Dissertation zur Erlangung des Doktorgrades
der Fakultat fir Chemie und Pharmazie

der Ludwig-Maximilians-Universitat Minchen

Next-Generation Mass Spectrometry for
Clinical and Spatial Proteomics

Sophia Anna Victoria Steigerwald

aus

Mombris, Deutschland

2024




This work is licensed under CC BY 4.0. https://creativecommons.org/licenses/by/4.0/




Erklarung

Diese Dissertation wurde im Sinne von 87 der Promotionsordnung vom 28. November
2011 von Herrn Professor Dr. Matthias Mann betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde eigenstandig und ohne unerlaubte Hilfe erarbeitet.

Minchen, den 11.11.2024

Sophia Anna Victoria Steigerwald

Dissertation eingereicht am 11.11.2024
1. Gutachter: Hon.-Prof. Dr. Matthias Mann
2. Gutachter: Jun.-Prof. Dr. Florian Meier-Rosar

Mindliche Prifung am 09.12.2024







Summary

Summary

While DNA provides the blueprint, proteins represent the functional and biologically
active units of a cell. As such the proteome is our closest proxy to the phenotype, and
can give important insights into cellular function and disease pathology. Although other
approaches exist, mass spectrometry (MS) based proteomics remains the method of
choice for fast, sensitive, quantitative, and high-throughput analysis of proteins. Over
the years, MS-based proteomics has seen great advancements and now enables the
routine analysis of thousands of clinical samples, near full proteomes and even single
cells. A key factor in these advancements are innovations in MS technology that enable
the instruments to push the boundaries of sensitivity, resolution, and acquisition speed.
In this thesis | therefore first focus on evaluating MS technologies and optimizing MS
acquisition strategies to expand the usability of MS instruments, and second to apply

them to clinical and spatial proteomics.

Across the MS workflow, one can greatly improve performance by implementing novel
technology, optimizing acquisition strategies and improving data analysis. In a first
project, | evaluated the full mass range application of ®SDM, a computational alternative
to standard MS signal processing. By providing a two-fold increase in resolution or
acquisition speed, as well as greatly improving signal-to-noise ratio, | showed that
®SDM could be a useful addition to extend the potential of existing Orbitrap mass
spectrometers for a wide range of proteomics applications. | then optimized a high-
throughput acquisition strategy for plasma proteomics on a state-of-the-art LC/MS
setup, which we applied to studying the effects of muscle loss in individuals undergoing
bedrest in a study funded by the Italian Space Agency. While follow up is needed, the
study identifies a potential biomarker candidate associated with muscle maintenance.
To fully make use of the data obtained with state-of-the-art MS instruments and ever
more complex data acquisition strategies, | contributed to benchmarking AlphaDIA, a
modular, open-source framework for data independent acquisition data analysis

developed in our lab.

| next contributed to applying novel MS technology for low input proteomics. The
Orbitrap Astral, as well as other highly-sensitive TOF detector instruments have pushed
the boundaries of sensitivity, acquisition speed and identification. This has shown to be
particularly advantageous for low input applications such as Deep Visual Proteomics
(DVP). Through a combination of these ultra-high sensitivity MS instruments, and

tailored DIA acquisition strategies, we were able to decrease the required cell input
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amount and broaden the range of application for DVP. Focusing first on tissues from a
single patient with signet ring cell carcinoma, we showcased the potential of DVP for
personalized medicine and were able to propose a treatment option that effectively
halted tumor progression. We next evaluated the phenotypic shifts after
xenotransplantation of organoid models. In a human mucosa model, we could show that
xenotransplanted tissue was closer to human physiology and regained its functional
profile in comparison to in-vitro organoid cultures and could provide valuable insights
into human disease. Lastly, we extended the previously described single cell DVP
workflow to formalin-fixed paraffin-embedded tissue, and applied it to study proteotoxic
stress in alpha-l-antitrypsin deficiency. Using a tailored MS method with optimized
variable DIA isolation windows, we were able to identify up to 3800 protein groups from

a single hepatocyte shape, which is the equivalent to ~half of a full cell.

In summary, my thesis highlights how a combination of technical, methodological, and
computational improvements can help to advance MS-based proteomics and bridge the
gap to clinical applications and personalized medicine.

Vi
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1. Introduction

1. Introduction

1.1 The human proteome

Nature's ingenuity is perhaps most evident in the intricate design of living cells, which
form the foundation of all biological complexity. While all cells carry the same genetic
information or genome, their individual functions and roles within a tissue or organism
can greatly differ. In order to explain how genetic information is translated into functional
diversity of living systems it is important to look at the different molecular components

of a cell.

The genome represents the complete set of genetic information of an organism.
Comprised of nucleotide sequences, the genome consists of only 1-2% protein coding
genes, as well as non-protein coding genes. These can have regulatory, structural and
other functional elements and seemingly non-functional elements, including “unk”
DNA.'-3 With the aim to use the genetic information to understand and potentially treat
genetic or multifactorial diseases, the Human Genome Society established the Human
Genome Project in 1990 to sequence the full human proteome.* After an initial draft in
2003, which was missing 8% of the genome, a first complete human reference genome
was published in 2022, with additional information on the Y-chromosome following in
2023.>" This complete reference genome, termed T2T-CHM13, encompassed more
than 3 billion base pairs of nuclear DNA and the annotation lead to more than 63,000

genes of which close to 20,000 are predicted to be protein coding.

Through efforts of the Human Proteome Project, 18,397 or about 93% of these genome
encoded or canonical proteins have been identified.® However the full human proteome
is expected to consist of hundreds of thousands or even millions of protein species.®*!
The portmanteau “proteome” was first coined at a conference in 1994 by scientist Marc
Wilkins, who described it as “the protein complement expressed by a genome”, but now
the term includes the set of all protein isoforms, modifications as well as protein-protein
interactions and protein complex assemblies.'>** These discrepancies between
canonical proteins and the total number of possible proteoforms arises from multiple
regulatory mechanisms operating between the transcription of DNA and the translated
protein. These biological processes include alternative splicing of mRNA transcripts,

genetic variations such as single nucleotide polymorphisms, co-transcriptional mRNA
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editing, and diverse post-translational modifications (PTMs). Each variation, or
combination of such, yields a different proteoform, with potentially unique biological
function. Highly adaptable to intrinsic and extrinsic stimuli and essentially the functional
and biologically active unit of every cell, the proteome is the closest proxy to cellular
phenotypes available.** Due to this close connection between the proteome and cellular
function, diseases phenotypes often manifest at the protein level. This makes proteins
ideal biomarker candidates for disease diagnosis, prognosis, treatment response, as
well as therapeutic targets.*15-17 With more than 600 canonical proteins being target by
FDA-approved drugs, and projected to represent half of the top ten selling drugs in 2023,
protein-targeted therapies have revolutionized current treatment approaches.®° While
this includes important classes such as kinase and proteasome inhibitors used in the
treatment of cancers, a notable and very recent example is the protein Semaglutide, a
glucagon-like peptide-1 receptor agonist sold under the brand name Ozempic. Initially
approved for the treatment of type 2 diabetes, it received much notice for its potential as
an anti-obesity drug, with more promising treatment effects than other available

medication.2%21

These clinical applications highlight the importance of investigating the proteome and
shedding light on its dark side that lies beyond the canonical sequences.?22% While other
approaches to study proteins exist, including gel electrophoresis and protein or antibody
arrays, the clear advantages of mass spectrometry (MS) based proteomics have made
it the method of choice for fast, sensitive, quantitative, and high-throughput analysis of

proteins. 142425

1.2 Mass spectrometry-based proteomics

1.2.1 Principles of proteomic data acquisition

Mass spectrometry-based proteomics primarily uses two main approaches: bottom-up
(shotgun) and top-down analysis. While bottom-up breaks proteins into small pieces and
top-down analyzes whole proteins, a third approach called middle-down has emerged

in recent years as an intermediate method (Figure 1).1426-2%

Top-down proteomics focusses on the analysis of intact proteins and omits any kind of
proteolytic digest. Single protein or protein mixtures are directly injected and subjected
to a full scan and subsequently fragmented for fragment ion scans (Figure 1, left). In
comparison to other MS-based proteomics approaches, it provides complete protein

sequence coverage and a holistic view of the proteoforms, including a high retention of
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Figure 1 Schematic overview of mass spectrometry-based proteomic approaches. In
both bottom-up (right) and middle down (middle) proteomics, proteins are proteolytically
digested, resulting in small and large peptide fragments respectively. Digested peptides are
separated by liquid chromatography and measured by mass spectrometry. Peptide and
fragment levels are consequently used to infer protein information during data analysis. In
top-down (left) proteomics intact proteins are injected, which allows for direct protein or
proteoform-level information. Proteins are then fragmented prior to MS2 scans.

PTMs, which allows the analysis of co-occurring PTMs. Top-down proteomics, however,
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is limited to the analysis of a few proteins at a time, with an additional upper limit on
protein size, and data analysis is more complex.?62%3! |n bottom-up and middle down
proteomics, proteins are subjected to proteolytic digest (Figure 1, right and middle),
however proteolysis in middle-down is restricted to achieve longer peptide fragments.3?-
3 Using this strategy, middle-down proteomics can achieve higher sequence coverage
than bottom-up proteomics and has an improved ability to characterize PTMs. As with
top-down proteomics, however, throughput is limited and data analysis is more
challenging.?®34 While both top- and middle-down approaches have their benefits, the
most common approach in mass spectrometry-based proteomics remains bottom-up or
shotgun proteomics.'*% This can mainly be attributed to the high sensitivity and
throughput this approach provides, as well as the ability to analyze complex samples,
such as tissues or whole cell lysates. Additionally, more mature technology and data
analysis tools make bottom-up more accessible and user-friendly than other MS-based
proteomics approaches.#2437-40 Bottom-up proteomic consists of three mayor steps, i)
sample preparation, ii) liquid chromatography coupled to tandem MS (LC-MS/MS), and
i) data analysis (Figure 2).4

1.2.2 Sample preparation in bottom-up proteomics

Starting with sample preparation, proteins can be extracted from a plethora of biological
material, including cell culture, body-fluids as well fresh-frozen or formalin-fixed paraffin
embedded (FFPE) tissue samples. For effective protein extraction and improved
enzymatic digest in tissue or cell culture samples, lysis buffers often contain protein
denaturants, such as detergents. Commonly, sample lysis is followed by a reduction and
alkylation step, where a reducing agent is used to disrupt disulfide bonds, followed by
the alkylation of free cysteines.*>* Extracted proteins are then digested using
sequence-specific proteases. Trypsin and LysC, the most commonly used proteases in
bottom-up proteomics, cleave C-terminal to arginine and lysine residues, which results
in peptides of 8-30 amino acid length and with a known proteolytic cleavage pattern.
The cleavage pattern of trypsin and LysC leaves a positively charged amino acid on the
C-terminal of the newly cleaved peptides, which increases subsequent ionization and
fragmentation efficieny.3>334546 Prior to MS analysis, samples might require sample
cleanup or can be subjected to various forms of offline fractionations for deeper
proteomic depth.*’-52 Additionally, the analysis of PTMs often requires a separate and

specific enrichment of modified peptides for optimal coverage.>*°
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Figure 2 Schematic of the bottom-up proteomics workflow. The overall bottom-up
workflow can be divided into three steps, i) sample preparation, ii) liquid chromatography
coupled to mass spectrometry (LC-MS/MS) and iii) data analysis. In i) sample preparation,
proteins are extracted from biological or clinical samples of interest, such as cell culture,
body-fluids or tissues, including archived formalin-fixed paraffin embedded (FFPE) tissue.
Extracted and solubilized proteins are enzymatically digested into peptides using trypsin,
LysC or other proteases. In ii) LC/MS/MS, extracted peptides are separated using liquid
chromatography and transferred to the mass spectrometer via electrospray ionization. First,
the MS acquires a full mass spectrum (MS or MS1 spectra, before selected peptide
precursor are fragmented for fragment ion scans (MS/MS or MS2 spectra). In iii) data
analysis, the obtained MS1 and MS2 spectra are compared to a database to confidently
identify peptides, infer protein sequences and quantify the identified proteins. These steps
are commonly handled by bioinformatics tools. The resulting peptide or protein group output
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tables are then used as the base for bioinformatic data analysis, statistics and data
visualization. Adapted from ref.4*

1.2.3 Liquid chromatography mass spectrometry

In a second step, the peptide mixture is separated based on their hydrophobicity using
high performance liquid chromatography (HPLC). In reverse-phase LC, the complex
peptide mixture is loaded onto an analytical column filled with porous silica beads that
have C18 hydrocarbon chains attached to them - this forms the non-polar stationary
phase commonly used in bottom-up proteomics. As peptides interact with these C18
chains through hydrophobic interactions, they can be gradually eluted from the column
using increasing concentrations of a nonpolar solvent like acetonitrile.%® This separation

step helps reduce the complexity of the sample before it enters the mass spectrometer.

For optimal separation of peptides, analytical columns, however, need to be robust,
reproducible and provide high chromatographic performance. As previous generations
of commercial capillary columns were associated with high costs and short lifetimes,
many labs, including ours, opted to produce their own in-house analytical columns.>"%8
With recent improvements in commercial column manufacturing, the trend however is
moving towards a fully commercial plug-and-play setup from column producers such as
PepSep, lonOpticks and Thermo Fisher Scientific. Apart from packed columns, micro-
pillar array columns show great potential for applications in proteomics by reducing peak
broadening.*®! The so called YPAC columns feature perfectly positioned and
geometrically ordered micropillars, which are etched into silicon wafers and form

separation channels.®23

The drive for more reliable and consistent results has led to new choices in LC
instruments. One example is the Evosep One LC system, which offers preset, short
gradients for consistent results while maintaining high sensitivity. By operating at low
pressure, it reduces equipment wear and extends operating time. The system performs
multiple steps simultaneously between samples, allowing throughput of up to 500
samples per day.5 It also uses disposable trap columns called Evotips that extend the
main column's life and, in most cases, alleviate the need for additional sample clean up.
These Evotips reduce sample handling and potential sample loss, which is especially

valuable when working with small sample amounts.

Peptides at this stage are optimally separated; however they now need to be injected

into the MS. A crucial step in MS-based proteomics that was revolutionized by the



1. Introduction

introduction of electrospray ionization (ESI) source - lead by the team of John Fenn in
1989°% - that earned John Fenn a joint Nobel Prize in chemistry in 2002. In ESI, analytes
in solution are pumped through a capillary, which is maintained at a high voltage, and
nebulized at the capillary tip (Figure 3). This leads to the dispersion of charged droplets,
which are rapidly evaporated and undergo coulomb fission once the electrostatic
repulsion outweighs the droplet surface tension, and the consequent transfer of residual
charges to the analytes.®®%” These ionized analytes are then moved into the high
vacuum chamber of a mass spectrometer. Based on the initial principle, many
improvements have been made to increase the efficiency, such as the introduction of a
nanoESI source, which additionally enables the use of ESI for low flow gradients.®="° In
a standard bottom-up MS run, the MS is operated in positive mode, meaning the emitter
is maintained at a positive potential, and ionization of analytes happens through
protonation.®” The number of charges a peptide carries can depend on the experimental
conditions as well as peptide length and amino acid sequence.”*"® Tryptic peptides
generally carry at least two charges, though non-tryptic digestion or specialized
applications, such as immunopeptidomics, can also give rise to singly charged

species.3374-76

Solvent Coulomb
Analyte molecule . L
evaporation fission
+ Naked charged
+(®)+ analyte
X \ N J ¥4 —
x @ N . r MS vacuum
— * — +@+ — 4 * —
0 &% + ¥ R — chamber
' @+

& Charged parent + Charged progeny
1 Taylor cone droplet droplets

Power supply

Figure 3 Schematic of electrospray ionization (ESI). Analytes in solution are exiting a
capillary column or emitter in an electric field. At the orifice of the emitter, an electrospray or
Taylor cone is formed and the analyte solution is nebulized. This leads to the formation of
initially larger, charged parent droplets. Through solvent evaporation, the size of the droplet
is reduced until the Rayleigh limit is reached, where electrostatic repulsion of like charges
outweighs the droplet surface tension, and droplets undergo Coulomb fission to form smaller
progeny droplets. This process continues until only the naked charged analyte remains.
Adapted from ref.57

A mass spectrometer is essentially composed of three main components: an ion source

to ionize the analytes, a mass analyzer to determine the “weight” or mass-to-charge
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(m/z) ratio of the analytes, and a detector, which counts the number of ions at a given
m/z value.*®’” Having covered ESI as the most common ionization strategy in the
previous section, the next is the mass analyzer, whose principle role is to separate
analytes based on their m/z ratios. The most commonly used mass analyzer types
include quadrupoles, linear ion traps, time-of-flight (TOF) analyzers, Fourier transform
ion cyclotron resonance, and the Orbitrap analyzer.’®% Different analyzer types have
their strengths and weaknesses with regards to analyzer performance factors, such as
sensitivity, resolution, mass accuracy, and speed.*®"%8 For optimal performance,
different analyzer types are often combined in so called tandem mass analyzer
approaches.”®8 A common example being the combination of quadrupoles, for ion
package selection, with more advanced analyzers such as TOF or Orbitrap analyzers.
Regardless of the analyzer, precursor peptides are first profiled in a full MS or MS1 scan.
Then precursors are selected for fragmentation and fragment ion scans (MS2) are
recorded. Depending on the fragmentation technique used, different types of ions series

are produced (Figure 4).878

CID/HCD fragmentation

C-terminal X Yy z, X Y, z, X Y, 2
ion series R res e

N-terminal
a b C a b, C. a b, C, ion series

UVPD fragmentation ETD fragmentation

Figure 4 Peptide fragmentation pattern in mass spectrometry. Roepstorff-Fohlman
nomenclature for the fragmentation of protonated peptides. The potential cleavage points
along the peptide backbone are referred to as A, B, C or X, Y, Z depending on whether the
charge retention is on the N- or C-terminal peptide respectively. Collision-induced
dissociation (CID), including higher-energy collisional dissociation (HCD) produce b and y
ions, while alternative fragmentation techniques such as electron-transfer dissociation (ETD)
and ultraviolet photodissociation (UVPD) produce complementary c/z and a/x ion series,
respectively. Adapted from ref.8’

Bottom-up approaches generally rely on higher-energy collisional dissociation (HCD), a
type of collision-induced dissociation (CID), for fragmentation, which yields b and y ions.
Other fragmentation techniques such as electron-transfer dissociation (ETD) and
ultraviolet photodissociation (UVPD) can produce complementary ions, which are

particularly beneficial for top-down MS or the analysis of labile PTMs.8%-%
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The selection of precursors for fragment ion scans is a crucial step in mass
spectrometry. In discovery proteomics, we can differentiate between data-dependent
(DDA) and data-independent acquisition (DIA) (Figure 5, left and middle). As the name
data-dependent acquisition suggests, precursor selection in DDA relies on information
from MS1 scan. The n most abundant peptide precursors (topN) are sequentially
isolated, subjected to fragmentation and MS2 scans of the corresponding fragment ions
are recorded. This establishes a clear connection between a precursor and its
fragments, but the stochastic nature of the precursor selection reduces reproducibility,
which leads to a greater number of missing values across replicates. Moreover,
coverage of the dynamic range of a mass spectrum is limited by the number of topN

peaks that can be selected.®>%3

In contrast to DDA, data-independent acquisition successively cycles through the entire
mass range using a set of pre-defined isolation windows. Within these isolation windows,
all detectable precursors are co-isolated and fragmented. This overcomes the dynamic
range and reproducibility limitations of DDA, and can greatly increase proteomic
depth.**°" However, these advantages come at the cost of the loss of the direct
precursor-fragment relationship and increased spectral complexity, which requires more
advanced search engines to process the obtained data.®*%%9° |n recent years multiple
such software suites have been released to effectively and confidently analyze DIA data,

each with their own advantages and disadvantages.3940:98.100-104
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Figure 5 Overview of data acquisition modes. In discovery-based proteomics, the goal is
to cover as wide a range of peptides and proteins as possible. This can be achieved with
two data acquisition modes, data-dependent (DDA) and data-independent acquisition (DIA).
In the former, the topN most abundant precursor of a given spectrum are sequentially
isolated and subjected to fragmentation before MS2 scans of the corresponding fragment
ions are recorded. In DIA the m/z range of the MS1 spectrum is divided into m/z isolation
windows of predefined size. Within these windows all precursors are co-isolated and
fragmented leading to a higher coverage of the precursors present at a given time at the
expense of increasing spectral complexity. In contrast to discovery proteomics, targeted
proteomics aims to specifically monitor a smaller number or peptides or proteins of interest.
Based on a predefined target list, precursors are selected for fragmentation. Here we
differentiate between selected or multiple reaction monitoring (SRM/MRM), in which a
certain number of peptide fragments of a given precursor are analyzed separately, and
parallel reaction monitoring (PRM), in which many or all fragment ions of a given precursor
are analyzed in parallel.

Discovery proteomics can give comprehensive insights into the proteome and help
identify proteins and peptides of interest for biological or clinical application, such as
disease biomarkers. Once these proteins of interest have been identified, researchers
can develop specialized MS-based assays to track these proteins — so-called targeted
proteomics. In contrast to discovery proteomics, the goal in targeted proteomics is to
specifically monitor a set of proteins or peptides of interest. Based on a pre-defined
target list, precursors are selected for fragmentation and product ion scans are recorded
(Figure 5, right). Fragment ions can either be analyzed sequentially (SRM) or in parallel

(PRM), depending on the mass analyzer used.05-110

10
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1.2.4 Computational mass spectrometry for data analysis

With the obtained mass spectrometry raw data in hand, we reach the data analysis step
of the general bottom-up proteomics workflow. As protein-level information is lost during
digestion, the identification of proteins from bottom-up proteomics samples is a complex
task. It requires matching the experimental MS2 (fragment) spectra to theoretical, library
or predicted fragment spectra to identify peptide precursors, inferring proteins (or protein
groups) from the identified peptides and quantifying the assembled proteins.4:11!
Peptide identification can be achieved in three ways: de novo sequencing, database
search approaches, or spectral library matching. In de novo sequencing peptide
sequences are directly read out of the MS2 spectra without the use of a reference
database. This is done using de novo sequencing algorithms, which by now often
employ deep learning, and reconstruct the peptide sequence by interpreting mass
differences between adjacent fragment ions in MS/MS spectra. Each mass increment
corresponds to a specific amino acid residue mass, wherefore this systematic mass
analysis along the peptide backbone enables sequential amino acid assignment.112-115
While this can be of interest for studying proteoforms or proteomes of organisms without
a complete reference genome, de novo sequencing has a lower accuracy and depth
compared to database-assisted search strategies. Additionally, search parameters,
such as peptide length, charge states and modifications, need to be limited as not to
inflate the search space.!

As information content and spectral complexity between DDA and DIA differ, the data
obtained by these two data acquisition strategies need to be handled differently. DDA
data is conventionally analyzed using spectrum-centric approaches, in which MS2
spectra are matched against reference proteome databases or a spectral library.3"117-
120 Most common DIA analysis tools on the other hand employ targeted peptide-centric
approaches, which query whether a predefined list of peptides from a spectral library
are detectable in the extracted ion chromatograms of the experimental data.%t121.122
This classical approach, however, requires the generation of an experimental spectral
library by acquiring deep proteomes of the target organism using DDA, which can be
tedious and time-intensive. So-called library-free approaches overcome the necessity
for an experimental library. These strategies involve converting DIA data into
pseudospectra that resemble DDA fragmentation patterns, enabling direct analysis with

established database search algorithms. Among others, notable examples include DIA
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Umpire or the directDIA search approach in Spectronaut.%8101:121.123.124 |n contrast, novel
algorithms, which employ machine learning or deep learning for the prediction of
peptides and peptide properties, allow the generation of tailored and fully in-silico
predicted libraries. This enables the peptide-centric search of all possible peptides and
precursors beyond the depth of experimental libraries. Moreover, these tailored libraries
can reduce search space in specialized applications such as immunopeptidomics by
decreasing the number of peptides in the spectral library to sequences likely present in

the sample.40:125-129

Most of these software suites, however, are of a closed nature, meaning the source
code and with it the details on how the search engine goes from MS raw data to a list of
guantified proteins is unavailable to the user. With new version releases claiming ever
higher identification rates from the same sample set, this can raise concerns about the
accuracy and confidence in these identifications. While there have been many
discussions recently about closed versus open-source proteomics tools, particularly in
connection with academic software commercialization, open-source proteomics
software has the potential to recover this trust in protein identifications. Moreover, an
open-source concept invites contributions beyond the source lab, enabling a faster
implementation of new features and functionalities. Since the code is freely available,
developers can rapidly update these tools to process data from new and complex mass
spectrometry scanning methods that traditional software cannot handle. One such
example - AlphaDIA (Article 3) a modular framework for the analysis of DIA data'*°
developed in our group - is highlighted in this thesis. Apart from being a fully open source
DIA search implementation, its main advantages are a feature-free identification
algorithm, which makes it particularly suitable for data produced by current state-of-the-
art TOF analyzers, and its end-to-end workflow using AlphaPeptDeep for library

prediction and directLFQ for quantification.*?63

During the protein inference, peptides are then assembled into proteins. As peptides are
often not unique, but rather can be assigned to a few different proteins, it is necessary
to introduce protein groups as not to inflate the number of identifications. If multiple
proteins share the same peptides and no uniquely distinguishing sequences have been

identified, these are assembled into a protein group.

Importantly, at both the peptide and protein identification level, the false discovery rates
(FDR) should be controlled.*®*? This is commonly done using target-decoy approaches

that help estimate the FDR. For this, decoys, such as reversed or scrambled sequences
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are added to a target list (e.g., the reference proteome of an organism of interest).
Obtained mass spectrometry data is searched against this combined database and,
based on the identification rate of target and decoy sequences, the FDR can be
calculated. At both the peptide and protein level, an FDR cutoff of 1% is proposed for

maximum confidence in identifications.32133

The advantage of MS-based proteomics, however, is the ability to not just identify, but
also quantify proteins. Protein quantification can either be achieved label-free (LFQ) or
using isobaric or non-isobaric labels. For quantification, LFQ directly uses the integrated
intensity of peptide peaks across the m/z and retention time (RT) dimensions. The core
principle is that when measuring a given peptide multiple times, the relative proportions
of its ions should remain consistent between multiple LC/MS runs. LFQ algorithms then
compare the peptide signals across different experimental conditions and normalize the
signals by using median-fold changes to calculate relative protein abundances or

intensities.131:134-136

In comparison to LFQ, labeling or multiplexing strategies add distinct tags to proteins or
peptides, depending on when the labeling step is incorporated in the sample preparation
workflow. These tags create predictable mass differences between otherwise physio-
chemically identical peptides and allow the differentiation and quantification of these
peptides. Labeling strategies also allow sample multiplexing, where peptides from
multiple samples are combined and analyzed in a single LC-MS run. This approach
increases analytical throughput while reducing technical variability, as all experimental
conditions are measured simultaneously. While these benefits often only hold true as
long as all experimental conditions can be processed together in a so-called plex, one
can also use one of the multiplexing channels to normalize between sets of multiplexed

samples.

Labeling strategies for LC-MS usually fall into one of two categories, isobaric and non-
isobaric labels. Isobaric labeling techniques, like TMT, iTRAQ, and EASI-tag, use
chemical tags composed of reporter ions and balancing or equalizing groups.37-140
During fragmentation, the reporter ions are released and used for quantification across
the experimental conditions, while the balancing groups ensure identical precursor
masses across different labels. While these are powerful tools with ever-increasing

multiplexing capabilities, they suffer drawbacks in terms of ratio-compression and are
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usually associated with high costs in comparison to LFQ sample preparation.'-143 Non-
isobaric labeling methods, such as SILAC, mTRAQ and dimethyl labeling do not rely on
reporter ions, but rather use the inherent mass differences between the employed labels
to distinguish between the differently labeled samples and quantify them from MS1
scans.'*1% However, the addition of such labels can introduce shifts in RT, that need
to be taken into the account by the analysis software. Moreover, they require near
perfect labeling efficiency, as un-labeled peptides are not considered for downstream
data processing. While some of these multiplexing strategies can only be used for DDA
analysis, many of the mentioned approaches have been adapted for use with DIA in

recent years.1°0-1%

Once the MS raw data has been processed, the search algorithm results in a list of
guantified protein groups and peptides, which can be used as the input for the last but
certainly not least step of data exploration, interpretation and visualization. For this
purpose, a plethora of bioinformatic tools have been developed that provide a framework
for statistical data analysis and biological or clinical interpretation. Perseus, MSStats,
and AlphaPeptStats, to name a few examples, are easing statistical analysis by having
ready to use implementation of common statistical analysis in a user friendly graphical
user interface or as assembled packages for coding languages such as R and
Python.'®6-1%° For additional data visualization, a multitude of packages is available. 5016
While these tools allow the visualization of proteomics data in a quantitative protein or
peptide centric-view, it is also important to evaluate data quality at the level of MS raw
data and peptide matching.'2-%4 This not only enables to manually confirm peptide
identifications on a spectrum level in case of low evidence, but is also important when
evaluating novel MS acquisition methods or technology (software and hardware
components) that directly impact the MS raw data. For one of the works presented in
this study (Article 1), we used such a tool, called AlphaRaw, to analyze distances
between neighboring peaks as a proxy for the resolving power provided by a novel raw

data processing algorithm, 164165

1.3 Mass spectrometry technology

Mass spectrometry stands as one of the most important analytical technologies in
proteomics and beyond. From the invention of what is now recognized as the first mass
spectrometer by J.J. Thomson in 1912, to modern mass spectrometers that enable the
analysis of full cellular proteomes in an hour, the field has undergone a remarkable
evolution.'%6-168 At the forefront of this evolution are the incredible technological

advancements in mass spectrometry technology that are continuing today, striving to
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make mass spectrometers ever more sensitive, fast, precise, and robust. Before we

delve into the latest MS innovations, it is important to first introduce a few key MS terms

(Table 1).

Table 1 Glossary of key mass spectrometry terms

Cycle time
Duty cycle
Dynamic range
Fill/Injection
time

Mass accuracy

Mass range

Mass resolution

Scan speed/rate

Sensitivity

Transmission
efficiency

Total time needed to complete a MS analysis cycle (MS1 + MS2
scans).

Proportion of time the mass spectrometer spends collecting
useful data.

Range between the most and least abundant peak. Can be
determined on an intra- or inter scan level.

Time allowed for the accumulation of ions before analysis.

Difference between measured and theoretical m/z value of an
ion. Typically expressed in parts-per-million [ppm].

Range of m/z values that can be analyzed.

Ability to distinguish between closely spaced peaks. Usually
expressed as m/Am (mass divided by peak distance).

The number of spectra that can be acquired per unit time. Often
expressed in hertz [Hz].

Defines the minimum amount of sample needed for detection.
Often expressed as a limit of detection or compared through
signal-to-noise ratios.

Percentage of ions that are successfully transferred through the
instrument.

While in an ideal world, a mass spectrometer would combine the best available
components, commercial instrument development is constrained by vendors' patents on
specific technologies, including hardware designs, software solutions, and scan modes.
For this reason, the instrument platforms from each vendor differs in core technologies,

components and as a result in performance.
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As mass spectrometry technologies from Thermo Fisher Scientific (TFS) played a
pivotal role in my PhD and journey through MS-based proteomics, | will primarily focus

on MS instrumentation and related innovations from this vendor in the next chapters.

1.3.1 A brief history of mass spectrometry technology in Bremen

Thermo Fisher Scientific sells a wide range of life science mass spectrometers from
single, to triple quadrupole to linear ion trap instruments to their range of hybrid or Tribrid
instruments. Hybrid instruments generally pair a quadrupole with the Orbitrap as a high-
resolution accurate mass (HRAM) analyzer, while Tribrid instruments have a secondary
mass analyzer in addition to the Orbitrap. In these pairings the quadrupole is generally
only employed for mass selection, meaning it selects or filters ions based on their m/z
values for downstream analysis. The available range of instruments is being
manufactured across two factory sites in Germany and the USA. During my PhD, as
well as during my master thesis, | had the opportunity to collaborate with the research
teams at the Bremen factory.

With not just TFS, but also Bruker Daltonics having their factories in Bremen, mass
spectrometry technology has a long history in there. Working on electromedical
instrumentation, physicist Ludolf Jenckel decided to build a mass spectrometer in 1947,
and was able to start a small division Atlas MAT with the aim to commercialize MS
instruments in Germany and thereby starting a now 77-year long journey of MS
innovation. Based on the quadrupole ion trap design of Wolfgang Paul, who would later
go on to receive the Nobel prize in Physics in 1989 for his development of the ion trap
technique, MAT introduced a commercial quadrupole analyzer in 1962.1%° Initially
underestimating its potential, MAT was prompted by the success of the first quadrupole
mass spectrometer from the US-based MS company Finnigan to introduce their own
guadrupole MS, the MAT 44, in 1977. This instrument featured a, for the time
unprecedented, resolution of 12,000, which could be attributed to the use of hyperbolic
guadrupole rods instead of round ones as was custom at the time. After the fusion of
MAT and Finnigan, these hyperbolic rods became a core technology in Finnigan’s
Quadrupole MS until the 1990s. This Fusion also marked the start of the scientific
collaborations between San Jose (Finnigan) and Bremen (MAT), which continues to this
day after Finnigan was acquired by ThermoElectron (later Thermo Fisher Scientific).
Their main competitor at the time was Vacuum Generators, a British MS company in
Manchester that after multiple changes in ownership was acquired by Thermo
Instruments. This prompted the formation of HD Technologies, a new company which

took over some of the former Vacuum Generators’ operations in Manchester. The same
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company employed Alexander Makarov, who developed the Orbitrap technology.!”
After HD Technologies was acquired by TFS in 2000, Alexander Makarov and the
development of the Orbitrap technology relocated to Bremen. This lead to the release
of the first commercial Orbitrap mass spectrometer, the LTQ Orbitrap, in 2005 and made

the Orbitrap technology the foundation for TFS’s high resolution mass spectrometers.*’*~
176

Build upon the learnings of previous ion trap designs such as the paul trap (i.e.
guadrupole), the kingdon and knight traps, as well as Yuri Golikov’s theory of ion motion
in quadro-logarithmic potential, the Orbitrap mass analyzer revolutionized the field of
mass spectrometry 81:169.170.177-179 The Qrbitrap consists of two outer barrel-like and a
central spindle-shaped electrodes that form an quadro-logarithmic electrostatic field

between them (Figure 6). During injection, the direct current (DC) applied to the inner

lons of different
m/z values

. \ Outer
/8 ' / electrodes
Central \ [/

electrode

Figure 6 Schematic of the Orbitrap design and trapped ion movement. The
Orbitrap mass analyzer features a spindle-shaped central electrode, which is
surrounded by two split barrel-like outer electrodes that form an electrostatic field. lons
are injected tangentially and begin to orbit around the central electrode, while
additionally oscillating back and forth along its length. The frequency of an ion’s
oscillation motion is proportional to its m/z value. The oscillation motion induces an
image current at the split outer electrodes and the recorded raw image current is
composed of the sine waves of all ions present in the Orbitrap. Fourier transformation
is used to decompose the convoluted signal to create a frequency spectrum, which
can be converted to a mass spectrum.

central electrode is ramped up quickly to contract the radius of the orbiting ions. A
principle that is referred to as ion “squeezing” and prevents the ions from hitting the outer

electrode at the opposite side of the Orbitrap during injection.*®° In the electrostatic field
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between electrodes, the ions are then kept on an even distance from the central
electrode due to an equilibrium of electrostatic attraction to the inner electrode and the
centrifugal force. lons are injected tangential to the central electrode and start orbiting it
while harmonically oscillating back and forth along its length.81:18%-182 The frequency (w)

of these oscillations can be described as:

where k is a constant, z is the number of charges (or charge state), and m the mass of
an ion. The frequency of ion motion therefore is a function of each ion’s mass-to-charge
or m/z value. If ions are introduced to the electrostatic field in a small temporal and
spatial window, ions of the same m/z will oscillate together, while ions with different m/z
values will oscillate at higher or lower frequencies. In all commercial Orbitrap
instruments, this tight requirement on kinetic energy, as well as the temporal and spatial
spread is achieved using the “C-trap”, a curved radio frequency (RF)-only quadrupole
with an opening in the electrode closest to the Orbitrap. In the C-trap ions are
accumulated and subjected to collisional cooling. Effective injection of ions in small ion
packages into the Orbitrap is achieved by rapidly ramping down the RF amplitude and
applying direct current (DC) gradients across the C-trap.1’®1° The axial oscillations of
ion rings are detected via image current, as the oscillating ions induce current on the
outer split electrodes. All ions inside the Orbitrap at a given time induce current
concurrently and the sum of these individual sine waves as a function of time produces
the raw image current or “transient”. Fourier transformation is used to deconvolute the
raw image current into its various frequencies, providing a frequency spectrum that can
be converted to a high-resolution mass spectrum.83184 Mass resolution (R) is defined
as the minimum distance between two m/z values the analyzer can resolve and is

therefore directly linked to the frequency resolution:

R = w 1 kZ _
T 20w 2AwN m Am

Two factors impact the resolution: the mass range and the timespan for which the
transient is recorded. First, in Orbitrap mass spectrometry, the resolution is inversely
proportional to the square root of m/z. The highest resolution can thus be achieved for
low m/z ratios. As the resolution is not stable across the mass range, usually a nominal
resolution at e.g., m/z of 200 is given. Second, for Fourier transform analysis, a longer
transient, i.e., a longer time span in which the image current is recorded, enables a more

fine-grained discrimination between frequencies and therefore m/z values. This can be
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explained by the fact that sine waves of similar but not identical frequency will become
increasingly out of sync the longer they are observed. From a practical point of view this
means, longer transients equal higher mass resolution. Even in the initial publication
from the year 2000, a resolution of 150,000 could be achieved.®! However, one should
note that in MS instruments with only a single mass analyzer, longer transients come at

the cost of decreased duty cycle and scan rate.

Over the years, the Orbitrap technology has been continuously improved with regards
to the achievable resolution, speed, and mass range. One such development was the
introduction of the high-field Orbitrap. A reduced distance between inner and outer
electrodes strengthened the electric field and increased the frequency of ion oscillations
and with it the mass resolution at a given acquisition time (transient length).'® The
achievable speed was then gradually improved up to 40 Hz (MS2 acquisition) in the
successively released Q-Exactive HF and Q-Exactive HF-X.1¥:187 Improvements in the
detection and processing steps could additionally improve resolution. So called
“enhanced Fourier transformation (eFT)” could increase mass resolution by a factor of
two for most experiments and a factor of 1.4 for rapidly decaying signals, such as the
signals of intact proteins.*®® Overall, the Orbitrap marks a key invention in MS technology
that launched MS into the modern era and considerably accelerated the pace of
discovery. While today’s Orbitrap analyzer appear as an elegant solution for mass
analysis, Alexander Makarov’s cabinet, or “museum” of failed prototype Orbitrap
electrode assemblies at the TFS factory in Bremen, highlights the importance of

perseverance in scientific innovation.

1.3.2 Modern mass spectrometry innovations

After delving into the history of mass spectrometry in Bremen, particularly the history of
what today is Thermo Fisher Scientific, as well as introducing the Orbitrap, one of the
key components of TFS’s high resolution accurate mass MS instruments, | would like to
focus on TFS’s innovations in mass spectrometry and related technologies. While | had
contact points with mass spectrometry and particularly mass spectrometry-based
proteomics throughout my university studies, my personal hands-on journey in mass

spectrometry began in 2019, which is roughly where I'd like to begin.
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Field asymmetric waveform ion mobility mass spectrometry

Field asymmetric waveform ion mobility mass spectrometry (FAIMS) is a type of
differential mobility spectrometry (DMS) that can be operated at atmospheric pressure.
lons in gas-phase are separated depending on their behavior in strong and weak electric
fields.181% FAIMS is often characterized by a curved or cylindrical electrode geometry,
in contrast to generally planar DMS technologies. Interfaced with electrospray ionization,
FAIMS can be used as an additional on-line orthogonal separation/fractionation between
LC and MS. 1°1:192 Commercialized in the early 2000s, it was first used in the form of a
front end accessory for SCIEX mass spectrometers, before a temperature controlled
version was implemented for TFS’s triple quadrupole MS in 2007.1921% While SCIEX
moved forward with a planar geometry, TFS build upon the cylindrical design featuring
an outer and inner electrode, where the asymmetric waveform is applied to the inner
electrode (Figure 7), and released an updated commercial interface, the FAIMS Pro, for
the use with their Tribrid MS instruments in 2018. Initially optimized for low flow

applications, its functionality was extended to high flow application.1%41%

Analytical Principle: Carried along by a carrier gas, ions enter the space between the
two electrodes to which an asymmetric high-voltage alternating current, the so-called
dispersion voltage, is applied. As the electric field continuous to alternate, ions
transverse the space between electrodes in a “zigzag” motion (Figure 7A). If an ion
exhibits differential mobility in the high vs. low field, it will eventually collide with one of
the two electrodes. Therefore, only ions with the same mobility across the alternating
field will be transmitted. For selective separation, an additional direct current termed
compensation voltage (CV) is applied that offsets the dispersion voltage and stabilizes
the flight path of specific ion packages (Figure 7B). Mobility in the FAIMS dimension is
influenced by a multitude of factors, including peptide length, charge state, shape, center
of mass.’®® As the optimal CV can differ between sample types as well as injection
amount and instruments, predetermining the optimum is recommended.*"-1% While this
is usually achieved through a so-called CV-sweep by injecting the sample multiple time
and acquiring data at different CV values, prediction models to infer optimal CV values

from peptide sequences have recently been proposed.2®
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Figure 7 Field asymmetric waveform ion mobility mass spectrometry (FAIMS). (A) lons
enter the space between the two electrodes to which an asymmetric high-voltage alternating
current, the so-called dispersion voltage, is applied. In this alternating field, the ions
transverse the space between electrodes in a “zigzag” motion. If an ion exhibits differential
mobility in the high vs. low field, it will eventually collide with one of the two electrodes. (B)
To offset the dispersion voltage, an additional compensation voltage (CV) is applied.
Through CV switching, either within a LC-MS run or between runs, the flight path of different
ion packages can be stabilized. These can then be analyzed in the interfaced mass
spectrometer. Adapted from references 198.19°

Benefits and application: The separation of ion packages using FAIMS can greatly

reduce chemical noise in the form of singly charged ions, which leads to increased
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sensitivity and protein identification. The cylindrical design blocks neutral molecules and
removes singly charged background ions, reducing contamination. This results in better
instrument performance and reliability. Since its release, FAIMS has been used for a
plethora of applications, including the analysis of full proteomes, PTMs, PTM crosstalk,
single cells, intact proteins, protein complexes, crosslinking mass spectrometry and
even the characterization of monoclonal antibody oligomers. 194198.201-213 Bepending on
the application, these make use of the ability to either increase proteomic depth by
reducing noise or the specific selection of proteins and peptide species in the FAIMS
dimension. In bottom-up proteomics, the application of FAIMS is particularly useful for
the analysis of low input and single cell samples. Here the decreased chemical noise
leads to Vvisibly cleaner mass spectra and increased peptide and protein
identifications.?*4-217 While the increase of protein identification still holds true to a certain
extent at higher sample load, the reduction of the total ion population can, however, lead
to a lower number of peptides-per-protein, decreases protein sequence coverage and
confidence in correct protein to peptide assignment.?°! The use of multiple FAIMS CVs
alleviates this problem and additionally acts as a form of online fractionation tool for
separating complex samples, protein and peptide isoforms and intact protein mixture
analysis. This is achieved in either a single LC-MS run, through CV stepping, or in
separate runs. While the former requires less sample material and MS time, acquiring
MS1 and MS2 scans at two or three CVs more than doubles or triples the cycle time,
respectively. As such, stepping through multiple CVs in a single LC/MS run, is more
suitable for use with longer chromatographic gradients, where broader peaks result in

higher tolerance for extended cycle times.!%

Comparison to other commercial ion mobility implementations: Most prominent
mass spectrometry manufacturers/vendors offer a commercial ion mobility (IM)
implementation, though they build on different IM principles. SCIEX’s SelexION device,
similar to FAIMS, it is based on differential mobility spectrometry, albeit in a planar
geometry. While the cylindrical electrode assembly blocks neutral and focuses the
traversing ions, a planar geometry has the benefit that it allows ions to simply traverse

the electrode assembly when no dispersion voltage is applied.1%:218

Apart from DMS/FAIMS, three more IM implementations (Figure 8) have been coupled
to MS: drift tube ion mobility spectrometry (DTIMS), traveling wave ion mobility
spectrometry (TWIMS) and trapped ion mobility spectrometry (TIMS). In short, DTIMS
utilizes a uniform, weak electric field and measures the amount of time an ion takes to

traverse a pressurized, gas-filled drift region. The ion mobility (ions traveling slow or fast)
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is influenced by collision events with the carrier gas and hence depends on the ion's
shape-to-charge ratio. DTIMS uniquely enables the accurate measurement of collisional
cross section (CCS) without the need for calibrant ions.2!821° While the drift region of
TWIMS is similar to that of DTIMS, it utilizes an oscillating electric field that pushes the
analyte ions through the drift tube. Measurement of CCS values requires prior calibration
with known ions, but ion focusing in the drift region increases ion transmission in
comparison to DTIMS.218220-222 T|MS essentially reverses the separation principle of
DTIMS by utilizing a moving gas phase and an electric field gradient. Analyte ions
migrate through the electric field against the gas drag and are immobilized in the electric
field gradient once the ion drift velocity and opposing gas velocity reach an equilibrium.
Traversed distance is proportional to an ion’s mobility, with low CCS (high mobility) ions
being trapped closer to the entrance, and ions with larger CCS values (lower mobility)
residing closer to the exit of the TIMS device. Trapped ion packages can then be

sequentially eluted from the TIMS device by reducing the electric field strength?23-226

Both TWIMS and TIMS have been coupled to ESI-MS, with TWIMS being implemented
on the Synapt and Select Series MS from Waters, and TIMS on Bruker's timsTOF
platform. In comparison to TWIMS and TIMS, FAIMS/DMS do not require pulsing ions
into the ion mobility device, but rather operate in a continuous fashion, through which
very high duty cycles can be achieved.?*® They do, however, lack the capability to
measure CCS values and offer lower resolution in comparison to other IM approaches.
The highest theoretical separation resolution can be achieved with TIMS, though at
reduced scan speed. For proteomics applications separation resolution is usually
balanced with speed. Through the capture and release mode utilized in TIMS, especially
with ‘parallel accumulation — serial fragmentation’ (PASEF) acquisition mode available
on the commercial timsTOF platform, ion utilization of up to 100% can be achieved.
85,227,228 The space-charge capacity of the TIMS device might, however, limit achievable
dynamic range in comparison to DMS and TWIMS. Additionally, more complex tuning
and calibration procedures might require higher levels of user training.?'822° While this

comparison only includes a selection of commercially available implementations, the
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IMS-MS field is rapidly evolving, improving and reimagining the available technology,

which might in future alleviate some of the limitations mentioned.3°-23¢
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Figure 8 Overview of available ion mobility implementations. Schematic was adapted
from reference??? as permitted by the CC BY 4.0 international license.

Overall, FAIMS provides a sensitive orthogonal analyte separation, that offers many
benefits for proteomic applications. Comparison to other IMS-MS implementation,
however also reveal potential shortcomings and opportunities for improvement.
Particularly, faster separation and CV switching will be crucial in enabling a higher ion
utilization. Operated at a single CV value, FAIMS nonetheless provides superior signal-
to-noise ratios for low input applications and, in our hand, extends instrument robustness

in high load applications.

Modern Quadrupole-Orbitrap instruments

20 years after the initial introduction of the Orbitrap technology, TFS released a new
instrument line, the Orbitrap Exploris (OE) series (Figure 9), which feature an

atmospheric pressure ion source interfaced with electrodynamic ion funnel via a high-
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capacity transfer tube, a quadrupole, a C-trap, an ion routing multipole, and an ultra-
high field Orbitrap analyzer.175201237.238 Three models were released, the Orbitrap
Exploris 480, Orbitrap Exploris 240 and Orbitrap Exploris 120. Named after their
maximum achievable resolution the three were supposed to serve different analytical
purposes. With the lowest resolution, the OE 120, was optimized for environmental, food
safety, and toxicology analysis, while the OE 240 and 480 were intended for high
performance omics and pharmaceutical applications. During my master’s thesis, | was
part of a team of researchers evaluating the Orbitrap 480 mass spectrometer for
proteomics applications.?° This OE model has been widely adopted in the field and
considered a workhorse instrument in many proteomics laboratories. In this thesis, | will

focus on this OE model.

High Field Orbitrap Mass Analzyer

High Capacity Advanced Active ‘ ; /

Transfer Tube  Beam Guide (AABG)

Advanced Quadrupole
Technology (AQT)

|
I[ F iF ]IIIDE JE
I L%ILI iF jIIID,\\__j‘E

EASY-IC Internal
Calibrant Source

X [

NI

& INilly/

C-Trap
OptaMax NG Independent lon Routing
Electrospray Charge Detector Multipole
lon Source
Electrodynamic
lon Funnel

Figure 9 Schematic of the Orbitrap Exploris mass spectrometer series. The OE series
of instruments features advanced quadrupole technology as well as a high field Orbitrap
analyzer for mass resolution up to 480,000. In comparison to previous instrument platforms,
it features a much smaller footprint, improved robustness and performance. Schematic was
adapted from reference?® as permitted by the CC BY 4.0 international license.

The most noticeable change in comparison to the Q-Exactive instrument platform is the
greatly reduced footprint and volume of the instrument. This could be achieved by
employing a single six-stage turbomolecular pump module instead of the previously
necessary bulky multi-pump systems. Modularization and alignment of all ion optical

components along a common axis in the new reduced footprint additionally increases
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ease of access. Interestingly, already at this stage TFS highlights that the analyzer
modularization and the instrument frame allow access for potential extension of the
instrument beyond the ion routing multipole (IRM).2*® A comment that in hindsight seems
to hint at instrumentation released 4 years later granting insight into the timeframe for

instrument development.

