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l. Introduction

Cows, as prey animals, have an innate tendency to conceal signs of pain (Weary et al., 2006),
which often leads to underdiagnosis of lameness, the most significant indicator of discomfort
in the musculoskeletal system. Lameness, however, is not solely a clinical condition; it can
profoundly affect a cow's overall well-being, influencing its natural behaviour, lifespan and
productivity (Whay & Shearer, 2017). When a cow's ability to move freely is restricted, it
impacts nearly every aspect of its daily life, from feeding and milking to social interactions. The
wide-ranging consequences of lameness highlight the importance of early detection and
intervention to ensure the overall health and welfare of the cow.

Digitalisation and automation are mentioned frequently as promising solutions to the numerous
challenges emerging in agriculture. Farmers investing in new precision livestock farming
technologies primarily aim to improve aspects like health monitoring, heat detection, animal
welfare and labour management on their farms (Bianchi et al., 2022). At the same time, there
remains a notable lack of awareness in this professional group regarding the potential for
automated systems to effectively manage lameness detection (Bianchi et al., 2022), which
would reduce the need to rely on error-prone, time-consuming manual observation
(Schlageter-Tello et al., 2014).

The prevalence of lameness on farms tends to be consistently underestimated by farmers
(Jensen et al., 2022; Laschinger et al., 2024), who are often oblivious to the far-reaching
negative consequences of claw diseases (Van de Gucht et al., 2017). Jensen et al. (2022)
noted that farmers who do not perceive lameness as a significant problem in their herd are
less likely to consider investing in an automatic lameness detection system. Upon being
educated on the matter, according to Van de Gucht et al. (2017), farmers begin to exhibit a
discernible increase in interest towards integrating automatic lameness detection systems,
reflecting a deeper understanding of the advantages these technologies can offer. In general,
there is a preference by farmers for utilising indirect automatic lameness detection systems
directly affixed to the animals over cameras or force plates (Van de Gucht et al., 2017). By
making use of the sensor systems and their infrastructure already in operation, a monitoring
framework can be implemented on farms, entailing minimal additional investment (Grimm et
al., 2019). This comprehensive approach not only facilitates the observation of various health
parameters but also allows for the integration of sophisticated algorithms and technologies to
address specific challenges like the more complex, multifaceted lameness detection. The
automation of the process can lead to a more consistent and objective monitoring of the
animals' lameness status (Abdul Jabbar et al., 2017), thereby placing a stronger emphasis on
the individual animal's welfare through the timely identification of claw issues.

There are currently no validated systems for indirect automatic lameness detection on the
market. Consequently, two preceding studies at the Bavarian State Research Centre for
Agriculture already focused on automatic lameness detection by using pedometer data in
combination with performance parameters on Bavarian dairy farms. In this subsequent study,
the behaviour, performance and claw health data of Simmental cows recorded by different
animal-specific sensor systems on eight Bavarian dairy farms were used to validate the
reference system for manual lameness detection and to determine which parameters from
which commercially available sensor systems are best suited for automatic lameness detection
and how they can be combined to accurately identify lame cows.






II. Review of Literature

1. Precision Livestock farming

Precision livestock farming (PLF) has gained increasing importance in recent years and the
development is still on the rise. This process could be caused by a greater demand for animal
products in general caused by a growing population (Ritchie et al., 2023) or by the improving
economic situation in developing countries (Berckmans, 2017). Subsequently, to meet these
needs and to stay profitable, farm sizes are growing and smaller agricultural family farms are
replaced by fewer, larger-scale agribusinesses (Statistisches Bundesamt [Destatis], 2022).
PLF, which is defined as a constant observation of the single animal and all its possible life
influences by using digital technologies (Berckmans, 2017), is seen as a promising tool to
facilitate the monitoring of larger herds while not losing sight of the individual animal. In PLF,
sensors collect data on the animal, the herd or the environment, which are then analysed by
algorithms and summarised for visualisation and final use by the farmer (Kleen & Guatteo,
2023). The focus of attention shifting towards the topic of animal welfare among the population
(European Commission, Directorate-General for Health and Food Safety, 2016) might also be
a reason for farmers to start investing in PLF technology. Getting real-time information from
cameras, microphones or sensors on the current well-being, performance, reproduction values
and environmental effects of the single animal (Berckmans, 2017) as well as performing
continuous monitoring of the whole herd could lead to earlier detection of deviations and enable
timely reactions (Dzermeikaité et al., 2023). The rising consciousness of the effects of climate
change and the commitment to promote sustainability is an additional factor that should not be
underestimated as a driving force for technologisation of farms (Singh, 2021). Better farm
management due to PLF can significantly contribute to a longer life expectancy of animals
(Singh, 2021), which may in turn lead to a more sustainable way of farming in the future.

1.1 Opportunities and limitations in precision livestock farming

1.1.1 Opportunities

The implementation of digital technologies on farms could produce clear benefits for many
farmers. The main advantage of applying sensors like ear tags, pedometers, boluses or collars
is the earlier detection of health issues (DzZermeikaité et al., 2023). If behaviour or performance
parameters of an animal differ from standard values, most systems generate an automatic
warning message (Islam & Scott, 2021). The farmer can focus on these animals with a
suspicion of illness and take action to prevent the illness from worsening. Difficult-to-detect
processes like silent heats or subclinical mastitis can be uncovered by help of sensor systems
and be promptly treated (Antanaitis et al., 2022; Hojo et al., 2018). Some sensors also
recommend actions such as calculating the optimum interval for insemination after detecting a
heat (Roelofs & Van Erp-van der Kooij, E., 2015). In sheep and pigs, animal-specific data is
rare, while the primary focus is placed on changes affecting the whole herd, including
applications like automatic weighing scales (Gonzalez-Garcia et al., 2018) or microphones
detecting vocalisation (Hong et al., 2020).

PLF tools are not only helpful for the detection of diseases but also deliver data on productivity
of the individual animals, which can lead to significant improvements in this area (Carillo &
Abeni, 2020). Every milking, heat or feed intake can be detected, and different lists can provide
insight into the history of reproduction, changes in weight or other performance parameters.
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Herd management solutions offer various ways of displaying, including graphs or tables, and
the capability of summarising large amounts of raw data to create reasonable and useful
representations, which can supply farmers with useful information on their herd (Van Hertem
et al., 2017). Management decisions such as culling can be made more confidently based on
the information provided by sensor systems (Kleen & Guatteo, 2023).

Different stakeholders like veterinarians, claw trimmers or feeding consultants could get a first
impression on the herd or specific animals by reviewing the sensor system data (Eastwood et
al., 2016). This could enable an enhanced exchange of information between the different
parties involved in the daily farming business and especially improve the integrated stock
supervision (Kleen & Guatteo, 2023). In times of scarcity of qualified employees, PLF
technologies could help to streamline farm working routines and processes (Gindele et al.,
2016) or assist temporary staff in getting to know animals and farm operations. Data that can
be transferred between different devices eases adding new information and checking specific
animals even if the farmer is not physically near the barn (Islam & Scott, 2021). Documentation
by sensor systems takes place 24 hours per day, giving the farmer an overview of events at
all the times he normally could not fully focus on his animals (Buller et al., 2020).

A digital technology fully in place can also be a time-saving tool for farmers (Makinde et al.,
2022). Collar tags blinking or sensor systems showing the location of the animal in the stable
allow the farmer to easily locate the animal and find those cows who need intervention (Chapa
et al., 2021). Smart gates divide the farm into different functional areas, giving the farmer a
hint about which activity the cow is currently engaged in and can also be used to separate
animals (Kuraloglu et al., 2023). Milking robots can contribute to more flexible work hours
because presence at the farm is not set to two specific time slots a day for the milking process
(Streete et al., 2017). Driving the whole herd to the milking parlour as well as attaching milking
utensils is also no longer necessary because cows enter the milking robot by themselves and
get milked automatically. Automatic feeding systems, manure scrapers and other devices take
over tasks for the farmer and accelerate the operating procedure (Da Borso et al., 2017;
Garcia-Covarrubias et al., 2023).

In addition, the financial aspects of PLF should be considered. Although farmers need to invest
in the technology first, several studies confirm there can be a financial profit by implementing
PLF technologies on farms. Most of these studies examined the issue by creating models that
simulate various baseline conditions to evaluate the possible effects on different farm
environments. Pfeiffer et al. (2020) and Rutten et al. (2014) demonstrated by simulations that
an activity recording sensor for heat detection would be a sound investment for most farmers.
Crociati et al. (2021) investigated the financial advantages of an intravaginal calving alert
sensor and showed a resulting increase of income by approximately 120 EUR per calving
event. A cost-benefit analysis of an automated lameness detection system is considerably
more complex, as it must account for not only system costs, performance and herd size, but
also varying levels of lameness severity and different incidence rates (Kaniyamattam et al.,
2020). Nevertheless, Kaniyamattam et al. (2020) were able to demonstrate that, with an
assumed 10-year operational period, an automatic lameness detection system would prove
financially beneficial for farmers in over 80% of the various scenarios considered. However, as
most of the available studies focus on the profitability of heat detection, further research might
be needed concerning cost-effectiveness of disease detection by sensor systems.

IoT and sensor technology will also be necessary to cope with the upcoming demands towards
animal husbandry in the future. Climate change and animal welfare topics might lead to more
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extensive husbandry systems such as pasture grazing or free-range farming (Schulze et al.,
2021). In these types of housing systems, building and repairing fences or driving animals from
one pasture to another can be a time-consuming task. Virtual fencing, for example, uses GPS
collars to track animals in set borders on pastures and can create a stimulus to steer them
away from the border (Campbell et al., 2019). Installations like temperature- and humidity-
controlled cow showers or ventilators might help cows to cope with heat stress in future climatic
conditions (Ji et al., 2020; Legrand et al., 2011). Besides, digital technologies could minimise
the environmental impact caused by cowshed emissions. Conditioning cows to use cow toilets
could reduce ammonia emissions by directly collecting the urine (Galama et al., 2020).

1.1.2 Barriers

Even though automatisation and digitisation represent promising new developments in
livestock farming, PLF is not free of risks and limitations. Initial investment costs are often high
and there is no guarantee for farmers that the technologies will prove to be financially viable.
Durability, maintenance or repair costs are only three out of many factors which might influence
the profitability of a sensor system (Borchers & Bewley, 2015; Hartung et al., 2017).

In addition, it is difficult for farmers to find the best-fitting sensor technology for their farm due
to a lack of unbiased information. Farmers place great value on independent advice and
available on-site support (Borchers & Bewley, 2015) but often need to search for product
descriptions like installation requirements by themselves or directly ask dealers of the specific
company, which might lead to subjective consultations.

The starting situation of every farm, including animal population (Abeni et al., 2019; Van de
Gucht et al., 2018), barn construction (Akinyemi et al., 2023), workforce (Abeni et al., 2019),
wireless network connection (Akinyemi et al., 2023) and current disease prevalence (Van de
Gucht et al., 2018), could influence the decision for the investment in a sensor system and its
chances of success. The personal preferences of the farmer should also be considered in
terms of sensor systems (Van de Gucht et al., 2017) or management applications and their
availability on different devices. Assessing the individual circumstances of their farm can be
challenging for farmers on their own, but in the end, it might be crucial for the benefit of sensor
technologies.

Furthermore, potential time savings in the daily management routine should not be the driving
force when deciding for or against digital technologies. Even if it could be a positive side effect,
supervising sensor systems can take a lot of time (Hostiou et al., 2017), especially in the first
period after installation. Some sensors need an initial behaviour learning phase (Hajnal et al.,
2022), others demand time for the attachment to the animal (Yousefi et al., 2022) or require
multiple manual data entries in the beginning (Daum et al., 2022). Getting used to the
application might take a while and demand initial training of the farmer (Van Hertem et al.,
2017). Power breakdowns, network issues or technical failures can never be ruled out
completely and might cause production downtime or loss of data (Tuyttens et al., 2022).
Representatives of the selling company might not always be reachable on short notice, thus it
could be an advantage if farmers possess a certain degree of technical know-how to deal with
such problems immediately (Hackfort, 2021). In summary, the way of working will differ after
investing in a sensor system (Hostiou et al., 2017) and the farmer must be willing to face
technological challenges.

PLF technologies might also directly influence the behaviour of cows or even cause damage,
for example through an incorrectly attached sensor (Pfeiffer et al., 2021; Tuyttens et al., 2022).
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The initial adaptation phase to new technologies on the farm can be difficult for some
individuals and result in temporary discomfort (Tuyttens et al., 2022). The human-animal
relationship could suffer from further technologisation of farms if the farmer exclusively focuses
on alerts and sensor data (Hartung et al., 2017; Tuyttens et al., 2022). Digital technologies
should never replace the direct contact with the animal but support the farmer in monitoring
and management tasks while increasing the available time for the more animal-related
activities (Hartung et al., 2017; Tuyttens et al., 2022).

Data sovereignty and security is also a topic that many farmers still feel insecure about,
especially when it comes to sharing their data (Wiseman et al., 2019). The more digitised and
technologised a farm is, the higher the risk of unauthorised access and data manipulations
(Gupta et al., 2020; Kleen & Guatteo, 2023). Data protection is an important issue for farmers
(Gupta et al., 2020), as in most cases the farm is not only a workplace, but also a home to
them (Leshed et al., 2014). Data storage, for example in cloud-based solutions, and data
exchange between different parties creates a risk of harmful interference from third parties
(Gupta et al., 2020). Fears like constant surveillance and control by the government or
distributors arising with further implementation of digital technology also need to be taken
seriously (Tuyttens et al., 2022).

A further limitation of PLF is the lack of interconnectivity between most of the precision livestock
technologies (Kleen & Guatteo, 2023). Communication between sensors of different
manufacturers is rarely possible and often a separate herd management system is necessary
to exchange data (Kleen & Guatteo, 2023). A uniform data standard is urgently needed (Bahlo
et al., 2019) and although projects like iDDEN (iDDEN GmbH, 2023) work towards this goal,
this process is still ongoing. Farmers tend to have a large number of different applications to
manage all their on-farm technology and these separate systems each collect different
parameters without comparing or combining their results to create alerts (Bahlo et al., 2019).
Consequently, at this point it is still the farmer’s task to retrieve the available information,
interpret the overall situation and draw conclusions.

1.2 Technical insights on sensor systems

1.2.1 Components and operation of a sensor system

A sensor system comprises various components (Figure 1), that are comprehensively
described in the study by Hunter et al. (2010). It includes different sensing units like
accelerometers or thermal sensors, whose characteristics are controlled by the
microprocessor. After recording, the data is forwarded to an analogue-to-digital conversion
unit, which translates the incoming analogue signals into discrete digital values. Depending on
the employed sensor system, the data may be temporarily stored in a memory unit within the
sensor system and is then wirelessly transmitted to external receivers via a communication
tool. The necessary energy supply of the sensor system is provided by an internally integrated
power unit, which may take the form of batteries, rechargeable batteries or self-sustaining
power sources such as solar cells or piezoelectric systems. The receivers transmit the data to
the management program associated with the sensor system on the computer or mobile
device, where further processing algorithms extract useful information for the farmer, such as
graphs, tables or notifications.
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Figure 1: Schematic illustration of a sensor system, based on Hunter et al. (2010). Adapted
from original with modifications

1.2.2 Categories of cow-attached sensor systems

Sensors attached directly to cows are already capable of monitoring a wide range of
behavioural and physiological variables. These include parameters like feeding behaviour and
quantity, grazing patterns, rumination, drinking behaviour and volume, pH levels, body
temperature, activity, standing behaviour, oestrus signs, calving events, lying behaviour,
respiratory rate or the cow's location within the barn. These parameters are monitored by a
diverse array of sensor systems, a selection of which is depicted in Figure 2. The following
section offers a general overview of the various sensor system classes, accompanied by
validations of the systems utilised in this study.

1.2.2.1 Pedometers

General overview

Pedometers, initially designed for activity tracking purposes only, have evolved over the years
into comprehensive recording devices capturing various behaviours. Some pedometers
incorporate a three-dimensional accelerometer, enabling them to distinguish between different
behaviours such as walking, standing or lying based on the direction of acceleration. If coupled
with a magnetic field-inducing loop, they can also detect the cow’s presence at the feeding
table (Lorenzini, Schindhelm et al., 2017).

Pedometers are typically attached to a cow's leg using a strap with pins or buckles, offering
the advantage of easy removal when the cow leaves the farm and allowing for reattachment
to another cow. However, proper attachment is not entirely straightforward, as tight fastening
may constrict the leg, while loose installation makes the pedometer susceptible to the cow's
movements, increasing the risk of detachment.

Proper orientation of the sensor on the cow's leg according to the label instructions is essential
to avoid inaccuracies in recording lying times (Brehme et al., 2006). Additionally, the
positioning of the sensor on the leg can significantly influence its accuracy, for example in
detection of feeding behaviour (Greil, 2018).
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Validation

Three different master's theses at the Institute for Agricultural Engineering and Animal
Husbandry of the Bavarian State Research Centre for Agriculture were based on the work with
the “Track a cow” pedometers by ENGS (ENGS Dairy Solutions, Rosh Pina, Israel). The first
one focused on the validation of the recorded lying behaviour recorded by the pedometers and
demonstrated that there was almost complete concordance between the visually observed and
the automatically measured lying duration (Weingut, 2017). The examination of the lying
events per hour showed a higher documentation of lying events by the pedometers than by
the visual observer, but the concordance correlation coefficient (CCC) (0.8) could still be
considered good (Weingut, 2017). Another thesis dealt with the validation of the feeding
behaviour detected by ENGS pedometers and revealed there was a good concordance of the
feeding duration between visual and automatic monitoring (0.9), but the pedometers often
recorded one feed visit less than the observer (Greil, 2018). These discrepancies could be
explained by the pedometer position, which led to errors when it was aligned parallel to the
induction loop (Greil, 2018). In a more recent master’s thesis, ENGS pedometers to detect
heat events were combined with two induction loops to distinguish between grazing and stall
periods of the cow (Wirsching, 2022). As the activity of cows on pasture is generally higher,
the use of heat detection systems is often complicated by too many false heat alarms
(Wirsching, 2022). Using pedometers, the cow’s location, and an adapted algorithm, 67% of
the cows, initially falsely identified as in heat, could be correctly recognised as not in heat
(Wirsching, 2022).

Van Erp-van der Kooij, E. et al. (2016) validated the CowControl pedometers by Nedap
Livestock Management (N.V. Nederlandsche Apparatenfabriek, Groenlo, the Netherlands)
through comparison with live observation and video data and reported very high correlations
for lying and standing. The standing-up frequency also corresponded to the video observation,
but timing discrepancies of the leg tags led to poorer alignments. For walking, the CCC yielded
only 0.45 and 0.5, which could also be explained by difficulties in observing this behaviour.
Nielsen et al. (2018) evaluated these leg tags in the CowScout version supplied by GEA (GEA
Group Aktiengesellschaft, Germany) and found similar results: nearly perfect accuracy for lying
and standing, but shortcomings in step tracking.

Borchers et al. (2016) conducted a validation study, which included the AfiTag Plus
pedometers by Lemmer-Fullwood (Lemmer-Fullwood GmbH, Lohmar, Germany) along with
visual observation, revealing a high CCC of the lying behaviour exceeding 0.99. Henriksen and
Munksgaard (2019) demonstrated the efficacy of accurately recording lying times and bouts of
another pedometer by Lemmer-Fullwood, the AfiTag I, although variances were noted in
pedometer readings among differently managed dry cows. Swartz et al. (2016) compared the
measured step activity by AfiTag Il pedometers in calves with video recordings and also noted
a high correlation of 0.99.

1.2.2.2 Neck and noseband sensors

General overview

Noseband sensors can be integrated into a complete halter, while neck tags are mostly
attached to a collar in various positions, for example snugly alongside the neck or hanging
beneath it.

Neck tags, like pedometers, typically also contain an accelerometer, which distinguishes
between different behaviours based on varying frequencies and directions. Vertical upward
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movements, for instance, can be interpreted as head bobbing during walking, while downward
acceleration is more associated with feeding or grazing. Sensors with a microphone are able
to identify the sound associated with regurgitation, which initiates rumination (Elischer et al.,
2013). The audio recordings allow for the tracking of individual chewing cycles per bolus, the
number of boli, and the duration of rumination (Elischer et al., 2013).

The noseband sensor comprises a pressure sensor, an accelerometer, and an oil-filled silicone
tube within the halter, the latter of which directly detects pressure changes resulting from
chewing movements (Kroger et al., 2016). This type of sensor is used mostly in research and
is not meant for data collection on commercial dairy farms.

Some sensors use ultrawideband radio signals, which emit signals intercepted by receivers
strategically positioned throughout the barn to calculate the cow's location (Frondelius, Van
Weyenberg et al., 2022).

Like pedometers, neck tags and halters provide the convenience of easy transferability across
different animals, but neck tags on a collar, in contrast to halter-attached sensors, are
susceptible to data inaccuracies stemming from improper attachment, slipping or twisting of
the collar.

Validation

Borchers et al. (2021) observed that the calculated mean difference for all behaviours recorded
by the CowControl Necktag by Nedap aligned closely with the visually observed values, with
feeding and rumination showing a strong correlation, while inactive time displayed a moderate
correlation. High CCC (>0.89) were also reported by Van Erp-van der Kooij, E. et al. (2016) for
all three behaviours.

No studies addressing the SCR (Allflex Livestock Intelligence, Dallas, USA) neck tags in the
5% generation could be found. The research of Schirmann et al. (2009) focused on the
validation of a preceding SCR neck tag, comparing rumination data recorded by the system
with visually documented observations and revealing a notably strong correlation (0.96).
Elischer et al. (2013) found only a moderate correlation (0.61) between the walking behaviour
recorded by the Qwes HR tag and visual observations.

No studies directly comparing the activity measurement of the DelLaval (DeLaval AB, Tumba,
Sweden) activity meter neck tags with visual observation could be identified. Nonetheless, the
study of Lgvendahl and Chagunda (2010) on oestrus detection through the neckband sensors
by DelLaval achieved a detection rate of 74.6%, with a daily error rate of 1.3%, employing a
specific algorithm.

1.2.2.3 Boluses

General overview

According to Mottram et al. (2008), boluses were originally developed to enable continuous pH
measurement without the need for specifically fistulated cows. They stated that due to the
unique structure of the cow's rumen and reticulum, weighted objects like boluses can remain
in the same location in the reticulum for the duration of the animal’s life. One problem that has
been evident from the outset and continues to be found in newer bolus models is the difficulty
in ensuring accurate pH measurements over an extended period of time (Mottram et al., 2008).

The boluses need to be resilient to rumen fluids, are orally administered and traverse the
rumen until they reach their final position in the reticulum. Boluses with advanced features
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additionally integrate longer-lasting functions like a temperature-sensing unit to record the
inner body temperature and the drink cycles and a three-dimensional accelerometer, allowing
for the recording of supplementary parameters like activity or rumination. Early detection of
oestrus, upcoming calving and diverse health issues can be enabled through these sensors.

A benefit of the system is that the bolus remains in the rumen, minimising the risk of loss
compared to other sensor devices attached to the cow. Nevertheless, in case of malfunction,
a replacement bolus is required and these boluses cannot be reused after the cow's death.

Validation

A study regarding the validation of the recorded pH value and temperature by the bolus
produced by smaXtec (smaXtec animal care GmbH, Graz, Austria) revealed that 94.7% of the
boluses could adhere to the pH tolerance value of £0.2 pH units and the measured
temperatures were only slightly below the guaranteed accuracy by the manufacturer (Pfanzelt
et al., 2021). Capuzzello et al. (2023) compared the rumen contractions recorded by the
smaXtec bolus with those obtained via ultrasound and auscultation, which produced
comparable results. Furthermore, a subsequent comparison of the rumination duration
recorded by the bolus with that from a collar yielded a Pearson correlation coefficient of 0.72.
Based on these findings, they concluded that the bolus is a reliable tool for recording daily
rumination duration. Edwards et al. (2024) discovered a high Pearson correlation coefficient of
0.95 to 0.96 between the rumination time measured by the smaXtec bolus and that recorded
by a neckband sensor and an ear tag. Although no studies directly comparing the activity
recordings of the boluses with visual observations were found, Stein (2017) conducted an
analysis focusing on heat detection based on smaXtec bolus activity measurement. They
compared the heat events reported by the boluses with progesterone measurements in the
cows' blood, revealing high precision (93%) and sensitivity (95%) (Stein, 2017).

1.2.2.4 Ear tags

Ear tags are affixed to the cow's ear and either need to be pierced independently or can be
embedded within a radio frequency identification tag. In the case of the former, a significantly
more invasive procedure is performed on the cow compared to, for example, attaching a
neckband. Additionally, ear tags may tear off and become lost depending on the feeding grid
or behaviour of the cow.

They commonly feature a triaxial accelerometer for recording feeding patterns, rumination, ear
temperature or activity levels and, depending on the system, a positioning function may also
be integrated (Zambelis et al., 2019).

1.2.2.5 Calving sensors

As described by Pfeiffer et al. (2021), calving sensors are attached to the cow a few days prior
to the estimated calving date either directly with an integrated strap and ratchet or with
adhesive tape. Tail movements are recorded, analysed and the farmer is notified a few hours
before the impending calving. According to their examinations, the main challenge lies in the
attachment process, as, depending on the method, there is a risk of causing pressure sores
and swelling if the sensor is fixed too tightly. Conversely, if attached too loosely, sensors may
easily fall off. Some animals may also require a short adjustment period to the sensors and
technical issues such as insufficient battery power despite charging can complicate the
process.
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Figure 2: Examples of different sensor types (a) Pedometer, b) Neck tag, c) Bolus, d) Ear tags,
e) Calving sensor)

1.2.3 Categories of non-wearable cow sensors

Even sensors not directly attached to the cow can significantly contribute to individual health
monitoring. Depending on the manufacturer and model, milking systems can detect a variety
of parameters beyond milk yield, including various milk components, somatic cell counts,
conductivity, milk temperature, milk colour, the presence of blood or milk flow. Environmental
sensors measure temperature and humidity, which are then used to calculate the
Temperature-Humidity Index (THI). Body constitution sensors are used to assess the cow's
stature through body condition scoring (BCS) and body weight.

1.2.3.1 Sensors for milk analysis in automatic milking systems

Modern milking systems can collect a broad range of cow-specific data. Although primarily
used for mastitis detection, this data can also offer valuable insights into other health
conditions. One of the often-measured parameters is electrical conductivity, which indicates
ion content, influenced by levels of sodium, potassium or chloride. As explained by Hogeveen
et al. (2010), during mastitis, the inflammation leads to changes in permeability of vessels in
the udder and consequently to an ion imbalance. Higher ion concentrations in milk enhance
its ability to conduct an induced electrical current and therefore the conductivity increases. To
identify the affected quarter, the conductivity needs to be measured for each udder quarter
individually.

Lely (Lely International N.V., Maassluis, the Netherlands) also records the milk temperature
using a temperature sensor, which is particularly useful because an increase in temperature
typically correlates with a rise in electrical conductivity (Kunes et al., 2021). Most robots also
assess milk flow rates, which are mainly influenced by milking intervals and individual cow
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characteristics, but a heightened milk flow can also pose an increased risk of mastitis
(Hogeveen et al., 2001).

Another key parameter associated with mastitis is the somatic cell count, as udder
inflammation triggers the immune system, resulting in the migration of inflammatory cells into
the udder and milk (Kunes et al., 2021). Sensor measurement methods can either rely on the
viscosity similar to the California Mastitis Test (Hogeveen et al., 2010) or employ optical
techniques such as flow cytometry or the Milk Leukocyte Differential Test, which can
differentiate between various types of leukocytes (Kunes et al., 2021).

Some robots display the blood concentration or amount in the milk, while others report the milk
colour. In this process, the milk is illuminated with light of the wavelengths red, green and blue
and the transmission is measured (Song & Van der Tol, 2010). DeLaval also utilises the
Mastitis-Detection-Index (MDi), which integrates three key parameters: conductivity, presence
of blood in the milk and the interval between milkings. Cows showing an MDi of 1.4 or greater
should be examined for udder health issues, while an MDi of 2.0 or more already indicates a
critical risk (Bausewein et al., 2022).

The content of milk constituents, primarily fat, protein and lactose, can be measured using
near-infrared spectroscopy, which involves the absorption or reflection of radiation at specific
wavelengths by these components (Kunes et al., 2021). The fat-protein ratio is often analysed,
as a fat-protein ratio below 1.2 indicates acidosis, while a value above 1.4 suggests a ketotic
metabolic condition (Kunes et al., 2021).

The Delaval Herd Navigator, as presented by Mazeris (2010), additionally measures urea,
lactate dehydrogenase, beta-hydroxybutyrate and progesterone. Progesterone is used for
cycle diagnosis in cows, aiding in the detection of oestrus, pregnancy and fertility issues. Beta-
hydroxybutyrate and urea serve as indicators for ketosis and assist in dietary adjustments,
while lactate dehydrogenase improves mastitis detection (Mazeris, 2010). The Herd Navigator
samples cows based on biological models, testing them by using a dry stick approach, and the
progesterone level is assessed with an immunoassay, while the other parameters are
determined through colorimetry, ultimately generating a risk probability for each cow (Mazeris,
2010).

1.2.3.2 Environmental sensors

Environmental sensors also play a crucial role in monitoring and optimising the ambient
conditions for dairy cows. Temperature and humidity sensors can help to monitor the in-barn
climate and are often combined as the Temperature-Humidity-Index (THI) to estimate heat
stress at the herd level. Weather sensors commonly record additional parameters such as
rainfall or global radiation, which includes both direct sunlight and diffuse sky radiation, making
it a valuable indicator of heat stress, particularly in pasture-based environments (Herbut et al.,
2018). Conversely, sensor-measured wind speed can facilitate cooling through convection for
cows located outside, but this benefit is absent in the barn, making the implementation of
ventilators necessary (Herbut et al., 2018). Air quality sensors may detect levels of gases like
ammonia and carbon dioxide, ensuring healthy air conditions, while light sensors capture
different lux levels, enabling them to determine how long cows are subjected to daylight
(Leliveld et al., 2024).

1.2.3.3 Body constitution sensors

Alongside basic scaling systems, which can, for example, be integrated into milking robots,

image recognition technology is often used to assess the body constitution of the cow through
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body condition score or body weight. Martins et al. (2020) investigated the potential
applications of lateral and dorsal images from 3D cameras and found that they can already be
effectively used to determine body weight, although there is still room for improvement in
estimating BCS. Delaval also offers a BCS camera that is mounted on the milking robot,
capturing 3D videos as the cow passes through (Mullins et al., 2019). According to Mullins et
al. (2019), this 3D technique enables the analysis of the BCS irrespective of the cow's
movement speed. From these videos, an image is generated, and an algorithm analyses the
surface profiles and fat coverage across various points on the cow's back, from the short ribs
to the ischial tuberosity, ultimately producing a score ranging from 1 to 5. Mullins et al. (2019)
discovered in their research that the system was effective in accurately identifying body
condition scores between 3 and 3.75, but it struggled to classify animals that were above or
below this range.

1.3 Areas of application in health monitoring of dairy cows

Utilisation of sensor systems has become common in many different fields for monitoring cows"
health and reproduction. Beginning already in the 1980s (Hogeveen et al., 2010), significant
efforts have been directed towards automating the detection of various health issues in cows.

Automatic heat detection using sensor systems can be encountered on many farms, as most
sensors only use the cow's activity to create a heat alarm and many studies showed that
sensors recording this parameter have high accuracy (LeRoy et al., 2018; Roelofs et al., 2017;
Shahriar et al., 2016). Taking into account that activity is highly animal-related (Miller &
Schrader, 2005), sensor system manufacturers often use the baseline activity of the individual
cow to detect deviations (Schilkowsky et al., 2021). Sensors attached to the sacral area of the
cow can determine mounting behaviour (Reith & Hoy, 2018), infrared thermography can
identify changes in the surface temperature (Perez Marquez et al., 2021), microphones can
recognise increased vocalisation (Roéttgen et al., 2020) and temperature and conductivity
sensors can detect vaginal deviances (Higaki et al., 2019). Another often used method is the
regular measurement of progesterone concentration in milk, for example performed by the
DelLaval Herd Navigator in the milking robot (Mazeris, 2010). New technologies like video
analysis and image recognition could also efficiently support the farmer in detecting oestrus
behaviours like the standing heat (Arago et al., 2020).

Calving events can be spotted by using different sensor technologies as well. Borchers et al.
(2017) examined pedometers and collar tags recording activity, lying behaviour and rumination
and proved that merging those parameters could enable a better calving prognosis. The
combination of different sensor systems like accelerometers and localisation sensors is likely
to improve the accuracy of prediction models (Benaissa et al., 2020). Reticulorumen boluses
discern upcoming calving events 20 hours prior by noticing a drop of the inner body
temperature (Kovacs et al., 2017). Farmers could use this as a first alert to relocate the cow to
the calving pen. Cows showing an earlier fall in reticulum temperature and a lower rumination
time might be more prone to calving difficulties (Kovacs et al., 2017). Higaki et al. (2020)
created an effective calving detection model by using the tail skin temperature and machine
learning processes. Intra-vaginal sensors are able to identify a sudden change in temperature
and light gradient after being ejected from the vagina due to the progressing calving (Crociati
et al.,, 2021). Some sensors can be attached to the cow’s tail, measure calving-related tail
motions and send a message to the farmer a few hours before the calving event (Pfeiffer et
al.,, 2021). Fixating these sensors at the tail without causing bruises or swelling and still
preventing the loss of the sensor can be challenging for the farmer (Pfeiffer et al., 2021).
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More complex clinical pictures are difficult to describe using sensors that record only one single
parameter. The combined effect of multiple predictors is necessary to differentiate between
diseases with similar symptoms. A well-known approach for detecting mastitis is the
combination of different milk parameters recorded by automated milking systems. The selected
thresholds and variables vary from one milking robot manufacturer to another (Bausewein et
al., 2022) and include, for example, somatic cell count, conductivity, milk flow, blood, milk
colour or milk temperature. Khatun et al. (2018) confirmed that integrating diverse factors
measured by the milking robot in a regression model could lead to a noticeably improved
identification of clinical mastitis. The cow’s behaviour can also be a mastitis indicator, as shown
in the study by Antanaitis et al. (2022), where subclinical mastitis led to a decrease in
rumination time, chews and drinking time. Steele et al. (2020) used milk parameters in
combination with pedometer data and found dissimilarity in the behaviour and performance of
cows with clinical mastitis caused by different pathogen types. Furthermore, GPS trackers can
help to monitor the social behaviour of cows and therefore display the contact with mastitis
pathogens by registering cow contacts, which enables a following ranking of the animals
according to their mastitis risk (Feng et al., 2022).

Metabolic disorders arising often in dairy cows could be detected earlier with the help of
different sensor systems. Acidosis is, for example, characterised by an imbalance in the acid-
base status of the rumen, leading to a decrease in rumen pH (Jaramillo-Lépez et al., 2017).
Especially the chronic course of the disease without visible clinical signs, known as subacute
ruminal acidosis, is often difficult to notice for the farmer (Studer et al., 2023). Boluses can
continuously monitor the pH value and alert the farmer in case of a significant decrease (Studer
et al.,, 2023). Deviations in the inner body temperature could also be an indication of a
metabolic disease (Alzahal et al., 2011). Ketosis in cows is associated with higher ketone body
values and a negative energy balance and often occurs in the first weeks after calving
(Esposito et al., 2014). As the BCS of a cow is correlated with the risk of developing a ketosis
(Rathbun et al., 2017), regularly monitoring its change with BCS cameras could enable earlier
diagnoses. Milk components like an increased fat protein ratio (Kunes et al., 2021) or beta-
hydroxybutyrate (Mazeris, 2010) could also be an indicator of a ketotic metabolic state.
Antanaitis et al. (2020) proved that decreased rumination and drinking in cows can be detected
several days before the clinical manifestation of the disease and Steensels et al. (2017) used
a wearable sensor to create an efficient ketosis detection model consisting of a combination
of rumination time, activity and milk yield.

Besides the most common production diseases, external influences on dairy cows, such as
temperature and humidity, should also be mentioned. Hut et al. (2022) recently discovered that
the impact of climate on behaviour parameters like eating or lying already starts at an average
daily temperature of twelve degrees. Different cows might deal with higher temperatures in
different ways depending on traits like breed and milk yield (Gantner et al., 2017) or individual
factors like lactation stage or parity (Heinicke et al., 2019). Wearable sensors could help to
increase the focus on the individual heat stress of the single animal instead of the whole herd.
Ramén-Moragues et al. (2021) examined various behaviours under heat stress by using neck
tag sensors and detected alterations in every monitored variable. Under heat load
circumstances, the animals panted more and showed higher activity values, while their
rumination, resting and feeding duration decreased (Ramoén-Moragues et al., 2021). Ranzato
et al. (2023) demonstrated that behavioural sensor data in combination with the cows' milk
yield could be used to identify the animals more prone to suffering from discomfort in heat
periods. Keeping track of the cows’ core or surface temperature could be another reasonable

14



approach, despite the noticed time lapse between the increase of external temperatures and
the cow's body temperature rise (Chung et al., 2023). Furthermore, as heat stress might
influence the respiration rate (Gaughan et al., 2000), respiration-detecting sensors (Strutzke
et al.,, 2019) or image recognition models (Wu et al., 2023), currently only employed for
experimental purposes, could be further developed into practicable solutions.

A more detailed exploration of sensor systems applied in the field of lameness detection will
be carried out in chapter 3.2.

2. Lameness

Characterising a deviation in gait resulting from pain-related, functional or structural disruptions
within the musculoskeletal system, the term lameness involves the animal's response through
the execution of specific unloading movements as a strategy to alleviate the associated
discomfort (Baumgartner & Wittek, 2018). In dairy cows, lameness can be seen as an intricate
and multifaceted condition, heightened by a variable time lag between the underlying causes
and the manifestation of the symptom (Bell, 2015). Claw disorders and lameness are still
reported as the third most common reason for culling of dairy cows, following reproduction
issues and udder diseases (Heise et al., 2016; Kulkarni et al., 2023). As evident in Table 1,
lameness continues to be a prevalent issue on dairy farms worldwide. Detected lameness
prevalences over the past 10 years range from approximately 15% to 40%, indicating a
persistent high level of claw disorders among dairy cows, irrespective of country or continent.
This highlights claw health problems posing one of the greatest risks to the well-being of cows
(Beusker, 2007) and substantially contributing to financial losses in livestock operations due
to associated costs (Ozsvari, 2017).

Table 1: Lameness prevalences reported in different countries in recent years

Reference Country Years of study Iar:;i\;:f?n(:zt;fan)
Griffiths et al. (2018) | England, Wales 2015-2016 31.6%
Weigele et al. (2018) | Switzerland 2015-2016 29.8%

Bran et al. (2019) Brazil 2016 41.1%

O'Connor et al. Ireland 2015 37.8%

(2020)

(Van Huyssteen et Canada 2018 20%

al., 2020)

Sadiq et al. (2021) Malaysia 2018-2019 36.9%

Sheferaw et al. Ethiopia 2018-2019 14.1%

(2021)

Jensen et al. (2022) | Germany 2016-2019 North: 23.1%
East: 39.1%
South: 23.2%

Matson et al. (2022) | Canada 2019 28.3%

Sahar et al. (2022) Canada 2019-2020 31.8%

Salem et al. (2023) Egypt 2022 43.1%




2.1 Anatomy of the claw

The digital end organ in cattle is constituted by the claws, comprising two main and two
dewclaws on each limb (Mulling, 2006). The protective horn capsule surrounding the claw is
shaped by keratinised skin and consists of the epidermis, dermis and subcutaneous layers
(Milling, 2006). Five distinct segments can be differentiated in the claw: the periople, coronary,
wall, sole, and bulb segments, the latter playing a crucial role in load distribution (Geyer, 2008).
At this particular site of the claw, the subcutaneous tissue is notably well-developed with fat
deposits with a shock-absorbing function (Budras et al., 2005). The overlying dermis forms two
layers, the inner stratum reticulare, which serves as a connection with the periosteum or
subcutis, and the outer stratum papillare, which is linked with the epidermis by laminae in the
wall segment and by papillae in the other areas (Mulling, 2006). The epidermis comprises cells
undergoing keratinisation in an outward direction and relies solely on diffusion of nutrients
through the vascular and neural plexuses of the underlying dermis (Milling, 2006). A structure
known as the white line represents a flexible connection between the hoof wall and sole,
rendering it a susceptible area for microtrauma and the infiltration of infectious agents due to
its composition of various types of horn (Milling, 2006).

As described by Milling (2005), the horn capsule of the claw encloses the distal part of the
short pastern bone, the distal sesamoid bone, the claw joint along with its ligaments and the
pedal bone. He noted that through its attachment to the pedal bone, the claw capsule serves
as a support structure for the claw and transfers the forces exerted during weight-bearing
evenly, including the sole and bulb part. The spreading of the claws after ground contact also
contributes to shock absorption and aids the claws in distributing the forces exerted by the
substantial body mass of the animal.

Compared to the hind claws, the front claws are set at a slightly steeper angle and exhibit a
broader and more compact shape (Mulling, 2005). The greatest load on the hind limb claws is
concentrated on the lateral claw, given its distinct prominence compared to its medial
counterpart (Geyer, 2008).

2.2 Prevalent diseases of the claw

Insufficient horn wear and the ongoing horn growth alter the shape of the claw, complicating
optimal load distribution and potentially leading to various claw disorders like sole ulcers or
white line lesions (Mulling, 2006). Additionally, infectious processes may also contribute to the
emergence of claw diseases like digital dermatitis or heel horn erosions.

2.2.1 Heel horn erosion

Heel horn erosion refers to V-shaped grooves that appear at the bulb and result from the
dissolution of the soft bulb horn, which is particularly susceptible to softening due to moisture,
ammonia and putrefaction processes (Kofler, 2014).

Since the lesions do not reach the corium, they do not cause lameness but contribute to the
development of other hoof diseases such as digital dermatitis or sole ulcers (Nuss & Kofler,
2019). The causes for the formation include damp pasture or stall surfaces, ubiquitous
putrefactive agents and excessive load on the bulbs due to insufficient claw trimming (Kofler,
2014).
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2.2.2 Digital dermatitis

Digital dermatitis or "strawberry foot rot" refers to an inflammation of the skin above the soft
bulb, potentially progressing to ulceration and extending into the interdigital space (Dirksen,
2006b). In rare cases, it may also manifest around the dewclaws or dorsally at the coronary
band (Dirksen, 2006b).

According to Nuss et al. (2019), it is considered a multifactorial disease in which various
conditions contribute to the infiltration of bacterial pathogens, such as the prevailing treponema
and other secondary agents. They explained that prior damage is a required precondition for
these pathogens to penetrate the skin, consisting, for example, in maceration and softening of
the horn. This is caused by exposure to faeces and urine and thus ammonia, resulting in
microfissures in the outer cutaneous barrier. Additional predisposing factors include unsanitary
farm conditions in general, poorly designed cubicles, sharp edges, the acquisition of new
animals as well as stress induced by overcrowding, poor nutrition, heat or other factors (Nuss
et al., 2019).

Initially classified by Dopfer (1994), digital dermatitis can be categorised in different stages
according to the visible defects, which are further elaborated in Table 2.

Table 2: Stages of digital dermatitis (Nuss et al., 2019)

Stage Clinical appearance
MO Healthy skin, without any visible lesions
M1 Small lesions (<2 cm) in the interdigital skin of the soft bulb
M2 Ulcerative, active and red-coloured erosions (>2 cm) above the bulb, often
surrounded by protruding hairs (Figure 3)
M3 Healing defects, completely covered with crusts
M4 Chronic hyperkeratotic elevated lesions of brown colour (Figure 4)
M4.1 Chronic form with recurrent small erosions (M1)

Figure 3: Digital Dermatitis (Stage M2) Figure 4: Digital Dermatitis (Stage M4)
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While the M2 stage (Figure 3) is consistently associated with pain, M1 and M3 are notably less
painful or entirely pain-free and in the chronic form M4 (Figure 4) cows often no longer exhibit
lameness due to the absence of pain (Nuss et al., 2019). Despite potential lesion healing,
treponema persist as cysts in the deeper layers of the skin, resulting in a latent infection of the
animal (Nuss et al., 2019).

2.2.3 Sole haemorrhage

Sole haemorrhage refers to a reddish or yellowish discolouration of the horn on the sole,
resulting from bleeding of the corium and the connective tissue (Kofler, 2014). Classification
involves differentiating between diffuse, extensive (Figure 5) and localised, circumscribed
(Figure 6) sole haemorrhages (ICAR Working Group on Functional Traits (ICAR WGFT) and
International Claw Health Experts, 2015). The discolouration in the horn is caused by bleeding
in the corium approximately six weeks prior to its appearance, given that the claw grows at a
rate of approximately five millimetres per month (Kofler, 2014). The aetiology of the
haemorrhage may stem from corium inflammation in the context of laminitis or traumatic
incidents resulting from slipping, stepping on sharp edges or overloading (Kofler, 2014).

Figure 5: Diffuse sole haemorrhage Figure 6: Circumscribed
sole haemorrhage
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2.2.4 Ulcers

Ulcers can develop in different locations on the claw,
with the most common being the sole ulcer (Figure 7).
This refers to a defect in the sole horn with exposed,
inflamed corium at the transition of the hard to the soft
bulb directly under the flexor tuberculum (Nuss &
Kofler, 2019). On the one hand, this area is highly
susceptible due to the varying hardness of horn types,
making it prone to defects under load (Mulling, 2005).
On the other hand, laminitis could lead to circulatory
disturbances in the corium, eventually followed by
sinking of the pedal bone along with the flexor
tuberculum, which consequently compresses the
corium (Nuss & Kofler, 2019). The compression leads -
to further undersupply and necrosis of the corium, - |
causing a cessation of horn formation until ultimately ‘.5_}' _‘o:. ¢ ‘é.““.’i "
the corium becomes exposed, inflamed and later > ol A 3
granulates (Nuss & Kofler, 2019). The observation . W

that the more heavily burdened outer hind claws
exhibit this condition more often suggests that its
development is influenced by factors beyond laminitis spray

(Nuss & Kofler, 2019). This includes an excessive weight shift onto the bulbs due to overgrown
claws, slippery flooring or structural aspects of the barn as well as changes in the bulb fat pad
due to lactation stage or advanced age (Kofler, 2014). As previously indicated, ulcerations may
also manifest in other, less frequent claw locations, including the toe or bulb (ICAR Working
Group on Functional Traits (ICAR WGFT) and International Claw Health Experts, 2015).

2.2.5 White line disease

Flooring covered with a combination of faeces and urine contributes to a continual softening
of the hoof horn, with the claw being particularly susceptible in the white line region due to its
anatomical structure primarily composed of softer horn material (Nuss & Kofler, 2019). This
maceration process facilitates the penetration of foreign bodies such as dirt or stones, leading
to structural separations and the onset of a white line fissure (Figure 8) (Nuss & Kofler, 2019).
Additionally, increased mechanical stress induced by sharp edges or tight turns in the stable
along with laminitis or improper farm claw trimming can further predispose this area between
the sole and wall to haemorrhaging and fissures (Kofler, 2014). Through this point of entry,
pathogens can infiltrate the upper stratum of the corium and induce polymicrobial infections
marked by inflammation, purulence and tissue liquefaction (Dirksen, 2006b). A white line
abscess (Figure 9) forms, progresses and either eventually erupts externally through the
coronary band or, less favourably, infiltrates deeper structures such as the claw joint (Nuss &
Kofler, 2019).

«

Figure 7: Sole ulcer with Repiderma
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Figure 8: White line fissure Figure 9: White line abscess

2.2.6 Laminitis

Laminitis presents as a complex condition primarily attributed to circulatory disorders, leading
to a diffuse, aseptic inflammation of the corium across multiple claws (Dirksen, 2006a). The
aetiology primarily involves systemic disorders such as ruminal acidosis or occasionally
overload conditions, leading to impairments in the suspensory apparatus of the claw (Nuss &
Kofler, 2019). This cascade of events ultimately manifests in various laminitis symptoms,
including white line fissures, sole haemorrhages or ulcers (Nuss & Kofler, 2019).

Both the rare acute laminitis, which is characterised by severe clinical symptoms, and the
subacute or subclinical forms can transition into a chronic course with a risk of recurrence in
the following manner described by Nuss and Kofler (2019). Toxins and other substances
penetrate the corium in the acute phase and damage the capillary walls, which results in
haemorrhages, circulatory disturbance, and the formation of inferior-quality horn. Ongoing
nutrient deficiency subsequently loosens the suspension of the pedal bone. This can lead to
its sinking or rotation and therefore further straining of the claw structures, causing contusions
between the corium and the claw capsule. Hormonal changes around calving, leading to a
relaxation of the connective tissue, along with less comfortable housing conditions for the cow,
can also contribute to these processes.

2.2.7 Interdigital hyperplasia

Regular irritations in the interdigital space accompanied by inflammation of the skin can lead
to tissue overgrowth, in the end resulting in the development of a bulge in this area (Geyer,
2008). Kofler (2014) explained that interdigital hyperplasia (Figure 10), also known as tyloma,
progressively enlarges with persistent irritation, reaching a size that induces bruising during
walking and cutaneous inflammation. Digital dermatitis lesions may also manifest on the
hyperplastic growths and these hyperplasias, accompanied by a compromised skin barrier,
are consequently associated with discomfort (Kofler, 2014). Splayed claws, whether
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genetically predisposed or arising from improper claw trimming or other claw disorders, can be
conducive to the development of these growths (Kofler, 2014).

2.2.8 Double sole

After inflammation or bleeding of the corium, there can be a separation of horn layers on the
sole, that causes the formation of a cavity (Nuss & Kofler, 2019). Moisture and pathogens
infiltrate and decompose the horn, contributing to the formation of the double sole (Figure 11)
(Nuss & Kofler, 2019).

The exudate leakage can be caused by secondary conditions associated with laminitis or by
traumatically induced contusions and after the recovery of the corium, the characteristic inner
horn layer forms beneath the cavity (Kofler, 2014).

Figure 10: Tyloma Figure 11: Double sole with sole ulcer

2.2.9 Vertical horn fissure

This claw disease involves a separation of the horn, occurring dorsally, axially or abaxially on
the claw (Kofler, 2014). It runs vertically and can either remain superficial or penetrate the
corium and the cause for its formation can be injuries to the coronary band, poor-quality horn
due to laminitis, nutritional deficiencies and dehydration or mechanical factors (Kofler, 2014).

2.2.10 Interdigital phlegmon

The interdigital phlegmon or foot rot is described as a symmetrical and distressing foot
inflammation, often coupled with a foul odour (ICAR Working Group on Functional Traits (ICAR
WGFT) and International Claw Health Experts, 2015). It manifests suddenly, coincides with
acute lameness and advances with a diffuse purulent-necrotising effect deep into the
subcutaneous tissues, extending towards the distal interphalangeal joint (Kofler, 2014). The
affected animals present distinct clinical symptoms, including localised erythema, warmth and
swelling in the coronary band region, accompanied by systemic indications such as pyrexia
and a compromised general condition (Nuss et al., 2019).

Stones, rough edges, dirty walking surfaces or gaps may induce minor defects in the interdigital

space and afterwards anaerobic bacteria, such as Fusobacterium necrophorum, can

eventually penetrate the skin through these defects, triggering the inflammation (Kofler, 2014).
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2.3 Causes for lameness in dairy cows

Several different factors can contribute to the development of lameness and can be
categorised into factors originating from the individual animal, management conditions and
environmental influences (Figure 12). The correlation of various factors makes it particularly
challenging to identify the root causes of claw diseases, as, for instance, certain animal-specific
factors may either promote lameness or have no impact, depending on the management
practices implemented on each farm.

N %
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stage Housing and
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Figure 12: Factors influencing the development of claw lesions

2.3.1 Animal-related factors

2.3.1.1 Breed

Various cattle breeds may display distinct susceptibilities to claw diseases; for instance,
research by Firmann et al. (2024) revealed that the probability of dermatitis digitalis
occurrence is five times higher in Holstein-Friesian herds, with individual Holstein cows facing
a 63% elevated risk compared to other breeds. Baird et al. (2009) observed a higher incidence
of white line defects in Holstein-Friesians compared to Norwegian cattle, while Lusa et al.
(2020) documented a notably lower prevalence of foot issues in Jersey cows when compared
to Holstein cows. VICek et al. (2016) additionally reported that 45% of the Holstein cows in their
study presented with claw lesions, whereas only 37% of the Simmental cows were affected.
These differences between dual-purpose breeds and the dairy breed Holstein could be
explained by the higher conversion of energy reserves in Holstein cows for the intense milk
production, resulting in a more pronounced negative energy balance and a higher change of
body condition (Gruber et al., 2014; Knob et al., 2021). Furthermore, the generally higher body
weight and larger claw dimensions could lead to more frequent incidents of claw lesions in
milk-orientated breeds such as Holstein or Brown Swiss (Lusa et al., 2020).

2.3.1.2 Genetics

Genetics can also be a significant element in the development of lameness. Numerous factors,
including recovery from sole ulcers, exhibit inheritable traits (Barden et al., 2023), and the
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utilisation of genetic indices can facilitate the selection of appropriate animals for breeding,
aiming to minimise the likelihood of lameness in progeny (Barden, Anagnostopoulos et al.,
2022; Browne et al., 2022). Anatomical features such as the thickness of the digital cushion
also have a hereditary component and can influence the development of claw diseases
(Barden, Li et al., 2022).

2.3.1.3 Parity

The parity and consequently the age of cows can have a significant impact on the occurrence
of lameness. The majority of studies indicate a higher likelihood of lameness with advancing
parity (Lean et al., 2023; Pdtzsch et al., 2003; Rittweg et al., 2023; Sheferaw et al., 2021). For
instance, Lean et al. (2023) discovered that the risk of lameness in cows in the fifth lactation
or beyond is more than five times higher than in animals during their first lactation.
Furthermore, P6tzsch et al. (2003) could trace an increase in the amount of white line defects
from 2% in the first lactation to nearly 50% in animals with five or more calvings.

Conversely, there is a significantly higher risk for cows in their first lactation compared to cows
in the second or third lactation who have never experienced any claw issues (Thomas et al.,
2023). Even though an increasing parity leads to a stronger asymmetry of partner claws,
thereby favouring a rise in lameness cases, cows are also particularly prone to sole
haemorrhages after the first calving (Sogstad et al., 2005). Capion et al. (2021) analysed
records from Danish claw trimmers over a period of five years and identified varying trends
depending on the claw lesion. While digital dermatitis manifested most frequently in heifers,
the prevalence of the other three investigated claw diseases exhibited an upward trajectory
with rising parity (Capion et al., 2021).

The structural alterations in the digital cushion may explain the increased vulnerability of
heifers and cows in advanced lactation stages. In heifers, this cushion is predominantly
constituted of lax connective tissue, which subsequently transforms into fat tissue and, as age
progresses, undergoes a reconversion into more fibrous structures (Raber et al., 2004).

Age-related osseous modifications, particularly evident at the tuberculum flexorium, may also
play a role in the heightened propensity of claw problems during the later stages of life (Tsuka
et al., 2012).

2.3.1.4 Lactation stage

The relationship between days in milk and lameness varies across different studies. In the
study of Rittweg et al. (2023), cows in mid-lactation exhibited a higher lameness likelihood,
whereas the research of Sheferaw et al. (2021) indicates an increase in lameness with
advancing gestation. Kulualp et al. (2021) determined that a more advanced lactation stage
corresponds to a 2.2-fold higher risk of infectious claw diseases. O'Connor et al. (2020)
observed that cows with over 120 days in milk exhibited elevated locomotion scores, but Sadiq
et al. (2021) detected the preponderance of lameness within the first 120 days after calving.
Van der Spek et al. (2015) found no overall difference in claw diseases between early and late
lactation stages. However, in their study, sole haemorrhages occurred more frequently early
in lactation, while white line defects were more common in the later period of lactation.

Bach et al. (2021) identified a reduction in the digital cushion during the weeks around calving,
likely attributed to rotation and sinking of the pedal bone. These changes may arise from
hormonal shifts during the calving period, leading to a loosening of the pedal bone attachment
apparatus and contributing to claw lesions in early lactation (Bach et al., 2021). The

development of claw diseases in the mid-lactation is likely already influenced by behavioural
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changes during the transition period, such as prolonged standing times or faster feed intake
(Proudfoot et al., 2010).

Some hoof disorders, such as laminitis or digital dermatitis, demand a longer incubation period
before becoming visually apparent (Zlatanovi¢ et al., 2021), which might be attributed to
continuous microbial processes or the formation of substandard horn, and consequently these
issues tend to manifest towards the latter part of lactation.

2.3.1.5BCS

Green et al. (2014) provided evidence that a body condition score (BCS) below 2.5 contributes
to the onset of claw diseases, predominantly arising from mechanical stress and suboptimal
horn quality, while not correlating with the development of infectious claw problems. In the
investigation of Rittweg et al. (2023) a low BCS also showed a pronounced correlation with the
occurrence of lameness in the southern, northern and eastern regions of Germany. Randall et
al. (2015) also recommend maintaining the BCS above 2.5 to prevent lameness and
additionally highlight that a low body weight coupled with an advanced age at first calving might
increase the susceptibility to recurrent lameness incidents. The reason could be a negative
energy balance, which might lead to a fat mobilisation in the digital cushion and consequently
result in the loss of its ability to distribute forces effectively (Newsome et al., 2017).

Some studies have identified an elevated lameness risk across all body condition scores
outside the optimal range, also including animals with a higher BCS, which is potentially
attributed to the increased load on the feet due to higher body weight (Kranepuhl et al., 2021;
Ristevski et al., 2017).

2.3.1.6 Performance

The relationship between the performance of a dairy cow, specifically its milk yield, and
lameness is inherently complex and multifaceted, making a straightforward description of
cause and effect difficult. The breeding processes conducted with the aim of achieving ever
higher milk yields naturally lead to increased strain on individual animals, consequently
resulting in an elevated susceptibility to production-related diseases (Oltenacu & Broom,
2010). Archer et al. (2010) determined that lame cows on average presented a daily milk yield
approximately 1-2 kg higher than non-lame cows. Rutherford et al. (2009) observed an
elevated prevalence of lameness in herds with higher milk yields and O'Connor et al. (2020)
identified a milk yield exceeding 6000 kg as a lameness risk factor.

However, there are also studies where high milk yield had no effect at all on the occurrence of
lameness (Aeberhard et al., 2001; Haskell et al., 2006). Oehm et al. (2020) and Rittweg et al.
(2023) moreover were able to demonstrate a protective effect of high milk yield in their
research, as elevated milk production was associated with a reduced risk of lameness. This
indicates that high milk production in cows does not necessarily have adverse effects on their
health and well-being if appropriate management practices are applied (Trevisi et al., 2006).
Furthermore, a correlation could be drawn between healthy cows and high performers, which
in turn might explain a lower occurrence of lameness in these animals (Leblanc, 2010).

2.3.2 Management-related factors
2.3.2.1 Claw trimming

Lameness in cows is primarily attributed to claw issues, which often result from rare or

improper claw trimming practices (Vidmar et al., 2021). Claw trimming is a proven method to

reduce the pain of claw lesions through appropriate treatment, consequently leading to an
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improvement in gait (Passos et al., 2017). A distinction is made between functional claw
trimming for the prevention of claw issues and corrective hoof care aimed at addressing pre-
existing claw diseases (Vidmar et al., 2021). The former strives to maintain the optimal shape
of the claw, enabling an even force distribution, while the latter serves to actively relieve
affected areas and thereby promotes rapid healing (Vidmar et al., 2021). Leach et al. (2012)
discovered that cows undergoing proper hoof treatment within the two days following lameness
detection exhibit a reduced likelihood of developing severe claw issues and require
subsequent treatments less often. Montgomery et al. (2012) observed the walking behaviour
of cows before and seven days after claw trimming and noted that approximately half of the
originally lame animals exhibited a normal gait again. Somers, Frankena et al. (2005) identified
an extended interval of over 7 months between claw trimming sessions as a risk factor for
digital dermatitis and also other studies highlighted the importance of a minimum of two hoof
care appointments per year (Katsoulos & Christodoulopoulos, 2009; Manske et al., 2002).

2.3.2.2 Hygiene

Good hygiene, integral to the management of diseases caused by pathogens, can serve as a
preventive measure against claw problems. In this context, primary consideration should be
given to the walkways, as wet and soiled walkways predispose animals to slipping and,
consequently, claw injuries (Rushen et al., 2004). Furthermore, the exposure to manure rapidly
softens the hoof, making it noticeably more vulnerable to defects and bacterial penetration
(Rushen et al., 2004). Thus, claw health is closely related to the regular removal of manure
and can be enhanced by increasing the frequency of scraping (Chapinal et al., 2013). Route
planning needs to be improved in using automatic scrapers, as the findings of Barker et al.
(2010) suggest an increased incidence of lameness linked to these devices, possibly resulting
from cows making abrupt evasive manoeuvres or stumbling directly over the robots. Besides
the walkways, cows housed in farms with suboptimal cubicle cleanliness showed an up to 80-
minute reduced lying duration per day compared to cows with clean cubicles and also had a
1.3-fold increased likelihood of lameness (Robles et al., 2021).

2.3.2.3 Nutrition

The condition of the claw horn can be affected by nutrition, especially when feeding an excess
of rapidly fermentable carbohydrates and protein in silage or concentrates (Babintseva et al.,
2020). This can result in compromised ruminal digestion and subsequent inflammatory
processes, potentially contributing to the occurrence of claw lesions (Babintseva et al., 2020).
The keratinisation process and the development of a solid hoof structure are significantly linked
to the sufficient supply of amino acids, minerals, vitamins and fats (Mulling et al., 1999).
Research demonstrated that administering biotin for a minimum of six months resulted in a
45% reduction of white line diseases in multiparous cows (P6tzsch et al., 2003). The addition
of a copper sulphate manganese complex to the ration has an impact on hoof hardness,
consequently enhancing the locomotion of lame cows (Zhao et al., 2015).

2.3.2.4 Animal handling and cow flow

The interaction between humans and animals, including the way cows are handled, may also
play a role in the development of lameness. Through modelling, Rouha-Miilleder et al. (2009)
showed that negative behaviours from the people responsible for herding, such as kicking or
punishments, contribute to a higher lameness prevalence in herds, which could be explained
by swift evasive movements and the resulting stumbling of the animal. Moreira et al. (2019)
evaluated that a calm handling of cows could reduce the incidents of tyloma, while negative
stimuli such as strikes might lead to an increase in sole haemorrhages.

25



According to Chesterton (2011), improving the flow of cows in daily management can be
achieved by comprehending their behaviour and implementing reliable, systematic routines.
Inadequate cow flow results in a more forceful herding approach to hasten the movement of
cows and these actions might potentially result in claw lesions caused by injuries, as the cows
can no longer position their feet of their own accord (Chesterton, 2011).

2.3.3 Environment related factors

2.3.3.1 Housing

Stall design, including the structuring of stalls, floors and other facilities, can significantly
influence the lameness incidence in the herd. Cubicles measuring less than 171 cm in length
(Oehm et al., 2020) and unbedded stalls only covered with mattresses (Salfer et al., 2018) may
elevate the risk for lameness. Deep or sand bedding can be a mitigating factor for lameness,
as lying on these is much more comfortable for the animals, and severely lame cows only
increase their lying times on this kind of stall surface (Ito et al., 2010; Salfer et al., 2018).
Studies observed diminished odds for lameness in the presence of shallow curb heights (King
et al.,, 2016) and larger cubicle widths (Lardy et al., 2021). Besides the dimensions, the
construction of the stall can also play a part in lesion development, as for example restrictive
neck rails on one hand improve cubicle hygiene, but on the other hand discourage cows from
standing in the stall, thus reducing the drying time of claws (Bernardi et al., 2009).

An optimal stocking density should not be underestimated as a determinant, as overcrowding
might reduce lying and rumination time of the individual and antagonistic social interaction at
the feeding table may become more common (Krawczel et al., 2012). It is thus advisable to
maintain a minimum 1:1 ratio for both feeding and resting spaces on farms (Arbeitsgruppe
Rinderhaltung, 2007).

Slatted floors being more slippery and uneven than solid concrete floors tend to heighten the
occurrence of claw health issues (Rouha-Milleder et al., 2009). Cows overall exhibit a slower
and more cautious gait on the slatted concrete floor, a situation that could be improved by
installing rubber mats (Telezhenko & Bergsten, 2005). Cows prefer to walk on softer and more
flexible surfaces, resembling their natural walking terrain, ultimately resulting in a more regular
locomotion (Telezhenko & Bergsten, 2005). De Andrade Kogima et al. (2022) proved that cows
housed under nearly natural, pasture-based conditions showed the fewest lameness cases,
followed by compost-bedded and free-stall cows. Incorporating sand-bedded areas can also
be beneficial for joint and claw health (Upadhyay et al., 2023).

2.3.3.2 Herd size and hierarchy

Regarding herd size, studies yield varying results on lameness prevalence: larger herds may
benefit from higher professionalism and personnel explicitly dedicated to claw health (Chapinal
et al., 2013), whereas in smaller herds more time can be dedicated to individual animal care
(Broom, 2013; Sjostrom et al., 2018).

Due to displacement, cows with a lower rank in the herd hierarchy exhibit shorter lying times
and tend to spend more time standing half in the stalls when compared to higher-ranking
animals (Galindo & Broom, 2000). This results in a greater incidence of lameness and higher
culling rates among these individuals (Galindo & Broom, 2000).

2.3.3.3 Season

Several studies identify summer as the season with the highest lameness prevalence,
attributing it to wet conditions and increased humidity due to cow cooling facilities such as
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ventilators or cow showers (Ali et al., 2021; Sanders et al., 2009). Furthermore, heightened
periods of heat stress during the summer can induce behavioural alterations, such as
prolonged standing times, subsequently intensifying strain on the hoof horn and predisposing
to lesions (Cook et al., 2007). Olechnowicz and Jaskowski (2015) focused on tie-stalls and
observed an accumulation of claw issues in the winter, likely attributed to the seasonal variation
in housing conditions, specifically the access to pastures during the summertime.

2.4 Effects of lameness on behaviour, physiology and
performance

Several studies have explored the diverse effects of lameness events on different aspects of
behaviour and performance, as illustrated in Table 3. Depending on the circumstances, cows
may experience varied responses to claw diseases, which will be further explored in the
following context.

Table 3: Studies regarding the average value of behaviour, physiological and performance
parameters in cows and the effect of lameness on these variables

Parameter Average Increases (1) Decreases (|) Unaltered (—)
Lying time 10 - 12 h/d (Tucker | (Beer et al., (Bernhard et al., | (Thompson et
et al., 2021) 2016; 2020; Pavlenko al., 2019;
Frondelius, et al., 2011) Yunta et al.,
Lindeberg et al., 2012)
2022; Hut et al.,
2021; lto et al.,
2010; King et
al., 2017;
Lorenzini, 2019;
Schindhelm et
al., 2017;
Solano et al.,
2016; Weigele
et al., 2018;
Westin et al.,
2016)
Number of 9 - 11 bouts/d (Frondelius, (Bernhard et al., (Navarro et al.,
lying bouts (Tucker et al., Lindeberg et al., | 2020; Lorenzini, 2013;
2021) 2022; King et 2019; Thompson et
al., 2017) Schindhelm et al., 2019;
al., 2017; Solano | Yunta et al.,
et al., 2016; 2012)
Westin et al.,
2016)
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Parameter Average Increases (1) Decreases () Unaltered (—)
Duration of | 60-99 min (Tucker | (Beer et al., / (Thompson et
lying bouts | et al., 2021) 2016; Bernhard al., 2019)
et al., 2020; Hut
et al., 2021; lto
et al., 2010;
King et al.,
2017; Lorenzini,
2019;
Schindhelm et
al., 2017;
Solano et al.,
2016; Weigele
et al., 2018;
Westin et al.,
2016; Yunta et
al., 2012)
Feeding 2.4-8.5 h/d / (Antanaitis, /
time (Beauchemin, Juozaitiené,
2018) Urbonavicius et
al., 2021; Beer et
al., 2016;
Bernhard et al.,
2020; Frondelius,
Lindeberg et al.,
2022; Hut et al.,
2021; Lorenzini,
2019;
Schindhelm et
al., 2017; Thorup
et al., 2016;
Weigele et al.,
2018)
Feeding 7-11 meals/d / (Antanaitis, /
frequency (Johnston & Juozaitiene,
DeVries, 2018) Urbonavicius et
al., 2021; Beer et
al., 2016;
Frondelius,
Lindeberg et al.,
2022; Lorenzini,
2019;
Schindhelm et
al., 2017; Thorup
et al., 2016)
Feeding 0.10-0.16 kg/min (Lorenzini, 2019; | / /
pace (Johnston & Norring et al.,
DeVries, 2018) 2014; Proudfoot
et al., 2010;
Schindhelm et
al., 2017;
Thorup et al.,
2016)
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Parameter

Average

Increases (1)

Decreases ()

Unaltered (—)

Feed intake

10.4-30.8 kg/d

(Proudfoot et al.,

(Haggman et al.,

(Schindhelm et

(Krizsan et al., 2010) 2012; Norring et al., 2017;
2014) al., 2014) Thorup et al.,
2016)
Drinking 66.5-100.7 L/d (Pavlenko et al., | (Antanaitis, (Walker et al.,
behaviour (Cardot et al., 2011) Juozaitiené, 2008)
2008) Urbonavicius et
0.67-0.73 min/h al., 2021)
(Antanaitis,
Juozaitiené,
Urbonavicius et al.,
2021)
147.96-157.95 n/h
(Antanaitis,
Juozaitiené,
Urbonavicius et al.,
2021)
Activity Free stall: 1,120- / (Beer et al., (Frondelius,
4,918 steps/d 2016; Haggman | Lindeberg et
(Shepley et al., et al., 2012; Hut al., 2022; King
2020) et al., 2021; et al., 2017)
Magrin et al.,
2022;
Neirurerova et
al., 2021;
Weigele et al.,
2018)
Neck 309.8-421 units/d / (Van Hertem et /
activity (Borchers et al., al., 2014;
2017) Weigele et al.,
2018)
Rumination | 2.5-10.5 h/d (Pavlenko et al., | (Antanaitis, (Thorup et al.,
time (Beauchemin, 2011) Juozaitiené, 2016; Walker
2018) Urbonavidius et et al., 2008;
25.3-42.2 min/2h al., 2021; Beer et | Weigele et al.,
(Pahl et al., 2014) al., 2016; Magrin | 2018)
et al., 2022)
Rumination | 357-605 boli/d / (Antanaitis, (Walker et al.,
frequency (Pahl et al., 2014) Juozaitiené, 2008; Weigele
20,959-36,789 jaw Urbonavidius et et al., 2018)
movements/d al., 2021; Beer et
(Pahl et al., 2014) al., 2016)
Body Reticular (Tadich et al., / (Adams et al.,
temperature | temperature: 38.9- | 2013; Talvio, 2013)
39.7 °C (Schutz & | 2020)

Bewley, 2009)
Rectal
temperature: 38.5-
39.2 °C (Schutz &
Bewley, 2009)
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Parameter Average Increases (1) Decreases () Unaltered (—)
Body weight | BCS: 2.5-3.5 (5 / (Alawneh et al., /
and BCS point scale) 2012; Magrin et

(Grubic et al., al., 2022; Norring

2009) et al., 2014;

583-726 kg Olechnowicz &

(Johnston &

Jaskowski, 2014;

DeVries, 2018) Singh et al.,
2018)
Milk yield 23.9-44.3 kg/d (Vicek et al., (King et al., 2017; | (Proudfoot et
(Glatz-Hoppe et 2016) Magrin et al., al., 2010;
al., 2020) 2022; Navarro et | Schindhelm et
al., 2013; al., 2017;
Pavlenko et al., Thorup et al.,
2011; Prasomsri, | 2016; Yunta et
2022; al., 2012)
Urbonavicius et
al., 2020; Van
den Borne et al.,
2022; Vicek et
al., 2016)
Milkings 2-3/d (Piwczynski |/ (King et al., 2017; | /
et al., 2020) Urbonavicius et
al., 2020; Van
den Borne et al.,
2022)
Milk flow 1.65-3.42 kg/min (Van Hertem et | (Juozaitiené et /
(Piwczynski et al., | al., 2016) al., 2021;
2020) Urbonavicius et
al., 2020;
Wieland et al.,
2022)
Conductivity | 4.6-5.8 mS/cm (Juozaitiené et (Maladauskiené |/
(Juozaitiené et al., | al., 2021; et al., 2022)
2015) MalaSauskiené
et al., 2022;
Paulauskas et
al., 2023; Van
Hertem et al.,
2016)
Milk Milk urea: / (Maladauskiené (Pavlenko et
components | 150-250 mg/L et al., 2022; al., 2011;
Milk protein: Olechnowicz & Singh et al.,
3.29-3.58% Jaskowski, 2010; | 2018; Yunta et
Milk fat: Slovak et al., al., 2012)
3.28-4.56% 2021; Vicek et
Milk lactose: al., 2016)
4.67-4.99%
(Glatz-Hoppe et
al., 2020)

30




Parameter Average Increases (1) Decreases () Unaltered (—)
Somatic cell | < 100.000 cells/mL | (Graff et al., (Archer et al., (Pavlenko et
count (Sumon et al., 2016; 2011) al., 2011)

2020) Malasauskiené
et al., 2022;
Singh et al.,
2018)

2.4.1 Behaviour parameters

In terms of lying behaviour, most studies concur that lameness contributes to an increase in
daily lying duration (Table 3). For example, in the study of Hut et al. (2021), an observed
disparity of 26 minutes was noted between lame and non-lame cows, while King et al. (2017)
reported a difference of 38 minutes. Considering that claw lesions are presumably more painful
when supporting the cow's entire body weight, an increase in lying times may provide relief to
the claws and diminish pain for the cow (Juarez et al., 2003). On the contrary, Bernhard et al.
(2020) and Pavlenko et al. (2011) observed a decrease in lying times and prolonged standing
duration per day in lame animals. Given that inadequate cow comfort resulting from less
optimal housing conditions might lead to a reduction in lying times (Robles et al., 2021), it is
challenging to ascertain whether the extended standing periods could be a consequence of
these conditions and potentially have contributed to the onset of lameness in the first place. In
reviewing the literature, it becomes evident that claw diseases are clearly associated with an
extension of individual lying events, while there is still disagreement regarding the total number
of lying bouts (Table 3). The studies reporting a reduced lying frequency justify this, for
instance, by emphasising the greater load on feet during the process of rising and lying down,
whereas in the investigations with an increase of lying bouts, no rationale is provided. Navarro
et al. (2013) also highlighted the relevance of housing conditions; in pasture-based settings,
cows with claw lesions exhibited a higher frequency of daily lying bouts, while indoor-housed
lame cows showed fewer lying events compared to their healthy counterparts. Yunta et al.
(2012) attributed the lack of effect in their study to the exclusion of severely lame cows, while
Thompson et al. (2019) emphasised the importance of considering additional factors such as
precipitation.

An unmistakable effect of lameness becomes apparent in relation to feeding behaviour, as
lame animals demonstrate a notably quicker ingestion rate, shorter feeding durations and
fewer visits to the feeding trough (Table 3). As the painful nature of claw diseases is evident
through the symptom of lameness (Whay & Shearer, 2017), prolonged walking or standing can
induce discomfort that cows seek to avoid. This avoidance can be manifested by reducing
movements towards the feeding trough or minimizing prolonged standing, as seen for example
in the study of Thorup et al. (2016) with a more than 40% reduction in feeding frequency. The
result is an elevated feeding rate of the animals, aiming to consume as much feed as possible
within a condensed timeframe. The examinations of the amount of consumed feed present a
less straightforward picture (Table 3): findings include both, increased feed intake among lame
animals directly after calving (Proudfoot et al., 2010) as well as decreased intake in cases of
severe lameness (Haggman et al., 2012). Furthermore, some instances occurred where, in
univariate analysis, no definitive correlation between lameness and feed intake could be
determined (Schindhelm et al., 2017; Thorup et al., 2016). The studies on the alterations in
drinking behaviour also display mixed findings: Antanaitis, Juozaitiené, UrbonaviCius et al.
(2021) reported a 42-minute reduction in drinking duration among lame cows compared to
healthy ones, whereas Walker et al. (2008) found no noticeable impact and conversely,
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Pavlenko et al. (2011) observed an uptick in drinking events among animals afflicted with digital
dermatitis.

In various scientific studies, activity levels exhibit a notable decline attributed to lameness, with
findings indicating a reduction in step count, along with a decrease in walking speed, neck
activity and stride length (Table 3). Other examinations have found no direct correlation
between hoof diseases and overall activity levels, possibly due to the inherent variability in
individual cow activity (Miller & Schrader, 2005) and its modulation by factors like lactation
status or parity (Brzozowska et al., 2014).

Pavlenko et al. (2011) reported increased rumination times during standing in lame animals,
whereas Antanaitis, Juozaitiené, Urbonavicius et al. (2021) observed a daily average reduction
of 133 minutes in rumination time, and Beer et al. (2016) noted a distinct decrease in
rumination events. Thorup et al. (2016) concluded in their study that claw problems might
influence rumination considerably less than feeding behaviour. This could be due to the fact
that rumination primarily occurs during lying (Schirmann et al., 2012), which is less detrimental
to the claws, whereas feeding happens while standing, exposing the claws to potentially more
harm.

2.4.2 Physiological parameters

Only a few studies investigated the impact of claw health problems on body temperature. Talvio
(2020) observed an increase in body temperature in cows with sole ulcers, suggesting that
these conditions not only induce local inflammation but also trigger a systemic reaction. Tadich
et al. (2013) showed that an elevation in rectal temperature only occurred in severely lame
animals, while Adams et al. (2013) detected no changes in reticular temperature measured
with a bolus.

The consensus across studies regarding the effects of lameness on BCS and body weight
indicates a consistent decline with worsening claw health. Alawneh et al. (2012) documented
an average loss of 61 kg in body mass among lame animals, while Olechnowicz and Jaskowski
(2014) observed lower BCS values in lame cows across all lactation stages compared to
healthy ones.

