
Designing and Optimizing Deep Learning Methods for
Genomic Sequencing Data

Hüseyin Anil Gündüz

Designing and Optimizing Deep Learning Methods for
Genomic Sequencing Data

Hüseyin Anil Gündüz

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität München

eingereicht von
Hüseyin Anil Gündüz

am 30.09.2024

Erster Berichterstatter: Prof. Dr. Bernd Bischl
Zweiter Berichterstatter: Prof. Dr. Alice Carolyn McHardy
Dritter Berichterstatter: Prof. Dr. Christoph Lippert

Tag der Disputation: 09.04.2025

Acknowledgments

I am deeply grateful to

. . . Prof. Dr. Bernd Bischl, Dr. Mina Rezaei, Dr. Philipp Münch, and Martin Binder

. . . for their continuous supervision, guidance, and inspiration.

Their efforts, support, and supervision were crucial to making this Ph.D. thesis possible.

I am thankful to Prof. Alice C. McHardy and Prof. Dr. Christoph Lippert

. . . for agreeing to review my thesis,

and to Prof. Dr. Christian Heumann and PD Dr. Fabian Scheipl

. . . for their kindness in agreeing to be on the examination panel.

Special thanks goes to my colleagues and collaborators:

. . . René, Özgür, Emilio, Yin, Julia, Lisa, Sheetal, Amadeu, and Amirhossein.

I fully appreciate my wife Hande for her eternal support throughout this Ph.D. journey,

. . . in addition to simply making my life much more amazing.

I also appreciate our cat Findik for her emotional support in the form of soothing purrs

. . . and happily sitting on my lap while I endeavored to advance science.

I am also grateful to my parents and brother for their support,

. . . which has been essential in getting me to where I am today.

Summary

While modern deep learning techniques have significantly impacted fields such as natural lan-
guage processing and computer vision, their application to biology still needs to be expanded.
To bridge the gap between these fields, several deep learning approaches are proposed and tai-
lored to genomics, based on recent advances in machine learning research and the characteristics
of sequential genomic data. The main contributions of the dissertation aim at advancing sev-
eral aspects of deep learning for sequential genomic data: self-supervised learning, uncertainty
quantification, and automated model design or, more generally, optimization of architectures and
hyperparameters.

A challenge that this thesis aims to address is the effective use of unlabeled genomic data to
improve model performance. In this context, self-supervised approaches for sequential genomic
data are investigated. These methods improve performance especially when the amount of labeled
data is limited and the acquisition of large amounts of annotated data is not feasible due to
factors such as increased cost. A major contribution of the thesis, Self-GenomeNet, is a self-
supervised learning method tailored for genomic data, using reverse-complement sequences within
self-supervised learning.

Another aspect explored in this thesis is the design and optimization of deep learning architectures
and hyperparameters for genomics. While models such as ResNets or Visual Transformers are the
standard architectures in computer vision and various transformer models such as BERT or GPT
in natural language processing, there is still no consensus on a standard architecture in computa-
tional biology, a field with many different tasks and subfields. As a result, it can be difficult for
researchers to train successful machine learning models in genomics using out-of-the-box archi-
tectures and hyperparameters. To address this problem, the first part of the thesis investigates
automated model design methods. These methods optimize model architectures for the specific
dataset and task. An important contribution of this work is a model-based optimization approach
called GenomeNet-Architect, which simultaneously optimizes both the model architecture through
proposed hyperparameters and the optimization hyperparameters. In another contribution of this
thesis, various neural architecture search methods are optimized using our proposed search space
and benchmarked against expert-designed architectures. Both papers suggest that automated
architecture design methods find better models than those designed by experts.

Other contributions of this thesis deal with uncertainty quantification methods applied to genomic
data. Applications in health and biology are often safety-critical, so the reliability of deep learning
models should be investigated and improved. To this end, various uncertainty quantification
methods for predicting regulatory activity are investigated, and a novel deep learning method for
improving the calibration of predictions is studied in the context of sequential genomic data.

Finally, contributions are made to the development of user-friendly software that can handle
different formats of genomic data, including the integration of key parts of several of the methods
outlined in this thesis into this software.

Zusammenfassung

Obwohl moderne Deep-Learning-Techniken bereits einen großen Einfluss auf Bereiche wie die Ve-
rarbeitung natürlicher Sprache und maschinelle Bildverarbeitung haben, muss ihre Anwendung
in der Biologie erst noch entwickelt werden. Um die Lücke zwischen diesen beiden Bereichen
zu schließen, werden verschiedene Deep-Learning-Ansätze vorgeschlagen und auf die Genomik
zugeschnitten, die auf den jüngsten Fortschritten in der maschinellen Lernforschung und den
Eigenschaften sequenzieller Genomdaten basieren. Die Hauptbeiträge der Dissertation zielen da-
rauf ab, verschiedene Aspekte des Deep Learning für sequenzielle Genomdaten voranzutreiben:
selbstüberwachtes Lernen, Quantifizierung von Unsicherheiten und automatisiertes Modelldesign
oder, allgemeiner, Optimierung von Architekturen und Hyperparametern.
Eine Herausforderung, die in dieser Arbeit angegangen werden soll, ist die effektive Nutzung un-
markierter Genomdaten zur Verbesserung der Modellleistung. In diesem Zusammenhang werden
selbstüberwachende Ansätze für sequenzielle Genomdaten untersucht. Diese Methoden verbessern
die Leistung insbesondere dann, wenn die Menge an markierten Daten begrenzt ist und die
Beschaffung großer Mengen annotierter Daten aus Kostengründen nicht möglich ist. Ein wichtiger
Beitrag der Arbeit, Self-GenomeNet, ist eine selbstüberwachte Lernmethode, die auf genomische
Daten zugeschnitten ist und revers-komplementäre Sequenzen innerhalb des selbstüberwachten
Lernens verwendet.
Ein weiterer Aspekt, der in dieser Arbeit untersucht wird, ist der Entwurf und die Optimierung
von Deep-Learning-Architekturen und Hyperparametern für die Genomik. Während Modelle
wie ResNets oder Visual Transformers Standardarchitekturen in der Computer Vision und ver-
schiedene Transformatormodelle wie BERT oder GPT in der natürlichen Sprachverarbeitung sind,
gibt es noch keinen Konsens über eine Standardarchitektur in der Computerbiologie, einem Gebiet
mit vielen verschiedenen Aufgaben und Teilgebieten. Infolgedessen kann es für Forscher schwierig
sein, erfolgreiche maschinelle Lernmodelle in der Genomik mit Standardarchitekturen und Hyper-
parametern zu trainieren. Um dieses Problem zu lösen, werden im ersten Teil der Arbeit Methoden
zur automatischen Modellentwicklung untersucht. Diese Methoden optimieren Modellarchitek-
turen für den jeweiligen Datensatz und die jeweilige Aufgabenstellung. Ein wichtiger Beitrag dieser
Arbeit ist ein modellbasierter Optimierungsansatz namens GenomeNet-Architect, der sowohl die
Modellarchitektur durch vorgeschlagene Hyperparameter als auch die Optimierungshyperparame-
ter gleichzeitig optimiert. In einem weiteren Beitrag dieser Arbeit werden verschiedene Suchmeth-
oden für neuronale Architekturen, die den von uns vorgeschlagenen Suchraum nutzen, optimiert
und mit von Experten entworfenen Architekturen verglichen. Beide Arbeiten deuten darauf hin,
dass automatische Architekturentwurfsmethoden bessere Modelle finden als von Experten entwor-
fene Modelle.
Weitere Beiträge dieser Arbeit befassen sich mit Methoden zur Quantifizierung von Unsicher-
heiten, die auf genomische Daten angewendet werden. Anwendungen im Bereich Gesundheit und
Biologie sind oft sicherheitskritisch, weshalb die Zuverlässigkeit von Deep-Learning-Modellen un-
tersucht und verbessert werden sollte. Zu diesem Zweck werden verschiedene Methoden zur Quan-
tifizierung von Unsicherheiten bei der Vorhersage regulatorischer Aktivitäten untersucht und eine
neue Deep-Learning-Methode zur Verbesserung der Kalibrierung von Vorhersagen im Kontext se-
quenzieller Genomdaten erforscht.
Schließlich wird ein Beitrag zur Entwicklung einer benutzerfreundlichen Software geleistet, die ver-
schiedene Formate genomischer Daten verarbeiten kann, einschließlich der Integration wichtiger
Teile mehrerer in dieser Arbeit vorgestellter Methoden in diese Software.

Contents

I Introduction, Background, and Conclusion 1

1 Introduction 2
1.1 Introduction . 2
1.2 Outline . 3

2 Methodological Background 4
2.1 Introduction to Deep Learning . 4
2.2 Self-Supervised Learning . 9
2.3 Automated Model Design . 12
2.4 Uncertainty Quantification . 14
2.5 Deep Learning for Genomics . 19

3 Conclusion 23
3.1 Discussion of Contributions . 23
3.2 Future Directions . 25

II Contributions 27

4 Contributions to Self-Supervised Learning for Genomics 28
4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics 28

5 Contributions to Automated Model Design for Genomics 46
5.1 Optimized Model Architectures for Deep Learning on Genomic Data 46
5.2 Neural Architecture Search for Genomic Sequence Data . 62

6 Contributions to Uncertainty Quantification and Calibration in Genomics 74
6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity

of DNA Sequences . 74
6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation 84
6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Represen-

tation Learning . 101

7 Contributions to Software Development for Genomics 128
7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences 128

References 140

vii

Contributing Articles

Chapter 4.1 Gündüz HA, Binder M, To XY, Mreches R, Bischl B, McHardy AC, Münch
PC, Rezaei M (2023). “A self-supervised deep learning method for data-
efficient training in genomics.” Communications Biology, 6(1), 928. doi:10.1038/
s42003-023-05310-2

Chapter 5.1 Gündüz HA, Mreches R, Moosbauer J, Robertson G, To XY, Franzosa EA, Hut-
tenhower C, Rezaei M, McHardy AC, Bischl B, Münch PC, Binder M (2024).
“Optimized model architectures for deep learning on genomic data.” Communica-
tions Biology, 7(1), 516. doi:10.1038/s42003-024-06161-1

Chapter 5.2 Scheppach A, Gündüz HA, Dorigatti E, Münch PC, McHardy AC, Bischl B, Rezaei
M, Binder M (2023). “Neural Architecture Search for Genomic Sequence Data.” In
2023 IEEE Conference on Computational Intelligence in Bioinformatics and Com-
putational Biology (CIBCB), pp. 1–10. doi:10.1109/CIBCB56990.2023.10264875

Chapter 6.1 Gündüz HA, Giri S, Binder M, Bischl B, Rezaei M (2023). “Uncertainty Quan-
tification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences.” In 2023 International Conference on Machine Learning and Applica-
tions (ICMLA), pp. 566–573. doi:10.1109/ICMLA58977.2023.00084

Chapter 6.2 Turkoglu MO, Becker A, Gündüz HA, Rezaei M, Bischl B, Daudt RC,
D' Aronco S, Wegner J, Schindler K (2022). “FiLM-Ensemble: Probabilis-
tic Deep Learning via Feature-wise Linear Modulation.” In S Koyejo, S Mo-
hamed, A Agarwal, D Belgrave, K Cho, A Oh (eds.), Advances in Neu-
ral Information Processing Systems, volume 35, pp. 22229–22242. Curran As-
sociates, Inc. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf

Chapter 6.3 Vahidi A, Wimmer L, Gündüz HA, Bischl B, Hüllermeier E, Rezaei M (2024).
“Diversified Ensemble of Independent Sub-networks for Robust Self-supervised
Representation Learning.” In A Bifet, J Davis, T Krilavičius, M Kull, E Ntoutsi,
I Žliobaitė (eds.), Machine Learning and Knowledge Discovery in Databases. Re-
search Track. ECML PKDD 2024, pp. 38–55. Springer Nature Switzerland, Cham.
doi:10.1007/978-3-031-70341-6 3

Chapter 7.1 Mreches R, To XY, Gündüz HA, Moosbauer J, Klawitter S, Deng ZL, Robertson
G, Rezaei M, Asgari E, Franzosa EA, Huttenhower C, Bischl B, McHardy AC,
Binder M, Münch PC (2024). “GenomeNet: A platform for deep learning on
(meta)genomic sequences.”

https://dx.doi.org/10.1038/s42003-023-05310-2
https://dx.doi.org/10.1038/s42003-023-05310-2
https://dx.doi.org/10.1038/s42003-024-06161-1
https://dx.doi.org/10.1109/CIBCB56990.2023.10264875
https://dx.doi.org/10.1109/ICMLA58977.2023.00084
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf
https://dx.doi.org/10.1007/978-3-031-70341-6_3

List of Abbreviations

A adenine

ACC accuracy

AMBER automated modeling for biological evidence-based research

AUC area under curve

AUROC area under receiver operating characteristic

AutoML automated machine learning

BANANAS bayesian optimization with neural architectures for neural architecture search

BERT bidirectional encoder representations from transformers

BONAS bayesian optimization neural architecture search

C cytosine

CNN convolutional neural networks

CPC contrastive predictive coding

CV computer vision

CWP-DARTS continuous weight sharing progressive differentiable architecture search

DAG directed acyclic graph

DARTS differentiable architecture search

DeepSEA deep learning–based sequence analyzer

DL deep learning

DNA deoxyribonucleic acid

ECE expected calibration error

EDP-DARTS edge discarding progressive differentiable architecture search

ENAS efficient neural architecture search

FiLM feature-wise linear modulation

FN false negative

FP false positive

G guanine

GAP global average pooling

GMP global max pooling

GPU graphics processing unit

GRU gated recurrent unit

HP hyperparameter

HPO hyperparameter optimization

ID in-distribution

LM language model

LLM large language model

LSTM long short-term memory

M million

MAE mean absolute error

MBO model-based optimization

MC-Dropout monte carlo dropout

MCMC markov chain monte carlo

MIMO multi input multi output

ML machine learning

MSE mean square error

NAS neural architecture search

NGS next generation sequencing

NLL negative log-likelihood

NLP natural language processing

OOD out-of-distribution

ORF open reading frames

P-DARTS progressive differentiable architecture search

PPR-Meta phage and plasmid recognizer for metagenomes

PR-AUC area under precision recall curve

RC reverse-complement

ReLU rectified linear unit

RMSE root mean square error

RNA ribonucleic acid

RNN recurrent neural networks

ROC receiver operating characteristic

RS random search

SCE static calibration error

SGD stochastic gradient descent

SH successive halving

SMBO surrogate model-based optimization

SNP single nucleotide polymorphism

SSL self-supervised learning

T thymine

TACE threshold adaptive calibration error

TN true negative

TP true positive

U uracil

UPC upper confidence bound

UQ uncertainty quantification

Part I

Introduction, Background, and
Conclusion

1 Introduction

1.1 Introduction

As an introductory section, the motivation for the thesis is presented, along with the type of
data that the contributions of this thesis will deal with, namely nucleic acids, and the historical
developments that lead to the abundance of this type of data. Advances in sequencing technology,
particularly the reduction in the cost of the technology, have paved the way for more effective use
of deep learning algorithms, which can require large amounts of data to learn from.

Nucleic acids are the primary carriers of genetic information in all living organisms, including
viruses. They regulate vital functions of organisms such as development, function, and reproduc-
tion. Two major classes of nucleic acids are DNA (deoxyribonucleic acid) sequences and RNA
(ribonucleic acid) sequences. The building blocks of nucleic acids are called nucleotides. A nu-
cleotide contains a five-carbon sugar, a phosphate group, and a nitrogen-containing nucleobase.
The sugar present is deoxyribose in DNA and ribose in RNA, which is also part of the names of
these nucleic acids. There are four types of nucleobases in DNA and RNA. The four nucleobases
in DNA are adenine (A), cytosine (C), guanine (G), and thymine (T). In RNA, there is uracil
(U) instead of thymine. By providing diversity, nucleobases (bases) are the source of information
in nucleic acids. Since nucleobases are the main source of information in nucleic acids, DNA or
RNA sequencing refers to determining the order of these bases, which can then be stored and
processed.

Watson and Crick (1953) proposed the double helix structure of DNA. Holley et al. (1965) de-
termined the first whole nucleic acid, which was alanine transfer RNA and was only 77 nu-
cleotides long. The first breakthrough in DNA sequencing was proposed by Sanger et al. (1977b).
The method, also known as Sanger sequencing, was used to sequence the first DNA, a bacte-
riophage with 5,386 base pairs (Sanger et al., 1977a). Sanger sequencing was the first widely
used sequencing technique and has been the most widely used sequencing technique for sev-
eral decades. Heather and Chain (2016) describe the proposal of the method as the birth of
first − generationsequencing. A major milestone in DNA sequencing was the Human Genome
Project between 1990 and 2003, a large and well-organized project aimed at sequencing the en-
tire human genome. By the end of the project, 92% of the human genome had been sequenced.
Another DNA sequencing technique, called pyrosequencing, was proposed by Ronaghi et al.
(1996) and formed the basis of the first so-called Next Generation Sequencing (NGS). NGS is
a high-throughput, high-speed sequencing technique that allows hundreds of millions of DNA or
RNA fragments to be sequenced simultaneously. In addition to being much faster, sequencing
technology has also become much more affordable over the past few decades.

Large amounts of genomic data needed by machine learning algorithms are already available thanks
to NGS. Machine learning methods have also advanced significantly in many different fields such
as computer vision and natural language processing, as discussed in more detail in chapter 2.

2

1.2 Outline

Despite these advances in machine learning (ML) and the large amount of genomic data from
which ML algorithms can learn, the application of ML to genomic data has been relatively slow.
This thesis aims to bridge the gap between these fields by contributing to several areas of machine
learning applied to genomics data, such as self-supervised learning, automated model design, and
uncertainty quantification. These areas of machine learning are particularly relevant to genomics.
First, self-supervised learning aims to reduce the need for human-annotated labels, which can be
expensive and error-prone in genomics. Second, automated model design and neural architecture
discovery aim to find successful models in an automated way for a given dataset and task, which
is a need in genomics since the models designed for genomics have not yet been successful enough
to become standard models for many different tasks in the field. Third, uncertainty quantification
and calibration are important in genomics because many applications in this field can be safety-
critical, and in such cases, uncertain model decisions must be avoided and human experts should
make decisions. Finally, contributions to software for genomics are made so that bioinformaticians
and researchers can easily use machine learning models and several contributions in this thesis.

1.2 Outline

This thesis is divided into two parts. The first part introduces the basics of deep learning, the basics
of several research areas of deep learning relevant to this thesis, and some concluding remarks.
The basics of deep learning are presented by approaching the field from three perspectives: data,
model, and evaluation. The data perspective looks for answers on how to use existing data so that
models can make accurate predictions. The model perspective answers how a machine can find a
function f that infers information from input data. Finally, the evaluation perspective addresses
how to determine the performance of these functions (models).

The machine learning research areas relevant to this thesis, self-supervised learning, automated
model design (including neural architecture search), and uncertainty quantification, are introduced
in sections 2.2, 2.3, and 2.4, respectively. Section 2.5 briefly introduces deep learning methods
in these areas applied to genomic data, along with machine learning-related software developed
for this data type. Chapter 3 provides a final discussion of the contributions of this thesis and
possible future research directions.

The second part of the thesis contains the articles and their appendices, if any. The chapters are
organized by research area so that the articles are as close as possible to each other. In particular,
contributions for genomics are included in these specific machine learning areas: self-supervised
learning (chapter 4), automated design of deep learning models (chapter 5), uncertainty and
calibration (chapter 6), and software development (chapter 7).

3

2 Methodological Background

2.1 Introduction to Deep Learning

This section introduces the main concepts of deep learning from three perspectives: data, model,
and evaluation.

Data Perspective

Deep learning seeks data-driven answers to the questions it seeks to answer, but how can existing
data be used to make the models (more) accurate in their predictions? The answer to this question
may depend on several aspects, such as the amount of data available or the modality of the data.
However, a common way to answer this question is closely related to whether or not the data is
labeled. The data can be labeled, unlabeled, or partially labeled. Furthermore, methods focus on
how to label the unlabeled data automatically and without human annotation, from which the
trained models can learn further. All these cases have different learning methods, and each case
will be studied in this part of the thesis.

i. Supervised learning: Supervised learning deals with situations where the data is labeled, i.e.
each data sample xi is paired with a label yi. The goal is to find a function f that can infer these
labels based on the inputs. For example, the data may consist of images of cats and dogs, and
the labels of each image as to whether it is a cat or a dog. Then the image of a sample i is xi,
its annotation is yi, and the goal is to have a classifier f that correctly classifies yi from xi such
that yi = f(xi). Such tasks, where an input sample is assigned to one of several options (classes),
are called classification tasks (LeCun et al., 1998). The annotation can also be a continuous
variable, such as the weight of cats and dogs, and if such annotations are to be predicted, the task
is called a regression task (Sykes, 1993).

ii. Unsupervised learning: Unsupervised learning deals with cases where there are no annotations.
Typical tasks for unsupervised learning are clustering, association, and dimensionality reduction.
The clustering algorithms aim to group the uncategorized data samples by finding similarities (Xu
and Tian, 2015). The goal of association algorithms is to find relationships between different
variables in the data set, such as whether two products are often purchased together (Agrawal
et al., 1993). Dimensionality reduction reduces the number of features (dimensions) that a data
input has, while preserving as much data integrity as possible (Maćkiewicz and Ratajczak, 1993;
Van der Maaten and Hinton, 2008). This can be used to visualize data with many inputs by
reducing the dimension size to a visualizable value, such as two dimensions, or it can be used to
reduce the irrelevant or random features in the data.

iii. Self-supervised learning: Self-supervised methods can be considered as a subset of unsuper-
vised models since they do not require human labeling, similar to (other) unsupervised learning

4

2.1 Introduction to Deep Learning

methods. Nevertheless, these methods propose ways to create labels from the unlabeled input
data itself (Devlin et al., 2018; Chen et al., 2020). The models are then trained using these labels,
similar to supervised learning methods. A simple example is next token prediction, where, for
example in NLP, the word that comes after a text can be predicted. In this example, the data may
not have any human annotations, e.g. no human had to read some or all of the existing texts in the
data and had to come up with labels based on the desired task. However, the labels are generated
from the originally unlabeled data. After self-supervised pre-training, models can transfer knowl-
edge learned from unlabeled data to supervised downstream tasks. In this way, self-supervised
methods use unlabeled data to improve the performance of supervised learning tasks. A typical
use case for self-supervised learning is when a lot of unlabeled data is available. For example, the
vast availability of natural language data (text data), computer vision data (videos and images),
and audio data make it possible to use self-supervised methods to improve state-of-the-art deep
learning models and reduce the need for human annotation (Floridi and Chiriatti, 2020; Henaff,
2020; Liu et al., 2022).

iv. Semi-supervised learning: Similar to self-supervised learning, semi-supervised learning meth-
ods aim to reduce the amount of labeled data. However, semi-supervised learning involves learning
from both labeled and unlabeled data simultaneously to improve model performance (Berthelot
et al., 2019).

v. Reinforcement learning: Interactive learning in machine learning is called reinforcement learn-
ing. Reinforcement learning methods are based on the interaction between a controller and an
environment (Mnih, 2013). The controller decides what action to take in the next step. The
environment then feeds back the new state and the reward to the controller. Next, the controller
can decide the next action based on the state and reward coming from the environment. This
process is repeated until the learning process is stopped.

Model Perspective

How does a machine find a function f that can infer information from input data? For example,
how does a machine find a function that can successfully infer the label yi from an input sample
xi in supervised learning? A short answer is that a model is optimized using the data. To
understand what is being optimized, it is necessary to introduce the building blocks of deep
learning: layers. Next, architectures formed by combining these building blocks in different orders
will be discussed. Finally, the methods for optimizing the weights and hyperparameters of these
architectures/models are discussed.

Model - From Layers to Architectures: The building blocks of a deep learning model are called
layers. A layer is a node that takes information from previous layers, modifies it, and passes it
on to the next layer. Terminologically, the layer that takes xi is called the input layer, the layer
that predicts yi is called the output layer, and the remaining layers between these two layers are
called hidden layers. How these layers modify the received information is determined by the type
of the layer. For example, a fully connected layer (also called a linear or dense layer) performs
the following operation:

y = σ (Wx + b) (2.1)

5

2.1 Introduction to Deep Learning

where σ is the activation function, which is a nonlinear function applied to the vector element-
wise, W is a matrix of weights connecting x to y, which are the input and output vectors (i.e.
representation vectors) respectively, and b is the bias vector. It can be shown that without an
activation function to introduce non-linearity, N linear layers stacked on top of each other are
equivalent to a linear layer with different weights. There are several commonly used activation
functions (Maas et al., 2013; Bridle, 1990; Han and Moraga, 1995; He et al., 2015). A simple and
common activation function is Rectified Linear Unit (ReLU) (Nair and Hinton, 2010):

ReLU(x) =
{

x, if x ≥ 0,
0, if x < 0.

(2.2)

Another common layer type is convolutional layers. Convolutional layers are often used in com-
puter vision tasks, among others. Convolutional layers consist of filters (also called kernels) that
iterate over different regions of the input data. For example, for a filter of size 3×3 and an image
of size 32×32, different regions of size 3×3 are multiplied by the filter element-wise, and then
the output of this multiplication is summed and fed into an activation layer to produce the out-
put. Some advantages of convolutional networks are local sparse connections, parameter sharing,
and translation equivariance. These allow convolutional networks to search for complex features
locally rather than globally, to reduce memory requirements, to learn efficiently, and to detect
features regardless of their position in the image.

Recurrent layers are another popular layer type to process sequential data. These layers process
data sequentially, feeding the input to the layer bit by bit, from one end of the sequence to the
other. A simple (also called vanilla) recurrent layer computes a hidden vector that embeds the
information of the previously processed portion of the input data. This vector and the next part of
the input are used to compute the hidden vector that will be used in the next step and, if desired,
an output vector. Since the hidden vector received from the previous step is needed to perform
the computations, the process must be sequential, and the computations are thus usually slow
because they cannot be parallelized. They are also prone to the vanishing gradient problem, which
makes learning long-range effects difficult. More popular recurrent layers than the vanilla version,
such as LSTM (Hochreiter, 1997) and GRU (Cho, 2014), address this problem by introducing
additional gates.

Attention layers determine the importance of each component/position relative to the others.
They gained popularity while mostly being used as an additional component to recurrent layers
like LSTM (Parikh et al., 2016). Vaswani et al. proposed the first transformer model in their
influential paper entitled “Attention is all you need” (Vaswani, 2017). As its name partly suggests,
the introduced transformer model consisted of self −attention layers and did not use any recurrent
layers, yet the model outperformed the state-of-the-art techniques.

Deep learning architectures are built by stacking layers on top of each other, which means that
the output of one layer is often fed into another (subsequent) layer as input. Similarly, the
output of that layer is fed into another layer as an output. For example, an early convolutional
network LeNet consists of two blocks of a convolutional and a pooling layer, followed by three fully
connected layers (LeCun et al., 1998). AlexNet contained five convolutional layers followed by
three fully connected layers (Krizhevsky et al., 2012). ResNet proposed residual blocks to train a
substantially larger number of layers end-to-end and successfully trained a state-of-the-art model

6

2.1 Introduction to Deep Learning

with 152 layers (He et al., 2016). Besides stacking fully connected layers on top of convolutional
layers, it is also possible to have other successful architectures with other combinations, such as
using recurrent layers between convolutional and fully connected layers (Gündüz et al., 2024).

Optimization of the Models: The weights of deep learning models are optimized for specific
datasets and tasks. Here the methodology for optimizing hyperparameters and weights is dis-
cussed.

i. Weights Optimization: In machine learning, the model performance is estimated and optimized
by minimizing the empirical risk Remp computed by averaging the loss function over the training
set. Thus, in a standard supervised learning setting, a machine learning model f with learnable
weights θ aims to minimize a defined loss function L over the training data consisting of input-label
pairs (xi, yi) indexed by i:

Remp = 1
n

n∑
i=1

L(y(i), f(x(i)|θ)). (2.3)

The loss function is typically defined to be minimized as f(x(i)|θ) approximates y(i) on average
over the training data. For more information on different loss functions, see the subsection 2.1:
“Evaluation Perspective”.

A simple method for determining θ that minimizes empirical risk is called gradient descent. Gra-
dient descent updates the weights towards the direction that the risk is minimized at maximum
for an infinitesimal step. This direction is calculated by computing the negative of the empirical
risk’s gradient. The direction is multiplied by a scalar value called the learning rate (α), which
adjusts the size of the taken step. While this iteration is repeated several times, typically until
the empirical risk converges, an iteration at time t is mathematically given as follows

θt+1 = θt − α∇Remp(θ) (2.4)

Since computing the gradient over the entire training set is computationally expensive, it is typ-
ical to use small stochastic subsets instead of the entire set. This method is called stochastic
gradient descent. Stochastic gradient descent can be further accelerated by using a method called
momentum, which accumulates the moving average of the computed gradient descents. (Polyak,
1964; Sutskever et al., 2013; Goodfellow, 2016).

ii. Hyperparameter Optimization: Hyperparameters are typically set before weight optimization
to define the underlying model and training procedure. A model consists of hyperparameters that
affect the overall layout of the architecture, such as the number of layers or the number of neurons
in a layer. In addition, some hyperparameters are related to the optimization procedure, such as
the learning rate. Hyperparameter optimization is typically done by selecting some hyperparame-
ters and training the weights of the model given those hyperparameters. This process is repeated
as long as the computational budget allows. The simplest hyperparameter optimization method is
probably random search. Here, the user defines a search space, which is a list of hyperparameters
to optimize and the range of values these hyperparameters can take. Then, models are trained
with randomly and independently sampled sets of hyperparameters until a predefined computa-
tional budget is reached. The selected set of hyperparameters are those that belong to the model

7

2.1 Introduction to Deep Learning

with the highest performance. A more detailed discussion of hyperparameter optimization can be
found in the section 2.3: “Automated Model Design”.

Evaluation Perspective

Given that one or more models are optimized on a dataset, how do you determine the performance
of these models and which one to use for a particular use case scenario? Evaluation metrics provide
insight into model performance and make it easier to compare different models.

Some evaluation metrics are differentiable and can be used to train model weights using modern
optimization methods based on gradient descent. Such metrics include mean square error (MSE)
and mean absolute error (MAE) for regression tasks, and negative log-likelihood (NLL) loss for
classification tasks.

MSE = 1
N

N∑
i=1

(yi − ŷi)2 (2.5)

MAE = 1
N

N∑
i=1

|yi − ŷi| (2.6)

NLL = − 1
N

N∑
i=1

C∑
j=1

yijlog(ŷij) (2.7)

where ŷi = f(xi) is the prediction, yi is the ground truth (label) value or vector, and j in ŷij and
yij indicates the indice value of the vector and corresponds to the predicted probability or ground
truth probability that data point i belongs to a particular class indexed by j. However, it should
be noted that the training (weight optimization) of the model is done on the training set, and a
more realistic performance indicator of the model on unseen data is to evaluate a metric on the
test data, as the model may overfit the training set.

Some evaluation metrics are not differentiable and cannot be used for the optimization. Nev-
ertheless, they offer valuable insight into the performance of the model. A popular and simple
metric is accuracy for classification tasks, evaluated by the number of correct classifications di-
vided by the number of all classifications. For binary classification tasks, labels are typically
called positive and negative labels, where the positive label often refers to an anomaly such as
an illness or fraudulent action. With two possible ground truth labels and two possible predicted
labels (positive or negative), the four possible combinations of ground truth and prediction pair
are called true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
Here, the first word designates if the ground truth and the predicted label match, and the sec-
ond word refers to the predicted label. Therefore, the accuracy for the binary classification can
be given as (TP+TN)/(TP+TN+FP+FN). Sensitivity and recall are given as TP/(TP+FN).
Specificity is given as TN/(TN+FP) and precision is defined as TP/(TP+FP). Precision-recall
and sensitivity-specificity are typically used as pairs and deliver more information than accuracy,
especially when the data is imbalanced. F1 score is computed by the harmonic mean of precision
and recall. However, all these metrics require a classification to either the positive or the negative
class, and therefore threshold selection is needed to divide data samples into two groups based on

8

2.2 Self-Supervised Learning

the numeric outcome of the machine learning model. The area under the receiver characteristic
(ROC) curve (AUC) is obtained by plotting sensitivity against 1 − specificity for all threshold
values and evaluating the area under the plotted curve (Rainio et al., 2024). Thus, this metric is
threshold-independent, i.e. a specific threshold is not needed to be chosen to evaluate this metric.
The precision-recall AUC is also similarly threshold-independent.

For multi-class classification, TP, TN, FP, and FN can be derived to form a confusion matrix
similar to the binary classification tasks uniquely for each class (Rainio et al., 2024). To compute
macro-averaged metrics, metrics can be evaluated for each class and then the evaluated results
for each class are averaged. For example, macro-averaged recall can be computed by averaging
the recall values for each class. Thus, the macro-averaged recall can also be interpreted as class-
balanced accuracy, since the recall value for a class is computed by dividing the true classifications
(TP) by the number of samples (TP+FN) from that class, being equivalent to the accuracy for
that class, and then the values computed for each class are averaged. Micro-averaged metrics can
be evaluated by summing up the number of observations over each class when the elements of the
confusion matrix are formed.

For regression tasks, Pearson’s correlation coefficient (r) can be used as an evaluation metric that
measures the correlation between the ground truth and the predicted values.

In addition, the uncertainty of the predictions can also be quantified by various techniques, which
can be an important component of the performance, especially for safety-critical areas. Recently
introduced NLL, ECE (Naeini et al., 2015) to be introduced in a following subchapter, static
calibration error (SCE) (Nixon et al., 2019), Brier score (Brier, 1950), and threshold adaptive
calibration error (TACE) (Nixon et al., 2019) are some metrics to give insights regarding the
uncertainty of models.

2.2 Self-Supervised Learning

Motivation

Annotating data and thus creating manually labeled datasets relying on human labeling is often
expensive and bound to errors. This is especially the case for genomics or similar data types such
as health data, as labeling for such tasks depends heavily on human expertise or spending on lab-
oratory equipment thus making it even more expensive than average labeling cases. Additionally,
it is often in these fields that an annotation by humans is wrong, and thus harmful for the machine
learning models that are trained on this data. Therefore, self-supervised learning methods are
proposed to increase the overall performance of deep learning models and to reduce the costs by
making use of unlabeled data and thus reducing the need for larger amounts of clean and correct
data annotated by humans.

General Structure

Unlike supervised methods, self-supervised learning techniques use unlabeled data to learn mean-
ingful representations that contain information about the properties of the data. A typical use

9

2.2 Self-Supervised Learning

case for self-supervised learning consists of two parts (Oord et al., 2018; Henaff, 2020; Chen et al.,
2020; Devlin et al., 2018):

i. Self-supervised training: A model is trained on unlabeled data, which is often very large. In
self-supervised learning methods, labels are automatically generated from unlabeled data based
on defined tasks. These tasks are called pretext tasks. Then, similar to supervised training, the
model is trained using these generated ground truth labels from the pretext task.

ii. Evaluation on downstream tasks: A machine learning model consisting of one or more layers
is initialized on top of the pre-trained model, i.e., the pre-trained model typically feeds its output
to this model. This model, possibly together with the pre-trained model, is then fine-tuned in a
typical supervised fashion on labeled data, which is often a much smaller dataset, to perform the
intended task of the model. This fine-tuned model typically performs much better than the case
where the model is not pre-trained or equally where the model weights are randomly initialized.

In the following subsections, different methods for self-supervised training and the evaluation
protocols for training on downstream tasks will be discussed.

Types of Self-Supervised Learning

Self-supervised learning methods can be roughly divided into two categories, which will be dis-
cussed in this subsection.

Generative Self-Supervised Learning: While modern self-supervised learning methods can use
more complex structures to achieve superior performance, the basic idea of generative self-
supervised training is to predict some tokens of text based on other tokens. For NLP tasks,
these tokens are typically words. In this way, labels that can be used for supervised training are
automatically generated from the “self” of the unlabeled data, and no further human annotation
is required.

A generative self-supervised learning method is the auto-regressive model, which is trained by
iteratively predicting the upcoming data based on the previous data. For example, the next word
can be predicted based on the previous words, and the following word can also be predicted based
on the predicted word in addition to the previous words (Floridi and Chiriatti, 2020; Achiam
et al., 2023). Similarly, based on some pixels of the images, the rest of the image can be generated
pixel by pixel (Van den Oord et al., 2016; Van Den Oord et al., 2016) or given the initial part
of an audio sample, the rest can be generated (Van Den Oord et al., 2016). Trained in this way,
these models are generative models by their nature, but they can also be used for other tasks if
they are tuned for those tasks.

Another generative self-supervised learning method is the auto-encoding model, where a complete
input is fed into the model in a distorted way and the model tries to predict the original input. For
example, the popular BERT (Devlin et al., 2018) method randomly modifies some of the existing
tokens to be a special mask token and tries to predict the original tokens while training the model
using the cross-entropy loss, which is a typical loss used for supervised classification tasks.

10

2.2 Self-Supervised Learning

Contrastive Self-Supervised Learning: While effective for NLP tasks, non-contrastive ap-
proaches have not been as successful in several deep learning application areas, such as computer
vision or audio processing. For example, models trained by predicting missing pixels for image
data, or similarly by predicting missing samples for audio, performed suboptimally and were
later outperformed by contrastive learning in many domains and cases (Oord et al., 2018). A
contrastive self-supervised learning method typically minimizes the distance between the learned
representations of two distorted copies of input data, while maximizing the distance between the
representations of different input samples. For example, given two distorted copies of an image of
a cat and many other images, such as an image of a mouse, the model learns that the copies of
the cat image have more in common, such as similar tails or paws, than a cat and a mouse, by
learning to embed the features of the images into the representations. In practice, these distorted
copies are extensions of the original image.

A contrastive self-supervised method uses a contrastive loss to minimize the distance between
the matched representations. An example is the Contrastive Predictive Coding (CPC) method
introduced by Oord et al. (2018), which used contrastive loss to train self-supervised deep learning
models and demonstrated the efficiency of contrastive loss on audio, images, natural language data,
and reinforcement learning tasks.

In general, the anchor, positive, and negative samples xa, x+, and x− are encoded by an encoder
network fe to compute their representations za = fe(xa), z+ = fe(x+), and z− = fe(x−) in a
contrastive loss given by

Lcontrastive = −E
[
log fs(za, z+)

fs(za, z+) + ∑N
j=1 fs(za, z−

j)

]
(2.8)

where fs is a similarity function. It is also possible to split a data sample into multiple patches,
which is particularly useful when the data type is, for example, audio, text, or sequential genomics
data (Oord et al., 2018; Gündüz et al., 2023). The representations of these patches can be
computed similarly by feeding them into fe. The anchor sample can consist of multiple patches,
and the representation of the anchor samples can be computed by feeding in the representations
of the patches that make up the anchor sample. Similarly, the positive and negative samples can
be a group of patches, but it is more common for these samples to be defined as a single patch.
The similarity function can also be represented by a neural network or a linear layer.

Evaluation Protocols for Training on Down-stream Tasks

After self-supervised pre-training, the learned representation of this self-supervised model is
trained or tested on supervised, usually smaller, datasets. Thus, training on downstream tasks is
a supervised training scheme, where the main difference from typical supervised training is the use
of pre-trained weights as initial weights instead of random initialization. A self-supervised learn-
ing model typically achieves much higher performance on small labeled datasets. These labeled
datasets are often called downstreamtasks or downstreamdatasets and can either be collected
or imitated.

i. Transfer learning: The self-supervised model is trained on labeled datasets, which are usually
of small size. These datasets are assumed to have a different data distribution than the dataset

11

2.3 Automated Model Design

used for the self-supervised training of the model. For example, Chen et al. (2020) uses 12 popular
computer vision datasets for transfer learning.

ii. Semi-supervised learning / Data-scarce evaluation: In this setting, a limited portion of the
dataset used during the self-supervised pre-training is used as the downstream dataset. For
example, 1% and 10% of the dataset used for self-supervision is used as the downstream datasets,
along with the labels (Chen et al., 2020; Gündüz et al., 2023). By providing a considerably
large dataset, with only a limited portion of that dataset available with labels, data scarcity is
mimicked.

iii. Linear evaluation / linear classification: While other evaluation protocols do not impose any
constraint on the model added on top of the self-supervised model, in linear classification protocol,
the model added on top of the self-supervised model is a linear classifier. In addition, the model
trained in the self-supervised pre-training is not updated during the downstream training (Chen
et al., 2020; Bardes et al., 2021; Goyal et al., 2021; Gündüz et al., 2023). This implies that the
representations evaluated for a data sample remain unchanged after training on the downstream
task. With these measures, this protocol ensures that the effect of training on the downstream
task on the representations is zero, and the superiority of the learned representations is tested in
a difficult setting limited to a linear layer on top of the representations, which implies testing the
superiority of self-supervised methods.

2.3 Automated Model Design

Automated machine learning (AutoML) describes the automation of the machine learning pipeline.
A standard AutoML workflow includes steps such as data preprocessing, feature extraction, model
generation, and model evaluation (He et al., 2021). Neural architecture search (NAS), the focus
of this thesis, is a subset of AutoML that aims at the automation of neural network design.
Therefore, NAS is particularly concerned with the model generation and evaluation phases of
AutoML. The first of these, the automated generation of machine learning models, contains two
essential parts: search space and optimization methods. The search space refers to the possible
architectures to be searched and optimized. The optimization methods or search strategy can be
divided into hyperparameter optimization, including learning rate optimization, and architecture
optimization, including optimization of parameters such as filter size of convolutional layers. In
line with these points, Elsken et al. (2019) divides a typical NAS framework into three stages:
search space, search strategy, and performance evaluation strategy.

Search Space

The search space defines the potential models that a NAS algorithm, or more specifically the
algorithm’s optimization methods, can discover. Designing a good search space is therefore a
challenging but crucial problem. A good search space should include a wide variety of model ar-
chitectures to reduce human bias (He et al., 2021), while larger search spaces with fewer constraints
are usually more computationally expensive.

A simple search space can be a chain-structured neural network, where each hidden layer in the
architecture receives its input from only one (previous) layer and feeds its output to only one

12

2.3 Automated Model Design

(following) layer. On the other hand, a more complex search space can be obtained by removing
the chain structure constraint and thus including additional possibilities such as multi-branching
or skip connections. He et al. (2021) introduces both such search spaces under the umbrella term
fully structured search space. The search space has to be parameterized in order to be searchable.
These parameters can be, for example, the number of layers, the type of operations in the existing
layers, or the hyperparameters of the operations (Elsken et al., 2019; Gündüz et al., 2024).

Deep architectures based on human expert designs often rely on repeating blocks (Szegedy et al.,
2016; He et al., 2016; Huang et al., 2017). Inspired by this, Zoph et al. (2018) and Zhong et al.
(2018) proposed cell-based search spaces so that optimized cells can be stacked to form the final
architecture. For example, Zoph et al. (2018) proposed optimizing two different repeating cells as
part of the architecture: a normal cell that preserves the input dimensionality, and a reduction
cell to reduce the spatial dimension. The cell-based approaches reduce the size of the search
space, thus reducing the computational burden and speeding up the optimization. While cell-
based methods reduce the complexity of the search space by reducing the number of possible
architectures, they suffer from a gap between the models trained and evaluated during the search
phase and the models selected as the final architecture and evaluated during the evaluation phase.
For example, DARTS consists of eight cells in the search phase and 20 cells during the evaluation
phase (Liu et al., 2018b). While the preference for a larger architecture for the evaluation phase
is based on the fact that they tend to perform better than the smaller ones and the evaluation of
many architectures during the search phase is computationally expensive, there is a chance that
the found architecture could be suboptimal or the larger architecture could even perform worse
than the one discovered in the search phase. This has been addressed in Chen et al. (2021) by
gradually increasing the number of cells during the search phase.

Architecture Optimization

Architectures within the defined search space should be efficiently evaluated to discover the near-
optimal architectures within the defined search space with many model possibilities. Therefore,
several optimization methods have been proposed. Some important architecture optimization
methods include evolutionary algorithms, reinforcement learning methods, differentiable models
optimized with gradient descent, and surrogate model-based optimization methods (He et al.,
2021).

Evolutionary algorithms are designed to be similar to biological evolution. A part of the generated
models are selected based on their performance and they generate offspring as pairs by forwarding
a fraction of their material (Real et al., 2017; Elsken et al., 2018; Real et al., 2019; Irwin-Harris
et al., 2019). Copied genetic material can be randomly modified, similar to mutations in biological
processes and some underperforming models can be removed from generated networks. These steps
are repeated several times. Evolutionary algorithms are well-established methods with robust
performance, but they are usually computationally expensive (He et al., 2021).

As explained earlier, reinforcement learning is interactive learning between a controller and an
environment. In the context of NAS algorithms, the controller of the reinforcement learning
algorithm can be an ML model such as an RNN that decides the next architecture to be evaluated,
while the environment of the reinforcement algorithm is the training and evaluation of this selected
model. The performance of this architecture is then fed back to the controller to decide the next

13

2.4 Uncertainty Quantification

architecture to be evaluated (Zoph and Le, 2016; Baker et al., 2016; Pham et al., 2018; Zoph et al.,
2018).

Gradient descent-based architecture search algorithms emerged when Liu et al. (2018b) defined
a differentiable search space by assigning weights to candidate operations and using a softmax
function on these weights. In particular, these assigned weights are also optimized to decide useful
operations to keep between nodes and useless ones to discard.

Surrogate Model-Based Optimization (SMBO) uses a surrogate model that attempts to predict
the most promising architecture based on previous evaluation results. The surrogate models used
can be based on Bayesian optimization, such as Gaussian processes. (Wistuba, 2017; Kandasamy
et al., 2018) or neural networks such as LSTM (Liu et al., 2018a) or multi-layer perceptron (Luo
et al., 2018).

Model Evaluation

Although it would be reliable to evaluate models on the full test set after training them to conver-
gence on the full training set, this is computationally expensive, especially considering the potential
number of architectures that can be evaluated. In practice, model evaluation can even take tens
of thousands of GPU days, representing a significant amount of computational resources (Zoph
and Le, 2016). A GPU (graphics processing unit) is a powerful computational resource used to
train and run deep learning models. A GPU day refers to the computing capacity of a GPU used
for an entire day. Due to such high computational requirements, several works have been done to
reduce the evaluation time.

He et al. (2021) divides model evaluation methods into four groups: low fidelity, weight sharing,
surrogate, and early stopping. Examples of low fidelity cases include when a smaller subset of the
dataset is used for training (Klein et al., 2017), the resolution of the data is lowered (Chrabaszcz
et al., 2017), or when a similar but smaller model is used (Zoph et al., 2018). Weight sharing
includes transferring the weights trained for other tasks (Wong et al., 2018) or other architec-
tures (Chen et al., 2015), or can be among child networks (Pham et al., 2018). Surrogate models
can be used to control the search method (Liu et al., 2018a). Similar to its use case to prevent
overfitting, early stopping refers to stopping training early, but in neural architecture search it is
used instead to discard unpromising models after a limited training time (Klein et al., 2022).

2.4 Uncertainty Quantification

Uncertainty quantification and calibrated models are critical, especially in safety-critical areas
such as automated healthcare. In such applications, model prediction performance at a desired
level may not be sufficient to use the model because the risk of wrong decisions may be too high.
In such cases, the use of the model may only be possible if the model can accurately detect high-
risk situations, such as when there is a high risk of a wrong model decision for a specific input
sample so that human expert intervention in the decision process is possible and thus significantly
risky situations are avoided. In other words, even in safety-critical situations, a model may need
to accurately determine how likely its predictions are to be right or wrong.

14

2.4 Uncertainty Quantification

Sources of Uncertainty

Sources of uncertainty are commonly divided into two main categories called aleatoric uncertainty
(also called data uncertainty) and epistemic uncertainty (also called model uncertainty) (Hüller-
meier and Waegeman, 2021).

i. Aleatoric uncertainty: Aleatoric (from alea, which means dice in Latin) uncertainty refers to
the variability of outcomes due to inherent randomness in the experiments. Some good examples
of such random processes are fair coin flipping or dice rolling. In these situations, the uncertainty
of the outcome is due to the randomness of the experimental process. For such cases, even with
collecting an almost infinite amount of samples, it would not be possible to predict the outcome
of an observation with almost complete certainty, e.g. it is not possible to know if a flipped fair
coin would be head or tail with certainty, no matter how many times the experiment is previously
repeated. For this reason, it is also known as irreducible uncertainty, as the uncertainty in the
experiment outcome is not due to a limited number of observations, but is due to the inherent
randomness.

For machine learning systems, noise and error in measurement systems are an example of aleatoric
uncertainty. An example of aleatoric uncertainty is a low-resolution image of an animal that could
be a dog or a wolf but cannot be determined because of the low resolution. Another example could
be that there is both a dog and a wolf in the image, but the decision maker (for example a machine
learning model) needs to decide if it is a dog or a wolf. As a result, falsely labeled data is also an
example of aleatoric uncertainty (Gawlikowski et al., 2023).

ii. Epistemic uncertainty: Epistemic (from episteme, meaning knowledge in ancient Greek)
uncertainty refers to uncertainty caused by a lack of knowledge, or in other words, uncertainty
due to ignorance. Sticking with the coin example, an example of epistemic uncertainty might
be the uncertainty in the experiment to determine whether a coin is fair or not - perhaps with
the further assumption that the probability of having a head or a tail has a constant value. In
this experiment, the coin fairness is not inherently random and can be determined with increased
certainty simply by collecting additional data, i.e., flipping the coin again.

For machine learning systems, distribution, and domain shifts are examples of epistemic uncer-
tainty (Gawlikowski et al., 2023). For example, a model trained on images of adult dogs and
wolves may perform poorly in deciding whether a puppy is a wolf or a dog. Similarly, a cat image
is also unknown to the model and would not be classified as such. In both cases, the uncertainty
is not caused by the images (data) themselves. For example, if the images are not so blurred
that it is impossible to tell what is in them, which would be an example of aleatoric uncertainty,
the image is clear to people or machines who know what puppies or cats are. So the uncertainty
about whether the puppy in the picture is a dog or a wolf is due to modeling, or in other words,
the model’s lack of knowledge.

Uncertainty Quantification Methods For Neural Networks

For each output to be predicted, standard deep learning models predict a single scalar value, but
such predictions provide limited information about the confidence of the prediction. For example,
the softmax output layer can provide confidence interpretations. The softmax layer is already
widely used in classification tasks. It normalizes the scalar values associated with a potential class

15

2.4 Uncertainty Quantification

to which a data sample may belong, and the sum of these scalar values to one. Therefore, the
output of the softmax layer can be interpreted as a probability distribution over all possible classes.
Different confidence metrics are defined over these softmax outputs interpreted as probability
distributions (Zhang et al., 2020). For example, the highest value of the softmaxed vector can be
considered as the confidence of the prediction, since this value is the value associated with the
predicted class (Pearce et al., 2020). However, these values are not robust and often overestimate
the true probability of being classified correctly (Guo et al., 2017). Therefore, these metrics are
not fully reliable. In addition, soft-max is not used for regression tasks.

An often better way to evaluate the confidence of deep learning models is to predict a distribution
in the output space, rather than predicting a single estimate. One group of methods for predicting
a distribution is Bayesian neural networks, which propose to learn the weights of the neural network
as probability distributions instead of scalar values. In this way, the output of the model also
becomes a probability distribution for a given input. Bayesian neural networks use the Bayes rule
to infer the distribution of weights p(θ|D) given the data D:

p(θ|D) = p(D|θ)p(θ)
p(D) = p(D|θ)p(θ)∫

p(D|θ)p(θ)dθ
. (2.9)

However, the integral required for the calculation is often intractable and is therefore approxi-
mated.d (Kingma, 2013; Wen et al., 2018).

Monte Carlo Dropout (Gal and Ghahramani, 2016) (MC-Dropout for short) approximates
Bayesian neural networks by using dropout layers not only during training but also during predic-
tion, where they are classically disabled. Standard dropout layers are not used during prediction
time to use all neurons without dropping any of them, resulting in a full model performance.
However, with random dropping on during prediction, the same input can be fed into the model
to make unequal predictions, and therefore an output distribution can be predicted for an in-
put sample. While there is almost no additional training time, prediction for MC-Dropout is
computationally expensive due to multiple forward passes.

Another way to predict a distribution is deep ensembles, where the same architectures are trained
independently and with different initialization weights (Lakshminarayanan et al., 2017). While
deep ensembles are easy to implement and often perform well, they are expensive in terms of
computation and memory because each independent model is trained from scratch. They are
also expensive in terms of prediction time due to the number of forward passes as much as the
number of individual networks in the ensemble. To alleviate this problem, several methods have
been proposed that make minor architectural changes to mimic deep ensembles while having
significantly lower computational and memory requirements (Turkoglu et al., 2022; Wen et al.,
2020).

On the other hand, some methods allow the user to the user to specify a desired level of certainty,
in other words, a predefined confidence level. The method then returns a prediction (e.g. predic-
tion interval) containing the ground truth value with that predefined confidence (Romano et al.,
2019).

16

2.4 Uncertainty Quantification

Calibration

In safety-critical situations, it can be critical to determine the certainty of model predictions
accurately. Deep learning models often use soft-max activation for classification tasks, which can
provide a probability distribution as a prediction. In addition, a higher value of the output for
a particular class means that the model is more confident in its prediction. Thus, the output
of a soft-max activation is typically interpreted as the confidence score. For example, an output
vector yi = f(xi) = [0.1, 0.2, 0.7] for an input sample xi and the model f can be interpreted as
saying that the model predicts that the chances of xi being correctly classified in each class are
10%, 20%, and 70%. However, this confidence interpretation of softmax outputs is overconfident
for typical modern deep learning networks (Guo et al., 2017). For the example above, this means
that the expected probability of xi being correctly classified in class 3rd is significantly less than
70% for most modern deep learning networks. When this is the case, the model is said to be
“uncalibrated”.

Formally, assuming that f(X) = (Ŷ , P̂), where Ŷ is a class prediction and P̂ is the confidence of
the prediction, i.e. the probability that it is correctly classified, Guo et al. (2017) defines perfect
calibration as:

P(Ŷ = Y |P̂ = p) = p, ∀p ∈ [0, 1] (2.10)

Evaluation of calibration quality: Calibration quality can be examined and measured by using
reliability diagrams and expected calibration error, which will now be discussed.

i. Reliability Diagrams: Estimating the expected accuracy from a limited number of samples can
be done by grouping predictions into N equally sized interval bins and calculating the accuracy of
each bin (DeGroot and Fienberg, 1983; Niculescu-Mizil and Caruana, 2005; Guo et al., 2017). Let
Bn be the indices of samples whose prediction confidence falls in the interval In =

(
n − 1

N
,

n

N

]
.

