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Abstract
The updating of our knowledge in response to new information can prove to be complex,

both in everyday life and in science. Bayes’ theorem provides a systematic, probabilistic
framework for updating our knowledge given new data. In any case of Bayesian inference -
parameter estimation, model comparison, or field inference - probability distributions are
used to encode our knowledge about the quantity of interest. This quantity is referred to
as the signal. To compute the posterior probability of the signal in the presence of new
data, Bayes’ theorem combines prior knowledge of the signal with knowledge of the data
measurement process, represented by the likelihood. This probabilistic approach not only
provides a posterior estimate of the signal, but also allows for uncertainty quantification.

This thesis focuses on Bayesian field inference built upon information field theory.
Inferring a field from an inherently finite data set is an under-constrained problem. Hence,
the inclusion of prior knowledge is essential. In the present work, the implementation of
generative, non-parametric prior models allows to exploit possibly complex and a priori
unknown correlation structures of the signal during inference. Two distinct applications of
Bayesian field inference are discussed: Bayesian evidence calculation and imaging.

The methodological part addresses the calculation of the posterior normalization - the
Bayesian evidence. The evidence plays an important role in Bayesian model comparison.
However, the evidence may be computationally intractable, for example due to complex
relationships between the prior and posterior. Nested sampling provides a numerical esti-
mate of the evidence by examining the likelihood as a function of enclosed prior volumes.
In particular, the algorithm is based on statistical estimates of the prior volumes, introduc-
ing a stochastic error. For this reason a one-dimensional Bayesian field inference problem
is formulated to obtain improved estimates of the prior volumes and the corresponding
evidence.

The second and main part is dedicated to advancing Bayesian imaging of the X-ray
sky. Observed by space-based telescopes, X-rays allow us to study some of the most
energetic phenomena in the universe. However, the interpretability of the data is limited
by overlapping X-ray sources, Poisson noise, and instrumental effects such as the point
spread function. In this context, Bayesian forward models are constructed for the X-
ray telescopes Chandra and eROSITA, tailored to their instrumental properties, to obtain
denoised, deconvolved, decomposed, and spatio-spectral resolved images of the X-ray object
of interest. The work presented includes the development of the JAX-accelerated open
source software package J-UBIK to support future and existing Bayesian imaging models.
Imaging results for the supernova remnant of SN1006 and for the Large Magellanic Cloud
provide a detailed view of the diffuse X-ray structures and the separated point sources.
This paves the way for future analysis of such fine-scale structures, such as shock fronts
of supernova remnants, the construction of point source catalogs, and possibly improved
instrument calibration.
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Zusammenfassung
Unser Wissen an neue Informationen anzupassen, kann sowohl im Alltag als auch in der

Wissenschaft eine Herausforderung darstellen. Der Satz von Bayes bietet einen systematis-
chen, probabilistischen Ansatz zur Aktualisierung unseres Wissens auf der Grundlage neuer
Daten. Bei der Bayes’schen Inferenz, sei es bei der Parameterschätzung, dem Modellver-
gleich oder der Feldinferenz, werden Wahrscheinlichkeitsverteilungen als Repräsentation
unseres Wissens über die hier relevante Größe, das Signal, verwendet. Unter Verwendung
von Vorwissen, auch A-priori-Wissen, über das Signal und der so genannten Likelihood, die
den Messprozess der Daten beschreibt, ermöglicht der Satz von Bayes, die A-posteriori-
Wahrscheinlichkeit des Signals unter Berücksichtigung der Daten zu inferieren. Somit
liefert der probabilistische Ansatz nicht nur eine A-posteriori-Schätzung des Signals, son-
dern ermöglicht auch die Quantifizierung der entsprechenden Unsicherheit.

Der Schwerpunkt dieser Dissertation liegt auf der Bayes’schen Feldinferenz basierend
auf der Informationsfeldtheorie. Die Inferenz eines Feldes aus einem inhärent endlichen
Datensatz ist ein unterbestimmtes Problem. Daher ist die Einbeziehung von A-priori-
Wissen unerlässlich. Die Implementierung von generativen, nichtparametrischen Prior-
modellen ermöglicht es, potentiell komplexe und a priori unbekannte Korrelationsstruk-
turen des Signals in die Inferenz mit einzubeziehen. Insgesamt umfasst diese Arbeit zwei
verschiedene Anwendungen der Bayes’schen Inferenz: Bayes’sche Evidenzberechnung und
Bildgebung.

Die Berechnung der Normalisierung des Posteriors - der Bayes’schen Evidenz - ist
Gegenstand des methodischen Teils. Die Evidenz spielt eine wichtige Rolle beim Vergleich
Bayes’scher Modelle. Allerdings können unter anderem komplexe Beziehungen zwischen
dem Prior und dem Posterior dazu führen, dass die Evidenz nicht analytisch berechnet
werden kann. Ein numerisches Verfahren, das als "Nested Sampling" bezeichnet wird,
liefert eine Schätzung der Evidenz, indem sie die Likelihood als Funktion eingeschlossener
Prior-Volumina sondiert. Präziser fomuliert basiert der Algorithmus auf einer statistischen
Schätzung der Prior-Volumina, die einen stochastischen Fehler in die Evidenzberechnung
einführt. Um verbesserte Schätzungen der Prior-Volumina und der entsprechenden Evi-
denz zu erhalten, wird ein eindimensionales Bayes’sches Feldinferenzproblem formuliert.

Der zweite Teil befasst sich mit der Bayes’schen Bildgebung des Röntgenhimmels.
Durch die Beobachtung von Röntgenstrahlen mit Teleskopen außerhalb unserer Atmo-
sphäre können wir einige der energiereichsten Phänomene im Universum untersuchen. Die
Interpretierbarkeit der Daten wird jedoch durch überlappende Röntgenquellen, Poisson-
Rauschen und instrumentelle Effekte wie die Punktspreizfunktion eingeschränkt. Hier wer-
den Bayes’sche Vorwärtsmodelle für die Röntgenteleskope Chandra und eROSITA erstellt,
die auf ihre instrumentellen Eigenschaften zugeschnitten sind, um entrauschte, dekon-
volvierte, zerlegte und räumlich-spektral aufgelöste Bilder des betreffenden Röntgenob-
jekts zu erhalten. Zur Unterstützung zukünftiger und bestehender Bayes’scher Bildge-
bungsmodelle wird das JAX-beschleunigte Open-Source-Softwarepaket J-UBIK entwick-
elt. Die Bildgebungsergebnisse für den Supernovaüberrest von SN1006 und für die Große
Magellansche Wolke bieten einen detaillierten Blick auf die diffusen Röntgenfeinstrukturen
und die davon separierten Punktquellen. Dies ebnet den Weg für die zukünftige Analyse
solcher Strukturen, wie z. B. Schockfronten von Supernova-Überresten, die Erstellung von
Punktquellenkatalogen und möglicherweise eine verbesserte Instrumentenkalibrierung.
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Chapter 1

Introduction

The human brain is designed to assess situations visually. Since the dawn of humanity, this
is how we have processed and visualized the information from our environment, perceived
the speed of objects in our field of vision and analyzed the reactions and emotions of other
people in our community. Specifically, our eyes process optical light, which is emitted or
reflected from our surroundings. Since the 11th century, there has been a great interest in
capturing what we see in images, leading to today’s digital photography. Although cameras
are getting better and better, it is clear that they most likely will never be accurate enough
to detect even the tiniest detail of reality. In other words, the resolution of the camera
taking a photo will never be able to capture the continuity of our surroundings. In fact,
the photograph provides a finite number of data points, defined by the number of pixels,
which constrain our assumptions about the imaged object, but do not allow complete
knowledge of it. However, in a scientific context, we are usually interested in getting
as much information as possible about exactly that continuous ground truth. Therefore,
imaging techniques need to be developed that can incorporate additional information to
derive the ground truth from the finite data set.

Imaging is in general not just about capturing and analyzing sources of optical light.
Imaging methods allow us to create visual representations of any physical quantity of in-
terest. Typically, physical quantities are color coded in such representations, producing
images that are easily accessible to human perception. In this way, images allow us to
quickly process large and complex data sets. Navigation maps are an everyday example.
They translate geographic information into a visual format designed for easy human inter-
pretation. Such navigation maps are usually a two-dimensional imaging example. However,
imaging can be used from one-dimensional space, such as visualizing a spectrum, through
three-dimensional space, like a color image, to arbitrary dimensions. Hence, imaging tech-
niques, which give us an intuition about patterns and morphology in physical quantities,
play an important role in almost all areas of science, from material sciences to astrophysics.

In this work, the main focus is on the imaging of the X-ray sky. Such X-rays origin
from high-energy phenomena in the universe, like it is the case in neutron stars, black
holes and supernova remnants. These X-rays are measured by telescopes on satellites,
because, fortunately for mankind, X-rays do not pass through our atmosphere. In order
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to reconstruct the continuous field of X-ray flux from a finite list of data points recorded
by the telescope, advanced imaging techniques are required.

Such imaging techniques following a Bayesian approach are discussed in the remainder
of this work. In particular, this introductory chapter provides a structured overview of
the key concepts and methodologies for imaging continuous fields using Bayes statistics
(section 1.1), X-ray astronomy (section 1.2), and the specifics of Bayesian imaging of the
X-ray sky (section 1.3). Section 1.4 outlines the objectives and structure of the subsequent
chapters and my corresponding five major publications that summarize my work in this
field.

1.1 Bayesian imaging of physical scalar fields
Physical fields are everywhere in nature. They can be scalar fields, like the temperature
field, vector fields, like the magnetic field, or tensor fields, like the metric of general rel-
ativity. In general, such a physical field assigns a physical quantity to each point in an
n-dimensional space, z ∈ Ωz ⊆ Rn. Imaging is all about creating a visual representation
of such physical quantities across the image domain Ωz. Continuing with the example of
temperature fields, imaging generates a visualization of a temperature map. Ideally, one
would like to have as complete information as possible about the temperature, T (z), at
each point in space, z, so that the image can be displayed in arbitrarily high resolution.
However, only a finite set of data points can be measured, which imposes constraints on
the underlying temperature field. In fact, the temperature field assigns a temperature to
every point in the image domain and thus has an infinite number of degrees of freedom.
This leads to an under-constrained problem and an infinite number of possible field con-
figurations that are consistent with the data. Finally, one should try to extract the most
plausible of these. This example of the challenge of imaging temperature fields is broadly
generalizable to imaging any physical field.

In the following we will assume, as is most common in image processing, that we are
interested in a scalar field, s : z → s(z) ∈ Ωs ⊆ R, such as the temperature field, for which
we can assign a scalar, s(z), to each point z. In case s is our quantity of interest, we call
it the signal field. In particular, we want to get the most information about s, under the
constraints of a discrete data set d. When trying to infer an infinite number of degrees
of freedom of s from a limited number of constraints, the resulting inferences can only
be expressed probabilistically. Here, information field theory (IFT) (Enßlin, 2013, 2019)
combines a probabilistic approach with field theory to infer and visualize the actual field
of interest given the data. The theoretical framework for visualizing scalar physical fields
using IFT is introduced below.

Imaging using digital computers is usually done on a finite number of pixels. In other
words, s is displayed on a particular grid. In particular, in the mathematical framework of
IFT the continuum limit from a pixelated signal array to a continuous signal field is taken.
This allows the signal to be inferred from the data as a continuous field, independent of the
final resolution or pixelization of the used, digital field realization. To update the knowledge
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about the signal after receiving the data, IFT leverages Bayesian inference. Here, the
state of knowledge is described by probability densities. In particular, each possible field
configuration is assigned a value which is the corresponding probability density of the real
field being in infinitesimal distance to that configuration. Similarly, the initial belief state
about the signal is described by a probability density P(s = s̄), where P ∈ [0,∞), which is
the probability density that the unknown field s has the configuration s̄. In fact, the belief
state in s usually depends on contextual information, I, which could be any knowledge
about the underlying system that is not considered as data, such as the assumption that
there should be no abrupt changes in temperature over short distances. Accordingly, this
contextual information must be included in the probabilistic description. With this in
mind, the abbreviated notation P(s) := P(s = s̄|I) will be used in the following. In
Bayes’ inference, P(s) is called the prior or prior probability, describing the knowledge
about s before any data is taken into account. For a number of reasons, that are detailed
later, it makes sense to refer to H(s) = − lnP(s) as the (prior) information Hamiltonian,
information potential, or simply information on s.

Bayes’ theorem states how to update the prior to a knowledge state which is data
informed, called the posterior, P(s|d) := P(s = s̄|d, I). The posterior, is mathemati-
cally described by the probability density that s takes a certain configuration s̄ given the
contextual information and data. In particular, Bayes’ Theorem,

P(s|d) = P(s, d)
P(d) = P(s)P(d|s)

P(d) , (1.1)

utilizes the prior and the, so called likelihood, P(d|s) := P(d|s = s̄, I), in order to calculate
the posterior. The likelihood, is the probability that the data was measured given a
certain field configuration. Thereby, it models the measurement process. Finally, the
posterior needs to be normalized, in order to be a proper probability density function. The
resulting, normalization P(d) =

∫
Ds P(s, d) is referred to as the evidence. In terms of

information functions, Bayes’ theorem becomes,

H(s|d) = H(s) +H(d|s)−H(d), (1.2)

stating that the above defined mathematical concept of information is an additive, in
physical language, extrinsic quantity.

Bayes theorem allows one to reason about s under incomplete or corrupted data by
combining the knowledge we already have with the measured data. The result is not only
a point estimate on s, but the whole posterior distribution over all possible configurations
of s or some approximation of it. Thereby, any quantity of interest which can be written
as an posterior expectation value,

⟨·⟩(s|d) =
∫
Ds · P(s|d) (1.3)

like the posterior mean ⟨s⟩(s|d) or variance ⟨(s−⟨s⟩(s|d))(s−⟨s⟩(s|d))†⟩(s|d) can be calculated.
The following outlines the three basic steps of Bayesian inference, as noted in Gelman

et al. (2013): First, section 1.1.1 describes the probability models, including the modelling
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of the prior and the likelihood. Second, section 1.1.2 describes challenges in inference and
possible approximations of the posterior conditioning on the data. Third, and finally, ways
to validate an appropriate approximation of the posterior are discussed in section 1.1.3. All
the models described are implemented using the software packages Numerical Information
Field TheorY (NIFTy) (Arras et al., 2019; Selig et al., 2013) and its further JAX-based
reimplementation (Edenhofer et al., 2024). NIFTy discretizes the continuous fields for
computational use.

1.1.1 Probability models
Theoretical models give us a simplified representation of the underlying reality - as do
probability models of our current state of knowledge. The signal itself and its measure-
ment process can be arbitrarily complex. In the probability models of prior and likelihood,
the goal is to describe the state of belief about the signal and the measurement, including
the most important patterns. In the end, the prior and the likelihood model determine the
unnormalized posterior, i.e. P(s|d) ∝ P(s, d) = P(s)P(d|s). How to derive an approxi-
mation to the true posterior or compute the evidence as the normalization is described in
section 1.1.2.

The prior model for s is supposed to describe the assumptions about the signal before
looking at any data. In Bayesian inference, the prior model is essential to reason about
the continuous signal under the uncertainty introduced by the limited constraints of finite
data. However, inaccurate prior assumptions can hinder inference and lead to incorrect
posterior estimates of s. Therefore, the prior model must be carefully chosen and well
justified.

One approach would be to not a priori prefer any possible field configuration for s,
or in a mathematical sense to choose P(s) to be flat. This is called a non-informative
prior, as the prior does not contribute any information about the signal during inference.
In fact, in this case the posterior knowledge about the signal is inferred entirely from the
data. However, as noted in Gelman et al. (2013), a flat prior is not flat in every coordinate
system. This can be illustrated on the example of the temperature map of an area of the
Earth. Suppose the prior for the temperature field, T (x), does not favor any configuration
for positive temperatures, i.e. P(T ) ∝ c = constant for T ∈ R+ is assumed. In statistical
thermodynamics, one instead considers the reciprocal temperature, β = 1

T
. Given that the

prior normalization must remain the same,

1 =
∫
DT P(T ) =

∫
Dβ P(β), (1.4)

→ lim
n→∞

n∏
i

∫
dT (xi) c = lim

n→∞

n∏
i

∫
dβ(xi)P(β(xi)), (1.5)

= lim
n→∞

n∏
i

∫
dT (xi)β(xi)2 P(β(xi)), (1.6)
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the prior for the reciprocal temperature field, is no longer flat but informative, P(β) ∝
1

β2 . As a result, Bayesian inference must always involve a specific formulation of prior
knowledge. For example, Jeffrey (Jeffreys, 1946) worked out an invariant form of the prior
probability distribution defined by the square root of the Fisher information.

In the following prior models are considered, which allow to constrain the degrees of
freedom of the inference problem, which are not set by the data. However, these constraints
shall be set to sensible bounds, while still being indifferent about solutions which are
a priori equally plausible. The fact that the prior densities depend on the coordinate
system chosen, as shown above, can be used to our advantage. Any prior, no matter
how complex its structure, from high-dimensional to multi-modal, can be described by a
simpler probability distribution accompanied by a coordinate transformation. In this case,
the coordinate transformation maps between the space on which the simpler probability
distribution is defined and the coordinate space of the more complex one.

Following this principle, the prior models used in this paper are based on standard Gaus-
sian priors and a corresponding mapping f from the standard normally distributed field
ξ ∼ N (ξ|0,1) to the signal s = f(ξ) with a more complex prior model. The corresponding
technique was introduced in Knollmüller and Enßlin (2020) and is based on inverse trans-
form sampling (Devroye, 1986). Accordingly, and as described in Enßlin (2022), the prior
model is implemented as a generative model. The a priori standard Gaussian distributed
field ξ, is called the latent field. From now on, we are interested in obtaining an estimate
of the latent field and its parameters. The application of the mapping f(ξ) yields the
corresponding estimate of the signal s from the hidden latent field.

The likelihood model aims to capture the essential parts of the measurement process.
In analogy to the generative model introduced for the prior, this should describe the like-
lihood of the data given s as a function of the hidden latent field ξ. As noted in Gelman
et al. (2013) this leads to Bayesian hierarchical models with the joint probability density,

P(s, ξ, d) = P(ξ)P(s|ξ)P(d|s, ξ). (1.7)

Marginalizing over s gives the joint probability of the latent field and the data via the
hyper-prior, P(ξ), and a hierarchical likelihood model, P(d|f(ξ)),

P(ξ, d) =
∫
Ds N (ξ|0,1) δ(s− f(ξ)) P(d|s, ξ) = N (ξ|0,1) P(d|f(ξ)). (1.8)

This allows inferring ξ, which completely encodes the signal field via the transformation f .
The likelihood model is defined hierarchically by P(d|s) = P(d|f(ξ)) and describes, as the
notation suggests, the likelihood that d was measured given the a priori standard normal
latent ξ field describing s.

The measurement model may be described by a function, M, capturing all the effects
of the production of data from the signal. Usually, two factors are taken into account:
(i) The instruments response, R, which is an simplified model how the instrument under
consideration would transform the signal into data. Therefore, it must map from signal
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space, Ωs, to data space. (ii) Nuisance parameters, η, such as noise, which are unpredictable
random fluctuations in the measurement. The measurement equation can generally be
written down as, d =M(R(s), η), where M is an arbitrary function of R(s) and η. The
joint probability of the data and the nuisance parameters given the signal is then defined
via,

P(d, η|f(ξ)) = P(d|f(ξ), η) P(η|f(ξ)) = δ(d−M(R(f(ξ)), η)) P(η|f(ξ)). (1.9)

The hierarchical likelihood model, which includes the discretization of the signal as well
as all the information given by the data, can be derived from eq. (1.9) via marginalization
over η,

P(d|f(ξ)) =
∫

dη δ(d−M(R(f(ξ)), η)) P(η|f(ξ)). (1.10)

1.1.2 Posterior approximation
Given probabilistic models for the prior and the likelihood, the product rule allows to
construct the unnormalized posterior,

P(s|d) ∝ P(s, d) = P(d|s) P(s). (1.11)

However, to obtain a proper posterior, its normalization is required. This is defined by
what is known as Bayesian evidence,

P(d) =
∫
Ds P(s, d) =

∫
Ds P(s)P(d|s). (1.12)

If the prior and the likelihood are conjugate, which means that their combination results
into a posterior of the same family of probability distributions as the prior, a closed-form
solution for the evidence exists. In other words, an analytical solution for the posterior
is available. A family of probability distributions, Pϕ, are probability distributions that
share the same functional form, but differ in the value of their parameters ϕ, like Gaussian
distributions that differ in their mean and variance. A simple example here is a Gaussian
prior, s ∼ N (s|0, S), combined with a linear measurement equation, d = Rs + n, with
Gaussian noise, n ∼ N (n|0, N) and a linear response R(s) = Rs. For this scenario the
unnormalized posterior,

P(s, d) = N (s|0, S)
∫

dn δ(d−Rs− n) N (n|0, N) = N (s|0, S) N (d−Rs|0, N), (1.13)

turns out to be a Gaussian as well.
However, non-conjugate models are often needed in order to model more complex re-

lations between the prior and the posterior, leading to an intractable normalization of the
posterior. In this case, the true posterior is inaccessible and must be approximated in some
way. In the literature, there are two main approaches discussed in order to approximate
the posterior: Approximating the posterior by a set of posterior samples or finding an
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analytic distribution, that is as close as possible to the true posterior. A brief overview of
these methods is given in chapter 2.

In this work, the focus is on approximating the posterior, P(ξ|d), with a simpler family
of distributions, Qϕ(ξ), where ϕ denotes its variational parameters. A common example of
a family of approximate distributions is the Gaussian distribution. Once one has chosen a
family of distributions, one needs a measure of the distance between the actual posterior
P(ξ|d) and its approximation Qϕ(ξ). This distance measure has to be minimized, in order
to find the optimal parameters, ϕ. In variational inference (VI) (Blei et al., 2017) the
Kullback–Leibler divergence (KL) (Kullback and Leibler, 1951),

DKL(Qϕ(ξ)||P(ξ|d)) =
∫

dξ Qϕ(ξ) ln
(
Qϕ(ξ)
P(ξ|d)

)
(1.14)

= ⟨H(ξ, d)⟩ϕ − ⟨Hϕ(ξ)⟩ϕ −H(d), (1.15)

is used as the distance measure, where Hϕ = − lnQϕ is the information content of Qϕ and
⟨·⟩ϕ is the average with respect to Qϕ. Intuitively, the KL gives a measure of how much
information is invented on average when the posterior is approximated by a given Qϕ(ξ).
While minimizing the KL in eq. (1.15) with respect to the variational parameters ϕ, the
log-evidence term, H(d), can be neglected, since it is an additive constant in ϕ. As a result,
VI allows one to approximate the posterior without having to compute the evidence.

There are several approaches to VI that differ, among other things, in the parametric
family of probability distributions chosen for the approximation. A common approach
is to approximate the posterior by a Gaussian, called Gaussian VI. In this case, only
two variational parameters need to be inferred, namely the mean and the variance. In
particular, metric Gaussian variational inference (MGVI) (Knollmüller and Enßlin, 2020)
builds the Gaussian VI on top of generative prior models, as discussed above. In this study,
geometric variational inference (geoVI) (Frank et al., 2021) is used which, instead of solely
learning the variational parameters of a given parametric probability family, minimizes
the KL for a coordinate transformation to a space in which the posterior is Gaussian
distributed. This generates a problem adapted parametrization. In this way, more complex
distributions, independent of a static parametric family, can be approximated.

In certain instances, the focus is explicitly on computing the evidence. For example,
when comparing models. Model comparison distinguishes between multiple models rep-
resenting hypotheses about the signal structure. By analogy with the temperature field
example, two nearby points in the temperature maps could be assumed to be completely
independent in one model and correlated in another. Model comparison is a tool for the
identification of the most appropriate model among these options within the data con-
straints. The desired quantity is the probability for the model given the data,

P(M |d) = P(M)P(d|M)
P(d) , (1.16)

where P(d) = ∑
M P(d|M)P(M) is the meta-evidence, i.e. the probability for the data

regardless of the model used. This probability distribution may be used to compare the
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compatibility between two models M1 and M2 using the Bayes factor,

B12 = P(M1|d)
P(M2|d) = P(d|M1)P(M1)

P(d|M2)P(M2)
. (1.17)

Under the assumption of equal prior probability distributions for each of the models,
i.e. P(M1) = P(M2), the comparison of models is determined solely by their evidences,
P(d|M1) and P(d|M2). A scientific application of a model comparison is described in Han-
dley (2021), where the evidence calculated from Planck data is used to distinguish between
different cosmological models.

Therefore, when comparing models, it is necessary to calculate the integral in eq. (1.12).
In chapter 2 we describe several approaches to do this, focusing on one of them called
nested sampling (NS). NS is an algorithm that transforms the high-dimensional integral
in eq. (1.12) into a one-dimensional integral over the contours of the likelihood and the
corresponding enclosed prior volume. This procedure introduces a stochastic error into the
calculation of the evidence, as will be discussed later.

1.1.3 Model evaluation
As mentioned above, the key components for field inference are the prior and likelihood
models. However, these need to be chosen carefully. Incorrect descriptions of either can
lead to significant problems in the inference and in the final estimates and conclusions.
Fortunately, two key aspects of the inference presented here offer numerous ways to analyze
the reconstruction: the statistical approach and the use of generative prior models. Due to
the statistical approach, the final result is a whole set of posterior samples, which allows
the calculation of any posterior sample average of interest, such as the uncertainty in terms
of standard deviation. These measures are an important analytical tool and will be used
to interpret the validity of the reconstruction in the subsequent chapters.

To check the overall consistency of the implementations of the likelihood models and
the inference scheme, all models are tested on simulated data. The generative nature of the
prior model allows us to draw prior samples, pass them through the instrument description,
and incorporate possible noise, allowing us to generate simulated data. On the basis of
these synthetic data, we do Bayesian inference and compare the results to the ground truth
signal using several diagnostic measures, such as various residuals, to ensure consistency.

1.2 X-ray astronomy and its observations
Astronomy is the study of celestial objects and phenomena. It has been studied by humans
for thousands of years, from observing the sky with the naked eye to using telescopes beyond
the Earth’s atmosphere. High-energy astronomy is an engaging branch of astronomy that
studies the most energetic processes in the universe. Such processes radiate high-energy
radiation, such as X-rays or γ-rays. While our atmosphere is almost transparent in the
energy range of optical light, X-rays and γ-rays are absorbed by the atmosphere and are
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therefore not measurable at the Earth’s surface (Seward and Charles, 2010). Accordingly,
before the development of space technology, there was no awareness of the high energy
phenomena in the universe.

X-ray astronomy is the study of all objects and processes that emit X-rays, i.e. radiation
in the range 0.1-100 keV. Section 1.2.1 summarizes the main underlying processes for X-rays
from astronomical objects. The energy range of X-rays not only makes them impossible
to be observed from Earth, but also complicates the optics needed to reflect and focus
them on a detector. How state-of-the-art telescopes meet this challenge is discussed in
section 1.2.2.

1.2.1 X-ray emitting astronomical objects and there emission
processes

As noted in Seward and Charles (2010), there are essentially three predominant emission
processes that produce X-rays: Bremsstrahlung, Synchrotron radiation and blackbody
radiation. These emissions differ not only in their underlying physical processes, but also
in their spectral shape. Thus, by measuring the spectrum of a celestial source, it is possible
to derive the processes involved and other physical conditions, such as temperature and
elemental composition, in the observed region.

The different types of emissions are explained below, with examples of their occurrence
in supernova remnants (SNRs). A luminous explosion or collapse at the end of the life
cycle of a star is called a supernova (SN). As the name suggests, a SNR is the structure
left behind after the SN event. Chapter 3 focuses on the imaging of a particular SNR
called SN1006. SN1006 is expected to be the remnant of a Type Ia SN. When a small
star has exhausted its nuclear fuel and becomes a white dwarf, this type of supernova
can occur. Under these circumstance the Pauli principle prevents the white dwarf from
further collapsing, called the electron degeneracy pressure. A commonly accepted model
assumes that this white dwarf is in a binary system with a companion star. In this setting,
the white dwarf is assumed to accrete mass from the companion star, eventually reaching
a mass such high that gravity overcomes the resistance of the electron density pressure.
Typically, the result is a collapse of the white dwarf to a neutron star, known as a Type
Ia SN.