2.4.3 Performance parameters

Despite the challenge of distinguishing between cause and effect, most studies have
demonstrated a reduction in milk yield following a lameness event. Prasomsri (2022) observed
a decrease in 305-day lactation performance of over 1200 kg when animals became lame
during their first lactation, while King et al. (2017) noted a reduction of 1.6 kg per day in lame
cows. According to Van den Borne et al. (2022), two-thirds of the recorded decrease in milk
yield after lameness can be attributed to a reduced milking frequency, with lame animals
experiencing 0.3 fewer milkings per day compared to healthy ones as reported by King et al.
(2017). Vicek et al. (2016) discovered varying changes in milk yield based on parity: lame first-
calving cows exhibited higher milk yields, whereas a decline in milk yield was noted in higher
lactations after lameness occurrence. Some studies also failed to establish a clear correlation
between lameness and milk yield, which, according to Schindhelm et al. (2017), can be
credited to the difficulty in determining whether high milk yield in cows initially contributed to
lameness or lameness subsequently led to a decline in milk yield. These two diverging effects
may counteract each other and other factors like feeding behaviour could influence the
interaction (Schindhelm et al., 2017).
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Lameness generally exerts rather negative effects on milk flow while concurrently showing
higher conductivity values in lame animals (Table 3). Juozaitiené et al. (2021) revealed a
reduction of 1.77 kg in milk yield within the first minute among lame cows, accompanied by an
elevation of 0.24 mS/cm in conductivity. Van Hertem et al. (2016) incorporated peak milk flow
in his lameness detection model, yet identified elevated peak milk flow values in association
with lameness. MalaSauskiené et al. (2022) established the range of 4-6 mS/cm conductivity
in healthy cows, whereas lame animals fell outside this range, registering values above 6 or
below 4 mS/cm.

MalaSauskiené et al. (2022), along with several other studies, observed an impact of lameness
on milk composition. They recorded an average decrease of 2.1% in milk lactose and 0.04%
in milk protein. However, no changes were noticeable in milk fat, while the somatic cell count
in the milk was significantly higher in affected animals. Slovak et al. (2021) demonstrated,
depending on lactation status, a reduction in milk protein of approximately 7-10% and in urea
of 18-30% in lame cows, while Vi¢ek et al. (2016) found a 44 kg decrease in protein in
primiparous cows and a 60 kg reduction in multiparous cows due to lameness. Singh et al.
(2018) provided evidence of an elevated probability of mastitis among lame cows attributed to
higher somatic cell counts, while no statistically significant alterations in milk composition were
discerned. Furthermore, Pavlenko et al. (2011) did not detect any disparities in protein, fat, and
somatic cell count between lame and unaffected animals.

2.5 Effects on welfare and economy
2.5.1 Welfare

The negative consequences of lameness are not to be underestimated and animal welfare
ranks among the most crucial factors when advocating for better detection and treatment of
claw problems. So far, there is no unified definition of animal welfare, but Reimert et al. (2023)
recently described it as a state where positive and negative influences balance over time. The
health status of the animal is thus no longer considered a component of animal welfare itself
but rather can influence animal welfare by interacting with the specific condition of the animal
(Reimert et al., 2023). In this manner, lameness events can impact the welfare of dairy cows
in various ways and, according to Whay and Shearer (2017), they can compromise all five
freedom areas that can be used to assess welfare impairment, including hunger and thirst,
discomfort, illness and pain, expression of normal behaviour, as well as fear and distress. The
pronounced behavioural changes resulting from lameness significantly impact various aspects
of a cow's life, potentially leading to undernourishment, a reduced lifespan and an altered
social behaviour (Weigele et al., 2018). Kovacs et al. (2015) focused their study on heart rate
and its variations, demonstrating that lameness induces increased parasympathetic activity
and consequently lowers heart rate, which could possibly be explained by the chronic stress
affecting the animal. Passos et al. (2017) demonstrated that claw diseases, especially non-
infectious ones, are associated with an increased pain response, which can, however, be
reduced through appropriate treatment. Additionally, Sadiq et al. (2022) concluded from their
research that a combination of therapeutic hoof care with blocking and painkillers results in
higher pain reduction and healing rates than simple claw trimming. A survey conducted in
Switzerland aligns with this research, drawing the conclusion that better education on pain
recognition and the benefits of using analgesics is necessary, given that over 50% of farmers
reported performing any painful interventions in the claw area without pain relief (Becker et al.,
2013).
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2.5.2 Economy

It is imperative to consider the adverse effects on the profitability of individual farms resulting
from lameness events, as lameness following mastitis infections can be considered the second
most cost-intensive production disease (Van Soest et al., 2019). The economic impact of
lameness is caused by a range of factors, including diminished milk yield, prolonged calving
intervals, elevated culling rates, and escalated treatment and labour expenses (Bruijnis et al.,
2010). Research conducted by Puerto et al. (2021) indicated that the economic losses
stemming from reduced overall milk production, ranging from 811 to 1290 kg per lame cow,
coupled with heightened culling rates, constituted a substantial proportion of the total losses,
which averaged between 599 US$ and 837 USS$. Ibishi et al. (2022) drew the same
conclusions, setting the proportion of reduced milk yield contributing to the overall loss at 45%,
followed by culling at 31%, while discarded milk, treatment costs, and reduced weight
comprised only approximately 8% of the annual costs of a lame cow. Furthermore, the
investigation of Robcis et al. (2023) demonstrated that the expenses caused by a cow afflicted
with digital dermatitis (391.80 € £ 10.0) surpassed the average costs associated with lameness
(307.50 € + 8.40). It was found that each additional week of lameness incurred a cost of
approximately 12 € per cow. Conversely, according to Dolecheck et al. (2019), a case of digital
dermatitis cost only 64 € + 24 and was surpassed by the expenses associated with white line
defects and sole ulcers. Moreover, claw problems at the beginning of lactation and in
multiparous cows resulted in the highest costs (Dolecheck et al., 2019).

3. Lameness detection

3.1 Manual lameness detection

The early detection of lameness in cows is essential for effectively managing claw diseases
on farm. Multiple manual locomotion scoring systems have been established to evaluate the
locomotion of cows depending on gait, posture and other aspects, but no consensus has been
reached regarding the precise number of scores or the specific features to be considered.
Schlageter-Tello et al. (2014) listed 25 different manual locomotion scoring systems, featuring
between 2 and 13 scoring levels.

The most well-known scoring system is the one by Sprecher et al. (1997), which employs a
five-point scale. Mild lameness is identified by a curved back line during walking, while
moderately lame cows exhibit this also while standing and take shortened steps (Sprecher et
al., 1997). At stage 4, the cow prefers to reduce the load on certain limbs and only takes one
step at a time, while severely lame cows, according to this classification, try to avoid any load
on the affected limb (Sprecher et al., 1997). Thomsen and Baadsgaard (2006) observed a
considerable variance of 0.36 to 0.80 in the prevalence-adjusted, bias-adjusted kappa while
applying the locomotion score by Sprecher et al. (1997) and analysing intra- and inter-observer
agreement. Notably, in their study the level of agreement varied significantly based on which
of the five stages was set as the threshold for lameness, thus affecting when an observer
classified a cow as lame.

Flower and Weary (2006) compared a visual analogue score, ranging from 0 to 100 and
increasing with lameness attributes, with a numerical score consisting of nine levels that
included the same attributes: asymmetry, back line, head movement, weight shifting, limb
bending and stride length. It was found that the numerical score performed best in classifying
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lame and healthy cows. They concluded the nine-point score provided a better assessment of
claw health (Flower & Weary, 2006).

Another often scientifically employed locomotion score is the one by Manson and Leaver
(1988), which also contains nine levels and ranges from 1 to 5 with steps of 0.5. It includes
features like adduction and abduction, unevenness, difficulty in turning and rising or affection
of behaviour pattern and stage 3 was designated as the lameness threshold (Manson &
Leaver, 1988). While Manson and Leaver (1988) reported an agreement of 89% among the
observers, Channon et al. (2009) only found a 33.3% agreement in scores. This discrepancy
could possibly be explained by the large number of different stages, as the observers agreed
on lame/not lame to over 88% (Channon et al., 2009).

A critical point in the type of locomotion scores, that include multiple levels, is that they are
especially applicable for scientific research but lack practical relevance (Channon et al., 2009).
In the farmer’s day-to-day operations, the primary concern is simply whether the animal is lame
or not, signalling the need for treatment of claw diseases (Channon et al., 2009). The nuanced
gradations of lameness, such as mild, moderate or severe, hold minimal significance for the
farmer’s daily work, as any degree of lameness warrants attention and treatment.

Scores with fewer levels have also gained popularity, such as the four-level score of DairyCo
(2007), widely used in UK farms. Level 0 is considered as a healthy cow, while level 1 is
characterised by imperfect mobility, where steps are uneven or shortened, but the affected foot
is not identifiable. It is recommended that these animals could benefit from routine claw
trimming and should be further monitored. At level 2, the affected foot becomes clearly
identifiable, often accompanied by a curved back and should be treated as soon as possible.
Severely lame animals are defined as those unable to keep up with the rest of the herd and
besides immediate treatment, it is also recommended to keep them on straw bedding and seek
professional help. Rutherford et al. (2009) utilised this locomotion score in their study and
reported an inter-observer agreement of 67.2% and a weighted kappa range of 0.42 to 0.73.

Previous experiences with the unsatisfactory reliability of a five-point scoring system also
compelled Grimm and Lorenzini to create a new three-level score (Lorenzini, Grimm et al.,
2017), which should be suitable for both practice and research (Lorenzini, 2019). This
approach centres on categorising animals as lame when exhibiting an irregular gait (Score 3),
while those walking regularly and displaying traits such as a curved backline, head nodding,
or shifting weight are flagged as suspected lame (Score 2). In the absence of these indicators,
animals are classified as sound (Score 1). To prevent delays in treating mild lameness,
according to Lorenzini (2019), it is suggested not to differentiate between mild and severe
cases, given the inconsistent correlation between perceived pain and lameness. This
locomotion score achieved a very good Kendall concordance coefficient in live assessment
(0.89) and a good concordance over video scoring (0.70) (Lorenzini, Grimm et al., 2017).

A drawback of manual locomotion scoring is its susceptibility to high variability between
different observers (Channon et al., 2009), owing to the inherently subjective nature of the
method (Renn et al., 2014). Lorenzini (2019) was able to demonstrate that lameness typically
manifests within an average of 14 days, making regular locomotion scoring of each animal at
least every two weeks necessary in order to intervene early and prevent the worsening of the
underlying disease. The rising number of cows per farm (Hofmann & Ippenberger, 2023) will
pose additional challenges to conducting regular and systematic visual evaluations of all
animals, indicating automated lameness detection systems as a promising alternative.
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3.2 Automatic lameness detection

Automatic lameness detection systems offer greater objectivity, as the outcome is not
influenced by the individual experience of the observer and the cows are not directly influenced
by the presence of an observer in the barn. The automatic lameness detection systems can
be categorised into direct and indirect detection tools.

3.2.1 Direct methods

Direct automatic lameness detection refers to technical setups capable of directly identifying
lameness based on features such as gait, body posture, weight distribution or temperature.
These systems can be further classified into kinetic, kinematic, and thermographic detection
mechanisms.

3.2.1.1 Kinetic

In the kinetic approach, movement is analysed with the use of force plates, pressure-mapping
systems or weighing platforms. Rajkondawar et al. (2002) were the first to introduce a one-
dimensional dynamic force plate system, which consisted of two parallel force plates and was
capable of identifying lame cows and their affected limbs based on vertical ground reaction
forces. Thorup et al. (2014) advanced to three-dimensional force measurement and
demonstrated that lame cows exhibit significantly slower gait and less left-right limb symmetry
across all three dimensions compared to healthy cows. Pastell et al. (2008) were able to
demonstrate that an electromechanical film, whose thickness varies based on the forces acting
during the cow's steps, can also be a promising lameness detection tool. Volkmann et al.
(2021) installed a tread surface with two different layers: the upper layer transmitted the sound
of the hoof upon impact to a sensor, while the lower foam layer provided sound insulation. The
sound signal was then utilised with a random forest algorithm to achieve a sensitivity of 81%
and a specificity of 97% in identifying lame animals (Volkmann et al., 2021).

Unlike those force measurement systems, which can only measure the total forces exerted,
pressure-sensitive systems gather information through a network of sensors, allowing for
simultaneous capture and mapping of diverse pressure points. Using pressure-sensitive mats,
Van Nuffel et al. (2013) observed that lame cows exhibit asymmetrical gait, reduced pressure
on the affected foot, smaller steps as well as prolonged standing on the contralateral leg and
suggested these metrics could aid in earlier lameness detection.

Weight-distributing platforms prioritise a static measurement approach, with each limb of the
cow standing on a separate weighing unit, enabling the measurement of weight distribution
between the limbs. Pastell et al. (2010) utilised a numerical rating to discern lame cows and
compared these results with weighing plate measurements in cows afflicted with sole ulcers.
A strong correlation, based on weight distribution asymmetry, allowed for the effective
identification of affected animals, achieving an area under the curve (AUC) of 0.87 (Pastell et
al., 2010). Nonetheless, mild lameness cases, such as sole haemorrhages and digital
dermatitis, posed challenges for detection, potentially requiring extended periods of individual
data collection to enhance accuracy (Pastell et al., 2010). The research of Chapinal and Tucker
(2012) demonstrated that particularly the number of steps taken by the rear legs increases
significantly in lame animals, making it a valuable indicator for lameness detection.

3.2.1.2 Kinematic

In kinematic applications, the focus is on the geometric aspects of specific movements,
including the position of certain body parts and their displacement, velocity, and acceleration.
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A subfield that has gained particular importance in recent times is image processing. Wu et al.
(2020) utilised the YOLOV3 algorithm to detect leg positions, followed by deriving step sizes.
This information was then used to calculate a relative step size vector, enabling the successful
identification of lame animals through a neural network (Wu et al., 2020). Anagnostopoulos et
al. (2023) assessed the accuracy of the commercially available Cattle Eye system, which
employs a 2D camera positioned above the exit of the milking parlour to detect coordinates of
specific reference points on the animal. These coordinates are then transformed into a mobility
score ranging from 1 to 100 using a neural network (Anagnostopoulos et al., 2023). Results
from the study revealed that the system achieved an inter-rater agreement of 80% and
outperformed an experienced veterinarian in identifying painful claw diseases
(Anagnostopoulos et al.,, 2023). Abdul Jabbar et al. (2017) also employed an overhead-
installed camera, but this one was capable of recording videos in three dimensions to
additionally detect changes in hip and spine height (Accuracy: 95.7%). Zhao et al. (2018)
generated a movement curve based on leg positions, from which six features, precisely
velocity, symmetry, tracking up, step length, tenderness and standing time, were extracted.
Using a decision tree, lame animals could be classified into three grades with an accuracy of
90.18% (Zhao et al., 2018). Piette et al. (2020) emphasised the assessment of the cow's
backline, deriving a back posture value that elevated with worsening lameness. By
incorporating reference data from each cow's healthy state over a minimum period of 200 days
and computing an individual threshold value per cow, they achieved an accuracy of 82% in
lameness detection (Piette et al., 2020).

Sensors can also be directly attached to the cow to capture kinematic data. Zhang et al. (2023)
opted for sensors equipped with both an accelerometer and a gyroscope on each limb of the
cows, allowing for the measurement of angular velocity and acceleration across three
dimensions. Employing time series analysis alongside gait reconstruction techniques, this
method achieved a very high accuracy of 97.78% (Zhang et al., 2023). Ismail et al. (2024)
equipped each cow with a smartwatch containing an accelerometer, gyroscope and
magnetometer, secured to a randomly selected limb. Using a combination of a multi-sensor
database and machine learning techniques, the animals were classified as lame or healthy
with an accuracy of 77% (Ismail et al., 2024).

3.2.1.3 Thermographic

Another growing field is infrared thermography, which involves devices such as cameras
deployed to detect temperature deviations in affected claw areas and create thermograms.
Werema et al. (2021) compared visual 4-stage locomotion scoring with infrared cameras,
noting that as the locomotion score increased by one stage, the average measured
temperature rose by 0.994 °C, while achieving a sensitivity of 80.0% and a specificity of 92.4%
in identifying lame animals. Most research conducted with handheld infrared cameras has
centred on detecting digital dermatitis, attributing to this method the potential to identify these
lesions based on the temperature increase caused by inflammation (Anagnostopoulos et al.,
2021; Fabbri et al., 2020). Lin et al. (2018) investigated the application of handheld infrared
laser thermometers, finding a correlation between temperature elevation and locomotion score
escalation, thereby detecting a high-risk group requiring further observation. Research also
indicated that capturing the heel region and utilising the maximum temperature as the decision
criterion yielded the best results in categorising lame and non-lame cows (Harris-Bridge et al.,
2018). Some studies have pointed out the need for improvement before these devices can be
reliably used in daily lameness detection. The highlighted issues included too many animals
being falsely classified as lame (Lin et al., 2018; Werema et al., 2021), labour intensity due to
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insufficient automation (Harris-Bridge et al., 2018; Werema et al., 2021) and high acquisition
costs (Coe & Blackie, 2022). At least the latter could be mitigated, as suggested by Coe and
Blackie (2022), by using less resolution cameras, which, in their trial, achieved only slightly
lower accuracy compared to those specialised for research purposes.

3.2.2 Indirect

Within the indirect methods for lameness detection, the emphasis is placed on utilising the
performance and behavioural data captured by animal-specific sensor systems to
automatically detect lameness. Research has revealed that cows' behaviour frequently shifts
prior to lameness becoming visually evident to farmers, potentially enabling earlier detection
of lameness (Norring et al., 2014; Thorup et al., 2015). Costs can be saved in this area by
simultaneously using behaviour-monitoring sensors for heat detection, lameness detection and
the detection of other diseases (Grimm et al., 2019; Pfeiffer et al., 2020). Many different
combinations of behaviour and performance predictors as well as various analytical techniques
have been described in recent years. For instance, Taneja et al. (2020) applied fog networking
to consolidate step counts, lying times, and get-ups into time-series data, enabling the
categorisation of cows based on activity levels and subsequent classification as lame or
healthy (accuracy: 87%). The clustered models achieved an 8% higher accuracy than a unified
model, with lame animals detected on average three days earlier than the onset of visible
symptoms (Taneja et al., 2020). Lavrova et al. (2023) utilised pedometer data of six German
dairy farms for their lameness detection model and investigated various statistical approaches,
attaining the highest accuracy of 81% by using a mixed linear regression model. This model
incorporated several predictors, including activity level, duration of lying events, average daily
milk yield, days in milk, parity, season and their interaction parameters, along with the
individual cow as a random intercept (Lavrova et al., 2023). Beer et al. (2016) collected data
from two 3D accelerometers and a neck collar sensor, discovering that the optimal logistic
regression model, incorporating parameters such as walking speed, standing events and
feeding duration time, achieved a sensitivity of 92.7% and a specificity of 91.7% in lameness
detection. However, models containing solely the pedometer data already exhibited a
commendable accuracy in lameness detection, with only a marginal 2.5% reduction in
sensitivity (Beer et al., 2016). Magana et al. (2023) focused on the detection of digital dermatitis
utilising an ear tag and machine learning models. They were able to identify affected animals
with a probability of 79% and even ensure an accurate prediction two days before the onset of
clinical symptoms, achieving an accuracy of 64% (Magana et al., 2023). The earlier detection
of mild lameness was also evident in the study of Lemmens et al. (2023) through the integration
of milking robot measurements and data from a neck or ear sensor, followed by successful
modelling with random forest. They achieved an accuracy of 75% and highlighted that this
approach is especially well-suited for practical deployment of automated lameness detection,
given the growing abundance of behavioural and performance information on farms (Lemmens
et al., 2023). Borghart et al. (2021) tested various model combinations and demonstrated that
the accuracy of a lameness detection model using a behavioural sensor can be further
improved by incorporating additional data such as milk parameters and body weight (accuracy:
85%).

Investigations by Grimm et al. (2019), which were performed on a Bavarian research farm by
combining the data of a long-range pedometer and performance parameters, highlighted the
intricate relationships and the necessity of incorporating various parameters for lameness
detection. They showed that high milk yield only poses an increased risk of lameness when
accompanied by reduced time spent at the feed trough or shorter lying durations below the
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average. Furthermore, an extended lying time per event was indicative of lameness only when
overall feeding time decreased or when animals exhibited increased daytime feeding,
emphasising the importance of considering the combination of these two behavioural
parameters. The final ENET beta model comprised four regular predictors and five interaction
parameters, achieving an accuracy of 94% in distinguishing lame from sound cows.

In the subsequent project, Lorenzini, Grimm, and Haidn (2021) built on this research and
examined data from both the research farm and four additional commercial dairy farms. The
top-performing model exhibited an AUC of 0.82 on the test dataset, incorporating eight fixed
parameters, three interaction parameters, and five random effects. The predictors incorporated
in the model belonged to the domains of feeding behaviour, lying behaviour, lactation status,
and milk yield. The individual animal was considered as the random effect of the intercept, and
it was revealed that the main challenge in lameness detection stems from the unique
differences in the relationship between claw health, performance and behaviour among the
cows and the application of the mixed model on previously unseen animals.

Efforts were made to address this issue by utilising neural networks, yet this approach only
yielded slightly better results with an accuracy of 0.86 (Lorenzini, Grimm, Hertle et al., 2021).
As an alternative solution, time series models were proposed, albeit requiring a different data
structure than used in the two preceding projects (Lorenzini, Grimm, Hertle et al., 2021), a
factor that was taken into account during the data collection for this study.
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Study objectives

This study is a continuation of two preceding projects on indirect automatic lameness detection
performed at the Institute for Agricultural Engineering and Animal Husbandry at the Bavarian
State Research Centre for Agriculture (Lorenzini, 2019; Schindhelm, 2016). The trial was part
of the demonstration project 5 “Animal-specific, interconnected sensor systems” within the
experimental field DigiMilch. The study’s main aim was to examine which behaviour and
performance parameters generated by different sensor systems from various manufacturers
are best suited for automatic lameness detection by means of the previously developed models
by Grimm and Lorenzini (Grimm et al., 2019; Lorenzini, 2019).

Partial objectives of the project were:

1.
2.

The recording of performance and behaviour data by use of different sensor systems
To gain reference data about lameness by recording videos covering the days before
the claw trimming and documenting the visible findings as well as the pain test results
during farm claw trimming

To create a score to explore the overgrowth of the central sole part as a reason for
cows experiencing pain without evident defects or clinical findings

To carry out locomotion scoring retrospectively by using the video data in an attempt
to detect changes of lameness or its onset

To summarise all data to create daily records

To integrate the data in different linear generalised mixed regression models to
discover the possibilities of early detection by combining various sensor parameters
To further validate the three-point locomotion score by Grimm and Lorenzini
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IV. Material and methods

1. General approach

Data gathering was performed on eight different project farms located in Bavaria, more
precisely on three research farms and five commercial dairy farms. The chosen farms were all
equipped with a milking robot and various sensor systems. Making use of a larger-scale ftrial
than in the preceding studies, different sensors by various manufacturers could be included.
Due to the higher amount of available data and the easier way of cow identification in
comparison to milking parlours, it was decided to only consider herds with a milking robot for
this project. In November 2020, suitable project farms were selected, the necessary camera
equipment was installed and a preliminary test at the farm claw trimming was performed on
RF1. The data collection for the study began in March 2021 and lasted until October 2022,
containing sensor and lameness data from a total of 744 cows.

Reference data was acquired during the farm claw trimming and afterwards by locomotion
scoring the cows using video footage. One to two cameras per farm were installed facing the
milking robot exit and recording the cows leaving the milking robot during three weeks before
the farm claw trimming date. Cow identification was possible by time synchronising the camera
with the milking robot and, if available, the automatic gates. The video footage was reviewed
after the trimming and the appearing cows were scored according to the three-step locomotion
score by Lorenzini, Grimm et al. (2017). Each cow scored lame or unsound on the day
preceding the claw trimming was then scored retrospectively for 21 days to detect the
beginning and development of lameness. If the cow was sound on the day before claw
trimming, it was only scored retrospectively every five days and, if the score remained
unchanged, the days in between were interpolated.

On the date of the claw trimming, each cow entering the cattle crush was checked right away
for pain reaction by exerting pressure on the claws in two different positions with claw pliers
before the trimming started. Using this procedure cows without visible lesions, which
nevertheless experienced pain, could be identified. A score for the growth in the sole centre
was also established and then noted for the claws of every cow on the trimming date after the
pain test and before the trimming. On the first three claw trimming dates, the findings
documented by the claw trimmers were considered. Afterwards, due to missing claw health
information in those documentations it was decided that the veterinarian should also record
the findings during the following claw trimming dates.

Behaviour and performance data were collected on the project farms during the three weeks
before the claw trimming by using the different sensor systems installed on the farms like
boluses, pedometers or neck tags. The data were either transferred automatically to the
DigiMilch database or exported manually by the examiner if no suitable interface existed or no
contractual agreement with the sensor manufacturers could be reached during the period of
data acquisition.

The collected data was used to develop daily records for each farm. Then by integrating the
daily records into different regression models, the goal was to find out if these models
containing behaviour and performance parameters recorded by sensor systems could detect
the lame cows. Furthermore, the aim was to determine which of the used sensor parameters
and models potentially provide the best results for automatic lameness detection.
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2. Farms

Factors influencing the choice of farms for the project were:

¢ Inclusion of a high amount of different sensor technology

e Presence of a milking robot

Possibility of taking part in the farm claw trimming on the farm

General farmer compliance and willingness to take part in a project on digitalisation.

It was also important for the researchers to have a combination of both research and
commercial dairy farms in the data set. The two research farms (RF1, RF2) and the teaching
and research institute (RF3) were included due to prior usage as trial venues in previous
projects and therefore familiarity with the study environment. Some of the commercial dairy
farms were recruited by a survey which was created to find project farms for the whole
experimental field. The survey, which included questions concerning general operating
information of the farms and their equipment with sensors, was spread over social media,
internet and the project partners, therefore interested farmers could complete the form. Others
were suggested as suitable farms by some of the manufacturers taking part in the “DigiMilch”
experimental field. A total of three research farms and five commercial farms could be included
as project farms, and the total number of claw trimming dates per farm and the number of
examined animals per date can be found in Table 4.

Table 4: Number of claw trimming dates (CT) and examined animals per CT (excluding dry
cows) grouped by farm during the data collection period

RF1 RF2 RF3 CDF1 | CDF2 | CDF3 CDF4 CDF5
Examined
animals per CT 57-60 | 43-45 | 57-62 62-65 52| 29-36 | 115-123 129
Number of CT 5 3 4 2 1 5 2 1

2.1 Research Farm 1

The Research Farm 1 (RF1) was one out of two farms in this study belonging to the Bavarian
State. The farm contained two dairy herds, one using a herringbone milking parlour, while the
other one was milked with a milking robot. Only the milking robot herd was considered for this
project and contained approximately 70 cows. A total of 102 different Simmental and 3 Brown-
Swiss cows were examined over five claw trimming dates from March 2021 to October 2022.
The farm was equipped with a DeLaval milking robot (VMS 3.0), the management system
“DelPro” and five automatic selection gates. Additionally, weighing troughs developed by the
Institute for Agricultural Engineering and Animal Husbandry, ventilators, curtains and climate
sensors were installed. Track a Cow pedometers, Heatime SCR sensors and smaXtec boluses
were attached to the cows. Information about diseases and treatment was stored in the GEA
herd management program C21. Deep litter cubicles, concrete-based raised cubicles with
rubber mattresses and waterbed cubicles separated by metal brackets or moveable bars, were
installed in the lying area. The slatted floor was covered with rubber mats in all different areas
and cleaned by a Delaval scraper robot. For the drying-off period, the cows were regularly
transferred to another stable with access to a pasture. Claw trimming took place three times a
year and was carried out using two cattle crushes. In December 2021, the farm switched to a
different claw trimmer and only one cattle crush was used on the following trimming dates.
Overall, data from 105 different animals could be collected.
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2.2 Research Farm 2

This Research Farm (RF2), also belonging to the Bavarian State, had one herringbone milking
parlour and one milking robot herd. The latter was included in this project and consisted of
approximately 50 cows. The total of 63 individual cows observed on this farm were milked by
a Lely Astronaut A5 milking robot and the used sensor systems were collars with Nedap
SmartTags (Premium (I) FERP). Besides the Lely management systems (T4C and later
Horizon), HERDE plus (dsp-Agrosoft GmbH, Germany) was used as an additional herd
management software. The walkway was mainly designed as solid concrete floor covered with
rubber mats and cleaned by manure scrapers by Schauer (Schauer Agrotronic GmbH,
Austria). Deep litter cubicles as well as concrete-based raised cubicles with rubber mattresses
separated by metal brackets were installed in the lying area. Further technologies like
ventilators and curtains were included to improve the indoor barn climate. The cows’ claws
were trimmed three times a year in one crush and the data were collected during three claw
trimming dates from May 2021 to June 2022.

2.3 Research Farm 3

The Research Farm 3 (RF3) kept 150 cows in two herds, approximately 70 of them belonging
to the milking robot herd. The automatic milking system used here was the Lely Astronaut A5
with the management system T4C/Horizon with Heatime SCR sensors (for the first claw
trimming date only), Smaxtec boluses, Nedap pedometers and Nedap neck tags. The deep
litter boxes were manually scattered with biogas digestate, a husk-clay-mix or chopped straw
and separated by metal brackets. The floors in the walkway and the feeding area were solid
and cleaned by manure scrapers by Prinzing (Peter Prinzing GmbH, Germany). The feeding
places were layered with rubber mattresses and a metal partition was installed every two
places. In summer the cows had access to a pasture and temperature was continuously
monitored by climate sensors and controlled by ventilators, curtains and cow showers. Dates
for claw trimming were planned three times a year and performed with one cattle crush. Data
from a total of 97 different animals were recorded on four different dates between May 2021
and July 2022.

2.4 Commercial Dairy Farm 1

On commercial dairy farm 1 (CDF1) approximately 65 cows were milked by a Lely Astronaut
A5 milking robot. The only employed sensor system was Heatime SCR and the management
system used was T4C/Horizon. The floor in the feeding area was solid with a rubber base,
while the other parts consisted of concrete floor whereas the transition area near the milking
robot was slatted. There was a walkway with grooves in the lying area and deep litter boxes,
which were littered automatically by a Hetwin robot (Hetwin Automation Systems GmbH,
Austria). Furthermore, the farm utilised curtains and manure scrapers by Prinzing. The cows
could also enter a farmyard which was partly equipped with solid floor and partly with grooved
ground. Claw trimming took place once a year by using one cattle crush. Data were originally
collected on two claw trimming dates in June 2021 and May 2022, but due to problems with
the recorded video footage by the camera, only the second date could be taken into account,
including 62 different cows.
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2.5 Commercial Dairy Farm 2

The approximately 65 cows on commercial dairy farm 2 (CDF2) were milked by a milking robot
from Lemmer Fullwood (Merlin 2) and carried pedometers of the same manufacturer. The used
herd management system distributed by Lemmer-Fullwood was “Full-Expert”. The walkway
was made out of concrete and slatted and the cubicles were built as deep litter boxes. The
farm was also equipped with a JozTech (Joz BV, The Netherlands) scraper robot, ventilators,
curtains and a cow shower. The farmer regularly performed claw trimming on his own by
trimming a group of 10 to 15 cows before the dry-off several times a year and used a
professional claw trimmer for the first time during the data collection. The cows were trimmed
in one crush in February 2022 and data of 52 cows could be collected.

2.6 Commercial Dairy Farm 3

Commercial dairy farm 3 (CDF 3) consisted of a herd of approximately 60 cows, which were
milked by a DelLaval milking robot (VMS 300). The cows were fitted with collars with DelLaval
neck tags and data was collected by the DelPro herd management system. A scraper robot by
Lely cleaned the concrete slatted floor and the in-barn climate was controlled by a large
ventilator. The concrete-based raised cubicles were separated by metal brackets. Claw
trimming took place five times a year, but only half of the herd was trimmed on every trimming
date. Claw health data was collected on five claw trimming dates on this farm from September
2021 to July 2022, but the video data regarding trimming dates three and four in February and
May 2022 were lost as the result of a defective storage unit due to power failure caused by a
malfunctioning fly screen. In summary, data from a total of 67 different cows could be collected.

2.7 Commercial Dairy Farm 4

The commercial dairy farm (CDF4) was an organic farm and included a herd with
approximately 120 milking cows, which were milked by two Lemmer Fullwood milking robots.
The installed sensor systems were Lemmer Fullwood pedometers and Smaxtec boluses. The
ground in the barn was concrete slatted and cleaned manually by a Heitmann (KR
Maschinen GmbH, Germany) scraper and the concrete-based raised cubicles were covered
with rubber mattresses and separated by metal brackets. There was also the possibility for
cows to enter a farmyard with concrete grooved flooring, which was cleaned by a manure
scraper by Prinzing and equipped with cow showers. Young stock and dry off were kept in a
separate stable with pasture access. Claw trimming was performed two times a year by using
one cattle crush. During the two claw trimming dates in November 2021 and April 2022, data
from 159 different cows were gathered.

2.8 Commercial Dairy Farm 5

Commercial dairy farm 5 (CDF5) was also an organic farm and contained two herds with
approximately 65 cows each in two different stables, which were milked by two Lely A4 milking
robots. T4C/Horizon was used as herd management system and the behaviour data were
collected by SCR sensors attached to the cows’ neck. Indoor barn climate was controlled by
ventilators and sash windows. The cubicles were deep litter boxes with metal brackets and the
solid concrete floor was cleaned by manure scrapers by Hartmann (Hartmann GmbH & Co.
KG, Germany). Claw trimming was carried out two times a year in one cattle crush and for this
study data were collected within one farm claw trimming during a two-day session in February
2022, including 129 cows.
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3. Technology used in the study

3.1 Cameras

Owing to the long distances between the farms and the |
experiences from the previous project regarding
observer presence impact, it was decided to install
cameras instead of practicing on-site scoring. Mobotix |
cameras were installed on all project farms to record |
videos of the cows exiting the milking robot.

The Mobotix D15 Dual Dome camera (Mobotix AG,
Langmeil, Germany) (Figure 13) includes two
moveable lenses, each of which can cover a wide
angle of up to 180° and can be rotated in different
directions. Both colour (Figure 14) and monochrome
cameras (Figure 15) were employed, the latter offering
enhanced night vision qualities. A red light signalled the camera's recording mode, and the
option was added for farmers or facility managers to install a switch for manual camera
deactivation, providing them with control over its operation as needed. The utilisation of the
NTP (Network Time Protocol) server allowed for automatic time synchronisation, yet at RF2,
attempts for automatic setup failed, resulting in the need for regular manual adjustments. Thus,
the timestamps logged by the milking robot during each cow's milking session, coupled with
stall occupancy data where applicable, provided a reliable means to identify the cow's
departure from the milking robot. Because the best evaluation was possible by watching the
cows from the side while walking forward, the conditions on each farm needed to be inspected
and factors such as ease of installment, shooting angle, preferred cow orientation, network
connection, data storage and access options were discussed to find the most promising
camera spot. The initial intention was to store the collected video data in terms of a circular
buffer on a Zyxel NAS326 (Zyxel Communications Corp., Hsinchu, Taiwan), a Network
Attached Storage system containing two 4TB hard discs. After encountering issues with
overwriting old data with new information in the case of full storage, which led to recording
interruptions, it was decided to switch to the previous generation Zyxel NAS 325. The cameras
were installed on the farms on different dates between December 2020 and July 2021, all
positioned to provide a clear view of the milking robot exit and to observe the cows in motion.
Examples of the camera views are shown in Figure 14 and Figure 15.

Figure 13: Mobotix D15 Dual Dome
Camera
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Figure 15: Recording window of the Mobotix camera at RF2

3.2 Milking robots

Milking robots from three different manufacturers were employed on the project farms included
in this study. Alongside the essential timestamps for video analysis during milking and milk
yield for each milking session, various additional parameters were recorded depending on the
type of milking robot.

Two research farms and one commercial dairy farm utilised Astronaut A5 milking robots by
Lely and one other employed the Astronaut A4 version. The robots on the project farms
documented an array of data points in addition to the basic milk quantity metrics, including milk
flow, fat, protein and lactose content, conductivity, days in milk, milk colour, milk temperature
and concentrate intake. All farms, except for CDF5, incorporated somatic cell count into their
records, while CDF5 also documented the body weight of the animals. Throughout the study,
all farms transitioned from the T4C Management Centre to the newer Horizon system, resulting
in data being collected from both platforms.
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RF1 implemented a DeLaval VMS V300 milking robot, whereas CDF3 had used the VMS V310
model. In addition to milk yield, these milking robots provided data on concentrate intake, days
in milk, conductivity, blood content in the milk, milk flow, and the MDi. The data could be
accessed through the management system DelPro associated with the robot.

CDF2 and CDF4 were equipped with M2erlin milking robots by Lemmer Fullwood. Beyond
monitoring milk quantity, also concentrated feed intake, blood presence in the milk,
conductivity, and, through the inline milk analyser, fat, protein and lactose levels could be
tracked on these farms. The employed management system was Crystal.

3.3 Weighing troughs

36 weighing troughs are installed on RF1 for the collection of animal-specific feeding data and
the following specifications regarding the weighing troughs are based on Fréhlich et al. (2005).
The troughs consist of the feeding trough, a load cell, a lockable gate, an antenna and a
process controller. The troughs’ capacity is, on average, enough to hold one day’s worth of
feed (80-100 kg) for a maximum of two cows. When a cow enters the detection area of the
antenna, the ear tag is detected by radio frequency identification. As the troughs are often used
in feeding experiments, not all animals have access to all troughs at all times. Sometimes the
herd is divided into feed groups and fed different feed rations. So according to the animal’s ear
tag number, the processor unlocks the gate, which can then be pushed down by the cow. The
processing unit determines the weight of the trough before and after food intake as well as the
starting and ending time to define the duration of the visit. The data can be stored in the
processor for several days but is also saved by using an access database on another computer
for longer term. Individual visit data or daily aggregated data can be exported from the program.
These files include details such as the start and end timestamps for each cow, along with the
calculated trough weight difference for each visit or daily summaries of total intake volumes
per cow and trough.

A livestock scale, functioning similarly to the load cell in the weighing trough and employing
identical software, is additionally incorporated into the milking robot on RF1 to regularly monitor
the cows' individual weight fluctuations.

3.4 Pedometers

3.4.1 Track a cow (ENGS Dairy Solutions)

The “Track a cow” pedometers (Figure 16) by ENGS Dairy Solutions (Rosh Pina, Israel) and
the associated application “EcoHerd” have already been used on RF1 during the preceding
studies. At the onset of data acquisition of the present study in 2021, cows on RF1 without
functional pedometers and those yet to be equipped were identified. Following this, the
"EcoHerd" system was updated to ensure comprehensive and accurate data collection for the
entire herd. This process was repeated in advance of every following claw trimming date.

The information regarding this sensor is based on ENGS (2023). The pedometers are so-called
long-range pedometers (LRP), which can cover a range of up to 10 km through radio
transmission. Every pedometer consists of a plastic casing containing a triaxial accelerometer,
a position sensor and an RFID antenna. After being attached to the cow's front leg with a nylon
strap and pins, the pedometer is capable of transforming the detected g-forces into three
movement patterns: lying, standing, and walking. The device captures the animal's walking
motion in terms of activity units, encompassing movements such as forward, backward,
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sideways or stationary leg movements. In addition to activity, parameters such as lying time
and the number of lying bouts resulting from the alternation between lying and standing can
also be extracted. The leg’s position in relation to the ground is registered every eight seconds
and aggregated datasets of two minutes length are created by the pedometer.

Data are transferred every 15 minutes to a receiver equipped with an antenna and
subsequently relayed through a cable to a USB converter, which processes the data and
forwards it to a computer. Data collected via “EcoHerd” undergoes daily backups, with storage
facilitated through a Microsoft Access database, allowing for querying of both hourly values
and total values per day.

The pedometers also serve to monitor the cows' feeding behaviour using an induction loop.
This loop consists of a cable encircling the feeding table, through which an electrical signal is
transmitted every 0.3 seconds by an activator, generating a magnetic field within the loop.
When the cow enters the loop with the pedometer, the signal is detected, and the time stamp
is considered as the beginning of the feed intake period. Any feeding visits occurring with
interruptions of less than six minutes are considered as one single visit to the feeding trough.
This gives the user information on the number of feeding table visits per day, the duration of
each visit, and the total feeding intake duration.

In the previous project focused on automatic lameness detection, the induction loop on the
cow side was initially positioned in a trench within the concrete floor, set at a distance from the
feeding area. This arrangement ensured that the magnetic field was large enough for the cow
to stand within it during feeding despite the large dimensions of the weighing troughs. However,
since the end of data collection on the previous project, rubber mats were installed in the barn,
and the corresponding trench for the cable was sealed during this process. At the beginning
of the data collection in this study, the cable needed to be reinstalled in the same position to
ensure precise and consistent recording of feeding behaviour.

3.4.2 CowControl (Nedap)

CowControl leg tags (Figure 17) are manufactured by Nedap Livestock Management (N.V.
Nederlandsche Apparatenfabriek, Groenlo, the Netherlands). In this study, the Nedap
pedometers were employed on RF3 in the version supplied by Lely. The pedometer details are
derived from Nedap Livestock Management (2024). They typically consist of a yellow plastic
housing, although the colour varies depending on the involved milking technology
manufacturer, and they are attached to the front leg of the cow using a plastic belt with a ratchet
function. The housing contains an accelerometer which can measure the acting g-forces in
three dimensions. The leg tags can be deployed for animal identification, heat detection and
monitoring of standing, lying and walking behaviour and the data is captured in intervals of 15
minutes. An antenna collects data through radio frequency in a range of 500 to 1000 meters
depending on the housing system and passes them on to a processing unit. The processor
analyses the data and transforms it into useful information for the farmer. Afterwards, it is
transmitted to the CowControl software called Velos on the local computer and forwarded to
the Nedap cloud for storage.
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Figure 16: ENGS Pedometer Figure 17: Lely pedometer (produced by
Nedap)

3.4.3 Fullexpert DPP (Lemmer Fullwood)

The Lemmer Fullwood (Lemmer-Fullwood GmbH, Lohmar, Germany) Fullexpert differential
precision pedometer (DPP) (Figure 18) and the DPP Plus (Figure 19), also recognised as
“AfiTag Plus” and “AfiTag IlI” as they are manufactured by Afimilk (Afimilk Ltd., Kibbutz Afikim,
Israel), can distinguish between activity and resting behaviour. The pedometers are described
according to information by Lemmer-Fullwood (2024). They were deployed on CDF2 and
CDF4, serve for the recognition of the cow in the milking robot and can detect standing, lying
and moving based on a triaxial accelerometer. The pedometer can be attached to the cow's
leg using either a webbing strap with a ring closure or a PVC band featuring a snap mechanism.
Data transfer is managed during every milking or every 15 minutes depending on the
pedometer version via radio frequency to an antenna inside a reader device, which collects
the data and forwards it to the Crystal herd management system via Wi-Fi. Animal-specific
data, including lying bouts, lying time, lying ratio, activity and an agitation index, can be
exported through Crystal. The daily activity indicates the hourly average of steps over six
recording intervals for each respective day. The agitation index is correlated with the activity;
the higher it is, the more likely the cow is in heat. Notifications regarding heat detection and
calving can be provided and a vitality profile can be visually integrated with milk yield and cow
conductivity to assess the cow’s well-being.
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Figure 18: Fullexpert DPP (AfiTag Figure 19: Cow with Fullexpert DPP Plus (AfiTag II)
Plus)

3.5 Neck tags
3.5.1 CowControl (Nedap)

The data transmission of the Nedap CowControl neck tags (Figure 20) operates in the same
manner as the Nedap leg tags (3.4.2) and the information concerning these sensors is also
based on Nedap Livestock Management (2024). The sensors are attached below the neck on
a collar and contain a three-dimensional accelerometer, which is able to distinguish between
different behaviours due to the direction of the movement. If a sensor is incorrectly attached,
the user gets informed by receiving a notification. The premium (I)FERP neck tag variant was
the one installed on RF2 (in the Nedap version) and RF3 (in the version supplied by Lely as
Qwes ISO LD). They were used for ISO animal identification, heat detection and cow location
tracking as well as for monitoring feeding, rumination and activity. For the location tracking,
beacons need to be installed at 10 to 15 meters in the barn and periodically send signals to
the neck tag. The tag receives the signals of several beacons and responds with an ultra-high
frequency signal to an antenna, and a processor can calculate the cow's current location based
on this information. A map of the barn with the position of all cows can be displayed and it can
be searched for individual cows. The system is able to compare the gained data to standard
values and earlier measurements of the specific cow or the whole group and uses all of this
information to recognise significant changes. The data can also be retrieved through the
milking robot of the distributing manufacturer instead of the Velos software and displayed in
the form of graphs or lists.

52



Figure 20: Nedap CowControl Neck Figure 21: Lely Qwes ISO LD (produced by
Tag Nedap)

3.5.2 SCR HR-LDn (Allflex)

Two research farms (RF1, RF3) and two commercial dairy farms (CDF1, CDF5) operated with
neck tags (Figure 22) by SCR (Allflex Livestock Intelligence, Dallas, USA). The description of
this sensor is based on Allflex Livestock Intelligence Deutschland (2024). The transmitter used
during data collection is called SCR HR-LDn, is fitted to the collar on the left side behind the
ear and needs to have contact with the neck muscle. The optimal positioning of the neckband,
and consequently the neck tag, is enabled by a weight beneath the cow's neck. The neck tags
contain a triaxial accelerometer to detect the cow’s movements and a processing unit and
forward the information via radio frequency over a distance of 200 to 500 meters to an antenna
and further to the corresponding computer. On the two commercial dairy farms, the neck tags
were supplied by Lely as QWES HR-LDn and the data retrieval and display were performed
by the Lely milking robot. On the two research farms, the data was available through the
Heatime Pro program, but on RF3 the SCR sensors were discontinued in the milking robot
herd after the initial claw trimming session in the project. Rumination time in minutes, an activity
index and the heat probability could be exported from Heatime or the milking robot. The
sensors also help to monitor the behaviour of the whole herd and can generate an alarm to
inform the farmer the cow might need calving assistance if rumination is already low for more
than two hours during the expected calving period.

3.5.3 Activity meter system (DeLaval)

The neck-mounted activity tag (Figure 23) by DelLaval (DeLaval AB, Tumba, Sweden) is called
“activity meter system” and is employed on CDF 3: The information about this sensor is drawn
from DeLaval (2024). The neck tag uses a three-axis accelerometer to record the cow’s activity
as an index and creates heat alerts. The activity meter is affixed to a collar on the cow’s right
side, situated directly above a transponder, which is necessary for the identification of the cow
in the milking robot. The neck tags forward the data via radio frequency to an antenna on a
receiver four times per hour or each time the cow passes an RFID reader. The complete data
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from the last 24 hours is transmitted, ensuring that no data loss occurs even during intermittent
periods of non-readouts. The data is then analysed with the assistance of a system controller
to, for example, identify cows in oestrus and subsequently presented within the DelPro system.
Cow activity data is retained for 180 days, enabling graphical representation and exportation
in a list format. This list includes values like the daily average of activity, the relative activity,
as well as the minimum and maximum levels of relative activity. The relative activity refers to
the current activity level of the cow compared to its individual average, as the system also
retains individual behavioural patterns. Additionally, the relative activity of the group can be
compared to identify events such as heat stress that may affect the entire herd. In detecting
an approaching calving, an increase in the percentage value for the likelihood of high activity
can be an indicator.

Figure 22: SCR HR-LDn neck tag Figure 23: Activity meter system
(DeLaval)

3.6 Bolus (smaXtec)

The boluses (Figure 25) are developed by smaXtec (smaXtec animal care GmbH, Graz,
Austria) and the specifications regarding these boluses are based on smaXtec (2024). The
boluses are 105 mm x 35 mm in size and are placed in the reticulum of the cow by oral
administration with an injector. On RF1, only some of the cows were equipped with boluses,
initially utilising the first-generation smaXtec boluses, which were unable to record rumination,
before transitioning to the smaXtec SX.2 boluses by the end of 2021. Both bolus generations
were employed on RF3, while only the newer version, smaXtec SX.2, was used on CDF4.

In general, there are also two different types of boluses: the pH bolus and the classic bolus.
The pH bolus measures the pH value in the reticulum in addition to the other recorded
parameters. The accuracy of the pH measuring function is only guaranteed for 150 days and
the manufacturer recommends equipping 6 to 10% of the herd with the pH boluses to monitor
the cows’ health and, if necessary, optimise the feeding management. The classic version,
which was employed on the project farms, detects activity using an index from 1 to 100,
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rumination time, internal body temperature, drink cycles and creates a heat index. At the time
of data collection in this project, the parameter for water intake quantity, which is now available,
had not yet been integrated into the system. The rumination can be detected by the duration
and number of reticuloruminal contractions, the internal body temperature can be measured
with an accuracy of up to £0.1°C and the drinking behaviour is displayed by a subsequent drop
in body temperature upon water intake. The recorded body temperature in the reticulorumen
usually shows a 0.5 to 1°C elevation compared to the rectal temperature and the normal
temperature of each animal is calculated individually, facilitating rapid identification of any
deviations. The bolus encompasses a 3D acceleration sensor, a temperature sensor, and
optionally, the pH sensor.

Data is collected in 10-minute intervals and the boluses are able to store information for up to
six days. Base stations (Figure 26) regularly retrieve the data and transmit it to a cloud via the
Wi-Fi connection by their built-in SIM card. A climate sensor (Figure 24) installed in the stable
measures temperature and relative humidity and calculates a corresponding THI
(Temperature-Humidity-Index) curve. Rumination, body temperature and activity are
continuously presented graphically in the smaXtec system and in case of deviations from the
norm values, heat and calving alarms as well as notifications regarding variances in
temperature, activity and rumination are generated. (smaXtec, 2024)

Figure 24: smaXtec climate Figure 25: smaXtec bolus Figure 26: smaXtec base
station station

3.7 Weather station

A weather station was installed near RF1 in 2013, facilitating the monitoring of diverse outdoor
climate parameters. These parameters encompass temperature readings at 2 and 20 cm
elevations, soil temperature at a depth of 5 and 20 cm, relative humidity, wind velocity,
precipitation levels and global radiation. Similar weather stations were also deployed on RF2
and RF3, recording the same climate parameters.

3.8 Additional data sources

Basic cow data essential for the study, such as identity, calving date, breed and lactation
number, were sourced from the LKV Bayern (Landeskuratorium der Erzeugerringe fur tierische
Veredelung in Bayern e.V., Munich, Germany). This organisation conducts milk performance
tests for each cow on the farms eleven times a year, which include protein, fat, lactose and
urea content of the milk as well as somatic cell count and milk yield on the test day. Additionally,
the total milk yield of the last lactation was also included in the dataset.
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4,

Data consolidation

Throughout the study, a variety of manually and automatically recorded data had to be
documented, extracted from the recording system and collected in different ways.

4.1

Automatically collected parameters

Given the use of different sensor technologies from various manufacturers across the eight
dairy farms, a unique array of parameters was collected on each farm. Table 5 and Table 6
provide an overview of the implemented sensor systems on the farms and the acquired
variables for behaviour, physiology, performance, environment and animal characteristics.

Table 5: Installed sensor technology on the project farms

Sensors

RF1 | RF2 | RF3 | CDF1

CDF2

CDF3

CDF4

CDF5

Track a cow pedometer
(ENGS)

X

Fullexpert DP pedometer
(Lemmer Fullwood)

CowControl pedometer
(Nedap/Lely)

CowControl neck tag
(Nedap/Lely)

SCR HR-LDn neck tag
(Allflex)

Bolus (Smaxtec)

X| X | X | X

Neck tag (DeLaval)

BCS Camera (DeLaval)

Weighing troughs and scale

Milking robot (DeLaval)

XIX[X| [X] X

Milking robot (Lely)

Milking robot (Lemmer
Fullwood)

Table 6: Automatically recorded parameters on the project farms

Parameters | RF1 | RF2 | RF3 | CDF1 | CDF2 | CDF3 | CDF4 | CDF5
Animal Characteristics
Breed X X X X X X X X
Date of birth X X X X X X
Behaviour
Activity X X X X X X X X
Lying behaviour X X X X
Rumination X X X X X X
Feeding behaviour X X X
Drinking behaviour X X X
Physiology
Body temperature X X X
Body weight X X
Body condition score X
Performance
Lactation number X X X X X X X X
Days in milk X X X X X X X X
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Parameters CDF1 | CDF2 | CDF3 | CDF4 | CDF5
Milk yield

Milkings

Maximum milking interval
Protein

Lactose

Fat

Urea

Somatic cell count
Conductivity

Milking flow

Blood

Milk colour

Milk temperature

MDi

Concentrated feed intake
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X
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Temperature
Humidity

Soil temperature
Precipitation
Wind velocity
Global radiation
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S

XX XX XX [X][|X

Efforts were directed towards incorporating as many automatically captured data points as
possible into the SQL (Structured Query Language) database established within the
experimental field DigiMilch via API interfaces, enabling subsequent retrieval of relevant
parameters. However, this endeavour encountered limitations for certain systems and
parameters utilised in the study. Challenges prompting an alternative approach included the
absence of suitable interfaces, protracted or unsuccessful negotiations with manufacturers
regarding data exchange agreements and limited access to raw data, which ultimately resulted
in marginal benefits compared to other possible export methods. In addition to direct
transmission via API interfaces, alternative methods such as semi-automated processes
through a web client were employed, storing the corresponding data exports in a cloud from
which they could be transferred to the database. Data from certain systems could only be
manually exported and sometimes required additional file conversion steps. In instances where
an export function was unavailable within the program, lists of parameters had to be manually
copied at regular intervals, depending on availability, and then inserted into an Excel
document.

4.2 Manually collected parameters

The manually collected data consisted of observations made during the claw trimming
sessions, including visible clinical findings, the degree of the growth in the sole centre and the
pain reaction, as well as locomotion scores carried out via video footage taken in the preceding
three weeks.

4.2.1 Locomotion scoring

In this study, like in the two preceding projects on indirect automatic lameness detection,
lameness assessment was conducted using locomotion scoring as the reference method. In
the previous project, a three-point locomotion score (Figure 27) was developed, aiming for
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higher reliability and improved practical applicability (Lorenzini, 2019). This was driven by the
understanding that, for these studies on indirect automatic lameness detection, similar to
practical applications, identifying whether a cow is lame or not outweighed the importance of
assessing the degree of lameness.

Figure 27: Three-point locomotion score according to Grimm and Lorenzini (Source: Lorenzini,
Grimm et al. (2017))

Applying this locomotion score (LMS), the initial focus is on the gait of the cow, aiming to
directly classify evidently lame cows exhibiting irregular, uneven and asymmetrical walking
patterns as lame (LMS3) irrespective of the degree of lameness. If there are no abnormalities
in the overall gait of the cow, three additional features are considered to investigate lameness
suspicion (LMS2), if any of these characteristics occur. These include an arched backline, the
stance of one or more limbs in relief or head bobbing. If the gait is regular, even and
symmetrical and none of the other features are present, the cow can be classified as sound
(LMS1).

To minimise the observer effect and due to the number of participating farms, it was decided
to conduct locomotion scoring based on video recordings. Following the synchronisation of the
camera with the milking robot, the timestamp provided during milking was utilised to accurately
identify the cow exiting the robot. Daily locomotion scores were performed on all farms starting
21 days prior to claw trimming, aiming to capture the onset and progression of lameness. This
21-day timeframe was considered sufficient, as lameness develops over a period of nine days
on average according to the results of Lorenzini (2019). During locomotion scoring of each
cow, the procedure involved examining the day before the claw trimming session and then
working backward up to 21 days prior to the trimming appointment. If a cow received a score
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of 1 on both days preceding the claw trimming, it was scored every five days, with the
assumption of maintaining a consistent score of 1 for the days in between. Conversely, if a
cow was scored 2 or 3, its gait was evaluated daily to monitor any changes.

Alongside the primary observer (Rater 1), locomotion scores for the cows were recorded by
two additional raters for 4 of the 20 claw trimming dates. These raters had practiced locomotion
scoring on at least 75 cows prior to the study, and their agreement with Rater 1 was evaluated
before the actual locomotion scoring started.

4.2.2 Validation of the locomotion scoring system

Although the locomotion score has already been validated in the previous project (Lorenzini,
2019), additional validation was carried out in the present study. Both, inter-rater agreement,
which measures the consistency between different observers, and intra-rater agreement,
which assesses the consistency of the same observer across multiple scoring sessions, were
calculated. Moreover, the locomotion score was validated using the results of the claw
trimmings and pain tests. For this purpose, an additional lesion score (LS) was developed,
including three different levels (Figure 28). Grade 1 was assigned to the animal if it exhibited
no pain response in any of its claws and presented with either no lesions or only mild, generally
non-painful findings such as chronic digital dermatitis (Stage M4), tylomas without digital
dermatitis or minor sole haemorrhages on only one to three feet. Grade 2 was given if there
was either a positive pain response combined with no or mild, generally non-painful findings,
or a negative pain response coupled with evident clinical findings. Grade 3 was assigned in
cases where a significant pain response occurred in any of the four feet along with evident
clinical findings. This three-level lesion score was then compared to the locomotion score

assessed one day prior to claw trimming.
Clinical

Positive
pain test

e " Clinical No/
pal . findings Aarer
test findings

No/minor
findings

Negative
pain test

Figure 28: Three-level lesion score to validate the locomotion scoring system

4.2.3 Clinical findings

The documentation of visible clinical findings took place for all animals during the on-farm claw
trimming sessions. Initially, for the first appointment on RF1, as well as the first appointments
on RF2 and RF3, the recordings made by the claw trimmers were utilised. Due to incomplete
documentation of less severe findings, the findings during the subsequent claw trimming dates
were documented by the author of this study. The findings were noted based on the ICAR
Claw Health Atlas (ICAR Working Group on Functional Traits (ICAR WGFT) and International
Claw Health Experts, 2015) and the corresponding abbreviations and their descriptions are
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displayed in Table 7. The table was additionally supplemented with the abbreviations "OLU",
signifying "otherwise located ulcers", to also describe ulcers not located in the typical area
beneath the flexor tuberculum and CSH, meaning “central sole haemorrhage” as the
preliminary stage of sole ulcers. In cases of digital dermatitis, the associated stage according
to Table 2 was documented and for CSH and SHC, it was also noted whether there was an
acute bleeding of the sole haemorrhage. HHE and WLD findings were noted only when they
were clearly visible.

Table 7: Descriptions and abbreviations used for documentation of clinical findings, based on
the ICAR Working Group on Functional Traits (ICAR WGFT) and International Claw Health
Experts, 2015 (adapted from original with modifications)

Code Name Description

Any torsion of either the outer or inner claw. The dorsal edge
of the wall deviates from a straight line

Infection of the digital and/or interdigital skin with erosion,
DD Digital dermatitis | mostly painful ulcerations and/or chronic
hyperkeratosis/proliferation

DS Double sole Two or more layers of under-run sole horn

Erosion of the bulbs, in severe cases typically V-shaped,
possibly extending to the corium

CcC Corkscrew claws

HHE | Heel-horn erosion

HF Horn fissure Crack in the claw wall
IH Interdlglta! Interdigital growth of fibrous tissue
hyperplasia
P Interdigital Symmetric painful swelling of the foot commonly accompanied
phlegmon with odorous smell with sudden onset of lameness
Sole
SHD | haemorrhage Diffused light red to yellowish discolouration
diffused form
Sole
haemorrhage Clear differentiation between discoloured and normally
SHC . .
circumscribed coloured horn
form
Central sole Haemorrhage beneath the tuberculum flexorium, preliminary
CSH . )
haemorrhage stage of sole ulcer without horn perforation
Penetration through the sole horn exposing fresh or necrotic
SuU Sole ulcer :
corium
BU Bulb ulcer Ulcer located at the bulb
TU Toe ulcer Ulcer located at the toe
OLU Sgéerrmse located Ulcer located on other, unusual sites of the claw
TN Toe necrosis Necrosis of the tip of the toe with involvement of bone tissue
TS Thin sole Sgrl)e“ehé)rn yields (feels spongy) when finger pressure is
WLE | White line fissure Separation of the white line, which remains after balancing
both soles
WLA White line Necro-purulent inflammation of the corium
abscess

Besides the clinical findings, also the treatment of each claw carried out by the claw trimmer
was documented by using the code as shown in Table 8.
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Table 8: Code for therapeutic procedures by claw trimmers

Code Name

B Bandage

CB Claw block

SAP | Salicylic Acid Paste

SAPO | Salicylic Acid Powder

CTC | Chlortetracycline spray

CZC | Copper and zinc chelate spray

4.2.4 Pain test

A pain test was performed on each claw before the trimming was carried out (Figure 29). The
order in which the pain test was carried out depended on the preferred trimming sequence of
each claw trimmer. The claw pliers were positioned at two different angles on each claw: once
on the abaxial and axial claw wall and once at the claw tip. Pressure was then briefly applied
to the claw and any potential pain response from the animal, such as claw withdrawal, was
noted. If such a reaction occurred, the pain test was classified as positive; otherwise, it was
recorded as negative. The pain test was conducted by the veterinarian; only during the first
two claw trimming dates on RF1 the help of a colleague was needed since two claw trimming
chutes were used at the same time.

— . 2GRS

Figure 29: Pain test performed using claw pliers

4.2.5 Growth in the sole centre (GSC)

The degree of growth in the sole centre was also assessed for all claws of each cow before
the trimming to eventually rule it out as a possible cause of lameness or positive pain response
in the absence of visible clinical findings. For this purpose, a three-level score was established
as shown in Table 9, enabling the assignment of a specific degree of growth in the sole centre
to each foot of a cow.
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Table 9: Three-level score to grade the growth in the sole centre (GSC)

Score GSC1 GSC2 GSC3
Clear interdigital space | Clear interdigital space | Completely closed or
Description with prominent, with no or slight, non- overgrown interdigital

indentable groove indentable groove space

P

4.2.6 Corrected locomotion score (C_LMS)

In addition to the locomotion score, a corrected locomotion score was formed by taking the
clinical findings and the pain test into account. If cows were identified with an LMS2, this score
was upgraded to 3 for all days featuring the original LMS2, given that the animals showed
either a positive pain test or visible and potentially painful findings during claw trimming.
Subsequently, this C_LMS was integrated into the daily datasets as an alternative reference
value alongside the standard LMS.

5. Data processing

After the data collection phase concluded at the end of 2022, the data processing phase
commenced. In the first instance, data from various sources needed to be standardised into a
unified CSV format and afterwards daily records of the different project farms could be
generated by using the statistics tool RStudio. These farm-specific daily records included every
parameter recorded within the individual farm, computed for each cow on a daily basis. The
daily record of RF1 was completed within the DigiMilch SQL database, while the other ones
were created directly in RStudio due to different file formats and export ways. Data was
prepared by including the counts of each variable, which was recorded at regular time intervals,
into the data frames and afterwards excluding the daily values with missing single recordings.
Individual limits of allowed missing counts were determined for each parameter based on the
total amount of counts registered by the sensors per day.

5.1 Daily records

The final daily datasets included data from the 21 days preceding the respective claw trimming
appointment. The timestamps of data collection on each farm as well as the appointments
excluded from the analysis due to data loss are represented as a timeline in Figure 30 and the
specific claw trimming appointments used for further analysis can be found in the appendices
in Table 32.
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Figure 30: Timeline of all claw trimming dates, including discarded appointments due to data
loss

Depending on the availability of technologies, the parameters collected on the farms varied,
resulting in different variables included in the farm-specific datasets. Table 33 in the
appendices provides a comprehensive list of all collected parameters, along with their
respective data sources and the farms where each parameter was collected. In the following,
the preprocessing of the data in order to build the final farm-specific daily data sets will be
explained.

5.1.1 Daily time budget of behavioural parameters

As in the preceding automatic lameness project, in addition to the daily values spanning over
the course of the entire day from 00:00 to 24:00, also the behaviour during daytime and the
day/night ratio, meaning the behaviour during daytime compared to the day-long behaviour,
were considered in the daily records. At first, the term “daytime” needed to be defined for each
farm as, for example, different management routines could lead to varying circadian rhythms
for the herds. Corresponding to the previous project, where activity exhibited the most variation
(Lorenzini, 2019), and because it was the only behaviour parameter available on all farms in
this study, activity was chosen as the determining parameter to define “daytime”. The overall
median for activity during all data collection periods was identified for each farm separately
and at the same time the median activity values for each hour on the farm were computed.
The start of daytime was established as the first hour in which the hourly median activity was
higher than the total median activity and the end was set as the last hour in which this
requirement was fulfilled. The calculated daytime periods per farm are displayed in Figure 31.
No calculation of the daytime was performed for CDF2 and CDF3 as the sensor systems
installed on these farms only generated daily values. Furthermore, for all sensor systems on
the other farms, which only offered daily values, no daytime values and day/night ratios could
be established.
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Figure 31: Daytime period on each project farm

5.1.2 Animal Characteristics

For the first identification of each cow, the animal’s specific number on each farm as well as
its unique ear tag number had to be documented. The date, as in the date of data collection,
was included across all different data sources to create unique daily data sets without
redundancy. The breed of each animal was also documented as labelled by the LKV and
automatically exported to the DigiMilch database. The dataset included data from 699
Simmental cows, 10 Holstein Friesian cows, nine Brown-Swiss cows, two Gelbvieh cows, one
Red Holstein Friesian cow and seven cows of other breeds. Additionally, the date of birth of
each cow was noted according to LKV and HIT to gain information about the cow’s age and
the herd composition.

5.1.3 Reproductive status and lactation data

The reproductive status of each cow was only included in the final data sets to track missing
milkings due to drying-off periods. As the reproductive status displayed by the milking robots
was not always up to date, it was calculated manually. A cow was described as “lactating” if
milk production was present on the current day. If the reported milk yield was NA (not available)
in combination with a lactation number equal to zero, the animal was labelled as “heifer”. With
a lactation number larger than zero and no occurring milking, it was noted as “dry period”. If a
cow was first identified as being in the dry period but had less than 200 days of milk, its
reproductive status was changed to “not milked”. The days in milk were calculated by
considering the day of the last calving as reported by the LKV as day 0 and then counting
forward to the current date. The lactation data was acquired either through the LKV or through
the milking robots.

5.1.4 LKV

A lot of milking data were collected through the LKV, including the cow’s lactation number. If
no lactation number was registered yet, the cow was considered to be a heifer and the lactation
number was noted as 0. The total milk yield in last lactation recorded by the LKV referred to
the total milk yield from the beginning to the end of the last lactation and could be collected for
all farms except CDF 1, because this farm only joined the LKV during the DigiMilch project. The
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results of the monthly milk performance tests, conducted by the LKV eleven times a year for
each lactating cow, were also included in the daily records. The results of the milk performance
test conducted on the last examination date were used as daily values for the days leading up
to the next monthly examination. The incorporated parameters included daily milk yield, urea,
protein, lactose and fat content and somatic cell count. Furthermore, the fat-protein ratio was
calculated by utilising the protein and fat content documented by the LKV.

5.1.5 Milking robot

The number of milkings was determined according to the cow’s visits to the milking robot and
the maximum milking interval was calculated as the maximum duration between the end and
start time stamp of two consecutive milkings on the same day. Since the milk yield of the cow
is not produced during the milking process itself, but rather during the whole period from the
end of the last milking to the start of the next milking, it was proportionally allocated to each
respective day in case of inter-daily intervals between the milkings. To simplify calculations,
the milk production rate was assumed to be constant and uniform. The total milk yield of the
current lactation was created within the SQL DigiMilch Database for RF1. For the other farms,
the total milk yield of the last lactation recorded by the milking robot was utilised. On RF2, RF3,
CDF1 and CDF5, the milking robots also calculated the average daily milk yield in the last
lactation.

The milk ingredients, including protein, fat and lactose, could be collected by the milking robots
on all farms except RF1 and CDF3 and the corresponding fat-protein ratio was subsequently
calculated. The somatic cell count could only be registered on RF2, RF3 and CDF1.
Additionally, other changes in the milk composition were detected differently depending on the
milking robot. The parameters regarding blood and colour were excluded from the dataset in
the further analysis due to insufficient comparability and missing data points. The Lely milking
robots also record the milk temperature and the DeLaval ones compute the Mastitis-Detection-
Index (MDi), a combination of the parameters blood in milk, conductivity and milk interval. The
milking flow, meaning the average speed and consistency of milk extraction during the milking
process, and the maximum milking flow were acquired on all farms except CDF2 and CDF4.
Conductivity was at first included as conductivity per quarter, but the median value of
conductivity for all quarters was calculated later in the analysis to limit the number of
parameters and simplify the analysis of the parameter conductivity. The conductivity was
recorded once on all farms equipped with Lely milking robots within a company-owned unit
and on all other farms within the unit mS/cm. Intake of concentrated feed and on RF2, RF3,
CDF1 and CDF5 additionally the remains of concentrated feed at the end of the day were also
included in the daily records.

5.1.6 Body condition score and body weight

On RF1, the body condition score was available through the milking robot, which collected the
data of the BCS camera during every milking process. The body weight of each cow was also
measured during the milking by a scale and transferred to a database. For both parameters,
to create daily values, the median of all single assessments was formed. Moreover, the daily
body weight could be exported on CDF5 through the daily lists generated by the milking robot.

5.1.7 Feeding

Information on the cows’ feeding behaviour could be documented on RF1, RF2 and RF3, but
data regarding the roughage intake were only accessible on RF1 through the weighing troughs.
The weighing troughs not only measured the feed intake during every visit to the trough but
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also recorded the feeding duration. The feeding pace was calculated by dividing the feed intake
by the corresponding feeding duration. The daily number of visits to the weighing trough was
noted and the visits were summed up to create meals. A meal was characterised by a series
of consecutive trough visits occurring within intervals of less than 6 minutes, provided that the
cumulative recordings were greater than or equal to 6 minutes. The average feed intake and
duration per weighing trough visit and meal were calculated by dividing the feed intake or
feeding duration by the number of weighing trough visits or meals. The daytime values and
day/night ratios were included in the daily record if possible.

The ENGS feeding data could only be collected on RF1 during the data collection before one
claw trimming date due to issues that will be further explained in chapter V.1.2.1. ENGS also
aggregates all feeding table visits with interruptions of less than 6 minutes into one meal and
subsequently provides the total count of meals. Additionally, the feeding duration per day was
supplied by the pedometers and the average feeding duration per meal as well as the daytime
and day/night values could be calculated afterwards.

Only the total daily feeding duration was included for the Nedap neck tags, as it was not
possible to directly access the raw data.

5.1.8 Rumination

SmaXtec provided users with the total daily rumination time. In contrast, the data output of the
SCR sensors depended on the tool used to access the data. Within the Heatime system on
RF1, rumination data could be exported in two-hour intervals, while the milking robots only
provided the total daily rumination time. As a result, only the daytime values and the day/night
ratio for RF1 could be established. Similarly, with Nedap, only the daily total rumination time
was accessible.

5.1.9 Heat behaviour

SCR provided an activity-based index for heat probability via the milking robot. The higher the
heat probability index, the more likely the cow was to exhibit heat on that particular day.

A similar variable was generated by the Lemmer-Fullwood pedometers called factor of
restlessness, which was also based on the activity data and as this index increased, so did the
probability of heat occurrence.

5.1.10 Lying

Lying data could be recorded on RF1, RF3, CDF2 and CDF4. As the lying data by ENGS
included hourly values, the number of individual lying events and the average lying duration
per bout could be included, but also the daytime and day/night values.

The Nedap and Lemmer-Fullwood pedometers recorded the total daily lying duration and the
number of lying events.

5.1.11 Activity

The parameter of activity could be captured in various forms, either at the neck, at the leg or
in the reticulum across all project farms. Hourly activity units could be found within the ENGS
Ecoherd system on RF1, an activity index was recorded by smaXtec every 10 minutes and
summed up for daily values and another activity index was created by SCR and provided every
two hours.
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Nedap counted the daily steps of the cows but also displayed the foot activity and the heat-
associated neck activity every two hours. Daily sums and two-hourly medians as well as the
daytime and day/night ratios were calculated for both types of activity loggers. Furthermore,
the inactive neck time, meaning the time without any head or neck movement, was also
recorded.

The Lemmer-Fullwood pedometers delivered the hourly average step count per day, while the
Delaval neck tags presented an average daily activity index, the relative activity as the current
activity level of the cow compared to its individual average and the minimum and maximum
relative activity of the cow on this day.

5.1.12 Body temperature

The body temperature could be collected on RF1, RF3 and CDF4 by using the smaXtec
boluses. The 10-minute values created by the system were transformed into average,
minimum and maximum values per day. The normal body temperature of the cow was detected
by the bolus in the first training phase after bolus input and regularly updated. The body
temperature still included the temperature drops caused by drinking events of the cow, while
the body temperature without drink cycles was adjusted for drinking.

5.1.13 Climate

Temperature and humidity could be measured by the smaXtec climate stations on RF1, RF3
and CDF4, as the stations were installed in the barns together with the smaXtec bolus
infrastructure. The Temperature-Humidity-Index (THI) was calculated manually, as the THI
computed by smaXtec could not be exported via the interface. For this calculation, the used
formula was created by Thom (1959) and modified by Zimbelman et al. (2009):

(0.8 x Temperature) + [(rel. Humidity / 100) x (Temperature - 14.4)] + 46.4 (1)

Weather stations were implemented on the three research farms and recorded hourly values,
which were transformed into a daily minimum, maximum and median. The collected
parameters included temperature at 2 m height and 20 cm height from the ground, soil
temperature at 5 cm depth and 20 cm depth, relative humidity, precipitation, wind velocity and
global radiation. The THI was also calculated using the formula provided above and the
temperature and humidity values detected by the weather station.

Season was added to consider a potential existing seasonal effect on lameness. For the
manual calculation of the season in which the claw trimming occurred, the year was divided
into quarters and assigned a value, as can be seen in Table 34 in the appendices.

5.1.14 Claw health

The data collected during the claw trimming events were initially recorded manually on printed
lists and then entered into a Microsoft Excel 16 spreadsheet. The results of the locomotion
scores were stored within the same spreadsheets and converted to CSV files with daily values.
The values inserted into the daily dataset corresponded to the results of the locomotion scoring
performed daily, whereas the results of the claw trimming session, including the pain test,
growth in the sole centre and findings were collected only on the respective claw trimming date
and retrospectively interpolated up to 21 days prior. The pain test and the growth in the sole
centre were added to the dataset according to the documentation methods described in 4.2.4
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and 4.2.5. The corrected locomotion score was documented according to the description in
4.2.6 and also added to the datasets.

5.2 Univariate Analysis
The data analysis was carried out with R Studio (Version 2022.07.2).

Descriptive statistics such as boxplots, histograms and Q-Q plots were used to check the
distribution of all variables and to get a first overview of the parameters. Outliers were identified
by calculating three times the interquartile range (3*IQR), as can be seen in Figure 32 and
those exceeding the threshold were removed. The 3*IQR was used instead of the 1.5*IQR
because the latter can be too strict for certain datasets, as observed in this study, leading to
an excessive removal of data points that do not clearly qualify as outliers (Zhang et al., 2020).

The statistical key figures were computed for each farm and across the farms by creating
summaries which included the mean, median, minimum, maximum, first and third quartile,
standard deviation and the number of observations of each value.

Outlier (> 3*IQR)
g , — 3*IQR
q75-1.5*IQR
g | _
§ 5.
s Median } q75-925
i q25-1.5*IQR |
i ! — 3*IQR

Figure 32: Example of the type of interquartile range (IQR) used in this study (IQR: interquartile
range, q25: first quartile, q75: third quartile)

5.3 Bivariate analysis

Regarding the validation of the locomotion score, the intra- and inter-rater reliability as well as
the agreement between LS and LMS were calculated. For the intra-rater reliability, the two
rounds of locomotion scoring by the same observer (Rater 1) were compared to each other
and the percentage of agreement (PA) as well as Cohen’s Kappa (k) according to the formula

_ p0—pe
= 1—pe

(2)
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were computed (Cohen, 1960). Thereby, po represents the proportion of actual conformity
while pe displays the percentage of incidental concordance. The quadratic weighted Cohen’s
kappa (kw) was used to account for larger and smaller distances between scores and to weight
them differently (Vanbelle, 2016). The inter-rater reliability was calculated by comparing one
detection round of the same video footage of Rater 1 with the results of another rater (Rater
2).

Due to the non-normal distribution of the data, the non-parametric Kruskal-Wallis test (Van
Hecke, 2010) was chosen to test for significant differences between the C_LMS and LMS
groups for each variable. Afterwards, the Wilcoxon signed rank test was performed on the data
as a post-hoc analysis to further investigate between which particular C_LMS or LMS pairings
the differences were significant or not significant.

The correlation between LMS or C_LMS and the parameters was determined by Spearman’s
rank correlation coefficient, which is used instead of Pearson’s correlation coefficient when
data does not meet the assumptions of linear correlation or normal distribution (Rebekic¢ et al.,
2015). Additionally, the correlation between the different automatically recorded parameters
was calculated, as it can be helpful to identify potential predictors for lameness and to assess
the strength and direction of relationships between the different parameters. The Intraclass
Correlation Coefficient (ICC) and its Cl was measured for each parameter recorded by both,
milking robot and LKV.

Binomial generalised logistic regression was carried out and provided the odds ratio, the lower
and upper confidence interval and the p-value of each parameter implemented in the
regression as the independent variable with the claw health status as the dependent variable.
Based on the dependent variable, two different regression models were chosen, one with the
locomotion score as reference and therefore LMS3 as lame and the other one focusing on the
corrected locomotion score and consequently on C_LMS3 as the lame outcome.

The tests, correlation, and OR calculations were also performed at the farm level to identify
farm-specific differences.

5.4 Multivariate analysis

For the development of regression models, the final farm-specific daily datasets were split or
combined to form subsets according to the different parameter classes. The newly created
datasets were checked for NA values and these were removed. The ETN (Ear Tag Number)
was converted into a numeric identification number called FCN (Farm Cow Number) and
afterwards centring and scaling were performed on the datasets. Centring adjusted the data
by subtracting the mean, aligning values around zero to eliminate baseline differences and
highlight key variations between samples (Van den Berg et al., 2006). Scaling transformed the
data by dividing each variable by the standard deviation to equalise their variability and
facilitate comparisons (Van den Berg et al., 2006).

For each parameter class, it was aimed to develop the best models for both C_LMS and LMS
as references. Dummy variables were used, where 1 indicated a "lame" outcome, substituting
for LMS3 or C_LMS3, and 0 indicated "not lame", representing LMS1 and LMS2 or C_LMS1
and C_LMS2. The outcome variables of the regression models were referred to as “Claw
health status,” for the non-corrected LMS and “Claw health status.” for the C_LMS.

Following this, the respective dataset was split into a training set and a test set, with the former
containing 80% and the latter containing 20% of the data. To ensure proper data partitioning,
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the FCN was randomly assigned to either the training set or the test set, ensuring it appeared
in only one of the sets. Furthermore, the training data were subjected to SMOTE (Synthetic
Minority Over-Sampling Technique) to achieve a balanced distribution between observations
of lame and non-lame animals. SMOTE improves classifier performance on imbalanced
datasets by generating synthetic examples for the minority class through interpolation between
existing minority samples (Chawla et al., 2002).

