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Abstract

Real-world applications such as recommender systems, social networks, and protein-protein
interactions often involve relational data. In recent years, there has been increasing in-
terest in machine learning on such data, particularly in the context of knowledge graphs
(KGs). KGs are structured relational data that store multi-relational information as di-
rected graphs, where each node corresponds to an entity and each labeled edge represents
a factual relationship between entities, e.g., (Ozford, located in, the United Kingdom). Tra-
ditional KGs assume time-invariant relationships. However, real-world relationships are
dynamically evolving over time. For example, the chancellor of Germany in 2020 was
Angela Merkel, but in 2022 it became Olaf Scholz. This necessitates the use of temporal
knowledge graphs (TKGs), where temporal facts are introduced by coupling stationary
facts with additional time identifiers, e.g., (Angela Merkel, is chancellor of, Germany,
2020). TKGs are more expressive than KGs as they model the temporal evolution of
knowledge. Consequently, recent research has paid more attention to machine learning on
TKGs. In this thesis, we focus on two machine learning problems: inductive knowledge

representation learning and natural language question answering (QA) on TKGs.

Knowledge representation learning is a successful paradigm for TKG modeling, where
models learn low-dimensional embedding vectors, i.e., representations, to represent enti-
ties and relations based on observed TKG facts. While embedding-based models excel in
downstream tasks, they are limited to transductive learning, meaning they can only learn
representations for entities and relations present during training. In real-world scenarios,
TKGs evolve, and new entities and relations emerge that are unseen during training. Tra-
ditional embedding-based TKG models cannot perform inductive learning, which involves
handling these new entities and relations. This thesis explores how to design TKG embed-
ding models to achieve inductive learning using modern machine learning techniques. We
develop advanced algorithms to significantly enhance the inductive capabilities of knowl-

edge representations.
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Abstract

Natural language question answering (QA) with machines has become a critical research
area due to the growing power of language models (LMs). LMs are promising for natu-
ral language QA as they incorporate extensive background knowledge from vast textual
data. QA over TKGs (TKGQA), a subcategory of natural language QA, aims to answer
knowledge-intensive temporal questions based on TKGs. Major research in TKGQA typi-
cally assumes that answers to questions are accessible from the underlying TKG, allowing
LMs to provide perfect answers by retrieving the correct piece of knowledge. However, this
is not always the case in real-world applications. For instance, a QA system that helps
to predict potential political crises should analyze past relationships between countries to
forecast future trends. This introduces the concept of forecasting TKGQA, where LMs
cannot rely solely on information retrieval, as the ground truth for future events is not
yet available. In this thesis, we comprehensively study the task of forecasting TKGQA.
We build a benchmark dataset and a coupled QA model, comparing previous TKGQA
methods with our model to highlight the challenges and potential solutions for this new
task.

Specifically, this thesis discusses the following contents in details:

First, we introduce the problem of inductive entity representation learning in TKG
modeling. We formally define the TKG few-shot out-of-graph (OOG) link prediction task,
which tests the inductive power of knowledge representation learning models. In this task,
models predict facts involving entities that are unseen during training and then emerge
with a few observed edges. To address this, we develop a TKG inductive learning model
trained with a meta-learning algorithm. Our approach uses a time-aware graph encoder
based on graph neural networks and another message-passing module to extract entity

concepts from knowledge bases.

Next, we improve inductive entity representation learning with confidence-augmented
reinforcement learning (RL). We train an RL-based model within a meta-learning frame-
work for TKG few-shot OOG link prediction. Our approach employs a Transformer with
time-aware positional encoding to capture few-shot information for learning representa-
tions of newly-emerged entities. The model follows a learned policy for graph traversal
within a TKG, guided by a concept regularizer leveraging entity concepts from knowledge
bases. To better address the data scarcity problem in the few-shot setting, we introduce a
module that computes the confidence of each candidate action during graph traversal, inte-
grating it into the policy for action selection. Experimental results demonstrate significant

improvements over previous methods.
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Abstract

We then explore inductive representation learning for TKG relations, defining the zero-
shot TKG forecasting task where models predict links involving previously unseen relations.
We use large language models (LLMs) to enrich textual relation descriptions provided by
temporal knowledge bases and then generate LLM-empowered relation representations.
These text-based relation representations are aligned to the graph representation space to
enhance the inductive capabilities of knowledge representation learning methods. By inte-
grating our approach with various TKG embedding-based models, we observe a significant
enhancement in their inductive power.

Finally, we study natural language question answering over TKGs in the forecasting
setting. We define the task of forecasting TKGQA, constructing a TKG from the Inte-
grated Crisis Early Warning System and generating a large-scale benchmark dataset, i.e.,
Forecast TKGQuestions, with 727k time-related questions requiring forecasting power to
answer. The benchmark includes diverse question types: entity prediction, yes-unknown,
and fact reasoning questions. To perform forecasting TKGQA, we develop a dedicated
model, i.e., FORECASTTKGQA, by combining a pre-trained LM with a TKG representa-
tion learning model trained for forecasting. Our model demonstrates strong performance,
highlighting the importance of building knowledge-aware QA models with forecasting ca-
pabilities.
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Zusammenfassung

Echtweltanwendungen wie Empfehlungssysteme, soziale Netzwerke und Protein-Protein-
Interaktionen beinhalten haufig relationale Daten. In den letzten Jahren hat Maschinelles
Lernen auf solchen Daten, insbesondere im Kontext von Wissensgraphen, zunehmend an
Interesse gewonnen. Wissensgraphen sind strukturierte relationale Daten, die mehrre-
lationale Informationen als gerichtete Graphen speichern, wobei jeder Knoten einer En-
titat entspricht und jede beschriftete Kante eine faktische Beziehung zwischen Entitéaten
darstellt, z. B. (Ozford, befindet sich in, das Vereinigte Konigreich). Traditionelle Wis-
sensgraphen gehen von zeitinvarianten Beziehungen aus. Allerdings entwickeln sich reale
Beziehungen dynamisch im Laufe der Zeit. Zum Beispiel war Angela Merkel im Jahr 2020
Bundeskanzlerin von Deutschland, aber 2022 wurde Olaf Scholz Kanzler. Dies erfordert
die Verwendung von temporalen Wissensgraphen, bei denen zeitliche Fakten eingefiihrt
werden, indem stationdre Fakten mit zusatzlichen Zeitangaben verkniipft werden, z. B.
(Angela Merkel, ist Kanzler(-in) von, Deutschland, 2020). Temporalen Wissensgraphen
sind ausdrucksstéirker als Wissensgraphen, da sie die zeitliche Entwicklung von Wissen
modellieren. Folglich hat die Forschung in letzter Zeit vermehrt maschinelles Lernen auf
temporalen Wissensgraphen untersucht. In dieser Arbeit konzentrieren wir uns auf zwei
maschinelle Lernprobleme: induktives Wissensreprasentationslernen und natiirlichsprach-

liches Frage-Antworten auf temporalen Wissensgraphen.

Das Wissensreprasentationslernen ist ein erfolgreiches Paradigma fiir die Modellierung
von temporalen Wissensgraphen, bei dem Modelle nieder-dimensionale Einbettungsvek-
toren, d. h. Représentationen, lernen, um Entitdten und Relationen basierend auf die
beobachteten Fakten von temporalen Wissensgraphen darzustellen. Wahrend einbettungs-
basierte Modelle in nachgelagerten Aufgaben hervorragend abschneiden, sind sie auf trans-
duktives Lernen beschrankt, was bedeutet, dass sie nur Reprisentationen fiir Entitdten
und Relationen lernen koénnen, die wahrend des Trainings vorhanden sind. In realen

Szenarien entwickeln sich temporale Wissensgraphen weiter, und neue Entitdten und Re-
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Zusammenfassung

lationen tauchen auf, die im Training nicht gesehen wurden. Traditionelle einbettungs-
basierte Modelle von temporalen Wissensgraphen kénnen kein induktives Lernen durch-
fithren, dass es ermdglicht, mit diesen neuen Entitdten und Relationen umzugehen. Diese
Arbeit untersucht, wie man Einbettungsmodelle von temporalen Wissensgraphen so en-
twerfen kann, dass sie mithilfe moderner maschineller Lerntechniken induktives Lernen
ermoglichen. Wir entwickeln fortschrittliche Algorithmen, um die induktiven Fahigkeiten

von Wissensrepréasentationen erheblich zu verbessern.

Natiirlichsprachliches Frage-Antworten mit Maschinen ist aufgrund der wachsenden
Leistungsfihigkeit von Sprachmodellen zu einem wichtigen Forschungsbereich geworden.
Sprachmodelle sind vielversprechend fir das natturlichsprachliche Frage-Antworten, da sie
umfangreiches Hintergrundwissen aus grofien Textdaten einbeziehen. Frage-Antworten
iiber temporale Wissensgraphen, eine Unterkategorie des natiirlichsprachlichen Frage- Antw-
ortens, zielt darauf ab, wissensintensive temporale Fragen auf Basis temporaler Wissens-
graphen zu beantworten. Die meiste Forschung in diesem Bereich geht davon aus, dass
Antworten auf Fragen aus dem zugrunde liegenden temporalen Wissensgraph zugénglich
sind, sodass Sprachmodelle perfekte Antworten liefern kénnen, indem sie das richtige
Stiick Wissen abrufen. Dies ist jedoch in realen Anwendungen nicht immer der Fall.
Ein Frage-Antworten-System, das beispielsweise potenzielle politische Krisen vorhersagen
soll, muss vergangene Beziehungen zwischen Léndern analysieren, um zukiinftige Trends
vorherzusagen. Dies fithrt zum Konzept des Vorhersage-Frage-Antwortens iiber tempo-
rale Wissensgraphen, bei dem Sprachmodelle nicht allein auf die Informationsbeschaffung
angewiesen sein konnen, da die Wahrheit fiir zukiinftige Ereignisse noch nicht verfiig-
bar ist. In dieser Arbeit untersuchen wir umfassend die Aufgabe des Vorhersage-Frage-
Antwortens iiber temporale Wissensgraphen. Wir erstellen einen Benchmark-Datensatz
und ein gekoppeltes Frage-Antworten-Modell, und vergleichen frithere Methoden mit un-
serem Modell, um die Herausforderungen und potenziellen Losungen fiir diese neue Aufgabe

hervorzuheben.
Insbesondere behandelt diese Arbeit die folgenden Inhalte im Detail:

Zunéchst fiihren wir das Problem des induktiven Entitédtsreprasentationslernens in der
Modellierung der temporalen Wissensgraphen ein. Wir definieren formell die Aufgabe
Few-Shot-Out-of-Graph-Link-Pradiktion fiir temporale Wissensgraphen, die die induk-
tive Leistungsfahigkeit von Wissensreprasentationslernmodellen testet. In dieser Aufgabe
pradizieren Modelle Fakten, die Entitaten beinhalten, die wahrend des Trainings nicht

gesehen wurden und dann mit wenigen beobachteten Fakten auftauchen. Um dies zu

xii
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l6sen, entwickeln wir ein Induktivlernmodell, das mit einem Meta-Learnen-Algorithmus
trainiert wird. Unser Ansatz verwendet einen zeitbewussten Graphenkodierer, der auf
Graph-Neuronale Netze basiert, sowie ein weiteres Nachrichtenweiterleitungsmodul, um

Entitatskonzepte aus Wissensbasen zu extrahieren.

Als Néchstes verbessern wir das induktive Entitatsrepriasentationslernen in temporalen
Wissensgraphen mit vertrauensverstarktem Bestarkendem Learnen. Wir trainieren ein
Bestarkendes-Learnen-basiertes Modell im Rahmen eines Meta-Learnen-Ansatzes fiir die
Few-Shot-Out-of-Graph-Link-Pradiktion Aufgabe. Unser Ansatz verwendet einen Trans-
former mit zeitbewusster Positionskodierung, um Few-Shot-Informationen zu erfassen und
Reprasentationen neu aufgetauchter Entitdaten zu lernen. Das Modell folgt einer gelernten
Policy zur Graph-Traversierung innerhalb eines temporalen Wissensgraphs, geleitet von
einem Konzeptregularisierer, der Entitatskonzepte aus Wissensbasen nutzt. Um das Prob-
lem des Datenmangels im Few-Shot-Learnen besser zu adressieren, fithren wir ein Modul
ein, das das Vertrauen jeder moglichen Aktion wéahrend der Graph-Traversierung berech-
net und es in die Policy zur Aktionsauswahl integriert. Experimentelle Ergebnisse zeigen

signifikante Verbesserungen gegeniiber fritheren Methoden.

Wir untersuchen dann das induktive Représentationslernen fiir Relationen in den tem-
poralen Wissensgraphen und definieren die Zero-Shot-Vorhersage-Aufgabe, bei der Mod-
elle Fakten vorhersagen, die zuvor unsichtbare Relationen beinhalten. Wir nutzen grofle
Sprachmodelle, um textbasierte Relationsbeschreibungen, die von temporalen Wissens-
basen bereitgestellt werden, anzureichern und sprachmodellgestiitzte Reprasentationen von
Relationen zu generieren. Diese textbasierten Représentationen werden an den Graph-
Repréasentationsraum ausgerichtet, um die induktiven Fahigkeiten von Wissensreprésenta-
tionslernmethoden zu verbessern. Durch die Integration unseres Ansatzes in verschiedene
Einbettungsmodelle der temporalen Wissensgraphen beobachten wir eine signifikante Steig-

erung ihrer induktiven Leistungsfiahigkeit.

Abschlieend untersuchen wir das nattrlichsprachliche Frage-Antworten tiber tempo-
rale Wissensgraphen fiir Vorhersagen. Wir definieren die Aufgabe des Vorhersage-Frage-
Antwortens tiber temporale Wissensgraphen, konstruieren einen temporalen Wissensgraph
aus dem Integrated Crisis Early Warning System und generieren einen grofl angelegten
Benchmark-Datensatz mit 727 Tausend zeitbezogenen Fragen, die Vorhersagekraft zur
Beantwortung erfordern. Der Benchmark umfasst verschiedene Fragetypen: Entitéatsvorher-
sagen, Ja-Unbekannt-Fragen und Faktenverkniipfungsfragen. Um die neue Aufgabe durchz-

ufithren, entwickeln wir ein spezielles Modell, FORECASTTKGQA, indem wir ein vor-
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trainiertes Sprachmodell mit einem fiir die Vorhersage trainierten Wissensreprasentation-
slernmodell kombinieren. Unser Modell zeigt starke Leistungen und unterstreicht die Be-
deutung des Aufbaus von wissensbewussten Frage-Antworten-Modellen mit Vorhersage-

fahigkeiten.
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Chapter 1

Introduction

1.1 Motivation

Artificial intelligence (Al) is a technology that empowers machines to replicate human in-
telligence, enabling them to perform tasks that require human cognition. This includes
problem-solving, learning from experience, understanding complex data, and making de-
cisions. Within the realm of AI, machine learning (ML) involves allowing machines to
utilize data to automatically identify patterns. These learned patterns can then be used
to make judgments and predictions about the world. In recent years, the volume of data
has been growing at an unprecedented pace. This has resulted in dedicated datasets of
high quality across various domains, making ML an increasingly popular topic. ML has
been implemented in a wide range of real-world applications, such as facial recognition [1],
product recommendation [88] and drug discovery [35].

One of the most common data structures is the graph, which consists of a set of nodes
and a set of edges connecting these nodes. Various real-world scenarios, e.g., social networks
[T1] and protein-protein interactions [142], can be represented with graphs, leading to a
growing interest in developing modern ML techniques for graph data. To better distinguish
the relationships among nodes, increasing attention is being paid to representing data as
relational graphs, where each edge denotes a specific relationship between its connecting
nodes. One of the most popular types of relational graphs is knowledge graph (KG) [49].
KGs store world knowledge with triples. Each triple describes a factual statement in the
form of (s,r,0), e.g., (Ozford, located in, the United Kingdom), where s, o are two entities
represented as graph nodes and r is the relation type of the graph edge between the entities.

In recent decades, a large number of KGs have emerged, e.g., Freebase [12] and DBpedia

1
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[5]. They are widely used in a series of ML-related applications, including recommender
system design [65] and natural language question answering (QA) [129], to advance the
development of Al systems. Despite their popularity, traditional KGs are static and thus
not suitable for representing time-varying knowledge. For example, the KG fact (Angela
Merkel, is Chancellor of, Germany) is only valid from year 2005 to 2021 because after
that Olaf Scholz became the Chancellor of Germany. Static KGs without specifying the
temporal constraints of facts fail to capture such temporal information. To address this
issue, temporal KGs (TKGs) have been introduced, incorporating a time identifier into
each fact. Each TKG fact is represented as a quadruple (s, 7, 0,t), where ¢ is the additional
time identifier. Significant efforts have been made to construct TKGs, such as Wikidata
[152] and ICEWS [14]. Based on these efforts, more recent works have begun to focus on
ML within the scope of TKGs, including developing improved TKG modeling techniques
with ML approaches and designing advanced algorithms that benefit from the abundant
information contained in TKGs for various applications.

This thesis focuses on two underexplored TKG-related ML problems: inductive knowl-

edge representation learning and natural language question answering (QA) on TKGs.

Inductive Knowledge Representation Learning on TKGs. Knowledge represen-
tation learning is currently the most successful ML paradigm for TKG modeling, where
models learn low-dimensional embedding vectors, i.e., representations, to represent entities
and relations based on observed TKG facts. Traditional embedding-based TKG models
require large amounts of training data to learn optimal representations for entities and
relations. As a result, these models struggle to produce meaningful representations for
the entities and relations not seen during training, posing a huge challenge for inductive
learning, which involves handling these newly-emerged entities and relations. Furthermore,
real-world TKGs are always evolving, with new entities and relations constantly emerging
[134]. This makes inductive learning crucial for effectively representing TKGs. In this
thesis, we explore how to equip TKG embedding models with inductive capabilities by

learning inductive knowledge representations using modern ML techniques.

Natural Language QA on TKGs. Natural language QA with machines has emerged
as a vital research area due to the increasing capabilities of language models (LMs). QA
over TKGs (TKGQA), a subcategory of natural language QA, asks machines to answer

knowledge-intensive temporal questions based on TKGs. Previous research in TKGQA
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often presumes that answers to questions can be directly retrieved from the underlying
TKG, allowing TKGQA models to easily answer the questions by accessing the correct
information from the graph [126]. However, in reality, humans frequently seek plans for
the future, leading to situations where models are expected to answer questions about the
future. This necessitates QA models to possess forecasting abilities. While several works
have focused on forecasting QA in open-domain QAEI [83], it is equally important to ex-
plore forecasting QA over TKGs (forecasting TKGQA). Forecasting TKGQA presents new
challenges. TKGQA systems cannot rely solely on information retrieval since the ground
truth for future events is not yet available. Therefore, it is crucial to equip the systems
with specialized modules that enable forecasting. In this thesis, we comprehensively study
the task of forecasting TKGQA, highlighting its challenges and potential solutions. More-
over, we discuss how to design a QA model that brings forecasting capabilities within the
context of TKGQA.

1.2 Overview and Summary of Contributions

We give an overview of this thesis and summarize the main contributions. The remainder

of this thesis is composed of six chapters.:

o In Chapter [2] we introduce the key concepts central to this thesis and provide a
comprehensive overview of the existing literature. We begin by discussing the funda-
mentals of graphs (Section[2.1]), followed by an introduction of meta-learning (Section
and LMs (Section, which are critical in inductive representation learning and
natural language QA. Next, we explore KGs (Section and TKGs (Section [2.5)),
focusing on representation learning, inductive learning, and natural language QA for
both of them. We highlight the differences between KGs and TKGs, particularly in

how temporal dynamics are incorporated into the modeling process.

« In Chapter [3| we introduce the problem of inductive entity representation learning
on TKGs. We propose a new ML task TKG few-shot out-of-graph (OOG) link pre-
diction to test the inductive power of knowledge representation learning models. In
this task, models are asked to predict facts involving entities that are unseen during

training and then emerge with a few observed edges. We show with experiments that

IDifferent from TKGQA that requires models to find the answers from the coupled TKGs, in open-domain

QA, answers to the questions are inferred from additional text contexts.
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traditional TKG representation learning models and inductive representation learn-
ing models targeted non-temporal KGs cannot effectively deal with unseen TKG
entities. To address this issue, we develop a TKG inductive learning model named
FILT that is trained with a meta-learning algorithm. FILT uses a time-aware graph
encoder based on graph neural networks and another message-passing module to ex-
tract entity concepts from knowledge bases. Experimental results show that FILT
substantially outperforms previous KG/TKG representation learning methods in in-

ductive learning for TKG entities, marking a notable advancement in this area.

« In Chapter [l we improve inductive entity representation learning with confidence-
augmented reinforcement learning (RL). We train an RL-based model, i.e., FIT-
CARL, within a meta-learning framework for TKG few-shot OOG link prediction.
Our approach employs a Transformer [149] with a customized time-aware positional
encoding to capture few-shot information for learning representations of few-shot en-
tities. The model follows a learned policy for graph traversal within a TKG. The
traversal is further guided by a parameter-free concept regularizer leveraging entity
concepts from knowledge bases, following the idea of modeling entities’ concept-aware
information proposed in FILT. To better address the data scarcity problem in the
few-shot setting, we introduce a module that computes the confidence of each candi-
date action during graph traversal, integrating it into the policy for action selection.
Experimental results demonstrate that FITCARL achieves significant improvements

over previous methods in inductive representation learning on TKG entities, includ-
ing FILT.

« In Chapter [5] we explore inductive representation learning for TKG relations. We
propose a new ML task zero-shot TKG forecasting where models are asked to predict
the facts involving previously unseen relations. To solve this task, we propose a model
zrLLM which is a plug-and-play model that can be implemented together with tra-
ditional TKG representation learning methods to enhance their inductive power over
unseen relations. We use large LMs (LLMs) to enrich textual relation descriptions
provided by temporal knowledge bases and then generate LLM-empowered relation
representations. These text-based relation representations are aligned to the graph
representation space and jointly trained with TKG models. To promote alignment
between representation spaces, we propose a relation history learner that captures

the temporal dynamics of historical relation patterns between each pair of entities.
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Comprehensive experiments show that zrLLM significantly enhances the inductive
capabilities of traditional TKG representation learning methods by leveraging tex-

tual information and LMs.

In Chapter [0, we study natural language QA over TKGs in the forecasting set-
ting. We define a new ML task forecasting TKGQA, constructing a TKG from the
Integrated Crisis Early Warning System [14] knowledge base and generating a large-
scale benchmark dataset, i.e., FORECASTTKGQUESTIONS, with 727k time-related
questions based on the constructed TKG. Each question in Forecast TKGQuestions
requires forecasting power to answer, posing a great challenge to previous TKGQA
approcahes. The benchmark includes diverse question types, including entity predic-
tion, yes-unknown, and fact reasoning questions, derived from the traditional tasks
of TKG link prediction, as well as yes-no and multiple-choice questions in reading
comprehension QA. To perform forecasting TKGQA, we develop a dedicated model,
i.e., FORECASTTKGQA, by combining a pre-trained LM with a TKG representation
learning model trained for forecasting. Our model demonstrates strong performance,
highlighting the importance of building knowledge-aware QA models with forecasting

capabilities.

In Chapter [7], we give a conclusion of the thesis. We also discuss the potential
future directions that can be built upon our findings, offering valuable insights for

the research community.






Chapter 2
Preliminaries and Related Work

In this chapter, we outline the fundamental concepts relevant to this thesis and provide an

overview of existing works to better contextualize our contributions.

2.1 Graphs

2.1.1 Fundamental of Graphs

Definition 1 (Graph). Let V and £ denote a set of vertices (i.e., nodes) and edges,
respectively. A graph is defined as G = (V,E). e;; € € describes an edge pointing from the
source node v; € V to the destination node v; € V, where i,j € {1,2,...,|V|}.

If a graph G = (V, £) is undirected, every edge e; ; € € can be implied by e;,;. Otherwise,
G is called a directed graph. In a graph, a node normally represents an item or a concept,
and an edge describes the relationship or connection between a pair of nodes. A node
v; € V can have node attributes, represented in the form of a feature vector x,, € R .
Node attributes provide detailed information of a node, e.g., the class label of the node
or various numerical numbers describing node characteristics. Similarly, an edge e; ; can
also be associated with edge attributes in the form of a feature vector x., ; € R . Edge
attributes specify the details of an edge, e.g., edge type or edge weight indicating the
importance of the edge. To ensure clarity, we will use the term node (nodes) instead of

vertex (vertices) throughout this thesis.

Definition 2 (Adjacency Matrix). For a graph G = (V, &), its adjacency matric A €
RV s a matriz with A, j =1 ife;; € € and A;; =0 ife;; & E. Ayj denotes the entry

in the i row and ™ column.



2.1. Graphs

If A is symmetric, then its associated graph is undirected. Otherwise, A implies a

directed graph.

Definition 3 (Neighborhood). For a node v; € V in the graph G = (V, £), its neighborhood
N, is defined as all the nodes existing in v;’s associated incoming edges: Ny, = {v;le;; €

£},

In our definition, we only consider incoming edges (the edges pointing to the node of
interest) as the neighbors following [162]. The ideas of incoming and outgoing edges (the
edges pointing out from the node of interest) only exist for directed graphs. For undirected
graphs, as long as two nodes are connected with an edge, they serve as a neighbor of each
other.

2.1.2 Graph Neural Networks

Unlike the data structures with an underlying Fuclidean structure, such as images, graphs
are represented in a non-Euclidean manner and therefore require specialized tools for ML
[15]. To address this, a new family of neural networks, i.e., graph neural networks (GNNs),
has emerged. GNNs learn low-dimensional embedding vectors, i.e., representations, for
graph nodes, depending on the graph structure, node features and edge features. We use
H ¢ RV*? to denote the representations of all nodes in a graph G = (V, £). Each row of
H refers to the representation of a node. For example, the representation h,, of v; € V
corresponds to the i'" row of H. d is the dimension of the node representations.

A GNN consists of a number of L (L > 1) layers. In layer [ (0 <1< L—1;1 € N), it
updates the node representations H' € RMXdl by aggregating the information provided by
each node’s neighborhood. After L layers, GNN'’s final output HZ (output of the (L —1)%
layer) corresponds to the learned node representations. If a graph has node attributes, the
node representations can be initialized with these attributes before input into a GNN.

We give an introduction of some classic GNN models. For simplicity, we omit the edge

feature vectors:

« Graph Convolutional Network (GCN) [89] stems from graph signal processing and
generalizes from the ChebNet [37] by using its first-order approximation. Each GCN

IThe superscript of H' indicates that it is the input of the I'" layer of GNN. d' denotes the dimension

lth

of node representations in the layer of GNN. We use such style of notation following previous works

about GNNs such as [89].
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layer updates node representations as
H'*' = (DAD H'W'). (2.1)

A = A +1, where I is an identity matrix in the same size as the adjacency matrix
A € RVIXVI. Wi e R¥*d™ ig 4 trainable weight matrix of the ['® GCN layer. Each
1

element of D € RV*IV is computed as D;; = > A, so that D-3AD" 3 represents

the normalized adjacency matrix. o(-) denotes an activation function.

o Message Passing Neural Network (MPNN) [61] employs the idea of neural message
passing to update node representations, where information can be passed from one
node to another along edges directly. It can be viewed as generalizing the convolution
operation in convolutional neural networks (CNNs) [96] for images to graph learning

scenarios. Each MPNN layer is defined as

hi:,“l = Update! (hii, mlﬂ) . where m‘ = Z Msg! (hii, hfjj) ) (2.2)

Vi U4
Vj ENui

Update'(-) and Msg!(-) are the update function and the message function of the
I'" MPNN layer, respectively. Equation is a process of aggregation, where a
node is updated by summing over the information provided by the adjacent nodes
in its neighborhood. [61] further finds that MPNN subsumes various GNN models,
including GCN [89]. In recent years, MPNN has become a significant framework of

GNNs and inspired a large number of follow-up works.

« Graph Attention Network (GAT) [150] introduces an attention mechanism to distin-
guish the importance of different neighboring nodes during message passing. Each
GAT layer is defined as

hi}jl =g ( Z OCZ,]Whi)J> 5

vj €N,
exp (LeakyReLU (aT (thjz HWhij))) (2.3)

Y ueeN,, EXP (LeakyReLU (aT (Whﬁ, ||Wh£,k>>) .

where «; ; =

«; ; represents the importance of node v; to v; during information aggregation. W €

I+1 . . . +1 . .
R¥™ x4 is a weight matrix. a € R2*" is a parameter vector used for computing

attention. o(-) denotes the activation function.
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For discussions on a broader range of GNN types, please refer to the surveys [162]
85]. The representations learned by GNNs can be applied to various downstream ML
tasks. More detailed discussions on leveraging GNNs, with an emphasis on KG and TKG
representation learning, are provided in Section [2.4.3] and Section [2.5.3

2.2 Meta-Learning

Few-shot learning (FSL) is a type of ML problem in which models are required to generalize
effectively to new data for each class, provided with only a small number of labeled class-
specific data examples. Meta-learning approaches aim to quickly grasp new concepts using
only a few related data examples by generalizing from previously encountered learning
tasks [92] and therefore are suitable for FSL. A classic meta-learning framework is episodic
training [I51], where an ML model is trained over a series of episodes, each serving as a
mini-training process on a specific task 7. In this framework, the training and test data
for each task are referred to as the support set S and the query set @), respectively. The
model is trained on a set of tasks to "learn how to learn" from the support set, with the
objective of minimizing a loss over the query set. Assume we have a set of N training tasks
T = {T;}Y,, where T; = {S;, Q;}, the training objective of a model in episodic training is

written as

oy X bl

lo(+) is a task-specific loss function decided by the downstream task and 6 denotes the

. (2.4)

0 = argmin Ep, op
0

model parameters. When support sets are limited to containing only a few data examples,
episodic training functions as a form of few-shot training. As a result, episodic training
is a powerful meta-learning tool for addressing FSL problems. Episodic training has been
employed in various studies on inductive learning for KGs and TKGs. We will discuss in
details in Section R.4.6] and 2.5.61

2.3 Language Models

A language model (LM) is a probabilistic model that estimates the likelihood of word
sequences in natural language. Early LMs originate from statistical approaches, such as
the N-gram model [131], which predicts the N*! word based on the preceding N — 1

words. This concept has influenced the design of modern LMs, which are built to generate
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the next tokenP| by conditioning on the preceding tokens. Later, representation learning
is introduced into language modeling, where each word is represented by a learned low-
dimensional embedding vector that captures its semantic meaning. For example, Word2Vec
[110] proposes two strategies for learning word embeddings: the Continuous Bag-of-Words
(CBOW) model, which predicts the current word based on its surrounding context, and
the Skip-gram model, which predicts surrounding words given the current word. The
word embeddings learned through these strategies enable words to be contextually aware,
making words with similar contexts seen in the training set close to each other in the
representation space. After that, encoder-decoder structured LMs start to gain attention.
An LM encoder takes the input text and outputs an encoded representation providing
comprehensive understanding of the input, while the decoder takes this representation as
input and generates the output token sequence (text is generated by combining tokens)
depending on the computed token probabilities. One famous LM with encoder-decoder
structure is Seq2Seq [141]. Both of its encoder and decoder are based on a separate long
short-term memory (LSTM) network [73], which is an effective variant of recurrent neural
network (RNN) [124] that is able to capture long-range information in the sequences. One
advantage of using RNNs to do language modeling is that RNNs can deal with sequences
with undefined lengths. An RNN recurrently incorporates the information of each element
in a sequence into its hidden state in the form of a vector representation, which can be used
to encode sentences. During decoding, RNN recurrently outputs a vector at each step that
can be transformed into a probability distribution over token vocabulary, which enables
Seq2Seq to do text generation. Building on the success of encoder-decoder architecture,
the Transformer model [149] is proposed. Transformers outperform RNNs in language
modeling and have become the foundational building blocks of modern LMs. We discuss

in details in the next section.

2.3.1 Transformers

A Transformer [149] follows the encoder-decoder architecture. The encoder contains several
identical layers, each of which is further comprised of two sub-layers: a self-attention layer
and a fully connected feed-forward neural network. Self-attention layer is the core of
Transformer. It can be described as follows. Consider a sequence of tokens (wy, ..., wy),

where each element w; in this sequence is represented by a token representation (i.e., token

2In the context of LMs, token is a unit of text that the model processes individually. A token can be a

word (e.g., dog) or subword (e.g., a character or a combination of several characters).
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embedding)) h,, € R? (d is the dimension of token embeddings). The self-attention layer

updates w;’s representation by considering all tokens in the input sequence

N
hw,- = Z ai,ijhwj;
j=1

-
exp ((thwi%wkhwj» (2.5)

(Wghu)T (Wihy) )
Zl]il eXp< NG i )

where a; ; =

«; ; is called the attention of w; when updating w;’s representation. W, € Ré%xd W, €
R%**4 and W, € R%*? are three matrices computing so-called queries, keys, and values,
respectively. In summary, the self-attention mechanism treats the token of interest as a
query, computes attention scores based on the keys corresponding to surrounding tokens,
and then produces a weighted sum according to these attention scores and the values
associated with these surrounding tokens. In practice, self-attention layers are implemented
in a multi-head manner. Assume there are m heads, and then in each head, the output
of the weighted sum will be a representation with a dimension of d/m. The final updated
representation will be a linear transformation of the concatenation of all m heads’ outputs.
Each head has its own set of parameters, enabling the model to capture diverse information.
[149] shows that multi-head attention is effective and thus it is widely adopted in later works

based on Transformers.

The decoder also contains several identical layers. Each decoding layer consists of
three sub-layers: a self-attention layer performing attention over the previously generated
outputEL another self-attention layer performing attention over the output of the encoder
stack and a fully connected feed-forward neural network. During decoding, attention is
computed over the previously generated tokens and the input sequence, rooting from the

idea of next token prediction [33].

3Token embedding in Transformer is a combination of original token representation representing tokens’
characteristics and a positional representation denoting the positions of tokens in input sequences. In
[149], the positional representations are learning-free and initialized with sinusoidal functions of different

frequencies.
4Note that Transformer is an autoregressive [63] model, meaning that it generates output token by token

and each generated token is based on the input as well as the previously generated token.
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2.3.2 Transformer-Based Language Models

Most successful modern LMs employ Transformers as basic building blocks. Due to the
increasing availability of large-scale data, a growing number of Transformer-based LMs are
first pre-trained on a large corpus with a series of pre-training tasks such as next token
prediction [33] and masked language modeling (MLM) [38]. Then, a fine-tuning process
is used to adjust model parameters to adapt to specific downstream tasks, requiring only
relatively small tuning datasets. Pre-training enables LMs to acquire strong generalization
capabilities across various tasks, as well as semantic and syntactic knowledge from the
extensive pre-training corpus. We discuss several representative Transformer-based LMs

here:

o BERT [38] pre-trains a bidirectional Transformer encoder on two pre-training tasks,
i.e., MLM and next sentence prediction (NSP). MLM masks several randomly sam-
pled tokens in a sequence and asks the model to generate them based on the unmasked
tokens which provide textual contexts. Since the unmasked tokens can be before or
after each to-be-predicted token, BERT achieves bidirectional encoding of token rep-
resentations. NSP requires models to predict whether the second sentence in the
input follows the first one. This task is claimed to be beneficial in several down-
stream tasks such as question answering. Additionally, to make the model aware of
the position of tokens, BERT introduces learnable position embeddings that is added
on the original token embeddings. It also prepends a [CLS] token at the beginning
of every input sequence which is used to aggregate the information from the entire

sequence. This allows BERT to do sentence-level downstream tasks more easily.

« RoBERTa [104] is an optimized version of BERT. It first employs a byte-level Byte-
Pair Encoding (BPE) [120] in its tokenization process, which helps to represent any
input text with a moderate size of vocabulary. It then employs dynamic masking
when the model is pre-trained on the MLM task. BERT uses static masking for each
input sequence, meaning that in different training epochs, the same input sequence is
masked in the same way. Dynamic masking masks different tokens when the model
is trained on the same input sequence in different epochs, leading to a more robust
training process and enabling maximal utilization of data. In addition, RoBERTa
collects a much larger corpus for pre-training. Experimental results show that larger
size of pre-training data helps to improve model’s capabilities. Finally, RoBERTa

verifies that the NSP pre-training task is not necessarily beneficial for the downstream
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tasks. Therefore, the loss regarding this task is discarded.

o T5 [121] is a text-to-text LM. It unifies a wide range of natural language processing
(NLP) tasks as a text-to-text framework. T5 takes the input text that describes
the task along with task-specific input data, and then generates a text response
directly specifying the answer. To further improve model’s ability of natural language
understanding, T5 is pre-trained on a huge corpus, i.e., Colossal Clean Crawled
Corpus (C4), consisting of hundreds of gigabytes of clean English text scraped from
the web. It also proposes a new pre-training task called span-corruption. In span-
corruption, spans of text are masked and the model is trained to predict the missing
text. [12I] shows that span-corruption is particularly effective in improving model
performance on various NLP tasks. Besides these contributions, T5 tries to scale up
the model size, introducing more training parameters. It demonstrates that larger
LMs pre-trained on larger corpora can lead to better performance on downstream
tasks due to a stronger capability in transfer learning. Note that T5 keeps an encoder-
decoder architecture. This allows users to extract the output of its encoder for

downstream tasks just as how BERT and RoBERTa are implemented.

o GPT-3 [16] scales up to 175 billion parameters and is pre-trained on a vast and diverse
570GB corpora . It shows that a large pre-trained LM can be viewed as a few-shot
learner. Given a small number of examples and a promptﬂ related to a downstream
task as input, GPT-3 can reason over the provided examples and generate answers
of high quality. This process is named as in-context learning, which has become a
popular pipeline in modern NLP. GPT-3 is a decoder-only model, meaning that it
does not generate intermediate representations of the input text, unlike the encoders
from previous works, e.g., BERT and T5. This allows GPT-3 to focus on generating

text autoregressively.

o LLaMA [144] is designed to be a decoder-only LM that is significantly smallexﬁ than
large models like GPT-3. It shows that by optimizing the training method and
model structure, LMs with fewer parameters can also achieve competitive perfor-

mance. One advantage of smaller language models is that they are much easier to

5A prompt in this context can be understood as an input aiming to elicit desired responses from LMs.
SHowever, LLaMA is still large compared with the previous generation of LMs, e.g., BERT. LLaMA has

four variants, i.e., LLaMA-7B, LLaMA-13B, LLaMA-33B and LLaMA-65B, that contain 7 billion, 13

billion, 33 billion and 65 billion trainable parameters, respectively.
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implement for inference. Compared with previous excessively large LMs, LLaMA is
less demanding on hardware, making it more accessible for research and practical
applications. LLaMA demonstrates that pre-normalization before each Transformer
sub-layer, switching the activation function from ReLU to SwiGLU [132] and adopt-
ing rotary positional embeddings [135] can help improve model performance. It also
demonstrates that pre-training LMs on larger datasets enables smaller models to
continually improve, allowing them to achieve performance comparable to very large

models.

« Mixtral 8x7B [82], a recent decoder-only LM, employs a mixture-of-experts (MoE)
structure, where each expert is a separate feed-forward neural network with 7 billion
parameters. During inference, 2 out of 8 experts are activated to generate response
based on a trained router that decides which experts should be used. This enables the
model to achieve high computational efficiency during inference while still preserving

strong capabilities of language modeling.

As the development of LM progresses, we witness a trend towards increasing model sizes
and more diverse, larger-scale training data, leading to the emergence of large language
models (LLMs). LLMs have gained great attention due to their potential as foundational
tools in building intelligent AI agents and assisting humans in various real-world appli-
cations. This motivation has driven a surge in the number of new LLMs (or multimodal
LLM{D built upon Transformer, such as Gemini [3]. Meanwhile, efforts have been made
to develop more advanced versions of existing models, e.g., the recent GPT-4 [117], Claude
Zﬁ and LLaMA 3 [48]. These advancements highlight the ongoing innovation and rapid
growth in the field of language modeling.

In this thesis, we leverage Transformer-based LMs to solve ML tasks related to TKGs.
In Chapter [6] we discuss how we use them together with underlying temporal knowledge
bases to achieve natural language question answering (See Section for preliminaries
and task definition). And in Chapter , we show how we use LLMs to promote inductive
learning on TKGs (See Section for preliminaries and task definition).

"Recent advances lead to the development of multimodal LLMs, which integrate text with other modalities
such as images, videos, and speech. Despite their expanded capabilities, we still classify them as LLMs

since they originate from language modeling.
8https://www.anthropic.com/news/claude-3-family
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Film Director Film Producer
occupation occupation
father spouse .
LeeSheng «— Anglee — Janelin

award award
received received

Academy Award Golden Horse Award

for Best Director for Best Director

Figure 2.1: An example KG. All the facts are taken from Wikidata [152]. Each grey
rectangle denotes a node (here is an entity) and the content beside each directed arrow

serves as an edge label, i.e., relation type.

2.4 Knowledge Graphs

2.4.1 Fundamental of Knowledge Graphs

Definition 4 (Knowledge Graph). Let £ and R denote a set of entities and relations,
respectively. A knowledge graph G = {(s,r,0)} C E x R x £ is a directed graph consisting
of a set of facts. Fach fact is represented with a triple (s,r,0), denoting a directed edge
pointing from the subject entity s € € to the object entity o € £. r € R is the edge type,

i.e., the relation type, describing the relationship between s and o.

Figure shows an example knowledge graph (KG). Each node in a KG corresponds to
an entity (e.g., Ang Lee). For each directed edge (s,r,0), s and o can also be viewed as the
source node and the destination node, respectively. To accurately capture the relationship
between two entities that cannot be described by a single relation type, KGs store multiple
edges with different relation types between entities. Thus, KGs are considered as multi-
relational graphs [128, 148]. Note that throughout Section , we adhere to the notation
commonly used in KG research, where £ denotes the set of entities, rather than the set of

edges defined in prior works on general graphs (Section [2.1).

Definition 5 (Neighborhood in Knowledge Graphs). For an entity e; € £ in the graph
G CE X R x &, its neighborhood N, is defined as all (subject entity, relation type) pairs
extracted from the facts where e; serves as the object entity: N, = {(e;,r;)|(ej,7j,€;) €
G.ejei€&,rj € R}

The idea of entity neighborhood in KGs is similar to node neighborhood in general

graphs. A key difference is that KGs specify edge labels, i.e., relation types. Therefore, we
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define each neighbor of a KG entity e; as a pair consisting of a neighboring entity and its

corresponding relation type associated with e;.

2.4.2 Relational Learning on Knowledge Graphs

Relational learning on KGs is the process of learning patterns that encapsulate relational
knowledge within KGs. KG relational learning methods can be categorized into symbolic
and subsymbolic approaches. Symbolic approaches employ logic-based frameworks, such as
description logic [6] and fuzzy logic [I71], to capture the association among facts and extract
logical rules for KG modeling. On the other hand, subsymbolic methods, also known as
knowledge representation learning (KRL) approaches, learn low-dimensional embedding
vectors, i.e., representations, of KG entities and relations. Embedding-based KRL has
gained significant popularity in recent years and has become the dominant paradigm in
KG relational learning. In this thesis, we focus on these embedding-based representation

learning approaches and discuss the related ML problems corresponding to them.

2.4.3 Knowledge Representation Learning on Knowledge Graphs

In this section, we provide an overview of KRL methods on KGs. KRL refers to learning
low-dimensional embedding vectors for KG entities and relations. Embeddings are learn-
able continuous vector representations. Within the context of ML and deep learning, they
can be trained from scratch via backpropagation. In KRL, Each KG entity or relation
is mapped to a unique embedding vector representation which is learnable through the

training data.

Inverse Relations. It is worth noting that a common practice in KRL is to include
inverse relations for each KG relation type. This involves expanding the original KGs by
adding the facts containing inverse relations and then performing representation learning
on these expanded graphs. For each fact (s,r,0), the corresponding inverse fact triple is
represented as (0,771, s), where 7~! denotes the inverse relation of 7. For example, for the
fact (Ozxford, located in, the United Kingdom), its inverse fact triple is (the United King-
dom, located in~*, Ozford), meaning that the United Kingdom has a region named Ozford.
Inverse relations are included into the KG relation set. As a result, the size of the KG as
well as the size of its relation set are doubled. Incorporating inverse relations enhances

graph connectivity during representation learning and leads to better model performance

17



2.4. Knowledge Graphs

as well as theoretically higher expressiveness as shown in recent works [87, [76]

KG Score Functions

A majority of embedding-based KRL methods propose KG score functions to compute the

plausibility score of each fact triple (s,r,0), indicating the likelihood of its veracity. A

KG score function ¢(+) takes the fact (s,7,0) as input, finds the corresponding embedding

vector representations hg, h,, h, of s, r, 0o, and then outputs a real-valued number as

the computed score. In the early stage, lots of works take the Euclidean space as the

representation space of knowledge representations. For example:

o RESCAL [I15] models a fact triple as a three-way tensor. It specifies a unique

parameter matrixﬂ H, for each relation r and computes the score for the fact (s,r,0)
as
#((s,r,0)) =h,"Hh,, h, h,cRYH, € R> (2.6)

d is the dimension of entity representations. H, is a full-rank matrix.

TransE [13] takes relations as translations from the subject entities to the object

entities in the Euclidean space, i.e.,
o((s,r,0)) = —||hy +h, —h,|, h, h, h, € R%. (2.7)

d is the dimension of entity and relation representations. | - || denotes the norm
(either L1 norm or L2 norm in TransE). After translation, the smaller the norm is,

the greater the plausibility of the fact (s,r,0).

DistMult [169] follows RESCAL, using a similar form of tensor factorization-based
function to compute scores. It restricts each relation-specific parameter matrix H,
to be diagonal, making it possible to use a vector h, to represent each relation. The

complete form of DistMult is
#((s,r,0)) = (hs,h,, h,), hy h, h, cR% (2.8)

d is the dimension of entity and relation representations. (-,-,-) is a function that
first computes the element-wise product of three input vectors, and then does a sum

over all elements.

9We take the parameter matrix as a distinct form of embedding vector.
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o TuckER [9] is another tensor factorization-based KG score function inspired by
Tucker decomposition [146]. It specifies a learnable core tensor W and performs

tensor product in three modes, i.e.,
o((s,7,0)) =W x1 hy xgh, xsh,, hy h, h, € R W e R4, (2.9)

d is the dimension of entity and relation representations. xi, X5 and X3 denote

tensor product in three different modes.

To increase models’ expressiveness, there also exist a number of methods learning knowl-

edge representations in the complex space. For example:

« ComplEx [145] extends DistMult to the complex space
6((s,7,0)) = Re ((hs,hy, b)), hy, by h, € CY (2.10)

d is the dimension of entity and relation representations. Each element in hy, h, and
h, is a complex number and Re(+) denotes a function taking the real part of its input.

h, is the complex conjugate of the object entity representation h,.

« RotatE [140] is a rotational model taking relation as a rotation from the subject

entity to the object entity in the complex space
#((s,r,0)) = —||hyoh, —h,||, h, h, h, e C% (2.11)

d is the dimension of entity and relation representations. o is the element-wise prod-
uct. Each element in h, has a modulus of 1, leading to a counterclockwise rotation
around the origin of the complex plane only affecting the phases of entity represen-

tations.

o QuatE [I76] extends RotatE’s complex representations to hypercomplex ones con-
sisting of quaternions [67]. A quaternion contains one real component and three
imaginary components, therefore the quaternion space can be viewed as a hypercom-

plex space. The complete form of QuatE is

h,
o((s,r,0)) =h, ® mho, h,,h,, h, € H°. (2.12)

d is the dimension of entity and relation representations. Each element in hy, h, and
h, is a quaternion and ® is the Hamilton product operation. || - || denotes the norm

of its input.
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In addition to the methods mentioned above, more recent works leverage the hyperbolic

space for knowledge representation learning due to its advantage in representing hierarchi-

cal structures. For example:

20

o« MuRP [§] embeds multi-relational graph data in the Poincaré ball model of the

hyperbolic space. A Poincaré ball of radius 1/4/c is a d-dimensional manifold B? =
{x € R? : c||z]|* < 1} equipped with the Riemannian metric ¢%. ¢% = (2/(1 —
c|lz||?))?g%, where g is the Euclidean metric [T14]. || - || is the Euclidean norm. The

complete form of MuRP is defined as
¢((s,7,0)) = —distga (expg (H, logg(hs)) , h, @, h,)? + b, + b,. (2.13)

h,, h,, h, € B? are hyperbolic embeddings. H, € R¥? is a diagonal parameter matrix
specific to the relation r. logg(-) and exp§(-) are two operations projecting the subject
entity representation to the tangent space of the Poincaré ball and performing back
projection, respectively. @. denotes Mobius addition [147] and bs, b, are entity-
related biases. distga(z,y) = (2/v/c)tanh™"(\/c|| — z @, y||) represents the distance
between = € B? and y € BY.

