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I. Introduction 

Cows, as prey animals, have an innate tendency to conceal signs of pain (Weary et al., 2006), 

which often leads to underdiagnosis of lameness, the most significant indicator of discomfort 

in the musculoskeletal system. Lameness, however, is not solely a clinical condition; it can 

profoundly affect a cow's overall well-being, influencing its natural behaviour, lifespan and 

productivity (Whay & Shearer, 2017). When a cow's ability to move freely is restricted, it 

impacts nearly every aspect of its daily life, from feeding and milking to social interactions. The 

wide-ranging consequences of lameness highlight the importance of early detection and 

intervention to ensure the overall health and welfare of the cow. 

Digitalisation and automation are mentioned frequently as promising solutions to the numerous 

challenges emerging in agriculture. Farmers investing in new precision livestock farming 

technologies primarily aim to improve aspects like health monitoring, heat detection, animal 

welfare and labour management on their farms (Bianchi et al., 2022). At the same time, there 

remains a notable lack of awareness in this professional group regarding the potential for 

automated systems to effectively manage lameness detection (Bianchi et al., 2022), which 

would reduce the need to rely on error-prone, time-consuming manual observation 

(Schlageter-Tello et al., 2014). 

The prevalence of lameness on farms tends to be consistently underestimated by farmers 

(Jensen et al., 2022; Laschinger et al., 2024), who are often oblivious to the far-reaching 

negative consequences of claw diseases (Van de Gucht et al., 2017). Jensen et al. (2022) 

noted that farmers who do not perceive lameness as a significant problem in their herd are 

less likely to consider investing in an automatic lameness detection system. Upon being 

educated on the matter, according to Van de Gucht et al. (2017), farmers begin to exhibit a 

discernible increase in interest towards integrating automatic lameness detection systems, 

reflecting a deeper understanding of the advantages these technologies can offer. In general, 

there is a preference by farmers for utilising indirect automatic lameness detection systems 

directly affixed to the animals over cameras or force plates (Van de Gucht et al., 2017). By 

making use of the sensor systems and their infrastructure already in operation, a monitoring 

framework can be implemented on farms, entailing minimal additional investment (Grimm et 

al., 2019). This comprehensive approach not only facilitates the observation of various health 

parameters but also allows for the integration of sophisticated algorithms and technologies to 

address specific challenges like the more complex, multifaceted lameness detection. The 

automation of the process can lead to a more consistent and objective monitoring of the 

animals' lameness status (Abdul Jabbar et al., 2017), thereby placing a stronger emphasis on 

the individual animal's welfare through the timely identification of claw issues.  

There are currently no validated systems for indirect automatic lameness detection on the 

market. Consequently, two preceding studies at the Bavarian State Research Centre for 

Agriculture already focused on automatic lameness detection by using pedometer data in 

combination with performance parameters on Bavarian dairy farms. In this subsequent study, 

the behaviour, performance and claw health data of Simmental cows recorded by different 

animal-specific sensor systems on eight Bavarian dairy farms were used to validate the 

reference system for manual lameness detection and to determine which parameters from 

which commercially available sensor systems are best suited for automatic lameness detection 

and how they can be combined to accurately identify lame cows. 
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II. Review of Literature 

1. Precision Livestock farming 

Precision livestock farming (PLF) has gained increasing importance in recent years and the 

development is still on the rise. This process could be caused by a greater demand for animal 

products in general caused by a growing population (Ritchie et al., 2023) or by the improving 

economic situation in developing countries (Berckmans, 2017). Subsequently, to meet these 

needs and to stay profitable, farm sizes are growing and smaller agricultural family farms are 

replaced by fewer, larger-scale agribusinesses (Statistisches Bundesamt [Destatis], 2022). 

PLF, which is defined as a constant observation of the single animal and all its possible life 

influences by using digital technologies (Berckmans, 2017), is seen as a promising tool to 

facilitate the monitoring of larger herds while not losing sight of the individual animal. In PLF, 

sensors collect data on the animal, the herd or the environment, which are then analysed by 

algorithms and summarised for visualisation and final use by the farmer (Kleen & Guatteo, 

2023). The focus of attention shifting towards the topic of animal welfare among the population 

(European Commission, Directorate-General for Health and Food Safety, 2016) might also be 

a reason for farmers to start investing in PLF technology. Getting real-time information from 

cameras, microphones or sensors on the current well-being, performance, reproduction values 

and environmental effects of the single animal (Berckmans, 2017) as well as performing 

continuous monitoring of the whole herd could lead to earlier detection of deviations and enable 

timely reactions (Džermeikaitė et al., 2023). The rising consciousness of the effects of climate 

change and the commitment to promote sustainability is an additional factor that should not be 

underestimated as a driving force for technologisation of farms (Singh, 2021). Better farm 

management due to PLF can significantly contribute to a longer life expectancy of animals 

(Singh, 2021), which may in turn lead to a more sustainable way of farming in the future. 

1.1 Opportunities and limitations in precision livestock farming 

1.1.1 Opportunities 

The implementation of digital technologies on farms could produce clear benefits for many 

farmers. The main advantage of applying sensors like ear tags, pedometers, boluses or collars 

is the earlier detection of health issues (Džermeikaitė et al., 2023). If behaviour or performance 

parameters of an animal differ from standard values, most systems generate an automatic 

warning message (Islam & Scott, 2021). The farmer can focus on these animals with a 

suspicion of illness and take action to prevent the illness from worsening. Difficult-to-detect 

processes like silent heats or subclinical mastitis can be uncovered by help of sensor systems 

and be promptly treated (Antanaitis et al., 2022; Hojo et al., 2018). Some sensors also 

recommend actions such as calculating the optimum interval for insemination after detecting a 

heat (Roelofs & Van Erp-van der Kooij, E., 2015). In sheep and pigs, animal-specific data is 

rare, while the primary focus is placed on changes affecting the whole herd, including 

applications like automatic weighing scales (González-García et al., 2018) or microphones 

detecting vocalisation (Hong et al., 2020). 

PLF tools are not only helpful for the detection of diseases but also deliver data on productivity 

of the individual animals, which can lead to significant improvements in this area (Carillo & 

Abeni, 2020). Every milking, heat or feed intake can be detected, and different lists can provide 

insight into the history of reproduction, changes in weight or other performance parameters. 
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Herd management solutions offer various ways of displaying, including graphs or tables, and 

the capability of summarising large amounts of raw data to create reasonable and useful 

representations, which can supply farmers with useful information on their herd (Van Hertem 

et al., 2017). Management decisions such as culling can be made more confidently based on 

the information provided by sensor systems (Kleen & Guatteo, 2023). 

Different stakeholders like veterinarians, claw trimmers or feeding consultants could get a first 

impression on the herd or specific animals by reviewing the sensor system data (Eastwood et 

al., 2016). This could enable an enhanced exchange of information between the different 

parties involved in the daily farming business and especially improve the integrated stock 

supervision (Kleen & Guatteo, 2023). In times of scarcity of qualified employees, PLF 

technologies could help to streamline farm working routines and processes (Gindele et al., 

2016) or assist temporary staff in getting to know animals and farm operations. Data that can 

be transferred between different devices eases adding new information and checking specific 

animals even if the farmer is not physically near the barn (Islam & Scott, 2021). Documentation 

by sensor systems takes place 24 hours per day, giving the farmer an overview of events at 

all the times he normally could not fully focus on his animals (Buller et al., 2020). 

A digital technology fully in place can also be a time-saving tool for farmers (Makinde et al., 

2022). Collar tags blinking or sensor systems showing the location of the animal in the stable 

allow the farmer to easily locate the animal and find those cows who need intervention (Chapa 

et al., 2021). Smart gates divide the farm into different functional areas, giving the farmer a 

hint about which activity the cow is currently engaged in and can also be used to separate 

animals (Kuraloglu et al., 2023). Milking robots can contribute to more flexible work hours 

because presence at the farm is not set to two specific time slots a day for the milking process 

(Stræte et al., 2017). Driving the whole herd to the milking parlour as well as attaching milking 

utensils is also no longer necessary because cows enter the milking robot by themselves and 

get milked automatically. Automatic feeding systems, manure scrapers and other devices take 

over tasks for the farmer and accelerate the operating procedure (Da Borso et al., 2017; 

Garcia-Covarrubias et al., 2023).  

In addition, the financial aspects of PLF should be considered. Although farmers need to invest 

in the technology first, several studies confirm there can be a financial profit by implementing 

PLF technologies on farms. Most of these studies examined the issue by creating models that 

simulate various baseline conditions to evaluate the possible effects on different farm 

environments. Pfeiffer et al. (2020) and Rutten et al. (2014) demonstrated by simulations that 

an activity recording sensor for heat detection would be a sound investment for most farmers. 

Crociati et al. (2021) investigated the financial advantages of an intravaginal calving alert 

sensor and showed a resulting increase of income by approximately 120 EUR per calving 

event. A cost-benefit analysis of an automated lameness detection system is considerably 

more complex, as it must account for not only system costs, performance and herd size, but 

also varying levels of lameness severity and different incidence rates (Kaniyamattam et al., 

2020). Nevertheless, Kaniyamattam et al. (2020) were able to demonstrate that, with an 

assumed 10-year operational period, an automatic lameness detection system would prove 

financially beneficial for farmers in over 80% of the various scenarios considered. However, as 

most of the available studies focus on the profitability of heat detection, further research might 

be needed concerning cost-effectiveness of disease detection by sensor systems. 

IoT and sensor technology will also be necessary to cope with the upcoming demands towards 

animal husbandry in the future. Climate change and animal welfare topics might lead to more 



5 
 

extensive husbandry systems such as pasture grazing or free-range farming (Schulze et al., 

2021). In these types of housing systems, building and repairing fences or driving animals from 

one pasture to another can be a time-consuming task. Virtual fencing, for example, uses GPS 

collars to track animals in set borders on pastures and can create a stimulus to steer them 

away from the border (Campbell et al., 2019). Installations like temperature- and humidity-

controlled cow showers or ventilators might help cows to cope with heat stress in future climatic 

conditions (Ji et al., 2020; Legrand et al., 2011). Besides, digital technologies could minimise 

the environmental impact caused by cowshed emissions. Conditioning cows to use cow toilets 

could reduce ammonia emissions by directly collecting the urine (Galama et al., 2020). 

1.1.2 Barriers 

Even though automatisation and digitisation represent promising new developments in 

livestock farming, PLF is not free of risks and limitations. Initial investment costs are often high 

and there is no guarantee for farmers that the technologies will prove to be financially viable. 

Durability, maintenance or repair costs are only three out of many factors which might influence 

the profitability of a sensor system (Borchers & Bewley, 2015; Hartung et al., 2017).  

In addition, it is difficult for farmers to find the best-fitting sensor technology for their farm due 

to a lack of unbiased information. Farmers place great value on independent advice and 

available on-site support (Borchers & Bewley, 2015) but often need to search for product 

descriptions like installation requirements by themselves or directly ask dealers of the specific 

company, which might lead to subjective consultations.  

The starting situation of every farm, including animal population (Abeni et al., 2019; Van de 

Gucht et al., 2018), barn construction (Akinyemi et al., 2023), workforce (Abeni et al., 2019), 

wireless network connection (Akinyemi et al., 2023) and current disease prevalence (Van de 

Gucht et al., 2018), could influence the decision for the investment in a sensor system and its 

chances of success. The personal preferences of the farmer should also be considered in 

terms of sensor systems (Van de Gucht et al., 2017) or management applications and their 

availability on different devices. Assessing the individual circumstances of their farm can be 

challenging for farmers on their own, but in the end, it might be crucial for the benefit of sensor 

technologies.  

Furthermore, potential time savings in the daily management routine should not be the driving 

force when deciding for or against digital technologies. Even if it could be a positive side effect, 

supervising sensor systems can take a lot of time (Hostiou et al., 2017), especially in the first 

period after installation. Some sensors need an initial behaviour learning phase (Hajnal et al., 

2022), others demand time for the attachment to the animal (Yousefi et al., 2022) or require 

multiple manual data entries in the beginning (Daum et al., 2022). Getting used to the 

application might take a while and demand initial training of the farmer (Van Hertem et al., 

2017). Power breakdowns, network issues or technical failures can never be ruled out 

completely and might cause production downtime or loss of data (Tuyttens et al., 2022). 

Representatives of the selling company might not always be reachable on short notice, thus it 

could be an advantage if farmers possess a certain degree of technical know-how to deal with 

such problems immediately (Hackfort, 2021). In summary, the way of working will differ after 

investing in a sensor system (Hostiou et al., 2017) and the farmer must be willing to face 

technological challenges.  

PLF technologies might also directly influence the behaviour of cows or even cause damage, 

for example through an incorrectly attached sensor (Pfeiffer et al., 2021; Tuyttens et al., 2022). 
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The initial adaptation phase to new technologies on the farm can be difficult for some 

individuals and result in temporary discomfort (Tuyttens et al., 2022). The human-animal 

relationship could suffer from further technologisation of farms if the farmer exclusively focuses 

on alerts and sensor data (Hartung et al., 2017; Tuyttens et al., 2022). Digital technologies 

should never replace the direct contact with the animal but support the farmer in monitoring 

and management tasks while increasing the available time for the more animal-related 

activities (Hartung et al., 2017; Tuyttens et al., 2022). 

Data sovereignty and security is also a topic that many farmers still feel insecure about, 

especially when it comes to sharing their data (Wiseman et al., 2019). The more digitised and 

technologised a farm is, the higher the risk of unauthorised access and data manipulations 

(Gupta et al., 2020; Kleen & Guatteo, 2023). Data protection is an important issue for farmers 

(Gupta et al., 2020), as in most cases the farm is not only a workplace, but also a home to 

them (Leshed et al., 2014). Data storage, for example in cloud-based solutions, and data 

exchange between different parties creates a risk of harmful interference from third parties 

(Gupta et al., 2020). Fears like constant surveillance and control by the government or 

distributors arising with further implementation of digital technology also need to be taken 

seriously (Tuyttens et al., 2022).  

A further limitation of PLF is the lack of interconnectivity between most of the precision livestock 

technologies (Kleen & Guatteo, 2023). Communication between sensors of different 

manufacturers is rarely possible and often a separate herd management system is necessary 

to exchange data (Kleen & Guatteo, 2023). A uniform data standard is urgently needed (Bahlo 

et al., 2019) and although projects like iDDEN (iDDEN GmbH, 2023) work towards this goal, 

this process is still ongoing. Farmers tend to have a large number of different applications to 

manage all their on-farm technology and these separate systems each collect different 

parameters without comparing or combining their results to create alerts (Bahlo et al., 2019). 

Consequently, at this point it is still the farmer’s task to retrieve the available information, 

interpret the overall situation and draw conclusions.  

1.2 Technical insights on sensor systems 

1.2.1 Components and operation of a sensor system 

A sensor system comprises various components (Figure 1), that are comprehensively 

described in the study by Hunter et al. (2010). It includes different sensing units like 

accelerometers or thermal sensors, whose characteristics are controlled by the 

microprocessor. After recording, the data is forwarded to an analogue-to-digital conversion 

unit, which translates the incoming analogue signals into discrete digital values. Depending on 

the employed sensor system, the data may be temporarily stored in a memory unit within the 

sensor system and is then wirelessly transmitted to external receivers via a communication 

tool. The necessary energy supply of the sensor system is provided by an internally integrated 

power unit, which may take the form of batteries, rechargeable batteries or self-sustaining 

power sources such as solar cells or piezoelectric systems. The receivers transmit the data to 

the management program associated with the sensor system on the computer or mobile 

device, where further processing algorithms extract useful information for the farmer, such as 

graphs, tables or notifications. 
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Figure 1: Schematic illustration of a sensor system, based on Hunter et al. (2010). Adapted 

from original with modifications 

1.2.2 Categories of cow-attached sensor systems 

Sensors attached directly to cows are already capable of monitoring a wide range of 

behavioural and physiological variables. These include parameters like feeding behaviour and 

quantity, grazing patterns, rumination, drinking behaviour and volume, pH levels, body 

temperature, activity, standing behaviour, oestrus signs, calving events, lying behaviour, 

respiratory rate or the cow's location within the barn. These parameters are monitored by a 

diverse array of sensor systems, a selection of which is depicted in Figure 2. The following 

section offers a general overview of the various sensor system classes, accompanied by 

validations of the systems utilised in this study.  

1.2.2.1 Pedometers 

General overview 

Pedometers, initially designed for activity tracking purposes only, have evolved over the years 

into comprehensive recording devices capturing various behaviours. Some pedometers 

incorporate a three-dimensional accelerometer, enabling them to distinguish between different 

behaviours such as walking, standing or lying based on the direction of acceleration. If coupled 

with a magnetic field-inducing loop, they can also detect the cow’s presence at the feeding 

table (Lorenzini, Schindhelm et al., 2017). 

Pedometers are typically attached to a cow's leg using a strap with pins or buckles, offering 

the advantage of easy removal when the cow leaves the farm and allowing for reattachment 

to another cow. However, proper attachment is not entirely straightforward, as tight fastening 

may constrict the leg, while loose installation makes the pedometer susceptible to the cow's 

movements, increasing the risk of detachment.  

Proper orientation of the sensor on the cow's leg according to the label instructions is essential 

to avoid inaccuracies in recording lying times (Brehme et al., 2006). Additionally, the 

positioning of the sensor on the leg can significantly influence its accuracy, for example in 

detection of feeding behaviour (Greil, 2018). 
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Validation 

Three different master’s theses at the Institute for Agricultural Engineering and Animal 

Husbandry of the Bavarian State Research Centre for Agriculture were based on the work with 

the “Track a cow” pedometers by ENGS (ENGS Dairy Solutions, Rosh Pina, Israel). The first 

one focused on the validation of the recorded lying behaviour recorded by the pedometers and 

demonstrated that there was almost complete concordance between the visually observed and 

the automatically measured lying duration (Weingut, 2017). The examination of the lying 

events per hour showed a higher documentation of lying events by the pedometers than by 

the visual observer, but the concordance correlation coefficient (CCC) (0.8) could still be 

considered good (Weingut, 2017). Another thesis dealt with the validation of the feeding 

behaviour detected by ENGS pedometers and revealed there was a good concordance of the 

feeding duration between visual and automatic monitoring (0.9), but the pedometers often 

recorded one feed visit less than the observer (Greil, 2018). These discrepancies could be 

explained by the pedometer position, which led to errors when it was aligned parallel to the 

induction loop (Greil, 2018). In a more recent master’s thesis, ENGS pedometers to detect 

heat events were combined with two induction loops to distinguish between grazing and stall 

periods of the cow (Wirsching, 2022). As the activity of cows on pasture is generally higher, 

the use of heat detection systems is often complicated by too many false heat alarms 

(Wirsching, 2022). Using pedometers, the cow’s location, and an adapted algorithm, 67% of 

the cows, initially falsely identified as in heat, could be correctly recognised as not in heat 

(Wirsching, 2022). 

Van Erp-van der Kooij, E. et al. (2016) validated the CowControl pedometers by Nedap 

Livestock Management (N.V. Nederlandsche Apparatenfabriek, Groenlo, the Netherlands) 

through comparison with live observation and video data and reported very high correlations 

for lying and standing. The standing-up frequency also corresponded to the video observation, 

but timing discrepancies of the leg tags led to poorer alignments. For walking, the CCC yielded 

only 0.45 and 0.5, which could also be explained by difficulties in observing this behaviour. 

Nielsen et al. (2018) evaluated these leg tags in the CowScout version supplied by GEA (GEA 

Group Aktiengesellschaft, Germany) and found similar results: nearly perfect accuracy for lying 

and standing, but shortcomings in step tracking. 

Borchers et al. (2016) conducted a validation study, which included the AfiTag Plus 

pedometers by Lemmer-Fullwood (Lemmer-Fullwood GmbH, Lohmar, Germany) along with 

visual observation, revealing a high CCC of the lying behaviour exceeding 0.99. Henriksen and 

Munksgaard (2019) demonstrated the efficacy of accurately recording lying times and bouts of 

another pedometer by Lemmer-Fullwood, the AfiTag II, although variances were noted in 

pedometer readings among differently managed dry cows. Swartz et al. (2016) compared the 

measured step activity by AfiTag II pedometers in calves with video recordings and also noted 

a high correlation of 0.99. 

1.2.2.2  Neck and noseband sensors 

General overview 

Noseband sensors can be integrated into a complete halter, while neck tags are mostly 

attached to a collar in various positions, for example snugly alongside the neck or hanging 

beneath it.  

Neck tags, like pedometers, typically also contain an accelerometer, which distinguishes 

between different behaviours based on varying frequencies and directions. Vertical upward 
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movements, for instance, can be interpreted as head bobbing during walking, while downward 

acceleration is more associated with feeding or grazing. Sensors with a microphone are able 

to identify the sound associated with regurgitation, which initiates rumination (Elischer et al., 

2013). The audio recordings allow for the tracking of individual chewing cycles per bolus, the 

number of boli, and the duration of rumination (Elischer et al., 2013). 

The noseband sensor comprises a pressure sensor, an accelerometer, and an oil-filled silicone 

tube within the halter, the latter of which directly detects pressure changes resulting from 

chewing movements (Kröger et al., 2016). This type of sensor is used mostly in research and 

is not meant for data collection on commercial dairy farms. 

Some sensors use ultrawideband radio signals, which emit signals intercepted by receivers 

strategically positioned throughout the barn to calculate the cow's location (Frondelius, Van 

Weyenberg et al., 2022). 

Like pedometers, neck tags and halters provide the convenience of easy transferability across 

different animals, but neck tags on a collar, in contrast to halter-attached sensors, are 

susceptible to data inaccuracies stemming from improper attachment, slipping or twisting of 

the collar. 

Validation 

Borchers et al. (2021) observed that the calculated mean difference for all behaviours recorded 

by the CowControl Necktag by Nedap aligned closely with the visually observed values, with 

feeding and rumination showing a strong correlation, while inactive time displayed a moderate 

correlation. High CCC (>0.89) were also reported by Van Erp-van der Kooij, E. et al. (2016) for 

all three behaviours. 

No studies addressing the SCR (Allflex Livestock Intelligence, Dallas, USA) neck tags in the 

5th generation could be found. The research of Schirmann et al. (2009) focused on the 

validation of a preceding SCR neck tag, comparing rumination data recorded by the system 

with visually documented observations and revealing a notably strong correlation (0.96). 

Elischer et al. (2013) found only a moderate correlation (0.61) between the walking behaviour 

recorded by the Qwes HR tag and visual observations. 

No studies directly comparing the activity measurement of the DeLaval (DeLaval AB, Tumba, 

Sweden) activity meter neck tags with visual observation could be identified. Nonetheless, the 

study of Løvendahl and Chagunda (2010) on oestrus detection through the neckband sensors 

by DeLaval achieved a detection rate of 74.6%, with a daily error rate of 1.3%, employing a 

specific algorithm. 

1.2.2.3 Boluses 

General overview 

According to Mottram et al. (2008), boluses were originally developed to enable continuous pH 

measurement without the need for specifically fistulated cows. They stated that due to the 

unique structure of the cow's rumen and reticulum, weighted objects like boluses can remain 

in the same location in the reticulum for the duration of the animal’s life. One problem that has 

been evident from the outset and continues to be found in newer bolus models is the difficulty 

in ensuring accurate pH measurements over an extended period of time (Mottram et al., 2008). 

The boluses need to be resilient to rumen fluids, are orally administered and traverse the 

rumen until they reach their final position in the reticulum. Boluses with advanced features 
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additionally integrate longer-lasting functions like a temperature-sensing unit to record the 

inner body temperature and the drink cycles and a three-dimensional accelerometer, allowing 

for the recording of supplementary parameters like activity or rumination. Early detection of 

oestrus, upcoming calving and diverse health issues can be enabled through these sensors. 

A benefit of the system is that the bolus remains in the rumen, minimising the risk of loss 

compared to other sensor devices attached to the cow. Nevertheless, in case of malfunction, 

a replacement bolus is required and these boluses cannot be reused after the cow's death.  

Validation 

A study regarding the validation of the recorded pH value and temperature by the bolus 

produced by smaXtec (smaXtec animal care GmbH, Graz, Austria) revealed that 94.7% of the 

boluses could adhere to the pH tolerance value of ±0.2 pH units and the measured 

temperatures were only slightly below the guaranteed accuracy by the manufacturer (Pfanzelt 

et al., 2021). Capuzzello et al. (2023) compared the rumen contractions recorded by the 

smaXtec bolus with those obtained via ultrasound and auscultation, which produced 

comparable results. Furthermore, a subsequent comparison of the rumination duration 

recorded by the bolus with that from a collar yielded a Pearson correlation coefficient of 0.72. 

Based on these findings, they concluded that the bolus is a reliable tool for recording daily 

rumination duration. Edwards et al. (2024) discovered a high Pearson correlation coefficient of 

0.95 to 0.96 between the rumination time measured by the smaXtec bolus and that recorded 

by a neckband sensor and an ear tag. Although no studies directly comparing the activity 

recordings of the boluses with visual observations were found, Stein (2017) conducted an 

analysis focusing on heat detection based on smaXtec bolus activity measurement. They 

compared the heat events reported by the boluses with progesterone measurements in the 

cows' blood, revealing high precision (93%) and sensitivity (95%) (Stein, 2017).  

1.2.2.4 Ear tags 

Ear tags are affixed to the cow's ear and either need to be pierced independently or can be 

embedded within a radio frequency identification tag. In the case of the former, a significantly 

more invasive procedure is performed on the cow compared to, for example, attaching a 

neckband. Additionally, ear tags may tear off and become lost depending on the feeding grid 

or behaviour of the cow.  

They commonly feature a triaxial accelerometer for recording feeding patterns, rumination, ear 

temperature or activity levels and, depending on the system, a positioning function may also 

be integrated (Zambelis et al., 2019).  

1.2.2.5 Calving sensors 

As described by Pfeiffer et al. (2021), calving sensors are attached to the cow a few days prior 

to the estimated calving date either directly with an integrated strap and ratchet or with 

adhesive tape. Tail movements are recorded, analysed and the farmer is notified a few hours 

before the impending calving. According to their examinations, the main challenge lies in the 

attachment process, as, depending on the method, there is a risk of causing pressure sores 

and swelling if the sensor is fixed too tightly. Conversely, if attached too loosely, sensors may 

easily fall off. Some animals may also require a short adjustment period to the sensors and 

technical issues such as insufficient battery power despite charging can complicate the 

process. 
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Figure 2: Examples of different sensor types (a) Pedometer, b) Neck tag, c) Bolus, d) Ear tags, 

e) Calving sensor) 

1.2.3 Categories of non-wearable cow sensors 

Even sensors not directly attached to the cow can significantly contribute to individual health 

monitoring. Depending on the manufacturer and model, milking systems can detect a variety 

of parameters beyond milk yield, including various milk components, somatic cell counts, 

conductivity, milk temperature, milk colour, the presence of blood or milk flow. Environmental 

sensors measure temperature and humidity, which are then used to calculate the 

Temperature-Humidity Index (THI). Body constitution sensors are used to assess the cow's 

stature through body condition scoring (BCS) and body weight. 

1.2.3.1 Sensors for milk analysis in automatic milking systems 

Modern milking systems can collect a broad range of cow-specific data. Although primarily 

used for mastitis detection, this data can also offer valuable insights into other health 

conditions. One of the often-measured parameters is electrical conductivity, which indicates 

ion content, influenced by levels of sodium, potassium or chloride. As explained by Hogeveen 

et al. (2010), during mastitis, the inflammation leads to changes in permeability of vessels in 

the udder and consequently to an ion imbalance. Higher ion concentrations in milk enhance 

its ability to conduct an induced electrical current and therefore the conductivity increases. To 

identify the affected quarter, the conductivity needs to be measured for each udder quarter 

individually.  

Lely (Lely International N.V., Maassluis, the Netherlands) also records the milk temperature 

using a temperature sensor, which is particularly useful because an increase in temperature 

typically correlates with a rise in electrical conductivity (Kunes et al., 2021). Most robots also 

assess milk flow rates, which are mainly influenced by milking intervals and individual cow 
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characteristics, but a heightened milk flow can also pose an increased risk of mastitis 

(Hogeveen et al., 2001). 

Another key parameter associated with mastitis is the somatic cell count, as udder 

inflammation triggers the immune system, resulting in the migration of inflammatory cells into 

the udder and milk (Kunes et al., 2021). Sensor measurement methods can either rely on the 

viscosity similar to the California Mastitis Test (Hogeveen et al., 2010) or employ optical 

techniques such as flow cytometry or the Milk Leukocyte Differential Test, which can 

differentiate between various types of leukocytes (Kunes et al., 2021). 

Some robots display the blood concentration or amount in the milk, while others report the milk 

colour. In this process, the milk is illuminated with light of the wavelengths red, green and blue 

and the transmission is measured (Song & Van der Tol, 2010). DeLaval also utilises the 

Mastitis-Detection-Index (MDi), which integrates three key parameters: conductivity, presence 

of blood in the milk and the interval between milkings. Cows showing an MDi of 1.4 or greater 

should be examined for udder health issues, while an MDi of 2.0 or more already indicates a 

critical risk (Bausewein et al., 2022). 

The content of milk constituents, primarily fat, protein and lactose, can be measured using 

near-infrared spectroscopy, which involves the absorption or reflection of radiation at specific 

wavelengths by these components (Kunes et al., 2021). The fat-protein ratio is often analysed, 

as a fat-protein ratio below 1.2 indicates acidosis, while a value above 1.4 suggests a ketotic 

metabolic condition (Kunes et al., 2021). 

The DeLaval Herd Navigator, as presented by Mazeris (2010), additionally measures urea, 

lactate dehydrogenase, beta-hydroxybutyrate and progesterone. Progesterone is used for 

cycle diagnosis in cows, aiding in the detection of oestrus, pregnancy and fertility issues. Beta-

hydroxybutyrate and urea serve as indicators for ketosis and assist in dietary adjustments, 

while lactate dehydrogenase improves mastitis detection (Mazeris, 2010). The Herd Navigator 

samples cows based on biological models, testing them by using a dry stick approach, and the 

progesterone level is assessed with an immunoassay, while the other parameters are 

determined through colorimetry, ultimately generating a risk probability for each cow (Mazeris, 

2010). 

1.2.3.2 Environmental sensors 

Environmental sensors also play a crucial role in monitoring and optimising the ambient 

conditions for dairy cows. Temperature and humidity sensors can help to monitor the in-barn 

climate and are often combined as the Temperature-Humidity-Index (THI) to estimate heat 

stress at the herd level. Weather sensors commonly record additional parameters such as 

rainfall or global radiation, which includes both direct sunlight and diffuse sky radiation, making 

it a valuable indicator of heat stress, particularly in pasture-based environments (Herbut et al., 

2018). Conversely, sensor-measured wind speed can facilitate cooling through convection for 

cows located outside, but this benefit is absent in the barn, making the implementation of 

ventilators necessary (Herbut et al., 2018). Air quality sensors may detect levels of gases like 

ammonia and carbon dioxide, ensuring healthy air conditions, while light sensors capture 

different lux levels, enabling them to determine how long cows are subjected to daylight 

(Leliveld et al., 2024). 

1.2.3.3 Body constitution sensors 

Alongside basic scaling systems, which can, for example, be integrated into milking robots, 

image recognition technology is often used to assess the body constitution of the cow through 
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body condition score or body weight. Martins et al. (2020) investigated the potential 

applications of lateral and dorsal images from 3D cameras and found that they can already be 

effectively used to determine body weight, although there is still room for improvement in 

estimating BCS. DeLaval also offers a BCS camera that is mounted on the milking robot, 

capturing 3D videos as the cow passes through (Mullins et al., 2019). According to Mullins et 

al. (2019), this 3D technique enables the analysis of the BCS irrespective of the cow's 

movement speed. From these videos, an image is generated, and an algorithm analyses the 

surface profiles and fat coverage across various points on the cow's back, from the short ribs 

to the ischial tuberosity, ultimately producing a score ranging from 1 to 5. Mullins et al. (2019) 

discovered in their research that the system was effective in accurately identifying body 

condition scores between 3 and 3.75, but it struggled to classify animals that were above or 

below this range. 

1.3 Areas of application in health monitoring of dairy cows 

Utilisation of sensor systems has become common in many different fields for monitoring cows‘ 

health and reproduction. Beginning already in the 1980s (Hogeveen et al., 2010), significant 

efforts have been directed towards automating the detection of various health issues in cows. 

Automatic heat detection using sensor systems can be encountered on many farms, as most 

sensors only use the cow‘s activity to create a heat alarm and many studies showed that 

sensors recording this parameter have high accuracy (LeRoy et al., 2018; Roelofs et al., 2017; 

Shahriar et al., 2016). Taking into account that activity is highly animal-related (Müller & 

Schrader, 2005), sensor system manufacturers often use the baseline activity of the individual 

cow to detect deviations (Schilkowsky et al., 2021). Sensors attached to the sacral area of the 

cow can determine mounting behaviour (Reith & Hoy, 2018), infrared thermography can 

identify changes in the surface temperature (Perez Marquez et al., 2021), microphones can 

recognise increased vocalisation (Röttgen et al., 2020) and temperature and conductivity 

sensors can detect vaginal deviances (Higaki et al., 2019). Another often used method is the 

regular measurement of progesterone concentration in milk, for example performed by the 

DeLaval Herd Navigator in the milking robot (Mazeris, 2010). New technologies like video 

analysis and image recognition could also efficiently support the farmer in detecting oestrus 

behaviours like the standing heat (Arago et al., 2020). 

Calving events can be spotted by using different sensor technologies as well. Borchers et al. 

(2017) examined pedometers and collar tags recording activity, lying behaviour and rumination 

and proved that merging those parameters could enable a better calving prognosis. The 

combination of different sensor systems like accelerometers and localisation sensors is likely 

to improve the accuracy of prediction models (Benaissa et al., 2020). Reticulorumen boluses 

discern upcoming calving events 20 hours prior by noticing a drop of the inner body 

temperature (Kovács et al., 2017). Farmers could use this as a first alert to relocate the cow to 

the calving pen. Cows showing an earlier fall in reticulum temperature and a lower rumination 

time might be more prone to calving difficulties (Kovács et al., 2017). Higaki et al. (2020) 

created an effective calving detection model by using the tail skin temperature and machine 

learning processes. Intra-vaginal sensors are able to identify a sudden change in temperature 

and light gradient after being ejected from the vagina due to the progressing calving (Crociati 

et al., 2021). Some sensors can be attached to the cow’s tail, measure calving-related tail 

motions and send a message to the farmer a few hours before the calving event (Pfeiffer et 

al., 2021). Fixating these sensors at the tail without causing bruises or swelling and still 

preventing the loss of the sensor can be challenging for the farmer (Pfeiffer et al., 2021). 
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More complex clinical pictures are difficult to describe using sensors that record only one single 

parameter. The combined effect of multiple predictors is necessary to differentiate between 

diseases with similar symptoms. A well-known approach for detecting mastitis is the 

combination of different milk parameters recorded by automated milking systems. The selected 

thresholds and variables vary from one milking robot manufacturer to another (Bausewein et 

al., 2022) and include, for example, somatic cell count, conductivity, milk flow, blood, milk 

colour or milk temperature. Khatun et al. (2018) confirmed that integrating diverse factors 

measured by the milking robot in a regression model could lead to a noticeably improved 

identification of clinical mastitis. The cow’s behaviour can also be a mastitis indicator, as shown 

in the study by Antanaitis et al. (2022), where subclinical mastitis led to a decrease in 

rumination time, chews and drinking time. Steele et al. (2020) used milk parameters in 

combination with pedometer data and found dissimilarity in the behaviour and performance of 

cows with clinical mastitis caused by different pathogen types. Furthermore, GPS trackers can 

help to monitor the social behaviour of cows and therefore display the contact with mastitis 

pathogens by registering cow contacts, which enables a following ranking of the animals 

according to their mastitis risk (Feng et al., 2022).  

Metabolic disorders arising often in dairy cows could be detected earlier with the help of 

different sensor systems. Acidosis is, for example, characterised by an imbalance in the acid-

base status of the rumen, leading to a decrease in rumen pH (Jaramillo-López et al., 2017). 

Especially the chronic course of the disease without visible clinical signs, known as subacute 

ruminal acidosis, is often difficult to notice for the farmer (Studer et al., 2023). Boluses can 

continuously monitor the pH value and alert the farmer in case of a significant decrease (Studer 

et al., 2023). Deviations in the inner body temperature could also be an indication of a 

metabolic disease (Alzahal et al., 2011). Ketosis in cows is associated with higher ketone body 

values and a negative energy balance and often occurs in the first weeks after calving 

(Esposito et al., 2014). As the BCS of a cow is correlated with the risk of developing a ketosis 

(Rathbun et al., 2017), regularly monitoring its change with BCS cameras could enable earlier 

diagnoses. Milk components like an increased fat protein ratio (Kunes et al., 2021) or beta-

hydroxybutyrate (Mazeris, 2010) could also be an indicator of a ketotic metabolic state. 

Antanaitis et al. (2020) proved that decreased rumination and drinking in cows can be detected 

several days before the clinical manifestation of the disease and Steensels et al. (2017) used 

a wearable sensor to create an efficient ketosis detection model consisting of a combination 

of rumination time, activity and milk yield.  

Besides the most common production diseases, external influences on dairy cows, such as 

temperature and humidity, should also be mentioned. Hut et al. (2022) recently discovered that 

the impact of climate on behaviour parameters like eating or lying already starts at an average 

daily temperature of twelve degrees. Different cows might deal with higher temperatures in 

different ways depending on traits like breed and milk yield (Gantner et al., 2017) or individual 

factors like lactation stage or parity (Heinicke et al., 2019). Wearable sensors could help to 

increase the focus on the individual heat stress of the single animal instead of the whole herd. 

Ramón-Moragues et al. (2021) examined various behaviours under heat stress by using neck 

tag sensors and detected alterations in every monitored variable. Under heat load 

circumstances, the animals panted more and showed higher activity values, while their 

rumination, resting and feeding duration decreased (Ramón-Moragues et al., 2021). Ranzato 

et al. (2023) demonstrated that behavioural sensor data in combination with the cows‘ milk 

yield could be used to identify the animals more prone to suffering from discomfort in heat 

periods. Keeping track of the cows’ core or surface temperature could be another reasonable 
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approach, despite the noticed time lapse between the increase of external temperatures and 

the cow‘s body temperature rise (Chung et al., 2023). Furthermore, as heat stress might 

influence the respiration rate (Gaughan et al., 2000), respiration-detecting sensors (Strutzke 

et al., 2019) or image recognition models (Wu et al., 2023), currently only employed for 

experimental purposes, could be further developed into practicable solutions. 

A more detailed exploration of sensor systems applied in the field of lameness detection will 

be carried out in chapter 3.2. 

2. Lameness  

Characterising a deviation in gait resulting from pain-related, functional or structural disruptions 

within the musculoskeletal system, the term lameness involves the animal's response through 

the execution of specific unloading movements as a strategy to alleviate the associated 

discomfort (Baumgartner & Wittek, 2018). In dairy cows, lameness can be seen as an intricate 

and multifaceted condition, heightened by a variable time lag between the underlying causes 

and the manifestation of the symptom (Bell, 2015). Claw disorders and lameness are still 

reported as the third most common reason for culling of dairy cows, following reproduction 

issues and udder diseases (Heise et al., 2016; Kulkarni et al., 2023). As evident in Table 1, 

lameness continues to be a prevalent issue on dairy farms worldwide. Detected lameness 

prevalences over the past 10 years range from approximately 15% to 40%, indicating a 

persistent high level of claw disorders among dairy cows, irrespective of country or continent. 

This highlights claw health problems posing one of the greatest risks to the well-being of cows 

(Beusker, 2007) and substantially contributing to financial losses in livestock operations due 

to associated costs (Ózsvári, 2017).  

Table 1: Lameness prevalences reported in different countries in recent years 

Reference Country Years of study 
Prevalence of 

lameness (median) 

Griffiths et al. (2018) England, Wales 2015-2016 31.6% 

Weigele et al. (2018) Switzerland 2015-2016 29.8% 

Bran et al. (2019) Brazil 2016 41.1% 

O'Connor et al. 

(2020) 

Ireland 2015 37.8% 

(Van Huyssteen et 

al., 2020) 

Canada  2018 20% 

Sadiq et al. (2021) Malaysia 2018-2019 36.9% 

Sheferaw et al. 

(2021) 

Ethiopia 2018-2019 14.1% 

Jensen et al. (2022) Germany 2016-2019 North: 23.1% 

East: 39.1%  

South: 23.2% 

Matson et al. (2022) Canada 2019 28.3% 

Sahar et al. (2022) Canada 2019-2020 31.8% 

Salem et al. (2023) Egypt 2022 43.1% 
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2.1 Anatomy of the claw 

The digital end organ in cattle is constituted by the claws, comprising two main and two 

dewclaws on each limb (Mülling, 2006). The protective horn capsule surrounding the claw is 

shaped by keratinised skin and consists of the epidermis, dermis and subcutaneous layers 

(Mülling, 2006). Five distinct segments can be differentiated in the claw: the periople, coronary, 

wall, sole, and bulb segments, the latter playing a crucial role in load distribution (Geyer, 2008). 

At this particular site of the claw, the subcutaneous tissue is notably well-developed with fat 

deposits with a shock-absorbing function (Budras et al., 2005). The overlying dermis forms two 

layers, the inner stratum reticulare, which serves as a connection with the periosteum or 

subcutis, and the outer stratum papillare, which is linked with the epidermis by laminae in the 

wall segment and by papillae in the other areas (Mülling, 2006). The epidermis comprises cells 

undergoing keratinisation in an outward direction and relies solely on diffusion of nutrients 

through the vascular and neural plexuses of the underlying dermis (Mülling, 2006). A structure 

known as the white line represents a flexible connection between the hoof wall and sole, 

rendering it a susceptible area for microtrauma and the infiltration of infectious agents due to 

its composition of various types of horn (Mülling, 2006). 

As described by Mülling (2005), the horn capsule of the claw encloses the distal part of the 

short pastern bone, the distal sesamoid bone, the claw joint along with its ligaments and the 

pedal bone. He noted that through its attachment to the pedal bone, the claw capsule serves 

as a support structure for the claw and transfers the forces exerted during weight-bearing 

evenly, including the sole and bulb part. The spreading of the claws after ground contact also 

contributes to shock absorption and aids the claws in distributing the forces exerted by the 

substantial body mass of the animal.  

Compared to the hind claws, the front claws are set at a slightly steeper angle and exhibit a 

broader and more compact shape (Mülling, 2005). The greatest load on the hind limb claws is 

concentrated on the lateral claw, given its distinct prominence compared to its medial 

counterpart (Geyer, 2008). 

2.2 Prevalent diseases of the claw 

Insufficient horn wear and the ongoing horn growth alter the shape of the claw, complicating 

optimal load distribution and potentially leading to various claw disorders like sole ulcers or 

white line lesions (Mülling, 2006). Additionally, infectious processes may also contribute to the 

emergence of claw diseases like digital dermatitis or heel horn erosions. 

2.2.1 Heel horn erosion 

Heel horn erosion refers to V-shaped grooves that appear at the bulb and result from the 

dissolution of the soft bulb horn, which is particularly susceptible to softening due to moisture, 

ammonia and putrefaction processes (Kofler, 2014). 

Since the lesions do not reach the corium, they do not cause lameness but contribute to the 

development of other hoof diseases such as digital dermatitis or sole ulcers (Nuss & Kofler, 

2019). The causes for the formation include damp pasture or stall surfaces, ubiquitous 

putrefactive agents and excessive load on the bulbs due to insufficient claw trimming (Kofler, 

2014). 
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2.2.2 Digital dermatitis 

Digital dermatitis or "strawberry foot rot" refers to an inflammation of the skin above the soft 

bulb, potentially progressing to ulceration and extending into the interdigital space (Dirksen, 

2006b). In rare cases, it may also manifest around the dewclaws or dorsally at the coronary 

band (Dirksen, 2006b).  

According to Nuss et al. (2019), it is considered a multifactorial disease in which various 

conditions contribute to the infiltration of bacterial pathogens, such as the prevailing treponema 

and other secondary agents. They explained that prior damage is a required precondition for 

these pathogens to penetrate the skin, consisting, for example, in maceration and softening of 

the horn. This is caused by exposure to faeces and urine and thus ammonia, resulting in 

microfissures in the outer cutaneous barrier. Additional predisposing factors include unsanitary 

farm conditions in general, poorly designed cubicles, sharp edges, the acquisition of new 

animals as well as stress induced by overcrowding, poor nutrition, heat or other factors (Nuss 

et al., 2019).  

Initially classified by Döpfer (1994), digital dermatitis can be categorised in different stages 

according to the visible defects, which are further elaborated in Table 2. 

Table 2: Stages of digital dermatitis (Nuss et al., 2019) 

Stage Clinical appearance 

M0 Healthy skin, without any visible lesions 

M1 Small lesions (<2 cm) in the interdigital skin of the soft bulb 

M2 
Ulcerative, active and red-coloured erosions (>2 cm) above the bulb, often 
surrounded by protruding hairs (Figure 3) 

M3 Healing defects, completely covered with crusts 

M4 Chronic hyperkeratotic elevated lesions of brown colour (Figure 4) 

M4.1 Chronic form with recurrent small erosions (M1) 

  

Figure 3: Digital Dermatitis (Stage M2) Figure 4: Digital Dermatitis (Stage M4) 
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While the M2 stage (Figure 3) is consistently associated with pain, M1 and M3 are notably less 

painful or entirely pain-free and in the chronic form M4 (Figure 4) cows often no longer exhibit 

lameness due to the absence of pain (Nuss et al., 2019). Despite potential lesion healing, 

treponema persist as cysts in the deeper layers of the skin, resulting in a latent infection of the 

animal (Nuss et al., 2019).  

2.2.3 Sole haemorrhage 

Sole haemorrhage refers to a reddish or yellowish discolouration of the horn on the sole, 

resulting from bleeding of the corium and the connective tissue (Kofler, 2014). Classification 

involves differentiating between diffuse, extensive (Figure 5) and localised, circumscribed 

(Figure 6) sole haemorrhages (ICAR Working Group on Functional Traits (ICAR WGFT) and 

International Claw Health Experts, 2015). The discolouration in the horn is caused by bleeding 

in the corium approximately six weeks prior to its appearance, given that the claw grows at a 

rate of approximately five millimetres per month (Kofler, 2014). The aetiology of the 

haemorrhage may stem from corium inflammation in the context of laminitis or traumatic 

incidents resulting from slipping, stepping on sharp edges or overloading (Kofler, 2014).  

  

Figure 5: Diffuse sole haemorrhage Figure 6: Circumscribed 

sole haemorrhage 
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2.2.4 Ulcers 

Ulcers can develop in different locations on the claw, 

with the most common being the sole ulcer (Figure 7). 

This refers to a defect in the sole horn with exposed, 

inflamed corium at the transition of the hard to the soft 

bulb directly under the flexor tuberculum (Nuss & 

Kofler, 2019). On the one hand, this area is highly 

susceptible due to the varying hardness of horn types, 

making it prone to defects under load (Mülling, 2005). 

On the other hand, laminitis could lead to circulatory 

disturbances in the corium, eventually followed by 

sinking of the pedal bone along with the flexor 

tuberculum, which consequently compresses the 

corium (Nuss & Kofler, 2019). The compression leads 

to further undersupply and necrosis of the corium, 

causing a cessation of horn formation until ultimately 

the corium becomes exposed, inflamed and later 

granulates (Nuss & Kofler, 2019). The observation 

that the more heavily burdened outer hind claws 

exhibit this condition more often suggests that its 

development is influenced by factors beyond laminitis 

(Nuss & Kofler, 2019). This includes an excessive weight shift onto the bulbs due to overgrown 

claws, slippery flooring or structural aspects of the barn as well as changes in the bulb fat pad 

due to lactation stage or advanced age (Kofler, 2014). As previously indicated, ulcerations may 

also manifest in other, less frequent claw locations, including the toe or bulb (ICAR Working 

Group on Functional Traits (ICAR WGFT) and International Claw Health Experts, 2015). 

2.2.5 White line disease 

Flooring covered with a combination of faeces and urine contributes to a continual softening 

of the hoof horn, with the claw being particularly susceptible in the white line region due to its 

anatomical structure primarily composed of softer horn material (Nuss & Kofler, 2019). This 

maceration process facilitates the penetration of foreign bodies such as dirt or stones, leading 

to structural separations and the onset of a white line fissure (Figure 8) (Nuss & Kofler, 2019). 

Additionally, increased mechanical stress induced by sharp edges or tight turns in the stable 

along with laminitis or improper farm claw trimming can further predispose this area between 

the sole and wall to haemorrhaging and fissures (Kofler, 2014). Through this point of entry, 

pathogens can infiltrate the upper stratum of the corium and induce polymicrobial infections 

marked by inflammation, purulence and tissue liquefaction (Dirksen, 2006b). A white line 

abscess (Figure 9) forms, progresses and either eventually erupts externally through the 

coronary band or, less favourably, infiltrates deeper structures such as the claw joint (Nuss & 

Kofler, 2019).  

Figure 7: Sole ulcer with Repiderma 

spray 
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Figure 8: White line fissure Figure 9: White line abscess 

2.2.6 Laminitis 

Laminitis presents as a complex condition primarily attributed to circulatory disorders, leading 

to a diffuse, aseptic inflammation of the corium across multiple claws (Dirksen, 2006a). The 

aetiology primarily involves systemic disorders such as ruminal acidosis or occasionally 

overload conditions, leading to impairments in the suspensory apparatus of the claw (Nuss & 

Kofler, 2019). This cascade of events ultimately manifests in various laminitis symptoms, 

including white line fissures, sole haemorrhages or ulcers (Nuss & Kofler, 2019). 

Both the rare acute laminitis, which is characterised by severe clinical symptoms, and the 

subacute or subclinical forms can transition into a chronic course with a risk of recurrence in 

the following manner described by Nuss and Kofler (2019). Toxins and other substances 

penetrate the corium in the acute phase and damage the capillary walls, which results in 

haemorrhages, circulatory disturbance, and the formation of inferior-quality horn. Ongoing 

nutrient deficiency subsequently loosens the suspension of the pedal bone. This can lead to 

its sinking or rotation and therefore further straining of the claw structures, causing contusions 

between the corium and the claw capsule. Hormonal changes around calving, leading to a 

relaxation of the connective tissue, along with less comfortable housing conditions for the cow, 

can also contribute to these processes.  

2.2.7 Interdigital hyperplasia 

Regular irritations in the interdigital space accompanied by inflammation of the skin can lead 

to tissue overgrowth, in the end resulting in the development of a bulge in this area (Geyer, 

2008). Kofler (2014) explained that interdigital hyperplasia (Figure 10), also known as tyloma, 

progressively enlarges with persistent irritation, reaching a size that induces bruising during 

walking and cutaneous inflammation. Digital dermatitis lesions may also manifest on the 

hyperplastic growths and these hyperplasias, accompanied by a compromised skin barrier, 

are consequently associated with discomfort (Kofler, 2014). Splayed claws, whether 
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genetically predisposed or arising from improper claw trimming or other claw disorders, can be 

conducive to the development of these growths (Kofler, 2014).  

2.2.8 Double sole  

After inflammation or bleeding of the corium, there can be a separation of horn layers on the 

sole, that causes the formation of a cavity (Nuss & Kofler, 2019). Moisture and pathogens 

infiltrate and decompose the horn, contributing to the formation of the double sole (Figure 11) 

(Nuss & Kofler, 2019).  

The exudate leakage can be caused by secondary conditions associated with laminitis or by 

traumatically induced contusions and after the recovery of the corium, the characteristic inner 

horn layer forms beneath the cavity (Kofler, 2014).  

  

Figure 10: Tyloma Figure 11: Double sole with sole ulcer 

2.2.9 Vertical horn fissure 

This claw disease involves a separation of the horn, occurring dorsally, axially or abaxially on 

the claw (Kofler, 2014). It runs vertically and can either remain superficial or penetrate the 

corium and the cause for its formation can be injuries to the coronary band, poor-quality horn 

due to laminitis, nutritional deficiencies and dehydration or mechanical factors (Kofler, 2014). 

2.2.10 Interdigital phlegmon 

The interdigital phlegmon or foot rot is described as a symmetrical and distressing foot 

inflammation, often coupled with a foul odour (ICAR Working Group on Functional Traits (ICAR 

WGFT) and International Claw Health Experts, 2015). It manifests suddenly, coincides with 

acute lameness and advances with a diffuse purulent-necrotising effect deep into the 

subcutaneous tissues, extending towards the distal interphalangeal joint (Kofler, 2014). The 

affected animals present distinct clinical symptoms, including localised erythema, warmth and 

swelling in the coronary band region, accompanied by systemic indications such as pyrexia 

and a compromised general condition (Nuss et al., 2019).  

Stones, rough edges, dirty walking surfaces or gaps may induce minor defects in the interdigital 

space and afterwards anaerobic bacteria, such as Fusobacterium necrophorum, can 

eventually penetrate the skin through these defects, triggering the inflammation (Kofler, 2014). 
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2.3 Causes for lameness in dairy cows 

Several different factors can contribute to the development of lameness and can be 

categorised into factors originating from the individual animal, management conditions and 

environmental influences (Figure 12). The correlation of various factors makes it particularly 

challenging to identify the root causes of claw diseases, as, for instance, certain animal-specific 

factors may either promote lameness or have no impact, depending on the management 

practices implemented on each farm. 

 

Figure 12: Factors influencing the development of claw lesions 

2.3.1 Animal-related factors 

2.3.1.1 Breed 

Various cattle breeds may display distinct susceptibilities to claw diseases; for instance, 

research by Fürmann et al. (2024) revealed that the probability of dermatitis digitalis 

occurrence is five times higher in Holstein-Friesian herds, with individual Holstein cows facing 

a 63% elevated risk compared to other breeds. Baird et al. (2009) observed a higher incidence 

of white line defects in Holstein-Friesians compared to Norwegian cattle, while Lusa et al. 

(2020) documented a notably lower prevalence of foot issues in Jersey cows when compared 

to Holstein cows. Vlček et al. (2016) additionally reported that 45% of the Holstein cows in their 

study presented with claw lesions, whereas only 37% of the Simmental cows were affected. 

These differences between dual-purpose breeds and the dairy breed Holstein could be 

explained by the higher conversion of energy reserves in Holstein cows for the intense milk 

production, resulting in a more pronounced negative energy balance and a higher change of 

body condition (Gruber et al., 2014; Knob et al., 2021). Furthermore, the generally higher body 

weight and larger claw dimensions could lead to more frequent incidents of claw lesions in 

milk-orientated breeds such as Holstein or Brown Swiss (Lusa et al., 2020).  

2.3.1.2 Genetics 

Genetics can also be a significant element in the development of lameness. Numerous factors, 

including recovery from sole ulcers, exhibit inheritable traits (Barden et al., 2023), and the 
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utilisation of genetic indices can facilitate the selection of appropriate animals for breeding, 

aiming to minimise the likelihood of lameness in progeny (Barden, Anagnostopoulos et al., 

2022; Browne et al., 2022). Anatomical features such as the thickness of the digital cushion 

also have a hereditary component and can influence the development of claw diseases 

(Barden, Li et al., 2022). 

2.3.1.3 Parity 

The parity and consequently the age of cows can have a significant impact on the occurrence 

of lameness. The majority of studies indicate a higher likelihood of lameness with advancing 

parity (Lean et al., 2023; Pötzsch et al., 2003; Rittweg et al., 2023; Sheferaw et al., 2021). For 

instance, Lean et al. (2023) discovered that the risk of lameness in cows in the fifth lactation 

or beyond is more than five times higher than in animals during their first lactation. 

Furthermore, Pötzsch et al. (2003) could trace an increase in the amount of white line defects 

from 2% in the first lactation to nearly 50% in animals with five or more calvings.  

Conversely, there is a significantly higher risk for cows in their first lactation compared to cows 

in the second or third lactation who have never experienced any claw issues (Thomas et al., 

2023). Even though an increasing parity leads to a stronger asymmetry of partner claws, 

thereby favouring a rise in lameness cases, cows are also particularly prone to sole 

haemorrhages after the first calving (Sogstad et al., 2005). Capion et al. (2021) analysed 

records from Danish claw trimmers over a period of five years and identified varying trends 

depending on the claw lesion. While digital dermatitis manifested most frequently in heifers, 

the prevalence of the other three investigated claw diseases exhibited an upward trajectory 

with rising parity (Capion et al., 2021).  

The structural alterations in the digital cushion may explain the increased vulnerability of 

heifers and cows in advanced lactation stages. In heifers, this cushion is predominantly 

constituted of lax connective tissue, which subsequently transforms into fat tissue and, as age 

progresses, undergoes a reconversion into more fibrous structures (Räber et al., 2004). 

Age-related osseous modifications, particularly evident at the tuberculum flexorium, may also 

play a role in the heightened propensity of claw problems during the later stages of life (Tsuka 

et al., 2012). 

2.3.1.4 Lactation stage 

The relationship between days in milk and lameness varies across different studies. In the 

study of Rittweg et al. (2023), cows in mid-lactation exhibited a higher lameness likelihood, 

whereas the research of Sheferaw et al. (2021) indicates an increase in lameness with 

advancing gestation. Kulualp et al. (2021) determined that a more advanced lactation stage 

corresponds to a 2.2-fold higher risk of infectious claw diseases. O'Connor et al. (2020) 

observed that cows with over 120 days in milk exhibited elevated locomotion scores, but Sadiq 

et al. (2021) detected the preponderance of lameness within the first 120 days after calving. 

Van der Spek et al. (2015) found no overall difference in claw diseases between early and late 

lactation stages. However, in their study, sole haemorrhages occurred more frequently early 

in lactation, while white line defects were more common in the later period of lactation. 

Bach et al. (2021) identified a reduction in the digital cushion during the weeks around calving, 

likely attributed to rotation and sinking of the pedal bone. These changes may arise from 

hormonal shifts during the calving period, leading to a loosening of the pedal bone attachment 

apparatus and contributing to claw lesions in early lactation (Bach et al., 2021). The 

development of claw diseases in the mid-lactation is likely already influenced by behavioural 
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changes during the transition period, such as prolonged standing times or faster feed intake 

(Proudfoot et al., 2010).  

Some hoof disorders, such as laminitis or digital dermatitis, demand a longer incubation period 

before becoming visually apparent (Zlatanović et al., 202 ), which might be attributed to 

continuous microbial processes or the formation of substandard horn, and consequently these 

issues tend to manifest towards the latter part of lactation. 

2.3.1.5 BCS 

Green et al. (2014) provided evidence that a body condition score (BCS) below 2.5 contributes 

to the onset of claw diseases, predominantly arising from mechanical stress and suboptimal 

horn quality, while not correlating with the development of infectious claw problems. In the 

investigation of Rittweg et al. (2023) a low BCS also showed a pronounced correlation with the 

occurrence of lameness in the southern, northern and eastern regions of Germany. Randall et 

al. (2015) also recommend maintaining the BCS above 2.5 to prevent lameness and 

additionally highlight that a low body weight coupled with an advanced age at first calving might 

increase the susceptibility to recurrent lameness incidents. The reason could be a negative 

energy balance, which might lead to a fat mobilisation in the digital cushion and consequently 

result in the loss of its ability to distribute forces effectively (Newsome et al., 2017).  

Some studies have identified an elevated lameness risk across all body condition scores 

outside the optimal range, also including animals with a higher BCS, which is potentially 

attributed to the increased load on the feet due to higher body weight (Kranepuhl et al., 2021; 

Ristevski et al., 2017). 

2.3.1.6 Performance 

The relationship between the performance of a dairy cow, specifically its milk yield, and 

lameness is inherently complex and multifaceted, making a straightforward description of 

cause and effect difficult. The breeding processes conducted with the aim of achieving ever 

higher milk yields naturally lead to increased strain on individual animals, consequently 

resulting in an elevated susceptibility to production-related diseases (Oltenacu & Broom, 

2010). Archer et al. (2010) determined that lame cows on average presented a daily milk yield 

approximately 1-2 kg higher than non-lame cows. Rutherford et al. (2009) observed an 

elevated prevalence of lameness in herds with higher milk yields and O'Connor et al. (2020) 

identified a milk yield exceeding 6000 kg as a lameness risk factor.  

However, there are also studies where high milk yield had no effect at all on the occurrence of 

lameness (Aeberhard et al., 2001; Haskell et al., 2006). Oehm et al. (2020) and Rittweg et al. 

(2023) moreover were able to demonstrate a protective effect of high milk yield in their 

research, as elevated milk production was associated with a reduced risk of lameness. This 

indicates that high milk production in cows does not necessarily have adverse effects on their 

health and well-being if appropriate management practices are applied (Trevisi et al., 2006). 

Furthermore, a correlation could be drawn between healthy cows and high performers, which 

in turn might explain a lower occurrence of lameness in these animals (Leblanc, 2010). 

2.3.2 Management-related factors 

2.3.2.1 Claw trimming 

Lameness in cows is primarily attributed to claw issues, which often result from rare or 

improper claw trimming practices (Vidmar et al., 2021). Claw trimming is a proven method to 

reduce the pain of claw lesions through appropriate treatment, consequently leading to an 
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improvement in gait (Passos et al., 2017). A distinction is made between functional claw 

trimming for the prevention of claw issues and corrective hoof care aimed at addressing pre-

existing claw diseases (Vidmar et al., 2021). The former strives to maintain the optimal shape 

of the claw, enabling an even force distribution, while the latter serves to actively relieve 

affected areas and thereby promotes rapid healing (Vidmar et al., 2021). Leach et al. (2012) 

discovered that cows undergoing proper hoof treatment within the two days following lameness 

detection exhibit a reduced likelihood of developing severe claw issues and require 

subsequent treatments less often. Montgomery et al. (2012) observed the walking behaviour 

of cows before and seven days after claw trimming and noted that approximately half of the 

originally lame animals exhibited a normal gait again. Somers, Frankena et al. (2005) identified 

an extended interval of over 7 months between claw trimming sessions as a risk factor for 

digital dermatitis and also other studies highlighted the importance of a minimum of two hoof 

care appointments per year (Katsoulos & Christodoulopoulos, 2009; Manske et al., 2002).  

2.3.2.2 Hygiene 

Good hygiene, integral to the management of diseases caused by pathogens, can serve as a 

preventive measure against claw problems. In this context, primary consideration should be 

given to the walkways, as wet and soiled walkways predispose animals to slipping and, 

consequently, claw injuries (Rushen et al., 2004). Furthermore, the exposure to manure rapidly 

softens the hoof, making it noticeably more vulnerable to defects and bacterial penetration 

(Rushen et al., 2004). Thus, claw health is closely related to the regular removal of manure 

and can be enhanced by increasing the frequency of scraping (Chapinal et al., 2013). Route 

planning needs to be improved in using automatic scrapers, as the findings of Barker et al. 

(2010) suggest an increased incidence of lameness linked to these devices, possibly resulting 

from cows making abrupt evasive manoeuvres or stumbling directly over the robots. Besides 

the walkways, cows housed in farms with suboptimal cubicle cleanliness showed an up to 80-

minute reduced lying duration per day compared to cows with clean cubicles and also had a 

1.3-fold increased likelihood of lameness (Robles et al., 2021). 

2.3.2.3 Nutrition 

The condition of the claw horn can be affected by nutrition, especially when feeding an excess 

of rapidly fermentable carbohydrates and protein in silage or concentrates (Babintseva et al., 

2020). This can result in compromised ruminal digestion and subsequent inflammatory 

processes, potentially contributing to the occurrence of claw lesions (Babintseva et al., 2020). 

The keratinisation process and the development of a solid hoof structure are significantly linked 

to the sufficient supply of amino acids, minerals, vitamins and fats (Mülling et al., 1999). 

Research demonstrated that administering biotin for a minimum of six months resulted in a 

45% reduction of white line diseases in multiparous cows (Pötzsch et al., 2003). The addition 

of a copper sulphate manganese complex to the ration has an impact on hoof hardness, 

consequently enhancing the locomotion of lame cows (Zhao et al., 2015). 

2.3.2.4 Animal handling and cow flow 

The interaction between humans and animals, including the way cows are handled, may also 

play a role in the development of lameness. Through modelling, Rouha-Mülleder et al. (2009) 

showed that negative behaviours from the people responsible for herding, such as kicking or 

punishments, contribute to a higher lameness prevalence in herds, which could be explained 

by swift evasive movements and the resulting stumbling of the animal. Moreira et al. (2019) 

evaluated that a calm handling of cows could reduce the incidents of tyloma, while negative 

stimuli such as strikes might lead to an increase in sole haemorrhages.  
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According to Chesterton (2011), improving the flow of cows in daily management can be 

achieved by comprehending their behaviour and implementing reliable, systematic routines. 

Inadequate cow flow results in a more forceful herding approach to hasten the movement of 

cows and these actions might potentially result in claw lesions caused by injuries, as the cows 

can no longer position their feet of their own accord (Chesterton, 2011). 

2.3.3 Environment related factors 

2.3.3.1 Housing 

Stall design, including the structuring of stalls, floors and other facilities, can significantly 

influence the lameness incidence in the herd. Cubicles measuring less than 171 cm in length 

(Oehm et al., 2020) and unbedded stalls only covered with mattresses (Salfer et al., 2018) may 

elevate the risk for lameness. Deep or sand bedding can be a mitigating factor for lameness, 

as lying on these is much more comfortable for the animals, and severely lame cows only 

increase their lying times on this kind of stall surface (Ito et al., 2010; Salfer et al., 2018). 

Studies observed diminished odds for lameness in the presence of shallow curb heights (King 

et al., 2016) and larger cubicle widths (Lardy et al., 2021). Besides the dimensions, the 

construction of the stall can also play a part in lesion development, as for example restrictive 

neck rails on one hand improve cubicle hygiene, but on the other hand discourage cows from 

standing in the stall, thus reducing the drying time of claws (Bernardi et al., 2009).  

An optimal stocking density should not be underestimated as a determinant, as overcrowding 

might reduce lying and rumination time of the individual and antagonistic social interaction at 

the feeding table may become more common (Krawczel et al., 2012). It is thus advisable to 

maintain a minimum 1:1 ratio for both feeding and resting spaces on farms (Arbeitsgruppe 

Rinderhaltung, 2007). 

Slatted floors being more slippery and uneven than solid concrete floors tend to heighten the 

occurrence of claw health issues (Rouha-Mülleder et al., 2009). Cows overall exhibit a slower 

and more cautious gait on the slatted concrete floor, a situation that could be improved by 

installing rubber mats (Telezhenko & Bergsten, 2005). Cows prefer to walk on softer and more 

flexible surfaces, resembling their natural walking terrain, ultimately resulting in a more regular 

locomotion (Telezhenko & Bergsten, 2005). De Andrade Kogima et al. (2022) proved that cows 

housed under nearly natural, pasture-based conditions showed the fewest lameness cases, 

followed by compost-bedded and free-stall cows. Incorporating sand-bedded areas can also 

be beneficial for joint and claw health (Upadhyay et al., 2023). 

2.3.3.2 Herd size and hierarchy 

Regarding herd size, studies yield varying results on lameness prevalence: larger herds may 

benefit from higher professionalism and personnel explicitly dedicated to claw health (Chapinal 

et al., 2013), whereas in smaller herds more time can be dedicated to individual animal care 

(Broom, 2013; Sjöström et al., 2018).  

Due to displacement, cows with a lower rank in the herd hierarchy exhibit shorter lying times 

and tend to spend more time standing half in the stalls when compared to higher-ranking 

animals (Galindo & Broom, 2000). This results in a greater incidence of lameness and higher 

culling rates among these individuals (Galindo & Broom, 2000). 

2.3.3.3 Season 

Several studies identify summer as the season with the highest lameness prevalence, 

attributing it to wet conditions and increased humidity due to cow cooling facilities such as 
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ventilators or cow showers (Ali et al., 2021; Sanders et al., 2009). Furthermore, heightened 

periods of heat stress during the summer can induce behavioural alterations, such as 

prolonged standing times, subsequently intensifying strain on the hoof horn and predisposing 

to lesions (Cook et al., 2007). Olechnowicz and Jaskowski (2015) focused on tie-stalls and 

observed an accumulation of claw issues in the winter, likely attributed to the seasonal variation 

in housing conditions, specifically the access to pastures during the summertime. 

2.4 Effects of lameness on behaviour, physiology and 
performance 

Several studies have explored the diverse effects of lameness events on different aspects of 

behaviour and performance, as illustrated in Table 3. Depending on the circumstances, cows 

may experience varied responses to claw diseases, which will be further explored in the 

following context. 

Table 3: Studies regarding the average value of behaviour, physiological and performance 

parameters in cows and the effect of lameness on these variables 

Parameter Average Increases (↑) Decreases (↓) Unaltered (→) 

Lying time 10 - 12 h/d (Tucker 
et al., 2021) 

(Beer et al., 
2016; 
Frondelius, 
Lindeberg et al., 
2022; Hut et al., 
2021; Ito et al., 
2010; King et 
al., 2017; 
Lorenzini, 2019; 
Schindhelm et 
al., 2017; 
Solano et al., 
2016; Weigele 
et al., 2018; 
Westin et al., 
2016) 

(Bernhard et al., 
2020; Pavlenko 
et al., 2011) 

(Thompson et 
al., 2019; 
Yunta et al., 
2012) 

Number of 
lying bouts 

9 -  11 bouts/d 
(Tucker et al., 
2021) 

(Frondelius, 
Lindeberg et al., 
2022; King et 
al., 2017) 

(Bernhard et al., 
2020; Lorenzini, 
2019; 
Schindhelm et 
al., 2017; Solano 
et al., 2016; 
Westin et al., 
2016) 

(Navarro et al., 
2013; 
Thompson et 
al., 2019; 
Yunta et al., 
2012) 
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Parameter Average Increases (↑) Decreases (↓) Unaltered (→) 

Duration of 
lying bouts 

60-99 min (Tucker 
et al., 2021) 

(Beer et al., 
2016; Bernhard 
et al., 2020; Hut 
et al., 2021; Ito 
et al., 2010; 
King et al., 
2017; Lorenzini, 
2019; 
Schindhelm et 
al., 2017; 
Solano et al., 
2016; Weigele 
et al., 2018; 
Westin et al., 
2016; Yunta et 
al., 2012) 

/ (Thompson et 
al., 2019) 

Feeding 
time 

2.4-8.5 h/d 
(Beauchemin, 
2018) 

/ (Antanaitis, 
Juo aitienė, 
Urbonavičius et 
al., 2021; Beer et 
al., 2016; 
Bernhard et al., 
2020; Frondelius, 
Lindeberg et al., 
2022; Hut et al., 
2021; Lorenzini, 
2019; 
Schindhelm et 
al., 2017; Thorup 
et al., 2016; 
Weigele et al., 
2018) 

/ 

Feeding 
frequency 

7-11 meals/d 
(Johnston & 
DeVries, 2018) 

/ (Antanaitis, 
Juo aitienė, 
Urbonavičius et 
al., 2021; Beer et 
al., 2016; 
Frondelius, 
Lindeberg et al., 
2022; Lorenzini, 
2019; 
Schindhelm et 
al., 2017; Thorup 
et al., 2016) 

/ 

Feeding 
pace 

0.10-0.16 kg/min 
(Johnston & 
DeVries, 2018) 

(Lorenzini, 2019; 
Norring et al., 
2014; Proudfoot 
et al., 2010; 
Schindhelm et 
al., 2017; 
Thorup et al., 
2016) 

/ / 
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Parameter Average Increases (↑) Decreases (↓) Unaltered (→) 

Feed intake 10.4-30.8 kg/d 
(Krizsan et al., 
2014) 

(Proudfoot et al., 
2010) 

(Häggman et al., 
2012; Norring et 
al., 2014) 

(Schindhelm et 
al., 2017; 
Thorup et al., 
2016) 

Drinking 
behaviour 

66.5-100.7 L/d 
(Cardot et al., 
2008) 
0.67-0.73 min/h 
(Antanaitis, 
Juo aitienė, 
Urbonavičius et al., 
2021) 
147.96-157.95 n/h  
(Antanaitis, 
Juo aitienė, 
Urbonavičius et al., 
2021) 

(Pavlenko et al., 
2011) 

(Antanaitis, 
Juo aitienė, 
Urbonavičius et 
al., 2021) 

(Walker et al., 
2008) 

Activity Free stall: 1,120-
4,918 steps/d 
(Shepley et al., 
2020) 

/ (Beer et al., 
2016; Häggman 
et al., 2012; Hut 
et al., 2021; 
Magrin et al., 
2022; 
Neirurerová et 
al., 2021; 
Weigele et al., 
2018) 

(Frondelius, 
Lindeberg et 
al., 2022; King 
et al., 2017) 

Neck 
activity 

309.8-421 units/d 
(Borchers et al., 
2017) 

/ (Van Hertem et 
al., 2014; 
Weigele et al., 
2018) 

/ 

Rumination 
time 

2.5-10.5 h/d 
(Beauchemin, 
2018) 
25.3-42.2 min/2h 
(Pahl et al., 2014) 

(Pavlenko et al., 
2011) 

(Antanaitis, 
Juo aitienė, 
Urbonavičius et 
al., 2021; Beer et 
al., 2016; Magrin 
et al., 2022) 

(Thorup et al., 
2016; Walker 
et al., 2008; 
Weigele et al., 
2018) 

Rumination 
frequency 

357-605 boli/d 
(Pahl et al., 2014) 
20,959-36,789 jaw 
movements/d 
(Pahl et al., 2014) 

/ (Antanaitis, 
Juo aitienė, 
Urbonavičius et 
al., 2021; Beer et 
al., 2016) 

(Walker et al., 
2008; Weigele 
et al., 2018) 

Body 
temperature 

Reticular 
temperature: 38.9-
39.7 °C (Schutz & 
Bewley, 2009) 
Rectal 
temperature: 38.5-
39.2 °C (Schutz & 
Bewley, 2009) 

(Tadich et al., 
2013; Talvio, 
2020) 

/ (Adams et al., 
2013) 
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Parameter Average Increases (↑) Decreases (↓) Unaltered (→) 

Body weight 
and BCS 

BCS: 2.5-3.5 (5 
point scale) 
( rubić et al., 
2009) 
583-726 kg 
(Johnston & 
DeVries, 2018) 

/ (Alawneh et al., 
2012; Magrin et 
al., 2022; Norring 
et al., 2014; 
Olechnowicz & 
Jaskowski, 2014; 
Singh et al., 
2018) 

/ 

Milk yield 23.9-44.3 kg/d 
(Glatz-Hoppe et 
al., 2020) 

(Vlček et al., 
2016) 

(King et al., 2017; 
Magrin et al., 
2022; Navarro et 
al., 2013; 
Pavlenko et al., 
2011; Prasomsri, 
2022; 
Urbonavicius et 
al., 2020; Van 
den Borne et al., 
2022; Vlček et 
al., 2016) 

(Proudfoot et 
al., 2010; 
Schindhelm et 
al., 2017; 
Thorup et al., 
2016; Yunta et 
al., 2012) 

Milkings 2-3/d (Piwc yński 
et al., 2020) 

/ (King et al., 2017; 
Urbonavicius et 
al., 2020; Van 
den Borne et al., 
2022) 

/ 

Milk flow 1.65-3.42 kg/min 
(Piwc yński et al., 
2020) 

(Van Hertem et 
al., 2016) 

(Juo aitienė et 
al., 2021; 
Urbonavicius et 
al., 2020; 
Wieland et al., 
2022) 

/ 

Conductivity 4.6-5.8 mS/cm 
(Juo aitienė et al., 
2015) 

(Juo aitienė et 
al., 2021; 
 alašauskienė 
et al., 2022; 
Paulauskas et 
al., 2023; Van 
Hertem et al., 
2016) 

( alašauskienė 
et al., 2022) 

/ 

Milk 
components 

Milk urea: 
150-250 mg/L 
Milk protein: 
3.29-3.58% 
Milk fat: 
3.28-4.56% 
Milk lactose: 
4.67-4.99% 
(Glatz-Hoppe et 
al., 2020) 

/ ( alašauskienė 
et al., 2022; 
Olechnowicz & 
Jaskowski, 2010; 
Slovák et al., 
202 ; Vlček et 
al., 2016) 

(Pavlenko et 
al., 2011; 
Singh et al., 
2018; Yunta et 
al., 2012) 
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Parameter Average Increases (↑) Decreases (↓) Unaltered (→) 

Somatic cell 
count 

< 100.000 cells/mL 
(Sumon et al., 
2020) 

(Gráff et al., 
2016; 
 alašauskienė 
et al., 2022; 
Singh et al., 
2018) 

(Archer et al., 
2011) 

(Pavlenko et 
al., 2011) 

2.4.1 Behaviour parameters 

In terms of lying behaviour, most studies concur that lameness contributes to an increase in 

daily lying duration (Table 3). For example, in the study of Hut et al. (2021), an observed 

disparity of 26 minutes was noted between lame and non-lame cows, while King et al. (2017) 

reported a difference of 38 minutes. Considering that claw lesions are presumably more painful 

when supporting the cow's entire body weight, an increase in lying times may provide relief to 

the claws and diminish pain for the cow (Juarez et al., 2003). On the contrary, Bernhard et al. 

(2020) and Pavlenko et al. (2011) observed a decrease in lying times and prolonged standing 

duration per day in lame animals. Given that inadequate cow comfort resulting from less 

optimal housing conditions might lead to a reduction in lying times (Robles et al., 2021), it is 

challenging to ascertain whether the extended standing periods could be a consequence of 

these conditions and potentially have contributed to the onset of lameness in the first place. In 

reviewing the literature, it becomes evident that claw diseases are clearly associated with an 

extension of individual lying events, while there is still disagreement regarding the total number 

of lying bouts (Table 3). The studies reporting a reduced lying frequency justify this, for 

instance, by emphasising the greater load on feet during the process of rising and lying down, 

whereas in the investigations with an increase of lying bouts, no rationale is provided. Navarro 

et al. (2013) also highlighted the relevance of housing conditions; in pasture-based settings, 

cows with claw lesions exhibited a higher frequency of daily lying bouts, while indoor-housed 

lame cows showed fewer lying events compared to their healthy counterparts. Yunta et al. 

(2012) attributed the lack of effect in their study to the exclusion of severely lame cows, while 

Thompson et al. (2019) emphasised the importance of considering additional factors such as 

precipitation. 

An unmistakable effect of lameness becomes apparent in relation to feeding behaviour, as 

lame animals demonstrate a notably quicker ingestion rate, shorter feeding durations and 

fewer visits to the feeding trough (Table 3). As the painful nature of claw diseases is evident 

through the symptom of lameness (Whay & Shearer, 2017), prolonged walking or standing can 

induce discomfort that cows seek to avoid. This avoidance can be manifested by reducing 

movements towards the feeding trough or minimizing prolonged standing, as seen for example 

in the study of Thorup et al. (2016) with a more than 40% reduction in feeding frequency. The 

result is an elevated feeding rate of the animals, aiming to consume as much feed as possible 

within a condensed timeframe. The examinations of the amount of consumed feed present a 

less straightforward picture (Table 3): findings include both, increased feed intake among lame 

animals directly after calving (Proudfoot et al., 2010) as well as decreased intake in cases of 

severe lameness (Häggman et al., 2012). Furthermore, some instances occurred where, in 

univariate analysis, no definitive correlation between lameness and feed intake could be 

determined (Schindhelm et al., 2017; Thorup et al., 2016). The studies on the alterations in 

drinking behaviour also display mixed findings: Antanaitis, Juo aitienė, Urbonavičius et al. 

(2021) reported a 42-minute reduction in drinking duration among lame cows compared to 

healthy ones, whereas Walker et al. (2008) found no noticeable impact and conversely, 
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Pavlenko et al. (2011) observed an uptick in drinking events among animals afflicted with digital 

dermatitis. 

In various scientific studies, activity levels exhibit a notable decline attributed to lameness, with 

findings indicating a reduction in step count, along with a decrease in walking speed, neck 

activity and stride length (Table 3). Other examinations have found no direct correlation 

between hoof diseases and overall activity levels, possibly due to the inherent variability in 

individual cow activity (Müller & Schrader, 2005) and its modulation by factors like lactation 

status or parity (Brzozowska et al., 2014). 

Pavlenko et al. (2011) reported increased rumination times during standing in lame animals, 

whereas Antanaitis, Juo aitienė, Urbonavičius et al. (2021) observed a daily average reduction 

of 133 minutes in rumination time, and Beer et al. (2016) noted a distinct decrease in 

rumination events. Thorup et al. (2016) concluded in their study that claw problems might 

influence rumination considerably less than feeding behaviour. This could be due to the fact 

that rumination primarily occurs during lying (Schirmann et al., 2012), which is less detrimental 

to the claws, whereas feeding happens while standing, exposing the claws to potentially more 

harm. 

2.4.2 Physiological parameters 

Only a few studies investigated the impact of claw health problems on body temperature. Talvio 

(2020) observed an increase in body temperature in cows with sole ulcers, suggesting that 

these conditions not only induce local inflammation but also trigger a systemic reaction. Tadich 

et al. (2013) showed that an elevation in rectal temperature only occurred in severely lame 

animals, while Adams et al. (2013) detected no changes in reticular temperature measured 

with a bolus.  

