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Zusammenfassung
Diese Arbeit beschäftigt sich mit der Analyse magnetohydrodynamischer (MHD) In-
stabilitäten in magnetisch eingeschlossenen Plasmen in der Tokamak-Konfiguration.
In großen Tokamaks muss eine Disruption, d.h. ein plötzlicher Verlust der thermi-
schen Energie und des Plasmastroms, vermieden oder zumindest abgemildert wer-
den. Da Tearing-Moden, bei denen es sich um resistive MHD-Instabilitäten han-
delt, mit einer toroidalen Modenzahl n = 1 häufig an Disruptionen beteiligt sind,
ist ihre Erkennung und Analyse sowohl für ein besseres Verständnis als auch für
die Einleitung von Gegenmaßnahmen, die eine Störung abmildern oder vermeiden
können, wichtig. Aufgrund der Toroidizität und Plasmaform können n = 1 Tearing-
Moden mit unterschiedlichen poloiden Modenanzahlen m koppeln und mit dersel-
ben Frequenz rotieren. Die Bestimmung der poloidalen Modenzusammensetzung
solch gekoppelter Tearing-Moden in Bezug auf Amplituden und Phasen erfordert
magnetische Messungen an verschiedenen poloiden Positionen sowie ein Modell zur
Berechnung des vorhergesagten magnetischen Störfeldes an der Spulenposition für
einzelne poloidale Harmonische. Für rotierende Moden, bei denen induzierte Ab-
schirmströme in den umgebenden leitenden Strukturen die Messungen beeinflussen,
werden Mirnovspulen im Tokamak ASDEX Upgrade (AUG) verwendet, die (haupt-
sächlich) die poloidale Störfeldkomponente messen. Für gelockte Moden, d.h. Moden,
die in Bezug auf das Vakuumgefäß nicht rotieren, sind integrierte Radialfeldmes-
sungen notwendig, da die poloidale Störfeldkomponente nicht mit ausreichender
Genauigkeit vom poloidalen Gleichgewichtsfeld unterschieden werden kann. Um
eine kontinuierliche Modenanalyse durchführen zu können, sind daher magnetische
Messungen verschiedener Spulentypen erforderlich, die durch das Modell konsistent
beschrieben werden müssen. Dies wird im Niederfrequenzbereich gezeigt, in dem
die meisten magnetischen Messungen in AUG verfügbar sind. Ein dreidimensionales
FEM-Modell wird verwendet, um die erwarteten virtuellen magnetischen Messun-
gen des Störfelds zu berechnen, das durch eine helixförmige Störstromdichte erzeugt
wird, welche kraftfrei auf der resonanten Fläche fließt. Diese ist mit einer vari-
ierenden Dicke definiert, um den unterschiedlichen Abstand zwischen benachbarten
magnetischen Flussflächen zu berücksichtigen. Relevante leitende Strukturen sind
in dem Modell implementiert, während das Plasma – mit Ausnahme der resonanten
Fläche – als Vakuum behandelt wird. Zusätzlich zum Einfluss des Vakuumgefäßes
und des Passiven Stabilisierungsleiters (PSL) wird die Relevanz der Implementierung
von Stützbrücken, welche der mechanischen Stabilisierung des PSLs dienen, und lei-
tender Strukturen mit einer Verbindung zur Wand gezeigt. Durch die lineare Su-
perposition der vorhergesagten magnetischen Messungen von einzelnen poloidalen
Harmonischen, welche am besten mit den Messergebnissen übereinstimmt, ergeben
sich Amplituden und Phasen der poloidalen Harmonischen. Die daraus resultieren-
den simulierten Mirnovmessungen zeigen eine hervorragende Übereinstimmung mit
ihren Messwerten über einen weiten Frequenzbereich. Die Analyse von zwei Fällen,
in denen die m = 2 und m = 3 Tearing-Moden entkoppelt sind, zeigt die Wichtigkeit
poloidaler Seitenbänder mit ∆m = ±1. Ferner wird die in einer früheren Arbeit
gefundene Variation der Phasenbeziehung zwischen gekoppelten m = 2 und m = 3
Tearing-Moden von 0 bis π in Abhängigkeit vom Plasma-β bestätigt und die von
der Theorie erwartete Phasenbeziehung von π zwischen dem poloidalen Seitenband
m = 1 und der poloidalen Harmonischen m = 2 nachgewiesen. Eine konsistente
Beschreibung der virtuellen Spulenergebnisse verschiedener Typen wird durch die
Übereinstimmung der simulierten Messungen von Spulen, die das radiale Störfeld
messen, mit ihren gemessenen Werten gezeigt, wobei die Amplituden und Phasen
der poloidalen Harmonischen aus den Mirnovspulen bestimmt wurden.
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Abstract
This thesis presents an analysis of magnetohydrodynamic (MHD) instabilities in
magnetically confined plasmas in the tokamak configuration. In large tokamaks, a
disruption, i.e. a sudden loss of the plasma thermal energy and current, has to be
avoided or at least mitigated. As tearing modes, which are resistive MHD insta-
bilities, with a toroidal mode number n = 1 are often involved in disruptions, their
detection and analysis is important for both a better understanding and the initiation
of countermeasures that can mitigate or avoid a disruption. Owing to toroidicity and
shaping, n = 1 tearing modes with different poloidal mode numbers m can couple and
rotate at the same frequency. Determining the poloidal mode composition of such
coupled tearing modes in terms of amplitudes and phases requires magnetic measure-
ments at different poloidal positions and a model to calculate the predicted magnetic
perturbation field at the coil position for a single poloidal harmonic. For rotating
modes, where induced shielding currents in the surrounding conducting structures
affect the measurements, Mirnov coils measuring (mainly) the poloidal perturbation
field component are used in the ASDEX Upgrade (AUG) tokamak. For locked modes,
i.e. modes that do not rotate with respect to the vacuum vessel, integrated radial
field measurements are required as the poloidal perturbation field component cannot
be distinguished from the poloidal equilibrium field with sufficient precision. Thus,
for a continuous mode analysis, the magnetic measurements of different coil types
are required and have to be consistently described by the model, which is proven
in the low frequency range, where most of the magnetic measurements in AUG are
available. We employ a three-dimensional FEM model to calculate the expected
virtual magnetic measurements of the perturbation field produced by a helical per-
turbation current density flowing force-free on the resonant surface. This surface is
defined with a varying thickness to account for the different distance between ad-
jacent magnetic flux surfaces. Relevant conducting structures are implemented in
the model, while the plasma around the resonant surface is treated as vacuum. We
show the importance of including not only the vacuum vessel and the Passive Sta-
bilisation Loop (PSL), but also the support bridges for mechanical stabilisation of
the PSL and additional conducting structures with a connection to the wall. The
linear superposition of the predicted magnetic measurements of single poloidal har-
monics that best matches the measured results gives the amplitudes and phases of
the individual poloidal harmonics. The resulting simulated Mirnov measurements
show excellent agreement with their measured values over a wide frequency range.
The analysis of two cases where the m = 2 and m = 3 tearing modes are decoupled
shows the importance of considering poloidal sidebands with ∆m = ±1. Moreover,
the variation of the phase relation between coupled m = 2 and m = 3 tearing modes
from 0 to π depending on the plasma β found in previous work is confirmed and a
phase relation of π between the m = 1 poloidal sideband and the m = 2 poloidal
harmonic, as expected by theory, is demonstrated. A consistent description of the
virtual coils of different types is proven by the agreement of the simulated measure-
ments of coils measuring the radial perturbation field, where the amplitudes and
phases of the poloidal harmonics are determined from the Mirnov coils, with their
measured values.
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1 Introduction
"Freude am Schauen und Begreifen ist die schönste Gabe der Natur."
"The joy of looking and understanding is the most beautiful gift of nature."
Albert Einstein, (1879-1955)

This quote from Albert Einstein possibly refers to his formula of the equivalence of
mass and energy, E = mc2, formulated in the context of the theory of relativity [1].
This work is not about the theory of relativity, but about nuclear fusion research,
which is also inspired by nature. The sun’s energy originates from the conversion of
four protons into a helium nucleus via multiple steps [2, 3]. The mass deficit of the
reaction results in an energy release according to Einstein’s formula E = mc2. The
aim of fusion research is to bring nuclear fusion to earth to convert mass into usable
energy, following the example of the sun.

1.1 Nuclear fusion on earth

The most promising fusion reaction to be used for nuclear fusion on earth is the
reaction of the nuclei of the hydrogen isotopes deuterium and tritium producing a
helium nucleus and a neutron [4]

2
1D + 3

1T → 4
2He (3.5MeV) + 1

0n (14.1MeV) . (1.1)

This reaction is highly advantageous because of its high reaction rate, which is about
24 orders of magnitude larger than the proton-proton reaction powering the sun [5].
The maximum of the cross section of this reaction occurs at energies in the order of
100 keV [4], which is relatively low compared to the gained energy of about 18MeV.
Accelerating deuterium and tritium beams to high energies and then colliding them
does not produce a significant amount of energy because elastic Coulomb collisions
with a much larger cross section compete with fusion collisions in this energy range.
A solution to achieve a positive energy balance is to provide the energy via thermal
energy of the particles and let them collide numerously without losing the energy.
At thermal energies of more than 10 keV, matter is in the state of plasma, i.e. an
ionised gas.

There are three concepts to confine a plasma at the required high temperatures:
by gravity as in stars; by magnetic fields; and by inertial confinement. On earth,
only the latter two options are possible. In order to obtain energy from the fusion
reactions in thermal plasmas, the product of density n, temperature T and energy
confinement time τE must exceed a temperature-dependent critical value LLawson(T )
[6]

nTτE >
12 T 2

< σv > Eα︸ ︷︷ ︸
LLawson(T )

(1.2)

where < σv > is the temperature dependent D-T reaction rate and Eα is the energy
of the charged helium nucleus that remains in the plasma. For magnetically confined
D-T plasmas, typical reactor relevant temperatures are in the range of 10 to 20 keV,
where LLawson(T ) is close to its minimum [7], and densities are usually chosen to
be about 1020 to 2 · 1020 1

m3 [8]. Consequently, the energy confinement timescale,
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which is defined as the ratio of energy content to heating power and is a measure of
the quality of the thermal insulation of the plasma, must be of the order of 5 s [8].
In inertial confinement fusion, which is not considered further in this work, a small
pellet is heated resulting in the ablation of the outer layer, the recoil of which heats
and compresses the inner part of the pellet. Thus, in inertial fusion, the densities
are much higher and the energy confinemt timescales are much shorter [9].

1.2 Magnetic confinement fusion

The magnetic confinement of a plasma is based on the fact that charged particles with
a charge qel and a velocity v experience the Lorentz force F L = qel v×B in a magnetic
field B. This results in a gyrating motion of electrons and positively charged ions (in
different directions and with different gyration radii) around the magnetic field lines.
In the first order, the charged particles are bound to the magnetic field lines, which
indicates that ring-shaped magnetic field lines could confine a plasma. However, as
will be shown below, a toroidal configuration with only a toroidal magnetic field,
Bϕ, cannot confine the charged particles due to particle drifts [6]

vD =
F ×B

qelB2
(1.3)

where F is an additional force and B is the magnetic field strength. The torus
coordinate system (r, θ, ϕ) and the cylinder coordinate system (R, z, ϕ) are introduced
in figure 1.1. The magnetic field strength in a torus with Bϕ is mainly given by
B = B0 R0/R, where B0 and R0 are the magnetic field strength and the major
radius, R, at the magnetic axis at r = 0. Thus, there is a toroidal magnetic field
gradient in negative major radial direction, with a higher field on the inner side
(High Field Side (HFS)) and a lower field on the outer side (Low Field Side (LFS))
of the torus. This leads to a charge-dependent drift vD,∇B ∼ 1/qel B × ∇B in
positive (negative) z-direction for qel > 0 (qel < 0) for the direction of Bϕ in figure
1.1 [10]. The charge separation generates an electric field, which consequently causes
all charged particles to drift outwards, with vD,E ∼ E ×B [10]. Thus, the plasma
cannot be confined by a pure toroidal magnetic field.

Figure 1.1: Direction of the toroidal magnetic field, Bϕ, and the poloidal magnetic
field, Bθ, resulting in helical magnetic field lines (light blue) on a particular magnetic
flux surface (purple). The torus coordinates (r, θ, ϕ), where r is the minor radius, θ
the poloidal and ϕ the toroidal angle, and the cylinder coordinates (R,z,ϕ), where R
is the major radius, are introduced. (figure adapted from [11])

The solution to avoid particle loss due to the outward drift is to introduce a poloidal
field component, Bθ, resulting in helically twisted field lines, shown in figure 1.1.
The surfaces on which the magnetic field lines lie (cf. purple surface in figure 1.1)
are nested within each other, such that the drifts due to the inhomogeneity of the

1.2 Magnetic confinement fusion
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magnetic field do not lead to a significant charge separation and thus not to the
outward drift (cf. chapter 2 in [12]). vD,∇B is still directed in positive (negative)
z-direction, but a positively (negatively) charged particle in the upper (lower) half
of the torus will now drift to a magnetic flux surface with a larger r and, once in the
lower (upper) part of the torus, will drift back to the original flux surface.

Two promising concepts to confine the plasma in a toroidal device are the tokamak
and the stellarator concept. In a tokamak, the poloidal magnetic field is generated
by a toroidal plasma current, Ip, induced by a transformer coil with the plasma as
secondary winding. In a stellarator, the twisted magnetic field is solely produced by
external magnetic field coils with complicated three-dimensional shapes. Owing to
the more challenging design and construction of a stellarator compared to a tokamak,
research on the tokamak was carried out more extensively in the past and therefore
has a development advantage (cf. [7]). This work is based on experiments on the
tokamak ASDEX Upgrade (AUG).1 Thus, we will focus on the tokamak principle in
the following.

1.3 The tokamak principle

The word ’tokamak’ is a Russian acronym for the expression ’toroidal chamber with
magnetic coils’ (cf. e.g. [12]). Figure 1.2 shows the coil system, the plasma current
and the resulting magnetic field of a tokamak. The toroidal field is created by
planar coils around the plasma, whereas the poloidal magnetic field is generated by
a toroidal plasma current. In order to balance the hoop force of the plasma, that
wants to expand the plasma ring, a vertical magnetic field is created by poloidal field
coils leading to a shift of the magnetic flux surfaces, called the Shafranov shift [13].
This results in magnetic flux surfaces with a smaller distance on the LFS which is
even more pronounced at higher plasma pressure. The poloidal field coils are also
used to fix the plasma position and to study different plasma shapes. Several poloidal
field coils are installed in AUG. Since an elliptical plasma cross section has improved
stability and confinement properties [14], the poloidal cross-sections of experimental
plasmas are usually chosen to be non-circular (cf. figure 1.3).

A typical poloidal cross section of the plasma in AUG is presented in figure 1.3 on
the left. All magnetic field lines on a magnetic flux surface, some of which are shown
in grey, share the same helicity. The separatrix, which separates the confined plasma
from the so-called Scrape-Off Layer (SOL), is shown in black. The helicity of the
field lines on a specific flux surface is expressed by the safety factor

q =
number of toroidal turns
number of poloidal turns

, (1.4)

and depends on the minor radius r. It is common to introduce a normalised radial
coordinate which serves as flux surface label. Here, we use ρpol which is defined as

ρpol =

√
Ψ−Ψaxis

Ψsep −Ψaxis
(1.5)

where Ψ =
∫
Spol

B dS denotes the poloidal magnetic flux through an area Spol per-
pendicular to the poloidal direction, which is indicated in figure 1.3. Ψ, Ψsep and

1The AUG tokamak is an experiment that operates without tritium in the plasma due to nuclear
safety restrictions. The aim of the scientific program is to investigate the physical basis for future
fusion devices, which are expected to gain energy from the reaction 1.1.

1.3 The tokamak principle
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Figure 1.2: The plasma in purple is confined by using the tokamak principle: The
toroidal magnetic field, Bϕ, is created by the Toroidal Field (TF) coils (blue coils
around the plasma). The poloidal magnetic field, Bθ, is generated by the toroidal
plasma current, Ip, which is driven by an electric field induced by the transformer in
the middle of the torus (blue coils with red arrow above). The combination of the
toroidal and poloidal field results in helical field lines indicated in black. The poloidal
field coils above and below the plasma complete the magnetic field configuration.
(source: MPI for Plasma Physics, graphic: Christian Brandt, adapted)

Ψaxis are called the poloidal flux at a particular flux surface, the separatrix and the
magnetic axis, respectively. The normalisation is such that ρpol = 0 at the magnetic
axis, ρpol = 1 at the separatrix and ρpol > 1 outside the separatrix in the SOL.
[13, 14]

A typical q profile as a function of ρpol is shown in 1.3 on the right. The safety
factor can be either a rational number, i.e. the field line closes in on itself after some
toroidal turns, or an irrational number, i.e. the field line never closes in on itself.
The magnetic flux surfaces, where q is a rational number, are prone to instabilities
and are called resonant surfaces.

A tokamak has two major conceptual disadvantages compared to stellarators. Firstly,
it is usually operated in pulses, since the plasma current relies on induction of the
transformer. Advanced scenarios to make the discharges stationary by replacing the
transformer induced plasma current are the subject of current research (cf. e.g. [15]).
Secondly, a so-called disruption can occur, i.e. a sudden loss of the plasma current,
which terminates the discharge. The consequences are high thermal and mechanical
loads on the device structures (cf. section 1.4). In order to avoid disruptions in
future fusion devices, it is important to study the instabilities that are involved in
disruptions.

1.3 The tokamak principle
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Figure 1.3: Equilibrium reconstruction of a standard discharge 40701 at t = 2.0 s.
In the poloidal cross section (left), the plasma is marked in purple, the separatrix
is shown in black and other magnetic flux surfaces are shown in grey. A part of an
area Spol for defining the magnetic flux surface label, ρpol, is indicated in dark grey.
The corresponding q-profile is shown on the right.

1.4 Disruptions and the role of tearing modes

Disruptions can severly damage future reactor machines and are therefore intolerable
in large devices with burning DT plasmas. A disruption usually occurs due to the
loss of plasma confinement, the thermal quench, which is a rapid decrease in thermal
energy, and the current quench. The plasma current cannot be sustained due to the
decreased plasma conductivity, σplasma, which increases with Te, with σplasma ∼ T

3/2
e .

In addition to the thermal loads of the no longer confined hot plasma, the sudden loss
of the plasma current leads to strong forces due to the induced current densities in the
conducting structures. Runaway electrons, i.e. relativistic electrons with an energy
of a few tens of MeV [16], accelerated in the large resulting toroidal electric field, can
also occur during a disruption with a high potential to damage the components on
impact. The energy dissipated to the wall is approximated to scale with L3, where
L is the typical size scale of the device, i.e. disruptions become more dangerous in
larger devices with higher plasma currents and magnetic fields. (cf. chapter 7 in [12])

To avoid disruptions in future fusion reactors, it is important to study the instabil-
ities that cause disruptions in smaller experiments like AUG where disruptions are
tolerable. Tearing modes, resistive magnetohydrodynamic (MHD) instabilities in
tokamak plasmas (cf. chapter 2), are often involved in disruptions (cf. e.g. [17, 18]).
They lead to a confinement degradation [19], which is even stronger for coupled
modes [20], i.e. modes that rotate with a fixed phase relation. Large rotating modes
can be slowed down by the electromagnetic interaction with the conducting vacuum
vessel surrounding the plasma and finally stop rotating with respect to the vessel,
as described in [13] and [21]. These non-rotating modes are called locked modes and
are found to be especially dangerous in regards to triggering disruptions.

In order to detect and analyse tearing modes, passive coils are installed in AUG
that measure the magnetic fluctuations associated with these modes. With multiple

1.4 Disruptions and the role of tearing modes
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passive coils at different locations, it is possible to infer and study the mode structure
of tearing modes using a model that calculates the expected measurements at the
coil positions for a set of perturbation currents.

1.5 Aim and content of this work

The detection and characterisation of n = 1 tearing modes in terms of the poloidal
mode number composition is important for a physical understanding and for initi-
ating appropriate countermeasures to avoid or mitigate a confinement degradation
and a disruption. In order to infer the poloidal mode number composition from
magnetic measurements, a model simulating the predicted perturbation magnetic
field is required, with different challenges arising for rotating and locked modes, i.e.
non-rotating modes with respect to the laboratory frame. Rotating modes induce
shielding currents in the surrounding conducting structures, which affect the mag-
netic measurements, while locked modes require the integrated measurements of the
radial field component, as the poloidal component of the perturbation magnetic field
cannot be distinguished from the poloidal equilibrium magnetic field with sufficient
accuracy. For rotating modes, Mirnov coils are used, which measure the poloidal
magnetic field component and thus cannot be used for locked modes. However, most
radial field measurements are not suitable for use in the rotating phase due to atten-
uation by nearby shielding currents. Thus, for a continuous description of the mode
structure of rotating and locked modes, all coil types have to be used and there-
fore modelled consistently. This requires a comparison in the low frequency range,
where measurements of all coil types are available and where shielding currents are
important.

Owing to the toroidal and shaped geometry of the resonant surface, where the tearing
mode is located, and the surrounding conducting structures, an analytical formula,
as derived in [13], using the cylindrical approximation is not sufficient for an ac-
curate frequency dependent description of magnetic measurements near conducting
structures. The aim of this work is to provide a tool to derive the poloidal mode com-
position from magnetic measurements for all mode frequencies f , including f = 0.
This work provides a description of this model, a discussion of the steps taken to
achieve a consistent description of the magnetic measurements of the different coil
types, and the application of the model.