Due to the results of the preceding automatic lameness detection project (Lorenzini, Grimm, &
Haidn, 2021), generalised linear mixed regression models were used in the analysis. The Ime4
package (Bates et al., 2015) in R was employed to analyse those generalised linear mixed
models, which include both fixed and random effects. An example of the formula is displayed
in the following:

a~b+c+die+ (x|2) (3)

In this context, according to Brown (2021), a represents the outcome variable, while b and ¢
are fixed effects that have a direct influence on a. Additionally, interaction parameters such as
d: e can be included to examine the combined effect on the outcome variable a. The
parameters within the parentheses are known as random effects, with the grouping variable z
positioned to the right of a vertical line, referred to as the pipe. This grouping variable defines
a unique starting point as a random intercept based on z. When x is present, the model also
incorporates the random slope, which captures individual variations in slope. Consequently, it
is assumed that variable x exerts different effects on the outcome variable a depending on the
value of z.

The regression models were created using a forward regression approach. This method
involves sequentially adding new parameters as fixed effects, allowing for the evaluation of
each parameter's contribution to the model's accuracy. A 10-fold cross-validation was
employed in this case, involving splitting the data into 10 parts. The model is trained and tested
10 times, with each part serving as the test set once, and the performance results are averaged
to provide a reliable estimate of the model.

To assess whether the parameters Farm and FCN should be included as random effects, the
intraclass correlation coefficient (ICC) was calculated to assess how much of the total variance
in the data could be explained by these variables as random effects.

Interaction terms were included in the models to illustrate how the effect of one independent
variable on the dependent variable changes as another independent variable varies. To avoid
manually testing every possible interaction term, an automated interaction analysis was
conducted. This analysis assessed all interaction terms based on the model and the data, and
only those with the most significant effects were afterwards re-evaluated in the regression
model. To assess the goodness of fit of a model, the Akaike information criterion (AIC), the
Bayesian information criterion (BIC), the p-values of the parameters, the area under the curve
(AUC), sensitivity and specificity were considered. Additionally, the Receiver Operating
Characteristic (ROC) curve was calculated for all models. The ROC curve offers a detailed
view of how well a diagnostic test performs by showing the balance between sensitivity and
specificity across different decision thresholds (Kumar & Indrayan, 2011). The area under the
ROC curve (AUC) quantifies a model's ability to differentiate between two classes (Kumar &
Indrayan, 2011). An AUC of 1 would signify perfect distinction between lame and non-lame
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animals, while an AUC of 0.5 would indicate that the classification is no better than random
chance.

Initially, the best regression models using only performance data were identified. In the second
step, performance data and activity data, collected across all eight farms, were integrated into
the models. Subsequently, various model versions were tested by adding one additional
parameter from the parameter classes of constitution, feeding, rumination, lying, body
temperature or climate to the activity and performance data in order to assess the extent of
model improvement. These models could no longer be analysed across all farms, but only on
those where the parameter classes were measured with sensors. Finally, two and ultimately
three additional parameters were combined with the activity and performance data in the
model.
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V. Results

1. Limitations in data collection

1.1 Cameras

The video data of the first claw trimming date on CDF1 in June 2021 and the claw trimming
date on RF2 in August 2021 could not be employed for analysis due to the mentioned
malfunction of the circular buffer (Chapter 1V.3.1), resulting in the storage of individual images
rather than complete videos. At CDF3, an electric fly screen caused multiple power outages,
which ultimately resulted in failure of the NAS, rendering the video footage from the two claw
trimming sessions in February and May 2022 irrecoverable.

The video recordings should capture the 21-day period preceding each claw trimming date.
However, for the first claw trimming session on RF3 in May 2021, the camera could only be
activated 13 days prior to the trimming date. Furthermore, in some instances certain animals
could not be scored due to dry periods, calving, illness or other factors. In such cases, the
scoring period was restricted to the days when the animals were captured by the camera.

1.2 Sensor technology
1.2.1 ENGS

At the start of data collection in 2021, several attempts were made to reinstall the induction
loop by ENGS on RF1 for reliable recording of feeding behaviour. Initially, attempts to attach
the cable directly to the weighing trough frame proved unsuccessful, as the cows stood too far
away to be detected within the magnetic field. Subsequently, efforts were made to lay the cable
beneath the rubber mats, which was successful at the beginning, allowing for the collection of
feeding data during claw trimming in November 2021. But due to the nubs on the underside of
the rubber mats and the resulting friction from the movement of the cows on the mat, the cable
was damaged and failed completely in January 2022. A third approach involved embedding
the loop directly into the rubber mats and securing the cable with industrial adhesive. This
solution proved inadequate due to moisture and ammonia present in the manure, causing the
adhesive to lose its effectiveness over time. Consequently, recording feeding behaviour via
the pedometers had to be discontinued in subsequent claw trimming sessions.

1.2.2 Weighing troughs

While reviewing the weighing trough data, consistent instances of implausible values, wherein
the same cow was detected at multiple troughs simultaneously, were observed. This
phenomenon occurred sporadically across different troughs, involving various cows, and
lacked a clear explanation. Considering their minimal impact on the overall feeding duration
when examining daily values, as those occurrences were mostly lasting less than a minute, it
was decided to proceed with utilising the weighing trough data for the study.

73



2. Data cleaning

The first data sets were primarily cleaned by removing the values with faulty or insufficient
counts, a variable that was created for all parameters that were recorded several times a day
at regular intervals. The upper and lower limits for the number of counts per day were
determined individually for each parameter depending on the frequency of measurements per
day and can be found in Table 10.

Table 10: Upper and lower daily count limits depending on the sensor system

Sensor system smaXtec | SCR | ENGS | Nedap
Upper daily count limit per cow 144 12 24 12
Lower daily count limit per cow 139 11 23 11

Afterwards, outliers exceeding three times the interquartile range were eliminated. The rows
that included no value for the LMS at all and those scored on the claw trimming date were also
excluded from the daily records.

The number of daily values and the number of cows in the first data sets and the final daily
records after data cleaning, as well as the number of variables in the final data set, can be
found in Table 11. A total of 27,690 daily values from 744 cows could be recorded on all farms
and was reduced to 24,583 daily values and 730 cows after data cleaning.

Table 11: Daily values, number of cows and variables in the daily records

Farm RF1 RF2 RF3 CDF1 CDF2 | CDF3 | CDF4 | CDF5
First data sets
(daily values) 7,328 2,861 | 5,022 1,359 1,135 1,922 | 5,257 | 2,752
First data sets
(number of
cows) 108 64 97 62 54 70 160 129
Final data sets
(daily values) 5,842 2,727 | 4,221 1,299 1,083 1,829 | 4959 | 2,624
Final data sets
(number of
cows) 105 63 92 62 52 68 159 129
Number of
variables 122 82 116 54 43 42 64 54

Even in the final daily datasets, there were some missing data points. Possible explanations
for missing data include instances of sensor malfunctions, collection of clearly erroneous data,
which had to be removed due to implausibility and that often not all animals on a farm were
equipped with a particular sensor system. In Figure 33, the relative share of missing values for
each system is displayed as a proportion of the total values recorded on the farms where the
sensors were installed.
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Figure 33: Relative proportion of missing values relative to total farm data

78.5% of ENGS (Feeding) values were missing on RF1. Due to the problems that occurred
with the induction loop installation, only feeding data for the three-week period before one claw
trimming date could be collected. The main reason for the 48.2% missing Nedap (pedometer)
values and the missing smaXtec data points can be attributed to the fact that not all animals
on RF3 were equipped with Nedap pedometers, and similarly, not all animals on RF1 were
fitted with smaXtec boluses. Additionally, older generation boluses were occasionally used on
RF1 and RF3, which did not capture rumination, resulting in further missing data points for this
parameter. Furthermore, SCR sensors were only deployed on RF3 during the initial claw
trimming period and were then discontinued. One main reason for missing values in the milking
robot and LKV data was the dry period of the cows. As all the different sensor systems on each
farm contained different missing values, the missing data points were kept in the daily farm
records to avoid excessive data loss and only excluded for the combined data sets and the
further analysis.

3. Univariate analysis
3.1 Claw Health

3.1.1 Locomotion score

The final daily records included 24,583 locomotion score (LMS) values. In 79% of the cases
the cows showed a healthy gait (LMS1), while 15.2% displayed small deviations from the
normal walking behaviour (LMS2) and 5.8% were clearly lame (LMS3). After correction to
create the C_LMS (see Chapter IV.4.2.6), 4.6% were still considered unsound (C_LMS2) and
16.4% were categorised as lame (C_LMS3). 13,238 LMS were detected directly by watching
video recordings (54%) while 11,345 LMS1 values (46%) were interpolated as explained in
Chapter 3.1.1. The number of locomotion scores as well as the number of scored cows and
assessments per farm and as a whole are displayed in Table 12.
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Table 12: Number of locomotion scores (LMS), corrected locomotion scores (C_LMS), cows
and assessments per farm and in total

Total LMS 5,842 | 2,727 | 4,221 | 1,299 | 1,083 | 1,829 | 4,959 | 2,623 | 24,583
LMS1 4498 | 2,153 | 3,373 | 1,041 857 | 1,332 | 3,993 | 2,184 | 19,431
LMS2 951 457 652 193 192 382 623 286 | 3,736
LMS3 393 117 196 65 34 115 343 153 | 1,416
C LMS2 391 62 246 99 82 116 91 46| 1,133
C LMS3 953 512 602 159 144 381 875 393 | 4,019
Number of

individual

COWS 105 63 92 62 52 68 159 129 730
Number of

individual

assessments 316 135 260 62 52 94 246 129 | 1,294

The percentages of the different locomotion scores recorded during the whole data collection
period divided by farm can be seen in Figure 34. CDF4 had the largest proportion of cows
scored as LMS3 (6.9%) while LMS2 was highest on CDF3 (20.9%). The lowest detection rate
of LMS3 occurred on CDF2 (3.1%) and the smallest proportion of LMS2 was found on CDF5
(10.9%). If LMS2 and LMS3 are both considered, the highest prevalence of unsound and lame
walking cows during the data collection period could be documented on CDF3 with 27.2%. The
highest number of sound walking cows scored as LMS1 was recorded on CDF5 (83.3%) with
16.7% of the cows walking unsound or lame. After correction of the LMS2 due to the claw
trimming findings or positive pain tests (C_LMS), the percentage of cows considered as lame
increased over all farms (RF1: 16.3%, RF2: 18.8%, RF3: 14.3%, CDF1: 12.2%, CDF2: 13.3%,
CDF3: 20.1%, CDF4: 17.6%, CDF5: 15.0%, Total: 16.4%).
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Figure 34: Relative proportion of the different locomotion scores recorded during the data
collection period on each farm
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To calculate the lameness prevalence on each farm, the locomotion scores detected on the
day before the claw trimming were utilised. The overall lameness prevalence on the different
farms, displayed by the LMS3 prevalence, is shown in Table 13 and the lameness prevalence
for each claw trimming on the farms can be found in Table 35 in the appendices. The highest
lameness prevalence was observed on CDF 3 with 10.0%, followed by RF1 with 9.5%, whereas
on CDF2 only 1.9% of the animals were clearly lame.

Table 13: Total count and relative proportion of locomotion scores (LMS) on the different farms

RF1 | RF2 | RF3 | CDF1 | CDF2 | CDF3 | CDF4 | CDF5 Total

LMS1 199 97 | 160 46 39 57 173 94 865
LMS2 59 26 45 13 12 24 48 28 255
LMS3 27 8 19 3 1 9 17 7 91

LMS1 (%) | 69.8| 74.0| 71.4 74.2 75.0 63.3 72.7 72.9 714
LMS2 (%) | 20.7 | 19.9 | 20.1 21.0 23.1 26.7 20.2 21.7 21.1
LMS3 (%) 95| 6.1 8.5 4.8 1.9 10.0 7.1 5.4 7.5

Using the LMS, the average number of days required for lameness to develop was calculated.
Only cases in which a cow received an LMS3 at least once and an LMS1 within the preceding
20 days were considered, i.e. when the cow went from sound to lame in the three weeks
preceding claw trimming. This was the case for n = 68 records from 64 different cows. The
days to lameness development were defined as the interval between the last day the cow
received an LMS1 score and the earliest day the cow received an LMS3 score. The shortest
interval for lameness development was one day, the longest was 13 days. The time for
lameness development from the last time the cow walked sound to the first time being scored
as lame across all observations was on average four and in median three days (Figure 35)
with a standard deviation of 2.97. A table reporting the median and standard deviation of
lameness development for each project farm separately can be found in Table 36 in the
appendices.

20

Frequency

) [ 1 ]

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Days between last LMS1 and first LMS3

Figure 35: Histogram of the duration of lameness development from locomotion score (LMS)
1 to LMS3 in days (Median: 3 days)
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3.1.2 Pain test

During the data collection period, 4,804 pain tests (PT) could be recorded on the project farms,
as this parameter, unlike the LMS, was measured only on the claw trimming date. The results
included 276 positive and 4,528 negative pain tests. The counts of negative and positive pain
reactions on the different farms are shown in Table 14 and the relative proportions of positive
and negative pain tests are displayed in Figure 36. The relative proportion of positive pain test
results was 5.7% in total and highest on RF2 (12.4%), while the lowest percentage was
observed on CDF1 (2.4%). A more comprehensive listing of the positive and negative pain test
results for each claw trimming date is provided in Table 37 in the appendices.

Table 14: Counts of negative and positive pain test (PT) results on the project farms

Positive pain test 66| 65| 59 6 6 18 36 20 276
Negative pain test 1,038 | 459 | 837 242 202 342 912 496 | 4,528

Total count of pain
tests 1,104 | 524 | 896 248 | 208 360 948 516 | 4,804

RF3

RF2

RF1

CDF5 Result of the pain test

Negative
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Figure 36: Relative proportion of negative and positive pain test results on the different farms

As the pain response was assessed separately for each of the cow's four feet, a difference in
the occurrence of a positive pain reaction could be observed depending on the foot. When
considering the results of the pain test across all farms, a positive reaction was most frequently
elicited in the left hind foot at 7.7%, followed by the left front and right hind feet at 5.5% each,
while the right front foot showed a pain reaction in only 4.3% of cases (Figure 37). Combining
the positive reactions from both hind and front feet, the hind feet displayed a positivity rate of
13.2%, contrasting with the lower rate of 9.8% observed in the front feet.
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For the final datasets, the pain test data from the four feet of each cow were consolidated into
a single value. A pain reaction was recorded as positive if any one of the feet showed a reaction
and as negative if all four feet showed no reaction. This method reduced the number of pain
test results in the dataset to 1201 values, including 226 (18.8%) positive and 975 (81.2%)
negative pain responses (Table 15).

Table 15: Count of aggregated positive and negative pain test results on the project farms

Positive
pain test 53 47 51 5 6 17 32 15 226 18.8%
Negative
pain test 223 84 | 173 57 46 73| 205| 114 975 81.2%
Total
count of
pain tests 276 | 131 | 224 62 52 90| 237 | 129 1,201 100%

LF: 5.5% RH: 5.5%
Count: 66 Count: 66

RF: 4.3%
Count: 52

LH: 7.7%
Count: 92

Figure 37: Percentage of positive pain reactions divided by the individual foot

3.1.3 Growth in the sole centre

The growth in the sole centre (GSC) was also assessed for each foot and a score from 1 to 3
was assigned. In total, 4,804 results for GSC were documented, including 24 times the result
GSC1, 1,664 times the result GSC2 and 3,116 times the result GSC3 (Table 16). The relative
proportion of the different GSC results divided by farm is shown in Figure 38, indicating a clear
predominant presence of GSC3 on CDF1, CDF2 and CDF5, while on the other farms, a more
balanced ratio was observed between GSC2 and GSC3. GSC1 was observed only in very
small proportions on RF1, RF2, RF3 and CDF3 and could not be recorded at all on the other
farms. The count and percentage of the GSC on the different claw trimming dates are displayed
in Table 38 in the appendices.
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Table 16: Counts of the score for the growth in the sole centre (GSC) on the project farms

Total

RF1 | RF2 | RF3 | CDF1 | CDF2 | CDF3 | CDF4 | CDF5 | Total | rel. (%)
GSC1 8 1 9 0 0 6 0 0 24 0.5
GSC2 477 | 199 | 444 21 5 152 322 44 | 1,664 34.6
GSC3 619 | 324 | 443 227 203 202 626 472 | 3,116 64.9
Total 1,104 | 524 | 896 248 208 360 948 516 | 4,804 100.0
Total rel.
(%) 23.0|10.9]| 18.7 5.2 4.3 7.5 19.7 10.7 | 100.0

Similarly to the pain test procedure, the four values of each cow were summarised into a total
GSC per cow per day, employing the median of these four individual values. The counts of the
aggregated GSC values are displayed in Table 17 and consist of 1,201 total values.

Table 17:Count of aggregated values of the growth in the sole centre (GSC)

GSC 1 112515 (1.75| 2 [225| 25 |[2.75]| 3 | Total
Count 2 1 3 3| 246 | 59| 204 | 91| 592 | 1,201
Rel. counts (%) | 0.2] 0.1]02| 0.2|20.5] 49|170] 7.6]49.3|100.0

GSC3 56.11% 66.03% 56.07% 61.83% 49.44%
<
<
8 Percentage
3 B
3 75
2 GsC2 8.47% 2.4% 42.22% 33.97% 8.53% 43.21% 37.98% 49.55% 50
=
< 25
5 0
]

GSC1 0% 0% 1.67% 0% 0% 0.72% 0.19% 1%
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Figure 38: Relative proportion of the scores of the growth in the sole centre assessed on each
farm

The distribution of different GSC score results is further broken down in Figure 39 according
to the occurrence on the individual foot. The proportion of GSC3 is slightly higher in the hind
feet compared to the front feet, whereas a higher proportion of GSC2 is observed in the front
feet instead.

80



67.69% 67.78%

63.03%
60.95%
60
38.47%
36.72%
31.81% 31.56%
0 0.5% 0.25% 0.67% 0.58%
N

N

N
o

Percentage

N
o

Foot and GSC score

Figure 39: Relative proportion of the scores of the growth in the sole centre (GSC) divided by
feet (LH = left hind, LF = left front, RH = right hind, RF = right front)

3.1.4 Findings and Treatments

In total, 2,955 findings and 991 treatments could be recorded during the study and the relative
shares of the different claw diseases over all farms are depicted in Figure 40. The different
digital dermatitis stages were combined into one total value for this analysis. SHD constituted
the largest share at 37.73%, followed by DD with 18.51% and WLF with 17.33%. The
prevalence of each diagnosis divided by farms is displayed in Table 18 and the single counts
of findings and treatments in total and on each farm are enlisted in Table 39 to Table 47 in the
appendices. SHD also constituted the largest proportion of findings on the different farms,
except for CDF2 and CDF5, where WLF findings predominated. Moreover, CDF1 showed a
complete absence of DD cases, whereas the incidence of DDM2 cases on RF2, at 15.95%,
significantly exceeded that observed in other facilities. The highest number of chronic
dermatitis cases were observed at CDF3 (16.31%), while RF1 exhibited the most SHC findings
(12.31%). Sole ulcers were seen predominantly on CDF4 at 2.77%, aligning with the highest
incidence of CSH (8.65%) on this farm. The highest share of WLA was documented on CDF1
(8.48%), while the greatest occurrence of IH was noted on RF3 (3.96%) and most DS were
observed on CDF2 (4%).
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Code Findings Percentage
(5.82 %) (0.03%) SHD Sole haemorrhage 37.73 %
CcsH BU diffused form
WLF (17.33 %) Digital dermatitis 18.51 %
White line fissure 17.33 %
ob SHC Sole haemorrhage 717 %
(18.51 %) circumscribed form
WLA(2.78 %) CSH Central sole 5.82 %
TU (0.14 %) haemorrhage
| Su(1.58%) Interdigital 2.88 %
TN (0.03 %) hyperplasia
(1.66 %) DS WLA White line abscess 2.78 %
(1.22 %) HF Heel-horn erosion 2.37 %
(2.37 %) HHE Double sole 1.66 %
(2.88 %) IH Sole ulcer 1.58 %
(0.31 %) (I)PLU - .
(0.44 %) Horn fissure 1.22%
SHG oLu Otherwise located ulcer | 0.44 %
(7.17%) IP Interdigital 0.31%
SHD phlegmon
(37.73 %)
Toe ulcer 0.14 %
BU Bulb ulcer 0.03 %
TN Toe necrosis 0.03 %

Figure 40: Pie chart and table of the relative share of each diagnosis documented during the
claw trimmings

Table 18: Prevalence of the different findings on each project farm (abbreviations explained in
Table 7)

Findings RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5
TU 0.15 0.00 0.00 0.61 0.00 0.00 0.00 0.68
OoLuU 0.60 1.43 0.00 0.00 0.00 0.60 0.16 0.34
IP 0.74 0.29 0.00 0.00 1.33 0.00 0.00 0.68
SU 1.49 1.71 0.66 0.00 1.33 1.51 2.77 1.70
DDM1 5.66 2.85 12.97 0.00 2.67 3.93 0.00 0.68
DDM2 4 .47 15.95 12.97 0.00 9.33 6.65 7.99 9.18
DDM3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
DDM4 9.54 3.13 1.10 0.00 6.67 16.31 2.45 1.02
DDM4.1 0.45 0.28 0.00 0.00 0.00 2.42 0.65 0.00
HHE 1.48 2.85 0.44 1.21 1.33 2.72 0.16 11.90
CSH 5.37 3.42 4.84 8.48 4.00 3.32 8.65 7.14
SHD 30.40 42 17 43.96 50.30 16.00 36.25 43.88 26.87
SHC 12.67 3.70 3.74 1.21 16.00 0.00 11.42 4.42
WLF 17.29 15.67 12.09 26.06 24.00 19.64 12.89 27.55
WLA 1.49 1.71 0.88 8.48 8.00 1.21 473 3.06
HF 1.94 1.71 0.87 0.00 4.00 0.60 1.14 0.35
IH 3.73 2.00 3.95 0.62 1.34 3.33 1.97 3.41
DS 2.38 0.85 1.53 3.03 4.00 1.51 1.14 1.02
TN 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00
BU 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total rel.

(%) 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
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The distribution of relative proportions of cases across different limbs was also analysed for
the findings, as can be seen in Figure 41. The majority of findings, comprising over 70%, were
found in the hind feet, whereas the smallest proportion, at 13.0%, was observed in the right
front limb.

LF: 15.5%
Count: 329

RH: 36.2%
Count: 772

LH: 35.3%
Count: 753

RF: 13.0%
Count: 277

Figure 41: Relative distribution of findings by foot

3.2 Statistical summaries

Statistical summaries were calculated for all numeric parameters across all farms and for each
farm individually. The corresponding tables can be found in Table 48 to Table 56 in the
appendices. The parameters Robot _blood, Robot blood percent, Colour_lv, Colour _rv,
Colour_Ih and Colour_rh were removed from the datasets for further analysis due to the lack
of comparability and the small number of values per parameter.

4. Bivariate analysis

4.1 Pain test and findings

Among the 226 aggregated positive pain samples, 53 showed no findings at all, while 173
presented with clinical findings (Table 19). Of the 975 negative pain test results, 229 did not
display any visible findings, whereas the remaining 746 demonstrated visible claw diseases.
Consequently, 23.5% of the animals displayed visible signs of pain despite the absence of
findings and only 18.8% of the animals with visible findings also showed a pain reaction. The
distribution of positive pain reactions with simultaneous absence of clinical findings across
different farms is shown in Table 19.

The different shares of positive and negative pain tests by claw disease can be found in Table
57 in the appendices.
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Table 19: Pain test (PT) results grouped by the occurrence or absence of visible findings

Positive PT Negative PT Total
Visible findings 173 746 919
No visible findings 53 229 282
Total 226 975 1,201
Table 20: Positive pain tests without clinical findings divided by farm
RF1 | RF2 | RF3 | CDF3 | CDF4 | CDF5
Positive pain tests with no findings 15 19 10 2 5 2

4.2 Pain test and growth in the sole centre

The score for the growth in the sole centre was recorded to explore the potential relationship
between positive pain tests in the absence of visible clinical findings and an excessive growth
in the sole centre. For this purpose, the median and the average of the GSC for all recordings
with a positive PT were compared to the median and average of the GSC for all recordings
with a negative PT. The values for the negative PT group (median: 3, average: 2.7) appeared
to be higher than the ones noted for the positive PT group (median: 2.5, average: 2.5). In cases
with a positive PT and no findings, the median was 2.3, while the average was 2.4.

4.3 Validation of the locomotion scoring system

A calculation of the intra-rater and inter-rater reliability as well as a comparative analysis
between a three-level lesion score (LS) (Figure 28) and the locomotion score (Figure 27) was
carried out to validate the locomotion scoring system.

As described by Hertle et al. (2022), videos of 355 cows were watched and locomotion scores
were assigned to each cow by the observer (Rater 1) twice with a six-month interruption. The
calculated percentage of agreement of the intra-rater reliability was 93.2% and the kv was 0.89.
The same procedure was performed to determine the inter-rater reliability, gaining the values
PA = 82.1% and kw = 0.72. As described by Yang and Laven (2019), point estimates may not
be sufficient because the true kappa value always falls in a specific range and can vary through
the influence of diverse factors. A more advanced approach utilises the 95% confidence
interval, which signifies that the calculated interval limits enclose the actual value with a
probability of 95%. For the intra-rater reliability, the 95% confidence interval (Cl) was 0.84-0.94
and therefore, according to the introduced levels by Landis and Koch (1977), the strength of
agreement was almost perfect. The result for the Cl of the inter-rater reliability (0.64-0.81)
implies a substantial to almost perfect accordance between the two raters. In this study,
besides Rater 1, two additional raters (Rater 3 and Rater 4) were involved in the locomotion
scoring and scored the corresponding cows to 4 out of 20 claw trimming dates. Prior to the
scoring process, the inter-rater reliability between these additional raters and Rater 1 was also
calculated. The results of all inter-rater agreement analyses are presented in Table 21.
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Table 21: Inter-rater reliability results, including the percentage of agreement (PA) and
quadratic weighted kappa (kw) of Rater 1 compared to three other raters

Raters Rater 1 and Rater 2 | Rater 1 and Rater 3 | Rater1 and Rater 4
N 355 105 75
PA 82.1% 85.2% 80.1%
Kw 0.72 0.85 0.82

In an initial analysis, two subsets of data were used to compare locomotion scores with lesion
scores (Hertle et al., 2022). The first subset comprised 110 cows, and the second subset
included 115 cows. The gained results were a kv of 0.51 (Cl: 0.34-0.68) and a PA of 66.4% for
the first dataset, while the second dataset yielded a kw=0.72 (Cl: 0.58-0.86) and a PA = 80.0%.

After the completion of locomotion scoring, lesion scores were calculated for the entire dataset,
utilising 1,201 assessments from 727 different cows. The calculated percentage of agreement
on this data was 65.7% and the kw was 0.44 (CI: 0.40-0.50), displaying a moderate agreement
between locomotion and lesion score. The correlation and divergence of locomotion and lesion
scores can be observed in Figure 42. Most of the deviating values show a difference of 1, with
the majority having an LMS of 1 and an LS of 2. Significantly fewer observations show a
difference of 2, with the combination LS3-LMS1 occurring more frequently than LMS3-LS1.
The values of PA, kw and CI on each farm can be found in Table 58 in the appendices.
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Figure 42: Jitter plot showing the differences between locomotion and lesion scores
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4.4 Relationships between claw health parameters and the
locomotion score

The growth in the sole centre and the pain test results were compared to the plain locomotion
score instead of the corrected locomotion due to the influence of the pain test on the C_LMS
itself. The statistical summaries for GSC or PT and each LMS group are shown in Table 22
and the percentages of the different PT and GSC results for each LMS group are displayed in
Figure 43. The Spearman’s rank correlation coefficient for GSC and the LMS was negative
(p =-0.06). Statistically significant differences between all LMS groups were found according
to the Kruskal-Wallis and the Wilcoxon signed rank test. The differences in PT between LMS
groups were also consistently statistically significant across both tests, although PT
demonstrated a positive correlation with LMS (p = 0.19) (Figure 43). The odds ratio for GSC
was 0.496 (Cl: 0.441-0.559) and indicated a protective effect, while for PT it was 5.775 (Cl:
5.167-6.456), indicating it strongly increases the risk of an animal being classified as lame,
both with p < 0.001.

Table 22: Statistical summaries of growth in the sole centre (GSC) and pain test (PT) for each
locomotion score (LMS) group

LMS | Variable | Min Q1 Median | Mean Q3 Max SD N
1 PT 0 0 0 0.1 0 1 04| 19,316
2 PT 0 0 0 0.2 0 1 0.4 3,678
3 PT 0 0 1 0.5 1 1 0.5 1,379
1 GSC 0 2.5 3 2.7 3 3 0.4 | 19,316
2 GSC 1 2.5 2.8 2.6 3 3 04 3,699
3 GSC 1.2 2 2.5 2.5 3 3 04 1,379
100% 100% 0.3% A 3%
19.5% 16.4%
27%
759% 46.8% 759 4 8% 6.1%
g g 4 1%
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® © W
@ ®
25% B 25%
24 1%
15%
0% 0%
1 2 3 1 2 3
LMS LMS

Figure 43: Relative proportion of pain test (PT) and growth in the sole centre (GSC) grouped
by locomotion score (LMS)
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4.5 Differences in variables across corrected locomotion score

groups

For the analysis of the other automatically recorded parameters, it was decided to prioritise the
comparison to the C_LMS, as this one also took the PT and the documented findings into
account, and the results compared to the original LMS were only noted in cases of significant
discrepancies. Statistical summaries were calculated for each variable combination and
C_LMS across all farms and can be found in Table 59 in the appendices (Statistical summaries
with LMS: Table 60). As the parameters of the data sets did not follow a normal distribution,
the corresponding tests for non-normally distributed variables were conducted. The
Spearman’s rank correlation was tested between the ordinal variable C_LMS and each of the

numeric parameters and can be found in Table 23.

Table 23: Spearman correlation between corrected locomotion score (C_LMS) and each
variable across all farms (parameters explained in Table 33)

Variable Positivel_ no Variable Negati\_re
correlation correlation
WT_feed_intake_per_visit 0.35 WT _trough_visits -0.31
WT _feeding_pace 0.27 WT _trough_visits_day -0.31
WT_feeding_duration_per_visit 0.24 Delaval_act_avg -0.25
Nedap_inactive 0.19 Lemmer_act -0.25
WT feed intake per meal 0.18 | Lemmer factor of restlessness -0.23
ENGS_lying_day_night 0.17 ENGS_act_day -0.23
Smaxtec_temp_normal_median 0.17 SCR_act_day -0.21
Smaxtec_temp_without_drink_cycles_me 0.16 ENGS_act -0.20
dian
Smaxtec_temp max 0.15 SCR _act -0.20
Smaxtec_temp_without_drink_cycles_ma 0.15 Nedap_act_foot_median_day -0.19
X
Smaxtec_temp_median 0.14 Nedap_get_ups -0.18
SCR_rum_day night 0.13 Nedap_act foot_sum_day -0.18
Lemmer_lying 0.13 Nedap act -0.17
Lactation_number 0.11 WT_feeding_duration -0.16
LKV_milk_yield in_last lactation 0.1 WT _feeding_duration_day -0.16
Body weight 0.1 Nedap_act _foot_median -0.15
ENGS _lying_duration_per_bout 0.11 | Nedap_act foot sum_day night -0.15
Lemmer_get_ups 0.09 WT_number of meals -0.14
Smaxtec_temp_without_drink_cycles_mi 0.09 WT_number_of meals_day -0.14
n

Robot_milk_yield_in_last_lactation 0.07 ENGS_lying_bouts -0.14
MDi 0.07 Delaval_act rel_min -0.14
WT feed intake 0.07 Delaval_act rel -0.13
ENGS_lying day 0.07 Nedap rum -0.12
Maximum_milking_interval 0.06 ENGS_lying_bouts_day -0.12
Milking_temperature 0.05 | Nedap_act_foot_median_day_nig -0.12

ht
ENGS _lying_bouts_day night 0.05 ENGS_act_day night -0.11
LKV_daily_milk_yield 0.04 Nedap_act_collar_median_day -0.11
Concentrated_feed_remains 0.04 Nedap_act_collar_sum_day -0.11
WS_rel_hum_med 0.04 | Nedap_act_collar_sum_day_nigh -0.11

t
WS rel hum min 0.04 SCR_act_day_night -0.09
Robot_daily _milk_yield 0.03 Nedap act collar_median -0.09
Robot_conduct_lely 0.03 Nedap_act_collar_sum -0.09
Smaxtec_climate_hum_median 0.03 | Nedap_act_collar_median_day_n -0.09

ight
Robot_milk_yield in_current_lactation 0.02 Delaval _act rel max -0.08
Robot_daily_milk_yield in_last_lactation 0.02 Smaxtec _temp_min -0.08
Max_milking_flow 0.02 Milkings -0.07
Robot_fat 0.02 Nedap_feeding -0.06
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. Positive/ no . Negative

VENIELED correlation VETIELD corrgelation
Robot_fat protein_ratio 0.02 WS thi_med -0.06
ENGS_feeding 0.02 WS _thi_min -0.06
ENGS_feeding_day 0.02 WS_thi_max -0.06
ENGS_feeding_duration_per_meal 0.02 WS _temp_2m_med -0.06
Smaxtec_rum 0.02 WS temp_2m_ min -0.06
Smaxtec _climate_hum_min 0.02 WS temp_2m_max -0.06
Smaxtec_climate_hum_max 0.02 WS _temp_20cm_med -0.06
WS_global_rad_min 0.02 WS_temp_20cm_max -0.06
Season 0.02 WS soil temp 5¢cm_med -0.06
WS wind_velocity min 0.01 WS soil temp_5cm_min -0.06
WS rain_med 0.01 Breed -0.05
WS _rain_max 0.01 LKV _protein -0.05
LKV _urea 0 Milking_flow -0.05
Robot_conduct 0 WS temp_20cm_min -0.05
Concentrated _feed_intake 0 WS soil temp 5cm_max -0.05
ENGS_feeding_day_night 0 WS soil temp 20cm_med -0.05
SCR_rum_day 0 WS_soil_temp_20cm_min -0.05
ENGS_lying 0 WS_soil_temp_20cm_max -0.05
Smaxtec climate temp min 0 WS global rad _med -0.05
Smaxtec_thi_min 0 WS global rad_max -0.05
WS rel hum_max 0 LKV fat -0.04
WS_wind_velocity_med 0 Robot_BCS -0.04
WT _feeding_duration_per_meal -0.04
ENGS_number_of_meals_day_ni -0.04

ght

SCR_heat_probability -0.04
Smaxtec_act_day -0.04
Smaxtec_act_day night -0.04
LKV lactose -0.03
Robot somatic_cell _count -0.03
WT_number_of meals_day night -0.03
SCR_rum -0.03
SCR_heat_probability _day -0.03
Nedap_lying -0.03
Smaxtec act -0.03
Smaxtec climate temp max -0.03
Smaxtec_thi_max -0.03
Days_in_milk -0.02
ENGS_number_of meals_day -0.02
LKV somatic_cell _count -0.01
LKV fat protein ratio -0.01
Robot_effect_of scc -0.01
Robot_protein -0.01
Robot lactose -0.01
WT _feeding_duration_day_night -0.01
WT _trough_visits_day night -0.01
ENGS_number_of meals -0.01
Smaxtec _climate_temp_median -0.01
Smaxtec thi median -0.01
WS_wind_velocity _max -0.01
WS rain_min -0.01
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Statistically significant differences for each parameter across all three C_LMS groups and all
farms were tested by applying the Kruskal-Wallis test and the results are displayed in Table
61 in the appendices. Most parameters demonstrated statistically significant differences
between the corrected locomotion score groups, with p < 0.05 and the majority even reaching
p < 0.01. Non-statistically significant parameter differences occurred in the group of milking
parameters, for example LKV _urea (p = 0.17) and Concentrated feed_intake (p = 0.39), in the
group of climate parameters, for instance, WS_wind_velocity_max (p = 0.12), in rumination
with Smaxtec_rum (p = 0.07), in heat behaviour with SCR_heat _probability _day (p = 0.09) and




in terms of feeding behaviour, where particularly the ENGS parameters like
ENGS_number_of meals (p=0.32) and the day-night ratios Ilike WT_feeding _
duration_day_night (p = 0.22) were not statistically significant. In contrast to the LMS groups,
the differences in ENGS_lying (p = 0.30) and Nedap_lying (p = 0.13) were also not significant
between the C_LMS groups.

To further specify the statistically significant differences between C_LMS groups, a post-hoc
analysis using the Wilcoxon signed-rank test was conducted. This analysis examined the
significance of differences between C LMS1 vs. C LMS2, C LMS1 vs. C LMS3, and
C_LMS2 vs. C_LMS3 (Table 62 in the appendices). For the LMS, the same analysis was
conducted, and the results can be found in Table 63 in the appendices. The counts of all
variables with and without a statistically significant difference (p > 0.05) between the C_LMS
groups grouped by parameter classes are displayed in Table 24.

Table 24: Count of variables with and without statistically significant differences between the
corrected locomotion score (C_LMS) groups (p > 0.05) for each parameter class
(sig. = statistically significant differences, n.s. = no statistically significant differences)

C_LMS1 vs. C LMS1vs. | C_LMS2 vs.
Variable C_LMS2 C_LMS3 C_LMS3

sig. n.s. | sig. n.s. | sig. n.s.
Animal characteristics 1 0 1 0 0 1
Milking parameters 19 9 20 8 12 16
Constitution 2 0 2 0 2 0
Feeding behaviour 11 14 14 11 13 12
Rumination 2 3 3 2 2 3
Heat behaviour 1 2 1 2 0 3
Lying behaviour 6 5 9 2 2 9
Activity 22 5 26 1 11 16
Body temperature 7 0 7 0 6 1
Climate 11 26 27 10 28 9

Furthermore, the odds ratio, measuring the association between an exposure variable and an
outcome, was calculated for all these parameters, once based on the outcome lame as
C_LMS = 3 and once with LMS = 3, and can be found in the appendices (Table 64).

4.5.1 Animal characteristics

The percentage distribution of each C_LMS group by breed is illustrated in Figure 44, with
Holstein cows exhibiting the highest percentage within the C_LMS3 category (33.0%), followed
by Simmental (16.7%) cows. However, this cannot be considered a breed-specific lameness
comparison, as the majority of the cows in this study were Simmental cows, with other breeds
represented only sporadically. No statistically significant differences could be demonstrated
between C_LMS2 and C_LMS3 and the OR was 0.828.
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Figure 44. Relative proportion of the corrected locomotion score (C_LMS) by breed and the
number of n assessments recorded per breed

4.5.2 Milking parameters

The milking data could be gathered from both the milking robot and LKV Bayern. The boxplots
in Figure 45 represent the daily milk yield recorded by LKV and the milking robots for each
corrected locomotion score group across all farms. In both evaluations, no significant
differences could be observed between C LMS2 and C_LMS3 (p=1.00) and for
Robot_daily_milk_yield the differences between C_LMS1 and C_LMS2 were also not
significant. A positive correlation could be documented (LKV _daily_milk_yield (p = 0.04),
Robot_daily _milk_yield (p = 0.03) and the odds ratios presented a slight positive association
for C_LMS. In contrast, when compared with the LMS, LMS2 animals displayed the highest
daily milk yields and no statistically significant differences could be observed between LMS1
and LMS3 cows. Considering the LMS, the Robot_daily_milk_yield revealed an OR below 1,
whereas for LKV_daily_milk vyield, the odds ratio results did not suggest a statistically
significant association.

The daily milk yield during the last lactation displayed significant differences between the
C_LMS groups except for C_LMS1/C_LMS2 and showed a correlation of p = 0.02 and an OR
greater than 1. Even though the median of the total milk yield in the last lactation was highest
among the C_LMS2 cows as shown in Figure 46, the Wilcoxon signed-rank test did not reveal
any significant differences between the C_LMS2 and C_LMS3 groups. In contrast, the
differences compared to the C_LMS1 group were significant, both for LKV and milking robots.
A positive correlation was reported (LKV_milk_yield in_last lactation (p =0.11),
Robot_milk_yield_in_last_lactation (p = 0.07) and an odds ratio of 1 was determined for both
parameters, implying no difference in odds ratio between the groups. Regarding the total milk
yield throughout the current lactation, C_LMS2 animals tended to have a significantly higher
milk yield compared to C_LMS1 cows, but the OR appeared to be not statistically significant.
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Figure 45: Boxplots of the daily milk yield in each corrected locomotion score (C_LMS) group
measured by the LKV and the milking robot
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Figure 46: Boxplots of the total milk yield in last lactation in each corrected locomotion score
(C_LMS) group measured by the LKV and the milking robot

Upon analysis of milk constituents captured by both the LKV and milking robots, there was an
increase in milk protein content from C_LMS1 to the C_LMS2 group before the protein content

decreased again in C_LMS3 cows. The Spearman’s rank correlation coefficient was negative
(LKV_protein (p = -0.05), Robot_protein (p = -0.01)), while the OR for LKV protein was 0.565
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and for Robot_protein was 0.630, which also implied a negative association. Regarding lactose
content in milk, there were fewer marked differences observed. LKV _/actose exhibited a slight
decline in concentration with increasing C_LMS (p = -0.03), notably within the C_LMS2 group.
Robot_lactose demonstrated a more modest negative trend (p =-0.01), significant only
between C_LMS1/C_LMS3 and C_LMS2/C_LMS3. The OR was below 1 for both variables,
also suggesting a lower probability of lameness with rising lactose. There were contrasting
trends in fat content with increasing C_LMS, where LKV _fat notably decreased among
C _LMS2 and C_LMS3 cows, while Robot fat showed a slight positive correlation (p = 0.02).
The odds ratio was 0.9 for LKV_fat, while Robot fat yielded no statistically significant
differences regarding C_LMS3 and an OR greater than 1 concerning LMS3. Accordingly,
Robot fat protein_ratio demonstrated a positive correlation (p =0.02) with significant
differences between the groups C_LMS1 and C_LMS3, while LKV _fat_protein_ratio displayed
a negative correlation (p = -0.01) with significant differences between the groups C_LMS1 and
C_LMS2 and between C_LMS2 and C_LMS3. LKV _urea exhibited no significant association
or correlation in any tests. The somatic cell count recorded by LKV and milking_robots as well
as Robot _effect_scc presented a negative correlation, but no statistically significant odd ratios.

The milking parameters registered by both milking robots and LKV were compared to evaluate
the degree of alignment between the monthly data provided by the LKV and the data collected
by the milking robot during each milking session in order to assess whether the monthly
recordings might be sufficient. For this analysis, the Intraclass Correlation Coefficient (ICC)
and its confidence interval were calculated (Table 25). The ICC was selected as it effectively
combines both correlation and agreement into a single metric (Koo & Li, 2016), providing an
ideal measure for evaluating the consistency between two measurements obtained from
different sources. According to Koo and Li (2016), the 95% CI of the ICC between LKV and
the milking robot can be designated as excellent for the milk yield in last lactation, good for the
daily milk yield and poor for the other milk parameters.

Table 25: Intraclass Correlation Coefficient (ICC) between milk parameters recorded by LKV
and the milking robots (parameters explained in Table 33)

Intraclass

Variables Correlation
Coefficient (ICC)
Ic_)gv_mlIk_y|eld_|n_Iast_Iactahon / Robot_milk_yield_in_last_lactati 0.90 (CI: 0.89-0.90)
LKV _daily _milk_yield / Robot_daily milk_yield 0.86 (Cl: 0.86-0.87)
LKV _protein / Robot_protein 0.47 (Cl: 0.46-0.48)
LKV fat/ Robot fat 0.34 (ClI: 0.32-0.35)
LKV lactose / Robot_lactose 0.31 (CI: 0.30-0.32)
LKV_somatic_cell count / Robot _somatic_cell count 0.21 (Cl: 0.19-0.23)

Other milk parameters grouped by the C_LMS are graphically represented in Figure 47 as
violin plots. The median lactation number increased with higher C_LMS, rising from 2 at LMS1
to 3 at both LMS2 and LMS3. The parameter exhibited both a positive correlation (p = 0.11)
and an OR exceeding 1, thereby suggesting an increased risk of being classified as lame with
increasing parity. Regarding days in milk, the differences were statistically significant. The
median initially increased from C_LMS1 to C_LMS2, before declining again at C_LMS3.
Overall, only a slight negative correlation and a protective effect of the days in milk were
observed. The maximum milking interval increased with higher C_LMS (p = 0.06), but no
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statistically significant differences could be reported for C_LMS2/C_LMS3. The number of
milkings per day presented the same median in all C_LMS groups and showed no differences
between C_LMS2 and C_LMS3, but when examining the OR (0.792) and the correlation (p = -
0.07), a reduction with increasing C_LMS could be observed.

In order to better assess the differences in conductivity in relation to LMS, a median value
Robot _conduct was formed from the individual values per udder quarter. The conductivity
values generated by the Lely milking robots were recorded separately as the parameter
Robot_conduct _lely due to the different format. No significant differences between LMS1 and
LMS3 were detected for Robot_conduct and the correlation was zero, indicating the absence
of a linear relationship. Robot_conduct_lely and Max_milking_flow were only significant
between C_LMS1 and C_LMS3 and exhibited a positive correlation. The milking temperature
did not achieve any significant odds ratio results but presented statistically significant
differences shown by the Wilcoxon signed-rank test and a p = 0.05. Additionally, the MDi
exhibited a positive correlation with the C_LMS according to Spearman's rank correlation as
well as an OR of 1.339.
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Figure 47: Lactation number, days in milk, maximum milking interval and milkings and their
medians grouped by corrected locomotion score (C_LMS)

4.5.3 Constitution

The parameters Body weight and Robot BCS exhibited opposite trends with increasing
C_LMS: as Body_weight increased (p = 0.11), Robot_BCS decreased (p = -0.04). The odds
ratio only demonstrated a slight positive association in Body weight (1.001), while the OR of
Robot_BCS (0.602) was clearly below 1. In Figure 48, an increase in body weight, especially
in the C_LMS2 group, is visualised. In contrast, the decline of Robot_BCS can be particularly
seen in the C_LMS3 cows.
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Figure 48: Body weight and body condition score (BCS) in each corrected locomotion score
(C_LMS) group

4.5.4 Feeding

4.5.4.1 Feeding duration

The feeding duration was assessed by weighing troughs and the ENGS pedometers on RF1
and by Nedap collars on RF2 and RF3. As displayed in Figure 49, the weighing troughs
reported a significant decrease in feeding duration in the C_LMS3 group (p =-0.16,
OR =0.991).

The feeding duration measured by ENGS pedometers showed no difference between C_LMS1
and C_LMS3, but increased in the C_LMS2 group with an overall slight positive correlation
(p = 0.02). The OR on the other hand was below 1 (0.996). The daytime proportions of feeding
duration showed the same trend for ENGS and WT as the overall feeding duration, while the
day-night ratios did not yield any significant OR results.

Nedap_feeding showed no significant differences between C_LMS1 and C_LMS3, but there
was a significant decline in C_LMS2 cows (p = -0.06), even if the OR results also confirmed
no significant differences. In contrast, a comparison with the LMS revealed a gradual decrease
in the Nedap_feeding parameter as the LMS increased. The median feeding duration recorded
by Nedap was significantly higher in all C_LMS groups compared to the ones noted by the
other two sensor systems.

4.5.4.2 Feed intake and feeding pace recorded by the weighing troughs
The parameter WT_feed_intake demonstrated a positive relationship (p = 0.07, OR = 1.005)
and statistically significant differences across all C_LMS groups. The variable
WT _feeding_pace showed a high positive correlation with C_LMS (p = 0.27), statistically
significant differences between all C_LMS groups and an OR greater than 1, thereby
suggesting an increased risk of being classified as lame with increasing feeding pace.

4.5.4.3 Feeding frequency parameters by ENGS and weighing troughs

The parameters WT_feed_intake per visit (p = 0.35), WT_feeding_duration_per_visit (p =
0.24) and WT feed intake per _meal (p =0.18) displayed high positive correlations with
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increasing C_LMS and increased the risk of being classified as lame according to the OR.
Conversely, WT_feeding_duration_per_meal displayed significant disparities only between
C_LMS1 and C_LMS3, revealing a discernible negative correlation (p = -0.04) and association
(OR: 0.990). ENGS_feeding_duration_per_meal showed a positive correlation but a negative
association according to its OR. The number of weighing trough visits (p = -0.31) and meals at
the weighing troughs (p = -0.14) as well as their daytime proportions decreased significantly
and demonstrated a negative association according to the OR. WT_number_
of _meals_day night only reported significant differences between C_LMS1 and C_LMSS3,
demonstrated a negative correlation and showed no differences in OR. The parameters
ENGS_number_of meals, ENGS_number_of _meals_day, ENGS_number_of _meals _
day_night and WT _trough_visits _day_night did not display statistically significant differences
in the Wilcoxon signed-rank test and the OR analysis.

4.5.4.4 Concentrated feed intake

Concentrated_feed_remains was only significant between C_LMS1 and C_LMS3 but showed
a positive correlation and association. The parameter Concentrated feed intake was not
statistically significant in the Wilcoxon signed-rank test or the OR analysis.
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Figure 49: Feeding duration recorded by weighing troughs, ENGS and Nedap sensor systems
and grouped by corrected locomotion score (C_LMS)

4.5.5 Rumination

Regarding rumination, the three sensors displayed differing changes in parameter results
according to the C_LMS groups. Smaxtec_rum did not exhibit any statistically significant
differences in rumination among the three C_LMS groups, Nedap_rum significantly declined
in CLMS3 cows (p =-0.12) and SCR_rum showed only a slight reduction at higher C_LMS
levels (p =-0.03) (Figure 50). Similarly, the OR was not significant for Smaxtec_rum but
showed negative associations for SCR_rum and Nedap_rum. The rumination values recorded
on the farms with Nedap collars appeared to be generally lower than those gained by the other
two systems. SCR _rum_day showed no correlation or significant OR results and
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SCR_rum_day _night was only statistically significant when considering C_LMS1 in
comparison with another C_LMS showing a positive correlation and high positive association
(p=0.13, OR =42.912).
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Figure 50: Rumination time recorded by smaXtec, Nedap and SCR sensor systems and
grouped by the corrected locomotion score (C_LMS)

4.5.6 Heat probability

The SCR_heat_probability and its daily value did not result in any statistically significant
differences between the C_LMS groups, while the Lemmer factor_of restlessness
significantly decreased with higher locomotion scores (p = -0.23) and displayed an odds ratio
below 1.

4.5.7 Lying

4.5.7.1 Lying duration

The lying duration measured by Lemmer-Fullwood showed a clearly positive correlation
(p =0.13) and slight positive association (OR: 1.002) with the C_LMS, increasing from
C _LMS1 to C_LMS3 cows (Figure 51). In contrast, for Nedap and ENGS sensors, no
statistically significant differences could be reported between any of the C_LMS groups.
ENGS_lying also appeared to have no correlation at all and an OR of 1, while Nedap_lying
showed a slight negative correlation (p =-0.03). ENGS _lying day, ENGS_lying_day_night
and ENGS_lying_duration_per_bout all showed clear positive correlations and odds ratios
greater than 1, but ENGS_lying day was not significant between C_LM1 and C_LMS3 and the
other two parameters did not show clear differences between the C_LMS2 and C_LMS3 group.

4.5.7.2 Lying events

The lying events data and their relationship to claw health status captured by Lemmer-
Fullwood were opposed to the ENGS and Nedap sensor data, as the former showed an
increase with higher C_LMS (p = 0.09), especially in the C_LMS2 group (Figure 52), whereas
the latter two systems exhibited a negative correlation (ENGS: p =-0.14, Nedap: p =-0.18).
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As can be seen in Figure 52, the average lying bouts measured by ENGS sensors decreased
continuously with rising C_LMS, while the get-ups measured by Nedap sensors declined from
C_LMS1 to C_LMS2 and then also stayed on this lower level in the C_LMS3 group. The daily
proportion of lying events measured by ENGS sensors exhibited a similar trend as the normal
value, while the day-night ratio showed significance only between C_LMS1 and C_LMS3 and
indicated a positive correlation and association.
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Figure 51: Lying duration recorded by Nedap, ENGS and Lemmer-Fullwood pedometers and
grouped by the corrected locomotion score (C_LMS)
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Figure 52: Lying bouts/get-ups measured by Nedap, ENGS and Lemmer-Fullwood
pedometers and grouped by the corrected locomotion score (C_LMS)
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4.5.8 Activity

Seven different sensor systems, including three pedometers, three collars and one bolus,
detected the cows’ activity and all of them noted an activity decrease with rising C_LMS
(ENGS_act (p =-0.20), Lemmer_act (p =-0.25), Nedap_act (p=-0.17),
Nedap_act collar_median (p =-0.09), SCR_act (p =-0.20), Delaval_act avg (p =-0.26),
Smaxtec_act (p = -0.03)) (Figure 53 and Figure 54). All other measured or calculated activity
parameters except for Nedap_inactivity also showed a negative correlation with increasing
C_LMS, although the differences between C_LMS2 and C_LMS3 were not statistically
significant in many activity variables such as Lemmer_act, Delaval act _avg,
SCR_act _day night, all activity parameters by ENGS and most of the Nedap activity
parameters. Smaxtec_act noted a higher activity level for the C_LMS2 group before falling in
the C_LMS3 cows. The relative activity variables detected by DelLaval showed no significant
differences between C_LMS1 and C_LMS2. Most of the OR results denoted a negative
association between C_LMS3 and activity, except for Smaxtec_act day night,
SCR_act _day night and DelLaval _act_rel_max with not statistically significant differences and
ENGS_act, Nedap_act and Nedap_act _foot sum_day with an OR of 1. The assessed
inactivity as the variable Nedap inactivity rose accordingly with higher locomotion scores
(p = 0.19) and thus had a positive association with C_LMS.
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Figure 53: Activity measured by pedometers from Nedap, ENGS and Lemmer-Fullwood and
grouped by the corrected locomotion score (C_LMS)
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Figure 54: Activity measured by collars from DelLaval, Nedap and SCR and by boluses from
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4.5.9 Body temperature

The parameter Smaxtec_normal_temp_median rose with increasing C_LMS values (p = 0.17).
The highest temperatures occurred in the C_LMS2 group, as displayed in Figure 55. Most of
the other variables regarding the body temperature and the body temperature without the drink
cycles measured by smaXtec also showed a positive correlation with the C_LMS, except for
Smaxtec_temp_min (p = -0.08), which also resulted in an OR below 1 in contrast to the positive
associations displayed by the calculated OR of the other parameters. Smaxtec_temp_med
was the only parameter not demonstrating statistically significant differences in all groups,

more precisely between C_LMS2 and C_LMS3.
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Figure 55: Normal body temperature recorded by smaXtec boluses and grouped by the
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In Figure 56, the decrease in temperature due to drinking cycles in the different C_LMS groups
was compared by analysing the difference between Smaxtec _temp_without_drink_
cycles_median and Smaxtec_temp_median. A significant distinction was notably evident
between all C_LMS groups, as the temperature difference increased in C_LMS2 cows and
decreased again in the C_LMS3 group to the lowest level.
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Figure 56: Calculated body temperature difference (Smaxtec_temp_without_drink_
cycles_median - Smaxtec_temp_median) grouped by corrected locomotion score (C_LMS) to
quantify the temperature drop induced by drinking

4.5.10 Climate

According to data by smaXtec, C_LMS2 cows were observed at higher temperatures and THI,
whereas C_LMS3 cows were noted at lower temperatures and THI. At the weather stations,
statistically significant decreases were noted in the C_LMS3 group, whereas all temperature
parameters and the THI recorded by the weather stations did not demonstrate a statistically
significant difference between C_LMS1 and C_LMS2. They also showed a negative correlation
and a protective effect according to the OR results. The temperature and THI values measured
by smaXtec displayed the same negative trend except for the minimum values, which showed
no correlation at all. The humidity data recorded by smaXtec and the weather stations indicated
an increase with increasing C_LMS and resulted in odds ratios greater than 1, except for the
maximum humidity, which appeared to be not significant in the OR analysis. The remaining
parameters from the weather stations also exhibited either non-significant differences,
marginal correlations or no significant associations in the OR analysis. The manually created
parameter Season displayed a positive correlation (p = 0.02) with the C_LMS3, as can be seen
in Figure 57, as the distribution of LMS3 detections was higher in winter (19.0%) and autumn
(17.5%) than in spring (16.6%) or summer (14.2%). Statistically significant differences could
be observed between C_LMS1 and C_LMS3.
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Figure 57: Relative proportion of the corrected locomotion score (C_LMS) by season and the
number of n assessments recorded per season

4.6 Farm-level comparison: Differences in variables between
corrected locomotion score groups

The differences in variables between the project farms were also investigated. Table 26
presents the results of the Kruskal-Wallis test, indicating whether there are significant
differences between the C_LMS groups. Due to the large number of parameters, this table
was restricted to those parameters collected on more than one farm and for which the
calculated significance varied between the individual farms. In the same manner, the
Spearman's rank correlations are presented in Table 65 and the odds ratios are displayed in
Table 66 in the appendices.

Table 26: Reduced results of the differences between the C_LMS groups divided by farm,
displaying only the parameters varying between the different farms (/ = not recoded on that
farm) (parameters explained in Table 33)

Parameter RF1 RF2 RF3 | CDF1 | CDF2 | CDF3 | CDF4 | CDF5
Body weight <0.01 |/ / / / / / >0.05
Concentrated_feed_ | <0.01 | <0.01 | <0.01 | <0.05 | <0.01 | >0.05 | <0.01 | <0.01
intake
Days_in_milk <0.01 | >0.05 | <0.05 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01
GSC >0.05 | <0.01 | <0.01 | <0.01 | <0.01 | <0.05 |>0.05 | <0.01
Lactation_number <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | >0.05 | <0.05
Lemmer_get_ups / / / / >0.05 |/ <0.01 |/
LKV_fat <0.01 | <0.01 | >0.05 | >0.05 | >0.05 | <0.01 | <0.01 | >0.05
LKV_fat_protein_ <0.01 | <0.01 |>0.05 | <0.01 | <0.05 | <0.01 | <0.01 | <0.01
ratio
LKV _lactose <0.01 | <0.01 | >0.05 | <0.05 | >0.05 | <0.01 | >0.05 | <0.01
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Parameter RF1 RF2 RF3 | CDF1 | CDF2 | CDF3 | CDF4 | CDF5
LKV _somatic_cell >0.05 | <0.01 | <0.01 | <0.01 | >0.05 | <0.01 | <0.01 | <0.05
count
LKV urea <0.01 | <0.01 | <0.01 | >0.05 | <0.05 | <0.01 | <0.01 | <0.01
Maximum_milking_ >0.05 | <0.01 | >0.05 | <0.01 | <0.01 | <0.05 | <0.01 | <0.01
interval

MDi <0.01 |/ / / / >0.05 |/ /
Milkings >0.05 | <0.01 | >0.05 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01
Robot conduct <0.01 |/ / / <0.01 | <0.01 | >0.05 |/
Robot_daily_milk_ <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | >0.05 | <0.01 | <0.05
yield

Robot effect scc / <0.01 | <0.01 | >0.05 |/ / / /
Robot fat / <0.01 | <0.01 | <0.01 | <0.01 |/ <0.01 | >0.05
Robot lactose / <0.01 | >0.05 | <0.01 | >0.05 |/ >0.05 | <0.01
Robot_milk_yield_in |/ <0.01 | <0.01 | >0.05 | <0.01 | <0.01 | <0.01 | <0.01

_last_lactation

Robot_protein / <0.05 | <0.01 | <0.01 | >0.05 |/ <0.01 | >0.05
Robot_somatic_cell |/ <0.01 | <0.01 | >0.05 |/ / / /
count

SCR_act_day night | <0.01 |/ >0.05 | <0.01 |/ / / <0.01
SCR_heat_ / / >0.05 | <0.05 |/ / / >0.05
probability

Smaxtec_act_day_ | <0.01 |/ <0.01 |/ / / >0.05 |/
night

Smaxtec_climate >0.05 |/ >0.05 |/ / / <0.01 |/
hum_min

Smaxtec_climate <0.01 |/ >0.05 |/ / / <0.01 |/
hum_median

Smaxtec_climate <0.01 |/ >0.05 |/ / / <0.01 |/
hum_max

Smaxtec_climate__ <0.01 |/ <0.01 |/ / / >0.05 |/
temp_min

Smaxtec thi_min <0.01 |/ <0.01 |/ / / >0.05 |/
WS global rad max | <0.01 | <0.01 | >0.05 |/ / / / /

WS rain_max >0.05 | <0.05 | <0.05 |/ / / / /
WS _rel_hum_max <0.05 | >0.05 | <0.05 |/ / / / /
WS_wind_velocity | <0.01 | >0.05 | <0.01 |/ / / / /
max

WS _wind_velocity | >0.05 | <0.05 | <0.01 |/ / / / /
min

4.7 Correlations between automatically recorded parameters

Spearman's rank correlation coefficient was computed for all combinations of the automatically
recorded data, resulting in a correlation matrix. Due to its extensive size, only parameters with
correlations above 0.4 were considered. The corresponding table was further streamlined for
clarity by initially eliminating parameter combinations that were derived from one another, like
WS _thi_median from WS_temperature_median. Furthermore, all rows corresponding to the
same parameter, whether from the same sensor or different sensors, were excluded. The
corresponding correlation table can be found in the appendices (Table 67). Parameter pairs
demonstrating a distinct and strong direct influence on each other, such as days in milk and
milk yield, might be included in the table, along with parameter pairs where the relationship is
less evident.
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Furthermore, particular emphasis was placed on parameters categorised under distinct
general parameter categories that nonetheless exhibit a strong correlation and the highest
correlation coefficient observed for these relationships was documented in Table 27.

Table 27: Highest correlation results between different categories of automatically recorded

parameters

Parameter 1 Parameter 2 Correlation
Milking temperature Climate 0.67
Days in milk Milk contents 0.57
Feeding behaviour Activity 0.56
Feeding behaviour Climate 0.54
Activity Climate 0.50
Milking temperature Body temperature 0.49
Lactation number Feeding behaviour 0.48
Milk contents Milk yield 0.47
Body weight Feeding behaviour 0.46
Milking temperature Rumination 0.42
Body temperature Climate 0.42
Milk contents Concentrated feed intake 0.41
Milk yield Feeding behaviour 0.41
Body weight Activity 0.41
Lying behaviour Body temperature 0.41

5. Multivariate analysis

5.1 Generalised linear mixed models

The unadjusted ICC, calculated without incorporating any fixed effects, was 0.006 for Farm
and 0.581 for FCN. Subsequently, the parameters that could be measured across all farms
were included in the model as fixed effects, and the adjusted ICC was calculated. The adjusted
ICC resulted in 0.006 for Farm and 0.639 for FCN. Based on these results, only the variable
FCN was considered as a random effect in the subsequent models.

5.1.1 Performance data

The first model was centred on performance data, which could be collected on all eight project
farms. The performance data included the breed, lactation number, lactation status, results of
the milk performance test, milk yield recorded by LKV and the milking robot and all additional
milk-related parameters recorded by the milking robot. The LKV _daily_milk_yield was included
as a random slope in the models.

The best-performing model with C_LMS as the dependent variable contained the following
predictors:

Claw health status, ~ LKV _lactose + Milkings + Days_in_milk
+ Lactation_number: LKV _protein + (LKV_daily_milk_yield | FCN)

Model 1: Best performing model with performance data from all farms and the corrected LMS
as outcome variable

The mean area under the curve (AUC) was 0.98 on the training data with a 95%-confidence

interval (Cl) of 0.981 to 0.984, the specificity (SP) was 0.91 (Cl: 0.90, 0.91) and the sensitivity

(SN) was 0.96 (CI: 0.96, 0.97). On the test data, the model yielded an AUC of 0.59 (CI: 0.56,
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0.62), an SP of 0.75 (Cl: 0.73, 0.77) and an SN of 0.47 (Cl:0.42, 0.51). Further reduction of
parameters could not reduce overfitting indicated by the difference in results between training
and test data sets. The model for non-corrected LMS3 as the outcome variable was structured
very similarly, including only the lactation number as an additional parameter and LKV _protein
instead of LKV _lactose:

Claw health status,~ LKV _protein + Milkings + Days_in_milk
+ Lactation_number: LKV _protein + Lactation_number
+ (LKV_daily_milk_yield | FCN)

Model 2: Best performing model with performance data from all farms and non-corrected LMS
as outcome variable

In this analysis, the achieved results were also significantly higher in the training dataset 0.98
(Cl: 0.98, 0.99) compared to the test dataset 0.60 (Cl: 0.56, 0.64), with a sensitivity of 0.99
(Cl: 0.98, 1.00) in the training set and 0.42 (Cl: 0.35, 0.49) in the test set, and a specificity of
0.92 (ClI: 0.92, 0.93) in the training set and 0.78 (CI: 0.77, 0.80) in the test set (Figure 58).

The other performance parameters, which could not be uniformly recorded across all farms,
were analysed afterwards using partial datasets with data from one or more farms, but all of
these regression models performed worse than Model 1 and Model 2.

5.1.2 Activity data

In the following step, the models were expanded to include the average daily activity in addition
to the performance parameters, as this was the only behavioural variable available on all eight
farms. If the activity was recorded by multiple sensors on a farm, the parameter with the fewest
missing values was selected. The C_LMS3 model included four fixed effects, of which one was
an interaction parameter, and two random effects and did not show any noticeable
improvement compared to Model 1:

Claw health status,~ Maximum_milking_interval + Days_in_milk + Activity
+ Lactation_number: Activity + (LKV_daily_milk_yield | FCN)

Model 3: Expansion of Model 1 with added activity parameters

The AUC for the training dataset was 0.99 (Cl: 0.98, 0.99), with an SP of 0.91 (ClI: 0.91, 0.92)
and an SN of 0.97 (Cl: 0.97, 0.97). For the test dataset, the AUC was 0.60 (Cl: 0.57, 0.63) with
a specificity of 0.64 (Cl: 0.62, 0.66) and a sensitivity of 0.56 (Cl: 0.52, 0.61).

In contrast, the best LMS3 model included Days_in_milk as an additional random slope and
added the predictor LKV _protein:

Claw health status,, ~ LKV _protein + Maximum_milking_interval + Activity
+ Activity: Lactation_number + (Days_in_milk
+ LKV _daily_milk_yield | FCN)

Model 4: Expansion of Model 2 with added activity parameters

It performed better than Model 2 with an AUC of 0.70 (CI: 0.65, 0.74) on the test data, with a
SN of 0.85 (ClI: 0.77, 0.90) and a SP of 0.53 (Cl: 0.51, 0.55) (Training: AUC (0.99), SP (0.96),
SN (0.99).
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5.1.3 Performance, activity and one additional parameter class

During further analysis, an additional class of parameters was incorporated in the regression
models alongside the performance parameters. The models were then analysed both with and
without activity as an additional parameter. Since all models with activity showed better results,
the predictor activity was retained in the model. Depending on the type of parameter, the
models were tested on the data of the corresponding farm, where the respective parameters
could be collected. The performance of the best models is shown in Table 28 for C_LMS as
the dependent variable and in Table 29 for the non-corrected LMS as the dependent variable.
For the feeding parameter class, an additional model was evaluated using data from RF1, as
this farm provided a substantially larger dataset on feeding behaviour compared to the other
farms.

Table 28: Best-performing regression models with C_LMS as the dependent variable, including
performance, activity and one additional parameter class. The model formulas can be found in
the appendices (AUC = Area under the curve, SN = Sensitivity, SP = Specificity)

Variables — Training Test Farms
model
AUC | SN SP | AUC | SN SP
Body 098 |094 |091 |0.75 0.78 | 0.69
. @l |l | | Cl: | (Cl
‘I’B"g'ght and | Model 7| g3 | 991, | 090 |068 |064 |064 |RFT
0.99) | 0.96) |0.93) |0.83) |0.88) |0.74)
099 |097 |094 |066 068 | 0.61
i Model8 | (Cl: |l |@l: | Cl: | (Cl: SEL'ZRF&
ying 099, |096, 093, |0.63, |063 |059, | ocy
0.99) |0.98) |0.95) |0.69) |0.73) |0.63)
098 |098 |090 |065 0.66 |0.58 EE;’ RF2,
o @l |l | | Cl: | (Cl '
Rumination | Model 9 | 495 | 597 | 000, | 063, |063, |0.56 SBE}
0.98) |098) |0.91) |0.67) |0.70) |060) | pre

098 |097 |089 |067 |063 |0.66
€l |l | | (Cl: | (Cl: |RF1,RF2,

Feeding Model10 | 597 | 096 |088 |064, |057, |064 |RF3
0.98) |0.98) |090) |070) |0.68) |0.69)
097 095 089 |08 086 |072
. Model 11 | (CI: | (Cl: |l | Cl: | (@I
Feeding 097, 093, |088, |084 |076 |068, |RFT
0.98) |097) |091) |091) |093) |0.77)
099 | 098 |095 066 |055 |075
Body Model 12 | (CI: | (Cl: |(Cl: | Cl: |l |RF1,RF3,
temperature 099 | 097, |094, |060 |046 |072 |CDF4

0.99) |0.99) |0.96) |0.71) |0.65) |0.78)
099 |099 |095 |0.75 071 |0.77
€l (@ | | (Cl: | (Cl: |RF1,RF2,
0.99, |0097, |0.94, |071, |063, |0.72, |RF3

0.99) |1.00) |0.96) |0.79) |0.77) | 0.81)

Climate Model 13
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Table 29: Best-performing regression models with LMS as the dependent variable, including
performance, activity and one additional parameter class. The model formulas can be found in
the appendices (AUC = Area under the curve, SN = Sensitivity, SP = Specificity)

Variables o Training Test Farms

model
AUC SN SP AUC SN SP

099 |097 |095 |067 |027 |047
(Cl: (@l | | | |(C

Body weight

and BCS Model 14 | 98 090, | 095 |060, |0.47, |042 |RF
0.99) |1.00) | 0.96) |0.74) |0.40) |0.52)
099 |099 |095 |078 |078 |072
RF1, RF3
: (Cl: (Cl: (Cl: (Cl: (Cl: (Cl: ' ’
Lying Model 15 | 5 99 098 | 095 |0.72 |065 |070 ggii’
0.99) |1.00) | 0.96) |0.84) |0.88) |0.74)
099 |099 |095 |070 |069 |065 EE;’ RF2,
N (Cl: (Cl: (Cl: (Cl:0. | (CI: (Cl: '
Rumination | Model 16 | o9 | 098 |0.04. |66, |0.60, |0.63, SBE{
0.99) |1.00) |095) |0.75) |0.76) |067) | iy

0.99 0.99 0.94 0.80 0.71 0.83
(Cl: (Cl: (Cl: (Cl: (Cl: (Cl: RF1, RF2,

Feeding Model 17| 5 99, | 0.97, 093, | 072, |054, |081, |RF3
0.99) |1.00) | 0.94) |0.88) |0.85) |0.85)
099 |098 |096 |085 |089 |066
. (Cl: (Cl: (Cl: (Cl: (Cl: (Cl:
Feeding Model 18 | h 99 | 0.04, 095 |077. |067, |062 |17
0.99) |1.00) | 0.96) |0.94) |099) |0.70)
099 |099 |094 |077 |088 |061
Body c: |@: | |@e: |@©: |@©: |RF1,RF3

temperature | 1°%®! 19\ 699 097, |094, | 073 |077, |058, |CDF4

0.99) [1.00) |0.95) |0.82) |0.95) |0.64)
1.00 | 050 |097 |073 |073 |o0.71
(Cl: |(©l: |@© | | |l |RF1,RF2,
0.99, |0.44, |0.96, |0.64, |050, |0.67, |RF3

1.00) |0.56) |0.97) |0.83) |0.89) |0.74)

Climate Model 20

5.1.4 Performance, activity and two additional parameter classes

In the subsequent analysis, two parameter classes were added to both activity and
performance data. Only the models that demonstrated enhanced performance compared to
models in Table 28 and Table 29 were included in the final evaluation. These models are
detailed in Table 30 with C_LMS as the dependent variable and in Table 31 with LMS as the
dependent variable.
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Table 30: Best-performing regression models with C_LMS as the dependent variable, including
performance, activity and two additional parameter classes. Only models surpassing the
performance of corresponding single additional parameter class models are included. The
model formulas can be found in the appendices (AUC =Area under the curve,
SN = Sensitivity, SP = Specificity)

Best

Variables Training Test Farms
model

AUC SN SP AUC SN SP
0.99 0.96 0.95 0.71 0.85 0.57

Lying, Body Model 21 (Cl: (Cl: (Cl: (Cl: (Cl: (Cl: RF1, RF3,

temperature 0.99, | 094, |0.94, |067, |0.78, |0.53, |CDF4
0.99) 10.98) [096) [0.75) |[0.91) |0.60)
0.98 0.90 0.89 0.82

, 0.95 0.94

Feeding, (Cl: (Cl: (Cl: (Cl:

BCS Model22 | 0,08, | 0921 093 | 086, | 077, |0.76, | R
0.99) 97) -99) 0.94) [0.96) |0.88)
0.97 0.95 0.88 0.91 0.79 0.88

Feeding, Model 23 (Cl: (Cl: (Cl: (Cl: (Cl: (Cl: RF1

Lying 0.96, |0.92, |0.87, |0.88, |069, |0.84,
0.98) |0.97) |0.89) |0.95) |0.88) |0.91)
099 |096 |091 |068 |070 |0.76
Feeding, Model 24 | (C1: | (Cl ([ (Cl: | (ClL |(CL |RF1,RF2
Rumination 0.98, |0.94, |0.90, |0.64, |063, |0.73, |RF3

0.99) |0.97) |0.92) |0.73) |0.76) |0.79)
099 |096 |095 |079 |068 |0.77

Body

c: | |@: | |@©: |©: |RF1,RF3,
temperature, | Model25 | 59 | 094 | 094 |0.75 |058 |0.74, | CDF4
Rumination

0.99) |0.97) |0.96) |0.83) |0.77) |0.80)

Table 31: Best-performing regression models with LMS as the dependent variable, including
performance, activity and two additional parameter classes. Only models surpassing the
performance of corresponding single additional parameter class models are included
(AUC = Area under the curve, SN = Sensitivity, SP = Specificity)
Variables L8 Training Test Farms
model

AUC SN SP AUC SN SP
0.99 0.99 0.96 0.82 0.72 0.80
Lying, Body Model 26 (Cl: (Cl: (Cl: (Cl: (Cl: (Cl: RF1, RF3,
temperature 0.99, |097, |095 |0.76, |0.61, |0.77, | CDF4
0.99) [11.00) | 0.96) |0.87) |10.81) |0.83)
0.99 0.99 0.95 0.86 0.84 0.72
Feeding, Model 27 | (Cl: (Cl: (Cl: (Cl: (Cl: (Cl:

Lying 0.99, | 096, |094 |081, |070 |069, |RFLRF3
0.99) |1.00) |096) |0.90) |0.93) |0.75)
099 |099 |096 |093 |089 |0.86

Feeding, Model 28 (Cl: (Cl: (Cl: (Cl: (Cl: (Cl: RE1

Lying 0.99, | 096, |0.96, |0.86, |0.67, |0.83,
0.99) [1.00) |0.97) ]0.99) |0.99) |0.89)
0.98 |0.98 0.93 0.77 0.77 0.71

Feeding, Model 29 (Cl: (Cl: (Cl: (Cl: (Cl: (Cl: RF1, RF2,
Rumination 0.98, |0.95 |0.93, |0.70, |0.61, |0.68, |RF3

0.99) 10.99) [094) [0.84) [0.88) |0.73)
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5.1.5 Performance, activity and three additional parameter classes

Only the best model for each of C_LMS and non-corrected LMS, including more than one farm
as dependent variables, is presented in this context, except those that were developed solely
based on the data of RF1 using the more detailed data on feeding behaviour.

The best C_LMS model included the parameter classes feeding, body temperature and
climate, which could be recorded on RF1 and RF3, besides activity and performance, and
achieved an AUC of 0.82 (ClI: 0.77, 0.86) with an SN of 0.84 (0.75, 0.91) and an SP of 0.71
(0.65, 0.77) on the test data (Training: AUC (0.98), SN (0.99), SP (0.90)). The model contained
the following predictors:

Claw health status, ~ Days_in_milk + LKV _daily_milk_yield + Feeding
+ Smaxtec_temp_normal_median + LKV_daily_milk_yield: Season
+ Activity: LKV _daily_milk_yield
+ + (Smaxtec_temp_without_drink_cycles_median | FCN)

Model 5: Best model for the corrected locomotion score (C_LMS) on different farms

In contrast, the best LMS model included the classes lying, body temperature and climate,
which could be recorded on RF1, RF3 and CDF4, besides activity and performance, and
presented as:

Claw health status,, ~ Maximum_milking_interval + Lying
+ Activity: Lactation_number LKV _daily_milk_yield: Season
+ (Smaxtec_temp_without_drink_cycles_median | FCN)

Model 6: Best model for the non-corrected locomotion score (LMS) on different farms

The AUC for Model 6 was 0.89 (Cl: 0.84, 0.95) on the test data with a SN of 0.83 (CI: 0.73,
0.90) and a SP of 0.90 (Cl: 0.88, 0.92) and 0.99 (CI: 0.99, 0.99) on the training data with a SN
of 0.98 (0.95, 1.00) and a SP of 0.95 (CI: 0.95, 0.96) (Figure 58).

Performance, activity and three additional
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Figure 58: Receiver Operating Characteristic (ROC) curve of the best performance data model
(Model 2) and the overall best model tested across multiple farms (Model 6)
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VI. Discussion

1. Claw health

1.1 Locomotion scoring

The total number of locomotion scores varied significantly from one farm to another. This
variation was partly due to differences in herd size across farms, but more notably due to the
varying number of claw trimming dates conducted on the farms during the data collection
period, as the frequency of claw trimming was set by each respective farm manager according
to their preferences. Furthermore, some claw trimming dates could not be used due to camera
failures as already mentioned in chapter V.1.1. The decision to conduct locomotion scoring
based on video footage was made for logistical reasons, as the study included different farms
across Bavaria and regular locomotion scoring on-site would have been time-consuming.
Additionally, it reduces the impact on cow behaviour compared to scoring performed in the
cow’s direct presence (Lorenzini, 2019) and Schlageter-Tello et al. (2015a) observed a higher
reliability of video locomotion scoring in experienced raters compared to live scoring. However,
this approach comes with the inherent risk of data loss due to power outages, transmission
errors, and hardware failures. The proper storage and preservation of video material on the
NAS was found to be especially prone to issues in this study. Implementing more frequent
automatic backups and integrating them with a cloud storage system could help to minimise
the risk of data loss.