Let ŷi and yi be the predicted and true class labels for sample i, the accuracy of the Bn is

acc(Bn) = 1
|Bn|

∑
i∈Bn

1(ŷi = yi). (2.11)

Where p̂i is the confidence for sample i, the average confidence within bin Bn is defined as

conf(Bn) = 1
|Bn|

∑
i∈Bn

p̂i (2.12)

Note that a perfectly calibrated model will have acc(Bn) = conf(Bn) for all n ∈ 1, ..., N .

ii. Expected Calibration Error: While reliability diagrams are useful for visualization and deeper
analysis, a scalar performance metric for calibration allows an effective comparison of different
methods and models. A scalar metric that satisfies this requirement is the expected value of the
absolute difference between accuracy and confidence, formally expressed as (Guo et al., 2017)

E
P̂

[∣∣∣P (
Ŷ = Y |P̂ = p

)
− p

∣∣∣] . (2.13)

17

2.4 Uncertainty Quantification

An approximation of 2.13 with a limited number of samples, similar to the reliability plots, can be
made by grouping the predictions into N equally sized bins. In this way, the expected calibration
error (ECE) Naeini et al. (2015) evaluates the expected value of the absolute difference between
accuracy and confidence. More specifically, where M is the total number of samples, ECE is
formally given by

ECE =
N∑

n=1

|Bn|
M

∣∣∣acc(Bn) − conf(Bn)
∣∣∣ (2.14)

There are other similar calibration error metrics besides ECE. The static calibration error (Nixon
et al., 2019) uses within-bin confidence and accuracy metrics similar to ECE, but instead of eval-
uating the calibration error over the predicted class like ECE, it evaluates the average calibration
error over all classes. The adaptive calibration error (Nixon et al., 2019) shapes the bins so that
each has the same number of predictions, rather than grouping them at equal intervals.

Methods to improve calibration: One way to improve the calibration is to modify the training
procedure. Label smoothing reduces the overconfidence of the model and thus improves the
calibration by changing the false labels to be small equal values instead of zero and reducing the
true label value accordingly Szegedy et al. (2016); Müller et al. (2019). Thulasidasan et al. (2019)
and Patel et al. (2021) use data augmentation techniques to improve the calibration. They use
the mixup (Zhang et al., 2017), which randomly sums parts of two input samples and their labels,
and on-manifold adversarial data as data augmentation methods, respectively.

After training the machine learning models, post-hoc calibration methods are applied to improve
the calibration. A small subset of the training set can be omitted for post-hoc calibration. It is
desired that the accuracy of the model is not affected by the calibration process. Temperature
scaling Guo et al. (2017) is an effective post-hoc calibration method for classification tasks, where
the elements of the input vector fed into the softmax function are divided by a positive scalar
value called the temperature. Similar to temperature scaling, Levi et al. (2022) suggests standard
deviation scaling for regression tasks.

A reduced model uncertainty means better modeling of the existing data distribution and there-
fore leads to a better calibration. Therefore, methods that reduce the uncertainty by reducing
the model uncertainty, such as Bayesian-based methods, deep ensembles, and similarly efficient
implementations of these methods, improve the calibration (Turkoglu et al., 2022).

Out-of-Distribution Detection

Out-of-distribution (OOD) detection is a critical task for the applicability of machine learning
systems in real-world scenarios. Machine learning models are typically trained using a closed-
world assumption, where the test set is assumed to be independent and identically distributed. It
is assumed that the samples are not connected and therefore do not influence each other and that
they are drawn from the same distribution.

However, the models are used in real-world or open-world scenarios where test samples may be
out-of-distribution. OOD samples can be due to semantic shift, where the samples may belong
to different classes, or covariate shift, where the samples may be from a different domain (Yang
et al., 2021).

18

2.5 Deep Learning for Genomics

There is a high risk of misclassification for out-of-distribution (OOD) samples, so ideally the model
should refrain from classifying and inform the user that it cannot confidently estimate the result.
The machine learning model trained for in-distribution (ID) scenarios is denoted f . The selective
classifier then consists of a pair of (f, g), where g is a selector for whether the prediction should
be made (El-Yaniv et al., 2010). Specifically

(f, g)(x) =
{

f(x), if g(x) = 1
No classification, if g(x) = 0.

(2.15)

Let κf (x) be the confidence of the model f for an input sample x. g(x) can be modelled as

g(x) =
{

g(x) = 1, if κf (x) ≥ Θ
g(x) = 0, otherwise.

(2.16)

where Θ is a threshold value (Geifman and El-Yaniv, 2017). For a multi-class classification task
using a softmax output activation, even if the model is not well calibrated, e.g. ECE is high, it
is assumed that the confidence of one input is greater than or equal to the confidence of another
input, i.e. κf (x1) ≥ κf (x2), if the output value of the input is greater than or equal to the other
input, i.e. f(x1) ≥ f(x2). In this case, it is also possible to model g(x) as follows:

g(x) =
{

g(x) = 1, if f(x) ≥ θ

g(x) = 0, otherwise.
(2.17)

g(x) = 1 in the above equation can be seen as an “ID” scenario and g(x) = 0 can be seen as an
“OOD” scenario (Sun et al., 2022).

Hendrycks and Gimpel (2016) proposed a simple baseline for detecting OOD samples without
having to choose a threshold like θ: First, the maximum softmax probability, i.e. the softmax
probability for the predicted class, is computed for test samples of the ID and OOD datasets.
Then, using these datasets as different groups, threshold-independent metrics such as ROC-AUC
and PR-AUC are computed from the maximum softmax probabilities of the test samples.

2.5 Deep Learning for Genomics

Deep learning methods for genomic applications will be introduced in this section, focusing on
DNA data, and the deep learning areas to which this thesis contributes: self-supervised learning,
model design, uncertainty quantification, and software applications.

19

2.5 Deep Learning for Genomics

Self-Supervised Learning for Genomic Applications

Self-supervised learning in genomics is dominated by models adapted from methods developed for
NLP or computer vision applications. Here is a brief introduction to how self-supervised learning
methods work and how they are adapted to genomics.

i. An example of such architectures is DNA-BERT (Ji et al., 2021), where BERT (Devlin et al.,
2018), a self-supervised method developed for NLP tasks, is adapted to genomic tasks. One
challenge in adapting BERT to perform well on DNA data is the mismatch between the complexity
of words in natural language processing and nucleotides in DNA. In particular, words, which are
fed into the model as so-called tokens, are inherently complex with thousands of them, whereas
there are only 4 different nucleotides in a DNA sequence and these nucleotides alone do not
contain complex information. Therefore, the tokenization of DNA sequences requires special care.
DNA-BERT adopts BERT by tokenizing k-mers instead of nucleotides, with values of k = 3,4,5,6.
This means that k-mers are one-hot encoded into a representation vector of size k4. A different
self-supervised model is trained for each value of k. However, multiple values with none clearly
outperforming the others may indicate that the application of NLP models to sequential genomic
data is still an active area of research (Zhou et al., 2023).

ii. Another example is CPCProt (Lu et al., 2020), which incorporates the contrastive loss to the
genomics data and trains a deep learning model for genomics with very similar training settings
compared to the work introducing contrastive predictive coding (Oord et al., 2018). Specifically,
it is trained by predicting future sequence patches, each patch consisting of 11 amino acids.

iii. Contrastive-sc (Ciortan and Defrance, 2021) is a method that utilizes contrastive loss for cell
clustering based on single-cell RNA sequencing data. Specifically, two randomly masked copies
of a sequence are trained in such a way that the agreement between the representations of these
copies is maximized, while the agreement between copies from different sequences is minimized.
In this setting, the training has substantial similarity to the common use of contrastive loss for
computer vision tasks. One difference between the adapted method and computer vision tasks is
that in contrastive-sc, the copies derived from the same sequence are randomly masked, whereas,
in computer vision tasks, many more complicated data augmentation techniques are used, such
as cropping, resizing, rotating, adding noise, blur, color distortion, or Sobel filtering (Chen et al.,
2020). Since such augmentation techniques used in computer vision do not produce meaningful
augmented samples for DNA sequences, they are not used for data augmentation and can therefore
be mentioned as a limitation of the adapted techniques.

iv. There are certain features of genome sequences that self-supervised approaches developed
for other fields and then adapted to genomics usually do not take into account, leading to less
effective results and limited applications. Gündüz et al. (2023) aims to address this by exploiting
the reverse-complement property of DNA sequences. Reverse-complement sequences have already
been used as part of various supervised techniques for DNA data (Shrikumar et al., 2017; Quang
and Xie, 2019), but it had not been integrated to self-supervised learning for this type. In addition,
the work takes into account the fact that nucleotides and multi-nucleotide k-mers contain less
complex information compared to words in human languages and addresses this issue by proposing
a loss function that maximizes the mutual information between the learned representations and
much longer sequences compared to multi-nucleotide k-mers.

20

2.5 Deep Learning for Genomics

v. Another example of self-supervised learning for the DNA data type is auto-regressive mod-
els trained by predicting the next nucleotides or k-mers, which is also used in Self-GenomeNet
paper (Gündüz et al., 2023) as baseline methods.

vi. DNABERT-2 (Zhou et al., 2023) addresses several problems associated with k-mer tokeniza-
tion, such as information leakage to neighbouring tokens after tokenization, and proposes to use
a data compression algorithm called byte pair encoding (Sennrich, 2015; Gage, 1994) instead of
k-mer tokenization.

Model Design for Genomics

Experts design and develop deep learning architectures based on a deep understanding of both
machine learning and the specific domain in which they are used. In addition, a significant amount
of testing and improvement is required.

Models developed for sequential genomic data based on convolutional layers include Deep-
VirFinder (Ren et al., 2020), ViraMiner (Tampuu et al., 2019), CHEER (Shang and Sun, 2020),
PPR-Meta (Fang et al., 2019), DeepSEA (Zhou and Troyanskaya, 2015), Basenji (Kelley et al.,
2018), DeepBind (Alipanahi et al., 2015), Coda (Koh et al., 2017), and models in Fiannaca et al.
(2018), Bartoszewicz et al. (2022), and Zeng et al. (2016). Depending on the task or dataset,
there may be global average or global max pooling after the convolutional layer, especially if the
predicted label of the data represents a feature that belongs to the complete sequence data, such
as whether the data sequence is either viral or bacterial nucleic acid, rather than a label expressed
as a function of position in the sequence.

Some genomics architectures developed by experts include recurrent layers such as Seeker (Aus-
lander et al., 2020) or DeepMicrobes (Liang et al., 2020). DanQ (Quang and Xie, 2016) and the
work of Wang et al. (2019) use recurrent layers on top of convolutional layers, i.e. the output
tensor of convolutional layers is fed into a recurrent layer so that some repeating motifs like k-mers
can be learned by convolutional layers and the sequential relationship between these patterns can
be learned by a recurrent layer.

The above models can provide a good basis for a meaningful search space for automated neural
architecture search. Contributions in this thesis by Gündüz et al. (2023), Scheppach et al. (2023)
define search spaces based on recurrent layers or global pooling layers (only the first work) placed
after convolutional layers, which proves to be very effective, outperforming all expert-designed
architectures in the performed benchmarks.

There are also other attempts to develop effective automated neural architecture search for ge-
nomics. Automated Modeling for Biological Evidence-based Research (AMBER) (Zhang et al.,
2021b), applied the ENAS (Pham et al., 2018) method to the genomics dataset for automatic
design of convolutional networks. AMBIENT (Zhang et al., 2021a) aims to reduce the need for
computational power by generating architectures for new tasks based on data descriptors such
as the type of regulatory feature. However, these NAS methods are based only on convolutional
networks and do not incorporate recurrent layers into their search space.

21

2.5 Deep Learning for Genomics

Uncertainty Quantification for Genomics

Uncertainty quantification can be essential in safety-critical areas such as genomics or medicine,
where high uncertainty in the models developed can lead to the models not being used. There-
fore, performance benchmarking of uncertainty quantification methods on tasks such as out-of-
distribution detection or calibration are quite common on data types such as genomics data like
DNA or RNA sequences (Turkoglu et al., 2022; Gündüz et al., 2023; Vahidi et al., 2024; Bajwa
et al., 2024) or medical image data (Turkoglu et al., 2022; Mehrtash et al., 2020). Some studies
carried out on DNA and RNA sequences are further examined as follows:

i. Bajwa et al. (2024) points out a high uncertainty in the predictions on variant sequences, indi-
cating that the developed models have limited generalization ability to out-of-distribution samples
for genomic sequence-to-activity tasks. They also suggest focusing on developing calibrated un-
certainty estimates for genomic sequence-to-activity models using methods such as conformal
prediction that generate statistically rigorous uncertainty intervals.

ii. Gündüz et al. (2023) shows that the conformal prediction coverage on the test set is 89.6% for
the coverage target, which has an expected coverage of 90%, optimized to cover the amount of
90% on the validation set. Since these values are very close, it should be noted that the coverage
on the validation set generalizes well to the test set.

iii. MacDonald et al. (2023) shows that simple Bayesian deep learning models applied to oncology
can significantly improve generalization, which is valuable as overconfidence of deep learning
models under data distribution shifts remains a major issue preventing their use in production.

iv. Turkoglu et al. (2022), including the author of this thesis, show that the state-of-the-art implicit
ensemble technique FiLM-Ensemble, also proposed in the same paper, can also be successfully
applied to DNA data, effectively yielding significantly better-calibrated models compared to deep
ensemble models.

v. Hie et al. (2020) demonstrates how uncertainty can improve the experimental lifecycle by
helping researchers prioritize sample-efficient experiments in biological areas such as single-cell
transcriptomics and protein engineering.

Software Libraries for Applied Deep Learning for Genomics

As access to more powerful computing resources has become easier and machine learning methods
have proven their success in various fields, deep learning methods are on the rise in the field of
genomics. Software libraries such as Selene (Chen et al., 2019) and Janggu (Kopp et al., 2020)
have emerged along with this trend. However, the focus of these libraries is on human genomics,
and their capabilities for other genomes, such as microbial, are limited. In addition, these libraries
are written in Python, a commonly used language for deep learning.

The software library deepG, which is a contribution in this thesis (Mreches et al., 2024), is mainly
based on the R language, another commonly used language among bioinformaticians. Two other
contributions of this thesis, Self-GenomeNet, and GenomeNet-Architect (Gündüz et al., 2023;
Gündüz et al., 2023), are also integrated into the library, allowing these methods to be easily
used, trained, tested, and deployed.

22

3 Conclusion

As concluding remarks, the contributions of this thesis are discussed along with potential future
work.

3.1 Discussion of Contributions

All data, model, and evaluation-related aspects of applied deep learning in genomics are addressed
in this thesis, providing a comprehensive range of contributions to its main topic, which is the
design and optimization of deep learning methods for genomic sequencing data.

i. Contributions to self-supervised learning for genomics: The contribution to the data-related part
focuses on how large amounts of unlabeled data can be utilized, which is particularly beneficial
when labeled data is limited. This can often be the case in genomics, as data labeling can
be expensive. Self-GenomeNet (Gündüz et al., 2023) shows that self-supervised methods more
suitable to genomic data can be proposed based on expert knowledge in genomics. Specifically, a
self-supervised method is proposed that makes more effective use of reverse complement sequences
to improve the quality of learned representations during self-supervised training of the machine
learning model. The effectiveness of the method is demonstrated in a wide range of settings
such as semi-supervised (also called label-scarce) setting, transfer learning, and linear evaluation,
and on a wide range of tasks such as bacteriophage detection, effector gene prediction, fungal-
protozoa classification, and chromatin feature estimation, outperforming the standard supervised
deep learning training despite using 10 times less annotated data samples.

ii. Contributions to automated model design for genomics: The contribution to the model-related
part focuses on the automated design of model architectures. Although there are several standard
models in different fields of deep learning, such as ResNets (He et al., 2016) or visual transform-
ers (Dosovitskiy, 2020) in computer vision or BERT (Devlin et al., 2018) in natural language
processing, there is no widely accepted standard model in genomics. Moreover, even in fields
with such standard models, neural architecture search methods that optimize the models based
on specific datasets are beneficial to improve predictive performance. The concurrent work of
GenomeNet-Architect (Gündüz et al., 2024) and the neural architecture search methods adapted
in the work of Scheppach et al. (2023) both show the effectiveness of automated model design
methods for genomics data, especially when an appropriate search space is proposed, which may
require expert knowledge. A major contribution of Scheppach et al. (2023) is that several neu-
ral architecture search methods developed for other areas of deep learning can outperform the
expert-designed methods in genomics and that performance differences between separate neu-
ral architecture search methods can often be insignificant. Because running neural architecture
search algorithms separately is computationally expensive, this study could be performed on only
one dataset (Zhou and Troyanskaya, 2015). It could also be argued that an additional potential
improvement point of the work was the limited number of expert-designed models as baselines.

23

3.1 Discussion of Contributions

This study showed the need for proposing a well-defined search space along with an appropri-
ate architecture search strategy, which should be empirically proven to outperform on a wider
range of datasets and expert-designed baselines, which are points fully addressed by the work of
Gündüz et al. (2024). The proposed method (Gündüz et al., 2024) outperforms a considerable
amount of expert-designed models on a newly introduced benchmark on virus classification tasks
for different sequence length values and outperforms all baselines on another existing benchmark
for pathogenicity prediction in which the baseline results are taken from the work of Bartoszewicz
et al. (2020).

iii. Contributions to uncertainty quantification and calibration for genomics: Contributions re-
lated to the evaluation part will be made in the area of uncertainty quantification, i.e. the
uncertainty in the evaluated performance metrics together with the relevant uncertainty quantifi-
cation subtasks such as calibration improvement and out-of-distribution detection. Being informed
about the risk of obtaining unwanted results based on the model decisions can be highly beneficial
for genomic datasets and tasks, as the use cases can be health-related and thus safety-critical.
The contributions of the thesis in this area (Gündüz et al., 2023; Turkoglu et al., 2022; Vahidi
et al., 2024) are applications of uncertainty quantification methods on genomic datasets. Gündüz
et al. (2023) analyzes uncertainty quantification approaches on a multi-target regression task in
genomics for both in-distribution and out-of-distribution scenarios. The author of this thesis
contributes to the work of Turkoglu et al. (2022) by evaluating the performance of the proposed
state-of-the-art implicit deep ensemble method on genomics data and shows that the calibration
of genomics tasks can be significantly improved. In addition, the trade-off between calibration
and prediction performance that can be achieved by adjusting the hyperparameter introduced by
the method is analyzed on the genomics dataset. Last but not least, the DNA dataset in the the-
sis also proves that the proposed FiLM-Ensemble also works with one-dimensional convolutional
layers, serving a more general purpose. Similarly, the author of this paper contributes to the work
of Vahidi et al. (2024) by testing the proposed method in the article, which can be built upon
existing self-supervised learning methods to improve the calibration of the models. The proposed
method is built on another contribution of this thesis, Self-GenomeNet, a self-supervised learning
model developed for genomics. Therefore this work (Vahidi et al., 2024) can further be attributed
to contributions made in the field of self-supervised learning. Such analyses of uncertainty quan-
tification methods on genomics datasets are valuable for testing existing deep learning methods on
this data type, an area where these methods are invaluable. However, recently proposed methods
in deep learning often omit to test the method on this data type and often test the proposed meth-
ods only in more mainstream deep learning fields such as computer vision and natural language
processing.

iv. Contributions to software development for genomics: The main contribution of Mreches et al.
(2024) is a software library called “deepG”. This library is written in R, a programming language
commonly used by bioinformaticians. The goal of this work is to facilitate the training, testing, and
deployment of machine learning models in genomics. In line with this goal, two major contributions
of this thesis, Self-GenomeNet (Gündüz et al., 2023) and GenomeNet-Architect (Gündüz et al.,
2024) are integrated into the deepG library. This integration makes the use of these methods
more accessible to researchers, allowing them to use unlabeled data more effectively, train models
on pre-trained self-supervised models, optimize data-specific model architectures, or use models
that have been shown to produce remarkable results on multiple datasets.

24

3.2 Future Directions

3.2 Future Directions

Foundational models and the development of unlabelled neural architecture search techniques for
genomic data can be potentially powerful successors of this work. This section discusses future
research ideas in these directions.

i. Foundational models designed specifically for genomic data: There is substantial quality work
in deep learning, especially in fields such as natural language processing. One recent breakthrough
in deep learning is natural language processing (NLP) with large language models (LLMs) (Min
et al., 2023). LLMs are trained with a huge amount of unlabeled text data using self-supervised
training methods. In genomics, unlabeled data is abundant, similar to NLP. Therefore, research
into this direction is very promising and can be very influential. In fact, such models have already
become influential for the genomics field (Rives et al., 2021; Dalla-Torre et al., 2023; Zhou et al.,
2023; Mendoza-Revilla et al., 2024).

One direction of LLMs for genomics can be designed based on the idea presented in Self-
GenomeNet (Gündüz et al., 2023), a contribution of this thesis. Gündüz et al. (2023) shows
that integrating reverse-complement effectively into the self-supervision task can improve the
quality of the learned representations. Like contrastive predictive coding (Oord et al., 2018), Self-
GenomeNet uses an autoregressive model enabled by a recurrent layer. LLMs are transformer
models, which are based on self-attention layers. The connection between recurrent networks and
transformer models is also well-studied. “Transformers are RNNs: Fast Autoregressive Trans-
formers with Linear Attention” (Katharopoulos et al., 2020) and “Transformers are Multi-State
RNNs” (Oren et al., 2024) illustrate the close connections between transformer models and RNNs,
even in the title of papers. Autoregressive LLMs such as the method in Katharopoulos et al. (2020)
to utilize the reverse-complement sequences as Self-GenomeNet (Gündüz et al., 2023) describes
could be worth investigating.

ii. Unlabeled neural architecture search for genomics: Some studies investigate neural architecture
search methods for cases where human-annotated data is not available and conclude that neural
architecture search methods using self-supervised learning targets achieve comparable results to
those using standard supervised learning on labeled data (Kaplan and Giryes, 2020; Liu et al.,
2020). Therefore, these methods address the need for labeled data for neural architecture search
by using already existing SSL techniques and without significant loss in performance. In section
2.2, it was mentioned that self-supervised learning methods create labels using the unlabeled
data sample and then the model is trained similarly to the supervised learning case using these
generated labels. Considering that self-supervised methods indeed create some labels (although
computer-designed and automated) and are effective in learning good representations, it is not
surprising to the author of this thesis that these methods find such successful architectures. Both
Liu et al. (2020) and Kaplan and Giryes (2020) use a NAS method called DARTS (Liu et al.,
2018b) along with various self-supervised learning methods. For example, Kaplan and Giryes
(2020) uses SimCLR (Chen et al., 2020) as a self-supervised learning method. Nevertheless, a
NAS method can only perform well if it has a good search space, which is already designed
by Gündüz et al. (2024) and Scheppach et al. (2023), which are contributions of this thesis. In
addition, Scheppach et al. (2023) already proves that the DARTS algorithm used in the mentioned
work (Liu et al., 2020; Kaplan and Giryes, 2020) can be successfully applied to genomic data using
its defined search space. Finally, the self-supervised learning method designed for genomic data,
Self-GenomeNet (Gündüz et al., 2023), which is another contribution of this thesis, combined with

25

3.2 Future Directions

GenomeNet-Architect (Gündüz et al., 2024) or a NAS model from Scheppach et al. (2023) would be
a good fit and could be worth investigating. Both these automated model design methods and the
self-supervised learning method explore the setting with recurrent layers on top of convolutional
layers, so combining these methods may be possible without major changes in model design
or search space. Last but not least, this research could also impact the field of deep learning in
genomics, especially due to the cost of expert annotated data in the field of health and genomics.

26

Part II

Contributions

4 Contributions to Self-Supervised Learning for
Genomics

4.1 A Self-supervised Deep Learning Method for Data-efficient
Training in Genomics

Contributing Article

Gündüz HA, Binder M, To XY, Mreches R, Bischl B, McHardy AC, Münch PC, Rezaei M (2023).
“A self-supervised deep learning method for data-efficient training in genomics.” Communications
Biology, 6(1), 928. doi:10.1038/s42003-023-05310-2

Declaration of Contributions

Hüseyin Anil Gündüz contributed to this paper as the first author with the following
significant contributions:
Hüseyin Anil Gündüz introduced the main idea, proposed the baselines, designed the experiments,
and was chiefly responsible for coding. Hüseyin Anil Gündüz trained, evaluated, and analyzed
the proposed method and the baselines. Hüseyin Anil Gündüz authored most of the manuscript.

Contribution of the coauthors:
Martin Binder contributed to the supervision of the project. Xiao-Yin To contributed to code
development, mostly for the CPC baseline and the training function. Rene Mreches contributed
to the code development, particularly regarding data processing and language model baselines.
The paper is mainly supervised by Mina Rezaei and Philipp C. Münch, from a machine learning
and bioinformatics perspective, respectively.

All authors helped with the editing of the paper.

28

https://dx.doi.org/10.1038/s42003-023-05310-2

ARTICLE

A self-supervised deep learning method for
data-efficient training in genomics
Hüseyin Anil Gündüz1,2, Martin Binder1,2, Xiao-Yin To1,2,3,4, René Mreches3,4, Bernd Bischl1,2,

Alice C. McHardy 3,4, Philipp C. Münch 3,4,5,6,7✉ & Mina Rezaei 1,2,7✉

Deep learning in bioinformatics is often limited to problems where extensive amounts of

labeled data are available for supervised classification. By exploiting unlabeled data, self-

supervised learning techniques can improve the performance of machine learning models in

the presence of limited labeled data. Although many self-supervised learning methods have

been suggested before, they have failed to exploit the unique characteristics of genomic data.

Therefore, we introduce Self-GenomeNet, a self-supervised learning technique that is custom-

tailored for genomic data. Self-GenomeNet leverages reverse-complement sequences and

effectively learns short- and long-term dependencies by predicting targets of different

lengths. Self-GenomeNet performs better than other self-supervised methods in data-scarce

genomic tasks and outperforms standard supervised training with ~10 times fewer labeled

training data. Furthermore, the learned representations generalize well to new datasets and

tasks. These findings suggest that Self-GenomeNet is well suited for large-scale, unlabeled

genomic datasets and could substantially improve the performance of genomic models.

https://doi.org/10.1038/s42003-023-05310-2 OPEN

1 Department of Statistics, LMU Munich, Munich, Germany. 2Munich Center for Machine Learning, Munich, Germany. 3 Department for Computational
Biology of Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany. 4 Braunschweig Integrated Centre of Systems Biology
(BRICS), Technische Universität Braunschweig, Braunschweig, Germany. 5 German Center for Infection Research (DZIF), partner site Hannover
Braunschweig, Braunschweig, Germany. 6Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA. 7These authors jointly supervised
this work: Philipp C. Münch, Mina Rezaei. ✉email: philipp.muench@helmholtz-hzi.de; mina.rezaei@stat.uni-muenchen.de

COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio 1

12
34

5
6
7
8
9
0
()
:,;

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

29

In bioinformatics, using unlabeled data to augment supervised
learning can reduce development costs for many machine
learning (ML) applications that would otherwise require large

amounts of annotation that are expensive to acquire, such as
functional annotation of genes1 or chromatin effects of single
nucleotide polymorphisms. This is particularly the case in
genomics due to the availability of large quantities of unlabeled
sequence data from large databases and metagenomic studies.

In contrast to supervised methods, self-supervised learning
(SSL) techniques learn representations that contain information
about the properties of the data without relying on human
annotation. The concept of SSL has been studied for several years
in the field of ML. These SSL methods are unsupervised tasks,
that are trained prior to the actual supervised training. Then,
instead of training a supervised model from scratch, the repre-
sentations learned from the SSL method can be used as a starting
point for downstream supervised tasks such as taxonomic pre-
diction or gene annotation. In this way, the pre-trained models
can be used as a starting point that contains meaningful repre-
sentations from the SSL tasks2,3. Several different methods for
self-supervised representation learning have been proposed, e.g.,
in the fields of natural language processing (NLP)4–8 and com-
puter vision (CV)3,9–11. However, only a limited number of SSL
methods have been developed for bioinformatics, and even fewer
for omics data12–15. Thus, SSL has not yet seen such widespread
adoption and remains an important and challenging endeavor in
this field.

Existing methods for representation learning on omics-data
have typically been adapted from other application fields of DL
such as NLP or CV16–18. For example, DNA-Bert19, which
identifies conserved sequence motifs and candidate functional
genetic variants, is an adaptation of BERT2, which is a form of
language model (LM)20 that predicts masked tokens. These
tokens are words in NLP, and nucleotides or k-mers in genome
sequences. Contrastive-sc18 is a method adapted from CV used
for cell clustering based on single-cell RNA sequencing data. It
creates two copies of each sequence with randomly masked
nucleotides and then trains the network to maximize the agree-
ment between the copies using a contrastive loss function, a
method commonly used in CV3. CPCProt17 is an adaptation of
the contrastive predictive coding (CPC)21 to protein data and is
trained by predicting future amino acid sequence patches.
However, there are specific properties of genome sequences that
these methods do not take into account, resulting in non-optimal
representations and limited use. Although used in several
supervised methods, reverse-complement (RC) sequences have
not been integrated into SSL methods. Additionally, nucleotides
and k-mers contain low-content information compared to words
in natural languages, and this is not taken into account when SSL
methods developed for NLP are applied to genome data.

Self-GenomeNet overcomes these limitations. First, Self-
GenomeNet uses RC sequences to create symmetry in the archi-
tecture. This increases predictive performance and reduces the
number of model parameters. This may also have the desirable side
effect of implicitly encoding RC-awareness in our architecture.
Secondly, Self-GenomeNet predicts targets of different lengths as an
SSL task. This way, a wider range of semantic relationships within
the DNA data is learned. Finally, due to the way recurrent networks
process their data, representations of many subsequences at dif-
ferent length scales are evaluated simultaneously within a single
training step, leading to increased computational efficiency.

Self-GenomeNet makes more efficient use of unannotated
genomic data to substantially improve various genomic tasks
when limited labeled data is available, making it more suitable for
genomic applications than existing SSL methods. In computa-
tional biology, such pre-training learning schemes could benefit a

wide range of ML tools, where large amounts of unlabeled data
such as metagenomic sequences are available to improve super-
vised models built on nucleotide-level training datasets.

Results
Self-GenomeNet is an efficient self-supervised pre-training
method, tailored for genomics. Self-GenomeNet is a SSL method,
where the network is trained without the need of labels on
available sequential genome data. Then this network, particularly
the trained weights of this network, can be used as the initial
point of the model that will be trained for the supervised tasks,
which are also called downstream tasks. We provide a model,
which is trained on bacteria, virus, and human data without using
labels. This model, named generic Self-GenomeNet, demonstrates
robust performance across diversified tasks, providing researchers
a readily accessible solution to leverage the power of our model in
their own studies, particularly for their own supervised tasks. We
have uploaded the trained generic Self-GenomeNet model to
GitHub for easy access (see self.genomenet.de). Additionally, we
have prepared interactive coding notebooks that provide detailed
instructions on how to use this model to obtain embeddings of
data and how to apply it to other datasets.

Self-GenomeNet learns representations of genome sequences
through a defined pre-training task that does not require labels.
This task is as follows: For a given input sequence of length N ,
S1:N, an embedding of a subsequence S1:t , predicts the embedding
of the RC of the remaining subsequence �SN:tþ1. Thus, the model
encodes in the learned representation of the given subsequence
the essential information necessary to predict the RC of a
neighboring subsequence. Self-GenomeNet encodes these two
subsequences through a representation network consisting of a
convolutional encoder network f θ, and a recurrent context
network Cϕ (Fig. 1a). The architecture of Self-GenomeNet is
implemented to perform this prediction for multiple values of t in
one iteration, enabling a more efficient training procedure.

The network of Self-GenomeNet takes both S1:N and �SN:1 as
inputs. Self-GenomeNet encodes these two subsequences through
a representation network consisting of a convolutional encoder
network and a recurrent context network. As a result of the
proposed architecture, the representations of subsequences S1:t
and �SN:tþ1 are computed for multiple values of t as intermediate
outputs of the context network, while the whole sequences S1:N
and �SN:1 are encoded. Later, on top of the embedding
representation, a linear prediction layer qη estimates the
embedding of �SN:tþ1 from the embedding of S1:t using a
contrastive loss against other random subsequences. Due to the
symmetry of this design, qη is also used to predict the embedding
of �SN:tþ1 from the embedding of S1:t . Although only one
prediction is shown in the figure for visual simplicity, the
prediction is computed for multiple values of t. Contrastive loss is
used for the optimization, meaning that the network is optimized
so that the sequences (e.g., S1:t) aims to predict the representation
of the RC of its own neighbor (e.g., �SN:tþ1) among other
representations in the training batch. The convolutional encoder
network, the recurrent context network, and the linear prediction
layer each consist of a single layer in our experiments to keep the
architecture simple; however, more complex architectures are
possible. The hyperparameters of the convolutional and recurrent
networks are mentioned later in the paper, in the “Network
Architecture Design” section.

After self-supervised training of the representations, these
representations can be used for downstream supervised tasks by
constructing a supervised deep learning model consisting of f θ
and Cϕ, followed by a fully connected output. The weights of f θ

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2

2 COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

30

and Cϕ are initialized with the training results from the SSL task,
but they are further trained (fine-tuned) together with the linear
layer on the new supervised task (Fig. 1b).

We evaluated the performance of the representations obtained
via Self-GenomeNet on different benchmarks (supervised tasks)
using data of either viral, bacterial, or human origin: (i) The virus
dataset contains viral genomes from GenBank22 and RefSeq23,

where the task is to classify prokaryotic viruses (bacteriophages)
and eukaryotic viruses (termed “non-phages”). (ii) For bacterial
data, we designed a supervised task on type VI secretion system
identification (T6SS), where the task is to identify effector
proteins among T6SS immunity proteins, T6SS regulators, and
T6SS accessory proteins (SecReT624). (iii) For the human dataset,
we focus on the DeepSEA dataset25. The task is to classify 919

Fig. 1 Pre-training of Self-GenomeNet and using the learned weights on a down-stream task. a Self-GenomeNet takes part of a sequence as input and
predicts the reverse-complement of the remaining sequence. The representations are learned by dividing unlabeled DNA sequences and their reverse-
complements into patches, each of which is given as an input to an encoder network fθ. The outputs of fθ are then fed sequentially to a recurrent context
network Cϕ, resulting in representations of the input sequence up to a point t (S1:t) and representations of the reverse-complement of the input sequence
going from tþ 1ð Þ to the end (i.e., �SN:tþ1). The representations are computed for multiple values of t simultaneously. Finally, the representations of S1:t (zi)
and �SN:tþ1 (z

0
n�1�ið Þ) predict each other for multiple values of t by using a contrastive loss, i.e, these sequences are matched among existing sequences in the

training batch. Thus, in one iteration of the training of Self-GenomeNet, each of the computed representations zi and z0n�1�ið Þ are utilized efficiently since zi
predicts z0n�1�ið Þ and z0n�1�ið Þ predicts zi for i 2 1; 2; ::; n� 2ð Þ in one iteration of training. In the figure, we only show that z2 predicts z0n�3ð Þ for visual
simplification. b The weights of fθ and Cϕ are initialized with the training results from the self-supervised learning task, but they are further trained (fine-
tuned), along with the linear layer on the new supervised task.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2 ARTICLE

COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio 3

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

31

binary chromatin features such as transcription factor binding
affinities, histone marks, and DNase I sensitivity.

We evaluated the performance of the representations obtained
via Self-GenomeNet on different benchmarks (supervised tasks)
using data of either viral, bacterial, or human origin: (i) The virus
dataset contains viral genomes from GenBank22 and RefSeq23,
where the task is to classify prokaryotic viruses (bacteriophages)
and eukaryotic viruses (termed “non-phages”). The bacteriophage
class contains approximately 1.0 billion nucleotides, the non-
phage virus dataset ~0.5 billion nucleotides. (ii) For bacterial data,
we designed a supervised task on type VI secretion system
identification (T6SS), where the task is to identify effector
proteins among T6SS immunity proteins, T6SS regulators, and
T6SS accessory proteins (SecReT624). This task is provided to
demonstrate that our method works well on a dataset with real
label scarcity, where the training set contains only 75 FASTA
entries and ~0.3 million nucleotides. (iii) For the human dataset,
we focus on the DeepSEA dataset25. It contains approximately 5
million subsequences of the human genome, with each sample
containing 1000 nucleotides as input and a label vector for 919
binary chromatin features such as transcription factor binding
affinities, histone marks and DNase I sensitivity. (iv) For the
fungi-protozoa classification task, we downloaded DNAs of fungi
and protozoa that may be pathogenic to humans from RefSeq23.
Here, the training set contains approximately 2.7 billion
nucleotides. (v) Finally, the bacteria data contains genomes from
GenBank22 and RefSeq23, comprising ~83 billion nucleotides. It is
used only for self-supervised pre-training.

In the results section, we will initially justify the choices we
have made in our architectural design. First, we design an
experiment to show the superiority of predicting targets of
varying lengths over targets of fixed length. Then, we compare
having the RC of neighboring subsequences as targets to be
predicted with neighboring subsequences or their reverse. After
justifying our design choices, we test Self-GenomeNet in data-
scarce settings, where the labeled data is limited to a certain
amount of the unlabeled data, and in transfer learning settings,
where the pre-trained models are trained on different smaller
datasets. Finally, we test Self-GenomeNet using the linear
evaluation protocol3,9,10,21,26–28, where the weights learned by
self-supervision are frozen and thus not updated in the down-
stream tasks. Here, only the fully connected layer on top of the
frozen layers is trained. In these experiments, we compare Self-
GenomeNet to four SSL baselines and the supervised baseline
where the model is not pre-trained.

In all experiments except DeepSEA dataset, we report class-
balanced accuracy and not precision/recall/F1 scores because
these metrics put an emphasis on positive samples and also
choosing a positive class. However, artificially choosing a
positive class is harmful as detection of both classes holds equal
importance for phage/non-phage classification and fungi/pro-
tozoa classification tasks. For the effector protein prediction
task, assigning a positive class is also hard as the number of
“effector protein” samples are more in both training, validation,
and test set. For our experiments on the DeepSEA dataset, we

opted for average PR AUC as a metric, based on the findings of
Quang and Xie29, who demonstrated that the sparsity of positive
binary targets in this dataset can artificially inflate the ROC
AUC and thus PR AUC is a more suitable indicator of
performance.

Predicting the sequences of varying lengths improves the per-
formance and has theoretical justifications. Self-GenomeNet is a
genome-tailored SSL method that aims to train meaningful
representations for various genomic tasks by capturing the unique
properties of genomic data. However, current models, such as
LMs or CPC21, use a fixed target sequence length, i.e., the part of
the input sequence they are trying to predict has a constant size
(up to 50 nucleotides). As supported by experiments comparing
our method with these methods (Figs. 2, 3, and 4), training with
such small subsequences does not yield optimal results, which
may be because nucleotides and n-mers contain less information
than words in natural languages. Optimal training for genomics
also requires longer sequences with higher information content.
Therefore, Self-GenomeNet predicts sequences of varying lengths,
ranging from small to the maximum length of sequences that the
model can capture.

Self-GenomeNet outperforms all other SSL methods (Figs. 2, 3,
and 4) that predict sequences of fixed length, which may indicate
the effectiveness of having targets of different lengths. However,
we design an additional experiment that closely examines the
effect of having target sequences of different lengths, which is
unique to our model compared to the baselines. We show that
having target sequences of different lengths helps the network to
learn better representations. Thus, two self-supervised models are
trained on the virus dataset with a sequence length of 1000 for the
phage classification task. The first model, Self-GenomeNet, used
varying-length targets as subsequences with a length range of
x 2 f40; 60; 80; :::960g, which predicted a subsequence with a
length of 1000 − x. The second model, also Self-GenomeNet, but
with one modification, uses only two fixed-length sequences of
500 nt to predict each other, and all other settings are the same as
the first model. Our evaluations show that predicting subse-
quences of varying lengths instead of fixed-length subsequences
results in a considerable improvement in model accuracy.
Specifically, the class-balanced accuracy on the test set increased
from 83.3% to 88.6% when the weights learned through self-
supervision (without using any labels) were frozen and only a
fully connected layer was trained on top of these frozen layers
using the same dataset as the downstream task (Table 1).

Predicting the reverse-complement of the neighbor sequence
improves the performance. Most SSL methods were originally
developed for NLP or CV tasks and did not consider the unique
properties of genomic data. Self-GenomeNet, on the other hand,
takes advantage of specific characteristics of genomic data by
exploiting the fact that the reverse complement (RC) of a DNA
sequence is also a valid DNA sequence. This allows for a sym-
metric construction of the SSL method, which reduces the

Table 1 Experimental results in terms of class-balanced accuracy performance for design choices of Self-GenomeNet.

Target Sequences Pre-training Dataset / Dataset of Down-stream Task

Length Targets Virus / Virus (1000 nt.) Bacteria / Virus Bacteria / T6SS

Fixed Length Reverse–Complement 83.3 - -
Varying Length Reverse 87.8 76.9 70.2
Varying Length Forward 85.8 - -
Varying Length Reverse–Complement 88.6 82.1 79.3

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2

4 COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

32

number of model parameters and mitigates the risk of overfitting.
Furthermore, we incorporate RC awareness into our learned
representations by predicting RC targets.

We conducted an experiment to compare the effectiveness of
different potential target sequences in self-supervised pre-
training. Specifically, we compared the use of RC neighbor
sequences �SN:tþ1 (which we refer to as “RC”) with the use of

neighbor sequences Stþ1:N (referred to as “Forward”) and the
reverse of neighbor sequences SN:tþ1 (referred to as “Reverse”).
We examine both settings on a viral dataset (1000 nt) using the
linear evaluation protocol3,9,10,21,26–28, meaning that we freeze
the weights trained on the viral dataset without using labels and
then train a linear layer on top of these weights using the labels.
We find that using RC targets results in a relative class-balanced

Fig. 2 Comparison of self-supervised methods in data-scarce settings. Self-GenomeNet representations outperform other baseline methods, such as
language models20 trained by predicting single nucleotides or 3-grams, Contrastive Predictive Coding21, and Contrastive-sc18, especially when a large
fraction of available labels are omitted. We train the models in the datasets without using labels and then successively withhold labeled samples to mimic
scenarios where labels are scarce (from 100% of available labeled samples to 0.1%). Each point in the plots is trained separately using the corresponding
amount of labeled data. The weights of the context and encoder models are initialized with the training results from the SSL task, but they are trained
further (fine-tuned), together with the linear layer, on the new supervised task. The label “Supervised” corresponds to the setting without any pre-training,
where the weights are initialized randomly for the supervised task. a Overview of dataset and tasks used for evaluation. b The results of the viral dataset for
150 nt sequences, (c) the DeepSEA dataset, (d) and the viral dataset for 1000 nt sequences. The human icon representing the patient was created by
Marcel Tisch and is available under a CC0 license. Original icon sourced from Bioicons. Twitter link for Marcel Tisch | CC0 License. The phage icon was
created by DBCLS and is licensed under a CC-BY 4.0 Unported license. Modifications were made. Original icon sourced from Bioicons. DBCLS | CC-BY 4.0
License. The virus icon representing hepatitis was created by Servier and is licensed under a CC-BY 3.0 Unported license. Modifications were made.
Original icon sourced from Bioicons. Servier | CC-BY 3.0 License. The chromatin structure icon was created by DBCLS and is licensed under a CC-BY 4.0
Unported license. Modifications were made. Original icon sourced from Bioicons. DBCLS | CC-BY 4.0 License.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2 ARTICLE

COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio 5

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

33

accuracy performance increase of 0.9% compared to using
reverse targets and 3.3% compared to using forward targets
(Table 1).

Since the difference between RC and reverse targets was small
in the experiment on the virus dataset, we investigate further. In
the following experiments, we freeze the self-supervised weights
trained on a bacteria dataset and train a linear layer on top of
these weights for downstream tasks on the viral pre-training
dataset, where the task is phage and non-phage classification and
T6SS effector gene prediction. Our results show that using RC
targets improved relative performance by 6.8% and 13.0%
compared to using reverse sequences for these tasks, respectively.
Therefore, our results suggest that using RC targets leads to better
performance without increasing the number of parameters

(Table 1). We also discuss potential reasons for this performance
change in the Discussion section.

Self-GenomeNet outperforms baselines in data-scarce settings,
reducing the need for additional labeled data. Generating large
labeled datasets requires a substantial investment of resources
that may not be feasible in computational biology. This limits the
effectiveness of DL techniques. The use of unlabeled data is
especially necessary when the labeled data is scarce since the
accuracy of supervised DL models drops considerably in the low-
data regime. We propose Self-GenomeNet as a data-efficient
learning method to reduce the need for annotated data samples.

We mimic label scarcity scenarios by using the full datasets of
virus and DeepSea datasets without labels and artificially reducing

Fig. 3 Comparison of self-supervised methods for transfer learning tasks. Self-GenomeNet representations outperform other baseline methods, such as
language models20 trained by predicting single nucleotides, 3-grams or 6-grams, Contrastive Predictive Coding21, and Contrastive-sc18, when pre-trained
with the bacteria dataset and then fine-tuned for effective gene detection and bacteriophage classification tasks. We also provide an additional evaluation,
where we train Self-GenomeNet on a wider range of datasets, which includes bacteria, virus and human data (generic Self-GenomeNet). This model achieves
even higher performance compared to Self-GenomeNet, showing that a wider range of data improves the performance of Self-GenomeNet. The context and
encoder model weights are initialized with training results from the SSL task, but are further trained (fine-tuned) on the new supervised task along with an
additional linear layer on top. The label “Supervised” and “7-mer frequency profile” corresponds to the setting without any pre-training, where the weights
are randomly initialized for the supervised task. Here, the first model is the same architecture used in SSL settings, which similarly takes the one-hot
encoded sequences. The second model is the CNN model developed by Fiannaca et al. 31, and it uses a 7-mer frequency profile as input. a Overview of the
dataset and tasks used for evaluation. b The class-balanced accuracy performance for the effector gene detection task, the bacteriophage detection task,
and for the protozoa-fungi prediction task. This figure was created in part with BioRender.com. The phage icon was created by DBCLS and is licensed under
a CC-BY 4.0 Unported license. Modifications were made. Original icon sourced from Bioicons. DBCLS | CC-BY 4.0 License.

C
la

ss
-b

al
an

ce
d

ac
cu

ra
cy

Performance of SSL methods
under linear evaluation protocol

50

60

70

80

90

100

Average Bacteria/Virus Bacteria/T6SS Virus/Virus (150 nt)

LM (single nt)

LM (3-gram) CPC
Contrastive-sc

Self-GenomeNet
Generic Self-GenomeNet

Virus/Virus (1000 nt)

Fig. 4 Comparison of self-supervised methods using the linear evaluation protocol. Self-GenomeNet outperforms the baselines in all experiments using
the linear evaluation protocol. First, the SSL methods are pre-trained on the bacteria and virus datasets. Then, the weights of the encoder and decoder
networks learned in the pre-training are frozen and a linear layer on top of the model is trained on the T6SS and virus datasets. The relative increase in
class-balanced accuracy over the second best-performing method is 9% on average, demonstrating the effectiveness of Self-GenomeNet. We also provide
an additional evaluation, where we train Self-GenomeNet on a wider range of datasets, which includes bacteria, virus, and human data, which we call “generic
Self-GenomeNet”. This model achieves even higher performance compared to Self-GenomeNet, showing that a wider range of data improves the
performance of Self-GenomeNet.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2

6 COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

34

the available labeled samples. Specifically, we test Self-GenomeNet
by training on the full virus and DeepSEA datasets without using
labels. We then quantify how model performance decreases as we
successively withhold labeled samples to imitate scenarios where
labels are scarce (from 100% of available labeled samples to
0.1%)3,30. Three different models are trained using Self-
GenomeNet and baseline methods. Specifically, two models for
150 nt and 1000 nt long sequences are trained on virus data and
one model is trained on the DeepSEA dataset. Then, each of these
models is trained on data-scarce settings.

For the virus dataset in both cases of 150 nt (Fig. 2b) and 1000 nt
(Fig. 2c) sequence length and the DeepSEA dataset (Fig. 2d), our
method outperforms the four SSL baselines adapted from NLP or
CV as well as the supervised baseline without any self-supervised
training, at all evaluated fractions of available labels. We observe
the most pronounced improvement in extreme data-scarce settings,
such as 0.1% and 1%, with an average relative improvement of
11% and 14% over the second-best SSL method, respectively.
Self-GenomeNet outperforms the supervised baseline that is trained
with ten times more data (0.1% vs. 1%, 1% vs. 10%) on average
across all experiments. This highlights that Self-GenomeNet
representations are particularly effective in scenarios where labels
are expensive to obtain—for example, in settings where genomic
features must be manually validated in the lab.

Learned representations of Self-GenomeNet can be transferred
and adapted to new tasks and datasets. We have quantified the
transfer-learning capacity of representations trained on a large
dataset of genome sequences to perform downstream supervised
tasks on different and smaller genome datasets (Fig. 3)3,30. This
evaluation particularly important because (i) for a given supervised
downstream task, there may be little or no matching unlabeled
training data (e.g., in the case of a newly discovered taxon, there
may be no suitable training data available to train representations),
and (ii) while performing the downstream task (training an arbi-
trary supervised model on top of the representations) is compu-
tationally fast, training the representation usually requires
specialized hardware that is not available to many researchers.

For the transfer-learning tasks, we trained Self-GenomeNet and
baseline models on a broad bacterial dataset. We then evaluated
their predictive power on two tasks. First, we tested the transfer-
learning ability of the pre-trained models on a very specific case: the
effector gene prediction task, where we used the T6SS dataset24. The
goal is to determine whether the pre-training regime works when
the final supervised task is only a small subset of the self-supervised
task. Next, we evaluated whether a biased training set for the pre-
training task affects the prediction of the final supervised model.
Here, the models (pre-)trained on the bacterial dataset (which
might contain integrated prophages) are applied to the downstream
tasks of separating bacteriophages from eukaryotic viruses.

Self-GenomeNet representations outperform those generated by
the four competing baseline methods as well as the non-pretrained
model. Self-GenomeNet, pre-trained on the bacteria dataset reduces
the misclassification rate by 9% on the effector gene prediction task
and by 33% on the phage identification task compared to the best
performing SSL baseline. Compared to the non-pretrained baseline,
the improvement on these tasks is as high as 60% and 63%,
respectively. This shows that trained representations generalize well
and are transferable to tasks with labeled data, even when this data
differs from the self-supervised training data. This allows for
applications where no suitable pre-training data is available.

Self-GenomeNet outperforms all baselines in linear evaluation
method. We have shown that the representations learned by
Self-GenomeNet exhibit transfer-learning capacity and that

Self-GenomeNet excels in data-scarce settings, consistently out-
performing SSL baselines and supervised models over different
fractions of available labels. However, all of the above evaluations
include fine-tuning of the pre-trained weights (of the encoder and
context networks). While the fine-tuning improves the perfor-
mance in most of the cases, it makes it more difficult to evaluate
the direct contribution of the SSL method due to the updated
weights. To evaluate the quality of the embeddings learned by the
SSL methods without making any modification on them, speci-
fically by not fine-tuning them on downstream tasks, we use the
linear evaluation protocol3,9,10,21,26–28. This method requires
freezing the weights learned by self-supervision and thus not
updating them in the downstream task, and training a fully
connected layer is trained on top of the frozen layers on the
downstream task. Therefore, the embeddings, which are the
output of the pre-trained model, remain unchanged for a given
input after the training on the downstream task. This simple and
efficient method thus compares the effectiveness of SSL methods
by directly comparing the embeddings themselves. In addition,
training only the last linear layer is less computationally intensive
than training the entire network, and achieving high performance
without training the entire network may be useful for researchers
with limited computational resources.

We performed this experiment and compared our method to the
baselines on the virus dataset (phage classification task) for both
150 nt and 1000 nt, where the virus dataset is used for the pre-
training and the downstream task. Additionally, we similarly froze
the representations learned during the self-supervised pre-training
on the bacteria dataset (for 1000 nt sequences) and evaluated the
performance of these representations on the T6SS and virus
datasets. We show that Self-GenomeNet outperforms the baselines
in all experiments, and the relative increase in class-balanced
accuracy over the second best method is 9% on average (Fig. 4).

Discussion
We introduced Self-GenomeNet, a SSL technique designed spe-
cifically for genomic data. By leveraging RC sequences and pre-
dicting targets of different lengths, Self-GenomeNet overcomes the
limitations of previous SSL methods and offers a more efficient
use of unannotated genomic data. In our experiments, we com-
pare Self-GenomeNet with several SSL baselines. We have shown
that Self-GenomeNet outperforms CPC21, which is potentially the
most similar SSL method to ours, since both methods predict a
target subsequence with contrastive loss. It also outperforms
Contrastive-sc18 as well as LMs20 based on predicting single
nucleotides and 3-grams. Both of these were originally proposed
for CV and NLP, respectively, and have been applied in several
cases in bioinformatics (Supplementary Methods, Supplementary
Figs. 1, 2).

We have shown that Self-GenomeNet can also outperform
supervised baselines that take normalized k-mer frequency as
input. Specifically, we compare our model to the CNN model
proposed by Fiannaca et al. 31. The input of this model is a 7-mer
frequency profile—the normalized frequency of 7-mers observed
in the sequence. This input is fed into the model consisting of two
convolutional layers with max-pooling layers, a flattened layer,
and two fully connected layers. While this model requires an
additional pre-processing step (in order to create the histogram
based on 7-mers) and has approximately six times the number of
parameters compared to our Self-GenomeNet model, our
approach consistently outperforms this baseline in all experi-
ments (Virus dataset (1000 nt) for phage/non-phage classification
task, on T6SS dataset) (Fig. 3). Notably, Self-Genomenet archives
substantially superior performance, particularly in data-scarce
settings (Supplementary Fig. 4).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2 ARTICLE

COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio 7

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

35

We tested the learned representations in the data-scarce
regime, with only 0.1%, 1%, and 10% of the labeled data, and
showed that Self-GenomeNet outperforms standard supervised
training with only ~10 times less labeled training data. We tested
the transfer learning capability and showed that our method
achieves better performance compared to other SSL methods on
our datasets. Finally, we show that the use of varying target
lengths (based on a theoretical explanation) and the use of RC
targets improve accuracy.

The effectiveness of the generic Self-GenomeNet model, which
incorporates pre-training on virus, bacteria, and human data,
consistently outperformed models pre-trained solely on virus data
or bacteria data across all tested datasets on transfer learning
tasks, under the linear evaluation protocol and across all pro-
portions of labeled in data-scarce settings (Figs. 3, 4 and Sup-
plementary Fig. 3). These results confirm the expected advantage
of a network that is pre-trained on multiple sources of data
compared to a network pre-trained on a single source. This aligns
with the fundamental principles of ML, where leveraging diverse
pre-training data often leads to improved performance.

Our study reveals an adaptation in SSL techniques that makes
them well-suited for analysis of genomic datasets, allowing for
more efficient use of genomic data. One adaptation is the use of
the RC for data processing. Typically, DNA sequences are read
from one end, but genes can be located on either strand of the
DNA molecule. By accounting for RCs, Self-GenomeNet can
efficiently learn powerful representations using the symmetry in
the design. Processing both sequences with the same ML model
and evaluating the average of the model’s decisions in order to
predict regulatory and taxonomic features is observed in several
models in supervised training32,33. Therefore, feeding these two
sequences to the same model such as a CNN and RNN model is a
well-established practice for supervised learning tasks. However,
the goal in these tasks is not to learn self-supervised representa-
tions, unlike our method, which to the best of our knowledge is
the first method to use RC to make an SSL method more effective
and efficient. On the other hand, these works justify the weight-
sharing strategy in the encoder and context networks of our
architecture.