Apart from the reduced footprint and new pump module, many changes in the hard- and
software were implemented. Starting at the front of the instrument, the OE series marks
the unification of TFS’s instrument lines, by adapting the front-end or interface design
used for the Tribrid and triple quadrupole instruments. This allows for full compatibility
with ion sources designed for these instruments as well as Tribrid front-end options,
including the FAIMS Pro interface, which enables FAIMS. Use of the (Tribrid) EASY-IC
discharge ion source, allows for improved ppm-level mass stability by releasing a stable
flow of fluoranthene ions that can be used as lock masses, which increases robustness
of the system.?*® Moving on to the quadrupole, a so-called symmetrical ion loading was
introduced that distributes filtered-out ions more evenly across the quadrupole rod pairs
using automatic and regular polarity switches in the quadrupole. To ensure that both rod
pairs provide equal transmission and isolation efficiency and quality, the quadrupole
manufacturing has been improved. Overall, this can increase the time between
instrument cleaning, and therefore decrease downtime, up to a factor of two. On the
Orbitrap analyzer end, additional focusing lenses have been added to allow for a new
C-trap design that only applies the pull-out pulse to the slotted C-trap electrode (closest
to the Orbitrap), which increases ion focusing and reduces ion losses at the edge of the
extraction slot. Improved pulse control on the Orbitrap central electrode further allows

for electrodynamic ion squeezing of a much broader mass range.

In terms of software changes, the instrument control software was engineered to
resemble the control software of the Tribrid and triple quadrupole platforms. This
includes the harmonization of instrument setting such as collision energies between
these instrument platforms. The OE series additionally marks the first instrument with a
commercial implementation of the Phase-constraint spectrum deconvolution method
(®SDM) to increase resolution, albeit it was only applied to the small m/z range of TMT
reporter ions in an acquisition mode termed Turbo-TMT to ensure real-time computation

directly on the instrument computer.24-243

Overall, this enables resolution of up to 480,000 at m/z 200, a scanning speed up to 40

Hz (as on the HF-X instruments), and a mass range up to 6,000 m/z (or 8,000 in the
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biopharma version) all in an instrument of reduced footprint. This has led to a wide
spread adaptation of the OE instruments for the analysis of proteomes, PTMs, and even
single cells.20:244-24% Qur investigation of the effects of muscle loss on the human plasma
proteome (Article 2) could additionally showcase its use for clinical proteomics.?*° This
has been explored by many other labs as well, with notable examples being the
identification of biomarkers for alcohol-related liver disease and the proteomic profiling
of eczema, both of which could have clinical implications.'”?° Mass spectrometers of
the Exploris, and Q-Exactive series have even been used in combination with the
MassSpec Pen, a liquid-extraction-based device, for intraoperative tissue analysis in
clinics.?®2-2%* The instrument, however, is not exclusive to proteomics, but has been

applied in peptidomics, metabolomics and lipidomics.?>%-2%°

While a fourth instrument in the Exploris series, the OE MX, has been released for
pharmaceutical analysis of native proteins and oligonucleotides, there were no
commercial hardware updates or upgrades of the original three instruments 2019.2¢°
However, many (so far non-commercial) options to extend the functionalities and
performance metrics of the OE 480 have been explored. Focusing on the latter, TFS
developers could show that a mass resolution of up to 2,000,000 at m/z of 200 is
possible (4s transient time) on an OE 480 with a specifically selected Orbitrap assembly,
manual mass calibration and fine tuning. If these tuning requirements can be reproduced
in the serial instrument, this could enable the resolution of fine isotopic structure analysis
in proteomics, metabolomics as well as trace and petrol analysis.?®® Another way of
increasing mass resolution on the OE 480 is extending the use of ®SDM to the full mass
range, as described in this thesis (Article 1). Since transient time and mass resolution
are inherently linked, ®SDM can also be used to increase acquisition speed. Achieving
the same mass resolution in half the transient time is particularly of interest for short
chromatographic gradients, where peptide signals are compressed to increasingly more
narrow peaks, that require MS acquisition methods with short cycle times for adequate

guantification.

Extension of functionalities or information content seemingly focused on two topics:
collisional cross section (CCS) analysis and targeted proteomics. The CCS of an ion
reflects its size, shape, and charge and is generally used in structural characterization
of intact proteins or as an additional metric for separation in ion mobility mass

spectrometry (IMS).261.262 \While the analysis of CCS values usually requires a separate
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ion mobility device, two ways of measuring CCS on the OE 480 have been proposed.
Both utilize the ion decay rate in either time or frequency domain, with one primarily
being used for analysis full protein CCS values?®, and the other to the analysis of
peptide CCS in complex proteomic samples. The latter takes advantage of the decrease
in full scan resolution observed when operating at elevated ultra-high vacuum pressure
and high MS1 resolution. Switching between UHV pressure conditions, however,

requires minor hardware modifications.?6426

Implementation of targeted mass spectrometry similarly has been achieved in different
ways. On one hand, the use of an application programming interface (API) allows for
the use of MaxQuant.Live for global targeting and control of data acquisition in real-
time.2%® The TFS proprietary SureQuant workflow also offers real-time adjustment, but
relies on synthetic peptide spike-ins to trigger quantification scans. Predefined template
methods in the TFS method editor, additionally make this approach more user and
beginner friendly.?6-2¢° Lastly, a hybrid-DIA approach, using an API for method
customization, combines the benefits of targeted and discovery DIA. Triggered by the
use of heavy-labeled peptides, DIA scans are interjected with multiplexed MS2 scan of
the predefined peptides targets, which allows the targeted acquisition of peptide targets
and DIA data acquisition in a single run.?’

Lastly, I would like to highlight an implementation of ion pre-accumulation on a modified
OE that allows for an ion trapping and accumulation step in the bent flatapole parallel to
C-trap operations. In contrast to regular operations, the exit lens of the bent flatapole is
set to trapping mode at the end of an ion injection to the IRM. While the first ion package
is transferred from the IRM to the C-trap and subsequently to the Orbitrap, ions are
accumulated in the bent flatapole. At an acquisition rate of 40 Hz, max. acquisition rate
of an OE, the instrument sensitivity could effectively be doubled and a 100% duty cycle
was achieved. Moreover, acquisition rate could be increased to over 80 Hz without a
decreased duty cycle. This initial, albeit crude implementation showcases the potential
for proteomics applications and could be especially of interest in combination with an

inherently faster HRAM analyzer.?’*

Tribrid MS instrumentation

Since 2019 two members of the well-established Tribrid platform of TFS instruments
have been released: the Orbitrap Eclipse and Orbitrap Ascend mass spectrometers.

The Tribrid instrument platform utilizes the synergy of three different analyzers: the
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quadrupole mass filter, the Orbitrap analyzer and a dual-pressure linear ion trap (LIT)
analyzer (Figure 10).249272273 This allows for the parallelization of MS1 and MS2 scans,
where high resolution MS1 scans are recorded in the Orbitrap and fast, high sensitivity
MS2 scans are acquired in the LT.
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Figure 10 Schematic of a TFS Tribrid instrument. General instrument design as
suggested at release of the first Tribrid instrument, which features a quadrupole for mass
selectivity, an Orbitrap for high resolution MS1 scans and a linear ion trap (LIT) for fast and
sensitive MS2 scans. Due to the mass analyzer duality, MS1 and MS2 scans be acquired in
parallel as shown at the bottom right schematic for scan scheduling. Adapted with
permission from reference?*°. Copyright (2013) American Chemical Society.

The dual-pressure LIT, was first introduced in the LTQ Velos instrument, back in 2009
and features, as the name suggests, two ion trapping cells, which are maintained at
differential pressure levels and separated by a single aperture lens. First a high-pressure
cell is used for ion trapping, isolation and fragmentation. Second, the low-pressure
region is used for mass analysis. This dual-pressure design improves efficiency of ion
trapping and fragmentation, scan rates and mass resolution. 27227 |t additionally allows

the implementation of alternative fragmentation strategies to HCD. In modern Tribrid
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instruments, such as the Orbitrap Eclipse and Ascend, these include CID, ETD, UVPD
and even EThcD. As mentioned previously, these provide complementary ions to HCD
and are highly beneficial for the analysis of full proteins or PTMs. First tested on a
modified Orbitrap Fusion Lumos, the Eclipse and Ascend Tribrid MS also implement
proton transfer charge reduction (PTCR), which is based on the proton transfer from
multiply charged analyte cations to singly charged perfluoroperhydrophenanthrene
anions. This leads to the a reduced charge of the analyte cation and shifts the cations
to higher m/z value, effectively extending the analyte charge envelope.?’>27® Qver the
years, this has shown great potential for the targeted analysis of proteins as well as for
middle down proteomics approaches.?’>27"-280 |n comparison to the Orbitrap Exploris
series, a commercial upgrade allows for Orbitrap resolution of 1,000,000 at m/z of 200
on the Orbitrap Tribrid Eclipse MS and the Tribrid MS instruments are capable of MS3
or MS" analysis, which has proven to be especially effective for TMT, crosslinking mass
spectrometry and single cell analysis.?8¥-285 For more intelligent selection of ions for MS3
analysis, the instruments have an inbuilt implementation of the “Real-Time Search”
algorithm. Active instrument control through an instrument API and the use of Comet,
an open source search engine, allows to identify fragment spectra on the fly and to only
trigger the acquisition of quantitative spectra after confident peptide identification.?86-28°
As many of the mentioned features improve the analysis of isobaric, specifically TMT,
labeled samples, it is not surprising that the instruments also feature a TurboTMT
implementation of PSDM. &

In comparison to previous Tribrid instruments, the design of the Eclipse MS already
featured improvements such as advanced quadrupole mass filter and higher-
transmission ion optics, that lead to an increase in ion transmission of 25-50%. However,
it still utilized the Orbitrap/C-trap assembly components and electronics from the Q-
Exactive series.?® In the state-of-the-art Tribrid instrument, the Orbitrap Ascend, this is
updated to feature the improved Orbitrap/C-trap design of the Exploris series, mentioned
before. Moreover, the updated instrument design includes a new ion funnel for gentler
ion injection and, most notably, a second RF-only IRM in front of the C-trap.?*° Together
this lead to increased ion transmission, sensitivity, and speed, which translates into
increased identification rates for proteome and PTM analysis.?®®2°1 Additional
fragmentation modes, MS" functionality, and extended mass range make the Tribrid
instruments particularly suitable for top or middle down proteomics, and the analysis of

labile PTMs, where these functionalities are of higher value.??

30



1. Introduction

Orbitrap Astral MS - a novel HRAM Orbitrap-TOF instrument

Overall, the Exploris, Tribrid, and other Orbitrap MS instruments, especially in
combination with front end accessories, showcase the strengths of the Orbitrap
technology, namely high resolution, mass accuracy and dynamic range. However, the
technology also has its limitations. The Orbitrap has slower acquisition rates and
sensitivity in comparison to other MS instrumentations, such as high-end time-of-flight
(TOF) analyzers. While single-ion detection has been shown to be possible, this required
transient times of multiple seconds.?®®* With high resolution in FT-MS inherently being
linked to the transient time, Orbitrap resolution additionally needs to be balanced with
scanning speed for proteomics applications. Size-constraints additionally limit the
charge capacity and too high ion load leads to space-charging effects, impacting
resolution.?®42% While the addition of a linear ion trap in TFS Tribrid instruments
addresses some of these limitations, ion traps cannot provide the same level of mass
resolution and accuracy as HRAM mass analyzers. While many labs still prefer Orbitrap-
based instruments, recent improvements in TOF technology - like Bruker's timsTOF and
SCIEX's ZenoTOF - have gained popularity due to their enhanced sensitivity, resolution,
and speed.®52922%-29%  Particularly, the timsTOF instrument series, with its
implementation of TIMS and the PASEF acquisition mode, surpassed the Orbitrap
technology in terms of speed, sensitivity and duty cycle.8594-300

In 2023, TFS introduced some of the previously mentioned technical advances on their
Exploris and Tribrid series and worked on new analyzer concepts, which ultimately lead
to the introduction of a novel HRAM mass spectrometer, the Orbitrap Astral MS. The
asymmetric track lossless (ASTRAL) analyzer is a multi-reflector (MR) type TOF
comprised of two elongated, asymmetric ion mirrors, a pair of prism-shaped deflectors

and specifically shaped electrodes, termed ion foils.391:302

A brief history of multi-reflector time of flight (MR-TOF) analyzer: In and of itself,
MR-TOF is not a novel idea. As resolution in TOF MS is dependent on the total length
of the ion flight path, it is no surprise that the idea to reflect ions using electrostatic
mirrors first arose in the 1950s and was implemented in the 1970s.3%33% |n general, MR-
TOF mass spectrometer utilize repeated ion reflections between electrostatic mirrors to
achieve flight paths significantly longer that the instruments dimensions.3%>-3% Qver the

years, many researchers have developed different versions of MR-TOF instruments,
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each offering unique advantages and limitations.?°°-3!3 Notably, Anatoly Verenchikov
and his company MSC-CG Ltd made significant advances in MR-TOF technology. Their
work contributed to Waters Corporation's development of a high-resolution MR-TOF
analyzer, now used primarily in imaging mass spectrometry.3%314 Building on these
technological advances, multiple patent applications by TFS suggest that work on a MR-
TOF type mass spectrometer has been ongoing for at least 10 years.315-31° Before they
arrived at the released Astral analyzer, other avenues, such as the concept of a so-

called OrbiTOF analyzer were explored (Figure 11).320
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Figure 11 Schematic of the OrbiTOF design and ion motion. Reprinted with permission
from ref®2°, Copyright (2024) Elsevier under license 5901441070212.

As the name suggests the MR-type OrbiTOF analyzer is based on the Orbitrap
technology with the addition of periodic lenses, termed “button” lenses, that are wrapped
around the central electrode. Shortly, ions are accumulated in an ion trap, before being
pulsed between the inner and outer electrode of the OrbiTOF analyzer. There, ions turn
around the inner electrode as they additionally drift to the top of the analyzer, before
being reflected back by a quadratic mirror potential. By the time the ions pass the
injection slot at the equator, they have performed a single orbit around the inner
electrode and are refocused by the first of a periodic series of button lenses. As ions
continue to oscillate around the inner electrode they pass the subsequent button lenses,
which prevents beam dispersion, and finally hit a multi-channel plate detector. While this

approach could achieved mass resolution up to 70,000, because of limitations in ion
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transmission as well as flaws concerning the button-lens based refocusing, the

development was discontinued in favor of the Astral MR-TOF concept,301:302:319.320

The Orbitrap Astral MS components: The Orbitrap Astral (OA) MS marks the start of
a new instrument line, which combines TFS advanced quadrupole and Orbitrap
technologies with the novel Astral analyzer, and is a step up in sensitivity, resolution and
speed in comparison to previous instrument generations. 31302 While OA components
up until the IRM are kept consistent with the OE 480 MS, the IRM is then interfaced with
the secondary instrument part through an octupole ion guide. For optimal instrument
performance, the novel Astral analyzer is complemented by advanced ion optics, a novel
so-called ion processor and a custom-design high dynamic range (HDR) detector
(Figure 12).321:322
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Figure 12 Schematic representation of the Orbitrap Astral mass spectrometer. The OA
instrument design is based on the Orbitrap Exploris series and all instrument components
up until the IRM are kept consistent with the OE 480 MS. The IRM is then interfaced to the
ion processor, a dual-pressure trap, through an octupole ion guide. The ion processor
accumulates, fragments and thermalizes ions prior to orthogonal pulsed extraction into the
Astral analyzer. lons are traverse the space between two asymmetric ion mirrors on a
multireflection path until they reach the high dynamic range (HDR) detector. Reprinted from
reference3?? as permitted by the CC-BY-NC-ND 4.0 international license.

lon processor: The novel ion processor, a dual-pressure linear quadrupole ion trap,

serves the purpose of ion accumulation, fragmentation, and extraction for subsequent
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analysis in the Astral analyzer (Figure 13). In the high-pressure region of the ion
processor, ions are first accelerated and undergo HCD fragmentation.
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Figure 13 An ion processor for parallelized ion processing. Schematic representation
of the ion processor featuring a high- and low-pressure region for accumulation,
fragmentation, thermalization and orthogonal ion extraction. Reprinted from ref®?? as
permitted by CC-BY-NC-ND 4.0 international license.

They are subsequently moved to the far end of the high-pressure region by a DC
gradient, where they accumulate and are subjected to thermal cooling, before being
transferred to the low-pressure region by an increase in the DC offset. Here auxiliary
DC electrodes move the ions along RF ion guides to an axial potential well in the center
of the low-pressure region, where there are stored and thermalized for subsequent
orthogonal pulsed extraction into the mass analyzer. Ejection of ions is achieved by
raising the low-pressure region to a higher potential, which accelerated the accumulated
ions towards the Astral analyzer (Figure 14). Parallel to the pulsed ion extraction, the
high-pressure region of the ion processor is reopened for accumulation and
fragmentation of a second ion package. Overall, the dual pressure design of the ion
processor enables high ion transmission, as well as the parallelization of ion processing

steps for maximum instrument utilization.302322
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Figure 14 Potential and ion processing sequence in the ion processor. lons are injected
into the high-pressure region, fragmented and subsequently accumulated and “cooled” at
the rear end of the high-pressure region. An increase in DC potential allows the ions to move
to the low-pressure region, where the ions are thermalized in an axial potential well. lons are
then lifted to higher potential for orthogonal extraction. Reprinted from ref3?? as permitted by
CC-BY-NC-ND 4.0 international license.

Astral analyzer: The Astral mass analyzer is a multi-reflector-type TOF analyzer that
utilizes two elongated asymmetric gridless ion mirrors and ion foils to create a multi-
reflection ion flightpath of ~30 m. After extraction from the beforementioned ion
processor, ions packages pass through the injection optics, comprised of a pair of lenses
and two electrostatic prisms, and are shaped, focused, and then deflected at an optimal
injection angle. lons now oscillate between the ion mirrors and drift towards the rear end
of the mirror length. Over the course of 12-13 reflections, the ion drift rate is decelerated
by the slight, converging mirror tilt and ultimately reversed. This reversion is primarily
achieved by a returning electrostatic potential, which is formed by a combination of
mirror tilt and refraction on a set of specially shaped electrodes, termed ion foils. The
ion foils additionally compensate for temporal aberrations and potential misalignment of
the asymmetric ion mirrors. After another 12-13 reflections, the ions pass the second
electrostatic prism and are deflected to the HDR detector, which is located at the
proximal end of the ion mirrors. Over the full course of 24-26 oscillations, and a total
flight path of ~30 m, the ion packages are separated based on the m/z values. Drift

expansion, during the first set of oscillations towards the distant mirror end, lead to a
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spatial dispersion of up to 5 cm. While this is essential for decreasing Coulomb repulsion
forces, it also leads to overlapping of oscillations of different ion populations. The drift
spread, however, is reduced on their returning oscillations and the ions are refocused
spatially as a single ion package for before reaching the detector.301:302323 While multiple
options for dispersion control were tested, the described implementation outperformed
them.32* Overall, the combination of optimal injection optics, gridless design, and spatial
refocusing allows for very high ion transmission through the Astral analyzer, which
inspired the inclusion of “lossless” in the Astral abbreviation.®°132> Though it should be
noted that this is to be considered “relative lossless” in comparison to other TOF
analyzers. While the Astral analyzer has a reduced charge capacity in comparison to
the Orbitrap, the sensitivity and low noise levels in combination with advanced detector
technology enable single ion detection. Moreover, the long flight path routinely enables
mass resolution of over 80,000.

High dynamic range (HDR) detector: To fulfil the speed, dynamic range and resolution
requirements of the Astral analyzer, a novel HDR detector was designed and
manufactured in a cooperation between TFS and EI-Mul Technologies Ltd.** The
detectors features a unique combination of 10 kV post-acceleration with an integrated
correction for ion package tilt, BXE (crossed magnetic and electrostatic field) focusing,
an optically coupled detector, pre-amplification and dual channel acquisition (Figure
15). After ions completed their oscillations between the asymmetric ion mirrors, they are
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Figure 15 A novel high dynamic range detector. (a) Arrangement of ion optics in the
Astral analyzer. (b) Schematic of the high dynamic range (HDR) detector assembly,
including the post accelerator stack and insulating ceramic division. (c) Schematic of the
HDR detector. Adapted from ref3?! as permitted by CC-BY-NC 4.0 international license.

deflected towards the detector (Figure 15a). A post-accelerator accelerates the ions
from 4 kV to 14 kV and focuses them on the detector plate (Figure 15b, c). A “deflector”
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in close proximity to the detector allows for controlled tilting of the focal plane to align
the ion trajectory with the detector surface and compensates potential small mechanical
errors. lons enter the detector through an entry slot, strike a conversion dynode, and
produce secondary electrons. These focus in the BXE field and produce photons when
they converge with a scintillator. The photons in turn travel to the photomultiplier tube
(PMT), where the photon signal is amplified. To improve dynamic range of the detector,
the PMT output is split into two channels, each with their own amplifier, where one
channel gets amplified fivefold, while the other gets reduced to half its original level. The
high and low gain signals are then directed to separate analogue-to-digital-convertor
channels within a dual-channel digitizer. After noise thresholding in the digitizer, the data
from both channels is transferred to the instrument embedded PC and combined in a
single mass spectrum. Overall, the HDR detector achieves an intra-scan dynamic range
of 4 orders of magnitude, resolution of over 100,000, effective single ion detection and

a relative immunity to detector aging for an increased lifetime.32!

Mode of operation: Similar to the Tribrid series, the OA is operated in Orbitrap/Astral
mode, meaning MS1 scans are recorded in the Orbitrap, while simultaneous MS2 scans
are recorded in the Astral analyzer. While the instrument can additionally be operated
in Orbitrap/Orbitrap mode, the Astral analyzer can, at the moment, be exclusively used
for MS2 acquisition. For MS1 scans, the quadrupole transmits ions of a wide m/z range
to the C-trap, before they continue to the IRM for trapping and accumulation. During the
accumulation in the IRM, ions are “cooled” before being transferred back to the C-trap
and from there into the Orbitrap analyzer, once the desired number of charges is
reached. For Orbitrap MS2 scans, selected precursor ions are subjected to HCD
fragmentation in the IRM prior to mass analysis. For Astral MS2 scans, the selected
precursor ions are routed through the C-trap to the far end of the IRM, where they are
set to accumulate for a defined amount of time. The ion package is then transmitted
through the octupole ion guide to the ion processor, where the ions are subjected to
HCD fragmentation, thermalized and injected into the Astral analyzer for mass analysis.
When both analyzers are being utilized, MS1 and MS2 scans can be acquired in parallel.
In this case, the advanced ion control enables the simultaneous handling of five ion
packages. While the Orbitrap is performing an MS1 scan using the first ion package, a
second ion package is accumulated in the ion routing multipole. The segmented, dual
pressure nature of the ion processor allows for the handling of two additional ion

packages, one in the high-pressure region, where peptides are being fragments prior to
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MS2 analysis, and the other in the low-pressure region, where the ion package is being
focused prior to injection into the Astral analyzer. The fifth and final ion package is,
therefore being analyzed in the Astral analyzer. Fast Astral scanning speeds of up to
200 Hz make the Orbitrap Astral analyzer ideal for DIA applications using narrow, DDA-
like DIA isolation windows.202326:327 The fast scanning speed in combination, with high
resolution (>80,000 at m/z 524), mass accuracy (<5ppm) and sensitivity (single ion
detection), make it one of the highest performing MS for proteomics applications at the
moment. In the less than 1.5 years since its release, ~100 publications - peer-reviewed
or preprinted - have been published covering a wide range of applications for proteomics

and beyond 214,326-329

Comparison to state-of-the-art TOF analyzers: While TFS primarily relied on the
Orbitrap technology, in combination with a quadrupole (Q) and in the case of the Tribrid
series the LIT, for their HRAM mass spectrometers, many other vendors have advanced
their TOF analyzer technology. One break-through on this front was the introduction of
Bruker’s high-resolution Q-TOF, the Impact 11.2°6 Building on this technology, they later
introduced a TIMS device for an added ion mobility dimension and increased ion
usage.®2?2 However, many other vendors also have high resolution Q-TOF instruments
in their portfolio. Notable examples include Agilent’s 6546 Q-TOF and 6560 IM Q-TOF,
Waters’ Synapt XS and Select and Select cyclic IMS series, and SCIEX’s ZenoTOF

instruments.330-33%

TOF design and resolution: Most TOF instruments share a basic design: an
orthogonal accelerator pushes ions into a long flight tube, where they travel up to a
reflectron, bounce back, and hit a detector at the bottom of the tube. Similar to the Astral
analyzer, the Waters’ instrument lines, however, also feature a MR-TOF using gridless
ion mirrors. While the instruments achieve impressive resolution of > 300,000 at m/z
785, they are comparatively slow with a scan speed of 30 Hz, and are as of yet primarily
used for imaging mass spectrometry. It does, however, highlight the key benefit of MR-
TOF designs, which is high resolution without the need of an extensively long flight tube.
In line with this, the Astral analyzer offers the highest achievable resolution in
comparison to the other ESI-Q-TOF instruments discussed, followed by the Bruker

timsTOF instruments.

Scan speed: In terms of speed, both the Agilent and Waters instruments have
comparatively low scan rates with up to 50 Hz and 30 Hz respectively, however both of

their primary applications lie outside of the analysis of complex bottom-up proteomics
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samples. As mentioned before, the Waters instruments are interfaced with ion sources
for matrix-assisted laser desorption ionization (MALDI) and desorption electrospray
ionization (DESI) and used for imaging MS, while the mentioned Agilent instrument find
application in metabolomics and food safety. In these cases, the reduced scan speed
might have less of an impact. Bruker TimsTOF Pro 2 instruments reach a scan rate up
to 120 Hz in dda-PASEF, while their HT, SCP and Ultra models can reach up to 300 Hz.
The SCIEX ZenoTOF 7600 can reach scan speeds of up to 133 Hz, though their newest
release the ZenoTOF 7600+ promises up to 640 Hz. The Astral analyzer can reach up
to 200 Hz.

Sensitivity: The sensitivity of LC/MS instruments generally refers to their ability to
identify and quantify low concentrations of analytes. This is expressed as a signal-to-
noise ratio, which infers that sensitivity can be improved either through increased signal
intensity or by reducing noise. On the other hand, sensitivity is decreased by ion losses
and poor ion utilization. For conciseness of the sensitivity comparison, | will limit it to the
ESI-Q-TOF instruments with application in proteomics, namely from Bruker, TFS, and
SCIEX. Overall, their state-of-the-art Q-TOF instruments are all highly sensitive and
enable the proteomics analysis of low input samples down to single cells.?7:29733¢ |n the
Orbitrap Astral MS, ion transmission is exceedingly high. However, when using narrow
window DIA only a fraction of the ion beam is actually used for each subsequent MS2
scan. In comparison to this, both the ZenoTOF and timsTOF MS implement a pre-
accumulation of ions, followed by transmission of these ion packages. In the case of
ZenoTOF instruments the accumulation is performed in a so-called ZenoTrap, which
ejects the accumulated ions into the TOF analyzer. This greatly enhances ion utilization
and consequently sensitivity. While ion transmission for MS1 scans across the
instrument platforms is generally >90%, Q-TOF instruments generally suffer significant
ion losses in the orthogonal accelerator and in the flight tube. In the Bruker Impact Il
(2015), this culminated in the ion loss between the quadrupole and flight tube of ~40%.
Overall transmission in the flight tube was reduced to 74% due to the restricted grid
transmission of the reflectron.?°® While improved ion optics and ion focusing techniques
can improve ion transmission between the quadrupole and TOF flight tube, this remains
a bottleneck for sensitivity.?®” Likewise optimization of the reflectron grids or gridless
TOF designs can further increase sensitivity.32°>33” This is highlighted by the single ion
resolution that can be achieved with the gridless ion mirror design of the Astral

analyzer.*® lon losses are further reduced by optimal injection optics, initial drift
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expansion (to reduce Coulomb forces) followed by spatial refocusing on of the ions, as
well as by operating the analyzer at a pressure below 108 mbar (reduced collisional ion
losses), leading to a (near) lossless ion path to the Astral analyzer.301-302

Overall, each of these instruments achieve high performance LC/MS analysis, has their
advantages and limitations. While vendor patents often limit the dissemination of novel
technological advancements, they can none the less serve as inspiration for further

improvements.

1.3.3 Potential future directions of the Orbitrap Astral platform

As the Orbitrap Astral instrument was only introduced in June 2023, we can expect the
instrument platform to mature over the next years. An updated software release,
expected for release in June 2025, might reintroduce functionalities available for the
previous instrument platforms, such as a SureQuant-like targeting, and stepped collision
energies. Without direct intel from the mass spectrometry manufacturers, it can be
difficult to guess what improvements or innovations will be released next, but practical

considerations as well as literature and patent review might give some insights.

As a first, it could be of interest to enable Astral MS1 scans, which would allow
acquisition rates that surpass the Orbitrap’s capabilities. A patent from TFS, covering
tandem MS1 acquisition in two different analyzers, one being the Orbitrap, and the other
being referred to as a TOF, suggests that that Astral MS1 is actively investigated.33 For
this, one should however consider the lower resolution and dynamic range of the Astral
analyzer in comparison to the Orbitrap. Dynamic range limitations might be addressed
by further improvements in detector technology, whereas increased mass resolution
relies on a longer TOF ion path. While increasing the size of the Astral analyzer might
neither be feasible nor desirable, multi-pass methods, where ions traverse the Astral
analyzer for more than one pass, have recently shown the ability to potentially double

the achievable mass resolution.33°

In comparison to other state-of-the-art TOF instruments, the ion utilization and duty cycle
of the Astral analyzer is comparatively low. While advantageous for selectivity, dynamic
range and deeper proteome coverage, the current operations using narrow window DIA
discard a large percentage of the ion cloud. The implementations of pre-accumulation
step could overcome these limitations. lon pre-accumulation in the IRM has already
been proposed for the Exploris platform and could, if initial results are confirmed, be

adapted to the Orbitrap Astral instrument. A so-called “ion guide” patent, showing an
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different ion guide concepts that are supposed to facilitate ion path length differences,
as well as their implementation in an Orbitrap MS between bent flatapole and
guadrupole, could be interpreted as an inbuild mode of separation in addition to the
quadrupole.34°

While TFS seems to be working on incorporating the measurement of CCS values in
the Astral analyzer, the current design does not include an IM device. Based on the
description, the idea seems to be utilizing the same principle as suggested for the
Orbitrap Exploris, where a spectrum is acquired at two different pressure levels to infer
CCS.265341 1t will be interesting to see how the CCS information will be utilized in such
an approach. Nonetheless, a future implementation of an integrated IM dimension could

be a valuable addition, especially in combination with a trapping function similar to TIMS.

For direct transfer from targets identified with Astral discovery DIA to a targeted assay,
implementation such as SureQuant could improve easy-of-use. With the recent
developments in targeted proteomic instrumentation in mind, the transfer of the adaptive
real-time retention time alignment technology, from the TFS Stellar MS to the Astral,
additionally would be highly beneficial.®*2343

In line with the Tribrid instrument series, another interesting direction could be the
integration of fragmentation techniques beyond HCD. This would allow the generation
of complementary fragment ions and enable more detailed analysis of PTMs, intact
proteins, as well as increased sequence coverage. While a biopharma option of the
Orbitrap Astral was available at the release in 2023, this only includes extended mass
range up to m/z of 8,000 for the Orbitrap analyzer. In line with the potential for Astral-
based MS1 analysis, it might be needed to increase the covered mass range to allow

for the analysis of intact proteins and biomolecules.
As many of the discussed applications and functionalities might require hardware and

electronics changes, one will have to wait until the reveal of a 2.0 version of the Orbitrap

Astral to find out which, if any, of the mentioned patents have been implemented.
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1.4 Applications of MS technology for clinical and spatial proteomics

Although MS technology, innovation and MS method development were the central to
my PhD research, the continuous improvements in resolution, sensitivity, speed and
robustness were implemented with the intension to further our knowledge and find
answers to biological or clinical questions. In other words, they were made and meant
to be applied. In the following sections, | briefly highlight a few applications relevant to
the projects presented in my thesis.

1.4.1 Clinical proteomics

The proteome, with its dynamic changes in protein abundance, localization, and diverse
proteoforms, is our closest proxy to understanding cellular phenotype. Its high
adaptability to both intrinsic and extrinsic changes make it an invaluable window into
cellular function. As such dysregulation and the manifestation of disease often occurs
on the protein level, making proteins ideal candidates for disease biomarkers or potential
therapeutic targets.#17:344-347 Here, MS-based proteomics allows for the systematic
evaluation of protein-level changes caused by disease manifestation, progression, and
treatment administration. Moreover, once potential biomarkers have been identified,
targeted mass spectrometry could offer a high throughput solution for the identification

and quantification of protein markers in clinical testing.109:342.348-351

The study of proteomic changes in health and disease can utilize various sample types,
each with unique advantages and limitations. While cell cultures and model organisms
offer accessible approaches to studying human diseases, they often struggle to fully
replicate in-vivo disease phenotypes. Patient-derived cell culture or organoid models,
especially in combination with xenotransplantation can alleviate some of these
limitations.352-3%% On the other hand, clinics routinely collect patient material in the form
of body fluids, punch biopsies and surgical tissue specimens that offer direct insights

into disease pathology in the human body.

When working with patient material, a key consideration for clinical proteomics is the
assembly of well stratified clinical cohorts. Balancing potential confounders, such as
age, biological sex, life style, etc., between case and control cohorts can reduce the
chance study biases and misinterpretation of biomarker relevancy.*¢°-3¢ Larger cohort
sizes, additionally enable higher statistical power particularly in the study of diseases
with low effect size, and decrease the effect of cofounders (Figure 16).261352 While this

was previously limited by long sample acquisition times, advances in LC and MS
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technology now enable the routine analysis of thousands of samples.®43¢4-3¢6 Another
important aspect is the standardization of sample collection to prevent batch effects and
sample contamination.®’ This is particularly crucial for blood plasma proteomics, where
contaminations, for instance with cellular blood components, greatly affects sample
integrity and the validity of potential biomarker discoveries.3*
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Figure 16 Clinical cohort design. Larger cohort size for discovery proteomics offers the
double benefit of increasing disease effect size and reducing the influence of cofounders,
such as patient age, biological sex, and lifestyle. This enables more confident identifications
of potential biomarker. Adapted from ref3¢! as permitted by the CC-BY 4.0 international
license.
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The analysis of blood plasma offers a minimally invasive strategy to evaluate proteomic
changes in health and disease. Obtained through the removal of cellular blood
components, blood plasma generally contains three classes of proteins: Classical
plasma proteins that are generally produced in the liver, secreted and have an active
function in the blood, immunoglobulins, and so-tissue leakage proteins that are released
into the blood stream after tissue damage, and could potentially serve as
biomarkers.62368-371 A notable example for this are cardiac troponins, which are
routinely used in clinical analysis for the diagnosis of acute myocardial infarction.3’? In
depth analysis of the plasma proteome by MS, however, is limited due to the large
abundance range in plasma. From the most abundant to the least abundant protein,
plasma is expected to span at least 12 orders of magnitude. Additionally, about half of
the protein content in plasma is comprised of the classical plasma protein serum

albumin, and the 15-20 top most abundant proteins account for about 99% of the
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biomass. 2369370373374 A5 modern mass spectrometers can often only cover about 5
orders of magnitude within a single scan, these high abundant proteins limit the
identification of lower abundant proteins. More advanced data acquisition methods, such
as narrow window DIA, or additional orthogonal peptide separation, e.g., through ion
mobility implementations, can alleviate some of these difficulties. Moreover, multiple up-
stream sample processing steps for selective enrichment/depletion of plasma proteins,
e.g., using antibodies, acid precipitation or nanoparticles, have been implemented. In
combination with highly sensitive MS instrumentation, such as the Orbitrap Astral of
timsTOF HT mass spectrometers and optimized acquisition strategies, these methods

now enable identification of 1000-2000 proteins in a single LC/MS run,327-366.373,375-380

Fresh frozen or FFPE patient tissue samples, albeit more invasive than plasma, allow
for greater reflection of disease manifestation and progression by directly analyzing
proteins in the affected tissues. Higher concentration of disease-relevant proteins and
less dynamic range issues than plasma, might aid in the discovery of disease
biomarkers or therapeutic targets. Over the years, many atlases for in depth
characterization of organ-specific proteomes in health and disease have been published
and serve as great resources for the continued investigation of disease phenotypes.38-
388  Additionally, analysis of patient tissue retains the cellular context and allows for
studying cell-type dependent effects, the analysis of cell-cell interactions and signaling.
In combination with microscopy, histological staining approaches, and laser-
microdissection this moreover provides a spatial aspect by enabling the analysis of
different regions within a tissue, including the tissue microenvironment, or even more
fine-grained proteomic analysis at cell type resolution. This offers unique insights into

disease progression and heterogeneity.38%-3%

1.4.2 Deep Visual Proteomics

Many diseases manifest in the tissues of our bodies and change their normal
morphology. These observed changes can be traced back to innumerable molecular
changes on the level of single cells, each contributing to a heterogenous mosaic of cells
in the unique tissue architecture. Conventional proteomics approaches, however, often
lose this spatial information through the analysis of bulk tissue or even sorted cells. To
overcome these limitations, several spatial proteomics techniques have been developed
over the years. MS imaging, for instance, directly maps the spatial distribution of proteins
using a focused ionization beam to acquire mass spectra of defined tissue regions within

a sample.3%-3% Multiplexed ion beam imaging and imaging mass cytometry on the other
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hand utilize metal-labeled antibodies for protein mapping.3*°4%° Another approach is the
systematic antibody-based analysis of proteins to determine their cell type and tissue
specificity, as well as their subcellular localization. One such effort is the Human Protein
Atlas, a spatial proteomics resource that aims to map the entire human

proteome, 384401402

While these approaches have their benefits, our group aimed to combine several layers
of technology to generate molecular proteomic maps at single cell (type) resolution.
Termed Deep Visual Proteomics (DVP), this recent innovation combines high content
imaging, machine-learning assisted image-based cell classification and segmentation,
with laser-microdissection and high-sensitivity LC/MS (Figure 17).3%%4% DVP can be
used to investigate cell-type resolved proteomes from fresh frozen as well as FFPE
tissue, while preserving the spatial context. Briefly, tissue sections, mounted on
membrane slides**, are stained by immunohistochemistry or immunofluorescence to
define cellular features, such as the cell shape, diameter or granularity, and differentiate
between different cell types of interest by targeted staining. Extensions of this protocol
now allow for highly multiplexed staining.*% After high-resolution microscopy images of
the stained tissue sections are acquired, pre-trained deep learning-based models are
applied for image-based cell segmentation using the BIAS software, Cellpose or other
tools for biological segmentation.3%54%497 Cells of interest are then excised using laser-
microdissection at single cell resolution. The excised cells are directly collected in 96-
or 384-well plates and subjected to automated sample processing in low volumes for
optimal protein retention. Digested proteins are separated using liquid chromatography
and measured on a high-sensitivity mass spectrometer. In a standard DVP experiment,
multiple hundred cell shapes per cell type or morphological feature are pooled to obtain
high proteomic depth and a robust cellular phenotype. While the original manuscript
analyzed 500-1000 cell shapes per cell type and achieved a proteomic depth of ~5000
protein groups, recent innovation in MS technology maintain high proteomic depth at

greatly reduced input material (~100 shapes).48-410

Pushing this to the next level, colleagues in the department developed a workflow to
enable the analysis of single cells.?°”41! Based on other single cell omics, such as single
cell transcriptomics, single cell proteomics aims to analyze individual cells to capture
cell heterogeneity and reveal cellular dynamics, among others. Due to the limited sample

amount, achieving biologically relevant proteomics depth has been challenging.
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However, the rapid advances in cell isolation, sample preparation and MS technology
now enable to measure up to multiple thousand protein groups from single

CelIS.61'214'215’217’248’297
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Figure 17 The Deep Visual Proteomics (DVP) workflow. DVP combines high content
imaging, machine-learning assisted image-based cell classification and segmentation, with
laser-microdissection and high-sensitivity LC/MS. This allows the analysis of cell type-
resolved proteomes while preserving their spatial context in the analyzed tissue. Adapted
from ref*%®. Copyright (2022) Elsevier under license 5902730019602.

Relative abundance

Automated single-cell isolation
using laser microdissection

For classic single cell proteomics approaches cultured cells are usually dissociated and
sorted, for instance using the cellenONE cell sorter.#2413 |n comparison to this, single
cell deep visual proteomics (scDVP) extends single cell proteomics to the intact tissue
context. Initially applied to the analysis of single hepatocytes to evaluate proteomics
changes along the portal to central vein axis in murine liver, scDVP allows to map the
protein abundances of single cells back to their spatial location in tissue samples.*!
Apart from the study of tissue zonation effects, this is also advantageous for the analysis
of disease pathologies with a defined spatial component. One such example is the
distribution of cells with alpha-1 antitrypsin aggregates in fibrotic liver sections of patients

with alpha-1 antitrypsin deficiency presented in this thesis (Article 6).

Since its introduction in 2022, DVP has been applied to study a multitude of pathological
conditions, such as colorectal adenoma*!*, borderline ovarian cancer®***, and Hodgkin’s

lymphoma.**® In this thesis, we additionally showcase its potential for personalized
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medicine in signet-ring cell carcinoma, the evaluation of model systems for human
disease and elucidating proteotoxic stress signals in Alpha-1 antitrypsin deficiency
(Articles 4-6). Most notable, DVP demonstrated a breakthrough recently by revealing
the involvement of the JAK/STAT signaling pathway in a lethal skin disease called toxic
epidermal necrolysis, which lead to the successful treatment of ten patients with already
FDA-approved JAK inhibitors. This highlights the translatability of DVP for clinical
applications.*1°
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2. Aims of the thesis

As discussed in the introduction, advances in MS-based proteomics are greatly driven
by innovations in MS technology. In recent years, novel instruments have further pushed
the boundaries on sensitivity, acquisition speed, and accuracy, which now enables the
routine analysis of thousands of clinical samples, near full proteomes and even single
cells. While state-of-the-art MS technologies provide a basis for these applications, it is
necessary to optimize instrument parameters and acquisition strategies to utilize them
to their fullest potential. Having been involved in the technical evaluation of state-of-the-
art instrumentation®? during my master thesis, | developed a great interest in MS
technology itself and further explored this topic during my PhD. Overall, the overarching
focus of my thesis was to evaluate MS technologies, contribute optimal MS acquisition
strategies, and apply them to clinical and spatial proteomics. This goal also included,
facilitating a number of projects within the lab by giving introductions to MS technology,
designing DIA methods or directly advising on and designing acquisition strategies.

Translating the previously used setup and method to the state-of -the-art LC/MS setup,
| optimized a faster acquisition strategy for plasma proteomics, which we applied to
studying the effects of muscle loss in humans undergoing bedrest (Article 2). Focusing
on further extending the functionality of existing hardware, | collaborated with Thermo
Fisher Scientific to evaluate the full mass range application of a computation approach
to either increase the mass resolution or decrease the acquisition time of Orbitrap mass
spectrometers (Article 1). As MS applications are increasingly moving to shorter
gradients, acquisition speed is particularly limiting. Here, ®SDM could significantly
increase the performance of Orbitrap instrumentation without having to upgrade the

existing hardware.

Through our long-standing collaboration with Thermo Fisher Scientific, | then had the
opportunity to gain pre-access to the Orbitrap Astral MS and used my obtained
knowledge to optimize DIA acquisition methods for the application in our lab, including
full proteome analysis, multiplexed DIA, and low input applications. To fully make use of
this data and to establish a framework for the analysis of upcoming acquisition
strategies, | contributed to a modular, open-source framework, for the analysis of DIA
data, which is particularly suitable for data produced on state-of-the art time-of-flight
(TOF) analyzers (Article 3). The sensitivity, acquisition speed, and resolution of the
Orbitrap Astral MS has shown to be particularly advantageous for low input applications

and is broadening the applicability of deep visual proteomics (DVP). Three such DVP
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applications are included in this thesis. Focusing first on tissues from a single patient
with signet ring cell carcinoma (SRCC), we showcased the potential of DVP for
personalized medicine and were able to propose a treatment option that effectively
halted tumor progression (Article 4). We next used DVP in combination with the Orbitrap
Astral MS to evaluate the phenotypic shifts after xenotransplantation of organoid
models. In a human mucosa model, we could show that xenotransplanted tissue was
closer to human physiology and regained its functional profile in comparison to in-vitro
organoid cultures highlighting the potential of this approach for studying human disease
(Article 5). Lastly, we extended the previously described single cell DVP (scDVP)
workflow to formalin-fixed paraffin-embedded (FFPE) tissue, increasing the proteomic
depth by 50% using optimized variable window methods, and applied it to study

proteotoxic stress in alpha-1-antitrypsin deficiency (Article 6).
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3.1 Expanding the usability of MS technology

Paired with fast LC systems, modern MS has especially shown potential for applications
with clinical application, such as the identification of biomarkers in human health and
disease.®! While novel mass spectrometers offer great potential, multiple factors can
limit the usability of novel instrumentation. One of these is the cost associated with novel
high-resolution MS instruments, which make upgrading to the latest releases a privilege
of well-funded institutions. To bridge this performance gap, we evaluated a
computational solution to increase the acquisitional speed or resolution of existing
Orbitrap MS instruments (Article 1). As part of the MARS-PRE project, funded by the
Italian Space Agency, we evaluated the effects of muscle loss, caused by bed rest or
cancer cachexia, on the plasma proteome (Article 2) using the at the time state-of-the-
art Exploris480 MS. Another limitation can be the available analysis software suits, as
these might not be able to handle novel acquisition methods or the amount of data
produced my modern mass spectrometers. To overcome this, we introduced AlphaDIA,
a modular, open-source framework for DIA analysis (Article 3).

Article 1: Full Mass Range ®SDM Orbitrap Mass Spectrometry for DIA Proteome

Analysis

Molecular and Cellular Proteomics 23(2), 100713 (2024)

Sophia Steigerwald?, Ankit Sinha?, Kyle L. Fort?2, Wen-Feng Zeng?, Lili Niu3, Christoph
Wichmann*, Arne Kreutzmann?, Daniel Mourad?, Konstantin Aizikov?, Dmitry Grinfeld?,

Alexander Makarov?, Matthias Mann®2, and Florian Meier5*

1Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried,
Germany; °Thermo Fisher Scientific (GmbH), Bremen, Germany; 3Department Clinical Proteomics, NNF
Center for Protein Research, University of Copenhagen, Copenhagen, Denmark; “Department
Computational Systems Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany;
SFunctional Proteomics, Jena University Hospital, Jena, Germany

*Corresponding author

Since their commercialization in 2005, Orbitrap mass analyzers have become one of the
most widely used mass analyzers in the field of proteomics. This can mainly be attributed
to their high mass accuracy and resolving power. Over the years multiple improvements

in term of mass resolution, such as the high-field Orbitrap geometry or so-called
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enhanced Fourier transformation (eFT), have been made. However, while mass
resolution scales with transient time, or the duration for which the image current of the
trapped ions is recorded, practicality often limits the use of very long transients in favor
of higher quantitative accuracy. Multiple computational approaches have been proposed
to overcome these limitations, but only recently were able to provide additional spectral

content and enable high resolution at lower transient times,242416:417

In this study we apply one of these approaches, termed phase-constrained spectrum
deconvolution method (®SDM) to the full mass range, evaluate its performance and
highlight it's benefits for proteomic applications, particularly short gradient DIA. In theory
®SDM is able to either at least double the mass resolving power at a given transient half
the transient at a given resolving power in comparison to eFT.24? Here, | was able to show
that this theoretical principle indeed translates to an at least doubled mass resolution in
complex proteomes with minimal scan overhead time. This required me to extend my
analysis to the raw data level and systematically evaluate all observed peak distances in
the ®SDM spectra in comparison to the resolution limits imposed in eFT as a proxy for
®SDM resolving power. Overall, the improved resolution, significantly increased signal
to noise ratios and was especially beneficial in areas of high peptide density. As
proteomics applications are gradually moving to higher through-puts, increased resolving
power and faster acquisition speeds become more and more vital. In line with this, we
found that ®SDM signal processing is particularly advantageous for increasingly shorter
gradient times. While we focused on constant transient times (equals increased
resolution), short gradient DIA applications could additionally benefit from ®SDM'’s
possibility to shorten the transient time at a given resolution to either increase quantitative
accuracy or decrease spectral complexity. We hypothesize that @SDM could be a useful
addition to extend the potential of existing Orbitrap mass spectrometers and should be
applicable for a wide range of proteomics applications beyond the label-free DIA

acquisitions shown in this manuscript.

Contribution:

First-authorship. Under the guidance of Florian Meier-Rosar in Matthias Mann’s group
and in close collaboration with Thermo Fisher Scientific. Florian and | conceptualized this
study. | conducted the experiments and analyses presented in this paper, made all
figures and wrote the first draft of the manuscript. Florian Meier-Rosar and | edited the
manuscript with input from Matthias Mann and our collaboration partners at Thermo

Fisher Scientific.
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Full Mass Range ®SDM Orbitrap Mass
Spectrometry for DIA Proteome Analysis

Sophia Steigerwald'©, Ankit Sinha', Kyle L. Fort’, Wen-Feng Zeng', Lili Niu®,
Christoph Wich’mann4 , Arne Kreut;manna, Daniel Mourad®, Konstantin Aizikov’,
Dmitry Grinfeld®, Alexander Makarov®, Matthias Mann', and Florian Meier' "

Optimizing data-independent acquisition methods for
proteomics applications often requires balancing spectral
resolution and acquisition speed. Here, we describe a
real-time full mass range implementation of the phase-
constrained spectrum deconvolution method (©SDM) for
Orbitrap mass spectrometry that increases mass
resolving power without increasing scan time. Comparing
its performance to the standard enhanced Fourier trans-
formation signal processing revealed that the increased
resolving power of ®SDM is beneficial in areas of high
peptide density and comes with a greater ability to resolve
low-abundance signals. In a standard 2 h analysis of a
200 ng Hela digest, this resulted in an increase of 16% in
the number of quantified peptides. As the acquisition
speed becomes even more important when using fast
chromatographic gradients, we further applied ®SDM
methods to a range of shorter gradient lengths (21, 12, and
5 min). While ®SDM improved identification rates and
spectral quality in all tested gradients, it proved particu-
larly advantageous for the 5 min gradient. Here, the
number of identified protein groups and peptides
increased by >15% in comparison to enhanced Fourier
transformation processing. In conclusion, ®SDM is an
alternative signal processing algorithm for processing
Orbitrap data that can improve spectral quality and benefit
quantitative accuracy in typical proteomics experiments,
especially when using short gradients.

