV. The beam current was set to 3.5 nA
with a proton pulse length of 200 ns at a repetition rate of 10 kHz, corresponding to a dose per pulse
of 0.58 Gy delivered at the BP. For this setup, 12.7 mm-diameter piezoelectric single elements with
a 3.5 MHz centre frequency were utilised, following a similar arrangement as in the previous ex-
periments. Specifically, the arrangement consisted of one axial transducer (Bs2; f l = 50.8 mm), two
transducers inclined at an angle of 28◦ with respect to the beam axis (Bs1 and Bs3; f l = 25.4 mm), and
two lateral transducers, both of them focused (Bs0 and Bs4; f l = 25.4 mm), as shown in Fig.(22). The
ionoacoustic signals were acquired sequentially due to limited channels available on the picoScope,
first with Bs0 to Bs2 and then with Bs2 to Bs4. As previously, the measurements were repeated over
1000 consecutive proton pulses, but the SNR for the IA signals recorded by the two tilted transducers
(Bs1 and Bs3) was lower than in the previous experiments due to their orientation relative to the beam
axis. The signals were averaged over 50 acquisitions to address this, resulting in a total peak dose of
29 Gy deposited at the BP before performing the wavelet filtering.

3.2.4 Transducer’s Spatial Localisation Setup 2

A 3D optical tracking system (Hybrid Polaris Spectra System, Northern Digital Inc., Waterloo, ON,
Canada) using a passive marker tool was utilised to estimate the spatial location of the transducers
(c0 to c4). In the case of focused transducers, the transducer location was defined as the projection
of the outer rim centre onto the curved surface. The position of the rim centre was determined by
locating three points on the circle, and its projection on the curved surface was obtained from a
fourth measurement on the curved surface. In addition, the accuracy of transducer localisation was
enhanced by performing a 3D rigid registration. The 3D rigid registration was based on the Coherent
Point Drift (CPD) algorithm [164], and it was performed between a template derived from the holder
drawing (moving image) and the position obtained from the optical measurements. The entry point
of the proton beam into the water tank, referred to as the entrance window (cew), was determined
by irradiating a Gafchromic film. Following this, a passive marker was placed at the centre of the
Gafchromic film, allowing the spatial location of the beam entrance window to be recorded using an
optical tracking system. Fig.(23) illustrates the step of estimating three points, p1, p2, and p3, on the
rear surface of the ultrasound transducer using a passive optical marker to determine the transducer
spatial location. Here, each point is denoted as pii=1,2,3 and can be represented as a function of its
Cartesian coordinates, x, y, and z. In the mentioned figure, the parameter h was fixed according to the
transducer focal length. In other words, equal to 0 mm for Bs0 (unfocused), 0.78 mm for Bs1, Bs3,
Bs4 and 0.39 mm for Bs2. Given the position of these three points, the centre c j of the transducer was
estimated by solving eq.(3.5). The procedure was repeated for all the transducers, having their spatial
locations as c0, c1, c3, and c4. Finally, the transducer location was estimated from the centre positions
by accounting for the focal length of every single transducer along the sensor axis.

As mentioned previously, to increase the accuracy of the transducer spatial location of the horseshoes
setup, the CPD registration, which is based on a probabilistic approach to align two point sets, was
used. The array drawings was labelled as IV, and the 3D optical tracking system output was labelled
as OT. Fig.(24) illustrates the four steps used for the rigid co-registration, as listed below:

• First, the template provided by drawing IV was initially rotated along all three axes (x,y,z).
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• Second, to properly align the template IV, it was shifted by subtracting the mean value of the
OT to the IV template.

• Third, the point clouds were estimated considering both inputs from IV and OT.

• Fourth, a 3D rigid co-registration between IV and OT was performed by moving IV while OT
was kept fixed. From the 3D rigid co-registration output, the new transducer spatial locations
c1

j
(

j = {0,1, ...,4}
)

were estimated and considered for the multilateration of the BP position.

(a) OT. (b) Acquisition setup.

Figure 22: 3D Multilateration experimental setup. (a) 3D optical tracking is used to localise the trans-
ducer spatial locations. (b) The water tank setup illustrates the transducer centre positions (yellow
dots) and the entrance window central position (orange dot on the red arrow indicating the beam en-
tering the water phantom), figure extracted from [150].

(pi,x − c j,x)
2 +(pi,y − c j,y)

2 +(pi,z − c j,z)
2 = r2

j ;

{
i = 1,2,3
j = 0, ...,4

(3.5)

Figure 23: Schematic representation of the procedure used to estimate the centre of the transducers.
The red dots show the OT measurement positions on the transducer’s outer rim, and the yellow dot
depicts the location of the transducer centre (projection of the rim centre on the curved surface).
Figure extracted from [150].
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Figure 24: 3D Rigid co-registration between the sensor template and the output from the optical
tracking system. (IV) is the technical drawing template, (OT) is the sensor coordinates provided by
the optical tracking coordinates output.

3.3 SIRMIO Case Study 45

The SIRMIO beamline was used to degrade and focus a low energy proton beam starting with an
initial energy of 75 MeV [56], resulting in a 50 MeV proton beam in water [54]. The Geant4 Monte
Carlo simulation package (version 10.06.p02) was used for the simulation. The simulation allowed
obtaining a 3D dose deposition in water using a homogeneous scoring grid spacing of 50 µm. The
homogeneous grid spacing was later interpolated to 200 µm for the k-Wave simulation of the acoustic
pressure propagation. The simulation setup included a 1 mm thickness of air preceding the water
target. From the k-Wave simulation, the aim was to evaluate multilateration in the context of SIRMIO
using an arc sensor. Fig.(25) illustrates the setup arrangement with xy and xz plane views. The sensor
setup included 52 sensors arranged in an arc shape with a radius of 20 mm, covering the area where
the mouse was expected to be located, as shown in Fig.(25a). All the sensors in the current setup
have a diameter of 1 mm, and they were all used to record the ionoacoustic signals produced by the
pulsed SIRMIO beam. The axial sensor, which corresponded to the centre on the arc, was placed at a
distance of 14 mm w.r.t the BP position. The simulation was performed for different lateral and distal
beam offsets to evaluate the BP position for different beam spatial locations. The reason for different
beam shifts was to reproduce the beam scanning. The first beam offset was applied along the x-axis.
Consequently, the beam was shifted by ±1 mm with a step of 0.5 mm while keeping the y and z-axis
fixed. Subsequently, the beam was shifted along the y-axis by ±1 mm with a step of 0.5 mm while
keeping the x and z-axis fixed. Lastly, the beam was shifted along the z-axis by ±1 mm with a step
of 0.5 mm while keeping the x and y-axis fixed. Before localising the BP position, the error on the
ToF was assessed considering the IVP. Afterwards, the error on ToF was evaluated by convolving the
solution of the IVP46 with a Gaussian time profiles with varying widths (FWHM) ranging from 1 to
10 µs, with a step of 1 µs. The error in the distance was computed as ground truth distance given by
the BP position (xBP,yBP,zBP) and sensors positions (xi,yi,zi) minus the estimated distance given by
the ToF extraction method, as described by the equation below:

45Simulations (FLUKA and k-Wave) courtesy of Pratik Dash based on requirements of this work for multilateration
purposes. Geant4 simulation courtesy of Dr Marco Pinto.

46Pressure integrated on the sensor surface assuming an instantaneous energy deposition.
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ε =

∣∣∣∣√(xBP − xi)2 +(yBP − yi)2 +(zBP − zi)2 −dToFi

∣∣∣∣ (3.6)

The error assessment47 related to the ToF was performed considering a different setup with 37 sensors
(1 mm dimension) separated by 5◦ from each other sensors instead of 52 sensors. All the other
simulation parameters were kept the same except for the number of sensors and sensor dimension.
The reason for not re-assessing the ToF error studies with a new setup with 52 sensors instead of
37 sensors is that the results are expected to be the same because the error will mainly depend on
the proton time profile width, among other parameters like the sensor dimension. However, a 1 mm
transducer dimension is expected to not change the result significantly compared to a point transducer.

On the other hand, the motivation beyond selecting the proton time profile widths is that from a
clinical synchrocyclotron facility, the time profile is expected to be between 3 to 6 µs [76]. Therefore,
for the error on ToF analyses, only the beam centred w.r.t the arc sensor was considered (beam at
x,y,z = 0,0,0 mm). After evaluating the impact of the ToF for different proton time profiles, the BP
position was localised. Initially, it was localised without considering a proton time profile, and then
the BP position was retrieved considering all the beam offsets and all the introduced proton time
profile widths.

(a) Beam position XY plane. (b) Beam position XZ plane.

Figure 25: Multilateration setup of BP position for the beam at a fixed spatial location, no offset ap-
plied to the beam (x,y,z = 0,0,0 mm). The black asterisk corresponds to the ground truth (maximum
BP position along all the axes). (a) The 52 sensors, with 1 mm dimension (x,y plane view), are the
white dots in the form of an arc. (b) The same sensor is viewed from a different plane (x,z plane).
Both figures are reproduced by courtesy of Pratik Dash.

47Results were readily available for another ongoing PhD thesis project by Pratik Dash.
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3.4 Data Analysis
The same metric was applied to the multilateration studies solved for ideal point sources and with
ionoacoustic propagated signals to assess the performance in localisation (i.e., error in the retrieved
position). However, since the robustness analysis was only conducted for the ideal point sources,
on top of the error in position, the root mean square error (RMSE) was also defined as a metric,
especially for the cases where random and systematic uncertainties were modelled. From these two
metrics (i.e., error in position, root mean square error), another set of metrics was defined to assess the
robustness of the multilateration algorithms. The other two metrics that were determined to evaluate
the convergence and accuracy of the optimisation algorithms are the FR and AR, already introduced
in section 3.1.2, which are based on the error in position output from the multilateration.

3.4.1 Multilateration Robustness Assessment

To assess the robustness of multilateration for both TOA and TDOA algorithms, initially, the localisa-
tion metrics were defined only for cases where uncertainties were not modelled in the ToF. Afterwards,
uncertainties were accounted for, leading to defining a new set of metrics. Some metrics described
here are mainly for ideal point source studies (BP localised in the space domain). However, some of
these metrics will also be considered when the BP position is retrieved from a signal emanated from
a proton beam (BP localised from a ToF signal). The metrics used to evaluate the performance of
multilateration and numerical optimisation algorithms are listed below:

• The accuracy can be defined mathematically in terms of the position error εxyz. However, it
should be noted that this definition does not consider any uncertainties.

εxyz =
√
(x′− xs)2 +(y′− ys)2 +(z′− zs)2 (3.7)

Where x′, y′, and z′ coordinates in the equation are the known source positions (e.g., the BP
position ground truth). On the other hand, xs, ys, and zs are the reconstructed source posi-
tions from the optimisation output. The 3D metric is reducible to 1D or 2D by cancelling the
coordinate of the missing dimensions. For the BP at multiple spatial locations, i.e., when its
position varies spatially as shown in Fig.(18), from the error in position a mean value µεxyz and
a standard deviation σεxyz of the error in position were assessed. The analyses also included
unrealistic cases, i.e., cases when the BP position is outside the volume covered by the sensors
network. For the more realistic cases when the sources are inside the FOV, the corresponding
metrics are designated as εFOV

xyz , µFOV
εxyz

and σFOV
εxyz

.

• For the BP position localised in the presence of uncertainties, the error in position metric was
replaced by the RMSE, i.e., the RMSE between the actual and retrieved source position, as
described in eq.(3.8).

RMSE =

√
1
N

N

∑
i=1

(
(x′i − xi

s)
2 +(y′i − yi

s)
2 +(z′i − zi

s)
2
)

(3.8)
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Other metrics were obtained from the RMSE, such as the mean root mean square error (µRMSE )
and the standard deviation of the root mean square error (σRMSE ). On the other hand, when
considering only source locations within the FOV and modelled the uncertainties, the metrics
were renamed as RMSEFOV , µFOV

RMSE
and σFOV

RMSE
.

The accuracy of various ToF extraction methods is assessed by calculating the error in ToF
estimation, denoted as εToF . This error was defined as the absolute difference between the
known ToF and the ToF estimated by a particular extraction method multiplied by the speed of
sound in the medium. The known ToF is the ground truth, determined during the simulation
study described in section 3.4.3. For each sensor, the ground truth of the ToF was defined as
the quotient of the Euclidean distance between the sensor spatial location and the known BP
position, divided by the speed of sound in the medium. After calculating the ground truth for
each sensor, the total error in ToF was estimated from eq.(3.9).

ε
ToF =

∣∣∣ToFi −ToFGround−truth
i

∣∣∣ ; i = 1,2, ...,n (3.9)

On the other hand, considering the signal originated from the 20 MeV, 22 MeV and 50 MeV
proton beam, the ground truth of the BP position was determined from the equivalent FLUKA
Monte Carlo simulations. While the simulations for the 22 MeV proton beam setup were not
directly benchmarked against an independent measurement, the strong consistency observed
between the experimental and simulated IA signals instils confidence in the reliability of the
utilised model. Furthermore, it is worth noting that this model had undergone prior validation
in a time-of-flight spectrometry study [165].

• To assess the convergence and accuracy of two optimisation algorithms, Levenberg and Sim-
plex, two metrics were defined based on the error in position. The first metric is the FR, and
the second metric is the AR, which was evaluated using eq.(3.10) and eq.(3.11), respectively.
Primarily, a localised source position was classified as an FR if its error in position was above
the threshold (γT ) of 1 mm. On the other hand, if the error in position was below or equal to
the threshold, the position was classified as an AR. Both metrics were based on the error in
position. The FR and AR values determine the success or failure of a particular outcome. If
these values fall below or above a certain threshold, a decision is made based on that outcome.

εxyz > γ
T → FR (3.10)

εxyz ≤ γ
T → AR (3.11)

The threshold can be further changed if one knows a prior maximum and minimum expected
error in position. However, for the studies conducted here, a threshold of 1 mm was within the
maximum acceptable error for the localisation performed without uncertainties. The motivation
behind the threshold value is based on the current clinical margins of safety, typically 3.5%+1
or 2 mm [30, 37]. However, the margin safety can also change from one clinical facility to
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another. Furthermore, this work is on BP localisation for pre-clinical applications; therefore, a
small margin of safety is expected.

• Another important metric is the SNR. The recorded ionoacoustic signal depends highly on
the dose and sensor position w.r.t the proton beam. Hence, different sensors spatial locations
are expected to have different signal quality, regardless of the number of signal averaging.
Therefore, another way to understand the error in position for a given experimental setup is to
estimate the SNR and put both results in context. The SNR for each sensor was defined as the
ratio between the peak-to-peak amplitude and the noise standard deviation and mathematically
can be described as:

SNRBsi =
Vp−p[mV ]

σ(Noise)[mV ]
; i = 1,2, ...,n (3.12)

In eq(3.12) Vp−p is the peak-to-peak amplitude of the primary signal and σ(Noise) is the noise
standard deviation. Vp−p was estimated from the signal acoustic traces recorded by the digital
oscilloscope. From the IA signal, Vp−p was calculated as the absolute difference between the
compression’s maximum and the rarefaction peaks’ minimum. On the other hand, σ(Noise)
was estimated by looking outside the signal in the acoustic traces and from there, the standard
deviation was computed. The acquisition of the noise signal was long enough to have many
samples to compute σ(Noise).

3.4.2 Multilateration Workflow for BP localisation

Fig.(26) illustrates the multilateration workflow used for BP localisation. The ToF was estimated
for each sensor Bs1 to Bsn, where n is the number of sensors located at a spatial location c1 to c j

48,
respectively, and converted to a distance knowing the medium speed-of-sound (vs). Multilateration
was performed afterwards, either using TOA or TDOA algorithms49. To this aim, the cost functions
described in eq.(2.43) and eq.(2.46) for TOA and TDOA, respectively, were minimised using the
Levenberg and Simplex algorithms. For the minimisation purpose, the input parameters for both al-
gorithms were the same, i.e., 500 iterations and a termination tolerance set to 10−9. The algorithms
were available from the Matlab software (Matlab R2021a). The code of the cost function computation
is reported in appendix F. For multilateration, the optimisation process is based on the computation
of gradients by solving the TOA and TDOA equations using, for example, the Levemberg approach.
Therefore, by default, Matlab software uses numerical gradient approximations based on several al-
gorithms, i.e., finite difference method. However, this computation approach can be slow, especially
in cases where uncertainties are considered. Therefore, analytical gradients were computed and im-
plemented in the minimisation process to speed up the optimisation process for both algorithms (TOA
and TDOA); see the appendix G.

As previously discussed in section 2.2.1, the TOA method is an absolute position localisation tech-
nique and does not require a reference sensor. However, the TDOA method always requires a refer-
ence sensor. Therefore, the study considered two types of reference sensors for the ideal scenario of

48 j is defined in eq.(3.5).
49For TOA and TDOA, the word “algorithms” and “methods” will be sometimes interchanged.
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point sources at multiple locations using TDOA. These are static and dynamic reference sensors. In
the case of static reference sensors, the same reference sensor is used regardless of the source location.
In contrast, for dynamic reference sensors, the reference sensor is changed based on the ToF readings
on each sensor of the network.

Figure 26: Schematic representation of multilateration workflow. For the multilateration localised for
three or four sensors, n is always equal to j, figure extracted from [150] with slight changes.

3.4.3 Ionoacoustic Time-of-Flight Extraction

In order to localise the BP position in water within the time domain (i.e., IA signal generated by a pro-
ton beam), a study on different ToF extraction methods was assessed. The ToF was obtained from the
direct signal (γ-wave) in studies involving IA signals, and various extraction methods were evaluated.
Fig.(27a) and Fig.(27b) show simulated IA signals recorded at different sensor positions (axial and
lateral, respectively), with annotations highlighting the signal features used for ToF extraction. From
the several ToF extraction methods described in this section, only a particular method will be used to
assess the accuracy of the BP position localisation for the experimental studies. So, the different ToF
extraction methods are listed below:

• For axial sensors, the zero-crossing method identifies the time instant when the IA signal crosses
zero between the compression and rarefaction pulses. This method is hereafter referred to as
the zero-crossing method (see Fig.(27a)). As shown in Fig.(27b), lateral sensors may produce
multiple zero-crossings. In such cases, the first zero-crossing point is typically chosen for ToF
extraction.

• The max amplitude method identifies the time instant when the IA signal reaches its maxi-
mum amplitude. However, this method may be inaccurate when multiple peaks occur due to
distortion of the pressure wave or spatial averaging effects50.

• The min amplitude method is similar to the previous method; however, it aims to identify the
time instant when the IA signal reaches its minimum amplitude. All the techniques suggested
for the maximum amplitude method could also be applied here.