Bremsstrahlung is well known from the discovery of X-ray emission by Röntgen in
1895. It generally occurs when charged particles are accelerated in the electromagnetic
field of other charged particles. As a result, the accelerated particle releases energy in the
form of high energy photons, called bremsstrahlung. In astronomy, bremsstrahlung occurs
in a hot gas with temperatures T > 105K. Under these circumstances, some of the atoms
of the hot, thin gas are ionized (Seward and Charles, 2010) and electrons are accelerated
by the ionized atoms. They emit X-rays.

At temperatures where not all atoms are ionized, additional characteristic line emission
occurs. Some of the electrons will transfer energy to the not ionized atoms, resulting in an
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excited state of the atom. As soon as the electrons of the atom return to their ground state,
energy in form of a photon characteristic to the energy levels of the atom is released, called
characteristic line emission. The resulting spectrum composed out of bremsstrahlung and
characteristic line emission depends on, among other things, the temperature of the hot
gas and its atomic composition. Consequently, its measurement provides insight into the
physical conditions in the observed region.

During the SN stellar material is ejected into space. The shell of the ejected material
sweeps up the the surrounding medium of the former white dwarf leading to a shock
front. As the shock front expands, the medium surrounding the SN heats up and ionizes.
Bremsstrahlung and characteristic line emission occur, which are often referred to as the
thermal emission of the SNR.

Synchrotron radiation results from the acceleration of relativistic electrons in a mag-
netic field. As relativistic electrons are deflected by a magnetic field, they emit radiation
with a broad energy range. The resulting spectrum of the synchrotron radiation is char-
acterized by a power law defined via the exponent, called the spectral index α.

In certain cases, synchrotron emitting regions are located along the shock fronts of
SNRs, usually called the non-thermal emission of the SNR. It was this observation that
provided the first clue to the origin of cosmic rays. For a long time, the question of where
these energetic particles come from and where they are accelerated remained unsolved.
The fact that electrons must have an energy of 100 TeV to produce X-ray synchrotron
emission (Seward and Charles, 2010) may indicate that not only electrons but also positive
ions could be accelerated to such high velocities at the shock front. Eventually, cosmic
rays could be produced.

Blackbody radiation is, as the name suggests, emitted by a black body. A black body
is an object that absorbs any electromagnetic radiation and then emits it with a spectrum
characterized by the temperature of the black body - the higher the temperature, the higher
the energy of the blackbody radiation. The final spectrum of the blackbody radiation is a
continuous spectrum, which is mathematically described by Planck’s law of blackbody ra-
diation (Rybicki and Lightman, 1991). An example of celestial objects, emitting blackbody
radiation are neutron stars, which have extremely high surface temperatures.

1.2.2 X-ray telescopes

X-ray telescopes have special requirements in two ways. First, the telescopes must be
operated in space due to the absorption of X-rays in the Earth’s atmosphere. Accordingly,
the size and weight of the instruments are limited. Second, X-ray optics in telescopes
have specific needs due to the interaction of X-rays with matter. In particular, X-rays are
primarily absorbed by matter rather than reflected. As noted in Arnaud et al. (2011), both
of those requirements lead to the need for a compromise between the size of the angular
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area that the telescope can observe, i.e. the field of view (FOV), and a high angular
resolution.

Even if X-rays generally penetrate
a material, they may be reflected at
small grazing angles. At very small
grazing angles, the incoming X-rays
may even be completely reflected.
This is called total external reflec-
tion and the corresponding grazing
angle beyond which total external
reflection occurs is denoted as the
critical angle (Arnaud et al., 2011).
If the critical angle is small, the re-
flecting mirrors can only collect X-
rays from a small region of the sky.
Therefore, it is desirable to have a
critical angle as large as possible,
which is proportional to the atomic
number of the mirror’s material.

Figure 1.1: General structure of a Wolter type
I telescope. Incoming X-rays from the right
are reflected first by the parabolic reflector
(yellow) and then by the hyperbolic reflector
(blue) to form an image.

In Wolter (1952) it was first noted that two reflections are required to focus X-rays with
a finite FOV. In particular, three possible geometries, Wolter type I-III, were introduced
for focusing X-rays onto the detector using different configurations of a hyperbolic and
a parabolic reflecting surface. Most X-ray telescopes, including eROSITA, Chandra and
XMM-Newton, use the Wolter type I geometry. The general structure of the hyperbolic
and parabolic reflecting surfaces in a Wolter type I mirror is shown in fig. 1.1. In this case,
the incoming X-rays from the right side of the image are first reflected at the inner parabolic
surface, then at the inner hyperbolic surface, and thereby focused on the detector.

In addition, a diffraction grating (Heilmann et al., 2024) is often placed between the
mirror assembly and the detector to split the converging X-ray beam into its spectral
components. Subsequent X-ray detectors, particularly charge-coupled devices (CCDs),
measure individual X-ray photons as events by converting each incoming photon into an
electrical charge by photoelectric absorption.

In the following, the specific X-ray telescopes Chandra and eROSITA are considered.
While Chandra has the highest angular resolution achieved so far for X-ray telescopes,
and focuses on the observation of objects with small extents, eROSITA with its large FOV
focuses on the observation of large structures and all-sky surveys. The specifics of these
individual instruments are described in more detail in the corresponding chapters, chapter 3
and chapter 4.
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1.3 Bayesian X-ray imaging

Once data is received from one of the telescopes, the goal is to extract as much information
as possible from the potentially noisy, corrupted data and update our knowledge of the
observed object of interest. However, there are a number of challenges in this process. In
section 1.2.1 it was discussed that there are multiple emission processes for X-ray emis-
sion. Likewise, there are usually multiple sources with different emission processes in an
observation. Sometimes all of these sources are the signal of interest, while at other times
we may want to construct only one of them separately. Any of the components that are
of interest are referred to as signal components, and all sources that are not of interest as
the background. Adding to the difficulty, each of these components may have non-trivial
spatial and spectral correlation structures about which we have little knowledge.

In addition, the measurement process described in section 1.2.2 needs to be understood
for each telescope in order to deduce how to build the likelihood model. Usually, in X-ray
imaging, these include the measurement noise, the telescope point spread function (PSF)
and the exposure. Imperfections in the optics lead to a spread out of point sources which is
described mathematically by the so-called PSF. The exposure is commonly defined as the
product of the observation time and the telescope’s collection capacity, called the effective
area. The conceptual aim is to be able to invert the measurement process. In other words
efficient deconvolution, exposure correction, and noise reduction techniques need to be
developed. Particular difficulties arise when multiple observations of overlapping regions
of the sky are to be combined. For example, a point source observed once may have
different measurement effects when observed a second time from a slightly different angle.
This is especially the case if the PSF varies significantly over the FOV, denoted as spatial
variant PSF.

These challenges can be tackled using Bayesian imaging for fields, namely IFT. We
consider the X-ray sky as the continuous signal field, s, which may have several components,
like diffuse emission and point sources. By building individual and different prior models
for the signal components, we can infer them jointly from the data and finally decompose
them. These components may be assumed to have a priori different spatial and spectral
correlation structures. These correlation structures are a priori unknown, but one can
make several a priori assumptions on them. Given these prior assumptions the correlation
structure is reconstructed concurrently with the signal. Two implementations of such prior
models for the X-ray sky are discussed in chapters 3 and 4.

The CCDs of the X-ray telescope measure the incoming X-ray flux from the signal as
photon counts. The number of counts in each pixel of the CCD is affected by the PSF and
the exposure. Thus, among others, the PSF and the exposure should be included in the
instrument response, R. Since the measured photon counts describe discrete events, the
photon counts are Poisson distributed, often referred to as Poisson or shot noise. Therefore,
the likelihood for X-ray imaging is modelled by a Poisson distribution for the data d given
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the signal s,

H(d|R(s)) =
n∑

i=1
(R(s))i − di ln(R(s))i + ln

(
di!
)
, (1.18)

where n is the number pixels in the data. Besides, the probabilistic description allows to
take into account a set of m observations. Under the assumption of independent mea-
surements, the likelihoods for each observation factorize. Accordingly, the full likelihood
information is defined via the sum of the individual likelihoods in eq. (1.18),

H({dj}|R(s)) =
m∑

j=1

n∑
i=1

(R(s))i
j − di

j ln(R(s))i
j + ln

(
di

j!
)
. (1.19)

Eventually, using one of the inference schemes proposed in section 1.1.2, we obtain a set of
posterior samples that allow to compute among others the mean of the signal component
and its uncertainty.

1.4 Objectives and structure of the thesis
The main objective of the presented work is to bridge the gap between methodological inno-
vation and application by leveraging Bayesian methods for model comparison and imaging
in X-ray astronomy. My five major contributions consist of three refereed first-author pub-
lications - two articles (Westerkamp et al., 2024a,b) and one conference proceedings paper
(Westerkamp et al., 2023) - and two joint first-author publications under review (Eberle
et al., 2024b,a). Each of the works features a recurring challenge: The ill-posed problem
of reconstructing a continuous field from a discrete data set.

The first part of the thesis (chapter 2) focuses on methodological advances for model
comparison. In particular, an algorithm and its implementation are presented to im-
prove the calculation of nested sampling evidence using Bayesian field inference of a one-
dimensional field. The initial idea of the algorithm is published in the conference proceed-
ings Westerkamp et al. (2023).

The subsequent chapters utilize Bayesian field inference for imaging of fields in two- to
three-dimensional space from X-ray data. The ultimate goal of the project is the spatio-
spectral large-field reconstruction of the X-ray sky in an accelerated framework.

The first spatio-spectral Bayesian X-ray imaging approach is shown in chapter 3. Here,
a spatio-spectral prior model in analogy to Scheel-Platz et al. (2023) is implemented for
X-ray imaging the first time and applied to the Chandra data of SN1006. A corresponding
likelihood modelling the features of Chandra in terms of the exposure and a spatially
invariant PSF is built. This likelihood model allows to incorporate the data taken from in
total eleven observations of the remnant. A multi-step approach is introduced where the
spatial reconstruction obtained for a single energy bin is used to derive an informed starting
point for the full spatio-spectral reconstruction in order to speed up the imaging process.
The result is the first denoised, decomposed and deconvolved image of SN1006 inferred
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Figure 1.2: Core components of UBIK- The Universal Bayesian Imaging Kit.

via Bayesian methods from Chandra data. This section is published in Westerkamp et al.
(2024a).

In chapter 4 the results of collaborative work on X-ray imaging for eROSITA with
Vincent Eberle, Matteo Guardiani and myself as first authors are presented. In particular,
the focus is on spatio-spectral imaging of eROSITA Early Data Release (EDR) data of the
Large Magellanic Cloud (LMC) region of SN1987A. In addition to the description of the
eROSITA instrument, including the exposure and in this case a spatially varying PSF for
each data set, a novel JAX-compatible spatio-spectral prior model is implemented.

The whole project has been focused on the goal of ultimately building a Universal
Bayesian Imaging Kit (UBIK) to be applied to X-ray data. In general, UBIK is intended
to be a flexible and modular framework to facilitate Bayesian imaging. Chapter 5 presents
the UBIK framework in the form of a software release of the software package J-UBIK,
the JAX-accelerated Universal Bayesian Imaging Kit. It is based on NIFTy.re, the JAX-
accelerated version of NIFTy. Figure 1.2 highlights the key components of the Bayesian
imaging process that utilize IFT and are incorporated into UBIK. While, the numerics
and inference algorithms are already included in the NIFTy software, UBIK focuses on
facilitating the construction of likelihood and prior models. The corresponding package is
open source and includes both, tools to facilitate the construction of new prior and likeli-
hood models as well as already constructed likelihood and prior models for various types
of celestial objects and instruments. At the moment, the models for Chandra, described
in chapter 3, and for eROSITA, shown in chapter 4, have been implemented.
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1.5 Additional work
In addition to my primary research, I completed a project based on my Master’s thesis
during the first year of my PhD, which focused on the theoretical analysis of dynamical
field inference. Dynamical field inference focuses on the challenge of reconstructing a field
that evolves dynamically driven by a stochastic force and is accordingly described by a
stochastic differential equation (SDE). As soon as the SDE becomes non-linear in the
field, the corresponding reconstruction becomes non-trivial due to terms involving a field-
dependent functional determinant. This paper deals with finding an appropriate path
integral representation of these problematic terms. It was first published in Westerkamp
et al. (2021) as a result of my master’s thesis and further developed in the conference
proceedings Westerkamp et al. (2022).
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Chapter 2

Field based Bayesian evidence
inference from nested sampling data

The following chapter was published in Entropy with me as first author (Westerkamp
et al., 2024b). A first idea has already been published as a conference paper with me as
first author (Westerkamp et al., 2023). I contributed through the theoretical calculations
for the Bayesian models, the development of the open source package 1 and the writing of
the manuscript. The project is a result from many discussions and close collaboration with
Jakob Roth. In particular, Jakob Roth and I jointly developed and implemented the first
prototype of the inference pipeline. This work would not have been possible without many
valuable discussions with and constructive feedback from Torsten Enßlin and Philipp Frank
on the research direction and interpretation of the results. The scientific exchange with
Will Handley for deeper insights into nested sampling was very beneficial to the present
work. All authors read, commented, and approved the final manuscript.

For consistency within this thesis, some of the parameters have been renamed and some of
the figures have been adapted according to the layout.

1The corresponding implementation is public and available at https://gitlab.mpcdf.mpg.de/ift/
public/iftns (accessed November 28, 2024).

https://gitlab.mpcdf.mpg.de/ift/public/iftns
https://gitlab.mpcdf.mpg.de/ift/public/iftns
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Nested sampling (NS) is a stochastic method for computing the log-evidence of a
Bayesian problem. It relies on stochastic estimates of prior volumes enclosed by
likelihood contours, which limits the accuracy of the log-evidence calculation. We
propose to transform the prior volume estimation into a Bayesian inference problem,
which allows us to incorporate a smoothness assumption for likelihood–prior–volume
relations. As a result, we aim to increase the accuracy of the volume estimates
and thus improve the overall log-evidence calculation using NS. The method pre-
sented works as a post-processing step for NS and provides posterior samples of the
likelihood–prior–volume relation, from which the log-evidence can be calculated. We
demonstrate an implementation of the algorithm and compare its results with plain
NS on two synthetic datasets for which the underlying evidence is known. We find
a significant improvement in accuracy for runs with less than one hundred active
samples in NS but a proneness for numerical problems beyond this point.

2.1 Introduction
In Bayesian inference, we update our knowledge about a measure of interest, which we
call the signal, s, on the basis of some given data, d. This signal, s, can be, among other
things, a set of model parameters θM , the model itself M , or a continuous field φ. Given the
prior P(s), which describes our a priori knowledge about s ∈ {θM , M, φ, ...}, the likelihood
P(d|s) of the data given the signal and the normalizing constant P(d) =

∫
ds P(d|s)P(s),

known as the evidence, Bayes’ theorem returns the posterior of the signal given the data,

P(s|d) = P(d|s)P(s)
P(d) . (2.1)

In particular, Bayesian parameter estimation is concerned with updating knowledge about
a set of model parameters given the data. Here, the model parameters in general depend
on the given model. Accordingly, the quantity of interest is the posterior P(θM |d, M). In
the case of field inference, we aim to reconstruct a continuous field from a finite dataset by
approximating the posterior probability P(φ|d). In fact, in both cases, Bayesian parameter
estimation and Bayesian field inference, it is in general not necessary to compute the
evidence, as long as one is interested in computing posterior expectation values. In contrast,
in model comparison the evidence is the main measure of interest. In model comparison,
multiple models, each with parameters and assumptions, are compared by the probability
of a model Mi given the data,

P(Mi|d) = P(d|Mi)P(Mi)
P(d) , (2.2)

with P(d) = ∑
j P(d|Mj)P(Mj). Assuming that all models have the same a priori prob-

ability, this leads to a comparison of the evidences P(d|Mj) between a set of different
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models {Mj}. The ratio of the evidences of two models is called the Bayes factor, giving
the betting odds for or against one of the models compared to the other.

A number of algorithms for Bayesian parameter estimation already exist, which can be
divided into two classes of posterior estimation approaches. One approach approximates
the posterior, i.e., it tries to find an analytic distribution that is close to the true poste-
rior. The main approach here is variational inference (VI), which minimizes a distance
measure between the analytic distribution and the posterior distribution, for example the
Kullback–Leibler divergence (KL) (Kullback and Leibler, 1951), and is often used in field
inference. The other approach aims to generate a set of samples of the posterior distribu-
tion. This set of samples can be used to approximate the true posterior. The most popular
posterior sampling algorithm is Markov Chain Monte Carlo (MCMC). A summary of the
basics of MCMC and different implementations is given in Hogg and Foreman-Mackey
(2018). MCMC methods draw samples directly from the posterior, given a likelihood and
a prior model. The simplest algorithm for MCMC is the Metropolis–Hastings algorithm
(Robert, 2015), which gives a biased random walk through the parameter space depend-
ing on a proposal function and the initialization of the algorithm. Still, there are several
challenges, such as the tuning of the proposal function and the initialization, which lead to
advanced MCMC methods such as ensemble sampling (Lu and Roy, 2017), Gibbs sampling
(Geman and Geman, 1984) and Hamiltonian Monte Carlo (Betancourt, 2017).

For model comparison (eq. (2.2)), we are instead interested in the integration of the like-
lihood over the prior, or in other words in the evidence calculation. Computing Bayesian
evidence is challenging in many applications, as discussed in Buchner (2023). The biggest
challenges are high-dimensional posteriors with multiple, well-separated modes or plateaus
and a high information gain from the prior to the posterior, increasing the amount of time
the algorithm spends in the low posterior mass regime. A concise overview of the different
approaches for integration is given in Preuss et al. (2007). Two integration methods that
smoothly contract the parameter space from the prior to the posterior are simulated an-
nealing (Wegener, 2005) and nested sampling (NS) (Skilling, 2004, 2006). While simulated
annealing uses fractional powers of the likelihood to obtain from the prior to the posterior,
NS instead takes samples from slices of the posterior and recombines them at the end. In
particular, NS transforms the multidimensional problem of integrating the likelihood over
the prior into a series of nested volumes defined by likelihood contours and the enclosed
prior. In doing so, NS is able to estimate the log-evidence and the posterior samples simul-
taneously. The NS algorithm is analyzed further from a physical perspective in Habeck
(2015).

As summarized in Buchner and Boorman (2024) there are several challenges in NS.
First, the computational cost of NS depends on the choice of the prior, i.e. the broader the
prior, the higher the computational cost. Second, sampling from the likelihood restricted
prior is not trivial. Finally, the rate at which the posterior is integrated is a stochastic
quantity for which there is only a probabilistic description. Accordingly, many improve-
ments to NS have been proposed to address some of these challenges. A number of studies
have focused on improving the calculation of evidence for likelihoods with peculiar shapes,
such as likelihood plateaus. Likelihood plateaus violate the assumption of uniformity in
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sampling and lead to ambiguity in the ranking of samples, which often leads to an under-
estimation of the prior volume contraction and thus to an overestimation of the evidence.
Accordingly, Schittenhelm and Wacker (2021) proposed a preprocessing step to correctly
handle the plateaus in the likelihood. The main idea is to decompose the parameter sets
into disjoint subsets that divide into plateaus and parts on which the usual NS can be
performed.

Other studies have aimed to work with a variable rate at which the posterior is in-
tegrated, known as dynamic NS (Higson et al., 2018; Speagle, 2020). Dynamic NS is
particularly useful for parameter estimation, as standard NS spends a great deal of com-
putational effort navigating to the posterior peak. Ultimately, dynamic NS allows more
samples to be placed in regions where we want higher resolution, and less in less interesting
regions. However, most of the progress has been focused on improving the sampling process
for the likelihood restricted prior sampling (LRPS). There are generally two different ap-
proaches that focus on LRPS - rejection sampling, used by MultiNest (Feroz et al., 2009),
and chain-based sampling using Markov chains, implemented for example in PolyChord
(Handley et al., 2015). In addition, Salomone et al. (2023) noted that standard NS assumes
independent prior samples given the likelihood constraint. However, this is usually not the
case, leading to a bias in the evidence calculation. Accordingly, they introduce nested
sampling via sequential Monte Carlo (NS-SMC) (Moral et al., 2006) based on the idea
of importance sampling, which does not require the imprecise assumption of independent
samples.

The dominant error in the evidence calculation, which is based on the statistical esti-
mate of the shrinkage ratio, can be reduced by taking a larger number of samples, which is
where improvements in LRPS focus. We take an orthogonal approach and try to increase
the accuracy of NS through a post-processing step that reduces the statistical error in each
of the compression factors. To do this, we use IFT to perform Bayesian field inference to
reconstruct a continuous and smooth likelihood–prior–volume function given the likelihood
contour information from NS. The presented approach has been addressed in Westerkamp
et al. (2023). In this paper, we aim to give a deeper introduction into the post-processing
and perform further validation.

In the following, we first give a general overview of the methods used in section 2.2.
This includes an introduction to NS and its notation, an introduction to IFT and the
general explanation of one-dimensional correlated field inference in section 2.2.2, and finally
the method for inferring prior volume estimates and a possible implementation of it in
section 2.2.3. In section 2.3, we show the according inference results for two validation
examples. In particular, we choose a Gaussian likelihood and a spike-and-slab likelihood
(Mitchell and Beauchamp, 1988). Finally, we discuss the results, including an analysis of
the computational cost, and conclude in section 2.4.
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2.2 Methods

2.2.1 Nested sampling algorithm
Using the notation introduced by Skilling (2004) the NS likelihood in Bayesian parameter
estimation is denoted via L(θM) := P(d|θM) and the prior is denoted by π(θM) := P(θM).
The evidence, Z := P(d) is calculated accordingly,

Z =
∫

dθML(θM)π(θM). (2.3)

The idea of NS is to transform this possibly high-dimensional integral in parameter space
into a one-dimensional one. Given the prior mass, X, enclosed by some likelihood contour
L(θM) = L,

X(L) =
∫

L(θM )>L
dθM π(θM), (2.4)

we can rewrite eq. (2.3) to a one-dimensional integral,

Z =
∫ 1

0
dX L(X), (2.5)

where L(X) is the likelihood value on the θ-contour that encloses the prior mass X
(eq. (2.4)). The underlying algorithm for the calculation of the integral in eq. (2.5) can
be summarised as follows: First, nlive samples are drawn from the prior π(θM), which we
call the live points, θ1, ..., θnlive . For each of these samples the likelihood can be calculated,
dL,i = L(θi). Then, the sample j out of these with the lowest likelihood is added to a new
set, called the dead points, dL := {dL,j}. A new sample is drawn, restricted to the space
of higher likelihood values. This is called likelihood restricted prior sampling (LRPS).
Accordingly, we transfer samples from a set of live points to dead points with increasing
likelihood while adding new samples to the set of live points for which the likelihood values
exceed the highest dead contour. This leads to the condition dL,i > dL,i−1. The prior
volume under consideration shrinks at each iteration, Xi < Xi−1, by a compression factor
ti,

Xi+1 = tiXi. (2.6)

Under the assumption that the samples are drawn from the prior independently within
the highest dead contour, all compression factors, t = {ti}, are independent of each other
and Beta distributed, P(ti) = Beta(ti|1, nlive). The algorithm stops after niter iterations.
Finally, the set of dead points and estimated prior volumes, defined by eq. (2.6), are used
to approximate the evidence using the quadrature rule with the according weights ωi,

Z ≈ Z =
niter∑
i=1

ωidL,i. (2.7)
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In this study, we use weights defined by the trapezoidal rule ωi = 1
2(Xi−1 − Xi+1) with

X0 = 1 and Xniter+1 = 0.
In view of this procedure, NS introduces a statistical uncertainty, since the prior volumes

at each iteration, Xi, are not known, but only the distribution of the contraction factors
defining the prior volumes is known. In the literature, there are two different approaches for
the estimation of the prior volume mentioned. The first one, which we call the statistical
approach, samples K chains of compression factors {ti}k independently. Correspondingly,
we can define several sets of prior volumes {Xi}k, where for each chain k = 1, ..., K the
prior volume at iteration i is defined by the corresponding sets of contraction factors,
Xi,k = ∏i

j=1 tj,k. The result is K samples for the log-evidence using eq. (2.7), which
allows us to obtain the mean estimate of the log-evidence and its uncertainty. The second
approach, which we call the deterministic approach, instead gives no uncertainty estimate.
Here, the mean of the log-compression factors ⟨ln ti⟩(ti) = −1/nlive,i is taken as an estimate,
as discussed in Feroz et al. (2019). This yields the deterministic prior volume estimation,

X̄i =
i∏

j=1
⟨tj⟩(tj) = e

ln
(∏i

j=1⟨tj⟩(tj )

)
≈ e

∑i

j=1 −1/nlive,j , (2.8)

and hence X̄i ≈ e−i/nlive if the number of live points remains constant at each iteration
(Handley et al., 2015). In other words, the prior volume gets compressed exponentially. In
fig. 2.1, we show the likelihood–prior–volume curves generated by NS for a simple Gaus-
sian example, which was introduced by Skilling (2006). In section 2.3.1, the details of this
simple Gaussian case are discussed further. The according NS likelihood contours were
generated using the software package anesthetic (Handley, 2019). Figure 2.1a shows
the entire likelihood–prior–volume function generated together with the analytical ground
truth. Figure fig. 2.1b shows an enlarged section that is marked in the left panel. In
NS each likelihood dead contour, dL,i, is accompanied by the estimated prior volume,
described by all contraction factors up to the considered iteration. This leads to the corre-
sponding NS likelihood–prior–volume function, defined through either the statistical prior
volume estimation, dL(Xk) for k = 1, ..., N , or the deterministic prior volume estimation,
dL(X̄). Both panels of fig. 2.1 show both the statistical and the deterministic likelihood–
prior–volume function. The zoomed-in panel also shows the information on the likelihood
contours given by NS, which we will use as the only data, dL for the inference of the
likelihood–prior–volume function.

Despite NS being mainly designed to estimate the evidence, it generates posterior sam-
ples and their individual probabilities, pi, at each iteration i = 1, ..., niter of the model
parameters θM as a by-product as described in Handley et al. (2015),

pi = ωidL,i

Z
= ωidL,i∑

i ωidL,i

. (2.9)

These posterior samples can be used to compute the posterior expectation values of any
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(a) (b)

Figure 2.1: Illustration of the nested sampling (NS) output for simple Gaussian example
introduced in Skilling (2006) and further elaborated in section 2.3.1 with two live points.
Figure 2.1a shows the full NS data generated with anesthetic and fig. 2.1b shows a
zoomed-in section, which is indicated in fig. 2.1a. The zoomed-in image additionally shows
the information of the likelihood dead contours dL, which we use as data for the Bayesian
inference of the prior volumes. In both figures, the samples of likelihood–prior–volume
functions defined by prior volume samples, Xk, dL(Xk), are shown as well as a likelihood–
prior–volume function defined by the deterministic NS approach in eq. (2.8), dL(X̄).
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function of the model parameters g(θM),

⟨g(θM)⟩(θM |d) =
∫

dθMg(θM)P(θM |d) ≈ 1
niter

niter∑
i=1

pig(θi). (2.10)

One such function and specific quantity of interest is the information gain from the prior
to the posterior given by the KL,

H := DKL(P(θM |d)||π(θM)) =
∫

dθMP(θM |d) ln
(
P(θM |d)
π(θM)

)
=
∫ 1

0
dX

L(X)
Z

ln
(

L(X)
Z

)
.

