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"The best time to plant a tree is 20 years ago.
The second best time is now."

(Unknown)
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Summary

Soil moisture is a critical variable across several domains, including agriculture, hydrology,
meteorology, and climatology. The required temporal and spatial resolutions for soil mois-
ture information vary depending on the application, ranging from sub-daily to monthly,
and from meters to tens of kilometers. Current operational soil moisture estimates at
regional to global scales are typically provided at coarse to medium spatial resolutions
(greater than 1 km). Due to the complexity of influencing factors and the high spatial and
temporal variability of soil moisture, accurate estimation becomes increasingly challenging
as the spatial resolution requirement increases. As a result, satellite remote sensing of soil
moisture at sub-field scales (10–100 m) is generally confined to specific research sites, often
limited in temporal resolution and available for only short periods, typically less than a
year. However, with the launch of the Sentinel-1 satellites, which offer both high temporal
and spatial resolutions, new opportunities arise to enhance the estimation of soil moisture.
These advances open doors to more detailed, accurate, and temporally frequent observa-
tions, expanding the potential for broader applications beyond limited research sites.

This dissertation focuses on addressing these limitations by developing methods to esti-
mate high spatio-temporal soil moisture values, which are essential for advancing precision
and smart farming applications. The work covers the complete scientific process, from ac-
quiring in-situ measurements for validation purposes, preprocessing and analyzing remote
sensing data, to conducting a detailed analysis of the strengths and weaknesses of various
Radiative Transfer (RT) model combinations used in soil moisture estimation. The primary
objective is to generate high spatio-temporal distributed soil moisture maps. Emphasis is
placed on minimizing the number of input variables, ensuring that all required data can be
operationally retrieved from remote sensing sensors, which facilitates the transferability of
the approach to other regions, with potential applications from regional to global scales.

Over decades, numerous empirical and physically-based RT models have been developed
to calculate radar backscatter - a key parameter estimated by Sentinel-1 - based on soil
surface and vegetation canopy characteristics. A comparison of various empirical and
physically-based surface and canopy RT model combinations (Publication I) identified a
semi-empirical surface model (Oh04) combined with a heuristic single scattering model for
vegetation (SSRT) as an optimal compromise between model sophistication (which affects
transferability) and the availability of required input parameters. The Oh04 model requires
surface roughness and soil moisture but does not rely on soil texture information, which
is often unavailable on a large scale and can restrict transferability. The SSRT model
accounts not only for the canopy backscatter but also for combined bistatic scattering
contributions from the ground and vegetation. Required input parameters can be either
parameterized or retrieved from optical remote sensing satellites such as Sentinel-2.

The Sentinel-1 A/B satellites provide a temporal resolution with identical observation
geometry every 6 days. However, by incorporating all available Sentinel-1 data - regardless
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of observation geometry - a temporal resolution of 1.5 days can be achieved across most
of Europe. The inclusion of Sentinel-1 time series with different observation geometries
presents a challenge, as varying geometries produce changes in backscatter values that
complicate the analysis. A detailed study of azimuth and incidence angle variations re-
vealed that incidence angle changes significantly affect backscatter, while azimuth angle
changes are largely negligible. Despite being accounted for in RT model equations, existing
models are often unable to fully reproduce the observed changes in Sentinel-1 backscatter.
Therefore, modifications to the original RT models were necessary to accommodate a dense
time series of images with varying incidence angles, enabling the use of a 1.5 day temporal
resolution (Publication II).

Building on the insights from Publications I and II, a retrieval scheme was developed
using a minimal set of input parameters for high spatio-temporal soil moisture estimation
(Publication III). This data assimilation approach estimates soil moisture by inverting
the RT model, utilizing radar backscatter (Sentinel-1), Vegetation Water Content (VWC)
(Sentinel-2), and parameterizations for surface roughness, single scattering albedo, and
an empirical parameter b. To address the equifinality problem commonly encountered in
remote sensing data assimilation, a medium-resolution (1 km) soil moisture dataset based
on RADar-ONLine-ANeichung (RADOLAN) data is used as prior information to guide
model outputs. High spatial (10 m) and temporal (1.5 day) soil moisture maps generated
for the Munich North Isar (MNI) test site were validated against in-situ measurements from
maize and winter wheat fields, producing mean unbiased root mean square error (ubRMSE)
values of 0.045 m3/m3 for 2017 and 0.037 m3/m3 for 2018. These estimates align with
the accepted accuracy range for operational coarse-resolution soil moisture products and
successfully capture spatial patterns and wetting and drying dynamics associated with
localized rainfall events.

To support the scientific output in Publications I, II, and III, two Python packages were
developed (Publications IV and V). These packages are designed to serve both the scientific
community and non-experts working with microwave remote sensing data. Freely avail-
able microwave remote sensing data typically require extensive preprocessing by experts,
which limits their usability. The Python package in Publication IV provides a default pre-
processing workflow to generate radiometrically and geometrically corrected sigma naught
backscatter values, allowing non-experts to use microwave data with minimal preprocessing
knowledge. At the same time, experts can leverage this package to streamline the creation
and implementation of their own automated processing pipelines for time series data. The
package described in Publication V implements various widely-used surface and canopy
RT models. Its modular design allows users to easily combine different models, facilitating
straightforward comparison and analysis of RT model outputs. This functionality offers
significant value to the scientific community by making advanced remote sensing models
more accessible and flexible.
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In summary, the key scientific advancements of this dissertation are:

• An improved and enhanced understanding of the comparative performance of various
surface and canopy radiative transfer (RT) models, highlighting the strengths and
weaknesses of different model combinations. This comprehensive analysis facilitates
the selection of appropriate models for specific remote sensing applications.

• A sensitivity analysis that systematically examines how variations in input param-
eters impact soil moisture estimates. This analysis assesses the models’ robustness
which significantly influence the accuracy of soil moisture retrieval, informing better
model calibration and application.

• An exploration of the factors driving variations in Synthetic Aperture Radar (SAR)
images, focusing on the effects of differing acquisition geometries, including azimuth
and incidence angle changes. This insight contributes to a more detailed interpreta-
tion of SAR data, essential for accurate remote sensing analysis.

• An advancement in the understanding of scattering mechanisms through dual po-
larimetric decomposition techniques, which enhances the capability to analyze and
interpret SAR signals related to changes in vegetation structure, moisture content,
and varying acquisition geometries, such as incidence angle changes. This contribu-
tion provides deeper insights into how radar waves interact with different scattering
surfaces, facilitating improved applications in agricultural monitoring and environ-
mental assessments by accounting for these geometrical variations.

• The development of a novel approach to derive high spatio-temporal soil moisture es-
timates over agricultural fields, leveraging operational and freely available microwave
and optical remote sensing data. This methodology enhances the accessibility and
applicability of soil moisture data for agricultural monitoring and management.

• The utilization of a higher temporal resolution time series, allowing for a more com-
prehensive analysis of soil moisture dynamics. This increased frequency of observa-
tions significantly improves the detection of temporal variations and enhances the
reliability of soil moisture estimates, ultimately supporting better decision-making in
agricultural practices.

• The development of a Python-based automated preprocessing pipeline for microwave
remote sensing data, enabling efficient and standardized preparation of data for anal-
ysis. This tool lowers the barrier for entry for researchers and practitioners in the
field, allowing for broader utilization of microwave remote sensing technologies.

• The creation of a user-friendly Python tool designed to facilitate the integration
and combination of different microwave RT models, incorporating both surface and
vegetation components. This tool empowers researchers to customize their model
configurations easily, promoting innovation in remote sensing studies.



Zusammenfassung

Die Bodenfeuchte ist ein wichtiger Einflussfaktor in der Landwirtschaft, der Hydrologie,
der Meteorologie und der Klimatologie. Die erforderlichen zeitlichen und räumlichen Auflö-
sungen für Bodenfeuchteinformationen variieren je nach Anwendung und reichen von Tage-
saktuellen bis hin zu monatlichen Werten sowie von Meter- bis zu mehreren Zehnkilome-
ternauflösungen. Derzeit sind aus Satellitendaten abgeleitete Bodenfeuchtigkeitswerte auf
regionalen bis globalen Skalen typischerweise mit grober (über 25 km) bis mittlerer räum-
licher Auflösung (über 1 km) verfügbar. Aufgrund der Komplexität der Einflussfaktoren
und der hohen räumlichen sowie zeitlichen Variabilität der Bodenfeuchte ist ihre Ableitung
mit hohen Unsicherheiten behaftet. Zudem führen höhere räumliche Auflösungsanforderun-
gen zu höherer Komplexität und höheren Unsicherheiten. Die satellitengestützte Ableitung
der Bodenfeuchte auf sub-feldmaßstäblichen Skalen (10–100 m) befindet sich immer noch
im Stadium der wissenschaftlichen Untersuchungen. Mit dem Start der Sentinel-1-Satelliten,
die sowohl hohe zeitliche als auch räumliche Auflösungen bieten, ergeben sich jedoch neue
Möglichkeiten zur Verbesserung der großflächigen Bodenfeuchteableitung.

Das Ziel dieser Dissertation ist die Weiterentwicklung von Methoden zur Ableitung von
zeitlich und räumlich hochaufgelösten Bodenfeuchtewerten aus Satellitendaten, um Anwen-
dungen im Bereich des Smart Farmings zu unterstützen. Die Arbeit umfasst den gesamten
wissenschaftlichen Prozess, von der Erfassung von In-situ-Messungen zur Validierung über
die Vorprozessierung und Analyse von Fernerkundungsdaten bis hin zu einer detaillierten
Analyse der Stärken und Schwächen verschiedener Modellkombinationen. Der Fokus liegt
auf der Minimierung der benötigten Eingangsvariablen, um eine hohe Übertragbarkeit des
entwickelten Ansatzes auf andere Gebiete zu ermöglichen. Zudem sollen alle Eingangsvari-
ablen aus bereits frei verfügbaren Fernerkundungsdaten bereitgestellt werden.

Die vom Sentinel-1-Satelliten gemessenen Radar-Backscatterwerte können mithilfe von
empirisch und physikalisch basierte Strahlungstransfermodelle modelliert werden. Ein Ver-
gleich verschiedener empirischer und physikalisch basierter Modellkombinationen (Veröf-
fentlichung I) identifizierte ein semi-empirisches Strahlungstransfermodell (Oh04), das mit
einem heuristischen Strahlungstransfermodell für Vegetation (SSRT) kombiniert wurde, als
optimalen Kompromiss zwischen Modellkomplexität und der Verfügbarkeit der erforder-
lichen Eingangsparameter. Die Eingangsvariablen des Oh04-Modells umfassen die Bo-
denrauhigkeit und die Bodenfeuchte. Informationen über die Bodenart, die oft nicht in
ausreichendem Maß verfügbar sind, werden nicht benötigt. Die erforderlichen Eingangspa-
rameter des SSRT-Modells können entweder parametrisiert oder von optischen Fernerkun-
dungssatelliten wie Sentinel-2 abgeleitet werden. Das SSRT-Modell berücksichtigt sowohl
die Rückstreuung der Vegetation als auch die Rückstreuung durch die Wechselwirkungen
zwischen Vegetation und Boden mit der ausgesendeten elektromagnetischen Welle.

Die Sentinel-1-Satelliten bieten eine zeitliche Auflösung mit identischer Beobachtungs-
geometrie alle sechs Tage. Durch die Nutzung aller verfügbaren Sentinel-1-Überflüge –
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unabhängig von der Aufnahmegeometrie – kann jedoch eine zeitliche Auflösung von 1.5
Tagen für weite Teile Europas erreicht werden. Die Verwendung von Zeitserien mit un-
terschiedlichen Aufnahmegeometrien stellt allerdings eine Herausforderung dar, da unter-
schiedliche Aufnahmegeometrien zu Veränderungen der Rückstreuung führen und somit die
Ableitung der Bodenfeuchte erschweren. Eine detaillierte Untersuchung von verschiedenen
Azimut- und Einfallswinkeln zeigt, dass Veränderungen des Einfallswinkels den Backscatter
erheblich beeinflussen, während Änderungen im Azimutwinkel weitgehend vernachlässig-
bar sind. Obwohl die Modelle den Einfallswinkel berücksichtigen, sind sie oft nicht in
der Lage, die beobachteten Änderungen im Sentinel-1-Backscatter vollständig zu repro-
duzieren. Daher sind Anpassungen an der ursprünglichen Modellkonzeption notwendig,
um eine zeitlich hochaufgelöste Zeitreihe (Auflösung von 1.5 Tagen) mit Szenen bestehend
aus unterschiedlichen Einfallswinkeln nutzbar zu machen (Veröffentlichung II).

Veröffentlichungen I und II bilden die Grundlage für einen Datenassimilationsansatz,
der mit minimalen Anforderungen an die Eingangsparameter, zeitlich und räumlich hoch-
aufgelöste Bodenfeuchte aus Satellitendaten ableitet (Veröffentlichung III). Durch eine
inverse Modellierung des Strahlungstransfermodells unter Verwendung des Radar-Back-
scatters (Sentinel-1), des Vegetationswassergehaltes (Sentinel-2) sowie einer Parametrisie-
rung der Bodenrauhigkeit, der Reflexionsstrahlung und eines empirischen Parameters b,
wird die Bodenfeuchte ermittelt. Um das häufig auftretende Problem der Äquifinalität in
der Datenassimilation von Fernerkundungsdaten zu minimieren, wird zusätzlich ein 1 km
aufgelöstes Bodenfeuchteprodukt, welches auf den RADOLAN-Daten des Deutschen Wet-
terdienstes basiert, als Zusatzinformation genutzt. Die modellierten Bodenfeuchtekarten
für das Münchner Nord-Isar-Testgebiet mit 10 m räumlicher und 1.5 Tagen zeitlicher Auflö-
sung wurden anhand von In-situ-Messungen von Mais- und Winterweizenfeldern validiert.
Die modellierten Bodenfeuchtewerte liegen mit einem unbiased RMSE von 0.045 m3/m3 für
2017 und 0.037 m3/m3 für 2018 im angestrebten Genauigkeitsbereich für satellitengestützte
Bodenfeuchteinformationen. Außerdem konnten Räumliche Muster bezüglich Vernässung-
und Abtrocknungsdynamiken, die mit lokalisierten Niederschlagsereignissen verbunden
sind, mit hoher Genauigkeit reproduziert werden.

Zur Erstellung der wissenschaftlichen Ergebnisse der Veröffentlichungen I, II und III
wurden zwei Python-Bibliotheken entwickelt. Frei verfügbare Mikrowellenfernerkundungs-
daten sind in der Regel nicht ohne weiteres nutzbar und erfordern zunächst eine umfan-
greiche Vorprozessierung, was ihre Anwendbarkeit stark limitiert. Die in Veröffentlichung
IV beschriebene Python-Bibliothek bietet eine automatisierte Vorprozessierungskette, um
radiometrisch und geometrisch korrigierte Sentinel-1-Sigma-Naught-Backscatter-Werte zu
generieren. Durch diesen Python-Code können auch Personen mit Programmierkenntnissen
und minimalem Vorwissen im Bereich der Fernerkundung Sentinel-1-Daten nutzen. Zudem
können Fernerkundungsexperten mit Programmierkenntnissen dieses Paket verwenden, um
eine angepasste oder komplett neue Prozessierungskette für Sentinel-1-Zeitreihendaten zu
erstellen. Die in Veröffentlichung V beschriebene Python-Bibliothek umfasst verschiedene
gängig verwendete Strahlungstransfermodelle. Das modulare Design ermöglicht den Nut-
zern, verschiedene Modelle einfach zu kombinieren, wodurch eine schnelle und einfache
Analyse verschiedener Modellergebnisse ermöglicht wird.



Zusammenfassung vii

Die wichtigsten wissenschaftlichen Fortschritte dieser Doktorarbeit sind:
• Ein verbessertes und erweitertes Verständnis der meistverwendeten Mikrowellen Strah-

lungstransfermodellen. Die durchgefuhrte umfassende Analyse erleichtert die Auswahl
geeigneter Modelle für spezifische Anwendungen der Fernerkundung.

• Eine Sensitivitätsanalyse, die systematisch untersucht, wie Variationen der Eingangs-
varibalen die Ableitungsqualität von Bodenfeuchtewerten beeinflussen. Diese Anal-
yse bewertet die Robustheit der Modelle und Eingangsparameter, welche die Genauig-
keit der Bodenfeuchteretrievals erheblich beeinflussen und somit eine bessere Modell-
kalibrierung und Anwendung ermöglichen.

• Eine Analyse der Auswirkungen von unterschiedlichen Sentinel-1 Aufnahmegeome-
trien auf den Radar-Backscatter. Diese Erkenntnisse im Bereich des Azimut- und
Einfallswinkels tragen zu einer verbesserten Interpretation der Sentinel-1 Zeitreihen
bei.

• Ein Fortschritt im Verständnis der Streumechanismen durch duale polarimetrische
Dekomposition, der die Fähigkeit zur Analyse und Interpretation von Radarsystemen
mit synthetischer Aperatur in Bezug auf Veränderungen in der Vegetationsstruktur,
dem Feuchtigkeitsgehalt und variierenden Aufnahmegeometrien, verbessert. Dieser
Beitrag liefert tiefere Einblicke in die Wechselwirkungen von Radarwellen mit unter-
schiedlichen Oberflächen, wodurch verbesserte Anwendungen in der landwirtschaft-
lichen Überwachung und der Umweltbewertung ermöglicht werden.

• Die Entwicklung eines neuartigen Ansatzes zur Ableitung räumlich und zeitlich hoch-
aufgelöster Bodenfeuchteinformationen von landwirtschaftliche Flächen, welcher auf
frei verfügbaren Mikrowellen- und optischen Fernerkundungsdaten basiert. Diese
Methodik verbessert die Ableitung von der Bodenfeuchte für Smart-Farming Anwen-
dungen.

• Die Nutzung einer Zeitreihe mit erhöhter zeitlicher Auflösung, die eine umfassendere
Analyse der Dynamik der Bodenfeuchte ermöglicht. Die erhöhte Beobachtungsfre-
quenz verbessert die Erkennung zeitlicher Variationen und erhöht die Zuverlässigkeit
der Bodenfeuchteableitung, was letztendlich bessere Entscheidungsfindungen in land-
wirtschaftlichen Praktiken unterstützt.

• Die Entwicklung einer Python-Bibliothek zur automatisierten Vorprozessierung von
Mikrowellenfernerkundungsdaten. Dieses Tool senkt die Eintrittsbarrieren für For-
scher und Praktiker in diesem Bereich und ermöglicht eine breitere Nutzung der
Technologien der Mikrowellenfernerkundung.

• Die Erstellung einer Python-Bibliothek, das darauf ausgelegt ist, die Integration und
Kombination verschiedener Mikrowellenstrahlungstransfermodellen zu vereinfachen.
Dieses Tool ermöglicht es Forschern, verschiedene Modellkombinationen schnell und
einfach zu analysieren.
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Chapter 1

Introduction

This introductory chapter provides a general overview of the research topic - soil moisture
- and guides the reader to the research questions (Chapter 2) and scientific publications
(Chapter 3). First, the motivation for the research topics is described (Section 1.1). Af-
terwards, a definition of soil moisture is provided (Section 1.2). Next, the importance
of soil moisture knowledge for agricultural purposes, as well as the required spatial and
temporal resolutions, are demonstrated (Section 1.3). This is followed by an overview
of the state-of-the-art microwave remote sensing soil moisture monitoring methods, along
with their respective spatial and temporal limitations (Section 1.4). Finally, as a lead-up
to the scientific contribution and research questions, the demands, benefits, and current
limitations of high spatio-temporal soil moisture estimates from remote sensing data are
discussed (Section 1.5).

1.1 Motivation
The motivation for the research presented in this dissertation is based on the need for
sustainable change, the growing availability of data to be analyzed, and the focus on one
important aspect/parameter that influences all life on our planet. The need for change is
driven by the increasing impacts of climate change and the need for greater sustainability.
The growing availability of data to be analyzed is both a challenge and an opportunity
for new innovations. Innovations are important to ensure the current quality of life while
simultaneously increasing sustainability. Finally, the focus on soil moisture is based on
the importance of fresh water, which is often referred to as the basis of all life on Earth
(United Nations World Water Assessment Programme, 2018).

Need for Sustainability and Increasing Climate Change Impacts
Our world has been changing at an unprecedented rate on both regional and global scales
over the past few decades. Political events (Brexit, conflict in Ukraine) (Martill, 2023; Vu
et al., 2023), social changes (generation Z entering the labor market, interactions during
the covid pandemic due to masks) (Larsen et al., 2018; Freud et al., 2020), technological ad-
vancements (artificial intelligence, blockchain) (Hussain and Al-Turjman, 2021), economic
issues (trade wars, energy crises, inflation) (Fajgelbaum and Khandelwal, 2022; Carrière-
Swallow et al., 2023), and environmental challenges (climate change) (Intergovernmental
Panel on Climate Change (IPCC), 2022) influence our daily lives in various ways. As a
society, we thus face enormous challenges in achieving self-set goals such as food security,
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clean water provision, energy decarbonization, and mitigating and adapting to climate
change impacts (Sachs et al., 2019).

In 2015, the United Nations General Assembly formulated 17 Sustainable Development
Goals to help transform our world into a better living place and a more sustainable future
(United Nation General Assembly, 2015). An initial effort to quantify the sustainability
of human lifestyles was made in 1972 by a small group of researchers at Massachusetts
Institute of Technology (Meadows et al., 1972). They analyzed growing trends in the
world population, industrialization, pollution, food production, and the consumption of
non-sustainable natural resources, reaching the at the time controversial conclusion that
humanity would reach the limits of our planet within the next hundred years (Meadows
and Meadows, 2007; Bardi, 2011).

In 1992, William Rees introduced a new calculation method to measure the ecological
footprint in an effort to visualize the planet’s limits and the current demands of human-
ity (Rees, 1992). Today’s estimates by Wackernagel and Beyers (2019) indicate that we
already reached the Earth’s annual biological capacity to regenerate (one Earth’s worth of
resources) in 1970. The estimates for 2022 suggest that today 1.75 Earths are required to
sustainably provide the consumed resources and absorb the waste produced by humanity
(Lin et al., 2022). This means that the ecological footprint has increased by 75% since
1970 and by 1.2% from 2021 to 2022 (Lin et al., 2022). Under a business-as-usual sce-
nario (population and consumption growth), the Global Footprint Network projects that
by 2030, two planets would be necessary to sustain humanity’s needs (Global Footprint
Network, 2015).

Furthermore, on basis of calculations for the special Intergovernmental Panel on Climate
Change (IPCC) (2018) report on 1.5°C from 2018, the United Nations believe that we have
only until 2030 to prevent irreversible damage from climate change impacts. Although the
estimated numbers and methods have been controverisal since the 1970s, the majority of
researchers now agree that we overuse our planet’s resources (Intergovernmental Panel on
Climate Change (IPCC), 2021). Despite decades of warnings from scientists about the
overuse of our planet’s resources, a broad public discussion of sustainable development
(meeting the needs of the present without jeopardizing the prosperity of future generations
(Mitra, 2016)) has emerged only in recent years.

The initiation of adaptation strategies and changes to our predominantly Western
lifestyle to create a more sustainable society (considering social, environmental, and eco-
nomic resources) was delayed by decades. As a result of our consumption and lifestyle, we
are now experiencing severe environmental changes due to climate change impacts (Inter-
governmental Panel on Climate Change (IPCC), 2019). Given the negative consequences
experienced around the world, it is unsurprising that a broad range of researchers, politi-
cians, economists, and the general public believe that adapting to climate change and
transitioning to a more sustainable society might be the greatest challenge our generation
faces.
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Growth and Benefit of Earth Observation Data
An insight report from 2024 by the World Economic Forum estimates the economic benefit
from Earth Observation (EO) data at $266 billion in 2023 (World Economic Forum and
Deloitte, 2024). This amount is expected to increase to more than $700 billion by 2030.
Thus, EO offers a potential cumulative economic benefit of $3.8 trillion to the global gross
domestic product from 2023 to 2030 while simultaneously having positive impacts on cli-
mate and nature (World Economic Forum and Deloitte, 2024). By far, the largest sector
for EO’s potential global economic value is agriculture, followed by mining (oil and gas),
government (public and emergency services), electricity and utilities, supply chain and
transport, and insurance. Agriculture alone accounts for $399 billion, which correspond
to over 50% of the projected global economic value (World Economic Forum and Deloitte,
2024). Moreover, the agricultural sector has the potential to reduce annual greenhouse
gas emissions by 27 million tonnes of CO2 equivalent. Counting only the five leading EO
applications with direct climate benefits (early warning, environmental impact monitoring,
route optimization, precision farming, and supply chain monitoring) EO applications has
the potential to reduce more than 2 gigatons (Gt) of CO2 equivalent annually by 2030.
Furthermore, the reduction in greenhouse gas emissions might be underestimated, as indi-
rect effects are not accounted for. However, the modeled emission reduction of 2 Gt CO2 is
equivalent to approximately 3.6% of the global emissions in 2024 (World Economic Forum
and Deloitte, 2024).

If we look at only the global satellite imaging market, a value of $3.27 billion in 2022
and $4.16 billion in 2023 are estimated. Furthermore, the satellite imaging market is
expected to increase to $14.18 billion by 2030, which corresponds to a compound annual
growth rate of 19% (Fortune Business Insights, 2023). Currently, considering only the
top two commercial imaging companies, the amount of data from satellites exceeds 100
terabytes (TBs) per day for 365 days per year (Fortune Business Insights, 2023). Thus,
it is not surprising that a report from Analysis Mason, the global leader in satellite and
space market research, estimates EO-introduced satellite and space application traffic at
787 petabytes (PBs) in 2022. A forecast predicts the generation of more than 2 exabytes
(EB) by 2032, which corresponds to a compound annual growth rate of 11% (Oni, 2024).
On the basis of these growth rates and the enormous numbers, it is highly likely that EO
data will become increasingly important to life on Earth.

Given the expected amount of data volume, issues such as storage and EO data pro-
vision to users are highly important. Thus, in 2023, the European Union launched the
Copernicus Data Space Ecosystem, a new initiative to create one of the world’s largest EO
offerings. The Copernicus Data Space Ecosystem aims not only to provide open access
data download capabilities but also to offer possibilities for cloud-based EO data process-
ing to enhance the usage of freely available EO. Currently, the Copernicus Data Space
Ecosystem grants access to over 50 PBs of EO data (new and historical Sentinel, Landsat,
Soil Moisture and Ocean Salinity (SMOS), and other Copernicus Contribution Mission
data) and is expected to grow to over 100 PBs within the next six years (CloudFerro S.A.,
2024).
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In summary, based on these numbers, the immense potential of EO applications is
evident, but it might be surprising that a study of World Economic Forum and Deloitte
(2024) conclude that the potential has not yet been fully realized.

Water/Soil Moisture as One of the Most Important Variables in
the Earth’s System
Climate change will have a considerable impact on the availability and usage of the most
precious resource we have on our planet "water", or more precisely, "freshwater" (Mishra,
2023). Different studies have concluded that, owing the increasing demand for our fresh-
water resources, the socio-economic impacts might be as large as the impacts of climate
change (Fischer et al., 2007; den Besten et al., 2021). Furthermore, with expected popula-
tion growth to approximately 9.7 billion by 2050 (United Nations Department of Economic
and Social Affairs, 2022), the demand for freshwater will increase. The global water de-
mand for industry, domestic, and agriculture is projected to increase by 20% to 30% by
2050 (Burek et al., 2016). Moreover, projections for 2050 estimate an increase in food
demand of 60% (United Nations World Water Assessment Programme, 2018).

As agriculture alone already accounts for 70% of global water usage (Boretti and Rosa,
2019), the importance of sufficient water availability cannot be emphasized enough. Al-
though enough freshwater for agriculture and other human needs is available globally and
annually, spatial and temporal variations in water accessibility and demand lead to water
scarcity in some regions (Mekonnen and Hoekstra, 2016). Thus, mainly due to geographic
and temporal mismatches between freshwater demand and availability approximately four
billion people live with (temporary) water scarcity worldwide (Mekonnen and Hoekstra,
2016). Hence, it is not surprising that the World Meteorological Organization has added
soil moisture to the list of 50 Essential Climatic Variables recommended for systematic
observation (World Meteorological Organization, 2010).

However, the actual mapping of high-resolution soil moisture from space is challenging
because of its high spatial and temporal variability and the complexity of the derivation
procedure. In agricultural regions, soil and crop conditions fluctuate throughout the day,
on a daily basis, and across different seasons. Furthermore, challenges due to temporal
changes and spatial variations (field-to-field and intra-field variances) present difficulties in
mapping and monitoring soil moisture and other soil and crop characteristics. Nevertheless,
reliable large-scale high-resolution soil moisture information is a key factor in determining
if and how much food can be produced.

As water can often be a scarce resource and agriculture requires much water at the
right moment, knowledge about daily soil moisture changes is essential. Thus, to reduce
water consumption, soil moisture information is vital for enabling highly efficient irrigation
and smarter decision-making in agriculture. Furthermore, knowledge about spatially and
temporally distributed soil moisture is especially needed as climate change impacts change
the availability of water on temporal and spatial scales (United Nations World Water
Assessment Programme, 2018; Intergovernmental Panel on Climate Change (IPCC), 2019).
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Moreover, changes in precipitation patterns due to climate change effects require adaptation
strategies worldwide (Dai et al., 2018).

In summary, with a rapidly changing world (climate change), the importance of high-
resolution soil moisture information and the possibility of enhancing soil moisture estimates
by analyzing a large amount of (upcoming) EO data, research to provide high spatial and
temporal distributed soil moisture maps is necessary and has significant impact potential.

1.2 Definition of Soil Moisture
In general, soil moisture is defined as the amount of water within a soil sample. However,
different disciplines (agriculture, meteorology, or hydrology) use the term soil moisture in
slightly different ways. For example, the American Meteorological Society (AMS) defines
soil moisture as the total amount of water in unsaturated soil (Seneviratne et al., 2010).
In simple hydrological models, soil moisture is often defined similarly to the definition
provided by the AMS. However, more complex hydrological models, such as Water bal-
ance Simulation Model (WaSiM) (Schulla and Jasper, 2015), may differentiate between
soil moisture in the root zone and soil moisture in the unsaturated zone. Regardless, the
relevant water for agricultural purposes is the soil moisture of the root zone, as this water
is available for plants (Iqbal et al., 2020). In terms of soil moisture estimates from remote
sensing data, the term soil moisture generally refers to the water within the upper 5 cm
to 10 cm of the soil (Lakhankar et al., 2009). Nevertheless, sometimes more precise termi-
nology, such as surface soil moisture, is used within the remote sensing community (Loew
et al., 2006). Hence, if not specified with terms such as surface, root zone, or unsaturated
soil, the commonly used term soil moisture might lead to misunderstandings. Therefore,
for clarification, if the term "soil moisture" is used here, it refers to the water within the
upper 5 cm to 10 cm of the soil, as the primarily used remote sensing data (Sentinel-1)
can only detect surface soil moisture. A summary and graphical overview of the different
layers of the soil are shown in Figure 1.

Mathematically speaking, soil moisture is described on either a volumetric (mv) or
gravimetric (mg) basis as:

mv = vw

vt

(1.1)

mg = mwet − mdry

mdry

(1.2)

mv = mg ∗ σsoil

σwater

(1.3)

where vw is the water volume, vt is the total volume, mwet is the mass of the wet soil
sample, mdry is the mass of the dry soil sample, σsoil is the dry bulk density of the soil, and
σwater is the density of water (Shukla et al., 2014; Kashyap and Kumar, 2021). Although
soil moisture is dimensionless, it is often expressed in units of [g/g], [m3/m3], [g/m3], or, if
multiplied by 100, as a volume percentage. Although soil moisture accounts for only 0.05%
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Figure 1: Schematic diagram of the unsaturated and saturated soil zones (adapted from
Petropoulos et al. (2015)).

of the freshwater within the hydrological cycle, its importance is undisputed (Dingman,
2008). The upper 5 cm to 10 cm of soil and the proportion of water in it (0.0012% of
the total Earth’s water (Brogi et al., 2023)) might seem insignificant, but it is vital for
agricultural plant growth and thus for our survival (Sutanto et al., 2022). Furthermore, the
small amount of water in this thin layer is a key factor in the entire water cycle and thus
influences and is highly intertwined with rainfall distributions, surface water, groundwater,
vegetation growth, ecosystem health, and climate conditions (Zhang et al., 2020).