The detected lameness prevalence per farm on the day before claw trimming ranged from
1.9% to 10% and was lower than the figures reported in current studies (Table 1). However,
this assessment only considered cows classified with an LMS3, indicating an irregular gait.
The variability in reported prevalence rates across different studies can be dependent on the
used locomotion score and the specific definition of lameness. For instance, Jensen et al.
(2022) used the locomotion score system developed by Sprecher et al. (1997) to identify and
count all cows with a score of 3 or higher, which signifies an arched back and shortened strides,
in order to evaluate the prevalence of lameness. In contrast, Griffiths et al. (2018) applied a
four-point scoring system and classified all cows with a score of 2 or above, indicating
shortened strides and a noticeably affected limb, as lame. If the relatively high proportion of
cows categorised as unsound (LMS2) (19.9%-26.7%) in the current study were included in the
prevalence estimates, the reported prevalence would have been closer to 25%-36.7% and
therefore would fall within the prevalence values presented in Table 1. The prevalence of
lameness varied significantly across the farms, likely due to various factors contributing to
lameness (11.2.3) that may be more pronounced on some farms than others. It is also essential
to consider that the number of prevalence assessments differed between farms according to
the count of claw trimmings, which may affect the comparison. LMS3 assessments varied not
only from farm to farm but also within the same farm between the different claw trimming
sessions. This could be attributed to seasonal climatic fluctuations, changes in management
or husbandry practices, as well as adjustments in claw trimming procedures. On RF1, the claw
trimmer changed after the initial two trimming dates, potentially resulting in the observed
gradual reduction of LMS3 during the subsequent sessions. The relative share of locomotion
scores documented during the whole data collection period was in the same range with 3.1%
to 6.9% LMS3 and 10.9% to 20.09% LMS2 depending on the farm.
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Regarding lameness development, all cases of lameness developed within two weeks, with
the longest one taking 13 days. The median time between the last LMS1 and the first LMS3
was three days, which is slightly less than the median of five days observed by Lorenzini
(2019). 61.8% of the cases developed in a short period of only one to three days, which could
be due to the approach to use the latest LMS1 and the first LMS3. Previous transitions between
LMS1 and LMS2 and back were not considered in this analysis, which may have prevented
the detection of a potentially longer lameness development period with alternating better and
worse days. Additionally, the sample size of 68 observations used to assess lameness
development was relatively small. This limitation was due to restricting the data to the three
weeks prior to claw trimming, resulting in many cows becoming lame or unsound before the
start of the data collection period and remaining at LMS2 or LMS3 until the claw trimming date.
Another reason could be that different claw diseases show different lameness progression
periods. In this study, cows experiencing a prolonged lameness development phase were
more likely to exhibit conditions such as WLD, WLA, or SU. Conversely, in cases where
lameness emerged more rapidly, within one to three days, the lesions were more frequently
associated with DD, IH or DS. This aligns with the analysis of farm-specific lameness
development periods, where CDF1, with a median of nine days, significantly differs from the
other farms with a median of one to four days. CDF1 showed an increased occurrence of WLF
and WLA and no cases of DD at all and thus highlights possible differences in the duration of
lameness development depending on the type of claw disease.

1.2 Pain test

The pain test was conducted to identify animals that, despite showing no visible signs, were
still experiencing pain. The overall distribution of positive pain test results showed RF2 having
the highest rate at 12.4%, followed by RF3 at 6.6% and RF1 at 6%. Out of the total aggregated
value of 226 positive pain tests, no findings could be detected in 53 (23.5%) of these positive
detections. Reflecting the overall distribution, most of the positive pain tests with no detectable
findings were found on the research farms, accounting for 44 cases.

Claw diseases, such as sole haemorrhages, generally manifest as visible lesions 6 to 8 weeks
following the onset of inflammation in the corium (Kofler, 2014). As a result, pain responses
might be present before any clinical findings can be detected by the observer. One alternative
reason for the high proportion of positive pain tests with no detectable findings on research
farms could be that the initial three claw trimming dates, during which findings were recorded
only by the claw trimmers, occurred on these farms. This could have resulted in incomplete
documentation of findings. Moreover, other external stimuli, including the claw trimming
conducted simultaneously by the claw trimmers on another foot, might have resulted in the
cow exhibiting flinching behaviour, which could have been incorrectly interpreted as a pain
response. Particularly on RF1, where two claw trimming chutes in combination with multiple
claw trimmers were used in the initial two claw trimming sessions, the procedure was
accompanied by increased ambient noise levels, which may have induced alternative
defensive reactions in the respective cow. Additionally, as experience was gained over time, it
is likely that distinguishing between pain responses and other involuntary movements became
more accurate for the examiner in subsequent assessments. For future pain assessments, it
is recommended that the examiner conducts multiple test runs in different environments
beforehand. Furthermore, a calm ambient setting should be ensured, and simultaneous claw
trimming on the other legs should be avoided during the pain assessment. The research farms
also predominantly used rubber mats on their floors, while the majority of the commercial dairy
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farms employed concrete and slatted flooring without rubber mats. Manure generally drains
better on slatted floors compared to solid floors (Fjeldaas et al., 2011) and concrete surfaces
tend to retain less moisture than rubber flooring (Norberg, 2012). This difference in surface
characteristics may have contributed to increased moisture on the walking areas of the
research farms, potentially leading to softer claw horn in these settings (Fjeldaas et al., 2011)
and therefore increased sensitivity to the pain tests.

Analysis of the percentage of positive and negative pain test results divided by the different
claw diseases indicated that certain conditions were significantly less likely to induce a pain
response. Specifically, in 80% or more of the cases, cows with any digital dermatitis stages,
any kind of sole haemorrhages, WLD, HF, HHE, IH or BU did not exhibit a pain reaction. In
contrast, cows with WLA, DS, OLU, SU, IP, TU or TN demonstrated a significantly higher
proportion of pain reactions, with 38% or more showing positive pain test results. On the one
hand, it is important to note that during the pain assessment with claw pliers, pressure was
primarily applied to the wall and sole region. Therefore, lesions located in the bulb area, such
as DD or BU, or in the interdigital space, such as IH, might not have led to a defensive reaction
as no direct pressure was applied to these specific lesion sites. On the other hand, Tadich et
al. (2010) identified distinct effects on locomotion associated with different claw diseases. No
changes in locomotion could be observed in cases of DD, HHE, WLF, and SH, while SU, IP
and DS were associated with significant gait alterations (Tadich et al., 2010). However, it
remained unclear whether these lesions were associated with less pain or if the impact of these
lesions could just not be adequately captured by the locomotion score. Holzhauer et al. (2008)
observed that cows with DDM2 lesions were significantly more sensitive to palpation compared
to other DD stages, but also only in 43% of DDMZ2 lesions the cows showed a pain response.
Furthermore, the stress induced by fixation, like immobilising the cow in the cattle crush, could
have potentially contributed to the suppression of a pain response in some cases (Herskin et
al., 2004).

Upon examining the pain test in comparison to the locomotion score, it was observed that as
the locomotion score increased, the percentage of pain reactions also increased. There was a
significant rise from 24.1% positive tests in LMS2 cows to 53.2% positive tests in LMS3 cows.
This disparity might be due to the fact that the pain response of cows in the LMS2 category
might not be as pronounced or easily triggered as they are in the early stages of lameness
development. Additionally, factors associated with LMS2, such as an arched back, can also
be seen in other painful conditions such as the foreign body syndrome (Lakhpati et al., 2019)
or mastitis.

To enhance the accuracy of pain response in future studies, simultaneous manipulations that
may result in false-positive findings should be avoided and direct palpation of the bulb region
should be included.

1.3 Growth in the sole centre

The growth in the sole centre was assessed as in the preceding study by Lorenzini (2019)
some cows showed a pain reaction or unsound locomotion without displaying visible clinical
findings. GSC3 accounted for the largest share of GSC recordings at 64.9%, while GSC2 was
observed in only 34.6% of cases and GSC1 was only recorded 24 times. After aggregating the
four individual values per cow into a median value, GSC3 made up the largest proportion at
49.3%, followed by GSC2 at 20.5% and GSC2.5 at 17.0%.
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The great amount of a more pronounced growth in the sole centre could be explained by the
frequency of claw trimming. This was also reflected in the comparison of different farms. CDF1,
CDF2 and CDF5 showed the highest levels of GSC3, each exceeding 90%. On CDF1, claw
trimming occurred only once a year, on CDF5 twice a year and on CDF2 before the cows were
dried off. In contrast, farms with three claw trimming sessions per year, such as RF1, RF2,
RF3 and CDF3, demonstrated a significantly more balanced distribution of GSC2 and GSC3.
Smith et al. (2007) showed that more frequent claw trimming can be beneficial by observing
that cows undergoing claw trimming three times a year, rather than just once, exhibited a 27%
reduction in lameness and a 52% decrease in the risk for sole ulcers. Although claw trimming
on CDF4 was also performed only twice a year, this farm showed lower GSC3 levels and
higher GSC2 levels compared to other farms with fewer claw trimming dates. This might be
attributed to differences in the claw trimming techniques employed by the claw trimmers. The
sole centre could be trimmed more extensively on this farm compared to others, leading to a
longer duration during which the sole centre remained unconsolidated. The type of flooring
could also be a factor influencing the growth in the sole centre, as hard surfaces tend to result
in increased claw growth, greater wear and decreased sole concavity compared to softer
surfaces like rubber mats (Telezhenko, 2007). According to this, although rubber mats result
in greater net growth, they also contribute to improved preservation of the sole cavity, which
may have reduced the likelihood of GSC on research farms in this study.

The growth in the sole centre was compared with the results of the pain test, revealing that the
mean values for those with a positive pain test were lower than those with a negative pain test.
Special attention was given to GSC values in cows that had a positive pain test but showed no
clinical findings, and this combination showed the lowest values, with a median of 2.3 and an
average of 2.4. When GSC was analysed based on LMS, a gradual decrease in GSC was
observed as LMS increased. While GSC3 remained the most prevalent across all LMS groups,
the relative proportions of GSC2 and GSC3 became more similar in LMS3. Even though the
relative share of GSC1.0 to 1.75 was generally very low, it was most pronounced in LMS3.
These results might be explained by the study design, which involved collecting GSC data
exclusively during the farm claw trimming sessions. As a result, lame animals or those with
claw disorders may have been treated in-between these sessions, leading to a reduced GSC
in the claws of these animals observed during the farm claw trimming. Specific claw diseases,
such as laminitis, could also lead to the formation of inferior-quality and reduced horn (Nuss &
Kofler, 2019), potentially resulting in a decreased GSC. Furthermore, the altered weight
distribution observed in lame cows (Pastell et al., 2010) may influence horn growth patterns.

1.4 Clinical findings

SHD accounts for the largest share of the clinical findings, making up over 30% of the total
findings, followed by DD and WLF. When evaluating individual farms, SHD was the most
common disorder, except for CDF2 and CDF5, where WLF was more prevalent. The barn
design could have contributed to this distribution, as features such as more edges or tighter
corners could potentially favour the occurrence of WLF (Kofler, 2014). CDF1 also exhibited the
highest incidence of WLA, with 14 cases documented during the claw trimming date. Moist
walking surfaces could have contributed to the softening of claw horn (Rushen et al., 2004),
thereby facilitating the penetration of foreign objects or bacteria. Since the barn was newly built
in 2020, there might have been instability in the social herd structure and increased stress,
leading to rank-related fights among the cows. This could also have resulted in slipping and
subsequent injuries to the white line area. Additionally, the presence of a farmyard on CDF1
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could have increased the risk of small stones being driven into the white line. High absolute
numbers of WLF and WLA were also observed on CDF4, further supporting the theory, as this
farm also employed a farmyard. Cows on CDF1, along with CDF4, showed the highest
proportion of CSH at over 8%. CSH is often the precursor to SU (Nuss & Kofler, 2019) and
CDF4 also exhibited the highest incidence of SU. However, no cases of SU were observed on
CDF1. This absence of SU on this farm might be attributed to the fact that the cows on CDF1
were relatively young, with 2.1 lactations on average, while the average on CDF4 was 3.1
lactations. The risk of SU typically increases with age due to the reduced cushioning capacity
of the bulb fat pad (Nuss & Kofler, 2019). This may explain why, on CDF1, the CSH lesions
had not yet progressed to SU. Additionally, the high numbers of WLF, CSH or SU and sole
haemorrhages on CDF1 and CDF4 could be interpreted as symptoms of laminitis, which can
arise from a combination of various contributing factors, such as inadequate cow comfort or
feeding issues (Nuss & Kofler, 2019). Unlike all other farms, CDF1 did not document a single
case of DD. Factors such as genetics, the absence of acquisition of cows from external sources
and especially hygiene may have played a significant role in this outcome (Nuss et al., 2019).
RF3 had the highest proportion of DDM1 lesions at around 13%, RF2 recorded the highest
share of DDM2 lesions at approximately 16% and CDF3 (16%), followed by RF1 (10%), had
the most DDM4 lesions. Almost 50 cases of active DDM2 could also be recorded on CDF4
during only two claw trimming sessions. The generally higher incidence of DD cases on the
research farms is likely attributable to the increased ftraffic in the barns due to visitors or
educational activities, which can facilitate the introduction of pathogens. CDF3, similar to RF2,
demonstrated a relatively high incidence of HHE at the same time, suggesting there might
have been a generally moist environment, leading to maceration and entry of pathogens in the
bulb area (Nuss et al., 2019). On RF1, the significant reduction in the number of active DDM2
lesions following the second claw trimming might have been due to the change of claw
trimmers and the use of CZC for treating all lesions, whereas previously only CTC was used
for treatment (Holzhauer et al., 2011). However, some active lesions might have progressed
to a chronic stage, which could account for the increased occurrence of DDM4 lesions. RF2
showed an increase in DDM2 cases at the most recent trimming compared to the previous two
sessions and RF3 reported a high incidence of DDM1 lesions. These numerous new or
recurrent outbreaks of DD could be related to a compromised immune system in the animals
due to external factors (Nuss et al., 2019). On CDF3, during the December claw trimming
session, there was a significant rise in chronic DD cases compared to the other trimming dates.
This could be due to seasonal factors, as winter conditions might lead to a higher risk of
infectious claw diseases (Haggman & Juga, 2015) and therefore the healing process for these
lesions might be less effective during the winter months. The majority of B were applied to
cows on RF2, where also most SAP treatments were administered, primarily due to the high
incidence of DDMZ2 lesions. Most CB were affixed to cows on CDF4 in response to the high
prevalence of SU and WLA on this farm.

1.5 Distribution of test scores on individual extremities

The distribution of PT, GSC and the clinical findings across the four extremities was also
investigated. For PT, the rate of positive pain reactions was notably higher in the hind feet
(13.2%) compared to the front feet (9.8%). When examining the GSC, GSC3 occurred more
frequently in the hind claws (over 67% on both left and right) than in the front claws (left 63%,
right 61%). The most notable difference was found in the clinical findings, with 61.5% of the
findings in the hind feet compared to 28.5% in the front feet. Somers, Schouten et al. (2005)
and Sogstad et al. (2005) also reported a higher frequency of findings in the hind claws
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compared to the front claws, despite the primary weight bearing occurring on the front claws
(Sogstad et al., 2005; Van der Tol et al., 2004). However, in comparison to the front claws, the
weight distribution in the hind claws is highly uneven, with 80% of the load on the outer and
only 20% on the inner claw (Sogstad et al., 2005; Van der Tol et al., 2004). The suspension
system in the forelimbs by muscles and tendons may facilitate a more balanced weight
distribution compared to the anatomical structures in the hind limb (Muggli et al., 2011; Sogstad
et al., 2005).

The positive clinical findings for the hind legs were nearly equally distributed, but PT was more
frequently positive in the left hind leg compared to the right. This could be explained by the fact
that the PT was often started on the left hind leg, and the cows might have reacted sensitively
not only to the affected leg but also to the pain in general. Consequently, they may have shown
a pain reaction on the foot tested first, even though the claw disease itself was localised on a
different one. Additionally, there could have been a random distribution of claw lesions with
more painful findings on the left and fewer painful claw conditions on the right hind feet.

1.6 Validation of the locomotion scoring system

The three-level locomotion score was also validated in this study as, unlike in the previous
project, significantly more actual LMS were generated instead of interpolated LMS, allowing
for a more accurate validation. The score demonstrated a very high level of agreement in terms
of the consistency of multiple scorings carried out by the same observer (intra-rater agreement)
with over 90% PA and in terms of the reliability of scoring when compared to other observers
(inter-rater agreement) with over 80% PA. According to Landis and Koch (1977), the intra-rater
agreement achieved an "almost perfect" level, while the inter-rater agreement was rated as
"substantial to almost” perfect and therefore both exceeded the minimum acceptance level of
k = 0.6. The results surpassed those reported in the study by Schlageter-Tello et al. (2015b),
which examined a five-point locomotion score by Flower and Weary (2006). In that study, the
intra-rater agreement was k = 0.77 with a PA of 71.4%, and inter-rater agreement was k = 0.65
with a PA of 57.1%. Schlageter-Tello et al. (2015b) employed the linear weighted kappa
method, whereas the present study used quadratic weighted kappa to account for larger
deviations more strongly. Additionally, Schlageter-Tello et al. (2015b) involved experienced
raters for the locomotion scoring, while Rater 1 in this study had no prior experience with
locomotion scoring at the beginning. The study conducted by Gardenier et al. (2021) examined
a 4-level locomotion scoring system, where an intra-observer agreement of 72% (k = 0.74) and
an inter-observer agreement of only 56% (k =0.59) were achieved. In the research by
Rutherford et al. (2009), the inter-rater reliability was 67.2% (k = 0.69) for a 4-level score but
could be increased to 90.5% by reducing the 4 categories to a simple distinction between lame
and sound. This indicates that, in comparison to the results of other researchers, the 3-level
locomotion score used in this study exhibited notably better inter- and intra-rater reliability, and
that reducing the number of scoring levels may enhance comparability. A further reduction of
the locomotion score levels was not considered based on the findings of the previous project
(Lorenzini, Grimm, Hertle et al., 2021), as a comparison of the different locomotion score
groups revealed that most misclassifications occurred in animals with an LMS2 score. These
animals could not be clearly assigned to either the LMS1 or LMS3 group, but nevertheless, a
clear classification of these animals might be essential for practical purposes, as farmers need
to know how to handle each specific case and whether they need to examine and treat the
affected animals in the claw trimming chute.

114



To further validate the locomotion score in terms of its accuracy in reflecting claw lesions, a
lesion score was also developed. In an initial analysis of two data sets, comparing lesion scores
with locomotion scores from two claw trimming dates each, significant discrepancies were
observed, with the PA ranging from 66.4% to 80% (Hertle et al., 2022). It was assumed that
these differences may be explained by the fact that the first dataset used findings recorded by
the claw trimmers, who might have documented the claw lesions in less detail, whereas the
second one was based on the findings by a veterinarian who did not have to trim the claws
and could thus concentrate only on documenting the findings (Hertle et al., 2022). But after
finishing the locomotion scoring of all the claw trimming sessions, the overall locomotion scores
were compared to the lesion scores, revealing only a moderate agreement between them.
Significant variation in the level of agreement was also observed between the farms.
Specifically, RF2 achieved a PA of only 48.9% (k = 0.24), while CDF2 (PA = 78.9%, k = 0.54)
and CDF5 (PA = 69.5%, k = 0.58) showed notably better results. Since only the findings of the
claw trimmers were included during the initial claw care trimming on RF2, this supports the
hypothesis that these records were not sufficiently detailed to comprehensively reflect claw
health. As mentioned before, the first claw trimmings occurred on research farms and initial
misinterpretations of pain responses may have resulted in false positive PT outcomes. The
especially high rate of positive PT on RF2 indicates that false positives may have distorted the
lesion scores on this farm. Additionally, a growing familiarity of the observers with the
procedures for conducting pain tests and recording findings may have led to more accurate
results in subsequent claw care appointments. The differences in camera angles across farms
could also have impacted, for example, the detection of an arched back, making it easier to
notice on some farms compared to the others.

The deviations shown in Figure 42 suggest that especially animals with a lesion score (LS)
higher than 1 often exhibited a sound locomotion (LMS1). According to this, not all painful or
visibly apparent claw diseases might necessarily result in altered locomotion scores. Especially
Simmental cattle exhibit a high degree of resilience and may show less pronounced pain
responses compared to breeds such as Holstein-Friesians. Indeed, findings from Tadich et al.
(2010), where some lesions, such as DD, did not lead to a significant increase in LMS, suggest
that a locomotion score alone may not be sufficient to identify all types of claw diseases and
their associated pain. Dyer et al. (2007) also reported that in 37.2% of cases, painful lateral
claws were present, even though the locomotion score remained unchanged. Thomsen et al.
(2012) demonstrated that when distinguishing between horn lesions like SU and skin lesions
like DD, horn lesions showed a clearer correlation with the locomotion score. The high
prevalence of DDM2 lesions observed at RF2 supports the theory that not all cows with acute
digital dermatitis lesions might have altered their gait in this study. Blackie et al. (2013) were
able to show that cows with SU are more likely to shorten their steps or adjust their spine,
whereas cows with DD showed less of these changes but lifted their legs higher, likely due to
the lesions being located on the sole for SU and in the heel area for DD. These specific
changes might need to be incorporated into the locomotion score, although visual detection
could be challenging. An animal might also have been scored as lame despite no visible
findings or pain reactions if the issue was located in the upper leg rather than the claw or if
other underlying health conditions were present, which could not be detected during the claw
trimmings.
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2. Automatically recorded parameters

2.1 General assessment and farm-specific variations

The analysis of the statistical summaries revealed that most of the mean values were within
the normal ranges outlined in Table 3. The average values for the BCS (mean: 3.8) and body
weight (mean: 741.5) in this study exceeded the mentioned averages in the table. This could
be attributed to the fact that the animals in this study were predominantly of the Simmental
breed, which have a higher mean live weight and BCS (Rittweg et al., 2023) than Holstein-
Friesian cows. Additionally, factors related to breeding and management practices at RF1
might have contributed to higher BCS and body weight. Feeding took place via the weighing
troughs on RF1, which resulted in shorter feeding durations and increased feeding pace on
this farm. The average number of lying bouts on RF1, which exceeded 17, was notably higher
than the average value of 9 to 11 lying bouts reported by Tucker et al. (2021), as well as the
averages observed on the other farms. Accordingly, the average duration of each lying bout
on RF1 was also lower at 52.6 minutes than the 60-99 minutes average noted in the study by
Tucker et al. (2021). Weingut (2017) observed during the validation of these pedometers that
more lying bouts were recorded by the pedometers than visually observed, indicating the issue
could be related to the measurement of the pedometer. The limited cow-to-feeding-space ratio
on RF1, with only 36 weighing troughs available for more than 60 cows, may also have led to
these variations in lying behaviour. Other factors that could have influenced the farm-specific
lying behaviour include high stocking density (Fregonesi et al., 2007), the design of cubicle
surfaces (Tucker et al., 2003) or the relatively high humidity inside the barn (mean: 79.8)
(Leliveld et al., 2022).

The average lactation number exhibited only minor variation across farms. CDF1 featured the
youngest cows, with an average lactation number of 2.1, while the herds on CDF4 and CDF5
included older cows, with average lactation numbers of 3.1 and 3.2. Total milk yield per
lactation varied from 5,955.8 kg on CDF1 to 11,847.4 kg on RF2. Notably, the daily average
milk yield on CDF1 was substantially lower at 22.2 kg in the last lactation compared to 31.2 kg
in the current lactation. This difference may be attributed to the herd’s recent relocation to the
new barn, which could have impacted milk production. The average milk temperature was
lowest on CDF5, measuring 38.1°C, which significantly differed from the highest average of
39.2°C recorded on RF3. These higher average milk temperatures on RF3 could be explained
by a greater number of mastitis cases (Maatje et al., 1992) or higher ambient temperatures
(West et al., 2003) on this farm. Accordingly, on RF3, higher average outdoor temperatures
were recorded at the weather station (mean: 11.4) compared to the other two farms, which
also resulted in a warmer indoor barn climate (mean: 14.4) and, consequently, a higher indoor
THI (mean: 57.5). The correlation analysis of the various automated parameters in this study
also revealed strong correlation coefficients between milk temperature and ambient
temperatures. Both, milk flow and maximum milk flow, exhibited substantial differences across
farms. The significantly lower milk flow on the RF1 and CDF3 farms could be attributed to the
use of different milking robots and, consequently, different preparation methods for the teats
as milking practices could influence the milk flow (Sandrucci et al., 2007). Hogeveen et al.
(2001) also found that milk flow decreases with shorter milking intervals, while Sandrucci et al.
(2007) demonstrated that cows with a higher number of lactations and with less than 150 days
in milk exhibit a stronger milk flow. However, these observations did not show a clear
correlation in this study. Concentrate intake varied significantly according to farm-specific
rations, ranging from an average of 2.1 kg on CDF4 to 5.6 kg on CDF5. The average feeding
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duration on RF3 at 270.7 minutes was significantly shorter compared to RF2 at 511.7 minutes.
This could be attributed to different feeding management practices; for instance, according to
DeVries & Keyserlingk (2005), the timing of feed distribution could influence feed intake
durations. Moreover, on RF3, an additional sensor was also attached to the collar and the
experience was made that its weight occasionally caused the feed intake sensor to be
improperly positioned on the cow’s neck, which led to inaccurate recording of feeding times.
The higher temperatures on RF3 could also have influenced the results, as according to the
Spearman’s rank correlation coefficients, the feeding behaviour in this study showed a strong
correlation with the climate. In contrast, the cows on RF2, with 271.7 minutes, exhibited a
substantially lower average rumination time than on the other four farms, where the average
rumination time was approximately 500 minutes. The time spent eating and ruminating can
also be influenced by the diet's composition and its physical texture (Beauchemin, 2018).
Furthermore, Herskin et al. (2004) demonstrated that cows respond to any stressors by
reducing their rumination activity, which suggests that external disturbances may have also
played a role in this context. The activity data from the various sensor systems were difficult to
compare due to differences in measurement units, such as steps, activity units, or indices.
Notable differences within the same sensor across the farms were primarily observed in the
activity data collected by smaXtec, where higher values were recorded for RF1 (mean: 6.5)
and RF3 (mean: 6.8) compared to the average value of 4.6 on CDF4. In contrast, an analysis
of the corresponding pedometer activity values across the farms revealed no significant
discrepancies. This could potentially be a sensor-specific issue, possibly due to difficulties in
detecting activity due to specific housing conditions or rumen conditions on the farm. All other
parameters showed no substantial deviations from one farm to another, which was also evident
in the model analysis, where the calculated ICC indicated a low level of parameter variation
explained by farm differences.

2.2 Lameness-induced alterations

Analysis revealed that the differences between the 'unsound' and 'lame' groups were more
pronounced when examining the automatically recorded parameters by using the locomotion
score (LMS), rather than the corrected locomotion score (C_LMS). On the one hand, this
phenomenon could be explained by the fact that, with the C_LMS, a greater number of animals
were categorised as C_LMS3 despite not showing a distinctly irregular gait but rather showing
only features such as an arched back or an exaggerated head bob along with a positive pain
response or visible findings. As a result, changes in behaviour and performance in these
animals may be less pronounced compared to those with a clearly lame gait, leading to a less
distinct separation between the two scoring categories. On the other hand, it is possible that
animals classified with LMS2, despite lacking a positive pain response or other diagnostic
findings, might already have experienced a subclinical claw health issue that impacted their
behaviour at an early stage. This hypothesis is supported by the observation that after the
locomotion score was adjusted to C_LMS, the statistical significance of differences between
the 'sound' and 'unsound' groups remained relatively stable. Consequently, C_LMS1 and
C_LMS2 animals continued to exhibit significant behavioural differences. Weigele et al. (2018)
were one of the few who also investigated behavioural changes in moderately lame cows and
identified significant deviations in behaviours such as lying patterns, feeding behaviour, and
activity levels, even in these cases. Norring et al. (2014) demonstrated that the feeding duration
and quantity of feed intake could already begin to decrease in the two weeks before visible
gait impairment occurred. Similarly, Mazrier et al. (2006) observed that 45.7% of lame cows
exhibited a decline in activity 7 to 10 days prior to the onset of clinical lameness. According to
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Van Nuffel et al. (2015), most of the research on lameness detection has been predominantly
focused on severely lame animals. As a result, there is a significant gap in knowledge on how
behaviour and performance change at the initial stages of lameness, which needs to be further
addressed to enable early lameness detection.

2.2.1 Breed

In this study, despite their lower representation on the farms, Holstein Friesian cows exhibited
a significantly higher proportion of lameness cases (33%) compared to Simmental cows
(16.7%). This aligns with other research, where Holstein cows have been found to be
especially prone to certain claw disorders (Baird et al., 2009; Firmann et al., 2024; Lusa et al.,
2020). Simmental cows, conversely, are known for their longevity and higher resistance to
diseases when compared with dairy breeds (Kucuk Baykan & Ozcan, 2019).

2.2.2 Milking parameters

2.2.2.1 Milk yield

When considering the daily milk yield recorded by the LKV and the milking robots, it becomes
apparent that the various lameness groups are difficult to distinguish from one another. Based
on the locomotion score alone, LMS2 animals exhibited a higher daily milk yield compared to
the other groups. In contrast, with the C_LMS, a small increase in C_LMS3 was noticeable
compared to C_LMS1. These varying results confirm the complex interactions between milk
yield and lameness. Higher-producing cows inherently have a higher risk of lameness
(O'Connor et al., 2020; Rutherford et al., 2009), which may explain the increased milk
production seen in LMS2 animals, whereas possible negative effects of lameness on daily milk
yield may become more evident in severe lameness cases (Olechnowicz & Jaskowski, 2010;
Warnick et al., 2001), which could be why the average daily milk yield of LMS3 animals
dropped back to the level of LMS1, despite their initially higher production levels. The analytical
methods applied in this study did not account for the individual temporal progression of each
animal’'s parameters. Consequently, it becomes difficult to clarify the causal relationship:
whether high performance initially contributed to lameness or lameness itself led to a decline
in milk yield in the first place. In the case of the C_LMS, more cows without visible gait
alterations were identified as lame, which means they initially started with higher levels of milk
yield, but they may not have been such severely lame that they were unable to maintain their
previous milk output. As a result, an increase towards C LMS3 is observed without a
subsequent decline. In the study of Archer et al. (2010), comparable results were displayed,
with a slightly higher milk yield in lame animals compared to healthy ones. The analysis of total
milk yield during the previous lactation and the current lactation in this study showed a similar
positive correlation. However, for the total milk yield during the previous lactation, neither the
LMS nor the C_LMS revealed statistically significant differences between the 'unsound' and
'lame' groups. Nonetheless, there was an observable increase in milk yield compared to
healthy cows, which could be attributed to the previously noted higher predisposition to
lameness of higher-yielding animals. The odds ratio either did not demonstrate a statistically
significant association or indicated no effect of lameness on milk performance, which might
have been influenced by variations in the lactation performance across the different farms.

Some studies have also identified a correlation between lactation number and milk yield,

revealing that lameness results in a significant reduction in milk production primarily in

multiparous cows (VICek et al., 2016; Warnick et al., 2001). The milk yield is thus influenced

by various other parameters and, as documented by Grimm et al. (2019), showed a clear

relationship with lameness only when analysed together with variables like lying and feeding
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behaviour, but not when considered independently. In the present study, milk yield also
showed a strong correlation with feeding behaviour (0.41), as well as with performance
parameter classes such as days in milk, milk content, and concentrated feed intake. Johnston
and DeVries (2018) similarly found a connection between feeding behaviour and milk yield,
demonstrating that an additional hour of feeding per day was associated with an average
increase of 1.74 kg in milk yield. Furthermore, higher milk production was correlated with a
greater number of feeding events and they attributed those findings to the relationship of these
variables with dry matter intake. Azizi et al. (2009), however, observed that high-performing
animals demonstrated a greater dry matter intake but showed shorter feeding durations and
an elevated feeding pace. This suggests that while high-performing animals generally
consume more feed, the duration over which this feed is ingested may vary depending on the
feeding system and management practices.

At the farm-specific level, the relationship between daily milk yield and lameness revealed
considerable variation. On farms RF1, RF3, CDF2, and CDF4, a significant positive correlation
between milk production and lameness was observed. In contrast, CDF3 showed no
statistically significant differences in daily milk yield from the milking robot, CDF1 lacked a
statistically significant odds ratio, and both RF2 and CDF5 exhibited a negative correlation
between daily milk yield and lameness. Additionally, RF2, unlike the other farms, demonstrated
a negative relationship between milk yield in the last lactation and increasing C_LMS. A
possible explanation for these findings might be the higher standard deviation of the daily milk
yield on these farms, particularly on RF2 and CDF1, which might have led to less clear
correlations due to fluctuations.

The intraclass correlation coefficient calculated between the milk yield parameters recorded
by the milking robot and LKV showed a very high agreement of 0.9 for the total milk yield in
the last lactation and 0.86 for the daily milk yield. This suggests that the monthly average
recorded by the LKV is sufficiently accurate for corresponding analyses and a daily milk yield
recorded by the milking robot is not always required.

2.2.2.2 Lactation metrics

The lactation number demonstrated a significant positive correlation with lameness, with the
median lactation number being one unit higher in lame and unsound animals compared to
healthy ones. This is consistent with the findings of most studies that report an increased risk
of lameness with rising parity (Lean et al., 2023; Pétzsch et al., 2003; Rittweg et al., 2023). No
statistically significant differences were observed for the lactation number between C_LMS2
and C_LMS3 cows, whereas there was a small rise from LMS2 to LMS3. A statistically
significant association was found on all farms except CDF4, and a positive correlation was
observed on all farms except CDF2 and CDF4. One possible explanation is that cows in their
first lactation are especially prone to laminitis due to the numerous alterations surrounding
calving, including factors like a new barn environment or feeding modifications (Bergsten,
2003) and show an increased risk for sole haemorrhages in the following months (Sogstad et
al., 2005). This aligns with the high number of SHD, SHB, and CSH cases reported on CDF4.

The highest average number of days in milk was observed in C_LMS2 cows (median: 166,
mean: 174), while the lowest was recorded in C_LMS3 cows (median: 150, mean: 153). A
modest negative correlation and an odds ratio slightly below 1 could be observed. An analysis
of the violin plot in Figure 47 reveals that C_LMS2 cows display two peaks, one around
lactation day 50 and another around day 300. In contrast, C_LMS3 cows show a concentration
primarily around 50 days in milk. According to the studies by Zlatanovic¢ et al. (2021), lesions

119



such as digital dermatitis or laminitis typically manifest in the last third of lactation (days 201-
305), while sole ulcers or interdigital hyperplasia predominantly occur in the period shortly after
calving. In line with our findings, in their study, the proportion of severely lame cows was
highest during the first third of lactation, whereas the rate of moderately lame cows peaked in
the final third of lactation. This indicates that cases of digital dermatitis, which, as previously
mentioned, may result in less severe gait alterations compared to other lesions, could be a
factor contributing to the second peak in lameness observed during late lactation in C_LMS2
cows. Upon closer examination, a negative correlation between C_LMS and days in milk was
found on all farms, except for CDF1 and CDF5, where the odds of lameness increased with
advancing lactation. This may be attributed to the high prevalence of WLA and WLF on CDF1
and a significant number of WLF cases on CDF5. According to Van der Spek et al. (2015),
white line lesions tend to appear predominantly in the later stages of lactation, which could
explain the positive correlation between C_LMS and days in milk on these farms.

2.2.2.3 Milking frequency

When analysing the milking frequency data, it was observed that the median number of
milkings per day was two across all C_LMS groups. However, the mean number of milkings
decreased from 2.53 in C_LMS1 to 2.38 in C_LMS2 and 2.40 in C_LMS3. This suggests a
difference, particularly between healthy and unsound cows, as well as between healthy and
lame cows. The relatively small differences and the non-significant odds ratios observed on
individual farms could be attributed to the fact that the majority of cows across all three groups
showed two to three milkings per day, as can be seen in Figure 47. Matson et al. (2022) also
stated that a higher milking frequency can be linked to a greater milk production, which in turn
can be connected to the claw health status. This connection might then influence the reduction
in milking frequency caused by lameness itself. Nevertheless, the overall odds ratio of 0.792
clearly indicated that with increasing milking frequency, the likelihood of lameness significantly
decreased in the present study. Van den Borne et al. (2022) demonstrated that the number of
milkings decreased in severely lame and mildly lame ones, which is consistent with the results
of this study, but only the decrease in severe lameness cases also affected the milk yield. They
also emphasised that 63% of the decline of milk performance due to lameness resulted from
a diminished number of milkings and concluded that lameness leads to particularly large losses
in farms with milking robots, where cows can actively control their milking frequency. The
average maximum milking interval accordingly exhibited a steady increase with higher C_LMS
levels, indicating longer milking intervals in lame cows. No statistically significant differences
were observed in either the number of milkings or the maximum milking interval between
C_LMS groups on RF1 and RF3. On these farms, the systematic practice of actively bringing
lame animals to the milking robot might have led to less pronounced differences between lame
and non-lame animals.

2.2.2.4 Milking contents

Milk protein showed the most distinct and consistent relationship with lameness, exhibiting a
reduction in lame cows. This correlation was even stronger for the parameter recorded by the
LKV. Differences in all other parameters were either minimal or barely detectable. These
findings align with other studies that have examined changes in milk components
(Malasauskiené et al., 2022; Slovak et al., 2021; Vi€ek et al., 2016), where a decline in milk
protein associated with lameness was the most commonly observed outcome. It remains
unclear whether the reduction in milk protein levels is primarily a consequence of lameness-
induced changes in feeding behaviour, as outlined by Slovak et al. (2021), resulting in
decreased feed intake and reduced nutrient absorption, or if an initial deficiency in dietary
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protein could be a contributing factor to the onset of lameness (Dippel et al., 2009). Lameness
also leads to metabolic and immunological adjustments (Sun et al., 2015), which may result in
metabolic energy being redirected from milk protein synthesis to support these processes and
therefore in a reduced milk protein content. Lactose content only displayed a slight negative
correlation with lameness, but increasing lactose content had a high negative influence on the
likelihood of lameness according to the OR. This association of a decline in lactose content
with lameness has also been demonstrated in several studies (Antanaitis, Juozaitiene, &
UrbonavicCius, 2021; MalaSauskiené et al., 2022; Olechnowicz & Jaskowski, 2010).

There were no significant differences in urea levels at all among the C_LMS groups. Fat
content showed a decrease with lameness in LKV data, while it increased in data from milking
robots and accordingly the parameter fat-protein ratio behaved in the same manner. Somatic
cell count showed no clear association with lameness, as in C_LMS analysis lame cows had
the lowest, but in LMS analysis lame cows had the highest median somatic cell count. The
varying correlation of fat and urea content across farms with lameness suggests that different
farm-specific rations might have complicated the identification of more pronounced
associations between these parameters and lameness. Malasauskiené et al. (2022) also found
no clear differences in milk fat content between lame and non-lame cows, but they did observe
higher somatic cell counts and concluded that lameness might be associated with a higher
likelihood of developing mastitis. In contrast, Archer et al. (2011) found lower cell counts to be
linked with higher locomotion scores. Singh et al. (2018) noted higher cell counts in lame cows,
but like Yunta et al. (2012) and Pavlenko et al. (2011), they could not detect any changes in
milk composition. In the study by Slovak et al. (2021), urea levels significantly decreased by
18-29.9%, depending on the lactation stage. Consequently, based on the results of this study
and the existing literature, no clear association of the parameters fat, urea and somatic cell
count with lameness could be established.

Some studies utilised monthly average values (Olechnowicz & Jaskowski, 2010) or total
lactation summaries (Vic¢ek et al., 2016) to quantify the association between claw health and
milk composition. In this study, the monthly milk component values recorded by the LKV
exhibited more pronounced deviations compared to the daily averages of milk components
measured by the milking robot. This observation suggests that the effects of lameness on milk
components might become more apparent over a longer period of time, indicating data
aggregation may help in clarifying the relationship. Additionally, the correlations between milk
components recorded by the LKV and those measured by the milking robot were relatively low.
The strongest correlation was observed for milk protein (0.47), which is consistent with the
similar patterns of association between LKV and robot values for lameness. This could be due
to the potential inaccuracy of the robot's milk component measurements, or it might be that
daily variability in milk components is so high that a monthly value is insufficient for accurate
representation. However, the latter explanation is contradicted by the fact that the average
standard deviation of the milking robot's measurements for milk contents was not greater than
that of the LKV.

2.2.2.5 Other performance parameters

Milk temperature was significant between all C_LMS groups and showed a positive correlation
with lameness on all farms and an OR >1, except for RF3. This could be due to the generally
higher average milk temperatures observed on RF3 as a result of higher ambient temperatures
(West et al., 2003), which may have masked the variations caused by lameness. The positive
correlation between elevated milk temperature and lameness may be attributed to the
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observation that animals with claw diseases tend to exhibit increased body temperatures
(Talvio, 2020), which are, to some extent, correlated with milk temperature (Pohl et al., 2014).
In this studies, a correlation of 0.49 was observed between milk temperature and body
temperature, very similar to the correlation of 0.52 reported by Pohl et al. (2014).

Regarding conductivity, varying results were observed. Standard conductivity measurements
in mS/cm did not show any correlation with C_LMS. Conversely, conductivity recorded by the
Lely milking robot in an alternate unit exhibited a slight positive correlation with lameness.
Furthermore, a higher MDi was associated with an increased likelihood of lameness on RF1,
while no effect was detected on CDF3. Antanaitis, Juozaitiené, and Urbonavi€ius (2021) also
reported elevated conductivity values in all four quarters of the udder in lame animals, while
Singh et al. (2018) revealed that a higher locomotion score was associated with a poorer udder
health status and consequently, with mastitis. MalaSauskiené et al. (2022) also observed that
the conductivity values for lame animals deviated from the average of healthy animals (4 to 6
mS/cm), but with approximately 50% of lame animals exhibiting values above this range and
50% below. This indicates that while higher conductivity may occasionally be linked to claw
diseases, variations in this association can occur and may depend on the specific udder health
conditions present on each farm.

The maximum milk flow showed a positive correlation with lameness and an OR>1, whereas
the normal milk flow, although slightly positively correlated, indicated that higher milk flow was
associated with a lower likelihood of lameness. The considerable variability in milk flow across
different farms and milking robots could have influenced this. Van Hertem et al. (2016) reported
increased maximum milk flow values in lame animals, while Wieland et al. (2022)
demonstrated lameness could increase the risk of developing a delayed milk flow. While on
the one handy, high milk production can contribute to both lameness (O'Connor et al., 2020)
and increased milk flow (Wieland et al., 2022), on the other hand, inflammatory processes
resulting from claw diseases (Whay & Shearer, 2017) might negatively impact the milk flow
(Wieland et al., 2022).

2.2.3 Constitution

The BCS of cows in the C_LMS3 group showed a decline, along with an overall negative
correlation and an odds ratio greater than one, indicating that particularly severely lame
animals tend to display a worse body condition. This raises the question of causality: whether
lameness leads to a lower BCS or vice versa. A low BCS is typically associated with a reduced
digital cushion thickness (Newsome et al., 2017), which can compromise claw support and
increase susceptibility to lameness. But lame cows may also change their feeding behaviour
and intake (Norring et al., 2014) and therefore experience a reduction in fat reserves or could
suffer from muscle loss (Necula et al., 2022), for example, due to reduced activity. Despite
these observations, C_LMS2 cows had the highest average BCS (3.91) of all C_LMS groups
in this study. This aligns with other studies that have additionally found a higher baseline weight
or BCS to be associated with an increased risk of lameness (Kranepuhl et al., 2021; Ristevski
et al., 2017). Body weight also showed a positive relationship with lameness in this study, with
unsound animals having the highest average weight among the three groups. Lorenzini (2019)
also demonstrated that a higher BCS was associated with a lower likelihood of lameness, while
a higher body weight was more strongly linked to a higher locomotion score. The discrepancy
between BCS and body weight in relation to lameness led to the conclusion that animal-specific
differences made it harder to determine a clear pattern. Furthermore, lameness and the
associated calorie deficit, due to reduced feed intake (Norring et al., 2014), may primarily result
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in a higher loss of subcutaneous fat instead of muscle mass. Weber et al. (2015) indicated that
weight loss following calving ceased significantly earlier, while BCS and back fat thickness
continued to decline. They concluded that muscle mass and internal fat reserves must be
replenished more rapidly than subcutaneous fat. As subcutaneous fat reserves diminish, the
lower weight of fat relative to muscle could lead to a decline in BCS without a proportional
reduction in body weight. In conclusion, although the kind of data analysis in this study could
not establish causality, the animal's constitution seemed to be linked to the claw health status.

2.2.4 Feeding behaviour

The feeding duration recorded by the weighing troughs on RF1 showed a clear negative
correlation with lameness and the likelihood of lameness significantly increased with a shorter
feeding duration. In contrast to this gradual decrease with rising C_LMS, the pedometers on
the same farm displayed a significant increase in feeding duration for cows with C_LMS2,
before dropping again for cows with C_LMS3. Similarly, the number of trough visits and meals
recorded by the weighing troughs decreased continuously with higher C_LMS, whereas the
ENGS data also demonstrated a peak in the C_LMS2 group for the number of meals. This
effect could not be observed in the study by Lorenzini (2019), where the ENGS parameters
exhibited a clear negative correlation with lameness. In combination with the lack of statistically
significant differences in many feeding behaviour parameters by ENGS, this might suggest
that the ENGS data, collected from only one claw trimming date, was insufficient to establish
a clear, traceable connection between feeding behaviour and lameness. Moreover, even with
this single claw trimming session, it cannot be definitively stated that the induction loop under
the rubber mats always remained in the same position during the whole three-week data
collection period. A shift in the loop's position could have led to poor detection of some animals
at the feeding trough, especially if individual cows tended to stand further away from the trough.
For effective use of the induction loop in future experimental settings, a groove in the concrete
floor is urgently needed to ensure that the cable remains installed securely and undamaged.
The feeding duration recorded by Nedap also revealed a negative correlation, with a gradual
decrease when using LMS as the reference. However, when C_LMS was taken as the
reference, cows with C_LMS2 displayed a shorter feed intake duration compared to cows with
C_LMS3. This implies that not all animals with an adjusted LMS due to PT or findings had
necessarily experienced negative effects on their feeding behaviour yet. Meanwhile, some
C_LMS2 animals, despite showing no visible signs or signs of pain, may have already been
dealing with claw health problems that impacted their feeding duration. A reduction in feeding
duration as well as in the feeding frequency has also been documented in various other studies
(Antanaitis, Juozaitiené, Urbonavicius et al., 2021; Beer et al., 2016; Frondelius, Lindeberg et
al., 2022; Grimm et al., 2019; Lorenzini, 2019). Schindhelm et al. (2017) explained this by
noting that increased feeding duration also means more time spent standing, which lame
animals naturally try to minimise. Additionally, each trip to the feeding trough is associated with
renewed discomfort, which explains the reduction in the number of meals.

In contrast, feed intake itself demonstrated a positive association with lameness in this study,
primarily driven by the higher intake observed in C_LMS2 animals. Norring et al. (2014)
reported a decrease in silage intake among severely lame animals only, and similarly, in the
present study, intake levels dropped again in C_LMS3 cows. Accordingly, the relationship
between feed intake and lameness may be influenced by the fact that higher-yielding cows are
at a greater risk of lameness (O'Connor et al., 2020), and cows with higher milk yields tend to
consume more dry matter (Azizi et al., 2009). Based on Palmer et al. (2012), feed intake is
also affected by lactation status, as lame animals showed a reduction in feed intake during
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early lactation, whereas no significant changes were observed during mid-lactation. According
to Grimm et al. (2019), only high-producing cows exhibited a decrease in feed intake due to
lameness, while no significant differences were observed in other cases. They were able to
further highlight the complex relationships surrounding lameness in this context, as they found
that for cows with above-average feed intake, the risk of lameness did not vary with milk
production. However, for cows with below-average feed intake, a rise in lameness odds could
be observed with higher milk yields. Proudfoot et al. (2010) observed an increase in feed intake
associated with lameness, as cows that developed claw disease in mid-lactation showed a rise
in feed intake, particularly during the 24 hours following calving. Additionally, they noted that
lame animals significantly increased their feeding rate in the two weeks prior to calving. In the
same way, this study reveals a strong positive correlation between feeding pace and lameness,
suggesting that lame animals attempt to consume as much feed as possible in the limited time
they are willing to spend standing at the feed trough.

In line with the findings by Lorenzini (2019), feed intake per meal and visit increased notably
with lameness in this study. The duration of individual trough visits also rose with worsening
claw health, similar to the study of Lorenzini (2019), whereas meal duration displayed a
negative correlation with lameness. This could be related to the tendency of lame animals to
avoid making frequent short feeding stops. Once they make the effort to reach the feed trough,
they interrupt their feed intake less often, leading to larger quantities consumed in overall
shorter meals. The comparison between day and night values revealed no noteworthy
differences in feeding behaviour.

Kofler et al. (2023) examined the consequences of subacute ruminal acidosis induced by high
levels of concentrate feed and observed a decline of claw health in severe cases, along with a
higher occurrence of white line disease. Accordingly, higher concentrate feed rations can
promote symptoms associated with laminitis. Conversely, a reduced milking frequency due to
lameness (Van den Borne et al., 2022) can lead to a decreased concentrate feed intake, as it
is primarily offered through the milking robot. In this study, there was no correlation between
concentrate feed intake and lameness, even though lame animals left more concentrate feed
unclaimed compared to healthy animals. This lack of correlation may be due to the
considerable variability in concentrate feed rations across farms, with about half showing a
positive correlation between concentrate intake and lameness, while the other half exhibited a
negative correlation. Furthermore, it is possible that the incidence of feeding-related laminitis
symptoms on the project farms was relatively low.

2.2.5 Rumination

Regarding rumination, the systems displayed varying tendencies depending on lameness. The
smaXtec system showed no significant correlation with lameness, while rumination duration in
more severely lame animals slightly decreased with the SCR sensors and showed a significant
decrease with Nedap collars. The bolus and collar systems on RF1 both showed a decrease
in rumination for lame animals, while on RF3, the bolus rumination parameter was positively
associated with lameness, unlike the collar. According to smaXtec (2024), the bolus measures
the duration of rumination based on reticuloruminal contractions, which could result in
discrepancies compared to the head movements recorded by collars. In contrast, Capuzzello
et al. (2023) reported a relatively high correlation of 0.72 between rumination durations
recorded by the bolus and a collar. However, their study was limited to just six cows, which
may have prevented the identification of individual or farm-specific variations. Since
reticulorumen contractions are classified as continuous processes rather than discrete
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episodes of rumination (Hamilton et al., 2019), deriving accurate rumination duration from
these contractions can be challenging. The discrepancies observed in the bolus
measurements might therefore be attributed to variations in the intensity of reticulorumen
contractions among individual cows or animal-specific differences in how these contractions
correlate with rumination duration. Antanaitis, Juozaitiené, Urbonavicius et al. (2021) were able
to detect a decrease in rumination activities as early as seven days before the onset of clinical
symptoms of lameness, whereas Magrin et al. (2022) observed only a slight reduction in
rumination time in lame animals. Many other studies failed to establish a clear connection
between rumination and lameness. For example, Pavlenko et al. (2011) investigated SU and
DD lesions and noted that animals with these claw issues showed no differences in overall
rumination duration. Likewise, Weigele et al. (2018) studied the rumination behaviour of
moderately lame animals and detected no significant changes in the number, duration or speed
of rumination episodes. These results, along with our own findings, suggest that lameness
does not always negatively affect rumination, possibly because rumination primarily occurs
during the lying periods, which cause less discomfort for the claws. Significant reductions in
rumination duration may only be evident in animals in more severe lameness stages.

2.2.6 Lying behaviour

In the analysis of lying behaviour, it became evident that using C_LMS as a reference revealed
no significant differences in the lying durations recorded by ENGS and Nedap across the score
groups. However, when LMS was used as the reference, distinct differences emerged between
the groups. With LMS, the average lying duration initially decreased in unsound cows, followed
by a marked increase in LMS3 cows. In contrast, when using C_LMS, the increase in lying
duration among lame cows mostly disappeared, resulting in a negative correlation with
lameness. These findings suggest that lying duration significantly increased only in cases of
clear lameness, whereas cows with claw diseases that have not yet impacted gait did not
exhibit clear changes in lying behaviour. In contrast, the Lemmer-Fullwood pedometer data
indicated a clear and progressive rise in lying duration for both unsound and lame animals,
regardless of the reference score used. The discrepancy in lying times for unsound cows
between CDF2 and CDF4 versus RF1 and RF3 might be explained by differences in
measurement techniques of the pedometers, variations in housing conditions (Ito et al., 2010)
or animal-specific variations. It might be anticipated that already cows with a beginning claw
problem would increase their lying time as a compensatory mechanism to reduce pressure on
their claws and alleviate associated discomfort. Accordingly, Weigele et al. (2018) reported an
average increase of up to 45 minutes in lying time already for moderately lame cows and
Lorenzini (2019) noted a gradual rise in lying time as LMS increased. Yunta et al. (2012), on
the other hand, in line with our results, observed that moderate lameness does not significantly
influence the total lying time of cows but identified other significant patterns, such as
moderately lame cows rising later for feeding and lying down earlier thereafter. Notably, the
parameters derived from the ENGS values, especially the day-night ratio of lying time as well
as the daytime lying duration, exhibited a strong positive correlation with lameness, along with
an odds ratio exceeding 1. This indicates that in unsound cows, daytime lying time may
increase initially, while total lying time remains largely unchanged. These findings align with
those of Blackie et al. (2011), who detected a significantly higher lying time in the evening and
thus a greater daytime lying duration in lame cows. Grimm et al. (2019) already demonstrated
in their study that the day-night ratio of specific parameters can be highly indicative for the
detection of developing lameness. They also found a relationship with milk yield, revealing that
high performance increased the risk of lameness only when the total lying time of the cow was
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below the average (Grimm et al., 2019). Consequently, it is essential to consider other
influencing factors, such as climate (Thompson et al., 2019) or lactation number (Thompson
et al., 2019), when assessing lying behaviour. This study demonstrated a significant correlation
between lying duration and body temperature. The latter might in turn be affected by a hot barn
climate and may lead cows to spend more time standing in the aisles to help regulate their
body temperature (Allen et al., 2015). These additional effects could potentially play an even
greater role in the lying behaviour of unsound cows than the claw condition itself.

Consistent with findings from numerous other studies (Bernhard et al., 2020; Hut et al., 2021;
Solano et al., 2016), this research documented an increase in the duration of individual lying
bouts by ENGS associated with lameness. Bernhard et al. (2020) stated that the strain on
claws might be particularly intense during the processes of getting up and lying down,
prompting lame animals to try to reduce this discomfort. But in terms of the number of lying
bouts in this study, the data from Nedap and ENGS revealed a contrasting pattern compared
to results from Lemmer-Fullwood pedometers. Both Nedap and ENGS values demonstrated a
reduction in lying events as claw health status worsened, while the Lemmer-Fullwood sensors
showed a positive association with lameness and an increase, especially in the C_LMS2 cows.
The literature also presents an inconsistent picture of the relationship between lying bouts and
lameness, with some studies showing an increase (Frondelius, Lindeberg et al., 2022; King et
al., 2017), others a reduction (Bernhard et al., 2020; Lorenzini, 2019), and some displaying no
significant correlation (Navarro et al., 2013; Thompson et al., 2019; Yunta et al., 2012). Grimm
et al. (2019) attributed it to the fact that interactions of lying behaviour with other parameters
like feeding behaviour were often not considered in other studies. In their study, lame cows
only exhibited longer durations of individual lying bouts when their total feeding duration was
simultaneously reduced or when the proportion of daily feeding duration was increased. Parity
could also be an influencing factor, as cows in their first lactation typically demonstrate fewer
and shorter lying bouts (Solano et al., 2016).

2.2.7 Activity and heat behaviour

Among all seven sensor systems used in this study to monitor cow activity, a reduction in
activity associated with lameness was observed. Walking as well as standing increases the
pressure on the claws, which cows suffering from claw health issues might try to avoid.
Accordingly, numerous other studies also reported a reduction in activity levels for animals
affected by claw disorders (Hut et al., 2021; Magrin et al., 2022; Neirurerova et al., 2021; Van
Hertem et al., 2016). In this study, the activity reduction due to lameness was more pronounced
in some systems, such as the pedometers and the DeLaval and SCR neck collars, compared
to others like the bolus. Furthermore, the bolus detected on average an increase in activity
among unsound cows. The activity measured by the bolus on RF1, similar to the rumination
data, showed an opposite correlation with lameness compared to other farms. Thus, farm-
specific conditions and, particularly since not all animals on RF1 were equipped with a bolus,
animal-specific differences could have led to these discrepancies. The less pronounced
correlation in some sensors could also be attributed to differences in sensor placement and
measurement methods. For example, the bolus might struggle to accurately assess activity
due to interference from other reticuloruminal movements, compared to a pedometer mounted
directly on the leg of the cow. Furthermore, the DeLaval and Nedap neck collars, along with
the ENGS and Lemmer-Fullwood pedometers, did not reveal significant differences between
unsound and lame animals. On one hand, a reason could be that cows that do not yet show a
clear impaired gait only slightly reduce their activity, regardless of whether findings or pain are
present. On the other hand, activity levels might already decline in the development of
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lameness and may therefore not necessarily be markedly distinct in cases of clear, visible
lameness. The inactive time recorded by Nedap increased significantly in C_LMS2 cows in
this study, indicating already unsound cows demonstrated less head movement. Weigele et
al. (2018) documented a reduction of activity and neck activity in moderately lame cows, with
significantly lower activity levels compared to healthy cows in the hour following feeding.
Schindhelm (2016) did not observe a strong impact of lameness on activity, which was
attributed to the large individual variations in activity levels among animals. King et al. (2017)
demonstrated that lower activity can be linked to a higher lactation number and that cows with
a low BCS tend to move more during the day, while those with a high BCS are more active at
night. Additionally, activity levels decreased over the course of lactation and were associated
with both milk yield and lying behaviour (King et al., 2017). In this study, activity also
demonstrated strong correlations with other factors, including climate, body weight and feeding
behaviour. Furthermore, it is noticeable that often the day-night ratio and always the activity
during daytime displayed a stronger negative correlation with lameness than the total activity
per day, which might suggest that lameness primarily leads to a reduction in daytime activity.
This observation is consistent with those of King et al. (2017), who observed an increased
night-to-day activity ratio with lameness, and with Van Hertem et al. (2016), where daytime
activity was integrated as the most significant activity parameter in the model.

No differences were observed between lame and healthy animals in the oestrus probability
calculated by SCR. However, the restlessness factor by Lemmer-Fullwood was significantly
higher on average in healthy cows compared to unsound or lame cows, suggesting that some
animals may exhibit their oestrus symptoms less distinctly due to claw diseases.

2.2.8 Body temperature

Almost all body temperature parameters from the bolus showed a positive correlation with
lameness, indicating an increase in body temperature with the occurrence of claw diseases.
Notably, the average body temperature was particularly high in the C_LMS2 group across all
parameters. Tadich et al. (2010) also observed a higher rectal body temperature in lame
animals, but conversely, this effect was only evident in cases of severe lameness. Talvio
(2020) demonstrated that cows with SU had elevated rectal body temperatures compared to
healthy animals and these temperatures approached those of healthy animals as the lesions
healed over time. They concluded that SU not only leads to a local inflammatory reaction but
also induces a systemic response in the body. Harris-Bridge et al. (2018) used infrared
thermography and observed that in the case of a DD lesion, not only was the temperature of
the affected foot elevated, but also that of the contralateral hind foot. They also concluded that
a systemic inflammatory response triggered by these lesions could lead to an increased body
temperature. The observation that temperature was highest in unsound cows may be
attributable to the fact that certain inflammatory processes occur during the development of
lameness and prior to its manifestation. For example, sole haemorrhages typically become
apparent six to eight weeks after the initial inflammation of the corium (Kofler, 2014).

Since the boluses account for drinking behaviour in the body temperature parameters, drinking
could also be approximately compared within the different C_LMS groups. The temperature
differences between temperature without and temperature with drinking cycles showed
statistically significant differences, with an increase in C_LMS2 and a subsequent decrease in
C_LMS3 animals. This could be explained by the distinct association of different claw diseases
with drinking behaviour. According to Pavlenko et al. (2011), cows with DD exhibited a
significantly higher number of drinking events than healthy cows, while no significant difference
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was observed between cows with SU and healthy animals. Antanaitis, Juozaitienée,
Urbonavicius et al. (2021) observed a significant decrease in drinking time in lame animals,
which may reflect the reduction of water intake in lame cows detected in this study. This could
be attributed to the reluctance of these cows to put weight on their painful claws, thereby
reducing drinking time in a similar manner to the reduction in feeding time.

2.2.9 Climate

When considering the different seasons, this study actually showed that in winter the highest
percentage of C_LMS3 was observed. Autumn followed, while the lowest rate of lame cows
was observed in summer. This result contrasts with other studies, which reported higher
lameness prevalence during the summer months (Cook et al., 2007; Jewell et al., 2021;
Sanders et al., 2009). Cook et al. (2007) attributed this effect to the increased load on the claws
due to longer standing times as a result of heat stress during the summer months. Most
researchers that detected higher lameness prevalence during the winter focused on pasture-
based housing systems (Clarkson et al., 1996; Olechnowicz & Jaskowski, 2015), which are
not really comparable to the housing systems of the farms studied in this research. In housed
cattle without access to pasture, seasonal variations in lameness prevalence are often
reported to be minimal or absent, reflecting a more consistent level of claw health throughout
the year (Sjostrom et al., 2018; Tillack et al., 2024). Cook (2003), on the other hand, identified
a higher prevalence of lameness in winter in free-stall systems without sand. They attributed
this increase to the slower drying of walking surfaces in winter and the particular challenges of
managing slurry under cold temperatures. Haggman and Juga (2015) observed seasonal
variations between infectious and non-infectious claw diseases, with infectious conditions
being 18-53% more likely during winter months, while non-infectious conditions were more
common in summer and autumn. Similarly, Armbrecht et al. (2018) found that cattle without
pasture access had a higher incidence of DD, DS, IH, and WLD in winter, while HHE, SH, and
SU were more apparent in the summer. It should also be noted that this study recorded
significantly fewer LMS and C_LMS data in winter compared to the other three seasons, which
might also have contributed to the observed higher lameness percentages in this season.
Additionally, scoring sessions conducted in summer could have taken place before the peak
heat stress, meaning that any resulting deterioration in claw health may only have become
apparent at the following claw trimming date in autumn or winter. In conclusion, it is important
to highlight that these findings are primarily hypothetical, as data collection spanned only 1.5
years, limiting the representation of all seasons within this study. To enable clearer and more
definitive conclusions, future research should aim to include at least two representations of
each season.

Consistent with the results regarding seasonality, temperature and THI inside and outside the
barn showed a negative correlation with lameness, indicating that lameness was more likely
to occur at lower temperatures and lower THI values. Conversely, lower air humidity levels had
a protective effect against lameness. King et al. (2016) observed similar results, with each 10-
degree increase in temperature correlating with a reduction in lameness prevalence of over
6%. They also concluded that the higher lameness prevalence in winter could be related to the
development of claw diseases during the summer months and the delayed impact on the cow’s
walking behaviour. Unlike other countries, where the highest relative humidity might be
observed during the summer (Sanders et al., 2009), summers in Germany tend to be relatively
dry. This difference could help to explain the higher frequency of lameness observed in autumn
and winter, as in this study the average humidity levels in these two seasons were significantly
higher compared to spring and summer.
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3. Regression models

In indirect automatic lameness detection, where lameness is identified using animal-specific
sensor data, regression models have proven effective across various studies. For instance,
the first of the two preceding studies of this project achieved a high AUC of 0.94 with an ENET
beta model, demonstrating a sensitivity of 0.92 and a specificity of 0.83 (Grimm et al., 2019).
In the follow-up study by Lorenzini (2019), the same modelling approach, however, yielded
significantly worse results when applied to data across different farms. This led to the adoption
of generalised linear mixed regression models to account for random effects, which provided
a better fit for the animals-in-farms data structure and were thus also applied in the present
study. Following further development of the models, Lorenzini, Grimm, and Haidn (2021) were
able to attain an AUC of 0.82 by using this regression method.

Similar to Lorenzini (2019), in this study the farm as a random effect only explained a small,
negligible proportion of the data's variation. In contrast, incorporating individual animal
variance had a significant impact on the performance of the models. This is likely due to
individual animal differences being more pronounced across farms than the farm-specific
differences themselves, a finding supported by the observations of other studies that
highlighted considerable variability at the individual animal level (Alsaaod et al., 2012; Kramer
et al., 2009; Thorup et al., 2015; Weigele et al., 2018). Weigele et al. (2018) incorporated
different random effects as well and demonstrated that the variation between farms was less
pronounced compared to the variability observed between individual cows.

In the different models, three additional parameters could be identified as the random slopes
that most effectively improved the fit of the regression models: milk yield, days in milk, and
body temperature. Accordingly, these parameters exhibit considerable individual variability in
their association with lameness. Each cow may have a different baseline milk production, not
every cow with high milk production necessarily faces an increased risk of lameness, nor does
lameness always need to cause a uniform decline in milk yield for each cow. Similarly, certain
cows might be more susceptible to claw diseases at different times, such as shortly after
calving or towards the end of lactation. Additionally, for some cows, an increased body
temperature might be linked to lameness, while others may react to elevated external
temperatures or other diseases.

Across nearly all models, the observation was consistent that models using C_LMS as a
reference showed poorer performance compared to models using LMS. This could be
explained by the fact that C_LMS might classify animals as lame even if they do not yet exhibit
a clearly altered gait but only suspicious characteristics such as an arched back or a
compensatory posture. In these cases, the claw lesions might be so mildly pronounced that
they do not necessarily affect the cows' behaviour yet. Behavioural changes caused by chronic
lameness tend to emerge slowly and vary during the developing period (Gonzalez et al., 2008),
which could have also led to an inadequate detection in this study. Additionally, claw diseases,
which are harder to identify based on the locomotion score, such as DD (Tadich et al., 2010),
might also have a less or diverse impact on the behaviour and performance of cows (Amory
et al., 2008). Furthermore, false classification of healthy animals as lame, particularly due to
the pain test, could have also contributed to this discrepancy.

Examining the best models based solely on performance data (Model 1, Model 2) or on
performance data combined with activity data (Model 3, Model 4), it became evident that
several parameters were consistently featured. These parameters included milking frequency
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as the number of milkings or the maximum milking interval, lactation data such as days in milk
or lactation number and the milk yield. The interaction parameter between lactation number
and milk protein accounted for the fact that in this study animals with a higher lactation number
exhibited higher milk protein levels, an observation that aligns with the findings by VI¢ek et al.
(2016). The analysis of the interaction between activity and lactation number revealed that
cows with higher lactation numbers generally exhibited lower activity levels, with activity
declining more significantly due to lameness compared to cows in earlier lactations. Garcia et
al. (2014) also observed that the impact of lameness on performance and behaviour, especially
activity, may vary considerably depending on the lactation number.

The accuracy of the models based exclusively on performance data (Model 1, Model 2) was
limited, with an AUC of approximately 60%, and they demonstrated a very low sensitivity,
making it difficult to identify lame animals effectively. Similarly, Van Hertem et al. (2016) used
a regression model incorporating solely performance parameters such as milk yield, milk flow
or milking order and yielded comparable results, with an AUC of 0.603 and very low sensitivity.
Lemmens et al. (2023) assessed a random forest model using AMS and performance data to
detect mild lameness cases and achieved an AUC of 0.629. This suggests that performance
data alone, both in this study and in the literature, were not sufficient to detect lameness with
adequate accuracy. The variations in milk parameters do not seem to be significant enough to
indicate lameness without the inclusion of additional behavioural parameters.

Behaviour parameters thus needed to be incorporated in the model and activity was selected
as the first additional behavioural parameter. This approach was pursued as the most used
sensor systems on farms are those designed for heat detection and activity is the parameter
generally monitored by most animal-attached sensor systems. The activity model with C_LMS
as a reference (Model 3) showed almost no improvement compared to the performance model,
while the model with LMS as a reference (Model 4) demonstrated a significant enhancement,
with an AUC of 0.7. This observation, combined with the results of the bivariate analysis, where
no significant differences in activity were observed between most sensors for C_LMS2 and
C_LMS3, suggests that the activity patterns of lame cows in the LMS model (Model 4), all
showing an asymmetric gait, differed more significantly from healthy cows than those of
unsound walking animals, irrespective of pain reactions or visible lesions. Consequently,
relying solely on activity as the only behavioural parameter in the lameness detection model
appeared inadequate, as the aim must be to detect lame animals before they show obvious
signs of gait alteration. Moreover, the better LMS model (Model 4) also displayed significant
weaknesses, as with a specificity of 53%, only half of the healthy cows would be correctly
identified and farmers would receive too many false-positive lameness notifications. The
individual differences in baseline activity among cows (Miller & Schrader, 2005) may have
complicated the accurate detection of lameness when relying solely on this behavioural
parameter. Van Hertem et al. (2016) also achieved only a marginal increase in the AUC of
their model up to 0.669 by combining activity and milking data. The model presented by
Kamphuis et al. (2013), which was based on milking order and activity, reached an AUC of
0.676. While their model accuracy aligns with the result of this study, they observed only a
slight reduction in accuracy when mild lameness cases were incorporated (AUC: 0.664). In
contrast, de Mol et al. (2013) achieved high sensitivity and specificity, both above 80%, by
employing a cow-specific model that accounted for day-to-day alterations in activity and milking
parameters. Similarly, Taneja et al. (2020), using an alternative approach that categorised
cows into distinct activity groups, were able to detect lameness with an accuracy of 87% and
could identify lame animals up to three days prior to the appearance of visible symptoms.
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These findings indicate that while activity and performance parameters may not be suitable in
a generalised model applied to all animals, as explored in this study, clustering methods or
animal-specific models could lead to a significant improvement in lameness detection
accuracy.

The inclusion of one single additional behavioural parameter enhanced the performance of all
models. The best-performing model, which included performance, activity, and a supplemental
behavioural parameter, was a feeding model incorporating feeding behaviour data from the
weighing troughs on RF1 (Model 11, Model 18). This model showed strong results on test data
for both LMS (AUC: 0.85) (Model 11) and C_LMS (AUC: 0.87) (Model 18) as references. In
particular, the behavioural parameters feeding pace and weighing trough visits had a
significant impact on the model's strong performance. However, this model had two notable
limitations. First, it was tested on only one farm, and second, it relied on data from weighing
troughs, an expensive system typically reserved for research farms. Despite these limitations,
the results highlight the importance of a more nuanced assessment of feeding behaviour using
sensor systems that go beyond simply measuring feeding duration. The models, including only
feeding duration (Model 10, Model 17), which could be measured on three different farms
performed significantly worse, especially with C_LMS as a reference (Model 10). Technologies
like the ENGS pedometers, which unfortunately could not be used for consistently monitoring
feeding behaviour in our case but were successfully employed in the previous study (Lorenzini,
2019), may offer good potential for commercial dairy farms under different conditions. Many
other studies have also emphasised the significance of feeding behaviour recordings in relation
to lameness (Gonzalez et al., 2008; Grimm et al., 2019; Lorenzini, 2019; Thorup et al., 2016;
Weigele et al., 2018). In the study by Lemmens et al. (2023), a model based solely on feeding
duration, performance data and activity patterns achieved a comparable AUC of 0.695, similar
to the findings in this study.

Among the other regression models adding an individual behavioural parameter, it is notable
that after feeding behaviour, with LMS as the outcome variable, the models including lying
behaviour (Model 15) or body temperature (Model 19) achieved the highest AUC, while for
C_LMS, the models based on constitution (Model 7), meaning BCS and body weight, or climate
(Model 13) yielded the best performance. These observations further highlight that cows with
early-stage claw diseases, which are not yet visibly lame, showed different deviations in
parameters compared to those that were clearly lame. It is crucial to note that, for the C_LMS
models, the interaction between BCS and body weight was particularly significant, but this
parameter combination could only be detected on one single farm. However, other studies
have similarly shown that integrating BCS or body weight could elevate the AUC of their
models to between 0.72 and 0.85 (Borghart et al., 2021; Kamphuis et al., 2013; Lemmens et
al., 2023). This underscores the potential of these constitution-related parameters to enhance
lameness detection models across different farm settings. Furthermore, since climatic
conditions differ by location, the impact of climate on the lameness probability in the C_LMS
model (Model 13) observed in this study in Bavaria may not be universally applicable to other
regions. But as Lavrova et al. (2023) were also able to find a strong influence of season and
thus climatic conditions on lameness in their studies on six other dairy farms in Germany, there
seems at least to be a correlation in the local climate zone. The lying behaviour in the C_LMS
model (Model 8) performed significantly worse than in the LMS model (Model 15), as
anticipated from the bivariate analysis. This discrepancy underlines the assumption that lying
behaviour might change significantly only with more pronounced lameness. Neupane et al.
(2024) attributed the minor variations in lying behaviour in their study to the observation that
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lying times for lame cows were either very high or very low, which, according to the findings of
this study, may also be associated with different severity grades of lameness. The least
effective behaviour parameter for both LMS (Model 16) and C_LMS (Model 9) was rumination,
with many other studies also failing to find a significant association between rumination and
the likelihood of lameness (Lemmens et al., 2023; Thorup et al., 2016; Weigele et al., 2018).

Conversely, incorporating another additional parameter notably enhanced the AUC of the
C_LMS rumination model (Model 9) up to 0.78 when combining rumination with body
temperature (Model 25). This implies that even a less significant single behavioural parameter
like rumination can indeed contribute to the detection of lameness if combined with other
parameters. Similarly, the combination of lying behaviour and body temperature in the C_LMS
model (Model 21) yielded improved results, indicating that body temperature, when considered
alongside other behavioural parameters, can provide more accurate outcomes, particularly in
cases where lameness is not yet clearly detectable. Additionally, also for the LMS models, the
combination of lying behaviour and body temperature (Model 26) significantly increased the
model’s AUC. The best accuracies, with an AUC of 90% or more, were achieved by combining
feeding behaviour and lying behaviour in the C_LMS (Model 23) and the LMS models (Model
27, Model 28) or condition with feeding behaviour in the C_LMS model (Model 22). However,
as noted earlier, these models, except for Model 27, are solely based on weighing trough data
from a single farm.

The best models, which could be tested across multiple farms and did not include the more
detailed feeding behaviour data provided solely by weighing troughs, included performance,
activity, body temperature, climate, and for C_LMS feeding behaviour, as well as lying
behaviour for LMS. In this case, the LMS model (Model 6) attained an AUC of 0.89 on test
data, whereas the C_LMS model (Model 5) achieved an AUC of 0.82. The interaction term
including milk yield and season was incorporated in both models, highlighting that the
increased risk of lameness in high-producing cows seems to be more pronounced in winter
and spring. In contrast, during summer and autumn, the combination of heat stress and
lameness may further intensify the negative effects on milk yield. Lavrova et al. (2023) similarly
integrated various parameter classes like activity, lying behaviour, performance, and climate
into a mixed effects regression model, achieving a sensitivity of 77%. Besides, other studies
using different modelling approaches and combining multiple parameter classes demonstrated
similar outcomes as well. For example, Lemmens et al. (2023) obtained an AUC of 0.72 with
a random forest model, while the time series model by Neupane et al. (2024) accurately
identified the need for therapeutic claw trimming with an AUC of 0.80.

The results of this study also align with the accuracy reported in the two preceding studies,
which achieved an AUC of 0.94 on a single farm (Grimm et al., 2019) and 0.82 across five
farms (Lorenzini, Grimm, & Haidn, 2021). In both studies, the combination of feeding behaviour
and lying behaviour with performance parameters proved to be particularly significant in the
regression models, a pattern that was also confirmed by this study. However, when sensors
only capture feeding duration without more detailed feeding behaviour data, additional
parameters such as climate or body temperature become essential. Notably, while body
temperature has not yet been explored in relation to lameness detection models, this study
demonstrated that it can significantly contribute to lameness detection when combined with
other behavioural parameters.
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VIl. Conclusion

In conclusion, the results of this study indicate that lameness continues to be a significant issue
in dairy farming, also affecting Simmental cows in Bavaria. The pain test used in this study
revealed that nearly a quarter of the cows in pain showed no visible signs of claw disease,
indicating that some claw conditions may cause pain before they become visibly detectable.
The three-level LMS demonstrated good reliability, but several cows with pain or lesions were
not classified as lame, which suggests that not all claw diseases may have an equally
pronounced effect on the gait of the animals. These results emphasise the need for a multi-
component reference system, as used in this study, to ensure accurate detection of claw health
issues.

Many of the behaviour and performance parameters recorded in this study either influenced
lameness or were affected by it, including factors such as lactation status, milking frequency,
feeding behaviour or body temperature. However, the challenge of distinguishing between
cause and effect, which is particularly complex in parameters such as milk yield or body
condition score, often complicates the interpretation of the relationship between claw health,
behaviour and performance. Animals with mild or early-stage claw disorders, without visible
impairments in gait, may differ in their behavioural changes compared to visibly lame animals,
for example, potentially showing an altered body condition rather than changes in lying
behaviour. In addition, there was a notable variation among individual animals in the way the
parameters changed in relation to lameness. These factors need to be considered when
modelling data for lameness detection.

In this study, data from various sensor systems covering behaviour, performance, physiology,
and climate were successfully applied in generalised linear mixed models to detect lameness.
A lameness detection model based solely on performance data or a combination of
performance and activity data proved ineffective in this study, but adding even a single
additional behavioural parameter significantly improved the detection of lame animals.
However, in the end, it was the combination of various parameters, including performance,
behaviour, physiology and climate data, that allowed for highly accurate identification of lame
cows. Particularly, parameters related to feeding behaviour, lying behaviour, body
temperature, climate and constitution showed promising results for integration into lameness
detection models. The increased use of sensor technology on dairy farms and the promising
results of this study show that it is possible to help farmers automatically detect lame animals
using data collected for other purposes, thus enabling earlier treatment and more awareness
of the claw health situation on the farm.
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VIIl. Outlook

The next step would be to investigate whether the lameness detection models could also
identify claw health issues before they become visible to an observer in either the animal’s gait
or stance. Given that previous studies have demonstrated early alterations in behaviour
parameters (Mazrier et al., 2006; Norring et al., 2014; Taneja et al., 2020), indirect automatic
lameness detection might be suitable for an early diagnosis. For this purpose, the models
would need to be implemented on a farm where manual locomotion scoring by a farmer or
veterinary professional is conducted on a regular basis to evaluate whether the models alert
for lameness before the observer and, if so, to determine how much sooner they could detect
a change in claw health status. Another approach would be to investigate whether different
lameness detection models tailored for specific claw diseases, such as one for horn-associated
lesions and another for claw skin-associated lesions, could improve the overall detection of
claw diseases. Furthermore, efforts should be directed towards improving the performance
accuracy of lameness detection. The data collected in this study might be suitable for time
series analyses, as multiple measurements were taken over equivalent time periods. Time
series analysis enables the comparison of an individual animal's behaviour across various time
periods (Neupane et al., 2024), facilitating the identification of deviations. In contrast to a model
that evaluates all animals at a single point in time, time series analysis could provide a more
nuanced understanding of each animal's specific changes and trends (Neupane et al., 2024).
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IX. Summary

Lameness continues to be a widespread, global issue and represents one of the most
significant production-related diseases in dairy farming, alongside udder diseases and fertility
issues. Investigating the aetiology of lameness demands the consideration of individual cow
factors such as age, breed or performance, as well as management practices and housing
conditions. Since lameness is a manifestation of pain, it significantly impacts animal welfare
and can influence various behaviours in cows, including their activity levels, feeding behaviour,
and lying patterns, thereby preventing them from engaging in their natural behaviours. From
an economic perspective, lameness imposes substantial costs on dairy farmers due to
treatment costs, production losses or potential culling of affected animals.