50The latter is a well-known problem in ultrasound and acoustics, where the shape of the received acoustic wave
can vary depending on the sensor position relative to the emitting source, which can affect the signal frequency content
[166, 167].
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• The max envelope approach for extracting ToF involves obtaining the signal envelope maximum
value by taking the Hilbert transforms of the absolute value of the recorded IA signal. The
Hilbert transform is a mathematical technique used to compute the analytic signal [168], which
contains information about the signal amplitude and phase. The instantaneous amplitude (or
envelope) can be extracted from the analytic signal, and the ToF can be obtained from this
envelope.

For all the ToF extraction methods, except for zero-crossing, an acceptable fitting method, i.e., Gaus-
sian fitting of the pressure wave, would be useful to estimate the time instant where the signal peaks
properly. However, the fitting does not come for free because the ToF extraction can be underesti-
mated or overestimated by doing so. The accuracy of the fitting method on the BP localisation will be
discussed in the results later on, but only for the experimental studies performed with the horseshoes
setup. Furthermore, to assess the impact of fitting on the ToF estimation and, consequently, on the lo-
calisation of the BP position, all 1000 consecutive measurements acquired using the horseshoes setup
were averaged to reduce statistical noise. Therefore, the fitting results on the ToF and BP localisation
presented in this thesis will be focused on the ToF extracted with the maximum envelope approach
for reasons that will be clarified in section 4.2.1.
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Figure 27: Simulated ionoacoustic signals and ToF extraction for different sensor positions (as intro-
duced in the simulation setup in Fig.(19b). The ToF was extracted using an axial sensor (a) and a
lateral sensor (b). The ground truth for each sensor was established by measuring the distance from
the sensor to the BP (dose maximum) defined in the simulation, which was then converted into a ToF.
In the figure, the black curves represent the IA signal envelope, illustrated by the blue lines. With
slight modifications, all figures were adapted from [150].
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4 Results

First say to yourself what you
would be; and then do what you
have to do

Epictetus
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4.1 Multilateration and Optimisation Methods Robustness
The accuracy of multilateration algorithms depends on the numerical optimisation methods used.
Therefore, this section focuses on analysing the numerical optimisation algorithms and the multilat-
eration algorithms for ideal point sources that mimic the spatial location of the BP. The performance
of two numerical optimisation algorithms – the Simplex and Levenberg– was assessed, evaluating
their sensitivity to initial guess conditions and their ability to converge to a local minimum. Follow-
ing that, a comprehensive study of multilateration was conducted using ideal acoustic point sources
and point sensors. The study aimed to test multilateration algorithms like TOA and TDOA with and
without uncertainties. It also evaluated the accuracy and precision of localisation estimates in different
conditions, examining the impact of uncertainties in both 2D and 3D scenarios.

4.1.1 Nelder-Mead Simplex vs Levenberg–Marquardt

To comprehensively analyse the multilateration results, the impact of the source location was first
examined in two scenarios: when it is inside and outside the FOV. This approach identified the regions
where multilateration failed and succeeded. Failure is indicated by a dark circle with magenta edges
in Fig.(29a), and the regions where it succeeds are represented by a green circle with magenta edges.
Subsequently, the total FR is reported based on the initial guess positions. For the first case, the
influence of the initial guess on the multilateration results was assessed by localising the source with
the TOA algorithm, as shown in Fig.(28). The multilateration was performed using the Simplex
algorithm, as shown in Fig.(28a). The localisation was assumed to fail for localisation errors larger
than 1 mm. As shown in Figs.(28a,28b), the FR for the acoustic point source located outside and
inside the FOV equals 0% for the investigated scenario. Figs.(28c,28d) illustrate the FR when the
acoustic point source is localised with the Levenberg algorithm. Compared to the previous case, the
FR is equal to 0.22%. The results indicate that the TOA is not significantly influenced by variations
in the initial guess, at least for the two cases considered.

For the second case, the influence of the initial guess on the multilateration results was assessed
by localising the source with the TDOA algorithm, as shown in Fig.(29). Same as in the case for
TOA, the FR was assessed for the source inside and outside the FOV. Fig.(29a) shows the FR for the
multilateration optimisation performed with the Simplex algorithm. Within all the reference sensors,
the dynamic reference sensor lRe f ,min was used as an example to show the most critical initial guess
positions where the multilateration fails. In these particular cases where the source is outside the FOV,
the FR equals 42.42% for the source localised with TDOA and goes down to 0% when the source is
located inside the FOV, as shown in Fig.(29b). On the contrary, in the case of source localisation
performed using the Levenberg algorithm, the FR is 9.0% when the source is located outside the
FOV, as depicted in Fig.(29c). Furthermore, when the source is located inside the FOV, the FR is 0%,
as illustrated in Fig.(29d).

In summary, high FR is mostly linked to positions where the acoustic point source is outside the
FOV, as demonstrated in the TDOA multilateration case. Clarification may be needed for the TOA
because the FR is approximately 0% for all numerical optimisation methods, as shown in Fig.(28).
This needs further validation with more statistics and initial guess positions. Notably, initial guess
positions within the FOV are optimal, consistent with standard procedures for selecting the initial
guess in numerical optimisation methods. Thus, choosing the centre of mass as the initial guess is
commonly used. For the remainder of the thesis, the results of the multilateration are presented using
the centre of mass derived from the spatial locations of the sensors as the initial guess.
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Figure 28: TOA varying the initial guess position using Simplex and Levenberg algorithms, for a total
of 66 random initial guesses positions (see section 3.1.2) and 66 acoustic source positions moving in
space. The red circle indicates an exemplary source position, and the blue circle indicates the point
sensors. The green circles indicate the initial guess positions where the source is successfully localised
(AR), which means an error below 1 mm. (a) The acoustic point source is outside the FOV and close
to the sensor Bs1. (b) The acoustic point source is inside the FOV, and localisation is performed with
the Simplex algorithm. (c) The acoustic source is outside the FOV and near Bs1. (d) The acoustic
source is within the FOV, and localisation is done using the Levenberg algorithm
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Figure 29: TDOA varying the initial guess position using Simplex and Levenberg algorithms, for a
total of 66 random initial guesses positions (see section 3.1.2) and 66 acoustic source positions moving
in space. The red circle indicates an exemplary source position, and the blue circle indicates the point
sensors. The green circles indicate the guess positions where the source is successfully localised
(AR), which means an error below 1 mm. The black circles indicate the initial guess positions where
the source is not successfully localised (FR). (a) The acoustic point source is outside the FOV and
close to the sensor Bs1. (b) The acoustic point source is inside the FOV, and localisation is performed
with the Simplex algorithm. (c) The acoustic point source is outside the FOV and close to the sensor
Bs1. (d) The acoustic point source is inside the FOV, and localisation is performed with the Levenberg
algorithm.
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In general, when considering the 66 source and initial guess positions, the Levenberg algorithm was
less sensitive to the initial guess than the Simplex algorithm. Table(1) summarises the FR for the
multilateration performed with both algorithms. For the TOA, having localised the source with the
Simplex algorithm, the FR is 0% against an FR of 0.22% for the source localised with the Levenberg
algorithm, indicating that the Simplex algorithm is the algorithm of choice if the source is localised
uniquely with the TOA. However, when considering the TDOA, a trade-off is needed to evaluate the
optimal optimisation method. For the TDOA, the FR also depends on the reference sensor. In fact,
as seen in Table(1), the FRs fluctuate from a minimum of 0.55% (lRe f ,Bs2) to a maximum of 1.12%
(lRe f ,Bs1) if the optimisation is performed with the Levenberg algorithm. On the other hand, if the
optimisation is performed with Simplex, the FR fluctuates from a minimum of 4.82% (lRe f ,Bs1) to
a maximum of 10.76% (lRe f ,max). Furthermore, the maximum FR achieved with the Levenberg is
1.12% (lRe f ,Bs1) compared to 10.76% (lRe f ,max) achieved with the Simplex algorithm.

So far, the discussion has primarily focused on the FR of 2D multilateration. The 3D multilater-
ation studies have not been as comprehensive as the 2D. In fact, for the 3D, the FR for a source
located within the FOV was 0% for both TOA and TDOA algorithms and for numerical optimisation
performed with Simplex and Levenberg algorithms. Hence, it was assumed that the results for 3D
multilateration are comparable to those obtained in 2D. In 3D, the magnitude of FR is expected to be
higher for sources both within and outside the FOV. This is due to the increase in error output of the
multilateration performed in 3D, as discussed in section 4.1.4. However, to fully conclude the FR in
3D, further detailed studies are necessary to confirm our assumptions.

The FR studies performed in 2D can be concluded with three important remarks. First, the multilat-
eration performed with the TOA is less sensitive to the initial guess and source position than TDOA.
Second, the Levenberg and Simplex algorithms yield similar results when used with TOA multilat-
eration. However, for TDOA multilateration, the Levenberg algorithm consistently outperforms the
Simplex algorithm, see Table(1). For this reason, the Levenberg algorithm will be preferred because
it gives the best FR compromises for both TOA and TDOA localisation approaches. Furthermore, all
the results reported in the following sections will be based on the Levenberg algorithm. Lastly, the
error increases drastically when the Simplex optimisation does not converge to a local minimum. The
source localisation outputs unrealistic values, with errors in the kilometre range. For more detail on
the localisation error, see appendix D.

Multilateration Methods Reference Sensor FRLevenberg FRSimplex

TDOA

Bs1 1.12 % 4.82 %
Bs2 0.55 % 10.10 %
Bs3 0.80 % 6.31 %

lRe f ,max 1.05 % 10.76 %
lRe f ,min 0.57 % 5.48 %

TOA none 0.22 % 0.00 %

Table 1: FR of TOA and TDOA for optimisations performed with the
Simplex and Levenberg algorithms for the considered arrangement of
sensors and ideal sources.
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4.1.2 Multilateration Robustness Assessment in Ideal 2D Scenarios

Fig.(30) illustrates the cases considered for the 2D multilateration without uncertainties51. The error
in position was initially assessed for all the source positions. Afterwards, the error in position was
assessed exclusively for the source located inside the FOV (depicted as black triangle in Fig.(30)).
Starting with the source located everywhere, the error obtained with TOA is nearly unaffected by
variations in the source location, resulting in εxy equal to 0.81±0.46 µm, which reduces to 0.74±0.59
µm for sources located inside the FOV. In synthesis, for the TOA, the error in position increases for
the sources located outside the FOV. The TOA’s localisation error is illustrated in Fig.(30a).

When considering the TDOA executed with the static reference sensors, the best multilateration per-
formance was achieved with the BS1. In fact, without considering the FOV, the obtained error εxy
equals to 2.00± 1.80 µm, which decreases to 0.78± 0.05 µm when the source is located inside the
FOV. Furthermore, the error increases for the sources located in proximity to the reference sensors,
as shown in Fig.(30b) to Fig.(30d). For the multilateration performed with the second set of reference
sensors (i.e., dynamic sensor lRe f ,max), the achieved error in localisation is 1.90± 1.50 µm without
considering the FOV. The error in localisation decreases to 0.84± 0.57 µm considering the sources
inside the FOV. The multilateration performed using reference sensors Bs1 and lRe f ,max yielded a sim-
ilar localisation error when the FOV was not considered. For the sources located inside the FOV, the
reference sensor Bs1 gives a lower localisation error, as reported in Table(2). For the TOA and TDOA,
all the multilateration results are reported and summarised in Table(2).
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Figure 30: Error in 2D Multilateration of ideal point sources without uncertainties: (a) TOA and
TDOA with (b) Bs1, (c) Bs2, (d) Bs3 as static reference sensors, and (e) lRe f ,max, (f) lRe f ,min, and (e)
lRe f ,mean as dynamic reference sensors. In all figures, the black triangle denotes the FOV. With slight
changes, all the figures reported here were extracted from [150].

51The sensor configurations in Figs. (30, 29d) differ. For setup details, check sections 3.1.2 and 3.1.3.
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In conclusion, TOA and TDOA performed similarly for sources located inside the FOV when there
are no uncertainties on the geometrical ToF estimation, as illustrated in Fig.(31). Moreover, from
Fig.(31), based on the distribution of the error inside the FOV for both multilateration algorithms,
it can be concluded that TOA and TDOA are around equal. However, the results also demonstrate
that TOA is less geometry dependent compared to TDOA (see the outlier errors for the TDOA in
Figs.(31b,31c and 31d)).

(a) TOA and TDOA ref.Bs1. (b) TOA and TDOA ref.Bs2 (c) TOA and TDOA ref.Bs3.

(d) TOA and TDOA ref.lRe f ,min. (e) TOA and TDOA ref.lRe f ,max (f) TOA and TDOA ref.lRe f ,mean.

Figure 31: Error distribution for ideal point source localisation performed with TOA and TDOA with-
out uncertainties. For TDOA, the ideal source was localised with static reference and dynamic ref-
erence sensors. (a,b,c) Comparison between multilateration performed with TOA and TDOA (static
reference sensors Bs1, Bs2 and Bs3). (d,e,f) Comparison between multilateration performed with TOA
and TDOA (dynamic reference sensor lRe f ,min, lRe f ,max and lRe f ,mean). All the results reported here
are for the sources located inside the FOV.

Multilateration Methods Reference Sensor µεxy [mm] µFOV
εxy

[mm] σεxy [mm] σFOV
εxy

[mm]

TDOA

Bs1 2.0× 10−3 7.8× 10−4 1.8×10−3 4.8×10−5

Bs2 2.4× 10−3 1.2× 10−3 2.0×10−3 1.2×10−3

Bs3 2.3× 10−3 1.1× 10−3 2.1×10−3 8.9×10−4

lRe f ,max 1.9× 10−3 8.4× 10−4 1.5×10−3 5.7×10−4

lRe f ,min 3.0× 10−3 1.5× 10−3 2.3×10−3 1.3×10−3

lRe f ,mean 2.0× 10−3 6.9× 10−3 1.9×10−3 3.8×10−3

TOA none 8.1× 10−4 7.4× 10−4 4.6×10−4 5.9×10−4

Table 2: Overview and comparison of 2D multilateration performance using TOA and TDOA in
the absence of uncertainties. TDOA multilateration was conducted with various reference sensors,
including static (Bs1, Bs2, Bs3) and dynamic (lRe f ,max, lRe f ,min, lRe f ,mean).



82 Results

Random and systematic uncertainties were evaluated separately before having both to better under-
stand their individual contribution. To simplify and make the analysis more concise, the thesis will
focus exclusively on localising sources inside the FOV using both multilateration algorithms. Addi-
tionally, when localising sources with TDOA, the reference sensor Bs1 will be preferred, as it results
in the lowest error in position estimation.

When modelling random uncertainties, the source localisation is more accurate at the centre of the
sensor network, independently of the method utilised. However, for the multilateration performed
with TOA, the error progressively increases inside the FOV from the centre. The average RMSE is
1.60 mm, reaching 3.21 mm at the outermost edges, leading to an average RMSE of 2.19 ± 0.41 mm,
for the range of uncertainty modelled as shown in Fig.(32a). The positions where the RMSE increases
are correlated to the positions where the source is located at the edge of the FOV.
On the other hand, when modelling random uncertainties for the TDOA, the RMSE goes from a min-
imum of 1.61 mm to a steep increase near Bs2 and Bs3, going up to 5.52 mm for the acoustic point
source located close to the Bs2 sensor. Hence, the mean root mean square error and its standard devi-
ation (µFOV

RMSE
,σFOV

RMSE
) were found to be 2.32 ± 0.66 mm, as illustrated in Fig.(32b). The results for both

algorithms are summarised in Table(3).
Through a comparison of Fig.(32a) and Fig.(32b), the plots show a higher degree of homogeneity on
the error distribution for TOA compared to TDOA. This observation indicates the superior perfor-
mance of TOA in the presence of random uncertainties. Furthermore, the TDOA’s higher dependency
on the geometry can be seen from the error that increases on the edge of the FOV.
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Figure 32: Error on the 2D Multilateration of ideal point sources located in the sensor array FOV
in the presence of random uncertainties, N (µµµ, ΣΣΣ) with mean zero and a standard deviation (σrandom)
equal to 5 % of the absolute ToF. (a) TOA multilateration and (b) TDOA multilateration with Bs1 as
a reference. Figure extracted from [150]

.

Multilateration Methods Reference Sensor µFOV
RMSE

[mm] σFOV
RMSE

[mm]

TDOA Bs1 2.32 0.66
TOA none 2.19 0.41

Table 3: Comparison of 2D multilateration between TOA and TDOA in
the presence of random uncertainties, N (µµµ,ΣΣΣ), with a mean of zero and a
standard deviation (σrandom) set to 5% of the absolute ToF.



Results 83

The different performance between TOA and TDOA in the presence of random uncertainties can be
explained mathematically from the cost function of both localisation algorithms. Starting with TDOA
and considering its cost function as described below:

min
xs,ys

fT DOA(xs,ys) = min
xs,ys

n

∑
i=1

∑
re f ̸=i

(
vs ·ToFi −∥di∥2 − vs ·ToFre f +

∥∥dre f
∥∥

2

)2
(4.1)

The cost function in eq.(4.1) can be re-written introducing the two variables ϒi and ϒre f , which
accounts for random uncertainties, for the ToF estimated from sensor Bs1 to Bsn and for the ToF
estimated with the reference sensor Bsre f . So, the new formulation of the cost function follows:

min
xs,ys

fT DOA(xs,ys) = min
xs,ys

n

∑
i=1

∑
re f ̸=i

(
vs ·
{
(ToFi −ToFre f )+(ϒi −ϒre f )

}
−∥di∥2 +

∥∥dre f
∥∥

2

)2
(4.2)

There was no correlation between random uncertainties of individual sensors (ϒi ̸= ϒre f ). Therefore,
for the TDOA algorithm, the total error is proportional to the error on each sensor plus the error on
the reference sensor52. Hence, poor performance is observed when modelling random uncertainties.

On the other hand, when considering the TOA and by re-writing its cost function as:

min
xs,ys

fTOA(xs,ys) = min
xs,ys

n

∑
i=1

(
vs ·ToFi −∥di∥2

)2
(4.3)

Again, considering the random uncertainties introduced on the ToF extracted from sensors Bs1 to
sensor Bsn as ϒi, the TOA cost function can be further expanded as :

min
xs,ys

fTOA(xs,ys) = min
xs,ys

n

∑
i=1

(
vs · (ToFi +ϒi)−∥di∥2

)2
(4.4)

From eq.(4.3) it can be seen that only ϒi contributes on the uncertainties introduced on the ToF. Indeed,
the performance of the TOA algorithm is attributed to the fact that the total error in TOA is solely
influenced by the error associated with each sensor. Consequently, the TOA algorithm demonstrates
higher performance in scenarios involving random uncertainties than TDOA.