An introduction to (resistive) MHD, tearing modes and their role regarding disrup-
tions is given in chapter 2. Chapter 3 contains a description of different methods
for measuring tearing modes, in particular magnetic measurements. The model re-
quired to calculate the expected magnetic measurements uses the Finite Element
Method (FEM) and is described in chapter 4 together with the mechanism to in-
fer the poloidal mode structure. As for locked modes only radial measurements at
far fewer poloidal positions are available, the theoretical distinguishability of modes
with different poloidal mode numbers with these radial coils is discussed in chapter
5. An algorithm for determining the poloidal mode structure of locked modes is also
presented. In chapter 6 an analysis of the relation between the dominant poloidal
harmonics and their poloidal sidebands is presented and the phase relation between
coupled modes analysed in [22] is confirmed. Moreover, it is shown that a consistent
description of all coil types is achieved, as the resulting amplitudes and phases of
modes with different poloidal mode numbers determined from the Mirnov coils yield
simulated measurements that agree with their measured amplitudes and phases for
the different coil types. A summary and outlook can be found in chapter 7.

1.5 Aim and content of this work



2 Physical background
This section will provide a theoretical description of the plasma, tearing mode insta-
bilities and their relation to disruptions. It is mainly based on [13].

2.1 The magnetohydrodynamic (MHD) equations

An exact description of the many-body system of the plasma in a magnetic field would
require solving the equations of motion for all particles simultaneously. Since these
equations are coupled by the interactions between the particles, this would mean that
a coupled system of about 1020 equations per cubic metre must be solved. The kinetic
theory statistically describes the system of a magnetised plasma by introducing the
distribution function fα for particle species α in six-dimensional space d3xd3v where
fα is the likelihood to find a particle of species α with velocity v at position x. To
get a three-dimensional fluid description of the system, the kinetic equations can
be averaged over the velocity space assuming the distribution function is close to a
Maxwellian.

The description of the plasma as a fluid is similar to the hydrodynamic equa-
tions, additionally taking into account magnetic fields B and electric fields E.
The fluid description is only valid if the mean free path of the particles is much
shorter than the length scale of the system L, which is not the case along the
magnetic field lines, but perpendicular to them. In addition, the radius of the
gyrating motion of the particles, the Lamor radius rL ∼

√
mT
B where m is the

mass and T is the temperature, has to be small compared to L. To obtain a one-
fluid description of a plasma consisting of electrons and positively charged ions, the
mass density is defined as ρ = mini +mene ≈ mini, the centre of mass velocity as
v = 1/ρ (miniui +meneue) ≈ ui and the current density as j = e n (ui − ue). The
subscript ’i’ refers to the positively charged ions, the subscript ’e’ to the electrons.
The variable n is the density, and quasi-neutrality is assumed, i.e. ne = ni = n for
singly charged ions. The velocities of the ions and electrons are denoted as u and e
is the elementary charge.

The resulting one-fluid MHD equations are the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 , (2.1)

the force balance equation

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇ · P + j ×B , (2.2)

where P = P i + P e is the total pressure tensor, and Ohm’s law

E + v ×B =
1

σ
j . (2.3)

The Hall term, j×B−∇pe
ene

, and the expression me
e

due
dt in equation 2.3 have been ne-

glected here. The validity of this approximation is discussed in [13] and [14].

To get a closed system of equations, the adiabatic equation

d

dt

(
p

ργ

)
= 0 , (2.4)
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is used, where γ is the adiabatic coefficient and P is assumed to be a scalar.

Together with the Maxwell’s equations, namely Faraday’s law

−∂B

∂t
= ∇×E , (2.5)

the absence of divergence of the magnetic field

∇ ·B = 0 , (2.6)

and Ampère’s law, neglecting the displacement current ( 1
c2

∂E
∂t ) due to velocities v ≪ c

(cf. [14]),
∇×B = µ0j , (2.7)

a complete description of the plasma as a single fluid is obtained.

A plasma equilibrium state, that is ∂
∂t = 0, assuming v = 0 and an isotropic pressure,

is derived from the force balance equation 2.2:

j ×B = ∇p . (2.8)

Constructing the dot product with B gives

B · (j ×B)︸ ︷︷ ︸
= 0

= B · ∇p , (2.9)

which means that lines of constant pressure lie on surfaces of magnetic field lines
and vice versa. The dot product of equation 2.8 with j gives that the lines of j also
lie on surfaces of constant pressure and magnetic flux in the equilibrium state. By
expressing the vector quantities in equation 2.8 by fluxes (cf. definition of Spol in
figure 1.3), a differential equation for the poloidal flux Ψ, called the Grad-Shafranov
equation (cf. e.g. [13, 12]), can be formulated for describing a toroidally symmetric
equilibrium. In cylindrical coordinates the Grad-Shafranov equation is

R
∂

∂R

(
1

R

∂Ψ

∂R

)
+

∂2Ψ

∂z2
= −µ0 (2πR)2 p′ − µ2

0I
′
polIpol , (2.10)

where derivatives with respect to Ψ are represented by a prime and Ipol is the poloidal
current.

Moreover, the MHD equations allow to study the stability of the system and to
predict the occurrence of MHD instabilities which will be discussed in the following
sections for ideal (section 2.2) and resistive MHD (section 2.3). In ideal MHD,
an important approximation is made: Considering the high electrical conductivity
(σplasma ∼ T

3/2
e ) of a hot fusion plasma, the resistivity ηplasma = 1/σplasma of the

plasma is neglected, i.e. σplasma → ∞. Hence, Ohm’s law (equation 2.3) simplifies
to E + v ×B = 0 in ideal MHD. This implies magnetic flux conservation through
a contour moving with the plasma, as derived in section 1.1.2 of [13], which means
that in ideal MHD, field lines cannot break and reconnect. In contrast to ideal MHD,
non-ideal or resistive MHD takes the plasma resistivity into account, which allows
magnetic field lines to reconnect.

The approximation of an ideally conducting fluid is reasonable, if the order of magni-
tude of the term |v×B| is much larger than | 1σj| (cf. equation 2.3). Using Ampère’s
law (equation 2.7) and a typical length scale L, the condition for an ideal treatment
of the plasma results in

vB ≫ 1

µ0σ

B

L
, (2.11)

2.1 The magnetohydrodynamic (MHD) equations
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which can be reformulated as

L/v ≪ µ0σL
2 . (2.12)

Thus, ideal MHD is valid for processes with a timescale τ = L/v that is much shorter
than the resistive timescale

τR = µ0σL
2 . (2.13)

The Alfvèn timescale τA = L/vA, which is of the order of a few µs in typical mag-
netically confined fusion plasmas, is the typical timescale of ideal MHD phenomena.
The Alfvèn velocity vA related to this timescale is derived in section 2.2 (cf. equation
2.20). The ratio between the resistive and the Alfvèn timescales is defined as the
Lundquist number

S =
τR
τA

≈ µ0σLvA . (2.14)

2.2 The energy principle of ideal MHD

In order to analyse the linear stability in ideal MHD, the ideal MHD equations
are linearised and the problem is reformulated to investigate different drives for
instabilities. A brief overview of this concept is given here, for a detailed derivation,
the reader is referred to [13] or [12].

All fluid quantities, f , are described by an equilibrium quantity (subscript 0), which
fulfills the stationary MHD equations, and a small perturbation (subscript 1) much
smaller than the equilibrium quantity:

f = f0 + f1 with f1 ≪ f0 . (2.15)

This labelling is retained in the following sections. The displacement vector ξ, which
is also a perturbation quantity, is introduced as

dξ

dt
= v1 . (2.16)

Inserting ansatz 2.15 for all fluid quantities into the MHD equations and neglecting
quadratic and higher order terms of the perturbation quantities, the linearised ideal
MHD equations are obtained. The linearised continuity equation (cf. equation 2.1)
reads

∂ρ1
∂t

+∇ · (ρ0v1) = 0 , (2.17)

the linearised adiabatic equation (cf. equation 2.4) is

∂p1
∂t

+ p0γ∇ · v1 + v1 · ∇p0 = 0 . (2.18)

The combination of Faraday’s (equation 2.5) and Ohm’s law (equation 2.3) yields

∂B1

∂t
= ∇× (v1 ×B0) . (2.19)

Equation 2.19 can be reformulated using a vector identity and inserted into the
linearised force equation to obtain a wave equation from which the Alfvèn velocity

vA =
B0√
µ0ρ0

(2.20)

2.2 The energy principle of ideal MHD
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can be inferred.

Integration of the equations 2.17 to 2.19 gives equations that depend on ξ, e.g. the
integrated equation 2.19 is B1 = ∇ × (ξ ×B0). Consequently, the force balance
equation (cf. equation 2.2) can be written as

ρ0
∂2ξ

∂t2
= F (ξ) (2.21)

with the force operator F that only depends on the displacement ξ and equilibrium
quantities. Using the ansatz ξ(x, t) = ξ(x) e−iωt equation 2.21 can be written as an
eigenvalue problem

−ω2ρ0ξ = F (ξ) (2.22)

which is stable for ω2 > 0 and unstable for ω2 < 0.2 The stability criterion is then
formulated using the so-called energy principle of ideal MHD by multiplication with
the complex conjugate of the displacement ξ∗, which takes the role of a test function,
and integration over the volume. The potential energy

δW = ω2/2

∫
ρ0|ξ|2dV = ω2K , (2.23)

where K is related to the kinetic energy, can now be used to investigate the stability:
δW > 0 implies linear stability whereas δW < 0 describes an unstable system. The
rearrangement of the terms in δW into an ’intuitive’ form [23] allows the identifica-
tion of terms that can be negative and thus drive instabilities, namely the pressure
gradient drive and the current density drive. This gives rise to ideal MHD instabil-
ities like current density driven kink modes or pressure gradient driven ballooning
modes. However, the limit of the maximum achievable pressure in a tokamak is often
set by resistive MHD instabilities already at lower pressure. It is common to express
the average pressure as plasma β, which is the ratio of the average plasma pressure
to magnetic pressure

β =
⟨p⟩

⟨B2⟩/2µ0
. (2.24)

2.3 Resistive MHD

As previously discussed when deriving the resistive timescale (equation 2.13), it is
necessary to include the effects of resistivity, if | 1σj| is comparable to |v×B|. Using
Ampère’s law (equation 2.7), this criterion is reformulated in reference to hydrody-
namics: Resistive effects have to be included if the magnetic Reynold’s number

ReM := µ0σLv ≈ |v ×B|
1

σµ0
|∇ ×B|

(2.25)

is small [13].

Compared to ideal MHD, when including the finite plasma resistivity, equation 2.19
becomes

∂B1

∂t
= ∇×

(
v1 ×B0 −

1

σ
j1

)
. (2.26)

2An instability proportional to e−iωt oscillates around the initial position when ω is a real value
and is therefore stable, while an exponentially growing solution exists when ω is an imaginary value
(unstable situation).

2.3 Resistive MHD
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Hence, in resistive MHD, the time-evolution of the perturbation magnetic field is
explicitly affected by the perturbation current density. Resistive corrections to the
energy functional are derived and discussed in [24].

As mentioned in section 2.1, resistive MHD becomes important for timescales com-
parable to the resistive timescale τR (cf. equation 2.13), which is in the order of
seconds for typical parameters in a magnetically confined fusion plasma. Since this
is about 6 orders of magnitude slower than the Alfvèn timescale, at first glance it
looks as if resistive MHD instabilities do not play a role. However, since τR ∼ L2, the
resistive timescale becomes much shorter in thin layers, e.g. around rational surfaces,
where the field line closes in on itself after a few toroidal turns. This allows resistive
instabilities to develop at such layer, while the surrounding plasma can be treated
ideally.

While the magnetic field topology is conserved in ideal MHD, the magnetic field lines
can tear and reconnect in resistive MHD if this is energetically favourable. As their
name suggests, tearing modes are such resistive instabilities involving the tearing
and reconnection of magnetic field lines.

2.4 The tearing mode: a resistive MHD instability

The resistive MHD instability ’tearing mode’ is driven by radial current and pressure
gradients in the plasma and changes the magnetic field topology: Magnetic field
lines are torn apart, hence the name ’tearing’, and reconnected forming so-called
magnetic islands [25]. A classical tearing mode, driven by a current density gradient,
is at first examined in a so-called screw pinch. The results are then applied to
a tokamak plasma, where also pressure driven Neoclassical Tearing Modes (NTM)
become important.

2.4.1 Tearing modes in a screw pinch

First, the analytically describable periodic screw pinch is considered, which can be
seen as a ’straight tokamak’. A screw pinch defines a cylindrical plasma with a
plasma current, Iz, and a constant magnetic field, Bz, in z-direction. The plasma
current produces a poloidal magnetic field, Bθ, resulting – together with Bz – in
helical magnetic field lines. By introducing a periodicity in z with a period of 2πR0,
the periodic screw pinch is similar to a tokamak with the magnetic axis at R = R0

and a toroidal angle R0ϕ instead of the z-direction, so the term ’toroidal’ is also used
for the periodic cylinder in this section . However, effects of toroidal field curvature,
which are especially important for pressure driven modes, are neglected in the screw
pinch.

As introduced in section 1.3, the safety factor q describes the helicity of the magnetic
field lines, which is

q =
r

R0

Bz

Bθ(r)
(2.27)

in a screw pinch. Generally, an instability in a screw pinch is assumed to extend
along the magnetic field lines such that an instability described by the poloidal and
toroidal mode numbers m and n, e.g. a (m,n) tearing mode, is located at the resonant
magnetic flux surface with a safety factor qs = m/n.3 A typical q profile ranges from

3Although the variables m and n were introduced as mass and density for the derivation of the
MHD equations (cf. section 2.1), in the following m and n always refer to the mode numbers.

2.4 The tearing mode: a resistive MHD instability
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q = 1 at the magnetic axis to q = 5 at the plasma edge (q where 95% of the poloidal
flux through the last closed magnetic flux surface is contained, cf. figure 1.3), with
the lowest m and n being the most unstable. The spatial structure of a perturbation
of an equilibrium quantity A0 is expressed here as

A1 = Â1(r) e
i(mθ−n z

R0
)

, (2.28)

where Â1(r) is the amplitude of the perturbation.

With finite resistivity, a perturbation of the magnetic field B1, e.g. produced by
a current density perturbation, j1, can lead to the reconnection of magnetic field
lines. This is illustrated in figure 2.1, where the equilibrium magnetic field, B0,
is directed in different directions inside and outside the layer where j1 flows. The
perturbation magnetic field, B1, strengthens (weakens) B0 at the position where j1
is directed into (out of) the plane, leading to the formation of magnetic islands if this
is energetically favorable. In a (straight) tokamak, B0 is not oriented in different
directions inside and outside the resonant layer, but the helicity changes across the
resonant surface due to the shear of B0 according to q(r).

Figure 2.1: Illustration of the formation of magnetic islands with an equilibrium
magnetic field, B0, directed in different directions inside and outside the resonant
surface (orange): A perturbation current density, j1 (red), flowing out of and into
the plane produces a perturbation magnetic field, B1 (olive green), so that the field
line topology around this layer is changed and magnetic islands with X- and O-points
are formed. In this cartoon, only the magnetic field lines at the layer are changed,
while in reality the magnetic field lines inside and outside the layer also change, cf.
figure 2.2 for a calculated magnetic island structure.

To obtain a situation in analogy to figure 2.1, the transformation is made to a helical
coordinate system with the helical angle ζ = (mθ− n z

R0
) following the field lines on

the resonant q = m/n surface. The coordinate system (marked with *) is chosen
such that B∗

θ vanishes at the resonant surface qs (cf. [6, 13]):

B∗
θ = Bθ

(
1− q(r)

qs

)
. (2.29)

Since ζ is now an ignorable coordinate, the problem can be formulated in two di-
mensions and the divergence-free magnetic field can be expressed by the helical flux
function Ψ∗ where

B∗
θ = −∂Ψ∗

∂r
(2.30)

B∗
r =

1

r

∂Ψ∗

∂θ
=

im

r
Ψ∗

1 , (2.31)

2.4 The tearing mode: a resistive MHD instability
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using the complex perturbed helical flux Ψ∗
1 = Ψ̂∗

1(r) e
i(mθ−n z

R0
). Note that B∗

r ,
which is directly related to Ψ∗

1, is a pure perturbation quantity since B0 has no
radial component.

In order to get an equation for Ψ∗
1 outside the resonant layer of thickness δ, where

ideal MHD can be applied, the energy principle of ideal MHD (cf. section 2.2) is used
to find δW = 0 in the approximation of negligible β. This gives an equation for the
radial displacement ξr which can be related to Ψ∗

1 via equation 2.19 and 2.16. After
some algebra [13], the tearing mode equation reads

∆Ψ∗
1 −

µ0
dj0,z
dr

B0,θ (1− q(r) n
m)

Ψ∗
1 = 0 , (2.32)

describing the plasma equilibrium around the resonant surface under the influence
of Ψ∗

1. Directly at the resonant surface qs, the tearing mode equation is singular and
diverges.

To obtain a solution for the helical flux Ψ∗ = Ψ∗
0 + Ψ∗

1, the equilibrium helical
flux Ψ∗

0 and the perturbed helical flux Ψ∗
1 have to be calculated numerically for

an equilibrium current profile using equation 2.30 and the tearing mode equation
2.32. For an analytical solution of Ψ∗ we can use a simple ansatz for Ψ∗

0 and Ψ∗
1,

which replaces the current sheet at r = rs in figure 2.1. A Taylor expansion of
the equilibrium flux Ψ∗

0 is formulated with Ψ∗
0(rs) set to 0 and ∂Ψ∗

0
∂r

∣∣∣
r=rs

= 0 since

B∗
0,θ(r = rs) = 0. The remaining third term of the Taylor expansion describes a

parabola, which is a valid approximation for Ψ∗
0 close to the resonant surface rs. The

perturbation flux is assumed to be a sinusoidal variation with constant amplitude
Ψ

∗
1, so that at z = 0 the ’constant Ψ approximation’ is (similar to [26] and [13])

Ψ∗ =
1

2

∂2Ψ∗
0

∂r2

∣∣∣∣
r=rs

(r − rs)
2

︸ ︷︷ ︸
Ψ∗

0

+Ψ
∗
1cos(mθ)︸ ︷︷ ︸

Ψ∗
1

. (2.33)

This ansatz is taken to visualise the island structure in the poloidal plane and to
derive characteristics of the magnetic island. It can be reformulated to

(r − rs) = ±

√√√√√ 2Ψ
∗
1

∂2Ψ∗
0

∂r2

∣∣∣
r=rs

(
Ψ∗

Ψ
∗
1

− cos(mθ)

)
. (2.34)

Magnetic flux surfaces are given by constant Ψ∗ which is shown for different Ψ∗ in
figure 2.2 for m = 2. The island separatrix is plotted in orange and fulfills Ψ∗ = Ψ

∗
1.

From this, the island width, W , can be calculated, resulting in

W = 4

√√√√√ Ψ
∗
1

∂2Ψ∗
0

∂r2

∣∣∣
r=rs

. (2.35)

According to equation 2.30, the second derivative of the equilibrium flux Ψ∗
0 can be

formulated as
∂2Ψ∗

0

∂r2

∣∣∣∣
r=rs

=
∂B∗

0,θ

∂r

∣∣∣∣
r=rs

= −
B0,θ

qs

dq

dr

∣∣∣∣
r=rs

, (2.36)

so that the island width can be written (using equation 2.31) as

W = 4

√√√√ rs Br qs

m B0,θ
dq
dr

∣∣∣
r=rs

. (2.37)

2.4 The tearing mode: a resistive MHD instability
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The island width increases with the perturbation field component Br and decreases
with magnetic shear s = r

q
dq
dr .

Figure 2.2: Magnetic flux surfaces calculated according to equation 2.34 with
Ψ

∗
1 = 1, ∂2Ψ∗

0
∂r2

∣∣∣
r=rs

= 1 and Ψ∗ = aΨ
∗
1 with a ∈ {0, 0.2, 0.5, 1, 2, 4, 6, 8, 10} for m = 2.

The island separatrix is shown in orange and an X- and O-point are marked in olive
green.

To study the temporal evolution of W , the temporal evolution of Ψ∗
1 is derived. For

this, the radial component of Faraday’s law (cf. equation 2.5) is used to relate Ψ∗
1 to

an electric field in z-direction and to jz via Ohm’s law (cf. equation 2.3 neglecting
v ×B in the resistive layer).

im

r

∂Ψ∗
1

∂t
=

∂B∗
r

∂t
= −1

r

∂E1,z

∂θ
= − 1

r σ

∂j1,z
∂θ

(2.28)
= − 1

r σ
imj1,z (2.38)

The perturbation current j1,z · δ, where δ is the infinitesimally small thickness of
the layer where j1,z flows, can be related to the jump of the tangential (poloidal)
component, B∗

1,θ, at the resonant surface:

µ0j1,zδ = B∗
1,θ

∣∣
rs+δ/2

− B∗
1,θ

∣∣
rs−δ/2

=
∂Ψ∗

1

∂r

∣∣∣∣
rs−δ/2

− ∂Ψ∗
1

∂r

∣∣∣∣
rs+δ/2

. (2.39)

The combination of equations 2.38 and 2.39 gives

∂Ψ∗
1

∂t
=

1

σµ0δ

(
∂Ψ∗

1

∂r

∣∣∣∣
rs+δ/2

− ∂Ψ∗
1

∂r

∣∣∣∣
rs−δ/2

)
=

1

σµ0δ
∆′

0Ψ
∗
1 , (2.40)

where the linear stability parameter

∆′
0 =

(
∂Ψ∗

1
∂r

∣∣∣
rs+δ/2

− ∂Ψ∗
1

∂r

∣∣∣
rs−δ/2

)
Ψ∗

1

(2.41)

is introduced. ∆′
0 > 0 represents an unstable situation, while ∆′

0 < 0 means that Ψ∗
1

decreases with time. To describe a non-linear island growth, the infinitesimally small

2.4 The tearing mode: a resistive MHD instability
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thickness δ is replaced by the island width W , so that the stability index ∆′(W ) is
a non-linear quantity. Equation 2.40 can be reformulated to obtain the Rutherford
equation [27] using the resistive timescale τR (cf. equation 2.13 with L = rs), relating
Ψ∗

1 to W (cf. equation 2.35) and taking the correct factor from numerical flux surface
averaged calculations [13]:

τR
rs

dW

dt
= 1.22 rs ∆

′(W ) . (2.42)

In reality, there is a saturated island width, Wsat, at which dW
dt = 0, so that a simple

ansatz for ∆′(W ) can be chosen:

∆′(W ) = ∆′
0

(
1− W

Wsat

)
, (2.43)

which gives a solution for W :

W = Wsat

(
1− e

− t
τR

r2s ∆
′
0

W2
sat

)
. (2.44)

In general, the current density that describes the growth of an island (dWdt ̸= 0)
via Faraday’s law (equation 2.5) is called the Rutherford current, while the current
describing a saturated (non-growing) island via Ampère’s law (equation 2.7) is used
in the following to represent a tearing mode.