LC-MS has become the method of choice for the investi-
gation of protein sequences and complex proteomes (1, 2).
One of the most widely used mass analyzers for MS-based
proteomics is the Orbitrap analyzer, first described in 2000
(3-5). In Orbitrap MS, the image current of trapped ions is
recorded (“transient”) and converted into a high-resolution
accurate mass spectrum using Fourier transformation (FT).
As with other FT mass spectrometry (MS) analyzers, mass
resolution scales with the transient duration, and even though
enhanced FT (eFT) calculations enabled a twofold increase in

mass resolving power using the same transient (6, 7), the
mass resolution is inherently limited by the Fourier uncertainty.
Interpolation techniques have been proposed to address this
limitation; however, they lack the power to increase the
spectral information content (8, 9). Only more recently, several
approaches in ion cyclotron resonance MS have succeeded
and are able to provide the required mass resolution at shorter
transients (10-14). In particular, a novel computational strat-
egy for processing Orbitrap transients, termed phase-
constrained spectrum deconvolution method (®#SDM), has
the potential to double the mass resolving power at a given
Orbitrap transient and could thereby significantly improve
spectral quality and acquisition speed (15, 16). ®SDM has
already been implemented in the acquisition software of the
most recent Orbitrap mass spectrometers (17, 18); however,
because of the computational cost associated with the pro-
cessing algorithm, its application has so far been limited to a
narrow m/z region, such as the m/z range of tandem mass tag
reporter ions (19, 20).

Here, we reascned that a full mass range implementation of
®SDM should be highly beneficial for data-independent
acquisition (DIA), which has become a key driver of ad-
vancements in MS-based proteomics in recent years (21, 22).
First popularized on a quadrupole time-of-flight instrument
(21), DIA strategies have now been established on a multitude
of mass analyzers (23-29). Unlike data-dependent acquisition
(DDA), DIA does not sequentially fragment the top N most
abundant peaks but cycles through the entire m/z range using
isolation windows of defined width to simultaneously fragment
all detectable precursors in each window. However, opti-
mizing DIA methods often requires a compromise between
spectral complexity and cycle time associated with a tradeoff
between proteome coverage and quantitative accuracy (22,
24). In Orbitrap MS, narrow isolation windows and high mass
resolution reduce complexity, improving spectral deconvolu-
tion, but this comes at the cost of longer cycle times and
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DSDM Orbitrap Mass Spectrometry

therefore a decrease in the ability to accurately quantify
chromatographic peaks. To address this, here we investigated
the potential of full mass range ®SDM for DIA proteomics. In
particular, we tested the compatibility with high-throughput
DIA MS strategies using short LC gradients.

EXPERIMENTAL PROCEDURES

Sample Preparation

Human cervix carcincma (Hela} cells were cultured in Dulbecco’s
modified Eagle's medium (Life Technologies Ltd) containing 20 mM
glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin.
After harvest, the cells were resuspended in PreOmics lysis buffer and
incubated at 95 °C for 10 min to reduce disulfide bridges, alkylate
cysteine residues, and denature proteins. Samples were sonicated
using a rod sonicator (Branson SFX 250 Digital Sonifier) and subse-
qguently incubated at 95 °C for an additional 5 min. Hela cell lysates
were diluted with an equal volume of water and digested overnight
using equal amounts of LysC and trypsin (1:100 ratio at protein level}.
Following digestion, peptides were acidified to a final concentration of
1% TFA and purified on StrataTM-X-C (Polymeric Strong Cation)
cartridges. Peptides were eluted in 80% acetonitrile (ACN}/1.25%
NH.OH and subsequently dried using a SpeedVac (Eppendorf).
Sarmples were resuspended in buffer A* (0.1% TFA, 2% ACN, or buffer
A[0.1% formic acid (FA)]}, for measurement with the Thermao Scientific
EASY-nLC 1200 system or the Evosep LC system, respectively.
Peptide concentrations were estimated by measuring absorbance at
280 nm on a Thermo Scientific NanoDrop 2000 spectrophotometer.
For online MS injection using the Evosep One (LC} system, peptides
were |oaded onto Evotips according to the manufacturer's
instructions.

High-pH Reverse-Phase Fractionation for Spectral Library
Generation

For the short-gradient DIA experiments, gradient-specific spectral
libraries were generated from 48 high-pH reverse-phase fractions for
each gradient (5, 12, and 21 min) using a “spider” low-flow fractionator
(30). The fractions were dried using a SpeedVac and resuspended in
huffer A for Evotip loading and subsequent LC-MS analysis using the
Evosep One system. We chose the peptide input amount for frac-
tionation based on the injection amounts used for each gradient
length. Peptide concentrations were estimated using a NanoDrop
2000 spectrophotometer, and 200, 100, and 50 ng per fraction were
loaded on Evotips for the 60 samples per day (SPD}, 100 SPD, and
200 SPD LC methods.

LC-MS

All data were acquired on a Thermo Scientific Orbitrap Exploris 480
mass spectrometer (17). Standard LC measurements were perfarmed
using a Thermo Scientific EASY-nLC 1200 system, and an Evosep LC
system (31) was used for preprogrammed short gradients with
gradient lengths of 21, 12, and 5 min (60, 100, and 200 SPD). For the
EASY-nLC chromatography system, we used an in-house packed
50 cm, 75 um i.d. capillary column with 1.9 um Reprosil-Pur C18
beads (Dr Maisch) and a laser-pulled electrospray emitter. The column
temperature was maintained at 60 °C (sonation column aven). For the
120 min nLC gradient, mobile phase A was water with 0.1% FA, and
mobile phase B was 80% ACN and 0.1% FA in water. Peptides were
separated at a constant flow rate of 300 nl/min with a linear gradient of
5 to 30% mobile phase B within 95 min, followed first by a linear in-
crease from 30 to 65% mobile phase B within 5 min and then a linear
increase from 65 to 95% within ancther 5 min, where it was kept for

5 min before re-equilibration. Evosep measurements for 60 and 100
SPD (preprogrammed gradients) were performed using an in-house
packed 8 cm, 150 um i.d. capillary column with 1.9 um Reprosil-Pur
C18 beads (Dr Maisch). Column temperature was maintained at
20 °C. For the 200 SPD method, a commercial Evosep capillary col-
umn (EV1107) of 4 cm, 150 pm i.d. with 1.9 um Reprosil-Pur C18
beads (Dr Maisch) was connected to an Evosep 30 pm i.d. stainless
steel emitter (EV1086). Colurmn temperature was maintained at 40 °C
using a butterfly oven (Phoenix S&T). For both LC setups (EASY nLC
and Evosep One LC), in-house packed columns were interfaced with
the Thermo Scientific NanoSpray Flex lon Source, whereas the
commercial column and emitter setup (for Evosep 200 SPD) was
interfaced with the Thermo Scientific EasySpray lon Source. For all
measurements, spray voltage was set to 2400 V, RF level was set to
40, and the heated capillary temperature was set to 275 °C.

For EASY-nLC DIA, Orbitrap full MS scans were acquired from 400
to 1000 m/z at a resolution of 60,000 at m/z 200 with & normalized
automated gain control (AGC) target of 200% and a maximum ion
injection time of 45 ms. For MS/MS scans, the collision energy was set
to 30%, the resolution to 15,000 at m/z 200, the normalized AGC
target to 3000%, whereas the maximum injection time was set to
“auto,” and the mass range was m/z 400 to 1000. For a theoretical
cycle time of 3 s, 82 DIA windows of 7.3 n/z and an overlap of 1 m/z
were used. For Evosep One LC DIA measurements, we designed
gradient-specific methods. The general method settings for full MS
and MS/MS were as aforementioned, except for the full MS AGC
target, which was set to 300%. Cycle times and window placement
were optimized according to the expected peak width (as reported by
Spectronaut (Biognosys) based on 1.7 * full width at half maximurm} of
the different gradient lengths at 21, 12, and 5 min for 60, 100, and 200
SPD, respectively. For the 60 SPD method, 53 DIA windows of 11.3 m/
z with an overlap of 1 m/z were used (~2 s cycle time). For the 100 and
200 SPD methods, 38 DIAwindows of 15.4 mi/z with an overlap of 1 m/
z were chosen (~1.5 s cycle time). Experiments to generate Evosep
gradient-specific spectral libraries were performed using a DDA top12
method. Full MS scans were acquired from 400 to 1000 m/z at a
resolution of 60,000 at m/z 200 with a normalized AGC target of 300%
and a maximum injection time of 25 ms. Precursor ions were isolated
in 2 1.3 Thomson window, normalized AGC target was set to 200%
with & maximum injection time of 22 ms, and the normalized collision
energy was set to 30%. Precursors with charge states of 1+ or above
5+ were excluded from sequencing, and the exclusion time for pre-
viously targeted precursors was set to 30 s. All Orbitrap mass spectra
were recorded in centroid mode.

Real-Time and Full Mass Range ©SDM Signal Processing

The ®SDM has previously been described and applied successfully
to small m/z areas for improved mass resolution of tandem mass tag
reporter ions (15, 19}. In brief, the algorithm is capable of resolving
spectral features beyond the limitation imposed by the Fourier un-
certainty by deconvolving an observed standard eFT spectrum on a
multiply refined frequency grid with the sinc function as its basis
functions. The sinc function reflects the finite length of a transient
signal and is completely characterized by its length {.e., known a
priori). The ®SDM spectrum is a solution that minimizes discrepancy
between the model and the observed signals in sense of L2 norm,
being subject to a phase constraint in a narrow interval around the
precalibrated phase. To avoid overdetermination, the phase constraint
is relaxed to form a cone. For the full mass range implementation of
®&SDM, we interfaced the instrument internal PC with additional
graphics processing units (GPUs). ®SDM setlings were accessed
through a research prototype Tune, version (3.1.279.9, Thermo Fisher
Scientific). Before measurements, ®3DM phase and noise levels were
calibrated. ®SDM processing was performed on the external GPUs
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(“on box™}, the number of iterations was limited to 150, the noise
threshold was set to 1.41, and version 2 of the backfilling approaches
was applied.

Raw Data processing

DDA raw files for the spectral library were analyzed, and the libraries
were generated using the Pulsar algorithm in Spectronaut, version
15.6 with default settings. The 5 min library consisted of 26,822 pre-
cursor and 4196 protein groups, the 12 min library of 61,111 precursor
and 6824 protein groups, and the 21 min lbrary of 92,865 precursor
and §173 protein groups. Targeted data extraction from DIA raw files
was performed with Spectronaut, version 15.6 (32). The “Protein LFQ
Method” was set to MaxLFQ, “Data Filtering” to Q-value, the
“Normalization Strategy” to local normalization, and “Row Selection”
was based on Q-value percentile with a “Fraction™ setting of 0.2. For
library generation and direct-DIA analysis, raw files were searched
against a target/decoy database of the human proteome (UniProt,
September 2021) with and without isoforms (80,426 and 20,588 en-
tries). Trypsin/P was selected to generate peptides, and a maximum
number of two missed cleavages were allowed. For all searches,
carbamidomethyl (C} was set as a fixed modification, and acetyl
(protein N-term) and oxidations (M) were set as variable modifications.
For the MS1 and MS2 mass tolerance, we used the default value for
Orbitrap MS in Spectronaut (40 ppm). A 1% false discovery rate cutoff
at precursor and protein levels was applied.

Data analysis

Statistical analysis and data visualization of the Spectronaut output
tables was performed in Python (version 3.8.8) using matplotiib,
pandas, and seaborn. For the manual inspection of close proximity
peptide signals, we used a custom Python script based on alpharaw
to read RAW data, alphabase to process peptides and fragments, and
alphaviz (33, 34} to visualize peptide to spectrum matches hitps.//
github.com/MannLabs}).

For the analysis of neighboring peaks, because the resolving power
in Orbitrap MS is inversely proportional to \/m/z, we first calculated a
theoretical tolerance window as a function of m/z assuming a nominal
resolution of 30,000 at m/z 200. The resolving power is calculated as
R = (m/z)/(Am/z), with m/z being the m/z value of a given peak and Am/
z being the smallest peak-to-peak distance still resolvable at a given
resolving power. We used this tolerance window to select peaks in
close proximity to all peaks in all M52 spectra of a given LC-MS
experiment. The neighboring peak pairs were then filtered for noise
using 4% relative to the base peak as an abundance threshold and
retaining only pairs for which one of the peaks was not greater than
four times more abundant than the other one. The resulting peak
neighbor pairs represent peak pairs that require a nominal resolving
power of >30,000 to be resolved, and their m/z and interpeak distance
can therefore be considered as a measure of resolving power
(3, 35-37).

Signal-to-noise ratio (SNR} scatter plots were filtered for outliers
with log2 SNRs of 13 and 14 or higher for the x- and y-axis, respec-
tively. This was necessary because these outliers (supplemental
Fig. 544} represent instances, for which Spectronaut could not
determine an empirical noise value for a given extracted ion chro-
matogram (XIC}, resulting in an overestimation of the SNR.

Experimental Design and Statistical Rationale

All experiments were performed using aliguots of the same Hela
digest to minimize confounders from preanalytical steps. The 2 h HelLa
experiment for the analytical evaluation was performed in quadrupli-
cates, whereas all short-gradient experiments were performed in
triplicates. Evaluation of the effects of ®SDM on spectral quality,

however, was performed on a per-spectrum level over the averaged
information of thousands of spectra in a single run. To benchrmark the
two alternative signal processing algorithms, we kept the MS method
settings identical for each comparison, except for activating ®3DM or
not (eFT).

RESULTS
Full Mass Range ®SDM Computation

The ®SDM can resolve signals in the mass spectrum that
are closer than the limitation imposed by the Fourier uncer-
tainty. This is achieved by iteratively fitting the observed signal
to a refined frequency grid {15). To enable this computationally
expensive method for the full mass range, we interfaced an
Orbitrap mass spectrometer with GPUs for highly parallelized
processing (Fig. 1). In our setup, the image current induced on
the outer electrode of the Orbitrap analyzer {transient) is
marshaled from the instrument’s internal computer to the
GPUs. We reascned that four Titan Xp Nvidia graphic cards
installed on an auxiliary computer should provide sufficient
resources to process multiple signals in parallel with an opti-
mized CUDA C++ implementation of the ®SDM algorithm. The
calculated frequency spectrum is centroided and marshaled
back to the instrument computer, where it is converted into a
mass spectrum {4) and stored in the proprietary Thermo Fisher
RAW file data format.

The key feature of ®SDM is that it uses the phase as a
constraint for signal deconvolution. To speed up the compu-
tation, making use of the very high stability of the MS elec-
tronics, we precalibrated the phase function externally as part
of our weekly instrument maintenance routine. Furthermare,
based on preliminary experiments, we parametrized the
®SDM algorithm as detailed in the Experimental Procedures
section and set the number of iterations to 150, which yiel-
ded a good compromise between processing speed and
resolving power.

Resolving Power of Fuill Mass-Range ®SDM

Having established an experimental setup that should be
capable of processing full mass range spectra with ®SDM in
real time, we first inspected the resulting mass spectra with
complex proteomics samples. For this, we analyzed the Hela
cell line proteome with 2 h gradients with DIA using either
®SDM or eFT signal processing (Fig. 24). Our DIA method
comprised 82 equidistant isclation windows from m/z 400 to
1000 resulting in a cycle time of ~3 s with transient times of 128
and 32 ms for full MS and MS/MS scans. These correspond to
a nominal eFT resolution of 60,000 and 15,000 at m/z 200.
Figure 2B shows two representative mass spectra for eFT
{upper panel and ®SDM {ower panel) with matching retention
time and isolation window between the two raw files. As ex-
pected, both spectra appeared very similar (Fig. 28 and
supplemental Fig. S1). Upon closer inspection, we observed
additional peaks in the ®SDM spectrum in close proximity to
peaks that ®SDM and eFT had in common. To investigate the

56

Mol Cell Proteomics (2024) 23(2) 100713 3



3. Publications

®SDM Orbitrap Mass Spectrometry

#>

J | {}
Orbitrap Mass
Spectrometer

transient FT spectrum

GPUs FT spectrum

Orbitrap
transient

A

Orbitrap Apodized and zero- padded

(standard eFT)
R

(Centroided) m/z
Mass spectrum

> AR >

®SDM spectrum Centroided

®SDM spectrum

Fic. 1. ®SDM for Orbitrap signal processing. The image current induced on the detection plates of the Orbitrap by the oscillating ions is
amplified and recorded as a transient signal followed by Fourier transformation (FT). With the assistance of an array of GPU cards to compensate
for added computation costs, the resolution of the FT frequency spectrum is further enhanced by processing it with the ®SDM. The ®SDM
spectrum is centroided, converted to the mass spectrum, and then stored in RAW format on the MS intemal computer. ®SDM, phase-
constrained spectrum deconvolution method; GPU, graphics processing unit.

nature of these signals systematically, we parsed all MS2
spectra from a full LC-MS experiment with ®SDM to find all
neighboring peak pairs. Here, we defined close neighbors as
mj/z peak pairs with a distance that requires a resolving power
>30,000 at m/z 200 to be resolved (see the Experimental
Procedures section). In total, we observed >100,000 such
peak pairs across the active part of the LC gradient (between
scan #12,500 and #148,000) covering an m/z range between
100 and 1700. For these, we then calculated the theoretical
resolving power required to distinguish them in a mass spec-
trum at full width half maximum (Fig. 2C and supplemental
Table S1). The pairwise peak resolution across the m/z range
in bins of 100 m/z followed the expected inverse proportionality
between resolving power and y/m/z, while exceeding the
nominal eFT resolution by more than twofold. To further illus-
trate this point, we selected multiple peak pairs in a small m/z
window of m/z 984 to 992 in the ®SDM MS/MS spectrum
#35,938 at a retention time of 25.5 min (supplemental Fig. S2).
With eFT processing at a 32 ms transient, the resolving power
in this m/z range is ~7000, which means that two signals of
equal abundance need to be at least 0.15 m/z apart to be
resolved by eFT. Strikingly, all but one peak pair in this part of
the ®SDM spectrum were closer than 0.07 m/z, which equates
a resolving power >13,000 in this m/z range or >30,000 at m/
z 200.

Next, we investigated whether ®SDM signal processing
introduces extra scan overhead times. Comparing the

empirical average cycle times with either eFT or ®SDM pro-
cessing to the sum of all Orbitrap transient times revealed
overhead times of 0.39 and 0.54 s per scan cycle (Fig. 2D).
This means that, even at an MS/MS scan rate of about 30 Hz,
the additional data transfer to and back from the auxiliary
computer as well as the iterative signal deconvolution caused
only a minimal increase in cycle time of 0.15 s per 83 spectra.
The comparison to eFT processing suggests that most of the
overhead time can be attributed to AGC prescan events and
ion routing. The ®SDM processing time is mainly determined
by the number of iterations to minimize the difference between
modeled and observed signal. In our default setting, we
limited the number of iterations to 150. To refine this, we
varied the number of iterations from 100 to 200 in steps of 25,
using the same 2 h LC gradient (supplemental Fig. S3). We
observed a nearly linear increase in cycle time of ~0.03 s for
every additional 25 iterations, from 0.08 s for 100 iterations, to
0.20 s for 200 iterations. As the difference in cycle time be-
tween the 100 iterations and 150 iterations is negligible on the
chromatographic time scale, all remaining datasets used 150
iterations.

SNR and Mass Accuracy of Full Mass Range #SDM

Having confirmed that ®SDM achieves an at least twofold
higher resolving power across the full mass range with minimal
impact to the acquisition rate, we asked whether this benefits
mass accuracy and SNR in a practical proteomics setting. We
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Fic. 2. Spectrum quality with ®SDM in complex proteomics samples. Analytical evaluation of ®SDM and eFT signal processing using
quadruplicate injections of a Hela full proteome digest with a 2 h EASY-nLC gradient. A, data-independent acquisition (DIA) schema used to

acquire both standard eFT and ®SDM data. B, spectrum comparison

for a representative eFT (top) and ®SDM (bottom) DIA MS2 scan at a

matching retention time and DIA isolation window. For inspection of areas of lower abundance ions, the m/z region 405 to 450 is shown. Full
range spectra are provided in supplemental Fig. S1. C, Box-Whisker plot showing pairwise resolution of neighboring peaks with ®SDM as
compared with the nominal eFT resolution for an Orbitrap transient of 32 ms (solid line). See text for more details. D, comparison of summed
transient time (gray) to experiment DIA cycle times for eFT (blue) and ©®SDM (orange). ®SDM, phase-constrained spectrum deconvolution
method; DIA, data-independent acquisition; eFT, enhanced Fourier transformation; MS, mass sprectrometry.

first analyzed the data with a 'directDIA' spectrum library and
extracted SNRs. The Spectronaut software computes SNRs
for identified peptides based on XICs, where signal is the
maximum intensity of the summed fragment XICs within the
chromatographic peak boundaries and noise is the average
summed fragment XICs outside the peak boundaries.
Figure 3A shows the logarithmized SNR for peptides shared
between quadruplicate eFT and ®SDM injections (see also the
Experimental Procedures section). Our analysis revealed a
substantial shift toward higher SNRs with ®SDM (median
®SDM to eFT ratio of 1.5, supplemental Fig. S4), suggesting
that ®SDM successfully resolves interfering signals from

fragment ion traces (chemical noise). Figure 3B visualizes this
effect for one example chosen from Figure 3A (red dot,
OSDM:eFT ratio 2.0). The fragment XICs for the triply charged
precursor ion of VDINTPDVDVHGPDWHLK showed low CVs
in-between replicates and similar intensities in eFT (Fig. 3B,
upper panel) and ®SDM (Fig. 3B, lower panel), whereas the
interfering signals were markedly reduced with ®SDM in all
four replicates (supplemental Fig. S5).

Next, we investigated the mass accuracy (after nonlinear
recalibration) for ®SDM in comparison to eFT both on the
fragment (Fig. 3C) and precursor (Fig. 3D) ion level
(supplemental Table S2). The mass error distribution was
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Fia. 3. Signal-to-noise (SNR) and mass accuracy in complex samples. A, scatter plot representing the log2 SNR comparison between eFT
and ®SDM. Diagonal indicated in black represents line of origin, and S/N distribution is colored based on density. Position of
VDINTPDVDVHGPDWHLK_.3 peptide highlighted in red. B, comparison between extracted ion chromatograms (XICs) for precursor
VDINTPDVDVHGPDWHLK_.3 from an eFT (upper panel) or ®SDM (fower panel) run. C, comparison of calibrated mass error for all fragments
identified in eFT (blue) and ®SDM (orange). D, comparison of calibrated mass error for all precursors identified in eFT (blue) and ®SDM (orange).
$SDM, phase-constrained spectrum deconvolution method; eFT, enhanced Fourier transformation.

centered on 0 for both, and we observed only minor differ-
ences in shape and standard deviation between ®SDM and
eFT processing (supplemental Fig. S6). This confirms that
$SDM signal processing does not affect mass accuracy,
whereas the precision of mass spectral peak centroiding in
proteomics practice appears primarily limited by the transient
length rather than resolving power (38).

Effect of ®SDM on Identification Rates in Complex DIA
Spectra

Having established the analytical figures of merit, we
investigated the influence of ®SDM on peptide identification
rates and label-free quantification accuracy in a typical DIA
experiment (Fig. 4). In the quadruplicate 2 h Hela experi-
ments, on average, 47,883 and 55,607 peptides for eFT and
®SDM were identified with 'directDIA' (Fig. 4A, left panel).
This translated into an 8% improvement on the protein group
level and over 6000 identified protein groups per replicate
with ®SDM (Fig. 4A, right panel). Irrespective of the signal
processing method, we achieved an excellent quantitative
reproducibility with median CV <8% on the peptide and <4%

on the protein group level (Fig. 4B). Comparing only the
subset of shared peptide identifications, we found similar
median CVs of 7.1% and 6.6% for ®SDM and efT,
respectively.

To delineate the higher identification rates with ®SDM, we
plotted the distribution of peptide ions in m/z and retention
time. Figure 4C shows a consistent increase in the number of
identified peptides throughout the binned precursor mi/z
range (bin size of 50 m/z). Interestingly, the largest relative
increase of up to 12% was in the range of m/z 400 to 600,
where most peptides were identified in absolute numbers. In
contrast, in the higher m/z range with fewer peptides, the
increase by ®SDM was moderate. This result indicates that
OSDM outperforms eFT particularly in areas of high peptide
density. This is further supported by a comparison of iden-
tification rates along the retention time dimension (Fig. 4D).
Again, the highest gains were in the center of the chro-
matographic gradient in RT bins with the overall highest
number of identifications.

Peptide abundances with both eFT and ®SDM spanned
more than five orders of magnitude (Fig. 4E). Peptides
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Fic. 4. Influence of ®SDM on identification and quantification. Analytical analysis of the influence of the ®SDM and eFT processing
method on spectral quality was performed using quadruplicate HeLa measurements on a 2 h nLC gradient. A, bar plots comparing the number of
peptides (left) and protein groups (PGs; right) identified in quadruplicate measurements of 200 ng Hela digest in the eFT (blue) and ®SDM
(orange) dataset. Mean number of identifications indicated. B, comparison of cumulative CV values for shared peptides (left) and PGs (right). CVs
for peptides or PGs identified in eFT and ®SDM are represented in blue and orange, respectively. C, bar chart of precursor identification for eFT
(blue) and ®SDM (orange) along the retention time dimension with a bin size of 10 min. Increase in identification (in percent [%]) for ®SDM in
comparison to standard eFT is indicated in black. D, bar chart of precursor identification for eFT (blue) and ®SDM (orange) along the retention
mass-to-charge (m/z) range with a bin size of 50 (m/z). Increase in identification (in percent [%)]) for ®°SDM in comparison to standard eFT is
indicated in black. E, abundance distribution (left side) of proteins identified in the eFT (blue) and ®SDM (orange) datasets. Abundance is
represented as the log10 scale median protein intensities. The slight shift toward lower abundance for proteins uniquely identified in the ®SDM
dataset (red) in comparison to those that are common between the ®SDM and eFT datasets (orange) is highlighted in the histogram. F,
abundance distribution (left side) of peptides identified in the eFT (blue) and ®SDM (orange) datasets. The slight shift toward lower abundance for
peptides uniquely identified in the ®SDM dataset (red) in comparison to those that are common between the ®SDM and eFT datasets (orange) is
highlighted in the histogram. Abundance is represented as the log10 scale median peptide intensities. ®SDM, phase-constrained spectrum
deconvolution method; eFT, enhanced Fourier transformation.

uniquely identified in the ®SDM experiments were distributed Repid DIA Experiments With @SDM

across the entire abundance range, even though a compar-
ison with peptides that were in common between ®SDM and
eFT revealed a bias toward the mid-to-lower abundance
range (histogram in Fig. 4E). Consequently, the protein
groups uniquely identified in ®SDM runs were distributed
over the entire abundance range of about five orders of
magnitude, but with a higher density in the lower abundance
range (Fig. 4F). From this, we concluded that ®SDM—while
keeping all other experimental parameters constant—facili-
tates the detection of lower-abundance signals in complex
samples such as full proteome digests.

The field of MS-based proteomics is currently pushing for
increasing throughput to facilitate large experimental de-
signs and clinical studies (39-43). However, shortening LC
gradients entails increased spectrum complexity as more
peptides coelute and, in addition, accurate quantification of
narrower chromatographic peaks requires fast detection
systems. The most common strategies to accommodate
this in (Orbitrap) DIA methods are to either decrease the
number of DIA windows and thus increase the number of
cofragmented peptides for a fixed total precursor mass
range or to lower the mass resolution to achieve faster cycle
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Fic. 5. ®SDM for rapid DIA proteomics. DIA acguisition schemas were optimized for each gradient to guarantee at least three datapoints
per peak. Average peak width and chosen cycle time are shown in the left panel. Full MS, MS/MS transients, and number of DIA windows used
to achieve the different cycle times (1.5 s for 200 and 100 SPD methods, 2 s for the 60 SPD method) are indicated on the left. Number of protein
and peptide identification (right panef) in triplicates. HeLa measurements using the Evosep 5 min (200 SPD, top), 12 min (100 SPD, middle), and
21 min (60 SPD, bottom) gradient for eFT (blue) and ®SDM (orange). Total identifications across the triplicates shown in light blue and light
orange for eFT and ®SDM, respectively. Proteins and peptides guantified with CV values <20% are shown in medium blue/orange, whereas
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injected for the 5 min and 12 min gradients each, whereas 200 ng were used per injection for the 21 min gradient. ®SDM, phase-constrained
spectrum deconvolution method; DIA, data-independent acquisition; eFT, enhanced Fourier transformation; SPD, sample per day.

times (22, 24). Qur aforementioned results indicate that
®SDM is most beneficial in dense regions of LC gradients.
To test this hypothesis further, we turned to gradually
shorter LC gradients compressing the peptide elution win-
dow. We used the Evosep One LC system to run pre-
configured gradients for a throughput of 60, 100, and 200
SPD and designed DIA methods aiming for at least three
data points per peak on average. The three gradients
resulted on average in chromatographic peak widths of 5,
5.3, and 7.5 s (Fig. 5, left column). Accordingly, we adapted
the number of DIA isolation windows in the m/z range 400
to 1000 to achieve cycle times around 1.5 s for the 200 and
100 SPD methods, and 2 s for the 60 SPD method,

recording 128 and 32 ms transients for MS and MS/MS
scans (supplemental Fig. S7A).

As our objective was to maximize the proteome coverage,
we generated gradient-specific libraries with DDA from 48
high-pH reverse-phase fractionated Hela samples per
gradient. A database search using the Pulsar search engine
integrated in the Spectronaut software resulted in 4196, 6824,
and 8173 protein groups for the 200, 100, and 60 SDP gra-
dients, respectively. Matching triplicate single-run measure-
ments of 200 ng Hela digest with both eFT and ®SDM to the
respective library, we observed an overall increase in peptide
and protein group identifications by ®SDM (Fig. 5). In line with
our results for the 2 h gradient, we observed increasing SNRs
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even though this effect was attenuated for shorter gradients
(supplemental Fig. S7B).

Consistently for all short gradients, ®SDM increased the
number of identified peptides over conventional eFT signal
processing particularly in retention time and isolation bins with
high peptide density {supplemental Fig. S8). From the 60 SPD
gradient, we identified 45,201 peptides with eFT and 52,558
peptides with ®SDM, from which 5151 and 5536 protein
groups were inferred. Likely because of the still relatively long
cycle time, the fraction of peptides and proteins quantified
with a CV <10% remained constant, whereas we quantified
slightly more proteins with a CV <20% in the ®SDM experi-
ment. Using the 100 SPD gradient and a DIA method with
wider isolation windows resulted in 11.7% and 6.6% more
peptide and protein group identifications with ©®SDM. In line
with our starting hypothesis, we observed the highest benefits
of ®SDM for the 5 min gradient {200 SPD) with a 17.7% in-
crease in peptide and 15.1% increase in protein group iden-
tifications. Here, we identified over 3000 protein groups (out of
4200 in the library) from triplicate injections of 100 ng, while
maintaining a very good quantitative reproducibility with me-
dian CVs of 10% and 7% for peptides and protein groups.

DISCUSSION

The ®SDM signal processing method for Orbitrap MS can
achieve a more than twofold higher mass resolution than
conventional eFT for the same transient length but was previ-
ously limited to narrow m/z ranges because of its high
computational cost {19). Here, we have implemented ®SDM on
an auxiliary computer to parallelize data acquisition and signal
processing in real time. This setup allowed us to extend ®SDM
to the full mass range with only minimal impact on the acqui-
sition rate in DIA proteomics experiments and maintaining the
high mass accuracy of the Orbitrap mass analyzer. Analyzing
fragment ion peak pairs in complex spectra, we confirmed that
®SDM increases the mass resclving power by more than
twofold over conventional eFT in the full mass range. In DIA
experiments of a human cancer cell lysate, this resulted in 50%
increased SNRs, facilitating peptide identification and label-
free quantification. Furthermore, we found increased identifi-
cation rates in dense areas of chromatographic gradients,
making the combination of DIA with ®SDM particularly
attractive for short LC gradients. While we here focused on
increasing resolving power {(keeping transient length constant),
in such applications, it can be desirable to shorten the transient
length {(keeping resolving power approximately constant). The
faster scan rate would then allow for more data points per peak
(shorter cycle time) or lower spectral complexity by increasing
the number of DIA windows per cycle.

Similarly, while we focused on label-free quantification in
this study, we note that workflows using nonisobaric labeling
or isobaric labeling with high-mass reporter ions should
directly benefit from higher mass resolution {44-48). Moreaver,

faster scan rates open up opportunities for advanced DIA
acquisition schemes that, for example, include BoxCar (49)
scans for high dynamic range MS1 scans or cycle through
multiple compensation voltages with field asymmetric ion
mobility spectrometry (17, 50-53). We also envision that
®SDM could be even more beneficial for top-down prote-
omics as ion decay in the Orbitrap analyzer limits the practical
maximum transient length. We thus conclude that full mass
range and real-time ®SDM signal processing is attractive fora
wide range of MS-based proteomics applications.
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Article 2: Plasma proteome profiling of healthy subjects undergoing bed rest

reveals unloading-dependent changes linked to muscle atrophy

Journal of Cachexia, Sarcopenia and Muscle 14,439-451 (2023)
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*Corresponding author

Muscle atrophy, the weakening and decreasing of muscle mass, can be caused, among
others, by inactivity, by old age (sarcopenia) or cancer (cancer cachexia).*8-420
Inactivity-induced muscle atrophy is particularly relevant for patients undergoing long
hospitalization, chronic disease or also for astronauts in microgravity conditions, as the
onset of muscle atrophy has been observed after two days of unloading.*?* The extend
of muscle loss during inactivity, however, can be subject to patient-based
heterogeneity.*?? Establishing a minimally invasive measure to predict or monitor the
patient-based muscle loss during inactivity or other muscle atrophy inducing conditions

could therefore be of great use.

Here we leverage MS-based proteomics to evaluate the effects of two conditions
causing skeletal muscle atrophy, namely bedrest and cachexia, on the serum/plasma
proteome and identify potential biomarkers correlated with muscle loss. Due to the high
dynamic range, plasma or serum poses a unique challenge in MS-based proteomics
and requires optimized MS acquisition. With this we gquantified 500 and 400 plasma
proteins in the bedrest and cachexia cohort respectively. In the initial cohort of healthy
individuals undergoing voluntary bedrest for ten days, we identified 30 proteins that
show significant abundance changes during bedrest (timepoint 0 vs 10 days). Notably,
the tissue-leakage protein teneurin-4 showed a 1.6-fold increase at the bedrest endpoint
on day 10, while the abundance of extracellular matrix protein lumican decreased during

unloading and remained low in the recovery. Evaluating differences in individual
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offloading response, we additionally identified six proteins differentiating between
individuals that maintain muscle mass and those developing unloading-mediated
muscle loss. Four of which, haptoglobin-related protein (HPR), transthyretin and two
apolipoproteins were more abundant in atrophy-resistant subjects. Looking at cancer
cachexia, comparison of cancer patients with cachexia to the controls lead to the
identification of two significant proteins. Importantly, haptoglobin-related protein, was
twofold more abundant in non-cachexia controls. Together this indicates that levels of
circulating HPR correlate with the maintenance of muscle mass in both bed rest and

cancer cachexia and its potential use as a biomarker.

Contribution:

Co-authorship. This study was primarily conceptualized and conducted by the first
author Marta Murgia. The plasma cohort shown in the study was part of the MARS-PRE
project, funded by the Italian Space Agency in 2019. The aim of this consortium of
nineteen groups with multidisciplinary background was the identification of biochemical
functional biomarkers to characterize the adaptation of the human body to spaceflight
and variations in gravitational conditions. Bed rest was used as a ground-based model
for space missions. To verify whether the plasma proteins whose abundance changed
during bed rest were also affected in other types of muscle atrophy, we added to the
study a cohort of cancer patients with and without muscle wasting (cachexia). This
second cohort was measured on the Thermo Scientific Exploris platform. | familiarized
Marta Murgia with the Exploris 480 MS instrument and optimized the MS acquisition
strategy. | took part in data acquisition and analysis. Alongside the other co-authors, |
also contributed to revising and editing the manuscript.
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Abstract

Background Inactivity and unloading induce skeletal muscle atrophy, loss of strength and detrimental metabolic ef-
fects. Bed rest is a model to study the impact of inactivity on the musculoskeletal system. It not only provides informa-
tion for bed-ridden patients care, but it is also a ground-based spaceflight analogue used to mimic the challenges of
long space missions for the human body. In both cases, it would be desirable to develop a panel of biomarkers to mon-
itor muscle atrophy in a minimally invasive way at point of care to limit the onset of muscle loss in a personalized
fashion.

Methods We applied mass spectrometry-based proteomics to measure plasma protein abundance changes in response
to 10 days of bed rest in 10 young males. To validate the correlation between muscle atrophy and the significant hits
emerging from our study, we analysed in parallel, with the same pipeline, a cohort of cancer patients with or without
cachexia and age-matched controls. Qur analysis resulted in the quantification of over 500 proteins.

Results Unloading affected plasma concentration of proteins of the complement cascade, lipid carriers and proteins
derived from tissue leakage. Among the latter, teneurin-4 increased 1.6-fold in plasma at bed rest day 10 (BR10) com-
pared with BRO (6.E9 vs. 4.3E9, P = 0.02) and decreased to 0.6-fold the initial abundance after 2 days of recovery at
normal daily activity (R + 2, 2.7E9, P = 3.3E-4); the extracellular matrix protein lumican was decreased to 0.7-fold
(1.2E9 vs. 8.5E8, P = 1.5E-4) at BR10 and remained as low at R + 2. We identified six proteins distinguishing subjects
developing unloading-mediated muscle atrophy (decrease of >4% of quadriceps cross-sectional area) from those
largely maintaining their initial muscle mass. Among them, transthyretin, a thyroid hormone-binding protein, was sig-
nificantly less abundant at BR10 in the plasma of subjects with muscle atrophy compared with those with no atrophy
(1.6E10 vs. 2.6E10, P = 0.001). Haptoglobin-related protein was also significantly reduced in the serum of cancer pa-
tents with cachexia compared with that of controls.

Conclusions  Our findings highlight a combination or proteomic changes that can be explored as potential biomarkers
of muscle atrophy occurring under different conditions. The panel of significant proteomic differences distinguishing
atrophy-prone and atrophy-resistant subjects after 10 days of bed rest need to be tested in a larger cohort to validate
their potential to predict inactivity-triggered muscle loss in humans.
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Introduction

Muscle atrophy can be triggered by immobility and nutrients
deprivation and is a severe co-morbidity for patients suffer-
ing from debilitating chronic diseases or undergoing long
hospitalizations." Sarcopenia is a crucial factor in the loss of
autonomy of the elderly population and, together with
weight loss, is part of the diagnostic criterion for cancer
cachexia,” a multifactorial syndrome associated with poor
outcomes in cancer patients.’

Atrophy causes detrimental changes to the morphology
and function of skeletal muscles. The onset of muscle atrophy
caused by unloading is observed in just 2 days® accompanied
by alterations of contractile properties within the same
timeframe.>® This atrophic state develops when hyperactiva-
tion of proteolysis and organelle degradation exceed rates of
protein synthesis and organelle biogenesis. Proteolysis occurs
via calcium-dependent proteolytic pathways and ubiquitin-
mediated proteasomal and autophagic lysosomal processes.
These are potentiated when cellular signalling events pro-
mote transcription of genes controlling protein degradation,
which are controlled by Forkhead box protein O (FoxO)-
dependent pathways.”® FoxO dephosphorylation induces
the ubiquitin proteasome system through the activation of
E3 ubiguitin ligases®*® and can directly enhance the autoph-
agy system.’ Mitochondrial alterations (for instance, mito-
chondrial fusion/fission machinery imbalance)™* and reactive
oxygen species (ROS) can activate FoxO pathways as well as
systemic signals, such as the pro-inflammatory cytokines
IL1, IL6 and TNFo and myostatin.*?

As muscles are the major site of glucose uptake through
glucose transporter type 4 (GLUT4), and the largest amino
acid reservoir,”” loss of muscle mass has systemic conse-
guences on metabolism. Blood plasma, by circulating through
all organs, is expected to relay this information dynamically,
through changes in the abundance of its ions, small mole-
cules and protein composition. With this in mind, we set
out to use plasma proteomics as a tool to convey first-hand
information on skeletal muscle trophism and monitor muscle
atrophy. Our goals were to provide a system view of the
changes caused by muscle atrophy to the plasma proteome
and to highlight single proteins and protein signatures whose
plasma abundance correlates with the loss of muscle mass. If
a pool of plasma biomarkers of muscle atrophy existed, one
could use a minimally invasive ‘liquid biopsy’ to monitor mus-
cle mass at point of care, in combination with indirect proxies
such as body weight and grip strength. This would be instru-
mental for frail sarcopenia patients as well as for astronauts
during long space missions on the International Space Sta-
tion, where they experience severe muscle atrophy and loss
of force despite intensive physical training on board.®

To this aim, we used state-of-the-art mass spectrometry
(MS)-based proteomics to analyse the blood plasma of a
cohort of 10 young healthy subjects undergoing 10 days of
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continuous bed rest. In the same cohort, we had analysed
in parallel muscle atrophy in great detail, showing a median
5.2% loss of the guadriceps volume and 13% of maximum iso-
metric voluntary contraction of the knee extensors.’® We
here measure the plasma proteome of these subjects before
bed rest (BRO) and at the endpoint of the unloading phase at
day 10 (BR10). Our data reveal changes in the abundance of
34 proteins after 10 days of bed rest, comprising both canon-
ical plasma components and proteins possibly originating
from tissue leakage. Our parallel analyses had unexpectedly
shown that three subjects in our cohort were largely resistant
to bed rest-induced muscle atrophy, whereas the other seven
had lost both mass and force at BR10. Exploring this seren-
dipitous observation, we could find proteins distinguishing
the plasma proteome of subjects undergoing no or minor
muscle atrophy from that of subjects undergoing extensive
atrophy after 10 days of bed rest.

To carry out an initial validation of our findings, we
analysed by MS-based proteomics the serum of a second co-
hort comprising gastrointestinal cancer patients, with and
without cachexia, and age-matched patients hospitalized for
non-neoplastic diseases. Although muscle atrophy is a com-
mon feature, there are profound differences between the
two cohorts. However, it is well established that various types
of atrophy share a common set of transcriptional adaptations
acting through the regulation of proteasome activity. FoxO-
controlled atrophy-related genes were discovered as com-
monly regulated in conditions as diverse as cachexia, starva-
tion, diabetes and kidney disease.*

Aiming at downstream common changes, in line with pre-
vious studies,”” we thus explored by proteomics two condi-
tions causing skeletal muscle atrophy. We highlight a group
of potential biomarkers that can be explored for their corre-
lation to muscle atrophy in different pathological states.

Methods
Patient cohorts

The bed rest study was approved by the National Ethical
Committee of the Slovenian Ministry of Health on 17 luly
2019, with reference number 0120-304/2019/9. The study in-
volving cancer patients was approved by the Ethical
Committee for Clinical Experimentation of Provincia di Pa-
dova (protocol number 3674/A0/15). The bed rest cohort
has been previously described.'® Ten young healthy volun-
teers (Toble 51) were housed in a horizontal lying position
for 10 full days in standard hospital rooms without interrup-
tion and were not allowed to carry out any form of exercise
on their beds. They were given an individually controlled
eucaloric diet during the whole hospital stay. Blood was
sampled right before the begin of bed rest (BRO), at day 10
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right before the subject was allowed to stand up (BR10). We
also analysed plasma drawn after 2 days of monitored recov-
ery in the hospital {R + 2). This was the endpoint of the study
carried out under strictly controlled diet and activity condi-
tions, after which the subjects were discharged from the
hospital. We used part of a cachexia cohort, which has been
previously described.'® Patients were stratified into ‘cachec-

’

tic’ and ‘pre-cachectic’ subgroups® and compared with
patients undergoing surgery for non-neoplastic noninflamma-
tory diseases (control). The subgroup of patients from that

cohort used in this study is described in Table 52.

Plasma and serum sample processing

The 12 most abundant plasma protein components comprise
about 95% of the total protein mass, making the guantifica-
tion of proteins in the low abundance range extremely
challenging.’® We therefore used a highly sensitive analytical
workflow, with one-buffer sample preparation combined with
novel MS acquisition modes and computational methods. For
peptide preparation, 5 pl of plasma or serum was diluted in
50 pl of LYSE buffer (PreOmics), heated at 95°C for 5 min
and sonicated in a water-bath sonicator (Diagenode) for
5 min with a 50% duty cycle. Proteolytic digestion was carried
out by addition of 2 ug of endoproteinase LysC and 2 nug of
trypsin. After overnight digestion at 37°C under continuous
shaking, samples were acidified to a final concentration of
0.1% trifluoroacetic acid (TFA) and loaded onto StageTip
plugs of SDB-RPS. Purified peptides were eluted with 80%
acetonitrile-1% ammonia and dried. For the library used for
match between runs (see below) peptides from all samples
were pooled and eluted into 24 fractions using a Spider Frac-
tionator. Concentration of HDL, LDL cholesterol and triglycer-
ides was measured in plasma of bed rest subjects using an
automated hospital clinical chemistry pipeline,
Contamination from erythrocytes, platelets and coagulation
factors was calculated using a custom-made R script based
on an online resource (www.plasmaproteomeprofiling.org)
derived from recent findings.*®

Liquid chromatography and tandem mass
spectrometry

Peptides were separated on 50-cm columns (75 um inner di-
ameter) of ReproSil-Pur C18-AQ 1.9 um resin (Dr Maisch
GmbH) packed in-house. The columns were kept at 60°C
using a column oven. Liguid chromatography—mass spec-
trometry (LC-MS) analysis was carried out on an EASY-nLC-
1200 system (Thermo Fisher Scientific) coupled through a
nanoelectrospray source to a mass spectrometer. Samples
were analysed in technical triplicates. Samples 58-510 at time
R + 2 were analysed in technical duplicates. For the bed rest

cohort, the analysis was carried out on a Q Exactive HF mass
spectrometer (Thermo Fisher Scientific). Peptides were
loaded in buffer A (0.1% (v/v) formic acid) applying a non-lin-
ear 45-min gradient of 3-75% buffer B {0.1% (v/v) formic
acid, 80% (v/v) acetonitrile) at a flow rate of 450 nL/min.
For the cancer patient cohort, samples were analysed on an
Orbitrap Exploris 480 mass spectrometer (Thermo Fisher
Scientific). Peptides were loaded in buffer A applying a
non-linear 120-min gradient of 0-65% buffer B at a flow rate
of 300 nL/min. Data acquisition switched between a full scan
and 15 data-dependent tandem mass spectrometry {MS/MS)
scans. Multiple sequencing of peptides was minimized
by excluding the selected peptide candidates for 30 s.

Computational proteomics and data deposition

The MaxQuant software (versions 1.6.10.43 and 2.0.3.0) was
used for the analysis of raw files searching against the human
UniProt databases (UP000005640_9606, UP000005640_
9606_additional) and a common contaminants database.”
The false discovery rate (FDR) was set to 1% for peptides
and proteins and was determined by searching a reverse da-
tabase. Peptide identifications by MS/MS were matched be-
tween the samples and the library files with a 0.7-min
retention-time match window. Peptides with a minimum
length of seven amino acids were considered for the search
including N-terminal acetylation and methionine oxidation
as variable modifications and cysteine carbamidomethylation
as fixed modification. Enzyme specificity was set to trypsin
cleaving C-terminal to arginine and lysine. A maximum of
two missed cleavages was allowed. In our dataset, the num-
ber of quantified peptides per proteins varied from 258 (Apo-
lipoprotein B) to 1. In the bed rest dataset, of the 44 proteins
out of 535 that were quantified with only one peptide, only
teneurin-4 (TENM4, 112 MS/MS quantifications) was consid-
ered for further analysis. All other proteins quantified with
only one peptide were not further analysed. The MS-based
proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner reposi-
tory with the dataset identifier PXD032969 and are publicly
available as of the date of publication.

Bioinformatic and statistical analysis

Analyses were performed with the Perseus software (version
1.6.15.0), part of the MaxQuant environment™ and with the
R software environment (https://www.R-project.org). Label-
free guantification values with a minimum ratio of 1 were
used throughout the analysis for protein abundance using
the feature implemented in MaxQuant.”® Categorical annota-
tions were supplied in the form of UniProt Keywords, Corum,
KEGG and Gene Ontology terms. Annotation enrichments
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were calculated by Fisher’s exact test using the Benjamini—
Hochberg method for FDR truncation at a cutoff of 2% and
the UniProt human proteome as background. For longitudinal
comparisons, we used paired Student’s t-tests, with signifi-
cance threshold set at 5% using permutation-based FDR with
250 randomizations. Technical replicates were averaged
(N = 10). For comparison between different subjects within
both cohorts, we used Welch tests with significance cut-off
set at 5% employing permutation-based FDR with 250 ran-
domizations and one-way ANOVA (P < 0.05) with Tukey’s
honestly significant difference post hoc tests. Principal com-
ponent analysis (PCA) was carried out after filtering the
dataset for 60% valid values and imputing missing values, as-
suming a Gaussian distribution and with a downshift of 1.8
the standard deviation of valid values.

Results

Proteomic workflow and features of the bed rest
plasma dataset

We carried out a longitudinal proteomic analysis of the blood
plasma of 10 young healthy volunteers undergoing ten days
of continuous bed rest (Tables S1 and 53). Samples were
taken immediately before bed rest (BRO), at day 10 (BR10)
and after 2 days of free re-ambulation post bed rest (R + 2).
Our second cohort consisted of 14 cancer patients, seven
with cachexia and seven without, and 14 controls (Tables 52
and 54). All samples were analysed by liquid chromatography
coupled to MS/MS followed by computational analysis. The
two datasets were measured separately and the protein
abundance results were cross-analysed (Figure 1A; see also
Materials and methods).

Our proteomic analysis of the bed rest cohort resulted in
an average Pearson correlation of 0.95 among all subjects
and time points without clear outliers and of >>0.96 for tech-
nical replicates (Figure S1A). We quantified 535 proteins in
total and 360 per subject on average, of which 286 were
guantified in all subjects (Figure S1B). We carried out a qual-
ity control assessment of our plasma samples by measuring
the intensities of known marker proteins from three contam-
ination panels, derived from other blood components and oc-
curring in plasma due to improper sample handling.”® Con-
tamination from red blood cells was consistently below a
recommended intensity threshold of 2.5% (Figure S1C) and
from platelets below 0.5% (Figure S1D). Coagulation markers
were mostly below 10% in all samples, except for triplicates
of one subject at one time point (28%), likely resulting from
incorrect sample handling (Figure S1E).