52ϒtot =
n

∑
i=1

∑
re f ̸=i

√
ϒ2

i +ϒ2
re f .
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Fig.(33) illustrates the RMSE for multilateration with systematic uncertainties using the TOA and
TDOA algorithms. When localising the source with TOA, the RMSEFOV can increase up to 2.14
mm for sources located at the edge positions. The mean root mean square error and its standard de-
viation equal 1.03 ± 0.52 mm. The RMSEFOV decreases to 0.12 mm for the sources at the centre.
The systematic uncertainties cancel out for the multilateration performed with TDOA as shown in
Fig.(33b); in fact, the RMSE equals 0.78±0.05 µm. The RMSE obtained in the presence of system-
atic uncertainties is equal to the error in multilateration without modelling uncertainties, with a value
of 0.78±0.05 µm (see the TDOA results for Bs1 reported in Table(2)).
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Figure 33: Error on the 2D Multilateration of ideal point sources located in the sensor array FOV in the
presence of systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero and a standard deviation (σsystematic)
equal to 1 µs. (a) TOA multilateration, and (b) TDOA multilateration with Bs1 as a reference. Figure
extracted from [150].

Multilateration Methods Reference Sensor µFOV
RMSE

[mm] σFOV
RMSE

[mm]

TDOA Bs1 7.8×10−4 4.8×10−5

TOA none 1.03 0.52

Table 4: 2D Multilateration comparison between TOA and TDOA in the
presence of systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero and a stan-
dard deviation (σsystematic) equal to 1 µs.

The cancellation of systematic uncertainties in multilateration performed with TDOA can be math-
ematically explained. This can be achieved by rewriting the cost function expressed in eq.(4.5) by
assuming that there is a correlation among the systematic uncertainties considered for every individ-
ual sensor, which implies ϒi = ϒre f . That implies that the localisation of the acoustic point source
relies exclusively on the ToF extraction method. As a result, the new cost function can be simplified
as described in eq.(4.6).

min
xs,ys

fT DOA(xs,ys) = min
xs,ys

n

∑
i=1

∑
re f ̸=i

(
vs ·
{
(ToFi +ϒi)− (ToFre f +ϒre f )

}
−∥di∥2 +

∥∥dre f
∥∥

2

)2
(4.5)
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min
xs,ys

fT DOA(xs,ys) = min
xs,ys

n

∑
i=1

∑
re f ̸=i

(
vs · (ToFi −ToFre f )−∥di∥2 +

∥∥dre f
∥∥

2

)2
(4.6)

The same analogy used to explain the TDOA can be made for the TOA by re-writing its cost function
as:

min
xs,ys

fTOA(xs,ys) = min
xs,ys

n

∑
i=1

(
vs ·ToFi −∥di∥2

)2
(4.7)

Again, considering the systematic uncertainties introduced on the ToF extracted from sensors Bs1 to
sensor Bsn as ϒi, the TOA cost function can be further expanded as :

min
xs,ys

fTOA(xs,ys) = min
xs,ys

n

∑
i=1

(
vs · (ToFi +ϒi)−∥di∥2

)2
(4.8)

After analysing a case where the TDOA algorithm is applied with perfect correlation among the
uncertainties of all sensors, it can be concluded that the systematic uncertainties are eliminated, as
demonstrated in equation (4.6). On the opposite, the TOA algorithm is sensitive to systematic uncer-
tainties, as demonstrated in eq.(4.8). These results are also valid for the multilateration performed in
3D. A more detailed discussion of the 3D multilateration, including the results for TOA and TDOA
algorithms, will be presented in section 4.1.3.

To understand the robustness of each localisation algorithm in the presence of different types of un-
certainties, we modelled random and systematic uncertainties separately as a starting point. In clinical
beam facilities, both uncertainties are expected to be correlated to the IA signals, and it is crucial to
study the impact of both uncertainties modelled simultaneously. The previous sections found that the
TOA algorithm is less sensitive to random uncertainties, while the TDOA algorithm is not sensitive
to systematic uncertainties. To examine the effect of random and systematic uncertainties on the lo-
calisation results, we performed multilateration with both algorithms. Fig.(34) presents the results of
multilateration in the presence of random and systematic uncertainties.

For the multilateration performed with the TOA algorithm, the error gradually increases inside the
FOV as the source moves from the centre towards the edges. The RMSE equals 1.63 mm at the
centre and 4.03 mm at the edges, leading to an average RMSE of 2.68 ± 0.63 mm for the range of
uncertainty modelled, as shown in Fig.(34a). The higher RMSE is correlated to the positions where
the source is located at the edge of the FOV. When the uncertainties were modelled for the TDOA
algorithm (Bs1 as reference sensor), the error rapidly increased near Bs2 and Bs3, going up to 5.52
mm for the acoustic point source located close to the Bs2 sensor. The minimum RMSE was achieved
for all the sources located in the centre of the FOV and was 1.61 mm. The mean root mean square
error and its standard deviation were found to be 2.32 ± 0.66 mm, as illustrated in Fig.(34b). All
source localisations are listed and summarised in Table(5).
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To summarise, for the range of random and systematic uncertainties investigated, TDOA is more
robust for all the acoustic source points in the centre of the FOV. However, it is less robust for sources
located at the FOV edges than the TOA. TDOA is more sensitive to geometry, i.e., sensor arrangement.
As a consequence, it might result in higher RMSE and standard deviation compared to the TOA.
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Figure 34: Error on the 2D Multilateration of ideal point sources located in the sensor array FOV in
presence of random and systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero and a standard deviations
σrandom equal to 5 % of the absolute ToF, and a σsystematic equal to 1 µs. using (a) TOA multilateration
and (b) TDOA multilateration with Bs1 as a reference. Figure extracted from [150].

Multilateration Methods Reference Sensor µFOV
RMSE

[mm] σFOV
RMSE

[mm]

TDOA Bs1 2.32 0.66
TOA none 2.68 0.63

Table 5: 2D Multilateration comparison between TOA and TDOA in the
presence of random and systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero
and a standard deviations σrandom equal to 5 % of the absolute ToF, and a
σsystematic equal to 1 µs, and vs equal to 1500 m/s.
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4.1.3 Multilateration Robustness Assessment in Ideal 3D Scenarios

Fig.(35) depicts the results of 3D multilateration. The results obtained without uncertainties are sim-
ilar to the 2D multilateration without uncertainties. In fact, starting with TOA and considering the
source inside the FOV, the obtained error and standard deviation were equal to 0.78 ± 0.58 µm. There
is no significant change in the error magnitude for TOA. This makes the localisation performed in 3D
comparable to the one performed in 2D. On the contrary, when localising the source with the TDOA
having Bs1 as the reference sensor, the error and the standard deviation was equal to 1.00 ± 0.62 µm.
The summary of the results between both multilateration algorithms is reported in Table(6).

(a) 3D TOA ideal scenario. (b) 3D TDOA ideal scenario.

Figure 35: RMSE of the multilateration in 3D ideal scenarios depending on the source location, for
(a) TOA and (b) TDOA using Bs1 as a reference sensor.

Multilateration Methods Reference Sensor µFOV
εxyz

[mm] σFOV
εxyz

[mm]

TDOA Bs1 1.0×10−3 6.2×10−4

TOA none 7.8×10−4 5.8×10−4

Table 6: Summary of the errors obtained using 3D multilateration without
modelling uncertainties.

Fig.(36) illustrates the RMSE output of localisation using multilateration in the presence of random
uncertainties. When localising the source using TOA, the mean root mean square error inside the
FOV and its standard deviation are 3.14 ± 0.42 mm, as shown in Fig.(36a). The minimum RMSE
obtained is 2.42 mm, corresponding to source positions located in the centre of the FOV. However,
when moving to the edge of the FOV, the RMSE increases to 4.49 mm. When localising the source
with TDOA as shown in Fig.(36b), the mean root mean square error inside the FOV and its standard
deviation (RMSEFOV ,σFOV ) equal 3.35 ± 0.74 mm. The minimum RMSE of 2.45 mm is achieved
for the sources in the centre of the FOV. Moreover, the RMSE increases for sources located on the
edge of the FOV up to a maximum of 8.38 mm. Similar to the multilateration performed in 2D, the
TOA performs better than TDOA in the presence of random uncertainties.

Fig.(37) shows the RMSE for the multilateration performed in 3D in the presence of systematic un-
certainties. For the TOA algorithm, the RMSE showed a minimum of 0.21 mm, reaching a maximum
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of 2.34 mm for sources located on the edge of the FOV. For all the sources located inside the FOV, the
mean root mean square error and the standard deviation (RMSEFOV ,σFOV ) equal 1.42 ± 0.41 mm,
as shown in Fig.(37a) and summarised in Table(8). For the multilateration performed with TDOA, as
shown in Fig.(37b), the RMSE reduces for all the source positions having the mean root mean square
error and its standard deviation of 1.00 ± 0.62 µm, as summarised in Table(8).
Fig.(38) illustrates the multilateration performed in 3D with both random and systematic uncertain-
ties. Starting with the TOA algorithm, the mean root mean square error inside the FOV and its
standard deviation are equal to 3.74 ± 0.54 mm, as shown in Fig.(38a). The minimum mean square
error equals 2.58 mm for the sources in the centre of the FOV. When moving outside the centre of
the FOV, the mean root mean square error increases to 5.38 mm. When localising the source position
with TDOA, the mean error and standard deviation equal 3.35 ± 0.74 mm, as shown in Fig.(38b).
The minimum RMSE equals 2.47 mm for the source in the centre of the FOV, increasing to 8.37 mm
when moving towards the edges of the FOV. It is important to note that the results obtained for the
TDOA in the presence of random and systematic uncertainties are similar to the ones obtained when
only random uncertainties are modelled, as systematic errors cancel out. For both algorithms, the
results reported in 3D agree with those presented for the multilateration in 2D. They confirm that in
the presence of random and systematic uncertainties, TDOA results are more robust than TOA, espe-
cially for sources inside the FOV due to the lower minimum RMSE (2.47 mm for TDOA, compared
to 2.58 mm for TOA). However, they also exhibit a stronger dependency on the sensor arrangement
due to the higher σFOV . All the results for both algorithms considering the source inside the FOV are
reported in Table(9).

(a) TOA (b) TDOA, Bs1

Figure 36: RMSE of the multilateration in 3D depending on the source location and in the presence
of random uncertainties, N (µµµ, ΣΣΣ), with mean zero and a standard deviation (σrandom) equal to 5 %
of the absolute ToF. (a) TOA multilateration and (b) TDOA multilateration using Bs1 as a reference
sensor. Figure extracted from [150].

Multilateration Methods Reference Sensor µFOV
RMSE

[mm] σFOV
RMSE

[mm]

TDOA Bs1 3.35 0.74
TOA none 3.14 0.42

Table 7: 3D Multilateration comparison between TOA and TDOA in the
presence of random uncertainties, N (µµµ, ΣΣΣ), with mean zero and a standard
deviation (σrandom) equal to 5 % of the absolute ToF, and vs equal to 1500
m/s.
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(a) TOA (b) TDOA, Bs1

Figure 37: RMSE of the multilateration in 3D depending on the source location and in the presence
of systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero and a standard deviation (σsystematic) equal to
1 µs. (a) TOA multilateration and (b) TDOA multilateration using Bs1 as a reference sensor. Figure
extracted from [150]. Figure extracted from [150].

Multilateration Methods Reference Sensor µFOV
RMSE

[mm] σFOV
RMSE

[mm]

TDOA Bs1 1.0×10−3 6.2×10−4

TOA none 1.42 0.41

Table 8: 3D Multilateration comparison between TOA and TDOA in the
presence of systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero and a stan-
dard deviation (σsystematic) equal to 1 µs, and vs equal to 1500 m/s.

(a) TOA (b) TDOA, Bs1

Figure 38: RMSE of the multilateration in 3D depending on the source location and in presence of
random and systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero and a standard deviations σrandom
equal to 5 % of the absolute ToF, and a σsystematic equal to 1 µs. (a) TOA multilateration and (b)
TDOA multilateration with Bs1 as a reference. Figure extracted from [150].

Multilateration Methods Reference Sensor µFOV
RMSE

[mm] σFOV
RMSE

[mm]

TDOA Bs1 3.35 0.74
TOA none 3.74 0.54

Table 9: 3D Multilateration comparison between TOA and TDOA in the
presence of random and systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero
and a standard deviations σrandom equal to 5 % of the absolute ToF and
σsystematic equal to 1 µs, and vs equal to 1500 m/s.
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4.1.4 Comparison of 2D and 3D Multilateration in Ideal Scenarios

For compactness, the comparison between multilateration in 2D and 3D has been performed only for
the algorithm’s localisation in the presence of random and systematic uncertainties. It is important
to stress that, in multilateration, the source localisation accuracy can be affected by various factors,
such as the geometry of the sensor network, sensor location, the number of sensors used for the lo-
calisation, and ToF estimation. For 3D multilateration using TOA, adding an extra sensor (Bs4) does
not always improve accuracy, especially with suboptimal sensor arrangement. However, a fourth sen-
sor can reduce ambiguity in localisation, even though the multilateration using TOA works with just
three sensors. In contrast, TDOA localisation in 3D requires four sensors and optimal arrangement.
Additionally, 3D multilateration may be more computationally complex than 2D, which impacts its
suitability for real-time applications.
Fig.(39) illustrates the comparison in performance of 2D and 3D multilateration for localising sources
in the same plane, defined by Bs1, Bs2, and Bs3, and limited to the sources within the sensor FOV. A
minimum of three sensors is required for multilateration executed in 2D. For the 3D multilateration,
at least four sensors are required. Therefore, an additional sensor (Bs4) was used for 3D multilatera-
tion, resulting in higher localisation complexity as 3D multilateration is more demanding than 2D. In
concrete, when performing the multilateration with the TOA algorithm, the mean root mean square
error and standard deviation increased from 2.68 ± 0.63 mm in 2D to 4.03 ± 0.33 mm in 3D. Cor-
respondingly, the mean root mean square error for the TDOA algorithm increased from 2.32 ± 0.66
mm in 2D to 3.86 ± 0.86 mm in 3D. The performance of the multilateration is better in 2D compared
to the multilateration performed in 3D. For the latter, the increase in the localisation error is more
likely because the multilateration is being performed in 3D (i.e., more planes to cover). The summary
of the comparison between TDOA performed in 2D and 3D are reported in Table(10).
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Figure 39: Comparison of the performance of TOA and TDOA multilateration in 2D and 3D in
the presence of random and systematic uncertainties. For TDOA, Bs1 was systematically used as a
reference sensor.

Multilateration Methods Reference Sensor µFOV
RMSE

[mm] σFOV
RMSE

[mm]

2D TOA none 2.68 0.63
3D TOA none 4.03 0.33

2D TDOA Bs1 2.32 0.66
3D TDOA Bs1 3.87 0.86

Table 10: Multilateration comparison between 2D TDOA vs 3D TDOA
with random and systematic uncertainties, N (µµµ, ΣΣΣ), with mean zero and a
standard deviations σrandom equal to 5 % and σsystematic equal to 1 µs, and
vs equal to 1500 m/s.
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4.2 Ionoacoustic Simulation Studies at Pre-clinical Beam Energies
This section is focused on localising the BP position using IA signals and previously introduced lo-
calisation algorithms. Firstly, we examined the impact of the ToF extraction method on the accuracy
of BP position localisation. The accuracy of the ToF extraction method can significantly affect the
localisation accuracy of the BP position. Different ToF extraction methods have been proposed in
the literature [70, 76], and their performance can vary depending on the IA signal characteristics and
the signal processing algorithms used. This work will discuss the advantages and disadvantages of
different ToF extraction methods and their impact on the localisation accuracy of the BP position.
Secondly, we explored the influence of the reference sensor when considering IA signals. The ref-
erence sensor is an essential component of IA signal-based localisation algorithms, as it provides a
time reference for the multilateration. Therefore, the placement of the reference sensor can affect
the accuracy of the BP position localisation, and its selection should be carefully considered. The
impact of different reference sensor placements on localisation accuracy is examined, and methods to
optimise the reference sensor selection are discussed.

4.2.1 ToF Extraction Depending on the Sensor Position

Fig.(40a) illustrates how the error in ToF determined from simulated53 ionoacoustic signals depends
on the extraction method and the sensor position54 in the arc array introduced in section 3.2.1 and
illustrated Fig.(19b). Independently of the extraction method used, the minimum ToF error occurs for
the axial sensors (i.e., Bs422), and the error increases for lateral sensors such as Bs1 and Bs843. The
ToF extraction from the signal’s max envelope yields the absolute lowest errors, with errors lower
than 0.1 µs at four positions close to the beam axis (Bs322, Bs403, Bs441, B523). On average, the lowest
error is obtained using the zero-crossing method across all analysed sensor positions.

Fig.(40b) illustrates the TDOA performance across different reference sensors, from Bs1 to Bs843,
during 2D multilateration using all 843 sensors and applying the zero-crossing method to extract the
ToF. Consistent with the ToF error pattern, the localisation error is minimum when the reference
sensor is on the beam axis (εxz = 0.18 mm for Bs422 as the reference sensor) and increases when
selecting a lateral sensor as the reference sensor (up to εxz = 1.60 mm for Bs1 as the reference sen-
sor). However, the minimum error in ToF estimation does not correspond to the lowest localisation
error. Table(11) presents the errors in BP localisation obtained using TOA and TDOA multilatera-
tion methods (with Bs422 as a reference sensor, similar to Bs1 in previous ideal studies) for different
ToF extraction methods. When using all 843 sensor positions, the zero-crossing method proved to be
the most accurate for ToF extraction, yielding the lowest BP position error (0.55 mm for TOA and
0.18 mm for TDOA) as well as the lowest average ToF error. Therefore, reducing the ToF error will
improve the multilateration outcomes.

For the BP localisation with three sensors, the errors were 0.09 mm and 0.35 mm for TOA and TDOA,
respectively. The max envelope ToF extraction method showed that the lateral55 and axial56 sensors
always had lower errors in ToF estimation than other extraction methods, as illustrated in Fig.(40a).
Fig.(40a) displays several sensor positions where the ToF error estimation, based on the max envelope
and min amplitude, exceeds 1.5 µs. The observed discontinuities result from the shape of the IA sig-

53For the simulation setup see Fig.(19b).
54Ranging from Bs1 to Bs843.
55Lateral sensors Bs1 and Bs843.
56Axial sensor Bs422.
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nals, where the rarefaction peak and the window signal are superimposed, as illustrated in Fig.(41a).
This feature significantly impacts the ToF estimation when computing the ToF from the IA signal
minimum amplitude, as several local minima may be present, making it challenging to identify the
rarefaction peak. Similarly, when utilising all information of the recorded signal, i.e., by computing
the signal envelope, the merging effect can still influence the position where the ToF is accurately ex-
tracted, as several peaks can be present in the signal envelope. Furthermore, due to the merging effect,
the signal envelope can become spread out, leading to either an underestimation or overestimation of
the ToF, as shown in Fig.(41b).
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Figure 40: ToF error and BP localisation accuracy as a function of sensor positioning are presented.
(a) ToF error is shown based on sensor position along the arc for four extraction methods: zero-
crossing, min amplitude, max amplitude, and max envelope. (b) BP localisation error using 843
sensors with TDOA is displayed relative to the reference sensor position, with ToF extracted using
zero-crossing in all cases. The discretised behaviour in both plots results from rounding errors in
sensor placement on the computational grid and slight asymmetry in the beam position relative to the
sensors. Figures adapted with minor changes from [150].

