
Adaptive Exploration of Intrinsic Data

Properties for Clustering, Outlier Detection,

and Dimensionality Reduction

Dissertation zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

vorgelegt von

Li Qian

aus Chongqing, China

München, den 24.02.2025

Erstgutachter: Prof. Dr. Christian Böhm

Zweitgutachter: Prof. Dr. Ye Zhu

Vorsitz: Prof. Dr. Albrecht Schmidt

Tag der Disputation: 27.05.2025

Eidesstattliche Versicherung
(siehe Promotionsordnung vom 12.07.2011, § 8, Abs. 2 Pkt. 5)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne uner-

laubte Beihilfe angefertigt ist.

München, den 24.02.2025

Li Qian

ACKNOWLEDGMENTS v

Acknowledgments

During my doctoral studies, I experienced both the challenges and unexpected oppor-

tunities brought by the COVID-19 pandemic. My academic and personal journeys in

Germany, China, and Austria have profoundly shaped my life, leaving me with unforget-

table memories that are both sweet and bitter. I want to express my deepest gratitude to

everyone who has supported, guided, and encouraged me during this period.

First and foremost, I would like to express my sincere gratitude to my supervisor,

Prof. Dr. Christian Böhm, who guided me into the field of data mining. His profound

knowledge, rigorous scientific spirit, and patience have greatly benefited me. Under

his supervision, I had the freedom to explore and received valuable guidance and full

support that enabled me to complete my doctoral studies.

I am also deeply grateful to Prof. Dr. Claudia Plant, who treated academic work with

a rigorous and responsible attitude. Her insightful advice for revision was invaluable

during the critical stage of paper submission. In particular, her support and care during

my research visit to the University of Vienna made me feel warm and further broadened

my research horizons.

I would like to thank my doctoral examination committee members, Prof. Dr. Ye

Zhu, Prof. Dr. Albrecht Schmidt, and Prof. Dr. Caroline Friedel, for their precious time

and effort, as well as their constructive feedback and suggestions, which have helped me

improve the quality of my thesis.

I am grateful to Prof. Dr. Wei Ye and Prof. Dr. Yllka Velaj for their insightful analysis

and patient guidance whenever I encountered academic confusion. I also want to extend

vi ACKNOWLEDGMENTS

my appreciation to my collaborators, Prof. Dr. Xin Sun, Dr. Yalan Qin, and Wengang Guo,

for their suggestions and contributions throughout the writing and research process.

I wish to thank my colleagues at the Ludwig Maximilian University of Munich and the

University of Vienna, in particular Dr. Dominik Mautz, Dr. Collin Leiber, Peiyan Li, Dr.

Martin Perdacher, Dr. Lukas Miklautz, and Ylli Sadikaj. The discussions with them not

only enriched my knowledge and provided inspiration but also helped me gain a deeper

understanding of the local culture and academic environment. Additionally, I would like

to thank Susanne Grienberger, Ulrike Robeck, Tugba Yilmaz, Ewald Hotop, and Tanja

Schwind for their dedicated support with technical and administrative tasks.

I am profoundly grateful to my family. My husband, Jing Qian, not only collaborated

with me in research and offered unexpected perspectives for solving technical problems

but also provided endless understanding, patience, and love. I am deeply grateful to

my parents for their full support after the pandemic so that I can focus on my doctoral

research without any worries. I extend my heartfelt thanks to my little son, whose bright

smile is a constant source of strength for me to persevere. I also wish to thank my friend,

Xizi Xiong, for her companionship and generous help, which made me feel at home even

in a foreign country.

Finally, I would like to express my gratitude to the China Scholarship Council (CSC)

for providing financial support, which has provided an important guarantee for my doc-

toral research.

ABSTRACT vii

Abstract

In the data-driven era, data has become a key element in supporting decision-making,

scientific research, and technological innovation. As the scale and complexity of data

continue to grow, it becomes increasingly important to extract actionable knowledge

from it. Given this background, data mining is essential for discovering interesting pat-

terns from large datasets, especially in unsupervised learning tasks such as clustering,

outlier detection, and dimensionality reduction. However, existing methods often face

critical challenges, including adapting to diverse and arbitrary data distributions, han-

dling datasets with varying densities, and reducing dependence on dataset-specific pa-

rameters. Since each dataset exhibits unique intrinsic properties, such as local density

and neighborhood relationships, this thesis focuses on developing an adaptive explo-

ration framework for unsupervised learning by leveraging intrinsic data properties to

enhance the adaptability, accuracy, and efficiency of unsupervised learning algorithms.

For the clustering task, this thesis proposes the DBADV algorithm. Existing density-

based methods, such as DBSCAN, although capable of recognizing clusters of arbitrary

shapes and sizes, are ineffective when dealing with density variations. DBADV calculates

the local density information of each object using perplexity, which not only reflects the

individual properties of each object but also describes the density distribution of clus-

ters and finds the adaptive search range of each object by collecting information from

its neighbors. In addition, a new metric is designed to obtain the mutual nearest neigh-

bors of each object to better distinguish objects near the cluster boundaries, significantly

improving the clustering accuracy in the presence of noise and outliers.

viii ABSTRACT

For the outlier detection task, this thesis proposes the ADOD algorithm. Existing

proximity-based methods rely on either a globally fixed radius or a fixed number of

neighbors as a parameter, both of which are prone to misjudgments when there is signif-

icant variation in data density. ADOD uses perplexity to calculate the local scale of each

object and dynamically adjusts the neighborhood boundaries based on this scale to adapt

to data with varying densities. Meanwhile, ADOD designs a density consistency score

that determines the outlier score by calculating the local density difference between an

object and its mutual neighbors, effectively identifying outliers that significantly deviate

from their surroundings. Additionally, ADOD extends its utility in real-time applications

by generalizing to unknown data through comparison with known data.

For the dimensionality reduction task, this thesis proposes the DynoGraph algorithm.

DynoGraph addresses two main issues of the existing graph-based methods like t-SNE

and UMAP: how to construct a good graph and how to maintain the similarity struc-

ture of high-dimensional data in low-dimensional space. DynoGraph first develops an

adaptive neighborhood graph construction method that accurately captures the intrinsic

geometry of the high-dimensional data. Then, for the first time, it introduces a dy-

namic graph modification process during dimensionality reduction, guaranteeing that

the data structure in the low-dimensional space faithfully reflects the high-dimensional

data. Moreover, DynoGraph sets an adaptive threshold that is automatically adjusted

according to the intrinsic structure of data, thus guiding the insertion and deletion of

edges. These adjustments help to update their positions in subsequent embeddings,

aligning them with the high-dimensional data.

In summary, this thesis demonstrates how three adaptive algorithms can effectively

leverage intrinsic data properties to adapt to arbitrary distributions, capture local density,

and design self-adaptive parameters, thereby improving the performance of unsupervised

learning tasks. This adaptive exploration framework not only enriches the theoretical

approaches to data analysis, but also provides new perspectives and effective solutions

for handling complex data in real-world scenarios.

ZUSAMMENFASSUNG ix

Zusammenfassung

Im Zeitalter von datengetriebenen Technologien sind Daten zu einem Schlüsselelement

geworden, um Entscheidungsfindung, wissenschaftliche Forschung und technologische

Innovation zu unterstützen. Mit dem kontinuierlichen Wachstum der Datenmengen und

ihrer Komplexität wird es zunehmend wichtiger, verwertbares Wissen aus den Daten zu

extrahieren. Vor diesem Hintergrund spielt Data Mining eine entscheidende Rolle bei

der Entdeckung interessanter Muster in großen Datensätzen, insbesondere bei Aufgaben

des unüberwachten Lernens wie der Clusteranalyse, Ausreißererkennung und Dimen-

sionsreduktion. Bestehende Methoden stehen jedoch oft vor großen Herausforderungen,

insbesondere in Anbetracht der Anpassung an vielfältige und beliebige Datenverteilun-

gen, dem Umgang mit Datensätzen unterschiedlicher Dichte und der Reduzierung der

Abhängigkeit von datensatzspezifischen Parametern. Da jeder Datensatz einzigartige

intrinsische Eigenschaften, wie lokale Dichte und Nachbarschaftsbeziehungen aufweist,

konzentriert sich diese Dissertation darauf, ein Rahmenwerk für die adaptive Exploration

im Bereich des unüberwachten Lernens zu entwickeln, das diese intrinsischen Eigen-

schaften nutzt, um die Anpassungsfähigkeit, Genauigkeit und Effizienz von Algorithmen

im Kontext des unüberwachten Lernens zu verbessern.

Für die Clusteranalyse schlägt diese Dissertation den Algorithmus DBADV vor. Beste-

hende dichtebasierte Methoden wie DBSCAN, die zwar in der Lage sind, Cluster be-

liebiger Formen und Größen zu erkennen, sind bei der Handhabung von Dichtevariatio-

nen ineffektiv. DBADV berechnet die lokale Dichteinformation jedes Objekts mithilfe der

Perplexität, die nicht nur die individuellen Eigenschaften jedes Objekts widerspiegelt,

x ZUSAMMENFASSUNG

sondern auch die Dichteverteilung der Cluster beschreibt. Dabei wird der adaptive Such-

bereich jedes Objekts durch das Sammeln von Informationen seiner Nachbarn ermittelt.

Zusätzlich wird eine neue Metrik entwickelt, um die gegenseitigen nächsten Nachbarn

jedes Objekts zu bestimmen, was es ermöglicht, Objekte in der Nähe von Clustergren-

zen besser zu unterscheiden und die Clustering-Genauigkeit in Situationen erheblich zu

verbessern, in denen Rauschen und Ausreißer vorhanden sind.

Für die Ausreißererkennung schlägt diese Dissertation den Algorithmus ADOD vor.

Bestehende nahebasierte Methoden verlassen sich entweder auf einen global festgelegten

Radius oder eine feste Anzahl von Nachbarn als Parameter, die bei signifikanten Varia-

tionen in der Datendichte anfällig für Fehlurteile sind. ADOD verwendet Perplexität,

um das lokale Ausmaß jedes Objekts zu berechnen, und ermittelt die Nachbarschafts-

grenzen dynamisch auf der Grundlage dieses Ausmaßes, um sich an Daten mit unter-

schiedlichen Dichten anzupassen. Darüber hinaus entwickelt ADOD eine Dichtekonsis-

tenzbewertung, die den Ausreißerwert durch Berechnung des lokalen Dichteunterschieds

zwischen einem Objekt und seinen gegenseitigen Nachbarn bestimmt und so effektiv

Ausreißer identifiziert, die erheblich von ihrer Umgebung abweichen. Zusätzlich erweit-

ert ADOD seine Anwendbarkeit in Echtzeitszenarien, indem es unbekannte Daten durch

einen Vergleich mit bekannten Daten generalisiert.

Für die Dimensionsreduktion schlägt diese Dissertation den Algorithmus DynoGraph

vor. DynoGraph adressiert zwei Hauptprobleme bestehender graphenbasierter Methoden

wie t-SNE und UMAP: Wie werden qualitativ hochwertige Graphen konstruiert und wie

werden Ähnlichkeitsstrukturen hochdimensionaler Daten in einem niedrigdimensionalen

Raum beibehalten. DynoGraph entwickelt zunächst eine adaptive Methode zur Kon-

struktion eines Nachbarschaftsgraphen, die die intrinsische Geometrie hochdimension-

aler Daten präzise erfasst. DynoGraph führt erstmals einen anschließenden dynamischen

Graphmodifikationsprozess während der Dimensionsreduktion ein, der sicherstellt, dass

die Datenstruktur im niedrigdimensionalen Raum die hochdimensionalen Daten origi-

nalgetreu widerspiegelt. Darüber hinaus legt DynoGraph einen adaptiven Schwellenwert

fest, der automatisch entsprechend der intrinsischen Datenstruktur angepasst wird, um

ZUSAMMENFASSUNG xi

das Einfügen und Löschen von Kanten zu steuern. Diese Anpassungen tragen dazu bei,

die Positionen der Daten in den nachfolgenden Einbettungen zu aktualisieren und sie

mit den hochdimensionalen Daten in Einklang zu bringen.

Zusammenfassend zeigt diese Dissertation, wie drei adaptive Algorithmen die in-

trinsischen Eigenschaften von Daten effektiv nutzen können, um sich an beliebige

Verteilungen anzupassen, lokale Dichte zu erfassen und selbstadaptive Parameter zu en-

twerfen, wodurch die Leistung bzgl. Aufgaben des unüberwachten Lernens verbessert

wird. Dieses Framework für adaptive Exploration bereichert nicht nur die theoretischen

Ansätze zur Datenanalyse, sondern bietet auch neue Perspektiven und effektive Lösun-

gen für den Umgang mit komplexen Daten in realen Anwendungen.

xii ZUSAMMENFASSUNG

CONTENTS xiii

Contents

Acknowledgments v

Abstract vii

Zusammenfassung ix

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Knowledge Discovery in Databases . 1

1.2 Unsupervised Learning in Data Analysis 3

1.3 Challenges in Unsupervised Learning . 5

1.4 Adaptive Exploration through Intrinsic Data Properties 6

1.5 Outline of the Thesis . 8

2 Background 11

2.1 Nearest Neighbor Methods . 11

2.1.1 Nearest Neighbor . 11

2.1.2 k-Nearest Neighbors . 12

2.1.3 ϵ-Nearest Neighbors . 12

2.1.4 ϵi-Nearest Neighbors . 13

2.1.5 Mutual Nearest Neighbors . 13

xiv CONTENTS

2.1.6 Nearest Neighbor Search . 14

2.2 Graph Construction . 16

2.2.1 Neighbor-Based Graph Construction 17

2.2.2 Ensuring Graph Connectivity . 18

2.3 Evaluation Metrics . 20

2.3.1 Normalized Mutual Information . 22

2.3.2 Adjusted Mutual Information . 23

2.3.3 F-measure . 24

2.3.4 Accuracy of the k-NN Classifier . 26

2.3.5 Receiver Operating Characteristic 27

2.3.6 Average Precision . 28

2.3.7 Precision at N . 29

2.3.8 Procrustes Analysis . 29

3 Density-Based Clustering for Adaptive Density Variation 31

3.1 Introduction . 32

3.2 Related Work . 34

3.3 Methodology . 37

3.3.1 Problem Definition . 37

3.3.2 Local Density Information . 37

3.3.3 Adaptive Search Range . 38

3.3.4 Mutual Nearest Neighbors . 41

3.3.5 Algorithm Overview . 43

3.3.6 Determining the Parameters . 43

3.3.7 Complexity Analysis . 47

3.4 Experiments . 48

3.4.1 Experimental Setup . 48

3.4.2 Parameter Sensitivity Analysis . 51

3.4.3 Results on Synthetic Dataset . 51

CONTENTS xv

3.4.4 Robustness Analysis . 56

3.4.5 Results on Real-World Datasets . 57

3.5 Conclusion . 57

4 Adaptive Density Outlier Detection 61

4.1 Introduction . 62

4.2 Related Work . 65

4.3 Methodology . 67

4.3.1 Problem Definition . 67

4.3.2 Algorithm Description . 68

4.3.3 Algorithm Overview . 73

4.3.4 Generalization to Unknown Data 74

4.3.5 Complexity Analysis . 75

4.3.6 Efficiency Optimization . 77

4.4 Experiments . 77

4.4.1 Experimental Setup . 77

4.4.2 Parameter Sensitivity Analysis . 80

4.4.3 Decision Boundaries Comparison 81

4.4.4 Results on Real-World Datasets . 90

4.4.5 Runtime Analysis . 93

4.4.6 Visualization on Real-World Datasets 93

4.5 Conclusion . 95

5 Dynamic Graph Construction for Nonlinear Dimensionality Reduction 97

5.1 Introduction . 98

5.2 Related Work . 101

5.3 Methodology . 102

5.3.1 Problem Definition . 103

5.3.2 Adaptive Neighborhood Graph . 103

xvi CONTENTS

5.3.3 Graph Modification . 106

5.3.4 Objective Function for Embedding 110

5.3.5 Algorithm Overview . 115

5.3.6 Complexity Analysis . 116

5.4 Experiments . 117

5.4.1 Experimental Setup . 117

5.4.2 Results on Synthetic Dataset . 119

5.4.3 Results on Real-World Datasets . 121

5.4.4 Ablation Studies . 123

5.4.5 Visualization on Real-World Datasets 125

5.5 Conclusion . 126

6 Conclusion and Future Work 135

6.1 Conclusion . 135

6.2 Future Work . 137

References 139

List of Figures

2.1 Confusion matrix for TP, FP, TN, and FN. 25

3.1 The clustering process of DBSCAN and DBADV with different search ranges. 34

3.2 Assign points around the boundary between clusters with different densities. 41

3.3 Effect of bandwidth on the probability density distribution and corre-

sponding search ranges of points with different densities. 42

3.4 NMI score against different search ranges of parameter pcum on synthetic

ThreeBlobs dataset. 45

3.5 NMI score against different search ranges of parameters perp and MinPts

on synthetic ThreeBlobs dataset. 46

3.6 NMI score against different search ranges of parameters perp and MinPts

on four real-world datasets. 52

3.7 Clustering performance on synthetic Shape3-Outlier dataset. 54

3.8 Clustering performance on synthetic Shape5 dataset. 55

3.9 Clustering performance on synthetic Shape3 dataset with outlier propor-

tions ranging from 0% to 30%. 56

4.1 Decision boundaries comparison on synthetic ThreeBlobs-Outlier dataset

using k-NN, LOF, and ADOD. 64

4.2 Illustration of key ADOD steps on synthetic ThreeBlobs-Outlier dataset. . . 68

4.3 Average ROC score against different search ranges of parameters pcum and

perp on real-world datasets. 81

xviii LIST OF FIGURES

4.4 Average P@N score against different search ranges of parameters pcum and

perp on real-world datasets. 82

4.5 Average AP score against different search ranges of parameters pcum and

perp on real-world datasets. 82

4.6 Decision boundaries comparison on synthetic ThreeBlobs-Outlier dataset

using various outlier detection algorithms. 83

4.7 CD diagram illustrating pairwise statistical difference comparison. 91

4.8 Run time comparison of 16 algorithms on 32 real-world datasets. 92

4.9 Visualization of musk, magic gamma, and pima datasets using UMAP. . . . 94

5.1 Graph construction techniques on the toy dataset. 99

5.2 Overview of the DynoGraph algorithm. 103

5.3 Edge modification strategies. 107

5.4 Visualization of synthetic 3D Scurve-hole dataset. 120

5.5 k-NN classifier accuracy on real-world datasets. 124

5.6 Visualization of WarpPIE10P dataset. 127

5.7 Visualization of COIL-20 dataset. 128

5.8 Visualization of LandsatSatellite dataset. 129

5.9 Visualization of COIL-100 dataset. 130

5.10 Visualization of HAR dataset. 131

5.11 Visualization of Fashion-MNIST dataset. 132

5.12 Visualization of MNIST dataset. 133

LIST OF TABLES xix

List of Tables

2.1 Comparison of nearest neighbor methods. 14

2.2 Comparison of libraries for nearest neighbor search. 16

2.3 Comparison of graph construction methods. 21

3.1 Computational complexity of DBADV and baseline methods. 47

3.2 Statistics of datasets used in DBADV. 49

3.3 Parameters and their search range for each algorithm. 50

3.4 NMI and F-measure scores on real-world datasets. 58

4.1 Statistics of the 32 real-world datasets used in ADOD. 79

4.2 ROC score on real-world datasets. 85

4.3 P@N score on real-world datasets. 86

4.4 AP score on real-world datasets. 87

4.5 Run time on real-world datasets (Part 1). 88

4.6 Run time on real-world datasets (Part 2). 89

5.1 Statistics of datasets used in DynoGraph. 118

5.2 AMI score on real-world datasets. 122

xx LIST OF TABLES

LIST OF ABBREVIATIONS 1

Chapter 1

Introduction

1.1 Knowledge Discovery in Databases

In recent years, the proliferation of Internet of Things (IoT) devices, the widespread use

of cloud computing, and the rapid development of artificial intelligence and machine

learning technologies have together driven data generation to unprecedented levels. Ac-

cording to SOAX1 research, the amount of data generated globally is estimated to reach

402.89 million terabytes2 per day in 2024, for a total of 147 zettabytes. This rapid

growth trend is expected to continue, with the total amount of data expected to reach

181 zettabytes by 2025. IDC3 predicts that the global datasphere will expand to 393.8

zettabytes by 2028, a figure that is almost identical to that predicted by Statista4, re-

flecting an increase of 9.8 times compared to 2018. It’s worth noting not only the total

amount of data but also the speed at which it is generated. In 2023, the global data

generation rate reached 4.2 petabytes per second, and this rate is expected to reach 12.5

petabytes per second by 20285.

This exponential growth of data not only brings significant opportunities but also
1https://soax.com/research/data-generated-per-day
21ZB (zettabyte) = 103 EB (exabyte) = 106 PB (petabyte) = 109 TB (terabyte) = 1012 GB (gigabyte) =

1015 MB (megabyte) = 1018 KB (kilobyte) = 1021 Bytes
3https://www.idc.com/getdoc.jsp?containerId=US52076424
4https://www.statista.com/statistics/871513/worldwide-data-created/
5https://www.idc.com/getdoc.jsp?containerId=prCHC52667624

https://soax.com/research/data-generated-per-day
https://www.idc.com/getdoc.jsp?containerId=US52076424
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.idc.com/getdoc.jsp?containerId=prCHC52667624

2 1. Introduction

poses serious challenges for data analysis. Volume, Variety, Velocity, Veracity, and Value,

known as the ”five Vs” of big data [RY21], make it increasingly complex to efficiently

extract meaningful knowledge from massive amounts of data. Addressing these chal-

lenges requires a series of powerful methods to effectively manage large, multimodal,

and dynamically evolving datasets. As a systematic theoretical framework, Knowledge

Discovery in Databases (KDD) [FPSS96] transforms raw data into actionable knowledge

through a structured multi-step process. Its main steps are as follows:

1. Data Selection: Selects target data from raw data, retrieving a subset relevant to

the analysis task from the database.

2. Data Preprocessing: Cleans and prepares target data as preprocessed data, dealing

with issues such as missing values, noise, duplicates, and inconsistencies to ensure

the quality and reliability of the data.

3. Data Transformation: Converts preprocessed data into transformed data, generat-

ing suitable data representations for downstream tasks through techniques such as

dimensionality reduction, normalization, or feature engineering.

4. Data Mining: Extracts patterns from transformed data, applying intelligent meth-

ods to identify meaningful relationships, trends, or models relevant to data mining

tasks.

5. Interpretation/Evaluation: Explains and evaluates patterns, refining them into

actionable knowledge through visualization and knowledge representation tech-

niques.

Steps 1 to 3 of the KDD process focus on the preparation and processing of raw data

into transformed data suitable for mining. Data mining [HKP11], as a key step in KDD, is

defined as the process of extracting and discovering interesting patterns and knowledge

from large amounts of data. The functionality of data mining determines the types of pat-

terns that need to be discovered in different tasks. These tasks can be broadly classified

1.2 Unsupervised Learning in Data Analysis 3

into two categories: predictive and descriptive. Predictive tasks, such as classification

and regression, aim at inductive reasoning based on known data to predict unknown or

future values. In contrast, descriptive tasks, such as clustering, summarization, and as-

sociation rule learning, focus on revealing the inherent structure or relationships within

known data. Furthermore, outlier detection (also known as anomaly detection) can be

either a predictive or descriptive task, depending on the task goal.

1.2 Unsupervised Learning in Data Analysis

The KDD framework encompasses various tasks that typically adopt three main learn-

ing paradigms: supervised, semi-supervised, and unsupervised learning [JM15]. Each

paradigm represents a distinct approach to analyzing data and extracting knowledge,

depending on the availability of labeled data. Supervised learning maps input data to

corresponding labeled output values by learning from a training set to predict unknown

instances on a test set while minimizing generalization error. Semi-supervised learning,

as an extension of supervised learning, combines a small amount of labeled data with

a large amount of unlabeled data during training. It improves the prediction accuracy

on the test set by utilizing the few labeled samples to guide the learning process while

mining potential information from the large unlabeled data. In contrast, unsupervised

learning analyzes the entire dataset without predefined labels and focuses on discovering

inherent patterns, structures, or relationships within the data.

In many real-world scenarios, obtaining labeled data is expensive, time-consuming,

or even impossible, making unsupervised learning indispensable for analyzing large

and complex datasets. This thesis develops novel approaches in unsupervised learning,

specifically in its core tasks: clustering, outlier detection, and dimensionality reduction.

While clustering and dimensionality reduction are essentially unsupervised learning, out-

lier detection [HHH+22] can be approached in a supervised, semi-supervised, or unsu-

pervised manner. However, this thesis focuses on the unsupervised learning paradigm of

outlier detection, emphasizing its ability to identify outliers without labeled data.

4 1. Introduction

Clustering. The clustering task [HKP11] involves grouping similar data points into

the same cluster based on a defined similarity metric, such that data points within the

same cluster are more similar to each other than to those in other clusters. The primary

goal of clustering is to reveal the inherent structure and natural groupings within an

unlabeled dataset. Clustering has a variety of applications in several fields, including

customer segmentation in marketing, where businesses identify groups of customers with

similar behaviors; image segmentation in computer vision, which partitions images into

meaningful regions; and biology, where clustering aids in identifying gene expression or

grouping organisms based on phenotypic traits.

Outlier Detection. The outlier detection task [HKP11] identifies rare or unusual data

points that deviate significantly from the majority, often arising from a different gener-

ating mechanism or inconsistent with the rest of the data. The goal of outlier detection

is twofold: data cleaning by identifying and removing errors or irrelevant data points

and uncovering rare observations that provide valuable insights. Outlier detection has

a variety of applications in several fields, such as in fraud detection, where suspicious

transactions or activities are flagged for further investigation; in cybersecurity, where in-

trusion behaviors or unusual patterns are identified; and in medical diagnostics, where

abnormal conditions or potential health problems are identified through the early detec-

tion of outliers in patient data.

Dimensionality Reduction. The dimensionality reduction task [HKP11] transforms

high-dimensional data into a low-dimensional representation while preserving the essen-

tial characteristics of the original data. The goal is to address the curse of dimensionality,

where high-dimensional data can cause sparsity, computational inefficiency, or degra-

dation of model generalization, while preserving the relationships and structures in the

data. Dimensionality reduction is widely applied across various fields. For example, in

bioinformatics, it helps visualize complex gene expression data; in signal processing, it

extracts key features from time-series data; and in computer vision, it simplifies image

representation for tasks such as object recognition. Dimensionality reduction promotes

efficient storage, visualization, and downstream analysis.

1.3 Challenges in Unsupervised Learning 5

1.3 Challenges in Unsupervised Learning

While most existing methods have demonstrated some success in many applications, they

often exhibit inherent limitations that restrict their adaptability to diverse and complex

datasets. The primary limitations are as follows:

Assumptions on Data Distributions. Many methods are built on strict assumptions

about the overall data distributions, such as Gaussian, uniform, or exponential distri-

butions [BN06, Mur12]. While these assumptions can simplify modeling and provide

robust performance when data follows the expected distribution, in practice, the distri-

bution of real-world data is often diverse and unpredictable, and these assumptions are

often inadequate. For example, practical datasets often exhibit complex characteristics,

such as multimodal distributions, heavy-tailed or skewed probabilities. They may even

arise from a combination of multiple underlying distributions that deviate significantly

from idealized models.

Insensitivity to Density Variations. Many methods struggle to handle datasets with

varying densities due to their reliance on predefined criteria consistently applied across

the entire dataset [SSE+17, BKNS00]. These methods often treat all regions of the

dataset as having similar density, a simplification that hardly reflects the complexity of

real-world data. By ignoring density differences across regions, these methods fail to

adapt to the diverse structures present in the data. For example, in dense regions, these

methods may over-segment the data, splitting continuous and meaningful clusters into

multiple smaller groups. Conversely, in sparse regions, they tend to overlook subtle but

important patterns, often considering sparse structures or boundary points as outliers.

Dependence on Dataset-Specific Parameters. Many methods rely on dataset-

specific parameters6 settings [EKSX96, ABKS99], which often require careful tuning for

optimal performance. However, when the dataset changes, these parameters often lose

6In this thesis, parameters refer to any settings determined before algorithm execution, excluding model
parameters, encompassing both primary parameters, which significantly influence performance and require
manual tuning, and default parameters, which are predefined by the authors or implementations. No
distinction is made between parameters and hyperparameters for simplicity.

6 1. Introduction

effectiveness and need to be manually readjusted. This dependency poses significant ob-

stacles in practical applications, as obtaining prior knowledge about optimal parameter

values is challenging. Common strategies such as grid search or random search [BB12]

enumerate candidate parameter combinations to find the best solution, but these meth-

ods are computationally expensive and time-consuming. In addition, it is challenging

to choose a universally applicable evaluation metric to guide parameter optimization

because most metrics only reflect a specific aspect of performance.

These three limitations are prevalent across many machine learning methods. In su-

pervised learning, these issues can be mitigated to some extent. For instance, labeled

data can provide guidance for validating distributional assumptions, understanding den-

sity variations, and optimizing parameters through techniques such as cross-validation.

In contrast, unsupervised learning faces inherent challenges due to the lack of labeled

data, with no direct feedback for guidance. As an alternative, unsupervised methods

often rely on internal metrics or heuristics to evaluate performance [LLX+10]. While

these techniques can provide some guidance, they often struggle to align with the true

underlying structure of the data, which may lead to unreliable results.

The limitations above present three critical challenges in the field of unsupervised

learning, which can be formulated as key research questions:

• RQ1: How can methods adapt to diverse and arbitrary data distributions?

• RQ2: How can methods handle datasets with varying densities?

• RQ3: How can methods reduce dependence on dataset-specific parameters?

1.4 Adaptive Exploration through Intrinsic Data

Properties

This thesis presents an adaptive exploration framework to address the three major chal-

lenges in unsupervised learning. This framework enables the dynamic adaptation of

1.4 Adaptive Exploration through Intrinsic Data Properties 7

algorithms by leveraging intrinsic data properties, aiming to eliminate reliance on prior

assumptions or predefined criteria. Specifically, when a dataset changes in terms of den-

sity, structure, size, or other key attributes, adaptive exploration can effectively capture

these changes and adjust critical elements such as threshold selection and neighborhood

size, thereby maintaining consistent performance. By dynamically adapting to intrinsic

data properties, adaptive exploration can effectively address challenges related to arbi-

trary data distributions, density variations, and excessive dependence on dataset-specific

parameters, providing a more flexible and generalizable solution for unsupervised learn-

ing tasks.

Intrinsic data properties refer to the inherent characteristics of a dataset that reveal

its internal structure and relationships. These properties are not dependent on exter-

nal annotations or a priori assumptions but are obtained by directly uncovering patterns

in data distribution, interrelationships, and both global and local structural character-

istics of the data points. For example, data size reflects the total number of points in

the dataset, which influences the selection of neighborhood size when analyzing local

structures. Local density describes the compactness around a data point, which helps to

differentiate between dense and sparse regions. Neighborhood relationships reveal lo-

cal connectivity structures by measuring the distance or similarity between data points.

Additionally, global and local relationships between data points can be captured through

graph representations, where nodes represent data points and edges indicate the simi-

larity or adjacency between points. These properties provide a reliable basis for dynamic

adaptation of the algorithm, allowing the algorithm to be optimized and adapted to the

specific characteristics of the data.

Building on these intrinsic data properties, we develop the adaptive exploration

framework to address the following three research questions:

Adapting to Arbitrary Distributions (RQ1). Adaptive exploration eliminates prede-

fined assumptions about data distributions, enabling algorithms to adapt to any distri-

bution without prior knowledge. Unlike methods that require predefined assumptions,

such as Gaussian or uniform distributions, adaptive exploration relies only on the intrin-

8 1. Introduction

sic data properties to capture its actual distribution characteristics. In this way, algo-

rithms can reflect the natural structure of the data and adapt to diverse, unpredictable,

and highly heterogeneous distributions, ensuring a fair and unbiased representation of

potential patterns.

Capturing Local Density (RQ2). Real-world datasets often exhibit varying densities

in different regions. Adaptive exploration accurately characterizes the density around in-

dividual points by focusing on the local properties of each data point rather than treating

all points as having the same density. By emphasizing the local environment, adaptive

exploration can maintain stable performance in both dense and sparse regions, avoiding

excessive segmentation of dense clusters while also identifying subtle but important pat-

terns in sparse regions, thus accurately capturing the density differences between regions

in the data.

Designing Self-Adaptive Parameters (RQ3). Adaptive exploration leverages intrin-

sic data properties to design parameters that self-adapt to the dataset. Parameters such as

thresholds, neighborhood sizes, and scaling factors can be dynamically derived from the

internal structure of the data, or sensitive parameters can be replaced with more robust

parameters, thereby minimizing the need for manual parameter adjustment. With this

adaptive exploration, algorithms can automatically adjust primary parameters when the

data size, local characteristics, or even the overall structure change, always maintaining

efficient and stable performance and adapting to different datasets.

1.5 Outline of the Thesis

The primary goal of this thesis is to develop an adaptive exploration framework for unsu-

pervised learning by leveraging intrinsic data properties. Specifically, we focus on three

fundamental tasks: clustering, outlier detection, and dimensionality reduction. By ad-

dressing critical challenges such as adapting to diverse and arbitrary data distributions,

handling datasets with varying densities, and reducing dependence on dataset-specific

parameters, this framework aims to enhance the adaptability, accuracy, and efficiency of

1.5 Outline of the Thesis 9

unsupervised learning algorithms. The thesis is structured as follows:

Chapter 1 introduces the motivation and scope of this thesis, with a focus on unsu-

pervised learning. It identifies critical challenges in the field and proposes an adaptive

exploration framework to address three key research questions.

Chapter 2 provides the background knowledge to support the proposed algorithms.

It introduces and compares various nearest neighbor methods and graph construction

techniques, highlighting their definitions, characteristics, and limitations. Additionally,

it presents the evaluation metrics used for the various tasks in this thesis.

Chapter 3 proposes DBADV, a density-based clustering algorithm. It highlights the

novel definition of local density information for each data point and the enforcement

of strong constraints on neighbors, enabling the algorithm to adapt to varying densities

and identify clusters with arbitrary shapes and sizes while maintaining robustness to

noise and outliers.

Chapter 4 proposes ADOD, a proximity-based unsupervised outlier detection algo-

rithm. It highlights the novel estimation of local density for each data point and com-

pares density differences with mutual neighbors to identify outliers that significantly de-

viate from their surroundings, enabling adaptation to varying densities and self-adaptive

parameter settings.

Chapter 5 proposes DynoGraph, a nonlinear graph-based dimensionality reduction al-

gorithm. It highlights the novel adaptive neighborhood graph construction and dynamic

graph modification processes, ensuring that the low-dimensional embedding accurately

reflects the intrinsic structure of the high-dimensional data. Additionally, DynoGraph

employs self-adaptive parameter settings.

Chapter 6 concludes the thesis by summarizing the main contributions and discussing

potential limitations. It also highlights possible directions for future research and reflects

on its broader impact.

10 1. Introduction

11

Chapter 2

Background

2.1 Nearest Neighbor Methods

Nearest neighbor methods are fundamental techniques in data analysis and machine

learning, serving as core building blocks for tasks such as classification, clustering, out-

lier detection, and graph construction. These methods rely on spatial proximity and

similarity within a feature space to establish local relationships among data points. This

section introduces several common nearest neighbor methods and discusses computa-

tional techniques for efficient nearest neighbor searches.

2.1.1 Nearest Neighbor

Given a dataset X = {x1,x2, . . . ,xn} ∈ Rn×d, where n denotes the number of data points

and d denotes the dimension of the feature space. For a given query point xi ∈ X, its

nearest neighbor (NN) [CH67] is defined as the point xj ∈ X that minimizes the distance

to xi, excluding the query point itself. The NN of xi is formally defined as follows:

NN(xi) = arg min
xj∈X, j ̸=i

distance(xi,xj) (2.1)

where distance(·, ·) is a general distance metric, such as the Euclidean distance, Manhat-

12 2. Background

tan distance, cosine similarity, etc.

2.1.2 k-Nearest Neighbors

For a given query point xi ∈ X, its k-nearest neighbors (k-NN) [CD21] are defined as the

k points in X that have the smallest distances to xi, excluding the query point itself. The

k-NN of xi are formally defined as follows:

k-NN(xi) = {xj ∈ X | distance(xi,xj) is among the smallest k to xi, j ̸= i} (2.2)

where k is a user-defined parameter that specifies the number of neighbors and

distance(·, ·) is a general distance metric.