The guantitative dynamic range of intensity in our plasma
dataset spans five orders of magnitude from highly abundant
albumins to the lowest intense protein quantified, the
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cytoskeleton-associated protein Profilin-1. We crossed our
plasma dataset to the ‘secreted to blood’ protein list of the
Human Protein Atlas, containing 784 proteins.*® Proteins in
the highest expression guartile predominantly originated
from plasma. Proteins of other origin, possibly deriving from
tissue leakage, were progressively more prevalent in the
lower intensity gquartiles. We could detect nuclear and
mitochondrial proteins, likely deriving from cell damage
(Figure 1B). The highest intensity quartile 1 was significantly
enriched in GO terms of apolipoproteins and acute-phase
proteins, whereas the lowest quartile 4 was enriched in intra-
cellular proteins, indicating a tissue leakage origin (Figure 1C).

To verify that unloading was the major source of variability
within the samples, we carried out PCA. This procedure
separated the BRO (black sguares) from the BR10 (orange
dots) samples diagonally along components 1 and 2
(Figure 1D), based on differences in both canonical plasma
proteins, like APP and SERPINAL, and tissue leakage proteins,
like the mitochondrial ATP5B and the chaperone HSP90ABL
(Figure 1E). This result shows that the differences in the
plasma proteome correlating with unloading are larger than
the individual variability among subjects. Samples taken at
R + 2 were clearly separated by PCA from both BRO and
BR10 (Figure S1F,G).

Loading-dependent changes in the plasma
proteome

Blood was drawn from all subjects right before bed rest
(BRO), after 10 days of continuous bed rest (BR10) and 2 days
after re-ambulation (R + 2) before hospital discharge. We
constructed a global correlation map containing pairwise
relationships between all proteins quantified in the dataset.
In our case, there were up to 87 abundance values for each
plasma protein {10 individuals; three time points, two to
three technical replicates). Unsupervised hierarchical correla-
tion clustering of the expression profiles across all samples
yielded clusters of highly co-regulated proteins (cluster mean
>0.8) involved in the immune response, complement and
coagulation cascades, lipid metabolism and integrin signalling
(Figure S2).

To highlight proteins whose abundance in plasma changes
at the different loading states of this sequence, we compared
samples taken in the unloading phase (BR10) with those
drawn in the loading phase pre-bed (BRO) and post-bed rest
(R + 2). We carried out paired t-tests for all 10 subjects and
three technical replicates, retrieving 22 proteins with signifi-
cantly different abundance between BR10 and BRO and 32
between BR10 and R + 2. Unsupervised hierarchical clustering
of the median expression of these proteins in 10 subjects
grouped the plasma at BRO and R + 2, separating it from that
at BR10. Eight proteins were significant hits in both compari-
sons. (Figure 2A and Table S5). The plasma proteins whose
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Figure 1 Study design and main features of the dataset. (A) Sample collection, preparation and proteomic analysis workflow. The study cohort in-
volved 10 subjects who underwent 10 days of continuous bed rest that caused muscle atrophy. BRO, before bed rest. BR10, after 10 days of continuous
bed rest, R + 2, after 2 days of recovery at weight-bearing conditions. A second cohort used for validation comprised serum from 14 cancer patient with
or without cachexia and 14 controls. Frozen samples were proteolytically digested and analysed by liquid chromatography coupled to mass spectrom-
etry, followed by computational proteomics and data analysis. (B) Intensity rank of the proteins quantified in the plasma of the subjects at three time
points. Proteins in light blue are annotated as ‘secreted to blood’, a list of 784 proteins in the Human Protein Atlas (HuPA) repository. The two most
and least abundant proteins are labelled. Representative proteins derived from intracellular compartments are marked over the abundance range (red
and green squares). Abundance quartiles are visualized with different shades of grey. (C) Top annotation enrichments among highly abundant proteins
in the first quartile (top) among low abundance proteins in the fourth quartile (bottom). Fisher exact test, Benjamini—Hochberg FDR for truncation with
threshold set at 0.02. (D) Principal component analysis (PCA) separating the plasma proteome of 10 subjects at BRO (black squares) from that at BR10
(orange dots). (E) PCA loadings, with the proteins driving the separation between the groups labelled in the corresponding colours.
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abundance changes significantly between different loading
states can be assigned several distinct functions. Most pro-
teins were annotated to GO terms blood coagulation, immu-
nity and lipid transport (Figure 2B). Four hits, namely,
Lumican, Teneurin 4, Proteoglycan 4 and lgGFc-binding pro-
teins, were not among the plasma-secreted to blood gene
set. Based on their characterized interactors {STRING, see
Supporting Information), they may be interacting with the ex-
tracellular matrix, and one of them, Teneurin4, has a synaptic
localization.?” Proteoglycand/Lubricin is a lubricating glyco-
protein localized at the cartilage surface with a key function
in the biomechanical properties of the tissue® (Figure 2C).

We confirmed the decreased abundance of Lumican in
plasma during bed rest by western blot, analysing also an
intermediate timepoint of the sequence, BR5. Our results
showed a consistently higher Lumican signal in the plasma
from BRO in all subjects analysed with this method, matching
the results obtained by MS-based proteomics (Figure 2D).
Depletion from plasma of the 12 most abundant proteins
allowed a clearer visualization of this effect (Figure 2D, right
panel).

Functional interaction networks of plasma proteins
changing in abundance with body loading state

We divided the plasma proteins significantly changing in
abundance between body loading states into two groups,
namely proteins with (i) lower abundance at BR10 and {ii)
higher abundance at BR10 unloading compared with both
BRO and R + 2. We then visualized both groups as functional
interaction networks, based on physical interaction, co-
expression and data mining (see Supporting Information).
Proteins whose abundance in plasma decreased significantly
during bed rest and increased again upon reloading included
proteins involved in coagulation and were significantly
enriched in the annotation term extracellular matrix organi-
zation (P = 1.4E-5) (Figure 3A). We calculated the BR10/BRO
abundance ratio in each of the 10 subjects separately. The
decrease in abundance could be measured in a majority of
subjects for most proteins, and it was especially large (>4-
fold) in the case of fibronectin, platelet basic protein and
von Willebrand factor (Figure 3B). Proteins whose abundance
increased at BR10 compared with both BRO and R + 2 formed
a tight functional network specifically enriched in the annota-
tion term protease inhibitor (P = 2.5E-10) and lipoproteins
(P = 2.7E-8) (Figure 3C). The latter might be correlated with
the changes in lipid metabolism measured in these subjects
during bed rest, which included a decrease in plasma choles-
terol and an increase in triglycerides, concomitant with an in-
crease in insulin resistance (Figure S3). Interestingly, three
proteins did not show any functional association with the
network under our conditions, namely, Teneurin 4 (see
Figure 2), Proteoglycan 4, a component of the extracellular
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matrix of cartilage, and Attractin, a protein expressed in many
tissues including skeletal muscle.?” Detailing the changes in
each subject (BR10/BRO) IgGFc-binding protein, secreted
phosphoprotein 24 and Teneurin 4 had the largest increases
in abundance (>4-fold) (Figure 3D).

Subject-centric correlation between muscle atrophy
and plasma proteame

We previously measured muscle atrophy at BR10 in this bed
rest cohort.'® We observed that seven subjects developed
muscle atrophy amounting from 4% up to 12.2% loss of gquad-
riceps volume during 10 days of bed rest. Three subjects were
relatively atrophy resistant, displaying a corresponding guad-
riceps volume change of 0.5-1.9% at BRO compared with BRO
(Figure 4A). This was confirmed measuring the difference in
fibre cross-sectional area (CSA) in the muscle biopsies of
these two groups of subjects. A 7.7% decrease of the median
fibre CSA was measured in the fibres of the seven subjects
developing muscle atrophy. Conversely, the fibres of the
three atrophy-resistant subjects showed essentially no me-
dian CSA decrease at BR10 (Figure 4B). The heterogeneity
of individual responses to bed rest in terms of muscle atrophy
and bone loss has been documented in previous studies.”®
The plasma proteome of atrophy-prone and atrophy-resistant
subjects at BRO showed no significant difference, although
complement factor H-related protein 3 (CFHR3) had a clear
tendence to over two-fold higher expression in atrophy-
prone subjects (Figure 4C). However, the same comparison
at BR10 highlighted four proteins expressed at higher level
in atrophy-resistant subjects and two expressed at higher
level in atrophy-prone subjects. Haptoglobin-related protein
(HPR), apolipoproteins Al and AIV (APOA1l, APOA4) and
transthyretin (TTR) were more abundant in the plasma of
atrophy-resistant subjects, suggesting that higher plasma
abundance of these proteins may have a positive correlation
with the preservation of muscle mass. Conversely, inter-
alpha-trypsin inhibitor H3 (ITIH3) and complement factor H
(CFH) displayed higher abundance in the plasma of subjects
undergoing larger loss of muscle mass during bed rest,
indicating a negative correlation with muscle trophism
(Figure 4D).

We reasoned that, if these proteins relay the loss vs main-
tenance of muscle mass occurring in these two groups of sub-
jects, they might also be common to other contexts in which
muscle atrophy occurs. For this purpose, we analysed the se-
rum proteome of a cohort of 14 cancer patients with or with-
out cachexia and 14 age-matched controls. We quantified
390 proteins in total, ranging from 223 to 278 in different
subjects (Table $3). Contamination from red blood cells and
platelets were minor (Figure S4A,B). We carried out ANOVA
and post hoc tests comparing control subjects with cancer pa-
tients with and without cachexia. This analysis retrieved 24
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Figure 2 Proteins whose abundance in plasma varied at different loading conditions. (A) Unsupervised hierarchical clustering of proteins that changed
significantly in different loading conditions between at least two time points (paired t-test, N = 10 subjects, permutation-based FDR = 0.05). (B) Main
cell compartment or functional class distribution of among ANOVA significant proteins (in percent). From GO terms, manually curated. (C) Plasma
abundance changes at different phases of the bed rest protocol of four proteins not of blood origin (see arrows in C) likely originating from tissue
leakage. Student’s t-test, N = 10. (D) Top, western blots showing a decreased abundance of Lumican in whole plasma of five subjects (S, see label
on top) at BR5 (not analysed by MS-based proteomics) and BR10, matching the results in (C). For S9, Lumican expression after depletion of the 12
most abundant proteins is also shown (top right, last three lanes. Bottom, Ponceau S staining of the upper part of the corresponding membrane).
The position of the Lumican band is indicated by an arrow.
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Figure 3 Functional interactions of plasma proteins changing in abundance according to loading conditions. (A) Functional interaction network of pro-
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Figure 4 Cormmon features of muscle atrophy in bed rest and cancer cachexia. {A) Bed rest-dependent velume changes of quadriceps femoris at BRC
{blaclk dots) and BR10 {red dots) measured by magnetic resenance imaging {MRI). Three subjects developing no or minor atrophy are indicated by
green lines. N = 10 subjects. Box shows median, 75th and 25th percentile; whiskers show standard deviation. {B) Distribution of muscle fibre
cross-sectional area overlaying BRO {dark) and BR10 {light). Tep, in red, all fibres measured in the muscle biopsies of seven subjects that developed
muscle atrophy during bed rest {N = 2547 fibres). Bottom, in green, the same analysis for subjects 52, 56 and 58 {see A) that were largely atrophy-re-
sistant {N = 819 fibres). {C) Volcane plot comparing the plasma proteome of atrophy-prone and atrophy-resistant bed rest subjects at BRO. In red and
green, proteins with significant abundance difference between the subjects at day 10. N = 3 atrophy-resistant and 7 atrophy-prone subjects, technical
triplicates. Dashed line, P value 0.05. Thresheld, permutation-based FDR = 0.05. {D) Same analysis as in {C), BR10. Proteins with significantly different
abundance between atrophy-resistant and atrophy-prone subjects are labelled with a filled circle. {E) Volcano plot comparing the serum proteome of
cancer patients with cachexia {V = 7) with that of controls {N = 14). Proteins with significantly different abundance between these groups are labelled
in colour with a filled circle above the dashed line marking £ value = 0.05. Proteins with significantly different abundance in the bed rest dataset at day
10 are labelled in colour. {F) Expression of the six proteins with differential expression at BR10 between the seven atrophy-prone {left side of each
graph, technical triplicates) and the three atrophy-resistant subjects {right side of each graph, technical triplicates). The red line with asterisks shows
the significant differences at BR10 between the two groups of subjects. The black line shows significant differences between BRO {in black) and BR10
{in red) within the two subject groups. N = 10 subjects with two to three technical replicates. *P < 0.05, **P < 0.01. Box shows median, mean, 75th

and 25th percentile; whiskers show standard deviation.

proteins whose abundance in plasma differed between at
least one of the three groups. Unsupervised hierarchical clus-
tering separated control from cancer patients and the signif-
icant hits formed three distinct clusters (Figure S4C).

We then compared the serum proteome of control sub-
jects with that of cancer patients that had developed
cachexia, leading to the loss of over 5% of their body weight
(Toble S2). Similar to the results obtained in bed rest, HPR
was significantly more abundant in the serum of controls
compared with that of cachectic cancer patients (Figure 4E).
This shows that HPR abundance in plasma/serum decreased
in subjects losing muscle mass both because of mechanical
unloading in young healthy subjects and of cachexia in cancer
patients, two scenarios with very few common aspects. Can-
cer patients significantly up-regulated the receptor for the in-
variable Fc fragment of immunoglobulin gamma FCGR3A,
which was part of a regulated protein cluster in bed rest
(see Figure 3D and S2). Interestingly, the remaining proteins
with higher abundance in atrophy-resistant bed rest subjects
also tended to be more abundant in controls compared with
cancer patients (compare Figure 4D ,E, labelled in green). A
similar analysis of the serum of controls and cancer patients
classified clinically as having pre-cachexia yielded a different
set of significant proteins, and the expression difference
between the two groups was small (Figure S4D). Interestingly,
ITIH3, a member of inter-alpha-trypsin inhibitor protein
family, was more abundant in the plasma of bed rest subjects
at BR10 as well as in the serum of cancer patients with
cachexia, correlating in both cohorts with an atrophy state
(Figure 4D,E).

A plasma protein with significantly different abundance at
BRO between atrophy-prone and atrophy-resistant subjects
could be explored as a predictive biomarker. No plasma pro-
tein had this behaviour {at a P value cut-off of 0.05) in our
bed rest cohort (Figure 4C). We then focused on the analysis
of the six plasma proteins correlated with maintenance or
loss of muscle mass at BR10. Interestingly, all but TTR had a
tendence to different median expression levels at BRO in

76

subject developing muscle atrophy compared with those es-
sentially resistant to it (Figure 4F; compare grey boxes). All
of them had significantly different expression at BR10 as ex-
pected (see also Figure 4D).

Discussion

We applied MS-based proteomics to the analysis of plasma
samples from a cohort of 10 participants in a bed rest study,
undergoing muscle atrophy varying from 12 to 0.4% (guadri-
ceps femoris volume) in 10 days.>® With this approach, we
aimed at correlating the loss of muscle mass with changes
in abundance of plasma proteins, which could be used to
monitor the state of skeletal muscle in a minimally invasive
way. We could quantify over 500 proteins in total, amounting
to 360 on average in each subject.

Our results revealed over 30 proteins undergoing abun-
dance changes in plasma comparing BR10, the endpoint of
mechanical unloading, with BRO, the time point immediately
before bed rest. Interestingly, four of the significant proteins
were not typical blood components but possibly deriving
from tissue leakage. One of them, Teneurin 4, is part of an
evolutionarily conserved protein family located predomi-
nantly at the synapse.”® We have previcusly shown that the
subjects of this cohort showed neuromuscular instability, as
indicated by the up-regulation of neural cell adhesion
molecule 1 {(NCAM) in skeletal muscle, a marker of denerva-
tion/re-innervation events.’® It will be of interest to test
Teneurin 4 as a readout for NMJ instability. Proteoglycan 4
{PRG4)/lubricin is a cartilage protein whose serum abundance
increases in patients with active inflammatory cartilage
disease.”® We detected a minor increase in the plasma abun-
dance of PRG4 during bed rest, but a significant twofold de-
crease 2 days after reloading. Lumican, a protein enriched
in the extracellular matrix of articular cartilage, was more
abundant at BRO than at both BR10 and BR5, as we could
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show in validation experiments using western blot. It could
be speculated that variations in loading cause extensive re-
modelling of cartilage, leading to changes in plasma abun-
dance of extracellular matrix proteins.®®

In addition, we found significant decrease in abundance at
BR10 for proteins involved in interactions with the extracellu-
lar matrix and in blood coagulation. Long hospitalizations are
linked to a hypercoagulable state and to increased risk of
thromboembolytic complications. However, in line with our
findings, previous bed rest studies in healthy young subjects
have observed no increase in major coagulation parameters
during 21 days>* or 60 days of head down tilt bed rest.> In-
deed, both studies reported a tendence to a hypocoagulable
state during bed rest, which would work as a compensatory
mechanism. Our results show that the abundance of some
plasma apolipoproteins was higher at BR10 compared with
BRO, including APOAL, whose plasma concentration was not
modified by inactivity in other studies.®® These changes may
be due to the inactivity-linked insulin resistance that we
and others have consistently observed starting in the early
phases of bed rest.*? Insulin resistance causes lipoprotein li-
pase inhibition and activation of hepatic triglyceride syn-
thase, which are known to cause significant changes in blood
lipid profile.® Inhibitors of different protease families,
including anti-trypsin, anti-thrombin and anti-C3, were more
abundant at BR10 compared with BRO. Members of the
inter-alpha-trypsin family have been recently suggested to
associate with mortality in COVID-19. ITIH3 and ITIH1/2
showed opposite differences in abundance between survi-
vors and non-survivors.®® Our data confirm opposite changes
of different members of this protein family, both in subjects
undergoing bed rest and in cancer patients (see below).

Interindividual differences in the response to intervention
(e.g. lifestyle of pharmacological) are the theoretical basis
for personalized medicine, which is rapidly developing with
the support of large throughput data generated with omics
technologies. The ability to predict different impacts of inac-
tivity with minimally invasive methods would be of great in-
terest to monitor community health and design early inter-
vention, particularly in the elderly population. In the future,
biomarkers predicting a muscle atrophy-resistant phenotype
might be of paramount importance for the selection of astro-
nauts for long space missions, where body unloading due to
microgravity represents a severe challenge for human
health.?” A serendipitous finding of our previcus analysis of
this bed rest subject cohort was significant inter-individual
heterogeneity in the susceptibility to unloading-induced mus-
cle atrophy, consistent with previous reports.*® Whereas
seven subjects lost between 4% and 12.2% of their quadri-
ceps volume in 10 days, three of them had minor decreases,
from 1.9 to 0.4%. Comparing the abundance of plasma pro-
teins in atrophy-prone and atrophy-resistant subjects at
BR10, we highlighted six proteins showing significant differ-
ences between the two groups. Two proteins were more

abundant in subjects developing atrophy during bed rest,
namely, the protease inhibitor ITIH3 and complement factor
H (CFH). Four proteins, haptoglobin-related protein {HPR),
transthyretin (TTR) and the apolipoproteins APOA1l and
APOA2 were more abundant in atrophy-resistant subjects. In-
terestingly from a biomarker perspective, the abundance dif-
ference was the same at BR10 as at BRO, though only the
samples at BR10 reached statistical significance under our
conditions (compare Figure 4C,D). It will be of interest to fur-
ther evaluate the ability of these proteins, alone or in combi-
nation, to predict the proneness to muscle atrophy in differ-
ent subjects.

To further evaluate the relationship between loss of mus-
cle mass and changes in circulating proteins, we analysed
the serum of seven cancer patients with cachexia, leading
to over 8% loss of total body weight. The comparison be-
tween the serum of cachectic patients and that of controls
yielded two significant proteins. The receptor for the invari-
able Fc fragment of immunoglobulin gamma FCGR3A/
CD16A, a cytotoxicity receptor of human natural killer (NK)
cells,*® was more abundant in cancer patients with cachexia.
This might be linked to the disease phenotype, though the
functional annotation FCGR activation was also regulated in
bed rest (Figure S2). Interestingly, haptoglobin-related pro-
tein/HPR was over twofeld more abundant in the serum of
controls compared with cancer patients with cachexia.

Crossing the results of the bed rest and cancer cachexia
cohort, we thus show that the level of circulating
haptoglobin-related protein/HPR correlates with the mainte-
nance of muscle mass in both conditions inducing skeletal at-
rophy, despite the large differences characterizing the two
subject groups. Although HPR has been proposed as a serum
marker of lymphoma,®® the abundance of HPR does not re-
sult different when we compare the serum cancer patient
without cachexia with that of controls (Figure S4D). Our anal-
ysis points to a positive correlation between circulating HPR
and muscle mass.

Despite suggesting a number of circulating potential bio-
markers of muscle atrophy, our study presents several limita-
tions that need to be taken into account. The bed rest dataset
lacks an intermediate time point. As a conseguence, our pro-
teomic data do not show how these potential biomarkers
change over time and whether they occur in the early phase
of bed rest, where most of the signal transduction controlling
atrophy unfolds, or whether they manifest towards the end
of the bed rest sequence, where atrophy is most pronounced.
For Lumican, we could show by western blot that the plasma
abundance is already decreased at BR5 and maintained at a
low level at BR10. Our pilot study is also limited in sample
size, so our findings will need further validation in larger co-
horts. At this stage, our result cannot yet contribute practical
predictive power to the indirect methods used to assess mus-
cle atrophy, like grip strength or body weight measurements.
However, this detailed quantification of the plasma
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\proteome, together with the characterization of the skeletal
muscle of the same bed rest cohort from our parallel
studies,”®*° will allow to draw correlations and perform data
mining once larger validation cohorts have been analysed.

In conclusion, we found changes in the plasma proteome
of healthy subjects undergoing voluntary bed rest that ac-
company and may be linked to the mechanical loading/activ-
ity state of the body and to muscle trophism. In the future,
this type of studies validated in large cohorts will lead to
the definition of biomarkers panels relaying information on
skeletal muscle trophism, contributing to the development
of point-of-care diagnostics for human health.
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Data-independent acquisition (DIA) strategies have become increasingly more powerful
and popular over the recent years, surpassing the performance of data dependent
acquisition (DDA).94346:423-425 |n contrast to DDA, DIA is not limited to the selection of only
the most abundant precursor and therefore allows for a higher dynamic range and depth.
However, DIA strategies come with their own set of challenges, mainly the increased
spectral complexity caused by co-isolation and co-fragmentation of precursor and
peptide ions. This requires more advanced and computationally heavy search algorithms
able to deconvolute this data, especially as data acquisition strategies and MS

instrumentation become more advanced.

In this study Georg Wallmann, in a collaboration across our bioinformatics and method
development team, developed a modular open-source framework for DIA analysis which
features a feature-free identification algorithm particularly suitable for data produced on
state-of-the art time-of-flight (TOF) analyzers. Building on the scientific python stack and
alphaX ecosystem!!’, accessible through a number of interfaces, such as python API,
command line or GUI, and running on the most common operating systems, AlphaDIA is
setting a new standard for accessibility and transparency. Unlike other DIA search
engines, which rely on predefined feature boundaries, AlphaDIA’s feature-free
identification algorithm does not reduce the data and processes the raw MS signal by
aggregating all relevant information, such as RT, IM and fragment intensities before the
identifications step. This enhances sensitivity, identification accuracy and makes
AlphaDIA particularly adept at handling “noisy” TOF data as AlphaDIA’s convolution
kernels can aggregate evidence across multiple dimensions to confidently identify
peptides and precursors even at low fragment intensities. While AlphaDIA can be used
with empirical (experimental) libraries, it also features an end-to-end workflow using

AlphaPeptDeep as a basis for fully predicted libraries. These predicted libraries can then
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be fine-tuned for the specific experimental conditions via transfer learning, boosting
identification by 48% and 25% on precursor and protein group level respectively in
comparison to the standard models. Whether using empirical or AlphaPeptDeep
predicted libraries, AlphaDIA shows competitive or superior performance for
identification, quantitative accuracy and FDR in comparison to popular search engines,
such as DIA-NN and Spectronaut. This is especially true for high-sensitivity platforms
such as the Orbitrap Astral, where AlphaDIA was able to identify more than 120,000
precursors and 9,500 protein groups in a 21 min LCMS acquisition. Moreover, it supports
novel and complex acquisition strategies, such as synchro-PASEF, and provides the
flexibility to process PTMs, labelled proteomics samples as well as increasingly more

complex acquisition strategies as MS instrumentation continues to evolves.

Contribution:

Co-authorship. The study was conceptualized by Georg Wallmann, Wen-Feng Zeng and
Matthias Mann. | initially optimized the Orbitrap Astral acquisition methods and gave input
on data acquisition for this study. Alongside the other co-authors, | contributed to revising
and editing the manuscript.
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Abstract

Mass spectrometry (MS)-based proteomics continues to evolve rapidly, opening more and more
application areas. The scale of data generated on novel instrumentation and acquisition strategies pose
achallenge to bioinformatic analysis. Search engines need to make optimaluse ofthe data for biological
discoveries while remaining statistically rigorous, transparent and performant. Here we present
alphaDIA, a modular open-source search framework for data independent acquisition (DIA) proteomics.
We developed a feature-free identification algorithm particularly suited for detecting patterns in data
produced by sensitive time-of-flight instruments. It naturally adapts to novel, more efficient scan modes
that are not yet accessible to previous algorithms. Rigorous benchmarking demonstrates competitive
identification and quantification performance. While supporting empirical spectral libraries, we
propose a new search strategy named end-to-end transfer learning using fully predicted libraries. This
entails continuously optimizing a deep neural network for predicting machine and experiment specific
properties, enabling the generic DIA analysis of any post-translational modification (PFTM). AlphaDIA
provides a high performance and accessible framework running locally or in the cloud, opening DIA
analysis to the community.

Introduction

Proteomics entails the study of key players of life — proteins — and their translation, composition of isoforms,
post-translational modification and degradation’. As proteomes are composed of thousands of different
proteoforms, which produce hundreds of thousands of peptides in bottom-up proteomics, handling
complexity is central to MS based proteomics acquisition and biocinformatic analysis.

Until recently, data dependent acquisition (DDA} was the acquisition method of choice. The direct relationship
between selected precursors and relatively pure fragmentation spectra, combined with its mature ecosystem
of search engines, results in confident peptide identifications®®. Due to the straightforward relationship
between precursor and fragment spectrum, this also holds for challenging cases such as complex patterns of
post-translational modifications or the interpretation inter-protein cross-links®’. Yet, selecting only a single
peptide at a time comes atthe cost of increased data acquisition time and stochastic sampling of precursors
across liguid chromatography (LC)-MS runs®.

In contrast to DDA, Data Independent Acquisition (DIA), allows the selection of multiple peptides in parallel,
originally in the form of cycles of fixed-width, relatively wide selection windows®". This results in systematic
sequencing of all available peptides only limited by sensitivity. Importantly, repeated scanning of the same
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mass range yields complete elution profiles of both the precursors and the fragments. This increases dynamic
range, allows for faster acquisition and deeper proteome characterization down to the single cell level''2. The
principal challenge of DIAis the increased spectral complexity as multiple peptides fragment together leading
to convoluted spectra. Thus, DIA data by its nature requires algorithms to deconvolute overlapping
fragmentation patterns and assign peptide identifications.

Initially, DIA involved generating an empirical, sample specific spectral library, usually acquired by offline
fractionation of samples and DDA acquisition, or spectrum centric processing'®™. Different algorithms have
been designed to process DIA data. Deconvolution of co-isolated peptides into individual spectra effectively
reduces them to DDA like data, amenable to the plethora of proven DDA methods. However, peptide-centric
approaches, in which each spectrum of the library is matched to the complex DIA data, achieve higher
performance especially if paired with deep-learning based scoring of identifications as pioneered by
Demichev et al. "', Deep learning also allows the prediction of libraries in silico, obviating the need for
sample specific empirical libraries "®2°, However, for optimal performance this has so far required DDA data
on the same MS platform and experimental method. This is in particular the case for spectra of post-
translationally modified peptides®'-2.

Despite the enormous potential of DIA, the fact that spectra are not easily manually interpretable has
hindered full acceptance, especially as researchers must generally rely on few closed source algorithms.
Flexible and open algorithms would clearly be beneficial to extend the reach, transparency, and acceptance
of DIA. This becomes especially necessary as the most recent generation of instrument employs time-of-flight
(TOF)} detectors which are sensitive down to the single molecule level®?4, Raw files easily contain billions of
detector events, often with no clearly visible peaks and up to four dimensions (4D) of separation®®. Handling
this data has usually required data reduction such as centroiding of the ion mobility, introducing feature
boundaries or centroiding®®?’, which may all lead to loss of information. We have found that this presents
formidable challenges when implementing novel scan modes that make data processing even more
demanding?®, especially when the underlying algorithms and source code are not available.

To enable open, performant, and extensible processing of high complexity DIA data, we therefore propose a
new processing framework which builds on technology driving the current breakthroughs in artificial
intelligence, especially deep learning. Our algorithms view a DIA experiment as high-dimensional snapshot of
the peptide spectrum space. This representation is amenable to DIA methods on all major instrument
platforms and naturally covers simple DIA methods as well as ion mobility, variable windows, sliding
guadrupole windows and yet to be developed acquisition modes. Integral to this generalized representation,
the data is processed without reduction of retention time or mobility resolution. Instead, our feature-free
approach performs machine learning directly on the raw signal, combing all available information before
making discrete identifications. Furthermore, we propose an end-to-end deep transfer learning strategy based
on our recently published alphaPeptDeep library. Transfer learning adapts the peptide library directly to the
instrument and sample workflow. We showcase performance and versatility by extending DIA arbitrary PTMs,
closing the gap between the versatility of DDA and the performance of DIA
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Results

We present alphaDIA, a modular, open-source, next generation framework for DIA search. It builds on the
scientific python stack and the alphaX?® ecosystem allowing flexible search strategies as well as default
workflows accessible through a Python API, Jupyter notebooks, a command line interface or an easily
installable graphical user interface (Fig. 1, a, Methods). AlphaDIA covers the entire workflow from raw files to
reporting protein quantities and can process files and proprietary formats from all major vendors. It was
designed for ‘one stop processing’ of large cohorts and arbitrary data sizes, running natively on Windows,
Linux and Mac or in a distributed fashion in the cloud with Slurm or Docker.
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Fig. 1 | Overview of the alphaDIA framework. a, Components of alphaDIA and the integration into the alphaX ecosystem.
AlphaDIA uses alphaRaw and alphaTims™ for accessing raw data from all major vendors. Importing as well as prediction of spectral
libraries is facilitated by alphaBase and alphaPeptDeep. After successful search, label free quantification is performed using
directLFQ*'. AlphaDIA uses best software engineering practices and builds on modern open architectures (GitHub, Python,
PyTorch) b-f, TIMS DIA data acquired using optimal dia-PASEF® is searched using a peptide centric algorithm. b, The library entry
for a single peptide sequence is selected for search e, Fragment spectra containing the precursor of interest are extracted and
converted into a dense matrix in spectrum space. d, Information from fragments mapping to the precursor of interest are combined
in a continuous score. e, AlphaDIA defines candidate peak groups with discrete integration boundaries (top row: intensities, bottom
row: mass deviation from theoretical mass. f, Aggregating signal across the integration boundaries in ion mobility and retention time
reveals the peptide spectrum. For further scoring, AlphaPeptDeep spectrum predictions are used.
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Feature-free processing for high dimensional TOF data

Apart from state-of-the-art DIA processing, the impetus for alphaDIA was the shift towards fast, sensitive but
also stochastic TOF detectors, presenting novel algorithmic challenges and opportunities. AlphaDIA’s feature-
free and peptide-centric search is illustrated by the identification of the peptide LLELTSSYSPDVSDYK?* from
timsTOF Ultra dia-PASEF data (Extended Data Fig. 1). First, we select all MS1 and MS2 spectra that contribute
evidence forthis precursor (Fig. 1,b). Adense representation of the spectrum space is used to score potential
peak group candidates, which does not involve feature building or centroiding (Fig. 1 ,c-d). Instead, signals
are aggregated across retentiontime, ion mobility and fragments using learned convolution kernels. Only after
all this evidence has been collected, discrete peak groups are determined (Fig. 1, e). In this way noisy TOF
data in which individual fragment signals are not distinguishable from background can still be processed
(Extended Data Fig. 2). After the signals in the peak groups are integrated it becomes evident that they
correspond to a confidently identified peptide, given the agreement with the predicted spectrum (Fig. 1,f).

Deep learning based search allows for whole proteome characterization

AlphaDIA uses deep learning based target-decoy competition and iterative calibration to search complex
proteomes with spectral libraries. For each target precursor entry with a given sequence and charge state, a
paired decoy peptide is created using a mutation pattern (Methods). Each peak group is scored by a collection
of up to 47 features using a fully connected neural network (NN) (Fig. 2, a}. False precursoridentifications are
controlled using a count-based FDR, calculated from the probabilities predicted by the NN (Fig. 2, b-c).
Measured properties like retention time, ion mobility and m/z ratios are iteratively calibrated to the observed
data on a high confidence subset of precursors, using non-linear LOESS regression with polynomial basis
functions (Fig. 2, d-f, Extended Data Fig. 3). AlphaDIA uses spectrum centric fragment competition to ensure
that fragment information is only used for a single precursor identification, even when multiple library entries
match the same observed signal (Methods). On a 21 minute, 60 samples per day (SPD) gradient of HeLa cell
lysate measured on a timsTOF Ultra with dia-PASEF, our algorithm identified more than 73,000 precursors with
unique sequence and charge, corresponding to almost 6,800 protein groups (Fig. 2, g-i}). For label free
guantification (LFQ) we integrated the recently developed directLFQ algorithm®", which resulted in a median
coefficient of variation of 7.7% for protein groups and a Person R > 0.99 across replicates (Fig. 2, j-k). This
suggests that alphaDIA can search and quantify complex protein mixtures with excellent depth and
quantitative precision.
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output probability for decoy peptides. ¢, Number of precursors identified as a function of the g-value cutoff. d, Non-linear calibration
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AlphaDIA adapts to different instruments and enables new acquisition methods

Recently, DIA has been coupled to sophisticated data acquisition schemes where the quadrupole isolation
window scans nearly continuously through the m/z or m/z and ion mobility space’ % The methods, termed
synchro-PASEF or midia-PASEF hold the promise of much improved precursor specificity and guantitative
accuracy, which, however, has been difficult to realize due to lack of flexible algorithms handling the
thousands of individual isolation windows per DIA cycle. AlphaDIA’s processing algorithm and alphaRaw’s
efficient data handling allows to use all synchro scans which contribute signal for a given precursor,
considering its isotope distribution as a prior (Fig. 3, a). Using the masses and abundance of the precursor
isotopes we model the behavior of the quadrupole, resulting in a template with the expected intensity
distribution across synchro scan observations (Fig. 3, b). This template includes the slicing of the isotope
distribution by the quadrupole which must be recapitulated in the intensity profiles of the fragments (Fig. 3,
c}. This comparison of the fragment profile with the template contributes to our deep-learning based
identification score and enables analysis of complex proteomes (Fig. 3, d, Extended Data Fig. 4). This first
processing algorithm for sliding quadrupole data could be extended from synchro-PASEF to similar
acguisition schemes such as midia-PASEF or scanning SWATH.

Next, we wanted to extend the reach of alphaDIA to other proteomic platforms and methods. For instance,
our algorithms adapted naturally to fixed as well as variable window DIA data from quadrupole Orbitrap
analyzers. The absence of ion mobility reduces the search space to a one-dimensional search across
retention time while still utilizing all valid MS2 observation for a given precursor (Fig. 3, e). As before, after
discrete peak group candidates have been identified (Fig. 3, f) the spectrum centric view allows detailed
scoring utilizing alphaPeptDeep predicted spectra (Fig. 3, g). Additionally, alphaDIA can process Orbitrap and
Orbitrap Astral data with wide, narrow, variable or overlapping DIA windows. It can likewise process Sciex
SWATH data (Extended Data Fig. 5).
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Fig. 3| AlphaDIA enables flexible processing for different acquisition methods a, Variable window synchro-PASEF acquisition
on the timsTOF. The quadrupole mass filter moves as precursors are released from the TIMS trap. The precursor with sequence
GTDDSMTLQSQK is sliced by the quadrupole, resulting in fragment signal across two synchro scans. b, Slicing patterns are resolved
by calculating the expected distribution of fragment signal in form of a template matrix. The template matrix is calculated by
transforming the individual precursor isotope signal with the quadrupole transmission function of the synchro scans. e, Observed
fragment signal across the two synchro scans. d, For each of the two synchro scans the elution and ion mobility XICs are compared.
Comparison of the fragment signal (rainbow colors) to the template (blue) provides evidence of the identification of peptides. e,
Application of the processing algorithm to variable window DIA data without ion mobility separation on a quadrupole Orbitrap
analyzer (QE-HF). For the given precursor (Acetyl)SWQAYTDNLIGTGK all valid MS2 scans contributing evidence are selected. f,
Elution profile of MS2 {top) and MS1 (bottom) ions for the precursor of interest. g, Observed and predicted fragment intensities after
integration of the peak area (top) and mass accuracy for the same precursor (bottom).
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AlphaDIA matches or exceeds popular packages in empirical library-based search

Having established the ability of alphaDIA for in-depth analysis of complex proteomes and its adaptability to
diverse platforms, we next wanted to directly benchmark its performance against other common DIA search
engines. To avoid potential bias, we build upon a recently published benchmarking study from the Shui group,
in which mouse brain membrane isolates were spiked into a complex background of yeast proteins in varying
ratios and measured on a quadrupole orbitrap (QE-HF) and a timsTOF®®, The authors generated empirical
libraries with MS Fragger? and optimized search parameters for DIA-NN, Spectronaut and MaxDIA (Fig. 4, a).

Based on the provided libraries alphaDIA identified up to 50,600 mouse peptides in the QE data across all
samples and up to 81,500 on the timsTOF (Extended Data Fig. 6). Inferring proteins from uniquely identified
peptide involves considerations that can influence the number of reported protein groups®. AlphaDIA allows
strict (maximum parsimony} or commonly used ‘heuristic’ grouping (Methods). With the latter, we identified
5,366 proteins (QE-HF) and 7,649 (timsTOF) protein groups across all samples, matching and even exceeding
the other algorithms (Fig. 4, b-¢). This is also reflected across replicates for single conditions. AlphaDIA
guantified the most protein groups in at least 3 out 5 replicates for most ratios while maintaining comparable
coefficients of variation (CV) and accuracy as judged by the proteome mixing ratios (Fig. 4, d, Extended Data
Fig. 6-9).

To prevent over-reporting by sophisticated DIA database searching strategies based on internal target decoy
FDR estimates, results can be externally validated by including additional proteome databases from species
not present in the sample®. As in the benchmarking study, we performed an entrapment search with an
Arabidopsis library added in increasing proportions to the target library. On both MS platforms, even for 100%
entrapment Arabidopsis identifications matched the chosen target FDR of 1% at the protein level Fig. 4, e-f).
At this protein FDR, false positive precursors are even less likely appearing only at 0.1% globally. This
contrasted with some of the other tested tools, which reported up to three-fold more false positive Arabidopsis
identifications than intended at the chosen FDR target (Extended Data Fig. 8, a-d}. Importantly, the increased
library size only minimally decreased overall identifications for alphaDIA (Extended Data Fig. 8, e-h). We
conclude that for library-based search alphaDIA provides at least competitive performance with common
search engines while maintaining a reliable and conservative FDR.
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Fig. 4 | Benchmarking alphaDIA against established software for library bases DIA search. a, Overview of the benchmarking
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Combining alphaDIA and alphaPeptDeep allows fast search of fully predicted libraries

While empirical libraries benefit from implicitly capturing instrument and workflow specific properties, the key
advantage of deep-learning predicted libraries of the entire proteome database is that it eliminates
cumbersome library measurement altogether. We recently introduced alphaPeptDeep, an open source,
transformer-based deep learning framework for predicting all MS-relevant peptide properties from their
sequences®.

With these state-of-the art predicted libraries, we devised a two-step search workflow in alphaDIA consisting
of library refinement and quantification (Fig. 5 a). Furthermore, we reasoned that our feature-free search
should adapt well to the high sensitivity TOF data generated by the Orbitrap Astral mass spectrometer. For
benchmarking, we acquired and searched bulk Hela samples with an alphaPeptDeep predicted library
containing 3.6 million tryptic precursors. AlphaDIA identified on average more than 120.000 precursors,
matching or exceeding the performance of all other tested search engines (Fig. 5 b). Remarkably, in this 60
SPD method (21 min) this corresponded to the identification of 9,500 protein groups of which 8,200 had a CV
less than 20% (Fig. 5 d). The great depth of proteome characterization was also reflected in the data
completeness across replicates (Extended Data Fig. 10). Search times stayed below the rapid acquisition
time (Fig. 5 e). We validated the FDR control of this more complex two step workflow using the entire
Arabidopsis library, which externally confirmed rigorous control of false positive identifications (1.08% at
protein level and 0.2% at precursor level, Fig. 5, f).

To compare identified proteins across search engines, we mapped peptide sequences to the UNIPROT
reference proteome, discarding ambiguous peptides mapping to multiple proteins. Reassuringly, more than
70,000 peptides and close to 8,000 proteins were jointly identified by all tested tools (Fig. 5 g). AlphaDIA had
the highest number of uniquely identified peptides among search engines, manifesting in higher sequence
coverage (median of 8 peptides per protein, Fig. 5 h}.

To assess the accuracy of label-free quantification (LFQ), we used the established strategy® of three species
proteomes mixed in defined ratios, acquired on the Orbitrap Astral. Fully predicted library search combined
with directLFQ recapitulated the expected ratios with excellent precision and accuracy (Fig. 5 i, Extended
Data Fig. 11).

Multiplexed DIA has recently shown great potential to increase throughput and depth®-*, To analyze such
data, identifications must be transferred between the channels which involves an additional channel FDR.
Due to the modular nature of alphaDIA this functionality was readily incorporated. We benchmarked it on a
DIA dataset in which Hela cells were heavy and light SILAC labeled and analyzed on a QE-HFX®*® (Extended
Data Fig. 12). In proportions of identifications in ‘light only’, ‘heavy only’ and ‘light and heavy’ were very similar
to the previous DDA and DIA results, validating our channel FDR. Interestingly, on the same data the absolute
number of identified peptides was threefold higherthan inthe original paper, reflecting advances in DIA search
over the last years in general, and specifically in alphaDIA.
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Fig. 5| Searching complex proteomes acquired on the Orbitrap Astral with fully predicted spectrallibraries. a, Sixreplicates
of 200ng Hela bulk data were analyzed on the Orbitrap Astral with a 60SPD (21 min) gradient. A fully predicted alphaPeptDeep
library was used for a two-step search in alphaDIA. Different search engines were used for comparison. b, Mean precursors
identified across search engines ¢, Mean protein groups identified across processing methods d, Protein groups identified at given
coefficients of variation (CV) cutoffs. e, Analysis time for different processing steps when analyzed with on a 32 core machine. f,
Arabidopsis entrapment search using the fully predicted library workflow. The share of identified Arabidopsis proteins at 1% target
decoy FDRis shown. g, Venn diagram showing the overlap of proteotypic peptides across processing methods. h, Analysis of protein
overlap between different processing methods. Peptides were mapped back to the same reference proteome, discarding
ambiguous matches. Number of peptides identified per protein. The median number of peptides per protein is shown. i, Mixed
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species experiment for establishing quantitative accuracy. Human, Yeast and E.coli proteomes were combined in defined ratios.
Plotting the ratio between species-unique protein groups recapitulates the expected ratio (dashed lines).

DIA transfer learning generalizes DIA search to unseen modifications

To date, fully predicted libraries address many of the needs of DIA workflows but their pretrained prediction
models are still best suited to the sample and instrument types that were used in training. This makes it
necessary to train custom models for different situations - for example PTMs, as they generally change
retention and fragmentation behavior compared to the unmodified peptide. We reasoned that close
integration of prediction by deep learning and the search engine might have the potential learn to adapt to
such differences, an approach that we call end-to-end transfer learning. Following search with alphaDIA
confidently identified precursors and their spectra are first collected into a training data set. The general
pretrained models for retention time, fragmentation spectra and charge state provided with alphaPeptDeep
are then finetuned using transfer learning on the experiment specific training data set (Fig. 6, a, b). This results
in a custom model, reflecting the behavior of peptides on the individual LCMS setup. A held-out test data set
ensures generalization and prevents overfitting.

To assess the potential of this end-to-end transfer learning concept, we first applied it to a dataset of
dimethylated HelLa peptides, an example of a modification that is known to alter retention times and
fragmentation behavior (Methods, Fig. 6, c). We found that transfer learning accurately modeled the effects
of the lysine and N-terminal dimethylation on retention time behavior, improving R? from 0.69 to 0.99 (Fig. 6,
d-i).

Using the transfer learned model resulted in a total of 96,000 unique precursor and 8,613 protein
identifications, a 48% increase over the 65,000 precursors identified without transfer learning and a 25%
increase in protein groups (Fig. 6, d,e; Extended Data Fig. 14)}. This gain in identifications is driven additively
by both improved predictions of retention times from a median prediction error of 317 s down to only 11 s and
an increase in the median correlation to predicted spectra from 0.5 to 0.85 (Fig. 6, g,h).

Given these drastic improvements, we wished to ascertain that they were not the result of overfitting, despite
the use of a holdout test dataset. Similarly to before, we used entrapment with the Arabidopsis proteome
library followed by transfer learning with all precursors, including false positive Arabidopsis hits (Extended
Data Fig. 13,a). Remarkably, even successive rounds of transfer learning led to more confident precursors
identifications and less than 0.5% false Arabidopsis identifications at 1% FDR (Extended Data Fig. 13, b-d).
Upon inspection, we found that predictions of target hits showed substantial improved agreement with
observed data, whereas the opposite was true of false positive Arabidopsis hits (Extended Data Fig. 13, e-g).
This implies that end to end transfer learning generalizes to the peptide behavior in the actual experiment
improving identifications and control of false discoveries at the same time.

12

93



3. Publications

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.596182; this version posted June 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

End-to-end
Transfer Learning NN

20.0 1
17.5 4
15.0
1254
10.0 4

754

501

predicted retention time [min]

25 =F.

DDA
Training

before transfer learning

Library Prediction

"

PeptDeep

5 10

15

Retention time [min]

f
Dimethyl
-
" 5
5
p &
e g
(=}
P @
g
D
b =2
E
R

Default

alphaDIA

Individual
LCMS Platform

PeptDeep

Retention Time m

2 1on Mobility |
MS2 Intensity |

Fragmentation Losses
Charge state probability

after transfer learning

d e
0.200 4 r 1.00
—— Trainloss — R?
01754 ---- Testlos: roes
b E
0.150 | 0% =
E
r0.94 =
0125 5
2 F092. Z
S 0100 x 2
t 090 %
0.075
ro.88 5
8
0.050 loss 5
254
0.025 l 084
20 0 10 20 30
Epoch
.
5 9 h
E g 1000
g’ o) 10+
<
5 800 g 0.85
kS E 05-[§053
& 600 g
g 8 00
£ s
5 31745 ‘g
2 200 & -0.5
o 135.2s
[:3
‘ 06 o]
MS2 RT+MS2 Default Calibration Transfer Default  Transfer
learning learning

5 10 15 20

Retention time [min]
i g
3
_ 80,000 o
3 60,000 i
8
&
@
2 40,000 o
5 B
20,000 @ @
ES
0
‘}" e\f
&

ff‘f fﬁ c.wf

Fig. 6 | DIA transfer learning for discovery of modified peptides a, A custom deep learning model is trained for every experiment
using the identifications from the DIA search engine. b, Multiple properties are being optimized resulting in smaller and better
matching spectral libraries. ¢, Observed and predicted retention times for dimethylated precursors before transfer learning. d, DIA
transfer learning for the retention times of dimethylated peptides. During training by stochastic gradient descent, a 20% test set of
precursors is held out to mitigate overfitting and ensure generalization to the peptide space of interest. e, Retention times after
transfer learning. f, Comparison of the number of unique peptides identified with the pretrained base model (Default) to the transfer
learned model after RT and MS2 transfer learning. g, Distribution of absolute retention time errors for the pre trained base model
(Default), the non-linear calibration within alphaDIA and after transfer learning. h, Comparison of spectral correlation before and
after MS2 transfer learning. i, Number of unique observed modifications by type.
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Discussion

The development of alphaDIA addresses several critical challenges inherent to DIA, such as the complexity of
spectral data and the need for robust, adaptable algorithms capable of handling high-dimensional data from
advanced instrumentation. Our results demonstrate that already the first public version of alphaDIA matches
and in many cases surpasses existing software tools in terms of performance and versatility, making it a
valuable addition to the proteomics toolkit.

AlphaDIA's feature-free processing method is central to its performance and flexibility. Traditional DIA
processing methods often rely on predefined feature boundaries, which can lead to information loss,
especially with the high sensitivity and stochastic nature of TOF detectors. By contrast, alphaDIA's approach
aggregates signals across multiple dimensions, ensuring that all relevant data is utilized before making
discrete identifications. This results in higher accuracy and sensitivity, as evidenced by our ability to
confidently identify peptides even in noisy datasets. Additionally, alphaDIA extends the reach of DIA to novel
acquisition modes. Together with its open-source architecture this enables the community to quickly loop
between experimental innovations and their algorithmic implementation.

Our benchmarking against established tools using both empirical and predicted libraries showcases
alphaDlA's equal or superior performance. This holds true across platforms and experimental designs
including the Orbitrap Astral, where alphaDIA identified over 120,000 precursors and 9,500 protein groups in
a 60 SPD format.

One of the most innovative and promising aspects of alphaDIA is its end-to-end transfer learning capability.
Based on integration with the transformer models of alphaPeptDeep, alphaDIA closes the loop between
spectral library prediction and DIA search. Our approach allows the model to adapt to experiment-specific
conditions, enhancing the accuracy of peptide identifications. We showcased this on a dataset of
dimethylated Hela peptides demonstrating dramatic improvements in retention time prediction and spectral
carrelation, resulting in a 48% increase in unique precursor identifications and a 25% increase in protein
groups compared to using pretrained models alone. This allows the application of DIA search to hitherto
inaccessible areas such as post-translationally modified proteins without PTM specific pretraining or to the
better identification of HLA peptides. Importantly we demonstrated that transfer learning not only improves
overall identifications but even improves FDR control, ensuring reliable results.

