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Zusammenfassung

In den letzten Jahren hat sich Deep Learning (DL) in vielen Bereichen als bahnbrechend er-
wiesen, auch im Bereich der medizinischen Bildgebung. Die Anwendung neuronaler Netze
und anderer lernfähiger Algorithmen hat sich erheblich auf den medizinischen Bereich aus-
gewirkt und verspricht, die Diagnosegenauigkeit zu erhöhen, die Ergebnisse für die Patien-
ten zu verbessern und die klinischen Arbeitsabläufe zu optimieren. Das Aufkommen großer
Datensätze und Fortschritte bei der Rechenleistung haben die Entwicklung anspruchsvoller
DL-Modelle erleichtert, die in der Lage sind, komplexe medizinische Bilder zu analysieren und
zu interpretieren. Der Umfang dieser Arbeit konzentriert sich auf einen Teil des gesamten DL-
Spektrums, insbesondere auf die aufstrebenden Bereiche der generativen Modellierung und des
Representation Learnings, die eng miteinander verflochten sind. Die angefügten Publikationen
zielen darauf ab, die Grenzen etablierter medizinischer Bild-DL-Methoden zu erweitern und in
experimentellere Forschungsbereiche vorzustoßen.

Die generative Modellierung zielt darauf ab, die Datenverteilung selbst zu erlernen, mit dem
Ziel, neue ungesehene Daten zu erzeugen, die eine Vielzahl nützlicher nachgelagerter Auf-
gaben ermöglichen. Der erste Beitrag dieser Arbeit untersucht das Gebiet der Unterabtastung
in der Magnetresonanztomographie (MRI). Anstatt die unterabgetasteten Bilder zu verfein-
ern, wird direkt eine diskrete Verteilung erlernt, die eine aufgabenspezifische Undersampling-
Maske mit einer Sparsity-Beschränkung erzeugt. Im zweiten und dritten Beitrag wird ein
Variational Autoencoder (VAE) im Zusammenhang mit der Überlebensanalyse von CT-Scans
von Lebermetastasen eingesetzt. Durch die Einbeziehung eines Labels in den rekonstruk-
tionsbasierten VAE wird der latente Raum mit Time-to-Event-Informationen angereichert.
Diese Anreicherung bietet ein höheres Maß an Erklärbarkeit und erleichtert die Modellierung
von Risiken in Datenproben via gradientengesteuertes Durchqueren des latenten Raums. Der
vierte Beitrag invertiert ein vortrainiertes Generative Adversial Network (GAN), um Embed-
dings von Thorax-Röntgenbildern (CXR) zu erzeugen, die zur Entdeckung zusätzlicher Muster
oder zur Modellierung des Krankheitsverlaufs verwendet werden. Aufgrund der unzureichen-
den Qualität der synthetischen CXR des GANs wird im fünften Beitrag ein neuer, moderner
Ansatz für die CXR-Synthese entwickelt. Die Verwendung eines Konglomerats aus mehreren
großen Datensätzen und kaskadierten Diffusionsmodellen ermöglicht die Erstellung von hoch-
auflösenden CXRs. Darüber hinaus leistet dieser Beitrag Pionierarbeit bei der textbasierten
CXR-Synthese mit Konditionierung auf der Grundlage von Radiologieberichten.

Durch die Manipulation des latenten Raums mittels generativer Modelle sind die bisherigen
Beiträge eng mit Representation Learning verbunden. Dieser Bereich zielt auf die Umwand-
lung von Rohdaten ab, aus denen wichtige Informationen extrahiert, strukturiert und zu einem
kompakten Embedding verdichtet werden, die für eine beliebige nachfolgende Aufgabe geeignet
ist. Der sechste Beitrag analysiert CXR-Embeddings, die einen inhärenten Bias in Rich-
tung sensibler, geschützter Merkmale enthalten. Mittels Post-hoc-Orthogonalisierung wird
die entsprechende Information entfernt, wodurch die Vorhersage nicht mehr möglich ist, die
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Klassifikationsleistung aber erhalten bleibt. Der siebte und letzte Beitrag befasst sich mit
dem Rechenaufwand für große volumetrische Segmentierungsmodelle. Unter Verwendung der
Tucker-Zerlegung werden die Gewichte von 3D Convolutions in kleinere, effiziente Darstel-
lungen faktorisiert. Diese Methode reduziert einen großen Teil der Parameter des Modells,
während die Vorhersagequalität der Segmentierung erhalten bleibt.
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Summary

In recent years, deep learning (DL) has proven to be a disruptive enabler in many domains,
including the realm of medical imaging. The application of neural networks and other learn-
able algorithms has substantially impacted the medical field, promising to improve diagnostic
accuracy, enhance patient outcomes, and streamline clinical workflows. The advent of large-
scale datasets and advancements in computational power have facilitated the development of
sophisticated DL models capable of analyzing and interpreting complex medical images. The
scope of this thesis concentrates on a subset of the full DL spectrum, specifically the uprising
areas of generative modeling and representation learning, which are closely interleaved with
each other. The proposed contributions aim to push the boundaries of established medical
image DL methods, venturing into more experimental research areas.

Generative modeling targets to learn the data distribution itself with the ultimate goal of
producing new unseen data samples, enabling a variety of useful downstream tasks. The first
contribution of this thesis explores the area of undersampling in magnetic resonance imaging
(MRI). Specifically, rather than refining the undersampled images, a discrete distribution that
generates a task-specific undersampling mask with a sparsity constraint is learned directly.
The second and third contributions utilize a variational autoencoder (VAE) in the context of
survival analysis on CT scans of liver metastases. By incorporating a survival objective into
the reconstruction-based VAE, the latent space becomes enriched with time-to-event informa-
tion. This enhancement offers a higher degree of explainability and facilitates counterfactual
modeling of hazard in data samples through gradient-guided traversal of the latent space. In
contrast, the fourth contribution proposes to invert a pre-trained generative adversarial net-
work (GAN) to produce chest X-ray (CXR) embeddings, which are used to discover additional
patterns or model pathology progress. Intrigued by the insufficient quality of synthetic GAN
CXR samples, the fifth contribution forms a new state-of-the-art approach for CXR synthesis.
Using a conglomerate of multiple large-scale datasets and cascaded diffusion models enables the
generation of high-resolution CXRs. Moreover, this work pioneered text-based CXR synthesis
with conditioning based on radiology reports.

Through engaging heavily in manipulating the latent space of generative models, the previ-
ous contributions are closely related to representation learning. As the name suggests, this
area aims to transform raw data, where important information is extracted, structured, and
condensed into an often concise embedding fit for an arbitrary downstream task. The sixth
contribution analyzes CXR embeddings, which were found to contain inherent biases towards
sensitive protected features. Using post-hoc orthogonalization the respective feature informa-
tion is removed, rendering its prediction infeasible but preserving downstream classification
performance. The seventh and last contribution tackles the computational efforts of large vol-
umetric segmentation models. Utilizing Tucker decomposition, 3D convolution weight kernels
are factorized into smaller, efficient representations. This method reduces a large fraction of
the models’ parameters by maintaining its predictive segmentation quality.





LIST OF ABBREVIATIONS

Abbreviation Meaning

2D Two-Dimensional
3D Three-Dimensional
AI Artificial Intelligence
CT Computed Tomography
CXR Chest X-ray
DL Deep Learning
DM Diffusion Model
ELBO Evidence Lower Bound
FLOP Floating Point Operation
GAN Generative Adversarial Network
GPU Graphical Processing Unit
HOSVD Higher-Order Singular Value Decomposition
HU Hounsfield Units
KL Kullback-Leibler
LDM Latent Diffusion Model
LLM Large Language Model
MRI Magnetic Resonance Imaging
NLP Natural Language Processing
PCA Principal Component Analysis
RF Radiofrequency
RL Representation Learning
SSL Self-Supervised Learning
SVD Singular Value Decomposition
TS TotalSegmentator
VAE Variational Autoencoder





LIST OF CONTRIBUTIONS

This cumulative PhD thesis consists of the following contributions:

[C1 ] Tobias Weber, Michael Ingrisch, Bernd Bischl, and David Rügamer. “Constrained
Probabilistic Mask Learning for Task-specific Undersampled MRI Reconstruction”. In:
Proceedings of the IEEE/ CVF Winter Conference on Applications of Computer Vision,
WACV. 2024, pp. 7665–7674

[C2 ] Tobias Weber, Michael Ingrisch, Matthias Fabritius, Bernd Bischl, and David Rügamer.
“Survival-Oriented Embeddings for Improving Accessibility to Complex Data Structures”.
In: Bridging the Gap: From Machine Learning Research to Clinical Practice, NeurIPS
Workshops. 2021

[C3 ] Tobias Weber, Michael Ingrisch, Bernd Bischl, and David Rügamer. “Towards Mod-
elling Hazard Factors in Unstructured Data Spaces Using Gradient-Based Latent Interpo-
lation”. In: Deep Generative Models and Downstream Applications, NeurIPS Workshops.
2021

[C4 ] Tobias Weber, Michael Ingrisch, Bernd Bischl, and David Rügamer. “Implicit Embed-
dings via GAN Inversion for High Resolution Chest Radiographs”. In: Medical Applica-
tions with Disentanglements, MICCAI Workshops. 2022, pp. 22–32

[C5 ] Tobias Weber, Michael Ingrisch, Bernd Bischl, and David Rügamer. “Cascaded Latent
Diffusion Models for High-Resolution Chest X-ray Synthesis”. In: Advances in Knowledge
Discovery and Data Mining: 27th Pacific-Asia Conference, PAKDD. 2023

[C6 ] Tobias Weber, Michael Ingrisch, Bernd Bischl, and David Rügamer. “Post-hoc Orthog-
onalization for Mitigation of Protected Feature Bias in CXR Embeddings”. In: arXiv
preprint arXiv:2311.01349. 2023

[C7 ] Tobias Weber, Jakob Dexl, David Rügamer, and Michael Ingrisch. “Post-Training
Network Compression for 3D Medical Image Segmentation: Reducing Computational
Efforts via Tucker Decomposition”. In: Radiology: Artificial Intelligence. Vol. 7. 2.
Radiological Society of North America, 2025



xiv Contributions

Additional Contributions

During this PhD program, the thesis author contributed to several additional publications as
a co-author.

[1 ] Anna Theresa Stüber, Stefan Coors, Balthasar Schachtner, Tobias Weber, David Rügamer,
Andreas Bender, Andreas Mittermeier, Osman Öcal, Max Seidensticker, Jens Ricke, et al.
“A comprehensive machine learning benchmark study for radiomics-based survival anal-
ysis of CT imaging data in patients with hepatic metastases of CRC”. in: Investigative
Radiology 58.12 (2023), pp. 874–881

[2 ] Ludwig Bothmann, Lisa Wimmer, Omid Charrakh, Tobias Weber, Hendrik Edelhoff,
Wibke Peters, Hien Nguyen, Caryl Benjamin, and Annette Menzel. “Automated wildlife
image classification: An active learning tool for ecological applications”. In: Ecological
Informatics 77 (2023), p. 102231

[3 ] Katharina Jeblick, Balthasar Schachtner, Jakob Dexl, Andreas Mittermeier, Anna Theresa
Stüber, Johanna Topalis, Tobias Weber, Philipp Wesp, Bastian Oliver Sabel, Jens
Ricke, et al. “ChatGPT makes medicine easy to swallow: an exploratory case study on
simplified radiology reports”. In: European Radiology 34.5 (2024), pp. 2817–2825

[4 ] David Rügamer, Chris Kolb, Tobias Weber, Lucas Kook, and Thomas Nagler. “Gener-
alizing Orthogonalization for Models with Non-linearities”. In: International Conference
on Machine Learning, ICML (2024)

[5 ] Chris Kolb, Tobias Weber, Bernd Bischl, and David Rügamer. “Deep Weight Factor-
ization: Sparse Learning Through the Lens of Artificial Symmetries”. In: International
Conference on Learning Representations, ICLR (2025)

Conference Talks

[1 ] Tobias Weber, Michael Ingrisch, Bernd Bischl, and David Rügamer. “Exploring La-
tent Spaces: Manipulating Medical Data Through Image Editing”. In: International
Conference on Computational and Methodological Statistics, CMStatistics (2023)



CONTENTS

1 Introduction 1

2 Methodological Background 7

2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 A Primer on Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Generative Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Generative Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Variational Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4.1 Latent Spaces in Generative Models . . . . . . . . . . . . . . . . . . . . 35
2.4.2 Neural Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Dimensionality Reduction & Tensor Decomposition . . . . . . . . . . . 40

3 Contributions 45

C1 Probabilistic Mask Learning for Undersampled MRI Reconstruction . . . . . . 47
C2 Survival Embeddings for Improving Accessibility to Complex Data Structures . 49
C3 Towards Modelling Hazard Factors in Unstructured Data Spaces . . . . . . . . 51
C4 Implicit Embeddings via GAN Inversion for Chest Radiographs . . . . . . . . 53
C5 Cascaded Latent Diffusion Models for Chest X-ray Synthesis . . . . . . . . . . 55
C6 Orthogonalization for Mitigation of Feature Bias in CXR Embeddings . . . . . 57
C7 Post-Training Network Compression for 3D Medical Image Segmentation . . . 59

4 Outlook and Conclusion 61

4.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



xvi Contents

References 65

List of Figures 79

Eidesstattliche Versicherung 81



CHAPTER 1

INTRODUCTION

I think if you work as a radiologist, you’re like the
coyote that’s already over the edge of the cliff but
hasn’t yet looked down, so it doesn’t realize there is
no ground underneath. People should stop training
radiologists now. It’s just completely obvious that,
within five years, deep learning is going to do better
than radiologists.

Geoffrey Hinton, 2016

Will AI ever replace radiologists?
I say the answer is no — but radiologists who use AI
will replace radiologists who don’t.