The k-NN method takes into account multiple points in the neighborhood, unlike

the NN method, which considers only a single point. This makes k-NN less sensitive to

outliers.

2.1.3 ϵ-Nearest Neighbors

For a given query point xi ∈ X, its ϵ-nearest neighbors (ϵ-NN) [SSE+17] are defined as

all points xj ∈ X that lie within a distance threshold ϵ from xi, excluding the query point

itself. The ϵ-NN of xi are formally defined as follows:

ϵ-NN(xi) = {xj ∈ X | distance(xi,xj) ≤ ϵ, j ̸= i} (2.3)

where ϵ > 0 is a user-defined distance threshold and distance(·, ·) is a general distance

metric. For symmetric distance metrics, such as the Euclidean distance or the Manhattan

distance, ϵ-NN exhibits symmetry.

Unlike the k-NN method, which assigns a fixed number of neighbors to each data

point, the number of neighbors in the ϵ-NN method is determined by the local density of

2.1 Nearest Neighbor Methods 13

the data points. In dense regions, ϵ-NN tends to include more neighbors, while in sparse

regions, the number of neighbors is usually small or may even be zero.

2.1.4 ϵi-Nearest Neighbors

For a given query point xi ∈ X, its ϵi-nearest neighbors (ϵi-NN) are defined as all points

xj ∈ X that lie within a distance threshold ϵi from xi, excluding the query point itself.

This concept serves as a key component of the DBADV algorithm in Chapter 3, the ADOD

algorithm in Chapter 4, and the DynoGraph algorithm in Chapter 5. The ϵi-NN of xi are

formally defined as follows:

ϵi-NN(xi) = {xj ∈ X | distance(xi,xj) ≤ ϵi, j ̸= i} (2.4)

where ϵi > 0 is an adaptive distance threshold specific to xi and distance(·, ·) is a general

distance metric. Since ϵi typically varies across different data points, the ϵi-NN relation-

ship is not symmetric.

Unlike the global fixed threshold ϵ shared by all data points, ϵi is determined adap-

tively based on the local characteristics of xi. The ϵi-NN method is not limited by density

variations, as ϵi for xi can be calculated using perplexity [vdMH08] or heuristic meth-

ods [̇Ink23]. In dense regions, ϵi is usually small, while in sparse regions, ϵi is usually

large, so that ϵi-NN can provide a relatively balanced number of neighbors for points in

different regions.

2.1.5 Mutual Nearest Neighbors

For a given query point xi ∈ X, its mutual nearest neighbors (MNN) [AEZS21] are

defined as all points xj ∈ X such that xi is a neighbor of xj and xj is a neighbor of xi.

The MNN of xi are formally defined as follows:

MNN(xi) = {xj ∈ X | xi ∈ N (xj) and xj ∈ N (xi)} (2.5)

14 2. Background

Table 2.1: Comparison of nearest neighbor methods.

Method Definition Characteristics Limitations

NN
The closest point to a
query point

Simple and intuitive Sensitive to outliers

k-NN
The k closest points to a
query point

Considers multiple neigh-
bors, less sensitive to out-
liers

Sensitive to k, computationally
expensive for large k

ϵ-NN
The points within a fixed
distance threshold ϵ from
a query point

Number of neighbors
varies with local density

Sensitive to ϵ, a fixed threshold
may fail in datasets with vary-
ing densities

ϵi-NN
The points within an adap-
tive distance threshold ϵi
from a query point

Adapts to density varia-
tions, relatively balanced
number of neighbors

Sensitive to ϵi, relies on the
method used to calculate ϵi

MNN
Points that share a mutual
neighborhood relationship
with a query point

Robust to outliers, ensures
symmetric relationships

Sensitive to neighborhood def-
inition, computationally expen-
sive for large datasets

where N (xi) denotes the neighborhood of xi. The neighborhood N (xi) can take on

various forms, such as NN(xi), k-NN(xi), and ϵi-NN(xi), which are defined in Eqs. (2.1),

(2.2), and (2.3). For symmetric distance metrics, ϵ-NN(xi) is inherently MNN.

Unlike the NN, k-NN, or ϵi-NN methods, which rely on unidirectional neighborhood

relationships, MNN ensures symmetric and bidirectional neighborhood relationships,

making it more robust in dealing with outliers. The number of mutual neighbors for

each point depends on the definition of the neighborhood and the local data distribu-

tion.

Table 2.1 summarizes the key differences among these nearest neighbor methods by

comparing their definitions, characteristics, and limitations. In this thesis, we adopt the

MNN method, where the neighborhood is defined as ϵi-NN(xi). This method can adapt to

density variations and impose stronger constraints on the neighbors, thereby effectively

resisting outliers.

2.1.6 Nearest Neighbor Search

Nearest neighbor search (NNS) [ML14] is an optimization problem that aims to find one

or more nearest neighbors for a given query point in a dataset based on a defined distance

2.1 Nearest Neighbor Methods 15

metric. Unlike nearest neighbor methods, such as NN, k-NN, ϵ-NN, ϵi-NN, and MNN,

that define relationships between data points, NNS focuses on how to efficiently identify

these relationships, particularly in large or high-dimensional datasets. NNS methods can

be broadly categorized into exact methods and approximation methods.

Exact methods for NNS aim to identify the exact nearest neighbors by systematically

traversing the dataset. The simplest method, often referred to as linear or brute force

search, is implemented by calculating the distance between the query point and all other

points in the dataset and finding the closest match. While this method is intuitive and

applicable to any distance metric, it can be computationally expensive for large datasets.

To improve efficiency, spatial partitioning techniques, such as KD-trees [Ben75] and R-

trees [Gut84], can be used to organize the dataset into a hierarchical structure. This

hierarchical structure allows regions irrelevant to the query point to be pruned during

the search process.

Approximation methods for NNS focus on improving computational efficiency by

relaxing the requirement to find the exact nearest neighbors. Instead, they aim to

find neighbors that are approximately close to the query point, seeking a trade-off

between accuracy and computational speed. Commonly used methods include graph-

based methods, such as Hierarchical Navigable Small World (HNSW) [MY20], which

uses greedy traversal on a preconstructed graph to iteratively optimize the search path,

thereby efficiently locating nearby data points. In addition, Locality Sensitive Hashing

(LSH) [GIM99] groups similar data points together using a chosen distance metric, en-

suring that similar points are more likely to be mapped to the same bucket.

In practice, NNS is often implemented using highly optimized libraries that sup-

port both exact and approximate methods. These implementations use advanced data

structures, such as trees, graphs, and hash-based indices, along with techniques like

vectorized operations, quantization, parallelization, and hardware acceleration. These

libraries are widely used for machine learning tasks, especially dimensionality re-

duction. For example, PyNNDescent7 [DML11] is the default for UMAP [MHM18],

7https://github.com/lmcinnes/pynndescent

https://github.com/lmcinnes/pynndescent

16 2. Background

Table 2.2: Comparison of libraries for nearest neighbor search.

Library Exact Approx. GPU Key Features

Faiss ✓ ✓ ✓
Highly scalable, GPU-accelerated, supports IVF,
PQ, HNSW

Annoy × ✓ ×
Memory efficient, random projection trees, sup-
ports static index sharing across processes

NMSLIB ✓ ✓ ×
Flexible for metric and non-metric spaces, sup-
ports HNSW and custom distance functions

PyNNDescent × ✓ ×
Nearest neighbor descent, random projection
trees, graph diversification

sklearn.neighbors ✓ × ×
Part of scikit-learn, uses KD-tree and Ball-tree
for exact search

while sklearn.neighbors8, NMSLIB9 [BN13], and PyNNDescent are commonly employed

for t-SNE [vdMH08]. Faiss10 [JDJ19, DGD+24], with its GPU acceleration, supports

SpaceMap [ZT22], and Annoy11 is used for methods such as PaCMAP [WHRS21],

TriMap [AW19], and LargeVis [TLZM16]. Table 2.2 summarizes common libraries for

NNS, highlighting their support for exact and approximate search, GPU acceleration,

and key features.

In this thesis, we perform exact NNS in Python using the Faiss library with GPU accel-

eration support. Specifically, the GpuIndexFlatL2 index12 is used to efficiently calculate

pairwise distances and identify nearest neighbors in large, high-dimensional datasets.

2.2 Graph Construction

Graphs provide a structured representation to model relationships among data points in

a dataset. Formally, a graph G = (V,E,W) consists of three main parts: a set of vertices

V = {v1, v2, . . . , vn}, where each vertex vi corresponds to a data point xi in the dataset

X = {x1,x2, . . . ,xn}; a set of edges E, representing the connections between vertices,

8https://scikit-learn.org/stable/modules/neighbors.html
9https://github.com/nmslib/nmslib

10https://github.com/facebookresearch/faiss
11https://github.com/spotify/annoy
12https://faiss.ai/cpp_api/class/classfaiss_1_1gpu_1_1GpuIndexFlatL2.html

https://scikit-learn.org/stable/modules/neighbors.html
https://github.com/nmslib/nmslib
https://github.com/facebookresearch/faiss
https://github.com/spotify/annoy
https://faiss.ai/cpp_api/class/classfaiss_1_1gpu_1_1GpuIndexFlatL2.html

2.2 Graph Construction 17

defined according to a specific criterion; and an optional weight matrix W, where wij

represents the distance or similarity between two connected vertices vi and vj. In this

thesis, we consider G to be an undirected graph, meaning that every edge (vi, vj) ∈ E

represents a bidirectional connection with weight wij = wji.

Graph construction [QZCS18] refers to the process of defining the edges E and

weights W to capture meaningful relationships between data points. The most com-

monly used methods rely on neighborhood relationships, such as k-nearest neighbor

graph, ϵ-nearest neighbor graph, and mutual nearest neighbor graph. Furthermore, in

specific tasks, it is crucial to ensure the graph is connected to facilitate the information

flow between all vertices. To achieve this, additional strategies, such as using the mini-

mum spanning tree, can be employed to ensure graph connectivity.

2.2.1 Neighbor-Based Graph Construction

Neighbor-based graph construction methods intuitively define edges based on the prox-

imity between points, making them suitable for capturing the local structure of the data.

Three commonly used methods are introduced below:

k-Nearest Neighbor Graph (k-NNG) In a k-NNG [HAYSZ11], each vertex vi ∈ V is

connected to its k-nearest neighbors based on a chosen distance metric, such as the

Euclidean distance, Manhattan distance, or cosine similarity. The edges are defined as

follows:

E = {(vi, vj) | vj ∈ k-NN(vi)} (2.6)

where k-NN(vi) denotes the set of k-nearest neighbors of vertex vi, determined by the

data point xi associated with vi, as defined in Eq. (2.2).

ϵ-Nearest Neighbor Graph (ϵ-NNG) In an ϵ-NNG [CPnZ04], each vertex vi ∈ V is

connected to other vertices within a predefined distance threshold ϵ. The edges are

18 2. Background

defined as follows:

E = {(vi, vj) | vj ∈ ϵ-NN(vi)} (2.7)

where ϵ-NN(vi) denotes the set of ϵ-nearest neighbors of vertex vi, determined by the

data point xi associated with vi, as defined in Eq. (2.3).

Mutual Nearest Neighbor Graph (MNNG) In an MNNG [BCQY97, OSKM11], each

vertex vi ∈ V is connected to another vertex vj ∈ V if and only if they are mutual nearest

neighbors. The edges are defined as follows:

E = {(vi, vj) | vj ∈ MNN(vi)} (2.8)

where MNN(vi) denotes the set of mutual nearest neighbors of vertex vi, determined

by the data point xi associated with vi, as defined in Eq. (2.5). The neighborhood N (vi)

used to determine mutual nearest neighbors can take on various forms, such as k-NN(vi),

or ϵi-NN(vi).

In addition to defining the edge set E, graph G may also contain an optional weight

matrix W, where wij quantifies the strength of the connection between vertices. In

the simplest case, an unweighted adjacency matrix (wij ∈ {0, 1}) is used to encode

the existence of edges, where wij = 1 indicates (vi, vj) ∈ E and wij = 0 otherwise.

For weighted graphs, wij is a real-valued weight that reflects the similarity or distance

between vertices, usually calculated using a metric such as the Gaussian kernel function

or inverse distance.

2.2.2 Ensuring Graph Connectivity

Specific tasks, such as dimensionality reduction, require the graph to be connected to

preserve global structure and facilitate information flow between vertices. However,

most graph construction methods, such as neighbor-based methods, do not inherently

guarantee connectivity. One straightforward strategy is to increase k, expand the distance

2.2 Graph Construction 19

threshold ϵ, or relax the constraints to include more edges. Although these strategies may

improve connectivity, they usually introduce redundant edges with limited relevance,

increasing computational complexity. However, they may still fail to ensure connectivity

when dealing with datasets with varying densities. A more effective strategy is to use a

minimum spanning tree to ensure graph connectivity.

Minimum Spanning Tree (MST) The MST [PR02] of a connected, weighted, undi-

rected graph G = (V,E,W) is a subset of the edges, T ⊆ E, that connects all vertices

in V without forming any cycles, while minimizing the total edge weight. The MST is

defined as follows:

MST(G) = argmin
T⊆E

∑
(vi,vj)∈T

wij (2.9)

where T is a spanning tree of G that ensures connectivity and acyclicity, and |T | = |V |−1.

Commonly used algorithms for finding the MST include Kruskal’s algorithm and Prim’s

algorithm [CLRS09]. Kruskal’s algorithm constructs the MST by sorting all edges in

ascending order of weight and incrementally adding edges to the spanning tree, ensuring

no cycles are formed. In contrast, Prim’s algorithm constructs the MST by iteratively

selecting the edge with the smallest weight that connects a vertex in the current tree to a

vertex outside the tree and continuously expanding the tree until it contains all vertices.

The MST is primarily designed to solve optimization problems in network design and

cost minimization. The goal is to minimize the total edge weight while ensuring that all

vertices are connected. MST can be applied to graph construction using this property to

ensure connectivity. However, the MST is rarely used directly as the final graph due to its

sparsity, containing only |V | − 1 edges. Instead, it is often used as a supplementary part

combined with other graph construction methods to achieve connectivity and a granular

representation of data relationships. There are two main ways to combine MST with

other graph construction methods:

MST for Initial Graph Construction. The MST [ARBM15] can serve as an initial

20 2. Background

structure in graph construction. A sparse but connected graph can be obtained by gen-

erating the MST on a complete graph with edges weighted by the distance or similarity

between vertices. Additional edges are incorporated with other graph construction meth-

ods to capture more granular relationships.

MST for Merging Disconnected Components. When a graph constructed by other

methods remains disconnected, the MST [VCP16] can merge isolated components. Each

disconnected component is treated as a super vertex, and the MST is then constructed on

these super vertices based on the relationship between them, such as distances between

centroids or representative points. This method ensures the overall connectivity of the

graph by introducing minimal additional edges required to bridge these components.

Table 2.3 summarizes the graph construction methods discussed above, highlight-

ing their definitions, key characteristics, and limitations. ANG is a graph construction

method proposed in Chapter 5.3.2 as an essential part of the DynoGraph algorithm.

2.3 Evaluation Metrics

Evaluation metrics are crucial for quantitatively measuring the performance of algo-

rithms, providing a standardized way to compare proposed algorithms with baseline

methods. This section introduces the evaluation metrics used in this thesis for cluster-

ing, outlier detection, and dimensionality reduction tasks. These metrics are selected to

evaluate the quality of the proposed algorithms from various perspectives.

We denote the dataset as X = {x1,x2, . . . ,xn} ∈ Rn×d, where each xi ∈ Rd is

a d-dimensional feature vector, and n denotes the total number of samples in the

dataset. Each sample xi is associated with a ground truth label ytrue
i , forming the

set of ground truth label Y true = {ytrue
1 , ytrue

2 , . . . , ytrue
n }. Similarly, the predicted labels

are denoted as Y pred = {ypred
1 , ypred

2 , . . . , ypred
n }. In dimensionality reduction, the origi-

nal high-dimensional dataset X is transformed into a low-dimensional representation

Z = {z1, z2, . . . , zn} ∈ Rn×m, where each zi ∈ Rm is an m-dimensional vector corre-

sponding to the original sample xi.

2.3 Evaluation Metrics 21

Table 2.3: Comparison of graph construction methods. Note: Method X refers to any
graph construction method.

Method Definition Characteristics Limitations

k-NNG
Each vertex connects to
its k nearest neighbors

Captures local structure,
simple, easy to implement

Sensitive to k, struggles
with varying densities,
may cause disconnections

ϵ-NNG
Each vertex connects to
others within a fixed
distance threshold ϵ

Captures local structure,
interpretable

Sensitive to ϵ, struggles
with varying densities,
may cause disconnections

MNNG
Two vertices connect if
they are mutual near-
est neighbors

Captures local structure,
symmetric, robust to out-
liers

Sensitive to neighborhood
definition, may cause dis-
connections

MST
A tree connecting all
vertices with minimal
total edge weight

Ensures connectivity, min-
imal edge cost, avoids cy-
cles

Highly sparse, may not
represent meaningful
structures as a final graph

MST + Method X
Constructs the MST,
then adds edges from
Method X

Ensures connectivity, en-
riches granular relation-
ships

Relies on the quality of
Method X, may introduce
unnecessary edges

Method X + MST

Constructs a graph
with Method X, then
connects components
using the MST

Ensures connectivity, in-
troduces minimal addi-
tional edges

Relies on the quality of
Method X, requires addi-
tional connectivity checks

ANG

Constructs a MNNG
with ϵi-NN as N (vi),
then connects compo-
nents using the MST

Adaptive to local struc-
ture, symmetric, robust,
connectivity, introduces
minimal additional edges

Relies on the quality of
method used to calculate
ϵi, requires additional con-
nectivity checks

22 2. Background

2.3.1 Normalized Mutual Information

The Normalized Mutual Information (NMI) [VEB10] is an external evaluation metric for

clustering task, which quantifies the similarity between the clustering results and the

ground truth. By measuring the mutual information between the predicted labels Y pred

and the ground truth labels Y true, NMI provides a normalized score that indicates how

well the clustering results agree with the ground truth. The NMI is defined as follows:

NMI(Y true, Y pred) =
MI(Y true, Y pred)

1
2
(H(Y true) +H(Y pred))

(2.10)

where MI(Y true, Y pred) denotes the mutual information, which quantifies the amount of

information shared between two sets of labels, and is calculated as follows:

MI(Y true, Y pred) =
∑

ytrue∈Y true

∑
ypred∈Y pred

P (ytrue, ypred) log
P (ytrue, ypred)

P (ytrue)P (ypred)
(2.11)

where H(Y true) and H(Y pred) denote the entropy of the ground truth and predicted la-

bels, respectively, which measure the uncertainty in each label set, and are calculated as

follows:

H(Y true) = −
∑

ytrue∈Y true

P (ytrue) logP (ytrue) (2.12)

H(Y pred) = −
∑

ypred∈Y pred

P (ypred) logP (ypred) (2.13)

The NMI score ranges from [0, 1], where a score of 1 indicates that the predicted labels

match the ground truth labels perfectly, while a score of 0 indicates that the predicted la-

bels are completely random and have very little correlation with the ground truth labels.

In this thesis, the NMI is implemented using the normalized mutual info score13

13https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_

info_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.normalized_mutual_info_score.html

2.3 Evaluation Metrics 23

function from the sklearn.metrics module in Python.

2.3.2 Adjusted Mutual Information

The Adjusted Mutual Information (AMI) [VEB10] is an external evaluation metric for

clustering task, which measures the similarity between the predicted labels Y pred and the

ground truth labels Y true. Unlike NMI, AMI accounts for chance, providing a more ac-

curate reflection of clustering performance by correcting for random label assignments.

This adjustment makes it particularly useful when comparing clustering results with dif-

ferent numbers of clusters. The AMI is defined as follows:

AMI(Y true, Y pred) =
MI(Y true, Y pred)− E[MI(Y true, Y pred)]

1
2
(H(Y true) +H(Y pred))− E[MI(Y true, Y pred)]

(2.14)

where MI(Y true, Y pred) denotes the mutual information, and H(Y true) and H(Y pred) de-

note the entropy of the ground truth and predicted labels, respectively. These quantities

are defined in Eqs. (2.11), (2.12), and (2.13). E[MI(Y true, Y pred)] is the expected mu-

tual information, which corrects for the overlap that may occur due to random chance.

By introducing this correction term, AMI provides a more robust similarity measure,

which corrects for the phenomenon that the mutual information value increases due to

an increase in the number of clusters, even if there is no additional information sharing

between these clusters.

The AMI score ranges from [0, 1], where a score of 1 indicates that the predicted

labels agree perfectly with the ground truth labels, while a score of 0 indicates that the

agreement is no better than random chance.

In this thesis, the AMI is implemented using the adjusted mutual info score14 func-

tion from the sklearn.metrics module in Python.

14https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_

info_score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.adjusted_mutual_info_score.html

24 2. Background

2.3.3 F-measure

The F-measure [Chi92], also known as the F1 score, is an external evaluation metric

for tasks such as classification, clustering, and information retrieval. It combines preci-

sion and recall into a harmonic mean, providing a comprehensive evaluation of model

performance. The F-measure is defined as follows:

F-measure =
2 · Precision · Recall
Precision + Recall

(2.15)

where precision measures the proportion of true positive samples out of all predicted

positive samples, and recall measures the proportion of true positive samples out of all

actual positive samples. These metrics are defined as follows:

Precision =
TP

TP + FP
=

∑n
i=1 I(y

pred
i = 1 ∧ ytrue

i = 1)∑n
i=1 I(y

pred
i = 1)

(2.16)

Recall =
TP

TP + FN
=

∑n
i=1 I(y

pred
i = 1 ∧ ytrue

i = 1)∑n
i=1 I(ytrue

i = 1)
(2.17)

where I(·) is an indicator function that returns 1 if the condition inside is true and 0

otherwise.

The confusion matrix in Figure 2.1 illustrates the relationship between the predicted

labels Y pred and the ground truth labels Y true, with a detailed layout of the relevant

terms used to compute the precision, recall, and ultimately the F-measure. These terms

are defined as follows:

• True Positives (TP): The number of samples that are correctly predicted as posi-

tive, where both the predicted labels and the ground truth labels are positive.

• False Positives (FP): The number of samples that are incorrectly predicted as pos-

itive, where the predicted labels are positive, but the ground truth labels are nega-

tive.

2.3 Evaluation Metrics 25

Predicted Labels

Positive Negative
G

ro
u

n
d

 T
ru

th
 L

ab
e

ls

Po
si

ti
ve True Positive

(TP)
False Negative

(FN)

N
eg

at
iv

e

False Positive
(FP)

True Negative
(TN)

Figure 2.1: Confusion matrix for TP, FP, TN, and FN.

• False Negatives (FN): The number of samples that are incorrectly predicted as

negative, where the predicted labels are negative, but the ground truth labels are

positive.

• True Negatives (TN): The number of samples that are correctly predicted as neg-

ative, where both the predicted labels and the ground truth labels are negative.

The performance of multiple clusters is commonly evaluated using two methods:

Macro-averaged F-measure and Micro-averaged F-measure. The Macro-averaged F-

measure calculates the F-measure for each cluster separately and then averages these

scores to assign the same weight to each cluster. In contrast, the micro-average F-measure

calculates the overall F-measure score by weighting the contribution of each cluster ac-

cording to its size.

In clustering evaluation, the Macro-averaged F-measure is usually pre-

ferred [ZTJA22], as it treats all clusters equally and provides a more balanced

evaluation. In contrast, the Micro-averaged F-measure may potentially be biased toward

clusters with more samples. The Macro-averaged F-measure is calculated as follows:

26 2. Background

Macro-averaged F-measure =
1

nc

nc∑
i=1

F-measurei (2.18)

where nc is the number of clusters.

The F-measure ranges from [0, 1], where a score of 1 indicates a perfect balance be-

tween precision and recall, meaning that the predicted labels are highly consistent with

the ground truth labels, while a score of 0 indicates that the clustering result is com-

pletely inconsistent with the ground truth.

In this thesis, the Macro-averaged F-measure is used to evaluate clustering perfor-

mance. Its implementation is based on the original MATLAB code provided by the au-

thors of the DBSCAN-DScale algorithm [ZTA18]15, which was converted to Python for

compatibility with our implementation.

2.3.4 Accuracy of the k-NN Classifier

Accuracy [MPM07] is an external evaluation metric, most commonly used for classifi-

cation tasks, measuring the proportion of correctly classified samples out of the total

samples. In the k-nearest neighbors (k-NN) [CH67] classification method, the label of

each sample is determined by the majority label of its k nearest neighbors in the dataset.

The dataset X is divided into a training set Xtrain and a test set Xtest, where the k-NN

classifier is trained on Xtrain and evaluated on Xtest. Subsequently, the accuracy is ob-

tained by calculating the proportion of correctly predicted samples in Xtest. The accuracy

of the k-NN classifier is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
=

1

ntest

ntest∑
i=1

I(ypred
i = ytrue

i) (2.19)

where ntest is the number of samples in the test set.

The accuracy score ranges from [0, 1], where a score of 1 indicates that all predicted

labels match the ground truth labels exactly, while a score of 0 indicates that the classifi-

15https://sourceforge.net/projects/distance-scaling/

https://sourceforge.net/projects/distance-scaling/

2.3 Evaluation Metrics 27

cation results completely mismatches the ground truth.

In this thesis, we refer to the accuracy of the k-NN classifier as the k-

NN classifier accuracy for brevity. The k-NN classifier accuracy is imple-

mented using the KNeighborsClassifier16 and cross val score17 functions from the

sklearn.neighbors and sklearn.model selection modules in Python.

2.3.5 Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) [Faw06] curve is a graphical representa-

tion widely used to evaluate the performance of binary classification models, such as

classification and outlier detection. The ROC curve plots the True Positive Rate (TPR)

against the False Positive Rate (FPR) at different thresholds on a coordinate graph.

The TPR, also known as sensitivity or recall, measures the proportion of actual posi-

tive samples correctly identified as positive. The FPR, on the other hand, represents the

proportion of actual negative samples that are misclassified as positive. These rates are

calculated as follows:

TPR =
TP

TP + FN
=

∑n
i=1 I(ytrue

i = 1 ∧ ypred
i = 1)∑n

i=1 I(ytrue
i = 1)

(2.20)

FPR =
FP

FP + TN
=

∑n
i=1 I(ytrue

i = 0 ∧ ypred
i = 1)∑n

i=1 I(ytrue
i = 0)

(2.21)

The Area Under the ROC Curve (AUC-ROC) [HM82] summarizes the ROC curve into

a scalar value that measures the overall performance of the model in distinguishing be-

tween predicted and ground truth labels. The AUC-ROC is defined as follows:

AUC-ROC =

∫ 1

0

TPR(FPR) d(FPR) (2.22)

16https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

KNeighborsClassifier.html
17https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_

score.html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html

28 2. Background

Here, TPR(FPR) denotes that TPR is a function of FPR, and d(FPR) denotes the change

in FPR along the ROC curve.

The AUC-ROC score ranges from [0, 1], where a score of 1 indicates that the predicted

labels are identical to the ground truth labels at all thresholds. A score of 0.5 indicates

that the predictions are no better than random guessing, showing a lack of discriminative

ability. A score of 0 indicates that the predicted results are consistently inverted relative

to the ground truth.

In this thesis, we refer to AUC-ROC score as the ROC score to emphasize its direct

connection to the ROC curve. The ROC score is implemented using the roc auc score18

function from the sklearn.metrics module in Python.

2.3.6 Average Precision

The Average Precision (AP) [Zhu04] is an external evaluation metric for tasks such as

ranking, classification, and outlier detection. It summarizes the Precision-Recall curve

into a scalar value by calculating the weighted mean of the precisions at different thresh-

olds, with the increase in recall as the weight. The AP is defined as follows:

AP =
∑
i

(Recalli − Recalli−1) · Precisioni (2.23)

where Precisioni and Recalli denote the precision and recall at the i-th threshold, re-

spectively. The term (Recalli − Recalli−1) denotes the increase in recall between two

consecutive thresholds.

The AP score ranges from [0, 1], where a score of 1 indicates that the predicted labels

agree exactly with the ground truth labels across all levels of recall, while a score of 0

indicates that the predicted results fail to align with the ground truth as recall increases.

In this thesis, the AP is implemented using the average precision score19 function

from the sklearn.metrics module in Python.
18https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
19https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_

score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html

2.3 Evaluation Metrics 29

2.3.7 Precision at N

The Precision at N (P@N) [JK17] is an external evaluation metric for tasks such as rank-

ing and outlier detection. It measures the proportion of correctly predicted samples in

the top N ranked results, focusing on the performance of the model in high-priority pre-

dictions. By concentrating on the precision of the top N samples, P@N is particularly

useful in scenarios where the most relevant results need to be identified accurately. The

P@N is defined as follows:

P@N =

∑N
i=1 I(ytrue

i = 1)

N
(2.24)

where N denotes the number of top-ranked samples considered.

The P@N score ranges from [0, 1], where a score of 1 indicates that the predicted

labels for all the top N samples are identical to the ground truth labels, while a score of

0 indicates that the top N predictions are completely different from the ground truth.

In this thesis, N is set to the number of ground truth outliers in the dataset. The

P@N is implemented using the precision n scores function from the pyod library20,

specifically located in the pyod.utils.utility module in Python.

2.3.8 Procrustes Analysis

The Procrustes analysis [Gow75] is a statistical method for quantitatively assessing the

geometric dissimilarity between two datasets. This technique aligns one dataset to an-

other through optimal scaling, translation, and rotation. Given a target dataset X and a

comparison dataset Z, Procrustes analysis aligns by minimizing the disparity between X

and Z. The disparity is defined as follows:

Disparity(X,Z) = min
b,T,c
∥bZT+ c−X∥2F (2.25)

where b is a scaling factor that adjusts the size of Z to match X, T is an orthogonal

20https://github.com/yzhao062/pyod

https://github.com/yzhao062/pyod

30 2. Background

rotation matrix that aligns Z with the orientation of X, and c is a translation vector that

shifts the centroid of Z to coincide with that of X. The Frobenius norm ∥ · ∥F measures

the element-wise differences between the transformed Z and X. By solving for b, T, and

c, Procrustes analysis provides an optimal transformation that minimizes the disparity

between the two datasets.

The disparity value quantifies the alignment error to measure the similarity between

X and Z. The lower the disparity, the higher the similarity between the two datasets.

In this thesis, we use Procrustes analysis to evaluate the performance of dimension-

ality reduction techniques. Specifically, we assess how well the geometric structure of

the original data is preserved after dimensionality reduction by comparing the low-

dimensional embedding with the original data. The Procrustes analysis is implemented

using the procrustes21 function from the scipy.spatial module in Python.

21https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.procrustes.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.procrustes.html

31

Chapter 3

Density-Based Clustering for Adaptive

Density Variation

Cluster analysis plays a crucial role in data mining and knowledge discovery. Although

many researchers have investigated clustering algorithms over the past few decades,

most well-known algorithms have limitations in dealing with clusters of arbitrary shapes

and varying sizes in the presence of noise and outliers. Density-based methods have

partially solved these issues but failed to discover clusters with varying densities. In this

chapter, we propose a novel Density-Based clustering algorithm for Adaptive Density

Variation (DBADV), which is based on the classic density-based clustering algorithm DB-

SCAN. To address the problem of density variation, we define the local density informa-

tion to reflect the individual property of each object and describe the density distribution

of clusters, then find the adaptive search range of each object by collecting information

from its neighbors. Moreover, we design a new metric to obtain the mutual nearest

neighbors of each object and detect the objects around the boundaries between clusters

more effectively. We show the effectiveness of our algorithm in extensive experiments

on synthetic and real-world datasets, demonstrating that the performance of DBADV is

superior to other competitive clustering algorithms.

Parts of the material presented in this chapter have been published in [QPB21]:

32 3. Density-Based Clustering for Adaptive Density Variation

”Li Qian, Claudia Plant, Christian Böhm. Density-based Clustering for Adaptive

Density Variation. 2021 IEEE International Conference on Data Mining (ICDM),

pp. 1282-1287, 2021.”

where Li Qian was primarily responsible for the development of the main concepts, the

implementation of the algorithm, the experimental evaluation, and the writing of the

paper. Christian Böhm proposed the initial idea of applying perplexity to density-based

clustering. Christian Böhm and Claudia Plant supervised and guided the research, re-

viewed the manuscript, and provided suggestions for revisions.

3.1 Introduction

As one of the most important unsupervised learning tasks, clustering methods are ap-

plied in various data analysis fields [HKP11, ZTY+20]. Clustering aims to find natural

groupings of data, such that objects within the same cluster are similar while objects in

different clusters are dissimilar. The existing clustering methods are generally divided

into the following categories [SPG+17]: partitioning-based, hierarchical-based, density-

based, and graph-based methods. However, most of these methods have some limita-

tions: they hardly handle clusters of arbitrary sizes and shapes, are sensitive to noise

and outliers, require prior knowledge (e.g., a pre-defined number of clusters), and are

formidable to maintain a relatively reasonable computational complexity.

To tackle the challenges above, we aim to define the local density information, which

contributes to describing the density distribution of clusters with fine granularity. Con-

sidering that density-based methods focus on density information but fail to deal with

clusters with varying densities, we propose a novel Density-Based clustering algorithm

for Adaptive Density Variation (DBADV) that inherits such density property and attempt

to use the local density information to solve the problem of density variation. As the

classic representative of density-based methods, the basic idea of Density-Based Spatial

Clustering of Applications with Noise (DBSCAN) [EKSX96] is adopting a global search

3.1 Introduction 33

range (ε-neighborhood) for all objects to distinguish relatively dense regions from sparse

regions. In contrast, DBADV regards the local density information as the individual prop-

erty of each object. Namely, each object has its own adaptive search range. A toy dataset

can illustrate the intuition of our algorithm to shed some light on the difference between

DBSCAN and DBADV. As shown in Fig. 3.1, the toy dataset contains one upper half-moon

cluster with high density, one random-shaped cluster with low density, and two distinct

outliers marked as squares. xi, xj, and xk represent boundary point and outliers, re-

spectively. We set the minimum number of points MinPts within the search range to

4 (including itself). DBSCAN and DBADV treat the points with at least MinPts in their

search range as core points (red). The non-core points within the search range of core

points are called border points (orange). The remaining points after clustering are out-

liers22 (black). The green arrow denotes the search path from the current core point to

the next core point. The solid circle represents the search range of the core point, and the

dashed circle represents the search range of the non-core point. For clarity, we only high-

light partial circles of the representative points. Fig. 3.1(a) shows that DBSCAN, with a

small global search range, can find the dense upper half-moon but assign all points in the

sparse region as outliers. With a large global search range, DBSCAN treats the boundary

point xi as the next core point and further merges all points in the sparse region to one

cluster, including the outlier xj, as shown in Fig. 3.1(b). On the contrary, DBADV finds

the adaptive search range of each point through the local density information collected

from neighbors. The adaptive search range is small in the relatively dense region and

large in the sparse region. Since each point has its own adaptive search range, DBADV

correctly identifies two clusters with different densities and two outliers, as shown in

Fig. 3.1(c).

The primary contributions include:

• We define the local density information and find the adaptive search range for each

22In this thesis, we distinguish between noise and outliers: noise refers to points within a cluster whose
values follow a certain distribution, such as Gaussian noise; outliers refer to points that do not belong to
any cluster.

34 3. Density-Based Clustering for Adaptive Density Variation

��

��

�i

(a)

��

��

�i

(b)

��

�i

��

(c)

Figure 3.1: The clustering process of DBSCAN and DBADV with different search ranges
(partial). (a) DBSCAN with a small global search range; (b) DBSCAN with a
large global search range; (c) DBADV with an adaptive search range.

object, enabling DBADV to discover clusters with varying densities.

• We design a new metric to search the mutual nearest neighbors of each object,

which can detect the objects around the indistinguishable boundaries between clus-

ters more efficiently.

• The experimental results show that DBADV can handle clusters of arbitrary shapes

and sizes with varying densities and is robust to noise and outliers.

3.2 Related Work

This section introduces the development of density-based methods and some well-known

clustering algorithms as baselines in our experiments.

Density-based methods [KKSZ11] can effectively exploit density information to find

clusters of arbitrary sizes and shapes while remaining robust against noise and outliers.