The advancements presented by alphaDIA pave the way for more comprehensive and accurate proteomic
analyses which will be important as MS technology continues to evolve. This will be especially important in
clinical and translational research, where ever increasing cohorts and data require large scale, distributed
processing.
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The framework's open-source nature ensures that it can be continuously improved and extended by the
scientific community, fostering innovation and collaboration. We therefore aim to establish alphaDIA as a
cornerstone for the next generation of DIA analysis, closely coupled to the developments in artificial
intelligence.
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Methods

Calibration of retention time, ion mobility and m/z

During search retention time, ion mobility, precursor m/z and fragment m/z are calibrated to the measured
values. Starting with initial default settings of 15ppm MS1 and M2 tolerance, 300 seconds rt tolerance and
0.04 mobility tolerance the library is iteratively calibrated within a minimum of three epochs. Every epoch,
batches of precursors are searched and scored with an exponential batch plan (2000, 4000, 8000, etc.) until
a minimum number of precursors has been identified at 1% FDR. The number of target precursors is increase
with every epoch (default: 200 precursors/epoch). If one epoch has accumulated enough confident target
precursors, they are calibrated to the measured values using locally estimated scatterplot smoothing (LOESS)
regression. For calibration of fragment m/z values, up to 5000 (but at least 500) of the best fragments
according to their XIC correlation are used. Following a single calibration pass, all tolerances are updated to
the 95 percentile error after calibration but not below the chosen target level.

LOESS regression using uniformly distributed kernels is used for each property which should be calibrated
(Extended Data Fig. 3}. Regression is performed on first and second degree polynomials basis functions of
the calibratable property. For m/z and ion mobility, two local estimators with tricubic kernels are used. For
retention time prediction, six estimators with tricubic kernels are used. The architecture is built on the scikit-
learn package and can be configured to use different hyperparameters and arbitrary predictors for calibration.

Scoring of precursors and decoys using convolution kernels and supervised classification

AlphaDIA employs a two-step scoring machine learning algorithm to identify the best potential peak group for
every library entry. The first step builds on a collection of weighted convolution kernels, learned during
optimization and calibration of the spectral library. For every precursor of interest, MS1 scans and MS2 scans
contributing information towards the identification are identified from the DIA cycle pattern of the acquisition
method. Based on a certain number of highest intensity fragments in the library (default: 12), dense
representations of the search space in ion mobility and retention time dimension are assembled. To identify
putative peak groups for each precursor, a set of convolution kernels, reflecting the expected distribution in
retention time, ion mobility and fragment intensity are learned during calibration and optimization. The
convolution of the search space is performed in Fourier space for fast processing, and a single score is
calculated as log sum across kernels and fragments. Local maxima are identified using a simple peak picking
algorithm and retention time and ion mobility boundaries of the peak group of interest are defined from the
joint scoring function. These candidates are subsequently rescored for FDR estimation.

As second step, AlphaDIA uses target decoy competition for scoring the guality of precursor spectrum
matches. Upon library import, paired known false positive decoy peptides are created for every target. By
default, a mutation pattern GAVLIFMPWSCTYHKRQENDBJOUXZ == LLLVVLLLLTSSSSLLNDQEVVVVVV is used.
For every library entry, target and decoy, the best high scoring matches from the convolution kernel score are
used for supervised classification. Up to 47 features are calculated for each peak-group match, reflecting the
merit of the identification. A multi-layer perceptron (MLP} deep neural network with layer sizes 100, 50, 20, 5
and 47 input dimensions (10,810 parameters} is trained to predict the probability of being a false decoy
identification. Training is performed with stochastic gradient descent for 10 epochs with a batch size of 5000
and learning rate of 0.001. While training on an 80% training set a 20% test set is held-out to mitigate
overfitting. Based on the final score, the best (lowest) decoy probability peak group is retained for every library
entry and a count based FDR is calculated.
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False discovery rate calculation

AlphaDIA uses a count based FDR on the level for assigning confidence to precursor, peptide, protein and
channels. Identifications are given as a set of target and decoy identifications P = {pg, p4, ... p; } all associated
with a ground truth decoy status decoy: P — {true, false} and a deep-learning derived decoy score : P - R.
For every precursor with index i the number of targets with lower or equal decoy probability

Ntarget = {p|3@) < 3(p), decoy(p) = false}|

and the number of decoys with lower or equal decoy probability

ndecay = I{ p I }A’(P) < f’(Pi), deCO)’(P) = true}l

are calculated. Furthermore, the total number of targets and decoys in the set are calculated as:
Nta'rget = I{p I dECOY(p) = fa'lse}l

Ndecoy = I{p | dEC()y(p) = true}|

The local count-based g value is given as:

q; = ndecuy % Ntarget
' ntarget Ndecoy
This is converted to a false discovery rate (FDR) by using the minimum g-value where a precursor was

accepted:

FDR; = min(q; {q| (@) > 9(p) )

By default, all identifications are filtered on a run-level 1% FDR precursor threshold and global 1% protein
group-level threshold.

Spectrum centric fragment competition

Competition of precursors for fragment ion is used as spectrum centric element to mitigate double use of
fragments for multiple identifications from the same spectra. Following initial FDR calculation, precursor
candidates are filtered at 5% FDR and split into groups of potentially fragment sharing. This is determined by
the guadrupole cycle pattern. Then, precursor candidates and their elution width at half maximum are
compared so that precursors with overlapping elution width at half maximum have no more than k4, = 1
shared fragment masses within the chosen MS2 mass accuracy §ys,. If two or more precursor candidates
share more fragments than permitted the precursor candidate with the lowest decoy score is used.

Protein inference

Reporting all proteins whose sequence can be matched to any identified peptide can lead to drastic inflation
of false discoveries onthe protein level®. Following the approach outlined by Nesvizhskii et al. #', we consider
a precursor as a single piece of evidence, and the task of protein inference is then to assemble these
precursors into proteins while controlling the accumulation of spurious protein identifications. AlphaDIA aims
to implement a simple and transparent inference approach, allowing for three inference modes: library,
maximum_parsimony and heuristic. Apart from the library mode which uses the inference performed during
empirical library creation, proteininference is based on an implementation of the “greedy set cover” algorithm
with grouping by default (heuristic) and without grouping for strict inference (maximum_parsimony).

In brief, alphaDIA’s protein inference starts with a table of identified precursors. Each precursor is associated
with a set of genes and proteins and based on user choice, the inference is performed on the gene or protein
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level (default: gene). While a common peptide precursor may match many proteins, a proteotypic peptide will
match one single protein. During grouping, the precursor and protein arrays are reshaped into a protein-
centric view, where each protein is associated with one set of precursors. Then, proteins are sorted by the
length of their precursor set in descending order, and the protein with the largest number of precursors
removed from the lists as the first query. The query is compared to all remaining subject proteins. From each
subject precursor set, all precursors matching the query set are removed. If a protein’s precursor set becomes
empty, it is considered redundant and dropped. After all precursor sets have been compared, the process
repeats by reordering the list and extracting the next query. After completion, retained queries are denoted
master proteins, necessary to explain all discovered precursors. In strict maximum_parsimony mode all
master proteins are simply reshaped to precursor-centric format, linking each precursor to one single protein
ID. In the heuristic mode, the list of master proteins is used to remove all non-master proteins from the initial
precursor table, effectively leaving each precursor with a set of associated proteins comprised solely of
master proteins. Thereby, the same precursor can be claimed by different proteins, creating protein groups
(see also the tutorial notebook in the GitHub repository).

Protein FDR

Protein FDR is performed on the protein groups (PGs) calculated during protein inference. For all target and
decoy protein groups, 7 features are calculated: the total number of precursors across runs for the PG; the
mean decoy score for precursors across runs for the PG; the number of unigue peptides for the PG; the
number of unique precursors for the PG; the number of runs the PG was found in; the lowest decoy score
across precursors for the PG; the highest decoy score across precursors for the PG. We use a multi-layer-
perceptron (MLP) to classify decoy PGs from target PGs. Correct training is ensured by a 20% held-out test
set. PG FDRs are calculated on a global level using the FDR mechanism described just above.

Library refinement for fully predicted libraries

AlphaDIA uses an established two step-search strategy for library refinement™. Following an initial search of
all or a subset of raw files, protein inference and FDR is performed as configured by the user. All precursors
are automatically filtered at 1% local precursor FDR and global 1% protein group FDR and accumulated into
a spectral library and finally saved to the project folder. For each precursor, the identification with the best
(lowest) decoy probability is used. By default, MS2 guantities are used as annotated in the original library. If
transfer learning accumulation is used, custom user specified fragment types can be selected and observed
MS2 intensities are extracted. This spectral library is then used for the second search with full MS2-based
target decoy scoring without any relaxed FDR parameters. For protein inference and FDR, library annotated
protein groups are used.

Transfer learning

To create transfer learning libraries, precursors identified at 1% precursor and protein FDR are selected for
requantification. Precursors are requantified for user defined fragment ion types (a, b, c, x, ¥, z, modification
loss, etc.} and a user-defined maximum charge (default: 2). Extracted fragment quantities are accumulated
across samples and ordered by their decoy probability. For each unique modified precursor, the
observations with the three lowest decoy scores are selected. AlphaDIA also creates a high quality subset
where only precursors with a median fragment correlation greater than 0.5 are included. For these
precursors we only retain fragments whose correlation values exceed 75% of the median fragment
carrelation of the respective precursor. The implementation of transfer learning library is globally sequential.
At any given time, we can limit the implementation to only parallelize across a limited number of processes.
This approach allows the process to scale without storing all runs in memory.
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For transfer learning, we prioritized robustness to ensure performance instead of requiring users to define
hyperparameters. The transfer learning datasetis splitinto a training (80%) and test set (20%) and trained for
a maximum of 50 epochs. After each training epoch, we run a test epoch for assessing the test loss and data
specific test metrics. AlphaDIA uses a custom learning rate scheduler with two phases. The first phaseis a
warm-up period (default 5 epochs) during which the learning rate gradually increases to a maximum value
(default: 0.005). After this warm-up phase the learning rate scheduler halves the learning rate if the training
loss does not significantly improve (default: >5% test loss) within a patience period (default: 3 epochs).
Additionally, we use a simple early stopping mechanism that interrupts training if the validation loss starts to
diverge or does not significantly improve (default: 12 epochs).

After training, the deep learning model is stored on disk, and can be loaded as necessary. Retention time
and ion mobility finetuning are supervised by calculating the L1 loss, R2, 95th percentile of the absolute
error on the training data. MS2 finetuning is supervised by calculating the L1 loss, Pearson correlation
coefficient, spectral angle, Spearman correlation on the test data. Charge finetuning is supervised by
calculating the cross entropy loss, accuracy, precision, recall on the test data. All training and test metrics
are reported to the user. The specific implementation and details of the test metrics can be found in the
open-source code on GitHub (see Code Availability).

Sample preparation of HelLa bulk digests

Hela S3 cells (ATCC) were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies Ltd)
supplemented with 20 mM glutamine, 10% fetal bovine serum, and 1% penicillin-streptomycin. After washing
the cells in PBS and cell lysis, the proteins were reduced, alkylated, and digested by trypsin (Sigma-Aldrich)
and LysC (WAKO} (1:100, enzyme/protein, w/w) in one step. The peptides were dried, resuspended in 0.1%
TFA/2% acetonitrile (ACN), and 200 ng digest was loaded onto Evotips (Evosep). The Evotips were prepared by
activation with 1-propanol, washed with 0.1% formic acid (FA}/99.9% ACN, and equilibrated with 0.1% FA.
After loading the samples, tips were washed once with 0.1% FA.

Sample preparation of dimethylated peptides for transfer learning

HelLa cells were cultured as describe above. A Hela cell pellet was lysed by boiling for 10 min in 1 % SDC in
60 mM TEAB pH 8.5, followed by sonication in a Branson type instrument, Heinemann Sonifier 250
(Schwabisch Gmund), operating at 20% duty cycle and 3-4 output for 1 min, and boiling for 5 min again. After
cooling down to room temperature, the protein concentration was determined using the tryptophan
fluorescence based, WF-assay in the microtiter plate format using white Nunc 96-well plates with a flat
bottom (Thermo Fisher Scientific, 136101). After diluting the lysate to 1 ug/uL in lysis buffer, disulfide bonds
were reduced by adding Tris(2-carboxyethyl)phosphine (TCEP) to a final concentration of 10 mM TCEP and
briefly incubating for 10 min. Denatured protein lysate was digested by Arg-C Ultra (Promega) and Lys-C
(WAKO) at a 1:250 and 1:100 (enzyme/protein) ratio to the lysate at 37°C for 3 h, respectively. The peptides
were labeled with a dimethyl group by using a 100 uL of 1 ug/uL digested peptides and adding 4 uL of 4 %
formaldehyde and 4 uL of a 0.6 M NaBH3CN solution. The mixture was incubated at room temperature and
every 10 minutes 2.8 uL (2 ug peptides) were sampled until 60 minutes and added to 17.2 uL of a 1 % solution
of trifluoro acetic acid to quench the reaction.

Sample preparation for the mixed species experiments

For the mixed species experiment, three different mixtures with varying mixing ratios of HelLa tryptic digest
(Pierce #1862824), S. cerevisiae tryptic digest (Promega V746A), and E. coli tryptic digest (Waters
#186003196) were prepared: Sample A (10:1:10 Human(H}:Yeast(Y):E. coli(E}), Sample B (10:10:1 H:Y:E), and
Sample C (10:4:7 H:Y:E). Five replicates containing 210 ng were loaded per condition.
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Peptide loading onto C-18 tips

C-18 tips (Evotip Pure, Evosep) were loaded with the Bravo robot (Agilent), by activation with 1-propanol,
washing two times with 50 pl buffer B (99.9% ACN, 0.1% FA}, activation with 1-propancl and two wash steps
with 50 pl buffer A (99.9% H20, 0.1% FA). In between, Evotips were spun at 700¢g for 1 min. For sample
loading, Evotips were prepared with 70 pl buffer A and a short spin at 700 g. Samples were loaded in 20 pl with
the indicated concentrationinto the remaining buffer Aand spun at 700 g for 1 min, if not described differently.
After sample loading, Evotips were washed with 50 pl buffer A and stored with 150 pl buffer A after a short spin
at 700 g at 4 °C until MS acquisition.

MS data acquisition of dia-PASEF and synchro-PASEF data

We used the Evosep One liquid chromatography system to separate peptide mixtures at varying throughputs
using standardized gradients. These gradients consisted of 0.1% formic acid (FA) and 99.9% water (v/v), and
0.1% FA with 99.9% acetonitrile (v/v) as mobile phases. For the 60 SPD runs, peptides were separated on a
Pepsep column (8 cmm x 150 pm ID, 1.5 pm C18, Bruker Daltoniks) connected to a 10 pm ID fused silica emitter
(Bruker Daltoniks). For the whisper40 SPD runs, we utilized an Aurora Elite nanoflow column (15 cm x 75 pm
ID, 1.7 pm C18, lonOpticks).

The system was coupled with a timsTOF mass spectrometer (Bruker Daltoniks) to acquire data in dia-PASEF
and synchro-PASEF modes. Sample loads above 25 ng were analyzed using a timsTOF Pro2, and those below
25 ng with a timsTOF Ultra. The dia-PASEF and synchro-PASEF methods were optimized using our Python tool,
py_diAID32. This tool maximizes precursor coverage by optimally positioning the acquisition scheme over the
precursor cloud and enhances sampling efficiency by adjusting the isolation window widths according to
precursor density.

The dia-PASEF method covers an m/z range from 300 to 1200 with eight dia-PASEF scans and two isolation
window positions per scan (cycle time 0.98 s). The synchro-PASEF method covers an m/z range from 140 to
1350 with four diagonal synchro scans (cycle time 0.53 s}). The method files are deposited in the data
repository. In both modes, the fragment scans were acquired with an m/z range from 100 to 1700.
Furthermore, ions were accumulated and ejected at 100 ms intervals from the TIMS tunnel. The methods
cover an ion mobility range from 1.3 to 0.7 V cm” -2, calibrated with Agilent ESI Tuning Mix ions (m/z, 1/K,:
622.02, 0.98 V cm”-2; 922.01, 1.19 V cm”-2; 1221.99, 1.38 V cm”-2). The collision energy was linearly
decreased in relation to the ion mobility elution: from 59 eV at an ion mobility of 1.6 Vscm”™-2 to 20 eV at 0.6
Vemh-2.

MS data acquisition of SWATH data on the ScieX 7600

Triplicates of 200ng Hela bulk digest were loaded onto C-18 tips as described above and analysed using an
Evosep One system (Evosep) coupled to a 7600 ZenoTOF mass spectrometer (Sciex} using Sciex OS (version
3.3 or higher). Peptides were separated by the 60 SPD method gradient (Evosep) on a PepSep 8cm x 150 pm
reverse-phase column packed with 1.5 pm C18-beads (Bruker Daltonics) at 50 °C connected to the low micro
electrode for 1-10 pL/min. The mobile phases were 0.1% formic acid in LC-MS-grade water (buffer A} and
99.9% ACN/0.1% FA (buffer B). The ZenoTOF mass spectrometer was equipped with the Optiflow ion source
using a spray voltage of 4.5 kV, ion source gas 1 of 15 psi, ion source gas 2 of 60 psi, curtain gas of 35 psi, CAD
gas of 7 and a temperature of 200 °C. SWATH data was acquired using the following parameters: TOF MS start
mass of 400 Da, a stop mass of 1500 Da, TOF MS accumulation time of 50 ms, TOF MSMS start mass 140 Da,
stop mass 1750 Da, accumulation time 13 ms with dynamic collision energy turned on, a charge state of 2,
Zeno pulsing enabled, and 60 variable SWATH windows covering the mass range of 400-900 m/z.
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MS data acquisition of mixed species samples fostering innovation and collaboration on the
Orbitrap Astral

For mixed species experiments, five replicates of samples A, B and C were loaded onto C-18tips as described
above. Samples were analyzed using an Evosep One system (Evosep) coupled to a Orbitrap Astral mass
spectrometer (Thermo Scientific) using Thermo Tune software {(version 1.0 or higher). Peptides were separated
by the 60SPD method gradient (Evosep) on a PepSep 8 cm x 150 pm reverse-phase column packed with 1.5
pum C18-beads (Bruker Daltonics) at 50 °C. The analytical column was connected to a stainless-steel emitter
with inner diameter of 30 pm (EV1086). The mobile phases were 0.1%formic acid in LC-MS-grade water (buffer
A) and 99.9% ACN/0.1% FA (buffer B). The Orbitrap Astral mass spectrometer was equipped with a FAIMS Pro
interface and an EASY-Spray source (both Thermo Scientific). A compensation voltage of -40V and a total
carrier gas flow of 3.5 L/min was used as well as an electrospray voltage of 2.0 KV was applied for ionization.
The MS1 spectra was recorded using the Orbitrap analyzer at 120k resolution from m/z 380-980 using an
automatic gain control (AGC) target of 500% and a maximum injection time of 3 ms. The Astral analyzer was
used for MS/MS3 scans in data-independent mode with 3 Th non-overlapping isolation windows with a scan
range of 150-2000 m/z. The precursor accumulation time was 3ms and an AGC target of 500%. The isolated
ions were fragmented using HCD with 25% normalized collision energy.

MS data acquisition of HelLa bulk data on the Orbitrap Astral

For analysis of HelLa bulk digest, 200ng of lysate was loaded onto C-18 tips in six replicates as described
above. Samples were analyzed using an Evosep One system (Evosep) coupled to a Orbitrap Astral mass
spectrometer (Thermo Scientific) using Thermo Tune software {version 1.0 or higher). Peptides were separated
by the 60SPD method gradient (Evosep) on an Aurora Rapid 80 mm x 0.15 mm reverse-phase column packed
with 1.7 pm C18-beads (lonOpticks) at 50 °C. The mobile phases were 0.1% formic acid in LC-MS-grade water
(buffer A) and 99.9% ACN/0.1% FA (buffer B). The Orbitrap Astral mass spectrometer was ecuipped with a
FAIMS Pro interface and an EASY-Spray source (both Thermo Scientific). A compensation voltage of -40V and
a total carrier gas flow of 3.5 L/min was used as well as an electrospray voltage of 1.9 kV was applied for
ionization. The MS1 spectra was recorded using the Orbitrap analyzer at 120k resolution from m/z 380-980
using an automatic gain control (AGC) target of 500% and a maximum injection time of 3 ms. The Astral
analyzer was used for MS/MS scans in data-independent mode with 2 Th non-overlapping isolation windows
with a scan range of 150-2000 m/z. The precursor accumulation time was 3ms and an AGC target of 500%.
The isolated ions were fragmented using HCD with 25% normalized collision energy.

MS data acquisition of dimethylated peptides on the Orbitrap Astral

MS data acquisition was performed as described for mixed species samples on the Orbitrap Astral, if not
described otherwise. For each of the six timepoints, triplicates of 50 ng of labeled peptide were injected.
Samples were separated by the Whisper 40SPD method gradient (Evosep) on an Aurora Elite TS 15 cm and
75 pm ID (AUR3-15075C18-TS, lonOpticks} at 50 °C. The An electrospray voltage of 1.9 kV was applied. The
MS1 resolution was 240 k with a maximum injection time of 100 ms and 6 ms for MS/MS.

Data Analysis

All data analysis was performed with python 3.11 using Numpy, Pandas, Seaborn and Matplotlib.

Search and analysis of dia-PASEF and synchro-PASEF data with alphaDIA

Data was searched with version 1.5.5 of alphaDIA using a previously published® empirical Hela library. A
default single step search was used with the following parameters: target ms7_tolerance = 15ppm,
target ms2_tolerance = 15 ppm, target_candidates = 5. For synchro-PASEF quant _all = true was set and a
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quant_window of 6 scans was used. All precursors with run-level FDR of 1% and protein groups with global
FDR of 1% we’re accepted. Coefficients of variation we’re calculated on non-log transformed directLFQ
normalized quantities.

Search and analysis of ZenoTOF data with alphaDIA

Data was searched with version 1.5.5 of alphaDIA using the HelLa library mentioned above. A default single
step search was used with the following parameters: target ms1_tolerance = 15ppm, target_ ms2 tolerance =
15 ppm, target _candidates = 3, target_rt_tolerance = 300. All precursors with run-level FDR of 1% and protein
groups with global FDR of 1% we’re accepted. Coefficients of variation we’re calculated on non-log
transformed directLFQ normalized quantities.

Search and analysis of empirical library data from Lou et al.

Raw files, libraries and fasta files were used as provided in the original publication®. All data was searched
with alphaDIA 1.5.5 using default parameters. For timsTOF data the following parameters were changed:
target_ms1_tolerance = 15ppm, target_msZ2_tolerance = 15 ppm, target_candidates = 5, quant_window = 6,
group level = genes, scans, target_rt_tolerance = 500 seconds. For QE-HF data search was performed with
target ms1_tolerance = 5ppm, target ms2 _tolerance = 10 ppm, target candidates = 5, quant window = 6,
group level = genes, scans, target rt _tolerance = 600 seconds. Data for benchmarked tools was used as
provided in the original publication. Analysis was performed as described in the original publication except for
reassignment of proteins. Instead, search engine specific protein grouping was used. For alphaDIA, precursor
passing local 1% FDR and protein groups passing a global 1% FDR were accepted.

Search and analysis of HeLa bulk data with fully predicted spectral libraries

For fully predicted library benchmarking, Spectronaut v18.6.231227.55695, DIA-NN 1.8.1, Chimerys on Ardia
in Proteome discoverer and alphaDIA 1.5.4 was used. All analysis was performed using the same fasta file of
reviewed human proteins without isoforms (01.12.2023). On all platforms, search was performed for tryptic
precursors with carbamidomethyl modification at cysteine as fixed modification and variable methionine
oxidation and protein N-terminal acetylation with maximum of two occurrences. Charge states 2 to 4 were
included with sequence lengths between 7 and 35 amino acids with a single missed cleavage. For Chimerys,
only peptides with up to 30 amino acids were used as the tool didn’t support 35 amino acids. For alphaDIA
automatic library prediction by alphaPeptDeep was used using the Lumos model for a NCE of 25. AlphaDIA
used default parameters for a two-step search with the following changes: target_ms7_tolerance = 4 ppm,
target_ms2_tolerance = 7 ppm, target_rt_tolerance = 300s in the first pass and target_rt_tolerance = 700s for
the second pass. All data was analyzed ata 1% FDR threshold as enforced by the search engine. Coefficients
of variation we’re calculated on non-log intensities as provided by the search engine for all proteins. For
Chimerys, quantification was only available on the protein level and not protein group level.

For Entrapment analysis, an Arabidopsis fasta with reviewed sequences and no isoforms was downloaded
from Uniprot (02.02.2024). Search was performed as described above with heuristic inference. Following
search all shared precursors, including isoleucine — leucine pairs were identified. Protein groups with shared
precursors were discarded.

Search and analysis of mixed species data with fully predicted spectral libraries

For allthree species, reviewed non-isoform proteomes were downloaded from Uniprot (21.02.2024). Proteins
were in-silico digested using tryptic cleavage with carbamidomethyl modification at cysteine as fixed
modification and variable methionine oxidation and protein N-terminal acetylation with maximum of two
occurrences. Charge states 2 to 4 were included with sequence lengths between 7 and 35 amino acids with a
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single missed cleavage. The Library was predicted using the alphaPeptDeep Lumos model at 25 NCE.
AlphaDIA 1.5.4 was used with default parameters for a two-step search with the following changes:
target_candidates = 5, target_msT1_tolerance = 5 ppm, target_ms2_tolerance = 10 ppm, target_rt_tolerance =
200s inthefirstpass and target_rt_tolerance = 100s for the second pass. Heuristic protein inference was used
on the gene level. Proteins with shared seguences were removed as described above. For benchmarking
accuracy, the median LFQ ratio was calculated for protein groups identified in at least three replicates.

Search and analysis of SILAC data with fully predicted spectral libraries

A fully predicted human library was generated with alphaPeptDeep as described above but for a NCE of 27.
The library was multiplexed across the light channel without additional modifications and a heavy channel
with isotopic labeling of Arginine (+10.008269) and Lysine (+8.014199). A single step search was performed
with alphaDIA default parameters apart from: target_ms1_tolerance = 5ppm, target_ms2_tolerance = 20ppm,
target _rt_tolerance = 600 seconds, channel _wise_fdr = True.

Search and analysis of dimethylated samples using transfer learning

A fully predicted human library was generated based on a reviewed human uniprot library (01.12.2023) with
the general pretrained alphaPeptDeep model not trained on dimethylated peptides. The peptides were
modified with Methionine oxidation and protein N-terminal acetylation as variable modifications with a
maximum of two. N-Terminal and Lysine dimethylation were set as fixed modifications. Transfer search was
performed using alphaDIA 1.5.5 with default parameters and target_candidates = 1, target_ms1_tolerance =4
ppm, target_msZ2_tolerance = 7 ppm and target_rt tolerance = 7200. Transfer learning quantification was
enabled and set to b and y ions with a maximum charge of 2 and the top 3 occurrences for every modified
sequence. The generated transfer learning library was used for training with the default training scheme
described above. For evaluation, the original pretrained model, the transfer learned retention time model, the
transfer learned MS2 model and the fully transfer learned model were evaluated for search. All searches were
performed with the same parameters as the transfer search apart from a target_rt tolerance = 700 for
searches with the updated model.

Search and analysis of transfer learning entrapments

For evaluation of transfer learning on FDRs, entrapment experiments with known false positive Arabidopsis
peptides were performed on the unmodified HelLa bulk samples acquired on the Orbitrap Astral. The
entrapment library was generated as described above for the two step search with added N-terminal
glutamate and glutamine to pyroglutamate conversion as variable modification. Raw files were searched with
alphaDIA 1.5.5 using default parameters and target candidates = 1, target ms1_tolerance = 4 ppm,
target ms2 tolerance = 7 ppm and target rt tolerance = 1200. Transfer learning quantification was enabled
and setto b and y ions with a maximum charge of 2 and the top 3 occurrences for every modified sequence.
Transfer learning was performed utilizing all human and Arabidopsis precursors identified at 1% FDR cutoff.
The transfer learning model was then reused for a second search with updated target rt tolerance = 750
seconds. The process was repeated twice and the identifications after every search were analyzed for the
number of false positive Arabidopsis identifications as described above.
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Extended Data Fig. 1 | alphaDIA search results for library-based search of triplicate bulk HeLa dia-PASEF data. Data was
acquired at 80SPD (21min) on the timsTOF Ultra. a, Qverview of the MS2 window distribution scheme of optimal dia-PASEF. b,
Precursor selected as example in Fig. 1 b-f. ¢, Correlation of LFQ protein quantities across replicates. d, number of precursors
identified in each replicate at 1% FDR. e, Reproducibility of precursor identification across replicates. Number of precursors
identified in at least 1, 2 or 3 replicates f, Precision of protein quantification. Number of protein groups for given CV cutoffs.
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Extended Data Fig. 2 | Fragment signal across ion mobility and retention time for the precursor LLELTSSYSPDVSDYK2+. a,
For each fragment all signal within the 15ppm of calibrated mass tolerance is shown and the final integration boundaries of the
identified precursor are highlighted in red. Due to the high sensitivity of time-of-flight detectors fragment signal might only
correspond to few ion copies. This leads to stochastic sampling of ions and discontinuous signal across retention time and ion
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mobility. Distinguishing fragment signal from other ion species is challenging and prevents to determine clear peak boundaries. This
requires an algorithm which does not need a minimum number of datapoints or certain peak shape. It’s likewise important to
combine evidence across fragments for determination of peak group boundaries.
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Extended Data Fig. 3 | Calibration of library properties to observed data using locally estimated scatterplot smoothing
(LOESS) regression. a, Observed retention times of confidently identified precursors compared with the library annotated values.
The absolute deviation in minutes is shown. b, A collection of polynomial kernels is fitted to uniformly distributed subregions of the
data. ¢, The functions are combined and smoothed using tricubic weights. d, Combining the kernels with their weighting functions
allows to approximate the systematic deviation of the data locally. e, The sum of the weighted kernels can then be used for
continuous approximation and calibration of retention times.
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Extended Data Fig. 4 | Processing of synchro-PASEF data with alphaDIA. Analysis of bulk HelLa lysate with synchro-PASEF on
the timsTOF Ultra. a, In synchro-PASEF the quadrupole is continuously scanning across the mass range while ions elute from the
TIMS trap. In this method, four synchro scans of variable width are being used. b, Correlation of protein groups quantified between
two replicates of HelLa lysate e, Number of precursors identified at 1% FDR per replicate. d, Data completeness given by precursors
identified in a minimum number of replicates. e, Coefficient of variation (CV) for protein groups.
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Extended Data Fig. 5 | Analysis of Sciex swath data acquired on the ZenoTOF 7600. Bulk Hela lysate was analyzed with
21minutes of active gradient. a, Overview of the acquisition method used for data acquisition. The position of MS2 quadrupole
windows is shown for a single DIA cycle. b, Correlation of protein groups quantified between two replicates of Hela lysate ¢,
Number of precursors identified at 1% FDR per replicate. d, Data completeness given by precursors identified in a minimum number
of replicates. e, Coefficient of variation (CV) for protein groups.
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Extended Data Fig. 8 | FDR benchmarking using Arabidopsis entrapments. Target Mouse and Yeast libraries we're spiked in
with increasing amounts of known false positive Arabidopsis precursors as provided by Lou et al.** a-d, Number of global known
false positive Arabidopsis proteins as a fraction of all identified proteins is shown as entrapment FDR. Search results are shown for
increasing amounts of entrapment precursors, relative to the target library. a, Benchmarking data acquired on timsTOF, entrapment
FDR calculated on the protein group level. b, Benchmarking data acquired on QE-HF, entrapment FDR calculated on the protein
group level. e, Benchmarking data acquired on timsTOF, entrapment FDR calculated on the precursor level. d, Benchmarking data
acquired on QE-HF, entrapment FDR calculated on the precursor level.
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Extended Data Fig. 9 | Quantitative accuracy for ratios in the benchmarking dataset. a Ratios were calculated as described
in the original study. The absolute error between the expected and observed ratio is shown for different search engines.

34

115



3. Publications

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.28.596182; this version posted June 2, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a

Precursors

Peptides

Protein groups

130,000

120,000

110,000

100,000

90,000

80,000

alphaDIA 1.5.4 heuristic

alphaDIA 15.4 maximum parsimony
Spectronaut 18

Chimerys

DIA-NN 181

105,000

100,000

95,000

90,000

85,000

80,000

75,000 -

1 2 3 4 5 6

alphaDIA 1.5.4 heuristic

alphaDIA 1.5.4 maximum parsimony
Spectronaut 18

Chimerys

DIA-NN1.8.1

9,600 1
9,400 1
9,200 4
9,000 1
8,800
8,600
8,400
8,200 1
8,000

Identified in N replicates

9,581

9540 alphaDIA 1.5.4 heuristic
alphaDIA 1.54 maximum parsimony
9244 —— Spectronaut 18
——— Chimerys
—— DIA-NN18.1
8,620
8,556
8,388
8,180

Identified in N replicates

Peptides, unique sequences remapped to fasta

I alphaDIA 154 M DIA-NN181
[0 Chimerys [ Spectronaut 18

Proteins, unique sequences remapped to fasta

I alphaDiA 154 I DIA-NN181
[ Chimerys [ Spectronaut 18

Extended Data Fig. 10 | Comparison of identifications for fully predicted library search across search engines. a, Data
completeness of precursor identifications across replicates. b, Data completeness of modified peptide identifications across
replicates. ¢, Data completeness of protein identifications across runs. d-e Peptides were mapped back to the human reference
proteome to enable comparison independent of grouping. All peptides matching to multiple proteins were discarded. d, Venn
diagram comparing the peptides identified by the different search engines. e, Venn diagram comparing the proteins identified by
different search engines.
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Extended Data Fig. 11 | Quantitative accuracy benchmark using mixed species proteomes on the Orbitrap Astral. a, Five
replicates of three samples were prepared with Yeast, E.coli and human proteomes mixed in defined ratios. b, Comparison of
median protein group intensities at 1% FDR between sample A and B. ¢, Comparison of median protein group intensities at 1% FDR
between sample A and B. d, Comparison of median protein group intensities at 1% FDR between sample C and B.
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Extended Data Fig. 12 | Validation of identification in SILAC labeled samples. SILAC data is from a method optimization study
by the Garcia group that was originally analyzed by EncyclopeDIA and an empirical library®. This is compared to a fully
alphaPeptDeep predicted library and database search by AlphaDIA. Triplicates results from the original paper are plotted in the left-
hand panels and the AlphaDIA results on the same data in the right-hand panels. a, Percentage of false identifications in the heavy
channel are median of 1.6% with EncyclopeDIA and 0.0043% with alphaDIA, which identified a threefold more precursors. b, For
the combined sample, the heavy to light ratios are similar (46.7% heavy in EncyclopeDIA to 48.1% heavy in alphaDIA). ¢, After
extended incorporation both analyses found similar percentage of light peptides (7.1% light in EncyclopeDIA vs 6.0% light in
alphaDIA).
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Extended Data Fig. 13 | Entrapment validation of end-to-end transfer learning across for iterations. a, Overview of the
validation workflow. A Human and Arabidopsis fasta file digest was used for fully predicted library search. All identified precursors
at 1% FDR were subsequently used for end-to-end transfer learning, including false positive Arabidopsis identifications. This
process was repeated twice, using the transfer learned deep-learning model for library prediction. b, Total unique identified
precursors across six replicates. Precursors mapping to both species, including leucine and isoleucine pairs were removed. ¢, Total
unique identified protein groups. d, Entrapment FDR given as the percentage of false positive Arabidopsis identifications. e, MS2
spectral angle for precursors before and after transfer learning. Median spectral angle is shown for each plot. f, Retention time
deviation in seconds before and after transfer learning. The median retention time deviation is shown. g, Predicted vs observed
retention time following transfer learning. False positive Arabidopsis identifications are highlighted in red.
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Extended Data Fig. 14 | Comparison of identification with transfer learning of dimethylation. a, Venn diagram showing the
overlap of precursor identifications before and after transfer learning. b, Total number of unique protein groups identified across
replicates after different stages of transfer learning,.
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3.2 Applications of Orbitrap Astral technology for spatial proteomics

As shown before, the Orbitrap Astral, as well as other highly sensitive TOF detector
instruments such as the timsTOF Ultra/SCP, have pushed the boundaries of sensitivity,
acquisition speed, and identification. This has shown to be particularly advantageous for
low input applications and is broadening the possibilities for applications such as Deep
Visual Proteomics (DVP) and single cell proteomics.215:217:395:426.427 \Whjle previous DVP
studies relied on the classification and laser-microdissection-based extraction of 700-
1000 cell shapes to achieve sufficient depth, the sensitivity of the Orbitrap Astral MS
allows for great proteomics depth at much lower sample input.3943%.414 Especially when
paired with an optimized and tailored acquisition strategy, something | have been
focusing on during my PhD. This knowledge and experience served as a building stone
for multiple DVP projects focusing on personalized medicine (Article 4), the evaluation
of phenotypic shifts after xenotransplantation (Article 5) and single cell DVP (scDVP) in

the context of alpha-1-antitrypsin deficiency (Article 6).

Article 4: Deep Visual Proteomics reveals DNA replication stress as a hallmark of
Signet Ring Cell Carcinoma

Pre-print published online: bioRxiv (2024), doi: 10.1101/2024.08.07.606985, in revision
at Precision Oncology

Sonja Kabatnik!, Xiang Zheng*?, Georgios Pappas?, Sophia Steigerwald?, Matthew P
Padula*, Matthias Mann®3*

INNF Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagen,
Denmark

°Department of Biomedicine, Aarhus University, Denmark

3Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried,
Germany

4School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology
Sydney,Ultimo, Australia

*Corresponding author

Signet ring cell carcinoma (SRCC) is a rare and highly aggressive form of
adenocarcinoma. SRCC is defined by the formation of a mucin filled vacuole, which
leads to nuclei dislocation to the periphery and gives SR cells their characteristic signet
ring morphology. It most commonly originates in the glandular cells of the stomach, but
can also arise from other tissues such as the gall- or urinary bladder.*?42° |n comparison

to other gastrointestinal cancers it has a poor prognosis, largely due to late diagnosis
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and limited treatment options.*3%431 Due to its rarity, little is known about the mechanisms

of this malignant cancer.

In this study, the first author Sonja Kabatnik had the unique opportunity to use DVP to
investigate the proteome of the primary tumor and metastasized tissues of a single
SRCC patient and utilize the gained information to make a tailored treatment
recommendation. After optimizing a universal staining strategy and training a
segmentation model, Sonja dissected 500 cell shapes, equating to ~50 SR cells, from
the bladder (primary tumor side), the prostate, the seminal vesicles and a lymph node
as well as non-cancerous epithelial prostate cells as a control. Using an input-optimized
MS acquisition method on the Orbitrap Astral MS, which | advised on, a median of >
6,500 proteins could be identified per sample. While these included a number of tissue
specific proteins, we could establish a core proteome of 4,825 proteins across all four
tissue types. The initial analysis showed a clear clustering of samples based on tissue
type and identified the disease status, healthy control vs. SR cells, as the primary driver
of separation in a principal component analysis. This separation was primarily driven by
known markers for prostate cancer, proteins related to epithelial-mesenchymal transition
and classic SRCC markers, such as carcinoembryonic antigen-related cell adhesion
molecule (CEACAM) and mucin (MUC) proteins. Among these, CEACAM5 and
CEACAMSG, as well as MUCL1, 2, and 13, showed the most differential abundance
between cancerous and epithelial controls. Further analysis indicated an upregulation
of proteins associated with DNA replication, DNA damage response (DDR) and ataxia-
telangiectasia mutated and Rad3-related (ATR) signaling, as well as defective mismatch
repair (MMR). Together, this hints towards replication stress as a signature of SRCC.
Moreover, proteomic and histological analysis indicated high levels of immune-related
proteins, including programmed cell death ligand protein 1 (PD-L1), and infiltration of
PD-1-positive cytotoxic T cells. This points towards tumor immunogenicity and suggests
immunotherapy, especially PD-1 or PD-L1 inhibitors, as potential treatment options. In
line with this, treatment with pembrolizumab, a PD-L1 inhibitor, was administered to the
patient and showed a positive treatment response and effectively halted tumor
progression. Overall, this highlights the potential of MS-based proteomics or DVP in

particular, for precision oncology.

Contribution:
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Co-authorship. This study was conceptualized by Sonja Kabatnik, Xiang Zheng,
Matthew Padua and Matthias Mann. Sonja Kabatnik conducted the study. | advised on
the MS acquisition strategy and gave feedback on data visualization. Alongside the

other co-authors, | contributed to revising and editing the manuscript
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Deep Visual Proteomics reveals DNA replication stress

as a hallmark of Signet Ring Cell Carcinoma

Sonja Kabatnik!, Xiang Zheng'2, Georgios Pappas', Sophia Steigerwald?®, Matthew P

Padula*, Matthias Mann'?

INNF Center for Protein Research, Faculty of Health Science, University of Copenhagen, Copenhagsn, Denmark.
2Department of Biomedicing, Aarhus University, Denmark,

3Department of Proteomics and Signhal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
4School of Lite Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney,

Ultimo, Australia.

Running title: Replication stress in signet ring cell carcinoma cells.

Abstract
Signet Ring Cell Carcinoma (SRCC) is a rare and highly malignant form of

adenocarcinoma with increasing incidence and poor prognosis due to late diagnosis
and limited treatment options. We employed Deep Visual Proteomics (DVP), which
combines Al directed cell segmentation and classification with laser microdissection
and ultra-high sensitivity mass spectrometry, for cell-type specific proteomic analysis
of SRCC across the bladder, prostate, liver, and lymph nodes of a single patient. DVP
identified significant alterations in DNA damage response (DDR) proteins, particularly
within the ATR and mismatch repair (MMR) pathways, indicating replication stress as a
crucial factor in SRCC mutagenicity. Additionally, we observed substantial enrichment
of immune-related proteins, reflecting high levels of cytotoxic T lymphocyte infiltration
and elevated PD-1 expression. These findings suggest that pembrolizumab
immunotherapy may be more effective than conventional chemotherapy for this
patient. Our results provide novel insights into the proteomic landscape of SRCC,
identifying potential targets and open up for personalized therapeutic strategies in

managing SRCC.
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Introduction
Signet Ring (SR) cell carcinoma (SRCC) is a rare and highly aggressive type of

adenocarcinoma that can occur in multiple organs. While the stomach is the most common
primary tumor site, SRCC has also been reported in the prostate, breast, lung, and bladder 1.
Regardless of origin it typically metastasizes rapidly to distal sites 2°. Incidences of gastric
SRCC have persistently increased over the last few decades 45.

If SRCC occurs from cells other than stomach glandular cells this may make disease
classification in the effected organ more difficult 5-8. However, there is one pathological feature
that characterizes SR cells as such: a high concentration of intercellular mucin that builds up
in large vacuoles, pushing the nucleus to the periphery of the cell and giving it the distinctive
shape of a signet ring °.

Despite clinical advances in gastric cancer classification, grading and treatment, the SR cell
carcinoma subtype remains a substantial clinical burden 2'°. Due to its rarity and a propensity
for late symptom onset, SRCC patients are often diagnosed at an advanced stage, limiting
treatment options and therapeutic efficacy 112, Surgical resection followed by postoperative
chemotherapy and radiotherapy are the main management options for advanced disease®.
However, these treatments have limited impact on overall survival and can have numerous
negative effects that worsen patient wellbeing 2. The rarity of SRCC and the substantial
knowledge gap regarding its fundamental biology and underlying signaling pathways thus
combine to limit personalized therapeutic strategies for this distinct cancer subtype.
Investigations into SRCC biology have primarily revolved around this cancet’s inherently
increased proliferation rate, characterized by aberrations of the RAS/RAF/MAPK, HER2 or
Wnt/B-catenin '® signaling pathways and mutation of the E-cadherin gene CDH1 1.
Microsatellite instability and strong lymphocyte infiltration have also been linked with colorectal
SRCC, clinicopathological signatures typically rather associated with colorectal cancer than
specifically with SRCC 1718, It is also kown that in colorectal SRCC, the SMAD complex
triggers the epithelial-mesenchymal transition (EMT) in response to transforming growth factor
(TGF)-B signaling, which accounts for the distinctive change of epithelial cell junctions and
polarity in SRCC of the colon9.20,

So far, most research on SRCC has been limited to clinical observations, histological
classifications 2122 and obtaining genomic sequencing data specific to occurrences in affected
organs 202 predominantly the colon. We reasoned that global molecular analyses at the
protein level could contribute to elucidating the broader biological context and distinctive
pathogenic mechanisms of SRCC. The spatial proteomics field has made significant strides

in recent years, and is potentially able to address the above challenge ?+%. In particular our
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group has developed the Deep Visual Proteomics (DVP) technology which combines high-
resolution image acquisition with machine learning-guided segmentation and classification,
followed by single-cell type enriched high-sensitivity mass spectrometry (MS)-based
proteomics?.

In this study, we took a precision oncology approach by using DVP to examine SRCC in four
different organs—the bladder, prostate, liver, and lymph node—within a single patient. We
reasoned that this spatial context would allow us to explore proteome differences and
similarities of SR cells across tissues, offering valuable insights into tumor origin, potential

mechanisms of metastasis and to make treatement recommendations.
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Results

Patient Disease Background and Interventions

The patient was diagnosed with SRCC , with the bladder identified as the primary site of origin,
following the removal of a suspicious mass on the bladder wall that was revealed by magnetic
resonance imaging (MRI). Hematoxylin and eosin (H&E) staining of the mass revealed the
typical signet ring morphology, and the patient was subjected to a radical cystectomy that
removed the bladder (B.), prostate (P.), seminal vesicles (S.V.) and 14 lymph nodes (L.N.)
(Figure 1A, B). Post-surgery pathology of these organs showed cells with signet ring
morphology in all organs and nine out of fourteen lymph nodes. To enhance the therapeutic
options for the patient, a genomic analysis was performed and a molecular tumor board report
was filed, noting a microsatellite instability of only 0.8%, an ATRX (alpha thalassemia/mental
retardation syndrome X-linked) frameshift mutation, MYCL and RICTOR (Rapamycin-
insensitive companion of mTOR) amplification and KDM6A (Lysine-specific demethylase 6A)
biallelic loss. The patient underwent chemotherapy with a combination of oxaliplatin, which
was discontinued after four months due to the onset of continuous neuropathy, and
capecitabine, likewise discontinued after seven months, before being monitored by quarterly
computed tomography (CT) scans (Figure 1C). Twelve months after the cessation of
chemotherapy, CT scan revealed suspicious enlargement of several lower abdominal lymph
nodes. After further evaluation through a positron emission tomography (PET) scan, an
accessible lymph node was removed by ultrasound guided biopsy, in which pathology
confirmed the presence of cells of signet ring morphology. The patient received a combination
of immunotherapy with pembrolizumab, which is ongoing, and chemotherapy with carboplatin,
which was again stopped after four months due to side effects (Figure 1C). The tissues used

in this study were obtained prior to any treatment.

A simple stain allows robust segmentation and classification for the DVP workflow

For spatial proteomics we sectioned formalin-fixed, paraffin-embedded (FFPE) tissue blocks
of all four organs (bladder, prostate, seminal vesicle and one lymph node) at three ym
thickness using a microtome and mounted the tissue sections on polyethylene naphthalate
(PEN) membrane-coated microscopy glass slides (Figure 2A). Tissues were stained with
DAPI for nuclear visualization. A crucial step in DVP is delination of the cell plasma membrand
for subsequent laser microdissection. For our samples, we found that staining by wheat germ
agglutinin (WGA), a lectin that binds to specific carbohydrates in the plasma membrane, was
sufficient for this purpose (Figure 2B). In comparison to other staining methods, such as

cytokeratin 1 (CK1) or the conventional H&E, WGA staining proved superior in terms of
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efficiency and simplicity. Continuing with the DVP pipeline, we imaged the tissue slides with a
standard immunoflourecent microscope (Zeiss Axio) and processed images with the Biology
Image Analysis Software (BIAS) 28 (Figure 2A, B). For cell segmentation we fine-tuned a pre-
trained model in BIAS. We trained a machine learning model for cell classification, which
involved manual annotation of more than 1000 SRCC and lymphocytes from each organ to
capture morphological diversity, ensuring accurate classification across tissue types (Figure
2B). Prediction accuracy of SR cells was 95% based on 10-fold cross validation and indendent
validation by a pathologist.

Shapes were subsequently exported to a second microscope for semi-automated laser
microdissection (Leica LMD?7). In total, we dissected 500 cell shapes per organ, corresponding
to approximately 50 SR cells, in triplicates. Collected cell shapes were lysed and enzymatically
digested for subsequent MS-based proteomics (Figure 2D). Peptides were separated by to
the Evosep One chromatography system 27 coupled to the Orbitrap Astral™ mass
spectrometer 4. This was followed by protein identification and quantification using the DIA-
NN software ?8 (Figure 2E, see Methods).

Proteomic analysis identifies organ-specific SRCC and DDR protein signatures

Analyzing MS data from the equivalent of 50 SR cells in all four organs, and including non-
cancerous epithelial prostate cells as controls, we quantified a median of 6,638 different
proteins (Figure 3A), with a excellent coefficient of variation (CV) of approximately 11% across
the tissues (Figure 3C). A total of 4,648 proteins were present across all triplicates and organs
and 7,157 in at least 70% of samples of each organ indicating high completeness of our data
set (Figure 3C). Across the four organs, we identified 4,825 proteins as a common core
proteome (Figure 3E). As expected, proteins uniquely present in each organ mirror specific
organ functions, such as semenogelin-2 (SEMG2) in the seminal vesicle which is responsible
for gel matrix formation for spermatozoa® (Figure 3F).

Principle component analysis (PCA) clearly clustered samples originating from the same
tissue, but also the cancerous SR cell away from the control (Figure 3E). Likewise, SR cells
from the lymph node, prostate, and bladder were clearly distinct from SR cells of seminal
vesicles (Figure 3E). Well known markers for prostate cancer and proteins involved in EMT
including dipeptidyl peptidase 4 (DPP4), transglutaminase 4 (TGM4), keratin 7 (KRT7), acid
phosphatase 3 (ACP3), kallikrein-related peptidase 3 (KLK3) and solute carrier family 45
member 4 (SLC45A4) 393 were among the proteins driving the separation between SRCC
and epithelial control in our PCA along the load component 1 (Figure 3F). Proteins that are

instead enriched in the SR cells compared to the epethilial control cells include
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carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAMb5) and CEACAMS,
mucins (MUC2, MUC5B), and calcium-activated cloride channel regulator 1 (CLCA1),
classical markers for SRCC (Figure 3F). Fatty acid binding protein 4 (FABP4) and glycerol-3-
phosphate dehydrogenase 1 (GPD1) separate the SR cells from the seminal vesicle from the
other organs through component 2, likely due to tissue-specific differences in cellular
proteomes, function, due to interactions between SR cells and their tumor environment (Figure
3F). Thus, DVP recapitulated expected or recently described physiological patterns while
adding novel molecular players.