Curtis Langlotz, 2017

The presented quotes reflect two diverse and contradictory approaches to the swiftly evolv-
ing field of Artificial Intelligence (AI) and its future in radiology. Geoffrey Hinton – often
proclaimed as the godfather of AI – foresees a radical shift in modern medicine, where medical
professionals are rendered obsolete due to the superiority of deep learning (DL). The qualified
physician and professor of radiology Curtis Langlotz offers a more synergistic vision. AI may
not serve as a general replacement but rather paves the way for cooperation between human
expertise and artificial assistance. These opinions represent two opposing viewpoints. Hinton
is manifesting AI as a technical disruptor of the field. In contrast, Langlotz promotes the
evolution of the traditional radiologist by appreciating the human factor and enhancing the
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role of radiologists. Both quotes state the undeniable presence of AI in the realm of medical
imaging and demand a paradigm shift in radiological practice. The presented thesis examines
the current status quo of Deep Learning (DL) research as well as its application in medical
imaging and evaluates how or whether the prognoses of Hinton and Langlotz became a reality.

Already nearly eight years have passed since the release of the statements at the time of
writing1, which resembles an eon in the fast-paced machine learning research environment.
General developments in a research field can be identified and analyzed by tracking trends at
premier conference venues, e.g. the MICCAI conference (Medical Image Computing and Com-
puter Assisted Intervention) for medical imaging. By investigating the number of MICCAI
conference submissions over the years in Figure 1.1, it can be seen that the time points of
the quotes mark the start of a nearly exponential growth of submitted research papers, with
a small dip during the global pandemic. This reflects a rising and continuing interest of the

LanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotzLanglotz
HintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHintonHinton

500

1000

1500

2000

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 20232011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Submissions Accepted Papers

Figure 1.1. Yearly number of submissions and accepted papers for the MICCAI conference from
2011 until 2023. The markers indicate the dates of the analyzed quotes from Hinton and Langlotz.

community to contribute and advance the boundaries of medical imaging techniques. Em-
ploying a quick web crawling routine of the MICCAI 2023 proceedings paired with zero-shot
GPT-4 classification results in a vague and rough estimate of around ≈97% of the accepted
papers utilizing DL techniques or are related to DL. While this is merely a snapshot of the full
spectrum of medical imaging, it indicates that DL is a major driver for current scientific and
methodological progress. Similar developments can be observed in new journals being issued
by medical imaging publishers, which are fully dedicated to AI - often used as a synonym for
DL-powered methods. Examples are Radiology: Artificial Intelligence by RSNA first issued in
2019 and BJR|Artificial Intelligence of the British Institute of Radiology as well as NEJM AI,
a spin-off from the New England Journal of Medicine, both founded in 2024.

The observed rise in submissions is a mere indicator of the hype around DL in combination
with medical imaging. Starting with the increased possibility of utilizing GPUs for the efficient

1 Hinton: https://www.youtube.com/watch?v=2HMPRXstSvQ

Langlotz: https://aimi.stanford.edu/news/rsna-2017-rads-who-use-ai-will-replace-rads-who-dont-0

https://www.youtube.com/watch?v=2HMPRXstSvQ
https://aimi.stanford.edu/news/rsna-2017-rads-who-use-ai-will-replace-rads-who-dont-0
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training of convolutional neural networks in the 2010s and the surprising dominance of AlexNet
[1] in the 2012 ImageNet [2] challenge, the interest to utilize DL for computer vision surged.
Afterward, the basic processing methods evolved, and groundbreaking architectures like the
U-Net [3] and ResNet [4] in 2015 built a foundation for a wide range of practical applications
including the medical domain. The interest in medical imaging can be attributed to multiple
reasons. To name just two, there is the noble intention of improving human life and the
fascination with modern medical technology. Additionally, DL algorithms require data and
the medical field can in theory provide this data, with some hospitals stockpiling patient
records for decades. The amount of available medical data is steadily growing as a result of an
increasingly digital clinical practice paired with multi-centric collaborations.

Aside from the developments in medical image research, the possibility of improving clinical
practice comes with opportunities for investors following a quote of Walter Wriston: “Capital
goes where it is welcome and stays where it is well treated ”. Medical professionals work in
a high-stress environment where mistakes can cost human lives, creating a critical need for
innovative solutions and advanced technologies. This demand presents a significant potential
for the development of new products and advancements in medical imaging, with deep learning
as a disruptive technology forming an optimal breeding ground for industrial growth. To
name just one of the hundreds of innovating ideas, the Munich start-up deepc operates a
unified platform for radiological AI, which allows other vendors to promote their commercial
models. Already, there are dozens of licensed models available for radiologists to use, including
Chest X-ray (CXR) classifiers, fracture detection, bone age assessment, analysis of brain scans,
and localization of strokes or lung nodules, among others. Productionalization of conceptual
research may ultimately be another important factor for the field to mature and establish itself.

An important aspect is the divergence of DL in general computer vision and medical imag-
ing. The differences between those domains are large. Whereas current natural image datasets
contain nearly a billion images with captions and myriads of concepts and variation, a medical
dataset may contain only a few dozen or hundreds of samples for a rare pathology. Further, in
medical imaging, the samples are often 3D images and grayscale instead of RGB. Each medical
image modality also presents distinct challenges, such as differentiating tissue densities, man-
aging contrast variations, addressing artifacts, etc. Importantly, a point in a medical image is
not a simple pixel value but represents complex physical properties. This raises the question
of whether architectures or algorithms designed for natural computer vision can be effectively
translated to the medical domain, or what modifications are required to make them usable.

Scope. While the general field of medical imaging is wide, the present thesis focuses on the
branch of radiology. As the name suggests, the term radiology originates from radiation-based
imaging methods but nowadays includes most imaging modalities, such as X-ray imaging,
computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound. From the
perspective of DL, the focus lies on the subfield of generative modeling and its symbiosis
with Representation Learning (RL). Figure 1.2 visualizes the specific topics as well as methods
grazed in the thesis and indicates the respective contributions. Conceptually, this thesis is on an
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Generative Modeling

Generative Distributions [C1 ]

Variational Autoencoders [C2 , C3 , C5 ]

Generative Adversarial Networks [C4 ]

Diffusion Models [C5 ]

Representation Learning

Latent Spaces [C2 , C3 , C4 , C5 ]

Neural Embeddings [C6 ]

Dimensionality Reduction [C7 ]

±

Figure 1.2. Overview over this thesis’ contributions and their relation.

explorative level, investigating new experimental domains and searching for a novel perspective
on established problems. Thus, its contributions are less concerned with an accurate clinical
evaluation and deployment but more with elaborating and exploring the boundaries of current
medical image research.

With this motto in mind, the first block of this thesis’ contributions concerns a variety
of generative models. The first contribution C1 delves into the problem statement of MRI
undersampling. Instead of enhancing an image based on a given undersampling pattern, C1
proposes a fully differentiable and probabilistic optimization routine capable of directly gen-
erating discrete undersampling masks. Given a specific optimization objective, the method
produces task- and data-specific undersampling masks, highlighting the benefit of tailoring the
acquisition process toward the respective use case. Contribution C2 and C3 deviate into the
field of survival analysis and employ an extension of a Variational Autoencoder (VAE) with
an additional supervised survival head. Hereby, the data concerns CTs of colorectal cancer
patients with liver metastases. The two contributions discuss the merits of employing such a
routine in a clinical context and elaborate on the guided traversal in the VAE’s latent space to
model survival hazards in unstructured data spaces. Contribution C4 analyzes whether em-
beddings of CXR radiographs can be obtained by inverting a Generative Adversarial Network
(GAN). This analysis discovers some inherent limitations of the used GAN when generating
synthetic CXR images. Subsequently, contribution C5 investigates the efficacy of a cascaded
diffusion model to eliminate this issue and improve the quality of the CXR synthesis process.
Moreover, contribution C5 pioneers the utilization of radiological reports for guiding CXR
generation.

All previously proposed contributions powered by generative models share a strong connec-
tion to RL, as each generative method gains unique benefits when operating in a latent space.
The concept of representations is further intensified in contribution C6 , where orthogonaliza-
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tion is used to remove sensible and hidden information from vectorized embeddings of CXR
images, providing further insights on biases occurring in CXR classifiers. Lastly, contribution
C7 tackles the problem of complex 3D segmentation models having a high computational ef-
fort. Through a post-hoc Tucker decomposition of a model’s weights, the method proposed
in contribution C7 substantially reduces the number of arithmetic operations required during
inference while preserving the model’s predictive accuracy.

Outline. The structure of this thesis is as follows. Chapter 2 contains the methodology foun-
dational to the proposed contributions. Section 2.1 defines the utilized notation. Section 2.2
introduces the unfamiliar reader to the medical imaging modalities of X-ray imaging, CT, and
MRI. Next, Section 2.3 handles the topic of generative modeling. Generative distributions are
defined in Section 2.3.1 and the methods of VAE (2.3.2), GAN (2.3.3) as well as diffusion mod-
els (2.3.4) are elaborated in the subsequent sections. Section 2.4 highlights different aspects
of RL. Hereby, Section 2.4.1 showcases the bond of generative models with RL through the
concept of latent space. Section 2.4.2 introduces neural feature representations. Section 2.4.3
explains methods for dimensionality reduction via tensor decomposition under the umbrella of
RL. Chapter 3 contains the proposed scientific contributions. This thesis concludes with an
outlook and conclusion in Chapter 4.





CHAPTER 2

METHODOLOGICAL BACKGROUND

2.1 Notation

A sample x is defined as an element of the data space X ⊆ R
d and is generated by the data

distribution p(x), i.e, x ∼ p(x). An unsupervised dataset is a collection of multiple samples
x, organized into a matrix X ∈ R

n×d, where each of the n rows corresponds to one sample x.
In a supervised learning setting, every x is accompanied by a label, where y ∈ {0, 1} indicates
a binary label. It is important to note that the data discussed in this thesis is typically multi-
dimensional, such as 2D and 3D images with additional channel information. However, for the
purpose of this methodological background, the spatial tensor structure is not relevant. Thus,
every multi-dimensional data sample is conceptually unfolded and treated as the vector sample
x.

Similarly, a latent variable z is denoted as a member of the latent space Z ⊆ R
k, where

z ∼ p(z). The distributions of x and z can be conditionally dependent on each other. For
example, p(z | x) represents the posterior distribution of z after observing x.

Generally, all vectors are column vectors and are denoted in boldface Roman letters. Ma-
trices and Tensors are defined in uppercase boldface Roman letters, e.g., A. A superscript ⊤
indicates the transpose of a vector or matrix. I denotes the identity matrix, characterized by
1 entries on the diagonal and 0 elsewhere. The shape of I should be inferred from the context
in which it is used. Scalar values, which are elements of R, are denoted using lowercase Greek
letters, e.g. α.

A neural network is defined as a deterministic mapping from one space to another. For
example, E : X → Z denotes a network that projects data samples x into the latent space.
Networks are denoted using calligraphic letters, with the exception of the network used in
diffusion models, which is denoted as ϵθ for reasons of consistency.
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2.2 A Primer on Medical Imaging

This section provides a brief overview of the medical imaging modalities utilized in this thesis:
X-ray Imaging, Computed Tomography (CT) Scan, and Magnetic Resonance Imaging (MRI).
As shown in the coronal view of a chest in Figure 2.1 every imaging modality has a distinct
display. X-ray imaging is generally the fastest and most cost-effective of the three options.
It is commonly used for diagnosing bone fractures, examining dental and chest areas as well
as screening purposes due to its ability to produce 2D images quickly. CT and MRI produce
volumetric images, capturing data in 3D, resulting in superior image quality but at a higher
cost and longer acquisition time in comparison to X-rays. A CT scan is readily available and
still magnitudes faster than an MRI and is therefore used for rapid detection in emergencies,
like strokes and internal bleeding. Additionally, a CT excels in visualizing bone structures,
blood vessels, and a range of lung pathologies and tumors. The main strength of the MRI
lies in its high-detail soft tissue and variable image contrasts, produced by variations in the
scanning protocol, and its ability to provide fine-grained images of organs, muscles, and other
soft tissues without utilizing ionizing radiation.

Note that the following section is intended as a mere high-level introduction to the complex
topic of medical imaging and does in no way reflect a holistic description of the modalities’
inner workings and applied physics. Thus, the presented information relies on concepts rather
than mathematical formulations. The avid reader is referred to “The Essential Physics of
Medical Imaging” by Bushberg and Boon [5] as well as Buzug’s “Computed Tomography” [6]
for a detailed tutorial. Unless stated otherwise, the subsequent introduction is based on these
two recommendations.

The Electromagnetic Spectrum. A method to group different image modalities is by
categorizing them according to the energy source of the image. One such source is electromag-
netic radiation, whose full range is portrayed in the electromagnetic spectrum (see Figure 2.2).

(a) X-ray. Source: radiopaedia.org (b) CT. Source: radiopaedia.org (c) MRI. Source: mrimaster.com

Figure 2.1. A coronal view of a chest using the image modalities X-ray, CT, and MRI.

https://radiopaedia.org/articles/chest-radiograph
https://radiopaedia.org/articles/computed-tomography-of-the-chest
https://mrimaster.com/plan-chest-t1-vibe-coronal/
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Figure 2.2. The electromagnetic spectrum. Electromagnetic radiation can be categorized based on
its wavelength, energy, and frequency. Image from [7].

Radiation can be described either as a propagating sinusoidal wave or as a stream of massless
particles traveling in wave-like patterns. Another term for such a particle is photon. The cate-
gorization of radiation is based on its attributes: its energy measured in electron volts (eV), its
frequency measured in Hertz (Hz), or its wavelength measured in meters (m). Hereby, a high
energy level coincides with high frequency and short wavelengths, while low energy corresponds
to low frequency and long wavelengths.