ATTH [20] introduces relation-specific hyperbolic rotation and reflection into the
Poincaré ball model. Different from MuRP, ATTH also learns relation-specific hy-
perbolic curvatures ¢, for different relations. The complete form of ATTH is defined

as
O((s.7,0)) = —distya (Att (B2, 0% a,) @, by h,)" + b, + by,
where h{®" = W}*'h,, h{*' = W*'h;
Att (thOt, hief, ar) = expy’ (ozh?oc log” (hSROt> + pret log (h?ef» ,
(ahgm, ahgef) = Softmax (aT log& (h§°t) ,a’ logé (hSRef)) .

(2.14)

hy, b, h, € B? are hyperbolic embeddings. Wi € R and Wi € R*? are the
block-diagonal rotation and reflection matrices specific to the relation r, respectively.
a € R? is an attention vector. log{’ (-) and exp{ (+) are two operations projecting the
subject entity representation to the tangent space of the relation-specific Poincaré ball
and performing back projection, respectively. &, denotes Mobius addition and by, b,
are entity-related biases. distgs (z,y) = (2/ Ve )tanh™ (/|| — z @, y||) represents
the distance between z € B! and y € B? .
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We have discussed a number of classic KG score functions in this section. For a more
comprehensive investigation of other KG score functions, please refer to the following
surveys [78, 19]. KG score functions often overlook the structural information inherent in
the graph structure of KGs, e.g., node neighborhoods. To address this limitation, there has
been a growing trend in designing graph encoders based on GNNs to learn contextualized

knowledge representations.

Multi-Relational Graph Neural Networks

To accommodate to KGs, a number of works design GNN models for multi-relational
graphs. Note that in KGs, each node corresponds to an entity, so learning KG entity
representations is equivalent to learning node representations within the context of GNNs.

We give an introduction of some classic multi-relational GNN models. GNN models
update the representations of all entities at once in each layer. We show how they update

the entity representation h,, for the entity e; € &:

 Relational Graph Convolutional Network (R-GCN) [128] extends GCN [89] to multi-
relational data and learns entity representations based on entities’ neighborhood. An

R-GCN layer is defined as

hé?:a(z >

Tk ejENeiﬂ‘k c(eZJTk)

1

W, h + Wgh;) : (2.15)

Neore = {ejl(ej, 10, ¢:) € Goejoe; € E,1, € R} is the relation-specific neighborhood
of the entity e; corresponding to the relation r,. Note that it is slightly different from
Definition [f|since in R-GCN the whole neighborhood of ¢; is split into several relation-
specific neighborhoods. ank e R*""xd" ig g trainable weight matrix related to 7, in
the ™" R-GON layer. Wl € R*"'*? is another trainable weight matrix in the {*"
R-GCN layer deciding how much information e; preserves from itself during update.
c(e;, ) is a normalization constant that can either be learned or set manually. o(+)

denotes the activation function.

 Structure-Aware Convolutional Network (SACN) [130] introduces a weighted graph
convolutional network (WGCN) that assigns a simple relation-specific parameter to

each relation type

hitl = o (Z Y a,Whi + wgh;) : (2.16)

Tk ej ENSika
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N, follows the same definition as in R-GCN [128]. W', W}, e R¥"™"* are two
trainable weight matrices in the (' layer. ozf.k € R is the parameter specific to the

relation 7, in the [*" layer. o(-) denotes the activation function.

« Composition-Based Multi-relational Graph Convolutional Network (COMPGCN) [148§]
jointly learns representations of KG entities and relations with composition functions.
Each CoMPGCN layer is defined as

b :a( > Wi (h;,haj)),hif:widhg,
(

ejrj)ENe;
WO S RdHlel, re 7?forig (217)
where Wf\(rj) = (W, e R e Ry
Wy e R — gelfloop.

¥(+,-) is a composition function that can be in various forms such as multiplica-
tion or subtraction. Wl)\(rj) is a direction-specific weight matrix in the I*" layer,

depending on whether 7, is an original relation (Rog), an inverse relation (Riny), Or
!

rel

denoting self-loop (connecting the node itself). Wi is a weight matrix for updating
relation representations in the I'" COMPGCN layer. o(-) is the activation function.
CoMPGCN subsumes R-GCN [128] and WGCN [130] and has become a popular

architecture in KRL.

In practice, multi-relational GNNs are coupled with KG score functions, in order to
compute the plausibility scores of KG fact triples. To be specific, the output of GNNs
will serve as the input representations of KG score functions. KRL methods aim to learn
expressive representations for KG modeling. We will then discuss how to leverage these
learned representations for downstream ML tasks. We particularly focus on two tasks, i.e.,
link prediction (Section and natural language question answering (Section [2.4.5)).
In Section [2.4.6, we further explore methods for conducting inductive learning to achieve

inductive link prediction on KGs.

2.4.4 Link Prediction on Knowledge Graphs

Although mainstream KGs are large-scale, they suffer from incompleteness [I11], meaning
they usually do not contain all ground truth facts. Hence, predicting unobserved facts in
KGs is crucial, leading to the task of link prediction on KGs, also known as KG completion
(KGC). KGC is the most popular ML task in the field of KRL.
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Definition 6 (Knowledge Graph Completion/Link Prediction). Assume we have a ground
truth KG Gy that contains all the true facts, and an observed KG Gy, containing all the
observed facts, where Go, C Gg. Given a link prediction query (sq,rq,?7) (or (7,74,04))
derived from a ground truth fact (sq,74,04) € Gg \ Gob, KG completion (i.e., KG link

prediction) aims to predict the missing object o, (or subject s,) based on Gup.

As discussed in Section [2.4.3] it is common to augment the original KG with the facts
including inverse relations. By incorporating inverse relations, subject entity prediction
can be transformed into object entity prediction. For example, the link prediction query
(?,74,04) can be rewritten as (o4, 7,7 ', 7). This allows KGC to be framed as an object
entity prediction problem.

In our definition, we focus on predicting missing entities rather than relations, following
most previous works that formulate KGC as an entity prediction problem. We treat relation
prediction as a separate problem and concentrate exclusively on entity prediction in this

thesis.

Evaluation

KGC is formed as a ranking task for evaluation. For example, assume we want to predict
the missing object entity o, from a link prediction query (s, r,,?), a KG model is asked to
compute a score for each triple in {(s,, 74, 0)|0" € £}, where o' is called candidate entity and
can be any entity within the KG entity set £. The candidate entities are ranked according
to the scores of their associated triples (e.g., if (s,, 74, 04) has the highest score then o, ranks
top 1). Ideally, a model should assign the highest score to the triple (s,,7,,0,) compared
with other triples containing other candidate entities o’ € £\ {0,}. To measure the quality
of ranking, two evaluation metrics are widely adopted, i.e., mean reciprocal rank (MRR)
and Hits@Qk. MRR computes the mean of the reciprocal ranks of ground truth missing

entities
1 1

@qega‘l‘

Q denotes the set of all link prediction queries and ¢ represents each link prediction query.

MRR = (2.18)

14 is the rank of the ground truth missing entity in each query. Hits@k denotes the
proportion of the predicted links where ground truth missing entities are ranked as top
k. Another point worth noting is that it has been a common practice to adopt a filtering
setting (proposed in [I3]) during ranking evaluation. Filtering refers to removing from the

entity set all the candidate entities that form ground truth fact triples together with the
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link prediction query during ranking, where these facts can appear either in the training,
validation or test set (except the test triple of interest). For example, assume two facts
exist in the KG: (Shanghai, located in, China), (Shanghai, located in, Asia). To predict the
missing object entity of the link prediction query (Shanghai, located in, 7), derived from
the fact (Shanghai, located in, China), the candidate entity Asia will be filtered because
(Shanghai, located in, Asia) is also correct and Asia will impose negative influence on the

ranking result, leading to an unfair evaluation of models.

2.4.5 Natural Language Question Answering on Knowledge Graphs
Natural language question answering on KGs (KGQA) can be defined as

Definition 7 (Question Answering on Knowledge Graphs). Assume we have an underlying
KG G C & xR xE. Given a natural language question q and an annotated topic entity
sq € & existing in q, KGQA aims to find the entity o, € £ that answers q.

Natural language questions in KGQA are proposed based on the facts in the underlying
KG, meaning that all the KGQA questions are answerable if a model can perform perfect
reasoning over the KG and no additional information source is needed.

Different from link prediction, KGQA does not provide the relation types for models.
Models have to understand the natural language questions for answer inference. Another
difference is that as introduced in a series of works such as [127], KGQA may involve multi-
hop questions that require models to perform reasoning over multiple edges. For example,
a 2-hop natural language question Who is the other child of Christopher Hemsworth’s
father? can be answered only by reasoning over two KG facts (Craig Hemsworth, is fa-
ther of, Christopher Hemsworth) and (Craig Hemsworth, is father of, Liam Hemsworth)lr_gl
The answer entity Liam Hemsworth is a 2-hop neighbor of the topic entity Christopher
Hemsworth. These differences mean that the approaches introduced in Section [2.4.3] cannot
be directly used to solve KGQA.

Mainstream KGQA methods can be divided into two types, i.e, semantic parsing-based
and KG embedding-based. Semantic parsing-based methods (e.g., [10, 10T} 27, 139, [36])
parse the questions into logic forms, e.g., SPARQL query, that are executable within knowl-
edge bases. Two major drawbacks of them are that: (1) they need to annotate expensive

logic forms as supervision signal; (2) they fail to achieve accurate prediction when KGs

10Ty this example, we assume that there is no fact such as (Liam Hemsworth, is sibling of, Christopher

Hemsworth) that makes Liam Hemsworth an 1-hop neighbor of Christopher Hemsworth.
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miss important facts regarding the ground truth answers (i.e., they suffer from KG incom-
pleteness, which is a common problem for real-world KGs) [I75, 94]. KG embedding-based
KGQA has recently gained popularity. One classic method is EmbedKGQA [127]. Em-
bedKGQA consists of three modules: (1) the KRL module (KG embedding module) trains
entity representations over the fact triples in the underlying KG by using the ComplEx
[T145] score function; (2) the question representation module enables natural language un-
derstanding by leveraging an LM, i.e., RoBERTa [104], to encode each natural language
question ¢ into a low-dimensional question representation; (3) the answer selection module

selects the predicted answer e,,s with a score function in the same form as ComplEx
€ans = argmax,.cRe ((hs, h,, EO/>) h,h, h, € Cce. (2.19)

where h, is the question representation encoded by LME] and d is the dimension size.
o' € £ is an candidate entity that is same as in KGC. EmbedKGQA does not constrain the
candidate answer to be within the limited neighborhood of the topic entity, so it is suitable
for Multi-hop KGQA. It is also the foundation of various recent works on temporal KGQA
that aims to perform QA on temporal KGs, which will be discussed in Section [2.5.5
Based on EmbedKGQA, many follow-up works are done aiming to improve KGQA
performance by extracting more relevant information to the questions from the underlying

KGs or implementing better complex query reasoning techniques. For example:

o LEGO [123] consists of a latent space executor and a query synthesizer. It starts
the answer inference with a query originating from the topic entity and then iter-
atively synthesizes and executes the query in the embedding space, conditioned on
the question representation encoded by an LM. A relation pruner is trained to prune
the search space in the query synthesis process, improving LEGQO’s efficiency and

performance.

o BeamQA [4] develops a sequence-to-sequence path generation module, and a beam
search execution algorithm to search and rank candidate entity answers to the ques-
tions. The path generation module takes a question as input and generates a sequence
of relations based on the BART [97] LM. The search execution algorithm leverages
the representations of KG entities and relations as well as the ComplEx [145] KG

score function for candidate ranking.

1T, M-encoded representations are real-valued. Here h, has already been transformed into complex-valued

vectors where each element is a complex number, as implemented in ComplEx [145].
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Evaluation

Same as KGC, KGQA can also be framed as a ranking task. For each natural language
question ¢ together with its annotated topic entity s,, a KGQA model is asked to compute
a score based on s,, ¢ and any candidate entity o’ € £. An ideal KGQA model should assign
the highest score for the ground truth answer entity o,. In this sense, KGQA evaluation
can be viewed as a slight variant from KGC evaluation, by changing the query relation
to the natural language question. Therefore, MRR and Hits@k are also used to evaluate

models on this task.

2.4.6 Inductive Representation Learning on Knowledge Graphs

Inductive learning on KGs refers to the ability of a model in making inferences about the
entities and relations unseen in the training data. As KRL gains popularity, there is a grow-
ing interest in enhancing KRL approaches with inductive capabilities. KRL approaches
require a substantial amount of training data to learn expressive representations of KG
entities and relations, making them inherently limited in inductive learning. Meanwhile,
real-world KGs are evolving, with new entities and relations constantly emerging. This
highlights the importance of effectively managing these newly-emerged elements (entities
and relations). Therefore, it is crucial to study how to equip KRL approaches with strong
inductive power.

The rest of this section is mainly divided into three parts: the first focuses on inductive
learning for unseen entities, the second on unseen relations, and the third discusses the
recent studies in addressing both unseen entities and relations together. As pointed out
in [23], past and current research on inductive learning often assesses models’ inductive
power by conducting KG link prediction involving unseen elements. In this thesis, we follow
previous works by focusing on the problem of inductive KG link prediction and centering
our discussions around it. We also give a brief discussion about symbolic approaches for

KG inductive learning at the end of this section.

Inductive Learning on Knowledge Graph Entities

Inductive KG link prediction on KG entities can be split into three problem settings:
semi-inductive (SI), fully-inductive (FI) and mixture of both (SI + FI) [2].
SI refers to predicting the unobserved facts containing one seen entity and an unseen

entity, i.e., either the subject or object entity in the to-be-predicted fact is not seen in the
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training data. We can define SI KG link prediction as

Definition 8 (Semi-Inductive Knowledge Graph Link Prediction). Given an observed back-
ground KG Giaer C Epack X R X Epaer and a set of unseen entities E', where £ N Epger, = 0.
Semi-inductive KG link prediction aims to predict the missing entity from each link predic-
tion query (Sq,7q,7) (o1 (?,74,04)) derived from an unobserved fact where either s, € &',

0g € Epack 0T Sq € Epacks 04 € E', and ry € R.

Representative works of SI link prediction leverage KGs’ structural information, e.g.,
entity neighborhoods, to transfer knowledge from seen entities to unseen entities. They
assume that new entities emerge together with a number of auxiliary facts connecting
them to seen entities for computing inductive representations. SI Link prediction is then
conducted on other facts (which do not exist in the auxiliary set) based on the computed

unseen entity representations. We introduce three classic methods:

« MEAN [66] adopts GNNs to propagate information from the seen entities to unseen
entities, based on the auxiliary facts. It also shows the effectiveness of mean pooling

when GNNs are used in inductive entity representation learning.

o LAN [I57] improves MEAN by introducing an attentional GNN for knowledge trans-
fer. The attention weights are decided not only by the entity representations but also
the logical rules indicating the relation dependencies between the relation in entity

neighbors and the query relation ;.

o CFAG [153] first leverages two GNN-based aggregators, i.e., global and local aggre-
gators, to transfer information from seen entities to unseen entities, and then uses
a conditional generative adversarial network [113] to incorporate the information of

query relation r, to output query-specific representations for unseen entities.

FI refers to predicting the unobserved facts containing two unseen entities, i.e., both
subject and object entities in the to-be-predicted fact are not seen in the training data.
We can define FI KG link prediction as

Definition 9 (Fully-Inductive Knowledge Graph Link Prediction). Given an observed
background KG Gpaer, € Epack X R X Epaer and a set of unseen entities £, where £ N Epger =
0. Fully-inductive KG link prediction aims to predict the missing entity from each link
prediction query (sq,74,7) (or (?,r4,04)) derived from an unobserved fact where s,,0, € E'
andry € R.
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FI KG link prediction assumes that unseen entities £ are not connected to seen entities
Epack and form a completely new KG. Some works leverage structural information of KGs,

e.g., the neighborhood of unseen entities, to achieve FI link prediction. For example:

» NodePiece [53] represents each unseen entity by encoding its distances to several
randomly selected anchor entities and its relational context with neural networks.
The anchor distances and the connected relations around the unseen entity are treated

as the entity-independent information for inductive representations learning.

« MorsE [26] employs meta-learning [93], learning to learn the FI setting during model
training. It uses an entity initializer and a GNN modulator to extract the entity type

information as well as the relational contexts, which is called meta knowledge in [26].

Some other methods try to encode the subgraph between each pair of unseen entities for

prediction. For example:

o GralL [I43] treats the unseen subject and object entities as a whole in an unobserved
fact and encodes the relational subgraph (named as enclosing subgraph) between
them. It extracts the subgraph on top of the multi-hop neighborhood of unseen
entities, uses an attentional GNN to capture the contextualized information within
the subgraph, and outputs a subgraph representation by average pooling over all the
entities in the subgraph. The subgraph representation is then used in a score function

for prediction.

A line of works follows [143] and proposes different subgraph encoding strategies for induc-
tive learning, such as CoMPILE [107], TACT [21], and SRNI [166]. However, such kind
of subgraph-based approaches have one limitation: they are limited to performing relation
prediction, i.e., predicting the relation between two unseen entities. It is hard for them to
be generalized to entity prediction since enclosing subgraphs can be extracted only when
two entities are fixed, meaning that the subgraphs are strongly bounded to the entity pairs
and to perform entity prediction, models have to extract a subgraph for each candidate en-
tity, which introduces a heavy computational burden. Besides, some works, e.g., NBFNet
[182], model the relational paths between unseen entities to achieve inductive learning. A
relational path can be viewed as a simple subgraph [23]. Reasoning over paths requires
no subgraph construction and therefore can improve model’s efficiency [I82]. Based on

it, RED-GNN [I79] proposes relational directed graphs that helps to preserve the local
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neighborhood information between entity pairs and also benefit from the directional path
for efficient subgraph encoding.

The mixture of both SI and FI, i.e., SI + FI, refers to predicting the unobserved
facts containing two unseen entities/one unseen entity, i.e., both subject and object enti-
ties/either the subject or object entity in the to-be-predicted fact are/is not seen in the
training data. We can define SI + FI KG link prediction as

Definition 10 (Semi-Inductive + Fully-Inductive Knowledge Graph Link Prediction).
Given an observed background KG Gpaer C Epack X R X Epacr and a set of unseen entities £,
where ' N Epger, = 0. SI + FI KG link prediction aims to predict the missing entity from
each link prediction query (sq,7q,7) (or (7,74,04)) derived from an unobserved fact where

either s, € £, 04 € Epack UE" 01 54 € Epgex UE', 0, € E', and 1y € R.

SI + FI KG link prediction is more realistic. It assumes that each unseen entity in &’
can be either connected to a seen entity in &Ep.q or an unseen entity in &', which is closer
to the real-world scenarios when KGs expand. Similar to SI and FI methods, some SI + FI

methods try to accurately encode structural information of unseen entities. For example:

o GEN [7] assumes that each unseen entity is associated with only a few facts as it
emerges (unlike SI methods such as MEAN [66] that equip each unseen entity with
a much larger number of associated auxiliary facts). It proposes a few-shot learning
task, i.e., KG few-shot out-of-graph (OOG) link prediction, and designs a meta-
learning framework to transfer knowledge from seen entities to unseen entities. KG
few-shot OOG link prediction belongs to SI + FI link prediction and it constrains
models to learning strong inductive representations for unseen entities with only

few-shot data examples, which is challenging and more realistic.

Apart from them, a number of recent works have explored introducing additional informa-
tion sources, e.g., textual descriptions of KG entities, for inductive entity representation

learning. For example:

« QBLP [2] solves inductive KG link prediction by using the additional information
provided by the qualifiers of hyper-relational KG facts (proposed in [54]). Each
hyper-relational fact consists of a main fact triple and a group of qualifiers describing
it. [2] assumes that qualifiers are comprised of seen entities and relations and thus

they can help to transfer knowledge for inductive representation learning.
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« KEPLER [159] proposes a KG dataset, i.e., Wikidata5M, that equips each entity
with text descriptions. It fine-tunes a pre-trained LM on two objectives: KG link
prediction (with the KG embedding loss adopted from RotatE [140]) and masked lan-
guage modeling (with the loss adopted from BERT [38]). It leverages the additional
textual information and LM’s ability in natural language understanding to achieve

inductive learning.

« SimKGC [156] follows KEPLER's setting and employs contrastive learning with dif-
ferent negative samplings to enhance text-based KG reasoning. It uses BERT to

encode entities to enhance model’s inductive capacity.

Additional information sources enable expressive representations of unseen entities, re-
gardless of how many related facts are encountered during model training. If a model
can effectively utilize these external sources, it can achieve strong inductive capabilities.
Therefore, such methods are capable of solving SI + FI KG link prediction.

For a more comprehensive discussion about other inductive entity representation learn-

ing methods, please refer to the following surveys [23] [77]

Inductive Learning on Knowledge Graph Relations

Previous works on unseen relations typically consider the few-shot scenario, where each
new relation is introduced with a small number of associated facts that models can use for
inference. This problem is referred to as few-shot relational learning{r_zl [164], and we can

formulate it into the following task

Definition 11 (Few-Shot Knowledge Graph Link Prediction). Given an observed back-
ground KG Guaer, € € X Rpaer X € and a set of unseen relations R', where R' N Ryger = 0.
Assume we further observe K quadruples S, = {(s;,r’,0;)}.X, corresponding to each un-
seen relation ', where r' € R/, s;,0; € €. Based on S, and the whole background graph
Gpack, few-shot KG link prediction aims to predict the missing entity of each link prediction
query, i.e., (sq,7",7) or (2,77, 0,), derived from the unobserved quadruple (s, 1", 04) € Q.
containing r', where s,, 0, € €. Sy and Q. = {(s;, 7/, oi)}ij\i}'{ﬂ are the support set and the
query set for the unseen relation r', respectively. M, denotes the number of all the fact

triples associated with r’.

12Here we follow previous works (e.g., [164} 25]) and only refer to few-shot relations.

30



Chapter 2. Preliminaries and Related Work

Few-shot KG link prediction is usually taken by previous works as a meta-learning
problem. Here we discuss several classic approaches. Some works are metric-based meta-
learning approaches that use metric functions to do similarity matching of the few-shot

examples and the to-be-predicted links. For example:

« GMatching [164] is a model trained with episodic training [I51]. In each episode,
GMatching samples a relation as an unseen relation and simulates a one-shot learn-
ing problem focused on it. GMatching uses a GNN to learn contexualized entity
representations based on the background graph and combines the representations of
the subject and object entities in a KG fact. The representations of the support
entity pair and the query entity pair are matched with a metric processor based on
an LSTM network [73] for link inference.

o FSRL [172] improves GMatching by first using a relation-aware heterogeneous neigh-
bor encoder, and then designing an aggregator based on RNNs [124] to combine the
information provided by few-shot examples. It addresses GMatching’s limitation in

effectively learning from multiple support fact triples.

« FAAN [I33] proposes an adaptive neighbor encoder to distinguish the importance of
different neighbors of an entity based on their relatedness to the unseen relation in
the link prediction query. It further uses Transformer [149] to encode support entity
pairs and devises an adaptive matching processor that introduces attention between

each support fact and the query fact during the support information aggregation.

Besides these methods, some other works employ the Model-Agnostic Meta-Learning (MAML)

[50] framework for few-shot learning. For example:

o MetaR [25] uses a neural network to compute a relation meta based on each support
fact triple of an unseen relation. It then utilizes the averaged relation meta as the
initialization of the representation of the unseen relation. With this representation,
it computes a loss with the TransE [13] score function. One step of gradient descent
is applied to the relation meta to output the final unseen relation representation,

which provides a good generalization power following MAML.

o GANA [I16] proposes a gated and attentive neighbor aggregator (GNN-based) to
capture the contextualized information of entities. It then uses a bidirectional LSTM

to integrate all the information provided by the entity pairs in support facts. It
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switches the TransE-like score function in MetaR to a score function based on TransH

[160] to handle more complex relationships.

Apart from them, there also exist several works relying on additional information
sources for inductive relation representation learning. These methods can also deal with

the zero-shot setting, i.e., S,» = (). For example:

o ZSGAN [I19] equips relations with textual descriptions. It trains a GAN [62] to
generate unseen relation representations conditioned on their encoded textual de-

scriptions, in order to achieve zero-shot relational learning.

o OntoZSL [59] leverages the ontology of KGs. It synthesizes the features of unseen
relations by using the representations within an ontological schema including the

semantics of the KG relations, which also enables zero-shot relational learning.

For a more comprehensive discussion about other inductive relation representation learning

methods, please refer to the following surveys [23 [77]

Inductive Learning on Knowledge Graph Entities & Relations

Recently, some works study how to address both unseen entities and relations simultane-

ously. For example:

o MaKEr [24] employs meta-learning to jointly handle unseen entities and relations. It
proposes a training task that simulates the situation where new entities and relations

emerge together, in order to enable model’s inductive capability[™]

o RMPI [60] leverages the subgraph encoding technique (used in FI methods, e.g.,
GralL [I43]) to handle unseen entities and achieves reasoning over unseen relations
by passing information between the relations sharing common entities. The unseen
relation representations can be further enhanced based on KGs’ ontological schema
(similar to OntoZSL [59]).

13Few-shot setting is not imposed in [24], meaning that each unseen relation and entity has a substantial
number of support facts during evaluation (similar to the auxiliary facts in several previous works such
as MEAN [66]). MaKEr leverages a GNN to aggregate information provided by the support set and is

evaluated on the query set.
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o ULTRA [55] builds upon RMPI by constructing a multi-relational meta-graph of
fundamental relation interactions (tail-to-head, head-to-head, head-to-tail, and tail-
to—tai]ED. It learns relative relation representations based on these fundamental in-
teractions and leverages conditional message passing to enhance performance. It

handles unseen entities with an encoder based on NBFNet [182].

Symbolic Approaches for Inductive Learning on Knowledge Graphs.

Different from KRL-based methods, symbolic KG relational learning approaches (such as
AMIE [52], AMIE+ [51] and AnyBURL [109]) are naturally capable of inductive learning.
They learn entity-agnostic symbolic rules to reason KGs so they can handle unseen entities.
However, one drawback of them is that rules are strongly bounded to KG relation types,
which makes them not generalizable to unseen relations. As this thesis lays emphasis on
KRL-based approaches, we will not go into more details about symbolic approaches. Please

refer to the following surveys for a better understanding [174, 23].

2.5 Temporal Knowledge Graphs

2.5.1 Fundamental of Temporal Knowledge Graphs

cast member cast member

1972 Marlon Brando, 1972 +«————— The Godfather, 1972

Marlon Brando =———— The Godfather
award received award
award nominated for award received
" 1973 received
received Academy Award for Academy Award for
1972 1972 Marion Brando, 1973 Best Actor, 1973 Best Actor, 1972
Academy Award
for Best Actor nominated for
(a) (b)

Figure 2.2: An example TKG. Figure represents the TKG by coupling timestamps
with edges, while Figure couples timestamps with entities to form temporal nodes.
The facts in the example TKG are extracted from Wikidata [152].

MFundamental relation interactions are between the nodes in a relation graph where each node in the
graph corresponds to a KG relation type. Tail-to-head means that the entity connecting two nodes in
the relation graph serves as the object entity of the first relation node and the subject entity of the

second relation node. Similar meaning applies for other fundamental interactions.
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Definition 12 (Temporal Knowledge Graph). Let £, R and T denote a set of entities,
relations and timestamps, respectively. A temporal knowledge graph G = {(s,r,0,t)} C
EXR xEXT is a directed graph consisting of a set of temporal facts. Fach fact is
represented with a quadruple (s,r,0,t), denoting a directed edge pointing from the subject
entity s € € to the object entity o € £ at the timestamp t. r € R is the edge type, i.e., the

relation type, describing the relationship between s and o.

Figure shows an example TKG. Each node in a TKG corresponds to an entity. For
each directed edge (s,r,0,t), s and o can be viewed as the source node and the destination
node, respectively, and a timestamp ¢ is coupled with the edge to specify the time validity
of the fact. Alternatively, we can decouple timestamps from edges and couple them with
entities to form temporal nodes. In this way, we can reframe the example TKG into the
form presented in Figure [2.2D]

Some real-world TKGs, e.g., Wikidata [I52], specify time constraints of facts with time
periods. For example, (s,r, o0, [t1,ts]) indicates that the fact remains valid from timestamp
t1 to ta. In this thesis, we follow [84] and decompose each of such fact into a group of
consecutive facts {(s,r,0,t1), ..., (s,7,0,t2)} to represent its validity at all the timestamps
between t; to t5. This enables Definition to represent any TKG, including the ones
labeled with time periods.

A number of existing works denote a TKG as a sequence of TKG snapshots G =
{G1,...,Gr}, where T' = |T| is the number of timestamps. Each snapshot contains all the
concurrent facts happening at the same timestamp and can be viewed as a static KG.

We will discuss how this formulation is used in GNN-based TKG representation learning
methods in Section 2.5.3

Definition 13 (Temporal Neighborhood in Temporal Knowledge Graphs). For an entity
e; € & in the graph G C € X R x € x T, its neighborhood N, is defined as all (subject
entity, relation type, timestamp) triples extracted from the facts where e; serves as the
object entity: N, = {(ej,rj, t;)|(ej,rj, e, t;) € G eje; € E,rj € R t; €TF

Different from static KGs, when considering the temporal neighborhood of an entity

e;, TKGs further include the timestamps extracted from the facts associated with e;.

2.5.2 Relational Learning on Temporal Knowledge Graphs

Relational learning on TKGs can also be categorized into symbolic and subsymbolic (i.e.,

KRL) approaches. Similar to the discussion about static KGs, we only focus on the
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embedding-based representation learning approaches and discuss the related ML problems
corresponding to them. Compared with KG relational learning methods, approaches for
TKG reasoning lay greater emphasis on temporal reasoning. In many cases, temporal in-
formation is crucial for decision-making. For example, assume we have a natural language
question for KGQA: In which university did Albert Finstein start his study in 1901¢. And
we have two observed related TKG facts, i.e., (Albert Einstein, start study, University of
Zurich, 1901), (Albert Finstein, start study, ETH Zurich, 1896), in the underlying TKG.
To answer the question, models should be able to reason over the underlying TKG and
distinguish the ground truth answer University of Zurich from the negative entity FTH
Zurich. Without the ability of temporal reasoning, static KG models (discussed in Section
are not able to achieve this. In contrast, TKG models are designed to incorporate tem-
poral information, enabling more accurate decision-making that accounts for the temporal

aspect.

2.5.3 Knowledge Representation Learning on Temporal Knowl-

edge Graphs

In this section, we provide an overview of KRL methods on TKGs. Similar to KRL
approaches for static KGs, these methods learn low-dimensional embedding vectors for

entities and relations.

Inverse Relations. KRL methods for TKGs also include inverse relations for each re-
lation type. This involves expanding the original TKGs by adding the facts containing
inverse relations and then performing representation learning on these expanded graphs.
For each fact (s,r,0,t), the corresponding inverse fact quadruple is (0,771, s,t), where r~*
denotes the inverse relation of r. Similar to KRL on static KGs, inverse relations are

included into the TKG relation set, leading to doubled TKG size and relation set size.

TKG Score Functions

A majority of embedding-based KRL methods are based on the KG score functions and
develop TKG score functions to compute the plausibility score of each fact quadruple
(s,r,0,t), indicating the likelihood of its veracity. A TKG score function ¢(-) takes the
fact (s,r,0,t) as input, finds the corresponding embedding vector representations for s, r,

o, t, and then outputs a real-valued number as the computed score. For example:
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o TTransE [95] is based on TransE [I3] and considers temporal information as a trans-

lation in the Euclidean space, i.e.,
é((s,r,0,t)) = —||hs + h, + h, —h,||, hy, h, h,h, € R% (2.20)

h,, h,, h,, h; are the embedding vector representations of s, r, o, t, respectively. d
is the dimension of entity, relation and time representations. || - || denotes the norm
(same as TransE). After relational and temporal translation, the smaller the norm

is, the greater the plausibility of the fact (s,r,0,t).

TA-DistMult [58] builds upon DistMult. It decomposes the timestamp into a se-
quence consisting of self-defined temporal tokens and concatenates it with the re-
lation token. Then the concatenated sequence is input into an LSTM to encode
the time-aware relation representation. Finally, TA-DistMult uses DistMult score

function to compute the final score
o((s,7,0,t)) = (hy,h,,h,),  hy h, h, € RY (2.21)

h,, is the time-aware relation representation of the relation r at timestamp ¢. d is

the dimension of representations. (,-,-) is a function as same in DistMult.

TNTComplEx [90] is inspired by ComplEx [145]. It assumes that some relations
are affected by temporal aspects and some are not. To this end, TNTComplEx uses
a combination of time-aware and time-invariant relation representations to embed

TKG relations. The complete form of this method is defined as
6((s,7,0,t)) = Re ((hy,h, + hy oy, hy)), h by hyy by € CL o (222)

Here we use h, to denote the time-invariant part of relation representation, and h, ; is
the time-aware part. d is the dimension of representations. Re(-) denotes a function

taking the real part of the its input. o is the element-wise product operation.

TeRo [145] implements temporal rotation based on the operation in RotatE [140] to
jointly encode entity and time information. It then uses a TransE-like score function

as the final form

¢((8’ r, o, t)) = _Hhs»t + h7" - BOJ“’

(2.23)
where h,; = h,oh;, h,; = h,oh;; hy, h, h, h, € C%
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h,, h,, h,, h; are the embedding vector representations of s, r, o, t, respectively.
d is the dimension of representations. Each element in hy, h, and h, is a complex
number and Re(-) denotes a function taking the real part of its input. h,, is the

complex conjugate of the time-aware object entity representation h, ;.

ChronoR [125] is also inspired by RotateE. It treats the combination of relation and
timestamp as a rotation from the subject entity to the object entity in the complex
space. Following TNTComplEx, it uses two separate embedding vectors to model

the time-aware and the time-invariant relation representations.
o((s,7,0,t)) = Re ((hy o (h,¢||h;) oh,, h,)), hy h, h., h,h €C’ (2.24)

h,, h,, are the time-invariant, time-aware part of relation representation, respec-
tively. d is the dimension of representations. Re(-) denotes a function taking the real

part of its input. o is the element-wise product operation and || means concatenation.

RotateQVS [22] extends TeRo and represents temporal information using rotations
in the quaternion vector space. Temporal rotations happen within the imaginary
axes of the quaternion representing each entity and the real part is used to describe
the time-invariant part of entity representation. Compared with TeRo that performs
rotation in the complex space, quaternions in RotateQVS have three imaginary axes
and therefore are more expressive in modeling. The complete form of RotateQVS is
defined as

(b((SvTv 0, t)) = _HhS,t + hT - BOiH?

(2.25)
where h,; = hyh,h, ™", h,, = h;h,h,™', h, h, h, h, € H%

h,, h,, h,, h; are the embedding vector representations of s, r, o, t, respectively. d
is the dimension of representations. RotateQQVS constrains the time representations

h; as unit quaternions.

DyERNIE [69] roots from MuRP [§] and embeds TKG entities with time-aware entity
representations on Riemannian manifolds. For an entity at a timestamp, DyERNIE
uses a collection of N embedding vectors on N different manifolds. Each of these

vectors is a combination of a time-invariant part and a velocity vector specifying the
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time-dependent information. Its complete form is defined as

N

] ; ; -\ 2 . .

6((s,7,0,1)) = 3 — dist g, (HL @, b, hi, @, hi) + 0]+ b,
i=1 “

where h!, = exp(' (IOggi(hi )+ h;/el,it) ’ (2.26)

by, = expy (logg (h}) +hiit) .

hi,hi hi € B% are hyperbolic embeddings on the i"* manifold. hy"* € B% and
hY? € B% denote the velocity vectors of s and o on the i** manifold, respectively.
d; and ¢; are the representation dimension and the curvature of the i*" manifold,
respectively. H! € R%*% is a parameter matrix specific to the relation r on the
i*" manifold. logf(-) and expg (-) are two operations projecting representations to
the tangent space of the manifold and performing back projection, respectively. ®.,
and &,, denote Mo6bius multiplication and addition [147, 56], respectively. b, b’
are entity-related biases on the i*® manifold. The distance function of DyERNIE

distga, (-, ) is in the same form as in MuRP.

In addition to the classic methods mentioned above, there are a wide variety of other
TKG score functions. Please refer to the following surveys [17, 155, 18] to have a better
overview. Similar to the problem for score functions of static KGs, TKG score functions
only pay attention to the fact quadruples and neglect the structural information in graphs.
Therefore, recent TKG modeling approaches aim to enhance model capabilities by utilizing

various GNN-based graph encoders, which will be discussed next.

Graph Neural Network-Based TKG Models

A number of GNN-based TKG modeling approaches apply GNNs in the following way:
(1) first, the concurrent TKG facts happening at the same timestamp will be grouped
together and taken as a static KG snapshot; (2) a GNN graph encoder (in most cases multi-
relational GNN) is then used to encode each snapshot; (3) the encoded representations at
different timestamps are input into a sequence encoder, e.g., LSTM or Transformer, to
learn time-aware representations at the timestamp of intereslfr_g]; (4) finally, a TKG decoder

(normally a KG or TKG score function) is employed to leverage the learned representations

15Tn this thesis, timestamp of interest means the timestamp involved in model inference. For example,
if we wish to compute the plausibility score of a TKG fact happening at timestamp ¢, then t is the

timestamp of interest.
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for performing downstream ML tasks. Here we discuss several classic methods using such

framework:

o TeMP [161] employs R-GCN [12§] as its snapshot encoder. It adopts two strategies for
temporal encoding and develops two corresponding model variants, i.e., TeMP-GRU
and TeMP-SA. TeMP-GRU encodes temporal information by using a gated recurrent
unit (GRU) [32] to sequentially process the outputs of the snapshot encoder condi-
tioned on different timestamps, while TeMP-SA utilizes the self-attention mechanism
proposed in [149] to integrate time-aware entity representations with learnable atten-
tions to different timestamps. Both model variants consider a time window around
the timestamp of interest as the information pool for extracting temporal informa-
tion. The graph information outside the time window is discarded. Any KG score
function can be used as the decoder of TeMP, where time-aware entity representations
serve as the input to enable temporal reasoning. TeMP’s snapshot encoder can be
any multi-relational GNN, making it an important prototype for TKG representation

learning.

« RE-GCN [100] designs a relation-aware GNN for snapshot encoding. The I*™" layer

encoding the graph snapshot at the timestamp ¢; can be written as

1

pit :a( 5
(

c(e; t')Wll(héj’ti + hf”j) T WIthet) : (2.27)
ej7rj)€Nei,t,L- 79 Uy

Here, N+, = {(ej,7;)|(ej i ei,ti) € G ej,e; € E,15 € R,t; € T} denotes the neigh-
borhood of e; in the snapshot at timestamp t;. W!, W, € R*" %4 are two trainable
weight matrices in the [ layer. c(e;, ;) denotes the number of facts happening at ¢,
that take e; as the object entity. o(-) is the activation function. Note that although
we write the representations with timestamp subscripts, the GNN here does not inject
temporal information evolving along the time axis. It is because this GNN encoder
is applied on each graph snapshot which is a static KG. We use this style of notation
to indicate that the GNN incorporates the structural information of entities at each
specific timestamp. Based on the output of GNN at two neighboring timestamps,
RE-GCN uses a time gate recurrent component to compute a weighted sum of entity
representations to capture the temporal evolution of entities. For representing each
relation in a time-aware manner, RE-GCN first performs mean pooling over the rep-

resentations of the entities connecting to this relation at each timestamp, and then
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uses a GRU to capture temporal dynamics. Besides, RE-GCN models time-invariant
information of entities and relations provided by the TKGs originating from the In-
tegrated Crisis Early Warning System (ICEWS) knowledge base. In ICEWS-based
TKGs, each entity’s name string contains time-invariant property information. For
example, the entity Police (Australia) implies that this entity belongs to Australia
and the general concept of Police. RE-GCN constructs two time-invariant facts (in
our example, the constructed facts are (Police (Australia), is a, Police) and (Police
(Australia), country, Australia)) according to such entities and collect all of them to
form a time-invariant multi-relational graph (can also be viewed as a static KG). It
uses R-GCN to model this entity property graph and ensures that the time-aware
representation of an entity remains closely aligned with its representation learned
from the property graph. For decoding, RE-GCN uses the ConvTransE [130] score

function.

TANGO [71] designs a customized residual multi-relational graph convolutional layer

to encode the structural information at each graph snapshot

1

Ilﬂiig = }léhti + 00 (: :E::

11,1 l
X t'>W (h . oh,,j)) . (2.28)
€;j,Tj c it 1y Y1

W e R ig 4 trainable weight matrix in the {* layer. § is a learnable weight
deciding how much aggregated information is integrated in each layer. Other nota-
tions follow RE-GCN’s graph encoder in Eq. 2.27 o is the element-wise product
operation. To better capture the temporal transition of TKGs, TANGO models the
formation and dissolution of temporal edges by using another graph encoder. Each

layer of this encoder is defined as

1
|'/\/61?,ti

hin=o| X

(ej ,Tj)e./\/’é’ti

W‘lcransgg,rj,ei (hfaj,ti © hi]) . (229)

Wi e R"" g a trainable weight matrix. Ae,riei € {—1,0,1} is an entry of

trans
a transition tensor A;, € {—1,0, 1}EXIVIXEl corresponding to e;, r; and e;. Ay, is
computed with the three-way adjacency tensors A, € {0, 1}EXVIXI€l and A, A, €
{0, 1}EXVIXIEl from the timestamps ¢; and t; — At, i.e., A;, = Ay, — Ay, _as. Take Ay,
as an example, if (e;, r;, e;,t;) exists in the graph snapshot at t;, then A’;l] rien = 1,

ti
€57 5,€i

otherwise A = 0. Finally, TANGO models temporal evolution recurrently with
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a neural ordinary differential equation (NODE)

ti+At _
H; o — Hy, = /t T (Fveen(Hr, G, 7) + @ furans(Hr, A 7)) dre (230)

fuaen(s -y 0) and fuans(c, -, ¢) are two functions doing multi-relational graph con-
volution (Eq. and temporal transition modeling (Eq. [2.29)), respectively.
H, € RUEH2RD*d denotes the entity and relation (including inverse relations) repre-
sentations at time 7. G, is the graph snapshot at 7. w is a hyperparameter controlling
how much the model learns from edge formation and dissolution. The integration is
modulated by an ODE solver and the time difference (At) decides how deep is the
neural functions applied between a pair of neighboring timestamps, making TANGO
able to model continuous temporal information. For decoding, TANGO uses Dist-
Mult and TuckER and builds two model variants TANGO-DistMult and TANGO-
TuckER based on them.

o TiRGN [99] builds upon RE-GCN. It jointly computes the entity and relation rep-
resentations based on the graph snapshot at timestamp t; with the following GNN

graph encoder

+1
hez‘,ti =0 ( Z

(ej 7rj)EN€i st

1
6(67;, tl)

W, o(hl bl )+ Wlhii,ti) : (2.31)

erj e R4 and W' € R*""*4 are two trainable weight matrices and Wij is
specific to the relation r;. (-,-) is a function that performs the one-dimensional
convolution. Other notations follow RE-GCN’s graph encoder in Eq. [2.27 TiRGN
uses an entity-oriented GRU and a relation-oriented GRU (named as local recurrent
encoder jointly) to learn the temporal evolution patterns of entities and relations, re-
spectively, in a similar way as RE-GCN. It then develops a new TKG score function
Time-ConvTransE as a decoder, where periodical and non-periodical time represen-
tations are specified to enable more fine-grained temporal reasoning. To effectively
capture the influence of repetitive global facts, TiRGN designs a global history en-
coder that checks the existence of facts in the history and performs masking on the
link prediction@ candidate entities. With the masked entity set, TIRGN uses Time-
ConvTransE to output a global score, which is used to compute a weighted sum with

the local score from the output of the decoder before masking.

6We will introduce link prediction on TKGs in Section including formal definitions and further

discussions.
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Another line of works develops temporal GNNs that directly incorporate temporal

information and temporal evolution during the graph information aggregation process.

For example:

o TARGCN [44] explores the temporal context of each entity to learn its entity rep-

resentation and encodes temporal information by learning representations based on
time differences between the timestamp of interest and the timestamps of entity’s

temporal neighbors

1
b =o| 3 WS (b, (i, 1) |, ) | - (2.32)
(ej,mjst5)ENe, 17 7€
Y(ti,t5) = d%[COS((Aﬂ(ti — ;) + B1), ..., cos(wa, (ti — t;) + ¢q,))] is a time difference

encoder taken from [165], where d; is the dimension of time representations. || means
concatenation operation. f(-) is a feed-forward neural network. N, C AN, is the
sampled version of the complete temporal neighborhood N.,. The probability of
each neighbor being sampled is exp(—|t; — tj\)/Z(emytk)eN%emp(_m_tkD. Sampling
neighborhood helps TARGCN to focus on the temporal context near the timestamp of
interest and avoid paying too much attention to the redundant temporal information.
TARGCOCN has high parameter efficiency by achieving strong performance with much
fewer parameters compared with TeMP [161] and T-GAP [86]. It uses DistMult as

its decoder.

o xERTE [70] proposes a temporal GNN based on the temporal relational atten-

tion mechanism to solve link prediction on TKGs. Given a link prediction query
(8g:7gs 7, tq)m, xERTE iteratively expands an inference graph for L times centered
on the temporal node (s,,t,). In each iteration, xERTE extracts the prior temporal
neighbors from the temporal nodes in the inference graph and forms edges between
each temporal node and its sampled neighbors. Each extracted prior neighbor is
taken from a historical fact that connects the entity of the temporal node and hap-
pens before the timestamp of the temporal node. After the construction of inference
graph, XERTE develops a TRGA GNN-based layer that updates node representa-
tions as follows. Take node v as an example. XERTE computes the attention score

associated with each edge from temporal node u = (ey,t,) to v = (e,,t,) in the

ITHere, tq is the timestamp of interest, similar to ¢; in the introduction of previous methods.
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inference graph as

+1 k
a51+1}(k> _ eXp[gav,u( ))l+1 7
7 Zweﬁv Zz:l exp(av,w (Z>) (233)
where al% (k) = Wi, (b [[hly [, b ) Wi, (bl b, [n!).

N, is all the prior neighbors of temporal node v. W, € R¥™ 4 and Wi, € R xd
are two trainable weight matrices. K is the number of all relations between the
entities of v and u during the inference graph construction. The node representation
of v used in TRGA is initialized as hY = h,, ||h;,, which also applies for node u.
h., € R% and h;, € R% denote the entity and timestamp representations of e, and

t,, respectively. With the attention scores, xERTE aggregates information for v

hit' =0 (W’ (vhfj +(1=7) > fj ol (k)b + bl)) . (2.34)
ueN, k=1

W e RY" > ig a weight matrix and b' € R? is a trainable weight vector. v is a

hyperparameter. After L layers of TRGA, xERTE aggregates the attention scores

of the edges to generate temporal node attention scores and further computes entity

attention scores by summing over all the nodes containing them. The link prediction

results are decided by these entity scores, with higher scores leading to higher rankings

for the corresponding entities

For the discussion of other TKG modeling methods based on temporal GNNs, please
refer to the following surveys [17, 155, [18].

Other Methods

Apart from the two types of mainstream methods mentioned above, there are other ap-

proaches for KRL on TKGs. We discuss several representatives here.

« CyGNet [180] proposes a copy-generation framework to solve link prediction on
TKGs. To predict a fact, CyGNet first operates in the copy mode, calculating prob-
abilities for the object entities that have previously appeared with the link prediction
query’s subject and relation in the graph history. It then switches to the generation
mode, computing probabilities for all candidate entities in the complete entity set.
Finally, CyGNet combines the probability distributions from both modes to deter-

mine the final scores for fact inference. The probability generation process utilizes
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multi-layer perceptrons (MLPs) on the embedding vector representations of entities,

relations, and timestamps.