Regular and systematic visual lameness detection in livestock demands a considerable
amount of time, which farmers often struggle to spare in their daily routines. Moreover, the
accuracy of manual lameness detection is significantly influenced by the observer's expertise
and experience. But early detection of claw health issues is critical, as it enables timely
intervention and helps to prevent further deterioration of the condition.

In this context, automated lameness detection systems present a promising solution for
achieving a more objective and precise identification of lame animals. The field of Precision
Livestock Farming (PLF) is gaining increasing attention, with sensor systems and digital
technologies being deployed in various ways within and around barns to, for instance, enhance
animal health and ease the daily workload of farmers. While these systems may present
potential challenges, such as system failures, data security concerns and high investment
costs, they can also alleviate certain tasks for farmers, streamline herd monitoring and facilitate
the identification of various health issues.

Unlike simpler systems such as automatic heat detection, automated lameness detection
presents a greater complexity as it involves numerous interrelated factors that both contribute
to and result from lameness. Automated lameness detection systems can be categorised into
direct systems, which rely on kinetic, kinematic, or thermographic methods, and indirect
systems, which use performance and behavioural data recorded by animal-specific sensor
systems. The latter offer the benefit of utilising sensor systems already installed in the barn to
monitor various health conditions, enabling farmers to avoid additional investments.

The two preceding studies regarding indirect automatic lameness detection, also conducted at
the Institute for Agricultural Engineering and Animal Husbandry of the Bavarian State
Research Centre for Agriculture (LfL), revealed that developed algorithms containing
behaviour and performance data could accurately distinguish between lame and non-lame
cows with a probability of 82% or greater. In these studies, the only animal-attached sensors
utilised were pedometers, which recorded activity, lying, and feeding behaviours.

The objective of this study, as part of the experimental field DigiMilch, was to refine and
enhance these algorithms using data from various sensor systems installed on eight Bavarian
dairy farms. It was aimed to determine which parameters from different sensor systems or their
combinations were best suited for indirect automatic lameness detection. Furthermore, an
additional aim was to validate the three-level locomotion score (LMS) created in the previous
project with the new data.
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With three research farms and five commercial farms involved, more farms participated in the
investigation than in the preceding projects. All farms utilised milking robots by different
manufacturers along with varying sensor systems attached to the animals. Data from three
different pedometers, three neck tags, a bolus, a BCS camera, scales, weighing troughs and
the LKV could be incorporated into the study alongside the milking robot data.

The necessary reference data regarding claw health were collected during 20 claw trimming
dates conducted between March 2021 and October 2022. During the claw trimming itself,
visible findings were documented and a pain test was performed on each claw to identify
animals that were experiencing pain without any visible signs. Additionally, the growth in the
sole centre was evaluated using a three-level scoring system. Furthermore, the cow’s gait was
assessed through video recordings by using the three-level LMS. Cameras were accordingly
installed at the exit of the milking robot, allowing a retrospective locomotion scoring for up to
21 days prior to the claw trimming date to track the developments of lameness cases. Both
intra-rater and inter-rater reliability were calculated for the three-level LMS. Furthermore, a
lesion score (LS) was developed for additional validation, based on a combination of visible
findings and the pain assessment. The reference data were ultimately consolidated into a
corrected locomotion score (C_LMS), where all LMS2 cases were elevated to LMS3 if
accompanied by either a positive pain test or visible findings.

Sensor data were either automatically transferred to an SQL database, depending on interface
availability, or manually exported. These data were then merged with the reference data in
RStudio to create daily datasets for each farm, which were later used to generate daily records
based on different parameter categories. The best possible generalised linear mixed
regression models were developed for each parameter class, using both the LMS and the
C_LMS as a reference.

The lameness prevalence ranged from 1.9% to 10% when only visibly lame animals were
considered. However, due to the large number of LMS2 cases, the prevalence increased to
25%-36.7% when all non-sound animals were included. Lameness developed in all cases
within two weeks, with a median onset of three days. In total, the pain test was positive in 226
cases, 23.5% of which showed no visible signs of findings. Excessive sole centre overgrowth
could be documented in 64.9% of all claws. The most frequent findings were diffuse sole
haemorrhages with a percentage of 30%, followed by digital dermatitis and white line fissures.
The majority of findings, pain responses and overgrown sole centres was detected in the hind
legs.

The LMS exhibited high intra-rater (kw = 0.89, Cl: 0.84-0.94) and inter-rater reliability (kw= 0.72,
Cl: 0.64-0.81) in this study. However, only moderate agreement was achieved between the LS
and the LMS (kw = 0.44, CI: 0.40-0.50). In particular, many cows with a higher LS, indicating a
pain reaction and/or visible findings, were classified as sound based on the LMS.

The automatically recorded parameters were analysed for differences between the LMS and
C_LMS groups. The results indicated that most of the automatically recorded parameters, such
as milking frequency, feeding behaviour and body temperature, differed in lame animals
significantly from those in healthy animals. However, the same differences were not always
observed when comparing the LMS and C_LMS groups. For instance, animals with a
noticeably irregular gait (LMS3) exhibited a statistically significant increase in lying duration
compared to those classified as healthy. This difference disappeared when animals without
visible lameness, but with findings or a positive pain test, were included in this group
(C_LMS3).
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The generalised linear mixed regression models that included only performance data achieved
an area under the curve (AUC) of approximately 0.6. This could only be improved to a
maximum of 0.7 by adding activity data. However, the inclusion of just one additional
automatically recorded parameter increased the accuracy to over 80%. The best models
across multiple farms incorporated not only performance and activity parameters but also the
parameter classes feeding behaviour or lying behaviour in combination with body temperature
and climate, achieving an AUC of 0.82 for C_LMS and 0.89 for LMS. The overall best
performance for both C_ LMS (AUC: 0.91) and LMS (AUC: 0.93) was attained using the
weighing trough data on RF1 in combination with lying behaviour. In the C_LMS model, the
combination of constitution and feeding behaviour also yielded particularly good results on the
same farm (AUC: 0.90).

The results provide insights into the prevalence of lameness in Bavarian dairy farms and the
most commonly occurring claw diseases. The fact that almost a quarter of the painful animals
showed no visible findings suggests that some claw diseases may cause pain before they are
visually detectable by the observer. The LMS demonstrated high comparability; however, the
relatively large proportion of animals with pain or findings that were not identified as lame may
be attributed to the fact that certain claw diseases, such as digital dermatitis, could have a less
pronounced impact on the LMS.

Developing claw lesions or mild cases might have different effects on automatically recorded
parameters compared to clearly visible lameness. For example, lying time may only increase
in cases of advanced lameness, whereas body condition score and body weight in combination
might provide an earlier indication of lameness.

Models relying solely on performance data or those that include both performance and activity
data failed to achieve adequate accuracy, likely due to significant individual variation in activity
levels among the animals. However, by adding further parameters, a high level of performance
in the automated lameness detection models was achieved. The most successful models
incorporated parameters such as feeding pace and trough visits, indicating that a more detailed
recording of feeding behaviour by sensor systems could significantly improve automatic
lameness detection. Even the inclusion of single additional parameters like feeding behaviour,
lying behaviour or body temperature already enhanced model accuracy, but it was the
combination of various parameters that most effectively identified lame animals. These results
highlight the critical need for integrating data from various sensors for complex health concerns
such as lameness, as a multifaceted approach is essential for the accurate detection and
management of this condition.

The project is supported by funds of the Federal Ministry of Food and Agriculture (BMEL)
based on a decision of the Parliament of the Federal Republic of Germany. The Federal Office
for Agriculture and Food (BLE) provides coordinating support for digitalisation in agriculture as
funding organisation.
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X. Zusammenfassung

Lahmheiten stellen nach wie vor ein weit verbreitetes, globales Problem dar und gehéren
neben Eutererkrankungen und Fruchtbarkeitsproblemen zu den bedeutendsten
produktionsbedingten Erkrankungen in der Milchwirtschaft. Die Suche nach auslésenden
Faktoren erfordert die Berlicksichtigung sowohl tierindividueller Faktoren wie Alter, Rasse oder
Milchleistung als auch von Managementpraktiken und Haltungsbedingungen. Da Lahmheiten
eine Ausdrucksform von Schmerz sind, haben sie erhebliche Auswirkungen auf das Tierwohl
und koénnen verschiedenste Verhaltensweisen der Kuihe beeinflussen, einschlieflich
Aktivitatsniveau, Fress- und Liegeverhalten, wodurch diese daran gehindert werden, ihren
natirlichen Verhaltensweisen nachzugehen. Aus wirtschaftlicher Sicht verursachen
Lahmheiten erhebliche Kosten fir Landwirte durch Behandlungen, Leistungsausfalle oder die
manchmal notwendige Keulung der betroffenen Tiere.

Die regelmaliige und systematische visuelle Lahmheitserkennung bei Nutztieren erfordert
einen erheblichen Zeitaufwand, dem die Landwirte in ihrem taglichen Arbeitsalltag oft nur
schwer nachkommen konnen. Darlber hinaus wird die Genauigkeit der manuellen
Lahmheitserkennung erheblich von der Sachkenntnis und Erfahrung des Beobachters
beeinflusst. Eine friihzeitige Erkennung von Klauengesundheitsproblemen ist jedoch von
entscheidender Bedeutung, da sie ein rechtzeitiges Eingreifen ermoéglicht und dazu beitragt,
eine weitere Verschlechterung des Zustands zu verhindern.

In diesem Zusammenhang stellen automatische Lahmheitserkennungssysteme eine
vielversprechende Lésung fir eine objektivere und prazisere ldentifikation lahmer Tiere dar.
Der Bereich der Prazisionslandwirtschaft (PLF) gewinnt zunehmend an Bedeutung, wobei
Sensorsysteme und digitale Technologien auf unterschiedliche Weise in Innen- und
AuRenwirtschaft eingesetzt werden, um zum Beispiel die Tiergesundheit zu verbessern oder
die tagliche Arbeitsbelastung der Landwirte zu reduzieren. Wahrend diese Systeme
potenzielle Herausforderungen hinsichtlich Systemausfallen, Datensicherheit und hoher
Investitionskosten mit sich bringen, kdnnen sie den Landwirten auch bestimmte Aufgaben
abnehmen, die Herdenuberwachung optimieren und die Erkennung verschiedener
Gesundheitsprobleme erleichtern.

Im Gegensatz zu einfacheren Systemen wie der automatischen Brunsterkennung ist die
automatische Lahmheitserkennung komplexer, da sie zahlreiche zusammenhangende
Faktoren umfasst, die sowohl eine Lahmheit beglinstigen als auch daraus resultieren kénnen.
Automatische Lahmheitserkennungssysteme lassen sich in direkte Systeme, die sich auf
kinetische, kinematische oder thermografische Methoden stlitzen, und indirekte Systeme
unterteilen, die Leistungs- und Verhaltensdaten nutzen, die von tierindividuellen
Sensorsystemen aufgezeichnet werden. Letztere bieten den Vorteil, dass vorhandene
Sensorsysteme im Stall genutzt werden kénnen, um verschiedene Gesundheitszustande zu
Uberwachen, und somit zusatzliche Investitionen vermieden werden konnen.

Die beiden vorangegangenen Studien zur indirekten automatischen Lahmheitserkennung, die
ebenfalls am Institut fir Landtechnik und Tierhaltung der Bayerischen Landesanstalt fir
Landwirtschaft (LfL) durchgefuhrt wurden, ergaben, dass die mit Hilfe von Verhaltens- und
Leistungsdaten entwickelten Algorithmen mit einer Wahrscheinlichkeit von 82 % oder mehr
zwischen lahmen und nicht lahmen Kihen unterscheiden konnten. In diesen Studien wurden
als einzige am Tier angebrachte Sensoren Pedometer verwendet, die die Aktivitat sowie das

Liege- und Fressverhalten aufzeichneten.
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Ziel dieser Studie im Rahmen des Experimentierfelds DigiMilch war es, diese Algorithmen mit
Hilfe von Daten aus verschiedenen Sensorsystemen, die in acht bayerischen
Milchviehbetrieben installiert waren, zu verfeinern und zu verbessern. Es sollte ermittelt
werden, welche Parameter aus den unterschiedlichen Sensorsystemen oder deren
Kombinationen sich am besten zur indirekten automatischen Lahmheitserkennung eignen. Ein
weiteres Ziel war es, den im Vorgangerprojekt entwickelten dreistufigen Locomotionscore
(LMS) mit den neuen Daten zu validieren.

Mit drei Versuchsbetrieben und fiunf Praxisbetrieben konnten mehr Betriebe in die
Untersuchung miteinbezogen werden als in den vorhergehenden Projekten. Alle Betriebe
verwendeten Melkroboter verschiedener Hersteller in Verbindung mit unterschiedlichen an den
Tieren angebrachten Sensorsystemen. So konnten neben den Melkroboterdaten auch Daten
von drei verschiedenen Pedometern, drei Halsbandsensoren, einem Bolus, einer BCS-
Kamera, Waagen, Wiegetrogen und dem LKV in die Studie einflielen.

Die erforderlichen Referenzdaten zur Klauengesundheit wurden innerhalb von 20
Klauenpflegeterminen im Zeitraum vom Marz 2021 bis Oktober 2022 erhoben. Bei der
Klauenpflege selbst wurden die sichtbaren Befunde dokumentiert und es wurde ein
Schmerztest an jeder Klaue durchgeflihrt, um Tiere zu identifizieren, die trotz Abwesenheit
sichtbarer Klauenldsionen schmerzhaft waren. AuRerdem wurde das Uberwachsen der
Hohlkehlung anhand eines dreistufigen Punktesystems bewertet. Der Gang der Kuh wurde
anhand von Videoaufzeichnungen mit Hilfe des dreistufigen LMS bewertet. Dementsprechend
wurden Kameras am Ausgang des Melkroboters installiert, die eine retrospektive Beurteilung
des Gangbilds bis zu 21 Tage vor dem Klauenpflegetermin ermoglichten, um auch die
Entwicklung der Lahmheiten nachverfolgen zu kénnen. Sowohl die Intra-Rater- als auch die
Inter-Rater-Reliabilitdt wurden fir den dreistufigen LMS berechnet. Dariiber hinaus wurde zur
zusatzlichen Validierung ein Lasions-Score (LS) entwickelt, der auf einer Kombination aus
sichtbaren Befunden und der Schmerzprobe beruhte. Die Referenzdaten wurden schlie3lich
zu einem korrigierten Locomotionscore (C_LMS) konsolidiert, bei dem alle LMS2-Falle auf
LMS3 hochgestuft wurden, wenn sie mit einem positiven Schmerztest oder sichtbaren
Befunden einhergingen.

Die Sensordaten wurden je nach Verfugbarkeit der Schnittstelle entweder automatisch in eine
SQL-Datenbank Ubertragen oder manuell exportiert. Diese Daten wurden dann in RStudio mit
den Referenzdaten zusammengefihrt, um Tagesdatensatze fir jeden Betrieb zu erstellen, die
spater in Tagesdatensatze basierend auf den verschiedenen Parameterkategorien
umgewandelt wurden. Fur jede Parameterklasse wurden die bestmoglichen generalisierten
linearen gemischten Regressionsmodelle entwickelt, wobei sowohl der LMS als auch der
C_LMS als Referenz verwendet wurden.

Die Lahmheitspravalenz reichte von 1,9 % bis 10 %, wenn nur deutlich lahme Tiere
bertcksichtigt wurden. Aufgrund der groRen Anzahl an LMS2-Fallen stieg die Pravalenz
jedoch auf 25 % bis 36,7 %, wenn alle nicht gesunden Tiere miteinbezogen wurden. Eine
Lahmbheit entwickelte sich in allen Fallen innerhalb von zwei Wochen, im Median dauerte es
drei Tage. Insgesamt war der Schmerztest in 226 Fallen positiv, wobei 23,5 % der
schmerzhaften Tiere keine sichtbaren Anzeichen einer Klauenerkrankung zeigten. Eine stark
Uberwachsene Hohlkehlung konnte bei 64,9 % aller Klauen dokumentiert werden. Die am
haufigsten auftretenden Befunde waren diffuse Sohlenblutungen mit einem Anteil von 30 %,
gefolgt von Dermatitis digitalis und Weilke-Linie-Defekten. Die meisten Befunde,
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Schmerzreaktionen und Uberwachsene Hohlkehlungen konnten an den Hinterbeinen
festgestellt werden.

Der LMS zeigte in dieser Studie eine hohe Intra-Rater- (kw= 0,89, KI: 0,84-0,94) und Inter-
Rater-Reliabilitat (kw=0,72, KI: 0,64-0,81). Es wurde jedoch nur eine moderate
Ubereinstimmung zwischen dem LS und dem LMS erzielt (kw= 0,44, Kl: 0,40-0,50).
Insbesondere wurden viele Kihe trotz eines héheren LS aufgrund einer Schmerzreaktion
und/oder sichtbaren Befunden auf der Grundlage des LMS als gesund eingestuft.

Die automatisch erfassten Parameter wurden auf Unterschiede zwischen den LMS- und
C_LMS-Gruppen untersucht. Die Ergebnisse zeigten, dass sich die meisten der automatisch
aufgezeichneten Parameter, wie Melkfrequenz, Fressverhalten und Koérpertemperatur, bei
lahmen Tieren signifikant von denen gesunder Tiere unterschieden. Beim Vergleich der LMS-
und C_LMS-Gruppen wurden jedoch nicht immer die gleichen Unterschiede beobachtet. So
wiesen Tiere mit einem sichtbar unregelmalligen Gang (LMS3) eine statistisch signifikant
hdhere Liegedauer auf als die als gesund eingestuften Tiere. Dieser Unterschied ging jedoch
verloren, wenn Tiere ohne sichtbare Lahmbheit, aber mit Befund oder positivem Schmerztest
in diese Gruppe aufgenommen wurden (C_LMS3).

Die generalisierten linearen gemischten Regressionsmodelle, die nur Leistungsdaten
enthielten, erreichten eine Flache unter der Kurve (AUC) von etwa 0,6. Dieser Wert konnte
durch Hinzufiigen von Aktivitdtsdaten nur auf maximal 0,7 verbessert werden. Die
Einbeziehung von nur einem zusatzlichen automatisch erfassten Parameter konnte die
Genauigkeit jedoch auf Gber 80 % erhdhen. Die besten Modelle Gber mehrere Betriebe hinweg
beinhalteten nicht nur Leistungs- und Aktivitdtsparameter, sondern auch die Parameterklassen
Fressverhalten oder Liegeverhalten in Kombination mit Korpertemperatur und Klima und
erreichten eine AUC von 0,82 fur den C_LMS und 0,89 fir den LMS als Referenz. Die
insgesamt beste Leistung sowohl fur C_LMS (AUC: 0,91) als auch fir LMS (AUC: 0,93) wurde
mit den Wiegetrogdaten von RF1 in Kombination mit dem Liegeverhalten erreicht. Im C_LMS-
Modell lieferte auRerdem die Kombination aus Konstitution und Fressverhalten auf demselben
Betrieb besonders gute Ergebnisse (AUC: 0,90).

Die Ergebnisse geben Aufschluss uber die Pravalenz von Lahmheiten in bayerischen
Milchviehbetrieben und die am haufigsten auftretenden Klauenerkrankungen. Die Tatsache,
dass fast ein Viertel der schmerzhaften Tiere keine sichtbaren Befunde zeigte, deutet darauf
hin, dass einige Klauenerkrankungen Schmerzen verursachen kdnnen, bevor sie fur den
Beobachter visuell erkennbar sind. Der LMS wies eine hohe Vergleichbarkeit auf; der relativ
grolRe Anteil an Tieren mit Schmerzen oder Befunden, die nicht als lahm identifiziert werden
konnten, kénnte jedoch darauf zurtickzuflhren sein, dass bestimmte Klauenkrankheiten, wie
z. B. die Dermatitis digitalis, einen weniger ausgepragten Einfluss auf den LMS haben.

Lahmheiten beeinflussen viele verschiedene Aspekte im Leben einer Kuh, doch das
Hauptproblem liegt oft in der schwierigen Unterscheidung zwischen Ursache und Wirkung.
Sich entwickelnde Klauenlasionen oder leichte Falle kdbnnten auRerdem andere Auswirkungen
auf die automatisch erfassten Parameter haben als deutlich sichtbare Lahmheiten. So zeigte
in dieser Studie beispielsweise die Liegezeit nur bei fortgeschrittener Lahmheit eine
Verlangerung, wahrend der Body-Condition-Score und das Kérpergewicht in Kombination
frGhere Hinweise auf Klauenerkrankungen lieferten.

Modelle, die sich ausschliellich auf Leistungsdaten stitzten, oder solche, die sowohl
Leistungs- als auch Aktivitdtsdaten enthielten, erreichten keine ausreichende Genauigkeit,

143



was unter anderem auf die erheblichen individuellen Unterschiede im Aktivitatsniveau der
Tiere zurlckzufihren sein kann. Durch Hinzufiigen weiterer Parameter wurde jedoch ein
hohes Leistungsniveau der automatischen Lahmheitserkennungsmodelle erreicht. Die
erfolgreichsten Modelle enthielten Parameter wie Fressgeschwindigkeit und Trogbesuche,
was darauf hindeutet, dass eine detailliertere Aufzeichnung des Futteraufnahmeverhaltens
durch Sensorsysteme die automatische Lahmheitserkennung erheblich verbessern kénnte.
Selbst die Einbeziehung einzelner zusatzlicher Parameter wie Futteraufnahmeverhalten,
Liegeverhalten oder Kérpertemperatur verbesserte bereits die Modellgenauigkeit, aber es war
die Kombination verschiedener Parameter, die am effektivsten lahme Tiere identifizierte. Diese
Ergebnisse verdeutlichen, wie wichtig die Integration von Daten aus verschiedenen Sensoren
fur komplexe Gesundheitsprobleme wie Lahmheit ist, da ein multifaktorieller Ansatz fir die
genaue Erkennung und Behandlung dieser Erkrankung unerlasslich ist.

Die Foérderung des Vorhabens erfolgt aus Mitteln des Bundesministeriums fir Erndhrung und
Landwirtschaft (BMEL) aufgrund eines Beschlusses des deutschen Bundestages. Die
Projekttragerschaft erfolgt Uber die Bundesanstalt fir Landwirtschaft und Ernahrung (BLE) im
Rahmen des Programms Experimentierfelder in der Landwirtschaft.
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XIll. Appendices

Table 32: Claw trimming dates used for data analysis

2021 2022
RF1 11/03, 13/07, 29/11 04/04, 11/10
RF2 06/05 03/02, 02/06
RF3 11/05, 21/09 02/02, 14/07
CDF1 / 24/05
CDF2 / 07/02
CDF3 20/09, 15/12 15/07
CDF4 18/11-19/11 11/04-12/04
CDF5 / 21/02-22/02

Table 33: All parameters recorded manually and automatically during the study

Code Parameter | Description | Format Unit I Farms
sources
Animal Characteristics
CowlD Cow Short factor LKV, HIT, | All
number identification every farms
number of system
the cow on
the specific
farm
ETN Ear Tag Unique factor LKV, HIT, | All
number identification every farms
number on system
the ear tag of
the cow
Date Date Date of the date YYYY- | Every All
data mm-dd | system farms
collection
Breed Breed Breed of the | factor LKV, All
cow number farms
was
assigned
to each
breed
Date of Date of birth | Birth date of | date YYYY- | LKV, HIT | All
birth the cow mm-dd farms
Milking
Status_of repr | Status of The character Calculated | All
oduction reproductio | reproductive based on | farms
n status of the daily milk
cow, for yield,
example lactation
lactating or number
dry and days
in milk
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Code

Parameter

Description

Format

Unit

Data
sources

Farms

Lactation_num
ber

Parity/Lacta
tion number

Number of
the current
lactation of
the cow

integer

LKV

All
farms

Days_in_milk

Days in milk

Number of
days since
calving

integer

Calculated
based on
last
calving
date

All
farms

Last date of
calving

Last calving
date

Last calving
date of the
cow

date

YYYY-
mm-dd

LKV

All
farms

LKV_milk_yiel

d_in_last lacta

tion

Milk yield in
last
lactation

Total milk
yield of the
cow in the
last lactation
measured
during the
Milk
performance
tests

numeric

kg

LKV

Except
for
CDF1

LKV_test_date

Milk
performanc
e test date

Date of the
respective
milk
performance
testing

date

YYYY-
mm-dd

LKV

All
farms

LKV_daily_mil
k_yield

Daily milk
yield

Average daily
milk yield as
a result of the
monthly milk
performance
testing

numeric

kg

LKV

All
farms

LKV _urea

Urea

Average daily
urea content
in milk as a
result of the
monthly milk
performance
testing

integer

ppm
(parts
per
million)

LKV

All
farms

LKV_somatic_
cell_count

Somatic cell
count

Average daily
somatic cell
count of the
milk as a
result of the
monthly milk
performance
testing

integer

thousa
nd
cells/ml

LKV

All
farms
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Data

Code Parameter | Description | Format Unit Farms
sources
LKV_fat Fat Average daily | numeric | % LKV All
fat content in farms
milk as a
result of the
monthly milk
performance
testing
LKV_protein Protein Average daily | numeric | % LKV All
protein farms
content in
milk as a
result of the
monthly milk
performance
testing
LKV _fat_protei | Fat-protein | Average daily | numeric Calculated | All
n_ratio ratio fat-protein based on | farms
ratio in milk the fat and
as a result of protein
the monthly content in
milk the milk
performance measured
testing during the
milk
performan
ce testing
by LKV
LKV_lactose Lactose Average daily | numeric | % LKV All
lactose farms
content in
milk as a
result of the
monthly milk
performance
testing
Milkings Milkings Number of integer n Milking All
milkings on robot farms
current day
Maximum_milk | Maximum Longest integer mins Calculated | All
ing_interval milking interval based on | farms
interval between two milking
consecutive visits of
milkings on the milking
current day robot
Robot_daily_m | Daily milk Sum of all numeric | kg Milking All
ilk_yield yield milkings on Robot farms

current day
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Data

Code Parameter | Description | Format Unit sources Farms
Robot_milk_yi | Total milk Accumulated | numeric | kg Milking RF1
eld_in_current | yield in milk yields robot
_lactation current within the

lactation current
lactation until
the
respective
day
Robot_milk_yi | Total milk Accumulated | numeric | kg Milking RF2,
eld_in_last_lac | yield in last | milk yields robot RF3,
tation lactation within the last CDF1,
lactation CDF2,
CDF3,
CDF4,
CDF5
Robot_daily _m | Daily milk Average daily | numeric | kg Milking RF2,
ilk_yield_in_las | yield in last | milk yield robot RF3,
t lactation lactation within the last CDF1,
lactation CDF5
Robot_fat Fat Average daily | numeric | % Milking RF2,
fat content in robot RF3,
milk CDF1,
CDF2,
CDF4,
CDF5
Robot_protein | Protein Average daily | numeric | % Milking RF2,
protein robot RF3,
content in CDF1,
milk CDF2,
CDF4,
CDF5
Robot_fat_prot | Fat-protein | Average daily | numeric Calculated | RF2,
ein_ratio ratio fat-protein based on | RF3,
ratio in milk the fat and | CDF1,
protein CDF2,
contentin | CDF4,
the milk CDF5
measured
by the
milking
robot
Robot_lactose | Lactose Average daily | numeric | % Milking RF2,
lactose robot RF3,
content in CDF1,
milk CDF2,
CDF4,
CDF5
Robot_somatic | Somatic cell | Average daily | numeric | thousa | Milking RF2,
_cell_count count somatic cell nd robot RF3,
count in milk cells/ml CDF1
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Data

Code Parameter | Description | Format Unit Farms
sources
Robot_effect | Effect of the | Index numeric Milking RF2,
of scc somatic cell | displaying robot RF3,
count the effect of CDF1
the somatic
cell count of
the cow on
the whole
herd
Robot_blood Blood in Amount of numeric | cells/uL | Milking RF1,
milk blood in the percent | robot CDF3
milk
Robot_blood_ | Blood in Amount of numeric | % Milking CDF2,
percent milk blood in the robot CDF4
milk
Colour_lv, Milk colour | Colour of the | factor Milking RF2,
Colour _rv, milk of every robot, RF3,
Colour_lIh, milk quarter number CDF1,
Colour_rh was CDF5
assigned
to each
possible
milk colour
Milking_tempe | Milk Average daily | numeric | °C Milking RF2,
rature temperature | temperature robot RF3,
of the milk CDF1,
CDF5
MDi Mastitis- Index numeric Milking RF1,
Detection- combining robot CDF3
Index blood in milk, (DelLaval)
milking
interval and
conductivity
Milking_flow Average Average rate | numeric | kg/min | Milking RF1,
milking flow | of milk robot RF2,
expulsion RF3,
from the CDF1,
udder during CDF3,
the milking CDF5
process
Max_milking_fl | Maximum Maximum numeric | kg/min | Milking RF1,
ow milking flow | rate of milk robot RF2,
expulsion RF3,
from the CDF1,
udder during CDF3,
the milking CDF5
process
Conduct_lv, Median Ability of milk | numeric | mS/cm | Milking RF1,
Conduct_rv, conductivity | to conduct robot CDF2,
Conduct_lh, of the milk electrical CDF3,
Conduct_rh in every current, CDF4
quarter reflecting its
composition
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Code Parameter | Description | Format Unit DEiE Farms
sources
Conduct_lely_| | Median Ability of milk | integer propriet | Milking RF2,
Vv, conductivity | to conduct ary robot RF3,
Conduct_lely_r | of the milk electrical measur | (Lely) CDF1,
Vv, in every current, ement CDF5
Conduct_lely | | quarter reflecting its unit
h, composition
Conduct_lely_r
h
Constitution
Robot BCS Body Numerical numeric Milking RF1
condition assessment robot
score of the body (DelLaval)
fat reserves
of the cow on
a scale from
1to5
Body_ weight Body weight | Total body numeric | kg Weighing | RF1,
weight of the troughs, CDF5
cow milking
robot
Feeding
WT_feed_intak | Feed intake | Total of numeric | kg Weighing | RF1
e individual Troughs
feed intake
amounts
Concentrated_ | Intake of Intake numeric | kg Milking All
feed_intake concentrate | amount of robot farms
d feed concentrated
feed
Concentrated_ | Remaining | Remaining numeric | kg Milking RF2,
feed_remains | concentrate | amount of robot RF3,
d feed concentrated CDFA1,
feed CDF5
WT feeding_d | Feeding Total numeric | mins Weighing | RF1
uration duration duration of all Troughs
visits to the
feeding
throughs
WT _feeding_d | Feeding Duration of numeric | mins Weighing | RF1
uration_day duration all visits to Troughs
during the feeding (Calculate
daytime throughs d)
during
daytime
WT_feeding_d | Feeding Ratio of the numeric Weighing | RF1
uration_day_ni | duration feeding Troughs
ght (day/night) | duration (Calculate
during d)
daytime to
the total
feeding
duration
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Data

Code Parameter | Description | Format Unit sources Farms
WT_feeding_p | Feeding Amount of numeric | kg/min | Weighing | RF1
ace pace feed intake Troughs

per feeding (Calculate
duration d)
WT _trough_vis | Number of | Total number | integer n Weighing | RF1
its weighing of visits to Troughs
trough visits | the weighing
trough
WT _trough_vis | Number of | Number of integer n Weighing | RF1
its_day weighing visits to the Troughs
trough visits | weighing (Calculate
during trough during d)
daytime daytime
WT_trough_vis | Number of | Ratio of the numeric Weighing | RF1
its_day_night | weighing number of Troughs
trough visits | visits to the (Calculate
(day/night) | weighing d)
trough during
daytime to
the total
number of
visits to the
weighing
trough
WT_number_o | Number of | Total number | integer n Weighing | RF1
f_meals meals of meals Troughs
(Calculate
d)
WT_number_o | Number of | Number of integer n Weighing | RF1
f_meals_day meals meals during Troughs
during daytime (Calculate
daytime d)
WT_number_o | Number of | Ratio of the numeric Weighing | RF1
f meals_day_ | meals number of Troughs
night (day/night) | meals during (Calculate
daytime to d)
the total
number of
meals
WT_feed_intak | Feed intake | Average feed | numeric | kg Weighing | RF1
e _per_meal per meal intake per Troughs
meal (Calculate
d)
WT_feeding_d | Feeding Average numeric | mins Weighing | RF1
uration_per_m | duration per | feeding Troughs
eal meal duration per (Calculate
meal d)
WT_feeding_d | Feeding Average numeric | mins Weighing | RF1
uration_per_vi | duration per | feeding Troughs
sit visit duration per (Calculate
weighing d)
trough visit
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Code Parameter | Description | Format Unit DEiE Farms
sources
WT_feed_intak | Feed intake | Average feed | numeric | kg Weighing | RF1
e_per_visit per visit intake per Troughs
weighing (Calculate
trough visit d)
ENGS feeding | Feeding Total integer mins ENGS RF1
duration duration of all
meals
ENGS_feeding | Feeding Duration of integer mins ENGS RF1
_day duration all meals (Calculate
during during d)
daytime daytime
ENGS_feeding | Feeding Ratio of the numeric ENGS RF1
_day_night duration feeding (Calculate
(day/night) | duration d)
during
daytime to
the total
feeding
duration
ENGS _numbe | Number of | Total number | integer n ENGS RF1
r of meals meals of meals
ENGS_numbe | Number of | Number of integer n ENGS RF1
r_of meals_da | meals meals during (Calculate
y during daytime d)
daytime
ENGS numbe | Number of | Ratio of the numeric ENGS RF1
r_of meals_da | meals number of (Calculate
y_night (day/night) | meals during d)
daytime to
the total
number of
meals
ENGS_feeding | Feeding Average numeric | mins ENGS RF1
_duration_per | duration per | feeding (Calculate
_meal meal duration per d)
meal
Nedap_feedin | Feeding Total feeding | integer mins Nedap RF2,
g duration duration per RF3
day
Rumination
Smaxtec_rum | Duration of | Total numeric | mins smaXtec RF1,
rumination duration of RF3,
rumination CDF4
SCR_rum Duration of | Total integer mins SCR, RF1,
rumination duration of Milking RF3,
rumination robot CDF1,
CDF5
SCR_rum_day | Duration of | Duration of integer mins SCR RF1
rumination | rumination (Calculate
during during d)
daytime daytime
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Data

Code Parameter | Description | Format Unit Farms
sources
SCR_rum_day | Duration of | Ratio of numeric SCR RF1
_night rumination | duration of (Calculate
(day/night) | rumination d)
during
daytime to
the total
duration of
rumination
Nedap_rum Duration of | Total integer mins Nedap RF2,
rumination duration of RF3
rumination
Heat behaviour
SCR_heat_pro | Heat Probability of | factor SCR, RF3,
bability probability an occurring Milking CDF1,
heat in a cow robot CDF5
(Lely)
SCR_heat_pro | Heat Probability of | factor SCR, RF3,
bability_day probability an occurring Milking CDF1,
during heat in a cow robot CDF5
daytime during (Lely)
daytime
Lemmer_factor | Factor of Factor of factor Milking CDF2,
_of restlessne | restlessnes | restlessness, robot CDF4
SS s depending on (Lemmer-
the cows’ Fullwood)
activity
Lying behaviour
ENGS_lying Lying Total lying integer mins ENGS RF1
duration duration
ENGS_lying_d | Lying Lying integer mins ENGS RF1
ay duration duration (Calculate
during during d)
daytime daytime
ENGS_lying_d | Lying Ratio of lying | numeric ENGS RF1
ay_night duration duration (Calculate
(day/night) | during d)
daytime to
the total lying
duration
ENGS _lying_b | Lying bouts | Total number | integer n ENGS RF1
outs of lying
events
ENGS_lying_b | Lying bouts | Number of integer n ENGS RF1
outs_day during lying events (Calculate
daytime during d)
daytime
ENGS_lying_b | Lying bouts | Ratio of lying | numeric ENGS RF1
outs_day_nigh | (day/night) | bouts during (Calculate
t daytime to d)
the total
number of
lying bouts
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Code Parameter | Description | Format Unit DEiE Farms
sources
ENGS_lying_d | Lying Average lying | numeric | mins ENGS RF1
uration_per_b | duration per | duration per (Calculate
out bout lying bout d)
Nedap_lying Lying Total lying integer mins Nedap RF3
duration duration
Nedap_get up | Lying bouts | Total number | integer n Nedap RF3
s of lying
events
Lemmer_lying | Lying Total lying integer mins Milking CDF2,
duration duration robot CDF4
(Lemmer-
Fullwood)
Lemmer_get u | Lying bouts | Total number | integer n Milking CDF2,
ps of lying robot CDF4
events (Lemmer-
Fullwood)
Activity
ENGS_act Activity Total activity | integer ENGS RF1
units
ENGS_act _da | Activity Activity integer ENGS RF1
y units during | during (Calculate
daytime daytime d)
ENGS_act_da | Activity Ratio of total | numeric ENGS RF1
y_night units activity to (Calculate
(day/night) | activity d)
during
daytime
Smaxtec_act Activity Total activity | numeric smaXtec RF1,
index RF3,
CDF4
Smaxtec_act_ | Activity Activity numeric smaXtec RF1,
day index during | during (Calculate | RF3,
daytime daytime d) CDF4
Smaxtec_act_ | Activity Ratio of total | numeric smaXtec RF1,
day_night index activity to (Calculate | RF3,
(day/night) | activity d) CDF4
during
daytime
SCR_act Activity Total activity | numeric SCR, RF1,
index Milking RF3,
robot CDFA1,
(Lely) CDF5
SCR_act_day | Activity Activity numeric SCR, RF1,
index during | during Milking RF3,
daytime daytime robot CDFA1,
(Lely) CDF5
(Calculate
d)
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Data

Code Parameter | Description | Format Unit Farms
sources
SCR_act_day_ | Activity Ratio of total | numeric SCR, RF1,
night index activity to Milking RF3,
(day/night) | activity robot CDF1,
during (Lely) CDF5
daytime (Calculate
d)
Nedap act Step count | Total activity | integer Nedap RF3
Nedap_inactiv | Inactive Total inactive | integer mins Nedap RF2,
e time time without RF3
any head
movements
Nedap _act fo | Median step | Median step | numeric Nedap RF3
ot_median count countin a
two-hour
interval
Nedap_act fo | Step count | Total activity | integer Nedap RF3
ot sum_day during during (Calculate
daytime daytime d)
Nedap act fo | Median step | Median step | numeric Nedap RF3
ot_median_da | count countin a (Calculate
y during two-hour d)
daytime interval
during
daytime
Nedap act fo | Step count | Ratio of total | numeric Nedap RF3
ot_sum_day n | (day/night) | activity to (Calculate
ight activity d)
during
daytime
Nedap act fo | Median step | Ratio of numeric Nedap RF3
ot_median_da | count median (Calculate
y_night (day/night) | activity in a d)
two-hour
interval
during
daytime to
daily average
activity in a
two-hour
interval
Nedap_act _col | Neck Total heat- integer Nedap RF2,
lar_sum activity associated (Calculate | RF3
neck d)
movements
Nedap_act_col | Median of Median heat- | numeric Nedap RF2,
lar_median neck activity | associated (Calculate | RF3
neck d)
movements
in a two-hour
interval
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Code

Parameter

Description

Format

Unit

Data
sources

Farms

Nedap_act_col
lar_sum_day

Neck
activity
during
daytime

Heat-
associated
neck
movements
during
daytime

integer

Nedap
(Calculate
d)

RF2,
RF3

Nedap_act_col
lar_median_da

y

Median of
neck activity
during
daytime

Median heat-
associated
neck
movements
in a two-hour
interval
during
daytime

numeric

Nedap
(Calculate
d)

RF2,
RF3

Nedap_act_col
lar_sum_day
night

Neck
activity
(day/night)

Ratio of heat-
associated
neck
movements
during
daytime to
total heat-
associated
neck
movements

numeric

Nedap
(Calculate
d)

RF2,
RF3

Nedap_act_col

lar_median_da
y_night

Median of
neck activity
(day/night)

Ratio of
median heat-
associated
neck
movements
in a two-hour
interval
during
daytime to
daily average
heat-
associated
neck
movements
in a two-hour
interval

numeric

Nedap
(Calculate
d)

RF2,
RF3

Lemmer_act

Hourly
average
step count

Hourly
average step
count

integer

Milking
robot
(Lemmer-
Fullwood)

CDF2,
CDF4

Delaval_act_a
vg

Activity
index

Average daily
activity index

integer

Milking
robot
(DeLaval)

CDF3

Delaval_act_re

Relative
activity

Current
activity level
of the cow
compared to
its individual
average

integer

%

Milking
robot
(DeLaval)

CDF3
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Code Parameter | Description | Format Unit DEiE Farms
sources
Delaval_act_re | Minimum Lowest value | integer % Milking CDF3
|_min relative of the cow’s robot
activity activity (DeLaval)
compared to
its individual
average
Delaval_act_re | Maximum Highest value | integer % Milking CDF3
|_max relative of the cow’s robot
activity activity (DelLaval)
compared to
its individual
average
Body temperature
Smaxtec_temp | Normal Individual numeric | °C smaXtec RF1,
_normal_medi | body normal body RF3,
an temperature | temperature CDF4
of the cow
based on the
last 5 days
Smaxtec_temp | Minimum Minimum numeric | °C smaXtec RF1,
_min body body RF3,
temperature | temperature CDF4
of the cow
Smaxtec_temp | Maximum Maximum numeric | °C smaXtec RF1,
_max body body RF3,
temperature | temperature CDF4
of the cow
Smaxtec_temp | Median Median body | numeric | °C smaXtec RF1,
__median body temperature RF3,
temperature | of the cow CDF4
Smaxtec_temp | Minimum Minimum numeric | °C smaXtec RF1,
_without_drink | body body RF3,
_cycles_min temperature | temperature CDF4
without adjusted for
drink cycles | temperature
declines
resulting from
drinking
Smaxtec_temp | Maximum Maximum numeric | °C smaXtec RF1,
_without_drink | body body RF3,
_cycles_max temperature | temperature CDF4
without adjusted for
drink cycles | temperature
declines
resulting from
drinking
Smaxtec_temp | Median Median body | numeric | °C smaXtec RF1,
_without_drink | body temperature RF3,
_cycles_media | temperature | adjusted for CDF4
n without temperature
drink cycles | declines
resulting from
drinking
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Code Parameter | Description | Format Unit DEiE Farms
sources
Climate
Smaxtec_clim | Minimum Minimum numeric | °C smaXtec RF1,
ate_temp_min | temperature | ambient RF3,
temperature CDF4
Smaxtec_clim | Maximum Maximum numeric | °C smaXtec RF1,
ate_temp_max | temperature | ambient RF3,
temperature CDF4
Smaxtec_clim | Average Median numeric | °C smaXtec RF1,
ate_temp_med | temperature | ambient RF3,
ian temperature CDF4
Smaxtec_clim | Minimum Minimum numeric | % smaXtec RF1,
ate_hum_min | humidity ambient RF3,
humidity CDF4
Smaxtec_clim | Maximum Maximum numeric | % smaXtec RF1,
ate_hum_max | humidity ambient RF3,
humidity CDF4
Smaxtec_clim | Median Median numeric | % smaXtec RF1,
ate_hum_medi | humidity ambient RF3,
an humidity CDF4
Smaxtec_thi_ | Minimum Minimum numeric smaXtec RF1,
min THI Temperature- (Calculate | RF3,
Humidity- d) CDF4
Index
Smaxtec_thi_ | Maximum Maximum numeric smaXtec RF1,
max THI Temperature- (Calculate | RF3,
Humidity- d) CDF4
Index
Smaxtec_thi_ | Median THI | Median numeric smaXtec RF1,
median Temperature- (Calculate | RF3,
Humidity- d) CDF4
Index
WS _thi_min Minimum Minimum numeric Weather RF1,
THI Temperature- station RF2,
Humidity- (Calculate | RF3
Index d)
WS_thi_max Maximum Maximum numeric Weather RF1,
THI Temperature- station, RF2,
Humidity- (Calculate | RF3
Index d)
WS _thi_media | Median THI | Median numeric Weather RF1,
n Temperature- station RF2,
Humidity- (Calculate | RF3
Index d)
WS _temp_2m | Median Median numeric | °C Weather RF1,
_med temperature | temperature station RF2,
in2m in 2 m height RF3
height
WS _temp_2m | Minimum Minimum numeric | °C Weather RF1,
_min temperature | ambient station RF2,
in2m temperature RF3
height in 2 m height
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Data

Code Parameter | Description | Format Unit sources Farms
WS temp_2m | Maximum Maximum numeric | °C Weather RF1,
_max temperature | ambient station RF2,
in2m temperature RF3
height in 2 m height
WS _temp 20c | Median Median numeric | °C Weather RF1,
m_med temperature | ambient station RF2,
in 20 cm temperature RF3
height in 20 cm
height
WS _temp_20c | Minimum Minimum numeric | °C Weather RF1,
m_min temperature | ambient station RF2,
in 20 cm temperature RF3
height in 20 cm
height
WS temp_20c | Maximum Maximum numeric | °C Weather RF1,
m_max temperature | ambient station RF2,
in 20 cm temperature RF3
height in 20 cm
height
WS _soil temp | Median soil | Median soil numeric | °C Weather RF1,
~5cm_med temperature | temperature station RF2,
in5cm in 5 cm depth RF3
depth
WS_soil temp | Minimum Minimum soil | numeric | °C Weather RF1,
_5cm_min soil temperature station RF2,
temperature | in 5 cm depth RF3
in5cm
depth
WS _soil_temp | Maximum Maximum numeric | °C Weather RF1,
_5cm_max soil soil station RF2,
temperature | temperature RF3
in5cm in 5 cm depth
depth
WS_soil temp | Median soil | Median soil numeric | °C Weather RF1,
_20cm_med temperature | temperature station RF2,
in 20 cm in 20 cm RF3
depth depth
WS_soil temp | Minimum Minimum soil | numeric | °C Weather RF1,
_20cm_min soil temperature station RF2,
temperature | in 20 cm RF3
in 20 cm depth
depth
WS_soil_temp | Maximum Maximum numeric | °C Weather RF1,
_20cm_max soil Soil station RF2,
temperature | temperature RF3
in 20 cm in 20 cm
depth depth
WS _rel_hum_ | Median Median numeric | % Weather RF1,
med relative relative station RF2,
humidity humidity RF3
WS_rel_hum_ | Minimum Minimum numeric | % Weather RF1,
min relative relative station RF2,
humidity humidity RF3
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Code Parameter | Description | Format Unit DEiE Farms
sources
WS rel hum_ | Maximum Maximum numeric | % Weather RF1,
max relative relative station RF2,
humidity humidity RF3
WS _wind_velo | Median Median wind | numeric | m/s Weather RF1,
city_med wind velocity station RF2,
velocity RF3
WS_wind_velo | Minimum Minimum numeric | m/s Weather RF1,
city_min wind wind velocity station RF2,
velocity RF3
WS _wind_velo | Maximum Maximum numeric | m/s Weather RF1,
city_max wind wind velocity station RF2,
velocity RF3
WS _rain_med | Median Median numeric | mm Weather RF1,
precipitation | precipitation station RF2,
RF3
WS_rain_min | Minimum Minimum numeric | mm Weather RF1,
precipitation | precipitation station RF2,
RF3
WS rain_max | Maximum Maximum numeric | mm Weather RF1,
precipitation | precipitation station RF2,
RF3
WS_global_ra | Median Median numeric | Wh/m? | Weather RF1,
d_med global global station RF2,
radiation radiation RF3
WS global ra | Minimum Minimum numeric | Wh/m? | Weather RF1,
d_min global global station RF2,
radiation radiation RF3
WS _global_ra | Maximum Maximum numeric | Wh/m? | Weather RF1,
d_max global global station RF2,
radiation radiation RF3
Season Season Current integer Manual, All
season of the number farms
claw assigned
trimming for each
season
Claw health
LMS Locomotion | Three-step integer Manual All
score Locomotion farms
score
C_LMS Corrected Locomotion integer Manual All
Locomotion | score, farms
score corrected for
pain test and
findings
GSC Growth in Three-step integer Manual All
the sole score for farms
centre growth in the
sole centre
PT Pain test Positive or integer Manual All
negative pain farms
test
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Code Parameter | Description | Format Unit DRI Farms
sources
Findings Findings Clinical character Manual All
and findings and farms
treatments | treatments of
the claw
trimming

Table 34: Classification of the claw trimming dates into seasons

Season Months Number
Spring March, April, May 1
Summer | June, July, August 2
Autumn | September, October, November 3
Winter December, January, February 4

Table 35: Count and percentage of locomotion scores (LMS) on the different claw trimming

dates (CT)

CT1 CT2 CT3 CT4 CT5 Farm
LMS1 | 33 (58.9%) | 45 (77.6%) | 39 (68.4%) | 43 (78.2%) | 39 (66.1%) | RF1
LMS2 | 15(26.8%) | 8 (13.8%) | 12 (21.0%) | 7 (12.7%) | 17 (28.8%) | RF1
LMS3 | 8(14.3%) 5(8.6%)| 6 (10.5%) 5(9.1%) 3(5.1%)| RF1
LMS1 | 38 (84.4%) | 28 (65.1%) | 31 (72.1%) / /| RF2
LMS2 | 6(13.3%) | 10 (23.3%) | 10 (23.3%) / /'l RF2
LMS3 1(2.2%)| 5(11.6%) 2 (4.7%) / /| RF2
LMS1 | 42 (66.7%) | 38 (67.9%) | 40 (76.9%) | 40 (75.5%) /'l RF3
LMS2 | 12 (19.0%) | 16 (28.6%) | 6 (11.5%) | 11 (20.8%) /'l RF3
LMS3 | 9 (14.3%) 2(3.6%) | 6(11.5%) 2 (3.8%) /| RF3
LMS1 | 46 (74.2%) / / / / | CDF1
LMS2 | 13 (21.0%) / / / / | CDF1
LMS3 3 (4.8%) / / / / | CDF1
LMS1 | 39 (75.0%) / / / / | CDF2
LMS2 | 12 (23.1%) / / / / | CDF2
LMS3 1(1.9%) / / / / | CDF2
LMS1 | 17 (58.6%) | 20 (62.5%) | 20 (69.0%) / / | CDF3
LMS2 | 8(27.6%)| 8(25.0%)| 8 (27.6%) / / | CDF3
LMS3 | 4(13.8%)| 4(12.5%) 1 (3.5%) / / | CDF3
LMS1 | 80 (69.6%) | 93 (75.6%) / / / | CDF4
LMS2 | 21 (18.3%) | 27 (22.0%) / / / | CDF4
LMS3 | 14 (12.2%) 3(2.4%) / / / | CDF4
LMS1 | 94 (72.9%) / / / /| CDF5
LMS2 | 28 (21.7%) / / / /| CDF5
LMS3 7 (5.4%) / / / / | CDF5
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Table 36: Median lameness development period between last locomotion score (LMS) 1 and
first LMS3 and standard deviation on each farm

Farm | Median days between last LMS1 and first LMS3 | Standard deviation
RF1 3 3.45
RF2 4 1.56
RF3 1 0.76
CDFA1 9 4.32
CDF2 3 6.43
CDF3 2 0.84
CDF4 2 2.41
CDF5 3 2.50

Table 37: Count and percentage of pain tests (PT) on the different claw trimming dates (CT)

CT1 CT2 CT3 CT4 CT5 Farm
PT- | 163 (86.7%) | 212 (91.4%) | 217 (95.2%) | 218 (99.1%) | 228 (96.6%) | RF1
PT+| 25(13.3%)| 20(8.6%)| 11 (4.8%) 2 (0.9%) 8 (3.4%) | RF1
PT- | 135 (75.0%) | 161 (93.6%) | 163 (94.8%) / /| RF2
PT+| 45(25%)| 11 (6.4%) 9 (5.2%) / /| RF2
PT- | 221 (87.7%) | 213 (95.1%) | 199 (95.7%) | 204 (96.2%) /| RF3
PT+| 31(12.3%)| 11 (4.9%) 9 (4.3%) 8 (3.8%) /| RF3
PT- | 242 (97.6%) / / / /| CDF1
PT+ 6 (2.4%) / / / /| CDF1
PT- | 202 (97.1%) / / / /| CDF2
PT+ 6 (2.9%) / / / /| CDF2
PT- | 107 (92.2%) | 122 (95.3%) | 113 (97.4%) / /| CDF3
PT+ 9 (7.8%) 6 (4.7%) 3 (2.6%) / /| CDF3
PT- | 433 (94.1%) | 479 (98.2%) / / /| CDF4
PT+| 27 (5.9%) 9 (1.8%) / / /| CDF4
PT- | 496 (96.1%) / / / /| CDF5
PT+| 20 (3.9%) / / / /| CDF5
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Table 38: Count and percentage of the growth in the sole centre (GSC) on the different claw

trimming dates (CT)

CT1 CT2 CT3 CT4 CT5 Farm
GSC1 4 (2.1%) 1(0.4%) 3 (1.3%) 0 (0%) 0(0%) | RF1
GSC2 | 154 (81.9%) | 144 (62.1%) | 97 (42.6%) | 25 (11.4%)| 57 (24.2%)| RF1
GSC3 | 30 (16.0%) 87(375%) 128 (56.1%) | 195 (88.6%) | 179 (75.8%) | RF1
GSC1 1(0.6%) 0 (0%) 0 (0%) / /| RF2
GSC2 | 144 (80.0%) 6 (3.5%) | 49 (28.5%) / /| RF2
GSC3| 35 (19.4%) 166(965%) 123 (71.5%) / /| RF2
GSCH1 0 (0%) 1(0.4%) 4 (1.9%) 4 (1.9%) /| RF3
GSC2 | 187 (74.2%) | 127 (56.7%) | 77 (37.0%) | 53 (25.0%) /| RF3
GSC3 | 65 (25.8%) | 96 (42.9%) 127 (61.1%) | 155 (73.1%) /| RF3
GSC1 0 (0%) / / / / | CDF1
GSC2| 21 (8.5%) / / / /| CDF1
GSC3 | 227 (91.5%) / / / / | CDF1
GSC1 0 (0%) / / J /| CDF2
GSC2 5 (2.4%) / / J /| CDF2
GSC3 | 203 (97.6%) / / / /| CDF2
GSC1 2 (1.7%) 4 (31%) 0 (0%) / /| CDF3
GSC2 | 93 (80.2%) | 51 (39.9%) 8 (6.9%) / /| CDF3
GSC3 | 21 (181%)| 73 (57.0% | 108 (93.1%) J /| CDF3
GSCH1 0 (0%) 0 (0%) / J /| CDF4
GSC2 | 284 (61.7%) | _ 38 (7.8%) / / /| CDF4
GSC3 | 176 (38.3%) | 450 (92.2%) / / /| CDF4
GSCH1 0 (0%) / / / /| CDF5
GSC2| 44 (8.5%) / / J /| CDF5
GSC3 | 472 (91.5%) / / J /| CDF5
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Table 39: Count of the total findings and treatments on each farm and percentages of the
findings and treatments (abbreviations explained in Table 7 and Table 8)

| RF1 | RF2 | RF3 | CDF1 | CDF2 | CDF3 | CDF4 | CDF5 | Total | Percentage |
Findings
TU 1 0 0 1 0 0 0 2 4 0.14
OLU 4 5 0 0 0 2 1 1 13 0.44
IP 5 1 0 0 1 0 0 2 9 0.31
SuU 10 6 3 0 1 5 17 5 47 1.58
DDM1 38| 10| 59 0 2 13 0 2] 124 4.20
DDM2 30| 56| 59 0 7 22 49 27| 250 8.46
DDM3 0 0 0 0 0 0 0 0 0 0.00
DDM4 64| 11 5 0 5 54 15 3] 157 5.31
DDM4.1 3 1 0 0 0 8 4 0 16 0.54
HHE 10| 10 2 2 1 9 1 35 70 2.37
CSH 36| 12] 22 14 3 11 53 21| 172 5.82
SHD 204 | 148 | 200 83 12| 120 ] 269 79 [ 1,115 37.73
SHC 85| 13] 17 2 12 0 70 13| 212 7.17
WLF 116 | 55| 55 43 18 65 79 81| 512 17.33
WLA 10 6 4 14 6 4 29 9 82 2.78
HF 13 6 4 0 3 2 7 1 36 1.22
IH 25 7] 18 1 1 11 12 10 85 2.88
DS 16 3 7 5 3 5 7 3 49 1.66
TN 0 1 0 0 0 0 0 0 1 0.03
BU 1 0 0 0 0 0 0 0 1 0.03
Total 671] 351 455| 165 75| 331] 613] 294 2,955 100.00
Treatments

B 48| 67| 58 5 2 32 45 41| 298 30.07
SAP 17| 62| 57 0 2 31 13 40| 222 22.40
CTC 0] 62 0 3 11 34 41 45| 196 19.78
CB 27| 12 7 4 11 2 33 0 96 9.69
SAPO 0 0 0 4 0 0 25 0 29 2.93
czc 84 0] 66 0 0 0 0 0] 150 15.13
Total 176 | 203 | 188 16 26 99| 157 | 126 991 100.00
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Table 40: Count and percentage of findings and treatments on the different claw trimming
dates (CT) on RF1 (abbreviations explained in Table 7 and Table 8)

CT1 CT2 CT3 CT4 CT5
Cou | Percen | Cou | Percen | Cou | Percen | Cou | Percen | Cou | Percen
nt tage nt tage nt tage nt tage nt tage
Findings
TU 0 0.00 0 0.00 1 0.50 0 0.00 0 0.00
OoLU 0 0.00 0 0.00 1 0.50 2 0.82 1 0.53
IP 0 0.00 3 13.64 0 0.00 1 0.41 1 0.53
SU 1 6.25 3 13.64 2 1.00 0 0.00 4 2.13
DDM
1 0 0.00 0 0.00 8 3.98 14 5.74 16 8.51
DDM
2 5 31.25 5 22.73 10 4,98 2 0.82 8 4.26
DDM
3 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
DDM
4 0 0.00 0 0.00 28 13.93 20 8.20 16 8.51
DDM
4.1 0 0.00 0 0.00 0 0.00 1 0.41 2 1.06
HHE 0 0.00 0 0.00 10 4.98 0 0.00 0 0.00
CSH 0 0.00 0 0.00 11 5.47 10 4.10 15 7.98
SHD 2 12.50 0 0.00 63 31.34 86 35.25 53 28.19
SHC 0 0.00 0 0.00 36 17.91 38 15.57 11 5.85
WLF 2 12.50 1 4.55 16 7.96 56 22.95 41 21.81
WLA 0 0.00 4 18.18 1 0.50 0 0.00 5 2.66
HF 0 0.00 2 9.09 4 1.99 5 2.05 2 1.06
IH 4 25.00 0 0.00 8 3.98 7 2.87 6 3.19
DS 2 12.50 4 18.18 2 1.00 1 0.41 7 3.72
TN 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
BU 0 0.00 0 0.00 0 0.00 1 0.41 0 0.00
Total 16 | 100.00 22 | 100.00 | 201 100.00 | 244 | 100.00 | 188 | 100.00
Treatments

B 9 90 10 50.00 8 14.81 10 18.87 11 28.21
SAP 0 0 0 0.00 6 11.11 3 5.66 8 20.51
CTC 0 0 0 0.00 0 0.00 0 0.00 0 0.00
CB 1 10 10 50.00 8 14.81 2 3.77 6 15.38
SAP
(0] 0 0 0 0.00 0 0.00 0 0.00 0 0.00
CZC 0 0 0 0.00 32 59.26 38 71.70 14 35.90
Total 10 | 100.00 20| 100.00 54 | 100.00 53| 100.00 39| 100.00
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Table 41: Count and percentage of findings and treatments on the different claw trimming

dates (CT) on RF2 (abbreviations explained in Table 7 and Table 8)

CT1 CT2 CT3
Count | Percentage | Count ‘ Percentage | Count ‘ Percentage
Findings
TU 0 0.00 0 0.00 0 0.00
OoLU 0 0.00 0 0.00 5 2.13
IP 0 0.00 1 1.09 0 0.00
SuU 1 4.17 4 4.35 1 0.43
DDM1 1 4.17 1 1.09 8 3.40
DDM2 16 66.67 15 16.30 25 10.64
DDM3 0 0.00 0 0.00 0 0.00
DDM4 0 0.00 9 9.78 2 0.85
DDM4.1 0 0.00 0 0.00 1 0.43
HHE 0 0.00 2 217 8 3.40
CSH 0 0.00 3 3.26 9 3.83
SHD 0 0.00 28 30.43 120 51.06
SHC 0 0.00 3 3.26 10 4.26
WLF 3 12.50 17 18.48 35 14.89
WLA 2 8.33 3 3.26 1 0.43
HF 0 0.00 0 0.00 6 2.55
IH 1 4.17 3 3.26 3 1.28
DS 0 0.00 2 2.17 1 0.43
TN 0 0.00 1 1.09 0 0.00
BU 0 0.00 0 0.00 0 0.00
Total 24 100.00 92 100.00 235 100.00
Treatments

B 16 31.37 24 36.36 27 31.40
SAP 16 31.37 20 30.30 26 30.23
CTC 16 31.37 17 25.76 29 33.72
CB 3 5.88 5 7.58 4 4.65
SAPO 0 0.00 0 0.00 0 0.00
czC 0 0.00 0 0.00 0 0.00
Total 51 100.00 66 100.00 86 100.00
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Table 42: Count and percentage of findings and treatments on the different claw trimming
dates (CT) on RF3 (abbreviations explained in Table 7 and Table 8)

CT1 CT2 CT3 CT4
Co | Percenta | Cou | Percenta | Cou | Percenta | Cou | Percenta
unt ge nt ge nt ge nt ge
Findings
TU 0 0.00 0 0.00 0 0.00 0 0.00
OoLuU 0 0.00 0 0.00 0 0.00 0 0.00
IP 0 0.00 0 0.00 0 0.00 0 0.00
SU 0 0.00 1 1.32 1 1.06 1 0.50
DDM1 22 25.58 11 14.47 18 19.15 8 4.02
DDM2 23 26.74 14 18.42 7 7.45 15 7.54
DDM3 0 0.00 0 0.00 0 0.00 0 0.00
DDM4 0 0.00 0 0.00 0 0.00 5 2.51
DDM4.1 0 0.00 0 0.00 0 0.00 0 0.00
HHE 0 0.00 0 0.00 0 0.00 2 1.01
CSH 0 0.00 3 3.95 9 9.57 10 5.03
SHD 27 31.40 33 43.42 32 34.04 108 54.27
SHC 6 6.98 0 0.00 5 5.32 6 3.02
WLF 3 3.49 5 6.58 11 11.70 36 18.09
WLA 1 1.16 2 2.63 1 1.06 0 0.00
HF 0 0.00 3 3.95 0 0.00 1 0.50
IH 3 3.49 1 1.32 8 8.51 6 3.02
DS 1 1.16 3 3.95 2 2.13 1 0.50
TN 0 0.00 0 0.00 0 0.00 0 0.00
BU 0 0.00 0 0.00 0 0.00 0 0.00
Total 86 100.00 76 100.00 94 100.00 199 100.00
Treatments

B 19 31.67 14 31.82 8 72.73 17 29.82
SAP 19 31.67 14 31.82 8 72.73 16 28.07
CTC 0 0.00 0 0.00 0 0.00 0 0.00
CB 2 3.33 2 4.55 3 27.27 0 0.00
SAPO 0 0.00 0 0.00 0 0.00 0 0.00
CczC 20 33.33 14 31.82 8 72.73 24 42.11
Total 60 100.00 44 100.00 11 100.00 57 100.00
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Table 43: Count and percentage of findings and treatments on the different claw trimming
dates (CT) on CDF1 (abbreviations explained in Table 7 and Table 8)

CT1
Count | Percentage |
Findings
TU 1 0.61
OLU 0 0.00
IP 0 0.00
SuU 0 0.00
DDM1 0 0.00
DDM2 0 0.00
DDM3 0 0.00
DDM4 0 0.00
DDM4.1 0 0.00
HHE 2 1.21
CSH 14 8.48
SHD 83 50.30
SHC 2 1.21
WLF 43 26.06
WLA 14 8.48
HF 0 0.00
IH 1 0.61
DS 5 3.03
TN 0 0.00
BU 0 0.00
Total 165 100.00
Treatments
B 5 31.25
SAP 0 0.00
CTC 3 18.75
CB 4 25.00
SAPO 4 25.00
CZC 0 0.00
Total 16 100.00

200



Table 44: Count and percentage of findings and treatments on the different claw trimming
dates (CT) on CDF2 (abbreviations explained in Table 7 and Table 8)

CT1
Count | Percentage |
Findings
TU 0 0.00
OLU 0 0.00
IP 1 1.33
SU 1 1.33
DDM1 2 2.67
DDM2 7 9.33
DDM3 0 0.00
DDM4 5 6.67
DDM4 .1 0 0.00
HHE 1 1.33
CSH 3 4.00
SHD 12 16.00
SHC 12 16.00
WLF 18 24.00
WLA 6 8.00
HF 3 4.00
IH 1 1.33
DS 3 4.00
TN 0 0.00
BU 0 0.00
Total 75 100.00
Treatments
B 2 7.69
SAP 2 7.69
CTC 11 42.31
CB 11 42.31
SAPO 0 0.00
CZC 0 0.00
Total 26 100.00
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Table 45: Count and percentage of findings and treatments on the different claw trimming
dates (CT) on CDF3 (abbreviations explained in Table 7 and Table 8)

CT1 CT2 CT3
Count | Percentage | Count | Percentage | Count | Percentage |
Findings
TU 0 0.00 0 0.00 0 0.00
OLU 0 0.00 0 0.00 2 1.02
IP 0 0.00 0 0.00 0 0.00
SuU 2 6.06 2 1.98 1 0.51
DDM1 2 6.06 0 0.00 11 5.58
DDM2 7 21.21 10 9.90 5 2.54
DDM3 0 0.00 0 0.00 0 0.00
DDM4 2 6.06 36 35.64 16 8.12
DDM4.1 0 0.00 6 5.94 2 1.02
HHE 2 6.06 2 1.98 5 2.54
CSH 0 0.00 6 594 5 2.54
SHD 12 36.36 26 25.74 82 41.62
SHC 0 0.00 0 0.00 0 0.00
WLF 3 9.09 10 9.90 52 26.40
WLA 1 3.03 0 0.00 3 1.52
HF 1 3.03 1 0.99 0 0.00
IH 1 3.03 2 1.98 8 4.06
DS 0 0.00 0 0.00 5 2.54
TN 0 0.00 0 0.00 0 0.00
BU 0 0.00 0 0.00 0 0.00
Total 33 100.00 101 100.00 197 100.00
Treatments

B 8 33.33 14 33.33 10 30.30
SAP 8 33.33 13 30.95 10 30.30
CTC 8 33.33 14 33.33 12 36.36
CB 0 0.00 1 2.38 1 3.03
SAPO 0 0.00 0 0.00 0 0.00
czZC 0 0.00 0 0.00 0 0.00
Total 24 100.00 42 100.00 33 100.00
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Table 46: Count and percentage of findings and treatments on the different claw trimming
dates (CT) on CDF4 (abbreviations explained in Table 7 and Table 8)

CT1 CT2
Count | Percentage Count | Percentage
Findings
TU 0 0.00 0 0.00
OLU 0 0.00 1 0.22
IP 0 0.00 0 0.00
SuU 11 6.63 6 1.34
DDM1 0 0.00 0 0.00
DDM2 18 10.84 31 6.94
DDM3 0 0.00 0 0.00
DDM4 0 0.00 15 3.36
DDM4 1 0 0.00 4 0.89
HHE 0 0.00 1 0.22
CSH 2 1.20 51 11.41
SHD 57 34.34 212 47 .43
SHC 28 16.87 42 9.40
WLF 13 7.83 66 14.77
WLA 20 12.05 9 2.01
HF 6 3.61 1 0.22
IH 5 3.01 7 1.57
DS 6 3.61 1 0.22
TN 0 0.00 0 0.00
BU 0 0.00 0 0.00
Total 166 100.00 447 100.00
Treatments
B 18 26.47 27 30.34
SAP 13 19.12 0 0.00
CTC 14 20.59 27 30.34
CB 23 33.82 10 11.24
SAPO 0 0.00 25 28.09
czZC 0 0.00 0 0.00
Total 68 100.00 89 100.00
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Table 47: Count and percentage of findings and treatments on the different claw trimming
dates (CT) on CDF5 (abbreviations explained in Table 7 and Table 8)

CT1
Count | Percentage
Findings
TU 2 0.68
OLU 1 0.34
IP 2 0.68
SuU 5 1.70
DDM1 2 0.68
DDM2 27 9.18
DDM3 0 0.00
DDM4 3 1.02
DDM4 .1 0 0.00
HHE 35 11.90
CSH 21 7.14
SHD 79 26.87
SHC 13 4.42
WLF 81 27.55
WLA 9 3.06
HF 1 0.34
IH 10 3.40
DS 3 1.02
TN 0 0.00
BU 0 0.00
Total 294 100.00
Treatments
B 41 32.54
SAP 40 31.75
CTC 45 35.71
CB 0 0.00
SAPO 0 0.00
CzC 0 0.00
Total 126 100.00
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Table 48: Statistical summaries over all farms (parameters explained in Table 33)

Parameter Min Q1 Median | Mean Q3 Max SD N
Breed 1 1 1 1.1 1 6 0.6 | 24,583
Lactation_numb
er 0 1 2 2.7 4 12 1.8 | 24,583
Days_in_milk 0 73 152 160.3 230 530 | 103.7 | 24,253
LKV_milk_yield
_in_last_lactatio 11,35 | 21,19 | 2,704.

n 3,194 | 7,851 9,317 | 9,727.1 0 3 9] 12,064
LKV_daily_milk

_yield 6.5 23.2 29.3 29.5 35.6 61.1 8.4 | 22,494
LKV _urea 30 140 184 184.3 229 454 65.2 | 21,752
LKV_somatic_c

ell_count 10 24 55 201.3 144 | 9,999 | 653.4 | 22,281
LKV_fat 21 3.6 4.1 4.2 4.6 8 0.8 | 22,482
LKV _protein 2.4 3.3 3.5 3.5 3.8 4.9 04| 22,494
LKV _fat_protein

_ratio 0.6 1 1.2 1.2 1.3 2.4 0.2 | 22,470
LKV _lactose 3.6 4.8 4.9 4.9 5 5.4 0.2 | 22,225
Milkings 1 2 2 2.5 3 9 0.7 | 23,652
Maximum_milki

ng_interval 18.8 495 567 586.3 654 | 1420 | 133.3 | 22,279
Robot_daily_mil

k_yield 0.1 22.1 28.6 28.9 35.5 72.5 9.6 | 23,642
Robot_milk_yiel

d_in_current_la 2,296. 7,728. | 15,87 | 3,509.

ctation 2.2 1] 5,063.2 | 5,325.8 5 4 5 5,137
Robot_milk_yiel

d_in_last_lactati 10,75 | 20,14 | 2,724.

on 635 | 7,338 8,867 | 9,200.6 9 8 1] 11,822
Robot_daily_mil

k_yield_in_last_|

actation 12 25.3 28.8 29.2 33.6 43 5.9 7,174
Robot_fat 0.9 3.8 4.2 4.4 4.8 13.1 1| 16,676
Robot_protein 2.5 3.3 3.4 3.4 3.6 5.6 0.3 | 16,675
Robot_fat_prote

in_ratio 0.2 1.1 1.2 1.3 1.4 3.5 0.3| 16,678
Robot lactose 2.9 4.6 8 7 4.9 5.2 0.2 | 16,669
Robot_somatic 3,920.

cell_count 1 30 53 117.4 99 5] 2791 7,491
Robot_effect of

scc 0 0.6 1 1.8 1.7 43.6 3.2 7,491
Milking_tempera

ture 35.9 38.2 38.6 38.7 39.1 41.5 0.7 | 10,713
MDi 1 1 1.1 1.2 1.1 4.2 0.3 6,912
Milking_flow 0 1.2 2 2.1 2.9 7.1 1.1 ] 16,650
Max_milking_flo

w 0.5 29 4 4.1 5.2 11.8 1.7 | 16,650
Conduct_Iv 0 4.3 4.6 4.6 5 8 0.7 | 12,560
Conduct rv 0 4.4 4.7 4.8 5.2 9.3 0.7 | 12,457
Conduct |h 0 44 4.7 4.8 5.2 8.9 0.7 | 10,867
Conduct_rh 0 4.3 4.5 4.6 4.9 7.7 0.7 | 12,439
Conduct_lely Iv 59 66.5 69 69.6 71.5| 128.5 5] 10,524
Conduct_lely rv 59 66.5 69 69.5 71 138 5.3 | 10,631
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Parameter Min Q1 Median | Mean Q3 Max SD N
Conduct_lely Ih 60 67 69 69.5 71 166 4.8 | 10,553
Conduct lely rh 59 67 69 69.4 71| 152.5 5] 10,552
Concentrated_f
eed_intake 0 1.9 3.7 3.7 5.3 10.6 22| 22,788
Concentrated_f
eed remains 0 0.1 0.1 04 0.3 6 06| 10,752
Robot_ BCS 2.5 3.6 3.9 3.8 4.1 4.6 0.3 4,770

1,151.

Body weight 4444 | 641.5 742.3 741.5| 820.8 6| 118.7 6,782
WT feed intake 0 35.7 44.7 44.2 53.9 92.2 14.5 5,437
WT feeding_du

ration 10 96 128 133.9 164 792 59.4 5,413
WT _feeding_du

ration_day 0 70 95 100.4 124 769 48.5 5,413
WT _feeding_du

ration_day_nigh

t 0 0.7 0.8 0.8 0.8 1 0.1 5,413
WT _feeding_du

ration_per_visit 0.4 2.5 3.4 3.9 4.7 70.3 3 5,443
WT feed_intake

_per _visit 0 0.8 1.1 1.4 1.7 13 1.1 5,443
WT _feeding_pa

ce 0.06 0.25 0.35 0.36 0.43 2.14 0.13 5,439
WT _trough_visit

s 1 25 39 42.6 55 222 25 5,445
WT_trough_visit

s_day 0 19 29 32.8 42 178 20.2 5,445
WT _trough_visit

s_day night 0 0.7 0.8 0.8 0.9 1 0.1 5,445
WT_number_of

meals 1 7 9 9.4 11 23 3.1 5,151
WT_number_of

meals_day 0 5 7 7 9 20 2.6 5,151
WT_number_of
_meals_day_nig

ht 0 0.7 0.8 0.7 0.8 1 0.1 5,151
WT _feed_intake
_per_meal 0.8 3.7 4.9 5.3 6.4 23.9 2.3 5,151
WT _feed_intake
_per_visit 0 0.8 1.1 1.4 1.7 13 1.1 5,443
ENGS feeding 1 48 83 89.8 124 288 54.9 1,266
ENGS_feeding_

day 0 36 61 67.3 94 220 42.7 1,266
ENGS_feeding_

day night 0 0.7 0.8 0.8 0.9 1 0.2 1,266
ENGS_number_

of _meals 0 6 9 8.7 11 25 3.6 1,266
ENGS_number_

of _meals_day 0 5 6 6.5 8 18 2.8 1,266
ENGS_number_

of_meals_day n

ight 0 0.7 0.8 0.8 0.9 1 0.2 1,238
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Parameter Min Q1 Median | Mean Q3 Max SD N

ENGS_feeding_

duration_per_m

eal 1 5.9 9.4 10.8 14.4 63 6.8 1,238
Nedap feeding 10 252 374 372 504 | 806.4| 157.8 6,433
Smaxtec_rum 188 | 490.5 532.1 526.1 | 569.2 | 735.1 65.3 6,892
SCR_rum 11 517 561 551.7 599 751 73.9 8,864
SCR_rum_day 2 305 343 338 379 545 63.1 4,224
SCR_rum_day

night 0 0.6 0.6 0.6 0.7 1 0.1 4,224
Nedap rum 10 | 273.6 388.8 383.8 504 | 820.8 | 145.2 6,463
SCR_heat_prob

ability -35 -3.5 -1.5 -0.6 0.5 92 7.7 4,472
SCR_heat_prob

ability day -36 -4 -1 -0.4 1 100 8.9 4,449
Lemmer_factor 30,50

of restlessness 53 | 210.6 301.7 421.8 | 4394 1.8 | 809.7 5,670
ENGS lying 4 576 688 677.1 789 | 1,258 | 174.9 5,091
ENGS_lying_da

y 0 311 389 385.5 464 835 | 124.1 5,091
ENGS lying _da

y_night 0 0.5 0.6 0.6 0.6 1 0.1 5,091
ENGS_lying_bo

uts 1 11 15 17.1 20 109 10.6 5,093
ENGS lying_bo

uts_day 0 7 9 11 13 60 6.9 5,091
ENGS_lying_bo

uts_day_night 0 0.6 0.7 0.6 0.7 1 0.1 5,093
ENGS lying_du

ration_per bout 1.6 32.3 45.6 52.6 61.8 719 41.7 5,091
Nedap_lying 156 633 723 716.9 809 | 1,131 | 135.1 2,151
Nedap _get _ups 1 8 10 10.1 12 29 3.8 2,223
Lemmer_get_up

s 1 7 9 9.3 11 40 3.9 5,669

1,254
Lemmer _lying 12 528 636 630 732 2.8 5,672
ENGS_act 30| 1,689 2,153 | 2,213.1 | 2,635 | 8,735| 8854 5,088
2,060.

ENGS_act_day 0] 1,293 1,667 | 1,724.9 2| 7,471 717 5,088
ENGS_act_day

night 0 0.7 0.8 0.8 0.8 1 0.1 5,088
Smaxtec_act 0.3 3.9 4.9 5.6 7 21.4 24 9,039
Smaxtec_act_d

ay 0.4 4.8 5.9 6.4 7.8 23.7 2.5 9,035
Smaxtec_act_d

ay night 0.4 1.1 1.1 1.2 1.3 2.5 0.2 9,034
SCR_act 21.5 35.5 39.5 40.6 44 150 8.2 8,804
SCR_act_day 20.5 37.5 42 43.6 48 151 9.6 8,799
SCR_act_day n

ight 0.6 1 1.1 1.1 1.1 2.2 0.1 8,807

2,556. 4,203. | 14,17 | 1,365.