Each category within the spectrum has specific use cases in computer vision, with some
categories being more prominent in medical imaging than others. These categories have no
clear boundaries but transition seamlessly into one another. Radio waves, with wavelengths
spanning several meters, play a crucial role in the MRI process, even though they are not
directly responsible for image creation. The light visible to the human eye is also part of the
electromagnetic spectrum, covering wavelengths from 380 to approximately 700 nanometers.
Highly energetic waves like Gamma rays and X-rays are particularly suited for medical imag-
ing, due to their ability to penetrate human tissue easily. In contrast, lower energy waves can
interact with tissues through heating, similar to the mechanism in a microwave oven. Addi-
tionally, high-energy waves, characterized by short wavelengths, exhibit small diffraction that
benefits sharp and detailed recordings. For example, gamma rays are fundamental to nuclear
imaging, particularly in Positron Emission Tomography (PET). In PET, a patient is admin-
istered a radioactive isotope (tracer) that emits positrons upon decay. When these positrons
encounter electrons, gamma rays are produced and subsequently detected. Tumors can be
identified due to their higher metabolic activity, leading to increased tracer consumption and
distinctive emission of gamma rays [8]. The principle of X-ray imaging is elaborated in the
next section.

Both gamma and X-ray radiation are ionizing, i.e., they have the ability to remove electrons
from the atomic shell and thus generate positively charged atoms (ions). This ionization can
cause stochastic and deterministic radiation damage, which may ultimately lead to cellular
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damage and mutations, which is why the usage of ionizing radiation is highly regulated and
conducted with protective measures such as limiting exposure time and shields [9]. Aside
from electromagnetic radiation, other noteworthy sources for imaging include sound waves in
ultrasound imaging and electron beams in electron microscopy, among others.

X-Ray Imaging. X-ray imaging is one of the oldest and most frequently used medical
imaging techniques. In a nutshell, to create an image, a beam of X-rays penetrates the object
of interest, and the X-ray attenuation, i.e., the reduction in wave intensity as the X-ray passes
through tissue, is measured on a detector. The first step involves generating X-ray radiation
using an X-ray tube, as illustrated in Figure 2.3. This vacuum-sealed chamber contains a
negatively charged electrode, the cathode, and a positively charged electrode, the anode. To
enable electron flow from the cathode to the physically detached anode, the cathode is heated
to induce thermionic emission. For medical X-ray imaging, a voltage of 20keV to 150keV
is usually applied to accelerate the free electrons [9]. When these electrons collide with the
anode, radiation is produced based on two effects. The first effect denotes as bremsstrahlung,
or braking radiation. If electrons are deflected by the atoms in the element of the anode,
their loss of kinetic energy is converted into radiation. The second effect is the characteristic
radiation, which is unique to every anode material. This phenomenon describes the emission of
radiation that occurs when an inner-shell electron within an atom is ejected upon collision and
is subsequently replaced by an electron from a higher energy level. Typical materials for the
anode are tungsten, molybdenum, or rhodium, chosen for their extremely high melting points
to mitigate damage due to heat. An example of an X-ray spectrum using a tungsten anode
is demonstrated in Figure 2.4, which shows the distinct differences between bremsstrahlung
and characteristic radiation. To shape the emitted radiation into a beam, the anode is angled.
Further, in an effort to reduce the strain on the anode material, the anode is often in the form
of a rotating disc.

On its way to the patient, the generated X-ray beam passes through a collimator, also
known as a beam-restrictor. These lead shutters concentrate the X-ray beam on an area
of interest, reducing the radiation dose and wave scattering. As the X-ray passes through

Figure 2.3. Schema of a X-ray tube. The electrons flow from the heated cathode to the angled anode,
which upon collision emits a beam of X-rays caused by bremsstrahlung and characteristic radiation.
Image from [10].
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Figure 2.4. Spectrum of a tungsten anode with an applied voltage of 90keV. The unique characteristic
radiation spikes (red) are superimposed on the bremsstrahlung (blue). Image adapted from [5].

X-ray tube

Collimator
Anti-scatter

grid
Screens &

film

Figure 2.5. The setup for conducting an X-ray scan. The X-ray beam emitted by the X-ray tube is
shaped by the collimator before passing through the patient. To mitigate the impact of scattered X-
rays, an anti-scatter grid is placed before the detector. In analog X-ray imaging, the detector consists
of a film positioned between two intensifying screens. Image adapted from [11].

the patient, it is attenuated depending on the type of tissue it encounters. Dense tissues,
like bones, absorb and deflect more radiation than less dense tissues, like organs or muscles.
The attenuation for a material or tissue being penetrated can be expressed as a coefficient,
whose computation is a combination of various absorption and scattering principles, such as
Rayleigh scattering, photoelectric absorption, Compton scattering, and pair production. It is
thus possible to determine the type of tissue based on the measured X-ray attenuation. After
passing through the patient, an anti-scatter grid mitigates scatter radiation resulting from the
interaction with the patient, enhancing the overall image quality. Eventually, the attenuated
invisible X-rays are captured by a detecting measure to convert them into a visible image.
Figure 2.5 showcases the full acquisition process.

Originally, films contained between two intensifying screens were used. Dense tissues, such
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as bones, appear white in the resulting image because these areas have less exposure to X-
rays compared to regions with, e.g., air, such as the lungs, which exhibit minimal attenuation
and thus strong exposure. Nowadays, digital alternatives are used instead of film. In digital
radiography, possible detectors include photostimulable phosphor plates (PSPs) and flat panel
Thin-Film-Transistor (TFT) arrays, among others.

Computed Tomography. Planar X-ray imaging works based on measuring the attenuation
of the X-ray radiation along one direction and is thus a 2D projection containing no information
about depth. In contrast, CT can capture a volumetric 3D view of the patient, allowing for
detailed depictions of internal structures. Like X-ray imaging, CT imaging utilizes X-rays to
record an image. Instead of capturing just one scene, CT acquires multiple scans from various
angles around the patient. The original CT method segments the patient or the object of
interest into axial slices. Hereby, a typical value for the thickness of such a slice is around 1.5
to 3 millimeters. For each slice, an X-ray tube emitting a narrowed-down beam is traversed
linearly (translated) across the subject. The attenuation of this so-called pencil beam is then
measured by a detection unit. This process is also illustrated in Figure 2.6.

After finishing a full translation, the same measurement procedure is repeated at a different
angle, i.e., the X-ray tube and detector are rotated. The number of recordings and the angle for
rotation may vary depending on the protocol and used scanner. This translation and rotation
process is repeated for every axial slice. Modern CT scanners can obtain more than 1000
measurements over a full 360° rotation [12]. Furthermore, recent technology employs multiple
simultaneous beams, cone-shaped beams, or spiral patterns instead of pencil beams to scan

Figure 2.6. Recording of a CT slice using a pencil beam. The collimated beam is translated across
the subject, hence creating a narrow axial X-ray scan of the patient. Image from [12].
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Figure 2.7. The backprojection process for image reconstruction in CT imaging. For every slice,
X-ray attenuation values are measured for multiple angles (A). The obtained attenuation values are
projected backward along the trajectory of the originating X-ray (B). This backprojection step is
done for every collected angle. Superimposing all backprojections creates a cross-sectional image (C).
Image from [12].

the patient, enhancing both recording speed and image quality.
The challenging part is now to reconstruct 3D cross-sectional images of the patient from all

of the previously obtained measurements. A fundamental concept for this image reconstruction
is backprojection as demonstrated in Figure 2.7. For every recorded angle, the scan is equivalent
to the sum of the X-ray attenuation values along the path of the X-rays, i.e., a forward
projection. Next, the measured attenuation values are projected back along the path of the
X-ray in image space. All collected angle projections are then superimposed on each other,
creating a cross-sectional view. The data from all angles can also be visualized in a plot known
as a sinogram. Each row of the sinogram represents the data collected at a specific angle, and
each column corresponds to a position during translation.

Unfortunately, utilizing the raw attenuation values for backprojection results in blurry
images and distinct artifacts. This is due to backprojection being a global procedure, where
contributions to attenuation are projected linearly across the entire image. As each projection is
backprojected, the overlapping of data from multiple angles causes blurring because each voxel
in the image receives contributions from multiple rays, leading to an accumulation of errors
and noise. Convoluting the measurements with a filter prior to backprojection substantially
mitigates this issue. Typically, the chosen filters, such as the Ram-Lak filter or the Shepp-Logan
filter, aim to emphasize high-frequency features like contours and edges while reducing low-
frequency blurring (cf. Figure 2.8). This process is known as filtered backprojection. Ultimately,
all slices are concatenated to form a full volume of the scanned subject.

Following the process of backprojection, each voxel in the resulting 3D scan is assigned a
CT number, which represents the average X-ray attenuation value at that specific location in
Hounsfield Units (HU). Specific HU values indicate the presence of different types of matter.
For example, −1000 HU represents air, 0 HU represents water, and values greater than 250
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Figure 2.8. Comparison of backprojection without (A) and with (B) filtering. The applied filter
substantially reduces blurring artifacts while emphasizing high-frequency features. Image from [12]

HU represent bone. Soft tissues like fat approximately range from −200 to 50 HU, tumors
range from 20 to 50 HU, and the liver has an average value of around 60 HU.

Magnetic Resonance Imaging. While CT allows the recording of high-quality images of a
patient, it is still based on ionizing radiation, thus posing risks on increased or multiple usage
[9]. On the contrary, MRI observes the behavior of hydrogen atoms in a strong magnetic field
without the influence of harmful radiation. As the name suggests, MRI comprises three distinct
components, the first of which is magnetization. One of the MRI’s main components is a strong
magnetic field with the strength of 1.5 to 3 Tesla, which is up to 30, 000 times stronger than
the earth’s magnetic field. The MRI’s magnetic field is created by passing current through
superconducting coils, which exhibit zero electrical resistance when cooled below a critical
temperature. Thus, the MRI machine needs a cooling system, typically powered with liquid
helium. Given the complexities of establishing the magnetic field with cooled superconductors,

No magnetic field
Applied external

magnetic field

Figure 2.9. Proton alignment in a magnetic field. The orientation of protons is naturally random
(left). If a magnetic field B0 is applied, the protons are aligned parallel or anti-parallel to the direction
of B0 (right). Image adapted from [13].
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the MRI’s magnetic field is always on and will never be turned off, requiring constant careful
handling of magnetizable objects in the machine’s proximity. The magnetic coils are the
main sources of the MRI machine’s weight, which can be up to 15 tons, setting additional
requirements for the room or floor where it is accommodated.

The application of a strong magnetic field, further abbreviated as B0 has a distinct effect
on the atoms of matter in it. It leads to aligning the spins of the nuclei in the atoms, causing
precession. The frequency of this spin is known as the Larmor frequency, which depends
entirely on the strength of B0 and an atom-specific constant. Hydrogen atoms, which consist
of a single proton and an electron, are particularly responsive to this effect. Hydrogen is a
fundamental component of the human body, present in nearly all tissues, fats, and fluids.
Moreover, B0 induces the alignment of hydrogen protons either parallel or anti-parallel to the
direction of B0 (cf. Figure 2.9). Notably, there is a slight excess of protons that align parallel
to B0, resulting in a magnetization effect within the matter.

The second part of MRI concerns with the phenomenon of resonance. When a radiofre-
quency (RF) pulse at the Larmor frequency is applied, it provides enough energy to disturb
the alignment of hydrogen protons in a small volume – known as the isochromat – leading
to a net magnetization. As shown in Figure 2.10, the longitudinal magnetization along the
direction of B0 is tipped by the RF pulse into the transverse plane. If the RF pulse is turned
off, the magnetization begins to relax and continue its previous alignment with B0. During
this relaxation, the isochromats emit RF waves by themselves, which are detected by a receiver
coil. These RF waves contain information about the so-called T1 and T2 relaxation times,
essential for ultimately constructing an image.

T1 relaxation describes the transition of the transversal magnetization back to the original
longitudinal magnetization level, as further illustrated in Figure 2.11. The T1 time is defined
as the time needed for the tissue to recover around 63% of its original magnetization along B0.
Each kind of tissue has a characteristic T1 time, where for example fat has a short and fluids
have a long T1 time.

Conversely, T2 relaxation describes the decay of the transverse magnetization after the RF
pulse. As shown in Figure 2.12 the RF pulse also leads to a temporary magnetization on the

Figure 2.10. Magnetization before (left) and after (right) the application of an 90° RF pulse. Due
to B0 the hydrogen protons have a longitudinal net magnetization along the z-axis. The RF pulse
tips this magnetization into the transverse xy-plane. Image adapted from [13].
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Figure 2.11. Effect of the RF pulse on the longitudinal magnetization. During the activated RF
pulse (top) the net magnetization along the z-axis is zero (bottom). After turning off the signal, the
magnetization steadily recovers. Image adapted from [13].

Figure 2.12. Visualization of T2 relaxation. The RF pulse leads to a transverse magnetization,
demonstrated in the plot. After turning off the pulse, the protons dephase and the strength of the
transverse magnetic field decays. Image adapted from [13].

transverse plane. The T2 time is defined as the time required for the transverse magnetic field
to decay to 37% of its initial strength. Typically, fluid-type tissue is equipped with longer T2
times than dense tissues such as bone. Same as in T1, the T2 relaxation can be detected using
receiver coils.

The third and last component in MRI is the mechanic of actually transforming the obtained
T1 and T2 signals into an image. Intuitively, an MRI measures the sources of magnetization
and water content within small regions of the subject’s body. This process involves the appli-
cation of gradient fields, known as gradient coils, which are responsible for spatial encoding by
varying the magnetic field along its axes, which enables the localization of the signal in three
dimensions. The acquired signal is stored in the k-space, a matrix where each entry represents
a specific spatial frequency component of the image. Eventually, the fully sampled k-space
matrix can be translated into the image domain using the inverse Fourier transform.
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2.3 Generative Modeling

Generative Modeling, as a broad subfield of statistical modeling and machine learning, is
equipped with various topics and nuances. The following section provides a detailed introduc-
tion to the domain and a general definition of generative models (Section 2.3.1.) Subsequently,
the full generative modeling landscape is narrowed down to three foundational algorithms,
each representing a different perspective on modeling a target distribution: Variational Au-
toencoders (VAEs; Section 2.3.2), Generative Adversarial Networks (GANs; Section 2.3.3), and
Diffusion Models (DMs; Section 2.3.4).

The presented selection of generative approaches forms a trilemma (cf. Figure 2.13). A VAE
is able to generate new samples quickly and with high diversity but lacks sufficient synthesis
quality. In contrast, a GAN produces high-quality samples rapidly but is not suited for diverse
and multi-modal data. The DM, however, achieves high-fidelity and quality sampling at the
cost of a long inference time. In the following sections, a deep dive into these methods examines
their nature and the reasons why this trilemma exists. Furthermore, efforts to mitigate specific
weaknesses are discussed.