They do not require the user to specify the number of clusters but fail to identify clus-

ters with varying densities due to the global search range, such as DBSCAN. Numerous

improvements to DBSCAN have attempted to overcome this limitation. Ordering Points

3.2 Related Work 35

To Identify the Clustering Structure (OPTICS) [ABKS99] defines the reachability distance

and draws a reachability plot, such that all points are sorted in a special linear order,

with spatially adjacent points following each other closely. OPTICS relies on order points

to identify the clustering structure and expects density drops to detect the boundaries

of the clusters. Shared Nearest Neighbors (SNN) clustering algorithm [ESK03, LWY18]

uses SNN similarity instead of the distance measure. SNN similarity of any two points

relies on the overlap between lists of their k-nearest neighbors. However, k-NN algo-

rithm [AWY16] is highly sensitive to the parameter k. Density peaks (DP) clustering

algorithm [RL14] characterizes cluster centers as a higher density than their neighbors

and a relatively large distance from points with higher density. Whereas DP has a limited

clustering effect on data with varying density distribution, equilibrium distribution, and

multiple domain-density maximums, leading to problems such as sparse cluster loss and

cluster fragmentation. Thus, Domain-Adaptive Density Clustering algorithm [CY21] is

proposed to address these problems. However, the first step of the k-NN based domain-

adaptive density measurement method leads to a heavy dependence on the parameter k

for the whole clustering process. ReScale [ZTC16] is an adaptive scaling approach that

operates as a preprocessing step to rescale a given dataset. It then applies the rescaled

dataset to an existing density-based method, such as DBSCAN, OPTICS, and SNN. How-

ever, ReScale is a one-dimensional scaling method that is applied to each attribute inde-

pendently. Therefore, DScale [ZTA18], a multidimensional scaling method, is proposed

to consider all dimensions simultaneously. Using DScale as a preprocessing can improve

accuracy but requires an extensive search of three parameters. Clustering with Robust

Autocuts and Depth (CRAD) algorithm [HG17] is based on a new neighbor searching

function using statistical data depth as the dissimilarity measure. CRAD is restricted by

the design of its algorithm (e.g., requiring invertible matrices) and therefore cannot be

applied to all data.

From another perspective, some algorithms combine the benefits of density-based

methods and other categories of clustering methods to alleviate some of the inherent dis-

advantages of each method. The Hierarchical DBSCAN (HDBSCAN) [CMZS15] combines

36 3. Density-Based Clustering for Adaptive Density Variation

density-based and hierarchical-based methods. HDBSCAN forms an MST to connect all

points in the hyperspace and defines mutual reachability distance as its edge weight be-

tween two vertices in MST. However, processing boundary points for HDBSCAN is not

ideal, and the minimum number of clusters needs to be defined. SpectACl [HDHM19]

combines density-based and graph-based methods. SpectACl uses minimum cut from

Spectral clustering [NJW01] and maximum density from DBSCAN to find clusters with

a large average density. The appropriate density for each cluster is automatically deter-

mined through the spectrum of the weighted adjacency matrix. Nevertheless, SpectACl

requires the user to specify the number of clusters and cannot handle outliers.

There are still many other categories of clustering methods that are widely used.

It is worth comparing with them to verify the effectiveness of the proposed algorithm

DBADV. k-means [Jai10, KR17] is one of the most famous partition-based methods, and

its basic idea is to randomly initialize k cluster centers and assign points to the nearest

cluster center. k-means has relatively low runtime complexity and high computing ef-

ficiency, but it is unsuitable for non-convex data, is relatively sensitive to outliers, and

requires prior knowledge. Affinity Propagation clustering algorithm [FD07] can also be

considered as one of the partition-based methods, which works based on similarities be-

tween pairs of points. Its core idea is to regard all points as the potential cluster centers,

which are called exemplars, and the negative value of the Euclidean distance between

two points as the affinity. Affinity Propagation has relatively high complexity, cannot

handle outliers, and is only suitable for spherical clusters. Spectral clustering algo-

rithm [NJW01, YGPB16] is evolved from graph theory. It treats the points in the dataset

as vertices and constructs the similarity graph and similarity matrix. Then, the Laplacian

matrix is constructed and normalized to perform the eigenvalue decomposition. Finally,

k-means is applied to obtain the clusters by treating the first k eigenvectors as the center

points. Spectral clustering has a highly complex complexity, cannot handle outliers, and

requires the number of clusters. Self-tuning spectral clustering algorithm [ZMP04] is a

variant of Spectral clustering, which automatically learns parameters in an unsupervised

manner by combining a local scaling method for constructing the similarity graph and a

3.3 Methodology 37

method for automatically selecting the number of clusters from the spectrum. Self-tuning

spectral clustering has the same complexity as Spectral clustering, which cannot handle

outliers. Additionally, it requires manually setting a specific range before automatically

selecting the number of clusters. Synchronous clustering algorithm [BPSY10, STG+19] is

a parameter-free method, which is based on the Kuramoto model [ABPV+05] to simulate

the dynamics of each point during the process toward synchronization and discover clus-

ter structure and outliers automatically in combination with the Minimum Description

Length Principle [Grü04].

3.3 Methodology

3.3.1 Problem Definition

We aim to perform clustering in a multidimensional dataset while identifying potential

outliers. The dataset is defined as X = {x1,x2, . . . ,xn} ∈ Rn×d, where each data point

xi ∈ Rd is a vector in d-dimensional space, and n denotes the number of data points.

The objective is to assign a cluster label ci to each data point xi, forming the label set

C = {c1, c2, . . . , cn}, where ci ∈ {1, 2, . . . , k, outlier}, and k represents the number of

clusters discovered by the algorithm. A label of outlier indicates that the point is not

assigned to any cluster but is instead identified as an outlier.

3.3.2 Local Density Information

In information theory, perplexity is used to evaluate distribution or model performance,

such as in language models [Sen12]. Recently, the notion of perplexity has been applied

to other fields. The t-Distributed Stochastic Neighbor Embedding (t-SNE) [vdMH08], an

effective technique for dimensionality reduction, uses perplexity to find the bandwidth

of each object. Inspired by that, we aim to find the local density information reflecting

individual property for each object through perplexity. To the best of our knowledge, this

is the first time to apply the notion of perplexity to clustering algorithms.

38 3. Density-Based Clustering for Adaptive Density Variation

The perplexity of a discrete probability distribution p is defined as follows:

Perplexity(p) = 2H(p) (3.1)

where H(p) is the Shannon entropy of p measured in bits: H(p) = −
∑
x

p(x)log2p(x).

For a dataset X, we define the local density information of a point xi by collecting all

the conditional probabilities pj|i with a neighbor point xj. This conditional probability

shows the similarity between the two points. For a close point, pj|i is relatively high,

whereas for a faraway point, pj|i is almost infinitesimal. Mathematically, we define this

conditional probability pj|i as follows:

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
l ̸=i exp

(
−∥xi − xl∥2/2σ2

i

) (3.2)

where σi is the bandwidth of the Gaussian kernel centered on xi, and xl is any point in the

dataset except xi. The bandwidth of a point in the dense region is usually smaller than

that in the sparse region. Therefore, we can consider the bandwidth of each point as the

local density information. The local density information reflects the individual property

of each point and describes the density distribution of clusters with fine granularity.

We set the same perplexity for the probability distribution of each point in the entire

dataset, which means that the probability distribution of each point has the same Shan-

non entropy H(pi) = −
∑
j

pj|ilog2pj|i. Consequently, a binary search is performed to find

the bandwidth of each point by approximating the Shannon entropy of the conditional

probability pi of xi to the logarithm of the fixed perplexity, as described in Algorithm 1.

3.3.3 Adaptive Search Range

Unlike DBSCAN, which uses a global search range for all data points, our goal is to

find the adaptive search range of each point based on the local density information.

To achieve this, we leverage the quantile function [SS08] derived from the cumulative

distribution function (CDF) [DFO20] of a Gaussian distribution. In probability theory,

3.3 Methodology 39

Algorithm 1: Binary Search
Input: Dataset X = {x1,x2, . . . ,xn} ∈ Rn×d, Perplexity perp
Output: Bandwidths of all points Sσ = {σ1, σ2, . . . , σn} ∈ Rn

1 Initialize tolerance tol = 1e− 5, iteration iter = 50, bandwidth set Sσ = ∅
2 foreach xi ∈ X do
3 Initialize loop t = 0, bandwidth σi = 1, maximum bandwidth σmax = inf ,

minimum bandwidth σmin = −inf
4 repeat
5 foreach xj ∈ X do

6 pj|i =
exp(−∥xi−xj∥2/2σi

2)∑
l ̸=i exp(−∥xi−xl∥2/2σi

2)
// Eq. (3.2)

7 H(pi) = −
∑
j

pj|ilog2pj|i

8 diff = H(pi)− log2perp
9 if diff > 0 then

10 σmax = σi

11 if σmin == −inf then
12 σi = σi/2
13 else
14 σi = (σi + σmin) /2

15 else
16 σmin = σi

17 if σmax == inf then
18 σi = σi · 2
19 else
20 σi = (σi + σmax) /2

21 t = t+ 1

22 until |diff | < tol or t > iter
23 Sσ = Sσ ∪ {σi}
24 return Sσ

40 3. Density-Based Clustering for Adaptive Density Variation

the CDF, denoted as F (x), describes the cumulative probability that a random variable

X takes a value less than or equal to x: F (x) = P (X ≤ x). For a Gaussian distribution

with mean µ and standard deviation σ, the CDF can be expressed as follows:

F (x) =
1

2

[
1 + erf

(
x− µ√

2σ

)]
(3.3)

where erf(·) is the error function [SE14].

The quantile function, denoted as F−1(pcum), is the inverse of the CDF. It specifies the

value x such that the probability of the variable being less than or equal to x is equal to

the given cumulative probability pcum: F−1(pcum) = x, where F (x) = pcum. For a Gaussian

distribution, the quantile function can be written as follows:

F−1(pcum) = µ+
√
2σ erf−1(2pcum − 1) (3.4)

where erf−1(·) is the inverse error function.

In our algorithm, the quantile function is used to adaptively determine the search

range for each point. Specifically, for a given cumulative probability pcum, the quantile

function calculates the distance from the center of the Gaussian distribution (i.e., the

mean of the Gaussian distribution) to the point where the cumulative probability equals

pcum. It is important to note that the Gaussian distribution here models the local density

around each point xi, rather than assuming that the entire dataset follows a Gaussian

distribution. For a Gaussian distribution centered at xi with bandwidth σi, its adaptive

search range ϵi is defined as follows:

ϵi =
√
2σi erf

−1(2pcum − 1) (3.5)

where pcum ∈ (0.5, 1) ensures ϵi > 0 and increases monotonically with pcum.

3.3 Methodology 41

𝑥𝑥𝑖𝑖

𝑥𝑥𝑗𝑗

Figure 3.2: Assign points around the boundary between clusters with different densities.

3.3.4 Mutual Nearest Neighbors

Further, we try to detect the points around the indistinguishable boundaries between

clusters with varying densities. As shown in Fig. 3.2, there are two clusters of different

densities, and the blue dashed curve shows the boundary between dense and sparse re-

gions, which is difficult to distinguish even by hand. We only highlight the representative

points and mark the remaining points in gray. The adaptive search range of points in the

dense region is generally small and vice versa. In the traditional nearest neighbor meth-

ods [AWY16], since the core point xi is within the adaptive search range of the core point

xj, xj in the sparse region takes xi in the dense region as the next search point. Then xi

and its neighbors are merged to the same cluster, though they are obviously in different

clusters with varying densities.

To address this issue, we propose a mutual nearest neighbors metric as an effective

tool to discover robust and reliable clusters. As shown in Fig. 3.3, the green point on

the left is in the sparse region with a large bandwidth, while the red point on the right

is in a dense region with a small bandwidth. Therefore, We define the mutual nearest

42 3. Density-Based Clustering for Adaptive Density Variation

Figure 3.3: Effect of bandwidth on the probability density distribution and correspond-
ing search ranges of points with different densities.

neighbors on the condition that both points are within the adaptive search range of each

other. Since we only need to consider pairs of points in each step rather than the entire

dataset, we can solely focus on the distance between these two points. The mutual

nearest neighbors set MNNi of the point xi is defined as follows:

MNNi = {xj ∈ X | distance(xi,xj) ≤ min(ϵi, ϵj), j ̸= i} (3.6)

where xj is a neighbor point of xi and distance(xi,xj) denotes the Euclidean distance be-

tween xi and xj. Through this metric, boundary points in Fig. 3.2 can be easily identified,

as points such as xi and xj are not mutual neighbors.

3.3 Methodology 43

3.3.5 Algorithm Overview

We first briefly review some notions of DBSCAN. The relationship between a core point

and the neighbors within its global search range is called directly density-reachable. If

any of these neighbors is a core point again, its neighbors are also transitively included in

the same cluster. The relationship between all these neighbors and a series of these core

points is called density-reachable. All points within the same cluster are called density-

connected.

The proposed algorithm DBADV defines cluster as a region of smoothly varying den-

sity separated from other clusters by a remarkable local density change. DBADV can be

generally divided into three parts: Firstly, we find the bandwidth as the local density

information of each point through Binary Search (Algorithm 1), which iteratively adjusts

the bandwidth for a fixed perplexity perp (Line 2). The quantile function is then used to

obtain the adaptive search range for each point, determined by the cumulative probabil-

ity pcum and the bandwidth σi of the point xi (Lines 3-5). Secondly, the notion of directly

density-reachable is redefined by identifying mutual nearest neighbors using the adaptive

search ranges of each point (Lines 6-11), and the MinPts is reconsidered as the mini-

mum number of mutual nearest neighbors. Moreover, the notions of density-reachable

and density-connected also change according to MinPts and directly density-reachable. Fi-

nally, clustering is performed the same as DBSCAN (Lines 12-29). The pseudocode of

the DBADV algorithm is described in Algorithm 2.

3.3.6 Determining the Parameters

We give an effective heuristic to determine the primary parameters cumulative probabil-

ity pcum, perplexity perp, and the minimum number of mutual nearest neighbors MinPts

using the NMI score [VEB10], which is detailed in Chapter 2.3.1. We generate syn-

thetic dataset ThreeBlobs containing three isotropic Gaussian blobs, each of which has

the same number from 500 to 5,000 with the step size 500, and different densities

with the ratio of their standard deviations given as 2:5:1. The search range of pcum is

44 3. Density-Based Clustering for Adaptive Density Variation

Algorithm 2: DBADV
Input: Dataset X = {x1,x2, . . . ,xn} ∈ Rn×d, Perplexity perp, Minimum number

of mutual nearest neighbors MinPts, Cumulative probability pcum

Output: Point labels C = {c1, c2, ..., cn} ∈ Rn

1 Initialize each point label ci ∈ C as undefined , number of clusters k = 0
2 Sσ = Binary Search(X, perp) // cf. Algorithm 1

3 foreach xi ∈ X do
4 σi = Sσ[i]

5 ϵi =
√
2σi erf

−1(2pcum − 1) // Eq. (3.5)

6 foreach xi ∈ X do
7 Initialize MNNi = ∅
8 foreach xj ∈ X do

9 distance(xi,xj) =
√
∥xi − xj∥2

10 if distance(xi,xj) ≤ min(ϵi, ϵj) then
11 MNNi = MNNi ∪ {xj} // Eq. (3.6)

12 foreach xi ∈ X do
13 if ci ̸= undefined then
14 continue

15 if |MNNi| < MinPts then
16 ci = outlier
17 continue

18 k = k + 1
19 ci = k
20 Sk = MNNi \ {xi} // Set of unprocessed points in cluster k
21 foreach xq ∈ Sk do
22 if cq == outlier then
23 cq = k

24 if cq ̸= undefined then
25 continue

26 cq = k
27 if |MNNq| < MinPts then
28 continue

29 Sk = Sk ∪MNNq

30 return C

3.3 Methodology 45

1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0
NM

I

cumulative probability
0.841
0.933
0.977

0.994
0.999

Figure 3.4: NMI score against different search ranges of parameter pcum on synthetic
ThreeBlobs dataset.

{0.841, 0.933, 0.977, 0.994, 0.999}, because it corresponds to approximately 1, 1.5, 2, 2.5

and 3 standard deviations [Dou16], respectively. perp and MinPts have the same large

search range [1, 100].

For pcum, the feasible theoretical search range is (0.5, 1). Since the quantile function of

the Gaussian distribution is continuous and strictly monotonically increasing, the adap-

tive search range of each object increases as the cumulative probability increases once

the bandwidth is obtained. As shown in Fig. 3.4, ThreeBlobs has the number of samples

from 1,500 to 15,000, the search range of perp and MinPts is from 1 to 100, and the

set of pcum is {0.841, 0.933, 0.977, 0.994, 0.999}. We record the highest NMI score obtained

by DBADV at different cumulative probabilities. Overall, DBADV can achieve good per-

formance at different cumulative probabilities. The cumulative probability value is too

46 3. Density-Based Clustering for Adaptive Density Variation

1500 3000 4500 6000 7500 9000 10500 12000 13500 15000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0
NM

I

search ranges
100
50
40

30
20
10

Figure 3.5: NMI score against different search ranges of parameters perp and MinPts on
synthetic ThreeBlobs dataset.

high (0.994 and 0.999) or too low (0.841), causing slight performance degradation. The

cumulative probability values of 0.933 and 0.977 have similar performances. However,

the larger the value of cumulative probability pcum is, the more perplexity tends to get

high NMI score at a lower cost. Therefore, we can fix pcum to 0.977 due to its quan-

tile function is approximately 2 standard deviations. According to the empirical rule, 2

standard deviations can contain more than 95% information of a Gaussian distribution

centered on the current object.

Since each probability distribution pi has the same perplexity, the bandwidth σi in-

creases monotonically with the perplexity. With the same cumulative probability, the

higher the bandwidth, the more extensive the adaptive search range for each object,

such that MinPts is prone to an extensive search range correspondingly. We set the num-

3.3 Methodology 47

Table 3.1: Computational complexity of DBADV and baseline methods.

Algorithm Complexity

k-means O(niter · nc · n)
DBSCAN O(n2)
DBADV O(n2)
OPTICS O(n2)
HDBSCAN O(n2)
DBSCAN-Dscale O(n2)
CRAD O(n2)
Synchronous O(T · nl · n2)
Affinity Propagation O(n2 log n)
SpectACl O(n3)
Spectral clustering O(n3)
Self-tuning spectral clustering O(n3)

ber of samples for ThreeBlobs from 1,500 to 15,000 with the step size of 1,500. pcum is

fixed to 0.977, and perp and MinPts have the same search range with values ranging

from 10 to 100, and the step size is 10. Fig. 3.5 shows the highest NMI score in the

different search ranges of perp and MinPts, ignoring the search range from 60 to 90 be-

cause their results are very similar and close. The principle of selecting an optimal search

range is to get a higher NMI score in a relatively small search range. The search range

30 is the appropriate choice because both 10 and 20 have large drops and fluctuations,

while 30 is consistent with the more extensive search range (40-100).

3.3.7 Complexity Analysis

The asymptotic computational complexity of DBADV is composed of three main parts as

follows. The first part is to perform a binary search on the bandwidth and obtain the

adaptive search range for each object with a complexity of O(n2); the second part is to

find the mutual nearest neighbors for each object with a complexity of O(n2); finally, the

complexity of discovering clusters is O(n2). Therefore, the overall asymptotic computa-

tional complexity of the proposed algorithm is O(n2), which is the same as DBSCAN.

In our experiments, we further compare the complexity of the proposed algorithm

48 3. Density-Based Clustering for Adaptive Density Variation

with baselines. Considering that these clustering algorithms are implemented in differ-

ent programming languages (Python, Java, Matlab), and some of them have already

been optimized by the authors for efficiency, we only list the theoretical asymptotic com-

putational complexity without any optimization, as shown in Table 3.1. k-mean has the

lowest runtime complexity, where niter and nc represent the number of iterations and

the number of clusters, respectively. DBSCAN, along with its variants OPTICS, HDB-

SCAN, CRAD, and DBSCAN-DScale, have the same complexity O(n2). The complexity of

the Synchronous is slightly higher, where T and nl represent the time evolution and the

number of different clustering models, respectively. Affinity Propagation has relatively

high complexity. SpectACl, Spectral clustering, and its variant Self-tuning spectral clus-

tering have the highest complexity O(n3). Compared with these clustering algorithms,

DBADV is at a relatively efficient level.

3.4 Experiments

3.4.1 Experimental Setup

Experimental Environment

The proposed DBADV algorithm was implemented in Python. All experiments related

to this algorithm were conducted on a machine equipped with an Intel Core i7-8700

CPU (six cores, 3.19 GHz) and 32GB of RAM. The code repository is available at https:

//github.com/Qian-Lily/DBADV.

Datasets

We evaluated DBADV and baselines on two synthetic datasets, Shape3-Outlier and

Shape5, generated by us; eight common datasets with multivariate, including Seeds,

Leaf, Dermatology, One-hundred plant species leaves shape (Plant Species), Image Seg-

ment, Page Blocks, Crowdsourced Mapping (Crowdsourced), Letter Recognition from

https://github.com/Qian-Lily/DBADV
https://github.com/Qian-Lily/DBADV

3.4 Experiments 49

Table 3.2: Statistics of datasets used in DBADV.

Dataset #Samples #Dimensions #Classes

Shape3 2250 2 3
Shape3-Outlier 2317 2 3
Shape5 3150 2 5
Seeds 210 7 3
warpPIE10P 210 2420 10
Leaf 340 15 30
Dermatology 358 34 6
COIL20 1440 1024 20
Plant Species 1600 64 100
Image Segment 2310 19 7
Page Blocks 5473 10 5
Crowdsourced 10545 28 6
Letter Recognition 20000 16 26

the UCI Machine Learning Repository [DG17]; and two face image datasets with high

dimensionality, including COIL20 and warpPIE10P from the Feature Selection Repos-

itory23. These datasets have samples ranging from 210 to 20,000, dimensions rang-

ing from 2 to 2,420, and classes ranging from 3 to 100. We preprocessed all datasets

by scaling each attribute to the range [0, 1] using the MinMaxScaler24 class from the

sklearn.preprocessing module. The statistics of these datasets are briefly summarized

in Table 3.2.

Comparison Methods

To extensively evaluate the performance of DBADV, we compared it against 11

representative and state-of-the-art clustering algorithms. These included density-

based methods such as DBSCAN25 [EKSX96] and its variants OPTICS26 [ABKS99],

23https://jundongl.github.io/scikit-feature/datasets.html
24https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

MinMaxScaler.html
25https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
26https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html

https://jundongl.github.io/scikit-feature/datasets.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html

50 3. Density-Based Clustering for Adaptive Density Variation

Table 3.3: Parameters and their search range for each algorithm. nc denotes the number
of clusters; median represents the median of the similarity matrix.

Algorithm Parameters with search ranges

DBADV MinPts ∈ {1, 2, ..., 30} ; perp ∈ {1, 2, ..., 30} ; pcum = 0.977
DBSCAN MinPts ∈ {1, 2, ..., 30} ; eps ∈ {0.01, 0.02, ..., 1}
OPTICS MinPts ∈ {1, 2, ..., 30} ; ξ ∈ {0.01, 0.02, ..., 0.99}
HDBSCAN minSample ∈ {2, 3, ..., 30} ;minCluster ∈ {2, 3, ..., 30} ;α = 1
CRAD StepSize = 1;Nbin ∈ (0.2 ∗ n− 100, 0.2 ∗ n+ 100)
DBSCAN-DScale MinPts ∈ {1, 2, ..., 30} ; eps ∈ {0.01, 0.02, ..., 1} ; η ∈ {0.1, 0.2, ..., 0.5}
SpectACl eps ∈ {0.01, 0.02, ..., 1} ;numCluster = nc; d = 50
k-means numCluster = nc

Spectral numCluster = nc;σ = 0.04
Self-tuning numCluster ∈ {2, 3, ..., 100} ;K = 7
Affinity Prop. lam ∈ {0.5, 0.55, ..., 0.95} ; p = median

HDBSCAN27 [CMZS15], CRAD28 [HG17], DBSCAN-DScale29 [ZTA18], and Spec-

tACl30 [HDHM19]; other categories of clustering methods such as k-means31 [Jai10],

Spectral Clustering [NJW01], Self-tuning Spectral Clustering [ZMP04], Affinity Propa-

gation32 [FD07], and Synchronous [BPSY10]. The implementations for Spectral Clus-

tering, Self-tuning Spectral Clustering, and Synchronous algorithms were obtained from

the original authors of Self-tuning Spectral Clustering and Synchronous, respectively.

For each comparison algorithm, we either searched for the best achievable clustering re-

sult within a reasonable parameter range or used the parameters recommended by the

authors, as summarized in Table 3.3. For DBADV, we fixed pcum at 0.977 and set the

search range for perp and MinPts to [1, 30], as described in Section 3.3.6. Synchronous

is a parameter-free clustering algorithm. We ran all initialization-dependent algorithms

(e.g., k-means, Spectral Clustering) 10 times and reported the best results.

27https://github.com/scikit-learn-contrib/hdbscan
28https://github.com/DataMining-ClusteringAnalysis/CRAD-Clustering/
29https://sourceforge.net/projects/distance-scaling/
30https://sfb876.tu-dortmund.de/spectacl/index.html
31https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
32https://scikit-learn.org/stable/modules/generated/sklearn.cluster.affinity_

propagation.html

https://github.com/scikit-learn-contrib/hdbscan
https://github.com/DataMining-ClusteringAnalysis/CRAD-Clustering/
https://sourceforge.net/projects/distance-scaling/
https://sfb876.tu-dortmund.de/spectacl/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.affinity_propagation.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.affinity_propagation.html

3.4 Experiments 51

Evaluation Metrics

The evaluation metrics are performed through external measures NMI score [VEB10] and

F-measure score [ZTC16], as described in Chapter 2.3.1 and Chapter 2.3.3, respectively.

For clustering algorithms that can detect outliers, outliers are treated as an independent

cluster when computing NMI score. AMI score [VEB10], introduced in Chapter 2.3.2,

provides results similar to NMI score and thus is omitted here. F-measure score is partic-

ularly effective in handling outliers in clustering, as demonstrated in [ZTA18].

3.4.2 Parameter Sensitivity Analysis

In Section 3.3.6, we validated the effectiveness of setting the DBADV parameters pcum

to 0.977 and using the same search range of [1, 30] for both perp and MinPts on the

synthetic ThreeBlobs dataset. Based on this validation, the same parameter settings were

applied to the real-world datasets, which also performed well. Fig. 3.6 shows NMI score

against parameters perp and MinPts on four real-world datasets Dermatology, COIL20,

Image Segment, and Letter Recognition. Overall, these recommended parameter settings

are highly robust, provided that combinations of very high MinPts and very low perp are

avoided.

3.4.3 Results on Synthetic Dataset

We generate a synthetic dataset Shape3 with different densities, shapes, and sizes, which

contains one lower half-moon with low density, one S-curve with high density, and one

blob with low density that are all polluted by Gaussian noise. To evaluate the perfor-

mance of clustering algorithms in the presence of outliers, we extend this dataset by

adding 3% distinct global outliers evenly distributed across the space, ensuring they are

outside the existing clusters. We refer to this variant as Shape3-Outlier. As shown in

Fig. 3.7, DBADV is the only algorithm that can accurately detect three clusters and al-

most all outliers. In addition, it pulls away from the runner-up by a large margin due to

52 3. Density-Based Clustering for Adaptive Density Variation

Dermatology COIL20

Image Segment Letter Recognition

Figure 3.6: NMI score against different search ranges of parameters perp and MinPts on
four real-world datasets.

3.4 Experiments 53

its robustness to noise and outliers. CRAD, as the runner-up in terms of NMI score, can

identify most of the major clusters. However, for the boundary points, especially between

the high-density S-curve and the low-density lower half-moon, CRAD assigns them to the

opposite cluster. In contrast, CRAD assigns outliers that fail to be identified to separate

smaller clusters. DBSCAN, HDBSCAN, and DBSCAN-DScale can accurately identify three

clusters and some outliers but show weaknesses when dealing with boundary points of

clusters with Gaussian noise. SpectACl also identifies three clusters but cannot find out-

liers. Instead, it allocates most outliers and the boundary points of the blob to the same

low-density cluster. k-means, Spectral clustering, and Self-tuning spectral clustering have

similar results that cannot detect clusters with different shapes and assign outliers to the

nearest cluster. OPTICS assigns both the lower half-moon and the blob with low density

as outliers and divides the S-curve with high density into numerous clusters. Affinity

Propagation and Synchronous erroneously discover too many clusters.

To verify that DBADV can handle clustering in more complex environments, such

as indistinguishable boundaries and different data distribution, we generate synthetic

dataset Shape5. It contains two concentric circles polluted by Gaussian noise and three

homogeneous rectangles with different densities and sizes. As shown in Fig. 3.8, DBADV

is the only algorithm that can accurately detect these five clusters and clearly distin-

guish the boundaries between clusters. DBSCAN-DScale is slightly inferior to DBADV,

which can also recognize most regions of the clusters but fails to distinguish the bound-

ary points, that is, between concentric circles and rectangles and between rectangles of

different densities. For complex environments, many algorithms show vulnerability. Syn-

chronous splits two concentric circles of different densities into three clusters. HDBSCAN

treats points in low density as outliers or many small clusters. SpectACl, OPTICS, CRAD,

Spectral clustering, and Self-tuning spectral clustering face failure in handling boundary

points and are prone to join adjacent clusters into a large cluster. OPTICS and DBSCAN

take rectangles of different densities as one cluster and consider all points of low density

as outliers. CRAD, k-means, Spectral clustering, and Affinity Propagation fail to discover

clusters of arbitrary shapes and sizes.

54 3. Density-Based Clustering for Adaptive Density Variation

DBADV, 0.98 DBSCAN, 0.81 OPTICS, 0.46

HDBSCAN, 0.79 CRAD, 0.87 DBSCAN-DScale, 0.84

SpectACl, 0.83 k-means, 0.65 Spectral, 0.66

Self-tuning, 0.65 Affinity Propagation, 0.45 Synchronous, 0.52

Figure 3.7: Clustering performance on synthetic Shape3-Outlier dataset. The first term
indicates the clustering algorithm, and the second term represents the cor-
responding NMI score.

3.4 Experiments 55

DBADV, 0.97 DBSCAN, 0.68 OPTICS, 0.70

HDBSCAN, 0.76 CRAD, 0.64 DBSCAN-DScale, 0.91

SpectACl, 0.73 k-means, 0.61 Spectral, 0.59

Self-tuning, 0.50 Affinity Propagation, 0.49 Synchronous, 0.79

Figure 3.8: Clustering performance on synthetic Shape5 dataset. The first term indicates
the clustering algorithm, and the second term represents the corresponding
NMI score.

56 3. Density-Based Clustering for Adaptive Density Variation

0 5 10 15 20 25 30
Outliers(%)

0.0

0.2

0.4

0.6

0.8

1.0
NM

I

DBADV
DBSCAN
OPTICS
HDBSCAN

DBSCAN-DScale
CRAD
Synchronization

Figure 3.9: Clustering performance on synthetic Shape3 dataset with outlier proportions
ranging from 0% to 30%.

3.4.4 Robustness Analysis

Among all baselines, only DBADV, DBSCAN, OPTICS, HDBSCAN, CRAD, DBSCAN-

DScale, and Synchronous can detect outliers. We explore the robustness of these algo-

rithms against outliers by randomly adding outliers from 0% to 30% on synthetic dataset

Shape3. As shown in Fig. 3.9, DBADV outperforms baselines in all cases where differ-

ent proportions of outliers exist. DBSCAN-DScale, DBSCAN, and HDBSCAN have almost

the same performance and trends and follow behind DBADV. It is worth noting that the

performance of CRAD ranks second initially, but there is a significant decline and fluc-

tuation when the proportion of outliers reaches 8%. The performance of Synchronous

drops dramatically in the presence of outliers. OPTICS has the worst performance and a

large fluctuation in the existence of outliers.

3.5 Conclusion 57

3.4.5 Results on Real-World Datasets

We chose ten real-world datasets from different domains, with dimensions ranging from

7 to 2,420, which are challenging due to their multivariate and high dimensionality. As

shown in Table 3.4, DBADV outperforms the 11 baselines on all benchmarks in terms of

NMI score, especially on warpPIE10P and Page Blocks datasets, with a substantial mar-

gin compared to the runner-up. DBADV achieves the best results for F-measure score in 7

out of 10 datasets and gets second place in the remaining datasets. In addition, DBADV

also performs superior on high-dimensional datasets (e.g., COIL20 with 1,024 dimen-

sions and warpPIE10P with 2,420 dimensions) and large datasets (e.g., Crowdsourced

with 10,545 objects and Letter Recognition with 20,000 objects). With the extensive

search range for three parameters, the overall performance of DBSCAN-DScale is closest

to DBADV. HDBSCAN, SpectACl, and k-means follow closely in performance, earning

runner-up on some datasets. DBSCAN, HDBSCAN, k-means, and Affinity Propagation

have similar performances, showing moderate levels on all datasets. The performance

of OPTICS, SpectACl, and Synchronous varies greatly depending on the properties of

datasets, which means that they perform well on some datasets and poorly on oth-

ers. CRAD, Spectral clustering, and Self-tuning spectral clustering perform exceptionally

poorly on some datasets, such as warpPIE10P. Some algorithms cannot be applied to spe-

cific datasets due to the limitations of their algorithm design, such as CRAD, Self-tuning

spectral clustering, and Synchronous. SpectACl fails to process warpPIE10P because its

parameter eps requires a larger search range.

3.5 Conclusion

We propose a novel Density-Based clustering algorithm for Adaptive Density Variation

(DBADV), which can handle clusters of arbitrary shapes and sizes with varying densities

and is robust to noise and outliers. DBADV not only defines the local density informa-

tion to find the adaptive search range of each object, but also designs a new metric to

58 3. Density-Based Clustering for Adaptive Density Variation

Table 3.4: NMI and F-measure scores on real-world datasets (N/A: Not Applicable). The
best value is in bold; the runner-up is underlined.

Method
Seeds Leaf Dermatology Plant Species Image Segment

NMI F-measure NMI F-measure NMI F-measure NMI F-measure NMI F-measure

DBADV 0.68 0.91 0.76 0.43 0.81 0.74 0.79 0.39 0.66 0.64
DBSCAN 0.60 0.79 0.74 0.25 0.62 0.52 0.78 0.24 0.63 0.59
OPTICS 0.65 0.58 0.64 0.41 0.77 0.58 0.63 0.34 0.62 0.39
HDBSCAN 0.41 0.48 0.56 0.39 0.64 0.33 0.67 0.40 0.65 0.57
CRAD 0.42 0.65 0.62 0.43 0.46 0.33 0.29 0.03 N/A N/A
DBSCAN-DScale 0.65 0.84 0.74 0.26 0.80 0.59 0.78 0.23 0.65 0.61
SpectACl 0.66 0.89 0.59 0.38 0.49 0.48 0.68 0.35 0.59 0.58
k-means 0.67 0.89 0.64 0.41 0.79 0.55 0.71 0.38 0.62 0.62
Spectral 0.02 0.22 0.43 0.13 0.03 0.11 0.50 0.09 0.40 0.38
Self-tuning 0.38 0.17 0.32 0.04 0.46 0.26 0.40 0.01 0.00 0.04
Affinity Propagation 0.51 0.50 0.66 0.43 0.67 0.59 0.86 0.25 0.59 0.33
Synchronous 0.61 0.54 0.27 0.04 0.74 0.41 0.31 0.02 N/A N/A

Method
Page Blocks Crowdsourced Letter Recognition warpPIE10P COIL20

NMI F-measure NMI F-measure NMI F-measure NMI F-measure NMI F-measure

DBADV 0.36 0.44 0.45 0.56 0.61 0.30 0.78 0.64 0.94 0.86
DBSCAN 0.24 0.26 0.38 0.23 0.58 0.29 0.60 0.09 0.62 0.19
OPTICS 0.22 0.17 0.18 0.05 0.44 0.02 0.68 0.30 0.87 0.67
HDBSCAN 0.19 0.29 0.33 0.16 0.48 0.24 0.69 0.32 0.91 0.88
CRAD 0.10 0.29 N/A N/A N/A N/A 0.41 0.06 0.00 0.00
DBSCAN-DScale 0.27 0.32 0.38 0.23 0.60 0.34 0.68 0.40 0.93 0.80
SpectACl 0.20 0.41 0.41 0.48 0.31 0.24 N/A N/A 0.24 0.10
k-means 0.13 0.26 0.26 0.32 0.35 0.26 0.30 0.30 0.77 0.57
Spectral 0.14 0.31 0.18 0.30 0.27 0.17 0.08 0.03 0.06 0.03
Self-tuning N/A N/A 0.32 0.27 N/A N/A 0.62 0.29 0.49 0.26
Affinity Propagation 0.13 0.36 0.23 0.26 0.58 0.15 0.64 0.49 0.76 0.50
Synchronous 0.19 0.33 0.28 0.39 0.30 0.17 0.02 0.04 0.38 0.06

3.5 Conclusion 59

find the mutual nearest neighbors of each object to detect objects around boundaries

between clusters more efficiently. Moreover, we give an effective heuristic to determine

the primary parameters by fixing cumulative probability pcum and only tuning MinPts

and perp, both of which share the same reasonable search range. Extensive experiments

on challenging synthetic and real-world datasets have demonstrated that the proposed

algorithm is effective and outperforms other state-of-the-art algorithms.