In a periodic screw pinch, all perturbation quantities have the exact same helicity in
linear ideal MHD. If the displacement, ξ , is aligned with the equilibrium magnetic
field, B0, on the qs surface, then the perturbation magnetic field, B1 = ∇×(ξ×B0)
(cf. equation 2.19), and the perturbation current density, j1 =

1
µ0
∇×B1 (cf. equation

2.7), also follow the field lines. Thus, a tearing mode in a screw pinch can be described
by a perturbation current density

j1 ∼ B0 e
i(mθ−n z

R0
)

, (2.45)

which is parallel to the magnetic field lines on the resonant q = m/n surface.

Difference between plasma and vacuum solution

In the model that will be introduced in section 4, the plasma around the resonant
surface is treated as a vacuum. While an exact description of Ψ∗

1 (in a screw pinch)
requires solving the tearing mode equation (cf. equation 2.32), the vacuum assump-
tion reduces to

∆Ψ∗
1,vac = 0 , (2.46)

with the solution

Ψ∗
1,vac =

{
Ψ̄∗

1

(
r
rs

)m
eimθ if r ⩽ rs

Ψ̄∗
1

(
rs
r

)m
eimθ if rs ⩾ r ,

(2.47)

where Ψ̄∗
1 is the amplitude of the perturbation [13].

The solution of the tearing mode equation (equation 2.32) is obtained using a code
based on [27, 28] where the conducting wall is placed at rw → ∞, for the equilibrium
current density profiles (shown in figure 2.3)

j0,z(r) =
(
1−

(r
a

)ν)µ
, (2.48)

2.4 The tearing mode: a resistive MHD instability
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where (ν, µ) ∈ {(1, 3), (2, 3), (2, 4)} and a is the minor radius at the separatrix, and
compared with Ψ∗

1,vac (cf. equation 2.47).

Figure 2.3: Equilibrium current density profiles according to equation 2.48 for
(ν, µ) ∈ {(1, 3), (2, 3), (2, 4)}.

The top panel in figure 2.4 shows the solution of the tearing mode equation for ν = 2,
µ = 3 together with the vacuum solution (equation 2.47) for an m = 2 mode. Solid
lines represent the solutions with the same perturbed helical flux amplitude at the
resonant surface. We then compare the perturbed helical fluxes at r = a, since in
the experiment the measurements of the perturbation magnetic field at r > a give
an indication of the perturbation amplitude of the tearing mode at the resonant
surface, and the radial dependence is the same for Ψ∗

1,vac and Ψ∗
1 outside the plasma.

In the case of figure 2.4 the corresponding perturbed helical fluxes at r = a differ by
a factor km=2 = 0.6 < 1, corresponding to an underestimation of Ψ∗

1,vac (red dashed
line) at the resonant surface due to the different radial decay of Ψ∗

1,vac compared to
Ψ∗

1 from equation 2.32.

The corresponding perturbation current density profile, j1,z, is calculated via the z
component of Ampère’s law (equation 2.7) in cylindrical coordinates,

µ0j1,z =
1

r

(
∂

∂r

(
rB∗

θ,1

)
− ∂B∗

r

∂θ

)
, (2.49)

and using equations 2.30 and 2.31

j1,z =
1

µ0r

(
−∂Ψ∗

1

∂r
− r

∂2Ψ∗
1

∂r2
+

m2

r
Ψ∗

1

)
. (2.50)

j1,z for the solutions Ψ∗
1, Ψ∗

1,vac and km=2Ψ
∗
1,vac is shown in the lower panel of figure

2.4. The perturbation current density distribution corresponding to the solution of
the tearing mode equation passes through zero at the resonant surface, in contrast to
j1,z of the vacuum solution, which essentially describes an ’effective’ current density.
In both cases j1,z is quite localised on the resonant surface. Note that, for numerical
reasons, the radial resolution of Ψ∗

1 calculated according to [27, 28] is reduced inside
the resonant surface for r → rs, leading to non-exact values of the perturbation
current density near the resonant surface in figure 2.4, but the general shape can be
shown.
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Figure 2.4: Solution of the tearing mode equation 2.32 (black) for an equilibrium
current density profile according to 2.48 with ν = 2, µ = 3 and the corresponding
q profile with qa = 4.5 at r = a together with the vacuum solution (red, equation
2.46) for the m = 2 mode (upper figure). The vacuum solution where Ψ∗

1 = Ψ∗
1,vac

at r = a is shown with a dashed red line. The corresponding perturbation current
densities are shown in the lower figure.

To evaluate the influence of using Ψ∗
1,vac instead of Ψ∗

1 from the tearing mode equation
on the determination of the mode composition, we compare the ratios of the per-
turbed helical fluxes at the plasma edge for an m = 2 and an m = 3 mode (denoted
by the subscript) which are located at their q surfaces. If there were no influence on
the determination of the relative mode composition, the same perturbation flux at
the resonant surface would result in

Ψ∗
1,m=2

Ψ∗
1,m=3

=
km=2

km=3︸ ︷︷ ︸
k

Ψ∗
1,vac,m=2

Ψ∗
1,vac,m=3

(2.51)

with k = 1. However, k < 1 for current density profiles with (ν, µ) ∈ {(1, 3), (2, 3),
(2, 4)} as shown in table 2.1, so m = 2 modes are underestimated by the vacuum
assumption, with a smaller effect for a steeper current profile. This must be taken
into account when interpreting the results of the mode composition determination.

ν µ rs,m=2 rs,m=3 km=2 km=3 k

1 3 0.648 0.814 0.823 0.961 0.856
2 3 0.615 0.811 0.606 0.903 0.671
2 4 0.643 0.815 0.757 0.961 0.788

Table 2.1: Relation between Ψ∗
1 and Ψ∗

1,vac at r = a for the same perturbed helical
flux amplitude at r = rs for different equilibrium current density profiles, correspond-
ing to different ν, µ, with qa = 4.5 and different resonant surface positions rs,m=2

and rs,m=3.
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For an interpretation of different perturbed helical flux amplitudes at the resonant
surface, the relation of Ψ∗

1 and Ψ∗
1,vac to the island width needs to be discussed. An

analytical expression for the island width (cf. equation 2.37) has been derived for the
’constant Ψ approximation’. A more accurate formulation of the island width would
require solving Ψ∗ = Ψ∗

0 + Ψ∗
1 for the island separatrix with a realistic equilibrium

helical flux Ψ∗
0 and Ψ∗

1 determined from equation 2.32.

We take the parabolic approximation for Ψ∗
0 from equation 2.33 and compare the

magnetic flux surfaces for the ’constant Ψ approximation’ (cf. figure 2.2), the vacuum
solution (cf. equation 2.47) and the solution of the tearing mode equation for ν = 2,
µ = 3 in figure 1 for an m = 2 mode. In each subfigure of figure 2.5 the island
separatrix is marked in red and the island width is given in the title. The island
width calculated using the vacuum solution for the perturbed helical flux (figure b))
is the smallest with 89% of the island width from the ’constant Psi approximation’
(cf. equation 2.35). If the curvature of the perturbed helical flux Ψ1 in the radial
direction is greater than the curvature of the equilibrium helical flux Ψ0, an additional
island can form at the location of the usual X-point [29], which can be the case for
the vacuum solution and is visible in figure b). For this equilibrium current density
profile, the solution of the tearing mode equation (figure c)) gives an island width
similar to W from equation 2.35 (97% of W from the ’constant Psi approximation’),
although the asymmetric shape of the island differs from figure a).

Table 2.2 shows a comparison of the island widths using the solution of the tearing
mode equation for different equilibrium current density profiles for m = 2 and m = 3.
It shows that a more accurate description of W might results in a value smaller
than W calculated according to the equation 2.35, i.e. the island width might be
overestimated when calculated according to the equation 2.35. This effect seems to
be quite small for the m = 2 mode, especially for current density profiles (ν, µ) ∈
{(2, 3), (2, 4)}, and amounts to an overestimation of about 10% for the m = 3 mode
when calculating W according to the equation 2.35.

m ν µ W
compared to W from
’const. Psi approx.’

2 1 3 0.296 94%
2 2 3 0.307 97%
2 2 4 0.308 97%
3 1 3 0.283 90%
3 2 3 0.288 91%
3 2 4 0.287 91%

Table 2.2: Island width of the solution of the tearing mode equation for different
equilibrium current density profiles, corresponding to different ν, µ, with qa = 4.5
for the m = 2 and m = 3 mode. The percentage of the island width compared to W
from the ’constant Psi approximation’ is given in the last column.

In summary, the vacuum assumption introduces uncertainties in the determination
of the mode composition. For the equilibrium current densities considered here, the
amplitude of the perturbed helical flux at the resonant surfaces is more underesti-
mated for the m = 2 mode compared to the m = 3 mode. In addition, the calculation
of the island width according to equation 2.35 slightly overestimates the width of the
tearing mode equation solution, especially for the m = 3 mode and the equilibrium
current density profiles regarded here, while for the m = 2 mode, the calculation
of W according to equation 2.35 is close to the width of the tearing mode equation

2.4 The tearing mode: a resistive MHD instability
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Figure 2.5: Ψ∗ with a parabolic equilibrium flux Ψ∗
0 = 20 · (r − rs)

2 and different
Ψ∗

1 for an m = 2 mode: Figure a) shows the contour plot of Ψ∗ for the ’constant Psi
approximation’ with Ψ∗

1 = 0.25 · cos(mθ) (similar to figure 2.2), figure b) the contour
plot for the vacuum solution Ψ∗

1 = Re(Ψ∗
1,vac) with Ψ̄∗

1 = 0.25 (cf. equation 2.47),
and figure c) the solution of the tearing mode equation for an equilibrium current
density profile with ν = 2, µ = 3 and the corresponding q profile with qa = 4.5. The
solution of the tearing mode equation is multiplied by Ψ̄∗

1 = 0.25, so that Ψ∗
1 at the

resonant surface is the same for all cases. The island separatrix is marked in red,
with the jagged structure at the X-point in figure b) indicating the formation of an
additional island as described in [29]. The separatrix location and the island width
is given in the title.

solution.

2.4.2 Tearing modes in a torus

When the periodic screw pinch is bent into a torus, the toroidal magnetic field,
Bϕ, corresponding to Bz in the screw pinch, varies as 1

R and is therefore no longer
constant on a magnetic flux surface. Thus, the field line pitch changes with θ in a
torus, which becomes even more pronounced for typical shaped cross sections with
finite β. In order to obtain straight magnetic field lines in a plane spanned by a
poloidal and a toroidal coordinate in a tokamak as well, a coordinate transformation
from the torus coordinates (r, θ, ϕ) to straight field line coordinates (ρ, θ∗, ϕ) is made,
where ρ = ρpol (cf. equation 1.5) can be chosen [12].4 The straight field line angle

4An analytical expression for θ∗ is derived in [30].
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θ∗(θ, r) is defined such that

B · ∇θ∗

B · ∇ϕ
= const . (2.52)

Using equations 4.8.8 and 4.8.9 in [31], this expression can be related to the safety
factor in straight field line coordinates, where q can be written as

q =
B · ∇ϕ

B · ∇θ∗
. (2.53)

For a plasma with nearly circular magnetic flux surfaces, θ∗ can be calculated ac-
cording to the Merezhkin formula [32]

θ∗(θ, r) = θ − λ sin θ (2.54)

with

λ =
r

R0

(
βp(r) +

li(r)

2
+ 1

)
, (2.55)

where βp = ⟨p⟩
⟨B2

θ ⟩/2µ0
is the poloidal plasma β, and li the internal inductance [13].

Figure 2.6 shows several magnetic flux surfaces of a nearly circular plasma on the
left, together with lines of constant angles θ and θ∗(θ, r) from the equilibrium re-
construction.5 A comparison between the equilibrium reconstruction of θ∗(θ, r) and
the value calculated according to the Merezhkin formula is shown in the right plot
of figure 2.6. In this case, the Merezhkin formula with λ = 0.4 is in agreement with
the reconstructed values for the q = 2 surface.

Figure 2.6: Equilibrium reconstruction for discharge 40488 at t = 2.0 s. On the left,
several magnetic flux surfaces are shown in grey, while the q = 2 surface is shown in
orange. Black and blue lines indicate lines of constant θ and θ∗, respectively. The
right plot shows the equilibrium reconstruction of θ∗ on the q = 2 surface and θ∗

calculated using the Merezhkin formula.

5The equilibrium is reconstructed based on the CLISTE code [33], which solves the Grad-
Shafranov equation. In the example of discharge 40488 (cf. figure 2.6), the IDE code [34] has
been used, which additionally takes the flux diffusion into account.
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An instability in a torus, that is aligned with B0 is therefore described with a poloidal
phase mθ∗. Note that in a toroidal device with finite β, different perturbation quan-
tities do not necessarily have the same helicity: If the displacement, ξ, has the
helicity of B0, the parallel perturbation current density, j1, is not described by a
single pair of (m,n), contrary to section 2.4.1. To show this, we assume a pure radial
displacement

ξ = ξ0(r) e
i(−nϕ+mθ∗(θ,r)) r̂ , (2.56)

and an equilibrium magnetic field in the approximation of non-shifted circular flux
surfaces, according to equations 2.57 and 2.73 in [13],

B0 =
Bϕ,0

1 + r
R0

cos θ
ϕ̂+

µ0Ip(r)

2πr︸ ︷︷ ︸
c1(r)

(
1 +

r

R0

(
βp(r) +

li(r)

2
− 1

)
︸ ︷︷ ︸

c̃2

cos θ
)
θ̂ (2.57)

where Bϕ,0 is the toroidal magnetic field at the magnetic axis at R0. The perturbed
vector potential A1 = ξ ×B0 (cf. equation 2.19) results in

A1 = ξ0(r) e
−inϕ ·(

− c1(r)

(
eimθ∗ +

εc̃2
2

(
ei(m+1)θ∗ eiεc3 sin θ∗ + ei(m−1)θ∗ e−iεc3 sin θ∗

))
ϕ̂

+Bϕ,0

(
eimθ∗ − ε

2

(
ei(m+1)θ∗ eiεc3 sin θ∗ + ei(m−1)θ∗ e−iεc3 sin θ∗

))
θ̂

)
(2.58)

where the inverse aspect ratio ε = r
R0

is introduced and c3 is defined as c3 =(
βp(r) +

li(r)
2 + 1

)
.6 Additionally, cos θ = eiθ+e−iθ

2 and the approximation for small

ε that 1
1+ε cos θ ≈ (1 − ε cos θ) and θ ≈ θ∗ + ε c3 sin θ

∗ have been used. Equation
2.58 already shows that A1 has poloidal sidebands with (m ± 1) in θ∗ of the order
of ε. To calculate the perturbed magnetic field B1 = ∇ × A1, the curl of A1 in
torus coordinates can lead to even more complicated poloidal sidebands, especially
if the perturbation current density is calculated from j1 = µ0 (∇×B1). Thus, the
perturbation quantities ξ, A1, B1 and j1 do not usually have the same helicity. In
general, the form of ξ0(r) (cf. equation 2.56), and thus also the corresponding j1, is
non-trivial and requires the use of a numerical model that solves the MHD equations
for stability, as described, for example, in [35].

Figure 2.7 shows the poloidal harmonics, i.e. harmonics with the same toroidal mode
number, of the normalised perturbation current density amplitude parallel to the
magnetic field, ĵ1,∥, calculated using the linear MHD stability code CASTOR3D
[36] for a (2,1) tearing mode for negligibly small and finite β. At finite β poloidal
sidebands, which are non-resonant poloidal harmonics, especially those with ∆m = 1,
might become significant.

However, as a first order approximation, the perturbation current density, j1, is
defined in the following to flow force-free, i.e. aligned with B0. The corrections to
this ansatz are discussed in section 4.5.

As a magnetic island introduces magnetic field lines that have a radial component
(cf. figure 2.2), heat and particle transport, which is much higher parallel than per-
pendicular to field lines, is amplified in radial direction, leading to a flattening of the
profiles at the location of a magnetic island [13]. Thus, the existence of an island can

6Since c̃2 and c3 depend on r only through βp(r) and li(r), the r dependence is not written
explicitly.
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Figure 2.7: ĵ1,∥ for a (2,1) tearing mode for negligibly small (figure a)) and finite
β (figure b)). The grey dashed lines indicate the position of the q = 2, q = 3 and
q = 4 surfaces at a normalised toroidal flux of 0.45, 0.66 and 0.81, respectively.
For negligibly small β, the tearing mode is well-described by the m = 2 Fourier
component at the q = 2 surface. For finite β, there are significant contributions of
the m = 1 and m = 3 harmonics at the q = 2 surface. There is also a small m = 3
contribution on the q = 3 surface, corresponding to a (m = 3, n = 1) tearing mode.
(Figure: courtesy of Jonas Puchmayr, MPI for Plasma Physics)

result in a flattening of the pressure gradient within the island. In tokamaks, there
is a current density resulting from the collisions of trapped7 and passing particles,
called the bootstrap current, which is jbs ∼ ∇p [37]. A reduced ∇p therefore leads
to a deficit of the bootstrap current density, which is similar to the perturbation cur-
rent density discussed above, describing a tearing mode.8 In this case, the tearing
mode is a pressure gradient driven NTM, as it is classically stable (∆′(W ) < 0) and
exists only because of the bootstrap current described in neoclassical theory, which
includes the effects of toroidicity.

These NTMs often occur in plasma discharges with high β, where ∇p is large without
an island. A so-called seed island causing a reduced ∇p excites the mode to an island
width W larger than the seed island width Wseed. The saturated island width of an
NTM is proportional to the poloidal β. There exists a marginal pressure βp,marg at
which the NTM disappears when βp is reduced, where βp,marg ≪ βp,onset and βp,onset
is βp at the onset of the NTM. [12]

As the example of NTMs shows, additional effects must be taken into account in

7Owing to the conservation of the magnetic moment µ =
mv2

⊥
2B

and the kinetic energy,
particles can be ’trapped’, if the ratio between the initial parallel and perpendicular velocity
v∥
v⊥

<
√

Bmax
Bmin

− 1. They change direction along their path towards the HFS at higher magnetic
field.

8One method to compensate the missing jbs for the suppression of NTMs is to apply a localised
current drive at the island location [38], which has to be inferred from the measurements.
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a torus with finite β. Likewise, the Rutherford equation (cf. equation 2.41) must
be extended to include additional stabilizing and destabilizing terms related to non-
inductive currents such as the bootstrap current [39, 40], a current that guarantees
∇ · j = 0 [41, 40], and the polarisation current [42], as well as external influences
[43, 44].9

In this work, no distinction is made between classical and neoclassical tearing modes.
Although most experimental examples are NTMs, each mode is referred to as a
tearing mode and is described by a perturbation current density

j1 ∼ B0 ei(mθ∗−nϕ+ωt) . (2.59)

This is similar to equation 2.45 where the rotation frequency ω is added to take into
account the rotation of the tearing mode.

2.4.3 Rotation, braking and locking of tearing modes

Owing to the balance of torque and viscosity, tearing modes usually rotate with a
velocity between the fluid velocity of the plasma, vfluid, and the sum of vfluid and
the diamagnetic drift velocity, vdia ⊥ B, arising due to a pressure gradient. For
large magnetic islands, where the pressure gradient becomes very small, the island
rotation approaches vfluid. [13]

The fluid velocity of the plasma can have a poloidal and a toroidal component, but
the poloidal rotation with ωpol is strongly damped in the core plasma, such that the
toroidal rotation with ωtor - with different rotation frequencies depending on ρpol -
dominates.10 Therefore, the angular frequency ω = nωtor +mωpol (cf. section 3.1.2
in [12]) of the modes rotating with the plasma frame is dominated by the toroidal
mode number n.

The rotating perturbation field of the mode induces currents in the conducting vac-
uum vessel around the plasma, which shield the magnetic fields to the outside. The
induced currents in the resistive wall, jwall, exert a braking force on a rotating mode,
which is stronger for larger modes. A very slowly rotating mode can stop rotating,
i.e. become locked11, by interacting with the resonant component of an error field of
the tokamak arising from imperfections. [13]

A model for mode braking and locking is derived in [46] taking the resistive wall
and the viscous coupling to the plasma into account. A tearing mode can also be
born locked, if the error field is so large, that it overcomes the shielding effect of the
plasma. In AUG, the so-called compass scan [47] was performed to identify the error
field. Discharges were performed with an applied perturbation field with different
orientations, hence the name, which causes a born locked mode. The error field of
AUG is very small (cf. [47, 48]) and born locked modes usually do not exist in NBI
heated plasmas without externally applied field.