Our study shows that using shared weights for the reciprocal
prediction of two sequences, both of which are the RC of the
upcoming subsequences for each other, improves the overall
performance. While Self-GenomeNet predicts the representation
of the RC of a neighboring subsequence �SN:tþ1 from S1:t , the
symmetry of the setup allows for also predicting S1:t from �SN:tþ1
and using shared weights for the whole model (prediction net-
work, context network, and encoder network). Importantly,
among the subsequence pairs that we can consider and study,
only the subsequence pair S1:t and �SN:tþ1 can use the same
encoder network, context network, and prediction network to
predict each other, ensuring that the ML network performs the
same task in both predictions. Specifically, we use these networks
to predict the RC of the upcoming data for both predicting S1:t
using �SN:tþ1 and predicting �SN:tþ1 using S1:t . For other sub-
sequence pairs we considered, which are S1:t and neighbor
sequences Stþ1:N (referred to as “Forward”), and S1:t and the
reverse of neighbor sequences SN:tþ1 (referred to as “Reverse”),
these networks do not have the same task, which results in a
decrease in performance. Specifically, in the “Reverse” condition,
context network with shared weights read these subsequences S1:t
and SN:tþ1 in opposite directions and in the “Forward” condition
the prediction networks with shared weights predict upcoming
neighboring sequence when S1:t predicts Stþ1:N and past neigh-
boring subsequence when Stþ1:N predicts S1:t . The use of shared
weights, which is possible by our proposed strategy of using the
RC of the neighboring subsequences to predict each other,

reduces the number of learned parameters and the risk of over-
fitting and thus improves the performance.

Self-GenomeNet’s ability to reduce computation time by
exploiting symmetry and RC is important for genomic research,
where large datasets must be explored to gain insight into com-
plex biological systems. Self-GenomeNet allows for efficient
training by generating representations of multiple subsequence
pairs simultaneously. Specifically, the representations of S1:t and
�SN:tþ1, are computed for multiple values of t in a single iteration.
This is done by feeding both the input sequence S1:N ¼
½s1; s2; ¼ ; sN � and the RC of that input �SN:1 ¼ ½�sN ;�sN�1; ¼ ;�s1�
into the network, where si 2 fA;C;G;Tg and �si is the com-
plementary nucleotide, e.g., �A ¼ T. The network then evaluates
representations of S1:t and �SN:tþ1 for multiple values of t by
design. We use all matching (neighbor) representations as pairs
for self-supervised training. This leads to considerable efficiency
in self-supervised pre-training. For example, in our experiments,
there are 18 and 47 matching representations per each data
sample in the batch respectively for 150 nt and 1000 nt sequences,
respectively. Additionally, the number of predictions in an
iteration is even double these values because the matching
representations predict each other. All of these predictions are
then used to optimize the model in one iteration (36 and 94
predictions, respectively) instead of having only one prediction
per data sample in the batch, as is common with several other
methods3,18. This makes Self-GenomeNet a computationally effi-
cient SSL method.

Long short-term memory (LSTM) layers, which we use in our
context network, are known to be less effective when they are fed
inputs that contain much more time steps than 10034. Con-
sidering this, we designed our architectures to have 49 and 22
time steps fed into the context network, for our 1000 nt and
150 nt models, respectively. Specifically, we reduced the number
of time steps by having a distance between the initial nucleotides
of the created patches (Fig. 1) to be 20 and 6 respectively for these
models. Having these values greater than 1 reduces the number of
time steps considerably and using even greater values for this
distance is recommended to be used for sequences that are much
longer than 1000 nt. Therefore fairly limited short-term memory
of LSTM can be managed. Additionally, it is also possible to
change LSTM altogether with transformer-based models, which
we will evaluate in the next version.

Self-GenomeNet has been shown to outperform other SSL
methods in experiments with sequences of 150 and 1000 nt input
lengths, demonstrating its effectiveness for sequences of varying
lengths. Furthermore, Self-GenomeNet can be used to learn
representations of sequences even longer than 1000 nt. However,
pre-trained models that are trained on read-level sequences may
not be effective for considerably longer sequences. Therefore, it
may be necessary to pre-train a new model using Self-GenomeNet
with longer sequences. It should be noted that training models on
very long sequences can require a substantial amount of memory,
making it difficult to fit many samples on a GPU. To ensure high
batch size values, methods such as batch accumulation should be
used instead of using a very small batch size (~10), which can
negatively impact the effectiveness of self-supervised training.
Therefore, practitioners should consider using batch accumula-
tion when working with long sequences. Additionally, we suggest
being cautious when interpreting results or masking low infor-
mation sequences when the dataset contains a high repeat content
such as transposable elements.

In our experiments, Self-GenomeNet showed resilience to
changing architectural hyperparameters. Specifically, several
architectural hyperparameters differ in the experiments with
input length values of 150 nt and 1000 nt on the virus data, such
as kernel and stride values of the convolutional layer. Despite the

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2

8 COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

36

different choices of hyperparameters, consistent improvements
over other SSL methods are observed in both experiments, indi-
cating the resilience of Self-GenomeNet to architectural changes.
Therefore, we expect the performance of Self-GenomeNet to be
superior to the other SSL methods for different model archi-
tectures. In addition, the performance of Self-GenomeNet can
potentially be further enhanced by using different architectural
modifications, such as deeper networks or alternative models for
the encoder and context network, which we will evaluate in the
next version.

In summary, our study shows that Self-GenomeNet can learn
powerful representations from genomic datasets and can poten-
tially be used to improve models trained on nucleotide-level data.
Due to the improved performance in label-scarce settings, this
method is of particular interest for the development of ML
models, where the generation of labeled data is costly and only a
limited number of labels are available. This could enable a new
class of ML methods for domains such as functional prediction of
genes, phenotypic or taxonomic prediction of genomes, or
detection of loci of interest, such as pathogenicity islands.

Methods
Self-supervised training and contrastive loss in Self-
GenomeNet. To create the representation, the sequence is first
divided into P overlapping patches SpðjÞ with the range pðjÞ ¼
ðj � aþ 1Þ : ðj � aþ lÞ indexing a subsequence, where l is the patch
length and a the patch stride value, and a < l for overlapping
patches. The patches are first encoded using a convolutional
neural network f θð�Þ. The resulting sequence of vectors
½f θðSp 0ð ÞÞ; f θðSp 1ð ÞÞ; ¼ ; f θðSp P�1ð ÞÞ� is fed into a recurrent context
network Cϕ �ð Þ, yielding embeddings zi ¼ Cϕðff θðSpðuÞÞgu≤ ði�ðl=aÞÞÞ
for ðl=aÞ≤ i<P þ ðl=aÞ. The patches of the RC �S�pðjÞ ¼
½�sj�aþl; ¼ ;�sj�aþ1� are also fed into f θ first and then Cϕ, giving rise
to zi is then a representation of S1:i�a likewise, �zi represents
�SN: i�aþ1ð Þ.

Training the encoder and context networks consists of
predicting �zi from zi contrastively against corresponding embed-
dings from other, negative example sequences S kð Þ�, i.e., against
�z kð Þ�
i . This is done using a linear prediction layer qη and the Noise
Contrastive Estimation or InfoNCE loss35, which maximizes the
mutual information shared between the forward sequence and its
matching RC sequence, is used:

Li ¼ � log
exp �zTi qη zi

� �� �

exp �zTi qη zi
� �� �

þ∑k exp �z kð Þ�
i

� �T
qη zi
� �� � ð1Þ

Negative samples �z kð Þ�
i are efficiently generated by comparing

against representations of other sequences loaded in the same
mini-batch. Each sequence in the minibatch produces two
negative samples for other sequences, the sequences themselves
and their RC, resulting in 2 B� 1ð Þ negative samples when using
the minibatch size B.

Embeddings are always contrasted only against embeddings of
sequences of the same length as the positive sample. More
specifically, zi S

þ� �
predicts �zi S

þ� �
against �zi S

kð Þ�� �
where S kð Þ�

contains 2 B� 1ð Þ negative samples (other samples in the batch
and their RCs) and not against �ziþn S�ð Þ where n≠0. This is done
to prevent the network from learning to encode the represented
length directly to gain an advantage, which would not be an
intrinsically interesting feature for downstream tasks.

A loss term is introduced for each index i, denoting the number
of patches represented by zi. Due to the symmetry of the setup,
the model both predicts �zi from zi, as well as zi from �zi. The

corresponding loss �Li, induced by predicting zi from �zi then uses
negative examples with the same length as zi. The final loss for
each individual sequence S is thus defined by L ¼ ∑iðLi þ �LiÞ.

Self-GenomeNet maximizes the mutual information between
varying-length targets and the representations, allowing the
representations to effectively learn both short- and long-term
information. Our theoretical analysis illustrates the advantages of
predicting sequences of different lengths. The mutual information
between the predicted subsequences and the learned representa-
tions is maximized during self-supervised training21. However,
optimizing the mutual information only for sequences that
should contain limited long-range information may reduce the
effectiveness of the learned representations because they may not
capture important long-range information. Therefore, we propose
a self-supervision method that maximizes the lower bound of the
mutual information between the embeddings zi and varying-
length RC targets �SN: i�aþ1ð Þ for
i 2 l=a

� �
; l=aþ 1
� ��

; ¼ ; N � lð Þ=a� �� 	
, where l is the length of

each patch that is fed into the convolutional encoder network and
a the patch stride length, and a<l for overlapping patches. Using
the theoretical proof of CPC21, we derive the theoretical deriva-
tion of the lower bound for maximizing the mutual information
as follows: Ið�SN:ði�aþ1Þ; ziÞ≥ logðnÞ � Li, where Ið�SN: i�aþ1ð Þ; ziÞ is the
mutual information between the learned representation zi and the
RC of the consecutive subsequence �SN: i�aþ1ð Þ:n is the number of
samples in the contrastive pre-training and is therefore
2ðB� 1Þ þ 1 ¼ 2B� 1. The length of the predicted subsequence
�SN: i�aþ1ð Þ changes as the value of i changes, thereby allowing us to
maximize the mutual information between targets of varying of
length and the learned representations by optimizing the loss Li
for different values of i simultaneously. Moreover, this approach
captures both short- and long-range semantics, and avoids the
potential loss of long-range information that can occur when
maximizing mutual information between learned representations
and short patches that lack long-range information.

The theoretical derivation of the lower bound for maximizing
the mutual information between targets of different lengths and
the learned representations can be shown by adapting the
equations in CPC21 as follows:

Given that �SN: i�aþ1ð Þ is predicted from the representation zi, our
loss is given by Eq. (2).

Li ¼ �ES log
f �SN: i�aþ1ð Þ; zi
� �

∑Sm2Sf Sm; zi
� �

2

4

3

5 ð2Þ

where S includes S kð Þ�(the set containing all negative samples of
the contrastive loss) and �SN: i�aþ1ð Þ. f is the modeled density ratio
and is given by Eq. (3).

f �SN: i�aþ1ð Þ; zi
� �

¼ exp �ziqη zi
� �� �

/
p �SN: i�aþ1ð Þ; j; zi
� �

p �SN: i�aþ1ð Þ
� � ð3Þ

The optimal loss and a lower bound for this loss are then given
by Eqs. (4) and (7) respectively.

Lopti ¼ �ES log

p �SN: i�aþ1ð Þjzið Þ
p �SN: i�aþ1ð Þð Þ

p �SN: i�aþ1ð Þjzið Þ
p �SN: i�aþ1ð Þð Þ þ∑Sm2S kð Þ�

p Smjzið Þ
p Smð Þ

2

64

3

75 ð4Þ

¼ ES log 1þ
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � ∑

Sm2S kð Þ�

p Smjzi
� �

p Sm
� �

2

4

3

5 ð5Þ

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2 ARTICLE

COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio 9

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

37

� ES log 1þ
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � n� 1ð ÞESm

p Smjzi
� �

p Sm
� �

2

4

3

5 ð6Þ

¼ ES log 1þ
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � n� 1ð Þ

2

4

3

5≥ES log
p �SN: i�aþ1ð Þ
� �

p �SN: i�aþ1ð Þjzi
� � n

2

4

3

5

ð7Þ
This is equal to �Ið�SN: i�aþ1ð Þ; ziÞ þ logðnÞ. Finally, we show that

Ið�SN: i�aþ1ð Þ; ziÞ≥ logðnÞ � Li, where Ið�SN: i�aþ1ð Þ; ziÞ is the mutual
information between the learned representation zi and the RC of
the consecutive subsequence �SN: i�aþ1ð Þ: n is the number of samples
in the contrastive pre-training and is therefore
2ðB� 1Þ þ 1 ¼ 2B� 1. As the value of i changes, the length of
the predicted subsequence �SN: i�aþ1ð Þ changes. We therefore
maximize the mutual information between varying-length targets
and the learned representations by optimizing the loss Li for
different values of i and simultaneously. Thus, the representations
learn both short and long-range semantics. The higher perfor-
mance of Self-GenomeNet compared to the baselines indicates
that our strategy of maximizing the mutual information between
varying-length subsequences and the learned representations is
effective.

Network architecture design. The particular architectures of the
encoder network f Θ and the context network Cϕ are hyperpara-
meters of the method and can be chosen according to the task at
hand. We choose f Θ to be a convolutional layer with 1024 filters
and Cϕ to be an LSTM layer with 512 units. The kernel size of the
convolutional layer is set equal to the patch size, which is the
number of nucleotides given to the encoder network (Fig. 1a),
and the stride value of the convolutional layer is equal to the
distance between the starting points of the patches. For experi-
ments trained on 150 nt sequences, the patch size is set to 24, and
the stride is set to 6, resulting in 75% overlapping patches. For
experiments trained on 1000 nt sequences, the patch size is set to
40 and the stride to 20, resulting in 50% overlapping patches.

Model training process. We use the Adam optimizer36 with
β1 ¼ 0:9, β2 ¼ 0:999 and a learning rate of 0.0001 for all
experiments, except for the T6SS dataset fixed base network
under transfer learning protocol, where the learning rate is set to
0.001 because we observe that 0.0001 is too low for this experi-
ment. For weight initialization, Glorot uniform initialization37 is
chosen, which is the default Keras weight initialization. The size
of the minibatch is chosen to be the largest possible for the used
GPU, GeForce RTX 2080 Ti. Therefore, it is set to 128 for the self-
supervised pre-training and 2048 for the supervised downstream
tasks (only powers of 2 are considered). The hyperparameters,
such as the hyperparameters of Adam36 or learning rate, are set to
the same values as our method for all baseline experiments. When
some hyperparameters are unique to a baseline method, we follow
the recommended values as in their papers.

In the transfer-learning experiments on the T6SS dataset and
in the experiments with data-scarce settings, where 0.1% of the
dataset is available, only the last linear layer of the model is
trained with the labels as the first round of supervised training on
downstream tasks. This means that the pre-trained layers are
frozen at this stage, which is done to avoid rapid overfitting to the
small labeled datasets, which results in low performance on the
validation set. Then, in the second round of supervised training,
the frozen layers are also fine-tuned, typically with considerably

fewer iterations than in the first round due to quick overfitting. In
other transfer-learning and data-scarce experiments, the initial
training with frozen layers is skipped for a faster evaluation
process, as the preliminary experiments showed that it did not
contribute to the final performance. Thus, the entire network is
fine-tuned directly.

In the experiments in which the raw input data are fasta files
(all datasets except DeepSEA), as long as the existing unlabeled
data files are long enough, we generate sequences up to a certain
number from the same fasta file for both supervised and self-
supervised training. Thus, not only one data sample is generated
when the fasta file is opened, as it would be if generated samples
were completely random, in order to ensure much faster
preprocessing. Specifically, up to 512 samples are created for
fungi-protozoa dataset due to very long fasta files (and thus
longer processing time) and 64 for other experiments. Addition-
ally, this may help to create harder negative samples in the
contrastive self-supervised training, which is shown to be helpful
for learning better representations. However, hard-negative
mining is not explicitly enforced in our experiments, such as by
modifying the loss function38. While incorporating such
measures can further improve the performance of Self-
GenomeNet, the fact that we achieved robust results without
relying on these underscores the robustness and success of our
approach.

Datasets. The DeepSEA dataset25 is an open benchmark dataset
that has been evaluated by many other DL models25,29,39. It
contains approximately 5 million subsequences of the human
genome, with each sample containing 1000 nucleotides as input
and a label vector for 919 binary chromatin features such as
transcription factor binding affinities, histone marks, and DNase I
sensitivity.

The Virus dataset is used as a representative of taxonomic
classification tasks often encountered in metagenomics, where
DNA found in environmental samples is analyzed by next
generation sequencing40. We downloaded all publicly available
viral genomes from GenBank22 and RefSeq23, and divided the
dataset into two taxonomic classes of bacteriophages vs. viruses
that are not bacteriophages, based on the annotations provided.
Unlike DeepSEA, which identifies properties of genomic regions,
this task tries to differentiate an aspect of an entire given genome
sequence. We divided the downloaded FASTA files into training,
validation, and test sets in approximate proportions of 70%, 20%,
and 10%, respectively. The bacteriophage class contained approxi-
mately 1.0 billion nucleotides, the non-phage virus dataset ~0.5
billion nucleotides. Samples were created from FASTA files by
partitioning them into equal-length non-intersecting sequences.

The bacterial dataset contains bacterial genomes from
GenBank22 and RefSeq23, comprising approximately 83 billion
nucleotides. It is used only for self-supervised pre-training. To
create this dataset, we downloaded all publicly available bacteria
genomes from GenBank, comprising approximately 83 billion
nucleotides, and processed them similarly to how we processed
the Virus dataset.

The T6SS effector protein dataset is provided to demonstrate
that our method works well on a dataset with real label scarcity,
where the training set contains only 75 FASTA entries. It is based
on publicly available bacteria data (SecReT624) where we defined
the task as the identification of effector proteins. T6SS effector
proteins serve as the positive samples to identify, whereas T6SS
immunity proteins, T6SS regulators, and T6SS accessory proteins
are negative samples. We divided the training, validation, and test
sets into approximate proportions of 60%, 20%, and 20%,
respectively.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2

10 COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

38

For the fungi-protozoa classification task, we downloaded
nucleotide data of fungi and protozoa that may be pathogenic to
humans from RefSeq23 using the genome_updater.sh script from
https://github.com/pirovc/genome_updater with the parameters
-g “fungi” -d “RefSeq” -c “representative genome” -A species:1 -a
-p -T ‘4930,74721,4753,4827,5052,5475,5206,33183,5042,5151,
34487,4859’ -k. For protozoa, we downloaded nucleotide
information with the same script with the parameters -g
“protozoa” -d “RefSeq” -c “representative genome” -m -A
species:1 -a -p -T ‘554915,255975,5878,5794’. We divided the
downloaded FASTA files into training, validation, and test sets in
approximate proportions of 70%, 20%, and 10%, respectively.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The data we used are publicly available and information about the data used is explained
in the Datasets subsection. In addition, the training, validation and test sets can be found
separately either as FASTA or RDS files, or as accession IDs on self.genomenet.de. Source
data for figures can be found in Supplementary Data 1.

Code availability
Code to reproduce and apply the models and pre-trained models are available via
interactive notebooks under self.genomenet.de.

Received: 8 February 2023; Accepted: 1 September 2023;

References
1. Gligorijević, V. et al. Structure-based protein function prediction using graph

convolutional networks. Nat. Commun. 12, 3168 (2021).
2. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proc. of Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies Vol. 1 (Long and Short Papers)
4171–4186 (Association for Computational Linguistics, 2019).

3. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for
contrastive learning of visual representations. In Proc. 37th International
Conference on Machine Learning 1597–1607 (JMLR.org, 2020).

4. Zaheer, M. et al. Big bird: Transformers for longer sequences. In Advances in
Neural Information Processing Systems (NeurIPS) Vol 33, 17283–17297 (2020).

5. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information
Processing Systems (eds Guyon, I. et al.) Vol. 30 5998–6008 (2017).

6. Beltagy, I., Peters, M. E. & Cohan, A. Longformer: the long-document
transformer. Preprint at https://arxiv.org/abs/2004.05150 (2020).

7. Kitaev, N., Kaiser, Ł. & Levskaya, A. Reformer: the efficient transformer. In
Proc. 8th International Conference on Learning Representations 1–12 (2020).

8. Dai, Z. et al. Transformer-XL: Attentive language models beyond a fixed-
length context. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics 2978–2988 (2019).

9. Zbontar, J., Jing, L., Misra, I., LeCun, Y. & Deny, S. Barlow twins: self-
supervised learning via redundancy reduction. In Proc. 38th International
Conference on Machine Learning (eds. Meila, M. & Zhang, T.) Vol. 139
12310–12320 (PMLR, 18–24 Jul 2021).

10. Chen, X., Xie, S. & He, K. An empirical study of training self-supervised vision
transformers. In Proc. IEEE/CVF International Conference on Computer
Vision (ICCV) 9640–9649 (IEEE, 2021).

11. Wang, X., Zhang, R., Shen, C., Kong, T. & Li, L. Dense contrastive learning for
self-supervised visual pre-training. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) 3024–3033 (2021)

12. Aakur, S. N. et al. Metagenome2Vec: Building Contextualized Representations
for Scalable Metagenome Analysis. In 2021 International Conference on Data
Mining Workshops (ICDMW) 500–507 (IEEE, 2021).

13. Indla, V. et al. Sim2Real for Metagenomes: accelerating animal diagnostics
with adversarial co-training. in Advances In Knowledge Discovery and Data
Mining 164–175 (Springer International Publishing, 2021).

14. Aakur, S. N. et al. Mg-net: Leveraging pseudo-imaging for multi-modal
metagenome analysis. In International Conference on Medical Image
Computing and Computer-Assisted Intervention 592–602 (Springer, 2021).

15. Queyrel, M., Prifti, E., Templier, A. & Zucker, J.-D. Towards end-to-end
disease prediction from raw metagenomic data. bioRxiv 2020.10.29.360297
https://doi.org/10.1101/2020.10.29.360297 (2021).

16. Rives, A. et al. Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences. Proc. Natl. Acad. Sci.
USA. 118 (2021).

17. Lu, A. X., Zhang, H., Ghassemi, M. & Moses, A. Self-supervised contrastive
learning of protein representations by mutual information maximization.
Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.283929 (2020).

18. Ciortan, M. & Defrance, M. Contrastive self-supervised clustering of scRNA-
seq data. BMC Bioinforma. 22, 280 (2021).

19. Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. V. DNABERT: pre-trained bidirectional
encoder representations from transformers model for DNA-language in
genome. Bioinformatics https://doi.org/10.1093/bioinformatics/btab083
(2021).

20. Dai, A. M. & Le, Q. V. Semi-supervised sequence learning. In Advances in
Neural Information Processing Systems, Vol 28 (eds Cortes, C., Lawrence, N.
D., Lee, D. D., Sugiyama, M. & Garnett, R.) 3079–3087 (Curran Associates,
Inc. Red Hook, NY, 2015).

21. Oord, A. V., Li, Y. & Vinyals, O. Representation learning with contrastive
predictive coding. Preprint at https://doi.org/10.48550/arXiv.1807.03748
(2018).

22. Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W.
GenBank. Nucleic. Acids Res. 44, D67–D72 (2016).

23. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current
status, taxonomic expansion, and functional annotation. Nucleic. Acids Res.
44, D733–D745 (2016).

24. Li, J. et al. SecReT6: a web-based resource for type VI secretion systems found
in bacteria. Environ. Microbiol. 17, 2196–2202 (2015).

25. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with
deep learning-based sequence model. Nat. Methods 12, 931–934 (2015).

26. Kolesnikov, A., Zhai, X. & Beyer, L. Revisiting self-supervised visual
representation learning. In Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition 1920–1929 (IEEE, 2019).

27. Zhang, R., Isola, P. & Efros, A. A. Colorful image colorization. In Computer
Vision – ECCV 2016 649–666 (Springer International Publishing, 2016).

28. Bachman, P., Hjelm, R. D. & Buchwalter, W. Learning representations by
maximizing mutual information across views. In Advances in Neural
Information Processing Systems (eds Wallach, H. et al.) 15509–15519
(NIPS, 2019).

29. Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep neural
network for quantifying the function of DNA sequences. Nucleic. Acids Res.
44, e107 (2016).

30. Henaff, O. Data-efficient image recognition with contrastive predictive coding.
In Proc. 37th International Conference on Machine Learning (eds. Iii, H. D. &
Singh, A.) Vol. 119, 4182–4192 (PMLR, 13–18 Jul 2020).

31. Fiannaca, A. et al. Deep learning models for bacteria taxonomic classification
of metagenomic data. BMC Bioinforma. 19, 198 (2018).

32. Quang, D. & Xie, X. FactorNet: A deep learning framework for predicting cell
type specific transcription factor binding from nucleotide-resolution
sequential data. Methods 166, 40–47 (2019).

33. Shrikumar, A., Greenside, P. & Kundaje, A. Reverse-complement parameter
sharing improves deep learning models for genomics. Preprint at https://www.
biorxiv.org/content/early/2017/01/27/103663 (2017).

34. Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow. (‘O’Reilly Media, Inc., 2022).

35. Gutmann, M. U. & Hyvarinen, A. Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image
statistics. https://www.jmlr.org/papers/volume13/gutmann12a/gutmann12a.
pdf (2012).

36. Kingma, D. P. & Ba, J. L. Adam: a method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2015).

37. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (eds. Teh, Y. W. &
Titterington, M.) Vol. 9, 249–256 (PMLR, 13–15 May 2010).

38. Robinson, J. D., Chuang, C., Sra, S., Jegelka, S. Contrastive learning with hard
negative samples. In International Conference on Learning Representations
(ICLR) (2021).

39. Kelley, D. R. et al. Sequential regulatory activity prediction across
chromosomes with convolutional neural networks. Genome. Res. 28, 739–750
(2018).

40. Pust, M.-M. & Tümmler, B. Identification of core and rare species in
metagenome samples based on shotgun metagenomic sequencing, Fourier
transforms and spectral comparisons. ISME Commun. 1, 1–4 (2021).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2 ARTICLE

COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio 11

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

39

Acknowledgements
We thank Curtis Huttenhower and Eric A. Franzosa for helpful discussions. This work
was funded in part by the German Federal Ministry of Education and Research (BMBF)
under Grant No. 01IS18036A and under GenomeNet Grant No. 031L0199A/031L0199B.
P.C.M. received funding from the German Research Foundation (Grant number
405892038). X.-Y.T. received funding from the German Center for Infection Research
(DZIF) TI BBD.

Author contributions
The main idea of Self-GenomeNet is proposed by H.A.G. He developed and implemented
the algorithm and he prepared the experimental results. X.-Y.T. has contributed to code
development, mostly for the CPC baseline. R.M. also contributed to the code develop-
ment, particularly regarding the processing of the data and language model baselines.
M.B., B.B., and A.C.M. contributed to the writing of the manuscript. M.B. additionally
contributed to the supervision of the project. The project is mainly supervised by M.R.
and P.C.M. from a machine learning and bioinformatics perspective, respectively.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-023-05310-2.

Correspondence and requests for materials should be addressed to Philipp C. Münch or
Mina Rezaei.

Peer review information Communications Biology thanks Sathyanarayanan Aakur and
the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Primary Handling Editor: Gene Chong. A peer review file is available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05310-2

12 COMMUNICATIONS BIOLOGY | (2023) 6:928 | https://doi.org/10.1038/s42003-023-05310-2 | www.nature.com/commsbio

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

40

Supplementary Information

Supplementary Results
Comparison of Self-GenomeNet to baselines
The self-supervised baselines and our method are trained without using any labels
(Supplementary Fig. 1, Supplementary Fig. 2). These models are then used for the
downstream tasks. In the "supervised" baseline, there is no self-supervised pre-training, and
randomly initialized weights are trained for downstream tasks.

Supplementary Figures

Supplementary Figure 1: Self-GenomeNet. The prediction network is used to predict representations of the reverse-complement
of the neighboring sequence. The predicted sequences are of different lengths in Self-GenomeNet. A contrastive loss is used, which
means that the matching sequence is predicted among other non-matching sequences in the batch.

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

41

Supplementary Figure 2: Self-supervised baselines. a) Language Model - single nucleotide prediction (denoted as LM - single
nt)1, where each nucleotide is one-hot encoded separately as a vector of 4 and predicted separately using cross-entropy loss. b)
Language Model - 3-gram prediction (LM - 3-gram), where each 3-gram (a group of 3 nucleotides) is one-hot encoded separately as
a vector of 64 and predicted separately using cross-entropy loss. c) In Contrastive Predictive Coding2,3, the representations of the
short and non-changing length neighboring sequences are predicted (in the figure below, these sequences contain 8 nucleotides)
using contrastive loss, which means that the matching sequence is predicted among other non-matching sequences in the batch.
The representations of the predicted sequences are obtained by feeding them into the encoder network. d) Contrastive-sc4 takes a
sequence and a copy of the sequence and randomly masks the input sequence. Then, the agreement between the embeddings of
two masked copies is maximized using contrastive loss, which means that the copied sequences predict each other among other
mismatching copied sequences in the batch.

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

42

Supplementary Figure 3: Data-scarce settings performance comparison on the virus dataset. Generic
Self-GenomeNet and Self-GenomeNet trained only on this dataset are evaluated. The generic Self-GenomeNet,
which incorporates pre-training on virus, bacteria, and human data consistently outperformed the model pre-trained
solely on virus data (the whole dataset) across all proportions of labeled data-scarce settings. We train the models
without using labels and then successively withhold labeled samples of the viral dataset for 1,000 nt sequences to
mimic scenarios where labels are scarce (from 100% of available labeled samples to 0.1%). Each point in the plots is
trained separately using the corresponding amount of labeled data. The weights of the context and encoder models
are initialized with the training results from the SSL task, but they are trained further (fine-tuned), together with the
linear layer, on the new supervised task.

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

43

Supplementary Figure 4: Data-scarce Settings Performances of generic Self-GenomeNet and a supervised
model that takes 7-mer profile as input. The generic Self-GenomeNet outperforms the CNN model proposed by
Fiannaca et al5. The input of this model is a 7-mer frequency - the normalized frequency of 7-mers observed in the
sequence. While this model requires an additional pre-processing step (in order to create the histogram based on
7-mers) and has approximately six times the number of parameters compared to our Self-GenomeNet model, our
approach consistently outperforms this baseline, particularly in data-scarce settings. We train the generic
Self-GenomeNet using virus, bacteria, and human data without using labels and then successively withhold labeled
samples of the viral dataset for 1,000 nt sequences to mimic scenarios where labels are scarce (from 100% of
available labeled samples to 0.1%). Each point of the generic Self-GenomeNet in the plots is trained separately using
the corresponding amount of labeled data. The weights of the context and encoder models are initialized with the
training results from the SSL task, but they are trained further (fine-tuned), together with the linear layer, on the new
supervised task. The label “7-mer frequency profile” corresponds to the setting where we used the CNN model
proposed by Fiannaca et al, where the weights are initialized randomly for the supervised task.

Supplementary References
1. Dai, A. M. & Le, Q. V. Semi-supervised sequence learning. Adv. Neural Inf. Process. Syst.

28, (2015).
2. Lu, A. X., Zhang, H., Ghassemi, M. & Moses, A. Self-Supervised Contrastive Learning of

Protein Representations By Mutual Information Maximization. bioRxiv 2020.09.04.283929
(2020) doi:10.1101/2020.09.04.283929.

3. van den Oord, A., Li, Y. & Vinyals, O. Representation Learning with Contrastive Predictive
Coding. arXiv [cs.LG] (2018).

4. Ciortan, M. & Defrance, M. Contrastive self-supervised clustering of scRNA-seq data. BMC
Bioinformatics 22, 280 (2021).

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

44

5. Fiannaca, A. et al. Deep learning models for bacteria taxonomic classification of
metagenomic data. BMC Bioinformatics 19, 198 (2018).

4.1 A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

45

5 Contributions to Automated Model Design for
Genomics

5.1 Optimized Model Architectures for Deep Learning on Genomic
Data

Contributing Article

Gündüz HA, Mreches R, Moosbauer J, Robertson G, To XY, Franzosa EA, Huttenhower C, Rezaei
M, McHardy AC, Bischl B, Münch PC, Binder M (2024). “Optimized model architectures for deep
learning on genomic data.” Communications Biology, 7(1), 516. doi:10.1038/s42003-024-06161-1

Declaration of Contributions

Hüseyin Anil Gündüz contributed to this paper as the first author with the following
significant contributions:
Hüseyin Anil Gündüz proposed the design space of architectures to be optimized over, designed
the experiments, proposed the baselines, and was chiefly responsible for coding. Hüseyin Anil
Gündüz trained, evaluated, and analyzed the baselines and the optimized architectures. Hüseyin
Anil Gündüz authored most of the manuscript.

Contribution of the coauthors:
Rene Mreches contributed to the code development. Julia Moosbauer helped with the model-
based optimization part of the experiments. Gary Robertson helped with the IT administration.
Eric A. Franzosa and Curtis Huttenhower contributed to virus identification and benchmarking.
Xiao-Yin To, Mina Rezaei, Alice C. McHardy, and Bernd Bischl provided valuable feedback and
input throughout the project. Martin Binder was the main developer of the hyperparameter
optimization code. He proposed and developed the particular multi-fidelity approach chosen
in this work. Martin Binder supervised and contributed to the code of the proposed model.
Martin Binder also ran the model-based optimization part of the experiments to find optimal
architectures. The project is mainly supervised by Martin Binder and Philipp C. Münch from a
machine learning and bioinformatics perspective, respectively.

All authors contributed to editing the paper.

46

https://dx.doi.org/10.1038/s42003-024-06161-1

communications biology Article

https://doi.org/10.1038/s42003-024-06161-1

Optimized model architectures for deep
learning on genomic data

Check for updates

Hüseyin Anil Gündüz1,2, René Mreches3,4, Julia Moosbauer 1,2, Gary Robertson3,4, Xiao-Yin To 1,2,3,4,
Eric A. Franzosa 5, Curtis Huttenhower 5, Mina Rezaei 1,2, Alice C. McHardy 3,4,6, Bernd Bischl1,2,
Philipp C. Münch 3,4,5,6,7 & Martin Binder 1,2,7

The success of deep learning in various applications depends on task-specific architecture design
choices, including the types, hyperparameters, and number of layers. In computational biology, there
is no consensus on the optimal architecture design, and decisions are often made using insights from
more well-established fields such as computer vision. These may not consider the domain-specific
characteristics of genome sequences, potentially limiting performance. Here, we present
GenomeNet-Architect, a neural architecture design framework that automatically optimizes deep
learning models for genome sequence data. It optimizes the overall layout of the architecture, with a
search space specifically designed for genomics. Additionally, it optimizes hyperparameters of
individual layers and themodel trainingprocedure.Ona viral classification task,GenomeNet-Architect
reduced the read-level misclassification rate by 19%, with 67% faster inference and 83% fewer
parameters, and achieved similar contig-level accuracy with ~100 times fewer parameters compared
to the best-performing deep learning baselines.

Deep learning (DL) techniques have been shown to achieve exceptional
performanceonawide rangeofmachine learning (ML) tasks, especiallywhen
large training sets are available1. These techniques have been applied to a
variety of challenges in bioinformatics2–4. For differentMLproblems anddata
modalities, different neural architectures have emerged that perform well in
their respective domains, such as convolutional neural networks (CNN) for
images or recurrent neural networks (RNN) for text. Architectural design
choices are often made based on the experience of researchers and trial and
error5–13. However, the optimal design and arrangement of these layers are
highly domain-specific, problem-dependent, and computationally expensive
to evaluate. Besides expert-drivendesign, it has therefore become increasingly
popular to apply systematic approaches to finding neural network config-
urations, such as automated neural architecture search (NAS)14. The number
of possible configurations of even small neural networks is very large, as the
numberof decisions tobemadegrows exponentially, andmostpracticalNAS
algorithms therefore impose various constraints on the search space.

To efficiently perform NAS for ML tasks in genomics, it is essential to
identifyDLnetwork architecture designs for genomic sequence analysis that
are widely recognized in the literature. These designs often start with one or

several convolutional layers, followed by a global pooling layer, and con-
clude with a series of fully connected layers6,7,9,11. Recurrent layers offer an
alternative to convolutional or global pooling layers. Their ability to pro-
pagate information across sequences allows recurrent layers to effectively
summarize data, comparable to pooling layers. While numerous works in
genomics use RNN layers15–19, one example is Seeker8, an RNN-basedmodel
that employs an LSTM layer for bacteriophage detection. Furthermore, by
stacking them sequentially, integrating convolutional and recurrent layers
enhances model capability. For instance, the model developed by Wang et
al.20 demonstrates this approach by placing an RNN on top of a convolu-
tional layer, followed by two fully connected layers. A similar configuration
is utilized in the DanQmodel21, showcasing the effectiveness of combining
recurrent and convolutional layers.

One way to approach NAS is to consider it as a hyperparameter opti-
mization (HPO) problem. Hyperparameters (HPs) are configuration settings
that determine howanMLmodelworks. In the context ofDL, typicalHPs are
the choiceof the gradientdescent algorithmand its learning rate.However, the
choice of neural network layers and their configuration can also be considered
as HPs. NAS is then equivalent to optimizing HPs that define different

1Department of Statistics, LMU Munich, Munich, Germany. 2Munich Center for Machine Learning, Munich, Germany. 3Department for Computational Biology of
Infection Research, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany. 4Braunschweig Integrated Centre of Systems Biology (BRICS),
TechnischeUniversität Braunschweig, Braunschweig, Germany. 5Department of Biostatistics, HarvardSchool of PublicHealth, Boston,MA,USA. 6GermanCentre
for InfectionResearch (DZIF), partner site Hannover Braunschweig, Braunschweig,Germany. 7These authors jointly supervised thiswork: PhilippC.Münch,Martin
Binder. e-mail: philipp.muench@helmholtz-hzi.de; martin.binder@stat.uni-muenchen.de

Communications Biology | (2024)7:516 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

47

architectures. A popular class of optimization algorithms used for HPO is
model based optimization (MBO), also called Bayesian optimization22. It
iteratively evaluates HP configurations and selects new configurations to try
based on knowledge of which configurations have worked well in the past.
This is donebyfitting a regressionmodel, the so-called surrogatemodel, to the
observed performance values. New evaluations are made by considering the
“exploration-exploitation tradeoff”: new configurations should be tried if their
expected performance is high (exploitation), or if the model’s uncertainty
about their performance is high (exploration). MBO-based methods such as
BANANAS23 have been shown to outperform methods based on other
optimization paradigms such as ENAS24 (which uses reinforcement learning)
or DARTS25 (which uses gradient descent).

The quality of the configurations evaluated by MBO increases gradu-
ally as the optimizationprogresses. Thefirst configurations evaluated,which
constitute the initial design, are randomly sampled from the search space
withoutusing anyprior knowledge.By anticipating that early configurations
are unlikely to performaswell as later ones, and by devoting fewer resources
to their evaluation, it is possible to reduce the cost of the overall optimization
process. Algorithms that speed up optimization by using cheaper approx-
imations of the target objective are called multi-fidelity (MF) optimization
algorithms. A simple way to approximate the performance of a DLmodel is
to stop training the model after a certain amount of time, even though the
model performance has not fully converged26.

While there are libraries that perform NAS on genome datasets27, we
are not aware of any methods that use efficient multi-fidelity or MBO
methods specifically for genome datasets.MBOhas been used in the past to
tune specifically designed genomic DL models28, but only to optimize spe-
cificHPs,not as a generalNAS framework.Nogeneral-purposeMBO-based
NAS framework provides a search space specifically modified to fit genome
sequence data; in fact, many focus on 2D image data instead.

In this work, we present GenomeNet-Architect, which optimizes DL
network architectures by repeatedly constructing new network configura-
tions, training networks based on these configurations on a given dataset,
and evaluating the performance of the resulting models by predicting on
held-out test data. It uses MBO as an efficient black-box optimization
method, combined with a multi-fidelity approach that increases model
training time after some initial optimizationprogress has beenmade.Unlike
other general-purpose NAS frameworks, GenomeNet-Architect uses a
search space specifically for genome data. It is made up of neural

architectures and HP setups that build on top of and generalize various
architectures for the genome data that have been successfully applied in the
past. This approach allows us to efficiently explore a large space of possible
network architectures and identify those that perform well for genome-
related tasks, creating architectures that outperform expert-guided archi-
tectures. Our method can be used for a variety of DL tasks on genome
sequence data, such as genome-level, loci-level, or nucleotide-level classifi-
cation and regression.

Results
GenomeNet-Architect uses an efficient global
optimization method
GenomeNet-Architect provides a predefined search space of hyperpara-
meters (HPs) that are used to construct different network architectures. It
needs to be given a specific ML task on genome sequence data. In our
framework, we use model-based optimization (MBO)22 to jointly tune the
network layout andHPs, and generate a specific architecture thatworkswell
on the given task.

The result of the optimization process itself is a specific HP config-
uration that works well for the given task. The resulting architecture can be
trained and evaluated on the given data, as well as used tomake predictions
on new data. However, the resulting architecture can also be used for other
tasks that are similar to the task for which it was optimized. It is therefore
possible to perform a single optimization run to solve multiple genome
sequence DL tasks.

GenomeNet-Architect uses a search space that covers themost
common layer types and hyperparameter settings
The search space of GenomeNet-Architect is based on our literature
analysis of successful architectures developed for genome data, such as
DeepVirFinder6, ViraMiner7, Seeker8, CHEER9, Fiannaca (CNN
model)10, PPR-Meta11, and an adapted version of RC-ResNet-1812. A
common type of architecture consists of convolutional layers followed by
global pooling and fully connected layers6,7,9,11. An alternative to pooling,
which also aggregates information across the entire sequence, is the use
of recurrent (RNN) layers.

Inspired by these common patterns observed in many networks suc-
cessfully applied to genome data, we build a template for an architecture
consisting of three stages (Fig. 1): (i) a stage of stacked convolutional layers

Convolutional Layers

Conv.

Block

Recurrent Layers

Recurrent

Layer

Recurrent

Layer
Input

Model (CNN-RNN)

Conv.

Block

Dense

Layer

Dense

Layer
Output

Fully Connected Layers

Conv.

Block

Global Average Pooling Block

Input

Model (CNN-GAP)

Conv.

Block

Dense

Layer

Dense

Layer
Output

Fully Connected Layers

GAP Concat-

enate

Filter (Skip Ratio)

X

GAP

....

........

....

Convolutional Layers

a

b

Fig. 1 | The network layout optimized by GenomeNet-Architect consists of three
stages: (i) a stage of stacked convolutional layers, (ii) global average pooling (in
the CNN-GAP model) or a stack of recurrent layers (in the CNN-RNN model),
and (iii) a fully connected stage. aTheCNN-RNNmodel feeds the output of the last
convolutional layer into a block of recurrent layers. The output of the last recurrent
layer is then flattened and fed into a fully connected neural network. b The CNN-

GAP model groups the convolutional layers into convolutional blocks. While the
output of some of these blocks is skipped (controlled by the “skip ratio” hyper-
parameter), the network performs global average pooling (GAP) on the remaining
blocks and concatenates the result. This is then fed into the fully connected neural
network.

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 2

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

48

operating on one-hot encoded input sequences, (ii) a stage for embedding
the sequential output data of the convolutional layers into a vector repre-
sentation, using either global average pooling (GAP) (in a setup that we call
the CNN-GAP model) or a stack of recurrent layers (which we call the
CNN-RNN model), and (iii) a fully connected neural network stage oper-
ating on the embedded values.

Someof the propertieswe search over include the network layout, such
as the number and size of convolutional, dense, and recurrent layers. Other
HPs that we searched over influence the training process, such as the
optimizer, and the behavior of specific layers, such as the dropout rate, the
activation functions, and the batch normalization constant (Table 1). By
introducing multiple HPs that influence the final layout of the model, our
framework covers many successful architectures from the literature, while
also making it possible to find architectures that have not yet been imple-
mented. While the provided search space is our recommendation, our
method also supports defining a custom search space, e.g. allowing more
layers, or including GMP instead of GAP.

Our HPs cover both the overall architecture of the network (e.g.,
number of convolutional layers) and the setup of individual layers (e.g., the
CNN kernel size). Having different HPs for each layer individually would
introduce HP dependencies, which would make the optimization problem
more difficult. Therefore, we use a setup where only the first and last layers
are directly parameterized. f0 and fend, for example, specify the number of
filters of the first and last convolutional layer. The setup of the intermediate
layers is interpolated based on thefirst and last layers (seeMethods formore
details).

Model configurationsare initiallyevaluatedwithshorter runtimes
for more efficient search space exploration
Several challenges arise when optimizing DL architectures on complex data
modalities such as genomics. First, for complex tasks, the time required for a
single model to converge to a solution makes it impractically slow to opti-
mize over a large search space such as the one we have designed. A simple
way to speed upmodel evaluation would be to limit the time for which each
proposed model is trained, even if models do not converge within a given
timeframe, because models that perform well early in model fitting will
continue to perform well after more training epochs26. While this reduces
the time spent on individual evaluations, the resulting models can only
approximate the true performance of a given HP configuration. Smaller
models (which have fewer parameters and therefore converge faster) may
falsely appear tobe superior to largermodels that run slower, complete fewer
epochs, and cannot converge in the given time limit. However, the models
trained for only a short time are still informative about which parts of the
search space are more likely to contain models that perform well. We can
therefore use them in a “warm start” method that speeds up the optimi-
zation process. This works by only partially evaluating initial configuration
proposals at first, and using the resulting data about which HPs tend to
perform well for short evaluation times to help determine which config-
urations are later evaluated for longer training times29.

GenomeNet-Architect first runs the MBOwith a fixed, low setting for
the model training time t = t1. After a given number of optimization
iterations, a newMBOrun is startedwith ahigher training time setting t= t2,
where the surrogatemodel contains the performance result data for t = t1 as

Table 1 | Space of hyperparameters that affect the training and final layout of the model, along with the ranges over which they
are optimized

Hyperparameter Type Range Log-Search Space Component

Learning Rate (lr) Float [10−6, 10−2] ✓ General

Reverse-Complement as
Additional Input

Boolean {True, False}

Optimizer Categ {Adam, Adagrad, Rmsprop, Sgd}

Model Type Categ {GAP, RNN}

Number of Convolutional Layers (nc) Integer [1,20] Convolutional Layers

Number of Convolutional Blocks (ncb) Integer [1,10]

First Layer Kernel Size (k0) Float [24,211] ✓

Last Layer Kernel Size (kend) Float [24, 211] ✓

First Layer Number of Filters (f0) Float [21,26] ✓

Last Layer Number of Filters (fend) Float [21,26] ✓

Last Layer Dilation Factor (dend) Float 20; 24
� �

for L ¼ 150 or 250;
20; 27
� �

for L ¼ 10000
✓

Total Max-Pooling (pend) Float 20; 24
� �

for L ¼ 150 or 250;
20; 27
� �

for L ¼ 10000
✓

Momentum of Batch-Normalization Float [0,0.99]

Leaky-ReLU Alpha Value Float [0,1]

Residual Block (res_block) Boolean {True, False}

Number of Dense Layers Integer [0,5] Fully Connected Layers

Units of Dense Layers Float [24,211] ✓

Dropout of Dense Layers Float [0,0.99]

Activation of Dense Layers Categ {ReLU, tanh, Sigmoid}

Recurrent Layer Type Categ {LSTM, GRU} Recurrent Layers (CNN-RNN only)

Number of Recurrent Layers Integer [1,3]

Uni-/Bidirectional Recurrent Layers Boolean {True, False}

Number of Recurrent Units Float [24, 211] ✓

SkipRatio for Global Average Pooling (rs) Float [0,1] Global Average Pooling Block (CNN-GAP only)

Where indicated in the “Log-Search Space” column, hyperparameters are optimized on a logarithmic scale. Hyperparameters are grouped by the “Component” they control, corresponding to the different
components shown in Fig. 1.

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 3

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

49

a “warm start”. The optimization procedure can be restarted several times
withhigher values of tnusing all previous points evaluatedat times t1, ..., tn−1

aswarmstart data.Our experiments startedwith t1 =2 hand thencontinued
with t2 = 6 h (Fig. 2a). Longer times were also tried, but did not lead to
sufficient improvement to justify the additional resources required (Sup-
plementary Note 1). Models evaluated after increasing the training time
have higher performance than randomly sampled models at the beginning,
showing that the information learned frommodels trained for a short time is
useful for building models trained for a longer time.

GenomeNet-Architect makes use of parallel resources
GenomeNet-Architect parallelizes the HP tuning process across multiple
GPUs to reduce the overall optimization time. There are a variety of multi-
point proposal techniques that allow MBO to evaluate several different HP
configurations simultaneously30.Aparticularly straightforwardmethod is to
use the UCB (upper confidence bound) infill criterion31: Given a parameter
λ, it uses the mean prediction of the surrogate model and adds λ times the
model’s uncertainty, thereby giving an optimistic bias to regions that have

high uncertainty and therefore potential for improvement. By sampling
multiple instances of the λ-parameter from an exponential distribution32,
effectively making different tradeoffs between exploration and exploitation,
one can generate different point propositions to be evaluated simulta-
neously. It is used by our method because, despite its simplicity, it is one of
the best-performing MBO parallelization methods30.

In addition to parallelizing individual MBO runs, we also identify
setups that are likely to lead to different optimal configurations, and whose
optimization can therefore be run independently and in parallel:WhichHP
settings are optimal, such as specific kernel sizes or number of filters, may
vary for different sequence lengths. Similarly, optimal values may differ for
CNN-GAP and CNN-RNN, and they may also change depending on
whether residual blocks are used. Therefore, the optimization proceeds in a
fully crossed design of these choices: The length of the training mini-
sequence (in our experiments we investigated both 150 nt, 250 nt, and
10,000 nt), the architecture (CNN-GAP or CNN-RNN), and whether
residual connections are used. These optimization runs are independent of
each other and can be run in parallel.

0.3

0.4

0.5

0.6

0.7

0 100 200 300

Evaluation progress (hours)

E
va

lu
a

tio
n

 a
cc

u
ra

cy

Optimization progress

Search space (scaled)

E
va

lu
a

te
d

 h
yp

e
rp

a
ra

m
e

te
rs

 (
1

0
,0

0
0

 n
t)

0.00 0.25 0.50 0.75 1.00

Learning rate

Dropout

First filter size

Last filter size

First kernel size

Last kernel size

Total max-pooling

Last dilation factor

Units of dense layers

Momentum of batch-norm

Leaky-ReLU alpha value

Skip ratio for GAP

Recurrent units

Batch size

models
trained for 2h

models
trained for 6h

Top 10%Evaluated Best

Convolution
(5, 623)

Max
Pool(2)

BatchNorm &

LeakyReLU

Convolution
(7, 375)

BatchNorm &

LeakyReLU

Convolution
(45, 30)

Concatenate

Dropout
(0.226)

Dense
(284, tanh)

Dropout
(0.226)

Dense
(284, tanh)

Convolution
(10, 226)

BatchNorm &

LeakyReLU

Convolution
(14, 137)

BatchNorm &

LeakyReLU

Convolution
(21, 83)

BatchNorm &

LeakyReLU

Convolution
(30, 50)

BatchNorm &

LeakyReLU

Dense
(3, softmax)

Global
Average
Pooling

Global
Average
Pooling

Input
(150,4)

Output (3)

Max
Pool(2)

Max
Pool(2)

Optimized architecture

a b

c

Evaluated hyperparameters

Fig. 2 | Overview of the optimization procedure and results on the viral
classification task.We evaluated the performance of the models proposed by our
optimization framework on a viral classification task and compared them to various
baseline methods for sequence lengths of 150 and 10,000 nt to evaluate for appli-
cation at the read and (large) contig level (Table 2). a The progress of hyperpara-
meter optimization for 150 nt sequence length. Models are trained for 2 h and then
6 h at different stages of the optimization. A better set of hyperparameters is dis-
covered as the optimization proceeds. b Evaluated values in the hyperparameter
optimization for 6 h of training time and a sequence length of 10,000 nt. The search
range (Table 1) of each hyperparameter is normalized in the plot. Dark circles

indicate the top 10% of evaluated configurations clustered around favorable values.
The best-selected configuration (vertical red lines) often lies within this cluster. cThe
model selected by the hyperparameter optimization stage for a sequence length of
150 is shown (CNN-GAP-6 h in Supplementary Table 1). The values in parentheses
indicate kernel size and number of filters for convolutional layers, units and acti-
vation for dense layers, and both pool size and stride values for max-pooling layers.
Since ncb is 7, there are seven convolutional layers with increasing kernel size and
decreasing number of filters along the model. Since the GAP skip ratio is 72%, only
the outputs of the last two convolutional layers are pooled and concatenated in the
GAP block. This is followed by two dense hidden layers with tanh-activation.

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 4

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

50

GenomeNet-Architect finds models that outperform expert-
designed baseline models in the viral identification task
GenomeNet-Architect demonstrated superior performance on the
virus classification task compared to other deep learning (DL) and
non-deep learning methods that we selected as baselines, effectively
distinguishing between sequences originating from bacterial chro-
mosomes, prokaryotic viruses (referred to as bacteriophages) and
eukaryotic viruses (referred to as viral non-phage DNA). We have
tested the effectiveness of GenomeNet-Architect against baselines for
classification at the read-level (150 nt long sequences) and at the
contig-level (10,000 nt) separately. At the read level, GenomeNet-
Architect reduces the class-balanced misclassification rate, i.e., the
misclassification rate averaged over all classes, by 19%, while having
83% fewer parameters and achieving 67% faster inference time
compared to the best DL baseline (Fiannaca10) and outperforms k-
mer-based and alignment-based approaches for sequence classifica-
tion (Fig. 3a, Supplementary Table 2). At the contig-level, the best
model found by our method achieves a class-balanced misclassifica-
tion rate of 1.21%, outperforming the best baseline (1.36%) while
being 82% smaller. GenomeNet-Architect also finds a model that
performs comparably to the baseline (1.41%) while having a factor of
117 times fewer parameters (Fig. 3b, Supplementary Table 1). For a
fair comparison, we trained and validated all DL baseline models on
the same dataset and dataset splits. Additionally, we standardized the
configuration by adapting the output layer of each model and
employing multi-class cross-entropy as the loss function, aligning
with our models to facilitate three-class classification. This approach
allows for a direct comparison of algorithmic improvements.

We show the best configuration found for this classification task using
10,000 nt sequences (red lines), as well as the top 10% configurations (solid
circles) in front of all evaluated configurations (transparent circles) (Fig. 2b)
and a diagram visualizing the optimized architecture for the classification
task using 150 nt (Fig. 2c). We also analyzed the performance of the opti-
mized model stratified by the degree of genomic differences to the training
data. Our findings show that it consistently outperforms the Fiannaca
baseline, demonstrating thatGenomeNet-Architect’s performance does not
come from overfitting on sequences that occur in the training dataset
(Supplementary Fig. 1). The superior performance persists evenwhen reads
are simulated with the Illumina read error profile, underscoring the tool’s
effectiveness across diverse genomic sequencing challenges (Supplemen-
tary Fig. 2).

GenomeNet-Architect identifiesmodels that outperform expert-
designed baselines in the pathogenicity detection task
To further validate the versatility ofGenomeNet-Architect,we extendedour
experiments to a second task: pathogen detection in bacteria, specifically to
distinguish between pathogenic and non-pathogenic sequences in human
hosts. We aligned our evaluation with the baseline values reported in the
study of Bartoszewicz et al.13, utilizing the same search space for the viral
classification task andhyperparameter optimization stage,wheremodels are
optimized for 2 h. We also fine-tuned the pre-trained DNABERT33 (6-mer
model), using the suggested hyperparameter settings given for fine-tuning
on themethod’s GitHub page.We added it as an additional baseline for this
task tomake our benchmarkmore comprehensive. GenomeNet-Architect’s
optimized models outperform all baseline models, showing substantial
improvement in pathogenicity detection (up to 11% improvement,
see Fig. 4).

Additionally, we adapted the models originally optimized for the viral
classification (initially optimized for sequences of 150 nt, CNN-RNN-6h,
and CNN-GAP-6h) by adjusting the input size to 250 nt to evaluate how
well performance of an architecture optimized for one task transfers to a
different task and conditions. These architectures are renamed tohave “VC”
(short for viral classification) as a suffix. The comparable performance of
“VC”models to models detected by GenomeNet-Architect on this dataset
“GAP-CNN” and “GAP-RNN” shows good transfer between related tasks
on genome data (Fig. 4).