60 3. Density-Based Clustering for Adaptive Density Variation

61

Chapter 4

Adaptive Density Outlier Detection

Outlier detection plays a dual role in data analysis: cleansing data to optimize the perfor-

mance of downstream tasks and identifying potentially rare valuable events or patterns.

Proximity-based methods, which are independent of data distribution assumptions, are

plagued by parameter selection and performance challenges when handling datasets

with varying densities. This chapter proposes a novel unsupervised algorithm named

Adaptive Density Outlier Detection (ADOD) to address these challenges. The core in-

novation of ADOD involves two main aspects: adaptive neighborhood boundaries and

density consistency scoring. First, instead of relying on a predefined fixed radius, ADOD

employs perplexity to calculate the local scale of each data point and dynamically ad-

justs the neighborhood boundaries according to this scale to adapt to data with varying

densities. Second, ADOD estimates local density using a mutual nearest neighbor graph

and combines the density differences between data points and their neighbors for outlier

scores, effectively distinguishing outliers that significantly deviate from their surround-

ings. We evaluated ADOD on one synthetic and 32 real-world datasets and compared

it with 14 classical and state-of-the-art algorithms from different categories. Extensive

experimental results demonstrated the superior performance of ADOD, achieving the

highest average ROC, P@N, and AP scores. This algorithm promotes the development of

outlier detection techniques and expands their potential for real-time applications.

62 4. Adaptive Density Outlier Detection

Parts of the material presented in this chapter have been published in [QQS+24]:

”Li Qian, Jing Qian, Xin Sun, Wengang Guo, Christian Böhm. ADOD: Adaptive

Density Outlier Detection. 2024 IEEE International Conference on Data Mining

(ICDM), pp. 400-409, 2024.”

where Li Qian was responsible for the development of the main concepts, the implemen-

tation of the algorithm, most of the experimental evaluation, and writing the majority

of the paper; Jing Qian proposed the research idea of generalizing the algorithm to un-

known data; Xin Sun and Wengang Guo were responsible for experiments on selected

comparison algorithms and wrote the corresponding parts of the paper; Christian Böhm

supervised and guided the research. All co-authors participated in the discussion of con-

cept development and the revision of the manuscript.

4.1 Introduction

Outlier detection identifies rare and suspicious data points that significantly differ from

the majority [ABC22]. On the one hand, for the majority fitting the expected pattern,

outlier detection serves as data cleaning. Data quality can be improved by effectively

identifying and removing outliers, thus ensuring the accuracy and reliability of down-

stream tasks such as predictive modeling and statistical analysis [RKV+21]. On the other

hand, the few outliers often reveal valuable events or observations [AA17]. For example,

in finance, outliers may indicate fraudulent transactions, leading to significant economic

losses; in cybersecurity, outliers may imply network intrusion, resulting in private data

leakage; in healthcare, outliers may indicate atypical diagnostic observations, resulting

in missing the best time for treatment, or even endangering the patient’s life [AA17].

Therefore, accurate and efficient outlier detection improves the quality of data analysis

and aids industries in proactively responding to potential threats and seizing opportuni-

ties [SB21].

4.1 Introduction 63

Outlier detection methods can generally be divided into five categories [AA17]:

proximity-based, probabilistic-based, linear model-based, ensemble-based, and neural

network-based methods [MWX+23]. Among them, proximity-based methods [ST23]

have received considerable attention due to their high interpretability and indepen-

dence from data distribution assumptions. Proximity-based methods offer several advan-

tages [AASM21]. Firstly, these methods compute outlier scores through simple and intu-

itive proximity relationships, making them easier to understand and interpret. Secondly,

unlike probabilistic-based methods, they do not rely on assumptions about statistical dis-

tributions, making them applicable to various data distributions. Additionally, compared

to neural network-based and ensemble-based methods, proximity-based methods are less

influenced by random values, resulting in more stable results. Proximity-based methods

can be further divided into distance and density methods. Distance methods such as

k-NN [RRS00] determine outliers by analyzing the distance to the k-th nearest neighbor,

assuming that points farther away are more likely to be outliers. However, k-NN uses

the same k for all points, which limits its adaptability to complex density variations. As

shown in Fig. 4.1, k-NN incorrectly detects certain outliers as inliers, leading to more

errors and irregular, scattered decision boundaries.

To alleviate this limitation, density methods such as Local Outlier Factor

(LOF) [BKNS00] propose the concept of reachable distance, which is defined as the

maximum distance between a point and its neighbor, and the k-distance of the neigh-

bor. This distance metric adjusts for the difference in distances between points in regions

with different densities and reduces the misclassification to a certain extent. LOF as-

sesses outliers by calculating the local density of each point and its neighbors. However,

its accuracy remains a concern in regions with significant density variations [AASM21].

As shown in Fig. 4.1, for boundary points with significant density variations, their nearest

k neighbors are located in both high- and low-density regions. However, LOF incorrectly

estimates their local densities, resulting in irregular decision boundaries. In addition,

LOF and k-NN both rely on selecting the parameter k. Although k can be selected by

methods such as greedy search, using the same k for each point cannot simultaneously

64 4. Adaptive Density Outlier Detection

k-NN (errors: 42) LOF (errors: 36) ADOD (errors: 34)

Figure 4.1: Decision boundaries comparison on synthetic ThreeBlobs-Outlier dataset us-
ing k-NN, LOF, and ADOD: Analysis on a synthetic dataset of 500 points from
three Gaussian blobs (σ = [0.6, 1.2, 0.3]) with 15% uniformly distributed out-
liers, where white dots represent true inliers and black dots represent true
outliers. Decision boundaries are depicted with predicted inliers (yellow),
predicted outliers (blue), and boundaries (red dashed lines). Error counts
are recorded for each algorithm.

adapt to various density variations in the data distribution. Therefore, these methods

are usually ineffective in dealing with complex datasets and cannot meet the needs of

practical applications.

We propose the Adaptive Density Outlier Detection (ADOD) algorithm to handle data

with varying densities. Inspired by the concept of perplexity in t-SNE [vdMH08], ADOD

adopts perplexity as a smoothing mechanism to measure the effective number of neigh-

bors, thereby avoiding the constraints of predefined fixed k for each point. ADOD calcu-

lates the adaptive local scale of each data point by perplexity and dynamically adjusts the

neighborhood boundary according to this scale. Based on these boundaries, it constructs

a mutual nearest neighbor graph to estimate the local density and ensures inliers in re-

gions with different densities have similar local densities. Finally, density consistency

scoring is performed by combining the local densities of a data point and the density

differences with its mutual neighbors, thus distinguishing the outliers that significantly

deviate from their surroundings, as shown in Fig. 4.1. This simple and robust algorithm

avoids tedious parameter tuning and exhibits excellent performance on data from various

domains.

4.2 Related Work 65

The primary contributions include:

1. We propose ADOD, one of the first outlier detection algorithms to leverage perplex-

ity for density estimation, enabling adaptation to varying data densities.

2. We enhance the efficiency and scalability of ADOD by optimizing it with nearest

neighbor search, ensuring robust performance on large datasets.

3. We extend ADOD to generalize to unknown data, enabling effective comparisons

with known data and expanding its applicability to real-time scenarios.

4.2 Related Work

This section provides a concise overview of the five categories of outlier detection meth-

ods and discusses classic and state-of-the-art algorithms for each category.

Probabilistic-based methods identify outliers by building statistical models of data

and then calculating the probabilistic deviation of data points [AA17]. For example,

Angle-Based Outlier Detection (ABOD) [KSZ08] calculates the angular difference be-

tween each data point and all other points, whereas FastABOD [KSZ08] simplifies the

computation through nearest neighbor search (NNS) [JDS11]. Stochastic Outlier Se-

lection (SOS) [JHPvdH12] uses affinity and binding probabilities between data points

to generate random neighbor graphs but relies on the parameter perplexity and has

high memory requirements. Copula-based Outlier Detection (COPOD) [LZB+20] and

Empirical-Cumulative-distribution-based Outlier Detection (ECOD) [LZH+23] assess the

outlierness of data points using an empirical cumulative distribution function. COPOD

models variable dependencies using Copula models, whereas ECOD focuses on the tail

probabilities of each dimension. Both methods may be limited in real-time environments

due to the lack of relationship exploitation between known and unknown data.

Linear model-based methods identify outliers by projecting data into a new space

and using linear transformations [AA17]. For example, Principal Component Analysis

66 4. Adaptive Density Outlier Detection

(PCA) [SCSC03] assumes linear relationships and projects data to a low-dimensional

space by analyzing the principal and secondary components, identifying points that de-

viate from the principal components as outliers. Kernel PCA (KPCA) [Hof07] projects

data to a high-dimensional feature space through kernel functions, extracting princi-

pal components for outlier detection. However, KPCA is computationally expensive and

unsuitable for large data. One-Class Support Vector Machines (OCSVM) [SPST+01] con-

struct a hyperplane in a high-dimensional space, assuming that inliers form a tight group

and outliers lie outside this group. However, OCSVM is sensitive to parameter selection

and has a high computational cost.

Ensemble-based methods improve robustness and accuracy by combining results from

multiple base models [AA17]. For example, Feature Bagging (FB) [LK05] combines mul-

tiple detections based on random feature subsets but is sensitive to subset selection.

Isolation Forest (IF) [LTZ08] constructs random tree structures to isolate data points us-

ing average path lengths. Deep Isolation Forest (DIF) [XPWW23] uses deep learning

techniques to generate random representations and axis-parallel partitions. However,

these representations may not efficiently capture outlier patterns in high-dimensional

and complex data, resulting in unstable performance. Locally Selective Combination of

Parallel Outlier Ensembles (LSCP) [ZNHL19] dynamically selects the optimal detector in

a local region, with its effectiveness depending on the local region definition and detector

selection.

Neural network-based methods employ deep learning models to capture complex

nonlinear relationships and identify outliers [MWX+23]. For example, Single-Objective

Generative Adversarial Active Learning (SO-GAAL) [LLZ+20] generates potential outliers

through a single generator and improves data discrimination boundaries by iteratively

optimizing a generative adversarial network (GAN). Still, it may encounter the mode col-

lapse problem. Multiple-Objective GAAL (MO-GAAL) [LLZ+20] extends SO-GAAL by us-

ing multiple generators to enhance data diversity and reduce mode collapse risk, but at a

higher computational cost. Adversarially Learned Anomaly Detection (ALAD) [ZRF+18]

combines reconstruction errors with features obtained through adversarial learning us-

4.3 Methodology 67

ing a bidirectional GAN. Unifying Local Outlier Detection Methods via Graph Neural

Networks (LUNAR) [GHNN22] employs graph neural networks to generate learnable

outlier scores for message passing and aggregation within local neighborhoods. How-

ever, its performance depends on hyperparameter selection.

Proximity-based methods identify outliers by measuring the distance or density dif-

ference between a data point and its neighbors [AA17]. For example, k-NN [RRS00]

and its variants AvgKNN and MedKNN [AP02] identify outliers by analyzing the k-th

nearest distances: k-NN considers the exact k-th distance, AvgKNN averages these dis-

tances, and MedKNN takes the median. All methods are sensitive to the parameter k

and are affected by density variations. LOF [BKNS00] computes the local density of each

data point and compares it with its neighbors, which is also sensitive to parameter se-

lection. Connectivity-based Outlier Factor (COF) [TCFC02], a variant of LOF, evaluates

outlier scores by calculating the average chained distance between the data point and its

neighbors but requires high memory.

The proposed ADOD algorithm is a proximity-based method. It determines the adap-

tive local density of each data point by perplexity and makes adjustments according to

the local densities of its mutual neighbors. ADOD avoids dependence on a fixed k, im-

proves robustness and applicability, performs well with varying densities and large data,

and quickly adapts to unknown data for real-time processing.

4.3 Methodology

4.3.1 Problem Definition

We aim to perform unsupervised outlier detection in a multidimensional dataset. The

dataset is defined as X = {x1,x2, . . . ,xn} ∈ Rn×d, where each data point xi ∈ Rd is a

vector in d-dimensional space, and n denotes the number of data points. The objective is

to compute an outlier score for each data point, denoted as si for xi, forming the outlier

score set S = {s1, s2, . . . , sn} ⊆ R. A higher score indicates a higher probability of being

68 4. Adaptive Density Outlier Detection

(a) (b) (c)

Figure 4.2: Illustration of key ADOD steps on synthetic ThreeBlobs-Outlier dataset. (a)
Ground truth; (b) Gaussian probability density via adaptive local scales
(higher peaks indicate denser regions); (c) Outlier scores (higher bars in-
dicate a greater likelihood of being an outlier).

an outlier.

4.3.2 Algorithm Description

Dissimilarity Matrix Calculation

The first step in ADOD is to calculate the dissimilarity matrix D, which is the basis for

analyzing the interrelationships between data points in the dataset X. The dissimilarity

matrix D is an n × n matrix, where each element Dij represents the Euclidean distance

between the i-th and j-th data points in X, formulated as follows:

Dij = ∥xi − xj∥2 (4.1)

where xi,xj ∈ Rd denote vectors in d-dimensional space. The diagonal element Dii of

the dissimilarity matrix is zero, and the symmetry of the matrix (Dij = Dji) ensures that

the distance relationships are mutual.

Adaptive Local Scale Estimation

We use the probability density function of the Gaussian distribution [Mur22] to define

the influence of the neighboring data point xj on the central data point xi and quantify

4.3 Methodology 69

it using the conditional probability pj|i with the following expression:

pj|i =
exp(−D2

ij/2σ
2
i)∑

l ̸=i exp(−D2
il/2σ

2
i)

(4.2)

where σi represents the local scale of xi. Based on σi, we can adaptively adjust the

neighborhood boundary of xi to reflect changes in local density. The bell-shaped curve

of the Gaussian distribution provides a natural weight decay mechanism [Mur22]. This

causes data points further from the centroid to exhibit a gradually decreasing effect,

which is suitable for quantifying the strength of interactions between data points, as

shown in Fig. 4.2(b).

In data analysis, perplexity is commonly used as a smoothing mechanism to mea-

sure the effective number of neighbors, excelling in density estimation. It has been

widely applied in techniques such as t-SNE [vdMH08] for dimensionality reduction,

DBADV [QPB21] for clustering (described in Chapter 3), and SOS [JHPvdH12] for out-

lier detection. In contrast to SOS, which uses perplexity to assess the affinity between

data points and requires careful tuning, ADOD uses perplexity to obtain the adaptive lo-

cal scale σi of xi, improving the adaptability to datasets with varying densities. Perplexity

is defined as follows:

Perplexity(pi) = 2H(pi) (4.3)

where, H(pi) is the entropy of the conditional probability distribution centered on xi,

which is used to quantify the uncertainty of the probability distribution. A higher H(pi)

indicates a more uniform probability distribution within the neighborhood of xi, implying

minimal density differences. Conversely, a lower entropy signifies significant density

differences within the neighborhood. Its formula is as follows:

H(pi) = −
∑
j

pj|i log2 pj|i (4.4)

The local scale σi is continuously adjusted by fixing the perplexity and using a binary

70 4. Adaptive Density Outlier Detection

search [vdMH08] to ensure that the neighborhood complexity (i.e., the number of ef-

fective neighbors) is balanced for each data point. Thus, it adaptively reflects the true

relationships and density variations of the data points in their local surroundings. Al-

though no explicit guidance is provided for setting the perplexity, inspired by the rule of

thumb in k-NN [DHS12], it is often recommended to set k proportional to
√
n [̇Ink23].

Similarly, we set the perplexity proportional to
√
n to ensure reliable density estimation

over sufficient neighbors while avoiding unnecessary computational costs associated with

excessively large neighborhoods. Experiments on parameter sensitivity analysis in Sec-

tion 4.4 verified the effectiveness of this setting, simplifying parameter selection and

enhancing adaptability to data size.

Adaptive Neighborhood Boundary Determination

ADOD employs the quantile function [Gil00] to determine an adaptive neighborhood

boundary for each data point. By dynamically adjusting the boundary based on the

local scale of each point, the method ensures that neighborhood sizes adapt to the data

distribution, capturing points with relatively consistent densities around the given point.

The quantile function, as the inverse of the CDF [DFO20], calculates a value such that

the probability of a random variable being less than or equal to this value matches the

specified cumulative probability. For a Gaussian distribution with mean µ and standard

deviation σ, the quantile function is expressed as follows:

F−1(pcum) = µ+
√
2σ erf−1(2pcum − 1) (4.5)

where erf−1(·) is the inverse of the error function [SE14], and pcum is the cumulative

probability.

In our algorithm, the neighborhood boundary of each data point xi is determined

using the quantile function with a local Gaussian distribution centered at xi. Specifically,

the boundary ϵi is defined as follows:

4.3 Methodology 71

ϵi =
√
2σi erf

−1(2pcum − 1) (4.6)

where σi represents the local scale of xi, and pcum is the specified cumulative probability

that determines the boundary. To ensure meaningful neighborhood boundaries, pcum is

constrained within the range (0.5, 1). Here, pcum is set to 0.999, corresponding to the

three-sigma rule [Gil00]. This setting ensures that almost all data points are included

in the neighborhood of each data point while effectively identifying and isolating poten-

tial outliers that deviate significantly. Experiments on parameter sensitivity analysis in

Section 4.4.2 verified the effectiveness of this configuration.

Mutual Nearest Neighbor Graph Construction

In the ADOD algorithm, the mutual nearest neighbor graph (MNNG) depicts the adja-

cency between data points. This mutual connection reflects the interactions between

data points and helps identify potential outliers. The MNNG G is an undirected graph

consisting of a node set V and an edge set E. The node set V contains all nodes cor-

responding to data points in the dataset, where each node vi ∈ V uniquely represents

a data point xi ∈ X. The edge set E includes all pairs of nodes (vi, vj) that satisfy the

mutual nearest neighbor condition: the node vj is within the neighborhood boundary ϵi

of xi, and simultaneously, vi is within the neighborhood boundary ϵj of xj. To ensure

that each node pair is considered only once and to avoid self-loops, we define the set

of mutual neighborhood edges as follows, where i < j ensures that each node pair is

unique:

E = {(vi, vj) | Dij ≤ min(ϵi, ϵj), i < j} (4.7)

The MNNG depicts the adjacency relationships between data points. This mutual

relationship reflects the interactions between data points and helps identify potential

outliers.

The neighborhood of a node vi, denoted as Ni, is obtained from the edge set E of the

72 4. Adaptive Density Outlier Detection

MNNG as follows:

Ni = {vj | (vi, vj) ∈ E} (4.8)

Local Density Estimation

The local density di of xi quantifies the number of neighbors within its adaptive neigh-

borhood boundary ϵi, reflecting the density distribution in that region. It is defined as

follows:

di =
deg(vi) + 1

ϵi
(4.9)

where ϵi is the adaptive neighborhood boundary of xi, and deg(vi) denotes the degree of

the corresponding node vi in G. The ”+1” ensures that xi itself is included in the density

estimation, providing a baseline density for isolated points. In dense regions, inliers

have a relatively small neighborhood boundary with a lower degree, whereas in sparse

regions, they exhibit a larger neighborhood boundary with a higher degree. Therefore,

even if these inliers are in regions with different densities, their local density results

remain comparable, effectively preventing misclassification due to density differences.

For outliers, which typically have larger neighborhood boundaries but lower degrees,

the local density is significantly lower than that of inliers.

Density Consistency Outlier Scoring

The outlier score is calculated based on the combination of the local density of the data

point and the local density differences with its mutual neighbors to identify potential

outliers. The outlier score si of xi is defined as follows:

si = d−1
i +

∑
j∈Ni

w′
ij(d

−1
j − d−1

i) (4.10)

where d−1
i and d−1

j denote the inverse of the local density of xi and its neighbor xj, re-

4.3 Methodology 73

spectively. The inverse of local density reflects the relative sparsity of a data point, where

a higher value implies lower density. Consequently, such points typically gain higher

outlier scores than inliers. Furthermore, by calculating d−1
j − d−1

i , ADOD quantifies the

density difference between each data point and its mutual neighbors, thereby identifying

those points that deviate from their surroundings. If the neighbor of xi is in a sparser sur-

rounding compared to xi, d−1
j −d−1

i > 0, then its outlier score further increases. Whereas,

if it is in a denser surrounding, d−1
j − d−1

i < 0, the outlier score further decreases. Finally,

if xi and its neighbors are in regions of similar density, the outlier score remains stable.

The weights wij are calculated based on the Euclidean distance Dij between xi and

xj, defined by the formula wij =
1

Dij
. These weights are then normalized to ensure that

the total sum of all neighboring weights equals 1, using the formula w′
ij =

wij∑
l∈Ni

wil
. This

process reflects the distance relationship between each neighbor point and the current

point (i.e., the closer the distance, the greater the influence) and balances the contribu-

tion of each neighbor to the outlier score, as shown in Fig. 4.2(c). Through this density-

consistent scoring mechanism, the ADOD algorithm not only takes into account the local

density of each data point but also integrates the information of its mutual neighbors,

providing an effective way to detect outlier patterns in the data.

4.3.3 Algorithm Overview

The ADOD algorithm is designed to identify potential outliers in the dataset, and its

pseudocode is presented in Algorithm 3. The algorithm accepts a dataset X and out-

puts outlier scores S for all data points. It begins by calculating the Euclidean distances

between all pairs of data points to form a dissimilarity matrix D, where Di is a vector

containing the distances between the data point xi and all other points in X (line 2). For

xi, an adaptive local scale σi is determined by a binary search based on perplexity perp

and Di. The adaptive neighborhood boundary ϵi is calculated based on σi and the prede-

termined cumulative probability pcum (lines 3-5). An MNNG G is constructed, where the

edge set E includes only pairs of data points that lie within the neighborhood boundary

74 4. Adaptive Density Outlier Detection

Algorithm 3: ADOD
Input: Dataset X = {x1, . . . ,xn} ∈ Rn×d

Output: Outlier scores S = {s1, . . . , sn} ∈ Rn

1 Initialize perplexity perp = 2 · ⌊
√
n⌋, cumulative probability pcum = 0.999

2 Calculate dissimilarity matrix D, where Dij = ∥xi − xj∥2
3 foreach xi ∈ X do
4 Calculate adaptive local scale σi: σi ← binary search(Di, perp)

5 Determine adaptive neighborhood boundary ϵi: ϵi =
√
2σi erf−1(2pcum − 1)

6 Initialize G = (V,E) with V = {v1, . . . , vn} and E = ∅
7 for i, j ∈ {1, . . . , n}, i < j do
8 if Dij ≤ min(ϵi, ϵj) then
9 E = E ∪ {(vi, vj)}

10 foreach vi ∈ V do
11 Estimate local density di =

deg(vi)+1
ϵi

12 foreach vi ∈ V do
13 Ni = {vj | (vi, vj) ∈ E}
14 foreach vj ∈ Ni do
15 wij =

1
Dij

16 Normalize weights: w′
ij =

wij∑
vl∈Ni

wil

17 si = d−1
i +

∑
vj∈Ni

w′
ij(d

−1
j − d−1

i)

18 return S

of each other (lines 6-9). The local density di of xi is estimated based on the degree

of the corresponding node vi in the graph, which reflects the number of connections to

neighbors within the neighborhood boundary ϵi (lines 10-11). Finally, the outlier score

for each data point is calculated based on the local density and normalized weights of the

neighbors w′
ij (lines 12-17). ADOD can effectively identify and quantify outlier patterns

in data through this density-consistent scoring mechanism, thus rendering it adaptive

and robust across various data properties.

4.3.4 Generalization to Unknown Data

In data analysis, unknown data refers to data points added after the initial training or

model construction, which may differ from the known dataset observed during model

4.3 Methodology 75

initialization. To effectively detect outliers among these unknown data points, an outlier

detection algorithm should accurately identify known data patterns and flexibly adapt to

unknown patterns [AA17]. An efficient outlier detection algorithm should leverage the

known model and data structure to comprehensively evaluate the degree of outlierness,

including comparing the unknown data points with known ones regarding distance or

dissimilarity and computing the corresponding outlier scores.

Algorithm 4 details how ADOD evaluates potential outliers in an unknown dataset.

It receives an unknown dataset Xunk = {xunk
1 , . . . ,xunk

m } ∈ Rm×d with m data points, and

a known dataset Xkn = {xkn
1 , . . . ,xkn

n } ∈ Rn×d with n data points. For each unknown

data point xunk
i , the algorithm first computes the Euclidean distance between xunk

i and all

points in the known dataset, forming the dissimilarity vector Dunk
i (line 3). Next, based

on Dunk
i and the same perplexity perp as the known dataset, the adaptive local scale σunk

i

for xunk
i is determined by a binary search. Then adaptive neighborhood boundary ϵunk

i

is calculated based on σunk
i and the predetermined cumulative probability pcum (lines 4-

5). Subsequently, a set of mutual neighbors Nunk
i of xunk

i is constructed to include the

known data points that satisfy the mutual nearest neighbor conditions (lines 6-9). The

local density dunk
i of xunk

i is determined by the number of neighbors within its adaptive

neighborhood boundary ϵunk
i (line 10). The outlier score sunk

i is computed using the

normalized neighbor weights and density differences, which quantify the outlierness of

the unknown data points with the known data points (lines 11-14).

4.3.5 Complexity Analysis

The time complexity of the ADOD algorithm without optimization is analyzed as fol-

lows: First, the adaptive local scale estimation is mainly affected by the dissimilarity

matrix computation, calculating the Euclidean distance between all pairs of data points.

The time complexity is O(n2). Next, the time complexity of the adaptive neighborhood

boundary determination step is O(n). Mutual nearest neighbor graph construction neces-

sitates the comparison of every pair of data points with a time complexity of O(n2). The

76 4. Adaptive Density Outlier Detection

Algorithm 4: ADOD for Unknown Data
Input: Unknown dataset Xunk = {xunk

1 , . . . ,xunk
m } ∈ Rm×d, Known dataset

Xkn = {xkn
1 , . . . ,xkn

n } ∈ Rn×d

Output: Outlier scores Sunk = {sunk
1 , . . . , sunk

m } ∈ Rm

1 Initialize perplexity perp = 2 · ⌊
√
n⌋, cumulative probability pcum = 0.999

2 foreach xunk
i ∈ Xunk do

3 Calculate dissimilarity vector Dunk
i for xunk

i with each xkn
j in Xkn:

Dunk
ij = ∥xunk

i − xkn
j ∥2 for j = 1, . . . , n

4 Calculate adaptive local scale σunk
i : σunk

i = binary search(Dunk
i , perplexity)

5 Determine adaptive neighborhood boundary ϵunk
i :

ϵunk
i =

√
2σunk

i erf−1(2pcum − 1)

6 Initialize neighbor set Nunk
i = ∅

7 for j ∈ {1, . . . , n} do
8 if Dunk

ij ≤ min(ϵunk
i , ϵkn

j) then
9 Nunk

i = Nunk
i ∪ {xkn

j }

10 Estimate local density dunk
i =

|Nunk
i |+1

ϵunk
i

11 foreach xkn
j ∈ Nunk

i do
12 wunk

ij = 1
Dunk

ij

13 Normalize weights: wunk′
ij =

wunk
ij∑

xkn
l

∈Nunk
i

wunk
il

14 sunk
i = 1

dunk
i

+
∑

xkn
j ∈Nunk

i
wunk′

ij

(
1
dkn
j

− 1
dunk
i

)
15 return Sunk

local density estimation iterates over all data points with a time complexity of O(n). Fi-

nally, the density consistency outlier scoring step exhibits a time complexity of O(n ·kavg),

where kavg is the average number of mutual neighbors used to compute the density dif-

ference between each data point and its mutual neighbors.

In summary, the overall time complexity of the ADOD algorithm without optimization

is O(n2). For the evaluation of unknown data, the time complexity is similar to that of the

above steps, and the overall time complexity is O(m · n), where m denotes the number

of unknown data points.

4.4 Experiments 77

4.3.6 Efficiency Optimization

We optimize the efficiency of the ADOD algorithm using NNS [JDS11]. This method

enables the algorithm to focus on the primary neighbors of each data point rather than

calculating all pairwise distances, significantly increasing processing speed and reducing

memory usage. As previously discussed, the number of neighbors is typically set pro-

portional to
√
n [DHS12]. Following the setting used in t-SNE [vdMH08], where the

perplexity, a smooth measure of the effective number of neighbors, is multiplied by 3 to

determine the neighbor number, we set the number of neighbors for NNS to 3
√
n. This

setting ensures that sufficient local information is captured while maintaining high com-

putational efficiency. When evaluating unknown data points, NNS simplifies the querying

of neighbors between the unknown and known data points. This strategy accelerates the

outlier detection process and enables the algorithm to adapt to real-time applications.

4.4 Experiments

4.4.1 Experimental Setup

Experimental Environment

The proposed DynoGraph algorithm was implemented in Python, utilizing faiss-gpu,

the GPU implementation of the Faiss library [JDJ19], for nearest neighbor search. All

experiments related to this algorithm were conducted on a machine equipped with an

Intel Core i9-12900H CPU (14 cores, 2.50 GHz), 64 GB of RAM, and an NVIDIA GeForce

RTX 3080 Ti GPU. The code repository is available at https://github.com/Qian-Lily/

ADOD.

Datasets

Table 4.1 summarizes the 32 commonly used real-world datasets for outlier detection.

These datasets are sourced from two repositories: 20 from ODDS [Ray16] and 12 from

https://github.com/Qian-Lily/ADOD
https://github.com/Qian-Lily/ADOD

78 4. Adaptive Density Outlier Detection

ADBench [HHH+22]. They cover various domains, including healthcare, chemistry,

physics, linguistics, finance, astronomy, web, image processing, and sociology. The total

number of samples ranges from 80 to 567,498, the number of samples after deduplica-

tion ranges from 80 to 286,048, the number of dimensions ranges from 3 to 500, and the

percentage of outliers after deduplication ranges from 0.03% to 34.90%. To ensure data

uniqueness, we removed duplicate entries before conducting the experiments. Since the

outlier detection algorithms in this chapter are unsupervised, we used the entire dataset

without splitting. We preprocessed each dataset by applying the StandardScaler33 from

the scikit-learn library, which standardizes each attribute by centering it to a mean of

0 and scaling it to a unit standard deviation of 1. In these datasets, the label ’1’ denotes

outliers, while the label ’0’ denotes inliers.

Comparison Methods

To comprehensively evaluate the performance of ADOD, we selected 14 represen-

tative and state-of-the-art outlier detection algorithms for comparison. These in-

cluded probabilistic-based methods such as ECOD [LZH+23], FastABOD [KSZ08],

and SOS [JHPvdH12]; linear model-based methods such as KPCA [Hof07] and

OCSVM [SPST+01]; proximity-based methods such as LOF [BKNS00], COF [TCFC02],

and k-NN [RRS00]; ensemble-based methods such as DIF [XPWW23], FB [LK05],

and LSCP [ZNHL19]; and neural network-based methods such as MO-GAAL [LLZ+20],

ALAD [ZRF+18], and LUNAR [GHNN22]. The implementation code for these algorithms

is available in the PyOD library34 [ZNL19], a Python toolbox specifically designed for

outlier detection. All comparison methods were configured with the default parame-

ters provided in PyOD, except for LSCP, which was configured using the PyOD exam-

ple settings35, where LOF was employed as the detector list with n neighbors set

to {15, 20, 25, 30}. For ADOD, we fixed the perplexity perp to 2
√
n and the cumulative

33https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html
34https://github.com/yzhao062/pyod
35https://github.com/yzhao062/pyod/blob/master/examples/lscp_example.py

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://github.com/yzhao062/pyod
https://github.com/yzhao062/pyod/blob/master/examples/lscp_example.py

4.4 Experiments 79

Table 4.1: Statistics of the 32 real-world datasets used in ADOD. Datasets with ” OD”
and ” AD” suffixes are from the ODDS and ADBench repositories, respectively.

Dataset #Total #Unique #Dimensions %Outliers Category

Hepatitis AD 80 80 19 16.25 Healthcare
wine OD 129 129 13 7.75 Chemistry
lympho OD 148 148 18 4.05 Healthcare
WPBC AD 198 198 33 23.74 Healthcare
Stamps AD 340 340 9 9.12 Document
WDBC AD 367 367 30 2.72 Healthcare
wbc OD 378 377 30 5.31 Healthcare
arrhythmia OD 452 452 274 14.60 Healthcare
pima OD 768 768 8 34.90 Healthcare
vowels OD 1456 1452 12 3.17 Linguistics
cardio OD 1831 1822 21 9.60 Healthcare
musk OD 3062 3062 166 3.17 Chemistry
Waveform AD 3443 3443 21 2.90 Physics
speech OD 3686 3686 400 1.65 Linguistics
thyroid OD 3772 3656 6 2.54 Healthcare
PageBlocks AD 5393 5393 10 9.46 Document
satimage-2 OD 5803 5801 36 1.19 Astronautics
satellite OD 6435 6435 36 31.64 Astronautics
pendigits OD 6870 6870 16 2.27 Image
annthyroid OD 7200 7062 6 7.56 Healthcare
mnist OD 7603 7603 100 9.21 Image
mammography OD 11183 7848 6 3.22 Healthcare
magic gamma AD 19020 18905 10 34.77 Physics
campaign AD 41188 41176 62 11.27 Finance
shuttle OD 49097 49097 9 7.15 Astronautics
smtp OD 95156 71230 3 0.03 Web
backdoor AD 95329 87020 196 2.16 Network
celeba AD 202599 113983 39 2.55 Image
fraud AD 284807 275661 29 0.17 Finance
cover OD 286048 286048 10 0.96 Botany
census AD 299285 223223 500 8.25 Sociology
http OD 567498 221900 3 0.03 Web

80 4. Adaptive Density Outlier Detection

probability pcum to 0.999.

Evaluation Metric

We evaluated the performance by averaging the scores from 10 independent trials with

different random values, using the ROC score, described in Chapter 2.3.5, P@N score, de-

scribed in Chapter 2.3.3, and AP score, described in Chapter 2.3.6. These metrics, which

compare the ground truth with the predicted scores, indicate better performance with

higher values. Furthermore, we used the critical difference (CD) diagram [IFFW+19] to

illustrate the statistical differences. This diagram visualizes the statistical comparisons

using the Wilcoxon signed-rank test with Holm’s correction, with a default p-value of

0.05.

4.4.2 Parameter Sensitivity Analysis

To evaluate the performance of ADOD under different parameter settings, we performed

a sensitivity analysis on two primary parameters. Cumulative probability pcum in the

Quantile function is set as a multiple of sigma based on the three-sigma rule, with the set

of candidate values {0.841, 0.933, 0.977, 0.994, 0.999} corresponding to cumulative proba-

bility values of 1, 1.5, 2, 2.5 and 3 sigma, respectively. Perplexity perp is used to measure

the number of effective neighbors and is set as a multiple of
√
n based on the scale of the

dataset with a set of candidate values of {1, 2, 3, 4, 5}.

Fig. 4.3 shows the average ROC score performance of ADOD on 32 real-world datasets

with different cumulative probability pcum and perplexity perp settings. The performance

was optimal for pcum = 0.999, with the ROC score peaking at 0.852 (marked with a

yellow star) when perplexity was 2
√
n, before gradually decreasing. Fig. 4.4 and Fig. 4.5

show the average P@N and AP score performances, respectively. Both metrics achieved

optimal performance at pcum = 0.999. For P@N, the highest score of 0.467 was observed

at 3
√
n perplexity, with a slightly lower by 0.01 at 2

√
n. Similarly, for AP, the highest

score of 0.448 was observed at 3
√
n perplexity, with a slightly lower of 0.006 at 2

√
n.

4.4 Experiments 81

Figure 4.3: Average ROC score against different search ranges of parameters pcum and
perp on real-world datasets.

Both metrics remained relatively stable between 2
√
n and 4

√
n, with slightly inferior

performance at 3
√
n.