In general, a higher rotation frequency allows for higher error fields. For larger fusion
devices with low rotation frequency of the plasma and therefore with low rotation
frequency of the tearing mode, the predicted critical error field for getting locked
modes is relatively small. [49]

9See for example [45] for a detailed discussion of the additional terms.
10In AUG, the toroidal plasma rotation mainly arises due to the injection of neutral particles

(Neutral Beam Injection (NBI)) in toroidal direction to heat the plasma.
11In this work, the term locked modes always refers to locking with respect to the laboratory

frame, while phase-locked modes will be referred to as coupled (or phase-locked) modes.
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2.4.4 Influence of a conducting wall on the perturbation magnetic field
of a rotating mode

As described in the previous section, a rotating mode induces mirror currents in the
conducting structures around the plasma, which in turn affect the perturbation mag-
netic field of the mode. Correctly accounting for these induced currents is important
for the interpretation of measurements that detect the perturbed magnetic field of
rotating modes (cf. section 3.3).

An analytical formula for the perturbed magnetic flux Ψ∗
1 in cylindrical geometry

with a circular wall at rw concentric around a circular resonant surface at rs con-
taining a rotating mode at frequency ω is derived in [13]. Ψ∗

1 is calculated in the
vacuum region inside rs (region I), between rs and rw (region II) and outside rw
(region III). The induced current density in the wall, jw, is obtained from Ψ∗

1 via the
radial component of Faraday’s law (cf. equation 2.5) and the jump of the tangential
magnetic field component across the wall. This results in

jw =
rwσ

2mτw
·

(
∂Ψ∗

III

∂r

∣∣∣∣
r=rw

−
∂Ψ∗

II

∂r

∣∣∣∣
r=rw

)
, (2.60)

where σ is the wall conductivity, Ψ∗
II and Ψ∗

III are the perturbed magnetic fluxes in
regions II and III (cf. equations equation 7.20 to 7.22 in [13]) with

∂Ψ∗
III

∂r

∣∣∣∣
r=rw

= −Ψ̄∗ i

i+ ωτw

(
rs
rw

)m(m

rw

)
· ei(mθ−ωt) , (2.61)

∂Ψ∗
II

∂r

∣∣∣∣
r=rw

= Ψ̄∗
((

rs
rw

)m (
−m

rw

)
− ωτw

i+ ωτw

(
rs
rw

)m m

rw

)
· ei(mθ−ωt) , (2.62)

where Ψ̄∗ is the perturbation amplitude, and

τw =
µ0σdrw
2m

(2.63)

is the resistive timescale of the wall of thickness d. In general, τw depends on the
frequency itself, as the skin depth, where the induced current flows, changes with
ω. At low ωτw, the frequency dependence of the induced currents, and hence their
effects, changes the most which is one of the motivations for implementing the model
described in section 4.

Owing to the induced currents, the perpendicular and tangential components of the
magnetic field have a different frequency dependence in the vicinity of an electrical
conductor. In the cylindrical approximation, the magnetic field components perpen-
dicular and tangential to the conducting wall are calculated according to equation
7.21 in [13] and equations 2.30 and 2.31 giving

Br = i B̂

((rs
r

)m
− ω τw

i+ ω τw

(
rs
rw

)2m (
r

rs

)m
)

· ei(mθ−ωt) (2.64)

Bθ = B̂

((rs
r

)m
+

ω τw
i+ ω τw

(
rs
rw

)2m (
r

rs

)m
)

· ei(mθ−ωt) , (2.65)

where B̂ = Ψ̄∗m/r is the perturbation field amplitude at rs for ω = 0. In this
geometry, the perpendicular and tangential components correspond to the radial
and poloidal components, Br and Bθ, respectively. We keep this nomenclature also
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for toroidal (and shaped) geometries, where these magnetic field components are
only approximately perpendicular or tangential.

The frequency dependence of the amplitude of the poloidal and radial field compo-
nents calculated according to equations 2.64 and 2.65 is shown in figure 2.8. As the
frequency increases, the amplitude of Br is attenuated while the amplitude of Bθ is
enhanced by the mirror currents in the wall. For fast rotating modes, in the limit of
ωτw → ∞, Bθ approaches 2B̂ and Br approaches zero directly at the wall.

Figure 2.8: Frequency dependence of the radial and poloidal magnetic field ampli-
tudes calculated according to equations 2.64 and 2.65. The magnetic perturbation
field is generated by an m = 2 mode at rs = 0.8m with jpert ∝ δ(r − rs)e

i(−ωt+mθ).
Dashed lines show the radial and poloidal field components directly at the wall
rw = 1.0m; solid lines show the radial and poloidal components 5 cm away from
the wall, normalised by the magnetic field amplitude at ω = 0. Here, the resistive
timescale of the wall is τw = 10−3 s.

The frequency dependence of the amplitudes of Br and Bθ changes to a slight extent
in a toroidal configuration with a perturbation current according to equation 2.59.
This will be shown and discussed in section 4.3.

2.4.5 Toroidal mode coupling

In a tokamak, poloidal symmetry is broken by the toroidal nature and shaping of the
plasma, so that tearing modes at different resonant surfaces with the same toroidal
mode number n, but different poloidal mode numbers m can couple together (cf.
chapter 3 in [12]). If so, they rotate at the same rotation frequency, i.e. their phase
relation is the same for all ϕ, but varies with θ. The difference in ω between un-
coupled tearing modes with the same n is due to the radial variation of ωtor. The
coupling of these modes is facilitated when the differential rotation of their resonant
surfaces is small. While it was originally thought, that tearing modes usually couple
constructively at the LFS [50], it was shown that in AUG the poloidal position at
which the tearing modes are in phase can vary from the LFS over the top to the HFS
depending on plasma pressure and plasma rotation velocity [22].

The determination of amplitude and phase relations of coupled tearing modes is
crucial to analyse tearing modes before a disruption. The formalism used in this
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work to determine the poloidal mode composition in terms of amplitudes and phases
is described in 4.5.

2.5 Role of tearing modes in regards to disruptions

As already indicated in the previous sections, tearing modes lead to an increased
transport in the radial direction, as they form a short circuit for heat transport,
which degrades the confinement of a tokamak plasma [19]. If coupled magnetic is-
lands overlap, this leads to a stochastisation of the field lines in this region and, in
turn, to even worse confinement degradation [20], especially at the poloidal angle
where the modes are in phase. Thus, (coupled) tearing modes are often precursors
to disruptions and are involved in the disruption process itself [18]. Especially locked
modes cause a large decrease in β [51] and often result in a disruption. As locked
modes inherently have the same frequency ω = 0, mode coupling is supposed to play
an important role. In order to understand in which cases tearing modes cause a dis-
ruption, the investigation of the poloidal mode composition, indicating the involved
resonant surfaces, in terms of amplitudes and phases is of high importance.

2.6 Description of tearing modes in this work

Parts of the content and text of this section are included in a publication accepted by
Plasma Physics and Controlled Fusion (DOI 10.1088/1361-6587/adc0bd), of which
the author of this thesis is the first author.

In this work, tearing modes are described by helical perturbation current densities
(cf. equation 2.59) in an annulus between two flux surfaces. We define base vectors

j
(m,n)
pert ∝ B0 ei(ωt−nϕ+mθ∗) (2.66)

with single helicities ((m,n)), such that jpert can be expressed by

jpert =
∑
m,n

ã(m,n) j
(m,n)
pert (2.67)

with complex amplitudes
ã(m,n) = a(m,n) eiφ

(m,n)
. (2.68)

The base vectors represent the harmonics of the mode, where those with the same
toroidal mode number are called the poloidal harmonics. Describing a tearing mode
can be translated to describing its complex amplitudes ã(m,n). Note that in our base
vector system, a pure (m,n) mode on its resonant q = m/n surface might require
the consideration of poloidal sidebands, which are non-resonant poloidal harmonics.
This has already been indicated in section 2.4.2 and will be discussed further in
section 4.5.

The radially localised ansatz of equation 2.66 describes an ’effective’ current density,
similar to the perturbation current density corresponding to Ψ∗

1,vac described in sec-
tion 2.4.1, where it was shown that the perturbation current density corresponding
to the tearing mode equation solution is quite localised on the resonant surface. We
assume a monotonically increasing q profile and hence no resonance with a second
surface of the same helicity, justifying the ansatz used in this work. However, the
consequences of treating the plasma as a vacuum, as discussed in section 2.4.1, must
be considered when interpreting the quantitative values of the amplitudes a(m,n).

2.5 Role of tearing modes in regards to disruptions



3 Measurements of tearing modes
Parts of the content, figures and text of this chapter are included in a publication
accepted by Plasma Physics and Controlled Fusion (DOI 10.1088/1361-6587/adc0bd)
of which the author of this thesis is the first author.

A first step to analyse tearing modes is their detection by suitable measurements
which can measure a perturbation related to a tearing mode. This can be either
a local measurement within the plasma (like Electron Cyclotron Emission spec-
troscopy (ECE)), a line-integrated measurement (like Soft X-Ray (SXR) measure-
ment) or a measurement of a perturbation outside the plasma (like magnetic measure-
ments). The ensuing determination of mode characteristics, as the mode frequency
and mode numbers, requires a sufficient high sampling rate, appropriate positions
of the measurements and a model for calculating synthetic measurements. Since
the perturbation quantities are usually small compared to the equilibrium, mode
characterisation is facilitated if the perturbation rotates in the laboratory frame.
[12]

The following sections 3.1 and 3.2 introduce the ECE and SXR measurements that
can be used for tearing mode detection. Magnetic measurements, which are the
diagnostic primarily used in this work, are explained in more detail in section 3.3.

3.1 Electron cyclotron emission spectroscopy

The passive technique of ECE is used to measure the electron temperature Te locally,
i.e. not by a line integral, along a Line of Sight (LOS). Usually, the LOS are directed
from the LFS outside the plasma towards the magnetic axis, primarily in major
radial direction [12]. Owing to the gyration of the electrons around the magnetic
field lines (cf. section 1.2), electromagnetic radiation is emitted at harmonics of the
electron cyclotron frequency [6]

ωce =
eB

me
, (3.1)

which depends on the magnetic field strength B =
√

B2
ϕ +B2

θ . The radiation ob-
served can be spectrally resolved and thus measured absolutely [8]. For optically
thick plasmas, the emission intensity has a direct relation to Te [6]. Because of the
dependence of the magnetic field strength on the major radius with Bϕ ∼ 1/R (cf.
section 1.2), ωce can be related to a radial position in the plasma, leading to a local
Te measurement. Bθ, which is about 10% of Bϕ and thus only about 0.5% of B, is
also taken into account.12

In the plasma core, where most of the harmful tearing modes are located, the emission
is optically thick and the electron temperatures can be deduced together with their
locations. Provided a radially decreasing background temperature profile, tearing
modes with a substantial flattening of the Te profile are visible in ECE with suitable
settings. Figure 3.1 shows an example of a contour plot of different channels of ECE.
In this case, the tearing modes are clearly visible at ρpol = 0.4 and ρpol ≈ 0.75 –
corresponding to the q = 2 and q = 3 surfaces – because of the lower temperatures

12In AUG, changes in the toroidal magnetic field and the magnetic field ripple due to the discrete
toroidal field coils at the position of the LOSs of the ECE diagnostic are also considered.
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inside the island separatrix. Here, the electron temperature profile is even hollow
within the magnetic island of the m = 2 tearing mode at ρpol = 0.4. The flattening
of Te due to the tearing modes is also visible in the Te profile. The tearing modes on
the q = 2 and q = 3 surfaces have the same frequency with a phase shift of π, hence
they are coupled (cf. section 2.4.5) in anti-phase on the LFS.

Figure 3.1: Contour plot of Te (colour bar on the right) determined from ECE of
discharge 41417 between t = 1.8690 s and 1.8710 s. The magnetic flux surface label
ρpol is shown on the y-axis. A profile of Te depending on ρpol is shown between the
contour plot and the colour bar.

As the example of figure 3.1 shows, appropriate settings allow comparing the resonant
surface position from equilibrium reconstruction with the island position determined
from ECE. Furthermore, coupled tearing modes at different q surfaces and their
phase relation can be analysed using ECE, as for example done in [22].

3.2 Soft x-ray measurement

The SXR diagnostic consists of semiconductor diodes and is a line-integrated mea-
surement. The quantity observed is the radiation power density along many LOS
covering a poloidal cross section of the plasma in AUG as shown in figure 3.2, where
the LOS of the SXR diagnostic are shown together with the location of the ECE. By
introducing material filters (usually beryllium foil filters), photons with low energy
can be blocked, allowing the radiation and fluctuations of the hot central plasma
to be studied. To obtain spatial information on local emissivity, an inversion algo-
rithm, i.e. a tomographic reconstruction, is required. By analysing the oscillations of
different LOS angles via Fast Fourier Transform (FFT), it is possible to deduce the
poloidal mode number of an instability in the core plasma. A mode profile of SXR
measurements is obtained by ordering, e.g. by the angle of the LOS with regard to
the direction θ = 0, the amplitudes and phases at the frequency with the maximum
amplitude determined from the FFT of a time signal where the oscillation is clearly
visible. For an uncoupled mode, the mode profile shows m amplitude minima and m
phase jumps by π. This is explained by the fact that the diagnostic detects a signal
where the perturbation consists essentially of the contributions of the intersection of

3.2 Soft x-ray measurement
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Figure 3.2: The LOS of the various channels of the SXR diagnostic, indicated by
letters, are displayed as lines of different colours, together with the position of the
ECE (black crosses) for discharge 40701 at 2.0 s. The separatrix is shown in black.

the LOS with the resonant surface and by geometrical considerations in cylindrical
geometry [12]. An example of an m = 1 mode is shown in figure 3.3, where one am-
plitude minimum and one phase jump of about π are visible at about a LOS angle
of 3.1 rad. Owing to the higher temperatures in the core plasma, the radiation is
higher in the central part of the plasma (cf. figure 3.3 a)). Thus the m = 1 mode is
visible in the SXR data, even though the dominant poloidal mode number obtained
from the magnetic measurements is m = 2.

We use the SXR diagnostic in particular to check whether an m = 1 mode is present
in the core of the plasma at the q = 1 surface (cf. figure 3.3). In principle, other
small poloidal mode numbers can be observed with the SXR diagnostic [12]. Care
should be taken in the interpretation of SXR signals when modes are coupled.

3.2 Soft x-ray measurement
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Figure 3.3: Signals of channel I of the SXR diagnostic as a function of the LOS
angle: figure a) shows the mean intensity, figures b) and c) the amplitudes and phases
at f = 789Hz, determined from the FFT of a central LOS signal. The central part,
where the amplitude minimum (figure b)) and the phase jump of about π (figure c))
occur, is marked in light blue.

3.3 Magnetic measurements

As ECE measurements are not always available for the resonant surfaces of inter-
est and SXR measurements are line integrated, magnetic measurements are suitable
for tearing mode detection as they measure locally outside the plasma and are al-
ways available without special settings. The passive coils measuring the perturbation
magnetic field generated by a tearing mode are installed at AUG with different ori-
entations at different positions. For constructional reasons, they are often mounted
on or near conducting structures and are therefore influenced by mirror currents in-
duced by rotating modes (cf. section 2.4.4). Note that from magnetic measurements
alone it is in principle not clear whether the perturbation magnetic field is generated
by an ideal instability, e.g. a kink mode, or by a resistive tearing mode. However, due
to the growth rates and effects of the mode, we usually assume that the instability
is a tearing mode and therefore use this term in most of the following.

3.3.1 Passive coils for mode detection

A time-varying magnetic field, e.g. the perturbation field of a tearing mode, is de-
tected via the induced voltage

Uind = −Ncoil
dΨB

dt
(3.2)

with Ncoil the winding number and ΨB =
∫
S B dS the magnetic flux through one

coil winding with area S and normal vector dS.

3.3 Magnetic measurements
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Usually, the measured coil voltages of coils k are converted into the temporal deriva-
tive of the perturbation magnetic field, ˙̃Bmeas,k, averaged over the coil volume. The
complex amplitude

B̃meas,k = ameas,k eiφmeas,k (3.3)

is then derived by temporal Fourier transform of ˙̃Bmeas,k and division by the rotation
frequency ω. This gives ameas,k and a phase shifted by π/2 or −π/2 relative to φmeas,k

depending on the rotation direction, as

∂B̃meas,k

∂t
= iω B̃meas,k = eiπ/2 ω B̃meas,k . (3.4)

For rotating modes with small toroidal mode numbers, n can be derived from a
small number of signals at the same poloidal position θcoil but different toroidal
positions ϕk, e.g. from two passive coils k = k1, k2. Here and in the following, the
measurements and simulations of only n = 1 tearing modes are discussed. Because
of toroidicity and shaping, the identification of the poloidal mode number m is more
difficult [52]. A poloidally arranged array of passive coils is required to determine
m. For coupled modes, the measured signal is composed of different poloidal mode
numbers, even when the effect of θ∗ is correctly accounted for (cf. section 2.4.2).
Separation by Fourier transform is therefore not possible for coupled rotating modes,
since the superposition of different harmonic oscillations (with different amplitudes
and phases) at the same frequency results in a harmonic oscillation again. Thus, in
addition to a poloidal array of coils, determining the poloidal mode composition of
rotating modes requires a model that calculates the expected magnetic measurements
for different m at the coil positions. This model needs to account for the field line
geometry of the resonant surface where the mode is located, and the influence of
mirror currents in conducting structures near the passive coils induced by a rotating
mode.

When a tearing mode locks with respect to the vessel (cf. section 2.4.3), the temporal
component is eliminated. The procedure described above, using a temporal Fourier
transform, is not applicable here anymore. Thus, to get the amplitude, ameas,k, and
the phase, φmeas,k, at one poloidal coil position θcoil, a toroidal array of passive coils is
needed for locked modes in addition. The determination of ameas,k and φmeas,k from a
toroidal array of coils is described in [53]. Moreover, integrated radial field measure-
ments are required to detect locked modes, since the poloidal magnetic perturbation
field of the tearing mode cannot be distinguished from the poloidal component of the
equilibrium magnetic field with sufficient precision. Integrating the signal from the
magnetic measurements adds another challenge, as the mode signal has to be sepa-
rated from other changes in the magnetic flux through the coils caused by changes in
plasma current, poloidal and toroidal field coils. The investigation of locked modes
thus requires the corrected integration of the signals from a toroidal array of radial
field coils, which are typically only available at a few poloidal positions.

3.3.2 Passive coils in ASDEX Upgrade

In AUG, different types of coils with different orientations and positions are installed.
A poloidal cross-section highlighting the relevant coils used in this work for tearing
mode detection is shown in figure 3.4.

Mirnov coils (cf. figure 3.5, left) are installed tangentially to the vacuum vessel, in
the welding flange, and measure (mainly) Bθ by nature of their arrangement. These

3.3 Magnetic measurements
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Figure 3.4: Toroidal (left) and poloidal (right) cross-section of AUG including the
magnetic measurements used for tearing mode detection. The Mirnov coils (’C09’)
are indicated in green, the saddle coils in red (’SAT’), the Ballooning coils in blue
(B31’) and the B-coils in purple (’Bu’, ’Bl’, only in the right plot). The 16 toroidal
sectors are numbered in the left plot. The poloidal cross-section (right) shows the
projection of all coil types onto one toroidal angle (only 2 Ballooning coils are shown).

coils are 13.1 cm high with 131 turns and an effective coil area of 0.3634m2 [54].
We use a poloidal array consisting of 30 coils (green in figure 3.4, labelled ’C09-xx’),
sufficient to determine the poloidal mode composition of rotating modes.13

Figure 3.5: Pictures of a Mirnov coil (on the left) and a Ballooning coil (on the
right) used in AUG.

The so-called Ballooning coils (cf. figure 3.5, right) measure Ḃr and consist of a
planar meander with an effective area of 0.119026m2 [54]. We use Ballooning coils
at the LFS midplane at different toroidal positions and slightly different major radii
(blue in figure 3.4, labelled ’B31-xx’). These are not placed directly in front of a

13In AUG there are also toroidally distributed Mirnov coils at the same poloidal position, from
which the toroidal mode number can be inferred.

3.3 Magnetic measurements
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conducting structure and can therefore also be used for rotating modes and give the
toroidal mode number. There is no poloidal array of Ballooning coils sufficient to
determine the poloidal mode composition.

Four saddle coils on the high field side (HFS) midplane (red in figure 3.4, labelled
’SATx’, where ’x’ is the coil orientation in the east (’e’), south (’s’), west (’w’)
and north (’n’) directions) with a height of 0.452m, covering a toroidal angle of π

2 ,
serve primarily as locked mode detector, although frequencies up to 10 kHz can be
observed. Only the difference of measured Uind of each pair of opposite coils (e.g.
’SATew’) is recorded, corresponding to an n = odd filtering. For locked modes,
the integration is done in hardware with an integrator constant τint = 10ms and a
correction for changes in plasma and coil currents is performed, similar to [55] and
references therein.