Number of sensors ToF extraction εTOA
xz εT DOA

xz mean εToF

843

ground truth 0.15 µm 0.87 µm
min amplitude 3.76 mm 1.19 mm 1.09 µs
max amplitude 0.62 mm 1.52 mm 0.50 µs
max envelope 4.49 mm 2.49 mm 0.64 µs
zero crossing 0.55 mm 0.18 mm 0.29 µs

3
ground truth 2.00 µm 3.00 µm
max envelope 0.09 mm 0.35 mm 0.19 µs

Table 11: 2D multilateration of the BP position was evaluated using different
ToF extraction methods. Two scenarios were analysed: one utilising all 843
sensors and another using only three optimally selected sensors. The ground
truth reflects the error in multilateration when ToF was derived from the Eu-
clidean distance between the BP and the selected sensors.
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(a) IA signal time-domain, sensor Bs319. (b) IA signal envelope, sensor Bs319.

Figure 41: IA signal in time-domain recorded with the sensor Bs319. (a) The figure illustrates the
distorted shape of the IA signal due to the merging effect (i.e., there is no clear separation between
the rarefaction peak and the window signal). (b) Overlap of the signal envelope and the IA signal,
the envelope comprises three prominent peaks indicating the compression, rarefaction/window signal
(merged) and the reflected signal.

4.2.2 Optimal Sensor Selection Based on ToF Error Analysis

The previous results did not include an optimal selection of the sensors for the multilateration. In
other words, the BP position can be localised more accurately by selecting the sensors optimally.
The results reported here are specifically for the TOA algorithm to simplify the complexity of the
reference sensor choice introduced by TDOA. The only exception is for the multilateration performed
with three sensors, where the results for TOA and TDOA will be reported. A more generic selection
of the reference sensor to minimise the error outcome on the multilateration of the BP is described by
eq.(4.9), which is defined as follows:

Bsi =


Bsminε

dToF,i
i ; εdToF,i < ηdToF,i i = 1, ..,n

Bsmaxε
dToF,i

i ; εdToF,i > ηdToF,i i = 1, ..,n

(4.9)

This study is feasible in an in-silico scenario where there is a ground truth available, enabling the
examination of the impact of ToF error on sensor selection. In eq.(4.9), Bsi represents the sensors in
the network, while n is the number of sensors. εdToF,i indicates the error on the ToF estimated from
the ground truth and converted into distance using the speed of sound in water, and ηdToF,i denotes the
chosen threshold distance, based on the minimum desired error on the ToF. By employing this method
and selecting a threshold (ηdToF,i) of 0.1 mm for localising the BP using TOA, an error of 46 µm is
achieved when extracting the ToF with the max amplitude method. In this particular case, the number
of sensors decreases from 843 to a total of 37 sensors. When localising the BP with ToF extracted with
the zero-crossing method, the error equals 21.80 µm, with a total of 52 sensors. Furthermore, when
localising the BP position using the max envelope ToF extraction method, the error in localisation
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equals 6.00 µm for a total of 72 sensors. Likewise, when selecting the minimum number of sensors,
for example, using only three sensors (Bs1, Bs422, and Bs843) and extracting the ToF from the max
envelope, which is the method that offers the lowest error for axial and the two lateral sensors, the
localisation error reaches the values of 0.09 mm and 0.35 mm for TOA and TDOA with Bs422 as a
reference, respectively. All the multilateration results are summarised in Table(12).
The number of sensors depends on the threshold, which is why different ToF extraction methods
employ different numbers of sensors. The aim is not to compare which method performs better but to
point out that the sensor selection for the BP localisation can be chosen optimally. Furthermore, the
results based on the ToF extracted from the min amplitude are not included because the average error
is 1.09 µs, which is about two times higher compared to the other ToF extraction methods.

Number of sensors ToF extraction εTOA
xz Optimal sensor selection

843
ground-truth 0.15 µm No
zero-crossing 0.15 mm No
max amplitude 0.62 mm No

37 max amplitude 46 µm Yes

52 zero-crossing 21.80 µm Yes

3 max envelope 0.09 mm Yes
75 max envelope 6.00 µm Yes

Table 12: Assessment of BP position multilateration using three distinct ToF
extraction techniques: zero-crossing, max amplitude, and max envelope. The
multilateration was carried out both with and without optimal sensor selection
based on the ToF error relative to the known ground truth, applying a threshold
(ηdToF,i) of 0.1 mm (εdToF,i < ηdToF,i).

4.3 Multilateration Experimental Studies
This section presents the experimental results for multilateration of the BP position from ionoacoustic
signals produced in water at different pre-clinical proton beam energies (20 and 22 MeV). The local-
isation process involved several steps. Initially, the localisation of the BP position was performed
in 2D. Next, the localisation was performed using two sets of sensor positions: one estimated from
the phantom drawings and the other calculated experimentally using pulse-echo measurements; for
more details, see section 3.2.2. Finally, a specially designed array57 was used to accurately localise
the BP position for the pre-clinical beam energy (for more details, see section 3.2.4). A significant
portion of the study focused on accurately determining the spatial locations of the transducers for both
experimental investigations.

4.3.1 IA Experiments with 3 Sensors

The IA signals detected by three sensors - an axial sensor, Bs1, and two lateral sensors, Bs2 and Bs3 -
are shown in Fig.(42a) to Fig.(42c). The experimental studies were conducted under two conditions:
on-axis, where the setup was positioned on the beam axis, i.e., aligned w.r.t to beam entrance window,
and off-axis, where the setup was shifted laterally by ±5 mm. Here, for compactness, only the results

57During this work, a dedicated ultrasound array was designed to capture the IA traces from different spatial locations.
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of the setup shifted by +5 mm will be presented and discussed. The axial signal, shown in Fig.(42a),
comprises three distinct pulses: the direct signal (used for ToF estimation), an entrance signal gen-
erated where the proton beam enters the water phantom, and a signal reflecting58 from the interface
between air and water. The axial signal has a higher frequency and amplitude than the lateral sig-
nals (as shown in Figs.(42b,42c)) due to sharper energy gradients along the proton beam axis for the
considered monoenergetic scenarios. Accordingly, when the setup is shifted laterally by +5 mm, the
ToF calculated from the lateral sensors59 is primarily affected since the longitudinal shift is smaller
than the transducer diameter of 12.7 mm. Consequently, the ToF measured by Bs2 increases, while
that measured by Bs3 decreases. This shift in time is expected to be retrieved from the localised BP
position. For all localisation results presented, the ToF was extracted using the signal max envelope,
as it yields a lower ToF error for lateral and axial sensors (see section 4.2.1).

Initially, the BP position was retrieved using the transducer spatial location derived from the pulse-
echo experiments described in section 3.2.2. The BP localisation was assessed with a total of 1000
consecutive IA measurements. When the phantom was positioned on-axis, the projected error along
the beam axis (1D) equals 0.20 ± 0.05 mm and 0.16 ± 0.11 mm for TOA and TDOA algorithms,
respectively, with Bs1 as the reference sensor. Furthermore, the error for the BP position localised in
2D is 0.87 ± 0.18 mm and 0.86 ± 0.22 mm for TOA and TDOA, respectively. The reconstructed lat-
eral and axial BP positions for the phantom on-axis are illustrated in Figs.(42d,42e). For the phantom
positioned off-axis, the projected error along the beam axis is 0.76 ± 0.06 mm and 0.87 ± 0.07 mm
for TOA and TDOA, respectively. The total error for the BP localised in 2D equals 1.40 ± 0.12 mm
and 1.46 ± 0.14 mm for TOA and TDOA, respectively.

The accurate localisation of the BP position depends on the transducer spatial locations accuracy,
among the previously discussed factors. For the transducer spatial locations estimated with pulse
echo, the error in BP localisation is high, approximately 0.90 mm and 1.50 mm for the phantom on-
axis and off-axis. The high errors in BP localisation are primarily due to the complexity of aligning
the cylinder target during pulse-echo measurements. Similarly, we conducted the spatial localisation
of the transducers using the cylinder target on different days compared to the main experiment using
the pre-clinical proton beam, which may have introduced additional variability. During the mounting
phase of the transducers on the phantom, a misalignment of 0.10 mm was also detected between
the centres of Bs2 and Bs3 (see Fig.(58) in appendix H). This misalignment was identified through
acoustic pulse-echo measurements, where Bs2 was used to send a pulse that reflected off the surface
of the Bs3 transducer, and vice-versa. Therefore, the sources of errors in estimating the transducer
spatial location are directly linked to the error in the BP localisation, as demonstrated by the findings.
In order to improve the localisation, it is crucial to decrease the error on the transducer spatial location.

58The reflected signal is the reflection of the direct signal.
59i.e., Bs2 and Bs3.
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Figure 42: 2D experimental study, the multilateration of the Bragg peak (BP) was assessed, and the
corresponding IA signals were recorded using (a) the axial sensor Bs1 and the lateral sensors (b) Bs2
and (c) Bs3. The BP lateral and axial positions (on-axis) were reconstructed and visualised in (d) and
(e), using the transducer spatial locations estimated from pulse-echo measurements. Furthermore,
the simulated laterally IDD distribution normalised by its maximum and displayed in (f) reveals the
Bragg peak located 4.12 mm distal to the phantom entrance (simulated IDD courtesy of Dr Hans-Peter
Wieser). The signals presented in figures (a) to (c) were averaged for better visualisation. Figures
extracted from [150], with exception to figures (d,e).

Figs.(43a,43b) illustrate the distribution of the BP reconstructed lateral and axial positions for the
phantom located on-axis. However, for the current reported results, the transducer spatial locations
were retrieved from the technical drawings of the I-BEAT [56]. Similar to the previous localisation
results, a total of 1000 consecutive IA measurements were used. When localising the BP having the
phantom located on-axis, the estimated error projection along the beam axis equals 0.21 ± 0.08 mm
and 0.30 ± 0.12 mm for TOA and TDOA (having Bs1 as a reference sensor). Furthermore, the corre-
sponding error on the BP position in 2D is 0.43 ± 0.20 mm and 0.48 ± 0.22 mm for TOA and TDOA.
All the reconstructed errors in position are summarised in Table(13). In both multilateration cases
(using TOA and TDOA), it was found that the main contribution to the total error in position (εx̂sẑs)
arises from the reconstruction of the lateral position (εx̂s = 0.37 ± 0.17 mm for TOA and TDOA, re-
spectively), which is attributed to an inaccurate knowledge of the transducer spatial location relative
to the beam entrance window.
When the phantom was positioned off-axis, the total error in BP position increased to 1.26 ± 0.13 mm
for TOA and 1.25 ± 0.14 mm for TDOA, primarily due to inaccuracies in ToF estimation. Moreover,
the error in Bs1 was higher compared to the previous setup (i.e., when the phantom was positioned
on-axis), which can be attributed to its nearly lateral positioning and reduced SNR. The SNR is one
of the most important metrics to assess the overall IA signal quality and its transition to pre/clinical-
clinical applications [169]. For this reason, the multilateration results performed with the two sets of
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transducer spatial locations60 can be contextualised by considering the estimated SNR for each trans-
ducer when the phantom is positioned on-axis and off-axis. Therefore, for the phantom positioned
on-axis, the higher SNR is achieved for the axial transducer Bs1, which equals 60.66 ± 3.41 dB (for
the SNR estimation, see eq.(3.12)). The high SNR leads to a stronger and more distinguishable IA
signal, implying an accurate ToF estimation. In addition, for the two lateral transducers, the estimated
SNR equals 19.08 ± 1.43 dB and 20.89 ± 1.38 dB for Bs2 and Bs3, respectively. The difference in the
SNR between both lateral sensors is about 1.81 dB, which translates to a similar IA signal strength,
integrity and features (see Fig.(42b)). The slight difference in the SNR between the two lateral sen-
sors could be due to the beam asymmetry w.r.t the sensors and uncertainties in the setup alignment.
Furthermore, the ToF accuracy and precision are expected to be comparable, if not the same. For the
phantom located on-axis, all the estimated SNR results are reported in Table(14). On the other hand,
when the phantom is located off-axis, the estimated SNR for the axial transducer Bs1 decreased to
14.91 ± 1.16 dB. For the lateral sensor Bs2, the SNR also decreased to 14.55 ± 0.73 dB because the
dose deposited in water is close to the lateral sensor Bs3, where the SNR increased to 26.81 ± 0.85
dB. All the results on the SNR are reported in Table(14).
In summary, when localising the BP using the transducer spatial locations estimated from pulse-echo
measurements, both TOA and TDOA methods exhibit a similar total error of approximately 0.90 mm
(phantom on-axis). These increased errors compared to the drawings are attributed to uncertainties
in accurately estimating the spatial location of the transducers using the cylinder target within the
phantom. Furthermore, the limited space between the entrance window and the cylinder target posed
challenges during the experimental studies, impacting the alignment and placement of the cylinder
target within the phantom. After employing a direct transducer localisation approach, i.e., based on
the phantom drawings, there was a significant improvement in localising the BP position. For the
phantom on-axis, the BP localisation error was 0.43 mm and 0.48 mm (TOA and TDOA, respec-
tively). For the phantom located off-axis, the accuracy of ToF estimation and proper knowledge of
the transducer’s spatial location is even more crucial due to the lower SNR for Bs1 and Bs2. Both
transducers have similar SNR. Therefore, for the BP localised using the two sets of the transducer
spatial location, the error on the BP localisation was above 1 mm (TOA and TDOA, respectively).
Hence, it can be concluded that when the sensor positions are known with high accuracy, and the IA
signals are recorded with high SNR, the BP position can be retrieved with high accuracy, assuming
that the error in ToF is properly estimated and the speed of sound in the medium is known.
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Figure 43: 2D Reconstructed BP position, for the transducer spatial locations estimated from the tech-
nical drawings. (a) reconstructed lateral BP position and (b) axial BP position, both for the phantom
located off-axis. IDD distribution normalised by its maximum and displayed in (c) (simulated IDD
courtesy of Dr Hans-Peter Wieser). Figures extracted from [150].

60i.e., using the cylinder and technical drawings.
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Phantom Position Multilateration Methods Reference Sensor ToF extraction εẑs
[mm] εx̂sẑs

[mm]

On-axis

TOAPulse echo none max envelope 0.20 ± 0.05 0.87 ± 0.18
T DOAPulse echo Bs1 max envelope 0.16 ± 0.11 0.86 ± 0.22
TOADrawings none max envelope 0.21 ± 0.08 0.43 ± 0.20
T DOADrawings Bs1 max envelope 0.30 ± 0.12 0.48 ± 0.22

Off-axis

TOAPulse echo none max envelope 0.76 ± 0.06 1.40 ± 0.12
T DOAPulse echo Bs1 max envelope 0.87 ± 0.07 1.46 ± 0.14
TOADrawings none max envelope 0.93 ± 0.07 1.26 ± 0.13
T DOADrawings Bs1 max envelope 0.91 ± 0.09 1.25 ± 0.14

Table 13: Position reconstruction errors for 2D multilateration are presented, comparing TOA and TDOA algo-
rithms with the phantom in both on-axis and off-axis positions. The BP localisation was based on single-shot
measurements (1.69 Gy). The reported localisation error represents the mean and standard deviation calculated
from 1000 consecutive measurements. Multilateration was performed using BP with two sets of transducer spatial
locations: one derived from drawings and the other from pulse-echo measurements.

Phantom Position SNRBs1 SNRBs2 SNRBs3

On-axis 60.66±3.41 19.08±1.43 20.89±1.38

Off-axis 14.91±1.16 14.55±0.73 26.81±0.85

Table 14: SNR estimation was conducted for single proton
pulse measurements (1.69 Gy) collected by the various sen-
sors with the phantom in both on-axis and off-axis positions.
These SNR values were calculated from 1000 consecutive
measurements and are presented as the mean and standard
deviation.
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4.3.2 IA Experiments with 5 Sensors

In real-life scenarios involving a small animal (i.e., a mouse), it becomes crucial to determine the
position of the sensor array relative to the animal. In such cases, optical measurements can be used
to retrieve the position of each sensor element. Furthermore, optical tracking measurements provide
the advantage of precise positioning by allowing for accurate tracking (i.e., an accuracy61 of 0.35 mm
[170]) and alignment of the sensor array with the beam entrance. We used an optical tracking system
to deduce the transducer spatial locations. Nevertheless, the results that were obtained did not meet
the required level of accuracy due to inherent challenges in the experimental setup. The inaccuracies
primarily resulted from the dependence of the optical tracking system on precise marker placement
on the transducer surface for accurate reconstruction of estimated points on the transducer rim sur-
face. Moreover, accessing and ensuring the visibility of markers on all transducer surfaces posed
difficulties. Accordingly, inaccuracies arise from the required rotations and translations of the pivot
point in manually positioning the markers on the transducer surface. Each point on the surface had to
be measured by manually holding a passive marker with a pivot point, further reducing the accuracy.
Fig.(44a) shows the transducer spatial location obtained from the optical measurements. One way to
assess if the transducer spatial location was accurate was to verify the horseshoes dimensions using
the coordinates estimated with the optical tracking. The distance estimated with the axial sensor was
benchmarked by computing the equation below:

dBP
Bs2

≈
√
(x2 − xew)2 +(y2 − yew)2 +(z2 − zew)2 −Range =⇒

∣∣∣dBP
Bs2

−dToF
Bs2

∣∣∣≈ 0 (4.10)

Eq.(4.10) compares the distance from the BP to the axial sensor estimated geometrically and based on
the ToF estimation from the recorded IA signal. In the equation, x2,y2, and z2 are the axial transducer
spatial location, xew,yew, and zew are the entrance window spatial location, and Range is the Bragg
peak position in water. From the geometrical calculation, the distance from the BP position to the
axial sensor (dBP

Bs2
) was estimated to be 37.33 mm. The distance from the axial sensor to the BP po-

sition (dToF
Bs2

)62 estimated using the IA signal was 44.60 mm. The difference between both distances
gave an offset of 9.27 mm. In addition, this offset was confirmed by comparing the dimension of the
horseshoes setup estimated from the output of the optical tracking coordinates and the one estimated
using the manufactured horseshoes drawings.
Fig.(44b) illustrates the transducer’s spatial localisation after applying the CPD rigid registration and
accounting for the proper matrix rotation for the sensors Bs1 and Bs3 defined in the template. Doing
so made compensating for the transducer’s spatial localisation errors possible. Therefore, after per-
forming the CPD rigid registration, a new set of transducer’s spatial locations was recalculated (i.e.,
c1

0, c1
1 to c1

4). The distances between the BP to the axial sensor, estimated geometrically and based on
the ToF estimation from the recorded IA signal, were again compared, giving an error of 0.96 mm.
Before discussing the output results of the multilateration algorithm, it is essential to describe the
IA signal recorded by each sensor using the horseshoes setup. Figs.(45a) to (45c) illustrate every
recorded signal from Bs0 to Bs4. Considering the sensor pairs (i.e., the lateral Bs0 and Bs4), it could
be noticed that the shape of the IA signal changes from one sensor to another, which is due to the
fact that one sensor is focused and the other is unfocused. The other pair of sensors (Bs1 and Bs3) are
shifted in phase because of different spatial impulse response. Lastly, the IA signal recorded with the

61The accuracy also depends on the type of the optical tracking system.
62dToF

Bs2
= vs ·ToFBs2 .
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axial sensor (Bs2) is illustrated in Fig.(45c). From the axial sensor, the classic shape of the IA signal
can be seen with the three main peaks, direct signal, window signal and reflected signal.
The ToF estimated with sensors Bs0 to Bs4 is reported in Table(15). The SNR was computed for every
single sensor in the network, and all the results are reported in Table(16).