(2.11)

The information gain is an important quantity for estimating the number of steps niter
needed to reach the posterior mass. It is therefore a good measure for determining a
termination criterion. In particular, as noted in Skilling (2004, 2012), the posterior set
is reached after about nliveH steps and the posterior is passed in nlive

√
C steps, where

C is the number of dimensions. That is, more live points nlive provide better sampling
of the posterior, but also increase the time to reach the posterior, increasing the overall
computation. In addition to the number of live points, nlive, the information gain H and
the average computational cost for LRPS at each iteration and the average computational
cost for evaluating the likelihood have an impact on the total computational cost T . In
particular, T scales as O(nlive) and O(H2) as pointed out in Ashton et al. (2022). Looking
at the error ϵNS for the evidence calculation using NS, we find that, according to Chopin
and Robert (2010), it is composed of three components under the assumption that we
integrate up to the niterth iteration using eq. (2.7),

ϵNS =
niter∑
i=1

ωidL,i −
∫ 1

0
L(X)dX

= −
∫ Xniter

0
L(X)dX︸ ︷︷ ︸

truncation error

+
(

niter∑
i=1

ωiL(Xi)−
∫ 1

Xniter

L(X)dX

)
︸ ︷︷ ︸

numerical integration error

+
niter∑
i=1

ωi(dL,i − L(Xi))︸ ︷︷ ︸
stochastic error

.

(2.12)

According to Speagle (2020), the numerical integration error introduced by replacing the
integral by the trapezoidal rule is of the order of O(1/n2

live) and therefore negligible as the
number of live points goes to infinity. The truncation error occurs when we stop at a given
maximum iteration niter. It can be kept small by choosing the stopping criterion wisely.
Several approaches have been described in the literature to determine the final iteration
niter, ranging from simultaneously computing the information H to determine the location
of the posterior set (Skilling, 2006), to stopping as soon as the LRPS becomes inefficient
(Schöniger et al., 2014) or as soon as the expected evidence from the remaining live points
compared to the current evidence estimate is less than a user-defined tolerance (Handley
et al., 2015; Speagle, 2020; Feroz et al., 2019).
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The error we are most interested in and aim to minimise is the stochastic error intro-
duced by the unknown prior volumes. This error is of the order of O(n− 1

2
live) (Chopin and

Robert, 2010), or as derived in Skilling (2004), proportional to
√

H/nlive, and dominates
the evidence approximation error. As a result, the stochastic error trends to zero as the
number of live points goes to infinity, but at the same moment the computational cost
trends to infinity. Thus, there is a trade-off between the accuracy of the evidence calcula-
tion and the computation time. In the following, we will present a post-processing step for
NS that aims to reduce either the error in the evidence calculation or the time complexity,
depending on the measure of interest.

2.2.2 Gaussian processes and information field theory

We use information field theory (IFT) (Enßlin, 2019) for the joint reconstruction of the
continuous likelihood–prior–volume function and the discrete set of prior volumes. IFT
focuses on Bayesian field inference, or in other words, on the reconstruction of a continuous
field from a discrete dataset. Here, we consider the likelihood–prior–volume function to
be a one-dimensional field with an infinite number of degrees of freedom, which is to
be reconstructed from a finite set of likelihood dead contours, dL. Thus, the inference
problem is underconstrained, and we need prior knowledge of the likelihood–prior–volume
function and the prior volumes to obtain the posterior. We call this prior probability
distribution the joint reconstruction prior P(L(X), t) to avoid confusion with the prior
volumes of NS. The reconstruction likelihood P(dL|L(X), t) is then the probability of
the measured likelihood dead contours given the likelihood–prior–volume function. We
combine the information on the reconstruction prior and the reconstruction likelihood in
Bayes’ theorem (eq. (2.1)) to reconstruct the posterior probability of the field L(X), which
we call the reconstruction posterior P(L(X), t|dL). This allows us to obtain any a posteriori
measure of interest, like for example the mean and variance of the likelihood–prior–volume
function. In section 2.2.3, we will introduce the explicit reconstruction likelihood and prior
models for the here introduced inference. Here, we focus on using IFT and its software
package NIFTy (Arras et al., 2019) to implement a generative prior for the likelihood–prior–
volume function, considering its correlation structure.

Since the prior model is based on Gaussian processes, this section describes Gaus-
sian processes from the IFT perspective. Specifically, we introduce a generative model
for Gaussian processes with variable correlation structure. In other words, the aim is to
generate a field, τ , as a Gaussian process N (τ, T ) with an unknown covariance T . This
implementation, which is desirable in many cases, ensures the smoothness of the likelihood–
prior–volume function. We use this information in the presented algorithm to improve the
accuracy of the evidence calculation. In the following sections, we will discuss the smooth-
ness assumption and its positive and negative consequences in more detail. One approach
for the implementation of a non-parametric model for fields with unknown correlation
structure, was introduced in Arras et al. (2022). Analogously, we call this model the cor-
related field model, which suggests that not only the realization of the field itself, τ , is
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learned, but also the underlying correlation structure T . Here, we consider the simplest
case of a one-dimensional correlated field. The correlated field is implemented as a genera-
tive process using the reparametrization trick introduced in Kingma et al. (2015), τ = Aξτ

with T = AA† and P(ξτ ) = N (ξτ , I). We can separate the field realization from the field
correlation structure using this basis transformation. This means that the new coordinates,
ξτ , have the same dimension as τ , but are a priori uncorrelated. Assuming statistical ho-
mogeneity and isotropy, the covariance T is fully defined by its power spectrum pT (|q|) via
the Wiener–Khinchin theorem in Fourier space (Khintchine, 1934),

Aqq′ = (FAF †)qq′ = 2πδ(q − q′)
√

pT (|q|), (2.13)

where F is the Fourier transform and
√

pT (|q|) is the amplitude spectrum. The aim is
to infer the power spectrum non-parametrically. This is achieved by building a model
of the power spectrum where each hyper-parameter is described by a Gaussian or log-
normal prior with a given mean and standard deviation. Each hyper-parameter, and thus
the entire power spectrum, is learned during inference. More specifically, the amplitude
spectrum is implemented as an integrated Wiener process, a general continuous process,
on the logarithmic scale l = log(|q|) for q ̸= 0,

√
pT (l) ∝ eγ(l),

d2γ

dl2 = ηξW (l),P(ξW ) = N (ξW , I). (2.14)

The integration gives

γ(l) = ml + η
∫ l

l0

∫ l′

l0
ξW (l′′)dl′dl′′. (2.15)

Here, l0 is the first mode greater than zero and m defines the slope of the integrated Wiener
process, i.e. it is the slope of the amplitude spectrum on a double logarithmic scale. The
parameter η is called flexibility because it controls the total variance of the integrated
Wiener process. In addition to these parameters, m and η, which essentially determine
the shape of the power spectrum, the total offset of the correlated field defined by the zero
mode and another hyper-parameter, called the fluctuations, a, which specifies the total
fluctuations of the non-zero modes,

√
pT (l) = a

eγ(l)(∫ l
l0

e2γ(l′)dl′

) 1
2
, (2.16)

are introduced. The expression in the denominator normalizes, so that the meaning of
a as the fluctuation amplitude is invariant under the change of γ, which determines on
which Fourier scales the fluctuations appear. Overall, this gives a generative model for a
Gaussian random field with unknown covariance.

The effect of changing a, m, and η is shown in fig. 2.2. It shows a reference power
spectrum and corresponding sample field realizations, together with the power spectrum
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and field realizations for a changed mean of one of the hyper-parameters. The variances of
the hyper-parameters are the same for all cases and are kept small in order to illustrate the
effect of the hyper-parameters on the correlated field more effectively. The specific means
and variances of the hyper-parameters are listed in table 2.1. For the reconstruction itself,
we keep the prior wide, which means that we take higher values for the standard deviations
of each parameter to allow for flexibility of the model.

IFT performs Bayesian field inference to infer the posterior for a continuous field given
some data dτ . The exact relationship between the correlated field, τ , and the likelihood–
prior–volume function is discussed in section 2.2.3. Thereby, the posterior probability
P(τ |dτ ) is approximated by a simpler posterior distribution Q(τ |dτ ) using variational in-
ference (VI). The approximation is done by minimizing the cross-entropy term of the KL
between the actual posterior and its approximation DKL(Q(τ |dτ )||P(τ |dτ )). In particular,
we use the geoVI introduced by Frank et al. (2021). The geoVI algorithm optimizes the
cross-entropy of the KL with respect to a non-linear normalizing coordinate transforma-
tion that maps the posterior onto a standard Gaussian. This allows it to approximate
non-Gaussian posteriors. All numerics related to IFT are implemented in the correspond-
ing software package NIFTy (Arras et al., 2019).

Table 2.1: Hyper-parameters for correlated field samples shown in fig. 2.2. The reference
parameters are denoted by an index r. The other indices correspond to the labels of the
sub-figures (a, b, c). Modified hyper-parameter means with respect to the reference field
are marked in blue.

ηr mr ar ηa ma aa ηb mb ab ηc mc ac

Mean 0.5 −6 1.0 0.5 −6 3.0 0.5 −2 1.0 10.0 −6 1.0
Std 0.5 10−16 0.5 0.5 10−16 0.5 0.5 10−16 0.5 0.5 10−16 0.5

2.2.3 Bayesian inference of the likelihood–prior–volume function
As noted in Westerkamp et al. (2023), we use the smoothness assumption for the likelihood–
prior–volume curve to improve the evidence calculation in NS. The description of the
algorithm is given below using the simple Gaussian example introduced by Skilling (2006)
for illustration. The full information from NS for this case is presented in fig. 2.1a. As
mentioned in section 2.2.1, NS generates data on the likelihood dead contours dL. These
data points are marked in fig. 2.1 on the likelihood axis. However, to compute the evidence
we would need the likelihood–prior–volume function, including information on the prior
volumes. In the following, we aim to give an algorithm that aims to improve the overall
estimate on the prior volume and thereby reduces the uncertainty in the evidence.

We propose to jointly infer the likelihood–prior–volume function L(X) and the prior
volumes {Xi} at each iteration i = 1, ..., niter using Bayesian field inference as described
in section 2.2.2. For the data, we only take into account the information we obtain from
NS about the probability of dead contours, dL. The composition of the reconstruction is
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(a) Change in a:

(b) Change in m:

(c) Change in η:

Figure 2.2: Visualization of the effect of changes in the mean value for one of the hyper-
parameters of the power spectrum model. The changed amplitude spectrum is shown on
the left side and the according influence on the field realization is shown on the right side
by comparison of a reference correlated field (ref) and a variation of one of its hyper-
parameters (var). Which hyper-parameter is changed and how it is changed in comparison
to the reference is denoted in table 2.1.
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shown in fig. 2.3a. As ingredients for Bayes theorem, we use the joint reconstruction prior
model as well as the reconstruction likelihood model, which in our case is defined fully
by the data. Figure 2.3a shows prior samples for the likelihood–prior–volume function
described by the correlated field to be learned. The data obtained by NS for the likelihood
dead contours, which then describes the reconstruction likelihood, are shown in fig. 2.3b.
Merging these two models and approximating the reconstruction posterior with VI yields
posterior samples of the likelihood–prior–volume function and the set of prior volumes.
Figure 2.3c shows the computed mean and uncertainty for the reconstructed posterior
likelihood–prior–volume function, as well as the function obtained by pure NS and the
analytic ground truth. In fig. 2.3d, a zoomed area on the reconstructed likelihood–prior–
volume function is shown, in order to facilitate comparison with fig. 2.1b.

Below, we describe a method to enforce the smoothness assumption on the likelihood–
prior–volume curve using the correlated field model introduced in section 2.2.2. In ap-
pendix A.1, we present an alternative approach that requires no δ-function approximation;
however, this method is currently only applicable for a MAP estimate and not for VI. The
here presented approach implements the smoothness by describing the derivative of the
likelihood by the prior volume as a log-normal process, which can be achieved by using a
correlated field as described in section 2.2.2. By using a log-normal rather than a Gaussian
process for the derivative of the logarithmic likelihood–prior–volume relation, we ensure
that the likelihood–prior–volume function is monotonic. As a consequence of the correlated
field model described above, it would be desirable that

−e−τ(ln X) = d ln L

d ln X
≈ const, (2.17)

with τ drawn from a Gaussian process. However, it can be seen that for the simplest case,
a Gaussian likelihood model, this assumption is not fulfilled. Accordingly, we introduce
a reparametrization f that maps ln L such that we find a damped log-normal process for
d ln L
d ln X

,

dfln L

d ln X
:= df(ln L)

d ln X
= 1

ln Lmax − ln L

d ln L

d ln X
= −e−τ(ln X). (2.18)

This way, a constant τ perfectly captures the Gaussian case, and non-Gaussianity is ab-
sorbed in excitations of τ around this constant, as described in section 2.2.2. The derivation
of the reparametrization for the Gaussian case is given in appendix A.2. Appendix A.3
shows how to calculate the corresponding Lmax according to Handley and Lemos (2019) if it
is not known analytically. The joint reconstruction prior for the reparametrized likelihood–
prior–volume function fln L and the contraction factors t is fully defined via the joint prior
P(τ, t),

P(fln L, t) = P(fln L|t)P(t) = N (τ, T )
niter∏
i=1

Beta(ti|1, nlive,i) = P(τ, t). (2.19)
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(a) (b)

(c) (d)

Figure 2.3: Illustration of the Bayesian field inference process for the simple Gaussian,
which is further elaborated in section 2.3.1 for two live points. The prior samples, the data
used, and the final reconstruction compared to the NS approach and the ground truth are
shown. Figure 2.3a: Prior samples for the likelihood–prior–volume function (L∗(X)) in
yellow together with the ground truth. A zoomed-in area is marked beside it (the same
area as in fig. 2.1a) which is taken to zoom into the data in fig. 2.3b and the reconstruction
in fig. 2.3d. Figure 2.3b: Data on likelihood dead contours for the given zoom area. Figures
2.3c, 2.3d: Reconstruction mean (rec mean) of the likelihood–prior–volume function and
the associated uncertainty, defined via the one sigma contours (rec uncertainty), which
is zoomed in on in fig. 2.3d, and the full image is presented in fig. 2.3c. The result for
the likelihood–prior–volume function for the deterministic NS approach is shown (dL(X̄)),
which is the same as in fig. 2.1b, and the analytic likelihood–prior–volume-function (ground
truth).
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The reconstruction likelihood is described by the solution of the differential equation in
eq. (2.18), which can be written as a function of the set of contraction factors,

fln L(t) = fln L(ln Xj =
j∑

i=1
ti) = fln L(0)−

∫ ∑j

i=1 ti

0
e−τ(z)dz. (2.20)

This leads to a likelihood model, which is a δ-function, which we approximate by a Gaussian
with a small chosen variance σδ,

P(f(ln dL)|τ, t) = δ(f(ln dL)− fln L(t)) ≈ N (f(ln dL)− fln L(t), σδ). (2.21)

The result is the joint reconstruction posterior,

P(τ, t|f(ln dL)) ∝ P(f(ln dL)|τ, t)P(τ, t). (2.22)

The posterior is approximated using geoVI as described in section 2.2.2, slowly increasing
the number of samples from iteration to iteration. We choose σδ = 0.1 min(dist(f(ln dL)))
to ensure that the likelihood does not allow for the exchange of two data points or even
non-monotonicity. Finally, the prior of τ prefers a constant flat τ without excitation,
corresponding to a linear relation between fln L and ln X, corresponding to a Gaussian
likelihood in NS. However, the prior of t prefers certain distances between the prior volumes
given by the Beta distribution. The likelihood ensures that the reconstructed function fln L

evaluated at the reconstructed prior volumes X matches the values of f(ln dL). This means
that, for example, if there is a jump in f(ln dL), P(τ) prefers a corresponding jump in ln X
to ensure smoothness and to avoid deviations from the linear reparametrized likelihood–
prior–volume relation, while P(t) on average prefers an increase in ln X defined by the
Beta distribution.

2.3 Results and analysis
For validation, we consider two cases: a simple Gaussian case as described in Skilling (2006)
and a spike-and-slab likelihood as introduced in Mitchell and Beauchamp (1988). The
according data on the likelihood live and dead contours are generated using the anesthetic
package by Handley (2019). These test cases are valuable for checking the consistency of
the presented method, as they allow the analytical calculation of evidence.

2.3.1 Gaussian case
As a first validation test case, we use a zero-centered Gaussian likelihood,

L(θ) = exp
(
− r2

2σ2

)
with r2 =

C∑
i=1

θ2
i , θ = {θi}i=1,...,C , (2.23)
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Table 2.2: Inferred (IFT) and NS (NS stat: statistical, NS det: deterministic) results for
the computed Gaussian log-evidence, represented by the mean and the according standard
deviation for nlive ∈ {2, 10, 1000} given K sample chains. The ground truth is ln Z =
−30.87. The histograms of the distributions of the evidences are shown in fig. 2.4.

nlive K Mean Standard Deviation

IFT NS Stat NS Det IFT NS Stat

2 120 −28.51 −25.11 −20.90 2.98 3.23
10 120 −30.56 −30.44 −29.37 0.24 1.6

1000 120 −31.01 −30.52 −30.51 0.61 0.17

in C = 10 dimensions with as variance σ = 0.02. As a prior, we use, in analogy to Skilling
(2006), a flat prior on the unit sphere

π(θ) = C/2!
πC/2 with r < 1. (2.24)

The evidence given the probability and prior above can be calculated analytically to be

Z =
∫ ∞

−∞
dθC L(θ)π(θ) = (C/2)!

(2σ2)C/2 . (2.25)

The definition of the prior mass in C dimensions is given by X = rC , which allows us to
compute the ground truth of the likelihood–prior–volume function,

L(X) = exp
(
−X2/C

2σ2

)
. (2.26)

Figure 2.4 shows the ground-truth likelihood–prior–volume function together with samples
of the likelihood–prior–volume function defined by the reconstructed prior volumes or the
statistical approximated prior volumes from NS for a constant number of live points, nlive ∈
{2, 10, 1000}. Also shown is the likelihood–prior–volume function for the deterministic NS
approach using eq. (2.4). As described in section 2.2.1, it can be seen that the standard
deviation for the NS approach decreases as the number of live points increases. For each of
these prior volume estimation approaches, the statistical NS, the deterministic NS or the
IFT based, we calculate the log-evidence using the weighted sum in eq. (2.7). This gives
us sample sets of evidence for the statistical NS and IFT approaches, which are plotted as
a histogram in fig. 2.4 together with the analytical ground truth and the deterministic NS
approach. The corresponding results for each of the approaches for the mean and, where
applicable, the standard deviation are given in table 2.2. Further discussion of the results
can be found in section 2.4.

2.3.2 Spike-and-slab case
As a next step we consider a non-Gaussian test case for validation. In particular, we will
look at a spike-and-slab likelihood known from Bayesian variable selection (Mitchell and
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(a) nlive = 2:

(b) nlive = 10:

(c) nlive = 1000:

Figure 2.4: Reconstruction results for the Gaussian prior volumes accompanied by the
likelihood contours given by NS on the left and the computed log-evidence on the right
for nlive ∈ {2, 10, 1000} from top to bottom. The inferred posterior samples (rec samples)
are shown together with their mean (rec mean) and compared with the corresponding
statistical (NS samples) and deterministic (det NS mean) NS results and the ground truth.
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Beauchamp, 1988), which is the sum of a zero-centered spike and a broad Gaussian back-
ground. This leads to an abrupt change in the prior volume X with increasing likelihood.
The corresponding likelihood is given by,

L(θ) = A exp
(
− r2

2σ2
1

)
+ (1− A) exp

(
− r2

2σ2
2

)
with r2 =

C∑
i=1

θ2
i . (2.27)

Again, we choose a flat prior as described in eq. (2.24). Accordingly, we are able to calculate
the evidence analytically, which gives us a good point for comparison,

Z =
∫ ∞

−∞
dθCL(θ)π(θ) = C/2!

(
a(2σ2

1)C/2 + (1− a)(2σ2
2)C/2

)
. (2.28)

Just as in section 2.3.1, we can obtain the analytic likelihood–prior–volume function
given the prior volume X = rC ,

L(X) = A exp
(
−X2/C

2σ2
1

)
+ (1− A) exp

(
−X2/C

2σ2
2

)
. (2.29)

The parameters of the spike-and-slab likelihood under consideration are denoted in ta-
ble 2.3.

Table 2.3: Parameters for the spike-and-slab likelihood described in eq. (2.29).

Parameter Meaning Value

C number of dimensions 10
A relative weight of

Gaussians
0.5

σ1 std of Gaussian weighted
by a

0.1

σ2 std of Gaussian weighted
by (1− a)

0.02

Figure 2.5 shows the ground truth of the likelihood–prior–volume function (eq. (2.29))
and evidence (eq. (2.28)) together with the corresponding samples and mean (eq. (2.4))
given by the corresponding NS runs for nlive ∈ {2, 10, 1000}. We infer the likelihood–prior–
volume function and the set of prior volumes jointly using the inference algorithm described
in section 2.2.3. As a result, we obtain a set of posterior samples on the likelihood–prior–
volume functions and the prior volumes, which leads to a set of posterior samples of the
evidence using eq. (2.7). The posterior samples for the likelihood contours as a function of
the reconstructed prior volumes (rec samples) as well as their mean (rec mean) are shown
on the left side of fig. 2.5. The computed corresponding evidence is shown on the right
side of fig. 2.5. For comparison, additionally the results for the statistical NS approach
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and the deterministic NS approach as well as the ground truth are shown. The computed
mean evidences for the sample sets for the IFT and the NS approach are listed in table 2.4
together with the corresponding standard deviation. A further discussion of the results is
given in section 2.4.

Table 2.4: Inferred (IFT) and NS (NS stat: statistical, NS det: deterministic) results
for the computed spike-and-slab log-evidence, represented by the mean and the according
standard deviation for nlive ∈ {2, 10, 1000} given K sample chains. The ground truth is
ln Z = −15.47. The histograms of the distributions of the evidences are shown in fig. 2.5.

nlive K Mean Standard Deviation

IFT NS Stat NS Det IFT NS Stat

2 40 −17.26 −13.00 −11.21 1.67 1.91
10 40 −16.03 −14.62 −14.01 0.78 0.80

1000 20 −18.35 −15.49 −15.50 0.01 0.10

2.4 Discussion
In NS, the statistical error in one of the contraction factors, ti, affects each upcoming prior
volume according to eq. (2.6). For this reason, it has a major impact on the calculation
of the logarithmic evidence. However, the propagation of error does not occur on the
likelihood contour information, which is assumed to be accurate, but only on the prior
volume estimates. We use additional knowledge to be able to assign an improved estimate
of the prior volume to the corresponding likelihood contour. The assumption we take into
account is the smoothness of the likelihood–prior–volume function, which is valid for a
large set of problems. Of course, if a problem is considered where the likelihood–prior–
volume function is not smooth, this post-processing algorithm will not be applicable and
the inference of the prior volumes could even make the result worse. One extreme example,
which was discussed in Fowlie et al. (2021), is the wedding cake likelihood. Furthermore,
the inference algorithm has its limits when dealing with likelihood plateaus. The reason
for this limitation is that we model the derivative of the likelihood–prior–volume function
as a modified log-normal process. A zero slope would therefore correspond to an infinite
excitation of the correlated field τ . A way to deal with this problem was suggested by
Schittenhelm and Wacker (2021). Accordingly, one could split the dataset into several
parts and perform the inference solely on the strictly negative monotonic regions of the
likelihood–prior–volume functions. The same applies to the use of nested sampling to
compute the evidence for multimodal likelihoods. In Feroz and Hobson (2008), three
different approaches to LRPS for multimodal likelihoods are presented; as long as the
final likelihood–prior–volume function would be given by a smooth function that could be
partitioned around possible plateaus, the algorithm outlined here is well-suited for the task.

In terms of computational cost, our overall goal is to define a post-processing algorithm
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(a) nlive = 2:

(b) nlive = 10:

(c) nlive = 1000:

Figure 2.5: Reconstruction results for the spike-and-slab prior volumes accompanied by
the likelihood contours given by NS on the left and the computed log-evidence on the right
for nlive ∈ {2, 10, 1000} from top to bottom. The inferred posterior samples (rec samples)
are shown together with their mean (rec mean) and compared with the corresponding
statistical (NS samples) and deterministic (det NS mean) NS results and the ground truth.
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whose computational cost is independent of the number of live points, nlive. As described in
section 2.2.1, the computational cost of a NS run is proportional to the number of live points
nlive and the KL, H, while the error in ln Z is proportional to

√
H and anti-proportional to√

nlive. Therefore, a large shrinkage from prior to posterior increases both the error and the
computation time, while the error can be reduced by using more live points, leading to an
increase in computation time. Accordingly, if the inference described here reduces the error
by a factor of ϵNS, then we could assume that the same result can be achieved using just
the standard NS run with more live points. In particular, the number of live points would
have to be increased by ϵ2

NS, which would also increase the computational complexity by a
factor of ϵ2

NS, i.e., Tϵ = ϵ2
NST . In contrast, the post-processing with IFT adds a constant,

live point independent computational complexity TIFT to the original computational effort
T in order to reduce the error by ϵ, i.e., Tϵ, IFT = T + TIFT. Therefore, in cases where T
is high, e.g., when the KL is high, or in particular when the evaluation of the likelihood
or the sampling from the restricted prior requires a lot of time, it makes sense to consider
the inference of the likelihood–prior–volume function instead of the addition of further live
points.

If we examine the reconstructed likelihood–prior–volume curves shown in section 2.3,
we find that the prior volumes for the spike-and-slab likelihood show an abrupt change in
the prior volume in the interval ln X ∈ [−20,−30]. In fact, this quick change in the prior
volume corresponds to small slope of the likelihood–prior–volume curve in this interval,
which would need to be modelled by a large value of τ . Looking at the prior generative
model shown in section 2.2.2, this particular case is difficult to model, as the correlated
field would need to be a straight line with a peak in this interval, which it is hardly forced
to by the relatively few data points given for nlive = 2 or nlive = 10. We expect this to
look better for examples that have several changes in the slope of the curve. In any case,
looking at the results in table 2.2 and table 2.4, we see that the reconstruction works
quite well during validation for the Gaussian and spike-and-slab examples. However, it is
noticeable that the benefit of using post-processing decreases as the number of live points
increases. This is expected because the likelihood–prior–volume function generated by NS
itself becomes smoother as the number of live points increases. Nevertheless, we can see
an increase in the accuracy of the result for the log-evidence up to one hundred live points
in terms of a decreased standard deviation. When the number of live points increases even
further, we find that the final σδ, defined by the minimum distance between two adjacent
nested likelihood contours, becomes very small. This can especially be seen in the case of
the spike-and-slab likelihood for one thousand live points, where σδ = 2.26 × 10−10. As
a result, the reconstruction using the Gaussian approximation of the δ-function becomes
numerically unstable, in the sense of a high reduced χ2 value between the data and the
reconstruction, allowing the reconstruction to be performed with fewer sample chains and
obtaining a worse estimate of the log evidence. Therefore, the likelihood–prior–volume
function inference proposed here is not applicable to a large number of live points. Instead,
it could be used to improve the log-evidence calculation in scenarios where only a small
number of live points are feasible, e.g., due to high LRPS costs. The applicability with
respect to the reduced χ2 and the inherent uncertainty given by the algorithm should
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therefore be checked by the user.
Thus, this post-processing method leaves some room for future work. First of all, it

would be desirable to apply it to a problem with a large number of live points. Two
different approaches could be considered. First, one could split the dataset into parts and
thus generate NS datasets with a smaller number of live points and thus a larger distance
between adjacent nested likelihood contours (Skilling, 2006). Second, one could think of
ways to avoid the Gaussian approximation of the δ-function. One alternative approach
that does not require the Gaussian approximation of the δ-function is described in the
appendix A.1. Using this approach for VI is left for future work. Moreover, one could
think of further assumptions besides the smoothness assumption and include them in the
inference to allow for a wider range of likelihoods, such as non-smooth ones or a specific
set of likelihoods.