1.3 Soil Moisture in Agriculture
By nature, water and agriculture are intertwined. Water is a determinant factor for agri-
cultural production, and several agriculture related processes affect the hydrological cycle
in terms of evapotranspiration, precipitation, groundwater recharge, and runoff (Kashyap
and Kumar, 2021). In agriculture, the optimum availability of moisture in the soil is vital
for processes such as seed germination, plant growth, and nutrient cycling (Hou et al.,
2022; Bauke et al., 2022). Thus, to reduce dependence on natural rainfall, large areas (ap-
proximately 20% of croplands) are irrigated (Brocca et al., 2018). The area equipped with
irrigation nearly doubled within the last 50 years and is responsible for around 40% of food
production (Scheierling and Treguer, 2016). Currently, approximately 70% of freshwater
withdrawals are used for irrigation, making the agricultural sector the world’s largest wa-
ter user (Fischer et al., 2007; Campbell et al., 2017). Nevertheless, the large amount of
irrigation used poses a major threat to water resources in many parts of the world.

Furthermore, changing conditions in terms of temporal and spatial water availability
due to climate change can be observed. Thus, adaptation strategies (change in crop type
and irrigation efficiency) need to be evaluated (Loboguerrero et al., 2019). Additionally,
with expected population growth from 8 billion (in 2022) to approximately 9.7 billion
by 2050 and 10.4 billion by 2100 (United Nations Department of Economic and Social
Affairs, 2022), the demand of freshwater for electricity, industry, households, and especially
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agriculture will further increase. For the development of adaptation strategies and the
efficient use of available water resources, systematic large-scale observations of soil moisture
are essential.

However, soil moisture changes are highly affected by land topography, inhomogene-
ity of soil properties, and non-uniformity of rainfall and evapotranspiration (Weng, 2016).
Thus, the systematic observation of soil moisture, especially for agricultural purposes, is
challenging because of the interaction of high-resolution demands and the high natural
variability of soil moisture in space and time. An overview of different soil moisture de-
pendent agricultural areas/processes and their respective spatial and temporal resolution
demands is given in Figure 2. As indicated in Figure 2, information about crop phenology
and crop yield is relevant mostly from weekly (change in phenology) to seasonal and annual
(crop yield) time intervals. On a spatial scale, field to sub-field resolutions are required to
provide phenology and crop yield information at the farmer level.

Nevertheless, since there is a global wheat market (production, demand, and price have
a global effect), crop yield information and predictions at regional to global scales are
important for food security reasons (Iizumi et al., 2018; Abbas et al., 2020). Information
about the mortality of plants is usually required at a higher resolution (sub-field) than
phenology, but the temporal resolution spans from weekly to almost annual. On the other
hand, irrigation has a large span in terms of spatial and temporal resolution. Irrigation
management starts at the sub-field scale for individual farmers but can reach regional di-
mensions. For example, the largest combined irrigation area is the Indus Basin Irrigation
System, with 26.02 million hectares (mha) in India and Pakistan (Khan and Adams, 2019).
Additionally, the time constraint of irrigation spans due to climate and individual seasonal
soil moisture dynamics from sub-daily (irrigation of fields) to seasonal (water allocation
and usage at a later time) (Salman et al., 2001; Phung et al., 2022). Individual farmers re-
quire the highest spatial resolution for their fieldwork (e.g., precision farming applications).

Figure 2: Categorization of parameters that define crop development and important appli-
cations in agriculture, based on their required temporal and spatial resolutions (adapted
from Konings et al. (2019)).
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Precision farming can be applied only if sub-field to meter resolution is available.
Moreover, information about soil and crop status must be available at the right time

(daily to weekly basis) (Finger et al., 2019). The benefit of high-resolution soil moisture
information for farmers is the easy and quick determination of whether the use of heavy
machinery is possible under certain moisture conditions or to find the perfect time (in terms
of soil moisture) for seed sowing or fertilization. Efficient nitrogen fertilization, including
nitrogen uptake by plants and reducing nitrogen-related greenhouse gas emissions, is highly
dependent on soil moisture conditions (Liang, 2022; Gao and Cabrera Serrenho, 2023).

Furthermore, information from soil moisture monitoring systems can help farmers with
optimal decision-making in terms of crop selection or if activities such as drainage are
needed (den Besten et al., 2021). The monitoring of soil moisture not only helps to ef-
fectively plan and manage agricultural processes but also provides information about crop
health and moisture retention, which are important indicators of sustainable agroecosys-
tems (Kashyap and Kumar, 2021). A previous study by Vanino et al. (2018) revealed that,
especially in drought situations, farmers tend to overirrigate and misuse water resources.
Thus, in areas where water is often a scarce resource, reliable soil moisture and crop sta-
tus information will help farmers reduce water consumption and optimize their irrigation
practices on the basis of soil matric potential (Thompson et al., 2007).

Nevertheless, as irrigation or other agricultural practices are mostly time sensitive, the
provision of continuous (e.g., daily) information is vital (Shannon et al., 2018). Addition-
ally, the use of soil moisture information by farmers is highly affected by product costs,
accessibility, reliability, and usage simplicity. Furthermore, without expected efficiency
improvements and thus economic savings potential and seamless integration of the infor-
mation into easy decision-making processes for farmers, a soil moisture product will not
be used (Tebbs et al., 2016). Even though soil moisture is an important parameter and
might serve as an indicator, additional information about the crops (biomass, phenology
stages, etc.) is often needed to determine a full picture of agricultural fields (Hosseini and
McNairn, 2017).

Thus, the development of a usable soil moisture product for farmers or an even more
advanced platform with additional field information will likely require contributions from
the scientific community and the private sector (Tebbs et al., 2016). Additionally, building
historical data will help farmers determine if a change in crop type might be favorable.
In addition to farmers, on a larger scale, policy and other decision-makers rely on soil
moisture information for agricultural regions (Zhang et al., 2021). Droughts and flooding,
as examples of events that can cause harvest failures, might change the global crop price,
thus, national economic security might require a change in import-export strategies (Tebbs
et al., 2016).
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1.4 Soil Moisture Monitoring with Microwave Remote
Sensing Techniques

As traditional in-situ soil moisture measurements are expensive and usually involve point
measurements, they fall short of providing large-scale information. However, with advances
in technology, especially in the field of remote sensing, it is possible to monitor changes
at regional to global scales from space. Today, a variety of different airborne and satel-
lite systems (optical, microwave, and thermal) provide the opportunity to improve Earth
observations in terms of ground coverage and spatio-temporal resolution.

In terms of soil moisture, microwave remote sensing images were found to be highly
suitable (Engman, 1991). Compared with optical remote sensing applications (aerial pho-
tography has been used since the late 1800s), microwave remote sensing is a fairly new
profession, with civilian use starting in the early 1960s (Ulaby and Long, 2014). As optical
and microwave radiation are located in different wavelength ranges of the electromagnetic
spectrum (Figure 3), each of them offers a unique view of the Earth’s environment. In con-
trast to optical remote sensing, microwave remote sensing has certain advantages. First,
especially active microwave signals are independent of sun illumination, and they are able
to penetrate clouds (Dwivedi et al., 2000). Therefore, microwave remote sensing data can
be recorded at any time of day and under almost all weather conditions (Woodhouse,
2006). Furthermore, microwave signals are not only able to penetrate clouds but can also
penetrate vegetation and, to some extent, even the upper soil layer (Beale et al., 2021).
The actual penetration depths of vegetation and soil depend on several factors such as the
wavelength or the amount of water in the plants and the soil (Baur et al., 2018).

In general, microwave remote sensing can be separated into active (radar, SAR) and
passive (radiometry) sensors. Whereas active radar measures the reflected energy of a

Figure 3: Electromagnetic spectrum with active and passive remote sensor information.
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self-emitted microwave, passive radiometers measure the natural energy emitted from the
land surface (brightness temperature) (Richards, 2009). Passive remote sensing satellites
provide coarse spatial resolutions (usually 10 to 50 km), whereas SAR as active sensor, is
able to provide much higher spatial resolutions (Wagner et al., 2007). Passive radiome-
ters are commonly used for monitoring climate and environmental parameters such as soil
moisture, sea surface temperature, sea ice concentration, rainfall, and atmospheric water
vapor. Owing to the higher possible resolution, SAR data are used in applications such
as terrain mapping, disaster monitoring, agriculture (precision farming, crop monitoring,
soil moisture estimation, and vegetation health assessment), forestry, glacier and ice mon-
itoring, and urban planning (Ulaby and Long, 2014). A history of spaceborne active and
passive microwave sensors for soil moisture estimation is given in Figure 4.

The reason for the use of microwave remote sensing to determine soil moisture is the
high dependency of electromagnetic radiation on the dielectric properties of the soil-water
mixture (Ulaby and Long, 2014). Thus, changes in soil moisture can be related to measured
soil scattering and emission changes from remote sensing sensors (Engman, 1991). In
general, an increase in the dielectric constant of the soil results in a radar backscatter
increase, thus, backscatter and soil moisture are positively correlated (Champion, 1996).
The remote sensing information in terms of brightness temperature (passive) and radar
backscatter (active), depends not only on soil moisture but also on other radar system
parameters (wavelength, incidence angle, azimuth angle, and polarization). More detailed
information on incidence and azimuth angle changes in regard to RT model estimation of
soil moisture from Sentinel-1 can be found in Publication II.

Earth surface characteristics (surface roughness, soil texture, topography, vegetation
structure, and water content) also influence radar signals (Bousbih et al., 2018). Moreover,
the parameters themselves and their sensitivity to the radar signal are influenced by each
other. For example, studies have shown that the sensitivity of the radar signal to surface
roughness increases with increasing incidence angle (Mattia et al., 2003). Additionally,
the influence of different moisture conditions (wet soil, dry soil), vegetation conditions
(fully grown, dormant), and incidence angle changes on radar backscattering changes non-
linearly (Wagner et al., 1999a). The effects of the various dependencies are shown in
Figure 5. Moreover, variables such as the soil bulk density and soil texture affect the
dielectric properties of the soil as well. The water-holding capacity of the soil changes
based on the soil texture. It was found that the higher amount of free water in sandy soil
compared to clay soils results in a higher Pearson correlation of soil moisture and radar
backscatter (Kong and Dorling, 2008; Srivastava et al., 2006). Additionally, the presence of
vegetation cover reduces the backscatter sensitivity to the soil and thus the soil moisture.
In general, the soil moisture sensitivity decreases with increasing density and height of
the vegetation layer. However, various factors such as vegetation biomass, canopy type,
and crop conditions (especially VWC), influence the effect of vegetation (Kornelsen and
Coulibaly, 2013; Petropoulos et al., 2015). Studies have shown that the sensitivity of
a C-band radar to soil moisture conditions within a wheat field highly increases during
the ripening of wheat plants, thus the vegetation cover (approximately 1 m in height) was
found to be almost invisible for C-band microwaves with high incidence angles (Weiß et al.,
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2021). In summary, owing to the different dependencies and impacts of radar, soil, and
vegetation characteristics, soil moisture retrievals are difficult without detailed knowledge
of these parameters (Das and Paul, 2015).

Figure 4: Timeline of spaceborne active and passive microwave sensors for soil moisture
retrieval (adapted from Kim et al. (2019)).
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Figure 5: Schematic overview of backscatter changes based on incidence angle, soil mois-
ture, and vegetation status (Wagner et al., 1999a).

.

In recent decades, the influences of radar, soil, and vegetation characteristics have
been investigated through numerous experimental and theoretical studies in the active and
passive microwave domains. This has led to the development and improvement of different
sensor techniques and retrieval approaches (Ulaby and Long, 2014; Wagner et al., 2007).
Given that the availability of detailed knowledge of soil and vegetation characteristics
differs greatly, different methods for soil moisture estimation ranging from empirical/semi-
empirical/theoretical RT models, change detection, polarimetric decomposition, statistical
approaches, to data fusion and machine learning, have been developed. This dissertation
focuses on the most commonly used RT models and their potential to estimate soil moisture
from Sentinel-1 C-band.

1.5 Demands, Benefits, and Current Limitations of
Soil Moisture Estimates from Remote Sensing Data

Despite the challenges and limitations in deriving accurate soil moisture estimates from
microwave remote sensing satellites, various disciplines, including hydrology, ecology, me-
teorology, agriculture, and climate science, already benefit from existing coarse to medium-
resolution soil moisture data products, as high-resolution products remain scarce (Senevi-
ratne et al., 2010; Chaparro et al., 2016). Currently available global-scale soil moisture
products typically feature coarse grid spacing and extensive temporal coverage, predomi-
nantly derived from passive sensors. In contrast, datasets with higher spatial resolutions
usually originate from active SAR sensors, although they may have limited spatial cov-
erage. A summary of publicly available satellite-derived soil moisture datasets from both
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passive and active microwave sensors is presented in Table 1.
The demand for soil moisture products varies depending on the application and its

spatial and temporal requirements. Figure 6 provides an overview of application areas and
their specific temporal and spatial resolution requirements, along with associated remote
sensing soil moisture missions. Soil moisture is crucial for determining land-atmosphere in-
teractions; thus, hydrologists require accurate soil moisture information to enhance weather
and climate forecasting models. Additionally, understanding soil moisture dynamics is es-
sential for linking terrestrial water, energy, and carbon cycles, which significantly impact
the climate system. Weather patterns and climate variability are also heavily influenced by
soil moisture conditions. Furthermore, soil moisture serves as a key parameter in hydrolog-
ical models, influencing surface runoff, streamflow, and water recharge. Its effects on land
surface processes, atmospheric moisture content, precipitation patterns, and the hydrologi-
cal cycle make soil moisture a crucial parameter in climate models, whose predictions assess

Table 1: Summary of publicly available satellite-derived soil moisture products, updated
and extended from Peng et al. (2021a). The table entries are sorted by spatial coverage,
grid spacing, and temporal coverage. Data links have been last accessed on Oct. 11, 2024.

Institution Temporal
coverage

Spatial
coverage

Temporal
resolution

Grid
spacing Sensor Data link Reference

Vrije Universiteit
Amsterdam 1978-1987 global 2-3 days 0.25 deg SMMR https://www.geo.vu.nl/∼jeur/lprm/ Owe et al. (2001); Holmes et al. (2009)

Vrije Universiteit
Amsterdam 1987-1999 global 2-3 days 50 km SSM/I https://www.geo.vu.nl/∼jeur/lprm/ Owe et al. (2008); Holmes et al. (2009)

ESA 1996-2001 global 1-2 days 25/50 km ERS-2 https://earth.esa.int/eogateway/
activities/scirocco Wagner et al. (1999b); Crapolicchio et al. (2016)

Vrije Universiteit
Amsterdam 1998-2015 global 2-3 days 50 km TRMM-TMI https://www.geo.vu.nl/∼jeur/lprm/ Owe et al. (2008); Holmes et al. (2009)

Vrije Universiteit
Amsterdam 2002-2011 global 1-3 days 25 km AMSR-E https://www.geo.vu.nl/∼jeur/lprm/ Owe et al. (2008); Holmes et al. (2009)

NASA 2002-now global daily 25 km AMSR-E, AMSR-2 https://nsidc.org/data/au_land/
versions/1 Kim et al. (2015)

CESBIO 2003-2011 global daily 15/25 km SMOS, aAMSR-E
https://www.catds.fr/Products/Products-
-over-Land/L4-Soil-Moisture-from-AMSR-
E-SMOS-synergie-using-Neural-Networks

Rodríguez-Fernández et al. (2016)

EUMETSAT
H-SAF 2007-now global 1-2 days 12.5/25/

50 km ASCAT https://hsaf.meteoam.it/Products/
ProductsList?type=soil_moisture Bartalis et al. (2007); Wagner et al. (2013)

CESBIO 2010-now global 1-2 days 25 km SMOS https://www.catds.fr/Products/Availab
le-products-from-CEC-SM/SMOS-IC Jacquette et al. (2010); Rodríguez-Fernández et al. (2016)

ESA 2010-now global 1-2 days 15 km SMOS https://smos-diss.eo.esa.int/oads/
access/ Jacquette et al. (2010); Rodríguez-Fernández et al. (2016)

BEC 2010-now global daily 15/25 km SMOS https://bec.icm.csic.es/ González-Zamora et al. (2015)

NASA 2011-2015 global 7 days 1 deg Aquarius https://nsidc.org/data/aquarius Bindlish et al. (2015)

JAXA 2012-now global 2-3 days 50 km AMSR-2 https://suzaku.eorc.jaxa.jp/GCOM_W/
data/data_w_index.html Kim et al. (2015)

NASA 2015-now global 1-2 days 3/9/36 km SMAP https://nsidc.org/data/smap/data Entekhabi et al. (2010)

NASA 2015-now global 1-2 days 1/3 km SMAP/
Sentinel-1 https://nsidc.org/data/smap/data Das et al. (2019)

ESA 1978-2019 global daily 0.25 deg Merged Active+Passive
Microwave Sensors (ESA CCI) https://www.esa-soilmoisture-cci.org/ Dorigo et al. (2017); Gruber et al. (2017, 2019)

NOAA 2012-now global 6 hours 0.25 deg Merged Active+Passive
Microwave Sensors (SMOPS)

https://www.ospo.noaa.gov/
Products/land/smops/ Liu et al. (2016)

EUMETSAT
H-SAF 2007-now Europe 1-2 days 1 km ASCAT https://hsaf.meteoam.it/Products/

Detail?prod=H08 Wagner et al. (2013); Brocca et al. (2017)

LMU 2015-2020 Germany hourly 1 km RADOLAN https://zenodo.org/record/6489998 Ramsauer et al. (2021)

TPDC 2003-2019 China daily 1 km AMSR-E, AMSR-2, MODIS https://data.tpdc.ac.cn/en/data/e1f24
e35-6235-40b2-b3d7-677dfb249e39/ Song et al. (2022)

ESA 2015-now Europe 1.5-4 days 1 km Sentinel-1 https://land.copernicus.eu/global/
products/ssm Bauer-Marschallinger et al. (2019)

CNR 2015-2018 Southern
Italy 6-12 days 1 km Sentinel-1 https://zenodo.org/record/5006307 Balenzano et al. (2021)

Theia 2016-2021 19 sites
in Europe 6 days 1 km Sentinel-1, Sentinel-2,

Land Cover SEC

https://www.theia-land.fr/en/ceslist/
soil-moisture-with-very-high-spatial-
resolution-sec/

El Hajj et al. (2017)

https://www.geo.vu.nl/~jeur/lprm/
https://www.geo.vu.nl/~jeur/lprm/
https://earth.esa.int/eogateway/activities/scirocco
https://www.geo.vu.nl/~jeur/lprm/
https://www.geo.vu.nl/~jeur/lprm/
https://nsidc.org/data/au_land/versions/1
https://www.catds.fr/Products/Products-over-Land/L4-Soil-Moisture-from-AMSR-E-SMOS-synergie-using-Neural-Networks
https://hsaf.meteoam.it/Products/ProductsList?type=soil_moisture
https://www.catds.fr/Products/Available-products-from-CEC-SM/SMOS-IC
https://smos-diss.eo.esa.int/oads/access/
https://bec.icm.csic.es/
https://nsidc.org/data/aquarius
https://suzaku.eorc.jaxa.jp/GCOM_W/data/data_w_index.html
https://nsidc.org/data/smap/data
https://nsidc.org/data/smap/data
https://www.esa-soilmoisture-cci.org/
https://www.ospo.noaa.gov/Products/land/smops/
https://hsaf.meteoam.it/Products/Detail?prod=H08
https://zenodo.org/record/6489998
https://data.tpdc.ac.cn/en/data/e1f24e35-6235-40b2-b3d7-677dfb249e39/
https://land.copernicus.eu/global/products/ssm
https://zenodo.org/record/5006307
https://www.theia-land.fr/en/ceslist/soil-moisture-with-very-high-spatial-resolution-sec/
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Figure 6: Classification of application areas based on soil moisture information, categorized
by their temporal and spatial resolution requirements, and allocated to microwave remote
sensing missions (Peng et al., 2021a).

climate change impacts on terrestrial ecosystems, water resources, and extreme weather
events. Currently, high-resolution soil moisture estimates at regional to global scales are
scarce or non-existent. Consequently, the soil moisture estimates derived from remote sens-
ing, currently used for climate modeling, numerical weather prediction, and hydrological
applications, typically exhibit coarse spatial resolutions. While soil moisture information
with a spatial resolution of 1 km or coarser may suffice for some applications, disaster
management (e.g., flooding, drought, and wildfire risk estimations), precision farming, and
forest management necessitate higher spatial resolutions (<1 km) (Gruber and Peng, 2023;
Liu and Yang, 2022).

Although not yet utilized for climate models or numerical weather prediction, the avail-
ability of high-resolution soil moisture information has the potential to enhance model pre-
dictions (Nayak et al., 2018). Areas with diverse land surface characteristics would benefit
significantly from such information due to the substantial impact of land surface conditions
on model outcomes (Trier et al., 2004; Osuri et al., 2017). Moreover, high-resolution soil
moisture data could improve the monitoring and forecasting of extreme hydrological events
(O et al., 2022). The demand for soil moisture information, particularly high-resolution
data, is further increasing in response to severe climate change impacts worldwide (Holsten
et al., 2009).

As illustrated in Figure 6, sectors such as natural disaster management, agricultural
activities (e.g., precision farming), and forest management require high spatial resolution
at varying temporal scales. Changes in soil moisture within forested areas, even if seasonal,
can stress specific tree types, reducing resilience to pests and diseases (Mina et al., 2022).
Thus, modern forest management relies on current soil moisture information and future
estimates to enhance biomass productivity and mitigate forest health risks by adjusting
tree composition in response to changing climate conditions (Cholet et al., 2022). While
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temporal resolution may not be as crucial for forests, spatial resolution is essential.
Conversely, disaster management and the assessment and prevention of flooding, drought,

or wildfires are regionally diverse and heavily depend on high spatial and temporal reso-
lution data (U.S. Global Change Research Program (USGCRP), 2017; Saco et al., 2021).
Water resources are managed based on soil moisture information, especially in regions vul-
nerable to water scarcity or flooding. Operational flood monitoring and prediction models
necessitate high temporal resolution soil moisture data, as flood forecasting relies on time-
sensitive soil moisture values. For effective drought monitoring and early flood warning
systems, high-resolution data and real-time or near-real-time information availability are
essential (Liu and Yang, 2022). High-resolution soil moisture estimates can support miti-
gation strategies and are vital for decision-making in administrative and public services.

As detailed in Section 1.3, soil moisture information is invaluable for enhancing agri-
cultural productivity. Remote sensing technologies can provide farmers with real-time soil
moisture conditions, allowing them to optimize irrigation and fertilization practices. Given
that soil moisture can vary significantly within fields due to factors such as soil texture,
compaction, topography, vegetation cover, and management practices, high spatial reso-
lution is crucial. Additionally, high temporal resolution and near-real-time processing are
particularly important during specific growing stages.

In terms of soil moisture retrieval, higher spatial resolution presents unique challenges
in mapping small-scale changes in vegetation, surface roughness, and water content and
their effects on radar signals (Peng et al., 2021a). Unlike operationally derived coarse-to-
medium resolution soil moisture products, operationally derived soil moisture information
with high spatial resolution (<1 km), comparable temporal coverage, and retrieval quality
is not yet available (Sabaghy et al., 2018; Peng et al., 2021a). However, with the launch
of the first Sentinel-1 satellite in 2014, the availability of high-resolution SAR data with
global coverage has opened new possibilities for soil moisture retrieval at regional and con-
tinental scales (Balenzano et al., 2012; Alexakis et al., 2017). Based on Sentinel-1 images,
the Copernicus Global Land Service launched an operational soil moisture product with
1 km resolution covering Europe (Bauer-Marschallinger et al., 2019). Other regional-scale
prototypes for soil moisture retrieval with 1 km resolution using Sentinel-1 include datasets
from Italy’s Consiglio Nazionale delle Ricerche (CNR) covering southern Italy (Balenzano
et al., 2021) and datasets from Theia (El Hajj et al., 2017) covering various test sites
across Europe. Despite the European Space Agency (ESA) announcement in 2022 regard-
ing issues with the Sentinel-1 B satellite, which is no longer operational, the twin satel-
lite Sentinel-1 A remains functional. Furthermore, Sentinel-1 C (launch date 2024) and
Sentinel-1 D (launch date ≥2025) are set to continue providing high-resolution SAR data
for the next decade. Alongside the Sentinel-1 satellites, other partially commercial mis-
sions, such as Radarsat, the Advanced Land Observing Satellite-2 (ALOS-2), and Satelite
Argentino de Observacicon COn Microondas (SAOCOM), also provide high-resolution mi-
crowave data. Given the recognized importance of high-resolution SAR information for es-
timating land surface parameters and monitoring Earth changes (land, ocean, ice) (Hajnsek
and Desnos, 2021), additional satellite missions such as NASA-ISRO Synthetic Aperture
Radar (NISAR) (planned launch date 2025, S- and L-band), the Radar Observing System



1.5 Demands, Benefits, and Current Limitations of Soil Moisture Estimates
from Remote Sensing Data 16

for Europe L (ROSE-L, planned launch date 2028, L-band), and Tandem-L (considered
launch ≥2029) are also in development.

Despite numerous studies, the availability of new satellite data, and other advance-
ments in the field of soil moisture retrieval from space, significant challenges remain,
particularly regarding high spatial and temporal resolutions (Zeng et al., 2023). These
challenges include improving spatial coverage, acquiring data over longer consistent time
spans, achieving higher temporal resolutions and shorter time lags (with the launch of more
satellites such as Sentinel-1 C and D), and enhancing spatial resolution (new SAR systems)
and frequency coverage (e.g., L-band data from NISAR). Moreover, substantial efforts are
needed to improve model performance, soil moisture accuracy, and the understanding of
radar scattering changes throughout the vegetation period, as well as the development of
products that estimate soil moisture at multiple depths. Research is also necessary to
determine how SAR images obtained with different observation geometries and/or from
different sensors can be integrated within a single retrieval framework to enhance temporal
resolution. Additionally, investigating the transferability of high-resolution retrieval ap-
proaches for regional to global applications, the provision of near-real-time information,
and simplifying usability for end users (e.g., farmers) are crucial issues that must be ad-
dressed. Despite these challenges, the continuous data provided by Sentinel-1 imagery and
upcoming missions present unprecedented opportunities to develop operational applica-
tions for estimating high-resolution soil moisture at a global scale (Balenzano et al., 2012;
Pandey et al., 2021). Thus, the research questions and original research presented in the
following Chapters 2 and 3 aim to advance the provision of high spatial and temporal soil
moisture estimates for smart farming applications.



Chapter 2

Research Questions

In this dissertation, the primary focus is on the analysis and improvement of model perfor-
mance (Research Questions (RQs) I and II) and the accuracy of soil moisture estimates (RQ
VI) for high-resolution soil moisture retrievals. The use of synthetic aperture radar (SAR)
images with varying observation geometries (RQs III and V), as well as the understanding
of scattering changes throughout the vegetation period (RQ IV), are also key areas of in-
vestigation. Additionally, this dissertation explores retrieval approaches that promote high
transferability from test areas, facilitating regional or even global applications. Ultimately,
this research aims to contribute towards providing high spatial and temporal soil moisture
estimates for smart farming applications.

Given the importance of high spatio-temporal soil moisture estimates, especially in
agriculture, the following research questions were formulated.

• RQ I: Can existing microwave radiative transfer RT models accurately simulate
high spatio-temporal Sentinel-1 VV-polarized radar backscatter throughout the entire
wheat growing season?

• RQ II: To what extent do the simulated Sentinel-1 VV-polarized radar backscatter
results differ among empirical, semi-empirical, and physically-based RT models?

• RQ III: What specific characteristics are observed in dense Sentinel-1 time series
with varying acquisition geometries, and how do these geometries influence the sim-
ulated RT model outcomes?

• RQ IV: How do different incidence and azimuth angles in Sentinel-1 images affect
the emergence of distinct scattering mechanisms?

• RQ V: Can a modified RT model effectively simulate a dense Sentinel-1 time series
comprising images with varying observation geometries?

• RQ VI: Can high-resolution soil moisture estimates over agricultural fields be derived
using microwave and optical remote sensing data in conjunction with microwave RT
models?

RQs I, II, and VI serve as the initial questions, while RQs III, IV, and V are guided by
the insights gained from the research conducted on RQs I and II.



Chapter 3

Publications

This dissertation comprises three peer-reviewed scientific publications (Publications I, II,
and III) and two peer-reviewed research software packages (Publications IV and V). Pub-
lications I, II, III, and IV have already been published, whereas Publication V has been
submitted to the Journal of Open Source Software. The scientific research presented in
this dissertation aims to contribute to the development and enhancement of high spatio-
temporal soil moisture estimates across agricultural regions. For potential global applica-
bility, the methods investigated are based on data that can be operationally derived from
various remote sensing sensors.

The evaluation of different RT models (Publication I) and an analysis of the potential
applications of a dense Sentinel-1 time series (Publication II) serve as foundational work for
Publication III, which ultimately produces and validates a high spatio-temporal soil mois-
ture time series over an agricultural area using two years of in-situ measurements. Research
questions (RQs) I and II are addressed in Publication I. RQs III, IV, and V are explored in
Publication II. Finally, RQ VI constitutes the main objective of Publication III. In addition
to the scientific insights gained from Publications I, II, and III, the production and provi-
sion of open-source software (Publications IV and V), which were essential for conducting
this research, represent a significant contribution of this thesis. Publication IV details the
development of an automated pipeline for preprocessing Sentinel-1 SLC data using the ESA
SNAP Sentinel-1 Toolbox, designed for use by other researchers (ReadTheDocs documenta-
tion: https://multiply-sar-pre-processing.readthedocs.io/en/latest/). Publi-
cation V summarizes various microwave RT models (ReadTheDocs documentation: https:
//sense-community-sar-scattering-model.readthedocs.io/en/latest/) and provides
a Python package that allows researchers to easily implement different surface and canopy
RT models for their own applications. A graphical summary of the dissertation, illustrating
the connections between the publications and research questions, is presented in Figure 7.

The following sections include a brief introduction, detailed author contributions, and
information about the scientific journals for each publication. Additionally, short transi-
tions between publications will weave a storyline and describe the significance and impact
of each research publication. Prior to Publications IV and V (open-source Python soft-
ware), an overview of the software and its importance for the execution of scientific research
will be provided.

https://multiply-sar-pre-processing.readthedocs.io/en/latest/
https://sense-community-sar-scattering-model.readthedocs.io/en/latest/
https://sense-community-sar-scattering-model.readthedocs.io/en/latest/
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Figure 7: Schematic overview of the dissertation. The dashed line indicates the subject as
well as the input data and method used for each publication.
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Radiative Transfer Models for Microwave Backscatter Estimation of Wheat Fields. Re-
mote Sensing 12, 3037. doi:10.3390/rs12183037

Status: published

Plain language summary: Over the past half-century, various microwave RT models,
which link radar backscatter to soil moisture, have been developed and extensively ana-
lyzed. A key purpose of RT models is to simulate the interaction between radar waves and
soil or vegetation, facilitating the retrieval of biophysical land surface parameters. The
complexity of these models varies, ranging from simple empirical models to semi-empirical
and physically-based approaches.