In the prostate, there was a clear and significant enrichment of MUC and CEACAM proteins
between the epithelial control and SR cells (Figure 3G). In contrast, we observed minimal
differences in the levels of prostate and prostate cancer-associated proteins, including KLKB1,
KLK2, KLK3, APC3, and SLC45A4, conventional adenocarcinoma of the prostate (Figure 3H).
To control for SRCC-specific protein patterns and to investigate proteins with the most
significant differential changes, we focused on two well-known protein families strongly
associated with SRCC, mucins and CEACAMSs.

MUC1, MUC2, and MUC13 showed the strongest — up to ten-fold - and most consistent
enrichments in SR cells across all organs compared to the epithelial control cells of the
prostate (Figure 3H). MUC1 and MUC2 are already well known to be overexpressed in gastric
cancers, however, MUC13, a transmembrane mucin might play an yet unknown role in cell
signaling and eptithelial barrier protection. MUC4, MUCS5AC, MUC5B, and MUC12 had
significant but fluctuating fold-changes between organs. SR cells in the seminal vesicles
exhibited protein levels similar to those of non-cancerous control cells in the prostate. Mucin-
like 1 protein (MUCL)1 has structural similarities and glycosylation patterns to classical
mucins, but interestingly its expression profile was not significantly changed across all tissues
analyzed, demonstrating that changes and overexpression in SR cells are specific to classical
mucins.

Regarding the CEACAM family, CEACAMS and CEACAMG expression increased up to ten-
fold between cancerous and epithelial controls, with the sole exception of CEACAMS in the
SR cells of the seminal vesicle. CEACAM1 and CEACAM21, who have different functions and
structures, remained uniform across the different tissues supporting the notion that they are
not directly involved in 35,

We next asked if the proteins highly enriched in prostate SR cells could point us to any
therapeutically relevant pathways. Indeed, the top ones in terms of fold-change and statistical
significance in a Gene Ontology (GO) enrichment analysis were all related to DNA replication

and DNA damage response (DDR), including ‘nucleotide excision repair (NER)', ‘base
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excision repair (BER)' and ‘mismatch repair (MMR)’ (Figure 31). We additionally found that the
enrichment of MMR pathways is universal to all SR-positive tissues. The majority of the
constituent proteins were upregulated, however, a number of prominent replication proteins

(RPAs) were substantially downregulated (Figure 3J).

ignet rin lls exhibit multiple DDR pathw ficienci I rgan
Following up on our observation that proteins of the DDR showed abundance changes
between prostate SR cells and epithelial cells, we next investigated tissue-specific protein
changes by correlating the fold-changes between them (Figure 4A). Comparing two tissues at
a time, observed that Ly6/PLAUR domain-containing protein 8 (LYPD8) and UDP-
glucuronosyltransferase 2B17 (UGT2B17) showed similar patterns to the above mentioned
CEACAMS and CEACAMBS proteins. LYPD8 is also involved in epethilial cell junction integrity,
pointing to a dysregulation of cell-cell adhesion, as well as potential deficiencies in tissue
protection. UGT2B17 is involved in the metabolism of steroid hormones and xenobiotics,
which can alter the tumor microenvironment.
S100 calcium binding protein P (S100P), MUC2, and CLCA1 also had similar expression
patterns across the tissue (Figure 4A), in line with CLCA1 ( Calcium-activated chloride channel
regulator 1) affecting mucin secretion through Ca?* signalling and its possible implications in
cancer pathophysiology®®. KLK3 and TGM4, well-known prostate-specific markers,
consistently exhibit a negative or zero fold change between tissues and non-cancerous control
cells (Figure 4A). Thus signet ring cells may arise due to different molecular mechanisms
distinct from those of conventional prostate adenocarcinoma and metastases.
To globally examine protein patterns prevalent across all SR cells and contrast them with
epithelial cells as a control, we performed unsupervised hierarchical clustering on the 1,560
ANOVA significant proteins, which revealed two prominent clusters, those upregulated or
downregulated with respect to control (upper, red cluster and lower, blue cluster in Figure 4B).
We performed GO term enrichment analysis on the upregulated cluster using Reactome,
NetPath, and Biological Processes, which highlighted diverse pathways active in SRCC cells.
These included Wnt, leptin, epidermal growth factor (EGF) receptor and transforming growth
factor B (TGFpB) receptor pathways, all well-known for their roles in various carcinomas
including stomach, colorectal and SRCC, (Figure 4C). Apart from these, the most prominent
pathways were again associated with DNA replication and DDR (Figure 4C).
Next, by comparing the SR cells to the epithelial control cells, we ran a gene set enrichment
analysis (GSEA) on proteins which showed a significant enrichment following pairwise

proteomic comparison. Remarkably, 7 of the top 10 pathways are part of DDR, namely
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‘Activation of [the] pre-replicative complex’, ‘activation of ATR (ataxia-telangiectasia mutated
and Rad3-Related), a pathway triggered upon perturbations affecting DNA replication
dynamics characterized as replication stress (RS)’, ‘PCNA-dependent long patch base
excision repair (LP-BER)’, ‘gap-filing DNA repair synthesis and ligation in global-genome
nucleotide excision repair (GG-NER)’, and ‘DNA strand elongation’ (Figure 4D, E).

To validate our proteomic results regarding ATR signaling activation, we stained all SRCC-
positive tissues for phospho-ATR (pATR), the activated form of the protein kinase which
phosphorylates downstream key proteins involved in DDR?72, Qur staining results confirmed
the presence of pATR across our tissue samples, with the highest positivity observed in the
seminal vesicle tissue (Figure 4F). We confirmed that the seminal vesicle is particularly highly
positive for pATR whereas the bladder, prostate, and lymph node also display pATR signals,
but to a lesser extent (Figure 4F).

Pathways implicated in metabolic processes such as ‘glycogen metabolism; and signaling
mechanisms such as the ‘Ca?* pathway’ and G-protein beta:gamma signaling’ are negatively
enriched (Figure 4D, E). Downregulation of these pathways in SR cells likely reflects metabolic
reprogramming of cancer cells, alterations in calcium signaling to support uncontrolled growth
and survival, and specific adaptations of SRCC to facilitate mucin production and secretion.
Given the observations of significant changes in protein abundances related to DDR pathways
and the ATR signaling axis in SR cell-positive tissues compared to epithelial control cells, we
further investigated proteins involved in stalled replication fork (RF) protection and repair of
complex DNA lesions formed in case of replication fork collapse, a key part of the cellular
response to DDR. These included proteins of the Fanconi Anemia (FA) pathway specifically
the FA group D2 protein (FANCD2) and its interactor %!, Fanconi Anemia complementation
group | (FANCI) 2. Additional mediators of the same process including DNA unwinding RecQ
like helicase 5 (RECQLS5), Werner syndrome helicase (WRN), and helicase-like transcription
factor (HLTF) all displaying a similar positive fold change (Figure 4G). Our data provides
strong indications of an ongoing RS and of the subsequent response of the SR cells to
maintain their genomic stability by upregulating various RF protection mechanisms.

Upon persistent RS and prolonged RF stalling, replisome structure is impaired and RFs
collapse, leading to the emergence of single-end double strand breaks (seDSBs), the most
deleterious form of DNA lesions. Cells then trigger the highly error-prone break induced
replication pathway (BIR) to deal with this threat 4344. GSEA on our proteomic data showed a
significant enrichment of this mutagenic pathway (Figure 4F). Moreover, DNA polymerase
delta subunit POLD3, an essential subunit of DNA polymerase delta upon BIR, together with

POLD2 and DNA polymerase epsilon (POLE) show a positive fold change enrichment
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comparing SR cells of the prostate, the seminal vesicle, the lymph node, and the bladder to
the epithelial control (Figure 4G).

APOBEC3s, members of the Apolipoprotein B mRNA-editing enzyme catalytic polypeptides
(APOBECSs) superfamily, exhibit overexpression across various cancer types, notably bladder
4547 and prostate cancer 4849, The induced hyper-mutations of long stretches of single strand
DNA (ssDNA) formed during BIR (with APOBEC3A and APOBEC3B being the major
mutators) through deamination, foster genome instability in cancer cells, a phenomenon
referred to as “kataegis”. However, proteins of the APOBEC3 family of enzymes were
markedly reduced in abundance in SR cells of every tissue (Figure 4G), possibly as a
protective feedback mechanism to mitigate the mutational burden and maintain genomic
stability 50-53,

Collectively our analysis of the proteome changes of SR cells from the bladder, identified as
the primary tumor site, as well as from metastatic sites, namely the prostate, seminal vesicle,
and lymph node revealed consistent patterns of a severe dysregulation of multiple DNA repair

mechanisms, with a potential negative impact on genome integrity.

Enrichment of Complement System and PD-1 Signaling Proteins in Signet Ring Cells result in

a cytotoxic T lymphocyte infiltration
DDR genes’ mutations and expression profiles have been recently associated with alterations

of immune regulatory gene expression and CD8+ T cell infiltration in the tumor
microenvironment, serving as a predictive marker of immune checkpoint blockade (ICB)
therapy efficiency 5455 We therefore hypothesized that our unique protein signatures could
indicate a higher immunogenicity and a greater mutational burden of the SRCC. The
Reactome-curated ‘Complement system’ pathway displayed a positive fold change across all
tissues, with the most marked increases seen in the C1q subcomponent subunits A (C1QA),
B (C1QB), and C (C1QC) (Figure 5A). A similar expression pattern was observed in
immunoglobulins and proteins involved in the programmed cell death protein 1 (PD-1)
signaling pathway (Figure 5A).

To confirm our hypotheses derived from our proteomic analyses, which pointed to tumour
immunogenicity and DNA damage response pathways, we immunostained for PD-1 and CD8-
positive cytotoxic T cells in bladder tissue (primary tumor site), and in lymph nodes
(metastasis) (Figure 5B). These tissues exhibited stubstantial or moderate infiltration of PD-
1+ cytotoxic T cells, respectively (Figure 5B). We also observed a pronounced upregulation

of programmed cell death ligand protein 1 {(PD-L1) on SR cells of the bladder (Figure 5C). This
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suggests that immunotherapy, particularly PD-1/PD-L1 inhibitors, could be a promising
therapeutic approach for targeting these tumors.

In line with our findings, the PD-1 inhibitor pembrolizumab had indeed been recommended
and administered as a therapy following recurrence rather than chemotherapy. Our results
indicate that the ladder, would have been unlikely to be effectivel while having the usual
adverse effects. Initiated in 2022, the pembrolizumab ICB therapy on our patient has
successfully halted tumor progression, with MRI scans conducted quarterly confirming tumor
stasis.

Based on our results we propose a model is which the DNA damage repair mechnisms and
the replication stress response takes center stage in SRCCs (Figure 5 D): These SR cells
hyper-activate the epidermal growth factor receptor (EGFR) pathway with subsequent hyper-
proliferation. Increased DNA replication combined with defective MMR then results in
numerous unrepaired post-replication DNA lesions across the genome. The repair of these
lesions relies on the cells' excision repair mechanisms, including base excision repair (BER)
and nucleotide excision repair (NER), which we observed to be upregulated at the protein
level. The abundance of such lesions, along with the increased rate of DNA replication, are
major driving forces behind replication stress, leading to the activation of the ATR signaling
pathway. Proteomics indicates SRCC cells respond to this stress by upregulating proteins
mediating stalled replication fork protection and collapsed replication forks repair, striving to

maintain their genome integrity.
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Discussion

In this study, we employed Deep Visual Proteomics (DVP) to investigate the proteome
landscape of Signet Ring Cell Carcinoma (SRCC) across primary and metastatic sites from a
single patient. Our analysis of approximately 50 SR cells per organ yielded up to 7,700
proteins, providing unprecedented insights into the tumorigenic properties and potential
signaling pathways of SRCC.

We identified both shared and organ-specific protein patterns in SR cells, with a clear
distinction from normal epithelial control cells. Key drivers of this difference include mucins,
CLCA1, CEACAMS, and CEACAMS6. Mucins, particularly MUC1, MUC2, and MUC13, showed
significant enrichment in SR cells across all organs, directly contributing to the characteristic
signet ring morphology®¢. CLCA1, closely linked to mucin production, can significantly alter
the tumor microenvironment, affecting cell adhesion and migration 2657, The upregulation of
CEACAMS and CEACAMS, immunoglobulin-related glycoproteins and adhesion molecules, is
notable. While CEACAMs are known to facilitate cellular connection and are frequently
elevated in various cancers %890 their specific role in SRCC has not been previously
emphasized. Their overexpression may contribute to the distinctive morphology and
aggressive behavior of SRCC through promotion of invasion and metastasis®!-%%.

Qur data revealed significant alterations in DNA damage response (DDR) pathways across
SR cells in different organs. We observed changes in excision repair mechanisms, including
DNA mismatch repair (MMR), base excision repair (BER), and nucleotide excision repair
(NER). The upregulation of most MMR proteins, coupled with the downregulation of MLH1,
suggests a defective MMR pathway, consistent with previous studies linking microsatellite
instability to colorectal SRCC 1718,

A key finding of our study is the upregulation of the ATR signaling axis, indicating ongoing
replication stress — a recognized hallmark of cancer driving genome instability®®. Our proposed
model suggests that replication fork stalling and collapse result from an increasing load of
post-replicative lesions combined with increased proliferation and DNA replication rates. In
response to this stress, the ATR signaling pathway is activated, triggering mediators of stalled
replication fork protection, and collapsed replication fork repair and restart (Figure 4G, 4F,
5D)%. Single-ended double-strand breaks, the most deleterious form of DNA lesions formed
upon replication fork collapse, are addressed by the break-induced replication (BIR)
pathway®768, We demonstrated that BIR is upregulated in SR cells across all four organs
examined. The error-prone nature of BIR has been associated with high mutation rates, gross
chromosomal rearrangements (GCRs), and loss of heterozygosity, further fostering genomic

instability®0.59,

11

134



3. Publications

bioRxiv preprint doi: https://doi.org/10.1101/2024.08.07 606985 this version posted August 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

In line with this model, SR cells exhibited a considerable increase in the abundance of poly
(ADP-ribose) polymerase (PARP), a key player in DNA repair, and a decreased abundance
of APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) enzymes compared to
adjacent non-tumorigenic epithelial cells. This protein profile suggests a complex interplay
between DNA damage accumulation and repair mechanisms in SRCC.

The activation of these DNA damage response and repair pathways likely contributes to the
high mutation rate and genomic instability observed in SRCC. This genomic instability,
particularly the disruptions in the MMR pathway, is linked to microsatellite instability, which in
turn can lead to increased tumor immunogenicity. These findings provide a mechanistic
explanation for the observed enrichment of immune-related protein signatures in our
proteomics data, and the potential efficacy of immunotherapy in SRCC'7:18, which we could
confirm by immunofluorescence (IF) imaging, revealing strong cytotoxic T lymphocyte
infiltration and PD-1 expression?2. Moreover, we observed alterations related to the
complement cascade pathway do occur in SRCC tissues as previously reported’®

Qur results provide a rationale for the observed clinical response to pembrolizumab
immunotherapy in this patient®>71-7% despite initial sequencing results showing only 0.8%
unstable microsatellite sites. This highlights the potential of proteomic analysis in guiding
treatment decisions, especially in cases where genomic data alone may not fully capture the
tumor's biology. The identification of replication stress as a central feature of SRCC opens
new avenues for targeted therapies. Our findings suggest that targeting the ATR pathway or
exploiting vulnerabilities in DNA repair mechanisms could be promising strategies.
Additionally, the overexpression of CEACAMs points to potential targets for antibody-drug
conjugates or other targeted therapies.

This study demonstrates the power of spatial proteomics in uncovering the molecular
intricacies of rare cancers like SRCC. By providing a comprehensive view of the proteome
across different organs, we've identified common features of SR cells that transcend their
tissue of origin, as well as organ-specific adaptations. This approach offers valuable insights
into tumor biology that may not be apparent from genomic or transcriptomic analyses alone.
In conclusion, our DVP-based analysis of SRCC reveals a complex interplay of DNA damage
response, replication stress, and immune signaling pathways. These findings not only deepen
our understanding of SRCC biology but also suggest potential therapeutic strategies. The
success of pembrolizumab in this case, explained retrospectively by our proteomic data,
underscores the potential of precision oncology approaches guided by comprehensive

molecular profiling.
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Future studies should aim to validate these findings in larger cohorts of SRCC patients and
explore the therapeutic potential of targeting the pathways identified here. Moreover,
integrating proteomic data with genomic and transcriptomic profiles could provide an even
more comprehensive understanding of SRCC biology, potentially leading to improved

diagnostic and therapeutic strategies for this aggressive cancer subtype.
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Materials and Methods

Study desigh and ethical permission

This is a case study. All experiments were performed on a single individual patient who
provided us with FFPE blocks from four organs with SRCC presence: bladder, lymph node,
prostate, and seminal vesicle. After consultation with the Nepean Blue Mountains Local Health
District, they concluded that ‘there is no need for formal application to the Human Research
Ethics Committee’ (HREC). The patient provided full consent as a subject of study (HREC
study reference: UTS ETH22-7236), including the provision that the proteomic analysis of
signet ring adenocarcinoma will be not followed up by any clinical intervention, and there is
‘no risk to privacy or confidentiality’. Thus, the letter and communication with the Nepean Blue

Mountains Local Health District acts as ‘evidence of waiver of the need for HREC approval’.

Immunohistochemistry and high-resolution microscopy

A detailed protocol for FFPE tissue mounting and staining on membrane PEN slides 1.0
(Zeiss, 415190-9041-000) is provided in the original Deep Visual Proteomics (DVP) article?®.
The tissue sections were initially subjected to deparaffinization and hydration through three
cycles involving xylene and decreasing ethanol concentrations from 99.6% to 70%. For Wheat
Germ Agglutinin  (WGA) labeling, sections on membrane PEN slides were incubated
with WGA staining solution (Biotium, 29023; diluted 1:1000) in a light-protected environment
at 37°C for 10 min. For pan-cytokeratin (CK), CD8, PD1, PDL1 and pATR staining, antigen
retrieval was achieved by immersing the tissue sections on glass slides in EDTA buffer
(Sigma, E1161; pH 8.5) at 90°C for 30 min. Following this, the tissue sections were blocked
with TBS protein-free blocking buffer (LI-COR, 927-80000) for 20 min at room temperature.
For CD8&/PD1/CK triple staining, the sections underwent overnight incubation at 4°C with anti-
CD8 antibody (Abcam, ab17147;1:100), followed by slide washing and subsequent incubation
with Alexa Fluor® 647 goat anti-mouse antibody (Invitrogen, A-21235; 1:1000) for one hour at
room temperature. After rinsing, the slides were further incubated overnight at 4°C with anti-
PD1 antibody (Miltenyi Biotec, 130-117-384; 1:100) and anti-CK antibody (Invitrogen, 53-
9003-82; 1:500). For PDL1/CK double staining, slides were incubated with anti-PDL1 antibody
(Invitrogen, 12-5983-42; 1:100) and anti-CK antibody (Invitrogen, 53-9003-82; 1:500)
overnight at 4°C. For pATR staining, slides were incubated with anti-pATR antibody
(GeneTex, GTX128145; 1:500) overnight at 4°C, followed by slide washing and subsequent
incubation with Alexa Fluor® 647 donkey anti-rabbit antibody (Invitrogen, A-31573; 1:1000)
for one hour at room temperature. Finally, we used DAPI (Abcam, ab228529; 1:1000) for

nuclear counterstaining for 5 min at room temperature and the slides were mounted with Anti-
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Fade Fluorescence Mounting Medium (Abcam, ab104135) before examination under an
AxioScan7 microscope (Zeiss, for WGA, CK, CD8, PD1 and PDL1 imaging) or PANNORAMIC
250 Flash Il (3Dhistech, for pATR imaging).

Tumor regions were identified using CK staining, WGA staining, or simply by including the

auto-fluorescent signal of mucin.

Cell segmentation and classification

Microscopy images were imported into BIAS (Biology Image Analysis Software, single-cell-
technologies.com), for machine learning-based cell segmentation, classification, and
subsequent single-shape export for semi-automated laser microdissection. For SR cell
segmentation, we utilized a pre-trained deep neuronal network on our IF WG A-stained tissues.
Detection confidence was set to 60% and the contour confidence to 20%. Cell shapes with a
larger area than 1000 ym? were excluded. To accurately classify SR cells, we trained a BIAS-
integrated multilayer perceptron (MLP) feedforward neural network on manually identified SR
cells across all four tissues. We set the weight scale and the momentum parameter to 0.01,
and the number of iterations to 10,000. Subsequently, reference points were set, and SR cell

contours were exported for semi-automated laser microdissection26.

Laser microdissection

After aligning the reference points using the LMD7 (Leica) microscope, we imported the shape
contours to facilitate semi-automated laser microdissection, which was conducted with the
following parameters: laser power at 34, aperture set to one, cutting speed at 28, the middle
pulse count to tree, final pulse to one, head current at 47 percent, pulse frequency at 2,600
Hz, and an offset of 180. For each type of organ tissue, SR cell shapes were excised in
triplicates, and collected into 384-well plates, deliberately omitting the outermost rows and
columns. After microdissection, we spun down the plate at 1,000 g for 10 min, and the

dissected cell shapes were preserved by freezing at —20°C for later processing.

MS sample preparation
The entire MS sample preparation protocol was adapted from the original DVP paper 26. After

protein digestion, samples were vacuum dried, resuspended in 20 pyL Evosep buffer A (0.1%

formic acid vAv) and directly loaded on Evotips (https:/Awww.evosep.com/).
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LC-MS

Subsequently after Evotip loading, our low input samples were analyzed on our Orbitrap Astral

mass spectrometer (Thermo Fisher Scientific) connected to the EvoSep One chromatography
system (https://immww.evosep.com/). We utilized a commercial analytical column (Aurora Elite
TS, lonOpticks) and an EASY-Spray™ source to run our samples with the 40 Samples Per
Day ('40 SPD’) method (31-min gradient). All samples we recorded in DIA (data independent
acquisition) mode. The Orbitrap analyzer of the mass spectrometer was utilized for full MS1
analyses with a resolution setting of 240,000 within a full scan range of 380 — 980 m/z. The
automatic gain control (AGC) for the full MS1 was adjusted to 500%. For the acquisition of our
low-input FFPE DVP samples, we set the MS/MS scan isolation window to 3 Th (200
windows), the ion injection time (lIT) to 5 ms, and the MS/MS scanning range to cover
150-2000 m/z. Selected ions were fragmented by higher-energy collisional dissociation

(HCD)™. at a normalized collision energy (NCE) of 25%.

MS data analysis
Raw files were first converted to the mzML file format using the MSConvert software

(https://proteowizard.sourceforge.io/) from Proteowizard, keeping the default parameters and

selecting ‘Peak Picking’ as filter. Afterwards, mzML files were quantified in DIA-NN28 (version
1.8.1) using the FASTA (2023, UP000005640 9606, with 20,594 gene entries) from the
UniProt database and a direct-DIA approach. The enzyme specificity was set to ‘Trypsin/P’
with a maximum of two missed cleavages. Parameters for post-translational modifications
were set to including N-terminal methionine excision, methionine oxidation and N-terminal
acetylation were all activated, and a maximum of two variable modifications were allowed.
Precursor FDR was set to 1%, and both mass and MS1 accuracy were set to 15 ppm. ‘Use
isotopologues’, ‘heuristic protein inference’, ‘no shared spectra’ and ‘match between runs’
(MBR) were enabled. Protein inference was set to ‘genes’ and the neural network classifier
run in ‘single-pass mode’. We chose the ‘robust LC (high precision)’ as quantification method
and a retention time-dependent cross-run normalization strategy. SRCC samples,

microdissected across all four organs’, were searched together.

Bioinformatic analysis

After quantification in DIA-NN, the protein group matrix was imported into Perseus’, and
samples were annotated according to the organ of origin (bladder, lymph node, prostate, and
seminal vesicle). Proteins with 70% of quantitative values present 'in at least one group’ were

then kept for imputation of missing values based on their normal distribution (width=0.3;
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downshift=1.5). Further, all statistical tests were corrected for multiple hypothesis testing,
applying a permutation-based false discovery rate (FDR) cut off either 5% or 1%.

Gene Set Enrichment Analysis (GSEA) was conducted using Python (version 3.9.7) and the
GSEApy package (documentation: https:/github.com/zqfang/GS EApy, version 1.0.4).

For the purpose of data visualization, our analyses were performed using the Python
programming language (version 3.9.7), and essential libraries such as NumPy (version
1.20.3), Pandas (version 1.3.4), Matplotlib (version 3.4.3), and Seaborn (version 0.12.2).

Additionally, the ShinyGo web tool (documentation: hitp:/bicinformatics.sdstate.edu/ao/),
version 0.77, was used to perform gene ontology (GO) term enrichment analysis.
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Figure 1 Signet ring cell carcinoma samples and timeline of medical interventions.
A Sample overview of signet ring cell carcinoma (SRCC)-positive tissues including the bladder
(B.), the seminal vesicle (S.V.), one lymph node (L.N.) and the prostate (P.). Image was

adapted from tulsaprocedure.com and modified. B Images of hematoxylin and eosin (H&E)

stained SRCC formalin-fixed, paraffin-embedded (FFPE) tissues. C Chronological timeline of

medical interventions. Illustrated with BioRender.
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Figure 2 Deep Visual Proteomics workflow on WGA-stained tissues.

A Cell-type specific tissue preparation for the Deep Visual Proteomics (DVP) sgpatial
proteomics pipeline, starting with FFPE tissue sectioning, mounting, staining and image
acquisition. B Representative images of WGA-stained lymph node tissue, showing one raw,
one segmented and one classified image (lymphocytes in pink, SR cells in green and
segmentation artifacts in blue). C Export mask of classified SR cells. D Illustration of the semi-
automated laser microdissection sample collection and processing, followed by E the liquid

chromatography-mass spectrometry (LC-MS) setup. lllustrated with BioRender.
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Figure 3 Proteomic depth and signhatures of signet ring cells across tissues.

A Number of precursors and proteins across all tissues. B Coefficients of variation (cv). €
Data completeness and highlighted cutoffs at 100, 75, 50 and 25%. Proteins were ranked in
descending order based on the number of valid values present across organs and triplicates.
D Overlap of SR cell proteomes across tissues, highlighting organ-specific proteins for the
seminal vesicle, bladder, lymph node, and prostate. E Principal component analysis (PCA) of
SR proteins across tissues. F Loading plot of the PCA, highlighting outlier proteins. G Pairwise
proteomic comparison of the non-cancerous epithelial control (Prostate ctrl.) cells to the SR
cells of the prostate (two-sided t-test, FDR <0.01, so = 0.1). H Log2 normalized protein
intensities of the mucin (MUC) and the carcinoembryonic antigen-related cell adhesion
molecule (CEACAM) family members. | Gene Ontology (GO) term enrichment analysis using
KEGG pathways of proteins significantly upregulated in the previous pairwise proteomic
comparison. J Heatmap showing fold changes in DNA mismatch repair proteins between SR
cells of the prostate, seminal vesicle, bladder, and lymph node to epithelial prostate cells as

control.
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Figure 4 Proteomic profiling of sighet ring cells in the context of DNA damage.

A Inter-organ fold change correlation plots, with emphasis on significant protein variations
highlighted in green (cutoffs at 6 fold-change). B Unsupervised hierarchical clustering of
ANOVA significant proteins (premutation-based FDR <0.01, so=0.1). C GO term enrichment
analysis of the bottom, upregulated cluster (in orange), highlighting the top five enriched
pathways within Reactome, NetPath, and Biological Process. D Gene Set Enrichment
Analysis (GSEA) of significantly positively and negatively enriched proteins after a pairwise
proteomic comparison of SR cells to the epithelial cells of the prostate (two-sided t-test, FDR
<0.01, so = 0.1). Top ten pathways, sorted in a descending sequence according to their
enrichment score (ES), with the corresponding normalized enrichment score (NES). E Two
representative GSEA graphs, showing one positively and one negatively enriched pathway. F
Representative images of SRCC-positive regions of the seminal vesicle, bladder, prostate and
lymph node, stained for pATR and DAPI (nucleus). The auto-fluorescence signal of the mucus
was initially used to identify SRCC-positive tumor regions. The scale bar is at 50 pm, and white
arrows indicate strong pATR accumulation with the nuclei. G Heatmaps showing fold changes
of proteins involved in ‘break-induced replication’, the ‘Fanconi Anemia pathway’ and the
‘Kataegis effect’. SR cells of all four tissues (prostate, bladder, lymph node and the seminal

vesicle) were compared to the epithelial cells of the prostate.
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Figure 5 SRCC shows immunogenicity and cytotoxic T cell infiltration.

A Fold-changes of proteins involved in GO ‘Complement system’ pathway, ‘immunoglobuling’
and ‘PD-1 signaling’. SR cells of all four tissues (prostate, bladder, lymph node and the
seminal vesicle) were compared to the epithelial cells of the prostate. B Representative
images of immunofluorescent-stained lymph node tissue and bladder for SR cells (cytokeratin,
green), cytotoxic T cells (CD8, pink), the programmed death protein 1 (PD-1, yellow) and the
nucleus (DAPI). C Representative image of the bladder tissue with SR cells (cytokeratin,
green) and the programmed death protein ligand 1 (PD-L1, yellow). D Proposed model of

SRCC DNA damage repair mechanisms and replication stress response.
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Intestinal epithelial cells (IECs), organized in crypt-villus units with a stem cell niche in
the crypt bottom, provide the intestinal mucosa’s first line of defense against harmful
luminal components and pathogens.**? To maintain intestinal homeostasis and tissue
integrity, the intestinal epithelial lining is renewed every 3-5 days.**® Dysregulation of the
gut homeostasis or intestinal epithelium, for instance caused by chemotherapy, food
allergies or overuse of alcohol or aspirin, predispose to the development of inflammatory
bowel disease and are hallmark symptoms of ulcerative colitis or Crohn’s disease.*34-43¢
The study of IECs and epithelial maintenance, therefore, is vital for understanding gut

health as well as preventing and treating these conditions.

Here the main authors Frederik Post and Annika Hausmann, aimed to evaluate the
suitability of human colon organoid models to study human IECs by applying an
optimized DVP workflow. To first establish a proteomic ground truth of the human colon
mucosa, epithelial, goblet, immune cells, and fibroblasts were isolated from the upper
crypt and crypt bottom. Spatially separating the crypt sections using our DVP pipeline,
circumventing the otherwise challenging identification of intestinal stem cells with
antibodies. Using the Orbitrap Astral MS, an unprecedented depth of almost 9,000
proteins across all cell types with a median of 6,780 proteins per sample could be
achieved and revealed a number of differentially regulated proteins across the analyzed
cell types and crypt localizations. While most samples consisted of about 500 dissected

shapes, even samples of rare cell types, such as stem cells of xenotransplanted
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organoids, yielded more about 5000 protein groups from fewer than 50 shapes. The
proteomic analysis of the in vitro organoids revealed high overlap with the in vivo atlas,
indicating the preservation of key features of the crypt bottom and the upper crypt.
Despite the big overlap, the in vitro organoids showed high levels of proliferation and
lacked functional signatures of the healthy human mucosa, such as secretion pathways.
Further analysis revealed that this proliferative state was primarily driven by WNT
pathway activation and could be shifted closer to more differentiated, functional states
by reducing WNR supplementation in the culturing medium. These adjusted culture
conditions improved the reliability of in vitro organoid models for studying IECs or

conducting drug screenings.

Interestingly, these proliferative signatures were also reverted to a more in vivo-like state
upon xenotransplantation of the organoids into the murine colon. Particularly, cells
isolated from the upper crypt showed upregulation of CA1 and MUC17, proteins involved
in ion transport and mucosal barrier formation respectively. This demonstrates that while
organoids are already a powerful tool to study human IECs, the mucosal
microenvironment is important to recapitulate functional characteristics and highlights
the use of xenotransplantation to enhance organoid models.

Contribution

Co-authorship. The study was conceptualized by Frederik Post, Annika Hausmann, Kim.
B Jensen and Matthias Mann. Frederik Post and Annika Hausmann conducted the
experiments. | shared my established Orbitrap Astral methods and advised on the MS
acquisition strategy, enabling the quantification of almost 9000 protein groups across all
samples. Alongside the other co-authors, | contributed to revising and editing the

manuscript.
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22  Abstract

23 Intestinal epithelial damage predisposes to chronic disorders like inflammatory bowel
24 disease. The organoid model allows cultivation, expansion and analysis of primary
25 intestinal epithelial cells and has been instrumental in studying epithelial behavior in
26  homeostasis and disease. Recent advances in organoid transplantation allow studying
27 human epithelial cell behavior within the intestinal tissue context. However, it remained
28 unclear how organoid transplantation into the colon affects epithelial phenotypes, which is
29  key to assessing the model’s suitability to study human epithelial cells. We employed Deep
30  Visual Proteomics, integrating Al-guided cell classification, laser microdissection, and an
31 improved proteomics pipeline to study the human colon. This created an in-depth cell type-
32  resolved proteomics resource of human intestinal epithelial cells within human tissue, in
33 vitro organoids, and the murine colon post-xenotransplantation. Our findings reveal that in
34  vitro conditions induce a proliferative organoid phenotype, which was reversible upon
35 transplantation and adjustment of organoid culturing conditions.
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Introduction

The intestinal epithelium forms an integral barrier between the intestinal lumen, filled with
microbiota and dietary components, and the lamina propria containing immune cells and
fibroblasts. Continuous proliferation of epithelial stem cells located within the epithelial crypts
ensures constant replenishment of intestinal epithelial cells (IECs). As stem cell progeny move
towards the crypt top, they cease to divide and differentiate terminally, establishing a
heterogeneous continuum along the crypt axis. These terminally differentiated IECs include
absorptive colonocytes, mucus producing goblet cells, and hormone secreting enteroendocrine
cells, which all perform key functions in intestinal physiology’.

Epithelial maintenance is key for human health and requires tight molecular regulation
balancing cell proliferation, differentiation and death. Murine models have provided substantial
mechanistic insights into these intricate relations. There are, however, clear differences between
the human and mouse, e.g. unique cell types identified in the human intestine?, highlighting the
need for human models. Addressing mechanistic questions in humans /in vivo is challenging, and
organoids®® have emerged as an important model system to culture primary human cells and
allow experimental manipulation. Human intestinal organoids have provided insights into e.g. cell
fate choices, with applications in molecular medicine, drug testing and cellular therapies!é-9.
Conventional organoid culture features epithelial cells, but lacks other cell types present in the
intestinal mucosa, such as immune cells and fibroblasts'. To address this limitation, orthotopic
transplantation models have recently been developed'®'!. They enable the transplantation of wild-
type or genetically engineered mouse or human organoids into the murine colon to mechanistically
dissect epithelial phenotypes within the mucosal microenvironment, which was previously only
possible in mouse models. Furthermore, autologous transplantation of organoids into patients with
impaired IEC phenotypes has great therapeutic potential in regenerative medicine, e.g. for
inflammatory bowel disease (IBD) and short bowel syndrome®8. This tractable xenotransplantation
system enables the assessment of human IEC phenotypes in the mucosal microenvironment"12,
but we still only have limited knowledge on how well human IECs transplanted into the murine
colon recapitulate human IECs in vivo.

Fully leveraging the potential of human organoids requires in-depth characterization and
validation of organoid models’-'®, which necessitates an accurate reference data set of their in vivo
counterpart. Such a resource could guide future evaluation of disease-related changes, cellular
and disease markers, and improvement of in vitro model systems. An accurate assessment of
cellular phenotypes should account for their spatial context, especially in delicately organized
tissues like the colon mucosa. Spatial transcriptomics and fluorescent in sifu hybridization (FISH)-
based techniques have provided valuable insights into the cellular heterogeneity of the colon'#15,
These approaches, however, require pre-defined target panels and are biased by current
knowledge. Single cell RNA-sequencing (scRNAseq), facilitates in-depth characterization of

cellular phenotypes?®18 but lacks spatial information. Typically, it also requires cellular dissociation
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75  and long enrichment protocols, which in itself can impact epithelial phenotypes'®. In the context of
76  organoids, scRNAseq has been used to assess cellular composition®2%, but in-depth phenotypic
77  benchmarking including direct comparison to the in vivo counterparts remains limited, especially
78  for the human colon.
79 Recent studies suggest that deep and sensitive proteomics provides more robust readouts for
80  cellular states than transcriptomes, while directly pinpointing functional consequences of
81 perturbation-induced changes?"22, The sensitivity of proteomics has advanced massively in the
82 last decades from the quantification of a few thousand proteins from milligrams of input material in
83  the beginning of the millennium to comparable numbers from single cells to date??-24, However, so
84  far none of these methods have reached substantially complete coverage of cell type-specific
85  proteomes. To address this, we here substantially further develop our Deep Visual Proteomics
86 (DVP)Y® pipeline, which employs high-resolution fluorescence imaging, Al-guided cell
87  segmentation and classification, single-cell isolation by laser capture microdissection, and high-
88  sensitivity proteomics. To date, the conventional DVP pipeline generally yielded up to 5,000
89  proteins by combining a few hundred contours of single cell contours of the same type?®. Qur
90 improved workflow using low flow gradients and the novel Orbitrap Astral analyzer?®, improved
91 proteome coverage substantially, from even fewer contours. This allowed us to build a spatial
92  proteome atlas of the human colon mucosa with unprecedented cell type-specific proteome depth.
93  Importantly, the increased depth of protein quantifications at decreased input amounts enabled us
94  to robustly and accurately benchmark human colon organoids grown in vifro and transplanted into
95  the murine colon.
96 Qur findings reveal that despite a robust correlation between in vitro and in vivo proteomes,
97  IECs grown as organoids in vitro display high proliferation and low functional signatures. Strikingly,
98  this is reverted upon xenotransplantation, rendering xenotransplanted human IECs a valuable tool
99  todissect human IEC phenotypes and illustrating that organoids retain their ability to reform colonic

100  epithelium. Combined with iterative, proteomics guided improvements in organoid cell culture

101 conditions this is a promising approach in regenerative medicine.

102

103 Results

104

105  DVP enables in-depth spatial proteomic profiling of cellular populations in the human

106  colon

107 The assessment of human organoid models requires the determination of the sfatus guo of the

108  human colon mucosa. We made use of DVP (Fig. 1A) to generate a high sensitivity spatial

109  proteome atlas of the human colon mucosa and analyze organoid models. In total, we analyzed

110 11 human colon tissue sections, 15 sections of organoids in vitro, and 50 sections of transplanted

111 organoids.

160



3. Publications

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.13.593888; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the authorffunder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

112 The analysis of the human colon mucosa included different populations of colonic epithelial
113 cells (EPCAM*) and their microenvironment (lamina propria fibroblasts (PDGFRA™), immune cells
114  (CD45%) (Fig. 1B). Intestinal stem cells can be identified by LGRS expression??, but it has proven
115 difficult to generate antibodies for reliable detection of LGRS. Alternative strategies for isolating
116 human intestinal stem cells have been developed based on expression of EPHB2282°, PTK739 and
117  OLFM43 however, it remained challenging to detect epithelial stem cells in the human colon
118  mucosa. We capitalized on the DVP technology to address this pertinent problem, enabling us to
119  separate the epithelial crypt bottoms (enriched for stem cells, hereafter referred to as “crypt
120  bottom”) from the upper part of the crypt (hereafter referred to as “upper crypt”) (Fig. 1C) based on
121 spatial context. We used cellpose to segment high-resolution images for cell detection®2. The
122 resulting cell shapes and marker staining intensity were used to classify epithelial, goblet, immune
123  cells and fibroblasts from the crypt bottom and upper crypt region using the biological image
124  analysis software (BIAS) resulting in contours (one contour = one cell in a 5 pm tissue section)
125  (Fig. 1C). Technological limitations concerning availability of material and reliance on cellular
126 markers for in-depth analysis of specific cellular subpopulations have so far hindered the
127  characterization of functional states and phenotypes of human colonic epithelial cell
128  subpopulations at protein levels. To address this, we isolated ~500 contours per population by
129  laser capture microdissection, lysed the collected contours, digested the proteins and performed
130  proteome acquisition on the Evosep One liquid chromatography system coupled to an Orbitrap
131 Astral mass spectrometer (Experimental Methods). With this approach, we achieved
132  unprecedented sensitivity of cell populations directly isolated from fresh-frozen tissue, featuring
133 8,865 unique proteins across all cell populations and a median of 6,780 unique proteins per sample
134  with a throughput of 40 samples per day (Fig. 1D-E, S1A-B). The limited sample amount from
135  transplanted organoids restricted us to collecting a maximum of 100 contours from transplanted
136  stem cells and ~200 contours of transplanted epithelial cells in the upper crypt. Remarkably, the
137  quantification of these samples still yielded ~5,000 or ~7,000 proteins, respectively (Fig. S1A).

138 Downstream principal component analysis (PCA) of the resulting data revealed that the
139  samples from the human colon mucosa separated into two main clusters according to epithelium
140  and lamina propria (immune cells and fibroblasts) along PC1, and further distributed according to
141 the position along the crypt axis (bottom or top) along PC2 (Fig. 1F). To assess the reliability of
142  identification and isolation of the different cell populations, we next assessed the abundance of
143  previously described cellular markers for the isolated subpopulations in our sample set (Fig. 1C,
144 G, S1C) and identified high expression of keratin (KRT)20 in upper crypt epithelial cells, Ephrin-
145  type B receptor (EPHB)2 in crypt bottom epithelial cells, mucin (MUC)2 in goblet cells, thymocyte
146  antigen (THY)1 in fibroblasts, as well as cluster of differentiation (CD)3E and human leukocyte
147  antigen (HLA)-DRA inimmune cells, thereby validating our human colonic mucosa proteome atlas.
148  Interestingly, within the epithelial and lamina propria clusters, sample location along the crypt axis

149  (upper crypt/bottom) rather than cell type drove their distribution (Fig. 1F). Differential activity of
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150  WNT and BMP signaling along the crypt axis regulate cellular organization, proliferation and
157 differentiation within the intestinal epithelium, suggesting that these pathways might partially drive
152  observed differences. The protein transgelin (TAGLN) was associated with the crypt bottom
153  compartment irrespective of the cell type (Fig. S1D). In line with high WNT activity around the
154  epithelial stem cell niche in the crypt bottom, TAGLN* stromal cells have been identified as VWNT
155  producers®3, The protein Zinc Finger ZZ-Type And EF-Hand Domain Containing (ZZEF)1, on the
156  other hand, was enriched in the upper crypt compartment (Fig. S1D). ZZEF1 acts as a
157  transcriptional regulator in cooperation with Krueppel-like factor (KLF)6 and KLF934 which regulate
158 IEC proliferation® and absorption®®, and might be modulated by the intestinal microbiota®,
159  indicating a potential involvement in the integration of environmental stimuli into epithelial
160  phenotypes. The interplay between luminal inputs and intrinsic regulation of mucosal gradients
167 along the crypt axis and their molecular basis warrants further investigation.

162 In summary, we successfully generated a proteome atlas of the human colon mucosa in
163  unprecedented depth with our DVP approach, which reveals differentially regulated protein levels
164  along the crypt axis across cell types.

165

166  DVP analysis reveals a robust correlation between human IECs in vivo and grown as

167  organoids

168 For an in-depth characterization of human colon organoids at proteome level, we adapted the
169  DVP pipeline described above to organocids. The accurate and sensitive assessment of functional
170  cellular states at proteome level within a spatial context in combination with the in vivo proteome
171 atlas as reference data set enables the benchmarking of model systems for human IECs (Fig. 1).
172 Here we made use of a genetically engineered human colon cell organoid line, expressing the
173 fluorescent reporter TdTomato under the control of the LGRS promoter'? to identify epithelial stem
174  cells (Fig. 2A). This allowed us to use the DVP workflow described above to identify, isolate and
175  analyze human colonic stem cells (LGR3-TdTomato* cells, hereafter referred to as “stem cells”),
176  LGR5-TdTomato™ cells (hereafter referred to as “LGR5 cells”), and goblet cells to generate a
177  proteome atlas of human IECs grown as organoids in vitro. It should be noted that the half-life of
178  the reporter protein might be longer than LGR5, thus TdTomato* cells could contain a fraction of
179  cells which have recently exited the stem cell state (e.g. transit amplifying progenitors). In the PCA,
180  samples clustered according to different epithelial populations (Fig. 2B) with PC1 separating stem
187 cells from the remaining IECs and PC5 separating goblet cells from stem cells and LGR5" IECs.
182 Expectedly, KRT20 was enriched in the LGR5 cells (Fig. 2C), the stem cell marker EPHB2 in
183  LGRS5* stem cells and MUC2 in goblet cells (Fig, 2C).

184 A comparison of significantly changed proteins in stem versus LGRS cells measured in vitro,
185  and those measured in vivo in the crypt bottom versus upper crypt respectively, showed a robust
186  correlation between the lower and upper crypt compartments in vivo and in vitro (Pearson

187  coefficient 0.77, Fig. 2D), which is in a similar range to the correlation of transcriptomes of murine
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188  small intestinal IECs n vitro and in vivo %% Notably, ~70% (crypt bottom) or ~60% (upper crypt)
189  of significantly enriched proteins in the respective populations in vivo were shared with organoids
180  grown in vitro (Fig. 2E). Among these, we identified a number of described markers associated
191 with the analyzed populations, indicating that key aspects of crypt bottom and upper crypt epithelial
182  cells are preserved in in vitro culture. The higher number of proteins identified as differentially
183  abundant in vitro is likely due to more homogenous populations isolated from in vitro than in vivo
184  conditions (e.g., LGR5* cells/crypt bottom), which allow for a more robust comparison.

185 To conclude, with our DVP approach we successfully benchmark human colon organoids to
186  IECs in vivo, revealing a robust preservation of key compartment-associated features in organoids
187  and highlighting their applicability as a model system for human colon IECs in vitro.

198

189  Orthotopic transplantation reverts organoid phenotypes to an in vivo-like state

200 The transplantation of human organoids into the murine colon emerges as a novel model to
201 dissect human IEC phenotypes and behavior within the mucosal environment'®'!, but our current
202  knowledge on how well human IECs transplanted into the murine colon recapitulate human IECs
203  in vivo is limited to the assessment of selected markers for epithelial subpopulations'®''. To
204  address this, we transplanted the genetically engineered human reporter organoids (Fig. 2A) into
205  the murine colon (Fig. 3A). Consistent with previous reports, the cultured cells integrated into the
206  murine colon mucosa and recapitulated the organotypic crypt structure featuring LGR5-TdTomato*
207  cells at the crypt bottom (Fig. 3B)'%-2. For a comprehensive, unbiased assessment of epithelial
208  phenotypes upon transplantation, we performed DVP analysis on the transplanted cells, focusing
209 on stem (LGR5-TdTomato*, hereafter referred to as “stem cells”) and remaining cells (LGR5-
210  TdTomato, hereafter referred to as “LGR5 cells”). Transplant size varies between mice and
211 sometimes comprises only a few crypts. In protocols that require tissue dissociation (e.g. for
212  scRNAseq), it can be challenging to efficiently recover these relatively rare cells. Furthermore, they
213  often include lengthy enrichment steps such as cell sorting, which impacts IEC phenotypes'®. For
214  our DVP approach instead, we localized the transplants during sectioning, which enabled us to
215  efficiently isolate transplanted IECs directly from their mucosal microenvironment. Strikingly, our
216  DVP analysis revealed that transplanted organoids clustered with the in vivo IECs rather than
217  organoid samples (Fig. 3C). This is particularly remarkable given that all organoid samples derive
218  fromthe same organoid line (i.e., the same donor), while the IECs in vivo derive from three different
219  donors, indicating that the phenotypic shift across conditions is stronger than interindividual
220 differences.

221 To gauge the biological magnitude of this shift, we included the lamina propria cells (fibroblasts,
222  immune cells) isolated from the colon mucosa in vivo as outlier groups into the PCA (Fig. S3A).
223  Surprisingly, despite the robust correlation between IECs in vivo and in vitro observed above, the
224  distance between IECs grown as organoids in vitro and in vivo was very similar to the distance

225 along PC1 between lamina propria cells and IECs in vivo, which are different cell types. A major
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226  driver for this differential clustering were components of the mucosal immunoglobulin A (IgA) (Fig.
227  S3B), an important adaptive immune component of the mucosal barrier, which is secreted into the
228  intestinal mucosa by B cells and subsequently transported into the intestinal lumen by IECs*C. This
229  indicates that the mucosal microenvironment has a significant impact on cellular proteomes across
230  cell types, which should be considered when translating findings from organoid studies to in vivo
231 phenotypes.

232 Collectively, the DVP analysis of orthotopically transplanted human colon organoids into the
233  murine colon demonstrates that the cellular environment strongly impacts on IEC proteome
234  profiles, pushing organoid phenotypes towards their in vivo counterparts.

235

236 To assess the cellular features driving phenotypic differences between IECs in vitro and within
237 the mucosa, we performed a Kruskal-Wallis test across all epithelial samples. Hierarchical
238  clustering of significantly changed proteins confirmed a separation of IECs grown in vitro from
239  those isolated from the mucosa (in vivo, transplant) (Fig. 3D). Protein abundance patterns among
240  these samples yielded eight clusters. Pathway analysis for the proteins within each cluster (Fig.
241 3E) revealed that signatures high in transcription (Cluster 4), translation (Cluster 1, 3), and
242  proliferation (Cluster 5) characterized organoids cultured in vitro (partially shared with crypt bottom
243  in vivo & transplanted stem cells), whereas in vivo and transplanted IECs were characterized by
244  signatures associated with mucosal barrier function*! (e.g. complement activation, Cluster 8),
245  functional features of mature IECs (e.g. ion transport, secretion, Cluster 7), and oxidative
246  phosphorylation (Cluster 6). A direct comparison between IECs in vivo and in vitro confirmed these
247  observations (Fig. S3C-H). The increased proliferative features in vitro were also evident as a
248  specific enrichment of proteins involved in proliferation in IECs in vitro, which was decreased upon
249 transplantation to levels similar to in vivo (Fig. 3F)*2. To identify markers associated with upper
250  crypt IEC phenotypes in vivo, we next assessed the PC loadings to identify proteins that drive the
251 separation between IECs in vivo and in vitro (Fig. S3B). Here, carbonic anhydrase (CA)1 and
252  MUC17 were amongst the highest scoring proteins. CA1 mediates ion transport, which is key for
253  the regulation of water absorption in the intestine*3. MUC17 is a membrane mucin forming the
254  glycocalyx, animportant barrier against bacterial attachment to the mucosa, which is compromised
255  in1BD* (Fig. S3l). In summary, components of two aspects of functional IECs in vivo, ion transport
256  and barrier function, are underrepresented in IECs grown in vifro under the conditions tested here.
257 Altogether, our DVP approach revealed that the in vitro culturing conditions used here induce
258 a high proliferation, low functional profile of IECs in vitro, and that these characteristics are
259  reversible upon transplantation into the colon mucosa. This underscores the value of transplanted
260  organoids as a system for the molecular dissection of epithelial phenotypes in a more in vivo-like
261 setting, and highlights their applicability in regenerative medicine, e.g., for approaches to replenish
262  impaired epithelium.