(a) Spatial location optical tracking. (b) Spatial location with CPD registration.

Figure 44: Transducer localisation before and after the registration. (a) Transducers spatial localisa-
tion, output directly from the optical tracking system. The orientation of sensors is illustrated by the
red circles. The magenta square indicates the centre of the sensors. The three blue points in each
sensor show the measurement positions on the transducer outer rim. The brown square indicates the
position of the centre of the water tank entrance window. (b) Transducer spatial location after the
CPD registration.
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Figure 45: The recorded ionoacoustic signals were obtained from various sensor locations, as follows:
(a,e) two lateral transducers (Bs0,Bs4); (b,d) two transducers tilted at an angle of 28◦ with respect
to the beam axis (Bs1,Bs3); (c) the axial transducer. In addition, a simulated integral depth dose
normalized by its maximum is shown in (f) (IDD simulation courtesy of Dr Julie Lascaud). All the
recorded signals were averaged over 50 acquisitions, with a total dose of 29 Gy, figures from [150].
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Table 15: The mean and standard deviation of ToF for all transducers in the network, ranging from
Bs0 to Bs4, were computed. The signals were averaged over 50 acquisitions. The ToF was estimated
using the max envelope extraction method for all the recorded signals.

ToF Method ToF, Bs0 ToF, Bs1 ToF, Bs2 ToF, Bs3 ToF, Bs4

Max envelope 15.57 ± 0.19 µs 28.75 ± 0.12 µs 28.54 ± 0.05 µs 30.06 ± 0.14 µs 19.81 ± 0.13 µs

For the 3D multilateration, initially, the BP was localised considering the sensor localisation illus-
trated in Fig.(44a), without considering the CPD registration. The results were then compared to BP
localisation using sensor positions from CPD, as shown in Fig.(44b). The results of BP multilateration
in 3D using TOA and TDOA for the setup depicted in Fig.(22) are presented in Figs.(46a,46b). The
sensor locations were determined with particular attention, resulting in a total error in determining the
3D BP position of 1.00±0.72 mm and 0.82±0.23 mm for TOA and TDOA, respectively. It is essen-
tial to point out that the accuracy of the sensor localisation was further improved by performing the
proposed registration step. Without this step, the BP multilateration error increases to 2.48±0.30 mm
for TOA and 8.82±1.52 mm for TDOA. These results demonstrate the importance of accurate sensor
localisation in BP multilateration, mainly when using TDOA. The proposed co-registration step can
significantly improve the accuracy of the sensor positions, leading to more precise BP localisation.
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Figure 46: 3D BP Multilateration performed by the horseshoes transducer array with (a) TOA and (b)
TDOA. Sensor positions are shown as blue dots (sensor positions determined with registration step).
The entrance window is shown as a red dot and the BP is shown as a green dot. Figure extracted from
[150].

SNRBs0 SNRBs1 SNRBs2 SNRBs3 SNRBs4

11.60±3.11 11.34±4.12 41.70±14.07 12.06±3.98 16.81±3.48

Table 16: SNR estimated from all the transducers with 50 acquisitions.
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4.3.3 Improvement of the ToF extraction using a Gaussian fit

Fig.(47a) to Fig.(47e) illustrate the IA signals before and after a Gaussian fitting is applied to the
signal envelope. For the sensors Bs0 and Bs4, the phases were inverted as a matter of visualisation.
However, the multilateration was performed on the initial signal. When estimating the ToF based on
the max envelope, the estimated maximum can deviate from the expected value due to signal noise,
signal distortion, and other effects (see, for instance, Fig.(47d)). As a result, the ToF estimation can
either be underestimated or overestimated, depending on the maximum value observed in the signal
envelope. Therefore, applying a Gaussian fitting to the signal envelope can ensure the presence of a
unique signal maximum. This improves ToF estimation accuracy and enhances the detection algo-
rithm robustness. Accordingly, the optimisation works faster due to the more reliable ToF estimation
procedure. However, the Gaussian fitting is computationally expensive63 especially in the presence
of signal distortion and low SNR.

(a) IA, sensor Bs0 (b) IA, sensor Bs1 (c) IA, sensor Bs2

(d) IA, sensor Bs3 (e) IA, sensor Bs4

Figure 47: The recorded IA signals were obtained by averaging 1000 acquisitions. In Figures (a, b, c,
d), we can observe the IA signals recorded with sensors labelled as Bs0, Bs1, Bs2, Bs3, and Bs4. These
figures depict the unfitted and Gaussian-fitted signal envelopes.

Initially, the BP was localised by averaging the 1000 signal acquisitions. The rationale was to decrease
the random errors (which should average out with many signal averages) and increase the SNR.
When localising the BP, the error in position equals 0.36 mm and 0.72 mm for TOA and TDOA,
respectively, without any fitting applied to the signal envelope. Consequently, after averaging the
1000 signal acquisitions, a Gaussian fitting was applied to the envelope signals recorded with all
sensors (as depicted in Fig.(47)), the error on the localised BP position reduces further to 0.12 mm
and 0.67 mm for the TOA and TDOA, respectively. One reason the error in localisation is higher for
the TDOA is that by increasing the signal average, random errors still remain, making TOA perform
better than TDOA. The fitting procedure decreases the error to 0.24 mm and 0.05 mm for TOA

63A proper numerical quantification may be required.
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and TDOA, respectively. The improvement in TDOA is likely because of the fitting process, which
reduces systematic errors in ToF estimation. However, due to uneven error distribution across all
sensors, systematic errors may persist even when localising the BP with Bs1 as the reference sensor.
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4.4 SIRMIO Case Study
This section focuses on localising the BP position within the context of the SIRMIO project. The
primary purpose is to investigate the influence of ToF in relation to a sensor arrangement designed
for the SIRMIO setup. Various proton time profiles were examined to evaluate their impact on ToF
estimation and, subsequently, on the accuracy of BP position localisation. Following this, a compre-
hensive analysis of ToF was conducted, encompassing all previously introduced extraction methods.
Subsequently, the multilateration technique was employed to assess BP position localisation for dif-
ferent proton time profile widths, considering the optimal ToF extraction method. Furthermore, the
multilateration process was performed for various beam spatial locations with respect to the sensor
arrangement to assess its effectiveness in different scenarios.

4.4.1 Error on ToF Depending on the Proton Time Profile

Fig.(48a) to Fig.(48d) demonstrate the relationship between the error in ToF for different proton
time profile widths64 compared to IVP. The comparison is made considering the max envelope, min
amplitude, max amplitude and zero-crossing. In section 4.2.1, it was concluded that the max envelope
extraction method is the optimal ToF extraction method due to the lowest error on the ToF for the
lateral and axial sensors. This conclusion was reached by considering a 200 ns square pulse.
A different time profile was considered in this study because the SIRMIO setup is expected to be
integrated into clinical facilities [54]. Hence, the results reported here consider a different beam
energy and proton time profile (i.e., varying from 1 µs to 10 µs) compared to the one performed in
section 4.2, which was a 200 ns square pulse. To keep the results concise, the analysis of the ToF error
for all the extraction methods was limited to the axial sensor. This procedure is applied to the results
presented in Figs. (48a,48d). The reasoning is that the error in ToF for the axial sensor depends only
on the γ-wave. However, for realistic scenarios, it cannot completely be ensured that an axial sensor
will always be available.

When the ToF is extracted using the max envelope method as illustrated in Fig.(48a), the findings
show that the minimum ToF error occurs when the proton profile widths range from 3 µs to 6 µs.
Moreover, for the ToF estimated using the min and max amplitude extraction methods, it can be seen
that the lowest error in ToF is achieved when the proton time profile widths vary from 1 µs to 4
µs, as illustrated in Figs.(48b,48c). On the other hand, when the zero-crossing extraction method is
employed to estimate the ToF, a lower error in ToF is obtained for proton profile widths ranging from
1 µs to 4 µs, as demonstrated in Fig.(48d). Overall, the error on ToF converted into the distance is
lower if the ToF is extracted from the maximum signal envelope. Furthermore, if we consider the IVP
without convolving with any proton time profile, the zero-crossings gives a lower error. One reason
is that zero-crossings is less sensitive to changes in the IA signal phase.

To summarise, the error on the ToF is lower for the max envelope extraction method because of the
spatial dose distribution. The sensors placed axially record an acoustic pressure signal, which can be
estimated as the first-order derivative of the IDD. The IDD resembles a Gaussian profile at the Bragg
peak region. Accordingly, the ionoacoustic signal is the first-order derivative of a Gaussian profile,
giving the typical bipolar shape obtained for axial signals. Likewise, the pressure wave propagates
according to the first-order derivative of the Gaussian cross-section profile for the sensors placed later-
ally. Since the envelope of the first-order derivative of a Gaussian signal resembles a Gaussian profile,

64The recorded IA signals were convolved with different Gaussian’s proton profile widths.
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which in our case resembles either the lateral cross-section profile or the BP region of the IDD, the
max envelope correctly estimates the ToF. Hence, for more realistic proton time profiles, we obtained
a lower error on the ToF for axial and lateral sensors when the max envelope was used.
The error in the distance for the ToF extracted using the max envelope is 0.79 mm for proton profile
widths within the clinical range of 3 to 6 µs, as demonstrated in Fig.(48a). However, upon examining
Fig.(48b) to Fig.(48c), the error in ToF (converted into distance) estimated from the min amplitude is
1.22 mm, while from the max amplitude, it is 0.82 mm, both for a proton profile width of 1 µs. The
error of 1.22 mm demonstrates that the ToF extracted from the signal min amplitude is more sensitive
to IA signal shape, e.g., compared to the ToF extracted from the signal max amplitude (see section
4.2.1 and Fig.(41)). It should be noted that this proton profile width is shorter than that used in the
clinical synchrocyclotron facility, which is around 3.7 µs [76]. Therefore, for the SIRMIO beamline
setup, the BP will be localised only considering the ToF extracted from the max envelope.

(a) ToF max envelope. (b) ToF min amplitude.

(c) ToF max amplitude. (d) ToF zero-crossing.

Figure 48: Error on ToF estimation (converted to distance) of the IA signal produced by a SIRMIO
beam of 50 MeV stopped in water, depending on the ToF identification approach. Different proton
time profiles were analysed, from 1 µs to 10 µs with a step of 1 µs, and the error in ToF was estimated
taking the IVP as ground truth. (a) Error in distance ToF extracted with max envelope method. (b)
Error in distance ToF extracted with min amplitude method. (c) Error in distance ToF extracted with
min amplitude method. (d) Error in distance ToF extracted with the zero-crossing method. All the
ToF estimations were based on the setup illustrated in Fig.(25) in chapter 3.
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4.4.2 Multilateration Accuracy Depending on the Proton Time Profile

Fig.(49) shows the multilateration performed considering different time profile widths and the num-
ber of sensors. When performing the multilateration with TOA, as shown in Fig.(49a), the error in
localisation is below 0.59 mm for proton pulse width varying from 1 µs to 6 µs for all sensor configu-
rations. The multilateration performed with three sensors results in an average error of 0.37 mm, with
minimum and maximum errors at time profile widths of 2 µs and 10 µs, respectively. By increasing
the number of sensors, the dependency on proton pulse width increases because the error in BP lo-
calisation goes up to 2.44 mm. Fig.(49b) shows the dependency of the pulse width for multilateration
performed with TDOA. The error in localisation is below 0.60 mm for pulse width varying from 1 µs
to 6 µs for all sensor configurations. The minimum average error in position of 0.28 mm is achieved
for a proton pulse width of 1 µs, and the maximum average error in the position is 0.70 mm for a
proton pulse width of 10 µs.
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Figure 49: Error in position for TOA and TDOA multilateration. The BP localisation was performed
by varying the number of sensors and proton pulse widths. (a) TOA multilateration for different
sensors and proton pulse widths. (b) TDOA multilateration for different sensors and proton pulse
widths. For all sensor configurations, the reference sensor was the axial one, as shown in the setup
illustrated in Fig.(25) in chapter 3.

To summarise, the proton time profile affects the accuracy of BP position localisation. It was demon-
strated that the accuracy of the ToF estimation depends on the proton time profile width, as discussed
in section 4.4.1. Furthermore, it was found that wider proton time profiles tend to result in higher
errors on the reconstructed BP position [70]. For shorter proton pulse width (i.e., proton pulse width
≤ 6 µs) and the BP located in the centre of the array, the multilateration performed with TOA yields
lower overall localisation errors compared to TDOA, as illustrated in Figs.(49a,49b). Furthermore,
Fig.(48a) illustrates that the lowest average error in ToF is achieved when proton profile widths range
from 1 µs to 4 µs. This trend is also observed for BP localisation, except for localisation with only
three sensors. In addition to the proton time profile, the number of sensors used in localisation is also
crucial. Table(17) highlights that the error is consistently below 0.55 mm for localisation with only
three sensors for all proton time profile widths. When increasing the number of sensors from 7 to 52,
the error in position is below 0.59 mm for a proton time profile varying from 1 µs to 6 µs. Moreover,
when increasing the proton time profile widths from 7 µs to 10 µs, the error in position increases from
approximately 1 mm to 2.47 mm. TOA resulted in being more sensitive to the proton pulse width
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(e.g., for multilateration performed with n ≥ 7, see Fig.(49a)).

When employing TDOA for multilateration, the dependence on the proton pulse width decreases.
Indeed, a more homogeneous distribution of the error in position can be seen, as shown in Fig.(49b).
For the TDOA, the error in localisation is consistently below 0.55 mm for all proton profile widths
for the BP localised with three sensors. When increasing the number of sensors (i.e., n ≥ 7), the error
in localisation is below 0.80 mm, as reported in Table(18). Besides the proton time profile width and
the number of sensors, the reference sensors also affect localisation accuracy (for more details, see
Fig.(59) in appendix I). A compromise between the proton time profile width, the number of sensors,
and the reference sensors is required for the TDOA algorithm. For example, having a sensor network
with 7 sensors, the BP position can be localised with an error of 0.41 mm for a proton pulse of 4 µs.
The sensor configuration is crucial in localising the BP in pre-clinical or clinical applications. The
number of sensors used impacts the localisation accuracy, especially when comparing configurations
with 7 sensors to those with 3 sensors. Notably, for shorter pulse widths, utilising 7 sensors results in
diminished errors, whereas, for longer pulses, the error increases. Consequently, choosing an appro-
priate sensor configuration is paramount for achieving accurate localisation of the BP.
All results for the multilateration performed with TOA and TDOA depending on the proton profile
width are reported in Tables(17,18). We can conclude that for wider proton profile width, it is prefer-
able to have an ideal/optimal sensor position to reduce ToF error.

Pulse Width εn=3 [mm] εn=7 [mm] εn=13 [mm] εn=27 [mm] εn=39 [mm] εn=52 [mm]

1 µs 0.30 0.23 0.25 0.26 0.26 0.26

2 µs 0.29 0.21 0.21 0.21 0.21 0.21

3 µs 0.40 0.28 0.29 0.30 0.30 0.30

4 µs 0.43 0.22 0.21 0.21 0.21 0.21

5 µs 0.39 0.28 0.29 0.30 0.31 0.31

6 µs 0.34 0.52 0.55 0.57 0.59 0.59

7 µs 0.35 0.90 0.95 0.98 1.00 1.00

8 µs 0.36 1.02 1.06 1.06 1.11 1.10

9 µs 0.39 1.60 1.69 1.67 1.75 1.73

10 µs 0.55 2.27 2.41 2.36 2.47 2.44

Table 17: Multilateration error in BP position for different proton time profile widths
using the TOA algorithm, varied from 1 µs to 10 µs. The BP is located in the centre of
the sensor array. The localisation was performed with multiple sensor configurations.
The sensor configuration varied from a minimum of 3 to 52 sensors. For all the cases
considered, the multilateration was assessed with the max envelope ToF extraction
method.
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Pulse Width εn=3 [mm] εn=7 [mm] εn=13 [mm] εn=27 [mm] εn=39 [mm] εn=52 [mm]

1 µs 0.27 0.23 0.28 0.30 0.30 0.31

2 µs 0.30 0.25 0.29 0.32 0.32 0.32

3 µs 0.40 0.32 0.35 0.37 0.37 0.37

4 µs 0.51 0.41 0.44 0.47 0.47 0.47

5 µs 0.53 0.46 0.52 0.54 0.55 0.55

6 µs 0.53 0.45 0.55 0.58 0.59 0.60

7 µs 0.56 0.44 0.58 0.61 0.63 0.64

8 µs 0.52 0.41 0.59 0.62 0.66 0.66

9 µs 0.52 0.46 0.63 0.67 0.71 0.72

10 µs 0.54 0.59 0.72 0.76 0.80 0.80

Table 18: Multilateration error in BP position for different proton time profile widths
using the TDOA algorithm, varied from 1 µs to 10 µs. The BP is located in the centre
of the sensor array. The localisation was performed with multiple sensor configu-
rations. The sensor configuration varied from a minimum of 3 to 52 sensors; the
reference sensor was always the axial one. For all the cases considered, the multilat-
eration was assessed using the max envelope ToF extraction method.