The upper and lower B-coils (purple in figure 3.4, labelled ’Bux’ and ’Blx’ where
’x’ is the coil number) are installed directly in front of the highly conducting upper
and lower Passive Stabilisation Loop (PSL) with a distance of 10mm and 30mm,
respectively. The PSL is installed in AUG to mitigate, i.e. slow down, a Vertical
Displacement Event (VDE).14 The upper B-coils have an effective area of 1.693m2,
the effective area for the lower B-coils is 1.798m2, each with 5 turns.15 They are
designed and primarily used to apply magnetic perturbations to the plasma [56] but
they measure magnetic perturbations when not actively used. Their vicinity to the
PSL strongly damps frequencies above a few hundred Hz (cf. section 2.4.4). Thus,
the detection of rotating modes with the B-coils is often challenging. Subtracting a
common noise, e.g. by taking the difference of the measured Uind as done in hardware
for the saddle coils, improves the signals. An additional enhancement is achieved
by projecting the signals onto the sine and cosine base vectors, with components
ensin,i = sin(nϕi) and encos,i = cos(nϕi) where ϕi is the coil position, as described
in [53]. However, the use of B-coil data for rotating modes is strongly limited, as
discussed in section 5.2. As the B-coils measure the radial field component and
consist of an upper and lower toroidal array of 8 coils each, the integrated data can
in principle be used for locked mode detection [53]. However, the integrated data
must be corrected for changes in the plasma current and currents in the poloidal
field coils.

3.4 Technical aspects

For rotating modes, a temporal Fourier transform is performed and the frequency
with the largest amplitude is selected. In order to do this, a manual selection of
time intervals with an integer number of mode periods is used, where the signal
approximately describes a stationary rotation. The selected time window should
also not contain any Edge Localised Mode (ELM), an MHD edge instability that
appears recursively in the High confinement mode (H-mode) [57], leading to a rapid
loss of plasma particles and energy [58]. ELMs are visible in magnetic measurements
and can affect the amplitude and phase determined by temporal Fourier transform.
Figure 3.6 shows an example of the magnetic signal ˙̃Bmeas,k from the Mirnov coil
’C09-11’ of discharge 38926, where an ELM is observed at the middle of the time
interval. A sinusoidal function corresponding to the first oscillation is displayed

14Elongated plasmas are prone to axisymmetric perturbations in which the plasma is vertically
displaced [6].

15The calculation of the B-coil area can be found in the Appendix A.3.

3.4 Technical aspects
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to show the change in phase and the distortion in amplitude. The relative phase
between the coils before and after the ELM occurs is not changed.

Figure 3.6: Time section of the signal from the Mirnov coil ’C09-11’ (back curve)
of discharge 38926, where an ELM is visible. For comparison, the sine function
A sin(ωt+ ϕ0) + ∆y, where A = 0.7, ω = 2π · 1145 1

s , ϕ0 = −1.4 rad and ∆y = 0.2,
is shown (red).

For uncoupled tearing modes on different q surfaces rotating at different frequencies,
the Fourier transform can be used to separate the signals and perform a separate fit
of the simulated to the measured coil amplitudes and phases, as described in section
6.1.

In principle, the integrated signal, e.g. the hardware integrated difference signal of the
saddle coils, can also be used for rotating modes. However, for hardware integrated
data, there is usually a frequency dependence of the integrator which must be known
and corrected. We therefore use non-integrated data for rotating modes.

3.5 Necessity for modelling magnetic measurements

As described in section 3.3.2, the poloidal array of Mirnov coils is well suited for
observing rotating modes, as they mainly measure Bθ, but they cannot be used for
locked modes. On the other hand, most Br coils in ASDEX Upgrade are not suited
to observe fast rotating modes due to the damping close to conducting structures.
Thus, for a continuous monitoring of tearing modes in all states, from rotating to
locked, both coil types are needed and have to be consistent. To validate this, a
comparison is required in the frequency range in which both coil types are applicable
and in which shielding currents are important.

Generally, a model is required to determine the complex amplitude, B̃(m,n)
sim,k , expected

for a coil at a certain coil position and tilt, for a given j
(m,n)
pert , especially when shielding

currents, induced by a rotating mode, influence the magnetic measurements. These
currents also flow in structures which are not toroidally symmetric, necessitating a
three-dimensional treatment.

In the following chapter, the three-dimensional model using the FEM is presented,
with which we calculate the magnetic perturbation field produced by the individual

3.5 Necessity for modelling magnetic measurements
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base vectors j
(m,n)
pert , including the frequency dependent shielding currents in the rel-

evant conducting structures in AUG. This allows the complex amplitudes, ã(m,n), of
the harmonics, j(m,n)

pert , for coupled n = 1 tearing modes to be inferred from magnetic
measurements for all mode frequencies.

3.5 Necessity for modelling magnetic measurements





4 Simulating tearing modes and
their measurements with the Finite
Element Method (FEM)

Parts of the content, figures and text of this chapter are included in a publication
accepted by Plasma Physics and Controlled Fusion (DOI 10.1088/1361-6587/adc0bd)
of which the author of this thesis is the first author.

In this work, a model using the FEM and implemented in the GetDP code [59]
is developed to solve the electromagnetic problem of a perturbation magnetic field
generated by a perturbation current that describes a tearing mode in the presence
of induced image currents in passive conductors. This allows for the interpretation
of magnetic measurements which for AUG were introduced in section 3.3. In this
chapter, a general introduction to FEM is given, followed by a description of the
model used in this thesis.

4.1 Theory and formulation of FEM

For solving the partial differential equations of the electromagnetic problem, the
FEM is chosen, which discretises the calculation domain into small elements and
then solves a simplified model for each element (cf. chapter 7 in [60]). The solution
for the whole system is then obtained from the solution for the elements, taking
into account the appropriate continuity and equilibrium conditions [61]. It was first
introduced by [62] for elastic deformation, where the domain was discretised by a
lattice structure. The first mathematical foundations were developed by [63].16 The
method was then further developed (e.g. by [67]), mainly in the field of civil and
aeronautical engineering. [68]

In general, the term FEM includes variational methods [69] as well as methods using
the weighted residual [70]. In this work, the equations are solved in the weak form
[71] using Galerkin’s method, which belongs to the category of weighted residuals
methods [72]. The reader is referred to [73] for an introduction to the electromagnetic
application of FEM, which is used in this thesis and is one of many applications of
FEM.

4.1.1 General theory

The basic idea of FEM is to divide the objects of a domain into small finite elements
as for example sketched in figure 4.1, where the triangular elements are linear and the
nodal points correspond to the corner of the elements.17 A variable f(x) is then, for
example, examined at the nodal points i and the distribution of f(x) over the element
is interpolated using a prescribed normalised function si(x), called shape function18,

16Comparable work was carried out by [64], [65] and [66] during this period (1940s, 1950s).
17For higher order elements, more nodal points are needed.
18The shape functions are also called approximation, ansatz, interpolation or basis functions.



38 | 4 Simulating tearing modes and their measurements

that describes the spatial course of the variable. Thus, f(x) is approximated by

f(x) =
∑
i

fi si(x) (4.1)

where fi denotes the unknown quantities – also called multipliers or degrees of free-
dom – that have to be determined for the element nodes i. The shape functions can
be of different order and must be continuous over the elements. In this example, the
shape functions are scalar functions associated with nodes, but they can also be as-
sociated with edges, facets or volumes. Edge functions for example allow to calculate
an unknown vector field via the circulation along the element edges. [74, 72, 75, 59]

Figure 4.1: Example of an object (blue) that is divided into finite elements where
one is shown in red. Here, the nodes i (cf. equation 4.1, black dots) are at the corners
of the triangular shaped elements.

For complex structures, it is often sufficient to solve the problem so that the partial
differential equations are fulfilled in the weak form for well-chosen test functions. By
multiplying the partial differential equation by a test function f ′ and integrating over
the volume Ω, the differential equations can be simplified such that the derivatives
are distributed over the unknowns and test functions, which is shown in the example
below.

As the same procedure is used repeatedly in the formulation described in section
4.1.2, it is illustrated here in a general example and referred to afterwards. A partial
differential equation with an unknown f and an arbitrary scalar function a

−∇ · (a ∇f) = 0 (4.2)

is formulated in the weak form by an inner product with a test function f ′ over a
domain Ω (

−∇ · (a ∇f) , f ′)
Ω
= 0 . (4.3)

This inner product can be, for example, the integral∫
Ω
(−∇ · (a ∇f)) f ′ dΩ = 0 . (4.4)

Problem 4.2 is now reformulated to find f such that equation 4.4 holds for all test
functions f ′. For differentiable test functions, equation 4.4 is rewritten by means of
integration by parts:

−
∫
Ω
∇ ·
(
a ∇f f ′) dΩ +

∫
Ω
(a ∇f) ·

(
∇f ′) dΩ = 0 . (4.5)

Using the Gaussian integral theorem, we obtain

−
∫
∂Ω

(
a ∇f f ′) · n dΓ +

∫
Ω
(a ∇f) ·

(
∇f ′) dΩ = 0 . (4.6)

The integral over the surface ∂Ω, where n is the normal vector on the surface and dΓ
is a small surface element, can either be included in the boundary conditions, or test

4.1 Theory and formulation of FEM
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functions that vanish at the boundary of the domain are chosen so that the surface
integral vanishes. In the following, we neglect these surface integrals, assuming that
one of the two possibilities is fulfilled. Thus, for a vanishing surface term, we need
to find f in the function space such that∫

Ω
(a ∇f) ·

(
∇f ′) dΩ = 0 (4.7)

holds for all f ′. The discrete approximation of f (equation 4.1) can be inserted into
equation 4.7, where in the Galerkin method the shape functions are used as test
functions. This gives a system of linear equations that can be solved by numerical
methods. [59]

4.1.2 FEM formulation used in this work

For the electromagnetic problem of a perturbation current creating a perturbation
magnetic field, the Maxwell equations (cf. equations 2.5, 2.6, 2.7) have to be solved
in the weak form, which is done here in the A-V formulation in the frequency domain
[59] using the vector potential A and the electric scalar potential V . A and V are
defined to directly fulfill the requirement that B is divergence free (equation 2.6) and
Faraday’s law (equation 2.5). Thus, the magnetic and electric field are expressed as

B = ∇×A (4.8)

and
E = −∂A

∂t
−∇V . (4.9)

Using these expressions (equations 4.8 and 4.9) and Ohm’s law with v = 0 (cf.
equation 2.3), Ampère’s law, neglecting the displacement current in the low frequency
limit (cf. equation 2.7), reads

∇×
(

1

µ0
∇×A

)
(2.7)
= j

(2.3)
= σ

(
−∂A

∂t
−∇V

)
+ js0 (4.10)

where js0 is the source current density that represents the perturbation current at
the resonant surface .

In this work, equation 4.10 is formulated in the weak form as an integral over the
domain Ω (cf. equation 4.4) such that∫

Ω

(
∇×

(
1

µ0
∇×A

))
·A′dΩ︸ ︷︷ ︸

I

+

∫
Ω
σ

(
∂A

∂t
+∇V

)
·A′dΩ︸ ︷︷ ︸

II

−
∫
Ω
js0 ·A′dΩ︸ ︷︷ ︸

III

= 0

(4.11)
where the test functions A′ are vectors in the edge finite element space of the shape
functions of A, allowing to calculate A via the circulation along the edges of the
elements.

Term I of equation 4.11 is rewritten by using the vector identity

(∇× c) · d = ∇ · (c× d) + c · (∇× d) (4.12)

with arbitrary vectors c and d, and the Gaussian integral theorem, similarly to
equations 4.5 to 4.7, for c = ∇ × A and d = A′, such that the curl is applied to
both A and A′:

I =

∫
Ω

1

µo
(∇×A) ·

(
∇×A′) dΩ (4.13)

4.1 Theory and formulation of FEM
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Term II is integrated over the conducting domains with the corresponding conduc-
tivities σ.

The source current density js0 in term III is defined as

js0 = js −∇ξs (4.14)

with a scalar potential ξs that fulfills

∇ · (js −∇ξs) = 0 (4.15)

which is formulated as – comparable to equations 4.4 to 4.7 –∫
Ω
∇ · (js −∇ξs) ξ

′ dΩ =

∫
Ω
js · ∇ξ′ dΩ−

∫
Ω
∇ξs · ∇ξ′ dΩ = 0 (4.16)

where the scalar test function ξ′ is an element of the function space called nodal
finite element space. Adding (−)∇ξs to js is necessary because the discretisation of
js according to equation 4.1 results in a current density that is, by definition, not
divergence-free, and the divergence-free nature of js0 is fundamental to the robust
determination of post-processing quantities such as B [76].

Like the source current density, the total current density j must also be divergence
free. This is formulated by using the definition of j as in equation 4.10:

∇ · σ
(
−∂A

∂t
−∇V

)
+∇ · js0︸ ︷︷ ︸

(4.15)
= 0

= 0 . (4.17)

In the weak form after using the Gaussian integral theorem – with the approach of
equation 4.4 to 4.7 – equation 4.17 reads∫

Ω
σ

(
∂A

∂t
+∇V

)
· ∇V ′ dΩ = 0 (4.18)

where the test functions V ′ are in the function space of the sum of the nodal functions.

To ensure the uniqueness of A, a gauge condition has to be formulated. In this work,
the Coulomb gauge is chosen

∇ ·A = 0 , (4.19)

which is formulated as (cf. equations 4.4 to 4.7)∫
Ω
A · ∇ξ′ dΩ = 0 , (4.20)

where the test functions ξ′ are from the nodal finite element space. There exist
also other possibilities to impose a gauge condition as for example using the co-
tree gauging [73]. For a unique and stable convergence of the solution, Lagrange
multipliers are introduced to complement the Coulomb gauge condition [77, 78].
They must be added to equation 4.11 as

∫
Ω∇ξA′ dΩ, where the shape functions of

ξ are elements of the nodal finite element space. [76]

4.1 Theory and formulation of FEM
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4.2 Model set-up in general

The ONELAB (Open Numerical Engineering LABoratory) software package [79] is
chosen as an interface to the Gmesh [80] and GetDP [59] codes. The mesh generator
Gmesh automatically generates a tetrahedral mesh fitting to the defined regions with
a prescribed characteristic length, i.e. a measure of the mesh fineness at that point.
For calculating the magnetic perturbation field generated by a perturbation cur-
rent representing a tearing mode on the resonant surface and including the induced
shielding currents, regions with different properties have to be defined: the source
region, where the perturbation current j

(m,n)
pert flows and conducting regions, which

represent the relevant conducting structures. The remaining volume, including the
plasma, except for the source region, is modelled as a vacuum. The geometry of the
model is defined by poloidal cross-sections Ai that are extruded by a specific angle
αi, as shown in figure 4.2, where the simulation coordinate system is introduced. By
extruding the poloidal cross sections by several different angles in succession, it is
possible to implement structures that are not toroidally symmetrical.

Figure 4.2: Schematic drawing of the coordinate system used in the model, defined
so that the y-axis is the height, corresponding to the z-axis in cylinder coordinates,
and the z-axis points out of the plane.

The source region, where the perturbation current density flows, is defined as an
annulus between two flux surfaces. Even if the source current density is made
divergence-free by including ∇ξs (cf. equation 4.15), the ansatz for js needs to be
divergence-free (before the discretisation) to ensure a correct physical description.
This is achieved by choosing a perturbation current density as defined in equation
2.59 (cf. [30]), as shown below.

Let a poloidal harmonic of the perturbation current density parallel to the equilib-
rium magnetic field, B0, be defined as

j
(m,n)
pert = f(ρpol) B0 ei(mθ∗−nϕ+ωt) , (4.21)

where f(ρpol) is a function that is constant on a magnetic flux surface. Then,

∇ · j(m,n)
pert = ∇ ·

(
f(ρpol) B0 ei(mθ∗−nϕ+ωt)

)
= (∇f(ρpol)) B0 ei(mθ∗−nϕ+ωt)︸ ︷︷ ︸

=0

+ f(ρpol) (∇ ·B0) ei(mθ∗−nϕ+ωt)︸ ︷︷ ︸
=0

+ f(ρpol) B0 ∇ ei(mθ∗−nϕ+ωt)

= f(ρpol) B0 ei(mθ∗−nϕ+ωt) (im∇θ∗ − in∇ϕ) . (4.22)

4.2 Model set-up in general
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Using the definition of q from equation 2.53, equation 4.22 becomes

∇ · j(m,n)
pert = f(ρpol) e

i(mθ∗−nϕ+ωt) B0 · ∇ϕ

(
im

q
− in

)
︸ ︷︷ ︸
=0 for q=m/n

. (4.23)

Thus, j(m,n)
pert is divergence-free on its resonant q = m/n surface, when defined as in

equation 4.21, i.e. the radial width of the current density is constant in ρpol.

The finite element solver GetDP is then used to solve the electromagnetic problem
in the weak form in the frequency domain using the A-V formulation.

The passive coils are not implemented as separate domains, but their flux is post-
calculated via the vector potential A. The magnetic flux through the coil windings
is calculated using Stokes integral theorem:

ΨB =

∫
S
B dS =

∫
S
(∇×A) dS =

∮
∂S

A dl , (4.24)

where S is the coil winding area, dS is the normal vector on the coil, ∂S is the curve
following the coil winding and dl the vector along the curve ∂S. Thus, the vector
potential, A, is integrated along the lines following the coil turns at their position to
obtain the magnetic flux, which can be directly compared with the measurements (cf.
equation 3.2). The magnetic flux calculated according to equation 4.24 is divided
by the area of the coils to obtain the expected complex measurement amplitudes
B̃

(m,n)
sim,k .

A measure of agreement between B̃
(m,n)
sim,k and B̃meas,k – and also between two vectors

of complex coil amplitudes with different simulation properties – is the angle α
between the two complex vectors. The angle between two complex vectors c and d
is defined as:

α = arccos

(
Abs⟨c,d⟩
∥c∥ ∥d∥

)
. (4.25)

where ⟨c,d⟩ is the dot product of c and d. α is also a measure to test linear
independence and orthogonality.

By calculating B̃
(m,n)
sim,k via an integral (equation 4.24), the solution is more robust

than evaluating the magnetic perturbation field at a single point. This is due to the
fact that, firstly, the gradient of ξ associated with the Coulomb gauge for the vector
potential A (cf. section 4.1.2) is introduced, which leads to A being continuous over
the elements but not continuously differentiable in the first-order calculation. By
integrating A along the lines of the coil turns, the quantity is smoothed and more
reliable. Secondly, the magnetic field B is calculated via ∇ ×A, which introduces
additional uncertainties in B. To test the reliability of the results of ΨB, a compari-
son of the simulated Mirnov results (cf. the model described in section 4.4) has been
made between simulations with first-order and second-order test functions. As the
angle α between B̃

(2,1)
sim,k of the first-order and second-order calculation is very small

(α = 1.34◦), the first-order calculation is used in this work to save computational
time.

4.2 Model set-up in general
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4.3 Magnetic measurements in a simplified toroidal device with
wall

From a cylinder to a torus – as already indicated in section 2.4.4 – the frequency
dependence of Br and Bθ in front of a resistive wall might change. Hence, to study
the influence of the toroidal geometry on the magnetic measurements, two models
with small and large aspect ratios A = R0/rs are implemented. The minor radius
of the resonant surface rs is 0.4m each, and they have a major radius R0 = 1.65m
and R0 = 5.00m at the centre of the resonant surface, resulting in A = 4.12 for
the small and A = 12.5 for the large aspect ratio case. Both models use the above
described FEM framework and share the same simplified circular geometry except
for the major radius R0.

Figure 4.3: Geometry of the circular torus model with the resonant magnetic flux
surface in purple and the conducting vessel in grey. The model contains 30 Mirnov
coils measuring the poloidal field direction, 16 of which are shown as green boxes,
and 30 quadratic saddle coils measuring the radial magnetic field component, 14 of
which are indicated as red lines. The coil labelling is indicated by the lettering on
the right.

Figure 4.3 shows the model geometry for the low aspect ratio case and the location
where the magnetic flux through the virtual coils (cf. equation 3.2) is evaluated. The
circular shaped vessel, with radius rw = 0.7m, a thickness dw = 0.06m and a conduc-
tivity σw = 2.0 · 105 1

Ωm , is implemented concentrically around the resonant surface.
30 virtual Mirnov coils (cf. section 3.3) and 30 small radial field coils (quadratic
coils at the centres of the Mirnov coils) are placed in front of the conducting vessel
in the model. The resonant magnetic flux surface is defined with a constant thickness
ds = 0.04m, neglecting the different distance of neighbouring magnetic flux surfaces
along the poloidal angle θ in real tokamak plasmas. In this simple geometry model,
no correction for constant flux surface thickness is implemented as the frequency
dependence of a single coil remains similar.

The tearing mode is described by a helical source current density

j
(m,n)
pert,circ =

ĵpert,circ
R

(−n r) eθ∗ +mR eϕ√
(n r)2 + (mR)2

ei(ωt−nϕ+mθ∗) (4.26)

where the amplitude of the source current is ĵpert,circ = 105 A
m . The factor 1/R

4.3 Magnetic measurements in a simplified toroidal device with wall
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accounts for the variation of B with the major radius R, to reproduce a perturbation
current density that is parallel to B0 (cf. equations 2.59 and 4.21). In the coordinate
system according to figure 4.2, the toroidal vector is

eϕ =

sin(ϕ)
0

cos(ϕ)

 (4.27)

where ϕ = arctan
(−z

x

)
and the poloidal vector is defined as

eθ∗ =

−cos(ϕ) · sin(θ∗)
cos(θ∗)

sin(ϕ) · sin(θ∗)

 (4.28)

where cos(ϕ) = x
R and sin(ϕ) = − z

R with the major radius R =
√
x2 + z2. The

straight field line angle θ∗ is defined according to the Merezhkin formula (equation
2.54) to be also applicable for the large aspect ratio case. The term (βp +

li
2 + 1) is

approximated to be 2, leading to λ = 0.48 and λ = 0.16 for ε = rs/R = 0.24 and
ε = 0.08, respectively.