To enhance the predictive accuracy and robustness, we explored the
efficacy of ensemble approaches, a technique that combinesmultiplemodel
predictions, akin to the approach presented in Bartoszewicz et al.13, merging
RC-LSTMandRC-CNNmodels into an RC-CNN+ LSTM ensemble. Our
experiments with ensemble models, including GAP+ RNN-VC, GAP+
RNN, and the 4-model ensemble combining both CNN-RNN and CNN-
GAP variants, demonstrate a notable decrease in misclassification rates.
Specifically, the 4-model ensemble reduced misclassification rates by 11%
compared to the RC-CNN+ LSTM baseline, with a single model
improvement of 8% for CNN-GAP-VC versus RC-CNN.

Discussion
GenomeNet-Architect defines an HP configuration search space for neural
architectures that extends and generalizes successful genome data archi-
tectures from the past. This adaptable search space is coupled with an
efficient black-box optimization method that can generate more optimal
network architectures for genome-related tasks compared to expert-

Fig. 3 | Predictive performance and characteristics
of models found by GenomeNet-Architect and
various baselines on the viral classification task.
The inference time to classify 10,000 one hot encoded
samples on a GPU and the class-balanced accuracy are
shown. The size of the circles indicates the number of
model parameters. We have not included Seeker8 in
both graphs and PPR-Meta11 for long sequences
because their performance was too low. a At the read-
level (150 nt), the best-performing model selected by
GenomeNet-Architect (CNN-GAP-6h) reduces the
read-level misclassification rate by 19% relative to the
best-performing deep learning baseline - Fiannaca10,
despite having 83% fewer parameters and 67% faster
inference time.bAt the contig-level (10,000nt),models
found by GenomeNet-Architect perform on par or
better than the best-performing baseline, although
all thesemodels performverywell in terms of accuracy.
However, much faster (CNN-GAP-2h) and much
smaller (CNN-RNN-6h) models are found, all with
balanced accuracy close to the best baseline (~ 98.6%).

Short sequences (150 nt) Long sequences (10,000 nt)

Performance comparison

Time Required to Classify 10,000 samples (s)

C
la

ss
−

B
a

la
n

ce
d

 A
cc

u
ra

cy

5101520

Model parameters [M]

Baseline models

Optimized models

a b

CNN−GAP−2h

CNN−RNN−2h

CNN−GAP−6h
CNN−RNN−6h

Fiannaca

DeepVirFinder

Viraminer

CHEER

RC−ResNet−18

20 30 40

0.975

0.980

0.985

CNN−GAP−6h

CNN−RNN−6h

CNN−RNN−2h

CNN−GAP−2h

Fiannaca

Viraminer

DeepVirFinder

CHEER PPR−Meta

RC−ResNet−18

0.3 1.0 3.0 10.0

0.65

0.70

0.75

0.80

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 5

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

51

designed architectures. With GenomeNet-Architect, researchers can iden-
tify better models when applying DL to genomic datasets.

The search space used by GenomeNet-Architect leads to resulting
architectures that are similar to other models used in the literature, and the
individual components of the resulting architecture therefore have similar
interpretations. The convolutional layer can be thought of as a pattern-
matching method that encodes the presence of motifs in short sub-
sequences. The global pooling layer then aggregates the information about
specific patternswithin the entire sequence.A global average pooling (GAP)
layer measures the relative frequency of these patterns, as opposed to the
encoding of the presence of individual patterns that are recorded in some
models that use global max-pooling (GMP). Models using RNNs, on the
other hand, are able to predict outcomes based on the spatial relationships
between different patterns and can learn long-term dependencies8,34. The
following fully connected layers are used to learn complex relationships
between detected patterns and can be used in both GAP and RNN-based
models20.

The DeepVirFinder6 model is an architecture that uses pooling, with a
convolutional layer, followed by a global max-pooling layer and a fully
connected layer. TheViraMiner7model builds on theDeepVirFindermodel
and proposes two branches called frequency and pattern branches, using
either GAP (frequency branch) or GMP (pattern branch) after separate
convolutional layers. In both branches, a fully connected layer follows, after
which their output vectors are concatenated. Finally, another fully con-
nected layer classifies whether a 300 nt sequence is human or viral DNA.
Since Tampuu et al.7 showed that the GAP alone achieves higher perfor-
mance than the GMP alone, we did not include GMP in our search space.
Another similarly structured architecture for viral classification is the
CHEERmodel9. In thismodel, reads from250 nt sequences are fed into four
different convolutional layers with different kernel sizes: 3, 7, 11, and 15.
Global max-pooling layers follow each convolutional layer, after which the
paths are concatenated. Similar to other architectures, multiple fully con-
nected layers follow the concatenation.

DeepMicrobes is another RNN-based DL model developed for viral
identification. The model consists of a 12-mer embedding layer, a bidirec-
tional LSTM layer, a self-attention layer, and several fully connected layers.
The convolutional layer in this model learns local representations, and the
recurrent layer can learn long-term dependencies within these local repre-
sentations in a sequential manner.

AlthoughDLmodels based on raw nucleotide sequences are common,
there are also alternatives. One example is Fiannaca-CNN10, which is a
model for bacterial classification. The model uses the number of k-mer
occurrences as input, which is fed into convolutional layers followed by
max-pooling layers and fully connected layers. We used k = 7 (7-mers) in
our experiments because they show that the highest accuracy is achieved
using this HP. Another example is PPR-Meta11, which is used to classify if
the sequence is a plasmid, chromosome, or phage. The input to themodel is
both one-hot encoded nucleotides and 3-mers. In addition, the reverse-
complements of the original inputs are concatenated to the original
sequence for both inputs. The model consists of two different three con-
volutional layers, the outputs of which are global average pooled, con-
catenated, and fed into a fully connected layer. There are also max-pooling
and batch-normalization layers after the first two convolutional layers.

Our HPO results provide valuable insight into the design and training
of architectures for specific tasks and datasets. For example, increasing the
kernel size, number of filters, and layers in convolutional networks can
substantially increase both the number of trainable parameters andmemory
requirements, resulting in a trade-off. Many existing models, such as
DeepVirFinder6, ViraMiner7 or CHEER9, are limited to a single (ormultiple
but parallelized, not sequential) convolutional layer with a large kernel size
(up to ~15) and a large number of filters (~ 1000). Although PPR-Meta11

proposes a deepermodel (3 sequential convolutional layers), it compensates
by reducing the kernel size (down to 3). Our HPO framework has dis-
covered an architecture that performs better on viral classification in terms
of accuracy: deeper (7 convolutional layers) with a smaller number of filters
in the final convolutional layers (as low as 30).

In examiningmodel architectures that performwell across twodatasets
and three different sequence lengths, we sought to identify common trends
and patterns in their architecture designs. Our analysis reveals that archi-
tectures with GAP layers typically incorporatemore convolutional layers (5
to 7, as opposed to 1 to 5 inRNNmodels) andmore fully connected layers (1
or 2, vs. 0 or 1) (Supplementary Table 1). The preference for GAP layers is
likely due to their function in aggregating information learned by con-
volutional layers through averaging over the sequence, instead of learning
representations by optimizing its own weights. Compared to CNN-RNN
models, CNN-GAP models mainly use fully connected layers to integrate
long-range information. Furthermore, LSTM layers are consistently pre-
ferred to GRU layers. Our findings also indicate a general avoidance of

Fig. 4 | Comparative analysis of misclassification
rates in the pathogenicity detection task. The
baselinemodels are shown in gray, while the red bars
indicate the models developed by GenomeNet-
Architect. The data for the dataset itself and the
baseline results, with the exception of DNABERT33,
were derived from the DeePaC study13. In addition,
the pre-trained DNABERT33 model is fine-tuned on
this task and added as a baseline. The graph shows
individual model performance along with the
improved performance archived by the ensemble
approaches and highlights the superior performance
of the GenomeNet-Architect models over various
baselines.

0.335

0.219

0.167 0.156 0.147 0.1430.147 0.1460.152 0.1390.140 0.136

EnsembleSingle Single Ensemble

BLA
ST

PaP
rB

aG

DNABERT

RC−C
NN

RC−C
NN+L

STM

CNN−R
NN

CNN−R
NN−V

C

CNN−G
AP

CNN−G
AP−V

C

GAP+R
NN

GAP+R
NN−V

C

4−
m

od
el

M
is

cl
a

ss
ifi

ca
tio

n
 r

a
te

Performance on the pathogenicity detection task

Baseline models Optimized models

0.0

0.1

0.2

0.3

RC−L
STM

0.162

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 6

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

52

multiple recurrent layers, while bidirectional RNN layers are preferred over
unidirectional ones. In terms of training hyperparameters, the optimized
learning rate is typically between 10−3 and 10−4 with the Adam35 optimizer
more commonly chosen over alternatives like Adagrad36, Rmsprop, and
SGD37. It is important to note, however, that these trends are observations
and may not universally apply to every dataset or task. Therefore, we
recommend runningGenomeNet-Architect on the specific dataset and task
in question to tailor themodel architecture for optimal performance in each
unique scenario.

The results of the 10,000 nt setting in contrast to the 150 nt setting are
noteworthy in that there is a much smaller improvement in accuracy over
the baselines in the 10,000 nt setting. This is because the viral identification
task becomes “too easy” at 10,000 nucleotides, leaving little room for
improvement. In such settings, where relatively simple models already
perform sufficiently well, it may not be worth the considerable computa-
tional overhead of finding a specialized architecture.

Method
Hyperparameter search space
The hyperparameter space used for optimization is listed in Table 1 and
described in more detail here.

The first part of the model constructed by GenomeNet-Architect
consists of a sequenceof convolutional blocks (Fig. 1), eachofwhich consists
of convolutional layers. The number of blocks (Ncb) and the number of
layers in eachblock (scb) is determined by theHPsncb andnc in the following
way:Ncb is directly set to ncb unless nc (which relates to the total number of
convolutional layers) is less than that. Their relation is therefore

Ncb ¼
nc; if nc ≤ ncb
ncb; otherwise

�

scb is calculated by rounding the ratio of the nc hyperparameter to the
actual number of convolutional blocks Ncb:

scb ¼ round
nc
Ncb

� �
:

This results in nc determining the approximate total number of con-
volutional layers while satisfying the constraint that each convolutional
block has the same (integer) number of layers. The total number of con-
volutional layers is then given by

Nc ¼ Ncb × scb:

f0 and fend determine the number of filters in the first or last con-
volutional layers, respectively. The number offilters in intermediate layers is
interpolated exponentially. If residual blocks are used, the number of filters
within each convolutional block needs to be the same, in which case the
number of filters changes block-wise. Otherwise, each convolutional layer
canhave adifferentnumberoffilters. If there is onlyone convolutional layer,
⌈f0⌉ is used as the number of filters in this layer. Thus, the number of filters
for the ith convolutional layer is:

f i ¼ f 0 ×
f end
f 0

� �j ið Þ& ’
; j ið Þ ¼

i
scb

j k
× 1

Ncb�1 ; if res block

i
Nc�1 ; otherwise

8<
: :

The kernel size of the convolutional layers is also exponentially inter-
polated between k0 and kend. If the model has only one convolutional layer,
the kernel size is set to ⌈k0⌉. The kernel size of the convolutional layer i is:

ki ¼ k0 ×
kend
k0

� � i
Nc�1

& ’
:

The convolutional layers can use dilated convolutions, where the
dilation factor increases exponentially from 1 to dend within each con-
volutional block.Using “rem” as the remainderoperation, thedilation factor
for each layer is then:

di ¼ d
i rem scbb cð Þ= scb�1ð Þ

end

l m
:

We apply max-pooling after convolutional layers, depending on the
total max-pooling factor pend. Max pooling layers of stride and a kernel size
of 2 or the power of 2 are inserted between convolutional layers so that the
sequence length is reduced exponentially along the model. pend represents
the approximate value of total reduction in the sequence length before the
output of the convolutional part is fed into the last GAP layer or into the
RNN layers depending on the model type.

For CNN-GAP, outputs from multiple convolutional blocks can be
pooled, concatenated, and fed into a fully connected network. Out of Ncb

outputs, the lastmin(1, ⌈(1− rs) ×Ncb⌉) of them are fed into global average
pooling layers, where rs is the skip ratio hyperparameter.

Hyperparameter optimization process
GenomeNet-Architect uses themlrMBOsoftware38with aGaussian process
model from the DiceKriging R package39 configured with a Matérn-3/2
kernel40 for optimization. It uses the UCB31 infill criterion, sampling λ from
an exponential distribution as a batch proposal method32. In our experi-
ment, we proposed three different configurations simultaneously in each
iteration.

For both tasks, we trained the proposed model configurations for a
given amount of time and then evaluated them afterwards on the validation
set. For each architecture (CNN-GAP and CNN-RNN) and for each
sequence length of the viral classification task (150 nt and 10,000 nt), the
best-performingmodel configuration foundwithin the optimization setting
(2 h, 6 h) was saved and considered for further evaluation. For the patho-
genicity detection task,weonly evaluated the 2 hoptimization. For each task
and sequence length value, the first t= t1 (2 h) optimization evaluated a total
of 788 configurations, parallelized on 24 GPUs, and ran for 2.8 days (wall
time). For the viral classification task, the warm-started t = t2 (6 h) opti-
mization evaluated 408 more configurations and ran for 7.0 days for each
sequence length value.

During HPO, the number of samples between model validation eva-
luationswas set dynamically, dependingon the time taken for a singlemodel
training step. It was chosen so that approximately 20 validation evaluations
were performed for each model in the first phase (t = 2 h), and approxi-
mately 100 validation evaluations were performed in the second phase (t =
6 hours). In the first phase, the highest validation accuracy found during
model trainingwasused as the objective value tobeoptimized. In the second
phase, the second-highest validation accuracy found in the last 20 validation
evaluations was used as the objective value. This was done to avoid
rewarding models with a very noisy training process with performance
outliers.

The batch size of each model architecture is chosen to be as large as
possible while still fitting into GPU memory. To do this, GenomeNet-
Architect performs a binary search to find the largest model that still fits in
the GPU and subtracts a 10% safety margin to avoid potential training
failures.

Architecture evaluation and benchmarks
For the viral classification task, the training and validation samples are
generated by randomly sampling FASTA genome files and splitting them
into disjoint consecutive subsequences from a random starting point. A
batch size that is a multiple of 3 (the number of target classes) is used, and
each batch contains the same number of samples from each class. Since we
work with datasets that have different quantities of data for each class, this
effectively oversamples the minor classes compared to the largest class. The
validation set performance was evaluated at regular intervals after training

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 7

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

53

on a predetermined number of samples, set to 6,000,000 for the 150 nt
models and 600,000 for the 10,000 nt models. The evaluation used a sub-
sample of the validation set equal to 50% of the training samples seen
between each validation. During the model training, the typical batch size
was 1200 for the 150 nt models, and either 120, 60, or 30 for the 10,000 nt
models. Unlike during training and validation, the test set samples were not
randomly generated by selecting randomFASTA files. Instead, test samples
were generated by iterating through all individual files, and using con-
secutive subsequences starting from the first position. For the pathogenicity
detection task, the validation performancewas evaluated at regular intervals
on the complete set, specifically once after training on 5,000,000 samples.
The batch size of 1000 was used for all models, except for GAP-RNN, as it
wasnotpossiblewith thememoryofourGPU.For thismodel, a batchsizeof
500 was used.

For both tasks, we chose a learning rate schedule that automatically
reduced the learning rate byhalf if the balancedaccuracydidnot increase for
3 consecutive evaluations on the validation set. We stopped the training
when the balanced accuracy did not increase for 10 consecutive evaluations.
This typically corresponds to stopping the training after 40/50 evaluations
for the 150ntmodels, 25/35 evaluations for the10,000ntmodels for the viral
classification tasks, and 5/15 evaluations for the pathogenicity
detection task.

To evaluate the performance of the architectures and HP configura-
tions, the models proposed by GenomeNet-Architect were trained until
convergence on the training set; convergence was checked on the validation
set. The resultingmodels were then evaluated on a test set that was not seen
during optimization.

Datasets
For the viral classification task, we downloaded all complete bacterial and
viral genomes fromGeneBank and RefSeq using the genome updater script
(https://github.com/pirovc/genome_updater) on 04-11-2020 with the
arguments -d “genbank,refseq” -g “bacteria”/”viral” -c “all” and -l “Com-
plete Genome”. To filter out possible contamination consisting of plasmids
and bacteriophages, we removed all genomes from the bacteria set with
more thanone chromosome.Filteringout plasmidsdue to their inconsistent
and poor annotations in databases avoids introducing substantial noise in
sequence and annotation since they can be incorrectly included or excluded
in genomes. We used the taxonomic metadata to split the viral set into
eukaryotic or prokaryotic viruses. Overall this resulted in three subgroups:
bacteria, prokaryotic bacteriophages, and eukaryotic viruses (referred to as
non-phage viruses, Table 2). To assess the model’s generalization perfor-
mance,we subset the genomes into training, validation, and test subsets.We
used the “date of publishing”metadata to split the data by publication time,
with the training data consisting mostly of genomes published before 2020,
and the validation and test data consisting of more recently published
genomes. Thus, when applied to newly sequenced DNA, the classification
performance of the models on yet unknown data is estimated. For smaller
datasets, using average nucleotide identity information (ANI) generated
with tools such asMashtree41 to perform the splits can alternatively be used
to avoid overlap between training and test data.

The training data was used for model fitting, the validation data was
used to estimate generalization performance during HPO and to check for
convergence during final model training, and the test data was used to
compare final model performance and draw conclusions. The test data was

not seen by the optimization process. The training, validation and test sets
represent approximately 70%, 20%, and 10% of the total data, respectively.

The number of FASTA files in the sets and the number of non-
overlapping samples in sets of the viral classification task are listed in
Table 2. Listed is the number of different non-overlapping sequences that
could theoretically be extracted from the datasets, were they split into
consecutive subsequences. However, whenever the training process reads a
file again, e.g. in a different epoch, the starting point of the sequence to be
sampled is randomized, resulting in a much larger number of possible
distinct (though overlapping) samples. Because the size of the test set is
imbalanced, we report class-balancedmeasures, i.e. measures calculated for
each class individually and then averaged over all classes.

For thepathogenicity classification task,wedownloaded thedataset from
https://zenodo.org/records/367856313. Specifically, the used training files are
nonpathogenic_train.fasta.gz, pathogenic_train.fasta.gz, the used validation
files are pathogenic_val.fasta.gz, nonpathogenic_val.fasta.gz, and the used test
files are nonpathogenic_test_1.fasta.gz, nonpathogenic_test_2.fasta.gz,
pathogenic_test_1.fasta.gz, pathogenic_test_2.fasta.gz.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The data for the virus identification task is available under https://research.
bifo.helmholtz-hzi.de/downloads/deepg_refpacks/architect_training_data.
tar.gz. Data for the pathogen detection task is taken from a study of Bar-
toszewicz et al.13 https://zenodo.org/records/3678563 as mentioned in the
Datasets subsection. Source data for figures can be found in Supplementary
Data 1 as well as on https://github.com/GenomeNet/Architect (https://doi.
org/10.5281/zenodo.10889923).

Code availability
The code, available at https://github.com/GenomeNet/Architect, enables
users to apply theoptimizationprocess across variousdatasets and tasks. It is
based on our R library deepG (deepg.de) and can therefore be adapted to a
variety of genomics tasks that are supported by it. It uses the TensorFlow
backend and can be made to run in parallel on multi-GPU-machines and
compute clusters through the batchtools42 R package.

Received: 8 February 2023; Accepted: 8 April 2024;
Published online: 30 April 2024

References
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436–444 (2015).
2. AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 35,

4862–4865 (2019).
3. Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional

Networks for Biomedical Image Segmentation. in Medical Image
Computing and Computer-Assisted Intervention –MICCAI 2015
234–241 (Springer International Publishing, 2015).

4. Daoud, M. & Mayo, M. A survey of neural network-based cancer
prediction models from microarray data. Artif. Intell. Med. 97,
204–214 (2019).

Table 2 | Description of the datasets used in our experiments

Number of FASTA Files Number of Sequences (L = 150) Number of Sequences (L = 10k)

Class Training Validation Test Training Validation Test Training Validation Test

Bacteria 15,826 4523 2263 373,404,076 118,398,785 59,111,408 5,579,451 1,772,121 881,031

Virus (non-Phage) 18,093 5171 2588 2,262,526 568,717 458,526 20,075 5552 5350

Bacteriophage 9987 2855 1428 4,702,821 1,301,375 609,088 64,937 18,031 8400

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 8

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

54

5. Patterson, J. & Gibson, A. Deep Learning: A Practitioner’s Approach.
(‘O’Reilly Media, Inc.’ 2017).

6. Ren, J. et al. Identifying viruses from metagenomic data using deep
learning. Quant. Biol. 8, 64–77 (2020).

7. Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep
learning on raw DNA sequences for identifying viral genomes in
human samples. PLoS One 14, e0222271 (2019).

8. Auslander, N., Gussow, A. B., Benler, S., Wolf, Y. I. & Koonin, E. V.
Seeker: alignment-free identification of bacteriophage genomes by
deep learning. Nucleic Acids Res. 48, e121 (2020).

9. Shang, J. & Sun, Y. CHEER: HierarCHical taxonomic classification for
viral mEtagEnomic data via deep learning.Methods 189,
95–103 (2021).

10. Fiannaca, A. et al. Deep learning models for bacteria taxonomic
classification of metagenomic data. BMC Bioinformatics 19,
198 (2018).

11. Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids
from metagenomic fragments using deep learning. Gigascience 8,
giz066 (2019).

12. Bartoszewicz, J. M., Nasri, F., Nowicka, M. & Renard, B. Y. Detecting
DNA of novel fungal pathogens using ResNets and a curated fungi-
hosts data collection. Bioinformatics 38, ii168–ii174 (2022).

13. Bartoszewicz, J. M., Seidel, A., Rentzsch, R. & Renard, B. Y. DeePaC:
predicting pathogenic potential of novel DNA with reverse-
complement neural networks. Bioinformatics 36, 81–89 (2019).

14. Elsken, T., Metzen, J. H., & Hutter, F. Neural architecture search: A
survey. J. Machine Learn. Res. 20, 1–21 (2019).

15. Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep learning: new
computational modelling techniques for genomics. Nat. Rev. Genet.
20, 389–403 (2019).

16. Koumakis, L. Deep learning models in genomics; are we there yet?
Comput. Struct. Biotechnol. J. 18, 1466–1473 (2020).

17. Boža, V., Brejová, B. & Vinař, T. DeepNano: Deep recurrent neural
networks for base calling in MinION nanopore reads. PLoS One 12,
e0178751 (2017).

18. Cao, R. et al. ProLanGO: Protein Function Prediction Using Neural
Machine Translation Based on a Recurrent Neural Network.
Molecules 22, 1732 (2017).

19. Shen, X., Jiang, C., Wen, Y., Li, C. & Lu, Q. A brief review on deep
learning applications in genomic studies. Front. Syst. Biol., 2,
877717 (2022).

20. Wang, R., Zang, T. & Wang, Y. Human mitochondrial genome
compression usingmachine learning techniques.Hum.Genomics13,
49 (2019).

21. Quang, D. & Xie, X. DanQ: a hybrid convolutional and recurrent deep
neural network for quantifying the function of DNA sequences.
Nucleic Acids Res. 44, e107 (2016).

22. Snoek, J., Larochelle, H. & Adams, R. P. Practical bayesian
optimization ofmachine learning algorithms.Adv. Neural Inf. Process.
Syst. 25, (2012).

23. White, C., Neiswanger, W., & Savani, Y. Bananas: Bayesian
optimization with neural architectures for neural architecture search.
In Proceedings of the AAAI conference on artificial intelligence (Vol.
35, No. 12, pp. 10293–10301) (2021).

24. Pham, H., Guan, M., Zoph, B., Le, Q. & Dean, J. Efficient Neural
Architecture Search via Parameters Sharing. 80, 4095–4104 (2018).

25. Liu, H., Simonyan, K. & Yang, Y. DARTS: Differentiable Architecture
Search. arXiv [cs.LG] (2018).

26. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A. & Talwalkar, A.
Hyperband: A novel bandit-based approach to hyperparameter
optimization. arXiv [cs.LG] (2016).

27. Zhang, Z., Park, C. Y., Theesfeld, C. L. & Troyanskaya, O. G. An
automated framework for efficiently designing deep convolutional
neural networks in genomics. Nat. Machine Intell. 3, 392–400 (2021).

28. Kelley, D. R. et al. Sequential regulatory activity prediction across
chromosomes with convolutional neural networks. Genome Res. 28,
739–750 (2018).

29. Booker, A. J. et al. A rigorous framework for optimization of expensive
functions by surrogates. Struct. Optimization 17, 1–13 (1999).

30. Bischl, B., Wessing, S., Bauer, N., Friedrichs, K. & Weihs, C. MOI-
MBO: Multiobjective Infill for Parallel Model-Based Optimization. in
Learning and Intelligent Optimization 173–186 (Springer International
Publishing, 2014).

31. Srinivas,N., Krause, A., Kakade,S.M.&Seeger,M.GaussianProcess
Optimization in the Bandit Setting: No Regret and Experimental
Design. arXiv [cs.LG] (2009).

32. Hutter, F., Hoos, H. H. & Leyton-Brown, K. Parallel Algorithm
Configuration. in Learning and Intelligent Optimization 55–70
(Springer Berlin Heidelberg, 2012).

33. Ji, Y., Zhou, Z., Liu, H. & Davuluri, R. V. DNABERT: pre-trained
Bidirectional Encoder Representations from Transformers model for
DNA-language in genome. Bioinformatics https://doi.org/10.1093/
bioinformatics/btab083. (2021).

34. Liang, Q., Bible, P. W., Liu, Y., Zou, B. & Wei, L. DeepMicrobes:
taxonomic classification for metagenomics with deep learning. NAR
Genom. Bioinform. 2, lqaa009 (2020).

35. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization.
arXiv [cs.LG] (2014).

36. Stochastic Optimization. Adaptive Subgradient Methods for. https://
www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf (2011).

37. Robbins, H. & Monro, S. A Stochastic Approximation Method. Ann.
Math. Stat. 22, 400–407 (1951).

38. Bischl, B. et al. mlrMBO: A Modular Framework for Model-Based
Optimization of Expensive Black-Box Functions. arXiv
[stat.ML] (2017).

39. Roustant, O., Ginsbourger, D. & Deville, Y. DiceKriging, DiceOptim:
Two R Packages for the Analysis of Computer Experiments by
Kriging-Based Metamodeling and Optimization. J. Stat. Softw. 51,
1–55 (2012).

40. Genton, M. G., Cristianini, N., Shawe-Taylor, J. & Williamson, R.
Classes of kernels for machine learning: A statistics perspective.
https://www.jmlr.org/papers/volume2/genton01a/genton01a.pdf?
ref=https://githubhelp.com.

41. Katz, L. S. et al. Mashtree: a rapid comparison of whole genome
sequence files. J. Open Source Softw. 4, 44 (2019).

42. Lang, M., Bischl, B. & Surmann, D. batchtools: Tools for R to work on
batch systems. J. Open Source Softw. 2, 135 (2017).

Acknowledgements
This work was funded in part by the German Federal Ministry of Education
and Research (BMBF) under Grant No. 01IS18036A and under GenomeNet
Grant No. 031L0199A/031L0199B and by the Deutsche
Forschungsgemeinschaft DFGEXC 2155. P.C.M. received funding from the
German Research Foundation (Grant number 405892038). X.-Y.T. received
funding from the German Center for Infection Research (DZIF) TI BBD. C.H.
received funding from NIH U19AI110820.

Author contributions
H.A.G., M.B., and P.C.M. designed the study and experiments. H.A.G. was
responsible for coding the baselines and optimized architectures, and for
training, evaluating, and analyzing them. H.A.G. drafted the initial
manuscript. R.M. and J.M. contributed to code development. M.B. was the
main developer of the hyperparameter optimization code and the multi-
fidelity approach used. M.B. also supervised and contributed to the model
code, and ran the model-based optimization experiments to find optimal
architectures. G.R. provided computational resources and support. E.A.F.
andC.H. contributed tovirus identificationandbenchmarking.M.R., A.C.M.,
B.B., and X.-Y.T. provided valuable feedback and input throughout the

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 9

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

55

project. The project was supervised by M.B. and P.C.M. All authors con-
tributed to the writing of the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-06161-1.

Correspondence and requests for materials should be addressed to
Philipp C. Münch or Martin Binder.

Peer review information Communications Biology thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editors: Gene Chong and Luke R. Grinham. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024, corrected publication 2024

https://doi.org/10.1038/s42003-024-06161-1 Article

Communications Biology | (2024)7:516 10

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

56

Supplementary Material

Supplementary Results

Task Viral Classification Pathogenicity Detection

Sequence Length 150 10,000 250

Metric CNN-GAP-2h CNN-GAP-6h CNN-RNN-2h CNN-RNN-6h CNN-GAP-2h CNN-GAP-6h CNN-RNN-2h CNN-RNN-6h CNN-GAP CNN-RNN

Learning Rate 0.0002295 0.0002138 0.0002630 0.0014382 0.0003255 0.00027436 0.0001168 0.0004349 0.0002418
0.000325

1

RC as Additional Input True True True True False True True False True True

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam

Model Type GAP GAP RNN RNN GAP GAP RNN RNN GAP RNN

Number of Conv. Layers (nc) 6 9 5 3 5 5 4 1 6 5

Number of Conv. Blocks (ncb) 7 7 3 4 5 7 9 10 7 3

First Kernel Size (k0) 3.7992 4.1379 2.6317 6.0517 7.8576 15.0923 2.8262 12.8539 4.1487 2.6463

Last Kernel Size (kend) 20.9910 44.4341 5.4452 53.4114 2.5291 2.6436 2.7787 58.9992 19.2934 3.4839

First Number of Filters (f0) 777.8104 622.1899 262.3433 378.8905 146.1158 108.9821 60.1536 708.3316 697.8605 147.8401

Last Number of Filters (fend) 22.3111 29.8014 901.9673 57.5173 370.7959 117.3769 401.0379 147.4949 49.6290 748.9535

Last Dilation Factor (dend) 2.1027 3.3495 1.9187 3.2531 11.1640 22.2875 6.0812 57.2750 2.7963 4.6694

Total Max-Pooling (pend) 15.4875 15.7883 14.7550 7.0775 69.7147 83.9126 115.4169 90.8419 21.0560 3.1384

Momentum of Batch-Norm 0.6888 0.7605 0.4730 0.1840 0.7577 0.8495 0.1288 0.1993 0.6945 0.0261

Leaky-ReLU Alpha Value 0.2630 0.0481 0.3142 0.0302 0.8579 0.8018 0.8324 0.2514 0.3399 0.5381

Residual Block False False False True False False True True False False

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

57

Number of Dense Layers 1 2 0 0 2 2 1 0 1 1

Units of Dense Layers 79 284 1474 32 365 470 152 73 101 1033

Dropout 0.1844 0.2257 0.3145 0.2108 0.1406 0.1424 0.3110 0.6830 0.1773 0.3122

Activation of Dense Layers tanh tanh tanh ReLU ReLU ReLU tanh tanh tanh tanh

Recurrent Type - - LSTM LSTM

-

- LSTM LSTM - LSTM

Number of Rec.Layers - - 3 1 - - 1 1 - 1

Uni-/Bi- dir, Rec. Layers - - True True - - True True - True

Recurrent Units - - 19 58 - - 452 23 - 65

Skip Ratio for GAP (rs) 0.6496 0.7169 - - 0.6063 0.5176 - - 0.6457 -

Class-Balanced Accuracy 0.7609 0.7978 0.7788 0.7905 0.9870 0.9864 0.9879 0.9859 0.8541 0.8525

Number of Parameters 2,675,616 3,471,893 8,050,761 1,606,250 1,367,073 714,802 3,704,628 175,426 3,226,246 3,757,059

Supplementary Table 1: Specific hyperparameter values and performance of chosen network architectures.

Shown are the optimized hyperparameters for both CNN-GAP and CNN-RNN models and both viral classification and pathogenicity

detection tasks. For the viral classification task, models are optimized and evaluated to discriminate between bacteria, eukaryotic

viruses, and prokaryotic viruses with two-hour and six-hour runs. 2h and 6h represent the training time allocated to each run during

the hyperparameter optimization, where the 6h optimization was warm-started using the results of the 2h optimization. For the

pathogenicity detection task, only two-hour runs are optimized. The evaluation was performed separately for sequence lengths of

150 nt (viral detection), 10,000 nt (viral detection), and for the pathogenicity classification task. The class-balanced accuracy was

evaluated on a test set not seen during optimization. The best architectures in terms of class-balanced accuracy are shown in bold

for all sequence length values.

Model/Baseline Balanced Accuracy Length (nt)

Bowtie21 71.7% 150

Kraken22 76.0%

Best ML baseline
(Fiannaca3)

75.0%

Optimized model 79.8%

Minimap2 68.1% 10k

Kraken22 89.4%

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

58

Best ML baseline
(Fiannaca3)

98.6%

Optimized model 98.8%

Supplementary Table 2: Balanced accuracy of baselines for the viral classification task, including

non-machine learning baselines. The optimized GenomeNet-Architect model outperforms all baseline models. The bold

values represent the best models.

Supplementary Figure 1: Model performance stratified similarity groups based on the closest sample in the

training set via Bowtie21 alignment. We binned the samples based into the following groups: exact match (alignment) of a

subsample from the test set to the combined training dataset (all groups); 1-5, 6-10, 11-15, and 16-20, and differences of more than

21 nucleotides (nt), respectively. The final bin denotes samples from the test set that had no alignment at all to the training

database, denoted as not aligned (NA) group. We processed these sets from the test datasets using methods to the best-performing

baseline Fiannaca and the optimized method CNN-GAP-6h. While by definition, all samples in the NA group fail to be processed by

the alignment-based baseline, our optimized model CNN-GAP-6h outperformed the best-performing baseline model Fiannaca3 by

8.6 percentage points. Furthermore, our optimized model showed a better performance compared to Fiannaca3 in all bins. When

tested simulated reads that have an Illumina error profile, our optimized models outperform Fiannaca by 10.5 percentage points.

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

59

Supplementary Figure 2: Model performance stratified similarity groups based on the closest sample in the

training set via Bowtie21 alignment for simulated data. To ensure the robustness and applicability of our model to real

sequencing scenarios, we conducted experiments with synthetic reads that included simulated error profiles. These synthetic reads

were generated using the NGSNGS4 tool, a tool designed to simulate sequencing reads with realistic error patterns. This approach

allowed us to model the types of inaccuracies typically encountered in high-throughput sequencing technologies, such as

substitutions, insertions, and deletions, thereby providing a more challenging and realistic test environment for our model.

Supplementary Note 1: Longer Optimization Runs. The optimization procedure can be

restarted several times with increasing values of t (training time of each run in hyperparameter

optimization), using all previous points as warm start data. After setting the training time of the

models to 2 hours and then to 6 hours in the hyperparameter optimization, we further increased

the training time to 20 hours. This optimization evaluated 528 more configurations, added 33.1

days of training, and thus increased the total hyperparameter optimization duration by 170%.

However, we did not observe any increase in the accuracy performance for the sequence length

of 150. For the sequence length of 10,000, the class-balanced misclassification error rate

decreased from 1.21% to 1.11%, while the number of parameters also decreased from 3.7

million to 0.8 million (CNN-RNN-2h vs CNN-RNN-20h). However, we do not find this increase

compelling, as a 0.1 percentage point change is rather small, considering the substantial

increase in total optimization run-time.

Supplementary References

1. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9,

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

60

357–359 (2012).

2. Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using

exact alignments. Genome Biol. 15, 1–12 (2014).

3. Fiannaca, A. et al. Deep learning models for bacteria taxonomic classification of

metagenomic data. BMC Bioinformatics 19, 198 (2018).

4. Henriksen, R. A., Zhao, L. & Korneliussen, T. S. NGSNGS: next-generation simulator for

next-generation sequencing data. Bioinformatics 39, (2023).

5.1 Optimized Model Architectures for Deep Learning on Genomic Data

61

5.2 Neural Architecture Search for Genomic Sequence Data

5.2 Neural Architecture Search for Genomic Sequence Data

Contributing Article

Scheppach A, Gündüz HA, Dorigatti E, Münch PC, McHardy AC, Bischl B, Rezaei M, Binder
M (2023). “Neural Architecture Search for Genomic Sequence Data.” In 2023 IEEE Conference
on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–10.
doi:10.1109/CIBCB56990.2023.10264875

Note: Due to copyright requirements of the publisher (IEEE), the accepted version of the paper
is available in this thesis. Thus, the version in the thesis is not the published version.

Declaration of Contributions

Hüseyin Anil Gündüz contributed to this paper as a co-author with the following
significant contributions:
Hüseyin Anil Gündüz helped with the design of the experiments to a substantial degree, including
proposing the dataset and the baselines of the experiments. Hüseyin Anil Gündüz helped define
the search space and develop the proposed methods, which are some of the major contributions of
the paper. Hüseyin Anil Gündüz contributed significantly to the writing and presentation of the
paper. Hüseyin Anil Gündüz also presented the paper at the IEEE CIBCB 2023 main conference.

Contribution of the coauthors:
Amadeu Scheppach is the first author and main contributor to the project. Amadeu Scheppach
designed most parts of the proposed methods, developed the code, and ran the experiments.
Emilio Dorigatti helped analyze and interpret the results. Mina Rezaei helped with the
supervision of the paper. Martin Binder was the main supervisor of the paper. He helped
with the development of the proposed methods and with the choice of baseline methods. He
also contributed significantly to the writing of the paper and created diagrams showcasing the
architectures. All authors helped with the editing of the paper.

Note: The project was started as Amadeu Scheppach’s master thesis, which he completed. The
thesis was mainly supervised by Mina Rezaei and Martin Binder, who provided supervision and
assistance throughout the entire process. Hüseyin Anil Gündüz, Bernd Bischl, and Philipp C.
Münch helped with the supervision during the thesis.

62

https://dx.doi.org/10.1109/CIBCB56990.2023.10264875

5.2 Neural Architecture Search for Genomic Sequence Data

Copyright License © 2023 IEEE. Reprinted, with permission, from Amadeu Scheppach, Hüseyin
Anil Günddüz, Emilio Dorigatti, Philipp C. Münch, Alice C. McHardy, Bernd Bischl, Mina Rezaei,
Martin Binder, Neural Architecture Search for Genomic Sequence Data, In 2023 IEEE Conference
on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), August
2023.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of LMU Munich’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution,
please go to http://www.ieee.org/publications standards/publications/rights/rights link.html to
learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or Pro-
Quest Library, or the Archives of Canada may supply single copies of the dissertation.

63

Neural Architecture Search for Genomic Sequence
Data

Amadeu Scheppach
Department of Statistics,

LMU Munich
Munich, Germany

scheppachamadeu@yahoo.com

Hüseyin Anil Gündüz
Department of Statistics,

LMU Munich and
Munich Center for Machine Learning

Munich, Germany
anil.guenduez@stat.uni-muenchen.de

Emilio Dorigatti
Department of Statistics,

LMU Munich and
Munich Center for Machine Learning

Munich, Germany
emilio.dorigatti@stat.uni-muenchen.de

Philipp C. Münch
Department for Computational Biology

of Infection Research,
Helmholtz Centre for Infection Research

Braunschweig, Germany
philipp.muench@helmholtz-hzi.de

Alice C. McHardy
Department for Computational Biology

of Infection Research,
Helmholtz Centre for Infection Research

Braunschweig, Germany
alice.mchardy@helmholtz-hzi.de

Bernd Bischl
Department of Statistics,

LMU Munich and
Munich Center for Machine Learning

Munich, Germany
bernd.bischl@stat.uni-muenchen.de

Mina Rezaei
Department of Statistics,

LMU Munich and
Munich Center for Machine Learning

Munich, Germany
mina.rezaei@stat.uni-muenchen.de

Martin Binder
Department of Statistics,

LMU Munich and
Munich Center for Machine Learning

Munich, Germany
martin.binder@stat.uni-muenchen.de

Abstract—Deep learning has enabled outstanding progress on
bioinformatics datasets and a variety of tasks, such as protein
structure prediction, identification of regulatory regions, genome
annotation, and interpretation of the noncoding genome. The
layout and configuration of neural networks used for these tasks
have mostly been developed manually by human experts, which
is a time-consuming and error-prone process. Therefore, there is
growing interest in automated neural architecture search (NAS)
methods in bioinformatics. In this paper, we present a novel
search space for NAS algorithms that operate on genome data,
thus creating extensions for existing NAS algorithms for se-
quence data that we name Genome-DARTS, Genome-P-DARTS,
Genome-BONAS, Genome-SH, and Genome-RS. Moreover, we
introduce two novel NAS algorithms, CWP-DARTS and EDP-
DART, that build on and extend the idea of P-DARTS. We
evaluate the presented methods and compare them to manually
designed neural architectures on a widely used genome sequence
machine learning task to show that NAS methods can be adapted
well for bioinformatics sequence datasets where they outperform
human designers.

Index Terms—Deep Learning, Neural Architecture Search,
Genomics

I. INTRODUCTION

Deep learning (DL) algorithms have shown promising per-
formance when used in biological research and have been

This work was funded in part by the German Federal Ministry of Education
and Research (BMBF) under GenomeNet Grant No. 031L0199B.

successfully used to tackle computational biology problems
[1], [2]. Genomics is one of the largest contributors to large
amounts of data in this field because of recent developments
in sequencing technology [3]. DL is especially well-suited to
tackle learning tasks within genomics, as the data—strings
of nucleotides represented by the letters A, C, G, and T—are
composed of simple individual units that work together to form
abstract, high-level features that are translationally invariant.
This setting closely resembles natural language processing
(NLP) with some crucial differences [4].

When applied to genomic DNA and RNA sequences, DL
has shed new light on molecular regulatory patterns and
helped uncover potential therapeutic targets for various human
diseases [5]–[7]. Predicting the function of non-coding DNA
regions is a particularly interesting task, as 98% of the
human genome is non-coding and 93% of disease-associated
variants lie in these regions [7]. However, most of the DL
architectures in this field are manually designed by human
experts, a time-consuming process that requires extensive
knowledge and experience. A great deal of practical expertise
was accumulated in other fields where DL has been used
in the last decade, resulting in canonical architectures that
are most commonly used in specific prediction tasks, such
as ResNet [8] in computer vision, Transformers [9] in NLP,
and U-Nets [10] in biomedical image segmentation. Although
there has been some research on what kind of models work

5.2 Neural Architecture Search for Genomic Sequence Data

64

well for genomics [11]–[13], the overall amount of work
done in this area is still relatively small. Genome sequence
analysis can therefore profit particularly well from methods
that automatically optimize DL architectures.

Neural Architecture Search (NAS) algorithms automatically
search for the most appropriate DL architecture for a given
prediction task, which typically achieve higher performance
than architectures handcrafted by human experts [14]. This is
challenging, however, since the search space encompasses bil-
lions of different architectures whose performance is computa-
tionally expensive to obtain [15]. NAS methods, therefore, use
various techniques to avoid exhaustive search and to find well-
performing architectures with less computational cost. NAS
approaches can be defined by three fundamental properties
[14]: The search space, which defines a parameterized set
of neural architectures to be considered, the search strategy,
which determines how the NAS algorithm decides which
elements of the search space to evaluate, and the performance
estimation strategy, which is used to gauge the performance
of proposed network architectures, preferably without fully
training each of them from scratch every time.

Out of the three NAS algorithm components listed above,
the search space is most closely tied to the analyzed data
modality. Liu, Simonyan and Yang [16], for example, define
two different search spaces, one for convolutional neural
networks (CNNs) for images, and one for recurrent neural
networks (RNNs) for NLP. However, methods commonly used
for DNA sequences tend to contain both CNN and RNN
layers [11], suggesting that a joint search space containing
both should be used.

Furthermore, since many NAS methods are optimized for
computer vision tasks, they need to pay attention to memory
efficiency, leading to methods that optimize smaller “proxy”
models instead of a final model [16], [17] . Genome sequence
data found in common tasks is less memory intensive than
image data, however, making such proxy models unnecessary
and enabling other kinds of optimizations (see Section III-B).

When choosing a NAS method for a task in genome se-
quence analysis, a researcher is confronted with two important
challenges: first, most NAS algorithms, in particular their
search space, are not appropriate for genome sequences, and
second, there is no benchmark that shows if and how well a
given NAS algorithm works on such data. In this work, we
tackle these problems and therefore list our contributions as
follows:

• We select a diverse set of popular NAS algorithms—
random search, Successive Halving [18], DARTS [16],
P-DARTS [19], BONAS [15]—and adapt them to the
domain of genome sequence data (Section III-A)

• We provide a natural extension of P-DARTS which
we term CWP-DARTS (Continuous Weight Sharing P-
DARTS). It avoids training network weights from scratch
in each of its optimization stages by keeping model size
constant (Sections III-B). This is particularly well-suited
for genomics, where memory efficiency is not as relevant
as in other settings.

• We propose another extension of P-DARTS, EDP-
DARTS (Edge Discarding P-DARTS), which takes the
idea behind P-DARTS a step further by progressively
discarding not only operations, but also edges (Sec-
tion III-C).

• We perform an extensive benchmark study on the well-
established DeepSEA [5] task encompassing 900 GPU
days, where we compare the different NAS methods
against each other and against established expert-designed
models that are commonly used.

II. BACKGROUND AND RELATED WORKS

A. Deep Learning on Genome Sequence Data

DNA molecules, consisting of sequences of Adenine (A),
Guanine (G), Cytosine (C), and Thymine (T) nucleotides, are
part of all known cellular life on earth. The totality of all
DNA sequences within a cell makes up its genome, and the
field of genomics is concerned with understanding the function
and meaning of these sequences. Various machine learning
methods have been used for genomics research [1], [2], [5].
Deep learning is particularly fitting for genomics data, because
of its ability to handle unstructured data efficiently without the
need for preprocessing [20]. The translation-invariant nature of
genome sequences makes them well suited for convolutional
[21] and recurrent [22] neural networks.

An early application of convolutional neural networks for
genome sequence data was the DeepSEA framework [5],
which predicted biochemical properties of parts of the human
DNA. Their model does multi-task prediction for 919 binary
features specifying transcription factor binding, DNase I sen-
sitivity, and histone-mark profiles. Their dataset has become
a reference dataset frequently used as a benchmark by subse-
quent genome sequence models; in this work, we refer to it
as the DeepSEA dataset. Later, [6] proposed DanQ, which is
composed of convolutional and recurrent neural networks fol-
lowed by a fully connected layer and softmax for the DeepSEA
task, while [7] showed its NCNet architecture, composed
of deeper convolutional network with residual connections
besides a recurrent layer, can outperform other networks on
the DeepSEA dataset.

B. Neural Architecture Search

Neural Architecture Search (NAS) was introduced by [23],
who treat the generation of neural architectures as a reinforce-
ment learning problem with the successive configuration of
layers as actions and ultimate network performance as rewards
for an RNN controller network. While in their method, the
controller network is used to generate the entire architecture,
[24] innovate by configuring individual network cells instead
of the entire network: They generate a normal cell, which is a
network of convolutional layers and operations that ultimately
leaves the size of the input constant, and a reduction cell,
which is generally a different network of layers where the
cell input operations have a stride of two, therefore reducing
the size of the input. These two cell types are then applied

5.2 Neural Architecture Search for Genomic Sequence Data

65

consecutively and repeatedly, with different numbers of repeats
for different datasets. This not only reduces the search space
relative to the ultimate network size, but also makes it possible
to optimize an architecture on a relatively simple dataset with
few repeated cells and fast evaluation time, and scale the result
up for a more complex dataset.

Many NAS methods (e.g. [15], [16], [19]) use a search
space that is heavily leaning on the one used in [24], which
they termed the NASNet search space. For this search space,
the possible network configurations of both the normal and
reduction cells are represented as directed acyclic graphs
(DAGs). The DAG for a given cell configuration consists of a
predefined number V of vertices or nodes x(i), i ∈ {1, . . . , V }
that are connected by (directed) edges (i, j) ∈ {1, . . . , V }2.
Each vertex stands for a latent representation of the network’s
input; they are divided into input nodes that have their values
set from incoming data, intermediate nodes, and output nodes.
Each edge is associated with an operation o(i,j)(·) ∈ O.
The value assigned to x(i) for intermediate nodes is the
sum of the operations applied along these edges: x(i) =∑

h∈pred(i) o
(h,i)

(
x(h)

)
, where pred(i) are the predecessors of

i in the DAG. While the predecessors of intermediate nodes
are learned directly by the NAS methods, the predecessors of
the output nodes depend on the rest of the graph; sometimes
they are the set of all intermediate nodes, sometimes only the
set of all intermediate nodes that otherwise have no outgoing
edge.

The original NASNet search space was designed for CNNs
and was therefore mostly used for image data. For CNN
architecture search, the DAG has two input nodes, and all inter-
mediate nodes have exactly two predecessors. The operations
in O are various convolution and pooling operations, as well as
the identity and, for some NAS methods, the zero operation. In
all methods treated in this work, the final network architecture
is formed by sequentially connecting multiple cells, where one
input node of cell n is assigned the output of cell n− 1, and
the other input node is assigned the output of cell n − 2, as
illustrated in Fig. 1. The value of the output node is set to the
concatenation along the filter dimension of its predecessors in
the graph.

While only some methods (e.g. [16]) also use a DAG search
space for RNNs, their search space has a slightly different
setup than the NASNet search space, first developed in this
form by [17], which we will therefore call the ENAS RNN
search space1. The DAG for RNNs has one input node, which
is set to the tanh-activated sum of a linear transformation
of (i) the input data of the current time step, and (ii) the
cell output state of the previous timestep. All intermediate
nodes have exactly one predecessor, and the operations in
O are linear transformations followed by various activation
functions. The value of the output node is set to the average
of its predecessors. Methods using the ENAS RNN search
space usually employ variational dropout [25].

1While [24] also perform NAS for RNNs, they do not use a DAG for it
and have a different search space.

In this work, we combine and adapt the search spaces
described above to include networks that are specifically well-
suited for genome sequence data. Similarly to many other
NAS methods, we use a fixed macro-architecture of blocks
of cells, where the architectures of the cells themselves are
being optimized. However, unlike all other cell-based NAS
methods that we are aware of, we combine both CNN and
RNN cells in a single architecture, since these hybrid models
have so far proven most successful on genome data [11]. The
resulting search space is the product space of the individual
cell search spaces. The overall macro-architecture, as well as
exemplary cell architectures, are shown in Fig. 1. A large
variety of methods exist that can use a DAG-based search
space and this adaption can be used with many of these. In
the following, we shortly describe the NAS methods that we
adapted:

Random Search (RS) is the random sampling of con-
figurations that are then fully evaluated on a given dataset.
It was shown to be relatively efficient for the related field
of hyperparameter optimization [26] due to the low effective
dimensionality of this problem. It can easily be used with any
given search space.

Successive Halving (SH) [27], also called Sequential Halv-
ing [28], was developed for hyperparameter optimization of
iterative machine learning methods, which it treats like a
non-stochastic multi-armed bandit problem. In this setting, an
arm corresponds to a hyperparameter or neural architecture
configuration, and pulling that arm corresponds to training
an iterative model for some iterations and evaluating it on
a validation set. By sequentially continuing to train a model
for more iterations, more information about the configuration
in the limit of model convergence is gained. SH is part of the
popular Hyperband [29] method.

DARTS (Differentiable ARchiTecture Search, [16]) is a
one-shot NAS method that uses a continuous relaxation of the
NASNet / ENAS RNN search spaces to be able to perform
gradient descent optimization on it. Instead of training models
within these discrete search spaces and evaluating them, it
trains a one-shot-model that is parameterized by continuous
architecture parameters α =

{
α(i,j)

}
, in addition to conven-

tional neural network parameters w. α(i,j) is a vector of length
|O| and determines, for edge (i, j), the relative weight of each
operation in O being performed on this edge. In this one-shot
model, every edge (i, j) for i < j is present in the DAG
and performs the operation ō(i,j)(·) = softmax(α(i,j)) · o(·),
with o(·) the vector of all operations in O. DARTS tackles
the bilevel optimization problem where the architecture pa-
rameters α are optimized for the outer loss Lval(w

∗(α),α)
on validation data, given that the model parameters w∗(α)
minimize the inner (training) loss Ltrain(w,α) on training
data. After the DARTS optimization is terminated, a result
architecture is produced by dropping all but the top two
(for the NASNet search space) or top one (for the ENAS
RNN search space) incoming edges for each intermediate
node, based on the largest softmax(α(i,j))-values (ignoring the
coefficient for the zero-operation). For each of the remaining

5.2 Neural Architecture Search for Genomic Sequence Data

66

GCATGTGCGTCGTACAGATTACG...

1 0 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0
0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0

....

....

....

....

2 (in)

7 (out)

1 (in)

....

....

2 (in)

7 (out)

1 (in)

....

....7 (out)

1 (in)

....

....7 (out)

1 (in)

....

....7 (out)

1 (in)

2 (in) 2 (in)

....

....

....

2 (in)

7 (out)

1 (in)

2 (in)

[normal] [normal][reduction 1/2] [reduction 1/2] [reduction 1/2] [reduction 1/3]

1

10

1

10

1

10

1

10

1

10

1

10

1

10

1

10

....

....

....

One-Hot encoded input

Convolutional
Cells

Recurrent Cell

Input DNA-Sequence

Output

1 (in)

3

sep_conv_15

4

max_pool_5

5

conv_15

6

conv_15

2 (in)

skip_connect

7 (out)

avg_pool_5

conv_15

conv_15

1 (in)

3

conv_15

4
max_pool_5

5max_pool_5
6

conv_15

2 (in)
sep_conv_15

conv_15

conv_15
7 (out)

sep_conv_15

x_{t}

1

h_{t-1}

10
(out, h_{t})

2

sigmoid

4

tanh

5

tanh

3

relu 6

tanh

9

tanh

7

tanh

8

identity

Fig. 1. Neural Architectures. Left: Macro-Architecture, i.e. the way in which cells are connected. The input sequence of length n is one-hot encoded as a
4× n matrix and fed through an initial convolution layer. The data is then successively fed through convolutional cells, which get their input from the two
preceding cells. Here, the large transparent arrows represent data processing according to the cell architectures. Reduction cells are used whenever a stride
length of 2 or 3 is used to reduce the sequence length. The output of the last convolutional cell is fed to the recurrent cell as a sequence.
Right: Overall best performing cells (learned by Genome-DARTS algorithm). From top to bottom: normal cell, reduction cell, recurrent (RNN) cell. For the
normal and reduction cell, nodes 1 and 2 are input nodes and node 7, the output node, is set to the concatenated value of all intermediate nodes. In the
recurrent cell, node 1 gets its input from both the input x {t} as well as the output of the previous time step, h {t-1}. The value of the output node 10 is
set to the mean of all intermediate nodes.

edges, the operation (excluding zero) with the largest α(i,j) is
then used.

The one-shot model used in DARTS needs to contain the
weights (and their gradients) of all possible operations O for
all edges (i, j), i < j and therefore needs large amounts of
memory. It is therefore common to perform architecture search
with a relatively small number of cells and possibly even on
an easier “proxy”-task that is different from the target task for
which the network is ultimately used. The performance of the
final model is evaluated with the resulting cell architectures,
but with a larger number of cells and, if applicable, on the
target task.