4.4.3 Multilateration for Different Beam Spatial Locations

Tables(19,21) display the BP error in position resulting from multiple beam offsets applied along
the x, y, and z-axis, for the multilateration performed with TOA algorithm. The localisation error is
determined based on the highest positive and negative beam offset applied. For the TOA algorithm,
when applying the offset of ±1 mm along the x-axis (beam axis), the localisation performed with
three sensors yields an error of 0.36 mm and 0.53 mm. When the number of sensors is increased
(i.e., n ≥ 7), the localisation error remains stable and decreases to 0.21 mm for all beam offsets (all
results are reported in Table(19)). When considering the beam offsets applied along the y-axis for the
multilateration performed with three sensors, the same trend in the error was observed for an offset
of ±1 mm. Indeed, the error in localisation is 0.40 mm and 0.48 mm, corresponding to the maximum
localisation error. It decreases in average to 0.21 mm for all beam offsets and when the number of
sensors is increased (i.e., n ≥ 7). See the results reported in Table(20). Lastly, when considering the
beam offsets applied along the z-axis, the error in localisation increases to 1.23 mm and 0.86 mm for
a beam offset of ±1 mm and the BP retrieved with three sensors. For a beam offset of ±0.5 mm,
the localisation error decreases on average to 0.81 mm to 0.40 mm when increasing the number of
sensors (i.e., n ≥ 7). All results are reported in Table(21).

Tables(22,24) display the BP error in position resulting from multiple beam offsets applied along the
x, y, and z-axis for the multilateration performed with the TDOA algorithm. When performing the
multilateration with TDOA and considering a beam offset of ±1 mm applied along the x-axis (beam
axis), the localisation errors equal to 0.41 mm and 0.76 mm for the multilateration performed with
three sensors, see Table(22). When the number of sensors increases (i.e., n ≥ 7), the localisation
error increases for all considered beam offsets. For example, considering 39 sensors, the localisation
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error reaches a maximum of 0.79 mm and 0.87 mm (e.g., for a beam offset of −1 mm and −0.5
mm), respectively. For different sensor configurations and beam offsets, see Table(22). For the offset
of ±1 mm applied along the y-axis, the localisation error equals 0.56 mm and 0.48 mm for the
multilateration performed with three sensors, as reported in Table(23). The error increases when the
number of sensors is increased (i.e., n ≥ 7), reaching a maximum of 0.71 mm and 0.76 mm, for a
beam offset of ±1 mm, as reported in Table(23). Finally, when the beam is moved along the z-axis,
i.e., considering an offset of ±1 mm and for the BP localised with three sensors, the localisation errors
are 1.26 mm and 0.90 mm. The error increases when the number of sensors is increased (i.e., n ≥ 7)
to 1.40 mm and 1.05 mm, respectively, as reported in Table(24).
To summarise the multilateration performed with TOA, all the results are reported in Tables(19,21).
It was demonstrated that the accuracy of the BP position localisation heavily depends on the direction
of the beam offsets. The localisation error is consistently lower when the offsets are applied along the
x-axis (beam axis) and the y-axis, compared to when the offsets are applied along the z-axis. For the
multilateration performed considering offsets along the x-axis, the maximum error in position was
equal to 0.48 mm. Moreover, for offsets applied along the y-axis, the maximum error in position
was equal to 0.53 mm. This is likely because the y and z-axes are perpendicular to the direction
of the beam, whereas the x-axis is parallel to it. The error in BP position was more sensitive for
the beam offsets applied along the z-axis. The maximum error in position was equal to 1.20 mm
for the multilateration performed with 7 to 52 sensors. The results also show that placing the sensors
optimally and increasing the number of sensors can help compensate for the localisation error, leading
to a more accurate position estimate. It is important to note that the asymmetry of the error in position
observed when considering multiple offsets is not necessarily an indication of a problem with the
multilateration setup. Other factors, such as the beam asymmetry, the simulation grid spacing (200 µm
in all directions) and numerical optimisation fluctuations, also contribute to the observed asymmetry
on the multilateration error output given a symmetric beam offset, i.e., an offset of ±1 mm.
Nonetheless, the results obtained from this study provide valuable insights for understanding that the
error in position may be strongly dependent on the beam spatial location w.r.t the sensors. Because
by moving the beam spatially (i.e., along all axes), the error on ToF increases, e.g., when considering
a beam offset of ±1 mm. Hence, the error in localising the BP position also increases.
For the multilateration performed with TDOA, higher errors were obtained compared to TOA, as
reported in Tables(19,23). The lowest localisation error of 0.41 mm was obtained when moving the
beam position in the x-axis for a beam offset of 1 mm. In this case, the error in ToF is equal between
the two lateral sensors. Hence, the significant contribution to the localisation error depends on the
reference sensor. Increasing the number of sensors increases the error on the BP localisation for
different beam offsets because the error on ToF is not equally distributed when the beam is moved
along the x-axis. This is also the case for the multilateration, considering the beam offsets applied
along the y-axis. The error was systematically below 0.57 mm for the localisation performed with
three sensors, reaching a minimum of 0.45 mm for a beam offset of 0.5 mm. For the localisation
performed with three sensors, the error is equal for the two lateral sensors. Hence, lower error in
position for all beam offsets. The maximum error equals 1.40 mm for the beam moving along the
z-axis (localisation performed with n ≥ 7). The accuracy of the BP localisation resulted in being
sensitive to the offsets applied to the beam position. Similar to the TOA, the asymmetry of the
error in position observed when considering multiple offsets does not necessarily indicate a problem
with the multilateration setup. The same factors previously mentioned (i.e., beam asymmetry, grid
spacing, numerical optimisation fluctuations and beam out of plane) affect the asymmetry on the
localisation error. Furthermore, the reference sensor introduces another level of complexity for the
TDOA algorithm.
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n εO f f set=−1 [mm] εO f f set=−0.5 [mm] εO f f set=0[mm] εO f f set=0.5 [mm] εO f f set=1 [mm]

3 0.53 0.48 0.38 0.40 0.36

7 0.22 0.21 0.21 0.21 0.20

13 0.21 0.21 0.21 0.21 0.20

27 0.21 0.21 0.21 0.20 0.20

39 0.21 0.21 0.21 0.21 0.20

52 0.21 0.21 0.21 0.21 0.20

Table 19: TOA Multilateration of the BP position for different beam offsets along the x-axis. The
given applied offset was Offset = (−1,−0.5,0,0.5,1) mm. The localisation and the error in position
were performed using a different number of sensors. The considered proton profile width was 3.7
µs. The multilateration was assessed with the max envelope ToF extraction method for all the cases
considered
.

n εO f f set=−1 [mm] εO f f set=−0.5 [mm] εO f f set=0[mm] εO f f set=0.5 [mm] εO f f set=1 [mm]

3 0.40 0.37 0.38 0.42 0.48

7 0.20 0.20 0.21 0.23 0.25

13 0.20 0.20 0.21 0.22 0.23

27 0.20 0.20 0.21 0.22 0.22

39 0.20 0.20 0.21 0.22 0.23

52 0.20 0.20 0.21 0.22 0.23

Table 20: TOA Multilateration of the BP position for different beam offsets along the y-axis. The
given applied offset was Offset = (−1,−0.5,0,0.5,1) mm. The localisation and the error in position
were performed using a different number of sensors. The considered proton profile width was 3.7 µs.
The multilateration was assessed with the maximum signal envelope ToF extraction method for all the
cases considered.

n εO f f set=−1 [mm] εO f f set=−0.5 [mm] εO f f set=0[mm] εO f f set=0.5 [mm] εO f f set=1 [mm]

3 0.86 0.52 0.38 0.86 1.23

7 0.80 0.40 0.21 0.80 1.20

13 0.80 0.40 0.21 0.80 1.20

27 0.80 0.40 0.21 0.80 1.20

39 0.80 0.40 0.21 0.80 1.20

52 0.80 0.40 0.21 0.80 1.20

Table 21: TOA Multilateration of the BP position for different beam offsets along the z-axis. The
given applied offset was Offset = (−1,−0.5,0,0.5,1) mm. The localisation and the error in position
were performed using a different number of sensors. The considered proton profile width was 3.7
µs. The multilateration was assessed with the max envelope ToF extraction method for all the cases
considered.
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n εO f f set=−1 [mm] εO f f set=−0.5 [mm] εO f f set=0[mm] εO f f set=0.5 [mm] εO f f set=1 [mm]

3 0.76 0.66 0.47 0.47 0.41

7 0.80 0.71 0.56 0.56 0.52

13 0.86 0.77 0.66 0.57 0.57

27 0.87 0.79 0.70 0.61 0.60

39 0.87 0.79 0.73 0.61 0.60

52 0.85 0.79 0.77 0.66 0.58

Table 22: TDOA Multilateration of the BP position for different beam offsets along the x-axis. The
given applied offset was Offset = (−1,−0.5,0,0.5,1) mm. The localisation and the error in position
were performed using a different number of sensors. The considered proton profile width was 3.7
µs. The reference sensor was always the axial one. The multilateration was assessed using the max
envelope ToF extraction method for all the cases considered.

n εO f f set=−1 [mm] εO f f set=−0.5 [mm] εO f f set=0[mm] εO f f set=0.5 [mm] εO f f set=1 [mm]

3 0.48 0.45 0.47 0.50 0.56

7 0.58 0.57 0.56 0.57 0.62

13 0.68 0.67 0.66 0.67 0.72

27 0.72 0.72 0.70 0.70 0.75

39 0.75 0.75 0.73 0.72 0.77

52 0.76 0.73 0.77 0.77 0.71

Table 23: TDOA Multilateration of the BP position for different beam offsets along the y-axis. The
given applied offset was Offset = (−1,−0.5,0,0.5,1) mm. The localisation and the error in position
were performed using a different number of sensors. The considered proton profile width was 3.7
µs. The reference sensor was always the axial one. The multilateration was assessed with the max
envelope ToF extraction method for all the cases considered.

n εO f f set=−1 [mm] εO f f set=−0.5 [mm] εO f f set=0[mm] εO f f set=0.5 [mm] εO f f set=1 [mm]

3 0.90 0.58 0.47 0.90 1.26

7 0.95 0.66 0.56 0.96 1.29

13 1.02 0.75 0.66 1.02 1.33

27 1.05 0.78 0.70 1.05 1.36

39 1.07 0.80 0.73 1.07 1.37

52 1.05 0.85 0.77 1.06 1.40

Table 24: TDOA Multilateration of the BP position for different beam offsets along the z-axis. The
given applied offset was Offset = (−1,−0.5,0,0.5,1) mm. The localisation and the error in position
were performed using a different number of sensors. The considered proton profile width was 3.7
µs. The reference sensor was always the axial one. The multilateration was assessed with the max
envelope ToF extraction method for all the cases considered.
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5 Discussion and Prospects
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5.1 Numerical Optimisation Methods
The performance of the numerical optimisation using the NLS method should be independent of the
initial guess. Similarly, the numerical optimisation method should be capable of converging to either
a local or global minimum, irrespective of the initial guess condition, hence needing the employment
of global optimisation methods. The convergence issues of the numerical optimisation algorithm are
a classical problem in source localisation. When using NLS optimisation methods, a typical approach
to overcome this problem is to modify the cost functions using weighting factors to improve the
convergence for a more accurate and precise optimisation solution [110]. Regrettably, many existing
algorithms designed for solving NLS problems fail to meet this requirement.

For TDOA localisation, our study shows that the Simplex algorithm exhibits higher sensitivity to the
initial guess condition, resulting in an FR of 5.42% compared to 0.57% with the Levenberg algorithm.
Conversely, when employing the TOA method, the Simplex algorithm yields a lower FR for source
localisation of 0% compared to 0.22% using the Levenberg algorithm. Regardless of the reference
sensor, the numerical optimisation performed with the Levenberg algorithm consistently yields an FR
below 1.12%. On the contrary, by varying the reference sensors (i.e., Bs1 to Bs3 and lRe f ,max,lRe f ,min),
the FR for the numerical optimisation performed with the Simplex algorithm reached a maximum of
10.76%. These results emphasise the superior performance of the Levenberg algorithm in precisely
localising the acoustic source, regardless of the initial guess spatial location. It is essential to point
out that a global solution may not be guaranteed for Levenberg.

It would be interesting to perform a comprehensive analysis that compares the Levenberg algorithm
with other algorithms, such as the genetic algorithm [171], differential evolution [172] and projection
onto convex sets [173]. These algorithms are well known to guarantee global solutions. Projection
onto convex sets algorithm has been demonstrated to have high-speed convergence rates, which can
be helpful toward real-time multilateration without losing the localisation accuracy. The numerical
optimisation algorithm will play an important role when localising the BP position in pre-clinical
and clinical applications. The multilateration process must be faster than one millisecond to localise
the BP position in real-time during patient treatment. This requirement arises because, at facilities
equipped with a synchro-cyclotron accelerator, proton pulses are typically produced at a repetition
rate of 1 kHz, meaning there is a pulse every millisecond. In this work, one multilateration process
takes 22 milliseconds (for more detail, see appendix G.3).

5.2 Intrinsic Performances of TOA and TDOA
When considering ideal conditions, the multilateration performed with TOA and TDOA shows equiv-
alent performance without uncertainties, whereas TDOA is more influenced by the source’s position.
Generally, the source should be located within the sensor array FOV, ideally at the centre. For the
given sensor configuration, which features a triangular structure with a height of 36 mm and the range
of uncertainties examined, selecting the reference sensor carefully allows TDOA to achieve a lower
localisation average error65 compared to TOA, specifically 2.32 mm against 2.68 mm when both
random and systematic uncertainties are present. It is important to note that TOA exhibits greater
robustness under random uncertainties, with an average error of 2.19 mm and a standard deviation66

65For compactness, the average error here is intended as average root mean square error, previously denoted as µFOV
RMSE

.
66For compactness, here the standard deviation here is intended as average root mean square error standard deviation,

previously denoted as σFOV
RMSE

.
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of 0.41 mm, compared to TDOA’s average error of 2.32 mm with a standard deviation of 0.66 mm.
In contrast, TDOA is more robust when only systematic uncertainties are considered, as the errors
effectively cancel out67, resulting in an average error of 7.8× 10−4 mm and a standard deviation of
4.8×10−4 mm. In comparison, TOA reaches an average error of 1.03 mm with a standard deviation
of 0.52 mm [150].

For both multilateration algorithms in 2D and 3D, their performance is influenced by geometrical
factors, i.e., source location w.r.t to the sensors. Nevertheless, the dependency on geometry is less
critical for the TOA compared to TDOA. Furthermore, there are additional considerations for the
TDOA algorithm. Since the TDOA accuracy is highly dependent on geometry, i.e., the number of
sensors, sensor placement and reference sensors, the geometry dependency can be mitigated by in-
creasing the number of sensors and changing the array geometry. This is a typical approach used to
boost the robustness of the TDOA algorithm [174, 175]. Moreover, during our studies, it was con-
cluded that increasing the number of sensors improves the performance of the multilateration using
TDOA compared to TOA. Particular attention should be paid to arranging the sensors to guarantee
the source is inside the FOV. In traditional localisation techniques, the FOV limitation often poses
challenges when the source is positioned beyond the sensor’s observable region. A common strategy
to solve this problem and achieve optimal performance from both algorithms is to employ a hybrid
approach that combines TOA and TDOA into a single algorithm [176]. The hybrid algorithm can
effectively estimate the source’s location, even when it falls outside the FOV. Another notable advan-
tage is achieving higher localisation accuracy than a single approach based solely on TOA or TDOA
[177, 178].

5.3 Signal Acquisition Start Time
The ionoacoustic measurements performed with 20 and 22 MeV proton beams were triggered by a
stable synchronisation signal from the Tandem accelerator’s chopping system. The exact time differ-
ence between when the synchronisation signal was initiated and when the protons actually entered the
medium was measured with a resolution finer than 0.1 ns, equivalent to under 150 nm in water. This
offset was then corrected during data analysis, ensuring that the systematic error remained negligible
compared to the ToF estimation. Thus, the BP localisation with TOA provided the best results, as
seen in simulations. In some proton therapy facilities, a stable synchronisation signal may be un-
available, leading to potential jitters of up to 850 ns (1.3 mm in water) [76]. Alternatively, triggering
can use an external detector sensing secondary emissions, which may introduce additional offsets.
Multilateration using TDOA algorithm is recommended if synchronisation is uncertain or unstable
[150].

5.4 Bragg Peak Localisation in Homogeneous Media
For the BP localisation using ionoacoustic signals in a homogeneous medium with a known speed of
sound and the sensors placed optimally, the main uncertainties stem from the measurement starting
time, particularly the systematic error in determining when the first protons enter the media and the
ToF extraction error. The multilateration of the BP position performed in in-silico, using an arc
sensor arrangement, showed that the ToF error varies with the sensor position relative to the BP and
is uncorrelated across the sensor array. Therefore, TOA offers more precise BP localisation, which

67For a detailed mathematical analysis of TDOA in the presence of systematic uncertainties, refer to eqs.(4.5,4.6).
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can be improved by optimising sensor positions to reduce ToF error. Simulation studies also reveal
that TDOA performance depends significantly on the reference sensor. In ionoacoustic applications,
localisation error can increase eightfold based on the reference sensor position and the ToF error.
However, multilateration accuracy is not directly tied to the ToF error of any single reference sensor,
as illustrated in Fig.(40b). The best reference sensor for TDOA is usually one with a ToF error near
the average, as this helps to balance out the errors across the entire sensor array/network [150].

In section 4.2.2, it was shown that applying the threshold technique to the estimated ToF data can
enhance BP localisation. The enhancement is achieved by discarding the sensors which have high
errors on the ToF (i.e., error > 0.1 mm). The 0.1 mm threshold improves the localisation by de-
creasing the error from 0.62 mm to 6 µm. The threshold on the ToF was chosen by considering the
error in ToF depending on the sensor position (see Fig.(40a)). For pre-clinical beams, it was shown
that the superimposition between the compression and rarefaction peaks affects the ToF estimation
(see Figs.(40a,41b)). From a signal-processing point of view, this superimposition could be solved by
“borrowing” the peak detection technique used in electrocardiogram (ECG) [179]. The IA signal ob-
tained in water using an axial sensor exhibits a shape almost resembling the QRS68 complex, which
allows using the wave delineation approach, commonly used for QRS signal delineation based on
slope information. These wave delineation approaches exhibit robustness, particularly against low-
frequency noise [181, 182]. Integration with zero-crossing techniques further improves ToF estima-
tion. Additionally, employing spectral analysis, similar to electroencephalogram signal segmentation,
may be crucial for IA signals. This should aid in categorising and recognising IA signals based on
their frequency content, facilitating differentiation from background noise. A thorough investigation
in this direction is essential for a comprehensive understanding and application of these techniques
in IA signals. Real-time ECG detection is already a well-developed signal processing technique.
Therefore, approaches such as real-time QRS detection [183, 184] could be used or modified for IA
applications, especially for ToF estimation and detection in real-time applications.