Figure 4.4 shows the perturbation current density for (m = 2, n = 1) on its resonant
surface, leading to a perturbation magnetic field and the induction of mirror currents
in the circular wall. The resulting magnetic flux through the virtual coils (cf. figure

Figure 4.4: Source current density j
(2,1)
pert,circ on the circular surface. Red values

mark extreme values and the direction is indicated by the grey arrows.

4.3) is evaluated according to equation 4.24. The virtual saddle coils are implemented
as a square winding of 4.5 cm length, the dimensions of the virtual Mirnov coils are
the same as those of AUG. In the model, they consist of 5 turns equally distributed
across the height of the Mirnov coil. The amplitude of the simulated magnetic
measurements of the virtual coils are shown in figure 4.5 depending on the frequency.
For the sake of clearness, the virtual measurements of only 16 coils each are shown.
Both the saddle and the Mirnov coils are labelled with numbers beginning with 1 at
the LFS midplane. The coils labelled with 16 (red and blue) are those at the HFS
midplane. The frequency dependence of the saddle coils, measuring Br, and of the
Mirnov coils, measuring Bθ, for the large aspect ratio case (right plot of figure 4.5) is
very similar to the magnetic field components obtained from the cylindrical formula
(cf. equations 2.64 and 2.65 and figure 2.8). However, the frequency dependence
of the amplitudes measured by the virtual coils on the HFS changes for the low
aspect ratio case for small frequencies (left plot of figure 4.5). This indicates that
the distribution of the perturbation current according to θ∗ leads to a non-monotonic
frequency dependence of B in front of a resistive wall on the HFS, where the minima

4.3 Magnetic measurements in a simplified toroidal device with wall
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and maxima of the perturbation current density are closer to each other. In a torus,
the vacuum vessel can no longer be considered as a flux surface, which becomes even
more pronounced for realistic resonant surface and vessel geometries (cf. section 4.4).

Figure 4.5: Amplitude of the magnetic field of a mode described by j
(2,1)
pert,circ mea-

sured by 16 virtual Mirnov (cyan to blue) and saddle coils (yellow to orange) for the
small (left) and large (right) aspect ratio cases depending on frequency. The coil
labelling starts – as indicated in figure 4.3 – on the LFS with index 1.

In order to capture not only the effects of toroidicity, but also the effects of shaped res-
onant surfaces, a non-circular vacuum vessel and other conducting structures within
the vessel, a more sophisticated model geometry is described in the following section
4.4 and used in the remainder of this work.

4.4 Model description: ASDEX Upgrade

In order to obtain a realistic simulation of the magnetic measurements, the geom-
etry of the resonant surface is taken from the equilibrium reconstruction19,20 and
the conducting structures are implemented in such a way that they cover the most
important effects on the magnetic measurements used here. Although a quarter of
the torus would be sufficient to model n = 1 tearing modes, we use half of the torus,
from segment 13 to segment 4 (cf. figure 3.4 on the left), so that the poloidal array
of Mirnov coils, a saddle and two upper and lower B-coils each can be calculated
directly.

4.4.1 Source region

The currents defined in the source regions (cf. figure 4.6) are the perturbation
current basis vectors for single helicities localised around the respective resonant
surfaces with positive mode numbers m, n:

j
(m,n)
pert = ĵ0 g(ρpol) B0 ei(ωt−nϕ+mθ∗) (4.29)

19In most cases, the equilibrium reconstruction is based on the CLISTE code [33]. If indicated,
the IDE code [34] is used instead.

20As explained in section 3.4, the time intervals are chosen manually to ensure an appropriate
amplitude and phase determination of the magnetic measurements from the temporal Fourier trans-
form. To ensure a reliable equilibrium reconstruction, times when the equilibrium changes little are
chosen, resulting in the times used for the equilibrium reconstruction sometimes not being exactly
in the time window used for the Fourier transform.

4.4 Model description: ASDEX Upgrade
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Figure 4.6: Source current density for m = 2, n = 1 on the resonant q = 2 surface
for discharge 41091 at 6.05 s used as a base vector to describe a tearing mode. Red
colors mark extreme absolute values, the grey arrows indicate the direction of the
perturbation current density.

where ĵ0 = 105 A
m2T

is defined to be the (fixed) amplitude and

g(ρpol) =

{
1 if (ρpol,m −∆ρpol) < ρpol < (ρpol,m +∆ρpol)

0 otherwise .

The radial coordinate ρpol,m is the magnetic flux surface label (equation 1.5) at
the resonant q = m

n=1 surface. Using ρpol as radial coordinate allows to define the
thickness of the source region ∆ρpol in a natural way. This is equivalent to using a
constant thickness in r and modulating the amplitude of j(m,n)

pert by 1
RBθ

as in [29].
The geometry of the resonant surface is taken from an equilibrium reconstruction
and ∆ρpol = 0.01 is chosen. The ansatz (equation 4.29) describes a divergence-free
perturbation current density on its resonant q = m

n surface as shown in equation
4.22.

The equilibrium magnetic field, B0, is calculated according to

B0 = (−1)l
√

B2
R,0 +B2

z,0 eθ +Bϕ,0 eϕ (4.30)

where BR,0, Bz,0 and Bϕ,0 are the magnetic field components from the equilibrium
reconstruction in cylinder coordinates. As the poloidal magnetic field of the equilib-
rium, Bθ,0 with |Bθ,0| =

√
B2

R,0 +B2
z,0, can be positive or negative depending on the

direction of Ip (and Bϕ,0), the factor (−1)l is introduced where l can be an odd or
an even number. For a standard (Ip, Bϕ,0) configuration, l is an even number. The
toroidal unit vector, eϕ, is defined according to equation 4.27 and the poloidal unit
vector is

eθ =

−cos(ϕ) · sin(θ)
cos(θ)

sin(ϕ) · sin(θ)

 (4.31)

where sin(θ) = y−z0
r and cos(θ) = R−R0

r with z0 and R0 being the z coordi-
nate and the major radius, R, on the magnetic axis. The minor radius is r =√

(y − z0)2 + (R−R0)2.

For poloidal sidebands j
(m1,n)
pert on a q = m2/n surface where m1 ̸= m2, i.e. non-

resonant poloidal harmonics, the perturbation current density ansatz (equation 4.29)

4.4 Model description: ASDEX Upgrade



4 Simulating tearing modes and their measurements | 47

is not divergence free. As the source current density is corrected to be divergence-
free by the code (cf. equation 4.15), it has to be checked whether the resulting js0
correctly describes the non-resonant poloidal harmonic. Thus, for comparison, the
factor

b =
m

q n
(4.32)

is introduced as a weighting factor of the toroidal magnetic field component, so that
equation 4.30 becomes

B0 = (−1)l
(√

B2
R,0 +B2

z,0 eθ +Bϕ,0 b eϕ

) √
B2

R,0 +B2
z,0 +B2

ϕ,0√
B2

R,0 +B2
z,0 + (b Bϕ,0)2

, (4.33)

where the ratio accounts for a different perturbation amplitude for b ̸= 1. On its own
resonant q = m1/1 surface, the factor b is one for j(m1,1)

pert . A comparison between the
simulated Mirnov amplitudes and phases of j(1,1)pert on the q = 2 surface with b = 1
and b = 1/2, which are both corrected to be divergence-free by the code (equation
4.15), is described in section 4.4.3. As will be shown in section 4.4.3, the resulting
amplitudes and phases are very similar, so that b is set to 1 for the sidebands as well.

4.4.2 Conducting regions

The rotating perturbation current density induces mirror currents in the conducting
structures, which influence the magnetic perturbation field and hence the magnetic
measurements. It is therefore important to include the relevant conducting structures
in the vicinity of the passive coils to infer the amplitude of j(m,n)

pert .

The vacuum vessel as largest conducting region is implemented as toroidally sym-
metric wall with an increased thickness to avoid the need for a very fine mesh in the
area of the wall. An effective conductivity σvessel,eff = 2.0·105 1

Ωm is chosen to account
for the increase in resistivity due to holes, ducts and different materials. The pro-
cedure for determining this effective conductivity is described in section 4.6.2. The
geometry of the vessel is defined as the contour of the inner flange (welding flange)
between the segments, as the Mirnov coils are installed in front of this contour. The
shape is defined by four circle segments (cf. table 4.1, dotted lines in figure 4.7) and
is shown in figure 4.7 together with an overview of the different coil types and other
conducting structures included in the simulation. The mirror currents induced in
the vacuum vessel mainly influence the measurements of the Mirnov and saddle coils
due to their proximity to the conducting structure.

centre of the circle segment radii of the contour starting angle
i Rc,i zc,i rin,i rout,i θi

1 1.0829 0.0 1.455 1.455+dw -1.0252
2 1.5449 0.7608 0.565 0.565+dw 1.0252
3 12.283 0.0 11.33 11.33+dw 3.0709
4 1.5449 -0.7608 0.565 0.565+dw 3.2123

Table 4.1: Coordinates, Rc,i and zc,i, of the centre of the four circle segments
together with their inner and outer radii, rin,i and rout,i, and poloidal angles, θi, that
define the starting angle of each segment. A wall thickness dw = 6 cm is defined.

4.4 Model description: ASDEX Upgrade
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Figure 4.7: Poloidal cross-section of the geometry used in the model: The vacuum
vessel and additional conducting structures (upper and lower loop of the PSL on the
LFS, and support structures on the HFS, cf. figure 4.8) are drawn in black. The
4 circle segments are marked by dotted lines as the connection between (Rc,i, zc,i)
and the inner contour of the vessel at the angles θi (cf. table 4.1). The included
coil types are the Mirnov coils indicated as green boxes, the saddle (red) and upper
and lower B-coils (magenta) marked by a line. The Ballooning coils are projected
onto this poloidal plane and shown as blue lines. The support bridges for mechanical
stabilisation of the PSL (cf. figure 4.8) are implemented in the model, but not shown
in this figure. The angle θcoil describes the poloidal coil positions with respect to the
geometric centre at R0 = 1.65m, z0 = 0 starting with 0 on the LFS midplane.

The upper and lower PSL (cf. figures 4.7 and 4.8), which is installed in AUG to
mitigate vertical displacement events, is a highly conducting region (copper with
σ = 5.77 · 107 1

Ωm) that strongly affects the B-coils that are directly mounted to it
but also those Mirnov coils that are located behind the upper or lower PSL loop. We
will show in 4.4.4 that the shielding currents induced in the PSL by tearing modes
with n ⩾ 1 are significantly modified by the implementation of support bridges (cf.
figure 4.13) that primarily stabilise the PSL mechanically (cf. figure 4.8).

Support bridges with a toroidal distance of π
4 each are implemented as a circular

connection between the upper and lower PSL loops with the centre of the circle at
R = 1.651m and z = 0.0341m and an extrusion angle of 2.73◦.21 In AUG, the
current bridge (indicated in figure 4.8, installed between sectors 7 and 8 in figure
3.4) replaces one of the support bridges. The effect of the current bridge can be

21For constructional reasons, two of the support bridges were replaced by two new bridges each in
AUG. The simulation retains the original configuration of support bridges with a toroidal distance
of π

4
to avoid the need to compute a full torus model. Note that the shape of the support bridges

is approximated in the simulation.
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Figure 4.8: Schematic drawing of the vessel and the coils extended in toroidal
direction. The PSL with support bridges in grey is sketched on the right and a
support structure on the lower part of the torus, which has an electrical connection
to the vacuum vessel, is shown as an inlay in the lower figure. The second support
structure on the HFS, that is included in the model, is not depicted here. The dotted
arrows in the PSL and the support structures represent induced mirror currents, the
solid bent arrow indicates the corresponding magnetic field. There is also a Mirnov
coil shown in the lower figure, indicated by the green box with black windings.

taken into account in the simulation, which has been studied in detail in [81], but
has no significant effect on the magnetic measurements considered here. Additional
conducting structures on the HFS with an electrical connection to the vacuum vessel
influence the magnetic measurements of nearby Mirnov coils. They are implemented
as conducting regions (cf. figure 4.7 and 4.8) with a connection to the wall at every
eighth of the torus.22 The electrical conductivity of the additional support structures
and bridges is assumed to be σ = 2 · 106 1

Ωm to be in the order of magnitude of the
electrical conductivity of steel.

As described in section 2.4.4, the mirror currents in a circular wall induced by a rotat-
ing perturbation current density can be calculated in the cylindrical approximation
according to equation 2.60, where the resistive timescale of the wall τw determines
the frequency dependence of jw. To infer an estimation of τw, the toroidal wall
currents in the simulation are calculated as an integral over the volume of the wall
according to

Iw,ϕ =

∫
wall

dV
|σE · eϕ|
R αextr

(4.34)

for different rotation frequencies ω. Equation 4.34 describes the integrated projection
of the wall current density onto the toroidal direction (cf. equation 4.27) divided by
the ’curve length’ of the vessel in the simulation, R αextr, where αextr is the extrusion
angle. Using equations 2.60, 2.61 and 2.62, the function

Iw = |jw| dw (4.35)
22The geometry of the T-shaped structure (cf. inlay of figure 4.8) is simplified in the model. The

same applies to the square-shaped conducting component, which is installed in AUG per segment,
including gaps.
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can be fitted to the simulated Iw,ϕ to obtain τw. Note that even if the wall has only
one mesh element in its thickness, it still has some resolution in the direction of the
wall thickness, which is achieved by interpolating between the results at the front
and back of the wall.

Figure 4.9 shows the simulation results for Iw,ϕ induced by m = 2 and m = 3 poloidal
harmonics depending on frequency. The geometry of the q = 2 and q = 3 surface
were taken from the equilibrium reconstruction of discharge 38706 at 3.0 s. The
resistive timescale τwall to obtain the best fit is found to be τw = 2.3ms for j(2,1)pert and
τw = 1.6ms for j

(3,1)
pert . Thus, (τwm) results in approximately 5ms, which is similar

to 7ms obtained by [82]. In [21], a mean resistive wall timescale τwm = 0.73ms was
found.

Figure 4.9: Toroidal currents in the vessel calculated according to equation 4.34
for j

(2,1)
pert (blue dots) and j

(3,1)
pert (orange dots) using the geometry of the equilibrium

reconstruction of the q = 2 and q = 3 surfaces of discharge 38706 at t = 3 s. The
corresponding fits according to equation 4.35 are shown as solid lines. The best τw
is given in the legend.

4.4.3 Virtual magnetic measurements

As described in section 4.2, the simulated magnetic measurements are evaluated in
the post-processing (cf. equation 4.24). In the simulation, the saddle coil consists
of one turn corresponding to the saddle coil ’SATe’ in AUG (cf. section 3.3). The
B-coils ’Bu1’, ’Bl1’, ’Bu8’ and ’Bl8’ are simulated with one turn at the position
of the middle turn of the corresponding B-coil.23 The Mirnov coil measurements
are modelled as the average of 5 turns equally distributed across the length of the
coil, as shown in figure 4.10. The Ballooning coils are simulated with the outermost
turn.24 The number of turns of the Mirnov and Ballooning coil measurements in the
simulation was found to be sufficient, as the modelled complex amplitudes do not
change with an increased number of turns.

23As the area of the B-coils used in the recorded integrated data is 0.396m2 per turn, this value
is also taken to calculate the magnetic field from the magnetic flux through the coils for simulated
and non-integrated measured data.

24The contour of the Mirnov and Ballooning coils used to evaluate the magnetic flux in the
simulation can be found in the Appendix A.1 and A.2.
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Figure 4.10: Illustration of the evaluation of the simulated Mirnov coil measure-
ments. The vector potential, A, is evaluated along 5 turns evenly distributed over
the length of the Mirnov coil (green box) to calculate the magnetic flux (cf. equation
4.24).

Figure 4.11a) shows the simulated amplitudes, a
(m,1)
sim,k , and phases, φ

(m,1)
sim,k , of all k

Mirnov coils generated by poloidal harmonics j
(m,1)
pert rotating at 719Hz with m ∈

{2, 3, 4} at the respective q = m/1 surfaces. The poloidal amplitude variation arises
mainly due to the different distances of the Mirnov coils to the resonant surfaces, but
also due to the different influence of the mirror currents in the conducting in-vessel
components. As the q = 4 surface is closest to the plasma boundary and hence
to the (virtual) measurements, the Mirnov amplitudes for m = 4 have the largest
amplitude. The simulated coil phases span approximately m · 2π. The influence of
the non-circular geometry including induced currents in the conducting structures is
visible in both a

(m,1)
sim,k and φ

(m,1)
sim,k .

The same applies to the simulated amplitudes and phases of the radial field coils.
a
(m,1)
sim,k and φ

(m,1)
sim,k for the upper and lower B-coils and the saddle coil is shown in figure

4.11b). Depending on the mode frequency, not only the different distance between
the virtual coils and the resonant surface contributes to the different a(m,1)

sim,k , but also
the stronger damping of the B-coils (at θcoil = 1.1 and 5.0) due to mirror currents
induced in the PSL.

The simulated amplitudes and phases of the toroidal Ballooning coils are shown
in figure 4.11c). Note that the Ballooning coils are installed with slightly different
tilting angles at different toroidal angles ϕcoil at the LFS midplane (θcoil = 0). Thus,
the phase dependence on ϕcoil is almost the same for all poloidal harmonics due to
the same toroidal mode number n = 1. The phase spans about 60% of n · 2π, since
the toroidal cover of ϕcoil is 3.99 ≈ 60% 2π.

Since there is no q = 1 surface in many equilibrium reconstructions, although a q = 1
surface exists, often inferred from the presence of sawteeth25, the poloidal harmonic

25The sawtooth instability describes a periodic relaxation of temperature and density in the
plasma core, usually with an accompanying (m = 1, n = 1) mode at the q = 1 surface (cf. chapter
4 in [12]).
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Figure 4.11: Amplitudes (upper row in each subfigure) and phases (lower row)
of the complex amplitudes B̃

(m,1)
sim,k of the poloidal array of Mirnov coils (figure a)),

the upper and lower B-coils together with the saddle coil (figure b), which are at
slightly different toroidal positions ϕcoil) and the toroidal Ballooning coils (figure c))
for m ∈ {2, 3, 4} as a function of the coil position, θcoil and ϕcoil (at θcoil = 0). The
individual coil amplitudes and phases (dots) are connected with a dashed lines as a
guidance for the eye only. The geometry of the resonant q = m/1 surface is taken
from the equilibrium reconstruction of discharge 38706 at t = 3.0 s.

j
(1,1)
pert is simulated on the q = 2 surface. As announced in section 4.4.1, the virtual

Mirnov results of j(1,1)pert calculated according to equations 4.29 and 4.33 with b = 1
and with b = 1/2 are compared in figure 4.12. The resulting Mirnov amplitudes
and phases are almost identical, which is also reflected in a very small α = 0.45◦.
Thus, the correction by the code via ∇ξs to make js divergence-free (cf. equation
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4.15), results in the same virtual measurements as using equation 4.33 with b = 1/2.
Therefore the equation 4.30 is also used to calculate the virtual measurements of
j
(1,1)
pert on the q = 2 surface.

Figure 4.12: Comparison of simulated Mirnov amplitudes a
(1,1)
sim,k and phases φ

(1,1)
sim,k

of an m = 1 poloidal harmonic at the q = 2 surface for b = 1 and b = 1/2 (cf.
equation 4.33). The angle α between the B̃

(1,1)
sim,k is given in the lower right corner.

4.4.4 Influence of conducting structures

The effect of the support bridges, which mechanically stabilise the PSL loops, and
the additional conducting structures on the HFS is demonstrated below using the
example of the Mirnov coils due to their high coverage in poloidal direction. Figure
4.13 shows the comparison between B̃meas,k and B̃

(2,1)
sim,k for the Mirnov coils for two

different models: one with wall and PSL only and one with wall, PSL and additionally
the support bridges and structures on the HFS. The angle α (equation 4.25) is used
to test the agreement of B̃(2,1)

sim,k with B̃meas,k. The case shown in figure 4.13 with only

j
(2,1)
pert and no support structures gives α = 26.9◦, including the support structures

improves the agreement to α = 16.0◦. The importance of including the support
bridges and the additional conducting structures on the HFS in addition to the wall
and the PSL is clearly visible in order to reproduce the observed damping of ameas,k

in the poloidal regions marked in figure 4.13. Although φ
(2,1)
sim,k is slightly changed by

implementing the additional structures, the main change is observed in a
(2,1)
sim,k.

The influence of the vacuum vessel, the PSL and support structures connected to
the wall on the HFS has already been discussed in [29] in the fast rotating limit in
2D with n = 0. Also in the 3D simulation described in this work, B̃

(2,1)
sim,k around

θcoil = 2 rad and θcoil = 4 rad are improved by the implementation of the in-vessel
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Figure 4.13: Comparison of B̃meas,k (blue crosses) with B̃
(2,1)
sim,k of the Mirnov coils

generated by j
(2,1)
pert . Open green circles show B̃

(2,1)
sim,k with only the vessel and the PSL

loops included, full green circles with the additional conducting structures (support
bridges, in-vessel components on HFS). The measured amplitudes and phases are
connected by dashed lines for guidance only. The amplitudes of the simulations are
multiplied by a constant factor such that the maximal values agree, the simulated
phase is shifted to match the measured phase of the Mirnov coil at the smallest θcoil.
Including the additional conducting structures reduces B̃(2,1)

sim,k behind the PSL (trans-
parent green) and near the HFS support structures (transparent grey) (indicated by
the green arrows). This improves the agreement with B̃

(2,1)
sim,k significantly.

components on the HFS (cf. figure 4.13). The inlay of figure 4.8 shows the induced
currents (dotted arrows) building a loop between support structure and vacuum
vessel. The resulting magnetic field (solid black arrow) influences the Mirnov coils
in the vicinity of these support structures.