The consensus across studies regarding the effects of lameness on BCS and body weight 

indicates a consistent decline with worsening claw health. Alawneh et al. (2012) documented 

an average loss of 61 kg in body mass among lame animals, while Olechnowicz and Jaskowski 

(2014) observed lower BCS values in lame cows across all lactation stages compared to 

healthy ones. 

2.4.3 Performance parameters 

Despite the challenge of distinguishing between cause and effect, most studies have 

demonstrated a reduction in milk yield following a lameness event. Prasomsri (2022) observed 

a decrease in 305-day lactation performance of over 1200 kg when animals became lame 

during their first lactation, while King et al. (2017) noted a reduction of 1.6 kg per day in lame 

cows. According to Van den Borne et al. (2022), two-thirds of the recorded decrease in milk 

yield after lameness can be attributed to a reduced milking frequency, with lame animals 

experiencing 0.3 fewer milkings per day compared to healthy ones as reported by King et al. 

(2017). Vlček et al. (2016) discovered varying changes in milk yield based on parity: lame first-

calving cows exhibited higher milk yields, whereas a decline in milk yield was noted in higher 

lactations after lameness occurrence. Some studies also failed to establish a clear correlation 

between lameness and milk yield, which, according to Schindhelm et al. (2017), can be 

credited to the difficulty in determining whether high milk yield in cows initially contributed to 

lameness or lameness subsequently led to a decline in milk yield. These two diverging effects 

may counteract each other and other factors like feeding behaviour could influence the 

interaction (Schindhelm et al., 2017). 
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Lameness generally exerts rather negative effects on milk flow while concurrently showing 

higher conductivity values in lame animals (Table 3). Juo aitienė et al. (2021) revealed a 

reduction of 1.77 kg in milk yield within the first minute among lame cows, accompanied by an 

elevation of 0.24 mS/cm in conductivity. Van Hertem et al. (2016) incorporated peak milk flow 

in his lameness detection model, yet identified elevated peak milk flow values in association 

with lameness.  alašauskienė et al. (2022) established the range of 4-6 mS/cm conductivity 

in healthy cows, whereas lame animals fell outside this range, registering values above 6 or 

below 4 mS/cm. 

 alašauskienė et al. (2022), along with several other studies, observed an impact of lameness 

on milk composition. They recorded an average decrease of 2.1% in milk lactose and 0.04% 

in milk protein. However, no changes were noticeable in milk fat, while the somatic cell count 

in the milk was significantly higher in affected animals. Slovák et al. (2021) demonstrated, 

depending on lactation status, a reduction in milk protein of approximately 7-10% and in urea 

of 18-30% in lame cows, while Vlček et al. (2016) found a 44 kg decrease in protein in 

primiparous cows and a 60 kg reduction in multiparous cows due to lameness. Singh et al. 

(2018) provided evidence of an elevated probability of mastitis among lame cows attributed to 

higher somatic cell counts, while no statistically significant alterations in milk composition were 

discerned. Furthermore, Pavlenko et al. (2011) did not detect any disparities in protein, fat, and 

somatic cell count between lame and unaffected animals. 

2.5 Effects on welfare and economy  

2.5.1 Welfare 

The negative consequences of lameness are not to be underestimated and animal welfare 

ranks among the most crucial factors when advocating for better detection and treatment of 

claw problems. So far, there is no unified definition of animal welfare, but Reimert et al. (2023) 

recently described it as a state where positive and negative influences balance over time. The 

health status of the animal is thus no longer considered a component of animal welfare itself 

but rather can influence animal welfare by interacting with the specific condition of the animal 

(Reimert et al., 2023). In this manner, lameness events can impact the welfare of dairy cows 

in various ways and, according to Whay and Shearer (2017), they can compromise all five 

freedom areas that can be used to assess welfare impairment, including hunger and thirst, 

discomfort, illness and pain, expression of normal behaviour, as well as fear and distress. The 

pronounced behavioural changes resulting from lameness significantly impact various aspects 

of a cow's life, potentially leading to undernourishment, a reduced lifespan and an altered 

social behaviour (Weigele et al., 2018). Kovács et al. (2015) focused their study on heart rate 

and its variations, demonstrating that lameness induces increased parasympathetic activity 

and consequently lowers heart rate, which could possibly be explained by the chronic stress 

affecting the animal. Passos et al. (2017) demonstrated that claw diseases, especially non-

infectious ones, are associated with an increased pain response, which can, however, be 

reduced through appropriate treatment. Additionally, Sadiq et al. (2022) concluded from their 

research that a combination of therapeutic hoof care with blocking and painkillers results in 

higher pain reduction and healing rates than simple claw trimming. A survey conducted in 

Switzerland aligns with this research, drawing the conclusion that better education on pain 

recognition and the benefits of using analgesics is necessary, given that over 50% of farmers 

reported performing any painful interventions in the claw area without pain relief (Becker et al., 

2013). 
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2.5.2 Economy 

It is imperative to consider the adverse effects on the profitability of individual farms resulting 

from lameness events, as lameness following mastitis infections can be considered the second 

most cost-intensive production disease (Van Soest et al., 2019). The economic impact of 

lameness is caused by a range of factors, including diminished milk yield, prolonged calving 

intervals, elevated culling rates, and escalated treatment and labour expenses (Bruijnis et al., 

2010). Research conducted by Puerto et al. (2021) indicated that the economic losses 

stemming from reduced overall milk production, ranging from 811 to 1290 kg per lame cow, 

coupled with heightened culling rates, constituted a substantial proportion of the total losses, 

which averaged between 599 US$ and 837 US$. Ibishi et al. (2022) drew the same 

conclusions, setting the proportion of reduced milk yield contributing to the overall loss at 45%, 

followed by culling at 31%, while discarded milk, treatment costs, and reduced weight 

comprised only approximately 8% of the annual costs of a lame cow. Furthermore, the 

investigation of Robcis et al. (2023) demonstrated that the expenses caused by a cow afflicted 

with digital dermatitis (391.80 € ± 10.0) surpassed the average costs associated with lameness 

(307.50 € ± 8.40). It was found that each additional week of lameness incurred a cost of 

approximately 12 € per cow. Conversely, according to Dolecheck et al. (2019), a case of digital 

dermatitis cost only 64 € ± 24 and was surpassed by the expenses associated with white line 

defects and sole ulcers. Moreover, claw problems at the beginning of lactation and in 

multiparous cows resulted in the highest costs (Dolecheck et al., 2019).  

3. Lameness detection 

3.1 Manual lameness detection 

The early detection of lameness in cows is essential for effectively managing claw diseases 

on farm. Multiple manual locomotion scoring systems have been established to evaluate the 

locomotion of cows depending on gait, posture and other aspects, but no consensus has been 

reached regarding the precise number of scores or the specific features to be considered. 

Schlageter-Tello et al. (2014) listed 25 different manual locomotion scoring systems, featuring 

between 2 and 13 scoring levels. 

The most well-known scoring system is the one by Sprecher et al. (1997), which employs a 

five-point scale. Mild lameness is identified by a curved back line during walking, while 

moderately lame cows exhibit this also while standing and take shortened steps (Sprecher et 

al., 1997). At stage 4, the cow prefers to reduce the load on certain limbs and only takes one 

step at a time, while severely lame cows, according to this classification, try to avoid any load 

on the affected limb (Sprecher et al., 1997). Thomsen and Baadsgaard (2006) observed a 

considerable variance of 0.36 to 0.80 in the prevalence-adjusted, bias-adjusted kappa while 

applying the locomotion score by Sprecher et al. (1997) and analysing intra- and inter-observer 

agreement. Notably, in their study the level of agreement varied significantly based on which 

of the five stages was set as the threshold for lameness, thus affecting when an observer 

classified a cow as lame. 

Flower and Weary (2006) compared a visual analogue score, ranging from 0 to 100 and 

increasing with lameness attributes, with a numerical score consisting of nine levels that 

included the same attributes: asymmetry, back line, head movement, weight shifting, limb 

bending and stride length. It was found that the numerical score performed best in classifying 
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lame and healthy cows. They concluded the nine-point score provided a better assessment of 

claw health (Flower & Weary, 2006). 

Another often scientifically employed locomotion score is the one by Manson and Leaver 

(1988), which also contains nine levels and ranges from 1 to 5 with steps of 0.5. It includes 

features like adduction and abduction, unevenness, difficulty in turning and rising or affection 

of behaviour pattern and stage 3 was designated as the lameness threshold (Manson & 

Leaver, 1988). While Manson and Leaver (1988) reported an agreement of 89% among the 

observers, Channon et al. (2009) only found a 33.3% agreement in scores. This discrepancy 

could possibly be explained by the large number of different stages, as the observers agreed 

on lame/not lame to over 88% (Channon et al., 2009).  

A critical point in the type of locomotion scores, that include multiple levels, is that they are 

especially applicable for scientific research but lack practical relevance (Channon et al., 2009). 

In the farmer’s day-to-day operations, the primary concern is simply whether the animal is lame 

or not, signalling the need for treatment of claw diseases (Channon et al., 2009). The nuanced 

gradations of lameness, such as mild, moderate or severe, hold minimal significance for the 

farmer’s daily work, as any degree of lameness warrants attention and treatment.  

Scores with fewer levels have also gained popularity, such as the four-level score of DairyCo 

(2007), widely used in UK farms. Level 0 is considered as a healthy cow, while level 1 is 

characterised by imperfect mobility, where steps are uneven or shortened, but the affected foot 

is not identifiable. It is recommended that these animals could benefit from routine claw 

trimming and should be further monitored. At level 2, the affected foot becomes clearly 

identifiable, often accompanied by a curved back and should be treated as soon as possible. 

Severely lame animals are defined as those unable to keep up with the rest of the herd and 

besides immediate treatment, it is also recommended to keep them on straw bedding and seek 

professional help. Rutherford et al. (2009) utilised this locomotion score in their study and 

reported an inter-observer agreement of 67.2% and a weighted kappa range of 0.42 to 0.73.  

Previous experiences with the unsatisfactory reliability of a five-point scoring system also 

compelled Grimm and Lorenzini to create a new three-level score (Lorenzini, Grimm et al., 

2017), which should be suitable for both practice and research (Lorenzini, 2019). This 

approach centres on categorising animals as lame when exhibiting an irregular gait (Score 3), 

while those walking regularly and displaying traits such as a curved backline, head nodding, 

or shifting weight are flagged as suspected lame (Score 2). In the absence of these indicators, 

animals are classified as sound (Score 1). To prevent delays in treating mild lameness, 

according to Lorenzini (2019), it is suggested not to differentiate between mild and severe 

cases, given the inconsistent correlation between perceived pain and lameness. This 

locomotion score achieved a very good Kendall concordance coefficient in live assessment 

(0.89) and a good concordance over video scoring (0.70) (Lorenzini, Grimm et al., 2017). 

A drawback of manual locomotion scoring is its susceptibility to high variability between 

different observers (Channon et al., 2009), owing to the inherently subjective nature of the 

method (Renn et al., 2014). Lorenzini (2019) was able to demonstrate that lameness typically 

manifests within an average of 14 days, making regular locomotion scoring of each animal at 

least every two weeks necessary in order to intervene early and prevent the worsening of the 

underlying disease. The rising number of cows per farm (Hofmann & Ippenberger, 2023) will 

pose additional challenges to conducting regular and systematic visual evaluations of all 

animals, indicating automated lameness detection systems as a promising alternative. 
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3.2 Automatic lameness detection 

Automatic lameness detection systems offer greater objectivity, as the outcome is not 

influenced by the individual experience of the observer and the cows are not directly influenced 

by the presence of an observer in the barn. The automatic lameness detection systems can 

be categorised into direct and indirect detection tools. 

3.2.1 Direct methods 

Direct automatic lameness detection refers to technical setups capable of directly identifying 

lameness based on features such as gait, body posture, weight distribution or temperature. 

These systems can be further classified into kinetic, kinematic, and thermographic detection 

mechanisms. 

3.2.1.1 Kinetic 

In the kinetic approach, movement is analysed with the use of force plates, pressure-mapping 

systems or weighing platforms. Rajkondawar et al. (2002) were the first to introduce a one-

dimensional dynamic force plate system, which consisted of two parallel force plates and was 

capable of identifying lame cows and their affected limbs based on vertical ground reaction 

forces. Thorup et al. (2014) advanced to three-dimensional force measurement and 

demonstrated that lame cows exhibit significantly slower gait and less left-right limb symmetry 

across all three dimensions compared to healthy cows. Pastell et al. (2008) were able to 

demonstrate that an electromechanical film, whose thickness varies based on the forces acting 

during the cow's steps, can also be a promising lameness detection tool. Volkmann et al. 

(2021) installed a tread surface with two different layers: the upper layer transmitted the sound 

of the hoof upon impact to a sensor, while the lower foam layer provided sound insulation. The 

sound signal was then utilised with a random forest algorithm to achieve a sensitivity of 81% 

and a specificity of 97% in identifying lame animals (Volkmann et al., 2021). 

Unlike those force measurement systems, which can only measure the total forces exerted, 

pressure-sensitive systems gather information through a network of sensors, allowing for 

simultaneous capture and mapping of diverse pressure points. Using pressure-sensitive mats, 

Van Nuffel et al. (2013) observed that lame cows exhibit asymmetrical gait, reduced pressure 

on the affected foot, smaller steps as well as prolonged standing on the contralateral leg and 

suggested these metrics could aid in earlier lameness detection.  

Weight-distributing platforms prioritise a static measurement approach, with each limb of the 

cow standing on a separate weighing unit, enabling the measurement of weight distribution 

between the limbs. Pastell et al. (2010) utilised a numerical rating to discern lame cows and 

compared these results with weighing plate measurements in cows afflicted with sole ulcers. 

A strong correlation, based on weight distribution asymmetry, allowed for the effective 

identification of affected animals, achieving an area under the curve (AUC) of 0.87 (Pastell et 

al., 2010). Nonetheless, mild lameness cases, such as sole haemorrhages and digital 

dermatitis, posed challenges for detection, potentially requiring extended periods of individual 

data collection to enhance accuracy (Pastell et al., 2010). The research of Chapinal and Tucker 

(2012) demonstrated that particularly the number of steps taken by the rear legs increases 

significantly in lame animals, making it a valuable indicator for lameness detection. 

3.2.1.2 Kinematic 

In kinematic applications, the focus is on the geometric aspects of specific movements, 

including the position of certain body parts and their displacement, velocity, and acceleration.  
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A subfield that has gained particular importance in recent times is image processing. Wu et al. 

(2020) utilised the YOLOv3 algorithm to detect leg positions, followed by deriving step sizes. 

This information was then used to calculate a relative step size vector, enabling the successful 

identification of lame animals through a neural network (Wu et al., 2020). Anagnostopoulos et 

al. (2023) assessed the accuracy of the commercially available Cattle Eye system, which 

employs a 2D camera positioned above the exit of the milking parlour to detect coordinates of 

specific reference points on the animal. These coordinates are then transformed into a mobility 

score ranging from 1 to 100 using a neural network (Anagnostopoulos et al., 2023). Results 

from the study revealed that the system achieved an inter-rater agreement of 80% and 

outperformed an experienced veterinarian in identifying painful claw diseases 

(Anagnostopoulos et al., 2023). Abdul Jabbar et al. (2017) also employed an overhead-

installed camera, but this one was capable of recording videos in three dimensions to 

additionally detect changes in hip and spine height (Accuracy: 95.7%). Zhao et al. (2018) 

generated a movement curve based on leg positions, from which six features, precisely 

velocity, symmetry, tracking up, step length, tenderness and standing time, were extracted. 

Using a decision tree, lame animals could be classified into three grades with an accuracy of 

90.18% (Zhao et al., 2018). Piette et al. (2020) emphasised the assessment of the cow's 

backline, deriving a back posture value that elevated with worsening lameness. By 

incorporating reference data from each cow's healthy state over a minimum period of 200 days 

and computing an individual threshold value per cow, they achieved an accuracy of 82% in 

lameness detection (Piette et al., 2020).  

Sensors can also be directly attached to the cow to capture kinematic data. Zhang et al. (2023) 

opted for sensors equipped with both an accelerometer and a gyroscope on each limb of the 

cows, allowing for the measurement of angular velocity and acceleration across three 

dimensions. Employing time series analysis alongside gait reconstruction techniques, this 

method achieved a very high accuracy of 97.78% (Zhang et al., 2023). Ismail et al. (2024) 

equipped each cow with a smartwatch containing an accelerometer, gyroscope and 

magnetometer, secured to a randomly selected limb. Using a combination of a multi-sensor 

database and machine learning techniques, the animals were classified as lame or healthy 

with an accuracy of 77% (Ismail et al., 2024). 

3.2.1.3 Thermographic 

Another growing field is infrared thermography, which involves devices such as cameras 

deployed to detect temperature deviations in affected claw areas and create thermograms. 

Werema et al. (2021) compared visual 4-stage locomotion scoring with infrared cameras, 

noting that as the locomotion score increased by one stage, the average measured 

temperature rose by 0.994 °C, while achieving a sensitivity of 80.0% and a specificity of 92.4% 

in identifying lame animals. Most research conducted with handheld infrared cameras has 

centred on detecting digital dermatitis, attributing to this method the potential to identify these 

lesions based on the temperature increase caused by inflammation (Anagnostopoulos et al., 

2021; Fabbri et al., 2020). Lin et al. (2018) investigated the application of handheld infrared 

laser thermometers, finding a correlation between temperature elevation and locomotion score 

escalation, thereby detecting a high-risk group requiring further observation. Research also 

indicated that capturing the heel region and utilising the maximum temperature as the decision 

criterion yielded the best results in categorising lame and non-lame cows (Harris-Bridge et al., 

2018). Some studies have pointed out the need for improvement before these devices can be 

reliably used in daily lameness detection. The highlighted issues included too many animals 

being falsely classified as lame (Lin et al., 2018; Werema et al., 2021), labour intensity due to 
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insufficient automation (Harris-Bridge et al., 2018; Werema et al., 2021) and high acquisition 

costs (Coe & Blackie, 2022). At least the latter could be mitigated, as suggested by Coe and 

Blackie (2022), by using less resolution cameras, which, in their trial, achieved only slightly 

lower accuracy compared to those specialised for research purposes. 

3.2.2 Indirect 

Within the indirect methods for lameness detection, the emphasis is placed on utilising the 

performance and behavioural data captured by animal-specific sensor systems to 

automatically detect lameness. Research has revealed that cows' behaviour frequently shifts 

prior to lameness becoming visually evident to farmers, potentially enabling earlier detection 

of lameness (Norring et al., 2014; Thorup et al., 2015). Costs can be saved in this area by 

simultaneously using behaviour-monitoring sensors for heat detection, lameness detection and 

the detection of other diseases (Grimm et al., 2019; Pfeiffer et al., 2020). Many different 

combinations of behaviour and performance predictors as well as various analytical techniques 

have been described in recent years. For instance, Taneja et al. (2020) applied fog networking 

to consolidate step counts, lying times, and get-ups into time-series data, enabling the 

categorisation of cows based on activity levels and subsequent classification as lame or 

healthy (accuracy: 87%). The clustered models achieved an 8% higher accuracy than a unified 

model, with lame animals detected on average three days earlier than the onset of visible 

symptoms (Taneja et al., 2020). Lavrova et al. (2023) utilised pedometer data of six German 

dairy farms for their lameness detection model and investigated various statistical approaches, 

attaining the highest accuracy of 81% by using a mixed linear regression model. This model 

incorporated several predictors, including activity level, duration of lying events, average daily 

milk yield, days in milk, parity, season and their interaction parameters, along with the 

individual cow as a random intercept (Lavrova et al., 2023). Beer et al. (2016) collected data 

from two 3D accelerometers and a neck collar sensor, discovering that the optimal logistic 

regression model, incorporating parameters such as walking speed, standing events and 

feeding duration time, achieved a sensitivity of 92.7% and a specificity of 91.7% in lameness 

detection. However, models containing solely the pedometer data already exhibited a 

commendable accuracy in lameness detection, with only a marginal 2.5% reduction in 

sensitivity (Beer et al., 2016). Magana et al. (2023) focused on the detection of digital dermatitis 

utilising an ear tag and machine learning models. They were able to identify affected animals 

with a probability of 79% and even ensure an accurate prediction two days before the onset of 

clinical symptoms, achieving an accuracy of 64% (Magana et al., 2023). The earlier detection 

of mild lameness was also evident in the study of Lemmens et al. (2023) through the integration 

of milking robot measurements and data from a neck or ear sensor, followed by successful 

modelling with random forest. They achieved an accuracy of 75% and highlighted that this 

approach is especially well-suited for practical deployment of automated lameness detection, 

given the growing abundance of behavioural and performance information on farms (Lemmens 

et al., 2023). Borghart et al. (2021) tested various model combinations and demonstrated that 

the accuracy of a lameness detection model using a behavioural sensor can be further 

improved by incorporating additional data such as milk parameters and body weight (accuracy: 

85%).  

Investigations by Grimm et al. (2019), which were performed on a Bavarian research farm by 

combining the data of a long-range pedometer and performance parameters, highlighted the 

intricate relationships and the necessity of incorporating various parameters for lameness 

detection. They showed that high milk yield only poses an increased risk of lameness when 

accompanied by reduced time spent at the feed trough or shorter lying durations below the 
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average. Furthermore, an extended lying time per event was indicative of lameness only when 

overall feeding time decreased or when animals exhibited increased daytime feeding, 

emphasising the importance of considering the combination of these two behavioural 

parameters. The final ENET beta model comprised four regular predictors and five interaction 

parameters, achieving an accuracy of 94% in distinguishing lame from sound cows.  

In the subsequent project, Lorenzini, Grimm, and Haidn (2021) built on this research and 

examined data from both the research farm and four additional commercial dairy farms. The 

top-performing model exhibited an AUC of 0.82 on the test dataset, incorporating eight fixed 

parameters, three interaction parameters, and five random effects. The predictors incorporated 

in the model belonged to the domains of feeding behaviour, lying behaviour, lactation status, 

and milk yield. The individual animal was considered as the random effect of the intercept, and 

it was revealed that the main challenge in lameness detection stems from the unique 

differences in the relationship between claw health, performance and behaviour among the 

cows and the application of the mixed model on previously unseen animals. 

Efforts were made to address this issue by utilising neural networks, yet this approach only 

yielded slightly better results with an accuracy of 0.86 (Lorenzini, Grimm, Hertle et al., 2021). 

As an alternative solution, time series models were proposed, albeit requiring a different data 

structure than used in the two preceding projects (Lorenzini, Grimm, Hertle et al., 2021), a 

factor that was taken into account during the data collection for this study. 



40 
 

  



41 
 

III. Study objectives 

This study is a continuation of two preceding projects on indirect automatic lameness detection 

performed at the Institute for Agricultural Engineering and Animal Husbandry at the Bavarian 

State Research Centre for Agriculture (Lorenzini, 2019; Schindhelm, 2016). The trial was part 

of the demonstration project 5 “Animal-specific, interconnected sensor systems” within the 

experimental field DigiMilch. The study’s main aim was to examine which behaviour and 

performance parameters generated by different sensor systems from various manufacturers 

are best suited for automatic lameness detection by means of the previously developed models 

by Grimm and Lorenzini (Grimm et al., 2019; Lorenzini, 2019).  

Partial objectives of the project were: 

1. The recording of performance and behaviour data by use of different sensor systems 

2. To gain reference data about lameness by recording videos covering the days before 

the claw trimming and documenting the visible findings as well as the pain test results 

during farm claw trimming 

3. To create a score to explore the overgrowth of the central sole part as a reason for 

cows experiencing pain without evident defects or clinical findings 

4. To carry out locomotion scoring retrospectively by using the video data in an attempt 

to detect changes of lameness or its onset 

5. To summarise all data to create daily records 

6. To integrate the data in different linear generalised mixed regression models to 

discover the possibilities of early detection by combining various sensor parameters 

7. To further validate the three-point locomotion score by Grimm and Lorenzini 
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IV. Material and methods 

1. General approach 

Data gathering was performed on eight different project farms located in Bavaria, more 

precisely on three research farms and five commercial dairy farms. The chosen farms were all 

equipped with a milking robot and various sensor systems. Making use of a larger-scale trial 

than in the preceding studies, different sensors by various manufacturers could be included. 

Due to the higher amount of available data and the easier way of cow identification in 

comparison to milking parlours, it was decided to only consider herds with a milking robot for 

this project. In November 2020, suitable project farms were selected, the necessary camera 

equipment was installed and a preliminary test at the farm claw trimming was performed on 

RF1. The data collection for the study began in March 2021 and lasted until October 2022, 

containing sensor and lameness data from a total of 744 cows.  

Reference data was acquired during the farm claw trimming and afterwards by locomotion 

scoring the cows using video footage. One to two cameras per farm were installed facing the 

milking robot exit and recording the cows leaving the milking robot during three weeks before 

the farm claw trimming date. Cow identification was possible by time synchronising the camera 

with the milking robot and, if available, the automatic gates. The video footage was reviewed 

after the trimming and the appearing cows were scored according to the three-step locomotion 

score by Lorenzini, Grimm et al. (2017). Each cow scored lame or unsound on the day 

preceding the claw trimming was then scored retrospectively for 21 days to detect the 

beginning and development of lameness. If the cow was sound on the day before claw 

trimming, it was only scored retrospectively every five days and, if the score remained 

unchanged, the days in between were interpolated. 

On the date of the claw trimming, each cow entering the cattle crush was checked right away 

for pain reaction by exerting pressure on the claws in two different positions with claw pliers 

before the trimming started. Using this procedure cows without visible lesions, which 

nevertheless experienced pain, could be identified. A score for the growth in the sole centre 

was also established and then noted for the claws of every cow on the trimming date after the 

pain test and before the trimming. On the first three claw trimming dates, the findings 

documented by the claw trimmers were considered. Afterwards, due to missing claw health 

information in those documentations it was decided that the veterinarian should also record 

the findings during the following claw trimming dates.  

Behaviour and performance data were collected on the project farms during the three weeks 

before the claw trimming by using the different sensor systems installed on the farms like 

boluses, pedometers or neck tags. The data were either transferred automatically to the 

DigiMilch database or exported manually by the examiner if no suitable interface existed or no 

contractual agreement with the sensor manufacturers could be reached during the period of 

data acquisition. 

The collected data was used to develop daily records for each farm. Then by integrating the 

daily records into different regression models, the goal was to find out if these models 

containing behaviour and performance parameters recorded by sensor systems could detect 

the lame cows. Furthermore, the aim was to determine which of the used sensor parameters 

and models potentially provide the best results for automatic lameness detection. 
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2. Farms 

Factors influencing the choice of farms for the project were: 

• Inclusion of a high amount of different sensor technology 

• Presence of a milking robot 

• Possibility of taking part in the farm claw trimming on the farm 

• General farmer compliance and willingness to take part in a project on digitalisation. 

It was also important for the researchers to have a combination of both research and 

commercial dairy farms in the data set. The two research farms (RF1, RF2) and the teaching 

and research institute (RF3) were included due to prior usage as trial venues in previous 

projects and therefore familiarity with the study environment. Some of the commercial dairy 

farms were recruited by a survey which was created to find project farms for the whole 

experimental field. The survey, which included questions concerning general operating 

information of the farms and their equipment with sensors, was spread over social media, 

internet and the project partners, therefore interested farmers could complete the form. Others 

were suggested as suitable farms by some of the manufacturers taking part in the “DigiMilch” 

experimental field. A total of three research farms and five commercial farms could be included 

as project farms, and the total number of claw trimming dates per farm and the number of 

examined animals per date can be found in Table 4. 

Table 4: Number of claw trimming dates (CT) and examined animals per CT (excluding dry 

cows) grouped by farm during the data collection period 

 RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

Examined 
animals per CT 57-60 43-45 57-62 62-65 52 29-36 115-123 129 

Number of CT 5 3 4 2 1 5 2 1 

2.1 Research Farm 1 

The Research Farm 1 (RF1) was one out of two farms in this study belonging to the Bavarian 

State. The farm contained two dairy herds, one using a herringbone milking parlour, while the 

other one was milked with a milking robot. Only the milking robot herd was considered for this 

project and contained approximately 70 cows. A total of 102 different Simmental and 3 Brown-

Swiss cows were examined over five claw trimming dates from March 2021 to October 2022. 

The farm was equipped with a DeLaval milking robot (VMS 3.0), the management system 

“DelPro” and five automatic selection gates. Additionally, weighing troughs developed by the 

Institute for Agricultural Engineering and Animal Husbandry, ventilators, curtains and climate 

sensors were installed. Track a Cow pedometers, Heatime SCR sensors and smaXtec boluses 

were attached to the cows. Information about diseases and treatment was stored in the GEA 

herd management program C21. Deep litter cubicles, concrete-based raised cubicles with 

rubber mattresses and waterbed cubicles separated by metal brackets or moveable bars, were 

installed in the lying area. The slatted floor was covered with rubber mats in all different areas 

and cleaned by a DeLaval scraper robot. For the drying-off period, the cows were regularly 

transferred to another stable with access to a pasture. Claw trimming took place three times a 

year and was carried out using two cattle crushes. In December 2021, the farm switched to a 

different claw trimmer and only one cattle crush was used on the following trimming dates. 

Overall, data from 105 different animals could be collected. 
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2.2 Research Farm 2 

This Research Farm (RF2), also belonging to the Bavarian State, had one herringbone milking 

parlour and one milking robot herd. The latter was included in this project and consisted of 

approximately 50 cows. The total of 63 individual cows observed on this farm were milked by 

a Lely Astronaut A5 milking robot and the used sensor systems were collars with Nedap 

SmartTags (Premium (I) FERP). Besides the Lely management systems (T4C and later 

Horizon), HERDE plus (dsp-Agrosoft GmbH, Germany) was used as an additional herd 

management software. The walkway was mainly designed as solid concrete floor covered with 

rubber mats and cleaned by manure scrapers by Schauer (Schauer Agrotronic GmbH, 

Austria). Deep litter cubicles as well as concrete-based raised cubicles with rubber mattresses 

separated by metal brackets were installed in the lying area. Further technologies like 

ventilators and curtains were included to improve the indoor barn climate. The cows’ claws 

were trimmed three times a year in one crush and the data were collected during three claw 

trimming dates from May 2021 to June 2022. 

2.3 Research Farm 3 

The Research Farm 3 (RF3) kept 150 cows in two herds, approximately 70 of them belonging 

to the milking robot herd. The automatic milking system used here was the Lely Astronaut A5 

with the management system T4C/Horizon with Heatime SCR sensors (for the first claw 

trimming date only), Smaxtec boluses, Nedap pedometers and Nedap neck tags. The deep 

litter boxes were manually scattered with biogas digestate, a husk-clay-mix or chopped straw 

and separated by metal brackets. The floors in the walkway and the feeding area were solid 

and cleaned by manure scrapers by Prinzing (Peter Prinzing GmbH, Germany). The feeding 

places were layered with rubber mattresses and a metal partition was installed every two 

places. In summer the cows had access to a pasture and temperature was continuously 

monitored by climate sensors and controlled by ventilators, curtains and cow showers. Dates 

for claw trimming were planned three times a year and performed with one cattle crush. Data 

from a total of 97 different animals were recorded on four different dates between May 2021 

and July 2022. 

2.4 Commercial Dairy Farm 1 

On commercial dairy farm 1 (CDF1) approximately 65 cows were milked by a Lely Astronaut 

A5 milking robot. The only employed sensor system was Heatime SCR and the management 

system used was T4C/Horizon. The floor in the feeding area was solid with a rubber base, 

while the other parts consisted of concrete floor whereas the transition area near the milking 

robot was slatted. There was a walkway with grooves in the lying area and deep litter boxes, 

which were littered automatically by a Hetwin robot (Hetwin Automation Systems GmbH, 

Austria). Furthermore, the farm utilised curtains and manure scrapers by Prinzing. The cows 

could also enter a farmyard which was partly equipped with solid floor and partly with grooved 

ground. Claw trimming took place once a year by using one cattle crush. Data were originally 

collected on two claw trimming dates in June 2021 and May 2022, but due to problems with 

the recorded video footage by the camera, only the second date could be taken into account, 

including 62 different cows. 
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2.5 Commercial Dairy Farm 2 

The approximately 65 cows on commercial dairy farm 2 (CDF2) were milked by a milking robot 

from Lemmer Fullwood (Merlin 2) and carried pedometers of the same manufacturer. The used 

herd management system distributed by Lemmer-Fullwood was “Full- xpert”. The walkway 

was made out of concrete and slatted and the cubicles were built as deep litter boxes. The 

farm was also equipped with a JozTech (Joz BV, The Netherlands) scraper robot, ventilators, 

curtains and a cow shower. The farmer regularly performed claw trimming on his own by 

trimming a group of 10 to 15 cows before the dry-off several times a year and used a 

professional claw trimmer for the first time during the data collection. The cows were trimmed 

in one crush in February 2022 and data of 52 cows could be collected. 

2.6 Commercial Dairy Farm 3 

Commercial dairy farm 3 (CDF 3) consisted of a herd of approximately 60 cows, which were 

milked by a DeLaval milking robot (VMS 300). The cows were fitted with collars with DeLaval 

neck tags and data was collected by the DelPro herd management system. A scraper robot by 

Lely cleaned the concrete slatted floor and the in-barn climate was controlled by a large 

ventilator. The concrete-based raised cubicles were separated by metal brackets. Claw 

trimming took place five times a year, but only half of the herd was trimmed on every trimming 

date. Claw health data was collected on five claw trimming dates on this farm from September 

2021 to July 2022, but the video data regarding trimming dates three and four in February and 

May 2022 were lost as the result of a defective storage unit due to power failure caused by a 

malfunctioning fly screen. In summary, data from a total of 67 different cows could be collected. 

2.7 Commercial Dairy Farm 4 

The commercial dairy farm (CDF4) was an organic farm and included a herd with 

approximately 120 milking cows, which were milked by two Lemmer Fullwood milking robots. 

The installed sensor systems were Lemmer Fullwood pedometers and Smaxtec boluses. The 

ground in the barn was concrete slatted and cleaned manually by a Heitmann (KR 

Maschinen GmbH, Germany) scraper and the concrete-based raised cubicles were covered 

with rubber mattresses and separated by metal brackets. There was also the possibility for 

cows to enter a farmyard with concrete grooved flooring, which was cleaned by a manure 

scraper by Prinzing and equipped with cow showers. Young stock and dry off were kept in a 

separate stable with pasture access. Claw trimming was performed two times a year by using 

one cattle crush. During the two claw trimming dates in November 2021 and April 2022, data 

from 159 different cows were gathered. 

2.8 Commercial Dairy Farm 5 

Commercial dairy farm 5 (CDF5) was also an organic farm and contained two herds with 

approximately 65 cows each in two different stables, which were milked by two Lely A4 milking 

robots. T4C/Horizon was used as herd management system and the behaviour data were 

collected by SCR sensors attached to the cows’ neck. Indoor barn climate was controlled by 

ventilators and sash windows. The cubicles were deep litter boxes with metal brackets and the 

solid concrete floor was cleaned by manure scrapers by Hartmann (Hartmann GmbH & Co. 

KG, Germany). Claw trimming was carried out two times a year in one cattle crush and for this 

study data were collected within one farm claw trimming during a two-day session in February 

2022, including 129 cows. 
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3. Technology used in the study 

3.1 Cameras 

Owing to the long distances between the farms and the 

experiences from the previous project regarding 

observer presence impact, it was decided to install 

cameras instead of practicing on-site scoring. Mobotix 

cameras were installed on all project farms to record 

videos of the cows exiting the milking robot. 

The Mobotix D15 Dual Dome camera (Mobotix AG, 

Langmeil, Germany) (Figure 13) includes two 

moveable lenses, each of which can cover a wide 

angle of up to 180° and can be rotated in different 

directions. Both colour (Figure 14) and monochrome 

cameras (Figure 15) were employed, the latter offering 

enhanced night vision qualities. A red light signalled the camera's recording mode, and the 

option was added for farmers or facility managers to install a switch for manual camera 

deactivation, providing them with control over its operation as needed. The utilisation of the 

NTP (Network Time Protocol) server allowed for automatic time synchronisation, yet at RF2, 

attempts for automatic setup failed, resulting in the need for regular manual adjustments. Thus, 

the timestamps logged by the milking robot during each cow's milking session, coupled with 

stall occupancy data where applicable, provided a reliable means to identify the cow's 

departure from the milking robot. Because the best evaluation was possible by watching the 

cows from the side while walking forward, the conditions on each farm needed to be inspected 

and factors such as ease of installment, shooting angle, preferred cow orientation, network 

connection, data storage and access options were discussed to find the most promising 

camera spot. The initial intention was to store the collected video data in terms of a circular 

buffer on a Zyxel NAS326 (Zyxel Communications Corp., Hsinchu, Taiwan), a Network 

Attached Storage system containing two 4TB hard discs. After encountering issues with 

overwriting old data with new information in the case of full storage, which led to recording 

interruptions, it was decided to switch to the previous generation Zyxel NAS 325. The cameras 

were installed on the farms on different dates between December 2020 and July 2021, all 

positioned to provide a clear view of the milking robot exit and to observe the cows in motion. 

Examples of the camera views are shown in Figure 14 and Figure 15. 

Figure 13: Mobotix D15 Dual Dome 

Camera 
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Figure 14: Recording window of the Mobotix camera at RF1 

 

Figure 15: Recording window of the Mobotix camera at RF2 

3.2 Milking robots  

Milking robots from three different manufacturers were employed on the project farms included 

in this study. Alongside the essential timestamps for video analysis during milking and milk 

yield for each milking session, various additional parameters were recorded depending on the 

type of milking robot. 

Two research farms and one commercial dairy farm utilised Astronaut A5 milking robots by 

Lely and one other employed the Astronaut A4 version. The robots on the project farms 

documented an array of data points in addition to the basic milk quantity metrics, including milk 

flow, fat, protein and lactose content, conductivity, days in milk, milk colour, milk temperature 

and concentrate intake. All farms, except for CDF5, incorporated somatic cell count into their 

records, while CDF5 also documented the body weight of the animals. Throughout the study, 

all farms transitioned from the T4C Management Centre to the newer Horizon system, resulting 

in data being collected from both platforms. 
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RF1 implemented a DeLaval VMS V300 milking robot, whereas CDF3 had used the VMS V310 

model. In addition to milk yield, these milking robots provided data on concentrate intake, days 

in milk, conductivity, blood content in the milk, milk flow, and the MDi. The data could be 

accessed through the management system DelPro associated with the robot. 

CDF2 and CDF4 were equipped with M²erlin milking robots by Lemmer Fullwood. Beyond 

monitoring milk quantity, also concentrated feed intake, blood presence in the milk, 

conductivity, and, through the inline milk analyser, fat, protein and lactose levels could be 

tracked on these farms. The employed management system was Crystal. 

3.3 Weighing troughs 

36 weighing troughs are installed on RF1 for the collection of animal-specific feeding data and 

the following specifications regarding the weighing troughs are based on Fröhlich et al. (2005). 

The troughs consist of the feeding trough, a load cell, a lockable gate, an antenna and a 

process controller. The troughs’ capacity is, on average, enough to hold one day’s worth of 

feed (80-100 kg) for a maximum of two cows. When a cow enters the detection area of the 

antenna, the ear tag is detected by radio frequency identification. As the troughs are often used 

in feeding experiments, not all animals have access to all troughs at all times. Sometimes the 

herd is divided into feed groups and fed different feed rations. So according to the animal’s ear 

tag number, the processor unlocks the gate, which can then be pushed down by the cow. The 

processing unit determines the weight of the trough before and after food intake as well as the 

starting and ending time to define the duration of the visit. The data can be stored in the 

processor for several days but is also saved by using an access database on another computer 

for longer term. Individual visit data or daily aggregated data can be exported from the program. 

These files include details such as the start and end timestamps for each cow, along with the 

calculated trough weight difference for each visit or daily summaries of total intake volumes 

per cow and trough. 

A livestock scale, functioning similarly to the load cell in the weighing trough and employing 

identical software, is additionally incorporated into the milking robot on RF1 to regularly monitor 

the cows' individual weight fluctuations. 

3.4 Pedometers 

3.4.1 Track a cow (ENGS Dairy Solutions) 

The “Track a cow” pedometers (Figure 16) by ENGS Dairy Solutions (Rosh Pina, Israel) and 

the associated application “ co erd” have already been used on RF1 during the preceding 

studies. At the onset of data acquisition of the present study in 2021, cows on RF1 without 

functional pedometers and those yet to be equipped were identified. Following this, the 

"EcoHerd" system was updated to ensure comprehensive and accurate data collection for the 

entire herd. This process was repeated in advance of every following claw trimming date. 

The information regarding this sensor is based on ENGS (2023). The pedometers are so-called 

long-range pedometers (LRP), which can cover a range of up to 10 km through radio 

transmission. Every pedometer consists of a plastic casing containing a triaxial accelerometer, 

a position sensor and an RFID antenna. After being attached to the cow's front leg with a nylon 

strap and pins, the pedometer is capable of transforming the detected g-forces into three 

movement patterns: lying, standing, and walking. The device captures the animal's walking 

motion in terms of activity units, encompassing movements such as forward, backward, 
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sideways or stationary leg movements. In addition to activity, parameters such as lying time 

and the number of lying bouts resulting from the alternation between lying and standing can 

also be extracted. The leg’s position in relation to the ground is registered every eight seconds 

and aggregated datasets of two minutes length are created by the pedometer. 

Data are transferred every 15 minutes to a receiver equipped with an antenna and 

subsequently relayed through a cable to a USB converter, which processes the data and 

forwards it to a computer. Data collected via “EcoHerd” undergoes daily backups, with storage 

facilitated through a Microsoft Access database, allowing for querying of both hourly values 

and total values per day. 

The pedometers also serve to monitor the cows' feeding behaviour using an induction loop. 

This loop consists of a cable encircling the feeding table, through which an electrical signal is 

transmitted every 0.3 seconds by an activator, generating a magnetic field within the loop. 

When the cow enters the loop with the pedometer, the signal is detected, and the time stamp 

is considered as the beginning of the feed intake period. Any feeding visits occurring with 

interruptions of less than six minutes are considered as one single visit to the feeding trough. 

This gives the user information on the number of feeding table visits per day, the duration of 

each visit, and the total feeding intake duration. 

In the previous project focused on automatic lameness detection, the induction loop on the 

cow side was initially positioned in a trench within the concrete floor, set at a distance from the 

feeding area. This arrangement ensured that the magnetic field was large enough for the cow 

to stand within it during feeding despite the large dimensions of the weighing troughs. However, 

since the end of data collection on the previous project, rubber mats were installed in the barn, 

and the corresponding trench for the cable was sealed during this process. At the beginning 

of the data collection in this study, the cable needed to be reinstalled in the same position to 

ensure precise and consistent recording of feeding behaviour. 

3.4.2 CowControl (Nedap) 

CowControl leg tags (Figure 17) are manufactured by Nedap Livestock Management (N.V. 

Nederlandsche Apparatenfabriek, Groenlo, the Netherlands). In this study, the Nedap 

pedometers were employed on RF3 in the version supplied by Lely. The pedometer details are 

derived from Nedap Livestock Management (2024). They typically consist of a yellow plastic 

housing, although the colour varies depending on the involved milking technology 

manufacturer, and they are attached to the front leg of the cow using a plastic belt with a ratchet 

function. The housing contains an accelerometer which can measure the acting g-forces in 

three dimensions. The leg tags can be deployed for animal identification, heat detection and 

monitoring of standing, lying and walking behaviour and the data is captured in intervals of 15 

minutes. An antenna collects data through radio frequency in a range of 500 to 1000 meters 

depending on the housing system and passes them on to a processing unit. The processor 

analyses the data and transforms it into useful information for the farmer. Afterwards, it is 

transmitted to the CowControl software called Velos on the local computer and forwarded to 

the Nedap cloud for storage. 
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Figure 16: ENGS Pedometer Figure 17: Lely pedometer (produced by 

Nedap) 

3.4.3 Fullexpert DPP (Lemmer Fullwood) 

The Lemmer Fullwood (Lemmer-Fullwood GmbH, Lohmar, Germany) Fullexpert differential 

precision pedometer (DPP) (Figure 18) and the DPP Plus (Figure 19), also recognised as 

“AfiTag Plus” and “AfiTag II” as they are manufactured by Afimilk (Afimilk Ltd., Kibbutz Afikim, 

Israel), can distinguish between activity and resting behaviour. The pedometers are described 

according to information by Lemmer-Fullwood (2024). They were deployed on CDF2 and 

CDF4, serve for the recognition of the cow in the milking robot and can detect standing, lying 

and moving based on a triaxial accelerometer. The pedometer can be attached to the cow's 

leg using either a webbing strap with a ring closure or a PVC band featuring a snap mechanism. 

Data transfer is managed during every milking or every 15 minutes depending on the 

pedometer version via radio frequency to an antenna inside a reader device, which collects 

the data and forwards it to the Crystal herd management system via Wi-Fi. Animal-specific 

data, including lying bouts, lying time, lying ratio, activity and an agitation index, can be 

exported through Crystal. The daily activity indicates the hourly average of steps over six 

recording intervals for each respective day. The agitation index is correlated with the activity; 

the higher it is, the more likely the cow is in heat. Notifications regarding heat detection and 

calving can be provided and a vitality profile can be visually integrated with milk yield and cow 

conductivity to assess the cow’s well-being. 
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Figure 18: Fullexpert DPP (AfiTag 

Plus) 

Figure 19: Cow with Fullexpert DPP Plus (AfiTag II) 

3.5 Neck tags 

3.5.1 CowControl (Nedap) 

The data transmission of the Nedap CowControl neck tags (Figure 20) operates in the same 

manner as the Nedap leg tags (3.4.2) and the information concerning these sensors is also 

based on Nedap Livestock Management (2024). The sensors are attached below the neck on 

a collar and contain a three-dimensional accelerometer, which is able to distinguish between 

different behaviours due to the direction of the movement. If a sensor is incorrectly attached, 

the user gets informed by receiving a notification. The premium (I)FERP neck tag variant was 

the one installed on RF2 (in the Nedap version) and RF3 (in the version supplied by Lely as 

Qwes ISO LD). They were used for ISO animal identification, heat detection and cow location 

tracking as well as for monitoring feeding, rumination and activity. For the location tracking, 

beacons need to be installed at 10 to 15 meters in the barn and periodically send signals to 

the neck tag. The tag receives the signals of several beacons and responds with an ultra-high 

frequency signal to an antenna, and a processor can calculate the cow's current location based 

on this information. A map of the barn with the position of all cows can be displayed and it can 

be searched for individual cows. The system is able to compare the gained data to standard 

values and earlier measurements of the specific cow or the whole group and uses all of this 

information to recognise significant changes. The data can also be retrieved through the 

milking robot of the distributing manufacturer instead of the Velos software and displayed in 

the form of graphs or lists. 



53 
 

  

Figure 20: Nedap CowControl Neck 

Tag 

Figure 21: Lely Qwes ISO LD (produced by 

Nedap) 

3.5.2 SCR HR-LDn (Allflex) 

Two research farms (RF1, RF3) and two commercial dairy farms (CDF1, CDF5) operated with 

neck tags (Figure 22) by SCR (Allflex Livestock Intelligence, Dallas, USA). The description of 

this sensor is based on Allflex Livestock Intelligence Deutschland (2024). The transmitter used 

during data collection is called SCR HR-LDn, is fitted to the collar on the left side behind the 

ear and needs to have contact with the neck muscle. The optimal positioning of the neckband, 

and consequently the neck tag, is enabled by a weight beneath the cow's neck. The neck tags 

contain a triaxial accelerometer to detect the cow’s movements and a processing unit and 

forward the information via radio frequency over a distance of 200 to 500 meters to an antenna 

and further to the corresponding computer. On the two commercial dairy farms, the neck tags 

were supplied by Lely as QWES HR-LDn and the data retrieval and display were performed 

by the Lely milking robot. On the two research farms, the data was available through the 

Heatime Pro program, but on RF3 the SCR sensors were discontinued in the milking robot 

herd after the initial claw trimming session in the project. Rumination time in minutes, an activity 

index and the heat probability could be exported from Heatime or the milking robot. The 

sensors also help to monitor the behaviour of the whole herd and can generate an alarm to 

inform the farmer the cow might need calving assistance if rumination is already low for more 

than two hours during the expected calving period. 

3.5.3 Activity meter system (DeLaval) 

The neck-mounted activity tag (Figure 23) by DeLaval (DeLaval AB, Tumba, Sweden) is called 

“activity meter system” and is employed on CDF 3: The information about this sensor is drawn 

from DeLaval (2024). The neck tag uses a three-axis accelerometer to record the cow’s activity 

as an index and creates heat alerts. The activity meter is affixed to a collar on the cow’s right 

side, situated directly above a transponder, which is necessary for the identification of the cow 

in the milking robot. The neck tags forward the data via radio frequency to an antenna on a 

receiver four times per hour or each time the cow passes an RFID reader. The complete data 
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from the last 24 hours is transmitted, ensuring that no data loss occurs even during intermittent 

periods of non-readouts. The data is then analysed with the assistance of a system controller 

to, for example, identify cows in oestrus and subsequently presented within the DelPro system. 

Cow activity data is retained for 180 days, enabling graphical representation and exportation 

in a list format. This list includes values like the daily average of activity, the relative activity, 

as well as the minimum and maximum levels of relative activity. The relative activity refers to 

the current activity level of the cow compared to its individual average, as the system also 

retains individual behavioural patterns. Additionally, the relative activity of the group can be 

compared to identify events such as heat stress that may affect the entire herd. In detecting 

an approaching calving, an increase in the percentage value for the likelihood of high activity 

can be an indicator. 

  

Figure 22: SCR HR-LDn neck tag Figure 23: Activity meter system 

(DeLaval) 

3.6 Bolus (smaXtec) 

The boluses (Figure 25) are developed by smaXtec (smaXtec animal care GmbH, Graz, 

Austria) and the specifications regarding these boluses are based on smaXtec (2024). The 

boluses are 105 mm x 35 mm in size and are placed in the reticulum of the cow by oral 

administration with an injector. On RF1, only some of the cows were equipped with boluses, 

initially utilising the first-generation smaXtec boluses, which were unable to record rumination, 

before transitioning to the smaXtec SX.2 boluses by the end of 2021. Both bolus generations 

were employed on RF3, while only the newer version, smaXtec SX.2, was used on CDF4. 

In general, there are also two different types of boluses: the pH bolus and the classic bolus. 

The pH bolus measures the pH value in the reticulum in addition to the other recorded 

parameters. The accuracy of the pH measuring function is only guaranteed for 150 days and 

the manufacturer recommends equipping 6 to 10% of the herd with the pH boluses to monitor 

the cows’ health and, if necessary, optimise the feeding management. The classic version, 

which was employed on the project farms, detects activity using an index from 1 to 100, 
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rumination time, internal body temperature, drink cycles and creates a heat index. At the time 

of data collection in this project, the parameter for water intake quantity, which is now available, 

had not yet been integrated into the system. The rumination can be detected by the duration 

and number of reticuloruminal contractions, the internal body temperature can be measured 

with an accuracy of up to ±0.1°C and the drinking behaviour is displayed by a subsequent drop 

in body temperature upon water intake. The recorded body temperature in the reticulorumen 

usually shows a 0.5 to 1°C elevation compared to the rectal temperature and the normal 

temperature of each animal is calculated individually, facilitating rapid identification of any 

deviations. The bolus encompasses a 3D acceleration sensor, a temperature sensor, and 

optionally, the pH sensor. 

Data is collected in 10-minute intervals and the boluses are able to store information for up to 

six days. Base stations (Figure 26) regularly retrieve the data and transmit it to a cloud via the 

Wi-Fi connection by their built-in SIM card. A climate sensor (Figure 24) installed in the stable 

measures temperature and relative humidity and calculates a corresponding THI 

(Temperature-Humidity-Index) curve. Rumination, body temperature and activity are 

continuously presented graphically in the smaXtec system and in case of deviations from the 

norm values, heat and calving alarms as well as notifications regarding variances in 

temperature, activity and rumination are generated. (smaXtec, 2024) 

   

Figure 24: smaXtec climate 

station 

Figure 25: smaXtec bolus Figure 26: smaXtec base 

station 

3.7 Weather station 

A weather station was installed near RF1 in 2013, facilitating the monitoring of diverse outdoor 

climate parameters. These parameters encompass temperature readings at 2 and 20 cm 

elevations, soil temperature at a depth of 5 and 20 cm, relative humidity, wind velocity, 

precipitation levels and global radiation. Similar weather stations were also deployed on RF2 

and RF3, recording the same climate parameters. 

3.8 Additional data sources 

Basic cow data essential for the study, such as identity, calving date, breed and lactation 

number, were sourced from the LKV Bayern (Landeskuratorium der Erzeugerringe für tierische 

Veredelung in Bayern e.V., Munich, Germany). This organisation conducts milk performance 

tests for each cow on the farms eleven times a year, which include protein, fat, lactose and 

urea content of the milk as well as somatic cell count and milk yield on the test day. Additionally, 

the total milk yield of the last lactation was also included in the dataset. 
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4. Data consolidation 

Throughout the study, a variety of manually and automatically recorded data had to be 

documented, extracted from the recording system and collected in different ways. 

4.1 Automatically collected parameters 

Given the use of different sensor technologies from various manufacturers across the eight 

dairy farms, a unique array of parameters was collected on each farm. Table 5 and Table 6 

provide an overview of the implemented sensor systems on the farms and the acquired 

variables for behaviour, physiology, performance, environment and animal characteristics. 

Table 5: Installed sensor technology on the project farms 

Sensors RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

Track a cow pedometer 
(ENGS) 

X        

Fullexpert DP pedometer 
(Lemmer Fullwood) 

    X  X  

CowControl pedometer 
(Nedap/Lely) 

  X      

CowControl neck tag 
(Nedap/Lely) 

 X X      

SCR HR-LDn neck tag 
(Allflex) 

X  X X    X 

Bolus (Smaxtec) X  X    X  

Neck tag (DeLaval)      X   

BCS Camera (DeLaval) X        

Weighing troughs and scale X        

Milking robot (DeLaval) X     X   

Milking robot (Lely)  X X X    X 

Milking robot (Lemmer 
Fullwood) 

    X  X  

Table 6: Automatically recorded parameters on the project farms 

Parameters RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

Animal Characteristics 

Breed X X X X X X X X 

Date of birth X X X X X X X X 

Behaviour 

Activity X X X X X X X X 

Lying behaviour X  X  X  X  

Rumination X X X X   X X 

Feeding behaviour X X X      

Drinking behaviour X  X    X  

Physiology 

Body temperature X  X    X  

Body weight X       X 

Body condition score X        

Performance 

Lactation number X X X X X X X X 

Days in milk X X X X X X X X 
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Parameters RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

Milk yield X X X X X X X X 

Milkings X X X X X X X X 

Maximum milking interval X X X X X X X X 

Protein X X X X X X X X 

Lactose X X X X X X X X 

Fat X X X X X X X X 

Urea X X X X X X X X 

Somatic cell count X X X X X X X X 

Conductivity X X X X X X X X 

Milking flow X X X X  X  X 

Blood X    X X X  

Milk colour  X X X    X 

Milk temperature  X X X    X 

MDi X     X   

Concentrated feed intake X X X X X X X X 

Environment 

Temperature X X X    X  

Humidity X X X    X  

Soil temperature X X X      

Precipitation X X X      

Wind velocity X X X      

Global radiation X X X      

Efforts were directed towards incorporating as many automatically captured data points as 

possible into the SQL (Structured Query Language) database established within the 

experimental field DigiMilch via API interfaces, enabling subsequent retrieval of relevant 

parameters. However, this endeavour encountered limitations for certain systems and 

parameters utilised in the study. Challenges prompting an alternative approach included the 

absence of suitable interfaces, protracted or unsuccessful negotiations with manufacturers 

regarding data exchange agreements and limited access to raw data, which ultimately resulted 

in marginal benefits compared to other possible export methods. In addition to direct 

transmission via API interfaces, alternative methods such as semi-automated processes 

through a web client were employed, storing the corresponding data exports in a cloud from 

which they could be transferred to the database. Data from certain systems could only be 

manually exported and sometimes required additional file conversion steps. In instances where 

an export function was unavailable within the program, lists of parameters had to be manually 

copied at regular intervals, depending on availability, and then inserted into an Excel 

document. 

4.2 Manually collected parameters 

The manually collected data consisted of observations made during the claw trimming 

sessions, including visible clinical findings, the degree of the growth in the sole centre and the 

pain reaction, as well as locomotion scores carried out via video footage taken in the preceding 

three weeks. 

4.2.1 Locomotion scoring 

In this study, like in the two preceding projects on indirect automatic lameness detection, 

lameness assessment was conducted using locomotion scoring as the reference method. In 

the previous project, a three-point locomotion score (Figure 27) was developed, aiming for 
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higher reliability and improved practical applicability (Lorenzini, 2019). This was driven by the 

understanding that, for these studies on indirect automatic lameness detection, similar to 

practical applications, identifying whether a cow is lame or not outweighed the importance of 

assessing the degree of lameness. 

 

Figure 27: Three-point locomotion score according to Grimm and Lorenzini (Source: Lorenzini, 

Grimm et al. (2017)) 

Applying this locomotion score (LMS), the initial focus is on the gait of the cow, aiming to 

directly classify evidently lame cows exhibiting irregular, uneven and asymmetrical walking 

patterns as lame (LMS3) irrespective of the degree of lameness. If there are no abnormalities 

in the overall gait of the cow, three additional features are considered to investigate lameness 

suspicion (LMS2), if any of these characteristics occur. These include an arched backline, the 

stance of one or more limbs in relief or head bobbing. If the gait is regular, even and 

symmetrical and none of the other features are present, the cow can be classified as sound 

(LMS1). 

To minimise the observer effect and due to the number of participating farms, it was decided 

to conduct locomotion scoring based on video recordings. Following the synchronisation of the 

camera with the milking robot, the timestamp provided during milking was utilised to accurately 

identify the cow exiting the robot. Daily locomotion scores were performed on all farms starting 

21 days prior to claw trimming, aiming to capture the onset and progression of lameness. This 

21-day timeframe was considered sufficient, as lameness develops over a period of nine days 

on average according to the results of Lorenzini (2019). During locomotion scoring of each 

cow, the procedure involved examining the day before the claw trimming session and then 

working backward up to 21 days prior to the trimming appointment. If a cow received a score 
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of 1 on both days preceding the claw trimming, it was scored every five days, with the 

assumption of maintaining a consistent score of 1 for the days in between. Conversely, if a 

cow was scored 2 or 3, its gait was evaluated daily to monitor any changes. 

Alongside the primary observer (Rater 1), locomotion scores for the cows were recorded by 

two additional raters for 4 of the 20 claw trimming dates. These raters had practiced locomotion 

scoring on at least 75 cows prior to the study, and their agreement with Rater 1 was evaluated 

before the actual locomotion scoring started. 

4.2.2 Validation of the locomotion scoring system 

Although the locomotion score has already been validated in the previous project (Lorenzini, 

2019), additional validation was carried out in the present study. Both, inter-rater agreement, 

which measures the consistency between different observers, and intra-rater agreement, 

which assesses the consistency of the same observer across multiple scoring sessions, were 

calculated. Moreover, the locomotion score was validated using the results of the claw 

trimmings and pain tests. For this purpose, an additional lesion score (LS) was developed, 

including three different levels (Figure 28). Grade 1 was assigned to the animal if it exhibited 

no pain response in any of its claws and presented with either no lesions or only mild, generally 

non-painful findings such as chronic digital dermatitis (Stage M4), tylomas without digital 

dermatitis or minor sole haemorrhages on only one to three feet. Grade 2 was given if there 

was either a positive pain response combined with no or mild, generally non-painful findings, 

or a negative pain response coupled with evident clinical findings. Grade 3 was assigned in 

cases where a significant pain response occurred in any of the four feet along with evident 

clinical findings. This three-level lesion score was then compared to the locomotion score 

assessed one day prior to claw trimming. 

 

Figure 28: Three-level lesion score to validate the locomotion scoring system 

4.2.3 Clinical findings 

The documentation of visible clinical findings took place for all animals during the on-farm claw 

trimming sessions. Initially, for the first appointment on RF1, as well as the first appointments 

on RF2 and RF3, the recordings made by the claw trimmers were utilised. Due to incomplete 

documentation of less severe findings, the findings during the subsequent claw trimming dates 

were documented by the author of this study. The findings were noted based on the ICAR 

Claw Health Atlas (ICAR Working Group on Functional Traits (ICAR WGFT) and International 

Claw Health Experts, 2015) and the corresponding abbreviations and their descriptions are 
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displayed in Table 7. The table was additionally supplemented with the abbreviations "OLU", 

signifying "otherwise located ulcers", to also describe ulcers not located in the typical area 

beneath the flexor tuberculum and CS , meaning “central sole haemorrhage” as the 

preliminary stage of sole ulcers. In cases of digital dermatitis, the associated stage according 

to Table 2 was documented and for CSH and SHC, it was also noted whether there was an 

acute bleeding of the sole haemorrhage. HHE and WLD findings were noted only when they 

were clearly visible. 

Table 7: Descriptions and abbreviations used for documentation of clinical findings, based on 

the ICAR Working Group on Functional Traits (ICAR WGFT) and International Claw Health 

Experts, 2015 (adapted from original with modifications) 

Code Name Description 

CC Corkscrew claws 
Any torsion of either the outer or inner claw. The dorsal edge 
of the wall deviates from a straight line 

DD Digital dermatitis 
Infection of the digital and/or interdigital skin with erosion, 
mostly painful ulcerations and/or chronic 
hyperkeratosis/proliferation 

DS Double sole Two or more layers of under-run sole horn 

HHE Heel-horn erosion 
Erosion of the bulbs, in severe cases typically V-shaped, 
possibly extending to the corium 

HF Horn fissure Crack in the claw wall 

IH 
Interdigital 
hyperplasia 

Interdigital growth of fibrous tissue 

IP 
Interdigital 
phlegmon 

Symmetric painful swelling of the foot commonly accompanied 
with odorous smell with sudden onset of lameness 

SHD 
Sole 
haemorrhage 
diffused form 

Diffused light red to yellowish discolouration 

SHC 

Sole 
haemorrhage 
circumscribed 
form 

Clear differentiation between discoloured and normally 
coloured horn 

CSH 
Central sole 
haemorrhage 

Haemorrhage beneath the tuberculum flexorium, preliminary 
stage of sole ulcer without horn perforation 

SU Sole ulcer 
Penetration through the sole horn exposing fresh or necrotic 
corium 

BU Bulb ulcer Ulcer located at the bulb 

TU Toe ulcer Ulcer located at the toe 

OLU 
Otherwise located 
ulcer 

Ulcer located on other, unusual sites of the claw 

TN Toe necrosis Necrosis of the tip of the toe with involvement of bone tissue 

TS Thin sole 
Sole horn yields (feels spongy) when finger pressure is 
applied 

WLF White line fissure 
Separation of the white line, which remains after balancing 
both soles 

WLA 
White line 
abscess 

Necro-purulent inflammation of the corium 

Besides the clinical findings, also the treatment of each claw carried out by the claw trimmer 

was documented by using the code as shown in Table 8. 
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Table 8: Code for therapeutic procedures by claw trimmers 

Code Name 

B Bandage 

CB Claw block 

SAP Salicylic Acid Paste 

SAPO Salicylic Acid Powder 

CTC Chlortetracycline spray 

CZC Copper and zinc chelate spray 

4.2.4 Pain test 

A pain test was performed on each claw before the trimming was carried out (Figure 29). The 

order in which the pain test was carried out depended on the preferred trimming sequence of 

each claw trimmer. The claw pliers were positioned at two different angles on each claw: once 

on the abaxial and axial claw wall and once at the claw tip. Pressure was then briefly applied 

to the claw and any potential pain response from the animal, such as claw withdrawal, was 

noted. If such a reaction occurred, the pain test was classified as positive; otherwise, it was 

recorded as negative. The pain test was conducted by the veterinarian; only during the first 

two claw trimming dates on RF1 the help of a colleague was needed since two claw trimming 

chutes were used at the same time. 

 

Figure 29: Pain test performed using claw pliers 

4.2.5 Growth in the sole centre (GSC) 

The degree of growth in the sole centre was also assessed for all claws of each cow before 

the trimming to eventually rule it out as a possible cause of lameness or positive pain response 

in the absence of visible clinical findings. For this purpose, a three-level score was established 

as shown in Table 9, enabling the assignment of a specific degree of growth in the sole centre 

to each foot of a cow. 
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Table 9: Three-level score to grade the growth in the sole centre (GSC) 

Score GSC1 GSC2 GSC3 

Description 
Clear interdigital space 
with prominent, 
indentable groove 

Clear interdigital space 
with no or slight, non-
indentable groove 

Completely closed or 
overgrown interdigital 
space 

 

 
 

 
 

 
 

4.2.6 Corrected locomotion score (C_LMS) 

In addition to the locomotion score, a corrected locomotion score was formed by taking the 

clinical findings and the pain test into account. If cows were identified with an LMS2, this score 

was upgraded to 3 for all days featuring the original LMS2, given that the animals showed 

either a positive pain test or visible and potentially painful findings during claw trimming. 

Subsequently, this C_LMS was integrated into the daily datasets as an alternative reference 

value alongside the standard LMS. 

5. Data processing 

After the data collection phase concluded at the end of 2022, the data processing phase 

commenced. In the first instance, data from various sources needed to be standardised into a 

unified CSV format and afterwards daily records of the different project farms could be 

generated by using the statistics tool RStudio. These farm-specific daily records included every 

parameter recorded within the individual farm, computed for each cow on a daily basis. The 

daily record of RF1 was completed within the DigiMilch SQL database, while the other ones 

were created directly in RStudio due to different file formats and export ways. Data was 

prepared by including the counts of each variable, which was recorded at regular time intervals, 

into the data frames and afterwards excluding the daily values with missing single recordings. 

Individual limits of allowed missing counts were determined for each parameter based on the 

total amount of counts registered by the sensors per day. 

5.1 Daily records 

The final daily datasets included data from the 21 days preceding the respective claw trimming 

appointment. The timestamps of data collection on each farm as well as the appointments 

excluded from the analysis due to data loss are represented as a timeline in Figure 30 and the 

specific claw trimming appointments used for further analysis can be found in the appendices 

in Table 32. 
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Figure 30: Timeline of all claw trimming dates, including discarded appointments due to data 

loss 

Depending on the availability of technologies, the parameters collected on the farms varied, 

resulting in different variables included in the farm-specific datasets. Table 33 in the 

appendices provides a comprehensive list of all collected parameters, along with their 

respective data sources and the farms where each parameter was collected. In the following, 

the preprocessing of the data in order to build the final farm-specific daily data sets will be 

explained. 

5.1.1 Daily time budget of behavioural parameters 

As in the preceding automatic lameness project, in addition to the daily values spanning over 

the course of the entire day from 00:00 to 24:00, also the behaviour during daytime and the 

day/night ratio, meaning the behaviour during daytime compared to the day-long behaviour, 

were considered in the daily records. At first, the term “daytime” needed to be defined for each 

farm as, for example, different management routines could lead to varying circadian rhythms 

for the herds. Corresponding to the previous project, where activity exhibited the most variation 

(Lorenzini, 2019), and because it was the only behaviour parameter available on all farms in 

this study, activity was chosen as the determining parameter to define “daytime”. The overall 

median for activity during all data collection periods was identified for each farm separately 

and at the same time the median activity values for each hour on the farm were computed. 

The start of daytime was established as the first hour in which the hourly median activity was 

higher than the total median activity and the end was set as the last hour in which this 

requirement was fulfilled. The calculated daytime periods per farm are displayed in Figure 31. 

No calculation of the daytime was performed for CDF2 and CDF3 as the sensor systems 

installed on these farms only generated daily values. Furthermore, for all sensor systems on 

the other farms, which only offered daily values, no daytime values and day/night ratios could 

be established. 

RF 

RF2

RF3

CDF 

CDF2

CDF3

CDF4

CDF5

Feb 2                    ay 2                   Aug 2                    ov 2                  Feb 22                  ay 22 Aug 22                      ct 22        

Data collection
Data loss
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Figure 31: Daytime period on each project farm 

5.1.2 Animal Characteristics 

For the first identification of each cow, the animal’s specific number on each farm as well as 

its unique ear tag number had to be documented. The date, as in the date of data collection, 

was included across all different data sources to create unique daily data sets without 

redundancy. The breed of each animal was also documented as labelled by the LKV and 

automatically exported to the DigiMilch database. The dataset included data from 699 

Simmental cows, 10 Holstein Friesian cows, nine Brown-Swiss cows, two Gelbvieh cows, one 

Red Holstein Friesian cow and seven cows of other breeds. Additionally, the date of birth of 

each cow was noted according to  KV and  IT to gain information about the cow’s age and 

the herd composition. 

5.1.3 Reproductive status and lactation data 

The reproductive status of each cow was only included in the final data sets to track missing 

milkings due to drying-off periods. As the reproductive status displayed by the milking robots 

was not always up to date, it was calculated manually. A cow was described as “lactating” if 

milk production was present on the current day. If the reported milk yield was NA (not available) 

in combination with a lactation number equal to  ero, the animal was labelled as “heifer”. With 

a lactation number larger than zero and no occurring milking, it was noted as “dry period”. If a 

cow was first identified as being in the dry period but had less than 200 days of milk, its 

reproductive status was changed to “not milked”. The days in milk were calculated by 

considering the day of the last calving as reported by the LKV as day 0 and then counting 

forward to the current date. The lactation data was acquired either through the LKV or through 

the milking robots. 

5.1.4 LKV 

A lot of milking data were collected through the  KV, including the cow’s lactation number. If 

no lactation number was registered yet, the cow was considered to be a heifer and the lactation 

number was noted as 0. The total milk yield in last lactation recorded by the LKV referred to 

the total milk yield from the beginning to the end of the last lactation and could be collected for 

all farms except CDF1, because this farm only joined the LKV during the DigiMilch project. The 
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results of the monthly milk performance tests, conducted by the LKV eleven times a year for 

each lactating cow, were also included in the daily records. The results of the milk performance 

test conducted on the last examination date were used as daily values for the days leading up 

to the next monthly examination. The incorporated parameters included daily milk yield, urea, 

protein, lactose and fat content and somatic cell count. Furthermore, the fat-protein ratio was 

calculated by utilising the protein and fat content documented by the LKV. 

5.1.5 Milking robot 

The number of milkings was determined according to the cow’s visits to the milking robot and 

the maximum milking interval was calculated as the maximum duration between the end and 

start time stamp of two consecutive milkings on the same day. Since the milk yield of the cow 

is not produced during the milking process itself, but rather during the whole period from the 

end of the last milking to the start of the next milking, it was proportionally allocated to each 

respective day in case of inter-daily intervals between the milkings. To simplify calculations, 

the milk production rate was assumed to be constant and uniform. The total milk yield of the 

current lactation was created within the SQL DigiMilch Database for RF1. For the other farms, 

the total milk yield of the last lactation recorded by the milking robot was utilised. On RF2, RF3, 

CDF1 and CDF5, the milking robots also calculated the average daily milk yield in the last 

lactation. 

The milk ingredients, including protein, fat and lactose, could be collected by the milking robots 

on all farms except RF1 and CDF3 and the corresponding fat-protein ratio was subsequently 

calculated. The somatic cell count could only be registered on RF2, RF3 and CDF1. 

Additionally, other changes in the milk composition were detected differently depending on the 

milking robot. The parameters regarding blood and colour were excluded from the dataset in 

the further analysis due to insufficient comparability and missing data points. The Lely milking 

robots also record the milk temperature and the DeLaval ones compute the Mastitis-Detection-

Index (MDi), a combination of the parameters blood in milk, conductivity and milk interval. The 

milking flow, meaning the average speed and consistency of milk extraction during the milking 

process, and the maximum milking flow were acquired on all farms except CDF2 and CDF4. 

Conductivity was at first included as conductivity per quarter, but the median value of 

conductivity for all quarters was calculated later in the analysis to limit the number of 

parameters and simplify the analysis of the parameter conductivity. The conductivity was 

recorded once on all farms equipped with Lely milking robots within a company-owned unit 

and on all other farms within the unit mS/cm. Intake of concentrated feed and on RF2, RF3, 

CDF1 and CDF5 additionally the remains of concentrated feed at the end of the day were also 

included in the daily records. 

5.1.6 Body condition score and body weight 

On RF1, the body condition score was available through the milking robot, which collected the 

data of the BCS camera during every milking process. The body weight of each cow was also 

measured during the milking by a scale and transferred to a database. For both parameters, 

to create daily values, the median of all single assessments was formed. Moreover, the daily 

body weight could be exported on CDF5 through the daily lists generated by the milking robot. 

5.1.7 Feeding 

Information on the cows’ feeding behaviour could be documented on RF , RF2 and RF3, but 

data regarding the roughage intake were only accessible on RF1 through the weighing troughs. 

The weighing troughs not only measured the feed intake during every visit to the trough but 
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also recorded the feeding duration. The feeding pace was calculated by dividing the feed intake 

by the corresponding feeding duration. The daily number of visits to the weighing trough was 

noted and the visits were summed up to create meals. A meal was characterised by a series 

of consecutive trough visits occurring within intervals of less than 6 minutes, provided that the 

cumulative recordings were greater than or equal to 6 minutes. The average feed intake and 

duration per weighing trough visit and meal were calculated by dividing the feed intake or 

feeding duration by the number of weighing trough visits or meals. The daytime values and 

day/night ratios were included in the daily record if possible. 

The ENGS feeding data could only be collected on RF1 during the data collection before one 

claw trimming date due to issues that will be further explained in chapter V.1.2.1. ENGS also 

aggregates all feeding table visits with interruptions of less than 6 minutes into one meal and 

subsequently provides the total count of meals. Additionally, the feeding duration per day was 

supplied by the pedometers and the average feeding duration per meal as well as the daytime 

and day/night values could be calculated afterwards. 

Only the total daily feeding duration was included for the Nedap neck tags, as it was not 

possible to directly access the raw data. 

5.1.8 Rumination 

SmaXtec provided users with the total daily rumination time. In contrast, the data output of the 

SCR sensors depended on the tool used to access the data. Within the Heatime system on 

RF1, rumination data could be exported in two-hour intervals, while the milking robots only 

provided the total daily rumination time. As a result, only the daytime values and the day/night 

ratio for RF1 could be established. Similarly, with Nedap, only the daily total rumination time 

was accessible. 

5.1.9 Heat behaviour 

SCR provided an activity-based index for heat probability via the milking robot. The higher the 

heat probability index, the more likely the cow was to exhibit heat on that particular day. 

A similar variable was generated by the Lemmer-Fullwood pedometers called factor of 

restlessness, which was also based on the activity data and as this index increased, so did the 

probability of heat occurrence. 

5.1.10 Lying 

Lying data could be recorded on RF1, RF3, CDF2 and CDF4. As the lying data by ENGS 

included hourly values, the number of individual lying events and the average lying duration 

per bout could be included, but also the daytime and day/night values. 

The Nedap and Lemmer-Fullwood pedometers recorded the total daily lying duration and the 

number of lying events. 

5.1.11 Activity 

The parameter of activity could be captured in various forms, either at the neck, at the leg or 

in the reticulum across all project farms. Hourly activity units could be found within the ENGS 

Ecoherd system on RF1, an activity index was recorded by smaXtec every 10 minutes and 

summed up for daily values and another activity index was created by SCR and provided every 

two hours. 
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Nedap counted the daily steps of the cows but also displayed the foot activity and the heat-

associated neck activity every two hours. Daily sums and two-hourly medians as well as the 

daytime and day/night ratios were calculated for both types of activity loggers. Furthermore, 

the inactive neck time, meaning the time without any head or neck movement, was also 

recorded. 

The Lemmer-Fullwood pedometers delivered the hourly average step count per day, while the 

DeLaval neck tags presented an average daily activity index, the relative activity as the current 

activity level of the cow compared to its individual average and the minimum and maximum 

relative activity of the cow on this day. 

5.1.12 Body temperature 

The body temperature could be collected on RF1, RF3 and CDF4 by using the smaXtec 

boluses. The 10-minute values created by the system were transformed into average, 

minimum and maximum values per day. The normal body temperature of the cow was detected 

by the bolus in the first training phase after bolus input and regularly updated. The body 

temperature still included the temperature drops caused by drinking events of the cow, while 

the body temperature without drink cycles was adjusted for drinking. 

5.1.13 Climate 

Temperature and humidity could be measured by the smaXtec climate stations on RF1, RF3 

and CDF4, as the stations were installed in the barns together with the smaXtec bolus 

infrastructure. The Temperature-Humidity-Index (THI) was calculated manually, as the THI 

computed by smaXtec could not be exported via the interface. For this calculation, the used 

formula was created by Thom (1959) and modified by Zimbelman et al. (2009): 

(0.8 𝑥 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒)  +  [(𝑟𝑒𝑙. 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 / 100) 𝑥 (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 –  14.4)]  +  46.4 (1) 

Weather stations were implemented on the three research farms and recorded hourly values, 

which were transformed into a daily minimum, maximum and median. The collected 

parameters included temperature at 2 m height and 20 cm height from the ground, soil 

temperature at 5 cm depth and 20 cm depth, relative humidity, precipitation, wind velocity and 

global radiation. The THI was also calculated using the formula provided above and the 

temperature and humidity values detected by the weather station. 

Season was added to consider a potential existing seasonal effect on lameness. For the 

manual calculation of the season in which the claw trimming occurred, the year was divided 

into quarters and assigned a value, as can be seen in Table 34 in the appendices. 

5.1.14 Claw health 

The data collected during the claw trimming events were initially recorded manually on printed 

lists and then entered into a Microsoft Excel 16 spreadsheet. The results of the locomotion 

scores were stored within the same spreadsheets and converted to CSV files with daily values. 

The values inserted into the daily dataset corresponded to the results of the locomotion scoring 

performed daily, whereas the results of the claw trimming session, including the pain test, 

growth in the sole centre and findings were collected only on the respective claw trimming date 

and retrospectively interpolated up to 21 days prior. The pain test and the growth in the sole 

centre were added to the dataset according to the documentation methods described in 4.2.4 
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and 4.2.5. The corrected locomotion score was documented according to the description in 

4.2.6 and also added to the datasets. 

5.2 Univariate Analysis 

The data analysis was carried out with R Studio (Version 2022.07.2). 

Descriptive statistics such as boxplots, histograms and Q-Q plots were used to check the 

distribution of all variables and to get a first overview of the parameters. Outliers were identified 

by calculating three times the interquartile range (3*IQR), as can be seen in Figure 32 and 

those exceeding the threshold were removed. The 3*IQR was used instead of the 1.5*IQR 

because the latter can be too strict for certain datasets, as observed in this study, leading to 

an excessive removal of data points that do not clearly qualify as outliers (Zhang et al., 2020). 

The statistical key figures were computed for each farm and across the farms by creating 

summaries which included the mean, median, minimum, maximum, first and third quartile, 

standard deviation and the number of observations of each value. 

 
Figure 32: Example of the type of interquartile range (IQR) used in this study (IQR: interquartile 

range, q25: first quartile, q75: third quartile) 

5.3 Bivariate analysis 

Regarding the validation of the locomotion score, the intra- and inter-rater reliability as well as 

the agreement between LS and LMS were calculated. For the intra-rater reliability, the two 

rounds of locomotion scoring by the same observer (Rater 1) were compared to each other 

and the percentage of agreement (PA) as well as Cohen’s Kappa (κ) according to the formula 

𝜅 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 (2) 

3 I R

3 I R

q 5  .5 I R

 edian

q25  .5 I R

q 5 q25

 utlier (> 3 I R)
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were computed (Cohen, 1960). Thereby, p0 represents the proportion of actual conformity 

while pe displays the percentage of incidental concordance. The quadratic weighted Cohen’s 

kappa (κw) was used to account for larger and smaller distances between scores and to weight 

them differently (Vanbelle, 2016). The inter-rater reliability was calculated by comparing one 

detection round of the same video footage of Rater 1 with the results of another rater (Rater 

2). 

Due to the non-normal distribution of the data, the non-parametric Kruskal-Wallis test (Van 

Hecke, 2010) was chosen to test for significant differences between the C_LMS and LMS 

groups for each variable. Afterwards, the Wilcoxon signed rank test was performed on the data 

as a post-hoc analysis to further investigate between which particular C_LMS or LMS pairings 

the differences were significant or not significant. 

The correlation between   S or C_  S and the parameters was determined by Spearman’s 

rank correlation coefficient, which is used instead of Pearson’s correlation coefficient when 

data does not meet the assumptions of linear correlation or normal distribution (Rebekić et al., 

2015). Additionally, the correlation between the different automatically recorded parameters 

was calculated, as it can be helpful to identify potential predictors for lameness and to assess 

the strength and direction of relationships between the different parameters. The Intraclass 

Correlation Coefficient (ICC) and its CI was measured for each parameter recorded by both, 

milking robot and LKV. 

Binomial generalised logistic regression was carried out and provided the odds ratio, the lower 

and upper confidence interval and the p-value of each parameter implemented in the 

regression as the independent variable with the claw health status as the dependent variable. 

Based on the dependent variable, two different regression models were chosen, one with the 

locomotion score as reference and therefore LMS3 as lame and the other one focusing on the 

corrected locomotion score and consequently on C_LMS3 as the lame outcome. 