Fast

Sampling

High

Quality

Samples

Diversity

GAN

Diffusion Model

VAE

Figure 2.13. The trilemma present in the generative methods of VAE, GAN and DM. Image adapted
from [14].

2.3.1 Generative Distributions

Despite being a specific subfield, generative modeling is still a very broad and vague term. The
literature provides a variety of definitions that converge in a similar direction, though each offers
a nuanced perspective on the topic. For example, Foster [15] claims that a generative model
is a probabilistic model that describes how a dataset is generated. According to Bishop [16]
a generative approach implicitly or explicitly models the distribution of inputs x and outputs
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y, i.e., the joint distribution p(x, y). These definitions originate from the idea of utilizing
generative models for supervised classification.

Discriminative versus Generative Classifiers. Bishops definition describes a classic gen-
erative classifier. Using the chain rule for p(x, y) = p(y | x)p(x), the conditional p(y | x) is
derived from the joint data distribution allowing the prediction of output targets y. Typical
generative classifiers include e.g. Naive Bayes and Gaussian mixture models. In contrast,
discriminative classifiers directly learn p(y |x), equivalent to modeling a decision boundary be-
tween classes. A selection of models enforcing this concept includes logistic regression, support
vector machines, or decision trees. Figure 2.14 highlights the difference between a discrimina-
tive and a generative model.

[17] illustrates one of the decisive advantages of using a generative classifier: given an
exemplary inference data point x∗ in Figure 2.14, which is situated far to the right of the
decision boundary but also distant from the cluster of red samples, the discriminative approach
would classify it with high confidence as belonging to the red class. On the contrary, recall that
the generative classifier approximates p(x, y) = p(y | x)p(x). While p(y = red | x = x∗) will
be very high, reasoned by its distance to the separating hyperplane, this does not necessarily
imply the correctness of the decision. The generative model has information about the data
distribution itself. Since x∗ is distant from the cluster of red samples, p(x = x∗) will be notably
low. Thus, p(x = x∗, y = red) is not equipped with high confidence, allowing a measure of
uncertainty or quantification of belief in the decision. Depending on the situation, x∗ might
belong to a newly discovered class or could assigned to be an outlier. However, without
considering p(x) the discriminative classifier has no utility to give an according estimation,
raising the question, of why discriminative models are used at all when generative models give
such an advantage. This phenomenon was investigated by e.g. [18], which found, despite the
presented toy example, discriminative models have a generally lower asymptotic error than the
generative version. Additionally, discriminate models tend to be more data-efficient and do
not require modeling an extremely high-dimensional p(x) in the case of x being image, video,

(a) A discriminative model. (b) A generative model.

Figure 2.14. Conceptual comparison of a discriminative and generative model in a two-class setting.
While the discriminative approach targets to differentiate between the two classes, the generative
approach approximates the joint data distribution p(x, y).
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or audio data [16].

Deep Generative Models. While the above definition of generative models is correct, the
recent object of interest has changed. In the earlier days, it was seen primarily as a byproduct
but is now a major reason for the widespread adoption of generative models: By learning
p(x), new, unseen data samples can be generated by sampling from this distribution. This
alters the general understanding of the generative framework. For example, Murphy [19]
recently defined a generative model solely as being the data distribution p(x) omitting the
need for label information y. Further introduced was the existence of a conditional generative
model p(x | c), where c corresponds to covariates guiding the generative process. Current
generative models are predominantly powered by DL, hence the prefix deep. Through their
capacity, they succeeded in entering complex data regimes with mixed data modalities [20,
21], meeting high publicity and an engaging community. Various algorithms were proposed
to create such a deep generative distribution. This thesis focuses on VAEs [22, 23], GANs
[24], and DMs [25, 26]. Additional widely adopted methods include normalizing flows [27]
and autoregressive plus energy-based models, among others. Each category possesses distinct
strengths and weaknesses, influencing both sampling speed and quality.

Contributions

Contribution C1 is located in the domain of undersampling MRI, which is a method to
reduce acquisition time by subsampling the number of obtained data points in k-space. A
previously defined pattern - a so-called undersampling mask - is employed to determine
the sampling process and acceleration factor. Reducing the number of acquired data
results in decreasing image quality, exhibiting blurring and other degradation artifacts.
Hereby, a typical use case of DL is to apply image restoration and refinement models
to enhance the undersampled images [28, 29, 30, 31, 32]. The approach of contribution
C1 reverses the process: Instead of optimizing images obtained from a pre-determined
undersampling mask, the mask itself is optimized yielding customized masks for dif-
ferent downstream tasks and datasets. This perspective is an experimental and nearly
unrevealed research area, encompassing only marginal literature [33, 34]. C1 tackled
the problem from a probabilistic point of view, optimizing a generative mask distribu-
tion that fulfills a convex sparsity constraint to enforce a desired acceleration factor,
hence pushing the boundaries of the generative modeling framework. Despite its dis-
crete nature, through a series of relaxation and reparametrization procedures, the novel
optimization process is end-to-end differentiable and model-free. The results indicate
that different anatomic regions have distinct optimal undersampling patterns and that
visual quality is not the only measure to effectively perform a downstream task, such as
segmentation.
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2.3.2 Variational Autoencoders

A basic autoencoder can be described as chain of two networks: an encoder and a decoder.
The encoder is defined as a mapping E : X → Z where X is the data space and Z is the
so-called latent space. In contrast, the decoder is a mapping G : Z → X . Note the unusual
notation of G, which is intended to emphasize its similarity to the generator used in GANs,
as described in detail in Section 2.3.3. The general goal of the full autoencoder is to encode
and reconstruct a sample x ∈ X . An overview of the architecture is displayed in Figure 2.15.
For a reconstruction x̂ = G(E(x)) this could be perfectly resolved when choosing the identity
function as a mapping for E and G. However, usually dim(Z) ≪ dim(X ). In other words, Z
serves as a bottleneck, forcing E to learn a meaningful representation of x to ensure optimal
recovery. For an elaborate introduction to latent spaces in generative models, the avid reader
is referred to Section 2.4.1.

The training of an autoencoder is traditionally done via the squared error. Interestingly,
when optimizing an autoencoder with the squared error as well as linear mappings E and G, it is
equivalent to performing Principal Component Analysis (PCA) [35]. Recent iterations include
the application of multiple loss functions simultaneously, including the binary cross-entropy
loss, deep perceptual losses [36, 37], and adversarial objectives [38, 39], which has substantially
boosted the visual reconstruction quality.

Autoencoder Challenges. Albeit the autoencoder framework is able to obtain good rep-
resentations from the dataset and reconstructs x samples well, it still has a major downside:
In its base formulation, the autoencoder is not yet a generative model. Aside from missing a
probabilistic component, the autoencoder is not able or extremely limited to sample x ∼ p(x)
[19]. Generally, in an autoencoder one would sample a z ∈ Z and then target to create a
new x ≈ G(z). However, this is not tractable in most cases, as z does not follow a specific
distribution. The model is trained fully unconstrained and thus gaps in the latent space occur.
Taking into account the curse of dimensionality [40], which refers to the phenomenon where
high-dimensional spaces, such as those in image data, are sparse, finding a z that maps to a
valid x ∈ X is akin to searching for a needle in a haystack. This challenge is addressed by the
probabilistic VAE, which imposes the framework of variational inference on the autoencoder.

Encoder z Decoderx x̂

Figure 2.15. Architecture of an autoencoder. The encoder and decoder are connected via a typically
low-dimensional bottleneck. The target is to reconstruct x, requiring the model to learn a meaningful
latent representation z.
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Variational Inference. Following [41] variational inference is defined as approximating a
conditional density of latent variables given observed variables with a variational density. In
the present case, variational inference strives to estimate a distribution over z in the latent
space after having observed a data sample x, i.e., the posterior distribution p(z |x). The need
for a variational framework becomes evident when expanding p(z | x):

p(z | x) = p(x, z)

p(x)
=

p(x, z)
∫
p(x | z)p(z) dz . (2.1)

Estimating the posterior requires computing p(x), the marginal density or evidence. Evalu-
ating the integral within the evidence requires exponential computational effort and is often
intractable [41, 16]. As an alternative, p(z | x) is replaced by an approximate density from a
known family – the variational density q(z|x). A tractable training objective can be formulated
by introducing a variational lower bound on p(x) via the approximate q(z | x):

log p(x) = log

∫

q(z | x) p(x, z)
q(z | x) dz ≥ Eq(z | x)

[

log
p(x, z)

q(z | x)

]

, (2.2)

which is called the evidence lower bound or ELBO. Equation (2.2) allows the application of
Jensens’ inequality due to the convexity of the logarithm function. The gap between p(x) and
the ELBO can be explained by the divergence between the true posterior p(z | x) and the
approximate posterior q(z | x), quantified by the Kullback-Leibler (KL) divergence:

log p(x) = ELBO +KL(q(z | x) ∥ p(z | x)) . (2.3)

By treating p(x) as a constant with respect to the variational parameters, maximizing the
tractable ELBO is equivalent to minimizing the KL divergence between the posteriors. Thus,
the equality log p(x) = ELBO holds only when p(z | x) = q(z | x).

From Variational Inference to Autoencoders. The previously elaborated variational
inference framework is concerned with fitting a latent variable model to estimate p(z |x). This
does not yet directly correspond to a generative model, though. Independently proposed by
[22] and [23], the VAE combines variational inference with the architecture of the autoencoder,
providing a method to jointly optimize q(z | x) and p(x | z). In that adaptation, q(z | x) is
represented by the encoder E , whereas p(x | z) is realized by the decoder G. Starting from the
ELBO, a fitting training objective can be derived by considering that p(x, z) = p(x | z)p(z):

ELBO = Eq(z | x)

[

log
p(x | z)p(z)
q(z | x)

]

= Eq(z | x) [log p(x | z)]
︸ ︷︷ ︸

Reconstruction likelihood

−KL(q(z | x) ∥ p(z))
︸ ︷︷ ︸

Deviation from prior

. (2.4)

The first term in the resulting Equation (2.4) corresponds to what is essentially a reconstruction
error. The second term denotes the deviation of the variational density from a prior distribution
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over the latents z. Essentially, penalizing the divergence between q(z | x) and p(z) leads to
imposing a constraint on the latent space Z. The prior distribution usually stems from a
known and tractable family. Thus, as p(z) is aligned with the encoding distribution q(z | x),
sampling z ∼ p(z) enables the generation of latent points that are mapped by G to valid data
points. This solves the problem of an autoencoder having gaps in its latent space. In the VAE
framework, the latent space is now smooth, enabling the creation of new data samples and
hence functioning as a generative model.

Stochastic Encoding. The definition of E as a deterministic mapping from the data to the
latent space does not meet the probabilistic requirements outlined in the generative model’s
definition. A proposed solution is to redefine E ’s output as the distribution p(z |x) rather than
a single latent data point. While the choice of distribution is arbitrary, an isotropic Gaussian
distribution N (µ,Σ) with Σ = diag(σ2) parametrized by a mean µ = (µ1, µ2, ...µk)

⊤ and
variance σ2 = (σ2

1, σ
2
2, ...σ

2
k)

⊤ is typically utilized. Technically, E remains deterministic but,
instead of predicting z directly, it predicts µ and σ, allowing for subsequent stochastic sampling
of z. In practice, Eq(z | x) is approximated via Monte Carlo sampling. This probabilistic
perspective introduces the challenge of backpropagating through stochastic nodes during the
training of E and G. The solution involves reparametrization: A noise variable ϵ ∼ N (0, I),
with ϵ ∈ R

k serves as the source of stochasticity. Random sampling is then simulated with
z = µ+ σ ⊙ ϵ, which allows unhindered gradient flow.

KL Divergence in Latent Space. Given that q(z |x) is Gaussian, a natural choice for p(z)
is also a Gaussian distribution. Following [19], for p(z) = N (0, I), the divergence between the
posterior and prior distribution can be directly estimated:

KL(q(z | x) ∥ p(z)) =
1

2

(

−
k∑

i

log σ2
i − k +

k∑

i

σ2
i +

k∑

i

µ2
i

)

. (2.5)

Utilizing VAEs as a generative model has a distinct downside: Due to the Gaussian prior,
the reconstructed and generated outputs tend to be considerably blurry (c.f. Figure 2.16). In
its extreme form, a phenomenon known as mode collapse occurs when q(z | x) ≈ p(z) due

Figure 2.16. Samples from a VAE trained on CelebA. The generative model exhibits severe blurriness
and a lack of high-frequency details due to the strong regularization of q(z | x). Image from [42].
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to excessively strong penalization. Here, the model completely ignores the covariates x and
produces only a single outcome – the mean of the dataset. A simple but powerful solution is
achieved by balancing the prior penalization term with a parameter β [43]:

Eq(z | x) [log p(x | z)]− βKL(q(z | x) ∥ p(z)) . (2.6)

This formulation is generally denoted as β-VAE. The choice of β is a trade-off in itself. Choosing
a large β > 1 results in strong latent representations with high disentanglement, but visual
reconstruction quality plummets substantially. Modern approaches that focus on high-quality
image outputs, such as the VAE backbone in Stable Diffusion [39], use β values of considerably
smaller magnitudes (e.g., 1e−6). In these cases, the smoothness of the latent space is less
important than image quality and is offset by the sheer amount of training data.

Contributions

The VAE framework is the foundation for contributions C2 and C3 . In its base for-
mulation, the model is trained in an unsupervised fashion, with the latent space being
formed by distinct image features. The Gaussian assumptions in the VAE tend to dis-
regard high-frequency features. However, in the present case of CT scans with liver
metastases, the object of interest is precisely such a small-detail feature. To counter this
aspect, an additional head is added to the latent space, which is not optimized for visual
reconstruction quality but via a supervised survival loss. This newly added head aids
in extracting the information necessary for subsequent survival analysis by altering the
vanilla VAE definition.
In contribution C5 a VAE serves as a backbone in the cascaded diffusion architecture
for synthesizing high-resolution CXRs. More precisely, the VAE acts as a bridge from
the generated latent points to the data space before the sample is upscaled by a super-
resolution diffusion model.