TITer [138] is a reinforcement learning-based method for TKG link prediction. It
searches for the ground truth missing entity with an agent traversing in the historical
graph prior to the prediction timestamp. During graph traversal, the agent travels
among the temporal nodes (defined same as in xERTE, i.e., (entity, timestamp)
pairs). Every step of transition refers to travelling from one temporal node u =
(€u,ty) to another temporal node v = (e,,t,) along the temporal edge between u
and v where v is a prior neighbor of u defined same as in the inference graph of
xERTE. Given a link prediction query (sq, 74, 7,%,), the agent starts traversal from
(s4:tq) and do L steps of state transition. The entity of the node where the agent
lands ultimately is taken as the prediction answer. TITer’s agent follows a policy
based on modeling the transition probabilities at each traversal step. Transition
probabilities are computed using MLPs on the embedding vector representations of
entities, relations and time differences, along with the path information encoded by
an LSTM.

ECOLA [72] enhances temporal knowledge embedding with temporally relevant tex-
tual information. For each fact in a TKG, ECOLA retrieves its relevant textual
description from backend knowledge bases and concatenates it with the fact to cre-
ate a textual input sequence. This sequence is then fed into a BERT [38] model
for fine-tuning. The BERT model is trained on TKG facts using the knowledge-text
prediction (KTP) task, a modified version of MLM. Given a fact quadruple and its
corresponding textual description, KTP randomly masks some input tokens and asks
the model to predict the original tokens based on their context. Unlike MLM, KTP
specifically masks entities and relations to better align knowledge and text repre-
sentations. In addition to KTP, ECOLA optimizes knowledge representations using
a TKG score function. By combining these two training objectives, ECOLA effec-
tively incorporates textual information into knowledge representations, enhancing

the performance of previous TKG scoring functions.

CENET [167] is a TKG link prediction method that leverages historical contrastive
learning. It accounts for the impact of both historical repetitive facts and non-
historical facts. A contrastive learning framework is used to learn representations that

differentiate between historical and non-historical facts. During inference, CENET
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first determines whether the to-be-predicted facts are repeated and then computes a

probability distribution over a masked candidate entity set for link prediction.

o GenTKG [102] fine-tunes an LLM, i.e., Llama2-7B [144] for TKG link prediction.
Given a link prediction query, GenTKG retrieves related historical facts with a group
of learned temporal logical rules. An instruction text is augmented with the retrieval
result to prompt the LLM to generate the prediction answer. The reasoning power

of LLM is leveraged for answer inference.

Please refer to the following surveys [17, (155, [I8] for the introduction of more types of
KRL approaches on TKGs. In the next sections, we will discuss how to leverage the learned
TKG representations for downstream ML tasks. Same as for static KGs, we particularly
focus on two tasks on TKGs, i.e., link prediction (Section and natural language
question answering (Section .

2.5.4 Link Prediction on Temporal Knowledge Graphs

Similar to static KGs, TKGs also suffer from incompleteness. Therefore, it is also crucial to
predict unobserved facts in TKGs, i.e., TKG link prediction. TKG link prediction can be
categorized into two types: interpolated link prediction and extrapolated link prediction.
TKG interpolated link prediction is commonly referred to as TKG completion or TKG
interpolation, while TKG extrapolated link prediction is often called TKG forecasting or
TKG extrapolation. The definitions of both tasks are provided below.

Definition 14 (Temporal Knowledge Graph Interpolated Link Prediction). Assume we
have a ground truth TKG Gy that contains all the true facts, and an observed TKG G
containing all the observed facts, where Gop, C Gge. Given a link prediction query (sq, 74, 7, tq)
(or (7,74, 04, t,)) derived from a ground truth fact (sq,rq,04,tq) € Ggt\Gov, TKG interpolated
link prediction aims to predict the missing object o, (or subject s,) based on all the observed

graph information in G.

To predict a link in TKG interpolation, models can leverage the observed facts happen-
ing at any timestamp. This allows fact inference based on the evidence from the prediction

timestamp ¢, or the future.

Definition 15 (Temporal Knowledge Graph Extrapolated Link Prediction). Assume we
have a ground truth TKG G, that contains all the true facts. Given a link prediction query
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(8g:7¢, 1, tq) (o1 (7,74, 04,14)) derived from a ground truth fact (s, 1q,04,t,) € Gu, TKG
extrapolated link prediction aims to predict the missing object o, (or subject s,) based on

the ground truth graph information prior to t,, i.e., {(si,7i,0i,ti) € Gulti < t4}.

TKG extrapolation restricts models to only leveraging the facts happening before the
prediction timestamp ¢, for link inference. This setting simulates a forecasting scenario,
which is important in various applications that require future planning. The difference

between interpolated and extrapolated link prediction is illustrated with Figure [2.3]
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(a) TKG interpolation. (b) TKG extrapolation.

Figure 2.3: An example explaining the difference between TKG interpolation (Figure [2.3al)
and extrapolation (Figure . We depict the TKG as a series of snapshots. The edges
marked with dashed lines are to-be-predicted links and the ones marked with solid lines
are observed facts. The graph nodes are labeled with node IDs. In our example, TKG
interpolation asks models to predict the unobserved links in Gy, given the observed facts
along the whole time axis. By contrast, TKG extrapolation asks models to predict all the

links in G», given prior facts in Gy and G;.

As discussed in Section [2.5.3], it is common to augment the original TKG with the facts
including inverse relations. Similar to static KGs, each subject prediction query (7,7, 04, t,)
on TKGs can be rewritten as (o,,7, ', ?,t,). This allows both TKG interpolated and ex-
trapolated link prediction to be framed as object entity prediction problems. We also focus
only on predicting missing entities rather than relations. Relation and time prediction are
treated as separate problems and this thesis concentrates exclusively on entity prediction,

following most previous works on TKG link prediction.

Discussion. TKG interpolation methods typically differ from extrapolation methods in
model design. Besides, their training strategies vary as well. Extrapolation methods follow

the restriction of the forecasting setting and therefore design their models to only utilize
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Train/Valid/Test Sets Training Set Validation Set Test Set
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(a) TKG interpolation. (b) TKG extrapolation.

Figure 2.4: Difference between TKG interpolation (Figure ) and extrapolation (Figure
2.4b) in the temporal orders of train/valid/test sets.

the information prior to the link prediction queries for representation learning, while in-
terpolation methods can have access to any information stored in the observed TKG facts
for link inference. In the standard ML pipeline, models are first trained on a training
dataset, validated using a validation set to assess their performance, and then evaluated
on a test set. Due to the constraint in the forecasting scenario, the temporal order among
train/valid /test sets for interpolated and extrapolated link prediction are different. For ex-
trapolation, the maximum timestamp of the fact quadruples in the training set is smaller
than the minimum timestamp of the facts in the validation set, and the maximum times-
tamp of the facts in the validation set is smaller than the minimum timestamp of the
facts in the test set. For interpolation, all train/valid/test sets share the same time pe-
riod. Figure illustrates the difference of temporal orders among the train/valid/test
sets between TKG interpolation and extrapolation. The varying temporal orders result in
different training strategies for the methods addressing two tasks. Interpolation methods
are trained with the facts that share the same time period with test data, while extrapo-
lation methods need to generalize to the timestamps unseen in the training process during
evaluation. To enable models’ forecasting capabilities, TKG extrapolation methods simu-
late the forecasting process during training. For example, as TKG extrapolation methods,
RE-GCN and TANGO (discussed in section recurrently encode the graph informa-
tion along the time axis from the past to the prediction timestamp to model the temporal
dynamics for forecasting. Such simulation is proven effective and widely adopted in var-
ious recent works, e.g., [99, 103]. Another feasible practice to achieve forecasting is to
introduce time difference representations. Although extrapolation models cannot learn
expressive representations of the timestamps in the test set, they can learn the represen-
tations of time differences instead. Some extrapolation models combine time difference
representation learning with GNNs in order to generate expressive time-aware entity rep-
resentations at unseen timestamps during evaluation, e.g., [42]. Among all the methods
discussed in Section all the TKG score functions are interpolation methods since
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they do not consider the forecasting setting during model design. For the rest of them,
RE-GCN, TANGO, TiRGN, xERTE, CyGNet, TITer and CENET are developed for TKG
extrapolation, while TeMP and TARGCN are designed for TKG interpolation. In gen-
eral, TKG extrapolation is harder than interpolation because of the restricted amount of
available information for link inference. Therefore, in recent years, TKG extrapolation has

gained more popularity than interpolation, with increasing efforts dedicated to this topic.

Evaluation

Both TKG interpolation and extrapolation are formed as ranking tasks for evaluation.
They share the same evaluation protocol. For example, assume we want to predict the
missing object entity o, from a link prediction query (s,, 74, ?,t,), a8 TKG model is asked to
compute a score for each quadruple in {(s,, 74,0, t,)|0" € £}, where o' is a candidate entity
and can be any entity within the TKG entity set £. The candidate entities are ranked
according to the scores of their associated quadruples (e.g., if (s, ry, 04,t,) has the highest
score then o, ranks top 1). To measure the quality of ranking, two evaluation metrics,
i.,e., MRR and Hits@#k, introduced in Section [2.4.4] are widely adopted. Please refer to
Section [2.4.4] for detailed definitions. Similar to the filtering setting used in the evaluation
process of static KG link prediction, TKG link prediction also employs filtering during
evaluation. Two types of filtering settings are commonly used. The first type of filtering
is called time-unaware filtering [84], which is as same as the filtering setting proposed in
[13] for static KG link prediction. The second type of filtering is called time-aware filtering
[70]. Tt refers to removing from the entity set all the candidate entities that form ground
truth fact quadruples together with the link prediction query during ranking, where these
facts can only appear at the prediction timestamp of the query ¢, (except the test fact
quadruple of interest). Time-aware filtering is more reasonable than time-unaware filtering
in the context of TKG link prediction. For example, assume we have a test fact of interest
(Albert Einstein, study at, University of Zurich, 1902) in the test set, and we derive an
object prediction query (Albert Einstein, study at, 7, 1902) from this quadruple where the
query time is 1902. Additionally, we have another fact (Albert Einstein, study at, ETH
Zurich, 1896) in the test set. According to the time-unaware filtering setting, ETH Zurich
will be filtered because it appears in the test set. However, it is unreasonable because
Albert Einstein did not study at ETH Zurich in 1902. In practice, a lot of related works
provide both time-aware and time-unaware filtered results, in order to make the evaluation

more comprehensive.
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2.5.5 Natural Language Question Answering on Temporal Knowl-

edge Graphs

Following [126], natural language question answering on TKGs (TKGQA) can be defined

as

Definition 16 (Question Answering on Temporal Knowledge Graphs). Assume we have
an underlying TKG G C € x R x &€ X T. Given a natural language question q, annotated
entities and timestamps (or time periods) existing in q (there can be no annotated entity

or time constraint), TKGQA aims to find the entity e, € € ort, € T that answer q.

Natural language questions in TKGQA are proposed based on the facts in the underly-
ing TKG, meaning that all the TKGQA questions are answerable if a model can perform
perfect reasoning over the TKG and no additional information source is needed. Similar
to KGQA on static KGs, TKGQA also does not provide the relation types for models.
Models have to understand the natural language questions for answer inference. Besides,
one key difference between KGQA and TKGQA is that TKGQA requires models to have
the ability of temporal reasoning. This poses a great challenge to previous works on TKG
KRL and KGQA since they are not capable of either natural language understanding or
temporal reasoning.

Mainstream works on TKGQA can also be divided into semantic parsing-based and
TKG embedding-based methods [136]. Different from the semantic parsing-based methods
of KGQA, in the context of TKGQA, such methods (e.g., [80, 40, 30]) consider temporal
operators during the parsing process to enable temporal reasoning. However, most of them
still carry over the drawbacks of the semantic parsing methods in non-temporal KGQA,
such as the need for costly logic form annotations and the requirement of complete TKGs
for accurate predictions. By contrast, based on the success of KG embedding-based KGQA
methods, various recent TKGQA models leverage TKG representations learned from KRL
approaches to enable embedding-based TKGQA. Here we discuss several classic embedding-
based TKGQA methods

o CRONKGQA [126] is the extension of EmbedKGQA [127]. It consists of three mod-
ules: (1) the KRL module (TKG embedding module) trains entity/relation/time rep-
resentations over the fact quadruples in the underlying TKG by using the TComplEx
[91] score function; (2) the question representation module enables natural language

understanding by leveraging a pre-trained BERT LM [38] together with projection
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layers to encode each natural language question ¢ into two separate low-dimensional
question representations, i.e., hgm for answering entities and hf]ime for answering the
timestamps; (3) the answer selection module selects the predicted answer e,,s Or £

with a score function in the same form as TComplEx

Cans = Argmax, s Re ((hs, he™ h,, ht)) h,, b, h,, h; € C,

o , (2.35)
tans = argmax, crRe ((h, hi™ by, hy))  hg, hi™ by, hy € €7,

Similar to the LM-encoded question representation in EmbedKGQA, entity-specific
and time-specific question representations (h;nt and hf;me) have been transformed into
complex-valued vectors where each element is a complex number, as implemented in
ComplEx [145]. d is the dimension size. o’ € £ and t' € T are an candidate entity
and an candidate timestamp as the answer to the question, respectively. Re(-) is the
function taking the real part of its input. h, and h, are the complex conjugate of
h, and h,, respectively. (-,-,-,-) is a function that first computes the element-wise

product of four input vectors, and then does a sum over all elements.

EXAQT [81] consists of two stages. In the first stage, it first detects the entities
in a natural language question and picks out the facts containing them from the
underlying KG to form a subgraph corresponding to the question by using Group
Steiner Trees (GST) [39]. Then a BERT LM [38] is employed to identify additional
question-related temporal facts. The identified facts are included into the subgraph
to output an answer graph for the next stage. In the second stage, EXAQT first
summarizes four temporal categories for natural language questions, i.e., EXPLICIT,
IMPLICIT, TEMPORAL ANSWER and ORDINAIJ[®| and tags them with their
corresponding labels. It then finds the temporal signals in each question following the
policy specified in [79]. After that, EXAQT encodes the temporal categories as well
as the temporal signals into multi-hot vectors. The textual information of a question
is encoded by an LSTM and further concatenated with multi-hot vectors to generate
an initialization of question representation. The entity representations are initialized
with Wikipedia2Vec [168] and updated with an L layer time-aware relational GNN.
To compute the time-aware representation of an entity within the answer graph,
in each layer, EXAQT leverages a sinusoidal position encoding function [I78] to

represent the temporal information of the temporal facts related to this entity and

18Please refer to [81] for a detailed explanation of categorization.
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uses another LSTM to aggregate over all related temporal facts. An attention module
is further designed to differentiate the contributions of repeated facts during the
update of entity representations. The predicted answer to each question is selected
from the elements (entities or timestamps) in the answer graph by computing element
probabilities with an MLP.

TempoQR [108] encodes a natural language question into a sequence of token rep-
resentations with a pre-trained BERT [38]. The representations of the tokens linked
with entities are first substituted by the TKG representations from a TComplEx [91]
model pre-trained on the underlying TKG. To retrieve the time scope associated with
the question, TempoQR proposes two strategies: hard supervison and soft supervi-
sion. Hard supervision selects all the facts involving annotated question entities and
collects the timestamps of them. The maximum and minimum timestamps among
them lead to the time scope of the question. Soft supervision leverages the learned
entity representations from TComplEx and recomputes the approximate timestamp
representations specifying the time scope (which consists of a start time representa-
tion and an end time representation) based on interchanged question entities. The
representations of time scope are added on the representations of the entity tokens
to achieve temporal positional encoding. And the updated sequence of token repre-
sentations is fed into an L-layer Transformer [149], where the output serves as the
final question representation. The TComplEx score function is finally used as a score

function for answer prediction.

Many recent TKGQA methods are proposed based on these works. Please refer to this

survey [136] for the introduction of them.

Evaluation

Same as KGQA, TKGQA can also be framed as a ranking task. For each natural language

question ¢ together with its annotated entities and timestamps, a TKGQA model is asked

to compute a score for any candidate entity o' € £ or candidate timestamp ¢ € 7. An

ideal TKGQA model should assign the highest score for the ground truth answer entity or
timestamp. Thus, MRR and Hits@k are also used to evaluate models on TKGQA.
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Limitations of Previous TKGQA

Previous TKGQA have limitations, which we discuss from three perspectives: task setting,

datasets and models.

Perspective of Task Setting. Previous related works aim to develop TKGQA systems
that answer temporal questions based on the facts from a fixed time period, where an un-
derlying TKG spanning this period is observable and can be fully used for answer inference.
However, in the real world, forecasting is also a common and critical situation. For exam-
ple, predicting potential political shifts around the globe, such as the rise of authoritarian
regimes and the outbreak of conflicts, is highly valuable because this allows governments
and international organizations to take preventive measures to address emerging threats
and promote long-term peacekeeping. To this end, it is crucial to develop TKGQA systems
that are capable of answering questions about the future based on historical knowledge.
In Chapter [0, we will thoroughly discuss how we propose a new task of TKGQA, namely
forecasting TKGQA, to address the above-mentioned limitation. In forecasting TKGQA,
every natural language question can be answered only when models are capable of future
inference. We also show with comprehensive experiments that the TKGQA systems for
non-forecasting TKGQA are not suitable for answering forecasting questions, demonstrat-

ing the challenge of this new task.

Perspective of Datasets. The earliest datasets for temporal KGQA are TEMPQUESTIONS
[79] and TIMEQUESTIONS [81]. Although all the questions in them are temporal questions,
their underlying KGs are not temporal KGs. To solve this problem, CRONQUESTIONS
[126], MuLTiTQ [31] and MusTQ [I77] are proposed, taking two TKGs, i.e., Wikidata
[152] and ICEWS [58], as their underlying knowledge bases, respectively. One limitation
of CRONQUESTIONS, MULTITQ and MusTQ is that they are not built for the forecasting
scenario. TKGQA models can access the ground truth fact from the underlying TKG that
directly indicates the answer to each temporal question. For example, the TKG facts from
2003, including (Stephen Robert Jordan, member of sports team, Manchester City, 2003),
are all observable to answer the question Which team was Stephen Robert Jordan part of
in 2003%. This means that as long as the QA model can perform extensive search on
the underlying TKG based on an accurate understanding of the natural language ques-
tion, they can find the ground truth answer. By contrast, in the forecasting scenario,

QA systems should be evaluated on their ability to predict the future, meaning that they
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should not be able to directly retrieve answers from the observed facts in the underlying
TKG. This requires new dedicated datasets to simulate the forecasting setting to drive
the development of TKGQA models for future predictions. Another point worth noting is
that previous TKGQA datasets only contain entity and time prediction questions that are
closely bounded to the task of link prediction over TKGs, greatly suppressing the diversity
of question types. Meanwhile, in a more general domain of reading comprehension QA,
yes-no questions and multiple-choice questions have been extensively studied, e.g., [83]. To
this end, we propose a new dataset, i.e., FORECASTTKGQUESTIONS, that is exclusively
developed for the new task of forecasting TKGQA. FORECASTTKGQUESTIONS not only
contains entity prediction questions, it also contains yes-no type questions and multiple-
choice questions. It is large-scale, including 717k forecasting questions, and is around 1.7

times as large as CRONQUESTIONS. We give detailed discussions about it in Chapter [6]

Perspective of Models. Previous TKGQA models are not designed for answering fore-
casting questions. For example, several TKGQA methods leverage TComplEx as the back-
end to learn entity representations for answer inference (e.g., CRONKGQA and TempoQR).
Since TComplEx is a TKG score function developed for interpolated link prediction, the
TKG embedding vectors provided by it are not useful in the forecasting setting. Therefore,
it is important to develop specific modules that equip TKGQA systems with forecasting
capabilities. In Chapter [0, we discuss the design of a new model, FORECASTTKGQA, tai-
lored for the forecasting setting. FORECASTTKGQA utilizes a TKG extrapolation module

to enable the whole system to achieve future prediction.

2.5.6 Inductive Representation Learning on Temporal Knowl-

edge Graphs

Same as static KGs, TKGs are also ever-evolving, with new entities and relations constantly
emerging. Inductive learning on TKGs refers to the ability of a model in making inferences
about the entities and relations unseen in the training data, in particular in a temporal
context. Building on inductive learning over static KGs (discussed in Section [2.4.6), TKGs
introduce additional challenges due to the dynamic nature of temporal data. As TKGs
capture evolving relationships among entities over time, the ability to generalize from
limited data becomes even more critical. Inductive learning on TKGs must handle the

introduction of new entities and relations while leveraging the temporal information to
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make accurate predictions, making it more challenging than inductive learning on static
KGs.

Compared with inductive representation learning on static KGs, there are only a limited
number of works studying how to equip KRL methods on TKGs with inductive capabil-
ities. In this section, we give an introduction of the current advancement of inductive
representation learning on TKGs. Following Section [2.4.6] we divide the rest of this sec-
tion into three parts: the first focuses on inductive learning for unseen entities, the second
on unseen relations, and the third discusses addressing both unseen entities and relations
simultaneously. We also follow previous works of inductive KG representation learning and

focus exclusively on the problem of inductive TKG link prediction.

Inductive Learning on Temporal Knowledge Graph Entities

In this thesis, we present the first approach of inductive entity representation learning on
TKGs, i.e., FILT [46]. We give a brief introduction of it in this section to lay a foundation
for the discussion about follow-up works. More details about [46] can be found in Chapter
Bl As the first work studying inductive learning on unseen entities, FILT is inspired by
GEN [7] (an inductive entity representation learning method discussed in Section
and formulates TKG inductive learning into a meta-learning task, i.e., TKG few-shot out-
of-graph (OOG) link prediction. TKG few-shot OOG link prediction is based on TKG
interpolation and thus does not involve future forecasting. It is also a task combining the
SI and FI settings where newly-emerged entities can be connected to either seen entities

or other unseen entities. We can define TKG few-shot OOG link prediction as

Definition 17 (Temporal Knowledge Graph Few-Shot Out-of-Graph Link Prediction).
Given an observed background TKG Gyaer, C Epack X R X Evack X T, an unseen entity €' is
an entity ¢’ € £, where &' NEpyer, = 0. Assume we further observe K associated quadruples
(support set) for each unseen entity €' in the form of (¢/,r é t) (or (€ r e t)), where
€€ (Epuek UE), r€R, t €T, and K is a small number denoting the shot size, e.g., 1
or 3. TKG few-shot out-of-graph link prediction aims to predict the missing entities from
the link prediction queries (e',14,7,t,) (or (?,ry, €, t,)) derived from unobserved quadruples

(query set) containing unseen entities, where v € R, t, € T.

FILT designs a meta-learning framework to transfer knowledge from seen entities to
unseen entities. It employs episodic training [I51] to train a time-aware GNN-based model

to "learn how to learn" entity representations of new-emerged entities based on observed
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few-shot associated facts. To enhance model’s inductive power, FILT also leverages entity
concepts provided by the temporal knowledge bases. FILT learns concept representations
and augments GNN’s output with them to inject conceptual knowledge into entity rep-
resentations. Although few-shot entities are observed in only a few, i.e., K, facts when
they are added into a knowledge base, their concepts are pre-defined. To this end, concep-
tual knowledge can serve as a strong information source for inductive entity representation
learning. We comprehensively discuss FILT in Chapter [3| Please refer to the correspond-
ing chapter for more details, including the model structure of FILT and how the entity
concepts are defined and encoded.

To better solve TKG few-shot OOG link prediction, we also present another method,
i.e., FITCARL [47], in this thesis. FITCARL improves inductive entity representation
learning with confidence-augmented RL. We train an RL-based model with episodic train-
ing to enable it to search for the link prediction answer entity given only a few observed
facts associated with few-shot entities. FITCARL employs a Transformer [I149] with time-
aware positional encoding to capture few-shot information. It follows a learned policy for
graph traversal among TKG entities, guided by a concept regularizer leveraging entity con-
cepts introduced in [46]. One challenge of graph traversal under the few-shot setting is that
when the agent lands on a few-shot entity, the action space will be highly limited because
only K edges are connected to this entity. This would potentially lead to unreasonable
traversal paths. To address this problem, we introduce a module that computes the con-
fidence of each candidate action during graph traversal, integrating it into the policy for
action selection. Please refer to Chapter 4| for more details of FITCARL, where we hold a
comprehensive discussion about it.

A concurrent work [I58] draws attention to inductive learning over unseen entities in
the setting of TKG extrapolation. It formulates a few-shot learning task named as few-shot

TKG reasoning

Definition 18 (Few-Shot Temporal Knowledge Graph Reasoning). Given a TKG G C
EXRXxEXT, an unseen entity e’ € &' (£'NE =0) is an entity that joins G at ' € T,
where the minimum timestamp in T’ is greater than the maximum timestamp in T . Assume
we further observe the first K associated fact quadruples {(¢',rs, &;,t;) or (€, i, €/, t;) 5,
(support set) for each unseen entity €', where & € (EUE'), r, € R, t; € T', and K is a
small number denoting the shot size, e.q., 1 or 3. Few-shot TKG reasoning aims to predict
the missing entities from the link prediction queries (e',14,7,t,) (or (7,74, €, t,)) derived

from unobserved quadruples (query set) containing unseen entities, where r, € R, t, € T'.
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To solve few-shot TKG reasoning, a model named MetaTKGR is proposed in [158].
MetaTKGR first designs a GNN-based attentional graph encoder that aggregates historical
information related to each unseen entity. Multi-hop temporal neighbors are considered to
overcome the data scarcity problem brought by the few-shot setting. MetaTKGR utilizes
the MAML [50] framework for meta-learning, where an inner loop updates the parameters
using the support set, and an outer loop calculates the loss over the query set.

Another closely related work is MetaTKG [163]. MetaTKG is a plug-and-play approach
that enables TKG extrapolation methods to deal with newly-emerged entities. It groups
each pair of neighboring TKG snapshots and treats the pairs as meta-learning tasks. In
each pair, the snapshot at the former timestamp serves as the support set and the one at
the latter timestamp is taken as the query set. MetaTKG uses a Temporal Meta Learner
that introduces MAML into the training process, aiming to let the backbone TKG model
quickly learn the evolutionary meta-knowledge over time. It achieves enhancement of model
performance on the entities with little historical information. One point worth noting is
that MetaTKG does not involve FSL. Each new entity is not limited to having only a few
observed associated facts, which means MetaTKG may not be fully applicable in more
extreme scenarios.

Apart from these methods, SST-BERT [28] explores leveraging pre-trained LMs’ ability
of natural language understanding to enable inductive entity representation learning. It
first fine-tunes a BERT [38] model based on the facts in the background TKG. Each fact for
fine-tuning is transformed into a group of textual sentences describing the fact, including
the historical description of subject and object entities and the description of relation path
between them. The fine-tuning objective is based on the classic masked language modeling
task, but is specifically adapted by [28] to emphasize temporal expressions within the
sentences. While the fine-tuned model can be applied to relation prediction among unseen

entities, it falls short in performing entity prediction.

Inductive Learning on Temporal Knowledge Graph Relations

OAT [112] and MOST [42] are the earliest works studying inductive learning on TKG
relations. They consider the one-shot scenario, where each new relation is introduced
with only one associated fact that can be leveraged for inference. OAT first proposes a
task named one-shot link prediction on TKGs. It refers to predicting future facts related
to one-shot relations, aligning with the TKG extrapolation setting. MOST redefines the

task proposed in OAT and formulates one-shot relational learning into two separate tasks
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covering both interpolation and extrapolation settings, i.e., one-shot TKG interpolated

and extrapolated link prediction, which can be defined as

Definition 19 (One-Shot Temporal Knowledge Graph Interpolated Link Prediction).
Given an observed background TKG Gyaer € € X Ripger X E X T and a set of unseen relations
R, where R' N Rpaer, = 0. Assume we further observe only one quadruple (so,1’,00,t0)
corresponding to each unseen relation ', where r' € R, sg,00 € £. Based on (sg,1’, 00, t0)
(support quadruple) and the whole background graph Gyaer, one-shot TKG interpolated link
prediction aims to predict the missing entity of each link prediction query, i.e., (sq,7",7,t,)
or (7,1, 04,t,), derived from the unobserved quadruples (sq,1",04,t,) (query set) containing
', where s, 04 € € and ty € T .

Definition 20 (One-Shot Temporal Knowledge Graph Extrapolated Link Prediction).
Given an observed background TKG Gyaer C € X Ripger X E X T and a set of unseen relations
R’, where R' N\ Ryaer = 0. Assume we further observe only one quadruple (so,7’,00,1t0)
corresponding to each unseen relation ', where r' € R, sg,00 € £. Based on (so,1’, 00, t0)
(support quadruple) and the facts happening prior to to in the background graph Gpack,
one-shot TKG extrapolated link prediction aims to predict the missing entity of each link
prediction query, i.e., (sq,1",7,t,) or (7,1, 04,t,), derived from the unobserved quadruples

(8q:7", 04, t,) (query set) containing r', where s, 0, € €, t, € T and ty < t,,.

OAT achieves inductive learning in the extrapolation setting by using episodic training
to train an attentional GNN together with a similarity-based decoding function. The
decoding function compares the to-be-predicted links with the support facts to determine
the link prediction answer. Based on a similar training paradigm, MOST develops a
model that first extracts meta information with a time-aware graph encoder, and then
learns the meta representation of each newly-emerged relation for link inference with a
customized decoding function inspired by RotatE [I40]. Time-aware entity representations
are input into the decoding function to achieve temporal reasoning. To adapt to different
link prediction settings, MOST further develops two model variants, i.e., MOST-TA and
MOST-TD. MOST-TA learns representations for timestamps, while MOST-TD learns time
difference representations. Experimental results show that MOST-TA is more suitable for
the interpolation setting and MOST-TD better suits extrapolation.

One limitation of the FSL methods is that they require at least one observed fact related

to each unseen relation to achieve link prediction on other associated facts. In this thesis,
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we propose a zero-shot relational learning method for TKGs [41], specifically designed to

address the zero-shot scenario. We first define a zero-shot TKG forecasting task as follows

Definition 21 (Zero-Shot Temporal Knowledge Graph Forecasting). Assume we have a
ground truth TKG Gy C EXRXEXT, where R can be split into seen R, and unseen Ry,
relations (R = Rse U Runs Rse N Run = 0). Given a link prediction query (sq,7q,7,t4) (or
(0g,7¢: 7, tq)) whose query relation r, € Ry, models are asked to predict the missing object
o4 (or subject s;) based on the facts O = {(s,1i,0,t;) € Gult; < tg, 1 € Rse} containing

seen relations and happening before t,.

To solve this task, we propose a plug-and-play model named zrLLM. zrLLM first uses an
LLM, i.e., GPT—3.5|T_9], to produce enriched relation descriptions (ERDs) for TKG relations
(whether seen or unseen) based on their textual descriptions provided in TKG datasets. It
then generates relation representations by using the encoder of another LLM, i.e., T5-11B
[122]. The ERDs are input into T5-11B’s encoder and the output relation representations
can be directly implemented with traditional TKG forecasting models (e.g., TANGO [71]).
Finally, zrLLM uses a relation history learner to capture historical relation patterns based
on LLM-empowered relation representations. Through these steps, zrLLM aligns the natu-
ral language space of LLMs with the embedding space of TKG forecasting models, instead
of relying on the models to learn relation representations purely from the observed graph
contexts. Zero-shot relations can be represented using LLM-enhanced representations that
incorporate semantic information, even without any observed associated facts. For more
details of zrLLM, please refer to Chapter [5

Inductive Learning on Knowledge Graph Entities & Relations

Recently, there is one preliminary work, i.e., MTKGE [29], studying how to address both
unseen entities and relations simultaneously on TKGs. MTKGE deals with unseen relations
by using two GNN-based modules to capture information from Relative Position Pattern
Graphs (RPPGs) and Temporal Sequence Pattern Graph (TSPGs). An RPPG treats
relations as nodes and labels the edges with the relative position features, which is the
same as the multi-relational meta-graphs of fundamental relation interactions proposed
in ULTRA[55] (as discussed in Section 2.4.6). A TSPG also treats relations as nodes,
but focus on the temporal order between a pair of relations. Since each fact in TKG

has a timestamp label, the timestamps of two facts connected by the same entity can

Yhttps:/ /platform.openai.com/docs/model-index-for-researchers
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indicate the temporal order of these facts, and it also specifies the temporal order of
their corresponding relations. TSPG labels edges with three meta-time relations, i.e.,
forward (source node happens before destination node), backward (source node happens
after destination node) and meantime (source and destination nodes happen together).
For unseen entities, MTKGE initializes their representations by utilizing their surrounding
relations in the original TKG. The meta information learned from RPPGs and TSPGs
helps to enrich unseen entities with reasonable characters. Finally, MTKGE proposes an
L-layer multi-relational GNN to further update representations for entities, relations and
timestamps. A decoding function (can be any TKG score function) is used to compute
plausibility scores of temporal facts. One limitation of MTKGE is that it requires a support
graph containing a substantial number of data examples related to the unseen entities and
relations to learn expressive representations, which is not always available in real-world
scenarios. Further efforts should be made to generalize MTKGE to the few-shot, or even
zero-shot, setting.

We have introduced a number of important works within the field of inductive repre-
sentation learning on TKGs. For discussions of more related works, please refer to the

following surveys [155, [1§].

Symbolic Approaches for Inductive Learning on Knowledge Graphs.

Symbolic TKG relational learning approaches (such as TLogic [106]) are naturally capable
of inductive learning on unseen entities because they learn entity-agnostic temporal rules
based on TKG relations. Same as the symbolic KG reasoning methods, their inductive
capability is only shown on unseen entities because of the strong bound between relations
and exploited symbolic rules. As this thesis lays emphasis on KRL-based approaches, we
will not go into more details about symbolic approaches. Please refer to the following

surveys for a better understanding [17], [I55].
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Abstract

Knowledge graph completion (KGC) aims to predict the missing links among knowledge graph
(KG) entities. Though various methods have been developed for KGC, most of them can only deal
with the KG entities seen in the training set and cannot perform well in predicting links concerning
novel entities in the test set. Similar problem exists in temporal knowledge graphs (TKGs), and no
previous temporal knowledge graph completion (TKGC) method is developed for modeling newly-
emerged entities. Compared to KGs, TKGs require temporal reasoning techniques for modeling,
which naturally increases the difficulty in dealing with novel, yet unseen entities. In this work, we
focus on the inductive learning of unseen entities’ representations on TKGs. We propose a few-shot
out-of-graph (OOG) link prediction task for TKGs, where we predict the missing entities from
the links concerning unseen entities by employing a meta-learning framework and utilizing the
meta-information provided by only few edges associated with each unseen entity. We construct
three new datasets for TKG few-shot OOG link prediction, and we propose a model that mines
the concept-aware information among entities. Experimental results show that our model achieves
superior performance on all three datasets and our concept-aware modeling component demonstrates
a strong effect.

1. Introduction

Knowledge graphs (KGs) store factual information in the form of triples, i.e., (s, r,0), where s,
o, r denote the subject entity, the object entity, and the relation between them, respectively. KGs
have already been widely used in a series of downstream tasks, e.g., question answering [Saxena
et al., 2020, Ding et al., 2022b] and recommender systems [Wang et al., 2019c,a]. While KG
triples are capable of representing facts, they cannot express their time validity. World knowledge is
ever-changing, which means many facts have their own time validity, e.g., the fact (Angela Merkel,
is chancellor of, Germany) is valid only before (Olaf Scholz, is chancellor of, Germany). To this
end, temporal knowledge graphs (TKGs) are introduced to consider the time validity of facts by
representing every fact with a quadruple, i.e., (s,r,0,t), where ¢ denotes the time when the fact is
valid.

+. Equal contribution.
T. Corresponding author.
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KGs and TKGs are known to suffer from incompleteness [Min et al., 2013, Leblay and Chekol,
2018]. Therefore, various methods have been developed for automatically completing KGs [Nickel
et al., 2011, Bordes et al., 2013, Trouillon et al., 2016, Sun et al., 2019, Guo and Kok, 2021b]
and TKGs [Tresp et al., 2015, Leblay and Chekol, 2018, Ma et al., 2019, Jung et al., 2021, Ding
et al., 2021]. Though these methods achieve superior performance on knowledge graph completion
(KGC) and temporal knowledge graph completion (TKGC), they have their limitations. In real-world
scenarios, KGs and TKGs evolve over time, indicating that new (unseen) entities may emerge
constantly [Shi and Weninger, 2018]. Besides, real-world KGs exhibit long-tail distributions, where a
large portion of entities only have few edges [Baek et al., 2020]. This also applies to TKGs, e.g., the
entity frequency distribution of ICEWS datasets (Appendix A). Traditional KGC and TKGC methods
learn the representations of the observed (seen) entities, and perform link prediction over a fixed
set of entities. To learn the optimal representations of the observed entities, these methods require
a large number of training examples associated with each of them. [Baek et al., 2020] shows that
traditional KGC methods show poor performance when they are used to predict the links concerning
newly-emerged, yet unseen entities. In our work, we also observe that traditional TKGC methods
share the same problem (Section 5.3).

To tackle the limitations of traditional TKGC methods, we propose the TKG few-shot out-of-
graph (OOG) link prediction task and a TKG reasoning model for better learning the inductive
representations of newly-emerged entities in TKGs. Inspired by recent work that mines shared
concepts of stocks for improving stock prediction [Li et al., 2020, Xu et al., 2021b], we devise a
module, taking advantage of the entity concepts provided by the temporal knowledge bases. The
contribution of our work is three-folded:

* We propose the TKG few-shot out-of-graph (OOG) link prediction task. To better learn the
inductive representations of unseen entities and predict their links, we propose a meta-learning-
based model. To the best of our knowledge, this is the first work aiming to improve the link
prediction performance concerning unseen entities in TKGs.

* We extract the entity concepts from the temporal knowledge bases and take them as additional
information to boost our model performance. We design an effective module to learn concept-
aware information. The experimental results show that introducing such information helps to
learn better representations for unseen entities in the inductive setting.

* We propose three new datasets for TKG few-shot OOG link prediction, i.e., ICEWS14-O0G,
ICEWS18-0O0G and ICEWS0515-O0G. We compare our model with several baseline methods.
Experimental results show that our model outperforms all the baselines on all three datasets.

2. Related Work

Knowledge graph embedding methods. Knowledge graph embedding (KGE) methods can be
split into two categories. Some methods design scoring functions to compute the plausibility scores
of KG facts [Bordes et al., 2013, Trouillon et al., 2016, Sun et al., 2019, Guo and Kok, 2021b], while
other KGE methods employ neural-based structures, e.g., graph neural networks (GNNs), to better
capture the structural dependencies of KGs [Schlichtkrull et al., 2018, Vashishth et al., 2020, Yu
et al., 2021]. By combining neural-based graph encoders with KG scoring functions, these methods
achieve superior performance in KG reasoning tasks.
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Temporal knowledge graph embedding methods. To deal with the temporal constraints in TKG
facts, two lines of temporal knowledge graph embedding (TKGE) methods have been developed.
The first line of methods designs novel time-aware scoring functions for characterizing extra time
information [Leblay and Chekol, 2018, Ma et al., 2019, Lacroix et al., 2020, Sadeghian et al., 2021,
Han et al., 2020a, 2021c]. The second line of methods models temporal information by employing
neural structures, e.g., GNNs and recurrent models. [Han et al., 2021a, Jung et al., 2021, Ding et al.,
2021, Han et al., 2020b, Sun et al., 2021] sample every entity’s temporal neighbors and use GNNs to
learn time-aware representations of them. [Wu et al., 2020] and [Han et al., 2021b] model structural
information with GNNs, and they achieve temporal reasoning by utilizing a gated recurrent unit [Cho
et al., 2014] and a neural ordinary differential equation [Chen et al., 2018], respectively.

Inductive learning on knowledge graphs. Traditional KGE and TKGE methods require a large
number of training examples to learn entity representations. However, in real-world scenarios, KGs
and TKGs are ever-evolving, and they exhibit long-tail distributions. New entities and relations
emerge and a huge portion of them only have very few associated facts, thus causing traditional
methods unable to learn optimal representations. To alleviate this problem, a line of work [Xiong et al.,
2018, Chen et al., 2019, Sheng et al., 2020, Mirtaheri et al., 2021, Ding et al., 2022a] tries to employ
meta-learning to learn inductive representations of unseen KG (or TKG) relations. Nevertheless,
they are unable to deal with novel entities. Several methods try to deal with unseen (out-of-graph)
entities in an inductive setting [Hamaguchi et al., 2017, Wang et al., 2019b, He et al., 2020]. They
first learn representations of seen entities, and then use an auxiliary set to transfer knowledge from
seen to unseen entities during inference. [Baek et al., 2020] proposes a more realistic task: few-shot
out-of-graph (OOG) link prediction, where the links among unseen entities are also considered during
evaluation and the representation of every unseen entity can only be derived from very few (number
of shot size) edges. Baek et al. simulate the unseen entities in the training phase and introduce
meta-learning for learning unseen entities’ representations. Based on it, [Zhang et al., 2021] proposes
a model using hyper-relation features to improve performance on few-shot OOG link prediction.
Another series of work tries to include external information of entities, e.g., textual descriptions, to
solve this problem [Xie et al., 2016, Wang et al., 2019d] and it turns out to be effective in modeling
unseen entities. Though there exist various methods dealing with OOG unseen entities in KGs, there
is still no method specifically designed to embed unseen entities inductively for TKGs.

3. Preliminaries and Task Formulation

Entity concepts in temporal knowledge graphs. Entity concepts describe the characteristics of
KG entities. They are manually defined by humans and assigned to every KG entity. In the ICEWS
database [Boschee et al., 2015], entities belong to several sectors, e.g., Government, Executive Office.
Each entity’s sectors are specified in the ICEWS weekly event data'. We treat the sectors of an entity
as its concepts and learn concept representations as additional information. We observe that some
region entities in the ICEWS database, e.g., South Korea and North America, have no specified
sectors. We manually assign a new sector Region to them. We ensure that every entity has its own
sectors. More details about concept extraction is presented in Appendix F.

Task formulation. We first give the definition of a temporal knowledge graph, then we formulate
the TKG few-shot out-of-graph link prediction task.

1. https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi: 10.7910/DVN/QI2T9A
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Definition 1 (Temporal Knowledge Graph (TKG)). Let £, R and T denote a finite set of entities,
relations and timestamps, respectively. A temporal knowledge graph (TKG) G can be taken as a
finite set of TKG facts represented by their associated quadruples, i.e., G = {(s,7,0,t)|s,0 € E,r €
RpEeETICEXRXEXT.

Definition 2 (Temporal Knowledge Graph Few-Shot Out-of-Graph Link Prediction). Given an
observed background TKG Gpack € Epack X R X Epack X T, an unseen entity ¢’ is an entity e’ € &,
where £ N Epack = (0. Assume we further observe K associated quadruples for each unseen entity ¢’
in the form of (¢/,r,¢é,t) (or (€,r,€',t)), where € € (Epaek UE'), 7 € R, t € T, and K is a small
number denoting the shot size, e.g., 1 or 3. TKG few-shot out-of-graph link prediction aims to
predict the missing entities from the link prediction queries (€', 4, ?,t,) (or (7,74, €, t,)) derived
from unobserved quadruples containing unseen entities, where r, € R, t, € T.

We further formulate the TKG few-shot OOG link prediction task into a meta-learning problem.
ForaTKG G C &€ x R x £ x T, we first select a group of entities £’, where each entity’s number
of associated quadruples is between a lower and a higher threshold. We aim to pick out the entities
that are not frequently mentioned in TKG facts since newly-emerged entities normally are coupled
with only several edges. We randomly split these entities into three groups &/ ... iains Emeta-valid
and &) e~ FOr each group, we treat the union of all the quadruples associated to this group’s
entities as the corresponding meta-learning set, e.g., the meta-training set Tneta-train 1S formulated
as {(¢/,r, e, t)lee E,r e R, € €& urrainst € THU{(E,1, € t)|ecEr €R,€ €& iatrainst €
T}. We ensure that there exists no link between every two of the meta-learning sets. The associated
quadruples of the rest entities form a background graph Gpack C Epack X R X Epack X T, wWhere
E' N&pack = 0 and € = (Epack U £'). We take the meta-training entities &/ .., i, @S simulated
unseen entities and try to learn how to transfer knowledge from seen entities Epac to them during
meta-training. The entities in £ .., \iq A1d Eeaese ar€ real unseen entities that are used to evaluate
the model performance.

Based on [Baek et al., 2020], we define a meta-training task 71" as follows. In each task T', we first
randomly sample N simulated unseen entities E7 from &/, .in- Then we randomly select K associ-
ated quadruples for each e’ € & as its support quadruples Ser = {(e’, 74, &;,t;) or (&;, 74, €, t:) Y,
where K is the shot size and €; € (Epack U E’). The rest of €’’s quadruples are taken as its query
quadruples Q. = {(¢/,r;,&;,t;) or (é;,r;,¢€, tl)}lj\i‘e]/{ 41> Where M, denotes the number of e’’s
associated quadruples in Tyeta-train and €; € (Epack U E'). For every meta-training task 7', the aim
of TKG few-shot OOG link prediction is to simultaneously predict the missing entities from the
link prediction queries derived from the query quadruples associated to all the entities from Ep,
e.g., (¢/,r,7,t;) or (?,r;,€ ;). In this way, we simulate the situation that we simultaneously
observe a bunch of unseen entities and each of them has only few edges, which is similar to how
emerging entities appear in temporal knowledge bases. After meta-training, we validate our model
on a meta-validation set T petavalia and test our model on a meta-test set Tpyega test, Where they contain
all the quadruples associated to the entities in £ ., vaig A0 Eferaiest- TESPectively. We do not sample
N entities during meta-validation and meta-test. Instead, we treat all the entities in £ .., \.iq (OF
&} etatest) @S appearing at the same time. For a better understanding, we present Figure 5 to illustrate
how we formulate the TKG few-shot OOG link prediction task into a meta-learning problem. We
also discuss the difference between our proposed task and traditional TKGC in Appendix D.

We summarize the challenge of TKG few-shot OOG link prediction as follows: (1) TKG
reasoning models are asked to predict the links concerning the newly-emerged entities that are

completely unseen during the training process; (2) Only a small number (K) of edges associated with
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each newly-emerged entity are observable to support predicting the unobserved links concerning this
entity.

4. Our Method

Entity Representation Updated Entity Representation

L
T ] ] L]
l Query Subject Query Object
&

Concept Modeling 1 Time Difference-Based

- > — .
Component Upper Branch © Graph Encoder ® Score Function — Score
| T Query Relation
d2  Lower Branch

Figure 1: Model structure of FILT. Assume we have an unseen entity ¢/, and we want to predict
a link corresponding to (€', 74, é;,t;) € Q.. We derive the concept representations in the concept
modeling component and use a time difference-based graph encoder for learning ¢”’s time-aware
representation. We take the representations of r; and €; to compute the plausibility score of the link.

We propose a model dealing with few-shot inductive learning on TKGs (FILT). Figure 1 shows the
model structure of FILT. It consists of three components: (1) Concept modeling component that
represents entity concepts based on seen entities’ representations; (2) Time difference-based graph
encoder that learns the contextualized representations of unseen entities; (3) KG scoring function
that computes the plausibility scores of the TKG quadruples concerning unseen entities.

4.1 Concept Modeling Component

When a new entity emerges in a TKG, though there might be only few observed associated edges,
some of its concepts, e.g., which sectors it belongs to, are already known. Since every entity concept
is shared across all the entities in this TKG, we can learn concept information from seen entities and
transfer it to newly-emerged entities.

Inspired by [Xu et al., 2021b] that mines concept-aware information for stock prediction, we
develop a concept modeling component to learn TKG entity concepts as follows. First, we pre-train
our background graph with ComplEx [Trouillon et al., 2016]. Note that only seen entities Ep,ck are
involved in the pre-training process. Assume we have a set of entity concepts C, then we initialize the
representation of every entity concept ¢ € C with its associated entities by averaging these entities’
representations:

1
hc = TAr he, (1)
Py

where h, and h, denote the representations of the concept c and the entity e, respectively. N, denotes
the neighborhood of the entity concept c. For example, if two TKG entities Angela Merkel and Xi
Jinping both belong to the concept Elite, they will be included into Elite’s neighborhood. Since we
want to distinguish the contributions of different entities to an entity concept, we then correct the
concept representations as follows:

eXp(h;: h.)

h. = aeihz‘v agt = . 2)
) e%;f o © Xeen. oxp(hl he)
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After we correct the concept representations, we compute an entity’s concept-aware information by
aggregating the representations of its associated concepts:

exp(h; h.)

hce — Cihg-, C; — . 3
e Z Be 7 /Be chece eXp(thjhe) ( )

(&3 ece

C. C C denotes the set of all concepts associated to e. As shown in Figure 1, we inject the concept-
aware information into two branches. We use two separate layers of feed forward neural network
and project the concept-aware information onto two branches. The upper branch adds the concept
information to the entity representations h, := h, + §;0(W!hS¢) and take them as the input of
our graph encoder. The lower branch processes the concept information d0(W?2hC¢) and adds it
to the entity representations after the graph aggregation step. d; and d9 are two trainable weights
deciding how much concept-aware information should be injected. W} and W? are two weight
matrices and o is an activation function. By employing the double branch structure, we not only
include the concept information into the graph encoder, but also directly infuse it into the final entity
representations for link prediction.