The tests, correlation, and OR calculations were also performed at the farm level to identify 

farm-specific differences. 

5.4 Multivariate analysis 

For the development of regression models, the final farm-specific daily datasets were split or 

combined to form subsets according to the different parameter classes. The newly created 

datasets were checked for NA values and these were removed. The ETN (Ear Tag Number) 

was converted into a numeric identification number called FCN (Farm Cow Number) and 

afterwards centring and scaling were performed on the datasets. Centring adjusted the data 

by subtracting the mean, aligning values around zero to eliminate baseline differences and 

highlight key variations between samples (Van den Berg et al., 2006). Scaling transformed the 

data by dividing each variable by the standard deviation to equalise their variability and 

facilitate comparisons (Van den Berg et al., 2006). 

For each parameter class, it was aimed to develop the best models for both C_LMS and LMS 

as references. Dummy variables were used, where 1 indicated a "lame" outcome, substituting 

for LMS3 or C_LMS3, and 0 indicated "not lame", representing LMS1 and LMS2 or C_LMS1 

and C_LMS2. The outcome variables of the regression models were referred to as “Claw 

health statusn” for the non-corrected LMS and “Claw health statusc” for the C_LMS. 

Following this, the respective dataset was split into a training set and a test set, with the former 

containing 80% and the latter containing 20% of the data. To ensure proper data partitioning, 
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the FCN was randomly assigned to either the training set or the test set, ensuring it appeared 

in only one of the sets. Furthermore, the training data were subjected to SMOTE (Synthetic 

Minority Over-Sampling Technique) to achieve a balanced distribution between observations 

of lame and non-lame animals. SMOTE improves classifier performance on imbalanced 

datasets by generating synthetic examples for the minority class through interpolation between 

existing minority samples (Chawla et al., 2002). 

Due to the results of the preceding automatic lameness detection project (Lorenzini, Grimm, & 

Haidn, 2021), generalised linear mixed regression models were used in the analysis. The lme4 

package (Bates et al., 2015) in R was employed to analyse those generalised linear mixed 

models, which include both fixed and random effects. An example of the formula is displayed 

in the following: 

𝑎 ~ 𝑏 + 𝑐 + 𝑑: 𝑒 + (𝑥 | 𝑧) (3) 

In this context, according to Brown (2021), a represents the outcome variable, while b and c 

are fixed effects that have a direct influence on a. Additionally, interaction parameters such as 

d: e can be included to examine the combined effect on the outcome variable a. The 

parameters within the parentheses are known as random effects, with the grouping variable z 

positioned to the right of a vertical line, referred to as the pipe. This grouping variable defines 

a unique starting point as a random intercept based on z. When x is present, the model also 

incorporates the random slope, which captures individual variations in slope. Consequently, it 

is assumed that variable x exerts different effects on the outcome variable a depending on the 

value of z. 

The regression models were created using a forward regression approach. This method 

involves sequentially adding new parameters as fixed effects, allowing for the evaluation of 

each parameter's contribution to the model's accuracy. A 10-fold cross-validation was 

employed in this case, involving splitting the data into 10 parts. The model is trained and tested 

10 times, with each part serving as the test set once, and the performance results are averaged 

to provide a reliable estimate of the model. 

To assess whether the parameters Farm and FCN should be included as random effects, the 

intraclass correlation coefficient (ICC) was calculated to assess how much of the total variance 

in the data could be explained by these variables as random effects. 

Interaction terms were included in the models to illustrate how the effect of one independent 

variable on the dependent variable changes as another independent variable varies. To avoid 

manually testing every possible interaction term, an automated interaction analysis was 

conducted. This analysis assessed all interaction terms based on the model and the data, and 

only those with the most significant effects were afterwards re-evaluated in the regression 

model. To assess the goodness of fit of a model, the Akaike information criterion (AIC), the 

Bayesian information criterion (BIC), the p-values of the parameters, the area under the curve 

(AUC), sensitivity and specificity were considered. Additionally, the Receiver Operating 

Characteristic (ROC) curve was calculated for all models. The ROC curve offers a detailed 

view of how well a diagnostic test performs by showing the balance between sensitivity and 

specificity across different decision thresholds (Kumar & Indrayan, 2011). The area under the 

ROC curve (AUC) quantifies a model's ability to differentiate between two classes (Kumar & 

Indrayan, 2011). An AUC of 1 would signify perfect distinction between lame and non-lame 
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animals, while an AUC of 0.5 would indicate that the classification is no better than random 

chance. 

Initially, the best regression models using only performance data were identified. In the second 

step, performance data and activity data, collected across all eight farms, were integrated into 

the models. Subsequently, various model versions were tested by adding one additional 

parameter from the parameter classes of constitution, feeding, rumination, lying, body 

temperature or climate to the activity and performance data in order to assess the extent of 

model improvement. These models could no longer be analysed across all farms, but only on 

those where the parameter classes were measured with sensors. Finally, two and ultimately 

three additional parameters were combined with the activity and performance data in the 

model.
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V. Results 

1. Limitations in data collection 

1.1 Cameras 

The video data of the first claw trimming date on CDF1 in June 2021 and the claw trimming 

date on RF2 in August 2021 could not be employed for analysis due to the mentioned 

malfunction of the circular buffer (Chapter IV.3.1), resulting in the storage of individual images 

rather than complete videos. At CDF3, an electric fly screen caused multiple power outages, 

which ultimately resulted in failure of the NAS, rendering the video footage from the two claw 

trimming sessions in February and May 2022 irrecoverable. 

The video recordings should capture the 21-day period preceding each claw trimming date. 

However, for the first claw trimming session on RF3 in May 2021, the camera could only be 

activated 13 days prior to the trimming date. Furthermore, in some instances certain animals 

could not be scored due to dry periods, calving, illness or other factors. In such cases, the 

scoring period was restricted to the days when the animals were captured by the camera. 

1.2 Sensor technology 

1.2.1 ENGS 

At the start of data collection in 2021, several attempts were made to reinstall the induction 

loop by ENGS on RF1 for reliable recording of feeding behaviour. Initially, attempts to attach 

the cable directly to the weighing trough frame proved unsuccessful, as the cows stood too far 

away to be detected within the magnetic field. Subsequently, efforts were made to lay the cable 

beneath the rubber mats, which was successful at the beginning, allowing for the collection of 

feeding data during claw trimming in November 2021. But due to the nubs on the underside of 

the rubber mats and the resulting friction from the movement of the cows on the mat, the cable 

was damaged and failed completely in January 2022. A third approach involved embedding 

the loop directly into the rubber mats and securing the cable with industrial adhesive. This 

solution proved inadequate due to moisture and ammonia present in the manure, causing the 

adhesive to lose its effectiveness over time. Consequently, recording feeding behaviour via 

the pedometers had to be discontinued in subsequent claw trimming sessions. 

1.2.2 Weighing troughs 

While reviewing the weighing trough data, consistent instances of implausible values, wherein 

the same cow was detected at multiple troughs simultaneously, were observed. This 

phenomenon occurred sporadically across different troughs, involving various cows, and 

lacked a clear explanation. Considering their minimal impact on the overall feeding duration 

when examining daily values, as those occurrences were mostly lasting less than a minute, it 

was decided to proceed with utilising the weighing trough data for the study. 
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2. Data cleaning 

The first data sets were primarily cleaned by removing the values with faulty or insufficient 

counts, a variable that was created for all parameters that were recorded several times a day 

at regular intervals. The upper and lower limits for the number of counts per day were 

determined individually for each parameter depending on the frequency of measurements per 

day and can be found in Table 10. 

Table 10: Upper and lower daily count limits depending on the sensor system 

Sensor system smaXtec SCR ENGS Nedap 

Upper daily count limit per cow 144 12 24 12 

Lower daily count limit per cow 139 11 23 11 

Afterwards, outliers exceeding three times the interquartile range were eliminated. The rows 

that included no value for the LMS at all and those scored on the claw trimming date were also 

excluded from the daily records. 

The number of daily values and the number of cows in the first data sets and the final daily 

records after data cleaning, as well as the number of variables in the final data set, can be 

found in Table 11. A total of 27,690 daily values from 744 cows could be recorded on all farms 

and was reduced to 24,583 daily values and 730 cows after data cleaning. 

Table 11: Daily values, number of cows and variables in the daily records 

Farm RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

First data sets 
(daily values) 7,328 2,861 5,022 1,359 1,135 1,922 5,257 2,752 

First data sets 
(number of 
cows) 108 64 97 62 54 70 160 129 

Final data sets 
(daily values) 5,842 2,727 4,221 1,299 1,083 1,829 4,959 2,624 

Final data sets 
(number of 
cows) 105 63 92 62 52 68 159 129 

Number of 
variables 122 82 116 54 43 42 64 54 

Even in the final daily datasets, there were some missing data points. Possible explanations 

for missing data include instances of sensor malfunctions, collection of clearly erroneous data, 

which had to be removed due to implausibility and that often not all animals on a farm were 

equipped with a particular sensor system. In Figure 33, the relative share of missing values for 

each system is displayed as a proportion of the total values recorded on the farms where the 

sensors were installed. 
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Figure 33: Relative proportion of missing values relative to total farm data 

78.5% of ENGS (Feeding) values were missing on RF1. Due to the problems that occurred 

with the induction loop installation, only feeding data for the three-week period before one claw 

trimming date could be collected. The main reason for the 48.2% missing Nedap (pedometer) 

values and the missing smaXtec data points can be attributed to the fact that not all animals 

on RF3 were equipped with Nedap pedometers, and similarly, not all animals on RF1 were 

fitted with smaXtec boluses. Additionally, older generation boluses were occasionally used on 

RF1 and RF3, which did not capture rumination, resulting in further missing data points for this 

parameter. Furthermore, SCR sensors were only deployed on RF3 during the initial claw 

trimming period and were then discontinued. One main reason for missing values in the milking 

robot and LKV data was the dry period of the cows. As all the different sensor systems on each 

farm contained different missing values, the missing data points were kept in the daily farm 

records to avoid excessive data loss and only excluded for the combined data sets and the 

further analysis. 

3. Univariate analysis 

3.1 Claw Health 

3.1.1 Locomotion score 

The final daily records included 24,583 locomotion score (LMS) values. In 79% of the cases 

the cows showed a healthy gait (LMS1), while 15.2% displayed small deviations from the 

normal walking behaviour (LMS2) and 5.8% were clearly lame (LMS3). After correction to 

create the C_LMS (see Chapter IV.4.2.6), 4.6% were still considered unsound (C_LMS2) and 

16.4% were categorised as lame (C_LMS3). 13,238 LMS were detected directly by watching 

video recordings (54%) while 11,345 LMS1 values (46%) were interpolated as explained in 

Chapter 3.1.1. The number of locomotion scores as well as the number of scored cows and 

assessments per farm and as a whole are displayed in Table 12. 



76 
 

Table 12: Number of locomotion scores (LMS), corrected locomotion scores (C_LMS), cows 

and assessments per farm and in total 

 RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 Total 

Total LMS 5,842 2,727 4,221 1,299 1,083 1,829 4,959 2,623 24,583 

LMS1 4,498 2,153 3,373 1,041 857 1,332 3,993 2,184 19,431 

LMS2 951 457 652 193 192 382 623 286 3,736 

LMS3 393 117 196 65 34 115 343 153 1,416 

C_LMS2 391 62 246 99 82 116 91 46 1,133 

C_LMS3 953 512 602 159 144 381 875 393 4,019 

Number of 
individual 
cows 105 63 92 62 52 68 159 129 730 

Number of 
individual 
assessments 316 135 260 62 52 94 246 129 1,294 

The percentages of the different locomotion scores recorded during the whole data collection 

period divided by farm can be seen in Figure 34. CDF4 had the largest proportion of cows 

scored as LMS3 (6.9%) while LMS2 was highest on CDF3 (20.9%). The lowest detection rate 

of LMS3 occurred on CDF2 (3.1%) and the smallest proportion of LMS2 was found on CDF5 

(10.9%). If LMS2 and LMS3 are both considered, the highest prevalence of unsound and lame 

walking cows during the data collection period could be documented on CDF3 with 27.2%. The 

highest number of sound walking cows scored as LMS1 was recorded on CDF5 (83.3%) with 

16.7% of the cows walking unsound or lame. After correction of the LMS2 due to the claw 

trimming findings or positive pain tests (C_LMS), the percentage of cows considered as lame 

increased over all farms (RF1: 16.3%, RF2: 18.8%, RF3: 14.3%, CDF1: 12.2%, CDF2: 13.3%, 

CDF3: 20.1%, CDF4: 17.6%, CDF5: 15.0%, Total: 16.4%). 

 

Figure 34: Relative proportion of the different locomotion scores recorded during the data 

collection period on each farm 
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To calculate the lameness prevalence on each farm, the locomotion scores detected on the 

day before the claw trimming were utilised. The overall lameness prevalence on the different 

farms, displayed by the LMS3 prevalence, is shown in Table 13 and the lameness prevalence 

for each claw trimming on the farms can be found in Table 35 in the appendices. The highest 

lameness prevalence was observed on CDF3 with 10.0%, followed by RF1 with 9.5%, whereas 

on CDF2 only 1.9% of the animals were clearly lame. 

Table 13: Total count and relative proportion of locomotion scores (LMS) on the different farms 

Using the LMS, the average number of days required for lameness to develop was calculated. 

Only cases in which a cow received an LMS3 at least once and an LMS1 within the preceding 

20 days were considered, i.e. when the cow went from sound to lame in the three weeks 

preceding claw trimming. This was the case for n = 68 records from 64 different cows. The 

days to lameness development were defined as the interval between the last day the cow 

received an LMS1 score and the earliest day the cow received an LMS3 score. The shortest 

interval for lameness development was one day, the longest was 13 days. The time for 

lameness development from the last time the cow walked sound to the first time being scored 

as lame across all observations was on average four and in median three days (Figure 35) 

with a standard deviation of 2.97. A table reporting the median and standard deviation of 

lameness development for each project farm separately can be found in Table 36 in the 

appendices. 

 

Figure 35: Histogram of the duration of lameness development from locomotion score (LMS) 

1 to LMS3 in days (Median: 3 days) 

 RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 Total 

LMS1 199 97 160 46 39 57 173 94 865 

LMS2 59 26 45 13 12 24 48 28 255 

LMS3 27 8 19 3 1 9 17 7 91 

LMS1 (%) 69.8 74.0 71.4 74.2 75.0 63.3 72.7 72.9 71.4 

LMS2 (%) 20.7 19.9 20.1 21.0 23.1 26.7 20.2 21.7 21.1 

LMS3 (%) 9.5 6.1 8.5 4.8 1.9 10.0 7.1 5.4 7.5 
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3.1.2 Pain test 

During the data collection period, 4,804 pain tests (PT) could be recorded on the project farms, 

as this parameter, unlike the LMS, was measured only on the claw trimming date. The results 

included 276 positive and 4,528 negative pain tests. The counts of negative and positive pain 

reactions on the different farms are shown in Table 14 and the relative proportions of positive 

and negative pain tests are displayed in Figure 36. The relative proportion of positive pain test 

results was 5.7% in total and highest on RF2 (12.4%), while the lowest percentage was 

observed on CDF1 (2.4%). A more comprehensive listing of the positive and negative pain test 

results for each claw trimming date is provided in Table 37 in the appendices. 

Table 14: Counts of negative and positive pain test (PT) results on the project farms 

 RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 Total 

Positive pain test 66 65 59 6 6 18 36 20 276 

Negative pain test 1,038 459 837 242 202 342 912 496 4,528 

Total count of pain 
tests 1,104 524 896 248 208 360 948 516 4,804 

 

Figure 36: Relative proportion of negative and positive pain test results on the different farms 

As the pain response was assessed separately for each of the cow's four feet, a difference in 

the occurrence of a positive pain reaction could be observed depending on the foot. When 

considering the results of the pain test across all farms, a positive reaction was most frequently 

elicited in the left hind foot at 7.7%, followed by the left front and right hind feet at 5.5% each, 

while the right front foot showed a pain reaction in only 4.3% of cases (Figure 37). Combining 

the positive reactions from both hind and front feet, the hind feet displayed a positivity rate of 

13.2%, contrasting with the lower rate of 9.8% observed in the front feet. 
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For the final datasets, the pain test data from the four feet of each cow were consolidated into 

a single value. A pain reaction was recorded as positive if any one of the feet showed a reaction 

and as negative if all four feet showed no reaction. This method reduced the number of pain 

test results in the dataset to 1201 values, including 226 (18.8%) positive and 975 (81.2%) 

negative pain responses (Table 15). 

Table 15: Count of aggregated positive and negative pain test results on the project farms 

 RF1 RF2 RF3 
CDF

1 
CDF

2 
CDF

3 
CDF

4 
CDF

5 Total 
Total rel. 

(%) 

Positive 
pain test 53 47 51 5 6 17 32 15 226 18.8% 

Negative 
pain test 223 84 173 57 46 73 205 114 975 81.2% 

Total 
count of 
pain tests 276 131 224 62 52 90 237 129 1,201 100% 

 

Figure 37: Percentage of positive pain reactions divided by the individual foot 

3.1.3 Growth in the sole centre 

The growth in the sole centre (GSC) was also assessed for each foot and a score from 1 to 3 

was assigned. In total, 4,804 results for GSC were documented, including 24 times the result 

GSC1, 1,664 times the result GSC2 and 3,116 times the result GSC3 (Table 16). The relative 

proportion of the different GSC results divided by farm is shown in Figure 38, indicating a clear 

predominant presence of GSC3 on CDF1, CDF2 and CDF5, while on the other farms, a more 

balanced ratio was observed between GSC2 and GSC3. GSC1 was observed only in very 

small proportions on RF1, RF2, RF3 and CDF3 and could not be recorded at all on the other 

farms. The count and percentage of the GSC on the different claw trimming dates are displayed 

in Table 38 in the appendices. 
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Table 16: Counts of the score for the growth in the sole centre (GSC) on the project farms 

 RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 Total 
Total 

rel. (%) 

GSC1 8 1 9 0 0 6 0 0 24 0.5 

GSC2 477 199 444 21 5 152 322 44 1,664 34.6 

GSC3 619 324 443 227 203 202 626 472 3,116 64.9 

Total 1,104 524 896 248 208 360 948 516 4,804 100.0 

Total rel. 
(%) 23.0 10.9 18.7 5.2 4.3 7.5 19.7 10.7 100.0  

Similarly to the pain test procedure, the four values of each cow were summarised into a total 

GSC per cow per day, employing the median of these four individual values. The counts of the 

aggregated GSC values are displayed in Table 17 and consist of 1,201 total values. 

Table 17:Count of aggregated values of the growth in the sole centre (GSC) 

GSC 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 Total 

Count 2 1 3 3 246 59 204 91 592 1,201 

Rel. counts (%) 0.2 0.1 0.2  0.2 20.5 4.9 17.0 7.6 49.3 100.0 

 

Figure 38: Relative proportion of the scores of the growth in the sole centre assessed on each 

farm 

The distribution of different GSC score results is further broken down in Figure 39 according 

to the occurrence on the individual foot. The proportion of GSC3 is slightly higher in the hind 

feet compared to the front feet, whereas a higher proportion of GSC2 is observed in the front 

feet instead. 
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Figure 39: Relative proportion of the scores of the growth in the sole centre (GSC) divided by 

feet (LH = left hind, LF = left front, RH = right hind, RF = right front) 

3.1.4 Findings and Treatments 

In total, 2,955 findings and 991 treatments could be recorded during the study and the relative 

shares of the different claw diseases over all farms are depicted in Figure 40. The different 

digital dermatitis stages were combined into one total value for this analysis. SHD constituted 

the largest share at 37.73%, followed by DD with 18.51% and WLF with 17.33%. The 

prevalence of each diagnosis divided by farms is displayed in Table 18 and the single counts 

of findings and treatments in total and on each farm are enlisted in Table 39 to Table 47 in the 

appendices. SHD also constituted the largest proportion of findings on the different farms, 

except for CDF2 and CDF5, where WLF findings predominated. Moreover, CDF1 showed a 

complete absence of DD cases, whereas the incidence of DDM2 cases on RF2, at 15.95%, 

significantly exceeded that observed in other facilities. The highest number of chronic 

dermatitis cases were observed at CDF3 (16.31%), while RF1 exhibited the most SHC findings 

(12.31%). Sole ulcers were seen predominantly on CDF4 at 2.77%, aligning with the highest 

incidence of CSH (8.65%) on this farm. The highest share of WLA was documented on CDF1 

(8.48%), while the greatest occurrence of IH was noted on RF3 (3.96%) and most DS were 

observed on CDF2 (4%). 
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Figure 40: Pie chart and table of the relative share of each diagnosis documented during the 

claw trimmings 

Table 18: Prevalence of the different findings on each project farm (abbreviations explained in 

Table 7) 

Findings RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

TU 0.15 0.00 0.00 0.61 0.00 0.00 0.00 0.68 

OLU 0.60 1.43 0.00 0.00 0.00 0.60 0.16 0.34 

IP 0.74 0.29 0.00 0.00 1.33 0.00 0.00 0.68 

SU 1.49 1.71 0.66 0.00 1.33 1.51 2.77 1.70 

DDM1 5.66 2.85 12.97 0.00 2.67 3.93 0.00 0.68 

DDM2 4.47 15.95 12.97 0.00 9.33 6.65 7.99 9.18 

DDM3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

DDM4 9.54 3.13 1.10 0.00 6.67 16.31 2.45 1.02 

DDM4.1 0.45 0.28 0.00 0.00 0.00 2.42 0.65 0.00 

HHE 1.48 2.85 0.44 1.21 1.33 2.72 0.16 11.90 

CSH 5.37 3.42 4.84 8.48 4.00 3.32 8.65 7.14 

SHD 30.40 42.17 43.96 50.30 16.00 36.25 43.88 26.87 

SHC 12.67 3.70 3.74 1.21 16.00 0.00 11.42 4.42 

WLF 17.29 15.67 12.09 26.06 24.00 19.64 12.89 27.55 

WLA 1.49 1.71 0.88 8.48 8.00 1.21 4.73 3.06 

HF 1.94 1.71 0.87 0.00 4.00 0.60 1.14 0.35 

IH 3.73 2.00 3.95 0.62 1.34 3.33 1.97 3.41 

DS 2.38 0.85 1.53 3.03 4.00 1.51 1.14 1.02 

TN 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 

BU 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total rel. 
(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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The distribution of relative proportions of cases across different limbs was also analysed for 

the findings, as can be seen in Figure 41. The majority of findings, comprising over 70%, were 

found in the hind feet, whereas the smallest proportion, at 13.0%, was observed in the right 

front limb. 

 

Figure 41: Relative distribution of findings by foot 

3.2 Statistical summaries 

Statistical summaries were calculated for all numeric parameters across all farms and for each 

farm individually. The corresponding tables can be found in Table 48 to Table 56 in the 

appendices. The parameters Robot_blood, Robot_blood_percent, Colour_lv, Colour_rv, 

Colour_lh and Colour_rh were removed from the datasets for further analysis due to the lack 

of comparability and the small number of values per parameter. 

4. Bivariate analysis 

4.1 Pain test and findings 

Among the 226 aggregated positive pain samples, 53 showed no findings at all, while 173 

presented with clinical findings (Table 19). Of the 975 negative pain test results, 229 did not 

display any visible findings, whereas the remaining 746 demonstrated visible claw diseases. 

Consequently, 23.5% of the animals displayed visible signs of pain despite the absence of 

findings and only 18.8% of the animals with visible findings also showed a pain reaction. The 

distribution of positive pain reactions with simultaneous absence of clinical findings across 

different farms is shown in Table 19. 

The different shares of positive and negative pain tests by claw disease can be found in Table 

57 in the appendices. 
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Table 19: Pain test (PT) results grouped by the occurrence or absence of visible findings 

Table 20: Positive pain tests without clinical findings divided by farm 

 RF1 RF2 RF3 CDF3 CDF4 CDF5 

Positive pain tests with no findings 15 19 10 2 5 2 

4.2 Pain test and growth in the sole centre 

The score for the growth in the sole centre was recorded to explore the potential relationship 

between positive pain tests in the absence of visible clinical findings and an excessive growth 

in the sole centre. For this purpose, the median and the average of the GSC for all recordings 

with a positive PT were compared to the median and average of the GSC for all recordings 

with a negative PT. The values for the negative PT group (median: 3, average: 2.7) appeared 

to be higher than the ones noted for the positive PT group (median: 2.5, average: 2.5). In cases 

with a positive PT and no findings, the median was 2.3, while the average was 2.4. 

4.3 Validation of the locomotion scoring system 

A calculation of the intra-rater and inter-rater reliability as well as a comparative analysis 

between a three-level lesion score (LS) (Figure 28) and the locomotion score (Figure 27) was 

carried out to validate the locomotion scoring system. 

As described by Hertle et al. (2022), videos of 355 cows were watched and locomotion scores 

were assigned to each cow by the observer (Rater 1) twice with a six-month interruption. The 

calculated percentage of agreement of the intra-rater reliability was 93.2% and the κw was 0.89. 

The same procedure was performed to determine the inter-rater reliability, gaining the values 

PA = 82.1% and κw = 0.72. As described by Yang and Laven (2019), point estimates may not 

be sufficient because the true kappa value always falls in a specific range and can vary through 

the influence of diverse factors. A more advanced approach utilises the 95% confidence 

interval, which signifies that the calculated interval limits enclose the actual value with a 

probability of 95%. For the intra-rater reliability, the 95% confidence interval (CI) was 0.84-0.94 

and therefore, according to the introduced levels by Landis and Koch (1977), the strength of 

agreement was almost perfect. The result for the CI of the inter-rater reliability (0.64-0.81) 

implies a substantial to almost perfect accordance between the two raters. In this study, 

besides Rater 1, two additional raters (Rater 3 and Rater 4) were involved in the locomotion 

scoring and scored the corresponding cows to 4 out of 20 claw trimming dates. Prior to the 

scoring process, the inter-rater reliability between these additional raters and Rater 1 was also 

calculated. The results of all inter-rater agreement analyses are presented in Table 21. 

 Positive PT Negative PT Total 

Visible findings 173 746 919 

No visible findings 53 229 282 

Total 226 975 1,201 
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Table 21: Inter-rater reliability results, including the percentage of agreement (PA) and 

quadratic weighted kappa (κw) of Rater 1 compared to three other raters 

In an initial analysis, two subsets of data were used to compare locomotion scores with lesion 

scores (Hertle et al., 2022). The first subset comprised 110 cows, and the second subset 

included 115 cows. The gained results were a κw of 0.51 (CI: 0.34-0.68) and a PA of 66.4% for 

the first dataset, while the second dataset yielded a κw = 0.72 (CI: 0.58-0.86) and a PA = 80.0%.  

After the completion of locomotion scoring, lesion scores were calculated for the entire dataset, 

utilising 1,201 assessments from 727 different cows. The calculated percentage of agreement 

on this data was 65.7% and the κw was 0.44 (CI: 0.40-0.50), displaying a moderate agreement 

between locomotion and lesion score. The correlation and divergence of locomotion and lesion 

scores can be observed in Figure 42. Most of the deviating values show a difference of 1, with 

the majority having an LMS of 1 and an LS of 2. Significantly fewer observations show a 

difference of 2, with the combination LS3-LMS1 occurring more frequently than LMS3-LS1. 

The values of PA, κw  and CI on each farm can be found in Table 58 in the appendices. 

 

 

Figure 42: Jitter plot showing the differences between locomotion and lesion scores 

 

Raters Rater 1 and Rater 2  Rater 1 and Rater 3 Rater1 and Rater 4 

N 355 105 75 

PA 82.1% 85.2% 80.1% 

κw 0.72 0.85 0.82 
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4.4 Relationships between claw health parameters and the 
locomotion score 

The growth in the sole centre and the pain test results were compared to the plain locomotion 

score instead of the corrected locomotion due to the influence of the pain test on the C_LMS 

itself. The statistical summaries for GSC or PT and each LMS group are shown in Table 22 

and the percentages of the different PT and GSC results for each LMS group are displayed in 

Figure 43. The Spearman’s rank correlation coefficient for GSC and the LMS was negative 

(ρ = -0.06). Statistically significant differences between all LMS groups were found according 

to the Kruskal-Wallis and the Wilcoxon signed rank test. The differences in PT between LMS 

groups were also consistently statistically significant across both tests, although PT 

demonstrated a positive correlation with LMS (ρ = 0.19) (Figure 43). The odds ratio for GSC 

was 0.496 (CI: 0.441-0.559) and indicated a protective effect, while for PT it was 5.775 (CI: 

5.167-6.456), indicating it strongly increases the risk of an animal being classified as lame, 

both with p < 0.001. 

Table 22: Statistical summaries of growth in the sole centre (GSC) and pain test (PT) for each 

locomotion score (LMS) group 

LMS Variable Min Q1 Median Mean Q3 Max SD N 

1 PT 0 0 0 0.1 0 1 0.4 19,316 

2 PT 0 0 0 0.2 0 1 0.4 3,678 

3 PT 0 0 1 0.5 1 1 0.5 1,379 

1 GSC 0 2.5 3 2.7 3 3 0.4 19,316 

2 GSC 1 2.5 2.8 2.6 3 3 0.4 3,699 

3 GSC 1.2 2 2.5 2.5 3 3 0.4 1,379 

 

Figure 43: Relative proportion of pain test (PT) and growth in the sole centre (GSC) grouped 

by locomotion score (LMS) 



87 
 

4.5 Differences in variables across corrected locomotion score 
groups 

For the analysis of the other automatically recorded parameters, it was decided to prioritise the 

comparison to the C_LMS, as this one also took the PT and the documented findings into 

account, and the results compared to the original LMS were only noted in cases of significant 

discrepancies. Statistical summaries were calculated for each variable combination and 

C_LMS across all farms and can be found in Table 59 in the appendices (Statistical summaries 

with LMS: Table 60). As the parameters of the data sets did not follow a normal distribution, 

the corresponding tests for non-normally distributed variables were conducted. The 

Spearman’s rank correlation was tested between the ordinal variable C_LMS and each of the 

numeric parameters and can be found in Table 23. 

Table 23: Spearman correlation between corrected locomotion score (C_LMS) and each 

variable across all farms (parameters explained in Table 33) 

Variable 
Positive/ no 
correlation 

Variable 
Negative 

correlation 

WT_feed_intake_per_visit 0.35 WT_trough_visits -0.31 

WT_feeding_pace 0.27 WT_trough_visits_day -0.31 

WT_feeding_duration_per_visit 0.24 Delaval_act_avg -0.25 

Nedap_inactive 0.19 Lemmer_act -0.25 

WT_feed_intake_per_meal 0.18 Lemmer_factor_of_restlessness -0.23 

ENGS_lying_day_night 0.17 ENGS_act_day -0.23 

Smaxtec_temp_normal_median 0.17 SCR_act_day -0.21 

Smaxtec_temp_without_drink_cycles_me
dian 

0.16 ENGS_act -0.20 

Smaxtec_temp_max 0.15 SCR_act -0.20 

Smaxtec_temp_without_drink_cycles_ma
x 

0.15 Nedap_act_foot_median_day -0.19 

Smaxtec_temp_median 0.14 Nedap_get_ups -0.18 

SCR_rum_day_night 0.13 Nedap_act_foot_sum_day -0.18 

Lemmer_lying 0.13 Nedap_act -0.17 

Lactation_number 0.11 WT_feeding_duration -0.16 

LKV_milk_yield_in_last_lactation 0.11 WT_feeding_duration_day -0.16 

Body_weight 0.11 Nedap_act_foot_median -0.15 

ENGS_lying_duration_per_bout 0.11 Nedap_act_foot_sum_day_night -0.15 

Lemmer_get_ups 0.09 WT_number_of_meals -0.14 

Smaxtec_temp_without_drink_cycles_mi
n 

0.09 WT_number_of_meals_day -0.14 

Robot_milk_yield_in_last_lactation 0.07 ENGS_lying_bouts -0.14 

MDi 0.07 Delaval_act_rel_min -0.14 

WT_feed_intake 0.07 Delaval_act_rel -0.13 

ENGS_lying_day 0.07 Nedap_rum -0.12 

Maximum_milking_interval 0.06 ENGS_lying_bouts_day -0.12 

Milking_temperature 0.05 Nedap_act_foot_median_day_nig
ht 

-0.12 

ENGS_lying_bouts_day_night 0.05 ENGS_act_day_night -0.11 

LKV_daily_milk_yield 0.04 Nedap_act_collar_median_day -0.11 

Concentrated_feed_remains 0.04 Nedap_act_collar_sum_day -0.11 

WS_rel_hum_med 0.04 Nedap_act_collar_sum_day_nigh
t 

-0.11 

WS_rel_hum_min 0.04 SCR_act_day_night -0.09 

Robot_daily_milk_yield 0.03 Nedap_act_collar_median -0.09 

Robot_conduct_lely 0.03 Nedap_act_collar_sum -0.09 

Smaxtec_climate_hum_median 0.03 Nedap_act_collar_median_day_n
ight 

-0.09 

Robot_milk_yield_in_current_lactation 0.02 Delaval_act_rel_max -0.08 

Robot_daily_milk_yield_in_last_lactation 0.02 Smaxtec_temp_min -0.08 

Max_milking_flow 0.02 Milkings -0.07 

Robot_fat 0.02 Nedap_feeding -0.06 
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Variable 
Positive/ no 
correlation 

Variable 
Negative 

correlation 

Robot_fat_protein_ratio 0.02 WS_thi_med -0.06 

ENGS_feeding 0.02 WS_thi_min -0.06 

ENGS_feeding_day 0.02 WS_thi_max -0.06 

ENGS_feeding_duration_per_meal 0.02 WS_temp_2m_med -0.06 

Smaxtec_rum 0.02 WS_temp_2m_min -0.06 

Smaxtec_climate_hum_min 0.02 WS_temp_2m_max -0.06 

Smaxtec_climate_hum_max 0.02 WS_temp_20cm_med -0.06 

WS_global_rad_min 0.02 WS_temp_20cm_max -0.06 

Season 0.02 WS_soil_temp_5cm_med -0.06 

WS_wind_velocity_min 0.01 WS_soil_temp_5cm_min -0.06 

WS_rain_med 0.01 Breed -0.05 

WS_rain_max 0.01 LKV_protein -0.05 

LKV_urea 0 Milking_flow -0.05 

Robot_conduct 0 WS_temp_20cm_min -0.05 

Concentrated_feed_intake 0 WS_soil_temp_5cm_max -0.05 

ENGS_feeding_day_night 0 WS_soil_temp_20cm_med -0.05 

SCR_rum_day 0 WS_soil_temp_20cm_min -0.05 

ENGS_lying 0 WS_soil_temp_20cm_max -0.05 

Smaxtec_climate_temp_min 0 WS_global_rad_med -0.05 

Smaxtec_thi_min 0 WS_global_rad_max -0.05 

WS_rel_hum_max 0 LKV_fat -0.04 

WS_wind_velocity_med 0 Robot_BCS -0.04 

  WT_feeding_duration_per_meal -0.04 

  ENGS_number_of_meals_day_ni
ght 

-0.04 

  SCR_heat_probability -0.04 

  Smaxtec_act_day -0.04 

  Smaxtec_act_day_night -0.04 

  LKV_lactose -0.03 

  Robot_somatic_cell_count -0.03 

  WT_number_of_meals_day_night -0.03 

  SCR_rum -0.03 

  SCR_heat_probability_day -0.03 

  Nedap_lying -0.03 

  Smaxtec_act -0.03 

  Smaxtec_climate_temp_max -0.03 

  Smaxtec_thi_max -0.03 

  Days_in_milk -0.02 

  ENGS_number_of_meals_day -0.02 

  LKV_somatic_cell_count -0.01 

  LKV_fat_protein_ratio -0.01 

  Robot_effect_of_scc -0.01 

  Robot_protein -0.01 

  Robot_lactose -0.01 

  WT_feeding_duration_day_night -0.01 

  WT_trough_visits_day_night -0.01 

  ENGS_number_of_meals -0.01 

  Smaxtec_climate_temp_median -0.01 

  Smaxtec_thi_median -0.01 

  WS_wind_velocity_max -0.01 

  WS_rain_min -0.01 

Statistically significant differences for each parameter across all three C_LMS groups and all 

farms were tested by applying the Kruskal-Wallis test and the results are displayed in Table 

61 in the appendices. Most parameters demonstrated statistically significant differences 

between the corrected locomotion score groups, with p < 0.05 and the majority even reaching 

p < 0.01. Non-statistically significant parameter differences occurred in the group of milking 

parameters, for example LKV_urea (p = 0.17) and Concentrated_feed_intake (p = 0.39), in the 

group of climate parameters, for instance, WS_wind_velocity_max (p = 0.12), in rumination 

with Smaxtec_rum (p = 0.07), in heat behaviour with SCR_heat_probability_day (p = 0.09) and 
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in terms of feeding behaviour, where particularly the ENGS parameters like 

ENGS_number_of_meals (p = 0.32) and the day-night ratios like WT_feeding_ 

duration_day_night (p = 0.22) were not statistically significant. In contrast to the LMS groups, 

the differences in ENGS_lying (p = 0.30) and Nedap_lying (p = 0.13) were also not significant 

between the C_LMS groups. 

To further specify the statistically significant differences between C_LMS groups, a post-hoc 

analysis using the Wilcoxon signed-rank test was conducted. This analysis examined the 

significance of differences between C_LMS1 vs. C_LMS2, C_LMS1 vs. C_LMS3, and 

C_LMS2 vs. C_LMS3 (Table 62 in the appendices). For the LMS, the same analysis was 

conducted, and the results can be found in Table 63 in the appendices. The counts of all 

variables with and without a statistically significant difference (p > 0.05) between the C_LMS 

groups grouped by parameter classes are displayed in Table 24. 

Table 24: Count of variables with and without statistically significant differences between the 

corrected locomotion score (C_LMS) groups (p > 0.05) for each parameter class 

(sig. = statistically significant differences, n.s. = no statistically significant differences) 

Variable 
C_LMS1 vs. 

C_LMS2 
C_LMS1 vs. 

C_LMS3 
C_LMS2 vs. 

C_LMS3 

 sig. n.s. sig. n.s. sig. n.s. 

Animal characteristics 1 0 1 0 0 1 

Milking parameters 19 9 20 8 12 16 

Constitution 2 0 2 0 2 0 

Feeding behaviour 11 14 14 11 13 12 

Rumination 2 3 3 2 2 3 

Heat behaviour 1 2 1 2 0 3 

Lying behaviour 6 5 9 2 2 9 

Activity 22 5 26 1 11 16 

Body temperature 7 0 7 0 6 1 

Climate 11 26 27 10 28 9 

Furthermore, the odds ratio, measuring the association between an exposure variable and an 

outcome, was calculated for all these parameters, once based on the outcome lame as 

C_LMS = 3 and once with LMS = 3, and can be found in the appendices (Table 64). 

4.5.1 Animal characteristics 

The percentage distribution of each C_LMS group by breed is illustrated in Figure 44, with 

Holstein cows exhibiting the highest percentage within the C_LMS3 category (33.0%), followed 

by Simmental (16.7%) cows. However, this cannot be considered a breed-specific lameness 

comparison, as the majority of the cows in this study were Simmental cows, with other breeds 

represented only sporadically. No statistically significant differences could be demonstrated 

between C_LMS2 and C_LMS3 and the OR was 0.828. 
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Figure 44. Relative proportion of the corrected locomotion score (C_LMS) by breed and the 

number of n assessments recorded per breed 

4.5.2 Milking parameters 

The milking data could be gathered from both the milking robot and LKV Bayern. The boxplots 

in Figure 45 represent the daily milk yield recorded by LKV and the milking robots for each 

corrected locomotion score group across all farms. In both evaluations, no significant 

differences could be observed between C_LMS2 and C_LMS3 (p = 1.00) and for 

Robot_daily_milk_yield the differences between C_LMS1 and C_LMS2 were also not 

significant. A positive correlation could be documented (LKV_daily_milk_yield (ρ = 0.04), 

Robot_daily_milk_yield (ρ = 0.03) and the odds ratios presented a slight positive association 

for C_LMS. In contrast, when compared with the LMS, LMS2 animals displayed the highest 

daily milk yields and no statistically significant differences could be observed between LMS1 

and LMS3 cows. Considering the LMS, the Robot_daily_milk_yield revealed an OR below 1, 

whereas for LKV_daily_milk_yield, the odds ratio results did not suggest a statistically 

significant association. 

The daily milk yield during the last lactation displayed significant differences between the 

C_LMS groups except for C_LMS1/C_LMS2 and showed a correlation of ρ = 0.02 and an OR 

greater than 1. Even though the median of the total milk yield in the last lactation was highest 

among the C_LMS2 cows as shown in Figure 46, the Wilcoxon signed-rank test did not reveal 

any significant differences between the C_LMS2 and C_LMS3 groups. In contrast, the 

differences compared to the C_LMS1 group were significant, both for LKV and milking robots. 

A positive correlation was reported (LKV_milk_yield_in_last_lactation (ρ = 0.11), 

Robot_milk_yield_in_last_lactation (ρ = 0.07) and an odds ratio of 1 was determined for both 

parameters, implying no difference in odds ratio between the groups. Regarding the total milk 

yield throughout the current lactation, C_LMS2 animals tended to have a significantly higher 

milk yield compared to C_LMS1 cows, but the OR appeared to be not statistically significant. 
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Figure 45: Boxplots of the daily milk yield in each corrected locomotion score (C_LMS) group 

measured by the LKV and the milking robot 

 

  

Figure 46: Boxplots of the total milk yield in last lactation in each corrected locomotion score 

(C_LMS) group measured by the LKV and the milking robot 

Upon analysis of milk constituents captured by both the LKV and milking robots, there was an 

increase in milk protein content from C_LMS1 to the C_LMS2 group before the protein content 

decreased again in C_LMS3 cows. The Spearman’s rank correlation coefficient was negative 

(LKV_protein (ρ = -0.05), Robot_protein (ρ = -0.01)), while the OR for LKV protein was 0.565 
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and for Robot_protein was 0.630, which also implied a negative association. Regarding lactose 

content in milk, there were fewer marked differences observed. LKV_lactose exhibited a slight 

decline in concentration with increasing C_LMS (ρ = -0.03), notably within the C_LMS2 group. 

Robot_lactose demonstrated a more modest negative trend (ρ = -0.01), significant only 

between C_LMS1/C_LMS3 and C_LMS2/C_LMS3. The OR was below 1 for both variables, 

also suggesting a lower probability of lameness with rising lactose. There were contrasting 

trends in fat content with increasing C_LMS, where LKV_fat notably decreased among 

C_LMS2 and C_LMS3 cows, while Robot_fat showed a slight positive correlation (ρ = 0.02). 

The odds ratio was 0.9 for LKV_fat, while Robot_fat yielded no statistically significant 

differences regarding C_LMS3 and an OR greater than 1 concerning LMS3. Accordingly, 

Robot_fat_protein_ratio demonstrated a positive correlation (ρ = 0.02) with significant 

differences between the groups C_LMS1 and C_LMS3, while LKV_fat_protein_ratio displayed 

a negative correlation (ρ = -0.01) with significant differences between the groups C_LMS1 and 

C_LMS2 and between C_LMS2 and C_LMS3. LKV_urea exhibited no significant association 

or correlation in any tests. The somatic cell count recorded by LKV and milking_robots as well 

as Robot_effect_scc presented a negative correlation, but no statistically significant odd ratios. 

The milking parameters registered by both milking robots and LKV were compared to evaluate 

the degree of alignment between the monthly data provided by the LKV and the data collected 

by the milking robot during each milking session in order to assess whether the monthly 

recordings might be sufficient. For this analysis, the Intraclass Correlation Coefficient (ICC) 

and its confidence interval were calculated (Table 25). The ICC was selected as it effectively 

combines both correlation and agreement into a single metric (Koo & Li, 2016), providing an 

ideal measure for evaluating the consistency between two measurements obtained from 

different sources. According to Koo and Li (2016), the 95% CI of the ICC between LKV and 

the milking robot can be designated as excellent for the milk yield in last lactation, good for the 

daily milk yield and poor for the other milk parameters. 

Table 25: Intraclass Correlation Coefficient (ICC) between milk parameters recorded by LKV 

and the milking robots (parameters explained in Table 33) 

Other milk parameters grouped by the C_LMS are graphically represented in Figure 47 as 

violin plots. The median lactation number increased with higher C_LMS, rising from 2 at LMS1 

to 3 at both LMS2 and LMS3. The parameter exhibited both a positive correlation (ρ = 0.11) 

and an OR exceeding 1, thereby suggesting an increased risk of being classified as lame with 

increasing parity. Regarding days in milk, the differences were statistically significant. The 

median initially increased from C_LMS1 to C_LMS2, before declining again at C_LMS3. 

Overall, only a slight negative correlation and a protective effect of the days in milk were 

observed. The maximum milking interval increased with higher C_LMS (ρ = 0.06), but no 

Variables 
Intraclass 

Correlation 
Coefficient (ICC) 

LKV_milk_yield_in_last_lactation / Robot_milk_yield_in_last_lactati
on 

0.90 (CI: 0.89-0.90) 

LKV_daily_milk_yield / Robot_daily_milk_yield 0.86 (CI: 0.86-0.87) 

LKV_protein / Robot_protein 0.47 (CI: 0.46-0.48) 

LKV_fat / Robot_fat 0.34 (CI: 0.32-0.35) 

LKV_lactose / Robot_lactose 0.31 (CI: 0.30-0.32) 

LKV_somatic_cell_count / Robot_somatic_cell_count 0.21 (CI: 0.19-0.23) 
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statistically significant differences could be reported for C_LMS2/C_LMS3. The number of 

milkings per day presented the same median in all C_LMS groups and showed no differences 

between C_LMS2 and C_LMS3, but when examining the OR (0.792) and the correlation (ρ = -

0.07), a reduction with increasing C_LMS could be observed. 

In order to better assess the differences in conductivity in relation to LMS, a median value 

Robot_conduct was formed from the individual values per udder quarter. The conductivity 

values generated by the Lely milking robots were recorded separately as the parameter 

Robot_conduct_lely due to the different format. No significant differences between LMS1 and 

LMS3 were detected for Robot_conduct and the correlation was zero, indicating the absence 

of a linear relationship. Robot_conduct_lely and Max_milking_flow were only significant 

between C_LMS1 and C_LMS3 and exhibited a positive correlation. The milking temperature 

did not achieve any significant odds ratio results but presented statistically significant 

differences shown by the Wilcoxon signed-rank test and a ρ = 0.05. Additionally, the MDi 

exhibited a positive correlation with the C_LMS according to Spearman's rank correlation as 

well as an OR of 1.339. 

 

Figure 47: Lactation number, days in milk, maximum milking interval and milkings and their 

medians grouped by corrected locomotion score (C_LMS) 

4.5.3 Constitution 

The parameters Body_weight and Robot_BCS exhibited opposite trends with increasing 

C_LMS: as Body_weight increased (ρ = 0.11), Robot_BCS decreased (ρ = -0.04). The odds 

ratio only demonstrated a slight positive association in Body_weight (1.001), while the OR of 

Robot_BCS (0.602) was clearly below 1. In Figure 48, an increase in body weight, especially 

in the C_LMS2 group, is visualised. In contrast, the decline of Robot_BCS can be particularly 

seen in the C_LMS3 cows. 
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Figure 48: Body weight and body condition score (BCS) in each corrected locomotion score 

(C_LMS) group 

4.5.4 Feeding 

4.5.4.1 Feeding duration 

The feeding duration was assessed by weighing troughs and the ENGS pedometers on RF1 

and by Nedap collars on RF2 and RF3. As displayed in Figure 49, the weighing troughs 

reported a significant decrease in feeding duration in the C_  S3 group (ρ = -0.16, 

OR = 0.991). 

The feeding duration measured by ENGS pedometers showed no difference between C_LMS1 

and C_LMS3, but increased in the C_LMS2 group with an overall slight positive correlation 

(ρ = 0.02). The OR on the other hand was below 1 (0.996). The daytime proportions of feeding 

duration showed the same trend for ENGS and WT as the overall feeding duration, while the 

day-night ratios did not yield any significant OR results. 

Nedap_feeding showed no significant differences between C_LMS1 and C_LMS3, but there 

was a significant decline in C_  S2 cows (ρ = -0.06), even if the OR results also confirmed 

no significant differences. In contrast, a comparison with the LMS revealed a gradual decrease 

in the Nedap_feeding parameter as the LMS increased. The median feeding duration recorded 

by Nedap was significantly higher in all C_LMS groups compared to the ones noted by the 

other two sensor systems. 

4.5.4.2 Feed intake and feeding pace recorded by the weighing troughs 

The parameter WT_feed_intake demonstrated a positive relationship (ρ = 0.07, OR = 1.005) 

and statistically significant differences across all C_LMS groups. The variable 

WT_feeding_pace showed a high positive correlation with C_LMS (ρ = 0.27), statistically 

significant differences between all C_LMS groups and an OR greater than 1, thereby 

suggesting an increased risk of being classified as lame with increasing feeding pace. 

4.5.4.3 Feeding frequency parameters by ENGS and weighing troughs 

The parameters WT_feed_intake_per_visit (ρ = 0.35), WT_feeding_duration_per_visit (ρ = 

0.24) and WT_feed_intake_per_meal (ρ = 0.18) displayed high positive correlations with 
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increasing C_LMS and increased the risk of being classified as lame according to the OR. 

Conversely, WT_feeding_duration_per_meal displayed significant disparities only between 

C_  S  and C_  S3, revealing a discernible negative correlation (ρ = -0.04) and association 

(OR: 0.990). ENGS_feeding_duration_per_meal showed a positive correlation but a negative 

association according to its OR. The number of weighing trough visits (ρ = -0.31) and meals at 

the weighing troughs (ρ = -0.14) as well as their daytime proportions decreased significantly 

and demonstrated a negative association according to the OR. WT_number_ 

of_meals_day_night only reported significant differences between C_LMS1 and C_LMS3, 

demonstrated a negative correlation and showed no differences in OR. The parameters 

ENGS_number_of_meals, ENGS_number_of_meals_day, ENGS_number_of_meals_ 

day_night and WT_trough_visits _day_night did not display statistically significant differences 

in the Wilcoxon signed-rank test and the OR analysis. 

4.5.4.4 Concentrated feed intake 

Concentrated_feed_remains was only significant between C_LMS1 and C_LMS3 but showed 

a positive correlation and association. The parameter Concentrated_feed_ intake was not 

statistically significant in the Wilcoxon signed-rank test or the OR analysis. 

 

Figure 49: Feeding duration recorded by weighing troughs, ENGS and Nedap sensor systems 

and grouped by corrected locomotion score (C_LMS) 

4.5.5 Rumination 

Regarding rumination, the three sensors displayed differing changes in parameter results 

according to the C_LMS groups. Smaxtec_rum did not exhibit any statistically significant 

differences in rumination among the three C_LMS groups, Nedap_rum significantly declined 

in CLMS3 cows (ρ = -0.12) and SCR_rum showed only a slight reduction at higher C_LMS 

levels (ρ = -0.03) (Figure 50). Similarly, the OR was not significant for Smaxtec_rum but 

showed negative associations for SCR_rum and Nedap_rum. The rumination values recorded 

on the farms with Nedap collars appeared to be generally lower than those gained by the other 

two systems. SCR_rum_day showed no correlation or significant OR results and 
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SCR_rum_day_night was only statistically significant when considering C_LMS1 in 

comparison with another C_LMS showing a positive correlation and high positive association 

(ρ = 0.13, OR = 42.912). 

 

Figure 50: Rumination time recorded by smaXtec, Nedap and SCR sensor systems and 

grouped by the corrected locomotion score (C_LMS) 

4.5.6 Heat probability 

The SCR_heat_probability and its daily value did not result in any statistically significant 

differences between the C_LMS groups, while the Lemmer_factor_of_restlessness 

significantly decreased with higher locomotion scores (ρ = -0.23) and displayed an odds ratio 

below 1. 

4.5.7 Lying 

4.5.7.1 Lying duration 

The lying duration measured by Lemmer-Fullwood showed a clearly positive correlation 

(ρ = 0.13) and slight positive association (OR: 1.002) with the C_LMS, increasing from 

C_LMS1 to C_LMS3 cows (Figure 51). In contrast, for Nedap and ENGS sensors, no 

statistically significant differences could be reported between any of the C_LMS groups. 

ENGS_lying also appeared to have no correlation at all and an OR of 1, while Nedap_lying 

showed a slight negative correlation (ρ = -0.03). ENGS_lying_day, ENGS_lying_day_night 

and ENGS_lying_duration_per_bout all showed clear positive correlations and odds ratios 

greater than 1, but ENGS_lying_day was not significant between C_LM1 and C_LMS3 and the 

other two parameters did not show clear differences between the C_LMS2 and C_LMS3 group. 

4.5.7.2 Lying events 

The lying events data and their relationship to claw health status captured by Lemmer-

Fullwood were opposed to the ENGS and Nedap sensor data, as the former showed an 

increase with higher C_LMS (ρ = 0.09), especially in the C_LMS2 group (Figure 52), whereas 

the latter two systems exhibited a negative correlation (ENGS: ρ = -0.14, Nedap: ρ = -0.18). 
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As can be seen in Figure 52, the average lying bouts measured by ENGS sensors decreased 

continuously with rising C_LMS, while the get-ups measured by Nedap sensors declined from 

C_LMS1 to C_LMS2 and then also stayed on this lower level in the C_LMS3 group. The daily 

proportion of lying events measured by ENGS sensors exhibited a similar trend as the normal 

value, while the day-night ratio showed significance only between C_LMS1 and C_LMS3 and 

indicated a positive correlation and association. 

 

Figure 51: Lying duration recorded by Nedap, ENGS and Lemmer-Fullwood pedometers and 

grouped by the corrected locomotion score (C_LMS) 

 

Figure 52: Lying bouts/get-ups measured by Nedap, ENGS and Lemmer-Fullwood 

pedometers and grouped by the corrected locomotion score (C_LMS) 
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4.5.8 Activity 

Seven different sensor systems, including three pedometers, three collars and one bolus, 

detected the cows’ activity and all of them noted an activity decrease with rising C_LMS 

(ENGS_act (ρ = -0.20), Lemmer_act (ρ = -0.25), Nedap_act (ρ = -0.17), 

Nedap_act_collar_median (ρ = -0.09), SCR_act (ρ = -0.20), Delaval_act_avg (ρ = -0.26), 

Smaxtec_act (ρ = -0.03)) (Figure 53 and Figure 54). All other measured or calculated activity 

parameters except for Nedap_inactivity also showed a negative correlation with increasing 

C_LMS, although the differences between C_LMS2 and C_LMS3 were not statistically 

significant in many activity variables such as Lemmer_act, DeLaval_act_avg, 

SCR_act_day_night, all activity parameters by ENGS and most of the Nedap activity 

parameters. Smaxtec_act noted a higher activity level for the C_LMS2 group before falling in 

the C_LMS3 cows. The relative activity variables detected by DeLaval showed no significant 

differences between C_LMS1 and C_LMS2. Most of the OR results denoted a negative 

association between C_LMS3 and activity, except for Smaxtec_act_day_night, 

SCR_act_day_night and DeLaval_act_rel_max with not statistically significant differences and 

ENGS_act, Nedap_act and Nedap_act_foot_sum_day with an OR of 1. The assessed 

inactivity as the variable Nedap_inactivity rose accordingly with higher locomotion scores 

(ρ = 0.19) and thus had a positive association with C_LMS. 

 

Figure 53: Activity measured by pedometers from Nedap, ENGS and Lemmer-Fullwood and 

grouped by the corrected locomotion score (C_LMS) 
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Figure 54: Activity measured by collars from DeLaval, Nedap and SCR and by boluses from 

smaXtec grouped by the corrected locomotion score (C_LMS) 

4.5.9 Body temperature 

The parameter Smaxtec_normal_temp_median rose with increasing C_LMS values (ρ = 0.17). 

The highest temperatures occurred in the C_LMS2 group, as displayed in Figure 55. Most of 

the other variables regarding the body temperature and the body temperature without the drink 

cycles measured by smaXtec also showed a positive correlation with the C_LMS, except for 

Smaxtec_temp_min (ρ = -0.08), which also resulted in an OR below 1 in contrast to the positive 

associations displayed by the calculated OR of the other parameters. Smaxtec_temp_med 

was the only parameter not demonstrating statistically significant differences in all groups, 

more precisely between C_LMS2 and C_LMS3. 

 

Figure 55: Normal body temperature recorded by smaXtec boluses and grouped by the 

corrected locomotion score (C_LMS) 
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In Figure 56, the decrease in temperature due to drinking cycles in the different C_LMS groups 

was compared by analysing the difference between Smaxtec_temp_without_drink_ 

cycles_median and Smaxtec_temp_median. A significant distinction was notably evident 

between all C_LMS groups, as the temperature difference increased in C_LMS2 cows and 

decreased again in the C_LMS3 group to the lowest level. 

 

Figure 56: Calculated body temperature difference (Smaxtec_temp_without_drink_ 

cycles_median - Smaxtec_temp_median) grouped by corrected locomotion score (C_LMS) to 

quantify the temperature drop induced by drinking 

4.5.10 Climate 

According to data by smaXtec, C_LMS2 cows were observed at higher temperatures and THI, 

whereas C_LMS3 cows were noted at lower temperatures and THI. At the weather stations, 

statistically significant decreases were noted in the C_LMS3 group, whereas all temperature 

parameters and the THI recorded by the weather stations did not demonstrate a statistically 

significant difference between C_LMS1 and C_LMS2. They also showed a negative correlation 

and a protective effect according to the OR results. The temperature and THI values measured 

by smaXtec displayed the same negative trend except for the minimum values, which showed 

no correlation at all. The humidity data recorded by smaXtec and the weather stations indicated 

an increase with increasing C_LMS and resulted in odds ratios greater than 1, except for the 

maximum humidity, which appeared to be not significant in the OR analysis. The remaining 

parameters from the weather stations also exhibited either non-significant differences, 

marginal correlations or no significant associations in the OR analysis. The manually created 

parameter Season displayed a positive correlation (ρ = 0.02) with the C_LMS3, as can be seen 

in Figure 57, as the distribution of LMS3 detections was higher in winter (19.0%) and autumn 

(17.5%) than in spring (16.6%) or summer (14.2%). Statistically significant differences could 

be observed between C_LMS1 and C_LMS3. 



101 
 

 

Figure 57: Relative proportion of the corrected locomotion score (C_LMS) by season and the 

number of n assessments recorded per season 

4.6 Farm-level comparison: Differences in variables between 
corrected locomotion score groups 

The differences in variables between the project farms were also investigated. Table 26 

presents the results of the Kruskal-Wallis test, indicating whether there are significant 

differences between the C_LMS groups. Due to the large number of parameters, this table 

was restricted to those parameters collected on more than one farm and for which the 

calculated significance varied between the individual farms. In the same manner, the 

Spearman's rank correlations are presented in Table 65 and the odds ratios are displayed in 

Table 66 in the appendices. 

Table 26: Reduced results of the differences between the C_LMS groups divided by farm, 

displaying only the parameters varying between the different farms (/ = not recoded on that 

farm) (parameters explained in Table 33) 

Parameter RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

Body_weight <0.01 / / / / / / >0.05 

Concentrated_feed_ 
intake 

<0.01 <0.01 <0.01 <0.05 <0.01 >0.05 <0.01 <0.01 

Days_in_milk <0.01 >0.05 <0.05 <0.01 <0.01 <0.01 <0.01 <0.01 

GSC >0.05 <0.01 <0.01 <0.01 <0.01 <0.05 >0.05 <0.01 

Lactation_number <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 >0.05 <0.05 

Lemmer_get_ups / / / / >0.05 / <0.01 / 

LKV_fat <0.01 <0.01 >0.05 >0.05 >0.05 <0.01 <0.01 >0.05 

LKV_fat_protein_ 
ratio 

<0.01 <0.01 >0.05 <0.01 <0.05 <0.01 <0.01 <0.01 

LKV_lactose <0.01 <0.01 >0.05 <0.05 >0.05 <0.01 >0.05 <0.01 
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Parameter RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

LKV_somatic_cell_ 
count 

>0.05 <0.01 <0.01 <0.01 >0.05 <0.01 <0.01 <0.05 

LKV_urea <0.01 <0.01 <0.01 >0.05 <0.05 <0.01 <0.01 <0.01 

Maximum_milking_ 
interval 

>0.05 <0.01 >0.05 <0.01 <0.01 <0.05 <0.01 <0.01 

MDi <0.01 / / / / >0.05 / / 

Milkings >0.05 <0.01 >0.05 <0.01 <0.01 <0.01 <0.01 <0.01 

Robot_conduct <0.01 / / / <0.01 <0.01 >0.05 / 

Robot_daily_milk_ 
yield 

<0.01 <0.01 <0.01 <0.01 <0.01 >0.05 <0.01 <0.05 

Robot_effect_scc / <0.01 <0.01 >0.05 / / / / 

Robot_fat / <0.01 <0.01 <0.01 <0.01 / <0.01 >0.05 

Robot_lactose / <0.01 >0.05 <0.01 >0.05 / >0.05 <0.01 

Robot_milk_yield_in
_last_lactation 

/ <0.01 <0.01 >0.05 <0.01 <0.01 <0.01 <0.01 

Robot_protein / <0.05 <0.01 <0.01 >0.05 / <0.01 >0.05 

Robot_somatic_cell_
count 

/ <0.01 <0.01 >0.05 / / / / 

SCR_act_day_night <0.01 / >0.05 <0.01 / / / <0.01 

SCR_heat_ 
probability 

/ / >0.05 <0.05 / / / >0.05 

Smaxtec_act_day_ 
night 

<0.01 / <0.01 / / / >0.05 / 

Smaxtec_climate_ 
hum_min 

>0.05 / >0.05 / / / <0.01 / 

Smaxtec_climate_ 
hum_median 

<0.01 / >0.05 / / / <0.01 / 

Smaxtec_climate_ 
hum_max 

<0.01 / >0.05 / / / <0.01 / 

Smaxtec_climate_ 
temp_min 

<0.01 / <0.01 / / / >0.05 / 

Smaxtec_thi_min <0.01 / <0.01 / / / >0.05 / 

WS_global_rad_max <0.01 <0.01 >0.05 / / / / / 

WS_rain_max >0.05 <0.05 <0.05 / / / / / 

WS_rel_hum_max <0.05 >0.05 <0.05 / / / / / 

WS_wind_velocity_
max 

<0.01 >0.05 <0.01 / / / / / 

WS_wind_velocity_
min 

>0.05 <0.05 <0.01 / / / / / 

4.7 Correlations between automatically recorded parameters 

Spearman's rank correlation coefficient was computed for all combinations of the automatically 

recorded data, resulting in a correlation matrix. Due to its extensive size, only parameters with 

correlations above 0.4 were considered. The corresponding table was further streamlined for 

clarity by initially eliminating parameter combinations that were derived from one another, like 

WS_thi_median from WS_temperature_median. Furthermore, all rows corresponding to the 

same parameter, whether from the same sensor or different sensors, were excluded. The 

corresponding correlation table can be found in the appendices (Table 67). Parameter pairs 

demonstrating a distinct and strong direct influence on each other, such as days in milk and 

milk yield, might be included in the table, along with parameter pairs where the relationship is 

less evident. 



103 
 

Furthermore, particular emphasis was placed on parameters categorised under distinct 

general parameter categories that nonetheless exhibit a strong correlation and the highest 

correlation coefficient observed for these relationships was documented in Table 27. 

Table 27: Highest correlation results between different categories of automatically recorded 

parameters 

Parameter 1 Parameter 2 Correlation 

Milking temperature Climate 0.67 

Days in milk Milk contents 0.57 

Feeding behaviour Activity 0.56 

Feeding behaviour Climate 0.54 

Activity Climate 0.50 

Milking temperature Body temperature 0.49 

Lactation number Feeding behaviour 0.48 

Milk contents Milk yield 0.47 

Body weight Feeding behaviour 0.46 

Milking temperature Rumination 0.42 

Body temperature Climate 0.42 

Milk contents Concentrated feed intake 0.41 

Milk yield Feeding behaviour 0.41 

Body weight Activity 0.41 

Lying behaviour Body temperature 0.41 

5. Multivariate analysis 

5.1 Generalised linear mixed models 

The unadjusted ICC, calculated without incorporating any fixed effects, was 0.006 for Farm 

and 0.581 for FCN. Subsequently, the parameters that could be measured across all farms 

were included in the model as fixed effects, and the adjusted ICC was calculated. The adjusted 

ICC resulted in 0.006 for Farm and 0.639 for FCN. Based on these results, only the variable 

FCN was considered as a random effect in the subsequent models. 

5.1.1 Performance data 

The first model was centred on performance data, which could be collected on all eight project 

farms. The performance data included the breed, lactation number, lactation status, results of 

the milk performance test, milk yield recorded by LKV and the milking robot and all additional 

milk-related parameters recorded by the milking robot. The LKV_daily_milk_yield was included 

as a random slope in the models. 

The best-performing model with C_LMS as the dependent variable contained the following 

predictors: 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐿𝐾𝑉_𝑙𝑎𝑐𝑡𝑜𝑠𝑒 +  𝑀𝑖𝑙𝑘𝑖𝑛𝑔𝑠 +  𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 

+ 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟: 𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 1: Best performing model with performance data from all farms and the corrected LMS 

as outcome variable 

The mean area under the curve (AUC) was 0.98 on the training data with a 95%-confidence 

interval (CI) of 0.981 to 0.984, the specificity (SP) was 0.91 (CI: 0.90, 0.91) and the sensitivity 

(SN) was 0.96 (CI: 0.96, 0.97). On the test data, the model yielded an AUC of 0.59 (CI: 0.56, 
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0.62), an SP of 0.75 (CI: 0.73, 0.77) and an SN of 0.47 (CI:0.42, 0.51). Further reduction of 

parameters could not reduce overfitting indicated by the difference in results between training 

and test data sets. The model for non-corrected LMS3 as the outcome variable was structured 

very similarly, including only the lactation number as an additional parameter and LKV_protein 

instead of LKV_lactose: 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛~ 𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝑀𝑖𝑙𝑘𝑖𝑛𝑔𝑠 + 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘

+ 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟: 𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 + 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟

+ (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 2: Best performing model with performance data from all farms and non-corrected LMS 

as outcome variable 

In this analysis, the achieved results were also significantly higher in the training dataset 0.98 

(CI: 0.98, 0.99) compared to the test dataset 0.60 (CI: 0.56, 0.64), with a sensitivity of 0.99 

(CI: 0.98, 1.00) in the training set and 0.42 (CI: 0.35, 0.49) in the test set, and a specificity of 

0.92 (CI: 0.92, 0.93) in the training set and 0.78 (CI: 0.77, 0.80) in the test set (Figure 58). 

 

The other performance parameters, which could not be uniformly recorded across all farms, 

were analysed afterwards using partial datasets with data from one or more farms, but all of 

these regression models performed worse than Model 1 and Model 2. 

5.1.2 Activity data 

In the following step, the models were expanded to include the average daily activity in addition 

to the performance parameters, as this was the only behavioural variable available on all eight 

farms. If the activity was recorded by multiple sensors on a farm, the parameter with the fewest 

missing values was selected. The C_LMS3 model included four fixed effects, of which one was 

an interaction parameter, and two random effects and did not show any noticeable 

improvement compared to Model 1: 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐~ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +  𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

+  𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟: 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 3: Expansion of Model 1 with added activity parameters 

The AUC for the training dataset was 0.99 (CI: 0.98, 0.99), with an SP of 0.91 (CI: 0.91, 0.92) 

and an SN of 0.97 (CI: 0.97, 0.97). For the test dataset, the AUC was 0.60 (CI: 0.57, 0.63) with 

a specificity of 0.64 (CI: 0.62, 0.66) and a sensitivity of 0.56 (CI: 0.52, 0.61). 

In contrast, the best LMS3 model included Days_in_milk as an additional random slope and 

added the predictor LKV_protein: 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  (𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 

+  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 4: Expansion of Model 2 with added activity parameters 

It performed better than Model 2 with an AUC of 0.70 (CI: 0.65, 0.74) on the test data, with a 

SN of 0.85 (CI: 0.77, 0.90) and a SP of 0.53 (CI: 0.51, 0.55) (Training: AUC (0.99), SP (0.96), 

SN (0.99).  
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5.1.3 Performance, activity and one additional parameter class 

During further analysis, an additional class of parameters was incorporated in the regression 

models alongside the performance parameters. The models were then analysed both with and 

without activity as an additional parameter. Since all models with activity showed better results, 

the predictor activity was retained in the model. Depending on the type of parameter, the 

models were tested on the data of the corresponding farm, where the respective parameters 

could be collected. The performance of the best models is shown in Table 28 for C_LMS as 

the dependent variable and in Table 29 for the non-corrected LMS as the dependent variable. 

For the feeding parameter class, an additional model was evaluated using data from RF1, as 

this farm provided a substantially larger dataset on feeding behaviour compared to the other 

farms. 

Table 28: Best-performing regression models with C_LMS as the dependent variable, including 

performance, activity and one additional parameter class. The model formulas can be found in 

the appendices (AUC = Area under the curve, SN = Sensitivity, SP = Specificity) 

Variables 
Best 

model 
Training Test Farms 

  AUC SN SP AUC SN SP  

Body 
weight and 
BCS 

Model 7 

0.98 
(CI: 
0.98, 
0.99) 

0.94 
(CI: 
0.91, 
0.96) 

0.91 
(CI: 
0.90, 
0.93) 

0.75 
(CI: 
0.68, 
0.83) 

0.78 
(CI: 
0.64, 
0.88) 

0.69 
(CI: 
0.64, 
0.74) 

RF1 

Lying 
Model 8 
 

0.99 
(CI: 
0.99, 
0.99) 

0.97 
(CI: 
0.96, 
0.98) 

0.94 
(CI: 
0.93, 
0.95) 

0.66 
(CI: 
0.63, 
0.69) 

0.68 
(CI: 
0.63, 
0.73) 

0.61 
(CI: 
0.59, 
0.63) 

RF1, RF3, 
CDF2, 
CDF4 

Rumination Model 9 

0.98 
(CI: 
0.98, 
0.98) 

0.98 
(CI: 
0.97, 
0.98) 

0.90 
(CI: 
0.90, 
0.91) 

0.65 
(CI: 
0.63, 
0.67) 

0.66 
(CI: 
0.63, 
0.70) 

0.58 
(CI: 
0.56, 
0.60) 

RF1, RF2, 
RF3, 
CDF1, 
CDF4, 
CDF5 

Feeding Model 10 

0.98 
(CI: 
0.97, 
0.98) 

0.97 
(CI: 
0.96, 
0.98) 

0.89 
(CI: 
0.88, 
0.90) 

0.67 
(CI: 
0.64, 
0.70) 

0.63 
(CI: 
0.57, 
0.68) 

0.66 
(CI: 
0.64, 
0.69) 

RF1, RF2, 
RF3 

Feeding 
Model 11 
 

0.97 
(CI: 
0.97, 
0.98) 

0.95 
(CI: 
0.93, 
0.97) 

0.89 
(CI: 
0.88, 
0.91) 

0.87 
(CI: 
0.84, 
0.91) 

0.86 
(CI: 
0.76, 
0.93) 

0.72 
(CI: 
0.68, 
0.77) 

RF1 

Body 
temperature 

Model 12 
 

0.99 
(CI: 
0.99, 
0.99) 

0.98 
(CI: 
0.97, 
0.99) 

0.95 
(CI: 
0.94, 
0.96) 

0.66 
(CI: 
0.60, 
0.71) 

0.55 
(CI: 
0.46, 
0.65) 

0.75 
(CI: 
0.72, 
0.78) 

RF1, RF3, 
CDF4 

Climate Model 13 

0.99 
(CI: 
0.99, 
0.99) 

0.99 
(CI: 
0.97, 
1.00) 

0.95 
(CI: 
0.94, 
0.96) 

0.75 
(CI: 
0.71, 
0.79) 

0.71 
(CI: 
0.63, 
0.77) 

0.77 
(CI: 
0.72, 
0.81) 

RF1, RF2, 
RF3 



106 
 

Table 29: Best-performing regression models with LMS as the dependent variable, including 

performance, activity and one additional parameter class. The model formulas can be found in 

the appendices (AUC = Area under the curve, SN = Sensitivity, SP = Specificity) 

Variables 
Best 

model 
Training Test Farms 

  AUC SN SP AUC SN SP  

Body weight 

and BCS 
Model 14 

0.99 

(CI: 

0.98, 

0.99) 

0.97 

(CI: 

0.90, 

1.00) 

0.95 

(CI: 

0.95, 

0.96) 

0.67 

(CI: 

0.60, 

0.74) 

0.27 

(CI: 

0.17, 

0.40) 

0.47 

(CI: 

0.42, 

0.52) 

RF1 

Lying Model 15 

0.99 

(CI: 

0.99, 

0.99) 

0.99 

(CI: 

0.98, 

1.00) 

0.95 

(CI: 

0.95, 

0.96) 

0.78 

(CI: 

0.72, 

0.84) 

0.78 

(CI: 

0.65, 

0.88) 

0.72 

(CI: 

0.70, 

0.74) 

RF1, RF3, 

CDF2, 

CDF4 

Rumination Model 16 

0.99 

(CI: 

0.99, 

0.99) 

0.99 

(CI: 

0.98, 

1.00) 

0.95 

(CI: 

0.94, 

0.95) 

0.70 

(CI:0.

66, 

0.75) 

0.69 

(CI: 

0.60, 

0.76) 

0.65 

(CI: 

0.63, 

0.67) 

RF1, RF2, 

RF3, 

CDF1, 

CDF4, 

CDF5 

Feeding Model 17 

0.99 

(CI: 

0.99, 

0.99) 

0.99 

(CI: 

0.97, 

1.00) 

0.94 

(CI: 

0.93, 

0.94) 

0.80 

(CI: 

0.72, 

0.88) 

0.71 

(CI: 

0.54, 

0.85) 

0.83 

(CI: 

0.81, 

0.85) 

RF1, RF2, 

RF3 

Feeding Model 18 

0.99 

(CI: 

0.99, 

0.99) 

0.98 

(CI: 

0.94, 

1.00) 

0.96 

(CI: 

0.95, 

0.96) 

0.85 

(CI: 

0.77, 

0.94) 

0.89 

(CI: 

0.67, 

0.99) 

0.66 

(CI: 

0.62, 

0.70) 

RF1 

Body 

temperature 
Model 19 

0.99 

(CI: 

0.99, 

0.99) 

0.99 

(CI: 

0.97, 

1.00) 

0.94 

(CI: 

0.94, 

0.95) 

0.77 

(CI: 

0.73, 

0.82) 

0.88 

(CI: 

0.77, 

0.95) 

0.61 

(CI: 

0.58, 

0.64) 

RF1, RF3, 

CDF4 

Climate Model 20 

1.00 

(CI: 

0.99, 

1.00) 

0.50 

(CI: 

0.44, 

0.56) 

0.97 

(CI: 

0.96, 

0.97) 

0.73 

(CI: 

0.64, 

0.83) 

0.73 

(CI: 

0.50, 

0.89) 

0.71 

(CI: 

0.67, 

0.74) 

RF1, RF2, 

RF3 

5.1.4 Performance, activity and two additional parameter classes 

In the subsequent analysis, two parameter classes were added to both activity and 

performance data. Only the models that demonstrated enhanced performance compared to 

models in Table 28 and Table 29 were included in the final evaluation. These models are 

detailed in Table 30 with C_LMS as the dependent variable and in Table 31 with LMS as the 

dependent variable. 
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Table 30: Best-performing regression models with C_LMS as the dependent variable, including 

performance, activity and two additional parameter classes. Only models surpassing the 

performance of corresponding single additional parameter class models are included. The 

model formulas can be found in the appendices (AUC = Area under the curve, 

SN = Sensitivity, SP = Specificity) 

Variables 
Best 

model 
Training Test Farms 

  AUC SN SP AUC SN SP  

Lying, Body 
temperature 

Model 21 

0.99 
(CI: 
0.99, 
0.99) 

0.96 
(CI: 
0.94, 
0.98) 

0.95 
(CI: 
0.94, 
0.96) 

0.71 
(CI: 
0.67, 
0.75) 

0.85 
(CI: 
0.78, 
0.91) 

0.57 
(CI: 
0.53, 
0.60) 

RF1, RF3, 
CDF4 

Feeding, 
BCS 

Model 22 

0.98 
(CI: 
0.98, 
0.99) 

0.95 
(0.92, 
0.97) 

0.94 
(0.93, 
0.95) 

0.90 
(CI: 
0.86, 
0.94) 

0.89 
(CI: 
0.77, 
0.96) 

0.82 
(CI: 
0.76, 
0.88) 

RF1 

Feeding, 
Lying 

Model 23 

0.97 
(CI: 
0.96, 
0.98) 

0.95 
(CI: 
0.92, 
0.97) 

0.88 
(CI: 
0.87, 
0.89) 

0.91 
(CI: 
0.88, 
0.95) 

0.79 
(CI: 
0.69, 
0.88) 

0.88 
(CI: 
0.84, 
0.91) 

RF1 

Feeding, 
Rumination 

Model 24 

0.99 
(CI: 
0.98, 
0.99) 

0.96 
(CI: 
0.94, 
0.97) 

0.91 
(CI: 
0.90, 
0.92) 

0.68 
(CI: 
0.64, 
0.73) 

0.70 
(CI: 
0.63, 
0.76) 

0.76 
(CI: 
0.73, 
0.79) 

RF1, RF2, 
RF3 

Body 
temperature, 
Rumination 

Model 25 

0.99 
(CI: 
0.99, 
0.99) 

0.96 
(CI: 
0.94, 
0.97) 

0.95 
(CI: 
0.94, 
0.96) 

0.79 
(CI: 
0.75, 
0.83) 

0.68 
(CI: 
0.58, 
0.77) 

0.77 
(CI: 
0.74, 
0.80) 

RF1, RF3, 
CDF4 

Table 31: Best-performing regression models with LMS as the dependent variable, including 

performance, activity and two additional parameter classes. Only models surpassing the 

performance of corresponding single additional parameter class models are included 

(AUC = Area under the curve, SN = Sensitivity, SP = Specificity) 

Variables 
Best 

model 
Training Test Farms 

  AUC SN SP AUC SN SP  

Lying, Body 
temperature 

Model 26 

0.99 
(CI: 
0.99, 
0.99) 

0.99 
(CI: 
0.97, 
1.00) 

0.96 
(CI: 
0.95, 
0.96) 

0.82 
(CI: 
0.76, 
0.87) 

0.72 
(CI: 
0.61, 
0.81) 

0.80 
(CI: 
0.77, 
0.83) 

RF1, RF3, 
CDF4 

Feeding, 
Lying 

Model 27 
 

0.99 
(CI: 
0.99, 
0.99) 

0.99 
(CI: 
0.96, 
1.00) 

0.95 
(CI: 
0.94, 
0.96) 

0.86 
(CI: 
0.81, 
0.90) 

0.84 
(CI: 
0.70, 
0.93) 

0.72 
(CI: 
0.69, 
0.75) 

RF1, RF3 

Feeding, 
Lying 

Model 28 

0.99 
(CI: 
0.99, 
0.99) 

0.99 
(CI: 
0.96, 
1.00) 

0.96 
(CI: 
0.96, 
0.97) 

0.93 
(CI: 
0.86, 
0.99) 

0.89 
(CI: 
0.67, 
0.99) 

0.86 
(CI: 
0.83, 
0.89) 

RF1 

Feeding, 
Rumination 

Model 29 

0.98 
(CI: 
0.98, 
0.99) 

0.98 
(CI: 
0.95, 
0.99) 

0.93 
(CI: 
0.93, 
0.94) 

0.77 
(CI: 
0.70, 
0.84) 

0.77 
(CI: 
0.61, 
0.88) 

0.71 
(CI: 
0.68, 
0.73) 

RF1, RF2, 
RF3 



108 
 

5.1.5 Performance, activity and three additional parameter classes 

Only the best model for each of C_LMS and non-corrected LMS, including more than one farm 

as dependent variables, is presented in this context, except those that were developed solely 

based on the data of RF1 using the more detailed data on feeding behaviour. 

The best C_LMS model included the parameter classes feeding, body temperature and 

climate, which could be recorded on RF1 and RF3, besides activity and performance, and 

achieved an AUC of 0.82 (CI: 0.77, 0.86) with an SN of 0.84 (0.75, 0.91) and an SP of 0.71 

(0.65, 0.77) on the test data (Training: AUC (0.98), SN (0.99), SP (0.90)). The model contained 

the following predictors: 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 +  𝐹𝑒𝑒𝑑𝑖𝑛𝑔 

+  𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑛𝑜𝑟𝑚𝑎𝑙_𝑚𝑒𝑑𝑖𝑎𝑛 +  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑: 𝑆𝑒𝑎𝑠𝑜𝑛 

+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 

+  + (𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑑𝑟𝑖𝑛𝑘_𝑐𝑦𝑐𝑙𝑒𝑠_𝑚𝑒𝑑𝑖𝑎𝑛 | 𝐹𝐶𝑁) 

Model 5: Best model for the corrected locomotion score (C_LMS) on different farms 

In contrast, the best LMS model included the classes lying, body temperature and climate, 

which could be recorded on RF1, RF3 and CDF4, besides activity and performance, and 

presented as: 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +  𝐿𝑦𝑖𝑛𝑔 

+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑: 𝑆𝑒𝑎𝑠𝑜𝑛 

+  (𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑑𝑟𝑖𝑛𝑘_𝑐𝑦𝑐𝑙𝑒𝑠_𝑚𝑒𝑑𝑖𝑎𝑛 | 𝐹𝐶𝑁) 

Model 6: Best model for the non-corrected locomotion score (LMS) on different farms 

The AUC for Model 6 was 0.89 (CI: 0.84, 0.95) on the test data with a SN of 0.83 (CI: 0.73, 

0.90) and a SP of 0.90 (CI: 0.88, 0.92) and 0.99 (CI: 0.99, 0.99) on the training data with a SN 

of 0.98 (0.95, 1.00) and a SP of 0.95 (CI: 0.95, 0.96) (Figure 58). 