This study reviews and evaluates six commonly used RT models, focusing on their abil-
ity to simulate radar backscatter from a dense Sentinel-1 C-band time series at field scale
(100 m), with a revisit time of 1.5 days. In addition to comparing the models, the study
examines backscatter trends throughout the entire wheat growing season. The findings
indicate that when using soil moisture, the Leaf Area Index (LAI) as a vegetation descrip-
tor, and a static empirical parameter, all models fail to accurately simulate the observed
increase in backscatter during the latter half of the growing season. The observed increase
in backscatter is driven by changes in VWC, which alters the canopy’s transmissivity. As
a result, the transmissivity calculations within the models were adjusted to incorporate a
temporally dynamic empirical parameter, replacing the static one. The dense time series
analyzed includes images with varying satellite acquisition geometries (e.i., different az-
imuth and incidence angles). Despite the overall improvement in modeling the backscatter
increase, a persistent trend mismatch remains between the modeled and observed backscat-
ter at consecutive time points with differing acquisition geometries.
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Abstract: This study aimed to analyze existing microwave surface (Oh, Dubois, Water Cloud
Model “WCM”, Integral Equation Model “IEM”) and canopy (Water Cloud Model “WCM”,
Single Scattering Radiative Transfer “SSRT”) Radiative Transfer (RT) models and assess advantages
and disadvantages of different model combinations in terms of VV polarized radar backscatter
simulation of wheat fields. The models are driven with field measurements acquired in 2017 at a test
site near Munich, Germany. As vegetation descriptor for the canopy models Leaf Area Index (LAI)
was used. The effect of empirical model parameters is evaluated in two different ways: (a) empirical
model parameters are set as static throughout the whole time series of one growing season and
(b) empirical model parameters describing the backscatter attenuation by the canopy are treated as
non-static in time. The model results are compared to a dense Sentinel-1 C-band time series with
observations every 1.5 days. The utilized Sentinel-1 time series comprises images acquired with
different satellite acquisition geometries (different incidence and azimuth angles), which allows us to
evaluate the model performance for different acquisition geometries. Results show that total LAI as
vegetation descriptor in combination with static empirical parameters fit Sentinel-1 radar backscatter
of wheat fields only sufficient within the first half of the vegetation period. With the saturation of
LAI and/or canopy height of the wheat fields, the observed increase in Sentinel-1 radar backscatter
cannot be modeled. Probable cause are effects of changes within the grains (both structure and
water content per leaf area) and their influence on the backscatter. However, model results with
LAI and non-static empirical parameters fit the Sentinel-1 data well for the entire vegetation period.
Limitations regarding different satellite acquisition geometries become apparent for the second half
of the vegetation period. The observed overall increase in backscatter can be modeled, but a trend
mismatch between modeled and observed backscatter values of adjacent time points with different
acquisition geometries is observed.

Keywords: Oh; Dubois; IEM; WCM; SSRT; SAR; soil moisture; LAI; wheat; Sentinel-1

1. Introduction

Soil moisture plays an important role in land surface processes, such as water and energy fluxes.
Therefore, soil moisture is a key variable in scientific fields like climatology, hydrology, meteorology,
or agriculture [1,2]. In recent decades, microwave data has proven to be a suitable tool for long-term
soil moisture derivation of large areas and different land cover types [3–9]. The retrieved soil
moisture information is widely used in applications, like climate modeling, precision farming,
water management, flood forecast, and drought monitoring [10–14]. With different available Synthetic
Aperture Radar (SAR) data from different sensors and for different usage in terms of absolute accuracy
and spatial scale, various soil moisture retrieval approaches, like change detection, microwave
data fusion (active and passive), differential Synthetic Aperture Radar (SAR) interferometry, or
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SAR polarimetry, are available [15]. Furthermore, land surface parameters, like soil moisture,
can be also derived by using Radiative Transfer (RT) models. Starting in 1974 [16], with the first
publication examining radar response and soil moisture [17], hundreds of different studies developing
and/or analyzing new or existing RT models have been conducted. RT models try to simulate the
interaction of the radar wave with the soil and the vegetation to derive different soil and vegetation
parameters [18]. Complexities in RT models for surface backscatter calculations range from simple
empirical regression-based models [18–21] and different empirical models based on the Water Cloud
approach (WCM surface part) [22–25], over semi-empirical models from Oh (Oh92, Oh04) [26,27]
or Dubois (Dubois95), [28] to physical-based models, like the Integral Equation Model (IEM) in its
original form [29] or refined versions [30–32]. Common RT models for canopy backscatter calculations
range from empirical models, like Water Cloud Model (WCM canopy part) [22], to more sophisticated
and multi-layered models, like the Michigan Canopy Scattering Model (MIMICS) [33], Tor Vergata
model [34], Single Scattering Radiative Transfer (SSRT) models described by De Roo [35] or Ulaby [17],
or a first order scattering model from Quast [36,37]. Despite the large numbers of existing models, there
is still the need of an algorithm generating soil moisture maps with acceptable accuracy of 3–4% [17].

So far, several studies have been carried out to test and compare pure surface RT models [15,38–42].
Research analyzing radar backscatter calculations and soil moisture retrieval approaches of combined
surface and canopy RT models has been performed. For these studies different test sites,
land cover types, and vegetation descriptors were used [25,43–55]. Investigations on how different
vegetation descriptors, like Leaf Area Index (LAI), Vegetation Water Content (VWC), Leaf Water Area
Index (LWAI), normalized Plant Water Index (PWI), or Normalized Different Water Index (NDWI),
affect soil moisture retrievals have been carried out, as well [25,48,53,54]. In this context, synergistic
retrieval approaches by using vegetation descriptors derived from optical sensors as input data for
microwave RT models have been published more and more in recent years [45,52,56–61].

Despite the existing analyses, a study testing and comparing different surface and canopy RT
model combinations with focus on the interaction between surface and canopy part and advantages
or disadvantages of the model combinations is missing. The launch of Sentinel-1A/B, and, therefore,
the availability of free SAR data with high temporal and spatial coverage, constitutes a suitable basis
for such an analysis. Investigations of the usage of dense Sentinel-1 time series with observations up to
every 1.5 days in terms of future synergistic retrieval approaches of SAR and optical data are needed.
The models and the knowledge gained from this paper shall be used within a newly developed
platform called MULTIPLY, which combines data from different optical and microwave satellites by
using state-of-the-art RT models within a data assimilation framework to consistently acquire and
interpret different land surface parameters.

This study was performed on time series data with high temporal and spatial (field scale)
resolution. The surface RT models WCM, Oh92, Oh04, Dubois95, and IEM were coupled with
canopy models WCM or SSRT. With these model combinations, VV polarized backscatter values for
an entire vegetation period of different wheat fields was calculated. The different input variables for
the model combinations, such as soil moisture, canopy height, LAI, or soil properties, were provided
by field measurements. For other parameters, like surface roughness or single scattering albedo,
suitable literature values were chosen. LAI was used as vegetation descriptor because of available
field measurements and its straight forward derivation from optical sensors [62–64]. The remaining
empirical parameters were calibrated by comparing modeled backscatter with Sentinel-1 backscatter
values. In summary, this paper aimed to

• investigate different RT model combinations and asses their advantages and disadvantages;
• evaluate if different radar acquisition geometries are modeled adequately with the used

RT models; and
• serve as preliminary work for future synergistic retrieval approaches of SAR and optical sensors

with a focus on high spatial and temporal resolutions.
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Section 2 presents the used dataset. Section 3 summarizes the used RT models. In Section 4,
calibration and validation results are shown and discussed. Finally, the main conclusions are drawn
in Section 5.

2. Datasets

2.1. Study Area

The study area, Munich North Isar (MNI), is located in southern Germany (Bavaria), near Munich
(48◦13’N–48◦20’N, 11◦39’E–11◦45’E, Figure 1). Since 2014, almost every year from spring until autumn,
different field campaigns targeting agricultural purposes were carried out [65–68]. From March to
September 2017, an intensive field campaign focusing on maize and wheat fields for validation of
soil and vegetation parameter retrievals from Sentinel-1, Sentinel-2 and the future EnMAP satellite
was conducted. MNI is characterized by intensive agriculture with wheat, maize, and grassland
as main crop types. In close vicinity (<10 km) to the test site two meteorological stations, Freising
(470 m a.s.l.) and Eichenried (475 m a.s.l.) managed by the Bavarian State Research Institute (LFL)
and one meteorological station Munich-airport (446 m a.s.l.) managed by the German Meteorological
Service (DWD) are situated. The annual measured mean temperature for 2017 ranges between
9 ◦C (Freising) and 9.3 ◦C (Eichenried). The average annual precipitation for 2017 reached 753 mm
(Munich-airport) to 853 mm (Eichenried). The used data for this study includes field campaign data of
wheat fields from 2017 (Section 2.2) and Sentinel-1 satellite data (Section 2.3).

Figure 1. Overview of study area Munich-North-Isar (MNI) located in southern Germany (Bavaria).
Three wheat test fields—508 (green), 542 (orange), and 301 (blue)—with three measurement points
each of the field campaign in 2017 are highlighted. Reference system: WGS84 (EPSG:4326).

2.2. Field Data

During the MNI field campaign of 2017, weekly field measurements of different biophysical
parameters (Table 1) were conducted. The total LAI was measured with a LI-COR Biosciences
LAI-2200C device (LI-COR Biosciences Inc., Lincoln, NE, USA) as an average of 14 measurements
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from the same area. The measurements were taken within each test field at three different locations
(Figure 1). The accuracy of LAI in terms of mean standard deviation of repeated measurements ranges
within the fields between 0.45 and 0.52. The monitoring period started end of March and ended
shortly before the fields were almost simultaneously harvested in mid of July. Additionally, Decagon
TM5 soil moisture sensors using the capacity method were installed permanently within the first five
centimeters of the soil surface. Soil moisture changes were monitored with a time interval of 10 min.
Information about the soil was provided by earlier campaigns when soil samples were taken from
the fields, and the soil properties were analyzed in the laboratory (Table 2). The soils bulk density
with 1.45 ± 0.13 g/cm3, and the clay content with 7.38 ± 1.8%, show no high variability between the
different fields. The sand content, on the other hand, shows higher variability, with 24.08 ± 10.46%.

Table 1. Acquisition time, time interval, and range of dynamic in-situ measurements.

Variable Acquisition Time Time Interval Range

Canopy height [cm] 03/24–07/17/2017 weekly 7–105
LAI 03/24–07/17/2017 weekly 0.35–6.25

Soil moisture [m3/m3] 03/24–07/17/2017 continues 0.09–0.38

Table 2. Laboratory results for sand, clay, and bulk content of soil surface samples.

Variable Time Interval Mean Std

Soil sand content [%] once (several locations) 24.08 10.46
Soil clay content [%] once (several locations) 7.38 1.80
Bulk density [g/cm3] once (several locations) 1.45 0.13

2.3. Satellite Data

For this study, C-band Sentinel-1 SLC data of Sentinel-1A/B was used. The Sentinel data was
pre-processed with ESA’s SNAP Toolbox Version 7.0.3. An overview of all applied pre-processing
steps is given in Figure 2. For the geometric correction, SRTM data with 1 arc-second resolution
was chosen as digital elevation model input. Afterward, the radiometric correction method of
Kellndorfer et al. [69] was applied. In a second pre-processing step, a multi-temporal Lee-sigma
filter was used for speckle reduction. The temporal filter was applied on each image with information
of 6 other images (three before the target and three after) with a spatial window size of 5 × 5 pixels,
a sigma of 0.9, and a target window size of 3 × 3 pixels. For the period of the field campaign in 2017
(March to July), in total, 78 Sentinel images covering the study area are available. Considering images
with different orbit directions (ascending and descending) and different incidence angles (ranges from
35◦ to 45◦) a revisit time of 1.5 days was archived. The spatial resolution of the processed data was
10 × 10 m. A more detailed overview of the used Sentinel-1 dataset and the image properties is given
in Table 3. The primary acquisition mode of Sentinel-1 provides data with polarization VV and VH.
For our study, the focus was set on polarization VV due to findings that, for retrieving soil moisture,
the usage of VH alone or in addition to VV is not suitable for well-developed vegetation [45,70].

Table 3. Available Sentinel-1A/B satellite data for MNI field campaign period in 2017 (03/23–07/17/2017).

Asc./Desc. Incidence Angle [◦] Relative Orbit Amount Revisit Time [Days] Acquisition Time

Ascending 36 44 19 6 4:58 p.m.
45 117 19 6 5:06 p.m.

Descending 43 95 20 6 5:17 a.m.
35 168 20 6 5:25 a.m.
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Figure 2. Schematic overview of SNAP pre-processing steps to retrieve geometric and radiometric
corrected images from Sentinel-1 SLC data (left). Pre-processing steps for speckle reduction using a
multi-temporal speckle filter (right).

3. Microwave Radiative Transfer Models

3.1. Surface RT Models

3.1.1. Empirical Water Cloud Model (WCM Surface Part)

The WCM, often referred to as the tau-omega model, was developed by Attema and Ulaby in
1978 [22]. For a given polarization pq (pq = HH, VV, or HV), the surface contribution σ0

spq of WCM to
the backscattered radar signal in dB scale is defined as

σ0
spq = Cpq + Dpq ·mv, (1)

with empirical fitted soil parameters Cpq and Dpq and soil moisture content mv. Cpq is an empirical
calibration constant, whereas Dpq, as a calibration factor, indicates the sensitivity of soil moisture
on the received radar signal. The WCM surface part is a purely empirical model thus no additional
information about surface roughness or incidence angle is needed. Therefore, the empirical parameters
have to be calibrated for each test site separately.

3.1.2. Semi-Empirical Oh Model 1992 (Oh92)

In 1992, Oh et al. [26] developed an approach for the retrieval of soil moisture and soil surface
roughness by empirical determined functions. Based on scatterometer measurements and various

ground measurements of soil moisture and surface roughness, two functions for the co- (p =
σ0

sHH
σ0

sVV
)

and cross-polarized (q =
σ0

sHV
σ0

sVV
) backscatter ratios were fitted. Consequently, p and q are defined as

p =
σ0

sHH

σ0
sVV

=

[
1−

(
2θ

π

) 1
3R0 · e−ks

]2

(2)
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and

q =
σ0

sHV

σ0
sVV

= 0.23
√

R0 (1− e−ks), (3)

with θ as local incidence angle, k as radar wave number (k = 2π/λ), where λ is the wavelength, and s
as rms height. R0 is the Fresnel reflectivity coefficient at nadir given by

R0 =

∣∣∣∣
1−√εr

1 +
√

εr

∣∣∣∣
2

, (4)

where εr is the relative dielectric constant. The VV polarized backscatter coefficient σ0
sVV

is further
defined as

σ0
sVV

= 0.7
[

1− e−0,65(ks)1.8
]

cos3θ√
p

[
Rv(θ) + Rh(θ)

]
, (5)

with the Fresnel coefficients for horizontal Rh and vertical Rv polarization

Rh =
µrcosθ −

√
µrεr − sin2θ

µrcosθ +
√

µrεr − sin2θ
, (6)

Rv =
εrcosθ −

√
µrεr − sin2θ

εrcosθ +
√

µrεr − sin2θ
, (7)

where µr is the relative permittivity. Furthermore, the backscatter coefficients σ0
sHH

and σ0
sHV

are given
with respect to σ0

sVV
, p, and q by

σ0
sHH

= p σ0
sVV

, (8)

σ0
sHV

= q σ0
sVV

. (9)

The model in its original form can be applied for the retrieval of soil moisture or soil surface
roughness for bare soil conditions at several frequencies (X- to L-Band) and a broad range of incidence
angles (10–70◦). Because it is a semi-empirical model, the validity range of the model in terms of soil
moisture and soil surface roughness is defined with 0.1 < ks < 6, and 9 Vol.% < mv < 31 Vol.%.

3.1.3. Semi-Empirical Oh Model 2004 (Oh04)

In 2004, Oh [27] revised and simplified his original approach to use only soil moisture (mv) as
an independent variable rather than R0 and εr (Section 3.1.2). Thus, if using mv as input variable,
no additional information about the soil properties (bulk density, sand and clay content) is needed.
The model is defined by

p =
σ0

sHH

σ0
sVV

= 1−
(

2θ

π

)0.35 mv−0.63

· e−0.4 (ks)1.4
, (10)

q =
σ0

sHV

σ0
sVV

= 0.095 (0.13 + sin1.5θ)1.4 [1− e−1.3 (ks)0.9
], (11)

σ0
sHV

= 0.11 mv0.7 (cosθ)2.2 [1− e−0.32 (ks)1.8
]. (12)

Oh04 is optimized for bare soils with 0.13 < ks < 6.98, 4 Vol.% < mv < 29.1 Vol.% and
10◦ < θ < 70◦.

3.1.4. Semi-Empirical Dubois Model (Dubois95)

Dubois et al. [28] proposed, in 1995, an empirical approach to determine backscatter values for HH
and VV polarizations based on soil moisture, soil surface roughness, and system parameters, like local
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incidence angle, wavelength, and frequency. Two non-linear equations were fitted to measured
backscatter values obtained by a scatterometer for a broad range of frequencies ranging from 2.5 GHz
to 11 GHz and incidence angles ranging from 30◦ to 60◦. The backscatter values can be calculated by

σ0
sHH

= 10−2.75 cos1.5θ

sin5θ
10 0.028 εr tanθ (ks · sinθ)1.4 λ0.7, (13)

σ0
sVV

= 10−2.37 cos3θ

sin3θ
10 0.046 εr tanθ (ks · sinθ)1.1 λ0.7. (14)

The Dubois model was optimized for bare soil conditions and has a validity range for soil moisture
of mv ≤ 35 Vol.% and soil surface roughness of ks ≤ 2.5.

3.1.5. Physical Integral Equation Model (IEM)

The IEM is a theoretical backscattering model and was developed by Fung et al. [29] in 1992.
Since then, Fung and colleagues extended the IEM to bistatic scattering [71]. The general co-polarized
backscatter coefficient σ0

pp for pp = VV or HH is defined as

σ0
spp =

k2

4π
ek2s2cos2θ

∞

∑
n=1
|In

pp|2
Wn (2ksinθ, 0)

n!
, (15)

where In
pp is

In
pp = (2 ks cosθ)n fppe−k2s2cos2θ + (ks cosθ)n Fpp, (16)

with Wn as the Fourier transform of the nth power of the surface correlation function p(x, y).
Furthermore, the backscatter at cross polarization σ0

sHV
is calculated as

σ0
sHV

=
k2

16π
e−2k2s2cos2θ

∞

∑
n=1

∞

∑
m=1

(k2s2cos2θ)n+m

n!m!
∫
[|FHV(u, v)|2 + FHV(u, v)F∗HV(−u,−v)] Wn(u− k sinθ, v) Wm(u + k sinθ) dudv.

(17)

The Kirchhoff coefficients fHH , fVV and complementary field coefficients FHH , FVV , FHV are
given as

fHH =
2Rh
cosθ

, (18)

fVV =
2Rv

cosθ
, (19)

FHH = 2
sin2θ

cosθ
[4Rh − (1− 1

εr
(1 + Rh)

2)], (20)

FVV = 2
sin2θ

cosθ
[(1− εcos2θ

µrεr − sin2θ
)(1− Rv)

2 + (1− 1
εr
)(1 + Rv)

2], (21)

FHV(u, c) =
Uv

kcosθ
[

8R2
√

k2 − u2 − v2
+
−2 + 6R2 + (1+R)2

εr
+ εr(1− R)2

√
εrk2 − u2 − v2

], (22)

with Fresnel coefficient at horizontal Rh (Equation (6)) and vertical Rv (Equation (7)) polarization thus
R is described by

R =
Rv − Rh

2
. (23)

The Fourier transform of the nth power of the surface correlation coefficient Wn(a, b) is
calculated by

Wn(a, b) =
1

2π

∫ ∫
pn(x, y)e−i(ax+by)dxdy. (24)
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The distribution of surface correlation function p(x, y) can be described for low surface roughness
as exponential and high surface roughness values as Gaussian by

p(x, y) = e−(
|x|+|y|

L ) (exponential), (25)

p(x, y) = e−(
x2+y2

L2 )
(Gaussian), (26)

with L as correlation length.

3.2. Surface and Canopy RT Models

3.2.1. Empirical Water Cloud Model (WCM)

The WCM [22] with respect to surface σ0
spq and canopy σ0

cpq contribution, as well as two-way
attenuation T2

pq, is defined as
σ0

pq = σ0
cpq + T2σ0

spq , (27)

whereas the canopy part σ0
cpq in linear scale and the two-way attenuation T2

pq are written as

σ0
cpq = Apq V1 cosθ (1− T2

pq), (28)

T2
pq = e−2 Bpq V2 secθ , (29)

where θ is the local incidence angle, V1 and V2 are empirical vegetation descriptors, and Apq, as well
as Bpq, are fitted parameters of the model which depend on the vegetation properties and the radar
configuration. For σ0

spq in Equation (27), each of the described surface models in Section 3.1 can be used.

3.2.2. Semi-Empirical Single Scattering Radiative Transfer (SSRT) Model

The SSRT model used by De Roo [35] and Ulaby [17] is a semi-empirical first-order scattering
model. The model is defined as

σ0
pq = σ0

gpq + σ0
cpq + σ0

cgtpq + σ0
gcgpq , (30)

where
σ0

gpq = TpTq σ0
spq , (31)

with Tp and Tq as attenuation of the canopy for different polarizations and σ0
spq describing the

pure surface scattering mechanism. Similar to the definition of WCM in Section 3.2.1, all surface
models described in Section 3.1 can be used for calculating the surface contribution σ0

spq within SSRT.
Furthermore, the p polarized one way transmittivity of the canopy Tp is defined as

Tp = e−τp , (32)

with τp as the p polarized attenuation of the canopy given by

τp = kp
e H secθ, (33)

whereas H represents the canopy height. The extinction coefficient kp
e which accounts for the absorption

and scattering losses of the electromagnetic wave through the canopy is defined as

kp
e = kp

a + kp
s . (34)

In general, a canopy consists of leaves, stalks, and branches with different shapes and orientations,
which do not show a linear distribution in the vertical. However, in the applied SSRT, it is assumed
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that kp
e , kp

a , and kp
s follow a uniform distribution in the vertical as a function of z within the canopy

layer. In addition to the extinction coefficient, the scattering part kp
s of kp

e can be derived by

kp
s = kp

e ω, (35)

where ω represents the single scattering albedo. For the direct backscattering contribution of the
canopy σ0

cpq , Attema and Ulaby’s [22] water cloud approach of identical scatterers, which are uniformly
distributed within the volume, is used. Thus, multiple scattering effects are ignored. As a consequence,
the volume backscattering coefficient σback

Vpq
of the vegetation medium is defined as

σback
Vpq

= Nv σback
pq , (36)

with Nv as the number of scattering particles per unit volume and σback
pq as the pq polarized

backscattering cross section of a single particle. Finally, the pq polarized canopy backscattering
coefficient σ0

cpq within Equation (30) can be obtained from

σ0
cpq =

σback
Vpq

cosθ

kp
e + kq

e
(1− TpTq). (37)

Furthermore, ground/canopy (σ0
gcpq ) and canopy/ground (σ0

cgpq ) scattering contributions are
defined as

σ0
gcpq = σbist

vpq H Rq TpTq, (38)

σ0
cgpq = σbist

vpq H Rp TpTq, (39)

where H is the canopy height, σbist
vpq is the bi-static scattering cross section of a single leaf or stalk, and

Rp describes the p polarized Fresnel reflectivity (Equations (6) and (7)). Thus, the total canopy ground
contribution σ0

cgtpq
within Equation (30) as the sum of σ0

gcpq and σ0
cgpq can be written as

σ0
cgtpq = σbist

vpq H [Rp + Rq] TpTq. (40)

Furthermore, ground canopy ground contribution (σ0
gcgpq ) within Equation (30) is defined as

σ0
gcgpq =

σback
Vpq

cosθ

kp
e + kq

e
(RpRq − TpTq). (41)

3.3. Practical Considerations

Each described model requires a different set of input parameters. A summary for the different
RT models is given in Table 4. For some parameters, field measurements (Section 2.2) or literature
values (s and ω, Table 5) are used, and other site dependent parameters have to be fitted. The analyzed
wheat fields were sown in autumn of 2016. By the starting point of the observation period (end of
March 2017), the soil surface was already smoothed out by rain and the ground was covered by wheat
plants (height > 10 cm). Marzahn et al. [72] showed that, for wheat fields with the above mentioned
state, only minor changes in terms of roughness throughout the vegetation period are observable.
Previous studies regarding periodic features and roughness changes [73,74] found out that changes in
surface roughness due to soil rows as periodic feature within wheat fields are essential if the viewing
angle is nearly perpendicular to the row orientation, but, for other viewing angles, the changes within
surface roughness are negligible. The viewing angle and the row orientation of the wheat fields in
our study are always <75◦. Therefore, changes due to periodic soil rows are assumed to be negligible.
Typical roughness measurements of various winter wheat fields suggest rms values between 1.0 and
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1.3 [72,73,75–78]. With the assumption of only minor roughness changes throughout the vegetation
period, a literature value for surface height s of 1.2 cm was chosen. The value of 1.2 cm was used
due to former field campaign measurements of wheat fields in Germany [72,73]. For single scattering
albedo ω, a common literature value of 0.03 [79] was set. The conversion from soil moisture field
measurements to the required model input of dielectric constant ε for models Oh92, Dubois95, and IEM
was performed by using a dielectric mixing model for soils after Dobson et al. [80]. The required
soil information about sand and clay content, bulk density (Table 2), and soil moisture (Table 1) were
provided by field measurements and laboratory results. Additionally, for some parameters, in their
original form, adjustments were made within this study. In particular, DeRoo et al. [35] used for
parameterizing of the extinction coefficient kp

e a combination of an empirical parameter, vegetation
water mass and vegetation height. In our study, the vegetation water mass, and the vegetation height
were replaced by total LAI. Therefore, kp

e is defined by

kp
e = coe f ∗

√
LAI, (42)

with coef as an empirical parameter. To reduce the required parameters for model IEM,
a well-established approach of Baghdadi et al. [31,45] was used. The correlation length L was replaced
by a fitted parameter Lopt which is dependent on s, θ, and the polarization. Lopt for C-band VV
polarization data and the Gaussian correlation function after Baghdadi et al. [45] is defined as

Lopt(s, θ, VV) = 1.281 + 0.134(sin0.19θ)−1.59s. (43)

The refined version of Baghdadi is hereinafter referred to as IEM_B. A schematic illustration
of the RT model calibration approach is shown in Figure 3. All RT model combinations (surface +
canopy) are driven by field measurements and the required empirical parameters (Table 4). The fitting
of the empirical parameters was carried out by minimizing the sum of the squared error between
modeled and measured (Sentinel-1) radar backscatter values. For the measured Sentinel-1 backscatter
value of each measurement point shown in Figure 1, the mean backscatter of 5 × 5 pixel (50 × 50 m)
around the measurement location was chosen. In a first fitting approach, all parameters shown in
Table 4 were defined to be static for the entire vegetation period. In a second fitting approach, WCM
parameters C, D, and A were set to be static; therefore, the mean (Table 5) of all model results of
the static approach was used. The used values for the different parameters for validation are shown
in Table 5. Additionally, the attenuation of the backscatter through the canopy was defined to be
variable throughout the time series. More specifically, parameters coe f within SSRT and B within WCM
were fitted for each time step individually by taking three observations before and after into account.
By making only coe f or B variable, changes within the results can then clearly related to changes of
the attenuation of the radar backscatter signal by the canopy. Field measurements used as model
input parameters show multidimensionally unstructured inter- and intra-field correlations. Therefore,
measurement point independency is assumed, and a validation of the parametrized RT models is
performed using a leave-one-out cross-validation approach. Hereby, the parameter mean of the
calibration results of eight measurement points is validated with the remaining measurement point.
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Table 4. Overview of differences of surface models Water Cloud Model (WCM surface), Oh models
Oh92 and Oh04, Dubois95, and Integral Equation Model refined version of Baghdadi (IEM_B), as well
as canopy models Single Scattering Radiative Transfer (SSRT) and WCM canopy, in terms of type,
validity range, site dependency, required input parameters, and polarization. Separation of used input
parameter of the analyzed Radiative Transfer (RT) models in fitted parameters and parameters where
field measurements or literature values were used as input data.

Type Validity Range Site
Dependent

Required Parameters
Pol.Fitted Field Measurements

or Literature Values

WCM
surface empi. 10◦ < θ < 70◦ Yes C, D θ, mv HH, VV

VH

Oh92 semi-empi.
10◦ < θ < 70◦

No s, k, θ, ε
(clay, sand, bulk, mv)

HH, VV
VH0.1 < ks < 6

9 < mv < 31Vol.%

Oh04 semi-empi.
10◦ < θ < 70◦

No s, k, θ, mv HH, VV
VH0.13 < ks < 6.98

4 < mv < 29.1Vol.%

Dubois95 semi-empi.
30◦ < θ < 60◦

No s, k, θ, ε
(clay, sand, bulk, mv) HH, VVks ≤ 2.5

mv ≤ 35Vol.%

IEM_B theoretical 10◦ < θ < 70◦ No s, k, l, θ, ε
(clay, sand, bulk, mv)

HH, VV
VHks ≤ 3

SSRT semi-empi. Yes ke (coe f ) H, LAI, θ, ω
HH, VV

VH

WCM
canopy empi. Yes A, B V1 (LAI), V2 (LAI), θ

HH, VV
VH

Table 5. Used model input parameters for validation.

k s ω C D A
[cm−1] [cm] [dB] [dB]

1.13 1.2 0.03 −14.61 12.88 0.0029

Figure 3. Schematic illustration of RT model calibration approach.

3.4. Differences Between Applied Models

WCM is a purely empirical model and depends, therefore, only on the calibrated empirical
coefficients. It is applicable under almost all surface/vegetation conditions, but it has to be calibrated
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for different test sites separately. The transferability to other test sites and or other surface/vegetation
conditions is not possible. Surface models, like Oh92, Oh04, Dubois95, and IEM, were originally
only developed for bare soil and or sparse vegetation conditions. Nevertheless, different studies
replaced the surface component within WCM and SSRT with Oh [17,35,43,47], Dubois95 [51,54,55],
or IEM/IEM_B [17,45,53] models. One key advantage of the semi-empirical-based (Oh92, Oh04,
Dubois95) or theoretical-based (IEM/IEM_B) surface models in comparison to WCM is their better
transferability to other test sites and surface/vegetation conditions. Models, like Oh92, Oh04, or
Dubois95, are based on a hybrid construction with experimental data guided by trends predicted by
theoretical models [17]. Theoretical models, like IEM/IEM_B, on the other hand, have a theoretical
foundation, whereas, for used mathematical approximations within the model, various assumptions
to retrieve a analytical solution are made [17]. The Oh model of 1992 was developed based on a single
experiment with information about only four different soil surfaces [26]. For the model version of
2004, Oh used information of approximately 40 bare soil fields conducted over seven experiments [27].
Furthermore, the usage of ε and R in model Oh92 was refined to the usage of mv in model Oh04.
Model Dubois95 is the only model which was developed only for co-polarized backscatter data (HH or
VV), whereas the other models can calculate co- and cross-polarized backscatter values (HH, VH, VV).
Differences between vegetation models WCM and SSRT exists in the form of their simplicity. WCM
calculates only the volume backscattering component, whereas, within SSRT, additional backscatter
components, such as plant-ground and ground-plant interaction, as well as ground-plant-ground
scattering contributions, are considered. In our implementation, the vegetation descriptor of WCM
is LAI, whereas the vegetation descriptor of SSRT consists of LAI and canopy height. In general,
the computational time and the required additional input parameters are increasing from empirical to
semi-empirical and theoretical models. A summary of the different models with information about
type, validity range, site dependency, required parameters, and used polarization are given in Table 4.