Nedap act 1,284 81| 3,268.5| 3,525.8 2 4 1 2,224
Nedap_inactive 225 563 655 676.5 769 | 1378 | 164.9 6,441
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Parameter Min Q1 Median | Mean Q3 Max SD N
Nedap_act _foot
_median 725 | 197.5 245 259.2 307 | 1,207 92.5 2,222
Nedap_act_foot 1,501.
median_day 86 | 222.5 282.5 308 | 367.5 5 131 2,237
Nedap_act_foot 3,289. | 1217 | 1185.
_sum_day 774 | 1,881 2,460 | 2,710.9 8 4 1 2,238
Nedap_act_foot
_median_day_ni
ght 0.4 1 1.1 1.2 1.3 3.5 0.2 2,231
Nedap_act_foot
sum_day_night 0.2 0.7 0.8 0.8 0.8 1 0.1 2,230
Nedap_act_coll
ar_median 0 4.5 7 8 10.5 71 4.9 6,476
Nedap_act_coll
ar_sum 9 62 93 1071 137 859 64.1 6,472
Nedap_act_coll
ar_median_day 0 5 8 9.3 12 89.5 6.4 6,481
Nedap_act_coll
ar_sum_day 6 45 69 80.1 102 737 51.4 6,481
Nedap_act_coll
ar_median_day
_night 0.1 1 1.1 1.2 1.3 5.5 0.3 6,474
Nedap_act_coll
ar_sum_day_ni
ght 0.2 0.7 0.8 0.7 0.8 1 0.1 6,473
Lemmer_act 37 97 126 144 .4 165 858 84.6 5,965
Delaval_act_av
g 10 23 29 30 36 89 10.1 1,515
Delaval_act rel 44 89 99 100.2 108 293 19.4 1,515
Delaval_act_rel
min 39 80.8 88 88.3 95 191 13.5 1,436
Delaval_act_rel
max 59 100 109 111.2 118 255 211 1,436
Smaxtec_temp_
normal_median 39 39.3 39.4 394 39.5 40 0.2 9,046
Smaxtec_temp_
min 27 32.9 33.8 33.8 34.7 39.3 1.3 9,104
Smaxtec_temp_
max 39 39.6 39.8 39.8 39.9 42.4 0.3 9,105
Smaxtec_temp_
median 38.5 39 39.1 39.2 39.3 40.6 0.2 9,102
Smaxtec_temp_
without_drink_c
ycles min 37.7 38.5 38.6 38.6 38.8 40 0.2 9,063
Smaxtec_temp_
without_drink_c
ycles max 39 39.6 39.7 39.8 39.9 42.3 0.3 9,056
Smaxtec_temp_
without_drink_c
ycles _median 38.7 39.1 39.3 39.3 39.4 40.8 0.2 9,059
Smaxtec_climat
e_temp_median 2.4 8.9 10.9 11.8 14.5 24.3 5] 11,340
Smaxtec_climat
e_temp_min -0.3 5.3 8.4 8.7 11.7 19.6 43| 11,340
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Parameter Min Q1 Median | Mean Q3 Max SD N

Smaxtec_climat

e_temp_max 4 10.8 14.1 15 18.3 29.6 6| 11,340
Smaxtec_climat

e_hum_median 46.5 67.4 73.7 74 81.3 100 11.2| 10,936
Smaxtec_climat

e_hum_min 1.2 50 63 62.1 76.8 98.8 16.2 | 10,936
Smaxtec_climat

e_hum_max 62.4 77.2 82.1 82.7 85.6 100 7.5| 10,936
Smaxtec_thi_m

edian 28.1 46.2 51.6 52 58 71.8 9.7 | 10,936
Smaxtec_thi_mi

n 35.5 45.1 48.8 49.6 54.5 65.3 6.4 | 10,936
Smaxtec_thi_m

ax 39.4 52 57.1 58.8 65 83.1 9.9| 10,936
WS _thi_med 27.2 38.7 48.7 48.9 59.8 70.8 11.7 | 12,790
WS _thi_min 22.6 35.9 42.5 43 514 61.1 9.4 | 12,790
WS thi_max 30.7 44 1 58.8 57.6 69.6 91.7 15.3 ] 12,790
WS_temp_2m_

med -3.4 3.1 8.5 9.2 15.5 23.3 6.8 12,790
WS _temp 2m_

min -7.9 -0.6 2.5 4.2 9.3 16.4 59| 12,790
WS_temp_2m_

max -0.7 6.7 14.9 14.3 20.9 33.4 8.5| 12,790
WS _temp 20c

m_med -3.9 2.7 7.7 8.8 15.5 23.5 6.9 12,790
WS temp_ 20c

m_min -9.6 -2 1.2 2.6 7.6 16.2 6.2 | 12,790
WS _temp 20c

m_max -0.4 8 16.9 15.6 23.3 33 91 12,790
WS _soil_temp

5cm_med 0.7 4.3 9.2 10.2 16.3 22.6 6.6 | 12,790
WS _soil temp_

5cm_min 0.5 2.6 7.2 8.6 14.5 19.5 6.1 12,790
WS _soil_temp

5cm_max 1 6.2 11.9 12.2 18.2 28.5 7.3 12,790
WS_soil temp_

20cm_med 1.6 4.5 9 10.2 15.7 20.4 6| 12,790
WS _soil_temp

20cm_min 1.5 4 8.5 9.8 15.2 19.7 5.9 12,790
WS _rel hum_m

ed 41.8 73.8 87.5 84.4 98.2 100 14.9 | 12,790
WS_rel_hum_m

in 17.8 40.2 58.7 62.8 90.3 100 25.9 | 12,790
WS_wind_veloci

ty_med 0.5 1.1 1.5 1.8 2.1 5.7 1] 12,790
WS_wind_veloci

ty_min 0 0 0 0.2 0.2 3.3 0.5| 12,790
WS_wind_veloci

ty_max 1.6 2.7 3.5 4 4.7 12.7 2| 12,790
WS rain_med 0 0 0 0 0 0.2 0] 12,790
WS rain_min 0 0 0 0 0 0 0| 12,790
WS rain_max 0 0 0 0.3 0.3 12.2 1.1] 12,790
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Parameter Min Q1 Median | Mean Q3 Max SD N
WS_global_rad
_med 5.6 54 141.8 1471 | 2224 | 359.3 98.3 | 12,790
WS _global _rad

min 0 0 0 0.1 0 2 0.3 | 12,790
WS_global_rad
_max 41 339 689 612.3 855 | 1,164 | 303.3 | 12,790
Season 1 1 2 2.2 3 4 1| 24,583
LMS 1 1 1 1.3 1 3 0.6 | 24,583
C LMS 1 1 1 1.4 1 3 0.7 | 24,583
GSC 0 2.2 3 2.7 3 3 0.4 | 24,394
PT 0 0 0 0.2 0 1 0.4 | 24,373

Table 49: Statistical summaries of RF1 (parameters explained in Table 33)

Parameter Min Q1 Median | Mean Q3 Max SD N
Breed 1 1 1 1 1 2 0.2 | 5842
LMS 1 1 1 1.3 1 3 0.6 | 5842
C LMS 1 1 1 1.4 1 3 0.8 | 5,842
Lactation_num
ber 0 1 2 2.6 3 10 1.9 | 5,842
Days_in_milk 0 63 156 160.5 235 481 | 106.2 | 5,660
LKV_milk_yiel
d_in_last lacta 12,29 | 18,96 | 2,543.
tion 6,201 8,644 | 10,423 | 10,653.6 0 2 1] 3,661
LKV_daily_mil
k vyield 8.1 24 29.7 30 35.8 52.7 7.8 | 5,196
LKV urea 30 128.8 190 183.8 239 454 77.6 | 4,740
LKV_somatic_
cell_count 10 25 62 191.9 144 | 7,099 | 549.9 | 5,133
LKV fat 2.1 3.6 4.2 4.1 4.6 7.4 09| 5184
LKV protein 2.5 3.3 3.5 3.5 3.8 4.6 0.4 | 5196
LKV _fat protei
n_ratio 0.6 1 1.2 1.2 1.3 2.4 0.3 ] 5,196
LKV lactose 3.6 4.8 4.9 4.9 5 5.4 0.2 | 5,097
Milkings 1 2 3 2.5 3 5 0.7 | 5137
Maximum_milk
ing_interval 203 501 570 584.8 651 | 1,059 | 118.7 | 4,954
Robot_daily_m
ilk_yield 2.8 24 30 30.6 37 69.2 8.9 | 5130
Robot_milk_yi
eld in_current 7,728. | 15,87 | 3,509.
_lactation 22| 2,296.1| 5,063.2 | 5,325.8 5 4 5| 5137
MDi 1 1 1.1 1.2 1.1 4.2 0.3 | 5,095
Milking flow 0.3 0.8 1 1 1.2 2 0.3 ] 4,117
Max_milking_fl
ow 2 4.8 5.6 5.8 6.7 11.8 14| 4,117
Conduct_rv 0 4.2 4.4 4.4 4.7 9.3 0.7 | 4,990
Conduct Iv 0 4.2 4.4 4.3 4.7 7.7 0.7 | 5,032
Conduct rh 0 4.2 4.4 4.4 4.6 7.5 0.7 | 4,907
Conduct |h 0 4.2 4.4 4.4 4.7 8.2 0.7 | 4,799
Robot BCS 2.5 3.6 3.9 3.8 4.1 4.6 0.3 ] 4,770

1,151.
Body weight 444 .4 721.4 776.7 783.3 835 6 95.5| 5,363
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Parameter Min Q1 Median | Mean Q3 Max SD N
Concentrated

feed intake 0 2.7 5 4.6 6.4 9.4 22| 4432
WT _feed_intak

e 0 35.7 44.7 44.2 53.9 92.2 14.5 | 5437
WT _feeding_d

uration 10 96 128 133.9 164 792 59.4 | 5,413
WT _feeding_d

uration_day 0 70 95 100.4 124 769 48.5| 5,413
WT _feeding_d

uration_day_ni

ght 0 0.7 0.8 0.8 0.8 1 0.1] 5413
WT _feeding_d

uration_per_vi

sit 0.4 2.5 3.4 3.9 4.7 70.3 3| 5,443
WT feed_intak

e_per visit 0 0.8 1.1 1.4 1.7 13 1.1 | 5,443
WT _feeding_p

ace 0.06 0.25 0.35 0.36 0.43 2.14 0.13 | 5,439
WT _trough_vis

its 1 25 39 42.6 55 222 25| 5,445
WT _trough_vis

its_day 0 19 29 32.8 42 178 20.2 | 5,445
WT _trough_vis

its_day night 0 0.7 0.8 0.8 0.9 1 0.1 ] 5445
WT_number_o

f meals 1 7 9 9.4 11 23 3.1 ] 5,151
WT_number_o

f meals_day 0 5 7 7 9 20 26| 5,151
WT_number_o

f_meals_day_

night 0 0.7 0.8 0.7 0.8 1 0.1] 5,151
WT _feed_intak

e_per_meal 0.8 3.7 4.9 5.3 6.4 23.9 2.3 | 5,151
WT feed_intak

e_per_visit 0 0.8 1.1 1.4 1.7 13 1.1 ] 5,443
ENGS lying 4 576 688 677.1 789 | 1258 | 174.9 | 5,091
ENGS_lying_d

ay 0 311 389 385.5 464 835 | 124.1| 5,091
ENGS_lying_d

ay_night 0 0.5 0.6 0.6 0.6 1 0.1 5,091
ENGS_lying_b

outs 1 11 15 171 20 109 10.6 | 5,093
ENGS_lying_b

outs_day 0 7 9 11 13 60 6.9 | 5,091
ENGS_lying_b

outs_day_nigh

t 0 0.6 0.7 0.6 0.7 1 0.1] 5,093
ENGS _lying d

uration_per_b

out 1.6 32.3 45.6 52.6 61.8 719 41.7 | 5,091
ENGS_act 30 1,689 2,153 | 2,213.1| 2,635| 8,735 | 8854 | 5,088
ENGS_act_da 2,060.

y 0 1,293 1,667 1,724.9 2| 74171 717 | 5,088
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Parameter Min Q1 Median | Mean Q3 Max SD N
ENGS_act da
y_hight 0 0.7 0.8 0.8 0.8 1 0.1] 5,088
ENGS_feeding 1 48 83 89.8 124 288 54.9 | 1,266
ENGS feeding
_day 0 36 61 67.3 94 220 42.7 | 1,266
ENGS_feeding
_day_night 0 0.7 0.8 0.8 0.9 1 0.2 | 1,266
ENGS _numbe
r of meals 0 6 9 8.7 11 25 3.6 | 1,266
ENGS_numbe
r_of meals_da
y 0 5 6 6.5 8 18 2.8 | 1,266
ENGS_numbe
r_ of meals_da
y_night 0 0.7 0.8 0.8 0.9 1 0.2 ] 1,238
ENGS_feeding
_duration_per
_meal 1 5.9 9.4 10.8 14.4 63 6.8 | 1,238
Smaxtec_rum 188 473 506 503 543 643 61.5 712
Smaxtec act 1.7 4.7 6.3 6.5 8.1 15.2 2.2 | 1,293
Smaxtec_act
day 1.9 5.5 6.9 71 8.4 16.6 21| 1,293
Smaxtec_act
day night 0.7 1 1.1 1.1 1.2 2.3 0.1] 1,293
Smaxtec_temp
_min 28.1 32.7 33.6 33.5 34.4 38.4 1.3 | 1,357
Smaxtec_temp
__max 39.2 39.7 39.8 39.8 40 41.5 0.3 ] 1,356
Smaxtec_temp
_median 38.7 39 39.2 39.2 39.3 40 0.2 | 1,356
Smaxtec_temp
_without_drink
cycles_min 37.9 38.5 38.7 38.7 38.8 39.4 0.2 ] 1,315
Smaxtec_temp
_without_drink
_cycles_max 39.2 39.7 39.8 39.8 40 40.8 0.2 | 1,307
Smaxtec_temp
_without_drink
_cycles_media
n 38.8 39.2 39.3 39.3 39.5 40.2 0.2 1,314
Smaxtec_temp
_normal_medi
an 39 39.4 39.5 39.5 39.6 40 0.2 ] 1,309
Smaxtec_clim
ate_temp_med
ian 2.4 8.9 11.2 10.7 12.6 15.7 3| 2,323
Smaxtec_clim
ate_temp_min 0.9 4 6.7 6.7 9 12.9 3.3 | 2,323
Smaxtec_clim
ate_temp_max 4.1 12.1 15.7 14.7 17.3 21.9 3.7 ] 2,323
Smaxtec_clim
ate_hum_medi
an 51.7 56.1 88.2 79.8 95.4 100 18.4 | 1,919
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Parameter Min Q1 Median | Mean Q3 Max SD N
Smaxtec_clim
ate_hum_min 1.2 40.2 63.3 61.5 83.3 98.8 246 | 1,919
Smaxtec_clim
ate_hum_max 68.5 80 98.8 91.8 100 100 104 | 1,919
Smaxtec_thi_
median 28.1 32.8 41.6 42 50.2 58.6 99| 1,919
Smaxtec_thi_
min 355 44.2 45.9 46.4 49.3 54.7 42| 1,919
Smaxtec_thi_
max 394 52.9 59.6 58 62.8 714 6.9 1,919
SCR_act 22.5 36.5 41 42.4 46 150 10 | 4,224
SCR_act_day 20.5 39.5 45 46.4 51 151 11.3 | 4,224
SCR_act_day_
night 0.6 1 1.1 1.1 1.1 2.2 0.1] 4,224
SCR_rum 11 495 545 535.5 591 739 83 | 4,224
SCR_rum_day 2 305 343 338 379 545 63.1 | 4,224
SCR_rum_day
_night 0 0.6 0.6 0.6 0.7 1 0.1] 4,224
WS _thi_med 29.3 39.2 47.6 47.6 54.1 69.8 10.2 | 5,842
WS _thi_min 23.5 35.9 41.4 41.9 46.4 61.1 8.9 | 5,842
WS thi_max 31.1 46.5 56.3 56 64.3 87.6 12.5 | 5,842
WS_temp_2m
_med -1.5 3.9 7.8 8.3 12.1 22.3 59| 5,842
WS temp_2m
_min -6.7 -14 2.3 3.5 7.9 16.4 59| 5,842
WS_temp_2m
_max -0.5 8 13.5 13.4 18 30.9 7| 5,842
WS _temp 20c
m_med -1.8 2.9 6.2 7.7 11.4 221 6.1 | 5,842
WS temp_ 20c
m_min -8.6 -4.2 -0.1 1.2 5.8 16.1 6.4 | 5,842
WS _temp 20c
m_max -0.2 8.9 15.3 14.8 20 32.2 7.5| 5,842
WS _soil_temp
_5cm_med 2.6 4.4 6.1 9.2 12.4 21.2 6.1 5,842
WS_soil_temp
~5cm_min 0.9 2.6 4.9 7.6 11.8 19.3 6| 5,842
WS _soil_temp
_5cm_max 3.6 6.5 8.3 11.2 13.9 28.5 6.2 | 5,842
WS_soil_temp
~20cm_med 2.5 4.6 6.6 9.5 13.3 19.8 5.7 | 5,842
WS_soil_temp
_20cm_min 2.2 4.1 6.4 9.1 13 19.4 5.7 | 5,842
WS_soil_temp
20cm_max 3 5.1 6.8 9.9 13.6 20.3 5.7 | 5,842
WS _rel_hum_
med 46.3 80.6 92.5 87.8 99.5 100 14 | 5,842
WS _rel_hum_
min 17.8 47.3 67.9 68.6 97.3 100 26.2 | 5,842
WS _rel_hum_
max 67.1 99.6 100 99.1 100 100 3.5 | 5,842
WS_wind_velo
city med 0.5 1.1 1.4 1.6 1.9 3.7 0.6 | 5,842
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Parameter Min Q1 Median | Mean Q3 Max SD N
WS_wind_velo
city_min 0 0 0 0.1 0 1 0.2 | 5842
WS_wind_velo
city_max 1.6 2.6 3.5 3.7 4.4 10.1 1.5] 5,842
WS rain_med 0 0 0 0 0 0.2 0| 5,842
WS rain_min 0 0 0 0 0 0 0] 5,842
WS rain_max 0 0 0 0.3 0.3 4.1 0.8 | 5,842
WS global ra
d_med 15.2 57 126.8 135.9 | 199.7 343 88.5| 5,842
WS_global_ra
d_min 0 0 0 0.1 0 2 0.4 | 5,842
WS_global_ra
d_max 78 351 577 571.8 728 | 1,164 | 273.4 | 5,842
Season 1 1 2 2 3 3 0.9 | 5,842
GSC 1.2 2 2.5 2.6 3 3 0.4 | 5,653
PT 0 0 0 0.2 0 1 0.4 ] 5,653

Table 50: Statistical summaries of RF2 (parameters explained in Table 33)

Parameter Min Q1 | Median | Mean Q3 Max SD N
Breed 1 1 1 1.5 1 6 1.3 2,727
LMS 1 1 1 1.3 1 3 0.5 2,727
C LMS 1 1 1 1.4 1 3 0.8 2,727
Lactation_numb
er 1 1 2 2.4 3 7 1.5 2,727
Days _in_milk 7 105 168 203.9 287 530 | 127.1 2,716
LKV_milk_yield
_in_last_lactatio 10,19 11,847. | 12,69 | 2,119 | 2,972.

n 6,038 5| 11,582 4 0 3 9 1,705
LKV_daily_milk

_yield 11.8 24.7 30.4 31.5 36.8 57.4 8.4 2,650
LKV urea 64 162 204 205.1 243 334 53.8 2,641
LKV_somatic_c

ell_count 10 17 34 80.9 68 | 3258 | 268.3 2,644
LKV _fat 2.6 3.8 4.2 4.4 4.8 7 0.8 2,650
LKV _protein 2.7 3.5 3.8 3.7 4 4.9 0.4 2,650
LKV_fat_protein

ratio 0.8 1 1.1 1.2 1.2 2.1 0.2 2,650
LKV lactose 4.4 4.8 4.9 4.9 5 5.3 0.2 2,641
Milkings 1 2 3 2.8 3 6 0.8 2,716
Maximum_milki 1,172.

ng_interval 78.7 | 452.5 508.6 525.1 | 574.8 1 111 2,637
Robot_daily_mil

k yield 10.2 24.4 30.1 31.1 37.4 61 8.9 2,716
Robot_milk_yiel

d_in_last_lactati 10,382. | 11,80 | 20,14 | 3,682.

on 635 | 8,340 | 10,406 9 8 8 4 1,705
Robot_daily_mil

k_yield_in_last_|

actation 20.8 27.3 314 31.3 35.5 43 5.2 1,705
Robot _fat 2.1 3.8 4.3 4.4 5 7.9 0.9 2,716
Robot protein 3 3.5 3.6 3.6 3.8 44 0.2 2,716
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Parameter Min Q1 Median | Mean Q3 Max SD N

Robot fat prote

in_ratio 0.6 1.1 1.2 1.2 1.4 2 0.2 2,716
Robot lactose 4.4 4.8 49 49 5 5.1 0.1 2,716
Robot_somatic

cell_count 1 31 57 101.2 102 | 3725 | 220.4 2,409
Robot_effect_of

_scce 0 0.9 1.4 2.2 2.3 43.6 3.3 2,409
Milking_tempera

ture 36.7 38.1 38.5 38.4 38.8 40.6 0.5 2,716
Milking_flow 0.9 1.9 2.4 2.4 2.9 4.9 0.7 2,716
Max_milking_flo

w 1 2.8 3.5 3.5 4.1 6.9 0.9 2,715
Conduct_lely Iv 59 67 69.5 69.6 72 88 4.1 2,653
Conduct_lely rv 60 67 69 69.3 71.5 89.5 3.9 2,694
Conduct_lely Ih 60.5 67 69 69.4 71 94 3.6 2,674
Conduct_lely rh 59 66.5 69 69.7 71.5| 152.5 7.2 2,695
Concentrated_f

eed_intake 0 2.4 4.4 4.5 6.2 10 2.1 2,716
Concentrated_f

eed remains 0 0.1 0.1 0.2 0.2 6 0.3 2,669
Nedap rum 10 206 277 271.7 344 746 | 100.4 2,727
Nedap_feeding 144 | 446.4 518.4 511.7 576 | 806.4 93.5 2,705
Nedap inactive 225 550 634 643.7 723 | 1167 | 137.9 2,705
Nedap_act_coll

ar_median 0 6 9 9.9 12.5 71 5.7 2,704
Nedap_act_coll

ar_sum 11 83 124 132.6 164 859 73.7 2,704
Nedap_act_coll

ar_median_day 0 6.5 10.5 11.5 14.5 89.5 7.6 2,704
Nedap_act_coll

ar_sum_day 6 59 90 98 121 737 59.3 2,704
Nedap_act_coll

ar_median_day

night 0.2 1 1.1 1.1 1.2 5.2 0.3 2,703
Nedap_act_coll

ar_sum_day_ni

ght 0.3 0.7 0.7 0.7 0.8 1 0.1 2,704
WS thi_med 27.2 36 47.2 46.7 56.3 66.2 10.9 2,727
WS _thi_min 22.6 36.1 41.7 41.6 47.6 56.6 7.6 2,727
WS thi_max 31.8 39.2 55.6 54.5 66.4 91.7 15.6 2,727
WS _temp 2m_

med -3.4 1.5 71 7.6 13.3 19.6 6.4 2,727
WS_temp_2m_

min -7.9 -0.5 0.9 2.5 6.2 13.3 4.6 2,727
WS _temp_2m_

max -0.1 4 13 12.5 19.5 33.4 8.8 2,727
WS_temp_20c

m_med -3.9 1.7 7.2 7.5 13 19.3 6.1 2,727
WS_temp_20c

m_min -9.6 -1.2 0.4 1.5 4.4 11.6 4.2 2,727
WS_temp_ 20c

m_max 0.1 5 15.2 13.9 21.8 30.8 9.1 2,727
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Parameter Min Q1 Median | Mean Q3 Max SD N
WS_soil_temp_
5cm_med 1.3 2.6 8.9 9 15.3 18.8 5.7 2,727
WS_soil temp_
5cm_min 1.1 2.1 6.2 7.1 12.1 15.4 4.8 2,727
WS_soil_temp_
5cm_max 1.8 3.4 11.4 11.1 18.5 24 .4 6.9 2,727
WS_soil temp_
20cm_med 2.8 3.5 8.7 8.8 14.2 16.3 4.8 2,727
WS_soil_temp_
20cm_min 2.8 3.4 8 8.4 13.4 15.6 4.6 2,727
WS_soil temp_
20cm_max 2.9 3.7 9.3 9.3 14.9 17.3 5 2,727
WS_rel_hum_m
ed 41.8 65.6 77.8 76.9 88.6 98.5 14.5 2,727
WS _rel hum_m
in 22.2 34.7 46.3 54.2 71.6 93.9 221 2,727
WS_rel_hum_m
ax 53 95 98.2 95.7 100 100 7.2 2,727
WS_wind_veloci
ty_med 0.5 1.1 1.5 1.6 2 3.8 0.7 2,727
WS_wind_veloci
ty_min 0 0 0 0.2 0.1 1.5 0.4 2,727
WS_wind_veloci
ty_max 1.6 2.7 3.4 3.5 4 7.5 1.2 2,727
WS rain_med 0 0 0 0 0 0.1 0 2,727
WS rain_min 0 0 0 0 0 0 0 2,727
WS rain_max 0 0 0.1 0.4 0.4 12.2 1.5 2,727
WS _global rad

med 5.6 31.7 160.7 146.6 | 251.8 | 299.1 | 103.8 2,727
WS_global_rad

min 0 0 0 0 0 0 0 2,727
WS _global_rad

max 41 296 801 629.7 909 | 1087 | 342.1 2,727
Season 1 1 2 2.3 4 4 1.2 2,727
GSC 2 2.2 2.8 2.6 3 3 0.4 2,727
PT 0 0 0 04 1 1 0.5 2,727

Table 51: Statistical summaries of RF3 (parameters explained in Table 33)

Parameter Min Q1 | Median | Mean Q3 Max SD N
Breed 1 1 1 1.3 1 6 1] 4,221
LMS 1 1 1 1.2 1 3 0.5 | 4,221
C LMS 1 1 1 1.3 1 3 0.7 | 4,221
Lactation_numb
er 0 1 2 2.5 4 9 1.5 ] 4,221
Days_in_milk 0 88 156 156.3 227 378 88 | 4,147
LKV_milk_yield
_in_last_lactatio 10,048. | 11,19 | 15,53
n 6,166 | 8,372 9,864 3 6 2 2,082 | 2,836
LKV_daily_milk

yield 14 27.1 32.2 32.7 38.3 61.1 7.9| 3,750
LKV urea 71 157 192 194.6 230 353 53.7 | 3,747
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Parameter Min Q1 Median | Mean Q3 Max SD N

LKV_somatic_c

ell_count 10 18 48 136.1 123 | 3,270 337.1 | 3,750

LKV_fat 21 3.8 4.2 4.3 4.8 7.7 0.8 ] 3,750

LKV _protein 2.6 3.3 3.6 3.6 3.8 4.9 0.3 ] 3,750

LKV_fat_protein

_ratio 0.6 1.1 1.2 1.2 1.3 2.3 0.2 ] 3,750

LKV _lactose 4.2 4.8 4.9 4.9 5 54 0.2 | 3,747

Milkings 1 2 2 2.5 3 7 0.7 ] 4132

Maximum_milki 1,301.

ng_interval 49.9| 512.8 579.3 603.3 669 2 137.7 | 3,912

Robot_daily_mil

k_yield 1.3 24.8 31.1 31.1 37.3 66.1 8.8 | 4,132

Robot_milk_yiel

d_in_last_lactati 10,98 | 15,37

on 5,980 | 8,500 9,535 | 9,836.4 1 4| 2,058.5| 2,836

Robot_daily_mil

k_yield_in_last_|

actation 21.4 28 30.5 31.7 35.4 42.9 51| 2,836

Robot_fat 0.9 3.4 4.2 4.6 54 13.1 1.6 | 4,132

Robot_protein 2.8 3.4 3.5 3.5 3.6 5.6 0.3 ] 4,132

Robot fat prote

in_ratio 0.2 1 1.2 1.3 1.5 3.5 04| 4132

Robot_lactose 4.2 4.8 4.9 4.9 4.9 5.1 01| 4127

Robot_somatic 3,920.

cell_count 1 30.5 54 1174 101 5 279 | 3,789

Robot_effect of

_scce 0 0.5 0.9 1.6 1.4 33.8 3| 3,789

Milking_tempera

ture 35.9 38.9 39.2 39.2 39.6 41.5 0.5| 4,128

Milking_flow 0 2.3 2.9 3 3.6 7.1 1] 4,131

Max_milking_flo

w 0.6 3.4 4.2 4.3 5.2 9.3 1.3 ] 4,132

Conduct_lely Iv 59 66.5 69 69.5 71.5 114 4.6 | 4,065

Conduct _lely rv 60 67 69 69.5 71 109 5] 4131

Conduct_lely |h 60 67 69 69.7 71.5 166 6.1 4,115

Conduct_lely rh 61 67 69 69.3 71 114 41| 4,072

Concentrated_f

eed intake 0.2 2 3.5 3.4 4.7 7.8 1.6 | 4,199

Concentrated_f

eed remains 0 0.1 0.1 0.2 0.2 2.5 0.3| 4,214

Nedap _rum 14.4 | 403.2 475.2 465.7 | 547.2 | 820.8 115.2 | 3,736

Nedap feeding 10 195 276 270.7 351 586 110.5 | 3,728

Nedap inactive 292 573 680 700.3 807 | 1,378 178.3 | 3,736

Nedap_lying 156 633 723 716.9 809 | 1,131 135.1 ] 2,151

Nedap get ups 1 8 10 10.1 12 29 3.8 | 2,223
2,556. 4,203. | 14,17

Nedap_act 1,284 8 | 3,268.5 | 3,525.8 2 4] 1,365.1 | 2,224

Nedap_act_coll

ar median 0 4 6 6.6 8 31.5 3.6 | 3,772

Nedap_act_coll

ar_sum 9 56 77 88.8 110 440 48.5| 3,768

Nedap_act_coll

ar_median_day 0.5 4.5 6.5 7.8 9.5 54.5 49| 3,777
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Parameter Min Q1 Median | Mean Q3 Max SD N
Nedap_act_coll

ar_sum_day 6 41 58 67.3 83 426 40.3 | 3,777
Nedap_act_coll

ar_median_day

_night 0.1 1 1.1 1.2 1.3 5.5 0.3 | 3,771
Nedap_act_coll

ar_sum_day_ni

ght 0.2 0.7 0.8 0.7 0.8 1 0.1 3,769
Nedap_act _foot

_median 725 | 197.5 245 259.2 307 | 1207 92.5| 2,222
Nedap_act_foot 1,501.

_median_day 86 | 222.5 282.5 308 | 367.5 5 131 | 2,237
Nedap_act foot 3,289. | 12,17

_sum_day 774 | 1,881 2,460 | 2,710.9 8 4] 1,185.1 | 2,238
Nedap_act_foot

_median_day_ni

ght 0.4 1 1.1 1.2 1.3 3.5 0.2 | 2,231
Nedap_act_foot

sum_day _night 0.2 0.7 0.8 0.8 0.8 1 0.1] 2,230
SCR_rum 235 532 578.5 569.6 615 732 71 804
SCR_act 26 32.5 35.5 36.4 38.6 79 6.1 748
SCR_act_day 27 33 36 37.5 40 99 7.5 742
SCR_act day n

ight 0.8 1 1 1 1 1.5 0.1 748
SCR_heat_prob

ability -27 -3.5 -2 -1 0 88 6.8 636
SCR_heat_prob

ability day -29 -5 -2 -1.1 0 84 8.9 630
Smaxtec act 0.3 4.5 6.8 6.8 8.8 17.7 2.7 | 2,937
Smaxtec_act_d

ay 0.4 5.1 7.3 7.4 9.3 20.6 2.8 | 2,936
Smaxtec_act d

ay_night 0.7 1 1.1 1.1 1.1 1.9 0.1] 2,934
Smaxtec_rum 265.1 | 505.4 544.8 539.8 581 | 713.5 62.5| 1,529
Smaxtec_temp_

median 38.6 39 39.1 39.2 39.3 40.2 0.2 | 2,935
Smaxtec_temp_

min 29.4 33.9 34.7 34.5 35.4 39.3 1.3 | 2,935
Smaxtec_temp_

max 39.3 39.7 39.8 39.9 40 42.4 0.3 | 2,937
Smaxtec_temp_

without_drink_c

ycles _median 38.7 39.2 39.3 39.3 39.4 40.4 0.2 ] 2,934
Smaxtec_temp_

without_drink_c

ycles _min 38.1 38.6 38.7 38.7 38.8 40 0.2 | 2,937
Smaxtec_temp_

without_drink_c

ycles max 39.2 39.6 39.8 39.8 40 42.3 0.3 | 2,937
Smaxtec_temp_

normal_median 39.1 39.3 39.5 39.5 39.6 40 0.2 2,925
Smaxtec_climat

e_temp_median 2.4 9.3 16.8 14.4 19.8 24.3 6.6 | 4,169
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Parameter Min Q1 Median | Mean Q3 Max SD N

Smaxtec_climat

e_temp_min -0.3 5.4 12.6 10.7 15.2 19.6 5.6 | 4,169
Smaxtec_climat

e_temp_max 4 10.8 201 17.8 24.3 29.6 8| 4,169
Smaxtec_climat

e_hum_median 46.5 64.5 721 70.6 7.7 85.7 9.7 4,169
Smaxtec_climat

e_hum_min 29.2 45.4 52 56.2 67.9 83.5 14.8 | 4,169
Smaxtec_climat

e_hum_max 62.4 79 81.6 81.2 84.6 89.6 49| 4,169
Smaxtec_thi_m

edian 38.2 50.1 61.6 57.5 65.4 71.8 10.3 | 4,169
Smaxtec_thi_mi

n 35.8 45.4 55.4 52.4 58.9 65.3 8.4 | 4,169
Smaxtec_thi_m

ax 40.6 52 67 63.3 74 83.1 12.9 | 4,169
WS thi_med 28 421 57.6 52.1 62.7 70.8 13.2 | 4,221
WS thi_min 24 35.9 48.7 45.4 54 60.6 10.7 | 4,221
WS thi_max 30.7 46.8 66.4 61.8 76.8 88.5 17.4 | 4,221
WS _temp 2m_

med -2.2 5.3 14.2 11.4 17.7 23.3 7.7 | 4,221
WS_temp_2m_

min -4.7 0.3 8 6.2 11 16.4 6.2 | 4,221
WS _temp 2m_

max -0.7 8.2 19.1 16.6 24.9 31.4 9.7 | 4,221
WS temp_ 20c

m_med -2.2 5.6 14.1 11.3 17.3 23.5 7.7 | 4,221
WS _temp 20c

m_min -6.1 -0.3 6.5 5.2 9.6 16.2 6.1 | 4,221
WS temp_ 20c

m_max -0.4 8 20.8 17.8 26.3 33 10.3 | 4,221
WS _soil temp_

5cm_med 0.7 8.1 15.4 12.4 18.4 22.6 7.3 | 4,221
WS _soil_temp

5cm_min 0.5 6.1 13.7 10.8 16.3 19.5 6.4 | 4,221
WS_soil temp_

5cm_max 1 8.8 16.9 14.3 20.4 27.3 8.3 | 4,221
WS _soil_temp

20cm_med 1.6 8.4 15.4 121 18.1 20.4 6.7 | 4,221
WS_soil temp_

20cm_min 1.5 7.6 14.9 11.6 17.4 19.7 6.5 | 4,221
WS_soil_temp_

20cm_max 1.7 9 15.9 12.7 18.6 21.8 6.9 | 4,221
WS_rel_hum_m

ed 47.4 73.8 87 84.4 99.3 100 14.6 | 4,221
WS_rel_hum_m

in 18.5 39.8 51.4 60.4 90.8 100 25.8 | 4,221
WS_rel_hum_m

ax 84.1 100 100 99.3 100 100 25| 4,221
WS_wind_veloci

ty_med 0.6 1.1 1.7 2.2 2.9 5.7 1.5 | 4,221
WS_wind_veloci

ty_min 0 0 0.1 0.4 0.4 3.3 0.7 | 4,221
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Parameter Min Q1 Median | Mean Q3 Max SD N
WS_wind_veloci
ty _max 1.6 2.7 3.7 4.8 6.6 12.7 2.7 | 4,221
WS rain_med 0 0 0 0 0 0.2 0] 4,221
WS rain min 0 0 0 0 0 0 0| 4,221
WS rain_max 0 0 0 0.3 0.2 10.9 1.3 | 4,221
WS_global_rad
~med 11.2 51 174.8 162.9 | 241.7 | 359.3 105.1 | 4,221
WS _global _rad
~min 0 0 0 0 0 0 0] 4,221
WS_global_rad
~max 55 358 762 657.1 907 | 1,064 308.6 | 4,221
Season 1 2 3 2.6 3 4 1.1 4,221
GSC 1 2 2.5 2.5 3 3 04| 4,221
PT 0 0 0 0.2 0 1 04| 4,221

Table 52: Statistical summaries of CDF1 (parameters explained in Table 33)

Parameter Min Q1 Median | Mean Q3 Max SD N
Breed 1 1 1 1 1 1 0] 1,299
LMS 1 1 1 1.2 1 05| 1,299
C LMS 1 1 1 1.3 1 3 0.7] 1,299
Lactation_numb
er 1 1 2 2.1 3 5 1] 1,299
Days_in_milk 17 79 128 144.7 207 337 82.1| 1,299
LKV_daily_milk
_yield 13.8 25.9 31.2 31.2 37.2 48.6 8.4 | 1,260
LKV urea 65 155 184 184.3 212 297 39.4 | 1,257
LKV_somatic_c
ell_count 10 23 62 431.4 171 | 9,999 | 1,706.1 | 1,260
LKV fat 2.2 3.1 3.6 3.7 4.2 5.7 0.7 | 1,260
LKV _protein 2.8 3.4 3.6 3.6 3.9 4.7 0.4 ] 1,260
LKV_fat_protein

ratio 0.7 0.9 1 1 1.1 1.8 0.2 ] 1,260
LKV lactose 4.3 4.8 4.9 4.9 5 5.2 0.1 1,257
Milkings 1 2 2 2.3 3 5 0.7 | 1,299
Maximum_milki 1,223.
ng_interval 329.6 | 522.4 621.8 625 | 705.1 2 1454 | 1,200
Robot_daily_mil
k vyield 10.7 24.2 30.9 31.3 37.6 53.6 9| 1,299
Robot_milk_yiel
d_in_last_lactati 3,278. 11,48
on 813 8| 6,434.5| 5955.8| 7,767 1] 2,701.9 840
Robot_daily_mil
k vyield_in_last_|
actation 12 194 21.8 22.2 26 30.7 4.7 840
Robot fat 2.2 3.6 4.1 4.1 4.6 6.2 0.8] 1,299
Robot_protein 3 3.5 3.6 3.6 3.7 3.9 0.2 ] 1,299
Robot_fat_prote
in_ratio 0.6 1 1.2 1.2 1.3 1.7 0.2] 1,299
Robot_lactose 4.4 4.8 8 8 9 5 0.1] 1,299
Robot_somatic
cell _count 1 25 45 147.8 86.5| 2,991 362.3 | 1,293
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Parameter Min Q1 Median | Mean Q3 Max SD N
Robot_effect_of
_scc 0 0.3 0.6 1.6 1 40.9 3.8 | 1,293
Milking_tempera
ture 37.6 38.5 38.8 38.7 39 40.6 0.3] 1,299
Milking_flow 0.9 2 2.5 2.5 3 5.6 0.8 | 1,299
Max_milking_flo
w 1 2.9 3.5 3.6 4.2 8.2 1.1 1,299
Conduct_lely Iv 60.5 66 68.5 69.7 71| 128.5 6.9 1,278
Conduct_lely rv 59 66.5 69 69.5 715 | 119.5 4.7 | 1,278
Conduct lely |h 60.5 67 69 69.4 71 99 3.7 | 1,257
Conduct_lely rh 61 67 69 69.5 71 98 41| 1,257
Concentrated_f
eed_intake 0.5 2.8 4.7 4.1 5.1 8 1.7 | 1,299
Concentrated_f
eed_remains 0 0.1 0.1 0.3 04 3 04| 1,299
SCR_act 26 35.5 38 38.7 41.5 65.5 46| 1,294
SCR_act day 26 36.5 39.5 40.2 43.5 75 53] 1,296
SCR_act_day_n
ight 0.9 1 1 1 1.1 14 0.1] 1,296
SCR_heat_prob
ability -35 -3 -1.5 -1 0.5 92 71| 1,297
SCR_heat_prob
ability day -36 -3.5 -1 -0.6 1 100 8.7 1,299
SCR_rum 270 531 571 566.1 607 751 63.1| 1,297
Season 1 1 1 1 1 1 0| 1,299
GSC 0 3 3 2.9 3 3 0.4 | 1,299
PT 0 0 0 0.1 0 1 0.3 ] 1,299

Table 53: Statistical summaries of CDF2 (parameters explained in Table 33)

Parameter Min Q1 Median | Mean Q3 Max SD N
Breed 1 1 1 1 1 1 0| 1,083
LMS 1 1 1 1.2 1 0.5| 1,083
C LMS 1 1 1 1.3 1 3 0.7] 1,083
Lactation_numb
er 0 1 2 2.7 4 8 1.9 | 1,083
Days_in_milk 1 48 113 123.5 175 336 84.1| 1,072
LKV_milk_yield
_in_last_lactatio 10,18 | 13,67
n 5,108 | 7,625 9,015 | 8,752.4 3 51 1,783.4 705
LKV_daily_milk
_yield 18.4 24.9 28.9 29.7 34.1 45.7 6.2 950
LKV urea 65 171 213 208 230 335 49.6 950
LKV_somatic_c
ell_count 10 31 55 145.3 187 | 1103 206.4 950
LKV fat 3.4 3.9 4.3 4.4 4.8 6 0.6 950
LKV _protein 2.9 3.4 3.6 3.5 3.7 4.2 0.3 950
LKV_fat_protein

ratio 0.9 1.1 1.2 1.3 1.3 1.9 0.2 950
LKV lactose 4.1 4.7 4.8 4.8 4.9 5.1 0.2 950
Milkings 1 2 2 2.3 3 4 0.7 ] 1,054
Maximum_milki 1129.
ng_interval 18.8 | 497.7 585.3 615.3 | 700.2 7 149.1 | 1,046




Parameter Min Q1 Median | Mean Q3 Max SD N
Robot_daily_mil
k vyield 7.8 24.6 28.8 29.7 35 50.7 711 1,054
Robot_milk_yiel
d_in_last lactati | 5,084. | 7,215. 9,906. | 12,59
on 7 8 8,768 | 8,589.1 5 8| 1,708.3 621
Robot _fat 3.3 4 4.3 4.3 4.6 5.3 04| 1,054
Robot protein 3.2 3.4 3.5 3.5 3.6 3.9 0.1] 1,054
Robot_fat_prote
in_ratio 0.9 1.1 1.2 1.2 1.3 1.6 0.1] 1,054
Robot lactose 4.4 4.7 4.8 4.8 4.9 5.1 0.1] 1,054
Conduct Iv 4.5 5 5.2 5.3 5.6 6.8 0.4 | 1,033
Conduct rv 3.6 5.1 5.3 5.4 5.7 6.8 0.5| 1,048
Conduct |h 3.8 4.8 5.1 52 5.4 71 0.5| 1,054
Conduct _rh 4.6 5 5.3 5.3 5.6 6.3 0.3 991
Concentrated_f
eed intake 0 2.2 3.4 3.4 4.5 6.3 1.5] 1,062
Lemmer_act 37 83 103 115.1 130 554 56.1 | 1,051
Lemmer_get_up
s 1 6 8 8.5 11 21 3] 1,052
Lemmer _lying 12 540 642 630 732 | 1254 156 | 1,052
Lemmer_factor 30501
of restlessness 53 | 179.2 237.2 427.3 | 347.9 8| 1627.3 | 1,052
Season 2 2 2 2 2 2 0| 1,083
GSC 2.5 3 3 3 3 3 0.1| 1,083
PT 0 0 0 0.1 0 1 0.3 | 1,083

Table 54: Statistical summaries of CDF3 (parameters explained in Table 33)

Parameter Min Q1 Median | Mean Q3 Max SD N
Breed 1 1 1 1.1 1 3 0.5| 1,829
LMS 1 1 1 1.3 3 0.6 | 1,829
C LMS 1 1 1 1.5 2 3 0.8| 1,829
Lactation_numb
er 0 2 3 2.9 4 6 15| 1,829
Days_in_milk 1 60 184 160 230 456 98.8 | 1,817
LKV_milk_yield
_in_last_lactatio 11,240. | 12,98 | 18,39
n 6,443 | 9,089 | 11,573 5 7 6| 2,588.4| 1,392
LKV_daily_milk
_yield 17.5 26.5 32.3 32.7 37.6 51.4 73| 1,618
LKV urea 108 175 208 215.8 245 363 54| 1,598
LKV_somatic_c
ell_count 10 20 37 138.5 80| 2681 258.2 | 1,618
LKV fat 24 3.7 4.1 4.2 4.6 71 0.8] 1,618
LKV protein 2.7 3.3 3.6 3.6 3.8 4.6 04| 1,618
LKV_fat_protein

ratio 0.8 1.1 1.2 1.2 1.3 2.3 0.2] 1,618
LKV lactose 4.2 4.8 4.9 4.9 5 5.3 0.2] 1,618
Milkings 1 2 2 2.3 3 5 0.7] 1,817
Maximum_milki 1110.
ng_interval 3225 | 517.7 594 1 6216 | 7104 8 1445 | 1,628
Robot_daily_mil
k vyield 0.5 26.2 31.4 32.5 38 72.5 9.7 1,817
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Parameter Min Q1 Median | Mean Q3 Max SD N
Robot_milk_yiel
d_in_last_lactati | 6,482. | 8,895. | 11,179. | 11,170. | 12,79 | 18,53
on 4 9 6 6 2 45| 2,726.4 | 1,306
Milking_flow 0.5 0.9 1.1 1.1 1.3 1.9 0.3 | 1,817
Max_milking_flo
w 0.8 1.3 1.5 1.5 1.8 2.5 0.3 1,817
MDi 1 1 1.1 1.2 1.1 4.2 0.3 | 1,817
Conduct_Iv 21 4.3 4.5 4.5 4.7 6.6 0.3 ] 1,776
Conduct rv 2.1 4.3 4.5 4.5 4.7 6.6 03| 1,775
Conduct_|h 2.1 4.3 4.5 4.5 4.7 6.7 04| 1,754
Conduct_rh 0 4.3 4.5 4.4 4.7 7.7 0.8 ] 1,752
Concentrated_f
eed_intake 0 1.4 3 2.9 4 6.4 1.6 | 1,822
Delaval_act_av
g 10 23 29 30 36 89 10.1 ] 1,515
Delaval_act_rel 44 89 99 100.2 108 293 19.4 | 1,515
Delaval_act_rel
_min 39 80.8 88 88.3 95 191 13.5| 1,436
Delaval_act_rel

max 59 100 109 111.2 118 255 211 ] 1,436
Season 2 2 3 3 4 4 0.8] 1,829
GSC 1 2 2.5 2.6 3 3 04| 1,829
PT 0 0 0 0.2 0 1 0.4 1,829

Table 55: Statistical summaries of CDF4 (parameters explained in Table 33)

Parameter Min Q1 Median | Mean Q3 Max SD N
Breed 1 1 1 1 1 1 0| 4,959
LMS 1 1 1 1.3 1 0.6 | 4,959
C_LMS 1 1 1 1.4 1 3 0.8 | 4,959
Lactation_numb
er 0 1 3 3.1 4 10 1.9 | 4,959
Days_in_milk 1 63 137 150.4 216 523 104.9 | 4,942
LKV_milk_yield
_in_last_lactatio 15,26
n 3,194 | 6,730 8,103 | 8,146.8 | 9,306 3] 2,247.2| 3,633
LKV_daily_milk
_yield 6.5 17.3 22.2 22.7 271 43.6 6.7 | 4,577
LKV _urea 30 96 119.5 123.7 152 254 41.2 | 4,326
LKV_somatic_c
ell_count 10 46 100 301.7 230 | 9,999 7384 | 4,433
LKV _fat 21 3.5 3.9 3.9 4.3 6.7 0.7 | 4,577
LKV _protein 2.6 3.2 3.4 3.4 3.6 4.7 0.3 | 4,577
LKV_fat_protein

ratio 0.7 1 1.1 1.1 1.2 1.7 0.2 | 4,558
LKV _lactose 3.8 4.7 4.8 . 4.9 5.2 0.2 | 4427
Milkings 1 2 2 2.3 3 9 0.7 | 4927
Maximum_milki
ng_interval 144.7 | 512.2 578.5 595.5| 651.7 | 1420 130.3 | 4,377
Robot_daily_mil
k_yield 0.1 15.2 20.8 21.4 27 60.4 8.7 | 4,924
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Parameter Min Q1 Median | Mean Q3 Max SD N

Robot_milk_yiel

d_in_last lactati | 2,644. | 6,533. 9,067. | 15,03

on 7 5| 78711 | 7,861.2 4 3.3 | 2,293.7 | 3,582
Robot_fat 2.3 3.8 4.1 4.1 4.4 6.1 0.4 | 4,905
Robot_protein 2.7 3.2 3.3 3.3 3.4 4.4 0.2 | 4,904
Robot fat prote

in_ratio 0.6 1.2 1.2 1.3 1.4 2 0.2 | 4,907
Robot lactose 29 4.3 4.4 4.4 4.6 5 0.2 | 4,903
Conduct_Iv 2.6 4.4 4.8 4.8 5.2 8 0.6 | 4,719
Conduct rv 2 4.9 5.2 5.2 5.5 8.9 0.6 | 4,644
Conduct_lh 3.8 5 5.3 5.3 5.5 8.9 0.5] 3,260
Conduct_rh 3 4.3 4.6 4.7 5 7.7 0.6 | 4,789
Concentrated_f

eed_intake 0 0.8 1.6 2.1 3.3 5.8 1.5 | 4,685
Lemmer_act 37 101 132 150.7 171 858 88.3| 4,914
Lemmer_get_up

s 1 7 9 9.5 12 40 41| 4,617
Lemmer _lying 24 528 636 630 732 1,212 168 | 4,620
Lemmer_factor

of restlessness 531 | 221.2 317.2 420.6 | 456.6 | 6,120 449.6 | 4,618
Smaxtec_act 0.4 3.6 4.3 4.6 5.2 21.4 1.8 | 4,809
Smaxtec_act d

ay 0.8 4.5 5.3 5.7 6.4 23.7 2| 4,806
Smaxtec_act_d

ay_night 0.4 1.1 1.2 1.2 1.3 2.5 0.2 | 4,807
Smaxtec_rum 202.9 | 489.6 532.3 525.2 | 568.4 | 735.1 65.6 | 4,651
Smaxtec_temp_

median 38.5 39 39.1 39.1 39.3 40.6 0.2 | 4,811
Smaxtec_temp_

min 27 32.7 33.4 33.4 34.1 37.7 1.2 | 4,812
Smaxtec_temp_

max 39 39.5 39.7 39.7 39.9 42.3 0.3 ] 4,812
Smaxtec_temp_

without_drink_c

ycles_median 38.7 39.1 39.2 39.2 39.4 40.8 0.2] 4,811
Smaxtec_temp_

without_drink_c

ycles min 37.7 38.5 38.6 38.6 38.7 39.8 0.2 | 4,811
Smaxtec_temp_

without_drink_c

ycles _max 39 39.5 39.7 39.7 39.9 42.2 0.3] 4,812
Smaxtec_temp_

normal_median 39 39.3 39.4 39.4 39.5 40 0.2 ] 4,812
Smaxtec_climat

e_temp_median 3.9 8.8 10 10.1 11.9 14.8 2.7 | 4,848
Smaxtec_climat

e_temp_min 2.6 7 8.3 7.9 9 12.9 24| 4,848
Smaxtec_climat

e _temp _max 5 10.5 12.5 12.8 15.3 20.2 3.2 | 4,848
Smaxtec_climat

e_hum_median 59.5 68.2 75 74.5 80.7 83.2 6.7 | 4,848
Smaxtec_climat

e _hum_min 43.9 58.5 71.2 67.4 771 79 10.4 | 4,848
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Parameter Min Q1 Median | Mean Q3 Max SD N
Smaxtec_climat
e_hum_max 71.4 75.9 80.5 80.4 85 87.3 4.8 | 4,848
Smaxtec_thi_m
edian 42.3 48.9 51.1 51.3 54.1 58.6 41| 4,848
Smaxtec_thi_mi
n 41.2 46.8 48.5 48.4 50.5 55.9 3.6 | 4,848
Smaxtec_thi_m
ax 43 51.5 54.8 55.2 59.3 67.1 5.2 | 4,848
Season 1 1 1 2 3 3 1] 4,959
GSC 2 2.5 2.8 2.7 3 3 0.4 | 4,959
PT 0 0 0 0.1 0 1 0.3 | 4,959

Table 56: Statistical summaries of CDF5 (parameters explained in Table 33)

Parameter Min Q1 Median | Mean Q3 Max SD N
Breed 1 1 1 1 1 1 0| 2,623
LMS 1 1 1 1.2 1 0.5| 2,623
C LMS 1 1 1 1.3 1 3 0.7 | 2,623
Lactation_numb
er 0 1 2 3.2 5 12 23| 2,623
Days_in_milk 1 81 162 162.7 237 468 98.5| 2,600
LKV_milk_yield
_in_last_lactatio 10,64 | 18,35
n 3,243 | 7,938 9,068 | 9,613.1 5 1 2,374 | 1,793
LKV_daily_milk

yield 15.7 24.7 31.5 31.4 37.1 51.3 7.4 | 2,493
LKV urea 130 185 222 223.9 253 360 474 | 2,493
LKV_somatic_c
ell_count 10 19 47 213.3 103 | 5464 613.9 | 2,493
LKV _fat 2.7 3.9 4.3 4.4 4.7 8 0.7 | 2,493
LKV protein 2.4 3.1 3.3 3.3 3.5 4.9 0.3 | 2,493
LKV_fat_protein

ratio 0.9 1.2 1.3 1.3 1.4 2.4 0.2 ]| 2,488
LKV lactose 4.4 4.9 5 5 5.1 5.4 0.2 | 2,488
Milkings 1 2 3 2.8 3 6 0.7 ] 2,570
Maximum_milki 1,176.
ng_interval 52.2 | 459.6 539.8 558.1 | 632.5 7 133.2 | 2,525
Robot_daily_mil
k vyield 0.5 23.7 29.5 29.9 35.7 58.7 8| 2,570
Robot_milk_yiel
d_in_last_lactati 14,44
on 5431 | 7,073 8,193 | 8,515.2 | 9,520 6] 1,865.3| 1,772
Robot_daily_mil
k_vyield_in_last_|
actation 16.5 23.9 26.5 26.7 28.8 37.6 41| 1,793
Robot fat 2 4 4.4 4.5 5 6.5 0.6 | 2,570
Robot protein 2.5 3.1 3.2 3.2 3.4 4.9 0.3 ] 2,570
Robot_fat_prote
in_ratio 0.7 1.3 1.4 1.4 1.5 2 0.2 ] 2,570
Robot_lactose 4.7 4.9 5 4.9 5 5.2 0.1] 2,570
Milking_tempera
ture 36.8 37.9 38.1 38.1 38.3 39.8 04| 2,570
Milking_flow 0.9 2.1 2.7 2.7 3.3 6.1 0.8 ] 2,570
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Parameter Min Q1 Median | Mean Q3 Max SD N

Max_milking_flo

w 0.5 3 3.9 3.9 4.7 8 1.1 2,570
Conduct lely Iv 60 67 69 69.5 71| 115.5 51| 2,528
Conduct lely rv 59.5 66 68 69.6 71 138 7.1 2,528
Conduct_lely Ih 60 67 69 69.3 71 94 3.9 | 2,507
Conduct lely rh 61 67 69 69.4 71 97 3.7 2,528
Concentrated_f

eed intake 0 4 6 5.6 7.3 10.6 2| 2,573
Concentrated_f

eed remains 0 0.2 0.5 0.9 1.4 5.9 1] 2,570
Body weight 453.5 562 586 583.6 607 666 35.6 | 1,419
SCR_act 21.5 35.5 39 39.7 43 81 5.8 | 2,538
SCR_act_day 26 38 42 42.6 46 93 6.8 | 2,537
SCR_act_day_n

ight 0.7 1 1.1 1.1 1.1 2 0.1] 2,539
SCR_heat_prob

ability -17 -3.5 -1 -0.3 1 92 8.2 | 2,539
SCR_heat_prob

ability day -19.5 -4 -1 -0.2 2 100 9.1] 2,520
SCR _rum 126 537 570 565.8 601 711 56.2 | 2,539
Season 2 2 2 2 2 2 0| 2,623
GSC 2 3 3 2.9 3 3 0.2 2,623
PT 0 0 0 0.1 0 1 0.3 ] 2,602
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Table 57: Counts and shares of positive and negative pain tests divided by findings

. Positive pain Perc.e n tage.of Negative pain Perceptage o J
Findings t positive pain negative pain
ests tests
tests test

SHD 72 13.79% 450 86.21%
SHC 23 15.65% 124 84.35%
CSH 19 13.57% 121 86.43%
DDM1 20 16.95% 98 83.05%
DDM2 43 20.00% 172 80.00%
DDM4 14 11.76% 105 88.24%
DDM4.1 1 6.67% 14 93.33%
WLD 41 13.31% 267 86.69%
HHE 6 13.64% 38 86.36%
HF 6 19.35% 25 80.65%
IH 19 15.70% 102 84.30%
BU 0 0.00% 1 100.00%
WLA 30 38.96% 47 61.04%
DS 18 40.91% 26 59.09%
oLuU 5 38.46% 8 61.54%
SuU 18 42.86% 24 57.14%
IP 5 55.56% 4 44.44%
TU 2 50.00% 2 50.00%
TN 1 100.00% 0 0.00%

Table 58: Percentage of agreement (PA), quadratic weighted Cohen’s kappa (kw) and
confidence interval (Cl) of locomotion and lesion score on each project farm

RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5

PA 69.9% | 48.9% | 64.3% 66.1% 78.9% 58.9% 68.9% | 69.5%
Kw 0.49 0.24 0.39 0.33 0.54 0.41 0.54 0.58
0.37- 0.12- 0.25- 0.03- 0.32- 0.23- 0.44- 0.46-

Cl 0.61 0.37 0.53 0.63 0.76 0.58 0.65 0.70

Table 59: Statistical summaries for each parameter grouped by corrected locomotion score
(C_LMS) across all farms (parameters explained in Table 33)

. Media
EpMS AL Min | Q1 n | Mean | Q3 | Max | SD N
Animal characteristics
1 Breed 1.00 | 1.00 1.00 119 1.00| 7.00| 0.88| 19,431
2 Breed 1.00 | 1.00 1.00 117 1.00 | 7.00| 0.94 1,133
3 Breed 1.00 | 1.00 1.00 1.09] 1.00] 7.00 | 0.56 4,019
Milking

1 Lactation_numb 12.0

er 0.00 | 1.00 2.00 2.64 | 4.00 0] 1.76 | 19,431
> Lactation_numb

er 0.00 | 2.00 3.00 3.10| 4.00 | 9.00 | 1.87 1,133
3 Lactation_numb 12.0

er 0.00 | 2.00 3.00 3.09 | 4.00 0] 1.93 4,019
1 Days_in_milk 76.0 | 152.0| 161.0| 228. | 530.| 103.

- = 0.00 0 0 3 00 00 27 | 19,148
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Media

CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
> Days_in_milk 68.0 | 166.0 | 173.8 | 276. | 468. | 110.
- = 0.00 0 0 5 00 00 97 1,115
3 Days_in_milk 58.0 | 150.0 | 152.9 | 227.| 520.| 103.
- = 0.00 0 0 5 00 00 31 3,990
LKV_milk_yield 11,3 | 21,1
1 _in_last_lactatio | 3,24 | 8,05 | 9,433. | 9,784. | 50.0 | 93.0 | 2,64
n 3.00 | 2.00 00 17 0 0] 9.71] 12,035
LKV_milk_yield 12,0 | 154
2 _in_last_lactatio | 6,24 | 8,64 | 10,46 | 10,51 | 62.0 | 55.0 | 2,28
n 9.00 | 0.00 0.00 5.23 0 0| 6.96 795
LKV_milk_yield 12,4
3 _in_last_lactatio | 3,19 | 8,34 | 10,37 | 10,44 | 44.0 | 2119 | 2903
n 4.00 | 2.00 8.00 4.97 0] 3.00 97 2,895
1 LKV_daily_milk 23.1 354 | 574
_yield 7.20 0] 29.10 | 29.37 0 0| 823 | 17,784
5 LKV _daily_milk 221 37.5| 46.0
yield 9.00 0] 31.10] 29.93 0 0| 8.89 1,034
3 LKV_daily_milk 24.0 36.3 | 61.1
_yield 6.50 0| 29.80 | 30.24 0 0] 9.03 3,676
1 LKV urea 30.0 | 138.| 184.0 | 184.7 | 229. | 454. | 64.4
- 0 00 0 2 00 00 9| 17,188
> LKV urea 32.0| 151.| 185.0 | 187.0 | 218.| 412. | 60.6
- 0 00 0 6 00 00 8 1,010
3 LKV urea 320 | 137.| 184.0 | 181.7 | 229.| 369. | 69.3
- 0 00 0 1 00 00 5 3,554
1 LKV_somatic_c | 10.0 | 24.0 205.6 | 143.| 9,99 | 654.
ell_count 0 0] 55.00 1 00 | 9.00 97 | 17,597
5 LKV_somatic ¢ | 10.0 | 38.0 119.0 | 142. | 2,68 | 184.
ell_count 0 0| 65.00 5 00 | 1.00 55 1,034
3 LKV_somatic_ ¢ | 10.0 | 20.0 203.5| 152.| 9,99 | 725.
ell_count 0 0] 53.00 7 00 | 9.00 67 3,650
1 LKV _fat 2.06 | 3.65 4.13 418 | 462 | 8.00| 0.79| 17,772
2 LKV _fat 2.11| 3.53 4.04 412 | 466 | 7.08| 0.87 1,034
3 LKV _fat 2.32 | 3.54 4.05 412 450 | 7.60| 0.83 3,676
1 LKV _protein 2.37 | 3.28 3.52 3.53| 3.78| 492 | 0.36 | 17,784
2 LKV _protein 2.78 | 3.28 3.58 3.60| 3.86| 4.58 | 0.38 1,034
3 LKV _protein 249 | 3.21 3.46 3.46 | 3.73| 4.69| 0.38 3,676
1 LKV_fat_protein
_ratio 0.59 | 1.05 1.16 119 1.31] 2.39] 0.22 | 17,760
> LKV_fat_protein
_ratio 0.69 | 1.00 1.13 1.15] 1.28 | 2.09| 0.24 1,034
3 LKV_fat_protein
ratio 0.60 | 1.05 1.16 1.20| 1.30 | 2.34 | 0.25 3,676
1 LKV _lactose 3.61 | 4.80 4.91 489 | 5.01] 540 | 0.19| 17,546
2 LKV _lactose 427 | 4.76 4.86 485| 499 | 524 | 0.19 1,034
3 LKV _lactose 3.83 | 4.78 4.90 488 | 5.01] 537 0.19 3,645
1 Milkings 1.00 | 2.00 2.00 253 | 3.00| 9.00| 0.74 | 18,617
2 Milkings 1.00 | 2.00 2.00 2.38| 3.00| 5.00| 0.75 1,101
3 Milkings 1.00 | 2.00 2.00 240 | 3.00| 6.00| 0.73 3,934
1 Maximum_milki | 18.7 | 492. | 563.7 | 582.4 | 650.| 1,35 | 131.
ng_interval 7 33 8 3 18 | 1.33 72| 17,652
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Media

CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
> Maximum_milki | 174.| 506. | 575.0 | 605.4 | 676. | 1266 | 142.
ng_interval 83 00 0 4 69 .97 38 1,019
3 Maximum_milki | 49.8 | 507. | 579.1 | 600.1 | 665. | 1420 | 137.
ng_interval 7 22 6 3 79 .00 21 3,608
1 Robot_daily_mil 221 351 | 725
k_yield 0.06 8| 28.41 | 28.7 4 2] 9.34| 18,609
2 Robot_daily_mil 21.8 376 | 66.3| 10.5
k yield 0.11 1] 29.32 | 29.34 5 4 1 1,101
3 Robot_daily_mil 221 36.6 | 63.2| 10.3
k_yield 1.05 0] 29.61 | 29.62 9 3 2 3,932
Robot_milk_yiel 15,8
1 d_in_current_la 2,40 | 4,894. | 5273. | 7,56 | 74.0| 3,45
ctation 219 | 4.90 38 55| 9.1 3| 424 3,870
Robot_milk_yiel 13,2
2 d_in_current_la | 121.| 2,27 | 5,542. | 5,913. | 8,91 | 54.4 | 3,93
ctation 12| 449 73 95| 6.91 8| 6.55 378
Robot_milk_yiel 15,5
3 d_in_current_la | 27.6 | 1,90 | 5,653. | 5,302. | 8,03 | 27.4 | 3,53
ctation 1] 9.46 56 94 | 4.67 1] 7.18 889
Robot_milk_yiel 10,4 | 20,1
1 d_in_last_lactati | 635. | 7,17 | 8,743. | 8,873. | 45.0 | 48.0| 2,73
on 00 | 6.55 00 23 0 0| 3.33 9,910
Robot_milk_yiel 11,9 | 149
2 d_in_last_lactati | 2,01 | 7,10 | 10,15| 9,552. | 12.0 | 96.7 | 3,28
on 8.00 | 9.00 7.00 14 0 2] 550 564
Robot_milk_yiel 11,1 ] 19,3
3 d_in_last_lactati | 1,73 | 7,31 | 9,017.| 9,346. | 97.0 | 33.0| 3,12
on 4.00 | 4.00 00 84 0 0] 8.17 2,188
Robot_daily_mil
1 k_yield in_last | | 12.0 | 25.2 33.6 | 43.0
actation 0 0| 28.60| 29.18 0 0| 5.84 5,567
Robot_daily_mil
2 k_yield_in_last | | 13.1 | 23.8 33.2 | 42.7
actation 0 0| 28.40 | 28.78 0 0| 5.86 370
Robot_daily_mil
3 k_yield_in_last | | 12.6 | 25.8 34.3 | 43.0
actation 0 0| 29.10 | 29.69 0 0| 5.92 1,237
1 MDi 1.00 | 1.00 1.10 1.15| 1.15] 420 | 0.31 5,157
2 MDi 1.00 | 1.00 1.10 119 1.15] 425 | 0.38 493
3 MDi 1.00 | 1.00 1.10 119 1.15| 3.85]| 0.33 1,262
1 Milking_flow 0.00 | 1.21 2.05 216 | 290 | 6.65| 1.09| 12,986
2 Milking flow 0.44 | 1.00 1.30 1.74 | 240 | 555 | 1.00 896
3 Milking_flow 0.50 | 1.18 1.90 210 | 290 710 | 1.09 2,768
1 Max_milking_flo 10.1
w 0.50 | 2.90 4.00 411 | 5.16 4| 1.67| 12,987
2 Max_milking_flo
w 1.16 | 2.93 4.10 411 ] 5.31| 840 | 1.65 896
3 Max_milking_flo 11.7
w 0.60 | 3.05 4.15 421 | 522 6] 1.79 2,767
1 Robot_conduct_ | 60.0 | 66.7 71.0| 96.2
lely 0 5| 68.75| 69.01 0 5| 3.40 8,630
> Robot_conduct_ | 62.0 | 66.7 72.0| 80.5
lely 0 5] 69.00 | 69.39 0 0] 352 434
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Media

G ] TEEEE Min | Q1 | n |Mean| Q3 |Max| SD | N
3 Robot _conduct_ | 60.5 | 67.0 715 | 85.2
lely 0 0| 69.00| 69.15 0 5| 3.54 1,653
1 Robot conduct | 0.00 | 4.38 470 472 | 505| 7.46 | 0.57 9,870
2 Robot conduct | 0.00 | 4.36 4.55 463 | 486 | 6.48| 057 661
3 Robot conduct | 0.00 | 4.42 4.67 472 | 5.03| 6.66 | 0.59 2,274
1 Robot_somatic_ 30.0 119.2 | 101.| 3,92 | 287.
cell _count 1.00 0] 54.00 8 00 | 0.50 54 5,997
2 Robot_somatic 23.7 1226 | 95.0| 2,69 | 310.
cell count 1.00 5| 45.00 1 0| 6.50 50 351
3 Robot_somatic_ 27.0 106.0 | 93.5| 2925 | 216.
cell _count 1.00 0] 49.00 2 0 .00 62 1,143
1 Robot_effect_of 43.6
_scc 0.00 | 0.55 1.00 1.78 | 1.70 0] 3.20 5,997
> Robot_effect of 40.8
scc 0.00 | 0.40 0.80 1.71| 1.65 5] 3.76 351
3 Robot_effect of 334
_scc 0.00 | 0.60 1.00 1.92 | 1.77 0] 3.33 1,143
13.1
! Robot fat | geg| 370| 4.20| 435 474| 1| 1.00| 13,410
11.6
2 Robot fat | 1g¢| 375| 433| 442| 48| 4| 1.09| 604
12.1
3 Robot fat | 1 o3| 370| 424 434 482| 5| 096| 2662
1 Robot protein 251 | 3.27 3.44 3.44 | 3.60| 554 | 0.27 | 13,408
2 Robot protein 2.88 | 3.40 3.53 3.54 | 3.67| 5.38| 0.26 605
3 Robot protein 2.70 | 3.22 3.42 3.41| 3.57 | 5.60| 0.28 2,662
1 Robot_fat_prote
in_ratio 0.18 | 1.1 1.24 127 | 1.39| 349 | 0.28| 13,411
> Robot_fat prote
in_ratio 0.50 | 1.09 1.24 124 | 141 | 216 | 0.26 605
3 Robot_fat_prote
in_ratio 040 | 1.12 1.25 127 | 141 | 342 | 0.26 2,662
1 Robot lactose | 2.90 | 4.59 4.82 475| 492 | 517 | 0.24 | 13,402
2 Robot lactose | 4.02 | 4.71 4.84 478 | 492 | 5.06| 0.20 605
3 Robot lactose | 4.01 | 4.56 4.82 473 ] 491] 519 0.25 2,662
1 Milking_tempera | 35.8 | 38.2 39.1| 413
ture 5 0| 38.60| 38.69 5 0| 0.67 8,626
> Milking_tempera | 37.0 | 38.5 39.3 | 40.6
ture 0 0| 38.90| 38.92 5 0] 0.63 434
3 Milking_tempera | 36.8 | 38.2 39.1| 415
ture 0 5| 38.70 | 38.72 0 0| 0.60 1,653
Constitution
1 Robot BCS 2.50 | 3.70 3.90 3.84| 410 4.60| 0.32 3,679
2 Robot BCS 3.10 | 3.70 3.90 3.91| 410 4.40| 0.30 326
3 Robot BCS 2.70 | 3.60 3.80 3.79| 4.00| 450| 0.33 765
1 Body_weight 453. | 637.| 735.7| 733.4| 813.| 1,15 | 115.
- 50 00 8 7 88| 1.60 46 5,202
. 459. | 742.| 817.0 | 806.8 | 897.| 1,03 | 112.
2 Body_weight | 55| "3 5 3| o7| 010| 44| 420
3 Body_weight 444.| 630.| 763.6 | 753.7 | 839.| 999. | 126.
- 40 88 0 7 86 80 44 1,160
Feeding
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Media

e R Min | Q1 | n | Mean | Q3 |Max| SD | N
1 Concentrated_f 10.5
eed_intake 0.00 | 1.83 3.67 3.73 | 5.32 8| 217 | 18,136
2 Concentrated_f
eed_intake 0.00] 1.7 3.72 3.64 | 522 | 9.20| 2.13 1,006
3 Concentrated_f 10.0
eed_intake 0.00 | 1.99 3.83 3.74 | 5.25 0] 2.07 3,646
1 Concentrated_f
eed_remains 0.00 | 0.08 0.13 0.36 | 0.31| 5.96 | 0.61 8,665
> Concentrated_f
eed_remains 0.02 | 0.09 0.14 0.28] 0.32| 3.05| 0.37 443
3 Concentrated_f
eed remains 0.00 | 0.09 0.14 044 | 045 | 546 | 0.67 1,644
. 34.8 53.7 | 921 | 14.7
1 | WT_feed_intake | 59 0| 44.02 | 43.53 2 6 5| 4,167
. 41.5 58.0| 81.9| 11.9
2 | WT_feedintake | 4 43| 0| 4899 49037| 7| 4| 7| 381
. 37.5 52.8 | 88.8| 13.9
3 | WT_feed intake | 4 o3 9| 45.56 | 45.06 7 4 7 889
1 WT _feeding_pa
ce 0.06 | 0.26 0.33 0.35]| 0.41] 1.37| 0.12 4,168
> WT _feeding_pa
ce 0.17 | 0.32 0.37 0.39| 0.45| 0.80| 0.1 381
3 WT _feeding_pa
ce 0.17 | 0.33 0.44 0.44 | 0.53| 2.14| 0.15 890
1 WT feeding du | 10.0 | 99.0 | 133.0 | 138.5| 170. | 792. | 62.0
ration 0 0 0 5 00 00 8 4,150
5 WT _feeding_du | 10.0 | 110. | 128.0 | 133.4| 152. | 289. | 40.8
ration 0 00 0 0 00 00 2 379
3 WT _feeding_du | 12.0 | 80.0 | 106.0 | 112.4 | 141.| 428. | 474
ration 0 0 0 1 00 00 6 884
1 WT _feeding_du 72.0| 100.0| 104.0| 128.| 769.| 51.3
ration_day 0.00 0 0 6 00 00 2 4,150
5 WT _feeding_du | 10.0 | 81.5 100.8 | 115. | 246. | 32.3
ration_day 0 0] 97.00 0 00 00 2 379
3 WT _feeding_du 59.0 103. | 358. | 35.1
ration_day 0.00 0| 80.00| 83.07 00 00 6 884
WT_feeding_du
1 ration_day_nigh
t 0.00 | 0.67 0.76 0.75] 0.85| 1.00| 0.14 4,150
WT _feeding_du
2 ration_day_nigh
t 0.18 | 0.68 0.77 0.77] 0.85| 1.00| 0.13 379
WT _feeding_du
3 ration_day_nigh
t 0.00 | 0.65 0.75 0.75]| 0.85| 1.00| 0.15 884
1 WT _trough_visit 29.0 59.0 | 222.| 25.9
s 1.00 0| 43.00 | 46.46 0 00 7 4,174
5 WT_trough_visit 25.0 40.0| 77.0| 13.2
s 2.00 0| 33.00] 33.00 0 0 9 381
3 WT _trough_visit 17.0 37.0| 119.| 16.6
S 2.00 0| 25.00| 28.84 0 00 7 890
1 WT_trough_visit 22.0 450 | 178.| 21.1
s day 0.00 0| 33.00| 35.72 0 00 0 4,174
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Media

CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
> WT_trough_visit 19.0 320 | 71.0| 10.8
s_day 2.00 0| 25.00 | 25.66 0 0 7 381
3 WT_trough_visit 13.0 280 91.0| 13.3
s_day 0.00 0| 19.00 | 22.06 0 0 4 890
1 WT_trough_visit
s_day_night 0.00 | 0.69 0.78 0.77] 0.86| 1.00| 0.14 4,174
2 WT _trough_visit
s_day night 0.27 | 0.70 0.78 0.78| 0.88| 1.00| 0.13 381
3 WT _trough_visit
s_day_night 0.00 | 0.67 0.77 0.77] 0.87| 1.00| 0.15 890
1 WT _feed_intake
_per _visit 0.00 | 0.72 0.97 118 | 1.39 | 8.71 | 0.76 4,172
> WT _feed_intake 10.9
per_visit 0.50 | 1.17 1.51 1.86 | 2.08 41 1.31 381
3 WT _feed_intake 13.0
_per _visit 0.26 | 1.10 1.79 212 | 2.64 2| 158 890
1 WT feeding_du 70.3
ration_per visit | 0.37 | 2.35 3.13 3.63 | 4.30 0] 2.68 4,172
> WT _feeding_du 43.4
ration_per visit | 1.50 | 3.17 4.07 497 | 547 2| 3.65 381
3 WT feeding_du 57.1
ration_per visit | 0.43 | 3.00 4.42 493 | 5.98 7| 3.53 890
1 WT_number_of 12.0| 23.0
_meals 1.00 | 7.00 9.00 9.63 0 0| 3.18 3,949
> WT_number_of 11.0| 17.0
meals 1.00 | 8.00 9.00 9.38 0 0] 2.67 374
3 WT_number_of 10.0| 19.0
meals 1.00 | 6.00 8.00 8.37 0 0] 2.87 828
1 WT_number_of 20.0
meals_day 0.00 | 5.00 7.00 7.18 | 9.00 0] 2.63 3,949
> WT_number_of 15.0
meals_day 1.00 | 5.00 7.00 7.06 | 9.00 0] 2.32 374
3 WT_number_of 16.0
meals_day 0.00 | 4.00 6.00 6.11 | 7.00 0] 222 828
WT_number_of
1 _meals_day_nig
ht 0.00 | 0.67 0.75 0.75]| 0.83| 1.00| 0.14 3,949
WT_number_of
2 _meals_day_nig
ht 0.25| 0.67 0.75 0.76 | 0.86 | 1.00| 0.14 374
WT_number_of
3 _meals_day_nig
ht 0.00 | 0.64 0.75 0.74) 0.83| 1.00| 0.15 828
1 WT_feed_intake 23.9
per_meal 0.83 | 3.53 4.67 511 ] 6.17 1] 2.29 3,949
> WT_feed_intake 13.5
per_meal 214 | 4.26 5.46 5.72 | 6.85 5] 2.07 374
3 WT_feed_intake 16.5
per_meal 1.51 | 4.41 5.58 6.15| 7.39 6| 249 828
1 WT _feeding_du 10.8 19.2 | 234.| 10.5
ration_per meal | 6.00 3| 1448 | 16.29 2 33 6 3,949
5 WT_feeding_du 11.1 18.7 | 175. | 115
ration_per meal | 6.23 0] 14.25] 16.14 6 55 8 374
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Media

CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
3 WT_feeding_du 10.2 18.2 | 148.
ration_per meal | 6.03 8| 13.62] 15.41 4 63| 9.32 828
. 45.0 127.| 288.| 57.2
1 | ENGS_feeding | 100| 0| 79.00| 8956| 00| 00| 3| 934
. 63.7 | 107.0| 103.2| 137.| 230.| 51.2
2 | ENGS feeding | 149| 5 0 6| 00| 00| 9| 144
. 45.5 112. | 213. | 42.2
3 | ENGS_feeding | 609 0| 83.50| 80.38| 25| 00| 8| 188
1 ENGS_feeding_ 32.0 94.7 | 220.| 449
day 0.00 0| 60.00| 67.30 5 00 7 934
> ENGS_feeding_ 51.0 108. | 171.| 37.7
day 0.00 0| 79.50| 78.55 00 00 3 144
3 ENGS_feeding_ 35.7 81.0| 169.| 31.1
day 0.00 5] 60.00 | 58.90 0 00 7 188
1 ENGS_feeding_
day night 0.00 | 0.65 0.77 0.75]| 0.86| 1.00| 0.18 934
> ENGS feeding_
day _night 0.00 | 0.69 0.79 0.78 ] 0.88 | 1.00| 0.15 144
3 ENGS_feeding_
day night 0.00 | 0.65 0.75 0.74] 0.85| 1.00| 0.18 188
1 ENGS _number_ 11.0| 21.0
of _meals 0.00 | 6.00 9.00 8.63 0 0| 3.55 934
2 ENGS_number_ 11.0| 18.0
of meals 0.00 | 7.00 9.00 8.98 0 0| 3.11 144
3 ENGS _number_ 11.0| 25.0
of _meals 0.00 | 6.00 8.00 8.70 0 0| 3.87 188
1 ENGS_number_ 18.0
of meals day | 0.00| 5.00 6.00 6.49 | 8.00 0] 2.82 934
5 ENGS _number_ 13.0
of meals day | 0.00 | 5.00 7.00 6.71 ] 8.00 0] 243 144
3 ENGS_number_ 17.0
of meals day | 0.00| 5.00 6.00 6.35| 8.00 0] 2.79 188
ENGS _number_
1 of meals_day n
ight 0.00 | 0.67 0.75 0.76 | 0.86| 1.00| 0.16 911
ENGS _number
2 of meals_day n
ight 0.46 | 0.67 0.75 0.76 | 0.83 | 1.00| 0.13 141
ENGS _number
3 of meals_day n
ight 0.00 | 0.67 0.75 0.74] 0.84| 1.00| 0.17 186
ENGS_feeding_
1 duration_per_m 14.6 | 63.0
eal 1.00 | 5.70 9.12 | 10.84 7 0| 7.1 911
ENGS_feeding_
2 duration_per_m 15.8 | 34.0
eal 1.50 | 6.88 | 11.42| 12.14 0 0| 6.91 141
ENGS_feeding_
3 duration_per_m 13.2| 26.2
eal 1.12 | 6.02 9.33 9.79 1 9] 4.96 186
1 Nedap, feeding 10.0 | 262. | 377.0 | 377.4| 504.| 806. | 154.
- 0 00 0 6 00 40 74 5,128
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. Media
¢ i) el Min| Q1 | n |Mean| Q3 |Max| SD | N
2 | Nedap foeding | 610 | 196 | 271.0| 284.9 382.| 676.| 129.
— ol 00 0 4| 50| 80| 86 291
3| Nedap feeding | 100 | 226.| 3744 | 366.4 | 504.| 806. | 173,
— 0| 25 0 6| 00| 40| 87| 1014
Rumination
1 Smatoc rum | 188 | 490. | 531.7 | 525.4 [ 568. | 735. | 656
— 00| 00 2 8| 71| 13| 5| 5539
) St ram | 338 | 504. | 539.2 | 5356 | 576. | 666. | 60.5
— 73| 10 0 2| 90| 90| 2 245
5 Smatoo ram | 237-| 490. | 5318 | 527.3| 571.| 714. | 64.2
— 20| 12 4 6| 28| 02| 9| 1108
1 SCR rum 11.0 | 520. | 562.0 | 553.2 | 599. | 748.| 71.6
— ol 00 0 3] 00| 00| 9| 6790
) SCR rum | 206. | 509, | 561.0 | 549.8 | 605. | 751.| 795
- 00| 00 0 9| 00| o0o| 6 541
5 SCR rum | 61.0| 504. [ 557.0 | 545.8 | 599. | 732. | 81.0
— ol 00 0 11 00| 00| 5| 1533
1 SR rum_ day 306. | 343.0 | 337.5| 377.| 533.] 61.7
_rum_ 200| 00 0 8| 00| 00| 6| 3032
109. | 310. | 356.0 | 3455 | 389. | 496. | 62.3
2 SCR_rum_day | "o | " 59 0 1] 00| 00| 4 359
61.0 | 302. | 340.0 | 336.0 | 380.| 545.| 68.1
3 SCR_rum_day ol 00 0 9| 00| 00| 1 833
1 SCR_rum_day_
night 001| 059| 063| 063| 066| 1.00| 006| 3,032
o SCR_rum_day
night 042 | 060| 065| 064| 068 0.85| 0.06 359
3 SCR_rum_day_
night 029| 061| 064| 064| 068| 1.00| 006| 833
1 Nedap ram | 144 | 291.] 395.0| 393.2 | 504. | 763.| 136.
_ ol 00 0 4| 00| 20| 14| 5153
) Nodap rum | 870 | 345.| 432.0| 406.9| 489. | 691.[ 113,
- ol 60 0 8| 60| 20| 47 290
5 Nedap rm | 100 | 188.[ 2915 3207 | 477. | 820.| 175.
_ ol 75 0 2| 40| 80| 54| 1,020
Heat detection
1 SCR—zﬁﬁ;—pmb 27.0 ] 92.0
0| 350| -1.00| -050| 050 ol 7.78| 3,621
2 SCR—aTi’I?t;—pmb 35.0 ] 88.0
0| 350| -2.00| -1.05| 0.00| 0] 9.07 177
3 SCR;Z‘?Iﬁ;—prOb 22.0 ] 74.0
0| 400| -150| -1.01| 050| o0 7.04| 674
1 SCaFE—"*i‘t‘;aL;‘;mb 29.0 ] 100.
_ 0| 400| -1.00| -034| 1.00| 00| 902| 3607
2 SCaRb—"?tf/ag;mb 36.0 ] 84.0| 10.6
— 0| 350| -150| -044| 000 o| 4 177
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Media

C Ly | TElEiE Min | Q1 | n |Mean| Q3 |Max| SD | N
3 Sci)—ilri‘t‘;aépJOb 250| - 84.0
— 0| 400| -1.50| -0.98| 1.00 0| 7.95 665
Lemmer_factor 30,5
1 of restlossness. 53.2 | 226.| 320.0 | 452.2 | 457.| 01.8 | 890.
- 3 00 0 4 71 2 26 4,532
2 Lemmer_factor_ | 84.6 | 160. | 2156 | 296.1 | 305. | 1,73 | 253.
of restlessness 0 62 4 7 06| 7.42 20 152
3 Lemmer_factor | 52.9 | 155. | 231.7 | 301.3 | 345. | 5,66 | 310.
of restlessness 6 66 8 9 81| 8.09 06 986
Lying
1 Nedap, lying 248.| 639.| 727.0| 719.4| 804.| 1,07 | 119.
— 00 00 0 9 00| 5.00 47 1,634
5 Nedap, lying 340.| 630.| 710.0| 740.1| 854.| 1,08 | 155.
— 00 00 0 7 50| 1.00 98 135
3 Nedap, lying 156. | 583.| 709.5| 697.4| 815.| 1,13 | 180.
— 00 00 0 7 00| 1.00 71 382
1 Nedap_get_ups 1201 29.0
—I7 = 1.00 | 8.00| 10.00 | 10.43 0 0| 3.52 1,687
2 Nedap_get ups 13.01 22.0
—I7 = 1.00 | 6.00 9.00 9.83 0 0| 4.48 135
3 Nedap_get ups 11.01 28.0
—I7 = 1.00 | 6.00 8.00 8.83 0 0| 442 401
. 587.| 688.0| 677.5| 780.| 1,15 | 152.
1 ENGS_lying | 4 00| 75 0 9| 25| 900| 74| 3,872
, 558. | 680.0| 641.0| 789.| 1,08 | 227.
2 ENGS_lying | 4 00| 00 0 8| 00| 000| 19| 337
. 34.0| 513.| 687.5| 688.9| 843.| 1,25 | 232.
3 ENGS_lying 0| 50 0 2| 50| 8.00| 00 882
1 ENGS_lying_da 313.| 387.0| 380.7 | 455.| 716.| 109.
y 0.00 00 0 1 00 00 69 3,872
5 ENGS _lying_da 313.| 395.0 | 374.3 | 463.| 699.| 145.
y 0.00 00 0 6 00 00 39 337
3 ENGS_lying_da 293.| 411.0| 410.5| 526. | 835.| 165.
y 0.00 00 0 0 75 00 08 882
1 ENGS_lying_da
y_night 0.00 | 0.51 0.56 0.56| 0.61| 1.00| 0.10 3,872
> ENGS_lying_da
y_night 0.00 | 0.52 0.58 0.58| 0.64| 1.00| 0.14 337
3 ENGS_lying_da
y night 0.00 | 0.54 0.60 0.59| 0.66 | 1.00| 0.13 882
1 ENGS_lying_bo 12.0 20.0 | 109.
uts 1.00 0| 15.00 | 17.47 0 00| 9.93 3,872
> ENGS_lying_bo 18.0 | 61.0
uts 1.00 | 8.00| 13.00 | 14.09 0 0| 8.53 339
3 ENGS_lying_bo 19.7| 81.0| 134
uts 1.00 | 9.00| 13.00 | 16.92 5 0 7 882
1 ENGS_lying_bo 13.0 | 60.0
uts day 0.00| 7.00| 10.00| 11.18 0 0| 6.49 3,872
> ENGS_lying_bo 11.0 | 45.0
uts_day 0.00 | 5.00 8.00 9.11 0 0| 5.87 337
3 ENGS_lying_bo 13.0 | 60.0
uts day 0.00 | 6.00 8.00 | 10.89 0 0| 8.75 882
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. Media
CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
1 ENGS_lying_bo
uts_day night | 0.00 | 0.57 0.65 0.64| 0.73| 1.00| 0.12 3,872
2 ENGS lying_bo
uts_day night | 0.00 | 0.56 0.67 0.66| 0.76 | 1.00 | 0.18 339
3 ENGS_lying_bo
uts_day night | 0.00 | 0.57 0.67 0.66 | 0.75]| 1.00| 0.15 882
1 ENGS_lying_du 32.3 584 | 510.| 27.3
ration_per bout | 2.00 2| 4450 | 48.18 2 00 8 3,872
5 ENGS_lying_du 33.1 69.4| 719.| 68.5
ration_per bout | 1.60 3| 47.75| 64.58 5 00 5 337
3 ENGS_lying_du 31.5 80.8 | 713.| 68.0
ration_per _bout | 5.00 4| 52.88 | 67.15 3 00 2 882
1 Lemmer_lying 10.8 | 529. | 628.2 | 616.2 | 715. | 1,25 | 152.
- 0 80 0 0 80 | 2.20 57 4,534
> Lemmer _lying 229.| 530.| 657.6 | 653.2| 771.| 1,00 | 157.
- 80 85 0 9 15| 6.20 03 152
3 Lemmer_lying 46.8 | 544. | 693.0 | 676.1| 825.| 1,21 | 213.
- 0 35 0 3 00 | 2.00 52 986
1 Lemmer_get_up 11.0| 40.0
s 1.00 | 6.00 9.00 9.17 0 0] 3.93 4,534
o Lemmer_get_up 12.0 | 23.0
s 4.00| 8.00| 10.00| 10.33 0 0| 3.45 152
3 Lemmer_get_up 12.0| 27.0
S 1.00 | 7.00 9.00 9.90 0 0] 3.94 983
Activity
1 Delaval_act_av | 12.0 | 24.0 38.0| 89.0| 10.1
g 0 0| 30.00| 31.67 0 0 5 1,055
> Delaval_act_ av | 11.0| 19.0 34.0 | 60.0
g 0 0| 28.00| 27.95 0 0| 9.68 116
3 Delaval_act_av | 10.0 | 20.0 31.0| 75.0
g 0 0] 25.00] 25.70 0 0| 857 344
1 Delaval act rel 59.0| 91.0| 100.0 | 100.8 | 108. | 287.| 17.2
- = 0 0 0 7 00 00 4 1,055
5 Delaval act rel 55.0 | 89.0 100.8 | 109. | 229.| 21.9
- = 0 0] 99.50 4 00 00 0 116
3 Delaval act rel 440 | 84.0 105. | 293. | 24.0
- = 0 0| 95.00 | 97.81 00 00 9 344
1 Delaval_act_rel | 50.0 | 82.0 96.0 | 137.| 11.7
_min 0 0| 89.00| 89.23 0 00 6 1,008
> Delaval_act _rel | 46.0 | 79.0 95.0| 162. | 154
_min 0 0| 88.00 | 86.41 0 00 8 112
3 Delaval_act_rel | 39.0| 77.0 93.0| 191.| 17.3
min 0 0| 84.00| 86.16 0 00 3 316
1 Delaval_act rel | 59.0 | 101.| 110.0| 111.2| 118.| 255.| 18.4
_max 0 00 0 4 00 00 6 1,008
> Delaval_act_rel | 62.0 | 103.| 111.0| 114.0| 121.| 255.| 25.6
max 0 75 0 4 25 00 7 112
3 Delaval_act_rel | 65.0 | 96.0| 106.0 | 110.0 | 115.| 255.| 26.6
_max 0 0 0 5 00 00 7 316
31.0| 1,80 | 2,223. | 2,299. | 2,70 | 8,73 | 869.
! ENGS_act ol 300| 00| 33| 700|500 84| 3870
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C_LMS variable Min | @1 | n | Mean | Q3 | Max | SD N
30.0 | 1,48 | 1,891. | 1,869. | 2,30 | 6,80 | 841.
2 ENGS_act ol 450 50 15| 550 | 300| 96 336
59.0 | 1.37 | 1.831. | 1.965.| 2.44 | 7.53 | 891,
3 ENGS_act 0| 925| 00| 86| 300| 200| 58| 882
139 1.740. | 1.802. | 212 | 7.47 | 707.
1 ENGS_act day | 50| 300| ~ 00| 66| 575| 100| 68| 3,870
111 1.458. | 1.441.| 1,80 | 5.84 | 676.
2 | ENGS_actday | o9 | 575| 00| 34| 7.75| 000| 50 336
1.05] 1.401. | 1.491.| 1,81 6.41 | 695.
3 | ENGS_actday | 49| 125| " 50| 74| 625| 600| 36 882
1 ENGS_act_day
hight 0.00| 0.74| 079| 078| 0.84| 1.00| 008| 3870
> ENGS_act_day
night 000| 072| 078| 076| 083| 1.00| 012| 336
3 ENGS_act_day
hight 000| 071| 076| 076| 082] 099| 0.10| 882
1 Smaxtec act 21.3
— 031| 396| 486| 565| 6.98| 6| 243| 7.183
2 Smaxtec act 16.8
— 031| 426| 532| 578| 792| 9| 2.40 365
3 Smaxtec act 15.0
— 042 | 371| 469| 541| 692| 9| 2.34| 1491
1 Smaxtec_act d 23.6
ay 040 | 480| 58| 649| 776| 9| 246| 7,180
> Smaxtec_act_d 17.6
ay 040 | 490| 635| 6.41| 8.01 71 230 364
3 Smaxtec_act d 20.6
ay 039| 453| 564! 621|775 5| 241| 1,491
1 Smaxtec_act_d
ay night 043 | 1.06| 1.15| 1.18| 127| 2.32| 018| 7,181
> Smaxtec_act d
ay night 068| 1.04| 111| 114|122 1.94]| 0.16 365
3 Smaxtec_act_d
ay night 072] 1.05| 114| 118| 126| 2.53| 020| 1,488
215 36.5 445 | 141,
1 SCR_act ol o] 4000| 4116 o] 00| 777| 6,740
26.0 | 345 425 | 845
2 SCR_act 0 0| 38.00| 38.81 0 0| 6.47 543
250 | 34.0 405 | 150. | 10.1
3 SCR_act ol ol 3700| 3853 o 00| 8| 1521
205 385 485 | 146
1 SCR_act_day ol o0l 43.00| 4439| 0| 50| 921| 6737
26.0 | 36.0 455 | 100,
2 SCR_act_day ol 0| 4050| 4142| o| 50| 856 543
250 | 35.0 44.0| 151.] 11.0
3 SCR_act_day ol ol 39.00| 4005| o 00| 7| 1519
1 SCR_act day n
ight 060| 1.02| 1.06| 1.08| 1.12| 2.15| 009 | 6743
5 SCR_act_day n
ight 074 | 1.01| 1.04| 1.06| 1.10| 2.01| 0.09 543
3 SCR_act_day n
ight 055| 1.01| 1.04| 1.06| 1.10| 1.99| 0.10| 1,521
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Media

CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
1 Lemmer act 37.0| 102. | 132.0| 151.5| 172. | 858. | 86.6
- 0 00 0 2 00 00 9 4,776
2 Lemmer act 47.0| 73.0 118.4 | 127.| 590. | 87.0
- 0 0] 94.00 4 00 00 1 173
3 Lemmer act 37.0| 79.0| 103.0| 1154 | 133.| 774.| 65.0
- 0 0 0 5 00 00 2 1,016
1 Nedap_inactive 225. | 548. | 639.0| 661.2 | 752. | 1,37 | 162.
- 00 00 0 0 00 | 8.00 54 5,132
> Nedap_inactive 363. | 639.| 7255 | 732.2| 829.| 1,14 | 127.
- 00 00 0 0 75| 7.00 35 290
3 Nedap. inactive 251. | 627.| 719.0 | 737.7 | 812.| 1,35 | 168.
- 00 00 0 4 00| 7.00 60 1,019
1 Nedap_act_coll 10.5| 71.0
ar_median 1.00 | 4.50 7.00 8.24 0 0] 5.05 5,168
> Nedap_act_coll 21.5
ar_median 0.00 | 4.50 6.00 6.88 | 9.00 0| 3.46 291
3 Nedap_act_coll 53.0
ar_median 0.00 | 4.00 6.00 7.02 | 9.50 0] 425 1,017
1 Nedap_act_coll | 14.0 | 63.0 110.2 | 140. | 859. | 65.6
ar_sum 0 0] 95.00 3 00 00 9 5,166
o Nedap_act_coll 62.0 119. | 330.| 48.2
ar_sum 9.00 0| 81.00 | 93.54 00 00 0 290
3 Nedap act coll | 11.0 | 58.0 125. | 635.| 57.8
ar_sum 0 0| 83.00] 95.10 00 00 0 1,016
1 Nedap_act_coll 12.5 | 89.5
ar_median_day | 0.50 | 5.00 8.00 9.70 0 0] 6.56 5172
> Nedap_act_coll 10.5| 30.0
ar_median_day | 0.50 | 5.00 7.00 7.93 0 0] 445 292
3 Nedap_act_coll 10.0 | 85.5
ar_median_day | 0.00 | 4.50 7.00 7.94 0 0] 5.80 1,017
1 Nedap_act_coll 46.0 105. | 737.| 52.6
ar_sum_day 6.00 0] 71.00 | 82.89 00 00 2 5,172
> Nedap_act_coll 43.7 93.0 | 308.| 38.8
ar_sum_day 6.00 5| 60.50 | 69.69 0 00 9 292
3 Nedap_act_coll 41.0 91.0| 534.| 46.0
ar_sum_day 6.00 0| 61.00 | 69.09 0 00 1 1,017
Nedap_act_coll
1 ar_median_day
night 0.13 | 1.00 1.12 117 | 1.28 | 547 | 0.27 5,168
Nedap_act_coll
2 ar_median_day
night 0.70 | 1.00 1.11 1.15| 1.25| 2.86 | 0.23 290
Nedap_act_coll
3 ar_median_day
night 0.20 | 1.00 1.07 112 1.22 | 421 ] 0.28 1,016
Nedap_act_coll
1 ar_sum_day_ni
ght 0.16 | 0.70 0.75 0.75] 0.80| 0.98 | 0.09 5,167
Nedap_act_coll
2 ar_sum_day_ni
ght 0.44 | 0.69 0.74 0.74] 0.79] 0.93 | 0.08 290
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Media

CIMS| variable | i | @1 | n | Mean | Q3 |Max| SD | N
Nedap_act_coll
3 ar_sum_day_ni
ght 0.26 | 0.67 0.73 0.72] 0.78 | 0.95| 0.09 1,016
141
1 Nedap_act 1,30 | 2,66 | 3,405. | 3,641. | 4,33 | 74.0| 1,37
4.00 | 1.50 50 51| 1.75 0] 197 1,686
> Nedap_act 1,78 | 2,59 | 2,979. | 3,256. | 3,70 | 9,39 | 966.
- 9.00 | 6.50 00 28 | 250 | 1.00 14 135
13,7
3 Nedap_act 1,28 | 2,32 | 2,849. | 3,132. | 3,71 | 26.0 | 13,6
4.00 | 4.00 00 03| 8.00 0] 6.53 403
1 Nedap_act_foot | 72.5| 202. | 252.0 | 266.2 | 315. | 1207 | 92.2
_median 0 50 0 4 00 .00 7 1,684
> Nedap_act_foot | 135.| 196. | 230.5| 239.5| 273. | 427.| 59.4
__median 50 00 0 9 00 00 8 135
3 Nedap_act _foot | 73.0 | 175.| 2225 | 236.6 | 280.| 1,04 | 97.9
median 0 25 0 1 75| 9.50 3 403
1 Nedap_act_foot | 89.0 | 231. | 290.7 | 320.3 | 385. | 1,47 | 132.
_median_day 0 50 5 0 00| 6.50 45 1,698
o Nedap _act foot | 109. | 219. | 255.0 | 264.7 | 306. | 502. | 72.8
median_day 00 50 0 7 00 50 7 135
3 Nedap_act_foot | 86.0 | 191.| 255.5| 270.5| 322.| 1,50 | 130.
_median_day 0 00 0 4 38| 1.50 29 404
Nedap_act_foot 11,0
1 sum dgy 893.| 1,95 | 2,584. | 2,815. | 3,40 | 56.0 | 1189
- = 00| 2.25 00 98 | 9.50 0 .97 1,698
> Nedap _act foot | 1,20 | 1,88 | 2,244. | 2,485. | 3,02 | 8,97 | 924.
_sum_day 6.00 | 6.00 00 52| 5.00 | 2.00 82 135
Nedap_ act_foot 12,1
3 sum dgy 774.| 1,66 | 2,074. | 2,345. | 2,81 | 74.0| 1,16
- = 00| 7.00 00 25| 7.00 0] 1.11 405
Nedap_act_foot
1 _median_day_ni
ght 0.37 | 1.03 1.15 1.20 | 1.29 | 349 0.25 1,693
Nedap_ act_foot
2 _median_day_ni
ght 0.55| 1.00 1.09 111 1.20| 167 | 0.16 135
Nedap_ act_foot
3 _median_day_ni
ght 0.61 ] 1.00 1.10 1.15] 1.25| 340 0.24 403
1 Nedap_act_foot
sum_day night | 0.22 | 0.72 0.78 0.77] 0.82 | 0.95| 0.08 1,692
> Nedap_act_foot
sum_day night | 0.57 | 0.70 0.75 0.75| 0.80| 0.96 | 0.07 135
3 Nedap_act_foot
sum_day night | 0.48 | 0.70 0.75 0.74] 0.79| 0.91| 0.07 403
Body temperature
1 Smaxtec temp | 39.0 | 39.2 39.5| 40.0
normal_median 0 8| 39.39 | 39.41 3 0] 0.19 7,190
> Smaxtec _temp_ | 39.1| 394 39.6 | 39.9
normal_median 1 4| 39.52| 39.53 4 6| 017 385
3 Smaxtec_temp_ | 39.0 | 39.3 39.6 | 40.0
normal_median 0 4| 3946 | 39.48 1 0] 0.20 1,471
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. Media
CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
1 Smaxtec_temp_ | 38.4 | 39.0 39.2 | 40.6
median 5 0] 39.12 | 39.14 5 41 0.20 7,226
2 Smaxtec temp_ | 38.7 | 39.1 39.3| 39.8
median 8 0] 39.24 | 39.22 4 4| 0.18 386
3 Smaxtec temp | 38.5| 39.0 39.3 | 401
median 6 6| 39.19 | 39.21 4 6| 0.23 1,490
1 Smaxtec temp | 26.9 | 32.9 34.7 | 39.2
min 9 8| 33.87 | 33.83 5 71 1.35 7,228
> Smaxtec temp | 30.2 | 33.2 35.0| 37.0
min 9 6| 34.26 | 34.15 8 1] 1.25 385
3 Smaxtec temp | 28.6 | 32.7 343 | 37.3
min 9 3| 33.48 | 3347 0 3] 1.24 1,491
1 Smaxtec temp_ | 39.0 | 39.5 39.9| 423
max 0 8| 39.73 | 39.77 1 5| 0.31 7,228
> Smaxtec temp | 39.2 | 39.7 40.0 | 41.0
max 4 6| 39.91 | 39.92 8 8| 0.25 386
3 Smaxtec temp_ | 39.1 | 39.6 40.0 | 423
max 5 5] 39.82 | 39.86 0 5] 0.34 1,491
Smaxtec_temp_
1 without_drink_c¢ | 38.6 | 39.1 39.3 | 40.7
ycles_median 9 3] 39.24 | 39.26 7 8| 0.20 7,183
Smaxtec_temp
2 without_drink_c | 38.9 | 39.2 39.4 | 39.9
ycles_median 0 7] 39.37 | 39.38 8 6| 0.18 386
Smaxtec_temp
3 without_drink_c | 38.7 | 39.1 39.4 | 40.3
ycles_median 4 9] 39.30 | 39.33 7 6| 0.22 1,490
Smaxtec_temp__
1 without_drink_c | 37.7 | 38.5 38.7 | 39.9
ycles_min 4 0| 38.63| 38.64 6 7| 0.21 7,185
Smaxtec_temp__
2 without_drink_c | 38.3 | 38.5 38.8 | 39.5
ycles_min 0 9| 38.75| 38.72 5 1] 0.18 386
Smaxtec_temp__
3 without_drink_c | 37.9 | 38.5 38.8 | 39.6
ycles_min 9 4| 38.67 | 38.68 1 2| 0.22 1,492
Smaxtec_temp
1 without_drink_c | 38.9 | 39.5 39.8 | 42.3
ycles_max 9 5] 39.70 | 39.75 8 2| 0.31 7,182
Smaxtec_temp
2 without_drink_c | 39.2 | 39.7 40.0 | 41.0
ycles max 4 3| 39.87 | 39.89 3 7| 0.26 386
Smaxtec_temp_
3 without_drink_c | 39.1 | 39.6 39.9 | 42.2
ycles_max 6 3] 39.79 | 39.84 8 8| 0.34 1,488
Climate
1 Smaxtec_climat 144 | 243
e temp median | 2.37 | 891 | 10.95| 11.84 8 4| 5.04 9,100
> Smaxtec_climat 17.7 | 24.3
e temp median | 2.37 | 9.76 | 13.94| 13.44 1 4| 5.46 436
3 Smaxtec_climat 14.1| 243
e temp median | 2.37 | 891 | 1046 | 11.32 2 4| 4.60 1,804
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Media

CIMS| variable | i | @1 | n | Mean | Q3 |Max| SD | N
1 Smaxtec_climat - 11.7 | 19.6
e _temp_min 0.34 | 5.26 8.36 8.71 3 3] 4.36 9,100
2 Smaxtec_climat - 13.2| 19.6
e _temp _min 0.34 | 6.67 9.36 9.94 7 3] 4.63 436
3 Smaxtec_climat - 10.5| 19.6
e _temp _min 0.34 | 543 8.35 8.41 0 3| 3.94 1,804
1 Smaxtec_climat 11.1 18.3 | 29.5
e_temp_max 3.98 0| 14.09 | 15.08 3 5] 6.01 9,100
> Smaxtec_climat 11.8 22.0| 295
e _temp _max 3.98 4| 16.85| 16.84 6 5] 6.50 436
3 Smaxtec_climat 10.5 17.1 ] 29.5
e _temp _max 3.98 0] 1317 ] 14.31 1 5] 551 1,804
1 Smaxtec climat | 46.5 | 67.4 81.3 | 100.| 11.1
e _hum_median 4 4| 7350 | 73.84 0 00 7 8,793
> Smaxtec climat | 46.5| 65.2 80.9 | 100.| 12.3
e _hum_median 4 1] 7274 | 73.40 0 00 4 408
3 Smaxtec _climat | 46.5 | 68.0 81.3 | 100.| 11.1
e _hum_median 4 7| 7492 | 74.68 1 00 2 1,735
1 Smaxtec_climat 50.0 76.2 | 98.7| 16.1
e_hum_min 1.21 2| 6247 | 61.98 8 7 2 8,793
o Smaxtec_climat 46.3 75.6 | 98.7| 17.6
e _hum_min 1.21 5] 58.50 | 59.10 5 7 8 408
3 Smaxtec_climat 52.0 77.0| 98.7| 16.3
e_hum_min 1.21 3| 64.68 | 63.39 7 7 9 1,735
1 Smaxtec climat | 62.3 | 77.2 85.6 | 100.
e _hum_ max 9 2| 8213 | 82.63 4 00| 7.46 8,793
> Smaxtec climat | 62.3 | 78.7 85.9 | 100.
e_hum_max 9 0| 81.86| 83.20 0 00| 7.87 408
3 Smaxtec climat | 62.3 | 77.4 85.6 | 100.
e _hum_ max 9 3] 8292 | 82.82 5 00| 7.58 1,735
1 Smaxtec thi m | 28.1 | 45.3 58.0| 71.7
edian 1 5| 51.61] 51.99 5 6| 9.84 8,793
5 Smaxtec thi m | 28.1 | 49.1 63.0| 71.7| 10.2
edian 1 2| 56.38 | 54.88 5 6 2 408
3 Smaxtec thi m | 28.1 | 46.6 572 | 71.7
edian 1 1] 51.13| 5145 9 6| 8.79 1,735
1 Smaxtec thi mi | 35.4 | 44.8 54.5| 65.3
n 5 1| 48.84 | 49.59 4 3] 6.44 8,793
> Smaxtec_thi_ mi | 35.4 | 46.5 57.4 | 65.3
n 5 9| 51.26 | 5143 6 3] 7.02 408
3 Smaxtec_thi mi | 35.4 | 45.1 52.4 | 65.3
n 5 9| 48.54 | 49.10 4 3| 5.88 1,735
1 Smaxtec_thi_ m | 39.4 | 52.0 64.9 | 83.0
ax 5 5| 57.31| 58.86 9 7] 99 8,793
> Smaxtec_thi_ m | 39.4 | 52.8 71.5| 83.0| 10.9
ax 5 6| 62.05| 61.87 4 7 2 408
3 Smaxtec_thi m | 39.4 | 51.5 62.3 | 83.0
ax 5 0| 55.79 | 57.56 7 71 9.09 1,735
, 27.2 | 39.0 60.4 | 70.7 | 11.7
! WS_thi_med 0 7| 4876 | 49.24| 3 6 1| 10,024
. 28.0 | 39.0 60.4 | 70.7| 11.6
2 WS_thi_med 3| 8| 4876| 4915| 7| 6| 7| 699
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Media

¢ i) el Min| Q1 | n |Mean| Q3 |Max| SD | N
. 272 36.7 56.2 | 70.7 | 11.1
3 WS_thi_med o| ol 4680 4711 0| 6| 8| 2067
R 225 36.1 51.7 | 61.1
1 WS_thi_min 7| 2| 4203| 4331 6| 2| 9.49| 10024
- 235 | 356 52.1| 61.1
2 WS_thi_min 4| 0] 4208| 4306| 9| 2| 974| 699
R 225 | 34.8 48.0 | 61.1
3 WS_thi_min 7| 3| 4105| 4161| 4| 2| 896| 2,067
. 30.7 | 44.2 708 | 916 153
1 WS_thi_max 4| o| 5018| 5803| 1| 6| 3| 10,024
. 30.7 | 44.4 69.8 | 91.6| 15.0
2 WS_thi_max 4| 2| s882| 5810| ol 6| 3| 699
. 30.7 | 42.2 663 | 91.6| 14.8
3 WS_thi_max 4 6| 55.75| 55.39 8 6 2| 2067
1 WS_temp_2m_ - 16.0 | 23.2
med 3.36 | 3.42| 859| 9.39 0 8| 6.89 | 10,024
> WS _temp 2m_ - 15.9| 23.2
med 222 | 352| 875| 944 6 8| 6.83 699
3 WS_temp_2m_ - 13.2| 23.2
med 336 | 217 | 7.43| 8.11 5 8| 6.54| 2,067
1 WS _temp 2m_ - - 16.4
min 7.90| 060| 270| 437 9.40 0| 5.95| 10,024
2 WS temp 2m_ - - 16.4
min 6.70 | 0.60| 3.30| 450/ 9.50 0| 5.93 699
3 WS _temp 2m_ - - 16.4
min 790 | 1.05| 160| 3.25| 7.90 0| 557 | 2,067
1 WS_temp_2m_ - 21.8| 334
max 0.70 | 6.80| 15.10 | 14.49 0 0| 856 | 10,024
5 WS _temp 2m_ - 21.0| 334
max 0.70 | 6.90| 14.90 | 14.53 0 0| 8.39 699
3 WS_temp_2m_ - 19.2 | 334
max 0.70 | 5.60| 13.10| 13.01 0 0| 828| 2,067
1 WS _temp_ 20c - 15.6 | 23.5
m med 3.03| 286| 7.80| 9.06 1 2| 6.94| 10,024
> WS_temp_20c - 15.6 | 23.5
m med 220| 266| 7.78| 9.06 8 2| 6.96 699
3 WS _temp_ 20c - 12.7 | 235
m med 3.93| 208| 6.34| 7.75 8 2| 652 | 2,067
1 WS_temp_20c - - 16.2
m min 960 | 1.80| 150| 277 7.60 0| 6.21| 10,024
5 WS _temp_ 20c - - 16.2
m min 8.60| 230| 220| 285| 7.80 0| 6.26 699
3 WS_temp_20c - - 16.2
m min 960 | 230| 040| 1.65| 6.30 0| 578 | 2,067
1 WS_temp_20c - 23.6| 33.0
m max 0.40 | 8.00| 17.00| 15.85 0 0| 9.06| 10,024
> WS_temp_20c - 23.5| 33.0
m max 0.40 | 8.10| 16.90 | 15.88 0 0| 8.90 699
3 WS_temp_20c - 21.2| 33.0
m max 0.40 | 6.30| 14.90 | 14.30 5 0| 875| 2,067
1 WS_soil_temp_ 16.4 | 22.6
5cm med 0.70 | 440| 9.63| 10.42 0 1| 6.65| 10,024
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Media

CLMS | variable |y @1 | n | Mean| Q3 |Max| SD | N
2 WS_soil_temp_ 16.5| 22.6
5cm_med 0.70 | 4.44 9.70 | 10.55 5 1] 6.55 699
3 WS_soil temp_ 14.3| 22.6
5cm_med 0.70 | 3.55 8.31 9.19 5 1] 6.20 2,067
1 WS_soil_temp_ 145 | 195
5cm_min 0.50 | 2.60 7.40 8.74 0 0] 6.20 | 10,024
2 WS_soil _temp_ 14.9| 195
5cm_min 0.50 | 2.80 8.00 8.89 5 0| 6.13 699
3 WS_soil temp_ 12.8 | 19.5
5cm_min 0.50 | 2.10 6.20 7.58 0 0] 5.75 2,067
1 WS_soil_temp_ 185 | 285
5cm_max 1.00 | 6.30 | 1240 | 12.41 0 0| 7.35| 10,024
> WS_soil temp_ 184 | 285
5cm_max 1.00 | 6.30 | 12.30 | 12.53 0 0] 718 699
3 WS_soil_temp_ 16.8 | 28.5
5cm_max 1.00 | 560 | 1040 | 11.12 0 0| 6.87 2,067
1 WS_soil temp 15.8| 204
20cm_med 1.64 | 457 9.18 | 10.37 1 4| 6.09]| 10,024
> WS_soil_temp_ 16.2 | 204
20cm_med 1.64 | 5.00 9.39 | 10.59 0 41 5.99 699
3 WS_soil temp 14.3| 204
20cm_med 1.64 | 3.89 8.41 9.26 3 4| 5.67 2,067
1 WS_soil_temp_ 15.3 | 19.7
20cm_min 1.50 | 4.10 8.70 9.95 0 0| 596 | 10,024
> WS_soil temp 15.7 | 19.7
20cm_min 1.50 | 4.70 8.80 | 10.18 0 0] 585 699
3 WS_soil_temp_ 13.7 | 19.7
20cm_min 1.50 | 3.50 7.60 8.87 0 0| 5.55 2,067
1 WS_soil temp 16.3 | 21.8
20cm_max 1.70 | 5.00 9.80 | 10.87 0 0] 6.26| 10,024
> WS_soil_temp_ 16.7 | 21.8
20cm_max 1.70 | 5.20 | 10.00 | 11.09 0 0| 6.16 699
3 WS_soil temp 149 | 21.8
20cm_max 1.70 | 440 9.00 9.74 0 0] 582 2,067
1 WS rel hum_m | 41.7 | 73.2 98.1| 100.| 14.9
ed 9 0| 87.31| 84.05 7 00 9] 10,024
5 WS rel_hum_m | 41.7 | 77.4 99.5| 100.| 14.2
ed 9 2| 90.17 | 86.23 8 00 3 699
3 WS rel_ hum_m | 41.7 | 74.9 98.5| 100.| 14.3
ed 9 6| 88.49| 85.18 4 00 8 2,067
1 WS _rel_hum_m | 17.8 | 39.8 90.2 | 100.| 25.8
in 0 0| 57.80 | 62.32 0 00 5| 10,024
> WS rel hum_m | 17.8 | 42.0 97.2 | 100.| 26.4
in 0 0| 60.90 | 65.56 0 00 4 699
3 WS _rel_hum_m | 17.8 | 40.9 91.1| 100.| 25.6
in 0 0| 62.30 | 64.27 0 00 6 2,067
1 WS _rel_ hum_m | 53.0 | 99.3 | 100.0 100. | 100.
ax 0 0 0| 98.39 00 00| 4.66 | 10,024
5 WS _rel_hum_m | 53.0 | 99.8 | 100.0 100. | 100.
ax 0 0 0| 99.00 00 00 | 3.47 699
3 WS _rel_hum_m | 53.0 | 99.2 | 100.0 100. | 100.
ax 0 0 0| 98.49 00 00| 4.30 2,067
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. Media
e R Min | Q1 | n |Mean| Q3 |Max| SD | N
1 WS_wind_veloci
ty_med 0.50 | 1.09 1.50 1.76 | 2.03| 568 | 1.03| 10,024
2 WS_wind_veloci
ty med 0.50 | 1.08 1.41 1.68 | 1.95| 568 | 0.95 699
3 WS_wind_veloci
ty_med 0.50 | 1.12 1.51 1.79 | 2.09| 568 | 1.05 2,067
1 WS_wind_veloci
ty _min 0.00 | 0.00 0.00 0.19| 0.10| 3.30| 0.48 | 10,024
> WS_wind_veloci
ty_min 0.00 | 0.00 0.00 0.16 | 0.10| 3.30 | 0.39 699
3 WS_wind_veloci
ty _min 0.00 | 0.00 0.00 0.21] 0.20 | 3.30| 047 2,067
1 WS_wind_veloci 12.7
ty _max 1.60 | 2.70 3.50 4.03 | 4.70 0] 1.99| 10,024
2 WS _wind_veloci 12.7
ty _max 1.60 | 2.60 3.40 3.90 | 4.45 0] 1.95 699
3 WS_wind_veloci 12.7
ty _max 1.60 | 2.70 3.50 4.05| 4.60 0] 2.07 2,067
1 WS rain med 0.00 | 0.00 0.00 0.01] 0.01| 0.22| 0.03| 10,024
2 WS rain_med 0.00 | 0.00 0.00 0.01] 0.01| 0.22| 0.03 699
3 WS rain_med 0.00 | 0.00 0.00 0.01] 0.01| 0.22 | 0.03 2,067
1 WS rain_min 0.00 | 0.00 0.00 0.00| 0.00| 0.01| 0.00 | 10,024
2 WS rain_min 0.00 | 0.00 0.00 0.00| 0.00| 0.01| 0.00 699
3 WS rain_min 0.00 | 0.00 0.00 0.00| 0.00| 0.01| 0.00 2,067
1 WS _rain_max 12.2
- - 0.00 | 0.00 0.02 0.35| 0.26 0| 1.18| 10,024
. 12.2
2 | WSranmax | 540| 000| 001, 030]| 022| 0| 1.10] 699
3 WS _rain_max 12.2
- - 0.00 | 0.00 0.03 0.30 | 0.28 0] 0.98 2,067
1 WS_global_rad 55.3 | 145.2 | 149.7 | 223. | 359. | 98.9
_med 5.61 8 6 6 91 26 0| 10,024
5 WS _global_rad 55.3| 134.2 | 142.6 | 213.| 359.| 96.2
_med 5.61 8 8 6 23 26 6 699
3 WS_global_rad 49.3 | 130.3 | 135.5| 208. | 359.| 949
_med 5.61 9 8 5 60 26 9 2,067
1 WS_global_rad
~min 0.00 | 0.00 0.00 0.06 | 0.00| 2.00| 0.27 | 10,024
> WS _global_rad
~min 0.00 | 0.00 0.00 0.11] 0.00| 2.00| 0.37 699
3 WS _global_rad
_min 0.00 | 0.00 0.00 0.06 | 0.00 | 2.00| 0.27 2,067
1 WS global_rad | 41.0 | 346. | 694.0 | 619.5| 871. | 1164 | 303.
max 0 00 0 7 00 .00 34| 10,024
5 WS global rad | 41.0 | 351. | 632.0 | 598.7 | 843. | 1164 | 297.
max 0 00 0 0 00 .00 49 699
3 WS global_rad | 41.0 | 303. | 631.0 | 581.6 | 843. | 1164 | 303.
max 0 50 0 0 00 .00 13 2,067
1 Season 1.00 | 1.00 2.00 214 | 3.00| 4.00| 0.98 | 19,431
2 Season 1.00 | 1.00 2.00 2.21| 3.00 | 4.00 | 0.99 1,133
3 Season 1.00 | 1.00 2.00 2.20| 3.00] 4.00| 1.03 4,019
Claw health
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. Media
C_LMS |  variable Min | @1 | n | Mean | Q3 | Max | SD N
1 GSC 1.00 | 250 | 3.00| 2.67] 3.00] 3.00| 0.40| 19,316
2 GSC 1.00| 200 250 254 3.00] 3.00] 047] 1.107
3 GSC 100] 225| 2.75| 263 3.00| 3.00| 042 3.971
1 PT 0.00] 0.00| 0.00| 015] 0.00| 1.00| 0.36| 19.316
2 PT 0.00| 0.00]| 0.00| 000] 0.00] 0.00] 0.00| 1.107
3 PT 0.00] 0.00]| 0.00| 041] 1.00| 1.00| 049 3.950

Table 60: Statistical summaries for each parameter grouped by locomotion score (LMS) across
all farms (parameters explained in Table 33)

LMS Variable Min | Q1 Me:'a Mean | Q3 | Max | SD | N
Animal characteristics
1 Breed 1 1 1 1.1 1 6 0.7 | 1,9431
2 Breed 1 1 1 1 1 4 0.3 3,736
3 Breed 1 1 1 1.1 1 3 0.4 1,416
Milking
1 Days_in_milk 103.
— = 0 76 152 161 | 228 | 530 3| 19,148
2 Days._in_milk 107.
- = 0 64 153 | 160.4 | 239 | 520 3 3,704
3 Days_in_milk 0 53 150 | 149.9| 226 | 517 | 99.6 1,401
1 Lactation_number 0 1 2 2.6 4 12 1.8 19,431
2 Lactation_number 0 2 3 3 4 12 1.8 3,736
3 Lactation_number 0 1 3 3.3 5 12 2.1 1,416
1 LKV _daily milk_y
ield 72| 231 29.1 294 | 354 | 574 8.2 | 17,784
> LKV _daily_milk_y
ield 6.5| 23.6 30.6 30.6 37| 61.1 9.1 3,418
3 LKV_daily_milk_y
ield 8.8 | 23.8 29.1 29.1| 351 | 514 8.7 1,292
1 LKV fat 2.1 3.6 4.1 4.2 4.6 8 08| 17,772
2 LKV fat 2.1 3.6 4.1 4.1 4.6 7.1 0.8 3,418
3 LKV fat 2.4 3.5 4 4.1 4.4 7.6 1 1,292
1 LKV_fat_protein_
ratio 0.6 1 1.2 1.2 1.3 2.4 0.2 | 17,760
2 LKV _fat_protein_
ratio 0.6 1 1.2 1.2 1.3 2.3 0.2 3,418
3 LKV_fat_protein_
ratio 0.7 1 1.1 1.2 1.3 2.3 0.3 1,292
1 LKV lactose 3.6 4.8 4.9 4.9 5 54 0.2 | 17,546
2 LKV lactose 4 4.8 4.9 4.9 5 54 0.2 3,390
3 LKV lactose 3.8 4.7 4.9 4.9 5 5.3 0.2 1,289
1 LKV_milk_yield i | 3,24 | 8,05 9,784. | 11,3 | 21,1 | 2,64
n_last_lactation 3 2| 9433 2 50 93 9.7 | 12,035
5 LKV_milk_yield i | 3,19 | 8,34 | 10,18 | 10,44 | 124 | 211 | 2,75
n last lactation 4 2 3 0.4 44 93 7.8 2,726
3 LKV_milk_yield i | 3,19 | 8,72 | 10,73 | 10,51 | 12,1 | 21,1 | 2,85
n_last_lactation 4 0 4 5.9 08 93 1.8 964
1 LKV _protein 2.4 3.3 3.5 3.5 3.8 4.9 04| 17,784
2 LKV _protein 2.5 3.2 3.5 3.5 3.8 4.7 0.4 3,418
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
3 LKV _protein 26| 341 3.5 34| 37| 47| 04 1,292
1 LKV_somatic_cell 9,99
count 10 24 55| 205.6 | 143 9| 655 | 17,597
2 LKV_somatic_cell 9,99 | 307.
_count 10 21 55 135 121 9 7 3,395
3 LKV_somatic_cell 9,99 | 1,11
count 10 26 58 | 316.3 | 187 9] 82 1,289
1 LKV urea 30| 138 184 | 184.7| 229 | 454 | 64.5| 17,188
2 LKV urea 32| 148 187 | 184.9| 225| 412 | 63.8 3,337
3 LKV _urea 32| 124 178 | 1774 | 233 | 369 | 76.6 1,227
1 Max_milking_flow 05| 29 4 4.1 52| 101 1.7 | 12,987
2 Max_milking_flow 06| 2.8 4 4.1 5.1 10 1.7 2,713
3 Max_milking_flow 08| 3.3 4.4 46| 56| 118 1.9 950
1 Maximum_milking 492, 650. | 1,35 | 131.
interval 18.8 3| 563.8 | 5824 2 1.3 7] 17,652
o Maximum_milking 660. | 1,27 | 134.
_interval 49.9 | 503 | 572.8 | 594.6 2| 28 8 3,393
3 Maximum_milking | 324. 694. | 1,42 | 146.
interval 2| 521 | 596.7 | 619.7 9 0 1 1,234
1 MDI 1 1 1.1 1.2 1.1 42| 0.3 5,157
2 MDI 1 1 1.1 1.2 1.1 42| 0.3 1,282
3 MDI 1 1 1.1 1.2 1.2 35| 04 473
1 Milking_flow 0 1.2 2 22| 29| 6.7 1.1] 12,986
2 Milking_flow 0.4 1.1 1.8 2| 27 7 1.1 2,713
3 Milking_flow 0.5 1.2 1.9 2.1 2.8 7.1 1.1 951
1 Milking_temperat
ure 35.8 | 38.2 38.6 38.7| 39.2| 41.3| 0.7 8,626
> Milking_temperat
ure 36.8 | 38.3 38.8 38.8| 39.2| 415| 0.6 1,568
3 Milking_temperat
ure 37.1| 38.3 38.8 38.7| 39.1| 406 | 0.6 519
1 Milkings 1 2 2 2.5 3 9| 0.7] 18,617
2 Milkings 1 2 2 2.4 3 5| 07 3,667
3 Milkings 1 2 2 2.3 3 6| 0.7 1,368
1 Robot_conduct 0 4.4 4.7 4.7 5 7.5 0.6 9,870
2 Robot_conduct 0] 44 4.7 4.7 5| 67| 0.6 2,089
3 Robot_conduct 0] 44 4.6 4.7 5| 63| 0.6 846
1 Robot _conduct_|
ely 60 | 66.8 68.8 69 71 96.2| 34 8,630
> Robot_conduct_|
ely 60.5 67 69 69.2| 71.5 84| 34 1,568
3 Robot_conduct_|
ely 60.5 | 66.8 68.5 69.1 71| 852 4 519
1 Robot_daily_milk
yield 01| 22.2 28.4 28.7| 351 | 725| 9.3 | 18,609
2 Robot_daily_milk
yield 01| 224 30.1 30.1] 374 | 66.3| 104 3,666
3 Robot_daily_milk
yield 1] 20.7 28.2 28.1| 349 | 62.7| 10.2 1,367
Robot_daily_milk
1 _yield_in_last_lac
tation 12| 25.2 28.6 29.2 | 33.6 43| 5.8 5,567
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
Robot_daily_milk
2 _yield_in_last_lac
tation 12.6 | 25.3 29.1 29.4 | 34.3 43| 5.6 1,222
Robot_daily_milk
3 _yield_in_last_lac
tation 12.6 | 27.1 28.7 29.7 | 33.7 43| 6.7 385
1 Robot_effect of
scc 0] 0.6 1 1.8 1.7 436 | 3.2 5,997
° Robot_effect _of
scc 0| 05 0.9 1.9 1.8 409| 3.5 1,157
3 Robot_effect of
scc 0] 0.6 1 1.7 16| 334 | 3.1 337
1 Robot_fat 09| 3.8 4.2 44| 47| 131 1] 13,410
2 Robot_fat 1.2| 3.7 4.2 43| 49| 116 1 2,376
3 Robot_fat 2| 39 4.3 45| 48] 122 1 890
1 Robot _fat protein
_ratio 0.2 1.1 1.2 1.3 14| 35| 03] 13411
2 Robot_fat_protein
_ratio 0.4 1.1 1.2 1.2 14| 25| 0.3 2,377
3 Robot_fat_protein
_ratio 0.7 1.2 1.3 1.3 14| 34| 0.3 890
1 Robot_lactose 29| 46 4.8 47| 49| 52| 0.2] 13402
2 Robot_lactose 4| 46 4.8 48| 49| 52| 0.2 2,377
3 Robot _lactose 4 4.6 4.8 47| 4.9 5.2 0.2 890
Robot_milk_yield
1 _in_current_lactat 240 4,894. | 5,273.| 7,56 | 1,58 | 3,45
ion 22| 49 4 6| 9.1 74| 4.2 3,870
Robot_milk_yield
2 _in_current_lactat 2,26 | 5,584. | 5,843. | 8,46 | 154 | 3,71
ion 276 | 4.7 7 9| 33 69| 6.1 906
Robot_milk_yield
3 _in_current_lactat 1,12 | 5,628. | 4,585. | 7,12 | 15,5| 3,39
ion 719| 6.6 2 1 59| 274 | 33 361
1 Robot_milk_yield 7,17 8,873.| 10,4 | 20,1 | 2,73
_in_last_lactation | 635| 6.6 | 8,743 2 45 48| 3.3 9,910
2 Robot_milk_yield | 1,73 | 7,26 9,456. | 11,6 | 19,3 | 3,11
_in_last_lactation 4 1.7 | 9,085 8| 31.9 33| 29 2,054
3 Robot_milk_yield | 1,73 | 7,31 9,189. | 11,1 | 19,3 | 3,29
_in_last_lactation 4 4| 9,017 2 97 33| 4.8 698
1 Robot_protein 25| 33 3.4 34| 36| 55| 0.3] 13,408
2 Robot_protein 2.7 3.3 3.5 3.5 3.6 54 0.3 2,377
3 Robot_protein 2.7 3.2 3.4 3.4 3.5 5.6 0.3 890
4 Robot_somatic_c 3920 | 287.
ell_count 1 30 54| 119.3| 101 5 5 5,997
> Robot_somatic_c 2696
ell_count 1 25 46 | 111.7] 925 5| 242 1,157
3 Robot_somatic_c 242.
ell_count 1 31 63| 103.8 94 | 2925 1 337
Constitution
1 Robot BCS 25| 3.7 3.9 3.8 441 46| 0.3 3,679
2 Robot BCS 27| 3.6 3.8 3.8 441 45| 0.3 772
3 Robot BCS 28| 35 3.8 3.8 4| 44| 03 319
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
, 453. 813. | 1151 | 115.
! Body_weight 5| e37| 7358| 7335| 9| 6| 5| 5202
2 Body_weight 459. | 699. 876. | 1030 | 121.
- 5 6| 780.9| 773.9 2 A 2 1,130
3 Body_weight 444. | 630. 840. | 999. | 133.
- 4 1| 7834 | 752.7 9 8 3 450
Feeding
1 Concentrated_fee
d_intake 0 1.8 3.7 37| 53| 106| 22| 18,136
° Concentrated_fee
d_intake 0 1.9 3.9 38| 53| 97| 21 3,417
3 Concentrated_fee
d_intake 0 2 3.6 36| 49 10 2 1,235
1 Concentrated_fee
d_remains 0 0.1 0.1 04 0.3 6 0.6 8,665
2 Concentrated fee
d_remains 0| 0.1 0.1 04| 04| 55| 06 1,570
3 Concentrated_fee
d_remains 0 0.1 0.2 0.5 0.6 5.2 0.8 517
1 WT feed intake 0] 348 44 43.5| 53.7 | 92.2 | 147 4,167
2 WT feed intake 1] 39.5 48 476 | 56.5| 86.4 | 135 927
3 WT feed_intake 6.9 | 36.8 44 43| 49.6 | 88.8| 13.1 343
1 WT feed_intake _
per_meal 08| 3.5 4.7 5.1 6.2 239| 23 3,949
> WT _feed intake
per_meal 1.5| 4.3 5.5 6| 72| 155| 24 880
3 WT feed_intake _
per_meal 19| 45 5.6 6.1 72| 166 | 24 322
1 WT _feed intake
per_visit 0| 07 1 1.2 14| 87| 0.8 4,172
2 WT feed_intake _
per_visit 0.4 1.1 1.6 19| 23] 10.9 1.2 928
3 WT _feed intake
per_visit 0.3 1.2 1.9 24| 27 13 2 343
1 WT_feeding_dura
tion 10 99 133 | 1385 | 170 | 792 | 62.1 4,150
2 WT _feeding_dura
tion 10 97 122 | 126.4 | 153 | 428 | 47.2 922
3 WT_feeding_dura
tion 19 73 95 97.8| 118 | 253 | 37.5 341
y WT _feeding_dura
tion_day 0 72 100 | 104.1| 128 | 769 | 51.3 4,150
> WT_feeding_dura
tion_day 0 69 92 93.6| 112 | 358 | 35.9 922
3 WT _feeding_dura
tion_day 10 54 71 74.4 92| 179 29.2 341
1 WT _feeding_dura
tion_day night 0 0.7 0.8 0.8 0.8 1 0.1 4,150
> WT_feeding_dura
tion_day night 0] 0.7 0.8 08| 0.8 1 0.1 922
3 WT _feeding_dura
tion_day night 03| 0.7 0.8 08| 0.9 1 0.1 341
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
1 WT _feeding_dura 234.
tion_per _meal 6| 10.8 14.5 16.3 | 19.2 3| 10.6 3,949
2 WT _feeding_dura 175.
tion_per _meal 6 11 14.4 16 19 6 9.3 880
3 WT _feeding_dura 148.
tion_per _meal 6 10 12.8 14.6 | 16.7 6| 11.9 322
1 WT _feeding_dura
tion_per _visit 04| 24 3.1 36| 43| 703] 27 4,172
° WT _feeding_dura
tion_per visit 0.4 3.1 4.3 4.8 57| 434 2.9 928
3 WT _feeding_dura
tion_per visit 0.7 3.1 4.4 54 6.1 | 57.2 4.8 343
1 WT _feeding_pac
e 0.06 | 0.26 0.33 0.35| 041 1.37| 0.12 4,168
2 WT _feeding_pac
e 0.17 | 0.32 0.40 041] 0.50| 214 | 0.14 928
3 WT _feeding_pac
e 0.18 | 0.37 0.46 047 0.55| 0.99| 0.13 343
1 WT_number_of _
meals 1 7 9 9.6 12 23| 3.2 3,949
> WT_number_of _
meals 1 7 9 9 11 191 29 880
3 WT_number_of _
meals 2 6 8 7.9 10 17| 2.6 322
1 WT_number_of _
meals_day 0 5 7 7.2 9 20| 26 3,949
2 WT_number_of _
meals_day 0 5 6 6.6 8 16| 2.3 880
3 WT_number_of
meals_day 1 4 6 5.9 7 12 2.1 322
1 WT_number_of _
meals_day_night 0] 0.7 0.8 0.7 0.8 1 0.1 3,949
2 WT_number_of
meals_day _night 0] 0.6 0.8 0.7| 0.8 1 0.1 880
3 WT_number_of _
meals_day night 0.2 0.7 0.8 0.8 0.9 1 0.2 322
1 WT _trough visits 1 29 43 46.5 59 | 222 26 4,174
2 WT _trough visits 2 21 30 32.1 40| 119 16.1 928
3 WT trough visits 4 15 22 24.6 32 78 | 13.7 343
1 WT _trough_visits
_day 0 22 33 35.7 45| 178 | 211 4,174
> WT_trough_visits
day 0 15 23 24.6 31 91| 131 928
3 WT _trough_visits
_day 2 11 18 19.3 25 69 11 343
1 WT_trough_visits
day night 0] 0.7 0.8 08| 0.9 1 0.1 4,174
2 WT _trough_visits
_day_night 0] 0.7 0.8 08| 0.9 1 0.1 928
3 WT_trough_visits
day night 03| 0.7 0.8 08| 0.9 1 0.2 343
1 ENGS feeding 1 45 79 89.6 | 127 | 288 | 57.2 934
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LMS Variable Min | Q1 | M9 Mean | @3 | Max | sD | N
ENGS_feeding 125
- 1] 59.2 94 94.3 8| 230]| 485 242
3 ENGS feeding 7 44 77.5 79.6 | 113 | 213 | 43.9 90
1 ENGS_feeding_d
ay 0 32 60 67.3| 94.8| 220 45 934
° ENGS feeding d
ay 0] 45.2 70 70.8| 98.8| 171 | 36.2 242
3 ENGS_feeding_d
ay 0| 345 57 58.3 77 | 169 32 90
1 ENGS feeding d
ay_night 0] 0.7 0.8 08| 0.9 1 0.2 934
2 ENGS_feeding_d
ay night 0| 0.7 0.8 08| 0.9 1 0.2 242
3 ENGS feeding d
ay_night 0] 0.6 0.8 0.7 0.9 1 0.2 90
1 ENGS_feeding_d
uration_per _meal 1 5.7 9.1 10.8 | 14.7 63 7.1 911
2 ENGS feeding d
uration_per_meal 1.5| 6.9 10.6 11.2 | 141 34| 6.2 238
3 ENGS_feeding_d
uration_per _meal 1.1 54 8.8 9.6 | 13.7 | 26.3 5.3 89
1 ENGS number_o
f meals 0 6 9 8.6 11 21 3.6 934
2 ENGS _number o
f meals 0 7 9 8.8 11 18| 3.2 242
3 ENGS _number_o
f meals 0 6 8 9 10 25| 44 90
1 ENGS _number o
f _meals_day 0 5 6 6.5 8 18| 2.8 934
2 ENGS number_o
f meals_day 0 5 6.5 6.5 8 13 2.5 242
3 ENGS _number o
f _meals_day 0 5 6 6.6 8 17| 3.1 90
ENGS number_o
1 f_meals_day_nig
ht 0] 07 0.8 08| 0.9 1 0.2 911
ENGS number_o
2 f_meals_day_nig
ht 0] 07 0.8 0.7 0.8 1 0.2 238
ENGS_number_o
3 f_meals_day_nig
ht 04| 0.7 0.8 08| 0.9 1 0.2 89
1 Nedap_feeding 806. | 154.
- 10| 262 377 | 377.5| 504 4 7 5,128
. 475. | 777.| 159.
2 | Nedap_feeding | 45| 20| 350| 354| 2| 6| 5| 1046
- 806. | 197.
3 | Nedap_feeding | 45| 490| 292 3364| 504| 4| 1| 259
Rumination
763. | 138.
! Nedap_rum | 444| 201| 395| 3932| 504| 2| 1| 5153
5 Nedap, rum 227. 489. | 820.| 161.
- 29 8| 378.5| 363.9 6 8 2 1,048
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
3 Nedap_rum a7, 164.
— 10| 151 | 234.7 | 278.5 6| 648 1 262
1 SCR rum 11| 520 562 | 553.2| 599 | 748 | 71.7 6,790
2 SCR rum 61| 509 561 | 551.7| 603 | 751 | 77.8 1,436
499,
3 SCR_rum 100| 2| 5505| 536| 593| 713| 85.8| 638
1 SCR _rum_day 2| 306 343 | 3376 | 377 | 533 | 61.8 3,032
307.
2 | SCRrum_day | g4| 8| 345| 3415| 384 545| 652| 860
380.
3 | SCRum._day | 4| 595| 338 3324| 2| 498| 696| 332
1 SCR_rum_day_ni
ght 0 0.6 0.6 0.6 0.7 1 0.1 3,032
2 SCR_rum_day ni
ght 0.4 0.6 0.6 0.6 0.7 1 0.1 860
3 SCR_rum_day_ni
ght 0.3 0.6 0.6 0.6 0.7 0.8 0.1 332
1 Smaxtec_rum 568. | 735.
— 188 | 490 | 531.7 | 525.5 7 1| 65.6 5,539
5 Smaxtec rum 256. | 495. 568. | 689.
— 9 1 533 | 528.9 2 5| 59.3 915
3 Smaxtec rum 237. | 488. 582.
— 2 2| 534.7 | 528.8 8| 714 72 438
Heat detection
1 SCR_heat_proba
bility 27| -3.5 -1 -0.5 0.5 92 7.8 3,621
2 SCR_heat_proba
bility -35| -35 -1.5 -0.9 0.5 88 7.2 558
3 SCR_heat_proba
bility -22 -4 -2 -1.2 0 74 8.1 293
1 SCR_heat_proba
bility day -29 -4 -1 -0.3 1| 100 9 3,607
> SCR_heat_proba
bility day -36 -4 -1 -0.7 1 84 8.4 552
3 SCR_heat_proba
bility day -25 -4 -2 -1.2 0.5 84 8.9 290
1 Lemmer_factor_o 457. | 30,5| 890.
f restlessness 53.2 | 226 320 | 452.2 7| 01.8 3 4,532
> Lemmer_factor o 178. 365. | 3,09 | 269.
f restlessness 63.1 3| 2454 | 3184 7 6.4 1 765
3 Lemmer_factor_o 125. 293. | 5,66 | 360.
f restlessness 53 6| 179.8 | 264.4 9 8.1 4 373
Lying
. 587. 780.| 1,15 | 152.
1 ENGS_lying 4| 8| ess| e776| 2| ‘9| 7| 3872
. 788.| 1,25
2 ENGS_lying 4| 499| 649| 640| 2| 2| 221 868
. 624. 916. | 1,25 | 233.
3 ENGS_lying 34| 5| 787| 764 5| 8| 8| 351
1 ENGS_lying_bout
s 1 12 15 17.5 20| 109 9.9 3,872
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LMS Variable Min | Q1 | M9 Mean | @3 | Max | sD | N
° ENGS_lying_bout
s 1 9 14 16.5 20 73| 11.6 870
3 ENGS _lying_bout
s 1 7 11 15.1 16 81 14 351
1 ENGS_lying_bout
s_day 0 7 10 11.2 13 60| 6.5 3,872
2 ENGS _lying_bout
s_day 0 6 9 10.6 13 48| 7.7 868
3 ENGS _lying_bout
s_day 0 5 7 9.8 11 60| 8.9 351
1 ENGS_lying_bout
s _day night 0 0.6 0.6 0.6 0.7 1 0.1 3,872
> ENGS _lying_bout
s _day night 0] 06 0.7 0.7 0.8 1 0.2 870
3 ENGS_lying_bout
s _day night 0 0.6 0.7 0.7 0.8 1 0.2 351
. 109.
1 | ENGS_ lying_day 0| 313| 387 380.7| 455| 716 7| 3872
. 283. 152.
2 | ENGSlying. day | | ""g| 3755 3748| 472| 833| 9| 868
. 579. 161.
3 | ENGS_lying_day 4| 365| 475| 464.2 5| 835 7 351
1 ENGS_lying_day
_night 0| 05 0.6 06| 0.6 1 0.1 3,872
> ENGS lying_day
night 0] 05 0.6 06| 0.7 1 0.1 868
3 ENGS_lying_day
night 0| 0.6 0.6 06| 0.7 1 0.1 351
1 ENGS_lying_dura
tion_per bout 2| 323 44.5 48.2 | 584 | 510 | 274 3,872
2 ENGS _lying_dura
tion_per bout 1.6 | 29.8 46.6 60 68| 719 | 641 868
3 ENGS_lying_dura 548.
tion_per bout 5.7 | 40.8 70.8 82.3 | 96.7 5 75 351
1 Lemmer _get ups 1 6 9 9.2 11 40 3.9 4,534
2 Lemmer_get_ups 1 7 9 9.4 12 24 3.7 763
3 Lemmer_get_ups 2 8 11 11.1 13 27 4 372
1 Lemmer_lying 02| 8.8 10.5 10.3| 11.9] 209 | 25 4,534
2 Lemmer_lying 09| 8.9 10.8 10.7 | 127 | 183 ] 2.8 765
3 Lemmer _lying 0.8| 9.7 13.2 12.3 ] 15.3| 20.2| 4.3 373
1 Nedap_lying 1,071 119.
- 248 | 639 727 | 719.5| 804 5 5 1,634
: 590. 1,08 | 161.
2 Nedap lying | 456 | 5| 6945 686.3| 784 1| 4| 404
3 Nedap_lying 1,131 199.
- 229 | 674 815 | 788.4 | 944 1 6 113
1 Nedap get ups 1 8 10 10.4 12 29| 35 1,687
2 Nedap get ups 1 6 9 9.2 11 28| 44 404
3 Nedap get ups 1 6 8 8.7 11 26| 4.7 132
Activity
1 Delaval act avg 12 24 30 31.7 38 89| 10.2 1,055
2 Delaval act avg 10 22 28 27.6 | 32.8 75| 87 358
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
3 Delaval _act avg 11 16 19.5 21.5 24 51 8.1 102
1 Delaval act rel 59 91 100 | 100.9| 108 | 287 | 17.2 1,055
2 Delaval act rel 55 87 97 98.3| 107 | 229 | 19.7 358
3 Delaval _act_rel 105.
- = 44 82 91.5 99.6 8| 293 34 102
1 Delaval_act_rel
max 59 | 101 110 | 111.2| 118 | 255| 18.5 1,008
o Delaval_act_rel_
max 62 | 99.2 108 | 109.3| 116 | 255| 20.6 330
3 Delaval_act_rel 125.
max 65 93 103 | 117.1 8| 255| 39.8 98
’ Delaval_act_rel_
min 50 82 89 89.2 96 | 137 | 11.8 1,008
> Delaval_act_rel
min 46 79 86 86.8 94 191 | 15.6 330
3 Delaval_act_rel
min 39| 72.2 82 84.2 | 93.8 178 | 20.5 98
1,80 2,299.| 2,70 | 8,73 | 869.
1 ENGS_act 31 3| 2,223 3 7 5 8| 3,870
1,49 245 | 7,53 | 893.
2 ENGS_act 30| 4| 1968| 2028 45| 2| 8| 867
1,22 1,719. | 2,15 | 6,39
3 ENGS_act 94| 65| 1,566 8| 75 9| 801 351
1,39 1,802. | 2,12 | 7,47 | 707.
1| ENGS_act_day o| 3| 1,740 7| 58| 1| 7| 3870
1,12 1,549.| 1,86 | 6,41 | 711.
2 ENGS_act_day 0 5| 1,490 8| 55 6 3 867
1,300. | 1,63 | 5,65 | 600.
3 | ENGS_act day 0| 954 | 1209 2| 1| 2| a| 351
1 ENGS_act_day_n
ight 0| 0.7 0.8 08| 0.8 1 0.1 3,870
2 ENGS_act_day n
ight 0 0.7 0.8 0.8 0.8 1 0.1 867
3 ENGS_act_day_n
ight 0| 0.7 0.8 08| 0.8 1 0.1 351
1 Lemmer act 37 102 132 | 151.5| 172 | 858 | 86.7 4776
2 Lemmer_act 138.
- 41 83 108 | 1224 8| 774 | 71.9 814
3 Lemmer_act 119.
— 37 66 88| 101.8 5| 487 | 58.6 375
1 Nedap_inactive 162.
- 225 | 548 639 | 661.2| 752 | 1378 5 5,132
. . 1,30 | 137.
2 | Nedap_inactive | 51| go0| 710 7149 801| 6| 5| 1,047
3 Nedap_inactive 686. 1,35
- 456 5| 767.5| 8229 | 963 7| 209 262
’ Nedap_act 1,30 | 2,66 | 3,405. | 3,641. | 4,33 | 14,1 | 1,37
— 4 1.5 5 5 1.8 74 2 1,686
5 Nedap_act 1,28 | 2,51 393 11,0 1,18
— 7 7| 3,133 | 3,289 6 30| 8.3 405
3 Nedap_act 1,28 | 2,21 2,780.| 2,92 | 13,7 | 1,45
- 4 4| 2,480 2 4 26 8.9 133
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
1 Nedap_act_collar
median 1 45 7 8.2 10.5 71 5.1 5,168
o Nedap_act_collar
_median 0] 45 6.5 71 9.5 53| 441 1,046
3 Nedap_act_collar
median 0 4 6 6.6 9] 30.5| 3.8 262
’ Nedap_act_collar
_median_day 0.5 5 8 9.7 | 12.5| 89.5 6.6 5,172
° Nedap_act_collar
median_day 05| 4.5 7 81| 10.5| 855 | 5.7 1,047
3 Nedap_act_collar
_median_day 0 4 6 7.3 9.5 46 4.9 262
Nedap_act_collar
1 _median_day_nig
ht 0.1 1 1.1 1.2 1.3 55| 0.3 5,168
Nedap_act_collar
2 _median_day_nig
ht 0.2 1 1.1 1.1 1.2 42 0.3 1,045
Nedap_act_collar
3 _median_day_nig
ht 0.3 1 1.1 1.1 1.2 3 0.3 261
’ Nedap_act_collar
_sum 14 63 95| 110.2| 140 | 859 | 65.7 5,166
> Nedap_act_collar
sum 9 60 83 96.3| 127 | 635| 56.7 1,045
3 Nedap_act_collar
_sum 11 54 78 88.8| 116 | 439 | 51.6 261
1 Nedap_act_collar
sum_day 6 46 71 829 | 105| 737 | 52.6 5172
> Nedap_act_collar
sum_day 6 42 61 70.5 93| 534 45 1,047
3 Nedap_act_collar
sum_day 6| 352 56.5 64 83| 410 | 42.3 262
, Nedap_act_collar
sum_day night 0.2 0.7 0.8 0.7 0.8 1 0.1 5,167
> Nedap_act_collar
sum_day night 03| 0.7 0.7 0.7 0.8 0.9 0.1 1,045
3 Nedap_act_collar
sum_day night 0.4 0.7 0.7 0.7 0.8 0.9 0.1 261
1 Nedap_act foot 202. 1,20
median 72.5 5 252 | 266.2| 315 71 923 1,684
2 Nedap_act_foot_ 187. 289. | 783.
median 73 5| 238.5| 2458 5 5] 80.1 405
3 Nedap_act_foot_ 167. 1,04 | 110.
median 88.5 5] 190.5| 211.5| 224 9.5 8 133
y Nedap_act_foot 231. 1,47 | 132.
median_day 89 5] 290.8 | 320.3| 385 6.5 5 1,698
5 Nedap_act foot 212. 336. | 1,50 | 112.
median_day 87.5 2 270 | 281.7 5 1.5 8 407
3 Nedap_act_foot 174. 1,36 | 127.
median_day 86 5] 211.8 | 230.4 | 258 0.5 3 132
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
Nedap_act foot
1 median_day_nigh
t 0.4 1 1.2 1.2 1.3 35| 0.3 1,693
Nedap_act foot
2 median_day_nigh
t 0.6 1 1.1 1.1 12| 34| 02 405
Nedap_act foot
3 median_day_nigh
t 0.6 1 1 1.1 12| 22| 02 133
1 Nedap_act _foot 1,95 340 11,0 1,19
sum_day 893 | 22| 2584 | 2,816 | 9.5 56 0 1,698
° Nedap_act_foot_ 1,79 2,486. | 3,01 | 9,60 | 1,00
sum_day 774 9] 2,300 9 9 0 2 407
3 Nedap_act_foot_ 1,55 2,054.| 2,07 | 121 | 1,33
sum_day 839 5] 1,829 1 4 74 4 133
1 Nedap act foot
sum_day_night 02| 07 0.8 08| 0.8 1 0.1 1,692
2 Nedap_act foot
sum_day night 0.5 0.7 0.8 0.7 0.8 1 0.1 405
3 Nedap act foot
sum_day _night 05| 07 0.7 07| 08| 09| o041 133
1 Smaxtec_act 0.3 4 4.9 5.6 71214 24 7,183
2 Smaxtec act 0.3 4.1 5 5.6 6.8 | 16.9 2.3 1,225
3 Smaxtec act 0.4 3.1 4.4 5.2 74| 13.2 2.5 631
1 Smaxtec_act_day 04| 4.8 5.9 65| 78| 23.7| 25 7,180
2 Smaxtec_act_day 04| 4.9 6 64| 77| 206 2.2 1,224
3 Smaxtec_act_day 04| 3.9 54 6 8| 19.7| 26 631
1 Smaxtec_act_day
_night 0.4 1.1 1.1 1.2 13| 23| 0.2 7,181
2 Smaxtec_act_day
_night 0.7 1.1 1.1 1.2 1.2 25| 0.2 1,224
3 Smaxtec_act_day
_night 0.7 1 1.1 1.2 13| 24| 0.2 629
Body temperature
1 Smaxtec_temp
max 39| 39.6 39.7 39.8| 39.9| 424 | 0.3 7,228
> Smaxtec_temp
max 39.1 | 39.7 39.8 39.9 40| 424 | 04 1,246
3 Smaxtec_temp
max 39.3 | 39.7 39.8 39.9 40| 416| 0.3 631
1 Smaxtec_temp
median 38.5 39 39.1 39.1] 39.3| 406 | 0.2 7,226
> Smaxtec_temp_
median 38.6 39 39.2 39.2| 39.3| 40.2| 0.2 1,245
3 Smaxtec_temp_
median 38.8 | 391 39.2 39.3| 394 40| 0.2 631
y Smaxtec_temp
min 27 33 33.9 33.8| 34.8| 39.3 1.4 7,228
> Smaxtec_temp_
min 28.7 | 32.9 33.8 33.7| 346 | 37.3 1.3 1,244
3 Smaxtec_temp
min 28.7 | 32.6 33.4 33.4 | 34.2| 36.7 1.2 632
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LMS Variable Min | Q1 | M9 Mean | @3 | Max | sD | N
1 Smaxtec_temp_n
ormal median 39| 39.3 394 394 | 395 40 0.2 7,190
2 Smaxtec_temp _n
ormal_median 39| 394 39.5 39.5| 39.6 40 0.2 1,224
3 Smaxtec_temp_n
ormal_median 39.1| 394 39.5 39.5| 39.6 40 0.2 632
Smaxtec_temp w
1 ithout_drink_cycle
S_max 39| 39.5 39.7 39.7| 39.9| 423| 0.3 7,182
Smaxtec_temp w
2 ithout_drink_cycle
S_max 39.2 | 39.7 39.8 39.9 40| 423| 04 1,245
Smaxtec_temp w
3 ithout_drink_cycle
S_max 39.3 | 39.6 39.8 39.8 40| 416| 0.3 629
Smaxtec_temp_w
1 ithout_drink_cycle
s_median 38.7 | 391 39.2 39.3| 394 | 40.8| 0.2 7,183
Smaxtec_temp_w
2 ithout_drink_cycle
s_median 38.7 | 39.2 39.3 39.3| 39.5| 404 | 0.2 1,245
Smaxtec_temp_w
3 ithout_drink_cycle
s_median 38.9 | 39.2 39.3 394 | 39.5| 402| 0.2 631
Smaxtec_temp w
1 ithout_drink_cycle
S_min 37.7 | 38.5 38.6 38.6 | 38.8 40| 0.2 7,185
Smaxtec_temp w
2 ithout_drink_cycle
S_min 38| 385 38.7 38.7| 38.8| 39.6| 0.2 1,246
Smaxtec_temp_w
3 ithout_drink_cycle
S_min 38.1| 38.6 38.7 38.7] 38.8| 39.5| 0.2 632
Climate
1 Smaxtec_climate
hum_max 624 | 77.2 82.1 82.6| 856 | 100| 7.5 8,793
2 Smaxtec_climate
hum_max 624 | 771 81.6 82.8 | 85.7| 100 8 1,556
3 Smaxtec_climate
hum_max 62.4 | 79.8 84.4 83.3| 85.7| 100| 6.5 587
y Smaxtec_climate
hum_median 46.5| 674 73.5 73.8| 81.3| 100 | 11.2 8,793
> Smaxtec_climate
hum_median 46.5| 674 73.2 74| 81.1| 100 | 11.8 1,556
3 Smaxtec_climate
hum_median 46.5 71 79.6 75.7| 814 | 100 | 101 587
1 Smaxtec_climate
hum_min 1.2 50 62.5 62| 76.3 | 98.8 | 16.1 8,793
2 Smaxtec_climate
hum_min 1.2 50 60.8 61.3| 75.8 | 98.8| 16.7 1,556
3 Smaxtec_climate
hum_min 1.2 ] 545 74.9 66 | 77.7 ] 98.8 | 16.2 587
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N
’ Smaxtec_climate
temp_max 41 111 14.1 15.1] 18.3 | 29.6 6 9,100
2 Smaxtec_climate
_temp_max 4| 11.2 15.3 153 191 ] 296 | 5.9 1,641
3 Smaxtec_climate
temp_max 41 104 12.1 13.3 16 | 29.6| 5.2 599
1 Smaxtec_climate
_temp_median 24| 89 10.9 11.8 | 145 | 243 5 9,100
° Smaxtec_climate
temp_median 2.4 9.2 11.6 122 | 148 | 24.3 5 1,641
3 Smaxtec_climate
_temp_median 24| 841 9.8 106 | 121 | 243 | 4.2 599
1 Smaxtec_climate
temp_min -0.3] 53 8.4 87| 11.7] 196| 44 9,100
2 Smaxtec_climate
_temp_min -0.3| 5.6 8.6 9] 124 | 196 | 43 1,641
3 Smaxtec_climate
temp_min -0.3] 5.1 8.3 8| 97| 185| 35 599
1 Smaxtec thi max | 39.4 52 57.3 58.9 65| 83.1 9.9 8,793
2 Smaxtec thi max | 39.4 | 52.2 58.3 59.3 | 66.1| 83.1 9.9 1,556
3 Smaxtec_thi max | 39.4 | 51.3 54.1 56 | 60.5 | 83.1 8.4 587
1 Smaxtec_thi_med
ian 28.1 | 45.3 51.6 52 58 | 71.8| 9.8 8,793
2 Smaxtec_thi med
ian 28.1| 47.6 52.3 52.7| 58.6 | 71.8| 9.6 1,556
3 Smaxtec_thi_med
ian 28.1| 46.4 50.4 50.6 | 53.7| 71.8| 7.8 587
1 Smaxtec thi min | 35.5| 44.8 48.8 49.6 | 54.5| 65.3 6.4 8,793
2 Smaxtec thi min | 35.5| 454 49.1 50 55| 65.3 6.4 1,556
3 Smaxtec thi_ min | 355 | 44.8 48.5 48.4 | 50.5 64| 5.2 587
1 WS _global_rad_ 303.
max 41| 346 694 | 619.6 | 871 | 1164 3] 10,024
> WS_global_rad_ 299.
max 41| 323 656 | 592.7 | 845 | 1164 8 2,060
3 WS _global_rad_ 306.
max 41| 296 561 | 566.1| 826 | 1164 7 706
1 WS_global_rad_ 223. | 359.
med 5.6 | 55.4 | 145.3 | 149.8 9 3] 98.9| 10,024
2 WS _global_rad_ 213. | 359.
med 5.6 51| 131.6 | 139.5 1 3] 95.3 2,060
3 WS_global_rad_ 197. | 359.
med 56| 424 | 1219 | 131.1 3 3] 95.2 706
’ WS _global_rad_
min 0 0 0 0.1 0 2| 03] 10,024
> WS_global_rad_
min 0 0 0 0.1 0 2| 03 2,060
3 WS _global_rad_
min 0 0 0 0.1 0 2| 03 706
1 WS rain_max 0 0 0 03| 03] 12.2 1.2 ] 10,024
2 WS rain_max 0 0 0 03| 03] 12.2 1.1 2,060
3 WS rain_max 0 0 0.1 03| 03] 122] 0.9 706
1 WS rain_med 0 0 0 0 0] 0.2 0] 10,024
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N