 

Figure 58: Receiver Operating Characteristic (ROC) curve of the best performance data model 

(Model 2) and the overall best model tested across multiple farms (Model 6) 
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VI. Discussion 

1. Claw health 

1.1 Locomotion scoring 

The total number of locomotion scores varied significantly from one farm to another. This 

variation was partly due to differences in herd size across farms, but more notably due to the 

varying number of claw trimming dates conducted on the farms during the data collection 

period, as the frequency of claw trimming was set by each respective farm manager according 

to their preferences. Furthermore, some claw trimming dates could not be used due to camera 

failures as already mentioned in chapter V.1.1. The decision to conduct locomotion scoring 

based on video footage was made for logistical reasons, as the study included different farms 

across Bavaria and regular locomotion scoring on-site would have been time-consuming. 

Additionally, it reduces the impact on cow behaviour compared to scoring performed in the 

cow’s direct presence (Lorenzini, 2019) and Schlageter-Tello et al. (2015a) observed a higher 

reliability of video locomotion scoring in experienced raters compared to live scoring. However, 

this approach comes with the inherent risk of data loss due to power outages, transmission 

errors, and hardware failures. The proper storage and preservation of video material on the 

NAS was found to be especially prone to issues in this study. Implementing more frequent 

automatic backups and integrating them with a cloud storage system could help to minimise 

the risk of data loss. 

The detected lameness prevalence per farm on the day before claw trimming ranged from 

1.9% to 10% and was lower than the figures reported in current studies (Table 1). However, 

this assessment only considered cows classified with an LMS3, indicating an irregular gait. 

The variability in reported prevalence rates across different studies can be dependent on the 

used locomotion score and the specific definition of lameness. For instance, Jensen et al. 

(2022) used the locomotion score system developed by Sprecher et al. (1997) to identify and 

count all cows with a score of 3 or higher, which signifies an arched back and shortened strides, 

in order to evaluate the prevalence of lameness. In contrast, Griffiths et al. (2018) applied a 

four-point scoring system and classified all cows with a score of 2 or above, indicating 

shortened strides and a noticeably affected limb, as lame. If the relatively high proportion of 

cows categorised as unsound (LMS2) (19.9%-26.7%) in the current study were included in the 

prevalence estimates, the reported prevalence would have been closer to 25%-36.7% and 

therefore would fall within the prevalence values presented in Table 1. The prevalence of 

lameness varied significantly across the farms, likely due to various factors contributing to 

lameness (II.2.3) that may be more pronounced on some farms than others. It is also essential 

to consider that the number of prevalence assessments differed between farms according to 

the count of claw trimmings, which may affect the comparison. LMS3 assessments varied not 

only from farm to farm but also within the same farm between the different claw trimming 

sessions. This could be attributed to seasonal climatic fluctuations, changes in management 

or husbandry practices, as well as adjustments in claw trimming procedures. On RF1, the claw 

trimmer changed after the initial two trimming dates, potentially resulting in the observed 

gradual reduction of LMS3 during the subsequent sessions. The relative share of locomotion 

scores documented during the whole data collection period was in the same range with 3.1% 

to 6.9% LMS3 and 10.9% to 20.09% LMS2 depending on the farm.  
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Regarding lameness development, all cases of lameness developed within two weeks, with 

the longest one taking 13 days. The median time between the last LMS1 and the first LMS3 

was three days, which is slightly less than the median of five days observed by Lorenzini 

(2019). 61.8% of the cases developed in a short period of only one to three days, which could 

be due to the approach to use the latest LMS1 and the first LMS3. Previous transitions between 

LMS1 and LMS2 and back were not considered in this analysis, which may have prevented 

the detection of a potentially longer lameness development period with alternating better and 

worse days. Additionally, the sample size of 68 observations used to assess lameness 

development was relatively small. This limitation was due to restricting the data to the three 

weeks prior to claw trimming, resulting in many cows becoming lame or unsound before the 

start of the data collection period and remaining at LMS2 or LMS3 until the claw trimming date. 

Another reason could be that different claw diseases show different lameness progression 

periods. In this study, cows experiencing a prolonged lameness development phase were 

more likely to exhibit conditions such as WLD, WLA, or SU. Conversely, in cases where 

lameness emerged more rapidly, within one to three days, the lesions were more frequently 

associated with DD, IH or DS. This aligns with the analysis of farm-specific lameness 

development periods, where CDF1, with a median of nine days, significantly differs from the 

other farms with a median of one to four days. CDF1 showed an increased occurrence of WLF 

and WLA and no cases of DD at all and thus highlights possible differences in the duration of 

lameness development depending on the type of claw disease. 

1.2 Pain test 

The pain test was conducted to identify animals that, despite showing no visible signs, were 

still experiencing pain. The overall distribution of positive pain test results showed RF2 having 

the highest rate at 12.4%, followed by RF3 at 6.6% and RF1 at 6%. Out of the total aggregated 

value of 226 positive pain tests, no findings could be detected in 53 (23.5%) of these positive 

detections. Reflecting the overall distribution, most of the positive pain tests with no detectable 

findings were found on the research farms, accounting for 44 cases.  

Claw diseases, such as sole haemorrhages, generally manifest as visible lesions 6 to 8 weeks 

following the onset of inflammation in the corium (Kofler, 2014). As a result, pain responses 

might be present before any clinical findings can be detected by the observer. One alternative 

reason for the high proportion of positive pain tests with no detectable findings on research 

farms could be that the initial three claw trimming dates, during which findings were recorded 

only by the claw trimmers, occurred on these farms. This could have resulted in incomplete 

documentation of findings. Moreover, other external stimuli, including the claw trimming 

conducted simultaneously by the claw trimmers on another foot, might have resulted in the 

cow exhibiting flinching behaviour, which could have been incorrectly interpreted as a pain 

response. Particularly on RF1, where two claw trimming chutes in combination with multiple 

claw trimmers were used in the initial two claw trimming sessions, the procedure was 

accompanied by increased ambient noise levels, which may have induced alternative 

defensive reactions in the respective cow. Additionally, as experience was gained over time, it 

is likely that distinguishing between pain responses and other involuntary movements became 

more accurate for the examiner in subsequent assessments. For future pain assessments, it 

is recommended that the examiner conducts multiple test runs in different environments 

beforehand. Furthermore, a calm ambient setting should be ensured, and simultaneous claw 

trimming on the other legs should be avoided during the pain assessment. The research farms 

also predominantly used rubber mats on their floors, while the majority of the commercial dairy 
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farms employed concrete and slatted flooring without rubber mats. Manure generally drains 

better on slatted floors compared to solid floors (Fjeldaas et al., 2011) and concrete surfaces 

tend to retain less moisture than rubber flooring (Norberg, 2012). This difference in surface 

characteristics may have contributed to increased moisture on the walking areas of the 

research farms, potentially leading to softer claw horn in these settings (Fjeldaas et al., 2011) 

and therefore increased sensitivity to the pain tests.  

Analysis of the percentage of positive and negative pain test results divided by the different 

claw diseases indicated that certain conditions were significantly less likely to induce a pain 

response. Specifically, in 80% or more of the cases, cows with any digital dermatitis stages, 

any kind of sole haemorrhages, WLD, HF, HHE, IH or BU did not exhibit a pain reaction. In 

contrast, cows with WLA, DS, OLU, SU, IP, TU or TN demonstrated a significantly higher 

proportion of pain reactions, with 38% or more showing positive pain test results. On the one 

hand, it is important to note that during the pain assessment with claw pliers, pressure was 

primarily applied to the wall and sole region. Therefore, lesions located in the bulb area, such 

as DD or BU, or in the interdigital space, such as IH, might not have led to a defensive reaction 

as no direct pressure was applied to these specific lesion sites. On the other hand, Tadich et 

al. (2010) identified distinct effects on locomotion associated with different claw diseases. No 

changes in locomotion could be observed in cases of DD, HHE, WLF, and SH, while SU, IP 

and DS were associated with significant gait alterations (Tadich et al., 2010). However, it 

remained unclear whether these lesions were associated with less pain or if the impact of these 

lesions could just not be adequately captured by the locomotion score. Holzhauer et al. (2008) 

observed that cows with DDM2 lesions were significantly more sensitive to palpation compared 

to other DD stages, but also only in 43% of DDM2 lesions the cows showed a pain response. 

Furthermore, the stress induced by fixation, like immobilising the cow in the cattle crush, could 

have potentially contributed to the suppression of a pain response in some cases (Herskin et 

al., 2004). 

Upon examining the pain test in comparison to the locomotion score, it was observed that as 

the locomotion score increased, the percentage of pain reactions also increased. There was a 

significant rise from 24.1% positive tests in LMS2 cows to 53.2% positive tests in LMS3 cows. 

This disparity might be due to the fact that the pain response of cows in the LMS2 category 

might not be as pronounced or easily triggered as they are in the early stages of lameness 

development. Additionally, factors associated with LMS2, such as an arched back, can also 

be seen in other painful conditions such as the foreign body syndrome (Lakhpati et al., 2019) 

or mastitis. 

To enhance the accuracy of pain response in future studies, simultaneous manipulations that 

may result in false-positive findings should be avoided and direct palpation of the bulb region 

should be included.  

1.3 Growth in the sole centre 

The growth in the sole centre was assessed as in the preceding study by Lorenzini (2019) 

some cows showed a pain reaction or unsound locomotion without displaying visible clinical 

findings. GSC3 accounted for the largest share of GSC recordings at 64.9%, while GSC2 was 

observed in only 34.6% of cases and GSC1 was only recorded 24 times. After aggregating the 

four individual values per cow into a median value, GSC3 made up the largest proportion at 

49.3%, followed by GSC2 at 20.5% and GSC2.5 at 17.0%. 
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The great amount of a more pronounced growth in the sole centre could be explained by the 

frequency of claw trimming. This was also reflected in the comparison of different farms. CDF1, 

CDF2 and CDF5 showed the highest levels of GSC3, each exceeding 90%. On CDF1, claw 

trimming occurred only once a year, on CDF5 twice a year and on CDF2 before the cows were 

dried off. In contrast, farms with three claw trimming sessions per year, such as RF1, RF2, 

RF3 and CDF3, demonstrated a significantly more balanced distribution of GSC2 and GSC3. 

Smith et al. (2007) showed that more frequent claw trimming can be beneficial by observing 

that cows undergoing claw trimming three times a year, rather than just once, exhibited a 27% 

reduction in lameness and a 52% decrease in the risk for sole ulcers. Although claw trimming 

on CDF4 was also performed only twice a year, this farm showed lower GSC3 levels and 

higher GSC2 levels compared to other farms with fewer claw trimming dates. This might be 

attributed to differences in the claw trimming techniques employed by the claw trimmers. The 

sole centre could be trimmed more extensively on this farm compared to others, leading to a 

longer duration during which the sole centre remained unconsolidated. The type of flooring 

could also be a factor influencing the growth in the sole centre, as hard surfaces tend to result 

in increased claw growth, greater wear and decreased sole concavity compared to softer 

surfaces like rubber mats (Telezhenko, 2007). According to this, although rubber mats result 

in greater net growth, they also contribute to improved preservation of the sole cavity, which 

may have reduced the likelihood of GSC on research farms in this study.  

The growth in the sole centre was compared with the results of the pain test, revealing that the 

mean values for those with a positive pain test were lower than those with a negative pain test. 

Special attention was given to GSC values in cows that had a positive pain test but showed no 

clinical findings, and this combination showed the lowest values, with a median of 2.3 and an 

average of 2.4. When GSC was analysed based on LMS, a gradual decrease in GSC was 

observed as LMS increased. While GSC3 remained the most prevalent across all LMS groups, 

the relative proportions of GSC2 and GSC3 became more similar in LMS3. Even though the 

relative share of GSC1.0 to 1.75 was generally very low, it was most pronounced in LMS3. 

These results might be explained by the study design, which involved collecting GSC data 

exclusively during the farm claw trimming sessions. As a result, lame animals or those with 

claw disorders may have been treated in-between these sessions, leading to a reduced GSC 

in the claws of these animals observed during the farm claw trimming. Specific claw diseases, 

such as laminitis, could also lead to the formation of inferior-quality and reduced horn (Nuss & 

Kofler, 2019), potentially resulting in a decreased GSC. Furthermore, the altered weight 

distribution observed in lame cows (Pastell et al., 2010) may influence horn growth patterns.  

1.4 Clinical findings 

SHD accounts for the largest share of the clinical findings, making up over 30% of the total 

findings, followed by DD and WLF. When evaluating individual farms, SHD was the most 

common disorder, except for CDF2 and CDF5, where WLF was more prevalent. The barn 

design could have contributed to this distribution, as features such as more edges or tighter 

corners could potentially favour the occurrence of WLF (Kofler, 2014). CDF1 also exhibited the 

highest incidence of WLA, with 14 cases documented during the claw trimming date. Moist 

walking surfaces could have contributed to the softening of claw horn (Rushen et al., 2004), 

thereby facilitating the penetration of foreign objects or bacteria. Since the barn was newly built 

in 2020, there might have been instability in the social herd structure and increased stress, 

leading to rank-related fights among the cows. This could also have resulted in slipping and 

subsequent injuries to the white line area. Additionally, the presence of a farmyard on CDF1 
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could have increased the risk of small stones being driven into the white line. High absolute 

numbers of WLF and WLA were also observed on CDF4, further supporting the theory, as this 

farm also employed a farmyard. Cows on CDF1, along with CDF4, showed the highest 

proportion of CSH at over 8%. CSH is often the precursor to SU (Nuss & Kofler, 2019) and 

CDF4 also exhibited the highest incidence of SU. However, no cases of SU were observed on 

CDF1. This absence of SU on this farm might be attributed to the fact that the cows on CDF1 

were relatively young, with 2.1 lactations on average, while the average on CDF4 was 3.1 

lactations. The risk of SU typically increases with age due to the reduced cushioning capacity 

of the bulb fat pad (Nuss & Kofler, 2019). This may explain why, on CDF1, the CSH lesions 

had not yet progressed to SU. Additionally, the high numbers of WLF, CSH or SU and sole 

haemorrhages on CDF1 and CDF4 could be interpreted as symptoms of laminitis, which can 

arise from a combination of various contributing factors, such as inadequate cow comfort or 

feeding issues (Nuss & Kofler, 2019). Unlike all other farms, CDF1 did not document a single 

case of DD. Factors such as genetics, the absence of acquisition of cows from external sources 

and especially hygiene may have played a significant role in this outcome (Nuss et al., 2019). 

RF3 had the highest proportion of DDM1 lesions at around 13%, RF2 recorded the highest 

share of DDM2 lesions at approximately 16% and CDF3 (16%), followed by RF1 (10%), had 

the most DDM4 lesions. Almost 50 cases of active DDM2 could also be recorded on CDF4 

during only two claw trimming sessions. The generally higher incidence of DD cases on the 

research farms is likely attributable to the increased traffic in the barns due to visitors or 

educational activities, which can facilitate the introduction of pathogens. CDF3, similar to RF2, 

demonstrated a relatively high incidence of HHE at the same time, suggesting there might 

have been a generally moist environment, leading to maceration and entry of pathogens in the 

bulb area (Nuss et al., 2019). On RF1, the significant reduction in the number of active DDM2 

lesions following the second claw trimming might have been due to the change of claw 

trimmers and the use of CZC for treating all lesions, whereas previously only CTC was used 

for treatment (Holzhauer et al., 2011). However, some active lesions might have progressed 

to a chronic stage, which could account for the increased occurrence of DDM4 lesions. RF2 

showed an increase in DDM2 cases at the most recent trimming compared to the previous two 

sessions and RF3 reported a high incidence of DDM1 lesions. These numerous new or 

recurrent outbreaks of DD could be related to a compromised immune system in the animals 

due to external factors (Nuss et al., 2019). On CDF3, during the December claw trimming 

session, there was a significant rise in chronic DD cases compared to the other trimming dates. 

This could be due to seasonal factors, as winter conditions might lead to a higher risk of 

infectious claw diseases (Häggman & Juga, 2015) and therefore the healing process for these 

lesions might be less effective during the winter months. The majority of B were applied to 

cows on RF2, where also most SAP treatments were administered, primarily due to the high 

incidence of DDM2 lesions. Most CB were affixed to cows on CDF4 in response to the high 

prevalence of SU and WLA on this farm. 

1.5 Distribution of test scores on individual extremities 

The distribution of PT, GSC and the clinical findings across the four extremities was also 

investigated. For PT, the rate of positive pain reactions was notably higher in the hind feet 

(13.2%) compared to the front feet (9.8%). When examining the GSC, GSC3 occurred more 

frequently in the hind claws (over 67% on both left and right) than in the front claws (left 63%, 

right 61%). The most notable difference was found in the clinical findings, with 61.5% of the 

findings in the hind feet compared to 28.5% in the front feet. Somers, Schouten et al. (2005) 

and Sogstad et al. (2005) also reported a higher frequency of findings in the hind claws 
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compared to the front claws, despite the primary weight bearing occurring on the front claws 

(Sogstad et al., 2005; Van der Tol et al., 2004). However, in comparison to the front claws, the 

weight distribution in the hind claws is highly uneven, with 80% of the load on the outer and 

only 20% on the inner claw (Sogstad et al., 2005; Van der Tol et al., 2004). The suspension 

system in the forelimbs by muscles and tendons may facilitate a more balanced weight 

distribution compared to the anatomical structures in the hind limb (Muggli et al., 2011; Sogstad 

et al., 2005). 

The positive clinical findings for the hind legs were nearly equally distributed, but PT was more 

frequently positive in the left hind leg compared to the right. This could be explained by the fact 

that the PT was often started on the left hind leg, and the cows might have reacted sensitively 

not only to the affected leg but also to the pain in general. Consequently, they may have shown 

a pain reaction on the foot tested first, even though the claw disease itself was localised on a 

different one. Additionally, there could have been a random distribution of claw lesions with 

more painful findings on the left and fewer painful claw conditions on the right hind feet.  

1.6 Validation of the locomotion scoring system 

The three-level locomotion score was also validated in this study as, unlike in the previous 

project, significantly more actual LMS were generated instead of interpolated LMS, allowing 

for a more accurate validation. The score demonstrated a very high level of agreement in terms 

of the consistency of multiple scorings carried out by the same observer (intra-rater agreement) 

with over 90% PA and in terms of the reliability of scoring when compared to other observers 

(inter-rater agreement) with over 80% PA. According to Landis and Koch (1977), the intra-rater 

agreement achieved an "almost perfect" level, while the inter-rater agreement was rated as 

"substantial to almost” perfect and therefore both exceeded the minimum acceptance level of 

k = 0.6. The results surpassed those reported in the study by Schlageter-Tello et al. (2015b), 

which examined a five-point locomotion score by Flower and Weary (2006). In that study, the 

intra-rater agreement was k = 0.77 with a PA of 71.4%, and inter-rater agreement was k = 0.65 

with a PA of 57.1%. Schlageter-Tello et al. (2015b) employed the linear weighted kappa 

method, whereas the present study used quadratic weighted kappa to account for larger 

deviations more strongly. Additionally, Schlageter-Tello et al. (2015b) involved experienced 

raters for the locomotion scoring, while Rater 1 in this study had no prior experience with 

locomotion scoring at the beginning. The study conducted by Gardenier et al. (2021) examined 

a 4-level locomotion scoring system, where an intra-observer agreement of 72% (κ = 0.74) and 

an inter-observer agreement of only 56% (κ = 0.59) were achieved. In the research by 

Rutherford et al. (2009), the inter-rater reliability was 67.2% (κ = 0.69) for a 4-level score but 

could be increased to 90.5% by reducing the 4 categories to a simple distinction between lame 

and sound. This indicates that, in comparison to the results of other researchers, the 3-level 

locomotion score used in this study exhibited notably better inter- and intra-rater reliability, and 

that reducing the number of scoring levels may enhance comparability. A further reduction of 

the locomotion score levels was not considered based on the findings of the previous project 

(Lorenzini, Grimm, Hertle et al., 2021), as a comparison of the different locomotion score 

groups revealed that most misclassifications occurred in animals with an LMS2 score. These 

animals could not be clearly assigned to either the LMS1 or LMS3 group, but nevertheless, a 

clear classification of these animals might be essential for practical purposes, as farmers need 

to know how to handle each specific case and whether they need to examine and treat the 

affected animals in the claw trimming chute. 
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To further validate the locomotion score in terms of its accuracy in reflecting claw lesions, a 

lesion score was also developed. In an initial analysis of two data sets, comparing lesion scores 

with locomotion scores from two claw trimming dates each, significant discrepancies were 

observed, with the PA ranging from 66.4% to 80% (Hertle et al., 2022). It was assumed that 

these differences may be explained by the fact that the first dataset used findings recorded by 

the claw trimmers, who might have documented the claw lesions in less detail, whereas the 

second one was based on the findings by a veterinarian who did not have to trim the claws 

and could thus concentrate only on documenting the findings (Hertle et al., 2022). But after 

finishing the locomotion scoring of all the claw trimming sessions, the overall locomotion scores 

were compared to the lesion scores, revealing only a moderate agreement between them. 

Significant variation in the level of agreement was also observed between the farms. 

Specifically, RF2 achieved a PA of only 48.9% (k = 0.24), while CDF2 (PA = 78.9%, k = 0.54) 

and CDF5 (PA = 69.5%, k = 0.58) showed notably better results. Since only the findings of the 

claw trimmers were included during the initial claw care trimming on RF2, this supports the 

hypothesis that these records were not sufficiently detailed to comprehensively reflect claw 

health. As mentioned before, the first claw trimmings occurred on research farms and initial 

misinterpretations of pain responses may have resulted in false positive PT outcomes. The 

especially high rate of positive PT on RF2 indicates that false positives may have distorted the 

lesion scores on this farm. Additionally, a growing familiarity of the observers with the 

procedures for conducting pain tests and recording findings may have led to more accurate 

results in subsequent claw care appointments. The differences in camera angles across farms 

could also have impacted, for example, the detection of an arched back, making it easier to 

notice on some farms compared to the others.  

The deviations shown in Figure 42 suggest that especially animals with a lesion score (LS) 

higher than 1 often exhibited a sound locomotion (LMS1). According to this, not all painful or 

visibly apparent claw diseases might necessarily result in altered locomotion scores. Especially 

Simmental cattle exhibit a high degree of resilience and may show less pronounced pain 

responses compared to breeds such as Holstein-Friesians. Indeed, findings from Tadich et al. 

(2010), where some lesions, such as DD, did not lead to a significant increase in LMS, suggest 

that a locomotion score alone may not be sufficient to identify all types of claw diseases and 

their associated pain. Dyer et al. (2007) also reported that in 37.2% of cases, painful lateral 

claws were present, even though the locomotion score remained unchanged. Thomsen et al. 

(2012) demonstrated that when distinguishing between horn lesions like SU and skin lesions 

like DD, horn lesions showed a clearer correlation with the locomotion score. The high 

prevalence of DDM2 lesions observed at RF2 supports the theory that not all cows with acute 

digital dermatitis lesions might have altered their gait in this study. Blackie et al. (2013) were 

able to show that cows with SU are more likely to shorten their steps or adjust their spine, 

whereas cows with DD showed less of these changes but lifted their legs higher, likely due to 

the lesions being located on the sole for SU and in the heel area for DD. These specific 

changes might need to be incorporated into the locomotion score, although visual detection 

could be challenging. An animal might also have been scored as lame despite no visible 

findings or pain reactions if the issue was located in the upper leg rather than the claw or if 

other underlying health conditions were present, which could not be detected during the claw 

trimmings.  
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2. Automatically recorded parameters 

2.1 General assessment and farm-specific variations 

The analysis of the statistical summaries revealed that most of the mean values were within 

the normal ranges outlined in Table 3. The average values for the BCS (mean: 3.8) and body 

weight (mean: 741.5) in this study exceeded the mentioned averages in the table. This could 

be attributed to the fact that the animals in this study were predominantly of the Simmental 

breed, which have a higher mean live weight and BCS (Rittweg et al., 2023) than Holstein-

Friesian cows. Additionally, factors related to breeding and management practices at RF1 

might have contributed to higher BCS and body weight. Feeding took place via the weighing 

troughs on RF1, which resulted in shorter feeding durations and increased feeding pace on 

this farm. The average number of lying bouts on RF1, which exceeded 17, was notably higher 

than the average value of 9 to 11 lying bouts reported by Tucker et al. (2021), as well as the 

averages observed on the other farms. Accordingly, the average duration of each lying bout 

on RF1 was also lower at 52.6 minutes than the 60-99 minutes average noted in the study by 

Tucker et al. (2021). Weingut (2017) observed during the validation of these pedometers that 

more lying bouts were recorded by the pedometers than visually observed, indicating the issue 

could be related to the measurement of the pedometer. The limited cow-to-feeding-space ratio 

on RF1, with only 36 weighing troughs available for more than 60 cows, may also have led to 

these variations in lying behaviour. Other factors that could have influenced the farm-specific 

lying behaviour include high stocking density (Fregonesi et al., 2007), the design of cubicle 

surfaces (Tucker et al., 2003) or the relatively high humidity inside the barn (mean: 79.8) 

(Leliveld et al., 2022).  

The average lactation number exhibited only minor variation across farms. CDF1 featured the 

youngest cows, with an average lactation number of 2.1, while the herds on CDF4 and CDF5 

included older cows, with average lactation numbers of 3.1 and 3.2. Total milk yield per 

lactation varied from 5,955.8 kg on CDF1 to 11,847.4 kg on RF2. Notably, the daily average 

milk yield on CDF1 was substantially lower at 22.2 kg in the last lactation compared to 31.2 kg 

in the current lactation. This difference may be attributed to the herd’s recent relocation to the 

new barn, which could have impacted milk production. The average milk temperature was 

lowest on CDF5, measuring 38.1°C, which significantly differed from the highest average of 

39.2°C recorded on RF3. These higher average milk temperatures on RF3 could be explained 

by a greater number of mastitis cases (Maatje et al., 1992) or higher ambient temperatures 

(West et al., 2003) on this farm. Accordingly, on RF3, higher average outdoor temperatures 

were recorded at the weather station (mean: 11.4) compared to the other two farms, which 

also resulted in a warmer indoor barn climate (mean: 14.4) and, consequently, a higher indoor 

THI (mean: 57.5). The correlation analysis of the various automated parameters in this study 

also revealed strong correlation coefficients between milk temperature and ambient 

temperatures. Both, milk flow and maximum milk flow, exhibited substantial differences across 

farms. The significantly lower milk flow on the RF1 and CDF3 farms could be attributed to the 

use of different milking robots and, consequently, different preparation methods for the teats 

as milking practices could influence the milk flow (Sandrucci et al., 2007). Hogeveen et al. 

(2001) also found that milk flow decreases with shorter milking intervals, while Sandrucci et al. 

(2007) demonstrated that cows with a higher number of lactations and with less than 150 days 

in milk exhibit a stronger milk flow. However, these observations did not show a clear 

correlation in this study. Concentrate intake varied significantly according to farm-specific 

rations, ranging from an average of 2.1 kg on CDF4 to 5.6 kg on CDF5. The average feeding 
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duration on RF3 at 270.7 minutes was significantly shorter compared to RF2 at 511.7 minutes. 

This could be attributed to different feeding management practices; for instance, according to 

DeVries & Keyserlingk (2005), the timing of feed distribution could influence feed intake 

durations. Moreover, on RF3, an additional sensor was also attached to the collar and the 

experience was made that its weight occasionally caused the feed intake sensor to be 

improperly positioned on the cow’s neck, which led to inaccurate recording of feeding times. 

The higher temperatures on RF3 could also have influenced the results, as according to the 

Spearman’s rank correlation coefficients, the feeding behaviour in this study showed a strong 

correlation with the climate. In contrast, the cows on RF2, with 271.7 minutes, exhibited a 

substantially lower average rumination time than on the other four farms, where the average 

rumination time was approximately 500 minutes. The time spent eating and ruminating can 

also be influenced by the diet's composition and its physical texture (Beauchemin, 2018). 

Furthermore, Herskin et al. (2004) demonstrated that cows respond to any stressors by 

reducing their rumination activity, which suggests that external disturbances may have also 

played a role in this context. The activity data from the various sensor systems were difficult to 

compare due to differences in measurement units, such as steps, activity units, or indices. 

Notable differences within the same sensor across the farms were primarily observed in the 

activity data collected by smaXtec, where higher values were recorded for RF1 (mean: 6.5) 

and RF3 (mean: 6.8) compared to the average value of 4.6 on CDF4. In contrast, an analysis 

of the corresponding pedometer activity values across the farms revealed no significant 

discrepancies. This could potentially be a sensor-specific issue, possibly due to difficulties in 

detecting activity due to specific housing conditions or rumen conditions on the farm. All other 

parameters showed no substantial deviations from one farm to another, which was also evident 

in the model analysis, where the calculated ICC indicated a low level of parameter variation 

explained by farm differences. 

2.2 Lameness-induced alterations 

Analysis revealed that the differences between the 'unsound' and 'lame' groups were more 

pronounced when examining the automatically recorded parameters by using the locomotion 

score (LMS), rather than the corrected locomotion score (C_LMS). On the one hand, this 

phenomenon could be explained by the fact that, with the C_LMS, a greater number of animals 

were categorised as C_LMS3 despite not showing a distinctly irregular gait but rather showing 

only features such as an arched back or an exaggerated head bob along with a positive pain 

response or visible findings. As a result, changes in behaviour and performance in these 

animals may be less pronounced compared to those with a clearly lame gait, leading to a less 

distinct separation between the two scoring categories. On the other hand, it is possible that 

animals classified with LMS2, despite lacking a positive pain response or other diagnostic 

findings, might already have experienced a subclinical claw health issue that impacted their 

behaviour at an early stage. This hypothesis is supported by the observation that after the 

locomotion score was adjusted to C_LMS, the statistical significance of differences between 

the 'sound' and 'unsound' groups remained relatively stable. Consequently, C_LMS1 and 

C_LMS2 animals continued to exhibit significant behavioural differences. Weigele et al. (2018) 

were one of the few who also investigated behavioural changes in moderately lame cows and 

identified significant deviations in behaviours such as lying patterns, feeding behaviour, and 

activity levels, even in these cases. Norring et al. (2014) demonstrated that the feeding duration 

and quantity of feed intake could already begin to decrease in the two weeks before visible 

gait impairment occurred. Similarly, Mazrier et al. (2006) observed that 45.7% of lame cows 

exhibited a decline in activity 7 to 10 days prior to the onset of clinical lameness. According to 
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Van Nuffel et al. (2015), most of the research on lameness detection has been predominantly 

focused on severely lame animals. As a result, there is a significant gap in knowledge on how 

behaviour and performance change at the initial stages of lameness, which needs to be further 

addressed to enable early lameness detection. 

2.2.1 Breed 

In this study, despite their lower representation on the farms, Holstein Friesian cows exhibited 

a significantly higher proportion of lameness cases (33%) compared to Simmental cows 

(16.7%). This aligns with other research, where Holstein cows have been found to be 

especially prone to certain claw disorders (Baird et al., 2009; Fürmann et al., 2024; Lusa et al., 

2020). Simmental cows, conversely, are known for their longevity and higher resistance to 

diseases when compared with dairy breeds (Kucuk Baykan & Ozcan, 2019). 

2.2.2 Milking parameters 

2.2.2.1 Milk yield 

When considering the daily milk yield recorded by the LKV and the milking robots, it becomes 

apparent that the various lameness groups are difficult to distinguish from one another. Based 

on the locomotion score alone, LMS2 animals exhibited a higher daily milk yield compared to 

the other groups. In contrast, with the C_LMS, a small increase in C_LMS3 was noticeable 

compared to C_LMS1. These varying results confirm the complex interactions between milk 

yield and lameness. Higher-producing cows inherently have a higher risk of lameness 

(O'Connor et al., 2020; Rutherford et al., 2009), which may explain the increased milk 

production seen in LMS2 animals, whereas possible negative effects of lameness on daily milk 

yield may become more evident in severe lameness cases (Olechnowicz & Jaskowski, 2010; 

Warnick et al., 2001), which could be why the average daily milk yield of LMS3 animals 

dropped back to the level of LMS1, despite their initially higher production levels. The analytical 

methods applied in this study did not account for the individual temporal progression of each 

animal’s parameters. Consequently, it becomes difficult to clarify the causal relationship: 

whether high performance initially contributed to lameness or lameness itself led to a decline 

in milk yield in the first place. In the case of the C_LMS, more cows without visible gait 

alterations were identified as lame, which means they initially started with higher levels of milk 

yield, but they may not have been such severely lame that they were unable to maintain their 

previous milk output. As a result, an increase towards C_LMS3 is observed without a 

subsequent decline. In the study of Archer et al. (2010), comparable results were displayed, 

with a slightly higher milk yield in lame animals compared to healthy ones. The analysis of total 

milk yield during the previous lactation and the current lactation in this study showed a similar 

positive correlation. However, for the total milk yield during the previous lactation, neither the 

LMS nor the C_LMS revealed statistically significant differences between the 'unsound' and 

'lame' groups. Nonetheless, there was an observable increase in milk yield compared to 

healthy cows, which could be attributed to the previously noted higher predisposition to 

lameness of higher-yielding animals. The odds ratio either did not demonstrate a statistically 

significant association or indicated no effect of lameness on milk performance, which might 

have been influenced by variations in the lactation performance across the different farms. 

Some studies have also identified a correlation between lactation number and milk yield, 

revealing that lameness results in a significant reduction in milk production primarily in 

multiparous cows (Vlček et al., 20  ;  arnick et al., 200 ). The milk yield is thus influenced 

by various other parameters and, as documented by Grimm et al. (2019), showed a clear 

relationship with lameness only when analysed together with variables like lying and feeding 
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behaviour, but not when considered independently. In the present study, milk yield also 

showed a strong correlation with feeding behaviour (0.41), as well as with performance 

parameter classes such as days in milk, milk content, and concentrated feed intake. Johnston 

and DeVries (2018) similarly found a connection between feeding behaviour and milk yield, 

demonstrating that an additional hour of feeding per day was associated with an average 

increase of 1.74 kg in milk yield. Furthermore, higher milk production was correlated with a 

greater number of feeding events and they attributed those findings to the relationship of these 

variables with dry matter intake. Azizi et al. (2009), however, observed that high-performing 

animals demonstrated a greater dry matter intake but showed shorter feeding durations and 

an elevated feeding pace. This suggests that while high-performing animals generally 

consume more feed, the duration over which this feed is ingested may vary depending on the 

feeding system and management practices.  

At the farm-specific level, the relationship between daily milk yield and lameness revealed 

considerable variation. On farms RF1, RF3, CDF2, and CDF4, a significant positive correlation 

between milk production and lameness was observed. In contrast, CDF3 showed no 

statistically significant differences in daily milk yield from the milking robot, CDF1 lacked a 

statistically significant odds ratio, and both RF2 and CDF5 exhibited a negative correlation 

between daily milk yield and lameness. Additionally, RF2, unlike the other farms, demonstrated 

a negative relationship between milk yield in the last lactation and increasing C_LMS. A 

possible explanation for these findings might be the higher standard deviation of the daily milk 

yield on these farms, particularly on RF2 and CDF1, which might have led to less clear 

correlations due to fluctuations.  

The intraclass correlation coefficient calculated between the milk yield parameters recorded 

by the milking robot and LKV showed a very high agreement of 0.9 for the total milk yield in 

the last lactation and 0.86 for the daily milk yield. This suggests that the monthly average 

recorded by the LKV is sufficiently accurate for corresponding analyses and a daily milk yield 

recorded by the milking robot is not always required. 

2.2.2.2 Lactation metrics 

The lactation number demonstrated a significant positive correlation with lameness, with the 

median lactation number being one unit higher in lame and unsound animals compared to 

healthy ones. This is consistent with the findings of most studies that report an increased risk 

of lameness with rising parity (Lean et al., 2023; Pötzsch et al., 2003; Rittweg et al., 2023). No 

statistically significant differences were observed for the lactation number between C_LMS2 

and C_LMS3 cows, whereas there was a small rise from LMS2 to LMS3. A statistically 

significant association was found on all farms except CDF4, and a positive correlation was 

observed on all farms except CDF2 and CDF4. One possible explanation is that cows in their 

first lactation are especially prone to laminitis due to the numerous alterations surrounding 

calving, including factors like a new barn environment or feeding modifications (Bergsten, 

2003) and show an increased risk for sole haemorrhages in the following months (Sogstad et 

al., 2005). This aligns with the high number of SHD, SHB, and CSH cases reported on CDF4. 

The highest average number of days in milk was observed in C_LMS2 cows (median: 166, 

mean: 174), while the lowest was recorded in C_LMS3 cows (median: 150, mean: 153). A 

modest negative correlation and an odds ratio slightly below 1 could be observed. An analysis 

of the violin plot in Figure 47 reveals that C_LMS2 cows display two peaks, one around 

lactation day 50 and another around day 300. In contrast, C_LMS3 cows show a concentration 

primarily around 50 days in milk. According to the studies by Zlatanović et al. (2021), lesions 
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such as digital dermatitis or laminitis typically manifest in the last third of lactation (days 201-

305), while sole ulcers or interdigital hyperplasia predominantly occur in the period shortly after 

calving. In line with our findings, in their study, the proportion of severely lame cows was 

highest during the first third of lactation, whereas the rate of moderately lame cows peaked in 

the final third of lactation. This indicates that cases of digital dermatitis, which, as previously 

mentioned, may result in less severe gait alterations compared to other lesions, could be a 

factor contributing to the second peak in lameness observed during late lactation in C_LMS2 

cows. Upon closer examination, a negative correlation between C_LMS and days in milk was 

found on all farms, except for CDF1 and CDF5, where the odds of lameness increased with 

advancing lactation. This may be attributed to the high prevalence of WLA and WLF on CDF1 

and a significant number of WLF cases on CDF5. According to Van der Spek et al. (2015), 

white line lesions tend to appear predominantly in the later stages of lactation, which could 

explain the positive correlation between C_LMS and days in milk on these farms. 

2.2.2.3 Milking frequency 

When analysing the milking frequency data, it was observed that the median number of 

milkings per day was two across all C_LMS groups. However, the mean number of milkings 

decreased from 2.53 in C_LMS1 to 2.38 in C_LMS2 and 2.40 in C_LMS3. This suggests a 

difference, particularly between healthy and unsound cows, as well as between healthy and 

lame cows. The relatively small differences and the non-significant odds ratios observed on 

individual farms could be attributed to the fact that the majority of cows across all three groups 

showed two to three milkings per day, as can be seen in Figure 47. Matson et al. (2022) also 

stated that a higher milking frequency can be linked to a greater milk production, which in turn 

can be connected to the claw health status. This connection might then influence the reduction 

in milking frequency caused by lameness itself. Nevertheless, the overall odds ratio of 0.792 

clearly indicated that with increasing milking frequency, the likelihood of lameness significantly 

decreased in the present study. Van den Borne et al. (2022) demonstrated that the number of 

milkings decreased in severely lame and mildly lame ones, which is consistent with the results 

of this study, but only the decrease in severe lameness cases also affected the milk yield. They 

also emphasised that 63% of the decline of milk performance due to lameness resulted from 

a diminished number of milkings and concluded that lameness leads to particularly large losses 

in farms with milking robots, where cows can actively control their milking frequency. The 

average maximum milking interval accordingly exhibited a steady increase with higher C_LMS 

levels, indicating longer milking intervals in lame cows. No statistically significant differences 

were observed in either the number of milkings or the maximum milking interval between 

C_LMS groups on RF1 and RF3. On these farms, the systematic practice of actively bringing 

lame animals to the milking robot might have led to less pronounced differences between lame 

and non-lame animals.  

2.2.2.4 Milking contents 

Milk protein showed the most distinct and consistent relationship with lameness, exhibiting a 

reduction in lame cows. This correlation was even stronger for the parameter recorded by the 

LKV. Differences in all other parameters were either minimal or barely detectable. These 

findings align with other studies that have examined changes in milk components 

( alašauskienė et al., 2022; Slovák et al., 202 ; Vlček et al., 20  ), where a decline in milk 

protein associated with lameness was the most commonly observed outcome. It remains 

unclear whether the reduction in milk protein levels is primarily a consequence of lameness-

induced changes in feeding behaviour, as outlined by Slovák et al. (2021), resulting in 

decreased feed intake and reduced nutrient absorption, or if an initial deficiency in dietary 
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protein could be a contributing factor to the onset of lameness (Dippel et al., 2009). Lameness 

also leads to metabolic and immunological adjustments (Sun et al., 2015), which may result in 

metabolic energy being redirected from milk protein synthesis to support these processes and 

therefore in a reduced milk protein content. Lactose content only displayed a slight negative 

correlation with lameness, but increasing lactose content had a high negative influence on the 

likelihood of lameness according to the OR. This association of a decline in lactose content 

with lameness has also been demonstrated in several studies (Antanaitis, Juo aitienė, & 

Urbonavičius, 202 ;  alašauskienė et al., 2022;  lechnowic  & Jaskowski, 20 0). 

There were no significant differences in urea levels at all among the C_LMS groups. Fat 

content showed a decrease with lameness in LKV data, while it increased in data from milking 

robots and accordingly the parameter fat-protein ratio behaved in the same manner. Somatic 

cell count showed no clear association with lameness, as in C_LMS analysis lame cows had 

the lowest, but in LMS analysis lame cows had the highest median somatic cell count. The 

varying correlation of fat and urea content across farms with lameness suggests that different 

farm-specific rations might have complicated the identification of more pronounced 

associations between these parameters and lameness.  alašauskienė et al. (2022) also found 

no clear differences in milk fat content between lame and non-lame cows, but they did observe 

higher somatic cell counts and concluded that lameness might be associated with a higher 

likelihood of developing mastitis. In contrast, Archer et al. (2011) found lower cell counts to be 

linked with higher locomotion scores. Singh et al. (2018) noted higher cell counts in lame cows, 

but like Yunta et al. (2012) and Pavlenko et al. (2011), they could not detect any changes in 

milk composition. In the study by Slovák et al. (2021), urea levels significantly decreased by 

18-29.9%, depending on the lactation stage. Consequently, based on the results of this study 

and the existing literature, no clear association of the parameters fat, urea and somatic cell 

count with lameness could be established. 

Some studies utilised monthly average values (Olechnowicz & Jaskowski, 2010) or total 

lactation summaries (Vlček et al., 20  ) to quantify the association between claw health and 

milk composition. In this study, the monthly milk component values recorded by the LKV 

exhibited more pronounced deviations compared to the daily averages of milk components 

measured by the milking robot. This observation suggests that the effects of lameness on milk 

components might become more apparent over a longer period of time, indicating data 

aggregation may help in clarifying the relationship. Additionally, the correlations between milk 

components recorded by the LKV and those measured by the milking robot were relatively low. 

The strongest correlation was observed for milk protein (0.47), which is consistent with the 

similar patterns of association between LKV and robot values for lameness. This could be due 

to the potential inaccuracy of the robot's milk component measurements, or it might be that 

daily variability in milk components is so high that a monthly value is insufficient for accurate 

representation. However, the latter explanation is contradicted by the fact that the average 

standard deviation of the milking robot's measurements for milk contents was not greater than 

that of the LKV. 

2.2.2.5 Other performance parameters 

Milk temperature was significant between all C_LMS groups and showed a positive correlation 

with lameness on all farms and an OR >1, except for RF3. This could be due to the generally 

higher average milk temperatures observed on RF3 as a result of higher ambient temperatures 

(West et al., 2003), which may have masked the variations caused by lameness. The positive 

correlation between elevated milk temperature and lameness may be attributed to the 
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observation that animals with claw diseases tend to exhibit increased body temperatures 

(Talvio, 2020), which are, to some extent, correlated with milk temperature (Pohl et al., 2014). 

In this studies, a correlation of 0.49 was observed between milk temperature and body 

temperature, very similar to the correlation of 0.52 reported by Pohl et al. (2014). 

Regarding conductivity, varying results were observed. Standard conductivity measurements 

in mS/cm did not show any correlation with C_LMS. Conversely, conductivity recorded by the 

Lely milking robot in an alternate unit exhibited a slight positive correlation with lameness. 

Furthermore, a higher MDi was associated with an increased likelihood of lameness on RF1, 

while no effect was detected on CDF3. Antanaitis, Juo aitienė, and Urbonavičius (2021) also 

reported elevated conductivity values in all four quarters of the udder in lame animals, while 

Singh et al. (2018) revealed that a higher locomotion score was associated with a poorer udder 

health status and consequently, with mastitis.  alašauskienė et al. (2022) also observed that 

the conductivity values for lame animals deviated from the average of healthy animals (4 to 6 

mS/cm), but with approximately 50% of lame animals exhibiting values above this range and 

50% below. This indicates that while higher conductivity may occasionally be linked to claw 

diseases, variations in this association can occur and may depend on the specific udder health 

conditions present on each farm.  

The maximum milk flow showed a positive correlation with lameness and an OR>1, whereas 

the normal milk flow, although slightly positively correlated, indicated that higher milk flow was 

associated with a lower likelihood of lameness. The considerable variability in milk flow across 

different farms and milking robots could have influenced this. Van Hertem et al. (2016) reported 

increased maximum milk flow values in lame animals, while Wieland et al. (2022) 

demonstrated lameness could increase the risk of developing a delayed milk flow. While on 

the one handy, high milk production can contribute to both lameness (O'Connor et al., 2020) 

and increased milk flow (Wieland et al., 2022), on the other hand, inflammatory processes 

resulting from claw diseases (Whay & Shearer, 2017) might negatively impact the milk flow 

(Wieland et al., 2022). 

2.2.3 Constitution 

The BCS of cows in the C_LMS3 group showed a decline, along with an overall negative 

correlation and an odds ratio greater than one, indicating that particularly severely lame 

animals tend to display a worse body condition. This raises the question of causality: whether 

lameness leads to a lower BCS or vice versa. A low BCS is typically associated with a reduced 

digital cushion thickness (Newsome et al., 2017), which can compromise claw support and 

increase susceptibility to lameness. But lame cows may also change their feeding behaviour 

and intake (Norring et al., 2014) and therefore experience a reduction in fat reserves or could 

suffer from muscle loss (Necula et al., 2022), for example, due to reduced activity. Despite 

these observations, C_LMS2 cows had the highest average BCS (3.91) of all C_LMS groups 

in this study. This aligns with other studies that have additionally found a higher baseline weight 

or BCS to be associated with an increased risk of lameness (Kranepuhl et al., 2021; Ristevski 

et al., 2017). Body weight also showed a positive relationship with lameness in this study, with 

unsound animals having the highest average weight among the three groups. Lorenzini (2019) 

also demonstrated that a higher BCS was associated with a lower likelihood of lameness, while 

a higher body weight was more strongly linked to a higher locomotion score. The discrepancy 

between BCS and body weight in relation to lameness led to the conclusion that animal-specific 

differences made it harder to determine a clear pattern. Furthermore, lameness and the 

associated calorie deficit, due to reduced feed intake (Norring et al., 2014), may primarily result 
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in a higher loss of subcutaneous fat instead of muscle mass. Weber et al. (2015) indicated that 

weight loss following calving ceased significantly earlier, while BCS and back fat thickness 

continued to decline. They concluded that muscle mass and internal fat reserves must be 

replenished more rapidly than subcutaneous fat. As subcutaneous fat reserves diminish, the 

lower weight of fat relative to muscle could lead to a decline in BCS without a proportional 

reduction in body weight. In conclusion, although the kind of data analysis in this study could 

not establish causality, the animal's constitution seemed to be linked to the claw health status. 

2.2.4 Feeding behaviour 

The feeding duration recorded by the weighing troughs on RF1 showed a clear negative 

correlation with lameness and the likelihood of lameness significantly increased with a shorter 

feeding duration. In contrast to this gradual decrease with rising C_LMS, the pedometers on 

the same farm displayed a significant increase in feeding duration for cows with C_LMS2, 

before dropping again for cows with C_LMS3. Similarly, the number of trough visits and meals 

recorded by the weighing troughs decreased continuously with higher C_LMS, whereas the 

ENGS data also demonstrated a peak in the C_LMS2 group for the number of meals. This 

effect could not be observed in the study by Lorenzini (2019), where the ENGS parameters 

exhibited a clear negative correlation with lameness. In combination with the lack of statistically 

significant differences in many feeding behaviour parameters by ENGS, this might suggest 

that the ENGS data, collected from only one claw trimming date, was insufficient to establish 

a clear, traceable connection between feeding behaviour and lameness. Moreover, even with 

this single claw trimming session, it cannot be definitively stated that the induction loop under 

the rubber mats always remained in the same position during the whole three-week data 

collection period. A shift in the loop's position could have led to poor detection of some animals 

at the feeding trough, especially if individual cows tended to stand further away from the trough. 

For effective use of the induction loop in future experimental settings, a groove in the concrete 

floor is urgently needed to ensure that the cable remains installed securely and undamaged. 

The feeding duration recorded by Nedap also revealed a negative correlation, with a gradual 

decrease when using LMS as the reference. However, when C_LMS was taken as the 

reference, cows with C_LMS2 displayed a shorter feed intake duration compared to cows with 

C_LMS3. This implies that not all animals with an adjusted LMS due to PT or findings had 

necessarily experienced negative effects on their feeding behaviour yet. Meanwhile, some 

C_LMS2 animals, despite showing no visible signs or signs of pain, may have already been 

dealing with claw health problems that impacted their feeding duration. A reduction in feeding 

duration as well as in the feeding frequency has also been documented in various other studies 

(Antanaitis, Juo aitienė, Urbonavičius et al., 202 ;  eer et al., 20  ; Frondelius,  indeberg et 

al., 2022; Grimm et al., 2019; Lorenzini, 2019). Schindhelm et al. (2017) explained this by 

noting that increased feeding duration also means more time spent standing, which lame 

animals naturally try to minimise. Additionally, each trip to the feeding trough is associated with 

renewed discomfort, which explains the reduction in the number of meals.  

In contrast, feed intake itself demonstrated a positive association with lameness in this study, 

primarily driven by the higher intake observed in C_LMS2 animals. Norring et al. (2014) 

reported a decrease in silage intake among severely lame animals only, and similarly, in the 

present study, intake levels dropped again in C_LMS3 cows. Accordingly, the relationship 

between feed intake and lameness may be influenced by the fact that higher-yielding cows are 

at a greater risk of lameness (O'Connor et al., 2020), and cows with higher milk yields tend to 

consume more dry matter (Azizi et al., 2009). Based on Palmer et al. (2012), feed intake is 

also affected by lactation status, as lame animals showed a reduction in feed intake during 
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early lactation, whereas no significant changes were observed during mid-lactation. According 

to Grimm et al. (2019), only high-producing cows exhibited a decrease in feed intake due to 

lameness, while no significant differences were observed in other cases. They were able to 

further highlight the complex relationships surrounding lameness in this context, as they found 

that for cows with above-average feed intake, the risk of lameness did not vary with milk 

production. However, for cows with below-average feed intake, a rise in lameness odds could 

be observed with higher milk yields. Proudfoot et al. (2010) observed an increase in feed intake 

associated with lameness, as cows that developed claw disease in mid-lactation showed a rise 

in feed intake, particularly during the 24 hours following calving. Additionally, they noted that 

lame animals significantly increased their feeding rate in the two weeks prior to calving. In the 

same way, this study reveals a strong positive correlation between feeding pace and lameness, 

suggesting that lame animals attempt to consume as much feed as possible in the limited time 

they are willing to spend standing at the feed trough. 

In line with the findings by Lorenzini (2019), feed intake per meal and visit increased notably 

with lameness in this study. The duration of individual trough visits also rose with worsening 

claw health, similar to the study of Lorenzini (2019), whereas meal duration displayed a 

negative correlation with lameness. This could be related to the tendency of lame animals to 

avoid making frequent short feeding stops. Once they make the effort to reach the feed trough, 

they interrupt their feed intake less often, leading to larger quantities consumed in overall 

shorter meals. The comparison between day and night values revealed no noteworthy 

differences in feeding behaviour. 

Kofler et al. (2023) examined the consequences of subacute ruminal acidosis induced by high 

levels of concentrate feed and observed a decline of claw health in severe cases, along with a 

higher occurrence of white line disease. Accordingly, higher concentrate feed rations can 

promote symptoms associated with laminitis. Conversely, a reduced milking frequency due to 

lameness (Van den Borne et al., 2022) can lead to a decreased concentrate feed intake, as it 

is primarily offered through the milking robot. In this study, there was no correlation between 

concentrate feed intake and lameness, even though lame animals left more concentrate feed 

unclaimed compared to healthy animals. This lack of correlation may be due to the 

considerable variability in concentrate feed rations across farms, with about half showing a 

positive correlation between concentrate intake and lameness, while the other half exhibited a 

negative correlation. Furthermore, it is possible that the incidence of feeding-related laminitis 

symptoms on the project farms was relatively low. 

2.2.5 Rumination 

Regarding rumination, the systems displayed varying tendencies depending on lameness. The 

smaXtec system showed no significant correlation with lameness, while rumination duration in 

more severely lame animals slightly decreased with the SCR sensors and showed a significant 

decrease with Nedap collars. The bolus and collar systems on RF1 both showed a decrease 

in rumination for lame animals, while on RF3, the bolus rumination parameter was positively 

associated with lameness, unlike the collar. According to smaXtec (2024), the bolus measures 

the duration of rumination based on reticuloruminal contractions, which could result in 

discrepancies compared to the head movements recorded by collars. In contrast, Capuzzello 

et al. (2023) reported a relatively high correlation of 0.72 between rumination durations 

recorded by the bolus and a collar. However, their study was limited to just six cows, which 

may have prevented the identification of individual or farm-specific variations. Since 

reticulorumen contractions are classified as continuous processes rather than discrete 
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episodes of rumination (Hamilton et al., 2019), deriving accurate rumination duration from 

these contractions can be challenging. The discrepancies observed in the bolus 

measurements might therefore be attributed to variations in the intensity of reticulorumen 

contractions among individual cows or animal-specific differences in how these contractions 

correlate with rumination duration. Antanaitis, Juo aitienė, Urbonavičius et al. (2021) were able 

to detect a decrease in rumination activities as early as seven days before the onset of clinical 

symptoms of lameness, whereas Magrin et al. (2022) observed only a slight reduction in 

rumination time in lame animals. Many other studies failed to establish a clear connection 

between rumination and lameness. For example, Pavlenko et al. (2011) investigated SU and 

DD lesions and noted that animals with these claw issues showed no differences in overall 

rumination duration. Likewise, Weigele et al. (2018) studied the rumination behaviour of 

moderately lame animals and detected no significant changes in the number, duration or speed 

of rumination episodes. These results, along with our own findings, suggest that lameness 

does not always negatively affect rumination, possibly because rumination primarily occurs 

during the lying periods, which cause less discomfort for the claws. Significant reductions in 

rumination duration may only be evident in animals in more severe lameness stages. 

2.2.6 Lying behaviour 

In the analysis of lying behaviour, it became evident that using C_LMS as a reference revealed 

no significant differences in the lying durations recorded by ENGS and Nedap across the score 

groups. However, when LMS was used as the reference, distinct differences emerged between 

the groups. With LMS, the average lying duration initially decreased in unsound cows, followed 

by a marked increase in LMS3 cows. In contrast, when using C_LMS, the increase in lying 

duration among lame cows mostly disappeared, resulting in a negative correlation with 

lameness. These findings suggest that lying duration significantly increased only in cases of 

clear lameness, whereas cows with claw diseases that have not yet impacted gait did not 

exhibit clear changes in lying behaviour. In contrast, the Lemmer-Fullwood pedometer data 

indicated a clear and progressive rise in lying duration for both unsound and lame animals, 

regardless of the reference score used. The discrepancy in lying times for unsound cows 

between CDF2 and CDF4 versus RF1 and RF3 might be explained by differences in 

measurement techniques of the pedometers, variations in housing conditions (Ito et al., 2010) 

or animal-specific variations. It might be anticipated that already cows with a beginning claw 

problem would increase their lying time as a compensatory mechanism to reduce pressure on 

their claws and alleviate associated discomfort. Accordingly, Weigele et al. (2018) reported an 

average increase of up to 45 minutes in lying time already for moderately lame cows and 

Lorenzini (2019) noted a gradual rise in lying time as LMS increased. Yunta et al. (2012), on 

the other hand, in line with our results, observed that moderate lameness does not significantly 

influence the total lying time of cows but identified other significant patterns, such as 

moderately lame cows rising later for feeding and lying down earlier thereafter. Notably, the 

parameters derived from the ENGS values, especially the day-night ratio of lying time as well 

as the daytime lying duration, exhibited a strong positive correlation with lameness, along with 

an odds ratio exceeding 1. This indicates that in unsound cows, daytime lying time may 

increase initially, while total lying time remains largely unchanged. These findings align with 

those of Blackie et al. (2011), who detected a significantly higher lying time in the evening and 

thus a greater daytime lying duration in lame cows. Grimm et al. (2019) already demonstrated 

in their study that the day-night ratio of specific parameters can be highly indicative for the 

detection of developing lameness. They also found a relationship with milk yield, revealing that 

high performance increased the risk of lameness only when the total lying time of the cow was 
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below the average (Grimm et al., 2019). Consequently, it is essential to consider other 

influencing factors, such as climate (Thompson et al., 2019) or lactation number (Thompson 

et al., 2019), when assessing lying behaviour. This study demonstrated a significant correlation 

between lying duration and body temperature. The latter might in turn be affected by a hot barn 

climate and may lead cows to spend more time standing in the aisles to help regulate their 

body temperature (Allen et al., 2015). These additional effects could potentially play an even 

greater role in the lying behaviour of unsound cows than the claw condition itself. 

Consistent with findings from numerous other studies (Bernhard et al., 2020; Hut et al., 2021; 

Solano et al., 2016), this research documented an increase in the duration of individual lying 

bouts by ENGS associated with lameness. Bernhard et al. (2020) stated that the strain on 

claws might be particularly intense during the processes of getting up and lying down, 

prompting lame animals to try to reduce this discomfort. But in terms of the number of lying 

bouts in this study, the data from Nedap and ENGS revealed a contrasting pattern compared 

to results from Lemmer-Fullwood pedometers. Both Nedap and ENGS values demonstrated a 

reduction in lying events as claw health status worsened, while the Lemmer-Fullwood sensors 

showed a positive association with lameness and an increase, especially in the C_LMS2 cows. 

The literature also presents an inconsistent picture of the relationship between lying bouts and 

lameness, with some studies showing an increase (Frondelius, Lindeberg et al., 2022; King et 

al., 2017), others a reduction (Bernhard et al., 2020; Lorenzini, 2019), and some displaying no 

significant correlation (Navarro et al., 2013; Thompson et al., 2019; Yunta et al., 2012). Grimm 

et al. (2019) attributed it to the fact that interactions of lying behaviour with other parameters 

like feeding behaviour were often not considered in other studies. In their study, lame cows 

only exhibited longer durations of individual lying bouts when their total feeding duration was 

simultaneously reduced or when the proportion of daily feeding duration was increased. Parity 

could also be an influencing factor, as cows in their first lactation typically demonstrate fewer 

and shorter lying bouts (Solano et al., 2016). 

2.2.7 Activity and heat behaviour 

Among all seven sensor systems used in this study to monitor cow activity, a reduction in 

activity associated with lameness was observed. Walking as well as standing increases the 

pressure on the claws, which cows suffering from claw health issues might try to avoid. 

Accordingly, numerous other studies also reported a reduction in activity levels for animals 

affected by claw disorders (Hut et al., 2021; Magrin et al., 2022; Neirurerová et al., 2021; Van 

Hertem et al., 2016). In this study, the activity reduction due to lameness was more pronounced 

in some systems, such as the pedometers and the DeLaval and SCR neck collars, compared 

to others like the bolus. Furthermore, the bolus detected on average an increase in activity 

among unsound cows. The activity measured by the bolus on RF1, similar to the rumination 

data, showed an opposite correlation with lameness compared to other farms. Thus, farm-

specific conditions and, particularly since not all animals on RF1 were equipped with a bolus, 

animal-specific differences could have led to these discrepancies. The less pronounced 

correlation in some sensors could also be attributed to differences in sensor placement and 

measurement methods. For example, the bolus might struggle to accurately assess activity 

due to interference from other reticuloruminal movements, compared to a pedometer mounted 

directly on the leg of the cow. Furthermore, the DeLaval and Nedap neck collars, along with 

the ENGS and Lemmer-Fullwood pedometers, did not reveal significant differences between 

unsound and lame animals. On one hand, a reason could be that cows that do not yet show a 

clear impaired gait only slightly reduce their activity, regardless of whether findings or pain are 

present. On the other hand, activity levels might already decline in the development of 
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lameness and may therefore not necessarily be markedly distinct in cases of clear, visible 

lameness. The inactive time recorded by Nedap increased significantly in C_LMS2 cows in 

this study, indicating already unsound cows demonstrated less head movement. Weigele et 

al. (2018) documented a reduction of activity and neck activity in moderately lame cows, with 

significantly lower activity levels compared to healthy cows in the hour following feeding. 

Schindhelm (2016) did not observe a strong impact of lameness on activity, which was 

attributed to the large individual variations in activity levels among animals. King et al. (2017) 

demonstrated that lower activity can be linked to a higher lactation number and that cows with 

a low BCS tend to move more during the day, while those with a high BCS are more active at 

night. Additionally, activity levels decreased over the course of lactation and were associated 

with both milk yield and lying behaviour (King et al., 2017). In this study, activity also 

demonstrated strong correlations with other factors, including climate, body weight and feeding 

behaviour. Furthermore, it is noticeable that often the day-night ratio and always the activity 

during daytime displayed a stronger negative correlation with lameness than the total activity 

per day, which might suggest that lameness primarily leads to a reduction in daytime activity. 

This observation is consistent with those of King et al. (2017), who observed an increased 

night-to-day activity ratio with lameness, and with Van Hertem et al. (2016), where daytime 

activity was integrated as the most significant activity parameter in the model. 

No differences were observed between lame and healthy animals in the oestrus probability 

calculated by SCR. However, the restlessness factor by Lemmer-Fullwood was significantly 

higher on average in healthy cows compared to unsound or lame cows, suggesting that some 

animals may exhibit their oestrus symptoms less distinctly due to claw diseases. 

2.2.8 Body temperature 

Almost all body temperature parameters from the bolus showed a positive correlation with 

lameness, indicating an increase in body temperature with the occurrence of claw diseases. 

Notably, the average body temperature was particularly high in the C_LMS2 group across all 

parameters. Tadich et al. (2010) also observed a higher rectal body temperature in lame 

animals, but conversely, this effect was only evident in cases of severe lameness. Talvio 

(2020) demonstrated that cows with SU had elevated rectal body temperatures compared to 

healthy animals and these temperatures approached those of healthy animals as the lesions 

healed over time. They concluded that SU not only leads to a local inflammatory reaction but 

also induces a systemic response in the body. Harris-Bridge et al. (2018) used infrared 

thermography and observed that in the case of a DD lesion, not only was the temperature of 

the affected foot elevated, but also that of the contralateral hind foot. They also concluded that 

a systemic inflammatory response triggered by these lesions could lead to an increased body 

temperature. The observation that temperature was highest in unsound cows may be 

attributable to the fact that certain inflammatory processes occur during the development of 

lameness and prior to its manifestation. For example, sole haemorrhages typically become 

apparent six to eight weeks after the initial inflammation of the corium (Kofler, 2014).  

Since the boluses account for drinking behaviour in the body temperature parameters, drinking 

could also be approximately compared within the different C_LMS groups. The temperature 

differences between temperature without and temperature with drinking cycles showed 

statistically significant differences, with an increase in C_LMS2 and a subsequent decrease in 

C_LMS3 animals. This could be explained by the distinct association of different claw diseases 

with drinking behaviour. According to Pavlenko et al. (2011), cows with DD exhibited a 

significantly higher number of drinking events than healthy cows, while no significant difference 
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was observed between cows with SU and healthy animals. Antanaitis, Juo aitienė, 

Urbonavičius et al. (2021) observed a significant decrease in drinking time in lame animals, 

which may reflect the reduction of water intake in lame cows detected in this study. This could 

be attributed to the reluctance of these cows to put weight on their painful claws, thereby 

reducing drinking time in a similar manner to the reduction in feeding time. 

2.2.9 Climate 

When considering the different seasons, this study actually showed that in winter the highest 

percentage of C_LMS3 was observed. Autumn followed, while the lowest rate of lame cows 

was observed in summer. This result contrasts with other studies, which reported higher 

lameness prevalence during the summer months (Cook et al., 2007; Jewell et al., 2021; 

Sanders et al., 2009). Cook et al. (2007) attributed this effect to the increased load on the claws 

due to longer standing times as a result of heat stress during the summer months. Most 

researchers that detected higher lameness prevalence during the winter focused on pasture-

based housing systems (Clarkson et al., 1996; Olechnowicz & Jaskowski, 2015), which are 

not really comparable to the housing systems of the farms studied in this research. In housed 

cattle without access to pasture, seasonal variations in lameness prevalence are often 

reported to be minimal or absent, reflecting a more consistent level of claw health throughout 

the year (Sjöström et al., 2018; Tillack et al., 2024). Cook (2003), on the other hand, identified 

a higher prevalence of lameness in winter in free-stall systems without sand. They attributed 

this increase to the slower drying of walking surfaces in winter and the particular challenges of 

managing slurry under cold temperatures. Häggman and Juga (2015) observed seasonal 

variations between infectious and non-infectious claw diseases, with infectious conditions 

being 18-53% more likely during winter months, while non-infectious conditions were more 

common in summer and autumn. Similarly, Armbrecht et al. (2018) found that cattle without 

pasture access had a higher incidence of DD, DS, IH, and WLD in winter, while HHE, SH, and 

SU were more apparent in the summer. It should also be noted that this study recorded 

significantly fewer LMS and C_LMS data in winter compared to the other three seasons, which 

might also have contributed to the observed higher lameness percentages in this season. 

Additionally, scoring sessions conducted in summer could have taken place before the peak 

heat stress, meaning that any resulting deterioration in claw health may only have become 

apparent at the following claw trimming date in autumn or winter. In conclusion, it is important 

to highlight that these findings are primarily hypothetical, as data collection spanned only 1.5 

years, limiting the representation of all seasons within this study. To enable clearer and more 

definitive conclusions, future research should aim to include at least two representations of 

each season. 

Consistent with the results regarding seasonality, temperature and THI inside and outside the 

barn showed a negative correlation with lameness, indicating that lameness was more likely 

to occur at lower temperatures and lower THI values. Conversely, lower air humidity levels had 

a protective effect against lameness. King et al. (2016) observed similar results, with each 10-

degree increase in temperature correlating with a reduction in lameness prevalence of over 

6%. They also concluded that the higher lameness prevalence in winter could be related to the 

development of claw diseases during the summer months and the delayed impact on the cow’s 

walking behaviour. Unlike other countries, where the highest relative humidity might be 

observed during the summer (Sanders et al., 2009), summers in Germany tend to be relatively 

dry. This difference could help to explain the higher frequency of lameness observed in autumn 

and winter, as in this study the average humidity levels in these two seasons were significantly 

higher compared to spring and summer. 
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3. Regression models 

In indirect automatic lameness detection, where lameness is identified using animal-specific 

sensor data, regression models have proven effective across various studies. For instance, 

the first of the two preceding studies of this project achieved a high AUC of 0.94 with an ENET 

beta model, demonstrating a sensitivity of 0.92 and a specificity of 0.83 (Grimm et al., 2019). 

In the follow-up study by Lorenzini (2019), the same modelling approach, however, yielded 

significantly worse results when applied to data across different farms. This led to the adoption 

of generalised linear mixed regression models to account for random effects, which provided 

a better fit for the animals-in-farms data structure and were thus also applied in the present 

study. Following further development of the models, Lorenzini, Grimm, and Haidn (2021) were 

able to attain an AUC of 0.82 by using this regression method. 

Similar to Lorenzini (2019), in this study the farm as a random effect only explained a small, 

negligible proportion of the data's variation. In contrast, incorporating individual animal 

variance had a significant impact on the performance of the models. This is likely due to 

individual animal differences being more pronounced across farms than the farm-specific 

differences themselves, a finding supported by the observations of other studies that 

highlighted considerable variability at the individual animal level (Alsaaod et al., 2012; Kramer 

et al., 2009; Thorup et al., 2015; Weigele et al., 2018). Weigele et al. (2018) incorporated 

different random effects as well and demonstrated that the variation between farms was less 

pronounced compared to the variability observed between individual cows.  

In the different models, three additional parameters could be identified as the random slopes 

that most effectively improved the fit of the regression models: milk yield, days in milk, and 

body temperature. Accordingly, these parameters exhibit considerable individual variability in 

their association with lameness. Each cow may have a different baseline milk production, not 

every cow with high milk production necessarily faces an increased risk of lameness, nor does 

lameness always need to cause a uniform decline in milk yield for each cow. Similarly, certain 

cows might be more susceptible to claw diseases at different times, such as shortly after 

calving or towards the end of lactation. Additionally, for some cows, an increased body 

temperature might be linked to lameness, while others may react to elevated external 

temperatures or other diseases. 

Across nearly all models, the observation was consistent that models using C_LMS as a 

reference showed poorer performance compared to models using LMS. This could be 

explained by the fact that C_LMS might classify animals as lame even if they do not yet exhibit 

a clearly altered gait but only suspicious characteristics such as an arched back or a 

compensatory posture. In these cases, the claw lesions might be so mildly pronounced that 

they do not necessarily affect the cows' behaviour yet. Behavioural changes caused by chronic 

lameness tend to emerge slowly and vary during the developing period (González et al., 2008), 

which could have also led to an inadequate detection in this study. Additionally, claw diseases, 

which are harder to identify based on the locomotion score, such as DD (Tadich et al., 2010), 

might also have a less or diverse impact on the behaviour and performance of cows (Amory 

et al., 2008). Furthermore, false classification of healthy animals as lame, particularly due to 

the pain test, could have also contributed to this discrepancy.  

Examining the best models based solely on performance data (Model 1, Model 2) or on 

performance data combined with activity data (Model 3, Model 4), it became evident that 

several parameters were consistently featured. These parameters included milking frequency 
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as the number of milkings or the maximum milking interval, lactation data such as days in milk 

or lactation number and the milk yield. The interaction parameter between lactation number 

and milk protein accounted for the fact that in this study animals with a higher lactation number 

exhibited higher milk protein levels, an observation that aligns with the findings by Vlček et al. 

(2016). The analysis of the interaction between activity and lactation number revealed that 

cows with higher lactation numbers generally exhibited lower activity levels, with activity 

declining more significantly due to lameness compared to cows in earlier lactations. Garcia et 

al. (2014) also observed that the impact of lameness on performance and behaviour, especially 

activity, may vary considerably depending on the lactation number.  

The accuracy of the models based exclusively on performance data (Model 1, Model 2) was 

limited, with an AUC of approximately 60%, and they demonstrated a very low sensitivity, 

making it difficult to identify lame animals effectively. Similarly, Van Hertem et al. (2016) used 

a regression model incorporating solely performance parameters such as milk yield, milk flow 

or milking order and yielded comparable results, with an AUC of 0.603 and very low sensitivity. 

Lemmens et al. (2023) assessed a random forest model using AMS and performance data to 

detect mild lameness cases and achieved an AUC of 0.629. This suggests that performance 

data alone, both in this study and in the literature, were not sufficient to detect lameness with 

adequate accuracy. The variations in milk parameters do not seem to be significant enough to 

indicate lameness without the inclusion of additional behavioural parameters. 

Behaviour parameters thus needed to be incorporated in the model and activity was selected 

as the first additional behavioural parameter. This approach was pursued as the most used 

sensor systems on farms are those designed for heat detection and activity is the parameter 

generally monitored by most animal-attached sensor systems. The activity model with C_LMS 

as a reference (Model 3) showed almost no improvement compared to the performance model, 

while the model with LMS as a reference (Model 4) demonstrated a significant enhancement, 

with an AUC of 0.7. This observation, combined with the results of the bivariate analysis, where 

no significant differences in activity were observed between most sensors for C_LMS2 and 

C_LMS3, suggests that the activity patterns of lame cows in the LMS model (Model 4), all 

showing an asymmetric gait, differed more significantly from healthy cows than those of 

unsound walking animals, irrespective of pain reactions or visible lesions. Consequently, 

relying solely on activity as the only behavioural parameter in the lameness detection model 

appeared inadequate, as the aim must be to detect lame animals before they show obvious 

signs of gait alteration. Moreover, the better LMS model (Model 4) also displayed significant 

weaknesses, as with a specificity of 53%, only half of the healthy cows would be correctly 

identified and farmers would receive too many false-positive lameness notifications. The 

individual differences in baseline activity among cows (Müller & Schrader, 2005) may have 

complicated the accurate detection of lameness when relying solely on this behavioural 

parameter. Van Hertem et al. (2016) also achieved only a marginal increase in the AUC of 

their model up to 0.669 by combining activity and milking data. The model presented by 

Kamphuis et al. (2013), which was based on milking order and activity, reached an AUC of 

0.676. While their model accuracy aligns with the result of this study, they observed only a 

slight reduction in accuracy when mild lameness cases were incorporated (AUC: 0.664). In 

contrast, de Mol et al. (2013) achieved high sensitivity and specificity, both above 80%, by 

employing a cow-specific model that accounted for day-to-day alterations in activity and milking 

parameters. Similarly, Taneja et al. (2020), using an alternative approach that categorised 

cows into distinct activity groups, were able to detect lameness with an accuracy of 87% and 

could identify lame animals up to three days prior to the appearance of visible symptoms. 
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These findings indicate that while activity and performance parameters may not be suitable in 

a generalised model applied to all animals, as explored in this study, clustering methods or 

animal-specific models could lead to a significant improvement in lameness detection 

accuracy. 

The inclusion of one single additional behavioural parameter enhanced the performance of all 

models. The best-performing model, which included performance, activity, and a supplemental 

behavioural parameter, was a feeding model incorporating feeding behaviour data from the 

weighing troughs on RF1 (Model 11, Model 18). This model showed strong results on test data 

for both LMS (AUC: 0.85) (Model 11) and C_LMS (AUC: 0.87) (Model 18) as references. In 

particular, the behavioural parameters feeding pace and weighing trough visits had a 

significant impact on the model's strong performance. However, this model had two notable 

limitations. First, it was tested on only one farm, and second, it relied on data from weighing 

troughs, an expensive system typically reserved for research farms. Despite these limitations, 

the results highlight the importance of a more nuanced assessment of feeding behaviour using 

sensor systems that go beyond simply measuring feeding duration. The models, including only 

feeding duration (Model 10, Model 17), which could be measured on three different farms 

performed significantly worse, especially with C_LMS as a reference (Model 10). Technologies 

like the ENGS pedometers, which unfortunately could not be used for consistently monitoring 

feeding behaviour in our case but were successfully employed in the previous study (Lorenzini, 

2019), may offer good potential for commercial dairy farms under different conditions. Many 

other studies have also emphasised the significance of feeding behaviour recordings in relation 

to lameness (González et al., 2008; Grimm et al., 2019; Lorenzini, 2019; Thorup et al., 2016; 

Weigele et al., 2018). In the study by Lemmens et al. (2023), a model based solely on feeding 

duration, performance data and activity patterns achieved a comparable AUC of 0.695, similar 

to the findings in this study.  

Among the other regression models adding an individual behavioural parameter, it is notable 

that after feeding behaviour, with LMS as the outcome variable, the models including lying 

behaviour (Model 15) or body temperature (Model 19) achieved the highest AUC, while for 

C_LMS, the models based on constitution (Model 7), meaning BCS and body weight, or climate 

(Model 13) yielded the best performance. These observations further highlight that cows with 

early-stage claw diseases, which are not yet visibly lame, showed different deviations in 

parameters compared to those that were clearly lame. It is crucial to note that, for the C_LMS 

models, the interaction between BCS and body weight was particularly significant, but this 

parameter combination could only be detected on one single farm. However, other studies 

have similarly shown that integrating BCS or body weight could elevate the AUC of their 

models to between 0.72 and 0.85 (Borghart et al., 2021; Kamphuis et al., 2013; Lemmens et 

al., 2023). This underscores the potential of these constitution-related parameters to enhance 

lameness detection models across different farm settings. Furthermore, since climatic 

conditions differ by location, the impact of climate on the lameness probability in the C_LMS 

model (Model 13) observed in this study in Bavaria may not be universally applicable to other 

regions. But as Lavrova et al. (2023) were also able to find a strong influence of season and 

thus climatic conditions on lameness in their studies on six other dairy farms in Germany, there 

seems at least to be a correlation in the local climate zone. The lying behaviour in the C_LMS 

model (Model 8) performed significantly worse than in the LMS model (Model 15), as 

anticipated from the bivariate analysis. This discrepancy underlines the assumption that lying 

behaviour might change significantly only with more pronounced lameness. Neupane et al. 

(2024) attributed the minor variations in lying behaviour in their study to the observation that 
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lying times for lame cows were either very high or very low, which, according to the findings of 

this study, may also be associated with different severity grades of lameness. The least 

effective behaviour parameter for both LMS (Model 16) and C_LMS (Model 9) was rumination, 

with many other studies also failing to find a significant association between rumination and 

the likelihood of lameness (Lemmens et al., 2023; Thorup et al., 2016; Weigele et al., 2018). 

Conversely, incorporating another additional parameter notably enhanced the AUC of the 

C_LMS rumination model (Model 9) up to 0.78 when combining rumination with body 

temperature (Model 25). This implies that even a less significant single behavioural parameter 

like rumination can indeed contribute to the detection of lameness if combined with other 

parameters. Similarly, the combination of lying behaviour and body temperature in the C_LMS 

model (Model 21) yielded improved results, indicating that body temperature, when considered 

alongside other behavioural parameters, can provide more accurate outcomes, particularly in 

cases where lameness is not yet clearly detectable. Additionally, also for the LMS models, the 

combination of lying behaviour and body temperature (Model 26) significantly increased the 

model’s AUC. The best accuracies, with an AUC of 90  or more, were achieved by combining 

feeding behaviour and lying behaviour in the C_LMS (Model 23) and the LMS models (Model 

27, Model 28) or condition with feeding behaviour in the C_LMS model (Model 22). However, 

as noted earlier, these models, except for Model 27, are solely based on weighing trough data 

from a single farm. 

The best models, which could be tested across multiple farms and did not include the more 

detailed feeding behaviour data provided solely by weighing troughs, included performance, 

activity, body temperature, climate, and for C_LMS feeding behaviour, as well as lying 

behaviour for LMS. In this case, the LMS model (Model 6) attained an AUC of 0.89 on test 

data, whereas the C_LMS model (Model 5) achieved an AUC of 0.82. The interaction term 

including milk yield and season was incorporated in both models, highlighting that the 

increased risk of lameness in high-producing cows seems to be more pronounced in winter 

and spring. In contrast, during summer and autumn, the combination of heat stress and 

lameness may further intensify the negative effects on milk yield. Lavrova et al. (2023) similarly 

integrated various parameter classes like activity, lying behaviour, performance, and climate 

into a mixed effects regression model, achieving a sensitivity of 77%. Besides, other studies 

using different modelling approaches and combining multiple parameter classes demonstrated 

similar outcomes as well. For example, Lemmens et al. (2023) obtained an AUC of 0.72 with 

a random forest model, while the time series model by Neupane et al. (2024) accurately 

identified the need for therapeutic claw trimming with an AUC of 0.80. 

The results of this study also align with the accuracy reported in the two preceding studies, 

which achieved an AUC of 0.94 on a single farm (Grimm et al., 2019) and 0.82 across five 

farms (Lorenzini, Grimm, & Haidn, 2021). In both studies, the combination of feeding behaviour 

and lying behaviour with performance parameters proved to be particularly significant in the 

regression models, a pattern that was also confirmed by this study. However, when sensors 

only capture feeding duration without more detailed feeding behaviour data, additional 

parameters such as climate or body temperature become essential. Notably, while body 

temperature has not yet been explored in relation to lameness detection models, this study 

demonstrated that it can significantly contribute to lameness detection when combined with 

other behavioural parameters. 
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VII. Conclusion 

In conclusion, the results of this study indicate that lameness continues to be a significant issue 

in dairy farming, also affecting Simmental cows in Bavaria. The pain test used in this study 

revealed that nearly a quarter of the cows in pain showed no visible signs of claw disease, 

indicating that some claw conditions may cause pain before they become visibly detectable. 

The three-level LMS demonstrated good reliability, but several cows with pain or lesions were 

not classified as lame, which suggests that not all claw diseases may have an equally 

pronounced effect on the gait of the animals. These results emphasise the need for a multi-

component reference system, as used in this study, to ensure accurate detection of claw health 

issues. 