4. Results and Discussion

4.1. Model Calibration Results

4.1.1. Static Empirical Parameters

In a first calibration approach, the empirical parameters for the different models were treated as
static throughout the entire time series. The modeled backscatter was then compared to the measured
backscatter from Sentinel-1. Table 6 shows the mean of RMSE and R2 of all analyzed sample points
(Figure 1) for different surface and canopy model combinations. The retrieved RMSE of the calibration
results ranges from 1.92 to 2.25 dB with R2 of 0.08 to 0.34, respectively. A more detailed picture
regarding differences between modeled and Sentinel-1 backscatter during the time series is shown
for field 508 in Figure 4. While, for the first half of the vegetation period, all model combinations
show a relatively good fit to Sentinel-1 backscatter data, in the second half, deviations are obvious.
Furthermore, from the beginning of June where LAI reaches its saturation point and the maximum
plant height is almost reached, no significant change over time within the modeled backscatter can
be observed. The analyzed soil models (different colors) show small differences, whereas a clear
separation between analyzed canopy models (solid vs dashed lines), especially for later vegetation
stages, is noticeable. As described in Section 2.3, Sentinel-1 data of four different overpasses, and
therefore with different incidence and azimuth angles, were used for this analysis. In Figure 4,
every fourth point (same icon) of the Sentinel-1 backscatter time series represents the same satellite
acquisition geometry (same incidence and azimuth angle). The incidence angle is implemented within
the used RT models, whereas the models do not account for difference azimuth angles. The black line
(Sentinel-1 backscatter) in Figure 4 shows that the observed backscatter values differ with varying
incidence angles and changes in soil moisture. The model predictions (different colors) illustrates that
the models can account for varying incidence angles and changes in soil moisture only until the end
of May. Furthermore, the good correlation of modeled and Sentinel-1 backscatter values suggests
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that the effect of different azimuth angles on backscatter values seems to be negligible until the end
of May. The main change within the wheat fields in June and July in terms of phenology are the
flowering, the development of the fruit, and, later on, the ripening [75,81]. For these phenology stages,
the increase in backscatter is caused by higher sensitivity of the radar signal to the ground contribution
due to water loss within the vegetation [81]. Mattia et al. [76] identified the heading period as turning
point where the sensitivity of the radar backscatter to above-ground biomass decreases, whereas the
sensitivity to soil surface increases. The temporal evolution of modeled ground contribution to the
total backscatter for different model combinations (different colors) with the observed Sentinel-1 total
backscatter (black line) is shown in Figure 5 (top part). Until the increase in canopy height at the
beginning of May (Table 4), the modeled ground scattering part seems to be the main contributor
to the total backscatter, whereas the canopy part is negligible. With increase, especially in canopy
height, the ground contribution drops significantly. The expected decrease in backscatter of the
ground contribution due to a bigger canopy layer (increase of canopy height and LAI) can be more
clearly observed for SSRT than WCM. The differences between SSRT and WCM might be found
by using different canopy descriptors (SSRT: LAI and canopy height; WCM: LAI). Differences in
ground contributions between Dubois95 and the other surface models are related to differences in the
modeled attenuation through the canopy T (Figure 4, bottom part). T is regulating the contribution
intensity of the ground and canopy part for the total backscatter calculation. The temporal evolution
of T with a value range from 0 (dominant canopy contribution) to 1 (dominant ground contribution)
is shown in Figure 5 (bottom part). All model combinations show a similar temporal shape with
slightly higher values for model Dubois95. T decreases from April (dominant ground contribution)
to mid-May (dominant canopy contribution) and stays at its minimum after mid-May. The expected
increase [76,81] of the modeled ground contribution due to higher ground sensitivity in June and July
(phenology: flowering, development of the fruit, and ripening) is not observed within the modeled
data. In our case, T is mainly driven by static empirical parameter B (WCM) and coe f (SSRT), as well
as non-static vegetation descriptors LAI and/or canopy height. Therefore, with almost no changes
in LAI and canopy height in June and July (Figure 4, middle part), the two-way attenuation T stays
near zero, which indicates a dominant canopy model contribution to the total backscatter calculation.
By definition, LAI is defined as the one-sided leaf area per measured ground unit [82]. By the time
wheat plants reach their maximum height, the leaves are fully developed. Changes within the wheat
plants, especially during vegetation stages of flowering, fruit development, or ripening (Figure 4), are
based mainly on increasing biomass within grains and stems, as well as changes of the vegetation
water content. However, biomass changes in grains and stems, as well as vegetation water content loss,
especially during the ripening stage, are not reflected within the LAI. Therefore, almost no information
about the increased biomass and the water loss due to ripening of the plants is given within this
model configuration. Plant moisture reduction affects the attenuation of the radar signal by the
canopy in a way that the canopy is more transparent for the radar wave [83]. Therefore, the sensitivity
of the radar signal to the canopy should decrease, whereas the sensitivity to the surface increases.
The almost non-existent deviation between Sentinel-1 and modeled backscatter in early vegetation
stages suggests that the interaction between surface and canopy model, and therefore the attenuation
of the backscatter signal by the canopy, described by static empirical parameters and LAI, can be
modeled sufficiently only in early vegetation stages. For good backscatter model results during later
vegetation stages, the backscatter changes due to water loss within the plants have to be considered.
The effects of utilizing non-static empirical parameters to account for these shortcomings are discussed
in the next sections.
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Table 6. Calibration results of different model combinations with static empirical parameters. Mean
RMSE, ubRMSE, and R2 of all analyzed field measurement points.

Model Calibration
Surface + Canopy RMSE [dB] R2

Oh92 + SSRT 2.11 0.20
Oh92 + WCM 1.97 0.26
Oh04 + SSRT 2.02 0.18
Oh04 + WCM 1.92 0.23

Dubois95 + SSRT 2.09 0.08
Dubois95 + WCM 2.03 0.08

WCM + SSRT 2.25 0.22
WCM + WCM 2.08 0.34
IEM_B + SSRT 2.24 0.15
IEM_B + WCM 2.13 0.24

Figure 4. Measured and modeled data (static parameters) of wheat field 508 for vegetation period 2017.
VV-polarized backscatter comparison of different model combinations (surface + canopy) with static
empirical parameters and Sentinel-1 data. Different icons represent different acquisition geometries of
Sentinel-1 (top). Field measurements of Leaf Area Index (LAI), canopy height, and soil moisture, as well
as precipitation data from meteorological station Freising (middle). Observed vegetation phenology
according to BBCH scale [84] (bottom).

Figure 5. Model results (wheat field 508, static parameter) of ground contribution to total backscatter
for different model combinations (different colors) with Sentinel-1 VV polarized total backscatter
(black line) as reference (top). Temporal evolution of model component two way attenuation by the
canopy T (bottom).
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4.1.2. Non-Static Empirical Parameters

Due to the results in Section 4.1.1, which showed that LAI and height cannot account for the
observed backscatter changes in June and July (increase of Sentinel-1 backscatter), a second calibration
approach with non-static empirical parameter where chosen. As already mentioned, the observed
increase in backscatter is caused by a higher sensitivity of the radar signal to the ground contribution.
The attenuation of the backscatter T, more precisely B, for WCM and coe f for SSRT were identified
as the main drivers for the increase or decrease of the ground contribution; therefore, a non-static
approach for these parameters was tried. The other empirical parameters of WCM (surface: C, D;
canopy: A) were set as static values (mean of the retrieved static values during the calibration approach
shown in Section 4.1.1) to clearly relate the observed changes to the attenuation of the backscatter.
The modeled backscatter was compared to Sentinel-1 observations and the statistics for different
model combinations are shown in form of mean RMSE and R2 of all analyzed field measurement
points in Table 7. The retrieved RMSE ranges from 1.13 to 1.60dB with R2 of 0.45 to 0.82, respectively.
By comparing different model combinations, almost no differences between the two analyzed canopy
models can be observed. A different picture is shown by comparing surface models only. WCM
seems to outperform all others, whereas differences between WCM and Oh92, Oh04, and IEM_B are
smaller than differences of these models to Dubois95. Similar to the approach with static empirical
parameters, the evolution over time of modeled and Sentinel-1 backscatter is shown in Figure 6 for
one measurement point of field 508. Like the results in Section 4.1.1, modeled backscatter results of
the first half of the vegetation period fit well to the observed Sentinel-1 backscatter data. Contrary
to the static parameter approach, the second half of the vegetation period shows high correlations
between Sentinel-1 and modeled backscatter. Unlike the results of the static approach (Figure 5, top
part), the expected increase of the ground contribution at the end of the vegetation period can be
observed in Figure 7 (top part). The increase of the ground contribution to the total backscatter is also
reflected within the two-way attenuation by the canopy T shown in Figure 7 (bottom part). Compared
to the static approach (Figure 5, bottom part), the values of T from April to the beginning of June
are very similar for all model combinations, except Dubois95. The temporal changes of non-static
parameters B and coe f are shown for the validation results in Figures 8 and 9 and will be further
discussed in the validation Section 4.2. Besides the modeled backscatter increase for the second half
of the vegetation period, different trends between Sentinel-1 and modeled backscatter for individual
time steps are observed. This mismatch might occur for several reasons. As already mentioned in
Section 4.1.1, Sentinel-1 data with different incidence and azimuth angles were used. A closer look
at every fourth modeled point (same incidence and azimuth angle) in Figure 6 (same icon) shows
a steady increase of modeled backscatter values at the end of the vegetation period. Therefore, an
overall trend of an increasing backscatter can be seen for Sentinel-1 and modeled data. Due to non
contradictory trends during the first half of the vegetation period, it seems that the influence on
backscatter due to incidence and azimuth angles increases for the second half of the vegetation period.
Thus, higher canopy heights and LAI values may also increase the impact of different incidence and
azimuth angles on the backscatter behavior. In addition, the acquisition time (Table 3) of the Sentinel-1
images might play another role for different attenuation effects by the canopy [81]. The acquisition
time of the satellite differs for different overpasses. For the MNI test site, Sentinel-1 data was acquired
during early morning or late afternoon (Table 3). This might lead to differences in the observations
due to dew [85,86] or different plant alignments towards the sun which, in theory, leads to different
backscatter attenuations through the canopy [87–89], which are not accounted for within the models.
Despite the different trends during the temporal evolution of modeled and Sentinel-1 backscatter for
the second half of the vegetation period, the observed overall increase in backscatter at the end of the
vegetation period can be modeled well.
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Table 7. Calibration and validation results of different model combinations with non-static empirical
parameters. Mean RMSE, ubRMSE, and R2 of all analyzed field measurement points.

Model Calibration Validation
Surface + Canopy RMSE [dB] R2 RMSE [dB] ubRMSE [dB] R2

Oh92 + SSRT 1.24 0.73 2.82 2.10 0.59
Oh92 + WCM 1.22 0.73 2.75 2.21 0.57
Oh04 + SSRT 1.33 0.69 2.87 2.14 0.57
Oh04 + WCM 1.32 0.68 2.81 2.22 0.57

Dubois95 + SSRT 1.55 0.49 3.06 2.11 0.49
Dubois95 + WCM 1.60 0.45 3.06 2.18 0.48

WCM + SSRT 1.16 0.82 2.65 1.93 0.63
WCM + WCM 1.13 0.81 2.57 2.08 0.60
IEM_B + SSRT 1.32 0.78 2.62 1.82 0.64
IEM_B + WCM 1.34 0.77 2.54 1.92 0.62

Figure 6. Measured and modeled data (non-static parameters) of wheat field 508 for vegetation period
2017. VV-polarized backscatter comparison of different model combinations (surface + canopy) with
non-static empirical parameters and Sentinel-1 data. Different icons represent different acquisition
geometries of Sentinel-1 (top). Field measurements of LAI, canopy height, and soil moisture, as well
as precipitation data from meteorological station Freising (middle). Observed vegetation phenology
according to BBCH scale [84] (bottom).
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Figure 7. Model results (wheat field 508, non-static parameter) of ground contribution to total
backscatter for different model combinations (different colors) with Sentinel-1 VV polarized total
backscatter (black line) as reference (top). Temporal evolution of model component two way attenuation
by the canopy T (bottom).

Figure 8. Evolution over time of non-static parameter coe f separated by different surface models
(colors) for each Sentinel-1 acquisition date during vegetation period 2017. The box plots show the
range of coe f used during the validation approach for different fields point (top). Mean and standard
deviation of all measurement points for LAI and canopy height (bottom).
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Figure 9. Evolution over time of non-static parameter B separated by different surface models (colors)
for each Sentinel-1 acquisition date during vegetation period 2017. The box plots show the range of B
used during the validation approach for different fields point (top). Mean and standard deviation of all
measurement points for LAI and canopy height (bottom).

Figure 10. Scatter plot showing statistical validation results (correlation coefficient R2 and ubRMSE)
for canopy model SSRT separated by different surface models (colors) and different field points (icons).
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Figure 11. Scatter plot showing statistical validation results (correlation coefficient R2 and ubRMSE) for
canopy model WCM separated by different surface models (colors) and different field points (icons).

4.2. Model Validation Results

The validation for the non-static approach was performed by a leave-one-out cross-validation
method. Means of RMSE, ubRMSE, and R2 are shown in Table 7. The results for the non-static approach
show ubRMSE values between 1.92 and 2.22dB. All validation (ubRMSE) results are in a range of
0.65 to 0.95dB poorer than the calibration (RMSE) results. Furthermore, for the validation results R2

ranges between 0.49 and 0.64, whereas the poorest results are archived with surface model Dubois95.
A comparison of ubRMSE for canopy model SSRT and WCM yields for all surface models slightly
better results for canopy model SSRT. A more detailed overview of the validation results separated
by models and measurement points is given in Figure 10 for canopy model SSRT and in Figure 11
for canopy model WCM. Comparing different fields, as well as field measurement points, a diverse
picture is drawn. In general, field 508, especially 508-1, shows the best results, with R2 values mainly
higher than 0.6 and ubRMSE lower than 2.2. Field 542, and especially 542-1, show the worst results,
with R2 around 0.4 and ubRMSE higher than 2.2. Comparing different surface model combinations,
IEM_B and WCM show, for both canopy models, slightly better results than the others. It is noticeable
that the results of Dubois95 are, in general, poorer than the results of the other surface models, with
the exception of point 542-1 (measurement point with the poorest overall results) and partly 301-2.
Differences between Oh92 and Oh04 for the different measurement points are present but, compared
to the other models, very low. A closer look into each model combination, and especially at the used
non-static empirical parameters coe f and B, and thus at the change of the attenuation of the canopy
in time, are given with Figures 8 and 9. The figures show the development of coe f and B over the
vegetation period and the parameter calibration spread, which is defined by the used leave-one-out
cross-validation results. Comparing different surface models, the same evolution over time (except
Dubois95 for the first half of the vegetation period), with some differences in the absolute values,
can be observed. The low values of coe f and B for model Dubois95 in the first half of the vegetation
period can explain the differences in absolute values of T (Figure 7, bottom part) between Dubois95
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and the other model combinations. A comparison of canopy model SSRT (parameter coe f ) and WCM
(parameter B) show, for all surface models (except Dubois95), for parameter coe f , a almost steady
decrease from the beginning to the end of the vegetation period and a similar evolution for parameter
B, except for a short period of increasing values to a relative maximum from mid-May to the end of
May. The differences in shape between coe f and B might be explained due to different model input
data. SSRT uses the canopy height and LAI for the description of the canopy, whereas WCM only
uses LAI. The increase of parameter B correlates very well with the measured increase of the canopy
height. This suggests that parameter B compensates for possible shortcomings of WCM due to missing
information about the canopy height. Furthermore, not only the absolute values but also the spread
of coe f and B for different models are higher at the beginning of the vegetation period and strongly
decrease over time. This means that coe f and B show higher differences between fields and field
measurement points at the beginning of the vegetation period. This is in line with observations made
during the field campaign, where higher differences within one field and between fields could be
observed more easily at early vegetation stages. At the end of the vegetation period, such differences
were not detectable anymore. Another indicator of low field differences regarding the ripening stage
of the wheat plants was the almost simultaneous harvesting date. Another factor to be considered
if looking at higher variability of coe f and B at the beginning of the vegetation season is the model
implementation itself. B and coe f are influencing the attenuation of the backscatter by the canopy and
therefore how strong each model compartment (surface or canopy) contributes to the total backscatter
calculation. At the beginning of the growing season, LAI and canopy height are low; therefore, notable
differences within coe f and B might have not such a high impact on total backscatter predictions.
Differences in the range of coe f (0 to 2.5) and B (from 0 to 0.35) are most likely based on differences
between the model definitions and the required input parameters.

5. Conclusions

Modeled backscatter results of wheat field time series data using different RT model combinations
(surface: Oh92, Oh04, Dubois95, IEM_B, WCM; canopy: WCM, SSRT) were compared to observed
C-band data from Sentinel-1. Differences between the models were analyzed. The used dataset
was acquired by an intense field campaign throughout one vegetation period in 2017. The analysis
focused on coupled performance of surface and canopy models and especially on how changes of
backscatter attenuation through the canopy influence the total backscatter calculation for different
vegetation stages. The two novelties of this study are the evaluation of different combinations of widely
used surface and canopy RT models on one test site and the analysis over time of empirical model
parameters coe f (SSRT) and B (WCM) describing the backscatter attenuation through the canopy T.

Results show that, for total LAI, as vegetation descriptor, a static parameter influencing the
backscatter attenuation through the canopy is suitable for the first half but not for the second half
of the vegetation period. By using a non-static parameter approach, the backscatter increase at the
end of the vegetation period can be modeled. The static calibration performance results in the form
of RMSE improved from 1.92–2.25dB to 1.13–1.60dB for the non-static approach. The validation
accuracy for the non-static parameter approach was evaluated with ubRMSE and ranges for all model
combinations between 1.82 and 2.22dB. Validation results with SSRT as canopy model show better
results in combination with all surface models when compared to respective combinations using
WCM for the canopy part. Furthermore, it has been shown that the modeled backscatter results
highly depend on the non-static empirical parameter. The evolution of the empirical parameter is
similar for all surface models except Dubois95. At the beginning of the vegetation period, high values
are observed, which decrease during the vegetation season to a minimum shortly before harvesting.
Differences between the canopy model SSRT and WCM are noticeable in the form of higher variability
(more outliers) of the empirical parameter from canopy model WCM. Furthermore, the empirical
parameter for canopy model WCM has a relative maximum at the end of June. This increase of WCM’s
empirical parameter B can most likely be explained by not including information about the canopy
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height. Overall, the results of this study indicate that more complex models, like IEM_B as surface
and SSRT as canopy model, provide the best results in our setup regarding ubRMSE and R2. It should
be mentioned that the disadvantage of more complex models, by requiring more input parameters,
were set to a minimum because of model parameter reduction by model adjustments and the use of
literature values for rms height and single scattering albedo. Therefore, based on this study, we suggest
using surface model IEM_B in combination with canopy model SSRT.

To accomplish a very dense time series of satellite acquisitions with a revisit time of 1.5 days,
Sentinel-1 images with different incidence and azimuth angles were used. The models can account for
backscatter changes due to different acquisition geometries only during the first half of the vegetation
period. During the second half, a trend mismatch between Sentinel-1 and modeled backscatter is
apparent in all model results. Therefore, it has to be stated that the used models in this study are only
partially able to handle differences due to changes in radar acquisition geometries.

To take full advantage of dense time series provided, e.g., by incorporating different sensors on
top of varying radar acquisition geometries, extended research on the suitability of certain RT models
is required. Respectively, arising radiometric differences added to the disparity in radar acquisition
geometries must be investigated, for that matter. To advance synergistic retrieval methods of SAR
and optical data for soil moisture estimation, further research on incorporating non-static empirical
parameter sets retrieved from optical sensors, to account for vegetation phenological states, is needed.
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3.2 Transition to Publication II
Publication I demonstrated that the analyzed RT models are capable of simulating radar
backscatter in winter wheat fields using soil moisture, the LAI as a vegetation descrip-
tor, and a non-static empirical parameter. However, the use of a dense Sentinel-1 C-band
time series, and consequently, images with different satellite acquisition geometries (vary-
ing azimuth and incidence angles), revealed a mismatch between observed and modeled
backscatter for consecutive daily images.

While the models successfully capture the general temporal evolution, a trend mismatch
in backscatter is consistently observed between consecutive images with different satellite
acquisition geometries. Since the models only account for changes in incidence angles, the
variation in azimuth angles might be responsible for this discrepancy. However, without a
detailed analysis of the model’s sensitivity to azimuth and incidence angles, no definitive
conclusions can be drawn.

In response, Publication II further investigates a dense Sentinel-1 time series composed
of images with varying incidence and azimuth angles. Subsets of this time series are ana-
lyzed to quantify the impact on model performance when images with different acquisition
geometries are used. The results suggest that incidence angle is the primary driver of
backscatter differences between consecutive acquisitions, even though it is accounted for
in the models. In contrast, changes in azimuth angles were found to have a negligible ef-
fect. Additionally, a polarimetric analysis using eigen-decomposition of dual-polarimetric
data (polarimetric entropy and scattering alpha angle) indicates that shifts in scattering
mechanisms are predominantly driven by variations in the incidence angle.
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3.3 Publication II: Sentinel-1 Backscatter Analysis and
Radiative Transfer Modeling of Dense Winter Wheat
Time Series

Reference: Weiß, T., Ramsauer, T., Jagdhuber, T., Löw, A., Marzahn, P., 2021. Sentinel-
1 Backscatter Analysis and Radiative Transfer Modeling of Dense Winter Wheat Time
Series. Remote Sensing 13, 2320. doi:10.3390/rs13122320.

Status: published

Plain language summary: The twin Sentinel-1 satellites, A and B, map the entire
globe with a joint repeat cycle of 6 days. When considering images with varying satellite
acquisition geometries, the Sentinel-1 satellites provide an even greater number of repeat
cycles for certain regions, particularly in Europe. As a result, a dense time series with a
mean temporal resolution of 1.5 days is available for the MNI test site in Germany for the
year 2017. This time series consists of images captured under four different acquisition
geometries: two with similar incidence angles but different azimuth angles, and two with
similar azimuth angles but different incidence angles. The availability of such a dense time
series allows for an in-depth analysis of the behavior of RT models when different images
with varying acquisition geometries are utilized.

In this study, various subsets of the time series are analyzed, including all images,
images with similar incidence angles, images with similar azimuth angles, images nor-
malized by incidence angle, and images separated by both incidence and azimuth angles.
The findings indicate that the incidence angle primarily accounts for the differences in
Sentinel-1 VV-polarized radar backscatter values, while the effect of the azimuth angle is
negligible. Furthermore, an analysis of the scattering mechanisms using dual polarimet-
ric eigen-decomposition reveals that different incidence angles can lead to changes in the
scattering mechanism, whereas variations in azimuth angles remain negligible. Although
the incidence angle is incorporated into the model equations, the original RT models are
unable to effectively handle Sentinel-1 time series comprising images with varying inci-
dence angles. To address this limitation, an empirical calibration parameter (coef) that
influences transmissivity is introduced.
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Abstract: This study evaluates a temporally dense VV-polarized Sentinel-1 C-band backscatter
time series (revisit time of 1.5 days) for wheat fields near Munich (Germany). A dense time series
consisting of images from different orbits (varying acquisition) is analyzed, and Radiative Transfer
(RT)-based model combinations are adapted and evaluated with the use of radar backscatter. The
model shortcomings are related to scattering mechanism changes throughout the growth period with
the use of polarimetric decomposition. Furthermore, changes in the RT modeled backscatter results
with spatial aggregation from the pixel to field scales are quantified and related to the sensitivity of
the RT models, and their soil moisture output are quantified and related to changes in backscatter.
Therefore, various (sub)sets of the dense Sentinel-1 time series are analyzed to relate and quantify the
impact of the abovementioned points on the modeling results. The results indicate that the incidence
angle is the main driver for backscatter differences between consecutive acquisitions with various
recording scenarios. The influence of changing azimuth angles was found to be negligible. Further
analyses of polarimetric entropy and scattering alpha angle using a dual polarimetric eigen-based
decomposition show that scattering mechanisms change over time. The patterns analyzed in the
entropy-alpha space indicate that scattering mechanism changes are mainly driven by the incidence
angle and not by the azimuth angle. Besides the analysis of differences within the Sentinel-1 data,
we analyze the capability of RT model approaches to capture the observed Sentinel-1 backscatter
changes due to various acquisition geometries. For this, the surface models “Oh92” or “IEM_B”
(Baghdadi’s version of the Integral Equation Method) are coupled with the canopy model “SSRT”
(Single Scattering Radiative Transfer). To resolve the shortcomings of the RT model setup in handling
varying incidence angles and therefore the backscatter changes observed between consecutive time
steps of a dense winter wheat time series, an empirical calibration parameter (coe f ) influencing
the transmissivity (T) is introduced. The results show that shortcomings of simplified RT model
architectures caused by handling time series consisting of images with varied incidence angles can
be at least partially compensated by including a calibration coefficient to parameterize the modeled
transmissivity for the varying incidence angle scenarios individually.

Keywords: soil moisture; radiative transfer models; winter wheat; Sentinel-1; time series

1. Introduction

The Sentinel-1 mission was designed for systematically mapping land surfaces with
enhanced revisit frequency, coverage, timeliness, and reliability for applications and op-
erational services requiring a long time series [1]. Two of these applications, using freely
available Sentinel-1 data, are agricultural monitoring and modeling on regional or global
scales [2,3]. The mission currently comprises a constellation of twin satellites, each with a
revisit time of 12 days [4,5]. Thus, observations with the same acquisition geometry (exact
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same orbit) are provided every six days. If multiple orbits (ascending and descending)
and, therefore, various satellite acquisition geometries are considered, a revisit time of less
than two days can be accomplished for most parts of Europe [6]. Furthermore, with the
provision of space-borne radar data at such an unprecedented spatial and temporal reso-
lution, research on crucial societal and economic challenges such as climate change [7,8]
or food security [9–11] can be assessed. For future food security, the monitoring of win-
ter wheat, as one of the most important cereals in Europe [12] and the crop type with
the second-largest coverage worldwide, is considered fundamental [13]. One important
environmental parameter for winter wheat growth is soil moisture, which shows high
spatiotemporal variability [14,15]. Monitoring of the diurnal cycles of soil moisture and
other natural fast changing processes with a dense time series [16] reveals possibilities for
real-time management, such as of droughts or precision agriculture [17,18].

Lately, more and more studies using microwave time series data to estimate the soil
moisture of agricultural areas—especially for the crop type winter wheat—have been
conducted [19–21]. Often, only a single satellite orbit constellation and, therefore, data from
one satellite with the same acquisition geometry are used [19,22–24]. Occasionally, the time
series used consists of data from the same satellite but related to different orbits and, thus,
various azimuth or/and incidence angles [20,23,25–27]. Only a few of these studies also
use data from different sensors to retrieve soil moisture values [23,27,28]. Summarizing the
above studies, one established approach is to simulate radar backscatter or to estimate soil
moisture of vegetated areas by using radar backscattering models based on the Radiative
Transfer (RT) equation [29,30]. These model simulations of radar backscatter from agricul-
tural fields are based on sensor and platform configurations (e.g., incidence angle, azimuth
angle, frequency, and polarization), soil properties (e.g., soil moisture, texture, and surface
roughness), and vegetation parameters (e.g., Leaf Area Index (LAI), Normalized Differ-
ence Vegetation Index (NDVI), Vegetation Water Content (VWC), and biomass) [19,29]. In
recent decades, several complex models such as the Michigan Canopy Scattering Model
(MIMICS) [31], the Tor Vergata model [32], a first-order radiative transfer model from
Quast [33,34], and a Wheat Canopy Scattering Model (WCSM) [27] have been developed
for modeling the electromagnetic scattering of different vegetation types by using the first
or second order of the RT equation. For precisely modeling the backscatter characteristics
that occur during different phenology stages of winter wheat, complex models with de-
tailed information, such as their canopy element size and distribution (length; diameter;
thickness; and water content fraction of the stem, leaf, and ears) are needed to account for
a multi-layer volume canopy [27]. Thus, different electromagnetic scattering interactions,
for example, direct canopy scattering and single or multiple interactions between canopy
parts (the ear, leaf, and stem) and the surface, can be modeled. A problem with using these
complex models is the provision of additional input data for characterization of the canopy.
Therefore, canopy models with fewer input parameters such as the empirical WCM [35],
in which only the direct volume backscatter part is considered; a modified version of
WCM (MWCM) [36]; or a Single Scattering Radiative Transfer (SSRT) model described
by Ulaby [30] or De Roo [37], in which various scattering mechanisms are modeled in a
simpler way, are regularly used [26,30,37–40]. Additionally, information about the surface
scattering contribution under winter wheat fields for the estimation of soil moisture is
crucial. Commonly used surface backscattering models are the surface scattering part of
the empirical Water Cloud Model (WCM) [35]; the semi-empirical models of Oh (Oh92,
Oh04) [41,42] and Dubois [43]; and physical models, such as the Integral Equation Method
(IEM) [44] in its original form or as adapted by Baghdadi (IEM_B) [45].

In the scope of using dense microwave time series for monitoring winter wheat fields
around the world, complex model approaches might not be applicable most of the time
due to the lack of detailed in situ measurements on soil and winter wheat characteristics.
Model approaches with a low number of required input parameters that can be provided
by satellite remote sensing (e.g., LAI) are preferred when applied on the global scale.
Therefore, in this study, we investigate how a simplified RT model for the canopy part
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(SSRT) in combination with two surface backscattering models (Oh92 and IEM_B) are able
to simulate backscattering for a dense time series with various acquisition geometries and
how far the RT model can be adapted by means of an empirical parameter to compensate
for the lack of detailed in situ wheat canopy information. The simple RT models used in
their original form are not completely optimized for wheat scattering, and a separation
of contributions from vegetation growth and geometric configuration is a challenging
task. Thus, the main focus is set on how changes in acquisition geometries (changes in
azimuth and incidence angles) affect the simplified backscattering models throughout the
entire wheat growing period and if an empirical parameter is able to compensate for these
effects up to a certain extent. The contributions from vegetation growth and the geometric
configuration difference in the multi-temporal signature are separated.

By investigating a dense Sentinel-1 time series of winter wheat fields in southern
Germany, the following questions are answered within this paper:

(A) Do backscatter variations between individual Sentinel-1 scenes with various acquisi-
tion geometries depend on changes in incidence and/or azimuth angle?

(B) How do backscatter calculations of simple RT model approaches react to changes
in terms of acquisition geometry, and what are the probable scattering mechanism
variations for winter wheat fields?

(C) What influence (in dB) do different spatial backscatter aggregation scenarios have on
RT model results?

(D) How do uncertainties in backscatter (variation by 0.2 dB, 0.5 dB, and 1.0 dB) influence
soil moisture estimations in the RT models analyzed during the vegetation growing
period of winter wheat?

(E) How should one best assess scattering from wheat fields in terms of acquisition
scenario, preprocessing, and soil moisture estimation using time series information?

2. Data Sets
2.1. Study Area

In situ measurements obtained from the Munich North Isar (MNI) test site in 2017
were used for this study. The study area (48◦13′N–48◦20′N, 11◦39′E–11◦45′E, Figure 1) is
located to the north of Munich, Bavaria, southern Germany. The test site was established in
2014, and since then, almost every year during the vegetation period, in situ campaigns
are carried out to survey the agriculturally relevant key variables [26,46–49]. The main
crop types within the MNI test site were wheat, maize, and grassland. The meteorological
measurements were provided by three meteorological stations: in Freising, in Eichenried,
and at the Munich airport. All three stations are situated within a 10 km radius around the
MNI test site. The permanently installed facilities in Freising (470 m a.s.l.) and Eichenried
(475 m a.s.l.) are operated by the Bavarian State Research Center for Agriculture (LFL).
The meteorological station at the Munich airport (446 m a.s.l.) is operated by the German
Meteorological Service (DWD). The meteorological station records reported an annual mean
temperature of 9 ◦C (Freising) to 9.3 ◦C (Eichenried) and an average annual precipitation of
753 mm (Munich-airport) to 853 mm (Eichenried) for the year 2017. The region around the
test site exhibits only marginal changes in height (above sea level) and has no significant
topographic variation.
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Figure 1. Overview of the study area Munich-North-Isar (MNI) with test fields 508 (green), 542 (or-
ange), and 301 (blue), each with three sampling points.