Overall, the cumulative probability setting significantly impacted performance. With

pcum = 0.999, the ROC score changed by 0.022, the P@N score changed by 0.059, and

the AP score changed by 0.048. These results indicate that perplexity variations have a

smaller impact on performance, demonstrating high robustness. Based on this analysis,

we recommend setting the perplexity perp to 2
√
n and the cumulative probability pcum

to 0.999. Throughout the experiments, we adopted these parameter settings as they

consistently yielded competitive performance across different datasets.

4.4.3 Decision Boundaries Comparison

We generate a synthetic dataset ThreeBlobs-Outlier containing 500 data points, 15% of

which are outliers, as shown in Fig. 4.6. The dataset consists of three Gaussian clusters

(white dots) of different densities but the same number of points with standard devi-

82 4. Adaptive Density Outlier Detection

Figure 4.4: Average P@N score against different search ranges of parameters pcum and
perp on real-world datasets.

Figure 4.5: Average AP score against different search ranges of parameters pcum and perp
on real-world datasets.

4.4 Experiments 83

ADOD (errors: 34) LOF (errors: 36) LSCP (errors: 36)

FastABOD (errors: 36) OCSVM (errors: 38) k-NN (errors: 42)

FB (errors: 44) COF (errors: 44) LUNAR (errors: 46)

ECOD (errors: 60) DIF (errors: 98) MO-GAAL (errors: 104)

SOS (errors: 106) ALAD (errors: 120) KPCA (errors: 148)

learned decision function
true inliers
true outliers

Figure 4.6: Decision boundaries comparison on synthetic ThreeBlobs-Outlier dataset us-
ing various outlier detection algorithms, sorted by error counts.

84 4. Adaptive Density Outlier Detection

ations of [0.6, 1.2, 0.3] and randomly distributed outliers (black dots). We trained the

detector using the entire dataset and then computed decision function values on the en-

tire 2D plane to draw decision boundaries. Decision function values are mapped to pre-

dicted inlier regions (yellow) and outlier regions (blue), and red dashed lines indicate

decision boundaries. We also calculated the number of misclassifications (the number of

predicted labels that do not match the true labels) for each algorithm, shown after the

algorithm.

Fig. 4.6 shows the decision boundary and number of errors for various algorithms on

ThreeBlobs-Outlier dataset. This experiment used ADOD for unknown data (Algorithm 4)

to generate decision boundaries, where the dataset represents known data, and the entire

2D plane represents unknown data. The decision boundaries are depicted with yellow

regions for inliers and blue regions for outliers, with the gradient of blue indicating the

outlier score, where darker blue represents a higher outlier score. In summary, ADOD

exhibited the lowest number of errors (34) and outperformed all baselines by accurately

identifying three Gaussian clusters of different densities with clear decision boundaries.

LOF, LSCP, and FastABOD exhibited relatively few errors (36) but featured irregular

decision boundaries. LSCP presented almost the same results as LOF because LSCP is

an ensemble-based method based on LOF detector. OCSVM, with 38 errors, displayed

smooth decision boundaries but merged blobs of different densities into a single region.

COF, ECOD, DIF, MO-GAAL, SOS, and ALAD failed to obtain reasonable decision bound-

aries. SOS, ALAD, and KPCA reported error numbers 106, 120, and 148, respectively. By

calculating the number of errors, we demonstrated the performance of the algorithms on

known data. Additionally, by drawing decision boundaries on a two-dimensional plane,

we effectively highlighted the generalization ability of the algorithms on unknown data

points within this plane.

4.4 Experiments 85

Ta
bl

e
4.

2:
R

O
C

sc
or

e
on

re
al

-w
or

ld
da

ta
se

ts
:

hi
gh

es
ts

co
re

s
in

bo
ld

;r
an

ki
ng

in
pa

re
nt

he
se

s
(l

ow
er

is
be

tt
er

).
N

ot
at

io
ns

:
N

/A
(N

o
R

es
ul

ts
),

O
/M

(O
ut

-o
f-

M
em

or
y,
>

64
G

B
),

O
/T

(O
ut

-o
f-T

im
e,

>
12

h)
.

D
at

as
et

EC
O

D
Fa

st
A

B
O

D
SO

S
K

PC
A

O
C

SV
M

LO
F

C
O

F
k
-N

N
D

IF
FB

LS
C

P
M

O
-G

A
A

L
A

LA
D

LU
N

A
R

A
D

O
D

H
ep

at
it

is
0.

73
9(

4)
0.

62
0(

10
)

0.
48

0(
12

)
0.

43
1(

15
)

0.
72

1(
5)

0.
71

0(
7)

0.
47

9(
13

)
0.

74
0(

3)
0.

72
0(

6)
0.

70
9(

8)
0.

76
2(

2)
0.

70
0(

9)
0.

47
9(

13
)

0.
60

6(
11

)
0.

82
4(

1)
w

in
e

0.
73

3(
5)

0.
43

3(
12

)
0.

47
7(

9)
0.

29
1(

14
)

0.
69

6(
6)

0.
88

6(
3)

0.
30

2(
13

)
0.

54
6(

8)
0.

63
4(

7)
0.

88
3(

4)
0.

89
8(

2)
0.

07
7(

15
)

0.
47

6(
10

)
0.

47
5(

11
)

0.
96

7(
1)

ly
m

ph
o

0.
99

7(
1)

0.
87

6(
9)

0.
61

7(
14

)
0.

81
6(

11
)

0.
97

5(
3)

0.
97

0(
4)

0.
86

4(
10

)
0.

96
7(

7)
0.

79
3(

12
)

0.
96

9(
6)

0.
97

0(
4)

0.
58

3(
15

)
0.

69
6(

13
)

0.
92

1(
8)

0.
98

1(
2)

W
PB

C
0.

48
1(

9)
0.

46
6(

13
)

0.
46

3(
15

)
0.

47
1(

12
)

0.
48

5(
8)

0.
51

9(
1)

0.
47

4(
11

)
0.

50
1(

7)
0.

50
4(

6)
0.

51
4(

3)
0.

51
7(

2)
0.

47
8(

10
)

0.
46

5(
14

)
0.

51
4(

3)
0.

50
7(

5)
St

am
ps

0.
87

6(
2)

0.
73

1(
6)

0.
45

5(
15

)
0.

57
1(

12
)

0.
87

2(
3)

0.
60

4(
11

)
0.

54
0(

14
)

0.
83

3(
5)

0.
86

9(
4)

0.
63

5(
9)

0.
69

8(
7)

0.
62

8(
10

)
0.

55
8(

13
)

0.
68

4(
8)

0.
91

2(
1)

W
D

B
C

0.
97

1(
7)

0.
92

1(
11

)
0.

50
1(

14
)

0.
72

2(
12

)
0.

98
3(

3)
0.

98
2(

4)
0.

94
7(

8)
0.

97
7(

6)
0.

92
2(

10
)

0.
98

4(
2)

0.
98

1(
5)

0.
06

8(
15

)
0.

70
4(

13
)

0.
93

7(
9)

0.
99

2(
1)

w
bc

0.
91

5(
8)

0.
91

5(
8)

0.
62

2(
13

)
0.

46
6(

14
)

0.
94

9(
2)

0.
94

5(
5)

0.
89

8(
10

)
0.

95
1(

1)
0.

87
7(

11
)

0.
94

9(
2)

0.
94

5(
5)

0.
07

0(
15

)
0.

65
9(

12
)

0.
93

9(
7)

0.
94

6(
4)

ar
rh

yt
hm

ia
0.

80
5(

1)
0.

74
8(

11
)

0.
62

8(
12

)
0.

58
9(

14
)

0.
77

4(
3)

0.
76

0(
9)

0.
77

2(
4)

0.
76

8(
6)

0.
78

6(
2)

0.
75

7(
10

)
0.

76
2(

7)
0.

61
2(

13
)

0.
53

3(
15

)
0.

77
2(

4)
0.

76
1(

8)
pi

m
a

0.
59

4(
10

)
0.

67
5(

4)
0.

53
1(

13
)

0.
49

2(
14

)
0.

62
4(

6)
0.

60
3(

7)
0.

59
1(

11
)

0.
71

4(
2)

0.
67

3(
5)

0.
60

2(
8)

0.
60

2(
8)

0.
30

6(
15

)
0.

53
7(

12
)

0.
68

7(
3)

0.
73

5(
1)

vo
w

el
s

0.
60

5(
11

)
0.

98
5(

1)
0.

65
2(

10
)

0.
56

2(
12

)
0.

79
3(

9)
0.

94
3(

4)
0.

97
5(

2)
0.

97
5(

2)
0.

53
6(

13
)

0.
94

2(
5)

0.
94

2(
5)

0.
10

0(
15

)
0.

53
6(

13
)

0.
94

2(
5)

0.
86

0(
8)

ca
rd

io
0.

93
8(

2)
0.

54
8(

10
)

0.
53

8(
13

)
0.

53
7(

14
)

0.
93

5(
3)

0.
54

4(
12

)
0.

56
7(

9)
0.

71
0(

5)
0.

90
5(

4)
0.

57
8(

8)
0.

54
8(

10
)

0.
37

9(
15

)
0.

60
0(

7)
0.

61
8(

6)
0.

94
6(

1)
m

us
k

0.
95

6(
3)

0.
05

4(
15

)
0.

45
4(

13
)

0.
49

8(
12

)
1.

00
0(

1)
0.

63
7(

6)
0.

56
0(

9)
0.

75
9(

4)
0.

54
0(

11
)

0.
61

9(
7)

0.
61

2(
8)

0.
67

4(
5)

0.
55

0(
10

)
0.

23
6(

14
)

1.
00

0(
1)

W
av

ef
or

m
0.

60
4(

11
)

0.
65

4(
10

)
0.

59
5(

12
)

0.
50

7(
14

)
0.

67
2(

9)
0.

70
8(

6)
0.

69
7(

7)
0.

73
4(

2)
0.

69
3(

8)
0.

73
1(

3)
0.

71
8(

4)
0.

43
6(

15
)

0.
50

9(
13

)
0.

71
0(

5)
0.

78
6(

1)
sp

ee
ch

0.
47

0(
12

)
0.

75
1(

1)
0.

64
8(

2)
0.

44
2(

15
)

0.
46

6(
13

)
0.

50
8(

7)
0.

53
2(

5)
0.

48
5(

10
)

0.
47

2(
11

)
0.

50
7(

8)
0.

50
0(

9)
0.

45
5(

14
)

0.
51

7(
6)

0.
53

6(
4)

0.
62

0(
3)

th
yr

oi
d

0.
97

6(
1)

0.
94

3(
5)

0.
52

9(
14

)
0.

06
0(

15
)

0.
95

7(
4)

0.
70

4(
12

)
0.

60
9(

13
)

0.
95

9(
3)

0.
71

2(
11

)
0.

75
0(

9)
0.

75
1(

8)
0.

86
9(

7)
0.

71
7(

10
)

0.
93

5(
6)

0.
97

0(
2)

Pa
ge

B
lo

ck
s

0.
91

4(
3)

0.
75

0(
8)

0.
51

2(
14

)
0.

35
7(

15
)

0.
91

5(
2)

0.
72

5(
10

)
0.

62
3(

13
)

0.
85

5(
4)

0.
81

4(
5)

0.
78

2(
6)

0.
74

0(
9)

0.
71

9(
11

)
0.

70
4(

12
)

0.
76

1(
7)

0.
93

7(
1)

sa
ti

m
ag

e-
2

0.
96

5(
4)

0.
81

2(
8)

0.
49

3(
15

)
0.

56
1(

11
)

0.
99

7(
2)

0.
53

4(
13

)
0.

56
5(

10
)

0.
93

6(
5)

0.
99

5(
3)

0.
52

8(
14

)
0.

54
5(

12
)

0.
89

9(
6)

0.
69

4(
9)

0.
87

8(
7)

0.
99

8(
1)

sa
te

lli
te

0.
58

3(
7)

0.
55

5(
9)

0.
46

6(
15

)
0.

57
2(

8)
0.

66
4(

4)
0.

54
6(

11
)

0.
53

6(
13

)
0.

67
2(

2)
0.

65
0(

5)
0.

54
2(

12
)

0.
55

4(
10

)
0.

66
9(

3)
0.

53
2(

14
)

0.
63

9(
6)

0.
74

5(
1)

pe
nd

ig
it

s
0.

92
7(

3)
0.

67
3(

8)
0.

50
5(

12
)

0.
60

3(
9)

0.
93

1(
2)

0.
49

9(
13

)
0.

52
2(

11
)

0.
74

4(
5)

0.
91

2(
4)

0.
48

9(
15

)
0.

49
7(

14
)

0.
71

3(
6)

0.
52

3(
10

)
0.

68
8(

7)
0.

94
0(

1)
an

nt
hy

ro
id

0.
78

4(
4)

0.
83

0(
1)

0.
62

4(
11

)
0.

31
8(

15
)

0.
67

5(
10

)
0.

74
3(

6)
0.

72
7(

8)
0.

80
3(

3)
0.

54
6(

13
)

0.
80

4(
2)

0.
75

0(
5)

0.
62

4(
11

)
0.

53
6(

14
)

0.
72

9(
7)

0.
69

7(
9)

m
ni

st
0.

74
6(

6)
0.

77
4(

4)
N

/A
0.

51
7(

14
)

0.
85

0(
2)

0.
67

9(
10

)
0.

63
5(

11
)

0.
84

1(
3)

0.
73

0(
7)

0.
68

1(
9)

0.
69

6(
8)

0.
55

9(
13

)
0.

56
0(

12
)

0.
76

6(
5)

0.
87

7(
1)

m
am

m
og

ra
ph

y
0.

88
6(

1)
0.

75
6(

6)
0.

53
5(

14
)

0.
40

5(
15

)
0.

84
4(

2)
0.

65
9(

10
)

0.
60

4(
12

)
0.

79
7(

4)
0.

54
2(

13
)

0.
66

9(
9)

0.
67

7(
8)

0.
71

2(
7)

0.
60

6(
11

)
0.

78
8(

5)
0.

80
7(

3)
m

ag
ic

ga
m

m
a

0.
63

9(
11

)
0.

79
8(

3)
0.

57
5(

12
)

0.
22

2(
15

)
0.

67
5(

9)
0.

69
7(

8)
0.

64
8(

10
)

0.
81

5(
2)

0.
70

3(
6)

0.
71

5(
5)

0.
70

0(
7)

0.
53

1(
14

)
0.

55
7(

13
)

0.
81

9(
1)

0.
72

8(
4)

ca
m

pa
ig

n
0.

77
0(

1)
0.

73
2(

4)
0.

57
9(

12
)

0.
52

9(
14

)
0.

73
7(

3)
0.

62
1(

9)
0.

59
5(

11
)

0.
74

1(
2)

0.
55

9(
13

)
0.

60
5(

10
)

0.
63

1(
7)

0.
62

2(
8)

0.
52

9(
14

)
0.

66
0(

6)
0.

70
5(

5)
sh

ut
tl

e
0.

99
3(

1)
0.

61
7(

10
)

0.
49

8(
15

)
0.

84
3(

6)
0.

99
2(

2)
0.

52
3(

12
)

0.
52

2(
13

)
0.

64
0(

8)
0.

98
4(

3)
0.

50
9(

14
)

0.
52

5(
11

)
0.

73
3(

7)
0.

84
7(

5)
0.

62
3(

9)
0.

94
9(

4)
sm

tp
0.

90
7(

7)
0.

94
5(

3)
0.

51
0(

14
)

0.
18

1(
15

)
0.

92
3(

5)
0.

90
2(

8)
0.

73
0(

12
)

0.
95

1(
2)

0.
73

7(
11

)
0.

89
4(

9)
0.

91
9(

6)
0.

61
5(

13
)

0.
78

7(
10

)
0.

93
9(

4)
0.

96
1(

1)
ba

ck
do

or
0.

88
6(

2)
0.

71
7(

10
)

O
/M

O
/M

0.
88

6(
2)

0.
78

7(
6)

0.
73

9(
9)

0.
78

3(
7)

0.
74

5(
8)

0.
79

6(
5)

0.
80

7(
4)

O
/T

0.
70

2(
11

)
0.

56
6(

12
)

0.
91

2(
1)

ce
le

ba
0.

70
1(

3)
0.

41
5(

11
)

O
/M

O
/M

0.
71

9(
2)

0.
48

9(
9)

O
/M

0.
63

0(
4)

0.
49

1(
8)

0.
50

7(
7)

0.
48

5(
10

)
O

/T
0.

52
8(

5)
0.

52
7(

6)
0.

75
6(

1)
fr

au
d

0.
94

7(
3)

0.
88

6(
7)

O
/M

O
/M

0.
95

2(
2)

0.
50

6(
11

)
O

/M
0.

94
5(

4)
0.

91
2(

6)
0.

50
8(

10
)

0.
53

4(
9)

O
/T

0.
67

9(
8)

0.
93

0(
5)

0.
95

5(
1)

co
ve

r
0.

92
0(

3)
0.

75
0(

5)
O

/M
O

/M
0.

95
2(

2)
0.

52
1(

11
)

O
/M

0.
77

9(
4)

0.
58

9(
7)

0.
53

8(
9)

0.
52

7(
10

)
O

/T
0.

58
9(

7)
0.

71
3(

6)
0.

97
0(

1)
ce

ns
us

0.
48

8(
9)

0.
56

5(
1)

O
/M

O
/M

0.
54

2(
3)

0.
53

2(
5)

O
/M

0.
55

1(
2)

0.
33

5(
10

)
0.

51
8(

6)
O

/T
O

/T
0.

48
9(

8)
0.

51
7(

7)
0.

53
5(

4)
ht

tp
0.

99
5(

4)
0.

98
1(

6)
O

/M
O

/M
1.

00
0(

1)
0.

63
8(

11
)

O
/M

0.
99

6(
3)

0.
92

8(
7)

0.
80

6(
9)

0.
70

9(
10

)
O

/T
0.

88
8(

8)
0.

98
5(

5)
1.

00
0(

1)

av
er

ag
e

0.
80

3(
3)

0.
71

5(
6)

0.
54

0(
13

)
0.

48
3(

15
)

0.
81

7(
2)

0.
67

6(
10

)
0.

63
9(

11
)

0.
78

4(
4)

0.
71

3(
7)

0.
68

8(
9)

0.
69

4(
8)

0.
53

2(
14

)
0.

60
3(

12
)

0.
72

0(
5)

0.
85

2(
1)

86 4. Adaptive Density Outlier Detection

Table
4.3:

P@
N

score
on

real-w
orld

datasets:
highest

scores
in

bold;
ranking

in
parentheses

(low
er

is
better).

N
ota-

tions:
N

/A
(N

o
R

esults),O
/M

(O
ut-of-M

em
ory,

>
64G

B
),O

/T
(O

ut-of-Tim
e,

>
12h).

D
ataset

EC
O

D
FastA

B
O

D
SO

S
K

PC
A

O
C

SV
M

LO
F

C
O

F
k-N

N
D

IF
FB

LSC
P

M
O

-G
A

A
L

A
LA

D
LU

N
A

R
A

D
O

D

H
epatitis

0.308(4)
0.000(14)

0.077(12)
0.083(11)

0.231(7)
0.231(7)

0.000(14)
0.308(4)

0.215(9)
0.254(6)

0.354(2)
0.338(3)

0.154(10)
0.069(13)

0.385(1)
w

ine
0.100(5)

0.000(8)
0.000(8)

0.000(8)
0.000(8)

0.100(5)
0.000(8)

0.000(8)
0.130(4)

0.150(3)
0.200(2)

0.000(8)
0.060(7)

0.000(8)
0.600(1)

lym
pho

0.833(1)
0.500(8)

0.000(15)
0.167(14)

0.667(2)
0.667(2)

0.500(8)
0.667(2)

0.433(11)
0.667(2)

0.667(2)
0.267(12)

0.217(13)
0.500(8)

0.667(2)
W

PB
C

0.128(14)
0.128(14)

0.234(2)
0.238(1)

0.170(7)
0.170(7)

0.170(7)
0.170(7)

0.162(12)
0.179(6)

0.181(5)
0.223(3)

0.217(4)
0.160(13)

0.170(7)
Stam

ps
0.290(2)

0.161(13)
0.032(15)

0.241(3)
0.194(6)

0.194(6)
0.194(6)

0.194(6)
0.374(1)

0.190(12)
0.194(6)

0.229(4)
0.097(14)

0.203(5)
0.194(6)

W
D

B
C

0.400(5)
0.200(10)

0.100(14)
0.400(5)

0.500(2)
0.400(5)

0.200(10)
0.400(5)

0.120(13)
0.470(3)

0.470(3)
0.000(15)

0.180(12)
0.320(9)

0.800(1)
w

bc
0.450(8)

0.300(11)
0.100(14)

0.200(12)
0.500(5)

0.550(2)
0.350(10)

0.500(5)
0.360(9)

0.570(1)
0.500(5)

0.000(15)
0.145(13)

0.535(4)
0.550(2)

arrhythm
ia

0.485(1)
0.379(9)

0.288(13)
0.390(8)

0.424(3)
0.379(9)

0.409(5)
0.409(5)

0.468(2)
0.370(12)

0.379(9)
0.280(14)

0.194(15)
0.417(4)

0.394(7)
pim

a
0.455(7)

0.530(3)
0.347(13)

0.329(14)
0.478(6)

0.440(8)
0.422(11)

0.545(2)
0.485(5)

0.439(9)
0.434(10)

0.195(15)
0.385(12)

0.526(4)
0.556(1)

vow
els

0.174(11)
0.804(1)

0.283(9)
0.100(12)

0.261(10)
0.304(8)

0.609(2)
0.478(4)

0.024(14)
0.322(6)

0.311(7)
0.000(15)

0.035(13)
0.480(3)

0.370(5)
cardio

0.531(3)
0.229(7)

0.109(14)
0.179(10)

0.503(4)
0.160(12)

0.217(8)
0.337(5)

0.535(2)
0.157(13)

0.167(11)
0.082(15)

0.200(9)
0.265(6)

0.651(1)
m

usk
0.495(3)

0.000(15)
0.062(11)

0.302(4)
1.000(1)

0.258(6)
0.206(9)

0.237(8)
0.012(14)

0.243(7)
0.268(5)

0.068(10)
0.044(12)

0.037(13)
1.000(1)

W
aveform

0.040(13)
0.050(10)

0.050(10)
0.138(3)

0.090(9)
0.100(7)

0.100(7)
0.150(2)

0.042(12)
0.128(5)

0.118(6)
0.035(14)

0.032(15)
0.131(4)

0.320(1)
speech

0.033(6)
0.147(1)

0.098(2)
0.049(4)

0.033(6)
0.033(6)

0.016(13)
0.016(13)

0.028(11)
0.061(3)

0.033(6)
0.011(15)

0.021(12)
0.038(5)

0.033(6)
thyroid

0.548(2)
0.237(6)

0.021(14)
0.000(15)

0.387(3)
0.118(9)

0.065(13)
0.269(5)

0.065(12)
0.073(11)

0.139(8)
0.362(4)

0.117(10)
0.222(7)

0.570(1)
PageB

locks
0.431(4)

0.400(5)
0.090(14)

0.071(15)
0.494(2)

0.349(11)
0.304(12)

0.486(3)
0.350(10)

0.374(8)
0.352(9)

0.391(6)
0.303(13)

0.376(7)
0.612(1)

satim
age-2

0.609(4)
0.174(7)

0.029(14)
0.129(10)

0.927(1)
0.087(13)

0.159(8)
0.377(5)

0.912(3)
0.096(12)

0.101(11)
0.000(15)

0.201(6)
0.151(9)

0.913(2)
satellite

0.449(7)
0.372(13)

0.262(15)
0.384(8)

0.538(2)
0.376(11)

0.380(9)
0.492(4)

0.482(5)
0.374(12)

0.377(10)
0.493(3)

0.349(14)
0.463(6)

0.604(1)
pendigits

0.359(1)
0.077(11)

0.019(15)
0.136(5)

0.340(2)
0.083(8)

0.070(13)
0.103(6)

0.153(3)
0.085(7)

0.083(8)
0.071(12)

0.053(14)
0.078(10)

0.147(4)
annthyroid

0.305(3)
0.313(1)

0.219(11)
0.073(15)

0.245(7)
0.242(9)

0.229(10)
0.313(1)

0.092(14)
0.254(5)

0.247(6)
0.113(12)

0.107(13)
0.243(8)

0.298(4)
m

nist
0.180(11)

0.350(5)
N

/A
0.167(12)

0.387(3)
0.294(8)

0.264(9)
0.424(2)

0.232(10)
0.297(7)

0.315(6)
0.154(14)

0.155(13)
0.374(4)

0.449(1)
m

am
m

ography
0.371(1)

0.190(7)
0.047(12)

0.043(13)
0.269(3)

0.182(8)
0.130(10)

0.221(4)
0.003(14)

0.136(9)
0.202(5)

0.000(15)
0.110(11)

0.198(6)
0.285(2)

m
agic

gam
m

a
0.460(11)

0.638(3)
0.414(12)

0.122(15)
0.525(8)

0.523(9)
0.483(10)

0.648(2)
0.550(4)

0.547(6)
0.527(7)

0.409(13)
0.404(14)

0.659(1)
0.549(5)

cam
paign

0.393(1)
0.296(5)

0.192(10)
0.016(15)

0.367(2)
0.209(9)

0.182(11)
0.328(3)

0.145(14)
0.156(12)

0.222(8)
0.270(6)

0.147(13)
0.255(7)

0.328(3)
shuttle

0.868(3)
0.193(9)

0.076(15)
0.336(6)

0.956(1)
0.125(11)

0.112(13)
0.214(8)

0.952(2)
0.097(14)

0.125(11)
0.280(7)

0.503(4)
0.192(9)

0.408(5)
sm

tp
0.714(1)

0.095(7)
0.000(10)

0.000(10)
0.571(3)

0.000(10)
0.000(10)

0.286(4)
0.133(6)

0.000(10)
0.143(5)

0.000(10)
0.038(8)

0.029(9)
0.667(2)

backdoor
0.137(11)

0.318(8)
O

/M
O

/M
0.548(2)

0.475(3)
0.456(5)

0.436(6)
0.030(12)

0.374(7)
0.475(3)

O
/T

0.227(9)
0.185(10)

0.549(1)
celeba

0.134(2)
0.000(11)

O
/M

O
/M

0.138(1)
0.021(9)

O
/M

0.051(4)
0.028(6)

0.028(6)
0.021(9)

O
/T

0.041(5)
0.028(6)

0.069(3)
fraud

0.294(2)
0.046(7)

O
/M

O
/M

0.076(6)
0.000(9)

O
/M

0.093(5)
0.316(1)

0.000(9)
0.000(9)

O
/T

0.035(8)
0.197(4)

0.271(3)
cover

0.164(2)
0.053(6)

O
/M

O
/M

0.076(4)
0.034(8)

O
/M

0.085(3)
0.013(10)

0.030(9)
0.037(7)

O
/T

0.005(11)
0.060(5)

0.277(1)
census

0.046(9)
0.097(1)

O
/M

O
/M

0.064(6)
0.087(3)

O
/M

0.095(2)
0.025(10)

0.053(8)
O

/T
O

/T
0.081(4)

0.070(5)
0.054(7)

http
0.278(4)

0.250(5)
O

/M
O

/M
0.361(2)

0.139(7)
O

/M
0.292(3)

0.006(11)
0.019(10)

0.111(8)
O

/T
0.156(6)

0.060(9)
0.875(1)

average
0.358(3)

0.235(7)
0.126(15)

0.165(12)
0.385(2)

0.229(10)
0.231(9)

0.301(4)
0.246(6)

0.225(11)
0.250(5)

0.164(13)
0.157(14)

0.235(7)
0.457(1)

4.4 Experiments 87

Ta
bl

e
4.

4:
A

P
sc

or
e

on
re

al
-w

or
ld

da
ta

se
ts

:
hi

gh
es

t
sc

or
es

in
bo

ld
;r

an
ki

ng
in

pa
re

nt
he

se
s

(l
ow

er
is

be
tt

er
).

N
ot

at
io

ns
:

N
/A

(N
o

R
es

ul
ts

),
O

/M
(O

ut
-o

f-
M

em
or

y,
>

64
G

B
),

O
/T

(O
ut

-o
f-T

im
e,

>
12

h)
.

D
at

as
et

EC
O

D
Fa

st
A

B
O

D
SO

S
K

PC
A

O
C

SV
M

LO
F

C
O

F
k
-N

N
D

IF
FB

LS
C

P
M

O
-G

A
A

L
A

LA
D

LU
N

A
R

A
D

O
D

H
ep

at
it

is
0.

29
2(

4)
0.

19
8(

12
)

0.
17

5(
13

)
0.

15
6(

14
)

0.
27

8(
7)

0.
25

3(
9)

0.
15

3(
15

)
0.

28
1(

6)
0.

28
7(

5)
0.

26
3(

8)
0.

31
5(

3)
0.

36
2(

2)
0.

20
4(

10
)

0.
20

3(
11

)
0.

41
7(

1)
w

in
e

0.
19

1(
5)

0.
07

0(
12

)
0.

07
6(

11
)

0.
06

1(
13

)
0.

14
2(

7)
0.

27
0(

3)
0.

05
8(

14
)

0.
08

9(
9)

0.
16

1(
6)

0.
26

6(
4)

0.
29

3(
2)

0.
04

6(
15

)
0.

11
6(

8)
0.

08
2(

10
)

0.
56

6(
1)

ly
m

ph
o

0.
91

5(
1)

0.
34

1(
11

)
0.

06
9(

15
)

0.
27

4(
12

)
0.

78
2(

3)
0.

71
6(

6)
0.

62
8(

8)
0.

76
0(

4)
0.

46
9(

10
)

0.
72

5(
5)

0.
71

6(
6)

0.
27

0(
13

)
0.

23
4(

14
)

0.
62

4(
9)

0.
80

3(
2)

W
PB

C
0.

21
8(

14
)

0.
22

6(
12

)
0.

24
4(

1)
0.

23
9(

4)
0.

22
3(

13
)

0.
23

2(
7)

0.
21

7(
15

)
0.

22
7(

11
)

0.
24

3(
2)

0.
23

0(
10

)
0.

23
3(

6)
0.

23
6(

5)
0.

24
1(

3)
0.

23
2(

7)
0.

23
2(

7)
St

am
ps

0.
31

4(
3)

0.
18

4(
9)

0.
11

1(
15

)
0.

16
4(

13
)

0.
29

4(
4)

0.
17

5(
12

)
0.

18
3(

10
)

0.
26

6(
5)

0.
33

8(
2)

0.
17

8(
11

)
0.

19
5(

8)
0.

23
6(

6)
0.

12
9(

14
)

0.
19

8(
7)

0.
37

8(
1)

W
D

B
C

0.
50

5(
5)

0.
20

8(
11

)
0.

06
8(

14
)

0.
37

0(
9)

0.
49

4(
6)

0.
53

5(
4)

0.
23

1(
10

)
0.

43
8(

7)
0.

19
5(

12
)

0.
55

0(
2)

0.
54

4(
3)

0.
01

6(
15

)
0.

16
8(

13
)

0.
37

5(
8)

0.
63

7(
1)

w
bc

0.
47

4(
8)

0.
31

2(
10

)
0.

11
3(

14
)

0.
15

0(
12

)
0.

54
0(

5)
0.

57
4(

4)
0.

30
9(

11
)

0.
52

7(
6)

0.
37

2(
9)

0.
57

9(
3)

0.
58

7(
2)

0.
02

9(
15

)
0.

14
3(

13
)

0.
51

1(
7)

0.
61

0(
1)

ar
rh

yt
hm

ia
0.

46
6(

1)
0.

33
0(

10
)

0.
23

9(
14

)
0.

29
3(

12
)

0.
39

1(
4)

0.
33

0(
10

)
0.

45
9(

2)
0.

38
2(

6)
0.

42
4(

3)
0.

33
2(

9)
0.

33
8(

8)
0.

25
8(

13
)

0.
19

6(
15

)
0.

39
1(

4)
0.

35
6(

7)
pi

m
a

0.
46

4(
6)

0.
50

3(
4)

0.
38

1(
13

)
0.

36
6(

14
)

0.
46

4(
6)

0.
41

8(
9)

0.
43

6(
8)

0.
53

0(
1)

0.
47

5(
5)

0.
41

5(
10

)
0.

41
4(

11
)

0.
26

2(
15

)
0.

41
0(

12
)

0.
51

4(
3)

0.
52

2(
2)

vo
w

el
s

0.
07

5(
11

)
0.

83
7(

1)
0.

22
9(

9)
0.

07
2(

12
)

0.
19

1(
10

)
0.

32
1(

8)
0.

61
8(

2)
0.

52
4(

3)
0.

03
8(

14
)

0.
33

8(
7)

0.
36

1(
5)

0.
01

7(
15

)
0.

04
2(

13
)

0.
47

0(
4)

0.
34

1(
6)

ca
rd

io
0.

57
0(

2)
0.

16
1(

8)
0.

11
2(

14
)

0.
15

1(
13

)
0.

53
4(

3)
0.

15
4(

11
)

0.
16

0(
9)

0.
32

1(
5)

0.
50

1(
4)

0.
15

9(
10

)
0.

15
3(

12
)

0.
09

1(
15

)
0.

18
6(

7)
0.

22
1(

6)
0.

58
5(

1)
m

us
k

0.
49

2(
3)

0.
01

7(
15

)
0.

03
1(

14
)

0.
26

1(
4)

1.
00

0(
1)

0.
20

5(
7)

0.
16

2(
9)

0.
24

0(
5)

0.
03

6(
12

)
0.

20
3(

8)
0.

21
5(

6)
0.

08
3(

10
)

0.
05

5(
11

)
0.

03
2(

13
)

1.
00

0(
1)

W
av

ef
or

m
0.

04
1(

12
)

0.
05

4(
9)

0.
04

0(
12

)
0.

06
5(

8)
0.

05
3(

10
)

0.
07

6(
6)

0.
07

3(
7)

0.
10

6(
2)

0.
05

1(
11

)
0.

08
8(

4)
0.

08
5(

5)
0.

03
0(

15
)

0.
03

2(
14

)
0.

10
4(

3)
0.

31
5(

1)
sp

ee
ch

0.
02

0(
9)

0.
09

9(
1)

0.
04

8(
2)

0.
01

7(
14

)
0.

01
8(

12
)

0.
02

5(
4)

0.
02

3(
7)

0.
01

9(
11

)
0.

01
8(

12
)

0.
02

4(
5)

0.
02

3(
7)

0.
01

6(
15

)
0.

02
0(

9)
0.

02
4(

5)
0.

02
9(

3)
th

yr
oi

d
0.

46
7(

2)
0.

20
9(

7)
0.

03
0(

14
)

0.
01

4(
15

)
0.

32
0(

3)
0.

09
2(

10
)

0.
04

0(
13

)
0.

28
4(

4)
0.

05
3(

12
)

0.
07

0(
11

)
0.

10
9(

8)
0.

28
0(

5)
0.

10
7(

9)
0.

22
0(

6)
0.

48
6(

1)
Pa

ge
B

lo
ck

s
0.

52
0(

3)
0.

39
0(

5)
0.

10
3(

14
)

0.
07

7(
15

)
0.

53
3(

2)
0.

30
0(

11
)

0.
25

7(
13

)
0.

48
4(

4)
0.

31
3(

9)
0.

35
2(

7)
0.

32
2(

8)
0.

31
1(

10
)

0.
28

2(
12

)
0.

37
5(

6)
0.

62
9(

1)
sa

ti
m

ag
e-

2
0.

66
8(

4)
0.

11
7(

7)
0.

01
5(

15
)

0.
05

2(
11

)
0.

96
4(

1)
0.

03
3(

14
)

0.
09

4(
10

)
0.

35
3(

5)
0.

95
9(

2)
0.

03
5(

12
)

0.
03

4(
13

)
0.

11
3(

8)
0.

17
8(

6)
0.

11
1(

9)
0.

95
8(

3)
sa

te
lli

te
0.

52
6(

6)
0.

38
6(

10
)

0.
28

6(
15

)
0.

42
5(

8)
0.

65
5(

1)
0.

37
6(

13
)

0.
38

1(
12

)
0.

52
7(

5)
0.

62
7(

2)
0.

37
2(

14
)

0.
38

3(
11

)
0.

57
0(

3)
0.

39
0(

9)
0.

48
0(

7)
0.

53
6(

4)
pe

nd
ig

it
s

0.
26

6(
1)

0.
05

1(
10

)
0.

02
8(

15
)

0.
05

6(
7)

0.
22

8(
2)

0.
04

3(
12

)
0.