In conclusion, we have presented a post-processing step for NS that uses a smoothness
assumption to infer the likelihood–prior–volume function, providing an estimate of the
inherent uncertainty in the reconstruction due to the stochastic approach. This aims to
reduce the statistical error in the evidence computation introduced by the unknown prior
volumes at each iteration step. Since this post-processing can deal with a varying number
of live points, it is applicable to advanced NS methods such as dynamic NS. Finally,
some work needs to be done to apply it to problems with a larger number of live points.
However, the method presented here should provide a first approach to improving prior
volume estimation, which remains one of the main challenges in NS.
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Chapter 3

First spatio-spectral Bayesian
imaging of SN1006 in X-rays

The following chapter has been published in Astronomy & Astrophysics with me as the
first author (Westerkamp et al., 2024a). My contributions to this project are the imple-
mentation of the likelihood models, the prior models, the inference script, and an extensive
diagnostic pipeline. I also performed the hyper-parameter search and computational anal-
ysis, and wrote the manuscript. The project grew out of a close collaboration between
Vincent Eberle and myself. Vincent Eberle and I implemented the initial inference pipeline
for SN1006 using multiple Chandra observations and a spatial prior model. This was
greatly facilitated by the efforts of Julia Stadler, who implemented a data loading pipeline
for Chandra observations. In exchange with Lukas Platz, I implemented the first spatio-
spectral prior model for the X-ray sky in NIFTy. To speed up the reconstruction with the
spatio-spectral prior, I implemented a so-called transition model based on fruitful discus-
sions with Jakob Knollmüller and Philipp Arras. This work also benefited from discussions
with Torsten Enßlin and Philipp Frank on validation, diagnostics, and feedback on the
methodological approach, as well as from the scientific exchange with Matteo Guardiani.
All authors read, commented and approved the final manuscript.
For consistency within this thesis, some of the parameters have been renamed and some of
the figures have been adapted according to the layout.
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Supernovae (SNe) are an important source of energy in the interstellar medium.
Young remnants of supernovae exhibit peak emission in the X-ray region, making
them interesting objects for X-ray observations. In particular, the supernova rem-
nant (SNR) SN1006 is of great interest due to its historical record, proximity, and
brightness. Thus, it has been studied with a number of X-ray telescopes. Improving
X-ray imaging of this and other remnants is an important but challenging task, as
it often requires multiple observations with different instrument responses to image
the entire object. Here, we use Chandra observations to demonstrate the capabilities
of Bayesian image reconstruction using information field theory (IFT). Our objec-
tive is to reconstruct denoised, deconvolved, and spatio-spectral resolved images
from X-ray observations and to decompose the emission into different morphologies,
namely, diffuse and point-like. Further, we aim to fuse data from different detectors
and pointings into a mosaic and quantify the uncertainty of our result. By utiliz-
ing prior knowledge on the spatial and spectral correlation structure of the diffuse
emission and point sources, this method allows for the effective decomposition of
the signal into these two components. In order to accelerate the imaging process,
we introduced a multi-step approach, in which the spatial reconstruction obtained
for a single energy range is used to derive an informed starting point for the full
spatio-spectral reconstruction.
We applied this method to 11 Chandra observations of SN1006 from 2008 and 2012,
providing a detailed, denoised, and decomposed view of the remnant. In particular,
the separated view of the diffuse emission ought to provide new insights into the
complex, small-scale structures in the center of the remnant and at the shock front
profiles. For example, our analysis reveals sharp X-ray flux increases by up to two
orders of magnitude at the shock fronts of SN1006.

3.1 Introduction
In the year 1006, observers on Earth were able to see the light of a bright "new star," which
eventually faded after a few months. This observation is now attributed to a Type 1a
supernova (SN1a) event that produced a SNR, now known as SN1006 or SNR G327.6+14.6.
It is the brightest stellar event ever recorded and its historical record (Stephenson, 2010)
is one of the reasons why this remnant was an interesting target for several observational
campaigns. SN1006 is notable for being a relatively unobscured SNR (Katsuda et al.,
2013) that is large in angular size due to its proximity to Earth (Winkler et al., 2003). All
these points have made SN1006 a good object for studying SN1a events and has led to an
impressive research history.

In particular, X-ray observations of the remnant have provided important information
about the dynamics and energies of the supernova explosion and the surrounding interstel-
lar medium. When a supernova explodes, it creates a rapidly expanding shell of ejected
material that compresses and aggregates up the surrounding interstellar medium (ISM).
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The collision between the expanding shell and the ISM creates a shock wave that prop-
agates into the ISM and heats it up so that it emits thermal and non-thermal X-rays
(Seward and Charles, 2010). In young SNRs, both thermal and non-thermal emission have
a peak in the 0.5-10 keV energy range (Li et al., 2015), making current X-ray telescopes
perfect for studying these objects. An important observation was made by Koyama et al.
(1995), who detected synchrotron X-ray emission in the envelope of SN1006, supporting
the theoretical expectation that the shock wave of SNRs accelerates particles to extremely
high energies. This is believed to be a major production process of cosmic rays (CRs).
Accordingly, SNRs are one important source of energy for the ISM via cosmic rays. This
observation led to many subsequent spectral (Helder et al., 2012; Reynolds, 2008) and
spatio-spectral analyses of SN1006 (Bamba et al., 2003; Winkler et al., 2014; Li et al.,
2015) to study the spatially varying X-ray production processes in SN1006. In addition,
supernovae are known to produce heavier elements from lighter ones during the explosion,
which are ejected into the ISM and enable the formation of new stars and planetary sys-
tems, making them very important for the Galactic metabolism. Winkler et al. (2014) and
Li et al. (2015) studied the spatial distribution of elements in the remnant. Long-term
observations of SN1006 allowed Winkler et al. (2014) and Katsuda et al. (2013) to study
its proper motion and thereby have offered insights into the dynamics of the explosion, the
evolution of the remnant, and its interaction with the interstellar medium. Despite the
extensive previous studies of SN1006 and other SNRs, there are still a number of aspects
that are not well understood. Among them are the details of particle acceleration at shock
fronts (Vink, 2011).

In recent years, there have been significant advances in X-ray astronomy aimed at
studying such high-energy phenomena in the universe. These advances have been driven
in large part by the development of new X-ray satellite missions such as Chandra, XMM-
Newton and Suzaku, which have provided unprecedented spatial and spectral resolution.
However, any technological advance in space-based astronomical instruments must be ac-
companied by advances in imaging methodology in order to exploit the full potential of
these instruments. Here, we focus on the development of such an imaging method, capable
of denoising, deconvolving, and decomposing the data, and apply it to Chandra observa-
tions of SN1006: the highest resolution data of this SNR to date. The aim is to obtain a
more detailed view of the small-scale structures of the remnant and, thus, to allow a more
detailed study of the open questions in the field of supernovae and their remnants as well
as to challenge and benchmark the imaging method.

To obtain an accurate and meaningful reconstruction of the true flux from the given
X-ray data, there are a number of challenges that need to be overcome. X-ray telescopes
such as Chandra record the data from these high-energy phenomena as photon count
events accompanied by information about the photon’s arrival direction, time, and energy.
In the present work, the events are categorized into spatial and energy bins, which yields
independent Poisson statistics for each pixel. In particular, X-ray observations often have
low count rates, which poses a challenge because of the resulting poor signal-to-noise ratio
(S/N). Accordingly, a major task in X-ray imaging is the denoising of the corresponding
data. In addition, there is an instrument-specific response to the observed X-ray flux,
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which complicates the relation between the sky and data, particularly the exposure and
the point spread function (PSF). A coherent representation and application of the response
is a complex problem, as the instrumental properties of X-ray instruments tend to change
with off-axis angle, energy, and time. Ultimately, one of the goals of X-ray imaging is to
discriminate between noise, background, extended and point sources. So far, most imaging
techniques are designed to extract either the point sources or the diffuse flux, but lack
the ability to reconstruct both simultaneously. In the study of such extended sources as
SN1006 in particular, this separation of components is essential when investigating the
spectra and, thus, the emission properties of the remnant at each location.

The study presented here aims to address these challenges in X-ray imaging. In par-
ticular, we use information field theory (IFT) (Enßlin, 2019) as a versatile mathematical
framework for reconstructing the signal from large and noisy data sets by combining infor-
mation theory, statistical physics, and probability theory. Along with the numerical IFT
algorithms implemented in the software package NIFTy (Arras et al., 2019), it provides
an excellent tool for denoising, deconvolving and decomposing the image. This capability
has already been demonstrated for Poisson data (Selig and Enßlin, 2015; Pumpe et al.,
2018; Scheel-Platz et al., 2023). The basis of IFT is Bayes theorem applied to the prob-
lem of reconstructing fields. In our case, the sky photon flux is regarded to be a field,
which we subsequently refer to as the signal field. It is inferred given prior knowledge on
its configuration and the measurement data, which is interpreted using a separate model
for the measurement response. The instrument description, including its noise statistics
determines the so called likelihood; in other words, the probability to observe specific data
given a sky flux configuration. By combining the prior and the likelihood into the posterior
distribution, we obtain not only an estimate of the actual sky photon flux as its posterior
mean, but also an estimate of the uncertainty via the posterior variance.

During inference, the prior model guides the separation of the signal into different
components, such as point-like and diffuse structures. Therefore, we need to carefully
encode our knowledge of the different components into our prior model to give the inference
the chance to discriminate their contributions to the observed photon counts. To this end,
we have modeled the signal field as a superposition of different physical fluxes: the emission
from point-like and extended sources. Assigning a different correlation structure to the
diffuse emission from extended sources, which is assumed to be spatially correlated, and
the point sources, which are assumed to be spatially uncorrelated, makes it possible to
distinguish between these components. A spatio-spectral prior allows the reconstruction of
the emissivity as a function of energy and spatial position. Further knowledge about the
different spectra of the components improves their separation.

The instrumental description encoded in the likelihood drives the deconvolution of
the data from the PSF, image denoising, and exposure correction. Specifically for Chan-
dra, there are two different Advanced CCD Imaging Spectrometer (ACIS) X-ray imagers:
ACIS-I and ACIS-S. The majority of the chips in ACIS-I and ACIS-S are front-illuminated.
However, ACIS-S also contains two chips that are back-illuminated leading to a significant
number of non-astronomical photon events in these regions. To account for the latter, we
added a further model component of a non-astronomical, spatially varying but temporally
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constant background that is present in regions of the back-illuminated chips. An addi-
tional challenge is the fact that Chandra’s field of view (FOV) is small compared with the
extent of SN1006. It is therefore not possible to capture the entire remnant in a single
ACIS-I or ACIS-S image. Instead, mosaicking is required (Winkler et al., 2014), which
can be effectively implemented, even for varying instrument responses, by combining the
corresponding likelihoods.

Overall, the spatio-spectral inference of the sky flux is associated with a significantly
higher computational complexity than an inference that only considers the spatial direction.
Therefore, we introduce a multi-step model, which considers two different priors: a purely
spatial one and a spatio-spectral one. First, we performed a spatial reconstruction using the
spatial prior. The result of this spatial reconstruction was mapped onto the entire spatio-
spectral sky. The mapped sky with multiple energy bins added was then used as the initial
guess for the subsequent spatio-spectral reconstruction. This allowed us to perform parts
of the reconstruction and especially of the component separation in a smaller parameter
space.

This multi-step model, which we call the transition model, and the reconstruction
results on SN1006 are presented and discussed in this chapter. In section 3.2, we present
current methods used in X-ray imaging and their application results on SN1006 data thus
far. We also review state-of-the-art approaches to photon count data in the field of IFT. An
introduction to the imaging of photon data with IFT is given in section 3.3. The explicit
structure of the algorithm and in particular of the transition model is given in section 3.4.
Section 3.5 focuses on the corresponding prior description and section 3.6 explains the
instrument model and the Chandra observations of SN1006. In section 3.7, we present a
reconstruction from synthetic data to validate the method, before finally presenting and
discussing the reconstruction results on SN1006 in section 3.8. The conclusion and outlook
for future research is given section 3.9.

3.2 Related work
This section is devoted to a review of previous studies and state-of-the-art developments in
X-ray imaging. Previous investigations in high-energy astrophysics, with a focus on X-ray
studies, are highlighted in three parts. First, we have a discussion of previous and current
X-ray imaging techniques, followed by an explanation of the results of these techniques
applied to SN1006 and an introduction to previous imaging techniques with IFT, which is
the basis for the reconstruction presented here.

3.2.1 State-of-the-art X-ray imaging
The study of X-ray phenomena in the universe began in the 1960s and it is still a relatively
new field of astrophysics due to the inability of ground-based telescopes to observe X-rays
from astronomical sources. However, there have been many technical developments since
then, discussed in greater detail in Seward and Charles (2010). Here, we focus on the
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imaging techniques that have been developed and are in use, with a non-exclusive focus on
the Chandra X-ray Observatory. A more comprehensive summary of recent developments
in X-ray analysis for X-ray telescopes XMM-Newton, Suzaku, and Chandra can be found
in Seward and Charles (2010).

Among others, Seward and Charles (2010) have offered insights into the steps and tech-
niques in the widely used Chandra data processing pipeline1. The corresponding methods
and further data imaging and response tools have been implemented in the software tool
Chandra Interactive Analysis of Observations (CIAO) (Fruscione et al., 2006), developed
by the Chandra X-ray Center (CXC).

Overall, there are some standards for extended sources, such as SN1006, which have
been applied in recent publications. One of these is the reduction of background from
the data, which can obscure the signal from the source of interest. A disadvantage of
this approach is that the subtraction of the background comes at the cost of eliminating
real X-ray events. Another tool, applied in particular for extended sources, is mosaicking.
This allows for the analysis of sources that have a greater extent than Chandra’s FOV.
In CIAO, mosaicking is implemented by transforming the raw count images, the effective
area, and the background maps into a single coordinate system. Reconstructing an image
from these mosaics has its difficulties, as there are often several PSFs and response matrix
functions (RMFs) for one source. So far, this problem has been overcome by calculating
and using the weighted average of the PSF and RMF for the data patches, as suggested
by Broos et al. (2010).

One of the final steps, which depends on the object of interest, is source detection and
extraction. The aim is to separate the X-ray source of interest from the background. For
this purpose, three well-known algorithms have been implemented in CIAO: the sliding cell
algorithm (Calderwood et al., 2001), wavelet detection algorithm (Freeman et al., 2008)
and Voronoi tessellation and percolation algorithm (Ebeling and Wiedenmann, 1993). The
sliding cell algorithm, previously used for Einstein and ROSAT, searches for sources by
summing the counts in a square cell that slides over the image. For comparison, the counts
in a cell assigned to the background are taken. From the ratio of the counts in the cell to the
counts in the background, the cell might be assigned to a source. Wavelet detection, on the
other hand, decomposes the signal into a series of wavelets. By analyzing the coefficients of
the wavelets, patterns of different scales can be detected in the data. Finally, data cleaning
and source extraction techniques differ for point sources and diffuse emission. This involves
additional work as the pipeline needs to be run several times to fully extract point source
and diffuse emission information.

There have been other approaches to source decomposition that fall into the category of
blind source separation. In general, the goal of blind source separation is to automatically
decompose observations into features maximizing their statistical separation. In Warren
et al. (2005), a principal component analysis (PCA) approach was presented to determine
the location of the contact discontinuity and the shock wave, and thus find evidence for
cosmic ray acceleration in the SNR Tycho. In particular, sparse blind source separation

1https://cxc.harvard.edu/ciao/dictionary/sdp.html
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aims to compress the signal and extract its essence in this way. One application of sparse
blind source separation to Chandra data was recently presented in Picquenot et al. (2019).
Moreover, a generalized morphological component analysis (Bobin et al., 2016) was per-
formed to X-ray data of Cassiopeia A by Bobin et al. (2020) to decompose the spectrum
into its components such as thermal and non-thermal emission. Here, the generalized mor-
phological component analysis models the source as a linear combination of a fixed number
of morphological components and solves the according blind source separation problem,
while putting sparsity constraints on the morphological components.

In addition, Bayesian and machine learning approaches have been applied for source
separation, model comparison or point source characterization. Guglielmetti et al. (2009)
analyzed Bayesian techniques for the joint estimation of sources and background, while
Cruddace et al. (1988) implemented a maximum likelihood algorithm for the calculation of
certain parameters of the detected sources, which has also been used for XXM-Newton. In
Ellien et al. (2023), different components of the spectrum were modeled for Chandra data
of five thin bands around Tycho and different one-, two-, and three-component models
were analyzed via a Bayesian model comparison. Recently, a machine learning approach
was published by Kumaran et al. (2023), with the aim of using it as an automated source
classifier. The approach is based on supervised learning and allows point sources to be
assigned to specific classes.

3.2.2 Previous studies of SN1006 in the X-ray range
The supernova remnant SN1006 has an exciting scientific record. As mentioned above, the
remnant is of great scientific interest in the study of Type 1a supernovae and their remnants
for many reasons: its proximity, low obscuration, and large size. In particular, X-ray
observations of the remnant provide an opportunity to study its evolution. Accordingly,
there have been intensive studies of SN1006 in this energy range, starting with observations
by ROSAT (Willingale et al., 1996) and ASCA (Koyama et al., 1995). The ASCA data on
SN1006 were analyzed by Koyama et al. (1995) and Dyer et al. (2003), which led to the
confirmation of theoretical predictions that cosmic rays are accelerated at the shock fronts
of the remnant. It was also discovered that there are several processes in the supernova
remnant that are responsible for the X-ray emission. In fact, it was found that the northeast
(NE) and southwest (SW) of SN1006 are dominated by non-thermal, synchrotron emission,
while the northwest (NW) and southeast (SE) edges are less distinct and are attributed
to thermal emission. Accordingly, Dyer et al. (2003) analyzed non-thermal and thermal
models on the ASCA data.

The new technologies of the X-ray telescopes XMM-Newton and Chandra have led
to an unprecedentedly high resolution of X-ray sources and, thus, to improved data for
SN1006. Bamba et al. (2003) published the first spatio-spectral study of Chandra ACIS-S
data from the NE shell of SN1006, followed by ACIS-I mosaic data from the analysis of
Cassam-Chenaï et al. (2008). Here, we want to highlight the publication of Winkler et al.
(2014), as their reconstructed image ought to be the main point of comparison for ours. In
Winkler et al. (2014), the standard Chandra pipeline (described in section 3.2.1) was used
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and point sources were extracted using the wavelet detection algorithm. To use multiple
data patches, the observations were merged using CIAO. A more recent study of SN1006
was carried out by Li et al. (2015) on XMM-Newton data using the SAS software. The
data were preprocessed in a similar way to the Chandra pipeline and wavelet detection
was used. However, point source detection was only possible at high energies because of
the risk of misidentifying small-scale structures in the low energy regime as point sources.

3.2.3 Previous work on high energy count data with IFT
High-energy astronomical data, including X-ray and gamma-ray data, are recorded in pho-
ton counts. So far there have been no applications of IFT to Chandra X-ray data, but there
have been studies on gamma-ray data and methodological research on the reconstruction
and component separation of such count data. First, the algorithm D3PO by Selig and
Enßlin (2015) based on IFT implemented the denoising, deconvolution, and decomposition
of count data. Building on this, D4PO by Pumpe et al. (2018) allows D3PO to work on
fields that have spectral and temporal coordinates in addition to spatial coordinates. Fi-
nally, Scheel-Platz et al. (2023) built a model of the gamma-ray sky and applied a variant
of D4PO in a spatio-spectral setting.

In this work, we adapt a similar model as presented in Scheel-Platz et al. (2023) to
describe the X-ray sky. As such, this is the first application of IFT imaging to X-ray
data. Further, we introduce a method to fuse several data sets with different detector
characteristics, pointing directions, and noise levels into a mosaic. We demonstrate how
the imaging can be accelerated and improved by a multi-step model, which is presented in
section 3.4.

3.3 Image reconstruction with IFT
In X-ray imaging, we are dealing with finite, incomplete, and noisy data. Here, we use IFT
(Enßlin, 2019), an information theory for fields, to infer the X-ray sky as a continuous field
from this finite data, d. In general, a physical field, s : Ωz → Ωs, assigns a value to each
point in the space Ωz, which describes a continuous physical quantity such as temperature,
pressure, intensity, and so on; in our case, this is the X-ray flux. Given the data, d, we
obtain constraints on the field of interest, which we call the signal field. Since the data
provide only a finite number of constraints on the signal field, there could have been an
infinite number of signals that have produced the data, even if we completely neglect noise.
For this reason, prior assumptions about the field are needed to sufficiently constrain the
signal field, s. Given the likelihood, P(d|s), which describes the measurement, and a
statistical description of the prior, P(s), the posterior probability of the signal given the
data can be calculated via Bayes’ theorem,

P(s|d) = P(d|s)P(s)
P(d) . (3.1)
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Through IFT, we aim to inspect this posterior probability, as it allows us to draw posterior
samples and thereby calculate any important posterior quantity such as the posterior mean,

µ = ⟨s⟩(s|d) ≡
∫
Ds s P(s|d), (3.2)

where
∫
Ds denotes the path integral over all possible field configurations and a measure

of uncertainty via the covariance of the posterior probability,

D = ⟨(µ− s)(µ− s)†⟩(s|d). (3.3)

The expectation value over the posterior probability is denoted by ⟨⟩(s|d) and † gives the
adjoint of the corresponding field. Therefore, the statistical treatment of the fields of
interest in IFT creates an important advantage, as we may not only present a point estimate
of the field, but also quantify its reliability at each position.

A more detailed description of the likelihood and prior model is given in section 3.4.
Here, we describe image reconstruction with IFT given a general measurement equation.
Accordingly, we consider a measurement as a function M that maps a field from its con-
tinuous space to a discrete data space. This function is determined by the response, R(s),
of the instrument and some statistical noise, n, in the measurement,

d =M(R(s), n). (3.4)

Given this generic measurement equation we can calculate the likelihood by marginalizing
over the measurement noise,

P(d|s) =
∫

dn P(d, n|s) =
∫

dn P(d|n, s) P(n|s), (3.5)

=
∫

dn δ(d−M(R(s), n)) P(n|s), (3.6)

= P
(
M−1(R(s), d)|s

) ∣∣∣∣∣∂M(R(s), n)
∂n

∣∣∣∣∣
−1

, (3.7)

where M−1, is the inverse of the measurement function with respect to the second ar-
gument, n, and |∂M/∂n| is the functional determinant. When combining the likelihood
with a prior distribution to obtain the posterior, the main difficulty lies in normalizing the
posterior, namely, in computing the evidence: P(d) =

∫
Ds P(d|s)P(d). To circumvent the

problem of analytically intractable normalization, we approximate the posterior via vari-
ational inference (VI), where a possibly complex posterior distribution P(s|d) is approx-
imated by a simpler one, Q(s|d). Mathematically, the Kullback–Leibler divergence (KL)
(Kullback and Leibler, 1951) is the measure that needs to be optimized to find the optimal
approximation,

DKL(Q(s|d)||P(s|d)) =
∫
Ds Q(s|d) ln

(
Q(s|d)
P(s|d)

)
. (3.8)
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Here, we use the VI version of the KL divergence; when minimized for the parameters
of Q(s|d), it ensures that in the approximation the least amount of spurious informa-
tion is introduced. The expectation propagation (EP) version of the KL divergence,
DKL(P(s|d)||Q(s|d)), would be more conservative, as it would just ensure that a minimum
of information is lost, but none have been introduced. However, EP requires integration
over the intractable posterior P(s|d), while VI only requires integration over a conveniently
chosen function Q(s|d) (e.g., a Gaussian) and, therefore, this is feasible. As a consequence,
uncertainty estimates obtained from the VI approximation are known to be a bit too op-
timistic, which should be kept in mind. However, those are nevertheless well informative
about the structure of the uncertainties. For further details, we refer to Frank et al. (2021).

3.4 Algorithm overview of Bayesian inference of the
X-ray sky

3.4.1 Structure of the reconstruction algorithm
The measure of interest in our reconstruction of SN1006 is the sky flux s as a function
of space and energy. In other words, the signal field, s, lives on a space consisting of
a 2D position space and a one-dimensional log-energy space, denoted by z = (x, y) ∈
Ωz = R2 × R, where y = log(E/E0) and E0 is the reference energy. In order to guide the
inference in the latent space and to reduce computational complexity, we introduce a multi-
step model, which we call the transition model. The transition model divides the actual
reconstruction into three parts, with three different inference problems, which are solved
by VI. First, we aim to reconstruct the sky at a single energy level. Here, we perform
a purely spatial reconstruction of the signal of interest. This part of the reconstruction
is called the single frequency (SF) reconstruction. Its results are used to determine an
informed starting position for the spatio-spectral reconstruction, subsequently called the
multifrequency (MF) reconstruction. The standard reconstruction algorithm for the SF
and MF model are further described in section 3.4.2. We model the mapping from the SF
image to the MF image space as an inference problem, whose solution constitutes step two
(introduced in section 3.4.3). In the third step, we solve the MF reconstruction using the
starting point provided by step two. A similar model was previously used by Arras et al.
(2022) to move from a spatial domain to a spatio-temporal domain.

Using the transition model, we can solve significant parts of the reconstruction problem,
including the separation of point source and diffuse emission, in the SF setting, which
has less model and computational complexity. Table 3.1 shows the number of hyper-
parameters for each model, SF and MF, and its sub-components, reflecting the model
complexity. Table 3.2 presents the number of latent parameters in the model as a measure
for the computational complexity. Figure B.2 and figs. B.3 to B.5 in the appendix show
a quantitative comparison regarding computational complexity and reconstruction error
for the transition model presented here versus a pure MF reconstruction. A schematic
overview of the described reconstruction algorithm can be seen in the diagram in fig. 3.1.
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The MF and SF prior models themselves are discussed in section 3.5.

3.4.2 Variational inference and generative models
As mentioned in section 3.3, we approximate the posterior given information on the prior
model (as described in section 3.5) and the likelihood description (see section 3.6) via VI.
Two approaches to VI of posteriors within the current NIFTy package are metric Gaussian
variational inference (MGVI) (Knollmüller and Enßlin, 2020) and geometric variational
inference (geoVI) (Frank et al., 2021). They are designed to approximate high-dimensional
and complex posterior probability distributions via optimization of the cross entropy term
of the KL in eq. (3.8). Both approaches perform the KL optimization in a coordinate space
of the problem, in which the prior is a standard Gaussian. In particular, the signal field is
described by a generative model s = f(ξ) given a set of latent parameters ξ with a standard
Gaussian prior P(ξ) = N (ξ,1). The generative model encodes all prior knowledge on the
corresponding field. To this end, the likelihood is formulated as a function of the latent
parameters, P(d|ξ) and the posterior P(ξ|d) can be inferred via VI. In this work, geoVI is
used, which optimizes the KL for the parameters of a non-linear coordinate transformation
in which the posterior becomes an approximate standardized Gaussian. Thereby, geoVI
allows for the representation of non-Gaussian signal posteriors. The detailed implementa-
tion can be found in (Frank et al., 2021). In any case, we need to define generative prior
models for both, the SF and the MF model, given the corresponding latent parameters
sM = fM(ξM), M ∈ {SF, MF}. The detailed explanation of these models is part of the
prior description in section 3.5. The according posterior approximations for each model M
are denoted by QM .