2.2. Field Data

Between March and July 2017, in situ measurements of soil and vegetation parameters
of wheat fields for the validation of retrieval schemes based on different satellite sensors,
such as Sentinel-1, Sentinel-2, or Environmental Mapping and Analysis Program (EnMAP),
were conducted (Table 1). For each field under investigation, three sample points were
chosen (Figure 1). At each location, weekly vegetation height and LAI measurements
as well as assessments of plant phenology (based on BBCH-scale) were taken. For total
LAI measurements, the average of 14 samples from the same area measured with a LI-
COR Biosciences LAI-2200C device (LI-COR Biosciences Inc., Lincoln, NE, USA) was
used. The LAI measurements reach a calculated accuracy of 0.45 m²/m² to 0.52 m²/m²
in terms of the mean standard deviation of repeated measurements within fields. Soil
moisture was monitored using permanently installed Decagon TM5 sensors (Decagon
Devices Inc., Pullman, WA, USA). The soil moisture devices were installed within the first
five centimeters of the soil surface with a monitoring time interval of 10 min. Laboratory
analysis of the soil texture of previous field campaigns reports no evidence of significant
micro-locational soil variations within the test site [48]. The soil properties presented in
Table 2 show values for soil bulk density, 1.45 ± 0.13 g/cm3; for clay content, 7.38 ± 1.8%;
for silt content, 68.55 ± 11.64%; and for sand content, 24.08 ± 10.46%.

Table 1. Acquisition time, time interval, and range of dynamic in situ measurements.

Variable Acquisition Time Time Interval Range

Canopy height [cm] 24 March–17 July 2017 weekly 7–105
LAI 24 March–17 July 2017 weekly 0.35–6.25

Soil moisture [m3/m3] 24 March–17 July 2017 every 10 min 0.09–0.38
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Table 2. Laboratory results for sand, clay, and bulk content of the soil surface samples.

Variable Time Interval Mean Std

Soil sand content [%] once (several locations) 24.08 10.46
Soil silt content [%] once (several locations) 68.55 11.64
Soil clay content [%] once (several locations) 7.38 1.80
Bulk density [g/cm3] once (several locations) 1.45 0.13

2.3. Satellite Data

A dense time series of Sentinel-1 A/B (C-band, Level-1 SLC) satellite data was used
for this study. Preprocessing of the SAR data was accomplished by using ESA’s SNAP
Toolbox Version 7.0.3. SRTM data with 1 arc-second spatial resolution were used as a
digital elevation model for geometric correction of the SAR data [50,51]. For radiometric
correction, the method of Kellndorfer et al. [52] was applied. To reduce the impact of
speckle by simultaneously maintaining the spatial resolution, a multi-temporal Lee-sigma
filter was chosen. For each Sentinel-1 acquisition, information from six other acquisitions
(three before and three after the target) was used for temporal filtering. A spatial window
of 5 × 5 pixels, sigma of 0.9, and a target window size of 3 × 3 served as the Lee filter
parameters. For the images used during temporal filtering, no separation with respect
to different orbits was performed. A comparison of the temporal filtered data—using
images from different orbits versus using images from the same orbit—shows almost no
difference between the filtered output data. After all of the preprocessing steps, the data
were resampled to a spatial resolution of 10 × 10 m [26]. In 2017, the MNI test site area
was covered by four different Sentinel-1 tracks with individual acquisition geometries
regarding incidence angle, azimuth angle, and orbit direction. Considering all available
Sentinel-1 images for 2017 at the MNI test site, a revisit time of 1.5 days was reached. A
total of 78 Sentinel-1 scenes during the time of the field campaign are available. For our
study, the focus was set to VV polarization, motivated by previous findings where, to
retrieve soil moisture, the usage of VH polarization alone or in addition to VV polarization
was not suitable for well-developed agricultural vegetation [23,53]. Table 3 summarizes
the Sentinel-1 data set used and its respective image properties.

Table 3. Available Sentinel-1A/B satellite data for the MNI field campaign period in 2017 (23 Match–17 July 2017).

Orbit Mean Incidence Angle Azimuth Angle Acquisition Amount Revisit Time
Mode Rel. Nr. of Test Site Area [◦] Relative to North [◦] Time [Days]

Asc 44 36 −15 4:58 p.m. 19 6
117 45 −15 5:06 p.m. 19 6

Des 95 43 −165 5:17 a.m. 20 6
168 35 −165 5:25 a.m. 20 6

3. Method

Our study focused on investigating a dense Sentinel-1 C-band backscatter time series
under varying acquisition geometries and on RT-based backscatter modeling of the time
series. Two different RT model combinations calculating VV-polarized backscatter were
analyzed. The soil surface scattering models used were Oh92 [41] and Baghdadi’s version
of the IEM [45], hereafter referred to as IEM_B. The surface models were coupled with
the Single Scattering Radiative Transfer Model (SSRT) of [30,37]. The SSRT was chosen
because it calculates the direct vegetation volume backscatter and backscatter contributions
due to the surface–canopy interactions. The calibration approach of Weiß et al. [26] with a
non-static empirical parameter (coe f ) influencing the one-way transmissivity of the canopy
(T) was used. Therefore, only one empirical parameter was calibrated for the different
model combinations. The approximations applied by Weiß et al. [26] for parameters with
missing in situ data such as rms height (1.2 cm) or scattering albedo (0.03) were used. The
other input parameters for the surface models were in situ data for soil properties such
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as clay and sand content, bulk density, and soil moisture measurements. For the canopy
model part, in situ data of canopy height and LAI were used as vegetation descriptors.
The various scattering components (ground component σ0

gpq , canopy component σ0
cpq , total

canopy ground contribution σ0
cgtpq

, and ground canopy ground contribution σ0
gcgpq ) of the

SSRT used by De Roo et al. [37] and Ulaby [30] are defined as

σ0
pq = σ0

gpq + σ0
cpq + σ0

cgtpq + σ0
gcgpq , (1)

with
σ0

gpq = TpTq σ0
spq , (2)

σ0
cpq =

σback
Vpq

cosθ

kp
e + kq

e
(1− TpTq), (3)

σ0
cgtpq = σbist

Vpq
H [Rp + Rq] TpTq and (4)

σ0
gcgpq =

σback
Vpq

cosθ

kp
e + kq

e
(RpRq − TpTq). (5)

where σ0
spq represents the surface scattering, Tp and Tq symbolize the transmissivity of the

canopy, σback
Vpq

is the volume backscattering coefficient of the vegetation medium, σbist
Vpq

is the
bi-static scattering cross section, θ is the incidence angle, ke is the extinction coefficient for
the different polarizations, H is the canopy height, and R describes the Fresnel reflectivity
by polarization pq. T is defined as

Tp = e−kp
e H secθ . (6)

To calibrate the transmissivity of the canopy (T) for different time steps and various
acquisition scenarios, the extinction coefficient ke for polarization p and q is defined as

kp
e = coe f ∗

√
LAI, (7)

with LAI as the vegetation descriptor and coe f as the calibration coefficient. A more
detailed overview of the different RT models is provided in Weiß et al. [26]. A summary
of validity ranges, model types, and input parameters required for the applied models is
listed in Table 4.

Table 4. Overview of the different surface models Oh92 and IEM_B as well as the canopy model SSRT in terms of type,
validity range, required input parameters, and polarization. Separation of the input parameter applied for the RT models in
calibrated parameters and in parameters from field measurements or literature values.

Type Validity Range
Required Parameters

PolarizationCalibrated Field Measurements
or Literature Values

Oh92 semi-empi.
10◦ < θ < 70◦ s, k, θ, ε

(clay, sand, bulk, mv)
HH, VV

VH0.1 < ks < 6
9 < mv < 31 Vol.%

IEM_B semi-empi. 10◦ < θ < 70◦ s, k, l, θ, ε
(clay, sand, bulk, mv)

HH, VV
VHks ≤ 3

SSRT semi-empi. ke (coe f ) H, LAI, θ, ω HH, VV
VH

3.1. Calibration and Analyzed Data Sets

Figure 2 schematically explains the calibration approach from Weiß et al. [26] that was
applied. Depending on the analysis approach, the images of the dense Sentinel-1 time
series were separated into different subsets (blue box in Figure 2). An overview of the
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data subsets used is provided in Table 5. Additionally, variations due to diverse spatial
aggregation scenarios of the Sentinel-1 backscatter were investigated. An overview of the
analyzed aggregation scenarios is given in Table 6. For each (sub)set and each aggregation
scenario, the empirical parameter coe f is calibrated separately. Therefore, the sum of the
squared difference between the modeled and measured VV-polarized backscatters were
used as a minimization function to calibrate the parameter coe f and thus the transmissivity
T (see Equations (6) and (7)). In the end, a final time series for coe f and thus a final RT
modeled VV polarized radar backscatter time series was obtained.

Figure 2. Schematic illustration of the calibration approach. Green box show used RT model combinations. The blue box
illustrates the various (sub)sets analyzed for the dense time series. The orange arrows symbolize that several data (sub)sets
and spatial aggregation scenarios were used.

Table 5. Investigated time series (sub)sets.

Abbreviation Data Sets Amount of Scenes Rel. Orbit

All All available Sentinel-1 scenes 78 44 + 95 + 117 + 168

Inci Sentinel-1 scenes with similar incidence 2 sets of 39 44 + 168; 95 + 117angle but different azimuth angle

Azi Sentinel-1 scenes with same orbit mode 2 sets of 39 44 + 117; 95 + 168and zimuth angle

Sep Sentinel-1 scenes separated by 4 sets of 19–20 44; 95; 117; 168incidence and azimuth angle

Norm All available Sentinel-1 scenes normalized 78 44 + 95 + 117 + 168to an incidence angle of 35°
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Table 6. The backscatter aggregations investigated.

Abbreviation Backscatter
Aggregation Area Size Amount of Pixel

SP Single pixel 10 × 10 m 1
30 m 15 m buffer 30 × 30 m 9
50 m 25 m buffer 50 × 50 m 25
100 m 50 m buffer 100 × 100 m 100

FS Field scale 724–963

3.2. Leave-One-Out-Cross-Validation of Calibrated Model Combinations

A leave-one-out cross-validation approach was chosen to validate the calibrated
model results of the different measurement points. Thus, the mean of eight out of nine
measurement points of calibrated parameter coe f was validated with the remaining one.
Since the model input parameters used show multi-dimensional and unstructured inter-
and intra-field correlations, independence between the different measurement points was
assumed [26]. To evaluate the RT model fit of the time series sets analyzed (Table 5), the
unbiased Root Mean Square Error (ubRMSE) [54] as a statistical metric was used. The
ubRMSE is calculated as follows

ubRMSE =

√√√√ 1
N

N

∑
i=1

[(xi − x)− (yi − y)]2 (8)

where x represents the backscatter modeled, x represents the backscatter modeled and
averaged, y represents the Sentinel-1 backscatter observation, y represents the averaged
Sentinel-1 backscatter observation, i represents a specific sample, and N represents the total
number of samples.

3.3. Sensitivity Analysis of Soil Moisture and Polarimetric Eigen-Based Decomposition for the
RT Model

A sensitivity analysis of the RT models was conducted for a comprehensive interpre-
tation of improvements in terms of backscatter values by using different Sentinel-1 time
series sets (Table 5) and/or various spatial aggregations (Table 6). To test the RT models’
sensitivity to changes in soil moisture, artificial deviations in soil moisture were assumed,
leading to changes in backscatter values of 0.2 db, 0.5 db, or 1.0 dB. The artificial deviations
in backscatter were calculated for each time step of the time series individually. In this
way, the sensitivity of the backscatter to soil moisture during the phenological cycle and
different meteorological conditions could be assessed.

In addition, a dual-polarized (VV and VH) eigen-based (entropy (H)-scattering al-
pha (alpha)) decomposition of the entire Sentinel-1 time series, having variations in the
acquisition scenario, was performed to investigate and understand the occurring scatter-
ing mechanisms and changes in scattering mechanisms during the growing season. The
H-alpha dual polarized decomposition [55] was performed by using an internal processing
step of ESA’s SNAP toolbox. Special focus was set on the comparison of images of consec-
utive time steps with various acquisition geometries. The dual-polarimetric eigen-based
decomposition comes with a caveat, as the separation of different scattering mechanisms in
the H-alpha plane is only possible with fully, quad-, or co- (VV and HH) polarized data [56].
Therefore, the exact identification and detailed distinction of the scattering mechanism
that occurs for each time step is beyond the scope of information from the recorded data
set. Nevertheless, the H-alpha results can be used as a first-order indicator of scattering
mechanism change over time and, owing to acquisition scenario, even if the exact types of
scattering mechanisms and their change cannot be identified directly. However, the scatter-
ing mechanism changes that were revealed might further improve our understanding of
the deficits of simplified model approaches and how they might be compensated.
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4. Results
4.1. All Sentinel-1 Tracks Analyzed as One Time Series

The calibration results analyzing the usage of different dense time series (sub)sets
are presented for field point 508-1 as an example. The other fields analyzed and the
respective intra-field points show similar patterns and are only included for validation of
the backscattering model results (Section 4.3). Accordingly, a time series of VV-polarized
backscatter of all available Sentinel-1 images for field point 508-1 (black line) is illustrated in
Figure 3a. The model results (green and blue line) are based on a calibration of the empirical
parameter coe f (Equation (7)) as part of the transmissivity (Equation (6)) considering all
available Sentinel-1 images as one data set (Tables 5 and 6, “All-50 m”). The background
colors red, blue, green, and yellow symbolize the Sentinel-1 data, and the respective
acquisition geometries represent four consecutive days of Sentinel-1 data acquisition. A
closer look at the four consecutive time steps (yellow to green background colors), while
disregarding backscatter changes due to soil moisture and vegetation dynamics, shows
that, during early vegetation stages (tillering and stem elongation), higher Sentinel-1
backscatter values are observed for more steep incidence angles (around 35◦) than for
more shallow ones (around 44◦). Starting from the beginning of June (phenology stage
booting), the backscatter behavior pattern in terms of the incidence angle variation of the
four consecutive time steps varied. Accordingly, higher backscatter values were observed
for incidence angles of 44◦ than for 35◦. A pattern regarding variations in azimuth angles
was not observed here. Comparing the modeled results of IEM_B with SSRT (green line)
and of Oh92 with SSRT (blue line), higher sensitivities to incidence angle deviations are
observed for the Oh92 model. Backscatter modeling for the phenology stages tillering and
stem elongation of model Oh92 with SSRT reveals a high correlation with the Sentinel-1
backscatter observed in terms of absolute values and the changes in backscatter observed
due to the various acquisition geometries. Starting from phenology stage booting to
senescence, Sentinel-1 backscatter reveals a different behavior from the modeled results.
For these phenology stages, the Sentinel-1 backscatter values of consecutive time steps with
varying incidence angles (background colors yellow to red) increased whereas the RT model
results exhibited a decrease in backscatter. For the other consecutive time steps with varying
incidence angles (background colors blue to green), the Sentinel-1 backscatter values
decreased whereas the RT model results showed an increase in backscatter. The different
results of the Sentinel-1 and RT models are hereinafter referred to as a trend mismatch
of consecutive time steps. Summarizing the findings, the simple RT model approaches
experience difficulties in accurately modeling time series comprising observations from
different orbits (different observation geometries) for a winter wheat field with a fully
developed canopy. A trend mismatch is observed. In the end, the model combination of
Oh92 with SSRT has a higher sensitivity to observation geometry changes than the model
combination of IEM_B with SSRT.
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Figure 3. Sentinel-1 backscatter data for field point 508-1. Modeled backscatter results of IEM_B and Oh92 with SSRT (a).
Different background colors (red, blue, green, and yellow) represent Sentinel-1 images with various acquisition geometries
(a,b). Calibrated transmissivity T for each time step (b). In situ data of vegetation height and LAI (c). Soil moisture and
precipitation measurements (d). Observed vegetation phenology according to the BBCH scale [57] (e).

4.2. Subsets of Dense Sentinel-1 Time Series
4.2.1. Analyzing Incidence Angle Variety

The data set was separated into two subsets to analyze the effect of varying incidence
angles within the dense Sentinel-1 time series on the RT model results. Therefore, one
subset consists only of images acquired in the same orbit direction and with the same
azimuth angle (“Azi-50 m”). The azimuth angle itself is not an input parameter within
the RT models, and therefore, deviations in backscatter caused by the various azimuth
angles were not considered in our simple model approach. The variation in incidence angle
on the other hand should cause variations in the backscatter modeled as the incidence
angle is implemented as an input parameter within the RT models. The empirical model
parameter coe f as part of the transmissivity T was calibrated for each time step using the
Sentinel-1 data of each subset separately. Figure 4 illustrates the results for an azimuth
angle of −15◦ (relative to north), and Figure 5 illustrates the results for an azimuth angle of
−165◦ (relative to north). Sentinel-1 backscatter (black line), total backscatter, and the two
main contributors to the total backscatter (surface and canopy part) of the models analyzed
(blue and green lines) are shown in Figures 4a and 5a. For both subsets, deviations in
Sentinel-1 backscatter in the range from 2 db to 3 dB between two consecutive time steps
with varied incidence angles (background colors blue to green or yellow to red) are still
apparent. Similar to the results shown in Figure 3, the Sentinel-1 backscatter differences
of consecutive time steps observed were modeled well until the end of May. However,
starting with the phenology stage of booting at the beginning of June, a trend mismatch
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is observed between two consecutive time steps of Sentinel-1 and modeled data, similar
to the one in Figure 3. The differences within the time series of T of Figures 4b and 5b
between two consecutive time steps are similar to the modeled transmissivity illustrated in
Figure 3. Since the simple RT models’ sensitivity towards accurately calculating backscatter
with varying incidence angles seems to be imperfect, an incidence angle normalization
approach might be able to resolve or at least mitigate this issue. One of the challenges of
applying incidence angle normalization approaches to the entire time series is experienced
when using the analyzed Sentinel-1 data itself. The Sentinel-1 backscatter (black line within
Figures 4 and 5) of consecutive time steps with different incidence angles shows higher
backscatter values for steep incidence angles until the end of May and lower backscatter
values for shallow incidence angles from the beginning of June. Due to this behavior,
an incidence angle normalization results in either lower backscatter differences due to
varying incidence angles during early phenology stages (tillering and stem elongation) and
higher differences for later phenology stages (booting to senescence), or vice versa. The
desired effect of the normalization in providing a smooth time series of backscatter data
from wheat fields cannot be accomplished by applying one normalization approach to the
entire data set. The findings indicate that a simple model approach has some deficits in
simulating backscatter under various incidence angles within one time series, although the
incidence angle is used as an input parameter to the models.

Figure 4. Sentinel-1 time series and RT model results considering images with an ascending orbit direction and an azimuth
angle of −15◦ (relative to north) (a). Different background colors (red, blue, green, and yellow) represent Sentinel-1 images
with various acquisition geometries (a,b). Calibrated transmissivity T (b).
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Figure 5. Sentinel-1 time series and RT model results considering images with a descending orbit direction and an azimuth
angle of −165◦ (relative to north) (a). Different background colors (red, blue, green, and yellow) represent Sentinel-1 images
with various acquisition geometries (a,b). Calibrated transmissivity T (b).

4.2.2. Analyzing Azimuth Angle Variety

The data set was split into two subsets to analyze the effect of varying azimuth angles
within the dense Sentinel-1 time series and on the RT model results. Therefore, each new
subset consists of acquisitions with similar incidence angles (“Inci-50 m”). Equivalent to
the approach of Section 4.2.1, parameter coe f of the RT model combinations was calibrated
using the Sentinel-1 data of each subset separately. Figure 6 shows the results for incidence
angles of 35◦ to 36◦, while Figure 7 illustrates the results for 43◦ to 45◦. For incidence
angles of 35◦ and 36◦, higher deviations in terms of Sentinel-1 backscatter values between
consecutive time steps are only visible with a significant change in soil moisture content
(Figure 6c). Otherwise, distinct backscatter differences between consecutive time steps for
the Sentinel-1 and RT model results are not identifiable. Additionally, the trend mismatch
between the Sentinel-1 and RT model results for the phenology stages booting to senescence
is not present for incidence angles 35◦ to 36◦. The backscatter variation with incidence
angles of 43◦ and 45◦ present a slightly different picture. Small discrepancies between
consecutive time steps of the Sentinel-1 data are visible. However, no real trend mismatches
between the backscatter values of the Sentinel-1 and RT model results are evident. For both
subsets, it can be stated that, overall, the RT model predictions are in sufficient agreement
with the Sentinel-1 data. Summarizing the findings, it can be stated that, although the
azimuth angle is not considered as a parameter within the models, no obvious deviations
between the backscatter modeled and the Sentinel-1 backscatter is observed and, thus,
deviations in azimuth angles within a dense time series seems to be negligible for the
model approach presented.
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Figure 6. Sentinel-1 VV backscatter time series and RT model results for canopy and surface scattering considering
images with similar incidence angles (35◦, 36◦) (a). Different background colors (red, blue, green, and yellow) represent
Sentinel-1 images with various acquisition geometries (a,b). Calibrated transmissivity T (b). Soil moisture and precipitation
measurements (c).

Figure 7. Sentinel-1 VV backscatter time series and RT model results for canopy and surface scattering considering
images with similar incidence angles (43◦, 45◦) (a). Different background colors (red, blue, green, and yellow) represent
Sentinel-1 images with various acquisition geometries (a,b). Calibrated transmissivity T (b). Soil moisture and precipitation
measurements (c).
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4.2.3. Separation of Dense Sentinel-1 Time Series into Mono-Incidence Data Sets

After analyzing the effects of different azimuth and incidence angles on the backscat-
ter, the dense time series was separated into four subsets with the same orbit and, thus,
the same acquisition geometry (“Sep-50 m”). The transmissivity T was calibrated by the
empirical parameter coe f for each subset individually, and the results were reassembled
into one time series afterwards. The trend mismatch between the data modeled and the
Sentinel-1 data of consecutive time steps with various acquisition geometries after the
beginning of June, which was detected in Figure 3, was resolved. Figure 8 shows these
calibrated model results of a reassembled dense time series. Furthermore, compared to
Figure 3, a sensitivity increase in the IEM_B model results in backscatter changes due to
varied incidence angles being observed. The resolved trend issue and the higher incidence
angle sensitivity effect result in dynamic transmissivity values by separately calibrating
the empirical parameter coe f for varying time series subsets. Contrarily, in Figure 3, no
differences of T between consecutive time steps are visible, but various values for T can
be observed in Figure 8. The model combination Oh92 with SSRT shows variations in T
(between Figures 3b and 8b) only after mid-July (flowering to senescence), whereas IEM_B
exhibits variations during the early (tillering) and late (flowering to senescence) phenology
stages. The calibrated parameter coe f seems to compensate for the lack of RT models
in handling various acquisition scenarios in our model setup. This compensation might
be forced by the model architecture and/or calibration and needs further investigation.
During the phenology stages flowering to senescence, higher T values (Figure 8b) as well
as higher surface model contributions (Figure 8a, triangle symbol) are observed for IEM_B
and Oh92 for shallow than for steep incidence angles. Theoretically, by considering a
canopy layer of 90–100 cm, the electromagnetic wave travels a farther distance through the
canopy for shallow incidence angles than for steep incidence angles. Under the assump-
tion that farther distances (shallow incidence angle) through the canopy leads to lower
canopy transmissivity of the electromagnetic wave, the modeled T and the model surface
component of Oh92 and IEM_B should be lower for shallow incidence angles and not
the other way around. Although the model theory described cannot be seen in Figure 8,
Figure 4 shows this theoretical behavior of the surface model component (Figure 4a, trian-
gle symbol) and transmissivity (Figure 4b). However, comparing Sentinel-1 and the total
modeled backscatter within Figure 4, a trend mismatch between consecutive time steps for
phenology stages flowering to senescence and, therefore, differences between the Sentinel-1
and RT model total backscatter are observed.

For the results illustrated in Figure 8, no trend mismatch and thus a better fit of the
data modeled and the Sentinel-1 data are observed. The reason for the discrepancy between
the model theory assumed and the behavior observed might be caused by insufficient—or
missing—consideration of the scattering mechanisms in the applied simplified model
architecture. For a change detection analysis on scattering mechanisms and/or backscatter
effects, a VV–VH dual polarimetric eigen-based (entropy (H)-scattering angle (alpha))
decomposition is performed [56]. The H-alpha results of the eigen-based decomposition
are reported in Figure 9. The rows illustrate the results of consecutive time steps with
various acquisition geometries (x-axis) for different vegetation stages of tillering, stem
elongation, heading, and ripening (y-axis). The columns indicate the results for different
incidence angles and orbit directions. During the wheat crop’s tillering stage, no obvi-
ous deviations between the H-alpha results of the different acquisition geometries are
recognizable. Changes in scattering effects moving from the tillering to stem elongation
stages are indicated by a shift to higher H- and alpha-values. Stronger variations in the H-
and alpha-values are observed for incidence angles around 35◦ than for 44◦. The H-alpha
values of the wheat fields of consecutive time steps confirm insensitivity to variations in
azimuth angles of individual scenes, similar to that for backscatter. However, differences
in the H- and alpha-values are observed between acquisitions with various incidence
angles. Lower incidence angles of 35◦ reveal higher shifts in the H- and alpha-values
between the tillering and stem elongation phases as well as higher H- and alpha-values
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compared to incidence angles around 44◦. When comparing the phenology stages stem
elongation and heading, a slight decrease in H- and alpha-values is apparent. Therefore,
a clear separation by incidence angle due to deviations in H- and alpha-values is possible,
whereas a separation due to azimuth angles is difficult. During the ripening stage, a further
decrease in H- and alpha-values is observed. Separation due to various incidence angles
is possible, although not as clear as during the stem elongation or heading stages. The
H- and alpha-values are similar to the values during the early vegetation stages, such
as tillering. Further analysis of the different scattering mechanisms is difficult as Ji and
Wu [56] found that, for VV-VH dual polarimetric eigen-based decomposition, the clas-
sification of scattering mechanisms is not as precise as for fully polarimetric ones. The
various scattering mechanism classes in the H-alpha plane can have high overlap for the
VV–VH dual decomposition results. Nevertheless, the change detection results show that
variations in the scattering mechanism of consecutive time steps are mainly driven by the
incidence angle during acquisition and not by the azimuth angle. Furthermore, similar
scattering mechanisms are observed for the early (tillering) and late (ripening) vegetation
stages. During the vegetation period from stem elongation to flowering stage, higher
changes in scattering effects (dynamics in H- and alpha-values) are observed for steep
incidence angles (35◦) than for shallow incidence angles (44◦). Summarizing the findings,
it can be stated that, although the simplified RT models have some deficits when handling
different incidence angles within one dense time series, the empirical parameter coe f can
partly compensate for model deficiencies if each orbit is modeled separately. H-alpha
decomposition is an analysis tool to explore variations in scattering mechanisms. These
variations might be a possible reason for the simple model approaches having deficits in
accurate backscatter modeling. H-alpha analysis indicates that, indeed, different scattering
mechanism changes occur over time for different incidence angles. Moreover, variations in
azimuth angles are not responsible for changes in backscatter or scattering mechanisms.

Figure 8. Joint Sentinel-1 VV backscatter time series and RT model results for canopy and surface scattering considering four
mono-incidence angle data sets (a). Different background colors (red, blue, green, and yellow) represent Sentinel-1 images
with various acquisition geometries (a,b). Calibrated transmissivity T (b). Observed vegetation phenology according to
BBCH scale [57] (c).
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4.3. Validation and Quantification of RT Model Results

Validation of the RT model calibration approach for the various dense time series
(sub)sets was performed by a leave-one-out-cross-validation method. The mean ubRMSE of
the Sentinel-1 and modeled data for all measurement field points is illustrated in Figure 10.
The results are categorized by different spatial backscatter aggregations (x-axis), RT model
combinations (x-axis), and (sub)sets of the dense Sentinel-1 time series used (color sep-
aration). It is expected that intra-field variances are reduced by averaging, and in this
way, agreements between the model and observations might be facilitated. However, this
analysis wants to quantify the model performance of the different aggregation scenarios in
dB to understand the loss of precision where intra-field variance is vital. Comparing the
results of Oh92 with SSRT and of IEM_B with SSRT for various Sentinel-1 data (sub)sets,
greater variabilty in ubRMSE is shown for the Oh92 model combination. For both models
as well as for the various data (sub)sets, spatial aggregations lead to improved ubRMSE
values. The IEM_B and Oh92 results reveal improvements on the pixel to field scales by up
to 0.5 dB. The best model fit in terms of ubRMSE is provided when using a time series that
only considers Sentinel-1 images with incidence angles of around 35◦ (light green). More-
over, the ubRMSE results in a similar range to that of the best model fit are shown by using
a data set with incidence angles of 43◦ to 45◦ (dark green) or if all acquisition geometry
scenarios are analyzed separately (black). Overall, the IEM_B model combination reveals
slightly better results than the Oh92 model combination for the different categorizations.
Both model combinations analyzed by using only images with incidence angles of 35–36◦

(light green) compared to the entire Sentinel-1 data set (gray) improved by up to 0.3 dB.
The ubRMSE of the best model fit (light green) is 1.43 dB for IEM_B and 1.64 dB for Oh92.
Summarizing the results, it can be stated that the best model agreement is obtained by
aggregation to the field level and by using steep incidence angles. The differences between
single pixel and 30 × 30 m resolution are up to 0.2 dB, and the differences between single
pixel and field scale aggregations are up to 0.5 dB.

4.4. Sensitivity to Soil Moisture Estimations over Time for the RT Model

For a comprehensive interpretation of the quantitative results illustrated in Figure 10,
sensitivity analyses of the model combinations IEM_B and Oh92 with SSRT are provided
in Figures 11 and 12, respectively. The figures show the deviation in estimated soil mois-
ture with artificial variations of backscatter of 0.2 dB, 0.5 dB, and 1.0 dB. This helps in
understanding how the backscatter differences modeled for different aggregation scenarios
(Figure 10) result in uncertainty regarding soil moisture. It is interesting to understand that
the uncertainty in soil moisture estimation differs for different phenology stages during the
vegetation growing period. Uncertainty starts to increase during the stem elongation stage.
This is in seen alongside an increase in vegetation height from 20 cm to 90 cm as well as
an increase in LAI from 3 to 6. Due to a larger canopy layer, the transmissivity decreases,
and therefore, less information about the soil and its moisture content is present within the
SAR signal. During the heading stage of plants, the uncertainty begins to decrease again
and it reaches its minimum during the ripening stage. Although the maximum height of
the canopy is reached, the transmissivity increases and, therefore, the uncertainty of soil
moisture estimations decreases. The higher transmissivity might be explained by the loss
of water within the vegetation, whereby the SAR signal is less attenuated by the canopy,
and therefore, the SAR signal provides more information about the soil [58–60]. Changes in
incidence angles do not result in varying soil moisture uncertainties for the IEM_B model
combination, whereas within the phenology stages stem elongation to fruit development,
the Oh92 model combination exhibits differences in soil moisture uncertainties for varying
incidence angles. For Oh92 with SSRT, a deviation in backscatter of 0.2 dB for an incidence
angle change from 35◦ to 44◦ does result in an uncertainty disparity of up to 0.08 cm3/cm3.
The results show that the uncertainties in soil moisture estimation of IEM_B and Oh92 have
similar values; are highly correlated to different vegetation stages; and in the case of Oh92,
are also dependent on the incidence angle.
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Figure 9. Polarimetric entropy to scattering alpha angle plane of dual (VV/VH) polarimetric eigen-
decomposition for different incidence angles (x-axis) and various phenology stages (y-axis) of wheat
field 508. Colors from blue to red symbolize the distribution density. The H-alpha plane segmentation
for dual (VV/VH) polarimetric eigen-decomposition is from Ji and Wu [56].
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Figure 10. Validation results in terms of ubRMSE for RT models Oh92 and IEM_B with SSRT. The results are segmented in
the x axis by different spatial aggregations (single pixel to field scale). Different colors symbolize the data (sub)sets used
due to separation of incidence and azimuth angles.