04
0(

14
)

0.
07

6(
5)

0.
16

4(
3)

0.
05

0(
11

)
0.

04
1(

13
)

0.
05

6(
7)

0.
06

5(
6)

0.
05

3(
9)

0.
16

0(
4)

an
nt

hy
ro

id
0.

26
9(

1)
0.

25
5(

2)
0.

15
0(

11
)

0.
05

8(
15

)
0.

18
6(

8)
0.

18
9(

7)
0.

18
2(

10
)

0.
22

8(
4)

0.
09

7(
14

)
0.

21
1(

5)
0.

19
5(

6)
0.

13
3(

12
)

0.
10

7(
13

)
0.

18
5(

9)
0.

24
1(

3)
m

ni
st

0.
17

8(
11

)
0.

30
2(

5)
N

/A
0.

14
0(

12
)

0.
38

5(
3)

0.
25

0(
8)

0.
20

4(
9)

0.
39

1(
2)

0.
19

9(
10

)
0.

25
3(

7)
0.

26
6(

6)
0.

13
0(

14
)

0.
13

3(
13

)
0.

31
6(

4)
0.

44
0(

1)
m

am
m

og
ra

ph
y

0.
36

3(
1)

0.
13

8(
6)

0.
04

4(
13

)
0.

03
3(

14
)

0.
18

5(
3)

0.
10

1(
9)

0.
06

9(
12

)
0.

16
1(

4)
0.

03
2(

15
)

0.
07

7(
11

)
0.

10
7(

7)
0.

09
0(

10
)

0.
10

2(
8)

0.
14

6(
5)

0.
19

0(
2)

m
ag

ic
ga

m
m

a
0.

53
0(

10
)

0.
71

8(
3)

0.
43

1(
13

)
0.

22
9(

15
)

0.
62

4(
5)

0.
53

1(
9)

0.
49

8(
11

)
0.

74
1(

2)
0.

58
9(

6)
0.

55
0(

7)
0.

53
5(

8)
0.

38
3(

14
)

0.
43

6(
12

)
0.

74
5(

1)
0.

66
0(

4)
ca

m
pa

ig
n

0.
35

5(
1)

0.
24

3(
5)

0.
16

3(
10

)
0.

11
2(

15
)

0.
28

4(
2)

0.
16

6(
9)

0.
15

6(
11

)
0.

27
6(

3)
0.

13
3(

13
)

0.
15

0(
12

)
0.

17
4(

8)
0.

20
6(

7)
0.

13
3(

13
)

0.
21

0(
6)

0.
24

6(
4)

sh
ut

tl
e

0.
90

4(
3)

0.
14

2(
10

)
0.

07
2(

15
)

0.
31

4(
6)

0.
90

6(
2)

0.
11

0(
12

)
0.

09
1(

13
)

0.
16

6(
9)

0.
96

6(
1)

0.
08

4(
14

)
0.

11
2(

11
)

0.
24

7(
7)

0.
52

3(
4)

0.
16

9(
8)

0.
43

1(
5)

sm
tp

0.
57

2(
1)

0.
07

0(
7)

0.
00

1(
13

)
0.

00
0(

13
)

0.
42

8(
2)

0.
01

3(
10

)
0.

00
2(

11
)

0.
26

6(
4)

0.
13

7(
5)

0.
00

2(
11

)
0.

07
8(

6)
0.

00
0(

13
)

0.
02

3(
9)

0.
02

6(
8)

0.
38

4(
3)

ba
ck

do
or

0.
15

6(
10

)
0.

19
5(

8)
O

/M
O

/M
0.

56
6(

2)
0.

41
3(

4)
0.

38
1(

5)
0.

37
3(

6)
0.

05
4(

12
)

0.
30

2(
7)

0.
42

3(
3)

O
/T

0.
16

0(
9)

0.
07

8(
11

)
0.

62
3(

1)
ce

le
ba

0.
08

2(
2)

0.
02

0(
11

)
O

/M
O

/M
0.

08
6(

1)
0.

02
5(

9)
O

/M
0.

04
0(

4)
0.

02
6(

7)
0.

02
6(

7)
0.

02
5(

9)
O

/T
0.

03
2(

5)
0.

02
8(

6)
0.

07
0(

3)
fr

au
d

0.
19

8(
3)

0.
03

2(
7)

O
/M

O
/M

0.
09

4(
5)

0.
00

2(
9)

O
/M

0.
06

0(
6)

0.
23

9(
1)

0.
00

2(
9)

0.
00

2(
9)

O
/T

0.
01

4(
8)

0.
11

6(
4)

0.
21

3(
2)

co
ve

r
0.

10
7(

2)
0.

02
8(

6)
O

/M
O

/M
0.

09
6(

3)
0.

01
2(

10
)

O
/M

0.
03

6(
4)

0.
01

2(
10

)
0.

01
3(

8)
0.

01
3(

8)
O

/T
0.

01
6(

7)
0.

03
0(

5)
0.

23
9(

1)
ce

ns
us

0.
07

4(
9)

0.
09

4(
1)

O
/M

O
/M

0.
08

5(
4)

0.
08

8(
3)

O
/M

0.
09

1(
2)

0.
05

7(
10

)
0.

08
2(

6)
O

/T
O

/T
0.

08
1(

8)
0.

08
2(

6)
0.

08
4(

5)
ht

tp
0.

11
5(

6)
0.

12
6(

5)
O

/M
O

/M
0.

47
2(

2)
0.

07
1(

7)
O

/M
0.

21
5(

3)
0.

00
5(

10
)

0.
00

4(
11

)
0.

06
7(

8)
O

/T
0.

13
7(

4)
0.

04
2(

9)
0.

75
7(

1)

av
er

ag
e

0.
35

6(
3)

0.
22

0(
10

)
0.

13
0(

15
)

0.
16

0(
13

)
0.

39
1(

2)
0.

22
2(

9)
0.

22
6(

8)
0.

29
6(

4)
0.

25
8(

5)
0.

21
8(

11
)

0.
23

7(
6)

0.
17

2(
12

)
0.

15
9(

14
)

0.
23

1(
7)

0.
44

2(
1)

88 4. Adaptive Density Outlier Detection

Table 4.5: Run time (in seconds) on real-world datasets (Part 1): fastest in bold; ranking
in parentheses (lower is better). Notations: N/A (No Results), O/M (Out-of-
Memory, >64GB), O/T (Out-of-Time, >12h).

Dataset ECOD FastABOD SOS KPCA OCSVM LOF COF k-NN

Hepatitis 0.001(2) 0.016(6) 0.016(6) 0.016(6) 0.002(3) 0.002(3) 0.007(5) 0.016(6)
wine 0.001(2) 0.011(7) 0.021(8) 0.026(9) 0.002(4) 0.002(4) 0.009(6) 0.001(2)
lympho 0.001(2) 0.018(7) 0.024(8) 0.030(9) 0.002(3) 0.008(5) 0.012(6) 0.006(4)
WPBC 0.002(2) 0.022(7) 0.034(8) 0.041(9) 0.003(3) 0.009(5) 0.017(6) 0.006(4)
Stamps 0.001(2) 0.031(8) 0.064(9) 0.078(10) 0.005(5) 0.003(4) 0.029(7) 0.002(3)
WDBC 0.002(2) 0.040(7) 0.071(8) 0.091(9) 0.005(3) 0.010(4) 0.034(6) 0.010(4)
wbc 0.001(2) 0.042(7) 0.073(8) 0.085(9) 0.006(3) 0.011(5) 0.034(6) 0.010(4)
arrhythmia 0.011(1) 0.058(6) 0.090(7) 0.120(9) 0.018(5) 0.013(2) 0.139(10) 0.015(3)
pima 0.001(1) 0.065(6) 0.198(10) 0.211(11) 0.022(5) 0.012(3) 0.091(8) 0.005(2)
vowels 0.003(1) 0.130(7) 0.461(10) 0.485(11) 0.078(5) 0.028(3) 0.236(9) 0.027(2)
cardio 0.005(1) 0.175(7) 0.658(10) 0.685(11) 0.133(6) 0.045(3) 0.391(8) 0.043(2)
musk 0.081(1) 0.343(6) 1.465(10) 2.082(11) 0.578(7) 0.109(2) 10.450(13) 0.118(3)
Waveform 0.010(1) 0.307(6) 1.977(11) 2.947(12) 0.465(7) 0.023(3) 1.610(10) 0.015(2)
speech 0.277(4) 0.517(5) 2.173(10) 3.638(11) 1.605(9) 0.080(1) 35.354(14) 0.110(2)
thyroid 0.003(1) 0.245(5) 2.211(11) 2.762(12) 0.482(8) 0.087(3) 1.317(10) 0.051(2)
PageBlocks 0.007(1) 0.383(5) 4.753(11) 7.146(13) 1.116(8) 0.153(3) 3.086(10) 0.112(2)
satimage-2 0.025(1) 0.413(5) 5.177(10) 11.196(13) 1.388(8) 0.048(3) 10.988(12) 0.039(2)
satellite 0.034(1) 0.503(5) 6.424(10) 14.751(13) 1.692(8) 0.057(3) 12.868(12) 0.046(2)
pendigits 0.015(1) 0.486(5) 6.882(11) 16.735(13) 1.770(9) 0.053(3) 6.050(10) 0.039(2)
annthyroid 0.005(1) 0.460(5) 7.535(11) 15.813(14) 1.810(9) 0.131(3) 5.442(10) 0.094(2)
mnist 0.085(1) 0.729(5) 10.674(10) 200.506(15) 3.051(9) 0.101(2) 41.867(13) 0.118(3)
mammography 0.007(1) 0.497(5) 9.909(12) 20.043(14) 2.340(9) 0.129(3) 6.488(10) 0.080(2)
magic gamma 0.037(1) 1.645(5) 49.115(12) 276.881(15) 15.027(9) 0.903(3) 56.354(14) 0.561(2)
campaign 0.307(1) 3.854(4) 212.156(12) 2605.953(15) 107.709(11) 1.147(2) 857.158(13) 1.227(3)
shuttle 0.059(1) 5.527(3) 746.870(14) 3930.835(15) 104.717(11) 5.552(4) 478.822(13) 2.700(2)
smtp 0.040(1) 4.263(4) 3851.268(14) 12978.204(15) 220.319(12) 0.531(3) 1103.847(13) 0.306(2)
backdoor 2.115(1) 17.893(4) O/M O/M 1215.598(11) 9.674(2) 11305.249(13) 10.953(3)
celeba 0.575(1) 14.060(4) O/M O/M 850.937(11) 6.254(2) O/M 6.642(3)
fraud 2.086(1) 51.627(4) O/M O/M 4901.288(10) 33.245(2) O/M 34.182(3)
cover 0.501(1) 25.353(4) O/M O/M 3674.421(11) 17.667(3) O/M 8.497(2)
census 15.256(1) 197.360(5) O/M O/M 16197.552(10) 156.431(3) O/M 167.366(4)
http 0.120(1) 17.166(4) O/M O/M 2357.628(11) 2.114(3) O/M 1.525(2)

average 0.677(1) 10.758(4) 189.242(11) 772.745(13) 926.930(14) 7.332(2) 516.220(12) 7.341(3)

4.4 Experiments 89

Table 4.6: Run time (in seconds) on real-world datasets (Part 2): fastest in bold; ranking
in parentheses (lower is better). Notations: N/A (No Results), O/M (Out-of-
Memory, >64GB), O/T (Out-of-Time, >12h).

Dataset DIF FB LSCP MO-GAAL ALAD LUNAR ADOD* ADOD

Hepatitis 0.450(13) 0.031(10) 0.268(12) 40.307(16) 31.830(15) 0.770(14) 0.000(1) 0.100(11)
wine 0.496(13) 0.026(9) 0.284(12) 41.805(16) 30.880(15) 0.809(14) 0.000(1) 0.110(11)
lympho 0.517(13) 0.032(10) 0.415(12) 41.446(16) 32.343(15) 0.879(14) 0.000(1) 0.112(11)
WPBC 0.555(13) 0.064(10) 0.533(12) 43.161(16) 33.192(15) 0.931(14) 0.000(1) 0.114(11)
Stamps 0.663(12) 0.026(6) 0.704(13) 45.519(16) 32.971(15) 0.898(14) 0.000(1) 0.105(11)
WDBC 0.847(12) 0.126(11) 0.942(13) 46.946(16) 32.846(15) 1.020(14) 0.000(1) 0.107(10)
wbc 0.829(12) 0.116(11) 0.962(14) 47.518(16) 32.748(15) 0.932(13) 0.000(1) 0.107(10)
arrhythmia 1.038(13) 0.146(11) 1.542(14) 50.633(16) 31.917(15) 1.014(12) 0.015(4) 0.107(8)
pima 1.542(13) 0.073(7) 1.634(14) 49.385(16) 30.929(15) 0.944(12) 0.016(4) 0.108(9)
vowels 2.532(13) 0.169(8) 3.292(14) 98.108(16) 32.575(15) 1.026(12) 0.031(4) 0.115(6)
cardio 2.921(13) 0.393(9) 4.888(14) 150.362(16) 31.347(15) 1.214(12) 0.048(4) 0.118(5)
musk 4.910(12) 1.010(8) 21.969(14) 710.906(16) 30.347(15) 1.276(9) 0.331(5) 0.169(4)
Waveform 4.991(13) 1.186(9) 10.090(14) 674.723(16) 32.970(15) 1.178(8) 0.220(5) 0.146(4)
speech 6.301(12) 0.692(6) 56.534(15) 1135.564(16) 34.936(13) 1.573(8) 0.980(7) 0.146(3)
thyroid 4.981(13) 0.385(7) 8.100(14) 872.353(16) 32.479(15) 1.216(9) 0.332(6) 0.178(4)
PageBlocks 6.971(12) 0.797(7) 13.392(14) 1410.542(16) 32.681(15) 1.583(9) 0.550(6) 0.258(4)
satimage-2 8.083(11) 0.430(6) 18.466(14) 1820.492(16) 34.501(15) 1.681(9) 0.566(7) 0.222(4)
satellite 8.869(11) 0.510(6) 20.052(14) 2196.644(16) 34.062(15) 1.750(9) 0.707(7) 0.253(4)
pendigits 9.803(12) 1.589(7) 17.857(14) 2238.766(16) 33.137(15) 1.708(8) 0.716(6) 0.292(4)
annthyroid 9.128(12) 0.667(6) 15.543(13) 2495.206(16) 33.654(15) 1.759(8) 0.816(7) 0.309(4)
mnist 11.322(11) 0.983(6) 59.895(14) 3089.309(16) 33.500(12) 2.059(8) 1.283(7) 0.335(4)
mammography 9.898(11) 0.568(6) 15.840(13) 2134.093(16) 32.123(15) 1.852(8) 1.162(7) 0.401(4)
magic gamma 25.340(10) 5.808(7) 55.932(13) 2823.087(16) 34.496(11) 6.585(8) 5.592(6) 1.349(4)
campaign 59.581(10) 9.401(6) 1087.362(14) 9057.621(16) 40.160(9) 13.467(7) 36.794(8) 6.495(5)
shuttle 60.473(9) 24.739(7) 190.964(12) 11990.691(16) 40.160(8) 15.812(6) 63.752(10) 8.105(5)
smtp 83.347(9) 13.880(5) 105.221(10) 25022.970(16) 40.135(8) 15.220(7) 172.821(11) 14.418(6)
backdoor 122.164(9) 78.607(7) 6938.666(12) O/T 67.415(6) 79.842(8) 277.521(10) 23.109(5)
celeba 162.863(9) 57.624(8) 3894.577(12) O/T 53.090(6) 55.181(7) 629.568(10) 49.700(5)
fraud 374.678(7) 1143.984(9) 25887.675(11) O/T 84.175(5) 234.578(6) O/M 468.122(8)
cover 397.624(9) 102.576(6) 962.728(10) O/T 76.589(5) 167.252(7) O/M 294.397(8)
census 360.443(7) 1130.943(9) O/T O/T 296.550(6) 927.143(8) O/M 103.457(2)
http 261.809(8) 391.694(9) 548.678(10) O/T 67.167(6) 40.341(5) O/M 110.156(7)

average 62.687(9) 92.790(10) 1288.549(15) 2628.006(16) 47.435(7) 49.484(8) 42.636(6) 33.851(5)

90 4. Adaptive Density Outlier Detection

4.4.4 Results on Real-World Datasets

Table 4.2 shows the ROC score on real-world datasets. ADOD ranked first on 19 out of

32 datasets, achieving an overall average score of 0.852 and outperforming all baselines.

ADOD and OCSVM both achieved a perfect score of 1.0 on musk dataset, while their

scores on http dataset were rounded to 1.0. Despite leading only two datasets, OCSVM

ranked second overall with an average score of 0.817. ECOD led in six datasets, ranking

third overall with a score of 0.803. In contrast, SOS and MO-GAAL underperformed,

with average scores of 0.540 and 0.532, respectively. KPCA performed the worst, with

an average score of 0.483, ranking 15th. It is worth noting that certain algorithms failed

to complete the computation because of out-of-memory (O/M) or out-of-time (O/T) is-

sues on specific large or high-dimensional datasets, with a single runtime limit of 12

hours. For instance, SOS, KPCA, and COF encountered out-of-memory issues on particu-

lar datasets, whereas LSCP and MO-GAAL were plagued by timeouts.

Table 4.3 and Table 4.4 present the P@N and AP scores on 32 real-world datasets.

ADOD consistently ranked first on 14 out of 32 datasets across both metrics, achieving

an overall average score of 0.457 for P@N and 0.442 for AP, significantly outperforming

all baselines. Notably, ADOD achieved a perfect score of 1.0 on musk dataset for both

metrics. OCSVM followed in terms of overall performance, ranking first on four datasets,

with average scores of 0.385 for P@N and 0.391 for AP. Compared to OCSVM, ADOD

exhibits improvements of approximately 18.70% in P@N and 13.04% in AP. In contrast,

SOS performs the worst, with average scores of 0.126 for P@N and 0.130 for AP, ranking

15th. Notably, several algorithms achieve a score of 0 on certain datasets, such as wine,

smtp, and fraud, in terms of P@N score, suggesting that some algorithms (including

FastABOD, SOS, KPCA, COF, and MO-GAAL) struggle to handle the challenging charac-

teristics of these datasets. Moreover, KPCA and MO-GAAL yield a score of 0 on SMTP

dataset for AP.

Fig. 4.7 shows the CD between 15 outlier detection algorithms in terms of ROC,

P@N, and AP scores on 25 datasets after removing those containing N/A, O/T, and O/M.

4.4 Experiments 91

123456789101112131415

12.9200KPCA
12.6400SOS
11.5200ALAD
10.9600MO-GAAL
10.1200COF

7.9400LOF
7.9200DIF
7.6000FB

7.5200 FastABOD
7.1400 LSCP
6.5600 LUNAR
5.1600 ECOD
4.8200 OCSVM
4.3600 k-NN
2.8200 ADOD

(a) CD diagram of ROC score

123456789101112131415

12.0200SOS
11.2400ALAD
10.6800MO-GAAL
10.0400COF

9.7400KPCA
8.5600LOF
8.2400DIF
8.2400FastABOD

8.0800 FB
7.3400 LUNAR
7.1000 LSCP
5.4600 k-NN
5.0400 ECOD
4.9600 OCSVM
3.2600 ADOD

(b) CD diagram of P@N score

123456789101112131415

12.4000SOS
11.6400KPCA
10.6400MO-GAAL
10.3200ALAD
10.3200COF

8.7400LOF
8.4400FB
7.9200FastABOD

7.6400 DIF
7.3600 LSCP
6.8800 LUNAR
5.2000 k-NN
4.9800 OCSVM
4.6800 ECOD
2.8400 ADOD

(c) CD diagram of AP score

Figure 4.7: CD diagram illustrating pairwise statistical difference comparison: ADOD
outperforms baselines on ROC, P@N, and AP scores, with statistically signif-
icant results on P@N score.

92 4. Adaptive Density Outlier Detection

ECOD
LO

F
k-N

N

Fas
tABOD

ADOD

ADOD*
ALA

D

LU
NAR DIF FB

SOS
COF

KPCA

OCSVM
LS

CP

MO-G
AAL

10
3

10
2

10
1

10
0

10
1

10
2

10
3

10
4

10
5

Ti
m

e
(s

ec
on

ds
)

Out of Time (>12h)
Out of Memory (>64GB)

Figure 4.8: Run time comparison of 16 algorithms on 32 real-world datasets. Boxplot
illustrates the median, quartiles, and outliers of log-scaled runtime for each
algorithm, sorted by their average runtime.

ADOD ranked first on 13 out of 25 datasets based on ROC score and on 10 out of 25

datasets according to P@N and AP scores, achieving the highest average rank across

these metrics. ADOD demonstrated statistically significant differences in P@N scores

compared to other algorithms, indicated by the lack of connections between ADOD and

the other algorithms in the CD diagram. k-NN, OCSVM, and ECOD also performed well,

usually ranking high. In contrast, algorithms such as KPCA, COF, MO-GAAL, ALAD, and

SOS ranked low across these metrics.

4.4 Experiments 93

4.4.5 Runtime Analysis

Fig.4.8 provides a boxplot illustration based on the runtime in Table4.5 and Table 4.6. As

shown in this figure, ADOD refers to the optimized algorithm with NNS, while ADOD*

refers to the original algorithm without NNS optimization. ADOD* ranked 6th with an

average time of 42s but suffered from out-of-memory errors on datasets exceeding 200k

samples. In contrast, the optimized ADOD ranked 5th with an average time of 33s, main-

taining a relatively low and stable runtime across most datasets and demonstrating its ef-

ficiency and reliability in handling large datasets. For example, ADOD (49s) was approx-

imately 12.8 times faster than ADOD* (629s) on celeba dataset (114k). SOS, COF, and

KPCA encountered out-of-memory errors when processing backdoor (87k) and celeba

(114k) datasets. ECOD, with an average runtime of less than 1s, exhibited the shortest

runtime among all algorithms. Meanwhile, LSCP (average time: 1,288s) and MO-GAAL

(average time: 2,628s) ran over 12 hours on large or high-dimensional datasets, high-

lighting their computational inefficiencies in these cases.

Notably, the performance difference between ADOD and ADOD* was negligible.

Comparing their performance on each dataset (ADOD - ADOD*), we obtained an av-

erage difference of 0.0035 in ROC score with a standard deviation of 0.0171, an average

difference of -0.0054 in P@N score with a standard deviation of 0.0394, and an average

difference of 0.0038 in AP score with a standard deviation of 0.0183. Thus, NNS opti-

mization improves efficiency and reduces memory overhead while remaining consistent

in terms of performance compared with the original algorithm ADOD*.

4.4.6 Visualization on Real-World Datasets

The first column of Fig. 4.9 shows the visualization of musk dataset. ADOD achieved

ROC, P@N, and AP scores of 1.0, indicating that it accurately identified all outliers. The

visualization results show that the outliers detected by ADOD perfectly matched the dis-

tribution of the true labels and were located in separate clusters far from the main clus-

ters. The second column of Fig. 4.9 shows the visualization of magic gamma dataset.

94 4. Adaptive Density Outlier Detection

Figure 4.9: Visualization of musk, magic gamma, and pima datasets using
UMAP [MHM18], comparing ground truth labels (first row) and ADOD
predictions (second row) with inliers in blue and outliers in red.

ADOD achieved ROC, P@N, and AP scores of 0.728, 0.549, and 0.66, respectively. In

the ground truth, outliers were scattered throughout the data distribution, whereas the

outliers detected by ADOD were primarily located at the edges of the data distribution.

Compared with the outliers in the ground truth, predicted outliers appeared to better

represent the characteristics of outliers. The third column of Fig. 4.9 shows the visu-

alization of pima dataset. ADOD achieved ROC, P@N, and AP scores of 0.735, 0.556,

and 0.522, respectively. Compared with the outliers in the ground truth, the outliers

predicted by ADOD better reflected the separation from the inliers, as indicated by two

completely red clusters of outliers.

This discrepancy between evaluation metrics and human intuition is an interesting

discovery because we often rely on evaluation metrics to assess the performance of out-

lier detection algorithms. The visualization revealed certain cases where the results were

more valuable, even if the metric scores were not high. Through visualization, we can in-

4.5 Conclusion 95

tuitively observe that the outliers detected by ADOD on specific datasets are more consis-

tent with human intuition and are typically located at the edges of the data distributions

or form separate small clusters.

4.5 Conclusion

This chapter proposes a novel unsupervised Adaptive Density Outlier Detection (ADOD)

algorithm for handling data with varying densities. The primary innovations of ADOD

included adaptive neighborhood boundaries and density consistency scoring. In addi-

tion, we optimized ADOD using nearest neighbor search to improve its efficiency and

reduce memory usage. The experimental results demonstrated that ADOD significantly

outperformed 14 other outlier detection algorithms from different categories in key per-

formance metrics, including ROC, P@N, AP scores, and execution time. In the parameter

sensitivity analysis, we fixed the values of the primary parameters. We demonstrated

their robust performance, which enabled ADOD to be regarded as a parameter-free

method in practical applications, eliminating the need for users to tune the parameters

manually. ADOD is adaptable and scalable while maintaining high accuracy, providing an

effective outlier detection solution, and expanding its application potential in real-time

data processing.

96 4. Adaptive Density Outlier Detection

97

Chapter 5

Dynamic Graph Construction for

Nonlinear Dimensionality Reduction

Most well-known graph-based dimensionality reduction algorithms, such as t-SNE and

UMAP, use a two-step approach: first, to construct a graph out of the high-dimensional

data and then to embed the graph into the low-dimensional space. The main challenges

of these algorithms include how to construct a good graph and how to maintain the

similarity structure of the high-dimensional data in the low-dimensional space. This

chapter proposes DynoGraph, a novel algorithm called Dynamic Graph construction for

Nonlinear dimensionality reduction, to address these two challenges. First, we develop

an adaptive neighborhood graph construction method that accurately captures the in-

trinsic geometry of the high-dimensional data. Second, for the first time, we introduce

a dynamic graph modification process during dimensionality reduction, ensuring that

the data structure in the low-dimensional space faithfully reflects the high-dimensional

data. For vertex pairs connected by edges in high-dimensional space exhibit far apart

in low-dimensional space, additional edges are inserted to strengthen the connection be-

tween them. Conversely, for vertex pairs not connected in high-dimensional space exhibit

close together in the low-dimensional space, edges are deleted to reduce the connection

between them. These adjustments help to update their positions in subsequent embed-

98 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

dings, aligning them toward the high-dimensional data. Extensive experiments have

demonstrated the superiority of DynoGraph against various comparative algorithms in

tasks such as visualization, classification, and clustering.

Parts of the material presented in this chapter have been published in [QPQ+24]:

”Li Qian, Claudia Plant, Yalan Qin, Jing Qian, Christian Böhm. DynoGraph:

Dynamic Graph Construction for Nonlinear Dimensionality Reduction. 2024

IEEE International Conference on Data Mining (ICDM), pp. 827-832, 2024.”

where Li Qian was responsible for the development of the main concepts, the implemen-

tation of the algorithm, most of the experimental evaluation, and writing the majority

of the paper; Claudia Plant proposed the initial idea of applying graph data compression

to dimensionality reduction and dynamically modifying the graph structure; Yalan Qin

was responsible for experiments on selected comparison algorithms and wrote the corre-

sponding parts of the paper; Jing Qian proposed the research idea of adaptive threshold

setting when dynamically modifying the graph structure during dimensionality reduc-

tion. Christian Böhm and Claudia Plant supervised and guided the research. All co-

authors participated in the discussion of concept development and the revision of the

manuscript.

5.1 Introduction

Nonlinear dimensionality reduction is an unsupervised learning task that targets trans-

forming high-dimensional data to a low-dimensional space while preserving the intrin-

sic structure of the original data [LV07]. It has a wide range of applications, covering

many fields like image processing, computer vision, bioinformatics, genomics, and fi-

nancial analysis [EMK+21]. A practical nonlinear dimensionality reduction method not

only helps visualize high-dimensional data, making it more accessible, but also promotes

interpretability in downstream tasks such as clustering, classification, and outlier detec-

tion [AHT20].

5.1 Introduction 99

(a) k-NNG (k=2) (b) k-NNG (k=3) (c) k-NNG (k=4)

(d) -NNG (=2) (e) -NNG (=2.5) (f) -NNG (=3)

(g) ANG w/o MNN & MST (h) ANG w/o MST (i) ANG

Figure 5.1: Graph construction techniques on the toy dataset. Showcases three classes,
each with 50 nodes, derived from a Gaussian distribution with a variance
ratio of 1:2:4. Different colors indicate different components; the black line
represents the normal edge, and the red line represents the edge where ANG
connects the different components through MST. The red dashed circles rep-
resent the ϵ-range for nodes in ϵ-NNG and the ϵi-range in ANG. For a fair
comparison with k-NNG and ϵ-NNG, the minimum five neighbors condition
in ANG is omitted.

100 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

In nonlinear dimensionality reduction, graph-based methods, such as Isometric fea-

ture mapping (Isomap) [TdSL00], t-SNE [vdMH08], and Uniform Manifold approxima-

tion and Projection (UMAP) [MHM18], involve two main steps: graph construction and

node embedding. First, high-dimensional data points are treated as nodes in the graph,

and edges are formed based on the proximity between these points. Second, nodes are

embedded into a low-dimensional space based on this graph. The effectiveness of these

methods depends heavily on graph quality. In dimensionality reduction, the commonly

used graph construction methods are k-NNG and ϵ-NNG [QZCS18]. The k-NNG is con-

structed by connecting each node to its k nearest neighbors. However, a fixed k may not

reflect the actual proximity. For example, nodes are connected even if they are far away

because they belong to the nearest k neighbors of a node. The ϵ-NNG is constructed by

connecting all node pairs whose distance is less than a fixed threshold ϵ. However, a

fixed ϵ can result in overly sparse or dense regions in the graph when handling data with

varying densities. Fig. 5.1(a)-(g) illustrate that, even with the extensive tuning of the

parameters k or ϵ, it is still challenging to construct a graph that accurately represents

the three distinct classes in a toy dataset with varying densities.

Maintaining the similarity structure of the high-dimensional data in the low-

dimensional space is another challenge, leading to distortion. Distortion refers to the

alteration or loss of relationships and properties of the original data during the transfor-

mation from high-dimensional to low-dimensional space [CVLD19]. This distortion oc-

curs when close node pairs in high-dimensional space become distant in low-dimensional

space or vice versa. Distortion is inevitable in graph-based methods because they rely

heavily on the graph structure to update the embedding in the low-dimensional space.

However, this graph structure does not accurately reflect the actual distances between

high-dimensional data points [CPA+20]. Specifically, densely connected regions in the

graph may appear very close in the embedding, while sparsely connected regions may

end up further apart.

We propose a novel algorithm, Dynamic Graph construction for Nonlinear dimen-

sionality reduction (DynoGraph), to address these challenges. The primary contributions

5.2 Related Work 101

include:

1. We propose an adaptive neighborhood graph construction method that captures

the intrinsic geometric structure of the data, avoids global fixed parameters, and

adapts to data with varying densities and sizes.

2. We introduce for the first time a dynamic graph modification process during di-

mensionality reduction to mitigate distortion and maintain consistency with high-

dimensional data.

3. We design an objective function called the Graph Structure Representation Mea-

sure, which applies attractive forces to vertex pairs with edges and repulsive forces

to vertex pairs without edges.

5.2 Related Work

We categorize dimensionality reduction methods into graph-based and non-graph-based

methods. For non-graph-based methods, the classical algorithm Principal Component

Analysis (PCA) [Smi02] converts potentially correlated variables into a set of linearly

uncorrelated variables, known as principal components, by orthogonal transformation,

and the core idea is to find the direction in which the data change the most. Multidi-

mensional Scaling (MDS) [BG05] preserves the distances between pairs of data points as

close as possible to their distances in the high-dimensional space during dimensionality

reduction. However, when dealing with the reconstruction and unfolding of nonlinear

data structures such as manifolds, they can only show projections from specific view-

points, not fully unfolding them.

For graph-based methods, Locally-linear Embedding (LLE) [RS00] approximates each

data point with a linear combination of its nearest neighbor points and thus fails to cap-

ture the overall structure of the data accurately. Laplacian Eigenmaps [BN03] constructs

the Laplacian matrix, performs spectral decomposition, and selects the eigenvectors cor-

responding to the smallest non-zero eigenvalues as the embedding vectors. This method

102 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

effectively preserves the local structure but fails to unfold the global manifold structure.

t-SNE [vdMH08] achieves dimensionality reduction by minimizing the probability distri-

bution between data points in low- and high-dimensional spaces. LargeVis [TLZM16], a

variant of t-SNE, is optimized for large datasets. UMAP [MHM18] assumes that the data

is uniformly distributed on a locally connected Riemannian manifold and maintains the

topology of the data for the neighborhoods of each data point. Space-based Manifold

Approximation and Projection (SpaceMAP) [ZT22] is a variant of UMAP that solves the

crowding problem by transforming the distance metric of the space. LargeVis, UMAP,

and SpaceMAP emphasize maintaining compactness within classes while ensuring clear

separation between different classes. Unlike the previously mentioned methods that only

consider pairs of data points, TriMap [AW19] utilizes the relative distances of triples to

maintain the local and global structure of the data.

The above graph-based methods all rely on the quality of the graph and suffer from

distortion problems in embedding updates, resulting in embedding representations de-

viating from the original data. In contrast, DynoGraph uses an adaptive neighborhood

graph that adjusts to the density and size of the dataset and, for the first time, introduces

a dynamic graph modification process during dimensionality reduction, ensuring that the

structure remains aligned with the original data.

5.3 Methodology

Fig. 5.2 provides the overall framework for DynoGraph, starting with the original data

X. First, DynoGraph constructs an adaptive neighborhood graph (ANG) labeled G to

describe the proximity between data points in X. Next, DynoGraph utilizes G to update

the embedding Z in the low-dimensional space. As Z evolves, if node pairs exhibit devia-

tions from the high-dimensional data structure in the low-dimensional space, DynoGraph

constructs a modified graph Gmod using X, Z, and G to adjust the connections between

these node pairs. This feedback loop establishes a mechanism where each new round

of updates to Z is based on Gmod, which in turn is adjusted according to changes in Z.

5.3 Methodology 103

𝑋 𝑍
ANG

Construction
Embedding

Updates

Graph
Modification

𝐺

𝐺
𝐺𝑚𝑜𝑑 𝑍

X

Figure 5.2: Overview of the DynoGraph algorithm.

Through this dynamic graph modification process, Z is continuously optimized and ac-

curately aligned to high-dimensional data. To the best of our knowledge, this is the first

time that dynamic graph modification techniques have been introduced into dimension-

ality reduction to mitigate distortion and maintain data fidelity.

5.3.1 Problem Definition

We aim to perform dimensionality reduction on a high-dimensional dataset to obtain

a low-dimensional embedding while preserving the intrinsic structure of the data. The

dataset is defined as X = {x1,x2, . . . ,xn} ∈ Rn×d, where each data point xi ∈ Rd is a

vector in d-dimensional space, and n denotes the number of data points. The objective

is to compute a corresponding low-dimensional embedding Z = {z1, z2, . . . , zn} ∈ Rn×m,

where each embedded point zi ∈ Rm is a vector in m-dimensional space.

5.3.2 Adaptive Neighborhood Graph

Adaptive Neighborhood Graph (ANG) constructs a graph G(V,E) from a dataset X. Each

vertex in the vertex set V = {v1, . . . , vn} corresponds to a data point in X, and the edge

set E represents proximity between data points. The following outlines the main steps

of ANG, with details as shown in Algorithm 5:

104 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

Adaptive ϵi Calculation

Traditional ϵ-NNG relies on a globally fixed ϵ or the heuristic rule based on the aver-

age distance to its k-th nearest neighbor [̇Ink23]. However, choosing the appropriate k

remains a challenge. Empirical evidence suggests that adapting the number of nearest

neighbors to ⌊
√
n⌋ can adjust to the size of the dataset, thus avoiding the limitation of

fixed k [DHS12].

Inspired by these studies, we propose a core innovation of ANG: an adaptive ϵi is

calculated for each point xi. ANG determines ϵi based on the average distance to its

⌊
√
n⌋-th nearest neighbor. This approach adapts the neighborhood range according to

the size of the dataset and also enhances flexibility and accuracy when handling datasets

with varying densities.