P-DARTS (Progressive DARTS, [19]) is an extension of
DARTS that tackles what is described as the optimization gap:
The large difference between the model during optimization
(fewer cells, possibly different data, weights optimized in
context of the one-shot model) and evaluation (more cells,
actual evaluation task, weights trained on resulting model
architecture). P-DARTS therefore divides optimization into k

stages, where the initial stage is equivalent to DARTS opti-
mization, but subsequent stages approximate the final model
architecture more closely. This is done by by dropping some of
the operations for each edge O(i,j)

k so that
∣∣∣O(i,j)

k

∣∣∣ = Ok with
monotonically decreasing schedule on number of operations
Ok. In later stages, fewer operations are considered, and the
decreased need of GPU memory for an individual cell makes it
possible to increase the number of cells after each optimization
stage. However, since this changes the overall topology of the
model, it becomes necessary to re-initialize model-weights w
after each stage. A second innovation introduced in P-DARTS
is what [19] call search space regularization, which aims to
reduce the number of identity-operations in the final model.
This is because of the observation that identity operations are
chosen disproportionately since they have unnaturally large
gradients at the beginning of the optimization. P-DARTS uses
a dropout mechanism for this operation with a dropout rate that
slowly decays during optimization. It furthermore introduces
a hyperparameter M that determines the maximum number

5.2 Neural Architecture Search for Genomic Sequence Data

67

of edges with identity operations in the final model; if the
number of identity edges in the naively constructed model
exceeds M , they set the α-components corresponding to
identity connections to 0 for all but the largest M occurrences.

BONAS (Bayesian Optimization NAS, [15]) is a NAS
method that, like DARTS, is a one-shot-model based ap-
proach, where multiple candidate architectures are trained
simultaneously. However, instead of gradient based methods,
it relies on Bayesian Optimization [30] for generating these
candidates. Instead of using a Gaussian Process as surrogate
model, as is often done, BONAS uses a graph-convolutional
network [31] to create a graph-embedding that represents the
DAG and assignment of operations o(i,j) of a given neural
architecture. BONAS performs Bayesian linear regression on
that embedding; the predicted mean and variance are then used
with the UCB acquisition function to select multiple candidate
solutions. These candidates are combined into a single one-
shot model and trained together. The trained weights are then
used to evaluate the performance of the candidate networks
for the optimization.

C. NAS for Genome Data

There have been a few recent attempts to apply existing
NAS methods on genome sequence data. [32] introduced
BioNAS where they modified the NAS of [23] for protein
binding prediction. They consider convolution, pooling, and
fully-connected layers as search space. AMBER [33] used the
Efficient Neural Architecture Search (ENAS, [17]) algorithm
on genome sequences and evaluated it on the DeepSEA tasks.
The AMBER search space includes convolution, dilated, max-
pooling, and ReLU activation. AMBIENT [34] builds on top
of that and uses dataset-characterizing meta-features for faster
convergence. AMBIENT’s search space includes convolution
and as well as recurrent LSTM layers. Unlike our method,
however, they do not optimize the architecture of the recurrent
network itself.

Similarly to these methods, we study NAS algorithms that
operate on genome data. Unlike these works, we provide a
comprehensive study on the search space and explore a NAS
algorithm with both convolutional and recurrent search space.
Specifically, our work differs in that (i) we have adapted
a variety of different NAS methods (DARTS, P-DARTS,
BONAS, SH, and RS; see above) for genomic sequence data,
that (ii) Our search space includes both the convolutional
and the recurrent architecture, and that (iii) we introduce two
novel extensions of P-DARTS named CWP-DARTS and EDP-
DARTS, which we also adapt for biological sequences.

III. METHODS

A. GenomeNAS Search Space

The GenomeNAS search space is created by combining both
the NASNet search space for CNNs and the ENAS search
space for RNNs. The NASNet search space here consists of
the configurations of two disjoint DAGs that describe each
the “normal” and a “reduction” convolutional cell; the ENAS

RNN search space is the configuration space of the DAG
describing the recurrent cell. The operations used for the
convolutional cells differ necessarily from the operations used
in other work focusing on image data, since they are applied
to one-dimensional data, and are chosen to have potentially
relatively large receptive field sizes because DNA data may
have relatively long-range interactions [35].

The operations Ocnn used for the convolutional cells are:
• average pooling (size 5)
• max pooling (size 5)
• convolution (size 15)
• depth-wise separable convolution (size 9 and size 15)
• dilated depth-wise separable convolution (size 9 and size

15, both dilation 2)
• identity (i.e. skip connection)
• zero-operation

. The non-dilated depth-wise separable convolutions are ap-
plied twice to the hidden state as in [24], and as in [16] each
convolution operation is preceded by ReLU activation and
followed by batch normalization. The operations Ornn used
for the recurrent cell are:

• tanh
• sigmoid
• ReLU
• identity (i.e. skip connection)
• zero-operation

. Note that for all cells, the zero-operation is only used by
DARTS-based methods during model search and is never part
of a final network. We follow [16] in that the value of the
output node of each cell is the concatenation (CNN) or average
(RNN) of all intermediate nodes within that cell.

As in [24], the reduction convolutional cells are used to
decrease the input size, while the normal convolutional cells
keep the input size constant. However, since input lengths for
genome sequence tasks can be thousands of nucleotides, it
is beneficial to have more aggressive input size reduction,
thereby increasing the effective receptive field size of later
convolutional operations. We therefore typically use more
reduction cells than used in [24], and also allow reduction
cells to have a step size greater than 2.

The overall network built from the individual cells consists
of normal and reduction convolutional cells stacked as in
[24] that are followed by a single recurrent cell. Both the
convolutional and the recurrent network are then optimized
jointly.

The GenomeNAS search space is used together with the
methods described in Section II-B to form the following meth-
ods: Genome-RS (performing random search over the Genom-
eNAS space), Genome-SH (performing successive halving),
Genome-DARTS (based on [16]), Genome-P-DARTS (based
on [19]), and Genome-BONAS (based on [15]). Because
neural networks for genome sequence data do not tend to be as
deep as for image data, we limit the number of convolutional
cells in the final model. The consequence of this is that, for
Genome-DARTS, the one-shot model used during architecture

5.2 Neural Architecture Search for Genomic Sequence Data

68

search can have the same size as the model used on the
ultimate evaluation task while still fitting in GPU memory,
reducing the optimization gap. This is also true for Genome-P-
DARTS, which, unlike the original P-DARTS, does not (need
to) change the number of cells between optimization stages.

B. CWP-DARTS

The original P-DARTS implementation [19] uses a different
number of cells for each optimization stage, which makes it
necessary to re-initialize the network weights w after each
stage. This means that the architecture search will, at the
beginning of each stage, proceed for a while with a one-shot
model that is relatively distant from an optimal parameteriza-
tion w∗, leading to wasted optimization steps.

We, therefore, propose the CWP-DARTS (Continuous
Weight sharing Progressive DARTS) method, which does
not change the number of cells between optimization stages,
and which therefore makes it possible to continue using the
network weights when starting a new optimization stage. The
other innovations of P-DARTS, namely the continuous reduc-
tion of the search space over operations O(i,j)

k for each stage
k, as well as the search space regularization, can be used as
before. If the final model evaluation task involves a model with
more cells than used during one-shot model optimization, then
this method slightly increases the optimization gap compared
to P-DARTS. It is traded for more efficient optimization within
the optimization stages.

In the context of genome data using the GenomeNAS search
space, we refer to this method as Genome-CWP-DARTS.

C. EDP-DARTS

The original P-DARTS method [19] closes the optimiza-
tion gap to the final model by (among others) reducing the
search space over operations O(i,j)

k for each stage k, thereby
“progressively” reducing the search space towards the final
result and at the same time making the one-shot model more
similar to the ultimate single result architecture. However, even
with this approach, the one-shot model is still a DAG where
most intermediate nodes have more incoming edges than they
will in the final model since the edges are pruned and each
intermediate node retains only one (RNN) or two (CNN) edges
at the end.

We, therefore, propose EDP-DARTS (Edge Discarding P-
DARTS), which builds on the idea of P-DARTS and expands
it by also pruning edges between optimization stages. This is
done by specifying a schedule Ek for the maximum number
of edges that each intermediate node may have at most
at the end of optimization stage k. After each stage, all
edges that are not among the best Ek edges based on their
largest softmax(α(i,j))-value (where the component of the zero
operation is ignored) are dropped. This mirrors the method of
selection for edges to use at the end of the optimization. This
way, the idea behind P-DARTS is taken a step further and
the optimization stages narrow the search space down to the
final model in an even more principled way. In the context

of genome data using the GenomeNAS search space, we term
this method Genome-EDP-DARTS.

IV. EXPERIMENTS

Dataset and Methods We performed all of our experiments
on the DeepSEA dataset, which is a popular and widely
used non-coding DNA sequence benchmark. The input is
represented by a one-hot encoded 1000-bp DNA sequence
which is used to predict 919 binary chromatin features in a
multi-label prediction setting. The data is used as provided by
[5]2 under a CC Attribution 3.0 license, who also provide splits
into training, validation and test data. In all our experiments,
we limit the size of one epoch to 3000 samples which are
randomly drawn without replacement from the full dataset.
Different samples from the DeepSEA data are drawn in each
epoch, for each experimental replicate and for each method.
The DeepSEA architecture [5], DanQ [6], and NCNet [7]
are popular deep learning architectures that we investigate as
human-designed baselines and compare them to the architec-
tures chosen by NAS algorithms. Experiments were conducted
each on single Nvidia A100 40GB accelerator cards on an
Nvidia DGX A100 Server.

Experimental Design We closely follow the NAS proce-
dure suggested by [16] in our experiments. It consists of three
defined steps: architecture search, architecture selection, and
architecture evaluation. For architecture search, the aim is to
learn the optimal architecture by running the NAS algorithms
for a pre-defined number of epochs. After the search phase
is completed, we obtain the final architecture. Each final
architecture is then trained for a specific number of replications
on the test set and average results are reported. The overall
experiments proceed as follows:
(i) Preliminary hyperparameter optimization: The learning rate
and dropout hyperparameters of the RNN part were optimized
in a preliminary step; see Appendix B for details.
(ii) Search phase: Each NAS algorithm is run four times, and
four final architectures are obtained.
(iii) Selection phase: Each of these four final architectures is
trained for 50 epochs and the validation performance of each
architecture is evaluated. The architecture that achieves the
highest performance on the validation data is chosen as the
final architecture of the NAS algorithm.
(iv) Evaluation phase: The performance of each NAS algo-
rithm is evaluated by training the selected architecture from
scratch for 50 epochs. We report the performance on the test
set.

We perform all runs with batch size of 100 as used by
DeepSEA, DanQ, and NCNet. For most hyperparameter set-
tings of the Genome-X NAS methods we use the settings
provided by the original authors, see Appendix A for more
details on chosen hyperparameters.

V. RESULTS AND DISCUSSION

Selection phase There was about a 10% difference in
median F1 score of the architecture found by the random

2http://deepsea.princeton.edu/media/code/deepsea train bundle.v0.9.tar.gz

5.2 Neural Architecture Search for Genomic Sequence Data

69

0.18 0.20 0.22 0.24
F1-Score

Genome-SH

Genome-EDP-DARTS

Genome-P-DARTS

Genome-BONAS

Genome-DARTS

Genome-RS

Genome-CWP-DARTS

(a) Selection Phase

0.725 0.750 0.775 0.800 0.825 0.850
ROC-AUC

Genome-DARTS
Genome-SH

Genome-CWP-DARTS
Genome-EDP-DARTS

Genome-P-DARTS
Genome-RS
NCNet-bRR

Genome-BONAS
NCNet-RR

DanQ
DeepSEA

Al
go

rit
hm

(b) Final Scores

Fig. 2. Performance of algorithms in the two phases of the evaluation. (a) selection phase: validation set performance of models, which is used to select
models for the evaluation phase. Architecture search was performed four different times, each dot represents the performance of a separate NAS run. For
each method, the architecture with the highest performance was chosen to be evaluated in the evaluation phase. (b) evaluation phase: The model architecture
selected in the selection phase was trained from scratch four separate times and evaluated on the test set. Each dot represents the performance of the selected
architecture for each NAS method, trained with different weight initializations.

TABLE I
COMPARISON OF PERFORMANCE VALUES OBTAINED WITH VARIOUS METHODS. PR-AUC IS THE PRECISION-RECALL-AUC [36] AS RECOMMENDED BY

[6], ROC-AUC THE AREA UNDER THE RECEIVER OPERATOR CHARACTERISTIC ([37], MORE IS BETTER); VALUES ARE AVERAGED OVER ALL 919
LABELS. TRAINING WAS DONE WITH SUBSAMPLED EPOCHS, SO VALUES MAY NOT BE COMPARABLE WITH OTHER VALUES IN THE LITERATURE.

Method Params. (M) PR-AUC ROC-AUC Train Time
(GPU-Days)

Baselines DeepSEA 52.84 6.44 71.22 -
DanQ 46.93 17.27 81.5 -
NCNet-RR 57.58 22.15 84.01 -
NCNet-bRR 47.69 22.05 84.31 -

Genome-RS 27.01 21.90 84.56 10.22
Genome-SH 26.86 23.44 85.23 9.91

Ours Genome-DARTS 29.22 23.90 85.47 10.21
Genome-P-DARTS 27.08 22.24 84.68 11.61
Genome-BONAS 26.25 21.20 84.19 24.03
Genome-CWP-DARTS 26.54 22.97 84.98 8.62
Genome-EDP-DARTS 26.73 22.87 84.95 10.45

baseline and the best-performing method, which was Genome-
SH, closely followed by Genome-DARTS (Fig. 2a). In certain
cases the variability among different architecture search runs
of the same method was considerable. Different runs of
Genome-CWP-DARTS resulted in both worst- and third best-
performing architectures, with a gap of 25% in F1 score. This
algorithm was also the worst in terms of median performance,
which was even lower than a purely random search. On the
contrary, the best and worst architectures found by Genome-
BONAS were separated by only about 8%. Despite producing
the best of the worst architectures, Genome-BONAS could
only increase its performance by 0.02 points.

Evaluation phase Except for Genome-BONAS, all
Genome-NAS consistently outperformed the baseline algo-
rithms, as well as random search and successive halving
(Table I and Fig. 2b). Random search achieved an average PR-
AUC [36] score of 21.90 and an average ROC-AUC score [37]
of 84.56, which was comparable to the results from NCNet-
RR [7] and NCNet-bRR [7] and better than the results of
the DeepSEA [5] and the DanQ algorithm [6]. This suggests
an advantage of our novel search space, which combines

a convolutional and a recurrent DAG. The best result was
achieved by Genome-DARTS, with Genome-SH within 0.5
percentage points in term of PR-AUC. The best architecture
is shown in Fig. 1. With an average PR-AUC score of 21.20
and an average ROC-AUC score of 84.19, the final architecture
of Genome-BONAS is the worst-performing architecture. Our
Genome-EDP-DARTS algorithm performed better than the
original Genome-P-DARTS, which suggests that we achieved
a further decrease of the optimization gap between search and
evaluation [19].

Runtime The runtime of all GenomeNAS algorithms was
between eight and 10 GPU-days, except for Genome-BONAS
which required more than 24 GPU-days on average. In spite
of the superior performance, the final networks found by the
GenomeNAS family of algorithms were considerably smaller
compared to the baseline models, respectively 26-29 and 46-
57 million parameters. However, such networks required on
average 156 minutes per epoch to train, compared to 7, 13,
34, and 52 minutes for DeepSEA [5], DanQ [6], NCNet-bRR
and NCNet-RR, and converged after about 40 training epochs.

Discussion Neural architecture search performs very well

5.2 Neural Architecture Search for Genomic Sequence Data

70

on genome data, outperforming prior hand-crafted models [6],
[7] while also being significantly smaller. Successive Halv-
ing performs surprisingly strong considering its simplicity.
It is also noticeable that P-DARTS, which was specifically
designed to outperform DARTS, does not work better in
this setting. This is likely due to the fact that one of its
main advantages, the shrinking of the optimization gap, is
diminished in this setting where the size of the network does
not change between architecture search and evaluation. It is
also likely that, since the more complicated NAS methods
have a variety of hyperparameters on their own, they have
so far been tuned for more popular deep learning tasks such
as computer vision. This likely explains some part of the
relatively weak performance of the more complex algorithms
and also creates hope that these algorithms could be tweaked
to work even better in this field.

Limitations Our work has shown that NAS methods can
easily be adapted to the field of genome sequence data, where
it outperforms human-designed baseline models. However, we
only conducted a benchmark experiment on a single dataset
that exemplifies the data and tasks in this field. It is likely that
for other genome sequence tasks that predict other features,
the results would be slightly different.

Broader impact statement NAS algorithms promise to
provide a better design and a better performance for deep
learning applications since they help to minimize the time and
cost involved in model design. Although on the surface, NAS
methods are expensive, they are likely more systematic and
therefore more efficient than human experimentation for archi-
tecture design. We consider deep learning on genomic data a
promising field that has the potential to bring new insights for
biomedical research and therefore ultimately benefit society.
Neural networks optimized for genomic data modalities could
e.g. benefit outbreak detection due to the optimization of
taxonomic assignments [38] and could contribute to the design
of novel therapeutica due to the modeling of protein folding
[39].

VI. CONCLUSION

In this paper, we have adapted a diverse set of popular
NAS algorithms (random search, Successive Halving, DARTS,
P-DARTS, BONAS) to the field of genomic sequence anal-
ysis. Moreover, we have extended the P-DARTS algorithm
in two novel ways, by introducing continuous weight sharing
(CWP-DARTS), and edge discarding (EDP-DARTS). The new
algorithms can generate accurate combined CNN and RNN
architectures that are capable of modeling genomic sequences.

It can be summarized that our uniquely designed search
space works very well, as all GenomeNAS algorithms showed
strong performance on the DeepSEA task and most out-
performed current state-of-the-art baseline models as well
as randomly sampled models. We conclude that our unique
combination of DAG search spaces for both CNN and RNN
cells has great potential for further research.

APPENDIX A
APPENDIX: DETAILS ABOUT HYPERPARAMETER SETTINGS

Most hyperparameters were set as in the original publica-
tions of the respective methods. We use momentum SGD to
ensure that our optimizer is similar to the original DARTS;
the CNN weights are optimized with momentum set to 0.9
and weight decay set to 3×10−4; the weights of the recurrent
part of the network are optimized without momentum and with
weight decay set to 5× 10−7.

• Genome-RS: To get an optimization runtime similar to
Genome-DARTS, 20 architectures are sampled randomly
and trained for 7 epochs before being evaluated.

• Genome-SH: An initial sample of 25 architectures is
sampled. Halving happens every 3 epochs by discarding
the worse half of models by performance.

• Genome-DARTS: The α parameters are optimized as in
DARTS with Adam, with initial learning rate 3 × 10−3,
weight decay 1 × 10−3, momentum parameters β =
(0.9, 0.999). Weight clipping of size 0.25 is applied for
stability. As in DARTS, the architecture search runs for
50 epochs.

• Genome-P-DARTS: As in P-DARTS, the initial dropout
probability of skip-connects for search space regulariza-
tion is set to 0.1 in the first stage, 0.2 in the second
stage and 0.3 in the third stage. The one-shot model is
trained for 25 epochs in each stage, where in the first 10
epochs, only network weights are trained. Network and
architecture weights are optimized jointly in the last 15
epochs of each stage. As in P-DARTS, α are optimized
with Adam with learning rate 0.0006, weight decay 0.001
and momentum β = (0.5, 0.999).

• Genome-CWP-DARTS: Unlike Genome-P-DARTS,
only the first stage is trained for 25 epochs with the
first 10 epochs network parameter optimization only; the
other two stages optimize only 15 epochs, optimizing
network and architecture weights jointly. This reduces
the overall number of epochs from 75 to 55.

• Genome-EDP-DARTS is optimized as Genome-P-
DARTS. The maximum number of input edges kept for
all vertices is 4 after the first stage, 3 after the second
stage, and 2 after the third (final) stage for the CNN
networks and 5 after the first stage, 3 after the second
stage, and 1 after the third (final) stage for the RNN
network.

• Genome-BONAS starts with 60 randomly sampled archi-
tectures trained for 60 epochs. Then, two BO iterations
are executed where 1000 randomly sampled architectures
are evaluated by the surrogate model and the top 60
networks by UCB are proposed for evaluation, again for
60 epochs.

During the model search, the batch size is set to 64, and epochs
are limited to random subset of the entire data of 2000 steps
(i.e. 64× 2000 samples). The final training of architectures is
done with 3000 steps and batch size 100.

5.2 Neural Architecture Search for Genomic Sequence Data

71

APPENDIX B
APPENDIX: PRELIMINARY HYPERPARAMETER

OPTIMIZATION

DARTS and ENAS run experiments on image classification
and language modeling tasks [16], [17]. For image classifica-
tion using CNNs, an initial learning rate of 0.025 is used, while
the RNNs used for language modeling have an initial learning
rate of 20. Due to high difference between the learning rates,
we decided to use different learning rates for the convolutional
and recurrent parts of our search space.

Initial experiments showed low sensitivity to the learning
rate of the convolutional part and high sensitivity to the
learning rate of the recurrent part. We therefore decided to
run a preliminary grid search to optimize the learning rate and
variational dropout rate of the recurrent network. We evaluated
the Genome-DARTS method for recurrent learning rate values
of 2, 8, and 12, and dropout rates (input / “embedding”
dropout, recurrent dropout) of (0,0), (0.1,0.05), and (0.3,0.1).
The best-performing settings that were chosen were learning
rate 8, input dropout 0.1, and recurrent dropout 0.05.

We performed a grid search to find the best parameters for
the learning rate of the RNN layers and variational dropout
rate pairs for cell input and hidden nodes. The searched space
for the learning rate is 2, 8 an 12; and the variational dropout
rate of cell input and hidden nodes are (0,0), (0.1,0.05) and
(0.3,0.1). The best-performing settings were 8, 0.1, and 0.05
respectively and we used these hyperparameters for the rest of
the experiments.

REFERENCES

[1] M. AlQuraishi, “Alphafold at casp13,” Bioinformatics, vol. 35, no. 22,
pp. 4862–4865, 2019.

[2] C. Cao, F. Liu, H. Tan, D. Song, W. Shu, W. Li, Y. Zhou, X. Bo, and
Z. Xie, “Deep learning and its applications in biomedicine,” Genomics,
proteomics & bioinformatics, vol. 16, no. 1, pp. 17–32, 2018.

[3] B. Segerman, “The most frequently used sequencing technologies and
assembly methods in different time segments of the bacterial surveil-
lance and refseq genome databases,” Frontiers in cellular and infection
microbiology, p. 571, 2020.

[4] A. Wahab, H. Tayara, Z. Xuan, and K. T. Chong, “Dna sequences
performs as natural language processing by exploiting deep learning
algorithm for the identification of n4-methylcytosine,” Scientific reports,
vol. 11, no. 1, pp. 1–9, 2021.

[5] J. Zhou and O. G. Troyanskaya, “Predicting effects of noncoding variants
with deep learning–based sequence model,” Nature methods, vol. 12,
no. 10, pp. 931–934, 2015.

[6] D. Quang and X. Xie, “Danq a hybrid convolutional and recurrent deep
neural network for quantifying the function of dna sequences,” Nucleic
acids research, vol. 44, no. 11, p. 107, 2016.

[7] H. Zhang, C.-L. Hung, M. Liu, X. Hu, and Y.-Y. Lin, “Ncnet: Deep
learning network models for predicting function of non-coding dna,”
Frontiers in genetics, vol. 10, p. 432, 2019.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[10] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[11] A. Trabelsi, M. Chaabane, and A. Ben-Hur, “Comprehensive evaluation
of deep learning architectures for prediction of dna/rna sequence binding
specificities,” Bioinformatics, vol. 35, no. 14, pp. i269–i277, 2019.

[12] H. R. Hassanzadeh and M. D. Wang, “Deeperbind: Enhancing predic-
tion of sequence specificities of dna binding proteins,” in 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2016, pp. 178–183.

[13] F. Runge, D. Stoll, S. Falkner, and F. Hutter, “Learning to design rna,”
arXiv preprint arXiv:1812.11951, 2018.

[14] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[15] H. Shi, R. Pi, H. Xu, Z. Li, J. Kwok, and T. Zhang, “Bridging the
gap between sample-based and one-shot neural architecture search with
bonas,” Advances in Neural Information Processing Systems, vol. 33,
pp. 1808–1819, 2020.

[16] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” arXiv preprint arXiv:1806.09055, 2018.

[17] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in International conference
on machine learning. PMLR, 2018, pp. 4095–4104.

[18] R. Schmucker, M. Donini, M. B. Zafar, D. Salinas, and C. Archam-
beau, “Multi-objective asynchronous successive halving,” arXiv preprint
arXiv:2106.12639, 2021.

[19] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive darts: Bridging the
optimization gap for nas in the wild,” 2020.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[21] L. Torada, L. Lorenzon, A. Beddis, U. Isildak, L. Pattini, S. Mathieson,
and M. Fumagalli, “Imagene: a convolutional neural network to quantify
natural selection from genomic data,” BMC bioinformatics, vol. 20,
no. 9, pp. 1–12, 2019.

[22] Z. Shen, W. Bao, and D.-S. Huang, “Recurrent neural network for
predicting transcription factor binding sites,” Scientific reports, vol. 8,
no. 1, pp. 1–10, 2018.

[23] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in 5th International Conference on Learning Representations
(ICLR), Conference Track Proceedings, 2017.

[24] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 8697–
8710.

[25] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” Advances in neural information
processing systems, vol. 29, 2016.

[26] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization.” Journal of machine learning research, vol. 13, no. 2, 2012.

[27] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Artificial intelligence and statis-
tics. PMLR, 2016, pp. 240–248.

[28] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration in
multi-armed bandits,” in International Conference on Machine Learning.
PMLR, 2013, pp. 1238–1246.

[29] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
pp. 6765–6816, 2017.

[30] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in neural information
processing systems, vol. 25, 2012.

[31] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” International Conference on Learning Repre-
sentation, ICLR, 2016.

[32] Z. Zhang, L. Zhou, L. Gou, and Y. N. Wu, “Neural architecture search
for joint optimization of predictive power and biological knowledge,”
arXiv preprint arXiv:1909.00337, 2019.

[33] Z. Zhang, C. Y. Park, C. L. Theesfeld, and O. G. Troyanskaya, “An
automated framework for efficiently designing deep convolutional neural
networks in genomics,” Nature Machine Intelligence, vol. 3, no. 5, pp.
392–400, 2021.

[34] Z. Zhang, E. M. Cofer, and O. G. Troyanskaya, “Ambient: acceler-
ated convolutional neural network architecture search for regulatory
genomics,” bioRxiv, 2021.

5.2 Neural Architecture Search for Genomic Sequence Data

72

[35] L. Koumakis, “Deep learning models in genomics; are we there yet?”
Computational and Structural Biotechnology Journal, vol. 18, pp. 1466–
1473, 2020.

[36] K. Boyd, K. H. Eng, and C. D. Page, “Area under the precision-recall
curve: Point estimates and confidence intervals,” in Machine Learning
and Knowledge Discovery in Databases, H. Blockeel, K. Kersting,
S. Nijssen, and F. Železný, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 451–466.

[37] K. H. Zou, A. J. O’Malley, and L. Mauri, “Receiver-operating charac-
teristic analysis for evaluating diagnostic tests and predictive models,”
Circulation, vol. 115, no. 5, pp. 654–657, 2007.

[38] J. N. Nissen, J. Johansen, R. L. Allesøe, C. K. Sønderby, J. J. A.
Armenteros, C. H. Grønbech, L. J. Jensen, H. B. Nielsen, T. N. Petersen,
O. Winther et al., “Improved metagenome binning and assembly using
deep variational autoencoders,” Nature biotechnology, vol. 39, no. 5, pp.
555–560, 2021.

[39] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Žı́dek, A. Potapenko et al., “Highly
accurate protein structure prediction with alphafold,” Nature, vol. 596,
no. 7873, pp. 583–589, 2021.

5.2 Neural Architecture Search for Genomic Sequence Data

73

6 Contributions to Uncertainty Quantification
and Calibration in Genomics

6.1 Uncertainty Quantification for Deep Learning Models Predicting
the Regulatory Activity of DNA Sequences

Contributing Article

Gündüz HA, Giri S, Binder M, Bischl B, Rezaei M (2023). “Uncertainty Quantification for
Deep Learning Models Predicting the Regulatory Activity of DNA Sequences.” In 2023 In-
ternational Conference on Machine Learning and Applications (ICMLA), pp. 566–573. doi:
10.1109/ICMLA58977.2023.00084

Note: Due to copyright requirements of the publisher (IEEE), the accepted version of the paper
is available in this thesis with added authors, acknowledgements, and a footnote stating the equal
contributions of the co-first authors. Thus, the version in the thesis is not the published version.

Declaration of Contributions

Hüseyin Anil Gündüz and Sheetal Giri share the first authorship of this paper and
their contributions are overall equal. Hüseyin Anil Gündüz’s significant contribu-
tions can be described as follows: Hüseyin Anil Gündüz is a main contributor to the project.
The paper was mainly written by Hüseyin Anil Gündüz. Hüseyin Anil Gündüz co-supervised
the project and contributed significantly to the design and evaluation of the experiments and the
presentation and interpretation of the results. Hüseyin Anil Gündüz also presented the paper at
the ICMLA 2023 main conference as a full paper and at the ISMB/ECCB 2023 as an abstract.

Contribution of the coauthors: Sheetal Giri contributed to the design, code develop-
ment, running, and evaluation of the experiments as a main contributor. Sheetal Giri also wrote
some parts of the paper. Mina Rezaei was the main supervisor of the project. Martin Binder
provided support with running computational jobs on a batch processing system.

All authors helped with the editing of the paper.

Note: The project was started as Sheetal Giri’s master thesis, which she completed. The
thesis was supervised by Mina Rezaei and Hüseyin Anil Gündüz, who provided supervision and
assistance throughout the entire process.

74

https://dx.doi.org/10.1109/ICMLA58977.2023.00084
https://dx.doi.org/10.1109/ICMLA58977.2023.00084

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

Copyright License © 2023 IEEE. Reprinted, with permission, from Hüseyin Anil Gündüz, Shee-
tal Giri, Martin Binder, Bernd Bischl, and Mina Rezaei, Uncertainty Quantification for Deep
Learning Models Predicting the Regulatory Activity of DNA Sequences, In 2023 International
Conference on Machine Learning and Applications (ICMLA), December 2023.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of LMU Munich’s products or services. Internal or personal use of this
material is permitted. If interested in reprinting/republishing IEEE copyrighted material for ad-
vertising or promotional purposes or for creating new collective works for resale or redistribution,
please go to http://www.ieee.org/publications standards/publications/rights/rights link.html to
learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or Pro-
Quest Library, or the Archives of Canada may supply single copies of the dissertation.

75

Uncertainty Quantification for Deep Learning
Models Predicting the Regulatory Activity

of DNA Sequences
Hüseyin Anil Gündüz*

LMU Munich
Munich Center for Machine Learning

Munich, Germany
anil.guenduez@stat.uni-muenchen.de

Sheetal Giri*
TU Munich

Munich, Germany
sheetal.giri@tum.de

Martin Binder
LMU Munich

Munich Center for Machine Learning
Munich, Germany

martin.binder@stat.uni-muenchen.de

Bernd Bischl
LMU Munich

Munich Center for Machine Learning
Munich, Germany

bernd.bischl@stat.uni-muenchen.de

Mina Rezaei
LMU Munich

Munich Center for Machine Learning
Munich, Germany

mina.rezaei@stat.uni-muenchen.de

Abstract—The field of computational biology has been en-
hanced by deep learning models, which hold great promise for
revolutionizing domains such as protein folding and drug discov-
ery. Recent studies have underscored the tremendous potential
of these models, particularly in the realm of gene regulation and
the more profound understanding of the non-coding regions of
the genome. On the other hand, this raises significant concerns
about the reliability and efficacy of such models, which have
their own biases by design, along with those learned from the
data. Uncertainty quantification allows us to measure where the
system is confident and know when it can be trusted. In this
paper, we study several uncertainty quantification methods with
respect to a multi-target regression task, specifically predicting
regulatory activity profiles using DNA sequence data. Using the
Basenji model, we investigate how such methods can improve in-
domain generalization, out-of-distribution detection, and provide
coverage guarantees on prediction intervals.

Index Terms—Uncertainty Quantification, Regularity Activity
of Genome Sequences, Multi-Target Regression

I. INTRODUCTION

Deep learning (DL) models have the potential to process
vast amounts of data and provide new insights, but their
black-box nature can make it difficult to understand and trust
their predictions. To address this issue, two approaches have
emerged: explainable AI and uncertainty quantification (UQ).
This study focuses on the latter.

In this paper, we study state-of-the-art methods to evaluate
the effectiveness of UQ methods for sequence genomes in
two different tasks. We use Basenji [1] as a DL model for
genome prediction of gene regulation. The Basenji model is
based on a convolutional neural network (CNN) architecture
and is trained on large-scale genomic data to learn the patterns

* Hüseyin Anil Gündüz and Sheetal Giri contributed equally to this work.
This work was funded in part by the German Federal Ministry of Education

and Research (BMBF) under GenomeNet Grant No. 031L0199B.

and relationships between genetic variations and gene regula-
tion. We report our experiments based on Basenji due to its
code and data availability, reproducibility, and popularity in
the community. However, the techniques introduced in this
paper can be applied to other multi-target regression tasks
in genomics. Our main findings and contributions can be
summarized as follows:

• We study a variety of approaches to estimate the uncer-
tainty of a DL model for a multi-target regression prob-
lem in biology, specifically for predicting the regulatory
activity profiles of genome sequences.

• We propose to use the negative binomial loss to allow the
Basenji architecture to learn parameters to evaluate the
variance of the predictions and thus quantify uncertainty.

• We study the effectiveness of the UQ methods for in-
domain generalization and benchmark the performance
improvement when using deep ensembles with our pro-
posed loss.

• We study the effect of using deep ensembles for an out-
of-distribution task and show that the deep ensemble not
only outperforms a single model in terms of prediction
performance but also is more uncertain in its predictions.
This indicates a better ability to detect that the tested data
differs from the trained data.

• We observe good coverage of the prediction intervals on
the test set using conformalized quantile regression.

• We observe a moderate correlation between the absolute
change in uncertainty and experimentally validated log
fold changes in gene expression for a single nucleotide
mutation in a subset of the data.

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

76

II. METHODS

A. The Basenji Model And Datasets

1) Basenji: We use the Basenji model, a highly performant,
standard CNN architecture for predicting regulatory activity
profiles from DNA sequences [1]. In the Basenji model, a
single DNA sequence of 131,072 base pairs is taken as input as
one-hot encoded vectors representing the four nucleotides: A,
C, G, and T. The model transforms this input to a representa-
tion of 896 × 1024 by multiple layers of convolution, pooling,
and cropping. A final width-one convolution with 1643 filters
for mouse and 5313 filters for human is applied, followed by
a softplus (f(x) = log(1 + ex)) activation function to ensure
positive predictions. Thus, the average count/expression values
across 128 base pairs for each genomic track and for each
of the central 896 windows of the sequence is predicted for
1643 genomic tracks for mouse and 5313 genomic tracks for
human. The Basenji model is trained to minimize a Poisson
log-likelihood loss.

2) Datasets: The dataset was used as published by Kelley
[2], with their pre-processing and train-validation-test split.
The dataset consists of 38.2k human and 33.5k mouse genome
sequences that are 131,072 base pairs long. The targets consist
of expression values from 5,313 human and 1,643 mouse
genomic tracks. Each track is an average across 896 windows,
each spanning 128 base pairs. These genomic tracks are
specific to different types of cells (for example, skin cells, stem
cells, liver cells) that belong to different stages of development,
from the embryo to adults at various ages. The tracks capture
different types of biochemical activity [3], [4].

B. Evaluating Quality of Measured Uncertainty

In healthcare-related applications, it is essential to evalu-
ate the reliability of the probabilistic forecasts for practical
use. This requires a deeper understanding of three important
concepts: calibration, sharpness, and OOD behavior.

1) Measuring Calibration and Sharpness: A forecaster is
said to be well-calibrated if its predictions match the frequen-
cies of the true observations. For example, if 100 different
input samples are classified as ”A” with a probability of 40%
(each), then the classifier is well calibrated if about 40 of these
samples actually belong to ”A”. Sharpness, on the other hand,
is a property of probability distributions that describes the
length of the prediction interval. A shorter prediction interval
indicates that the model has a higher degree of certainty, which
is a desirable property in practical applications. Calibration and
sharpness can be quantified by using scoring rules [5], and the
log-likelihood of a probability distribution, log pθ(y | x), is a
proper scoring rule [6].

2) Out-of-Distribution Detection: In addition to generaliz-
ing well to new examples from the training data distribution,
it is important for models to be able to identify data that are
significantly different from what they have seen. A model’s
ability to detect OOD data can be measured by examining the
confidence of its predictions. For instance, if a model trained
for digit classification in images assigns high confidence to a

prediction for an image of a cat, this indicates that the model
is not able to detect OOD data.

C. Uncertainty Quantification methods with Neural Networks

1) Deep Ensemble: The Deep Ensemble method [6], is a
method that quantifies uncertainty by combining the results
from multiple models trained with random initialization. These
models are neural networks trained to model the probabilistic
predictive distribution by learning to predict the mean and
variance of this distribution as outputs. The training objective
is to minimize the Negative Log-Likelihood (NLL) of the
distribution, as NLL is a proper scoring rule that can be
considered a measure of predictive uncertainty.

The Basenji model is trained by minimizing a Poisson
loss in the original setup [1], which implies that the data
are modeled using a Poisson distribution. This distribution
assumes that the mean and variance are equal. While the mean
is used for the prediction and the model can be optimized
with this purpose, the uncertainty in the prediction cannot
be reliably quantified, as the variance is bound to the prior
assumption of being equal to the mean. To address this
problem, we adopted the Poisson loss to a Negative Binomial
(NB) loss. We modify deep ensemble to predict the parameters
of the NB loss, which are the mean µ and the overdispersion
parameter α−1. Here, µ is used for the prediction of the model,
similarly to the Poisson loss. The other learned parameter α−1

is used for the uncertainty quantification, as the variance in NB
loss is defined as σ2 = µ+ αµ2.

For our purposes, we adopt the loss following the NB2 for-
mulation of the negative binomial distribution. We reformulate
the log-likelihood of this distribution given by [7] in terms of
µ and α−1, to make it numerically feasible for training and
the final NLL criterion is given by:

L = log Γ(α−1) + log Γ(y + 1)− log Γ(α−1 + y)

+(y + α−1) log(α−1 + µ)− α−1 log(α−1)− y log(µ).
(1)

The neural network is optimized to minimize the above NLL
criterion the predicted mean µ and the predicted alpha inverse,
α, for any given input.

During the test time, the predictions of the deep ensemble
are computed by feeding the input x into Nd different models
{θ1, θ2, ..., θNd

}, which are trained independently with random
initializations on the same data. The average mean µ∗(x) and
average variance σ2

∗(x) across all models are obtained by
combining results from individual models as follows [6]:

µ∗(x) = N−1
d

∑

n

µθn(x) (2)

σ2
∗(x) = N−1

d

∑

n

(
σ2
θn(x) + µ2

θn(x)
)
− µ2

∗(x) (3)

The average mean µ∗(x) is then the prediction of the deep
ensemble and the average variance σ2

∗(x) is the variance of the
prediction as a measure of uncertainty. Note that the original
Basenji model is not suitable for predicting the variance by
using the deep ensemble since it is trained with Poisson loss,
which assumes that mean and variance are equal.

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

77

2) MC Dropout: MC Dropout by Gal et al. [8] approx-
imates uncertainty in the framework of Bayesian Neural
Networks. Instead of treating weights as single values or
point estimates, we learn a probability distribution over all
possible weights that could explain our data. In the Bayesian
framework, we start by assuming a prior distribution p(W)
over the weights that could have generated the data. The goal
is to learn the posterior distribution over these weights based
on the observed data. Given inputs X = {x1, x2..., xn} and
observations Y = {y1, y2..., yn}, such that X ∈ RNxD and
Y ∈ RNxQ, the posterior distribution is given by:

p(W | X,Y) ∝ p(Y | X,W)p(W) (4)

Inferring the posterior using the Bayes rule is computationally
intractable for neural network-based models and therefore, has
to be approximated. MC dropout can be used to learn the
approximate posterior. It is based on theoretical proof that a
deep neural network trained with dropout before every weight
layer and minimizing a Euclidean loss (for regression) or
softmax loss (for classification) is equivalent to approximate
inference in a deep Gaussian Process. Thus, even though
Basenji originally minimizes a Poisson loss, MSE loss is used
with this method to stay true to the theory accompanying it.

The mean and variance of the approximated posterior for
any given input can be obtained by Monte Carlo Estimation.
This is done by computing Nm samples from the posterior and
averaging them. In practice, this computing of samples is done
by having dropout enabled during the test time (that is, the
dropout is still applied in the test time, similar to the training
time) and doing Nm stochastic forward pass on the model for
any given input. As mentioned, the predictions computed by
Nm forward passes are averaged.

3) Conformalized Quantile Regression: In regression mod-
eling, it is beneficial to determine the prediction interval, i.e.,
the upper and lower bounds within which the true prediction is
likely to fall. Conformal prediction methods offer theoretically
valid coverage guarantees for the prediction intervals generated
by the algorithm [9]. The level of coverage controlled by
the user-defined significance level α, where α = 0.1 implies
that the model can have at most 10% miscoverage and
consequently that ground truth value will be in the prediction
interval 90% of the time. Therefore, the goal of this method
is not to improve the uncertainty but to determine the interval
in which the ground truth value will lie with respect to the
user-defined level of confidence. Unlike traditional methods,
conformal prediction does not make any strong assumptions
about the data distribution, making it a more flexible approach.

This method trains two models, t̂0.05 and t̂0.95, using
quantile loss instead of Poisson loss to regress to a quantile.
The quantile loss is given by the following function:

Lγ

(
t̂γ , y

)
=

(
y − t̂γ

)
γ1

{
y > t̂γ

}
+

(
t̂γ − y

)
(1− γ)1

{
y ≤ t̂γ

}
(5)

This loss ensures that model t̂0.05 learns to make predictions
that fall below the 5% quantile and t̂0.95 above the 95%
quantile. Once fitted, the models can be used to generate the

TABLE I
AVERAGE PEARSON CORRELATION (r) AND RMSE METRICS ON THE TEST
SET ACROSS MODELS ON MOUSE AND HUMAN DATASETS. OUR MODIFIED

DEEP ENSEMBLE NOT ONLY ALLOWS TO LEARN A VARIATION OF THE
PREDICTION BUT ALSO IMPROVES PERFORMANCE METRICS

Dataset Mouse Human
Method r RMSE r RMSE
Single Model - Poisson Loss 0.7036 1.8414 0.6198 1.8474
Single Model - NB Loss 0.6986 1.8760 0.6179 1.8606
Single Model - MSE Loss 0.6687 1.9375 0.6080 1.8656
Deep Ensemble (Nd = 5) 0.7129 1.8395 0.6320 1.8164
MC Dropout (Nm = 5) 0.6669 1.9216 0.5915 1.8922
MC Dropout (Nm = 50) 0.6699 1.9140 0.5945 1.8842

90% prediction interval, as given by [t̂0.05(x), t̂0.95(x)], for
any given input x.

To have significant level of α= 0.1 for the conformal pre-
diction, this prediction interval is further refined by calibrating
it on the validation set as follows:

1) Calculate the set of scores S = {S1, S2, ..., Sn} for all
n input-output pairs (xi, yi) in the calibration set,

Si = max(yi − t̂0.95(xi), t̂0.05(xi)− yi). (6)

2) Calculate the
⌈
(n+1)(1−α)

n

⌉th
quantile for the set of

scores S = {S1, S2, ..., Sn}, which is denoted by q̂.
During the test time, the valid prediction interval for any input
x is given by

[t̂0.05(x)− q̂, t̂0.95(x) + q̂]. (7)

III. RESULTS

A. Can UQ Methods Perform Better than Existing Methods
for In-Distribution Tasks?

The prediction performance of the deterministic models and
models with UQ methods was evaluated on both the mouse
and human datasets. The results are shown in Table I. The
deterministic model was trained with a Poisson loss, and the
Basenji model has trained with a Negative Binomial (NB) loss.
The Basenji model with the NB loss was also evaluated for the
deep ensemble method, while the Mean Squared Error (MSE)
loss was used for MC Dropout. Both the Poisson loss and the
NB loss were comparable in performance for the deterministic
model, with the NB loss being an extension of the Poisson
loss that accounts for overdispersion. All models trained with
MSE loss had relatively high root mean squared error (RMSE)
values and lower Pearson correlation (r) values. This could be
because the MSE loss assumes that the data follow a Gaussian
distribution, which is not appropriate for this type of data.

Deep ensemble predictions were obtained by averaging
predictions across five randomly initialized models trained
with NB loss. For both mouse and human datasets, it was
observed that deep ensemble with our proposed loss improves
the performance compared to all the other models in Pearson
correlation (r) and RMSE metrics, including the original
Basenji architecture. This could be because ensembles are
known to perform better in general in ML [10]. In addition,
deep ensemble with our proposed loss can learn the standard

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

78

a) b)

Fig. 1. Histogram of predictive uncertainty for mouse and human model on human test sequences. (a) The mouse model has higher predictive uncertainty
compared to the human model because of the domain shift in the input distribution due to the Alu elements in the human sequence (OOD regions). (b) When
the Alu elements are removed, the uncertainty distributions are more similar.

TABLE II
HUMAN TEST SET PERFORMANCE - AVERAGE PEARSON CORRELATION (r)

AND PREDICTIVE UNCERTAINTY (NLL) FOR HUMAN SEQUENCES WHEN
MODELS ARE TRAINED ON THE MOUSE VS HUMAN DATA. MODELS ARE

EVALUATED FOR REGIONS CONTAINING ONLY ALU ELEMENTS (OOD
REGION) AND REGIONS WITHOUT ALU ELEMENTS (EXC. OOD REGION)

Test Set Samples OOD region Exc. OOD region
Method Train Data r NLL r NLL
Deep Ensemble Human 0.7628 0.1035 0.5567 0.1379
Deep Ensemble Mouse 0.4146 0.1275 0.5176 0.1596
Single Model Mouse 0.2979 0.1258 0.4837 0.1772

deviation of the prediction for each data sample, enabling
quantification of uncertainty.

B. Deep Ensemble with our proposed loss both outperforms
a single model and better recognizes OOD data

Due to the largely conserved Transcription Factor binding
preferences between mice and humans for the same cell
types, a model trained for predicting regulatory activity on
mouse DNA should be able to generalize well for human
DNA sequences [2]. Cochran et al. [11] evaluated this by
evaluating how a model trained to predict binding behavior on
mouse DNA performs on human DNA input. They observed
degraded prediction performance for regions in the sequence
containing repeated elements called Alus which are exclusive
to primates and cover 10% of the human genome [12]. We
refer to this region as out-of-distribution(OOD) region for the
mouse model, since the model has not seen the Alu elements
during its training.

We tested the performance of the model trained on mouse
data to predict shared genomic tracks between mouse and
human. Specifically, the CAGE expression values for common
Myeloid Progenitor cells and Mesenchymal stem cells are
estimated and the prediction performance and uncertainty for
human sequence input are evaluated.

The NLL measure is used to assess the model’s uncer-
tainty, with higher NLL values implying higher uncertainty.

Comparing the deep ensemble trained on the mouse data with
the single model trained on the same data, Table II shows
that the deep ensemble has slightly higher uncertainty in the
OOD region, although it has considerably better performance
in terms of the Pearson correlation coefficient (r). Thus, deep
ensemble does not only improve the performance in both
OOD and non-OOD region but is also more uncertain in its
prediction, when tested on the OOD region. This indicates a
better ability to detect that the tested data is different from
the trained data. For the non-OOD region, the deep ensemble
not only outperforms a single model in terms of r, but also
has considerably smaller uncertainty. This indicates that the
deep ensemble model both outperforms the single model and
is better at distinguishing that this region is not OOD.

Table II also shows that for the OOD regions containing
only Alu elements, a model trained on mouse data has a
notably lower Pearson correlation between the true observation
and prediction compared to a model trained on human data.
The differences between Pearson correlation values are much
smaller for the sequence without Alu elements. Thus, our
selection of OOD region is justified.

Fig. 1 shows NLL values for 2017 sequences in the human
test set. The model trained on mouse data is more uncertain
about its predictions for OOD regions containing Alu elements
in the human test set. However, when Alu elements were
removed, the count distributions of NLL values are closer,
suggesting that the mouse model can perform well for human
sequences if OOD regions are removed.

C. Prediction intervals obtained using Conformal Quantile
Regression provide good coverage on test set

The Basenji model for mouse DNA was evaluated using
Conformal Quantile Regression to determine 90% confidence
intervals for predictions. The results showed that the intervals
had an average coverage rate of 89.63% on the test set,
meaning the predicted interval accurately captured the true

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

79

expression value for that percentage of the test set. The
coverage rates for each sequence in the test set are displayed
in a histogram (Fig. 2), calculated as the proportion of values
out of a total of 896 bins and 1643 genomics tracks for which
the predicted interval contained the true value.

Fig. 3 illustrates the usefulness of prediction intervals to
practitioners, as they can determine the level of confidence in
the model. The length of the interval (the distance between
the upper and lower bounds) provides further insight into
uncertainty of the model, with shorter intervals indicating
greater confidence.

D. Experimentally observed variant effect correlates with the
change in model uncertainty

In-silico mutation is an important application of sequence-
to-profile models, providing an inexpensive way to study the
effect of mutations in one or more nucleotides on regulatory
activity [13]. If the model is of high quality, the difference in
uncertainty between its predictions on the original sequence
and the mutated sequence can reflect the degree of change in
gene expression. A model that is confident in its predictions
should not show a significant change in uncertainty values
when presented with two variants of a sequence with known
similar expression values. However, the model’s predictions
should be less certain when expression levels change drasti-
cally.

This concept was tested using the saturation mutagenesis
data [14], which comprises experiments that record gene
expression changes for all possible variants of a single nu-
cleotide in 15 locus regions within the human genome. The
data includes reference nucleotides (REF) and three possible
alterations (ALT) for each variant, with expression changes
measured as log fold change (log FC) calculated as

log FC = log2 ExpressionALT – log2 ExpressionREF . (8)

To perform in-silico mutation using Basenji, cell lines from
the experiments had to be mapped to corresponding genomic

Fig. 2. Histogram for coverage on test set sequences of mouse dataset.

tracks, which the human model is trained to predict. This
was done by matching cell lines with CAGE/DNase genomic
tracks based on their ENCODE description, following a similar
experiment in Karollus et al. [15].

The deep ensemble model is used to predict expression
values for all mutations, assuming a NB distribution and
predicting the mean and variance of genomic track values
for a given sequence. The mean is the expression, while the
variance is used as a measure of uncertainty, with the change
in uncertainty measured as the absolute difference in the
predicted variance between the sequence containing the altered
mutation and the sequence with the reference nucleotide, i.e.,

∥V AR(ALT)− V AR(REF)∥. (9)

The best prediction for Basenji is observed for variants in the
LDLR locus measuring CAGE expression for the HepG2 cell
line, with a moderate correlation of 0.65 (p-value = 1.19e-
89) between the measured variant effect (log fold change) and
the predicted variant effect (change in predicted expression).
We focus on this locus to assess changes in uncertainty and
evaluate the correlation between the change in uncertainty and
the experimentally observed log fold change at two levels
of this locus. First, changes are measured only for the 128
bp window/bin containing the mutated variant, resulting in a
lower correlation of 0.34 (p-value = 3.02e-21). However, the
correlation is much better when the prediction uncertainty is
averaged over the whole sequence, as shown in Fig. 4, with a
Pearson correlation of 0.67 (p-value = 7.04e-95).

IV. DISCUSSION

This study explored UQ techniques for DL models that per-
form sequence-to-regulatory activity profile prediction. This
work aims to provide insights for improving the performance
of such models and enable practitioners to make informed
decisions based on the reliability of the model’s results.

To this end, we evaluated three UQ methods (MC Dropout,
Deep Ensemble, and Conformalized Quantile Regression) us-
ing the Basenji model. Our results indicate that Deep Ensem-
ble performed best in model performance on the test data,
while Conformalized Quantile Regression generated prediction
intervals with 90% coverage. In addition, we observed an
increase in uncertainty for OOD inputs when evaluating Alu
elements of the human sequence on the mouse model.

The current literature on gene expression prediction models
incorporating UQ techniques is limited. While there have been
efforts to estimate uncertainty using Bayesian methods for
Gaussian Mixture Models, these techniques might not be di-
rectly transferable to DL models [16]. On the other hand, more
research has been conducted on quantifying uncertainty in
medical imaging models, but these studies primarily focus on
classification tasks. The work by Laves et al. [17] provides the
closest relevance to the profile prediction task, demonstrating
the feasibility of attaining well-calibrated uncertainty values
using MC Dropout for regression tasks using medical images.

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

80

Fig. 3. Shown for a model trained and tested on mouse data, Conformal Quantile Regression generates 90% confidence intervals for genomic track predictions.

A. Limitations

The field of UQ in DL is largely focused on classification
problems and single-output regression, leaving a gap in UQ
for multi-target regression problems. The task of multi-target
regression in genomic sequences involves predicting multi-
ple expression/count values across nucleotides for multiple
genomic tracks that capture different biochemical behavior.
Treating this problem as multiple single-output regression
problems ignores the relationship between tasks and their
correlations. Further research should examine methods for
this using the Conformal Prediction framework for multitarget
regression [18] and using the Generalized Fiducial Inference
framework for high dimensional multitask learning [19].

When using MC Dropout for multi-target regression in

genomic sequences, MSE Loss is used to approximating a
Gaussian process [8]. The Basenji model enforces positive
target signals by preprocessing the data to clip negative values
to zero [2]. This allows for modelling the data using a Poisson
distribution and has shown to have the best performance as
seen in Table I, for the human and mouse data. However,
using the MSE loss for deterministic models and MC Dropout
has relatively poor performance, highlighting the need for
distribution-free methods such as conformal prediction [20].

Deep Ensemble is computationally expensive and infeasible
for larger models like Enformer [21], the current state-of-the-
art for the sequence to regulatory activity prediction. There is
a need for UQ methods that can be applied without retraining
larger models. Finally, uncertainty values can be useful for in-
silico mutation analysis. The relationship between uncertainty

a) b)

Fig. 4. (a) A moderate correlation between the absolute change in uncertainty averaged across predictions and the absolute experimental log fold change,
for variants in the LDLR locus measuring expression for the HepG2 cell line. (b) Predicted change in CAGE expression for HepG2 plotted against log fold
change, the bigger dots indicate predictions for which the model is more uncertain.

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

81

Fig. 5. Heatmap of Averaged Predictive Uncertainty (NLL) across all predictions made by Deep Ensemble on 1937 Mouse test set sequences.

values and log fold change in gene expression for single
nucleotide mutations was studied using the dataset by Kircher
et al. [14]. Although some correlation was observed in Fig. 4,
one cannot be sure about the quality of the predictions because
the cell lines used in the experiment do not exactly match
the genomic tracks that Basenji is predicting for and the
correlation alone cannot be trusted as log fold change is an
average value that may be biased and noisy. Having base pair
resolution expression values per mutation would have been
more helpful in this case, as they would serve as ground truth
predictions that could be used to evaluate uncertainty quality
and improve the model.

B. Future Work

The development of accurate and interpretable models for
genomic sequence analysis is an important area of research.
Incorporating uncertainty into sequence-to-profile models of-
fers a promising direction for improving their performance.
Here, we propose two avenues for improvement.

First, the current multitask loss formulation for predicting
individual target values can be enhanced by considering task
correlations. The current design computes the loss indepen-
dently for each task and sums them, treating all tasks equally.
An alternative approach is the weighting of losses using task-
specific model uncertainty [22].