Figure 11. Sensitivity analysis of the RT model IEM_B with SSRT. Deviations in the backscatter of
0.2 dB, 0.5 dB, and 1.0 dB are correlated with soil moisture uncertainty (a). Different acquisition
geometries (indicated by the colors red, blue, green, and yellow) of the data set used and the
calibrated transmissivity for each time step (b). In situ data of vegetation descriptors height and LAI
(c). Vegetation phenology observed according to the BBCH scale [57] (d).
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Figure 12. Sensitivity analysis of RT model Oh92 with SSRT. Deviations in the backscatter of 0.2 dB,
0.5 dB, and 1.0 dB are correlated with soil moisture uncertainty (a). Different acquisition geometries
(indicated by the colors red, blue, green, and yellow) of the data set used and the calibrated transmis-
sivity for each time step (b). In situ data of vegetations descriptors height and LAI (c). Vegetation
phenology observed according to the BBCH scale [57] (d).

5. Discussion

To monitor high temporal dynamics of soil moisture, a time series with up to daily
acquisitions is very useful. Currently, the Sentinel-1 satellites can provide time series with
almost daily (1.5 days) acquisitions at mid-latitudes. However, due to different acquisition
orbits, the images can vary in acquisition geometry and timing, which has an effect on the
SAR signal. Our results show that various azimuth angles for daily consecutive acquisitions
of wheat fields have only a minor impact on observed Sentinel-1 backscatter differences.
However, a comparison of images with various incidence angles reveals backscatter varia-
tions in the range of up to 3 dB. Using images with similar incidence and diverse azimuth
angles, backscatter variations between images of consecutive acquisition days are min-
imal to negligible. Lower differences in backscatter are observed for incidence angles
around 35◦ than for 44◦. A different spread of incidence angle variation in the observations
(35–36◦ vs. 43–46◦) might cause these differences in the backscatter. The lower backscatter
differences between incidence angles 35–36◦ compared to 43–46◦ might be caused by the
slightly higher incidence angle variation between the observations used for the different
orbits. A comparison of the RT model results and Sentinel-1 backscatter observations for
“All-50 m” (Figure 3) and “Azi-50 m” (Figures 4 and 5) reveal trend mismatches between the
RT modeled and observed Sentinel-1 backscatter for consecutive time steps with incidence
angle variations from the beginning of June until harvesting (corresponds to phenology
stages from booting to senescence). When using (sub)sets with similar incidence angle and
varying azimuth angles (“Inci-50 m” Figures 6 and 7), a trend mismatch between the RT
model and Sentinel-1 backscatter is not found. Since the incidence angle is implemented as
an input variable within the RT models applied [23,30,37,41], we expect that the RT models
should be able to sufficiently consider Sentinel-1 backscatter differences due to incidence
angle variations for the entire growing season. However, the trend mismatch observed
in later phenological stages (booting to senescence) of the wheat fields implies that the
simple model approach falls short in handling variations within a dense time series if the
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canopy layer is fully developed. By calibrating the empirical parameter coe f for each orbit
constellation separately (Figure 8), the drawbacks in precise modeling of all scattering
mechanisms by simplified models (vegetation and soil) can be compensated. While more
complex models might account for incidence angle variations in a more accurate way, they
may be more inappropriately applied due to missing but necessary a priori/input mea-
surements. As several studies have already found that backscatter characteristics change
during or after the phenology stage of heading [60–62], we explored simple RT models by
handling variations in incidence angles by performing a dual polarimetric (VV and VH)
eigen-based decomposition (Figure 9). These results indicate that a change in the scattering
mechanisms starts at the end of the phenology stage of stem elongation. Furthermore,
they convey that varied backscatter characteristics for wheat fields might significantly
depend on the incidence angle, whereas the azimuth angle seems to play a minor role.
The shortcoming of simplified RT model approaches when handling various incidence
angle scenarios is most likely related to inaccurate modeling of the different scattering
mechanisms. As simplified models are often preferred over complex scattering models,
further investigations with a larger sample of wheat fields and preferably with fully polari-
metric SAR data should be carried out to verify the obtained results and to find a simple
empirical or physical model solution that might be able to enhance the models by keeping
their simplicity. In this context, an often-used strategy of incidence angle variations by
normalizing the incidence angle [40,63–65] was ruled out. An examination of the Sentinel-1
time series of winter wheat fields observed revealed that incidence angle normalization
of the entire time series are not useful due to contradicting trends between consecutive
Sentinel-1 observations, variations in acquisition scenarios, and different phenology stages
in the wheat growing season.

In light of exploring the possible use of Sentinel-1 data and simplified backscattering
models for precision farming purposes, where sub-field variability needs to be preserved,
a quantification of model-to-observation mismatch was carried out in absolute numbers
(dB) for different aggregation scenarios (Figure 10). With a larger spatial aggregation, an
accuracy increase in backscatter estimation (in comparison to the Sentinel-1 observations)
was found that is similar to that in Pierdicca et al. [66] or Carranza et al. [64]. This was
expected. However, the quantification in dB shows differences between single-pixel (SP)
and 30 × 30 m (30 m) resolutions as well as single-pixel and field-scale (FS) aggregations of
up to 0.2 dB and 0.5 dB, receptively. The backscatter differences found are relate to small
deviations in the soil moisture estimation by 0.01 cm3/cm3 (SP to 30 m) and 0.02 cm3/cm3

(SP to FS) for the early and late vegetation stages and up to large variations of 0.13 cm3/cm3

(SP to 30 m) and 0.19 cm3/cm3 (SP to FS) for the phenology stages stem elongation to fruit
development. The variations in soil moisture during the early and late vegetation stages
indicate some opportunities for providing information for precision farming. However,
during the phenology stages of significant vegetation growth (late stage of stem elongation
to heading) the deviations in possible soil moisture estimation increase, greatly hampering
precision farming applications. Since accurate soil moisture estimation highly depends on
reliable information about the canopy, the fusion of optical (Sentinel-2) and microwave
(Sentinel-1) time series [67–69] might provide useful phenology stage-based information
in terms of LAI, NDVI, VWC, or biomass. The increase in soil moisture sensitivity of the
radar signal for later vegetation stages is further related to the loss of plant water after the
heading stage, which leads to a more transparent canopy layer and higher sensitivity of
the radar waves to the soil surfaces [26,58,60,70]. These findings of high surface scattering
during the end of the vegetation period are also supported by similar polarimetric entropy
and scattering alpha values for the tillering and ripening stages (Figure 9).

6. Conclusions

Simulations of the RT model combinations (IEM_B with SSRT and Oh92 with SSRT)
were compared to a dense Sentinel-1 VV backscatter time series. By considering Sentinel-1
images recorded with the available acquisition geometry, a dense time series with a mean
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revisit time of 1.5 days was achieved for the winter wheat test site near Munich, Germany.
Thus, different (sub)sets (separation by acquisition geometry) of the dense time series were
evaluated in time and space.

Backscatter variations between individual Sentinel-1 scenes with various acquisition
geometries (different orbits) were found to be mainly driven by changes in incidence
angles, whereas the azimuth angle was found to be negligible. The RT models used
appear incomplete regarding accurately modeling backscatter variations due to incidence
angle changes for a fully developed winter wheat canopy. It was demonstrated that,
when using Sentinel-1 images with the same incidence angle (mono-incidence case), the
ubRMSE between the backscatter modeled and the Sentinel-1 backscatter decreases by
up to 0.3 dB compared to the multi-incidence case with ubRMSEs of 1.93 dB (Oh92 with
SSRT, “Sep-FS”) and 1.68 db (IEM_B with SSRT, “Sep-FS”). The best fit results between
the backscatter modeled and the Sentinel-1 backscatter were achieved by selecting scenes
with incidence angles around 35◦. Further investigations of the scattering mechanism
changes by a dual polarimetric eigen-based decomposition of the VV and VH Sentinel-1
backscatter data for wheat fields showed more significant divergence during the vegetation
period for steep incidence angles of 35◦. During phenological stages from stem elongation
to fruit development, a clear separation in terms of polarimetric entropy and scattering
alpha angle values could be made between steep (35–36◦) and shallow (43–45◦) incidence
angles. Differences between the early vegetation stages (tillering) and late vegetation
stages (ripening) were marginal. It was found that the types of scattering mechanisms
that appeared during the vegetation period are also dependent on the incidence angle
used during acquisition. Hence, observing with a dense time series of Sentinel-1 and
therefore diversity in incidence angle could mean mixing various scattering mechanisms,
as observed in our study. Therefore, when modeling a dense Sentinel-1 time series using RT
models, the models applied might need a certain flexibility in terms of model design to take
into account potentially occurring scattering mechanisms and their weighting depending
on acquisition scenarios and phenology stages.

An analysis of different spatial backscatter aggregation scenarios (single pixel to field
scale) revealed improvements in the ubRMSE by up to 0.5 dB. Changes in backscatter
between single-pixel and 30 × 30 m aggregation as well as single-pixel and field-scale
aggregation were related to possible soil moisture uncertainties. Only small soil moisture
uncertainty differences between different aggregation scenarios were shown for the early
vegetation stages with a small canopy layer (tillering) and the late vegetation stages
(ripening and senescence), where the winter wheat canopy should be almost transparent
for C-band microwaves. Higher soil moisture uncertainties occurred for the vegetation
stages stem elongation to heading. The sensitivity change is related to a canopy layer
with 95 cm height by using C-band (5 cm wavelength) data. Hence, to estimate soil
moisture under a changing vegetation cover (growing season of wheat), a variety of
biomass, structure, and vegetation water scenarios have to be accounted for. Unfortunately,
these changes in conditions are not easy to simulate electromagnetically with one scattering
model or one model-combination. Hence, further research on approaches using shorter
time series or RT models with limited variable parameters for calibration of the model
might be promising prospects.

Simplified RT model approaches, such as that applied in this study, are well established
for soil moisture estimation from active microwave (SAR) data. However, little attention
is paid to differences caused by incidence angle variations between consecutive images.
The implementation of the incidence angle within the RT models used can mislead one
to assume that backscatter diversity due to variation in incidence angles is sufficiently
accounted for. These differences lead to imprecise soil moisture estimations. Our study on
the winter wheat fields of one growing season shows that the shortcomings of simplified RT
model architectures used to handle time series consisting of images with varied incidence
angles can be at least partly compensated for by including a calibration coefficient to
individually parameterize the modeled transmissivity for the varying incidence angle
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scenarios. Our simple approach of just calibrating one empirical parameter sheds light
on the possibilities for adjusting model simulations for a dense time series of Sentinel-1
observations on winter wheat. Nevertheless, further investigations have to be carried out
on the simple adaption of the RT models developed in terms of the applied calibration
parameter. The usefulness of integrating possible the scattering mechanism changes
between different phenology stages or the adaption of the approach presented to other
crop types might be an interesting follow-up research topic.
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3.4 Transition to Publication III
Publication I evaluates the advantages and disadvantages of various RT models for simu-
lating microwave radar backscatter at the field scale, utilizing in-situ soil moisture data. A
further analysis of a dense Sentinel-1 time series, consisting of images captured at different
incidence and azimuth angles, and its implications within the RT models, is presented in
Publication II.

Building on the insights gained from the preliminary work in Publications I and II,
Publication III introduces an approach for deriving high spatial (100 m) and temporal
(1.5 days) soil moisture estimates for agricultural fields at the MNI test site. This ap-
proach emphasizes the easy transferability of the method to other regions, ensuring that
all necessary auxiliary information can be derived from data provided by freely available,
operational remote sensing sensors. A medium-resolution (1 km × 1 km) RADOLAN soil
moisture product (Ramsauer et al., 2021) is downscaled using a combination of the Oh04
(Oh, 2004) and SSRT (Ulaby and Long, 2014) models, driven by Sentinel-1 VV-polarized
backscatter and VWC information derived from Sentinel-2. High spatio-temporal maps
illustrating soil moisture changes due to precipitation events and soil drying behavior are
generated. Thus, Publication III demonstrates that a high spatio-temporal soil moisture
time series can be established for the test area using solely remotely sensed input data.

With the provision of near-daily soil moisture estimates at the field scale, Publications
I, II, and III represent significant advancements in improving the accuracy of soil moisture
information for precision farming applications.
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RTM-Based Downscaling of Medium Resolution Soil
Moisture Using Sentinel-1 Data Over

Agricultural Fields
Thomas Weiß , Thomas Jagdhuber , Senior Member, IEEE, Thomas Ramsauer ,

Alexander Löw , and Philip Marzahn

Abstract—High temporal soil moisture at field scale resolution
(10 m–100 m) is important for smart farming decisions. Although,
medium and coarse resolution (1 km–50 km) soil moisture infor-
mation is operationally available on a large scale, high resolution
(field scale) datasets are not. This study propose a data assimilation
approach to downscale medium resolution (1 km × 1 km) soil
moisture information–of intense agriculturally cultivated areas–
to field scale. For achieving high transferability of the proposed
method, the used input data (Sentinel-1 VV backscatter, Sentinel-2
derived vegetation water content, literature values) can be provided
systematically from global operational satellites. Microwave and
optical data are used together as input data of a radiative transfer
model to derive soil moisture information with high temporal and
spatial resolution. The retrieval approach shows a mean ubRMSE
for soil moisture estimates of all test fields (Munich-North-Isar test
site, Bavaria, Germany) with 0.045 m3/m3 and 0.037 m3/m3 for
2017 and 2018. Furthermore, the retrieved soil moisture estimates
cover a broad range of values from 0.05 m3/m3 to 0.4 m3/m3. In
addition, the temporal evolution of the soil moisture patterns are
in line with precipitation events. Moreover, the drying behavior is
matched as well. The proposed method showed that for the test area,
high resolution soil moisture time series can be provided by only
using remote sensing derived input data. In this way, this study is
another step towards providing high spatio-temporal soil moisture
information for precision farming purposes.

Index Terms—Radiative transfer, Sentinel-1, Sentinel-2, soil
moisture, time series, vegetation water content (VWC).

I. INTRODUCTION

SOIL moisture has an indisputable impact on climate, hy-
drological, and agricultural systems [1], [2], [3]. As soil
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moisture has a high variability in time and space, continuous
monitoring is essential [4], [5]. Moreover, different model ap-
plications, flood forecasting, or precision farming rely heav-
ily on spatio-temporal distributed soil moisture information.
Compared to remote sensing derived soil moisture products,
traditional in-situ measurements at the point scale are expensive
and fall short of providing spatio-temporal patterns on a larger
(e.g., subcatchment) scale [6]. Today, several operational NASA
and ESA missions (Soil Moisture Active Passive (SMAP), Soil
Moisture and Ocean Salinity (SMOS), or Advanced SCAT-
terometer (ASCAT)) produce global soil moisture maps at a
coarse spatial resolution of 25 km to 50 km [7]. Further prod-
ucts of medium spatial resolution (1 km to 10 km) are mostly
achieved by downscaling coarse resolution products [8], [9] or
combining information from coarse and medium/high resolution
sensors [10], [11]. Thus, medium resolution soil moisture prod-
ucts are available at a regional scale, e.g., a RADOLAN (radar
online calibration)-based soil moisture product for Germany
(RADOLAN Antecedent Precipitation Index—A Soil Moisture
Dataset derived from Weather Radar Data; Ramsauer et al. [12])
or a SMAP-based product for China [13]. Other soil moisture
products provided by the Copernicus Global Land Service [10]
or NASA [11] reach even global coverage. However, global and
regional products differ in their retrieval approach as well as in
temporal (hourly to several days) and spatial resolutions. Com-
pared to the the 1 km RADOLAN product which offers absolute
soil moisture values in vol.%, the 1 km Copernicus soil moisture
product is a change detection approach which leads to relative
soil moisture values in % from 0 to 100. However, compared
to medium resolution soil moisture products, operationally pro-
duced high resolution (field scale, meaning below 1 km) datasets
on a global scale are not yet available [7]. But regional studies
using polarimetric decomposition [14], [15], machine learning
approaches [16], data fusion [17], statistical modeling [18], or
radiative transfer models (RTMs) [19] show promising results
in estimating soil moisture from synthetic aperture radar (SAR)
data at the field scale. The use of RTMs and radar observations
has been proven to be a suitable approach [20], [21]. With RTM
a logical linkage between observations and physical processes
can be established [22]. Thus, a better physical understanding
as well as simulations of interactions between electromagnetic
waves and the land surface is possible. Furthermore, RTMs are
not only able to interpret satellite measurements, but also capable

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/
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of providing predictions under different conditions [23]. For bare
soil applications, forward models of Oh [24], [25], Dubois [26],
or the Integral Equation Model developed by Fung et al. [27]
are often applied, among others. A study by Baghdadi et al. [28]
showed that the accuracy on plot scale of bare soil moisture
estimates is highly dependent on the surface roughness state. By
using Sentinel-1 images an overestimation of soil moisture by
high soil roughness and an underestimation of soil moisture by
low surface roughness is observed [28]. For vegetated areas, the
bare soil models need to be combined with vegetation scattering
models. Here, the Water Cloud Model (WCM) approach by At-
tema and Ulaby [29] or a Single Scattering Radiative Transfer
(SSRT) [30], [31] model is used for inverting radar backscatter to
retrieve soil moisture information. The main uncertainty of radar
based soil moisture retrievals in vegetated areas is the influence
of the canopy layer on the backscatter signal [32], [33], [34]. The
WCM considers the canopy layer as a collection of identical
spherical particles, that are uniformly distributed [29]. Thus,
the vegetation contribution within WCM (only considering di-
rect scattering contributions from plants) is simplified by not
differentiating between additional occurring scattering mech-
anisms (plant–ground, ground–plant, or ground–plant–ground
scattering contributions). In contrast, the SSRT distinguishes
the canopy layer by scattering mechanisms, so direct vegetation
contribution as well as canopy–soil and soil–canopy–soil inter-
actions are considered [31]. For accurate soil moisture retrievals,
information about vegetation in terms of crop type, structure,
phenology, and water content is necessary. Therefore, Vegetation
Optical Depths (VOD), Normalized Difference Vegetation Index
(NDVI), Normalized Difference Water Index (NDWI), or Vege-
tation Water Content (VWC) are used as remote sensing-based
indicators from optical and radar observations. [35], [36], [37].
Over large areas, optical remote sensing data has proven useful
in obtaining information on vegetation at field resolution. [38],
[39], [40]. Thus, a combination of SAR (Sentinel-1) and optical
data (Sentinel-2) provides unique possibilities for improving soil
moisture estimates by using microwave RTMs with additional
information provided by optical sensors [41], [42].

This article aims to investigate the potential of accurate down-
scaling of a soil moisture product at medium resolution (1 km)
to field scale by combining high-resolution SAR and optical
remote sensing data based on RTM. The approach is deliberately
based on a few input parameters, which can already be derived
from remote sensing sensors, to ensure easy transferability of the
approach to other areas worldwide. The used remote sensing in-
formation are a RADOLAN-based soil moisture product at 1-km
resolution, VV-polarized backscatter (Sentinel-1), and as a vege-
tation descriptor, the VWC (calculated from NDWI information
obtained from Sentinel-2). The spatio-temporal distributed data
is used to drive an inversion process for models Oh04 and SSRT.
Thus, a time series of almost daily spatially distributed absolute
soil moisture estimates (Vol.%) is achieved.

II. DATASETS

A. Test Site

For our study, the Munich-North-Isar (MNI) test site [43], [44]
with in-situ measurements of winter wheat and maize fields for

Fig. 1. Munich-North-Isar (MNI) test site with sampled wheat and maize
fields of 2017 and 2018. The inset map shows the spatial relationship between
meteorological stations and the test site.

the years 2017 and 2018 was chosen. The winter wheat fields
were sowed beginning of October and harvested mid/end of July
in both years. The maize fields were sowed end of May in 2017
and beginning of May in 2018. The harvest of the maize took
place end of September in 2017 and beginning of September
in 2018. Besides the two main crop types (wheat and maize),
grassland is the third major type of agricultural cultivation. The
test site (48◦13′N–48◦20′N, 11◦39′E–11◦ 45′E, Fig. 1) is located
near Munich, southern Germany. Two meteorological stations
(Eichenried and Grub) provide measurements within a 15-km
radius around the study area. For the year 2017, the measure-
ments show an annual mean temperature of 9.3 ◦C (Eichenried)
and 9.5 ◦C (Grub). Furthermore, an average annual precipitation
of 853 mm (Eichenried) and 863 mm (Grub) was observed in
2017. For the year 2018, the measurements show a higher annual
mean temperature of 10.3 ◦C (Eichenried and Grub) and a more
diverse average annual precipitation of 663 mm (Eichenried) and
926 mm (Grub). The river Isar within the test site is embanked
and has no significant influence on the water availability of
the agricultural areas in the vicinity. Furthermore, no irrigation
practices were observed during the years 2017 and 2018 within
the MNI test site.

B. In-Situ Data

For 2017, in-situ data comprising five different fields (three
wheat and two maize fields) and for 2018, measurements of four
different fields (two wheat and two maize fields) are available
for detailed and local analyses. Field measurements were taken
at three different locations (Elementary Sampling Points ESU)
on every test field. At each location, the plants of half a square
meter were taken, the wet and dry (drying temperature 102◦C)
weights of the plants were measured, and the VWC was calcu-
lated. Soil moisture time series were provided by permanently
installed sensors (Decagon TM5 sensors, Decagon Devices
Inc., Pullman, WA, USA) within the upper soil layer (first five
centimeters). The monitoring interval was ten minutes. Further
information about the in-situ measurements are summarized in
Table I.
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TABLE I
ACQUISITION TIME, TIME INTERVAL, AND RANGE OF IN-SITU MEASUREMENTS

(VEGETATION WATER CONTENT AND SOIL MOISTURE)

TABLE II
USED REMOTE SENSING DATA FOR MNI TEST SITE OF 2017

(03/24/2017-09/22/2017) AND 2018 (04/04/2018-08/29/2018)

C. Remote Sensing Data

1) Sentinel-1: The Sentinel-1 satellites (C-band) provide
continuous images for the MNI test site. In 2017 and 2018,
Sentinel-1A and Sentinel-1B provide four different overpasses
(relative orbit number 44,95,117,168) The MNI test site is
observed with two incidence angle sets of 35◦–36◦ and 43◦–45◦.
The usage of all available scenes led to an average temporal re-
visit time of 1.5 days. The Level-1 Single Look Complex (SLC)
data product was preprocessed by using the default configuration
for time series processing of the python package SenSARP [45].
SenSARP utilizes ESA’s SNAP Toolbox to apply thermal noise
removal, radiometric calibration, geometric correction, radio-
metric correction, co-registering, and multitemporal speckle
filtering. Thus, a radiometric and geometric corrected as well
as temporal speckle filtered time series of Sentinel-1 images is
provided. El Hajj et al. [46] and Baghdadi et al. [47] suggested
that VV polarization is more suitable to monitor soil moisture
under well-developed agricultural vegetation than VH. There-
fore, VV polarized backscatter is the main focus of the study.
Table II summarizes the information from the used Sentinel-1
images.

2) Sentinel-2: Sentinel-2 satellites provide free multispectral
data with systematic global coverage. The Multispectral Imager
sensor on Sentinel-2 has 13 spectral bands covering wavelength
from 443 nm (Ultra Blue) to 2190 nm (Short Wave Infrared
(SWIR). The spatial resolution of different bands ranges from
10to 60 m. Within our study a combination of Bands B8a
(10 m, 842 nm—Visible and Near Infrared) and B11 (20 m,
1610 nm—SWIR) is used. Observations from Sentinel-2 of the
MNI test site are available every 2–3 days. However, only 32
images for the time period under investigation (2017 + 2018)
have a cloud coverage below 10% and were therefore used in
this study. The Sentinel-2 images are preprocessed and retrieved

using the Google Earth Engine. In order to transform the top-of-
atmosphere to surface reflectance values and hence account for
atmospheric artifacts in the imagery, the 6S radiative transfer
code is used [48], [49]. Table II summarizes the information
from the Sentinel-2 data.

3) RADOLAN API: The utilized RADOLAN API
dataset [50] is an empirically retrieved soil moisture dataset
based on the German weather radar product RADOLAN
RW [51], [52]. It extends the idea of the Antecedent
Precipitation Index (API) [53], integrating information on
local soil characteristics (SoilGrids; Hengl et al. [54]) and
spatially distributed temperature data. The algorithm accounts
for general physical boundaries in soil hydrology (e.g.,
moisture content limits) when empirically modeling saturation
state dependent soil moisture gains and losses. The hourly
RADOLAN API dataset with a spatial resolution of 1 km ×
1 km is openly available for the spatial domain of Germany
(utilized version 1.0.0 (2015–2019)) [12].

D. CORINE Land Cover

The CORINE land cover class 2 from 2018 [55], in particular
211 (“nonirrigated arable land”) and 231 (“pasture, meadows,
and other permanent grasslands under agricultural use”) are
used as a mask. Thus the algorithm is only applied on agri-
cultural areas excluding vineyards and forest areas. It has to be
mentioned that although forestry areas are excluded some scrub
vegetation/forestry areas are wrongly found within the 211 and
231 CORINE land cover classes.

III. METHODOLOGY

The main objective is the development of an approach to
downscale a medium resolution soil moisture product to field
scale by using RTMs. The proposed method was developed and
tested at a test site in southern Germany, Bavaria. Enabling trans-
ferability to other regions, the focus during method development
was set on a minimal set of input parameters for the RTMs, which
can already be operationally derived by remote sensing products.

A. Radiative Transfer Model

This section introduces a first order radiative transfer model
(SSRT), which is used in an inversion process for the retrieval of
soil moisture information in agricultural areas with vegetation
cover. The original SSRT [30], [31] can be described as

σ0
pq = σ0

gpq
+ σ0

cpq
+ σ0

cgtpq
+ σ0

gcgpq
. (1)

An overview of the different scattering contributions simulated
by SSRT is given in Fig. 2. The ground contribution σ0

gpq
(p and

q stand for the polarization) can be further described by

σ0
gpq

= TpTq σ
0
spq

(2)

whereσ0
spq

represents the surface scattering andTp andTq are the
transmissivity of the canopy for the respective polarization. The
transmissivity (11) accounts for the signal loss of the surface
scattering when passing through the canopy covers. For the
surface scattering, the model of Oh [25] (Oh04) is used. Oh04
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Fig. 2. SSRT modeled scattering contributions in a vegetation canopy. Di-
rect backscatter from soil (σ0

g ), direct backscatter from plants (σ0
c ), ground–

plant (σ0
gc), plant–ground (σ0

cg) scattering, and ground–plant–ground scattering
σ0
gcg). Figure adapted from Ulaby and Long [31].

is a semiempirical model that was developed by using in-situ
measurements of a variety of soil types, primarily silt loam,
loam, and sandy loam [56]. One advantage of Oh04 is that
no additional information about the soil type is necessary. The
authors claim that the backscatter has only a weak dependency
on soil type but is, in comparison, highly influenced by soil
moisture (sm) and surface roughness [56]. The backscatter σsV V

of Oh04 is defined as

σ0
sV V

=
0.11 sm0.7 (cosθ)2.2

[
1− e−0.32 (ks)1.8

]

0.095 (0.13 + sin1.5θ)1.4
[
1− e−1.3 (ks)0.9

] · (3)

Therefore, the soil moisture by Oh04 can be calculated with
information about the backscatter σ0

sV V
, the local incidence

angle θ, and the soil roughness ks. The soil roughness can be
further specified by k as the radar wave number (k = 2π/λ)
and s as the rms height of the soil surface. The rms height (s)
characterizes the surface height variation and as such describes
the scattering effects of natural surfaces in the vertical domain
(profile). Furthermore, the soil roughness is dependent on the
sensor wavelength (λ). The canopy scattering components of
the SSRT [30], [31] are defined as

σ0
cpq

=
σback
Vpq

cosθ

kpe + kqe
(1− TpTq), (4)

σ0
cgtpq

= σbist
Vpq

H [Rp +Rq] TpTq and (5)

σ0
gcgpq

=
σback
Vpq

cosθ

kpe + kqe
(RpRq − TpTq) (6)

with θ as incidence angle, H as canopy height, and R represents
the Fresnel coefficients of the respective polarization. The Fres-
nel coefficients for horizontal RH and vertical RV polarization
are defined [31] as

RH =
μrcosθ −

√
μrεr − sin2θ

μrcosθ +
√

μrεr − sin2θ
, (7)

RV =
εrcosθ −

√
μrεr − sin2θ

εrcosθ +
√

μrεr − sin2θ
(8)

where μr is the relative permittivity. Under the assumption
of isotropic canopy scatterers [31] following relationship is
assumed for the volume backscattering coefficient σback

Vpq
and the

volume bistatic scattering coefficient σbist
Vpq

:

σbist
V = σback

V = ks. (9)

The scattering component ks is defined by the single scattering
albedo ω and the extinction coefficient ke as

ks = ω ke. (10)

The transmissivity T for the polarization p can be written as

Tp = e−kp
e H secθ (11)

whereas kpe H is often referred to as VOD. VOD can be retrieved
from passive and active microwave systems. In the passive
domain empirical studies showed a good correlation between
VOD and the Vegetation Water Content (VWC). Thus, VOD can
be expressed by kpe H (active microwave domain) and b VWC
(passive microwave domain) as

VOD = kpe H = b VWC (12)

where the b parameter from the passive domain is empirical
derived and depends on vegetation type, structure, growth stage,
and water status [57], [58]. The Soil Moisture Active Passive
(SMAP) mission uses a static b parameter differentiated by
land cover type. However, recent studies found that b does vary
throughout the vegetation season due to significant change of
crop water [58], [59]. Thus, in order to archive a temporal
dynamic for b along the growing period, we found that linking
b to a normalized VWC parameter (range 0 to 1) works quite
well for the active microwave domain. Therefore, the utilized b
in our case can be written as

b = b′ VWCnorm (13)

with VWCnorm for a specific timestep i as

VWCnorm
i = 1− VWCi − min(VWC)

max(VWC)− min(VWC)
· (14)

The min and max values of the VWC are calculated on pixel
basis and for each growing period separately. Due to the inver-
sion within (14), VWCnorm decreases while the original VWC
increases. Based on the VWC normalization in (14) the depen-
dency of b and also of VOD changes to a more parabolic form
which helps the algorithm fitting process. In order to better dis-
tinguish between the original tranmissivity of the SSRT model
(T ) and the introduced changes, we refer the used transmissivity
as T ′. Combining (11), (12), and (13), the used transmissivity
of the canopy T ′ can be written as

T ′
p = e−b VWC secθ (15)

T ′
p = e−b′ VWCnorm VWC secθ. (16)

To minimize the required input parameters, a literature value
for the single scattering albedo (ω = 0.03) [20], [60] was used.
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Furthermore, during the analysis published in Weiß et al. [20]
and Weißet al. [60] the vegetation height H was found to be
a nonsensitive parameter within (5) and thus in absence of
height information, H=1 m is assumed. Thus, considering only
polarization VV the final equations for the canopy scattering
component can be written as

σ0
cV V

=
1

2
ω cosθ (1− T ′

V T
′
V ), (17)

σ0
cgtV V

= ω b′ VWCnorm VWC [RV +RV ] T
′
V T

′
V , (18)

σ0
gcgpq

=
1

2
ω cosθ (RV RV − T ′

V T
′
V ) (19)

by considering RV (8) and T ′
V (16).