263
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264  Integrated DVP analysis identifies a human stem cell signature

265 The use of fluorescent reporters has enabled studies of intestinal epithelial stem cells in mice
266  in vivo and in genetically engineered human organoids in vitro but it has so far been difficult to
267  spedcifically isolate and analyze human stem cells in vivo due to the lack of antibody-stainable stem
268  cellmarkers. Our study design uniquely allowed the collective in-depth proteome analysis of LGR5-
269  TdTomato* human stem cells in vifro and upon xenotransplantation in comparison to stem cell-
270  enriched human IECs in vivo. The comparisons across these datasets enabled us to identify a
271 shared protein profile enriched in stem cells in vitro and upon transplantation, and crypt bottom
272  cells in vivo, which were downregulated in upper crypt cells in vivo. This human stem cell proteome
273  signature includes 48 proteins (Fig. 3G) and as expected, contains a number of proteins associated
274  with cell proliferation. The assessment of the expression patterns of these proteins via the Human
275  Protein Atlas*® confirmed their localization at the crypt bottom in vivo (Fig. S4A-B). Notably, while
276  allidentified proteins localized within the stem cell niche, their abundance towards the crypt's upper
277  part varied (Fig. S4A-B). Based on this, we postulate that markers with a relatively confined
278  expression such as EPHB3, meiotic recombination 11 (MRE11) and minichromosome
279  maintenance complex component 2 (MCM2) could be suitable markers for a strongly stem cell-
280  enriched IEC population. In comparison to previously published markers for stem cell enrichment
287 in the human colon such as PTK7, EPHB2 and OLFM4 283031 expression of these markers is
282  more restricted to the crypt bottom (Fig. S4B). EPHB3 is a receptor tyrosine kinase involved in
283  regulation of stem cell positioning along the crypt axis and regulates mitogenic activity in
284  cooperation with WNT2%48 As an antibody-stainable surface protein, we expect it to be a valuable
285  marker for the enrichment of human stem cells, e.g. in cell sorting, which would address a major
286  technical gap. MRE11%7 and MCM2*® regulate DNA double-strand break repair and DNA
287  replication, respectively. Other markers such as PCNA, MCM3, MCM4 likely include transit
288  amplifying populations as well, in line with their roles in cell division4®-51,

289 With this, our DVP approach has enabled the identification of EPHB3 as a potential novel
290  surface marker for strong enrichment of stem cells, together with MRE11 and MCM2 as additional,
291 antibody-stainable markers.

292

293  WNT withdrawal induces upregulation of in vivo IEC markers

294 The protocols for expansion of IECs as organoids have been optimized for growth at the
295  expense of differentiation. This is achieved via activation of the WNT pathway (supplementation of
296  signals activating the canonical WNT pathway — WNT surrogate and R-spondin1), which is active
297  in the crypt bottom compartment in vivo, and inhibition of BMP signaling (supplementation of
298  Noggin), which is active in the upper crypt compartment in vivo>552. We hypothesized that these
299  conditions could be drivers of the observed in vitro characteristics shaped by high proliferation and

300  lower functional features when compared to the in vivo and transplanted |ECs. In line with this,
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301 both stem cells and LGR5' cells in vitro were enriched for active WNT signaling®® when compared
302  to their in vivo counterparts (Fig. SSA-B).

303 To address the impact of WNT and BMP signaling on epithelial phenotypes, we cultured
304  organoids in vitro under conventional (+WWNT, Noggin, RSPO (WNR)) or differentiation (-(\WNR +/-
305 BMP) conditions!?54, We observed a clear shift in organoid proteome profiles upon withdrawal of
306  WNR while the addition of BMP only had a minor additional effect (Fig 4A). As hypothesized, WNR
307  withdrawal led to a decrease in WNT activation (Fig. S5C-D). It furthermore induced a
308  downregulation of stem cell- and proliferation-associated proteins such as SOX9, MKI67, MCM2
308 and PCNA (Fig. 4B-C). This was also evident at a more global level when we assessed expression
310  of proteins assigned to the proliferation signature*? and our stem cell signature identified above
31 (Fig. 4D). At the same time, WNR withdrawal coincided with an upregulation of markers of mature
312  IECs, such as KRT20, as well as CA1 and MUC17, which we identified in the analysis above as
313  strongly associated with IECs in vivo (Fig. 4E). Similarly, the oxidative phosphorylation signature,
314  which was enriched in vivo compared to organoids (Fig. S3F) was increased upon WNR
315  withdrawal, indicating that IEC metabolic function is in part driven by IEC maturation state (Fig.
316  4F). Importantly, immunostaining of MUC17 in organoids upon WNR withdrawal revealed
317  increased abundance of MUC17 at the apical surface, suggesting glycocalyx formation under
318  these conditions. (Fig. 4G). Altogether, this indicates, as suggested previously, that withdrawal of
319  WNR indeed drives organoids towards a more in vivo, upper crypt-like phenotype®s.

320

321 Discussion

322 We here employ DVP to generate an in-depth proteome atlas of the human colon mucosa,
323  which we use to benchmark human colon organoids grown in vitro and upon orthotopic
324  xenotransplantation. We originally developed DVP as a spatial proteomics technology that enabled
325  the acquisition of the proteome of about 10 samples per day, quantifying up to 5,000 proteins from
326  input material equivalent to 100 — 200 cells®. In our improved workflow, which includes coupling
327  the Evosep One liquid chromatography system to the Orbitrap Astral analyzer, throughput is
328 increased to 40 samples per day. Remarkably, total proteome acquisition time for this in depth,
329  functional organoid study encompassing 136 samples was only 88 hours. Despite faster
330 acquisition, we increased the proteome depth to a total of 8,865 unique proteins. This setup also
33 enabled the quantification of ~5,000 proteins from as little as 100 transplanted stem cell contours,
332  corresponding to only 20 intact cells. The increased proteome depth was essential to enable
333 conducting this study since it enabled us to identify low abundant proteins such as SOX9 or LGRS
334  from cells dispersed over several slides.

335 Based on this improved DVP pipeline, the benchmarking of human colon organoids reveals a
336  robust correlation of IECs grown in vitro and in vivo. Nevertheless, |IECs grown in vifro display high
337  proliferation and altered functional and metabolic signatures compared to in vivo, which has

338 important implications for the use of organoids as models to dissect epithelial phenotypes. We
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338  show that these features are driven by organoid culture conditions and are largely reverted upon
340  organoid transplantation into the murine mucosa, as well as, in part, by altering organoid culturing
341 conditions (WNR withdrawal). Altogether, our study validates the applicability of orthotopically
342  xenotransplanted organoids as tools to mechanistically dissect human IEC phenotypes in an in
343  vivodike setting and highlights their potential to accurately replenish the intestinal epithelium in a
344  regenerative medicine approaches.

345 Human organoid models are instrumental for assessing key biological questions in a human
346  context. The premise that the organoid model truly recapitulates in vivo phenotypes, and an
347  awareness of its limitations, is crucial for the translatability of in vitro results to in vivo applications.
348  Akey gap currently limiting the exploitation of the full potential of human organoids in biomedical
348 research is the characterization and validation of organoids as accurate models for human
350  biology™7'3, An in-depth characterization of native IEC states within their in vivo environment is
351 essential to establish a reference for benchmarking of human-like model systems. We have here
352  tackled this issue, using our DVP approach to generate an in-depth proteome atlas of the
353 homeostatic human colon, which serves as an important reference for future studies assessing
354  e.g. disease-associated changes in the human colon. Notably, the DVP setup does not require
355  fresh tissue dissociation and enrichment of living cells, which reduces the impact of lengthy
356  isolation protocols on cellular phenotypes and thereby enabled us to assess the proteomes of
357  mucosal cell types in their native state. We successfully identified and differentiated the isolated
358  mucosal cell populations. Interestingly, aside from cell type-specific protein abundance patterns,
358  we observed location-skewed protein abundance along the mucosal crypt axis. A similar zonation
360  has been reported previously for murine small intestinal epithelial cells at transcriptome level',
361 and it is well known that differences in e.g. WNT and BMP signaling along the crypt axis regulate
362  epithelial phenotypes'. We here address this comprehensively across the different cell types in the
363  mucosa at the protein level and identify the proteins ZZEF1 and TAGLN, which associate with the
364  upper or crypt bottom compartment across the analyzed cell types, respectively. In the future, it
365  will be interesting to study this protein regulation along the crypt axis in further detail and to dissect
366  how e.g. WNT and BMP signaling gradients, as well as luminal cues such as microbiota shape
367  protein abundance and cellular identity. This will shed light on the regulatory pathways maintaining
368  tissue structures which are key for intestinal homeostasis and abrogated for example in the context
369  of colorectal cancer®®%7,

370 Our human colon proteome atlas further enabled us to benchmark widely used in vitro 3-5 and
37 emerging organoid transplantation models® for human IECs. Importantly, while we detect robust
372  proteome correlation between IECs grown in vifro and their in vivo counterparts, which mirrors
373  previous reports on transcriptome level in murine small intestine, we observe a striking phenotypic
374  switch of organoids upon transplantation into the mucosa, rendering them in vivo-like. A major
375  difference between organoids grown in vitro and transplanted into the mouse colon is a reduction

376  in the proliferation signature, comparable to in vivo IECs, upon reintroduction into the mucosa. In
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377  addition to the high proliferation state, organoids grown in vitro display lower functional features
378 (e.g. ion transport), as well as a different metabolic signature characterized by lower oxidative
378  phosphorylation. In the murine small intestine, oxidative phosphorylation has been linked to the
380 regulation of stem cell identity and differentiation into Paneth cells5®. We here find that proteins
381 associated with oxidative phosphorylation are, at least in part, differentially regulated depending
382  on epithelial maturation state. It remains to be shown whether this correlates with actual changes
383  in metabolism between epithelial subpopulations, and whether/how epithelial differentiation and
384  metabolism are linked in colonic IECs®. We further make use of our dataset to identify CA1 (ion
385  ftransport/water homeostasis®®) and MUC17 (glycocalyx in the brush border of differentiated
386  IECs/barrier function*¥) as markers for human upper crypt IECs in vivo.

387 We show that high proliferation and low functional features observed in IECs grown in vitro are
388  driven by the culture conditions (high WNT, low BMP signaling), rather than an intrinsic cellular
389 feature selected for during culture, and that this state, including abundance of CA1 and MUC17,
390 can be partially reverted by adjustments in culturing conditions (-WWNR +BMP). Notably, recent
39 advances in organoid-on-a-chip models using hydrogels which recapitulate the mucosal crypt
392  structure and molecular gradients, feature similar IEC shifts to a more in vivo-like phenotype at
393 transcriptome level®®. These findings have important implications for the use of organoids to study
394  IEC functions in vitro, especially when focusing on the role of upper crypt IECs, e.g. in host-microbe
395 interactions.

396 The phenctypic reversion of organoids transplanted into the murine colon to a more in vivo-like
397  phenotype highlights a remarkable homology between mouse and human stem cell niche factors.
398 A more detailed analysis of the differences between transplanted organoids and IECs in vivo will
398  reveal which molecular pathways drive the difference we observed between these two populations.
400  One key aspect aside from the limited compatibility of mouse and human growth factor signaling
401 could be the fact that we used immunocompromised mice for the xenotransplantation to prevent
402  rejection. Future studies comparing human to murine organoids transplanted into the murine colon
403  will be able to dissect the impact of species-specificity and the presence of immune cells on
404  transplanted epithelial cells.

405 Finally, we capitalize on the unprecedented possibility to characterize human LGR5* stem cells
406  in the colon mucosa to identify a human stem cell proteome signature, which reveals EPHB3,
407 MRE11 and MCM2 as antibody-stainable markers for the enrichment of human colonic stem cells
408  in vivo. Notably, expression of these markers is more strongly restricted to the crypt bottom in vivo
409 compared to previously published markers for the enrichment of human stem cells (EPHB2, PTK?,
410 OLFM4). As EPHB3 is a surface protein, we expect that this marker will be of great value for the
411 community to identify and isolate stem cell-enriched IECs for future studies of human intestinal
412  stem cells. Furthermore, this showcases the strength of DVP to i) efficiently isolate rare cells from
413  tissue in their native state and to ii) use proteome data to directly identify antibody-stainable

414  markers. In addition, it serves as a proof-of-principle for the specific isolation and analysis of
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415  genetically modified xenotransplanted human IECs from the murine colon and lays the base for
416  future mechanistic studies, e.g. in the context of tissue damage and repair, and host-microbe
417  interactions.

418 We here advanced the DVP pipeline, demonstrating that DVP is a uniquely well-suited
419  methodology for the faithful in-depth analysis of functional cellular phenotypes in a densely packed
420  tissue like the colon mucosa. Limited sensitivity has so far been a major difficulty for the use of
421 proteomics to dissect dynamic tissue processes, especially in the context of tightly regulated
422  responses such as inflammation (i.e., low abundant, spatially restricted proteins). An additional
423 limitation has been the ability to isolate cells in a near to native state, in the absence of alterations
424 by tissue handling including single cell isolation. The DVP protocol we use here tackles these
425  hurdles, enabling higher throughput and requiring less input material than the original method, and
426  preserving spatial context while reducing the impact of isolation protocols on cellular phenotypes.
427  These technological advancements are promising regarding the expansion of DVP for the
428  acquisition of proteomes of single cells®!. This opens exciting perspectives for the use of DVP to
429  study dynamic tissue processes such as inflammation, even from rare patient material.

430 Taken together, the presented data has important implications for the selection of in vitro
431 organoid systems to study specific aspects of epithelial cell biology. The phenotypic reversion of
432  organoids transplanted into the murine colon to a more in vivolike phenotype highlights the
433  impressive homology between mouse and human stem cell niche factors, underlines the suitability
434  of the murine (orthotopic transplantation) model for studies of epithelial-niche interactions with a
435 translational perspective and opens exciting possibilities for the use of organoid transplantation in
436  regenerative medicine.

437

438 Methods

439 Human colon mucosa samples

440 All'individuals included in this study were attending the Department of Gastroenterology, Herlev
441 Hospital, University of Copenhagen, Denmark, for the Danish National Screening Program for
442  Colorectal Cancer or evaluated for various gastrointestinal symptoms but were included only if all
443  subsequent examinations were normal. The exclusion criteria included age below 18 or over 80
444  years; impaired cognitive functions, e.g., dementia; pregnant or lactation women; ongoing
445  treatment with anticoagulation, and patients unable to understand Danish language. The study
446  was approved by the Scientific Ethics Committee of the Capital Region of Denmark (reg. no. H-
447  21038375). All individuals were informed of the study both orally and in writing, in compliance with
448  the Declaration of Helsinki and the guidelines of the Danish National Scientific Ethics Committee.
449  Written informed consent was obtained prior to inclusion.

450 For those individuals included, human colon mucosa samples (cancer-associated bowel
451 resection or biopsies (healthy individuals undergoing cancer screening)) were immediately

452  transferred to 4% PFA (Sigma) upon sampling and fixed at 4 °C for 2-10 days, depending on

12

169



3. Publications

bioRxiv preprint doi: https://doi.org/10.1101/2024.05.13.593888; this version posted May 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

453  sample size. Samples were then washed in PBS and transferred to 30% sucrose/PBS and
454  dehydrated for 2-10 days at 4 °C. Next, samples were embedded in OCT, frozen on dry ice and
455  stored at -80C until further analysis.

456

457  Human colon organoid culture

458 Human colon organoids were cultured as previously described®. Briefly, upon single cell
459  dissociation, 3,000 — 4,000 single cells were seeded in 30 puL Matrigel domes and maintained in
460  advanced DMEM/F-12, supplemented with penicillin-streptomycin, 10 mM HEPES, 2 mM
461 GlutaMAX, 100 ng/mL recombinant mouse Noggin, 1x B27, 500 nM A83-01, 1% NGS-WNT, 1
462  mg/mL recombinant human R-spondin-1, 100 ng/mL recombinant human IGF, 50 ng/mL
463  recombinant human FGF2, 1 mM N-Acetylcysteine and 10 nM recombinant human Gastrin. For
464  WNR withdrawal, organoids were cultured in conventional medium until d7. Organoids were then
465  reseeded in fresh Matrigel domes (no splitting) and maintained until d10 in advanced DMEM/F-12,
466  supplemented with penicillin-streptomycin (Penstrep), 10 mM HEPES, 2 mM GlutaMAX, 1x B27,
467 500 nM A83-01, 100 ng/mL recombinant human IGF, 50 ng/mL recombinant human FGF2, 1 mM
468  N-Acetylcysteine and 10 nM recombinant human Gastrin in the presence or absence of BMP4 (10
469  ng/ml). Organoids were split every 7d for maintenance. Organoids were harvested at d10 for the
470  analyses presented in this study. Human colon organoids from healthy individuals have been used
471 for this study. The LGR5-TdTomato reporter organoid line has been described before'?. To
472  introduce a constitutive GFP reporter to the cells for easier localization of the transplant, eight wells
473  (i.e. eight 30 pL Matrigel domes) of organoids were mechanically disrupted, washed and
474  resuspended ~600 pL media supplemented with Y-27632 (10 uM). Lenti virus was added to the
475  cells to transduce them with a plasmid expressing GFP under the SFFV promotor®?. The cells were
476  incubated for 4 h at 37 °C, washed three times in DMEM medium and subsequently seeded into
477  four Matrigel domes (30 pL). After three days of culture, transduced cells were selected by addition
478  of 2 ug/ml Puromycin to the media. Cells were passaged twice, tested according to FELASA
479  standards (IDEXX), and subsequently used for transplantation.

480 For cryosamples, 500 pL ice cold cell recovery solution was added to each well. Matrigel domes
481 were carefully scraped off with a cut open P1000 pipet tip and transferred to 5 ml cell recovery
482  solution (R&D systems) on ice. After 30 min, the superatant was removed, organoids were
483  resuspended in 4% PFA and fixed for 1h at ambient temperature. Subsequently, organocids were
484  washed three times in 5 ml PBS (if necessary, organcids were spun down for 2 min at 100g),
485 embedded in OCT (Tissue Tek) in cryomolds, and frozen on dry ice. Samples were stored at -80 °C
486  until further analysis.

487 For bulk proteome analysis, organoids were harvested as previously described®3. Briefly, 1 ml
488  ice cold 0.1% BSA/PBS was added to each well and matrigel domes were broken up by pipetting
489 10 times with a P1000 pipet. Organoids from four wells were pooled per sample in a tube containing
490 3 ml0.1% BSA/PBS. Cells were pelleted by centrifugation (5 min, 300 x g, 4 °C), supernatant was
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491 removed and cells were resuspended in 1 ml 0.1% BSA/PBS and pelleted again. Upon removal of
492  the supernatant, cells were resuspended in 200 uL 0.1% BSA/PBS and transferred to a 1.5 ml
493  Eppendorf tube (pre-coated with 0.1% BSA/PBS) and kept on ice until further processing.

494

495  Orthotopic xenotransplantation

496 NOD.Cg-Prkdcs |12rgt™Sug/JicTac (NOG) mice were used for transplantation assays. All
497  animal procedures were approved by the Danish Animal Inspectorate (license number 2018-15-
498  0201-01569 to Kim B. Jensen).

499 In preparation of the transplantation, organoids were grown as described above until d5-6 in 6-
500  well plates containing nine Matrigel domes per well. 3 ml ice cold cell recovery solution was added
501 to each well. Matrigel domes were carefully scraped off with a cut open P1000 pipet tip and
502  transferred to 5 ml cell recovery solution (R&D systems) on ice for 20 min. Cells were subsequently
503  pelleted for 3 min at 300 x g, washed once in PBS and resuspended in 200 pL of 5% Matrigel/PBS
504  per mouse. Right before transplantation, organoids were dissociated by pipetting 20x with a pre-
505  wet P1000 pipette.

506 Transplantation was performed as described previously'", with slight modifications. Mice were
507  anesthetized with 2% isoflurane before the procedure. The colon content was flushed with PBS
508 and an electric interdental brush, soaked in prewarmed 0.5 M EDTA, was used to brush crypts off
508 onone side of the colon. The organoids suspension was subsequently infused into the conditioned
570  colon. Glue (Histo-acryl, B. Braun) was added to the anal verge and left for 3h to avoid the ejection
51 of the organoid suspension and thereby enhance the engraftment of the infused material. Mice
512  were monitored daily. Transplanted samples were isolated six weeks after transplantation. For
513  cryosectioning, the colon was isolated, cut open and placed under a fluorescent microscope (Evos)
574  to locate GFP* transplanted cells. The colon area containing the transplant was subsequently cut
515  out, fixed in 4% PFA at 4 °C over night, dehydrated in 30% sucrose/PBS over night at 4 °C and
576  then embedded in OCT and frozen on dry ice. Samples were kept at -80 °C until further analysis.

517

518  Cryosectioning, immunofluorescent staining and imaging for DVP

519 2-mm-thick polyethylene naphthalate membrane slides (Zeiss) were pretreated by ultraviolet
520  ionization for 3 h. Without delay, slides were consecutively washed for 5 min each in 350 mi
521 acetone and 7 ml VECTABOND reagent to 350 ml with acetone, and then washed in ultrapure
522  water for 30 s before drying in a gentle nitrogen air flow. The slides were treated with a dilution of
523 7 mL Vectabond in 350 mL acetone for 5 minutes without prior washing in acetone or subsequent
524 washing in water. Afterwards, the slides were dried in an incubator at 30 °C for 3 hours.

525 Frozen samples in OCT were cut with a Leica cryostat in 5 um sections. Samples were
526  subsequently dried for 1h at ambient temperature, rehydrated with 500 pL PBS for 1 min and
527  permeabilized with 300 ul PBS/0.5% TritonX-100. Tissue sections were blocked in 200 pL

528 PBS/donkey serum for 30 min at room temperature and subsequently incubated with the primary
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529  antibody mix in blocking buffer overnight at 4C. The next day, samples were washed three times
530  with 500 pL PBS and incubated for 40 min at ambient temperature with the secondary antibody
531 mix in PBS. Upon washing three times with PBS, samples were mounted using anti-fade
532  fluorescence mounting medium (abcam). Samples were subsequently imaged as described below
533  and, if necessary subjected to a second round of staining. For this, samples were bleached using
534  bleaching buffer (24 mM NaOH and 4.5% H202) for 10 min at room temperature, washed with
535  PBS and stained as above.

536 Antibodies and staining reagents used in this study: CD45-BV421 (30-F11, Biolegend, 1:100),
537  Lrig1 (R&D Systems AF3688, 1:50), PDGFR (EPR22059-270, abcam, 1:100), UEA-Atto550 (Atto-
538 Tec, 1:500), EPCAM-APC (EBA1, BD Biosciences, 1:50), EPCAM-APC (G8.8, Fisher
539  Scientific,1:50), ECAD (ECCD2, Thermo Fisher, 1:200), CD45 (HI30, Stem cell, 1:200), DAPI
540  (Sigma), MUC17 (Merck HPA031634, 1:200), CA1 (EPR5193, abcam, 1:200), Pan-Laminin-AF647
541 (Novus Biologicals NB300-144AF647, 1:100).

542 The samples were imaged on a Zeiss Axioscan 7 microscope slide scanner at a magnification
543  of 20x%, with three z-layers with intervals of 2.5 mm. Human colon tissues were imaged in two
544  secutive rounds. For the first round, the acquisition settings were 4 ms illumination time and 1.49%
545 385 nm laser for DAPI, 20 ms illumination time and 100% 475 nm laser for AF488, and 300 ms
546  illumination time and 100% 735 nm laser for AF750. For the second round, the acquisition settings
547 were 4 ms illumination time and 1.49% 385 nm laser for DAPI, 15 ms illumination time and 100%
548 475 nm laser for AF488, 60 ms illumination time and 100% 567 nm laser for AF568, and 20 ms
548  illumination time and 100% 630 nm laser for AF647. For in vitro organoids, the acquisition settings
550 were 2 ms illumination time and 1.1% 385 nm laser for DAPI, 2.2 ms illumination time and 100%
557 475 nm laser for FITC, 30 ms illumination time and 100% 567 nm laser for Rhoda, and 8 ms
552  illumination time and 100% 630nm laser for AF647. Transplanted organoids were imaged in two
553  staining rounds. The first round was imaged with an illumination time of 1.2ms and 1.5% 385 nm
554 laser for DAPI, 3 ms illumination time and 100% 475 nm laser for Af488, 80 ms illumination time
555 and 100% 567 nm laser for tdTomato, 20 ms illumination time and 100% 630 nm laser for Af647,
5566 and 100 ms illumination time and 100% 735 nm laser for Af750.

557

558 Image Analysis

569 Corresponding images of the two imaging rounds were cropped and subsequently
560 concatenated in imagej. Afterwards, the images were registered using the RigidBody
561 transformation in HyperStackReg on the GFP and tdTomato channel in the transplanted organoids
562 and DAPI in the in vivo human colon, and all channels were merged.

563 Images were split into tiles using the Biological Image Analysis Software (BIAS , Single-Cell
564  Technologies Ltd.) and each tile was segmented in Napari using the cellpose cytosolic algorithm
565  in the serialcellpose plugin. Images were not treated as RGB, baich size was set to 3, flow

566 threshold was set to 3, cell probability threshold was set to —4, diameter was set to 30, the magenta
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567 channel was set as channel to segment, and the yellow channel was used as a helper channel.
568  Image analysis was continued in in BIAS by filtering shapes for a minimum size of 50 ym? and a
569  maximum size of 2000 pm?. Features of segmented cells were extracted and classified using a
570  multi-layer perceptron classifier with default settings. For human colon tissue, the bottom part of
571 crypts was manually annotated using the region feature to distinguish stem cells and differentiated
572  epithelium. Contours of cells were sorted using the “Greedy” setting and coordinates of the
573  contours were exported.

574

575  Laser Microdissection

576 Contours were imported at 63x magnification, and laser microdissection performed with the
577 LMD7Y (Leica) in a semi-automated manner at the following settings: power 46, aperture 1, speed
578 40, middle pulse count 4, final pulse 8, head current 46-50%, and pulse frequency 2,600. Contours
578  were sorted into a low-binding 384-well plate (Eppendorf 0030129547). 500 contours were
580 collected per sample except for immune cells surrounding upper crypt of which 700 contours were
581 collected. Due to limited sample amount in the transplanted organoids, 200 contours were
582  collected for differentiated cells and about 100 contours were collected for stem cells. An overview
583  of collected biological replicates and technical replicates per cell population can be found in the
584  supplementary data (Table S1). Contours were rinsed to the bottom of the well by filling the wells
585  up with 40 mL acetonitrile, vortexing for 10 seconds, and centrifuging at 2000 x g at ambient
586  temperature for 5 min. A SpeedVac was used to evaporate the acetonitrile at 60 °C for 20 min or
587  until achieving complete dryness and the contours were stored at 4 °C.

588

589 DVP proteome sample preparation and acquisition

590 Lysis was performed in 4 mL of 0.01 % n-dodecyl-beta-maltoside in 60 mM triethyl ammonium
591 bicarbonate (TEAB, pH 8.5, Sigma) at 95 °C in a PCR cycler with a lid temperature of 110 °C for 1
592  h.1 mL of 60% acetonitrile in 80 mM TEAB was added and lysis continued at 75 °C for 1 h. Proteins
593  were first digested with 4 ng LysC at 37 °C for 3 h and subsequently digested overnight using 6 ng
594  trypsin at 37 °C. The digestion was terminated by adding 1.5 mL 5 % TFA. Samples were dried in
595  a SpeedVac at 60 °C for 40 min and stored at -80 °C.

596 C-18 tips (Evotip Pure, EvoSep) were washed with 100 pL of buffer B (0.1% formic acid in
597  acetonitrile), activated for 1 min in 1-propanol, and washed once with 20 pL buffer A (0.1% formic
598  acid). Samples were resuspended in 20 mL buffer A on a thermoshaker at room temperature at
599 700 x g for 15 min. Peptides were loaded on the C-18 tips, washed with 20 mL buffer A, and then
600  toped up with 100 mL buffer A. All centrifugation steps were performed at 700 x g for 1 min, except
601 peptide loading at 800 x g for 1 min.

602 Samples were measured with the Evosep One LC system (EvoSep) coupled to an Orbitrap
603  Astral mass spectrometer (Thermo Fisher). Peptides were separated on an Aurora Elite column
604 (15 cmx 75 mm ID with 1.7 mm media, lonOpticks) at 40 °C running the Whisper40 gradient. The
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605  mobile phases were 0.1% formic acid in liquid chromatography (LC)-MS-grade water (buffer A)
606  and 0.1% formic acid in acetonitrile (buffer B). For samples consisting of 500 contours, the Orbitrap
607  Astral MS was operated at a full MS resolution of 240,000 with a full scan range of 380 — 980 m/z.
608  The AGC target was set to 500% for full scans and fragment ion scans. Fragment ion scans were
608  recorded with a maximum injection time of 5 ms and with 300 windows of 2 Th scanning from 150
610 - 2000 m/z. Fragmentation of precursor ions took place using HCD with 25% NCE. Samples
611 consisting of 200 contours (stem cells from transplanted organoids) were acquired using a full
612  maximum injection time of 100 ms for MS1. Fragment ion scans were recorded with a maximum
613  injection time of 14 ms (MS2), an AGC target of 800 %, and with 75 windows of 8 Th scanning
614  from 150 - 2000 m/z.

615
616  DVP raw MS data analysis
617 Raw files were converted to mzML using MSconvert and analyzed in DIA-NN 1.8.1 using an in-

618  silico DIA-NN predicted spectral library (101370 protein isoforms, 177027 protein groups and
619 7821224 precursors in 3872218 elution groups)®*. A human proteome reference database,
620 including isoform information and the tdTomato fluorophore sequence, was used to generate the
621 library and search the raw files (Uniprot March 2023). Following configuration was set for the
622  search: N-terminal methionine excision was enabled, digest was performed at K* and R¥,
623 maximum number of missed cleavages was set to 2, maximum number of variable modifications
624 was set to 2, oxidation of methionine was considered as variable, acetylation of the N-terminus
625 was considered as variable, Protein inference = “Genes”, Neural network classifier = “Single-pass
626  mode”, Quantification strategy = “Robust LC(high precision)”, Cross-run normalization = “RT-
627  dependent”, Library Generation = “Smart profiling”, and Speed and RAM usage = “Optimal results”.

628 Mass accuracy and MS1 accuracy were set to 15. “Use isotopologues”, “No shared spectra”,

629  “Heuristic protein inference” and “MBR” were activated.

630

631 DVP data analysis

632 Data analysis was mostly performed in Perseus and AlphaPeptStats 5%, Python and R were

633  used to conduct further analyses and visualize the data. The first technical replicate of the second
634  biological replicate of fibroblasts at the bottom of crypts (fib_top_02_01) was removed due to the
635  quantification of less than 2000 proteins. Raw data was imported into Perseus, and proteins filtered
636  for 80 % data completeness within samples of the same cell type and same location in the human
637  tissue. Missing values were replaced from a normal distribution with a width of 0.3 and a down shift
638  of 1.3. Data was normalized by aligning the median intensity of all samples. Median intensities of
639  each sample were determined, and the median of these median intensities was divided by the
640 median of each sample. The resulting factor was multiplied with each intensity of the sample.
641 Differential abundance analyses for volcano plots and enrichment analyses were performed in

642  Perseus. Kruskal-Wallis tests were performed in Perseus with Benjamini-Hochberg FDR correction
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643  and a threshold of 0.01. GSEAs were performed using the GSEApy (v 1.0.6) package against the
644  GO_Biological_Process_2023 dataset®”-%8,

645

646

647  Bulk Proteome sample preparation and acquisition

648 200 mL 60 mM TEAB lysis buffer was added to the washed and pelleted organoids. Samples
649  were lysed at 95 °C shaking at 800 rpm for 30 min. Afterwards the lysate was sonicated at 4 °C in
650 30 s intervals for 10 min. 18 mL ACN was added to bring the lysis buffer to a final concentration of
651 12.5 % ACN and lysis continued at 95 °C shaking at 800 rpm for another 30 min. Debris was
652  pelleted at 4 °C at 20,000 x g for 10 min and supernatants transferred to fresh tubes. Protein
653  concentration of supernatants was determined using nanodrop and 200 mg were used for further
654  processing. Lys-C and trypsin were added at a protein to enzyme ratio of 50:1. Digestion took
655  place at 37 °C shaking at 800 rpm overnight. Peptides were lyophilized using a SpeedVac at 60
656  °C for 1 hour. Peptides were resuspended in 200 mL Evosep buffer A (0.1 % formic acid) and 60
657  mL corresponding to 60 mg were loaded in triplicates on 3 layers of SDB-RPS membranes. About
658 10 ng were loaded on Evotips Pure.

659 Samples were measured with the Evosep One LC system (EvoSep) coupled to an Orbitrap
660  Astral mass spectrometer (Thermo Fisher). Peptides were separated on an Aurora Elite column
661 (15 cm x 75 mm ID with 1.7 mm media, lonOpticks) at 40 °C running the Whisper40 gradient. The
662  mobile phases were 0.1% formic acid in liquid chromatography (LC)-MS-grade water (buffer A)
663  and 0.1% formic acid in acetonitrile (buffer B). The Orbitrap Astral MS was operated at a full MS
664  resolution of 240,000 with a full scan range of 380 — 980 m/z and a maximum injection time of 100
665 ms. The AGC target was set to 500% for full scans and fragment ion scans. Fragment ion scans
666  were recorded with a maximum injection time of 5 ms and with 300 windows of 2 Th scanning from
667 150 — 2000 m/z. Fragmentation of precursor ions took place using HCD with 25% NCE.

668

669  Bulk proteome raw MS data analysis

670 Raw files were converted to mzML using MSconvert and analyzed together with the DVP
671 samples in DIA-NN 1.8.1 using an in-silico DIA-NN predicted spectral library (101370 protein
672  isoforms, 177027 protein groups and 7821224 precursors in 3872218 elution groups)®4%%, Ahuman
673  proteome reference database, including isoform information and the tdTomato fluorophore
674  sequence, was used to generate the library and search the raw files (Uniprot March 2023).
675  Following configuration was set for the search: N-terminal methionine excision was enabled, digest
676 was performed at K* and R*, maximum number of missed cleavages was set to 2, maximum
677 number of variable modifications was set to 2, oxidation of methionine was considered as variable,
678 acetylation of the N-terminus was considered as variable, Protein inference = “Genes”, Neural
679 network classifier = “Single-pass mode”, Quantification strategy = “Robust LC(high precision)”,

680  Cross-run normalization = “RT-dependent”, Library Generation = “Smart profiling”, and Speed and
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681 RAM usage = “Optimal results”. Mass accuracy and MS1 accuracy were set to 15. “Use
682  isotopologues”, “No shared spectra”, “Heuristic protein inference” and “MBR” were activated.

683

684  Bulk proteome data analysis

685 Data analysis was mostly performed in Perseus and AlphaPeptStats. Python and R were used
686 to conduct further analyses and visualize the data. Raw data was imported into Perseus, and
687  proteins filtered for 80 % data completeness within samples of the same cell type and same
688  location in the human tissue. Missing values were replaced from a normal distribution with a width
689  of 0.3 and a down shift of 1.3. Differential abundance analyses for volcano plots and enrichment
690  analyses were performed in Perseus and visualized in python and R. GSEAs were performed using
691 the GSEApy (v 1.0.6) package against the GO_Biological_Process_2023 dataset.

692
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Figure 1: DVP analysis faithfully assesses cellular heterogeneity in the human colon

A Study design for the validation of organoids in vitro and organoid transplantation using Deep Visual
Proteomics. B Immunofluorescence image of the human colon mucosa stained for fibroblasts
(PDGFR), immune cells (CD45) and epithelial cells (EPCAM}. C Crypt bottom and upper crypts were
defined by a manually drawn line. Single cells were segmented and classified, contours exported,
microdissected, and analyzed. This analysisreveals protein abundance across the colon mucosa and
cell populations, as exemplified here for KRT20, a marker of differentiated epithelial cells. D Protein
and precursor peptide identifications across all samples. E Median dynamic range of identified
proteins across all samples after imputation and normalization. F PCA plot of samples isolated from
the colon mucosa (three donors) as indicated by classification in C. G Protein abundance and spatial
distribution of previously described cell type markers for different subpopulations in the human
colon.
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Figure 2: DVP analysis reveals a robust correlation between human IECs in vive and grown as
organoids

A Immunofluorescence image of a human colon organoid genetically engineered to express
TdTomato under an LGR5 reporter for the identification of LGRS+ epithelial stem cells. B PCA plot of
samples isolated from human colon organoids (three biological replicates (one organoid line, three
separate passages), five technical replicates). € Abundance of previously described markers for
different epithelial subpopulations (Krt20 - differentiated epithelial cells, MUC2 - goblet cells, EPHB”
- stem cells). D Correlation plot of protein intensities of significantly changed proteins in epithelial
cells located in the crypt bottom vs upper crypt in vitro and in vivo. E Venn Diagram of significantly
changed proteins in epithelial cells in crypt bottom vs upper crypt in vitro and in vivo. Lines indicate
selected overlapping proteins between in vitro and in vivo crypts.
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Figure 3: Human colon organoids transplanted into the murine colon recapitulate human
colonocytes in vivo

A Workflowfor orthotopic transplantation of organoids into the murine colon. B Immunofluorescence
image human colon organoids (Fig. 2} transplanted into the murine colon (transplant). (GFP: human
IECs. LGR5: stem cells (human). mECAD: epithelial cells {(mouse). mPDGFR: fibroblasts (mouse).
mLRIG1: crypt bottom compartment (mouse). UEA: mucus (goblet cells). C PCA plot of human
colonocytes transplanted into the murine colon (one organoid line, three mice, one to three technical
replicates), in vitro (organoids} and in vivo (human colon). D Heatmap of significantly changed
proteins between organoids in vitro, transplanted organocids, and epithelial cells in vivo. E Gene
ontology pathway enrichments of clustered proteins based on the heatmap in 3D. F Normalized
protein intensities in vitro, in transplant, and in vivo of proteins that are associated with a proliferation
signature in epithelial cells in the crypt bottom and the upper crypt. G Human stem cell proteome
signature.
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Figure 4: WNR withdrawal in colon organoids cultured in vitro induces upregulation of in vive IEC
markers.

A PCA of organoids cultured with WNR (WNT3a (W)}, Noggin (N), R-spondin-3 (R)){(+WNR)}, without
WNR (-WNR)}, and with BMP (Bone Morphogenetic Protein) but without WNR (-WNR +BMP). B Volcano
plot of organoids cultured with WNR and without WNR. C Decrease of stem cell markers of colonic
epithelial cells by withdrawal of WNR and addition of BMP. D Median normalized intensity of a
proliferation signature’’ and stem cell signature in +WNR, -WNR, and -WNR +BMP. E Increase of
differentiation markers of colonic epithelial cells by withdrawal of WNR and addition of BMP. F
Fluorescence microscopy showing the increase of MUC17 in colon organoids upon withdrawal of
WNR and addition of BMP. G Gene Set Enrichment Analysis showing an increase of the oxidative
phosphorylation Gene Ontology pathway in -WNR vs +WNR.
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Figure $1
A Number of identified proteins and precursors per sample. B Coefficient of variation of technical

replicates. C Volcano plot comparing epithelial cells from the crypt bottom and upper crypt in vivo.D
Protein abundance and spatial distribution of TAGLN and ZZEF1, which are differentially abundant in
the crypt bottom versus upper crypt region inthe colon mucosa across different cell types.
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Figure S2
AVolcano plot of stem cells (LGR5-TdTomato*) and LGR5-TdTomato- cells in organoids in vitro.
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Figure S3

A PCA of the top 3000 most varying proteins across samples in in vitro, transplant, and in vivo. B
Loadings describing proteins driving the PCA in S3A. CA1, CA2, MUC17 and CEACAM7 are strongly
associated with a crypt top in vivo colonocyte phenotype. C Heatmap of significantly changed
proteins between epithelial cells in vitro and in vivo. D Pathway enrichments of proteins in clusters of
Fig S3C. E Volcano plot of stem cells in vitro vs crypt bottom epithelial cells in vivo. F Gene Set
Enrichment Analysis (GSEA) of the Gene Ontology term “positive regulation of cell cycle” on protein
differences of S3E. G Volcano plot of epithelial cells inthe upper crypt in vitro vs in vivo. H GSEA of the
Gene Ontology term “oxidative phosphorylation” on protein differences of S3G. | Staining for CA1 and
MUC17 in the human colon mucosa fromthe Human Protein Atlas#.
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Figure S4

A Spatial distribution of proteins that were identified in the colon stem cell signature. B
Immunohistochemistry staining from the Human Protein Atlas® in human colon of proteins that were
identified as potential colon stem cell markers.
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Figure S5

A Gene set enrichment analysis of WNT signature proteins® in crypt bottom IECs in vivo versus stem
cells in vitro, B in upper crypt IECs in vivo versus LGR5-TdTomato- cells in vitro, C organoids grown
under -WNR versus +WNR conditions and D organoids grown under -WNR+BMP and +WNR
conditions.
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Alpha-1 antitrypsin deficiency (AATD) is a fibrogenic liver disease caused by mutations
in the SERPINAL gene. This causes misfolding and accumulation of alpha-1 antitrypsin
(AAT) in hepatocytes and ultimately leads to liver cirrhosis and can negatively impact
lung function. Most severe ATTD cases can be attributed to a homozygous Z-variant,
which has a prevalence of 1:2,000.*74% The mechanisms driving the disease
progression and outcome heterogeneity, however, are largely unknown and treatment

options remain unexplored.

In this study, we characterized hepatocyte responses to proteotoxic stress in AATD
using DVP, machine learning and Al-guided image-based cell phenotyping. In a first line
of evidence, we evaluated proteomic differences of cells with low, medium and high AAT
aggregate load. While this confirmed known AATD signatures, it also enabled a pseudo-

time analysis of disease progression. This identified a prominent peroxisomal
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biogenesis response and unfolded protein response (UPR) as early and late hepatocyte
responses to AAT accumulation, respectively. Interestingly, the distribution of AAT
aggregate positive cells shows a distinct spatial component, with clear separation of
areas with AAT+ and AAT- cells, and even occurrence of single AAT+ cells. To map the
spatial proteomes of these cells and regions, we utilized the previously described single
cell DVP workflow.#'* Aiming to improve the proteomic depth of the workflow and use it
on formalin-fixed paraffin-embedded tissue sections, | optimized a variable window DIA
method based for the acquisition of these single hepatocyte shapes on the Orbitrap
Astral MS. With this, we achieved an unprecedented depth of up to 3,600 proteins in the
equivalent of one-third to one-half of a hepatocyte, a 50% increase compared to the
previously achieved depth on isolated hepatocytes from frozen tissue sections. Single-
cell analysis of the AAT+ and AAT- border regions indicated that proteotoxic stress is
cell-intrinsic and not propagated between neighboring cells. Correlating the earlier
protein markers for early and late proteotoxic response with the border regions showed
that late response markers, such as DNAJB11, remained unchanged in two out of three
tissue samples. Moreover, in one sample we detected upregulation of an apoptotic
marker in AAT+ border cells, which correlated with the observed aggregate morphology.
Building on this, we integrated image featurization to isolate cells with different
aggregate morphologies and identified globular aggregate morphology as a terminal
cellular feature prior to cell death in AATD. Aggregating the results of the different spatial
approaches, hundreds of dysregulated proteins could be identified, which offers novel

candidates for treatment of AATD.

Contribution:

Co-authorship and shared second author. This study was conceptualized by Florian
Rosenberger and Matthias Mann. | was the study lead for the single-cell DVP section of
the manuscript. | selected regions of interest, processed the scDVP samples, and
developed and optimized a tailored MS method for the acquisition of single hepatocyte
shapes based on the expected precursor distribution. | supervised data quality control
and performed initial biological analyses. Furthermore, for the first and last part of this
study, | performed initial experiments to advise on the Orbitrap Astral acquisition for the
DVP samples. | wrote the MS method section for the scDVP acquisition and contributed
to revising and editing the manuscript alongside the other co-authors.
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The proteomic landscape of proteotoxic stress in a fibrogenic liver disease
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ABSTRACT

Protein misfolding diseases, including alpha-1 antitrypsin deficiency (AATD), pose significant
health challenges, with their cellular progression still poorly understood . We utilize spatial
proteomics by mass spectrometry and machine learning to map AATD in human liver tissue.
Combining Deep Visual Proteomics (DVP) with single-cell analysis™®, we probe intact patient
biopsies to resolve molecular events during hepatocyte stress in pseudo-time across fibrosis
stages. We achieve unprecedented proteome depth of up to 3,800 proteins from a third of a
single cell in formalin-fixed, paraffin-embedded (FFPE) tissue. This dataset revealed a
potentially clinically actionable peroxisomal upregulation that precedes the canonical unfolded
protein response. Our single-cell proteomics data show alpha-1 antitrypsin accumulation is
largely cell-intrinsic, with minimal stress propagation between hepatocytes. We integrated
proteomic data with Al-guided image-based phenotyping across multiple disease stages,
revealing a terminal hepatocyte state characterized by globular protein aggregates and distinct
proteomic signatures, notably including elevated TNEFSF10/TRAIL. expression. This
phenotype may represent a critical disease progression stage. Our study offers novel insights
into AATD pathogenesis and introduces a powerful methodology for high-resolution, in situ
proteomic analysis of complex tissues. This approach holds potential to unravel molecular
mechanisms in various protein misfolding disorders, setting a new standard for understanding

disease progression at the single-cell level in human tissue.
MAIN TEXT

Spatial omics technologies are revolutionizing our ability to deconvolute molecular events at
single-cell resolution within a tissue context. While much focus has been placed on spatial
genomics and transcriptomics, recent advances in multiplexed imaging and proteomics are
beginning to shed light on the functional proteomic layer. Mass spectrometry-based proteomics
has made significant strides towards biologically informative single-cell analysis, now
enabling quantification of up to 5,000 proteins in cultured cells %7, In the tissue context, we
have recently introduced Deep Visual Proteomics (DVP), which integrates staining, Al-guided
cell segmentation and classification, laser microdissection of single-cell shapes, and high-

sensitivity mass spectrometry *°

. DVP excels in digital pathology applications with
pronounced spatial and visual components, providing simultancous and deep proteomic

characterization at the level of thousands of proteins.

We reasoned that these emerging technologies would be ideally suited to elucidate molecular

events during the progressive worsening of proteotoxicity as it unfolds in patients.
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Proteotoxicity, characterized by the accumulation of misfolded and aggregated proteins leading
to cell damage, is a hallmark of many diseases, including neurodegenerative pathologies such
as Alzheimer's and Parkinson's disease ®7'°. The underlying cause of proteotoxicity is a
disruption in protein homeostasis, resulting in an imbalance between protein synthesis, folding,

and clearance mechanisms °.

To investigate proteotoxicity in a clinically relevant context, we focused on a disorder with
unmet clinical need that exemplifies the challenges of protein misfolding and aggregation in a
vital organ. The fibrogenic liver disease alpha-1 antitrypsin deficiency (AATD), is a genetic
disorder caused by autosomal, co-dominant mutations in the SEFRPINAI gene resulting in
misfolding and accumulation of alpha- 1 antitrypsin (AAT) in hepatocytes. Most severe AATD
cases are caused by a homozygous Z-variant (Pi*Z7 genotype) with a peak incidence of
1:2,000 in individuals of European descent 1'*!1%, Current hypotheses suggest that the severity

T B8 However, the

of liver damage correlates with the amount of accumulated AA
mechanisms driving fibrogenesis or hepatocyte survival versus death remain unclear, leaving

potentially druggable targets unexplored.

To address this challenge, we curated a cohort of formalin-fixed paraffin-embedded (FFPE)
biopsies and liver explants from patients homozygous for the pathogenic Z-variant (Pi*Z7),
encompassing all fibrosis stages (n = 35, Extended Data Fig. la, Supplementary Table S1).
Despite the same underlying disease-causing mutation at a similar median age (57.3 £ SD 9.9
years) and BMI (25.4 £ SD 4.0), the fibrosis stages varied drastically, indicating unexplored

molecular resilience or risk profiles.
Proteomic mapping of hepatocyte responses to proteotoxic stress

To elucidate the molecular basis of the observed clinical heterogeneity in AATD patients, we
implemented a comprehensive proteomic mapping approach to characterize hepatocyte
responses to proteotoxic stress. We first laser microdissected 3 um thick FFPE sections from
patient biopsies and analyzed them with mass spectrometry following our DVP workflow.
After staining for cell outlines and AAT, we segmented and stratified cells into low, moderate,
and high aggregate load groups based on their microscopy images (Fig. la and 1b). The
proteome of 100 shapes, equivalent to the volume of 10—15 complete hepatocytes, was then
acquired on the recently introduced Orbitrap Astral mass spectrometer, yielding a high-quality
dataset with a mean proteomic depth exceeding 5,000 proteins per sample (Extended Data Fig.
1b and lc, Supplementary Table S1). We observed a striking 32-fold difference in AAT levels

Page 3 of 33



3. Publications

103
104
105
106
107
108
109
110
111
112
113
114
115
116

between low and high-load cells. The AAT load was captured on the second principal
component, preceded only by the fibrosis stage on the first component (Extended Data Fig. 1d
to 1f). Given the sparsity of AAT+ cells in biopsy material, this validated our laser
microdissection approach as it allowed the biological phenotype to emerge more clearly.
Biopsies with a low fibrosis stage exhibited lower AAT baseline loading compared to high
fibrosis stages on both proteomics and imaging data, while the maximum load remained fairly
equal across all stages (Extended Data Fig. 1g). The proteomes of the three load classes differed
markedly (16.2% significant hits at < 5% FDR, paired two-sided t-test; Fig. 1c). Alongside
AAT, several known markers of AATD liver pathology were highly enriched in aggregate-
positive cells, such as a 1.8-fold increased ER chaperone HSPAS and a 2.8-fold increased ER-
Golgi cargo receptor LMANT1 (Fig. 1d) 12!,

Among the most dysregulated hits, we identified other secretory proteins, including many
SERPINSs, coagulation, and complement factors (Fig. 1c, Extended Data Fig. 1i). This

corroborates the notion of ineffective processing and crowding in the ER space, with
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Fig. 1: Proteomic mapping of hepatocyte stress response. a, Overview of the Deep Visual Proteomics workflow. Fibrosis
stages are Kleiner scores. b, Inmunofluorescence staining of alpha-1 antitrypsin (AAT), the cell outline marker pan-cadherin
(pan-Cadh), nucleus (SytoxGreen), and three-color overlay. ¢, Proteomic changes in high versus moderate versus low AAT-
accumulating cells. Enriched in high on the right side. Top significant and top changed hits are named (paired two-sided t test
with load class as covariable, multiple testing corrected, n = 95 at 100 shapes per sample). d, MS intensity of selected proteins
across three classes. One dot is one sample from a patient (n = 32). e, Significantly (FDR < 0.05) enriched KEGG pathways
after Gene Set Enrichment Analysis. Each line is a member of the pathway. n.s. not significant.
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pathological implications due to the systemic deficiency of multiple plasma proteins '°.