4.2 Time Difference-Based Graph Encoder

Link Prediction Query ¢:
(Chongwadai, Engage in negotiation, ?, 2014-07-24)

North Korea My,
,Yl /\'s

q an
09~22 queSt
2
Grand Yq

National =i Chongwadai

Party Make statement

2014-06-05
A
G
ke S‘a;i.oﬁ
Barak 3 ks
Obama q

Figure 2: The structure of the time difference-based graph encoder. Assume we have an unseen
entity Chongwadai, and we have a link prediction query (Chongwadai, Engage in negotiation,
?, 2014-07-24), given three support quadruples, i.e., (North Korea, Make an appeal or request,
Chongwadai, 2014-09-22), (Chongwadai, Make statement, Grand National Party, 2014-06-05), and
(Chongwadai, Make statement, Barak Obama, 2014-04-04). We use our graph encoder to compute
the time-aware contextualized representation of Chongwadai at 2014-07-24. For each temporal
neighbor from a support quadruple, we compute its importance according to the time difference
between 2014-07-24 and the timestamp of its corresponding support quadruple. We denote the
temporal neighbors with colored circles. The color darkness of the circles implies the importance of
the temporal neighbors during aggregation in Equation 4. The darker circle a temporal neighbor is
represented with, the more important it is, i.e., 'yg > 7; > 7;’-

To compute the contextualized representations of the unseen entities, we employ a time difference-
based graph encoder. For each unseen entity €/, assume we have a link prediction query (€', 7, ?,t,)
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derived from a query quadruple (¢’,74,¢é4,t,) € Q.. We first find its temporal neighbors from
its support quadruples S = {(¢/, 7, &;,t;) or (&, 74, €, ;) }X ., and then compute e'’s time-aware
representation at ¢, through aggregation:

exp(1/|tg — til) \
> e inent, X1/ [ty — 1)) )

h(e/,tq) = Z ’Yéwg(héinhm), 73 =
(&4,74,t:)EN

W, denotes the weight matrix in our graph encoder. Vs denotes the observed neighborhood of e’
and [Ny | = K. 72 is the importance of the ¢th temporal neighbor €; based on the time difference
between t, and ¢;. The smaller the time difference is, the more important a temporal neighbor is
during aggregation. The motivation of our time difference-based graph encoder is that we assume
the temporal neighbors that are temporally closer to the query timestamp ¢, tend to contribute more
to predicting the links at ¢,. Since we take the temporal neighbors of an entity from its incoming
edges, we transform every support quadruple whose form is (¢, 7;, &, ;) to (¢;,7; ', €/, t;), where
T ! corresponds to the inverse relation of r;. We manage to incorporate every support quadruple into
the aggregation process with this quadruple transformation. Note that if ¢, — ¢; = 0, the denominator
of the exponential term will be 0. Thus, we use a constant A to assign a value to exp(1/[t, — t;]) if t,
equals ¢;, and )\ serves as a hyperparameter that can be tuned. Figure 2 illustrates the structure of our
graph encoder with an example. After aggregation, we further infuse the concept-aware information
from the lower branch into the output of our graph encoder: hr ¢ ) := her g,y + 520(W§h§,€’ ). We
show in Section 5.4 that our simple-structured graph encoder can beat more complicated structures
in the TKG OOG link prediction task.

4.3 Parameter Learning

For each meta-training task 7, we have IV simulated unseen entities £7. We use the hinge loss for
learning model parameters:

L= Z Z Z max {60 — score(q") + score(q”),0}. 5)

¢'€fr gt EQu gmeQ,

6 > 0 is the margin. ¢+ denotes a query quadruple from e’’s query set. ¢~ is generated by negative
sampling [Bordes et al., 2013]. For every gt = (€/,1¢, €4, t4) (or g7 = (€4, 74, €, t4)), we corrupt
€4 with another entity e~ € {&’, Epack }. We map our learned representations to the complex space
and use ComplEx [Trouillon et al., 2016] as our scoring function, i.e., score = Re < hg, h,, h, >,
where hg, h, denote the representations of the subject entity and the object entity, respectively. h,
denotes the relation representation. Re means taking the real part, and h,, means taking the conjugate
of the vector h,,.

5. Experiments

We compare FILT with several baselines on TKG few-shot OOG link prediction. To prove the effec-
tiveness of the model components, we conduct several ablation studies. We also do further analysis
to show the robustness of our method. Besides, we visualize the learned concept representations and
show that our concept modeling component helps to capture the semantics of entity concepts.
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5.1 Datasets

We propose three TKG few-shot OOG link prediction datasets, i.e., ICEWS14-O0G, ICEWS18-O0G,
and ICEWS0515-O0G. We first take three subsets, i.e., ICEWS14, ICEWS18, and ICEWS05-15,
from the Integrated Crisis Early Warning System (ICEWS) database [Boschee et al., 2015], where
they contain the timestamped political facts in 2014, in 2018, and from 2005 to 2015, respectively.
Following the data construction process of [Baek et al., 2020], for each subset, we first randomly
sample half of the entities whose number of associated quadruples is between a lower and a higher
threshold as unseen entities. Then we split the sampled entities into three groups £, ... ains Emetavalids
Sr,neta—test (glileta—train N 5r/neta—valid = (Z)’ gr/neta—train N Er/neta—test = ®’ glileta—valid N gr/rleta—test = Q))’ where
&) etatrain] * [€metavatial © [Emetaest] = 8 + 1 1 1. The associated quadruples of all the entities in

! eta-train/ Emetavalid! Emeta-test fOrm the meta-training/meta-validation/meta-test set. The rest of the
quadruples without unseen entities are used for constructing a background graph Gp,cx. The dataset

statistics are presented in Table 1. We present the dataset construction process in Appendix H.

Dataset ‘S | ‘R ‘ ‘ T‘ ‘géwla—lrain ‘ |€r,ncla—valid ‘ ‘gl/nela-les[ ‘ M back N, meta-train N, meta-valid N, meta-test
ICEWS14-00G 7128 230 365 385 48 49 83448 5772 718 705
ICEWS18-00G 23033 256 304 1268 160 158 444269 19291 2425 2373
ICEWS0515-00G 10488 251 4017 647 80 82 448695 10115 1217 1228
. b / / / s

Table 1: Dataset statistics. |5mem_train o N metavalid|» El etatest| denote the number of unseen entities

in the meta-training set, meta-validation set, meta-test set, respectively. Ny, denotes the number
of quadruples in the background graph Gpack. Nmeta-train> Vmeta-valids Vmeta-test denote the number of
quadruples concerning unseen entities in Teta-train> Lmeta-valid> L meta-test, T€Spectively.

5.2 Baseline Methods

We take four types of methods as our baselines. First we consider two traditional KGC methods, i.e.,
ComplEx [Trouillon et al., 2016] and BiQUE [Guo and Kok, 2021a]. Then we consider several tradi-
tional TKGC methods, i.e., TNTComplEx [Lacroix et al., 2020], TeLM [Xu et al., 2021a], and TeRo
[Xu et al., 2020a]. We combine all the quadruples in the background graph Gp,cx with the quadruples
of the meta-training set to construct a training set for traditional KGC as well as TKGC methods, and
let them evaluate on all the query quadruples in the meta-validation/meta-test set. We also include
two inductive KGC methods for OOG link prediction that do not employ meta-learning framework,
i.e., MEAN [Hamaguchi et al., 2017], LAN [Wang et al., 2019b]. To achieve fair comparison, we
only allow them to utilize support quadruples during inference, rather than an auxiliary set containing
a large number of quadruples for each unseen entity €’ € {&] ... vaid» Emetatest f- Apart from the first
three types of methods, we further consider a meta-learning-based method GEN [Baek et al., 2020]
which deals with few-shot OOG link prediction on static KGs. For the baseline methods designed for
static KGs, we provide them with all the quadruples in our datasets and neglect time constraints, i.e.,
neglecting ¢ in (s, 7, 0,t). We ensure that all the methods evaluate exactly the same quadruples.

5.3 Experimental Results

We report the TKG 1-shot and 3-shot OOG link prediction results in Table 2. We use mean reciprocal
rank (MRR) and Hits@1/3/10 as the evaluation metrics (definition in Appendix B). We follow the
filtered setting [Bordes et al., 2013] for fairer evaluation. We observe that traditional KGC and TKGC
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methods show inferior performance in predicting the links concerning unseen entities. This is due
to their nature that they have no way to transfer knowledge from seen to unseen entities. Besides,
they learn representations of seen entities with a large number of associated training examples, thus
causing the learned representations more prone to the data concerning seen entities and failing to
embed unseen entities inductively. We also observe that inductive learning methods for static KGs
show degenerated performance. MEAN, LAN, heavily rely on the auxiliary set during inference.
We constrain their auxiliary set to only include the support quadruples, where only 1 associated
quadruple for each unseen entity is included in the 1-shot case (3 associated quadruples in the
3-shot case). Experimental results show that these methods cannot effectively deal with newly-
emerged entities that have only few observed edges, which is common in real-world scenarios. GEN
employs meta-learning during training, thus having the ability to alleviate the data sparsity problem.
However, it has no component to model temporal information, and it also does not incorporate any
additional information, e.g., textual information and concept-aware information. To this end, GEN
underperforms FILT in both 1-shot and 3-shot cases. Another crucial point worth noting is that
the margin between FILT and GEN is much larger in the 3-shot case than in the 1-shot case. We
attribute this to our time difference-based graph encoder. Our encoder distinguishes the importance
of multiple support quadruples and aggregates the temporal neighbors more effectively.

Datasets ICEWS14-00G ICEWS18-00G ICEWS0515-00G
MRR He@l He@3 H@10 MRR Hel H@3 H@10 MRR Hel H@3 H@10

Model s 3s 1S 3 1 35 1S 3S 1S 3S 1S 3S 1S 3S 1S 3S 1S 3S 1S 3S 1S 38 1S 3§
ComplEx 048 .046 018 .014 .045 .046 .099 .089 .039 .044 .031 .026 .048 .042 .085 .093 .077 .076 .045 .048 .074 .071 .129 .120
BiQUE 039 .035 .015 .014 .041 .030 .073 .066 .029 .032 .022 .021 .033 .037 .064 .073 .075 .083 .044 .049 .072 .077 .130 .144
TNTComplEx .043 .044 .015 .016 .033 .042 .102 .096 .046 .048 .023 .026 .043 .044 .087 .082 .034 .037 .014 .012 .031 .036 .060 .071
TeLM 032 .035 .012 .009 .021 .023 .063 .077 .049 .019 .029 .001 .045 .013 .084 .054 .080 .072 .041 .034 .077 .072 .138 .151
TeRo 009 .010 .002 .002 .005 .002 .015 .020 .007 .006 .003 .001 .006 .003 .013 .006 .012 .023 .000 .010 .008 .017 .024 .040
MEAN 035 .144 013 .054 .032 .145 .082 .339 .016 .101 .003 .014 .012 .114 .043 283 .019 .148 .003 .039 .017 .175 .052 .384
LAN 168 199 050 .061 .199 255 421 .500 .077 .127 .018 .025 .067 .165 .199 344 171 .182 .081 .068 .180 .191 .367 .467
GEN 231 234 162 .155 250 .284 378 .389 .171 216 .112 .137 .189 .252 289 351 .268 .322 .185 231 .308 .362 .413 .507
FILT 278 321 208 240 305 357 410 475 191 266 .129 .187 .209 .298 316 .417 .273 370 .201 .299 303 .391 405 .516

Table 2: TKG 1-shot and 3-shot OOG link prediction results. Evaluation metrics are filtered MRR
and Hits@1/3/10 (H@1/3/10). The best results are marked in bold.

5.4 Ablation Study

To prove the effectiveness of the model components, we conduct several ablation studies on ICEWS14-
0OO0G and ICEWS18-O0G. We devise model variants in the following way. (A) Concept Mod-
eling Variants: In A1 we run our model without the concept modeling component. In A2, we
delete the lower branch connecting the concept modeling component with the output of the graph
encoder. In A3, we delete the upper branch connecting the concept modeling component with
the input of the graph encoder. (B) Graph Encoder Variants: In B1, we neglect the time in-
formation and switch our graph encoder to RGCN [Schlichtkrull et al., 2018]. In B2, we use
Time2Vec [Kazemi et al., 2019] to model temporal information. In B3, we employ the functional
time encoder introduced in [Xu et al., 2020b] as our graph encoder. In B4, we derive a time-
aware attentional network as our graph encoder: h( ;) = Z(éiﬂ"iuti) N yéWg(hgi |hy,), where
i = exp(o(([hry |2 (tg) W) T ([br,[|2(t:)]WK)))

a Z(éj,rj,t].>e/\/€,exp(a(([hrq|I¢(tq)]WQ)T([hr-jII‘b(tj)}WK)
proposed in [Xu et al., 2020b] and W, W i are two weight matrices.

I ® denotes the functional time encoder
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We report the experimental results of the ablation studies in Table 3. From A1 to A3, we show
that our concept modeling component helps to improve model performance, and it benefits from its
double branch structure. From B1, we find that incorporating temporal information into the graph
encoder is important for modeling TKGs. Besides, B2 to B4 show that in TKG few-shot OOG link
prediction, it is not necessary to employ a complicated graph encoding structure. A possible reason
is that we can only observe K (1 or 3) associated quadruples for every unseen entity, and this forms
a tiny neighborhood. Complicated structures, e.g., our time-aware attentional network, are unable to
demonstrate their superiority in this case.

Datasets ICEWS14-00G ICEWS18-00G
MRR Hel H@10 MRR Hel H@10

Model s 3S 1S 3S 1S 3S 1S 3S 1S 3S 1S 3§
Al 267 302 195 220 407 462 .187 261 .128 .181 315 .408
A2 271 285 203 217 403 454 188 265 .129 187 316 411
A3 276 306 206 .235 401 471 189 265 .125 .185 .316 415
Bl 243 256 171 179 361 402 .184 238 .122 .162 314 .383
B2 258 281 181 .196 393 432 .185 240 .119 .165 .316 .388
B3 249 278 177 179 389 438 183 242 116 .166 314 .395
B4 263 284 192 .195 400 450 .181 245 .112 .174 307 .393
FILT 278 321 208 240 410 475 191 266 .129 .187 .316 .417

Table 3: Ablation studies of FILT on ICEWS14-O0G and ICEWS18-O0G. H@1/3/10 denote
Hits@1/3/10, respectively. The best results are marked in bold.

5.5 Further Analysis

Cross shot analysis. We evaluate our trained 3-shot and 1-shot models with varying shots (1,3
or 5-shot) during meta-test. We observe in Table 4 that for both trained models, the performance
increases as the test shot size rises. This is due to the effectiveness of our time-aware graph
encoder. It distinguishes the importance of different support quadruples and better incorporates graph
information as the shot size increases. We also observe that when the test shot size is larger than 3,
FILT trained with 3 shots performs better than it trained with 1 shot. This is because during 3-shot
meta-training, we simulate that for every unseen entity, 3 support examples are observable, which
helps the model to generalize to the cases where their shot sizes are larger than 1 during meta-test.
Besides, test with random shots does not greatly affect our model performance, thus showing FILT’s
robustness.

Datasets ICEWS14-00G ICEWS18-00G ICEWS0515-00G

(Train) 1-shot (Train) 3-shot (Train) 1-shot (Train) 3-shot (Train) 1-shot (Train) 3-shot
Test Shots MRR H@! H@10 MRR H@! H@I0 MRR H@l H@I0 MRR H@l H@I0 MRR H@l H@I0 MRR H@l H@I0
1-shot 278 208 410 265 195 386 191 .129 316  .178 117 305 273 201 405 258 184 399
3-shot 293 212 452 321 240 475 232 158 381 266 187 417 331 254 482 370 299 516
5-shot 297 212 467 322 231 .503 256 183 400 289 206 449 351 275 499 394 317 553
R-shot 283 203 440 299 214 462 224 154 364 242 167 390 315 240 460 337 262 490

Table 4: Cross shot analysis results. R-shot denotes the setting that we randomly sample 1, 3 or
5 support quadruples for every unseen entity during meta-test. H@1/3/10 denote Hits@1/3/10,
respectively.

10
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Visualization of concept representations. We plot the trained concept representations of the 3-shot
model on ICEWS18-O0G with t-SNE [Van der Maaten and Hinton, 2008]. The entity concepts in
the ICEWS database are hierarchical. For example, under the concept Government, there exist other
concepts, e.g., Foreign Ministry. We only create labels for the first hierarchy concepts and assign other
concepts belonging to them with the same label. From Figure 3, we can observe that the concepts
bearing the same label tend to form a cluster, and the clusters having similar semantic meanings
tend to be close to each other, e.g., the clusters of Parties and Government. This demonstrates that
our concept modeling component learns the semantics of entity concepts, which helps to improve
inductive learning for unseen new entities. We present three case studies in Appendix G.

" » ¢ o O 4 9 o
‘... Cv.’.
oy, % :’
® o ..‘
0 o

Figure 3: Visualization of learned concept representations on 3-shot ICEWS18-O0G.

6. Conclusion

We propose a new task: temporal knowledge graph (TKG) few-shot out-of-graph (OOG) link
prediction, aiming to introduce the inductive entity representation learning problem into TKGs.
We develop a model that focuses on the few-shot inductive learning on TKGs (FILT). Given only
few edges associated to each newly-emerged entity, FILT employs a meta-learning framework that
enables inductive knowledge transfer from seen entities to new unseen entities. FILT uses a time-
aware graph encoder to learn the contextualized representations of unseen entities, which shows
stronger performance as the shot size increases. It also utilizes the external entity concept information
specified in the temporal knowledge bases. We propose three new datasets for TKG few-shot OOG
link prediction and compare FILT with several baselines. Experimental results show that learning
concept-aware information improves inductive learning for emerging entities. In the future, we would
like to generalize rule-based knowledge graph reasoning methods to the TKG inductive learning
scenario. Another direction is to combine future link prediction with our proposed TKG few-shot
OOG link prediction task since our task currently does not support link forecasting.
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Appendix A. Long-Tail Distribution of Entities in Temporal Knowledge Bases

Figure A illustrates the entity occurrence of ICEWS14, ICEWS18 and ICEWS05-15 databases. We
find that most entities occur for only a few times.
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Figure 4: Entity occurrence of ICEWS14, ICEWS18 and ICEWSO05-15 databases.
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Appendix B. Evaluation Metrics

We use two evaluation metrics for our experiments, i.e., mean reciprocal rank (MRR) and Hits@1/3/10.
For every link prediction query, we compute the rank ¢ of the ground truth missing entity. MRR
is defined as: m doee £ > ateQ, i Hits@1/3/10 denote the proportions of the

meta-test

predicted links where ground truth missing entities are ranked as top 1, top3, top10, respectively.

Appendix C. Implementation Details

We implement all the experiments with PyTorch [Paszke et al., 2019] on a single NVIDIA Tesla T4.
We search hyperparameters following Table 5. For each dataset, we do 108 trials to try different
hyperparameter settings. We run 15000 batches for each trail and compare their meta-validation
results. We choose the setting leading to the best meta-validation result and take it as the best
hyperparameter setting. We report the best hyperparameter setting in Table 6. Every result of our
model is the average result of five runs. For the models leading to the results reported in Table 2, we
provide their meta-validation results in Table 7. We also specify their GPU memory usage (Table
8) and number of parameters (Table 9). For different datasets, we use different numbers of unseen
entities IV in each meta-training task 7. We set N = 100 for ICEWS14-OOG and ICEWS0515-
00G, N = 200 for ICEWS18-O0G. We sample 32 negative samples for every positive sample.

Hyperparameter Search Space Datasets ICEWS14-00G ICEWS18-00G ICEWS0515-00G

Embedding Size {50, 100, 200} Hyperparameter

# Aggregation Step {1’ 2} Embedding Size 100 100 100

Activation Function ~{Tanh, ReLU, LeakyReLU} # Aggregation Step : ! :

K 2 Activation Function LeakyReLU LeakyReLU LeakyReLU

Dropout {0.2,03,0.5} Dropout 0.3 0.3 0.3

A {0.2,0.4} A 0.2 04 04
Table 5: Hyperparameter searching strategy. Table 6: Best hyperparameter settings.
Datasets ICEWS14-00G ICEWS18-00G ICEWS0515-00G

MRR He! H@3 H@10 MRR Hel H@3 H@10 MRR Hel H@3 H@10

Model 1S 3S 1S 3.8 1S 3S 1S 38 1§ 3$ 1S 38 1§ 3§ 1S 38 1§ 3§ 1S 38 1§ 38 IS 38
FILT 251 354 171 271 285 389 410 511 .187 242 .127 .163 204 264 308 406 232 316 .163 229 247 350 378 .491

Table 7: TKG 1-shot and 3-shot OOG link prediction results on the meta-validation set. Evaluation
metrics are filtered MRR and Hits@1/3/10 (H@1/3/10).

Datasets ICEWS14-00G ICEWS18-00G  ICEWS0515-00G  Datasets ICEWS14-00G ICEWS18-00G  ICEWS0515-00G

GPU Memory GPU Memory GPU Memory # Param # Param # Param
Model 1-S 3-S 1-S 3-S 1-S 3-S Model 1-S 3-S 1-S 3-S 1-S 3-S
FILT 1493MB  1466MB 187IMB 1841MB 1557MB 154IMB  FILT 2966303 2966303 4567203 4567203 3310703 3310703
Table 8: GPU memory usage. Table 9: Number of parameters.
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For baseline methods, except MEAN, we use their official implementations, i.e., ComplExz,
BiQUE?, TNTComplEx*, TeLM?, TeRo®, LAN’, GEN®. We use the MEAN implementation provided
in the LAN repository. We use default hyperparameters of TKGC methods for ICEWS datasets. For
other methods, we keep their embedding size the same as FILT’s. We keep other hyperparameters of
them as their default settings.

Appendix D. Further Discussion of TKG Few-Shot OOG Link Prediction

Figure 5 illustrates how we formulate TKG few-shot OOG link prediction into a meta-learning prob-
lem with an example. Green edges correspond to the support quadruples and orange edges correspond
to the query quadruples (timestamps and relations are omitted for brevity). The meta-training process
consists of a number of meta-training tasks. During each meta-training task 7', /N unseen entities

from & . ... are randomly sampled. In Figure 5, ¢}, ¢5 € &/ ... i, are sampled in task T". For

each sampled unseen entity, K (K = 1 in Figure 5) quadruples from all the quadruples containing
itself are sampled to form its support set. The rest form its query set. During meta-validation, all
the unseen entities (ef, eg, e, €5) from &/ ., ,.iiq are treated as appearing simultaneously, which also

. L / / / / /
applies to meta-test and the unseen entities (eg, €/, €], €]12) from & i tesi-

Support Set
Query Set

Meta-Training

Figure 5: Illustration of the meta-learning framework formulated from the TKG few-shot OOG link
prediction task.

TKG few-shot OOG link prediction vs. TKG completion. For the existing TKGC benchmark
datasets, e.g., ICEWS14°, there exist a number of entities that only appear in the test sets (or the

. https://github.com/ttrouill/complex

. https://github.com/guojiapub/BiQUE

. https://github.com/facebookresearch/tkbc
. https://github.com/soledad921/TeLM

. https://github.com/soledad921/ATISE

. https://github.com/wangpf3/LAN

. https://github.com/JinheonBaek/GEN

. https://github.com/BorealisAl/de-simple
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validation sets) and are unseen in their training sets. Evaluating on the links concerning these unseen
entities coincides to the evaluation setting of TKG few-shot OOG link prediction. However, in our
proposed task, we focus on the unseen entities that are long-tail, and we also introduce a realistic
setting that each unseen entity is coupled with K support quadruples containing itself, while in
traditional TKGC benchmark datasets the unseen entities are not guaranteed to be long-tail and no
associated edge is given for learning the inductive representations of them. The aim of TKG few-shot
OOG link prediction is to ask the TKG reasoning models to learn strong representations of the unseen
entities inductively from extracting the information from the provided K support quadruples, which
corresponds to the realistic situation where every newly-emerged entity is often coupled with a small
number of associated edges.

Appendix E. Ablation Study Details

We present the detailed equations of graph encoder variants (B1-B3 in Table 3, B4 already presented).
In B1, RGCN computes the unseen entity €’’s representation as:

1
h i) = NG|

Z Wn‘ (héi ) ) (6)

(éimi,ti)e/\/e/
where W, is a weight matrix modeling r;. In B2, Time2Vec computes ¢’’s representation as:
1
he sy = A Z Wy (he, 1y, @)
e (éi,ri,ti)e./\/;/
where hg, ;) is defined as:
h, 1) = f(he || 2(t:)),

B(t;)[j] = wit; + @4, ifj =0, )
V= sin(wjt; +¢j), if1<j <d,.

f denotes a layer of feed forward neural network. ®(¢;)[7] denotes the jth component of ¢;’s time
representation ®(¢;). d; is the dimension size of time representations. w; and ¢; represent the
trainable frequency and phase parameters, respectively. In B3, we use the same aggregation function
7 as in Time2vec, however, we use another form of time encoder to encode time information:

h(éz‘,ti) = f(héz'”q)(ti))v

1 (©)]
O(t;) = \/;t[cos(wlti +¢1),...,cos8(wa,ti + ©4,))],

where wy ...wq, and @1 ... @4, are trainable parameters.

Appendix F. Concept Extraction of ICEWS Database

We take the sectors of ICEWS entities as their concepts. The sector classification can be found on
the ICEWS official website'. ICEWS sectors have hierarchies. We do not consider hierarchies and

10. https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi: 10.7910/DVN/28118
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consider each sector as individual. For example, the sector Foreign Ministry belongs to the sector
Government. We learn their representations separately.

A number of entities in the ICEWS coded event data are not labeled with any sector. Some of
them are regions, e.g., North Korea. We create a new sector named Region for them. For other entities,
we find their affiliations and pick out their sectors. We then choose from their affiliations’ sectors the
most suitable ones and label these entities. For example, European Parliament has no associated
sector in the ICEWS coded event data. We find its affiliation European Union. European Union
is assigned a sector Regional Diplomatic IGOs. We take Regional Diplomatic IGOs as European
FParliament’s sector and it is taken as a concept in our meta-learning process.

Appendix G. Case Study of Learned Concept Representations

We further find three cases to show that our learned concept representations capture the semantic
meaning of concepts, which helps to embed unseen entities inductively. We resize the visualization
in Figure 3 and label several concepts close to each other.

The first case is about the concepts Foreign Ministry, International Government Organization and
Regional Diplomatic IGOs, where IGO stands for international government organization. From hu-
man intuition, Foreign Ministry is closely related to international interactions. Similarly, international
Government Organization and Regional Diplomatic IGOs also possess the same semantics.

The second case is about the concepts International Ethnic, International Religious and Muslim.
Muslim stands for not only a religion but also an ethnicity, therefore, it is close to both International
Religious and International Ethnic.

The third case is about the concepts Medical / Health NGOs, Human Rights NGOs and Human
Rights IGOs, where NGO stands for nongovernmental organizations. We can observe that Human
Rights NGOs and Human Rights IGOs are extremely close to each other. Since protecting human
rights is normally concerned with providing medical aid, they are also close to Medical / Health
NGOs.

Appendix H. Dataset Construction Process

1. We take ICEWS14!!, ICEWS18!2 and ICEWS05-15'3 as the databases for dataset construc-
tion.

2. We set the upper and lower thresholds for entity frequencies. We do not want the upper
threshold to be large since in real-world scenarios, newly-emerged entities normally are only
coupled with very few edges. We also do not want the lower threshold to be too small since
we want to include enough test examples. We set the upper and lower threshold to 10 and 25
for every dataset.

3. We pick out the entities whose frequencies are between thresholds and sample half of them
as the total unseen entities £ (following [Baek et al., 2020]). We take the quadruples without
any unseen entity as the background graph Gp,c.

11. https://github.com/BorealisAl/de-simple
12. https://github.com/INK-USC/RE-Net
13. https://github.com/mniepert/mmkb/tree/master/Temporal KGs
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4. We split the unseen entities as meta-training &’ meta-validation &’

meta-train’ meta-valid and meta-
! iti / .| .|t _Q .1 . . .
test Emeta—test entities. |5meta—train‘ : |gmeta—valid| . |5meta-test| ~ 8 : 1 : 1. Their associated

quadruples form the corresponding meta-learning sets.
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Abstract. Temporal knowledge graph completion (TKGC) aims to pre-
dict the missing links among the entities in a temporal knowledge graph
(TKG). Most previous TKGC methods only consider predicting the miss-
ing links among the entities seen in the training set, while they are
unable to achieve great performance in link prediction concerning newly-
emerged unseen entities. Recently, a new task, i.e., TKG few-shot out-
of-graph (OOG) link prediction, is proposed, where TKGC models are
required to achieve great link prediction performance concerning newly-
emerged entities that only have few-shot observed examples. In this work,
we propose a TKGC method FITCARL that combines few-shot learning
with reinforcement learning to solve this task. In FITCARL, an agent
traverses through the whole TKG to search for the prediction answer. A
policy network is designed to guide the search process based on the tra-
versed path. To better address the data scarcity problem in the few-shot
setting, we introduce a module that computes the confidence of each can-
didate action and integrate it into the policy for action selection. We also
exploit the entity concept information with a novel concept regularizer
to boost model performance. Experimental results show that FITCARL
achieves stat-of-the-art performance on TKG few-shot OOG link predic-
tion. Code and supplementary appendices are provided (https://github.
com/ZifengDing/FITCARL/tree/main).

Keywords: Temporal knowledge graph : Few-shot learning

1 Introduction

Knowledge graphs (KGs) store knowledge by representing facts in the form of
triples, i.e., (s,r,0), where s and o are the subject and object entities, and r
denotes the relation between them. To further specify the time validity of the
facts, temporal knowledge graphs (TKGs) are introduced by using a quadruple

Z. Ding and J. Wu—Equal contribution.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
D. Koutra et al. (Eds.): ECML PKDD 2023, LNAI 14171, pp. 5650-566, 2023.
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Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 551

(s,7,0,t) to represent each fact, where ¢ is the valid time of this fact. In this way,
TKGs are able to capture the ever-evolving knowledge over time. It has already
been extensively explored to use KGs and TKGs to assist downstream tasks,
e.g., question answering [12,27,45] and natural language generation [2,20)].

Since TKGs are known to be incomplete [19], a large number of researches
focus on proposing methods to automatically complete TKGs, i.e., temporal
knowledge graph completion (TKGC). In traditional TKGC, models are given a
training set consisting of a TKG containing a finite set of entities during training,
and they are required to predict the missing links among the entities seen in the
training set. Most previous TKGC methods, e.g., [11,17,19,31], achieve great
success on traditional TKGC, however, they still have drawbacks. (1) Due to
the ever-evolving nature of world knowledge, new unseen entities always emerge
in a TKG and traditional TKGC methods fail to handle them. (2) Besides, in
real-world scenarios, newly-emerged entities are usually coupled with only a few
associated edges [13]. Traditional TKGC methods require a large number of
entity-related data examples to learn expressive entity representations, making
them hard to optimally represent newly-emerged entities. To this end, recently,
Ding et al. [13] propose the TKG few-shot out-of-graph (OOG) link prediction
(LP) task based on traditional TKGC, aiming to draw attention to studying
how to achieve better LP results regarding newly-emerged TKG entities.

In this work, we propose a TKGC method to improve few-shot inductive
learning over newly-emerged entities on TKGs using confidence-augmented rein-
forcement learning (FITCARL). FITCARL is developed to solve TKG few-shot
OOG LP [13]. It is a meta-learning based method trained with episodic training
[36]. For each unseen entity, FITCARL first employs a time-aware Transformer
[35] to adaptively learn its expressive representation. Then it starts from the
unseen entity and sequentially takes actions by transferring to other entities
according to the observed edges associated with the current entity, following
a policy parameterized by a learnable policy network. FITCARL traverses the
TKG for a fixed number of steps and stops at the entity that is expected to be the
LP answer. To better address the data scarcity problem in the few-shot setting,
we introduce a confidence learner that computes the confidence of each candi-
date action and integrate it into the policy for action selection. Following [13],
we also take advantage of the concept information presented in the temporal
knowledge bases (TKBs) and design a novel concept regularizer. We summa-
rize our contributions as follows: (1) This is the first work using reinforcement
learning-based method to reason over newly-emerged few-shot entities in TKGs
and solve the TKG few-shot OOG LP task. (2) We propose a time-aware Trans-
former using a time-aware positional encoding method to better utilize few-shot
information in learning representations of new-emerged entities. (3) We design
a novel confidence learner to alleviate the negative impact of the data scarcity
problem brought by the few-shot setting. (4) We propose a parameter-free con-
cept regularizer to utilize the concept information provided by the TKBs and it
demonstrates strong effectiveness. (5) FITCARL achieves state-of-the-art per-
formance on all datasets of TKG few-shot OOG LP and provides explainability.
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2 Related Work

2.1 Knowledge Graph and Temporal Knowledge Graph Completion

Knowledge graph completion (KGC) methods can be summarized into two types.
The first type of methods focuses on designing KG score functions that directly
compute the plausibility scores of KG triples [1,4,5,22,25,32,43]. Other KGC
methods are neural-based models [28,34]. Neural-based models are built by cou-
pling KG score functions with neural structures, e.g., graph neural network
(GNN). It is shown that neural structures make great contributions to enhancing
the performance of KGC methods. TKGC methods are developed by incorpo-
rating temporal reasoning techniques. A line of works aims to design time-aware
KG score functions that are able to process time information [7,19,23,26,42,44].
Another line of works employs neural structures to encode temporal information,
where some of them use recurrent neural structures, e.g., Transformer [35], to
model the temporal dependencies in TKGs [39], and others design time-aware
GNNSs to achieve temporal reasoning by computing time-aware entity represen-
tations through aggregation [11,17]. Reinforcement learning (RL) has already
been used to reason TKGs, e.g., [21,30]. TITer [30] and CluSTeR [21] achieve
temporal path modeling with RL. However, they are traditional TKG reasoning
models and are not designed to deal with few-shot unseen entities'.

2.2 Inductive Learning on KGs and TKGs

In recent years, inductive learning on KGs and TKGs has gained increasing inter-
est. A series of works [8,10,24,29,40] focuses on learning strong inductive rep-
resentations of few-shot unseen relations using meta-learning-based approaches.
These methods achieve great effectiveness, however, they are unable to deal with
newly-emerged entities. Some works try to deal with unseen entities by induc-
tively transferring knowledge from seen to unseen entities with an auxiliary set
provided during inference [15,16,37]. Their performance highly depends on the
size of the auxiliary set. [13] shows that with a tiny auxiliary set, these meth-
ods cannot achieve ideal performance. Besides, these methods are developed
for static KGs, thus without temporal reasoning ability. On top of them, Baek
et al. [3] propose a more realistic task, i.e., KG few-shot OOG LP, aiming to
draw attention to better studying few-shot OOG entities. They propose a model
GEN that contains two GNNs and train it with a meta-learning framework to
adapt to the few-shot setting. Same as [15,16,37], GEN does not have a tem-
poral reasoning module, and therefore, it cannot reason TKGs. Ding et al. [13]
propose the TKG few-shot OOG LP task that generalizes [3] to the context of
TKGs. They develop a meta-learning-based model FILT that achieves temporal
reasoning with a time difference-based graph encoder and mines concept-aware

! TITer can model unseen entities, but it is not designed for few-shot setting and
requires a substantial number of associated facts. Besides, both TITer and CluSTeR
are TKG forecasting methods, where models are asked to predict future links given
the past TKG information (different from TKGC, see Appendix B for discussion).
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information from the entity concepts specified in TKBs. Recently, another work
[38] proposes a task called few-shot TKG reasoning, aiming to ask TKG models
to predict future facts for newly-emerged few-shot entities. In few-shot TKG
reasoning, for each newly-emerged entity, TKG models are asked to predict the
unobserved associated links happening after the observed few-shot examples.
Such restriction is not imposed in TKG few-shot OOG LP, meaning that TKG
models should predict the unobserved links happening at any time along the
time axis. In our work, we only consider the task setting of TKG few-shot OOG
LP and do not consider the setting of [38].

3 Task Formulation and Preliminaries

3.1 TKG Few-Shot Out-of-Graph Link Prediction

Definition 1 (TKG Few-Shot OOG LP). Assume we have a background
TKG Gpack = {(S,T, O,t)|8,0 € Epack,T” € R,t € T} C Ehack X R X Epack X T,
where &pack, R, 7 denote a finite set of seen entities, relations and timestamps,
respectively. An unseen entity €’ is an entity ¢/ € £’ and £ N Epack = 0. For each
e/ € &, given K observed ¢ associated TKG facts (¢/,r,é,t) (or (é,r, €, t)),
where € € (Epack UE'), r € R, t € T, TKG few-shot OOG LP asks models to
predict the missing entities of LP queries (e, 74, 7,t,) (or (?,74,€',t,)) derived
from unobserved TKG facts containing ¢’ (r, € R, t, € 7). K is a small number
denoting shot size, e.g., 1 or 3.

Ding et al. [13] formulate TKG few-shot OOG LP into a meta-learning
problem and use episodic training [36] to train the model. For a TKG G C
E X R x € x T, they split its entities into background (seen) entities Ep,ex and
unseen entities £, where &' NEpack = 0 and € = (Epack UE'). A background TKG
Oback C Epack X R X Epack X7 is constructed by including all the TKG facts that do
not contain unseen entities. Then, unseen entities £ are further split into three
non-overlapped groups €/ .. ¢ ains Emetavalid A Enetatest- Lhe union of all the
facts associated to each group’s entities forms the corresponding meta-learning
set, e.g., the meta-training set Tieta train 1S formulated as {(¢/,r,é,t)|é € E,r €
R, €& totramst € TIU{(E,r € t)e € E,r e R e €E tatram -t €T} Ding
et al. ensure that there exists no link between every two of the meta-learning
sets. During meta-training, models are trained over a number of episodes, where
a training task 7' is sampled in each episode. For each task 7', N unseen entities
Er are sampled from &/ . . .. . Foreach ¢ € &, K associated facts are sampled
to form a support set Sup., = {(€/,r;,€;,t;) or (€;,7;, €, t;)|€; € (Epack UE'), T €

R,t; € T}E |, and the rest of its associated facts are taken as its query set

~ ~ ~ M,
Quee = {(€/,7;,€;,t;) or (€;,7r5,€ ,t;)]€; € (Epack UE'), 1 € R t; € T}Z.;KH,

where M, denotes the number of e’’s associated facts. Models are asked to simul-
taneously perform LP over Que.s for each ¢’ € Ep, given their Sup., and Gpack.
After meta-training, models are validated with a meta-validation set Ty,eta-valid
and tested with a meta-test set Tpeta-test- I our work, we also train FITCARL in
the same way as [13] with episodic training on the same meta-learning problem.
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Fig. 1. Overview of FITCARL. To do prediction over the LP query q = (€', 14,7, t4),
FITCARL first learns h,./ from a time-aware Transformer. It is then used in history
encoding (with GRU) and policy network. To search for the answer, FITCARL starts
from node (¢’,t,). It goes to (eV,tV), state sV, at step I. It computes a policy using a
confidence-augmented policy network. Assume FITCARL selects action a; in current
action space A" as the current action a'¥. We compute a loss ﬁgl) at step [, considering
a1’s probability in policy and reward R(s(l), a(l)), as well as an extra regularization

loss nﬁﬁ?qu computed by a concept regularizer. Please refer to Sect.4.1, 4.2 and 4.3
for details.

3.2 Concepts for Temporal Knowledge Graph Entities

[13] extracts the concepts of TKG entities by exploring the associated TKBs.
Entity concepts describe the characteristics of entities. For example, in the Inte-
grated Crisis Early Warning System (ICEWS) database [6], the entity Air Force
(Canada) is described with the following concepts: Air Force, Military and Gov-
ernment. Ding et al. propose three ICEWS-based datasets for TKG few-shot
OOG LP and manage to couple every entity with its unique concepts. We use C
to denote all the concepts existing in a TKG and C,. to denote e’s concepts.

4 The Proposed FITCARL Model

Given the support set Sup. = {(€/,7;,&,t;) or (&;,r,€,t;)} M, of ¢ € &,
assume we want to predict the missing entity from the LP query ¢ = (¢, 7, ?, q)
derived from a query quadruple? (e’ ,Tq,€q,tq) € Queer. To achieve this, FIT-
CARL first learns a representation h., € R? (d is dimension size) for e’
(Sect.4.1). Then it employs an RL agent that starts from the node (¢’,%,) and
sequentially takes actions by traversing to other nodes (in the form of (entity,
timestamp)) following a policy (Sect.4.2 and 4.3). After L traverse steps, the
agent is expected to stop at a target node containing ¢€,. Figurel shows an

overview of FITCARL during training, showing how it computes loss Lgl) at
step .

2 For each query quadruple in the form of (€q,7q, €', tq), we derive its LP query as
(e/,m71,7,tq). r7 " is ry’s inverse relation. The agent always starts from (€, ).
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4.1 Learning Unseen Entities with Time-Aware Transformer

We follow FILT [13] and use the entity and relation representations pre-trained
with ComplEx [32] for model initialization. Note that pre-training only considers
all the background TKG facts, i.e., Gpack-

To learn h./, we start from learning K separate meta-representations. Given
Super, we transform every support quadruple whose form is (e/,7;,€;,t;) to
(€;,1; 1 e, t;), where T 1 denotes the inverse relation® of r;. Then we create
a temporal neighborhood Ny = {(&;,7:,t:)|(&,7i €', t;) € Super or (¢/,r7 !,
€i,t;) € Supe } for € based on Sup., where |[No/| = K. We compute a meta-
representation h?, from each temporal neighbor (€;,7;,t;) as h', = f(hg,|h.,),
where h,., € R? is the representation of the relation 7; and || is the concatenation
operation.

We collect {h?, } K | and use a time-aware Transformer to compute a contextu-
alized representation h.. We treat each temporal neighbor (é;,7;,t;) € N as a
token and the corresponding meta-representation h’, as its token representation.
We concatenate the classification ([CLS]) token with the temporal neighbors in
N, as a sequence and input it into a Transformer, where the sequence length
is K 4+ 1. The order of temporal neighbors is decided by the sampling order of
support quadruples.

To better utilize temporal information from temporal neighbors, we propose
a time-aware positional encoding method. For any two tokens u, v in the input
sequence, we compute the time difference t,, — t,, between their associated times-
tamps, and then map it into a time-difference representation hy _; € R4,

hy ¢+ = \/g[cos(wl(tu —ty) + P1), ..., cOS(wa(ty — ty) + Pa)]. (1)

w1 to wg and ¢1 to ¢4 are trainable parameters. The timestamp for each tem-
poral neighbor is ¢; and we set the timestamp of the [CLS] token to the query
timestamp ¢, since we would like to use the learned h./ to predict the LP query
happening at ¢,. The attention att, , of any token v to token u in an attention
layer of our time-aware Transformer is written as

S LG R
D k1 eXP (k) (2)
1

Qy v = _(WTTQhu)T(WTTKhU) + WPOSThtu_tv'

TVd

h,,h, € R? are the input representations of token u,v into this attention
layer. W, Wrrk € R%*4 are the weight matrices following original definition
in [35]. wp,s € RY is a parameter that maps h;, _; to a scalar representing time-
aware relative position from token v to u. We use several attention layers and
also employ multi-head attention to increase model expressiveness. The output
representation of the [CLS] token from the last attention layer is taken as hes.
Figure 2 illustrates how the time-aware Transformer learns h./ in the 3-shot case.

3 Both original and inverse relations are trained in pre-training.
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Fig. 2. Time-aware Transformer with one attention layer for learning unseen entity
representation in the 3-shot case.

4.2 Reinforcement Learning Framework

We formulate the RL process as a Markov Decision Process, and we introduce
its elements as follows. (1) States: Let S be a state space. A state is denoted
as s = (eW, ¢t ¢ rq, ty) € S. (e W) is the node that is visited by the
agent at step l and e',rq,t, are taken from the LP query (e’,74,7,%,). The
agent starts from (e’,t,), and thus s(9 = (¢/,t,,¢',r,,t,). (2) Actions: Let A
denote an action space and A®) C A denotes the action space at step I. A®Y is
sampled from all the possible outgoing edges starting from (e, tM), ie., {a =
(r,e,t)|(e®,r,e,t) € (Gpack U Ue”GET Super),r € R,ye € (Epack U Er),t € T}.
We do sampling because if e) € Ep,c, there probably exist lots of outgoing
edges in Gpack. If we include all of them into AWM, they will lead to an excessive
consumption of memory and cause out-of-memory problem on hardware devices.
We sample A®) in a time-adaptive manner. For each outgoing edge (r,e,t), we
compute a score WAtThtq_t, where wa; € R? is a time modeling weight and
h; _; is the representation denoting the time difference ¢, —t. hy_ 4 is computed
as in Eq.1 with shared parameters. We rank the scores of outgoing edges in
descending order and take a fixed number of top-ranked edges as A" . We also
include one self-loop action in each A®) that makes the agent stay at the current
node. (3) Transition: A transition function J is used to transfer from one state
to another, i.e., §(sV),aV) = s+ = (e(+D) U+ ¢’y 't ), according to the
selected action a®. (4) Rewards: We give the agent a reward at each step
of state transition and consider a cumulative reward for the whole searching
process. The reward of doing a candidate action a € AW at step [ is given
as R(s(l), a) = Sigmoid (0 — Hhéq —h,, Hz) . 0 is a hyperparameter adjusting the
range of reward. h._, denotes the representation of entity e, selected in the action
a = (Tq,€q,tq). || - |2 is the L2 norm. The closer e, is to €,, the greater reward
the agent gets if it does action a.

4.3 Confidence-Augmented Policy Network

We design a confidence-augmented policy network that calculates the probability
distribution over all the candidate actions A®") at the search step [, according
to the current state s(), the search history hist®) = ((e’,tq),r(l), (eM tM) ..,
0 (e®W, 1)), and the confidence conf,), of each a € AW During the search,
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we represent each visited node with a time-aware representation related to the
LP query ¢. For example, for the node (e, t()) visited at step [, we compute
its representation as h . ;1)) = h.o ||htq_t(1). h, _,u is computed as same in
Eq.1 and parameters are shared.

Encoding Search History. The search history hist® is encoded as

by = GRU ((hyo [lhew )  hyiga-n) |

(3)
hhist(o) = GRU ((h”f’dummy”h(e’,tq)) ,0) .

GRU is a gated recurrent unit [9]. hy, 0 € R3¢ is the initial hidden state
of GRU and h, € R?is the representation of a dummy relation for GRU
initialization. h(. ; y is the time-aware representation of the starting node (', ).