Enhancing the information extracted from the IA signals (e.g., the accuracy of the ToF estimation)
for pre-clinical and clinical applications requires advanced signal processing and classification tech-
niques. These methods are often specific to the application, such as ionoacoustics. It was already
shown that Wavelet decomposition can reduce signal averaging, minimising the minimum dose de-
livered to the patient [185, 186]. However, a focused study exclusively for IA applications combining
different signal denoise techniques (i.e., Kalman filtering69) may be necessary. To integrate various
signal denoising techniques, such as Wavelet and Kalman filters, it is paramount to assess the specific
features of the IA signals. Additionally, it is recommended to apply signal threshold techniques based
on factors such as the beam energy, proton pulse time structure, and any other factors that may impact
the shape of the IA signal.

68The QRS complex mirrors the hearts depolarisation of the right and left ventricles, for more see [180, p. 412-441].
69For more detail on the Kalman filters applied to acoustic signals, see [187, 188, 189].
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5.5 Bragg Peak Localisation in Heterogeneous Media
The research conducted during this work focused “solely” on irradiating a water70 phantom, where
the speed of sound remains constant at a fixed measured temperature. In contrast, in vivo, the speed
of sound fluctuates according to tissue type (different tissues have different speed of sound), which
could reduce BP localisation accuracy [150]. By assuming a conservative 5% deviation in the average
speed of sound along the acoustic path, we observed that the localisation error increased by roughly
2 mm for the evaluated geometry. Thus, applying multilateration for in vivo range verification should
incorporate sound speed aberration, akin to techniques used in wireless capsule endoscopy tracking
via radio-frequency signals [91, 93]. To address this, the speed of sound might be empirically de-
termined from pre-treatment X-ray imaging [190] or mapped using ultrasound [191] shortly before
treatment. Notably, a prior in-silico study indicated that over- and under-estimations of the speed
of sound across the propagation path generally offset each other for the clinical scenarios examined
(liver and prostate), leading to comparable localisation errors whether using the sound speed in water
or the average speed derived from X-ray imaging [136].
When estimating the ToF for the homogeneous case, a ToF ground truth was needed to choose the
ToF threshold correctly. For in vivo applications, the ToF ground truth could be estimated from the
treatment plan. Therefore, the threshold can be predicted by accurately knowing the setup or hav-
ing reference threshold values provided by simulated data. Furthermore, the distance between the
tumour and sensor elements could be assessed using the information on the tumour location obtained
from real-time ultrasound imaging. With this information, a ToF threshold can be defined for the
heterogeneities relevant to IA applications.

5.6 Multilateration in Small Animals
In summary, the localisation of the BP position considering a pre-clinical beam energy of 50 MeV
and employing the TOA algorithm depends on factors such as the ToF estimation, proton time profile
width (e.g., lower ToF error for proton time profiles from 3 µs to 6 µs, see Fig.(48c) and Fig.(48c))
and the sensor arrangement. Furthermore, an optimal number of sensors that minimise the error in
ToF would improve the localisation performance. Performing the multilateration with TDOA would
introduce another variable to localise the BP position, i.e., the reference sensor. Therefore, localising
the BP position for different beam offsets would also require an optimal reference sensor. When
moving the proton beam to different spatial locations (i.e., laterally along the z-axis), the error in ToF
is more likely to increase for lateral (z-axis) than axial (x-axis) beam offsets, at least for the considered
sensor arrangement (setup in Fig.(25)). Increasing the error in ToF leads to higher errors in the BP
localisation. Therefore, for the TDOA algorithm, the optimal reference sensors would also change
depending on the beam position. For more details on the localisation error due to the beam position
for both algorithms (TOA and TDOA), refer to the summary reported in appendix J.

In the investigated small animal setup, the sensors have a diameter of 1 mm. Distortions on the
IA signal are also expected to change for larger sensor diameters, which would translate into an
over/under-estimation of the ToF and, consequently, have an impact on the BP localisation. Moreover,
the setup dimensions should be considered when having different beam offsets. The main issue in
SIRMIO primarily arises from the Gaussian pulse being too broad compared to the time gap between
the entrance and direct signals. The setup employed in this study showed that by moving the beam

70The experimental studies conducted with heterogeneities, we have considered as a simple heterogeneities case.
Meaning no significant variation on the speed of sound.
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by ±1 mm (along the z-axis, see Fig.(25b)), the error in localisation increases considerably (i.e., 1.20
mm and 1.40 mm for TOA and TDOA, respectively. For a beam range of 16.4 mm). This is because
the signal shape differs in the near field (i.e., when the sensor is close to the source) from that in the far
field, hampering the time-of-flight analysis. Accordingly, the sensors should not be placed too close
to the beam during the BP localisation. For instance, when the beam is moved considering offsets
along y/z-axes equal to ±1 mm, before the multilateration, the ToF estimation algorithm should be
automatised to discard those sensors’ positions close to the beam position. The same approach could
be applied to the axial sensors when moving the beam position along the x-axis. All in all, for the
multilateration performed with TOA and TDOA, the poor localisation performance when moving the
beam along the z-axis is due to the sensor arrangement. In other words, the error is strengthened by
the 2D sensor arrangement, resulting in an inability to resolve the beam when offset along the z-axis.
Another way to conceptualise this is that the beam falls outside the FOV.

The results presented in this work show the need for an initial evaluation based on the treatment plan
(pre-treatment IA simulation) to identify the optimal sensor arrangement and proper reference sensor
selection, aiming to minimise ToF estimation errors, as discussed in [150]. However, further inves-
tigation is required to refine sensor positioning, particularly regarding the stability of the optimised
configuration when the BP shifts within the treatment field. This was evident in the experimental anal-
ysis of the three sensor setup (see section 4.3.1) and for the beam offsets applied for the small animal
setup (see section 4.4.3), both studies aimed to mimic a treatment plan. In one case, experimentally
and with only 3 sensors and in another, via simulation with 52 sensors. For the experimental case,
when the BP was localised with 3 sensors, localisation errors for TOA and TDOA were similar when
the proton beam shifted laterally by 5 mm, mainly due to a more significant ToF error. Therefore, de-
termining the optimal sensor positions, number, and reference sensor for TDOA is crucial, especially
for the single beams with the highest intensity in the treatment plan. This suggests that a fixed sensor
array geometry may be suboptimal for multilateration. Instead, optimised for each treatment plan,
a sparse detector arrangement would likely provide the most accurate BP localisation. Additionally,
sensor positioning should accommodate specific treatment plan constraints, ensuring that areas where
the beam enters remain free of detectors to avoid interference from high-density, high atomic number
(high-Z) piezoelectric sensors. For the SIRMIO project, a sterile environment will be maintained for
the small animal using a specially designed holder during irradiation [54].

For optimal SNR, IA sensors should be in direct contact with the patient71 skin, so positioning the
detectors before sealing the sterile environment onto the SIRMIO platform is essential. Bulky com-
mercial ultrasonic detectors used in this study are unsuitable for the proton imaging field-of-view
due to their high water equivalent thickness (WET >> 1 cm) and atomic number Z, which increase
proton scattering and reduce image resolution, further limiting IA detector placement options. Al-
ternatively, sensors with a lower material budget could be considered. Potential candidates include
emerging ultrasonic transducers like micromachined transducers [73], optical hydrophones [192], and
conventional piezoelectric polymers with tailored acoustic designs [193]. However, further studies are
necessary to determine if these sensors are sensitive enough to detect the very low pressures (a few
mPa, at least one order of magnitude lower than clinical scenarios) expected in SIRMIO after proton
beam degradation [194].

71Small animal in our case.
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5.7 Towards Real-time Applications
The real-time multilateration workflow could be similar to the setup described in section 3.2.3. The
transducer spatial location should be ideally estimated in real-time (e.g., using an optical tracking
system) to also account for possible anatomical changes. Consequently, the BP position should be re-
trieved in real-time. From the results of the multilateration performed with five sensors, one challenge
was correctly estimating the transducer spatial location in real-time. Upon reviewing the horseshoes
array design, we identified a 9.27 mm error between the axial sensor and the centre of the beam en-
trance window. The error was decreased to 0.96 mm after applying the rigid co-registration. Without
improving the transducer’s spatial location accuracy and the ToF estimation, the BP localisation has
ranged from 0.72 mm and 0.67 mm for TOA and TDOA, respectively. Considering the improvement
in the transducer’s spatial location given by the CPD registration and further improving the ToF es-
timation (i.e., by applying the Gaussian fitting as discussed in section 4.3.3), the error in localisation
decreased to values of 0.36 mm and 0.12 mm for TOA and TDOA, respectively.

It would be beneficial to use a robust self-localisation algorithm to compensate for real-time uncer-
tainties in the sensor placement, especially to solve the patient motion during the treatment delivery
(e.g., due to breathing). Self-localisation algorithms are widely implemented in robotics [195]. This
approach should be similar to the one implemented for the horseshoes setup (see section 3.2.3). How-
ever, because of the patient motion and other artefacts, the spatial location of the sensors will change.
Indeed, the correction of the transducer spatial location employing the CPD algorithm can be ideally
analogous to the patient motion compensation. In other words, if the patient breathes, the transducer
spatial locations are expected to change. Therefore, approaches similar to the one applied in mo-
tion compensation during in vivo Optical Coherence Tomography (OCT) can be used. The motion
compensation approach seeks to register and align multiple OCT volume scans recorded sequentially
or from various laser beam angles to estimate and correct for a given patient motion, i.e., typically
during radiotherapy [196, 197], and eye or hearing surgery [198, 199]. This method can be adapted
to the multilateration of the BP using IA signals. Furthermore, such approach can also be used for IA
image co-registration (for more on co-registration, see [74]) and time reversal reconstruction.

5.8 IA Range Verification in Clinical Applications
Considering optimal signal acquisition synchronisation, accurate speed of sound correction, and pre-
cise sensor placement, have been extensively addressed in [150]. The primary limitation of multilat-
eration is the ToF extraction. The previously presented results show that the IA signal shape varies
with sensor position, especially at pre-clinical energies where the proton range is short compared to
the propagation length. In such cases, lateral signals combine acoustic waves from the BP, plateau
region, and energy discontinuities at the phantom entrance, leading to ToF errors. For clinical scenar-
ios, the proton range increases from 4 mm at 20 MeV to 122 mm at 130 MeV in water, improving
wavefront separation. Fig.(50) presents the ToF error for a 130 MeV proton beam, with a maximum
error of 0.75 µs (1.11 mm), consistent with previous studies [76, 200], indicating the applicability of
low-energy findings to clinical settings. Patient irradiation also generates acoustic emissions at tissue
interfaces, but high spatial frequency signals are expected to be filtered out with the clinically avail-
able microsecond proton pulse. Therefore, millimetre accuracy appears achievable in areas without
bones or air cavities, as confirmed by recent studies on an anthropomorphic phantom [201, 202].
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(a) Simulation setup (b) Error in ToF max-envelope

Figure 50: Evaluation of the ToF at clinical energy: (a) The simulation setup illustrates the proton
beam position (colour map) in relation to the sensor arc (red line). The propagation medium’s density
is represented in greyscale. (b) The ToF error is determined based on the maximum of the signal
envelope, varying according to the sensor position. Figure extracted from the supplementary material
of [150].

5.9 Multilateration and TRR Reconstruction
As discussed in section 2.4, the TRR approach offers an alternative method for localising the BP
position. This technique reconstructs the initial pressure based on the deposited dose within a given
medium, similar to the back projection algorithm recently investigated for real-time dose reconstruc-
tion using IA signals [145]. Fig.(51) depicts a typical results obtained through TRR, where the initial
dose is reconstructed, and the BP position is determined accordingly. The main advantage of the
TRR is that it outputs the dose distribution and not just the BP position. Notably, Pratik Dash, in the
context of the SIRMIO project used a similar setup in his master’s thesis [148]. The author accurately
reconstructed the BP position, achieving an accuracy of less than 0.5 mm in a homogeneous medium.
The localisation approach using TRR was also benchmarked with experimental studies. Compared
to multilateration, TRR can simultaneously output the dose distribution and the BP position. This in-
formation can later be used for dose monitoring (dosimetry) and for IA/US co-registration. The main
drawback of TRR is the computation time72 and the number of sensors to have an accuracy below 1
mm. The impact of the number of sensors on the reconstructed BP position using TRR was investi-
gated in [148, p. 34-35]; the number of sensors varied from 2 to 13. The best results were obtained
with 13 sensors, having an accuracy of 0.8 mm after 60 iterations. Conversely, the advantage of mul-
tilateration lies in its implementation simplicity, i.e., fewer sensors, faster localisation time (i.e., 22
milliseconds73) and the ability to localise the BP position in 3D with only four sensors. Furthermore,
it can use absolute (TOA) or relative (TDOA) localisation approaches, which can be combined. The
major drawback is that it cannot output the reconstructed dose and cannot be used for dose monitor-
ing. While we do not intend to compare TRR and multilateration algorithms directly, both approaches
can effectively localise the BP position. On the one hand, multilateration offers the advantage of lo-
calising the BP position using only three sensors, assuming they are appropriately chosen. On the

72i.e., when using a CPU, the computation time is about 6 minutes, and it can be decreased to 40 seconds using a GPU.
73More studies would be required to decrease this 22 milliseconds computation time by using GPU-accelerated com-

puting.
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other hand, the TRR method, in principle, can reconstruct the deposited dose distribution. By com-
bining these two localisation approaches, we can leverage the strengths of both algorithms to achieve
the highest possible accuracy in localising the BP position. For example, a routine can be created to
run both algorithms simultaneously. The multilateration can output the BP position 2D/3D while the
TRR outputs the reconstructed dose distribution. Furthermore, since both methods aim to localise the
BP position, they can be combined as follows: first, multilateration for real-time application during
treatment delivery. Second, TRR for dose reconstruction and treatment adaptation from one treatment
fraction to the other.

Figure 51: Dose reconstruction and BP localisation using TRR algorithm (pencil beam of 50 MeV in
water). (left figure) BP localised with an error of 0.63 mm, BP ground truth indicated with a black
asterisk, and reconstructed BP position indicated with a red asterisk. For this particular result, no
proton time profile was considered. (right figure) BP localised with an error of 0.4 mm, BP ground
truth indicated with a black asterisk, and reconstructed BP position indicated with a red asterisk. A
Gaussian time profile with an FWHM of 2 µs was considered. The localised BP position is overlaid
on the reconstructed dose for both cases. Figures reproduced with courtesy of Pratik Dash. They were
extracted from his master’s thesis [148, p. 70].
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Appendix A Heterogeneity’s Silicone Setup
In this experiment, a multi-layer silicone phantom was positioned near the entrance window with a
water gap of approximately 0.83 mm between them. This gap was estimated using the signal envelope
to calculate the time-of-flight, with the accuracy of the estimation depending on the method used.

Figure 52: Initial setup showing both silicone layers positioned near the entrance window with a water
gap between the entrance window and the thicker silicone layer.

Appendix B Multilateration 3D Setup

(a) 3D Setup, ideal point sensors configurations. (b) ToF extraction lateral sensor.

Figure 53: 3D Setup with ideal source localisation, (a) sensor Bs1, Bs2, Bs3 and Bs4 sensor configu-
ration, (b) setup including all the point sources inside the FOV.
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Appendix C 3D I-BEAT Experimental Setup

Figure 54: The experimental setup for the 3D I-BEAT detector consists of three sensors (denoted as
Bs1, Bs2, and Bs3) and a silicon target. The silicon target was removed for the experiments discussed
in this thesis, and all measurements were conducted without it. The 3D I-BEAT detector is mounted
on a 3D linear stage to ensure precise and secure positioning and alignment.
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Appendix D FR Simplex and Levenberg algorithms

(a) TOA varying the initial guess, Simplex. (b) TOA varying the initial guess, Levenberg.

Figure 55: FR multilateration performed with TOA method using Simplex and Levenberg algorithms.

(a) TDOA varying the initial guess, Simplex. (b) TDOA varying the initial guess, Levenberg.

Figure 56: FR multilateration performed with TDOA method using Simplex and Levenberg algo-
rithms.
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Appendix E Multilateration and Optimisation Robustness

E.1 2D Multilateration Robustness Random Uncertainties
Multilateration Methods Reference Sensor µRMSE [mm] µFOV

RMSE [mm] σRMSE [mm] σFOV
RMSE [mm]

TDOA

Bs1 5.81 2.32 6.33 0.66
Bs2 6.50 2.32 6.33 0.68
Bs3 6.50 2.34 6.44 0.76

lRe f ,max 5.07 2.33 4.72 0.70
lRe f ,min 5.80 2.32 6.32 0.68
lRe f ,mean 5.37 2.32 4.97 0.66

TOA none 2.33 2.19 0.34 0.41

Table 25: Comparison of the performance of 2D multilateration using TOA and TDOA considering ran-
dom uncertainties. TDOA is performed for different reference sensors such as: Bs1, Bs2, Bs3, lRe f ,max,
lRe f ,min, lRe f ,mean.

E.2 2D Multilateration Robustness Systematic Uncertainties
Multilateration Methods Reference Sensor µRMSE [mm] µFOV

RMSE [mm] σRMSE [mm] σFOV
RMSE [mm]

TDOA

Bs1 2.0× 10−3 7.8× 10−4 1.8×10−3 4.8×10−5

Bs2 2.4× 10−3 1.2× 10−3 2.0×10−3 1.2×10−3

Bs3 2.3× 10−3 1.1× 10−3 2.1×10−3 8.9×10−4

lRe f ,max 1.9× 10−3 8.4× 10−4 1.5×10−3 5.7×10−4

lRe f ,min 3.0× 10−3 1.5× 10−3 2.3×10−3 1.3×10−3

lRe f ,mean 2.0× 10−3 6.9× 10−3 1.9×10−3 3.8×10−3

TOA none 1.53 1.03 0.59 0.52

Table 26: Comparison of the performance of 2D multilateration using TOA and TDOA considering sys-
tematic uncertainties. TDOA is performed for different reference sensors such as: Bs1, Bs2, Bs3, lRe f ,max,
lRe f ,min, lRe f ,mean.

E.3 2D Multilateration Robustness Random and Systematic Uncertainties
Multilateration Methods Reference Sensor µRMSE [mm] µFOV

RMSE [mm] σRMSE [mm] σFOV
RMSE [mm]

TDOA

Bs1 5.37 2.32 4.97 0.66
Bs2 6.62 2.31 9.21 0.67
Bs3 5.89 2.32 6.62 0.70

lRe f ,max 7.15 2.32 10.13 0.70
lRe f ,min 5.81 2.31 6.38 0.67
lRe f ,mean 5.37 2.31 4.99 0.66

TOA none 3.02 2.68 0.55 0.63

Table 27: Comparison of the performance of 2D multilateration using TOA and TDOA, random and
systematic uncertainties modelled simultaneously. TDOA is performed for different reference sensors
such as: Bs1, Bs2, Bs3, lRe f ,max, lRe f ,min, lRe f ,mean.
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E.4 3D Multilateration Robustness Random Uncertainties
Multilateration Methods Reference Sensor µRMSE [mm] µFOV

RMSE [mm] σRMSE [mm] σFOV
RMSE [mm]

TDOA

Bs1 9.47 3.35 8.86 0.74
Bs2 10.59 3.35 13.74 0.74
Bs3 10.35 3.35 12.90 0.74
Bs4 9.03 3.35 7.74 0.75

lRe f ,max 12.07 3.36 17.25 0.76
lRe f ,min 9.14 3.35 7.85 0.74
lRe f ,mean 9.05 3.35 7.72 0.74

TOA none 4.03 3.14 1.03 0.42

Table 28: Comparison of the performance of 3D multilateration using TOA and TDOA considering ran-
dom uncertainties. TDOA is performed for different reference sensors such as: Bs1, Bs2, Bs3, Bs4, lRe f ,max,
lRe f ,min, lRe f ,mean.