The experimentally observed influence of the PSL requires the consideration of the
support bridges, which were not relevant in 2D, but become crucial in the 3D case
with n > 0. B̃meas,k of the Mirnov coils behind the PSL at positions around θcoil =
1 rad and θcoil = 5 rad cannot be reproduced, if the support bridges are not included.
As indicated in the right drawing of figure 4.8, the support bridges are required to
close the loop of the induced currents between the upper and lower PSL (black dotted
arrows) in order to reproduce the damping of ameas,k of the coils k behind the PSL.

However, B̃
(2,1)
sim,k from the simulation with all the conducting structures discussed

above with only j
(2,1)
pert cannot fully reproduce the B̃meas,k of all Mirnov coils. Other

poloidal harmonics have to be included in order to match the measurements. The
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determination of amplitudes and phase relations of the poloidal harmonics of jpert
is described in in section 4.5.

The frequency dependence of the saddle coil and several simulated Mirnov amplitudes
is shown in figure 4.14. As already observed with the simplified toroidal geometry (cf.
section 4.3, figure 4.5), the frequency evolution can be non-monotonic for magnetic
measurements near the wall on the HFS in toroidal geometry with a perturbation
current density distribution along θ∗. Here, the virtual Mirnov measurements, of
which 16 are shown, also have different amplitudes and frequency behaviours due to
the shaped geometries of the resonant surface and the wall with different distances
between the resonant surface and the virtual Mirnov coils, and due to the additional
conducting structures within the vacuum vessel.

Figure 4.14: Amplitude of simulated saddle (red) and Mirnov coil measurements
(cyan to blue) for the geometry of discharge 38706 at t = 3.0 s depending on fre-
quency. The Mirnov coil labelling starts with index 1 at the LFS, by definition
identical as indicated in figure 4.3.

From figure 4.14 it follows that the ratio between simulated Mirnov and saddle coil
amplitudes changes with frequency. This ratio is shown in figure 4.15, where the
same virtual Mirnov coils are shown as in figure 4.14. The frequency dependence of
a
(2,1)
sim,Mirnov/a

(2,1)
sim,saddle underlines the necessity of a frequency dependent treatment as

done in this work, especially in the low frequency range.
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Figure 4.15: Ratio of
a
(2,1)
sim,Mirnov

a
(2,1)
sim,saddle

for the geometry of discharge 38706 at t = 3.0 s for

16 Mirnov coils. The coil labelling corresponds to the labelling in figure 4.14.

4.4.5 Influence of the position of the resonant surface

In order to get an estimate of the uncertainty of the simulation due to a possible
wrong position of the resonant surface from the equilibrium reconstruction, 4 sim-
ulations with shifted resonant surfaces are compared. The q = 2 surface from the
equilibrium reconstruction of discharge 38706 at t = 3.0 s is shifted in z- and major
radial direction by ±2 cm respectively, as shown in figure 4.16. The resulting Mirnov
amplitudes and phases generated by j

(2,1)
pert rotating at f = 719Hz are shown in figure

4.16.

The angle α between B̃
(2,1)
sim,k on the q = 2 surface from the equilibrium reconstruction

and on the shifted surfaces gives an average of α = 4.07◦ with a minimum deviation
of α = 3.86◦ (shift of 2 cm in negative major radial direction towards the HFS) and a
maximum deviation of α = 4.17◦ (shift in negative z-direction towards the bottom).
Figure 4.16 shows that a shift of the resonant surface in major radial direction has a
large effect on the simulated amplitudes on HFS and LFS, while the simulated phase
remains almost unchanged. To minimise the effect of an incorrect position of the
resonant surface, coils with a similar θcoil should be used, when comparing different
coil types, as done in section 4.6.
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Figure 4.16: Simulated Mirnov measurements, B̃
(2,1)
sim,k, (left figure) generated by

j
(2,1)
pert at a q = 2 surface which is shifted by ±2 cm in major radial direction (orange,

red) and ±2 cm in z-direction (cyan, blue). B̃
(2,1)
sim,k for the non-shifted surface are

shown as black crosses. The right figure shows the q = 2 surface geometry used as
the source region for the non-shifted case. The coloured arrows indicate the direction
of the shift.

4.5 Determination of mode composition

As seen in figure 4.13, a single helicity perturbation current j
(2,1)
pert cannot reproduce

the B̃meas,k for a seemingly pure (2,1) mode measured by the poloidal Mirnov coil
array. The stability analysis, shown in section 2.4.2, suggested that multiple poloidal
harmonics j(m,n)

pert must be considered for a complete description of the current density
for a tearing mode at β > 0. We will now show experimental evidence that tearing
modes are generally composed of different m in our base vector system.

4.5.1 Method and application

Since tearing modes on the q = 2 and q = 3 surfaces are considered to be the most
important n = 1 tearing modes in regard to disruptions, and we include sidebands
with ∆m = ±1, j

(m,1)
pert with m ∈ {1, 2, 3, 4} are considered as appropriate base

vectors for the perturbation current. Note that the phases of the expected Mirnov
measurements of an m = 3 sideband of an m = 2 tearing mode, which is on the
q = 2 surface, are almost the same as those of an m = 3 poloidal harmonic on
the q = 3 surface. Apart from the different amplitude, which is due to different
distance between current and coils, the expected Mirnov amplitudes differ due to
the differences in the θ∗(θ) and the different shapes and positions of the resonant
surfaces, as shown in figure 4.17, where the virtual Mirnov amplitudes and phases
are presented for an m = 3 poloidal harmonic on its q = 3 surface and on the q = 2
surface, resulting in a deviation of α = 18.5◦. Since there could also be a tearing
mode on a surface with q ̸= 2, each j

(m,1)
pert is simulated on the q = m surface, apart
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from j
(1,1)
pert , which is positioned on q = 2 because the equilibrium reconstruction in

the plasma core is less reliable and does not always contain a q = 1 surface (cf.
section 4.4.3).

Figure 4.17: Simulated amplitudes and phases of the virtual Mirnov measurements
for discharge 38706, at t = 3.0 s for poloidal harmonics j

(3,1)
pert on the q = 3 (red) and

on the q = 2 surface (orange). The simulated amplitudes of j
(3,1)
pert on the q = 3

surface are multiplied by a factor so that the two maximal simulated amplitudes
match.

The expected measurement for all coils k, B̃
(m,1)
sim,k , resulting from the model, form

a vector space for the coil measurements. Determining the contribution of m ∈
{1, 2, 3, 4} to the observed mode means finding the vector in this vector space that
is closest to the measurement vector. This is defined by the minimum of

||B̃meas −
∑
m

ã(m,1) B̃
(m,1)
sim || . (4.36)

This linear problem is solved by the pseudoinverse as e.g. described in [22]. Naturally,
the number of base modes must be smaller than the number of coils in order to get
a unique solution with a deviation α.

As shown in section 4.4.4, an agreement of α = 26.9◦ between Mirnov measurements
and simulations was achieved for the basic model geometry with only wall and PSL
for j(2,1)pert , which was improved to α = 16.0◦ by implementing the support bridges and
the additional conducting structures on the HFS. Using j

(m,1)
pert with m ∈ {1, 2, 3, 4},

B̃meas for the same discharge (cf. figure 4.13) is reproduced by the simulated Mirnov
results with α = 8.81◦ as shown in figure 4.18. Especially the measured phase is
matched with j

(m,1)
pert and m ∈ {1, 2, 3, 4}.
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Figure 4.18: Comparison of simulated (red dots) to measured (blue crosses) Mirnov
amplitudes and phases for discharge 38706 at t = 3.0 s where the tearing mode was
rotating with a frequency f = 719Hz. The relative amplitudes and phase relations
of the poloidal harmonics of jpert are given in the legend. α, as defined in equation
4.25, is given in the lower plot.

As it is common to present the measured amplitudes and phases separately, we intro-
duce normalised deviations of amplitude (εA) and phase (εφ), even though equation
4.36 is minimised for the complex values. When calculating the minimum of equa-
tion 4.36 using the pseudoinverse, small signals, which are considered less reliable,
are naturally given less weight. This also motivates the definition of εA and εφ of all
N coils according to the 2-norm:

εA =
1

N

√∑
k

ε2A,k and εφ =
1

N

√∑
k

ε2φ,k (4.37)

with the individual deviations of amplitude and phase for each coil k

εA,k =
|ameas,k − asim,k|

amean
and εφ,k =

|φmeas,k − φsim,k|
π

(4.38)

where amean is the average measured amplitude and asim,k and φsim,k are the am-

plitudes and phases of the kth component of B̃sim =
∑

m ã(m,1) B̃
(m,1)
sim . The phase

difference φmeas,k−φsim,k is evaluated to be in the interval [−π, π]. This results in an
individual phase deviation εφ,k between 0 and 1, where 1 corresponds to the maximal
phase deviation of ±π. Figure 4.19 shows the individual deviations of amplitude and
phase for the case shown in figure 4.18, where the individual phase errors are small
for all coils and the total deviations are εA = 0.0241 and εφ = 0.0099.
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Figure 4.19: Individual deviations εA,k (blue) and εφ,k (orange) depending on the
poloidal angle θcoil of the coils k for the case shown in figure 4.18.

4.5.2 Agreement between simulated and measured Mirnov amplitudes
and phases over a wide frequency range

The agreement between B̃meas and B̃sim is also tested for other discharges, listed
in table 4.2, covering a wide frequency range.26 Figure 4.20 shows the normalised
errors, εA with a mean value of 0.0307 and εφ with a mean of 0.0217, which are
comparably low for all discharges. As in the case of discharge 38706 (cf. figures 4.18
and 4.19), in most cases the measured phases can be better reproduced than the
amplitudes.

Discharge t [s] f [Hz]
40488∗ 1.53 153
35667 5.17 251
38628 1.84 280
39661 5.70 448
40703 7.10 635
38706 3.00 719
35713 6.26 795
38926 2.00 1400
38761 2.70 1640
41417∗ 2.24 2400
34008∗ 3.65 3426
36234 1.80 4050
36171 5.61 4220
35667 1.66 5380
41091 6.05 9383

Table 4.2: Discharges and evaluated times. For the discharges marked with a star,
the IDE code [34] was used for the equilibrium reconstruction.

26The signal of coil ’C09-32’ was excluded for discharges 35667, 35713, 36234 and 36171 as this
coil did not work in these discharges. Coil ’C09-11’ was additionally excluded for discharge 35667
for the same reason.
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Figure 4.20: Normalised amplitude and phase deviations, εA and εφ, for different
frequencies (cf. discharges listed in table 4.2) for simulations with m ∈ {1, 2, 3, 4}.
The average values are shown as blue and orange dashed lines.

4.6 Calibration for consistent description of all coil types

In the previous section we showed that the measured amplitudes and phases of the
Mirnov coils can be reproduced by the simulation when considering the relevant m
components. The next step is to test the agreement of Mirnov coils with the Br coils
for different frequencies, which will be discussed in this section.

We determine the mode composition, i.e. ã(m,1) with m ∈ {1, 2, 3, 4}, from the Mirnov
coils (cf. equation 4.36) for discharges from table 4.2 and apply this to the Br

coils. If the model perfectly described all the details of the experimental setup, the
plasma and all coils, and if the chosen m perfectly described the tearing mode, the
simulation would perfectly reproduce all measurements. Thus, the complex measured
amplitudes B̃meas,k and the complex simulated amplitudes B̃sim,k =

∑
m ã(m,1)B̃

(m,1)
sim,k

would always be identical for all coils k, regardless of the coil type. We introduce the
complex ratio γB as a measure of the agreement between different coil types which
compares the relation between B̃meas,k and B̃sim,k for coils k, labelled I and II, which
can also be of different coil types:

γB =

B̃meas,I(t)

B̃sim,I(f(t))

B̃meas,II(t)

B̃sim,II(f(t))

(4.39)

where f(t) is the mode frequency at time t. A perfect representation would always
result in γB = 1. Since no perfect model is expected due to approximated shapes of
the conducting components (cf. section 4.4.2), γB is used to test the agreement, first
between Mirnov and Ballooning coils (cf. section 4.6.1) and then between Mirnov
and saddle coils. For the latter, there are free parameters in the model, which are
determined by minimizing |γB − 1| as discussed in section 4.6.2.

4.6.1 Correcting Mirnov with Ballooning coils

The Mirnov coils are installed in the welding flange of the AUG vacuum vessel
(cf. figure 4.21), whereas in the model the wall is modelled toroidally symmetric,
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as the actual flange geometry cannot be represented by toroidally extruded wall
elements. It is necessary to check whether this missing detail in the conducting
structures requires a correction. For this purpose we compare the Mirnov coils with
the Ballooning coils27 for the set of discharges listed in table 4.2. The latter are
mounted with a clear distance to the wall and the conducting structures relevant for
them are expected to be well captured in the model. The ratio γB is calculated as
defined in equation 4.39, where coil I corresponds to a Ballooning coil and coil II to
a Mirnov coil. We chose the Mirnov coils at similar poloidal angles as the Ballooning
coils (’C09-01’ and ’C09-32’ cf. figure 3.4) to minimise the effect of errors in the
resonant surface position (cf. section 4.4.5) and in the determination of ã(m,1). For
each pair of coils of different type γB is calculated and the average complex value is
determined.

Figure 4.21: Technical drawing from [54], adapted to show the position of a Mirnov
coil (black and green rectangles). The drawing plane is indicated by the dotted
horizontal line in the inserted picture of the flange where the coils are installed.

The upper plot of figure 4.22 shows the absolute values of γB for different discharges
and mode frequencies, revealing a frequency dependent factor between Ballooning
and Mirnov coils. Towards zero frequency, where shielding currents vanish, |γB|
approaches 1. This indicates that mirror currents, presumably radial currents in
the flange contour, lead to a reduction of the measured Mirnov coil amplitude for
frequencies f > 0. To achieve agreement between Ballooning and Mirnov coils for
frequencies 10Hz < f < 10 kHz, the simulated Mirnov amplitudes are corrected with
the function (cf. figure 4.22)

h(f) =

(
− 1

f1/7
+ 1.7

)−1

. (4.40)

The phase of γB is close to zero (cf. lower plot in figure 4.22), which indicates
that model and measurement agree in terms of the relative phases between Mirnov
and Ballooning coils. Thus, only the amplitude of the Mirnov coils is corrected.
The simulations to find this correction are performed with an effective conductivity
σvessel,eff = 2.0 · 105 1

Ωm found by the scan described in the following section 4.6.2.
Finding the Mirnov coil amplitude correction function was done iteratively with
updated values of σvessel (determined by the scan described in section 4.6.2).

27The Ballooning coil ’B31-40’ has been excluded here as the position of the coil has changed
between campaigns.
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Figure 4.22: Absolute value (upper plot) and phase (lower plot) of γB calculated
for different discharges as defined in equation 4.39, where coil I corresponds to the
Ballooning coils and coil II to the Mirnov coils on the LFS. The red line in the upper
plot is the inverse of h(f) as defined in equation 4.40.

4.6.2 Optimization of free parameters: scan of Rsaddle and σvessel

The model description requires some simplifications due to the toroidally extruded
elements and in order to ensure an appropriate meshing of the wall. On the other
side, also the AUG reality is not precisely known. This introduces free parameters
for the model that have to be fixed before it can be used.

First, the vacuum vessel cannot be implemented with the exact geometry and re-
sistivities of all materials present and electrical connections are not exactly known.
This requires to introduce an effective conductivity of the wall, σvessel,eff . The second
free parameter is the effective position of the saddle coil, Rsaddle,eff , as the distance
between the coil winding and the vacuum vessel, ∆Rsaddle,wall, varies in toroidal
direction in AUG which is too complex to replicate in this framework (cf. figure
4.23). These effective parameters have to ensure the best possible agreement between
Mirnov and saddle coils. To determine them, γB (cf. equation 4.39) is calculated for
a matrix of (σvessel,eff ,Rsaddle,eff) pairs, with 1.0 ·105 1

Ωm < σvessel,eff < 5.0 ·105 1
Ωm and

0.96m < Rsaddle,eff < 1.01m. Here, coil I corresponds to the Mirnov coils ’C09-16’
and ’C09-17’ behind the saddle coil (cf. figure 3.4) and coil II to the saddle coil.28 In
order to find the best (σvessel,eff ,Rsaddle,eff) pair for all resonant surface geometries,
mode compositions (ã(m,1)) and frequencies, γB is evaluated for time periods of dif-
ferent discharges with a strong n = 1 mode (cf. table 4.3), covering a wide frequency
range.29 For each discharge, poloidal mode number, and σvessel, a frequency scan is

28In the calculation of γB, the measured mean saddle amplitude is taken and ã(m,1) are determined
from the Mirnov coils with an effective conductivity of the wall, σvessel,eff = 2.0 · 105 1

Ωm
.

29The equilibrium reconstruction for each discharge is evaluated at time points with small equi-
librium changes, so that the same geometry is used for an entire time period.
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Figure 4.23: Excerpt from a technical drawing of a horizontal cut of the vacuum
vessel on the HFS, where the location of a part of the saddle coil (red) is indicated.
The distance to the conducting vessel varies with toroidal angle, Φ. In this figure,
also a part of the Mirnov coil (black and green) is shown (adapted from [54]).

performed to calculate γB for the corresponding time points, i.e. frequencies.

Discharge time period frequency range
36234 1.705 - 1.895 s 3213 - 4893Hz
38706 2.807 - 3.095 s 594 - 3503Hz
38761 2.605 - 2.854 s 9289 - 1647Hz
36171 5.605 - 5.681 s 925 - 4219Hz
38926 1.602 - 2.256 s 904 - 2521Hz
35667 1.369 - 1.997 s 556 - 5378Hz
35667 5.013 - 5.289 s 251 - 406Hz
34008 3.646 - 3.654 s 1877 - 3499Hz

Table 4.3: Time periods used for the scan of Rsaddle and σvessel.

Only the absolute value of γB is used and the phase is checked for the best pair of
σvessel,eff and Rsaddle,eff . The requirement that |γB| = 1 for all frequencies can be
divided into two conditions for γB, namely

∂|γB|
∂f

= 0 and γB = 1 (4.41)

with γB the average value of |γB|. Both conditions must be approximated simulta-
neously, which is described by the combined condition using the geometrical mean
value: √

|γB − 1| · d = 0 (4.42)

with d the absolute deviation of ∂|γB|
∂f from zero. To compute d, first a polynomial

fit of degree 4 is determined for each (σvessel,eff ,Rsaddle,eff) pair for all discharges
simultaneously to obtain |γB| as a function of frequency. From this, the derivative
∂|γB|
∂f is calculated. The summed absolute deviation of ∂|γB|

∂f from zero is taken to
also account for frequency dependent |γB| with a mean value close to 1.

Figure 4.24 shows the frequency dependence of |γB| for a pair of (σvessel,eff , Rsaddle,eff),
where the requirements are not fulfilled (figure a.1)) and the corresponding determi-
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nation of d and |γB|−1 in figure a.2). The values of the combined condition of equa-
tion 4.42 for different (σvessel,eff , Rsaddle,eff), including the example in the top row, are
shown as coloured dots in figure 4.24b). The minimum, i.e. the best pair of (σvessel,eff ,
Rsaddle,eff), is found for Rsaddle = 0.98m, corresponding to ∆Rsaddle,wall = 2.7 cm,
and σvessel = 2.0 · 105 1

Ωm . The frequency dependence of |γB| for the best (σvessel,eff ,
Rsaddle,eff) is shown in figure 4.24c). The analysis is done for discharges with pri-
marily a dominant m = 2 tearing mode, but also the case with a dominant m = 3
mode (discharge 34008) obeys condition 4.42 for the correct (σvessel,eff , Rsaddle,eff)
with sufficient accuracy.

Figure 4.24: An example with a with a wrong effective conductivity σvessel =
5 · 105 1

Ωm and a wrong saddle position Rsaddle = 1.01m is shown in the upper row
where the calculation of |d| and |γB| − 1 is demonstrated on the right. The lower
left plot shows the requirements for γB, as defined in equation 4.42, calculated for
different pairs of (σvessel,eff , Rsaddle,eff). The effective distance between the saddle
coil and the vessel, ∆Rsaddle,wall, is Rsaddle − Rwall with Rwall = 0.953m at z = 0
on the HFS, according to table 4.1. The minimum values, i.e. the best values, are
shown in grey, resulting in a best pair of (σvessel,eff , Rsaddle,eff) (lower right plot). In
most cases, there is a dominant m = 2 tearing mode (different colors for different
discharges in the upper left and lower right plot), whereas one discharge (34008)
contains a dominant m = 3 mode at the selected frequencies.

The angle of the complex ratio γB is evaluated for the discharge with the largest
frequency coverage and the result for the best (σvessel,eff , Rsaddle,eff) is shown in
figure 4.25. The phase of γB is frequency independent but only approximately zero.
A constant phase offset of −0.04π is observed between the Mirnov and saddle coils,
which might be due to a toroidal shift between the nominal and actual positions of
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the saddle coils in AUG. This small phase difference is neglected and Rsaddle = 0.98m
and σvessel = 2.0 · 105 1

Ωm are chosen as effective parameters for the simulation. Note
that this effective conductivity is valid for a vacuum vessel thickness of dw = 6 cm as
defined in section 4.4.2. For the flange thickness of the vacuum vessel dw = 15mm,30

this corresponds to an effective σvessel = 8.0 · 105 1
Ωm , which is – as expected – below

the documented value of the primary wall material [83] σvessel,theo = 1.4 · 106 1
Ωm .