Confidence-Aware Action Scoring. We design a score function for com-
puting the probability of selecting each candidate action ¢ € A®. Assume
a = (rq,€eq,t,), where (e(l), Tay€asta) € (gbaCkUUe”GST Super ). We first compute
an attentional feature hy;y o ., that extracts the information highly-related to

action a from the visited search history hist) and the LP query q.

hhist(l),q|a = 8Ltthist(l),a ) hhist(l) + att(ba ) hq7

_ - (4)
hyiow = W1 hygo, by =W (hy |he))

Wi, Wy € R24%34 gre two weight matrices. h,. is the representation of the query
relation 74. atty; . , and att, , are two attentional weights that are defined as

eXP(¢hist<l),a) att.  — eXp<¢q,a) (5)
eXp(¢hist<l>,a) + exp(¢g,a)’ B eXP(Cbhist(l),a) + exp(dg,a)’

aJtthist(l),a =

where
i Ti T i Ti T
¢hist(l>,a =h, hhist(l) + WAthta—t(l)7 qu,a =h, hq + WAthta—tq>

6

h, = WST (hraHh(ea,ta)) : )
W3 € R24%3d i5 3 weight matrix. h;, is the representation of 7. hi, ;) is
the time-aware representation of node (eq,t,) from action a. wa; maps time
differences to a scalar indicating how temporally important is the action a to the
history and the query g. We take t) as search history’s timestamp because it is
the timestamp of the node where the search stops. Before considering confidence,
we compute a probability for each candidate action a € AY) at step I

T
eXp(ha W4hhist(l),q|a)
— ,
Za’eA(Z) eXp(ha’W‘lhhist(U ,q|a’)

P(a|s®  hist®) = (7)

where W, € R24%24 i5 3 weight matrix. The probability of each action a is
decided by its associated node (eq,t,) and the attentional feature hy; ;@) |, that
adaptively selects the information highly-related to a.
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In TKG few-shot OOG LP, only a small number of K edges associated to
each unseen entity are observed. This leads to an incomprehensive action space
A at the start of search because our agent starts travelling from node (e’,t,)
and |A(®)| = K is extremely tiny. Besides, since there exist plenty of unseen
entities in &, it is highly probable that the agent travels to the nodes with other
unseen entities during the search, causing it sequentially experience multiple tiny
action spaces. As the number of the experienced incomprehensive action spaces
increases, more noise will be introduced in history encoding. From Eqs. 4 to 7, we
show that we heavily rely on the search history for computing candidate action
probabilities. To address this problem, we design a confidence learner that learns
the confidence conf,|, of each a € AW independent of the search history. The
form of confidence learner is inspired by a KG score function TuckER [4].

eXp(wa|q)
, where wa :lehe’, Xghrq Xghema .
Za’eAU) eXp(¢a/|q) lg (e’,tq) (€arta)
(8)

W € R2dxdx2d jg 5 Jearnable core tensor introduced in [4]. As defined in tucker
decomposition [33], X1, X2, X3 are three operators indicating the tensor product
in three different modes (see [4,33] for detailed explanations). Equation8 can
be interpreted as another action scoring process that is irrelevant to the search
history. If 14|, is high, then it implies that choosing action a is sensible and
eq is likely to resemble the ground truth missing entity é,. Accordingly, the
candidate action a will be assigned a great confidence. In this way, we alleviate
the negative influence of cascaded noise introduced by multiple tiny action spaces
in the search history. The policy 7(a|sV) at step [ is defined as

conf, |, =

exp(P(a|s® hist?) - confyq)

0y —
m(al|s\)) =
(afs™) > aream exp(P(a’|sW, hist®) - confy/|,)

(9)

4.4 Concept Regularizer

In the background TKG Gy.cx, the object entities of each relation conform to
a unique distribution. For each relation » € R, we track all the TKG facts
containing r in Gpack, and pick out all their object entities &, (&, € Epack)
together with their concepts {C.|e € &,}. We sum up the number of appearances
n. of each concept ¢ and compute a probability P(c|r) denoting how probable it
is to see ¢ when we perform object prediction® over the LP queries concerning r.
For example, for r, £. = {e1,e2} and C., = {c1, 2}, Ce, = {c2}. The probability
P(cilr) = ne,/ D cee e = 1/3, P(calr) = ney [/ Y oce Ne = 2/3. Assume we have
an LP query ¢ = (¢/,7,,7,t,), and at search step [, we have an action probability
from policy 7(a|s®V) for each candidate action a € A®Y. We collect the concepts
C., of e, in each action a and compute a concept-aware action probability

(Y cc., Plelry)
ZQIGA(Z) eXp(ZC/GCea, P(C/|TQ))

4 All LP queries are transformed into object prediction in TKG few-shot OOG LP.

P(alCe,,q) = (10)
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P(c|rq) P(alCe,,q) a|s(l)

0.3
uMC.,, ={c,esb |:|'> o) _
ale% ={c2} CZ o ‘CKL\q(ag s = 0.0087
(&

Fig. 3. Concept regularizer. P(a1|Ce,, ,q) = exp(0.3+0.1)/(exp(0.3+0.1)+exp(0.6)) =
0.45. P(az2lCe,,,q) = exp(0.6)/(exp(0.3 + 0.1) + exp(0.6)) = 0.55.

We then compute the Kullback-Leibler (KL) divergence between P(alC,,,q) and
7(a|sV) and minimize it during parameter optimization.

0) m(als")
Ly, = Z m(a|sW)log (W) : (11)

aE_A(l)

Note that r, € R is observable in Gpack. Gback 1S huge and contains a substantial
number of facts of r;. As stated in FILT [13], although we have only K associated
edges for each unseen entity €', its concepts C,+ is known. Our concept regularizer
enables a parameter-free approach to match the concept-aware action probability
P(a|C., ,q) with the action probability taken from the policy 7(a|s®). It can be
taken as guiding the policy to conform to the distribution of 7,’s objects’ concepts
observed in Gp,c. We illustrate our concept regularizer in Fig. 3.

4.5 Parameter Learning

Following [13], we train FITCARL with episodic training. In each episode, a
training task T is sampled, where we sample a Sup. for every unseen entity
e € & ciatrain T = &l ctatrain) and calculate loss over Que.:. For each LP
query ¢, we aim to maximize the cumulative reward along L steps of search. We
write our loss function (we minimize our loss) for each training task 7" as follows.

> WL M (D)]4(0) UG,
Lt = |Quee| Z Z’YAC s E —ULKLIq lOg(T(‘(a |3 ))R(S ,a )
e’ q€Que, =0
(12)

a® is the selected action at search step I. 4 is the {** order of a discount factor
v € [0,1). n is a hyperparameter deciding the magnitude of concept regulariza-
tion. We use Algorithm 1 in Appendix E to further illustrate our meta-training
process.

5 Experiments

We compare FITCARL with baselines on TKG few-shot OOG LP (Sect.5.2). In
Sect. 5.3, we first do several ablation studies to study the effectiveness of different
model components. We then plot the performance over time to show FITCARL’s
robustness and present a case study to show FITCARL’s explainability and
the importance of learning confidence. We provide implementation details in
Appendix A.
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5.1 Experimental Setting

We do experiments on three datasets proposed in [13], i.e., ICEWS14-O0G,
ICEWS18-O0G and ICEWS0515-O0G. They contain the timestamped polit-
ical facts in 2014, 2018 and from 2005 to 2015, respectively. All of them are
constructed by taking the facts from the ICEWS [6] TKB. Dataset statistics
are shown in Table 1. We employ two evaluation metrics, i.e., mean reciprocal
rank (MRR) and Hits@1/3/10. We provide detailed definitions of both met-
rics in Appendix D. We use the filtered setting proposed in [5] for fairer eval-
uation. For baselines, we consider the following methods. (1) Two traditional
KGC methods, i.e., ComplEx [32] and BIQUE [14]. (2) Three traditional TKGC
methods, i.e., TNTComplEx [18], TeLM [41], and TeRo [42]. (3) Three induc-
tive KGC methods, i.e., MEAN [15], LAN [37], and GEN [3]. Among them,
only GEN is trained with a meta-learning framework. (4) Two inductive TKG
reasoning methods, including an inductive TKG forecasting method TITer [30],
and a meta-learning-based inductive TKGC method FILT [13] (FILT is the only
previous work developed to solve TKG few-shot OOG LP). We take the experi-
mental results of all baselines (except TITer) from [13]. Following [13], we train
TTITer over all the TKG facts in Gpack and Theta-train- We constrain T1Ter to only
observe support quadruples of each test entity in & ;. test for inductive learning
during inference. All methods are tested over exactly the same test examples.

Table 1. Dataset statistics.

Dataset €] IR IT] | |Eeta-srain | Emeta-vatial | [Emeta-test| | [Gback| | [Tmetactrain| | [Tmeta-vatia| | |Tmeta-test|
ICEWS14-00G | 7128 | 230 365 385 48 49 83448 | 5772 718 705
ICEWS18-O0G | 23033 | 256 304 | 1268 160 158 444269 | 19291 2425 2373
ICEWS0515-00G | 10488 | 251 4017 | 647 80 82 448695 | 10115 1217 1228

5.2 Main Results

Table2 shows the experimental results of TKG 1-shot/3-shot OOG LP. We
observe that traditional KGC and TKGC methods are beaten by inductive
learning methods. It is because traditional methods cannot handle unseen enti-
ties. Besides, we also find that meta-learning-based methods, i.e., GEN, FILT
and FITCARL, show better performance than other inductive learning meth-
ods. This is because meta-learning is more suitable for dealing with few-shot
learning problems. FITCARL shows superior performance over all metrics on all
datasets. It outperforms the previous stat-of-the-art FILT with a huge margin.
We attribute it to several reasons. (1) Unlike FILT that uses KG score func-
tion over all the entities for prediction, FITCARL is an RL-based method that
directly searches the predicted answer through their multi-hop temporal neigh-
borhood, making it better capture highly-related graph information through
time. (2) FITCARL takes advantage of its confidence learner. It helps to alleviate
the negative impact from the few-shot setting. (3) Concept regularizer serves as
a strong tool for exploiting concept-aware information in TKBs and adaptively
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guides FITCARL to learn a policy that conforms to the concept distribution
shown in Gpack-

Table 2. Experimental results of TKG 1-shot and 3-shot OOG LP. Evaluation metrics
are MRR and Hits@1/3/10 (HQ1/3/10). Best results are marked bold.

Datasets ICEWS14-00G ICEWS18-00G ICEWS0515-00G
MRR Ha1l Ha@3 H@10 MRR Ha1 Ha@3 H@10 MRR Ha1 Ha@3 Ha@10

Model - |3S |18 |3S |18 |3S |1-S |3-S |1-S [3S |1-S |38 |18 |3-S |1-S |3-S |1-S |3-S |1-S |3-S |1-S |3-S |1-S |3-S
ComplEx .048 |.046 |.018 |.014 |.045 |.046 |.099 |.089 |.039 |.044 |.031 |.026 |.048 |.042 |.085 |.093 |.077 |.076 |.045 |.048 |.074 |.071 |.129 |.120
BiQUE .039 |.035 |.015 |.014 |.041 |.030 |.073 |.066 |.029 |.032 |.022 |.021 |.033 |.037 |.064 |.073 |.075 |.083 |.044 |.049 |.072 |.077 |.130 |.144
TNTComplEx |.043 |.044 |.015 |.016 |.033 |.042 |.102 |.096 |.046 |.048 |.023 |.026 |.043 |.044 |.087 |.082 |.034 |.037 |.014 |.012 |.031 |.036 |.060 |.071
TeLM .032 |.035 |.012 |.009 |.021 |.023 |.063 |.077 |.049 |.019 |.029 |.001 |.045 |.013 |.084 |.054 |.080 |.072 |.041 |.034 |.077 |.072 |.138 |.151
TeRo .009 |.010 |.002 |.002 |.005 |.002 |.015 |.020 |.007 |.006 |.003 |.001 |.006 |.003 |.013 |.006 |.012 |.023 |.000 |.010 |.008 |.017 |.024 |.040
MEAN .035 | .144 |.013 |.054 |.032 |.145 |.082 |.339 |.016 |.101 |.003 |.014 |.012 |.114 |.043 |.283 |.019 |.148 |.003 |.039 |.017 |.175 |.052 |.384
LAN 168 |.199 |.050 |.061 |.199 |.255 |.421 |.500 | .077 |.127 |.018 |.025 |.067 |.165 |.199 |.344 |.171 |.182 |.081 |.068 |.180 |.191 |.367 |.467
GEN .231 |.234 |.162 |.155 |.250 |.284 |.378 |.389 | .171 |.216 |.112 |.137 |.189 |.252 |.289 |.351 |.268 |.322 |.185 |.231 |.308 |.362 |.413 | .507
TITer 144 |.200 |.105 |.148 |.163 |.226 |.228 |.314 |.064 |.115 |.038 |.076 |.075 | .131 |.011 |.186 |.115 |.228 |.080 |.168 |.130 |.262 |.173 |.331
FILT 278 |.321 |.208 |.240 |.305 |.357 |.410 |.475 |.191 |.266 |.129 |.187 |.209 |.298 |.316 |.417 |.273 |.370 |.201 |.299 |.303 |.391 |.405 |.516
FITCARL .418|.481 |.284 |.329 |.522|.646 | .681 | .696 .297|.370|.156|.193 |.386 .559 .584 |.627 .345 | .513 .202 .386 .482|.618|.732 .700

5.3 Further Analysis

Ablation Study. We conduct several ablation studies to study the effective-
ness of different model components. (A) Action Space Sampling Variants:
To prevent oversized action space AW, we use a time-adaptive sampling method
(see Sect. 4.2). We show its effectiveness by switching it to random sample (abla-
tion A1) and time-proximity sample (ablation A2). In time-proximity sample, we
take a fixed number of outgoing edges temporally closest to the current node at
tW as AD. We keep |AY| unchanged. (B) Removing Confidence Learner:
In ablation B, we remove the confidence learner. (C) Removing Concept
Regularizer: In ablation C, we remove concept regularizer. (D) Time-Aware
Transformer Variants: We remove the time-aware positional encoding method
by deleting the second term of Eq.2. (E) Removing Temporal Reasoning
Modules: In ablation E, we study the importance of temporal reasoning. We
first combine ablation Al and D, and then delete every term related to time
difference representations computed with Eq. 1. We create a model variant with-
out using any temporal information (see Appendix C for detailed setting). We
present the experimental results of ablation studies in Table 3. From ablation A1l
and A2, we observe that time-adaptive sample is effective. We also see a great
performance drop in ablation B and C, indicating the strong importance of our
confidence learner and concept regularizer. We only do ablation D for 3-shot
model because in 1-shot case our model does not need to distinguish the impor-
tance of multiple support quadruples. We find that our time-aware positional
encoding makes great contribution. Finally, we observe that ablation E shows
poor performance (worse than Al and D in most cases), implying that incorpo-
rating temporal information is essential for FITCARL to solve TKG few-shot
OOG LP.
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Table 3. Ablation study results. Best results are marked bold.

Datasets | ICEWS14-O0G ICEWS18-00G ICEWS0515-00G
MRR Hal Ha@3 HQ10 MRR Ha1l Ha@3 HQ10 MRR Ha1l Ha@3 HQ10

Model 1-s |38 |18 |38 |18 [3-S |1-S |3S |1-S |3S |1-S |3-S |1-S |3-S |1-S |3-S |1-S [3-S |1-S |3-S |1-S |3-S [1-S |3-S
Al 404 | 418 | .283 |.287 | 47T |.494 | .647 | .667 |.218 | .260 |.153 |.167 |.220 |.296 | .404 |.471 |.190 |.401 |.108 |.289 |.196 |.467 |.429 | .624
A2 .264 | .407 | .241 |.277 | .287 |.513 |.288 |.639 |.242 | .265 |.126 |.168 |.337 |.291 | .444 |.499 |.261 |.414 |.200 | .267 |.298 |.545 |.387 | .640
B 373 |.379 | .255 |.284 | .454 |.425 | .655 |.564 |.156 |.258 |.106 |.191 |.162 |.271 |.273 |.398 |.285 | .411 |.198 |.336 | .328 |.442 |.447 |.567
C .379 | .410 |.265 |.236 | .489 |.570 |.667 |.691 |.275 |.339 |.153 |.190 |.346 |.437 |.531 |.556 |.223 |.411 |.130 | .243 |.318 |.544 |.397 | .670
D .438 .262 626 676 257 .160 .280 .500 .438 .262 .610 672
E 270 |.346 |.042 |.178 | .480 |.466 |.644 | .662 |.155 |.201 |.012 |.117 |.197 |.214 | .543 |.429 |.176 |.378 |.047 | .239 |.194 |.501 |.506 | .584
FITCARL | .418|.481 |.284|.329 .522 | .646 |.681 |.696 |.297 .370 .156.193 .386|.559 .584  .627.345|.513|.202 .386 .482 .618.732|.700

Performance Over Time. To demonstrate the robustness of FITCARL, we
plot its MRR performance over prediction time (query time t,). We compare
FITCARL with two meta-learning-based strong baselines GEN and FILT. From
Figs. 4a to 4f, we find that our model can constantly outperform baselines. This
indicates that FITCARL improves LP performance for examples existing at
almost all timestamps, proving its robustness. GEN is not designed for TKG rea-
soning, and thus it cannot show optimal performance. Although FILT is designed
for TKG few-shot OOG LP, we show that our RL-based model is much stronger.

—&— GEN

—e— FILT

—4— FITCARL 0.3
0.30

—&— GEN
£ 025 o T
= —4— FITCARL

0 2 4 6 8 10 0 2 a 6 8

Time Unit: Month Time Unit: Month Time Unit: Year

(a) ICEWS14-O0G 1-shot (b) ICEWS18-OO0G 1-shot (¢) ICEWS0515-O0G 1-shot

0.6

—— GEN
—e— FIT
—4— FITCARL

—— GEN
—e— FIT
—4— FITCARL

05

0.4

MRR

0.3

0.2

0.1

a
Time Unit: Month Time Unit: Month Time Unit: Year

(d) ICEWS14-O0G 3-shot (e) ICEWS18-O0G 3-shot (f) ICEWS0515-O0G 3-shot

Fig. 4. Performance comparison among FITCARL, FILT and GEN over different query
time t,. Horizontal axis of each subfigure denotes how temporally faraway from the first
timestamp. We aggregate the performance of each month to one point in ICEWS14-
O0OG and ICEWS18-O0G. A point for [ICEWS0515-O0G denotes the aggregated per-

formance in each year.
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Case Study. We do a case study to show how FITCARL provides explainabil-
ity and how the confidence learner helps in reasoning. We ask 3-shot FITCARL
and its variant without the confidence learner (both trained on ICEWS14-O0G)
to predict the missing entity of the LP query (Future Movement, Fxpress intent
to cooperate on intelligence, 7, 2014-11-12), where Future Movement is a newly-
emerged entity that is unseen during training and the answer to this LP query is
Miguel Angel Rodriguez. We visualize a specific reasoning path of each model and
present them in Fig. 5. The relation FExpress intent to cooperate on intelligence
indicates a positive relationship between subject and object entities. FITCARL
performs a search with length L = 3, where it finds an entity Military Person-
nel (Nigeria) that is in a negative relationship with both Future Movement and
Miguel Angel Rodriguez. FITCARL provides explanation by finding a reason-
ing path representing the proverb: The enemy of the enemy is my friend. For
FITCARL without confidence learner, we find that it can also provide similar
explanation by finding another entity that is also an enemy of Military Personnel
(Nigeria). However, it fails to find the ground truth answer because it neglects
the confidence of each action. The confidence learner assigns high probability to
the ground truth entity, leading to a correct prediction.

Future Movement Future Movement
Threaten with sanctions =2 Threaten with repression
l = l 2014-05-13 Self-loop 1 =0 120140513
=1 Military Accuseof [ =1
- — F—
i Accuse of Miguel Angel Personnel —Dgeresstonm, Valens
Personnel - B A 2014-09-17 _ Munyabagisha
o aggression! Rodriguez (Nigeria) ; =
(Nigeria) 2014-09-17 Demand settling of dispute 2014-05-22
(a) FITCARL (b) FITCARL w.o. Confidence

Fig. 5. Case study reasoning path visualization. The entity marked in red are the
answer predicted by the model. w.o. means without. (Color figure online)

6 Conclusion

We present an RL-based TKGC method FITCARL to solve TKG few-shot OOG
LP, where models are asked to predict the links concerning newly-emerged enti-
ties that have only a few observed associated facts. FITCARL is a meta-learning-
based model trained with episodic training. It learns representations of newly-
emerged entities by using a time-aware Transformer. To further alleviate the
negative impact of the few-shot setting, a confidence learner is proposed to be
coupled with the policy network for making better decisions. A parameter-free
concept regularizer is also developed to better exploit concept-aware information
in TKBs. Experimental results show that FITCARL achieves a new state-of-the-
art and provides explainability.



564 Z. Ding et al.
References
1. Abboud, R., Ceylan, I.I., Lukasiewicz, T., Salvatori, T.: Boxe: a box embedding

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

model for knowledge base completion. In: NeurIPS (2020)

Ammanabrolu, P., Hausknecht, M.J.: Graph constrained reinforcement learning
for natural language action spaces. In: ICLR. OpenReview.net (2020)

Baek, J., Lee, D.B., Hwang, S.J.: Learning to extrapolate knowledge: transductive
few-shot out-of-graph link prediction. In: NeurIPS (2020)

. Balazevic, 1., Allen, C., Hospedales, T.M.: Tucker: tensor factorization for knowl-

edge graph completion. In: EMNLP/IJCNLP (1), pp. 5184-5193. Association for
Computational Linguistics (2019)

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787-2795 (2013)
Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S., Starz, J., Ward, M.:
ICEWS Coded Event Data (2015)

Chen, K., Wang, Y., Li, Y., Li, A.: Rotateqvs: representing temporal information
as rotations in quaternion vector space for temporal knowledge graph completion.
In: ACL (1), pp. 5843-5857. Association for Computational Linguistics (2022)
Chen, M., Zhang, W., Zhang, W., Chen, Q., Chen, H.: Meta relational learning
for few-shot link prediction in knowledge graphs. In: EMNLP/IJCNLP (1), pp.
4216-4225. Association for Computational Linguistics (2019)

Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In: EMNLP, pp. 1724-1734. ACL (2014)

Ding, Z., He, B., Ma, Y., Han, Z., Tresp, V.: Learning meta representations of one-
shot relations for temporal knowledge graph link prediction. CoRR abs/2205.10621
(2022)

Ding, Z., Ma, Y., He, B., Han, Z., Tresp, V.: A simple but powerful graph encoder
for temporal knowledge graph completion. In: NeurIPS 2022 Temporal Graph
Learning Workshop (2022)

Ding, Z., et al.: Forecasting question answering over temporal knowledge graphs.
CoRR abs/2208.06501 (2022)

Ding, Z., Wu, J., He, B., Ma, Y., Han, Z., Tresp, V.: Few-shot inductive learning on
temporal knowledge graphs using concept-aware information. In: 4th Conference
on Automated Knowledge Base Construction (2022)

Guo, J., Kok, S.: Bique: biquaternionic embeddings of knowledge graphs. In:
EMNLP (1), pp. 8338-8351. Association for Computational Linguistics (2021)
Hamaguchi, T., Oiwa, H., Shimbo, M., Matsumoto, Y.: Knowledge transfer for
out-of-knowledge-base entities: a graph neural network approach. In: IJCAI, pp.
1802-1808. ijcai.org (2017)

He, Y., Wang, Z., Zhang, P., Tu, Z., Ren, Z.: VN network: embedding newly emerg-
ing entities with virtual neighbors. In: CIKM, pp. 505-514. ACM (2020)

Jung, J., Jung, J., Kang, U.: Learning to walk across time for interpretable tem-
poral knowledge graph completion. In: KDD, pp. 786-795. ACM (2021)

Lacroix, T., Obozinski, G., Usunier, N.: Tensor decompositions for temporal knowl-
edge base completion. In: ICLR. OpenReview.net (2020)

Leblay, J., Chekol, M.W.: Deriving validity time in knowledge graph. In: WWW
(Companion Volume), pp. 1771-1776. ACM (2018)

Li, J., Tang, T., Zhao, W.X., Wei, Z., Yuan, N.J., Wen, J.: Few-shot knowl-
edge graph-to-text generation with pretrained language models. In: ACL/IJCNLP
(Findings). Findings of ACL, vol. ACL/IJCNLP 2021, pp. 1558-1568. Association
for Computational Linguistics (2021)



21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

Few-Shot Inductive Learning on TKGs Using Confidence-Augmented RL 565

Li, Z., et al.: Search from history and reason for future: two-stage reasoning on
temporal knowledge graphs. In: ACL/IJCNLP (1), pp. 4732-4743. Association for
Computational Linguistics (2021)

Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, pp. 2181-2187. AAAI Press (2015)
Messner, J., Abboud, R., Ceylan, I.I.: Temporal knowledge graph completion using
box embeddings. In: AAAI, pp. 7779-7787. AAAI Press (2022)

Mirtaheri, M., Rostami, M., Ren, X., Morstatter, F., Galstyan, A.: One-shot learn-
ing for temporal knowledge graphs. In: 3rd Conference on Automated Knowledge
Base Construction (2021)

Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on
multi-relational data. In: ICML, pp. 809-816. Omnipress (2011)

Sadeghian, A., Armandpour, M., Colas, A., Wang, D.Z.: Chronor: rotation based
temporal knowledge graph embedding. In: AAAI, pp. 6471-6479. AAAI Press
(2021)

Saxena, A., Tripathi, A., Talukdar, P.P.: Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings. In: ACL, pp. 4498-4507.
Association for Computational Linguistics (2020)

Schlichtkrull, M., Kipf, T.N., Bloem, P.; van den Berg, R., Titov, 1., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593-607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4_38

Sheng, J., et al.: Adaptive attentional network for few-shot knowledge graph com-
pletion. In: EMNLP (1), pp. 1681-1691. Association for Computational Linguistics
(2020)

Sun, H., Zhong, J., Ma, Y., Han, Z., He, K.: Timetraveler: reinforcement learn-
ing for temporal knowledge graph forecasting. In: EMNLP (1), pp. 8306-8319.
Association for Computational Linguistics (2021)

Tresp, V., Esteban, C., Yang, Y., Baier, S., Krompaf}, D.: Learning with memory
embeddings. arXiv preprint arXiv:1511.07972 (2015)

Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, JMLR Workshop and Conference Pro-
ceedings, vol. 48, pp. 2071-2080. JMLR.org (2016)

Tucker, L.R.: The extension of factor analysis to three-dimensional matrices. In:
Gulliksen, H., Frederiksen, N. (eds.) Contributions to Mathematical Psychology,
pp. 110-127. Holt, Rinehart and Winston, New York (1964)

Vashishth, S.,; Sanyal, S., Nitin, V., Talukdar, P.P.: Composition-based multi-
relational graph convolutional networks. In: ICLR. OpenReview.net (2020)
Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998-6008 (2017)
Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching
networks for one shot learning. In: NIPS, pp. 3630-3638 (2016)

Wang, P., Han, J., Li, C., Pan, R.: Logic attention based neighborhood aggregation
for inductive knowledge graph embedding. In: AAAI, pp. 7152-7159. AAAI Press
(2019)

Wang, R., et al.: Learning to sample and aggregate: few-shot reasoning over tem-
poral knowledge graphs. In: NeurIPS (2022)

Wu, J., Cao, M., Cheung, J.C.K., Hamilton, W.L.: Temp: temporal message pass-
ing for temporal knowledge graph completion. In: EMNLP (1), pp. 5730-5746.
Association for Computational Linguistics (2020)



566

40.

41.

42.

43.

44.

45.

Z. Ding et al.

Xiong, W., Yu, M., Chang, S., Guo, X., Wang, W.Y.: One-shot relational learning
for knowledge graphs. In: EMNLP, pp. 1980-1990. Association for Computational
Linguistics (2018)

Xu, C., Chen, Y., Nayyeri, M., Lehmann, J.: Temporal knowledge graph completion
using a linear temporal regularizer and multivector embeddings. In: NAACL-HLT,
pp. 2569-2578. Association for Computational Linguistics (2021)

Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Tero: a time-aware
knowledge graph embedding via temporal rotation. In: COLING, pp. 1583-1593.
International Committee on Computational Linguistics (2020)

Yang, B., Yih, W., He, X., Gao, J., Deng, L..: Embedding entities and relations for
learning and inference in knowledge bases. In: ICLR (Poster) (2015)

Zhang, F., Zhang, Z., Ao, X., Zhuang, F., Xu, Y., He, Q.: Along the time: timeline-
traced embedding for temporal knowledge graph completion. In: CIKM, pp. 2529-
2538. ACM (2022)

Zhang, Y., Dai, H., Kozareva, Z., Smola, A.J., Song, L.: Variational reasoning for
question answering with knowledge graph. In: AAAI, pp. 6069-6076. AAAI Press
(2018)



A TImplementation Details

All experiments are implemented with PyTorch on a single NVIDIA A40 with
48GB memory. We search hyperparameters following Table 1. For each dataset,
we do 108 trials to try different hyperparameter settings. We run 1000 episodes
for each trail and compare their meta-validation results. We choose the setting
leading to the best meta-validation result and take it as the best hyperparame-
ter setting. The best hyperparameter setting is reported in Table 2. Our time-
aware Transformer uses two heads and two attention layers for all experiments.
The results of FITCARL is the average of five runs. The GPU memory usage,
training time and the number of parameters are presented in Table 3, 4 and 5,
respectively. For all datasets, we use all meta-training entities £/ ..  .i, as the
considered unseen entities in each meta-training task 7. This also applies dur-
ing meta-validation and meta-test, where all the entities in &/ ;. vania/Emetatest
are considered appearing simultaneously in one evaluation task. All the datasets
are taken from FILT’s official repository!. We also take the pre-trained repre-
sentations from it for our experiments. During evaluation, we follow previous
RL-based TKG reasoning models TITer and CluSTeR and use beam search for
answer searching. The beam size is 100 for all experiments.

We implement TITer with its official code?. We give it the whole background
graph Gpack as well as all meta-training quadruples Tyeta-train for training. Dur-
ing meta-validation and meta-test, it is further given support quadruples for
predicting the query quadruples.

Table 1: Hyperparameter searching strategy.

Hyperparameter Search Space
Embedding Size d {100, 200}
Sampled Action Space Size {25, 50, 100}
Search Step L {3, 4}

Regularizer Coefficient . {le-11, 1e-9, le-7}
Margin of Reward 6 {1, 5, 10}

B Difference between TKGC and TKG forecasting

Assume we have a TKG G = {(s,7,0,t)[s,0€ E,r e R, € T CEXRXEXT,
where £, R, 7 denote a finite set of entities, relations and timestamps, re-
spectively. We define the TKG forecasting task (also known as TKG extrapo-
lation) as follows. Assume we have an LP query (sq,7q,?,tq) (or (?,74,04,tq))

! https://github.com/Jasper-Wu/FILT
2 https://github.com/JHL-HUST/T1Ter



Table 2: Best hyperparameter settings.

Datasets ICEWS14-O0G ICEWS18-00G ICEWS0515-00G
Hyperparameter

Embedding Size d 100 100 100
Sampled Action Space Size 50 50 50

Search Step L 3 3 3
Regularizer Coefficient n le-9 le-9 le-9

Margin of Reward 6 5 5 5

Table 3: GPU memory usage (MB).
Datasets ICEWS14-O0G ICEWS18-O0G ICEWS0515-00G

GPU Memory GPU Memory GPU Memory
Model 1-S 3-S 1-S 3-S 1-S 3-S

FITCARL 10729 11153 14761 15419 14765 15475

Table 4: Training time (min).
Datasets ICEWS14-O0G ICEWS18-O00G ICEWS0515-O0G

Time Time Time
Model 1-S 3-S 1-S 3-S 1-S 3-S
FITCARL 225 85 305 764 1059 297

Table 5: Number of parameters.
Datasets ICEWS14-0O0G ICEWS18-00G ICEWS0515-00G

# Param # Param # Param
Model 1-S 3-S 1-S 3-S 1-S 3-S

FITCARL 8271206 8271410 14633206 10006710 9615206 9615410




derived from a query quadruple (sq,7q,04,tq). TKG forecasting aims to pre-
dict the missing entity in the LP query, given the observed past TKG facts
O = {(si,7i,0i,t;)|t; < tq}. Such temporal restriction is not imposed in TKGC
(also known as TKG interpolation), where the observed TKG facts from any
timestamp, including ¢, and the timestamps after t,, can be used for prediction.

TITer is designed for TKG forecasting, therefore it only performs its RL
search process in the direction pointing at the past. This leads to a great loss of
information along the whole time axis. TITer also does not use a meta-learning
framework for adapting to the few-shot setting, which is also a reason for its weak
performance on TKG few-shot OOG LP. Please refer to the papers studying
TKG forecasting for more details.

C Ablation E Details

We describe here how we change equations in ablation E to build a model vari-
ant without using any temporal information. First, we change the action space
sampling method to random sample, which corresponds to ablation Al. This
means we do not use temporal information to compute time-adaptive sampling
probabilities. Next, we neglect the last term in Equation 2 of the main paper. It
thus becomes

attu7,u = I(ej-(f)(&?
e exp(ou,k) (1)
1
Qy v = 7(WTrQhu)T(WT7‘Kh’U)a

Vd

which corresponds to ablation D. Finally, we remove every term in all equations
containing time-difference representations. For a node (e, t), its representation
becomes h.. Thus, Equation 3 of the main paper becomes

by = GRU ((hyo [hew ), hyige-n)

2
hy.0 = GRU ((h,,,... [he) , 0). (2)

Equation 4 of the main paper becomes

hhist(l),q\a = atthist(”,a ! hhist(l) + a‘ttq’a ' h‘]’

_ N 3)
hy 0 = Wi hy0, hy=W,' (b, |h).

Equation 5 and 6 of the main paper become

exp((bhist(”,a)
eXp(gbhist”) ,a) + exp(¢4ﬂ)

exp(@q,a)
,atty o = ’ , (4
o eXp((i)hist”),a) + exp(qﬁq,a) ( )

a“tthist(”,a =

where
R R
Phist® o = Dy 05 @g.0 =hy hy,

_ (5)
ha = W3T (hTa Hhea) .



Algorithm 1: FITCARL Meta-Training

Input: Meta-training entities £, ;. (rain, Packground TKG Gpack, shot size K

1 for episode = 1: M do

2 for e’ € &1 train do

3 Sample a support set Sup,/ and a query set Que,/

a | Learn meta-representations {hi, YK,

& for ¢’ € £}, 14 truin, dO

6 for query € Que,., do

7 Derive LP query ¢ from query

8 Compute h,/ using time-aware Transformer // Section 4.1

9 Initialize s(%) « (&', tq, €', ¢, tq)

! I\ L—1 i L-1 1)) (1 L—1

10 {R(s( ),a( ))}l:O R L£<£|q}l:0 ,{7\'((1( )|s( ))}l:O < Search(L,s(o))
11 Compute loss L1 // Equation 12
12 | Update model parameters using gradient of VL1
13 Procedure Search(L, s(®))
14 for | = 0:L-1 do

15 Sample action space A® from all observed outgoing edges of node (e(l) s t(l))
16 Compute P(a|s®¥, hist™®) and conf, |, for a € A®D /7 Equation 7, 8
17 Compute 7(a|s))) for each a € AP // Equation 9

18 Compute ﬁgl‘q // Equation 11

19 Sample a®) = (eau) RNOY ta(l)) according to policy 7
20 Compute reward R(s),a))
21 Execute a(l’)7 agent transfers to state st = (e(1+1),r(1+1>, 6/7 Tq, tq)

1 Dy L—1 i L—1 1) ()1 L—1

22 | return {R(s( ),a( ))}1:0 7{££<£\q}L:0 ,{ﬂ(a( )\s( ))}1:0

Equation 8 of the main paper becomes

_ exp(wa\q)
le Za’eA(l) exp(%/\q)’

The other equations remain unchanged. To this end, we create a model variant
that uses no temporal information.

conf,

where wa|q =W x; hel X9 hrq X3 he,,,- (6)

D Evaluation Metrics

We use two evaluation metrics, i.e., mean reciprocal rank (MRR) and Hits@1/3/10.
For every LP query g, we compute the rank rank, of the ground truth miss-
ing entity. We define MRR as: 1 Gue] D ercer > L

) oot a q€EQue, s rankg”
e’ €€ eta-test meta-test ¢ a

Hits@1/3/10 denote the proportions of the predicted links where ground truth
missing entities are ranked as top 1, top3, topl0, respectively. We also use the
filtered setting proposed in previous works for fairer evaluation.

E Meta-Training Algorithm of FITCARL

We train FITCARL with episodic training. We present our meta-training process
in Algorithm 1.
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Abstract

Modeling evolving knowledge over temporal
knowledge graphs (TKGs) has become a heated
topic. Various methods have been proposed
to forecast links on TKGs. Most of them are
embedding-based, where hidden representa-
tions are learned to represent knowledge graph
(KG) entities and relations based on the ob-
served graph contexts. Although these methods
show strong performance on traditional TKG
forecasting (TKGF) benchmarks, they face a
strong challenge in modeling the unseen zero-
shot relations that have no prior graph context.
In this paper, we try to mitigate this problem as
follows. We first input the text descriptions
of KG relations into large language models
(LLMs) for generating relation representations,
and then introduce them into embedding-based
TKGF methods. LLM-empowered represen-
tations can capture the semantic information
in the relation descriptions. This makes the
relations, whether seen or unseen, with sim-
ilar semantic meanings stay close in the em-
bedding space, enabling TKGF models to rec-
ognize zero-shot relations even without any
observed graph context. Experimental results
show that our approach helps TKGF models to
achieve much better performance in forecast-
ing the facts with previously unseen relations,
while still maintaining their ability in link fore-
casting regarding seen relations.

1 Introduction

Knowledge graphs (KGs) represent world knowl-
edge with a collection of facts in the form of
(s,r,0) triples, where in each fact, s, o are the
subject and object entities and r is the relation be-
tween them. Temporal knowledge graphs (TKGs)
are introduced by further specifying the time va-
lidity. Each TKG fact is denoted as a quadruple
(s,7,0,t), where ¢ (a timestamp or a time period)

“Equal contribution.
"Corresponding author.

provides temporal constraints. Since world knowl-
edge is ever-evolving, TKGs are more expressive
in representing dynamic factual information and
have drawn increasing interest in a wide range of
downstream tasks, e.g., natural language question
answering over TKGs (Saxena et al., 2021; Ding
et al., 2023b).

In recent years, there has been an increasing
number of works paying attention to forecasting
future facts in TKGs, i.e., TKG forecasting (TKGF)
or TKG extrapolated link prediction (LP). Most of
them are embedding-based, where entity and re-
lation representations are learned with the help of
the observed graph contexts. Although traditional
embedding-based TKGF methods show impressive
performance on current benchmarks, they share a
common limitation. In these works, models are
trained on the TKG facts regarding a set of rela-
tions R, and they are only expected to be evaluated
on the facts containing the relations in R. They
cannot handle any zero-shot unseen relation r ¢ R
because no graph context regarding unseen rela-
tions exists in the training data and thus no rea-
sonable relation representations can be learned. In
the forecasting scenario, as time flows, new knowl-
edge is constantly introduced into a TKG, making
it expand in size. This increases the chance of
encountering newly-emerged relations, and there-
fore, it is meaningful to improve embedding-based
TKGF methods to be more adaptive to zero-shot
relations.

With the increasing scale of pre-trained language
models (LMs), LMs become large LMs (LLMs).
Recent studies find that LLMs have shown emerg-
ing abilities in various aspects (Wei et al., 2022)
and can be taken as strong semantic knowledge
bases (KBs) (Petroni et al., 2019). Inspired by this,
we try to enhance the performance of embedding-
based TKGF models over zero-shot relations with
an approach consisting of the following three steps:
(1) Based on the relation text descriptions provided
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in TKG datasets, we first use an LLLM to produce
an enriched relation description (ERD) with more
details for each KG relation (Sec. 3.1). (2) We then
generate the relation representations by leveraging
another LLM, i.e., T5-11B (Raffel et al., 2020).
We input ERDs into T5’s encoder and transform
its output into relation representations of TKGF
models (Sec. 3.1). (3) We design a relation his-
tory learner (RHL) to capture historical relation
patterns, where we leverage LLM-empowered rela-
tion representations to better reason over zero-shot
relations (Sec. 3.2). With these steps, we align
the natural language space provided by LLMs to
the embedding space of TKGF models, rather than
letting models learn relation representations solely
from observed graph contexts. Even without any
observed associated facts, zero-shot relations can
be represented with LLM-empowered representa-
tions that contain semantic information. We term
our approach as zrLLM since it is used to enhance
zero-shot relational learning on TKGF models by
using LLMs.

We experiment zrLLM on seven recent
embedding-based TKGF models and evaluate them
on three new datasets constructed specifically for
studying TKGF regarding zero-shot relations. Our
contribution is three-folded: (1) To the best of
our knowledge, this is the first work trying to
study zero-shot relational learning in TKGF. (2)
We design an LLM-empowered approach zrLLM
and manage to enhance various recent embedding-
based TKGF models in reasoning over zero-shot
relations. (3) Experimental results show that zr-
LLM helps to substantially improve all considered
TKGF models’ abilities in forecasting the facts con-
taining unseen zero-shot relations, while still main-
taining their ability in link forecasting regarding
seen relations.

2 Preliminaries

2.1 Related Work

Traditional TKG Forecasting Methods. Tradi-
tional TKGF methods are trained to forecast the
facts containing the KG relations (and entities)
seen in the training data, regardless of the case
where zero-shot relations (or entities) appear as
new knowledge arrives. These methods can be
categorized into two types: embedding-based and
rule-based. Embedding-based methods learn hid-
den representations of KG relations and entities,
and perform link forecasting based on them. Most

existing embedding-based methods, e.g., (Jin et al.,
2020; Han et al., 2021b; Li et al., 2021b, 2022; Liu
et al., 2023), learn evolutional entity and relation
representations from the historical TKG informa-
tion by jointly employing graph neural networks
(Kipf and Welling, 2017) and recurrent neural struc-
tures, e.g., GRU (Cho et al., 2014). Some other
approaches (Han et al., 2021a; Sun et al., 2021;
Li et al., 2021a) start from each LP query' and
traverse the temporal history in a TKG to search
for the prediction answer. There also exist some
methods, e.g., (Zhu et al., 2021; Xu et al., 2023b),
that achieve forecasting based on the appearance of
historical facts. Compared with embedding-based
TKGEF approaches, rule-based TKGF has still not
been extensively explored. One popular rule-based
TKGF method is TLogic (Liu et al., 2022). It ex-
tracts temporal logical rules from TKGs and uses
a symbolic reasoning module for LP. Based on it,
ALRE-IR (Mei et al., 2022) proposes an adaptive
logical rule embedding model to encode temporal
logical rules into rule representations. This makes
ALRE-IR both a rule-based and an embedding-
based method. Rule-based TKGF methods have
strong ability in reasoning over zero-shot unseen
entities connected by the seen relations, however,
they are not able to handle unseen relations since
the learned rules are strongly bounded by the ob-
served relations.

Inductive Learning on TKGs. Inductive learn-
ing on TKGs refers to developing models that can
handle the relations and entities unseen in the train-
ing data. Most of TKG inductive learning methods
are based on few-shot learning, e.g., (Ding et al.,
2022; Zhang et al., 2019; Ding et al., 2023c; Mir-
taheri et al., 2021; Ding et al., 2023a,a; Ma et al.,
2023). They first compute inductive representa-
tions of newly-emerged entities or relations based
on K-associated facts (K is a small number, e.g.,
1 or 3), and then use them to predict other facts re-
garding few-shot elements. One limitation of these
works is that the inductive representations cannot
be learned without the K '-shot examples, making
them hard to solve the zero-shot problems. Differ-
ent from few-shot learning methods, SST-BERT
(Chen et al., 2023a) pre-trains a time-enhanced
BERT (Devlin et al., 2019) and proves its inductive
power over unseen entities but has not shown its
ability in reasoning zero-shot relations. Another

'A TKG LP query is denoted as (s, r, ?,t) (object predic-
tion query) or (7,7, 0,t) (subject prediction query).
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recent work MTKGE (Chen et al., 2023b) is able
to concurrently deal with both unseen entities and
relations. However, it requires a support graph
containing a substantial number of data examples
related to the unseen entities and relations, which
is far from the zero-shot setting.

TKG Reasoning with Language Models. Re-
cently, more and more works have introduced LMs
into TKG reasoning. SST-BERT pre-trains an LM
on a corpus of training TKGs for fact reasoning.
ECOLA (Han et al., 2023) aligns facts with addi-
tional fact-related texts and enhances TKG reason-
ing with BERT-encoded language representations.
PPT (Xu et al., 2023a) converts TKGF into the
pre-trained LM masked token prediction task and
finetunes a BERT for TKGF. Apart from them, one
recent work (Lee et al., 2023) explores in-context
learning (ICL) (Brown et al., 2020) with LLMs to
predict future facts without finetuning. Another
recent work GenTKG (Liao et al., 2023) finetunes
Llama2-7B (Touvron et al., 2023), and let it directly
generate the LP answer in TKGF.

Although previous works have shown success of
LMs in TKG reasoning, they have limitations: (1)
None of them has studied whether LMs, in partic-
ular LLLMs, can be used to better reason zero-shot
relations. (2) By only using ICL, LLMs are beaten
by traditional TKGF methods in performance (Lee
et al., 2023). The performance can be greatly im-
proved by finetuning LLMs (Liao et al., 2023),
but finetuning LLMs requires huge computational
resources. (3) Since LMs are pre-trained with a
huge corpus originating from diverse information
sources, it is inevitable that they have already seen
the world knowledge before they are used to solve
TKG reasoning tasks. Most popular TKGF bench-
marks are constructed with the facts before 2020
(ICEWS14/18/05-15 (Jin et al., 2020)). The facts
inside are based on the world knowledge before
2019, which means LMs might have encountered
them in their training corpus, posing a threat of
information leak to the LM-driven TKG reason-
ing models. To this end, we (1) draw attention to
studying the impact of LLMs on zero-shot rela-
tional learning in TKGs; (2) make a compromise
between performance and computational efficiency
by not finetuning LMs or LL.Ms but adapting the
LLM-provided semantic information to non-LM-
based TKGF methods; (3) construct new bench-
marks whose facts are all happening from 2021 to
2023, which avoids the threat of information leak

when we utilize T5-11B that was released in 2020.

2.2 Definitions and Task Formulation

Definition 1 (TKG). Let £, R, T denote a set of
entities, relations and timestamps, respectively. A
TKG G = {(s,71,0,t)} CEXRXEXT isasetof
temporal facts where each fact is represented with
a fact quadruple (s, 7, 0,1).

Definition 2 (TKG Forecasting). Assume we
have a ground truth TKG ggt that contains all the
true facts. Given an LP query (sg,7q,7,t,) (or
(0¢,7¢,?,tq)), TKGF requires the models to pre-
dict the missing object o, (or subject s,) based on
the facts observed before the query timestamp ¢,
ie., O ={(s,1,0,t;) € Gy|ti < t4}.

Definition 3 (Zero-Shot TKG Forecasting). As-
sume we have a ground truth TKG G, C & X
R x € x T, where R can be split into seen
Rse and unseen R, relations (R = Rg U
Run, Rse N Run = 0). Given an LP query
(84,74, 7, tq) (or (04,74, 7,ty)) whose query rela-
tion 7y, € Ryn, models are asked to predict the
missing object o, (or subject s,) based on the facts
O = {(s,7i,0,ti) € Ggi|ts < tg,7i € Rye} con-
taining seen relations and happening before #,.

3 zrLLM

zrLLM is coupled with TKGF models to enhance
zero-shot ability. It uses GPT-3.5 to generate en-
riched relation descriptions (ERDs) based on the
relation texts provided by TKG datasets. It then
inputs the ERDs into the encoder of T5-11B and
aligns its output to TKG embedding space. zrTLLM
also employs a relation history learner (RHL) to
capture the temporal relation patterns based on the
LLM-based relation representations, which further
promotes embedding space alignment. See Fig. 1
for illustration of zrLLM-enhanced TKGF models.

3.1 Represent KG Relations with LLMs

Generate Text Representations with ERDs. We
generate text representations with T5-11B based
on the textual descriptions of KG relations. Since
the relation texts provided by TKG datasets are
short and concise, we use GPT-3.52 to enrich them
for more comprehensive semantics. Our prompt
for description enrichment is depicted in Fig. 2.
For each relation, we treat the combination of its
relation text and LLM-generated explanation as its
ERD. See Table 1 for two enrichment examples.

Zhttps://platform.openai.com/docs/model-index-for-
researchers
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(a) Training pipeline of zrLL.M-enhanced model.

12
TKGF Model Loss LTKGF

\_Score Function | v

(b) Evaluation pipeline of zrLLM-enhanced model.

Figure 1: Illustration of zrLLM-enhanced TKGF models. RHL-related components are marked in blue. RHL works
differently in training and evaluation. During training, since we know both entities (s, o in 1a) in the training fact, we
can find the ground truth historical relations between them over time. We train a history prediction network (HPN)
that aims to generate the relation history between two entities given their current relation (). During evaluation, we
directly use the trained HPN to infer the relation history. See Sec. 3 for details.

Prompt

Please give me for each of the following relations an explanation:
[REL_O]; ...; [REL_n].
- + .
[ GPT-3.5 |
—

Output

Certainly, here are explanations for each of the listed relations:
[REL_0]: [EXP_0].

[RELin]:"iEXPin],

Figure 2: Prompting GPT-3.5 for ERDs. [REL_0], ...,
[REL_n] are the dataset provided relation texts for a
batch of n KG relations. [EXP_0], ..., [EXP_n] are the
LLM-generated explanations. [REL:_0]: [EXP_0], ...,
[REL:_n]: [EXP_n] are taken as ERDs. See Appendix
A for an expanded version of this figure.

KG Relation Text Enriched Relation Description

Engage in negotiation: This indicates a willingness to ipate in ssions or
dialogues with the aim of reaching agreements or settlements on various issues.