3.4.3 Transition model
The indirect encoding of fields in generative models complicates the transition from one
model (e.g. the SF model) to another (e.g. the MF model) as the corresponding generative
function is in generally not invertible; in other words, its inverse is not unique. Thus, our
objective is to determine a mapping function that plausibly maps the parameters of the
SF model, ξSF, to their corresponding MF parameters ξMF. As the transition model is
intended to be flexible and adaptable to a range of initial and final models, we implement
it as an inference problem. Given the posterior signal space mean µSF = ⟨fSF(ξSF)⟩QSF

and signal space variance σ2
SF = ⟨(fSF(ξSF) − µSF)2⟩QSF of the SF reconstruction, we infer

the corresponding latent space parameters of the MF model, which we take as the starting
point ξI,MF for the MF reconstruction. The according virtual measurement equation is:

dT = µSF = RTfMF(ξI,MF) + n, n ↶ N (n, N), (3.9)

where N = diag(σ2
SF). The transition response RT is a linear operator that can be chosen

adaptively according to the problem under consideration. In the present analysis, RT is an
operator that extracts the highest energy bin from the spatio-spectral field sMF, generating
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a 2D field, sSF. The likelihood of the mapping inference problem is given by the linear
measurement equation in eq. (3.9) and the likelihood derivation in section 3.3 is described
by a Gaussian:

P(dT|ξI,MF, σ2
SF) = N (dT −RTfMF(ξI,MF), diag(σ2

SF)). (3.10)

The posterior for the initial latent parameters in the MF model P(ξI,MF|dT, σ2
SF) is ap-

proximated by QT(ξI,MF|dT, σ2
SF), with geoVI as described in section 3.4.2. We chose the

posterior mean of the transition ⟨ξI,MF⟩QT as the initial position for the subsequent MF
reconstruction. This results in an overall algorithm that starts with a high-energy slice and
uses this reconstruction as a starting point for the subsequent spatio-spectral reconstruc-
tion. The flow of reconstructions in this approach is illustrated in fig. 3.1. The decision
to start with the high energy slice was deliberate, as this particular energy range has a
more consistent effective area for Chandra. Since the transition result is used only as
an initial guess, we assume a consideration of a diagonal transition noise covariance, N,
to be sufficient. The possibly underestimated noise level is corrected in the subsequent
spatio-spectral reconstruction steps.

3.5 Prior models for the X-ray sky

3.5.1 Prior composition

As described in section 3.4.1, we consider two different prior models, one for the SF re-
construction and one for the MF reconstruction. The fields in the SF reconstruction are
defined in the spatial domain, sSF : ΩSF = R2 → R+, whereas the MF fields have an
additional spectral dimension, sMF : ΩMF = R2 × R → R+. Regardless of the model,
we assume that the X-ray sky consists of two possible sources: point sources and diffuse
sources. Different prior models represent fluxes of different morphologies, each shaped by
their physical production processes. The flux in diffuse structures should vary smoothly
over position space. In other words, field values in the vicinity of a location are similar to
that, which is best represented by the correlation structure of the field. In contrast, point
sources are spatially uncorrelated and therefore best represented by spatially independent
and sparsity enforcing priors. We discuss the specific use of either component in more
detail below. In the following, the validity of the assumptions made for s ∈ {sSF, sMF} is
assumed to hold for both the SF and MF sky.

We represent the flux signal, s, as a superposition of point sources, sp, and diffuse
sources, sd. In addition, we add a background component, sb, which in our case accounts
for the different backgrounds in front-illuminated (FI) and back-illuminated (BI) chips,
which are further discussed in section 3.6.

Correspondingly, we denote the latent space sub-vectors, which parametrize these in-
dividual components, as ξp, ξd, and ξb, which altogether form the total latent space vector
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Single frequency (SF) Transition Multifrequency (MF)

SF data

Poisson likelihood SF prior model

geoVI: Posterior approximation

Latent space posterior samples {ξ∗
SF}

Signal space mean µSF
Signal space variance σ2

SF

Virtual measurement
Data dT = µSF

Gaussian Likelihood
Noise covariance N = diag(σ2

SF) MF prior model

geoVI: Posterior approximation

Latent space posterior samples {ξ∗
I,MF}

Latent space mean ξ̄I,MF

MF data

Poisson likelihood MF prior model

geoVI: Posterior approximation
Initial latent space position ξ̄I,MF

Latent space posterior samples {ξ∗
MF}

Signal space mean µMF
Signal space variance σ2

MF

Figure 3.1: Structure of the transition model given the generative prior models for the
SF reconstruction sSF = fSF(ξSF) and for the MF reconstruction sMF = fMF(ξMF), which
transform the according latent parameters ξSF and ξMF from the latent space into the signal
space. Here, ξI, MF denotes the initial position of the MF reconstruction in latent space.
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of the model, ξ = (ξp, ξd, ξb). The according generative prior model is given by,

s = f(ξ) = fp(ξp) + fd(ξd)︸ ︷︷ ︸
sky flux

+ R′fb(ξb)︸ ︷︷ ︸
BI background

. (3.11)

Here, R′ denotes a mask, which assures that the additional background field is added in
BI chip regions only. By expressing the transformation into the standardized coordinate
system as a function si with i ∈ d, p, b, we obtain a generative model for each component
as described in (Enßlin, 2022).
A set of prior samples can be seen in the first row of the synthetic data generation diagram
in fig. B.1 in the appendix. Furthermore, the according prior samples and synthetic data
allow us to choose the model hyper-parameters correctly. Here, we perform the search in
two steps. First, we ensure mathematically via a coarse adjustment of the parameters that
the order of magnitude in the counts of the data in fig. 3.3 is the same as the order of
magnitude in the expected counts of the pixel-wise product of the exposure and the prior
samples. Second, we look at the corresponding synthetic data, as shown in fig. B.1 and
fine-tune hyper-parameters such that the components in the actual data and the synthetic
data are morphologically similar, in order to improve the convergence of the algorithm.

3.5.2 Correlated components
Correlated components correspond to a flux that can vary over several orders of magnitude
and exhibit spatial correlation. In this sense, the diffuse sky emission and the background
are represented by correlated components. Their morphology is implemented by represent-
ing the signal for a correlated component as a log-normal process,

s = eτ with P(τ |T ) = N (τ, T ), (3.12)

with an unknown covariance, T, describing the correlation structure of the correlated signal
component. Since the correlation structure is not known a priori, we infer it concurrently by
incorporating the correlated field model from Arras et al. (2022). Using the reparametriza-
tion trick introduced by Kingma et al. (2015), we describe the logarithmic sky flux as a
generative process:

τ = Aξτ with T = AA†. (3.13)

We went on to model the correlations in space and energy separately and assumed a priori
statistical homogeneity and isotropy of the correlated logarithmic sky flux components in
each of the subspaces Ω(k), where Ω = ⊗

k Ω(k). Thus, according to the Wiener-Khinchin
theorem, the corresponding covariances for the space Ω(k), T (k) are diagonal and defined
by the power spectrum pT (k) .

To learn the correlation structure of the correlated component, the power spectrum
was modeled non-parametrically by representing the logarithmic power spectrum by an
integrated Wiener process according to Arras et al. (2022) (The one-dimensional case



3.5 Prior models for the X-ray sky 53

is further described in section 2.2.2). In particular, the mean and uncertainty of the
parameters resulting from the chosen representation, such as the slope of the logarithmic
power spectrum, its offset, and the fluctuations around the described power law, are learned
from the data by modeling them as generative processes. This introduces further latent
parameters to describe the generative model for the correlation structure. In the following,
we refer to this prior model as the correlated field.

In the case of the SF model, we only considered the spatial correlations. Accordingly,
the generative model for the spatially correlated components in the SF reconstruction is
defined via sSF = fSF(ξSF) = eτSF(ξSF) with Ω = Ω(k) = R2. In the MF model, we combined
the power spectra for the independent spatial and spectral domain via a tensor product
and define sMF = fMF(ξMF) = eτMF(ξMF). A further description of this generative model and
its normalization can be found in Arras et al. (2022).
The diffuse and background components are represented by these spatially and spectrally
correlated components. The number of derived hyper-parameters as well as latent param-
eters per component in each model is given in table 3.1 and table 3.2. For the correlation
structure of the diffuse and background components, we made different prior assumptions
to ensure an adequate separation of these components. In particular, we assumed that the
spatial power spectrum of the diffuse sky structures has a slightly declining slope, allowing
for small-scale structures in this component; meanwhile the spectrum of the background
is assumed to be steep, allowing only for smooth background noise in the back-illuminated
chips.

3.5.3 Point-like components
Point-like components appear local without any spatial correlation structure, due to their
extreme distances. Consequently, we assume that the sky fluxes from point sources are
spatially independent and, thus, their prior is factorized in a spatial direction:

P(sp) =
∏
x

P(sp(x, y)).

In Selig and Enßlin (2015), different functional forms of possible point source luminosity
priors were analyzed. Since the reconstruction of SN1006 requires a point source prior
capable of modeling a few very bright point sources, we chose the inverse-gamma prior for
the spatial direction according to Guglielmetti et al. (2009):

P(sp|β, κ) =
∏
x

(β)κ

Γ(κ)

(
1

s
(x)
p

)κ+1

exp
(
−β

s
(x)
p

)
, (3.14)

where κ is the shape parameter of the inverse-gamma distribution and β is the correspond-
ing lower flux cutoff. The inverse-gamma prior behaves as a power law for fluxes much
larger than the cutoff value, which matches the behavior observed for the luminosity func-
tions of high-energy astrophysical point sources. Intuitively, it encodes the assumption



54 3. First spatio-spectral Bayesian imaging of SN1006 in X-rays

Model s sd sp sb

SF 24 11 2 11
MF 53 19 15 19

Table 3.1: Number of hyper-parameters in each model per component

Model s sd sp sb

SF 3.4× 106 1.2× 106 1.0× 106 1.2× 106

MF 1.4× 107 4.4× 106 5.0× 106 4.4× 106

Table 3.2: Number of latent parameters in each model per component

that with increasing luminosity, the set of point sources exceeding it becomes increas-
ingly sparse. We model the inverse-gamma prior in standardized coordinates via inverse
transform sampling leading to the generative model:

sp = fp(ξp), (3.15)

where ξp is drawn from a standard Gaussian. Accordingly, fp encodes the entire complexity
of the inverse-gamma distribution and fp(ξp) is drawn according to eq. (3.14). In the SF
model, eq. (3.15) describes the accurate generative model for the point sources.

For the MF model, we need to consider the spectral axis as well, by modeling the
point source flux as spatially independent functions of the logarithmic energy y, accord-
ing to Scheel-Platz et al. (2023). We assume that each point in the spatial subdomain
has non-negligible correlations in the energy direction, as described by the correlated field
component. In particular, we want to obtain a power-law dependence in the energy direc-
tion, defined by the spectral index αp, and add fluctuations around it by a correlated field
τp,

(sMF)p(x, y) = (sSF)p(x)eτ
(x)
p (y)+α

(x)
p y

c
, (3.16)

where c is the normalization. Here, not only the correlated field is described by a generative
model, but also the spectral index α(x)

p at every location x is learned. Thus, the additional
energy axis introduces a number of new hyper- and latent parameters. The exact numbers
of hyper- and latent parameters for the point sources in each model are given in table 3.1
and table 3.2.

3.6 Chandra instrument and data description
In Bayesian X-ray imaging, the prior model (section 3.5) is responsible for decomposing
the components, whereas the denoising and deconvolution is controlled by the likelihood
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model, which describes the measurement process. In general, an X-ray telescope provides
photon counts that are statistically binned into pixels. This stochasticity is modeled by
Poisson noise. The Poisson distribution gives the probability of the actual number of
photon counts per bin, given the expected number of events, λ,

P(d|λ) =
∏

i

P(di|λi) =
∏

i

1
di!

λi
die−λi . (3.17)

In the end, we want to know the photon flux at each point in position and energy space.
To do this, we need to model the response function R, which in a first step transforms
the continuous flux field into a pixel-wise vector of expected photon counts λi, given a sky
and BI background model. The response function includes all aspects of the instrument
specific measurement, which are described in more detail below. Given the response, R
(see section 3.6.1), the number of expected counts at each pixel, λi, is calculated via
λ(z) = R(s)(z). Because the Chandra FOV is small compared to the extent of SN1006,
multiple observations were taken to cover the whole SNR. For each of several data patches,
j, we get the data, dj, and the response, Rj, which need to be fused. Here, we introduce a
mechanism that accounts for differences in the exposure and the PSF between the patches.
By assuming that each patch is observed independently, we can write the log-likelihood of
the full mosaic as the sum over individual patches (eq. (3.17)) for each data patch, dj, and
the corresponding expected counts, λj, calculated from the response, Rj,

lnP(d|λ) =
∑

j

lnP(dj|λj). (3.18)

3.6.1 Chandra instrument response
We consider the data taken by the ACIS (Garmire et al., 2003), which is able to determine
the energy of each incoming photon by using charge-coupled devices (CCDs). In particular,
we consider the energy range 0.5 keV to 7.0 keV, which we bin in accordance with Winkler
et al. (2014) into three energy bins (0.5-1.2 keV, 1.2-2.0 keV, and 2.0-7.0 keV). Chandra
carries two different kinds of ACIS detectors, ACIS-I, used for imaging, and ACIS-S, used
for imaging and spectral analysis. According to their application, ACIS-I and ACIS-S differ
in the chips they are built of. In particular, ACIS-I is constructed out of FI chips only,
which means that the incidental X-ray photons have to pass through the metal wiring
until they reach the light-receiving surface. In contrast, ACIS-S also contains BI chips,
where the CCD is flipped, such that the gate structure and channel stops do not face the
X-ray-illuminated side. Accordingly, the BI chips are more sensitive to soft X-rays, so they
are well suited for spectral analyses. However, they have a lower high-energy quantum
efficiency and a worse resolution due to increased noise (Arnaud et al., 2011). The exact
layout of ACIS-I and ACIS-S can be found in Chandra X-ray Center (2021).

We use version 4.14 of CIAO tool (Fruscione et al., 2006) designed by the CXC to
extract information on the response ingredients such as the PSF and the exposure as well
as on the event files itself for each patch. Here, we have made use of tools from the "data
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Figure 3.2: Visualization of the exposures used for the reconstruction in [s cm2]( table 3.3):
Top: Full exposure for all FI chips. Bottom: Full exposure for all BI chips.

manipulation" category for extracting and binning the data and from the "response tool"
category to generate the ingredients of the instrument response. The exposure map is a
key component in the process of converting raw X-ray data into scientifically useful data
products, such as images and spectra. The exposure map combines information from the
instrument map, which characterizes the instrument sensitivity such as the effective area
and aspect solution (McDowell, 2006), which describes the spacecraft pointing and roll to
create a map of the total observing time (or exposure) for each pixel in the field of view.

In Evans et al. (2010) the effective area as a function of energy is shown for the different
chips. As mentioned above already, the FI chips are much less sensitive to low energy X-ray
photons than the BI chips. On the other hand, the BI chips have more background flux.
The exposure maps for the FI and BI chips can be seen in fig. 3.2. In order to account
for the higher noise in the BI chips, we introduce an additional BI background field in
section 3.5.

In general, for any of the considered chip types, it is evident that the chips are more
sensitive to higher energies, leading us to the decision to take the highest energy bin (2.0-
7.0 keV) as a starting point for the transition model. The PSF was simulated using the
Model of AXAF Response to X-rays (MARX) (Davis et al., 2012). MARX is a software
developed by the CXC (amongst others) to simulate the response (i.e., the PSF) of the
Chandra X-ray Observatory, taking into account the telescope optics, pointing, and aspect
of the telescope. We generated the response for each dataset and for each dataset, we used
a homogeneous, spatially invariant PSF – but different PSFs for the different patches. The
consequences of this approximation are addressed further in the quantitative discussion of
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the results in section 3.8.1. For a further analysis of spatially variant PSFs, we refer to
Eberle et al. (2023).

3.6.2 Chandra data of SN1006

The photon count data taken by
the instrument is translated into an
event table. Each event has infor-
mation on time, energy, and posi-
tion. Here, the data are binned into
1024×1024 spatial pixels and three
energy bins. Moreover, the point-
ing direction of Chandra varies in
time. Thus, the aspect correction
is necessary, that is, taking into ac-
count the pointing direction of the
telescope as a function of time. The
data itself is an event list, which
specifies the position in the chip co-
ordinates and the arrival time of
each photon. In McDowell (2001)
the calculation of the sky coordi-
nates of the photon given this event
list is specified.
The latest Chandra observations of
SN1006 according to Winkler et al.
(2014) was chosen for the recon-
struction presented here. Informa-
tion on the data is given in ta-
ble 3.3.

Figure 3.3: Visualization of the photon count
data used for the reconstruction (table 3.3)
with right ascension on the x-axis and decli-
nation on the y-axis: red = 0.5 - 1.2 keV, green
= 1.2 - 2.0 keV, and blue = 2.0 - 7.0 keV.

The aim of the study of Winkler et al. (2014) was to measure the motion of the remnant
and to get a more detailed view on its fine scale structures. Thus, the data observations
were designed by Winkler et al. (2014) in order to match former observations, to be able
to measure the expansion and using a longer exposure time in order to get a more detailed
picture. The previous observations, which were taken as first-epoch images by Winkler
et al. (2014), comprised a study of the non-thermal NE rim and the thermal NW rim
with the ACIS-S array (Long et al., 2003; Katsuda et al., 2009) and the whole remnant
with a mosaic of the ACIS-I observation (Cassam-Chenaï et al., 2008). Accordingly, the
reconstruction deals with data from the BI and FI chips.
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ObsID Instrument R.A. Decl. Date

9107 ACIS-S 15:03:51.5 -41:51:19 24.06.2008
13737 ACIS-S 15:02:15.9 -41:46:10 20.04.2012
13738 ACIS-I 15:01:41.8 -41:58:15 23.04.2012
14424 ACIS-I 15:01:41.8 -41:58:15 27.04.2012
13739 ACIS-I 15:02:12.6 -42:07:01 04.05.2012
13740 ACIS-I 15:02:40.7 -41:50:21 10.06.2012
13741 ACIS-I 15:03:48.0 -42:02:53 25.04.2012
13742 ACIS-I 15:03:01.8 -42:08:27 15.06.2012
13743 ACIS-I 15:03:01.8 -41:43:05 28.04.2012
14423 ACIS-I 15:02:50.9 -41:55:25 25.04.2012
14435 ACIS-I 15:03:42.5 -41:54:49 08.06.2012

Table 3.3: Information on the Chandra ACIS observations for the used data of SN1006
according to Winkler et al. (2014). Observations taken by the instrument ACIS-S are
followed by the ACIS-I observations.

3.7 Validation of the algorithm using synthetic data
To demonstrate the performance of the developed algorithm, we perform the inference
described above on a realistic but simulated dataset. Such a reconstruction based on
synthetic data is useful not only for validating the reconstruction method, but also for
determining certain parameters of the actual reconstruction, such as the sky flux detection
limit. By constructing our model as a generative model, we were able to draw realistic sky
samples that are similar to the region of the X-ray sky considered in this study. Given a
sample of the sky, we were able to apply the response to it and mimic the Poisson noise.
As a result, we obtained the synthetic data. The process of generating synthetic data
is illustrated in fig. 3.4. For simplicity, we considered only three of the ACIS-I exposure
patches for the synthetic reconstruction, rather than the whole set. The relevant synthetic
data are shown in fig. 3.4, together with the actual simulated sky sample and the considered
exposure map.

The resulting spatio-spectral reconstruction of the synthetic data in fig. 3.5 shows that
the structures of the simulated sky are well captured. The denoising and response cor-
rections are clearly visible when compared to the data shown in fig. 3.4. In particular,
the right-hand side fig. 3.5 shows an enlarged version of the data and reconstruction to
illustrate the denoising and deconvolution.

As mentioned before, a particular strength of the X-ray imaging method presented here
is that we not only get an expectation of the signal, but also a corresponding standard
deviation to this estimate. The corresponding pictures of the standard deviation for the
individual energy bins can be seen in the appendix in fig. B.7. As expected, higher mean
values exhibit greater variability in the flux, which in turn leads to a higher absolute
uncertainty. However, given the standard deviation, σs, the reconstruction mean, µs, and
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Figure 3.4: Generation of synthetic data: Left: Sky sample generated for the validation
experiment. Center: Chandra exposure, modeled by combining three patches (14423,
14424, 14435) (see table 3.3). Right: Synthetic data corresponding to the sky sample,
obtained by convolving the sky sample with the PSF and drawing a pixel-wise Poisson
sample from the resulting detector flux prediction.

Figure 3.5: Reconstruction results on synthetic data: Left: Sky sample generated for this
study masked by the extent of the exposure patches (14423, 14424, 14435) (see table 3.3).
Center: Reconstruction result, i.e., the posterior mean, of the imaged sky masked by the
extent of the same exposure patches. Right: Zoomed-in regions of the data on top and of
the reconstructed image below. The shown cutout region is marked in the center image.

the fact that we know the signal ground truth, sgt, itself from our generative model, we can
calculate even more interesting validation measures, such as the UWRs per energy bin, i:

(ϵUWR)i = (µs)i − (sgt)i

(σs)i

. (3.19)
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In fig. B.6 of the appendix, we show the UWRs as well as the residuals,

ϵr = (µs − sgt). (3.20)

Areas with many counts show higher and more correlated residuals than those with low
counts. Accordingly, the UWRs show that these pixels with high counts have higher
uncertainty weighted residuals, due to a relatively small uncertainty. Overall, the simulated
reconstruction demonstrates that the method developed is internally consistent.

Therefore, we used this syn-
thetic reconstruction to set the
threshold above which we can
no longer distinguish noise from
signal, which we refer to as the
detection limit. The detection
limit is used as a plotting lower
limit in the actual reconstruc-
tion. Below this lower limit flux
values are not shown in the im-
age. The posterior approxima-
tion gives us the opportunity to
draw posterior samples s∗ ←↩
Q(s|d), which we can use to cal-
culate the sample averages. In
order to determine the detec-
tion limit, we define the stan-
dardized error, ϵrel, between the
ground truth, sgt, and each of
these samples, s∗, as a function
of the ground truth flux,

ϵrel(sgt) =
∣∣∣∣∣s∗ − sgt

sgt

∣∣∣∣∣. (3.21)

Figure 3.6: Visualization of the 2D histogram for
the sample averaged relative distance of the poste-
rior sky flux samples vs. the ground truth sky flux
( eq. (3.21)). The detection limit is determined
via the intersection of the line showing the mean
standardized error ϵ̄rel (eq. (3.22)) with the ϵrel = 1
line.

In fig. 3.6, the sample-averaged 2D histogram ϵrel(sgt) as a function of the ground truth
flux, sgt. is shown. For each value of sgt, i we calculate the mean standardized error of the
histogram bins along the ϵrel-axis, ϵ̄rel(sgt, i), where n(ϵrel,j, sgt, i) is the number of counts
for each bin (i, j) in the 2D histogram:

ϵ̄rel(sgt, i) =
∑

j ϵrel,jn(ϵrel,j, sgt, i)∑
j n(ϵrel,j, sgt, i)

. (3.22)

Figure 3.6 reflects the expectation that the standardized error increases with smaller flux.
To establish a detection threshold for low fluxes, we defined a limit beyond which we
cannot confidently ascertain the presence of a signal in our observations. In this study, we
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determined the detection threshold in such a way that the mean standardized error is less
than 1. In other words, the detection threshold is set via the intersection point of the mean
standardized error ϵ̄rel and the line ϵrel = 1, leading to a detection limit of 9.0e−9s−1 cm−2.
We only performed this synthetic analysis on three of the data patches. Therefore, this
threshold is conservative for the reconstruction with all patches.

3.8 Results and analysis of inference performance

Figure 3.7: Spatial reconstruction result for
the highest energy bin in [s−1 cm−2].

In this section, we discuss the re-
sults of the sky flux reconstruction.
The additional background from
the BI chips according to eq. (3.11)
is removed in the reconstruction
process. In fig. 3.7, we show the
intermediate result of the SF re-
construction of the highest energy
bin. This is taken as the initial
condition of the subsequent MF re-
construction of SN1006, whose re-
construction results are shown in
fig. 3.8 given the data shown in ta-
ble 3.3 using Bayesian imaging and
the transition model introduced in
section 3.4.1. The reconstruction
was visualized using the SAOIm-
age DS9 imaging application (Joye
and Mandel, 2003). The according
results for each energy bin includ-
ing the according color bars can be
found in the appendix (fig. B.9).

As noted above, we are not only reconstructing the sky flux itself, but also its correlation
structure in its correlated components. Accordingly, the posterior mean of the power spec-
trum in the spatial direction of the diffuse, extended sky component was also reconstructed
and is shown for each energy bin in the appendix in fig. B.8.

3.8.1 Quantitative discussion
Figure 3.8 displays the final results of applying our reconstruction algorithm to SN1006:
the reconstructed sky and its separated components. The overall separation of diffuse
emission and point sources was successfull. The point sources are clearly identified and the
PSF deconvolution is particularly evident for the point sources. The diffuse structures are
almost free of point source contributions.
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Figure 3.8: Reconstruction results for the flux in [s−1 cm−2] (red = 0.5-1.2 keV, green
= 1.2-2.0 keV, and blue = 2.0-7.0 keV. The corresponding color bars for each of these
energy bins can be found in fig. B.9): Top: Full sky reconstruction mean. Bottom left:
Reconstruction mean for diffuse emission. Bottom right: Reconstruction mean for point
sources.
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The effect of component separation can be seen more clearly in fig. 3.9, which shows a
zoom-in on the NE quarter of the remnant and its components. It can also be seen that
some of the additional background noise from the BI chip is partially absorbed into the
background model.

One soft X-ray point source in the
center of the remnant was not well
separated from the diffuse emission.
We believe this was caused by PSF
mismodeling in the outer pixels of
the detectors, where the source is
located in all observations consid-
ered, due to the assumption of in-
variant PSFs within each observa-
tion. Figure 3.10 shows the expo-
sure maps of the observations that
covered this source and the posi-
tion of the point source within these
exposure maps. The pointing of
ACIS-I and ACIS-S described in
Chandra X-ray Center (2021) sug-
gests large deviations of the ac-
tual PSF from the PSF model used
in the positions of the mismod-
eled point source in detector coor-
dinates. Dealing with position de-
pendent PSFs will be addressed in
a future publication.

Figure 3.9: NE quarter of SN1006 and its
components: From left to right: Total sky,
diffuse emission, point sources, and BI back-
ground.

Figure 3.11 shows the reconstruction of diffuse emissions from the remnant in detail. In
order to study the remnant effectively, it is crucial to get a detailed view of it. To improve
the clarity of our results, we present four close-up images of the remnant, highlighting its
small-scale structures. The analysis shows that the shell is denoised both in the NW region
(where we expect thermal emission) and in the SW region (where we expect non-thermal
emission). We can also see that the denoising has improved the resolution of the small-scale
structures in the inner X-ray emission of the remnant with respect to the data and also in
comparison to the previous study of Winkler et al. (2014).

Due to the statistical approach presented in this study, we obtained an estimate of the
sky flux via the mean of the posterior probability, but also an uncertainty estimate via its
standard deviation. The corresponding standard deviations for each energy bin are shown
in the appendix in fig. B.9. The top row of the figure shows the different energy bins of
the posterior mean for better comparison. It can be seen that, as expected, the standard
deviation is higher for regions of higher flux.
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Thanks to the probabilistic approach we adopted, we gain the ability to draw posterior
samples from the inferred distribution. Such posterior samples, s∗, have allowed us to
compute the posterior mean, the standard deviation or any other statistical quantity of
interest. Correspondingly, we can calculate the absolute NWR, (ϵNWR)j, for each data
patch, j, as another interesting outcome of our results:

Figure 3.10: Exposures that capture
the not well separated point source
(marked red).

(ϵNWR)j =
〈
|dj − λj(s)|√

λj(s)

〉
Q(s|d)

(3.23)

≈ 1
N

N∑
i=1

|dj − λj(s∗
i )|√

λj(s∗
i )

. (3.24)

Here, λj describes the reconstructed ex-
pected number of counts for each pixel in the
data patch, j. The absolute NWRs provide
a way to quantify the difference between a
measured data point and its reconstruction,
and help to distinguish between true devi-
ations of the data from the reconstruction
and deviations that are simply due to Pois-
son noise.

The plots of the absolute NWRs are shown in the appendix in table B.1 for each energy
bin and data patch. These plots can be used as a sanity check on the correctness of the
reconstruction presented here, as they allow us to point out systematically unmodeled
effects in the likelihood and the prior. We can see that the NWRs are close to one in most
regions, which implies a well-fitting model and reconstruction. In particular, in regions
around point sources or at strong edges, we find higher NWRs, which we attribute to the
well-functioning deconvolution in these regions, leading to deviations of the reconstructed
signal from the data.