B. Vegetation Water Content (VWC)

VWC is often used as a parameter to characterize the vegeta-
tion above the ground. But unlike, e.g., NDWI, VWC cannot
be easily measured by optical satellites such as Sentinel-2.
Nevertheless, a high correlation between VWC and NDWI was
found in numerous studies (R2: 0.57–0.89) [39], [61], [62], [63].
The NDWI1640 is described as

NDWI1640 =
NIR860 − SWIR1640

NIR860 + SWIR1640
(20)

where the near infrared channel at λ=860 nm (NIR860) and
short wave infrared channel at λ=1640 nm (SWIR1640) corre-
sponded to Band 8a and Band 11 of the Sentinel-2 satellites.
For a NDWI-based VWC calculation, several crop type specific
empirical equations exist in the literature [39]. For simplicity of
the approach, we used the wheat specific equation in Maggioni
et al. [62] to calculate the VWC for the entire test site. The
equation for VWC over wheat fields from Maggioni et al. [62]
is

VWC = 13.2 NDWI21640 + 1.62 NDWI1640. (21)

C. Soil Moisture Downscaling Approach

The RTM combination Oh04 and SSRT (Section III-A) is used
in an inversion process to downscale a medium resolution soil
moisture dataset (RADOLAN API [50]) by using a cost function
J , defined as

J = Jobs + Jprior (22)

and minimized by Limited-memory Broyden-Fletcher-
Goldfarb-Shanno with Box constraint (L-BFGS-B) [64] which
is a gradient descent approach. The cost function is described
by the model fit to the observations Jobs and deviations from a
priori information Jprior of the observation variables. Jobs as the
mismatch between Sentinel-1 backscatter and modeled RTM
backscatter is described by

Jobs =
1

2
(y −H(x))TC−1

0 (y −H(x)) (23)

where y is the time series of Sentinel-1 VV polarized radar
backscatter (σ0

V V ).H(x) is the RTM backscatter with x describ-
ing the state variables sm (3), VWC (21), b (13), and rms height s
(3). The observation uncertainty is represented by the covariance

Fig. 3. Schematic illustration of methodology.

matrix C0. Another important part of the optimization process
is the prior information. Thus, Jprior is defined as

Jprior =
1

2
(x− xp)

TC−1
P (x− xp) (24)

with a vector x again describing the state variables, xp referring
to the prior estimates, and the covariance matrix CP as the un-
certainty of the prior. Before the start of the parameter estimation
process, realistic boundaries based on the model physics as well
as a starting value were set for the applied optimization algorithm
L-BFGS-B. The possible equifinality problem in an underdeter-
mined system is addressed by the usage of a guided optimization
(weak constraint) approach. The derived parameters (sm, VWC,
b′, and s) are not completely unknown parameters. Due to the
absence of tillage practices rms height s is assumed to be static
throughout the vegetation growing period, thus only one value
for s for each pixel needs to be optimized. Prior information
for sm (RADOLAN API) and VWC (derived from Sentinel-2
observations) as well as literature values for the initial starting
points of b′ and s form in conjunction with provided uncertainty
information a weak constraint data assimilation system [65],
[66]. An overview of the boundaries, priors, starting values, and
uncertainty ranges is given in Table III. During the inversion
process, the entire state vector (sm, VWC, b′, and s) is optimized
for each satellite pixel by comparing the entire time series
of Sentinel-1 VV polarized backscatter with a time series of
RTM derived backscatter values that depend on the respective
state vector values, priors (sm, VWC), boundaries (sm, VWC,
b′, s) and uncertainty (VV backscatter, sm, VWC, b′, s). The
optimized state vector values for sm, VWC, and b′ are allowed
to differ between each time step, whereas for rms height s only
one value for the entire time series is optimized. The entire
methodology is schematically illustrated in Fig. 3.

D. Applied Statistical Metrics

For the evaluation of the RTM based soil moisture down-
scaling approach, statistical metrics were used. The Root Mean
Square Error (RMSE), the bias, the unbiased Root Mean Square
Error (ubRMSE), the correlation coefficient R and the coefficient
of variation (CV) are defined as

RMSE =

√
1

N

∑N

i=1
(Pi −Oi)2 (25)
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TABLE III
APPLIED PARAMETER BOUNDARIES, PRIORS, STARTING VALUES, AND UNCERTAINTY RANGES

Fig. 4. Mean Sentinel-1 VV backscatter (10 m × 10 m) of investigation time
period March to September 2017.

Fig. 5. Sentinel-2 derived mean VWC (20 m × 20 m) of investigation time
period March to September 2017.

bias =
1

N

N∑

i=1

(Pi −Oi) (26)

ubRMSE =

√
1

N

∑N

i=1
[(Pi − bias)−Oi]2 (27)

R =

∑N
i=1[(Pi − P )(Oi −O)]√∑N

i=1(Pi − P )2
∑N

i=1(Oi −O)2
(28)

CV =
σ

μ
(29)

with N as total number of observation, Oi as ith observation,
Pi as ith prediction, O and P as average of observation and
predictions, σ as standard deviation, and μ as mean.

Fig. 6. Mean value of RADOLAN API soil moisture (1 km × 1 km) of
investigation time period March to September 2017.

Fig. 7. VWC and evolution of b for winter wheat field 508.

Fig. 8. VWC and evolution of b for maize field 515.

IV. RESULTS

A. Spatial Distributed Model Input

Spatially distributed model input data are the VV-polarized
Sentinel-1 backscatter (Fig. 4), Sentinel-2 derived VWC (Fig. 5),
and a coarse resolution soil moisture product based on
RADOLAN data (Fig. 6). Looking at the high resolution
(10 m× 10 m) mean VV backscatter (Fig. 4) for the investigation
time period of March to September 2017, field boundaries are
clearly visible, whereas intra-field differences are low. The mean
backscatter of the entire scene is 10.5 dB for 2017 and 10.7 dB
for 2018. Certain areas with low backscatter values (black/dark
color) correspond to forestry or other nonagricultural areas,
which will not be considered in the quality assessment of the
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Fig. 9. Mean downscaled high resolution soil moisture (10 m × 10 m) of
investigation time period March to September 2017.

Fig. 10. Coefficient of variation of downscaled high resolution soil moisture
of investigation time period March to September 2017.

Fig. 11. Unbiased in-situ soil moisture (five fields with three ESUs) compared
with downscaled soil moisture of year 2017.

approach later on. Field boundaries can be distinguished within
the high resolution (20 m × 20 m) mean VWC image (Fig. 4)
for the investigation time period of 2017 too. The mean VWC
of the entire scene is 1.37 kg/m2 for 2017 and 1.25 kg/m2

for 2018. Contrary to the backscatter information, intrafield
differences for certain fields (515 or 301) are visible. The coarse
resolution (1 km × 1 km) mean RADOLAN API soil moisture

Fig. 12. Mean downscaled high resolution soil moisture (10 m × 10 m) of
investigation time period April to September 2018.

Fig. 13. Coefficient of variation of downscaled high resolution soil moisture
of investigation time period April to September 2018.

Fig. 14. Unbiased in-situ soil moisture (four fields with three ESUs) compared
with downscaled soil moisture of year 2018.

product (Fig. 6) for the investigation time period of 2017 shows,
compared to the backscatter and VWC, no field boundaries and
low overall differences (the legend of soil moisture range is
within 0.05 m3/m3). The mean soil moisture of the entire scene
is 0.25 m3/m3 for both years. Input data for the year 2018 is
not shown due to similar patterns with small differences in
backscatter and VWC content based on field crop rotation.
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TABLE IV
PERFORMANCE METRICS (RMSE, BIAS, UBRMSE) FOR DIFFERENT GROWING PERIODS (TS=ENTIRE TIME SERIES; BBCH<40=TILLERING AND STEM

ELONGATION; BBCH>39=HEADING, FLOWERING, FRUIT DEVELOPMENT AND RIPENING) AS WELL AS FOR INDIVIDUAL FIELDS

SEPARATED BY YEAR AND CROP TYPE

B. Parameter b

Figs. 7 and 8 show the change of parameter b based on the
temporal evolution of VWC. As the VWC is normalized and
multiplied with b ( (13)), higher VWC values result in lower b
values and vice versa. Figs. 7 and 8 show the Sentinel-2 derived
VWC content for wheat field 508 and maize field 515. The
derived VWC content matches the temporal evolution of the
in-situ measurements quite well (R > 0.9). But a slight intensity
mismatch between the observed and calculated VWC can be
observed for wheat as well as for maize fields. The starting
point of b depends on the incidence angle of the respective VV
backscatter observations [60].

C. Downscaled Soil Moisture Results

Figs. 9 and 12 illustrate the mean downscaled soil moisture
of the investigation time period for 2017 and 2018, respectively.
Test fields with in-situ measurements show similar mean soil
moisture values despite crop rotation practices between the
years. The average soil moisture of the test area for 2017 and
2018 was 0.236 m3/m3 and 0.235 m3/m3, respectively. Within
the test area, different fields show partly differing soil moisture
values. Thus, field boundaries are detectable, although not as
visible as the boundaries in the input variables of VV backscatter
and VWC. In order to analyze the temporal dynamics of soil
moisture, Figs. 10 and 13 illustrate the CV of the downscaled
soil moisture within the investigation time period for 2017 and
2018. Overall, slightly higher CV values were retrieved for 2018
(mean CV= 0.138) than for 2017 (mean CV= 0.109). This is in
line with in-situ observations, which indicate a drier summer and
wetter spring for 2018 than for 2017. Isolated pixels within some
crop fields show high CV values of > 0.4. These high CV values
might be the result of remaining speckle disturbances within the
backscatter data. Furthermore, areas with high CV values (>0.4)
show very low mean backscatter values of < –15 dB. A com-
parison of in-situ and bias corrected downscaled soil moisture
for wheat and maize fields are illustrated in Figs. 11 and 14. The
mean RMSE for all ESUs is 0.069 m3/m3 and 0.089 m3/m3

for 2017 and 2018, respectively. Considering the ubRMSE,
values of 0.045 m3/m3 and 0.037 m3/m3 are shown. A higher
improvement of RMSE and ubRMSE is seen for 2018, though a
higher bias range is calculated for 2018 (Fig. 14) than for 2017
(Fig. 11). Furthermore, both years show a similar range of in-situ
soil moisture measurements (2017: 0.03–0.38 m3/m3; 2018:

0.02–0.39 m3/m3). In addition, a higher soil moisture range is
seen within the downscaled values for 2018 (0.05 - 0.40 m3/m3)
than 2017 (0.08 - 0.34 m3/m3). In general, the soil moisture
results are well located around the 1:1 line. The performance
metrics for the individual fields, separated by year and crop type,
are illustrated in Table IV. To differentiate between phenological
stages, the Biologische Bundesanstalt, Bundessortenamt and
CHemical (BBCH) [67] developed a system for uniform coding
of growth stages for all mono- and dicotyledonous plant types.
Performance metrics for different vegetation growing period can
be also found in Table IV as well. Considering the results for
the entire time series of the individual fields, no obvious pattern
which would suggest that the method works better for wheat or
maize fields can be detected. But a high RMSE goes along with
a high bias. The ubRMSE for the entire time series shows for all
test fields a similar performance of 0.032 to 0.053 m3/m3. This
indicates that the temporal evolution is well met even for fields
with high RMSE values. Comparing the RMSE and ubRMSE
of wheat fields, a better RMSE and ubRMSE are observed for
BBCH<40 than BBCH>39. This suggests that the retrieval
works better for lower vegetation stages. The same behavior
can be observed for maize fields in 2017 whereas the results
from 2018 are contradicting.

The correlation coefficient and standard deviation of down-
scaled and in-situ soil moisture values as well as RADOLAN
API and in-situ values are illustrated on a field basis in Figs. 15–
17. For the results in Fig. 15, the entire investigation period
is considered, whereas in Figs. 16 and 17, the time series is
separated according to different phenological phases. Fig. 16
shows the soil moisture results for the time period with BBCH
values lower than 40 (tillering and stem elongation), and Fig. 17
shows the results with BBCH values higher than 39 (heading,
flowering, fruit development, and ripening). Overall, the time se-
ries and subsets show a low standard deviation of <0.04 m3/m3.
The correlation coefficient for the entire time series has a broad
range from 0.06 to 0.78 for the RT retrieved soil moisture. High
and low correlation coefficients are observed for maize as well as
wheat fields. Thus, no real crop-specific pattern between maize
and wheat fields is detectable. Considering only time steps with
BBCH values below 40 (sparse to medium vegetation cover), the
correlation coefficient of the wheat fields increases significantly
due to lower vegetation cover. Only one wheat field remains
with a correlation coefficient of 0.22, whereas the other test
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Fig. 15. Standard deviation and correlation coefficient of downscaled and
in-situ soil moisture values (red/blue represents wheat/maize; filled/nonfilled
represents 2017/2018) as well as RADOLAN API and in-situ values (magenta),
for the entire investigation period of 2017 and 2018.

Fig. 16. Standard deviation and correlation coefficient of downscaled and
in-situ soil moisture values (red/blue represents wheat/maize; filled/nonfilled
represents 2017/2018) as well as RADOLAN API and in-situ value (magenta),
for the time period with BBCH values lower than 40 (tillering and stem
elongation).

fields, with crop type wheat, show values of up to 0.91. For
all maize fields, the correlation coefficient of the RT retrieved
soil moisture is dropping compared to the entire time series.
Maize fields of 2017 (blue filled icon) show a significantly lower
standard deviation for the entire time series as well as for the
time series with BBCH values lower than 40 (Figs. 15 and 16)
compared to maize fields of 2018 (blue nonfilled icon). However,
for the time series with BBCH values higher than 39 (Fig. 17),
the standard deviation of all maize fields (blue icons) is similar.
Comparing the RADOLAN API and RT retrieved soil moisture
results predominantly a lower standard deviation is observed
for the RADOLAN API. This is expected as the RADAOLAN
API has a lower resolution. Furthermore, the RADOLAN API
generally shows better correlation with the in-situ data. It is
suspected that this is due to the lower resolution. Through spatial
aggregation, it is often observed that soil moisture estimates tend
to have a better correlation with in-situ data since local variation
and measurement noise are smoothed out.

Fig. 18 shows the downscaled soil moisture pattern of the test
site from the end of May to the beginning of June 2017. Fig. 18(f)
presents the soil moisture distribution and the precipitation mea-
surements of two meteorological stations (for location relative to
the test site, see Fig. 1) for the 29th of May until the 6th of June.
A precipitation event occurred on May 30th after the Sentinel-1
overflight. Hence, the precipitation event is not visible in the
downscaled soil moisture image [Fig. 18(a)]. Moisture patterns
of May 31st indicate higher values for the northern part and
almost no soil moisture change in the southern part of the test

Fig. 17. Standard deviation and correlation coefficient of downscaled and
in-situ soil moisture values (red/blue represents wheat/maize; filled/nonfilled
represents 2017/2018) as well as RADOLAN API and in-situ value (magenta),
for the time period with BBCH values higher than 39 (heading, flowering, fruit
development and ripening).

site. This behavior can be explained by the observations at the
meteorological stations, where high precipitation was measured
at Eichenried (latitude 48.27◦) and low to no precipitation was
measured southward at Grub (latitude 48.17◦). With almost no
precipitation between June 1st and 3rd, a conversion of the north-
ern and southern soil moisture values is visible in Fig. 18(c).
Another spatially distributed precipitation event occurred on
June 4th, with marginal soil moisture changes in the southeast
and high changes for the rest of the test area [Fig. 18(d)]. Similar
to the situation on June 30th, 2017, the meteorological stations
show the same behavior. After two days of precipitation (June
5th and 6th) within the entire test site area, a homogeneous
soil moisture pattern with high moisture values is illustrated in
Fig. 18(e). The downscaled soil moisture distribution of the test
site and the measured precipitation at stations Eichenried and
Grub are shown for April to July 2017 in Fig. 19. A comparison
of soil moisture changes of the downscaled soil moisture product
and the measured precipitation measurements reveal a high
alignment of dry-down phases and precipitation events within
the data.

Exemplary for the time period of July 19th to 24th of 2018,
Fig. 20 illustrates the drying process on the field scale of the
MNI test site. Low to no precipitation was measured between
July 18 and 20 [Fig. 20(e)]. The precipitation events on July
21st and 22nd are clearly visible by comparing the down-
scaled soil moisture patterns of July 19th [Fig. 20(a)] and 22nd
[Fig. 20(b)]. With almost no precipitation from July 23rd to
26th, the downscaled drying process within the test area can
be seen by comparing Fig. 20(b)–(d) and by looking at the soil
moisture distribution of July 22nd to 24th in Fig. 20(e). Fur-
thermore, comparing Fig. 20(e) top (downscaled soil moisture
distribution) and bottom (precipitation at stations Eichenried
and Grub) dry-down phases and precipitation events are mapped
very well in the downscaled soil moisture distribution of the test
site.

V. DISCUSSION

Continuous, high-resolution, large scale monitoring of a vari-
able like soil moisture with its high spatial and temporal variabil-
ity is challenging. Current operationally retrieved soil moisture
products do not fulfill the demand for temporal and spatial
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Fig. 18. Downscaled soil moisture pattern of the test site for (a) May 30th, (b) May 31st, and (c) June 3rd, (d) June 4th, and (e) June 6th of 2017. Downscaled
soil moisture distribution and measured precipitation events of meteorological stations Eichenried and Grub (f).
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Fig. 19. Downscaled soil moisture distribution (top) and measured precipitation events of meteorological stations Eichenried and Grub (bottom) from April to
July 2017.

resolution for smart farming operations [68]. With the Sentinel
satellites in orbit, remote sensing data with suitable high spatio-
temporal resolution is available for further investigations of soil
moisture retrieval approaches. Sentinel-1 (SAR) and Sentinel-2
(optical spectrometer) provide information with a spatial resolu-
tion of 10 m (Sentinel-1) and 10–6 m (Sentinel-2), respectively.
Sentinel-1 and Sentinel-2 provide images over the same area
with the same viewing angle every 6 or 5 days, respectively. The
number of usable images from Sentinel-2 decreases when con-
sidering cloud cover. For the MNI test site, Sentinel-2 provides a
usable image approximately every 10 days. A special challenge
however results from a change in the Sentinel-1 observation
geometry, namely, modeling the radar backscatter response in
conjunction with the associated soil moisture value. Other high
resolution soil moisture approaches of Baghdadi et al. [47], El
Hajj et al. [19], or Nativel et al. [69] solely use Sentinel-1 images
with similar incidence angle. Although, in theory they might be
applicable to handle incidence angle changes, [60] has shown
that the incidence angle implementation within common RT
models (WCM, SSRT) are not sophisticated enough to handle
incidence angle changes within one time series. Thus, either
each incidence angle needs to be calculated as a separate time
series or as we proposed some changes need to be applied.
Although more observations (different observation geometries)
might be available (depending on the location of the test area)
most studies show only a time series based on the Sentinel-1A
and Sentinel-1B 6-day repeat cycle. In respect to Sentinel-1A
and Sentinel-1B it has to be mentioned that, Sentinel-1B was
retired in December 2021 and does not provide images anymore.
Nevertheless, the two satellite system should be restored with the
planned launch of Sentinel-1C end of 2024. This study proposes
a RTM based soil moisture downscaling method that allows for
all available Sentinel-1 images (varying viewing angles) to be
used, and thus a temporal resolution for the MNI test site of 1.5
days can be archived. However, it has to be mentioned that the
soil moisture retrieval quality is also effected by the incidence
angle. A study of Bazzi et al. [70] investigated the effect of the
incidence angle on soil moisture retrievals from Sentinel-1 and

found that lower incidence angle were more suitable than higher
ones. With such high spatio-temporal resolution, the results
provide an almost daily overview of soil wetting and drying.
Furthermore, a differentiation on the field scale is possible in
contrast to the medium resolution soil moisture input data. But
besides different field scale soil moisture levels, unique differ-
entiated soil moisture patterns due to spatially scattered rain
events are also captured (Fig. 20). Nevertheless, as Sentinel-1
images are snapshots of a specific acquisition time, a discrete and
noncontinuous time series is produced. A rain event which might
occur slightly after the Sentinel-1 overpass is only captured by
the follow-on overpass.

The literature shows, that a relationship between the b-
parameter and VWC is often used to parameterize vegeta-
tion attenuation (VOD) [57], [71], [72]. Furthermore, research
of Togliatti et al. [58] indicated that the b-parameter is changing
during the growing season. To account for changes in the grow-
ing season, the b-parameter was adapted by using normalized
VWC information (13) and (16). In previous studies [20], [60],
LAI, in combination with an emprical parameter similar to
b were used to describe the vegetation status. It was found
that the retrieval algorithm had problems deriving good soil
moisture estimates for later vegetation stages. Since the used
RT-models were not able to reproduce the backscatter increase
during later vegetation stages seen in the Sentinel-1 data, LAI
with its saturation in later vegetation stages was suspected to
be part of the problem. By changing the vegetation descriptor
from LAI to VWC, the retrieval algorithm produced better soil
moisture results, but did not resolve the backscatter mismatch
between the RT-model and the observed Sentinel-1. However,
by implementing the proposed VWC normalization and thus
changing the dependency of b to a more parabolic form, the
retrieval results and the mismatch between the RT-model and
Sentinel-1 backscatter could be further improved. Furthermore,
previous research by Weißet al. [60] has shown that a joint
dense Sentinel-1 time series (all available images disregarding
incidence angle changes) is usable within RTMs if considering
a correction of the transmissivity term T based on the incidence
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Fig. 20. Downscaled soil moisture pattern of the test site for (a) July 19th, (b) 22nd, (c) 23rd, and (d) 24th of 2018. Downscaled soil moisture distribution and
measured precipitation events of meteorological stations Eichenried and Grub (e).

angle of Sentinel-1. Therefore, different starting points for pa-
rameter b based on the incidence angle were used. The VWC,
representing the other important input parameter describing the
vegetation state, can be derived by crop type specific empirical
functions from optical sensors (Sentinel-2), as shown by Mag-
gioni et al. [62], Cosh et al. [73], or Gao et al. [39]. But, as
field scale crop type information is often not available on large
scales, an empirical function for wheat, the worldwide most
widely cultivated crop [74], was used for the entire test site.
Although the applied wheat equation may not seem suitable

to derive VWC for mutliple crop types, the calculation of an
appropriate temporal VWC evolution during the growing season
was possible and tested during algorithm development. The
ubRMSE values on field scale for different wheat and maize
fields range between 0.032 m3/m3 and 0.053 m3/m3 with a mean
ubRMSE for the entire test site of 0.045 m3/m3 (2017) and
0.037 m3/m3 (2018). It is very probable that the methodology
design and thus the modification of the b parameter and its
temporal guidance through VWCnorm is what produced these
good results for the maize fields.
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Our results show a similar accuracy in terms of ubRMSE as
other high resolution approaches from Tao et al. [75] (0.060 to
0.039 m3/m3), El Hajj et al. [19] (0.097 to 0.040 m3/m3),
Ma et al. [32] (0.078 to 0.039 m3/m3) or Mengen et al. [76]
(0.063 m3/m3). Furthermore, compared with the abovemen-
tioned studies, our method provides the highest temporal res-
olution with almost daily updates for soil moisture values.

A. Transferability

The proposed method is purely based on publicly available
information, which can operationally be derived from remote
sensing sensors like Sentinel-1, Sentinel-2, or the weather radar
network RADOLAN. The applied RTM (Oh04 and SSRT) needs
radar backscatter, VWC, and the starting value of the parameter
b′ (temporal evolution is coupled to VWC) as input data. Specific
information about soil composition is not necessary. For VWC
calculation, the literature offers different approaches, which
are mostly based on spectral information provided by optical
sensors like Sentinel-2 or MODIS [62], [73]. Unfortunately,
different equations for different crop types are needed to ac-
curately retrieve VWC in absolute terms [39]. Therefore also
current crop type information is required. But with the proposed
approach (relationship between VWCnorm and b), the absolute
value of VWC is not as important as the temporal dynamics of
VWC during the vegetation growing period. Thus, for simplicity
reasons, VWC is calculated using an empirical function suitable
for wheat regardless of the crop type. Our study shows, that,
although VWC calculation for maize fields is based on the
wheat equation, reasonable soil moisture time series patterns
(ubRMSE range between 0.032 and 0.053 m3/m3) for wheat and
maize fields are retrieved. Due to the normalization of VWC, the
actual temporal dynamic seems to be more important than the
absolute value. This allows the approach to be applied on maize
and wheat fields without specific crop type information if the
temporal dynamic of VWC is matched. The transferability of
the proposed method compared to other approaches from Kim
and Liao [77] or Huang et al. [16] thereby is greatly enhanced,
due to a lack of specific crop information on field basis for most
parts of the world.

Another important input parameter of our study is a soil
moisture proxy with medium resolution (1 km × 1 km),
which represents the basis for the downscaling efforts. The
utilized RADOLAN API product’s hourly resolution makes it
an excellent prior dataset, however it only covers the spatial
domain of Germany. Nevertheless, Ramsauer and Marzahn [78]
recently published the global soil moisture product equivalent
based on GPM precipitation data (GPM_API). Furthermore, for
global use, soil moisture products with resolution from 25 km
down to 1 km [11], [79] exist and can be used as soil moisture
proxy instead of the RADOLAN based data. In addition, other
countries like Poland with POLRAD [80], Switzerland with
CombiPrecip [81], or the USA with NEXRAD [82] provide
similar information, like the German RADOLAN network. In
summary, the proposed approach qualifies for high transfer-
ability to be applied to other regions due to its limited set of
input variables (VV-polarized backscatter, VWC, and medium
resolution soil moisture proxy), which all are provided or can
be derived from operational remote sensing sensors.

B. Limitations, Improvements, and Usage

The possible transferability of the approach was theoretically
stated in Section V-A, but has to be proven by applying the
method to other regions. Furthermore, because of the lack of
in-situ measurements for other crop types, only the accuracy of
the soil moisture results for wheat and maize fields could be
validated in this study. Nevertheless, maize and wheat already
account for 65% of the world’s cereal production [83]. However,
due to our approach (use of time variant b parameter which is
normalized by VWC), we found that the evolution of VWC
is more important than the absolute values for VWC. We do
not expect, that the absolute VWC values of empirical equation
defined for wheat will fit other crops like rapeseed or soybean,
but as the VWC is based on the optical NDWI index an increase
of VWC during the early growing season and an decrease during
the drying phase should be matched for all summer cultivated
plants. However, this has to be proven with in-situ data. Thus,
summarizing the next research focus will be the usage of the
method in other regions as well as testing different medium
resolution soil moisture products.

One advantage of using microwave data is its penetration
capabilities through vegetation cover, and thus the possible
retrieval of information about soil moisture conditions under
vegetation [84]. The penetration depth of electromagnetic waves
into the canopy depends on frequency, polarization, and inci-
dence angle [85]. C-band data is able to penetrate vegetation
cover, but with a combination of shallow incidence angles and
high vegetation cover (e.g., fully developed maize plants), the
backscattering signal of the soil might be very low [85], [86].
For high incidence angles, Joseph et al. [87] and El Hajj
et al. [33] showed that even at the biomass peak of maize
fields, C-band microwaves were sensitive to soil moisture. They
conclude that soil moisture sensitivity is given due to significant
soil-vegetation scattering contributions. On the other hand, in
case of a full developed wheat field, the penetration of C-band
into the canopy was found limited [33]. During certain growing
stages (booting, heading, flowering, fruit development) where
wheat plants contain a lot of canopy water, the penetration
of C-band is highly dampened [60]. However, for later wheat
growing stages (ripening) the sensitivity of C-band to the soil
and soil moisture does increase [88], [89]. The sensitivity in-
crease can be attributed to the loss of canopy water which
makes the vegetation layer more transparent for microwaves.
We see the effect of changing C-band sensitivity during the
growing season of wheat by comparing Figs. 16 and 17. The
correlation coefficient drops significantly between the first and
the second half of the growing season. In addition, the ubRMSE
in Table IV for wheat fields shows better results for BBCH<40
than BBCH>39. But, the ubRMSE values for BBCH>39 are
still in an acceptable range of 0.032 to 0.048 m3/m3. Thus, we
suspect that during growing stages like heading and flowering
the proposed approach relies more on the soil moisture prior
information. Therefore, in case of high vegetation cover, the
application of radar sensors with lower frequencies, e.g., L-band
might increase the accuracy of the retrieval results due to its
higher vegetation penetration [90], especially at low incidence
angles. Unfortunately, no operational L-band dataset with high



15476 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

temporal and spatial resolution is currently available, but the
NISAR mission of NASA is upcoming [91].

Promising results for large scale provision of crop type in-
formation are shown with optical data by Inglada et al. [92]
and with combined optical and microwave data by Oryn-
baikyzy et al. [93], Ofori-Ampofo et al. [94], and Blickensdörfer
et al. [95]. But as crop types might differ every year, and
distinction levels might not exceed a differentiation of summer
and winter crops [92], operational application might be difficult
on global scales.

Another limitation of the proposed methodology in its current
status is that the normalization of VWC is based on maximum
and minimum values. This means that in its current status the
method can only be applied after the growing period. However,
additional crop specific a priori data from previous years might
be usable to apply the methodology already during the grow-
ing period. Nevertheless, this needs more investigation. If the
abovementioned limitation can be overcome, then we will be
another step further towards providing high temporal and spatial
soil moisture information for applications in terms of smart
farming decisions [8] and improved crop yield estimations [96].
In areas with irrigation, high spatio-temporal information about
soil moisture has the potential to improve water usage on a
local to regional scale [97]. Furthermore, spatially distributed
soil moisture information helps by minimizing fertilizer us-
age [7], and thus reducing pollution of surface and groundwater
resources [98]. In addition, soil erosion often depends on local
conditions, which means that for soil erosion modeling and agri-
cultural adaptation strategies, high spatio-temporal soil moisture
information is vital [68].

VI. CONCLUSION

A soil moisture time series product with medium spatial reso-
lution (RADOLAN API 1 km × 1 km) was downscaled to field
scale by applying an adapted microwave RTM. For model input,
high spatio-temporal VV-polarized backscatter (Sentinel-1; 10
m × 10 m) and VWC information derived from optical sensors
(Sentinel-2; 20 m × 20 m) were used. For parameters like
soil roughness, which were considered static over the growing
season, suitable literature values were chosen [60]. The retrieved
high spatio-temporal distributed soil moisture information was
further validated with in-situ measurements (MNI test site in
Bavaria, Germany) of wheat and maize fields during the vege-
tation growing periods of 2017 and 2018.

A validation of soil moisture with in-situ measurements of
several fields reveals good agreement with a mean ubRMSE
of 0.045 m3/m3 and 0.037 m3/m3 for the years 2017 and 2018,
respectively. Furthermore, the downscaled soil moisture covers a
broad range of values from 0.05 m3/m3 to 0.4 m3/m3. In addition,
spatial patterns from precipitation events and drying behavior
within the test site are clearly visible within the downscaled soil
moisture images. Overall, it is demonstrated that with a small
and well selected set of input parameters which are publicly
provided by different optical and microwave remote sensing
sensors, the generation of high spatio-temporal distributed soil
moisture patterns is feasible by using RTM-based downscaling
over the investigated agricultural fields.

One advantage of the proposed methodology is the usage of
all available Sentinel-1 images regardless of the observation
geometry which lead to changes of the radar backscatter re-
sponse. Thus, the temporal resolution constraint due to the
Sentinel-1A and Sentinel-1B 6-day repeat cycle (same obser-
vation geometry, same orbit, same incidence angle, same ob-
servation time) is overcome and in case of the MNI test site a
1.5 d temporal resolution is archived. Unfortunately, right now
only Sentinel-1A provides images as Sentinel-1B had a power
supply issue and was retired in December 2021. Nevertheless,
the upcoming Sentinel-1C will hopefully restore the two satellite
system before the end of 2024.