Engage in negotiation

Praise or endorse: This signifies a positive evaluation or approval of another entity’s

Praise or endorse f . s A " P
actions, policies, or behavior. It is a form of expressing support or admiration.

Table 1: Relation description enrichment examples.

We then input the ERDs into T5-11B. TS5 is with
an encoder-decoder architecture, where its encoder
can be taken as a module that helps to understand
the text input and the decoder is solely used for
text generation. We take the output of T5-11B’s
encoder, i.e., the hidden representations, for our
downstream task. Note that although ERDs are pro-
duced by GPT-3.5 who is trained with the corpus
until the end of 2021, the representations used for
TKGF are generated only with T5-11B, preventing
information leak. Also, through our prompt, GPT-
3.5 does not know our underlying task of TKGF.
We manually check the ERDs generated by GPT-
3.5 and make sure that GPT-3.5 generates relation
explanations solely from the semantic perspective
and no world knowledge is contained in its output.

Align Text Representations to TKG Embed-
ding Space. For each KG relation 7, the T5-
generated text representation is a parameter matrix
H, € RY%9 | [ is the length of the Transformers
(Vaswani et al., 2017) in T5 and d,, is the embed-
ding size of each word output from TS5 encoder.
The I row in H, is the TS encoded hidden repre-
sentation w; € R% of the I word in the enriched
description. To align H, to an embedding-based
TKGF model, we first use a multi-layer perceptron
(MLP) to map each w; to the dimension of the
TKGF model’s relation representation.

= MLP(w;), where w} € R%. (D)

Then we learn a representation of 7’s ERD h,. using
a GRU.

h) = GRU(w}, h{~V); h®) =

hr - h(Lil). (2)

| € [1, L — 1]. h, contains semantic information
from ERD, and therefore, we can view it as an
LM-based relation representation. We substitute
the relation representations of TKGF models with
LM-based representations for semantics integra-
tion. Note that we fix the values of every H, to
keep the LLM-provided semantic information in-
tact. This is because we do not want the relation
representations to lay excessive emphasis on the
training data where zero-shot relations never ap-
pear. We want the models to maximally benefit
from the semantic information for better generaliza-
tion power. The textual descriptions of the relations
with close meanings will show similar semantics.
Since for each relation r, H, is generated based on
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r’s ERD, the relations with close meanings will nat-
urally lead to highly correlated text representations,
building connections on top of the natural language
space regardless of the observed TKG data.

3.2 Improving Text-to-Graph Alignment with
Relation History Learner

As the relationship between two entities evolves
through time, it follows certain temporal pat-
terns. For example, the fact (China, Sign formal
agreement, Nicaragua, 2022-01-10) happens after
(China, Grant diplomatic recognition, Nicaragua,
2022-01-04), implying that an agreement will be
signed after showing diplomatic recognition. These
temporal patterns are entity-agnostic and can reflect
the dynamic relationship between any two entities
over time. To this end, we develop RHL, aiming
to capture such patterns. RHL leverages the LLM-
based relation representations for pattern modeling,
which further promotes the alignment between the
text and TKG embedding spaces.

Assume we have a training fact (s,r,0,t), we
search for the historical facts G5/ containing s
and o before ¢, and group these facts according
to their timestamps, i.e., G5t = {G?,, ..., Gl 1}
The searched facts with the same timestamp are
put into the same group. For each group, we pick
out the relations of all its facts and form a relation
set, e.g., Rgo is derived from ggo. s and o’s rela-
tionship at ¢; (¢; € [0,¢ — 1]) is computed with an
aggregator

h?;o =Y, amhy,; am = softmax(ﬁLlMLPagg(ﬁr)). 3)

Tm € ngo denotes a relation bridging s and o at ;.
If RY, = 0, we set h¥, to a dummy embedding
hgum. To capture the historical relation dynamics,
we use another GRU, i.e., GRURqL.

- i i—1y. —
hflist - GRURHL(hi,m hfﬂst )7 hgist = hg,m
t—1 “)
hpige = by

hy,; is taken as the encoded relation history until
t — 1. Note that during evaluation, TKGF asks
models to predict the missing object of each LP
query (sq,7q,?,tq), which means we do not know
which two entities should be used for historical fact
searching?. To solve this problem, during training,
we train another history prediction network (HPN)

3We can indeed couple s, with every candidate entity e €
£ and search for their historical facts. But it requires huge
computational resources and greatly harms model’s scalability.

that aims to directly infer the relation history given
the training fact relation r.

hpie = aMLPpig(h,.) + h,.. (5)

Here, « is a hyperparameter scalar and MLPy is
an MLP. flhist is the predicted relation history given
r. Since we want flhist to represent the ground truth
relation history, we use a mean square error (MSE)
loss to constrain it to be close to hy;g;.

Lhist = MSE (hpigt, hipisy)- (6)

In this way, during evaluation, we can directly use
Eq. 5 to generate a meaningful hhig for further
computation. Given flhist, we do one more step in
GRURyL to capture the r-related relation pattern.

hpat = GRUggr (By, hiise).- @)

h,,, can be viewed as a hidden representation con-
taining comprehensive information of temporal re-
lation patterns. Inspired by TuckER (Balazevic
et al., 2019), we compute an RHL-based score for
the training target (s,r,0,t) as

¢((s;m,0,t)) =W x1 hgpy X2 hpa X3 hoy),  (8)

where W € R%*@xd i5 a learnable core tensor and
X1, X2, X3 are three operators indicating the tensor
product in three different modes (details in (Bal-
azevic et al., 2019)). h(, ;) and h(, ;) are the time-
aware entity representations of s and o computed
by TKGF model, respectively. RHL-based score
can be viewed as measuring how much two entities
match the relation pattern generated by the relation
history. We couple this score with the score com-
puted by the original TKGF model ¢'((s, 7, 0,t))
and use the total score for LP.

broal((8,7,0,8)) = ¢ ((s,7,0,1)) +v9((5,7,0,1)). (9)

~ is a hyperparameter. RHL enables models to
make decisions by additionally considering the
temporal relation patterns. Note that patterns are
captured with LLM-empowered relation represen-
tations that contain rich semantic information. This
guarantees RHL to generalize well to zero-shot
relations. See App. I for explanations.

3.3 Parameter Learning and Evaluation

We let zrLLM be co-trained with TKGF model.
Assume f is a TKGF model’s loss function, e.g.,
cross-entropy, where f takes a fact quadruple’s
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score computed by model’s score function ¢’ and
returns a loss for this fact. We input the quadruple
score computed with Eq. 9 into f to let TKGF
models better learn the parameters in RHL.

LTKGF = m > xeGu, I (Droat (V) (10)
where A denotes a fact quadruple (s, 7, 0,t) € Giain
in the training set Gyin. Besides, we also employ
an additional binary cross-entropy loss Lryr, di-
rectly on the RHL-based score

LRHL = % Z Z ﬁﬁﬁm

A ee€
Lyt = —yn log(6(N)) — (1 =y ) log(1 — p(X)).

1D

N = |Girain| X |E|. N is a perturbed fact by switch-
ing the object of A to any e € &£ and y) is its label.
If N € Giain, then vy, = 1, otherwise yy = 0.
Finally, we define the total loss Lo as

Liotal = L1KGF + Lhist + nLrAL.  (12)
1 is a hyperparameter deciding Lrpr’s magni-
tude. Given our loss, we can also view RHL
as a module that does a subtask during training.
The subtask is to leverage the relation patterns
encoded solely with LLM-based relation repre-
sentations to perform TKG forecasting, which
is parallel to the pipeline of the original TKGF
model. This subtask training process helps to im-
prove the embedding space alignment between text
and graph representations. During evaluation, for
each LP query (sq,rq,?,t4), we compute scores
{brotal ((¢,7¢, €, t4)) }|e € £} and take the entity
with maximum score as the predicted answer. We
provide algorithms of training and evaluation in
App. D.

4 Experiments

We give details of our new zero-shot TKGF datasets
in Sec. 4.1. In Sec. 4.3, we (1) do a compara-
tive study to show how zrLLM improves TKGF
models, (2) do ablation studies, (3) compare zr-
LLM with recent LM-enhanced TKGF models,
and (4) do a case study to prove RHL’s effec-
tiveness. The implementation code and our pro-
posed zero-shot datasets are in the following page:
https://github.com/ZifengDing/zrLLM

4.1 Datasets for Zero-Shot TKGF

As discussed in Sec. 2.1, LM-enhanced TKGF
models experience the risk of information leak.

Dataset €] [RI [Twinl [Teval [Rsel [Runl [Giwin]  |Gvatia] |Grew|
ACLEDzero 621 23 20 11 9 14 2118 931 146
ICEWS2l-zero 18205 253 181 62 130 123 247764 77,195 1395
ICEWS22-zero 999 248 181 62 93 155 171,013 47,784 1956

Table 2: Dataset statistics. Dataset timestamps consist
of both training and evaluation timestamps, i.e., 7 =

7;rain U 7;val, 7:rain N ’Teval = wa max(ﬁrain) < min(ﬁval)~

To exclude this concern, we construct new bench-
mark datasets on top of the facts happening af-
ter the publication date of T5-11B. We first con-
struct two datasets [CEWS21-zero and ICEWS22-
zero based on the Integrated Crisis Early Warn-
ing System (ICEWS) (Boschee et al., 2015) KB.
ICEWS21-zero contains the facts happening from
2021-01-01 to 2021-08-31, while all the facts in
ICEWS22-zero happen from 2022-01-01 to 2022-
08-31. Besides, we also construct another dataset
ACLED-zero based on another KB: The Armed
Conflict Location & Event Data Project (ACLED)
(Raleigh et al., 2010). Facts in ACLED-zero take
place from 2023-08-01 to 2023-08-31. All the facts
in all three datasets are based on social-political
events described in English.

Inspired by (Mirtaheri et al., 2021), our dataset
construction process consists of the following steps.
(1) For each dataset, we first collect all the facts
within the time period of interest from the associ-
ated KB and then sort them in the temporal order.
(2) Then we split the collected facts into two splits,
where the first split contains the facts for model
training and the second one has all the facts for
evaluation. Any fact from the evaluation split hap-
pens later than the maximum timestamp of all the
facts from the training split. Since we are study-
ing zero-shot relations, we exclude the facts in the
evaluation split whose entities do not appear in the
training split, to avoid the potential impact of un-
seen entities. (3) We compute the frequencies of all
relations in the evaluation split, and set a frequency
threshold (40 for ACLED-zero and ICEWS21-zero,
60 for ICEWS22-zero). (4) We take each relation
whose frequency is lower than the threshold as a
zero-shot relation, and treat every fact containing it
in the evaluation split as zero-shot evaluation data
Gest. We exclude the facts associated with zero-
shot relations from the training split to ensure that
models cannot see these relations during training,
and take the rest as the training set Gyain. The rest
of facts in the evaluation split are taken as the reg-
ular evaluation data Gy,iq. We do validation over
Gvatia and test over G because we want to study
how models perform over zero-shot relations when
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Datasets ACLED-zero ICEWS21-zero ICEWS22-zero

Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall
Model MRR Hits@l Hits@l0 MRR Hits@l Hits@l0 MRR MRR Hits@l Hits@l0 MRR Hits@l Hits@l0 MRR MRR Hits@l Hits@l0 MRR Hits@l Hits@l0 MRR
CyGNet 0.487  0.349 0791  0.751 0.663 0.903 0717 0.120  0.046 0270  0.254  0.165 0.432 0252 0211 0.098 0459 0315 0.198 0.540 0.311

CyGNet+ 0.533 0418 0.753 0751  0.664 0.906 0.723  0.201  0.103 0415 0258 0.162 0.447 0.257  0.286  0.167 0.542 0315 0.200 0.545 0.314
TANGO-T ~ 0.052  0.021 0.101  0.774  0.701 0.900 0.681  0.067 0.031 0.132 0283  0.190 0.470 0.279  0.092  0.042 0.187 0363  0.250 0.579 0.352
TANGO-T+ 0.525  0.393 0.764  0.775  0.702 0.901 0.743 0216  0.125 0.395  0.280 0.186 0.466 0.279  0.326  0.198 0.578 0363  0.251 0.585 0.362
TANGO-D  0.021  0.003 0.049  0.777  0.701 0.907 0.679  0.012  0.005 0.023 0266 0.178 0.439 0.261  0.011  0.002 0.018 0350 0.227 0.569 0.337
TANGO-D+ 0.491  0.348 0791 0.760  0.678 0.901 0.725 0212 0.122 0.400 0268 0.175 0.453 0.267 0.311  0.186 0.574 0350 0.239 0.570 0.348
RE-GCN 0.441 0332 0.718  0.730  0.653 0.865 0.693  0.200 0.104 0379 0277 0.185 0.456 0276 0.280 0.162 0.616 0.354 0.243 0.567 0.351
RE-GCN+  0.529  0.393 0.784  0.731  0.650 0.876 0705 0.214  0.117 0.406  0.280 0.188 0.456 0279 0324 0.194 0.595  0.357 0.244 0.573 0.356

TIRGN 0478 0330 0745 0754 0678  0.886 0718 089 0101 0368 0275 0.182 0457 0273 0299 0169 0570 0352 0239 0575 0350
TIRGN+ 0548 0436 0750 0754 0679 0885 0727 0221 030 0410 0279 0185 0464 0278 0333 0203  0.602 0353 0240 0577 0352
RETIA 0499 0360 0795 0782 0701 0924 0745 120 Hours Timeout 0302 0.66 0566 0356 0245 0577 0354
RETIA+ 0557 0408 0814 0783 0703 0925  0.754 ours imeou 0331 0201 0597 0358 0247 0578 0357
CENET 0419 0297 0593 0753 0682 0869 0710 0205 0101 0411 0288 0.196 0468 0287 0270 0.134 0544 0379 0268 0599 0375

CENET+ 0.591  0.451 0.844  0.779  0.692 0.912 0.755  0.335 0.162 0.659 0396 0.239 0.688 0.395  0.564 0.432 0.801 0571 0451 0.773 0.570

Table 3: LP results. The best results between each baseline and its zrLLM-enhanced version (model name with "+'")
are marked in bold. TANGO-T and TANGO-D denote TANGO with TuckER (Balazevic et al., 2019) and Distmult
(Yang et al., 2015), respectively. RETIA cannot be trained before 120 hours timeout on ICEWS21-zero. Complete

results with Hits@3 are presented in App. F.

they reach the best performance over seen relations.
See Table 2 and App. B for dataset statistics.

4.2 Experimental Setup

Training and Evaluation for Zero-Shot TKGF.
All TKGF models are trained on Gq,. We take
the model checkpoint achieving the best validation
result on Gyaiiq as the best model checkpoint, and
report their test result on Gieg to study the zero-shot
inference ability. To keep zero-shot relations "al-
ways unseen" during the whole test process, we
constrain all models to do LP only based on the
training set as several popular TKGF methods, e.g.,
RE-GCN (Zhu et al., 2021). Some TKGF mod-
els, e.g., TiIRGN (Li et al., 2022), allow using the
ground truth TKG data until the LP query times-
tamp, including the facts in evaluation sets. This
will violate the zero-shot setting because every un-
seen relation will occur multiple times in the evalu-
ation data and is no longer zero-shot after models
observe any fact of it. We prevent them from ob-
serving evaluation data to maintain the zero-shot
setting. See App. C.5 for explanation. Note that
Gvatia and Gies; share the same time period. This
is because we want to make sure that zrLLM
can enhance zero-shot reasoning and simultane-
ously maintain TKGF models’ performance on
the facts with seen relations. Improving zero-
shot inference ability at the cost of sacrificing
too much performance over seen relations is un-
desired.

Baselines and Evaluation Metrics. We consider
seven recent embedding-based TKGF methods as
baselines, i.e., CyGNet (Zhu et al., 2021), TANGO-
TuckER/Distmult (Han et al., 2021b), RE-GCN (Li
etal., 2021b), TiRGN (Li et al., 2022), CENET (Xu

etal., 2023b) and RETIA (Liu et al., 2023). We cou-
ple them with zrLLLM and show their improvement
in zero-shot relational learning on TKGs (imple-
mentation details in App. C). We employ two eval-
uation metrics, i.e., mean reciprocal rank (MRR)
and Hits@1/3/10. See App. E for detailed defi-
nitions. As suggested in (Gastinger et al., 2023),
we use the time-aware filtering setting (Han et al.,
2021a) for fairer evaluation.

4.3 Comparative Study and Further Analysis

Comparative Study. We report the LP results of
all baselines and their zrLL.M-enhanced versions in
Table 3. We have two findings: (1) zrLLM greatly
helps TKGF models in forecasting the facts with
unseen zero-shot relations. (2) In most cases, zr-
LLM even improves models in predicting the facts
with seen relations. The zrLLLM-enhanced models
whose performance drops over seen relations still
achieve better overall performance. These findings
prove that embedding-based TKGF models bene-
fit from the semantic information extracted from
LLMs, especially when they are dealing with zero-
shot relations.

Ablation Study. We conduct ablation studies
from three aspects. (1) First, we directly input
the dataset-provided relation texts into T5-11B en-
coder, ignoring the relation explanations generated
by GPT-3.5. From Table 4 (-ERD), we observe
that in most cases, models’ performance drops on
the facts with both seen and zero-shot relations,
which proves the usefulness of ERDs. (2) Next, we
remove the RHL from all zrLLM-enhanced mod-
els. From Table 4 (-RHL), we find that all the
considered TKGF models can benefit from RHL,
especially CENET. (3) We switch T5-11B to T5-
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Express intent to settle dispute

Defend verbally
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2021-06-17
Express intent to settle dispute
Defend verbally
Cooperate economically

2021-06-17
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! Appeal for change in regime

2021-06-24
| Use unconventional violence
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‘.. Ground Truth History -

2021-06-24
Use unconventional violence
Make statement
Changed History 1

2021-06-24
Ease administrative sanctions
Cooperate militarily
Changed History 2
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GTH 2021-06-17
PRH
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(©

0.8 1.0

0.2

(b)

Figure 3: (a) Ground truth and changed relation histories between United States and African Union. Changed
relations are marked in red. Only the histories nearest to 2021-07-03 are shown. (b) t-SNE of encoded GTH, CHI1,
CH2 (computed with Eq. 4), and predicted history PRH. Numbers beside dashed lines denote point distances (L2
norm). (¢) Ground truth relation histories between United States and Afghanistan.

3B to see the impact of LM size on zrLLM. We
observe from Table 4 that decreasing the size of TS
harms model performance. This proves that using
larger scale LMs can provide semantic information
of higher quality, and can be more beneficial to

mally solve TKGF. zrLLM not only benefits from a
large LM but also enables efficient alignment from
language to TKG embedding space, which leads to
superior performance.

Datasets ACLED-zero ICEWS21-zero ICEWS22-zero
downstream TKGF (whether zero-shot or not). MRR MRR MRR
Model Zero Seen Overall Zero Seen Overall Zero Seen Overall

Datasets ACLED-zero ICEWS21-zero ICEWS22-zero PPT 0532 0782 0748 0212 0269 0268 0323 0332 0331

MRR MRR MRR ICL 0537 0736 0709 0156 0.178 0.177 0255 0229 0.230
Model Zero Seen Overall Zero Seen Overall Zero Seen Overall
CyGNet+ 0.533 0.751 0.723 0.201 0.258 0.257 0.286 0.315 0.314 Table 5: PPT and ICL performance' Implementation
-ERD 0502 0748 0716 0198 0252 0251 0250 0314 0311 . .
-RHL 0503 0752 0720 0199 0256 0255 0268 0297 0.296 details and complete results in App. C.3 and H.
T5-3B 0511 0752 0721 0117 0204 0202 0257 0315 0313
TANGO-T+ 0.525 0775 0743 0216 0280 0279 0326 0363 0.362
-ERD 0.533 0772 0741 0214 0280 0279 0320 0362 0.360
-RHL 0.506 0755 0740 0213 0277 0276 0309 0363 0361 .
T5-38 0.544 0771 0742 0206 0274 0273 0323 0359 0.338 Case Study of RHL  We do a case study to show:
TANGO-D+ 0491 0760 0725 0212 0268 0267 0311 0350 0348 (1) RHL’s HPN is able to capture ground truth
-ERD 0491 0702 0675 0205 0267 0266 0285 0328 0.326 . . .
SRHL 0490 0725 0.695 0197 0224 0224 0296 0324 0.323 relation history (GTH). (2) By capturing tempo-
T5-3B 0490 0701 0674 0204 0223 0222 0308 0.284 0285 | relati RHL helps for b
RE-GCN+ 0529 0731 0705 0214 0280 0279 0324 0357 0.356 ral relation patterns, elps Tor better zero-
-ERD 0489 0730 0699 0211 0277 0276 0294 0354 0352 -
-RHL 0.519 0726 0699 0213 0277 0276 0317 0350 0.349 shot TKGF. We ask zrLLM-enhanced CENET
T5-38 0.504 0721 0693 0211 0259 0258 0301 0354 0352 to predict the missing object of the test query
TiIRGN+  0.548 0754 0727 0221 0279 0278 0333 0353 0.352 .
-ERD 0480 0747 0713 0211 0275 0274 0282 0353 0350 q = (Sq,rq,?,tq) = (United States, Reduce or
-RHL 0515 0752 0721 0215 0277 0276 0320 0350 0.349 e . o .
T5-3B 0498 0749 0717 0208 0271 0270 0325 0345 0.344 stop mllztary assistance, !, 2021-07—03) (answer is
RETIA+ 0557 0783 0754 0331 0358 0357 — ; ; -
YeRb 03t 077 o7 0 o 0w 00 = African Union) taken from ICEWS21-zero.
-RHL 0529 0.782 0749 ‘ 0318 0357 0355 i -
T5-38 0512 0776 0742 0330 0353 0352 The GTH O_f Sq an_d oq (Fig. 3a, le_ft) ShOW'S a p'(flt
CENET+ 0391 0779 0755 0335 039 0395 0564 o571 osv  tern indicating their recent worsening relationship.
-ERD 0.526 0737 0710 0321 0374 0373 0542 0.570 0.568 . .
CRHL 0445 0754 0714 0232 0290 0289 0295 0370 0367 It can serve as a clue in LP over ¢ because it can be
T5-38 0.568 0736 0714 0303 0330 0329 0550 0555 0.554

Table 4: Ablation study (complete results in App. G).

Compare with Previous LM-Enhanced Model.
We benchmark two recent LM-enhanced TKGF
models PPT (Xu et al., 2023a) and ICL + GPT-
NeoX-20B (Lee et al., 2023; Black et al., 2022)
(Table 5). PPT finetunes BERT for TKGF. We
find that although PPT achieves strong zero-shot
results, it is beaten by several zrLLM-enhanced
models. This proves that aligning language space
to TKGF is helpful for zero-shot relational learning
and LMs with larger size can be more contributive.
ICL shows inferior results. This proves that without
finetuning or alignment, LLLMs are unable to opti-

viewed as a "cause" to the query relation r, which
also implies a negative relationship. In other words,
the entities with a worsening historical relation-
ship are more likely to be connected with a relation
showing their bad relationship currently. Since
RHL uses HPN to infer GTH during test, we wish
to study whether HPN can achieve reasonable infer-
ence to support LP. Based on GTH, we first change
all three relations on 2021-06-17 to randomly sam-
pled positive relations seen in the training data and
form a changed history 1 (CHI, Fig. 3a, middle).
Then we further modify the relations on 2021-06-
24 in the same way and form a changed history
2 (CH2, Fig. 3a, right). We use Eq. 4 to encode
GTH, CHI, CH2, and visualize them together with
the predicted history (PRH) computed with HPN
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by using t-SNE (van der Maaten and Hinton, 2008)
in Fig. 3b. We find that PRH is the closest to
GTH and CHI is closer than CH2 to GTH. The
reason why CH2 is much farther from GTH is that
CH2 changes more negative relations to positive,
greatly changing the semantic meaning stored in
GTH. CH1 only introduces changes on 2021-06-17,
making it less deviated from GTH. HPN takes the
r4 and can keep PRH close to GTH, making zrLLM
able to maximally capture the temporal patterns in-
dicated by GTH, while preventing the scalability
problem incurred by searching relation histories of
all candidate entities. By using RHL, the zrLLM-
enhanced CENET can correctly predict o4, while
the model without RHL takes o' = Afghanistan
as the predicted answer. We present the nearest
GTH between s, and o’ in Fig. 3¢ and find that it
indicates a positive relationship which is unlikely
to cause r, right after. During training, RHL learns
patterns and matches entity pairs with them (Eq. 8).
This enables RHL to exclude the entities that do
not fit into the learned patterns from the answer set
and make more accurate predictions.

5 Conclusion

We study zero-shot relational learning in TKGF and
design an LLM-empowered approach, i.e., zrLLM.
zrLLM extracts the semantic information of KG re-
lations from LLMs and introduces it into TKG rep-
resentation learning. It also uses an RHL module
to capture the temporal relation patterns for better
reasoning, and meanwhile promote the embedding
space alignment between text and TKGs. We cou-
ple zrLLM with several embedding-based TKGF
models and find that zrLLM provides huge help in
forecasting the facts with zero-shot relations, and
moreover, it maintains models’ performance over
seen relations.

6 Limitations

Our limitations can be summarized as follows.
First, zrTLLM is developed only for enhancing
embedding-based TKG forecasting methods. It
is not directly applicable to the rule-based methods,
e.g., TLogic. Besides, relation history learner in-
evitably increases model’s training and evaluation
time since relation patterns are learned with GRUs
where recurrent computations are performed along
the time axis. More GPU memory is also required
for storing relation histories. This hinders the effi-
ciency of zrLLM-enhanced models compared with

the original baselines. In the future, we will ex-
plore how to generalize our proposed method to
rule-based models and try to improve model effi-
ciency. We will also try to experiment zrLLM on
more TKG forecasting methods and study whether
we can benefit more of them.
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A Detailed Illustration of Prompt for
GPT-3.5

We give a detailed illustration of our prompt for
producing ERDs with GPT-3.5 in Fig. 4. For every
batch of n relations, we incorporate their dataset-
provided texts into our prompt to generate their
enriched descriptions.

B Further Details of Zero-Shot Datasets

For each dataset, we provide the distribution of all
zero-shot relations’ frequncies in Fig. 5. We take
the relations with lowest frequencies as zero-shot
relations when we construct datasets, following
previous few-shot relational TKG learning frame-
works, e.g., OAT (Mirtaheri et al., 2021) and MOST
(Ding et al., 2023a). The proportion of zero-shot
relations for each dataset is high. 14 out of 23;
123 out of 253; 155 out of 248 relations in ACLED-
zero; ICEWS21-zero; ICEWS22-zero are zero-shot
relations. This ensures the diversity of relation
types in test sets.

C Implementation Details

All experiments are implemented with PyTorch
(Paszke et al., 2019) on a server equipped with
an AMD EPYC 7513 32-Core Processor and a
single NVIDIA A40 with 48GB memory. All the
experimental results are the average of three runs
with different random seeds.

C.1 Baseline Implementation Details

Our baselines are all based on neural net-
works rather than pure score function-based (e.g.,
TTransE (Leblay and Chekol, 2018)). This is be-
cause the most popular and recent TKGF methods
all leverage neural networks to gain the forecast-
ing ability and it is hard for pure score function-
based methods to achieve that solely with geomet-
ric embeddings. The implementation details of
each TKGF baseline is as follows.
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Prompt

Please give me for each of the following relations an explanation:

Engage in negotiation;
Praise or endorse;

n
Provide humanitarian aid.
)
[ GPT-3.5 )
i
Output

Certainly, here are explanations for each of the listed relations:

Engage in negotiation: This indicates a willingness to participate in discussions or
dialogues with the aim of reaching agreements or settlements on various issues.
Praise or endorse: This signifies a positive evaluation or approval of another entity’s
actions, policies, or behavior. It is a form of expressing support or admiration.

Provide humanitarian aid: This relation denotes the act of delivering assistance,
relief, or support, usually in the form of food, medical supplies, and other essentials,
to alleviate human suffering in crisis situations.

Figure 4: Prompting GPT-3.5 for ERDs. The green texts are the short relation texts provided in the original datasets.
The orange texts are the generated relation explanations from GPT-3.5.

Histogram of Zero-Shot Relation Frequency on ACLED-zero

Histogram of Zero-Shot Relation Frequency on ICEWS21-zero

Histogram of Zero-Shot Relation Frequency on ICEWS22-zero
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Figure 5: Zero-shot Relation frequency on all zero-shot TKGF datasets. Horizontal axis denotes the appearance
times, i.e., frequency. Vertical axis denotes the number of relations.

* CyGNet. We use the official code of
CyGNet*. We search hyperparameters of base-
line CyGNet following Table 6. The best hy-
perparameters are marked as bold. For each
dataset, we do 4 trials to try different hyper-
parameter settings. We run 5 epochs for each
trail and take the one with the best validation
result as the best hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Hyperparameter CyGNet CyGNet CyGNet
Embedding Size {100, 200} {100, 200} {100, 200}
Alpha (Eq. 9 in (Zhu et al., 2021)) {0.2,0.5} {0.2,0.5} {0.2,0.5}

Table 6: CyGNet hyperparameter searching strategy.

* TANGO-TuckER/Distmult. We use the offi-
cial code of TANGO?. We search hyperparam-
eters of baseline TANGO-TuckER/Distmult
following Table 7. The best hyperparameters
are marked as bold. For each dataset, we do 6
(TANGO-TuckER) and 9 (TANGO-Distmult)

*https://github.com/CunchaoZ/CyGNet
>https://github.com/TemporalK GTeam/TANGO

trials to try different hyperparameter settings.
We run 10 epochs for each trail and take the
one with the best validation result as the best
hyperparameter setting.

ICEWS22-zero
TuckER

ACLED-zero
TuckER

ICEWS21-zero
TuckER

Dataset

Hyperparameter Distmult Distmult Distmult

Embedding Size
History Length

(100,200} {100, 200, 300}
{4.6,10} (4.6, 10}

{100, 200}
(4,6, 10}

{100, 200, 300} {100,200} {100, 200, 300}
{4,6,10} {4,6,10} {4,6,10}

Table 7: TANGO hyperparameter searching strategy.

* RE-GCN. We use the official code of RE-
GCNS. We search hyperparameters of base-
line RE-GCN following Table 8. The best
hyperparameters are marked as bold. For each
dataset, we do 4 trials to try different hyperpa-
rameter settings. We run 10 epochs for each
trail and take the one with the best validation
result as the best hyperparameter setting.

* TiRGN. We use the official code of TIRGN”.
We search hyperparameters of baseline

®https://github.com/Lee-zix/RE-GCN

"https://github.com/Liyyy2122/TiRGN
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Dataset
Hyperparameter

ACLED-zero ICEWS21-zero ICEWS22-zero
RE-GCN RE-GCN RE-GCN

Embedding Size {100, 200} (100, 200} {100, 200}

History Length {3,9} {3,9} {3,9}

Table 8: RE-GCN hyperparameter searching strategy.

TiRGN following Table 9. The best hyperpa-
rameters are marked as bold. For each dataset,
we do 12 trials to try different hyperparameter
settings. We run 10 epochs for each trail and
take the one with the best validation result as
the best hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Hyperparameter TiRGN TiRGN TiRGN
Embedding Size {100, 200} {100, 200} {100, 200}
History Length {3,9} {3,9} {3,9}
Alpha (Eq. 11in (Lietal,, 2022)) {0.3,0.5,0.7}  {0.3,0.5,0.7} {0.3,0.5,0.7}

Table 9: TiRGN hyperparameter searching strategy.

» RETIA. We use the official code of RETIAS.
We search hyperparameters of baseline RE-
TIA following Table 10. The best hyperpa-
rameters are marked as bold. For each dataset,
we do 4 trials to try different hyperparameter
settings. We run 10 epochs for each trail and
take the one with the best validation result as
the best hyperparameter setting.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Hyperparameter RETIA RETIA RETIA

Embedding Size {100, 200} {100, 200} {100, 200}
History Length (3,9 (3,9 (3,9}

Table 10: RETIA hyperparameter searching strategy.

+ CENET. We use the official code of CENET?.
We search hyperparameters of baseline
CENET following Table 11. The best hyperpa-
rameters are marked as bold. For each dataset,
we do 4 trials to try different hyperparameter
settings. We run 5 epochs for each trail and
take the one with the best validation result as
the best hyperparameter setting.

The hyperparameters not discussed above follow
the settings reported in the original papers.

C.2 zrLLM Implementation Details

We fix the hyperparameters searched from the base-
lines and additionally search zrLLLM-specific hyper-
parameters for zrLLM-enhanced models. The hy-
perparameter searching strategy and the best hyper-
parameter settings regarding the zrLLM-enhanced

8https://github.com/CGCL-codes/RETIA
*https://github.com/xyjigsaw/CENET

Dataset
Hyperparameter
Embedding Size
Mask Strategy

ACLED-zero ICEWS21-zero ICEWS22-zero
CENET CENET CENET

(100, 200} {100, 200} {100, 200}
{soft, hard} {soft, hard} {soft, hard}

Table 11: CENET hyperparameter searching strategy.

baselines are reported in Table 12. Note that v can
be either a learnable parameter or a fixed scalar.
When + is not fixed, v Value means the initialized
parameter value during training. For each zrLLM-
enhanced model, in each dataset, we do 24 trials
to try different hyperparameter settings. We run 7
epochs for each trail and take the one with the best
validation result as the best hyperparameter setting.

C.3 Implementation Details of PPT and ICL

We use the official code of PPT!? and ICL!!. For
PPT, we use the default hyperparameter setting
used for ICEWS14 when we implement it on all
our new datasets. Since PPT only explores object
entity prediction in its original implementation, we
add the subject entity prediction part and report the
overall result. We achieve subject prediction by
first deriving the inverse relation texts for each rela-
tion in each TKG dataset, e.g., use Inversed Reduce
or stop military assistance to represent the inverse
relation of the relation Reduce or stop military as-
sistance, and then turning each subject prediction
query (?,rq4,04,t4) to an object prediction query
(0g, 74 1.7,t,), where T, 1 stands for the inverse
relation of r,. For ICL, we use the lexical-based
prompt because we are dealing with zero-shot re-
lations where text information is important. We
also employ the unidirectional entity-focused his-
tory, which achieves best results on ICEWS14 as
reported in ICL’s original paper. We use the default
history length of 20 for all datasets.

C.4 Computational Resource Usage

We report the computational resources for all
zrLL.M-enhanced models and PPT in Table 13.
Training time denotes the period of time a model
requires to reach its best validation performance.
PPT requires extremely long time for sampling and
thus has high time consumption. Note that zrfLLM
loads TS to generate LM-based relation represen-
tations. This process takes a substantial amount
of GPU memory. However, in our work, we store
the output of T5’s encoder as saved parameters and
use them in downstream zero-shot TKGF with any

https://github.com/JaySaligia/PPT
"https://github.com/usc-isi-i2/isi-tkg-icl
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Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Model @ ~ Type ~ Value n @ 7 Type ~ Value n « ~ Type v Value n
CyGNet+ {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {1.2,1} ({1,0.1} ({Fixed, Unfixed} ({1,0.01,0.001} ({1.2,1} {1,0.1} ({Fixed, Unfixed} {I,0.01,0.001} {1.2,1}
TANGO-T+ {1,0.1} ({Fixed, Unfixed} {1,0.01,0.001} {1.2,1} {1,0.1} ({Fixed, Unfixed} {1,0.01,0.001} {1.2,1} {1,0.1} ({Fixed, Unfixed} {1,0.01,0.001} {1.2,1}
TANGO-D+ {1,0.1} ({Fixed, Unfixed} {1,0.01,0.001} {1.2,1} ({1,0.1} ({Fixed, Unfixed} {1,0.01,0.001} ({1.2,1} {1,0.1} ({Fixed, Unfixed} {1,0.01,0.001} {1.2,1}
RE-GCN+ {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {1.2,1} {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {1.2,1} {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {1.2,1}
TiRGN+ {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {1.2,1} ({1,0.1} ({Fixed, Unfixed} ({1,0.01,0.001} ({1.2,1} {1,0.1} ({Fixed, Unfixed} {I,0.01,0.001} {1.2,1}
RETIA+ {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {2,1} - - - - {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {2, 1}
CENET+ {1,0.1} {Fixed, Unfixed} {1,0.01,0.001} {1.2,1} ({I1,0.1} ({Fixed, Unfixed} ({1,0.01,0.001} {1.2,1} {1,0.1} ({Fixed, Unfixed} {I,0.01,0.001} {1.2,1}

Table 12: zrLLM hyperparameter searching strategy. The best settings are marked as bold.

Dataset ACLED-zero ICEWS21-zero ICEWS22-zero

Model Training Time (h) GPU Memory (MB) Training Time (h) GPU Memory (MB) Training Time (h) GPU Memory (MB)
CyGNet+ 0.03 2,216 17.87 7,470 4.80 9,574
TANGO-T+ 0.05 2,716 8.64 34,186 2.82 20,120
TANGO-D+ 0.11 3,064 10.88 34,034 0.70 19,250
RE-GCN+ 0.06 1,587 14.70 26,420 3.85 19,168
TiRGN+ 0.10 2,654 11.67 36,780 2.40 15,976
RETIA+ 0.13 4,274 - - 9.33 26,328
CENET+ 0.03 1,429 48.94 6,750 12.54 5,639

PPT 0.47 7,654 84.68 9,078 59.35 7,678

Table 13: Computational resources required by zrLLM-enhanced models and PPT.

zrLLM-enhanced model. This prevents from high
memory demand during model training and eval-
uation. We use Fig. 6 to illustrate the direct com-
parison among zrLLLM-enhanced models and PPT
regarding their required computational resources
during training.

ICL loads GPT-NeoX-20B that requires huge
memory consumption. We use two NVIDIA A40
for all its experiments. Since ICL does not require
training, we only report its validation and test time
here. For ACLED-zero, GPU memory usage is
90,846 MB. Validation time is 0.63 h and test time
is 0.12 h. For ICEWS21-zero, GPU memory usage
1s 90,868 MB. Validation time is 35.48 h and test
time is 0.82 h. For ICEWS22-zero, GPU memory
usage is 91,458 MB. Validation time is 22.98 h and
test time is 1.15 h.

C.5 Zero-Shot Evaluation Setting
Explanation

To keep zero-shot relations "always unseen" during
the whole evaluation process, we constrain all mod-
els to do LP only based on the training set. Among
all TKGF models, TANGO, RE-GCN, TiRGN and
RETIA use recurrent neural structures to model his-
torical TKG information from a short sequence of
timestamps prior to the prediction timestamp. We
constrain them to only use the latest training data,
i.e., from tyain_max — K tO tirain_max, to encode his-
torical information during evaluation. k is the con-
sidered history length and tiain max = mMax(7rain)
is the maximum timestamp in the training data.
For CyGNet and CENET, they have originally met
our restriction of not observing any ground truth

evaluation data during evaluation, and thus can
be directly implemented in our zero-shot setting.
Another point worth noting is that RHL requires
ground truth relation history. We restrict zrLLM to
only capture the relation history across the whole
training time period to prevent from exposing zero-
shot relations during evaluation.

D Algorithm

We provide algorithms to show the whole process
of using zrLLM to enhance TKGF models. First,
zrLLM generates LLM-based relation representa-
tions by using GPT-3.5 and T5-11B (Algorithm 1).
Then we train zrLLM jointly with TKGF baseline
models (Algorithm 2). The trained models are then
used for evaluation (Algorithm 3).

Algorithm 1: Generate LLM-based Rela-
tion Representations

Input: Relations R, relation text of all relations provided by the
TKG dataset TEXT .

1 for batch = /: B do

2 Take a batch of n relations from R

3 Pick out their relation texts from TEXTr

4 ‘Write prompt with the relation texts // Fig. 2

5 Input the prompt into GPT-3.5

6

7

8

9

Extract the ERDs from the output of GPT-3.5
Input the ERDs into T5-11B’s encoder
Store the output of T5-11B’s encoder

return T5-encoded text representation H,. for every r € R

E Evaluation Metrics Details

We employ two evaluation metrics, i.e., mean recip-
rocal rank (MRR) and Hits@1/3/10. For every LP
query g, we compute the rank 6, of the ground truth
missing entity. We define MRR as: @ > é
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Figure 6: Computational resources required during training of zrLL.M-enhanced models and PPT.

Algorithm 2: Model Training with zcLLM

Input: Entities £, relations R, timestamps 7, T5-encoded text

representations { H,. } for R, training set Girin

1 Align {H,.} to TKG embedding space and get {h,.} // Eq. 1, 2
2 forepoch=1:Vdo

3

wm s

D-I- IR B

10
11
12
13
14
15
16

for batch = 1: B do

Take a batch of training facts { (s, 7, 0,t)} € Giuin

Find the relation history of s and o before ¢ for each
(5,750, 1)

Encode relation history until ¢ — 1 // Eq. 4

Compute the predicted history with HPN // Eq. 5

Compute history-related MSE loss Lpisc // Eq. 6

Compute the representation of the r-related temporal
relation pattern // Eq. 7

Compute the RHL-based score // Eq. 8

Input {h,.} into TKGF baseline and compute LP score

Compute total score for the training batch // Eq. 9

Compute TKGF model loss Ltxgr // Eq. 10

Compute RHL-based loss Lrpur, // Eq. 11

Compute total loss Lol // Eq. 12

Update model parameters using gradient of <7 Liotal

17 return trained zrLLM-enhanced TKGF model

Algorithm 3: Model Evaluation with zr-
LLM

Input: Entities £, relations R, timestamps 7", LLM-based relation

representations {ET} for R, training set Gyrin, validation set
Gualid, test set Giest

if evaluation set is G,y then

else

L

1
2
3
4
5 for batch=1: Bdo
6
7
8

Geval = Galid
Geval = Grest

Take a batch of evaluation facts {(sq, rq, 0q,tq)} € Geval

Derive LP queries {(sq,7q, 7, tq)

Input {74 } into HPN and compute the predicted history
// Eq. 5

Compute the representation of the r-related temporal relation
pattern for each LP query // Eq. 7

Compute the RHL-based score of each candidate entity e € £
for each LP query // Eq. 8

Input {h,.} into TKGF baseline and compute LP score of each
candidate entity e € £ for each LP query

Compute total score of each candidate entity e € £ for each
LP query in the batch // Eq. 9

Rank candidate entities £ with their total scores in the
descending order

Compute and record the rank of the ground truth missing entity
04 for each LP query

15 Compute MRR and Hits@1/3/10

—

6 return MRR and Hits@1/3/10

(the definition is similar for Gygiq). Hits@1/3/10
denote the proportions of the predicted links where
ground truth missing entities are ranked as top 1,
top3, topl0, respectively. As explored and sug-
gested in (Gastinger et al., 2023), we also use the
time-aware filtering setting proposed in (Han et al.,
2021a) for fairer evaluation.

F Complete Comparative Study Results

We report the complete results of comparative study
in Table 14 and 15.

G Complete Ablation Study Results

We report the complete ablation study results in
Table 16.

H Complete Results of Previous
LM-Enhanced TKGF Model

We report the complete results of previous LM-
enhanced TKGF models in Table 14 and 15.

I Further Discussion about RHL

In RHL, temporal relation patterns are captured
by only using LLM-based relation representations.
Since for all relations (whether zero-shot or not),
their LLM-based representations contain seman-
tic information extracted from the same LLM, the
learned HPN can do reasonable relation history
prediction even with an input of unseen zero-shot
relation. If we learn hidden representations for each
relation based on graph contexts (as most TKGF
models do), zero-shot relations cannot be easily
processed by HPN anymore. In this case, zero-shot
relations will not have a meaningful representation
without any observed associated fact, and therefore,
HPN cannot detect its meaning and will fail to find
reasonable relation history.
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Datasets ICEWS21-zero ICEWS22-zero

Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall
Model MRR Hits@l Hits@3 Hits@l10 MRR Hits@l Hits@3 Hits@l0 MRR MRR Hits@l Hits@3 Hits@l10 MRR Hits@1 Hits@3 Hits@10 MRR
CyGNet 0.120  0.046 0.130 0.270 0.254  0.165 0.293 0.432 0.252 0211  0.098 0.240 0.459 0.315 0.198 0.373 0.540 0.311
CyGNet+ 0.201  0.103  0.226 0415 0.258 0.162 0.294 0.447 0.257 0286 0.167 0.324 0542 0315 0200 0.364 0.545 0.314
TANGO-T  0.067 0.031 0.069 0.132 0283 0.190  0.319 0.470 0.279 0.092 0.042  0.100 0.187 0363 0250  0.407 0.579 0.352
TANGO-T+ 0216 0.125  0.245 0.395 0280 0.186  0.313 0.466 0279 0.326 0.198  0.388 0.578  0.363  0.251 0.409 0.585 0.362
TANGO-D  0.012  0.005 0.011 0.023 0266 0.178  0.298 0.439 0.261 0.011 0.002  0.007 0.018 0350 0.227 0.394 0.569 0.337
TANGO-D+ 0.212 0.122  0.237 0.400  0.268 0.175 0.303 0.453 0.267 0311 0.186  0.374 0.574 0350 0239  0.393 0.570 0.348
RE-GCN 0.200 0.104  0.231 0379 0277 0.185 0.309 0.456 0.276  0.280 0.162  0.321 0.616 0354 0.243 0.398 0.567 0.351
RE-GCN+  0.214  0.117  0.246 0406 0.280 0.188  0.314 0.456 0.279 0324 0.194  0.376 0595 0357 0.244  0.398 0.573 0.356
TiRGN 0.189  0.101 0.209 0368 0275 0.182  0.308 0.457 0273 0299 0.169  0.358 0.570 0352 0.239 0.399 0.575 0.350
TiRGN+ 0.221  0.130  0.246 0410 0279 0.185  0.323 0.464 0.278 0.333 0.203  0.383 0.602 0353 0.240  0.400 0.577 0.352
RETIA 120 Hours Ti " 0302  0.166  0.349 0.566  0.356 0.245 0.401 0.577 0.354
RETIA+ 7 ours Limeou 0331 0201 0384 0597 0358 0247 0402 0578 0357
CENET 0.205  0.101 0.232 0411 0288 0.196 0318 0.468 0.287 0270 0.134  0.318 0.544 0379 0.268 0.423 0.599 0.375
CENET+ 0335  0.162  0.455 0.659 039 0239  0.502 0.688 0395 0.564 0.432  0.649 0.801 0.571 0.451 0.651 0.773 0.571
PPT 0212 0.120 0.240 0.403 0.269  0.172 0.304 0.462 0.268 0.323  0.191 0.376 0.598 0332 0219 0.377 0.556 0.331
ICL 0.156  0.096  0.180 0300 0.178 0.120  0.206 0.308 0.177 0255 0.162  0.303 0460 0229 0.158 0.264 0.393 0.230

Table 14: Complete LP results on ICEWS21-zero and ICEWS22-zero. We also report PPT and ICL’s performance.

Datasets ACLED-zero

Zero-Shot Relations Seen Relations Overall
Model MRR Hits@] Hits@3 Hits@l0 MRR Hits@l Hits@3 Hits@l10 MRR
CyGNet 0487 0349 0.565 0.791  0.751 0.663  0.827 0.903 0.717
CyGNet+ 0.533 0418 0.592 0.753  0.751  0.664 0.821 0.906 0.723
TANGO-T ~ 0.052  0.021 0.049 0.101 0.774  0.701 0.826 0.900 0.681
TANGO-T+ 0.525 0.393 0.606 0.746  0.775  0.702 0.827 0.901 0.743
TANGO-D  0.021  0.003 0.017 0.049  0.777  0.701 0.833 0.907 0.679
TANGO-D+ 0.491 0.348 0.560 0.791  0.760  0.678 0.818 0.901 0.725
RE-GCN 0.441  0.332 0.466 0.718  0.730  0.653 0.783 0.865 0.693
RE-GCN+ 0.529  0.393 0.612 0.784  0.731 0.650 0.789 0.876 0.705
TiRGN 0.478  0.330 0.572 0.745  0.754  0.678 0.806 0.886 0.718
TiRGN+ 0.548 0.436 0.607 0.750  0.754  0.679 0.807 0.885 0.727
RETIA 0.499  0.360 0.586 0.795  0.782  0.701 0.844 0.924 0.745
RETIA+ 0.557  0.408 0.676 0814 0.783 0.703 0.842 0.925 0.754
CENET 0.419  0.297 0.522 0.593  0.753  0.682 0.808 0.869 0.710
CENET+ 0.591  0.451 0.687 0.844  0.779  0.692 0.849 0.912 0.755
PPT 0532 0.388 0.651 0.787  0.782  0.693 0.842 0.942 0.748
ICL 0.537 0452 0.620 0.661 0.736  0.668 0.794 0.853 0.709
Table 15: Complete LP results on ACLED-zero. We

also report PPT and ICL’s performance.