3.8.2 Analysis and comparison with previous studies
As mentioned above, SN1006 has been studied extensively using a variety of instruments. In
particular, several studies using X-ray telescopes have produced images of the SNR. These
studies have provided important insights into its structure and evolution, thus advancing
our understanding of supernova explosions and their aftermath. Corresponding imaging
approaches to SN1006 can be found in Winkler et al. (2003), Li et al. (2015), Bamba et al.
(2003) and also in Fruscione et al. (2006), which demonstrated the fidelity of the Chandra
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(a) (b)

Figure 3.11: Zoom-in on the reconstruction results in the diffuse component: (a) the whole
diffuse reconstruction and the locations of the zoomed-in areas; (b) the top panels represent
the green areas marked in the remnant and show zoom-ins on the denoised shell of the
remnant. The lower panels are represented by the white boxes in (a) and show structures
in the inner soft X-ray emission of the remnant.

data processing pipeline for SN1006. In particular, in this study we have focused on the
data and energy regions used by Winkler et al. (2014) and compare our reconstructions
with their results. In Winkler et al. (2014), a comparison was made between the X-ray
image and a Hα image of SN1006 from CTIO. The comparison shows that there are several
thin arcs of Balmer emission in the southern part of the remnant, which lie just in front
of small-scale structures in the X-ray emission. In fig. 3.11, we show these central parts
of the remnant, which are dominated by soft X-rays. We show the enlarged cut-outs
of these regions for the extracted remnant. Compared to previous studies, small-scale
structures have an improved resolution due to the denoising and deconvolution and are
well disentangled from any point sources in the background. Accordingly, the presented
reconstruction provides a more detailed view of the inner part of the remnant, enabling a
more accurate study of its small-scale structures.

As noted in Li et al. (2015), the different energy bands show spatial variations in
the remnant SN1006 with respect to each other. Figure 3.8 shows these differing spatial
variations of intensity with different X-ray energy bands. In particular, in fig. 3.9 and
fig. 3.11, parts of the hard X-ray lobe (the non-thermal regions in the SW and NE of the
remnant) are well resolved and denoised, without any point source contribution. Soft X-
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Figure 3.12: Flux intensity profiles in [s−1 cm−2]: The center image shows the location of
the lines along which we present the intensity profile in pixel coordinates. The correspond-
ing intensity profiles are plotted next to the line. The posterior mean of the reconstructed
flux is plotted in red and the corresponding posterior samples are plotted in grey. The
profiles are shown from left to right from the outsides to the insides of the SNR.

rays in the NW shell are shown in fig. 3.11, which shows the shell of the thermal emission.
Koyama et al. (1995) presented the first observational evidence that supernova shocks
produce cosmic rays. However, the details of the acceleration mechanism of the particles
is still an open question. Therefore, the study of the shock fronts is important to gain
further insight into the acceleration mechanism and the dynamics of the shock front. The
separation of the diffuse emission from the remnant allows us to visualize long intensity
profiles along the remnant. Figure 3.12 shows such radial intensity profiles of the SNR in
eight equidistantly space orientations. These denoised and deconvolved profile lines can be
very useful to search for halos in front of the non-thermal regions and to get insights into
the magnetic field strength according to Helder et al. (2012). Here, the profile lines show
strong and sharp X-ray flux increases by up to two orders of magnitude at the shock front
in the non-thermal regions in the SW and NE of SN1006. Notwithstanding, we defer the
analysis of the structure of the remnant based on our reconstructions to future works.
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3.9 Conclusion
In summary, we present a technique for obtaining an estimate of the true sky photon
flux from Chandra X-ray event data. By using the sky flux as a generative process, this
method allows us to infer not only the flux itself, but also its correlation structure in its
extended components. Based on IFT and the application of Bayes’ theorem, this method
approximates the posterior probability of a signal given the data via geoVI in a problem-
adapted latent space. This allows us to draw posterior samples in order to compute the
expected sky flux, posterior uncertainty, and further validation and diagnostic measures.

Modeling the different correlation structures of point sources, diffuse emission, and
background in the BI chips, we were able to separate point-like, extended sources and
the additional noise in the BI chips from the sought-after signal. Compared to previous
separation and source extraction techniques, which are usually specified to extract either
point sources or extended sources, the inference based on IFT accounts for both components
jointly. In particular, we built a spatio-spectral model for the sky flux based on the D4PO
algorithm implemented by Scheel-Platz et al. (2023) and used it for the spatio-spectral
reconstruction of the X-ray sky. Since the spatio-spectral reconstruction is computationally
expensive for a large number of pixels, we introduced an accelerated inference model, called
the transition model. In the transition model, we first performed a spatial reconstruction
in a single energy band, which has almost one order of magnitude less degrees of freedom
as the spatio-spectral reconstruction, making it computationally less complex. The result
of the spatial reconstruction, which already contains a lot of information about the sky
flux in an energy bin and about the component separation, was used as an initial condition
for the spatio-spectral reconstruction.

A benefit of the here presented analysis is the ability to build mosaics of different
observations via the sum of logarithmic likelihoods. Each likelihood has its own description
of the instrument response. This approach solves the problem of modelling different PSFs
for the same source in different data patches.

We applied the spatio-spectral reconstruction to the latest Chandra observations of
SN1006, presented by Winkler et al. (2014). The resulting image is a denoised, deconvolved
and decomposed image, which provides a detailed view of the small-scale structures of
SN1006. We reconstructed a separate image of the point sources present in the considered
datasets, which can be compared with point source catalogs and, more importantly, which
allows us to study the X-ray emission of SN1006 without point source contributions. The
different energy ranges in NE and SW – dominated by synchrotron emission – and the
rest of the remnant – dominated by thermal emission – are clearly visible. The intensity
profiles at the shell of the remnant are denoised and not visibly affected by point source
contributions. We also show other diagnostics such as a simulated data reconstruction,
uncertainties, and noise-weighted residuals as a check for systematic errors.

Taking this work as a starting point for spatio-spectral Bayesian imaging of X-ray data,
we have pointed out the need for further methodological improvements. One is based on the
use of a spatially varying PSF. Alexander et al. (2003) already showed the actual spatial
variability of the PSF in the Chandra image of the Deep Field North. We expect that the
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separation of the central point source in SN1006 to improve by the implementation of a
spatially varying PSF. However, this is not a trivial task, as an invariant PSF can be applied
via multiplication in Fourier space, whereas a spatially varying PSF cannot. Methods are
currently being developed to solve this problem in the language of IFT, including a neural
network approach recently presented by Eberle et al. (2023). In addition, a line model
capable of modelling lines in the thermal emission will help to further resolve the energy
direction. An interesting option here, already mentioned in Seward and Charles (2010),
would be to define different models for synchrotron emission and bremsstrahlung, with the
goal of eventually decomposing the diffuse emission of the remnant into its thermal and non-
thermal components. In general, we aim to further improve the reconstruction speed and
reduce its computational cost to enable studies of more data sets, larger regions, and with
higher resolutions in the spatial and spectral dimensions. In addition, we want to further
optimize our hyper-parameter search to enable a faster convergence of the algorithm.
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Chapter 4

Bayesian multi-wavelength imaging
of the eROSITA LMC SN1987A

The following chapter is a manuscript that has been submitted to Astronomy & Astro-
physics with Vincent Eberle, Matteo Guardiani and me as the shared first authors (Eberle
et al., 2024a). In close collaboration Vincent Eberle, Matteo Guardiani, Philipp Frank,
and I implemented the first inference pipeline in NIFTy for a spatial reconstruction of the
eROSITA sky. This was facilitated by the eROSITA data loading pipeline implemented by
Matteo Guardiani. The theoretical calculations and implementation of the spatially variant
PSF used were carried out by Vincent Eberle. The entire code was rewritten by Vincent
Eberle, Matteo Guardiani and myself to be JAX-compliant using NIFTy.re. To this end,
Vincent Eberle and I implemented a JAX-compatible spatio-spectral prior model. Matteo
Guardiani and I built an extensive diagnostic pipeline for the results. Other contributions
of mine were the implementation of extended sources in the prior model, the tuning of
the hyperparameters for the final reconstruction, and the corresponding validation of the
algorithm in a simulated data reconstruction. The scientific exchange with Michael Frey-
berg and Mara Salvato about the eROSITA data and instrument has been very beneficial
to the presented work. The whole work would not have been possible without many fruitful
discussions with Torsten Ensslin. The first draft of the manuscript was written jointly by
Vincent Eberle, Matteo Guardiani, and myself. The individual contributions to the first
draft are marked within the chapter. The final manuscript was refined and reviewed by the
authors.
For consistency within this thesis, some of the parameters have been renamed and some of
the figures have been adapted according to the layout.
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The EDR and eRASS1 data have already revealed a remarkable number of undiscov-
ered X-ray sources. Using Bayesian inference and generative modeling techniques
for X-ray imaging, we aim to increase the sensitivity and scientific value of these
observations by denoising, deconvolving, and decomposing the X-ray sky. Lever-
aging information field theory, we can exploit the spatial and spectral correlation
structures of the different physical components of the sky with non-parametric pri-
ors to enhance the image reconstruction. By incorporating instrumental effects into
the forward model, we develop a comprehensive Bayesian imaging algorithm for
eROSITA pointing observations. Finally, we apply the developed algorithm to EDR
data of the LMC SN1987A, fusing data sets from observations made by five differ-
ent telescope modules. The final result is a denoised, deconvolved, and decomposed
view of the LMC, which enables the analysis of its fine-scale structures, the creation
of point source catalogs of this region, and enhanced calibration for future work.

4.1 Introduction
First draft written by Vincent Eberle.
The eROSITA X-ray Telescope (Predehl et al., 2021) on Spectrum-Roentgen-Gamma
(SRG) (Sunyaev et al., 2021) was launched on July 13th, 2019 from the Baikonour Cosmod-
rome. Since the full-sky survey of ROSAT (Truemper, 1982) in 1990, eROSITA is the first
X-ray observatory to perform a full-sky survey with higher resolution and a larger effective
area. After a calibration and phase verification (CalPV) phase of pointed and field-scan
observations, the main phase of the mission is devoted to multiple all-sky surveys of the
celestial sphere, each lasting about 6 months. The amount of data collected by the X-ray
observatory in its about 4.3 completed all-sky surveys already has a huge scientific impact.
In order to make use of scientific data, nuisance effects of the instrument need to be un-
derstood and removed whenever possible. Amongst others, Poissonian shot noise and the
point spread function (PSF) of the optical system cause problems to source detection algo-
rithms. Unfortunately some of these effects are not analytically invertible and thus leave
us with an ill-posed problem at hand. Information field theory (IFT) (Enßlin et al., 2009)
provides us with a theoretical framework that allows to address these kinds of problems.
The use of prior knowledge and generative modeling enables us to remove instrumental
effects, decompose the sky into physical components, potentially remove the high-energy
particle background and leave us with a statistical approximation of the posterior distri-
bution. This permits us to gain knowledge about any posterior measure of interest, such
as the mean and the uncertainty of the measured physical quantities.

4.1.1 Related work
First draft written by Margret Westerkamp.
X-ray astronomy has developed rapidly since its beginnings in the 1960s, driven by ma-
jor X-ray missions such as Einstein and ROSAT. This rapid progress has been fueled not
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only by advancements in instrumentation, with ever-improving telescopes such as Chandra
(Garmire et al., 2003), XMM-Newton (Schartel and Dahlem, 2000), and more recently
eROSITA, but also by simultaneous developments in imaging techniques. These advance-
ments have steadily increased the amount of information extracted from observations and
enabled researchers to address various data-analysis challenges. For instance, tasks such as
source detection and the coherent fusion of overlapping datasets – some of the most diffi-
cult tasks in astrophysical imaging – along with the denoising and deconvolution of X-ray
data affected by Poisson noise, have become more manageable due to these innovations.

In chapter 3, an overview of general source detection algorithms is given, such as the
sliding cell algorithm algorithm (Calderwood et al., 2001), the wavelet detection algorithm
(Freeman et al., 2008) and the Voronoi tessellation and percolation algorithm (Ebeling and
Wiedenmann, 1993), as well as an overview on data fusion techniques currently used and
implemented for Chandra data. A summary of the data processing and imaging pipelines
for the Chandra and XMM-Newton X-ray telescopes is available at Seward and Charles
(2010). This section provides an overview of the state of the art in X-ray imaging techniques
specifically for eROSITA. For eROSITA data analysis, there is the eROSITA Science Anal-
ysis Software System (eSASS) (Brunner et al., 2018; Merloni et al., 2024), which includes all
the functionalities of the standard eROSITA processing pipeline, such as event processing,
event file and image generation, background and point source detection, and source-specific
output such as light curve and spectrum generation. In Brunner et al. (2022) the standard
eROSITA source detection pipeline using eSASS for eROSITA Final Equatorial-Depth Sur-
vey (eFEDS) is elaborated step by step. First, the standard source detection requires a
preliminary source list containing all possible source candidates, which is generated using
the sliding cell algorithm. Based on the preliminary source catalog the X-ray data is com-
pared to an PSF model using maximum likelihood fitting. Finally, as noted in Merloni
et al. (2024), the point sources can be excluded by a circular region centered on the point
sources with a certain radius to obtain a point source subtracted images. All the necessary
functionalities, including the sliding cell algorithm, are implemented in the corresponding
eSASS package. To test the completeness and accuracy of this source detection pipeline,
Liu et al. (2022) simulated eFEDS data by simulating the instrument response, given a
specific catalog and background, and applied the source detection algorithm to it.

Recently, Merloni et al. (2024) published a catalogue of point sources and extended
sources in the western Galactic hemisphere using the first of the all-sky scans of eROSITA
All-Sky Survey (eRASS1). In this study we focus on the imaging of the LMC using EDR
data from the CalPV phase. As the nearest star-forming galaxy, the LMC has already been
observed and analyzed in its various parts across the entire electromagnetic spectrum,
as noted in Zangrandi et al. (2024); Zanardo et al. (2013). Among other things, the
numerous supernova remnants (SNRs) present in it are of interest, as studied in Zangrandi
et al. (2024) on data from eRASS:4, including all data from the eROSITA all-sky surveys
eRASS1-4. To enhance the edges of the shocked gas in the SNRs, they used the Gaussian
gradient magnitude (GGM) filter (Sanders et al., 2016), resulting in 78 SNRs and 45
candidates in the LMC. The most famous supernova (SN) in the LMC is SN1987A, as
the only nearby core-collapse SN. SN1987A provides a perfect opportunity to study the



72 4. Bayesian multi-wavelength imaging of the eROSITA LMC SN1987A

evolution of young Type II SNe into the SNR stage. It has therefore been the subject of
several publications and observed by several instruments, including ATCA (Zanardo et al.,
2013), XMM-Newton (Haberl et al., 2006), Chandra (Burrows et al., 2000) and recently
JWST (Matsuura et al., 2024).

In this study we focus on Bayesian imaging methods for X-ray astronomy based on the
algorithm D3PO (Selig and Enßlin, 2015), which implements denoising, deconvolution and
decomposition of count data. Decomposition means that in addition to the total photon
flux, the composition of the flux at each pixel is reconstructed using assumptions about
prior statistics. The algorithm has been extended by Pumpe et al. (2018) to reconstruct and
decompose multi-domain knowledge. The developed algorithm has been applied to Fermi
data to reconstruct the spatio-spectral gamma-ray sky in Scheel-Platz et al. (2023) and its
capabilities have been shown on X-ray photon-count data for Chandra in Westerkamp et al.
(2024a). Here, we build a novel likelihood model for the eROSITA instrument and advance
the prior model for the X-ray sky to reconstruct LMC features from EDR eROSITA data,
as shown below. Moreover, we use variational inference (VI) to approximate the posterior
instead of the maximum a posteriori (MAP) approach followed in Pumpe et al. (2018).

4.2 Observations
First draft written by Margret Westerkamp.
We have employed observations from the EDR of
the LMC SN1987A containing data from the cal-
ibration and the performance verification phase
of eROSITA. We have used data of the LMC
SN1987A from eROSITA in pointing mode with
the observation ID 700161.1 In total, this ob-
servation of the LMC includes all seven tele-
scope modules (TMs) of eROSITA. However,
we have chosen only to use data from five of
these TMs, specifically TM1, TM2, TM3, TM4
and TM6 (together usually referred to as TM8),
since TM5 and TM7, as noted in Merloni et al.
(2024), do not have an on-chip optical blocking
filter and suffer from an optical light leak (Pre-
dehl et al., 2021). The raw data were processed
using the eSASS pipeline (Brunner et al., 2022)
and binned into 1024 × 1024 spatial bins and 3
energy bins, 0.2 - 1.0 keV (red), 1.0 - 2.0 keV
(green) and 2.0 - 4.5 keV (blue), according to
the binning used by Haberl et al.2

Figure 4.1: Visualisation of
the exposure corrected eROSITA
EDR TM8 data of ObsID 700161
for three energy bins. Red: 0.2
- 1.0 keV, Green: 1.0 - 2.0 keV,
Blue: 2.0 - 4.5 keV. The white box
marks the region of 30 Doradus C
further discussed in section 4.3.2.

1The data used are publicly available at https://erosita.mpe.mpg.de/edr/eROSITAObservations/.
2The first light EDR image of LMC SN1987A by F. Haberl et al. is shown in https://www.dlr.de/

de/aktuelles/nachrichten/2019/04/20191022_first-light-erosita.

https://erosita.mpe.mpg.de/edr/eROSITAObservations/
https://www.dlr.de/de/aktuelles/nachrichten/2019/04/20191022_first-light-erosita
https://www.dlr.de/de/aktuelles/nachrichten/2019/04/20191022_first-light-erosita
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In particular, we used evtool to generate the cleaned event files and expmap to generate
the corresponding exposure maps for each TM. The specific configurations for evtool and
expmap can be found in appendix C.1. We created new detector maps that included the
bad pixels in order to exclude those from the inference. Figure 4.1 shows the corresponding
RGB image of the eROSITA LMC data, where one image pixel corresponds to four arc
seconds. In the appendix in fig. C.1 the data per energy bin and TM are shown. Figure C
shows the exposures summed over the TMs.

4.3 Mathematical derivations
First draft written by Margret Westerkamp.
In this section, we present the methods used for X-ray imaging with eROSITA. In the end
we want to reconstruct a signal s, in our case the X-ray photon flux density field in units
of [1/(arcsec2× s)]. The signal is described by a physical field and is a function of spatial
coordinates, x ∈ R2, and a spectral coordinates, y = log(E/E0) ∈ R, where E is the energy
and E0 the reference energy. In the following, we describe the Bayesian inference of the
signal field and its components, in other words the prior and the likelihood model.

4.3.1 Imaging with information field theory

First draft written by Matteo Guardiani.
X-ray imaging poses a series of different challenges. Astrophysical sources emit photons
at a certain rate. This rate can be mathematically modeled by a scalar field which varies
across the field of view (FOV), energy, and time. After being bent through the instru-
ment’s optics, this radiation is then collected by the charge-coupled devices (CCDs) which
record individual photon counts as events. This way, the physical information contained
in the sources’ flux spatio-spectro-temporal distribution is degraded into the observational
data. The mathematical object of a field with an infinite number of degrees of freedom,
which is well suited to describe the original flux-rate signal, is not suited to describe a
finite collection of event counts. Recovering the infinite degrees of freedom of the signal
field from finite data is a challenging problem that requires additional information. IFT
(Enßlin et al., 2009; Enßlin, 2019) provides the mathematical framework to introduce these
additional components and solve the inverse problem of recovering fields from data. The
additional information introduced characterizes typical source types found in astrophysical
observations, such as point sources, which can be bright but are spatially sparse; diffuse
emission, which is nearly ubiquitous across the FOV and spatially correlated; and extended
sources, which are finite regions of diffuse emission with their own specific correlation struc-
tures. In the context of X-ray imaging, this allows to accurately and robustly reconstruct
the underlying photon flux field as the sum of all modeled emission fields. In essence, upon
denoting the quantity of interest, in our case the X-ray flux, with s for signal, we can use
prior information on the distribution of s, P(s), to obtain posterior information P(s|d) on
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the signal constrained to the observed data d using Bayes’ theorem,

P(s|d) = P(d|s)P(s)
P(d) . (4.1)

Here, P(d|s) is called the likelihood and incorporates information about the instrument’s
response and noise statistics, while P(d) is called the evidence and ensures proper nor-
malization of the posterior P(s|d). In the following, we will discuss our choices for the
prior distribution (section 4.3.2), describe how to build the likelihood model which takes
into account eROSITA-specific instrumental effects (section 4.3.3), and explain how to
combine our likelihood and prior models to numerically approximate the posterior distri-
bution as this turns out to be analytically intractable (section 4.3.4). The corresponding
models are built using the software package J-UBIK (chapter 5), the JAX-accelerated uni-
versal Bayesian imaging kit, which is based on NIFTy.re (Edenhofer et al., 2024) as a
JAX-accelerated version of NIFTy (Selig et al., 2013; Arras et al., 2019).

4.3.2 Prior models
First draft written by Margret Westerkamp.
Prior models are an essential part of Bayesian inference, allowing us to infer a field with
a virtually infinite number of degrees of freedom from a finite number of data constraints.
Here we explain how we mathematically model different sky components, the underlying
assumptions and justifications, and how these models are implemented in a generative way.
Our signal s is composed of a set of sky components {si},

s =
∑

i

si , (4.2)

that differ in their morphology. In this study, these are in particular the point source
emission, sp, and the diffuse extended source emission, sd. Building individual prior models
for each of these components allows us to decompose the reconstructed, denoised and
deconvolved sky into its various sources. The prior models for each of the sky components
are implemented as generative models as introduced in Knollmüller and Enßlin (2020)
using the reparametrization trick of Kingma et al. (2015). In other words, each of the prior
models is described by a set of normal or log-normal models, leading to the final generative
model defined via Gaussian processes via inverse transform sampling (see chapter 2 for
1D example). In this study, we distinguish between spatially correlated sources, which
describe diffuse emission, and spatially uncorrelated sources, which model point sources.
For each of the components we have a correlated spectral direction.

There are several ways to implement the correlation in the spatial or spectral dimension.
To model the two-dimensional spatial correlation in diffuse emission, we use the correlated
field model introduced in Arras et al. (2022). In this particular case the two-dimensional
field, which we call φln = eτ , is modelled by a log-normal process with τ being normal
distributed, P(τ |T ) = N (τ, T ), with unknown covariance T ,

φln = eτ = eAξτ with T = AA†, ξτ = N (ξτ ,1) . (4.3)
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Here, a normal distribution is denoted as,

N (x, X) := 1
|2πX| 12

exp
(
−1

2x†X−1x

)
. (4.4)

Assuming a-priori statistical homogeneity and isotropy, the correlation structure encoded
in T can be represented by its power spectrum according to the Wiener-Khinchin theorem.
In order to learn the power spectrum and thus the correlation structure simultaneously
with the diffuse sky realization, it is implemented by an integrated Wiener process whose
parameters are themselves represented by log-normal and Gaussian processes and can thus
be learned from the data. For more details on the correlated field model see Arras et al.
(2022).

For the point sources, we want the two-dimensional spatial field, φig, to be pixel-wise
uncorrelated, or in other words we want each pixel to be independent. Statistically this is
described by probability distribution, which factorizes in spatial direction. Moreover, we
aim for a few bright point sources. As shown in Guglielmetti et al. (2009) an appropriate
probability distribution is the inverse gamma distribution, i.e.

P(φig) =
∏
x

Γ−1
(

φig(x)
)

. (4.5)

As we aim to perform a spatio-spectral reconstruction of the eROSITA X-ray sky, we add
a spectral axis. In this study we consider a power-law behavior, described by the spectral
index α in spectral direction. For the diffuse emission we assume that the spectral index,
αd, is spatially correlated, while it is assumed to be spatially uncorrelated for the point
source emission αp. This leads to the mathematical definition of the individual components,
sp and sd;

sp(x, y) = φig(x)× eαp(x) y and sd(x, y) = φln(x)× eαd(x) y. (4.6)

In fig. 4.1 it can be seen that both the correlation structure and the spectral power law be-
havior in the region of 30 Doradus C are fundamentally different from the diffuse structures
that are otherwise present in the data. For the diffuse structures in the LMC we expect
long correlation structures and a steep power-law slope in the energy direction. 30 Doradus
C, on the other hand, has a flat power-law and a shorter correlation length. To account
for this, we add another prior component, sb, in the region of a box, b, around 30 Doradus
C, which has a correspondingly flatter power law and allows for smaller structures, giving
us a third component,

sb(x, y) =

φln, b(x)× eαb(x) y if x ∈ b

0 otherwise
. (4.7)
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Figure 4.2: Visualization of one prior sample drawn
from the prior model described in section 4.3.2 for three
energy bins in [1/(arcsec2× s)].

Figure 4.2 shows one
prior sample drawn
from the here de-
scribed prior model
for three energy bins.
In the appendix C.2,
we explain how to
choose the latent
parameters of this
generative model
in order to find a
reasonable prior.

4.3.3 The likelihood
First draft written by Vincent Eberle.
The likelihood is the conditional probability of a data realization d given the underlying
physical signal s. In the case of photon-count instruments like eROSITA, this conditional
probability for a pixel i, takes the form of a Poisson distribution

P(di|s) = P(di|λi(s)) = λdi
i

di!
e−λi , (4.8)

with di being the photon counts and λi being the average number of photon counts on
the detector pixel i, caused by the signal s. For a CCD chip with n instrument pixels the
data is a vector of pixel photon counts, d = (di)i∈{1,...n}. The total likelihood turns into
the product of the individual likelihoods in the case of statistical independence of the pixel
events,

P(d|s) =
∏

i

P(di|λi(s)) =
∏

i

λdi
i

di!
e−λi . (4.9)

Often we refer to the negative logarithm of this probability as the likelihood information
Hamiltonian

H(d|s) = − lnP(d|λ(s)) =
∑

i

λi − di ln(λi) + ln(di!) . (4.10)

These equations can be generalized to multiple observations m of the same sky with
different instruments or at different times. Then the data is a vector of vectors, d =
(dj)j∈{1,...m} = (dji)j∈{1,...m}, i∈{1,...n}, where dji is the data point from the pixel i in the
observation j which turns eq. (4.10) into

H(d|s) =
∑

j

H(dj|λj(s)) =
∑
j,i

λji − dji ln(λji) + ln(dji!) . (4.11)

The steps performed to bin the data before using it in this formula are explained in sec-
tion 4.2. In order to evaluate the Hamiltonian H(d|s) we need a digital representation of
the measurement process, the relation between the physical signal s, and the mean count
rate λ. The derivation of these quantities is discussed in this section.
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Instrument model

An accurate description of the measurement process is essential for the inference of the
signal s. Therefore, we need the instrument response R, which represents the effects of the
measurement process,

λ = R(s), (4.12)

to be as accurate as possible. However, since this function will be called many times during
the computation process, it also has to be efficient and therefore we aim for a representation
that is not only precise but also computationally affordable. In essence, we want to build a
forward model that describes the linear effects of the measurement process. We tackle this
by subdividing the response function R into its most relevant constituents. The photon
flux s coming from the sky gets smeared out by the PSF of the mirror assembly (MA).
This gets mathematically described by an operator O. The PSF of each individual mirror
module on-ground, on-axis and in-focus is of the order of 16.1 arcsec. However, the modules
are mounted intra-focal to reduce the off-axis blurring for the price of an enlarged PSF in
the on-axis region. Therefore, the in-flight PSF is significantly broader than 16.1 arcsec
(Predehl et al., 2021). The blurred flux gets then collected by the camera assembly (CA).
We denote the mathematical operator representing the exposure with E. It encodes the
observation time and detector sensitivity effects. The flagging of invalid detector pixels,
also called the mask, is denoted with M . The instrument response is thus

R = M ◦ E ◦O , (4.13)

where ◦ denotes the composition of operators. Readout streaks are almost completely
suppressed due to the fast shift from the imaging to the frame-store area of the CCDs and
therefore, don’t have to be modeled (Predehl et al., 2021). Other effects, like pile-up are
neglected up to this moment, but will be covered in future work. In the following sections,
the parts of the instrument response will be discussed individually.