Another advantage of the proposed methodology is its high
transferability to other regions, as the used retrieval algorithm re-
lies only on information that can be systematically retrieved with
existing global operational satellites (Sentinel-1 and Sentinel-2)
and a coarse to medium resolution soil moisture prior. A com-
parison of different medium and low resolution soil moisture
proxy as prior and the application of the methods on other
test sites is needed to further explore and optimize the quality
of the spatio-temporal soil moisture estimates at decameter
resolution. Possible pitfalls of the transferability of this and
other high resolution soil moisture retrieval approaches might
be uncertainties due to landscape heterogeneity (soil proper-
ties, crop types, vegetation stages). Thus, in order to further
reduce uncertainties, opportunities may arise by including site
specific auxiliary information (soil texture or crop type) within
the proposed downscaling scheme. Hence, the approach offers
multiple opportunities for enhancement by including additional
information which are or will be provided in the future by remote
sensing sensors and techniques.
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Currently, various remote sensing data are publicly available free of charge. Nevertheless,
before remote sensing data can be utilized in different applications and models, addi-
tional processing steps are often required. Within the Sentinel-1 C-band Level-1 SLC data
provided by the ESA, geometric and radiometric distortions due to the specific imaging
geometry of the radar system are still present. Thus, before the data can be employed by
RT models, various preprocessing steps must be applied to make the data usable.

To address this, the Python code from Publication IV offers an automated preprocessing
pipeline to correct for geometric and radiometric distortions, ultimately producing a time
series of Sentinel-1 images with sigma naught backscatter values. These sigma naught
backscatter values are subsequently utilized in Publications I, II, and III as input data for
the analyzed RT models. The open-source Python package SenSARP (Publication IV)
is available on GitHub, enabling other researchers to employ an automated pipeline for
Sentinel-1 data processing. Furthermore, SenSARP is part of the MULTIPLY platform,
which allows for the retrieval of biophysical parameters from microwave and optical remote
sensing sensors for various agricultural areas. End users of the MULTIPLY platform do
not need any expertise in preprocessing microwave or optical data but can instead focus
on retrieving the desired biophysical parameters.

The open-source Python package SenSE (Publication V) is also available on GitHub.
SenSE encompasses existing microwave RT models for surface and vegetation scattering.
The main advantage of SenSE is its ability to easily combine different surface and vegetation
models, allowing for various model combinations to be utilized, adjusted, and analyzed.
Since RT models are crucial for retrieving biophysical parameters, the scientific community
will benefit from an easy-to-use Python package like SenSE, where the primary RT models
are implemented and ready for use. This enables researchers to concentrate on data analysis
and improving retrieval results, rather than spending valuable time translating existing RT
model equations into programming code. The scientific publications I, II, and III heavily
rely on the RT models implemented in the open-source Python package SenSE.

Although the quality of individual researchers is primarily assessed by their contri-
butions and the impact of scientific research papers such as Publications I, II, and III,
the production and publication of the utilized software code may be equally important.
Without the development of scientific software code, the research quality or even the fun-
damental conclusions of many scientific publications would not be feasible.
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though Sentinel-1 satellite data and processing software are freely available, the usage of
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Summary
The Sentinel-1 mission consists of two polar-orbiting satellites acquiring Synthetic Aper-
ture Radar data (SAR) at C-band (frequency of 5.405 GHz) with a revisit time of 6 days.
The SAR data is distributed free of charge via the Copernicus Open Access Hub (https:
//scihub.copernicus.eu/) by European Space Agency (ESA) and the European Commission.
Large archives are also provided by Data and Information Access Services (DIAS) which serve
the purpose to facilitate the access and use of Sentinel Data. Due to the specific imaging
geometry of the radar system, the acquired radar data contains different radiometric and geo-
metric distortions. The radiometric quality is affected by spreading loss effect, the non-uniform
antenna pattern, possible gain changes, saturation, and speckle noise. Geometric distortions
such as foreshortening, layover or shadowing effects are based on the side looking radar ac-
quisition system. To account for these radiometric and geometric distortions, the Sentinel-1
Level 1 data has to be corrected radiometrically and geometrically before the data can be
used for further analysis or within third party applications. Therefore, either an automatic or
manual pre-processing of Sentinel-1 images is needed.

Statement of need
Sentinel-1 satellites will provide continuous free available microwave remote sensing data of
the entire globe at least until the end of 2030. Furthermore, ESA is not only providing
Sentinel satellite images (e.g., Sentinel-1, Sentinel-2, Sentinel-3) but they also developed free
open source toolboxes (Sentinel-1, 2, 3 toolboxes) for scientific exploitation. The toolboxes
can be accessed and used via the Sentinel Application Platform (SNAP). SNAP offers a
graphical interface were expert users can develop different processing schemes and apply
them on the satellite images. Although, Sentinel-1 satellite data and a processing software
are freely available, the usage of the data is mainly limited to expert users in the field of
microwave remote sensing as different pre-processing steps need to be applied before using
Sentinel-1 images.
SenSARP was developed to provide a push-button option to easily apply a rigid pre-processing
pipeline with sensible defaults to a Sentinel-1 Level 1 SLC time series data as well as single
Sentinel-1 Level 1 SLC images. Thus, non-expert users in the field of pre-processing microwave
data are able to use radiometric and geometric corrected sigma nought backscatter data for
their specific applications. Beside a rigid pre-processing pipeline, SenSARP provides filter
options to retrieve only images of a specific year or images that contain a specific area of
interest from a stack of downloaded Sentinel-1 data. Furthermore, the default processing
scheme of SenSARP can handle if an area of interest is contained in two tiles of the same
swath (due to storage reasons data of one Sentinel-1 satellite swath is provided by ESA within
different tiles). Additionally, SenSARP checks if within a stack of Sentinel-1 images, one
specific image was multiple processed by ESA and uses the newest.
For expert users, SenSARP provides the possibility to automate their pre-processing on a
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large scale by either modifying the default pre-processing scheme (modification of xml graph
pre_processing_step1.xml) or create their own pre-processing scheme (create a new xml graph)
with the graph builder of the SNAP software. They can benefit from the filter options, the
default pre-processing step 2 (co-registration of images) and the SenSARP functions to stack
all processed and co-registered images within a netCDF file with additional image information
e.g., satellite name, relative orbit, and orbit direction.

Method
This Python package generates a file list of to be processed Sentinel-1 images (already down-
loaded and stored in a specific folder) based on different user defined criteria (specific year,
area of interest). Additionally, specific cases of repeatedly processed data are handled, as
sometimes Sentinel-1 data were initially processed multiple times and stored under similar
names on the Copernicus Open Access Hub. Also, cases where Sentinel-1 data within the
user-defined area of interest might be stored in consecutive tiles are considered.
Based on the generated file list the default processing pipeline of the Python package ap-
plies a pre-processing chain to Sentinel-1 Single Look Complex (SLC) time series or single
images to generate radiometrically and geometrically corrected sigma nought backscatter val-
ues. Furthermore, if a time series is processed the images are co-registered and additional
output files of multi-temporal speckle filtered data are generated. In addition, a single speckle
filter instead of a multi-temporal one is applied as well and the output will be stored as a
separate layer. To pre-process the images, the Python package uses the GPT (Graph Process-
ing Tool) of SNAP to execute different operators provided by the Sentinel-1 Toolbox. The
Sentinel Toolbox is available for download at http://step.esa.int/, its source code is available
in the senbox-org organization on GitHub. Each of these operators performs a pre-processing
step. The operators can be chained together to form a graph, which is used by the Python
package to run on the Sentinel-1 data using the Graph Processing Framework (GPF). The
graphs are stored in xml-files. Users may change the graphs by modifying the files directly or
via the Sentinel Toolbox. User Guides to show how the GPF can be used are provided here:
https://senbox.atlassian.net/wiki/spaces/SNAP/pages/70503053/Processing.
After the pre-processing the resulting radiometrically and geometrically corrected images are
stored for further usage within a NetCDF4 stack file. The processing workflow was developed
and optimized to use a Sentinel-1 time series of pre-processed sigma nought backscatter values
to retrieve biophysical land surface parameters by the use of radiative transfer models. The
sigma nought backscatter values provided by the default workflow of SenSARP might be used
in other applications like flood risk analysis, monitoring land cover changes or monitoring global
food security but it has to be mentioned that different applications have different demands
and therefore, slight adjustments of the default workflow might be required. In the future,
many more new products and operational third party services based on consistent Sentinel-1
time series might be developed.

Applications
This Python package was developed within the Horizon 2020 project called MULTIscale SEN-
TINEL land surface information retrieval Platform (MULTIPLY) (http://www.multiply-h2020.
eu/, https://cordis.europa.eu/project/id/687320, https://multiply.obs-website.eu-de.otc.
t-systems.com). Furthermore, data processed by this package is used within Sentinel-Synergy-
Study S3 project (https://www.researchgate.net/project/Sentinel-Synergy-Study-S3). In
addition, the Python code was used to process Sentinel-1 time series images for the detection
and analysis of temporary flooded vegetation (Tsyganskaya et al., 2018, 2019) and for the
evaluation of different radiative transfer models for microwave backscatter estimation of
wheat fields (Weiß et al., 2020).
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Other available Python software packages using ESA’s
SNAP software to pre-process SAR data
The ESA’s SNAP toolbox has been written in Java. For Python users the developers provide
a Python interface called Snappy. However, the Snappy interface is lacking in terms of
installation, processing performance and usability. Hence, the remote sensing community
developed different wrappers (e.g., SenSARP, snapista or pyroSAR) to use SNAP processing
functionalities by utilizing the SNAP Graph Processing Tool (GPT).

snapista
Snapista (https://snap-contrib.github.io/snapista/index.html) targets mainly experts remote
sensing users with Python programming skills. It provides access to the processing operators
of all toolboxes (e.g., Sentinel-1, Sentinel-2 or Sentinel-3) within SNAP. Expert users can gen-
erate processing graphs and execute their generated graphs in a pure Pythonic way. Guidelines
about which processing steps are needed for different applications, or about which process-
ing steps can or have to be combined, are not provided yet. Establishing guidelines about
how to process different satellite data for different applications is not an easy task to do and
would exceed the goal of snapista as a Python wrapper for the SNAP software. Summarizing,
snapista provides access to all SNAP toolboxes (not just to Sentinel-1 Toolbox) via Python.
But as it provides no default processing chains, snapista will be primarily usable by expert
remote sensing users. The advantage of snapista is the accessibility of processing operators
for SAR and optical data.

pyroSAR
PyroSAR (https://pyrosar.readthedocs.io/en/latest/index.html) is a Python library which pro-
vides a Python wrapper to SAR pre-processing software SNAP and GAMMA (Wegnüller et
al., 2016; Werner et al., 2000). The library provides utilities to read and store metadata
information of downloaded satellite data within a database. Furthermore, pyroSAR provides
access to processing operators of SNAP and GAMMA. A default workflow with different user
options is provided to process single or time-series Sentinel-1 images. After executing the
default processing workflow radiometric and geometric corrected gamma nought backscatter
data are provided in Geotiff format (Truckenbrodt et al., 2019). The processed images can
also be stored within an Open Data Cube. For expert users which might want to use a dif-
ferent processing workflow pyroSAR provides an option to create SNAP xml-workflows and
execute them with the GPT. Summarizing, pyroSAR provides a similar push-button option
to process Sentinel-1 data with a slightly different default workflow (pyroSAR: no temporal
speckle filter, gamma nought backscatter output in Geotiff format) than SenSARP (SenSARP:
temporal speckle filter, sigma nought backscatter output in netCDF format). PyroSAR, as a
more complex library than SenSARP, provides on the one hand more changeable parameters
within the processing workflow but on the other hand the usability for non-expert users might
be narrowed compared to SenSARP. An advantage of SenSARP, especially for non-expert
users, might be the provision of background information (theory/purpose) of the different
pre-processing steps within the documentation.
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Summary7

SenSE is a comprehensive community framework designed for radiative transfer (RT) modeling8

in the active microwave domain. It summarizes various RT models developed for synthetic9

aperture radar (SAR) to simulate backscatter responses from open soil and vegetated land10

surfaces, primarily in agricultural settings. This integration encompasses different models for11

scattering and emission across various surfaces, providing a cohesive operational structure.12

One of the framework’s most significant advantages is its modular design, which allows for13

the easy substitution and analysis of different surface and canopy scattering models within a14

single system. This flexibility facilitates seamless model exchange, enhancing the framework’s15

adaptability and utility. The SenSE package currently includes several surface models such16

as Oh92 (Y. Oh et al., 1992), Oh04 (Yisok Oh, 2004), Dubois95 (Dubois et al., 1995), IEM17

(Fung et al., 1992), and the surface component of the Water Cloud Model (WCM) (Attema &18

Ulaby, 1978). For canopy modeling, it supports models like SSRT Ulaby & Long (2014) and19

WCM (Attema & Ulaby, 1978).20

Additionally, the framework incorporates the dielectric mixing model by Dobson et al. (Dobson21

et al., 1985), available in various versions for converting soil moisture content to a dielectric22

constant. SenSE also includes essential utility functions, such as those for frequency-wavelength23

conversion and calculating Fresnel reflectivity coefficients, further enhancing its analytical24

capabilities.25

For more detailed information, users are directed to the ReadtheDocs documentation and26

the original sources of each model, ensuring comprehensive access to technical details and27

operational guidelines.28

Figure 1: Implemented RT models within SenSE

Weiß, & Löw. (2024). SenSE: Community SAR ScattEring model. Journal of Open Source Software, 0(0), ¿PAGE? https://doi.org/10.xxxxxx/draft. 1



DRAFT
Statement of need29

Over the last several decades, various (empirical to physically based) RT models in the active30

microwave domain have been developed, tested, and further modified. However, an easy-to-31

use framework combining the most common microwave RT models (simulating backscatter32

responses of active microwave sensors) is lacking. Thus, every researcher must produce their33

own code implementation from the original source. This Python framework aims to serve34

as a first attempt to combine the most common active microwave-related RT models in a35

modular way. As a result, surface and volume scattering models can be easily exchanged with36

one another. Such a modular framework provides an opportunity to easily plug and play with37

different RT model combinations for various research questions and use cases. SenSE facilitates38

the application of RT models, especially for comparative analysis. Over time, the framework39

is expected to grow, incorporating more RT models (e.g., passive microwave domain) and40

supplementary functions (e.g., more dielectric mixing models).41

Applications42

The Python framework was employed within the EU-sponsored MULTIPLY Project43

(https://cordis.europa.eu/project/id/687320). Furthermore, the implementation of RT models44

in SenSE played a crucial role in the analysis conducted for several publications (Weiß et al.,45

2020, 2021, 2024). Additionally, the functionalities of SenSE are planned to be utilized in46

Project 2 - Remote Sensing of Vegetation Canopy Properties: States & Spatio-temporal47

Dynamics of the Land Atmosphere Feedback Initiative (LAFI) (https://www.lafi-dfg.de/p-2).48

Further collaboration with researchers in the field of vegetation optical depths in forest areas49

is ongoing. Consequently, the functionality of SenSE will continue to be used, and further50

extensions of SenSE are anticipated.51

Other available software scripts (Ulaby and Long code library)52

Ulaby and Long (Ulaby & Long, 2014) authored an extensive book on the fundamentals of53

microwave remote sensing, including a wealth of MATLAB codes for demonstration purposes.54

However, these MATLAB codes consist of individual snippets from different RT models, which55

makes it challenging to interchange combinations of RT models. While the interactive version56

of the MATLAB codes is effective for demonstration, it does not support processing large57

datasets. SenSE addresses the limitations of the MATLAB approach through practical examples58

provided in various Jupyter notebooks.59
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Chapter 4

Conclusion

This thesis encompasses the complete scientific workflow for producing a new set of high
spatio-temporal soil moisture estimates derived from remote sensing data. It spans ground
truth data acquisition (self-acquisition of in-situ data used in Publications I, II, and III),
preprocessing of remote sensing data (Publication IV), and an in-depth analysis of RT
models concerning their remote sensing input requirements (Publications I, II, and V),
culminating in the primary goal of producing high spatio-temporal soil moisture estimates
for agriculturally utilized areas (Publication III).

In the following, the RQs outlined in Chapter 2 are summarized, and their key findings
are addressed in relation to Publications I - V and additional literature. Finally, an outlook
on research applications and potential uses is provided to conclude this thesis.

4.1 Answers of Research Questions
In the following RQs I, II, and VI are considered initial RQs, while RQs III, IV, and V are
significantly influenced by observations made during the investigation of RQs I and II.

RQ I: Can existing microwave radiative transfer RT models accurately simulate
high spatio-temporal Sentinel-1 VV-polarized radar backscatter throughout the
entire wheat growing season?

The findings in Publication I indicate that a simplistic approach using soil moisture, LAI,
and a static empirical parameter to describe the attenuation of the canopy is insufficient to
simulate the observed Sentinel-1 VV-polarized backscatter response for the entire growing
period of wheat fields. Although different RT model combinations can accurately simu-
late the first half of the vegetation growing period (phenological stages including tillering,
stem elongation, booting, and heading until maximum vegetation height is reached), the
observed increase in VV-polarized backscatter during the second half of the growing period
(flowering, fruit development, and ripening) is not represented in the RT model results. An
in-depth analysis of the model parameters related to canopy attenuation (Publication I)
revealed that, during the second half of the growing period, a dominant contribution from
the canopy model with almost no changes over time was estimated. The main physiological
changes in wheat fields after reaching their maximum height (the second half of the grow-
ing period) include increases in grain and stem biomass, as well as loss of vegetation water
content (Harfenmeister et al., 2019). Since microwaves are sensitive to changes in water
content in the soil and plants, a decrease in plant moisture should affect the attenuation
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of the radar signal by the canopy, rendering it more transparent to radar waves (He et al.,
2016). Thus, an increase in the modeled attenuation parameter for the second half of the
growing period is expected. However, the LAI appears to be an inadequate descriptor
for vegetation water loss, as it shows almost no change throughout the second half of the
vegetation growing period. Therefore, a model configuration using soil moisture, LAI, veg-
etation height, and a static empirical model parameter as input variables is only suitable
for the first half of the vegetation growing period, but not for the entire period. To model
the second half of the growing period, a more advanced approach involving changes in an
empirical parameter that influence the attenuation of the canopy is needed. The results
in Publication I demonstrate that by adjusting one empirical parameter to be non-static,
the missing information about water loss during the second half of the vegetation growing
period, as well as the observed backscatter increase, can be accurately modeled by all an-
alyzed microwave RT models.

RQ II: To what extent do the simulated Sentinel-1 VV-polarized radar backscat-
ter results differ among empirical, semi-empirical, and physically-based RT
models?

The analyzed soil models, ranging from empirical to more physically-based, include WCM
(Attema and Ulaby, 1978), Dubois95 (Dubois et al., 1995), Oh92 (Oh et al., 1992), Oh04
(Oh, 2004), and IEM_B (Baghdadi et al., 2017). The analyzed canopy models, varying
from empirical to more physically-based, are WCM (Attema and Ulaby, 1978) and SSRT
(Ulaby and Long, 2014). The findings published in Publication I indicate that the most
sophisticated model combination of IEM_B + SSRT provides the best results, with an
ubRMSE of 1.82 dB and an R2 of 0.64 in terms of modeled backscatter. Similar results re-
garding ubRMSE and R2 are observed when the most sophisticated soil model is combined
with a purely empirical canopy model (IEM_B + WCM; ubRMSE of 1.92 dB and R2 of
0.62) and when the most sophisticated canopy model is paired with a purely empirical
soil model (WCM + SSRT; ubRMSE of 1.93 dB and R2 of 0.63). Other combinations of
empirical and semi-empirical soil models (WCM, Oh92, Oh04, and Dubois95) yield slightly
poorer values for ubRMSE (ranging from 2.08 dB to 2.22 dB) and R2 (ranging from 0.48 to
0.60) with both analyzed canopy models. Nevertheless, the choice of a specific model com-
bination is highly dependent on the availability of the required model input parameters.
Thus, although the best results (ubRMSE, R2) are achieved using more physically-based
models, empirical-based model combinations serve as a good alternative due to their only
slightly inferior performance. The popularity of the empirical WCM model, which benefits
from low input parameter requirements, is further supported by a review of the literature
(Kweon and Oh, 2015; Liu and Shi, 2016; Choker et al., 2017; Baghdadi et al., 2017; Tao
et al., 2019). Despite the differences in input requirements and validation discrepancies in
terms of ubRMSE and R2, the time series results of all model combinations show a mis-
match between the simulated RT model results and the observed Sentinel-1 backscatter
across daily consecutive time steps. Therefore, a definitive conclusion regarding whether
more physically-based RT models are better suited for simulating the high spatio-temporal
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resolution of Sentinel-1 VV-polarized radar backscatter response in wheat cannot be drawn
from the research results of Publication I.

RQ III: What specific characteristics are observed in dense Sentinel-1 time se-
ries with varying acquisition geometries, and how do these geometries influence
the simulated RT model outcomes?

The constellation of the twin satellites Sentinel-1 A and B can provide images with the
same acquisition geometries (same incidence and azimuth) every 6 days. However, due to
the flight plan, some areas (e.g., large parts of Europe) are viewed by different overpasses
(tracks), allowing for a much greater time series of Sentinel-1 images to be archived if
images with different acquisition geometries are used (Geudtner et al., 2014). But, the
unique acquisition technique of SAR images (e.g., side-looking acquisition) can result in
different backscatter responses due to varying acquisition geometries, posing another chal-
lenge (Wegmuller et al., 2006; Mladenova et al., 2013; Arias et al., 2022). When analyzing
a dense Sentinel-1 time series (revisit time of 1.5 days) for the MNI test site, acquisitions
taken on consecutive days show backscatter variations of a few dB, even though in-situ
measurements indicate no changes in vegetation or soil. Owing to the constellation of four
different Sentinel-1 tracks with individual acquisition geometries regarding incidence and
azimuth angles (two tracks with similar incidence but different azimuth angles; two tracks
with similar azimuth angles but different incidence angles), the influences of azimuth and
incidence angles on the radar backscatter response can be analyzed.

Publication II reveals that consecutive acquisition days with similar incidence angles
(two tracks with incidence angles of 35° and 36°; two tracks with incidence angles of 43°
and 45°) and different azimuth angles (-165° and -15° relative to north) show almost no
changes in VV-polarized backscatter values when there are no changes in soil moisture
or vegetation cover. A different picture emerges when analyzing the radar backscatter of
consecutive days with the same azimuth angle but different incidence angles. Although in-
situ data show no change in soil moisture and vegetation cover, different backscatter values
are observed. Thus, Sentinel-1 VV-polarized backscatter variations in scenes with different
acquisition geometries are primarily driven by changes in incidence angles, whereas the
influence of azimuth angle changes is negligible. The findings in Publication II regarding
the influence of incidence angle changes on radar backscatter align with research results
from Balenzano et al. (2011); Molijn et al. (2019). Other studies on azimuth angle changes
reveal that their influence varies with topographic slope orientation (Schaufler et al., 2018).
Furthermore, in agricultural fields, the azimuthal effects on tilled soils depend heavily on
the relationship between the row tillage direction and the viewing angle (Wegmuller et al.,
2006; Mattia, 2011). Moreover, since agricultural fields are typically dynamic targets, the
influence of incidence and azimuth angles on the backscatter response from vegetation
might also depend on changes in scattering mechanisms as well as crop row orientation
(Arias et al., 2022). The occurrence of different scattering mechanisms is further discussed
in RQ IV.

In Publication I, a mismatch between retrieved (RT model) and observed (Sentinel-1)
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VV-polarized backscatter data from consecutive days (change in observation geometry)
was identified. Thus, understanding the influence of varying observation geometries of the
Sentinel-1 time series on the simulated RT model results was the main objective of Publi-
cation II. Since different azimuth angles have a negligible influence on the dense Sentinel-1
time series and because azimuth angle changes are not considered in the RT models used,
a detailed analysis of the azimuth angles was not feasible. On the other hand, the effects
of incidence angle changes could be further investigated, as they result in deviations in
Sentinel-1 backscatter and, in theory, are accounted for in the RT models. As the inci-
dence angle is implemented as an input variable within the analyzed RT models, it was
expected that these models should adequately consider Sentinel-1 backscatter differences
due to incidence angle variations. However, the observed trend mismatch between the
Sentinel-1 and RT model backscatter of daily consecutive images with different incidence
angles reveals that simplistic model approaches fall short in addressing incidence angle
variations within a dense time series. Even if the different incidence angles are normal-
ized using a commonly employed cosine correction method (Kellndorfer et al., 1998), the
analyzed RT models are unable to account for backscatter changes between images with
differing incidence angles. These findings suggest that for accurate time series backscatter
simulation with the analyzed RT models, only images with similar incidence angles should
be used. Nevertheless, a modification of the RT model analyzing the possibility of utilizing
a time series with varying observation geometries will be discussed in RQ V.

RQ IV: How do different incidence and azimuth angles in Sentinel-1 images
affect the emergence of distinct scattering mechanisms?

With dual polarimetric eigen-decomposition, an analysis aimed at better understanding
the physical differences in backscatter signals due to changes in incidence and azimuth
angles was published in Publication II. Using VV-VH dual polarimetric decomposition,
variations in scattering mechanisms are made apparent. Since changes in scattering mech-
anisms are heavily influenced by alterations in the canopy (e.g., height, biomass, or canopy
water content), a change detection analysis was performed for different phenological stages.
During the tillering stage (characterized by low vegetation cover), no significant deviations
between different acquisition geometries are observed. This is expected, as the dominant
scattering mechanism is direct backscatter from the soil when there is minimal vegetation
cover. During the stem elongation stage, stronger changes in scattering mechanisms are
evident at lower incidence angles (35°) compared to higher incidence angles (44°). No-
tably, differences due to varying azimuth angles are not distinguishable. For the flowering
stage, the presence of different scattering mechanisms related to incidence angle variations
remains visible, although not as clearly as during the stem elongation phase. By the end
of the vegetation period (ripening stage), differences based on scattering mechanisms are
nearly imperceptible. Unfortunately, further analyses in terms of scattering mechanism
classification are challenging, as dual polarimetric eigen-decomposition is not as precise
as four-component polarimetric methods when specifying the exact nature of scattering
occurrences (Ji and Wu, 2015).
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RQ V: Can a modified RT model effectively simulate a dense Sentinel-1 time
series comprising images with varying observation geometries?

In RQs III and IV, the unique characteristics of a dense Sentinel-1 time series (varying
acquisition geometries) and the associated challenges faced by RT models in accurately
simulating this series were discussed. Although a more extensive time series could be
available, due to the identified challenges, most studies (Baghdadi et al., 2017; El Hajj
et al., 2017; Nativel et al., 2022) utilize only the 6 day Sentinel-1 repeat cycle (same ob-
servation geometry). However, since higher temporal resolution is particularly valuable for
soil moisture assessment, a modified RT model approach, based on findings from RQs III
and IV, was introduced in Publication II. The original RT model approach discussed in
Publication I was enhanced by incorporating a time-variant model parameter. With this
additional time-variant calibration coefficient, the transmissivity factor - based on varying
incidence angles within the RT models - can be individually parameterized. The findings
in Publication II demonstrate that this additional parameterization can partly compensate
for the shortcomings of the RT model architecture in handling incidence angle variations.
Nevertheless, a statistical comparison indicates that the best results are still achieved when
only images with similar incidence angles are utilized. However, this approach would imply
that, for the MNI test site, the average revisit time would decrease from 1.5 days to 6 days.
In summary, the developed approach is suitable for using time series with changing obser-
vational geometries. However, depending on the specific application, the choice between
greater temporal resolution or improved retrieval accuracy may lead to different selections
of available Sentinel-1 time series.

RQ VI: Can high-resolution soil moisture estimates over agricultural fields be
derived using microwave and optical remote sensing data in conjunction with
microwave RT models?

The pre-analysis of RT models and the use of Sentinel-1 images with varying acquisition
geometries, as discussed in Publications I and II, were essential steps in establishing a
data assimilation process that ultimately enables the production of accurate high spatio-
temporal soil moisture estimates. This addresses the initial goal and thus RQ VI. The
findings in Publication III confirm that RQ VI can indeed be confirmed. An area-based
retrieval of high spatio-temporal resolution (10 m; 1.5 days) for the MNI test site is achiev-
able by driving an RT model retrieval using remote sensing information from Sentinel-1,
Sentinel-2, and RADOLAN data. Validation results from several test fields demonstrate
good overall agreement with in situ data for both wheat and maize fields. For the year 2017,
the mean ubRMSE was 0.045 m3/m3, while for 2018, a mean ubRMSE of 0.037 m3/m3

was achieved. Furthermore, with retrieval and in situ values ranging from 0.05 m3/m3

to 0.4 m3/m3, the range of naturally occurring soil moisture values is adequately cov-
ered. Although other high-resolution approaches for soil moisture retrieval report similar
ubRMSE values (Baghdadi et al., 2017; El Hajj et al., 2017; Nativel et al., 2022), they
typically have a temporal resolution of 6 days (same acquisition geometry) rather than the



4.2 Research Usage and Application 108

1.5 days achieved here. Another advantage of the approach utilized in Publication III is
its enhanced transferability to other regions, as the retrieval methodology relies solely on
input data that can be systematically obtained from freely available satellite sources.

4.2 Research Usage and Application
The research orientation of this thesis encompasses a comparative study on RT model
composition (Publication I), fundamental research on satellite data (impacts of different
acquisition geometries; Publication II), and applied research focusing on the retrieval of
high spatio-temporal soil moisture maps (Publication III). Furthermore, the provision of
research programming code through various Python packages (Publications IV and V) has
significantly contributed to the scientific community. Publication IV not only facilitates
the use of preprocessing steps within the remote sensing community but also enables both
specialists and non-specialists to utilize microwave data with minimal knowledge of pre-
processing techniques, thereby broadening the scope of applications. The compilation of
the most common surface and canopy-based RT models in Publication V further supports
the scientific community. With this freely available Python package, users can easily and
efficiently analyze various combinations of RT models.

Although the research in Publications I-III is based on the MNI test site, the methods
employed have significant potential for transferability to other regions due to the use of
freely accessible remote sensing data. Moreover, the proposed approach (Publication III)
minimizes the reliance on additional a priori data, such as soil properties or crop type
information. First, no supplementary soil property information is required. Second, while
land use (crop type) data is essential for accurate quantitative VWC estimates, the method
demonstrated in Publication III shows that satisfactory soil moisture retrieval results can
be achieved using a single equation for both wheat and maize, without differentiating based
on land use. Unfortunately, validation for other crop types is not feasible due to a lack of
in situ data. Nevertheless, wheat and maize collectively account for 65% of global cereal
production (Erenstein et al., 2021).

The significance of the archived high spatio-temporal soil moisture information is high-
lighted by its diverse applications, ranging from improving crop yield estimates (Verstraeten
et al., 2011) to providing comprehensive soil moisture assessments at the field scale (Peng
et al., 2017). Additionally, timely soil moisture information can contribute to reducing
water usage at local to regional scales, particularly in irrigation areas (Neupane and Guo,
2019). By minimizing fertilizer application (Peng et al., 2021b), spatially distributed soil
moisture data also help mitigate the contamination of surface and groundwater resources
(Preetha and Al-Hamdan, 2020). Moreover, since soil erosion is often influenced by local
conditions, high spatio-temporal soil moisture data are essential for accurate soil erosion
modeling and the development of agricultural adaptation strategies (Peng et al., 2021a).

Ultimately, the research presented in this thesis marks a significant advancement toward
establishing a system for the operational provision of high spatio-temporal soil moisture
information, thereby enhancing and facilitating precision farming applications.
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