2 WS rain_med 0 0 0 0 0] 0.2 0 2,060
3 WS rain_med 0 0 0 0 0 0.2 0 706
1 WS _rain_min 0 0 0 0 0 0 0] 10,024
2 WS _rain_min 0 0 0 0 0 0 0 2,060
3 WS rain_min 0 0 0 0 0 0 0 706

1 WS _rel hum_ma
X 53| 99.3 100 98.4| 100, 100, 4.7 | 10,024

o WS_rel_hum_ma
X 53 | 99.3 100 984 | 100| 100| 4.5 2,060

3 WS _rel hum_ma
X 67.1 | 99.5 100 99.1]| 100 100 2.6 706

’ WS_rel_hum_me
d 418 | 73.2 87.3 84.1| 98.2| 100 15| 10,024

> WS _rel_ hum_me
d 418 | 73.9 88.3 84.9| 98.9| 100 | 14.8 2,060

3 WS_rel_hum_me
d 46.2 | 79.3 90.2 87.1] 99.2| 100 | 12.8 706
1 WS rel hum min | 17.8 | 39.8 57.8 62.3| 90.2| 100 | 25.8| 10,024
2 WS rel hum _min | 17.8 | 40.7 60.9 64| 914 | 100 ] 26.1 2,060
3 WS rel hum min | 17.8 | 42.9 64.6 66.3| 94.7| 100 | 25.2 706

1 WS_soil_temp_2
Ocm_max 1.7 5 9.8 109 16.3| 21.8| 6.3 | 10,024

> WS _soil temp 2
Ocm_max 1.7 49 9.6 104 | 158 | 21.8| 5.9 2,060

3 WS_soil_temp_2
Ocm_max 1.7 43 6.9 92| 131 21.8| 5.8 706

1 WS _soil temp 2
Ocm_med 16| 4.6 9.2 104 | 158 | 204 | 6.1 ] 10,024

2 WS_soil_temp_2
Ocm_med 16| 44 9 9.9 15| 204 | 5.8 2,060

3 WS _soil temp 2
Ocm_med 16| 3.8 6.7 8.7| 128 | 204 | 5.7 706

1 WS_soil_temp_2
Ocm_min 1.5 41 8.7 10| 15.3 | 19.7 6| 10,024

2 WS _soil _temp 2
Ocm_min 1.5 4 8.2 95| 145| 19.7]| 5.6 2,060

3 WS_soil_temp_2
Ocm_min 1.5| 35 6.5 83| 126 | 194 | 56 706

1 WS _soil temp 5
cm_max 1 6.3 12.4 124 | 185 | 285 | 7.3 | 10,024

2 WS_soil_temp_5
cm_max 1 6.1 11.7 11.8 | 17.7 | 28.5 7 2,060

3 WS_soil_temp_5
cm_max 1 54 8.3 10.5| 16.3 | 28.5 6.9 706

y WS_soil_temp 5
cm_med 07| 44 9.6 104 | 164 | 226 | 6.6 | 10,024

> WS_soil_temp_5
cm_med 0.7| 3.8 9.2 99| 155 226 | 6.3 2,060

3 WS_soil_temp_5
cm_med 07| 3.5 6.1 86| 134 | 226 | 6.3 706

’ WS_soil_temp_5
cm_min 05| 26 7.4 87| 145| 195| 6.2] 10,024
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Media

LMS Variable Min | Q1 n Mean | Q3 | Max | SD N

2 WS_soil_temp_5
cm_min 05| 26 71 82| 13.7] 195| 538 2,060

3 WS _soil temp 5
cm_min 0.5 2 4.9 711 113] 193] 5.9 706

y WS_temp_20cm_
max -0.4 8 17 15.9 | 23.6 33| 9.1 10,024

2 WS _temp_20cm_
max 04| 741 16.4 15.1 | 22.2 33| 8.8 2,060

3 WS _temp_20cm_
max -04| 5.8 13.1 13.5| 20.5 33| 8.8 706

’ WS_temp_20cm_
med -3.9| 29 7.8 91| 156 | 23.5| 6.9| 10,024

> WS _temp_20cm_
med -3.9| 23 7.6 84| 144 | 235| 6.6 2,060

3 WS temp_20cm_
med -3.9 1.6 5.6 711 122 | 235| 6.6 706

1 WS _temp_20cm_
min 96| -1.8 1.5 28| 76| 16.2]| 6.2] 10,024

2 WS temp_20cm_
min -9.6 | -2.1 1.2 22| 6.7 16.2] 59 2,060

3 WS _temp_20cm_
min -9.6| -2.7 -0.2 1.2 5] 16.1 5.9 706

1 WS_temp_2m_m
ax -0.7| 6.8 15.1 145| 218 | 334 | 86| 10,024

> WS _temp 2m m
ax -0.7| 6.2 14.5 13.8 | 198 | 334 | 8.3 2,060

3 WS_temp_2m_m
ax -0.7| 54 11.6 12.3| 186 | 334 | 8.3 706

1 WS _temp 2m m
ed -34| 34 8.6 9.4 16 | 23.3| 6.9| 10,024

2 WS _temp_2m_m
ed 34| 27 8.4 88| 14.7| 23.3| 6.6 2,060

3 WS _temp 2m m
ed 34| 21 5.7 75| 13.2| 233| 6.6 706

, WS_temp_2m_mi
n 79| -0.6 2.7 44| 94| 164 | 59| 10,024

2 WS _temp_2m_mi
n -79| -0.8 2.5 38| 83| 164 | 5.7 2,060

3 WS_temp_2m_mi
n 79| 14 0.6 28| 72| 164 | 5.7 706
1 WS thi_max 30.7 | 44.3 59.2 58 | 70.8 | 91.7 | 15.3 | 10,024
2 WS thi_max 30.7 | 43.2 58.1 56.8 | 67.6 | 91.7 | 14.9 2,060
3 WS thi_max 30.7 | 41.9 53 54.1| 65.4| 91.7 | 14.9 706
1 WS thi_med 27.2 | 391 48.8 49.2 | 604 | 70.8| 11.7| 10,024
2 WS thi_med 27.2| 37.6 48.5 48.2 | 584 | 70.8| 11.3 2,060
3 WS thi_med 27.2 | 3641 43.4 46| 56.2 | 70.8| 114 706
1 WS thi_min 226 | 361 42.9 43.3 | 51.8 | 61.1 9.5| 10,024
2 WS thi_min 22.6 | 35.8 42.1 424 | 50.2 | 61.1 9.1 2,060
3 WS thi_min 22.6 | 33.6 39.1 40.7 | 475 | 61.1 9.3 706

1 WS_wind_velocit
y_max 16| 27 3.5 4| 4.7 127 2| 10,024
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LMS Variable Min | Q1 | M9 Mean | @3 | Max | sD | N

2 WS_wind_velocit

y_max 16| 26 3.4 39| 44| 127 1.9 2,060
3 WS_wind_velocit

y_max 16| 27 3.6 43| 48] 127]| 23 706
y WS_wind_velocit

y_med 0.5 1.1 1.5 1.8 2| 57 1] 10,024
2 WS_wind_velocit

y _med 0.5 1.1 1.4 1.7 2| 57 1 2,060
3 WS_wind_velocit

y_med 0.5 1.2 1.6 19| 22| 57 1.1 706
’ WS_wind_velocit

y_min 0 0 0 0.2 041 3.3| 0.5 10,024
2 WS_wind_velocit

y_min 0 0 0 02| 041 33| 04 2,060
3 WS_wind_velocit

y_min 0 0 0 02| 03| 33| 05 706
1 Season 1 1 2 2.1 3 4 1] 19,431
2 Season 1 1 2 2.2 3 4 1 3,736
3 Season 1 1 2 2.3 3 4 1 1,416

Claw health

1 PT 0 0 0 0.1 0 1 04| 19,316
2 PT 0 0 0 0.2 0 1 0.4 3,678
3 PT 0 0 1 0.5 1 1 0.5 1,379
1 GSC 0] 25 3 2.7 3 3] 04] 19,316
2 GSC 1 2.5 2.8 2.6 3 3| 04 3,699
3 GSC 1.2 2 2.5 2.5 3 3] 04 1,379

Table 61: Significance across all corrected locomotion score (C_LMS) groups across all farms
(Kruskal-Wallis test) (parameters explained in Table 33)

Variable | Statistics | p_value
Animal characteristics
Breed | 58| <0.01
Milking

Lactation_number 281.7 <0.01
Days_in_milk 40.5 <0.01
LKV_milk_yield in_last_lactation 197.7 <0.01
LKV _daily _milk_yield 28.5 <0.01
LKV urea 3.6 >0.05
LKV _somatic_cell_count 17.5 <0.01
LKV _fat 34.3 <0.01
LKV _protein 120.6 <0.01
LKV _fat_protein_ratio 32.6 <0.01
LKV lactose 56.7 <0.01
Milkings 130.6 <0.01
Maximum_milking_interval 69.9 <0.01
Robot_daily milk yield 26.2 <0.01
Robot_milk_yield in_current_lactation 7.6 <0.05
Robot_milk_yield in_last_lactation 75.9 <0.01
Robot_daily _milk_yield in_last_lactation 14.3 <0.01
MDi 36.4 <0.01
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Variable Statistics p_value
Milking_flow 151.1 <0.01
Max_milking_flow 6.7 <0.05
Robot conduct lely 9.1 <0.05
Robot_conduct 271 <0.01
Robot somatic cell count 94 <0.01
Robot effect of scc 18.7 <0.01
Robot fat 9.5 <0.01
Robot protein 125.9 <0.01
Robot fat_protein_ratio 114 <0.01
Robot lactose 12.8 <0.01
Milking_temperature 62.1 <0.01

Constitution
Robot BCS 32.8 <0.01
Body weight 171.3 <0.01
Feeding
Concentrated feed intake 1.9 >0.05
Concentrated feed remains 20.6 <0.01
WT feed intake 60.2 <0.01
WT feeding_pace 401.3 <0.01
WT feeding_duration 171.5 <0.01
WT feeding_duration_day 1711 <0.01
WT feeding duration day night 3.1 >0.05
WT trough visits 540.5 <0.01
WT trough visits_day 512.2 <0.01
WT trough visits day night 3.3 >0.05
WT feed intake per visit 666.6 <0.01
WT feeding duration per visit 317.7 <0.01
WT_number_of meals 119.8 <0.01
WT number_of meals _day 126.2 <0.01
WT_number_of meals_day night 8.4 <0.05
WT feed intake per meal 175.4 <0.01
WT feeding duration_per meal 9.2 <0.05
ENGS feeding 15.8 <0.01
ENGS_feeding_day 201 <0.01
ENGS_feeding_day night 3.6 >0.05
ENGS number of meals 2.3 >0.05
ENGS number_of meals day 2.7 >0.05
ENGS number_of meals day night 2.3 >0.05
ENGS_feeding_duration_per_meal 7.7 <0.05
Nedap feeding 86.5 <0.01
Rumination
Smaxtec_rum 5.3 >0.05
SCR_rum 8.1 <0.05
SCR_rum_day 9 <0.05
SCR_rum_day _night 73.8 <0.01
Nedap rum 144.6 <0.01
Heat detection
SCR_heat_probability 6.5 <0.05
SCR_heat_probability day 4.7 >0.05
Lemmer factor of restlessness 292.6 <0.01
Lying

Nedap_lying 41| >0.05
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Variable Statistics p_value
Nedap_get ups 79.7 <0.01
ENGS lying 2.4 >0.05
ENGS lying day 254 <0.01
ENGS lying_day night 141 <0.01
ENGS_lying_bouts 108.4 <0.01
ENGS lying bouts day 89.8 <0.01
ENGS lying_bouts_day night 13.3 <0.01
ENGS lying duration _per bout 59.4 <0.01
Lemmer _lying 98.4 <0.01
Lemmer _get ups 51.9 <0.01

Activity
Delaval act avg 92.4 <0.01
Delaval_act_rel 28.8 <0.01
Delaval_act_rel_min 28.5 <0.01
Delaval_act rel _max 18.3 <0.01
ENGS act 218 <0.01
ENGS_act_day 276.5 <0.01
ENGS act day night 60 <0.01
Smaxtec act 25.3 <0.01
Smaxtec act day 19.4 <0.01
Smaxtec act day night 21.1 <0.01
SCR_act 366.6 <0.01
SCR_act_day 383.4 <0.01
SCR_act_day_night 68.4 <0.01
Lemmer_act 383 <0.01
Nedap inactive 248.2 <0.01
Nedap act collar median 54.6 <0.01
Nedap act collar_sum 55 <0.01
Nedap_act collar_median_day 85 <0.01
Nedap_act_collar_sum_day 79.3 <0.01
Nedap_act_collar_median_day night 57.6 <0.01
Nedap act collar sum_day night 82.7 <0.01
Nedap act 65.9 <0.01
Nedap act foot median 51.5 <0.01
Nedap_act foot _median_day 78.8 <0.01
Nedap_act_foot_sum_day 76.2 <0.01
Nedap_act foot median_day night 36.8 <0.01
Nedap act foot sum_day night 51 <0.01
Body temperature
Smaxtec_temp _normal_median 333.4 <0.01
Smaxtec_temp median 193.4 <0.01
Smaxtec_temp_min 129.2 <0.01
Smaxtec_temp max 259.8 <0.01
Smaxtec _temp without drink_cycles_median 267.9 <0.01
Smaxtec_temp_without_drink_cycles_min 109.9 <0.01
Smaxtec_temp_without_drink_cycles max 250.4 <0.01
Climate

Smaxtec climate temp median 60.5 <0.01
Smaxtec climate temp _min 39.3 <0.01
Smaxtec_climate_temp_max 65.7 <0.01
Smaxtec _climate_hum_median 124 <0.01
Smaxtec climate_hum_min 27.1 <0.01
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Variable Statistics p_value
Smaxtec_climate_hum_max 4.8 >0.05
Smaxtec thi median 45.9 <0.01
Smaxtec thi_min 39.6 <0.01
Smaxtec_thi_max 63.4 <0.01
WS thi_med 56 <0.01
WS thi_min 56.7 <0.01
WS thi max 51.9 <0.01
WS temp 2m med 58.6 <0.01
WS temp_2m_min 55.3 <0.01
WS _temp 2m_max 52.5 <0.01
WS temp 20cm med 594 <0.01
WS temp 20cm_min 49.6 <0.01
WS _temp_ 20cm_max 53.2 <0.01
WS soil temp 5cm_med 60.2 <0.01
WS soil temp 5cm_min 57.9 <0.01
WS_soil temp 5cm_max 52 <0.01
WS soil temp 20cm_med 59.4 <0.01
WS soil temp 20cm_min 58.2 <0.01
WS soil temp 20cm_max 59.8 <0.01
WS _rel hum_med 24.9 <0.01
WS _rel_hum_min 19.6 <0.01
WS rel hum max 23.8 <0.01
WS wind velocity med 6.5 <0.05
WS _wind_velocity min 4.5 >0.05
WS _wind_velocity max 4.3 >0.05
WS rain_med 6.5 <0.05
WS rain_min 0.7 >0.05
WS rain_max 8.7 <0.05
WS global rad _med 36.6 <0.01
WS global rad _min 22.6 <0.01
WS global_rad_max 32.2 <0.01
Season 14.7 <0.01

Table 62: Significance of the differences between the different corrected locomotion score
(C_LMS) groups for each parameter across all farms (Wilcoxon signed-rank test) (parameters
explained in Table 33)

p-value p-value p-value
Parameters C LMS1vs. | C_LMS1vs. | C_LMS2 vs.

C_LMS2 C_LMS3 C_LMS3

Animal characteristics
Breed | <0.05 | <0.01 | > 0.05
Milking

Lactation_number < 0.01 < 0.01 > 0.05
Days _in_milk <0.01 < 0.01 <0.01
LKV_milk_yield in_last lactation < 0.01 < 0.01 > 0.05
LKV _daily milk_yield <0.05 < 0.01 > 0.05
LKV urea > 0.05 > 0.05 > 0.05
LKV _somatic_cell_count < 0.01 > 0.05 <0.01
LKV _fat > 0.05 < 0.01 > 0.05
LKV _protein < 0.01 <0.01 <0.01
LKV _fat_protein_ratio < 0.01 > 0.05 <0.01
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p-value p-value p-value
Parameters C_LMS1vs. | C_LMS1vs. | C_LMS2vs.
C_LMS2 C_LMS3 C_LMS3
LKV _lactose <0.01 <0.05 <0.01
Milkings <0.01 <0.01 > 0.05
Maximum_milking_interval < 0.01 <0.01 > 0.05
Robot_daily_milk_yield > 0.05 < 0.01 > 0.05
Robot milk yield in_current lactation <0.05 > 0.05 > 0.05
Robot milk_yield in_last_lactation < 0.01 < 0.01 > 0.05
Robot_daily _milk_yield in_last lactation > 0.05 <0.01 <0.01
MDi < 0.01 <0.01 > 0.05
Milking_flow < 0.01 <0.05 <0.01
Max_milking flow > 0.05 <0.05 > 0.05
Robot _conduct lely > 0.05 <0.05 > 0.05
Robot conduct <0.01 > 0.05 <0.01
Robot somatic cell count > 0.05 > 0.05 > 0.05
Robot effect of scc < 0.01 > 0.05 < 0.01
Robot_fat <0.05 > 0.05 > 0.05
Robot_protein <0.01 <0.01 <0.01
Robot_fat_protein_ratio > 0.05 < 0.01 > 0.05
Robot lactose > 0.05 < 0.05 <0.01
Milking temperature <0.01 < 0.05 <0.01
Constitution
Robot_BCS <0.01 <0.01 <0.01
Body weight < 0.01 < 0.01 <0.01
Feeding
Concentrated feed intake > 0.05 > 0.05 > 0.05
Concentrated_feed _remains > 0.05 <0.01 > 0.05
WT feed intake <0.01 <0.05 <0.01
WT feeding_pace < 0.01 < 0.01 <0.01
WT _feeding_duration > 0.05 <0.01 <0.01
WT feeding_duration_day > 0.05 <0.01 <0.01
WT feeding duration _day night > 0.05 > 0.05 > 0.05
WT trough_visits <0.01 <0.01 <0.01
WT _trough visits_day < 0.01 < 0.01 <0.01
WT _trough_visits_day night > (0.05 > 0.05 > 0.05
WT feed intake per visit <0.01 <0.01 <0.05
WT feeding duration per visit <0.01 <0.01 > 0.05
WT _number_of meals > 0.05 < 0.01 <0.01
WT_number_of meals_day > 0.05 <0.01 <0.01
WT_number_of meals_day night > (0.05 < 0.05 > 0.05
WT feed intake per meal <0.01 <0.01 > 0.05
WT _feeding_duration_per_meal > 0.05 <0.01 > 0.05
ENGS feeding <0.01 > 0.05 <0.01
ENGS feeding_day <0.01 > 0.05 <0.01
ENGS_feeding day night > 0.05 > 0.05 > 0.05
ENGS_number_of meals > 0.05 > 0.05 > 0.05
ENGS number of meals day > 0.05 > 0.05 > 0.05
ENGS_number_of meals_day night > 0.05 > 0.05 > 0.05
ENGS_feeding_duration_per_meal <0.05 > 0.05 <0.05
Nedap_ feeding < 0.01 > 0.05 <0.01
Rumination

Smaxtec_rum > 0.05 > 0.05 > 0.05
SCR_rum > 0.05 <0.05 > 0.05
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p-value p-value p-value
Parameters C_LMS1vs. | C_LMS1vs. | C_LMS2vs.
C_LMS2 C_LMS3 C_LMS3
SCR _rum_day <0.05 > 0.05 <0.05
SCR_rum_day night < 0.01 < 0.01 > 0.05
Nedap rum > 0.05 <0.01 <0.01
Heat detection
SCR_heat probability > 0.05 > 0.05 > 0.05
SCR_heat_probability day > 0.05 > 0.05 > 0.05
Lemmer factor of restlessness < 0.01 <0.01 > 0.05
Lying
Nedap lying > 0.05 > 0.05 > 0.05
Nedap get ups > 0.05 < 0.01 <0.05
ENGS_lying > 0.05 > 0.05 > 0.05
ENGS lying_day > 0.05 <0.01 <0.05
ENGS lying_day night < 0.01 <0.01 > 0.05
ENGS_lying_bouts < 0.01 <0.01 > 0.05
ENGS_lying_bouts_day < 0.01 <0.01 > 0.05
ENGS lying bouts_day night > 0.05 < 0.01 > 0.05
ENGS lying_duration_per_bout <0.01 <0.01 > 0.05
Lemmer _lying <0.05 <0.01 > 0.05
Lemmer _get ups <0.01 <0.01 > 0.05
Activity
Delaval _act_avg < 0.01 < 0.01 > 0.05
Delaval_act rel > 0.05 <0.01 <0.05
Delaval_act_rel_min > 0.05 <0.01 > 0.05
Delaval_act rel max > 0.05 <0.01 <0.01
ENGS_act <0.01 <0.01 > 0.05
ENGS_act_day < 0.01 < 0.01 > 0.05
ENGS_act_day_night <0.01 <0.01 > 0.05
Smaxtec_act <0.05 < 0.01 < 0.01
Smaxtec_act_day > 0.05 < 0.01 <0.05
Smaxtec_act day night < 0.01 > 0.05 <0.05
SCR_act < 0.01 < 0.01 <0.01
SCR_act _day < 0.01 < 0.01 <0.01
SCR_act_day_night < 0.01 <0.01 > 0.05
Lemmer_act < 0.01 < 0.01 > 0.05
Nedap inactive <0.01 <0.01 > 0.05
Nedap_act_collar_median <0.01 <0.01 > 0.05
Nedap_act_collar_sum <0.01 <0.01 > 0.05
Nedap_act_collar_median_day <0.01 <0.01 > 0.05
Nedap act collar sum_day <0.01 <0.01 > 0.05
Nedap_act collar median_day night > 0.05 < 0.01 <0.05
Nedap_act collar_sum_day night <0.05 < 0.01 <0.05
Nedap_act <0.01 <0.01 <0.05
Nedap_act foot _median < 0.01 < 0.01 > 0.05
Nedap_act foot_median_day < 0.01 < 0.01 > 0.05
Nedap_act_foot_sum_day <0.01 <0.01 <0.05
Nedap_act foot _median_day_ night < 0.01 < 0.01 > 0.05
Nedap_act foot sum_day night <0.05 < 0.01 > 0.05
Body temperature

Smaxtec_temp normal_median < 0.01 < 0.01 <0.01
Smaxtec_temp_median < 0.01 <0.01 > 0.05
Smaxtec_temp _min < 0.01 < 0.01 <0.01
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p-value p-value p-value
Parameters C_LMS1vs. | C_LMS1vs. | C_LMS2vs.
C_LMS2 C_LMS3 C_LMS3
Smaxtec_temp_max < 0.01 < 0.01 <0.01
Smaxtec temp without drink_cycles_median < 0.01 < 0.01 <0.01
Smaxtec_temp without_drink_cycles_min <0.01 <0.01 <0.01
Smaxtec temp without drink cycles max <0.01 <0.01 <0.01
Climate

Smaxtec climate _temp median < 0.01 < 0.01 <0.01
Smaxtec climate temp min <0.01 > 0.05 <0.01
Smaxtec climate temp max <0.01 <0.01 <0.01
Smaxtec_climate_hum_median > 0.05 < 0.01 <0.05
Smaxtec climate_ hum_min < 0.01 < 0.01 < 0.01
Smaxtec_climate_hum_max > 0.05 > 0.05 > 0.05
Smaxtec thi median <0.01 < 0.05 <0.01
Smaxtec thi min <0.01 < 0.05 <0.01
Smaxtec thi max < 0.01 < 0.01 < 0.01
WS thi_med > 0.05 <0.01 <0.01
WS _thi_min > 0.05 <0.01 <0.01
WS thi_max > 0.05 <0.01 <0.01
WS temp 2m med > 0.05 <0.01 <0.01
WS temp 2m min > 0.05 < 0.01 < 0.01
WS temp 2m_max > 0.05 < 0.01 <0.01
WS temp 20cm med > 0.05 <0.01 <0.01
WS _temp 20cm_min > 0.05 <0.01 <0.01
WS temp 20cm max > 0.05 <0.01 <0.01
WS soil temp 5cm_med > 0.05 <0.01 <0.01
WS _soil temp 5cm_min > 0.05 <0.01 <0.01
WS soil temp 5cm_max > 0.05 < 0.01 <0.01
WS_soil temp 20cm_med > 0.05 < 0.01 <0.01
WS soil temp 20cm_min > 0.05 <0.01 <0.01
WS_soil temp 20cm_max > 0.05 <0.01 <0.01
WS rel hum_med < 0.01 <0.05 > 0.05
WS _rel_hum_min < 0.01 < 0.01 > 0.05
WS _rel_hum_max < 0.01 > 0.05 <0.01
WS _wind_velocity _med > 0.05 > 0.05 <0.05
WS wind velocity min > 0.05 > 0.05 > 0.05
WS _wind velocity max > 0.05 > 0.05 > 0.05
WS _rain_med > 0.05 > 0.05 <0.05
WS rain_min > 0.05 > 0.05 > 0.05
WS rain_max > 0.05 > 0.05 <0.05
WS global rad _med > 0.05 <0.01 > 0.05
WS global rad min < 0.01 > 0.05 <0.01
WS global_rad_max > 0.05 <0.01 > 0.05
Season > 0.05 < 0.01 > 0.05
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Table 63: Significance of the differences between the different locomotion score (LMS) groups
for each parameter across all farms (Wilcoxon signed-rank test) (parameters explained in
Table 33)

p-value p-value p-value
Parameters LMS1 vs. LMS1 vs. LMS2 vs.
LMS2 LMS3 LMS3
Animal characteristics
Breed | <0.01 | <0.01] > 0.05
Milking
Lactation _number < 0.01 < 0.01 <0.01
Days_in_milk > 0.05 < 0.01 <0.05
LKV_milk vyield in_last lactation < 0.01 < 0.01 > 0.05
LKV_daily milk_yield < 0.01 > 0.05 <0.01
LKV urea > 0.05 <0.05 <0.05
LKV somatic_cell _count < 0.05 <0.01 <0.01
LKV_fat <0.01 <0.01 > 0.05
LKV _protein < 0.01 < 0.01 <0.01
LKV _fat protein_ratio > 0.05 > 0.05 > 0.05
LKV _lactose <0.01 <0.01 <0.01
Milkings <0.01 <0.01 <0.01
Maximum_milking_interval <0.01 <0.01 <0.01
Robot_daily_milk_yield <0.01 > 0.05 <0.01
Robot milk vyield in_current lactation <0.01 <0.01 <0.01
MDI <0.01 <0.01 <0.05
Milking_flow < 0.01 > 0.05 <0.01
Max_milking_flow > 0.05 <0.01 <0.01
Robot_conduct_lely < 0.01 > 0.05 > 0.05
Robot_conduct > 0.05 > 0.05 > 0.05
Robot_milk_yield in_last_lactation <0.01 <0.01 > 0.05
Robot daily milk yield in_last lactation > 0.05 > 0.05 > 0.05
Robot_fat > 0.05 < 0.01 <0.05
Robot _protein < 0.01 < 0.01 <0.01
Robot_fat_protein_ratio > 0.05 < 0.01 <0.01
Robot lactose > 0.05 <0.01 < 0.05
Robot_somatic_cell _count < 0.01 > 0.05 > 0.05
Robot_effect of scc > 0.05 > 0.05 > 0.05
Milking_temperature < 0.01 > 0.05 > 0.05
Constitution
Robot BCS > 0.05 <0.01 <0.01
Body weight < 0.01 < 0.01 <0.05
Feeding
Concentrated feed intake > 0.05 > 0.05 <0.01
Concentrated_feed remains > 0.05 < 0.01 <0.01
WT feed intake < 0.01 > 0.05 <0.01
WT _feeding_duration < 0.01 <0.01 <0.01
WT _feeding_duration_day < 0.01 <0.01 <0.01
WT _feeding_duration_day night > 0.05 > 0.05 > 0.05
WT _feeding_duration_per_meal > 0.05 < 0.01 <0.01
WT _feeding_duration_per_visit < 0.01 < 0.01 > 0.05
WT feeding pace < 0.01 < 0.01 <0.01
WT trough_visits < 0.01 < 0.01 <0.01
WT trough_visits_day < 0.01 < 0.01 <0.01
WT trough_visits_day night > 0.05 > 0.05 > 0.05
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p-value p-value p-value
Parameters LMS1 vs. LMS1 vs. LMS2 vs.
LMS2 LMS3 LMS3
WT_number_of meals <0.01 <0.01 <0.01
WT number_of meals_day < 0.01 < 0.01 <0.01
WT number_of meals_day_night > 0.05 > 0.05 > 0.05
WT feed intake per _meal < 0.01 < 0.01 > 0.05
WT feed intake per visit < 0.01 < 0.01 <0.01
ENGS feeding > 0.05 > 0.05 <0.05
ENGS feeding_day > 0.05 > 0.05 <0.01
ENGS feeding _day night > 0.05 > 0.05 > 0.05
ENGS number_of meals > 0.05 > 0.05 > 0.05
ENGS number of meals day > 0.05 > 0.05 > 0.05
ENGS number_of meals day night > 0.05 > 0.05 > 0.05
ENGS feeding_duration_per meal > 0.05 > 0.05 > 0.05
Nedap feeding < 0.01 < 0.01 > 0.05
Rumination
SCR_rum > 0.05 <0.01 <0.01
SCR_rum_day > 0.05 > 0.05 > 0.05
SCR_rum_day night <0.01 <0.01 > 0.05
Nedap rum <0.01 <0.01 <0.01
Smaxtec_rum > 0.05 > 0.05 > 0.05
Heat detection
SCR_heat_probability > 0.05 > 0.05 > 0.05
SCR_heat_probability day > 0.05 > 0.05 > 0.05
Lemmer factor of restlessness <0.01 <0.01 <0.01
Lying
ENGS _lying < 0.01 <0.01 <0.01
ENGS_lying_day > 0.05 <0.01 <0.01
ENGS_lying_day night <0.01 <0.01 <0.01
ENGS _lying_bouts < 0.01 <0.01 <0.01
ENGS _lying bouts_day < 0.01 <0.01 <0.01
ENGS lying bouts_day night > 0.05 < 0.01 > 0.05
ENGS lying_duration_per_bout > 0.05 <0.01 <0.01
Nedap_lying <0.01 <0.01 <0.01
Nedap_get_ups <0.01 <0.01 > 0.05
Lemmer_get ups > 0.05 <0.01 <0.01
Lemmer_lying <0.01 <0.01 <0.01
Lemmer_lying_ratio < 0.01 <0.01 <0.01
Activity
ENGS_act < 0.01 <0.01 <0.01
ENGS_act_day <0.01 <0.01 <0.01
ENGS_act_day night < 0.01 < 0.01 > 0.05
Smaxtec_act > 0.05 < 0.01 <0.01
Smaxtec_act day > 0.05 < 0.01 <0.01
Smaxtec_act_day night < 0.01 > 0.05 > 0.05
SCR_act <0.01 <0.01 <0.01
SCR_act_day < 0.01 <0.01 <0.01
SCR_act_day night < 0.01 < 0.01 > 0.05
Nedap_act < 0.01 < 0.01 <0.01
Nedap_inactive < 0.01 < 0.01 <0.01
Nedap act collar median < 0.01 < 0.01 > 0.05
Nedap_act_collar_sum < 0.01 <0.01 > 0.05
Nedap_act_collar_median_day <0.01 <0.01 <0.05
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p-value p-value p-value
Parameters LMS1 vs. LMS1 vs. LMS2 vs.
LMS2 LMS3 LMS3
Nedap _act collar_sum_day < 0.01 < 0.01 <0.05
Nedap_act _collar_median_day night < 0.01 < 0.01 > 0.05
Nedap_act_collar_sum_day night <0.01 <0.01 > 0.05
Nedap act foot median <0.01 <0.01 <0.01
Nedap_act foot median_day < 0.01 < 0.01 <0.01
Nedap act foot sum_day < 0.01 < 0.01 <0.01
Nedap_act foot _median_day night <0.01 <0.01 > 0.05
Nedap act foot sum_day night <0.01 <0.01 < 0.05
Lemmer_act <0.01 <0.01 <0.01
Delaval act avg < 0.01 < 0.01 < 0.01
Delaval_act_rel <0.01 <0.01 > 0.05
Delaval_act_rel_min < 0.01 <0.01 > 0.05
Delaval_act rel _max > 0.05 > 0.05 > 0.05
Body temperature
Smaxtec_temp _min <0.05 < 0.01 <0.01
Smaxtec_temp_max < 0.01 < 0.01 > 0.05
Smaxtec temp median <0.01 <0.01 <0.01
Smaxtec temp without drink cycles min <0.01 <0.01 <0.01
Smaxtec temp_ without drink_cycles max <0.01 <0.01 > 0.05
Smaxtec temp without drink_cycles_median <0.01 <0.01 <0.01
Smaxtec_temp normal_median < 0.01 < 0.01 <0.05
Climate
Smaxtec climate temp median < 0.05 <0.01 <0.01
Smaxtec climate temp min < 0.05 <0.01 <0.01
Smaxtec _climate temp max > 0.05 <0.01 <0.01
Smaxtec climate hum_ median > 0.05 <0.01 <0.01
Smaxtec_climate_hum_min > 0.05 < 0.01 <0.01
Smaxtec climate _hum_max > 0.05 < 0.01 < 0.01
Smaxtec_thi_median <0.05 < 0.01 <0.01
Smaxtec_thi_min <0.05 <0.01 <0.01
Smaxtec thi max > 0.05 <0.01 <0.01
WS thi_med <0.01 <0.01 <0.01
WS _thi_min < 0.01 <0.01 <0.01
WS thi_max <0.01 <0.01 <0.01
WS temp 2m med < 0.01 < 0.01 <0.01
WS _temp_2m_min < 0.01 < 0.01 <0.01
WS temp 2m_max < 0.01 < 0.01 <0.01
WS temp 20cm_ med <0.01 <0.01 <0.01
WS _temp 20cm_min <0.01 <0.01 <0.01
WS temp 20cm_max < 0.01 < 0.01 <0.01
WS_soil temp 5cm_med < 0.01 < 0.01 <0.01
WS_soil temp 5cm_min < 0.01 < 0.01 <0.01
WS _soil_temp _5cm_max < 0.01 < 0.01 <0.01
WS soil temp _20cm_med < 0.01 < 0.01 <0.01
WS soil temp 20cm_min < 0.01 < 0.01 <0.01
WS_soil temp 20cm_max < 0.01 < 0.01 <0.01
WS rel hum_med <0.05 < 0.01 <0.05
WS rel hum_min <0.05 < 0.01 > 0.05
WS rel hum_max > 0.05 > 0.05 > 0.05
WS _wind_velocity _med > 0.05 <0.01 <0.01
WS _wind_velocity _min > 0.05 <0.05 <0.05
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p-value p-value p-value
Parameters LMS1 vs. LMS1 vs. LMS2 vs.
LMS2 LMS3 LMS3

WS _wind_velocity max <0.05 > 0.05 <0.01
WS rain_med > 0.05 <0.01 <0.01
WS_rain_min > 0.05 > 0.05 > 0.05
WS _rain_max > 0.05 < 0.01 <0.05
WS global rad med < 0.01 < 0.01 > 0.05
WS global rad _min > 0.05 <0.05 > 0.05
WS _global rad_max < 0.01 <0.01 > 0.05
Season > 0.05 < 0.01 <0.01
GSC <0.05 <0.01 <0.01
PT < 0.01 < 0.01 < 0.01

Table 64: Odds ratios with confidence intervals and p values of each variable for C_LMS3 or

LMS3 as outcome lame

C_LMS3 LMS3

Variable OR 25% | 97.5% | p_value | OR | 2.5% | 97.5% | p_value
Breed 0.828 | 0.781 0.874 <0.001 1 0.844 | 0.765| 0.919 <0.001
Lactation_nu
mber 1132 | 1.112 1.152 <0.001 | 1.178 | 1.148 1.209 <0.001
Days_in_milk | 0.999 | 0.999 1.000 <0.001 | 0.999 | 0.998 | 0.999 <0.001
LKV_milk_yie
Id_in_last_lac
tation 1.000 | 1.000 1.000 <0.001 | 1.000 | 1.000 1.000 <0.001
LKV_daily_m
ilk_yield 1.012 | 1.008 1.016 <0.001 | 0.994 | 0.987 1.000 0.066
LKV _urea 0.999 | 0.999 1.000 0.009 | 0.998 | 0.997 | 0.999 <0.001
LKV_somatic

cell_count 1.000 | 1.000 1.000 0.815 | 1.000 | 1.000 1.000 <0.001
LKV _fat 0.919 | 0.879 0.961 <0.001 | 0.919 | 0.856 | 0.987 0.021
LKV _protein 0.565 | 0.512 0.623 <0.001 | 0.507 | 0.433 | 0.593 <0.001
LKV fat prot
ein_ratio 1.267 | 1.088 1.473 0.002 | 1.305 | 1.026 1.653 0.029
LKV lactose | 0.779 | 0.648 0.938 0.008 | 0.409 | 0.312 0.540 <0.001
Milkings 0.792 | 0.755 0.830 <0.001 | 0.645 | 0.597 | 0.697 <0.001
Maximum_mi
Iking_interval | 1.001 | 1.001 1.001 <0.001 | 1.002 | 1.001 1.002 <0.001
Robot_daily_
milk_yield 1.010 | 1.006 1.013 <0.001 | 0.991 | 0.985| 0.996 0.001
Robot_milk_y
ield_in_curre
nt_lactation 1.000 | 1.000 1.000 0.831 | 1.000 | 1.000 1.000 <0.001
Robot_milk_y
ield_in_last_|
actation 1.000 | 1.000 1.000 <0.001 | 1.000 | 1.000 1.000 0.051
Robot_daily_
milk_yield_in
_last_lactatio
n 1.016 | 1.005 1.026 0.003 | 1.013 | 0.995 1.030 0.164
Milking flow 0.971| 0.935 1.008 0.126 | 0.982 | 0.924 1.043 0.565
Milking_temp | 1.057 | 0.976 1.144 0.176 | 1.036 | 0.905 1.184 0.609
erature
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Variable OR 25% | 97.5% | p_value | OR | 2.5% | 97.5% | p_value
Max_milking
_flow 1.037 | 1.012 1.062 0.003 | 1.170 | 1.127 1.214 <0.001
Robot_condu
ct_lely 1.010 | 0.995 1.026 0.180 | 1.005 | 0.980 1.031 0.684
Robot_condu
ct 1.021 | 0.944 1.106 0.602 | 0.880 | 0.786 | 0.989 0.029
Robot_somat
ic_cell count | 1.000 | 1.000 1.000 0.136 | 1.000 | 0.999 1.000 0.360
Robot_effect

of scc 1.013 | 0.995 1.031 0.152 | 0.989 | 0.950 1.023 0.573
Robot_fat 0.985 | 0.945 1.027 0.491 | 1.108 | 1.040 1.178 0.001
Robot_protei
n 0.630 | 0.538 0.737 <0.001 | 0.356 | 0.273 | 0.463 <0.001
Robot_fat_pr
otein_ratio 1.100 | 0.946 1.277 0.212 | 2.008 | 1.618 | 2.474 <0.001
Robot_lactos
e 0.780 | 0.658 0.925 0.004 | 0.625| 0.478 | 0.819 0.001
MDi 1.339 | 1.125 1.584 0.001 | 1.596 | 1.264 1.980 <0.001
Robot BCS 0.602 | 0.478 0.760 <0.001 | 0.532 | 0.383 | 0.744 <0.001
Body weight | 1.001 | 1.001 1.002 <0.001 | 1.001 | 1.000 1.002 0.039
Concentrated
_feed_intake | 1.002 | 0.986 1.019 0.817 | 0.964 | 0.938 | 0.990 0.007
Concentrated
_feed_remai
ns 1.213 | 1.123 1.308 <0.001 | 1.407 | 1.262 1.559 <0.001
WT feed int
ake 1.005 | 1.000 1.010 0.049 | 0.994 | 0.987 1.002 0.123
WT feeding_ | 1.43e | 7.05e | 4.60e+ 3.73e | 4.46e | 5.30e+
pace +174 | +155 175 <0.001 | +102 | +110 149 <0.001
WT _feeding
duration 0.991 | 0.989 0.992 <0.001 | 0.985 | 0.982 | 0.987 <0.001
WT _feeding_
duration_day | 0.988 | 0.986 0.990 <0.001 | 0.983 | 0.979 | 0.986 <0.001
WT _feeding
duration_day

night 0.864 | 0.527 1.426 0.566 | 2.363 | 1.085| 5.224 0.032
WT _trough_v
isits 0.958 | 0.954 0.963 <0.001 | 0.944 | 0.936 | 0.951 <0.001
WT_trough_v
isits_day 0.949 | 0.944 0.955 <0.001 | 0.936 | 0.927 | 0.945 <0.001
WT_trough_v
isits_day_nig
ht 0.866 | 0.525 1.438 0.576 | 2.192 | 0.993 | 4.943 0.055
WT_feed_int
ake per visit | 1.951 | 1.820 2.095 <0.001 | 1.745 | 1.620 1.883 <0.001
WT_feeding_
duration_per

visit 1131 1.101 1.162 <0.001 | 1.097 | 1.068 1.131 <0.001
WT_number_
of _meals 0.872 | 0.849 0.895 <0.001 | 0.831 | 0.798 | 0.865 <0.001
Nedap_feedi
ng 1.000 | 0.999 1.000 0.223 | 0.999 | 0.998 | 0.999 <0.001

271




C_LMS3 LMS3
Variable OR 25% | 97.5% | p_value | OR | 2.5% | 97.5% | p_value
WT_number_
of _meals_da
y 0.839 | 0.813 0.866 <0.001 | 0.823 | 0.784 | 0.864 <0.001
WT_number_
of meals_da
y_night 0.604 | 0.359 1.019 0.058 | 1.746 | 0.776 | 3.991 0.182
WT feed int
ake _per_me
al 1171 | 1.137 1.205 <0.001 | 1.136 | 1.090 1.182 <0.001
WT _feeding
duration_per
_meal 0.990 | 0.980 0.998 0.028 | 0.974 | 0.956 | 0.990 0.003
ENGS feedi
ng 0.996 | 0.993 0.999 0.011 | 0.996 | 0.992 1.000 0.069
ENGS _feedi
ng_day 0.994 | 0.990 0.998 0.003 | 0.994 | 0.989 1.000 0.037
ENGS feedi
ng_day night | 0.649 | 0.282 1.534 0.316 | 0.739 | 0.237 | 2.483 0.614
ENGS _numb
er_of meals 1.002 | 0.959 1.047 0.924 | 1.028 | 0.968 1.091 0.374
ENGS _numb
er_of meals
day 0.978 | 0.924 1.034 0.433 | 1.021 | 0.945 1.102 0.603
ENGS _numb
er_of meals
day night 0.521 | 0.202 1.379 0.183 | 1.046 | 0.275| 4.285 0.949
ENGS _feedi
ng_duration_
per_meal 0.971 | 0.947 0.996 0.025 | 0.969 | 0.934 1.003 0.084
Smaxtec _ru
m 1.000 | 0.999 1.001 0.497 | 1.001 | 0.999 1.002 0.380
SCR_rum 0.999 | 0.998 0.999 0.001 | 0.997 | 0.996 | 0.998 <0.001
SCR_rum_da
y 0.999 | 0.998 1.001 0.341 | 0.999 | 0.997 1.000 0.092
SCR rum_da | 42.91| 1252 | 149.04 61.53 | 10.38 | 362.91
y_night 2 9 2 <0.001 7 0 0 <0.001
Nedap _rum 0.997 | 0.996 0.997 <0.001 | 0.995 | 0.994 | 0.996 <0.001
SCR _heat_pr
obability 0.991 | 0.977 1.002 0.138 | 0.986 | 0.964 1.004 0.167
SCR_heat_pr
obability day | 0.990 | 0.979 1.001 0.094 | 0.987 | 0.968 1.003 0.147
Lemmer_fact
or_of restles
sness 0.998 | 0.998 0.999 <0.001 | 0.997 | 0.996 | 0.998 <0.001
Nedap_get u
ps 0.884 | 0.855 0.913 <0.001 | 0.883 | 0.836 | 0.931 <0.001
ENGS lying 1.000 | 1.000 1.001 0.028 | 1.003 | 1.003 1.004 <0.001
ENGS_lying_
day 1.002 | 1.001 1.003 <0.001 | 1.006 | 1.005 1.007 <0.001
ENGS _lying_ | 13.91 43.84 | 15.91 | 119.98
day night 7| 6.882 | 28.312 <0.001 5 6 0 <0.001
ENGS_lying_ | 0.997 | 0.990 1.004 0.477 | 0.976 | 0.962 | 0.988 <0.001
bouts
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Variable OR 25% | 97.5% | p_value | OR | 2.5% | 97.5% | p_value
ENGS_lying_
bouts_day 0.997 | 0.987 1.008 0.631 1 0.968 | 0.949 | 0.986 0.001
ENGS lying
bouts_day_ni
ght 2.164 | 1.254 3.750 0.006 | 3.417 | 1.501 7.848 0.004
ENGS lying
duration_per
_bout 1.008 | 1.007 1.010 <0.001 | 1.010 | 1.008 1.012 <0.001
Lemmer_lyin
g 1.002 | 1.002 1.003 <0.001 | 1.005 | 1.004 1.005 <0.001
Nedap_lying 0.999 | 0.998 1.000 0.002 | 1.004 | 1.003 1.006 <0.001
Lemmer_get
_ups 1.043 | 1.026 1.060 <0.001 | 1.103 | 1.079 1.128 <0.001
Delaval_act_
avg 0.936 | 0.922 0.949 <0.001 | 0.869 | 0.841 0.897 <0.001
Delaval_act
rel 0.991 | 0.983 0.998 0.010 | 0.998 | 0.987 1.008 0.761
Delaval_act_
rel_min 0.984 | 0.974 0.994 0.001 | 0.974 | 0.958 | 0.990 0.001
Delaval_act
rel_max 0.997 | 0.990 1.003 0.275 | 1.011 | 1.003 1.018 0.005
ENGS_act 1.000 | 0.999 1.000 <0.001 | 0.999 | 0.999 | 0.999 <0.001
ENGS act d
ay 0.999 | 0.999 0.999 <0.001 | 0.999 | 0.999 | 0.999 <0.001
ENGS act d
ay_night 0.096 | 0.046 0.201 <0.001 | 0.151 | 0.056 | 0.427 <0.001
Smaxtec_act | 0.958 | 0.935 0.981 <0.001 | 0.918 | 0.884 | 0.953 <0.001
Smaxtec_act
_day 0.953 | 0.931 0.976 <0.001 | 0.907 | 0.874 | 0.941 <0.001
Smaxtec_act
_day_night 1.049 | 0.769 1.423 0.762 | 1.056 | 0.670 1.640 0.811
SCR_act 0.950 | 0.941 0.958 <0.001 | 0.889 | 0.874 | 0.903 <0.001
SCR act da
y 0.954 | 0.946 0.961 <0.001 | 0.908 | 0.896 | 0.920 <0.001
SCR_act_da
y_night 0.154 | 0.077 0.300 <0.001 | 0.095 | 0.034 | 0.263 <0.001
Lemmer_act 0.990 | 0.989 0.992 <0.001 | 0.982 | 0.979| 0.985 <0.001
Nedap_inacti
ve 1.003 | 1.002 1.003 <0.001 | 1.005 | 1.004 1.005 <0.001
Nedap act c
ollar_median | 0.944 | 0.928 0.959 <0.001 | 0.920 | 0.888 | 0.950 <0.001
Nedap_act_c
ollar_sum 0.996 | 0.995 0.997 <0.001 | 0.994 | 0.991 0.996 <0.001
Nedap_act ¢
ollar_median
day 0.947 | 0.934 0.960 <0.001 | 0.922 | 0.895| 0.949 <0.001
Nedap_act ¢
ollar_sum_da
y 0.994 | 0.992 0.995 <0.001 | 0.991 | 0.987 | 0.994 <0.001
Nedap_act_c
ollar_median
day night 0.427 | 0.314 0.576 <0.001 | 0.391 ] 0.216| 0.685 0.001
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Variable

OR

2.5%

97.5%

p_value

OR

2.5%

97.5%

p_value

Nedap act c
ollar_sum_da
y_night

0.040

0.019

0.083

<0.001

0.037

0.011

0.129

<0.001

Nedap act

1.000

1.000

1.000

<0.001

0.999

0.999

0.999

<0.001

Nedap_act f
oot _median

0.996

0.995

0.997

<0.001

0.991

0.988

0.994

<0.001

Nedap_act f
oot_median_
day

0.996

0.995

0.997

<0.001

0.991

0.989

0.993

<0.001

Nedap_act f
oot _sum_day

1.000

0.999

1.000

<0.001

0.999

0.999

0.999

<0.001

Nedap_act f
oot_median_
day night

0.405

0.239

0.667

0.001

0.195

0.073

0.482

0.001

Nedap act f
oot_sum_day
_night

0.023

0.006

0.083

<0.001

0.007

0.001

0.047

<0.001

Smaxtec _te
mp_normal_
median

5.979

4.507

7.935

<0.001

9.806

6.604

14.545

<0.001

Smaxtec _te
mp_median

4.255

3.305

5.479

<0.001

11.62

8.271

16.353

<0.001

Smaxtec _te
mp_min

0.815

0.782

0.849

<0.001

0.779

0.735

0.826

<0.001

Smaxtec _te
mp_max

2.055

1.755

2.404

<0.001

1.723

1.378

2.134

<0.001

Smaxtec _te
mp_without
drink_cycles__
median

4.000

3.106

5.151

<0.001

7.176

5.103

10.072

<0.001

Smaxtec _te
mp_without_
drink_cycles__
min

2.219

1.710

2.879

<0.001

4.478

3.099

6.457

<0.001

Smaxtec te
mp_without_
drink_cycles__
max

2.051

1.751

2.401

<0.001

1.697

1.356

2.104

<0.001

Smaxtec_cli
mate_temp
median

0.976

0.966

0.986

<0.001

0.946

0.930

0.963

<0.001

Smaxtec_cli
mate_temp_
min

0.981

0.969

0.992

0.001

0.958

0.939

0.977

<0.001

Smaxtec_cli
mate_temp__
max

0.976

0.968

0.984

<0.001

0.949

0.935

0.963

<0.001

Smaxtec_cli
mate_hum_
median

1.007

1.002

1.011

0.004

1.015

1.007

1.022

<0.001

Smaxtec_cli
mate_hum_
min

1.006

1.003

1.009

<0.001

1.017

1.011

1.022

<0.001
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Variable OR 25% | 97.5% | p_value | OR | 2.5% | 97.5% | p_value
Smaxtec_cli
mate_hum_
max 1.003 | 0.996 1.010 0.391 | 1.011 | 1.000 1.022 0.051
Smaxtec_thi_
median 0.993 | 0.988 0.998 0.009 | 0.985| 0.977 | 0.993 <0.001
Smaxtec_thi_
min 0.986 | 0.978 0.994 0.001 | 0.968 | 0.955| 0.981 <0.001
Smaxtec_thi_
max 0.985| 0.980 0.990 <0.001 | 0.968 | 0.960 | 0.977 <0.001
WS thi_ med | 0.984 | 0.980 0.988 <0.001 | 0.978 | 0.971 0.984 <0.001
WS _thi_min 0.981 | 0.976 0.986 <0.001 | 0.973 | 0.965 | 0.981 <0.001
WS thi_ max | 0.989 | 0.986 0.992 <0.001 | 0.984 | 0.979 | 0.989 <0.001
WS_temp_2
m_med 0.973 | 0.966 0.979 <0.001 | 0.962 | 0.951 0.973 <0.001
WS temp_2
m_min 0.967 | 0.959 0.975 <0.001 | 0.957 | 0.944 | 0.970 <0.001
WS _temp_2
m_max 0.980 | 0.974 0.985 <0.001 | 0.971 | 0.962 | 0.980 <0.001
WS _temp 20
cm_med 0.972 | 0.965 0.979 <0.001 | 0.961 | 0.950| 0.972 <0.001
WS temp_ 20
cm_min 0.970 | 0.963 0.978 <0.001 | 0.960 | 0.948 | 0.973 <0.001
WS _temp 20
cm_max 0.981 | 0.976 0.986 <0.001 | 0.973 | 0.965| 0.981 <0.001
WS_soil_tem
p_5cm_med 0.971 | 0.964 0.978 <0.001 | 0.959 | 0.947 | 0.971 <0.001
WS_soil_tem
p_5cm_min 0.969 | 0.961 0.976 <0.001 | 0.957 | 0.944 | 0.969 <0.001
WS _soil_tem
p_5cm_max 0.975| 0.969 0.982 <0.001 | 0.964 | 0.954 | 0.975 <0.001
WS_soil_tem
p_20cm _med | 0.969 | 0.961 0.977 <0.001 | 0.956 | 0.943 | 0.968 <0.001
WS _soil_tem
p_20cm_min | 0.968 | 0.960 0.976 <0.001 | 0.955 | 0.942 | 0.968 <0.001
WS_soil_tem
p_20cm _max | 0.970 | 0.962 0.978 <0.001 | 0.957 | 0.945| 0.969 <0.001
WS_rel_hum

med 1.005 | 1.001 1.008 0.006 | 1.014 | 1.009 1.020 <0.001
WS _rel_hum

min 1.003 | 1.001 1.004 0.005 | 1.005 | 1.003 1.008 <0.001
WS_rel_hum

max 1.003 | 0.993 1.014 0.558 | 1.065 | 1.036 1.100 <0.001
WS_wind_vel
ocity _med 1.034 | 0.988 1.081 0.145 | 1.129 | 1.055 1.206 <0.001
WS_wind_vel
ocity_min 1.067 | 0.968 1.172 0.181 | 1.148 | 0.990 1.317 0.058
WS_wind_vel
ocity _max 1.006 | 0.982 1.029 0.633 | 1.064 | 1.028 1.101 <0.001
WS _rain_me
d 0.365 | 0.070 1.750 0.218 | 3.103 | 0.273 | 28.774 0.339

1.43e+ 4.94e 4.83e+

WS rain_min 0 0 14 0.279 | +24 0 56 0.223
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Variable OR 25% | 97.5% | p_value | OR | 2.5% | 97.5% | p_value
WS_rain_ma
X 0.966 | 0.920 1.009 0.134 | 0.979 | 0.904 1.045 0.556
WS global r
ad_med 0.999 | 0.998 0.999 <0.001 | 0.998 | 0.997 | 0.999 <0.001
WS_global_r
ad min 0.963 | 0.808 1.138 0.670 | 1.341 | 1.055 1.671 0.012
WS global r
ad_max 1.000 | 0.999 1.000 <0.001 | 0.999 | 0.999 1.000 <0.001
Season 1.061 | 1.026 1.098 0.001 | 1.153 | 1.093 1.216 <0.001

Table 65: Reduced Spearman’s rank correlation table by farm, displaying only the parameters
varying between the different farms (+ = positive correlation, - = negative correlation, / = not
recorded on that farm) (parameters explained in Table 33)

RF | RF | RF | CDF | CDF | CDF | CDF | CDF
1 2 3 1 2 3 4 5
/ / /

- + +

Parameter

Breed
Concentrated feed intake
Days in_milk

GSC

Lactation number

LKV _daily milk_yield
LKV_fat

LKV fat protein_ratio - -
LKV _lactose - - 0
LKV_milk_yield_in_last_lactatio
n

LKV protein
LKV_somatic_cell_count

LKV urea

Max_milking_flow
Maximum_milking_interval
MDi

Milking_flow
Milking_temperature
Robot_conduct_lely
Robot_daily_milk_yield
Robot_daily_milk_yield_in_last
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CDF | CDF | CDF | CDF | CDF
Parameter

Smaxtec_act
Smaxtec_act day
Smaxtec_act day night
Smaxtec_climate_hum_max
Smaxtec_climate_hum_median
Smaxtec climate_ hum_min
Smaxtec _climate temp max
Smaxtec_climate_temp_media
n

Smaxtec_climate_temp_min
Smaxtec_rum
Smaxtec_thi_max
Smaxtec_thi_median
Smaxtec_thi_min

WS rain_max

WS rain_med

WS rel_ hum_max

WS _wind_velocity max
WS_wind_velocity median -
WS wind velocity min 0
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Table 66: Reduced Odds ratio table by farm, displaying only the parameters varying between
the different farms (>1 = positive association according to the odds ratio, <1 = negative
association according to the odds ratio, n.s. = not significant, / = not recoded) (parameters
explained in Table 33)

Parameter RF | RF | RF | CDF | CDF | CDF | CDF | CDF
1 2 3 1 2 3 4 5

Body weight >1 / / / / / /| n.s.
Concentrated feed intake >1 | <1] >1 n.s. >1 n.s. >1 <1
Days_in_milk <1] <1] <1 n.s. <1 <1 <1 >1
GSC ns.| >1] <1 >1 ns.| ns.| ns. <1
Lactation _number >1 | >1 ] >1 >1 ns.| ns.| ns.| ns.
Lemmer_act / / / /| n.s. / <1 /
Lemmer factor of restlessness / / / /| n.s. / <1 /
Lemmer_get_ups / / / /] n.s. / >1 /
LKV_daily_milk_yield >1 | ns.| >1 n.s. >1 >1 >1 <1
LKV _fat <1] <1|ns.| ns.| ns. >1 n.s.| n.s.
LKV fat protein_ratio <1] <1] >1 n.s. >1 >1 >1 >1
LKV lactose <1] <1|ns.| ns.| ns. >1 <1 >1
LKV_milk_yield in_last_lactation 1 1 1 1 1 1 n.s. 1
LKV _protein <1] <1] <1 <1 <1 <1 <1 n.s.
LKV_somatic_cell_count 1/ns.{ns.| ns.| ns.| ns. 1 <1
LKV urea <1|ns.| >1 n.s. <1 n.s. <1 >1
Max_milking_flow >1 | ns.| >1 >1 / >1 / >1
Maximum_milking_interval ns.| >1|/ns.| ns. <1 n.s. >1 >1
MDi >1 / / / /| n.s. / /
Milking_flow >1 | ns.| >1 n.s. / >1 / >1
Milking_temperature [l >1] <1 >1 / / / >1
Milkings ns.| <1|/ns.| ns. <1 n.s. <1 <1
Nedap_feeding /|l ns.| <1 / / / / /




Parameter RF | RF | RF | CDF | CDF | CDF | CDF | CDF
1 2 3 1 2 3 4 5
Nedap_rum /| <1]ns. / / / / /
Robot conduct >1 / / / >1 n.s.| n.s /
Robot _conduct lely /| >1]ns. <1 / / n.s.
Robot_daily_milk_yield >1 ] <1] >1 n.s. >1 n.s. >1 n.s.
Robot_daily_milk_yield_in_last_lact
ation [l <1| >1 n.s. / / / >1
Robot_effect_of scc /| <1|ns.| ns. / / / /
Robot_fat [ >1] <1 >1 n.s. / >1 >1
Robot_fat_protein_ratio /] >1] <1 >1 n.s. / >1 >1
Robot lactose /| <1]n.s. >1 n.s. /| n.s. >1
Robot milk yield last lactation / 1 1 n.s. 1 1 n.s. 1
Robot protein /|l ns. | <1 <1 n.s. / <1 n.s.
Robot_somatic_cell _count /| <1|ns.| ns. / / / /
SCR_act day night <1 /| ns.| ns. / / / <1
SCR_heat probability / /| n.s. <1 / / /| n.s.
SCR_heat_probability day / /| n.s. <1 / / /| n.s.
SCR_rum <1 /]l ns.| ns. / / / >1
Season ns.| >1| <1 / /| n.s. >1 /
Smaxtec act >1 /| n.s. / / / <1 /
Smaxtec_act day >1 /| n.s. / / / <1 /
Smaxtec_act day night <1 /] <1 / / / >1 /
Smaxtec climate hum_ max n.s. /] <1 / / / >1 /
Smaxtec climate _hum_median >1 /| n.s. / / / >1 /
Smaxtec climate hum min n.s. /| n.s. / / / >1 /
Smaxtec climate temp max n.s. /| <1 / / / <1 /
Smaxtec climate _temp median n.s. /] <1 / / / <1 /
Smaxtec climate temp min n.s. /] <1 / / /| n.s. /
Smaxtec_temp_median >1 /| n.s. / / / >1 /
Smaxtec_temp_without_drink_cycl
es
__median >1 /| n.s. / / / >1 /
Smaxtec_temp_without_drink_cycl
es
min >1 /| n.s. / / / >1 /
Smaxtec thi max n.s. /] <1 / / / <1 /
Smaxtec_thi_median n.s. /] <1 / / / <1 /
Smaxtec thi min n.s. /] <1 / / /| n.s. /
WS global rad_max 1] <1|ns. / / / / /
WS rain_max <1|ns.[ns. / / / / /
WS rel hum_max n.s.| ns.| >1 / / / / /
WS _rel_ hum_med ns.| >1] >1 / / / / /
WS rel_ hum_min ns.| >1] >1 / / / / /
WS temp 20cm_min <1|ns.| <1 / / / / /
WS _temp 20m_min <1|ns.| <1 / / / / /
WS _wind_velocity _max <1.|ns.| >1 / / / / /
WS _wind_velocity_median ns.| >1] >1 / / / / /
WS _wind_velocity _min ns.| ns.| <1 / / / / /
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Table 67: Reduced Spearman’s rank-coefficient correlation table displaying most relevant
parameter correlations with p > 0.4 (parameters explained in Table 33)

Parameter 1 Parameter 2 Correlation
Days _in_milk Robot _milk_yield in_current_lactation 0.93
WT feeding_duration_day night WT trough_visits_day night 0.81
WT feed intake per visit WT feeding_duration_per_visit 0.79
Robot daily milk yield Concentrated feed intake 0.72
ENGS feeding day night ENGS number_of meals day night 0.71
LKV _daily milk_yield Concentrated feed_intake 0.69
WT feeding_duration_day night WT number_of meals_day night 0.69
Milking temperature Smaxtec climate temp max 0.67
Milking_temperature Smaxtec thi max 0.67
Milking_temperature Smaxtec climate temp median 0.66
Milking_temperature Smaxtec_thi_median 0.66
Smaxtec climate hum_median Season 0.65
WT feed intake per meal WT feeding duration_per meal 0.63
Milking _temperature Smaxtec climate temp min 0.62
Milking temperature Smaxtec _thi_min 0.62
Milking_temperature WS temp 2m_med 0.62
Milking temperature WS temp 20cm med 0.62
Milking_temperature WS thi_med 0.61
Milking temperature WS temp _2m_min 0.61
Milking _temperature WS_soil temp 5cm_min 0.61
Milking_temperature WS _thi_max 0.60
Milking temperature WS temp 2m max 0.60
Milking temperature WS temp 20cm_ max 0.60
Milking _temperature WS_soil temp 20cm_med 0.60
Milking_temperature WS soil temp 20cm_ min 0.60
Smaxtec_climate_hum_max Season 0.60
Milkings Concentrated_feed_intake 0.59
Milking_temperature WS thi min 0.59
Milking temperature WS _temp 20cm_min 0.59
Milking_temperature WS soil temp 5cm_ med 0.59
Milking_temperature WS _soil_temp_20cm_max 0.59
WS rel hum min Season 0.59
Days_in_milk LKV _protein 0.57
WT feeding_pace Smaxtec_act 0.56
Smaxtec climate hum min Season 0.56
WS _rel_ hum_med Season 0.55
WT _feeding_duration Smaxtec_thi_median 0.54
Milking temperature WS _soil temp 5cm_max 0.54
WT _feeding_duration Smaxtec_climate_temp_min 0.53
Nedap feeding SCR_act 0.52
WT _feeding_duration_day Smaxtec_thi_median 0.52
WT feeding_pace Smaxtec_act_day 0.51
WT feed intake Smaxtec_thi_median 0.51
Milkings Robot_daily milk_vyield 0.50
WT feed intake WT _feeding_duration 0.50
WT _feeding_duration_day WT _trough_visits_day 0.50
Nedap_feeding SCR_act_day 0.50
WT feeding duration _day Smaxtec_climate_temp_min 0.50
Nedap act foot sum_day WS thi_max 0.50
Nedap act foot sum_day WS _temp 2m_max 0.50
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Parameter 1 Parameter 2 Correlation
Nedap _act foot sum_day WS _temp 20cm_max 0.50
Nedap_act foot sum_day WS_soil temp 5cm_max 0.50
Smaxtec climate _hum_median WS rain_med 0.50
WT feeding_duration WT trough_visits 0.49
Milking_temperature Smaxtec temp max 0.49
WT feeding duration Smaxtec climate temp median 0.49
Nedap_act foot sum_day Smaxtec_thi_max 0.49
Nedap act foot sum_day WS thi_med 0.49
Nedap act WS_thi_max 0.49
Nedap _act foot sum_day WS temp 2m_ med 0.49
Nedap_act WS _temp_2m_max 0.49
Nedap act foot sum_day WS temp 20cm_med 0.49
Nedap act foot sum_day WS_soil temp 5cm_med 0.49
Nedap act foot sum_day WS _soil temp 20cm_max 0.49
LKV _protein Robot_fat 0.48
Lactation number WT feed intake per visit 0.48

Smaxtec_temp_without drink_cycles

Milking temperature max 0.48
WT feed intake Smaxtec climate temp min 0.48
Nedap act foot sum day Smaxtec climate temp max 0.48
Nedap_ act WS temp 20cm_ max 0.48
Nedap act foot sum day WS_soil temp 20cm_med 0.48
LKV _protein Robot_milk_yield in_current_lactation 0.47
Nedap _act foot sum_day Smaxtec climate temp median 0.47
Nedap_act Smaxtec_climate _temp _max 0.47
Nedap act foot sum day Smaxtec _thi_median 0.47
Nedap act Smaxtec_thi_max 0.47
Nedap_ act WS _thi_med 0.47
Nedap _act foot sum_day WS _thi_min 0.47
Nedap_act WS _temp_2m_med 0.47
Nedap_act WS temp 20cm_med 0.47
Nedap act foot sum day WS_soil temp 5cm_min 0.47
Nedap act WS soil temp 5cm_ max 0.47
Nedap _act foot sum_day WS_soil temp 20cm_min 0.47
Body weight WT _feeding_pace 0.46
Nedap_act_foot_sum_day WS temp 2m min 0.46
Nedap act foot sum day WS _temp 20cm_min 0.46
Nedap act WS soil temp 5cm_ med 0.46
Nedap_act WS _soil_temp_20cm_max 0.46
Days_in_milk Robot fat 0.45
LKV urea Robot_lactose 0.45
Max_milking_flow Milking_temperature 0.45
WT feeding_ duration WT trough visits_day 0.45
Milking_temperature Smaxtec_temp _normal_median 0.45
WT feed _intake Smaxtec_climate_temp_median 0.45
WT _feeding_duration_day Smaxtec_climate_temp _median 0.45
Nedap_act Smaxtec_climate_temp_median 0.45
Nedap act foot sum_day Smaxtec _climate _temp _min 0.45
Nedap act Smaxtec_thi_median 0.45
WT _feeding_duration Smaxtec_thi_min 0.45
Nedap act foot sum day Smaxtec_thi_min 0.45
Nedap_act WS _thi_min 0.45
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Parameter 1 Parameter 2 Correlation
Smaxtec_temp_min WS _temp 20cm_min 0.45
Nedap act WS soil temp 20cm med 0.45
Smaxtec climate_ hum_min WS rain_med 0.45
Smaxtec_climate_hum_median WS rain_max 0.45
WT feeding_duration_day WT _trough_visits 0.44
WT _feeding_duration Smaxtec_climate_hum_median 0.44
Nedap_act WS _temp_2m_min 0.44
Nedap_ act WS soil temp 5cm_min 0.44
Nedap act WS_soil temp 20cm_min 0.44
Smaxtec climate _hum_max WS rain_med 0.44
Milking flow Milking temperature 0.43
WT feed intake WT feeding duration day 0.43
Lactation_number WT feed intake per meal 0.43
WT feed _intake Smaxtec_act 0.43
Nedap act Smaxtec climate temp min 0.43
WT feeding_duration_day Smaxtec _climate_hum_median 0.43
Nedap_ act Smaxtec thi_min 0.43
SCR_heat_probability day WS temp _2m_min 0.43
Nedap act WS temp 20cm_ min 0.43
LKV _daily milk_yield Milkings 0.42
LKV _somatic_cell_count MDi 0.42
LKV protein Robot _somatic cell count 0.42
Lactation_number WT feeding pace 042
Milking_temperature Nedap_rum 0.42

Smaxtec_temp_without_drink_cycles

Milking temperature _median 0.42
WT feeding duration _per _meal Smaxtec_thi_median 0.42
SCR_heat_probability WS temp_2m_min 0.42
WS_wind_velocity med WS _rain_med 0.42
Milking_temperature WS global rad_med 0.42
Robot lactose Concentrated feed intake 0.41
Robot_milk_yield_in_current_lact

ation WT feed intake 0.41
Body weight WT feed intake per visit 0.41
Body weight Smaxtec_act 0.41
ENGS lying Smaxtec _temp_median 0.41
WT feed intake Smaxtec_thi_min 0.41
Nedap_act foot _median_day WS _thi_max 0.41
WT _feed_intake WS _soil_temp_20cm_min 0.41
WS _wind_velocity _med WS rain_max 0.41
Nedap act foot sum day WS _global rad_med 0.41
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Claw health status, ~ Days_in_milk + Activity + Body_weight: Robot_BCS
+ (LKV_daily_milk_yield | FCN)

Model 7: Expansion of Model 3 with added BCS (Body condition score) and body weight
parameters

Claw health status, ~ Days_in_milk + Milkings + LKV _protein + Activity
+ Lying_bouts + Lying_bouts: Lactation_number + Lying: Activity
+ (LKV_daily_milk_yield | FCN)

Model 8: Expansion of Model 3 with added lying behaviour parameters

Claw health status, ~ LKV _daily_milk_yield + Activity + Rumination: Lactation_number
+ (Days_in_milk | FCN)

Model 9: Expansion of Model 3 with added rumination parameters

Claw health status .~ Days_in_milk + LKV _protein + Lactation_number + Activity
+ Feeding + LKV _daily_milk_yield: LKV _protein
+ (LKV_daily_milk_yield | FCN)

Model 10: Expansion of Model 3 with added feeding behaviour parameters

Claw health status, ~ Days_in_milk + Activity + WT_trough_visits + WT_feeding_pace
+ WT_trough visits: Days_in_milk + (LKV_daily_milk_yield | FCN)

Model 11: Expansion of Model 3 with added feeding behaviour parameters on RF1

Claw health status, ~ Lactation_number + LKV _protein

+ LKV _milk_yield_in_last_lactation + Activity + Smaxtec_temp_median

+ Smaxtec_temp_normal_median: Smaxtec_temp_without_drink_cycles_median
+ (LKV_daily_milk_yield + Days_in_milk | FCN)

Model 12: Expansion of Model 3 with added body temperature parameters

Claw health status, ~ Days_in_milk + Activity + WS_thi_med + Smaxtec_thi_median
+ Activity: Smaxtec_thi_median + (LKV_daily_milk_yield | FCN)

Model 13: Expansion of Model 3 with added climate parameters

Claw health status,, ~ Days_in_milk + Activity + Robot_BCS: LKV _daily_milk_yield
+ Activity: Maximum_milking_interval + (LKV_daily_milk_yield | FCN)

Model 14: Expansion of Model 4 with added BCS (Body condition score) and body weight
parameters
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Claw health status,, ~ Milkings + Activity + Lying: Activity + Lying: Days_in_milk
+ (Days_in_milk + LKV _daily_milk_yield | FCN)

Model 15: Expansion of Model 4 with added lying behaviour parameters

Claw health status,, ~ LKV _protein + Activity + Rumination
+ Lactation_number: Rumination + (Days_in_milk
+ LKV _daily_milk_yield | FCN)

Model 16: Expansion of Model 4 with added rumination parameters

Claw health status, ~ Lactation_number + Activity + Feeding
+ LKV _daily_milk_yield: LKV _protein + (Days_in_milk
+ LKV _daily_milk_yield | FCN)

Model 17: Expansion of Model 4 with added feeding behaviour parameters

Claw health status,, ~ Days_in_milk + Activity + WT_feeding_pace
+ Lactation_number: Maximum_milking_interval
+ (LKV_daily_milk_yield | FCN)

Model 18: Expansion of Model 4 with added feeding behaviour parameters on RF1

Claw health status, ~ Days_in_milk + Activity + Smaxtec_temp_median
+ Activity: Smaxtec_temp_normal_median + (LKV_daily_milk_yield | FCN)

Model 19: Expansion of Model 4 with added body temperature parameters

Claw health status,, ~ Days_in_milk + WS_thi_med + Season: Activity
+ Activity: Smaxtec_thi_median + (LKV_daily_milk_yield | FCN)

Model 20: Expansion of Model 4 with added climate parameters

Claw health status, ~ Maximum_milking_interval + LKV _protein + Lying
+ Smaxtec_temp_min + Activity: Lactation_number + (Days_in_milk
+ LKV _daily_milk_yield | FCN)

Model 21: Expansion of Model 3 with added lying behaviour and body temperature parameters

Claw health status, ~ Days_in_milk + Maximum_milking_interval + Activity
+ Robot_BCS + WT_trough_visits + WT_feeding_pace
+ Body_weight: LKV _daily_milk_yield + (LKV_daily_milk_yield | FCN)

Model 22: Expansion of Model 3 with added BCS (Body condition score), body weight and
feeding parameters
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Claw health status, ~ Days_in_milk + WT_feeding_pace + WT_trough_visits
+ Lying bouts: Lactation_number
+ Activity: Lying WT _trough_visits: Days_in_milk
+ (LKV_daily_milk_yield | FCN)

Model 23. Expansion of Model 3 with added lying and feeding behaviour parameters on RF1

Claw health status, ~ Days_in_milk + Lactation_number
+ LKV _milk_yield_in_last_lactation + Activity + Feeding
+ Rumination: LKV _daily_milk_yield + (LKV_daily_milk_yield | FCN)

Model 24: Expansion of Model 3 with added rumination and feeding behaviour parameters

Claw health status, ~ Days_in_milk + Lactation_number + Maximum_milking_interval
+ LKV _protein + Activity + Smaxtec_temp_median
+ Rumination: Smaxtec_temp_min + (LKV_daily_milk_yield | FCN)

Model 25: Expansion of Model 3 with added rumination and body temperature parameters

Claw health status,, ~ Milkings + Lying + Smaxtec_temp_min
+ Activity: Lactation_number + (Days_in_milk
+ LKV _daily_milk_yield | FCN)

Model 26: Expansion of Model 4 with added lying behaviour and body temperature parameters

Claw health status,, ~ Days_in_milk + Lactation_number + Activity + Feeding
+ Activity: Lying + Feeding: LKV_daily_milk_yield
+ (LKV _daily_milk_yield | FCN)

Model 27: Expansion of Model 4 with added lying and feeding behaviour parameters

Claw health status,, ~ Days_in_milk + Activity_day + WT_feeding_pace
+ Lying: Lactation_number + (LKV_daily_milk_yield | FCN)

Model 28: Expansion of Model 4 with added lying and feeding behaviour on RF1

Claw health status, ~ Milkings + LKV _protein + Activity + Feeding
+ Rumination: Days_in_milk + Feeding: Milkings
+ (LKV_daily_milk_yield | FCN)

Model 29: Expansion of Model 4 with added rumination and feeding behaviour parameters
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