Many of the behaviour and performance parameters recorded in this study either influenced 

lameness or were affected by it, including factors such as lactation status, milking frequency, 

feeding behaviour or body temperature. However, the challenge of distinguishing between 

cause and effect, which is particularly complex in parameters such as milk yield or body 

condition score, often complicates the interpretation of the relationship between claw health, 

behaviour and performance. Animals with mild or early-stage claw disorders, without visible 

impairments in gait, may differ in their behavioural changes compared to visibly lame animals, 

for example, potentially showing an altered body condition rather than changes in lying 

behaviour. In addition, there was a notable variation among individual animals in the way the 

parameters changed in relation to lameness. These factors need to be considered when 

modelling data for lameness detection. 

In this study, data from various sensor systems covering behaviour, performance, physiology, 

and climate were successfully applied in generalised linear mixed models to detect lameness. 

A lameness detection model based solely on performance data or a combination of 

performance and activity data proved ineffective in this study, but adding even a single 

additional behavioural parameter significantly improved the detection of lame animals. 

However, in the end, it was the combination of various parameters, including performance, 

behaviour, physiology and climate data, that allowed for highly accurate identification of lame 

cows. Particularly, parameters related to feeding behaviour, lying behaviour, body 

temperature, climate and constitution showed promising results for integration into lameness 

detection models. The increased use of sensor technology on dairy farms and the promising 

results of this study show that it is possible to help farmers automatically detect lame animals 

using data collected for other purposes, thus enabling earlier treatment and more awareness 

of the claw health situation on the farm. 
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VIII. Outlook 

The next step would be to investigate whether the lameness detection models could also 

identify claw health issues before they become visible to an observer in either the animal’s gait 

or stance. Given that previous studies have demonstrated early alterations in behaviour 

parameters (Mazrier et al., 2006; Norring et al., 2014; Taneja et al., 2020), indirect automatic 

lameness detection might be suitable for an early diagnosis. For this purpose, the models 

would need to be implemented on a farm where manual locomotion scoring by a farmer or 

veterinary professional is conducted on a regular basis to evaluate whether the models alert 

for lameness before the observer and, if so, to determine how much sooner they could detect 

a change in claw health status. Another approach would be to investigate whether different 

lameness detection models tailored for specific claw diseases, such as one for horn-associated 

lesions and another for claw skin-associated lesions, could improve the overall detection of 

claw diseases. Furthermore, efforts should be directed towards improving the performance 

accuracy of lameness detection. The data collected in this study might be suitable for time 

series analyses, as multiple measurements were taken over equivalent time periods. Time 

series analysis enables the comparison of an individual animal's behaviour across various time 

periods (Neupane et al., 2024), facilitating the identification of deviations. In contrast to a model 

that evaluates all animals at a single point in time, time series analysis could provide a more 

nuanced understanding of each animal's specific changes and trends (Neupane et al., 2024). 
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IX. Summary  

Lameness continues to be a widespread, global issue and represents one of the most 

significant production-related diseases in dairy farming, alongside udder diseases and fertility 

issues. Investigating the aetiology of lameness demands the consideration of individual cow 

factors such as age, breed or performance, as well as management practices and housing 

conditions. Since lameness is a manifestation of pain, it significantly impacts animal welfare 

and can influence various behaviours in cows, including their activity levels, feeding behaviour, 

and lying patterns, thereby preventing them from engaging in their natural behaviours. From 

an economic perspective, lameness imposes substantial costs on dairy farmers due to 

treatment costs, production losses or potential culling of affected animals. 

Regular and systematic visual lameness detection in livestock demands a considerable 

amount of time, which farmers often struggle to spare in their daily routines. Moreover, the 

accuracy of manual lameness detection is significantly influenced by the observer's expertise 

and experience. But early detection of claw health issues is critical, as it enables timely 

intervention and helps to prevent further deterioration of the condition. 

In this context, automated lameness detection systems present a promising solution for 

achieving a more objective and precise identification of lame animals. The field of Precision 

Livestock Farming (PLF) is gaining increasing attention, with sensor systems and digital 

technologies being deployed in various ways within and around barns to, for instance, enhance 

animal health and ease the daily workload of farmers. While these systems may present 

potential challenges, such as system failures, data security concerns and high investment 

costs, they can also alleviate certain tasks for farmers, streamline herd monitoring and facilitate 

the identification of various health issues.  

Unlike simpler systems such as automatic heat detection, automated lameness detection 

presents a greater complexity as it involves numerous interrelated factors that both contribute 

to and result from lameness. Automated lameness detection systems can be categorised into 

direct systems, which rely on kinetic, kinematic, or thermographic methods, and indirect 

systems, which use performance and behavioural data recorded by animal-specific sensor 

systems. The latter offer the benefit of utilising sensor systems already installed in the barn to 

monitor various health conditions, enabling farmers to avoid additional investments. 

The two preceding studies regarding indirect automatic lameness detection, also conducted at 

the Institute for Agricultural Engineering and Animal Husbandry of the Bavarian State 

Research Centre for Agriculture (LfL), revealed that developed algorithms containing 

behaviour and performance data could accurately distinguish between lame and non-lame 

cows with a probability of 82% or greater. In these studies, the only animal-attached sensors 

utilised were pedometers, which recorded activity, lying, and feeding behaviours. 

The objective of this study, as part of the experimental field DigiMilch, was to refine and 

enhance these algorithms using data from various sensor systems installed on eight Bavarian 

dairy farms. It was aimed to determine which parameters from different sensor systems or their 

combinations were best suited for indirect automatic lameness detection. Furthermore, an 

additional aim was to validate the three-level locomotion score (LMS) created in the previous 

project with the new data. 
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With three research farms and five commercial farms involved, more farms participated in the 

investigation than in the preceding projects. All farms utilised milking robots by different 

manufacturers along with varying sensor systems attached to the animals. Data from three 

different pedometers, three neck tags, a bolus, a BCS camera, scales, weighing troughs and 

the LKV could be incorporated into the study alongside the milking robot data. 

The necessary reference data regarding claw health were collected during 20 claw trimming 

dates conducted between March 2021 and October 2022. During the claw trimming itself, 

visible findings were documented and a pain test was performed on each claw to identify 

animals that were experiencing pain without any visible signs. Additionally, the growth in the 

sole centre was evaluated using a three-level scoring system. Furthermore, the cow’s gait was 

assessed through video recordings by using the three-level LMS. Cameras were accordingly 

installed at the exit of the milking robot, allowing a retrospective locomotion scoring for up to 

21 days prior to the claw trimming date to track the developments of lameness cases. Both 

intra-rater and inter-rater reliability were calculated for the three-level LMS. Furthermore, a 

lesion score (LS) was developed for additional validation, based on a combination of visible 

findings and the pain assessment. The reference data were ultimately consolidated into a 

corrected locomotion score (C_LMS), where all LMS2 cases were elevated to LMS3 if 

accompanied by either a positive pain test or visible findings. 

Sensor data were either automatically transferred to an SQL database, depending on interface 

availability, or manually exported. These data were then merged with the reference data in 

RStudio to create daily datasets for each farm, which were later used to generate daily records 

based on different parameter categories. The best possible generalised linear mixed 

regression models were developed for each parameter class, using both the LMS and the 

C_LMS as a reference. 

The lameness prevalence ranged from 1.9% to 10% when only visibly lame animals were 

considered. However, due to the large number of LMS2 cases, the prevalence increased to 

25%-36.7% when all non-sound animals were included. Lameness developed in all cases 

within two weeks, with a median onset of three days. In total, the pain test was positive in 226 

cases, 23.5% of which showed no visible signs of findings. Excessive sole centre overgrowth 

could be documented in 64.9% of all claws. The most frequent findings were diffuse sole 

haemorrhages with a percentage of 30%, followed by digital dermatitis and white line fissures. 

The majority of findings, pain responses and overgrown sole centres was detected in the hind 

legs. 

The LMS exhibited high intra-rater (κw = 0.89, CI: 0.84-0.94) and inter-rater reliability (κw = 0.72, 

CI: 0.64-0.81) in this study. However, only moderate agreement was achieved between the LS 

and the LMS (κw = 0.44, CI: 0.40-0.50). In particular, many cows with a higher LS, indicating a 

pain reaction and/or visible findings, were classified as sound based on the LMS. 

The automatically recorded parameters were analysed for differences between the LMS and 

C_LMS groups. The results indicated that most of the automatically recorded parameters, such 

as milking frequency, feeding behaviour and body temperature, differed in lame animals 

significantly from those in healthy animals. However, the same differences were not always 

observed when comparing the LMS and C_LMS groups. For instance, animals with a 

noticeably irregular gait (LMS3) exhibited a statistically significant increase in lying duration 

compared to those classified as healthy. This difference disappeared when animals without 

visible lameness, but with findings or a positive pain test, were included in this group 

(C_LMS3). 
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The generalised linear mixed regression models that included only performance data achieved 

an area under the curve (AUC) of approximately 0.6. This could only be improved to a 

maximum of 0.7 by adding activity data. However, the inclusion of just one additional 

automatically recorded parameter increased the accuracy to over 80%. The best models 

across multiple farms incorporated not only performance and activity parameters but also the 

parameter classes feeding behaviour or lying behaviour in combination with body temperature 

and climate, achieving an AUC of 0.82 for C_LMS and 0.89 for LMS. The overall best 

performance for both C_LMS (AUC: 0.91) and LMS (AUC: 0.93) was attained using the 

weighing trough data on RF1 in combination with lying behaviour. In the C_LMS model, the 

combination of constitution and feeding behaviour also yielded particularly good results on the 

same farm (AUC: 0.90). 

The results provide insights into the prevalence of lameness in Bavarian dairy farms and the 

most commonly occurring claw diseases. The fact that almost a quarter of the painful animals 

showed no visible findings suggests that some claw diseases may cause pain before they are 

visually detectable by the observer. The LMS demonstrated high comparability; however, the 

relatively large proportion of animals with pain or findings that were not identified as lame may 

be attributed to the fact that certain claw diseases, such as digital dermatitis, could have a less 

pronounced impact on the LMS. 

Developing claw lesions or mild cases might have different effects on automatically recorded 

parameters compared to clearly visible lameness. For example, lying time may only increase 

in cases of advanced lameness, whereas body condition score and body weight in combination 

might provide an earlier indication of lameness.  

Models relying solely on performance data or those that include both performance and activity 

data failed to achieve adequate accuracy, likely due to significant individual variation in activity 

levels among the animals. However, by adding further parameters, a high level of performance 

in the automated lameness detection models was achieved. The most successful models 

incorporated parameters such as feeding pace and trough visits, indicating that a more detailed 

recording of feeding behaviour by sensor systems could significantly improve automatic 

lameness detection. Even the inclusion of single additional parameters like feeding behaviour, 

lying behaviour or body temperature already enhanced model accuracy, but it was the 

combination of various parameters that most effectively identified lame animals. These results 

highlight the critical need for integrating data from various sensors for complex health concerns 

such as lameness, as a multifaceted approach is essential for the accurate detection and 

management of this condition. 
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X. Zusammenfassung 

Lahmheiten stellen nach wie vor ein weit verbreitetes, globales Problem dar und gehören 

neben Eutererkrankungen und Fruchtbarkeitsproblemen zu den bedeutendsten 

produktionsbedingten Erkrankungen in der Milchwirtschaft. Die Suche nach auslösenden 

Faktoren erfordert die Berücksichtigung sowohl tierindividueller Faktoren wie Alter, Rasse oder 

Milchleistung als auch von Managementpraktiken und Haltungsbedingungen. Da Lahmheiten 

eine Ausdrucksform von Schmerz sind, haben sie erhebliche Auswirkungen auf das Tierwohl 

und können verschiedenste Verhaltensweisen der Kühe beeinflussen, einschließlich 

Aktivitätsniveau, Fress- und Liegeverhalten, wodurch diese daran gehindert werden, ihren 

natürlichen Verhaltensweisen nachzugehen. Aus wirtschaftlicher Sicht verursachen 

Lahmheiten erhebliche Kosten für Landwirte durch Behandlungen, Leistungsausfälle oder die 

manchmal notwendige Keulung der betroffenen Tiere.  

Die regelmäßige und systematische visuelle Lahmheitserkennung bei Nutztieren erfordert 

einen erheblichen Zeitaufwand, dem die Landwirte in ihrem täglichen Arbeitsalltag oft nur 

schwer nachkommen können. Darüber hinaus wird die Genauigkeit der manuellen 

Lahmheitserkennung erheblich von der Sachkenntnis und Erfahrung des Beobachters 

beeinflusst. Eine frühzeitige Erkennung von Klauengesundheitsproblemen ist jedoch von 

entscheidender Bedeutung, da sie ein rechtzeitiges Eingreifen ermöglicht und dazu beiträgt, 

eine weitere Verschlechterung des Zustands zu verhindern. 

In diesem Zusammenhang stellen automatische Lahmheitserkennungssysteme eine 

vielversprechende Lösung für eine objektivere und präzisere Identifikation lahmer Tiere dar. 

Der Bereich der Präzisionslandwirtschaft (PLF) gewinnt zunehmend an Bedeutung, wobei 

Sensorsysteme und digitale Technologien auf unterschiedliche Weise in Innen- und 

Außenwirtschaft eingesetzt werden, um zum Beispiel die Tiergesundheit zu verbessern oder 

die tägliche Arbeitsbelastung der Landwirte zu reduzieren. Während diese Systeme 

potenzielle Herausforderungen hinsichtlich Systemausfällen, Datensicherheit und hoher 

Investitionskosten mit sich bringen, können sie den Landwirten auch bestimmte Aufgaben 

abnehmen, die Herdenüberwachung optimieren und die Erkennung verschiedener 

Gesundheitsprobleme erleichtern.  

Im Gegensatz zu einfacheren Systemen wie der automatischen Brunsterkennung ist die 

automatische Lahmheitserkennung komplexer, da sie zahlreiche zusammenhängende 

Faktoren umfasst, die sowohl eine Lahmheit begünstigen als auch daraus resultieren können. 

Automatische Lahmheitserkennungssysteme lassen sich in direkte Systeme, die sich auf 

kinetische, kinematische oder thermografische Methoden stützen, und indirekte Systeme 

unterteilen, die Leistungs- und Verhaltensdaten nutzen, die von tierindividuellen 

Sensorsystemen aufgezeichnet werden. Letztere bieten den Vorteil, dass vorhandene 

Sensorsysteme im Stall genutzt werden können, um verschiedene Gesundheitszustände zu 

überwachen, und somit zusätzliche Investitionen vermieden werden können. 

Die beiden vorangegangenen Studien zur indirekten automatischen Lahmheitserkennung, die 

ebenfalls am Institut für Landtechnik und Tierhaltung der Bayerischen Landesanstalt für 

Landwirtschaft (LfL) durchgeführt wurden, ergaben, dass die mit Hilfe von Verhaltens- und 

Leistungsdaten entwickelten Algorithmen mit einer Wahrscheinlichkeit von 82 % oder mehr 

zwischen lahmen und nicht lahmen Kühen unterscheiden konnten. In diesen Studien wurden 

als einzige am Tier angebrachte Sensoren Pedometer verwendet, die die Aktivität sowie das 

Liege- und Fressverhalten aufzeichneten. 
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Ziel dieser Studie im Rahmen des Experimentierfelds DigiMilch war es, diese Algorithmen mit 

Hilfe von Daten aus verschiedenen Sensorsystemen, die in acht bayerischen 

Milchviehbetrieben installiert waren, zu verfeinern und zu verbessern. Es sollte ermittelt 

werden, welche Parameter aus den unterschiedlichen Sensorsystemen oder deren 

Kombinationen sich am besten zur indirekten automatischen Lahmheitserkennung eignen. Ein 

weiteres Ziel war es, den im Vorgängerprojekt entwickelten dreistufigen Locomotionscore 

(LMS) mit den neuen Daten zu validieren. 

Mit drei Versuchsbetrieben und fünf Praxisbetrieben konnten mehr Betriebe in die 

Untersuchung miteinbezogen werden als in den vorhergehenden Projekten. Alle Betriebe 

verwendeten Melkroboter verschiedener Hersteller in Verbindung mit unterschiedlichen an den 

Tieren angebrachten Sensorsystemen. So konnten neben den Melkroboterdaten auch Daten 

von drei verschiedenen Pedometern, drei Halsbandsensoren, einem Bolus, einer BCS-

Kamera, Waagen, Wiegetrögen und dem LKV in die Studie einfließen. 

Die erforderlichen Referenzdaten zur Klauengesundheit wurden innerhalb von 20 

Klauenpflegeterminen im Zeitraum vom März 2021 bis Oktober 2022 erhoben. Bei der 

Klauenpflege selbst wurden die sichtbaren Befunde dokumentiert und es wurde ein 

Schmerztest an jeder Klaue durchgeführt, um Tiere zu identifizieren, die trotz Abwesenheit 

sichtbarer Klauenläsionen schmerzhaft waren. Außerdem wurde das Überwachsen der 

Hohlkehlung anhand eines dreistufigen Punktesystems bewertet. Der Gang der Kuh wurde 

anhand von Videoaufzeichnungen mit Hilfe des dreistufigen LMS bewertet. Dementsprechend 

wurden Kameras am Ausgang des Melkroboters installiert, die eine retrospektive Beurteilung 

des Gangbilds bis zu 21 Tage vor dem Klauenpflegetermin ermöglichten, um auch die 

Entwicklung der Lahmheiten nachverfolgen zu können. Sowohl die Intra-Rater- als auch die 

Inter-Rater-Reliabilität wurden für den dreistufigen LMS berechnet. Darüber hinaus wurde zur 

zusätzlichen Validierung ein Läsions-Score (LS) entwickelt, der auf einer Kombination aus 

sichtbaren Befunden und der Schmerzprobe beruhte. Die Referenzdaten wurden schließlich 

zu einem korrigierten Locomotionscore (C_LMS) konsolidiert, bei dem alle LMS2-Fälle auf 

LMS3 hochgestuft wurden, wenn sie mit einem positiven Schmerztest oder sichtbaren 

Befunden einhergingen. 

Die Sensordaten wurden je nach Verfügbarkeit der Schnittstelle entweder automatisch in eine 

SQL-Datenbank übertragen oder manuell exportiert. Diese Daten wurden dann in RStudio mit 

den Referenzdaten zusammengeführt, um Tagesdatensätze für jeden Betrieb zu erstellen, die 

später in Tagesdatensätze basierend auf den verschiedenen Parameterkategorien 

umgewandelt wurden. Für jede Parameterklasse wurden die bestmöglichen generalisierten 

linearen gemischten Regressionsmodelle entwickelt, wobei sowohl der LMS als auch der 

C_LMS als Referenz verwendet wurden. 

Die Lahmheitsprävalenz reichte von 1,9 % bis 10 %, wenn nur deutlich lahme Tiere 

berücksichtigt wurden. Aufgrund der großen Anzahl an LMS2-Fällen stieg die Prävalenz 

jedoch auf 25 % bis 36,7 %, wenn alle nicht gesunden Tiere miteinbezogen wurden. Eine 

Lahmheit entwickelte sich in allen Fällen innerhalb von zwei Wochen, im Median dauerte es 

drei Tage. Insgesamt war der Schmerztest in 226 Fällen positiv, wobei 23,5 % der 

schmerzhaften Tiere keine sichtbaren Anzeichen einer Klauenerkrankung zeigten. Eine stark 

überwachsene Hohlkehlung konnte bei 64,9 % aller Klauen dokumentiert werden. Die am 

häufigsten auftretenden Befunde waren diffuse Sohlenblutungen mit einem Anteil von 30 %, 

gefolgt von Dermatitis digitalis und Weiße-Linie-Defekten. Die meisten Befunde, 
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Schmerzreaktionen und überwachsene Hohlkehlungen konnten an den Hinterbeinen 

festgestellt werden. 

Der LMS zeigte in dieser Studie eine hohe Intra-Rater- (κw = 0,89, KI: 0,84-0,94) und Inter-

Rater-Reliabilität (κw = 0,72, KI: 0,64-0,81). Es wurde jedoch nur eine moderate 

Übereinstimmung  wischen dem  S und dem   S er ielt (κw = 0,44, KI: 0,40-0,50). 

Insbesondere wurden viele Kühe trotz eines höheren LS aufgrund einer Schmerzreaktion 

und/oder sichtbaren Befunden auf der Grundlage des LMS als gesund eingestuft. 

Die automatisch erfassten Parameter wurden auf Unterschiede zwischen den LMS- und 

C_LMS-Gruppen untersucht. Die Ergebnisse zeigten, dass sich die meisten der automatisch 

aufgezeichneten Parameter, wie Melkfrequenz, Fressverhalten und Körpertemperatur, bei 

lahmen Tieren signifikant von denen gesunder Tiere unterschieden. Beim Vergleich der LMS- 

und C_LMS-Gruppen wurden jedoch nicht immer die gleichen Unterschiede beobachtet. So 

wiesen Tiere mit einem sichtbar unregelmäßigen Gang (LMS3) eine statistisch signifikant 

höhere Liegedauer auf als die als gesund eingestuften Tiere. Dieser Unterschied ging jedoch 

verloren, wenn Tiere ohne sichtbare Lahmheit, aber mit Befund oder positivem Schmerztest 

in diese Gruppe aufgenommen wurden (C_LMS3). 

Die generalisierten linearen gemischten Regressionsmodelle, die nur Leistungsdaten 

enthielten, erreichten eine Fläche unter der Kurve (AUC) von etwa 0,6. Dieser Wert konnte 

durch Hinzufügen von Aktivitätsdaten nur auf maximal 0,7 verbessert werden. Die 

Einbeziehung von nur einem zusätzlichen automatisch erfassten Parameter konnte die 

Genauigkeit jedoch auf über 80 % erhöhen. Die besten Modelle über mehrere Betriebe hinweg 

beinhalteten nicht nur Leistungs- und Aktivitätsparameter, sondern auch die Parameterklassen 

Fressverhalten oder Liegeverhalten in Kombination mit Körpertemperatur und Klima und 

erreichten eine AUC von 0,82 für den C_LMS und 0,89 für den LMS als Referenz. Die 

insgesamt beste Leistung sowohl für C_LMS (AUC: 0,91) als auch für LMS (AUC: 0,93) wurde 

mit den Wiegetrogdaten von RF1 in Kombination mit dem Liegeverhalten erreicht. Im C_LMS-

Modell lieferte außerdem die Kombination aus Konstitution und Fressverhalten auf demselben 

Betrieb besonders gute Ergebnisse (AUC: 0,90). 

Die Ergebnisse geben Aufschluss über die Prävalenz von Lahmheiten in bayerischen 

Milchviehbetrieben und die am häufigsten auftretenden Klauenerkrankungen. Die Tatsache, 

dass fast ein Viertel der schmerzhaften Tiere keine sichtbaren Befunde zeigte, deutet darauf 

hin, dass einige Klauenerkrankungen Schmerzen verursachen können, bevor sie für den 

Beobachter visuell erkennbar sind. Der LMS wies eine hohe Vergleichbarkeit auf; der relativ 

große Anteil an Tieren mit Schmerzen oder Befunden, die nicht als lahm identifiziert werden 

konnten, könnte jedoch darauf zurückzuführen sein, dass bestimmte Klauenkrankheiten, wie 

z. B. die Dermatitis digitalis, einen weniger ausgeprägten Einfluss auf den LMS haben.  

Lahmheiten beeinflussen viele verschiedene Aspekte im Leben einer Kuh, doch das 

Hauptproblem liegt oft in der schwierigen Unterscheidung zwischen Ursache und Wirkung. 

Sich entwickelnde Klauenläsionen oder leichte Fälle könnten außerdem andere Auswirkungen 

auf die automatisch erfassten Parameter haben als deutlich sichtbare Lahmheiten. So zeigte 

in dieser Studie beispielsweise die Liegezeit nur bei fortgeschrittener Lahmheit eine 

Verlängerung, während der Body-Condition-Score und das Körpergewicht in Kombination 

frühere Hinweise auf Klauenerkrankungen lieferten.  

Modelle, die sich ausschließlich auf Leistungsdaten stützten, oder solche, die sowohl 

Leistungs- als auch Aktivitätsdaten enthielten, erreichten keine ausreichende Genauigkeit, 
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was unter anderem auf die erheblichen individuellen Unterschiede im Aktivitätsniveau der 

Tiere zurückzuführen sein kann. Durch Hinzufügen weiterer Parameter wurde jedoch ein 

hohes Leistungsniveau der automatischen Lahmheitserkennungsmodelle erreicht. Die 

erfolgreichsten Modelle enthielten Parameter wie Fressgeschwindigkeit und Trogbesuche, 

was darauf hindeutet, dass eine detailliertere Aufzeichnung des Futteraufnahmeverhaltens 

durch Sensorsysteme die automatische Lahmheitserkennung erheblich verbessern könnte. 

Selbst die Einbeziehung einzelner zusätzlicher Parameter wie Futteraufnahmeverhalten, 

Liegeverhalten oder Körpertemperatur verbesserte bereits die Modellgenauigkeit, aber es war 

die Kombination verschiedener Parameter, die am effektivsten lahme Tiere identifizierte. Diese 

Ergebnisse verdeutlichen, wie wichtig die Integration von Daten aus verschiedenen Sensoren 

für komplexe Gesundheitsprobleme wie Lahmheit ist, da ein multifaktorieller Ansatz für die 

genaue Erkennung und Behandlung dieser Erkrankung unerlässlich ist. 
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XII. Appendices 

Table 32: Claw trimming dates used for data analysis 

Table 33: All parameters recorded manually and automatically during the study 

Code Parameter Description Format Unit 
Data 

sources 
Farms 

Animal Characteristics 

CowID Cow 
number 

Short 
identification 
number of 
the cow on 
the specific 
farm 

factor  LKV, HIT, 
every 
system 

All 
farms 

ETN Ear Tag 
number 

Unique 
identification 
number on 
the ear tag of 
the cow  

factor  LKV, HIT, 
every 
system 

All 
farms 

Date Date Date of the 
data 
collection 

date YYYY-
mm-dd 

Every 
system 

All 
farms 

Breed Breed Breed of the 
cow 

factor  LKV, 
number 
was 
assigned 
to each 
breed 

All 
farms 

Date_of_ 
birth 

Date of birth Birth date of 
the cow 

date YYYY-
mm-dd 

LKV, HIT All 
farms 

Milking 

Status_of_repr
oduction 

Status of 
reproductio
n 

The 
reproductive 
status of the 
cow, for 
example 
lactating or 
dry 

character  Calculated 
based on 
daily milk 
yield, 
lactation 
number 
and days 
in milk 

All 
farms 

 2021 2022 

RF1 11/03, 13/07, 29/11 04/04, 11/10 

RF2 06/05 03/02, 02/06 

RF3 11/05, 21/09 02/02, 14/07 

CDF1 / 24/05 

CDF2 / 07/02 

CDF3 20/09, 15/12 15/07 

CDF4 18/11-19/11 11/04-12/04 

CDF5 / 21/02-22/02 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Lactation_num
ber 

Parity/Lacta
tion number  

Number of 
the current 
lactation of 
the cow 

integer n LKV All 
farms 

Days_in_milk Days in milk Number of 
days since 
calving 

integer n Calculated 
based on 
last 
calving 
date 

All 
farms 

Last_date_of_
calving 

Last calving 
date 

Last calving 
date of the 
cow  

date YYYY-
mm-dd 

LKV All 
farms 

LKV_milk_yiel
d_in_last_lacta
tion 

Milk yield in 
last 
lactation 

Total milk 
yield of the 
cow in the 
last lactation 
measured 
during the 
Milk 
performance 
tests 

numeric kg LKV Except 
for 
CDF1 

LKV_test_date Milk 
performanc
e test date 

Date of the 
respective 
milk 
performance 
testing  

date YYYY-
mm-dd 

LKV All 
farms 

LKV_daily_mil
k_yield 

Daily milk 
yield 

Average daily 
milk yield as 
a result of the 
monthly milk 
performance 
testing 

numeric kg LKV All 
farms 

LKV_urea Urea  Average daily 
urea content 
in milk as a 
result of the 
monthly milk 
performance 
testing 

integer ppm 
(parts 
per 
million) 

LKV All 
farms 

LKV_somatic_
cell_count 

Somatic cell 
count  

Average daily 
somatic cell 
count of the 
milk as a 
result of the 
monthly milk 
performance 
testing 

integer thousa
nd 
cells/ml 

LKV All 
farms 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

LKV_fat Fat Average daily 
fat content in 
milk as a 
result of the 
monthly milk 
performance 
testing 

numeric % LKV All 
farms 

LKV_protein Protein Average daily 
protein 
content in 
milk as a 
result of the 
monthly milk 
performance 
testing 

numeric % LKV All 
farms 

LKV_fat_protei
n_ratio 

Fat-protein 
ratio  

Average daily 
fat-protein 
ratio in milk 
as a result of 
the monthly 
milk 
performance 
testing 

numeric  Calculated 
based on 
the fat and 
protein 
content in 
the milk 
measured 
during the 
milk 
performan
ce testing 
by LKV 

All 
farms 

LKV_lactose Lactose  Average daily 
lactose 
content in 
milk as a 
result of the 
monthly milk 
performance 
testing 

numeric % LKV All 
farms 

Milkings Milkings Number of 
milkings on 
current day 

integer n Milking 
robot 

All 
farms 

Maximum_milk
ing_interval 

Maximum 
milking 
interval  

Longest 
interval 
between two 
consecutive 
milkings on 
current day 

integer mins Calculated 
based on 
milking 
visits of 
the milking 
robot 

All 
farms 

Robot_daily_m
ilk_yield 

Daily milk 
yield 

Sum of all 
milkings on 
current day  

numeric kg Milking 
Robot  

All 
farms 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Robot_milk_yi
eld_in_current
_lactation 

Total milk 
yield in 
current 
lactation 

Accumulated 
milk yields 
within the 
current 
lactation until 
the 
respective 
day 

numeric kg Milking 
robot 

RF1 

Robot_milk_yi
eld_in_last_lac
tation 

Total milk 
yield in last 
lactation 

Accumulated 
milk yields 
within the last 
lactation 

numeric kg Milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF2, 
CDF3, 
CDF4, 
CDF5 

Robot_daily_m
ilk_yield_in_las
t_lactation 

Daily milk 
yield in last 
lactation 

Average daily 
milk yield 
within the last 
lactation 

numeric kg Milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF5 

Robot_fat Fat Average daily 
fat content in 
milk 

numeric % Milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF2, 
CDF4, 
CDF5 

Robot_protein Protein Average daily 
protein 
content in 
milk 

numeric % Milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF2, 
CDF4, 
CDF5 

Robot_fat_prot
ein_ratio 

Fat-protein 
ratio 

Average daily 
fat-protein 
ratio in milk 

numeric  Calculated 
based on 
the fat and 
protein 
content in 
the milk 
measured 
by the 
milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF2, 
CDF4, 
CDF5 

Robot_lactose Lactose Average daily 
lactose 
content in 
milk 

numeric % Milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF2, 
CDF4, 
CDF5 

Robot_somatic
_cell_count 

Somatic cell 
count 

Average daily 
somatic cell 
count in milk 

numeric thousa
nd 
cells/ml 

Milking 
robot 

RF2, 
RF3, 
CDF1 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Robot_effect_
of_scc 

Effect of the 
somatic cell 
count 

Index 
displaying 
the effect of 
the somatic 
cell count of 
the cow on 
the whole 
herd 

numeric  Milking 
robot 

RF2, 
RF3, 
CDF1 

Robot_blood Blood in 
milk 

Amount of 
blood in the 
milk 

numeric cells/µL 
percent 

Milking 
robot 

RF1, 
CDF3 

Robot_blood_
percent 

Blood in 
milk 

Amount of 
blood in the 
milk 

numeric % Milking 
robot 

CDF2, 
CDF4 

Colour_lv, 
Colour_rv, 
Colour_lh, 
Colour_rh 

Milk colour Colour of the 
milk of every 
milk quarter 

factor  Milking 
robot, 
number 
was 
assigned 
to each 
possible 
milk colour 

RF2, 
RF3, 
CDF1, 
CDF5 

Milking_tempe
rature 

Milk 
temperature 

Average daily 
temperature 
of the milk 

numeric ° C Milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF5 

MDi Mastitis-
Detection-
Index 

Index 
combining 
blood in milk, 
milking 
interval and 
conductivity 

numeric  Milking 
robot 
(DeLaval) 

RF1, 
CDF3 

Milking_flow Average 
milking flow 

Average rate 
of milk 
expulsion 
from the 
udder during 
the milking 
process 

numeric kg/min Milking 
robot 

RF1, 
RF2, 
RF3, 
CDF1, 
CDF3, 
CDF5 

Max_milking_fl
ow 

Maximum 
milking flow 

Maximum 
rate of milk 
expulsion 
from the 
udder during 
the milking 
process 

numeric kg/min Milking 
robot 

RF1, 
RF2, 
RF3, 
CDF1, 
CDF3, 
CDF5 

Conduct_lv, 
Conduct_rv, 
Conduct_lh, 
Conduct_rh 

Median 
conductivity 
of the milk 
in every 
quarter 

Ability of milk 
to conduct 
electrical 
current, 
reflecting its 
composition  

numeric mS/cm Milking 
robot  

RF1, 
CDF2,
CDF3, 
CDF4 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Conduct_lely_l
v, 
Conduct_lely_r
v, 
Conduct_lely_l
h, 
Conduct_lely_r
h 

Median 
conductivity 
of the milk 
in every 
quarter 

Ability of milk 
to conduct 
electrical 
current, 
reflecting its 
composition  

integer propriet
ary 
measur
ement 
unit 

Milking 
robot 
(Lely) 

RF2, 
RF3, 
CDF1, 
CDF5 

Constitution 

Robot_BCS Body 
condition 
score 

Numerical 
assessment 
of the body 
fat reserves 
of the cow on 
a scale from 
1 to 5 

numeric  Milking 
robot 
(DeLaval) 

RF1 

Body_weight Body weight Total body 
weight of the 
cow 

numeric kg Weighing 
troughs, 
milking 
robot 

RF1, 
CDF5 

Feeding 

WT_feed_intak
e 

Feed intake Total of 
individual 
feed intake 
amounts 

numeric kg Weighing 
Troughs 

RF1 

Concentrated_
feed_intake 

Intake of 
concentrate
d feed 

Intake 
amount of 
concentrated 
feed  

numeric kg Milking 
robot 

All 
farms 

Concentrated_
feed_remains 

Remaining 
concentrate
d feed 

Remaining 
amount of 
concentrated 
feed  

numeric kg Milking 
robot 

RF2, 
RF3, 
CDF1, 
CDF5 

WT_feeding_d
uration 

Feeding 
duration 

Total 
duration of all 
visits to the 
feeding 
throughs 

numeric mins Weighing 
Troughs 

RF1 

WT_feeding_d
uration_day 

Feeding 
duration 
during 
daytime 

Duration of 
all visits to 
the feeding 
throughs 
during 
daytime 

numeric mins Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_feeding_d
uration_day_ni
ght 

Feeding 
duration 
(day/night) 

Ratio of the 
feeding 
duration 
during 
daytime to 
the total 
feeding 
duration 

numeric  Weighing 
Troughs 
(Calculate
d) 

RF1 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

WT_feeding_p
ace 

Feeding 
pace 

Amount of 
feed intake 
per feeding 
duration 

numeric kg/min Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_trough_vis
its 

Number of 
weighing 
trough visits 

Total number 
of visits to 
the weighing 
trough 

integer n Weighing 
Troughs 

RF1 

WT_trough_vis
its_day 

Number of 
weighing 
trough visits 
during 
daytime 

Number of 
visits to the 
weighing 
trough during 
daytime 

integer n Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_trough_vis
its_day_night 

Number of 
weighing 
trough visits 
(day/night) 

Ratio of the 
number of 
visits to the 
weighing 
trough during 
daytime to 
the total 
number of 
visits to the 
weighing 
trough 

numeric  Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_number_o
f_meals 

Number of 
meals 

Total number 
of meals  

integer n Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_number_o
f_meals_day 

Number of 
meals 
during 
daytime 

Number of 
meals during 
daytime 

integer n Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_number_o
f_meals_day_
night 

Number of 
meals 
(day/night) 

Ratio of the 
number of 
meals during 
daytime to 
the total 
number of 
meals 

numeric  Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_feed_intak
e_per_meal 

Feed intake 
per meal 

Average feed 
intake per 
meal 

numeric kg Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_feeding_d
uration_per_m
eal 

Feeding 
duration per 
meal 

Average 
feeding 
duration per 
meal 

numeric mins Weighing 
Troughs 
(Calculate
d) 

RF1 

WT_feeding_d
uration_per_vi
sit 

Feeding 
duration per 
visit 

Average 
feeding 
duration per 
weighing 
trough visit 

numeric mins Weighing 
Troughs 
(Calculate
d) 

RF1 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

WT_feed_intak
e_per_visit 

Feed intake 
per visit 

Average feed 
intake per 
weighing 
trough visit 

numeric kg Weighing 
Troughs 
(Calculate
d) 

RF1 

ENGS_feeding Feeding 
duration 

Total 
duration of all 
meals 

integer mins ENGS RF1 

ENGS_feeding
_day 

Feeding 
duration 
during 
daytime 

Duration of 
all meals 
during 
daytime 

integer mins ENGS 
(Calculate
d) 

RF1 

ENGS_feeding
_day_night 

Feeding 
duration 
(day/night) 

Ratio of the 
feeding 
duration 
during 
daytime to 
the total 
feeding 
duration 

numeric  ENGS 
(Calculate
d) 

RF1 

ENGS_numbe
r_of_meals 

Number of 
meals 

Total number 
of meals 

integer n ENGS RF1 

ENGS_numbe
r_of_meals_da
y 

Number of 
meals 
during 
daytime 

Number of 
meals during 
daytime 

integer n ENGS 
(Calculate
d) 

RF1 

ENGS_numbe
r_of_meals_da
y_night 

Number of 
meals 
(day/night) 

Ratio of the 
number of 
meals during 
daytime to 
the total 
number of 
meals 

numeric  ENGS 
(Calculate
d) 

RF1 

ENGS_feeding
_duration_per
_meal 

Feeding 
duration per 
meal 

Average 
feeding 
duration per 
meal 

numeric mins ENGS 
(Calculate
d) 

RF1 

Nedap_feedin
g 

Feeding 
duration 

Total feeding 
duration per 
day 

integer mins Nedap RF2, 
RF3 

Rumination 

Smaxtec_rum Duration of 
rumination 

Total 
duration of 
rumination 

numeric mins smaXtec RF1, 
RF3, 
CDF4 

SCR_rum Duration of 
rumination 

Total 
duration of 
rumination 

integer mins SCR, 
Milking 
robot 

RF1, 
RF3, 
CDF1, 
CDF5 

SCR_rum_day Duration of 
rumination 
during 
daytime 

Duration of 
rumination 
during 
daytime  

integer mins SCR 
(Calculate
d) 

RF1 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

SCR_rum_day
_night 

Duration of 
rumination 
(day/night) 

Ratio of 
duration of 
rumination 
during 
daytime to 
the total 
duration of 
rumination 

numeric  SCR 
(Calculate
d) 

RF1 

Nedap_rum Duration of 
rumination 

Total 
duration of 
rumination 

integer mins Nedap RF2, 
RF3 

Heat behaviour 

SCR_heat_pro
bability 

Heat 
probability 

Probability of 
an occurring 
heat in a cow 

factor  SCR, 
Milking 
robot 

(Lely) 

RF3, 
CDF1, 
CDF5 

SCR_heat_pro
bability_day 

Heat 
probability 
during 
daytime 

Probability of 
an occurring 
heat in a cow 
during 
daytime 

factor  SCR, 
Milking 
robot 
(Lely) 

RF3, 
CDF1, 
CDF5 

Lemmer_factor
_of_restlessne
ss 

Factor of 
restlessnes
s 

Factor of 
restlessness, 
depending on 
the cows’ 
activity 

factor  Milking 
robot 
(Lemmer-
Fullwood) 

CDF2, 
CDF4 

Lying behaviour 

ENGS_lying Lying 
duration 

Total lying 
duration 

integer mins ENGS RF1 

ENGS_lying_d
ay 

Lying 
duration 
during 
daytime 

Lying 
duration 
during 
daytime 

integer mins ENGS 
(Calculate
d) 

RF1 

ENGS_lying_d
ay_night 

Lying 
duration 
(day/night) 

Ratio of lying 
duration 
during 
daytime to 
the total lying 
duration 

numeric  ENGS 
(Calculate
d) 

RF1 

ENGS_lying_b
outs 

Lying bouts Total number 
of lying 
events 

integer n ENGS RF1 

ENGS_lying_b
outs_day 

Lying bouts 
during 
daytime 

Number of 
lying events 
during 
daytime 

integer n ENGS 
(Calculate
d) 

RF1 

ENGS_lying_b
outs_day_nigh
t 

Lying bouts 
(day/night) 

Ratio of lying 
bouts during 
daytime to 
the total 
number of 
lying bouts 

numeric  ENGS 
(Calculate
d) 

RF1 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

ENGS_lying_d
uration_per_b
out 

Lying 
duration per 
bout 

Average lying 
duration per 
lying bout 

numeric mins ENGS 
(Calculate
d) 

RF1 

Nedap_lying Lying 
duration 

Total lying 
duration 

integer mins Nedap RF3 

Nedap_get_up
s 

Lying bouts Total number 
of lying 
events 

integer n Nedap RF3 

Lemmer_lying Lying 
duration 

Total lying 
duration 

integer mins Milking 
robot 
(Lemmer-
Fullwood) 

CDF2, 
CDF4 

Lemmer_get_u
ps 

Lying bouts Total number 
of lying 
events 

integer n Milking 
robot 
(Lemmer-
Fullwood) 

CDF2, 
CDF4 

Activity 

ENGS_act Activity 
units 

Total activity integer  ENGS RF1 

ENGS_act_da
y 

Activity 
units during 
daytime 

Activity 
during 
daytime 

integer  ENGS 
(Calculate
d) 

RF1 

ENGS_act_da
y_night 

Activity 
units 
(day/night) 

Ratio of total 
activity to 
activity 
during 
daytime 

numeric  ENGS 
(Calculate
d) 

RF1 

Smaxtec_act Activity 
index 

Total activity numeric  smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_act_
day 

Activity 
index during 
daytime 

Activity 
during 
daytime 

numeric  smaXtec 
(Calculate
d) 

RF1, 
RF3, 
CDF4 

Smaxtec_act_
day_night 

Activity 
index 
(day/night) 

Ratio of total 
activity to 
activity 
during 
daytime 

numeric  smaXtec 
(Calculate
d) 

RF1, 
RF3, 
CDF4 

SCR_act Activity 
index 

Total activity numeric  SCR, 
Milking 
robot 
(Lely) 

RF1, 
RF3, 
CDF1, 
CDF5 

SCR_act_day Activity 
index during 
daytime 

Activity 
during 
daytime 

numeric  SCR, 
Milking 
robot 
(Lely) 
(Calculate
d) 

RF1, 
RF3, 
CDF1, 
CDF5 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

SCR_act_day_
night 

Activity 
index 
(day/night) 

Ratio of total 
activity to 
activity 
during 
daytime 

numeric  SCR, 
Milking 
robot 
(Lely) 
(Calculate
d) 

RF1, 
RF3, 
CDF1, 
CDF5 

Nedap_act Step count Total activity integer  Nedap RF3 

Nedap_inactiv
e 

Inactive 
time 

Total inactive 
time without 
any head 
movements 

integer mins Nedap RF2, 
RF3 

Nedap_act_fo
ot_median 

Median step 
count 

Median step 
count in a 
two-hour 
interval 

numeric  Nedap RF3 

Nedap_act_fo
ot_sum_day 

Step count 
during 
daytime 

Total activity 
during 
daytime 

integer  Nedap 
(Calculate
d) 

RF3 

Nedap_act_fo
ot_median_da
y 

Median step 
count 
during 
daytime 

Median step 
count in a 
two-hour 
interval 
during 
daytime 

numeric  Nedap 
(Calculate
d) 

RF3 

Nedap_act_fo
ot_sum_day_n
ight 

Step count 
(day/night) 

Ratio of total 
activity to 
activity 
during 
daytime 

numeric  Nedap 
(Calculate
d) 

RF3 

Nedap_act_fo
ot_median_da
y_night 

Median step 
count 
(day/night) 

Ratio of 
median 
activity in a 
two-hour 
interval 
during 
daytime to 
daily average 
activity in a 
two-hour 
interval 

numeric  Nedap 
(Calculate
d) 

RF3 

Nedap_act_col
lar_sum 

Neck 
activity 

Total heat-
associated 
neck 
movements 

integer  Nedap 
(Calculate
d) 

RF2, 
RF3 

Nedap_act_col
lar_median 

Median of 
neck activity 

Median heat-
associated 
neck 
movements 
in a two-hour 
interval 

numeric  Nedap 
(Calculate
d) 

RF2, 
RF3 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Nedap_act_col
lar_sum_day 

Neck 
activity 
during 
daytime 

Heat-
associated 
neck 
movements 
during 
daytime 

integer  Nedap 
(Calculate
d) 

RF2, 
RF3 

Nedap_act_col
lar_median_da
y 

Median of 
neck activity 
during 
daytime 

Median heat-
associated 
neck 
movements 
in a two-hour 
interval 
during 
daytime 

numeric  Nedap 
(Calculate
d) 

RF2, 
RF3 

Nedap_act_col
lar_sum_day_
night 

Neck 
activity 
(day/night) 

Ratio of heat-
associated 
neck 
movements 
during 
daytime to 
total heat-
associated 
neck 
movements 

numeric  Nedap 
(Calculate
d) 

RF2, 
RF3 

Nedap_act_col
lar_median_da
y_night 

Median of 
neck activity 
(day/night) 

Ratio of 
median heat-
associated 
neck 
movements 
in a two-hour 
interval 
during 
daytime to 
daily average 
heat-
associated 
neck 
movements 
in a two-hour 
interval 

numeric  Nedap 
(Calculate
d) 

RF2, 
RF3 

Lemmer_act Hourly 
average 
step count 

Hourly 
average step 
count 

integer  Milking 
robot 
(Lemmer-
Fullwood) 

CDF2, 
CDF4 

Delaval_act_a
vg 

Activity 
index 

Average daily 
activity index 

integer  Milking 
robot 
(DeLaval) 

CDF3 

Delaval_act_re
l 

Relative 
activity 

Current 
activity level 
of the cow 
compared to 
its individual 
average 

integer % Milking 
robot 
(DeLaval) 

CDF3 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Delaval_act_re
l_min 

Minimum 
relative 
activity 

Lowest value 
of the cow’s 
activity 
compared to 
its individual 
average 

integer % Milking 
robot 
(DeLaval) 

CDF3 

Delaval_act_re
l_max 

Maximum 
relative 
activity 

Highest value 
of the cow’s 
activity 
compared to 
its individual 
average 

integer % Milking 
robot 
(DeLaval) 

CDF3 

Body temperature 

Smaxtec_temp
_normal_medi
an 

Normal 
body 
temperature 

Individual 
normal body 
temperature 
of the cow 
based on the 
last 5 days 

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_temp
_min 

Minimum 
body 
temperature 

Minimum 
body 
temperature 
of the cow 

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_temp
_max 

Maximum 
body 
temperature 

Maximum 
body 
temperature 
of the cow 

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_temp
_median 

Median 
body 
temperature 

Median body 
temperature 
of the cow 

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_temp
_without_drink
_cycles_min 

Minimum 
body 
temperature 
without 
drink cycles 

Minimum 
body 
temperature 
adjusted for 
temperature 
declines 
resulting from 
drinking  

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_temp
_without_drink
_cycles_max 

Maximum 
body 
temperature 
without 
drink cycles 

Maximum 
body 
temperature 
adjusted for 
temperature 
declines 
resulting from 
drinking  

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_temp
_without_drink
_cycles_media
n 

Median 
body 
temperature 
without 
drink cycles 

Median body 
temperature 
adjusted for 
temperature 
declines 
resulting from 
drinking  

numeric °C smaXtec RF1, 
RF3, 
CDF4 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Climate 

Smaxtec_clim
ate_temp_min 

Minimum 
temperature 

Minimum 
ambient 
temperature 

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_clim
ate_temp_max 

Maximum 
temperature 

Maximum 
ambient 
temperature 

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_clim
ate_temp_med
ian 

Average 
temperature 

Median 
ambient 
temperature 

numeric °C smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_clim
ate_hum_min 

Minimum 
humidity 

Minimum 
ambient 
humidity 

numeric % smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_clim
ate_hum_max 

Maximum 
humidity 

Maximum 
ambient 
humidity 

numeric % smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_clim
ate_hum_medi
an 

Median 
humidity 

Median 
ambient 
humidity 

numeric % smaXtec RF1, 
RF3, 
CDF4 

Smaxtec_thi_
min 

Minimum 
THI 

Minimum 
Temperature-
Humidity-
Index 

numeric  smaXtec 
(Calculate
d) 

RF1, 
RF3, 
CDF4 

Smaxtec_thi_
max 

Maximum 
THI 

Maximum 
Temperature-
Humidity-
Index 

numeric  smaXtec 
(Calculate
d) 

RF1, 
RF3, 
CDF4 

Smaxtec_thi_
median 

Median THI Median 
Temperature-
Humidity-
Index 

numeric  smaXtec 
(Calculate
d) 

RF1, 
RF3, 
CDF4 

WS_thi_min Minimum 
THI 

Minimum 
Temperature-
Humidity-
Index 

numeric  Weather 
station 
(Calculate
d) 

RF1, 
RF2, 
RF3 

WS_thi_max Maximum 
THI 

Maximum 
Temperature-
Humidity-
Index 

numeric  Weather 
station, 
(Calculate
d) 

RF1, 
RF2, 
RF3 

WS_thi_media
n 

Median THI Median 
Temperature-
Humidity-
Index 

numeric  Weather 
station 
(Calculate
d) 

RF1, 
RF2, 
RF3 

WS_temp_2m
_med 

Median 
temperature 
in 2 m 
height 

Median 
temperature 
in 2 m height 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_temp_2m
_min 

Minimum 
temperature 
in 2 m 
height 

Minimum 
ambient 
temperature 
in 2 m height 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

WS_temp_2m
_max 

Maximum 
temperature 
in 2 m 
height 

Maximum 
ambient 
temperature 
in 2 m height 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_temp_20c
m_med 

Median 
temperature 
in 20 cm 
height 

Median 
ambient 
temperature 
in 20 cm 
height 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_temp_20c
m_min 

Minimum 
temperature 
in 20 cm 
height 

Minimum 
ambient 
temperature 
in 20 cm 
height 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_temp_20c
m_max 

Maximum 
temperature 
in 20 cm 
height 

Maximum 
ambient 
temperature 
in 20 cm 
height 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_soil_temp
_5cm_med 

Median soil 
temperature 
in 5 cm 
depth 

Median soil 
temperature 
in 5 cm depth 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_soil_temp
_5cm_min 

Minimum 
soil 
temperature 
in 5 cm 
depth 

Minimum soil 
temperature 
in 5 cm depth 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_soil_temp
_5cm_max 

Maximum 
soil 
temperature 
in 5 cm 
depth 

Maximum 
soil 
temperature 
in 5 cm depth 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_soil_temp
_20cm_med 

Median soil 
temperature 
in 20 cm 
depth 

Median soil 
temperature 
in 20 cm 
depth 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_soil_temp
_20cm_min 

Minimum 
soil 
temperature 
in 20 cm 
depth 

Minimum soil 
temperature 
in 20 cm 
depth 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_soil_temp
_20cm_max 

Maximum 
soil 
temperature 
in 20 cm 
depth 

Maximum 
soil 
temperature 
in 20 cm 
depth 

numeric °C Weather 
station 

RF1, 
RF2, 
RF3 

WS_rel_hum_
med 

Median 
relative 
humidity 

Median 
relative 
humidity 

numeric % Weather 
station 

RF1, 
RF2, 
RF3 

WS_rel_hum_
min 

Minimum 
relative 
humidity 

Minimum 
relative 
humidity 

numeric % Weather 
station 

RF1, 
RF2, 
RF3 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

WS_rel_hum_
max 

Maximum 
relative 
humidity 

Maximum 
relative 
humidity 

numeric % Weather 
station 

RF1, 
RF2, 
RF3 

WS_wind_velo
city_med 

Median 
wind 
velocity 

Median wind 
velocity 

numeric m/s Weather 
station 

RF1, 
RF2, 
RF3 

WS_wind_velo
city_min 

Minimum 
wind 
velocity 

Minimum 
wind velocity 

numeric m/s Weather 
station 

RF1, 
RF2, 
RF3 

WS_wind_velo
city_max 

Maximum 
wind 
velocity 

Maximum 
wind velocity 

numeric m/s Weather 
station 

RF1, 
RF2, 
RF3 

WS_rain_med Median 
precipitation 

Median 
precipitation 

numeric mm Weather 
station 

RF1, 
RF2, 
RF3 

WS_rain_min Minimum 
precipitation 

Minimum 
precipitation 

numeric mm Weather 
station 

RF1, 
RF2, 
RF3 

WS_rain_max Maximum 
precipitation 

Maximum 
precipitation 

numeric mm Weather 
station 

RF1, 
RF2, 
RF3 

WS_global_ra
d_med 

Median 
global 
radiation 

Median 
global 
radiation 

numeric Wh/m² Weather 
station 

RF1, 
RF2, 
RF3 

WS_global_ra
d_min 

Minimum 
global 
radiation 

Minimum 
global 
radiation 

numeric Wh/m² Weather 
station 

RF1, 
RF2, 
RF3 

WS_global_ra
d_max 

Maximum 
global 
radiation 

Maximum 
global 
radiation 

numeric Wh/m² Weather 
station 

RF1, 
RF2, 
RF3 

Season Season Current 
season of the 
claw 
trimming 

integer  Manual, 
number 
assigned 
for each 
season 

All 
farms 

Claw health 

LMS Locomotion 
score 

Three-step 
Locomotion 
score 

integer  Manual All 
farms 

C_LMS Corrected 
Locomotion 
score 

Locomotion 
score, 
corrected for 
pain test and 
findings 

integer  Manual All 
farms 

GSC Growth in 
the sole 
centre 

Three-step 
score for 
growth in the 
sole centre 

integer  Manual All 
farms 

PT Pain test Positive or 
negative pain 
test 

integer  Manual All 
farms 
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Code Parameter Description Format Unit 
Data 

sources 
Farms 

Findings Findings 
and 
treatments 

Clinical 
findings and 
treatments of 
the claw 
trimming 

character  Manual All 
farms 

Table 34: Classification of the claw trimming dates into seasons 

Season Months Number 

Spring March, April, May 1 

Summer June, July, August 2 

Autumn September, October, November 3 

Winter December, January, February 4 

Table 35: Count and percentage of locomotion scores (LMS) on the different claw trimming 

dates (CT) 

 CT 1 CT 2 CT 3 CT 4 CT 5 Farm 

LMS1 33 (58.9%) 45 (77.6%) 39 (68.4%) 43 (78.2%) 39 (66.1%) RF1 

LMS2 15 (26.8%) 8 (13.8%) 12 (21.0%) 7 (12.7%) 17 (28.8%) RF1 

LMS3 8 (14.3%) 5 (8.6%) 6 (10.5%) 5 (9.1%) 3 (5.1%) RF1 

LMS1 38 (84.4%) 28 (65.1%) 31 (72.1%) / / RF2 

LMS2 6 (13.3%) 10 (23.3%) 10 (23.3%) / / RF2 

LMS3 1 (2.2%) 5 (11.6%) 2 (4.7%) / / RF2 

LMS1 42 (66.7%) 38 (67.9%) 40 (76.9%) 40 (75.5%) / RF3 

LMS2 12 (19.0%) 16 (28.6%) 6 (11.5%) 11 (20.8%) / RF3 

LMS3 9 (14.3%) 2 (3.6%) 6 (11.5%) 2 (3.8%) / RF3 

LMS1 46 (74.2%) / / / / CDF1 

LMS2 13 (21.0%) / / / / CDF1 

LMS3 3 (4.8%) / / / / CDF1 

LMS1 39 (75.0%) / / / / CDF2 

LMS2 12 (23.1%) / / / / CDF2 

LMS3 1 (1.9%) / / / / CDF2 

LMS1 17 (58.6%) 20 (62.5%) 20 (69.0%) / / CDF3 

LMS2 8 (27.6%) 8 (25.0%) 8 (27.6%) / / CDF3 

LMS3 4 (13.8%) 4 (12.5%) 1 (3.5%) / / CDF3 

LMS1 80 (69.6%) 93 (75.6%) / / / CDF4 

LMS2 21 (18.3%) 27 (22.0%) / / / CDF4 

LMS3 14 (12.2%) 3 (2.4%) / / / CDF4 

LMS1 94 (72.9%) / / / / CDF5 

LMS2 28 (21.7%) / / / / CDF5 

LMS3 7 (5.4%) / / / / CDF5 
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Table 36: Median lameness development period between last locomotion score (LMS) 1 and 

first LMS3 and standard deviation on each farm 

Farm Median days between last LMS1 and first LMS3 Standard deviation 

RF1 3 3.45 

RF2 4 1.56 

RF3 1 0.76 

CDF1 9 4.32 

CDF2 3 6.43 

CDF3 2 0.84 

CDF4 2 2.41 

CDF5 3 2.50 

Table 37: Count and percentage of pain tests (PT) on the different claw trimming dates (CT) 

 CT1 CT2 CT3 CT4 CT5 Farm 

PT- 163 (86.7%) 212 (91.4%) 217 (95.2%) 218 (99.1%) 228 (96.6%) RF1 

PT+ 25 (13.3%) 20 (8.6%) 11 (4.8%) 2 (0.9%) 8 (3.4%) RF1 

PT- 135 (75.0%) 161 (93.6%) 163 (94.8%) / / RF2 

PT+ 45 (25%) 11 (6.4%) 9 (5.2%) / / RF2 

PT- 221 (87.7%) 213 (95.1%) 199 (95.7%) 204 (96.2%) / RF3 

PT+ 31 (12.3%) 11 (4.9%) 9 (4.3%) 8 (3.8%) / RF3 

PT- 242 (97.6%) / / / / CDF1 

PT+ 6 (2.4%) / / / / CDF1 

PT- 202 (97.1%) / / / / CDF2 

PT+ 6 (2.9%) / / / / CDF2 

PT- 107 (92.2%) 122 (95.3%) 113 (97.4%) / / CDF3 

PT+ 9 (7.8%) 6 (4.7%) 3 (2.6%) / / CDF3 

PT- 433 (94.1%) 479 (98.2%) / / / CDF4 

PT+ 27 (5.9%) 9 (1.8%) / / / CDF4 

PT- 496 (96.1%) / / / / CDF5 

PT+ 20 (3.9%) / / / / CDF5 
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Table 38: Count and percentage of the growth in the sole centre (GSC) on the different claw 

trimming dates (CT) 

 CT1 CT2 CT3 CT4 CT5 Farm 

GSC1 4 (2.1%) 1 (0.4%) 3 (1.3%) 0 (0%) 0 (0%) RF1 

GSC2 154 (81.9%) 144 (62.1%) 97 (42.6%) 25 (11.4%) 57 (24.2%) RF1 

GSC3 30 (16.0%) 87 (37.5%) 128 (56.1%) 195 (88.6%) 179 (75.8%) RF1 

GSC1 1 (0.6%) 0 (0%) 0 (0%) / / RF2 

GSC2 144 (80.0%) 6 (3.5%) 49 (28.5%) / / RF2 

GSC3 35 (19.4%) 166 (96.5%) 123 (71.5%) / / RF2 

GSC1 0 (0%) 1 (0.4%) 4 (1.9%) 4 (1.9%) / RF3 

GSC2 187 (74.2%) 127 (56.7%) 77 (37.0%) 53 (25.0%) / RF3 

GSC3 65 (25.8%) 96 (42.9%) 127 (61.1%) 155 (73.1%) / RF3 

GSC1 0 (0%) / / / / CDF1 

GSC2 21 (8.5%) / / / / CDF1 

GSC3 227 (91.5%) / / / / CDF1 

GSC1 0 (0%) / / / / CDF2 

GSC2 5 (2.4%) / / / / CDF2 

GSC3 203 (97.6%) / / / / CDF2 

GSC1 2 (1.7%) 4 (3.1%) 0 (0%) / / CDF3 

GSC2 93 (80.2%) 51 (39.9%) 8 (6.9%) / / CDF3 

GSC3 21 (18.1%) 73 (57.0% 108 (93.1%) / / CDF3 

GSC1 0 (0%) 0 (0%) / / / CDF4 

GSC2 284 (61.7%) 38 (7.8%) / / / CDF4 

GSC3 176 (38.3%) 450 (92.2%) / / / CDF4 

GSC1 0 (0%) / / / / CDF5 

GSC2 44 (8.5%) / / / / CDF5 

GSC3 472 (91.5%) / / / / CDF5 
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Table 39: Count of the total findings and treatments on each farm and percentages of the 

findings and treatments (abbreviations explained in Table 7 and Table 8) 

 RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 Total Percentage 

Findings 

TU 1 0 0 1 0 0 0 2 4 0.14 

OLU 4 5 0 0 0 2 1 1 13 0.44 

IP 5 1 0 0 1 0 0 2 9 0.31 

SU 10 6 3 0 1 5 17 5 47 1.58 

DDM1 38 10 59 0 2 13 0 2 124 4.20 

DDM2 30 56 59 0 7 22 49 27 250 8.46 

DDM3 0 0 0 0 0 0 0 0 0 0.00 

DDM4 64 11 5 0 5 54 15 3 157 5.31 

DDM4.1 3 1 0 0 0 8 4 0 16 0.54 

HHE 10 10 2 2 1 9 1 35 70 2.37 

CSH 36 12 22 14 3 11 53 21 172 5.82 

SHD 204 148 200 83 12 120 269 79 1,115 37.73 

SHC 85 13 17 2 12 0 70 13 212 7.17 

WLF 116 55 55 43 18 65 79 81 512 17.33 

WLA 10 6 4 14 6 4 29 9 82 2.78 

HF 13 6 4 0 3 2 7 1 36 1.22 

IH 25 7 18 1 1 11 12 10 85 2.88 

DS 16 3 7 5 3 5 7 3 49 1.66 

TN 0 1 0 0 0 0 0 0 1 0.03 

BU 1 0 0 0 0 0 0 0 1 0.03 

Total 671 351 455 165 75 331 613 294 2,955 100.00 

Treatments 

B 48 67 58 5 2 32 45 41 298 30.07 

SAP 17 62 57 0 2 31 13 40 222 22.40 

CTC 0 62 0 3 11 34 41 45 196 19.78 

CB 27 12 7 4 11 2 33 0 96 9.69 

SAPO 0 0 0 4 0 0 25 0 29 2.93 

CZC 84 0 66 0 0 0 0 0 150 15.13 

Total 176 203 188 16 26 99 157 126 991 100.00 
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Table 40: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on RF1 (abbreviations explained in Table 7 and Table 8) 

 CT1 CT2 CT3 CT4 CT5 

 
Cou
nt 

Percen
tage 

Cou
nt 

Percen
tage 

Cou
nt 

Percen
tage 

Cou
nt 

Percen
tage 

Cou
nt 

Percen
tage 

Findings 

TU 0 0.00 0 0.00 1 0.50 0 0.00 0 0.00 

OLU 0 0.00 0 0.00 1 0.50 2 0.82 1 0.53 

IP 0 0.00 3 13.64 0 0.00 1 0.41 1 0.53 

SU 1 6.25 3 13.64 2 1.00 0 0.00 4 2.13 

DDM
1 0 0.00 0 0.00 8 3.98 14 5.74 16 8.51 

DDM
2 5 31.25 5 22.73 10 4.98 2 0.82 8 4.26 

DDM
3 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 

DDM
4 0 0.00 0 0.00 28 13.93 20 8.20 16 8.51 

DDM
4.1 0 0.00 0 0.00 0 0.00 1 0.41 2 1.06 

HHE 0 0.00 0 0.00 10 4.98 0 0.00 0 0.00 

CSH 0 0.00 0 0.00 11 5.47 10 4.10 15 7.98 

SHD 2 12.50 0 0.00 63 31.34 86 35.25 53 28.19 

SHC 0 0.00 0 0.00 36 17.91 38 15.57 11 5.85 

WLF 2 12.50 1 4.55 16 7.96 56 22.95 41 21.81 

WLA 0 0.00 4 18.18 1 0.50 0 0.00 5 2.66 

HF 0 0.00 2 9.09 4 1.99 5 2.05 2 1.06 

IH 4 25.00 0 0.00 8 3.98 7 2.87 6 3.19 

DS 2 12.50 4 18.18 2 1.00 1 0.41 7 3.72 

TN 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 

BU 0 0.00 0 0.00 0 0.00 1 0.41 0 0.00 

Total 16 100.00 22 100.00 201 100.00 244 100.00 188 100.00 

Treatments 

B 9 90 10 50.00 8 14.81 10 18.87 11 28.21 

SAP 0 0 0 0.00 6 11.11 3 5.66 8 20.51 

CTC 0 0 0 0.00 0 0.00 0 0.00 0 0.00 

CB 1 10 10 50.00 8 14.81 2 3.77 6 15.38 

SAP
O 0 0 0 0.00 0 0.00 0 0.00 0 0.00 

CZC 0 0 0 0.00 32 59.26 38 71.70 14 35.90 

Total 10 100.00 20 100.00 54 100.00 53 100.00 39 100.00 
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Table 41: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on RF2 (abbreviations explained in Table 7 and Table 8) 

 CT1 CT2 CT3 

 Count Percentage Count Percentage Count Percentage 

Findings 

TU 0 0.00 0 0.00 0 0.00 

OLU 0 0.00 0 0.00 5 2.13 

IP 0 0.00 1 1.09 0 0.00 

SU 1 4.17 4 4.35 1 0.43 

DDM1 1 4.17 1 1.09 8 3.40 

DDM2 16 66.67 15 16.30 25 10.64 

DDM3 0 0.00 0 0.00 0 0.00 

DDM4 0 0.00 9 9.78 2 0.85 

DDM4.1 0 0.00 0 0.00 1 0.43 

HHE 0 0.00 2 2.17 8 3.40 

CSH 0 0.00 3 3.26 9 3.83 

SHD 0 0.00 28 30.43 120 51.06 

SHC 0 0.00 3 3.26 10 4.26 

WLF 3 12.50 17 18.48 35 14.89 

WLA 2 8.33 3 3.26 1 0.43 

HF 0 0.00 0 0.00 6 2.55 

IH 1 4.17 3 3.26 3 1.28 

DS 0 0.00 2 2.17 1 0.43 

TN 0 0.00 1 1.09 0 0.00 

BU 0 0.00 0 0.00 0 0.00 

Total 24 100.00 92 100.00 235 100.00 

Treatments 

B 16 31.37 24 36.36 27 31.40 

SAP 16 31.37 20 30.30 26 30.23 

CTC 16 31.37 17 25.76 29 33.72 

CB 3 5.88 5 7.58 4 4.65 

SAPO 0 0.00 0 0.00 0 0.00 

CZC 0 0.00 0 0.00 0 0.00 

Total 51 100.00 66 100.00 86 100.00 
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Table 42: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on RF3 (abbreviations explained in Table 7 and Table 8) 

 CT1 CT2 CT3 CT4 

 
Co
unt 

Percenta
ge 

Cou
nt 

Percenta
ge 

Cou
nt 

Percenta
ge 

Cou
nt 

Percenta
ge 

Findings 

TU 0 0.00 0 0.00 0 0.00 0 0.00 

OLU 0 0.00 0 0.00 0 0.00 0 0.00 

IP 0 0.00 0 0.00 0 0.00 0 0.00 

SU 0 0.00 1 1.32 1 1.06 1 0.50 

DDM1 22 25.58 11 14.47 18 19.15 8 4.02 

DDM2 23 26.74 14 18.42 7 7.45 15 7.54 

DDM3 0 0.00 0 0.00 0 0.00 0 0.00 

DDM4 0 0.00 0 0.00 0 0.00 5 2.51 

DDM4.1 0 0.00 0 0.00 0 0.00 0 0.00 

HHE 0 0.00 0 0.00 0 0.00 2 1.01 

CSH 0 0.00 3 3.95 9 9.57 10 5.03 

SHD 27 31.40 33 43.42 32 34.04 108 54.27 

SHC 6 6.98 0 0.00 5 5.32 6 3.02 

WLF 3 3.49 5 6.58 11 11.70 36 18.09 

WLA 1 1.16 2 2.63 1 1.06 0 0.00 

HF 0 0.00 3 3.95 0 0.00 1 0.50 

IH 3 3.49 1 1.32 8 8.51 6 3.02 

DS 1 1.16 3 3.95 2 2.13 1 0.50 

TN 0 0.00 0 0.00 0 0.00 0 0.00 

BU 0 0.00 0 0.00 0 0.00 0 0.00 

Total 86 100.00 76 100.00 94 100.00 199 100.00 

Treatments 

B 19 31.67 14 31.82 8 72.73 17 29.82 

SAP 19 31.67 14 31.82 8 72.73 16 28.07 

CTC 0 0.00 0 0.00 0 0.00 0 0.00 

CB 2 3.33 2 4.55 3 27.27 0 0.00 

SAPO 0 0.00 0 0.00 0 0.00 0 0.00 

CZC 20 33.33 14 31.82 8 72.73 24 42.11 

Total 60 100.00 44 100.00 11 100.00 57 100.00 
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Table 43: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on CDF1 (abbreviations explained in Table 7 and Table 8) 

 CT1 

 Count Percentage 

Findings 

TU 1 0.61 

OLU 0 0.00 

IP 0 0.00 

SU 0 0.00 

DDM1 0 0.00 

DDM2 0 0.00 

DDM3 0 0.00 

DDM4 0 0.00 

DDM4.1 0 0.00 

HHE 2 1.21 

CSH 14 8.48 

SHD 83 50.30 

SHC 2 1.21 

WLF 43 26.06 

WLA 14 8.48 

HF 0 0.00 

IH 1 0.61 

DS 5 3.03 

TN 0 0.00 

BU 0 0.00 

Total 165 100.00 

Treatments 

B 5 31.25 

SAP 0 0.00 

CTC 3 18.75 

CB 4 25.00 

SAPO 4 25.00 

CZC 0 0.00 

Total 16 100.00 
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Table 44: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on CDF2 (abbreviations explained in Table 7 and Table 8) 

 CT1 

 Count Percentage 

Findings 

TU 0 0.00 

OLU 0 0.00 

IP 1 1.33 

SU 1 1.33 

DDM1 2 2.67 

DDM2 7 9.33 

DDM3 0 0.00 

DDM4 5 6.67 

DDM4.1 0 0.00 

HHE 1 1.33 

CSH 3 4.00 

SHD 12 16.00 

SHC 12 16.00 

WLF 18 24.00 

WLA 6 8.00 

HF 3 4.00 

IH 1 1.33 

DS 3 4.00 

TN 0 0.00 

BU 0 0.00 

Total 75 100.00 

Treatments 

B 2 7.69 

SAP 2 7.69 

CTC 11 42.31 

CB 11 42.31 

SAPO 0 0.00 

CZC 0 0.00 

Total 26 100.00 
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Table 45: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on CDF3 (abbreviations explained in Table 7 and Table 8) 

 CT1 CT2 CT3 

 Count Percentage Count Percentage Count Percentage 

Findings 

TU 0 0.00 0 0.00 0 0.00 

OLU 0 0.00 0 0.00 2 1.02 

IP 0 0.00 0 0.00 0 0.00 

SU 2 6.06 2 1.98 1 0.51 

DDM1 2 6.06 0 0.00 11 5.58 

DDM2 7 21.21 10 9.90 5 2.54 

DDM3 0 0.00 0 0.00 0 0.00 

DDM4 2 6.06 36 35.64 16 8.12 

DDM4.1 0 0.00 6 5.94 2 1.02 

HHE 2 6.06 2 1.98 5 2.54 

CSH 0 0.00 6 5.94 5 2.54 

SHD 12 36.36 26 25.74 82 41.62 

SHC 0 0.00 0 0.00 0 0.00 

WLF 3 9.09 10 9.90 52 26.40 

WLA 1 3.03 0 0.00 3 1.52 

HF 1 3.03 1 0.99 0 0.00 

IH 1 3.03 2 1.98 8 4.06 

DS 0 0.00 0 0.00 5 2.54 

TN 0 0.00 0 0.00 0 0.00 

BU 0 0.00 0 0.00 0 0.00 

Total 33 100.00 101 100.00 197 100.00 

Treatments 

B 8 33.33 14 33.33 10 30.30 

SAP 8 33.33 13 30.95 10 30.30 

CTC 8 33.33 14 33.33 12 36.36 

CB 0 0.00 1 2.38 1 3.03 

SAPO 0 0.00 0 0.00 0 0.00 

CZC 0 0.00 0 0.00 0 0.00 

Total 24 100.00 42 100.00 33 100.00 
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Table 46: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on CDF4 (abbreviations explained in Table 7 and Table 8) 

 CT1 CT2 

 Count Percentage Count Percentage 

Findings 

TU 0 0.00 0 0.00 

OLU 0 0.00 1 0.22 

IP 0 0.00 0 0.00 

SU 11 6.63 6 1.34 

DDM1 0 0.00 0 0.00 

DDM2 18 10.84 31 6.94 

DDM3 0 0.00 0 0.00 

DDM4 0 0.00 15 3.36 

DDM4.1 0 0.00 4 0.89 

HHE 0 0.00 1 0.22 

CSH 2 1.20 51 11.41 

SHD 57 34.34 212 47.43 

SHC 28 16.87 42 9.40 

WLF 13 7.83 66 14.77 

WLA 20 12.05 9 2.01 

HF 6 3.61 1 0.22 

IH 5 3.01 7 1.57 

DS 6 3.61 1 0.22 

TN 0 0.00 0 0.00 

BU 0 0.00 0 0.00 

Total 166 100.00 447 100.00 

Treatments 

B 18 26.47 27 30.34 

SAP 13 19.12 0 0.00 

CTC 14 20.59 27 30.34 

CB 23 33.82 10 11.24 

SAPO 0 0.00 25 28.09 

CZC 0 0.00 0 0.00 

Total 68 100.00 89 100.00 
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Table 47: Count and percentage of findings and treatments on the different claw trimming 

dates (CT) on CDF5 (abbreviations explained in Table 7 and Table 8) 

 CT1 

 Count Percentage 

Findings 

TU 2 0.68 

OLU 1 0.34 

IP 2 0.68 

SU 5 1.70 

DDM1 2 0.68 

DDM2 27 9.18 

DDM3 0 0.00 

DDM4 3 1.02 

DDM4.1 0 0.00 

HHE 35 11.90 

CSH 21 7.14 

SHD 79 26.87 

SHC 13 4.42 

WLF 81 27.55 

WLA 9 3.06 

HF 1 0.34 

IH 10 3.40 

DS 3 1.02 

TN 0 0.00 

BU 0 0.00 

Total 294 100.00 

Treatments 

B 41 32.54 

SAP 40 31.75 

CTC 45 35.71 

CB 0 0.00 

SAPO 0 0.00 

CZC 0 0.00 

Total 126 100.00 
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Table 48: Statistical summaries over all farms (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1.1 1 6 0.6 24,583 

Lactation_numb
er 0 1 2 2.7 4 12 1.8 24,583 

Days_in_milk 0 73 152 160.3 230 530 103.7 24,253 

LKV_milk_yield
_in_last_lactatio
n 3,194 7,851 9,317 9,727.1 

11,35
0 

21,19
3 

2,704.
9 12,064 

LKV_daily_milk
_yield 6.5 23.2 29.3 29.5 35.6 61.1 8.4 22,494 

LKV_urea 30 140 184 184.3 229 454 65.2 21,752 

LKV_somatic_c
ell_count 10 24 55 201.3 144 9,999 653.4 22,281 

LKV_fat 2.1 3.6 4.1 4.2 4.6 8 0.8 22,482 

LKV_protein 2.4 3.3 3.5 3.5 3.8 4.9 0.4 22,494 

LKV_fat_protein
_ratio 0.6 1 1.2 1.2 1.3 2.4 0.2 22,470 

LKV_lactose 3.6 4.8 4.9 4.9 5 5.4 0.2 22,225 

Milkings 1 2 2 2.5 3 9 0.7 23,652 

Maximum_milki
ng_interval 18.8 495 567 586.3 654 1420 133.3 22,279 

Robot_daily_mil
k_yield 0.1 22.1 28.6 28.9 35.5 72.5 9.6 23,642 

Robot_milk_yiel
d_in_current_la
ctation 2.2 

2,296.
1 5,063.2 5,325.8 

7,728.
5 

15,87
4 

3,509.
5 5,137 

Robot_milk_yiel
d_in_last_lactati
on 635 7,338 8,867 9,200.6 

10,75
9 

20,14
8 

2,724.
1 11,822 

Robot_daily_mil
k_yield_in_last_l
actation 12 25.3 28.8 29.2 33.6 43 5.9 7,174 

Robot_fat 0.9 3.8 4.2 4.4 4.8 13.1 1 16,676 

Robot_protein 2.5 3.3 3.4 3.4 3.6 5.6 0.3 16,675 

Robot_fat_prote
in_ratio 0.2 1.1 1.2 1.3 1.4 3.5 0.3 16,678 

Robot_lactose 2.9 4.6 4.8 4.7 4.9 5.2 0.2 16,669 

Robot_somatic_
cell_count 1 30 53 117.4 99 

3,920.
5 279.1 7,491 

Robot_effect_of
_scc 0 0.6 1 1.8 1.7 43.6 3.2 7,491 

Milking_tempera
ture 35.9 38.2 38.6 38.7 39.1 41.5 0.7 10,713 

MDi 1 1 1.1 1.2 1.1 4.2 0.3 6,912 

Milking_flow 0 1.2 2 2.1 2.9 7.1 1.1 16,650 

Max_milking_flo
w 0.5 2.9 4 4.1 5.2 11.8 1.7 16,650 

Conduct_lv 0 4.3 4.6 4.6 5 8 0.7 12,560 

Conduct_rv 0 4.4 4.7 4.8 5.2 9.3 0.7 12,457 

Conduct_lh 0 4.4 4.7 4.8 5.2 8.9 0.7 10,867 

Conduct_rh 0 4.3 4.5 4.6 4.9 7.7 0.7 12,439 

Conduct_lely_lv 59 66.5 69 69.6 71.5 128.5 5 10,524 

Conduct_lely_rv 59 66.5 69 69.5 71 138 5.3 10,631 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Conduct_lely_lh 60 67 69 69.5 71 166 4.8 10,553 

Conduct_lely_rh 59 67 69 69.4 71 152.5 5 10,552 

Concentrated_f
eed_intake 0 1.9 3.7 3.7 5.3 10.6 2.2 22,788 

Concentrated_f
eed_remains 0 0.1 0.1 0.4 0.3 6 0.6 10,752 

Robot_BCS 2.5 3.6 3.9 3.8 4.1 4.6 0.3 4,770 

Body_weight 444.4 641.5 742.3 741.5 820.8 
1,151.

6 118.7 6,782 

WT_feed_intake 0 35.7 44.7 44.2 53.9 92.2 14.5 5,437 

WT_feeding_du
ration 10 96 128 133.9 164 792 59.4 5,413 

WT_feeding_du
ration_day 0 70 95 100.4 124 769 48.5 5,413 

WT_feeding_du
ration_day_nigh
t 0 0.7 0.8 0.8 0.8 1 0.1 5,413 

WT_feeding_du
ration_per_visit 0.4 2.5 3.4 3.9 4.7 70.3 3 5,443 

WT_feed_intake
_per_visit 0 0.8 1.1 1.4 1.7 13 1.1 5,443 

WT_feeding_pa
ce 0.06 0.25 0.35 0.36 0.43 2.14 0.13 5,439 

WT_trough_visit
s 1 25 39 42.6 55 222 25 5,445 

WT_trough_visit
s_day 0 19 29 32.8 42 178 20.2 5,445 

WT_trough_visit
s_day_night 0 0.7 0.8 0.8 0.9 1 0.1 5,445 

WT_number_of
_meals 1 7 9 9.4 11 23 3.1 5,151 

WT_number_of
_meals_day 0 5 7 7 9 20 2.6 5,151 

WT_number_of
_meals_day_nig
ht 0 0.7 0.8 0.7 0.8 1 0.1 5,151 

WT_feed_intake
_per_meal 0.8 3.7 4.9 5.3 6.4 23.9 2.3 5,151 

WT_feed_intake
_per_visit 0 0.8 1.1 1.4 1.7 13 1.1 5,443 

ENGS_feeding 1 48 83 89.8 124 288 54.9 1,266 

ENGS_feeding_
day 0 36 61 67.3 94 220 42.7 1,266 

ENGS_feeding_
day_night 0 0.7 0.8 0.8 0.9 1 0.2 1,266 

ENGS_number_
of_meals 0 6 9 8.7 11 25 3.6 1,266 

ENGS_number_
of_meals_day 0 5 6 6.5 8 18 2.8 1,266 

ENGS_number_
of_meals_day_n
ight 0 0.7 0.8 0.8 0.9 1 0.2 1,238 
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Parameter Min Q1 Median Mean Q3 Max SD N 

ENGS_feeding_
duration_per_m
eal 1 5.9 9.4 10.8 14.4 63 6.8 1,238 

Nedap_feeding 10 252 374 372 504 806.4 157.8 6,433 

Smaxtec_rum 188 490.5 532.1 526.1 569.2 735.1 65.3 6,892 

SCR_rum 11 517 561 551.7 599 751 73.9 8,864 

SCR_rum_day 2 305 343 338 379 545 63.1 4,224 

SCR_rum_day_
night 0 0.6 0.6 0.6 0.7 1 0.1 4,224 

Nedap_rum 10 273.6 388.8 383.8 504 820.8 145.2 6,463 

SCR_heat_prob
ability -35 -3.5 -1.5 -0.6 0.5 92 7.7 4,472 

SCR_heat_prob
ability_day -36 -4 -1 -0.4 1 100 8.9 4,449 

Lemmer_factor_
of_restlessness 53 210.6 301.7 421.8 439.4 

30,50
1.8 809.7 5,670 

ENGS_lying 4 576 688 677.1 789 1,258 174.9 5,091 

ENGS_lying_da
y 0 311 389 385.5 464 835 124.1 5,091 

ENGS_lying_da
y_night 0 0.5 0.6 0.6 0.6 1 0.1 5,091 

ENGS_lying_bo
uts 1 11 15 17.1 20 109 10.6 5,093 

ENGS_lying_bo
uts_day 0 7 9 11 13 60 6.9 5,091 

ENGS_lying_bo
uts_day_night 0 0.6 0.7 0.6 0.7 1 0.1 5,093 

ENGS_lying_du
ration_per_bout 1.6 32.3 45.6 52.6 61.8 719 41.7 5,091 

Nedap_lying 156 633 723 716.9 809 1,131 135.1 2,151 

Nedap_get_ups 1 8 10 10.1 12 29 3.8 2,223 

Lemmer_get_up
s 1 7 9 9.3 11 40 3.9 5,669 

Lemmer_lying 12 528 636 630 732 
1,254 

 2.8 5,672 

ENGS_act 30 1,689 2,153 2,213.1 2,635 8,735 885.4 5,088 

ENGS_act_day 0 1,293 1,667 1,724.9 
2,060.