Additionally, we employ nearest neighbor search [JDS11] to efficiently construct the

graph. For each data point xi, the nearest neighbor search returns a list of neighbors Ni

and their corresponding distances Di in ascending order of distance. To ensure sufficient

candidate neighbors to calculate ϵi and subsequently determine mutual neighbors, we

set the target number of neighbors for the nearest neighbor search to 3⌊
√
n⌋, as this

multiplier of 3 is an empirical choice [vdMH08].

Edge Formation

In the ANG algorithm, edge formation is based on two criteria. Firstly, the algorithm

ensures that each node is connected to at least five nearest neighbors. This criterion

is designed to avoid numerous isolated or fragmented nodes, especially in sparser re-

gions, and to ensure a certain extent of basic graph connectivity [TdSL00]. Additional

connections are established based on the mutual nearest neighbors criterion, where an

edge is formed between nodes vi and vj only if their distance is less than the minimum

of ϵi and ϵj. This selective criterion ensures that only the most relevant and meaningful

relationships are retained.

5.3 Methodology 105

Algorithm 5: Adaptive Neighborhood Graph
Input: Dataset X = {x1, . . . ,xn} ∈ Rn×d

Output: Graph G(V,E)
1 Initialize G(V,E) with V = {v1, . . . , vn} and E = ∅
2 for i = 1 to n do

// Nearest neighbor search

3 (Ni, Di) = NearestNeighbors(xi, ⌊3
√
n⌋)

// Adaptive ϵ calculation

4 ϵi = Mean(Di[: ⌊
√
n⌋])

// Edge formation

5 for k = 1 to |Ni| do
6 j = Ni[k]

// Ensure minimum five neighbors

7 if k ≤ 5 then
8 E = E ∪ {(vi, vj)}

// Mutual nearest neighbors

9 else if Di[k] ≤ min(ϵi, ϵj) then
10 E = E ∪ {(vi, vj)}

// Ensure graph connectivity

11 Identify disconnected components {C1, . . . , Cg} in G
12 if g > 1 then
13 Ecandidate = {(vr, vs,distance(vr, vs)) | vr ∈ Cp, vs ∈ Cq, p ̸= q}
14 Emst = Kruskal(Ecandidate)
15 E = E ∪ Emst

16 return G(V,E)

Graph Connectivity

In the final stage, ANG identifies disconnected components of the graph. If multiple

components exist, it forms a set Ecandidate of candidate edges weighted by the mini-

mum distance between nodes vr and vs across different components. Kruskal’s algo-

rithm [CLRS09] is then applied to Ecandidate to select a subset of these edges, which forms

the MST, denoted as Emst. This subset connects all disconnected components with mini-

mal total weight and is integrated into the existing set of edges E, ensuring connectivity

of the graph G. This crucial step captures the complete topology of the data and pre-

serves global structure, which is often neglected in dimensionality reduction techniques.

106 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

Fig. 5.1 illustrates the ANG construction process when the condition requiring each

point to connect to at least five nearest neighbors is omitted. Fig. 5.1(g) shows the

graph where each point connects to its neighbors within the adaptive ϵi-range, ensuring

a relatively balanced number of neighbors across points, regardless of density variations.

Fig. 5.1(h) builds on Fig. 5.1(g) by imposing the mutual nearest neighbors constraint,

which accurately identifies the three components. Finally, Fig. 5.1(i) demonstrates the

use of MST to connect the distinct components with the minimum and closest edges

required to ensure graph connectivity.

5.3.3 Graph Modification

Determining Adaptive Threshold

In graph modification, it is crucial to accurately identify the vertex pairs that need to be

adjusted, particularly to distinguish between far and near vertex pairs based on proximity

and connection in the low-dimensional space. It is common practice to compute the

distances between all vertex pairs in the low-dimensional space, flatten these distances

into an array, sort them in ascending order, and then manually set predefined thresholds.

For example, the first 5% of the minimum distances can be defined as near, while the

last 10% of the maximum distances can be defined as far. However, different datasets

can vary greatly in density. For example, some datasets may be suitable for determining

the first 1% of distance as near, while others may need to consider a larger threshold of

10% due to different densities. Fixed thresholds may not accurately capture proximity in

all cases. In addition, this approach does not take into account the inherent structure of

the original data and the graph constructed from it.

To address this issue, we propose a data-driven strategy for deriving adaptive thresh-

olds from the data distribution of the high-dimensional space and graph structure. In-

stead of defining the threshold directly in the low-dimensional space, we returned to the

high-dimensional data to analyze it and then applied it to the low-dimensional space. It

maintains the consistency of spatial proximity in both high- and low-dimensional spaces

5.3 Methodology 107

A B

C

(a)Edge Deletion

A B

D

(b)Edge Insertion

Figure 5.3: Edge modification strategies.

during the dimensionality reduction process. Specifically, we define the maximum dis-

tance for vertex pairs with edges in the high-dimensional space as far, labeled distedge,

i.e., vertex pairs beyond this distance are not connected. The minimum distance for ver-

tex pairs without edges is near, labeled distnoedge, i.e., vertex pairs less than this distance

are all connected. We record the location of these two distances in the flattened, sorted

high-dimensional distance array, labeled Pfar and Pnear, respectively. Finally, we use the

same locations in the flattened, sorted low-dimensional distance array to find Tfar and

Tnear, corresponding to the adaptive distance thresholds in the low-dimensional space.

The Tfar is a lower bound on the distance in the low-dimensional space that identifies

vertex pairs that should not be connected, while Tnear is an upper bound on the distance

that identifies vertex pairs that should be connected.

Reducing Connections of Vertex Pairs without Edges

The distortion problem is serious when vertex pairs that are not connected by edges in

high-dimensional space become near (< Tnear) in the low-dimensional space. This phe-

nomenon contradicts the original data, as vertex pairs not connected in high-dimensional

spaces are typically due to their greater distances. As shown in Fig. 5.3(a), the vertex pair

108 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

A and B (denoted in red) are near in the low-dimensional space, but they are not directly

connected. To mitigate such distortion, the connections that lead to improper close-

ness need to be reduced. This reduction can be achieved by identifying their common

neighbors (denoted in orange) and randomly removing one connection. For example,

the connection between common neighbor C and vertex A is highlighted in a red cross

mark, indicating that the edge should be deleted to reduce the connection between A and

B. Reduce connections only if there are multiple common neighbors to keep the graph

connectivity.

Strengthening Connections of Vertex Pairs with Edges

Distortions also occur when vertex pairs that are connected by edges in high-dimensional

space become far (> Tfar) in low-dimensional space. Fig. 5.3(b) illustrates such a sce-

nario where the vertex pairs A and B are far in the low-dimensional space and are di-

rectly connected. To mitigate this distortion, we strengthen the connections by inserting

an edge between a vertex and a non-common neighbor vertex (denoted in green) of its

counterpart. For example, D is a non-common neighbor vertex of B. As indicated in the

red line, we insert a new edge between D and A.

Algorithm 6 describes in detail the graph modification process, which adjusts the

connections between vertex pairs based on their relative distances in the high- and low-

dimensional spaces and the original graph G constructed by Algorithm 5. First, the

algorithm calculates the flattened distance array DX and DZ for all vertex pairs in the

high- and low-dimensional spaces (line 2). Relying on DX , two positions Pfar and Pnear

are found, which represent the maximum distances for vertex pairs with edges distedge

and the minimum distances for vertex pairs without edges distnoedge, respectively (lines

3-6). These positions are then applied in DZ to determine the adaptive thresholds Tfar

and Tnear by using the QuickSelect algorithm [CFNTV16] in the low-dimensional space,

providing a guide for the adjustment of the connections (lines 7-8). For each vertex

pair, the algorithm decides whether to strengthen or reduce the connection between

5.3 Methodology 109

Algorithm 6: Graph Modification
Input: Dataset X = {x1, . . . ,xn} ∈ Rn×d, Graph G(V,E), Embedding

Z = {z1, . . . , zn} ∈ Rn×m

Output: Modified graph Gmod(V,Emod)
1 Initialize Gmod(V,Emod) with Emod = E
// Determining adaptive threshold

2 Compute flattened distance array of all vertex pairs in X and Z: DX , DZ

3 distedge = max({d|(vi, vj) ∈ E, d = DX [i, j]})
4 distnoedge = min({d|(vi, vj) /∈ E, d = DX [i, j]})
5 Pfar = |{(i, j)|DX [i, j] ≤ distedge}|
6 Pnear = |{(i, j)|DX [i, j] ≤ distnoedge}|
7 Tfar = QuickSelect(DZ , Pfar)
8 Tnear = QuickSelect(DZ , Pnear)
9 for each pair (vi, vj) do

10 Ni = {vk | (vi, vk) ∈ Emod}
11 Nj = {vk | (vj, vk) ∈ Emod}
12 Ncommon = Ni ∩Nj

13 Nnci = Ni \Ncommon

14 Nncj = Nj \Ncommon

// Strengthening connections

15 if DZ [i, j] > Tfar and (vi, vj) ∈ E then
16 Candidateins = {(vi, vk)|vk ∈ Nncj} ∪ {(vj, vk)|vk ∈ Nnci}
17 randomly select (v, vk) from Candidateins
18 Emod = Emod ∪ {(v, vk)}

// Reducing connections

19 else if DZ [i, j] < Tnear and (vi, vj) /∈ E and |Ncommon| > 1 then
20 Candidatedel = {(vi, vk), (vj, vk)|vk ∈ Ncommon}
21 randomly select (v, vk) from Candidatedel
22 Emod = Emod \ {(v, vk)}

23 Return Gmod(V,Emod)

110 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

them based on these two thresholds. If the distance between a vertex pair with an edge

in the low-dimensional space exceeds Tfar, an edge will be randomly inserted between

one of their non-common neighbors (lines 9-18). Conversely, if the distance between

a vertex pair without an edge is less than Tnear and more than one common neighbor

exists, the connection with one common neighbor will be randomly deleted (lines 19-

22). Eventually, the algorithm returns the modified graph Gmod(V,Emod), where Emod

denotes the adjusted set of edges.

5.3.4 Objective Function for Embedding

In this section, we integrate three critical components: Vertex Pair Probability Function

(VPPF), Graph Structure Representation Measure (GSRM), and Weighted Majorization

(WM). The VPPF establishes a probabilistic basis for modeling the proximity of vertex

pairs in the embedding space, reflecting their connectivity in the original graph. The

GSRM, as an objective function, then utilizes the VPPF to attract vertex pairs with edges

and repel vertex pairs without edges, evaluating the overall representation quality of the

graph structure. Further, WM is employed to approximate the solution of the GSRM,

providing the necessary parameters for effective embedding.

Vertex Pair Probability Function

The Vertex Pair Probability Function (VPPF) mathematically models the probability based

on the distance between vertex pairs in a low-dimensional space, considering whether an

edge exists between them in the original graph. The VPPF is denoted by Pvp(||zi − zj||),

and its expression is:

Pvp(||zi − zj||) =


1
2
− 1

2
erf

(
||zi−zj ||−µ√

2σ

)
if (vi, vj) ∈ E

1
2
+ 1

2
erf

(
||zi−zj ||−µ√

2σ

)
if (vi, vj) /∈ E

(5.1)

where zi and zj denote the embedding vectors of the vertex pair vi and vj, respec-

tively. ||zi − zj|| denotes the Euclidean distance between these two vertices in the low-

5.3 Methodology 111

dimensional space, quantifying their proximity. By setting µ to 0 and σ to 1, we exploit

the properties of the standard Gaussian distribution. This choice simplifies the model

computation and ensures consistency of probability measures and standardization of the

low-dimensional space. By introducing the error function (erf), the VPPF transforms the

Euclidean distance between embedding vectors into a probability value between 0 and

1. For the vertex pair with an edge (vi, vj) ∈ E, the probability monotonically decreases

as the distance increases, ranging from 1 to 0. Therefore, a higher probability value in-

dicates that the vertex pair with an edge is close in the lower-dimensional space. This

reflects that vertex pairs connected in the high-dimensional space should be relatively

close in the lower-dimensional space. For the vertex pair without an edge (vi, vj) /∈ E,

the probability monotonically increases as the distance increases, ranging from 0 to 1.

Thus, a higher probability value indicates that the vertex pair without an edge is farther

apart in the lower-dimensional space. This result suggests that vertex pairs not connected

in the high-dimensional space should be relatively farther away in the low-dimensional

space. This function has a gentle slope at the ends and a larger slope in the middle

region, thus naturally focusing the optimization on those vertex pairs with intermediate

distances that require adjustment.

Graph Structure Representation Measure

Based on VPPF, the Graph Structure Representation Measure (GSRM) is designed as

an objective function to evaluate the quality of graph structure representation in low-

dimensional space. By transforming local estimations of the vertex pair probabilities

into a comprehensive measure, GSRM evaluates how well the embedding maintains the

original graph structure. The mathematical definition of GSRM is as follows:

GSRM(Z) =
1

Nvp

[∑
1≤i<j≤n

− log2 (Pvp(||zi − zj||))

]
(5.2)

where Nvp represents the total number of vertex pairs, serving as a normalization factor

for the overall measure. The core of GSRM utilizes the negative logarithm of Pvp(||zi −

112 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

zj||), which further amplifies the effect of the VPPF on this measure. For vertex pairs

with edges, we expect them to be as close as possible in the low-dimensional space so

that their VPPF is approaching 1. For vertex pairs without edges, we expect them to be as

distant as possible so that their VPPF is also approaching 1. In this way, the minimization

of GSRM aims to apply an attractive force to vertex pairs with edges and a repulsive force

to vertex pairs without edges, thus ensuring that the relative positions of the vertex pairs

in the low-dimensional space accurately reflect the connection patterns in the original

graph structure.

Weighted Majorization for Embedding

Weighted Majorization (WM) [dL05], derived from MDS [BG05], is optimized for non-

metric stress minimization. It handles non-metric distance functions while allowing dif-

ferential weighting of vertex pair distances. By minimizing the weighted sum of squared

differences between actual and target distances in the low-dimensional space, WM effec-

tively preserves the structural properties of the graph. The optimization objective of WM

is expressed as follows:

WM(Z) =
∑

1≤i<j≤n

wij(||zi − zj|| − dij)
2 (5.3)

where wij is the weight assigned to each vertex pair and dij is their target distance in the

low-dimensional space. The parabola of the quadratic error function of WM is similar to

the curve of GSRM, which supports the use of WM as a suitable approximation of GSRM.

It is consistent with the approach taken in [PBB20], where WM is also used to approxi-

mate the objective function, which is very similar to the GSRM function. By aligning the

first and second partial derivatives of GSRM and WM to the Euclidean distances between

vertex pairs, we ensure that the approximation of WM precisely follows the optimization

trajectory of GSRM. The derivative equations establishing this connection are:

5.3 Methodology 113

∂ [− log2 (Pvp(||zi − zj||))]
∂||zi − zj||

=
∂ [wij(||zi − zj|| − dij)

2]

∂||zi − zj||
(5.4)

∂2 [− log2 (Pvp(||zi − zj||))]
∂||zi − zj||2

=
∂2 [wij(||zi − zj|| − dij)

2]

∂||zi − zj||2
(5.5)

On the right side of Eq. (5.4), the first-order derivative of WM with respect to the

Euclidean distance ||zi − zj|| is formulated as follows:

∂ [wij(||zi − zj|| − dij)
2]

∂||zi − zj||
= 2wij(||zi − zj|| − dij) (5.6)

The second-order derivative of WM in Eq. (5.5) is formulated as follows:

∂2 [wij(||zi − zj|| − dij)
2]

∂||zi − zj||2
= 2wij (5.7)

For the left side of Eq. (5.4), integrating the VPPF for vertex pairs with edges, the first-

order derivative of GSRM with respect to the Euclidean distance ||zi − zj|| as follows:

∂ [− log2 (Pvp(||zi − zj||))]
∂||zi − zj||

=

√
2e−

||zi−zj ||
2

2

√
π ln 2

(
1− erf

(
||zi−zj ||√

2

)) (5.8)

For vertex pairs without edges, the first-order derivative of GSRM can be described as

follows:

∂ [− log2 (Pvp(||zi − zj||))]
∂||zi − zj||

=

√
2e−

||zi−zj ||
2

2

√
π ln 2

(
1 + erf

(
||zi−zj ||√

2

)) (5.9)

For vertex pairs with edges, the second-order derivative of GSRM in Eq. (5.5) is for-

mulated as follows:

114 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

∂2 [− log2 (Pvp(||zi − zj||))]
∂||zi − zj||2

=
2e−||zi−zj ||2

π ln 2
(
1− erf

(
||zi−zj ||√

2

))2 −
√
2||zi − zj||e−

||zi−zj ||
2

2

√
π ln 2

(
1− erf

(
||zi−zj ||√

2

))
(5.10)

For vertex pairs without edges, the second-order derivative of GSRM is shown below:

∂2 [− log2 (Pvp(||zi − zj||))]
∂||zi − zj||2

=
2e−||zi−zj ||2

π ln 2
(
1 + erf

(
||zi−zj ||√

2

))2 +

√
2||zi − zj||e−

||zi−zj ||
2

2

√
π ln 2

(
1 + erf

(
||zi−zj ||√

2

))
(5.11)

By substituting the second-order derivative formulas of GSRM and WM for vertex

pairs with edges (Eqs. (5.10) and (5.7)) and vertex pairs without edges (Eqs. (5.11)

and (5.7)), respectively, into Eq. (5.5), we can derive the expression for wij:

wij =
2

π ln 2
e−∥zi−zj∥2(

1∓ erf
(

∥zi−zj∥√
2

))2 ∓
∥zi−zj∥√
2π ln 2

e−
(∥zi−zj∥)

2

2(
1∓ erf

(
∥zi−zj∥√

2

)) (5.12)

By integrating the first-order derivative expressions of GSRM and WM for vertex pairs

with edges (Eqs. (5.8) and (5.6)) and vertex pairs without edges (Eqs. (5.9) and (5.6)),

respectively, we obtain the formula for dij that incorporates the parameter wij as follows:

dij = ∥zi − zj∥ ∓
1√

2π ln 2
e−

∥zi−zj∥
2

2

wij

(
1∓ erf

(
∥zi−zj∥√

2

)) (5.13)

In the ∓ notation used in these equations, the minus sign (−) indicates vertex pairs

with edges, and the plus sign (+) indicates vertex pairs without edges.

Vertices in the low-dimensional space are iteratively updated to optimize Eq. (5.3) by

the following update rule for WM:

zi =

∑
j ̸=i wij

(
zj + dij

zi−zj
||zi−zj ||

)
∑

j ̸=i wij

(5.14)

5.3 Methodology 115

Algorithm 7: DynoGraph
Input: Dataset X = {x1, . . . ,xn} ∈ Rn×d, Target dimension m
Output: Embedding Z = {z1, . . . , zn} ∈ Rn×m

1 Initialize Z with uniform distribution over [0, 1]
2 Construct graph G(V,E) using Algorithm 5
3 Initialize Gcurrent = G
4 for iter = 0 to itergraph do
5 if iter > 0 then
6 Construct modified graph Gmod(V,Emod) using Algorithm 6
7 Gcurrent = Gmod

8 repeat
9 UpdateEmbedding(Z, Gcurrent)

10 until iterembedding

11 return Z
12 Procedure UpdateEmbedding (Z, G):
13 foreach (vi, vj) ∈ E do
14 Compute wij and dij according to Eqs. (5.12) and (5.13)
15 Update zi and zj according to Eq. (5.14)

// Negative sampling for vi & vj
16 for vk ∈ {vi, vj} do
17 Select a random vertex vl s.t. (vk, vl) /∈ E
18 Compute wkl and dkl according to Eqs. (5.12) and (5.13)
19 Update zk and zl according to Eq. (5.14)

where zi−zj
||zi−zj || is the unit vector pointing from zj to zi. The position of vertex zi in the

low-dimensional space is refined through a weighted sum designed to adjust the actual

distances between vertices closer to their target distances, thus iteratively improving the

embedding. The convergence of WM [GKN04] proves its suitability as an approximation

for GSRM.

5.3.5 Algorithm Overview

DynoGraph, as described in Algorithm 7, incorporates ANG, graph modification, and em-

bedding updates to obtain a low-dimensional embedding of the high-dimensional data.

Given a high-dimensional dataset X and target dimension m, it outputs the embedding

116 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

Z in the low-dimensional space. It starts with initializing Z using a uniform random dis-

tribution within the range [0,1] (line 1). Subsequently, it constructs the original graph

G(V,E) from X using Algorithm 5 (line 2). Next, it refines the embedding by iteratively

updating Z based on G (lines 8-10). The procedure of updating the embedding involves

calculating the weights wij and target distances dij for the vertex pair (vi, vj) with an

edge according to Eqs. (5.12) and (5.13). The positions of zi and zj are then updated

according to Eq. (5.14) (lines 13-15). Furthermore, negative sampling is implemented

by randomly selecting a random vertex vl, ensuring that for each vk ∈ {vi, vj}, the edge

(vk, vl) /∈ E, and then applying the same update rule to zk and zl (lines 16-19). In the

dynamic graph modification phase, Algorithm 6 combines X, Z, and G to construct the

modified graph Gmod(V,Emod), which in turn iteratively update Z based on Gmod (line

6). DynoGraph can effectively transform high-dimensional data into the target dimen-

sional space while preserving the spatial proximity of the original data. The elegance of

DynoGraph is its adaptive nature, requiring no external parameter tuning and completely

relying on the inherent properties of the original data.

5.3.6 Complexity Analysis

The DynoGraph algorithm integrates ANG, graph modification, and embedding updates.

Its computational complexity is analyzed as follows: The time complexity of ANG is re-

duced from O(n2) to O(n log n) by using nearest neighbor search; Graph modification

computes the distances between all vertex pairs, resulting in a complexity of O(n2). Dur-

ing the embedding update, Nedges, the number of edges, are iteratively processed with a

complexity of O(Nedges), leading to an embedding update complexity of O(iterembedding ·

Nedges). The dynamic graph modification phase combines graph modification and em-

bedding updates, with an overall complexity of O(itergraph · (n2 + iterembedding · Nedges)).

Here, itergraph and iterembedding are set to 2 and 200 by default, respectively. In summary,

the overall asymptotic runtime complexity of DynoGraph is O(n2).

5.4 Experiments 117

5.4 Experiments

5.4.1 Experimental Setup

Experimental Environment

The proposed DynoGraph algorithm was implemented in Python, utilizing faiss-gpu,

the GPU implementation of the Faiss library [JDJ19], for nearest neighbor search. All

experiments related to this algorithm were conducted on a machine equipped with an

Intel Core i9-12900H CPU (14 cores, 2.50 GHz), 64 GB of RAM, and an NVIDIA GeForce

RTX 3080 Ti GPU. The code repository is available at https://github.com/Qian-Lily/

DynoGraph. All experiments aim to learn a two-dimensional embedding representation

of the original data for visualization and comprehensive comparison.

Datasets

We selected seven real-world datasets from various domains to demonstrate the broad

applicability of DynoGraph. The WarpPIE10P [SBB02] dataset is used for facial recog-

nition. From the UCI Machine Learning Repository [DG17], we introduced Landsat-

Satellite and Human Activity Recognition Using Smartphones (HAR) datasets, which

represent satellite images and activity recognition using time series data collected from

smartphone sensors, respectively. From the COIL project at Columbia University, we used

the COIL-20 [NNM96b] and COIL-100 [NNM96a] datasets, which consist of images of

objects captured from different angles, commonly used for object recognition tasks rang-

ing from small to large object sizes. Additionally, we used the Fashion-MNIST [XRV17]

and MNIST [LCB98] datasets for image classification of clothing and handwritten digits,

respectively. These datasets have samples ranging from 210 to 70,000, dimensions rang-

ing from 3 to 49,152, and classes ranging from 1 to 100. The statistics of these datasets

are briefly summarized in Table 5.1. For image data, we scaled the pixel values to the

range [0, 1] by dividing by the maximum pixel value. For multivariate data, we prepro-

https://github.com/Qian-Lily/DynoGraph
https://github.com/Qian-Lily/DynoGraph

118 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

Table 5.1: Statistics of datasets used in DynoGraph.

Dataset #Samples #Dimensions #Classes

3D Scurve-hole 8540 3 1
WarpPIE10P 210 2420 10
COIL-20 1440 16384 20
LandsatSatellite 6435 36 6
COIL-100 7200 49152 100
HAR 10299 561 6
Fashion-MNIST 70000 784 10
MNIST 70000 784 10

cessed each dataset by applying the StandardScaler36 from the scikit-learn library,

which standardizes each attribute by centering it to a mean of 0 and scaling it to a unit

standard deviation of 1 [GLH15].

Comparison Methods

To evaluate the effectiveness of DynoGraph, we conducted a comprehensive com-

parative analysis against nine representative or state-of-the-art dimensionality reduc-

tion techniques. These included PCA37 [Smi02], MDS38 [BG05], LLE39 [RS00],

Eigenmaps40 [BN03], t-SNE41 [vdMH08], LargeVis42 [TLZM16], UMAP43 [MHM18],

TriMap44 [AW19], and SpaceMAP45 [ZT22]. To ensure consistency and fairness in com-

parisons, we parameterized all comparison methods as recommended in the correspond-

ing publications. Notably, DynoGraph does not require any input parameters.

36https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

StandardScaler.html
37https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
38https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
39https://scikit-learn.org/stable/modules/generated/sklearn.manifold.

LocallyLinearEmbedding.html
40https://scikit-learn.org/stable/modules/generated/sklearn.manifold.

SpectralEmbedding.html
41https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
42https://github.com/lferry007/LargeVis
43https://github.com/lmcinnes/umap
44https://github.com/eamid/trimap
45https://github.com/zuxinrui/SpaceMAP

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.LocallyLinearEmbedding.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html
https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://github.com/lferry007/LargeVis
https://github.com/lmcinnes/umap
https://github.com/eamid/trimap
https://github.com/zuxinrui/SpaceMAP

5.4 Experiments 119

Evaluation Metric

We evaluate the effectiveness of dimensionality reduction algorithms using two global

evaluation metrics, including Procrustes analysis [BB22], described in Chapter 2.3.8, and

AMI score [VEB10], described in Chapter 2.3.2, along with a local evaluation metric, the

k-NN classifier accuracy [CD21], detailed in Chapter 2.3.4.

We generate two-dimensional ground truth coordinates for the synthetic dataset and

fold them into three-dimensional space through a nonlinear transformation. Procrustes

analysis is used to assess the difference between the ground truth coordinates and the

embeddings obtained by the dimensionality reduction algorithms.

For real-world datasets, we perform k-means clustering (initialized with k-means++)

and evaluate the clustering performance of the low-dimensional embeddings using AMI

score. Additionally, the k-NN classifier accuracy is used to evaluate local structure preser-

vation, where the choice of k depends on the number of data points in the dataset, rang-

ing from 1% to 20%. The k-NN classifier accuracy is evaluated using 10-fold stratified

cross-validation. All experiments were repeated ten times, and we report the average

results.

5.4.2 Results on Synthetic Dataset

The 3D Scurve-hole dataset, shown in Fig. 5.4, originates from a two-dimensional uni-

form distribution rectangle with a hole in the center, which is then folded into an S-curve

in three-dimensional space. This synthetic dataset evaluates several key properties of the

dimensionality reduction algorithm. First is the unfolding, which examines whether the

algorithm can faithfully and fully unfold the three-dimensional manifold back to two-

dimensional ground truth. It requires the algorithm to balance global and local preserva-

tion: global preservation focuses on maintaining the overall structure and shape, while

local preservation focuses on similar relationships between neighboring points. Second,

the hole provides a key topological challenge. The algorithm needs to recognize and

handle this hole correctly to avoid incorrectly establishing connections or disconnections

120 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

3D Scurve-hole Ground Truth DynoGraph 0.107

t-SNE 0.349 SpaceMAP 0.364 LargeVis 0.375

TriMap 0.481 UMAP 0.486 Eigenmaps 0.504

MDS 0.582 PCA 0.709 LLE 0.915

Figure 5.4: Visualization of synthetic 3D Scurve-hole dataset, sorted by Procrustes error
(Lower is better).

5.4 Experiments 121

in a region with no data, which tests its ability to handle complex data structures. To

evaluate these aspects, we use Procrustes analysis to quantitatively compare the similar-

ity between the low-dimensional embedding and ground truth. Meanwhile, visualization

is used to qualitatively evaluate whether the data layout, shape, and key topologies in

the embedding representation are accurately preserved.

As shown in Fig. 5.4, DynoGraph almost fully unfolds the dataset, maintaining the

global rectangular structure indicated by the smooth color gradient transition from blue

to red and correctly identifying the hole. Besides, DynoGraph maintains the uniform

distribution of the data and obtains the lowest Procrustes error (0.107), demonstrating

advantages in global and local preservation. However, some algorithms such as t-SNE,

SpaceMAP, and UMAP appear to hallucinate a local cluster structure, exhibit numerous

voids that are not perceivable in the ground truth, and fail to preserve uniform distri-

bution. LargeVis and UMAP misinterpret the hole as a signal for data segmentation,

splitting the dataset into discrete segments and failing to preserve the overall global

structure. Eigenmaps, MDS, and PCA show a 2D projection of the original 3D structure

from a specific viewpoint rather than unfolding it, and completely ignore the hole, with

the Procrustes error rising from 0.504 to 0.709. TriMap identifies the hole but is signif-

icantly expanded and not fully unfolded, presenting a 3D-like ring-wrapped shape with

Procrustes errors of 0.481. LLE shows compression or stretching of data points in spe-

cific directions as a direct result of its attempt to maintain local linear relationships in

the low-dimensional space. However, this approach sacrifices the global structure of the

data, resulting in the highest Procrustes error of 0.915.

5.4.3 Results on Real-World Datasets

Clustering Analysis

Table 5.2 presents a comparative analysis of clustering accuracy measured by AMI

score [VEB10] on real-world datasets. DynoGraph ranks first on three out of seven

datasets, with an overall average score of 0.72, outperforming all baselines. In par-

122 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

Table 5.2: AMI score on real-world datasets: mean ± standard deviation; highest scores
in bold; ranking in parentheses (lower is better). Notations: N/A (No Re-
sults), O/M (Out-of-Memory, >64GB).

Dataset PCA LLE MDS Eigenmaps TriMap

WarpPIE10P 0.04±0.00 (10) 0.29±0.00 (4) 0.07±0.01 (9) 0.10±0.00 (8) 0.27±0.02 (5)
COIL-20 0.62±0.00 (8) 0.85±0.04 (4) 0.62±0.01 (8) 0.56±0.00 (10) 0.85±0.01 (4)
LandsatSatellite 0.47±0.00 (10) 0.61±00.0 (8) 0.60±0.01 (9) 0.63±0.00 (3) 0.62±0.00 (5)
COIL-100 0.60±0.00 (9) N/A 0.64±0.00 (7) 0.61±0.00 (8) 0.88±0.00 (3)
HAR 0.46±0.00 (9) 0.41±0.01 (10) 0.49±0.01 (8) 0.67±0.00 (6) 0.69±0.00 (5)
Fashion-MNIST 0.42±0.00 (7) 0.36±0.00 (8) O/M O/M 0.60±0.01 (5)
MNIST 0.36±0.00 (8) 0.67±0.00 (7) O/M O/M 0.79±0.00 (5)

Average 0.42±0.00 (10) 0.53±0.01 (7) 0.48±0.01 (9) 0.51±0.00 (8) 0.67±0.01 (5)

Dataset LargeVis SpaceMAP t-SNE UMAP DynoGraph

WarpPIE10P 0.24±0.01 (7) 0.26±0.00 (6) 0.30±0.01 (3) 0.31±0.01 (2) 0.50±0.03 (1)
COIL-20 0.81±0.02 (7) 0.87±0.00 (2) 0.84±0.01 (6) 0.87±0.01 (2) 0.90±0.01 (1)
LandsatSatellite 0.64±0.01 (1) 0.62±0.00 (5) 0.62±0.01 (5) 0.64±0.00 (1) 0.63±0.02 (3)
COIL-100 0.86±0.00 (5) 0.89±0.00 (1) 0.88±0.00 (3) 0.89±0.00 (1) 0.85±0.01 (6)
HAR 0.72±0.04 (1) 0.67±0.00 (6) 0.70±0.03 (4) 0.71±0.03 (2) 0.71±0.03 (2)
Fashion-MNIST 0.61±0.02 (4) 0.62±0.00 (2) 0.56±0.02 (6) 0.62±0.01 (2) 0.64±0.01 (1)
MNIST 0.84±0.02 (3) 0.91±0.00 (1) 0.76±0.04 (6) 0.85±0.01 (2) 0.81±0.01 (4)

Average 0.67±0.02 (4) 0.69±0.00 (3) 0.67±0.02 (6) 0.70±0.01 (2) 0.72±0.02 (1)

ticular, on WarpPIE10P dataset, the AMI score of DynoGraph improved by approximately

61% compared to the runner-up UMAP. UMAP, SpaceMAP, and LargeVis rank first on

two of the seven datasets, with average rankings ranging from 2nd to 4th. TriMap and

t-SNE perform stably across datasets, while classical dimensionality reduction algorithms

such as LLE, Eigenmaps, MDS, and PCA perform poorly on average. MDS and Eigenmaps

suffer from out-of-memory errors when dealing with large datasets (70k), showing the

limitations when facing big data. In addition, LLE fails to produce valid results on COIL-

100 dataset due to a singular weight matrix, revealing its limitations when handling

highly linearly correlated feature data.

Classification Analysis

Fig. 5.5 illustrates the k-NN classifier accuracy of various dimensionality reduction tech-

niques on real-world datasets. On WarpPIE10P and COIL-20 datasets, DynoGraph out-

performs all baselines when k is 4%, and the performance gap widens further as the k

5.4 Experiments 123

increases. DynoGraph exhibits robustness and superior ability to maintain the integrity

of data relationships when considering a wider range of neighborhoods. Across most

datasets, DynoGraph achieves comparable performance to other state-of-the-art algo-

rithms such as LargeVis, SpaceMAP, t-SNE, UMAP, and TriMap, which are known for

their superior preservation of local structures. In contrast, classical algorithms such as

PCA, LLE, MDS, and Eigenmaps perform poorly in preserving local structure, resulting in

lower accuracy.

5.4.4 Ablation Studies

Graph Construction

DynoGraph employs ANG instead of the standard k-NNG commonly used in many di-

mensionality reduction algorithms. After replacing ANG with k-NNG (e.g., setting k to

15 as in UMAP), labeled as the variant DynoGraph knn, a notable degradation in perfor-

mance is observed in Fig. 5.5. This degradation is pronounced in classification tasks on

small datasets such as WarpPIE10P, where the fixed k parameter significantly decreases

accuracy. In contrast, ANG adapts to the density and size of the dataset, recognizing

only up to 8 neighbors, which highlights the limitations of applying a fixed k to various

datasets.

Graph Modification

To test the impact of the dynamic graph modification phase on the performance of Dyno-

Graph, we define two variants: DynoGraph w/o modi, which removes the modification

phase from DynoGraph, and DynoGraph knn w/o modi, which removes the modification

phase from DynoGraph knn. Fig. 5.5 shows that the inclusion of a dynamic graph modifi-

cation phase notably enhances the performance of both DynoGraph and DynoGraph knn,

especially on the LandsatSatellite dataset.

124 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

2 4 6 8 10 12 14 16 18 20
k (% of n)

0.2

0.4

0.6

0.8

k-
NN

 c
la

ss
ifi

er
 a

cc
ur

ac
y WarpPIE10P

2 4 6 8 10 12 14 16 18 20
k (% of n)

0.2

0.4

0.6

0.8

k-
NN

 c
la

ss
ifi

er
 a

cc
ur

ac
y COIL-20

2 4 6 8 10 12 14 16 18 20
k (% of n)

0.70

0.75

0.80

0.85

k-
NN

 c
la

ss
ifi

er
 a

cc
ur

ac
y LandsatSatellite

2 4 6 8 10 12 14 16 18 20
k (% of n)

0.2

0.4

0.6

0.8

k-
NN

 c
la

ss
ifi

er
 a

cc
ur

ac
y COIL-100

2 4 6 8 10 12 14 16 18 20
k (% of n)

0.5

0.6

0.7

0.8

0.9

k-
NN

 c
la

ss
ifi

er
 a

cc
ur

ac
y HAR

2 4 6 8 10 12 14 16 18 20
k (% of n)

0.5

0.6

0.7

0.8

k-
NN

 c
la

ss
ifi

er
 a

cc
ur

ac
y Fashion-MNIST

2 4 6 8 10 12 14 16 18 20
k (% of n)

0.5
0.6
0.7
0.8
0.9

k-
NN

 c
la

ss
ifi

er
 a

cc
ur

ac
y MNIST

Figure 5.5: k-NN classifier accuracy on real-world datasets.