J Failure Case Discussion

From Table 4, we observe several failure cases
when the complete zrLLM is implemented, e.g.,
(1) TANGO-T+ without ERDs show a slightly bet-
ter zero-shot result on ACLED-zero compared with
the complete TANGO-T+; (2) TANGO-T+ does
not witness an improvement over the seen rela-
tions on ICEWS21-zero compared with TANGO-
T+ without RHL. We attribute such failure cases to
the characteristics of the considered TKGF mod-
els. As highlighted in Sec. 4.2, our goal is to use
zrLLM to enhance TKGF model performance over
zero-shot relations while maintaining strong perfor-
mance over seen relations. By carefully comparing
the overall performance of zrLLM-enhanced mod-
els with their ablated variants, e.g., -ERD, we find
that the complete version of zrLLM with ERDs,
RHL and T5-11B can always achieve the best over-
all performance, which aligns to our motivation.
The small number of failure cases caused by sev-
eral baseline TKGF methods cannot overturn the

merit brought by the modules of zrLLM.

K Related Work Details

Traditional TKG Forecasting Methods. As dis-
cussed in Sec. 1, traditional TKGF methods are
trained to forecast the facts containing the KG
relations (and entities) seen in the training data,
regardless of the case where zero-shot relations
(or entities) appear as new knowledge arrives'?.
These methods can be categorized into two types:
embedding-based and rule-based. Embedding-
based methods learn hidden representations of KG
relations and entities (some also learn time rep-
resentations), and perform link forecasting by in-
putting learned representations into a score func-
tion for computing scores of fact quadruples. Most
existing embedding-based methods, e.g., (Jin et al.,
2020; Han et al., 2021b; Li et al., 2021b, 2022; Liu
et al., 2023), learn evolutional entity and relation
representations by jointly employing graph neural
networks (Kipf and Welling, 2017) and recurrent
neural structures, e.g., GRU (Cho et al., 2014). His-
torical TKG information are recurrently encoded
by the models to produce the temporal sequence-
aware evolutional representations for future predic-
tion. Some other approaches (Han et al., 2021a;
Sun et al., 2021; Li et al., 2021a) start from each LP
query and traverse the temporal history in a TKG to
search for the prediction answer. Apart from them,
CyGNet (Zhu et al., 2021) achieves forecasting
purely based on the appearance of historical facts.

12Some works of traditional TKGF methods, e.g., TANGO
(Han et al., 2021b), have discussions about models’ ability
to reason over the facts regarding unseen entities. Note that
this is not their main focus but an additional demonstration to
show their models’ inductive power, i.e., these models are not
designed for inductive learning on TKGs.
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Datasets ACLED-zero ICEWS21-zero ICEWS22-zero

Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall Zero-Shot Relations Seen Relations Overall
Model MRR Hits@! Hits@10 MRR Hits@l Hits@10 MRR MRR His@]1 Hits@10 MRR Hits@]l Hits@l0 MRR MRR Hits@l Hits@l0 MRR Hits@l Hits@10 MRR
CyGNet+ 0.533 0418 0.753 0.751 0.664 0.906 0.723  0.201  0.103 0415 0.258  0.162 0.447 0.257  0.286 0.167 0.542 0.315  0.200 0.545 0.314
-ERD 0.502  0.386 0.743 0.748  0.660 0.902 0.716  0.198  0.102 0.379 0252 0.161 0.429 0.251  0.250 0.136 0.503 0314 0.198 0.546 0.311
- RHL 0.503 0.356 0.751 0.752  0.663 0.901 0.720  0.199  0.100 0.398 0.256  0.159 0.445 0.255 0268 0.144 0.536 0.297 0.181 0.531 0.296
T5-3B 0.511 0414 0.684 0.752  0.663 0.905 0.721  0.117  0.068 0.186 0.204 0.127 0.348 0.202 0257 0.135 0.521 0.315  0.201 0.540 0.313
TANGO-T+ 0.525 0.393 0.764 0.775  0.702 0.901 0.743 0.216 0.125 0.395 0.280 0.186 0.466 0.279 0.326 0.198 0.578 0.363  0.251 0.585 0.362
-ERD 0.533  0.408 0.770 0.772  0.692 0.898 0.741 0.214 0.122 0.389 0.280 0.187 0.465 0.279 0320 0.193 0.576 0.362  0.250 0.584 0.360
-RHL 0.506 0.374 0.749 0.755  0.704 0.901 0.740 0.213 0.118 0.407 0.277  0.181 0.469 0.276  0.309  0.190 0.574 0.363  0.250 0.584 0.361
T5-3B 0.544 0425 0.769 0.771 0.697 0.896 0.742  0.206 0.119 0.375 0274  0.182 0.454 0273  0.323  0.193 0.576 0.359  0.246 0.579 0.358
TANGO-D+ 0.491 0.348 0.791 0.760  0.678 0.901 0.725  0.212  0.122 0.400 0.268 0.175 0.453 0.267 0311 0.186 0.574 0.350  0.239 0.570 0.348
-ERD 0.491  0.350 0.771 0.702  0.578 0.898 0.675 0.205 0.111 0.398 0267 0.174 0.449 0.266 0.285 0.159 0.541 0328 0213 0.550 0.326
- RHL 0490 0.344 0.772 0.725 0.628 0.890 0.695 0.197 0.107 0.390 0.224  0.132 0412 0.224 0296 0.175 0.552 0324 0212 0.547 0.323
T5-3B 0.490 0.341 0.786 0.701  0.576 0.897 0.674 0.204 0.109 0.393 0.223  0.131 0.408 0.222 0308 0.177 0.582 0.284 0.173 0.510 0.285
RE-GCN+ 0.529 0.393 0.784 0.731  0.650 0.876 0.705 0.214 0.117 0.406 0.280 0.188 0.456 0.279  0.324 0.194 0.595 0.357  0.244 0.573 0.356
-ERD 0.489 0.375 0.724 0.730  0.650 0.865 0.699 0.211 0.119 0.397 0.277  0.185 0.454 0.276 0294  0.168 0.560 0354  0.242 0.571 0.352
-RHL 0.519  0.396 0.757 0.726  0.646 0.836 0.699 0.213 0.119 0.405 0.277  0.185 0.455 0.276 0317 0.184 0.589 0.350 0.241 0.562 0.349
T5-3B 0.504  0.361 0.767 0.721 0.638 0.864 0.693 0.211 0.121 0.384 0.259 0.171 0.427 0.258  0.301 0.174 0.577 0.354  0.243 0.570 0.352
TiRGN+ 0.548  0.436 0.750 0.754  0.679 0.885 0.727  0.221  0.130 0.410 0.279  0.185 0.463 0.278 0.333  0.203 0.602 0.353  0.240 0.577 0.352
-ERD 0.480 0.387 0.673 0.747  0.669 0.882 0.713  0.211 0.120 0.387 0275  0.181 0.460 0274 0.282 0.157 0.544 0.353  0.240 0.576 0.350
-RHL 0.515  0.400 0.753 0.752  0.675 0.887 0.721 0215  0.124 0.391 0.277 0.183 0.461 0.276  0.320  0.190 0.593 0.350 0.239 0.569 0.349
T5-3B 0.498  0.389 0.722 0.749  0.675 0.879 0.717 0.208 0.118 0.392 0.271  0.180 0.448 0.270 0.325 0.189 0.594 0345  0.233 0.565 0.344
RETIA+ 0.557 0.408 0.814 0.783  0.703 0.925 0.754 0.331  0.201 0.597 0.358  0.247 0.578 0.357
-ERD 0.519  0.391 0.765 0.777  0.692 0917 0.744 » 120 Hours Timeout 0.292  0.163 0.562 0354  0.242 0.576 0.352
-RHL 0.529  0.368 0.796 0.782  0.701 0.923 0.749 ; 0.318 0.191 0.583 0.357  0.244 0.580 0.355
T5-3B 0.512  0.385 0.766 0.776  0.690 0917 0.742 0.330  0.200 0.595 0.353  0.242 0.573 0.352
CENET+ 0.591 0451 0.844 0.779  0.692 0.912 0.755 0335 0.162 0.659 0.396  0.239 0.688 0.395  0.564 0.432 0.801 0.571 0451 0.773 0.570
-ERD 0.526 0373 0.785 0.737  0.653 0.870 0.710  0.321 0.156 0.665 0374 0.216 0.683 0373 0542 0.388 0.799 0.570  0.448 0.774 0.568
-RHL 0.445 0367 0.565 0.754  0.685 0.862 0.714 0.232  0.128 0.446 0290 0.202 0.469 0.289  0.295 0.168 0.560 0.370  0.262 0.588 0.367
T5-3B 0.568 0.426 0.819 0.736  0.646 0.900 0.714 0303 0.158 0.568 0.330 0.203 0.712 0.329 0550 0413 0.798 0.555 0431 0.765 0.554

Table 16: Complete results of ablation studies.

Another recent work CENET (Xu et al., 2023b)
trains contrastive representations of LP queries to
identify highly correlated entities in either histor-
ical or non-historical facts. Compared with the
rapid advancement in developing embedding-based
TKGF methods, rule-based TKGF has still not
been extensively explored. One popular rule-based
TKGF method is TLogic (Liu et al., 2022). It ex-
tracts temporal logic rules from TKGs and uses
a symbolic reasoning module for LP. Based on it,
ALRE-IR (Mei et al., 2022) proposes an adaptive
logical rule embedding model to encode temporal
logical rules into rule representations. This makes
ALRE-IR both a rule-based and an embedding-
based method. Experiments in TLogic and ALRE-
IR have proven that rule-based TKGF methods
have strong ability in reasoning over zero-shot un-
seen entities connected by the seen relations, how-
ever, they are not able to handle unseen relations
since the learned rules are strongly bounded by the
observed relations. In our work, we implement zr-
LLM on embedding-based TKGF models because
(1) embedding-based methods are much more pop-
ular; (2) zrLLM utilizes LLM to generate relation
representations, which is more compatible with
embedding-based methods.

Inductive Learning on TKGs. Inductive learn-
ing on TKGs has gained increasing interest. It
refers to developing models that can handle the
relations and entities unseen in the training data.
TKG inductive learning methods can be catego-
rized into two types. The first type of works fo-
cuses on reasoning over unseen entities (Ding et al.,

2022; Wang et al., 2022; Ding et al., 2023c; Chen
et al., 2023a), while the second type of methods
aims to deal with the unseen relations (Mirtaheri
et al., 2021; Ding et al., 2023a; Ma et al., 2023).
Most of inductive learning methods are based on
few-shot learning (e.g., FILT (Ding et al., 2022),
MetaTKGR (Zhang et al., 2019), FITCARL (Ding
et al., 2023c), OAT (Mirtaheri et al., 2021), MOST
(Ding et al., 2023a) and OSLT (Ma et al., 2023)).
They first compute inductive representations of
newly-emerged entities or relations based on K-
associated facts (K is a small number, e.g., 1 or 3)
observed during inference, and then use them to
predict the facts regarding few-shot elements. One
limitation of these works is that the inductive rep-
resentations cannot be learned without the K -shot
examples, making them hard to solve the zero-shot
problems. Different from few-shot learning meth-
ods, SST-BERT (Chen et al., 2023a) pre-trains a
time-enhanced BERT (Devlin et al., 2019) for TKG
reasoning. It achieves inductive learning over un-
seen entities but has not shown its ability in rea-
soning zero-shot relations. Another recent work
MTKGE (Chen et al., 2023b) is able to concur-
rently deal with both unseen entities and relations.
However, it requires a support graph containing a
substantial number of data examples related to the
unseen entities and relations, which is far from the
zero-shot problem that we focus on.

TKG Reasoning with Language Models. Re-
cently, more and more works have introduced LMs
into TKG reasoning. SST-BERT (Chen et al.,
2023a) generates a small-scale pre-training corpus
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based on the training TKGs and pre-trains an LM
for encoding TKG facts. The encoded facts are then
fed into a scoring module for LP. ECOLA (Han
et al., 2023) aligns facts with additional fact-related
texts and proposes a joint training framework that
enhances TKG reasoning with BERT-encoded lan-
guage representations. PPT (Xu et al., 2023a) con-
verts TKGF into the pre-trained LM masked token
prediction task and finetunes a BERT for TKGF. It
directly input TKG facts into the LM for answer
prediction. Apart from them, one recent work (Lee
et al., 2023) explores the possibility of using in-
context learning (ICL) (Brown et al., 2020) with
LLMs to make predictions about future facts with-
out fintuning. Another recent work GenTKG (Liao
et al., 2023) finetunes an LLM, i.e., Llama2-7B
(Touvron et al., 2023), and let the LLM directly
generate the LP answer in TKGF. It mines tempo-
ral logical rules and uses them to retrieve historical
facts for prompt generation.

Although the above-mentioned works have
shown success of LMs in TKG reasoning, they
have limitations: (1) None of these works has
studied whether LMs can be used to better rea-
son the zero-shot relations. (2) By only using ICL,
LLMs are beaten by traditional TKG reasoning
methods in performance (Lee et al., 2023). The
performance can be greatly improved by finetun-
ing LLMs (as in GenTKG (Liao et al., 2023)), but
finetuning LLMs requires huge computational re-
sources. (3) Since LMs, e.g., BERT and Llama2,
are pre-trained with a huge corpus originating from
diverse information sources, it is inevitable that
they have already seen the world knowledge before
they are used to solve TKG reasoning tasks. Most
popular TKGF benchmarks are extracted from the
TKGs constructed before 2020, e.g., ICEWS14,
ICEWS18 and ICEWSO05-15 (Jin et al., 2020). The
facts inside are based on the world knowledge be-
fore 2019, which means LMs might have encoun-
tered them in their training corpus, posing a threat
of information leak to the LM-driven TKG reason-
ing models. To this end, we (1) draw attention
to studying the impact of LMs on zero-shot rela-
tional learning in TKGs; (2) make a compromise
between performance and computational efficiency
by not fintuning LMs or LLMs but adapting the
LLM-provided semantic information to non-LM-
based TKGF methods; (3) construct new bench-
marks where the facts are all happening from 2021
to 2023, which avoids the possibility of informa-
tion leak when we utilize T5-11B that was released

in 2020.
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Abstract. Question answering over temporal knowledge graphs
(TKGQA) has recently found increasing interest. Previous related works
aim to develop QA systems that answer temporal questions based on
the facts from a fixed time period, where a temporal knowledge graph
(TKG) spanning this period can be fully used for inference. In real-world
scenarios, however, it is common that given knowledge until the current
instance, we wish the TKGQA systems to answer the questions asking
about future. As humans constantly plan the future, building forecasting
TKGQA systems is important. In this paper, we propose a novel task:
forecasting TKGQA, and propose a coupled large-scale TKGQA bench-
mark dataset, i.e., FORECASTTKGQUESTIONS. It includes three types
of forecasting questions, i.e., entity prediction, yes-unknown, and fact
reasoning questions. For every question, a timestamp is annotated and
QA models only have access to TKG information prior to it for answer
inference. We find that previous TKGQA methods perform poorly on
forecasting questions, and they are unable to answer yes-unknown and
fact reasoning questions. To this end, we propose FORECASTTKGQA, a
TKGQA model that employs a TKG forecasting module for future infer-
ence. Experiments show that it performs well in forecasting TKGQA.

1 Introduction

Knowledge graphs (KGs) model factual information by representing every fact
with a triple, i.e., (s,7,0), where s, o, r, are the subject entity, the object entity,

7. Ding, 7. Li and R. Qi— Equal contribution.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. R. Payne et al. (Eds.): ISWC 2023, LNCS 14265, pp. 541-560, 2023.
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and the relation between s and o, respectively. To adapt to the ever-evolving
knowledge, temporal knowledge graphs (TKGs) are introduced, where they addi-
tionally specify the time validity of every fact with a time constraint ¢ (e.g., a
timestamp), and represent each fact with a quadruple (s, r,0,t). Recently, TKG
reasoning has drawn increasing attention. While a lot of methods focus on tem-
poral knowledge graph completion (TKGC) where they predict missing facts at
the observed timestamps, various recent methods pay more attention to fore-
casting the facts at unobserved future timestamps in TKGs.

Knowledge graph question answering (KGQA) is a task aiming to answer nat-
ural language questions using a KG as the knowledge base (KB). KGQA requires
QA models to extract answers from KGs, rather than retrieving or summarizing
answers from text contexts. [21] first introduces question answering over tempo-
ral knowledge graphs (TKGQA). It proposes a non-forecasting TKGQA dataset
CRONQUESTIONS that takes a TKG as its underlying KB. Temporal reasoning
techniques are required to answer these questions. Though [21] manages to com-
bine TKG reasoning with KGQA, it has limitations. Previous KGQA datasets,
including CRONQUESTIONS, do not include yes-no and multiple-choice questions,
while these two question types have been extensively studied in reading com-
prehension QA, e.g., [13]. Besides, the questions in CRONQUESTIONS are in a
non-forecasting style, where all questions are based on the TKG facts that hap-
pen in a fixed time period, and an extensive TKG that is fully observable in
this period can be used to infer the answers, making the answer inference less
challenging. For example, the TKG facts from 2003, including (Stephen Robert
Jordan, member of sports team, Manchester City, 2003), are all observable to
answer the question Which team was Stephen Robert Jordan part of in 2003%.
CRONQUESTIONS manages to bridge the gap between TKGC and KGQA, how-
ever, no previous work manages to combine TKG forecasting with KGQA, where
only past TKG information can be used for answer inference.

In this work, we propose a novel task: forecasting question answering over
temporal knowledge graphs (forecasting TKGQA ), together with a coupled large-
scale dataset, i.e., FORECASTTKGQUESTIONS. We generate forecasting questions
based on the Integrated Crisis Early Warning System (ICEWS) Dataverse [2],
and label every question with a timestamp. To answer a forecasting question,
QA models can only access the TKG information prior to the question times-
tamp. The contribution of our work is three-folded: (1) We propose forecasting
TKGQA, a novel task aiming to test the forecasting ability of TKGQA mod-
els. To the best of our knowledge, this is the first work binding TKG forecasting
with temporal KGQA; (2) We propose a large-scale benchmark TKGQA dataset:
FORECASTTKGQUESTIONS. It contains three types of questions, i.e., entity pre-
diction questions (EPQs), yes-unknown questions (YUQs), and fact reasoning
questions (FRQs), where the last two types of questions have never been consid-
ered in previous KGQA datasets'; (3) We propose FORECASTTKGQA, a model
aiming to solve forecasting TKGQA. It employs a TKG forecasting module and
a pre-trained language model (LM) for answer inference. Experimental results
show that it achieves great performance on forecasting questions.

1 YUQs are based on yes-no questions and FRQs are multiple-choice questions.
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2 Preliminaries and Related Work

TKG Reasoning. Let £, R and 7 denote a finite set of entities, relations, and
timestamps, respectively. A TKG G is defined as a finite set of TKG facts repre-
sented by quadruples, i.e., G = {(s,7,0,t)|s,0 € E,r € R,t € T}. We define the
TKG forecasting task (also known as TKG extrapolation) as follows. Assume
we have a query (sq,7¢,7,ty) (or (?,74,04,t4)) derived from a target quadruple
(84:7q,0q,tq), and we denote all the ground-truth quadruples as F. TKG fore-
casting aims to predict the missing entity in the query, given the observed past
TKG facts O = {(s,7:,0i,t;) € Flti < ty}. Such temporal restriction is not
imposed in TKG completion (TKGC, also known as TKG interpolation), where
the observed TKG facts from any timestamp, including ¢, and the timestamps
after t,, can be used for prediction. In recent years, there have been exten-
sive works done for both TKGC [6,15,16] and TKG forecasting [8,9,14,18,30].
We give a more detailed discussion about the forecasting methods. RE-NET
[14] employs an autoregressive architecture and models fact occurrence as a
probability distribution conditioned on the temporal sequences of past related
TKG information. TANGO [9] employs neural ordinary differential equations to
model temporal dependencies among graph information of different timestamps.
CyGNet [30] uses the copy-generation mechanism to extract hints from historical
facts for forecasting. xERTE [8] constructs a historical fact-based subgraph and
selects prediction answers from it. TLogic [18] is the first rule-based TKG fore-
casting method that learns temporal logical rules in TKGs and achieves superior
results.

Question Answering over KGs. Several datasets have been proposed for
QA over non-temporal KGs, such as SimpleQuestions [1], WebQuestionsSP
28], ComplexWebQuestions [24], MetaQA [29], TempQuestions [11], and Time-
Questions [12]. Among these datasets, only TempQuestions and TimeQuestions
involve temporal questions that require temporal reasoning for answer inference,
however, their associated KGs are non-temporal. CRONQUESTIONS [21] contains
questions based on a time-evolving TKG, i.e., Wikidata [27]. It is proposed for
non-forecasting TKGQA. Two types of questions, i.e., entity prediction and time
prediction questions, are included. To answer CRONQUESTIONS, Saxena et al.
propose CRONKGQA that uses TKGC methods, along with pre-trained LMs,
which shows great effectiveness. A line of methods has been proposed on top
of CRONKGQA (TempoQR [19], TSQA [23], SubGTR [4]), where they better
distinguish question time scopes and reason over subgraphs. CRONQUESTIONS
is proposed based on the idea of TKGC, and it does not support TKG forecast-
ing and contains no forecasting questions. One recent work, i.e., FORECASTQA
[13], proposes a QA dataset fully consisting of forecasting questions. However,
FORECASTQA is not related to KGQA. In FORECASTQA, answers to its ques-
tions are inferred from text contexts, while KGQA/TKGQA requires models to
find the answers from the coupled KGs/TKGs without providing any additional
text contexts. As a result, the methods designed for FORECASTQA have no abil-
ity to address TKGQA. To this end, we propose FORECASTTKGQUESTIONS,
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Table 1. (a) KGQA dataset comparison. Statistics are taken from [12,21]. T% denotes
the portion of temporal questions. (b) FORECASTTKGQUESTIONS statistics: number of
questions of different types.

(a) (b)
Datasets ‘TKG‘Forecast‘ T% ‘# Questions Train | Valid | Test
MetaQA x| x| 0% | 400k 1-Hop Entity Prediction | 211,564 | 36,172 | 33,447
TempQuestions x| X 100% 1271 2-Hop Entity Prediction | 85,088 | 12,266 | 10,765
TimeQuestions x| X 100% 16k Yes-Unknown 251,537 | 42,884 | 39,695
CRONQUESTIONS v X 100% 410k Fact Reasoning 3,164 | 514 | 517
FORECASTTKGQUESTIONS| v | v | 100% | 727k Total 551,353 | 91,836 | 84,424

aiming to bridge the gap between TKG forecasting and KGQA. We compare
FORECASTTKGQUESTIONS with recent KGQA datasets in Table 1.

Task Formulation: Forecasting TKGQA. Forecasting TKGQA aims to test
the forecasting ability of TKGQA models. It requires QA models to predict
future facts based on past TKG information. We formulate it as follows. Given
a TKG ¢ and a natural language question ¢ generated based on a TKG fact
whose valid timestamp is t,, forecasting TKGQA aims to predict the answer
to g. We label every question ¢ with t,, and constrain QA models to only use
the TKG facts {(s;,7,0:,ti)|t; < t,} before t, for answer inference. We propose
three types of forecasting TKGQA questions, i.e., EPQs, YUQs, and FRQs. The
answer to a EPQ is an entity e € £. The answer to a YUQ is either yes or
unknown. We formulate FRQs as multiple choices and thus the answer to an
FRQ corresponds to a choice c. As a novel task, forecasting TKGQA requires
models to have the ability of both natural language understanding (NLU) and
future forecasting. Compared with it, the traditional TKG forecasting task does
not require NLU and non-forecasting TKGQA does not consider future fore-
casting. Thus, previous methods for TKG forecasting?, e.g., RE-NET [14], and
non-forecasting TKGQA, e.g., TempoQR [19], are not suitable for solving fore-
casting TKGQA.

3 FORECASTTKGQUESTIONS

3.1 Temporal Knowledge Base

A subset from ICEWS [2] is taken as the associated temporal KB for our pro-
posed dataset. We construct a TKG ICEWS21 based on the events taken from
the official website of the ICEWS weekly event data® [2]. ICEWS contains socio-
political events in English. We take the events from Jan. 1, 2021, to Aug. 31,

? Relation set is provided in TKG forecasting and these methods explicitly learn
relation representations. However, TKG relations are not annotated in forecasting
TKGQA questions. Only question texts are provided and these methods have no
way to process. Therefore, we do not consider them in experiments on our new task.

3 https://dataverse.harvard.edu/dataverse/icews.
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Table 2. ICEWS21 TKG statistics. Nirain, Nvalid, Ntest denote the number of TKG
facts in Girain, Gvalid, Grest, respectively. |E|, |R|, |7| denote ICEWS21’s number of
entities, relations, timestamps, respectively.

Dataset ‘ Ntrain ‘Nvalid ‘Ntest ‘ €] ‘ R ‘ 7]
ICEWS21 | 252,434 43,033 | 39,836 | 20,575 | 253 | 243

2021, and extract TKG facts in the following way. For every ICEWS event, we
generate a TKG fact (s,r,0,t). We take the content of Fvent Date as the times-
tamp t of the TKG fact. We take the contents of Source Name and Target Name
as the subject entity s and the object entity o of the TKG fact, respectively. We
take the content of Event Text as the relation type r of the fact. We present the
dataset statistics of ICEWS21 in Table2. We split ICEWS21 into three parts
Girain = {(s,1,0,t) € G|t € [to,t1) }, Guaa = {(s,7,0,t) € G|t € [t1,t2) },
Grest = {(s,1,0,t) € G|t € [ta,t3]}, where tg, t1, ta, t3 correspond to 2021-
01-01, 2021-07-01, 2021-08-01 and 2021-08-31, respectively. We generate train-
ing/validation/test questions based on Giyain/Gvalid/Gtest- We ensure that there
exists no temporal overlap between every two of them, i.e., Girain N Gyatia = 0,
Girain N Giest = 0 and Gyatig N Giest = 0. In this way, we prevent QA models from
observing any information from the evaluation sets during training.

3.2 Question Categorization and Generation

We generate natural language questions based on the TKG facts in ICEWS21
and propose our QA dataset FORECASTTKGQUESTIONS. Every relation type
in ICEWS21 is coupled with a CAMEO code (specified in the CAMEO Code
column of the ICEWS weekly event data). In the official CAMEO codebook
(can be found in ICEWS database), each CAMEO code is explained with exam-
ples and detailed descriptions. We use the official CAMEO codebook provided
in the ICEWS dataverse for aiding the generation of natural language relation
templates. We create relation templates for 250 out of 253 relation types for ques-
tion generation*. For example, we create a relation template engage in material
cooperation with for the relation type engage in material cooperation, not spec-
ified below. Questions in FORECASTTKGQUESTIONS are categorized into three
categories, i.e., EPQs (including 1-hop and 2 hop EPQs), YUQs, and FRQs. We
summarize the number of different types of questions in Table 1b. We use the
relation templates to create natural language question templates for all types of
questions (examples in Table 3) which are used for question generation. All ques-
tion templates are presented in our supplementary source code and explained
in Appendix C.2. Similar to previous KGQA datasets, e.g., CRONQUESTIONS,
entity linking is considered as a separate problem and is not covered in our work.
We assume complete entity and timestamp linking, and annotate the entities and
timestamps in our questions. This applies to all three types of questions in our
dataset. Distribution of question timestamps is specified in Appendix C.5.

* The rest three relation types are not ideal for question generation (Appendix C.1).
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Table 3. Example question templates of all types. s, and o, are the annotated question
entities. t, is the annotated question timestamp. For FRQ), s, o., t. are annotated
choice entities and timestamp. We only write one choice in FRQ template for brevity.
Better understand with details in Sect. 3.2.

Question Type | Example Template
1-Hop EPQ Who will {sq} engage in material cooperation with on {tq}?
2-Hop EPQ Who will threaten a country, while {sq} criticizes or denounces this country on {tq}?
YUQ Will {sq} make a pessimistic comment about {oq} on {tq}?
FRQ Why will {sq} appeal to {04} to meet or negotiate on {ty}?
A: {sc} threatens {oc} on {t.}; B:...

Entity Prediction Questions. We generate two groups of EPQs, i.e., 1-hop
and 2-hop EPQs. Each 1-hop EPQ is generated from a single TKG fact, e.g.,
the natural language question Who will Sudan host on 2021-08-017 is based
on (Sudan, host, Ramtane Lamamra, 2021-08-01). Question templates are used
during question generation. The underlined parts in the question denote the
annotated entities and timestamps for KGQA. We consider all the facts con-
cerning the 250 selected relations and transform them into 1-hop EPQs. Each
2-hop EPQ is generated from two associated TKG facts in ICEWS21 where they
contain common entities. An example is presented in Table 4. The answer to a 2-
hop EPQ (Israel) corresponds to a 2-hop neighbor of its annotated entity (Iran)
at the question timestamp (2021-08-02). We generate 2-hop questions by utiliz-
ing AnyBURL [20], a rule-based KG reasoning model. We first split ICEWS21
into snapshots, where each snapshot G;, = {(s,r,0,t) € G|t = t;} contains all
the TKG facts happening at the same timestamp. Then we train AnyBURL on
each snapshot for rule extraction. We collect the 2-hop rules with a confidence
higher than 0.5 returned by AnyBURL, and manually check if two associated
TKG facts in each rule potentially have a logical causation or can be used to
interpret positive/negative entity relationships. After excluding the rules not
meeting this requirement, we create question templates based on the remaining
ones. We search for the groundings in ICEWS21 at every timestamp, where each
grounding corresponds to a 2-hop EPQ. See our source code for the complete list
of extracted 2-hop rules and see Appendix C.3 for more EPQ generation details.

Yes-Unknown Questions. Based on the idea of triple classification in KG rea-
soning®, we introduce yes-no questions into KGQA. We then turn yes-no ques-
tions into yes-unknown questions because, according to the Open World Assump-
tion (OWA), the facts not observed in a given TKG are not necessarily wrong [7].
We generalize triple classification to quadruple classification®, and then translate
TKG facts into natural language questions. We take answering YUQs as solving

® For a KG fact (s, r,0), triple classification aims to predict whether this fact is valid
or not.

6 Quadruple classification has never been studied in previous works. We define it as
predicting whether a TKG fact (s, 7, 0,t) is valid or unknown, under OWA.
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Table 4. 2-hop EPQ example. To avoid overlong text, we use symbols to represent
relations and timestamps in TKG facts and 2-hop rules. r1 =accuse; r2 =engage in
diplomatic cooperation; t1 =2021-08-02. m,n are two entities that are 2-hop neighbors
of each other at ¢1. X is their common 1-hop neighbor at ¢;. The extracted rule describes
the negative relationship between Iran and Israel.

Associated TKG Facts ‘ 2-Hop Rule ‘ Generated 2-Hop Question ‘ Answer
(United States, r1, Iran, t1) ‘ (X,r1,m) ‘ Who will a country engage in diplomatic cooperation with,
(United States, r2, Israel, t1) ‘ => (X,r2,n) ‘ while this country accuses Iran on 2021-08-02¢ ‘

Israel

quadruple classification. For every TKG fact concerning the selected 250 relations,
we generate either a true or an unknown question based on it. For example, for
the fact (Sudan, host, Ramtane Lamamra, 2021-08-01), a true question is gener-
ated as Will Sudan host Ramtane Lamamra on 2021-08-017 and we label yes as
its answer. An unknown question is generated by randomly perturbing one entity
or the relation type in this fact, e.g., Will Germany host Ramtane Lamamra on
2021-08-017, and we label unknown as its answer. We ensure that the perturbed
fact does not exist in the original TKG. We use 25% of total facts in ICEWS21 to
generate true questions and the rest are used to generate unknown questions.

Fact Reasoning Questions. The motivation for proposing FRQs is to study
the difference between humans and machines in finding supporting evidence for
reasoning. We formulate FRQs in the form of multiple choices. Each question is
coupled with four choices. Given a TKG fact from an FRQ, we ask the QA models
to choose which fact in the choices is the most contributive to (the most relevant
cause of) the fact mentioned in the question. We provide several examples in
Fig. 1. We generate FRQs as follows. We first train a TKG forecasting model
xERTE [8] on ICEWS21. Note that to predict a query (s,r, 7, t), xERTE samples
its related prior TKG facts and assigns contribution scores to them. It provides
explainability by assigning higher scores to the more related prior facts. We
perform TKG forecasting and collect the queries where the ground-truth missing
entities are ranked as top 1 by xERTE. For each collected query, we find its
corresponding TKG fact and pick out four related prior facts found by xERTE.
We take the prior facts with the highest, the lowest, and median contribution
scores as Answer, Negative, and Median, respectively. Inspired by InferWiki
[3], we include a Hard Negative fact with the second highest contribution score,
making it non-trivial for QA models to make the right decision. We generate each
FRQ by turning the corresponding facts into a question and four choices (using
templates), and manage to use XERTE to generate a large number of questions.
However, since the answers to these questions are solely determined by xERTE,
there exist numerous erroneous examples. For example, the Hard Negative of
lots of them are more suitable than their Answer to be the answers. We ask
five graduate students (major in computer science) to manually check all these
questions and annotate them as reasonable or unreasonable according to their
own knowledge or through search engines. If the majority annotate a question
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as unreasonable, we filter it out. See Appendix C.4 for more details of FRQ
generation and annotation, including the annotation instruction and interface.

Reasoning Types Question Example Example Explanation
Causal Relation (91%) Which of the following statements contributes most to the fact that Pedro Pedro Sanchez wished to
The answer directly causes the Sanchez signed a formal agreement with Joseph Robinette Biden on 2021-08-23? cooperate with Joseph
question fact or the answer clearly A. Pedro Sanchez expressed the intent to cooperate with Joseph Robinette Biden on 2021-08-22. Robinette Biden on 2021-
shows the relationship between B. Pedro Sanchez engaged in diplomatic cooperation with Government (Spain) on 2021-08-22. 08-22. This directly causes
entities that leads to the question C. Government (Spain) made a statement to Cuba on 2021-07-27. that they signed an
fact. D. United States praised or endorsed Sayyid Ali al-Husayni al-Sistani on 2021-07-24. agreement on the next day.
Identity Understanding (46%) Which of the following statements contributes most to the fact that Turkey hosted Ursula von der Leyen was
An entity’s identity is vital for Ursula von der Leyen on 2021-04-08? the president of European
reasoning. E.g., without knowing Sauli &' Turkey signed a formal agreement with Government (Libya) on 2021-04-07. Commission. Recep Tayyip
Niinistd is the president of Finland, B. Wang Yi negotiated with Foreign Affairs (Malaysia) on 2021-04-02. Erdogan was the president
the choices containing him might be C. Ursula von der Leyen expressed the intent to meet or negotiate with Recep Tayyip Erdogan of Turkey. After knowing
neglected, causing mistakes in on 2021-03-30. the identities, it is obvious
reasoning the facts regarding Finland.  B] Foreign Affairs (Turkey) praised or endorsed European Union on 2021-03-26. that C is better than D.
Time Sensitivity (19%)

Without paying attention
to the timestamps of facts,
A, B, Call seem reasonable
to lead to the question fact.
However, after considering
time information, B should
be the answer.

Time difference between a choice and ~ Which of the following statements contributes most to the fact that Xie Zhenhua

the question fact plays an important negotiated with John Kerry on 2021-08-31?

role. When more than one choice A. Xie Zhenhua expressed the intent to meet or negotiate with John Kerry on 2021-04-14.
seem reasonable, the choices that are  B. Xie Zhenhua expressed the intent to meet or negotiate with John Kerry on 2021-08-30.
temporally far from the question fact C! Xie Zhenhua negotiated with John Kerry on 2021-04-15.

(or much farther than other choices) D. China accused United States on 2021-04-09.

are more probable to be wrong.

Fig. 1. Required reasoning types and proportions (%) in sampled FRQs, as well as
FRQ examples. We sample 100 FRQs in each train/valid/test set. For choices, green
for Answer, blue for Hard Negative, orange for Median and yellow for Negative.
Multiple reasoning skills are required to answer each question, so the total proportion
sum is not 100%. (Color figure online)

To better study the reasoning skills required to answer FRQs, we ran-
domly sample 300 FRQs and manually annotate them with reasoning types.
The required reasoning skills and their proportions are shown in Fig. 1.

4 FORECASTTKGQA

FORECASTTKGQA employs a TKG forecasting model TANGO [9] and a pre-
trained LM BERT [5] for solving forecasting questions. We illustrate its model
structure in Fig.2 with three stages. In Stage 1, a TKG forecasting model
TANGO [9] is used to generate the time-aware representation for each entity
at each timestamp. In Stage 2, a pre-trained LM (e.g., BERT) is used to encode
questions (and choices) into question (choice) representations. Finally, in Stage
3, answers are predicted according to the scores computed using the representa-
tions from Stage 1 and 2.

4.1 TKG Forecasting Model

We train TANGO on ICEWS21 with the TKG forecasting task. We use Com-
plEx [26] as its scoring function. We learn the entity and relation representations
in the complex space C¢, where d is the dimension of complex vectors. The train-
ing set corresponds to all the TKG facts in Giain, and we evaluate the trained
model on Gyaiq and Giest. After training, we perform a one time inference on
Gyalid and Giess. Following the default setting of TANGO, to compute entity and
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Fig. 2. Model structure of FORECASTTKGQA.

relation representations at every timestamp ¢, we recurrently input all the TKG
facts from ¢ — 4 to t — 1, i.e., snapshots from G;_4 to G;_1, into TANGO and
take the output representations. Note that it infers representations based on the
prior facts, thus not violating our forecasting setting. We compute the entity
and relation representations at every timestamp in ICEWS21 and keep them for
aiding the QA systems in Stage 1 (Fig.2). See Appendix B.1 for more details of
TANGO training and inference. To leverage the complex representations com-
puted by TANGO with ComplEx, we map the output of BERT to C?. For each
natural language input, we take the output representation of the [CLS] token
computed by BERT and project it to a 2d real space to form a 2d real-valued
vector. We take the first and second half of it as the real and imaginary part of
a d-dimensional complex vector, respectively. All the representations output by
BERT have already been mapped to C¢ without further notice.

4.2 QA Model

Entity Prediction. For every EPQ ¢, we compute an entity score for every
entity e € £. The entity with the highest score is predicted as the answer e,s.
To compute the score for e, we first input ¢ into BERT and map its output to
C? to get the question representation h,. Inspired by ComplEx, we then define
e’s entity score as

bep(€) = Re << h/(sq,tq)7 h,, 1_1’(67tq) >> : (1)

hi, .y = fe (hs, t,))s hi,, ) = fep (he,,)), where fe, denotes a neural net-
work aligning TKG representations to EPQs. h,, ;) and h; ) denote the
TANGO representations of the annotated entity s, and the entity e at the ques-
tion timestamp t,, respectively. Re means taking the real part of a complex
vector and 171’(6’ +,) means the complex conjugate of h’(e’ t)-
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Yes-Unknown Judgment. For a YUQ, we compute a score for each candidate
answer z € {yes, unknown}. We first encode each x into a d-dimensional complex
representation h, with BERT. Inspired by TComplEx [16], we then compute
scores as

byu(@) = Re (< B, 1) By B, 1) Be >) (2)

(sw D= = fyu ( sq.t q)), (0grts) = = fyu ( (04:tq ) where fy, denotes a neural net-
work aligning TKG representations to YUQs. h,, ;) and h(,_ ;) denote the
TANGO representations of the annotated subject entity s, and object entity o,
at t,, respectively. h, is the BERT encoded question representation. We take
the candidate answer with the higher score as the predicted answer x,;s.

Fact Reasoning. We compute a choice score for every choice ¢ in an FRQ by
using the following scoring function:

é(c) = Re (< hi,_, ) he b, ) b >)) | (3)
hg is the output of BERT mapped to C? given the concatenation of ¢ and c.
hi, )=/ (hs, .)) and hi, .)=/a (h(o, 1)) fa is a projection network and

(sete)» N(o,,t,) denote the TANGO representations of the entities annotated in
c. hi = f (ffr (hs, b)) [ fee (Do, e,)) ), Where f serves as a projection and ||
denotes concatenation. h(,_; ) and h(,_; ) denote the TANGO representations
of the entities annotated in the question g. We take the choice with the highest
choice score as our predicted answer c,,s. We give a more detailed description
of Eq.1, 2 and 3 in Appendix A.

Parameter Learning. We use cross-entropy loss to train FORECASTTKGQA on

each type of questions separately. The loss functions of EPQs, FRQs and YUQs are
1 — d)ep (eans) S ¢ r(cans)

given by Lep = — > e oe l0g (zeeg ben(€) ) e (zf _¢fr<c>) and

Loy == geovu 108 (Z Pyu(@ans) — ) , respectively. Q°P/Q¥"/Q denotes

x € {yes,unknown} f;byu ( )

all EPQs/YUQs/FRQs and €,ns/Tans/Cans 18 the answer to question g.

5 Experiments

We answer several research questions (RQs) with experiments”. RQ1 (Sect. 5.2,
5.4): Can a TKG forecasting model better support forecasting TKGQA than
a TKGC model? RQ2 (Sect.5.2, 5.4): Does FORECASTTKGQA perform well
in forecasting TKGQA? RQ3 (Sect. 5.3, 5.5): Are the questions in our dataset
answerable? RQ4 (Sect. 5.7): Is the proposed dataset efficient? RQ5 (Sect. 5.6):
What are the challenges of forecasting TKGQA?

" Implementation details and further analysis of FORECASTTKGQA in Appendix B.3
and G.
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5.1 Experimental Setting

Evaluation Metrics. We use mean reciprocal rank (MRR) and Hits@k as the
evaluation metrics of the EPQs. For each EPQ, we compute the rank of the
ground-truth answer entity among all the TKG entities. Test MRR is then com-
puted as @ Do, ﬁ, where Q;> . denotes all EPQs in the test set and
rank, is the rank of the ground-truth answer entity of question ¢. Hits@Qk is the
proportion of the answered questions where the ground-truth answer entity is
ranked as top k. For YUQs and FRQs, we employ accuracy for evaluation. Accu-
racy is the proportion of the correctly answered questions out of all questions.

Baseline Methods. We consider two pre-trained LMs, BERT [5] and
RoBERTa [17] as baselines. For EPQs and YUQs, we add a prediction head
on top of the question representations computed by LMs, and use softmax func-
tion to compute answer probabilities. For every FRQ, we input into each LM the
concatenation of the question with each choice, and follow the same prediction
structure. Besides, we derive two model variants for each LM by introducing
TKG representations. We train TComplEx on ICEWS21. For every EPQ and
YUQ, we concatenate the question representation with the TComplEx repre-
sentations of the entities and timestamps annotated in the question, and then
perform prediction with a prediction head and softmax. For FRQs, we further
include TComplEx representations into choices in the same way. We call this
type of variant BERT_int and RoBERTa_int since TComplEx is a TKGC (TKG
interpolation) method. Similarly, we also introduce TANGO representations into
LMs and derive BERT _ext and RoBERTa_ext, where TANGO serves as a TKG
extrapolation backend. Detailed model derivations are presented in Appendix
B.2. We also consider one KGQA method EmbedKGQA [22], and two TKGQA
methods, i.e., CRONKGQA [21] and TempoQR [19] as baselines. We run Embed-
KGQA on top of the KG representations trained with ComplEx on ICEWS21,
and run TKGQA baselines on top of the TKG representations trained with
TComplEx.

5.2 Main Results

We report the experimental results in Table5. In Table 5a, we show that our
entity prediction model outperforms all baseline methods. We observe that
EmbedKGQA achieves a better performance than BERT and RoBERTa, show-
ing that employing KG representations helps TKGQA. Besides, LM variants
outperform their original LMs, indicating that TKG representations help LMs
perform better in TKGQA. Further, BERT _ext shows stronger performance than
BERT.int (this also applies to RoBERTa_int and RoBERTa_ext), which proves
that TKG forecasting models provide greater help than TKGC models in fore-
casting TKGQA. CRONKGQA and TempoQR employ TComplEx representa-
tions as supporting information and perform poorly, implying that employing
TKG representations provided by TKGC methods may include noisy informa-
tion in forecasting TKGQA. FORECASTTKGQA injects TANGO representations
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Table 5. Experimental results over FORECASTTKGQUESTIONS. The best results are
marked in bold.

(a) EPQs. Overall results in Appendix D.

(b) YUQs and FRQs.

MRR Hits@1 Hits@10
Accuracy
Model 1-Hop 2-Hop 1-Hop 2-Hop 1-Hop 2-Hop —
Model YUQ FRQ

RoBERTa 0.166 0.149 0.104 0.085 0.288 0.268
BERT 0.279 0.182 0.192 0.106 0.451 0.342 RoBERTa 0.721 0.645
BERT 0.813 0.634

EmbedKGQA 0.317 0.185 0.228 0.112 0.489 0.333
RoBERTa.int 0.768 0.693
RoBERTa.int 0.283 0.157 0190 0.094 0467 0290 prpr .. 0820 0.682

BERT.int 0314 0.183 0.223 0.107 0.490 0.344
CRONKGQA 0.131 0.090 0.081 0.042 0231 0.187 RoBERTaext SELI A
TempoQR. 0145 0.107 0.094 0.061 0.243 0.199 DERText 0.837 0.746
RoBERTa._ext 0.306 0.180 0.216 0.108 0497 0323 FORECASTTKGQA 0.870 0.769
BERT _ext 0.331 0208 0239 0.128 0508 0.369 1luman Performance (a) - 0.936
Human Performance (b) - 0.954

FORECASTTKGQA 0.339 0.216 0.248 0.129 0.517 0.386

into a scoring module, showing its great effectiveness on EPQs. For YUQs and
FRQs, FORECASTTKGQA also achieves the best performance. Table 5b shows
that it is helpful to include TKG representations for answering YUQs and FRQs
and our scoring functions are effective.

5.3 Human Vs. Machine on FRQs

To study the difference between humans and models in fact reasoning, we fur-
ther benchmark human performance on FRQs with a survey (See Appendix E for
details). We ask five graduate students to answer 100 questions randomly sam-
pled from the test set. We consider two settings: (a) Humans answer FRQs with
their own knowledge and inference ability. Search engines are not allowed;
(b) Humans can turn to search engines and use the web information published
before the question timestamp for aiding QA. Table5 shows that humans
achieve much stronger performance than all QA models (even in setting (a)).
This calls for a great effort to build better fact reasoning TKGQA models.

5.4 Performance over FRQs with Different Reasoning Types

Considering the reasoning types listed in Fig. 1, we compare RoBERTa_int with
FORECASTTKGQA on the 100 sampled test questions that are annotated with
reasoning types, to justify performance gain brought by TKG forecasting model
on FRQs. Experimental results in Table 6 imply that employing TKG forecasting
model helps QA models better deal with any reasoning type on FRQs. We use
two cases in Fig. 3 to provide insights into performance gain.

Case 1. Two reasoning skills, i.e., Causal Relation and Time Sensitivity (shown
in Fig. 1), are required to correctly answer the question in Case 1. Without con-
sidering the timestamps of choices, A, B, C all seem at least somehow reasonable.
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Table 6. Performance comparison across FRQs with different reasoning types.

Accuracy
Model Causal Relation | Identity Understanding | Time Sensitivity
RoBERTa_int 0.670 0.529 0.444
FORECASTTKGQA | 0.787 0.735 0.611
Which of the following statements contributes most to the fact that Xie Zhenhua Which of the following statements contributes most to the fact that Kenya hosted
negotiated with John Kerry on 2021-08-31? Head of Government (Somalia) on 2021-08-10?
A Xie Zhenhua expressed the intent to meet or negotiate with John Kerr A. Kenya expressed the intent to cooperate economically with United Arab Emirates
on 2021-04-14. on 2021-07-28.
Bl Xie Zhenhua expressed the intent to meet or negotiate with John Kerry on 2021-08-30.  B: Simon Coveney appealed to European Union on 2021-06-15.
€. Xie Zhenhua negotiated with John Kerry on 2021-04-15. C. Kenya expressed the intent to cooperate with Somalia on 2021-08-09.
D. China accused United States on 2021-04-09. D. Kenya had a consolation or a meeting with Israel on 2021-07-30.
RoBERTa_int: A FORECASTTKGQA: B RoBERTa_int: D FORECASTTKGQA: C
(a) Case 1. (b) Case 2.