2.3.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs), proposed by [24], mark another important milestone
in developing deep generative models. In contrast to the VAE framework, the likelihood-free
GAN does not have the inherent limitation of blurriness in the synthesized outputs.

Adversarial Objective. The architecture of the GAN, as illustrated in Figure 2.17, consists
of two models: A generator G and a discriminator D. The definition of the generator aligns with
that of the encoding network in the autoencoder, as both are mappings, denoted G : Z → X .
New samples x̂ can be generated by sampling z from a predefined prior p(z), usually N (0, I).
On its own, G has no tractable solution for training to assimilate the data distribution. A
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Figure 2.17. Architecture of a GAN. The generator and discriminator are engaged in an adversarial
objective. The discriminator aims to differentiate between real and synthesized samples, while the
generator is optimized to deceive the discriminator.

fitting signal is produced by engaging a discriminator D, defined as a mapping D : X → [0, 1]
[44]. The discriminator’s role is to distinguish between real samples from the data distribution
pdata and fake samples from the generator distribution pG. During training, G and D compete
in a two-player minimax game. D aims to maximize the probability of correctly identifying
real and fake samples, while G seeks to minimize this probability. This relationship can be
expressed in a value function

min
G

max
D

V (G,D) = Epdata(x)[logD(x)] + Ep(z)[log(1−D(G(z)))] . (2.7)

By maximizing V with respect to D, the optimum value of 0 is achieved when D correctly
predicts all true samples x ∼ pdata with a 1 and all fake samples x̂ ∼ pG with a 0. In contrast,
G can only influence the second term, which, when minimized, incentivizes the creation of
samples that the discriminator cannot distinguish from real data. This effectively pushes G to
imitate the underlying data distribution pdata. The two models are trained in an alternating
fashion. The key is to find an optimal balance, as a good result can only be achieved when
one model does not overpower the other.

Optimization Challenges. The first difficulty arises when initializing the training. It is
extremely easy for D to differentiate between real and fake samples, as G has received few or
no weight updates, resulting in largely disjoint distributions. In this scenario, G suffers from
poor gradients. This issue can be mitigated by changing the objective for G from minimizing
log(1 − D(G(z))) to maximizing D(G(z)). Additionally, it has been proven beneficial for D
to receive multiple weight updates before each iteration of G [24]. These adjustments provide
an initial improvement to the original objective. Nonetheless, training a GAN remains an
unstable task, and many further improvements were proposed to alleviate the optimization
process.
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Further Developments. The GAN is a popular and widely studied subject with a myriad of
research literature. This section highlights key contributions that have substantially impacted
the development of GANs. The GAN itself is an unsupervised algorithm, and sampling is
unconditional. [45] introduced the ability to steer the generation process by providing G and
D access to label information. The GAN is still subject to severe mode collapse. Thus a
lot of effort has gone into stabilizing the training process. For example, [46] proposed to
replace the sigmoidal activation in D with a real-valued output and the cross-entropy error
function with a squared error function. [47] discovered that optimizing the earth mover’s or
Wasserstein distance, rather than the original GAN objective, results in much more stable
training. However, the formulation of the Wasserstein GAN (WGAN) requires D to satisfy
Lipschitz continuity. WGAN enforces this requirement by limiting D via weight-clipping, which
“is a clearly terrible way to enforce a Lipschitz constraint” [47]. WGAN-GP [48] enhances this
approach by incorporating a gradient penalty, which penalizes D when the gradient norm
deviates from 1. Another regularization technique is spectral normalization [49], which scales
the weights of D by their largest singular value. GANs traditionally require massive amounts
of training data. By applying augmentation to both real and fake images, GANs can be trained
with significantly less data [50].

For the domain of imaging, DCGAN [51] introduced architectural changes to convolutional
layers and compiled best training practices. Training a GAN to produce images becomes
increasingly challenging as the target resolution increases. The Progressive Growing GAN
(PGAN) [52] addresses this issue by employing an iteratively expanding architecture. This
approach begins optimization at a low resolution and incrementally extends it until the target
resolution is achieved. A major milestone is the introduction of StyleGAN [53]. Instead
of directly feeding the seed z to G, StyleGAN applies a mapping network for a non-linear
projection of z, which is subsequently passed to all layer blocks of G via adaptive instance
normalization [54]. [53] found that earlier layers encode coarse features while later layers
capture fine-grained image details, enabling the combination and style-based manipulation
of the generated images by injecting modified latent code. Its successor, StyleGAN2 [55],
improved upon this architecture by further refining the generator architecture and utilizing
path length regularization that benefits a well-behaved latent space. In the next iteration,
StyleGAN3, [56] argued that the StyleGAN synthesis process relies too much on absolute pixel
coordinates. This dependency causes objects (e.g., eyes or teeth) to be fixed to specific pixel
locations, resulting in unusual effects during interpolation. By treating signals in the network
as continuous, the model became equivariant to translation and rotation, effectively resolving
this issue. In recent years, the popularity of GANs has diminished slightly with the rise of
diffusion models. Current approaches strive to demonstrate the competitiveness of GANs in
comparison to diffusion models [57, 58].

GAN Inversion. The latent space Z implicitly formed by a GAN has some intriguing
properties. For examples, if the samples z1, z2 ∈ Z are in close distance, the synthesized
images G(z1),G(z2) ∈ X are similar as well [59]. Further, Z encodes rich semantic features
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of X [60, 53, 61, 62]. G provides a one-way mapping from the latent to data space but the
reverse direction is not possible in the GAN base architecture. Building a connection X → Z
is referred to as GAN inversion. This objective concerns finding a latent point

z∗ = argmin
z∈Z

L(G(z),x) , (2.8)

where L defines an arbitrary similarity criterion. Methods for performing this inversion can
be categorized into three groups [59, 63]:

• Learning-based: An encoder is trained to project x into Z.

• Optimization-based: Optimizes Equation (2.8) directly by backpropagation.

• Hybrid: Engages an encoder to initialize an optimization-based approach.

Learning-based approaches require training an additional network, but inference is done with
a single forward pass. Hence, this allows for the rapid inversion of large data sets, but the
encoder’s approximation of z∗ is notorious for neglecting small details. The optimization-based
approach is more precise, but it requires up to thousands of iterations to converge for a single
sample, making it very slow. Hybrid methods combine the best of both approaches. By using
the encoded x in the proximity of z∗ as a starting point, they substantially accelerate the
optimization process.

The previously described categories solve the inversion problem post-hoc. Outside of this
taxonomy, approaches such as [64, 65] jointly optimize a VAE and GAN to directly provide a
mapping to the latent space. Among other domains, the application of GAN inversion is an
important backbone in adversarial anomaly detection (e.g. [63, 66, 67]). Here, the foundational
assumption is that anomalous samples cannot be reconstructed by a G trained solely on regular
data. The loss criterion L should then exceed a certain threshold, indicating the presence of
an anomaly.

Image Editing. The release of StyleGAN has promoted a research movement towards
utilizing GAN inversion for image editing, dominantly in the area of facial image manipu-
lation. Notable methods for inverting the StyleGAN encoder include encoder4editing [36],
pixel2style2pixel [62] and ReStyle [69]. The HyperInverter [70] does not only apply an encoder,
but an additional auxiliary network that manipulates G to produce the target image.

After obtaining a latent point z∗ where G(z∗) ≈ x, the original image itself can now
be manipulated by transforming z∗ and projecting the result back to X using G. A simple
transformation can be, for example, a linear interpolation between two samples. Due to the
smoothness in Z, every change in z∗ translates to a semantic variation in the typically sparse
X in image space. In practice, the Gaussian p(z) is still subject to the curse of dimensionality
[40] such that most of its probability mass lies on a hypersphere. To account for this aspect,
spherical linear interpolation (SLERP) [71] is commonly used to enhance the quality of the
reconstructed images during interpolation.
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Figure 2.18. Manipulation of real images using the InterFaceGAN method on a GAN trained on
the CelebA dataset. Image from [68].

Of particular interest are guided transformations based on target attributes (c.f. Fig-
ure 2.18). The attributes that match the subject of interest are often part of a larger dataset
like in CelebA [72]. InterFaceGAN [68] is a simple but effective method for image manipu-
lation: When interpolating between two latent samples with different attributes (e.g., glasses
and no glasses), there must be a boundary where one attribute transitions into the other, i.e.,
the attribute turns into the opposite when crossing the boundary. This boundary, or sepa-
rating hyperplane, is created by inverting a labeled dataset and then training a supervised
classifier on the latent codes. In the case of InterFaceGAN a linear boundary is estimated
by a support vector machine [73]. Its weights form a normal vector n perpendicular to the
separating hyperplane between two attributes. Thus, one can manipulate a latent sample z

using z + αn where n serves as an interpolation axis and α defines the step size. Choosing
α > 0 will leverage increasing semantic features of the positive class and vice versa. While
the method is targeted towards facial editing, its formulation allows for general application.
A similar interpolation technique is portrayed in [60] in an attempt to quantify memorabil-
ity, aesthetics, and emotional valence. A different procedure that does not require inverting
the GAN is GANSpace [61], which identifies latent directions via PCA to steer the synthesis
process.
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Contributions

Contribution C4 builds on the PGAN generator of [74], which evaluate the clinical real-
ism of synthetic CXR. C4 analyzes whether post-hoc GAN inversion can be effectively
applied to high-resolution CXR, providing several key contributions. Firstly, C4 pro-
poses a novel multi-stage hybrid approach for inverting GANs, enabling the mapping of
CXR into the latent space of the generator. This approach includes bootstrapped pre-
training to align the encoder directly to the generator’s distribution, followed by fine-
tuning with real data and iterative optimization to enhance inversion quality. Secondly,
the study demonstrates that Z encodes semantically meaningful features of CXR, which
allows for various applications such as image compression, guided image manipulation,
and the creation of stylized samples, Moreover, GAN inversion enables the application
of generative techniques to actual patient images. The findings conclude that the quality
of the inversion process is upper-bounded by the capacity of the utilized generator. This
manifests in inverted samples lacking details like medical devices and annotation, which
the used G network cannot produce.

2.3.4 Diffusion Models

Despite the difficulty in training GANs, they were considered the state-of-the-art method in
generative modeling until the advent of Diffusion Models (DMs). Propelled by papers with
compelling titles such as “Diffusion Models Beat GANs on Image Synthesis” [75] and ground-
breaking open-source models, the attention shifted and persisted until the time of writing this
section. Interestingly enough, the original idea of DM stems from the field of thermodynam-
ics [25]. The architecture and training objective were refined by [26] creating a fully-fledged
generative model capable of high-quality content synthesis.

The upcoming introduction to DMs follows the definition of Denoising Diffusion Prob-
abilistic Models (DDPM) [26] and the tutorial of [76]. Alternatively, DMs can be defined
equivalently from a score-matching perspective [77, 78], which is not covered in this thesis. On
a conceptual level, as shown in Figure 2.19, the DM forms a Markov chain, where states are
connected through a series of transitions that gradually add (forward diffusion process q) or
remove noise (reverse diffusion process pθ). Note that the definitions of q, pθ and some other
notations deviate from the general notation used in this thesis but are retained to maintain
consistency with the standard terminology in DM literature.

Forward Diffusion. The forward diffusion process q intuitively describes the corruption of a
data sample x0 ∼ q(x) via some noise distribution, which is chosen to be Gaussian in the DM
base formulation. The sample x0 is corrupted over T timesteps. According to the Markovian
property, the next state depends solely on the present state and not the preceding sequence.
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x0 ... xt−1 xt ... xT

≈ z

q(xt | xt−1)

pθ(xt−1 | xt)

Figure 2.19. Architecture of a diffusion model. In the forward diffusion process q, data x0 ∼ q(x) is
progressively noised until it matches a simple noise distribution, e.g. xT ≈ z ∼ N (0, I). The reverse
diffusion process pθ transforms noise back into complex data through a series of denoising steps, each
refining the generated sample.

Thus, for sampling an arbitrary timestep t with 0 < t ≤ T the transition

q(xt | xt−1) = N (
√

1− βtxt−1, βtI) . (2.9)

The step size between two states is moderated by a variance βt that is part of a variance schedule
{βt ∈ (0, 1)}Tt=1. Practically, T ranges in the magnitudes of thousands, whereas β is chosen to
be small. For example, [26] employ T = 1000 with a linear interpolation from β1 = 1e−4 to
βT = 0.02. The difference between two neighboring states is marginal, indicating a consistent
and seamless transformation where increased corruption is applied to larger T . Eventually,
the final xT resembles an isotropic Gaussian distribution. Having declared the timesteps and
variance schedule, the trajectory towards xT starting from an uncorrupted sample x0 is defined
as

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1) . (2.10)

However, reaching T implies that every state in this trajectory must be evaluated, which is
computationally intensive and time-consuming. This limitation can be circumvented by apply-
ing a reparametrization trick similar to the one used in VAEs, allowing sampling an arbitrary
timestep t in a tractable closed-form. With the substitution αt = 1 − βt the computation of
xt can be recursively unfolded as follows:

xt =
√
αtxt−1 +

√
1− αtϵ

=
√
αtαt−1xt−2 +

√

1− αtαt−1ϵ

= ...

=
√
ᾱx0 +

√
1− ᾱϵ
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Here, ϵ ∼ N (0, I) and ᾱ =
∏t

i=1 αi. This formulation is one of the crucial success factors of
DMs, as now q(xt |x0) = N (

√
ᾱx0,

√
1− ᾱI) allows to create noised training data for all time

steps in a single computation.