2 7,471 717 5,088 

ENGS_act_day
_night 0 0.7 0.8 0.8 0.8 1 0.1 5,088 

Smaxtec_act 0.3 3.9 4.9 5.6 7 21.4 2.4 9,039 

Smaxtec_act_d
ay 0.4 4.8 5.9 6.4 7.8 23.7 2.5 9,035 

Smaxtec_act_d
ay_night 0.4 1.1 1.1 1.2 1.3 2.5 0.2 9,034 

SCR_act 21.5 35.5 39.5 40.6 44 150 8.2 8,804 

SCR_act_day 20.5 37.5 42 43.6 48 151 9.6 8,799 

SCR_act_day_n
ight 0.6 1 1.1 1.1 1.1 2.2 0.1 8,807 

Nedap_act 1,284 
2,556.

8 3,268.5 3,525.8 
4,203.

2 
14,17

4 
1,365.

1 2,224 

Nedap_inactive 225 563 655 676.5 769 1378 164.9 6,441 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Nedap_act_foot
_median 72.5 197.5 245 259.2 307 1,207 92.5 2,222 

Nedap_act_foot
_median_day 86 222.5 282.5 308 367.5 

1,501.
5 131 2,237 

Nedap_act_foot
_sum_day 774 1,881 2,460 2,710.9 

3,289.
8 

12,17
4 

1185.
1 2,238 

Nedap_act_foot
_median_day_ni
ght 0.4 1 1.1 1.2 1.3 3.5 0.2 2,231 

Nedap_act_foot
_sum_day_night 0.2 0.7 0.8 0.8 0.8 1 0.1 2,230 

Nedap_act_coll
ar_median 0 4.5 7 8 10.5 71 4.9 6,476 

Nedap_act_coll
ar_sum 9 62 93 107.1 137 859 64.1 6,472 

Nedap_act_coll
ar_median_day 0 5 8 9.3 12 89.5 6.4 6,481 

Nedap_act_coll
ar_sum_day 6 45 69 80.1 102 737 51.4 6,481 

Nedap_act_coll
ar_median_day
_night 0.1 1 1.1 1.2 1.3 5.5 0.3 6,474 

Nedap_act_coll
ar_sum_day_ni
ght 0.2 0.7 0.8 0.7 0.8 1 0.1 6,473 

Lemmer_act 37 97 126 144.4 165 858 84.6 5,965 

Delaval_act_av
g 10 23 29 30 36 89 10.1 1,515 

Delaval_act_rel 44 89 99 100.2 108 293 19.4 1,515 

Delaval_act_rel
_min 39 80.8 88 88.3 95 191 13.5 1,436 

Delaval_act_rel
_max 59 100 109 111.2 118 255 21.1 1,436 

Smaxtec_temp_
normal_median 39 39.3 39.4 39.4 39.5 40 0.2 9,046 

Smaxtec_temp_
min 27 32.9 33.8 33.8 34.7 39.3 1.3 9,104 

Smaxtec_temp_
max 39 39.6 39.8 39.8 39.9 42.4 0.3 9,105 

Smaxtec_temp_
median 38.5 39 39.1 39.2 39.3 40.6 0.2 9,102 

Smaxtec_temp_
without_drink_c
ycles_min 37.7 38.5 38.6 38.6 38.8 40 0.2 9,063 

Smaxtec_temp_
without_drink_c
ycles_max 39 39.6 39.7 39.8 39.9 42.3 0.3 9,056 

Smaxtec_temp_
without_drink_c
ycles_median 38.7 39.1 39.3 39.3 39.4 40.8 0.2 9,059 

Smaxtec_climat
e_temp_median 2.4 8.9 10.9 11.8 14.5 24.3 5 11,340 

Smaxtec_climat
e_temp_min -0.3 5.3 8.4 8.7 11.7 19.6 4.3 11,340 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Smaxtec_climat
e_temp_max 4 10.8 14.1 15 18.3 29.6 6 11,340 

Smaxtec_climat
e_hum_median 46.5 67.4 73.7 74 81.3 100 11.2 10,936 

Smaxtec_climat
e_hum_min 1.2 50 63 62.1 76.8 98.8 16.2 10,936 

Smaxtec_climat
e_hum_max 62.4 77.2 82.1 82.7 85.6 100 7.5 10,936 

Smaxtec_thi_m
edian 28.1 46.2 51.6 52 58 71.8 9.7 10,936 

Smaxtec_thi_mi
n 35.5 45.1 48.8 49.6 54.5 65.3 6.4 10,936 

Smaxtec_thi_m
ax 39.4 52 57.1 58.8 65 83.1 9.9 10,936 

WS_thi_med 27.2 38.7 48.7 48.9 59.8 70.8 11.7 12,790 

WS_thi_min 22.6 35.9 42.5 43 51.4 61.1 9.4 12,790 

WS_thi_max 30.7 44.1 58.8 57.6 69.6 91.7 15.3 12,790 

WS_temp_2m_
med -3.4 3.1 8.5 9.2 15.5 23.3 6.8 12,790 

WS_temp_2m_
min -7.9 -0.6 2.5 4.2 9.3 16.4 5.9 12,790 

WS_temp_2m_
max -0.7 6.7 14.9 14.3 20.9 33.4 8.5 12,790 

WS_temp_20c
m_med -3.9 2.7 7.7 8.8 15.5 23.5 6.9 12,790 

WS_temp_20c
m_min -9.6 -2 1.2 2.6 7.6 16.2 6.2 12,790 

WS_temp_20c
m_max -0.4 8 16.9 15.6 23.3 33 9 12,790 

WS_soil_temp_
5cm_med 0.7 4.3 9.2 10.2 16.3 22.6 6.6 12,790 

WS_soil_temp_
5cm_min 0.5 2.6 7.2 8.6 14.5 19.5 6.1 12,790 

WS_soil_temp_
5cm_max 1 6.2 11.9 12.2 18.2 28.5 7.3 12,790 

WS_soil_temp_
20cm_med 1.6 4.5 9 10.2 15.7 20.4 6 12,790 

WS_soil_temp_
20cm_min 1.5 4 8.5 9.8 15.2 19.7 5.9 12,790 

WS_rel_hum_m
ed 41.8 73.8 87.5 84.4 98.2 100 14.9 12,790 

WS_rel_hum_m
in 17.8 40.2 58.7 62.8 90.3 100 25.9 12,790 

WS_wind_veloci
ty_med 0.5 1.1 1.5 1.8 2.1 5.7 1 12,790 

WS_wind_veloci
ty_min 0 0 0 0.2 0.2 3.3 0.5 12,790 

WS_wind_veloci
ty_max 1.6 2.7 3.5 4 4.7 12.7 2 12,790 

WS_rain_med 0 0 0 0 0 0.2 0 12,790 

WS_rain_min 0 0 0 0 0 0 0 12,790 

WS_rain_max 0 0 0 0.3 0.3 12.2 1.1 12,790 
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Parameter Min Q1 Median Mean Q3 Max SD N 

WS_global_rad
_med 5.6 54 141.8 147.1 222.4 359.3 98.3 12,790 

WS_global_rad
_min 0 0 0 0.1 0 2 0.3 12,790 

WS_global_rad
_max 41 339 689 612.3 855 1,164 303.3 12,790 

Season 1 1 2 2.2 3 4 1 24,583 

LMS 1 1 1 1.3 1 3 0.6 24,583 

C_LMS 1 1 1 1.4 1 3 0.7 24,583 

GSC 0 2.2 3 2.7 3 3 0.4 24,394 

PT 0 0 0 0.2 0 1 0.4 24,373 

Table 49: Statistical summaries of RF1 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1 1 2 0.2 5,842 

LMS 1 1 1 1.3 1 3 0.6 5,842 

C_LMS 1 1 1 1.4 1 3 0.8 5,842 

Lactation_num
ber 0 1 2 2.6 3 10 1.9 5,842 

Days_in_milk 0 63 156 160.5 235 481 106.2 5,660 

LKV_milk_yiel
d_in_last_lacta
tion 6,201 8,644 10,423 10,653.6 

12,29
0 

18,96
2 

2,543.
1 3,661 

LKV_daily_mil
k_yield 8.1 24 29.7 30 35.8 52.7 7.8 5,196 

LKV_urea 30 128.8 190 183.8 239 454 77.6 4,740 

LKV_somatic_
cell_count 10 25 62 191.9 144 7,099 549.9 5,133 

LKV_fat 2.1 3.6 4.2 4.1 4.6 7.4 0.9 5,184 

LKV_protein 2.5 3.3 3.5 3.5 3.8 4.6 0.4 5,196 

LKV_fat_protei
n_ratio 0.6 1 1.2 1.2 1.3 2.4 0.3 5,196 

LKV_lactose 3.6 4.8 4.9 4.9 5 5.4 0.2 5,097 

Milkings 1 2 3 2.5 3 5 0.7 5,137 

Maximum_milk
ing_interval 203 501 570 584.8 651 1,059 118.7 4,954 

Robot_daily_m
ilk_yield 2.8 24 30 30.6 37 69.2 8.9 5,130 

Robot_milk_yi
eld_in_current
_lactation 2.2 2,296.1 5,063.2 5,325.8 

7,728.
5 

15,87
4 

3,509.
5 5,137 

MDi 1 1 1.1 1.2 1.1 4.2 0.3 5,095 

Milking_flow 0.3 0.8 1 1 1.2 2 0.3 4,117 

Max_milking_fl
ow 2 4.8 5.6 5.8 6.7 11.8 1.4 4,117 

Conduct_rv 0 4.2 4.4 4.4 4.7 9.3 0.7 4,990 

Conduct_lv 0 4.2 4.4 4.3 4.7 7.7 0.7 5,032 

Conduct_rh 0 4.2 4.4 4.4 4.6 7.5 0.7 4,907 

Conduct_lh 0 4.2 4.4 4.4 4.7 8.2 0.7 4,799 

Robot_BCS 2.5 3.6 3.9 3.8 4.1 4.6 0.3 4,770 

Body_weight 444.4 721.4 776.7 783.3 835 
1,151.

6 95.5 5,363 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Concentrated_
feed_intake 0 2.7 5 4.6 6.4 9.4 2.2 4,432 

WT_feed_intak
e 0 35.7 44.7 44.2 53.9 92.2 14.5 5,437 

WT_feeding_d
uration 10 96 128 133.9 164 792 59.4 5,413 

WT_feeding_d
uration_day 0 70 95 100.4 124 769 48.5 5,413 

WT_feeding_d
uration_day_ni
ght 0 0.7 0.8 0.8 0.8 1 0.1 5,413 

WT_feeding_d
uration_per_vi
sit 0.4 2.5 3.4 3.9 4.7 70.3 3 5,443 

WT_feed_intak
e_per_visit 0 0.8 1.1 1.4 1.7 13 1.1 5,443 

WT_feeding_p
ace 0.06 0.25 0.35 0.36 0.43 2.14 0.13 5,439 

WT_trough_vis
its 1 25 39 42.6 55 222 25 5,445 

WT_trough_vis
its_day 0 19 29 32.8 42 178 20.2 5,445 

WT_trough_vis
its_day_night 0 0.7 0.8 0.8 0.9 1 0.1 5,445 

WT_number_o
f_meals 1 7 9 9.4 11 23 3.1 5,151 

WT_number_o
f_meals_day 0 5 7 7 9 20 2.6 5,151 

WT_number_o
f_meals_day_
night 0 0.7 0.8 0.7 0.8 1 0.1 5,151 

WT_feed_intak
e_per_meal 0.8 3.7 4.9 5.3 6.4 23.9 2.3 5,151 

WT_feed_intak
e_per_visit 0 0.8 1.1 1.4 1.7 13 1.1 5,443 

ENGS_lying 4 576 688 677.1 789 1258 174.9 5,091 

ENGS_lying_d
ay 0 311 389 385.5 464 835 124.1 5,091 

ENGS_lying_d
ay_night 0 0.5 0.6 0.6 0.6 1 0.1 5,091 

ENGS_lying_b
outs 1 11 15 17.1 20 109 10.6 5,093 

ENGS_lying_b
outs_day 0 7 9 11 13 60 6.9 5,091 

ENGS_lying_b
outs_day_nigh
t 0 0.6 0.7 0.6 0.7 1 0.1 5,093 

ENGS_lying_d
uration_per_b
out 1.6 32.3 45.6 52.6 61.8 719 41.7 5,091 

ENGS_act 30 1,689 2,153 2,213.1 2,635 8,735 885.4 5,088 

ENGS_act_da
y 0 1,293 1,667 1,724.9 

2,060.
2 7,471 717 5,088 
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Parameter Min Q1 Median Mean Q3 Max SD N 

ENGS_act_da
y_night 0 0.7 0.8 0.8 0.8 1 0.1 5,088 

ENGS_feeding 1 48 83 89.8 124 288 54.9 1,266 

ENGS_feeding
_day 0 36 61 67.3 94 220 42.7 1,266 

ENGS_feeding
_day_night 0 0.7 0.8 0.8 0.9 1 0.2 1,266 

ENGS_numbe
r_of_meals 0 6 9 8.7 11 25 3.6 1,266 

ENGS_numbe
r_of_meals_da
y 0 5 6 6.5 8 18 2.8 1,266 

ENGS_numbe
r_of_meals_da
y_night 0 0.7 0.8 0.8 0.9 1 0.2 1,238 

ENGS_feeding
_duration_per
_meal 1 5.9 9.4 10.8 14.4 63 6.8 1,238 

Smaxtec_rum 188 473 506 503 543 643 61.5 712 

Smaxtec_act 1.7 4.7 6.3 6.5 8.1 15.2 2.2 1,293 

Smaxtec_act_
day 1.9 5.5 6.9 7.1 8.4 16.6 2.1 1,293 

Smaxtec_act_
day_night 0.7 1 1.1 1.1 1.2 2.3 0.1 1,293 

Smaxtec_temp
_min 28.1 32.7 33.6 33.5 34.4 38.4 1.3 1,357 

Smaxtec_temp
_max 39.2 39.7 39.8 39.8 40 41.5 0.3 1,356 

Smaxtec_temp
_median 38.7 39 39.2 39.2 39.3 40 0.2 1,356 

Smaxtec_temp
_without_drink
_cycles_min 37.9 38.5 38.7 38.7 38.8 39.4 0.2 1,315 

Smaxtec_temp
_without_drink
_cycles_max 39.2 39.7 39.8 39.8 40 40.8 0.2 1,307 

Smaxtec_temp
_without_drink
_cycles_media
n 38.8 39.2 39.3 39.3 39.5 40.2 0.2 1,314 

Smaxtec_temp
_normal_medi
an 39 39.4 39.5 39.5 39.6 40 0.2 1,309 

Smaxtec_clim
ate_temp_med
ian 2.4 8.9 11.2 10.7 12.6 15.7 3 2,323 

Smaxtec_clim
ate_temp_min 0.9 4 6.7 6.7 9 12.9 3.3 2,323 

Smaxtec_clim
ate_temp_max 4.1 12.1 15.7 14.7 17.3 21.9 3.7 2,323 

Smaxtec_clim
ate_hum_medi
an 51.7 56.1 88.2 79.8 95.4 100 18.4 1,919 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Smaxtec_clim
ate_hum_min 1.2 40.2 63.3 61.5 83.3 98.8 24.6 1,919 

Smaxtec_clim
ate_hum_max 68.5 80 98.8 91.8 100 100 10.4 1,919 

Smaxtec_thi_
median 28.1 32.8 41.6 42 50.2 58.6 9.9 1,919 

Smaxtec_thi_
min 35.5 44.2 45.9 46.4 49.3 54.7 4.2 1,919 

Smaxtec_thi_
max 39.4 52.9 59.6 58 62.8 71.4 6.9 1,919 

SCR_act 22.5 36.5 41 42.4 46 150 10 4,224 

SCR_act_day 20.5 39.5 45 46.4 51 151 11.3 4,224 

SCR_act_day_
night 0.6 1 1.1 1.1 1.1 2.2 0.1 4,224 

SCR_rum 11 495 545 535.5 591 739 83 4,224 

SCR_rum_day 2 305 343 338 379 545 63.1 4,224 

SCR_rum_day
_night 0 0.6 0.6 0.6 0.7 1 0.1 4,224 

WS_thi_med 29.3 39.2 47.6 47.6 54.1 69.8 10.2 5,842 

WS_thi_min 23.5 35.9 41.4 41.9 46.4 61.1 8.9 5,842 

WS_thi_max 31.1 46.5 56.3 56 64.3 87.6 12.5 5,842 

WS_temp_2m
_med -1.5 3.9 7.8 8.3 12.1 22.3 5.9 5,842 

WS_temp_2m
_min -6.7 -1.4 2.3 3.5 7.9 16.4 5.9 5,842 

WS_temp_2m
_max -0.5 8 13.5 13.4 18 30.9 7 5,842 

WS_temp_20c
m_med -1.8 2.9 6.2 7.7 11.4 22.1 6.1 5,842 

WS_temp_20c
m_min -8.6 -4.2 -0.1 1.2 5.8 16.1 6.4 5,842 

WS_temp_20c
m_max -0.2 8.9 15.3 14.8 20 32.2 7.5 5,842 

WS_soil_temp
_5cm_med 2.6 4.4 6.1 9.2 12.4 21.2 6.1 5,842 

WS_soil_temp
_5cm_min 0.9 2.6 4.9 7.6 11.8 19.3 6 5,842 

WS_soil_temp
_5cm_max 3.6 6.5 8.3 11.2 13.9 28.5 6.2 5,842 

WS_soil_temp
_20cm_med 2.5 4.6 6.6 9.5 13.3 19.8 5.7 5,842 

WS_soil_temp
_20cm_min 2.2 4.1 6.4 9.1 13 19.4 5.7 5,842 

WS_soil_temp
_20cm_max 3 5.1 6.8 9.9 13.6 20.3 5.7 5,842 

WS_rel_hum_
med 46.3 80.6 92.5 87.8 99.5 100 14 5,842 

WS_rel_hum_
min 17.8 47.3 67.9 68.6 97.3 100 26.2 5,842 

WS_rel_hum_
max 67.1 99.6 100 99.1 100 100 3.5 5,842 

WS_wind_velo
city_med 0.5 1.1 1.4 1.6 1.9 3.7 0.6 5,842 
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Parameter Min Q1 Median Mean Q3 Max SD N 

WS_wind_velo
city_min 0 0 0 0.1 0 1 0.2 5,842 

WS_wind_velo
city_max 1.6 2.6 3.5 3.7 4.4 10.1 1.5 5,842 

WS_rain_med 0 0 0 0 0 0.2 0 5,842 

WS_rain_min 0 0 0 0 0 0 0 5,842 

WS_rain_max 0 0 0 0.3 0.3 4.1 0.8 5,842 

WS_global_ra
d_med 15.2 57 126.8 135.9 199.7 343 88.5 5,842 

WS_global_ra
d_min 0 0 0 0.1 0 2 0.4 5,842 

WS_global_ra
d_max 78 351 577 571.8 728 1,164 273.4 5,842 

Season 1 1 2 2 3 3 0.9 5,842 

GSC 1.2 2 2.5 2.6 3 3 0.4 5,653 

PT 0 0 0 0.2 0 1 0.4 5,653 

Table 50: Statistical summaries of RF2 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1.5 1 6 1.3 2,727 

LMS 1 1 1 1.3 1 3 0.5 2,727 

C_LMS 1 1 1 1.4 1 3 0.8 2,727 

Lactation_numb
er 1 1 2 2.4 3 7 1.5 2,727 

Days_in_milk 7 105 168 203.9 287 530 127.1 2,716 

LKV_milk_yield
_in_last_lactatio
n 6,038 

10,19
5 11,582 

11,847.
4 

12,69
0 

2,119
3 

2,972.
9 1,705 

LKV_daily_milk
_yield 11.8 24.7 30.4 31.5 36.8 57.4 8.4 2,650 

LKV_urea 64 162 204 205.1 243 334 53.8 2,641 

LKV_somatic_c
ell_count 10 17 34 80.9 68 3258 268.3 2,644 

LKV_fat 2.6 3.8 4.2 4.4 4.8 7 0.8 2,650 

LKV_protein 2.7 3.5 3.8 3.7 4 4.9 0.4 2,650 

LKV_fat_protein
_ratio 0.8 1 1.1 1.2 1.2 2.1 0.2 2,650 

LKV_lactose 4.4 4.8 4.9 4.9 5 5.3 0.2 2,641 

Milkings 1 2 3 2.8 3 6 0.8 2,716 

Maximum_milki
ng_interval 78.7 452.5 508.6 525.1 574.8 

1,172.
1 111 2,637 

Robot_daily_mil
k_yield 10.2 24.4 30.1 31.1 37.4 61 8.9 2,716 

Robot_milk_yiel
d_in_last_lactati
on 635 8,340 10,406 

10,382.
9 

11,80
8 

20,14
8 

3,682.
4 1,705 

Robot_daily_mil
k_yield_in_last_l
actation 20.8 27.3 31.4 31.3 35.5 43 5.2 1,705 

Robot_fat 2.1 3.8 4.3 4.4 5 7.9 0.9 2,716 

Robot_protein 3 3.5 3.6 3.6 3.8 4.4 0.2 2,716 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Robot_fat_prote
in_ratio 0.6 1.1 1.2 1.2 1.4 2 0.2 2,716 

Robot_lactose 4.4 4.8 4.9 4.9 5 5.1 0.1 2,716 

Robot_somatic_
cell_count 1 31 57 101.2 102 3725 220.4 2,409 

Robot_effect_of
_scc 0 0.9 1.4 2.2 2.3 43.6 3.3 2,409 

Milking_tempera
ture 36.7 38.1 38.5 38.4 38.8 40.6 0.5 2,716 

Milking_flow 0.9 1.9 2.4 2.4 2.9 4.9 0.7 2,716 

Max_milking_flo
w 1 2.8 3.5 3.5 4.1 6.9 0.9 2,715 

Conduct_lely_lv 59 67 69.5 69.6 72 88 4.1 2,653 

Conduct_lely_rv 60 67 69 69.3 71.5 89.5 3.9 2,694 

Conduct_lely_lh 60.5 67 69 69.4 71 94 3.6 2,674 

Conduct_lely_rh 59 66.5 69 69.7 71.5 152.5 7.2 2,695 

Concentrated_f
eed_intake 0 2.4 4.4 4.5 6.2 10 2.1 2,716 

Concentrated_f
eed_remains 0 0.1 0.1 0.2 0.2 6 0.3 2,669 

Nedap_rum 10 206 277 271.7 344 746 100.4 2,727 

Nedap_feeding 144 446.4 518.4 511.7 576 806.4 93.5 2,705 

Nedap_inactive 225 550 634 643.7 723 1167 137.9 2,705 

Nedap_act_coll
ar_median 0 6 9 9.9 12.5 71 5.7 2,704 

Nedap_act_coll
ar_sum 11 83 124 132.6 164 859 73.7 2,704 

Nedap_act_coll
ar_median_day 0 6.5 10.5 11.5 14.5 89.5 7.6 2,704 

Nedap_act_coll
ar_sum_day 6 59 90 98 121 737 59.3 2,704 

Nedap_act_coll
ar_median_day
_night 0.2 1 1.1 1.1 1.2 5.2 0.3 2,703 

Nedap_act_coll
ar_sum_day_ni
ght 0.3 0.7 0.7 0.7 0.8 1 0.1 2,704 

WS_thi_med 27.2 36 47.2 46.7 56.3 66.2 10.9 2,727 

WS_thi_min 22.6 36.1 41.7 41.6 47.6 56.6 7.6 2,727 

WS_thi_max 31.8 39.2 55.6 54.5 66.4 91.7 15.6 2,727 

WS_temp_2m_
med -3.4 1.5 7.1 7.6 13.3 19.6 6.4 2,727 

WS_temp_2m_
min -7.9 -0.5 0.9 2.5 6.2 13.3 4.6 2,727 

WS_temp_2m_
max -0.1 4 13 12.5 19.5 33.4 8.8 2,727 

WS_temp_20c
m_med -3.9 1.7 7.2 7.5 13 19.3 6.1 2,727 

WS_temp_20c
m_min -9.6 -1.2 0.4 1.5 4.4 11.6 4.2 2,727 

WS_temp_20c
m_max 0.1 5 15.2 13.9 21.8 30.8 9.1 2,727 
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Parameter Min Q1 Median Mean Q3 Max SD N 

WS_soil_temp_
5cm_med 1.3 2.6 8.9 9 15.3 18.8 5.7 2,727 

WS_soil_temp_
5cm_min 1.1 2.1 6.2 7.1 12.1 15.4 4.8 2,727 

WS_soil_temp_
5cm_max 1.8 3.4 11.4 11.1 18.5 24.4 6.9 2,727 

WS_soil_temp_
20cm_med 2.8 3.5 8.7 8.8 14.2 16.3 4.8 2,727 

WS_soil_temp_
20cm_min 2.8 3.4 8 8.4 13.4 15.6 4.6 2,727 

WS_soil_temp_
20cm_max 2.9 3.7 9.3 9.3 14.9 17.3 5 2,727 

WS_rel_hum_m
ed 41.8 65.6 77.8 76.9 88.6 98.5 14.5 2,727 

WS_rel_hum_m
in 22.2 34.7 46.3 54.2 71.6 93.9 22.1 2,727 

WS_rel_hum_m
ax 53 95 98.2 95.7 100 100 7.2 2,727 

WS_wind_veloci
ty_med 0.5 1.1 1.5 1.6 2 3.8 0.7 2,727 

WS_wind_veloci
ty_min 0 0 0 0.2 0.1 1.5 0.4 2,727 

WS_wind_veloci
ty_max 1.6 2.7 3.4 3.5 4 7.5 1.2 2,727 

WS_rain_med 0 0 0 0 0 0.1 0 2,727 

WS_rain_min 0 0 0 0 0 0 0 2,727 

WS_rain_max 0 0 0.1 0.4 0.4 12.2 1.5 2,727 

WS_global_rad
_med 5.6 31.7 160.7 146.6 251.8 299.1 103.8 2,727 

WS_global_rad
_min 0 0 0 0 0 0 0 2,727 

WS_global_rad
_max 41 296 801 629.7 909 1087 342.1 2,727 

Season 1 1 2 2.3 4 4 1.2 2,727 

GSC 2 2.2 2.8 2.6 3 3 0.4 2,727 

PT 0 0 0 0.4 1 1 0.5 2,727 

Table 51: Statistical summaries of RF3 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1.3 1 6 1 4,221 

LMS 1 1 1 1.2 1 3 0.5 4,221 

C_LMS 1 1 1 1.3 1 3 0.7 4,221 

Lactation_numb
er 0 1 2 2.5 4 9 1.5 4,221 

Days_in_milk 0 88 156 156.3 227 378 88 4,147 

LKV_milk_yield
_in_last_lactatio
n 6,166 8,372 9,864 

10,048.
3 

11,19
6 

15,53
2 2,082 2,836 

LKV_daily_milk
_yield 14 27.1 32.2 32.7 38.3 61.1 7.9 3,750 

LKV_urea 71 157 192 194.6 230 353 53.7 3,747 



217 
 

Parameter Min Q1 Median Mean Q3 Max SD N 

LKV_somatic_c
ell_count 10 18 48 136.1 123 3,270 337.1 3,750 

LKV_fat 2.1 3.8 4.2 4.3 4.8 7.7 0.8 3,750 

LKV_protein 2.6 3.3 3.6 3.6 3.8 4.9 0.3 3,750 

LKV_fat_protein
_ratio 0.6 1.1 1.2 1.2 1.3 2.3 0.2 3,750 

LKV_lactose 4.2 4.8 4.9 4.9 5 5.4 0.2 3,747 

Milkings 1 2 2 2.5 3 7 0.7 4,132 

Maximum_milki
ng_interval 49.9 512.8 579.3 603.3 669 

1,301.
2 137.7 3,912 

Robot_daily_mil
k_yield 1.3 24.8 31.1 31.1 37.3 66.1 8.8 4,132 

Robot_milk_yiel
d_in_last_lactati
on 5,980 8,500 9,535 9,836.4 

10,98
1 

15,37
4 2,058.5 2,836 

Robot_daily_mil
k_yield_in_last_l
actation 21.4 28 30.5 31.7 35.4 42.9 5.1 2,836 

Robot_fat 0.9 3.4 4.2 4.6 5.4 13.1 1.6 4,132 

Robot_protein 2.8 3.4 3.5 3.5 3.6 5.6 0.3 4,132 

Robot_fat_prote
in_ratio 0.2 1 1.2 1.3 1.5 3.5 0.4 4,132 

Robot_lactose 4.2 4.8 4.9 4.9 4.9 5.1 0.1 4,127 

Robot_somatic_
cell_count 1 30.5 54 117.4 101 

3,920.
5 279 3,789 

Robot_effect_of
_scc 0 0.5 0.9 1.6 1.4 33.8 3 3,789 

Milking_tempera
ture 35.9 38.9 39.2 39.2 39.6 41.5 0.5 4,128 

Milking_flow 0 2.3 2.9 3 3.6 7.1 1 4,131 

Max_milking_flo
w 0.6 3.4 4.2 4.3 5.2 9.3 1.3 4,132 

Conduct_lely_lv 59 66.5 69 69.5 71.5 114 4.6 4,065 

Conduct_lely_rv 60 67 69 69.5 71 109 5 4,131 

Conduct_lely_lh 60 67 69 69.7 71.5 166 6.1 4,115 

Conduct_lely_rh 61 67 69 69.3 71 114 4.1 4,072 

Concentrated_f
eed_intake 0.2 2 3.5 3.4 4.7 7.8 1.6 4,199 

Concentrated_f
eed_remains 0 0.1 0.1 0.2 0.2 2.5 0.3 4,214 

Nedap_rum 14.4 403.2 475.2 465.7 547.2 820.8 115.2 3,736 

Nedap_feeding 10 195 276 270.7 351 586 110.5 3,728 

Nedap_inactive 292 573 680 700.3 807 1,378 178.3 3,736 

Nedap_lying 156 633 723 716.9 809 1,131 135.1 2,151 

Nedap_get_ups 1 8 10 10.1 12 29 3.8 2,223 

Nedap_act 1,284 
2,556.

8 3,268.5 3,525.8 
4,203.

2 
14,17

4 1,365.1 2,224 

Nedap_act_coll
ar_median 0 4 6 6.6 8 31.5 3.6 3,772 

Nedap_act_coll
ar_sum 9 56 77 88.8 110 440 48.5 3,768 

Nedap_act_coll
ar_median_day 0.5 4.5 6.5 7.8 9.5 54.5 4.9 3,777 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Nedap_act_coll
ar_sum_day 6 41 58 67.3 83 426 40.3 3,777 

Nedap_act_coll
ar_median_day
_night 0.1 1 1.1 1.2 1.3 5.5 0.3 3,771 

Nedap_act_coll
ar_sum_day_ni
ght 0.2 0.7 0.8 0.7 0.8 1 0.1 3,769 

Nedap_act_foot
_median 72.5 197.5 245 259.2 307 1207 92.5 2,222 

Nedap_act_foot
_median_day 86 222.5 282.5 308 367.5 

1,501.
5 131 2,237 

Nedap_act_foot
_sum_day 774 1,881 2,460 2,710.9 

3,289.
8 

12,17
4 1,185.1 2,238 

Nedap_act_foot
_median_day_ni
ght 0.4 1 1.1 1.2 1.3 3.5 0.2 2,231 

Nedap_act_foot
_sum_day_night 0.2 0.7 0.8 0.8 0.8 1 0.1 2,230 

SCR_rum 235 532 578.5 569.6 615 732 71 804 

SCR_act 26 32.5 35.5 36.4 38.6 79 6.1 748 

SCR_act_day 27 33 36 37.5 40 99 7.5 742 

SCR_act_day_n
ight 0.8 1 1 1 1 1.5 0.1 748 

SCR_heat_prob
ability -27 -3.5 -2 -1 0 88 6.8 636 

SCR_heat_prob
ability_day -29 -5 -2 -1.1 0 84 8.9 630 

Smaxtec_act 0.3 4.5 6.8 6.8 8.8 17.7 2.7 2,937 

Smaxtec_act_d
ay 0.4 5.1 7.3 7.4 9.3 20.6 2.8 2,936 

Smaxtec_act_d
ay_night 0.7 1 1.1 1.1 1.1 1.9 0.1 2,934 

Smaxtec_rum 265.1 505.4 544.8 539.8 581 713.5 62.5 1,529 

Smaxtec_temp_
median 38.6 39 39.1 39.2 39.3 40.2 0.2 2,935 

Smaxtec_temp_
min 29.4 33.9 34.7 34.5 35.4 39.3 1.3 2,935 

Smaxtec_temp_
max 39.3 39.7 39.8 39.9 40 42.4 0.3 2,937 

Smaxtec_temp_
without_drink_c
ycles_median 38.7 39.2 39.3 39.3 39.4 40.4 0.2 2,934 

Smaxtec_temp_
without_drink_c
ycles_min 38.1 38.6 38.7 38.7 38.8 40 0.2 2,937 

Smaxtec_temp_
without_drink_c
ycles_max 39.2 39.6 39.8 39.8 40 42.3 0.3 2,937 

Smaxtec_temp_
normal_median 39.1 39.3 39.5 39.5 39.6 40 0.2 2,925 

Smaxtec_climat
e_temp_median 2.4 9.3 16.8 14.4 19.8 24.3 6.6 4,169 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Smaxtec_climat
e_temp_min -0.3 5.4 12.6 10.7 15.2 19.6 5.6 4,169 

Smaxtec_climat
e_temp_max 4 10.8 20.1 17.8 24.3 29.6 8 4,169 

Smaxtec_climat
e_hum_median 46.5 64.5 72.1 70.6 77.7 85.7 9.7 4,169 

Smaxtec_climat
e_hum_min 29.2 45.4 52 56.2 67.9 83.5 14.8 4,169 

Smaxtec_climat
e_hum_max 62.4 79 81.6 81.2 84.6 89.6 4.9 4,169 

Smaxtec_thi_m
edian 38.2 50.1 61.6 57.5 65.4 71.8 10.3 4,169 

Smaxtec_thi_mi
n 35.8 45.4 55.4 52.4 58.9 65.3 8.4 4,169 

Smaxtec_thi_m
ax 40.6 52 67 63.3 74 83.1 12.9 4,169 

WS_thi_med 28 42.1 57.6 52.1 62.7 70.8 13.2 4,221 

WS_thi_min 24 35.9 48.7 45.4 54 60.6 10.7 4,221 

WS_thi_max 30.7 46.8 66.4 61.8 76.8 88.5 17.4 4,221 

WS_temp_2m_
med -2.2 5.3 14.2 11.4 17.7 23.3 7.7 4,221 

WS_temp_2m_
min -4.7 0.3 8 6.2 11 16.4 6.2 4,221 

WS_temp_2m_
max -0.7 8.2 19.1 16.6 24.9 31.4 9.7 4,221 

WS_temp_20c
m_med -2.2 5.6 14.1 11.3 17.3 23.5 7.7 4,221 

WS_temp_20c
m_min -6.1 -0.3 6.5 5.2 9.6 16.2 6.1 4,221 

WS_temp_20c
m_max -0.4 8 20.8 17.8 26.3 33 10.3 4,221 

WS_soil_temp_
5cm_med 0.7 8.1 15.4 12.4 18.4 22.6 7.3 4,221 

WS_soil_temp_
5cm_min 0.5 6.1 13.7 10.8 16.3 19.5 6.4 4,221 

WS_soil_temp_
5cm_max 1 8.8 16.9 14.3 20.4 27.3 8.3 4,221 

WS_soil_temp_
20cm_med 1.6 8.4 15.4 12.1 18.1 20.4 6.7 4,221 

WS_soil_temp_
20cm_min 1.5 7.6 14.9 11.6 17.4 19.7 6.5 4,221 

WS_soil_temp_
20cm_max 1.7 9 15.9 12.7 18.6 21.8 6.9 4,221 

WS_rel_hum_m
ed 47.4 73.8 87 84.4 99.3 100 14.6 4,221 

WS_rel_hum_m
in 18.5 39.8 51.4 60.4 90.8 100 25.8 4,221 

WS_rel_hum_m
ax 84.1 100 100 99.3 100 100 2.5 4,221 

WS_wind_veloci
ty_med 0.6 1.1 1.7 2.2 2.9 5.7 1.5 4,221 

WS_wind_veloci
ty_min 0 0 0.1 0.4 0.4 3.3 0.7 4,221 
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Parameter Min Q1 Median Mean Q3 Max SD N 

WS_wind_veloci
ty_max 1.6 2.7 3.7 4.8 6.6 12.7 2.7 4,221 

WS_rain_med 0 0 0 0 0 0.2 0 4,221 

WS_rain_min 0 0 0 0 0 0 0 4,221 

WS_rain_max 0 0 0 0.3 0.2 10.9 1.3 4,221 

WS_global_rad
_med 11.2 51 174.8 162.9 241.7 359.3 105.1 4,221 

WS_global_rad
_min 0 0 0 0 0 0 0 4,221 

WS_global_rad
_max 55 358 762 657.1 907 1,064 308.6 4,221 

Season 1 2 3 2.6 3 4 1.1 4,221 

GSC 1 2 2.5 2.5 3 3 0.4 4,221 

PT 0 0 0 0.2 0 1 0.4 4,221 

Table 52: Statistical summaries of CDF1 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1 1 1 0 1,299 

LMS 1 1 1 1.2 1 3 0.5 1,299 

C_LMS 1 1 1 1.3 1 3 0.7 1,299 

Lactation_numb
er 1 1 2 2.1 3 5 1 1,299 

Days_in_milk 17 79 128 144.7 207 337 82.1 1,299 

LKV_daily_milk
_yield 13.8 25.9 31.2 31.2 37.2 48.6 8.4 1,260 

LKV_urea 65 155 184 184.3 212 297 39.4 1,257 

LKV_somatic_c
ell_count 10 23 62 431.4 171 9,999 1,706.1 1,260 

LKV_fat 2.2 3.1 3.6 3.7 4.2 5.7 0.7 1,260 

LKV_protein 2.8 3.4 3.6 3.6 3.9 4.7 0.4 1,260 

LKV_fat_protein
_ratio 0.7 0.9 1 1 1.1 1.8 0.2 1,260 

LKV_lactose 4.3 4.8 4.9 4.9 5 5.2 0.1 1,257 

Milkings 1 2 2 2.3 3 5 0.7 1,299 

Maximum_milki
ng_interval 329.6 522.4 621.8 625 705.1 

1,223.
2 145.4 1,200 

Robot_daily_mil
k_yield 10.7 24.2 30.9 31.3 37.6 53.6 9 1,299 

Robot_milk_yiel
d_in_last_lactati
on 813 

3,278.
8 6,434.5 5,955.8 7,767 

11,48
1 2,701.9 840 

Robot_daily_mil
k_yield_in_last_l
actation 12 19.4 21.8 22.2 26 30.7 4.7 840 

Robot_fat 2.2 3.6 4.1 4.1 4.6 6.2 0.8 1,299 

Robot_protein 3 3.5 3.6 3.6 3.7 3.9 0.2 1,299 

Robot_fat_prote
in_ratio 0.6 1 1.2 1.2 1.3 1.7 0.2 1,299 

Robot_lactose 4.4 4.8 4.8 4.8 4.9 5 0.1 1,299 

Robot_somatic_
cell_count 1 25 45 147.8 86.5 2,991 362.3 1,293 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Robot_effect_of
_scc 0 0.3 0.6 1.6 1 40.9 3.8 1,293 

Milking_tempera
ture 37.6 38.5 38.8 38.7 39 40.6 0.3 1,299 

Milking_flow 0.9 2 2.5 2.5 3 5.6 0.8 1,299 

Max_milking_flo
w 1 2.9 3.5 3.6 4.2 8.2 1.1 1,299 

Conduct_lely_lv 60.5 66 68.5 69.7 71 128.5 6.9 1,278 

Conduct_lely_rv 59 66.5 69 69.5 71.5 119.5 4.7 1,278 

Conduct_lely_lh 60.5 67 69 69.4 71 99 3.7 1,257 

Conduct_lely_rh 61 67 69 69.5 71 98 4.1 1,257 

Concentrated_f
eed_intake 0.5 2.8 4.7 4.1 5.1 8 1.7 1,299 

Concentrated_f
eed_remains 0 0.1 0.1 0.3 0.4 3 0.4 1,299 

SCR_act 26 35.5 38 38.7 41.5 65.5 4.6 1,294 

SCR_act_day 26 36.5 39.5 40.2 43.5 75 5.3 1,296 

SCR_act_day_n
ight 0.9 1 1 1 1.1 1.4 0.1 1,296 

SCR_heat_prob
ability -35 -3 -1.5 -1 0.5 92 7.1 1,297 

SCR_heat_prob
ability_day -36 -3.5 -1 -0.6 1 100 8.7 1,299 

SCR_rum 270 531 571 566.1 607 751 63.1 1,297 

Season 1 1 1 1 1 1 0 1,299 

GSC 0 3 3 2.9 3 3 0.4 1,299 

PT 0 0 0 0.1 0 1 0.3 1,299 

Table 53: Statistical summaries of CDF2 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1 1 1 0 1,083 

LMS 1 1 1 1.2 1 3 0.5 1,083 

C_LMS 1 1 1 1.3 1 3 0.7 1,083 

Lactation_numb
er 0 1 2 2.7 4 8 1.9 1,083 

Days_in_milk 1 48 113 123.5 175 336 84.1 1,072 

LKV_milk_yield
_in_last_lactatio
n 5,108 7,625 9,015 8,752.4 

10,18
3 

13,67
5 1,783.4 705 

LKV_daily_milk
_yield 18.4 24.9 28.9 29.7 34.1 45.7 6.2 950 

LKV_urea 65 171 213 208 230 335 49.6 950 

LKV_somatic_c
ell_count 10 31 55 145.3 187 1103 206.4 950 

LKV_fat 3.4 3.9 4.3 4.4 4.8 6 0.6 950 

LKV_protein 2.9 3.4 3.6 3.5 3.7 4.2 0.3 950 

LKV_fat_protein
_ratio 0.9 1.1 1.2 1.3 1.3 1.9 0.2 950 

LKV_lactose 4.1 4.7 4.8 4.8 4.9 5.1 0.2 950 

Milkings 1 2 2 2.3 3 4 0.7 1,054 

Maximum_milki
ng_interval 18.8 497.7 585.3 615.3 700.2 

1129.
7 149.1 1,046 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Robot_daily_mil
k_yield 7.8 24.6 28.8 29.7 35 50.7 7.1 1,054 

Robot_milk_yiel
d_in_last_lactati
on 

5,084.
7 

7,215.
8 8,768 8,589.1 

9,906.
5 

12,59
8 1,708.3 621 

Robot_fat 3.3 4 4.3 4.3 4.6 5.3 0.4 1,054 

Robot_protein 3.2 3.4 3.5 3.5 3.6 3.9 0.1 1,054 

Robot_fat_prote
in_ratio 0.9 1.1 1.2 1.2 1.3 1.6 0.1 1,054 

Robot_lactose 4.4 4.7 4.8 4.8 4.9 5.1 0.1 1,054 

Conduct_lv 4.5 5 5.2 5.3 5.6 6.8 0.4 1,033 

Conduct_rv 3.6 5.1 5.3 5.4 5.7 6.8 0.5 1,048 

Conduct_lh 3.8 4.8 5.1 5.2 5.4 7.1 0.5 1,054 

Conduct_rh 4.6 5 5.3 5.3 5.6 6.3 0.3 991 

Concentrated_f
eed_intake 0 2.2 3.4 3.4 4.5 6.3 1.5 1,062 

Lemmer_act 37 83 103 115.1 130 554 56.1 1,051 

Lemmer_get_up
s 1 6 8 8.5 11 21 3 1,052 

Lemmer_lying 12 540 642 630 732 1254 156 1,052 

Lemmer_factor_
of_restlessness 53 179.2 237.2 427.3 347.9 

30501
.8 1627.3 1,052 

Season 2 2 2 2 2 2 0 1,083 

GSC 2.5 3 3 3 3 3 0.1 1,083 

PT 0 0 0 0.1 0 1 0.3 1,083 

Table 54: Statistical summaries of CDF3 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1.1 1 3 0.5 1,829 

LMS 1 1 1 1.3 2 3 0.6 1,829 

C_LMS 1 1 1 1.5 2 3 0.8 1,829 

Lactation_numb
er 0 2 3 2.9 4 6 1.5 1,829 

Days_in_milk 1 60 184 160 230 456 98.8 1,817 

LKV_milk_yield
_in_last_lactatio
n 6,443 9,089 11,573 

11,240.
5 

12,98
7 

18,39
6 2,588.4 1,392 

LKV_daily_milk
_yield 17.5 26.5 32.3 32.7 37.6 51.4 7.3 1,618 

LKV_urea 108 175 208 215.8 245 363 54 1,598 

LKV_somatic_c
ell_count 10 20 37 138.5 80 2681 258.2 1,618 

LKV_fat 2.4 3.7 4.1 4.2 4.6 7.1 0.8 1,618 

LKV_protein 2.7 3.3 3.6 3.6 3.8 4.6 0.4 1,618 

LKV_fat_protein
_ratio 0.8 1.1 1.2 1.2 1.3 2.3 0.2 1,618 

LKV_lactose 4.2 4.8 4.9 4.9 5 5.3 0.2 1,618 

Milkings 1 2 2 2.3 3 5 0.7 1,817 

Maximum_milki
ng_interval 322.5 517.7 594.1 621.6 710.4 

1110.
8 144.5 1,628 

Robot_daily_mil
k_yield 0.5 26.2 31.4 32.5 38 72.5 9.7 1,817 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Robot_milk_yiel
d_in_last_lactati
on 

6,482.
4 

8,895.
9 

11,179.
6 

11,170.
6 

12,79
2 

18,53
4.5 2,726.4 1,306 

Milking_flow 0.5 0.9 1.1 1.1 1.3 1.9 0.3 1,817 

Max_milking_flo
w 0.8 1.3 1.5 1.5 1.8 2.5 0.3 1,817 

MDi 1 1 1.1 1.2 1.1 4.2 0.3 1,817 

Conduct_lv 2.1 4.3 4.5 4.5 4.7 6.6 0.3 1,776 

Conduct_rv 2.1 4.3 4.5 4.5 4.7 6.6 0.3 1,775 

Conduct_lh 2.1 4.3 4.5 4.5 4.7 6.7 0.4 1,754 

Conduct_rh 0 4.3 4.5 4.4 4.7 7.7 0.8 1,752 

Concentrated_f
eed_intake 0 1.4 3 2.9 4 6.4 1.6 1,822 

Delaval_act_av
g 10 23 29 30 36 89 10.1 1,515 

Delaval_act_rel 44 89 99 100.2 108 293 19.4 1,515 

Delaval_act_rel
_min 39 80.8 88 88.3 95 191 13.5 1,436 

Delaval_act_rel
_max 59 100 109 111.2 118 255 21.1 1,436 

Season 2 2 3 3 4 4 0.8 1,829 

GSC 1 2 2.5 2.6 3 3 0.4 1,829 

PT 0 0 0 0.2 0 1 0.4 1,829 

Table 55: Statistical summaries of CDF4 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1 1 1 0 4,959 

LMS 1 1 1 1.3 1 3 0.6 4,959 

C_LMS 1 1 1 1.4 1 3 0.8 4,959 

Lactation_numb
er 0 1 3 3.1 4 10 1.9 4,959 

Days_in_milk 1 63 137 150.4 216 523 104.9 4,942 

LKV_milk_yield
_in_last_lactatio
n 3,194 6,730 8,103 8,146.8 9,306 

15,26
3 2,247.2 3,633 

LKV_daily_milk
_yield 6.5 17.3 22.2 22.7 27.1 43.6 6.7 4,577 

LKV_urea 30 96 119.5 123.7 152 254 41.2 4,326 

LKV_somatic_c
ell_count 10 46 100 301.7 230 9,999 738.4 4,433 

LKV_fat 2.1 3.5 3.9 3.9 4.3 6.7 0.7 4,577 

LKV_protein 2.6 3.2 3.4 3.4 3.6 4.7 0.3 4,577 

LKV_fat_protein
_ratio 0.7 1 1.1 1.1 1.2 1.7 0.2 4,558 

LKV_lactose 3.8 4.7 4.8 4.8 4.9 5.2 0.2 4,427 

Milkings 1 2 2 2.3 3 9 0.7 4,927 

Maximum_milki
ng_interval 144.7 512.2 578.5 595.5 651.7 1420 130.3 4,377 

Robot_daily_mil
k_yield 0.1 15.2 20.8 21.4 27 60.4 8.7 4,924 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Robot_milk_yiel
d_in_last_lactati
on 

2,644.
7 

6,533.
5 7,871.1 7,861.2 

9,067.
4 

15,03
3.3 2,293.7 3,582 

Robot_fat 2.3 3.8 4.1 4.1 4.4 6.1 0.4 4,905 

Robot_protein 2.7 3.2 3.3 3.3 3.4 4.4 0.2 4,904 

Robot_fat_prote
in_ratio 0.6 1.2 1.2 1.3 1.4 2 0.2 4,907 

Robot_lactose 2.9 4.3 4.4 4.4 4.6 5 0.2 4,903 

Conduct_lv 2.6 4.4 4.8 4.8 5.2 8 0.6 4,719 

Conduct_rv 2 4.9 5.2 5.2 5.5 8.9 0.6 4,644 

Conduct_lh 3.8 5 5.3 5.3 5.5 8.9 0.5 3,260 

Conduct_rh 3 4.3 4.6 4.7 5 7.7 0.6 4,789 

Concentrated_f
eed_intake 0 0.8 1.6 2.1 3.3 5.8 1.5 4,685 

Lemmer_act 37 101 132 150.7 171 858 88.3 4,914 

Lemmer_get_up
s 1 7 9 9.5 12 40 4.1 4,617 

Lemmer_lying 24 528 636 630 732 1,212 168 4,620 

Lemmer_factor_
of_restlessness 53.1 221.2 317.2 420.6 456.6 6,120 449.6 4,618 

Smaxtec_act 0.4 3.6 4.3 4.6 5.2 21.4 1.8 4,809 

Smaxtec_act_d
ay 0.8 4.5 5.3 5.7 6.4 23.7 2 4,806 

Smaxtec_act_d
ay_night 0.4 1.1 1.2 1.2 1.3 2.5 0.2 4,807 

Smaxtec_rum 202.9 489.6 532.3 525.2 568.4 735.1 65.6 4,651 

Smaxtec_temp_
median 38.5 39 39.1 39.1 39.3 40.6 0.2 4,811 

Smaxtec_temp_
min 27 32.7 33.4 33.4 34.1 37.7 1.2 4,812 

Smaxtec_temp_
max 39 39.5 39.7 39.7 39.9 42.3 0.3 4,812 

Smaxtec_temp_
without_drink_c
ycles_median 38.7 39.1 39.2 39.2 39.4 40.8 0.2 4,811 

Smaxtec_temp_
without_drink_c
ycles_min 37.7 38.5 38.6 38.6 38.7 39.8 0.2 4,811 

Smaxtec_temp_
without_drink_c
ycles_max 39 39.5 39.7 39.7 39.9 42.2 0.3 4,812 

Smaxtec_temp_
normal_median 39 39.3 39.4 39.4 39.5 40 0.2 4,812 

Smaxtec_climat
e_temp_median 3.9 8.8 10 10.1 11.9 14.8 2.7 4,848 

Smaxtec_climat
e_temp_min 2.6 7 8.3 7.9 9 12.9 2.4 4,848 

Smaxtec_climat
e_temp_max 5 10.5 12.5 12.8 15.3 20.2 3.2 4,848 

Smaxtec_climat
e_hum_median 59.5 68.2 75 74.5 80.7 83.2 6.7 4,848 

Smaxtec_climat
e_hum_min 43.9 58.5 71.2 67.4 77.1 79 10.4 4,848 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Smaxtec_climat
e_hum_max 71.4 75.9 80.5 80.4 85 87.3 4.8 4,848 

Smaxtec_thi_m
edian 42.3 48.9 51.1 51.3 54.1 58.6 4.1 4,848 

Smaxtec_thi_mi
n 41.2 46.8 48.5 48.4 50.5 55.9 3.6 4,848 

Smaxtec_thi_m
ax 43 51.5 54.8 55.2 59.3 67.1 5.2 4,848 

Season 1 1 1 2 3 3 1 4,959 

GSC 2 2.5 2.8 2.7 3 3 0.4 4,959 

PT 0 0 0 0.1 0 1 0.3 4,959 

Table 56: Statistical summaries of CDF5 (parameters explained in Table 33) 

Parameter Min Q1 Median Mean Q3 Max SD N 

Breed 1 1 1 1 1 1 0 2,623 

LMS 1 1 1 1.2 1 3 0.5 2,623 

C_LMS 1 1 1 1.3 1 3 0.7 2,623 

Lactation_numb
er 0 1 2 3.2 5 12 2.3 2,623 

Days_in_milk 1 81 162 162.7 237 468 98.5 2,600 

LKV_milk_yield
_in_last_lactatio
n 3,243 7,938 9,068 9,613.1 

10,64
5 

18,35
1 2,374 1,793 

LKV_daily_milk
_yield 15.7 24.7 31.5 31.4 37.1 51.3 7.4 2,493 

LKV_urea 130 185 222 223.9 253 360 47.4 2,493 

LKV_somatic_c
ell_count 10 19 47 213.3 103 5464 613.9 2,493 

LKV_fat 2.7 3.9 4.3 4.4 4.7 8 0.7 2,493 

LKV_protein 2.4 3.1 3.3 3.3 3.5 4.9 0.3 2,493 

LKV_fat_protein
_ratio 0.9 1.2 1.3 1.3 1.4 2.4 0.2 2,488 

LKV_lactose 4.4 4.9 5 5 5.1 5.4 0.2 2,488 

Milkings 1 2 3 2.8 3 6 0.7 2,570 

Maximum_milki
ng_interval 52.2 459.6 539.8 558.1 632.5 

1,176.
7 133.2 2,525 

Robot_daily_mil
k_yield 0.5 23.7 29.5 29.9 35.7 58.7 8 2,570 

Robot_milk_yiel
d_in_last_lactati
on 5,431 7,073 8,193 8,515.2 9,520 

14,44
6 1,865.3 1,772 

Robot_daily_mil
k_yield_in_last_l
actation 16.5 23.9 26.5 26.7 28.8 37.6 4.1 1,793 

Robot_fat 2 4 4.4 4.5 5 6.5 0.6 2,570 

Robot_protein 2.5 3.1 3.2 3.2 3.4 4.9 0.3 2,570 

Robot_fat_prote
in_ratio 0.7 1.3 1.4 1.4 1.5 2 0.2 2,570 

Robot_lactose 4.7 4.9 5 4.9 5 5.2 0.1 2,570 

Milking_tempera
ture 36.8 37.9 38.1 38.1 38.3 39.8 0.4 2,570 

Milking_flow 0.9 2.1 2.7 2.7 3.3 6.1 0.8 2,570 
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Parameter Min Q1 Median Mean Q3 Max SD N 

Max_milking_flo
w 0.5 3 3.9 3.9 4.7 8 1.1 2,570 

Conduct_lely_lv 60 67 69 69.5 71 115.5 5.1 2,528 

Conduct_lely_rv 59.5 66 68 69.6 71 138 7.1 2,528 

Conduct_lely_lh 60 67 69 69.3 71 94 3.9 2,507 

Conduct_lely_rh 61 67 69 69.4 71 97 3.7 2,528 

Concentrated_f
eed_intake 0 4 6 5.6 7.3 10.6 2 2,573 

Concentrated_f
eed_remains 0 0.2 0.5 0.9 1.4 5.9 1 2,570 

Body_weight 453.5 562 586 583.6 607 666 35.6 1,419 

SCR_act 21.5 35.5 39 39.7 43 81 5.8 2,538 

SCR_act_day 26 38 42 42.6 46 93 6.8 2,537 

SCR_act_day_n
ight 0.7 1 1.1 1.1 1.1 2 0.1 2,539 

SCR_heat_prob
ability -17 -3.5 -1 -0.3 1 92 8.2 2,539 

SCR_heat_prob
ability_day -19.5 -4 -1 -0.2 2 100 9.1 2,520 

SCR_rum 126 537 570 565.8 601 711 56.2 2,539 

Season 2 2 2 2 2 2 0 2,623 

GSC 2 3 3 2.9 3 3 0.2 2,623 

PT 0 0 0 0.1 0 1 0.3 2,602 
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Table 57: Counts and shares of positive and negative pain tests divided by findings 

Findings 
Positive pain 

tests 

Percentage of 
positive pain 

tests 

Negative pain 
tests 

Percentage of 
negative pain 

test 

SHD 72 13.79% 450 86.21% 

SHC 23 15.65% 124 84.35% 

CSH 19 13.57% 121 86.43% 

DDM1 20 16.95% 98 83.05% 

DDM2 43 20.00% 172 80.00% 

DDM4 14 11.76% 105 88.24% 

DDM4.1 1 6.67% 14 93.33% 

WLD 41 13.31% 267 86.69% 

HHE 6 13.64% 38 86.36% 

HF 6 19.35% 25 80.65% 

IH 19 15.70% 102 84.30% 

BU 0 0.00% 1 100.00% 

WLA 30 38.96% 47 61.04% 

DS 18 40.91% 26 59.09% 

OLU 5 38.46% 8 61.54% 

SU 18 42.86% 24 57.14% 

IP 5 55.56% 4 44.44% 

TU 2 50.00% 2 50.00% 

TN 1 100.00% 0 0.00% 

Table 58: Percentage of agreement (PA), quadratic weighted Cohen’s kappa (κw) and 

confidence interval (CI) of locomotion and lesion score on each project farm 

Table 59: Statistical summaries for each parameter grouped by corrected locomotion score 

(C_LMS) across all farms (parameters explained in Table 33) 

C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

Animal characteristics 

1 Breed 1.00 1.00 1.00 1.19 1.00 7.00 0.88 19,431 

2 Breed 1.00 1.00 1.00 1.17 1.00 7.00 0.94 1,133 

3 Breed 1.00 1.00 1.00 1.09 1.00 7.00 0.56 4,019 

Milking 

1 
Lactation_numb

er 0.00 1.00 2.00 2.64 4.00 
12.0

0 1.76 19,431 

2 
Lactation_numb

er 0.00 2.00 3.00 3.10 4.00 9.00 1.87 1,133 

3 
Lactation_numb

er 0.00 2.00 3.00 3.09 4.00 
12.0

0 1.93 4,019 

1 Days_in_milk 
0.00 

76.0
0 

152.0
0 

161.0
3 

228.
00 

530.
00 

103.
27 19,148 

 RF1 RF2 RF3 CDF1 CDF2 CDF3 CDF4 CDF5 

PA 69.9% 48.9% 64.3% 66.1% 78.9% 58.9% 68.9% 69.5% 

κw 0.49 0.24 0.39 0.33 0.54 0.41 0.54 0.58 

CI 
0.37-
0.61 

0.12-
0.37 

0.25-
0.53 

0.03-
0.63 

0.32-
0.76 

0.23-
0.58 

0.44-
0.65 

0.46-
0.70 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

2 Days_in_milk 
0.00 

68.0
0 

166.0
0 

173.8
5 

276.
00 

468.
00 

110.
97 1,115 

3 Days_in_milk 
0.00 

58.0
0 

150.0
0 

152.9
5 

227.
00 

520.
00 

103.
31 3,990 

1 
LKV_milk_yield
_in_last_lactatio

n 
3,24
3.00 

8,05
2.00 

9,433.
00 

9,784.
17 

11,3
50.0

0 

21,1
93.0

0 
2,64
9.71 12,035 

2 
LKV_milk_yield
_in_last_lactatio

n 
6,24
9.00 

8,64
0.00 

10,46
0.00 

10,51
5.23 

12,0
62.0

0 

15,4
55.0

0 
2,28
6.96 795 

3 
LKV_milk_yield
_in_last_lactatio

n 
3,19
4.00 

8,34
2.00 

10,37
8.00 

10,44
4.97 

12,4
44.0

0 
2119
3.00 

2903
.97 2,895 

1 
LKV_daily_milk

_yield 7.20 
23.1

0 29.10 29.37 
35.4

0 
57.4

0 8.23 17,784 

2 
LKV_daily_milk

_yield 9.00 
22.1

0 31.10 29.93 
37.5

0 
46.0

0 8.89 1,034 

3 
LKV_daily_milk

_yield 6.50 
24.0

0 29.80 30.24 
36.3

0 
61.1

0 9.03 3,676 

1 LKV_urea 
30.0

0 
138.

00 
184.0

0 
184.7

2 
229.

00 
454.

00 
64.4

9 17,188 

2 LKV_urea 
32.0

0 
151.

00 
185.0

0 
187.0

6 
218.

00 
412.

00 
60.6

8 1,010 

3 LKV_urea 
32.0

0 
137.

00 
184.0

0 
181.7

1 
229.

00 
369.

00 
69.3

5 3,554 

1 
LKV_somatic_c

ell_count 
10.0

0 
24.0

0 55.00 
205.6

1 
143.

00 
9,99
9.00 

654.
97 17,597 

2 
LKV_somatic_c

ell_count 
10.0

0 
38.0

0 65.00 
119.0

5 
142.

00 
2,68
1.00 

184.
55 1,034 

3 
LKV_somatic_c

ell_count 
10.0

0 
20.0

0 53.00 
203.5

7 
152.

00 
9,99
9.00 

725.
67 3,650 

1 LKV_fat 2.06 3.65 4.13 4.18 4.62 8.00 0.79 17,772 

2 LKV_fat 2.11 3.53 4.04 4.12 4.66 7.08 0.87 1,034 

3 LKV_fat 2.32 3.54 4.05 4.12 4.50 7.60 0.83 3,676 

1 LKV_protein 2.37 3.28 3.52 3.53 3.78 4.92 0.36 17,784 

2 LKV_protein 2.78 3.28 3.58 3.60 3.86 4.58 0.38 1,034 

3 LKV_protein 2.49 3.21 3.46 3.46 3.73 4.69 0.38 3,676 

1 
LKV_fat_protein

_ratio 0.59 1.05 1.16 1.19 1.31 2.39 0.22 17,760 

2 
LKV_fat_protein

_ratio 0.69 1.00 1.13 1.15 1.28 2.09 0.24 1,034 

3 
LKV_fat_protein

_ratio 0.60 1.05 1.16 1.20 1.30 2.34 0.25 3,676 

1 LKV_lactose 3.61 4.80 4.91 4.89 5.01 5.40 0.19 17,546 

2 LKV_lactose 4.27 4.76 4.86 4.85 4.99 5.24 0.19 1,034 

3 LKV_lactose 3.83 4.78 4.90 4.88 5.01 5.37 0.19 3,645 

1 Milkings 1.00 2.00 2.00 2.53 3.00 9.00 0.74 18,617 

2 Milkings 1.00 2.00 2.00 2.38 3.00 5.00 0.75 1,101 

3 Milkings 1.00 2.00 2.00 2.40 3.00 6.00 0.73 3,934 

1 
Maximum_milki

ng_interval 
18.7

7 
492.

33 
563.7

8 
582.4

3 
650.

18 
1,35
1.33 

131.
72 17,652 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

2 
Maximum_milki

ng_interval 
174.

83 
506.

00 
575.0

0 
605.4

4 
676.

69 
1266

.97 
142.

38 1,019 

3 
Maximum_milki

ng_interval 
49.8

7 
507.

22 
579.1

6 
600.1

3 
665.

79 
1420

.00 
137.

21 3,608 

1 
Robot_daily_mil

k_yield 0.06 
22.1

8 28.41 28.71 
35.1

4 
72.5

2 9.34 18,609 

2 
Robot_daily_mil

k_yield 0.11 
21.8

1 29.32 29.34 
37.6

5 
66.3

4 
10.5

1 1,101 

3 
Robot_daily_mil

k_yield 1.05 
22.1

0 29.61 29.62 
36.6

9 
63.2

3 
10.3

2 3,932 

1 
Robot_milk_yiel
d_in_current_la

ctation 2.19 
2,40
4.90 

4,894.
38 

5,273.
55 

7,56
9.11 

15,8
74.0

3 
3,45
4.24 3,870 

2 
Robot_milk_yiel
d_in_current_la

ctation 
121.

12 
2,27
4.49 

5,542.
73 

5,913.
95 

8,91
6.91 

13,2
54.4

8 
3,93
6.55 378 

3 
Robot_milk_yiel
d_in_current_la

ctation 
27.6

1 
1,90
9.46 

5,653.
56 

5,302.
94 

8,03
4.67 

15,5
27.4

1 
3,53
7.18 889 

1 
Robot_milk_yiel
d_in_last_lactati

on 
635.

00 
7,17
6.55 

8,743.
00 

8,873.
23 

10,4
45.0

0 

20,1
48.0

0 
2,73
3.33 9,910 

2 
Robot_milk_yiel
d_in_last_lactati

on 
2,01
8.00 

7,10
9.00 

10,15
7.00 

9,552.
14 

11,9
12.0

0 

14,9
96.7

2 
3,28
5.50 564 

3 
Robot_milk_yiel
d_in_last_lactati

on 
1,73
4.00 

7,31
4.00 

9,017.
00 

9,346.
84 

11,1
97.0

0 

19,3
33.0

0 
3,12
8.17 2,188 

1 
Robot_daily_mil
k_yield_in_last_l

actation 
12.0

0 
25.2

0 28.60 29.18 
33.6

0 
43.0

0 5.84 5,567 

2 
Robot_daily_mil
k_yield_in_last_l

actation 
13.1

0 
23.8

0 28.40 28.78 
33.2

0 
42.7

0 5.86 370 

3 
Robot_daily_mil
k_yield_in_last_l

actation 
12.6

0 
25.8

0 29.10 29.69 
34.3

0 
43.0

0 5.92 1,237 

1 MDi 1.00 1.00 1.10 1.15 1.15 4.20 0.31 5,157 

2 MDi 1.00 1.00 1.10 1.19 1.15 4.25 0.38 493 

3 MDi 1.00 1.00 1.10 1.19 1.15 3.85 0.33 1,262 

1 Milking_flow 0.00 1.21 2.05 2.16 2.90 6.65 1.09 12,986 

2 Milking_flow 0.44 1.00 1.30 1.74 2.40 5.55 1.00 896 

3 Milking_flow 0.50 1.18 1.90 2.10 2.90 7.10 1.09 2,768 

1 
Max_milking_flo

w 0.50 2.90 4.00 4.11 5.16 
10.1

4 1.67 12,987 

2 
Max_milking_flo

w 1.16 2.93 4.10 4.11 5.31 8.40 1.65 896 

3 
Max_milking_flo

w 0.60 3.05 4.15 4.21 5.22 
11.7

6 1.79 2,767 

1 
Robot_conduct_

lely 
60.0

0 
66.7

5 68.75 69.01 
71.0

0 
96.2

5 3.40 8,630 

2 
Robot_conduct_

lely 
62.0

0 
66.7

5 69.00 69.39 
72.0

0 
80.5

0 3.52 434 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

3 
Robot_conduct_

lely 
60.5

0 
67.0

0 69.00 69.15 
71.5

0 
85.2

5 3.54 1,653 

1 Robot_conduct 0.00 4.38 4.70 4.72 5.05 7.46 0.57 9,870 

2 Robot_conduct 0.00 4.36 4.55 4.63 4.86 6.48 0.57 661 

3 Robot_conduct 0.00 4.42 4.67 4.72 5.03 6.66 0.59 2,274 

1 
Robot_somatic_

cell_count 1.00 
30.0

0 54.00 
119.2

8 
101.

00 
3,92
0.50 

287.
54 5,997 

2 
Robot_somatic_

cell_count 1.00 
23.7

5 45.00 
122.6

1 
95.0

0 
2,69
6.50 

310.
50 351 

3 
Robot_somatic_

cell_count 1.00 
27.0

0 49.00 
106.0

2 
93.5

0 
2925

.00 
216.

62 1,143 

1 
Robot_effect_of

_scc 0.00 0.55 1.00 1.78 1.70 
43.6

0 3.20 5,997 

2 
Robot_effect_of

_scc 0.00 0.40 0.80 1.71 1.65 
40.8

5 3.76 351 

3 
Robot_effect_of

_scc 0.00 0.60 1.00 1.92 1.77 
33.4

0 3.33 1,143 

1 Robot_fat 
0.86 3.79 4.20 4.35 4.74 

13.1
1 1.00 13,410 

2 Robot_fat 
1.81 3.75 4.33 4.42 4.88 

11.6
4 1.09 604 

3 Robot_fat 
1.23 3.79 4.24 4.34 4.82 

12.1
5 0.96 2,662 

1 Robot_protein 2.51 3.27 3.44 3.44 3.60 5.54 0.27 13,408 

2 Robot_protein 2.88 3.40 3.53 3.54 3.67 5.38 0.26 605 

3 Robot_protein 2.70 3.22 3.42 3.41 3.57 5.60 0.28 2,662 

1 
Robot_fat_prote

in_ratio 0.18 1.11 1.24 1.27 1.39 3.49 0.28 13,411 

2 
Robot_fat_prote

in_ratio 0.50 1.09 1.24 1.24 1.41 2.16 0.26 605 

3 
Robot_fat_prote

in_ratio 0.40 1.12 1.25 1.27 1.41 3.42 0.26 2,662 

1 Robot_lactose 2.90 4.59 4.82 4.75 4.92 5.17 0.24 13,402 

2 Robot_lactose 4.02 4.71 4.84 4.78 4.92 5.06 0.20 605 

3 Robot_lactose 4.01 4.56 4.82 4.73 4.91 5.19 0.25 2,662 

1 
Milking_tempera

ture 
35.8

5 
38.2

0 38.60 38.69 
39.1

5 
41.3

0 0.67 8,626 

2 
Milking_tempera

ture 
37.0

0 
38.5

0 38.90 38.92 
39.3

5 
40.6

0 0.63 434 

3 
Milking_tempera

ture 
36.8

0 
38.2

5 38.70 38.72 
39.1

0 
41.5

0 0.60 1,653 

Constitution 

1 Robot_BCS 2.50 3.70 3.90 3.84 4.10 4.60 0.32 3,679 

2 Robot_BCS 3.10 3.70 3.90 3.91 4.10 4.40 0.30 326 

3 Robot_BCS 2.70 3.60 3.80 3.79 4.00 4.50 0.33 765 

1 Body_weight 
453.

50 
637.

00 
735.7

8 
733.4

7 
813.

88 
1,15
1.60 

115.
46 5,202 

2 Body_weight 
459.

50 
742.

32 
817.0

5 
806.8

3 
897.

97 
1,03
0.10 

112.
44 420 

3 Body_weight 
444.

40 
630.

88 
763.6

0 
753.7

7 
839.

86 
999.

80 
126.

44 1,160 

Feeding 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

1 
Concentrated_f

eed_intake 0.00 1.83 3.67 3.73 5.32 
10.5

8 2.17 18,136 

2 
Concentrated_f

eed_intake 0.00 1.71 3.72 3.64 5.22 9.20 2.13 1,006 

3 
Concentrated_f

eed_intake 0.00 1.99 3.83 3.74 5.25 
10.0

0 2.07 3,646 

1 
Concentrated_f
eed_remains 0.00 0.08 0.13 0.36 0.31 5.96 0.61 8,665 

2 
Concentrated_f
eed_remains 0.02 0.09 0.14 0.28 0.32 3.05 0.37 443 

3 
Concentrated_f
eed_remains 0.00 0.09 0.14 0.44 0.45 5.46 0.67 1,644 

1 WT_feed_intake 
0.00 

34.8
0 44.02 43.53 

53.7
2 

92.1
6 

14.7
5 4,167 

2 WT_feed_intake 
4.13 

41.5
0 48.99 49.37 

58.0
7 

81.9
4 

11.9
7 381 

3 WT_feed_intake 
1.03 

37.5
9 45.56 45.06 

52.8
7 

88.8
4 

13.9
7 889 

1 
WT_feeding_pa

ce 0.06 0.26 0.33 0.35 0.41 1.37 0.12 4,168 

2 
WT_feeding_pa

ce 0.17 0.32 0.37 0.39 0.45 0.80 0.11 381 

3 
WT_feeding_pa

ce 0.17 0.33 0.44 0.44 0.53 2.14 0.15 890 

1 
WT_feeding_du

ration 
10.0

0 
99.0

0 
133.0

0 
138.5

5 
170.

00 
792.

00 
62.0

8 4,150 

2 
WT_feeding_du

ration 
10.0

0 
110.

00 
128.0

0 
133.4

0 
152.

00 
289.

00 
40.8

2 379 

3 
WT_feeding_du

ration 
12.0

0 
80.0

0 
106.0

0 
112.4

1 
141.

00 
428.

00 
47.4

6 884 

1 
WT_feeding_du

ration_day 0.00 
72.0

0 
100.0

0 
104.0

6 
128.

00 
769.

00 
51.3

2 4,150 

2 
WT_feeding_du

ration_day 
10.0

0 
81.5

0 97.00 
100.8

0 
115.

00 
246.

00 
32.3

2 379 

3 
WT_feeding_du

ration_day 0.00 
59.0

0 80.00 83.07 
103.

00 
358.

00 
35.1

6 884 

1 
WT_feeding_du
ration_day_nigh

t 0.00 0.67 0.76 0.75 0.85 1.00 0.14 4,150 

2 
WT_feeding_du
ration_day_nigh

t 0.18 0.68 0.77 0.77 0.85 1.00 0.13 379 

3 
WT_feeding_du
ration_day_nigh

t 0.00 0.65 0.75 0.75 0.85 1.00 0.15 884 

1 
WT_trough_visit

s 1.00 
29.0

0 43.00 46.46 
59.0

0 
222.

00 
25.9

7 4,174 

2 
WT_trough_visit

s 2.00 
25.0

0 33.00 33.00 
40.0

0 
77.0

0 
13.2

9 381 

3 
WT_trough_visit

s 2.00 
17.0

0 25.00 28.84 
37.0

0 
119.

00 
16.6

7 890 

1 
WT_trough_visit

s_day 0.00 
22.0

0 33.00 35.72 
45.0

0 
178.

00 
21.1

0 4,174 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

2 
WT_trough_visit

s_day 2.00 
19.0

0 25.00 25.66 
32.0

0 
71.0

0 
10.8

7 381 

3 
WT_trough_visit

s_day 0.00 
13.0

0 19.00 22.06 
28.0

0 
91.0

0 
13.3

4 890 

1 
WT_trough_visit

s_day_night 0.00 0.69 0.78 0.77 0.86 1.00 0.14 4,174 

2 
WT_trough_visit

s_day_night 0.27 0.70 0.78 0.78 0.88 1.00 0.13 381 

3 
WT_trough_visit

s_day_night 0.00 0.67 0.77 0.77 0.87 1.00 0.15 890 

1 
WT_feed_intake

_per_visit 0.00 0.72 0.97 1.18 1.39 8.71 0.76 4,172 

2 
WT_feed_intake

_per_visit 0.50 1.17 1.51 1.86 2.08 
10.9

4 1.31 381 

3 
WT_feed_intake

_per_visit 0.26 1.10 1.79 2.12 2.64 
13.0

2 1.58 890 

1 
WT_feeding_du
ration_per_visit 0.37 2.35 3.13 3.63 4.30 

70.3
0 2.68 4,172 

2 
WT_feeding_du
ration_per_visit 1.50 3.17 4.07 4.97 5.47 

43.4
2 3.65 381 

3 
WT_feeding_du
ration_per_visit 0.43 3.00 4.42 4.93 5.98 

57.1
7 3.53 890 

1 
WT_number_of

_meals 1.00 7.00 9.00 9.63 
12.0

0 
23.0

0 3.18 3,949 

2 
WT_number_of

_meals 1.00 8.00 9.00 9.38 
11.0

0 
17.0

0 2.67 374 

3 
WT_number_of

_meals 1.00 6.00 8.00 8.37 
10.0

0 
19.0

0 2.87 828 

1 
WT_number_of

_meals_day 0.00 5.00 7.00 7.18 9.00 
20.0

0 2.63 3,949 

2 
WT_number_of

_meals_day 1.00 5.00 7.00 7.06 9.00 
15.0

0 2.32 374 

3 
WT_number_of

_meals_day 0.00 4.00 6.00 6.11 7.00 
16.0

0 2.22 828 

1 
WT_number_of
_meals_day_nig

ht 0.00 0.67 0.75 0.75 0.83 1.00 0.14 3,949 

2 
WT_number_of
_meals_day_nig

ht 0.25 0.67 0.75 0.76 0.86 1.00 0.14 374 

3 
WT_number_of
_meals_day_nig

ht 0.00 0.64 0.75 0.74 0.83 1.00 0.15 828 

1 
WT_feed_intake

_per_meal 0.83 3.53 4.67 5.11 6.17 
23.9

1 2.29 3,949 

2 
WT_feed_intake

_per_meal 2.14 4.26 5.46 5.72 6.85 
13.5

5 2.07 374 

3 
WT_feed_intake

_per_meal 1.51 4.41 5.58 6.15 7.39 
16.5

6 2.49 828 

1 
WT_feeding_du
ration_per_meal 6.00 

10.8
3 14.48 16.29 

19.2
2 

234.
33 

10.5
6 3,949 

2 
WT_feeding_du
ration_per_meal 6.23 

11.1
0 14.25 16.14 

18.7
6 

175.
55 

11.5
8 374 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

3 
WT_feeding_du
ration_per_meal 6.03 

10.2
8 13.62 15.41 

18.2
4 

148.
63 9.32 828 

1 ENGS_feeding 
1.00 

45.0
0 79.00 89.56 

127.
00 

288.
00 

57.2
3 934 

2 ENGS_feeding 
1.00 

63.7
5 

107.0
0 

103.2
6 

137.
00 

230.
00 

51.2
9 144 

3 ENGS_feeding 
6.00 

45.5
0 83.50 80.38 

112.
25 

213.
00 

42.2
8 188 

1 
ENGS_feeding_

day 0.00 
32.0

0 60.00 67.30 
94.7

5 
220.

00 
44.9

7 934 

2 
ENGS_feeding_

day 0.00 
51.0

0 79.50 78.55 
108.

00 
171.

00 
37.7

3 144 

3 
ENGS_feeding_

day 0.00 
35.7

5 60.00 58.90 
81.0

0 
169.