The point spread function

The PSF, here denoted as the mathematical operator O, describes the response of the
instrument to a point-like source. An incoming photon from direction x̃ ∈ R2 is deflected
to a different direction x ∈ R2. This blurs the original incident flux s to the blurred flux
s′, which is notated in a continuous and discretized way,

s′(x) =
∫
R2

O(x, x̃) s(x̃) dx̃ or s′
x =

∑
x̃

Oxx̃ sx̃ . (4.14)

This operator O(x, x̃) can be regarded as a probability density function P(x|x̃), which is
normalized by the integration over the space of all directions meaning, that the process of
blurring conserves the photon flux,

1 =
∫
R2

O(x, x̃) dx =
∫
R2
P(x|x̃) dx . (4.15)
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In the discretized form the operator O is a matrix and thus scales quadratically with the
number of pixels n, resulting in a computational complexity of O(n2). In most applications
a spatially in-variant PSF is assumed, meaning that the PSF is the same for all points
within the field of view. Thus the PSF is only a function of the deflection x− x̃, meaning
O(x, x̃) = O(x− x̃). This fact turns eq. (4.14) into a convolution

s′(x) =
∫
R2

O(x− x̃) s(x̃) dx̃ . (4.16)

Convolutions on regular grids can be executed very efficiently, thanks to the convolution
theorem and the fast Fourier transform (FFT) developed by Cooley and Tukey (1965).
However, the assumption of spatial in-variance of the PSF only holds, depending on the
variability of the PSF, for smaller FOVs. In order to image large structures on the sky,
the spatial variability of the PSF cannot be ignored without imprinting artifacts on the
reconstructions.

Therefore, we need a representation of spatially variant PSFs that can be used in the
forward model. Here, we use the algorithm of (Nagy and O’Leary, 1997). This algorithm,
which we call linear patched convolution in the following, is a method to approximate spa-
tially variant PSFs in a computationally efficient way. It scales sub-quadratically, meaning
it is computationally affordable, but improves the accuracy, in comparison to a regular
spatially in-variant convolution.

In linear patched convolution the full spatially-variant PSF, O, is approximated by a
combination of operations

O ≈
∑

k

PkWCk . (4.17)

First, the image is cut into k overlapping patches by the slicing operator Ck. Next, these
patches are weighted with a linear interpolation kernel W , such that the total flux s, despite
the overlapping patches, is conserved. Then, each patch is convolved with the associated
PSF corresponding to the center of the patch, denoted by Pk. Finally, the results of the
weighted and convolved overlapping patches are summed up. This can be seen as an
Overlapp-Add convolution with linear interpolation and different PSFs for each patch (see
(Nagy and O’Leary, 1997)).

In order to perform this operation we need information about the spatial distribution
of the PSF, which we can retrieve from the calibration database (CALDB)1. Here, we
find information about the PSF, gathered at the PANTER 130 meter long-beam X-ray
experimental facility of the Max-Planck-Institute for extraterrestrial physics (Predehl et al.,
2021).2 The CALDB files contain the measurements of the PSF for certain off-axis angles and
energies, averaged over the azimuth angle. For the linear patched convolution algorithm
at use we need the PSF at the central positions in the patches. To obtain these, we rotate
and linearly interpolate the PSFs from the CALDB, which allows us to construct the PSFs
at these central positions. We also remove some noticeable shot noise from the measured
PSFs by clipping the normalized PSFs at 10−6.

1Information about the CALDB: https://erosita.mpe.mpg.de/edr/DataAnalysis/esasscaldb.html
2Details in appendix C.1

https://erosita.mpe.mpg.de/edr/DataAnalysis/esasscaldb.html
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The exposure

The received flux on the camera is observed for a total exposure time Θ by the CA. The
exposure operator E includes not only the exposure time Θ, but also the vignetting, ρ,
of the TM, and its effective area Aeff. In the case of a time-invariant flux s′(t) = s′

0, the
integral over time corresponds to a multiplication with the total exposure time Θ and thus

λ =
∫

Θ
ρ Aeff s′(t) dt = ρ Aeff s′

0

∫
Θ

dt = (ρ Aeff Θ)s′
0 = Es′

0. (4.18)

In the case that s′(t) is not constant, s′
0 is the average value of s′(t) in the observed time

interval. We calculate the total observation time of a pixel projected to the sky in a certain
energy band, combined with the vignetting, with eSASS (eROSITA Science Analysis Soft-
ware System)3 (Brunner et al., 2018; Predehl et al., 2021) through the command expmap.
The parameters used for the expmap command can be found in appendix C.1 in table C.2.
The information about the effective area for each TM can be found in the CALDB4.

The mask

The likelihood information Hamiltonian eq. (4.11) derived from the Poissonian distribution
is only defined for λ > 0. Also it contains the logarithm of the count rate λ. Therefore, it
is necessary to mask all sky positions with no observation time or defective detector pixels
for a certain TM, which result in λ = 0 for the respective pixel.

Removing these pixels from the calculation makes the algorithm more stable, prevents
the appearance of NaNs, and ensures that only reliable data is used for the reconstruction.
From the raw data, there seem to be corrupted data points in regions with very low
exposure time and at the boundary of the FOV. Therefore, we decided to mask from the
reconstruction all pixels and data points with an observation time of less than 500 seconds.

As not all bad pixels were correctly flagged in the exposure files, we used information
from the CALDB badpix files to update the detmap files. We then used these modified
detmap files to build the new exposure maps and update the mask.

Forward model for multiple observations

In the case of an eROSITA pointing, all TMs that are online observe the same sky and
capture the same physics. Although the instruments are very similar, they are not identical.
Their slightly different pointing results in different positions of the focal point of the PSF.
Also, they may have different good-time intervals, resulting in different exposure times
and also different defective pixels for the CCDs. Instead of summing the counts from the
different data sets, thereby assuming a “mean” instrument, we model each TM and its
observation individually. That means, we formulate the signal response λj of one TMj as

λj = MjEjOjs . (4.19)
3More information about the eSASS software developed by the eROSITA Team can be found here:

https://erosita.mpe.mpg.de/edr/DataAnalysis/
4Details in appendix C.1

https://erosita.mpe.mpg.de/edr/DataAnalysis/
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We display a visualization of the forward model’s computational graph in fig. 4.3. By
plugging in all λj into eq. (4.11), we get a formulation of the full likelihood information
Hamiltonian that allows us to remove the individual detector effects jointly.

R1 R2 R3 R4 R6

H(d1|λ1)

Signal

λ1 λ2 λ3 λ4 λ6

H(d2|λ2) H(d3|λ3) H(d4|λ4) H(d6|λ6)

Figure 4.3: Visualisation of the computational graph of the forward model.

4.3.4 Inference
First draft written by Matteo Guardiani.
In principle, given the prior and likelihood distributions, eq. (4.1) allows to fully determine
the posterior distribution by computing the evidence

P(d) =
∫

Ωs

Ds P(d|s)P(s),

where we have denoted with Ωs the Hilbert space in which s lives. In general, and specifi-
cally for the prior and likelihood models described above, the evidence cannot be explicitly
evaluated, as it would require integrating over the potentially multi-million- or multi-
billion-dimensional space, Ωs. To overcome this problem we use VI. In VI, the evidence
calculation problem is overcome by approximating the posterior distribution directly using
a family of tractable distributions Qϕ(s|d), parametrized by some variational parameters
ϕ. To approximate the posterior we minimize the Kullback–Leibler divergence (KL),

DKL(Qϕ||P) :=
∫

Ωs

Ds Qϕ(s|d) log Qϕ(s|d)
P(s|d) ,

with respect to the variational parameters ϕ. In this work, the family of approximating
posterior distributions Qϕ(s|d) is built using geoVI (Frank et al., 2021). In geoVI, the
posterior is approximated with a Gaussian distribution in a space in which the posterior
is approximately Gaussian. This is achieved by utilizing the Fisher information metric,
which captures the curvature of the likelihood and the prior distributions. The Fisher
metric provides a way to measure the local geometry of the posterior, guiding the cre-
ation of a local isometry – a transformation that maps the curved parameter space to



4.4 Results 81

a Euclidean space while preserving its geometric properties. In this transformed space,
the posterior distribution approximates a Gaussian distribution more closely, allowing the
Gaussian variational approximation to be more accurate. Consequently, geoVI can repre-
sent non-Gaussian posteriors with high fidelity, improving inference results. By leveraging
the geometric properties of the posterior distribution, geoVI offers a powerful extension
to traditional VI, enabling more precise and reliable approximations for complex Bayesian
models, as the ones presented in this work.

4.4 Results
First draft written by Matteo Guardiani.
In fig. 4.4, we present the reconstruction of the sky flux distribution based on the data
shown in section 4.2. Our algorithm’s forward modeling of the X-ray sky enables the
decomposition of the signal into point-like, diffuse, and extended-source emission compo-
nents, providing a more detailed view of the small-scale features of the extended structure
of the 30 Doradus C bubble. These reconstructed components are also displayed in fig. 4.4.
From these reconstructions, it is clear that most of the point-like emission is well separated
from the diffuse emission, resulting in the first denoised and deconvolved view of this region
of the sky as observed by the eROSITA X-ray observatory. Additionally, in fig. C.5, we
show the reconstructed flux for each energy bin, offering a clearer understanding of the
color scheme adopted in fig. 4.4. All the final reconstructions have been obtained using the
geoVI algorithm. For the spatial distribution, we have chosen a resolution of 1024× 1024
pixels. For the spectral distribution, we have chosen 3 energy bins corresponding to the
energy ranges between 0.2 - 0.1 keV, 1.0 - 2.0 keV, and 2.0 - 4.5 keV, respectively. The vari-
ational approximation to the posterior was estimated using 8 samples, corresponding to 4
pairs of antithetic samples. We considered the posterior approximation to have converged
when the posterior expectation values of the signals of interest, such as the reconstructed
sky flux field, exhibited no significant changes between consecutive iterations of the VI
algorithm. The runtime for the reconstruction was approximately one day on a CPU for a
single module, and around two days for all five analyzed telescope modules. By adopting
a fully probabilistic approach, we leverage posterior samples to assess how well the model
assumptions align with the observed data. In particular, in the presence of shot noise, we
define the NWR as

ϵNWR =
〈

λ(s)− d√
λ(s)

〉
ϕ

≃ 1
N

N∑
i=0

λ(s∗
i )− d√
λ(s∗

i )
, (4.20)

where λ(s) is the expected number of counts predicted by the model and d is the observed
data. Here, the posterior average ⟨·⟩ϕ over Qϕ is approximated by the sample average
over the corresponding posterior samples s∗

i . These residuals are particularly useful for
identifying model inconsistencies, which may indicate areas for improving the instrument’s
description as well as point to potential calibration improvements. We will explore this
possibility further in section 4.5.
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Figure 4.4: Posterior mean of the SN1987A reconstruction. The top panels display on the
left the reconstruction of the sky and on the right the separated diffuse emission. The
bottom panels display the reconstruction of the point-like emission (left) and the recon-
struction of the diffuse emission from 30 Doradus C (right). We convolve the point sources
with an unnormalized Gaussian kernel with standard deviation σ = 0.5, in order to make
them visible on printed paper. The different colors represent the intensities in the three
energy channels 0.2 - 0.1 keV, 1.0 - 2.0 keV, and 2.0 - 4.5 keV and are depicted in red,
green, and blue, respectively.
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4.5 Discussion and validation
First draft written by Margret Westerkamp.
The discussion is divided into two parts. First, in section 4.5.1, we validate the general
consistency of the presented algorithm using a simulated sky and simulated data, which also
motivates the detection threshold for point sources. In the second part, section 4.5.2, we
discuss the results of the reconstruction presented in section 4.4 along with corresponding
diagnostics, such as the NWRs.

4.5.1 Validation

Generative modeling allows to generate prior models of the sky, as described in section 4.3.2.
These prior models can be used to validate the consistency of the presented algorithm. In
particular, we look at prior samples of the X-ray sky, composed out of point sources and
diffuse emission, with a FOV of 1024 arcsec. Using the same resolution as for the ac-
tual reconstruction this leads to 256× 256 pixels. We pass the prior samples through the
forward model shown in fig. 4.3 including all five TMs, which gives us simulated data.
Figure 4.5 shows the considered prior sample of the X-ray sky as well as the corresponding
simulated data passed through the eROSITA response and affected by Poissonian noise.
The simulated data per TM and the underlying simulated sky per energy bin is shown in
the appendix C.4 in fig. C.9 and fig. C.10. Using the simulated data, we aim to apply
the algorithm presented above to estimate the posterior through VI posterior samples. We
then evaluate how well the corresponding simulated sky, or prior sample, is reconstructed
and determine the corresponding uncertainty in that estimate. The right side of fig. 4.5
shows the reconstructed prior sample. Component separation, deconvolution, and denois-
ing techniques show strong performance when applied to simulated data. They effectively
recover the underlying signal.

Figure 4.5: Visualisation of the simulated X-ray, the corresponding simulated data and its
reconstruction. Left: Simulated X-ray sky. Center: Simulated X-ray data generated as
shown in fig. 4.3. Right: Reconstructed X-ray sky.
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To validate the results shown in fig. 4.5, we use a set of validation metrics that we
have access to due to the probabilistic approach of the algorithm. These metrics are
intended to provide further insight into the residuals between the simulated X-ray sky and
its reconstruction, as well as the uncertainty of the algorithm at each pixel.

Accordingly, we show in the appendix the standard deviation of the posterior samples
in fig. C.12, which gives us a measure of the uncertainty of the algorithm. To examine
the residuals, we define the standardized error as the relative residual between the ground
truth, sgt, and the posterior mean, µs,

ϵrel(sgt) = µs − sgt

sgt
, (4.21)

to check for differences between the ground truth and the reconstruction. This standardized
error is shown for each energy bin in appendix C.4 in fig. C.13. The image shows that
point sources are not detected or are misplaced in some areas. This highlights the need for
a detection threshold for point sources in the reconstruction to ensure the correctness as
also indicated in the hyper parameter search in appendix C.2. To validate the detection
threshold further we use posterior samples, s∗

p, of the approximated posterior, Qϕ(sp|d), for
the point source component in order to get the sample-averaged two-dimensional histogram
of the absolute standardized error only for point sources, |ϵ∗

rel|(sgt, p) , where,

|ϵ∗
rel|(sgt, p) =

|s∗
p − sgt, p|

sgt, p
. (4.22)

Figure 4.6 shows the sample-
averaged histogram together with
the detection threshold, θ, analyt-
ically set for this reconstruction in
appendix C.2. Below the detection
threshold, the histogram shows two
effects, undetected or misplaced
point sources and possible noise
over-fitting, which are eliminated
by cutting the point sources below
the detection threshold to ensure
the consistency of the reconstruc-
tion. We apply the same cuts to the
reconstruction shown in section 4.4.

Figure 4.6: Two-dimensional histogram of the
standardized error eq. (4.22) for the point
sources. The histogram is plotted together
with the detection threshold, θ = 2.5 × 10−9,
calculated in appendix C.2.
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4.5.2 Discussion of results
The results of the algorithm described above, applied to the eROSITA LMC data, are shown
in section 4.4. Figure 4.4 shows the LMC in a deconvolved, denoised and decomposed view.
The full image of the LMC is shown, as well as the separated components of the point
sources, the diffuse structures of the LMC, and the extended sources of 30 Doradus C. As
a result of the inference we get posterior samples of the approximated posterior probability
Qϕ(s|d). Given these posterior samples, we can calculate a measure of uncertainty of the
reconstruction, which is in this case given by the standard deviation. The corresponding
plots of the standard deviation per energy bin for the reconstruction shown in fig. 4.4 are
shown in appendix C.3 in fig. C.6. As expected, we can see that the uncertainty is higher
in regions of a high number of photon counts.

Analyzing the component separation in fig. 4.4, it can be seen that there is still a halo
around the source of SN1987A, which can have two different causes, firstly a detection
pile-up effect due to the high fluxes from these sources (Davis, 2001), and secondly a
mismodeling of the instruments due to calibration mismatches. In order to check for
possible calibration issues we performed single-TM reconstructions, which only took the
data and the response functions for one of the TMs each into account. The results of the
single-TM reconstructions are shown per energy bin in appendix C.3 in fig. C.3. These
images give us a great insight into possible calibration inconsistencies together with the
corresponding NWRs (eq. (4.20)) per TM and energy bin, which are shown in fig. C.8. In
particular, the reconstruction for TM2 suggests both pile-up issues and mismatches in the
calibration files, such as the PSF and dead pixels. Although we incorporated information
about the dead pixels into the inference, the number of dead pixels accounted for does not
seem to be sufficient. The reconstruction clearly indicates that there are likely additional
dead pixels in this area.

Figure 4.7: Zoom-in on reconstruction of diffuse emission from the Tarantula Nebula. From
left to right showing the zoom area on the plot of the eROSITA LMC data, the zoomed
LMC data for TM1, the corresponding single-TM reconstruction for TM1, the zoomed
data for all 5 TMs and the reconstruction by means of all five observations.

If we look at the single-TM reconstruction and compare it with the reconstruction using
all five TMs in fig. 4.4, we see that in the latter the diffuse structures of the LMC and
30 Doradus C have been much more finely resolved. Figure 4.7 shows a comparison of
the diffuse structures around the Tarantula Nebula in the eROSITA data, zoomed in for
both a single TM and all five TMs. This higher resolution is due to the higher amount of
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information we get on the diffuse structure by incorporating several observations. However,
we also find that it is more difficult to separate point-like from diffuse emission using all the
telescope modules. This is likely due to possible calibration inconsistencies in comparison
with the single-TM reconstructions.

4.6 Conclusion
First draft written by Margret Westerkamp.
In conclusion, this paper presents the first Bayesian reconstruction of the eROSITA EDR
data, providing a denoised, deconvolved, and separated view of the diffuse and point-like
sources in the LMC. The presented algorithm enables the spatio-spectral reconstruction
of the LMC, incorporating its observation by the five different TMs of TM8. Ultimately,
this reconstruction has the potential to assist in the further analysis of the diffuse X-ray
emission as done by Sasaki et al. (2022) without any noise or point source contributions or
effects from the PSF. It also allows the point source catalog to be refined by considering
only the point source component. Due to the generative nature of the algorithm we are
able to generate simulated data, on which we tested the consistency of the reconstruction.
The underlying building blocks of the implementation are publicly available (Eberle et al.,
2024b) and can therefore be used to image other eROSITA observations as well.

In particular, the presented algorithm uses an additional component in the region of 30
Doradus C. Such additional components in certain regions allow to image such extended
objects which overlap with the emission from the hot phase of the ISM and point sources
and have a very different correlation structure. In this way, not only the general diffuse and
point source emission can be decomposed, but also the diffuse emission from the hot phase
of the ISM and from extended sources such as 30 Doradus C. In this work, the additional
component for the extended source was set by hand. For future work, we aim to automate
this and to find the the extended sources for high excitations in the latent space.

There are also several areas for further investigation. The algorithm presented here
can be useful to check the calibration using single TM reconstructions and diagnostics
such as the NWRs, which are readily available due to the algorithm’s probabilistic nature.
Future work could focus on improving the spectral resolution to allow further insight into
the spectra of the different components. In addition, work is underway to extend the
applicability to eROSITA field scans and all-sky surveys. Ultimately, the goal is to use
this algorithm to perform multi-instrument Bayesian reconstructions of specific celestial
objects.



Chapter 5

J-UBIK: The JAX-accelerated
Universal Bayesian Imaging Kit

The following chapter is a manuscript that has been submitted to The Journal of Open
Source Software with Vincent Eberle, Matteo Guardiani and me as the shared first au-
thors (Eberle et al., 2024b).1The open source software package is the result of a close
collaboration between Vincent Eberle, Matteo Guardiani and myself. The project benefited
greatly from the knowledge and discussions with Philipp Frank regarding the inference struc-
ture and JAX implementation. The implementation of the JWST instrument and demo
is the contribution of Julian Rüstig. Julia Stadler contributed the data loading pipeline
for Chandra. The project was supported by many fruitful discussions with Torsten En-
sslin and is based on his vision of a universal Bayesian imaging kit. The initial draft of
the manuscript was written by me, forming the basis for the collaborative revisions that
followed.
For consistency within this thesis, some of the parameters have been renamed and some of
the figures have been adapted according to the layout.

1Further information on code and contributions can be found at https://github.com/NIFTy-PPL/
J-UBIK

https://github.com/NIFTy-PPL/J-UBIK
https://github.com/NIFTy-PPL/J-UBIK
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Many advances in astronomy and astrophysics originate from accurate images of the
sky emission across multiple wavelengths. This often requires reconstructing spa-
tially and spectrally correlated signals detected from multiple instruments. To facil-
itate the high-fidelity imaging of these signals, we introduce the universal Bayesian
imaging kit (UBIK). Specifically, we present J-UBIK, a flexible and modular imple-
mentation leveraging the JAX-accelerated NIFTY.re software as its backend. J-UBIK
streamlines the implementation of the key Bayesian inference components, provid-
ing for all the necessary steps of Bayesian imaging pipelines. First, it provides
adaptable prior models for different sky realizations. Second, it includes likelihood
models tailored to specific instruments. So far, the package includes three instru-
ments: Chandra and eROSITA for X-ray observations, and the James Webb Space
Telescope (JWST) for the near- and mid-infrared. The aim is to expand this set
in the future. Third, these models can be integrated with various inference and
optimization schemes, such as maximum a posteriori estimation and variational in-
ference. Explicit demos show how to integrate the individual modules into a full
analysis pipeline. Overall, J-UBIK enables efficient generation of high-fidelity images
via Bayesian pipelines that can be tailored to specific research objectives.

5.1 Summary

Many advances in astronomy and astrophysics originate from accurate images of the sky
emission across multiple wavelengths. This often requires reconstructing spatially and
spectrally correlated signals detected from multiple instruments. To facilitate the high-
fidelity imaging of these signals, we introduce the universal Bayesian imaging kit (UBIK).
Specifically, we present J-UBIK, a flexible and modular implementation leveraging the JAX-
accelerated NIFTy.re (Edenhofer et al., 2024) software as its backend. J-UBIK streamlines
the implementation of the key Bayesian inference components, providing for all the nec-
essary steps of Bayesian imaging pipelines. First, it provides adaptable prior models for
different sky realizations. Second, it includes likelihood models tailored to specific instru-
ments. So far, the package includes three instruments: Chandra and eROSITA for X-ray
observations, and the James Webb Space Telescope (JWST) for the near- and mid-infrared.
The aim is to expand this set in the future. Third, these models can be integrated with
various inference and optimization schemes, such as maximum a posteriori estimation and
variational inference. Explicit demos show how to integrate the individual modules into a
full analysis pipeline. Overall, J-UBIK enables efficient generation of high-fidelity images
via Bayesian pipelines that can be tailored to specific research objectives.
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5.2 Statement of need
In astrophysical imaging, we often encounter high-dimensional signals that vary across
space, time, and energy. The new generation of telescopes in astronomy offers exciting
opportunities to capture these signals but also presents significant challenges in extracting
the most information from the resulting data. These challenges include accurately model-
ing the instrument’s response to the signal, accounting for complex noise structures, and
separating overlapping signals of distinct physical origin.

Here, we introduce J-UBIK, the JAX-accelerated Universal Bayesian Imaging Kit, which
leverages Bayesian statistics to reconstruct complex signals. In particular, we envision its
application in the context of multi-instrument data in astronomy and also other fields such
as medical imaging. J-UBIK is built on information field theory IFT (Enßlin, 2013) and the
NIFTy.re software package (Edenhofer et al., 2024), a JAX-accelerated version of NIFTy
(Selig et al., 2013; Steininger et al., 2019; Arras et al., 2019).

Following the NIFTy paradigm, J-UBIK employs a generative prior model that encodes
assumptions about the signal before incorporating any data, and a likelihood model that
describes the measurements, including the responses of multiple instruments and noise
statistics. Built on NIFTy.re, J-UBIK supports adaptive and distributed representations
of high-dimensional physical signal fields and accelerates their inference from observational
data using advanced Bayesian algorithms. These include maximum a posteriori (MAP),
Hamiltonian Monte Carlo (HMC), and two variational inference techniques: metric Gaus-
sian variational inference MGVI (Knollmüller and Enßlin, 2020; Enßlin, 2013) and geomet-
ric variational inference geoVI, (Frank et al., 2021). As NIFTy.re is fully implemented in
JAX, J-UBIK benefits from accelerated inference through parallel computing on clusters or
GPUs.

Building generative models with NIFTy.re for specific instruments and applications can
be very tedious and labor-intensive. Here, J-UBIK comes into play which addresses this
challenge from two angles. First, it provides tools to simplify the creation of new likelihood
and prior models and acts as a flexible toolbox. It implements a variety of generic response
functions, such as spatially-varying point-spread functions (PSFs) (Eberle et al., 2023)
and enables the user to define diverse correlation structures for various sky components.
Second, J-UBIK includes implementations for several instruments.

Currently, it supports Chandra, eROSITA pointings, and JWST observations, with
plans to expand this list as the user base grows. This expansion will provide users with a
diverse set of accessible inference algorithms for various instruments. Ultimately J-UBIK
enables the user, through Bayesian statistics, not only to obtain posterior samples and
hence measures of interest such as the posterior mean and uncertainty of the signal for a
several data sets, but also to perform multi-instrument reconstructions.

The software has already been applied in chapter 3, and publications on eROSITA
pointings and JWST are currently in preparation. In the future, the set of instruments
will be further expanded to include existing imaging pipelines from NIFTy and NIFTy.re
such as those described in Scheel-Platz et al. (2023), Roth et al. (2023), Hutschenreuter
et al. (2022), as well as new ones.
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Figure 5.1: Simulated X-ray sky

5.3 Bayesian imaging with J-UBIK

At the core of the J-UBIK package is Bayes’ theorem:

P(s|d) ∝ P(d|s)P(s), (5.1)

where the prior P(s) represents our knowledge about the signal s before observing the data
d, and the likelihood P(d|s) describes the measurement process. The posterior P(s|d) is
the primary measure of interest in the inference process. J-UBIK’s main role is to model the
prior in a generative fashion and to facilitate the creation and use of instrument models to
develop the likelihood model. The package includes demos for Chandra, eROSITA point-
ings, and JWST, which illustrate how to use or build these models and how to construct
an inference pipeline to obtain posterior estimates.

5.3.1 Prior models

The package includes a prior model for the sky’s brightness distribution across different
wavelengths, which can be customized to meet user needs in both spatial and spectral
dimensions. This model allows for the generation of spatially uncorrelated point sources
or spatially correlated extended sources, as described by the correlated field model in Ar-
ras et al. (2022). In the spectral dimension, the model can be a power law, describe the
correlation structure of the logarithmic flux using a Wiener process along the spectral axis
or combine both of these models. The prior model’s structure is designed to be flexible,
allowing for modifications to accommodate additional dimensions and correlation struc-
tures. Figure 5.1 illustrates an example of a simulated X-ray sky in J-UBIK, sampled from
a corresponding generative prior model with one energy bin. This example features two
components: one representing spatially uncorrelated point sources and the other represent-
ing spatially correlated extended structures. Figure 5.1 shows from left to right the full
sky and its components, the diffuse, extended structures and the point sources.
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Figure 5.2: Simulated X-ray data

5.3.2 Likelihood models
J-UBIK implements several instrument models (Chandra, eROSITA, JWST) and their
respective data- and response-loading functionalities, enabling their seamless integration
into the inference pipeline. Due to its fully modular structure, we anticipate the inclusion
of more instruments into the J-UBIK platform in the future. J-UBIK is not only capable of
reconstructing signals from real data; since each instrument model acts as a digital twin of
the corresponding instrument, it can also be used to generate simulated data by passing
sky prior models through the instrument’s response. This allows to test the consistency of
the implemented models.