Reverse Diffusion. Adding noise to data samples is a trivial procedure, whereas this could
not be stated about the opposite. Sampling xT ∼ N (0, I), reversing the diffusion process, and
thereby generating new data is somewhat more challenging. This starts by the true posterior
q(xt−1 | xt) being intractable. It is thus replaced with an approximate distribution

pθ(xt−1 | xt) = N (µθ(xt, t),Σθ(xt, t)) (2.11)

parametrized by θ. The trajectory of deriving x0 from xT is then defined as

pθ(x0:T ) = pθ(xT )
T∏

t=1

pθ(xt−1 | xt) . (2.12)

Training Objective. A suitable training objective can be formulated over the evidence
lower bound (ELBO) similar to the VAE. Intuitively, the approaches of VAE and DM have
substantial parallels. Encoding data corresponds to transforming the data into noise, while
the denoising aspect is akin to decoding. Following [79], the ELBO can be decomposed as:

log pθ(x) ≥ Eq(x1:T | x0) [log pθ(x0 | x1:T )]−KL(q(x1:T | x0) ∥ pθ(x1:T ))

= Eq(x1 | x0) [log pθ(x0 | x1)]
︸ ︷︷ ︸

L0

−KL(q(xT | x0) ∥ pθ(xT ))
︸ ︷︷ ︸

LT

−
T−1∑

t=2

Eq(xt | x0) [KL(q(xt−1 | xt,x0) ∥ pθ(xt−1 | xt))]
︸ ︷︷ ︸

Lt−1

.

(2.13)

The results contain three distinct types of terms, each requiring a different mode of interpre-
tation. Similar as in the VAE objective, the first term, L0, can be interpreted as a type of
reconstruction error when traversing from x1 to x0. [26] model L0 as a separate discrete de-
coder, which maps the continuous signal to discrete pixel values. The second term LT measures
the distance from the corrupted xT to the prior distribution of xT . Since both expressions
resemble an isotropic Gaussian and lack trainable parameters, this term remains constant and
is not relevant for training. The last term Lt−1 denotes the similarity of the true versus the
approximated reverse posterior for every state > 0 in the Markov chain. It can be observed
that for T = 1, the objective in Equation (2.13) is equivalent to that used in VAEs.

By applying the Bayes rule and the closed form of the forward process, the mean of the
posterior can be expressed as

µθ(xt, t) =
1√
αt

(

xt −
1− αt√
1− ᾱt

ϵθ(xt, t)

)

. (2.14)
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This notation indicates a valuable discovery. The neural network used for the approximation
pθ(xt−1 | xt) does not directly predict the mean of its distribution. Instead, it predicts the
noise applied to x0. The network has the same weights across all timesteps and is equipped
with xt and the information about the current t. As dim(xt) = dim(ϵt), this is similar to an
image-to-image translation problem. The standard architectural choice is hence a U-Net [3]
with time-conditioned encodings.

One remaining task is to parametrize the variances, Σθ(xt, t). [26] set Σθ(xt, t) = σ2
t I to

time-dependent constants, where experiments showed that σ2
t = βt and σ2

t = 1−ᾱt−1

1−ᾱt
as the

upper and lower bounds of the reverse process entropy led to similar results. In contrast, other
work (cf. [80]) opted for learning the variance parameters.

Through a series of rearrangements and substitutions (see [79] for full derivation), the final
loss objective then boils down to

Et∼[1,T ],x0,ϵt

[
(1− αt)

2

2αt(1− ᾱt) ∥Σθ∥2
∥ϵt − ϵθ(xt, t)∥2

]
simple≈ Et∼[1,T ],x0,ϵt

[
∥ϵt − ϵθ(xt, t)∥2

]
, (2.15)

where xt =
√
ᾱx0+

√
1− ᾱϵt. Empirical evidence has shown that using the simplified version of

the loss, which treats the weighting term as constant, yields superior results [26]. In summary,
by the merits of the closed-form forward noising and one unified network for all timesteps, a
DM can be trained rather efficiently across all Markov states in parallel. To generate a new
data sample, the base DDPM must traverse every state from xT to x0, necessitating thousands
of network passes. This results in slow and computationally intensive inference.

Accelerating Diffusion. With the intention of mitigating the inference bottleneck of DMs,
Diffusion Denoising Implicit Models (DDIM) [81] formulate DM as a non-Markovian process
with the same training procedure as DDPMs but a substantially faster generation process. The
key idea is to skip certain steps when generating a new data sample from xT . In the original
DDPM, one step is being computed by sampling from the predicted posterior distribution. In
contrast, the DDIM has no stochastic element:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)

︸ ︷︷ ︸

Prediction of “x0”

+
√
ᾱt−1ϵθ(xt, t)

︸ ︷︷ ︸

Deterministic “noise”

. (2.16)

The inference step consists of two components. First, given xt, the model directly estimates
an approximation of x0. Second, to account for the correct amount of noise corruption in the
target xt−1, a predicted but rescaled ϵ is added to the initial estimate. This has two major
effects. On one hand, the absence of stochasticity due to deterministic model forward passes
renders the full DM deterministic, meaning one specific xT maps to one x0. On the other hand,
arbitrary steps can be skipped by adjusting the scaling term

√
ᾱt−1 to earlier timesteps than

t−1 in the second term. The number of inference steps represents a quality trade-off. Typically,
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around 100 DDIM steps are used, which maintains generation quality while accelerating the
DM by multiple factors.

[82] argue that DDIM is a variant of pseudo numerical methods and improve the sampling
quality with even less steps. From another point of view, DMs can be solved as ordinary
differential equations, giving rise to a new class of samplers [83, 84]. More approaches to boost
the inference speed of DMs include the parallel sampling of steps [85] or progressive distillation
[86], among others.

Latent Diffusion Models. A notable drawback of DDPM is that the dimensionality of Z
matches that of X , which may be extremely large and has a high sparsity. This limitation is
circumvented, for example, by the VAE framework, where the latent space is usually a semantic
bottleneck. However, it has been demonstrated that simply sampling from a Gaussian prior
does not achieve the desired fidelity and perplexity for complex X . One possible mitigation is
to employ an autoregressive transformer to generate new z instead of sampling from a basic
prior distribution [87, 38]. The architecture of a latent diffusion model (LDM) [39] transports
this idea into the realm of DMs (see Figure 2.20). Intuitively, an LDM is a VAE in which,
during inference, latent samples are generated by a DM before being translated into data
space. In other words, the forward and reverse diffusion processes are applied to a semantic
meaningful Z. One of the major benefits of conducting diffusion in latent space is the reduced
computational effort as dim(Z) is usually magnitudes smaller than dim(X ). Thus, the LDM
comprises two neural networks, the VAE and DM, which are trained separately in two stages.
The VAE operates independently of the DM and can be reused across various DM engines. To

Figure 2.20. Architecture of a latent diffusion model (LDM). Instead of applying diffusion in the
data space X , the LDM utilizes a VAE to conduct the process in the latent space Z. Additionally,
cross-attention serves as a conditioning mechanism to guide the generation toward a target of choice.
Figure from [39].
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account for the diffusion in latent space, the DM objective is modified accordingly as follows:

Et∼[1,T ],z0∼E(x),ϵt

[
∥ϵt − ϵθ(zt, t)∥2

]
, (2.17)

using an encoder E and zt =
√
ᾱz0 +

√
1− ᾱϵt.

Moreover, the LDM framework proposed a new method to steer the diffusion process toward
some conditioning c. This conditioning can be any concept that should be included in the
generated data, be it text, images, representations, or scenes. Previous methods were limited
to utilizing the gradients of an auxiliary classifier [75] or applying classifier-free guidance [88].
Alternatively, using the same mechanism as in encoder-decoder transformer architectures [89],
the information can be fed to the underlying diffusion network via cross-attention. For this,
an embedding head τθ is used to process c into a suitable representation before being passed
to the model.

Further Developments. Propelled by the generation quality and capability of conditioning
on text inputs, DMs dominate the generative computer vision community. With exponentially
growing datasets, large-scale models have been developed by major private industry players
capable of affording the necessary GPU resources and advancing the state-of-the-art. Examples
include GLIDE [90], DALL·E2 [91], and DALL·E3 [92] from OpenAI or Imagen [93], SR3
[94], and Palette [95] by Google. A significant contribution to the open-source community
was made by the Stable Diffusion model series, supported by Stability AI. So far, its releases
include Stable Diffusion 1, 2 [39], XL [96], and 3 [97, 98].

Given the widespread open access to foundational diffusion models, a new field within
generative modeling focuses on adapting existing models to meet personal needs with limited
resources. For example, textual inversion [99] and DreamBooth [100] allow to adapt a DM to
custom objects or concepts given only a handful of images. Custom Diffusion [101] fine-tunes
only the cross-attention layer in the DM. DiffEdit [102] facilitates semantic image editing
through content preservation via automatically generated masks. The LoRA [103] method,
also often used in large language models, learns only additive low-rank approximations of the
model weights. Similarly, ControlNet [104] is an auxiliary network integrated into the original
model, enabling new modes of conditioning, such as canny edges or poses. The training-free
framework FABRIC [105] guides the diffusion process based on user preferences over multiple
iterations.

Further effort has gone into improving the diffusion process in general. A non-exhaustive
list includes, e.g., experimenting with transformers as a backbone [106], using an ensemble of
expert denoisers for given timestep range [107], or applying rectified flows for optimal transport
between diffusion states [108]. To accelerate the inference speed, FlashAttention [109, 110]
revises the implementation of the attention mechanism with the DM and provides GPU-specific
kernels for increased efficiency. The deployment of DMs on edge devices without access to
GPU architectures can be facilitated with weight quantization [111, 112]. While the center
of attention is still on image synthesis, the application of diffusion spreads across a myriad of
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other modalities and disciplines, for example, videos [113, 114], audio [115], time series [116],
anomaly detection [117], learning representations [118], generating gene sequences [119], or
MRI-to-CT synthesis [120].

Contributions

The previously described methods are typically applied and validated by training mod-
els on extremely large datasets, often comprising tens of millions of natural images or
more. Contribution C5 examines whether these approaches can be adapted to the med-
ical domain, using CXR images as an example. An additional motivation for C5 was
the deficiency of the analyzed GAN generator discovered in contribution C4 , which po-
tentially can be eliminated by a more complex model. The first part of the proposed
contribution involves compiling a collection of open-sourced CXR datasets, referred to
as MaCheX (massive chest X-ray dataset), encompassing roughly 650, 000 CXR images
preprocessed for training. MaCheX was expanded after the paper’s publication and now
contains nearly 1 million entries. The goal of MaCheX was to provide an optimal basis
for training a large-scale foundational CXR DM, which is the second part of C5 . The
model consists of three stages: the first two stages employ a LDM, and the final stage
is a super-resolution diffusion model that upscales the target to one megapixel. Empiri-
cal results showed that this model provides high-detail and -resolution samples, forming
a new state-of-the-art in the domain of CXR synthesis. Moreover, C5 was the first
peer-reviewed publication that investigated radiology-report-to-CXR synthesis, hence,
pioneering a new research area. The model is publicly available and equipped with an
open-source license.
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2.4 Representation Learning

While Representation Learning (RL) is a subfield on its own, its concepts pervade most of the
DL domain. According to [35] RL is a “set of techniques that allow automatic construction
of data representations needed for machine learning”. This definition aligns with one of the
ultimate goals of DL: eliminating the need for manual feature selection and preparation and
thus allowing the network to process raw or minimally preprocessed data directly. RL is
implicitly or explicitly part of nearly every neural network. For example, a simple image
classifier network can be decomposed into two components: the main body and the head. The
main body employs a series of linear and non-linear transformations to map the input data
into a feature space. This process extracts valuable semantic concepts from the data while
removing redundant information. The head, typically a simple linear classifier, then makes
decisions based on the features produced by the body. In this end-to-end setting, the main
body did indeed learn a representation of the input data.

The subsequent section serves as a glimpse into the RL domain by focusing on three of its
subfields. First, Section 2.4.1 demonstrates how RL is embedded as a fundamental concept
in generative models. Second, Section 2.4.2 investigates the application of RL for creating
semantic embeddings. Third, Section 2.4.3 shows how dimensionality reduction and tensor
decomposition are related to RL.

2.4.1 Latent Spaces in Generative Models

Formally, a latent space Z is an abstract representation or encoding of typically high-dimensional
and complex data [15]. This space captures the underlying factors or features that characterize
the data but are not directly observable. Z is also often called feature or embedding space.
The concept of latent spaces is closely related to manifold learning that assumes the observed
data reside on a low-dimensional manifold embedded within a high-dimensional space [121]. A
latent space possesses several desirable properties [35]. One such property is smoothness, which
indicates that Z is continuous, ensuring that small variations within it lead to proportional
changes in the output. Another property is disentanglement, where distinct concepts from X
are represented in Z as separate factors or dimensions. For example, in an ideal scenario, a
latent space for images of black circles might consist of only two factors: the location of the
center and the radius.

Generative Seeds and Latent Spaces. In generative modeling, the latent space plays a
central role and is often the “fuel ” for inducing a generative process. Most, if not all, generative
models employ some tractable prior distribution p(z) to sample a z ∈ Z that connects to a new
synthetic sample x ∈ X . Figure 2.21 illustrates how the different concepts of VAEs, GANs, and
DMs are related. The VAE has the most accessible latent space of the three showcased models.
Real data samples can be directly converted to a latent representation using the encoder, which
facilitates the conversion of large datasets with subsequent analysis of their latent structure.
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Figure 2.21. A holistic high-level overview of the generative models: GAN, VAE, and DM. Albeit
having separate frameworks and concepts, every framework has some connection to a latent space
that enables the generative process. Figure inspired by [76].

Conversely, the synthesis process is more complex. While the decoder can readily project a
latent sample back to the data space, identifying a valid latent point is non-trivial. Sampling
from z ∼ p(z) does not ensure that z lies on the manifold of q(z |x). Although the ELBO loss
objective minimizes the distance between p(z) and q(z |x), it does not completely align them,
as doing so would result in posterior collapse. The strength of this regularization determines the
structure of the spanned latent space. A stark alignment to the isotropic Gaussian prior implies
a strong factor of disentanglement, yielding favorable representations. The close distance to
the prior also aids in finding a z that translates to a meaningful data sample. In practice,
typical training data do not follow a Gaussian distribution (e.g. binary images) and this
regularization leads to a substantial loss in generation quality. Thus, finding the optimal
balance between disentanglement and synthetic quality is a key challenge in fitting a VAE
architecture. Aside from pure sample synthesis, the VAE is particularly suited for image
manipulation. Through the encoder’s translation to feature space, a data point can be modified
using various techniques, including interpolations, traversals, and projections, among others.
However, given the limited reconstruction quality of the decoder, these are more beneficial for
feature discovery or counterfactual explanations rather than for photo-realistic image editing.