Second, the uncertainty can be used to identify the regions
with data problems. Fig. 5 shows an example of the predictive
uncertainties of a deep ensemble model averaged over the test
set. The genomic tracks with high uncertainty can be further
investigated to verify data quality. To effectively analyze high-
resolution predictions such as those made by models like
Basenji, specialized visualization tools and metrics must be de-
veloped. In addition, interpretability tools such as importance

scores [23] should be integrated to understand which input
features contribute most to the uncertainty in the prediction.

In conclusion, incorporating uncertainty into sequence-to-
profile models has immense potential for improving their
accuracy and interpretability. Further work in this direction is
important to advance the field of genomic sequence analysis.

ACKNOWLEDGMENTS

We thank Alexander Karollus and Laura Martens for helpful
discussions.

REFERENCES

[1] D. R. Kelley, Y. A. Reshef, M. Bileschi, D. Belanger, C. Y. McLean, and
J. Snoek, “Sequential regulatory activity prediction across chromosomes
with convolutional neural networks,” Genome research, vol. 28, no. 5,
pp. 739–750, 2018.

[2] D. R. Kelley, “Cross-species regulatory sequence activity prediction,”
PLoS computational biology, vol. 16, no. 7, p. e1008050, 2020.

[3] A. P. Boyle, S. Davis, H. P. Shulha, P. Meltzer, E. H. Margulies,
Z. Weng, T. S. Furey, and G. E. Crawford, “High-resolution mapping
and characterization of open chromatin across the genome,” Cell, vol.
132, no. 2, pp. 311–322, 2008.

[4] H. Takahashi, T. Lassmann, M. Murata, and P. Carninci, “5 end–
centered expression profiling using cap-analysis gene expression and
next-generation sequencing,” Nature protocols, vol. 7, no. 3, pp. 542–
561, 2012.

[5] T. Gneiting and A. E. Raftery, “Strictly proper scoring rules, prediction,
and estimation,” Journal of the American statistical Association, vol.
102, no. 477, pp. 359–378, 2007.

[6] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable
predictive uncertainty estimation using deep ensembles,” Advances in
neural information processing systems, vol. 30, 2017.

[7] A. C. Cameron and P. K. Trivedi, Regression analysis of count data.
Cambridge university press, 2013, vol. 53.

[8] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning. PMLR, 2016, pp. 1050–1059.

[9] V. Vovk, A. Gammerman, and G. Shafer, “Conformal prediction,”
Algorithmic learning in a random world, pp. 17–51, 2005.

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

82

[10] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems. Springer, 2000, pp.
1–15.

[11] K. Cochran, D. Srivastava, A. Shrikumar, A. Balsubramani, R. C.
Hardison, A. Kundaje, and S. Mahony, “Domain-adaptive neural net-
works improve cross-species prediction of transcription factor binding,”
Genome research, vol. 32, no. 3, pp. 512–523, 2022.

[12] M. A. Batzer and P. L. Deininger, “Alu repeats and human genomic
diversity,” Nature reviews genetics, vol. 3, no. 5, pp. 370–379, 2002.

[13] J. Schreiber and R. Singh, “Machine learning for profile prediction in
genomics,” Current Opinion in Chemical Biology, vol. 65, pp. 35–41,
Dec. 2021.

[14] M. Kircher, C. Xiong, B. Martin, M. Schubach, F. Inoue, R. J. Bell, J. F.
Costello, J. Shendure, and N. Ahituv, “Saturation mutagenesis of twenty
disease-associated regulatory elements at single base-pair resolution,”
Nature communications, vol. 10, no. 1, pp. 1–15, 2019.

[15] A. Karollus, T. Mauermeier, and J. Gagneur, “Current sequence-based
models capture gene expression determinants in promoters but mostly
ignore distal enhancers,” bioRxiv, 2022.

[16] B. Rajaratnam, D. Sparks, K. Khare, and L. Zhang, “Scalable bayesian
shrinkage and uncertainty quantification for high-dimensional regres-
sion,” arXiv preprint arXiv:1509.03697, 2015.

[17] M.-H. Laves, S. Ihler, J. F. Fast, L. A. Kahrs, and T. Ortmaier, “Well-
calibrated regression uncertainty in medical imaging with deep learning,”
in Medical Imaging with Deep Learning. PMLR, 2020, pp. 393–412.

[18] S. Messoudi, S. Destercke, and S. Rousseau, “Conformal multi-target
regression using neural networks,” in Conformal and Probabilistic
Prediction and Applications. PMLR, 2020, pp. 65–83.

[19] Z. Wei, “Some contributions to high-dimensional statistical machine
learning,” Ph.D. dissertation, UC Davis, 2016.

[20] A. N. Angelopoulos and S. Bates, “A gentle introduction to confor-
mal prediction and distribution-free uncertainty quantification,” arXiv
preprint arXiv:2107.07511, 2021.

[21] Ž. Avsec, V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska,
K. R. Taylor, Y. Assael, J. Jumper, P. Kohli, and D. R. Kelley, “Effective
gene expression prediction from sequence by integrating long-range
interactions,” Nature methods, vol. 18, no. 10, pp. 1196–1203, 2021.

[22] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncer-
tainty to weigh losses for scene geometry and semantics,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 7482–7491.

[23] A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important
features through propagating activation differences,” in International
conference on machine learning. PMLR, 2017, pp. 3145–3153.

6.1 Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA
Sequences

83

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise
Linear Modulation

Contributing Article

Turkoglu MO, Becker A, Gündüz HA, Rezaei M, Bischl B, Daudt RC, D' Aronco S, Weg-
ner J, Schindler K (2022). “FiLM-Ensemble: Probabilistic Deep Learning via Feature-
wise Linear Modulation.” In S Koyejo, S Mohamed, A Agarwal, D Belgrave, K Cho,
A Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 22229–
22242. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper files/paper/2022/file/
8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf

Declaration of Contributions

Hüseyin Anil Gündüz contributed to this paper as a co-author with the following
significant contributions:
Hüseyin Anil Gündüz designed, developed the code, and ran all the experiments of the 6mA
identification task, which is presented in Chapter 3.5 and Figure 3 of the main paper, and
Subchapter A3 and Figure 2 in the Appendix. These experiments show that the proposed method
can also be applied successfully on 1-dimensional sequential genomics data and therefore prove
the effectiveness of the proposed method on 1-dimensional data. Additionally, the performed
experiments by Hüseyin Anil Gündüz show that there is a tradeoff between improving the
calibration of the model predictions and improving the model’s performance, and this tradeoff
can be managed by adjusting the initialization gain parameter of the batch normalization layers,
which is a hyperparameter induced by the proposed method. Hüseyin Anil Gündüz also presented
the paper at the NeurIPS 2023 main conference together with Mehmet Ozgur Turkoglu.

Contribution of the coauthors:
Mehmet Ozgur Turkoglu is the main contributor and author of the paper. Mehmet Ozgur
Turkoglu proposed the method, developed the main parts of the code, and ran most of the
experiments. Alexander Becker worked on parallelization of the algorithm and performed
experiments for benchmarking memory and inference complexities. He also helped with the code
implementation of the baselines. Mina Rezaei designed, ran, and analyzed the experiments on
the retinal glaucoma detection task, presented in Chapters 3.4 and 3.6. Konrad Schindler was the
main supervisor of the project. Konrad Schindler provided supervision and assistance throughout
the entire process and helped with the writing of the paper significantly. All authors contributed
to the writing and editing of the paper.

84

https://proceedings.neurips.cc/paper_files/paper/2022/file/8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf

FiLM-Ensemble: Probabilistic Deep Learning via
Feature-wise Linear Modulation

Mehmet Ozgur Turkoglu
ETH Zurich

Alexander Becker
ETH Zurich

Hüseyin Anil Gündüz
LMU Munich

Mina Rezaei
LMU Munich

Bernd Bischl
LMU Munich

Rodrigo Caye Daudt
ETH Zurich

Stefano D’Aronco
ETH Zurich

Jan Dirk Wegner
ETH Zurich &

University of Zurich

Konrad Schindler
ETH Zurich

Abstract

The ability to estimate epistemic uncertainty is often crucial when deploying ma-
chine learning in the real world, but modern methods often produce overconfident,
uncalibrated uncertainty predictions. A common approach to quantify epistemic
uncertainty, usable across a wide class of prediction models, is to train a model
ensemble. In a naïve implementation, the ensemble approach has high compu-
tational cost and high memory demand. This challenges in particular modern
deep learning, where even a single deep network is already demanding in terms
of compute and memory, and has given rise to a number of attempts to emulate
the model ensemble without actually instantiating separate ensemble members.
We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the
concept of Feature-wise Linear Modulation (FiLM). That technique was originally
developed for multi-task learning, with the aim of decoupling different tasks. We
show that the idea can be extended to uncertainty quantification: by modulating
the network activations of a single deep network with FiLM, one obtains a model
ensemble with high diversity, and consequently well-calibrated estimates of epis-
temic uncertainty, with low computational overhead in comparison. Empirically,
FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very
close to the upper bound of an explicit ensemble of networks (sometimes even
beating it), at a fraction of the memory cost.

1 Introduction

A key component for reliable and trustworthy machine learning are algorithms that output not only
accurate predictions of the target variables, but also well-calibrated estimates of their uncertainty [Gal
and Ghahramani, 2016]. The overall uncertainty of a predictor is usually decomposed into two parts
[Der Kiureghian and Ditlevsen, 2009]. Aleatoric uncertainty is inherent in the data, for instance due
to class overlap or sensor noise. On the contrary, epistemic uncertainty characterises the uncertainty
of the model weights, due to a lack of knowledge about parts of the input space that are insufficiently
represented in the training set. Uncertainty caused by distributional shifts between the training and
test data is sometimes conceived as a third source of uncertainty [Malinin and Gales, 2018], but in
practice often modelled as part of epistemic uncertainty.

Measuring epistemic uncertainty for complex models such as deep neural networks is not trivial: by
definition one cannot derive it from the training data, since it concerns the behavior of the model

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

85

in regions of the input space that are not represented in the training set. Different methods have
been explored [Welling and Teh, 2011, Graves, 2011, Blundell et al., 2015, Lakshminarayanan et al.,
2017a, Huang and Belongie, 2017, Gal and Ghahramani, 2016], however the de facto standard remain
deep ensemble models [Lakshminarayanan et al., 2017a]. In its basic form, such a deep ensemble is
simply a collection of independently trained networks that can be regarded as Monte Carlo samples
from the model space. To obtain ensemble members with reasonably low correlation, one can exploit
the stochastic nature of the optimisation procedure, with different (random) weight initialisation and
different (random) batches during stochastic gradient descent. The expectation is that, once trained,
the ensemble members will agree for inputs near the training samples, since the loss function favours
similar outputs at those locations. Whereas they may disagree in unseen regions of the data space.
Thus, the spread of their predictions is a measure of epistemic uncertainty. The ensemble idea is
conceptually very simple, but nevertheless yields uncertainties that are well calibrated, i.e., they are
in line with the actual prediction errors (in expectation).

The drawback of deep ensembles is their large computational cost. Both computation and memory
consumption grow directly proportionally with the number of ensemble members, during training as
well as during inference. This makes them impractical in hardware-constrained settings, and leads to
a widening gap as models continue to grow in size, while at the same time applications like mobile
robotics, augmented reality and smart sensor networks increase the need for mobile and embedded
computing.

To improve efficiency, several researchers have explored ways to mimic deep ensembles without
explicitly duplicating the underlying network. Possible strategies include the reuse and recombination
of network modules [e.g., Wen et al., 2020, Havasi et al., 2021], injection of noise at inference
time [e.g., Gal and Ghahramani, 2016], as well as hybrid variants [e.g., Durasov et al., 2021].
Empirically, these models do speed up training and/or inference, but still exhibit a significant
performance gap compared to the naïve, explicit ensemble, both w.r.t. prediction quality and w.r.t. the
calibration of the predicted (epistemic) uncertainties.

The lottery ticket hypothesis [Frankle and Carbin, 2018] and other network pruning studies, e.g., by
Han et al. [2015], Lee et al. [2019], Mallya and Lazebnik [2018], underline that neural networks
are heavily over-parameterized. Their parameters are used inefficiently, and they can be pruned
significantly without large performance drops. In lifelong learning and multi-task learning it is
essential to use the network efficiently, in order to limit computational overhead when introducing
new tasks. There are recent works that achieve good performance in these tasks by introducing
modulation (respectively, adaptation) strategies. In particular, Li et al. [2018], Takeda et al. [2021]
propose an efficient lifelong learning / domain adaptation method for multi-task learning, utilizing
single feature-wise linear modulation (FiLM).

Inspired by that line of work, we propose a new, efficient ensemble method, FiLM-Ensemble. Our
method adapts feature-wise linear modulation as an alternative way to construct an ensemble for
(epistemic) uncertainty estimation. FiLM-Ensemble greatly reduces the computational overhead
compared to the naïve ensemble approach, while performing almost on par with it, sometimes even
better. In a nutshell, FiLM-Ensemble can be described as an implicit model ensemble in which each
individual member is defined via its own set of linear modulation parameters for the activations,
whereas all other network parameters are shared among ensemble members – and therefore only need
to be stored and trained once. Thanks to this design, our method requires only a very small number
of additional parameters on top of the base network, e.g., converting a single ResNet-18 model to an
ensemble of 16 models increases the parameter count by 1.3%, compared to an increase by 1500%
when setting up a naïve ensemble, see Table 1. We further show that FiLM-Ensemble results in
more diverse ensemble members compared to other efficient ensemble methods. For instance, on
the Cifar-10 benchmark it achieves diversity scores > 6.9% and up to 9.2% (depending on ensemble
size), against 6.8% for a naive ensemble, see Fig. 1. Our contributions can be summarized as follows.

• We propose FiLM-Ensemble, a novel parameter- and time-efficient deep ensemble method.

• FiLM-Ensemble is designed in such a way that it can be readily combined with many popular
deep learning models, by simply replacing batch normalisation (batchnorm) layers with
conditional batchnorm layers.

• We show that FiLM-Ensemble provides an excellent trade-off between accuracy and calibra-
tion performance, improving over existing ensemble methods.

2

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

86

2 FiLM-Ensemble

Perez et al. [2018] achieved the linear feature modulation by varying the affine parameters of the
batch normalization layers γ and β. For each batchnorm layer n in the network, the parameters are
predicted according to some conditioning input z (for instance, different prediction tasks):

γn = gn(z) βn = hn(z) (1)

The size of γn and βn is RDn where Dn is the feature dimension at layer n. These parameters are
then used to linearly modulate the activations at the n-th layer Fn:

FiLM(Fn|γn,βn) = γn(z) ◦ Fn + βn(z) , (2)

with ◦ being the Hadamard (element-wise) product taken w.r.t. the feature dimension.

In our scenario we aim to use the affine parameters to instantiate different ensemble members, i.e.,
the conditioning variable z is simply an index m ∈ {1, ...,M} that identifies the ensemble member.
The functions gn(z) and hn(z) degenerate to look-up tables, so we can dispose of them and simply
learn M different sets of affine parameters for every batchnorm layer Fn:

FiLM(Fn|γm
n ,βm

n) = γm
n ◦ Fn + βm

n . (3)

To achieve ensemble members with diverse parameters, we resort to Xavier initialization, i.e., all γm
n

and βm
n are sampled from a uniform distribution bounded between:

±
√
3√
Dn

ρ , (4)

where Dn is the number of features (channels) in the n-th layer, and ρ is an initialization gain factor.
In our setting ρ is a tunable hyperparameter that allows one to control the trade-off between predictive
accuracy and calibration of the model, see Section 3.5. In general, increasing ρ leads to more diverse
ensemble members and thus favours calibration. Note that as ρ → 0, all ensemble members start
from similar initial values for γm

n and βm
n and the FiLM-Ensemble gradually collapses to a single

model.

During training, we feed each input sample x to every ensemble member and obtain predictions
ym = fθ,γm,βm(x), which depend both on the member-specific parameters (βm,γm) and on the
shared parameters θ. All those parameters are optimized together to minimise the chosen loss function.
Here we focus on classification and use a standard cross-entropy (CE) loss.

At inference time the final prediction ŷ is obtained by averaging the M predictions of the ensemble:

ŷ =
1

M

M∑

m=1

ym . (5)

2.1 Implementation Details

We implemented 1-dimensional and 2-dimensional FiLM-Ensemble layers, to be used in combination
with 1-dimensional and 2-dimensional convolution operations, respectively. The forward passes
through different ensemble members can easily be parallelized by replicating both the input tensor and
the FiLM parameters γ,β along the batch dimension and applying the affine transformation Eq. 3 (the
same holds for the BatchEnsemble method). In this way all ensemble members run simultaneously
on a single device, thus optimally utilizing modern tensor computing hardware without having to load
several instances of the classification network into memory. We have implemented FiLM-Ensemble
in PyTorch and release the source code.1

For all experiments, we optimize the model parameters with standard stochastic gradient descent,
with momentum µ=0.9 and weight decay λ=0.0005 for regularization. We train for 200 epochs
with batch size 128. The learning rate is initially set to 0.1 and decays according to a cosine
annealing schedule [Loshchilov and Hutter, 2017]. The initialisation gain is set to ρ = 2 for all
experiments, except for genome sequences (see Table 3), where ρ ∈ {4, 8, 16, 32}. Please refer to
the supplementary material for additional, dataset-specific details.

1https://github.com/prs-eth/FILM-Ensemble

3

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

87

3 Experiments

In the following, we first empirically examine the ability of FiLM-Ensemble to learn independent
ensemble members, and compare it to deep ensembles. Then we analyze the predictive accuracy and
uncertainty calibration of our method, as well as its computational cost and memory consumption.
We compare its performance against several baseline methods and state-of-the-art alternatives on a
variety of different datasets, and using different backbone architectures. All experimental results are
averaged over three runs with different random seeds.

We evaluate our proposed method on a diverse set of classification tasks, including popular image
classification benchmarks, image-based medical diagnosis, and genome sequence analysis. CIFAR-
10 and CIFAR-100 [Krizhevsky, 2009] are widely used testbeds for image classification, and deep
learning in general. They consist of clean images of objects from 10, respectively 100, different
semantic classes. Each of the two datasets contains 60,000 images, of which 10,000 are reserved
for testing. The semantic classes are uniformly distributed in the datasets and stratified across the
train/test spit. Retina Glaucoma Detection [Diaz-Pinto et al., 2019] is a real-world clinical dataset
that includes microscopic retina images from 956 patients with the neuropathic disease Glaucoma, and
from 1401 subjects with normal (healthy) retinas. Each input sample is a single RGB image; we resize
all images to 128×128. The image augmentation applies by combination of crop, horizontal flip, and
color jitter. REFUGE 2020 [Orlando et al., 2020] was a challenge at the MICCAI-2020 conference,
aimed at retinal Glaucoma diagnosis. The dataset consists of 800 microscopic retina images with
size 1411 × 1411 pixels, collected from different clinics. We use this dataset in conjunction with
the models trained on the previous dataset [Diaz-Pinto et al., 2019], to evaluate the ability to detect
out-of-distribution samples with the help of the predicted uncertainties (Table 4). 6mA Identification
[Li et al., 2021], is a 1-dimensional sequential genome dataset. It consists of DNA sequences of rice
plants, along with binary labels that indicate whether the sequence is a N6-methyladenine (6mA)
site. 6mA is an important DNA modification associated with several biological processes, such
as regulating gene transcription, DNA replication and DNA repair [Campbell and Kleckner, 1990,
Cheng et al., 2016, Pukkila et al., 1983]. Each sequence consists of 41 nucleotides. As there are 4
different types of nucleotides, each one-hot encoded sequence is represented by a 41× 4 matrix. In
total there are 269,500 training samples and 38,500 test samples.

We compare FiLM-Ensemble against (i) a single model without any ensembling, as the elementary
baseline, (ii) a naïve deep ensemble [Lakshminarayanan et al., 2017b], and (iii) MC-Dropout [Gal
and Ghahramani, 2016]. Furthermore, we compare with other state-of-the-art methods, including:
(iv) Masksemble [Durasov et al., 2021] which can be seen as an extension of MC-Dropout, (v) MIMO
("multi-input multi-output") [Havasi et al., 2021] which defines a multi-head architecture where each
head acts as one ensemble member, and (vi) BatchEnsemble [Wen et al., 2020] which creates an
efficient ensemble by expanding the layer weights using low rank matrices. Arguably, this layer-wise
modification of an underlying, common representation is the approach that comes closest to our work.

3.1 Diversity Analysis

Diversity is the key to constructing powerful ensembles: nothing is to be gained from highly correlated
ensemble members that return similar outputs for (almost) any input [Zhang and Ma, 2012]. In order
to analyze the diversity (respectively, the degree of independence) among members, we compute two
distance metrics between the members’ predictive distributions. Let fi and fj denote two different
ensemble members for a classification task. We first measure the disagreement score D, defined as
the fraction of all s test samples for which the two members return different answers, averaged over
all possible pairs of members:

D =
2

M(M − 1)

M∑

i=1

M∑

j=i+1

s∑

k=1

1

s

[
fi(xk) ̸= fj(xk)

]
, (6)

with [·] being the Iverson bracket. Second, we also measure the Kullback–Leibler (KL) divergence
between the two predictive distributions p(fi) and p(fj), again averaged over all pairs:

KL =
2

M(M − 1)

M∑

i=1

M∑

j=i+1

s∑

k=1

p(fi(xk)) log
p(fi(xk))

p(fj(xk))
. (7)

4

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

88

Table 1: Memory and inference complexity comparison (CIFAR-10/100 datasets): Number of
additional trainable parameters to have 16 ensemble members for different backbones. The inference
time (mult-adds) shown corresponds to the mean GPU time (number of multiply-add operations)
required to run a forward pass for a batch of size 1 with 16 ensemble members. The bottom section
comprises methods whose forward and backward passes are implemented in parallel over ensemble
members. Measurements are done on an NVIDIA GeForce GTX 1080 Ti.

Method Parameters (↓) Inference time (ms) (↓) Mult-adds (B) (↓)

Backbone VGG-11 ResNet-18 VGG-11 ResNet-18 VGG-11 ResNet-18

MC-Dropout 0.0% 0.0% 16× 2.5 16×2.4 16×0.15 16×0.56
Deep Ensemble 1500% 1500% 16× 2.3 16× 1.8 16×0.15 16×0.56

Masksemble 0.0% 0.0% 20.8 6.6 2.45 8.89
MIMO 1.1% 0.9% 2.7 1.9 0.18 0.58

BatchEnsemble 1.4% 5.2% 2.8 5.2 2.44 8.89
FiLM-Ensemble 0.9% 1.3% 2.8 5.7 2.45 8.89

For both metrics, higher numbers correspond to higher diversity. See Fig. 1. We observe that the
average diversity increases with the number of ensemble members. In both metrics, FiLM-Ensemble
achieves higher scores than the naïve, explicit deep ensemble. Meaning that the predictions of FiLM-
Ensemble are less correlated than those of an equivalent number of networks trained independently
with different random seeds. Also, note that with the increasing number of members, improvements
in diversity metrics for the naïve explicit deep ensemble are negligible.

Figure 1: Diversity analysis: CIFAR-10/VGG-11 experiment. With increasing number of members,
FiLM-Ensemble achieves more diverse representations. See Section 3.1.

3.2 Computational Cost

We go on to measure the efficiency of our proposed method, both in terms of parameter count and in
terms of resources needed for a forward pass. Table 1 (left section) reports the numbers of additional
numbers of parameters compared to a single network (i.e., without uncertainty calibration). Due
to their design, MC-Dropout and Masksemble do not require any additional parameters. Among
the remaining methods, FiLM-Ensemble has the lowest (VGG-11) or second-lowest (Resnet-18)
overhead in terms of parameter count, while performing significantly better, as we will see below.
In terms of inference complexity (Tab. 1, center and right), FiLM-Ensemble turns out to be very
competitive. Only MIMO with a ResNet-18 backbone is significantly faster and lighter, however this
comes at a considerable price in terms of accuracy and calibration, see below.

3.3 CIFAR-10 / CIFAR-100

We perform several experiments on widely used benchmarks in computer vision, CIFAR-10 and
CIFAR-100. As performance metrics, we plot the test set accuracy and the expected calibration error

5

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

89

Table 2: Classification performance on CIFAR-100 with M = 4, using ResNet-18/34 as backbone.
Best score for each metric in bold, second-best underlined.

Backbone Resnet-18 Resnet-34

Method Acc (↑) ECE (↓) Acc (↑) ECE (↓)

Single Network 78.0 ±0.4 0.046 ±0.001 79.3 ±0.2 0.089 ±0.006
Deep Ensemble 81.6 ±0.3 0.041 ±0.002 82.0 ±0.1 0.044 ±0.002

MC-Dropout 75.5 ±0.6 0.064 ±0.003 72.2 ±0.2 0.079 ±0.004
MIMO 48.0 ±2.6 0.083 ±0.017 56.2 ±4.8 0.132 ±0.055
Masksemble 72.5 ±0.5 0.075 ±0.004 70.1 ±1.2 0.067 ±0.004
BatchEnsemble 77.7± 0.1 0.052± 0.002 78.3± 0.1 0.056± 0.002
FiLM-Ensemble 79.4 ±0.2 0.038 ±0.000 80.2 ±0.1 0.045 ±0.001

(ECE) against the ensemble size M in Fig. 2, for all compared methods. In terms of accuracy (left
subfigure), FiLM-Ensemble is outperformed only by the explicit deep ensemble, across all tested
values of M ∈ {2, 4, 8, 16}. These two surpass all other methods by a clear margin. Surprisingly,
we observe that BatchEnsemble generally exhibits a negative correlation between ensemble size
and test set accuracy, with M = 4 performing best among all settings. MIMO shows very poor
performance in this experimental setting in terms of accuracy (and also in ECE). We speculate
that its shared backbone probably has a tendency to fragment into largely independent ensemble
members of low channel depth, which lack the necessary capacity when using comparatively small
networks like VGG-11 or Resnet-18. With regard to ECE (right subfigure), we see all methods
improving with growing ensemble size M . FiLM-Ensemble achieves better calibration then the
widely used deep ensemble and MC-dropout methods, with significant margins at large ensemble
sizes. Masksemble and BatchEnsemble achieve very good calibration for sizes M ∈ [4 . . . 16], but at
the cost of significant drops in classification performance. An attractive feature of FiLM-Ensemble
is that it offers a simple mechanism for trading off accuracy against calibration, by tuning the gain
factor ρ. See Section 3.5.

In Tab. 2 we quantitatively compare all tested methods on the CIFAR-100 dataset, both with a
standard Resnet-18 backbone and with a larger Resnet-34. We observe that with both architectures,
and in terms of both predictive accuracy and calibration, FiLM-Ensemble always either ranks first, or
it ranks second behind the inefficient, explicit deep ensemble. Also, note that when the capacity of
the network is increased (Resnet-18 → Resnet-34), calibration performance improves for some of the
implicit methods, but at the cost of reduced accuracy. Overall, the experiments with both variants
of CIFAR and all three model architectures confirm that our method presents an excellent trade-off
between predictive accuracy, uncertainty calibration and computational efficiency.

Figure 2: Accuracy and ECE for CIFAR-10, with varying ensemble sizes, using VGG-11 as backbone.

6

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

90

Table 3: Classification performance for retinal Glaucoma images. Best score for each metric in bold,
second-best underlined.

Method Accuracy (%) (↑) ECE (↓)

member (M) 2 4 8 16 2 4 8 16

Single 84.4 0.084
Deep Ensemble 85.6± 0.2 85.7± 0.3 86.0± 0.2 86.8± 0.4 0.041± 0.002 0.078± 0.002 0.091± 0.004 0.066± 0.003

FSSD Huang et al. [2020] 85.9± 0.1 0.047± 0.002
SNGP Liu et al. [2020] 84.7± 0.2 0.064± 0.003
pNML Bibas et al. [2021] 85.6± 0.1 0.061± 0.001

MC-Dropout 67.0± 0.2 78.4± 0.5 80.0± 0.4 82.7± 0.4 0.002 ± 0.001 0.046± 0.009 0.053± 0.011 0.051± 0.018
MIMO 72.4± 1.9 69.8± 2.3 68.9± 2.4 68.3± 2.4 0.049± 0.011 0.061± 0.013 0.082± 0.017 0.041± 0.019
Masksemble 82.7± 0.5 83.0± 0.5 80.2± 0.6 81.7± 1.1 0.064± 0.004 0.049± 0.007 0.021± 0.010 0.062± 0.012
BatchEnsemble 84.5± 0.1 86.5± 0.1 86.8± 0.2 87.1± 0.2 0.035± 0.003 0.063± 0.009 0.071± 0.002 0.066± 0.002
FiLM-Ensemble 86.3± 0.1 86.8± 0.2 86.9± 0.1 87.8 ± 0.1 0.062± 0.001 0.074± 0.000 0.068± 0.002 0.055± 0.001

3.4 Retinal Glaucoma Detection

Glaucoma is currently the leading reason of irreversible blindness in the world. Detection of
glaucomatous structural damages and changes is a challenging task in the field of ophthalmology.
We evaluate our proposed FiLM-Ensemble, as well as the baselines described above, on the ask of
diagnosing Glaucoma and quantifying the uncertainty associated with the prediction, see Table 3.
The proposed FiLM-Ensemble achieves the best classification result across all ensemble sizes, and
also the best overall result, with M=16. Whereas there is no clear trend with respect to uncertainty
calibration.

3.5 6mA Identification

With the 6mA identification task we show that FiLM-Ensemble can also be readily combined with
existing models for 1-dimensional sequential genome data. We use the 6mA-rice-Lv dataset and
a 1D-CNN architecture whose hyper-parameters have already been optimized for this dataset [Li
et al., 2021]. FiLM-Ensemble improves the accuracy and the calibration of that model, see Fig.3.
Our method performs on par with the explicit deep ensemble and better than a single instance of the
model tuned for the specific task. More importantly, one can reach a significantly better calibration
(lower ECE) by increasing the gain ρ, with only a minimal accuracy drop by < 0.25 percent points.
Please refer to the Section ?? for more results.

Figure 3: Performance of FiLM-Ensemble with varying gain ρ, c.f. Section 3.5.

3.6 Out-of-Distribution Detection

Domain shift often occurs in medical datasets; thus, detecting out-of-distribution (OOD) samples
is an important task in clinical diagnosis. Model uncertainty can be used for OOD detection. For
our experiment, we regard the retinal Glaucoma dataset [Diaz-Pinto et al., 2019] as the within-
distribution samples and perform OOD detection with the REFUGE dataset [Orlando et al., 2020]. As
performance metric, we report AUROC (Area Under the Receiver Operating Characteristic) scores,
Table 4. FiLM-Ensemble can detect OOD test samples with significantly higher accuracy than other

7

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

91

Table 4: OOD detection for retinal Glaucoma images. Best score in bold, second-best underlined.

Method AUROC (%) (↑)

member 2 4 8 16

Single 68.42
Deep Ensemble 76.89± 0.1 77.91± 0.2 78.22± 0.1 78.06± 0.1

FSSD Huang et al. [2020] 76.42± 0.2
SNGP Liu et al. [2020] 71.25± 0.6
pNML Bibas et al. [2021] 76.68± 0.3

MC-Dropout 68.03± 0.3 69.79± 0.2 77.94± 0.6 72.22± 0.2
MIMO 57.33± 1.4 59.49± 1.2 61.74± 2.1 60.52± 3.1
Masksemble 71.22± 0.5 70.83± 0.8 72.04± 1.1 70.95± 1.4
BatchEnsemble 74.38± 0.1 72.61± 0.3 75.44± 0.2 75.04± 1
FiLM-Ensemble 77.02± 0.1 77.92± 0.2 79.43± 0.1 79.85 ± 0.2

efficient ensemble methods, standard state-of-the-art OOD detection methods, and even the explicit
deep ensemble. This suggests that for challenging test samples, which are not adequately represented
in the training data, the uncertainties estimated with FiLM-Ensemble are better calibrated.

4 Related Work

4.1 Epistemic Uncertainty Quantification

A large corpus of related work addresses the estimation of epistemic (model) uncertainty in neural
networks. At the heart of such modeling is often the concept of marginalization instead of optimiza-
tion, i.e., integrating out a (possibly uncountably infinite) set of models weighted by their posterior
probability, instead of committing to a point estimate of that distribution. A multitude of methods
have been proposed to implement approximate Bayesian inference w.r.t. the model weights, given the
training data and an appropriate prior, a process that is not analytically tractable in general [Kendall
and Gal, 2017].

For instance, methods based on variational inference [Graves, 2011, Ranganath et al., 2014, Blundell
et al., 2015] seek to learn an approximate posterior distribution which is a member of a simpler family
of variational distributions. This variational distribution can often be learned using backpropagation
[Blundell et al., 2015] and can then be sampled from, or sometimes even used for exact inference.
Markov chain Monte Carlo sampling (MCMC) approaches [Neal, 1996, Welling and Teh, 2011, Chen
et al., 2014] construct a Markov chain which has the exact posterior distribution as its stationary
distribution, that can then be employed for sampling. However, in practise, these approaches often
fail to sufficiently explore high-dimensional, multi-modal loss landscapes as they are common in
deep learning [Gustafsson et al., 2020].

4.2 Ensembles and Sub-networks

In a method referred to as deep ensembles [Lakshminarayanan et al., 2017a], a set of M neural
network models are randomly and independently initialized, and are subjected to stochastic mini-batch
sampling during SGD training. The models generally converge to different minima in the parameter
space, and can be considered samples from an approximate posterior [Wilson and Izmailov, 2020,
Gustafsson et al., 2020, Izmailov et al., 2021]. Deep ensembles often achieve the best calibration
and predictive accuracy [Ovadia et al., 2019, Gustafsson et al., 2020, Ashukha et al., 2020], but
suffer from high computational complexity as they require training, storing, and running inference on
several full instances of the network.

Many alternative methods have recently been proposed in an attempt to reduce either the computa-
tional cost or the storage cost of deep ensembles. Monte Carlo (MC) Dropout [Gal and Ghahramani,
2016] runs multiple forward passes on the dropout layers in order to obtain multiple predictions
and obtain an uncertainty estimate. Although the method requires fewer computations compared
to deep ensembles, it also leads to less accurate uncertainty estimates. Snapshot ensembles [Huang

8

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

92

et al., 2017] use a cyclic learning rate schedule in order to find multiple local minima, they then store
multiple copies of the network to create the ensemble. While this approach reduces the computation
cost during training it does not alleviate the storage cost.

BatchEnsembles [Wen et al., 2020] employ multiple low rank matrices, which can be stored efficiently,
in order to modulate the parameters of a neural network and thus mimic an ensemble of network
models. Masksembles [Durasov et al., 2021] aim to improve the performance of MC Dropout by
carefully selecting the dropout masks, used to drop certain features, such that they lead to better
uncertainty quantification. Another approach that uses multiple sub-networks is proposed in Havasi
et al. [2021]. In this case additional, independent layers are added at the beginning and at the end of
the network, in order to obtain multiple prediction with an single backbone model. Although such
method seems to reduce the computational resources required at training and inference time, the gain
is limited to larger backbones, such as Wide-ResNet (e.g., ResNet28-10), whereas for widely used
standard architectures like VGG (e.g., -16), or ResNet (e.g., -34), the approach is not very effective,
as shown in our experiments.

Although many methods have been proposed that aim at reducing the computational cost of deep
ensembles, none of them appears to clearly outperform most others. In summary, the question how to
effectively model uncertainty still remains open.

4.3 Feature-wise Linear Modulation

The idea of controlling the batch normalization parameters to modulate a network’s function has been
explored by many different authors to accomplish different tasks. Conditional batch normalization
(CBN) was proposed by de Vries et al., who achieved good performance in VQA experiments by
using an MLP to estimate residuals for normalization parameters used in a pre-trained ResNet [De
Vries et al., 2017b]. Perez et al. [2018] proposed FiLM also for solving VQA tasks. Strub et al.
[2018] modify FiLM to produce normalization parameters in several stages instead of all at once.
This formulation is better able to handle longer conditioning information, such as dialogues instead
of questions, and achieved excellent results on the GuessWhat?! visual dialogue task [De Vries et al.,
2017a].

Such modulation operations have also been used for image style transfer. It has been observed that the
statistics of a feature map, which are associated with and can be controlled by the parameters produced
by FiLM, are directly related to the style of an image [Huang and Belongie, 2017]. Dumoulin et al.
[2017] succeeded in capturing the styles of artistic paintings, as well as combining extracted styles to
create new ones, by using conditional instance normalization, which can be seen as a variation of
FiLM. Ghiasi et al. [2017] expand on this work by jointly training a style prediction network and
a style transfer network, which also operate based on conditional instance normalization. Finally,
Brock et al. [2018] used FiLM for natural image synthesis using generative adversarial networks
(GANs). They report that this allowed for a reduction in computation and memory costs, as well as a
37% increase in training speed.

Yang et al. [2018] have used FiLM to modulate the layers of a segmentation network to perform
video object segmentation. This made it possible to avoid the fine-tuning process that was used by
competing methods, which resulted in a 70× speed-up while achieving similar accuracy. Feature
modulation has also been applied for various other tasks. Oreshkin et al. [2018] used FiLM for task-
dependent metric scaling, which allowed them to achieve excellent results in few-shot classification.
Vuorio et al. [2019] use FiLM for meta-learning via task-aware modulation. The authors note that
FiLM outperforms attention-based modulation in this context, and is more stable. Finally, Vinyals
et al. [2019] used FiLM in their AlphaStar neural architecture for multi-agent reinforcement learning.
To our knowledge, FiLM has so far not been used for (implicit) model ensembling or uncertainty
quantification.

5 Limitations & Future Work

The work presented in this paper gives rise to several questions that can be explored in future
work. Using pre-trained models is standard procedure in deep learning applications. It would be
useful to explore how FiLM-Ensemble performs when used in conjunction with pre-trained models.
This may not be straightforward since FiLM-Ensemble (and also other implicit ensemble methods,

9

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

93

e.g., BatchEnsemble, MIMO) is based on variations between ensemble members, which may be
reduced if all members are similarly initialized. Furthermore, self-attention-based models, e.g.,
Transformers [Vaswani et al., 2017] and Vision Transformers [ViTs, Dosovitskiy et al., 2021] have
recently become very popular; therefore it is natural to adapt FilM-Ensemble to work with such
models. Note that layer normalization is standard in Transformers instead of batch normalization,
which prevents the straightforward application of the presented method in this case. Also, a number
of measures designed to enhance implicit ensembles are orthogonal to our approach and could
potentially be combined with FiLM-Ensemble to further improve its performance and uncertainty
calibration, while minimally increasing the computational costs. It appears straight-forward to add
the selection of independent examples for each member during training [as in MIMO, Havasi et al.,
2021], temperature scaling [Guo et al., 2017] or data augmentation strategies [such as, e.g., Ramé
et al., 2021].

6 Conclusion

In this paper we present FiLM-Ensemble, a novel implicit deep ensembling method. We achieve high
efficiency using a simple yet effective idea – feature-wise linear modulation – which has been shown
to be effective in different domains, such as image style transfer, model-agnostic meta-learning, or
multi-task learning. Our extensive evaluation shows that FiLM-Ensemble outperforms, or is on par
with, state-of-the-art ensemble methods in many different experimental settings.

Broader Impact

Machine learning has recently witnessed a steep increase in model sizes and associated computational
costs, and as a consequence a rapid growth in energy consumption. For instance, training state-of-the-
art language models like GPT-3 would amount to at least 1400 MWh, or 4.6 million $. Therefore,
recently the term Green AI has been introduced, referring to AI research that yields novel results
while taking into account the computational cost, encouraging a reduction in resources spent. To
this extent, we believe that the presented method can foster more efficient ensemble methods and be
helpful towards a greener AI.

Acknowledgements We would like to thank Liyuan Zhu for his invaluable contributions to experi-
ments. H.A.G. received funding from German Federal Ministry of Education and Research (BMBF,
Grant “GenomeNet” 031L0199B). B. B. and M. R. were supported by the Bavarian Ministry of
Economic Affairs, Regional Development and Energy through the Center for Analytics - Data -
Applications (ADACenter) within the framework of BAYERN DIGITAL II (20-3410-2-9-8) and the
German Federal Ministry of Education and Research and the Bavarian State Ministry for Science and
the Arts.

References
A. Ashukha, A. Lyzhov, D. Molchanov, and D. Vetrov. Pitfalls of in-domain uncertainty estimation and

ensembling in deep learning. In International Conference on Learning Representations, 2020.

K. Bibas, M. Feder, and T. Hassner. Single layer predictive normalized maximum likelihood for out-of-
distribution detection. Advances in Neural Information Processing Systems, 34:1179–1191, 2021.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural network. In
International Conference on Machine Learning, volume 37, 2015.

A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image synthesis. In
International Conference on Learning Representations, 2018.

J. L. Campbell and N. Kleckner. E. coli oric and the dnaa gene promoter are sequestered from dam methyltrans-
ferase following the passage of the chromosomal replication fork. Cell, 62(5):967–979, 1990.

T. Chen, E. Fox, and C. Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In International Conference on
Machine Learning, volume 32, 2014.

L. Cheng, J. Sun, W. Xu, L. Dong, Y. Hu, and M. Zhou. Oahg: an integrated resource for annotating human
genes with multi-level ontologies. Scientific reports, 6(1):1–9, 2016.

10

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

94

H. De Vries, F. Strub, S. Chandar, O. Pietquin, H. Larochelle, and A. Courville. Guesswhat?! visual object
discovery through multi-modal dialogue. In IEEE Conference on Computer Vision and Pattern Recognition,
2017a.

H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C. Courville. Modulating early visual
processing by language. In Advances in Neural Information Processing Systems, volume 30, 2017b.

A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter? Structural Safety, 31(2):105–112,
2009.

A. Diaz-Pinto, A. Colomer, V. Naranjo, S. Morales, Y. Xu, and A. F. Frangi. Retinal image synthesis and semi-
supervised learning for glaucoma assessment. IEEE Transactions on Medical Imaging, 38(9):2211–2218,
2019.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In
ICLR, 2021.

V. Dumoulin, J. Shlens, and M. Kudlur. A learned representation for artistic style. ICLR, 2017.

N. Durasov, T. Bagautdinov, P. Baque, and P. Fua. Masksembles for uncertainty estimation. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13539–13548, 2021.

J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep
learning. In International Conference on Machine Learning, 2016.

G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens. Exploring the structure of a real-time, arbitrary neural
artistic stylization network. arXiv preprint arXiv:1705.06830, 2017.

A. Graves. Practical variational inference for neural networks. In Advances in Neural Information Processing
Systems, volume 24, 2011.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. In International
Conference on Machine Learning, 2017.

F. K. Gustafsson, M. Danelljan, and T. B. Schon. Evaluating scalable bayesian deep learning methods for robust
computer vision. In IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020.

S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural network.
Advances in neural information processing systems, 28, 2015.

M. Havasi, R. Jenatton, S. Fort, J. Z. Liu, J. Snoek, B. Lakshminarayanan, A. M. Dai, and D. Tran. Training
independent subnetworks for robust prediction. In ICLR, 2021.

G. Huang, Y. Li, G. Pleiss, Z. Liu, J. E. Hopcroft, and K. Q. Weinberger. Snapshot ensembles: Train 1, get m for
free. In International Conference on Learning Representations, 2017.

H. Huang, Z. Li, L. Wang, S. Chen, B. Dong, and X. Zhou. Feature space singularity for out-of-distribution
detection. arXiv preprint arXiv:2011.14654, 2020.

X. Huang and S. Belongie. Arbitrary style transfer in real-time with adaptive instance normalization. In IEEE
International Conference on Computer Vision, 2017.

P. Izmailov, S. Vikram, M. D. Hoffman, and A. G. G. Wilson. What are bayesian neural network posteriors
really like? In International Conference on Machine Learning, volume 139, 2021.

A. Kendall and Y. Gal. What uncertainties do we need in bayesian deep learning for computer vision? In
Advances in Neural Information Processing Systems, 2017.

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto,
2009.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using
deep ensembles. In Advances in Neural Information Processing Systems, volume 30, 2017a.

B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and scalable predictive uncertainty estimation using
deep ensembles. Advances in neural information processing systems, 30, 2017b.

11

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

95

N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection sensitivity. ICLR,
2019.

Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu. Adaptive batch normalization for practical domain adaptation. Pattern
Recognition, 80:109–117, 2018.

Z. Li, H. Jiang, L. Kong, Y. Chen, K. Lang, X. Fan, L. Zhang, and C. Pian. Deep6ma: A deep learning framework
for exploring similar patterns in dna n6-methyladenine sites across different species. PLoS computational
biology, 17(2):e1008767, 2021.

J. Liu, Z. Lin, S. Padhy, D. Tran, T. Bedrax Weiss, and B. Lakshminarayanan. Simple and principled uncer-
tainty estimation with deterministic deep learning via distance awareness. Advances in Neural Information
Processing Systems, 33:7498–7512, 2020.

I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts. In International Conference
on Learning Representations, 2017.

A. Malinin and M. Gales. Predictive uncertainty estimation via prior networks. In Advances in Neural
Information Processing Systems, volume 31, 2018.

A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network by iterative pruning. In
Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 7765–7773, 2018.

R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg, 1996.

B. Oreshkin, P. Rodríguez López, and A. Lacoste. Tadam: Task dependent adaptive metric for improved few-shot
learning. Advances in Neural Information Processing Systems, 31, 2018.

J. I. Orlando, H. Fu, J. B. Breda, K. van Keer, D. R. Bathula, A. Diaz-Pinto, R. Fang, P.-A. Heng, J. Kim, J. Lee,
et al. Refuge challenge: A unified framework for evaluating automated methods for glaucoma assessment
from fundus photographs. Medical Image Analysis, 59:101570, 2020.

Y. Ovadia, E. Fertig, J. Ren, Z. Nado, D. Sculley, S. Nowozin, J. Dillon, B. Lakshminarayanan, and J. Snoek.
Can you trust your model's uncertainty? evaluating predictive uncertainty under dataset shift. In Advances in
Neural Information Processing Systems, volume 32, 2019.

E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. FiLM: Visual reasoning with a general
conditioning layer. In AAAI Conference on Artificial Intelligence, volume 32, 2018.

P. J. Pukkila, J. Peterson, G. Herman, P. Modrich, and M. Meselson. Effects of high levels of dna adenine
methylation on methyl-directed mismatch repair in escherichia coli. Genetics, 104(4):571–582, 1983.

A. Ramé, R. Sun, and M. Cord. Mixmo: Mixing multiple inputs for multiple outputs via deep subnetworks. In
IEEE/CVF International Conference on Computer Vision, 2021.

R. Ranganath, S. Gerrish, and D. Blei. Black box variational inference. In International Conference on Artificial
Intelligence and Statistics, 2014.

F. Strub, M. Seurin, E. Perez, H. De Vries, J. Mary, P. Preux, and A. C. Pietquin. Visual reasoning with multi-hop
feature modulation. In European Conference on Computer Vision, 2018.

M. Takeda, G. Benitez, and K. Yanai. Training of multiple and mixed tasks with a single network using feature
modulation. In International Conference on Pattern Recognition, pages 719–735. Springer, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention
is all you need. Advances in neural information processing systems, 30, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds,
P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575
(7782):350–354, 2019.

R. Vuorio, S.-H. Sun, H. Hu, and J. J. Lim. Multimodal model-agnostic meta-learning via task-aware modulation.
In Advances in Neural Information Processing Systems, volume 32, 2019.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In International
Conference on Machine Learning, 2011.

Y. Wen, D. Tran, and J. Ba. Batchensemble: an alternative approach to efficient ensemble and lifelong learning.
In International Conference on Learning Representations, 2020.

12

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

96

A. G. Wilson and P. Izmailov. Bayesian deep learning and a probabilistic perspective of generalization. In
Advances in Neural Information Processing Systems, volume 33, 2020.

L. Yang, Y. Wang, X. Xiong, J. Yang, and A. K. Katsaggelos. Efficient video object segmentation via network
modulation. In IEEE Conference on Computer Vision and Pattern Recognition, 2018.

C. Zhang and Y. Ma. Ensemble machine learning: methods and applications. Springer, 2012.

13

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

97

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [No] Purely

methodological contribution that, when added to a learning system, does not alter
its potential societal impacts. If anything, better uncertainty calibration reduces
the risk of negative effects caused by undetected prediction errors.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] license information for the used

datasets is public.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

98

A Training Details

A.1 CIFAR-10 / CIFAR-100

Please refer to Section 2.1.

A.2 Retinal Glaucoma Detection

We followed the same training procedure as for CIFAR-10/100, please refer to Section 2.1. Resnet-18
is used as a backbone. Models are trained with 70% of the dataset for 150 epochs and tested on the
test set (30% of the dataset).

A.3 6mA Identification

A 1-dimensional CNN architcture is used, whose hyperparameters such as kernel size and the number
of layers are optimized by Li et al. [2021]. The CNN consists of 5 convolutional blocks, where each
block contains a 1-dimensional convolution, ReLU activation, batch normalization, and dropout with
a rate of 0.5. The convolutional layers have a filter size of 256, kernel size of 10, a stride of 1, and the
first convolutional layer have a padding of 5. On top of the last convolutional block, there is a linear
layer for predicting the binary labels. Binary cross-entropy is used as a loss. All models are trained
for 20 epochs. The initial learning rate of 0.01 is used, as in Li et al. [2021]. Cosine-annealing is
used as a learning rate scheduler.

B Additional Results

B.1 EfficientNet as Backbone & More Calibration Metrics

We run more experiments using more modern architecture: EfficientNet Tan and Le [2019] whose
proportion of the number of channels vs. the number of layers can vary drastically, compared to
Resnets. In this experiment we use two extra calibration metrics: (i) the Brier score Brier et al. [1950]
and (ii) the Static Calibration Error (SCE) Nixon et al. [2019]. SCE can be considered an extension
of ECE but more accurately account for calibration by considering all classes, instead of just the
one with the highest confidence. Table 1 shows that FiLM-Ensemble can also be effectively used in
conjunction with EfficientNet architecture. In addition, other calibration metrics are also in favor of
FilM-Ensemble.

Table 1: CIFAR-10/EfficientNet-B0 performance comparison. M ∈ {2, 4}. The best score for each
metric is printed bold.

Method Acc (↑) ECE (↓) SCE (↓) Brier (↓)

Single 90.80 0.0496 0.0106 0.1470
MC-Dropout (2) 90.81 0.0499 0.0107 0.1478
MC-Dropout (4) 90.81 0.0497 0.0107 0.1474
Deep Ensemble (2) 92.67 0.0373 0.0080 0.1146
Deep Ensemble (4) 93.30 0.0307 0.0067 0.1008
Film-Ensemble (2) 91.62 0.0336 0.0073 0.1291
Film-Ensemble (4) 91.73 0.0163 0.0044 0.1222

B.2 Calibration-Accuracy Trade-off

As in Section 3.5, we show that one can reach a significantly better calibration (lower ECE) by
increasing the gain ρ, with only a minimal accuracy drop. In this case, we use Resnet-34 with 2
ensemble members on Cifar-100 dataset. See Fig. 1. Also note Fig. 2 is an extension of Fig. 3 (of the
main text) with various number of ensemble members.

1

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

99

Figure 1: Performance of FiLM-Ensemble with varying gain ρ on Cifar-100 using Resnet-34 as
backbone with M = 2, c.f. Section B.2.

Figure 2: Performance of FiLM-Ensemble with varying gain ρ on 6mA-rice-Lv dataset, using CNN-
based Deep6mA as backbone with M ∈ {2, 4, 8}, c.f. Section 3.5.

References
G. W. Brier et al. Verification of forecasts expressed in terms of probability. Monthly weather review, 78(1):1–3,

1950.

Z. Li, H. Jiang, L. Kong, Y. Chen, K. Lang, X. Fan, L. Zhang, and C. Pian. Deep6ma: A deep learning framework
for exploring similar patterns in dna n6-methyladenine sites across different species. PLoS computational
biology, 17(2):e1008767, 2021.

J. Nixon, M. W. Dusenberry, L. Zhang, G. Jerfel, and D. Tran. Measuring calibration in deep learning. In CVPR
Workshops, volume 2, 2019.

M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR, 2019.

2

6.2 FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation

100

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

6.3 Diversified Ensemble of Independent Sub-Networks for Robust
Self-Supervised Representation Learning

Contributing Article

Vahidi A, Wimmer L, Gündüz HA, Bischl B, Hüllermeier E, Rezaei M (2024). “Diversified Ensem-
ble of Independent Sub-networks for Robust Self-supervised Representation Learning.” In A Bifet,
J Davis, T Krilavičius, M Kull, E Ntoutsi, I Žliobaitė (eds.), Machine Learning and Knowledge
Discovery in Databases. Research Track. ECML PKDD 2024, pp. 38–55. Springer Nature Switzer-
land, Cham. doi:10.1007/978-3-031-70341-6 3

Acknowledgement: Reproduced with permission from Springer Nature.

Declaration of Contributions

Hüseyin Anil Gündüz contributed to this paper as a co-author with the following
significant contributions:
Hüseyin Anil Gündüz designed, developed the code, and ran all the experiments of the T6SS
identification task presented in the paper, which is presented in Figure 4 of the main paper,
and Table 7 in the Appendix. These experiments show that the proposed method can also
be applied to 1-dimensional sequential genomics data. Hüseyin Anil Gündüz also edited the paper.

Contribution of the coauthors:
Amirhossein Vahidi contributed to the design, code development, running, and evaluation of
most experiments as the first author. Most of the paper is written by Amirhossein Vahidi.
Laura Wimmer designed, developed the code, and ran the experiments of the natural language
processing (NLP) task in the paper. These experiments show that the proposed method can also
be applied to the NLP data. Mina Rezaei was the main supervisor of the paper. Mina Rezaei
wrote some parts of the paper.

All authors helped with the editing of the paper.

Note: The project was started as Amirhossein Vahidi’s master’s thesis, which he also
completed. The thesis was supervised by Mina Rezaei, who provided supervision and assistance
throughout the entire process.

101

https://dx.doi.org/10.1007/978-3-031-70341-6_3

Diversified Ensemble of Independent
Sub-networks for Robust Self-supervised

Representation Learning

Amihossein Vahidi1,2, Lisa Wimmer1,2, Hüseyin Anil Gündüz1,2,
Bernd Bischl1,2, Eyke Hüllermeier2,3, and Mina Rezaei1,2(B)

1 Department of Statistics, LMU Munich, Munich, Germany
2 Munich Center for Machine Learning, Munich, Germany

mina.rezaei@stat.uni-muenchen.de
3 Institute of Informatics LMU Munich, Munich, Germany

Abstract. Ensembling a neural network is a widely recognized app-
roach to enhance model performance, estimate uncertainty, and improve
robustness in deep supervised learning. However, deep ensembles often
come with high computational costs and memory demands. In addi-
tion, the efficiency of a deep ensemble is related to diversity among the
ensemble members, which is challenging for large, over-parameterized
deep neural networks. Moreover, ensemble learning has not yet seen such
widespread adoption for unsupervised learning and it remains a challeng-
ing endeavor for self-supervised or unsupervised representation learn-
ing. Motivated by these challenges, we present a novel self-supervised
training regime that leverages an ensemble of independent sub-networks,
complemented by a new loss function designed to encourage diversity.
Our method efficiently builds a sub-model ensemble with high diversity,
leading to well-calibrated estimates of model uncertainty, all achieved
with minimal computational overhead compared to traditional deep self-
supervised ensembles. To evaluate the effectiveness of our approach,
we conducted extensive experiments across various tasks, including in-
distribution generalization, out-of-distribution detection, dataset corrup-
tion, and semi-supervised settings. The results demonstrate that our
method significantly improves prediction reliability. Our approach not
only achieves excellent accuracy but also enhances calibration, improv-
ing on important baseline performance across a wide range of self-
supervised architectures in computer vision, natural language processing,
and genomics data.