00 
31.1

7 188 

1 
ENGS_feeding_

day_night 0.00 0.65 0.77 0.75 0.86 1.00 0.18 934 

2 
ENGS_feeding_

day_night 0.00 0.69 0.79 0.78 0.88 1.00 0.15 144 

3 
ENGS_feeding_

day_night 0.00 0.65 0.75 0.74 0.85 1.00 0.18 188 

1 
ENGS_number_

of_meals 0.00 6.00 9.00 8.63 
11.0

0 
21.0

0 3.55 934 

2 
ENGS_number_

of_meals 0.00 7.00 9.00 8.98 
11.0

0 
18.0

0 3.11 144 

3 
ENGS_number_

of_meals 0.00 6.00 8.00 8.70 
11.0

0 
25.0

0 3.87 188 

1 
ENGS_number_
of_meals_day 0.00 5.00 6.00 6.49 8.00 

18.0
0 2.82 934 

2 
ENGS_number_
of_meals_day 0.00 5.00 7.00 6.71 8.00 

13.0
0 2.43 144 

3 
ENGS_number_
of_meals_day 0.00 5.00 6.00 6.35 8.00 

17.0
0 2.79 188 

1 
ENGS_number_
of_meals_day_n

ight 0.00 0.67 0.75 0.76 0.86 1.00 0.16 911 

2 
ENGS_number_
of_meals_day_n

ight 0.46 0.67 0.75 0.76 0.83 1.00 0.13 141 

3 
ENGS_number_
of_meals_day_n

ight 0.00 0.67 0.75 0.74 0.84 1.00 0.17 186 

1 
ENGS_feeding_
duration_per_m

eal 1.00 5.70 9.12 10.84 
14.6

7 
63.0

0 7.11 911 

2 
ENGS_feeding_
duration_per_m

eal 1.50 6.88 11.42 12.14 
15.8

0 
34.0

0 6.91 141 

3 
ENGS_feeding_
duration_per_m

eal 1.12 6.02 9.33 9.79 
13.2

1 
26.2

9 4.96 186 

1 Nedap_feeding 
10.0

0 
262.

00 
377.0

0 
377.4

6 
504.

00 
806.

40 
154.

74 5,128 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

2 Nedap_feeding 
61.0

0 
196.

00 
271.0

0 
294.9

4 
382.

50 
676.

80 
129.

86 291 

3 Nedap_feeding 
10.0

0 
226.

25 
374.4

0 
366.4

6 
504.

00 
806.

40 
173.

87 1,014 

Rumination 

1 Smaxtec_rum 
188.

00 
490.

00 
531.7

2 
525.4

8 
568.

71 
735.

13 
65.6

5 5,539 

2 Smaxtec_rum 
338.

73 
504.

10 
539.2

0 
535.6

2 
576.

90 
666.

90 
60.5

2 245 

3 Smaxtec_rum 
237.

20 
490.

12 
531.8

4 
527.3

6 
571.

28 
714.

02 
64.2

9 1,108 

1 SCR_rum 
11.0

0 
520.

00 
562.0

0 
553.2

3 
599.

00 
748.

00 
71.6

9 6,790 

2 SCR_rum 
206.

00 
509.

00 
561.0

0 
549.8

9 
605.

00 
751.

00 
79.5

6 541 

3 SCR_rum 
61.0

0 
504.

00 
557.0

0 
545.8

1 
599.

00 
732.

00 
81.0

5 1,533 

1 SCR_rum_day 
2.00 

306.
00 

343.0
0 

337.5
8 

377.
00 

533.
00 

61.7
6 3,032 

2 SCR_rum_day 
109.

00 
310.

50 
356.0

0 
345.5

1 
389.

00 
496.

00 
62.3

4 359 

3 SCR_rum_day 
61.0

0 
302.

00 
340.0

0 
336.0

9 
380.

00 
545.

00 
68.1

1 833 

1 
SCR_rum_day_

night 0.01 0.59 0.63 0.63 0.66 1.00 0.06 3,032 

2 
SCR_rum_day_

night 0.42 0.60 0.65 0.64 0.68 0.85 0.06 359 

3 
SCR_rum_day_

night 0.29 0.61 0.64 0.64 0.68 1.00 0.06 833 

1 Nedap_rum 
14.4

0 
291.

00 
395.0

0 
393.2

4 
504.

00 
763.

20 
138.

14 5,153 

2 Nedap_rum 
97.0

0 
345.

60 
432.0

0 
406.9

8 
489.

60 
691.

20 
113.

47 290 

3 Nedap_rum 
10.0

0 
188.

75 
291.5

0 
329.7

2 
477.

40 
820.

80 
173.

54 1,020 

Heat detection 

1 
SCR_heat_prob

ability 

-
27.0

0 
-

3.50 -1.00 -0.50 0.50 
92.0

0 7.78 3,621 

2 
SCR_heat_prob

ability 

-
35.0

0 
-

3.50 -2.00 -1.05 0.00 
88.0

0 9.07 177 

3 
SCR_heat_prob

ability 

-
22.0

0 
-

4.00 -1.50 -1.01 0.50 
74.0

0 7.04 674 

1 
SCR_heat_prob

ability_day 

-
29.0

0 
-

4.00 -1.00 -0.34 1.00 
100.

00 9.02 3,607 

2 
SCR_heat_prob

ability_day 

-
36.0

0 
-

3.50 -1.50 -0.44 0.00 
84.0

0 
10.6

4 177 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

3 
SCR_heat_prob

ability_day 

-
25.0

0 
-

4.00 -1.50 -0.98 1.00 
84.0

0 7.95 665 

1 
Lemmer_factor_
of_restlessness 

53.2
3 

226.
00 

320.0
0 

452.2
4 

457.
71 

30,5
01.8

2 
890.

26 4,532 

2 
Lemmer_factor_
of_restlessness 

84.6
0 

160.
62 

215.6
4 

296.1
7 

305.
06 

1,73
7.42 

253.
20 152 

3 
Lemmer_factor_
of_restlessness 

52.9
6 

155.
66 

231.7
8 

301.3
9 

345.
81 

5,66
8.09 

310.
06 986 

Lying 

1 Nedap_lying 
248.

00 
639.

00 
727.0

0 
719.4

9 
804.

00 
1,07
5.00 

119.
47 1,634 

2 Nedap_lying 
340.

00 
630.

00 
710.0

0 
740.1

7 
854.

50 
1,08
1.00 

155.
98 135 

3 Nedap_lying 
156.

00 
583.

00 
709.5

0 
697.4

7 
815.

00 
1,13
1.00 

180.
71 382 

1 Nedap_get_ups 
1.00 8.00 10.00 10.43 

12.0
0 

29.0
0 3.52 1,687 

2 Nedap_get_ups 
1.00 6.00 9.00 9.83 

13.0
0 

22.0
0 4.48 135 

3 Nedap_get_ups 
1.00 6.00 8.00 8.83 

11.0
0 

28.0
0 4.42 401 

1 ENGS_lying 
4.00 

587.
75 

688.0
0 

677.5
9 

780.
25 

1,15
9.00 

152.
74 3,872 

2 ENGS_lying 
4.00 

558.
00 

680.0
0 

641.0
8 

789.
00 

1,08
0.00 

227.
19 337 

3 ENGS_lying 
34.0

0 
513.

50 
687.5

0 
688.9

2 
843.

50 
1,25
8.00 

232.
00 882 

1 
ENGS_lying_da

y 0.00 
313.

00 
387.0

0 
380.7

1 
455.

00 
716.

00 
109.

69 3,872 

2 
ENGS_lying_da

y 0.00 
313.

00 
395.0

0 
374.3

6 
463.

00 
699.

00 
145.

39 337 

3 
ENGS_lying_da

y 0.00 
293.

00 
411.0

0 
410.5

0 
526.

75 
835.

00 
165.

08 882 

1 
ENGS_lying_da

y_night 0.00 0.51 0.56 0.56 0.61 1.00 0.10 3,872 

2 
ENGS_lying_da

y_night 0.00 0.52 0.58 0.58 0.64 1.00 0.14 337 

3 
ENGS_lying_da

y_night 0.00 0.54 0.60 0.59 0.66 1.00 0.13 882 

1 
ENGS_lying_bo

uts 1.00 
12.0

0 15.00 17.47 
20.0

0 
109.

00 9.93 3,872 

2 
ENGS_lying_bo

uts 1.00 8.00 13.00 14.09 
18.0

0 
61.0

0 8.53 339 

3 
ENGS_lying_bo

uts 1.00 9.00 13.00 16.92 
19.7

5 
81.0

0 
13.4

7 882 

1 
ENGS_lying_bo

uts_day 0.00 7.00 10.00 11.18 
13.0

0 
60.0

0 6.49 3,872 

2 
ENGS_lying_bo

uts_day 0.00 5.00 8.00 9.11 
11.0

0 
45.0

0 5.87 337 

3 
ENGS_lying_bo

uts_day 0.00 6.00 8.00 10.89 
13.0

0 
60.0

0 8.75 882 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

1 
ENGS_lying_bo
uts_day_night 0.00 0.57 0.65 0.64 0.73 1.00 0.12 3,872 

2 
ENGS_lying_bo
uts_day_night 0.00 0.56 0.67 0.66 0.76 1.00 0.18 339 

3 
ENGS_lying_bo
uts_day_night 0.00 0.57 0.67 0.66 0.75 1.00 0.15 882 

1 
ENGS_lying_du
ration_per_bout 2.00 

32.3
2 44.50 48.18 

58.4
2 

510.
00 

27.3
8 3,872 

2 
ENGS_lying_du
ration_per_bout 1.60 

33.1
3 47.75 64.58 

69.4
5 

719.
00 

68.5
5 337 

3 
ENGS_lying_du
ration_per_bout 5.00 

31.5
4 52.88 67.15 

80.8
3 

713.
00 

68.0
2 882 

1 Lemmer_lying 
10.8

0 
529.

80 
628.2

0 
616.2

0 
715.

80 
1,25
2.20 

152.
57 4,534 

2 Lemmer_lying 
229.

80 
530.

85 
657.6

0 
653.2

9 
771.

15 
1,00
6.20 

157.
03 152 

3 Lemmer_lying 
46.8

0 
544.

35 
693.0

0 
676.1

3 
825.

00 
1,21
2.00 

213.
52 986 

1 
Lemmer_get_up

s 1.00 6.00 9.00 9.17 
11.0

0 
40.0

0 3.93 4,534 

2 
Lemmer_get_up

s 4.00 8.00 10.00 10.33 
12.0

0 
23.0

0 3.45 152 

3 
Lemmer_get_up

s 1.00 7.00 9.00 9.90 
12.0

0 
27.0

0 3.94 983 

Activity 

1 
Delaval_act_av

g 
12.0

0 
24.0

0 30.00 31.67 
38.0

0 
89.0

0 
10.1

5 1,055 

2 
Delaval_act_av

g 
11.0

0 
19.0

0 28.00 27.95 
34.0

0 
60.0

0 9.68 116 

3 
Delaval_act_av

g 
10.0

0 
20.0

0 25.00 25.70 
31.0

0 
75.0

0 8.57 344 

1 Delaval_act_rel 
59.0

0 
91.0

0 
100.0

0 
100.8

7 
108.

00 
287.

00 
17.2

4 1,055 

2 Delaval_act_rel 
55.0

0 
89.0

0 99.50 
100.8

4 
109.

00 
229.

00 
21.9

0 116 

3 Delaval_act_rel 
44.0

0 
84.0

0 95.00 97.81 
105.

00 
293.

00 
24.0

9 344 

1 
Delaval_act_rel

_min 
50.0

0 
82.0

0 89.00 89.23 
96.0

0 
137.

00 
11.7

6 1,008 

2 
Delaval_act_rel

_min 
46.0

0 
79.0

0 88.00 86.41 
95.0

0 
162.

00 
15.4

8 112 

3 
Delaval_act_rel

_min 
39.0

0 
77.0

0 84.00 86.16 
93.0

0 
191.

00 
17.3

3 316 

1 
Delaval_act_rel

_max 
59.0

0 
101.

00 
110.0

0 
111.2

4 
118.

00 
255.

00 
18.4

6 1,008 

2 
Delaval_act_rel

_max 
62.0

0 
103.

75 
111.0

0 
114.0

4 
121.

25 
255.

00 
25.6

7 112 

3 
Delaval_act_rel

_max 
65.0

0 
96.0

0 
106.0

0 
110.0

5 
115.

00 
255.

00 
26.6

7 316 

1 ENGS_act 
31.0

0 
1,80
3.00 

2,223.
00 

2,299.
33 

2,70
7.00 

8,73
5.00 

869.
84 3,870 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

2 ENGS_act 
30.0

0 
1,48
4.50 

1,891.
50 

1,869.
15 

2,30
5.50 

6,80
3.00 

841.
96 336 

3 ENGS_act 
59.0

0 
1,37
9.25 

1,831.
00 

1,965.
86 

2,44
3.00 

7,53
2.00 

891.
58 882 

1 ENGS_act_day 
0.00 

1,39
3.00 

1,740.
00 

1,802.
66 

2,12
5.75 

7,47
1.00 

707.
68 3,870 

2 ENGS_act_day 
0.00 

1,11
5.75 

1,458.
00 

1,441.
34 

1,80
7.75 

5,84
0.00 

676.
50 336 

3 ENGS_act_day 
0.00 

1,05
1.25 

1,401.
50 

1,491.
74 

1,81
6.25 

6,41
6.00 

695.
36 882 

1 
ENGS_act_day

_night 0.00 0.74 0.79 0.78 0.84 1.00 0.08 3,870 

2 
ENGS_act_day

_night 0.00 0.72 0.78 0.76 0.83 1.00 0.12 336 

3 
ENGS_act_day

_night 0.00 0.71 0.76 0.76 0.82 0.99 0.10 882 

1 Smaxtec_act 
0.31 3.96 4.86 5.65 6.98 

21.3
6 2.43 7,183 

2 Smaxtec_act 
0.31 4.26 5.32 5.78 7.92 

16.8
9 2.40 365 

3 Smaxtec_act 
0.42 3.71 4.69 5.41 6.92 

15.0
9 2.34 1,491 

1 
Smaxtec_act_d

ay 0.40 4.80 5.88 6.49 7.76 
23.6

9 2.46 7,180 

2 
Smaxtec_act_d

ay 0.40 4.90 6.35 6.41 8.01 
17.6

7 2.30 364 

3 
Smaxtec_act_d

ay 0.39 4.53 5.64 6.21 7.75 
20.6

5 2.41 1,491 

1 
Smaxtec_act_d

ay_night 0.43 1.06 1.15 1.18 1.27 2.32 0.18 7,181 

2 
Smaxtec_act_d

ay_night 0.68 1.04 1.11 1.14 1.22 1.94 0.16 365 

3 
Smaxtec_act_d

ay_night 0.72 1.05 1.14 1.18 1.26 2.53 0.20 1,488 

1 SCR_act 
21.5

0 
36.5

0 40.00 41.16 
44.5

0 
141.

00 7.77 6,740 

2 SCR_act 
26.0

0 
34.5

0 38.00 38.81 
42.5

0 
84.5

0 6.47 543 

3 SCR_act 
25.0

0 
34.0

0 37.00 38.53 
40.5

0 
150.

00 
10.1

8 1,521 

1 SCR_act_day 
20.5

0 
38.5

0 43.00 44.39 
48.5

0 
146.

50 9.21 6,737 

2 SCR_act_day 
26.0

0 
36.0

0 40.50 41.42 
45.5

0 
100.

50 8.56 543 

3 SCR_act_day 
25.0

0 
35.0

0 39.00 40.95 
44.0

0 
151.

00 
11.0

7 1,519 

1 
SCR_act_day_n

ight 0.60 1.02 1.06 1.08 1.12 2.15 0.09 6,743 

2 
SCR_act_day_n

ight 0.74 1.01 1.04 1.06 1.10 2.01 0.09 543 

3 
SCR_act_day_n

ight 0.55 1.01 1.04 1.06 1.10 1.99 0.10 1,521 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

1 Lemmer_act 
37.0

0 
102.

00 
132.0

0 
151.5

2 
172.

00 
858.

00 
86.6

9 4,776 

2 Lemmer_act 
47.0

0 
73.0

0 94.00 
118.4

4 
127.

00 
590.

00 
87.0

1 173 

3 Lemmer_act 
37.0

0 
79.0

0 
103.0

0 
115.4

5 
133.

00 
774.

00 
65.0

2 1,016 

1 Nedap_inactive 
225.

00 
548.

00 
639.0

0 
661.2

0 
752.

00 
1,37
8.00 

162.
54 5,132 

2 Nedap_inactive 
363.

00 
639.

00 
725.5

0 
732.2

0 
829.

75 
1,14
7.00 

127.
35 290 

3 Nedap_inactive 
251.

00 
627.

00 
719.0

0 
737.7

4 
812.

00 
1,35
7.00 

168.
60 1,019 

1 
Nedap_act_coll

ar_median 1.00 4.50 7.00 8.24 
10.5

0 
71.0

0 5.05 5,168 

2 
Nedap_act_coll

ar_median 0.00 4.50 6.00 6.88 9.00 
21.5

0 3.46 291 

3 
Nedap_act_coll

ar_median 0.00 4.00 6.00 7.02 9.50 
53.0

0 4.25 1,017 

1 
Nedap_act_coll

ar_sum 
14.0

0 
63.0

0 95.00 
110.2

3 
140.

00 
859.

00 
65.6

9 5,166 

2 
Nedap_act_coll

ar_sum 9.00 
62.0

0 81.00 93.54 
119.

00 
330.

00 
48.2

0 290 

3 
Nedap_act_coll

ar_sum 
11.0

0 
58.0

0 83.00 95.10 
125.

00 
635.

00 
57.8

0 1,016 

1 
Nedap_act_coll
ar_median_day 0.50 5.00 8.00 9.70 

12.5
0 

89.5
0 6.56 5,172 

2 
Nedap_act_coll
ar_median_day 0.50 5.00 7.00 7.93 

10.5
0 

30.0
0 4.45 292 

3 
Nedap_act_coll
ar_median_day 0.00 4.50 7.00 7.94 

10.0
0 

85.5
0 5.80 1,017 

1 
Nedap_act_coll

ar_sum_day 6.00 
46.0

0 71.00 82.89 
105.

00 
737.

00 
52.6

2 5,172 

2 
Nedap_act_coll

ar_sum_day 6.00 
43.7

5 60.50 69.69 
93.0

0 
308.

00 
38.8

9 292 

3 
Nedap_act_coll

ar_sum_day 6.00 
41.0

0 61.00 69.09 
91.0

0 
534.

00 
46.0

1 1,017 

1 
Nedap_act_coll
ar_median_day

_night 0.13 1.00 1.12 1.17 1.28 5.47 0.27 5,168 

2 
Nedap_act_coll
ar_median_day

_night 0.70 1.00 1.11 1.15 1.25 2.86 0.23 290 

3 
Nedap_act_coll
ar_median_day

_night 0.20 1.00 1.07 1.12 1.22 4.21 0.28 1,016 

1 
Nedap_act_coll
ar_sum_day_ni

ght 0.16 0.70 0.75 0.75 0.80 0.98 0.09 5,167 

2 
Nedap_act_coll
ar_sum_day_ni

ght 0.44 0.69 0.74 0.74 0.79 0.93 0.08 290 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

3 
Nedap_act_coll
ar_sum_day_ni

ght 0.26 0.67 0.73 0.72 0.78 0.95 0.09 1,016 

1 Nedap_act 1,30
4.00 

2,66
1.50 

3,405.
50 

3,641.
51 

4,33
1.75 

14,1
74.0

0 
1,37
1.97 1,686 

2 Nedap_act 
1,78
9.00 

2,59
6.50 

2,979.
00 

3,256.
28 

3,70
2.50 

9,39
1.00 

966.
14 135 

3 Nedap_act 1,28
4.00 

2,32
4.00 

2,849.
00 

3,132.
03 

3,71
8.00 

13,7
26.0

0 
13,6
6.53 403 

1 
Nedap_act_foot

_median 
72.5

0 
202.

50 
252.0

0 
266.2

4 
315.

00 
1207

.00 
92.2

7 1,684 

2 
Nedap_act_foot

_median 
135.

50 
196.

00 
230.5

0 
239.5

9 
273.

00 
427.

00 
59.4

8 135 

3 
Nedap_act_foot

_median 
73.0

0 
175.

25 
222.5

0 
236.6

1 
280.

75 
1,04
9.50 

97.9
3 403 

1 
Nedap_act_foot
_median_day 

89.0
0 

231.
50 

290.7
5 

320.3
0 

385.
00 

1,47
6.50 

132.
45 1,698 

2 
Nedap_act_foot
_median_day 

109.
00 

219.
50 

255.0
0 

264.7
7 

306.
00 

502.
50 

72.8
7 135 

3 
Nedap_act_foot
_median_day 

86.0
0 

191.
00 

255.5
0 

270.5
4 

322.
38 

1,50
1.50 

130.
29 404 

1 
Nedap_act_foot

_sum_day 
893.

00 
1,95
2.25 

2,584.
00 

2,815.
98 

3,40
9.50 

11,0
56.0

0 
1189

.97 1,698 

2 
Nedap_act_foot

_sum_day 
1,20
6.00 

1,88
6.00 

2,244.
00 

2,485.
52 

3,02
5.00 

8,97
2.00 

924.
82 135 

3 
Nedap_act_foot

_sum_day 
774.

00 
1,66
7.00 

2,074.
00 

2,345.
25 

2,81
7.00 

12,1
74.0

0 
1,16
1.11 405 

1 
Nedap_act_foot
_median_day_ni

ght 0.37 1.03 1.15 1.20 1.29 3.49 0.25 1,693 

2 
Nedap_act_foot
_median_day_ni

ght 0.55 1.00 1.09 1.11 1.20 1.67 0.16 135 

3 
Nedap_act_foot
_median_day_ni

ght 0.61 1.00 1.10 1.15 1.25 3.40 0.24 403 

1 
Nedap_act_foot
_sum_day_night 0.22 0.72 0.78 0.77 0.82 0.95 0.08 1,692 

2 
Nedap_act_foot
_sum_day_night 0.57 0.70 0.75 0.75 0.80 0.96 0.07 135 

3 
Nedap_act_foot
_sum_day_night 0.48 0.70 0.75 0.74 0.79 0.91 0.07 403 

Body temperature 

1 
Smaxtec_temp_
normal_median 

39.0
0 

39.2
8 39.39 39.41 

39.5
3 

40.0
0 0.19 7,190 

2 
Smaxtec_temp_
normal_median 

39.1
1 

39.4
4 39.52 39.53 

39.6
4 

39.9
6 0.17 385 

3 
Smaxtec_temp_
normal_median 

39.0
0 

39.3
4 39.46 39.48 

39.6
1 

40.0
0 0.20 1,471 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

1 
Smaxtec_temp_

median 
38.4

5 
39.0

0 39.12 39.14 
39.2

5 
40.6

4 0.20 7,226 

2 
Smaxtec_temp_

median 
38.7

8 
39.1

0 39.24 39.22 
39.3

4 
39.8

4 0.18 386 

3 
Smaxtec_temp_

median 
38.5

6 
39.0

6 39.19 39.21 
39.3

4 
40.1

6 0.23 1,490 

1 
Smaxtec_temp_

min 
26.9

9 
32.9

8 33.87 33.83 
34.7

5 
39.2

7 1.35 7,228 

2 
Smaxtec_temp_

min 
30.2

9 
33.2

6 34.26 34.15 
35.0

8 
37.0

1 1.25 385 

3 
Smaxtec_temp_

min 
28.6

9 
32.7

3 33.48 33.47 
34.3

0 
37.3

3 1.24 1,491 

1 
Smaxtec_temp_

max 
39.0

0 
39.5

8 39.73 39.77 
39.9

1 
42.3

5 0.31 7,228 

2 
Smaxtec_temp_

max 
39.2

4 
39.7

6 39.91 39.92 
40.0

8 
41.0

8 0.25 386 

3 
Smaxtec_temp_

max 
39.1

5 
39.6

5 39.82 39.86 
40.0

0 
42.3

5 0.34 1,491 

1 
Smaxtec_temp_
without_drink_c
ycles_median 

38.6
9 

39.1
3 39.24 39.26 

39.3
7 

40.7
8 0.20 7,183 

2 
Smaxtec_temp_
without_drink_c
ycles_median 

38.9
0 

39.2
7 39.37 39.38 

39.4
8 

39.9
6 0.18 386 

3 
Smaxtec_temp_
without_drink_c
ycles_median 

38.7
4 

39.1
9 39.30 39.33 

39.4
7 

40.3
6 0.22 1,490 

1 
Smaxtec_temp_
without_drink_c

ycles_min 
37.7

4 
38.5

0 38.63 38.64 
38.7

6 
39.9

7 0.21 7,185 

2 
Smaxtec_temp_
without_drink_c

ycles_min 
38.3

0 
38.5

9 38.75 38.72 
38.8

5 
39.5

1 0.18 386 

3 
Smaxtec_temp_
without_drink_c

ycles_min 
37.9

9 
38.5

4 38.67 38.68 
38.8

1 
39.6

2 0.22 1,492 

1 
Smaxtec_temp_
without_drink_c

ycles_max 
38.9

9 
39.5

5 39.70 39.75 
39.8

8 
42.3

2 0.31 7,182 

2 
Smaxtec_temp_
without_drink_c

ycles_max 
39.2

4 
39.7

3 39.87 39.89 
40.0

3 
41.0

7 0.26 386 

3 
Smaxtec_temp_
without_drink_c

ycles_max 
39.1

6 
39.6

3 39.79 39.84 
39.9

8 
42.2

8 0.34 1,488 

Climate 

1 
Smaxtec_climat
e_temp_median 2.37 8.91 10.95 11.84 

14.4
8 

24.3
4 5.04 9,100 

2 
Smaxtec_climat
e_temp_median 2.37 9.76 13.94 13.44 

17.7
1 

24.3
4 5.46 436 

3 
Smaxtec_climat
e_temp_median 2.37 8.91 10.46 11.32 

14.1
2 

24.3
4 4.60 1,804 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

1 
Smaxtec_climat

e_temp_min 
-

0.34 5.26 8.36 8.71 
11.7

3 
19.6

3 4.36 9,100 

2 
Smaxtec_climat

e_temp_min 
-

0.34 6.67 9.36 9.94 
13.2

7 
19.6

3 4.63 436 

3 
Smaxtec_climat

e_temp_min 
-

0.34 5.43 8.35 8.41 
10.5

0 
19.6

3 3.94 1,804 

1 
Smaxtec_climat

e_temp_max 3.98 
11.1

0 14.09 15.08 
18.3

3 
29.5

5 6.01 9,100 

2 
Smaxtec_climat

e_temp_max 3.98 
11.8

4 16.85 16.84 
22.0

6 
29.5

5 6.50 436 

3 
Smaxtec_climat

e_temp_max 3.98 
10.5

0 13.17 14.31 
17.1

1 
29.5

5 5.51 1,804 

1 
Smaxtec_climat
e_hum_median 

46.5
4 

67.4
4 73.50 73.84 

81.3
0 

100.
00 

11.1
7 8,793 

2 
Smaxtec_climat
e_hum_median 

46.5
4 

65.2
1 72.74 73.40 

80.9
0 

100.
00 

12.3
4 408 

3 
Smaxtec_climat
e_hum_median 

46.5
4 

68.0
7 74.92 74.68 

81.3
1 

100.
00 

11.1
2 1,735 

1 
Smaxtec_climat

e_hum_min 1.21 
50.0

2 62.47 61.98 
76.2

8 
98.7

7 
16.1

2 8,793 

2 
Smaxtec_climat

e_hum_min 1.21 
46.3

5 58.50 59.10 
75.6

5 
98.7

7 
17.6

8 408 

3 
Smaxtec_climat

e_hum_min 1.21 
52.0

3 64.68 63.39 
77.0

7 
98.7

7 
16.3

9 1,735 

1 
Smaxtec_climat

e_hum_max 
62.3

9 
77.2

2 82.13 82.63 
85.6

4 
100.

00 7.46 8,793 

2 
Smaxtec_climat

e_hum_max 
62.3

9 
78.7

0 81.86 83.20 
85.9

0 
100.

00 7.87 408 

3 
Smaxtec_climat

e_hum_max 
62.3

9 
77.4

3 82.92 82.82 
85.6

5 
100.

00 7.58 1,735 

1 
Smaxtec_thi_m

edian 
28.1

1 
45.3

5 51.61 51.99 
58.0

5 
71.7

6 9.84 8,793 

2 
Smaxtec_thi_m

edian 
28.1

1 
49.1

2 56.38 54.88 
63.0

5 
71.7

6 
10.2

2 408 

3 
Smaxtec_thi_m

edian 
28.1

1 
46.6

1 51.13 51.45 
57.2

9 
71.7

6 8.79 1,735 

1 
Smaxtec_thi_mi

n 
35.4

5 
44.8

1 48.84 49.59 
54.5

4 
65.3

3 6.44 8,793 

2 
Smaxtec_thi_mi

n 
35.4

5 
46.5

9 51.26 51.43 
57.4

6 
65.3

3 7.02 408 

3 
Smaxtec_thi_mi

n 
35.4

5 
45.1

9 48.54 49.10 
52.4

4 
65.3

3 5.88 1,735 

1 
Smaxtec_thi_m

ax 
39.4

5 
52.0

5 57.31 58.86 
64.9

9 
83.0

7 9.91 8,793 

2 
Smaxtec_thi_m

ax 
39.4

5 
52.8

6 62.05 61.87 
71.5

4 
83.0

7 
10.9

2 408 

3 
Smaxtec_thi_m

ax 
39.4

5 
51.5

0 55.79 57.56 
62.3

7 
83.0

7 9.09 1,735 

1 WS_thi_med 
27.2

0 
39.0

7 48.76 49.24 
60.4

3 
70.7

6 
11.7

1 10,024 

2 WS_thi_med 
28.0

3 
39.0

8 48.76 49.15 
60.4

7 
70.7

6 
11.6

7 699 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

3 WS_thi_med 
27.2

0 
36.7

9 46.80 47.11 
56.2

0 
70.7

6 
11.1

8 2,067 

1 WS_thi_min 
22.5

7 
36.1

2 42.93 43.31 
51.7

6 
61.1

2 9.49 10,024 

2 WS_thi_min 
23.5

4 
35.6

0 42.98 43.06 
52.1

9 
61.1

2 9.74 699 

3 WS_thi_min 
22.5

7 
34.8

3 41.05 41.61 
48.0

4 
61.1

2 8.96 2,067 

1 WS_thi_max 
30.7

4 
44.2

9 59.18 58.03 
70.8

1 
91.6

6 
15.3

3 10,024 

2 WS_thi_max 
30.7

4 
44.4

2 58.82 58.10 
69.8

0 
91.6

6 
15.0

3 699 

3 WS_thi_max 
30.7

4 
42.2

6 55.75 55.39 
66.3

8 
91.6

6 
14.8

2 2,067 

1 
WS_temp_2m_

med 
-

3.36 3.42 8.59 9.39 
16.0

0 
23.2

8 6.89 10,024 

2 
WS_temp_2m_

med 
-

2.22 3.52 8.75 9.44 
15.9

6 
23.2

8 6.83 699 

3 
WS_temp_2m_

med 
-

3.36 2.17 7.43 8.11 
13.2

5 
23.2

8 6.54 2,067 

1 
WS_temp_2m_

min 
-

7.90 
-

0.60 2.70 4.37 9.40 
16.4

0 5.95 10,024 

2 
WS_temp_2m_

min 
-

6.70 
-

0.60 3.30 4.50 9.50 
16.4

0 5.93 699 

3 
WS_temp_2m_

min 
-

7.90 
-

1.05 1.60 3.25 7.90 
16.4

0 5.57 2,067 

1 
WS_temp_2m_

max 
-

0.70 6.80 15.10 14.49 
21.8

0 
33.4

0 8.56 10,024 

2 
WS_temp_2m_

max 
-

0.70 6.90 14.90 14.53 
21.0

0 
33.4

0 8.39 699 

3 
WS_temp_2m_

max 
-

0.70 5.60 13.10 13.01 
19.2

0 
33.4

0 8.28 2,067 

1 
WS_temp_20c

m_med 
-

3.93 2.86 7.80 9.06 
15.6

1 
23.5

2 6.94 10,024 

2 
WS_temp_20c

m_med 
-

2.20 2.66 7.78 9.06 
15.6

8 
23.5

2 6.96 699 

3 
WS_temp_20c

m_med 
-

3.93 2.08 6.34 7.75 
12.7

8 
23.5

2 6.52 2,067 

1 
WS_temp_20c

m_min 
-

9.60 
-

1.80 1.50 2.77 7.60 
16.2

0 6.21 10,024 

2 
WS_temp_20c

m_min 
-

8.60 
-

2.30 2.20 2.85 7.80 
16.2

0 6.26 699 

3 
WS_temp_20c

m_min 
-

9.60 
-

2.30 0.40 1.65 6.30 
16.2

0 5.78 2,067 

1 
WS_temp_20c

m_max 
-

0.40 8.00 17.00 15.85 
23.6

0 
33.0

0 9.06 10,024 

2 
WS_temp_20c

m_max 
-

0.40 8.10 16.90 15.88 
23.5

0 
33.0

0 8.90 699 

3 
WS_temp_20c

m_max 
-

0.40 6.30 14.90 14.30 
21.2

5 
33.0

0 8.75 2,067 

1 
WS_soil_temp_

5cm_med 0.70 4.40 9.63 10.42 
16.4

0 
22.6

1 6.65 10,024 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

2 
WS_soil_temp_

5cm_med 0.70 4.44 9.70 10.55 
16.5

5 
22.6

1 6.55 699 

3 
WS_soil_temp_

5cm_med 0.70 3.55 8.31 9.19 
14.3

5 
22.6

1 6.20 2,067 

1 
WS_soil_temp_

5cm_min 0.50 2.60 7.40 8.74 
14.5

0 
19.5

0 6.20 10,024 

2 
WS_soil_temp_

5cm_min 0.50 2.80 8.00 8.89 
14.9

5 
19.5

0 6.13 699 

3 
WS_soil_temp_

5cm_min 0.50 2.10 6.20 7.58 
12.8

0 
19.5

0 5.75 2,067 

1 
WS_soil_temp_

5cm_max 1.00 6.30 12.40 12.41 
18.5

0 
28.5

0 7.35 10,024 

2 
WS_soil_temp_

5cm_max 1.00 6.30 12.30 12.53 
18.4

0 
28.5

0 7.18 699 

3 
WS_soil_temp_

5cm_max 1.00 5.60 10.40 11.12 
16.8

0 
28.5

0 6.87 2,067 

1 
WS_soil_temp_

20cm_med 1.64 4.57 9.18 10.37 
15.8

1 
20.4

4 6.09 10,024 

2 
WS_soil_temp_

20cm_med 1.64 5.00 9.39 10.59 
16.2

0 
20.4

4 5.99 699 

3 
WS_soil_temp_

20cm_med 1.64 3.89 8.41 9.26 
14.3

3 
20.4

4 5.67 2,067 

1 
WS_soil_temp_

20cm_min 1.50 4.10 8.70 9.95 
15.3

0 
19.7

0 5.96 10,024 

2 
WS_soil_temp_

20cm_min 1.50 4.70 8.80 10.18 
15.7

0 
19.7

0 5.85 699 

3 
WS_soil_temp_

20cm_min 1.50 3.50 7.60 8.87 
13.7

0 
19.7

0 5.55 2,067 

1 
WS_soil_temp_

20cm_max 1.70 5.00 9.80 10.87 
16.3

0 
21.8

0 6.26 10,024 

2 
WS_soil_temp_

20cm_max 1.70 5.20 10.00 11.09 
16.7

0 
21.8

0 6.16 699 

3 
WS_soil_temp_

20cm_max 1.70 4.40 9.00 9.74 
14.9

0 
21.8

0 5.82 2,067 

1 
WS_rel_hum_m

ed 
41.7

9 
73.2

0 87.31 84.05 
98.1

7 
100.

00 
14.9

9 10,024 

2 
WS_rel_hum_m

ed 
41.7

9 
77.4

2 90.17 86.23 
99.5

8 
100.

00 
14.2

3 699 

3 
WS_rel_hum_m

ed 
41.7

9 
74.9

6 88.49 85.18 
98.5

4 
100.

00 
14.3

8 2,067 

1 
WS_rel_hum_m

in 
17.8

0 
39.8

0 57.80 62.32 
90.2

0 
100.

00 
25.8

5 10,024 

2 
WS_rel_hum_m

in 
17.8

0 
42.0

0 60.90 65.56 
97.2

0 
100.

00 
26.4

4 699 

3 
WS_rel_hum_m

in 
17.8

0 
40.9

0 62.30 64.27 
91.1

0 
100.

00 
25.6

6 2,067 

1 
WS_rel_hum_m

ax 
53.0

0 
99.3

0 
100.0

0 98.39 
100.

00 
100.

00 4.66 10,024 

2 
WS_rel_hum_m

ax 
53.0

0 
99.8

0 
100.0

0 99.00 
100.

00 
100.

00 3.47 699 

3 
WS_rel_hum_m

ax 
53.0

0 
99.2

0 
100.0

0 98.49 
100.

00 
100.

00 4.30 2,067 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

1 
WS_wind_veloci

ty_med 0.50 1.09 1.50 1.76 2.03 5.68 1.03 10,024 

2 
WS_wind_veloci

ty_med 0.50 1.08 1.41 1.68 1.95 5.68 0.95 699 

3 
WS_wind_veloci

ty_med 0.50 1.12 1.51 1.79 2.09 5.68 1.05 2,067 

1 
WS_wind_veloci

ty_min 0.00 0.00 0.00 0.19 0.10 3.30 0.48 10,024 

2 
WS_wind_veloci

ty_min 0.00 0.00 0.00 0.16 0.10 3.30 0.39 699 

3 
WS_wind_veloci

ty_min 0.00 0.00 0.00 0.21 0.20 3.30 0.47 2,067 

1 
WS_wind_veloci

ty_max 1.60 2.70 3.50 4.03 4.70 
12.7

0 1.99 10,024 

2 
WS_wind_veloci

ty_max 1.60 2.60 3.40 3.90 4.45 
12.7

0 1.95 699 

3 
WS_wind_veloci

ty_max 1.60 2.70 3.50 4.05 4.60 
12.7

0 2.07 2,067 

1 WS_rain_med 0.00 0.00 0.00 0.01 0.01 0.22 0.03 10,024 

2 WS_rain_med 0.00 0.00 0.00 0.01 0.01 0.22 0.03 699 

3 WS_rain_med 0.00 0.00 0.00 0.01 0.01 0.22 0.03 2,067 

1 WS_rain_min 0.00 0.00 0.00 0.00 0.00 0.01 0.00 10,024 

2 WS_rain_min 0.00 0.00 0.00 0.00 0.00 0.01 0.00 699 

3 WS_rain_min 0.00 0.00 0.00 0.00 0.00 0.01 0.00 2,067 

1 WS_rain_max 
0.00 0.00 0.02 0.35 0.26 

12.2
0 1.18 10,024 

2 WS_rain_max 
0.00 0.00 0.01 0.30 0.22 

12.2
0 1.10 699 

3 WS_rain_max 
0.00 0.00 0.03 0.30 0.28 

12.2
0 0.98 2,067 

1 
WS_global_rad

_med 5.61 
55.3

8 
145.2

6 
149.7

6 
223.

91 
359.

26 
98.9

0 10,024 

2 
WS_global_rad

_med 5.61 
55.3

8 
134.2

8 
142.6

6 
213.

23 
359.

26 
96.2

6 699 

3 
WS_global_rad

_med 5.61 
49.3

9 
130.3

8 
135.5

5 
208.

60 
359.

26 
94.9

9 2,067 

1 
WS_global_rad

_min 0.00 0.00 0.00 0.06 0.00 2.00 0.27 10,024 

2 
WS_global_rad

_min 0.00 0.00 0.00 0.11 0.00 2.00 0.37 699 

3 
WS_global_rad

_min 0.00 0.00 0.00 0.06 0.00 2.00 0.27 2,067 

1 
WS_global_rad

_max 
41.0

0 
346.

00 
694.0

0 
619.5

7 
871.

00 
1164

.00 
303.

34 10,024 

2 
WS_global_rad

_max 
41.0

0 
351.

00 
632.0

0 
598.7

0 
843.

00 
1164

.00 
297.

49 699 

3 
WS_global_rad

_max 
41.0

0 
303.

50 
631.0

0 
581.6

0 
843.

00 
1164

.00 
303.

13 2,067 

1 Season 1.00 1.00 2.00 2.14 3.00 4.00 0.98 19,431 

2 Season 1.00 1.00 2.00 2.21 3.00 4.00 0.99 1,133 

3 Season 1.00 1.00 2.00 2.20 3.00 4.00 1.03 4,019 

Claw health 
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C_LMS variable 
Min Q1 

Media
n Mean Q3 Max SD N 

1 GSC 1.00 2.50 3.00 2.67 3.00 3.00 0.40 19,316 

2 GSC 1.00 2.00 2.50 2.54 3.00 3.00 0.47 1,107 

3 GSC 1.00 2.25 2.75 2.63 3.00 3.00 0.42 3,971 

1 PT 0.00 0.00 0.00 0.15 0.00 1.00 0.36 19,316 

2 PT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1,107 

3 PT 0.00 0.00 0.00 0.41 1.00 1.00 0.49 3,950 

Table 60: Statistical summaries for each parameter grouped by locomotion score (LMS) across 

all farms (parameters explained in Table 33) 

LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

Animal characteristics 

1 Breed 1 1 1 1.1 1 6 0.7 1,9431 

2 Breed 1 1 1 1 1 4 0.3 3,736 

3 Breed 1 1 1 1.1 1 3 0.4 1,416 

Milking 

1 Days_in_milk 
0 76 152 161 228 530 

103.
3 19,148 

2 Days_in_milk 
0 64 153 160.4 239 520 

107.
3 3,704 

3 Days_in_milk 0 53 150 149.9 226 517 99.6 1,401 

1 Lactation_number 0 1 2 2.6 4 12 1.8 19,431 

2 Lactation_number 0 2 3 3 4 12 1.8 3,736 

3 Lactation_number 0 1 3 3.3 5 12 2.1 1,416 

1 
LKV_daily_milk_y

ield 7.2 23.1 29.1 29.4 35.4 57.4 8.2 17,784 

2 
LKV_daily_milk_y

ield 6.5 23.6 30.6 30.6 37 61.1 9.1 3,418 

3 
LKV_daily_milk_y

ield 8.8 23.8 29.1 29.1 35.1 51.4 8.7 1,292 

1 LKV_fat 2.1 3.6 4.1 4.2 4.6 8 0.8 17,772 

2 LKV_fat 2.1 3.6 4.1 4.1 4.6 7.1 0.8 3,418 

3 LKV_fat 2.4 3.5 4 4.1 4.4 7.6 1 1,292 

1 
LKV_fat_protein_

ratio 0.6 1 1.2 1.2 1.3 2.4 0.2 17,760 

2 
LKV_fat_protein_

ratio 0.6 1 1.2 1.2 1.3 2.3 0.2 3,418 

3 
LKV_fat_protein_

ratio 0.7 1 1.1 1.2 1.3 2.3 0.3 1,292 

1 LKV_lactose 3.6 4.8 4.9 4.9 5 5.4 0.2 17,546 

2 LKV_lactose 4 4.8 4.9 4.9 5 5.4 0.2 3,390 

3 LKV_lactose 3.8 4.7 4.9 4.9 5 5.3 0.2 1,289 

1 
LKV_milk_yield_i
n_last_lactation 

3,24
3 

8,05
2 9,433 

9,784.
2 

11,3
50 

21,1
93 

2,64
9.7 12,035 

2 
LKV_milk_yield_i
n_last_lactation 

3,19
4 

8,34
2 

10,18
3 

10,44
0.4 

12,4
44 

21,1
93 

2,75
7.8 2,726 

3 
LKV_milk_yield_i
n_last_lactation 

3,19
4 

8,72
0 

10,73
4 

10,51
5.9 

12,1
08 

21,1
93 

2,85
1.8 964 

1 LKV_protein 2.4 3.3 3.5 3.5 3.8 4.9 0.4 17,784 

2 LKV_protein 2.5 3.2 3.5 3.5 3.8 4.7 0.4 3,418 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

3 LKV_protein 2.6 3.1 3.5 3.4 3.7 4.7 0.4 1,292 

1 
LKV_somatic_cell

_count 10 24 55 205.6 143 
9,99

9 655 17,597 

2 
LKV_somatic_cell

_count 10 21 55 135 121 
9,99

9 
307.

7 3,395 

3 
LKV_somatic_cell

_count 10 26 58 316.3 187 
9,99

9 
1,11
8.2 1,289 

1 LKV_urea 30 138 184 184.7 229 454 64.5 17,188 

2 LKV_urea 32 148 187 184.9 225 412 63.8 3,337 

3 LKV_urea 32 124 178 177.4 233 369 76.6 1,227 

1 Max_milking_flow 0.5 2.9 4 4.1 5.2 10.1 1.7 12,987 

2 Max_milking_flow 0.6 2.8 4 4.1 5.1 10 1.7 2,713 

3 Max_milking_flow 0.8 3.3 4.4 4.6 5.6 11.8 1.9 950 

1 
Maximum_milking

_interval 18.8 
492.

3 563.8 582.4 
650.

2 
1,35
1.3 

131.
7 17,652 

2 
Maximum_milking

_interval 49.9 503 572.8 594.6 
660.

2 
1,27
2.8 

134.
8 3,393 

3 
Maximum_milking

_interval 
324.

2 521 596.7 619.7 
694.

9 
1,42

0 
146.

1 1,234 

1 MDI 1 1 1.1 1.2 1.1 4.2 0.3 5,157 

2 MDI 1 1 1.1 1.2 1.1 4.2 0.3 1,282 

3 MDI 1 1 1.1 1.2 1.2 3.5 0.4 473 

1 Milking_flow 0 1.2 2 2.2 2.9 6.7 1.1 12,986 

2 Milking_flow 0.4 1.1 1.8 2 2.7 7 1.1 2,713 

3 Milking_flow 0.5 1.2 1.9 2.1 2.8 7.1 1.1 951 

1 
Milking_temperat

ure 35.8 38.2 38.6 38.7 39.2 41.3 0.7 8,626 

2 
Milking_temperat

ure 36.8 38.3 38.8 38.8 39.2 41.5 0.6 1,568 

3 
Milking_temperat

ure 37.1 38.3 38.8 38.7 39.1 40.6 0.6 519 

1 Milkings 1 2 2 2.5 3 9 0.7 18,617 

2 Milkings 1 2 2 2.4 3 5 0.7 3,667 

3 Milkings 1 2 2 2.3 3 6 0.7 1,368 

1 Robot_conduct 0 4.4 4.7 4.7 5 7.5 0.6 9,870 

2 Robot_conduct 0 4.4 4.7 4.7 5 6.7 0.6 2,089 

3 Robot_conduct 0 4.4 4.6 4.7 5 6.3 0.6 846 

1 
Robot_conduct_l

ely 60 66.8 68.8 69 71 96.2 3.4 8,630 

2 
Robot_conduct_l

ely 60.5 67 69 69.2 71.5 84 3.4 1,568 

3 
Robot_conduct_l

ely 60.5 66.8 68.5 69.1 71 85.2 4 519 

1 
Robot_daily_milk

_yield 0.1 22.2 28.4 28.7 35.1 72.5 9.3 18,609 

2 
Robot_daily_milk

_yield 0.1 22.4 30.1 30.1 37.4 66.3 10.4 3,666 

3 
Robot_daily_milk

_yield 1 20.7 28.2 28.1 34.9 62.7 10.2 1,367 

1 
Robot_daily_milk
_yield_in_last_lac

tation 12 25.2 28.6 29.2 33.6 43 5.8 5,567 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

2 
Robot_daily_milk
_yield_in_last_lac

tation 12.6 25.3 29.1 29.4 34.3 43 5.6 1,222 

3 
Robot_daily_milk
_yield_in_last_lac

tation 12.6 27.1 28.7 29.7 33.7 43 6.7 385 

1 
Robot_effect_of_

scc 0 0.6 1 1.8 1.7 43.6 3.2 5,997 

2 
Robot_effect_of_

scc 0 0.5 0.9 1.9 1.8 40.9 3.5 1,157 

3 
Robot_effect_of_

scc 0 0.6 1 1.7 1.6 33.4 3.1 337 

1 Robot_fat 0.9 3.8 4.2 4.4 4.7 13.1 1 13,410 

2 Robot_fat 1.2 3.7 4.2 4.3 4.9 11.6 1 2,376 

3 Robot_fat 2 3.9 4.3 4.5 4.8 12.2 1 890 

1 
Robot_fat_protein

_ratio 0.2 1.1 1.2 1.3 1.4 3.5 0.3 13,411 

2 
Robot_fat_protein

_ratio 0.4 1.1 1.2 1.2 1.4 2.5 0.3 2,377 

3 
Robot_fat_protein

_ratio 0.7 1.2 1.3 1.3 1.4 3.4 0.3 890 

1 Robot_lactose 2.9 4.6 4.8 4.7 4.9 5.2 0.2 13,402 

2 Robot_lactose 4 4.6 4.8 4.8 4.9 5.2 0.2 2,377 

3 Robot_lactose 4 4.6 4.8 4.7 4.9 5.2 0.2 890 

1 
Robot_milk_yield
_in_current_lactat

ion 2.2 
2,40
4.9 

4,894.
4 

5,273.
6 

7,56
9.1 

1,58
74 

3,45
4.2 3,870 

2 
Robot_milk_yield
_in_current_lactat

ion 27.6 
2,26
4.7 

5,584.
7 

5,843.
9 

8,46
3.3 

15,4
69 

3,71
6.1 906 

3 
Robot_milk_yield
_in_current_lactat

ion 71.9 
1,12
6.6 

5,628.
2 

4,585.
1 

7,12
5.9 

15,5
27.4 

3,39
3.3 361 

1 
Robot_milk_yield
_in_last_lactation 635 

7,17
6.6 8,743 

8,873.
2 

10,4
45 

20,1
48 

2,73
3.3 9,910 

2 
Robot_milk_yield
_in_last_lactation 

1,73
4 

7,26
1.7 9,085 

9,456.
8 

11,6
31.9 

19,3
33 

3,11
2.9 2,054 

3 
Robot_milk_yield
_in_last_lactation 

1,73
4 

7,31
4 9,017 

9,189.
2 

11,1
97 

19,3
33 

3,29
4.8 698 

1 Robot_protein 2.5 3.3 3.4 3.4 3.6 5.5 0.3 13,408 

2 Robot_protein 2.7 3.3 3.5 3.5 3.6 5.4 0.3 2,377 

3 Robot_protein 2.7 3.2 3.4 3.4 3.5 5.6 0.3 890 

1 
Robot_somatic_c

ell_count 1 30 54 119.3 101 
3920

.5 
287.

5 5,997 

2 
Robot_somatic_c

ell_count 1 25 46 111.7 92.5 
2696

.5 242 1,157 

3 
Robot_somatic_c

ell_count 1 31 63 103.8 94 2925 
242.

1 337 

Constitution 

1 Robot_BCS 2.5 3.7 3.9 3.8 4.1 4.6 0.3 3,679 

2 Robot_BCS 2.7 3.6 3.8 3.8 4.1 4.5 0.3 772 

3 Robot_BCS 2.8 3.5 3.8 3.8 4 4.4 0.3 319 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

1 Body_weight 
453.

5 637 735.8 733.5 
813.

9 
1151

.6 
115.

5 5,202 

2 Body_weight 
459.

5 
699.

6 780.9 773.9 
876.

2 
1030

.1 
121.

2 1,130 

3 Body_weight 
444.

4 
630.

1 783.4 752.7 
840.

9 
999.

8 
133.

3 450 

Feeding 

1 
Concentrated_fee

d_intake 0 1.8 3.7 3.7 5.3 10.6 2.2 18,136 

2 
Concentrated_fee

d_intake 0 1.9 3.9 3.8 5.3 9.7 2.1 3,417 

3 
Concentrated_fee

d_intake 0 2 3.6 3.6 4.9 10 2 1,235 

1 
Concentrated_fee

d_remains 0 0.1 0.1 0.4 0.3 6 0.6 8,665 

2 
Concentrated_fee

d_remains 0 0.1 0.1 0.4 0.4 5.5 0.6 1,570 

3 
Concentrated_fee

d_remains 0 0.1 0.2 0.5 0.6 5.2 0.8 517 

1 WT_feed_intake 0 34.8 44 43.5 53.7 92.2 14.7 4,167 

2 WT_feed_intake 1 39.5 48 47.6 56.5 86.4 13.5 927 

3 WT_feed_intake 6.9 36.8 44 43 49.6 88.8 13.1 343 

1 
WT_feed_intake_

per_meal 0.8 3.5 4.7 5.1 6.2 23.9 2.3 3,949 

2 
WT_feed_intake_

per_meal 1.5 4.3 5.5 6 7.2 15.5 2.4 880 

3 
WT_feed_intake_

per_meal 1.9 4.5 5.6 6.1 7.2 16.6 2.4 322 

1 
WT_feed_intake_

per_visit 0 0.7 1 1.2 1.4 8.7 0.8 4,172 

2 
WT_feed_intake_

per_visit 0.4 1.1 1.6 1.9 2.3 10.9 1.2 928 

3 
WT_feed_intake_

per_visit 0.3 1.2 1.9 2.4 2.7 13 2 343 

1 
WT_feeding_dura

tion 10 99 133 138.5 170 792 62.1 4,150 

2 
WT_feeding_dura

tion 10 97 122 126.4 153 428 47.2 922 

3 
WT_feeding_dura

tion 19 73 95 97.8 118 253 37.5 341 

1 
WT_feeding_dura

tion_day 0 72 100 104.1 128 769 51.3 4,150 

2 
WT_feeding_dura

tion_day 0 69 92 93.6 112 358 35.9 922 

3 
WT_feeding_dura

tion_day 10 54 71 74.4 92 179 29.2 341 

1 
WT_feeding_dura

tion_day_night 0 0.7 0.8 0.8 0.8 1 0.1 4,150 

2 
WT_feeding_dura

tion_day_night 0 0.7 0.8 0.8 0.8 1 0.1 922 

3 
WT_feeding_dura

tion_day_night 0.3 0.7 0.8 0.8 0.9 1 0.1 341 



249 
 

LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

1 
WT_feeding_dura

tion_per_meal 6 10.8 14.5 16.3 19.2 
234.

3 10.6 3,949 

2 
WT_feeding_dura

tion_per_meal 6 11 14.4 16 19 
175.

6 9.3 880 

3 
WT_feeding_dura

tion_per_meal 6 10 12.8 14.6 16.7 
148.

6 11.9 322 

1 
WT_feeding_dura

tion_per_visit 0.4 2.4 3.1 3.6 4.3 70.3 2.7 4,172 

2 
WT_feeding_dura

tion_per_visit 0.4 3.1 4.3 4.8 5.7 43.4 2.9 928 

3 
WT_feeding_dura

tion_per_visit 0.7 3.1 4.4 5.4 6.1 57.2 4.8 343 

1 
WT_feeding_pac

e 0.06 0.26 0.33 0.35 0.41 1.37 0.12 4,168 

2 
WT_feeding_pac

e 0.17 0.32 0.40 0.41 0.50 2.14 0.14 928 

3 
WT_feeding_pac

e 0.18 0.37 0.46 0.47 0.55 0.99 0.13 343 

1 
WT_number_of_

meals 1 7 9 9.6 12 23 3.2 3,949 

2 
WT_number_of_

meals 1 7 9 9 11 19 2.9 880 

3 
WT_number_of_

meals 2 6 8 7.9 10 17 2.6 322 

1 
WT_number_of_

meals_day 0 5 7 7.2 9 20 2.6 3,949 

2 
WT_number_of_

meals_day 0 5 6 6.6 8 16 2.3 880 

3 
WT_number_of_

meals_day 1 4 6 5.9 7 12 2.1 322 

1 
WT_number_of_
meals_day_night 0 0.7 0.8 0.7 0.8 1 0.1 3,949 

2 
WT_number_of_
meals_day_night 0 0.6 0.8 0.7 0.8 1 0.1 880 

3 
WT_number_of_
meals_day_night 0.2 0.7 0.8 0.8 0.9 1 0.2 322 

1 WT_trough_visits 1 29 43 46.5 59 222 26 4,174 

2 WT_trough_visits 2 21 30 32.1 40 119 16.1 928 

3 WT_trough_visits 4 15 22 24.6 32 78 13.7 343 

1 
WT_trough_visits

_day 0 22 33 35.7 45 178 21.1 4,174 

2 
WT_trough_visits

_day 0 15 23 24.6 31 91 13.1 928 

3 
WT_trough_visits

_day 2 11 18 19.3 25 69 11 343 

1 
WT_trough_visits

_day_night 0 0.7 0.8 0.8 0.9 1 0.1 4,174 

2 
WT_trough_visits

_day_night 0 0.7 0.8 0.8 0.9 1 0.1 928 

3 
WT_trough_visits

_day_night 0.3 0.7 0.8 0.8 0.9 1 0.2 343 

1 ENGS_feeding 1 45 79 89.6 127 288 57.2 934 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

2 ENGS_feeding 
1 59.2 94 94.3 

125.
8 230 48.5 242 

3 ENGS_feeding 7 44 77.5 79.6 113 213 43.9 90 

1 
ENGS_feeding_d

ay 0 32 60 67.3 94.8 220 45 934 

2 
ENGS_feeding_d

ay 0 45.2 70 70.8 98.8 171 36.2 242 

3 
ENGS_feeding_d

ay 0 34.5 57 58.3 77 169 32 90 

1 
ENGS_feeding_d

ay_night 0 0.7 0.8 0.8 0.9 1 0.2 934 

2 
ENGS_feeding_d

ay_night 0 0.7 0.8 0.8 0.9 1 0.2 242 

3 
ENGS_feeding_d

ay_night 0 0.6 0.8 0.7 0.9 1 0.2 90 

1 
ENGS_feeding_d
uration_per_meal 1 5.7 9.1 10.8 14.7 63 7.1 911 

2 
ENGS_feeding_d
uration_per_meal 1.5 6.9 10.6 11.2 14.1 34 6.2 238 

3 
ENGS_feeding_d
uration_per_meal 1.1 5.4 8.8 9.6 13.7 26.3 5.3 89 

1 
ENGS_number_o

f_meals 0 6 9 8.6 11 21 3.6 934 

2 
ENGS_number_o

f_meals 0 7 9 8.8 11 18 3.2 242 

3 
ENGS_number_o

f_meals 0 6 8 9 10 25 4.4 90 

1 
ENGS_number_o

f_meals_day 0 5 6 6.5 8 18 2.8 934 

2 
ENGS_number_o

f_meals_day 0 5 6.5 6.5 8 13 2.5 242 

3 
ENGS_number_o

f_meals_day 0 5 6 6.6 8 17 3.1 90 

1 
ENGS_number_o
f_meals_day_nig

ht 0 0.7 0.8 0.8 0.9 1 0.2 911 

2 
ENGS_number_o
f_meals_day_nig

ht 0 0.7 0.8 0.7 0.8 1 0.2 238 

3 
ENGS_number_o
f_meals_day_nig

ht 0.4 0.7 0.8 0.8 0.9 1 0.2 89 

1 Nedap_feeding 
10 262 377 377.5 504 

806.
4 

154.
7 5,128 

2 Nedap_feeding 
10 222 350 354 

475.
2 

777.
6 

159.
5 1,046 

3 Nedap_feeding 
10 190 292 336.4 504 

806.
4 

197.
1 259 

Rumination 

1 Nedap_rum 
14.4 291 395 393.2 504 

763.
2 

138.
1 5,153 

2 Nedap_rum 
29 

227.
8 378.5 363.9 

489.
6 

820.
8 

161.
2 1,048 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

3 Nedap_rum 
10 151 234.7 278.5 

417.
6 648 

164.
1 262 

1 SCR_rum 11 520 562 553.2 599 748 71.7 6,790 

2 SCR_rum 61 509 561 551.7 603 751 77.8 1,436 

3 SCR_rum 
100 

499.
2 550.5 536 593 713 85.8 638 

1 SCR_rum_day 2 306 343 337.6 377 533 61.8 3,032 

2 SCR_rum_day 
61 

307.
8 345 341.5 384 545 65.2 860 

3 SCR_rum_day 
71 295 338 332.4 

380.
2 498 69.6 332 

1 
SCR_rum_day_ni

ght 0 0.6 0.6 0.6 0.7 1 0.1 3,032 

2 
SCR_rum_day_ni

ght 0.4 0.6 0.6 0.6 0.7 1 0.1 860 

3 
SCR_rum_day_ni

ght 0.3 0.6 0.6 0.6 0.7 0.8 0.1 332 

1 Smaxtec_rum 
188 490 531.7 525.5 

568.
7 

735.
1 65.6 5,539 

2 Smaxtec_rum 
256.

9 
495.

1 533 528.9 
568.

2 
689.

5 59.3 915 

3 Smaxtec_rum 
237.

2 
488.

2 534.7 528.8 
582.

8 714 72 438 

Heat detection 

1 
SCR_heat_proba

bility -27 -3.5 -1 -0.5 0.5 92 7.8 3,621 

2 
SCR_heat_proba

bility -35 -3.5 -1.5 -0.9 0.5 88 7.2 558 

3 
SCR_heat_proba

bility -22 -4 -2 -1.2 0 74 8.1 293 

1 
SCR_heat_proba

bility_day -29 -4 -1 -0.3 1 100 9 3,607 

2 
SCR_heat_proba

bility_day -36 -4 -1 -0.7 1 84 8.4 552 

3 
SCR_heat_proba

bility_day -25 -4 -2 -1.2 0.5 84 8.9 290 

1 
Lemmer_factor_o

f_restlessness 53.2 226 320 452.2 
457.

7 
30,5
01.8 

890.
3 4,532 

2 
Lemmer_factor_o

f_restlessness 63.1 
178.

3 245.4 318.4 
365.

7 
3,09
6.4 

269.
1 765 

3 
Lemmer_factor_o

f_restlessness 53 
125.

6 179.8 264.4 
293.

9 
5,66
8.1 

360.
4 373 

Lying 

1 ENGS_lying 
4 

587.
8 688 677.6 

780.
2 

1,15
9 

152.
7 3,872 

2 ENGS_lying 
4 499 649 640 

788.
2 

1,25
2 221 868 

3 ENGS_lying 
34 

624.
5 787 764 

916.
5 

1,25
8 

233.
8 351 

1 
ENGS_lying_bout

s 1 12 15 17.5 20 109 9.9 3,872 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

2 
ENGS_lying_bout

s 1 9 14 16.5 20 73 11.6 870 

3 
ENGS_lying_bout

s 1 7 11 15.1 16 81 14 351 

1 
ENGS_lying_bout

s_day 0 7 10 11.2 13 60 6.5 3,872 

2 
ENGS_lying_bout

s_day 0 6 9 10.6 13 48 7.7 868 

3 
ENGS_lying_bout

s_day 0 5 7 9.8 11 60 8.9 351 

1 
ENGS_lying_bout

s_day_night 0 0.6 0.6 0.6 0.7 1 0.1 3,872 

2 
ENGS_lying_bout

s_day_night 0 0.6 0.7 0.7 0.8 1 0.2 870 

3 
ENGS_lying_bout

s_day_night 0 0.6 0.7 0.7 0.8 1 0.2 351 

1 ENGS_lying_day 
0 313 387 380.7 455 716 

109.
7 3,872 

2 ENGS_lying_day 
0 

283.
8 375.5 374.8 472 833 

152.
9 868 

3 ENGS_lying_day 
4 365 475 464.2 

579.
5 835 

161.
7 351 

1 
ENGS_lying_day

_night 0 0.5 0.6 0.6 0.6 1 0.1 3,872 

2 
ENGS_lying_day

_night 0 0.5 0.6 0.6 0.7 1 0.1 868 

3 
ENGS_lying_day

_night 0 0.6 0.6 0.6 0.7 1 0.1 351 

1 
ENGS_lying_dura

tion_per_bout 2 32.3 44.5 48.2 58.4 510 27.4 3,872 

2 
ENGS_lying_dura

tion_per_bout 1.6 29.8 46.6 60 68 719 64.1 868 

3 
ENGS_lying_dura

tion_per_bout 5.7 40.8 70.8 82.3 96.7 
548.

5 75 351 

1 Lemmer_get_ups 1 6 9 9.2 11 40 3.9 4,534 

2 Lemmer_get_ups 1 7 9 9.4 12 24 3.7 763 

3 Lemmer_get_ups 2 8 11 11.1 13 27 4 372 

1 Lemmer_lying 0.2 8.8 10.5 10.3 11.9 20.9 2.5 4,534 

2 Lemmer_lying 0.9 8.9 10.8 10.7 12.7 18.3 2.8 765 

3 Lemmer_lying 0.8 9.7 13.2 12.3 15.3 20.2 4.3 373 

1 Nedap_lying 
248 639 727 719.5 804 

1,07
5 

119.
5 1,634 

2 Nedap_lying 
156 

590.
5 694.5 686.3 784 

1,08
1 

161.
4 404 

3 Nedap_lying 
229 674 815 788.4 944 

1,13
1 

199.
6 113 

1 Nedap_get_ups 1 8 10 10.4 12 29 3.5 1,687 

2 Nedap_get_ups 1 6 9 9.2 11 28 4.4 404 

3 Nedap_get_ups 1 6 8 8.7 11 26 4.7 132 

Activity 

1 Delaval_act_avg 12 24 30 31.7 38 89 10.2 1,055 

2 Delaval_act_avg 10 22 28 27.6 32.8 75 8.7 358 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

3 Delaval_act_avg 11 16 19.5 21.5 24 51 8.1 102 

1 Delaval_act_rel 59 91 100 100.9 108 287 17.2 1,055 

2 Delaval_act_rel 55 87 97 98.3 107 229 19.7 358 

3 Delaval_act_rel 
44 82 91.5 99.6 

105.
8 293 34 102 

1 
Delaval_act_rel_

max 59 101 110 111.2 118 255 18.5 1,008 

2 
Delaval_act_rel_

max 62 99.2 108 109.3 116 255 20.6 330 

3 
Delaval_act_rel_

max 65 93 103 117.1 
125.

8 255 39.8 98 

1 
Delaval_act_rel_

min 50 82 89 89.2 96 137 11.8 1,008 

2 
Delaval_act_rel_

min 46 79 86 86.8 94 191 15.6 330 

3 
Delaval_act_rel_

min 39 72.2 82 84.2 93.8 178 20.5 98 

1 ENGS_act 
31 

1,80
3 2,223 

2,299.
3 

2,70
7 

8,73
5 

869.
8 3,870 

2 ENGS_act 
30 

1,49
4 1,968 2,028 

2,45
4.5 

7,53
2 

893.
8 867 

3 ENGS_act 
94 

1,22
6.5 1,566 

1,719.
8 

2,15
7.5 

6,39
9 801 351 

1 ENGS_act_day 
0 

1,39
3 1,740 

1,802.
7 

2,12
5.8 

7,47
1 

707.
7 3,870 

2 ENGS_act_day 
0 

1,12
5 1,490 

1,549.
8 

1,86
5.5 

6,41
6 

711.
3 867 

3 ENGS_act_day 
0 954 1,209 

1,300.
2 

1,63
1 

5,65
2 

600.
4 351 

1 
ENGS_act_day_n

ight 0 0.7 0.8 0.8 0.8 1 0.1 3,870 

2 
ENGS_act_day_n

ight 0 0.7 0.8 0.8 0.8 1 0.1 867 

3 
ENGS_act_day_n

ight 0 0.7 0.8 0.8 0.8 1 0.1 351 

1 Lemmer_act 37 102 132 151.5 172 858 86.7 4,776 

2 Lemmer_act 
41 83 108 122.4 

138.
8 774 71.9 814 

3 Lemmer_act 
37 66 88 101.8 

119.
5 487 58.6 375 

1 Nedap_inactive 
225 548 639 661.2 752 1378 

162.
5 5,132 

2 Nedap_inactive 
251 620 710 714.9 801 

1,30
6 

137.
5 1,047 

3 Nedap_inactive 
456 

686.
5 767.5 822.9 963 

1,35
7 209 262 

1 Nedap_act 
1,30

4 
2,66
1.5 

3,405.
5 

3,641.
5 

4,33
1.8 

14,1
74 

1,37
2 1,686 

2 Nedap_act 
1,28

7 
2,51

7 3,133 3,289 
3,93

6 
11,0

30 
1,18
8.3 405 

3 Nedap_act 
1,28

4 
2,21

4 2,480 
2,780.

2 
2,92

4 
13,7

26 
1,45
8.9 133 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

1 
Nedap_act_collar

_median 1 4.5 7 8.2 10.5 71 5.1 5,168 

2 
Nedap_act_collar

_median 0 4.5 6.5 7.1 9.5 53 4.1 1,046 

3 
Nedap_act_collar

_median 0 4 6 6.6 9 30.5 3.8 262 

1 
Nedap_act_collar

_median_day 0.5 5 8 9.7 12.5 89.5 6.6 5,172 

2 
Nedap_act_collar

_median_day 0.5 4.5 7 8.1 10.5 85.5 5.7 1,047 

3 
Nedap_act_collar

_median_day 0 4 6 7.3 9.5 46 4.9 262 

1 
Nedap_act_collar
_median_day_nig

ht 0.1 1 1.1 1.2 1.3 5.5 0.3 5,168 

2 
Nedap_act_collar
_median_day_nig

ht 0.2 1 1.1 1.1 1.2 4.2 0.3 1,045 

3 
Nedap_act_collar
_median_day_nig

ht 0.3 1 1.1 1.1 1.2 3 0.3 261 

1 
Nedap_act_collar

_sum 14 63 95 110.2 140 859 65.7 5,166 

2 
Nedap_act_collar

_sum 9 60 83 96.3 127 635 56.7 1,045 

3 
Nedap_act_collar

_sum 11 54 78 88.8 116 439 51.6 261 

1 
Nedap_act_collar

_sum_day 6 46 71 82.9 105 737 52.6 5,172 

2 
Nedap_act_collar

_sum_day 6 42 61 70.5 93 534 45 1,047 

3 
Nedap_act_collar

_sum_day 6 35.2 56.5 64 83 410 42.3 262 

1 
Nedap_act_collar
_sum_day_night 0.2 0.7 0.8 0.7 0.8 1 0.1 5,167 

2 
Nedap_act_collar
_sum_day_night 0.3 0.7 0.7 0.7 0.8 0.9 0.1 1,045 

3 
Nedap_act_collar
_sum_day_night 0.4 0.7 0.7 0.7 0.8 0.9 0.1 261 

1 
Nedap_act_foot_

median 72.5 
202.

5 252 266.2 315 
1,20

7 92.3 1,684 

2 
Nedap_act_foot_

median 73 
187.

5 238.5 245.8 
289.

5 
783.

5 80.1 405 

3 
Nedap_act_foot_

median 88.5 
167.

5 190.5 211.5 224 
1,04
9.5 

110.
8 133 

1 
Nedap_act_foot_

median_day 89 
231.

5 290.8 320.3 385 
1,47
6.5 

132.
5 1,698 

2 
Nedap_act_foot_

median_day 87.5 
212.

2 270 281.7 
336.

5 
1,50
1.5 

112.
8 407 

3 
Nedap_act_foot_

median_day 86 
174.

5 211.8 230.4 258 
1,36
0.5 

127.
3 132 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

1 
Nedap_act_foot_
median_day_nigh

t 0.4 1 1.2 1.2 1.3 3.5 0.3 1,693 

2 
Nedap_act_foot_
median_day_nigh

t 0.6 1 1.1 1.1 1.2 3.4 0.2 405 

3 
Nedap_act_foot_
median_day_nigh

t 0.6 1 1 1.1 1.2 2.2 0.2 133 

1 
Nedap_act_foot_

sum_day 893 
1,95
2.2 2,584 2,816 

3,40
9.5 

11,0
56 

1,19
0 1,698 

2 
Nedap_act_foot_

sum_day 774 
1,79

9 2,300 
2,486.

9 
3,01

9 
9,60

0 
1,00

2 407 

3 
Nedap_act_foot_

sum_day 839 
1,55

5 1,829 
2,054.

1 
2,07

4 
12,1

74 
1,33

4 133 

1 
Nedap_act_foot_
sum_day_night 0.2 0.7 0.8 0.8 0.8 1 0.1 1,692 

2 
Nedap_act_foot_
sum_day_night 0.5 0.7 0.8 0.7 0.8 1 0.1 405 

3 
Nedap_act_foot_
sum_day_night 0.5 0.7 0.7 0.7 0.8 0.9 0.1 133 

1 Smaxtec_act 0.3 4 4.9 5.6 7 21.4 2.4 7,183 

2 Smaxtec_act 0.3 4.1 5 5.6 6.8 16.9 2.3 1,225 

3 Smaxtec_act 0.4 3.1 4.4 5.2 7.4 13.2 2.5 631 

1 Smaxtec_act_day 0.4 4.8 5.9 6.5 7.8 23.7 2.5 7,180 

2 Smaxtec_act_day 0.4 4.9 6 6.4 7.7 20.6 2.2 1,224 

3 Smaxtec_act_day 0.4 3.9 5.4 6 8 19.7 2.6 631 

1 
Smaxtec_act_day

_night 0.4 1.1 1.1 1.2 1.3 2.3 0.2 7,181 

2 
Smaxtec_act_day

_night 0.7 1.1 1.1 1.2 1.2 2.5 0.2 1,224 

3 
Smaxtec_act_day

_night 0.7 1 1.1 1.2 1.3 2.4 0.2 629 

Body temperature 

1 
Smaxtec_temp_

max 39 39.6 39.7 39.8 39.9 42.4 0.3 7,228 

2 
Smaxtec_temp_

max 39.1 39.7 39.8 39.9 40 42.4 0.4 1,246 

3 
Smaxtec_temp_

max 39.3 39.7 39.8 39.9 40 41.6 0.3 631 

1 
Smaxtec_temp_

median 38.5 39 39.1 39.1 39.3 40.6 0.2 7,226 

2 
Smaxtec_temp_

median 38.6 39 39.2 39.2 39.3 40.2 0.2 1,245 

3 
Smaxtec_temp_

median 38.8 39.1 39.2 39.3 39.4 40 0.2 631 

1 
Smaxtec_temp_

min 27 33 33.9 33.8 34.8 39.3 1.4 7,228 

2 
Smaxtec_temp_

min 28.7 32.9 33.8 33.7 34.6 37.3 1.3 1,244 

3 
Smaxtec_temp_

min 28.7 32.6 33.4 33.4 34.2 36.7 1.2 632 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

1 
Smaxtec_temp_n

ormal_median 39 39.3 39.4 39.4 39.5 40 0.2 7,190 

2 
Smaxtec_temp_n

ormal_median 39 39.4 39.5 39.5 39.6 40 0.2 1,224 

3 
Smaxtec_temp_n

ormal_median 39.1 39.4 39.5 39.5 39.6 40 0.2 632 

1 
Smaxtec_temp_w
ithout_drink_cycle

s_max 39 39.5 39.7 39.7 39.9 42.3 0.3 7,182 

2 
Smaxtec_temp_w
ithout_drink_cycle

s_max 39.2 39.7 39.8 39.9 40 42.3 0.4 1,245 

3 
Smaxtec_temp_w
ithout_drink_cycle

s_max 39.3 39.6 39.8 39.8 40 41.6 0.3 629 

1 
Smaxtec_temp_w
ithout_drink_cycle

s_median 38.7 39.1 39.2 39.3 39.4 40.8 0.2 7,183 

2 
Smaxtec_temp_w
ithout_drink_cycle

s_median 38.7 39.2 39.3 39.3 39.5 40.4 0.2 1,245 

3 
Smaxtec_temp_w
ithout_drink_cycle

s_median 38.9 39.2 39.3 39.4 39.5 40.2 0.2 631 

1 
Smaxtec_temp_w
ithout_drink_cycle

s_min 37.7 38.5 38.6 38.6 38.8 40 0.2 7,185 

2 
Smaxtec_temp_w
ithout_drink_cycle

s_min 38 38.5 38.7 38.7 38.8 39.6 0.2 1,246 

3 
Smaxtec_temp_w
ithout_drink_cycle

s_min 38.1 38.6 38.7 38.7 38.8 39.5 0.2 632 

Climate 

1 
Smaxtec_climate

_hum_max 62.4 77.2 82.1 82.6 85.6 100 7.5 8,793 

2 
Smaxtec_climate

_hum_max 62.4 77.1 81.6 82.8 85.7 100 8 1,556 

3 
Smaxtec_climate

_hum_max 62.4 79.8 84.4 83.3 85.7 100 6.5 587 

1 
Smaxtec_climate

_hum_median 46.5 67.4 73.5 73.8 81.3 100 11.2 8,793 

2 
Smaxtec_climate

_hum_median 46.5 67.4 73.2 74 81.1 100 11.8 1,556 

3 
Smaxtec_climate

_hum_median 46.5 71 79.6 75.7 81.4 100 10.1 587 

1 
Smaxtec_climate

_hum_min 1.2 50 62.5 62 76.3 98.8 16.1 8,793 

2 
Smaxtec_climate

_hum_min 1.2 50 60.8 61.3 75.8 98.8 16.7 1,556 

3 
Smaxtec_climate

_hum_min 1.2 54.5 74.9 66 77.7 98.8 16.2 587 



257 
 

LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

1 
Smaxtec_climate

_temp_max 4 11.1 14.1 15.1 18.3 29.6 6 9,100 

2 
Smaxtec_climate

_temp_max 4 11.2 15.3 15.3 19.1 29.6 5.9 1,641 

3 
Smaxtec_climate

_temp_max 4 10.4 12.1 13.3 16 29.6 5.2 599 

1 
Smaxtec_climate
_temp_median 2.4 8.9 10.9 11.8 14.5 24.3 5 9,100 

2 
Smaxtec_climate
_temp_median 2.4 9.2 11.6 12.2 14.8 24.3 5 1,641 

3 
Smaxtec_climate
_temp_median 2.4 8.1 9.8 10.6 12.1 24.3 4.2 599 

1 
Smaxtec_climate

_temp_min -0.3 5.3 8.4 8.7 11.7 19.6 4.4 9,100 

2 
Smaxtec_climate

_temp_min -0.3 5.6 8.6 9 12.4 19.6 4.3 1,641 

3 
Smaxtec_climate

_temp_min -0.3 5.1 8.3 8 9.7 18.5 3.5 599 

1 Smaxtec_thi_max 39.4 52 57.3 58.9 65 83.1 9.9 8,793 

2 Smaxtec_thi_max 39.4 52.2 58.3 59.3 66.1 83.1 9.9 1,556 

3 Smaxtec_thi_max 39.4 51.3 54.1 56 60.5 83.1 8.4 587 

1 
Smaxtec_thi_med

ian 28.1 45.3 51.6 52 58 71.8 9.8 8,793 

2 
Smaxtec_thi_med

ian 28.1 47.6 52.3 52.7 58.6 71.8 9.6 1,556 

3 
Smaxtec_thi_med

ian 28.1 46.4 50.4 50.6 53.7 71.8 7.8 587 

1 Smaxtec_thi_min 35.5 44.8 48.8 49.6 54.5 65.3 6.4 8,793 

2 Smaxtec_thi_min 35.5 45.4 49.1 50 55 65.3 6.4 1,556 

3 Smaxtec_thi_min 35.5 44.8 48.5 48.4 50.5 64 5.2 587 

1 
WS_global_rad_

max 41 346 694 619.6 871 1164 
303.

3 10,024 

2 
WS_global_rad_

max 41 323 656 592.7 845 1164 
299.

8 2,060 

3 
WS_global_rad_

max 41 296 561 566.1 826 1164 
306.

7 706 

1 
WS_global_rad_

med 5.6 55.4 145.3 149.8 
223.

9 
359.

3 98.9 10,024 

2 
WS_global_rad_

med 5.6 51 131.6 139.5 
213.

1 
359.

3 95.3 2,060 

3 
WS_global_rad_

med 5.6 42.4 121.9 131.1 
197.

3 
359.