Figure 5.2 shows the same simulated sky from fig. 5.1 seen by two different instruments,
eROSITA and Chandra, with Poisson noise on the photon count data. The pointing center
for each observation is marked in red. The two images on the right illustrate the same
simulated sky seen by Chandra, but with different pointing centers, showing the impact of
spatially varying PSFs (Eberle et al., 2023).
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Chapter 6

Conclusion

Throughout this thesis, the common goal is to leverage the observed data to its fullest
potential, whether in model comparison or in imaging. This work covers the formulation,
implementation and application of field inference algorithms in a generative manner to
exploit correlation structures and morphologies of the underlying, possibly superimposed,
signal.

The main focus of this thesis is the reconstruction of the X-ray sky on the basis of
photon event data. Three device-specific challenges are addressed by the likelihood model:
the deconvolution, the denoising and the mosaicing of several overlapping data sets. The
separation of multiple X-ray emitting sources and the inference of complex correlation
structures of such components is driven by implemented generative and non-parametric
prior models. As part of this work, the first Bayesian spatio-spectral prior model for the X-
ray sky is implemented, which accounts for non-trivial correlation structures in the spatial
and spectral directions. To speed up the reconstruction with the parameter-heavy spatio-
spectral prior, both a novel transition model is proposed and the codebase is developed
using JAX. Two implementations of likelihood and prior models for X-ray telescopes are
demonstrated in this work: Chandra and eROSITA. The Bayesian field inference pipeline
for Chandra, using a spatially invariant point spread function, is applied to eleven datasets
of the supernova remnant of SN1006. The results reveal a distinct view of the resolved
diffuse structures of the remnant and the sharp point sources. Intensity profiles along the
shock front show strong and sharp X-ray flux peaks of up to two orders of magnitude.
The eROSITA likelihood employs a spatially variant point spread function. The prior
model describes three signal components: diffuse emission, point sources, and extended
sources. Correspondingly, the inference results on the eROSITA EDR data of the LMC
SN1987A show the diffuse emission, the point sources and 30 Doradus C separated. The
reconstructed components show reduced noise and point spread function effects.

The software package NIFTy provides the numerical framework for IFT. Still, the con-
struction of likelihood and prior models in NIFTy is a labor-intensive task. To support their
implementation, the software package J-UBIK is developed as part of this thesis. J-UBIK
aims to facilitate the implementation of future likelihood and prior models and to incorpo-
rate a growing set of instrument implementations - in its current state Chandra, eROSITA



94 6. Conclusion

and JWST. The result is a flexible and modular framework that supports Bayesian imaging
as well as related diagnostic measures and validity checks.

Variational inference is used to approximate the posterior in the X-ray imaging algo-
rithm, as described above. The thesis highlights, that in this particular case, the posterior
normalization, the evidence, is not required. But when it comes to comparing different
Bayesian models, it is important to calculate the evidence. Thus, the methodological
part of this thesis evolves the formulation of a field inference problem for the evidence
calculation using nested sampling. In nested sampling the lack of knowledge about the
precise values of the prior mass introduces a stochastic error, which has a major impact
on the evidence calculation. The present work leverages Bayesian field inference to infer
the likelihood-prior-volume function. In particular, the assumptions of monotonicity and
smoothness of the likelihood-prior-volume function are included in the inference. While
standard nested sampling requires a trade-off between computational time and estimation
accuracy, the proposed approach, serves as a post-processing step with a computational
cost that remains independent of the number of live points. Thus, without a significant
increase in computing time, the accuracy of the evidence calculation can be improved.
The results show a significant increase in accuracy in the evidence calculation for less than
hundred prior samples in the iterative process of nested sampling.

These findings lay the groundwork for future research in this field. The Bayesian
field inference methods presented for evidence calculation and X-ray imaging mark initial
steps, and accordingly, numerous challenges and further research directions remain to be
addressed.

In this way, the presented post-processing for nested sampling holds the potential to
improve the evidence calculation without the drawback of an exploding computational
cost. Still, the algorithm encounters instability issues due to the Gaussian approximation
of the δ-function in the theoretical framework. Thus, alternative approaches, such as
those discussed in the appendix, could be explored further. Also, the method has its
limits when dealing with non-smooth likelihood-prior-volume functions or plateaus. One
approach discussed is to split the data set into several parts and apply post-processing only
to the strictly monotonic parts. As this case demonstrates, future work on more evolved
likelihood-prior-volume relations is desirable.

In the context of X-ray imaging, future research could focus on the auto-detection
of extended sources, the refinement of the spectral resolution or implementation and in-
corporation of further instruments. Until now, as in the eROSITA imaging of the LMC
SN1987A, extended sources have been introduced manually; automating their detection
and extraction would be a significant advancement for future imaging. An enhanced spec-
tral resolution could enable the separation of different emission processes. For example,
by defining different prior models for thermal and non-thermal emission for the supernova
remnant SN1006 one could imagine to decompose its spectral components. This paves
the way for an evolved analysis of the spectra and the conditions within the region un-
der consideration. As part of the J-UBIK package future implementations could address
a growing database of instruments. These could include XMM-Newton or different ob-
servation modes of currently deployed instruments, like the eROSITA scans and all-sky
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surveys. Cross-calibration and multi-instrument reconstructions within J-UBIK would be
the ultimate goal.

In summary, this work contributes to the development and exploration of accelerated
Bayesian inference techniques. It provides robust, open-source tools and methods that
improve both the accuracy and interpretability of results in nested sampling and X-ray
imaging.
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Appendix A

Supplementary material chapter 2

A.1 Inference with Gaussian approximation
In the following, we want to work out an exact inference algorithm that is not based
on a Gaussian approximation of the δ-function. This approach has its difficulties due
to the calculation of the Fisher metric, as we will see below, and therefore cannot be
used for geoVI. The approach discussed in the main part of this paper focuses on the
joint reconstruction of the likelihood–prior–volume function and the prior volumes. The
approach presented here solely reconstructs the likelihood–prior–volume function, given
the data on the likelihood contours. The corresponding prior volumes for each likelihood
contour can then be computed by inversion of this function. Again, we incorporate the
smoothness assumption into the inference, but this time using a different relationship
between the likelihood–prior–volume function and the correlated field,

df(ln L)
d ln X

= −eτ(f(ln L)). (A.1)

The solution for the prior volumes given the likelihood information is,

X(f(ln L)|τ) = exp
(

ln X0 −
∫ f(ln L)

f(ln L0)
e−τ(y)dy

)
= exp

(
−
∫ f(ln L)

f(ln L0)
e−τ(y)dy

)
, (A.2)

with X0 = 1. The prior model is then given by P(τ), and our goal is to determine the
likelihood model, denoted by P(f(ln dL)|τ), which can be rewritten by marginalizing over t,

P(f(ln dL)|τ) =
niter∏
i=1

∫
dti P(f(dL,i), t|τ) =

niter∏
i=1

∫
dti P(ti) P(f(ln dL,i)|t, τ). (A.3)

Here, the contraction factors t are beta distributed, i.e., P(ti) = Beta(ti|1, nlive). The
tricky part is to rewrite P(f(ln dL,i)|t, τ) such that we can integrate over ti. Under the
assumption that we can find a unique solution for f(ln dL,i) with i = 1, .., niter for each of
the following niter equations using eq. (A.2),

X(f(ln dL,i)|τ) =
i∏

j=1
tj for i = 1, ..., niter (A.4)
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the distribution P(f(ln dL,i)|τ, t) is defined via

P(f(ln dL,i)|τ, t) = δ

(
X(f(ln dL,i)|τ)−

i∏
j=1

tj

) ∣∣∣∣∣∂X(f(ln L)|τ)
∂f(ln L)

∣∣∣∣∣
f(ln L)=f(ln dL,i)

. (A.5)

In the following, we will denote |∂τ X|dL,i
=
∣∣∣∣∣∂X(f(ln L)|τ)

∂f(ln L)

∣∣∣∣∣
f(ln L)=f(ln dL,i)

and Xi = X(f(ln dL,i)|τ),

for the matter of brevity of the equations. With the definition of t0 := 1, we can further
rewrite eq. (A.5) to,

P(f(ln dL,i)|τ, t) = δ

(
ti −

Xi∏i−1
j=0 tj

)
|∂τ X|dL,i

i−1∏
j=0

1
tj

, (A.6)

= δ

(
ti −

Xi

Xi−1

)
|∂τ X|dL,i

i−1∏
j=0

1
tj

, (A.7)

Using this and eq. (A.3), we can write down the overall reconstruction likelihood for this ap-
proach:

P(f(ln dL)|τ) =
niter∏
i=1

∫
dtiP(ti)δ

(
ti −

Xi

Xi−1

)
|∂τ X|dL,i

i−1∏
j=0

1
tj

(A.8)

=
niter∏
i=1

Beta
(

Xi

Xi−1
|1, nlive

)
1

Xi−1

∣∣∣∣∣∂τ X|dL,i
(A.9)

=
niter∏
i=1

nlive,i
X

nlive,i−1
i

X
nlive,i

i−1
|∂τ X|dL,i

(A.10)

So far, the likelihood model and the prior model can be used for a maximum a posteri-
ori approximation of f(ln L). For variational inference (VI), however, the Fisher metric
is required,

(IF )k,l =
∫

df(ln dL,0)...
∫

df(ln dL,niter)
∂

τk

(− ln(P(f(ln dL)|τ))) (A.11)

× ∂

τl

(− ln(P(f(ln dL)|τ))). (A.12)

Due to the complexity and length of the calculations involved in this integration and the
difficulties of its implementation, we have opted to use the Gaussian approximation and
reserve this approach for future work.

A.2 Reparametrization
The aim of the reparametrization is to map the likelihood–prior–volume function such that
the correlated field describing the log-normal process is constant in the Gaussian case and
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non-Gaussianity is modelled by structures in the correlated field (section 2.2.2). Below,
we show that the reparametrization in eq. (2.18) leads to this condition. For the Gaussian
case (eq. (2.23)), we have

d ln L

d ln X
= d

d ln X

(
−X2/C

2σ2

)
= 2

C
ln L. (A.13)

For the Gaussian case, we know ln Lmax = 0 analytically. If we substitute this into eq. (2.18)
we find the desired condition,

df(ln L)
d ln X

= − 2
C

= −e−τ(ln X), (A.14)

leading to τ(ln X) = const. It can be seen that the corresponding reparameterization is
given by the following equation

f(ln L) = − ln
(

ln Lmax

L

)
. (A.15)

A.3 Maximal likelihood calculation
We calculate the maximum likelihood given the data on the likelihood dead contours dL. In

Handley and Lemos (2019) the maximum of the Shannon entropy Imax = max
[
ln
(

P(θM |d)
P(θM )

)]
is calculated via,

Imax = H + C

2 , (A.16)

where C is the dimension of the problem. This gives the maximum log-likelihood ln Lmax,

ln
(

Lmax

Z

)
=
∫

dθM P(θM |d) ln
(

L

Z

)
+ C

2 (A.17)

→ ln Lmax = ⟨ln L⟩(θM |d) + C

2 . (A.18)

This can be approximated using the data on the likelihood contours and taking the deter-
ministic NS information on the prior volumes {dX,i} according to eq. (2.8),

ln Lmax =
∫

dθ
P(d|θ)P(θ)

Z
ln L + C

2 (A.19)

≈
niter∑
i=1

1
2

dL,i(dX,i−1 − dX,i+1)
Zd

ln dL,i + C

2 . (A.20)

Here, Zd is the evidence calculated according to eq. (2.7), with {dL,i} as the likelihood
information and {dX,i} as the prior volume information.
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Appendix B

Supplementary material chapter 3

B.1 Synthetic data generation
Given the generative models, we can construct prior samples of the individual components
and of the imaged sky composed of them, as described in section 3.5.

Three of these prior samples are
shown at the top of fig. B.1. They
illustrate how the prior samples
are converted into simulated data
using the instrument response and
mimicking Poisson noise. As
mentioned in section 3.5, we use
the prior samples and the simu-
lated data to fine-tune the hyper-
parameters prior to reconstruc-
tion. As we can see by compari-
son, the chosen hyper-parameters
ensure that the order of magni-
tude of the data in fig. 3.3 is the
same as the order of magnitude
of the simulated data. Moreover,
and more importantly, the simu-
lated data allow us to perform the
validation of the algorithm, as de-
scribed in section 3.7.

Figure B.1: Illustration of generation of simu-
lated data for three prior samples, showing the
variance in intensity and correlation structure
permitted by the prior.

B.2 Computational analysis
In this section, we present a comparison of the introduced algorithm including the transition
model and a pure MF reconstruction in terms of computational time and reconstruction
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error. In case of the transition model, we started with a SF reconstruction and use the
corresponding result as an initial condition for the MF reconstruction, as described in
section 3.4. In the other case, we started the reconstruction on the whole MF parameter
space from the beginning. We considered four different spatial resolutions, from 64 × 64
to 512× 512 pixels, for which we generated simulated data and perform the corresponding
reconstruction on a single core for the transition model and the pure MF model. This
allowed us to compare, for each problem size, the time complexity at each iteration and
the reconstruction error as a function of time.

Figure B.2: Time complexity (top-left: 64× 64 spatial pixels; top-right: 128× 128 spatial
pixels; bottom-left: 256 × 256 spatial pixels; bottom-right: 512 × 512 spatial pixels).
The time complexity is plotted for the different models. In green, we show just the MF
reconstruction times per iteration. Light blue: duration for each iteration in the SF model
before the transition. Dark blue: duration of the MF model iterations after the transition.
The first dark blue marker also includes the transition time.

As mentioned in section 3.4, the parameter space for the SF reconstruction is much smaller
(table 3.2), leading to higher computational time for each iteration in the MF reconstruc-
tion. This effect is also shown in fig. B.2. The time complexity of each iteration is ac-
cordingly higher in the MF reconstruction than in the SF reconstruction, resulting in an
overall lower time complexity for the transition model reconstruction. It can be seen that
similarly to the duration of each iteration in the reconstruction, the transition time also
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increases with the growing parameter space. However, the increased transition time is not
significant compared to the overall time savings.

Figure B.3: Reconstruction error in terms of the Frobenius norm (eq. (B.1)) for 64 × 64,
128×128, 256×256, and 512×512 spatial pixels for the imaged sky. The green line marks
the reconstruction error as a function of time for the pure MF reconstruction. The light
blue line marks the reconstruction error of the SF reconstruction as part of the transition
model and, correspondingly, the black line marks the transition and the blue line marks
the subsequent transition model MF reconstruction. In the iterations of the SF model,
we typically anticipate lower reconstruction error in terms of small Frobenius norm. This
expectation is attributed to the model’s consideration of a smaller space.

What is more important for the analysis is the notion of how the reconstruction error of the
reconstruction behaves over time. This is shown for the different components in figs. B.3
to B.5. As a measure of the reconstruction error, we computed the posterior sample mean
for N samples of the Frobenius norm of the sample residuals ϵ∗

r = (s∗ − sgt) according to
eq. (3.20) for each component:

⟨∥ϵr∥F ⟩s∗ = 1
N

N∑
n=0

(∑
i,j,k

(ϵ∗
r,n)2

i,j,k

) 1
2

, (B.1)
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where i, j, k are the corresponding spatial and spectral pixel indices. Due to the consid-
eration of a smaller space in the iterations of the SF model, we would typically expect a
smaller reconstruction error in terms of small Frobenius norm. It can be seen that the
computational advantage of the transition model approach increases as the problem size
increases in terms of a higher number of spatial pixels. This is especially true for the diffuse
component, which is constructed from an outer product of correlated fields.

Figure B.4: Reconstruction error in terms of the Frobenius norm (eq. (B.1)) for 64 × 64,
128× 128, 256× 256, and 512× 512 spatial pixels for the imaged point source component.
The green line marks the reconstruction error as a function of time for the pure MF
reconstruction. The light blue line marks the reconstruction error of the SF reconstruction
as part of the transition model and, correspondingly, the black line marks the transition and
the blue line marks the subsequent transition model MF reconstruction. In the iterations of
the SF model, we typically anticipate lower reconstruction error in terms of small Frobenius
norm. This expectation is attributed to the model’s consideration of a smaller space.
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B.3 Further diagnostics for synthetic data reconstruc-
tion

In this section, we present further diagnostic plots for sanity checks on the simulated data
reconstruction in section 3.7. The analysis of these plots can be found in the according
sections. We show the UWRs and residuals for the simulated data case in fig. B.6. Figure
B.7 shows the reconstruction results for the simulated data case for each energy bin together
with the associated uncertainty.

Figure B.5: Reconstruction error in terms of the Frobenius norm (eq. (B.1)) for 64 × 64,
128 × 128, 256 × 256, and 512 × 512 spatial pixels for the imaged diffuse component.
The green line marks the reconstruction error as a function of time for the pure MF
reconstruction. The light blue line marks the reconstruction error of the SF reconstruction
as part of the transition model and, correspondingly, the black line marks the transition and
the blue line marks the subsequent transition model MF reconstruction. In the iterations of
the SF model, we typically anticipate lower reconstruction error in terms of small Frobenius
norm. This expectation is attributed to the model’s consideration of a smaller space.
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Figure B.6: Synthetic data reconstruction UWRs (top row) and residuals (bottom row)
for the individual energy bins (left: 0.5-1.2 keV, center: 1.2-2.0 keV, right: 2.0-7.0 keV)
according to eq. (3.19).

Figure B.7: Synthetic data reconstruction uncertainties for the individual energy bins (left:
0.5-1.2 keV, center: 1.2-2.0 keV, right: 2.0-7.0 keV. Top row: Reconstruction results for
the flux in [s−1 cm−2] for the individual energy bins. Bottom row: Uncertainty maps for
the individual energy bins.
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Figure B.8: Spatial power spectra of the posterior mean and samples in the diffuse com-
ponent for each energy bin (red: 0.5-1.2 keV, green: 1.2-2.0 keV, blue: 2.0-7.0 keV)

B.4 Further diagnostics for SN1006 reconstruction
Here, we show more diagnostic plots for the analysis of the reconstruction results presented
in section 4.4. First, the reconstruction mean and posterior samples of the spatial power
spectrum are shown in fig. B.8. For further analysis of the reconstruction of the sky flux
of the remnant SN1006, we present the posterior standard deviation separately for each
energy bin and accompanied by the corresponding color bars in fig. B.9. Finally, table B.1
shows the NWRs according to eq. (3.23) for each energy bin and dataset.

Figure B.9: Posterior means and standard deviations for each energy bin in [s−1 cm−2]:
Top row: Posterior means (red: 0.5-1.2 keV, green:1.2-2.0 keV, blue:2.0-7.0 keV). Bottom
row: Posterior standard deviations (left: 0.5-1.2 keV, center:1.2-2.0 keV, right:2.0-7.0 keV).
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Patch ID 0.5-1.2keV 1.2-2.0keV 2.0-7.0keV

9107

13737

13738

13739

13739

13740
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13741

13742

13743

14423

14424

14435

Table B.1: NWRs (eq. (3.23)) for each dataset in table 3.3 and energy bin.
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C.1 eROSITA data:
LMC SN1987A

First draft written by Margret Westerkamp.
The LMC SN1987A EDR data were pre-
processed using the eSASS pipeline, which is
described in detail by Brunner et al. (2018)
and Predehl et al. (2021) a. In particular,
the data was extracted and manipulated us-
ing the eSASS evtool command. We list
the flag values we chose for the evtool com-
mand b in table C.1. We computed the ex-
posure maps for the eROSITA event files
using the eSASS expmap command and the
corresponding flags in table C.2. The data
per energy bin and per TM is shown in
fig. C.1. The corresponding expsoure maps
summed over the 5 TMs are shown in ap-
pendix C The PSFs used for the PSF linear
patched convolution representation can be
found in tm[1-7]_2dpsf_190219v05.fits
in the CALDB. The effective area for
the individual CA can be found in
tm[1-7]_arf_filter_000101v02.fits in
the CALDB.

aFurther information on the eSASS pipeline can
also be found at https://erosita.mpe.mpg.de/
edr/DataAnalysis/.

bA further description of the flags can
be found at https://erosita.mpe.mpg.de/edr/
DataAnalysis/evtool_doc.html.

TM1:

TM2:

TM3:

TM4:

TM6:

Figure C.1: Visualization of
eROSITA data per energy bin
from left to right, 0.2 - 0.1 keV,
1.0 - 2.0 keV, and 2.0 - 4.5 keV for
TM1 to TM6 from top to bottom.

https://erosita.mpe.mpg.de/edr/DataAnalysis/
https://erosita.mpe.mpg.de/edr/DataAnalysis/
https://erosita.mpe.mpg.de/edr/DataAnalysis/evtool_doc.html
https://erosita.mpe.mpg.de/edr/DataAnalysis/evtool_doc.html
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Table C.1: Flags and their
corresponding data types
for evtool, where tmid
∈ {1, 2, 3, 4, 6} and (emin, emax)
∈ {(0.2, 1.0), (1.0, 2.0), (2.0, 4.5)}

Flag Data Type Value
clobber bool True
events bool True
image bool True
size int 1024
rebin int 80
center_position tuple None
region str None
gti str None
flag str None
flag_invert bool None
pattern int 15
telid int tmid
emin float | str emin
emax float | str emax
rawxy str None
rawxy_telid int None
rawxy_invert bool False
memset int None
overlap float None
skyfield str None

Table C.2: Flags and their correspond-
ing data types for expmap, where tmid
∈ {1, 2, 3, 4, 6} and (emin, emax) ∈
{(0.2, 1.0), (1.0, 2.0), (2.0, 4.5)}

Parameter Data Type Value
emin float | str emin
emax float | str emax
withsinglemaps bool True
withmergedmaps bool False
gtitype str GTI
withvignetting bool True
withdetmaps bool True
withweights bool True
withfilebadpix bool True
withcalbadpix bool True
withinputmaps bool False

Figure C.2: eROSITA exposure maps
summed over all 5 TMs.

C.2 Hyper-parameter search
First draft written by Margret Westerkamp.
The prior model described in section 4.3.2 requires choosing a set of hyper-parameters,
which describe the mean and standard deviation of the Gaussian processes modelling the
prior. The meaning of the specific hyper-parameters of the correlated field is more precisely
described in Arras et al. (2022). In particular, the offset mean of the correlated field
parametrizes the mean of τ in eq. (4.3) and therefore the mean of the log-normal flux.
Accordingly, we take the exposure-corrected data, de, shown in fig. 4.1 and calculate its
mean ⟨de⟩ and set both the offset mean of φln and φln,b to log ⟨de⟩ = −19.9.
We use the information on the detection threshold to set the hyper-parameters for the
inverse gamma distribution used for the point sources. In particular we set the mean of
the inverse gamma distribution as the sum of all fluxes from point sources which are higher
than the detection threshold θ divided by the total number of pixels.
To determine the detection threshold θ, we set a minimum S/N, γmin, that is required to
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reliably detect a source. Essentially, for a source to be detected, the S/N, γ, in each pixel
must be higher than this set threshold, γmin. Specifically, for Poisson data, the S/N is
given by γ =

√
λ, where λ is the expected number of counts in a pixel. We set γmin based

on the confidence level we want for detection. In this case, we aim for a 99% confidence
level, meaning there is a 99% probability that any observed signal is not just a random
fluctuation,

P(k ≥ 1|λ) = 1− P(k = 0|λ) = 1− e−λ != 0.99, (C.1)

which leads to λmin = 4.6 and, consequently, γmin =
√

λmin = 2.14. The pixel-wise detection
threshold θi is then defined, via the smallest flux, which can be reliably detected in each
pixel i, which is given via λmin and the exposure in the corresponding pixel, Ei

θi = λmin

Ei

. (C.2)

We want to find an overall detection threshold for the whole image, which is then defined
via maximal exposure, Emax

θ = λmin

Emax
= 2.5× 10−9. (C.3)

Eventually, this leads to a mean µig = 2.08× 10−9 of the inverse gamma distribution. The
mode, Moig, of the inverse gamma distribution should be even further below the detection
threshold. In particular, we thus assume that the S/N for the mode is much lower, i.e.
γmin = 0.1,

Moig = 0.12

Emax
. (C.4)

Having the mean and the mode, we can use these in order to calculate the hyper-parameters
κ and β of the inverse gamma distribution via

κ = 2
µig

Moig
− 1 + 1, (C.5)

β = Moig(κ + 1). (C.6)

A prior sample drawn from the prior given these hyper-parameters can be seen in fig. 4.2.
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C.3 Results diagnostics
First draft written by Margret Westerkamp.
Here, we show additional plots correspond-
ing to the reconstruction of of SN1987A in
the LMC as seen by SRG/eROSITA in the
CalPV phase. First, we display the recon-
struction shown in fig. 4.4 per energy bin
in fig. C.5 to give a better understanding of
the color bar used. We also show the cor-
responding uncertainty in the form of the
standard deviation per energy bin in fig. C.6.
Finally, we also performed single TM recon-
structions, the results of which are shown per
TM in fig. C.3. Important diagnostic mea-
sures to check for possible calibration incon-
sistencies in the single TM reconstructions
are the NWRs (eq. (4.20)), which are shown
per TM and energy bin in fig. C.8.

TM1:

TM2: TM3:

Figure C.3: Results for single-TM reconstructions for TM1, TM2 and TM3. The different
colors represent the intensities in the three energy channels 0.2 - 0.1 keV, 1.0 - 2.0 keV, and
2.0 - 4.5 keV and are depicted in red, green, and blue, respectively. Continued for TM4
and TM6 in fig. C.4
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TM4: TM6:

Figure C.4: Results for single-TM reconstructions for TM4 and TM6. The different colors
represent the intensities in the three energy channels 0.2 - 0.1 keV, 1.0 - 2.0 keV, and 2.0 -
4.5 keV and are depicted in red, green, and blue, respectively.

Figure C.5: Posterior mean of the sky reconstruction in the different energy bins.

Figure C.6: Standard deviation per energy bin for the reconstruction shown in fig. 4.4 and
fig. C.5.
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TM1:

TM2:

TM3:

Figure C.7: Continued in fig. C.8.
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TM4:

TM6:

Figure C.8: Posterior mean of the NWRs for single-TM reconstructions.
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C.4 Validation diagnostics
First draft written by Margret Westerkamp.

This section provides supple-
mentary plots that offer fur-
ther insights into the valida-
tion analysis discussed in sec-
tion 4.5.1. These plots show
in particular the images of the
simulated sky, the simulated
data, and the corresponding re-
construction. These are shown
as an RGB image in fig. 4.5 as
plots per energy, which serve
to enhance the understanding of
the color bar for the RGB im-
age. In particular the data per
energy bin and TM is presented
in fig. C.9, the underlying sim-
ulated sky per energy bin is
shown in fig. C.10 and the re-
constructed sky per energy bin
is illustrated in fig. C.11. Fur-
thermore, we display the un-
certainty in the reconstruction
by means of the standard de-
viation for each energy bin in
fig. C.12. Figure C.13 shows the
standardized error for each en-
ergy bin.

TM1:

TM2:

TM3:

TM4:

TM6:

Figure C.9: Visualisation of the exposure cor-
rected simulated data per energy bin from left
to right, 0.2 - 1.0 keV, 1.0 - 2.0 keV and 2.0 -
4.5 keV for TM1 to TM6 from top to bottom.



C.4 Validation diagnostics 119

Figure C.10: Visualization of the simulated sky per energy bin (left: 0.2-1.0 keV, center:
1.0-2.0 keV, right: 2.0-4.5 keV).

Figure C.11: Visualization of the reconstruction per energy bin (left: 0.2-1.0 keV, center:
1.0-2.0 keV, right: 2.0-4.5 keV).

Figure C.12: Visualization of the standard deviation of the validation reconstruction per
energy bin (left: 0.2-1.0 keV, center: 1.0-2.0 keV, right: 2.0-4.5 keV)

Figure C.13: Visualization of the standardized error of the validation reconstruction per
energy bin (left: 0.2-1.0 keV, center: 1.0-2.0 keV, right: 2.0-4.5 keV).
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