1 Introduction

Ensemble learning has become a potent strategy for enhancing model perfor-
mance in deep learning [19,28]. This method involves combining the outputs of
multiple independently trained neural networks, all using the same architecture

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-70341-6_3.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Bifet et al. (Eds.): ECML PKDD 2024, LNAI 14941, pp. 38–55, 2024.
https://doi.org/10.1007/978-3-031-70341-6_3

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

102

Robust Self-supervised Framework via Diversified Ensemble 39

and same training dataset but differing in the randomized configurations of their
initialization and/or training. Despite its remarkable effectiveness, training deep
ensemble models poses several challenges: i) The high performance achieved by
deep ensembles comes with a significant increase in computational costs. Run-
ning multiple neural networks independently demands more resources and time.
ii) Maintaining diversity among ensemble members – a property often critical
to success – becomes increasingly difficult for large, over-parameterized deep
neural networks [37] in which the main source of diversity stems from random
weight initialization. iii) Most of the existing literature focuses on deep ensem-
bles for supervised models. Adapting these approaches to unsupervised and self-
supervised models requires careful consideration and evaluation to ensure com-
parable performance.

In recent years, self-supervised learning methods have achieved cutting-edge
performance across a wide range of tasks in natural language processing (NLP;
[2,9]), computer vision [5,40], multimodal learning [36], and bioinformatics [18].
In contrast to supervised techniques, these models learn representations of the
data without relying on costly human annotation. Despite remarkable progress
in recent years, self-supervised models do not allow practitioners to inspect the
model’s confidence. This problem is non-trivial given the degree to which critical
applications rely on self-supervised methods. As recently discussed by LeCun1,
representing predictive uncertainty is particularly difficult in self-supervised
contrastive learning for computer vision. Therefore, quantifying the predictive
uncertainty of self-supervised models is critical to more reliable downstream
tasks. Here, we follow the definition of reliability as described by Plex [44], in
which the ability of a model to work consistently across many tasks is assessed.
In particular, [44] introduces three general desiderata of reliable machine learn-
ing systems: a model should generalize robustly to new tasks, as well as new
datasets, and represent the associated uncertainty in a faithful manner.

In this paper, we introduce a novel, robust, and scalable framework for ensem-
bling self-supervised learning while preserving performance with a negligible
increase in computational cost and encouraging diversity among the ensemble
of sub-networks.

Our contributions can be summarized as follows:

– We propose a novel, scalable ensemble component of self-supervised learning
that is robust, efficient and enhances performance in various downstream
tasks.

– We develop a complementary loss function to enforce diversity among the
independent sub-networks.

– We perform extensive empirical analyses to highlight the benefits of our app-
roach. We demonstrate that this inexpensive modification achieves very com-
petitive (in most cases, better) predictive performance: 1) on in-distribution
(IND) and out-of-distribution (OOD) tasks; 2) in semi-supervised settings; 3)
learns a better predictive performance-uncertainty trade-off than compared

1 https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-
intelligence/.

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

103

40 A. Vahidi et al.

baselines. (i.e., exhibits high predictive performance and low uncertainty on
IND datasets as well as high predictive performance and high uncertainty on
OOD datasets).

τ

θ

(, ′)

ℓ + λℓ

τ′

Self-supervised Network
Contras�ve/Self-dis�lla�on/BERT

Ensemble of
Independent
Sub-Networks

1

1,..,

1

′

Embedding

(, ′)
Representa�on

Fig. 1. Illustration of our proposed method. Given a batch X of input samples, two
different views x̃ and x̃′ are produced for each sample, which is then encoded into
representations by the encoder network fθ ′ . The representations are projected to the
ensemble of independent sub-networks gm, where each sub-network produces embed-
ding vectors z and z′. The mean value of these embeddings is passed to the self-
supervised loss, while their standard deviation is used for the diversity loss. Finally,
the total loss is computed by a combination of the two loss components.

2 Related Work

Self-supervised Learning. For most large-scale modeling problems, learning
under full supervision is severely inhibited by the scarcity of annotated samples.
Self-supervised learning techniques, which solve pretext tasks [9] to generate
labels from (typically abundant) unlabeled data, have proven to be a power-
ful remedy to this bottleneck. The learned feature maps can serve as a starting
point for downstream supervised tasks, such as classification, object detection, or
sentiment analysis, with a substantially reduced need for labeled examples [25].
Alternatively, the downstream application may directly use the extracted repre-
sentation for problems such as anomaly OOD detection. While there have been
attempts to make pretraining more robust by preventing embedding collapse [40]
or boosting performance in OOD detection [39,45], the aspect of uncertainty-
awareness has been studied to a lesser extent in the self-supervised context.
Motivated by this, we present a simple way to make self-supervised learning
robust during pretext-task learning.
Ensemble Learning. Deep ensembles [28] comprise a set of M neural net-
works that independently train on the same data using random initialization.

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

104

Robust Self-supervised Framework via Diversified Ensemble 41

Deep ensembles often outperform other approaches in terms of calibration and
predictive accuracy [38], but their naive application incurs high computational
complexity, as training, memory, and inference cost multiply with the number of
base learners. BatchEnsemble [46] introduces multiple low-rank matrices, with
little training and storage demand, whose Hadamard products with a shared
global weight matrix mimic an ensemble of models. Masksensemble [13] builds
upon Monte Carlo dropout [15] and proposes a learnable (rather than random)
selection of masks used to drop specific network neurons. MIMO [20] uses ensem-
bles of sub-networks diverging only at the beginning and end of the parent
architecture – thus sharing the vast majority of weights – to obtain multiple
predictions with a single forward pass.
Diversity in Ensembles: Diversity is a crucial component for successful ensem-
bles. [37] classify existing approaches for encouraging diversity among ensemble
members into three groups: i) methods that force diversity in gradients with
adaptive diversity in prediction [35], or using joint gradient phase and magni-
tude regularization (GPMR) between ensemble members [7], ii) methods focus-
ing on diversity in logits, improving diversity with regularization and estimating
the uncertainty of out-of-domain samples [30], iii) methods promoting diver-
sity in features that increase diversity with adversarial loss [4] for conditional
redundancy [37], information bottleneck [42], or f1-divergences [4]. Our method
belongs to this last category, where our loss function encourages the diversity of
feature maps.

3 Method

We propose a simple principle to 1) make self-supervised pretraining robust with
an ensemble of diverse sub-networks, 2) improve predictive performance during
pretraining of self-supervised deep learning, 3) while keeping an efficient training
pipeline.

As depicted in Fig. 1, our proposed method can be readily applied to recent
trends in self-supervised learning [3,5,10,17,18,26] and is based on a joint
embedding architecture. In the following sections, we first describe our proposed
ensemble model, followed by the diversity loss, and then a discussion on diversity,
and computational cost.

3.1 Robust Self-supervised Learning via Independent Sub-networks

Setting. Given a randomly sampled mini-batch of data X = {xk}N
k=1 ⊂ X ⊆ Rp,

the transformer function derives two augmented views x̃ = τ(x), x̃′ = τ ′(x)
for each sample in X. The augmented views are obtained by sampling τ, τ ′

from a distribution over suitable data augmentations, such as masking parts
of sequences [1,10], partially masking image patches [21], or applying image
augmentation techniques [5].

The two augmented views x̃ and x̃′ are then fed to an encoder network fθ

with trainable parameters θ ⊆ Rd. The encoder (e.g., ResNet-50 [22], ViT [12])

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

105

42 A. Vahidi et al.

maps the distorted samples to a set of corresponding features. We call the
output of the encoder the representation. Afterward, the representation fea-
tures are transformed by M independent sub-networks {gφm

}M
m=1 with train-

able parameters φm to improve the feature learning of the encoder network. The
ensemble constructs from the representation M different q-dimensional embed-
ding vectors {zm}M

m=1, {z′
m}M

m=1, respectively, for x̃ and x̃′. We modify the
conventional self-supervised loss and replace the usual zm by the mean value
z̄ = (z1 + . . . + zM)/M , and similarly z′

m by z̄′. Averaging over the embeddings
generated by the M sub-networks increases robustness, which in turn may help
to improve predictive performance in downstream tasks.

Self-supervised Loss. In the case of contrastive learning [5], the self-supervised
loss �ssl with temperature t > 0 and cosine similarity sim(·, ·) is computed as:

�ssl (x̃k, x̃′
k) = − log

exp(sim(z̄k, z̄′
k)/t)

∑2N
i=1 I[k �=i] exp(sim(z̄k, z̄i)/t)

. (1)

Diversity Loss. Since diversity is a key component of successful model ensem-
bles [14], we design a new loss function for encouraging diversity during the
training of the sub-networks. We define the diversity regularization term �div as
a hinge loss over the difference of the standard deviation across the embedding
vectors {zk,m}M

m=1, {z′
k,m}M

m=1 to a minimum diversity of α > 0. The standard
deviation is the square root of the element-wise variance {σ2

k,o}q
o=1:

σ2
k,o = 1

M−1

∑M
m=1(zk,m,o − z̄k,o)

2 + ε ,

where we add a small scalar ε > 0 to prevent numerical instabilities. The diversity
regularization function is then given by:

�div (x̃k, x̃′
k) =

∑q
o=1 max (0, α − σk,o) (2)

+ max(0, α − σ′
k,o) ,

where σ and σ′ indicate standard deviation for the input sample and augmented
views, respectively.

Total Loss. The objective of the diversity loss is to encourage disagreement
among sub-networks by enforcing the element-wise standard deviations to be
close to α > 0 and to thus prevent the embeddings from collapsing to the same
vector. Figure 2a underlines the importance of the diversity loss on the total
sum of standard deviations between different sub-networks, which increases by
adding this loss. The total loss is calculated by combining the self-supervised
loss (Eq. 1) and the diversity loss (Eq. 2), where the degree of regularization is
controlled by a tunable hyperparameter λ ≥ 0:

� (x̃k, x̃′
k) = �ssl (x̃k, x̃′

k) + λ · �div (x̃k, x̃′
k) . (3)

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

106

Robust Self-supervised Framework via Diversified Ensemble 43

Finally, the total loss is aggregated over all the pairs in minibatch X:

Ltotal = 1
N

∑N
k=1 � (x̃k, x̃′

k). (4)

Gradients. Consider the output of the encoder fθ (x) = b and the output of the
m-th linear sub-network zm = gφm

(b) = wm · b. The weight wm is updated by
two components during backpropagation, the first of which depends on the self-
supervised loss and is the same for the entire ensemble, while the second term
depends on the diversity loss and is different for each sub-network. Given Eq. 2,
we simplify the equation by vector-wise multiplication since the sub-networks
are linear; furthermore, we omit the numerical stability term since it does not
have an effect on the derivative. The element-wise standard deviation can be
computed as follows:

σk,o =
(

1
M−1

∑M
m=1(zk,m,o − z̄k,o)

2
) 1

2
. (5)

Consider Eq. 2 for aggregating the element-wise standard deviations for one
observation (x) and assume σk < α; otherwise, the diversity loss is zero. The
derivative of the loss with respect to zk,m̂,o, m̂ ∈ 1, . . . ,M , is then given as
follows:

∂ (�div)

∂zk,m̂,o
=

−A

M − 1
· (zk,m̂,o − z̄k,o), (6)

where A := 1
M−1

∑M
m=1(zk,m,o − z̄k,o)

2). The proof is provided in the appendix
(see Theoretical Supplement).

In the optimization step of stochastic gradient descent (SGD), the weight of
sub-network m̂ is updated by:

η · ∇wm̂,o
�div = −C · (zk,m̂,o − z̄k,o), (7)

where η > 0 is the learning rate, and C is constant with respect to wm̂,o, which
depends on the learning rate, number of sub-networks, A, and b. The proof is
provided in Appendix (see Theoretical Supplement).

Equation 7 shows the updating step in backpropagation. Hyperparameter α
prevents zk,m̂,o from collapsing to a single point. Hence, wm̂,o is updated in
the opposite direction of z̄k,o, so the diversity loss prevents weights in the sub-
networks from converging to the same values.

3.2 Empirical Analysis of Diversity

Diversity of ensemble members is an important feature for powerful model
ensembles and reflects the degree of independence among its members [34,49].
We follow [14] to quantify the diversities among the ensemble of sub-networks.
Specifically, we report the diversities in terms of disagreement score between
the members’ predictive distributions and a baseline. Diversity disagreement

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

107

44 A. Vahidi et al.

2.5

5.0

7.5

10.0

0 200 400 600 800
Epoch

To
ta

l s
ta

nd
ar

d
de

vi
at

io
n

Loss function

Without diversity regularization

With diversity regularization

(a) (b)

Fig. 2. (a) Total standard deviation: sum of all standard deviations between inde-
pendent sub-networks during training. Training with diversity loss (Eq. 2) increases
the standard deviation and improves the diversity between independent sub-networks.
(b) Diversity analysis: prediction diversity disagreement vs. achieved accuracy on
CIFAR-10. Our method is on par with the deep self-supervised ensemble in terms of
both accuracy and diversity disagreement. Models in the top right corner are better.

is defined as distance disagreement divided by 1− accuracy, where the dis-
tance disagreement between two classification models hi and hj is calculated as
1
N

∑N
k=1

[
hi(xk) �= hj(xk)

]
, with N denoting the number of samples. Figure 2b

compares the diversity disagreement between our method with 10-sub-networks,
a deep ensemble with 10 members, and the single-network baseline. The results
clearly indicate that our proposed method achieves comparable results with deep
self-supervised ensembles in terms of both accuracy and diversity disagreement.

3.3 Computational Cost and Efficiency Analysis

We analyze the efficiency of our proposed method in Table 1. SSL-Ensemble
increases memory and computational requirements compared to the baseline by
200% and 900% for 3 and 10 members, respectively. The increase in the number
of parameters is 32% and 143%, and the increase in computational requirement
is ∼ 0 − 6% for our method.

Table 1. Computational cost in 4 DGX-A100 40G GPUs (PyTorch) on CIFAR 10.

Method Members Parameters(M) Memory/GPU Time/800-ep.

Baseline (SSL) 1 28 9 G 3.6 (h)
SSL-Ensemble 3 3×28 3×9 G 3× 3.6 (h)
SSL-Ensemble 10 10×28 10×9 G 10×3.6 (h)
Our method 3 37 9.2 G 3.6 (h)
Our method 10 68.1 10 G 3.8 (h)

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

108

Robust Self-supervised Framework via Diversified Ensemble 45

4 Experimental Setup

We perform several experiments with a variety of self-supervised methods to
examine our hypothesis for robustness during both pretext-task learning and
downstream tasks (fine-tuning).
Deep Self-supervised Network Architecture. Our proposed approach
builds on two recent popular self-supervised models in computer vision: i) Sim-
CLR [5] is a contrastive learning framework that learns representations by max-
imizing agreement on two different augmentations of the same image, employing
a contrastive loss in the latent embedding space of a convolutional network archi-
tecture (e.g., ResNet-50 [22]), and ii) DINO [3] is a self-distillation framework
in which a student vision transformer (ViT; [11]) learns to predict global features
from local image patches supervised by the cross-entropy loss from a momentum
teacher ViT’s embeddings. Furthermore, we study the impact of our approach
in NLP and modify SCD [26], which applies the bidirectional training of trans-
formers to language modeling. Here, the objective is self-supervised contrastive
divergence loss. Lastly, we examine our approach on Self-GenomeNet [18],
a contrastive self-supervised learning algorithm for learning representations of
genome sequences. More detailed descriptions of the employed configurations are
provided in Appendix (see Implementation Details)
Deep Independent Sub-networks. We implement M independent sub-
networks on top of the encoder, for which many possible architectures are con-
ceivable. For our experiments on computer vision datasets, we consider an ensem-
ble of sub-network architecture where each network includes a multi-layer per-
ceptron (MLP) with two layers of 2048 and 128 neurons, respectively, with ReLU
as a non-linearity and followed by batch normalization [24]. Each sub-network
has its own independent set of weights and learning parameters. For the NLP
dataset, the projector MLP contains three layers of 4096 neurons each, also using
ReLU activation’s as well as batch normalization. For the genomics dataset, our
ensemble of sub-networks includes one fully connected layer with an embedding
size of 256.
Optimization. For all experiments on image datasets based on DINO and
SimCLR, we follow the suggested hyperparameters and configurations by the
paper [3,5]. Implementation details for pretraining with DINO on the 1000-
classes ImagetNet dataset without labels are as follows: coefficients ε, α, and
λ are respectively set to 0.0001, 0.15, and 2 in Eq. 2, 2, and 3. We provide
more details in ablation studies (Sect. 6) on the number of sub-networks and the
coefficients λ and α used in the loss function. The encoder network fθ is either a
ResNet-50 [22] with 2048 output units when the baseline is SimCLR [5] or ViT-
s [12] with 384 output units when the baseline is DINO [3]. The best prediction
and calibration performance is achieved when the number of sub-networks is 5.
We followed the training protocol and settings suggested by [3].
Datasets. We use the following datasets in our experiments: CIFAR-
10/100 [27] are subsets of the tiny images dataset. Both datasets include 50,000
images for training and 10,000 validation images of size 32× 32 with 10 and 100
classes, respectively. SVH [32] is a digit classification benchmark dataset that

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

109

46 A. Vahidi et al.

contains 600,000 32 × 32 RGB images of printed digits (from 0 to 9) cropped
from pictures of house number plates. ImageNet [8], contains 1,000 classes, with
1.28 million training images and 50,000 validation images. For the NLP task, we
train on a dataset of 1 million randomly sampled sentences from Wikipedia
articles [23] and evaluate our models on 7 different semantic textual simi-
larity datasets from the SentEval benchmark suite [6]: MR (movie reviews),
CR (product reviews), SUBJ (subjectivity status), MPQA (opinion-polarity),
SST-2 (sentiment analysis), TREC (question-type classification), and MRPC
(paraphrase detection). The T6SS effector protein dataset is a public real-world
bacteria dataset (SecReT6, [29]) with actual label scarcity. The sequence length
of the genome sample is 1000nt in all experiments.
Tasks. We examine and benchmark a model’s performance on different
tasks considering evaluation protocols by self-supervised learning [5] and
Plex’s benchmarking tasks [44]. Specifically, we evaluate our model on the
basis of uncertainty-aware IND generalization, OOD detection, semi-
supervised learning, corrupted dataset evaluation (see Sect. 5), and
transfer learning to other datasets and tasks (see Appendix: Transfer
to Other Tasks and Datasets)
Evaluation Metrics. We report prediction/calibration performance with the
following metrics, where upward arrows indicate that higher values are desirable,
et vice versa. Top-1 accuracy ↑: share of test observations for which the correct
class is predicted. AUROC ↑: area under the ROC curve arising from different
combinations of false-positive and false-negative rates (here: with positive and
negative classes referring to being in and out of distribution, respectively) for a
gradually increasing classification threshold. Negative log-likelihood (NLL)
↓: negative log-likelihood of test observations under the estimated parameters.
Expected calibration error (ECE); [31] ↓: mean absolute difference between
accuracy and confidence (highest posterior probability among predicted classes)
across equally-spaced confidence bins, weighted by relative number of samples
per bin. Thresholded adaptive calibration error (TACE); [33]) ↓: modi-
fied ECE with bins of equal sample size, rather than equal interval width, and
omitting predictions with posterior probabilities falling below a certain threshold
(here: 0.01) that often dominate the calibration in tasks with many classes.
Compared Methods. We compare our method to the following contenders.
Baseline: self-supervised architectures (i.e., SimCLR, DINO, SCD, or Self-
GenomeNet, depending on the task). SSL-Ensemble: deep ensemble com-
prising a multiple of the aforementioned baseline networks. Monte Carlo
(MC) dropout: [15] baseline networks with dropout regularization applied
during pretraining of baseline encoder. BatchEnsemble: baseline encoder with
BatchEnsemble applied during pretraining.

5 Results and Discussion

In-Distribution Generalization. IND generalization (or prediction calibra-
tion) quantifies how well model confidence aligns with model accuracy. We

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

110

Robust Self-supervised Framework via Diversified Ensemble 47

perform several experiments on small and large image datasets as well as the
genomics sequence dataset to evaluate and compare the predictive performance
of our proposed model in IND generalization. Here, the base encoder fθ is frozen
after unsupervised pretraining, and the model is trained on a supervised linear
classifier. The linear classifier is a fully connected layer followed by softmax,
which is placed on top of fθ after removing the ensemble of sub-networks. High
predictive scores and low uncertainty scores are desired. Figure 3 illustrates the
predictive probability of correctness for our model on CIFAR-10, CIFAR-100,
ImageNet, and T6SS datasets in terms of Top-1 accuracy, ECE, and NLL, respec-
tively. Based on Fig. 3, our method achieves better calibration (ECE and NLL)
than the deep ensemble of self-supervised models. The discrepancy in perfor-
mance between our model and the deep ensemble can be explained by various
factors, including differences in uncertainty modeling, complexity, and robust-
ness. While the deep ensemble excels in top-1 accuracy, our model’s superior
ECE and NLL scores indicate better-calibrated and more reliable predictions,
which are essential for safety-critical applications and decision-making under
uncertainty.

ACC ECE NLL

C
IF

A
R

10

C
IF

A
R

10
0

Im
ag

eN
et

T6
S

S

C
IF

A
R

10

C
IF

A
R

10
0

Im
ag

eN
et

T6
S

S

C
IF

A
R

10

C
IF

A
R

10
0

Im
ag

eN
et

T6
S

S
0.0

0.5

1.0

1.5

2.0

2.5

0.00

0.03

0.06

0.09

0.00

0.25

0.50

0.75

Task

Method

Baseline

SSL−Ens

MCDO

BatchEns

Our method

Fig. 3. IND generalization in terms of (a) Top-1 Accuracy (b) ECE (c) NLL aver-
aged over in-distribution on test samples of CIFAR-10/100, ImageNet, T6SS datasets.
Here, we compare our method with the ensemble of deep self-supervised networks
(SSL-Ens), as well as the baseline.

Out-of-Distribution Detection. OOD detection shows how well a model can
recognize test samples from the classes that are unseen during training [16]. We
perform several experiments to compare the model generalization from IND to
OOD datasets and to predict the uncertainty of the models on OOD datasets.
Evaluation is performed directly after unsupervised pretraining without a fine-
tuning step. Table 2 shows the AUROC on different OOD sets for our model,
baseline, and deep self-supervised ensemble. Our approach improves overall com-
pared to other methods.
Semi-supervised Evaluation. We explore and compare the performance of
our proposed method in the low-data regime. Again, the encoder fθ is frozen
after self-supervised pretraining, and the model is trained on a supervised lin-
ear classifier using 1% and 10% of the dataset. The linear classifier is a fully
connected layer followed by softmax. Table 3 shows the result in terms of top-

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

111

48 A. Vahidi et al.

Table 2. OOD detection. Results reported using AUROC show our method enhances
the baseline up to 6%.

IND OOD Baseline SSL-Ensemble Our method

CIFAR-100 SVHN 84.22 84.95 88.00
Uniform 91.65 90.53 97.57
Gaussian 90.00 89.42 94.10
CIFAR-10 74.71 74.80 75.18

CIFAR-10 SVHN 95.03 96.68 97.07
Uniform 96.73 91.64 99.05
Gaussian 96.39 93.24 99.24
CIFAR-100 91.79 91.59 91.87

Table 3. Semi-supervised evaluation: Top-1 accuracy (ACC), ECE, and NLL for
semi-supervised CIFAR-10/100 classification using 1% and 10% training examples.

Method CIFAR-10 (1%) CIFAR-10 (10%) CIFAR-100 (1%)CIFAR-100 (10%)

ACC ECE NLL ACC ECE NLL ACC ECE NLL ACC ECE NLL
Baseline 89.1 0.075 0.364 91.1 0.039 0.274 56.2 0.097 2.01 59.5 0.086 1.79
SSL-Ensemble 90.1 0.056 0.334 92.2 0.050 0.257 59.7 0.081 1.86 62.6 0.053 1.48
Our method 90.4 0.018 0.296 92.6 0.016 0.249 59.3 0.060 1.71 62.4 0.042 1.56

1 accuracy, ECE, and NLL. The results indicate that our method outperforms
other methods in the low-data regime – in terms of calibration.
Corrupted Dataset Evaluation. Another important component of model
robustness is its ability to make accurate predictions when the test data distri-
bution changes. Here, we evaluate model robustness under covariate shift. We
employ a configuration similar to the one found in [44]. Figure 4 summarizes
the improved performance across metrics of interest. The results confirm that
our method outperforms the baseline and achieves comparable predictive perfor-
mance as a deep self-supervised ensemble – both in terms of calibration (TACE)
and AUROC.
Transfer to Other Tasks and Datasets. We further assess the generaliza-
tion capacity of the learned representation on learning a new task in NLP. We
train our model without any labels on a dataset of sentences from Wikipedia [23]
and fine-tune the pretrained representation on seven different semantic textual
similarity datasets from the SentEval benchmark suite [6]: MR (movie reviews),
CR (product reviews), SUBJ (subjectivity status), MPQA (opinion-polarity),
SST-2 (sentiment analysis), TREC (question-type classification), and MRPC
(paraphrase detection). Then, we evaluate the test set of each dataset. Figure 5
provides a comparison of the transfer learning performance of our self-supervised
approach for different tasks. Our results in Fig. 5 indicate that our approach
performs comparably to or better than the baseline method. We test the per-

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

112

Robust Self-supervised Framework via Diversified Ensemble 49

CIFAR100

AUROC

CIFAR100

TACE

CIFAR10

AUROC

CIFAR10

TACE

1 2 3 4 5 1 2 3 4 5

0.55

0.60

0.65

0.70

0.75

0.15

0.20

0.25

90

95

70

80

90

Severity of perturbation

Method

Baseline

SSL−Ensemble

Our method

Our method

Fig. 4. Performance under dataset corruption (CIFAR-10/100 with five levels of
increasing perturbation), evaluation in terms of AUROC and TACE for several types
of corruption (vertical spread).

formance of the trained model on ImageNet [8] on CIFAR-10 [27] dataset where
the model is trained for 100 epochs (Table 4).

ACC ECE NLL

C
R

M
P

Q
A

M
R

M
R

P
C

S
S

T−
2

S
U

B
J

TR
E

C

C
R

M
P

Q
A

M
R

M
R

P
C

S
S

T−
2

S
U

B
J

TR
E

C

C
R

M
P

Q
A

M
R

M
R

P
C

S
S

T−
2

S
U

B
J

TR
E

C

0.0

0.2

0.4

0.6

0.00

0.05

0.10

0.15

0.00

0.25

0.50

0.75

Task

M
et

ric

Method

Our method

SCD

Fig. 5. Transfer to other dataset and tasks: Comparision of Sentence embedding
performance on semantic textual similarity tasks.

Table 4. Transfer to other dataset: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) TACE (↓)

Baseline 73.5 0.038 0.78 0.20
Our method 73.9 0.030 0.75 0.18

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

113

50 A. Vahidi et al.

Fig. 6. We compare the feature diversity for different subnetworks and ensemble mem-
bers. The top images are for different sub-networks, and the bottom images are for
different ensemble members. We used Grad-CAM [41] for visualization.

6 Ablation Study

In order to build intuition around the behavior and the observed performance
of the proposed method, we further investigate the following aspects of our app-
roach in multiple ablation studies exploring: (1) the number M of sub-networks,
(2) the role of each component of the proposed loss, and (3) analysis of diversity
with visualization of the gradients of subnetworks. We also present more results
on (4) the impact of our approach during pretraining vs. at the finetuning step,
(5) the size of sub-networks, and (6) the impact of model parameters.
Number of Sub-networks. We train M individual deep neural networks on
top of the representation layer. The networks receive the same inputs but are
parameterized with different weights and biases. Here, we provide more details
regarding our experiments on IND generalization by considering varying M .
Figure 7a compares the performance in terms of top-1 accuracy, ECE, and NLL
for CIFAR-10 and CIFAR-100. Based on the quantitative results depicted in
Fig. 7a, the predictive performance improves in both datasets when increasing
the number of sub-networks (M) until a certain point. For example, in the case
of CIFAR-10, when M = 3, our performance is 91.9%; increasing M to 10 levels
top-1 accuracy up to 92.6%, while the ECE and NLL decrease from 0.026 and
0.249 to 0.023 and 0.222, respectively. These findings underline that training our
sub-networks with a suitable number of heads can lead to a better representa-
tion of the data and better calibration. Recently [43,47] provided a theoretical
statement as well as experimental results that projection heads help with faster
convergence.
Analysis of Loss. The total loss (Eq. 3) is calculated by the combination of
self-supervised loss (Eq. 1) and diversity loss (Eq. 2), where the mean value of
the embeddings across the ensemble of sub-networks is fed to the self-supervised
loss, and the corresponding standard deviation is used for the diversity loss.
First, we note that the use of our diversity regularizer indeed improves calibra-
tion and provides better uncertainty prediction. The results in Fig. 3 show the
impact of our loss function in relation to the baseline. Figure 3 compares the
predictive probability of the correctness of DINO (baseline) and our model on

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

114

Robust Self-supervised Framework via Diversified Ensemble 51

ACC ECE NLL

1 3 5 10 1 3 5 10 1 3 5 10
0.25
0.50
0.75
1.00
1.25

0.02

0.04

0.06

0.08

0.70
0.75
0.80
0.85
0.90

Number of sub−networks

M
et

ric

dataset cifar10 cifar100

(a)

ACC ECE NLL

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

0.24

0.26

0.28

0.30

0.015

0.020

0.025

0.030

0.90

0.91

0.92

�

M
et

ric

(b)

ACC ECE NLL

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

0.230

0.235

0.240

0.245

0.030

0.035

0.926

0.927

0.928

0.929

�

M
et

ric

(c)

Fig. 7. Ablation study on number of M sub-networks (a), hyperparameters of our
proposed loss (b) λ and (c) α.

ImageNet. Second, we explore different hyperparameter configurations to find
the optimal values for α and λ in Fig. 7b, 7c. Note that, in practice, α and λ
must be optimized jointly. The best top-1 accuracy in our case is achieved when
α and λ are set to 0.08 and 1.5, respectively, on the CIFAR-10 dataset.
Analysis of Diversity. In addition to quantitative results for diversity analy-
sis provided in Fig. 2b, we visualize the activation map for the last convolution
layer in the encoder for each ensemble member and each subnetwork to moti-
vate the effect of subnetworks on the encoder. As illustrated in Fig. 6, different
subnetworks have more feature diversity compared to the deep ensemble as we
expected.
Efficient Ensemble of Sub-networks at Pretraining vs. Finetuning We
performed additional experiments to study the efficiency of proposed loss and
independent sub-networks (InSub) i) during pretraining, ii) during finetuning,
and iii) during both pretraining and finetuning. As shown in Table 5, pretraining
with an ensemble of sub-networks is beneficial, and additional fine-tuning with
multiple heads can further improve performance.

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

115

52 A. Vahidi et al.

Table 5. Pretraining vs. Finetuning: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets. InSub refers to training with our
proposed Independent Subnetworks

Method ACC (%) (↑) ECE (↓) NLL (↓) TACE (↓)

Baseline 92.5 0.039 0.238 0.133
Pretrain-InSub 92.6 0.032 0.226 0.131
Finetune-InSub 92.6 0.021 0.222 0.103
Pretrain-InSub + Finetune-InSub 92.8 0.023 0.227 0.115

Table 6. Sub-Network Size: Expected calibration error averaged over uncertainty-
aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓)

Our method with 5 sub-network (100%) 92.9 0.019 0.221
With 25 percent of sub-network size 92.3 0.026 0.231
With 50 percent of sub-network size 92.6 0.021 0.226
With 75 percent of sub-network size 92.6 0.019 0.221

Table 7. Large variant encoder: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) Number of parameters (M)

Our method with ResNet50 as a encoder with 5 sub-networks 92.9 0.019 0.221 45.79
Baseline with ResNet101 as a encoder 93.2 0.027 0.202 46.95

Analysis of Size of Sub-networks. We perform several experiments to study
the different sizes of sub-network. As shown in Table 6, the dimension of pro-
jection heads does not change the top-1 accuracy. Recent self-supervised models
such as SimCLR [5], BarlowTwins [48] also reach the same results with different
projection head sizes.
Impact of Model Parameters. Our project aims to improve the predictive
uncertainty of the baseline without losing predictive performance by mimick-
ing the ensembles of self-supervised models with much lower computational
costs. According to the results shown in Table 7, a bigger encoder can poten-
tially improve the predictive performance, but it does not necessarily improve
the predictive uncertainty of the results. We used ResNet101 as a baseline with
more parameters in the encoder. To have a fair comparison, we compare it with
our model with five heads. Our model performs better in ECE and NLL and has
comparable accuracy. Also, we used ResNet34 as a baseline with fewer parame-
ters in the encoder with twenty heads and compared it with baseline ResNet50
with one head. According to results obtained in Table 8, our model performs
better in terms of ECE and NLL and has on-par accuracy.

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

116

Robust Self-supervised Framework via Diversified Ensemble 53

Table 8. Different encoder (medium size): Expected calibration error averaged
over uncertainty-aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓) Number of parameters (M)

Our method with ResNet34 as a encoder with 20 sub-networks 92.5 0.016 0.23 27.84
Baseline with ResNet50 as a encoder 92.8 0.039 0.233 27.89

7 Conclusion

In this paper, we presented a novel diversified ensemble of self-supervised frame-
work. We achieved high predictive performance and good calibration using a
simple yet effective idea – an ensemble of independent sub-networks. We intro-
duced a new loss function to encourage diversity among different sub-networks.
Our method is able to produce well-calibrated estimates of model uncertainty at
low computational overhead over a single model while performing on par with
deep self-supervised ensembles. It is straightforward to add our method to many
existing self-supervised learning frameworks during pretraining. Our extensive
experimental results show that our proposed method outperforms, or is on par
with, an ensemble of self-supervised baseline methods in many different experi-
mental settings.

Acknowledgments. L.W. is supported by the DAAD program Konrad Zuse Schools
of Excellence in Artificial Intelligence, sponsored by the German Federal Ministry of
Education and Research.

References

1. Baevski, A., Hsu, W., Xu, Q., Babu, A., Gu, J., Auli, M.: data2vec: a general
framework for self-supervised learning in speech, vision and language. In: ICML
(2022)

2. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. NeurIPS 33, 1877–1901 (2020)

3. Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., Joulin,
A.: Emerging properties in self-supervised vision transformers. In: Proceedings of
the IEEE/CVF ICCV, pp. 9650–9660 (2021)

4. Chen, C., Sun, X., Hua, Y., Dong, J., Xv, H.: Learning deep relations to promote
saliency detection. In: Proceedings of the AAAI, pp. 10510–10517 (2020)

5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for con-
trastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

6. Conneau, A., Kiela, D.: Senteval: An evaluation toolkit for universal sentence rep-
resentations. In: Calzolari, N., et al. (eds.) Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation, LREC 2018, Miyazaki,
Japan, May 7-12, 2018. European Language Resources Association (ELRA) (2018),
http://www.lrec-conf.org/proceedings/lrec2018/summaries/757.html

7. Dabouei, A., Soleymani, S., Taherkhani, F., Dawson, J., Nasrabadi, N.M.: Exploit-
ing joint robustness to adversarial perturbations. In: Proceedings of the IEEE/CVF
CVPR, pp. 1122–1131 (2020)

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

117

54 A. Vahidi et al.

8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale
hierarchical image database. In: 2009 IEEE CVPR, pp. 248–255. IEEE (2009)

9. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. ACL (2018)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Min-
nesota, June 2019. https://doi.org/10.18653/v1/N19-1423, https://aclanthology.
org/N19-1423

11. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.:
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In:
Proceedings of the 9th ICLR (2021)

12. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image
recognition at scale (2021)

13. Durasov, N., Bagautdinov, T., Baque, P., Fua, P.: Masksembles for uncertainty
estimation. In: Proceedings of the IEEE/CVF CVPR, pp. 13539–13548 (2021)

14. Fort, S., Hu, H., Lakshminarayanan, B.: Deep ensembles: A loss landscape per-
spective. arXiv preprint arXiv:1912.02757 (2019)

15. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In: ICML pp. 1050–1059. PMLR (2016)

16. Geng, C., Huang, S.j., Chen, S.: Recent advances in open set recognition: a survey.
IEEE TPAMI 43(10), 3614–3631 (2020)

17. Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Avila Pires, B., Guo, Z.,
Gheshlaghi Azar, M.: Bootstrap your own latent-a new approach to self-supervised
learning. NeurIPS 33, 21271–21284 (2020)

18. Gündüz, H.A., et al.: A self-supervised deep learning method for data-efficient
training in genomics. Commun. Biol. 6(1), 928 (2023)

19. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal.
Mach. Intell. 12(10), 993–1001 (1990)

20. Havasi, M., et al.: Training independent subnetworks for robust prediction. In:
ICLR (2021)

21. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF CVPR, pp. 16000–16009
(2022)

22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE CVPR, pp. 770–778 (2016)

23. Huggingface: wiki1m_for_simcse.txt (2021). https://huggingface.co/datasets/
princeton-nlp/datasets-for-simcse/blob/main/wiki1m_for_simcse.txt

24. Ioffe, S.: Batch Renormalization: Towards Reducing Minibatch Dependence in
Batch-Normalized Models. In: NeurIPS, 2017 (2017)

25. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A Survey on
Contrastive Self-Supervised Learning. Technologies 9(1) (2020)

26. Klein, T., Nabi, M.: Scd: self-contrastive decorrelation for sentence embeddings.
Proceedings of the 60th ACL (2022)

27. Krizhevsky, A.: Learning multiple layers of features from tiny images. University
of Toronto, Tech. rep. (2009)

28. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: NeurIPS, vol. 30 (2017)

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

118

Robust Self-supervised Framework via Diversified Ensemble 55

29. Li, J., Yao, Y., Xu, H.H., Hao, L., Deng, Z., Rajakumar, K., Ou, H.Y.: Secret6:
a web-based resource for type vi secretion systems found in bacteria. Environ.
Microbiol. 17(7), 2196–2202 (2015)

30. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image
detection in neural networks. ICLR (2018)

31. Naeini, M.P., Cooper, G.F., Hauskrecht, M.: Obtaining well calibrated probabilities
using bayesian binning. In: Proceedings of AAAI’15. AAAI Press (2015)

32. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits
in natural images with unsupervised feature learning (2011)

33. Nixon, J., et al.: Measuring Calibration in Deep Learning (2019)
34. Ortega, L.A., Cabañas, R., Masegosa, A.: Diversity and generalization in neu-

ral network ensembles. In: International Conference on Artificial Intelligence and
Statistics, pp. 11720–11743. PMLR (2022)

35. Pang, T., Xu, K., Du, C., Chen, N., Zhu, J.: Improving adversarial robustness via
promoting ensemble diversity. In: ICML, pp. 4970–4979. PMLR (2019)

36. Radford, A., et al.: Learning transferable visual models from natural language
supervision. In: ICML, pp. 8748–8763. PMLR (2021)

37. Ramé, A., Cord, M.: DICE: diversity in deep ensembles via conditional redundancy
adversarial estimation. In: 9th ICLR 2021, Virtual Event, Austria, 3–7 May, 2021.
OpenReview.net (2021)

38. Rezaei, M., Näppi, J., Bischl, B., Yoshida, H.: Deep mutual gans: representation
learning from multiple experts. In: Medical Imaging 2022: Imaging Informatics for
Healthcare, Research, and Applications, vol. 12037, pp. 191–197. SPIE (2022)

39. Rezaei, M., Näppi, J.J., Bischl, B., Yoshida, H.: Bayesian uncertainty estimation
for detection of long-tail and unseen conditions in abdominal images. In: Medical
Imaging 2022: Computer-Aided Diagnosis, vol. 12033, pp. 270–276. SPIE (2022)

40. Rezaei, M., Soleymani, F., Bischl, B., Azizi, S.: Deep bregman divergence for self-
supervised representations learning. Computer Vision and Image Understanding,
p. 103801 (2023)

41. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-
cam: visual explanations from deep networks via gradient-based localization. In:
ICCV (2017)

42. Sinha, S., Bharadhwaj, H., Goyal, A., Larochelle, H., Garg, A., Shkurti, F.: Dibs:
diversity inducing information bottleneck in model ensembles. In: Proceedings of
the AAAI, pp. 9666–9674 (2021)

43. Tian, Y., Chen, X., Ganguli, S.: Understanding self-supervised learning dynamics
without contrastive pairs. In: ICML (2021)

44. Tran, D., et al.: Plex: Towards reliability using pretrained large model extensions.
arXiv preprint arXiv:2207.07411 (2022)

45. Vahidi, A., Schosser, S., Wimmer, L., Li, Y., Bischl, B., Hüllermeier, E., Rezaei, M.:
Probabilistic self-supervised representation learning via scoring rules minimization.
In: The Twelfth International Conference on Learning Representations (2023)

46. Wen, Y., Tran, D., Ba, J.: Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. In: ICLR (2020)

47. Wen, Z., Li, Y.: The mechanism of prediction head in non-contrastive self-
supervised learning. NeurIPS (2022)

48. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised
learning via redundancy reduction. In: ICML, pp. 12310–12320. PMLR (2021)

49. Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications.
Springer Publishing Company, Incorporated (2012)

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

119

Robust Self-supervised Framework via Diversied Ensemble 59

8 Implementation Details

8.1 Computation Cost Analysis

Figure 8 illustrates relative computation cost – as compared to the baseline –
in terms of the number of parameters, computation time, and memory required
between our model and a deep self-supervised ensemble.

2.5

5.0

7.5

10.0

1 3 10

Number of ensemble members

R
e

la
ti
v
e

 c
o

s
t

Cost type

Number of parameters

Memory / GPU

Time / 800 ep.

Method

Baseline

SSL−Ensemble

Our Method

Fig. 8: The test time cost (purple, dotted) and memory cost (purple, dashed) of
our model w.r.t. the ensemble size. The gures are relative to the cost incurred
by a single model (green). The inference time cost and memory cost of a deep
self-supervised ensemble are plotted in blue.

8.2 Computational Cost Analysis

As we mentioned in Section Method the increase in the number of parameters is
32% and 143%, and the increase in computational requirement is negligible and
6% for our method compared to the baseline when there exist 3 and 10 ensemble
members, respectively. We would like to explain the reason as follows:

While the encoder networks used in the baseline methods (and our method)
contain many convolutional layers, the additional parameters introduced by our
method are in the projection head, and they are a few linear layers. Although
these additional linear layers increase the number of parameters to some extent,
the computational burden introduced by them is much more limited compared
to the convolutional layers that exist in both baselines and our method. That
is because convolutional layers typically contain fewer parameters compared to
fully connected layers due to parameter-sharing but have a much higher compu-
tational burden since their outputs are evaluated over the whole image. A toy
example to understand this would be the comparison of the two settings below:

1. Consider a 100 × 100 image fed into a convolutional lter with (kernel size=
3 × 3, stride= 1 × 1, padding= ”same”, bias= False). The convolutional lter
has 9 parameters but needs to do 100 × 100 × 9 = 90000 multiplications to
evaluate its output.

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

120

60 A. Vahidi et al.

2. Consider a vector of 1000 that is fed into a fully connected layer (without
bias) to produce 1 output value. The fully connected layer contains 1000
parameters and the number of multiplications needed to evaluate its output
is also 1000.

Comparing these two settings, the convolutional layer needs ∼100 times more
computational burden (convolutional: 90000 vs dense: 1000 multiplications) to
evaluate its outcome, although it has ∼100 times fewer parameters (convolu-
tional: 9 vs dense: 1000) compared to the fully connected layer.

Similarly, the increase in memory requirements is low for our method com-
pared to the SSL-Ensemble, but the increase in computational requirements is
much lower and even negligable.

8.3 Data Augmentation for Computer Vision Datasets

We dene a random transformation function T that applies a combination of
crop, horizontal ip, color jitter, and grayscale. Similar to [5], we perform crops
with a random size from 02 to 10 of the original area and a random aspect
ratio from 34 to 43 of the original aspect ratio. We also apply horizontal
mirroring with a probability of 05. Then, we apply grayscale with a probability
of 02 as well as color jittering with a probability of 08 and a conguration of
(04, 04, 04, 01). However, for ImageNet, we dene augmentation based on the
original DINO from their ocial repository. In all experiments, at the testing
phase, we apply only resize and center crop.

8.4 Hyperparameters for Self-supervised Network Architectures

SimCLR [5]: we use ResNet-50 as a backbone, a loss temperature of 0.07, batch
size 512, and a cosine-annealing learning rate scheduler. The embedding size is
2048, and we train for 800 epochs during pretraining. DINO [3]: we use ViT-
small as a backbone, patch size 16, batch size 1024, and a cosine-annealing
learning rate scheduler. The embedding size is 384/1536, and we train for 100
epochs during pretraining.

9 Additional Results

9.1 Robustness of representation: IND- Generalization

Tables 9, 10, and 11 present results for the predictive performance and cal-
ibration of our model on CIFAR-10, CIFAR-100, and ImageNet respectively.
Based on Table 9, our method achieves better calibration than the deep en-
semble of self-supervised networks, MC-Dropout, and BatchEnsemble, with sig-
nicant margins at large ensemble sizes. In order to have multiple batches for

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

121

Robust Self-supervised Framework via Diversied Ensemble 61

BatchEnsemble, we decreased the initial batch size because of memory, so we
ended up with a smaller batch size to which the self-supervised model (i.e.,
SimCLR) is sensitive. Also, each time we have more positive samples than the
original.

In the case of dropouts, we again face the same problem with positive and
negative samples. Dropouts also count as data regularization, but when applied
randomly to all data in contrastive learning, it degrades the idea of positive and
negative. For example, in NLP, dropouts are used to produce dierent augmen-
tations.

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

122

62 A. Vahidi et al.
T
ab

le
9:

IN
D

G
en

er
al
iz
at

io
n
:T

op
-1

ac
cu

ra
cy
,E

C
E
an

d
N
L
L
av
er
ag

ed
ov
er

in
-d
is
tr
ib
ut
io
n
on

te
st

sa
m
pl
es

of
th
e
C
IF

A
R
-1
0

da
ta
se
t
ov
er

th
re
e
ra
nd

om
se
ed

s.
T
he

be
st

sc
or
e
fo
r
ea
ch

m
et
ri
c
is

sh
ow

n
in

b
ol
d
,
an

d
th
e
se
co
nd

-b
es
t
is

un
de

rl
in
ed

.
M
et
ho

d
T
op

-1
A
cc

(%
)
(↑
)

E
C
E

(↓
)

N
L
L
(↓
)

#
m
em

b
er

(M
)

3
5

10
3

5
10

3
5

10

B
as
el
in
e

92
.8

±
0.
4

0.
03

9
±

0.
00

2
0.
23

3
±

0.
01

1
SS

L
-E

ns
em

bl
e

9
2
.8

±
0
.1

9
3
.0

±
0
.2

94
.2

±
0.
3

0
.0
4
3
±

0
.0
2

0
.0
3
3
±

0
.0
1

0.
02

9
±

0.
02

0
.2
2
1
±

0
.0
1
1
0
.2
2
6
±

0
.0
0
9

0
.1
9
9
±

0
.0
0
4

M
C

D
ro
p
ou

t
6
5
.7

±
0
.2

6
6
.3

±
0
.2

6
6
.4

±
0
.2

0
.0
8
3
±

0
.0
1
4
0
.0
7
7
±

0
.0
0
9

0
.0
7
5
±

0
.0
0
5

0
.6
6
±

0
.0
1
2

0
.6
3
7
±

0
.0
0
2

0
.5
9
3
±

0
.0
0
6

B
at
ch

E
ns
em

bl
e

6
9
.1

±
0
4
7
2
.1

±
0
.3

7
1
.9

±
0
.2

0
.0
6
4
±

0
.0
1
1
0
.0
6
1
±

0
.0
0
8

0
.0
6
2
±

0
.0
0
5

0
.6
1
3
±

x
x

0
.5
8
±

0
.0
0
7

0
.5
5
1
±

0
.0
0
4

O
ur

m
et
ho

d
9
2
.6

±
0
.2

9
2
.9

±
0
.1

9
3
.6

±
0
.1

0
.0
2
1
±

0
.0
0
4
0
.0
1
9
±

0
.0
0
2
0.
01

6
±

0.
00

1
0
.2
4
1
±

0
.0
1
0
0
.2
2
1
±

0
.0
0
5
0.
19

3
±

0.
00

3

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

123

Robust Self-supervised Framework via Diversied Ensemble 63
T
ab

le
10

:
IN

D
G
en

er
al
iz
at

io
n
:T

op
-1

ac
cu

ra
cy
,E

C
E
an

d
N
L
L
av
er
ag

ed
ov
er

in
-d
is
tr
ib
ut
io
n
on

te
st

sa
m
pl
es

of
th
e
C
IF

A
R
-

10
0
da

ta
se
t
ov
er

th
re
e
ra
nd

om
se
ed

s.
T
he

be
st

sc
or
e
fo
r
ea
ch

m
et
ri
c
is

sh
ow

n
in

b
ol
d
,
an

d
th
e
se
co
nd

-b
es
t
is

un
de

rl
in
ed

.
M
et
ho

d
T
op

-1
A
cc

(%
)
(↑
)

E
C
E

(↓
)

N
L
L
(↓
)

#
m
em

b
er

(M
)

3
5

10
3

5
10

3
5

10

B
as
el
in
e

68
.9

±
0.
3

0.
08

6
±

0.
01

4
1.
28

±
0.
05

SS
L
-E

ns
em

bl
e

7
0
.6

±
0
.1
2
7
1
.4

±
0
.5

72
.0

±
0.
2

0
.1
2
±

0
.0
1

0
.1
2
2
±

0
.0
1

0
.1
1
9
±

0
.0
4

1
.0
9
±

0
.0
1

1
.1
2
±

0
.0
1

1
.0
6
±

0
.0
2

M
C

D
ro
p
ou

t
4
6
.3

±
0
.1

4
5
.2

±
0
.4

4
8
.2

±
0
.1

0
.0
7
7
±

0
.0
1
2
0
.0
8
1
±

0
.0
0
2

0
.0
7
1
±

0
.0
0
2

2
.6
6
±

0
.1
1

2
.3
7
±

0
.0
2

2
.4
3
±

0
.0
6

B
at
ch

E
ns
em

bl
e

4
4
.1

±
0
3

4
5
.2

±
0
.2

4
6
.1

±
0
.1

0
.0
7
3
±

0
.0
1

0
.0
7
1
±

0
.0
8

0.
06

8
±

0.
00

1
2
.4
3
±

0
.0
3

2
.6
4
±

0
.0
0
7

2
.5
1
±

0
.0
0
4

O
ur

m
et
ho

d
6
7
.7

±
0
.1

68
.8

±
0.
1

7
0
.1

±
0
.0

0
.0
6
7
±

0
.0
0
1
0
.0
6
3
±

0
.0
0
1
0.
04

8
±

0.
00

0
0
.1
1
4
±

0
.0
0
5
0
.1
1
6
±

0
.0
0
0
2
1.
0
6
±

0.
0
01

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

124

64 A. Vahidi et al.

Table 11: IND Generalization: Top-1 accuracy, ECE and NLL averaged over
in-distribution on test samples of the ImageNet dataset over three random
seeds. The best score for each metric is shown in bold, and the second-best is
underlined.

Method Top-1 Acc (%) (↑) ECE (↓) NLL (↓)
Baseline 73.8 ± 0.3 0.013 ± 0.015 1.05 ± 0.01
SSL-Ensemble 75.1 ± 0.1 0.014 ± 0.000 0.98 ± 0.01
Our method 74.0 ± 0.0 0.010 ± 0.000 1.03 ± 0.01

Table 12: IND Generalization: Top-1 accuracy, ECE and NLL averaged over
in-distribution on test samples of the T6SS Identication dataset over three
random seeds. The best score for each metric is shown in bold, and the second-
best is underlined.

Method Top-1 Acc (%) (↑) ECE (↓) NLL (↓)
Baseline 75.9 ± 2.0 0.100 ± 0.006 0.502 ± 0.020
SSL-Ensemble 80.2 ± 0.7 0.099 ± 0.014 0.471 ± 0.011
Our method 76.7 ± 2.3 0.108 ± 0.006 0.492 ± 0.024

We also performed experiments on a dataset of 1-dimensional genomic se-
quences – the T6SS identication of eector proteins– to demonstrate that
uncertainty-aware subnetworks can also be readily combined with existing mod-
els for 1-dimensional datasets and models. Based on Table 12, our method im-
proves the accuracy and the calibration compared to the baseline.

10 Additional Ablation Analysis

Ecient ensemble of sub-networks at pretraining vs. netuning We
performed additional experiments to study the eciency of proposed loss and
independent sub-networks (InSub) i) during pretraining, ii) during netuning,
and iii) during both pretraining and netuning. As shown in Table 13, pretraining
with an ensemble of sub-networks is benecial, and additional ne-tuning with
multiple heads can further improve performance.

10.1 Analysis of Size of Sub-Networks

We perform several experiments to study the dierent sizes of sub-network. As
shown in Table 14, the dimension of projection heads does not change the top-1
accuracy. Recent self-supervised models such as SimCLR [5], BarlowTwins [48]
also reach the same results with dierent projection head sizes.

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

125

Robust Self-supervised Framework via Diversied Ensemble 65

Table 13: Pretraining vs. Finetuning: Expected calibration error averaged
over uncertainty-aware evaluation on CIFAR-10 datasets. InSub refers to train-
ing with our proposed Independent Subnetworks

Method ACC (%) (↑) ECE (↓) NLL (↓) TACE (↓)
Baseline 92.5 0.039 0.238 0.133
Pretrain-InSub 92.6 0.032 0.226 0.131
Finetune-InSub 92.6 0.021 0.222 0.103
Pretrain-InSub + Finetune-InSub 92.8 0.023 0.227 0.115

Table 14: Sub-Network Size: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets.

Method ACC (%) (↑) ECE (↓) NLL (↓)
Our method with 5 sub-network (100%) 92.9 0.019 0.221
With 25 percent of sub-network size 92.3 0.026 0.231
With 50 percent of sub-network size 92.6 0.021 0.226
With 75 percent of sub-network size 92.6 0.019 0.221

Table 15: Large variant encoder: Expected calibration error averaged over
uncertainty-aware evaluation on CIFAR-10 datasets.
Method ACC (%) (↑) ECE (↓) NLL (↓) Number of parameters (M)

Our method with ResNet50 as
a encoder with 5 sub-networks

92.9 0.019 0.221 45.79

Baseline with ResNet101 as a
encoder

93.2 0.027 0.202 46.95

Table 16: Dierent encoder (medium size): Expected calibration error av-
eraged over uncertainty-aware evaluation on CIFAR-10 datasets.
Method ACC (%) (↑) ECE (↓) NLL (↓) Number of parameters (M)

Our method with ResNet34
as a encoder with 20 sub-
networks

92.5 0.016 0.23 27.84

Baseline with ResNet50 as a
encoder

92.8 0.039 0.233 27.89

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

126

66 A. Vahidi et al.

10.2 Impact of Model Parameters

Our project aims to improve the predictive uncertainty of the baseline with-
out losing predictive performance by mimicking the ensembles of self-supervised
models with much lower computational costs. According to the results shown in
Table 15, a bigger encoder can potentially improve the predictive performance,
but it does not necessarily improve the predictive uncertainty of the results. We
used ResNet101 as a baseline with more parameters in the encoder. To have
a fair comparison, we compare it with our model with ve heads. Our model
performs better in ECE and NLL and has comparable accuracy.