Fig. 3. Case Studies on FRQs. We mark green for Answer, blue for Hard Negative,
orange for Median and yellow for Negative. (Color figure online)

However, after considering choice timestamps, B should be the most contribu-
tive reason for the question fact. First, the timestamp of B (2021-08-30) is much
closer to the question timestamp (2021-08-31). Moreover, the fact in choice B
directly causes the question fact. RoBERTa_int manages to capture the causa-
tion, but fails to correctly deal with time sensitivity, while FORECASTTKGQA
achieves better reasoning on both reasoning types.

Case 2. Two reasoning skills, i.e., Causal Relation and Identity Understanding
(shown in Fig. 1), are required to correctly answer the question in Case 2. Head of
Government (Somalia) and Somalia are two different entities in TKG, however,
both entities are about Somalia. By understanding this, we are able to choose
the correct answer. FORECASTTKGQA manages to understand the identity of
Head of Government (Somalia), match it with Somalia and find the cause of the
question fact. ROBERTa_int makes a mistake because as a model equipped with
TComplEx, it has no well-trained timestamp representations of the question and
choice timestamps, which would introduce noise in decision making.

5.5 Answerability of FORECASTTKGQUESTIONS

To validate the answerability of the questions in FORECASTTKGQUESTIONS. We
train TComplEx and TANGO over the whole ICEWS21, i.e., Girain UGvatid UGtest »
and use them to support QA. Note that this violates the forecasting setting of
forecasting TKGQA, and thus we call the TKG models trained in this way as
cheating TComplEx (CTComplEx) and cheating TANGO (CTANGO). Answer-
ing EPQs with cheating TKG models is same as non-forecasting TKGQA.
We couple TempoQR with CTComplEx and see a huge performance increase
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Table 7. Answerability study. Models with @ means using CTComplEx and (3 means
using CTANGO. 1 denotes relative improvement (%) from the results in Table 5. Acc
means Accuracy.

(a) EPQs. (b) YUQs and FRQs.

MRR Hits@10 YUQ FRQ
Model 1-Hop T 2-Hop 1 1-Hop T 2-Hop 1 Model Acc T Acc 1
TempoQR® 0.713 391.7 0.233 117.8 0.883 263.4 0.419 110.6 BERT_int” 0.855 19.6 0.816 14.4
MHS* 0.868 - 0647 - 0992 - 0904 - BERT _ext” 0.873 4.3 0.836 12.1
MHS? 0.771 - 0.556 - 0.961 - 0.828 - FORECASTTKGQAB 0.925 6.3 0.821 6.8

(Table 7a). Besides, inspired by [10], we develop a new TKGQA model Multi-
Hop Scorer® (MHS) for EPQs. Starting from the annotated entity s, of an EPQ,
MHS updates the scores of outer entities for n-hops (n = 2 in our experiments)
until all s,’s n-hop neighbors on the snapshot G; are visited. Initially, MHS
assigns a score of 1 to s, and 0 to any other unvisited entity. For each unvis-
ited entity e, it then computes e’s score as: ¢ep(e) = m D (el men.ty) (Y
Pep(€') +1p(€' 1, e,1,)), where N.(ty) = {(¢/,7)|(¢/,7,e,tq) € Gy, } is €’s 1-hop
neighborhood on G;, and - is a discount factor. We couple MHS with CTCom-
plEx and CTANGO, and define ¢ (€', e, t,) separately. For MHS + CTCom-
plEx, ¥(e',r e, ty) = fa(fi(he||hy[|he|/h [[hy)). fi and fo are two neural net-
works. h., her, h;, h; are the CTComplEx representations of entities e, €', rela-
tion r and timestamp t,, respectively. For MHS + CTANGO, we take the idea
of FORECASTTKGQA: ¢(6/, T, e, tq) = Re (< h(e/,tq), h,, ljl(e’tq), hq >). h(e’tq),
he ;y, h, are the CTANGO representations of entities e, e at ty, and rela-
tion r, respectively. h, is BERT encoded question representation. We find that
MHS achieves superior performance (even on 2-hop EPQs). This is because MHS
not only uses cheating TKG models, but also considers ground-truth multi-hop
structural information of TKGs at ¢, (which is unavailable in the forecasting
setting). For YUQs and FRQs, Table 7b shows that cheating TKG models help
improve performance, especially on FRQs. These results imply that given the
ground-truth TKG information at question timestamps, our forecasting TKGQA
questions are answerable.

5.6 Challenges of Forecasting TKGQA over FORECAST TKG
QUESTIONS

From the experiments discussed in Sect. 5.3 and 5.5, we summarize the challenges
of forecasting TKGQA: (1) Inferring the ground-truth TKG information G at
the question timestamp ¢, accurately; (2) Effectively performing multi-hop rea-
soning for forecasting TKGQA; (3) Developing TKGQA models for better fact
reasoning. In Sect. 5.5, we have trained cheating TKG models and used them to
support QA. We show in Table7 that QA models substantially improve their
performance on forecasting TKGQA with cheating TKG models. This implies

8 See Appendix F for detailed model explanation and model structure illustration.
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that accurately inferring the ground-truth TKG information at ¢, is crucial in
our task and how to optimally achieve it remains a challenge. We also observe
that MHS with cheating TKG models achieves much better results on EPQs
(especially on 2-hop). MHS utilizes multi-hop information of the ground-truth
TKG at t, (Gs,) for better QA. In forecasting TKGQA, by only knowing the
TKG facts before t, and not observing G;_, it is impossible for MHS to directly
utilize the ground-truth multi-hop information at ¢,. This implies that how to
effectively infer and exploit multi-hop information for QA in the forecasting sce-
nario remains a challenge. Moreover, as discussed in Sect. 5.3, current TKGQA
models still trail humans with great margin on FRQs. It is challenging to design
novel forecasting TKGQA models for better fact reasoning.

5.7 Study of Data Efficiency

We want to know how the models will be affected with less/more training data.
For each type of questions, we modify the size of its training set. We train
FORECASTTKGQA on the modified training sets and evaluate our model on
the original test sets. We randomly sample 10%, 25%, 50%, and 75% of the
training examples to form new training sets. Figure4 shows that for every type
of question, the performance of FORECASTTKGQA steadily improves as the size
of the training sets increase. This proves that our proposed dataset is efficient
and useful for training forecasting TKGQA models.

Data Efficiency on EPQs Data Efficiency on YUQs and FRQs
0.88

05 —_—
0.86
0.45 0.84
0.82
0.4
— 0.8
0.35 078
o
03 0.76 ///’_.
0.74
0.25 072 /
: —
0.2 0.7
10 25 50 75 100 10 25 50 75 100
Portion of Training Set (%) Portion of Training Set (%)
——1-Hop MRR —-2-Hop MRR —-1-Hop EPQ Hits@10 —~-2-Hop EPQ Hits@10 ——FRQ Accuracy YUQ Accuracy
(a) Data efficiency on EPQs. (b) Data efficiency on YUQs, FRQs.

Fig. 4. Data efficiency analysis.

6 Justification of Task Validity from Two Perspectives

(1) Perspective from Underlying TKG. We take a commonly used tem-
poral KB, i.e., ICEWS, as the KB for constructing underlying TKG ICEWS21.
ICEWS-based TKGs contain socio-political facts. It is meaningful to perform
forecasting over them because this can help to improve early warning in criti-
cal socio-political situations around the globe. [25] has shown with case studies
that ICEWS-based TKG datasets have underlying cause-and-effect temporal
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patterns and TKG forecasting models are built to capture them. This indicates
that performing TKG forecasting over ICEWS-based TKGs is also valid. And
therefore, developing forecasting TKGQA on top of ICEWS21 is meaningful
and valid. (2) Perspective from the Motivation of Proposing Different
Types of Questions. The motivation of proposing EPQs is to introduce TKG
link forecasting (future link prediction) into KGQA, while proposing YUQs is
to introduce quadruple classification (stemming from triple classification) and
yes-no type questions. We view quadruple classification in the forecasting sce-
nario as deciding if the unseen TKG facts are valid based on previously known
TKG facts. To answer EPQs and YUQs, models can be considered as under-
standing natural language questions first and then performing TKG reasoning
tasks. Since TKG reasoning tasks are considered solvable and widely studied
in the TKG community, our task over EPQs and YUQs is valid. We propose
FRQs aiming to study the difference between humans and machines in fact rea-
soning. We have summarized the reasoning skills that are required to answer
every FRQ in Fig. 1, which also implies the potential direction for QA models to
achieve improvement in fact reasoning in the future. We have shown in Sect. 5.3
that our proposed FRQs are answerable to humans, which directly indicates the
validity of our FRQs. Thus, answering FRQs in forecasting TKGQA is also valid
and meaningful.

7 Conclusion

In this work, we propose a novel task: forecasting TKGQA. To the best of our
knowledge, it is the first work combining TKG forecasting with KGQA. We
propose a coupled benchmark dataset FORECASTTKGQUESTIONS that contains
various types of questions including EPQs, YUQs and FRQs. To solve forecast-
ing TKGQA, we propose FORECASTTKGQA, a QA model that leverages a TKG
forecasting model with a pre-trained LM. Though experimental results show that
our model achieves great performance, there still exists a large room for improve-
ment compared with humans. We hope our work can benefit future research and
draw attention to studying the forecasting power of TKGQA methods.

Supplemental Material Statement: Source code and data are uploaded here”.
Appendices are published in the arXiv version!?. We have referred to the corre-
sponding parts in the main body. Please check accordingly.
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A Scoring Function Details

A.1 Entity Prediction
The detailed definition of the EPQs’ scoring function is defined as

¢EP(6) = Re (< h,(sq,tq)a hQ7 l_ll(e,tq) >)

€ (Z h/(sq,tq)(k) ’ hQ(k) ' B/(e,tq)(k))
k=1

=< Re (h(,,,)),Re(hy),Re (hic,,)) > W)
+ < Re (h{s, +,)) ,Im (hg) , Tm (hi,)) >
+ < Im (h,, .,)),Re (hy),Im (hi., )) >
— <Im (h{,, ) ,Im (hy),Re (hic,,)) >

Re and Im denote taking the real part and the imaginary part of the complex
vector, respectively. h’(S . )vhq>hée 1) € ce. h’(sq tq)(k:) denotes the kth element

of it (same for h, and hzatq))‘ < Vi,Va,Vg >= 22:1 vi(k)-va(k)-vs(k) denotes

the dot product of three d-dimensional complex vectors vy, vg, vy € Ce.

A.2 Yes-Unknown
The detailed definition of the YUQs’ scoring function is defined as

¢yu($) = Re (< hzsq,tq)a hqa Ezoq,tq)a hm >)

e <Z h/(sq,tq)(k) +hy(k) - lFl/(oq,tq)(k) : hw(k)>

=< Re (h/(sq,tq)) ,Re(hg),Re (héoq,tq)> ,Re (hg) >

+ < Re (h/(s ) Im (hy),Im (h/(oq q)) e(hy) >
+ < Im (hi,, tq>) Re (hy),Im (h{,, +,)) » Re (hy) >
+ <Re (h(sq )) ;Re (hq) Im (h(o t )) ,Im (hy) >
— <Im (h{s, ) Im( q) Re (h{,, +,)) s Re (hy) >
— <Im (h(s t )) ;Re ( Re (h(oq )) , Im (hx) >
— <Im (hi,, ), Im q) Im (h{,, ;) ,Im (hg) >
— <Re(h,, ¢,)) Im(hy),Re (h{, y),Im (h;) > .

(2)



A.3 Fact Reasoning

The detailed definition of FRQs’ scoring function is defined as

¢fr(C) = Re (< hl(smtc)’ h;’ ljll(ocytc)’ h:] >)

€ (Z his. i) (k) - hg(k) - hig, . (K) hf;(k))

,t a) Re (hio, 1)), Re (hg(k)) >
+ < Re (h{,, ;) . Im (hg) ,Im (h(oc, ») - Re (hg(k)) >
+ <Im (h{,, ), Re (hy) , Im (hy (ourt t0)) » Re (hy(k)) >
+ < Re (h,, ) Re (hy) ,Im (h{,, ;) , Tm (h(k)) >
— <Im (h{,, ), Im (hg) , Re (h(,, +.)) , Re (hg(k)) >
— <Im (b)), Re (hy) , Re (hi,, ;)) , Im (h q(k)) >
— <Im (h,, ), Im (hg) , Im (hiy, ,)) , Im (hg(k)) >
— <Re (h{s,,,)) ,Im (hy) ,Re (h{,, ;.)) , Tm (hg(k)) >

B Implementation Details

We implement all the experiments with PyTorch [6] on an NVIDIA A40 with
48GB memory and a 2.6GHZ AMD EPYC 7513 32-Core Processor.

B.1 TKG Forecasting

We train TANGO and TComplEx to perform TKG forecasting on ICEWS21.
We implement TANGO with the official implementation'. We switch its scoring
function to ComplEx and perform a grid search for the embedding size (the
dimension d of the entity and relation representations). We keep the rest hyper-
parameters as TANGO’s default setting of the ICEWS05-15 dataset. We train
TComplEx with the official implementation?. We perform a grid search for the
embedding size and keep the other hyperparameters as their default values. Ta-
ble 1 provides the searching spaces of the grid searches for both methods. For
each method, we run TKG forecasting experiments with different embedding
sizes and choose the setting that leads to the best validation MRR as the best
hyperparameter setting. We further run TANGO + TuckER with the best hy-
perparameters searched with TANGO + ComplEx for studying the effectiveness
of different KG representations.

! https://github.com/TemporalKGTeam/TANGO
2 https://github.com/facebookresearch /tkbc



Table 1: Embedding size search space of TANGO and TComplEx. The embed-
ding sizes leading to the best validation results are marked as bold. Note that
the numbers represent the dimensions of complex space. Dimensions of real val-
ued vectors are doubled, e.g., a complex vector with embedding size 100 will be
transformed into a real valued vector with embedding size 200. The embedding

size search spaces are taken from the default search space stated in the original
papers of TANGO and TComplEx.

Emebdding Size Search Space

TANGO {50, 100, 150}
TComplEx {100, 136, 174}

Besides, we train ComplEx on ICEWS21 for TKG forecasting. We use the
implementation provided in the repository of TComplEx. Since ComplEx is not
designed for processing temporal information, we transform every quadruple
(s,r,0,t) into a corresponding triplet (s,7,0). We do not remove the repeated
triplet. For example, if (s,7,0,t1) and (s, 7, 0,t2) both exist in the training set of
ICEWS21, we train ComplEx with two identical triplets (s,r,0). This preserves
the inductive bias brought by the temporal knowledge base. To achieve a fairer
comparison between ComplEx and TComplEx, we set the embedding size of
ComplEx to 100 (same as the embedding size of TComplEx).

We report in Table 2 the validation results of the trained TKG models of
all three KG reasoning methods on ICEWS21. We observe that TComplEx un-
derperforms ComplEx in TKG forecasting. We attribute this to the excessive
noise introduced by TComplEx’s representations of unseen timestamps. Note
that TComplEx is a TKG completion method. The validation timestamps are
unseen during training, thus causing TComplEx to leverage the untrained times-
tamp representations during evaluation. ComplEx does not consider temporal
information, which enables it to avoid the negative influence of the timestamps
unseen in the training set. TANGO is designed for TKG forecasting. It outper-
forms the other methods greatly. Although TANGO + TuckER performs better
than TANGO + ComplEx on ICEWS21, we choose the latter one for forecasting
TKGQA since it aligns to our QA scoring function better (see Appendix G for
detailed discussion).

Table 2: Validation results of KG reasoning models for TKG forecasting on
ICEWS21.

Metrics MRR Hits@1 Hits@3 Hits@10
ComplEx 0.278 0.188  0.312 0.456
TComplEx 0.250 0.164  0.279 0.420

TANGO + TuckER 0.402 0.327  0.431 0.546
TANGO + ComplEx 0.389 0.324  0.411 0.515




B.2 Baseline Details

We use the library HuggingFace’s Transformers [9] to implement the pre-trained
LMs, i.e., BERT and RoBERTa. Following CRONKGQA and TempoQR, we
choose DistilBERT [7] as the BERT model used throughout our work to save
computational budget. For every natural language input, e.g., a natural language
question, we take the output representation of the [CLS| token computed by an
LM as its LM encoded representation.

Pre-trained LM baselines for TKGQA We provide detailed information
of our pre-trained LM baselines. For EPQs, BERT and RoBERTa compute the
scores of all entities with a prediction head fégl :R2% — RIEN a5

Pep, = fop (hy). (4)

Py, is a |E€|-dimensional real valued vector where each element corresponds to the
score of an entity. h, is the question representation output by BERT or RoBERTa
with a projection to a 2d real space. Note that in FORECASTTKGQA, we further
map the 2d real valued vector to a d-dimensional complex vector. This step does
not exist when we implement pre-trained LM baselines without including any
TKG representation. We choose the entity with the highest score as the predicted
answer. BERT .int and RoBERTa_int compute the score of each entity e with a
prediction head fir-nt: R8! — R! as

¢0p(€) = ég]’i“t (hSthHhe||htq) ) (5)

where hg, h;_, and h, denote the TComplEx representations of the question’s
subject entity, the question’s timestamp, and the entity e, respectively. Simi-
larly, BERT _ext and RoBERTa_ext compute the score of each entity e with a
prediction head fir-**: R%? — R' as

Pep(€) = fep " (D5, 1) 1Bty (6)

where h,_ ;) and h ;) denote the TANGO representations of the question’s
subject entity and the entity e, respectively. Since TANGO and TComplEx rep-
resentations are complex vectors in C%, we expand them into 2d real valued
vectors, where the first half of every real valued vector is the real part of the
original vector and the second half is the imaginary part. This applies to all the
TKG representations used in pre-trained LM baselines for answering all three
types of questions.

For yes-unknown questions, BERT and RoBERTa compute the scores of yes
and unknown with a prediction head f&,‘ff :R?? 5 R? as

u = fyu(hy). (7)

&y, is a 2-dimensional real valued vector where each element corresponds to the
score of either yes or unknown. BERT _int and RoBERTa_int compute the score
of each = € {yes, unknown} with a prediction head f;,’r?*int ;R84 - R! as

¢yu($) = ;rrilLim (hquh(IHhoq Hhtq) : (8)



And BERT _ext and RoBERTa_ext compute the score of each 2 € {yes, unknown}
with a prediction head f;,’,f*e"t ;R 5 R! as

¢yu(x) = ;’Iﬁl?eXt (h(sqvtq)HhQHh(qutq)) : (9)

We choose the one (either yes or unknown) with the higher score as the predicted
answer.

For every fact reasoning question, BERT and RoBERTa compute the score
of the choice ¢ as

r(c) = fi" (hY). (10)

hy is the output of a pre-trained LM when the concatenation of the question
q and the choice ¢ is given as the input. fflrm : R?? — R! is a layer of neural
network for score computation. BERT _int and RoBERTa_int compute the score

of the choice ¢ as
¢fr(c) _ fllfn,int (hgn,intthcm,int) . (11>

hi™-nt = h, ||h¢|h,, |y, , where h,, , h,, and hy, denote the TComplEx repre-
sentations of the question’s subject entity, object entity and timestamp, respec-
tively. him-nt — b h{||h,, |h;,, where hg , h, and h;, denote the TComplEx
representations of the choice’s subject entity, object entity and timestamp, re-
spectively. fim-nt : R164 5 R is a layer of neural network for score computation.
Similarly, BERT _ext and RoBERTa_ext compute the score of the choice ¢ as

Bre(c) = AP (o [l (12
hy™ext = he, o lhE] b, 1), Where he, ;) and he, ;) denote the time-aware
TANGO representations of the question’s subject entity and object entity, re-
spectively. hlm-ext — he,, i lhglhe, ), where hi, ;) and h(,_ ;) denote the
time-aware TANGO representations of the choice’s subject entity and object
entity, respectively. fim-ext : R124 — R! is a layer of neural network for score
computation.

KGQA & TKGQA Baselines For EmbedKGQA, we use the trained Com-
plEx representations as its supporting KG information. For CRONKGQA and
TempoQR, we use the trained TComplEx representations as their supporting
TKG information. We use the EmbedKGQA and CRONKGQA implementation
provided in the repository of CRONKGQA3. We use the official implementation of
TempoQR*. Since we annotate the timestamps for every entity prediction ques-
tion in FORECASTTKGQUESTIONS, we do not implement soft/hard supervision
proposed in TempoQR. We skip the soft/hard supervision and keep everything
else as same as the original implementation. We implement all the KGQA base-
lines with their default hyperparameter settings.

3 https://github.com/apoorvumang/CronKGQA
* https://github.com/cmavro/TempoQR



Table 3: FORECASTTKGQA hyperparameter searching strategy.

Hyperparameter Search Space

TKG Model {TuckER, ComplEx}
Language Model {DistilBERT, RoBERTa}
Dropout {0.2, 0.3, 0.5}
Batch Size {32, 64, 128, 256, 512}

Table 4: Best hyperparameter setting.

Question Type Entity Prediction Yes-Unknown Fact Reasoning

Hyperparameter

TKG Model ComplEx ComplEx ComplEx
Language Model DistilBERT DistilBERT DistilBERT
Dropout 0.3 0.3 0.3
Batch Size 512 256 256

Table 5: Experimental results of EPQs on the validation set. Evaluation metrics
are MRR and Hits@1/10.

MRR Hits@1 Hits@10
Model Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop
FORECASTTKGQA 0.297 0.342 0.192 0.206 0.247 0.111 0.475 0.526 0.353

B.3 ForecastTKGQA

We search hyperparameters of FORECASTTKGQA following Table 3. For every
type of question, we do 60 trials, and let our model run for 50 epochs. We select
the trial leading to the best performance on the validation set and take this
hyperparameter setting as our best configuration. We train our model five times
with different random seeds and report averaged results. The best hyperparame-
ters concerning all three types of questions are shown in Table 4. We also report
the model performance on the validation sets in Table 5 and Table 7. We fur-
ther report the standard deviation of the results on the test sets in Table 6 and
Table 8. The GPU memory usage is reported in Table 9. The training time and
test time of our model are presented in Table 10 and Table 11. The number of
parameters of our model is presented in Table 12.



Table 6: Standard deviation of the results of EPQs on the test set.
MRR Hits@1 Hits@10

Model Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop
ForecAsSTTKGQA 0.0004 0.0004 0.0009 0.0006 0.0007 0.0007 0.0008 0.0008 0.0018

Table 7: Experimental results of YUQs and FRQs on the validation sets. The
evaluation metric is accuracy.

Accuracy

Question Type Yes-Unknown Fact Reasoning
FORECASTTKGQA 0.873 0.758

Table 8: Standard deviation of the results of YUQs and FRQs on the test set.

Accuracy

Question Type Yes-Unknown Fact Reasoning
FORECASTTKGQA 0.0013 0.0052

Table 9: GPU memory usage.

Question Type Entity Prediction Yes-Unknown Fact Reasoning
Model GPU Memory GPU Memory  GPU Memory
FORECASTTKGQA 45,239MB 12,241MB 22,719MB

Table 10: Training time (second) of FORECASTTKGQA on all types of questions.
Question Type Entity Prediction Yes-Unknown Fact Reasoning

Model
FORECASTTKGQA 63,840 3,700 5000

Table 11: Test time (second) of FORECASTTKGQA on all types of questions.
Question Type Entity Prediction Yes-Unknown Fact Reasoning
Model
FORECASTTKGQA 48 33 3

C ForecastTKGQuestions Details

C.1 Natural Language Relation Template

After we get ICEWS21, we get a TKG with 253 relation types. We create natural
language relation templates for 250 out of 253 relation types for question genera-



Table 12: Number of parameters of FORECASTTKGQA on all types of questions.

Question Type Entity Prediction Yes-Unknown Fact Reasoning
Model
FORECASTTKGQA 234,600 234,600 354,800

tion. The rest three relation types in ICEWS21 are not taken into consideration
because either the verb is not suited for a question in the future tense (Attempt
to assassinate) or there is no clear description for the subject-object-relationship
of the relation type in [2] (Demobilize armed forces and Demonstrate military or
police power). We use the generated relation templates for question generation
of all three types of questions. For fact reasoning questions, we also use these
relation templates to generate natural language choices.

C.2 Natural Language Question Template

All question templates are presented in Question_Generation/template_icews.zlsx
which is attached with the submission in Easychair. 2-hop EPQs and their tem-
plates are generated with Question_Generation/generate_qa_anyburl.py.

C.3 2-Hop EPQ Generation Details

We generate 2-hop questions by utilizing AnyBURL [5], a rule-based KG rea-
soning model. We first split ICEWS21 into TKG snapshots, where each snap-
shot G, = {(s,r,0,t) € G|t = t;} contains all the TKG facts happening at
the same timestamp. We treat every TKG snapshot as a non-temporal KG
and train an AnyBURL model with the KG completion task on each TKG
snapshot for rule extraction (KG completion aims to predict the missing en-
tity from every query (s,r,?)). Since AnyBURL is a KG reasoning method that
cannot process temporal information, we transform every quadruple (s,r,0,t)
into a corresponding triplet (s,7,0). For each TKG snapshot, we keep the 2-hop
rules with a confidence higher than 0.5 extracted by AnyBURL, and manually
check if two associated TKG facts in each rule potentially have a logical cau-
sation or can be used to interpret positive/negative entity relationships. After
this process, we take the remaining 2-hop rules as the drafts for generating 2-
hop EPQ templates. The complete list of extracted 2-hop rules is presented
in Question_Generation/anyburl ICEWS.tzt. 2-hop EPQs and their templates
are generated with Question_Generation/generate_qa_anyburl.py, given the ex-
tracted rules.

C.4 FRQ Generation Details

We train xERTE [3] on ICEWS21 for TKG forecasting, and pick out all the
link prediction queries (s, r,?,t) whose ground-truth missing entities are ranked



by xERTE as top 1. We collect the TKG facts corresponding to these queries
for question generation. The intuition of this step is that we assume that the
better xERTE performs on a link prediction query, the more reasonable the
returned prior facts are for explainability. Ranking the ground-truth missing
entities as top 1 indicates that xERTE performs very well on these link prediction
queries. We wish to use xXERTE to generate reasonable fact reasoning questions,
therefore, we want it to find reasonable supporting evidence of the TKG facts
by returning relevant prior facts. For each collected top 1 fact, we take the
prior facts with the highest contribution score, the lowest contribution score,
the median contribution score, and the second highest contribution score as
the facts for generating the choices Answer, Negative, Median and Hard
Negative, respectively. In this way, we can generate a large number of question
candidates by fitting the corresponding facts into question templates.

After we collect all the question candidates, we have 78,606 questions. We
find that there exist a large number of question candidates whose question and
Answer share the same s, 7, 0. For example, the TKG fact of a question candi-
date is (Sudan, host, Ramtane Lamamra, 2021-08-01), and the TKG fact of its
Answer is (Sudan, host, Ramtane Lamamra, 2021-07-29). We filter out all the
question candidates with this pattern since we think that they are not satisfy-
ing our motivation for proposing fact reasoning questions. We wish to generate
the questions that require fact reasoning, rather than finding the repeated facts
happening at different timestamps. A good example of the questions we want to
generate is as follows. For the question whose associated fact is (Envoy (United
States), visit, China, 2021-08-31), the associated fact of its Answer is (Envoy
(United States), express the intent to meet or negotiate, China, 2021-08-30).
From human knowledge, Answer’s fact serves as a highly possible reason for
the fact in the question, and it is also diverse from the question fact. To this
end, we have 50,379 question candidates left.

We then ask five graduate students (major in computer science) to further
annotate the remaining question candidates by deciding whether each of them is
reasonable or not. Students are allowed to use their own knowledge and search
engines to help annotation. If the students think that a question’s Answer is
not the most contributive to the question, they are asked to annotate this ques-
tion as unreasonable, otherwise, they are asked to annotate it as reasonable. For
every question candidate, if it is annotated as unreasonable by three students,
we filter it out. As a result, we have 4,195 questions left. We use Fleiss’ kappa
to measure inter-annotator agreement. Fleiss’ kappa is 0.63 in our annotation
process. The estimated annotation time for each student is 320 hours. The an-
notation instruction and interface are presented in Fig. 5 and 6, respectively.

C.5 Question Time Distribution

We provide the distribution of the questions along the time axis of our dataset
in Fig. 1a and Fig. 1b. We plot the number of questions at every timestamp
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Fig. 1: Question distribution of different types of questions along the time axis.

for all three types of questions. The numbers on the horizontal axis denote how
many days away from 2021-01-01.

D Full Experimental Results on EPQs

We present Table 13 as the supplement of the main results regarding EPQs in
the main paper. We present the aggregated overall performance of MRR and
Hits@k.

Table 13: Complete experimental results of EPQs. The best results are marked
in bold.

MRR Hits@1 Hits@10
Model Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop
RoBERTa 0.161 0.166 0.149 0.098 0.104 0.085 0.282 0.288 0.268
BERT 0.253 0.279 0.182 0.168 0.192 0.106 0.421 0.451 0.342
EmbedKGQA 0.278 0.317 0.185 0.194 0.228 0.112 0.443 0.489 0.333
RoBERTa_int 0.246 0.283 0.157 0.162 0.190 0.094 0.415 0.467 0.290
BERT .int 0.275 0.314 0.183 0.189 0.223 0.107 0.447 0.490 0.344
CRONKGQA 0.119 0.131 0.090 0.069 0.081 0.042 0.218 0.231 0.187
TempoQR 0.134 0.145 0.107 0.085 0.094 0.061 0.230 0.243 0.199
RoBERTa_ext 0.269 0.306 0.180 0.184 0.216 0.108 0.433 0.497 0.323
BERT _ext 0.295 0.331 0.208 0.206 0.239 0.128 0.467 0.508 0.369

FORECASTTKGQA 0.303 0.339 0.216 0.213 0.248 0.129 0.478 0.517 0.386
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E  Human Benchmark Details

We ask five graduate students (major in computer science, not participating in
annotation during FRQ generation) to answer 100 questions randomly sampled
from the test set of FRQs. We consider two settings: (a) Humans answer FRQs
with their own knowledge and inference ability. Search engines are not al-
lowed; (b) Humans can turn to search engines and use the web information
published before the question timestamp for aiding QA. We create a survey
that contains the selected 100 questions. Fig. 3a and 3b show the instruction
of survey and the interface of answering. We first ask the students to do the
survey in setting (a), and then ask them to do it once again in setting (b). The
ground-truth answers to survey questions are not shown to students throughout
the whole process. Also, students have no idea which question they answer in-
correctly. Thus, they cannot use this information to exclude wrong choices when
they do the survey for the second time. From Table 5 of the main paper, we
observe that with search engines, humans can better answer FRQs, although
humans can already reach 0.936 accuracy without any additional information
source.

Ezample to explain accuracy improvement from setting (a) to (b). We present
an example explaining the human performance improvement from setting (a) to
(b). Fig. 2 shows a question in the generated survey for human benchmark. In
setting (a), 3 of 5 students make a mistake by choosing A. After being allowed
to use search engines in setting (b), they all choose the correct choice B. This is
because in setting (a), most students have no idea that Alberto Ferndndez is the
president of Argentina. But after using search engines, they know the identity
of Alberto Ferndndez and manage to achieve correct reasoning.

Which of the following statements contributes most to the fact that Agustin Rossi
had a consolation or a meeting with Alberto Fernandez on 2021-08-017?
A. Alberto Ferndandez expressed the intent to meet or negotiate with Peru on 2021-07-26.
B. Agustin Rossi visited Argentina on 2021-07-31.
I Agustin Rossi had a consolation or a meeting with Brazil on 2021-01-30.
D. United Kingdom engaged in diplomatic cooperation with European Union
on 2021-06-10.

Fig. 2: Example question in the human benchmark survey.

F Details of Multi-Hop Scorer

We develop a QA model, i.e., Multi-Hop Scorer (MHS), for non-forecasting
TKGQA (the TKGQA task proposed in [8]). We use it to prove that given the
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(a) Survey insturction.

(b) Survey interface.

Fig. 3: Human benchmark survey instruction and interface.
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ground-truth TKG information at the question timestamp t, (same setting as
non-forecasting TKGQA), the EPQs in FORECASTTKGQUESTIONS are answer-
able. Considering the non-forecasting setting, we equip MHS with two cheating
TKG models (CTComplEx and CTANGO) and also design MHS by considering
the multi-hop graphical structure of the snapshot G;, = {(s,r,0,t) € G|t = t,}.
We illustrate MHS’s model structure with an example in Fig. 4. Starting from
the annotated subject entity s, of an EPQ, MHS updates the scores of outer
entities for n-hops (n = 2 in our experiments) until all s,’s n-hop neighbors on
the snapshot G; are visited. Initially, MHS assigns a score of 1 to s, and 0 to
any other unvisited entity. For each unvisited entity e, it then computes e’s score

. Qgep(e) = Z (v~ Qsep(e/) + 'g/}(e/, T, e, tq))v

(el :"”)eNe (tq)

1 _
bep(€) = 7777 Pen (€);

* Ne(tg)] "
where N (t,) = {(¢/,7)|(¢/,r,e,t;) € Gy} is e’s 1-hop neighborhood on the
snapshot Gy and v is a discount factor. We couple MHS with CTComplEx
and CTANGO, and define ¢(¢’, 7, €,t,) separately. For MHS + CTComplEx, we

define
Y(e'r e ty) = fo(fi(he |y [[he|hy, [[hy)). (14)

fi : R4 5 R24 £, : R2¢ — R! are two neural networks. he,he, h,, hy are
the CTComplEx representations of entities e, €, relation r and timestamp ¢,
respectively. For MHS + CTANGO, we take the idea of FORECASTTKGQA and
define

(13)

IZJ(BI,T,e,tq) = Re (< h(e’,tq)a hraﬁ(e,tq)a hq >) . (15)

heet,)s Ber t,) are the CTANGO entity representations of e, e’ at tq, respectively.
h, is the CTANGO relation representation of r. h, is BERT encoded question
representation.

G Further Analysis on ForecastTKGQA

Ablation on KG Representations We conduct an ablation study by com-
paring the performance of FORECASTTKGQA coupled with different KG (TKG)
representations. We first train ComplEx on ICEWS21 and provide our model
with its representations. We observe in Table 14 that TANGO representations
are more effective than static KG representations in our proposed model. Besides,
we switch TANGO’s scoring function to TuckER [1] when we train TANGO on
ICEWS21. Table 14 shows that TANGO + ComplEx aligns better to our QA
module.
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Who will Sudan host on 2021-08-01? Multi-Hop Exploration | | Cheating
5 i TKG Model Whole ICEWS21
U S V)
e j
- e %0, =4
" 2-Hop Neighborhood of Sudan A
e, on 2021-08-01 i
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Hosty, .- “Ss... Irakii Ghudushauri-
O, 2021 ggt” ~-._ Shiolashvili
> Sameh Shoukry Ramtane Lamamra e ¢ ! Score Computation
Foregn Affairs Mafe ; Vg s e T3 i . :
(oania) 0219 2021080 pler) = 5(27 +¥(sg,r1 e, ty) +9(sq.m5 " esty)) |
, 0, e e ]
y 74 Consuit - Gepler) + (e, 3, ea,ty) :
2021-08-01 '\ Ahmadu U
', Ahmadu Umaru . Ner. ra. e
\ Fini ep(er) + v(er,ra e3,ty)
! other Authorites / i
\  Other Authorities " "
. Foreign Affairs ", K /- Officials (Algeria) i |Question Encoding h,
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Fig.4: Assume we have a question: Who will Sudan host on 2021-08-01% The
annotated subject entity s, is Sudan and the annotated timestamp ¢, is 2021-
08-01. We first pick the snapshot G; and find s,’s n-hop (n = 2 in our case)
neighbors on Gy, . Starting from s,, MHS updates the scores of outer entities for
2-hops until all s,’s 2-hop neighbors on G; ({Ramtane Lamamra (ey), Sameh
Shoukry, Samantha Power, Alfredo Rangel, Irakli Ghudushauri-Shiolashvili (e3),
Ahmadu Umaru Fintiri (e3), Other Authorities/Officials (Algeria), Foreign Af-
fairs (Albania), Foreign Affairs (Cyprus) } in our example) are visited. Initially,
MHS assigns a score of 1 to s, and 0 to any other unvisited entity. To be spe-
cific, MHS first propagates scores to s,’s 1-hop neighbors on G;_, e.g., e1. Then
through the visited 1-hop neighbors, MHS propagates scores to s,’s 2-hop neigh-
bors. Score computation for e, eg, ez is presented in this figure. r5 ! denotes the
inverse relation of rp that points from s, to e;. We transform ry to ry ! because
we define the 1-hop neighbor of an entity with its incoming edges (following
TANGO [4]). Scores are computed by considering the graphical structure of G; .
After the score propagation process, the entity with the highest score is taken
as the predicted answer e,ys.

Table 14: Comparison of different KG representations. w. means with. EPQ),
YUQ, FRQ represent entity prediction, yes-unknown and fact reasoning ques-
tions, respectively.

Question Type EPQ YUQ FRQ
MRR Hits@1 Hits@10 Accuracy Accuracy

Model Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop Overall 1-Hop 2-Hop

FOrRECASTTKGQA w. ComplEx 0.296 0.338 0.196 0.207 0.245 0.114 0.470 0.516 0.358 0.863 0.752

FORECASTTKGQA w. TANGO + TuckER  0.298 0.335 0.211 0.210 0.245 0.125 0.474 0.511 0.385 0.867 0.757
FORECASTTKGQA w. TANGO + ComplEx 0.303 0.339 0.216 0.213 0.248 0.129 0.478 0.517 0.386 0.870 0.769
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Annotation Instruction

You will be given a number of machine-generated multiple-choice questions. Each of them is coupled with four choices. You will also
be given the answer labeled by machines. For every question, your task is to distinguish whether the machine labeled answer is correct
(i.e., reasonable) or incorrect (i.e., unreasonable). If the machine labels correctly, please annotate the corresponding question as
“reasonable”, otherwise, please annotate the question as “unreasonable”.

Each question is centered around a political fact (i.e., centered fact). Each choice denotes a different fact that happens before the
centered fact. The answer to each question should be the choice that serves as the most relevant evidence (cause) of the centered
fact among all choices.

Note:

(1) Pay attention to the time information specified in the facts.

(2) If none of four choices potentially leads to the centered fact, please annotate the corresponding question as unreasonable.

(3) If more than one choices seem relevant and you cannot decide which choice is the best, please also annotate as unreasonable.

(4) Feel free to use search engines, e.g., Google, to support your annotation process.

Here are two examples explaining which kind of questions should be annotated as “reasonable” and which should be annotated as
“unreasonable”.

Example 1:

Which of the following statements contributes most to the fact that Pedro Sanchez signed a formal agreement with Joseph Robinette
Biden on 2021-08-23?

A. Pedro Sanchez expressed the intent to cooperate with Joseph Robinette Biden on 2021-08-22.

B. Pedro Sanchez engaged in diplomatic cooperation with Government (Spain) on 2021-08-22.

C. Government (Spain) made a statement to Cuba on 2021-07-27.

D. United States praised or endorsed Sayyid Ali al-Husayni al-Sistani on 2021-07-24.

Machine labeled A as the answer to this question. From human perspective, A is the strong cause of the centered fact and B, C, D are
not relevant compared with A. Therefore, this question should be annotated as “reasonable”.

Example 2:

Which of the following statements contributes most to the fact that Emmanuel Macron negotiated with Kamala Harris on 2021-02-18.?
A. Emmanuel Macron had a consolation or a meeting with Saad Hariri on 2021-02-14.

B. Emmanuel Macron negotiated with Saad Hariri on 2021-02-12.

C. Military (France) attacked France using aerial weapons on 2021-01-08.

D. Vladimir Putin made a statement to Iran on 2021-02-09.

Machine labeled A as the answer to this question. In fact, from human perspective, all four choices cannot serve as an obviously
relevant cause of the centered fact. Therefore, this question should be annotated as “unreasonable”.

How to annotate?

You will be given an excel form containing questions and choices. The question is in Column B (Machine-Generated Question), and the
machine-labeled answer is in Column C (Machine-Labeled Answer). Column D, E, F contain other choices generated by machines. Each
row in the excel form corresponds to one multiple-choice question. If you think the question is “reasonable” please write 1 in Column
G (Annotation Result) in the corresponding row, otherwise, please write 0. For example, if you think the question in row 1337 is
unreasonable, please write 0 at G1337 of the excel form.

Why annotate?

The annotation process of the machine-generated questions will help to generate a dataset that tests machines’ ability of fact reasoning
and forecasting in the context of temporal knowledge question answering (TKGQA). This annotation process also aims to promote high
quality dataset generation. Further, more humans will be asked to answer the sampled questions in the generated dataset for studying
the difference between humans and machines in fact reasoning.

Fig. 5: Human annotation instruction for fact reasoning questions.
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Fig. 6: Human annotation interface for fact reasoning questions.
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Chapter 7
Conclusion

We have thoroughly discussed two emerging ML tasks related to TKGs: inductive knowl-
edge representation learning and natural language QA on TKGs. Specifically, we provide

a chapter-by-chapter summary of our conclusions, from Chapter [3| to Chapter [6]

 In Chapter 3| we propose a new task: TKG few-shot OOG link prediction, introduc-
ing the inductive entity representation learning problem into TKGs. We develop a
model FILT dedicated to solve this new task. Given only a few edges associated to
each newly-emerged entity, FILT employs a meta-learning framework that enables
inductive knowledge transfer from seen entities to new unseen entities. FILT uses
a time-aware graph encoder to incorporate temporal information in representation
learning. It learns contextualized representations of unseen entities based on the
few-shot data as well as the concept-aware information extracted from the temporal
knowledge bases. A concept modeling component is used to represent entity concepts
for all entities, incorporating prior knowledge into the representations of unseen enti-
ties. To evaluate models on the new task, we introduce three new datasets for TKG
few-shot OOG link prediction and compare FILT with related baselines. Experimen-
tal results demonstrate that our meta-learning framework, combined with concept-

aware information, enhances inductive learning for emerging entities on TKGs.

 In Chapter [d] we keep focusing on inductive entity representation learning on TKGs
and present an RL-based TKG link prediction method FITCARL to solve TKG few-
shot OOG LP. To predict a link involving an unseen entity, FITCARL starts at the
unseen entity and traverses the background graph to find the answer entity, with

the traversal process guided by a learned policy. Same as FILT, FITCARL is also a
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meta-learning-based model trained with episodic training. It learns representations
of newly-emerged entities by using a time-aware Transformer, with a customized
time-aware positional encoding. To further alleviate the negative impact of the data
scarcity problem brought by the few-shot setting, a confidence learner is proposed
to be coupled with the policy network for making better decisions. A parameter-
free concept regularizer is also developed to better exploit concept-aware information
provided by temporal knowledge bases. Experimental results show that FITCARL
achieves a new state-of-the-art and provides explainability, outperforming FILT with

a grat margin.

In Chapter [5 we focus on inductive relation representation learning on TKGs. We
propose a new task: zero-shot TKG forecasting to study zero-shot relational learning
in the context of TKG extrapolation. We design an LLM-empowered approach, i.e.,
zrLLM. zrLLM extracts the semantic information of KG relations from LLMs and
introduces it into TKG representation learning. It first uses GPT-3.91 to generate
enriched relation descriptions based on the relation texts provided by TKG datasets.
Then it inputs the enriched descriptions into the encoder of T5-11B [122] and aligns
the output to TKG embedding space. An extra relation history learner is designed to
capture the temporal relation patterns for better reasoning, and meanwhile promote
the embedding space alignment between text and TKGs. To evaluate models on the
new task and prevent information leak from LLMs, we introduce three new datasets
for zero-shot TKG forecasting. We couple zrLLM with a wide range of embedding-
based TKG forecasting models and find that zrLLM provides huge help in forecasting
the facts with zero-shot relations, and moreover, it maintains models’ performance

over seen relations.

In Chapter [0, we focus on natural language QA on TKGs, in particular in the fore-
casting scenario. We propose a novel task: forecasting TKGQA, which is the first
work combining TKG forecasting with KGQA. We propose a coupled large-scale
benchmark dataset FORECASTTKGQUESTIONS that contains various types of ques-
tions including entity prediction questions, yes-unknown questions and fact reason-
ing questions. To solve forecasting TKGQA, we propose FORECASTTKGQA, a QA
model that leverages a TKG forecasting model with a pre-trained LM. We bench-
mark FORECASTTKGQA together with several popular baselines on our dataset and

Thttps://platform.openai.com/docs/model-index-for-researchers
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demonstrate that our model greatly outperforms previous methods due to its strong
forecasting capability. Despite the great performance achieved by FORECASTTKGQA,
we further show that there still exists a large room for improvement compared with
humans in answering forecasting questions. We summarize the challenges of our new
task and hope our work can benefit future research in studying the forecasting power
of TKGQA methods.

Based on our findings and the current interests of the research community, we outline

four key future research directions.

e Inductive Representation Learning on Both TKG Entities and Relations.
As discussed in Chapter [2] Section [2.5.6] limited efforts have been made to address
unseen entities and relations simultaneously, and few-shot or zero-shot cases remain
underexplored. Given that these challenges are more reflective of real-world scenarios,

they represent a highly important direction for future research.

o Inductive Representation Learning on New Data Structures. Following
[54], [75], several recent studies have introduced qualifiers into TKGs, proposing more
expressive forms of TKGs, such as hyper-relational TKGs [45] and N-tuple TKGs [74].
For each TKG fact, qualifiers?| provide additional contextual information, offering a
more precise description of the facts. This introduces new challenges in developing
methods that effectively model both qualifiers and the temporal dynamics in TKGs.
Additionally, preliminary research has explored multimodal TKGs [98], where texts
and images serve as supplementary information sources to enrich factual data. This
raises new research problems, such as forecasting future facts on multimodal TKGs
by integrating information across various modalities. Inductive learning on these new
data structures has not been thoroughly explored, highlighting the need for further
investigation. Qualifiers, along with texts, images, and potentially other modalities,
offer critical insights for reasoning and may inspire novel approaches in inductive

representation learning on TKGs.

« Leveraging New Generation of Language Models in TKGQA. Recent LLMs,
e.g., GPT-4 [I17], exhibit remarkable performance across various NLP tasks. Two
key characteristics of these models are: (1) they unify all tasks into a text-to-text

framework; (2) they use a decoder-only architecture, making it difficult to apply them

2Each qualifier consists of a relation along with an entity.
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in the same way as text encoders like BERT [38] in FORECASTTKGQA (Chapter [6).
This poses a new challenge in leveraging recent LLMs for TKGQA. One recent work
[57] has made the first attempt at solving TKGQA in a generative manner using
modern LLMs. It decomposes TKGQA into two stages. First, a pre-trained LLM
retrieves relevant factual evidence from the underlying TKG, and second, an LLM
is fine-tuned to generate answers using this information. This approach marks a
shift in the TKGQA framework in the era of LLMs, highlighting new challenges and
opportunities, such as developing more powerful retrieval modules and introducing
more efficient reasoning techniques that do not rely on fine-tuning large Transformer-
based models which requires huge computational resources. One further direction is
to leverage LLMs for forecasting TKGQA. Recent study [I70] has demonstrated that
LLMs struggle with accurate prediction and reliable confidence estimation, highlight-
ing the importance of improved uncertainty modeling and confidence calibration.
Addressing these limitations is crucial for effectively utilizing LLMs in forecasting
TKGQA. Another point worth noting is that due to the quadratic complexity of
self-attention in Transformer [149], recent efforts have focused on designing more
efficient modules for sequence modeling, such as state space models (SSMs). One
of the most popular modules is the Mamba SSM [64] which has proven as effective
as Transformer in long sequence modeling while being much more efficient. Several
follow-up studies have demonstrated that Mamba can replace Transformers to ef-
ficiently model various data structures, including images [181, [105], text [34, 118],
and graphs [154] [43]. Notably, some new language models have been built on top of
Mamba, showing promising results in language modeling. This opens up opportu-
nities to incorporate SSM-based LMs into TKGQA, improving the efficiency of the

reasoning process without compromising model performance.

Exploring Further Applications of TKGs. This thesis focuses on two emerg-
ing ML tasks on TKGs and does not discuss how they can be applied to address
challenges in various Al applications. KGs have recently gained significant atten-
tion in Al due to their structured nature and capacity to enhance explainability and
trustworthiness [I37]. They have been incorporated into a wide range of applications
such as recommender system development [I73] and supply chain management [68].
Building on this, an increasing number of studies are now investigating how to inte-
grate TKGs into various applications to enable dynamic decision-making, paving the

way for more adaptive and time-aware Al solutions. This opens up new opportunities
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for TKGs in areas like finance, healthcare, and industrial applications.
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