The GAN shares some concepts with the VAE architecture. Both have a generating archi-
tecture, the generator and the decoder, which take a latent sample and convert it to a data
point. Due to the absence of a latent posterior, sampling from p(z) in a GAN does not result in
a distribution discrepancy as it does in a VAE. Further, the two models utilize a compressing
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architecture. While the VAE’s encoder projects data into latent space, the GAN’s discrimina-
tor outputs a scalar indicating the authenticity of the input. Unfortunately, the GAN lacks a
direct access point to its latent space. Building the required bridge follows the technique of
GAN inversion, described in detail in Section 2.3.3. Fascinatingly, the GAN’s prior distribution
does form a fully-fledged latent space. It implicitly encodes semantically meaningful features,
despite having no explicit encoding process in its training and merely serving as a seed for the
generator. With inversion, the GAN can be utilized for latent space editing and manipulation
similarly to the VAE, but with a significant advantage: The generated samples are of superior
quality compared to those produced by the VAE.

The latent space of the DM exhibits distinct differences compared to that of the VAE and
GAN. Firstly, the DM does not involve compression, as the dimensionality of z matches that
of x. Consequently, there is no feature extraction. Due to the probabilistic nature of the
DM, a single z can yield infinitely different x instances. Intuitively, a latent point provides
a starting point for a trajectory whose course has not yet been determined. Secondly, as
the encoding and decoding process between X and Z is based on a stochastic process, new
complexity in navigating the latent space is introduced. While VAEs and GANs allow relatively
straightforward manipulations of the latent vectors, the DM requires careful control over the
diffusion steps to ensure meaningful modifications. This process can be more computationally
intensive and less intuitive in comparison to the direct latent space manipulations available
in VAEs and GANs. The application of DDIM [81] with a deterministic sampling process
mitigates this limitation to a certain degree, allowing for example the interpolation between
two z. Another viable strategy is masking, where certain parts or areas, such as in an image, are
masked during each denoising step. The DM is then tasked with filling in only the unmasked
areas, often guided by a conditioning mechanism that steers the diffusion process toward the
desired changes.

Unifying Architectures. Each architecture has its advantages and disadvantages. To mit-
igate the weaknesses of one model and enhance it with the strengths of another, unified ar-
chitectures attempt to integrate different approaches under a single framework. For example,
Adversarial Autoencoders [122] substitute the KL-divergence penalty in the VAE objective
with an adversarial component that determines whether z originates from a specific prior
distribution, enabling the network to learn arbitrary p(z). Similarly, Adversarial Variational
Bayes [123] refines the variational inference process in VAEs by employing adversarial training
to distinguish between true and variational posteriors. Bidirectional Generative Adversarial
Networks (BiGANs) [124, 125] simultaneously learn a GAN and an encoder that provides an
inverse mapping, thereby eliminating the need for post-hoc inversion. [126] connect GANs
and VAEs formally by interpreting GAN synthesis as performing posterior inference. Fur-
ther, [127] enable unpaired image-to-image translation with DMs by using a reconstructable
encoder model in the stochastic diffusion process. Diffusion Autoencoders [128] utilize a se-
mantic encoder paired with a diffusion decoder. Although not closely related to latent spaces,
the integration of GANs into DMs remains important. Typically, proposed methods addition-
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ally evaluate each timestep in the diffusion process with a discriminator [129, 14]. On top of
that, adversarial methods have proven beneficial for distilling large DMs [130].

Contributions

The latent space plays a central role in the contributions employing VAEs, GANs, and
DMs. Contribution C2 analyzes the impact of an additional supervised survival network
attached to the latent bottleneck in a VAE. In addition to pure visual reconstruction, the
latent space now incorporates survival information, leading to a reordered and restruc-
tured representation. In contribution C3 this added survival head serves to manipulate
data. The approximation of the posterior q(z | x) is guided by the gradients of the
survival network to move into regions of increased or decreased hazard. Paired with the
decoding network, this gradient-based walk aids in visualizing sources associated with
hazards in unstructured data spaces. Further, contribution C4 applies GAN inversion
to obtain access to the latent space of a CXR generator. The paper analyzes the ob-
tained CXR embeddings to find clusters reflecting data characteristics and applies latent
space traversals in an attempt to model pathology progression. Lastly, contribution C5
utilizes the synthesis stack to perform image in- and outpainting on CXR via a masking
procedure, demonstrating the capacity of the proposed model.

2.4.2 Neural Embeddings

The previous section examined latent spaces, which are essentially neural embeddings. While
latent spaces typically emerge as a useful byproduct in generative models, other methods aim
specifically to produce embeddings. A neural embedding, as the name suggests, is typically
produced by a highly non-linear neural network. Moreover, an embedding is generally a con-
densed vector representation of complex data, where semantically meaningful information is
contained in disentangled form. A desired property within these representations is invariance
[35]. In an invariant embedding, changes within the same abstract concept in X result in
a similar location in Z. For example, a batch of dog images should map to rather similar
embeddings, whereas images of cats and dogs should not. The term Self-Supervised Learning
(SSL) often occurs in the context of learning such invariant and disentangled embeddings. This
approach leverages the inherent structure of the data without requiring explicit labels.

Language Embeddings. Embeddings are a necessity in Natural Language Processing (NLP),
as the foundational data is not numeric but present in the forms of characters, words, or sen-
tences. Also, language can be quite ambiguous, where two completely different words can have
the same meaning. This aspect benefits substantially from the invariance property. A popular
method to provide word embeddings is Word2Vec [131], which encodes words by predicting



2.4 Representation Learning 39

word-context pairs via a shallow neural network. GloVe [132], on the other hand, generates
embeddings by constructing a global word-word co-occurrence matrix and then factorizing it
to produce vector representations. While these methods have advanced the NLP community,
current attention focuses on vector databases [133]. Instead of single words, vector databases
encode complete documents, storing them in a queryable structure. This approach saves stor-
age and enables semantic document search as well as information retrieval, often assisted by
LLMs.

Contrastive Learning. Methods in SSL can be further divided into generative and con-
trastive approaches [134]. For example, the previously mentioned method Word2Vec with
its encoding and decoding structure belongs to the generative class. Conversely, contrastive
methods explicitly promote contrasting positive and negative pairs of instances. Aligned with
the general idea of invariance, similar (positive) samples should be close together, whereas
different (negative) samples are pushed apart. To produce corresponding pairs, contrastive
learning heavily relies on data augmentation. The simple framework SimCLR [135] operates
by maximizing the agreement between two randomly augmented versions of the same sample.
Similarly, MoCo [136, 137] extends this concept by introducing a dynamic dictionary, serving
as a queue of negative data samples, and a momentum-updated encoder. In contrast, BYOL
[138] does not utilize negative data samples but instead relies on predicting the representation
of the augmented sample itself as the objective. To enforce consistency and disentanglement,
Barlow Twins [139] aim to minimize the distance between the cross-correlation matrix of two
augmentations and the identity matrix. Breaking with the concept of SSL, SupContrast [140]
uses supervision to construct positive and negative data pairs based on labels. Likewise, JEPA
[141] operates within the realm of supervision by jointly learning embeddings of data and
their corresponding labels, aligning the embeddings of both. Joint embeddings are particu-
larly useful in a multi-modality setting, as demonstrated by CLIP [142], which constructs an
embedding space for both images and text.

Contributions

Embeddings and SSL are powerful toolboxes to extract information from data and cre-
ate tailored representations. However, in an unregularized setting, the applied algorithm
learns to extract any kind of information without considering its ethical applicability.
This results in unintended side effects, like networks being able to predict a patient’s race
in CXR with high confidence [143, 144]. The prediction of sensitive attributes in CXR
is feasible not only from raw images but also from neural embeddings obtained through
classifiers and SSL methods, which introduces an inherent bias in downstream tasks [145,
146]. Contribution C6 tackles this challenge using an orthogonalization procedure. In
the first step, the existing bias in CXR embeddings is confirmed. The second step con-
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cerns removing such a bias by projecting the embedding into a space orthogonal to the
sensible features. The analysis concludes that orthogonalization makes the prediction
of the targeted attributes infeasible but does not resolve subgroup disparities, highlight-
ing the need for further investigation into sources of bias. Contribution C6 elaborates
on a highly significant and active domain—bias in clinical decision-making—and raises
concerns about the practical application of CXR classifiers. It provides a platform for
further research in the field of bias in SSL embeddings and showcases novel applications
of post-hoc orthogonalization.

2.4.3 Dimensionality Reduction & Tensor Decomposition

Dimensionality reduction and RL describe nearly the same concept but under different um-
brellas. While RL emphasizes the automatic extraction of features, the term dimensionality
reduction focuses on the compression aspect. Both approaches aim to achieve a unified goal:
finding a low-dimensional representation of often complex data that captures its underlying in-
formation. For instance, Principal Component Analysis (PCA) is a common method for reduc-
ing dimensionality. It works by rotating the original data into a new coordinate system, where
the axes, or principal components, match the directions of greatest variance. PCA effectively
reduces the data’s dimensionality by keeping only the principal components with the highest
variance. The method thus has found a compact representation of the data. Hereby, perform-
ing PCA is equivalent to obtaining the embedding from a linear autoencoder. Although both
methods operate unsupervised, a key difference is in their inner workings: Autoencoders re-
quire an auxiliary network to generate embeddings, whereas PCA decomposes the data matrix
directly. The subsequent sections serve as an introduction to the field of tensor decomposition.

Singular Value Decomposition. Singular Value Decomposition (SVD) [147, 148, 149] is
one of the foundational algorithms to perform matrix decomposition. The SVD states that
given a matrix A ∈ R

r×s it can be decomposed as

A = USV ⊤ . (2.18)

U ∈ R
r×r and V ∈ R

s×s are orthogonal, i.e. its columns or rows have a norm of 1 and their
pairwise inner product corresponds to 0. Here, the columns of U are referred to as the left
singular vectors, while the columns of V are referred to as the right singular vectors. S ∈ R

r×s

is a diagonal matrix with non-negative entries representing the singular values of A, sorted in
descending order. It can be proven that an SVD exists for every matrix [149]. In a geometrical
interpretation, A is a linear mapping R

r → R
t. The SVD decomposes this operation into

a rotation in R
r with U , a scaling operation by S with a change in dimensions and a final

rotation in R
s by V . In its current form, the SVD does not gain an advantage in the sense of

dimensionality reduction but serves to discover concepts hidden in A.



2.4 Representation Learning 41

Alternatively, the SVD can be expressed as the sum of min{r, s} rank-1 matrices, where
one rank-1 matrix results from the outer product of the i-th left and right singular vectors (ui

and vi) scaled by the corresponding singular value si:

A =

min{r,s}
∑

i=1

siuiv
⊤
i . (2.19)

A low-rank approximation of A can be produced by taking only a fraction of all rank-1 matrices
in the previous summation. As the singular values are in descending order and reflect the
importance of the transformation along the respective axes, a rank-k approximation is created
by taking the first k components of the full decomposition:

Â =
k∑

i=1

siuiv
⊤
i . (2.20)

Figure 2.22 illustrates how this truncated SVD relates to the full decomposition. Eventually,
Â = UkSkV

⊤
k , where Uk ∈ R

r×k, Sk ∈ R
k×k and Vk ∈ R

s×k.
A major benefit of low-rank approximations is the aspect of compression. Instead of having

to store the r ·s elements of A, the truncated SVD amounts to m ·k+k+k ·n = k · (1+m+n)
entries, which requires substantially less space for small k. In practical scenarios, SVD can be
used as a form of naive image compression. Further use cases involve denoising and efficient
training of huge weight matrices in neural networks (see LoRA [103]). Truncated SVD is a
form of lossy compression, so the choice of k is crucial. A basic indicator is given by the
magnitude of the si, but selecting an appropriate threshold is challenging and depends on the
intended application. Simply, one could evaluate the difference of A and Â and increase k

until a certain quality criterion is reached. A rule of thumb could be formulated as choosing
k such that the sum of the top k singular values is minimally a pre-defined domain-specific
constant times the sum of the remaining singular values [148].

=

k k

k k
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= U
r × r

· S
r × s

· V ⊤
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Figure 2.22. Truncated SVD. Instead of conducting a full SVD, the grey boxes demonstrate how a
rank-k approximation of A is achieved by considering only the first k left and right singular vectors,
along with their corresponding singular values.
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Connection to PCA. PCA aims to project a matrix onto its principal components, captur-
ing the primary sources of variance within the data. The first principal component corresponds
to the direction that maximizes variance in its projection. Subsequent components are orthogo-
nal to the preceding ones and continue to maximize the explained variance. Geometrically, this
is equivalent to rotating the coordinate system, and dimensionality reduction can effectively
be performed by disregarding components that do not substantially contribute to the total
variance. Finding these directions is the same as computing the eigenvectors. Given that the
matrix of interest A is scaled and centered, PCA computes the eigenvectors and eigenvalues
of the covariance matrix A⊤A via the eigendecomposition

A⊤A = QΛQ⊤ , (2.21)

where Q ∈ R
r×r contains the eigenvectors as columns and Λ ∈ R

r×r is a diagonal matrix
containing the eigenvalues [149]. By substituting the SVD A = USV ⊤ into the covariance
matrix, one can see that

A⊤A = (USV ⊤)⊤(USV ⊤) = V S⊤U⊤USV ⊤ = V S2V ⊤ , (2.22)

with U⊤U = I due to orthogonality. This implies that the right singular vectors of A corre-
spond to the eigenvectors of the covariance matrix. Thus, eigendecomposition and PCA can
be conducted without computing A⊤A. Dimensionality reduction can then be performed by
selecting a subset of k components via Vk and using the projection AVk. Ultimately, with
SVD as a backbone, a data representation was found that focuses on capturing the explained
variance.