3 95.2 706 

1 
WS_global_rad_

min 0 0 0 0.1 0 2 0.3 10,024 

2 
WS_global_rad_

min 0 0 0 0.1 0 2 0.3 2,060 

3 
WS_global_rad_

min 0 0 0 0.1 0 2 0.3 706 

1 WS_rain_max 0 0 0 0.3 0.3 12.2 1.2 10,024 

2 WS_rain_max 0 0 0 0.3 0.3 12.2 1.1 2,060 

3 WS_rain_max 0 0 0.1 0.3 0.3 12.2 0.9 706 

1 WS_rain_med 0 0 0 0 0 0.2 0 10,024 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

2 WS_rain_med 0 0 0 0 0 0.2 0 2,060 

3 WS_rain_med 0 0 0 0 0 0.2 0 706 

1 WS_rain_min 0 0 0 0 0 0 0 10,024 

2 WS_rain_min 0 0 0 0 0 0 0 2,060 

3 WS_rain_min 0 0 0 0 0 0 0 706 

1 
WS_rel_hum_ma

x 53 99.3 100 98.4 100 100 4.7 10,024 

2 
WS_rel_hum_ma

x 53 99.3 100 98.4 100 100 4.5 2,060 

3 
WS_rel_hum_ma

x 67.1 99.5 100 99.1 100 100 2.6 706 

1 
WS_rel_hum_me

d 41.8 73.2 87.3 84.1 98.2 100 15 10,024 

2 
WS_rel_hum_me

d 41.8 73.9 88.3 84.9 98.9 100 14.8 2,060 

3 
WS_rel_hum_me

d 46.2 79.3 90.2 87.1 99.2 100 12.8 706 

1 WS_rel_hum_min 17.8 39.8 57.8 62.3 90.2 100 25.8 10,024 

2 WS_rel_hum_min 17.8 40.7 60.9 64 91.4 100 26.1 2,060 

3 WS_rel_hum_min 17.8 42.9 64.6 66.3 94.7 100 25.2 706 

1 
WS_soil_temp_2

0cm_max 1.7 5 9.8 10.9 16.3 21.8 6.3 10,024 

2 
WS_soil_temp_2

0cm_max 1.7 4.9 9.6 10.4 15.8 21.8 5.9 2,060 

3 
WS_soil_temp_2

0cm_max 1.7 4.3 6.9 9.2 13.1 21.8 5.8 706 

1 
WS_soil_temp_2

0cm_med 1.6 4.6 9.2 10.4 15.8 20.4 6.1 10,024 

2 
WS_soil_temp_2

0cm_med 1.6 4.4 9 9.9 15 20.4 5.8 2,060 

3 
WS_soil_temp_2

0cm_med 1.6 3.8 6.7 8.7 12.8 20.4 5.7 706 

1 
WS_soil_temp_2

0cm_min 1.5 4.1 8.7 10 15.3 19.7 6 10,024 

2 
WS_soil_temp_2

0cm_min 1.5 4 8.2 9.5 14.5 19.7 5.6 2,060 

3 
WS_soil_temp_2

0cm_min 1.5 3.5 6.5 8.3 12.6 19.4 5.6 706 

1 
WS_soil_temp_5

cm_max 1 6.3 12.4 12.4 18.5 28.5 7.3 10,024 

2 
WS_soil_temp_5

cm_max 1 6.1 11.7 11.8 17.7 28.5 7 2,060 

3 
WS_soil_temp_5

cm_max 1 5.4 8.3 10.5 16.3 28.5 6.9 706 

1 
WS_soil_temp_5

cm_med 0.7 4.4 9.6 10.4 16.4 22.6 6.6 10,024 

2 
WS_soil_temp_5

cm_med 0.7 3.8 9.2 9.9 15.5 22.6 6.3 2,060 

3 
WS_soil_temp_5

cm_med 0.7 3.5 6.1 8.6 13.4 22.6 6.3 706 

1 
WS_soil_temp_5

cm_min 0.5 2.6 7.4 8.7 14.5 19.5 6.2 10,024 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

2 
WS_soil_temp_5

cm_min 0.5 2.6 7.1 8.2 13.7 19.5 5.8 2,060 

3 
WS_soil_temp_5

cm_min 0.5 2 4.9 7.1 11.3 19.3 5.9 706 

1 
WS_temp_20cm_

max -0.4 8 17 15.9 23.6 33 9.1 10,024 

2 
WS_temp_20cm_

max -0.4 7.1 16.4 15.1 22.2 33 8.8 2,060 

3 
WS_temp_20cm_

max -0.4 5.8 13.1 13.5 20.5 33 8.8 706 

1 
WS_temp_20cm_

med -3.9 2.9 7.8 9.1 15.6 23.5 6.9 10,024 

2 
WS_temp_20cm_

med -3.9 2.3 7.6 8.4 14.4 23.5 6.6 2,060 

3 
WS_temp_20cm_

med -3.9 1.6 5.6 7.1 12.2 23.5 6.6 706 

1 
WS_temp_20cm_

min -9.6 -1.8 1.5 2.8 7.6 16.2 6.2 10,024 

2 
WS_temp_20cm_

min -9.6 -2.1 1.2 2.2 6.7 16.2 5.9 2,060 

3 
WS_temp_20cm_

min -9.6 -2.7 -0.2 1.2 5 16.1 5.9 706 

1 
WS_temp_2m_m

ax -0.7 6.8 15.1 14.5 21.8 33.4 8.6 10,024 

2 
WS_temp_2m_m

ax -0.7 6.2 14.5 13.8 19.8 33.4 8.3 2,060 

3 
WS_temp_2m_m

ax -0.7 5.4 11.6 12.3 18.6 33.4 8.3 706 

1 
WS_temp_2m_m

ed -3.4 3.4 8.6 9.4 16 23.3 6.9 10,024 

2 
WS_temp_2m_m

ed -3.4 2.7 8.4 8.8 14.7 23.3 6.6 2,060 

3 
WS_temp_2m_m

ed -3.4 2.1 5.7 7.5 13.2 23.3 6.6 706 

1 
WS_temp_2m_mi

n -7.9 -0.6 2.7 4.4 9.4 16.4 5.9 10,024 

2 
WS_temp_2m_mi

n -7.9 -0.8 2.5 3.8 8.3 16.4 5.7 2,060 

3 
WS_temp_2m_mi

n -7.9 -1.4 0.6 2.8 7.2 16.4 5.7 706 

1 WS_thi_max 30.7 44.3 59.2 58 70.8 91.7 15.3 10,024 

2 WS_thi_max 30.7 43.2 58.1 56.8 67.6 91.7 14.9 2,060 

3 WS_thi_max 30.7 41.9 53 54.1 65.4 91.7 14.9 706 

1 WS_thi_med 27.2 39.1 48.8 49.2 60.4 70.8 11.7 10,024 

2 WS_thi_med 27.2 37.6 48.5 48.2 58.4 70.8 11.3 2,060 

3 WS_thi_med 27.2 36.1 43.4 46 56.2 70.8 11.4 706 

1 WS_thi_min 22.6 36.1 42.9 43.3 51.8 61.1 9.5 10,024 

2 WS_thi_min 22.6 35.8 42.1 42.4 50.2 61.1 9.1 2,060 

3 WS_thi_min 22.6 33.6 39.1 40.7 47.5 61.1 9.3 706 

1 
WS_wind_velocit

y_max 1.6 2.7 3.5 4 4.7 12.7 2 10,024 
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LMS Variable Min Q1 
Media

n 
Mean Q3 Max SD N 

2 
WS_wind_velocit

y_max 1.6 2.6 3.4 3.9 4.4 12.7 1.9 2,060 

3 
WS_wind_velocit

y_max 1.6 2.7 3.6 4.3 4.8 12.7 2.3 706 

1 
WS_wind_velocit

y_med 0.5 1.1 1.5 1.8 2 5.7 1 10,024 

2 
WS_wind_velocit

y_med 0.5 1.1 1.4 1.7 2 5.7 1 2,060 

3 
WS_wind_velocit

y_med 0.5 1.2 1.6 1.9 2.2 5.7 1.1 706 

1 
WS_wind_velocit

y_min 0 0 0 0.2 0.1 3.3 0.5 10,024 

2 
WS_wind_velocit

y_min 0 0 0 0.2 0.1 3.3 0.4 2,060 

3 
WS_wind_velocit

y_min 0 0 0 0.2 0.3 3.3 0.5 706 

1 Season 1 1 2 2.1 3 4 1 19,431 

2 Season 1 1 2 2.2 3 4 1 3,736 

3 Season 1 1 2 2.3 3 4 1 1,416 

Claw health 

1 PT 0 0 0 0.1 0 1 0.4 19,316 

2 PT 0 0 0 0.2 0 1 0.4 3,678 

3 PT 0 0 1 0.5 1 1 0.5 1,379 

1 GSC 0 2.5 3 2.7 3 3 0.4 19,316 

2 GSC 1 2.5 2.8 2.6 3 3 0.4 3,699 

3 GSC 1.2 2 2.5 2.5 3 3 0.4 1,379 

Table 61: Significance across all corrected locomotion score (C_LMS) groups across all farms 

(Kruskal-Wallis test) (parameters explained in Table 33) 

Variable Statistics p_value 

Animal characteristics 

Breed 58 <0.01 

Milking 

Lactation_number 281.7 <0.01 

Days_in_milk 40.5 <0.01 

LKV_milk_yield_in_last_lactation 197.7 <0.01 

LKV_daily_milk_yield 28.5 <0.01 

LKV_urea 3.6 >0.05 

LKV_somatic_cell_count 17.5 <0.01 

LKV_fat 34.3 <0.01 

LKV_protein 120.6 <0.01 

LKV_fat_protein_ratio 32.6 <0.01 

LKV_lactose 56.7 <0.01 

Milkings 130.6 <0.01 

Maximum_milking_interval 69.9 <0.01 

Robot_daily_milk_yield 26.2 <0.01 

Robot_milk_yield_in_current_lactation 7.6 <0.05 

Robot_milk_yield_in_last_lactation 75.9 <0.01 

Robot_daily_milk_yield_in_last_lactation 14.3 <0.01 

MDi 36.4 <0.01 
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Variable Statistics p_value 

Milking_flow 151.1 <0.01 

Max_milking_flow 6.7 <0.05 

Robot_conduct_lely 9.1 <0.05 

Robot_conduct 27.1 <0.01 

Robot_somatic_cell_count 9.4 <0.01 

Robot_effect_of_scc 18.7 <0.01 

Robot_fat 9.5 <0.01 

Robot_protein 125.9 <0.01 

Robot_fat_protein_ratio 11.4 <0.01 

Robot_lactose 12.8 <0.01 

Milking_temperature 62.1 <0.01 

Constitution 

Robot_BCS 32.8 <0.01 

Body_weight 171.3 <0.01 

Feeding 

Concentrated_feed_intake 1.9 >0.05 

Concentrated_feed_remains 20.6 <0.01 

WT_feed_intake 60.2 <0.01 

WT_feeding_pace 401.3 <0.01 

WT_feeding_duration 171.5 <0.01 

WT_feeding_duration_day 171.1 <0.01 

WT_feeding_duration_day_night 3.1 >0.05 

WT_trough_visits 540.5 <0.01 

WT_trough_visits_day 512.2 <0.01 

WT_trough_visits_day_night 3.3 >0.05 

WT_feed_intake_per_visit 666.6 <0.01 

WT_feeding_duration_per_visit 317.7 <0.01 

WT_number_of_meals 119.8 <0.01 

WT_number_of_meals_day 126.2 <0.01 

WT_number_of_meals_day_night 8.4 <0.05 

WT_feed_intake_per_meal 175.4 <0.01 

WT_feeding_duration_per_meal 9.2 <0.05 

ENGS_feeding 15.8 <0.01 

ENGS_feeding_day 20.1 <0.01 

ENGS_feeding_day_night 3.6 >0.05 

ENGS_number_of_meals 2.3 >0.05 

ENGS_number_of_meals_day 2.7 >0.05 

ENGS_number_of_meals_day_night 2.3 >0.05 

ENGS_feeding_duration_per_meal 7.7 <0.05 

Nedap_feeding 86.5 <0.01 

Rumination 

Smaxtec_rum 5.3 >0.05 

SCR_rum 8.1 <0.05 

SCR_rum_day 9 <0.05 

SCR_rum_day_night 73.8 <0.01 

Nedap_rum 144.6 <0.01 

Heat detection 

SCR_heat_probability 6.5 <0.05 

SCR_heat_probability_day 4.7 >0.05 

Lemmer_factor_of_restlessness 292.6 <0.01 

Lying 

Nedap_lying 4.1 >0.05 
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Variable Statistics p_value 

Nedap_get_ups 79.7 <0.01 

ENGS_lying 2.4 >0.05 

ENGS_lying_day 25.4 <0.01 

ENGS_lying_day_night 141 <0.01 

ENGS_lying_bouts 108.4 <0.01 

ENGS_lying_bouts_day 89.8 <0.01 

ENGS_lying_bouts_day_night 13.3 <0.01 

ENGS_lying_duration_per_bout 59.4 <0.01 

Lemmer_lying 98.4 <0.01 

Lemmer_get_ups 51.9 <0.01 

Activity 

Delaval_act_avg 92.4 <0.01 

Delaval_act_rel 28.8 <0.01 

Delaval_act_rel_min 28.5 <0.01 

Delaval_act_rel_max 18.3 <0.01 

ENGS_act 218 <0.01 

ENGS_act_day 276.5 <0.01 

ENGS_act_day_night 60 <0.01 

Smaxtec_act 25.3 <0.01 

Smaxtec_act_day 19.4 <0.01 

Smaxtec_act_day_night 21.1 <0.01 

SCR_act 366.6 <0.01 

SCR_act_day 383.4 <0.01 

SCR_act_day_night 68.4 <0.01 

Lemmer_act 383 <0.01 

Nedap_inactive 248.2 <0.01 

Nedap_act_collar_median 54.6 <0.01 

Nedap_act_collar_sum 55 <0.01 

Nedap_act_collar_median_day 85 <0.01 

Nedap_act_collar_sum_day 79.3 <0.01 

Nedap_act_collar_median_day_night 57.6 <0.01 

Nedap_act_collar_sum_day_night 82.7 <0.01 

Nedap_act 65.9 <0.01 

Nedap_act_foot_median 51.5 <0.01 

Nedap_act_foot_median_day 78.8 <0.01 

Nedap_act_foot_sum_day 76.2 <0.01 

Nedap_act_foot_median_day_night 36.8 <0.01 

Nedap_act_foot_sum_day_night 51 <0.01 

Body temperature 

Smaxtec_temp_normal_median 333.4 <0.01 

Smaxtec_temp_median 193.4 <0.01 

Smaxtec_temp_min 129.2 <0.01 

Smaxtec_temp_max 259.8 <0.01 

Smaxtec_temp_without_drink_cycles_median 267.9 <0.01 

Smaxtec_temp_without_drink_cycles_min 109.9 <0.01 

Smaxtec_temp_without_drink_cycles_max 250.4 <0.01 

Climate 

Smaxtec_climate_temp_median 60.5 <0.01 

Smaxtec_climate_temp_min 39.3 <0.01 

Smaxtec_climate_temp_max 65.7 <0.01 

Smaxtec_climate_hum_median 12.4 <0.01 

Smaxtec_climate_hum_min 27.1 <0.01 
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Variable Statistics p_value 

Smaxtec_climate_hum_max 4.8 >0.05 

Smaxtec_thi_median 45.9 <0.01 

Smaxtec_thi_min 39.6 <0.01 

Smaxtec_thi_max 63.4 <0.01 

WS_thi_med 56 <0.01 

WS_thi_min 56.7 <0.01 

WS_thi_max 51.9 <0.01 

WS_temp_2m_med 58.6 <0.01 

WS_temp_2m_min 55.3 <0.01 

WS_temp_2m_max 52.5 <0.01 

WS_temp_20cm_med 59.4 <0.01 

WS_temp_20cm_min 49.6 <0.01 

WS_temp_20cm_max 53.2 <0.01 

WS_soil_temp_5cm_med 60.2 <0.01 

WS_soil_temp_5cm_min 57.9 <0.01 

WS_soil_temp_5cm_max 52 <0.01 

WS_soil_temp_20cm_med 59.4 <0.01 

WS_soil_temp_20cm_min 58.2 <0.01 

WS_soil_temp_20cm_max 59.8 <0.01 

WS_rel_hum_med 24.9 <0.01 

WS_rel_hum_min 19.6 <0.01 

WS_rel_hum_max 23.8 <0.01 

WS_wind_velocity_med 6.5 <0.05 

WS_wind_velocity_min 4.5 >0.05 

WS_wind_velocity_max 4.3 >0.05 

WS_rain_med 6.5 <0.05 

WS_rain_min 0.7 >0.05 

WS_rain_max 8.7 <0.05 

WS_global_rad_med 36.6 <0.01 

WS_global_rad_min 22.6 <0.01 

WS_global_rad_max 32.2 <0.01 

Season 14.7 <0.01 

Table 62: Significance of the differences between the different corrected locomotion score 

(C_LMS) groups for each parameter across all farms (Wilcoxon signed-rank test) (parameters 

explained in Table 33) 

Parameters 
p-value 

C_LMS1 vs. 
C_LMS2 

p-value 
C_LMS1 vs. 

C_LMS3 

p-value 
C_LMS2 vs. 

C_LMS3 

Animal characteristics 

Breed < 0.05 < 0.01 > 0.05 

Milking 

Lactation_number < 0.01 < 0.01 > 0.05 

Days_in_milk < 0.01 < 0.01 < 0.01 

LKV_milk_yield_in_last_lactation < 0.01 < 0.01 > 0.05 

LKV_daily_milk_yield < 0.05 < 0.01 > 0.05 

LKV_urea > 0.05 > 0.05 > 0.05 

LKV_somatic_cell_count < 0.01 > 0.05 < 0.01 

LKV_fat > 0.05 < 0.01 > 0.05 

LKV_protein < 0.01 < 0.01 < 0.01 

LKV_fat_protein_ratio < 0.01 > 0.05 < 0.01 
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Parameters 
p-value 

C_LMS1 vs. 
C_LMS2 

p-value 
C_LMS1 vs. 

C_LMS3 

p-value 
C_LMS2 vs. 

C_LMS3 

LKV_lactose < 0.01 < 0.05 < 0.01 

Milkings < 0.01 < 0.01 > 0.05 

Maximum_milking_interval < 0.01 < 0.01 > 0.05 

Robot_daily_milk_yield > 0.05 < 0.01 > 0.05 

Robot_milk_yield_in_current_lactation < 0.05 > 0.05 > 0.05 

Robot_milk_yield_in_last_lactation < 0.01 < 0.01 > 0.05 

Robot_daily_milk_yield_in_last_lactation > 0.05 < 0.01 < 0.01 

MDi < 0.01 < 0.01 > 0.05 

Milking_flow < 0.01 < 0.05 < 0.01 

Max_milking_flow > 0.05 < 0.05 > 0.05 

Robot_conduct_lely > 0.05 < 0.05 > 0.05 

Robot_conduct < 0.01 > 0.05 < 0.01 

Robot_somatic_cell_count > 0.05 > 0.05 > 0.05 

Robot_effect_of_scc < 0.01 > 0.05 < 0.01 

Robot_fat < 0.05 > 0.05 > 0.05 

Robot_protein < 0.01 < 0.01 < 0.01 

Robot_fat_protein_ratio > 0.05 < 0.01 > 0.05 

Robot_lactose > 0.05 < 0.05 < 0.01 

Milking_temperature < 0.01 < 0.05 < 0.01 

Constitution 

Robot_BCS < 0.01 < 0.01 < 0.01 

Body_weight < 0.01 < 0.01 < 0.01 

Feeding 

Concentrated_feed_intake > 0.05 > 0.05 > 0.05 

Concentrated_feed_remains > 0.05 < 0.01 > 0.05 

WT_feed_intake < 0.01 < 0.05 < 0.01 

WT_feeding_pace < 0.01 < 0.01 < 0.01 

WT_feeding_duration > 0.05 < 0.01 < 0.01 

WT_feeding_duration_day > 0.05 < 0.01 < 0.01 

WT_feeding_duration_day_night > 0.05 > 0.05 > 0.05 

WT_trough_visits < 0.01 < 0.01 < 0.01 

WT_trough_visits_day < 0.01 < 0.01 < 0.01 

WT_trough_visits_day_night > 0.05 > 0.05 > 0.05 

WT_feed_intake_per_visit < 0.01 < 0.01 < 0.05 

WT_feeding_duration_per_visit < 0.01 < 0.01 > 0.05 

WT_number_of_meals > 0.05 < 0.01 < 0.01 

WT_number_of_meals_day > 0.05 < 0.01 < 0.01 

WT_number_of_meals_day_night > 0.05 < 0.05 > 0.05 

WT_feed_intake_per_meal < 0.01 < 0.01 > 0.05 

WT_feeding_duration_per_meal > 0.05 < 0.01 > 0.05 

ENGS_feeding < 0.01 > 0.05 < 0.01 

ENGS_feeding_day < 0.01 > 0.05 < 0.01 

ENGS_feeding_day_night > 0.05 > 0.05 > 0.05 

ENGS_number_of_meals > 0.05 > 0.05 > 0.05 

ENGS_number_of_meals_day > 0.05 > 0.05 > 0.05 

ENGS_number_of_meals_day_night > 0.05 > 0.05 > 0.05 

ENGS_feeding_duration_per_meal < 0.05 > 0.05 < 0.05 

Nedap_feeding < 0.01 > 0.05 < 0.01 

Rumination 

Smaxtec_rum > 0.05 > 0.05 > 0.05 

SCR_rum > 0.05 < 0.05 > 0.05 
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Parameters 
p-value 

C_LMS1 vs. 
C_LMS2 

p-value 
C_LMS1 vs. 

C_LMS3 

p-value 
C_LMS2 vs. 

C_LMS3 

SCR_rum_day < 0.05 > 0.05 < 0.05 

SCR_rum_day_night < 0.01 < 0.01 > 0.05 

Nedap_rum > 0.05 < 0.01 < 0.01 

Heat detection 

SCR_heat_probability > 0.05 > 0.05 > 0.05 

SCR_heat_probability_day > 0.05 > 0.05 > 0.05 

Lemmer_factor_of_restlessness < 0.01 < 0.01 > 0.05 

Lying 

Nedap_lying > 0.05 > 0.05 > 0.05 

Nedap_get_ups > 0.05 < 0.01 < 0.05 

ENGS_lying > 0.05 > 0.05 > 0.05 

ENGS_lying_day > 0.05 < 0.01 < 0.05 

ENGS_lying_day_night < 0.01 < 0.01 > 0.05 

ENGS_lying_bouts < 0.01 < 0.01 > 0.05 

ENGS_lying_bouts_day < 0.01 < 0.01 > 0.05 

ENGS_lying_bouts_day_night > 0.05 < 0.01 > 0.05 

ENGS_lying_duration_per_bout < 0.01 < 0.01 > 0.05 

Lemmer_lying < 0.05 < 0.01 > 0.05 

Lemmer_get_ups < 0.01 < 0.01 > 0.05 

Activity 

Delaval_act_avg < 0.01 < 0.01 > 0.05 

Delaval_act_rel > 0.05 < 0.01 < 0.05 

Delaval_act_rel_min > 0.05 < 0.01 > 0.05 

Delaval_act_rel_max > 0.05 < 0.01 < 0.01 

ENGS_act < 0.01 < 0.01 > 0.05 

ENGS_act_day < 0.01 < 0.01 > 0.05 

ENGS_act_day_night < 0.01 < 0.01 > 0.05 

Smaxtec_act < 0.05 < 0.01 < 0.01 

Smaxtec_act_day > 0.05 < 0.01 < 0.05 

Smaxtec_act_day_night < 0.01 > 0.05 < 0.05 

SCR_act < 0.01 < 0.01 < 0.01 

SCR_act_day < 0.01 < 0.01 < 0.01 

SCR_act_day_night < 0.01 < 0.01 > 0.05 

Lemmer_act < 0.01 < 0.01 > 0.05 

Nedap_inactive < 0.01 < 0.01 > 0.05 

Nedap_act_collar_median < 0.01 < 0.01 > 0.05 

Nedap_act_collar_sum < 0.01 < 0.01 > 0.05 

Nedap_act_collar_median_day < 0.01 < 0.01 > 0.05 

Nedap_act_collar_sum_day < 0.01 < 0.01 > 0.05 

Nedap_act_collar_median_day_night > 0.05 < 0.01 < 0.05 

Nedap_act_collar_sum_day_night < 0.05 < 0.01 < 0.05 

Nedap_act < 0.01 < 0.01 < 0.05 

Nedap_act_foot_median < 0.01 < 0.01 > 0.05 

Nedap_act_foot_median_day < 0.01 < 0.01 > 0.05 

Nedap_act_foot_sum_day < 0.01 < 0.01 < 0.05 

Nedap_act_foot_median_day_night < 0.01 < 0.01 > 0.05 

Nedap_act_foot_sum_day_night < 0.05 < 0.01 > 0.05 

Body temperature 

Smaxtec_temp_normal_median < 0.01 < 0.01 < 0.01 

Smaxtec_temp_median < 0.01 < 0.01 > 0.05 

Smaxtec_temp_min < 0.01 < 0.01 < 0.01 
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Parameters 
p-value 

C_LMS1 vs. 
C_LMS2 

p-value 
C_LMS1 vs. 

C_LMS3 

p-value 
C_LMS2 vs. 

C_LMS3 

Smaxtec_temp_max < 0.01 < 0.01 < 0.01 

Smaxtec_temp_without_drink_cycles_median < 0.01 < 0.01 < 0.01 

Smaxtec_temp_without_drink_cycles_min < 0.01 < 0.01 < 0.01 

Smaxtec_temp_without_drink_cycles_max < 0.01 < 0.01 < 0.01 

Climate 

Smaxtec_climate_temp_median < 0.01 < 0.01 < 0.01 

Smaxtec_climate_temp_min < 0.01 > 0.05 < 0.01 

Smaxtec_climate_temp_max < 0.01 < 0.01 < 0.01 

Smaxtec_climate_hum_median > 0.05 < 0.01 < 0.05 

Smaxtec_climate_hum_min < 0.01 < 0.01 < 0.01 

Smaxtec_climate_hum_max > 0.05 > 0.05 > 0.05 

Smaxtec_thi_median < 0.01 < 0.05 < 0.01 

Smaxtec_thi_min < 0.01 < 0.05 < 0.01 

Smaxtec_thi_max < 0.01 < 0.01 < 0.01 

WS_thi_med > 0.05 < 0.01 < 0.01 

WS_thi_min > 0.05 < 0.01 < 0.01 

WS_thi_max > 0.05 < 0.01 < 0.01 

WS_temp_2m_med > 0.05 < 0.01 < 0.01 

WS_temp_2m_min > 0.05 < 0.01 < 0.01 

WS_temp_2m_max > 0.05 < 0.01 < 0.01 

WS_temp_20cm_med > 0.05 < 0.01 < 0.01 

WS_temp_20cm_min > 0.05 < 0.01 < 0.01 

WS_temp_20cm_max > 0.05 < 0.01 < 0.01 

WS_soil_temp_5cm_med > 0.05 < 0.01 < 0.01 

WS_soil_temp_5cm_min > 0.05 < 0.01 < 0.01 

WS_soil_temp_5cm_max > 0.05 < 0.01 < 0.01 

WS_soil_temp_20cm_med > 0.05 < 0.01 < 0.01 

WS_soil_temp_20cm_min > 0.05 < 0.01 < 0.01 

WS_soil_temp_20cm_max > 0.05 < 0.01 < 0.01 

WS_rel_hum_med < 0.01 < 0.05 > 0.05 

WS_rel_hum_min < 0.01 < 0.01 > 0.05 

WS_rel_hum_max < 0.01 > 0.05 < 0.01 

WS_wind_velocity_med > 0.05 > 0.05 < 0.05 

WS_wind_velocity_min > 0.05 > 0.05 > 0.05 

WS_wind_velocity_max > 0.05 > 0.05 > 0.05 

WS_rain_med > 0.05 > 0.05 < 0.05 

WS_rain_min > 0.05 > 0.05 > 0.05 

WS_rain_max > 0.05 > 0.05 < 0.05 

WS_global_rad_med > 0.05 < 0.01 > 0.05 

WS_global_rad_min < 0.01 > 0.05 < 0.01 

WS_global_rad_max > 0.05 < 0.01 > 0.05 

Season > 0.05 < 0.01 > 0.05 
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Table 63: Significance of the differences between the different locomotion score (LMS) groups 

for each parameter across all farms (Wilcoxon signed-rank test) (parameters explained in 

Table 33) 

Parameters 
p-value 

LMS1 vs. 
LMS2 

p-value 
LMS1 vs. 

LMS3 

p-value 
LMS2 vs. 

LMS3 

Animal characteristics 

Breed < 0.01 < 0.01 > 0.05 

Milking 

Lactation_number < 0.01 < 0.01 < 0.01 

Days_in_milk > 0.05 < 0.01 < 0.05 

LKV_milk_yield_in_last_lactation < 0.01 < 0.01 > 0.05 

LKV_daily_milk_yield < 0.01 > 0.05 < 0.01 

LKV_urea > 0.05 < 0.05 < 0.05 

LKV_somatic_cell_count < 0.05 < 0.01 < 0.01 

LKV_fat < 0.01 < 0.01 > 0.05 

LKV_protein < 0.01 < 0.01 < 0.01 

LKV_fat_protein_ratio > 0.05 > 0.05 > 0.05 

LKV_lactose < 0.01 < 0.01 < 0.01 

Milkings < 0.01 < 0.01 < 0.01 

Maximum_milking_interval < 0.01 < 0.01 < 0.01 

Robot_daily_milk_yield < 0.01 > 0.05 < 0.01 

Robot_milk_yield_in_current_lactation < 0.01 < 0.01 < 0.01 

MDI < 0.01 < 0.01 < 0.05 

Milking_flow < 0.01 > 0.05 < 0.01 

Max_milking_flow > 0.05 < 0.01 < 0.01 

Robot_conduct_lely < 0.01 > 0.05 > 0.05 

Robot_conduct > 0.05 > 0.05 > 0.05 

Robot_milk_yield_in_last_lactation < 0.01 < 0.01 > 0.05 

Robot_daily_milk_yield_in_last_lactation > 0.05 > 0.05 > 0.05 

Robot_fat > 0.05 < 0.01 < 0.05 

Robot_protein < 0.01 < 0.01 < 0.01 

Robot_fat_protein_ratio > 0.05 < 0.01 < 0.01 

Robot_lactose > 0.05 < 0.01 < 0.05 

Robot_somatic_cell_count < 0.01 > 0.05 > 0.05 

Robot_effect_of_scc > 0.05 > 0.05 > 0.05 

Milking_temperature < 0.01 > 0.05 > 0.05 

Constitution 

Robot_BCS > 0.05 < 0.01 < 0.01 

Body_weight < 0.01 < 0.01 < 0.05 

Feeding 

Concentrated_feed_intake > 0.05 > 0.05 < 0.01 

Concentrated_feed_remains > 0.05 < 0.01 < 0.01 

WT_feed_intake < 0.01 > 0.05 < 0.01 

WT_feeding_duration < 0.01 < 0.01 < 0.01 

WT_feeding_duration_day < 0.01 < 0.01 < 0.01 

WT_feeding_duration_day_night > 0.05 > 0.05 > 0.05 

WT_feeding_duration_per_meal > 0.05 < 0.01 < 0.01 

WT_feeding_duration_per_visit < 0.01 < 0.01 > 0.05 

WT_feeding_pace < 0.01 < 0.01 < 0.01 

WT_trough_visits < 0.01 < 0.01 < 0.01 

WT_trough_visits_day < 0.01 < 0.01 < 0.01 

WT_trough_visits_day_night > 0.05 > 0.05 > 0.05 
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Parameters 
p-value 

LMS1 vs. 
LMS2 

p-value 
LMS1 vs. 

LMS3 

p-value 
LMS2 vs. 

LMS3 

WT_number_of_meals < 0.01 < 0.01 < 0.01 

WT_number_of_meals_day < 0.01 < 0.01 < 0.01 

WT_number_of_meals_day_night > 0.05 > 0.05 > 0.05 

WT_feed_intake_per_meal < 0.01 < 0.01 > 0.05 

WT_feed_intake_per_visit < 0.01 < 0.01 < 0.01 

ENGS_feeding > 0.05 > 0.05 < 0.05 

ENGS_feeding_day > 0.05 > 0.05 < 0.01 

ENGS_feeding_day_night > 0.05 > 0.05 > 0.05 

ENGS_number_of_meals > 0.05 > 0.05 > 0.05 

ENGS_number_of_meals_day > 0.05 > 0.05 > 0.05 

ENGS_number_of_meals_day_night > 0.05 > 0.05 > 0.05 

ENGS_feeding_duration_per_meal > 0.05 > 0.05 > 0.05 

Nedap_feeding < 0.01 < 0.01 > 0.05 

Rumination 

SCR_rum > 0.05 < 0.01 < 0.01 

SCR_rum_day > 0.05 > 0.05 > 0.05 

SCR_rum_day_night < 0.01 < 0.01 > 0.05 

Nedap_rum < 0.01 < 0.01 < 0.01 

Smaxtec_rum > 0.05 > 0.05 > 0.05 

Heat detection 

SCR_heat_probability > 0.05 > 0.05 > 0.05 

SCR_heat_probability_day > 0.05 > 0.05 > 0.05 

Lemmer_factor_of_restlessness < 0.01 < 0.01 < 0.01 

Lying 

ENGS_lying < 0.01 < 0.01 < 0.01 

ENGS_lying_day > 0.05 < 0.01 < 0.01 

ENGS_lying_day_night < 0.01 < 0.01 < 0.01 

ENGS_lying_bouts < 0.01 < 0.01 < 0.01 

ENGS_lying_bouts_day < 0.01 < 0.01 < 0.01 

ENGS_lying_bouts_day_night > 0.05 < 0.01 > 0.05 

ENGS_lying_duration_per_bout > 0.05 < 0.01 < 0.01 

Nedap_lying < 0.01 < 0.01 < 0.01 

Nedap_get_ups < 0.01 < 0.01 > 0.05 

Lemmer_get_ups > 0.05 < 0.01 < 0.01 

Lemmer_lying < 0.01 < 0.01 < 0.01 

Lemmer_lying_ratio < 0.01 < 0.01 < 0.01 

Activity 

ENGS_act < 0.01 < 0.01 < 0.01 

ENGS_act_day < 0.01 < 0.01 < 0.01 

ENGS_act_day_night < 0.01 < 0.01 > 0.05 

Smaxtec_act > 0.05 < 0.01 < 0.01 

Smaxtec_act_day > 0.05 < 0.01 < 0.01 

Smaxtec_act_day_night < 0.01 > 0.05 > 0.05 

SCR_act < 0.01 < 0.01 < 0.01 

SCR_act_day < 0.01 < 0.01 < 0.01 

SCR_act_day_night < 0.01 < 0.01 > 0.05 

Nedap_act < 0.01 < 0.01 < 0.01 

Nedap_inactive < 0.01 < 0.01 < 0.01 

Nedap_act_collar_median < 0.01 < 0.01 > 0.05 

Nedap_act_collar_sum < 0.01 < 0.01 > 0.05 

Nedap_act_collar_median_day < 0.01 < 0.01 < 0.05 
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Parameters 
p-value 

LMS1 vs. 
LMS2 

p-value 
LMS1 vs. 

LMS3 

p-value 
LMS2 vs. 

LMS3 

Nedap_act_collar_sum_day < 0.01 < 0.01 < 0.05 

Nedap_act_collar_median_day_night < 0.01 < 0.01 > 0.05 

Nedap_act_collar_sum_day_night < 0.01 < 0.01 > 0.05 

Nedap_act_foot_median < 0.01 < 0.01 < 0.01 

Nedap_act_foot_median_day < 0.01 < 0.01 < 0.01 

Nedap_act_foot_sum_day < 0.01 < 0.01 < 0.01 

Nedap_act_foot_median_day_night < 0.01 < 0.01 > 0.05 

Nedap_act_foot_sum_day_night < 0.01 < 0.01 < 0.05 

Lemmer_act < 0.01 < 0.01 < 0.01 

Delaval_act_avg < 0.01 < 0.01 < 0.01 

Delaval_act_rel < 0.01 < 0.01 > 0.05 

Delaval_act_rel_min < 0.01 < 0.01 > 0.05 

Delaval_act_rel_max > 0.05 > 0.05 > 0.05 

Body temperature 

Smaxtec_temp_min < 0.05 < 0.01 < 0.01 

Smaxtec_temp_max < 0.01 < 0.01 > 0.05 

Smaxtec_temp_median < 0.01 < 0.01 < 0.01 

Smaxtec_temp_without_drink_cycles_min < 0.01 < 0.01 < 0.01 

Smaxtec_temp_without_drink_cycles_max < 0.01 < 0.01 > 0.05 

Smaxtec_temp_without_drink_cycles_median < 0.01 < 0.01 < 0.01 

Smaxtec_temp_normal_median < 0.01 < 0.01 < 0.05 

Climate 

Smaxtec_climate_temp_median < 0.05 < 0.01 < 0.01 

Smaxtec_climate_temp_min < 0.05 < 0.01 < 0.01 

Smaxtec_climate_temp_max > 0.05 < 0.01 < 0.01 

Smaxtec_climate_hum_median > 0.05 < 0.01 < 0.01 

Smaxtec_climate_hum_min > 0.05 < 0.01 < 0.01 

Smaxtec_climate_hum_max > 0.05 < 0.01 < 0.01 

Smaxtec_thi_median < 0.05 < 0.01 < 0.01 

Smaxtec_thi_min < 0.05 < 0.01 < 0.01 

Smaxtec_thi_max > 0.05 < 0.01 < 0.01 

WS_thi_med < 0.01 < 0.01 < 0.01 

WS_thi_min < 0.01 < 0.01 < 0.01 

WS_thi_max < 0.01 < 0.01 < 0.01 

WS_temp_2m_med < 0.01 < 0.01 < 0.01 

WS_temp_2m_min < 0.01 < 0.01 < 0.01 

WS_temp_2m_max < 0.01 < 0.01 < 0.01 

WS_temp_20cm_med < 0.01 < 0.01 < 0.01 

WS_temp_20cm_min < 0.01 < 0.01 < 0.01 

WS_temp_20cm_max < 0.01 < 0.01 < 0.01 

WS_soil_temp_5cm_med < 0.01 < 0.01 < 0.01 

WS_soil_temp_5cm_min < 0.01 < 0.01 < 0.01 

WS_soil_temp_5cm_max < 0.01 < 0.01 < 0.01 

WS_soil_temp_20cm_med < 0.01 < 0.01 < 0.01 

WS_soil_temp_20cm_min < 0.01 < 0.01 < 0.01 

WS_soil_temp_20cm_max < 0.01 < 0.01 < 0.01 

WS_rel_hum_med < 0.05 < 0.01 < 0.05 

WS_rel_hum_min < 0.05 < 0.01 > 0.05 

WS_rel_hum_max > 0.05 > 0.05 > 0.05 

WS_wind_velocity_med > 0.05 < 0.01 < 0.01 

WS_wind_velocity_min > 0.05 < 0.05 < 0.05 
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Parameters 
p-value 

LMS1 vs. 
LMS2 

p-value 
LMS1 vs. 

LMS3 

p-value 
LMS2 vs. 

LMS3 

WS_wind_velocity_max < 0.05 > 0.05 < 0.01 

WS_rain_med > 0.05 < 0.01 < 0.01 

WS_rain_min > 0.05 > 0.05 > 0.05 

WS_rain_max > 0.05 < 0.01 < 0.05 

WS_global_rad_med < 0.01 < 0.01 > 0.05 

WS_global_rad_min > 0.05 < 0.05 > 0.05 

WS_global_rad_max < 0.01 < 0.01 > 0.05 

Season > 0.05 < 0.01 < 0.01 

GSC < 0.05 < 0.01 < 0.01 

PT < 0.01 < 0.01 < 0.01 

Table 64: Odds ratios with confidence intervals and p values of each variable for C_LMS3 or 

LMS3 as outcome lame 

 C_LMS3 LMS3 

Variable OR 2.5% 97.5% p_value OR 2.5% 97.5% p_value 

Breed 0.828 0.781 0.874 <0.001 0.844 0.765 0.919 <0.001 

Lactation_nu
mber 1.132 1.112 1.152 <0.001 1.178 1.148 1.209 <0.001 

Days_in_milk 0.999 0.999 1.000 <0.001 0.999 0.998 0.999 <0.001 

LKV_milk_yie
ld_in_last_lac
tation 1.000 1.000 1.000 <0.001 1.000 1.000 1.000 <0.001 

LKV_daily_m
ilk_yield 1.012 1.008 1.016 <0.001 0.994 0.987 1.000 0.066 

LKV_urea 0.999 0.999 1.000 0.009 0.998 0.997 0.999 <0.001 

LKV_somatic
_cell_count 1.000 1.000 1.000 0.815 1.000 1.000 1.000 <0.001 

LKV_fat 0.919 0.879 0.961 <0.001 0.919 0.856 0.987 0.021 

LKV_protein 0.565 0.512 0.623 <0.001 0.507 0.433 0.593 <0.001 

LKV_fat_prot
ein_ratio 1.267 1.088 1.473 0.002 1.305 1.026 1.653 0.029 

LKV_lactose 0.779 0.648 0.938 0.008 0.409 0.312 0.540 <0.001 

Milkings 0.792 0.755 0.830 <0.001 0.645 0.597 0.697 <0.001 

Maximum_mi
lking_interval 1.001 1.001 1.001 <0.001 1.002 1.001 1.002 <0.001 

Robot_daily_
milk_yield 1.010 1.006 1.013 <0.001 0.991 0.985 0.996 0.001 

Robot_milk_y
ield_in_curre
nt_lactation 1.000 1.000 1.000 0.831 1.000 1.000 1.000 <0.001 

Robot_milk_y
ield_in_last_l
actation 1.000 1.000 1.000 <0.001 1.000 1.000 1.000 0.051 

Robot_daily_
milk_yield_in
_last_lactatio
n 1.016 1.005 1.026 0.003 1.013 0.995 1.030 0.164 

Milking_flow 0.971 0.935 1.008 0.126 0.982 0.924 1.043 0.565 

Milking_temp
erature 

1.057 0.976 1.144 0.176 1.036 0.905 1.184 0.609 
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 C_LMS3 LMS3 

Variable OR 2.5% 97.5% p_value OR 2.5% 97.5% p_value 

Max_milking
_flow 1.037 1.012 1.062 0.003 1.170 1.127 1.214 <0.001 

Robot_condu
ct_lely 1.010 0.995 1.026 0.180 1.005 0.980 1.031 0.684 

Robot_condu
ct 1.021 0.944 1.106 0.602 0.880 0.786 0.989 0.029 

Robot_somat
ic_cell_count 1.000 1.000 1.000 0.136 1.000 0.999 1.000 0.360 

Robot_effect
_of_scc 1.013 0.995 1.031 0.152 0.989 0.950 1.023 0.573 

Robot_fat 0.985 0.945 1.027 0.491 1.108 1.040 1.178 0.001 

Robot_protei
n 0.630 0.538 0.737 <0.001 0.356 0.273 0.463 <0.001 

Robot_fat_pr
otein_ratio 1.100 0.946 1.277 0.212 2.008 1.618 2.474 <0.001 

Robot_lactos
e 0.780 0.658 0.925 0.004 0.625 0.478 0.819 0.001 

MDi 1.339 1.125 1.584 0.001 1.596 1.264 1.980 <0.001 

Robot_BCS 0.602 0.478 0.760 <0.001 0.532 0.383 0.744 <0.001 

Body_weight 1.001 1.001 1.002 <0.001 1.001 1.000 1.002 0.039 

Concentrated
_feed_intake 1.002 0.986 1.019 0.817 0.964 0.938 0.990 0.007 

Concentrated
_feed_remai
ns 1.213 1.123 1.308 <0.001 1.407 1.262 1.559 <0.001 

WT_feed_int
ake 1.005 1.000 1.010 0.049 0.994 0.987 1.002 0.123 

WT_feeding_
pace 

1.43e
+174 

7.05e
+155 

4.60e+
175 <0.001 

3.73e
+102 

4.46e
+110 

5.30e+
149 <0.001 

WT_feeding_
duration 0.991 0.989 0.992 <0.001 0.985 0.982 0.987 <0.001 

WT_feeding_
duration_day 0.988 0.986 0.990 <0.001 0.983 0.979 0.986 <0.001 

WT_feeding_
duration_day
_night 0.864 0.527 1.426 0.566 2.363 1.085 5.224 0.032 

WT_trough_v
isits 0.958 0.954 0.963 <0.001 0.944 0.936 0.951 <0.001 

WT_trough_v
isits_day 0.949 0.944 0.955 <0.001 0.936 0.927 0.945 <0.001 

WT_trough_v
isits_day_nig
ht 0.866 0.525 1.438 0.576 2.192 0.993 4.943 0.055 

WT_feed_int
ake_per_visit 1.951 1.820 2.095 <0.001 1.745 1.620 1.883 <0.001 

WT_feeding_
duration_per
_visit 1.131 1.101 1.162 <0.001 1.097 1.068 1.131 <0.001 

WT_number_
of_meals 0.872 0.849 0.895 <0.001 0.831 0.798 0.865 <0.001 

Nedap_feedi
ng 1.000 0.999 1.000 0.223 0.999 0.998 0.999 <0.001 
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 C_LMS3 LMS3 

Variable OR 2.5% 97.5% p_value OR 2.5% 97.5% p_value 

WT_number_
of_meals_da
y 0.839 0.813 0.866 <0.001 0.823 0.784 0.864 <0.001 

WT_number_
of_meals_da
y_night 0.604 0.359 1.019 0.058 1.746 0.776 3.991 0.182 

WT_feed_int
ake_per_me
al 1.171 1.137 1.205 <0.001 1.136 1.090 1.182 <0.001 

WT_feeding_
duration_per
_meal 0.990 0.980 0.998 0.028 0.974 0.956 0.990 0.003 

ENGS_feedi
ng 0.996 0.993 0.999 0.011 0.996 0.992 1.000 0.069 

ENGS_feedi
ng_day 0.994 0.990 0.998 0.003 0.994 0.989 1.000 0.037 

ENGS_feedi
ng_day_night 0.649 0.282 1.534 0.316 0.739 0.237 2.483 0.614 

ENGS_numb
er_of_meals 1.002 0.959 1.047 0.924 1.028 0.968 1.091 0.374 

ENGS_numb
er_of_meals_
day 0.978 0.924 1.034 0.433 1.021 0.945 1.102 0.603 

ENGS_numb
er_of_meals_
day_night 0.521 0.202 1.379 0.183 1.046 0.275 4.285 0.949 

ENGS_feedi
ng_duration_
per_meal 0.971 0.947 0.996 0.025 0.969 0.934 1.003 0.084 

Smaxtec_ru
m 1.000 0.999 1.001 0.497 1.001 0.999 1.002 0.380 

SCR_rum 0.999 0.998 0.999 0.001 0.997 0.996 0.998 <0.001 

SCR_rum_da
y 0.999 0.998 1.001 0.341 0.999 0.997 1.000 0.092 

SCR_rum_da
y_night 

42.91
2 

12.52
9 

149.04
2 <0.001 

61.53
7 

10.38
0 

362.91
0 <0.001 

Nedap_rum 0.997 0.996 0.997 <0.001 0.995 0.994 0.996 <0.001 

SCR_heat_pr
obability 0.991 0.977 1.002 0.138 0.986 0.964 1.004 0.167 

SCR_heat_pr
obability_day 0.990 0.979 1.001 0.094 0.987 0.968 1.003 0.147 

Lemmer_fact
or_of_restles
sness 0.998 0.998 0.999 <0.001 0.997 0.996 0.998 <0.001 

Nedap_get_u
ps 0.884 0.855 0.913 <0.001 0.883 0.836 0.931 <0.001 

ENGS_lying 1.000 1.000 1.001 0.028 1.003 1.003 1.004 <0.001 

ENGS_lying_
day 1.002 1.001 1.003 <0.001 1.006 1.005 1.007 <0.001 

ENGS_lying_
day_night 

13.91
7 6.882 28.312 <0.001 

43.84
5 

15.91
6 

119.98
0 <0.001 

ENGS_lying_
bouts 

0.997 0.990 1.004 0.477 0.976 0.962 0.988 <0.001 
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 C_LMS3 LMS3 

Variable OR 2.5% 97.5% p_value OR 2.5% 97.5% p_value 

ENGS_lying_
bouts_day 0.997 0.987 1.008 0.631 0.968 0.949 0.986 0.001 

ENGS_lying_
bouts_day_ni
ght 2.164 1.254 3.750 0.006 3.417 1.501 7.848 0.004 

ENGS_lying_
duration_per
_bout 1.008 1.007 1.010 <0.001 1.010 1.008 1.012 <0.001 

Lemmer_lyin
g 1.002 1.002 1.003 <0.001 1.005 1.004 1.005 <0.001 

Nedap_lying 0.999 0.998 1.000 0.002 1.004 1.003 1.006 <0.001 

Lemmer_get
_ups 1.043 1.026 1.060 <0.001 1.103 1.079 1.128 <0.001 

Delaval_act_
avg 0.936 0.922 0.949 <0.001 0.869 0.841 0.897 <0.001 

Delaval_act_
rel 0.991 0.983 0.998 0.010 0.998 0.987 1.008 0.761 

Delaval_act_
rel_min 0.984 0.974 0.994 0.001 0.974 0.958 0.990 0.001 

Delaval_act_
rel_max 0.997 0.990 1.003 0.275 1.011 1.003 1.018 0.005 

ENGS_act 1.000 0.999 1.000 <0.001 0.999 0.999 0.999 <0.001 

ENGS_act_d
ay 0.999 0.999 0.999 <0.001 0.999 0.999 0.999 <0.001 

ENGS_act_d
ay_night 0.096 0.046 0.201 <0.001 0.151 0.056 0.427 <0.001 

Smaxtec_act 0.958 0.935 0.981 <0.001 0.918 0.884 0.953 <0.001 

Smaxtec_act
_day 0.953 0.931 0.976 <0.001 0.907 0.874 0.941 <0.001 

Smaxtec_act
_day_night 1.049 0.769 1.423 0.762 1.056 0.670 1.640 0.811 

SCR_act 0.950 0.941 0.958 <0.001 0.889 0.874 0.903 <0.001 

SCR_act_da
y 0.954 0.946 0.961 <0.001 0.908 0.896 0.920 <0.001 

SCR_act_da
y_night 0.154 0.077 0.300 <0.001 0.095 0.034 0.263 <0.001 

Lemmer_act 0.990 0.989 0.992 <0.001 0.982 0.979 0.985 <0.001 

Nedap_inacti
ve 1.003 1.002 1.003 <0.001 1.005 1.004 1.005 <0.001 

Nedap_act_c
ollar_median 0.944 0.928 0.959 <0.001 0.920 0.888 0.950 <0.001 

Nedap_act_c
ollar_sum 0.996 0.995 0.997 <0.001 0.994 0.991 0.996 <0.001 

Nedap_act_c
ollar_median
_day 0.947 0.934 0.960 <0.001 0.922 0.895 0.949 <0.001 

Nedap_act_c
ollar_sum_da
y 0.994 0.992 0.995 <0.001 0.991 0.987 0.994 <0.001 

Nedap_act_c
ollar_median
_day_night 0.427 0.314 0.576 <0.001 0.391 0.216 0.685 0.001 
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 C_LMS3 LMS3 

Variable OR 2.5% 97.5% p_value OR 2.5% 97.5% p_value 

Nedap_act_c
ollar_sum_da
y_night 0.040 0.019 0.083 <0.001 0.037 0.011 0.129 <0.001 

Nedap_act 1.000 1.000 1.000 <0.001 0.999 0.999 0.999 <0.001 

Nedap_act_f
oot_median 0.996 0.995 0.997 <0.001 0.991 0.988 0.994 <0.001 

Nedap_act_f
oot_median_
day 0.996 0.995 0.997 <0.001 0.991 0.989 0.993 <0.001 

Nedap_act_f
oot_sum_day 1.000 0.999 1.000 <0.001 0.999 0.999 0.999 <0.001 

Nedap_act_f
oot_median_
day_night 0.405 0.239 0.667 0.001 0.195 0.073 0.482 0.001 

Nedap_act_f
oot_sum_day
_night 0.023 0.006 0.083 <0.001 0.007 0.001 0.047 <0.001 

Smaxtec_te
mp_normal_
median 5.979 4.507 7.935 <0.001 9.806 6.604 14.545 <0.001 

Smaxtec_te
mp_median 4.255 3.305 5.479 <0.001 

11.62
9 8.271 16.353 <0.001 

Smaxtec_te
mp_min 0.815 0.782 0.849 <0.001 0.779 0.735 0.826 <0.001 

Smaxtec_te
mp_max 2.055 1.755 2.404 <0.001 1.723 1.378 2.134 <0.001 

Smaxtec_te
mp_without_
drink_cycles_
median 4.000 3.106 5.151 <0.001 7.176 5.103 10.072 <0.001 

Smaxtec_te
mp_without_
drink_cycles_
min 2.219 1.710 2.879 <0.001 4.478 3.099 6.457 <0.001 

Smaxtec_te
mp_without_
drink_cycles_
max 2.051 1.751 2.401 <0.001 1.697 1.356 2.104 <0.001 

Smaxtec_cli
mate_temp_
median 0.976 0.966 0.986 <0.001 0.946 0.930 0.963 <0.001 

Smaxtec_cli
mate_temp_
min 0.981 0.969 0.992 0.001 0.958 0.939 0.977 <0.001 

Smaxtec_cli
mate_temp_
max 0.976 0.968 0.984 <0.001 0.949 0.935 0.963 <0.001 

Smaxtec_cli
mate_hum_
median 1.007 1.002 1.011 0.004 1.015 1.007 1.022 <0.001 

Smaxtec_cli
mate_hum_
min 1.006 1.003 1.009 <0.001 1.017 1.011 1.022 <0.001 
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 C_LMS3 LMS3 

Variable OR 2.5% 97.5% p_value OR 2.5% 97.5% p_value 

Smaxtec_cli
mate_hum_
max 1.003 0.996 1.010 0.391 1.011 1.000 1.022 0.051 

Smaxtec_thi_
median 0.993 0.988 0.998 0.009 0.985 0.977 0.993 <0.001 

Smaxtec_thi_
min 0.986 0.978 0.994 0.001 0.968 0.955 0.981 <0.001 

Smaxtec_thi_
max 0.985 0.980 0.990 <0.001 0.968 0.960 0.977 <0.001 

WS_thi_med 0.984 0.980 0.988 <0.001 0.978 0.971 0.984 <0.001 

WS_thi_min 0.981 0.976 0.986 <0.001 0.973 0.965 0.981 <0.001 

WS_thi_max 0.989 0.986 0.992 <0.001 0.984 0.979 0.989 <0.001 

WS_temp_2
m_med 0.973 0.966 0.979 <0.001 0.962 0.951 0.973 <0.001 

WS_temp_2
m_min 0.967 0.959 0.975 <0.001 0.957 0.944 0.970 <0.001 

WS_temp_2
m_max 0.980 0.974 0.985 <0.001 0.971 0.962 0.980 <0.001 

WS_temp_20
cm_med 0.972 0.965 0.979 <0.001 0.961 0.950 0.972 <0.001 

WS_temp_20
cm_min 0.970 0.963 0.978 <0.001 0.960 0.948 0.973 <0.001 

WS_temp_20
cm_max 0.981 0.976 0.986 <0.001 0.973 0.965 0.981 <0.001 

WS_soil_tem
p_5cm_med 0.971 0.964 0.978 <0.001 0.959 0.947 0.971 <0.001 

WS_soil_tem
p_5cm_min 0.969 0.961 0.976 <0.001 0.957 0.944 0.969 <0.001 

WS_soil_tem
p_5cm_max 0.975 0.969 0.982 <0.001 0.964 0.954 0.975 <0.001 

WS_soil_tem
p_20cm_med 0.969 0.961 0.977 <0.001 0.956 0.943 0.968 <0.001 

WS_soil_tem
p_20cm_min 0.968 0.960 0.976 <0.001 0.955 0.942 0.968 <0.001 

WS_soil_tem
p_20cm_max 0.970 0.962 0.978 <0.001 0.957 0.945 0.969 <0.001 

WS_rel_hum
_med 1.005 1.001 1.008 0.006 1.014 1.009 1.020 <0.001 

WS_rel_hum
_min 1.003 1.001 1.004 0.005 1.005 1.003 1.008 <0.001 

WS_rel_hum
_max 1.003 0.993 1.014 0.558 1.065 1.036 1.100 <0.001 

WS_wind_vel
ocity_med 1.034 0.988 1.081 0.145 1.129 1.055 1.206 <0.001 

WS_wind_vel
ocity_min 1.067 0.968 1.172 0.181 1.148 0.990 1.317 0.058 

WS_wind_vel
ocity_max 1.006 0.982 1.029 0.633 1.064 1.028 1.101 <0.001 

WS_rain_me
d 0.365 0.070 1.750 0.218 3.103 0.273 28.774 0.339 

WS_rain_min 0 0 
1.43e+

14 0.279 
4.94e

+24 0 
4.83e+

56 0.223 
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 C_LMS3 LMS3 

Variable OR 2.5% 97.5% p_value OR 2.5% 97.5% p_value 

WS_rain_ma
x 0.966 0.920 1.009 0.134 0.979 0.904 1.045 0.556 

WS_global_r
ad_med 0.999 0.998 0.999 <0.001 0.998 0.997 0.999 <0.001 

WS_global_r
ad_min 0.963 0.808 1.138 0.670 1.341 1.055 1.671 0.012 

WS_global_r
ad_max 1.000 0.999 1.000 <0.001 0.999 0.999 1.000 <0.001 

Season 1.061 1.026 1.098 0.001 1.153 1.093 1.216 <0.001 

Table 65: Reduced Spearman’s rank correlation table by farm, displaying only the parameters 

varying between the different farms (+ = positive correlation, - = negative correlation, / = not 

recorded on that farm) (parameters explained in Table 33) 

Parameter 
RF
1 

RF
2 

RF
3 

CDF
1 

CDF
2 

CDF
3 

CDF
4 

CDF
5 

Breed + / / / / / / - 

Concentrated_feed_intake + - + - + + - - 

Days_in_milk - - - + - - - + 

GSC 0 + - + - + - - 

Lactation_number + + + + - + - + 

LKV_daily_milk_yield + - + + + + + - 

LKV_fat - - - + + + - + 

LKV_fat_protein_ratio - - + + + + + + 

LKV_lactose - - 0 + + + - + 

LKV_milk_yield_in_last_lactatio
n + - + + + + + + 

LKV_protein - - - - - - - + 

LKV_somatic_cell_count - + - + + - + - 

LKV_urea - + + + - - - + 

Max_milking_flow + - - + / + / + 

Maximum_milking_interval 0 + - + + + + + 

MDi + / / / / 0 / / 

Milking_flow 0 - - + / + / + 

Milking_temperature / + - + / / / + 

Robot_conduct_lely / + + - / / / + 

Robot_daily_milk_yield + - + + + + + - 

Robot_daily_milk_yield_in_last
_ 
lactation + - + + + + + + 

Robot_effect_of_scc / 0 - - / / / / 

Robot_fat / + - + - / + + 

Robot_fat_protein_ratio / + - + 0 / + + 

Robot_lactose / - - + + / - + 

Robot_milk_yield_last_lactation / - + - 0 + + + 

Robot_protein / + - - - - - + 

SCR_act_day_night - / + - / / / - 

SCR_heat_probability / / + - / / / - 

SCR_heat_probability_day / / + - / / / - 

SCR_rum - / - + / / / + 

Season + + - / / + + / 
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Parameter 
RF
1 

RF
2 

RF
3 

CDF
1 

CDF
2 

CDF
3 

CDF
4 

CDF
5 

Smaxtec_act + / - / / / - / 

Smaxtec_act_day + / - / / / - / 

Smaxtec_act_day_night - / - / / / + / 

Smaxtec_climate_hum_max + / - / / / + / 

Smaxtec_climate_hum_median + / - / / / + / 

Smaxtec_climate_hum_min + / - / / / + / 

Smaxtec_climate_temp_max + / - / / / - / 

Smaxtec_climate_temp_media
n + / - / / / - / 

Smaxtec_climate_temp_min + / - / / / - / 

Smaxtec_rum - / + / / / + / 

Smaxtec_thi_max + / - / / / - / 

Smaxtec_thi_median + / - / / / - / 

Smaxtec_thi_min + / - / / / - / 

WS_rain_max - + + / / / / / 

WS_rain_med - + + / / / / / 

WS_rel_hum_max + - 0 / / / / / 

WS_wind_velocity_max - + + / / / / / 

WS_wind_velocity_median - + + / / / / / 

WS_wind_velocity_min 0 + + / / / / / 

Table 66: Reduced Odds ratio table by farm, displaying only the parameters varying between 

the different farms (>1 = positive association according to the odds ratio, <1 = negative 

association according to the odds ratio, n.s. = not significant, / = not recoded) (parameters 

explained in Table 33) 

Parameter 
RF
1 

RF
2 

RF
3 

CDF
1 

CDF
2 

CDF
3 

CDF
4 

CDF
5 

Body_weight >1 / / / / / / n.s. 

Concentrated_feed_intake >1 <1 >1 n.s. >1 n.s. >1 <1 

Days_in_milk <1 <1 <1 n.s. <1 <1 <1 >1 

GSC n.s. >1 <1 >1 n.s. n.s. n.s. <1 

Lactation_number >1 >1 >1 >1 n.s. n.s. n.s. n.s. 

Lemmer_act / / / / n.s. / <1 / 

Lemmer_factor_of_restlessness / / / / n.s. / <1 / 

Lemmer_get_ups / / / / n.s. / >1 / 

LKV_daily_milk_yield >1 n.s. >1 n.s. >1 >1 >1 <1 

LKV_fat <1 <1 n.s. n.s. n.s. >1 n.s. n.s. 

LKV_fat_protein_ratio <1 <1 >1 n.s. >1 >1 >1 >1 

LKV_lactose <1 <1 n.s. n.s. n.s. >1 <1 >1 

LKV_milk_yield_in_last_lactation 1 1 1 1 1 1 n.s. 1 

LKV_protein <1 <1 <1 <1 <1 <1 <1 n.s. 

LKV_somatic_cell_count 1 n.s. n.s. n.s. n.s. n.s. 1 <1 

LKV_urea <1 n.s. >1 n.s. <1 n.s. <1 >1 

Max_milking_flow >1 n.s. >1 >1 / >1 / >1 

Maximum_milking_interval n.s. >1 n.s. n.s. <1 n.s. >1 >1 

MDi >1 / / / / n.s. / / 

Milking_flow >1 n.s. >1 n.s. / >1 / >1 

Milking_temperature / >1 <1 >1 / / / >1 

Milkings n.s. <1 n.s. n.s. <1 n.s. <1 <1 

Nedap_feeding / n.s. <1 / / / / / 
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Parameter 
RF
1 

RF
2 

RF
3 

CDF
1 

CDF
2 

CDF
3 

CDF
4 

CDF
5 

Nedap_rum / <1 n.s. / / / / / 

Robot_conduct >1 / / / >1 n.s. n.s. / 

Robot_conduct_lely / >1 n.s. <1 / / / n.s. 

Robot_daily_milk_yield >1 <1 >1 n.s. >1 n.s. >1 n.s. 

Robot_daily_milk_yield_in_last_lact
ation / <1 >1 n.s. / / / >1 

Robot_effect_of_scc / <1 n.s. n.s. / / / / 

Robot_fat / >1 <1 >1 n.s. / >1 >1 

Robot_fat_protein_ratio / >1 <1 >1 n.s. / >1 >1 

Robot_lactose / <1 n.s. >1 n.s. / n.s. >1 

Robot_milk_yield_last_lactation / 1 1 n.s. 1 1 n.s. 1 

Robot_protein / n.s. <1 <1 n.s. / <1 n.s. 

Robot_somatic_cell_count / <1 n.s. n.s. / / / / 

SCR_act_day_night <1 / n.s. n.s. / / / <1 

SCR_heat_probability / / n.s. <1 / / / n.s. 

SCR_heat_probability_day / / n.s. <1 / / / n.s. 

SCR_rum <1 / n.s. n.s. / / / >1 

Season n.s. >1 <1 / / n.s. >1 / 

Smaxtec_act >1 / n.s. / / / <1 / 

Smaxtec_act_day >1 / n.s. / / / <1 / 

Smaxtec_act_day_night <1 / <1 / / / >1 / 

Smaxtec_climate_hum_max n.s. / <1 / / / >1 / 

Smaxtec_climate_hum_median >1 / n.s. / / / >1 / 

Smaxtec_climate_hum_min n.s. / n.s. / / / >1 / 

Smaxtec_climate_temp_max n.s. / <1 / / / <1 / 

Smaxtec_climate_temp_median n.s. / <1 / / / <1 / 

Smaxtec_climate_temp_min n.s. / <1 / / / n.s. / 

Smaxtec_temp_median >1 / n.s. / / / >1 / 

Smaxtec_temp_without_drink_cycl
es 
_median >1 / n.s. / / / >1 / 

Smaxtec_temp_without_drink_cycl
es 
_min >1 / n.s. / / / >1 / 

Smaxtec_thi_max n.s. / <1 / / / <1 / 

Smaxtec_thi_median n.s. / <1 / / / <1 / 

Smaxtec_thi_min n.s. / <1 / / / n.s. / 

WS_global_rad_max 1 <1 n.s. / / / / / 

WS_rain_max <1 n.s. n.s. / / / / / 

WS_rel_hum_max n.s. n.s. >1 / / / / / 

WS_rel_hum_med n.s. >1 >1 / / / / / 

WS_rel_hum_min n.s. >1 >1 / / / / / 

WS_temp_20cm_min <1 n.s. <1 / / / / / 

WS_temp_20m_min <1 n.s. <1 / / / / / 

WS_wind_velocity_max <1. n.s. >1 / / / / / 

WS_wind_velocity_median n.s. >1 >1 / / / / / 

WS_wind_velocity_min n.s. n.s. <1 / / / / / 
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Table 67: Reduced Spearman’s rank-coefficient correlation table displaying most relevant 

parameter correlations with ρ > 0.4 (parameters explained in Table 33) 

Parameter 1 Parameter 2 Correlation 

Days_in_milk Robot_milk_yield_in_current_lactation 0.93 

WT_feeding_duration_day_night WT_trough_visits_day_night 0.81 

WT_feed_intake_per_visit WT_feeding_duration_per_visit 0.79 

Robot_daily_milk_yield Concentrated_feed_intake 0.72 

ENGS_feeding_day_night ENGS_number_of_meals_day_night 0.71 

LKV_daily_milk_yield Concentrated_feed_intake 0.69 

WT_feeding_duration_day_night WT_number_of_meals_day_night 0.69 

Milking_temperature Smaxtec_climate_temp_max 0.67 

Milking_temperature Smaxtec_thi_max 0.67 

Milking_temperature Smaxtec_climate_temp_median 0.66 

Milking_temperature Smaxtec_thi_median 0.66 

Smaxtec_climate_hum_median Season 0.65 

WT_feed_intake_per_meal WT_feeding_duration_per_meal 0.63 

Milking_temperature Smaxtec_climate_temp_min 0.62 

Milking_temperature Smaxtec_thi_min 0.62 

Milking_temperature WS_temp_2m_med 0.62 

Milking_temperature WS_temp_20cm_med 0.62 

Milking_temperature WS_thi_med 0.61 

Milking_temperature WS_temp_2m_min 0.61 

Milking_temperature WS_soil_temp_5cm_min 0.61 

Milking_temperature WS_thi_max 0.60 

Milking_temperature WS_temp_2m_max 0.60 

Milking_temperature WS_temp_20cm_max 0.60 

Milking_temperature WS_soil_temp_20cm_med 0.60 

Milking_temperature WS_soil_temp_20cm_min 0.60 

Smaxtec_climate_hum_max Season 0.60 

Milkings Concentrated_feed_intake 0.59 

Milking_temperature WS_thi_min 0.59 

Milking_temperature WS_temp_20cm_min 0.59 

Milking_temperature WS_soil_temp_5cm_med 0.59 

Milking_temperature WS_soil_temp_20cm_max 0.59 

WS_rel_hum_min Season 0.59 

Days_in_milk LKV_protein 0.57 

WT_feeding_pace Smaxtec_act 0.56 

Smaxtec_climate_hum_min Season 0.56 

WS_rel_hum_med Season 0.55 

WT_feeding_duration Smaxtec_thi_median 0.54 

Milking_temperature WS_soil_temp_5cm_max 0.54 

WT_feeding_duration Smaxtec_climate_temp_min 0.53 

Nedap_feeding SCR_act 0.52 

WT_feeding_duration_day Smaxtec_thi_median 0.52 

WT_feeding_pace Smaxtec_act_day 0.51 

WT_feed_intake Smaxtec_thi_median 0.51 

Milkings Robot_daily_milk_yield 0.50 

WT_feed_intake WT_feeding_duration 0.50 

WT_feeding_duration_day WT_trough_visits_day 0.50 

Nedap_feeding SCR_act_day 0.50 

WT_feeding_duration_day Smaxtec_climate_temp_min 0.50 

Nedap_act_foot_sum_day WS_thi_max 0.50 

Nedap_act_foot_sum_day WS_temp_2m_max 0.50 
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Parameter 1 Parameter 2 Correlation 

Nedap_act_foot_sum_day WS_temp_20cm_max 0.50 

Nedap_act_foot_sum_day WS_soil_temp_5cm_max 0.50 

Smaxtec_climate_hum_median WS_rain_med 0.50 

WT_feeding_duration WT_trough_visits 0.49 

Milking_temperature Smaxtec_temp_max 0.49 

WT_feeding_duration Smaxtec_climate_temp_median 0.49 

Nedap_act_foot_sum_day Smaxtec_thi_max 0.49 

Nedap_act_foot_sum_day WS_thi_med 0.49 

Nedap_act WS_thi_max 0.49 

Nedap_act_foot_sum_day WS_temp_2m_med 0.49 

Nedap_act WS_temp_2m_max 0.49 

Nedap_act_foot_sum_day WS_temp_20cm_med 0.49 

Nedap_act_foot_sum_day WS_soil_temp_5cm_med 0.49 

Nedap_act_foot_sum_day WS_soil_temp_20cm_max 0.49 

LKV_protein Robot_fat 0.48 

Lactation_number WT_feed_intake_per_visit 0.48 

Milking_temperature 
Smaxtec_temp_without_drink_cycles

_max 0.48 

WT_feed_intake Smaxtec_climate_temp_min 0.48 

Nedap_act_foot_sum_day Smaxtec_climate_temp_max 0.48 

Nedap_act WS_temp_20cm_max 0.48 

Nedap_act_foot_sum_day WS_soil_temp_20cm_med 0.48 

LKV_protein Robot_milk_yield_in_current_lactation 0.47 

Nedap_act_foot_sum_day Smaxtec_climate_temp_median 0.47 

Nedap_act Smaxtec_climate_temp_max 0.47 

Nedap_act_foot_sum_day Smaxtec_thi_median 0.47 

Nedap_act Smaxtec_thi_max 0.47 

Nedap_act WS_thi_med 0.47 

Nedap_act_foot_sum_day WS_thi_min 0.47 

Nedap_act WS_temp_2m_med 0.47 

Nedap_act WS_temp_20cm_med 0.47 

Nedap_act_foot_sum_day WS_soil_temp_5cm_min 0.47 

Nedap_act WS_soil_temp_5cm_max 0.47 

Nedap_act_foot_sum_day WS_soil_temp_20cm_min 0.47 

Body_weight WT_feeding_pace 0.46 

Nedap_act_foot_sum_day WS_temp_2m_min 0.46 

Nedap_act_foot_sum_day WS_temp_20cm_min 0.46 

Nedap_act WS_soil_temp_5cm_med 0.46 

Nedap_act WS_soil_temp_20cm_max 0.46 

Days_in_milk Robot_fat 0.45 

LKV_urea Robot_lactose 0.45 

Max_milking_flow Milking_temperature 0.45 

WT_feeding_duration WT_trough_visits_day 0.45 

Milking_temperature Smaxtec_temp_normal_median 0.45 

WT_feed_intake Smaxtec_climate_temp_median 0.45 

WT_feeding_duration_day Smaxtec_climate_temp_median 0.45 

Nedap_act Smaxtec_climate_temp_median 0.45 

Nedap_act_foot_sum_day Smaxtec_climate_temp_min 0.45 

Nedap_act Smaxtec_thi_median 0.45 

WT_feeding_duration Smaxtec_thi_min 0.45 

Nedap_act_foot_sum_day Smaxtec_thi_min 0.45 

Nedap_act WS_thi_min 0.45 
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Parameter 1 Parameter 2 Correlation 

Smaxtec_temp_min WS_temp_20cm_min 0.45 

Nedap_act WS_soil_temp_20cm_med 0.45 

Smaxtec_climate_hum_min WS_rain_med 0.45 

Smaxtec_climate_hum_median WS_rain_max 0.45 

WT_feeding_duration_day WT_trough_visits 0.44 

WT_feeding_duration Smaxtec_climate_hum_median 0.44 

Nedap_act WS_temp_2m_min 0.44 

Nedap_act WS_soil_temp_5cm_min 0.44 

Nedap_act WS_soil_temp_20cm_min 0.44 

Smaxtec_climate_hum_max WS_rain_med 0.44 

Milking_flow Milking_temperature 0.43 

WT_feed_intake WT_feeding_duration_day 0.43 

Lactation_number WT_feed_intake_per_meal 0.43 

WT_feed_intake Smaxtec_act 0.43 

Nedap_act Smaxtec_climate_temp_min 0.43 

WT_feeding_duration_day Smaxtec_climate_hum_median 0.43 

Nedap_act Smaxtec_thi_min 0.43 

SCR_heat_probability_day WS_temp_2m_min 0.43 

Nedap_act WS_temp_20cm_min 0.43 

LKV_daily_milk_yield Milkings 0.42 

LKV_somatic_cell_count MDi 0.42 

LKV_protein Robot_somatic_cell_count 0.42 

Lactation_number WT_feeding_pace 0.42 

Milking_temperature Nedap_rum 0.42 

Milking_temperature 
Smaxtec_temp_without_drink_cycles

_median 0.42 

WT_feeding_duration_per_meal Smaxtec_thi_median 0.42 

SCR_heat_probability WS_temp_2m_min 0.42 

WS_wind_velocity_med WS_rain_med 0.42 

Milking_temperature WS_global_rad_med 0.42 

Robot_lactose Concentrated_feed_intake 0.41 

Robot_milk_yield_in_current_lact
ation WT_feed_intake 0.41 

Body_weight WT_feed_intake_per_visit 0.41 

Body_weight Smaxtec_act 0.41 

ENGS_lying Smaxtec_temp_median 0.41 

WT_feed_intake Smaxtec_thi_min 0.41 

Nedap_act_foot_median_day WS_thi_max 0.41 

WT_feed_intake WS_soil_temp_20cm_min 0.41 

WS_wind_velocity_med WS_rain_max 0.41 

Nedap_act_foot_sum_day WS_global_rad_med 0.41 
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𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐 ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝐵𝑜𝑑𝑦_𝑤𝑒𝑖𝑔ℎ𝑡: 𝑅𝑜𝑏𝑜𝑡_𝐵𝐶𝑆 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 7: Expansion of Model 3 with added BCS (Body condition score) and body weight 

parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝑀𝑖𝑙𝑘𝑖𝑛𝑔𝑠 +  𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
+  𝐿𝑦𝑖𝑛𝑔_𝑏𝑜𝑢𝑡𝑠 +  𝐿𝑦𝑖𝑛𝑔_𝑏𝑜𝑢𝑡𝑠: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  𝐿𝑦𝑖𝑛𝑔: 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 8: Expansion of Model 3 with added lying behaviour parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 + 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑅𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 
+  (𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 | 𝐹𝐶𝑁) 

Model 9: Expansion of Model 3 with added rumination parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠 𝑐~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
+  𝐹𝑒𝑒𝑑𝑖𝑛𝑔 +  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑: 𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 10: Expansion of Model 3 with added feeding behaviour parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑊𝑇_𝑡𝑟𝑜𝑢𝑔ℎ_𝑣𝑖𝑠𝑖𝑡𝑠 +  𝑊𝑇_𝑓𝑒𝑒𝑑𝑖𝑛𝑔_𝑝𝑎𝑐𝑒 
+  𝑊𝑇_𝑡𝑟𝑜𝑢𝑔ℎ_𝑣𝑖𝑠𝑖𝑡𝑠: 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 11: Expansion of Model 3 with added feeding behaviour parameters on RF1 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 
+  𝐿𝐾𝑉_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑_𝑖𝑛_𝑙𝑎𝑠𝑡_𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑚𝑒𝑑𝑖𝑎𝑛 
+ 𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑛𝑜𝑟𝑚𝑎𝑙_𝑚𝑒𝑑𝑖𝑎𝑛: 𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑤𝑖𝑡ℎ𝑜𝑢𝑡_𝑑𝑟𝑖𝑛𝑘_𝑐𝑦𝑐𝑙𝑒𝑠_𝑚𝑒𝑑𝑖𝑎𝑛 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 +  𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 | 𝐹𝐶𝑁)  

Model 12: Expansion of Model 3 with added body temperature parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑊𝑆_𝑡ℎ𝑖_𝑚𝑒𝑑 +  𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡ℎ𝑖_𝑚𝑒𝑑𝑖𝑎𝑛 
+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡ℎ𝑖_𝑚𝑒𝑑𝑖𝑎𝑛 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 13: Expansion of Model 3 with added climate parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑅𝑜𝑏𝑜𝑡_𝐵𝐶𝑆: 𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 
+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 14: Expansion of Model 4 with added BCS (Body condition score) and body weight 

parameters 



283 
 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛  ~ 𝑀𝑖𝑙𝑘𝑖𝑛𝑔𝑠 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 + 𝐿𝑦𝑖𝑛𝑔: 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝐿𝑦𝑖𝑛𝑔: 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 
+  (𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 15: Expansion of Model 4 with added lying behaviour parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛  ~ 𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑅𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 
+  𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟: 𝑅𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 + (𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 
+  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 16: Expansion of Model 4 with added rumination parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛  ~ 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝐹𝑒𝑒𝑑𝑖𝑛𝑔 
+  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑: 𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  (𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 
+  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 17: Expansion of Model 4 with added feeding behaviour parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑊𝑇_𝑓𝑒𝑒𝑑𝑖𝑛𝑔_𝑝𝑎𝑐𝑒 
+  𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟: 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 18: Expansion of Model 4 with added feeding behaviour parameters on RF1 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑚𝑒𝑑𝑖𝑎𝑛 
+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑛𝑜𝑟𝑚𝑎𝑙_𝑚𝑒𝑑𝑖𝑎𝑛 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 19: Expansion of Model 4 with added body temperature parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝑊𝑆_𝑡ℎ𝑖_𝑚𝑒𝑑 +  𝑆𝑒𝑎𝑠𝑜𝑛: 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡ℎ𝑖_𝑚𝑒𝑑𝑖𝑎𝑛 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 20: Expansion of Model 4 with added climate parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +  𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐿𝑦𝑖𝑛𝑔 
+  𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑚𝑖𝑛 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 + (𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 
+  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 21: Expansion of Model 3 with added lying behaviour and body temperature parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 
+  𝑅𝑜𝑏𝑜𝑡_𝐵𝐶𝑆 +  𝑊𝑇_𝑡𝑟𝑜𝑢𝑔ℎ_𝑣𝑖𝑠𝑖𝑡𝑠 +  𝑊𝑇_𝑓𝑒𝑒𝑑𝑖𝑛𝑔_𝑝𝑎𝑐𝑒 
+  𝐵𝑜𝑑𝑦_𝑤𝑒𝑖𝑔ℎ𝑡: 𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 22: Expansion of Model 3 with added BCS (Body condition score), body weight and 

feeding parameters 



284 
 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝑊𝑇_𝑓𝑒𝑒𝑑𝑖𝑛𝑔_𝑝𝑎𝑐𝑒 +  𝑊𝑇_𝑡𝑟𝑜𝑢𝑔ℎ_𝑣𝑖𝑠𝑖𝑡𝑠 
+  𝐿𝑦𝑖𝑛𝑔 𝑏𝑜𝑢𝑡𝑠: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 
+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝐿𝑦𝑖𝑛𝑔 𝑊𝑇_𝑡𝑟𝑜𝑢𝑔ℎ_𝑣𝑖𝑠𝑖𝑡𝑠: 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 23. Expansion of Model 3 with added lying and feeding behaviour parameters on RF1 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 
+  𝐿𝐾𝑉_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑_𝑖𝑛_𝑙𝑎𝑠𝑡_𝑙𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝐹𝑒𝑒𝑑𝑖𝑛𝑔 
+  𝑅𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛: 𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 + (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 24: Expansion of Model 3 with added rumination and feeding behaviour parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑐  ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  𝑀𝑎𝑥𝑖𝑚𝑢𝑚_𝑚𝑖𝑙𝑘𝑖𝑛𝑔_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
+  𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑚𝑒𝑑𝑖𝑎𝑛 
+  𝑅𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛: 𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑚𝑖𝑛 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 25: Expansion of Model 3 with added rumination and body temperature parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝑀𝑖𝑙𝑘𝑖𝑛𝑔𝑠 +  𝐿𝑦𝑖𝑛𝑔 +  𝑆𝑚𝑎𝑥𝑡𝑒𝑐_𝑡𝑒𝑚𝑝_𝑚𝑖𝑛 
+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  (𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 
+  𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 26: Expansion of Model 4 with added lying behaviour and body temperature parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝐹𝑒𝑒𝑑𝑖𝑛𝑔 
+  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦: 𝐿𝑦𝑖𝑛𝑔 +  𝐹𝑒𝑒𝑑𝑖𝑛𝑔: 𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 27: Expansion of Model 4 with added lying and feeding behaviour parameters 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦_𝑑𝑎𝑦 +  𝑊𝑇_𝑓𝑒𝑒𝑑𝑖𝑛𝑔_𝑝𝑎𝑐𝑒 
+  𝐿𝑦𝑖𝑛𝑔: 𝐿𝑎𝑐𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 +  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 28: Expansion of Model 4 with added lying and feeding behaviour on RF1 

𝐶𝑙𝑎𝑤 ℎ𝑒𝑎𝑙𝑡ℎ 𝑠𝑡𝑎𝑡𝑢𝑠𝑛 ~ 𝑀𝑖𝑙𝑘𝑖𝑛𝑔𝑠 +  𝐿𝐾𝑉_𝑝𝑟𝑜𝑡𝑒𝑖𝑛 +  𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 +  𝐹𝑒𝑒𝑑𝑖𝑛𝑔 
+  𝑅𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛: 𝐷𝑎𝑦𝑠_𝑖𝑛_𝑚𝑖𝑙𝑘 +  𝐹𝑒𝑒𝑑𝑖𝑛𝑔: 𝑀𝑖𝑙𝑘𝑖𝑛𝑔𝑠 
+  (𝐿𝐾𝑉_𝑑𝑎𝑖𝑙𝑦_𝑚𝑖𝑙𝑘_𝑦𝑖𝑒𝑙𝑑 | 𝐹𝐶𝑁) 

Model 29: Expansion of Model 4 with added rumination and feeding behaviour parameters 
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