Galectin-3 binding protein LGALS3BP and the apoptotic inducer TNFSF10/TRAIL had the
most pronounced positive changes (Fig. 1¢ and 1d). LGALS3BP is a hepatocyte-produced
protein targeted for secretion that is elevated in plasma from patients with liver disease 2.
Reports describing the immune-modulatory activity of LGALS3BP could explain the
involvement of immune cells in AATD liver pathology 13232,

Pathway enrichment analysis showed a strong elevation of proteins related to the three branches
of unfolded protein response (UPR) mediated through ATF6, PERK and IREI along with a
general upregulation of chaperones, accompanied by a reduction of the transcription and
translation machinery. This occurred at the expense of physiological functions such as bile
secretion (Fig. 1e). Strikingly, many responses converged into a protective response to reactive
oxygen species (ROS) with upregulation of thioredoxins and glutaredoxins, including an
atypical increase in the peroxisomal compartment and reduction of mitochondrial complex I
(Fig. 1d, Extended Data Fig. 1h to 1m). Proteasomal and autophagy proteins remained largely

unchanged, and neither did we detect disturbances of calcium homeostasis (Fig. 1d, Extended

Data Fig. 1n).
Early and late-stage responses to proteotoxic stress

Our experimental design, encompassing three aggregate load classes, should allow us to
resolve the step-wise progression of molecular events. To determine the sequence in which
molecular responses occur during AAT build-up, we first correlated AAT with other protein
levels to identify 'followers' that tightly track AAT levels. Proteins of the endoplasmic
reticulum were among the top ten hits, many destined for secretion (Fig. 2a, Extended Data
Fig. 2a and 2b). This included many structurally similar SERPINs, and the tight tracking of
AAT levels suggests that these proteins accumulate in tandem with AAT rather than being co-
regulated.

We then categorized proteins into early and late responders to proteotoxic stress caused by
AAT accumulation (Fig. 2b, Supplementary Table S2). We observed the most consistent
relation with AAT load among co-elevated proteins, with the majority (77%) manifesting as
late responders and only a smaller fraction as early responders. The immune-modulatory
marker LGALS3BP, was most prominent among early responders, followed by the ER cargo
receptor MCFD2 together with its co-binder LMANI1 (Fig. 2¢). Intriguingly, a strong
peroxisomal biogenesis response emerged ecarly on, characterized by the peroxisomal

proliferation factor PEX11B and other membrane-integral proteins, along with lipid
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metabolism and superoxide detoxifying proteins (Fig. 2d and 2e, Extended Data Fig. 2¢ and
3). In contrast, most proteins of the core machinery of the unfolded protein response appeared
later during AAT build-up, despite visual protein accumulation at earlier stages (Fig. 2d,
Extended Data Fig. 2d and 2¢). The crosstalk between UPR and peroxisomal activity remains
poorly understood, yet lipid metabolism, cholesterol metabolism, and ROS detoxification
intersect both pathways. Together, the data indicate a dominant increase of the endoplasmic
reticulum oxidoreductase 1 alpha (ERO1A), a major peroxide producer (Extended Data Fig.
2b).

We then analyzed samples at various fibrosis stages, revealing major dysregulations with
increasing fibrosis stage in proteotoxicity-responsive pathways (Fig. 2f, Extended Data Fig. 4).
Notably, this included the peroxisomal response, which showed a gradually prolonged onset
time relative to AAT load (Fig. 2g). Importantly, peroxisomal chaperones or chaperone-like
proteins remained unaltered, suggesting that peroxisomes are unlikely to contribute to the

clearance of unfolded proteins (Extended Data Fig. 2¢).
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Fig. 2: Early and late responses to proteotoxic stress. a, Expression profile of the top-ten proteins correlating with AAT.
All DVP sample are plotted, and values belonging to the same protein are on one line. Purple, polynommial fit (third order).
Boxplot, distribution of AAT expression values along the x axis. b, Clustering into carly and late responding genes to
proteotoxic stress, order on x axis by AAT levels. The y axis was broken into seven groups to achieve good coverage of all
response types. Significant KEGG term per box are shown, *not significant. e, Pseudo-time expression of top early and late
responders by directionality. d, Curmilative changes of indicated KEGG pathways expressed as z scores. e, Changes of proteins
levels across three AAT bing, highlighting peroxisomal proteins. Top significant and top changed hits are named (paired two-
sided t test with load class as covariable, multiple testing corrected, n=95). f, Top differential functional categories between
Fl and F4 fibrotic samples during early AAT accumulation (log2(AAT intensity) < 25; two-sided Wilcoxon test, multiple
testing corrected). g, Cumulative expression of peroxisomal proteins across four fibrosis stages.
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Single-cell mapping in intact tissue

The accumulation of AAT in intact tissue exhibits a pronounced spatial component. Prior work
has demonstrated that AAT accumulates unequally along the zonation gradient from portal to
central vein axis in AATD-patients with then Pi*ZZ genotype '**>%. Yet, sharp borders and
the absence of gradual changes between neighboring AAT+ and AAT- cells, as well as single
positive cells, indicate a more complex picture (Fig. 3a). To map the spatial protecome in these
regions, we built upon our previous single-cell DVP workflow * and isolated single shapes
from selected regions in 10 pum thick FFPE sections (equivalent to one-third to one-half of a
complete hepatocyte) from three Fl-stage biopsies. We quantified the proteome of these
‘shapes’ one at a time, allowing us to map back the proteome information onto the tissue with
preserved single-cell spatial resolution (Fig. 3a).

In this way, we quantified the proteome of 132 single shapes in three biopsies at a median depth
of 2,735 proteins, and reaching up to 3,600 proteins in some cells (Fig. 3b, Supplementary
Table S3). The laser capturing proved highly efficient (9.9% dropout rate) and precise, as
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Figure 3, Mapping intact tissue at single cell level. a, Enrichment efficiency of the workflow as shown by isolating adjacent
cells from FFPE tissue. Proteome quantification of AAT mapped back onto tissue. Boxplot shows AAT expression enrichment.
b, Number of proteins detected per single shape across all 132 runs. ¢, Distribution of p values when comparing single cells at
a border (top, n = 68), direct AAT- neighbours (middle, n = 69) and direct AAT+ neighbours (bottom, n = 49; two-sided
unpaired t test after multiple testing correction). d, Mapping of proteomic information onto the original microscopic image.
Cut-out images show AAT staining only. Gray, protein not quantified (n.q.); white, shape not captured and measured (n.m.)
(N=3,n=132).
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evidenced by the complete separation of adjacent AAT+ and AAT- cells (Fig. 3a, Extended
Data Fig. 5ato 5d). Upon comparing AAT+ and AAT- cells at border regions, we identified
similar proteotoxic stress markers as before (Extended Data Fig. 5e to 5g). Interestingly, cells
of the first or second row within a border region and within their respective AAT class
displayed very similar proteomes (Fig. 3c¢). Consistent with this, the AAT-accumulation
markers LGALS3BP and ERO1A were markedly different between AAT+ and AAT- cells, but
not among first and second-order neighbors. Consequently, the data supports an absence of
dedicated stress propagation between neighboring cells, suggesting that proteotoxic stress is a
cell-intrinsic response.

AAT accumulation has been previously characterized as a peri-portal event *’. However, our
data indicate only partial or no dependence of AAT accumulation on zonation, as evidenced
by a drastic change in the expression levels of the portal marker ASS1 at borders, but not HAL
and ARG1, or the central markers ADHI and CYP2E1. Notably, we observed a marked loss
of subunits of oxidative phosphorylation in AAT+ cells, including complex IV subunits (mt-
CO2, COX5B, COX6C, and others), a signal that was largely undetectable when comparing
bulk samples of three groups (Extended Data Fig. 5¢, Sh). Importantly, we did not observe any
zonation effect in single AAT+ cells compared to AAT- direct neighbors (Extended Data Fig.
51).

Upon mapping early- and late-responder markers back onto tissue, we found the expected
pattern at border regions for SERPINC1 and LGALS3BP, which mirrored AAT levels early
on. The late marker DNAJB11 remained unchanged in two of the three samples, indicating that
we captured the accumulation event at an early to medium stage (Fig. 3d). However, we
detected upregulation of the apoptotic inducer TNFSF10 in the border cells in one sample.
Further inspection revealed that the aggregate morphology was markedly different, with a
globular phenotype in contrast to amorphous AAT accumulation in the other two samples.
Differential expression analysis highlighted intracellular sequestration of iron (FTHI1, FTL),
the apoptotic marker TNFSF10, and MBL.2, as well as several enzymes related to detoxification
functions.

Globular aggregates mark apoptotic cells

Motivated by this observation, we enhanced our DVP workflow to connect cellular phenotypes
with proteomic data acquisition. We obtained liver resection samples containing thousands of
cells with various AAT aggregate morphologies on one slide. After staining and confocal

imaging of 3 um thick sections of four biological and five technical samples, we segmented
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cells and transformed the AAT channel signal within cell boundaries into 2048 features
representing AAT morphology using the ConvNeXt convolutional neural network 8. We
projected these representations into a two-dimensional space using UMAP and determined 50
equally distributed center points across the image information layer, from which selected the
50 closest cells. These were isolated by laser microdissection and measured by MS, resulting

in 250 morphology classes representing a total of 12,500 cells (Fig. 4a).
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Fig. 4: The proteome of cells with various aggregate morphologies (n = 4). a, Overview of the CNN-DVP pipeline. b,
Projection of all laser microdissected cells (1”,300) and representative AAT images in indicated areas. Color scheme refers to
AAT expression level (proteomic). ¢, Proteomic data of 209s samples (after filtering) reduced by PCA. d, Proteomic sample
correlation heatmap, indicating proteome clusters based on k means clustering (5 groups manually chosen) and samples slides.
e, Comparison of proteomes from cells with globular versus amorphous aggregates after selecting for similar AAT levels
(AAT indicated as white triangle). Up in globular on the right, top hits annotated (paired two-sided t test after multiple testing
correction). f, Projection of proteomics data onto image-based UMAP space of one representative sample, with representative
images of indicated clusters. g, Pseudo time-sorted images of all four biological replicates. Groups mark inflection points of
CRP. h, Expression levels of indicated proteins in CRP-ranked pseudo-time. Each line is one sample, smoothing curve in
purple with 95%-confidence interval in grey.
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Employing UMAP to project the representation of these micro-dissected cells into a 2D space
validated that the utilized CNN could indeed stratify cells by aggregate morphologies, with
aggregate-devoid cells clustering on one end and globular and amorphous morphologies
located at the opposite side and clearly separated from one another (Fig. 4b). We achieved a
median proteomic depth of 5,970 proteins from the equivalent of 5 to 10 complete hepatocytes
(Extended Data Fig. 6a, Supplementary Table S4). The main drivers of our proteomic data
were dynamic changes in keratins and AAT levels on principal components 1 and 2,
respectively (Fig. 4c, Extended Data Fig. 6b to 6d). When grouping samples by proteome into
clusters, patient samples were equally distributed across proteomic clusters without apparent
genotypic or technical biases (Fig. 4d). As an inverse proof-of-principle, we successfully
mapped the proteomic clusters back onto the UMAP image space with clear dimensional
separation (Extended Data Fig. 6e). Consistently, samples of one proteome cluster also
exhibited the shortest distances to one another on a proteomic UMAP and t-SNE plot (Extended
Data Fig. 6f and 6g).

To better understand the molecular responses underlying morphology types, we comparatively
analyzed samples with clear globular versus amorphous aggregates (Fig. 4e). Contrary to
expectation, markers that typically follow AAT levels, like CES2 and ERO1A, were decreased
in globular types. Conversely, the apoptotic inducer TNFSF10 and the inflammatory marker
C-reactive protein (CRP) were positively enriched, indicating this to be a terminal phenotype
preceding intrinsic or extrinsic apoptosis. We then mapped levels of marker proteins back onto
the UMAP-derived image space. Intriguingly, ERO1A and TNFSF10 were localized in two
distinct cell populations (Fig. 4f). While ERO1A, indicative of an ongoing UPR response, was
highly enriched in amorphous aggregate types, TNFSF10 was mostly present in cells with
globular aggregates alongside innate immune system activators. In line with this, Gene Set
Enrichment Analysis further identified processes related to cell death as upregulated in globular
types (Extended Data Fig. 6h).

Given a rather linear response rate of CRP across the image UMAP space (Fig. 4f), we then
sorted all samples in pseudo-time by CRP expression levels. Across all four biological samples,
we observed the emergence and disappearance of small corpuscular aggregates despite retained
CRP signal. This was followed by a fulminant amorphous aggregation prior to condensation
into globular aggregates as a terminal feature before cell death and clearance (Fig. 4g). In
addition to TNFSF10, we identified EGF-like domain-containing protein 7 (EGFL7) as a viable
marker of this stage that appeared late in the AATD phenotype. Notably, EGFL7 is also
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upregulated in hepatocellular carcinoma, and high expression levels are associated with poor
prognosis 2°. However, a potential link between globular phenotypes and HCC incidence in
AATD remains unexplored. This terminal phenotype was further characterized by a stagnating
or even declining unfolded protein response in late stages, as evidenced by Calreticulin and
EROI1A levels, while reclining levels of proteins such as UGT2B17 suggest the termination of
physiological functions in this hepatocyte subtype (Fig. 4h).

DISCUSSION

We present a pseudo-time resolved proteome of individual hepatocytes undergoing proteotoxic
stress due to AAT aggregation. Qur findings, derived from FFPE biopsies and resections from
patients, provide novel insights into the progression and hepatic manifestation in AAT
deficiency. While there are several model systems in the field, including murine models * and
patient-derived induced pluripotent stem cells (iPSCs) 3!, our approach uniquely captures
responses to proteotoxic stress directly in patients via human tissue specimens representing the
full disease spectrum (stages F1-F4). Notably, our data reveal that existing Pi*ZZ models do
not accurately recapitulate the UPR, which manifests as a late but fulminant mode of action in
our patient-derived samples *2, This discrepancy extends to the globular phenotype, which we
now identify as the terminal cellular feature preceding cell death '*. Our approach strikingly
underlines the power of harnessing patient cohorts and tissues. As many potentially druggable
targets and pathways are intrinsically more difficult to validate when appropriate model
systems are not in place, this inverts the traditional biomedical discovery cycle.

We here developed a single-cell proteomiecs approach to generate high-resolution maps of
adjacent hepatocytes in intact tissue, leveraging recent advancements in ultra-low input mass
spectrometry %73%. Building upon our previous work mapping zonation profiles in frozen
mouse liver sections at single-cell resolution °, we now quantify 50% more proteins and apply
single-cell Deep Visual Proteomics (scDVP) to formalin-fixed tissue. This compatibility with
FFPE tissue specimens, the gold standard in diagnostic pathology, expands access to cohorts
of virtually any origin, age, and size , broadening the potential applications of this technology.
Our findings indicate that cells without aggregates are not directly affected or triggered by
seeding-like mechanisms from adjacent aggregate-bearing cells. However, the presence of
large patches of positive cells implies a propagation mechanism. Given the extensive metabolic
perturbations observed, including alterations in fatty acid metabolism and detoxification
pathways, AAT aggregate formation in one cell may lead to changes in the metabolic

microenvironment, thereby inducing stress and proteostatic imbalance in adjacent cells. This
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283  hypothesis aligns with other reports in the AATD field and similar mechanisms have been
284  proposed in the context of neurodegenerative proteotoxic disorders where, however, it remains
285  subject of ongoing debate 3>,

286  We present an integration of image featurization and DVP that enables characterization of the
287  entire proteomic and phenotypic lifecycle of stressed hepatocytes in a proteotoxic and
288  fibrogenic liver disease. This methodology establishes a robust framework for dissecting
289  complex cellular processes in situ across a spectrum of proteotoxic diseases. This strategy, an
290  example of digital pathology with quantitative and very deep proteomic readout, yielded
291  exceptionally deep proteomes of 6,000 quantified proteins, sufficient to inter most of the
292  functional proteome of a given cell type. Importantly, our datasets are large enough to generate
293  robust models capable of predicting the proteome of a cell based solely on its phenotype. This
294  advancement paves the way for whole-slide proteomics in the future, representing a leap
295  forward in our ability to comprehensively analyze tissue types at exceptional molecular and
296  spatial resolution by mass spectrometry.

297  The methods developed here recapitulate known disease progression markers while identifying
298  hundreds of additional dysregulated proteins. The present study is necessarily limited in
299  functional follow-ups, vet these novel candidates clearly offer a valuable resource for
300  biological and clinical validation. Of particular clinical relevance, we uncover an early
301  upregulation of the peroxisomal compartment in samples from patients with low-grade liver
302  fibrosis. This response is significantly delayed in high-grade fibrotic samples, suggesting a
303  potential window for therapeutic intervention. PPAR-a agonists, such as fibrates, which
304  increase peroxisome load in the liver, may be promising candidates for treating patients with
305  late-diagnosed advanced liver fibrosis due to AATD. Given their well-established safety
306  profiles, we suggest that these drugs could be repurposed for AATD, potentially transforming

307  the treatment landscape of this proteotoxic disorder.
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METHODS
Clinical cohorts and sample preparation

Patient biopsies and explant samples were obtained at two different sites, Odense University
Hospital (OUH, Denmark) and Aachen RWTH University Hospital (UKA, Germany). The
sample origin is indicated in Supplementary Table 1. Following ethical guidelines, the clinical
data provided here is de-identified by only reporting sample type, fibrosis score, and site of
origin.

OUH patient recruitment — Patients were recruited through the Danish patient organization
(Alfa-1 Denmark) and clinical departments for liver and lung diseases as part of a cohort study.
The cohort was designed to investigate liver health among non-pregnant adults (minimum age
18 years) diagnosed with AATD of any genotype and carrier status. This specific study includes
16 individuals diagnosed with Pi*ZZ who consented to undergo the procedure. The study was
approved by the Danish Ethical Committee (S-2016987), and participants gave informed
consent prior to enrollment. Participants without a history of liver transplant or decompensated
cirrhosis were offered a percutaneous liver biopsy. The patients underwent liver core needle
biopsies at Odense University Hospital (OUH) between 2017 and 2021. Liver core needle
biopsies were taken during this period, stored in 4% formalin, and embedded in paraffin. For
the assessment of fibrosis stage, FFPE blocks were cut on a microtome into 3um thin sections
and mounted on FLEX IHC slides (Dako, Glostrup, Denmark). Tissue sections were
deparaffinized with xylene, rehydrated in serial dilutions of ethanol, and stained with Sirius
Red. A certified hepatopathologist (S.D.) assessed the Kleiner fibrosis stage (0-4) according to
the Pathology Committee of the NASH Clinical Research Network (NAS-CRN).

UKA patient recruitment — The recruitment of patients is described in detail in reference *’. OF
this cohort, the present study includes 19 individuals diagnosed with Pi*ZZ, of whom 14
underwent liver core needle biopsies due to medical indication and five received a liver
transplantation due to end-stage liver disease. Samples were stored in 4% formalin and
embedded in paraffin. Fibrosis stage was assessed after trichrome staining of Sum thin sections
by a certified hepatopathologist. Blocks were stored at room temperature. Ethical approval was
provided by the institutional review board of Aachen University (EK 173/15). All participants
provided written informed consent and were treated following the ethical guidelines of the
Helsinki Declaration (Hong Kong Amendment) as well as Good Clinical Practice (European

guidelines).
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Staining

Two micrometer PEN membrane slides (MicroDissect GmbH) were exposed to UV light (254
nm) for one hour and then coated with Vectabond (Vector Laboratories; SP-1800-7) according
to the manufacturer's protocol. Three (DVP, ML) or ten (scDVP) micrometer thin FFPE
sections were mounted onto these slides and dried at 37°C overnight. Slides were stored at 4°C
until further processing, upon which slides were baked at 55°C for 40 minutes, and then
deparaffinized and rehydrated (xylene 2 x 2 min, 100% EtOH 2 x 1 min, 90% EtOH 2 x 1 min,
75% EtOH 2 x 1 min, 30% EtOH 2 x 1 min, ddH20 2 x 1 min). Slides were transferred to
prewarmed glycerol-supplemented antigen retrieval buffer (DAKO pH 9 S2367 + 10%
Glycerol) at 88°C for 20 minutes, followed by a 20-minute cooldown at room temperature (RT
22°C). After washing in water, sections were blocked with 5% BSA in PBS for one hour,
followed by an overnight incubation with primary antibodies in 1% BSA/PBS at 4°C in a humid
staining chamber (1:200 mouse IgG1 monoclonal AAT 2C1, Hycult HM2289; 1:200 rabbit
recombinant anti-pan cadherin [EPR1792Y], Abcam ab51034). After three washes in PBS for
two minutes each, secondary antibodies (1:400 goat anti-mouse IgG1, Invitrogen A21127,
1:400 goat anti-rabbit AF647, Invitrogen A21245) in 1% BSA/PBS were applied for 90
minutes, followed by two 2-minute washes in PBS, 15 minutes in SYTOX™ Green (1:40,000
in PBS, Invitrogen S 7020), and three final 2-minute washes in PBS. Excess liquid was
removed and samples were coverslipped using SlowFade Diamond Antifade Mountant

(Invitrogen, S36963).

Imaging

Widefield Imaging — For DVP and scDVP experiments (Figures 1-3), sections were imaged
using a Zeiss Axioscan 7. For all excitation wavelengths (504 nm, 577 nm, 653 nm), 50% light
source intensity was used. The illumination time was specified on one section and applied to
all consecutive samples within one experimental group. Three z-stacks at an interval of 2 pm
were recorded with a Plan-Apochromat 20x/0.8 M27 objective and an Axiocam 712 camera at
14-bit, with a binning of 1 and a tile overlap of 10%, resulting in a scaling of 0.173 um x 0.173
um. Multiscene images were then split into single scenes, z-stacks combined into a single plane
using extended depth of focus (variance method, standard settings), and stitched on the pan

cadherin channel using the proprietary Zeiss Zen Imaging software.

Confocal Imaging — For experiments with downstream ML applications (Figure 4), sections
were imaged on an PerkinElmer OperaPhenix high-content microscope, controlled with

Harmony v4.9 software, at 40> magnification and 0.75 numerical aperture, with a binning of
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1 and a per tile overlap of 10%. Only one z-plane was recorded, which was manually specified
for each slide and channel. The three channels were imaged consecutively after deactivation of

simultaneous recording to avoid any leakage between channels.
Cell selection (BIAS)

Images were imported as .czi files into the Biological Image Analysis Software (BIAS) using
the packaged import tool . Within BIAS, images were then retiled to 1024x1024 pixels with
an overlap of 10%, and empty tiles were excluded from further analyses. Cell outlines were
identified based on anti-pan cadherin stains using Cellpose 2.0 with the default cyto2 model *%.
Masks were imported into BIAS, and duplicates, as well as cells touching the borders of a tile
(0.1% on each side), were removed. Further filtering was applied to retain cells with a minimum
size of 3000 pixels, enriching for the hepatocyte population. For classification based on low,
medium, and high aggregate load, the cell populations were divided per sample into five classes
using a multilayer perceptron (MLP) with the following parameters: weight scale 0.01,
momentum 0.01, maximum iterations 10,000, epsilon 0.0005, and 5 neurons in the hidden
layer. Classification was based on the AAT (alpha-1 antitrypsin) maximum, median, and mean
intensity within the cell outline mask. No human feedback was provided during this process.
The low class was attributed to the cells with the lowest normalized mean intensity, medium
to the third highest, and high to the highest normalized mean intensity; the other two
intermediate classes were dropped. Reference points were selected based on prominent nuclear

and histological features. One hundred cells were randomly picked for excision.

For single shape experiments, three characteristic low-fibrosis samples (all F1) and regions
were selected that presented with a clear border-like phenotype (i.e., a row of AAT+ cells in
direct neighborhood to AAT- cells) or with single AAT+ cells surrounded by AAT- cells. The
cells were selected manually in BIAS, starting from the innermost cell and moving spiral-like

to the outermost cell, thus avoiding cross-contamination of consecutively cut material.
Single-cell image generation

Images were flat-field corrected during image acquisition using the Perkin Elmer Harmony
software (v4.9). Stitching of the flat-field corrected image tiles was performed using

SPARCStools (https://github.com/Mannlabs/SPARCStools). The stitched tile positions were

calculated using the anti-pan cadherin stains imaged in the Alexa647 channel as a reference
and then transferred to the other image channels. During stitching, the tile overlap was set to

0.1, the filter sigma parameter to 1, and the max shift parameter to 50.
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The stitched images were then further processed in the python library SPARCSpy
(https://github.com/MannLabs/SPARCSpv). Cell outlines were identified based on the 7X

downsampled anti-pan cadherin stains using Cellpose 2.0 with the pretrained “cyto” model ¥,
Segmentation was performed in a tiled mode with a 100px overlap. After resolving the cell
outlines from overlapping regions, the resulting segmentation mask was upscaled to the
original input dimensions during which the edges of the masks were smoothened by applying

an erosion and dilation operation with a kernel size of 7.

Then, the generated segmentation mask was used to extract single-cell image datasets with a
size of 280px x 280px. During extraction, the same single-cell image masks are used to obtain
the pixel information from each channel for each cell. The resulting single-cell images were
then rescaled to the [0, 1] range while preserving relative signal intensities. The resulting
single-cell image datasets were filtered to only contain cells from within manually annotated

regions in the tissue section containing hepatocytes but not fibrotic tissue.
Cell selection (CNN)

The filtered single-cell image datasets produced by SPARCSpy were further filtered to remove
any cells that fell outside the 5 to 97.5% size percentile. Representations of the remaining cells
were generated by featurization using the natural image-pretrained ConvNext model 28, For
this, the single-cell images depicting the Alpha-1 channel were rescaled to the expected image
dimensions of Npx x Npx and triplicated to generate a pseudo rgb image. Inference was then

performed using the huggingface transformers package v. 4.26 *°.

The resulting 2048 image features were projected into a two-dimensional space using the
UMAP algorithm “°. The UMAP dimensions were calculated on the basis of the first 50
principal components and the 15 nearest neighbours. Using the spectral clustering algorithm
from scikit-learn ¥, the resulting UM AP space was split into 50 clusters. The geometric centre
of each cluster was calculated and the 50 cells with the smallest Euclidean distance to the

cluster centre were selected for laser microdissection.

Contour outlines of the selected cells were generated in SPARCSpy using the py-lmd package
2 whereby the cell outlines were dilated with a kemnel size of 3 and a smoothing filter of 25
was applied. Furthermore, the number of points defining each shape were compressed by a
factor of 30 to improve LMD cutting performance. The cutting path, i.e. which cell is cut after
one another, was optimized using the Hilbert algorithm

(https://github.com/galtay/hilbertcurve).
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Laser microdissection

After aligning the reference points, contour outlines were imported, and shapes were cut using
the LMD?7 (Leica) laser microdissection system in a semi-automated mode with the following
settings: power 43, aperture 1, speed 40, middle pulse count 1, final pulse 0, head current 42-
50%, pulse frequency 2,982, and offset 190. The microscope was operated with the LMD beta
10 software, calibrated for the gravitational stage shift into 384-well plates (Eppendorf
0030129547), leaving the outermost rows and columns empty. To prevent sorting errors, a
'wind shield' plate was placed on top of the sample stage. Plates were then sealed, centrifuged

at 1,000 g for 5 minutes, and subsequently frozen at —20°C for further processing.
Peptide preparation and Evotip loading

Peptides were prepared as previously described using a BRAVO pipetting robot (Agilent) as

4. Briefly, 384-well plates were thawed, and shapes (both combined and

per reference
individual) were rinsed from the walls into the bottom of the well with 28ul. of 100%
acetonitrile (ACN). The wells were completely dried in a SpeedVac at 45°C, followed by the
addition of 6ul, of 60mM triethylammonium bicarbonate (TEAB, Supelco 18397) (pH 8.5)
supplemented with 0.013% n-Dodecyl-beta-D-maltoside (DDM, Sigma-Aldrich D3172).
Plates were sealed and incubated at 95 °C for one hour. After adjusting to 10% ACN, samples
were incubated again at 75 °C for one hour. Subsequently, 6ng and 4ng of trypsin and Lys-C
protease, respectively, in 1 pl of 60 mM TEAB buffer were added to each sample, and proteins

were digested for 16 hours at 37 °C. The reaction was quenched by adding trifluoroacetic acid

(TFA) to a final concentration of 1%. Peptide samples were then frozen at -20 °C.

For loading, new Evotips were first soaked in 1-propanol for one minute, then rinsed twice
with 50 pL of buffer B (ACN with 0.1% formic acid). After another 1-propanol soaking step
for three minutes, the tips were equilibrated with two washes of 50 uL. buffer A (0.1% formic
acid). Samples were loaded into 70 pL of pre-loaded buffer A. Following one additional buffer
A wash, the peptide-containing C18 disk was overlaid with 150puL buffer A and briefly
centrifuged through the disk. All centrifugation steps were performed at 700g for one minute.

The final tips were stored in buffer A for a maximum of four days prior to LC-MS.
LC-MS data acquisition

The peptide samples were analyzed using an Evosep One liquid chromatography (L.C) system
(Evosep) coupled to an Orbitrap Astral mass spectrometer (Thermo Fisher Scientific). Peptides
were eluted from the Evotips with up to 35% acetonitrile (ACN) and separated using an Evosep
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low-flow "Whisper" gradient for DVP samples, or an experimental Evosep "Whisper Zoom"
gradient for single shapes and DVP-ML samples, with a throughput of 40 samples per day
(SPD) on an Aurora Elite TS column of 15 em length, 75 pum internal diameter (i.d.), packed
with 1.7 pm C18 beads (IonOpticks). The column temperature was maintained at 30°C using

a column heater (IonOpticks).

The Orbitrap Astral mass spectrometer was equipped with a FAIMS Pro interface and an
EASY-Spray source (both Thermo Fisher Scientific). A FAIMS compensation voltage of —40V
and a total carrier gas flow of 3.5 L/min were used. An electrospray voltage of 1900V was
applied for ionization, and the RF level was set to 40. Orbitrap MS1 spectra were acquired
from 380 to 980 m/z at a resolution of 240,000 (at m/z 200) with a normalized automated gain

control (AGC) target of 500% and a maximum injection time of 100 ms.

For the Astral MS/MS scans in data-independent acquisition (DIA) mode, we experimentally
determined the optimal methods across the precursor selection range of 380-980 m/z: (a) For
DVP samples, a window width of 5 Th, a maximum injection time of 10 ms, and a normalized
AGC target of 800% were used. (b) For DVP-MIL samples, a window width of 6 Th, a
maximum injection time of 13 ms, and a normalized AGC target of 500% were applied. (¢) For
single shapes and other DIA scans, the window width was optimized based on precursor density
across the selection range of 380-980 m/z. A total of 45 variable-width DIA windows (see
supplementary table 3) were acquired with a maximum injection time of 28 ms and an AGC
target of 800%. The isolated ions were fragmented using higher-energy collisional dissociation

(HCD) with 25% normalized collision energy.

Detailed method descriptions are provided in a default format with each supplementary data

table.
Spectral searches and normalization

The raw files were searched together with match-between run in library-free mode within each
experimental group with DIA-NN v1.8.1 . A FASTA file containing only canonical
sequences was obtained from Uniprot (20,404 entries, downloaded on 2023-01-02), and the
disease-causing amino acid was manually changed (E342K). We allowed a missed cleavage
rate of up to 1, and set mass accuracy to 8, MS1 accuracy to 4, and the scan window to 6.
Proteins were inferred based on genes, and the neural network classifier was set to ‘single-pass
mode’. For DVP and DVP-ML samples, precursor intensities in the ‘report.tsv’ file were then

normalized using the directLFQ GUI at standard settings including a minimum number of non-
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nan ion intensities required to derive a protein intensity of one #*. The single shape data was
additionally median normalized to a set of proteins quantified across all samples (621 proteins
quantified in 100% of included samples; see Supplementary Table S3), thereby correcting for

the dependence of protein numbers on shape size 3.

Data analysis and statistics

Data was analyzed using R version 4.4.1. The directLFQ output file ‘pg matrix.tsv’ was
utilized for all subsequent data analysis, including the reported protein counts. Samples were
included if the number of protein groups exceeded the mean minus (a) 1.5 standard deviations
for DVP and single shape samples, resulting in 1.0% (1/96) and 10.6% (14/132) dropouts,
respectively; and (b) 0.5 standard deviations for DVP-ML samples, resulting in 16.4% (41/250)
dropouts. This lower cutoff was selected after manual inspection of the data distribution.
Although some samples were collected in technical duplicates per patient biopsy, only the first
replicate was used for statistical analyses and all reported measurements were taken from
distinct samples. Coefficients of variation were calculated on non-transformed intensity values.
For principal component analysis (PCA), the R package PCAtools 2.16.0 was used on a
complete data matrix, removing the lower 10% of variables based on variance. Statistical
analyses were performed assuming normality using the limma package version 3.60.3 with
two-sided moderated t-tests and "fdr" as a multiple testing correction method. A per-patient
statistical pairing was applied for DVP and single shape experiments. Intensity and fold
changes are reported as log2-transformed values unless indicated otherwise. Gene Set
Enrichment Analysis (GSEA) was conducted using WebGestalt 2024 against the indicated
databases, with a false discovery rate (FDR) of < 0.05 considered significant 4. Interaction
networks were calculated with STRING database at standard settings *’. The timing of
responses ranked by the absolute difference between B values of limma’s moderated t test
comparing three AAT load groups: low to moderate, and moderate to high. Only proteins that
were significant in either or both comparisons were considered. Differential pathway
expression across fibrosis stages was calculated by fitting a linear model through log2-
transformed intensity values of individual proteins in samples with log2(AAT)-intensity < 25,
and the slopes of proteins in a particular pathway were compared between F1 and F4 samples
by a two-sided Wilcoxon rank test without assumption of normality. Indicated p values are
corrected for multiple testing using the “fdr” method. Spatial data was mapped using the ‘simple

features’ package.
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Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE “® partner repository with the dataset identifier PXD054440
(Username: reviewer_pxd0354440@ebi.ac.uk, Password: R14c41PdHVKO).
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EXTENDED DATA FIGURES
a
Kleiner score F1 F2 F3 F4 Resections
Genotype PIZZ (100%)
Female sex 45.5% (5111) 0% (0/7) 33.3% (1/3) 66.6% (4/6) 100% (3/3, 2 NA)
Age at biopsy (y) 56.9 (x11.5) 49.2 (£9.88) 63.0 (£8.5) 556 (+4.0) 63.6 (£5.7)
Alcohol | 18.1% (2A11) 28.6% (27,2 NA) 0% (0/3) 33.3% (206) 0% (4/6, 1 NA)
Diabetes 2.9% (1/35)
BMI 240 (+3.0) 255 (+2.8) 242 (+2.3) 26.2 (+1.6) 33.5 (+7.5)
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Extended Data Fig. 1, Proteomic mapping of hepatocyte stress response. a, Summary of
clinical metadata expressed in number of patients, or percentages with absolute numbers in
brackets. Mean + SD is reported. b, Number of proteins detected across all runs prior to

exclusion of technical replicates (n = 134). Upper dotted line: median number of protein
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692
693
694
695
696
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groups. Lower dotted line: Median — 1.5 SD. Samples below were excluded and are marked as
a cross. ¢, Coefficient of variation across fibrosis stages. d, MS intensity of alpha-1 antitrypsin
in the three distinctly microdissected cell classes. e, Principal component analysis with
principal components 1 and 2 color by fibrosis stage, and f, with principal component 2 and 3
colored by alpha-1 antitrypsin level. Each dot is one sample (n = 95). g, Levels of alpha-1
antitrypsin by fibrosis stage across the three microdissected cell classes (n = 32 patients). h,
STRING interaction network of significantly (FDR < 0.05) upregulated (top) or downregulated
proteins in cells (see Fig. 1¢). i — n, levels of selected proteins in indicated pathways in cells
with compared to without aggregates. Circles indicate mean, bars are SD across patient samples

(n = 32). The proteins in i to m were manually selected, n is retrieved from KEGG.
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Extended Data Fig. 2, Early and late responses to proteotoxic stress. a, Pearson’s R
correlation coefficient of each detected protein with alpha-1 antitrypsin levels calculated per
MS sample. Top and low-10 protein names are indicated in boxes. b, Proteomic changes in
high versus moderate versus low AAT-accumulating cells colored by their R? value against

alpha-1 antitrypsin expression. Enriched in high on the right side. Top significant and top

Page 27 of 33



6. Appendix

707
708
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changed hits are named (paired two-sided t test with load class as covariable, multiple testing
corrected, n =95 at 100 shapes per sample). ¢, Expression levels of indicated proteins colored
by z score (assuming normality) across all samples split by load class and related to
peroxisomal protein import, d, XBP1 signaling and e, the Calnexin/Calreticulin cycle.

Database IDs given below each graph (n = 95 in 32 patients).
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Extended Data Fig. 3, Changes of functional pathways. a-f, Scaled intensity (z scored) of
all detected proteins in indicated KEGG pathways against AAT intensity. “hsa00000° are
KEGG identifiers. Purple line is the local regression (span 0.75, degree 2).
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Extended Data Fig. 5, The single-cell proteome. a and b, Color-coded AAT expression in
regions with single-positive cells. AAT expression levels of all indicated shapes are also shown
in the dot graph on the right of each spatial mapping. ¢, Expression of AAT in indicated regions
determined by immunofluorescence signal across all included samples (n = 118). d, Number
of proteins detected in relation to the cut shape area. Excluded samples are indicated with a
cross. e, Statistical comparison of AAT+ and AAT- cells at the three regions classified as
‘borders” (paired two-sided t test, multiple testing corrected, 30 AAT+ cells and 38 AAT-
cells). f, Comparison of adjusted p-values and g, log2(fold changes) of AAT+ and AAT- single
shape comparisons on the x axis versus cells along the accumulation gradient (refer to Fig. 1
and 2) on the y axis. Statistics as in e, and Fig. 1c. h, Relative expression levels of subunits of
the oxidative phosphorylation system (OXPHOS) in AAT+ versus AAT- single shapes.
Proteins are retrieved from Mitocarta 3.0 *°. i, Expression of protein indicated on the right in
respective spatial region. Periportal markers: ASS1 and HAL; pericentral markers: ALDHIAI1
and CYP2EL. The boxes are first and third quartiles, the thick line is the median, whiskers are

+1.5 interquartile range and outliers are indicated as individual points.
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738  Extended Data Fig. 6, The proteome of cells with various aggregate morphologies. a,

739  Number of protein groups detected per sample. Each dot is one sample, the horizontal line
740  indicates the mean across all included samples (n = 209 included, n = 41 excluded and

741  marked with a cross). Exclusion criteria were that the number of detected proteins was

742 smaller than mean minus 0.5 SD. b, Principal component analysis of all included samples
743 with AAT, ¢, KRT1 expression levels, or d, shape size color coded ( n = 209). e, Annotation
744 of the proteome cluster in Fig. 4d onto the image space UMAP. Dropped samples are in grey
745 (n=12,500). f, Representation of individual samples color coded by proteome cluster in a
746 proteomic UMAP, or g, tSNE space (n = 209). h, Gene Set Enrichment Analysis (GO:

747  Biological Process noRedundant) of globular versus amorphous aggregate types.

Page 33 of 33

236



6. Appendix

4. Discussion and Outlook

The increasing sensitivity and speed of MS instrumentation in the last years, has driven
a great wave of impactful publications. Since its introduction in June 2023, already more
than 100 papers using the Orbitrap Astral MS were published, of which over 40 are peer-
reviewed. These cover a wide range of applications, from full proteomes over PTM
analysis to microbiomes and additionally enable unprecedented proteome depths of

>5000 proteins from single cells.68:215217.326,328,426,439,440

Presenting at the instrument release, | could showcase initial results for our DVP
workflow. In a titration experiment of epithelial cells from patients with high grade serous
ovarian cancer, we could identify almost 2,000 protein groups from as little of 10 cell
shapes and more than 5,000 protein groups from 100 shapes. A depth that previously
required the analysis of 500-700 shapes.*® Additionally, we were able to identify the
primary ovarian cancer biomarker, CA-125, in as little as 25 cell shapes. With these
promising results in hand, we focused our effort on these projects in the last year. DVP
presents a unique opportunity to preserve the spatial aspect of cell type-specific
proteomes in the context of intact tissue. In contrast, other methodologies, such as
macrodissection or cell sorting, can only preserve the spatial or cell type resolution
respectively. DVP, therefore, is of particular interest when studying specific cell types in
cases of distinct spatial characteristics, such as the crypt-villus architecture in the
intestinal mucosa (Article 5) or to spatially differentiate cancerous and non-cancerous
cells (Article 4). With more advanced MS technology, the number of required cells per
cell-type further decreases and broadens the applicability of DVP to the study of more
rare cell types or where total cell amount is limited, as is the case in organoid models,

for instance.

For research questions that require higher spatial resolution, scDVP offers a more fine-
grained analysis of the spatial proteome of single cells in intact tissue. First applied to
fresh frozen tissue sections and used to study the spatial organization of hepatocytes in
the central to portal vein axis, we could extend the workflow to FFPE (Article 6) to study
liver sections of patients with AATD. As clinical tissue samples are commonly archived
as FFPE tissue and often available as parts of biobanks, this greatly extends the number
of sample cohorts that can be studied using scDVP. Further, we increased the
achievable proteome depth from a mean of 1700 proteins to 2800 proteins by a

combination of technological advances and optimal method design, and were able to
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pick up biologically and clinically relevant proteomic changes. With this more sensitive
and optimized set-up, scDVP studies of smaller cell types become increasingly more
feasible further extending the possible use cases. Similar to AATD, it would be valuable
to apply scDVP to other clinical conditions featuring protein misfolding and aggregation
in individual cells, such as the neurodegenerative diseases Parkinson and Alzheimer.#4!
This is currently being investigated in our group. Apart from the disease context scDVP
could give insights into developmental and regenerative processes that require a spatial
single cell resolution. Altogether, the technological improvements in the DVP and scDVP
studies presented in this thesis showcase the potential of DVP, especially in spatially
resolved clinical proteomics and highlight use cases in precision oncology or
personalized medicine. They, however, also spotlight the importance of highly sensitive
mass spectrometers, such as the Orbitrap Astral MS, and tailored method design to

achieve high proteomic depth and quantitative accuracy.

While new MS instruments have greatly improved on the previously achievable
proteomic depth, there is still room for further improvements. The fast scanning speeds
of modern MS analyzers enable us to reduce DIA windows to an almost DDA-like width,
considerably reducing the spectral complexity of each DIA window and in turn increasing
identification.®2® This, however, means we are only ever analyzing a small fraction of the
total ion population. In contrast, an ideal mass spectrometer or acquisition strategy
would utilize all entering ions for subsequent analysis. Over the years, multiple
approaches, both technical and methodological, have been proposed to improve on this.
One such methodological strategy is BoxCar, which increases ion utilization, total
injection time for MS full scans, and with it dynamic range and sensitvity.**? While DIA
acquisition shifted the focus towards MS2 spectra, recent experimental data
reemphasizes the importance of high quality MS1 data, especially for low input samples
and for improved quantification.®! Depending of the mass analyzer used, this, however,
often requires long transient times, which might not be feasible especially for high-
throughput applications. In these cases, the ability to acquire MS1 and MS2 spectra in
parallel, as instruments with more than one mass analyzer can do, is particularly
advantageous. BoxCar-like acquisition strategies for MS1 or potentially MS2 level in
combination with tribrid instruments or the Orbitrap Astral MS could help increase ion
utilization while maintaining high proteomic depth. Ultimately, optimal ion usage on the
Orbitrap Astral MS will require a technical solution similar to the trapped ion mobility

spectrometry (TIMS) device on Bruker instruments, or Sciex’s Zeno Trap technology.
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While discussing the impressive performance of novel mass spectrometers and
potential ideas to further improve their capabilities, one should, however, note that not
every group has the financial means to upgrade to the newest instrument releases. For
this reason, | think it is important to also extend the functionality of existing mass
spectrometers through hardware or software add-ons and increasingly more refined
acquisition strategies. On the side of Thermo Fisher Scientific instrumentation for
instance, the unification of the MS front-end design between tribrid and hybrid MS
instruments enabled the use of the FAIMS ion mobility device for the hybrid MS
instruments. While this can extend the time between cleaning cycles, making the
instruments more robust, it can also greatly improve the performance for low-input
applications by removing background ions. On the same line, ®SDM (Article 1),
potentially as a commercially available upgrade, could increase the performance and
functionality of existing Orbitrap mass spectrometers in groups that cannot afford to

exchange their MS instruments with the newest generation.

Even if we are utilizing our mass spectrometers to the best of their abilities, all of this is
diminished without analysis or post-processing software that makes optimal use of the
acquired data. In line with this, the introduction of AlphaDIA (Article 3) provides a great
framework for the search of DIA data, particularly for potentially “noisier” TOF data. The
aggregation of evidence across multiple dimensions allows the confident identification
of peptides and precursors even at low fragment intensities. As novel analyzers promise
single ion detection, this will be of particular importance to retain low FDR and high
identification confidence. Moreover, AlphaDIA’s flexible processing algorithm combined
with alphaRaw’s efficient raw data handling promised high adaptability to novel and
complex scan modes, including synchro-PASEF.3% The integration of AlphaPeptDeep,
for prediction of spectral libraries, and directLFQ provide an end-to-end solution for raw
data analysis.'?%13! The former also highlight the use of deep learning for the prediction
of peptide properties, training of highly tailored models, including HLA peptides and
PTMs, and generation of in-silico libraries. AlphaDIA, as well as other software solutions
of the alphaX universe, are built with modern and open-source tools like Python and
PyTorch and openly provided to the community on GitHub. This stand in contrast to
other commonly used DIA analysis software, whose “inner workings” more often than
not are “black boxes”. With this, AlphaDIA sets an example for transparent, open science
that performs on par or better than other popular DIA search platforms, particularly for
TOF analyzers, such as the Orbitrap Astral MS. Here, AlphaDIA was able to identify

9,500 proteins groups from a 21 min run, outperforming the other analysis tools.
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While in this case proper FDR control ensures high confidence in the identified peptides
and proteins, one should always prioritize reproducible, high-quality datasets over a sole
focus on who gets the highest numbers. As such, there is much to say about the
“‘numbers game” in proteomics. On the side of MS instrumentation continuously or
sometimes drastically improving instrument parameters upkeep the commercial
competition between MS vendors. This promotes innovation in order to stay competitive,
driving the field forwards. Just in the last years this enables, almost routine identification
of full proteomes, deeper plasma proteomes, and covers the single cell proteome at a
biologically and potentially clinically relevant depth, goals that the community was
working towards for a long time.309443444 However, we have also seen that purely
focusing on achieving the highest numbers possible, through any means necessary,
might be accompanied with higher false identifications, unreproducible results, and, in
translation to clinical proteomics, can lead to the misidentification of biomarkers.
Examples for this can be found in the early days of plasma proteomics, were achieved
depths and identified biomarkers were, in hindsight, associated with cohort batch effects
or lack of sample quality. Consequently, this decreased trust that MS-based plasma
proteomics could aid in the efforts to identify disease biomarkers.369445446 \With a revival
of the plasma proteomics field in the last years, a greater focus was placed on achieving
translatable data, including proposed improvements to cohort design and awareness of
sample quality biases.*4%2447 The latter, revealed that a great number of previously
identified plasma biomarkers can be attributed to sample processing artefacts, such as
erythrocyte and platelet contaminations. The proposed contamination marker panel
provides a useful tool to evaluate cohort quality and increases confidence in potential
protein markers, such as HPR in our bed rest study (Article 2). As a result of these
efforts, first examples of promising MS-based marker panels for diagnosis have set the

stage for the MS-based proteomic approaches in the clinic.1394:448

The translation to clinical application, however, will require further validation, the
establishment of easy-to-use MS-based assays and MS systems that can be maintained
and operated by non-expert users.®¢144° Steps in the right direction are the recent
advances in MS systems focusing on targeted proteomics, such as the Thermo Stellar
MS, which improves on the dated triple-quad technology and allows rapid and highly
sensitive PRM and MS3 targeting.?*234® This enables the targeting of thousands of
peptides in a single run and can adapt target lists that were previously generated using
discovery DIA on high-resolution mass spectrometers, such as the Orbitrap Astral.
Implementation of an auto-calibration source for easier maintenance, additionally makes

this instrument more user-friendly. As such it could provide a solution for establishing
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targeted MS-based assays for a variety of disease marker panels, as highlighted by the
development of a targeted assay for the previously proposed alcohol-related liver

disease biomarkers.!":342

In summary, the recent improvements and innovations in MS technology have greatly
and positively impacted the proteomics field and will go hand-in-hand with advances in
data analysis, such as AlphaDIA and applications of machine learning and artificial
intelligence in proteomics. In my thesis, | highlighted the performance of novel MS
instrumentation, namely the Orbitrap Astral MS, and the importance of tailored
acquisition strategies. The application to clinical proteomics with a focus on spatial
proteomics and biomarker discovery, showcased the great potential and adaptability of
our previously introduced DVP workflow. Altogether, | am sure there are exciting times
and great discoveries ahead and | for one am looking forward to what the future and my

continued journey in MS technology will bring.
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