5.4 Experiments 125

5.4.5 Visualization on Real-World Datasets

Fig. 5.6 shows the visualization of WarpPIE10P dataset. DynoGraph demonstrates signif-

icantly superior performance compared to all baselines. This superiority is reflected in

the tighter clustering of points within the same class and the clearer identification of dis-

tinct classes, particularly for class 10. Notably, DynoGraph effectively distinguishes class

10, which other algorithms often do not achieve. In many cases, class 10 appears as a

linear strip, such as in UMAP, SpaceMAP, LargeVis, TriMap, t-SNE, and LLE, or remains

visually indistinguishable, as observed in Eigenmaps, MDS, and PCA.

Fig. 5.7 and Fig. 5.9 show the visualization of COIL-20 and COIL-100 datasets, re-

spectively. DynoGraph exhibits clearer class separation and uniform distribution within

classes, with overlap between some classes. In contrast, t-SNE, UMAP, SpaceMAP,

TriMap, and LargeVis present a circle-shaped class structure with compact intra-class

structures. However, the boundaries between classes are not as distinct as those in Dyno-

Graph and contain more overlap between classes. PCA, MDS, and Eigenmaps lack clear

separation between classes and an over-dispersion of intra-class distribution.

Fig. 5.8 shows the visualization of LandsatSatellite dataset. Unlike UMAP and

LargeVis, which exhibit compact and well-separated clusters for class 1 and class 2

but overlap in the remaining four classes, DynoGraph distributes the data points of all

six classes almost uniformly, maintaining similar shapes across the classes. SpaceMap,

TriMap, t-SNE, and MDS face similar challenges in distinguishing these classes. Algo-

rithms like LLE, Eigenmaps, and PCA reveal a triangular linear relationship.

Fig. 5.10 shows the visualization of HAR dataset. Unlike LLE, Eigenmaps, MDS, and

PCA, the remaining algorithms can clearly separate class 5. Among these, class 3 and

class 4 show overlapping regions in most algorithms, but DynoGraph achieves a rela-

tively distinct boundary between them. For class 0, class 1, and class 2, DynoGraph

represents these classes with a more dispersed, circular intra-class structure. In compar-

ison, algorithms like UMAP, SpaceMap, LargeVis, and TriMap produce overly compact,

dot-like clusters. In contrast, t-SNE shows smaller inter-class distances with a more scat-

126 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

tered overall distribution of data points.

Fig. 5.11 shows the visualization of Fashion-MNIST dataset. UMAP and LargeVis

clearly separate class 1 from the other classes. However, LargeVis struggles with class 8,

splitting it into three disjoint clusters. DynoGraph performs comparably with other state-

of-the-art algorithms, relatively clearly identifying certain classes, such as class 1, 5, 7,

8, and 9. In contrast, others exhibit overlap and are difficult to distinguish, such as class

0, 2, 3, 4, and 6. PCA fails to reveal any clear class structure or separation, while LLE

compresses most data points into a narrow region, lacking distinct boundaries between

classes.

Fig. 5.12 shows the visualization of MNIST. DynoGraph demonstrates relatively clear

classes and inter-class separation, but some scattered points exist between the classes.

SpaceMAP and TriMap exhibit a similar problem of scattered points. t-SNE presents non-

overlapping classes, with less spacing between classes, and uniform distribution within

each class. UMAP and LargeVis produce similar results, showing some overlap between

classes, while non-overlapping classes are separated farther apart and have a more com-

pact intra-class structure.

5.5 Conclusion

This chapter introduces DynoGraph, a Dynamic Graph construction algorithm for Non-

linear dimensionality reduction. Our adaptive neighborhood graph captures the intrin-

sic geometric structure of the original data. For the first time, we propose a dynamic

graph modification approach that detects deviations in the proximity of the original data

and adjusts the graph structure during dimensionality reduction, ensuring that the low-

dimensional embedding aligns with the high-dimensional data. DynoGraph effectively

overcomes parameter dependencies and mitigates distortions. Extensive experiments

have demonstrated that DynoGraph faithfully reconstructs the original data structure

and shows excellent performance in visualization, clustering, and classification tasks.

5.5 Conclusion 127

DynoGraph UMAP SpaceMAP

LargeVis TriMap t-SNE

LLE Eigenmaps MDS

PCA
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

Figure 5.6: Visualization of WarpPIE10P dataset (sorted by average AMI score ranking).

128 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

DynoGraph UMAP SpaceMAP

LargeVis TriMap t-SNE

LLE Eigenmaps MDS

PCA
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

Class 11
Class 12
Class 13
Class 14
Class 15
Class 16
Class 17
Class 18
Class 19
Class 20

Figure 5.7: Visualization of COIL-20 dataset.

5.5 Conclusion 129

DynoGraph UMAP SpaceMAP

LargeVis TriMap t-SNE

LLE Eigenmaps MDS

PCA

Class 1
Class 2
Class 3
Class 4
Class 5
Class 7

Figure 5.8: Visualization of LandsatSatellite dataset.

130 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

DynoGraph UMAP SpaceMAP

LargeVis TriMap t-SNE

N/A

LLE Eigenmaps MDS

PCA
Class 5
Class 10
Class 15
Class 20
Class 25
Class 30
Class 35
Class 40
Class 45
Class 50

Class 55
Class 60
Class 65
Class 70
Class 75
Class 80
Class 85
Class 90
Class 95
Class 100

Figure 5.9: Visualization of COIL-100 dataset.

5.5 Conclusion 131

DynoGraph UMAP SpaceMAP

LargeVis TriMap t-SNE

LLE Eigenmaps MDS

PCA

Class 0
Class 1
Class 2
Class 3
Class 4
Class 5

Figure 5.10: Visualization of HAR dataset.

132 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

Figure 5.11: Visualization of Fashion-MNIST dataset.

5.5 Conclusion 133

Figure 5.12: Visualization of MNIST dataset.

134 5. Dynamic Graph Construction for Nonlinear Dimensionality Reduction

135

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, our primary goal is to develop an adaptive exploration framework for unsu-

pervised learning by leveraging intrinsic data properties. Specifically, we propose adap-

tive algorithms for three fundamental unsupervised learning tasks: clustering, outlier

detection, and dimensionality reduction. These algorithms focus on adapting to arbi-

trary data distributions, capturing local density, and designing self-adaptive parameters,

thereby addressing the challenges posed by diverse data distributions, density variations,

and the dependency on dataset-specific parameters. The main contributions of this thesis

are summarized as follows:

Chapter 3 proposes a density-based clustering algorithm, DBADV (Density-Based

Adaptive Clustering with Density Variation). First, DBADV is the first clustering method

to employ perplexity to derive local density information for each data point, which cap-

tures the individual properties of the data points. Second, this information is then used

to determine an adaptive search range for each point, which enables the identification of

clusters with varying densities. Third, DBADV incorporates a mutual nearest neighbors

metric to effectively identify boundary points between clusters and further contribute to

distinguishing outliers and noise points from the clusters.

136 6. Conclusion and Future Work

Chapter 4 proposes a proximity-based unsupervised outlier detection algorithm,

ADOD (Adaptive Density Outlier Detection). First, ADOD is one of the first outlier de-

tection algorithms to employ perplexity to calculate the local scale of each data point,

which is then used to estimate its local density, allowing the algorithm to adapt to den-

sity variations. Second, ADOD combines local density with density differences between

each point and its mutual neighbors to distinguish outliers that significantly deviate from

their surroundings. Third, ADOD uses nearest neighbor search to improve scalability and

efficiency for large datasets. Finally, ADOD generalizes to unknown data by comparing

it with known data, extending its applicability to real-time scenarios.

Chapter 5 proposes a nonlinear graph-based dimensionality reduction algorithm,

DynoGraph (Dynamic Graph Construction for Nonlinear Dimensionality Reduction).

First, DynoGraph proposes an adaptive neighborhood graph construction method to cap-

ture the intrinsic geometric structure of the data. Second, DynoGraph introduces, for

the first time in dimensionality reduction, a dynamic graph modification process to miti-

gate distortion and maintain the similarity structure of the high-dimensional data. Third,

DynoGraph designs an objective function, the Graph Structure Representation Measure,

to ensure that the low-dimensional embedding preserves the geometric relationships cap-

tured in the graph representation of the high-dimensional data. Specifically, it applies

attractive forces to vertex pairs with edges and repulsive forces to vertex pairs without

edges. Finally, DynoGraph uses nearest neighbor search to optimize the graph construc-

tion process, improving efficiency and scalability for large datasets.

Despite the contributions presented in this thesis, there are still some limitations. For

the clustering algorithm DBADV, although the perplexity parameter is less sensitive than

the epsilon parameter of DBSCAN, the algorithm still requires two input parameters as

in DBSCAN. For the dimensionality reduction algorithm DynoGraph, despite the nearest

neighbor search being used in the graph construction phase to improve efficiency, the

time complexity of the dynamic graph modification phase is O(n2), which highlights the

need for further optimization to improve the scalability and computational efficiency of

the entire algorithm.

6.2 Future Work 137

6.2 Future Work

There are several promising directions for future research, especially in extending the

scope of unsupervised learning and delving deeper into intrinsic data properties.

Extending the scope of unsupervised learning offers several opportunities for future

research. One direction is to expand the range of tasks covered by adaptive exploration

methods, such as feature selection, feature extraction, and association rule learning.

These tasks are often challenged by high-dimensionality, redundancy, sparsity, and com-

plex data distributions, making them ideal candidates for leveraging intrinsic data prop-

erties to enhance both the adaptability and performance of methods. Another promising

direction is to apply these methods to a wide range of data types, such as graph data,

time series data, and high-dimensional sparse data. In addition, there is great potential

for optimizing these methods to support real-time processing, which can be applied in

dynamic and rapidly evolving environments.

Delving deeper into intrinsic data properties offers several promising directions for

future research. An important research focus is to leverage these properties more com-

prehensively to address additional limitations of existing methods, such as inadequate

handling of multimodal data and insufficient adaptability to dynamic or streaming data

environments. Strengthening the theoretical foundations of adaptive exploration meth-

ods would also be crucial, contributing to their interpretability. In addition, reducing

or even completely eliminating the reliance on manual parameter settings is crucial to

expand the accessibility and improve the performance of the methods in diverse applica-

tions. Finally, optimizing the computational efficiency and scalability of these methods

would ensure their applicability to large and high-dimensional datasets.

138 6. Conclusion and Future Work

REFERENCES 139

References

[AA17] Charu C Aggarwal and Charu C Aggarwal. An introduction to outlier anal-

ysis. Springer, 2017.

[AASM21] Omar Alghushairy, Raed Alsini, Terence Soule, and Xiaogang Ma. A review

of local outlier factor algorithms for outlier detection in big data streams.

Big Data and Cognitive Computing, 5(1), 2021.

[ABC22] Yahya Almardeny, Noureddine Boujnah, and Frances Cleary. A novel outlier

detection method for multivariate data. IEEE Transactions on Knowledge

and Data Engineering, 34(9):4052–4062, 2022.

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.

OPTICS: Ordering points to identify the clustering structure. In Proceedings

of the 1999 ACM SIGMOD International Conference on Management of Data,

pages 49–60, 1999.

[ABPV+05] Juan A. Acebrón, L. L. Bonilla, Conrad J. Pérez Vicente, Félix Ritort, and

Renato Spigler. The kuramoto model: A simple paradigm for synchroniza-

tion phenomena. Reviews of Modern Physics, 77:137–185, 2005.

[AEZS21] Mohamed Abbas, Adel El-Zoghabi, and Amin Shoukry. DenMune: Density

peak based clustering using mutual nearest neighbors. Pattern Recognition,

109:107589, 2021.

140 REFERENCES

[AHT20] Shaeela Ayesha, Muhammad Kashif Hanif, and Ramzan Talib. Overview

and comparative study of dimensionality reduction techniques for high di-

mensional data. Information Fusion, 59:44–58, 2020.

[AP02] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimen-

sional spaces. In Principles of Data Mining and Knowledge Discovery, pages

15–27, 2002.

[ARBM15] Ahmed Shamsul Arefin, Carlos Riveros, Regina Berretta, and Pablo

Moscato. The MST-kNN with paracliques. In Artificial Life and Compu-

tational Intelligence, pages 373–386, 2015.

[AW19] Ehsan Amid and Manfred K. Warmuth. TriMap: Large-scale dimensionality

reduction using triplets. arXiv preprint arXiv:1910.00204, 2019.

[AWY16] D.A. Adeniyi, Z. Wei, and Y. Yongquan. Automated web usage data mining

and recommendation system using k-nearest neighbor (knn) classification

method. Applied Computing and Informatics, 12(1):90–108, 2016.

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter

optimization. Journal of machine learning research, 13(2):281–305, 2012.

[BB22] Fang Bai and Adrien Bartoli. Procrustes analysis with deformations: A

closed-form solution by eigenvalue decomposition. International Journal

of Computer Vision, 130(2):567–593, 2022.

[BCQY97] M.R. Brito, E.L. Chávez, A.J. Quiroz, and J.E. Yukich. Connectivity of the

mutual k-nearest-neighbor graph in clustering and outlier detection. Statis-

tics & Probability Letters, 35(1):33–42, 1997.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associa-

tive searching. Communications of the ACM, 18(9):509–517, 1975.

REFERENCES 141

[BG05] Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling:

Theory and applications. Springer Science & Business Media, 2005.

[BKNS00] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander.

LOF: identifying density-based local outliers. In Proceedings of the 2000

ACM SIGMOD International Conference on Management of Data, pages 93–

104, 2000.

[BN03] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality

reduction and data representation. Neural Computation, 15(6):1373–1396,

2003.

[BN06] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and

machine learning. Springer, 2006.

[BN13] Leonid Boytsov and Bilegsaikhan Naidan. Engineering efficient and effec-

tive non-metric space library. In Similarity Search and Applications, pages

280–293, 2013.

[BPSY10] Christian Böhm, Claudia Plant, Junming Shao, and Qinli Yang. Clustering

by synchronization. In Proceedings of the 16th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 583–592, 2010.

[CD21] Pádraig Cunningham and Sarah Jane Delany. k-nearest neighbour classi-

fiers - a tutorial. ACM Computing Surveys, 54(6):1–25, 2021.

[CFNTV16] Julien Clément, James Allen Fill, Thu Hien Nguyen Thi, and Brigitte Vallée.

Towards a realistic analysis of the quickselect algorithm. Theory of Com-

puting Systems, 58(4):528–578, 2016.

[CH67] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE

transactions on information theory, 13(1):21–27, 1967.

142 REFERENCES

[Chi92] Nancy Chinchor. MUC-4 evaluation metrics. In Proceedings of the 4th Con-

ference on Message Understanding, pages 22–29, 1992.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford

Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[CMZS15] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg

Sander. Hierarchical density estimates for data clustering, visualization,

and outlier detection. ACM Transactions on Knowledge Discovery from Data,

10(1):1–51, 2015.

[CPA+20] Benôıt Colange, Jaakko Peltonen, Michaël Aupetit, Denys Dutykh, and Syl-

vain Lespinats. Steering distortions to preserve classes and neighbors in su-

pervised dimensionality reduction. In Proceedings of the 34th International

Conference on Neural Information Processing Systems, pages 13214–13225,

2020.

[CPnZ04] Miguel Á. Carreira-Perpiñán and Richard S. Zemel. Proximity graphs for

clustering and manifold learning. In Proceedings of the 17th International

Conference on Neural Information Processing Systems, pages 225–232, 2004.

[CVLD19] Benôıt Colange, Laurent Vuillon, Sylvain Lespinats, and Denys Dutykh. In-

terpreting distortions in dimensionality reduction by superimposing neigh-

bourhood graphs. In 2019 IEEE Visualization Conference (VIS), pages 211–

215, 2019.

[CY21] Jianguo Chen and Philip S. Yu. A domain adaptive density clustering al-

gorithm for data with varying density distribution. IEEE Transactions on

Knowledge and Data Engineering, 33(6):2310–2321, 2021.

[DFO20] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics

for machine learning. Cambridge University Press, 2020.

REFERENCES 143

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository. https:

//archive.ics.uci.edu, 2017.

[DGD+24] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely

Szilvasy, Pierre-Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and

Hervé Jégou. The faiss library. arXiv preprint arXiv:2401.08281, 2024.

[DHS12] Richard O Duda, Peter E Hart, and David G Stork. Pattern Classification.

John Wiley & Sons, 2012.

[dL05] Jan de Leeuw. Applications of convex analysis to multidimensional scaling.

UCLA: Department of Statistics, UCLA, 2005.

[DML11] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph

construction for generic similarity measures. In Proceedings of the 20th

International Conference on World Wide Web, pages 577–586, 2011.

[Dou16] Christopher Dougherty. Introduction to Econometrics. Oxford University

Press, 2016.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-

based algorithm for discovering clusters in large spatial databases with

noise. In Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining, pages 226–231, 1996.

[EMK+21] Mateus Espadoto, Rafael M. Martins, Andreas Kerren, Nina S. T. Hirata,

and Alexandru C. Telea. Toward a quantitative survey of dimension reduc-

tion techniques. IEEE Transactions on Visualization and Computer Graphics,

27(3):2153–2173, 2021.

[ESK03] Levent Ertöz, Michael Steinbach, and Vipin Kumar. Finding clusters of dif-

ferent sizes, shapes, and densities in noisy, high dimensional data. In Pro-

ceedings of the 2003 SIAM International Conference on Data Mining, pages

47–58, 2003.

https://archive.ics.uci.edu
https://archive.ics.uci.edu

144 REFERENCES

[Faw06] Tom Fawcett. An introduction to ROC analysis. Pattern recognition letters,

27(8):861–874, 2006.

[FD07] Brendan J. Frey and Delbert Dueck. Clustering by passing messages be-

tween data points. Science, 315(5814):972–976, 2007.

[FPSS96] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data

mining to knowledge discovery in databases. AI magazine, 17(3):37–54,

1996.

[GHNN22] Adam Goodge, Bryan Hooi, See Kiong Ng, and Wee Siong Ng. LUNAR:

Unifying local outlier detection methods via graph neural networks. In

Proceedings of the AAAI Conference on Artificial Intelligence, number 6, pages

6737–6745, 2022.

[Gil00] Warren Gilchrist. Statistical modelling with quantile functions. Chapman

and Hall/CRC, 2000.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high

dimensions via hashing. In Proceedings of the 25th International Conference

on Very Large Data Bases, pages 518–529, 1999.

[GKN04] Emden R. Gansner, Yehuda Koren, and Stephen North. Graph drawing by

stress majorization. In Graph Drawing, pages 239–250, 2004.

[GLH15] Salvador Garćıa, Julián Luengo, and Francisco Herrera. Data preprocessing

in data mining. Springer, 2015.

[Gow75] John C Gower. Generalized procrustes analysis. Psychometrika, 40:33–51,

1975.

[Grü04] Peter Grünwald. A tutorial introduction to the minimum description length

principle. arXiv preprint arXiv:math/0406077, 2004.

REFERENCES 145

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial search-

ing. In Proceedings of the 1984 ACM SIGMOD international conference on

Management of data, pages 47–57, 1984.

[HAYSZ11] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang.

Fast approximate nearest-neighbor search with k-nearest neighbor graph.

In Proceedings of the Twenty-Second International Joint Conference on Artifi-

cial Intelligence - Volume Volume Two, pages 1312–1317, 2011.

[HDHM19] Sibylle Hess, Wouter Duivesteijn, Philipp Honysz, and Katharina Morik.

The SpectACl of nonconvex clustering: A spectral approach to density-

based clustering. In Proceedings of the AAAI Conference on Artificial Intelli-

gence, pages 3788–3795, 2019.

[HG17] Xin Huang and Yulia R. Gel. CRAD: Clustering with robust autocuts and

depth. In 2017 IEEE International Conference on Data Mining, pages 925–

930, 2017.

[HHH+22] Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao.

ADBench: Anomaly detection benchmark. In Advances in Neural Informa-

tion Processing Systems, pages 32142–32159, 2022.

[HKP11] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and

Techniques. Morgan Kaufmann, 2011.

[HM82] James A Hanley and Barbara J McNeil. The meaning and use of the area un-

der a receiver operating characteristic (ROC) curve. Radiology, 143(1):29–

36, 1982.

[Hof07] Heiko Hoffmann. Kernel PCA for novelty detection. Pattern Recognition,

40(3):863–874, 2007.

146 REFERENCES

[IFFW+19] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane

Idoumghar, and Pierre-Alain Muller. Deep learning for time series clas-

sification: a review. Data Mining and Knowledge Discovery, 33(4):917–963,

2019.

[̇Ink23] Tülin İnkaya. Consensus similarity graph construction for clustering. Pat-

tern Analysis and Applications, 26(2):703–733, 2023.

[Jai10] Anil K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition

Letters, 31(8):651–666, 2010.

[JDJ19] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity

search with GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[JDS11] Herve Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization

for nearest neighbor search. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 33(1):117–128, 2011.

[JHPvdH12] Jeroen Janssens, Ferenc Huszár, Eric Postma, and HJ van den Herik.

Stochastic outlier selection. Technical Report TiCC TR 2012-001, Tilburg

University, 2012.

[JK17] Kalervo Järvelin and Jaana Kekäläinen. IR evaluation methods for retriev-

ing highly relevant documents. SIGIR Forum, 51(2):243–250, 2017.

[JM15] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspec-

tives, and prospects. Science, 349(6245):255–260, 2015.

[KKSZ11] Hans-Peter Kriegel, Peer Kröger, Jörg Sander, and Arthur Zimek. Density-

based clustering. WIREs Data Mining and Knowledge Discovery, 1(3):231–

240, 2011.

REFERENCES 147

[KR17] K. Mahesh Kumar and A. Rama Mohan Reddy. An efficient k-means clus-

tering filtering algorithm using density based initial cluster centers. Infor-

mation Sciences, 418:286–301, 2017.

[KSZ08] Hans-Peter Kriegel, Matthias Schubert, and Arthur Zimek. Angle-based

outlier detection in high-dimensional data. In Proceedings of the 14th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

pages 444–452, 2008.

[LCB98] Yann LeCun, Corinna Cortes, and Christopher J. C. Burges. The MNIST

database of handwritten digits. http://yann.lecun.com/exdb/mnist/,

1998.

[LK05] Aleksandar Lazarevic and Vipin Kumar. Feature bagging for outlier detec-

tion. In Proceedings of the Eleventh ACM SIGKDD International Conference

on Knowledge Discovery in Data Mining, pages 157–166, 2005.

[LLX+10] Yanchi Liu, Zhongmou Li, Hui Xiong, Xuedong Gao, and Junjie Wu. Under-

standing of internal clustering validation measures. In 2010 IEEE Interna-

tional Conference on Data Mining, pages 911–916, 2010.

[LLZ+20] Yezheng Liu, Zhe Li, Chong Zhou, Yuanchun Jiang, Jianshan Sun, Meng

Wang, and Xiangnan He. Generative adversarial active learning for unsu-

pervised outlier detection. IEEE Transactions on Knowledge and Data Engi-

neering, 32(8):1517–1528, 2020.

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008

Eighth IEEE International Conference on Data Mining, pages 413–422, 2008.

[LV07] John A Lee and Michel Verleysen. Nonlinear dimensionality reduction.

Springer, 2007.

http://yann.lecun.com/exdb/mnist/

148 REFERENCES

[LWY18] Rui Liu, Hong Wang, and Xiaomei Yu. Shared-nearest-neighbor-based

clustering by fast search and find of density peaks. Information Sciences,

450:200–226, 2018.

[LZB+20] Zheng Li, Yue Zhao, Nicola Botta, Cezar Ionescu, and Xiyang Hu. COPOD:

Copula-based outlier detection. In 2020 IEEE International Conference on

Data Mining (ICDM), pages 1118–1123, 2020.

[LZH+23] Zheng Li, Yue Zhao, Xiyang Hu, Nicola Botta, Cezar Ionescu, and George H.

Chen. ECOD: Unsupervised outlier detection using empirical cumulative

distribution functions. IEEE Transactions on Knowledge and Data Engineer-

ing, 35(12):12181–12193, 2023.

[MHM18] Leland McInnes, John Healy, and James Melville. UMAP: Uniform mani-

fold approximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[ML14] Marius Muja and David G. Lowe. Scalable nearest neighbor algorithms for

high dimensional data. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 36(11):2227–2240, 2014.

[MPM07] Antonio Menditto, Marina Patriarca, and Bertil Magnusson. Understanding

the meaning of accuracy, trueness and precision. Accreditation and quality

assurance, 12:45–47, 2007.

[Mur12] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,

2012.

[Mur22] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT

Press, 2022.

[MWX+23] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z. Sheng,

Hui Xiong, and Leman Akoglu. A comprehensive survey on graph anomaly

REFERENCES 149

detection with deep learning. IEEE Transactions on Knowledge and Data

Engineering, 35(12):12012–12038, 2023.

[MY20] Yu A. Malkov and D. A. Yashunin. Efficient and robust approximate near-

est neighbor search using hierarchical navigable small world graphs. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 42(4):824–836,

2020.

[NJW01] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:

Analysis and an algorithm. In Proceedings of the 14th International Confer-

ence on Neural Information Processing Systems: Natural and Synthetic, pages

849–856, 2001.

[NNM96a] Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia object

image library (COIL-100). Technical Report CUCS-006-96, Columbia Uni-

versity, 1996.

[NNM96b] Sameer A. Nene, Shree K. Nayar, and Hiroshi Murase. Columbia object

image library (COIL-20). Technical Report CUCS-005-96, Columbia Uni-

versity, 1996.

[OSKM11] Kohei Ozaki, Masashi Shimbo, Mamoru Komachi, and Yuji Matsumoto. Us-

ing the mutual k-nearest neighbor graphs for semi-supervised classification

on natural language data. In Proceedings of the Fifteenth Conference on

Computational Natural Language Learning, pages 154–162, 2011.

[PBB20] Claudia Plant, Sonja Biedermann, and Christian Böhm. Data compres-

sion as a comprehensive framework for graph drawing and representation

learning. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 1212–1222, 2020.

[PR02] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree

algorithm. Journal of the ACM (JACM), 49(1):16–34, 2002.

150 REFERENCES

[QPB21] Li Qian, Claudia Plant, and Christian Böhm. Density-based clustering for

adaptive density variation. In 2021 IEEE International Conference on Data

Mining (ICDM), pages 1282–1287, 2021.

[QPQ+24] Li Qian, Claudia Plant, Yalan Qin, Jing Qian, and Christian Böhm. Dyno-

graph: Dynamic graph construction for nonlinear dimensionality reduc-

tion. In 2024 IEEE International Conference on Data Mining (ICDM), pages

827–832, 2024.

[QQS+24] Li Qian, Jing Qian, Xin Sun, Wengang Guo, and Christian Böhm. Adod:

Adaptive density outlier detection. In 2024 IEEE International Conference

on Data Mining (ICDM), pages 400–409, 2024.

[QZCS18] Lishan Qiao, Limei Zhang, Songcan Chen, and Dinggang Shen. Data-

driven graph construction and graph learning: A review. Neurocomputing,

312:336–351, 2018.

[Ray16] Shebuti Rayana. ODDS library, 2016.

[RKV+21] Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Mon-

tavon, Wojciech Samek, Marius Kloft, Thomas G. Dietterich, and Klaus-

Robert Müller. A unifying review of deep and shallow anomaly detection.

Proceedings of the IEEE, 109(5):756–795, 2021.

[RL14] Alex Rodriguez and Alessandro Laio. Clustering by fast search and find of

density peaks. Science, 344(6191):1492–1496, 2014.

[RRS00] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algo-

rithms for mining outliers from large data sets. In Proceedings of the 2000

ACM SIGMOD International Conference on Management of Data, pages 427–

438, 2000.

[RS00] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction

by locally linear embedding. Science, 290(5500):2323–2326, 2000.

REFERENCES 151

[RY21] R Rawat and R Yadav. Big data: Big data analysis, issues and challenges

and technologies. IOP Conference Series: Materials Science and Engineering,

1022(1):012014, 2021.

[SB21] Georg Steinbuss and Klemens Böhm. Benchmarking unsupervised outlier

detection with realistic synthetic data. ACM Transactions on Knowledge

Discovery from Data (TKDD), 15(4):1–20, 2021.

[SBB02] Terence Sim, Simon Baker, and Maan Bsat. The CMU pose, illumination,

and expression (PIE) database. In Proceedings of Fifth IEEE International

Conference on Automatic Face Gesture Recognition, pages 53–58, 2002.

[SCSC03] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu

Chang. A novel anomaly detection scheme based on principal component

classifier. In Proceedings of the IEEE foundations and new directions of data

mining workshop, pages 172–179, 2003.

[SE14] Alessandro Soranzo and Emanuela Epure. Very simply explicitly invert-

ible approximations of normal cumulative and normal quantile function.

Applied Mathematical Sciences, 8(87):4323–4341, 2014.

[Sen12] Rico Sennrich. Perplexity minimization for translation model domain adap-

tation in statistical machine translation. In Proceedings of the 13th Confer-

ence of the European Chapter of the Association for Computational Linguis-

tics, pages 539–549, 2012.

[Smi02] Lindsay I Smith. A tutorial on principal components analysis. Technical

Report OUCS-2002-12, University of Otago, 2002.

[SPG+17] Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash

Patel, Aruna Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin.

A review of clustering techniques and developments. Neurocomputing,

267:664–681, 2017.

152 REFERENCES

[SPST+01] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola,

and Robert C. Williamson. Estimating the support of a high-dimensional

distribution. Neural Computation, 13(7):1443–1471, 2001.

[SS08] György Steinbrecher and William T Shaw. Quantile mechanics. European

Journal of Applied Mathematics, 19(2):87–112, 2008.

[SSE+17] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei

Xu. DBSCAN revisited, revisited: why and how you should (still) use DB-

SCAN. ACM Transactions on Database Systems (TODS), 42(3):1–21, 2017.

[ST23] Durgesh Samariya and Amit Thakkar. A comprehensive survey of anomaly

detection algorithms. Annals of Data Science, 10(3):829–850, 2023.

[STG+19] Junming Shao, Yue Tan, Lianli Gao, Qinli Yang, Claudia Plant, and Ira

Assent. Synchronization-based clustering on evolving data stream. Infor-

mation Sciences, 501:573–587, 2019.

[TCFC02] Jian Tang, Zhixiang Chen, Ada Wai-chee Fu, and David W. Cheung. En-

hancing effectiveness of outlier detections for low density patterns. In Ad-

vances in Knowledge Discovery and Data Mining, pages 535–548, 2002.

[TdSL00] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global

geometric framework for nonlinear dimensionality reduction. Science,

290(5500):2319–2323, 2000.

[TLZM16] Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-

scale and high-dimensional data. In Proceedings of the 25th International

Conference on World Wide Web, pages 287–297, 2016.

[VCP16] Patrick Veenstra, Colin Cooper, and Steve Phelps. Spectral clustering using

the kNN-MST similarity graph. In 2016 8th Computer Science and Electronic

Engineering (CEEC), pages 222–227, 2016.

REFERENCES 153

[vdMH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9(86):2579–2605, 2008.

[VEB10] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theo-

retic measures for clusterings comparison: Variants, properties, normal-

ization and correction for chance. Journal of Machine Learning Research,

11:2837–2854, 2010.

[WHRS21] Yingfan Wang, Haiyang Huang, Cynthia Rudin, and Yaron Shaposhnik. Un-

derstanding how dimension reduction tools work: An empirical approach

to deciphering t-sne, UMAP, TriMap, and PaCMAP for data visualization.

Journal of Machine Learning Research, 22(201):1–73, 2021.

[XPWW23] Hongzuo Xu, Guansong Pang, Yijie Wang, and Yongjun Wang. Deep isola-

tion forest for anomaly detection. IEEE Transactions on Knowledge and Data

Engineering, 35(12):12591–12604, 2023.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel im-

age dataset for benchmarking machine learning algorithms. arXiv preprint

arXiv:1708.07747, 2017.

[YGPB16] Wei Ye, Sebastian Goebl, Claudia Plant, and Christian Böhm. FUSE: Full

spectral clustering. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1985–1994,

2016.

[Zhu04] Mu Zhu. Recall, precision and average precision. Working Paper 2004-09,

University of Waterloo, 2004.

[ZMP04] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In

Proceedings of the 17th International Conference on Neural Information Pro-

cessing Systems, pages 1601–1608, 2004.

154 REFERENCES

[ZNHL19] Yue Zhao, Zain Nasrullah, Maciej K Hryniewicki, and Zheng Li. LSCP:

Locally selective combination in parallel outlier ensembles. In Proceedings

of the 2019 SIAM International Conference on Data Mining (SDM), pages

585–593, 2019.

[ZNL19] Yue Zhao, Zain Nasrullah, and Zheng Li. PyOD: A python toolbox for scal-

able outlier detection. Journal of Machine Learning Research, 20(96):1–7,

2019.

[ZRF+18] Houssam Zenati, Manon Romain, Chuan-Sheng Foo, Bruno Lecouat, and

Vijay Chandrasekhar. Adversarially learned anomaly detection. In 2018

IEEE International Conference on Data Mining (ICDM), pages 727–736,

2018.

[ZT22] Xinrui Zu and Qian Tao. SpaceMAP: Visualizing high-dimensional data by

space expansion. In Proceedings of the 39th International Conference on

Machine Learning, pages 27707–27723, 2022.

[ZTA18] Ye Zhu, Kai Ming Ting, and Maia Angelova. A distance scaling method to

improve density-based clustering. In Pacific-Asia Conference on Knowledge

Discovery and Data Mining, pages 389–400, 2018.

[ZTC16] Ye Zhu, Kai Ming Ting, and Mark J Carman. Density-ratio based clustering

for discovering clusters with varying densities. Pattern Recognition, 60:983–

997, 2016.

[ZTJA22] Ye Zhu, Kai Ming Ting, Yuan Jin, and Maia Angelova. Hierarchical clus-

tering that takes advantage of both density-peak and density-connectivity.

Information Systems, 103:101871, 2022.

[ZTY+20] Yaliang Zhao, Samwel K. Tarus, Laurence T. Yang, Jiayu Sun, Yunfei Ge,

and Jinke Wang. Privacy-preserving clustering for big data in cyber-

REFERENCES 155

physical-social systems: Survey and perspectives. Information Sciences,

515:132–155, 2020.

156 REFERENCES

	Acknowledgments
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Introduction
	Knowledge Discovery in Databases
	Unsupervised Learning in Data Analysis
	Challenges in Unsupervised Learning
	Adaptive Exploration through Intrinsic Data Properties
	Outline of the Thesis

	Background
	Nearest Neighbor Methods
	Nearest Neighbor
	k-Nearest Neighbors
	-Nearest Neighbors
	i-Nearest Neighbors
	Mutual Nearest Neighbors
	Nearest Neighbor Search

	Graph Construction
	Neighbor-Based Graph Construction
	Ensuring Graph Connectivity

	Evaluation Metrics
	Normalized Mutual Information
	Adjusted Mutual Information
	F-measure
	Accuracy of the k-NN Classifier
	Receiver Operating Characteristic
	Average Precision
	Precision at N
	Procrustes Analysis

	Density-Based Clustering for Adaptive Density Variation
	Introduction
	Related Work
	Methodology
	Problem Definition
	Local Density Information
	Adaptive Search Range
	Mutual Nearest Neighbors
	Algorithm Overview
	Determining the Parameters
	Complexity Analysis

	Experiments
	Experimental Setup
	Parameter Sensitivity Analysis
	Results on Synthetic Dataset
	Robustness Analysis
	Results on Real-World Datasets

	Conclusion

	Adaptive Density Outlier Detection
	Introduction
	Related Work
	Methodology
	Problem Definition
	Algorithm Description
	Algorithm Overview
	Generalization to Unknown Data
	Complexity Analysis
	Efficiency Optimization

	Experiments
	Experimental Setup
	Parameter Sensitivity Analysis
	Decision Boundaries Comparison
	Results on Real-World Datasets
	Runtime Analysis
	Visualization on Real-World Datasets

	Conclusion

	Dynamic Graph Construction for Nonlinear Dimensionality Reduction
	Introduction
	Related Work
	Methodology
	Problem Definition
	Adaptive Neighborhood Graph
	Graph Modification
	Objective Function for Embedding
	Algorithm Overview
	Complexity Analysis

	Experiments
	Experimental Setup
	Results on Synthetic Dataset
	Results on Real-World Datasets
	Ablation Studies
	Visualization on Real-World Datasets

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	References