E.5 3D Multilateration Robustness Systematic Uncertainties

Multilateration Methods Reference Sensor µεRMSE [mm] µFOV
εRMSE

[mm] σεRMSE [mm] σFOV
εRMSE

[mm]

TDOA

Bs1 3.4× 10−3 1.0× 10−3 2.7×10−3 6.2×10−4

Bs2 3.9× 10−3 3.9× 10−3 2.9×10−3 1.1×10−3

Bs3 3.7× 10−3 1.2× 10−3 2.7×10−3 9.2×10−4

Bs4 6.9× 10−3 1.6× 10−3 6.9×10−3 1.3×10−3

lRe f ,max 3.5× 10−3 1.3× 10−3 2.3×10−3 7.2×10−4

lRe f ,min 7.2× 10−3 1.3× 10−3 6.8×10−4 7.2×10−4

lRe f ,mean 3.4× 10−3 9.2× 10−4 2.7×10−3 5.4×10−4

TOA none 1.98 1.42 0.33 0.41

Table 29: Comparison of the performance of 2D multilateration using TOA and TDOA considering sys-
tematic uncertainties. TDOA is performed for different reference sensors such as: Bs1, Bs2, Bs3, Bs4,
lRe f ,max, lRe f ,min, lRe f ,mean.

E.6 3D Multilateration Robustness Random and Systematic Uncertainties

Multilateration Methods Reference Sensor µεRMSE [mm] µFOV
εRMSE

[mm] σεRMSE [mm] σFOV
εRMSE

[mm]

TDOA

Bs1 9.45 3.35 8.61 0.74
Bs2 10.61 3.35 13.90 0.74
Bs3 10.28 3.35 12.35 0.75
Bs4 9.01 3.36 7.70 0.75

lRe f ,max 12.05 3.36 16.98 0.76
lRe f ,min 9.12 3.35 7.81 0.74
lRe f ,mean 9.03 3.35 7.66 0.74

TOA none 4.69 3.74 0.93 0.54

Table 30: Comparison of the performance of 3D multilateration using TOA and TDOA, random and
systematic uncertainties modelled simultaneously. TDOA is performed for different reference sensors
such as: Bs1, Bs2, Bs3, Bs4, lRe f ,max, lRe f ,min, lRe f ,mean.
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Appendix F TOA/TDOA Cost Function Computation

1 f unc t i on [ objVal ,G] = cos tMu l t i l a t e ra t i on3D (x0 , mCordTransducer , re fVal , ixRefTransd ,
multi latMethods , runRef )

2 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % func t i on objVal = ob j e c t i v e f un c t i onTr i angu l a t i on ( x0 , mCordTransducer , re fVal , ixRefTransd ,

tr iangulaMethods )
4 %
5 %
6 %
7 % input
8 % x0 i n i t i a l guess g iven as the cente r o f mass o f the t ransduce r s
9 % mCordTransducer matrix conta in ing the t ransducer coo rd ina t e s (x , y , z )

10 %
11 % re fVa l d i s t an c e s o f each transducer from the source l o c a c a t i on
12 %
13 % ixRefTransd r e f e r e n c e t ransducer f o r the Time D i f f e r e n c e o f Arr iva (TDOA)
14 %
15 % triangulaMethods t r i angu l a t i on , i t a s t r i n g and could be 'TOA' or 'TDOA'
16 %
17 % output
18 % objVal co s t func t i on f o r TOA or TDOA
19 % the time index o f the maximum envelop
20 % author : Ronaldo Kalunga
21 % date : January 20th , 2020
22 % purpose : I onoacous t i c source l o c a l i z a t i o n
23 % Refe rences :
24 % Acoust ic source l o c a l i z a t i o n by Tribikram Kundu 2013
25 % Source Lo ca l i z a t i on : Algorithms and Analys i s by Reza Zekavat and R. Michael Buehrer
26
27
28 %% Triangu la t i on approach
29
30 objVal = 0 ;
31 numSensor = s i z e (mCordTransducer , 1 ) ;
32
33 %% Choose the r e f e r e n c e s enso r f o r the time d i f f e r e n c e o f a r r i v a l (TDOA)
34
35 i f isempty ( ixRefTransd )
36
37 % By con s i d e r i ng the maximum d i s t ance between the source and the
38 % senso r
39
40 i f c onta in s ( 'maxRef' , runRef )
41
42 [ ˜ , ixRefTransd ] = max( r e fVa l ) ;
43
44 % By con s i d e r i ng the minimum d i s t anc e between the source and the
45 % senso r
46
47 e l s e i f conta in s ( 'minRef' , runRef )
48
49 [ ˜ , ixRefTransd ] = min ( r e fVa l ) ;
50
51 % By con s i d e r i ng the cente r s enso r
52
53 e l s e i f conta in s ( ' cente rRe f ' , runRef )
54
55 ixRefTransd = c e i l ( numel ( r e fVa l ) /2) ;
56
57 % I f none o f the cond i t i on s are f u l l f i l e d then the r e f e r e n c e s enso r
58 % w i l l always the f i r s s enso r .
59
60 e l s e i f conta in s ( 'none ' , runRef )
61
62 ixRefTransd = 1 ;
63
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64 e l s e i f conta in s ( 'meanRef' , runRef )
65
66 [ ˜ , ixRefTransd ] = min ( abs ( r e fVa l − mean( r e fVa l ) ) ) ;
67
68 e l s e i f conta in s ( 'dynamicMeanRef' , runRef )
69
70 [ ˜ , i xSo r tD i s t ] = so r t ( abs ( r e fVa l − s q r t (sum( ( x0 . ˆ 2 ) ) ) ) ) ;
71 ixRefTransd = ixSo r tD i s t ( end ) ; % take the second h ighe s t d i s t anc e
72
73 e l s e
74
75 warning ( 'The senso r has been s e t manually ' )
76 pr in t ( ixRefTransd )
77
78 end
79
80 end
81
82 %% Eucl idean d i s t ance f o r the TOA and TDOA
83
84 euc lD i s t = @(mDistance , x0 ) sq r t (sum( ( bsxfun(@minus , mDistance , x0 ) . ˆ 2 ) ,2 ) ) ;
85
86 objTOA = @(vRefDist , mCordTransducer , x0 ) sum( ( vRefDist − euc lD i s t (mCordTransducer , x0 ) ) . ˆ 2 ) ;
87 objTDOA = @(vRefDist , mCordTransducer , mCordRefTransducer , x0 ) sum( ( vRefDist − euc lD i s t (

mCordTransducer , x0 ) + euc lD i s t (mCordRefTransducer , x0 ) ) . ˆ 2 ) ;
88
89
90 switch mult i latMethods
91
92 case 'TOA'
93
94 % TOA implemented as TOA
95
96 objVal = objTOA( re fVal , mCordTransducer , x0 ) ;
97
98 % TOA implmented from the TDOA i t i s more e l egan t but i t i s 1
99 % second s lower .

100
101 % objVal = objTDOA( re fVal , mCordTransducer , x0 , x0 ) ; −−> Slow
102 %% Ana ly t i c a l Gradient TOA
103
104 i f nargout > 1
105
106 euc l iDean = sq r t (sum( bsxfun(@minus , mCordTransducer , x0 ) . ˆ 2 , 2 ) ) ;
107
108 xComponent = ( x0 (1 ) − mCordTransducer ( : , 1 ) ) . / euc l iDean ;
109 yComponent = ( x0 (2 ) − mCordTransducer ( : , 2 ) ) . / euc l iDean ;
110 zComponent = ( x0 (3 ) − mCordTransducer ( : , 3 ) ) . / euc l iDean ;
111
112 G = −2.* [ sum( ( r e fVa l − euc l iDean ) . * xComponent ) ,sum( ( r e fVa l − euc l iDean ) . *

yComponent ) , sum( ( r e fVa l − euc l iDean ) . * zComponent ) ] ;
113 end
114
115 case 'TDOA'
116
117 ixTransd = 1 : numSensor ;
118 ixTransd = ixTransd ( ixTransd˜=ixRefTransd ) ;
119
120 vRefDi f f = re fVa l ( ixTransd )−r e fVa l ( ixRefTransd ) ;
121 objVal = objTDOA( vRefDi f f , mCordTransducer ( ixTransd , : ) ,mCordTransducer ( ixRefTransd , : )

, x0 ) ;
122
123 %% Ana ly t i c a l Gradient TDOA
124
125 i f nargout > 1
126
127 euc l iDean = sq r t (sum( bsxfun(@minus , mCordTransducer ( ixTransd , : ) , x0 ) . ˆ 2 , 2 ) ) ;
128 eucl iDeanRef = sq r t (sum( bsxfun(@minus , mCordTransducer ( ixRefTransd , : ) , x0 ) . ˆ 2 , 2 ) ) ;
129
130 xComponent = − ( x0 (1 ) − mCordTransducer ( ixTransd , 1 ) ) . / euc l iDean + ( x0 (1 ) −

mCordTransducer ( ixRefTransd , 1 ) ) . / eucl iDeanRef ;
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131 yComponent = − ( x0 (2 ) − mCordTransducer ( ixTransd , 2 ) ) . / euc l iDean + ( x0 (2 ) −
mCordTransducer ( ixRefTransd , 2 ) ) . / eucl iDeanRef ;

132 zComponent = − ( x0 (3 ) − mCordTransducer ( ixTransd , 3 ) ) . / euc l iDean + ( x0 (3 ) −
mCordTransducer ( ixRefTransd , 3 ) ) . / eucl iDeanRef ;

133
134 G = 2 . * [ sum(xComponent . * ( vRe fDi f f + eucl iDeanRef − euc l iDean ) ) , sum(yComponent

. * ( vRe fDi f f + eucl iDeanRef − euc l iDean ) ) , ...
135 sum( zComponent . * ( vRe fDi f f + eucl iDeanRef − euc l iDean ) ) ] ;
136
137 end
138
139
140 otherw i se
141
142 e r r o r ( 'does not e x i s t ' )
143
144 end
145
146 end

Appendix G Analytical Numerical Gradient
The optimization routines from MATLAB use the numerical gradient by default based on the fi-
nite–difference approximation. Therefore, the possible issues are: computational speed.

• Computational speed. The numerical gradient can be slower compared to the analytical gradi-
ents.

• The finite–difference approximation influences the accuracy of the results. The approximation
is performed using the central or forward finite difference approaches.

G.1 TOA Analytical Gradient
The analytical gradient for the TOA is computed starting from the TOA cost function. It is computed
in 3D but can also be computed in 2D by cancelling the undesired coordinates. Again, the cost
function can be expressed as:

min
xs,ys,zs

fTOA(xs,ys,zs) = min
xs,ys,zs

n

∑
i=1

(
vs · (ToFi +ϒi)−

√
(xi − xs)2 +(yi − ys)2 +(zi − zs)2

)2

(G.1)

The numerical gradients are computed as follows:

∇( fTOA(xs,ys,zs)) =



∂ fTOA(xs,ys,zs)
∂x

∂ fTOA(xs,ys,zs)
∂y

∂ fTOA(xs,ys,zs)
∂z


=−2 ·



∑
n
i=1

(dTOA,i−∥di∥2)·(xs−xi)
∥di∥2

∑
n
i=1

(dTOA,i−∥di∥2)·(ys−yi)
∥di∥2

∑
n
i=1

(dTOA,i−∥di∥2)·(zs−zi)
∥di∥2


(G.2)

Where dTOA,i and di are expressed as:
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dTOA,i = vs · (ToFi +ϒi) (G.3)

∥di∥2 =
√
(xi − xs)2 +(yi − ys)2 +(zi − zs)2 (G.4)

For compactness in the analytical gradient model, the calculation was computed by setting ϒi = 0.

G.2 TDOA Analytical Gradient
The analytical gradient for the TDOA is computed starting from the TDOA cost function. It can be
expressed as:

min
xs,ys,zs

fT DOA(xs,ys,zs) = min
xs,ys,zs

n

∑
i=1

∑
re f ̸=i

(
vs ·w−

√
(x− xs)2 +(y− ys)2 +(z− zs)2 +

∥∥dre f
∥∥

2

)2
(G.5)

To be noted that w is describe as:

w = (ToFi +ϒi)− (ToFre f +ϒre f ) (G.6)

Similar to the TOA, we can move from a 3D to a 2D problem by cancelling the undesired coordinates.
Therefore, the analytical gradients for TDOA can be computed as follows:

∇( fT DOA(xs,ys,zs)) =



∂ fT DOA(xs,ys,zs)
∂x

∂ fT DOA(xs,ys,zs)
∂y

∂ fT DOA(xs,ys,zs)
∂z


= 2 ·



∑
n
i=1 ∑re f ̸=i

(
−(xs−xi)
∥di∥2

+
(xs−xre f )

∥dre f∥2

)
·RT DOA

∑
n
i=1 ∑re f ̸=i

(
−(ys−yi)
∥di∥2

+
(ys−yre f )

∥dre f∥2

)
·RT DOA

∑
n
i=1 ∑re f ̸=i

(
−(zs−zi)
∥di∥2

+
(zs−zre f )

∥dre f∥2

)
·RT DOA


(G.7)

Where RT DOA and
∥∥dre f

∥∥ and dT DOA,i are expressed as:

RT DOA = dT DOA,i −∥di∥2 +
∥∥dre f

∥∥
2 (G.8)

dT DOA,i = vs ·w; where ϒi = ϒre f = 0 (G.9)
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G.3 Multilateration Time Performance
Without considering the analytical gradient, the multilateration computation takes 1.2 seconds, and
when considering random and systematic uncertainties, it takes 27000 seconds. The computation time
is improved when the analytical gradient is considered. The multilateration time decreases to 0.022
seconds without uncertainties and increases to 495 seconds when considering random and systematic
uncertainties. These values were obtained by comparing the output of the multilateration without
modelling uncertainties for a single numerical optimisation with and without considering the analyt-
ical gradient for the TOA. Then, the outcome was multiplied by a different number of samples con-
sidering the random and systematic uncertainties. In other words, toptimisation = Nsyst ×Nrand × tideal
(Nsyst = Nrand = 150; with a total of 22500 samples for each source position. Where tideal is the time
when no uncertainties are considered, equal to 1.2 seconds (without analytical gradient) and 0.022
seconds (with analytical gradient).

Figure 57: Multilateration performance with and without the analytical-numerical gradient.
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Appendix H Pulse-echo Measurement Between the Lateral Sen-
sors

(a) Pulse-echo between sensor Bs2 and Bs3.

(b) Pulse-echo between sensor Bs3 and Bs2.

Figure 58: Misalignment between the two lateral sensors inside the 3D-IBeat. (a) Sensor Bs2 here
denominated as (S2). (b) Sensor Bs3 here denominated as (S2). There was a misalignment between
the two sensors of 0.10 mm.
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Appendix I TDOA Fixed Beam Position and Varying the Refer-
ence Sensor

(a) Reference sensor Bs1. (b) Reference sensor Bs2.

(c) Reference sensor Bs3.

Figure 59: Multilateration using TDOA for different proton widths (i.e., 1,2,3,4,5,6,7,8,9, 10 µs), for
the beam position at (x,y,z) = (0,0,0) mm. (a) TDOA with Bs1 as reference sensor, (b) TDOA with
Bs2 as reference sensor, (c) TDOA with Bs3 as a reference sensor.
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Appendix J TOA/TDOA Beam Offsets & Localisation Using Mul-
tiple Sensors

(a) Localisation with 3 sensors. (b) Localisation with 7 sensors. (c) Localisation with 13 sensors.

(d) Localisation with 27 sensors. (e) Localisation with 39 sensors. (f) Localisation with 52 sensors.

Figure 60: TOA, BP localised with multiple beam offsets. Localisation is performed with different
sensor sets (3,7,13,27,39, and 52).



J TOA/TDOA Beam Offsets & Localisation Using Multiple Sensors 135

(a) Localisation with 3 sensors. (b) Localisation with 7 sensors. (c) Localisation with 13 sensors.

(d) Localisation with 27 sensors. (e) Localisation with 39 sensors. (f) Localisation with 52 sensors.

Figure 61: TDOA, BP localised with multiple beam offsets. Localisation is performed with different
sensor sets (3,7,13,27,39, and 52).
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Marta, Tia Sambita, Tio Elias, and the Monteiro, Mufinda, and Xtragados families—thank you for
staying connected all these years; with you, it feels as though I never left.

From Luanda, my journey took me to Italy/Rome. Daje! There, I learned to walk alone and pursue my
dreams. Rome will always be HOME. Deep thanks to Alfredo Catalfo, Tavinha, Jocelyne, Francesca
Mariani, Atanasio, Dr. Issau Agostinho, Prof. Alessandro Savoia, and all my friends from Roma Tre
University. I extend special gratitude to Prof. Luca Cabibbo. You had a huge impact on my academic
career, especially on the art of coding!

Roma Ostiense (Biblioteca) and Statuto 44 will always be among the best memories ever. Our paths
intersected there, and we combined the passion of pushing towards the marvellous universe of “learn-
ing and exploring”. Thank you for everything, Dr.(Corazon) Cristina Sanz Martin.

One of the chapters led me to Spain for an unforgettable Erasmus year in Zaragoza. Thank you, Prof.
Pablo Laguna, for introducing me to biomedical signal processing. Spain will always hold a special
place in my heart, as it taught me different ways to persevere. Thank you, Encarni, Carlos, German
and Darwin, for those cherished moments of writing by the mountains and waterfalls of Cabuérniga
in Cantabria. Thank you for cheering up all my professional and academic achievements (from the
Bachelor’s to the PhD!).

During my adventures, I had to stop in Germany/Munich. Where I got this amazing opportunity
to start my PhD journey. During my PhD, I interacted with colleagues and friends who shared the
journey’s highs and lows. My deepest thanks go to my colleagues Juliana, Katrin, Franz, Jannis,
Sebastian Lehrack (I still have your book!), Andreas, Sonja, Pratik (always a pleasure, my friend),
Giulio, Prasanna (it is time to print!), Zé, Mune, Leonard, Bea, Mambo and Giovanni.
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