Tucker decomposition. The methods of SVD and PCA cover only matrices (2D arrays).
A possible generalization of SVD to higher-order tensors or multi-dimensional arrays can be
formulated using the Tucker decomposition [150, 151, 152]. The following introduction demon-
strates the method using a third-order tensor A ∈ R

r×s×t for visualization. Nevertheless, it
generalizes to an arbitrary number of dimensions.

A necessary prerequisite is the concept of tensor fibers. This refers to a selection process
in which all indices except one are fixed [152]. The mode specifies the dimension along which
the selection occurs. For example, in a matrix, a mode-1 fiber is a column, whereas a mode-2
fiber is a row. Third-order tensors, such as A, also have mode-3 fibers, known as tubes (see
Figure 2.23). A tensor can be rearranged into a matrix by matricization, also called unfolding
or flattening. With mode-n matricization, the fiber vectors of the n-th mode are stacked
as columns of a new matrix. In this demonstration n ∈ {1, 2, 3}. Specifically, the mode-2
matricization of A would result in the matrix A(2) ∈ R

s×rt. Building on the unfolded tensors,
a mode-n product denoted as ×n can be defined, which multiplies every fiber vector of the n-th
mode with an arbitrary matrix. Returning to the example of A, the mode-2 product with a
matrix B ∈ R

b×s would be defined as A×2 B ∈ R
r×b×t where the resulting mode-2 fibers are

computed as BA(2) ∈ R
b×rt.
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(a) Mode-1 column fibers. (b) Mode-2 row fibers. (c) Mode-3 tube fibers.

Figure 2.23. Fibers of a third-order tensor. Image from [152].

The Tucker decomposition utilizes the mode-n product and decomposes an n-th order
tensor into a core tensor C ∈ R

k1×···×kn and n factor matrices. For the third-order tensor A

this corresponds to the decomposition

A = C ×1 F1 ×2 F2 ×3 F3 , (2.23)

with factor matrices F1 ∈ R
r×k1 , F2 ∈ R

s×k2 and F3 ∈ R
t×k3 . The decomposition of A

is visualized in Figure 2.24. Hereby, the Tucker decomposition can be thought of as some
higher-order PCA as the factor matrices contain the principal components in each mode. The
core tensor C captures the interactions between those components. The choice of the core
tensor size is thus crucial, as this determines the number of retained components. A small
core tensor will result in a high degree of compression and a compact representation coupled
with a presumably lossy reconstruction. The optimal choice of these parameters is not trivial
and denotes the problem of automatic rank selection [153, 154, 155]. Notably, the tucker
decomposition does not have a unique solution.

Higher-Order Singular Value Decomposition. A special case of the Tucker decomposi-
tion is the Higher-Order Singular Value Decomposition (HOSVD) [156], a generalized version
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Figure 2.24. Tucker decomposition of a third-order tensor A into a core tensor C and three factor
matrices F1, F2, F3.
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of the SVD for higher-order tensors. In fact, the decomposition follows Equation (2.23) as
well. However, there are some constraints on the core tensor and the factor matrices. While
there are no restrictions in the full Tucker decomposition, the HOSVD has an all-orthogonal
core, i.e., each mode’s fibers are orthogonal to each other, and factor matrices are orthogonal as
well. The HOSVD is computed by performing an SVD on each of the mode-n fibers separately,
expressed as A(n) = UnSnV

⊤
n . The factor matrix Fn is formed by the left singular vectors, Un.

Eventually, the core tensor is derived by the mode-n product of A with the Moore-Penrose
inverse of each Un:

C = A×1 U
+
1 ×2 U

+
2 ×3 U

+
3 . (2.24)

Note that U+
n = U⊤

n due to orthogonality. The HOSVD plays a central role as an initialization
for further refining the approximation via, e.g., Alternating Least Squares (ALS) algorithms
[157, 158] or the Higher-Order Orthogonal Iteration (HOOI) [159].

An additional approach for generalizing a SVD to higher-order tensors is per canonical
polyadic decomposition, also known as CANDECOMP [160], PARAFAC [161] or CP [162]
decomposition. This method decomposes a tensor into a sum of rank-1 tensors, which are
expressed as the outer product of vectors. Ultimately, the presented algorithms share a unified
goal: to extract patterns and condense information into a compact form in an automated
manner, aligning closely with the principles of representation learning.

Contributions

The utilization and development of foundational segmentation models enjoy increasing
popularity within the medical image community. For example, the TotalSegmentator
(TS) [163] is able to segment over 100 anatomical structure in CTs. However, these
models are typically quite large and demand substantial computational resources, re-
sulting in inference times that can extend to several minutes. High-performance GPUs
that can alleviate the burden are often scarce in everyday clinical practice. A substantial
contributor to the computational demands is the use of cost-intensive 3D convolutions,
which power models such as the TS. Contribution C7 tackles this problem by simplifying
the network behind the TS. To reduce the number of Floating Point Operations (FLOPs)
the Tucker decomposition is adapted to decompose the weights of 3D convolutional ker-
nels. Instead of one complex 3D convolution, the factorization yields a series of three
simple 3D convolutions. This post-hoc procedure results in a lightweight network that
performs nearly on par with the full original model but contains only a small fraction
of its parameters and FLOPs. Further, contribution C7 represents pioneering work in
investigating the impact of tensor decomposition on the performance of 3D segmentation
networks and provides the community with open-sourced lightweight alternatives to TS.
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CHAPTER 4

OUTLOOK AND CONCLUSION

After presenting the contributions, this thesis ends with an outlook toward further research
and concluding remarks.

4.1 Outlook

The applied generative algorithms in this thesis‘ contributions, mainly VAEs, GANs, and DMs,
while all having their pros and cons, can be depicted as some stage in the evolution of generative
models. Undoubtedly the latest stage and the one with the most recent attention is the era
of DMs. With the development of accelerating the diffusion process substantially, the concept
of the generative model trilemma begins to crumble. DMs exhibit superior synthesis quality
with high diversity and a steadily increasing inference speed. DMs are already dominating the
medical generative model community and it is most likely that this trend will not change in
the near future.

Foundation Models. An observable movement in the generative community is the shift
from dedicated task-specific specialist models toward large foundational models that can han-
dle a variety of tasks in a zero-shot fashion or with minimal adjustments. This development
is most noticeable in the success of LLMs but also vision models, such as Stable Diffusion
[39]. Moreover, the boundaries between data modalities begin to blur as multi-modal syn-
thesis models are on the rise, which can generate not only images but also text data. This
evolution proposes a new challenge but also an opportunity for the medical image community.
A foundation model for the medical domain is particularly challenging as the model needs to
account for a myriad of different attributes. This begins with the diversity of medical imaging
modalities (e.g., X-ray, CT, MRI), where images from the same modality and anatomical re-
gion can exhibit entirely different properties just by changing the scanning device or sequence.
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A medical foundational generative model should thus be able to provide a fine-grained level of
control.

Another challenge is posed by the volumetric nature of medical scans. Synthesizing 3D
is not only subject to the curse of dimensionality but also requires exponentially more com-
putational effort. Finding methods that allow the efficient synthesis of these complex data
spaces could be of great value. An initial approach to mitigate this issue involves the use of
LDMs, which has also been applied in the context of 3D medical data. Lastly, integrating
text in the synthesis process can be done in the form of, e.g., radiological reports and enables
automatic report generation or new ways of detailed control over the synthesis process. This
is in principle possible with already existing methods but it is still far from being a holistic
and matured field of research.

Medical Data. When entering the realm of foundational models, a further requirement is
an enormous amount of training data, which opens another set of challenges. Notably, this
aspect is not as present in the CXR community, as multiple open-source datasets are accessible
nowadays. In contrast, large volumetric datasets consume terabytes or even petabytes in
storage, straining the physical capacity of hardware drives. Medical image formats, such as
DICOM or NIfTI are not exactly suited for efficient neural network training. For example,
the decoding process causes a substantial CPU overhead, whereas the sheer amount of data
maximizes the I/O load of the system. Further development towards a data standard that
is tailored for fast loading and resource-saving storage of 3D data poses a significant factor
in advancing medical neural network training and fully utilizing the otherwise undersupplied
high-capacity GPUs.

Apart from processing data, the data itself must be available at first. In theory, most
hospitals have an immense stock of patient data in their archive. Nevertheless, human data is
subject to strict data protection laws in many countries. While this protects privacy to some
degree, this can lead to decelerating the progress in DL research, hungry for huge amounts of
any kind of data. Optimally, a middle ground would be found, where sharing anonymized data
across multiple institutions and nations is encouraged and not riddled by intense bureaucracy.
New generation datasets with the scale of those in natural computer vision may only exist
in a realm of open-source and collaboration. Further research could thus be concerned with
building partnerships and establishing ways to provide a common and easy-to-use interface for
sharing and composing large medical datasets. This open-source character not only facilitates
the training of more capable and robust models but also enables the community to directly
engage with the data, mitigating the occurrence of biases or leakages.

Evaluation. Another point is the translation from conceptual research into clinical practice.
Here, generative models or representation learning are merely a toolbox that requires proper
use to gain an actual practical benefit. In all cases, rigorous evaluation of the proposed method
poses a necessity. For generative models, this naturally requires the attention of experienced
medical practitioners that examine the plausibility and validity of the synthesized content. In
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the case of representation learning, the data representation should encode relevant information
and should less be prone to proxy or protected features. This transition to clinical practice is
an important step in future research, facilitating care to prevent harmful actions in real-world
scenarios.

Deployment. Lastly, the deployment phase of such models gives opportunities for further
improvement. As currently seen in research surrounding LLMs, fast inference speed and model
compression promote overall adoption and democratize large neural networks. In particular,
creating an efficient clinical workflow for integrating DL into everyday practice is of importance.
Its implementation can take many forms, ranging from cloud solutions, where neural network
hooks enhance stored patient data, to real-time interventional measures that require reaction
times in milliseconds. Efficient neural network inference can be done with various methods,
e.g., powered by model compression via tensor decomposition or weight quantization for fast
CPU inference. However, the application of advanced inference methods in the medical domain
paired with its specific requirements, is still in its infancy, paving the way for more elaborate
methods and implementation.

4.2 Conclusion

This thesis focuses on advancing DL for medical imaging with a focus on generative mod-
eling and representation learning. The presented contributions introduce several innovations
and novel methods all with open-sourced code repositories. Among other things, this thesis
established a new perspective on MRI undersampling by direct optimization of the under-
sampling pattern enabling data- and task-specific masking. Moreover, the VAE framework
was successfully extended to incorporate survival information in the synthesis process, build-
ing a basis for interpretable survival analysis of complex data. The research area of CXR
synthesis was improved by proposing GAN inversion for obtaining image embeddings and by
open-sourcing a foundational CXR synthesis diffusion model including a unified collection of
CXR datasets. Also within the field of CXR analysis, the first application of post-hoc orthog-
onalization continues the ongoing discussion about inherent bias in CXR classifiers. Lastly,
this thesis explored the compressibility of foundational 3D segmentation models by developing
a pioneering approach to factorizing convolutional kernels with Tucker decomposition.

These contributions provide various experimental perspectives, ideas, and techniques but
are limited in their evaluation of actual clinical applicability. Aligning with the previous section
on research outlook, further work is needed to strengthen the position of the proposed contri-
butions and ultimately enable their application in real-world scenarios beyond the confines of
the research environment.

Status Quo. This is also the point to reflect on the contrastive quotes from Geoffrey Hinton
and Curtis Langlotz (see Chapter 1). As Langlotz himself later elaborates in an editorial [164],
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the need for radiologists will persist. An imminent transformation in the field is the changing
role of radiologists, similar to the evolution of bank tellers’ tasks with the advent of ATMs.
While a radiologist might not directly be required to segment anatomical structures or create
a radiological report in the near future, a medical expert is still a necessity. For instance,
although direct communication between radiologists and patients is not common, radiologists
play an essential indirect role in patient care. They ensure that the diagnostic information they
provide is accurate and interpretable, acting as a vital bridge between complex imaging results
and the physicians treating the patients. This connection is crucial for informed patient care
and is less likely to be replaced by AI. Additionally, DL algorithms are not entirely infallible,
and generative models, in particular, are prone to hallucinations. A radiologist is thus an
extremely important instance for controlling the outputs of DL models, as mistakes can result
in costing the life of a patient. Overall, it appears that Hinton, the godfather of AI, might have
been somewhat overenthusiastic about the hype at that time. As the demand for radiologists
still exists in clinical practice, their roles are shifting, whereas AI is a steady companion in
alleviating typical tasks and eventually becomes a standard everyday tool.

Concluding Remarks. DL is a highly capable enabler, demonstrating promising results in
the medical imaging domain. However, the rapid pace of advancements in this field raises
questions about the rigor and quality of the exponentially increasing scientific contributions.
While the surge in publications is often seen as evidence of a thriving field, it is essential to
ensure that these contributions stem from sincere scientific exploration rather than from a
publish or perish mentality. The stakes are undeniably high, given that innovation can have
a direct impact on human lives. Therefore this thesis ends with an appeal to the scientific
community to prioritize research quality and integrity over mere quantity. Senior researchers,
in particular, bear the responsibility of using their influence to advance medical research that
benefits the public, especially considering the substantial public funding that supports most
open research. Failing to adhere to these principles could lead to a scenario where proprietary
industry solutions overshadow open collaboration, ultimately slowing overall progress. This is
similar to the challenges faced by the LLM community, which involves major industrial players
like OpenAI, Google, and Meta that now have a substantial advantage over public research with
work originally built from public funding and effort. To ensure continued meaningful scientific
progress, the academic community must remain committed to transparency, collaboration, and
the ethical use of DL.

While DL is a powerful toolbox with vast potential, its application in the medical domain
requires special caution and responsibility. This thesis provided a brief overview of its cur-
rent and future possibilities with focus on generative modeling and representation learning,
emphasizing the importance of collaboration and transparency in achieving long-term success.
Fostering these values is a key component for continuous progress in open medical science,
and, ultimately, improved patient outcomes.
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