Also, we used ResNet34 as a baseline with fewer parameters in the encoder
with twenty heads and compared it with baseline ResNet50 with one head. Ac-
cording to results obtained in Table 16, our model performs better in terms of
ECE and NLL and has on-par accuracy.

10.3 Source Code

Please nd the source code in the supplementary material.

11 Theoretical Supplement

11.1 Proof for Eq. 6

∂ (ℓdiv)

∂zk,m̂,o
= −1

2

1

M−1

M
m=1(zk,m,o − z̄k,o)

2

A

·
∂

1
M−1

M
m=1(zk,m,o − z̄k,o)

2

∂zk,m̂,o
=

−A
2 · 1

M−1

2 ·

(zk,m̂,o − z̄k,o) ·

∂ zk,m̂,o

∂zk,m̂,o
− ∂z̄k,o

∂zk,m̂,o

+

M
m=1 I[m ̸=m̂](zk,m,o − z̄k,o) ·

∂zk,m,o

∂zk,m̂,o
− ∂z̄k,o

∂zk,m̂,o

=

−A
2 · 1

M−1

2 ·

(zk,m̂,o − z̄k,o) ·

1− 1

M

+

M
m=1 I[m ̸=m̂](zk,m,o − z̄k,o) ·

−1
M

=

−A
M−1 ·

(zk,m̂,o − z̄k,o) · M−1

M +
zk,m̂,o

M

− z̄k,o +

M−1
M · z̄k,o

=

−A
M−1 · (zk,m̂,o − z̄k,o)

(8)

11.2 Proof for Eq. 7

η ·wm̂,o
ℓdiv = η · ∂ℓdiv

∂zk,m̂,o
· ∂zk,m̂,o

∂wm̂,o
= η · −A

M − 1
· (zk,m̂,o − z̄k,o) · b

6.3 Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation
Learning

127

7 Contributions to Software Development for
Genomics

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic
Sequences

Contributing Article

Mreches R, To XY, Gündüz HA, Moosbauer J, Klawitter S, Deng ZL, Robertson G, Rezaei M,
Asgari E, Franzosa EA, Huttenhower C, Bischl B, McHardy AC, Binder M, Münch PC (2024).
“GenomeNet: A platform for deep learning on (meta)genomic sequences.”

Declaration of Contributions

Hüseyin Anil Gündüz contributed to this paper as a co-author with the following
significant contributions:
Hüseyin Anil Gündüz made a substantial contribution regarding code development to the deepG
software library, a crucial aspect of this paper. Hüseyin Anil Gündüz also contributed to the
inclusion and implementation of major parts of his other works to the deepG library, such
as Self-GenomeNet and GenomeNet-Architect, which are methods focusing on self-supervised
learning and architecture optimization for sequential genomics data.

Contribution of the coauthors:
Rene Mreches and Xiao-Yin To share the first authorship of this paper with overall equal
contributions. Rene Mreches developed most of the deepG library and developed the GenomeNet
structure. Xiao-Yin To developed the functions for training a self-supervised deep learning model
as well as for siamese/twin neural networks. She further preprocessed the data, implemented the
code, and ran the models for the BacDive database predictions. Philipp C. Münch and Martin
Binder share senior authorship of the paper as the main supervisors of the project.

All authors contributed to the editing and proofreading of the paper.

128

 GenomeNet: A platform for deep learning on
 (meta)genomic sequences

 René Mreches 1,2,# , Xiao-Yin To 1,2,3,4,# , Hüseyin Anil Gündüz 3,4 , Julia Moosbauer 3,4 , Sandra
 Klawitter 1,2 , Zhi-Luo Deng 1,2 , Gary Robertson 1.2 , Mina Rezaei 3,4 , Ehsaneddin Asgari 1,2 , Eric A.
 Franzosa 5 , Curtis Huttenhower 5 , Bernd Bischl 3,4 , Alice C. McHardy 1,2,6,7 , Martin Binder 3,4,* and

 Philipp C. Münch 1,2,5,6,7,*

 1 Department for Computational Biology of Infection Research, Helmholtz Center for Infection
 Research, 38124 Braunschweig, Germany
 2 Braunschweig Integrated Centre of Systems Biology (BRICS),Technische Universität
 Braunschweig, Braunschweig, Germany
 3 Department of Statistics, LMU Munich, Germany
 4 Munich Center for Machine Learning, Munich, Germany
 5 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA
 6 Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover,
 Germany
 7 German Centre for Infection Research (DZIF)
 * These authors share senior authorship
 # These authors share first-authorship

 Abstract
 We introduce GenomeNet, an online platform designed to accelerate genomics research through the
 creation, use and sharing of deep learning models for bioinformatics tasks. Each model is accompanied
 by comprehensive model and dataset cards that detail training procedure, performance metrics, and
 potential applications. To complement this platform, we created deepG , a software library focused on the
 creation of deep learning models optimized for nucleotide sequence data, covering tasks such as
 labeling, classification, and regression. Unlike other deep learning software libraries that are primarily
 tailored for human genomics, deepG employs a variety of data augmentation techniques to facilitate the
 training of robust and accurate models. These models are capable of handling a diverse range of data
 types, from short reads and contigs to complete genomes and metagenomic assemblies. Overall, this
 platform aims to advance genomics research by making model development, deployment, and
 reproducibility more accessible, while fostering community-wide collaboration.

 Introduction

 Bioinformatics has long depended on specialized tools for processing and interpreting various
 types of biological data. One of the most intricate and information-rich types of data comes in
 the form of genomic sequences. These could range from full genomes to smaller sequence
 fragments such as contigs and reads, sourced from an array of organisms including humans,
 animals, plants, bacteria, and viruses. In the traditional bioinformatics pipeline, one often has to
 navigate a series of complex preprocessing steps before arriving at analyzable data. For
 example, in dealing with genomic sequences, tasks could include but are not limited to the
 identification and annotation of Open Reading Frames (ORFs), gene prediction, sequence
 alignment, and comparison with reference genomes. Additional steps may involve variant calling

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

129

 to detect mutations or Single Nucleotide Polymorphisms (SNPs), and even comparative
 genomics to relate sequences across species.

 These multi-step processes necessitate a vast landscape of software tools, each designed with
 specific input and output formats, as well as targeted functionalities. This poses a practical
 challenge for bioinformaticians and researchers, as they must carefully curate datasets and
 align tools to ensure compatibility and meaningful results. The situation becomes even more
 complex when considering that different tools often utilize unique algorithms, requiring users to
 understand the underlying methodologies to prevent errors or misinterpretation of data.
 Moreover, these preprocessing methods may inherently reduce the available information
 content of the raw sequences. For instance, one common technique involves converting longer
 genomic sequences into k-mer profiles—short, overlapping substrings—to simplify data and
 speed up computation. While this can be effective, it often omits valuable information. A case in
 point is the potential loss of structural relationships between distant genomic features, which
 might be essential for understanding phenomena like chromatin interactions, long-range
 regulatory effects, or three-dimensional protein configurations.

 In recent years, deep learning (DL) has emerged as a transformative approach in the field of
 bioinformatics, providing the foundation for new toolsets designed to tackle complex genomic
 problems. Libraries such as Selene (Chen et al. 2019) and Janggu (Kopp et al. 2020) exemplify
 this trend, albeit with a primary focus on human genomics. These libraries have been
 particularly instrumental in predicting transcriptional regulation events, such as transcription
 factor binding sites. However, their applicability can be limited when it comes to other types of
 genomes, especially those of microbial origin. This is due in part to differing data distributions
 among genomes of various species, as well as the specific data augmentation and subsampling
 methods employed by these tools, which may not be universally suitable for all genomics
 applications.

 In response to these challenges, we present deepG , a versatile deep learning platform tailored
 for genomics research across a spectrum of organisms. Unlike existing tools, deepG is
 designed with a focus on adaptability and robustness to different data distributions, thereby
 enabling the platform to be used for a variety of open problems in genomics. This includes but is
 not limited to the taxonomic classification of bacteria and viruses, functional genomics, and even
 phenotypic characterization. To account for the inherent diversity and complexity of genomic
 data, deepG incorporates novel data augmentation and subsampling techniques that are
 sensitive to the specificities of different organisms and genomic features.

 In response to the growing complexity and diversity of deep learning models in bioinformatics,
 we propose the standardized use of "model cards," brief documents that specify a model's
 capabilities, limitations, and optimal application scenarios. Similarly, we introduce dataset cards
 to detail the characteristics and appropriate usage of the training data. Our online platform,
 genomenet.de, serves as a repository for both models and their corresponding cards, aiming to
 simplify and demystify the user experience. Additionally, genomenet.de offers an inference
 service, allowing researchers to upload FASTA files for immediate analysis. By combining

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

130

 accessible model documentation with practical utility, we aim to promote transparent and
 effective use of machine learning in the field of genomics.

 Results

 From library to application: The GenomeNet ecosystem

 Central to our ecosystem is deepG , an R-based software library developed for training DL
 models on (meta) genomical datasets. The library is built with a focus on flexibility, allowing
 researchers to easily adapt its features to different types of genomic data across various
 organisms. It incorporates data augmentation and subsampling techniques tailored for
 genomics, aimed at making the models robust to different data distributions (Fig. 1A).
 Additionally, deepG streamlines the development, training, and application of deep learning
 models, significantly reducing the computational overhead traditionally associated with
 genomics research.

 Complementing deepG , we introduce GenomeNet , a platform featuring a curated repository of
 pre-trained DL models compatible with deepG library. For this, we introduce two foundational
 elements aimed at enhancing transparency, reproducibility, and utility in genomics research:
 "Model Cards" and "Dataset Cards." Model Cards furnish comprehensive details about each
 model, from architecture and performance metrics to the rationale behind the choice of those
 metrics (Fig. 1B, Supplementary Table 1). Dataset Cards, on the other hand, offer an overview
 of the training data used for each DL model. These cards encapsulate vital information such as
 the data source, preprocessing steps, class distributions, and any limitations like taxonomic
 biases that may affect model generalizability (Fig. 1B, Supplementary Table 2). For those
 interested in contributing to the platform, we offer options for community-submitted models,
 which undergo rigorous validation before being added to the platform, further enriching its
 capabilities.

 On the end-user front, GenomeNet serves as a powerful resource, permitting researchers to
 search the repository for models matching their specific needs. Following model selection, users
 can upload their dataset and employ our online inference service for generating predictions
 (Fig. 1C). The detailed information available in Model and Dataset Cards aids in this model
 selection process, ensuring that end-users can make informed, responsible choices in their
 research endeavors. Further, a feature of the platform is its queuing system. Given that genomic
 inference tasks can be computationally intensive and vary in execution time, the queuing
 system ensures equitable distribution of computational resources. This is especially crucial
 during periods of high traffic, facilitating a smooth and uninterrupted user experience. Crucially,
 all the models discussed in this manuscript, including those predicting sporulation capability,
 identifying CRISPR cassettes, and imputing missing nucleotides, are integrated into
 GenomeNet's repository and are accompanied by their respective Model and Dataset Cards.
 Alongside the interface, we offer a RESTful API that allows seamless integration into existing
 bioinformatics workflows or platforms, enhancing its applicability across various research
 settings.

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

131

 Figure 1 : Integrative Workflow of the GenomeNet Ecosystem A) Illustration of deepG's role in processing
 genomic datasets to train deep learning models. Metadata such as performance metrics and dataset characteristics
 are generated automatically at this stage. B) Depiction of GenomeNet's platform features, including the uploading
 process with integrated Model and Dataset Cards, which serve as comprehensive metadata descriptors for each
 uploaded DL model. C) Demonstration of the end-user experience, emphasizing the repository search functionality
 for model selection and the online inference service for real-time predictive analytics. Arrows guide the directional
 flow, elucidating the synergistic interplay among deepG, GenomeNet, and the end-users, thereby providing a
 coherent understanding of the integrated GenomeNet ecosystem.

 The DeepG library

 Deep learning (DL) models in computational biology have been applied to an increasing number
 of challenges 1 , such as virus detection 2 , antibiotic resistance prediction 3 , and contamination
 removal 4 . The development of such models often uses DL application programming interfaces
 (API) such as Keras, which enables researchers to stack neural layers into deep neural
 networks. However, these interfaces do not provide solutions for efficient data handling and
 network training for genomic data modalities.

 With deepG , we provide a software library that includes adaptations for genomic datasets on the
 nucleotide and amino acid level and provides an easy-to-use interface for training and applying
 DL networks. In deepG , the standard workflow starts from collections of FASTA files divided into
 two or more sets that correspond to class labels. The deepG data generator iterates over the
 input files and trains a deep neural network that can be applied to new datasets to perform
 predictions (Fig. 1A, S1).
 A common challenge of applying DL to genomics is that the input length of genomic sequences
 is typically longer compared to datasets of the traditional DL domains, especially when input
 samples are full (meta)genomes. To address this, the deepG library also includes specialized

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

132

 neural networks to account for long-range dependencies that span multiple batches of samples
 (stateful long short-term memory) as well as architectures designed for long input sequences
 such as WaveNet 5 , which implements residual and parameterized skip connections with dilated
 convolutions to speed up convergence in this data regime. Further, we have found that
 processing nucleotides sequences in a naïve and purely sequential fashion often leads to highly
 ineffective training, since this approach successively processes potentially varying nucleotide
 distributions of input samples, leading to repeated regimes of under- and overfitting (Fig. 1B).
 We identified and implemented combinations of subsampling strategies to mitigate these
 problems (Fig. 1A), which makes model training easy to use for a wide range of research
 questions. Furthermore, the library supports more customized and advanced training methods,
 such as the training of language models and fine-tuning (Fig. 1C) (see Supplementary
 Methods).

 Figure 1: deepG facilitates the development of deep neural networks for a wide range of genomic data
 modalities. a) deepG is designed to work with different data types, from read-level data to metagenomic level. To
 process the nucleotide data, deepG generates a data encoding dependent on the input format (i.e., probability
 encoding in case of quality scores are provided within a FASTQ file, or coverage encoding if community coverage is
 provided for contigs in case of metagenomic data input, see Supplementary Methods). Next, the data generator
 within deepG runs several subsampling methods to prevent overfitting, supporting different stride sizes and padding
 regimes. deepG can adjust class weights and handle label noise caused by mislabeled samples to address class
 imbalances. b) Since the inputs of deepG are often sequences from different organisms, subsampling and data
 augmentation regimes are important to control for differences in the underlying data distributions. c) Besides the

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

133

 supervised training, where one model is directly trained from sets of labeled samples, deepG supports unsupervised
 training, where a data representation can be trained from unlabeled samples.

 Case Studies

 We validated our method by developing classifiers targeting common bioinformatic tasks, and
 show that our approach achieves accuracy comparable to, or even superior to, highly
 specialized state of the art tools. To demonstrate the wide range of possible applications, we
 trained supervised models at the read-level, locus-level (within non-coding regions), gene-level,
 genome-level, and metagenomic-level (Fig. 2a). We provide code notebooks that fully
 reproduce these use-cases at http://deepg.de .

 At the read-length level, we trained a model that is able to discriminate between bacterial and
 human sequences, which can be used for screening human contamination in metagenomic
 sequences. After 3 hours of training with a context size of 150 nucleotides (nt) (corresponding to
 the typical read-level size), our model achieved a balanced accuracy of 97% when trained on a
 set of bacterial genomes and a human reference genome. We evaluated this model on a paired
 end metagenomic dataset with a processing speed of over 250,000 reads per minute on a
 consumer-grade graphics processing unit (GPU), demonstrating a practical processing speed.
 In this case, the model was trained on data from the full human genome (non-read size) but
 optimized for the application on read data. deepG also supports the model development on
 read-level data (FASTQ files) and can account for this in the encoding of the network by using a
 probability encoding instead of one-hot encoding – which is of potential interest for the direct
 processing of long and low-quality sequencing reads (Fig. S2). This use case demonstrates that
 deepG can successfully run on small sequences such as 150 nt, which enables direct
 alignment-free applications. While the model was trained here on fragments larger than
 sequencing reads, the context size of the model was set to 150 nt to allow for the inference
 process of FASTQ files. However, models might be trained directly from FASTQ files holding the
 read information. This use case showcases the ability of deepG to efficiently process small
 sequence data and apply it to real-world metagenomic screening scenarios. When comparing
 the performance of model-based contamination detection on a synthetic evaluation dataset,
 where 75% of the reads originate from E. coli and the remaining 25% of the reads originate from
 a human genome, the deepG model shows similar accuracy compared to the alignment-based
 read removal tools BMTagger 6 with 97.58% vs. 97.98% accuracy (non-significant differences on
 ten datasets according to a paired Wilcoxon test). However, compared to alignment-based
 methods, the deepG model generalizes better to other eukaryotes: When replacing the human
 contaminant with mouse reads, our methods successfully predict 98.13% of the reads correctly,
 compared to 75.25% of BMTagger (Fig. 2a).

 At the locus level, we trained a model that is capable of predicting CRISPR arrays, which are
 variable-length features present in non-coding parts of sequences. The CRISPR array
 identification problem is of interest, since it cannot be captured with models leveraging the
 profile of a multiple sequence alignment using profile Hidden Markov Models (pHMM) 7,8 , and
 there are no clear conserved motifs, but there are conserved higher-order structures 9 . The
 deepG model outperforms strategies that are purely based on the identification of local

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

134

 alignment on regions that are classified as false positive, such as Staphylococcus aureus repeat
 like elements 10 , with an accuracy of 95% on these CRISPR-like sequences and reaches an area
 under the receiver operating characteristic curve (AUC ROC) of 0.98 (Fig. 2b,c). This shows
 that deepG models have higher representational power by taking semantics, syntactic, and
 synteny of genomic sequences into account and work well on non-coding parts of the genome.
 Such models can be used similarly to pHMM, but have the advantage of not requiring a multiple
 sequence alignment and working on a collection of genes or other sequences such as genomic
 islands only, while also being able to model more powerful relationships compared to pHMMs.
 This shows that deepG models can be applied to a wider range of sequences and genomic
 regions compared to pHMMs.

 Figure 2: deepG performance achieves accuracy comparable or superior to highly specialized state of the art
 tools. a) Comparison to baseline methods on the read-level (contamination detection), genome-level (sporulation
 prediction), and metagenome-level (CRC prediction). Gene-level predictions (16S rRNA detection) are not shown,
 since both methods achieve an accuracy of 100% b) deepG for CRISPR-detection (loci-level). Left: Predicted
 CRISPR probability (points) goes up around a known CRISPR locus (green). Right: Venn diagram showing the
 number of CRISPR arrays detected with each method. c) ROC of deepG predictions on the read-level and the
 loci-level task.

 At the gene level, we used deepG to build and train a classifier capable of detecting 16S rRNA
 genes (context size of 500 nt), achieving a balanced accuracy of 0.975 within 1 hour of training
 using the genomic gene pool as the background. deepG can apply such models within a sliding
 window over an input sequence to screen for possible hits, as demonstrated when we identified
 the location of this gene in E. faecalis . We compared the predictive performance with Barrnap 11 ,
 a bacterial ribosomal RNA predictor based on HMMs on 1,059 genomes. In 99.3% of genomes,
 both tools agree. For two genomes, where Barrnap outputs warnings due to a low alignment
 fraction, the deepG model reports no hits, while the deepG reports false positives on 5
 genomes that could be filtered out using a reasonable length cutoff of at least 800 nt and mean
 aggregated confidence of at least 0.8.

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

135

 To demonstrate the application of deepG at the genome level, we predicted bacterial
 morphology from the genomic sequence. Here, we used labels provided by the BacDive
 database 12 on sporulation, which is of particular interest due to their potential epidemiological
 danger. With the library, we trained a model that predicts the ability to sporulate based on
 subsequences of a length of 1M nt. We applied the model on full genomes (test data) unseen
 during training, with an average inference time of less than 7 seconds per genome. Since the
 aforementioned context size of 1M nt might be smaller than the size of the desired genome to
 be predicted, deepG runs multiple predictions over the genomic sequence (every 100,000 nt)
 and aggregates these to the final prediction. On this task, deepG had a balanced accuracy of
 97.1% on the test set and incorrectly classified 15 genomes out of 512, while Traitar, a tool that
 infers sporulation and other phenotype properties using presence/absence information of gene
 families 13 , falsely classified 29 genomes (94.3% balanced accuracy). The improved
 performance of deepG compared to established approaches like Traitar demonstrates the
 application of deepG on predicting bacterial sporulation from genomic sequence, due to
 deepG ’s comparably high accuracy and short prediction time. Our model was trained for around
 10 days on a single data center GPU and trained on a different dataset than Traitar, which could
 also be responsible for the increase in accuracy.

 To demonstrate the application of deepG to full metagenomes, we trained a supervised model
 on the Chinese cohort from the colorectal cancer (CRC) study (128 metagenomes) 14 . The input
 data are the full metagenome samples of the study, with individuals grouped into CRC and
 healthy subjects. The AUC ROC of the resulting deepG model is 0.82 – similar to the AUC ROC
 score reported by the authors of the original study, with 0.81 and 0.87 AUC ROC based on
 different analysis strategies. Therefore, deepG achieved a similar performance without the need
 for any alignment, taxonomic annotations, or functional annotations. Additionally, deepG is not
 limited to coding regions or the identification of functional groups. Furthermore, deepG 's ability
 to train on full metagenomes allows for a more comprehensive data analysis compared to
 methods relying on annotations or coding regions. To facilitate model training in scenarios
 where the sequence length is long, where one input sample might be a whole metagenomic
 sample, deepG can be run using a “set training” 15 regime, where no order is encoded within
 subsamples (contigs).

 While most aforementioned applications describe the construction of a supervised binary
 classifier, where a model is trained from scratch to discriminate between two classes, deepG
 can also run in a multi-label setting – e.g., for the prediction of multiple classes at a taxonomic
 rank or when metagenomes are grouped into more than two sets. Moreover, since deepG
 models are implemented with the Keras functional API, it supports custom and more advanced
 models – e.g., when the user has access to additional information, such as clinical metadata,
 that can be used as input for the model. Besides supervised training, deepG also supports
 unsupervised training with support for additional training modes, such as Contrastive Predictive
 Coding 16 and Self-GenomeNet * . In this setting, a model is trained on unlabeled data and can
 later serve as a fundament for supervised tasks to increase performance and speed up model
 convergence, as this enables the efficient use of unlabeled datasets by efficiently capturing

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

136

 representations. deepG also supports Tensorboard, a tool that allows users to track training
 runs and generate custom metrics, such as balanced accuracy (Fig. S3).

 While further tools for implementing DL models for genome sequence data are available (as
 reviewed in Alharbi et al. 17 , the python packages Janggu 18 and Selene 19 also apply DL models
 on genomic input), these tools are designed with a focus on applying DL on human genome
 data. deepG further implements data augmentation strategies to handle scenarios that arise
 when DL is applied to microbial data collections. Furthermore, we demonstrated deepG to be
 effective for bacterial and viral and mixed sequence origins of different species, from 150 nt
 read-level to (meta)genomes using set learning.

 To support the full taxonomic range and different sequence lengths, deepG comes with a range
 of data augmentation methods and training schemes that are required for such input types (Fig.
 1C) and makes DL training possible for non-human datasets. Another key feature of deepG is
 its support for both supervised and unsupervised models. This provides researchers the
 capability to use pre-trained models, e.g., to improve supervised tasks to speed up training time
 and accuracy. It could also be used for clustering based on the neural representation which
 could be used as an alternative to classical clustering methods which may provide more
 accurate and robust results compared to traditional methods 20 .

 The deepG software resource will enable many researchers to create and apply customized
 learning models when the classification problem is very specific and other software tools are
 outdated or unavailable, or where classical machine learning tools reach their limitations, e.g.
 due to Markov Assumptions when applying pHMM models or the lack of known features. deepG
 code, documentation, and interactive case studies can be found at the following URL:
 https://deepG.de .

 Discussion

 We have presented deepG, a versatile deep learning library designed to meet the specific
 challenges encountered in genomics research. Our GenomeNet models have shown promise in
 a range of applications, from taxonomic classifications to functional genomics. However, like all
 models, they are not without limitations. One possible area for improvement is the optimization
 for less-represented organisms, which could enhance the library's overall performance and
 utility.

 The strength of the deepG-GenomeNet ecosystem lies not only in its current capabilities but
 also in its potential for growth through community contributions. GenomeNet.de's model card
 system allows for a level of transparency that encourages user contributions and critique. We
 envision a community-driven platform where researchers can easily share, validate, and utilize
 models for a range of genomics applications. Future developments include the integration of
 new data types and formats, enhanced data visualization tools, and the creation of a community
 forum for users to discuss challenges, solutions, and best practices.

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

137

 While deepG and GenomeNet show great potential and flexibility in tackling various challenges
 in genomics research, some limitations are worth noting. At present, the inference service can
 only handle files up to 2 MB, which could be a drawback for users who need to analyze larger
 datasets quickly. Also, there's no strict limit on model sizes, but using GPU-accelerated
 inference is only possible if the model fits within the memory of a T4 GPU. This sets a practical
 upper limit for those needing GPU power.

 deepG and GenomeNet offer a new paradigm in genomics research by reducing barriers to
 entry and fostering a collaborative environment. The platform's versatility and adaptability make
 it poised to contribute significantly to future advancements in the field. We anticipate that deepG
 will be a cornerstone in the evolution of genomics, offering a robust and scalable solution for
 complex problems in the domain.

 References
 1. Eraslan, G., Avsec, Ž., Gagneur, J. & Theis, F. J. Deep learning: new computational

 modelling techniques for genomics. Nat. Rev. Genet. 20 , 389–403 (2019).

 2. Tampuu, A., Bzhalava, Z., Dillner, J. & Vicente, R. ViraMiner: Deep learning on raw DNA

 sequences for identifying viral genomes in human samples. PLoS One 14 , e0222271

 (2019).

 3. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic

 resistance genes from metagenomic data. Microbiome 6 , 23 (2018).

 4. Deng, Z.-L., Münch, P. C., Mreches, R. & McHardy, A. C. Rapid and accurate identification

 of ribosomal RNA sequences via deep learning. Nucleic Acids Res. (2022)

 doi: 10.1093/nar/gkac112 .

 5. van den Oord, A. et al. WaveNet: A Generative Model for Raw Audio. arXiv [cs.SD] (2016).

 6. Rotmistrovsky, K. & Agarwala, R. BMTagger: Best Match Tagger for removing human reads

 from metagenomics datasets. Unpublished (2011).

 7. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14 , 755–763 (1998).

 8. Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs.

 Bioinformatics 29 , 2487–2489 (2013).

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

138

 9. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science

 321 , 960–964 (2008).

 10. Zhang, Q. & Ye, Y. Not all predicted CRISPR–Cas systems are equal: isolated cas genes

 and classes of CRISPR like elements. BMC Bioinformatics 18 , 1–12 (2017).

 11. Seemann, T. & Booth, T. Barrnap: basic rapid ribosomal RNA predictor. GitHub repository

 (2018).

 12. Söhngen, C., Bunk, B., Podstawka, A., Gleim, D. & Overmann, J. BacDive—the Bacterial

 Diversity Metadatabase. Nucleic Acids Res. 42 , D592–D599 (2013).

 13. Weimann, A. et al. From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer.

 mSystems 1 , (2016).

 14. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures

 that are specific for colorectal cancer. Nat. Med. 25 , 679–689 (2019).

 15. Zaheer, M. et al. Deep Sets. arXiv [cs.LG] (2017).

 16. van den Oord, A., Li, Y. & Vinyals, O. Representation Learning with Contrastive Predictive

 Coding. arXiv [cs.LG] (2018).

 17. Alharbi, W. S. & Rashid, M. A review of deep learning applications in human genomics

 using next-generation sequencing data. Hum. Genomics 16 , 26 (2022).

 18. Kopp, W., Monti, R., Tamburrini, A., Ohler, U. & Akalin, A. Deep learning for genomics using

 Janggu. Nat. Commun. 11 , 3488 (2020).

 19. Chen, K. M., Cofer, E. M., Zhou, J. & Troyanskaya, O. G. Selene: a PyTorch-based deep

 learning library for sequence data. Nat. Methods 16 , 315–318 (2019).

 20. Karim, M. R. et al. Deep learning-based clustering approaches for bioinformatics. Brief.

 Bioinform. 22 , 393–415 (2021).

7.1 GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

139

References

Achiam J, Adler S, Agarwal S, Ahmad L, Akkaya I, Aleman FL, Almeida D, Altenschmidt J,
Altman S, Anadkat S, et al. (2023). “Gpt-4 technical report.” arXiv preprint arXiv:2303.08774.

Agrawal R, Imieliński T, Swami A (1993). “Mining association rules between sets of items in large
databases.” In Proceedings of the 1993 ACM SIGMOD international conference on Management
of data, pp. 207–216.

Alipanahi B, Delong A, Weirauch MT, Frey BJ (2015). “Predicting the sequence specificities of
DNA-and RNA-binding proteins by deep learning.” Nature biotechnology, 33(8), 831–838.

Auslander N, Gussow AB, Benler S, Wolf YI, Koonin EV (2020). “Seeker: alignment-free identifi-
cation of bacteriophage genomes by deep learning.” Nucleic acids research, 48(21), e121–e121.

Bajwa A, Rastogi R, Kathail P, Shuai RW, Ioannidis N (2024). “Characterizing uncertainty in
predictions of genomic sequence-to-activity models.” In Machine Learning in Computational
Biology, pp. 279–297. PMLR.

Baker B, Gupta O, Naik N, Raskar R (2016). “Designing neural network architectures using
reinforcement learning.” arXiv preprint arXiv:1611.02167.

Bardes A, Ponce J, LeCun Y (2021). “Vicreg: Variance-invariance-covariance regularization for
self-supervised learning.” arXiv preprint arXiv:2105.04906.

Bartoszewicz JM, Nasri F, Nowicka M, Renard BY (2022). “Detecting DNA of novel fun-
gal pathogens using ResNets and a curated fungi-hosts data collection.” Bioinformatics,
38(Supplement 2), ii168–ii174.

Bartoszewicz JM, Seidel A, Rentzsch R, Renard BY (2020). “DeePaC: predicting pathogenic
potential of novel DNA with reverse-complement neural networks.” Bioinformatics, 36(1), 81–
89.

Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel CA (2019). “Mixmatch:
A holistic approach to semi-supervised learning.” Advances in neural information processing
systems, 32.

Bridle JS (1990). “Probabilistic interpretation of feedforward classification network outputs, with
relationships to statistical pattern recognition.” In Neurocomputing: Algorithms, architectures
and applications, pp. 227–236. Springer.

Brier GW (1950). “Verification of forecasts expressed in terms of probability.” Monthly weather
review, 78(1), 1–3.

Chen KM, Cofer EM, Zhou J, Troyanskaya OG (2019). “Selene: a PyTorch-based deep learning
library for sequence data.” Nature methods, 16(4), 315–318.

140

References

Chen T, Goodfellow I, Shlens J (2015). “Net2net: Accelerating learning via knowledge transfer.”
arXiv preprint arXiv:1511.05641.

Chen T, Kornblith S, Norouzi M, Hinton G (2020). “A simple framework for contrastive learning
of visual representations.” In International conference on machine learning, pp. 1597–1607.
PMLR.

Chen X, Xie L, Wu J, Tian Q (2021). “Progressive darts: Bridging the optimization gap for nas
in the wild.” International Journal of Computer Vision, 129, 638–655.

Cho K (2014). “On the Properties of Neural Machine Translation: Encoder-decoder Approaches.”
arXiv preprint arXiv:1409.1259.

Chrabaszcz P, Loshchilov I, Hutter F (2017). “A downsampled variant of imagenet as an alterna-
tive to the cifar datasets.” arXiv preprint arXiv:1707.08819.

Ciortan M, Defrance M (2021). “Contrastive self-supervised clustering of scRNA-seq data.” BMC
bioinformatics, 22(1), 280.

Dalla-Torre H, Gonzalez L, Mendoza-Revilla J, Carranza NL, Grzywaczewski AH, Oteri F, Dallago
C, Trop E, de Almeida BP, Sirelkhatim H, et al. (2023). “The nucleotide transformer: Building
and evaluating robust foundation models for human genomics.” BioRxiv, pp. 2023–01.

DeGroot MH, Fienberg SE (1983). “The comparison and evaluation of forecasters.” Journal of
the Royal Statistical Society: Series D (The Statistician), 32(1-2), 12–22.

Devlin J, Chang MW, Lee K, Toutanova K (2018). “Bert: Pre-training of deep bidirectional
transformers for language understanding.” arXiv preprint arXiv:1810.04805.

Dosovitskiy A (2020). “An image is worth 16x16 words: Transformers for image recognition at
scale.” arXiv preprint arXiv:2010.11929.

El-Yaniv R, et al. (2010). “On the Foundations of Noise-free Selective Classification.” Journal of
Machine Learning Research, 11(5).

Elsken T, Metzen JH, Hutter F (2018). “Efficient multi-objective neural architecture search via
lamarckian evolution.” arXiv preprint arXiv:1804.09081.

Elsken T, Metzen JH, Hutter F (2019). “Neural architecture search: A survey.” Journal of Machine
Learning Research, 20(55), 1–21.

Fang Z, Tan J, Wu S, Li M, Xu C, Xie Z, Zhu H (2019). “PPR-Meta: a tool for identifying phages
and plasmids from metagenomic fragments using deep learning.” Gigascience, 8(6), giz066.

Fiannaca A, La Paglia L, La Rosa M, Renda G, Rizzo R, Gaglio S, Urso A, et al. (2018). “Deep
learning models for bacteria taxonomic classification of metagenomic data.” BMC bioinformat-
ics, 19(7), 198.

Floridi L, Chiriatti M (2020). “GPT-3: Its nature, scope, limits, and consequences.” Minds and
Machines, 30, 681–694.

Gage P (1994). “A new algorithm for data compression.” The C Users Journal, 12(2), 23–38.

141

References

Gal Y, Ghahramani Z (2016). “Dropout as a bayesian approximation: Representing model un-
certainty in deep learning.” In international conference on machine learning, pp. 1050–1059.
PMLR.

Gawlikowski J, Tassi CRN, Ali M, Lee J, Humt M, Feng J, Kruspe A, Triebel R, Jung P, Roscher
R, et al. (2023). “A survey of uncertainty in deep neural networks.” Artificial Intelligence
Review, 56(Suppl 1), 1513–1589.

Geifman Y, El-Yaniv R (2017). “Selective classification for deep neural networks.” Advances in
neural information processing systems, 30.

Goodfellow I (2016). “Deep learning.”

Goyal P, Caron M, Lefaudeux B, Xu M, Wang P, Pai V, Singh M, Liptchinsky V, Misra I, Joulin
A, et al. (2021). “Self-supervised pretraining of visual features in the wild.” arXiv preprint
arXiv:2103.01988.

Gündüz HA, Binder M, To XY, Mreches R, Bischl B, McHardy AC, Münch PC, Rezaei M (2023).
“A self-supervised deep learning method for data-efficient training in genomics.” Communica-
tions Biology, 6(1), 928. doi:10.1038/s42003-023-05310-2.

Gündüz HA, Mreches R, Moosbauer J, Robertson G, To XY, Franzosa EA, Huttenhower C,
Rezaei M, McHardy AC, Bischl B, Münch PC, Binder M (2024). “Optimized model ar-
chitectures for deep learning on genomic data.” Communications Biology, 7(1), 516. doi:
10.1038/s42003-024-06161-1.

Guo C, Pleiss G, Sun Y, Weinberger KQ (2017). “On calibration of modern neural networks.” In
International conference on machine learning, pp. 1321–1330. PMLR.

Gündüz HA, Giri S, Binder M, Bischl B, Rezaei M (2023). “Uncertainty Quantification for
Deep Learning Models Predicting the Regulatory Activity of DNA Sequences.” In 2023 In-
ternational Conference on Machine Learning and Applications (ICMLA), pp. 566–573. doi:
10.1109/ICMLA58977.2023.00084.

Han J, Moraga C (1995). “The influence of the sigmoid function parameters on the speed of
backpropagation learning.” In International workshop on artificial neural networks, pp. 195–
201. Springer.

He K, Zhang X, Ren S, Sun J (2015). “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification.” In Proceedings of the IEEE international conference
on computer vision, pp. 1026–1034.

He K, Zhang X, Ren S, Sun J (2016). “Deep residual learning for image recognition.” In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

He X, Zhao K, Chu X (2021). “AutoML: A survey of the state-of-the-art.” Knowledge-based
systems, 212, 106622.

Heather JM, Chain B (2016). “The sequence of sequencers: The history of sequencing DNA.”
Genomics, 107(1), 1–8.

Henaff O (2020). “Data-efficient image recognition with contrastive predictive coding.” In Inter-
national conference on machine learning, pp. 4182–4192. PMLR.

142

https://dx.doi.org/10.1038/s42003-023-05310-2
https://dx.doi.org/10.1038/s42003-024-06161-1
https://dx.doi.org/10.1038/s42003-024-06161-1
https://dx.doi.org/10.1109/ICMLA58977.2023.00084
https://dx.doi.org/10.1109/ICMLA58977.2023.00084

References

Hendrycks D, Gimpel K (2016). “A baseline for detecting misclassified and out-of-distribution
examples in neural networks.” arXiv preprint arXiv:1610.02136.

Hie B, Bryson BD, Berger B (2020). “Leveraging uncertainty in machine learning accelerates
biological discovery and design.” Cell systems, 11(5), 461–477.

Hochreiter S (1997). “Long Short-term Memory.” Neural Computation MIT-Press.

Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick JR, Zamir A
(1965). “Structure of a ribonucleic acid.” Science, 147(3664), 1462–1465.

Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017). “Densely Connected Convolutional
Networks.” In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 2261–2269. doi:10.1109/CVPR.2017.243.

Hüllermeier E, Waegeman W (2021). “Aleatoric and epistemic uncertainty in machine learning:
An introduction to concepts and methods.” Machine learning, 110(3), 457–506.

Irwin-Harris W, Sun Y, Xue B, Zhang M (2019). “A graph-based encoding for evolutionary
convolutional neural network architecture design.” In 2019 IEEE Congress on Evolutionary
Computation (CEC), pp. 546–553. IEEE.

Ji Y, Zhou Z, Liu H, Davuluri RV (2021). “DNABERT: pre-trained Bidirectional Encoder Rep-
resentations from Transformers model for DNA-language in genome.” Bioinformatics, 37(15),
2112–2120.

Kandasamy K, Neiswanger W, Schneider J, Poczos B, Xing EP (2018). “Neural architecture search
with bayesian optimisation and optimal transport.” Advances in neural information processing
systems, 31.

Kaplan S, Giryes R (2020). “Self-supervised neural architecture search.” arXiv preprint
arXiv:2007.01500.

Katharopoulos A, Vyas A, Pappas N, Fleuret F (2020). “Transformers are rnns: Fast autoregres-
sive transformers with linear attention.” In International conference on machine learning, pp.
5156–5165. PMLR.

Kelley DR, Reshef YA, Bileschi M, Belanger D, McLean CY, Snoek J (2018). “Sequential reg-
ulatory activity prediction across chromosomes with convolutional neural networks.” Genome
research, 28(5), 739–750.

Kingma DP (2013). “Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114.

Klein A, Falkner S, Bartels S, Hennig P, Hutter F (2017). “Fast bayesian optimization of machine
learning hyperparameters on large datasets.” In Artificial intelligence and statistics, pp. 528–
536. PMLR.

Klein A, Falkner S, Springenberg JT, Hutter F (2022). “Learning curve prediction with Bayesian
neural networks.” In International conference on learning representations.

Koh PW, Pierson E, Kundaje A (2017). “Denoising genome-wide histone ChIP-seq with convo-
lutional neural networks.” Bioinformatics, 33(14), i225–i233.

143

https://dx.doi.org/10.1109/CVPR.2017.243

References

Kopp W, Monti R, Tamburrini A, Ohler U, Akalin A (2020). “Deep learning for genomics using
Janggu.” Nature communications, 11(1), 3488.

Krizhevsky A, Sutskever I, Hinton GE (2012). “Imagenet classification with deep convolutional
neural networks.” Advances in neural information processing systems, 25.

Lakshminarayanan B, Pritzel A, Blundell C (2017). “Simple and scalable predictive uncertainty
estimation using deep ensembles.” Advances in neural information processing systems, 30.

LeCun Y, Bottou L, Bengio Y, Haffner P (1998). “Gradient-based learning applied to document
recognition.” Proceedings of the IEEE, 86(11), 2278–2324.

Levi D, Gispan L, Giladi N, Fetaya E (2022). “Evaluating and calibrating uncertainty prediction
in regression tasks.” Sensors, 22(15), 5540.

Liang Q, Bible PW, Liu Y, Zou B, Wei L (2020). “DeepMicrobes: taxonomic classification for
metagenomics with deep learning.” NAR Genomics and Bioinformatics, 2(1), lqaa009.

Liu C, Dollár P, He K, Girshick R, Yuille A, Xie S (2020). “Are labels necessary for neural
architecture search?” In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part IV 16, pp. 798–813. Springer.

Liu C, Zoph B, Neumann M, Shlens J, Hua W, Li LJ, Fei-Fei L, Yuille A, Huang J, Murphy K
(2018a). “Progressive neural architecture search.” In Proceedings of the European conference on
computer vision (ECCV), pp. 19–34.

Liu H, Simonyan K, Yang Y (2018b). “Darts: Differentiable architecture search.” arXiv preprint
arXiv:1806.09055.

Liu S, Mallol-Ragolta A, Parada-Cabaleiro E, Qian K, Jing X, Kathan A, Hu B, Schuller BW
(2022). “Audio self-supervised learning: A survey.” Patterns, 3(12).

Lu AX, Zhang H, Ghassemi M, Moses A (2020). “Self-supervised contrastive learning of protein
representations by mutual information maximization.” BioRxiv, pp. 2020–09.

Luo R, Tian F, Qin T, Chen E, Liu TY (2018). “Neural architecture optimization.” Advances in
neural information processing systems, 31.

Maas AL, Hannun AY, Ng AY, et al. (2013). “Rectifier nonlinearities improve neural network
acoustic models.” In Proc. icml, volume 30, p. 3. Atlanta, GA.

MacDonald S, Foley H, Yap M, Johnston RL, Steven K, Koufariotis LT, Sharma S, Wood S,
Addala V, Pearson JV, et al. (2023). “Generalising uncertainty improves accuracy and safety
of deep learning analytics applied to oncology.” Scientific Reports, 13(1), 7395.

Maćkiewicz A, Ratajczak W (1993). “Principal components analysis (PCA).” Computers &
Geosciences, 19(3), 303–342.

Mehrtash A, Wells WM, Tempany CM, Abolmaesumi P, Kapur T (2020). “Confidence calibration
and predictive uncertainty estimation for deep medical image segmentation.” IEEE transactions
on medical imaging, 39(12), 3868–3878.

144

References

Mendoza-Revilla J, Trop E, Gonzalez L, Roller M, Dalla-Torre H, de Almeida BP, Richard G,
Caton J, Lopez Carranza N, Skwark M, et al. (2024). “A foundational large language model
for edible plant genomes.” Communications Biology, 7(1), 835.

Min B, Ross H, Sulem E, Veyseh APB, Nguyen TH, Sainz O, Agirre E, Heintz I, Roth D (2023).
“Recent advances in natural language processing via large pre-trained language models: A
survey.” ACM Computing Surveys, 56(2), 1–40.

Mnih V (2013). “Playing atari with deep reinforcement learning.” arXiv preprint arXiv:1312.5602.

Mreches R, To XY, Gündüz HA, Moosbauer J, Klawitter S, Deng ZL, Robertson G, Rezaei M,
Asgari E, Franzosa EA, Huttenhower C, Bischl B, McHardy AC, Binder M, Münch PC (2024).
“GenomeNet: A platform for deep learning on (meta)genomic sequences.”

Müller R, Kornblith S, Hinton GE (2019). “When does label smoothing help?” Advances in
neural information processing systems, 32.

Naeini MP, Cooper G, Hauskrecht M (2015). “Obtaining well calibrated probabilities using
bayesian binning.” In Proceedings of the AAAI conference on artificial intelligence, volume 29.

Nair V, Hinton GE (2010). “Rectified linear units improve restricted boltzmann machines.” In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814.

Niculescu-Mizil A, Caruana R (2005). “Predicting good probabilities with supervised learning.”
In Proceedings of the 22nd international conference on Machine learning, pp. 625–632.

Nixon J, Dusenberry MW, Zhang L, Jerfel G, Tran D (2019). “Measuring Calibration in Deep
Learning.” In CVPR workshops, volume 2.

Oord Avd, Li Y, Vinyals O (2018). “Representation learning with contrastive predictive coding.”
arXiv preprint arXiv:1807.03748.

Oren M, Hassid M, Adi Y, Schwartz R (2024). “Transformers are multi-state rnns.” arXiv preprint
arXiv:2401.06104.

Parikh AP, Täckström O, Das D, Uszkoreit J (2016). “A decomposable attention model for natural
language inference.” arXiv preprint arXiv:1606.01933.

Patel K, Beluch W, Zhang D, Pfeiffer M, Yang B (2021). “On-manifold adversarial data aug-
mentation improves uncertainty calibration.” In 2020 25th International Conference on Pattern
Recognition (ICPR), pp. 8029–8036. IEEE.

Pearce T, Leibfried F, Brintrup A (2020). “Uncertainty in neural networks: Approximately
bayesian ensembling.” In International conference on artificial intelligence and statistics, pp.
234–244. PMLR.

Pham H, Guan M, Zoph B, Le Q, Dean J (2018). “Efficient neural architecture search via param-
eters sharing.” In International conference on machine learning, pp. 4095–4104. PMLR.

Polyak BT (1964). “Some methods of speeding up the convergence of iteration methods.” Ussr
computational mathematics and mathematical physics, 4(5), 1–17.

145

References

Quang D, Xie X (2016). “DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences.” Nucleic acids research, 44(11), e107–e107.

Quang D, Xie X (2019). “FactorNet: a deep learning framework for predicting cell type specific
transcription factor binding from nucleotide-resolution sequential data.” Methods, 166, 40–47.

Rainio O, Teuho J, Klén R (2024). “Evaluation metrics and statistical tests for machine learning.”
Scientific Reports, 14(1), 6086.

Real E, Aggarwal A, Huang Y, Le QV (2019). “Regularized evolution for image classifier archi-
tecture search.” In Proceedings of the aaai conference on artificial intelligence, volume 33, pp.
4780–4789.

Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, Le QV, Kurakin A (2017). “Large-scale
evolution of image classifiers.” In International conference on machine learning, pp. 2902–2911.
PMLR.

Ren J, Song K, Deng C, Ahlgren NA, Fuhrman JA, Li Y, Xie X, Poplin R, Sun F (2020).
“Identifying viruses from metagenomic data using deep learning.”

Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Zitnick CL, Ma J, et al. (2021).
“Biological structure and function emerge from scaling unsupervised learning to 250 million
protein sequences.” Proceedings of the National Academy of Sciences, 118(15), e2016239118.

Romano Y, Patterson E, Candes E (2019). “Conformalized quantile regression.” Advances in
neural information processing systems, 32.

Ronaghi M, Karamohamed S, Pettersson B, Uhlén M, Nyrén P (1996). “Real-time DNA sequenc-
ing using detection of pyrophosphate release.” Analytical biochemistry, 242(1), 84–89.

Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes JC, Hutchison III CA, Slocombe
PM, Smith M (1977a). “Nucleotide sequence of bacteriophage φX174 DNA.” nature, 265(5596),
687–695.

Sanger F, Nicklen S, Coulson AR (1977b). “DNA sequencing with chain-terminating inhibitors.”
Proceedings of the national academy of sciences, 74(12), 5463–5467.

Scheppach A, Gündüz HA, Dorigatti E, Münch PC, McHardy AC, Bischl B, Rezaei M, Binder M
(2023). “Neural Architecture Search for Genomic Sequence Data.” In 2023 IEEE Conference on
Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–10.
doi:10.1109/CIBCB56990.2023.10264875.

Sennrich R (2015). “Neural machine translation of rare words with subword units.” arXiv preprint
arXiv:1508.07909.

Shang J, Sun Y (2020). “CHEER: hierarCHical taxonomic classification for viral mEtagEnomic
data via deep leaRning.”

Shrikumar A, Greenside P, Kundaje A (2017). “Reverse-complement parameter sharing improves
deep learning models for genomics.” BioRxiv, p. 103663.

Sun Y, Ming Y, Zhu X, Li Y (2022). “Out-of-distribution detection with deep nearest neighbors.”
In International Conference on Machine Learning, pp. 20827–20840. PMLR.

146

https://dx.doi.org/10.1109/CIBCB56990.2023.10264875

References

Sutskever I, Martens J, Dahl G, Hinton G (2013). “On the importance of initialization and
momentum in deep learning.” In International conference on machine learning, pp. 1139–1147.
PMLR.

Sykes AO (1993). “An introduction to regression analysis.”

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016). “Rethinking the inception architecture
for computer vision.” In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818–2826.

Tampuu A, Bzhalava Z, Dillner J, Vicente R (2019). “ViraMiner: Deep learning on raw DNA
sequences for identifying viral genomes in human samples.” PloS one, 14(9), e0222271.

Thulasidasan S, Chennupati G, Bilmes JA, Bhattacharya T, Michalak S (2019). “On mixup
training: Improved calibration and predictive uncertainty for deep neural networks.” Advances
in neural information processing systems, 32.

Turkoglu MO, Becker A, Gündüz HA, Rezaei M, Bischl B, Daudt RC, D' Aronco S, Weg-
ner J, Schindler K (2022). “FiLM-Ensemble: Probabilistic Deep Learning via Feature-
wise Linear Modulation.” In S Koyejo, S Mohamed, A Agarwal, D Belgrave, K Cho,
A Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 22229–
22242. Curran Associates, Inc. URL https://proceedings.neurips.cc/paper files/paper/2022/
file/8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf.

Vahidi A, Wimmer L, Gündüz HA, Bischl B, Hüllermeier E, Rezaei M (2024). “Diversified En-
semble of Independent Sub-networks for Robust Self-supervised Representation Learning.” In
A Bifet, J Davis, T Krilavičius, M Kull, E Ntoutsi, I Žliobaitė (eds.), Machine Learning and
Knowledge Discovery in Databases. Research Track. ECML PKDD 2024, pp. 38–55. Springer
Nature Switzerland, Cham. doi:10.1007/978-3-031-70341-6 3.

Van Den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior
A, Kavukcuoglu K, et al. (2016). “Wavenet: A generative model for raw audio.” arXiv preprint
arXiv:1609.03499, 12.

Van den Oord A, Kalchbrenner N, Espeholt L, Vinyals O, Graves A, et al. (2016). “Conditional
image generation with pixelcnn decoders.” Advances in neural information processing systems,
29.

Van Den Oord A, Kalchbrenner N, Kavukcuoglu K (2016). “Pixel recurrent neural networks.” In
International conference on machine learning, pp. 1747–1756. PMLR.

Van der Maaten L, Hinton G (2008). “Visualizing data using t-SNE.” Journal of machine learning
research, 9(11).

Vaswani A (2017). “Attention is all you need.” Advances in Neural Information Processing
Systems.

Wang R, Zang T, Wang Y (2019). “Human mitochondrial genome compression using machine
learning techniques.” Human Genomics, 13(1), 1–8.

Watson JD, Crick FH (1953). “The structure of DNA.” In Cold Spring Harbor symposia on
quantitative biology, volume 18, pp. 123–131. Cold Spring Harbor Laboratory Press.

147

https://proceedings.neurips.cc/paper_files/paper/2022/file/8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bd31288ad8e9a31d519fdeede7ee47d-Paper-Conference.pdf
https://dx.doi.org/10.1007/978-3-031-70341-6_3

References

Wen Y, Tran D, Ba J (2020). “Batchensemble: an alternative approach to efficient ensemble and
lifelong learning.” arXiv preprint arXiv:2002.06715.

Wen Y, Vicol P, Ba J, Tran D, Grosse R (2018). “Flipout: Efficient pseudo-independent weight
perturbations on mini-batches.” arXiv preprint arXiv:1803.04386.

Wistuba M (2017). “Bayesian optimization combined with incremental evaluation for neural
network architecture optimization.” In Proceedings of the International Workshop on Automatic
Selection, Configuration and Composition of Machine Learning Algorithms.

Wong C, Houlsby N, Lu Y, Gesmundo A (2018). “Transfer learning with neural automl.” Advances
in neural information processing systems, 31.

Xu D, Tian Y (2015). “A comprehensive survey of clustering algorithms.” Annals of data science,
2, 165–193.

Yang J, Zhou K, Li Y, Liu Z (2021). “Generalized out-of-distribution detection: A survey.” arXiv
preprint arXiv:2110.11334.

Zeng H, Edwards MD, Liu G, Gifford DK (2016). “Convolutional neural network architectures
for predicting DNA–protein binding.” Bioinformatics, 32(12), i121–i127.

Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017). “mixup: Beyond empirical risk minimiza-
tion.” arXiv preprint arXiv:1710.09412.

Zhang X, Xie X, Ma L, Du X, Hu Q, Liu Y, Zhao J, Sun M (2020). “Towards characterizing
adversarial defects of deep learning software from the lens of uncertainty.” In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, pp. 739–751.

Zhang Z, Cofer EM, Troyanskaya OG (2021a). “AMBIENT: accelerated convolutional neural
network architecture search for regulatory genomics.” bioRxiv, pp. 2021–02.

Zhang Z, Park CY, Theesfeld CL, Troyanskaya OG (2021b). “An automated framework for effi-
ciently designing deep convolutional neural networks in genomics.” Nature Machine Intelligence,
3(5), 392–400.

Zhong Z, Yan J, Wu W, Shao J, Liu CL (2018). “Practical block-wise neural network architecture
generation.” In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2423–2432.

Zhou J, Troyanskaya OG (2015). “Predicting effects of noncoding variants with deep learning–
based sequence model.” Nature methods, 12(10), 931–934.

Zhou Z, Ji Y, Li W, Dutta P, Davuluri R, Liu H (2023). “Dnabert-2: Efficient foundation model
and benchmark for multi-species genome.” arXiv preprint arXiv:2306.15006.

Zoph B, Le QV (2016). “Neural architecture search with reinforcement learning.” arXiv preprint
arXiv:1611.01578.

Zoph B, Vasudevan V, Shlens J, Le QV (2018). “Learning transferable architectures for scalable
image recognition.” In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8697–8710.

148

Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12. Juli 2011, §8 Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig,
ohne unerlaubte Beihilfe angefertigt ist.

München, den 30.09.2024 Hüseyin Anil Gündüz

149

	Introduction, Background, and Conclusion
	Introduction
	Introduction
	Outline

	Methodological Background
	Introduction to Deep Learning
	Self-Supervised Learning
	Automated Model Design
	Uncertainty Quantification
	Deep Learning for Genomics

	Conclusion
	Discussion of Contributions
	Future Directions

	Contributions
	Contributions to Self-Supervised Learning for Genomics
	A Self-supervised Deep Learning Method for Data-efficient Training in Genomics

	Contributions to Automated Model Design for Genomics
	Optimized Model Architectures for Deep Learning on Genomic Data
	Neural Architecture Search for Genomic Sequence Data

	Contributions to Uncertainty Quantification and Calibration in Genomics
	Uncertainty Quantification for Deep Learning Models Predicting the Regulatory Activity of DNA Sequences
	FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear Modulation
	Diversified Ensemble of Independent Sub-Networks for Robust Self-Supervised Representation Learning

	Contributions to Software Development for Genomics
	GenomeNet: A Platform for Deep Learning on (Meta)genomic Sequences

	References