Figure 4.25: Phase of the complex ratio γB for Rsaddle = 0.98m and σvessel =
2.0 · 105 1

Ωm calculated for discharge 35667.

4.7 Possible extensions to the model

As will be shown in section 6.3, the simulated complex measurements B̃sim,k with
complex amplitudes ã(m,1) determined from the Mirnov coils are also in agreement
with the measured amplitudes and phases of the saddle and Ballooning coils, which
confirms an overall consistent description of the different coil types. However, the
model still uses a simplified geometry that could be refined in the future. In AUG
the B-coils are mounted on the PSL in a steel housing which is not implemented in
the model. This is not relevant for the analysis of locked modes, but in the slowly
rotating phase, if usable B-coil data are available (cf. section 5.2), the effect of the
steel housing has to be considered. As described in section 4.4.2, the exact shape of
the support bridges is not implemented, which might be relevant when considering
other Ballooning coils at the LFS with θcoil ̸= 0. Moreover, instead of correcting
the amplitude of the Mirnov coils as described in section 4.6.1, the flange structure
could be implemented in its exact geometry, which might require supplementary
calculations in a geometry without toroidally extruded sections.

In addition, at very low frequencies, i.e. at a few Hz, an effect occurs that cannot be
reproduced by the simulation. Figure 4.26 shows the simulated and measured Mirnov
amplitudes and phases for discharge 40648 where a tearing mode was rotating at
2.7Hz (figure b)). The measurements cannot be reproduced (α = 40.0◦) due to the
high amplitudes of the Mirnov coils behind the PSL, which are marked in yellow in
figures a) and b). The reason for the deviation between the simulated and measured
results for the Mirnov coils behind the PSL at these low frequencies are probably
external control coils (similar to the poloidal field coils in figure 1.2), which react to a
presumed plasma motion in the vertical direction. In AUG there are two control coils
(’CoIu’ and ’CoIo’) approximately at the poloidal position of the upper and lower
PSL, which can cause an amplification of the measured Mirnov amplitudes and a

30Here we assume that the skin depth is approximately equal to the wall thickness.
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phase distortion at these poloidal positions. Figure 4.27 shows the time traces of the
currents in the control coils and the magnetic field measured by two affected Mirnov
coils, which are clearly correlated. The currents in these control coils could also be
included in the model or the affected Mirnov coils behind the PSL are ignored for
the determination of the poloidal mode composition in these cases.

Figure 4.26: Poloidal cross section of the vessel, including in-vessel components
and the geometry of a magnetic flux surface, with the Mirnov coils shown as green
boxes (figure a). The affected Mirnov coils are marked in yellow. Figure b) shows the
simulated and measured amplitudes and phases of a slowly rotating mode depending
on the poloidal angle of the coil position θcoil. The areas of θcoil where the Mirnov
coil measurements are expected to be affected are marked in yellow.
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Figure 4.27: Time traces of the currents in the control coils ’CoIu’ (red) and ’CoIo’
(blue) and of the magnetic field measured by the Mirnov coils ’C09-04’ (cyan) and
’C09-29’ (orange).
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5 Mode composition with radial
field coils
Assuming usable B-coil data – at least in the case of locked modes, where shielding
currents no longer play a role – radial field measurements at 4 different poloidal
positions with one toroidal array each are available in AUG. These radial field coils
have to be sufficient to determine the poloidal mode composition for locked modes,
since the poloidal perturbation field of the mode can no longer be distinguished from
the equilibrium magnetic field with enough accuracy, and thus the Mirnov measure-
ments cannot be used for locked modes. The model developed in this work allows
to investigate whether these radial field measurements are theoretically sufficient to
distinguish the different poloidal mode numbers (cf. section 5.1). The use of the
model to determine the poloidal mode composition for locked modes is outlined in
section 5.2.

5.1 Theoretical distinguishability

The poloidal harmonics defined according to equation 4.21 form a vector space in
which they are orthogonal as the product

(j
(m,n)
pert , j

(m′,n′)
pert )Ω ∼

∫ 2π

0

∫ 2π

0
ei(mθ∗−nϕ) · ei(m′θ∗−n′ϕ) dθ∗dϕ = δmm′δnn′ . (5.1)

The measurements also form a vector space, but the measurement vector of a single
harmonic j

(m,n)
pert is not necessarily orthogonal to the measurements of the harmonic

j
(m′,n′)
pert with m ̸= m′, n ̸= n′. Orthogonal measurement vectors are not necessary,

but the measurement vectors must be sufficiently distinguishable to allow the mode
composition to be inferred. To test the ’degree’ of linear independence, we use the
angle α as defined in equation 4.25.

The angle α between two simulated complex measurement arrays B̃
(m,1)
sim for m ∈

{1, 2, 3, 4} is calculated separately for the Mirnov and the radial field coils for the
discharges from table 4.2 to cover different resonant surface geometries and frequen-
cies. Since only the simulated measurements are used in this analysis, the angle α
gives an estimate of how well the two poloidal harmonics can theoretically be dis-
tinguished with the respective passive coils, independent of the uncertainties in the
measured data and their reproducibility with the model. A value of α = 90◦ would
indicate perfect distinguishability. Since a value of α < 10◦ corresponds to a very
good agreement between measurement and simulation for the Mirnov coils (cf. e.g.
figure 4.18), α = 10◦ is used here as the limit for (non-)distinguishability: Values
below α < 10◦ indicate that the measurements of these poloidal harmonics are barely
distinguishable, considering uncertainties in the measurements, in the model, and in
the position of the resonant surface. For the poloidal array of 30 Mirnov coils, we
have assumed that the poloidal harmonics are sufficiently distinguishable, as will be
also shown below. For the radial field coils at only 4 poloidal positions, this is more
critical and needs to be validated.

Figure 5.1 shows α between B̃
(1,1)
sim and B̃

(2,1)
sim in figure a), between B̃

(2,1)
sim and B̃

(3,1)
sim

in figure b), between B̃
(1,1)
sim and B̃

(3,1)
sim in figure c), and between B̃

(2,1)
sim and B̃

(4,1)
sim
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in figure d) depending on the frequencies of the evaluated times (cf. table 4.2). The
angles α between the simulated Mirnov coil measurements (full blue squares) are
well above the line indicating α = 10◦ (black dashed line) in all cases, as expected.
For comparison with the radial field measurements, α is also calculated between
the simulation arrays of only 4 simulated Mirnov measurements (’C09-01’, ’C09-05’,
’C09-17’, ’C09-29’; open blue squares), which are at similar poloidal positions as
the radial field coils. Although coils ’C09-05’ and ’C09-29’ are affected by the PSL,
they are still used for this comparison as their poloidal position is similar to that
of the B-coils. The value of α becomes smaller for the case with only 4 Mirnov
coils, especially when comparing B̃

(1,1)
sim and B̃

(3,1)
sim (figure c)) and B̃

(2,1)
sim and B̃

(4,1)
sim

(figure d)), indicating that the m = 2 and m = 4 poloidal harmonics are hardly
distinguishable by magnetic measurements at these 4 poloidal positions. Indeed, α
between B̃

(2,1)
sim and B̃

(4,1)
sim (figure d)) for the simulated radial field coils ’B31-01’,

’Bu1’, ’SATew’ and ’Bl1’ (full orange circles) is also very low for all frequencies.
In the case of figure c), the values of α for the radial field coils are not very high
either. Figures a) and b) show that α increases for lower frequencies for the radial
field coils, indicating that the damping due to mirror currents in the conducting
structures leads to more similar measurements, which would not be a problem in
the locked case. However, as the calculation of α weights a larger amplitude more
than a smaller one, a normalisation could be introduced if all signals are considered
equally reliable, taking into account that for the radial field coils we additionally have
different coil types. A weighting factor would improve the distinguishability, as can
be seen in figures a) to d), where the largest simulated amplitude, i.e. the amplitude
of the Ballooning coil ’B31-01’, is weighted by a factor of 0.25 (open orange circles),
which is only a rough estimate to demonstrate the effect. Using this weighting before
calculating α increases the value of α for the radial field coils. A weighting factor
might also be useful for calculating the poloidal mode composition with the radial
field coils using the pseudoinverse.

Although it will probably be difficult to distinguish the m = 2 from the m = 4
poloidal harmonic with the radial field coils, the m = 2 harmonic can be distinguished
– in particular for low frequencies – from the m = 3 poloidal harmonic, which are
expected to be the most important modes. As will be shown in section 6.2, the
m = 1 poloidal harmonic is not relevant for determining the phase relation between
an m = 2 and an m = 3 tearing mode, and thus the distinctiveness between the
m = 2 and m = 3 components should be sufficient.

5.1 Theoretical distinguishability
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Figure 5.1: α between 2 simulations B̃
(m1,1)
sim and B̃

(m2,1)
sim with m1 = 1 and m2 = 2

in figure a), with m1 = 2 and m2 = 3 in figure b), with m1 = 1 and m2 = 3 in figure
c), and with m1 = 2 and m2 = 4 in figure d), calculated for the cases listed in table
4.2 and sorted by frequency. α is calculated separately for the Mirnov coils (full
blue squares), for only 4 Mirnov coils (open blue squares), for the radial field coils
’B31-01’, ’Bu1’, ’SATew’ and ’Bl1’ (full orange circles) and for these radial field coils
but with a weighting factor of 0.25 of the simulated amplitude of the Ballooning coil
’B31-01’, asim,Ball. The values α = 10◦ and α = 90◦ are marked with dashed black
lines.

5.2 Extension for locked modes

The model is capable of calculating the electromagnetic problem with non-conducting
structures, corresponding to the case where the tearing mode is locked with respect
to the laboratory frame and hence the vacuum vessel. In the case of non-conducting
structures, the mode frequency is irrelevant, allowing the simulation in the frequency
domain at any frequency.

A method for determining the mode composition in the locked phase is derived in
[53]. While for rotating modes the measured amplitude, ameas,k, and phase, φmeas,k,
can be determined from a single coil k at θcoil,k via FFT, for locked modes, ameas,k and
φmeas,k must first be determined from a toroidal array of coils at θcoil,k. Assuming
a toroidal array of coils k at θcoil,k with the radial position rcoil,k, equation 4.36
evaluated at the same toroidal coil position can also be used for locked modes. If, as
with the Ballooning coils, there is a toroidal array with different rcoil,k (and slightly
different tilt angles), a correction for the differences has to be made before using the
algorithm of [53] to determine ameas,k and φmeas,k for locked modes.

Another method of obtaining the mode composition of locked modes is to directly

5.2 Extension for locked modes
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compare the real part of the simulation with the measurements. Finding the mini-
mum of the equation 4.36 corresponds to the best solution of

B̃sim ã = B̃meas (5.2)

where B̃sim is the simulation matrix containing B̃
(m,1)
sim as columns and ã is the m

dimensional vector of ã(m,1). This equation must also be satisfied for the real part:

Re
(
B̃sim ã

)
= Re (B̃meas) , (5.3)

which is the same as

Re
((

B̃sim,Re + i B̃sim,Im

)
(ãRe + i ãIm)

)
= B̃meas,Re , (5.4)

where the subscripts Re and Im denote the real and imaginary parts, respectively.
Thus, equation 5.4 becomes

B̃sim,Re ãRe − B̃sim,Im ãIm = B̃meas,Re , (5.5)

which can be written in matrix notation:(
B̃sim,Re − B̃sim,Im

)(ãRe

ãIm

)
= B̃meas,Re (5.6)

and solved by the pseudoinverse. The amplitudes a(m,1) and phases φ(m,1) can then
be determined from ãRe and ãIm.

In order to test the determination of ã by solving equation 5.6, synthetic data with
specified amplitudes and phases are used instead of measured data and must be
reproduced. As explained earlier, locked modes require toroidally distributed passive
radial field coils and hence the real part of all toroidally distributed radial field coils,
i.e. the vector B̃meas,Re consists here of 25 entries (7 Ballooning coils, 2 saddle coil
signals and 16 B-coils). The simulated amplitudes and phases are calculated directly
for all toroidally distributed Ballooning coils, the saddle coil signal corresponding
to ’SATew’ and the B-coil signals ’Bl1’, ’Bu1’, ’Bl8’, ’Bu8’ (cf. section 4.4.3). The
remaining virtual B-coil measurements have to be calculated – assuming n = 1 modes
– by adding −π

4 l ·n, where l ∈ {1, ..., 6}, to the phase of ’Bl1’ and ’Bu1’. Similarly, by
adding π

2n to the phase of ’SATew’, the virtual measurement of ’SATns’ is derived.
Figure 5.2 shows that the amplitudes a(1,1) = 1, a(2,1) = 2, a(3,1) = 3 and the phases
φ(1,1) = −1, φ(2,1) = 3, φ(3,1) = 2 of the synthetic data can be determined from the
radial field coils using equation 5.6, so that the fitted data matches the synthetic
data. The coil index in figure 5.2 describes the position in the vector B̃meas,Re.

As shown in section 5.1, a weighting factor can improve the distinguishability of
two simulated measurement vectors of different poloidal harmonics if the individual
simulated coil amplitudes are of different magnitude. Here, the number of coils of
the same type is also different. Thus, an additional weighting by the number of coils
of the same type could be considered.

For slowly rotating n = 1 tearing modes, where the mode is visible in the difference
signal of two B-coils toroidally separated by an angle of π, the amplitudes determined
from FFT of all difference signals of two opposing upper (and lower) B-coils should be
equal as long as the mode rotates. However, this is not the case as shown in figure 5.3
for a very slowly rotating mode (f = 2.7Hz), where the amplitudes of the difference
signals differ significantly. The steel casing surrounding the B-coils, not implemented

5.2 Extension for locked modes
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Figure 5.2: Test of equation 5.6 using synthetic data of radial field coils for discharge
40703 at t = 7.1 s and f = 635Hz with given amplitudes a(1,1) = 1, a(2,1) = 2,
a(3,1) = 3 and phases φ(1,1) = −1, φ(2,1) = 3, φ(3,1) = 2’ (blue squares) which can be
reproduced by the fitted data (orange crosses), where the poloidal mode composition
ã is determined from the radial field coils using equation 5.6. The names of the coil
signals to which the coil indices (on the x-axis) belong are given in the figure.

Figure 5.3: Amplitudes of the difference signals ’DiffUBl’ of the lower B-coils (blue)
and ’DiffUBu’ of the upper B-coils (orange) for the B-coils toroidally separated by
an angle of π for discharge 40648 at about t = 5.0s, where the mode was rotating at
f = 2.7Hz. The name of the difference signal, e.g. ’DiffB15’, is taken from the coil
labels of the two B-coils involved. The dashed lines show the mean values with the
corresponding colours.

in the model (cf. section 4.7), cannot explain the different amplitudes, as the damping
should be similar for all B-coils, which is not observed. Thus, the integrated B-coil
data required in the locked phase cannot be guaranteed to be correct.

The present work provides the basis for combining the different coil types so that

5.2 Extension for locked modes
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the magnetic measurements in the rotating and locked phases can be interpreted,
although the cause of the uncertainty in the B-coil data must first be clarified before
the measurements can be used.

5.2 Extension for locked modes



6 Application of the model
The model described in section 4.4 can now be used to determine the poloidal mode
composition (cf. section 4.5) from the Mirnov coils and thus to analyse several cases.
We first consider two examples, where the m = 2 and m = 3 tearing modes are
decoupled and can therefore be analysed separately (cf. section 6.1), then the phase
relation between coupled modes and between a tearing mode and its poloidal side-
bands is analysed in section 6.2. Although a tearing mode in the perturbation current
density formulation used in this work is composed of a dominant poloidal harmonic
and its poloidal sidebands, we use the term tearing mode to describe the dominant
poloidal harmonic. In section 6.3, the mode composition obtained from the Mirnov
coils is applied to the simulated measurements of the radial field coils to prove a
consistent description.

6.1 Characterisation of poloidal sidebands of tearing modes

In order to demonstrate the necessity and to study the characteristics of the poloidal
sidebands with the description of the perturbation current density according to equa-
tion 4.21, an uncoupled tearing mode, e.g. a pure m = 2 mode, is required. Since
an m = 3 tearing mode is not always visible in the ECE data (the example shown
in figure 3.1 represents an exception) due to the applied settings or an incomplete
temperature flattening at the q = 3 surface, the existence of and thus the coupling to
an m = 3 tearing mode cannot be excluded in general. Thus, two cases are evaluated
where the m = 2 and m = 3 tearing modes exist, but rotate at different frequencies
and are hence known to be uncoupled. Note that in this section the term sidebands
corresponds to the poloidal harmonics with ∆m = ±1 with respect to the dominant
poloidal harmonic, called tearing mode, at the selected frequency.

Figure 6.1 shows the spectrograms of the discharges 34008 and 33980 between t =
3.16 s and 3.65 s and between t = 5.53 s and 5.64 s respectively. It can be seen in
figure 6.1 a) that the coupled modes separate at about t = 3.4 s, until they couple
again at about t = 3.44 s (indicated by the white box). In the case of discharge
33980 (figure 6.1 b)) there also exists a phase (white box) where the modes rotate
at different frequencies until they couple at about t = 5.58 s. As described in section
3.4, a separate analysis at the dominant frequencies is possible in the period when
the modes are uncoupled.

Table 6.1 gives the relevant discharge parameters for the selected times. The de-
coupling of the m = 2 and m = 3 tearing modes in discharge 33980 occurs during
the ramp-down of the plasma current, i.e. at a lower value of Ip. Since the toroidal
magnetic field Bϕ is the same in both cases (cf. table 6.1), the q values at the plasma
edge are therefore different. In addition, the heating power Pheat of discharge 33980
at t = 5.555 s is only 40% of Pheat of discharge 34008 at t = 3.41 s.

Since we consider poloidal sidebands with ∆m = ±1, the poloidal harmonics j
(m,1)
pert

with m ∈ {1, 2, 3} and with m ∈ {2, 3, 4} are simulated for the m = 2 and m = 3
tearing modes, respectively. The poloidal mode composition is then determined from
the Mirnov coils for the dominant frequencies of the m = 2 and m = 3 tearing modes
separately. Contrary to the procedure described in section 4.5 and used in the rest
of this work, where each poloidal harmonic j

(m,1)
pert – except for j

(1,1)
pert – is simulated

on its q = m surface, the poloidal sidebands with ∆m = ±1 are now simulated on
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Figure 6.1: Spectrograms of the Mirnov coil signal ’C09-16’ on the HFS for dis-
charges 34008 in figure a) and 33980 in figure b). The phases in which the m = 2
and m = 3 tearing modes are decoupled are marked with white boxes in both figures.
The selected frequencies f = 7700Hz and f = 5600Hz of the m = 2 and m = 3
tearing mode, respectively, at t = 3.410 s (figure a)) as well as f = 7900Hz and
f = 5580Hz of the m = 2 and m = 3 tearing mode, respectively, at t = 5.555 s
(figure b)) are indicated by arrows.

Parameter 34008 at t = 3.410 s 33980 at t = 5.555 s

Ip 0.8MA 0.6MA
Bϕ −2.5T −2.5T
Pheat 6.4MW 2.6MW
βp 0.67 0.68

Table 6.1: Discharge parameters for discharges 34008 at t = 3.410 s and 33980 at
t = 5.555 s.

the resonant surface of the tearing mode to which they belong to (cf. figure 2.7),
to account for the differences in resonant surface geometries and θ∗ (cf. figure 4.17
and thus obtain the correct amplitudes. Therefore, the amplitudes a(3,1) of j

(3,1)
pert

simulated on the q = 2 surface and a(4,1) of j(4,1)pert simulated on the q = 3 surface will
be larger than in the simulations where j

(m,1)
pert is simulated on the q = m surface:

As the m = 3 and m = 4 poloidal harmonics are simulated on a resonant surface
further inside, their amplitudes at the simulated measurement position a

(m,1)
sim,k are

smaller and therefore larger amplitudes a(m,1) are required for the same measured
amplitudes.

Tables 6.2 and 6.3 show the amplitudes a(m,1) of the poloidal sidebands and the
relative phases

φm=ij = φ(i,1) − φ(j,1) , (6.1)

where i and j are the poloidal mode numbers with i being the dominant poloidal
harmonic, for the discharges 34008 at t = 3.41 s and 33908 at t = 5.555 s for the
frequencies of the m = 2 and m = 3 tearing modes. In the case of the m = 2 tearing
mode (table 6.2), the amplitude a(3,1) is considerably larger than a(1,1) for both
discharges. Especially the large value of a(3,1) for discharge 33980, which describes
the m = 3 sideband, might indicate the contribution of an m = 3 kink mode (cf.
section 3.3) in resonance with the m = 3 component. The phase relation between
the m = 1 and m = 2 Fourier components appears to be close to π, while the relative
phases φm=23 are quite different. The amplitudes of the poloidal sidebands of the

6.1 Characterisation of poloidal sidebands of tearing modes
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m = 3 tearing mode (table 6.3) are more similar, particularly in the case of discharge
33980. The phase relations of the m = 2 sideband to the m = 3 poloidal harmonic
are similar for both discharges with φm=32 ≈ 3/4π, while φm=34 are quite different
in the case of the m = 3 tearing mode.

Discharge t [s] f [Hz] a(1,1) a(3,1) φm=21 φm=23

34008 3.410 7700 0.07 0.30 0.91 π -0.30 π
33980 5.555 7900 0.07 0.78 0.89 π 0.89 π

Table 6.2: Normalised amplitudes, i.e. the dominant mode amplitude (here a(2,1))
is 1.0, and relative phases of the poloidal sidebands of a (2, 1) rotating tearing mode.

Discharge t [s] f [Hz] a(2,1) a(4,1) φm=32 φm=34

34008 3.410 5600 0.14 0.33 0.69 π -0.14 π
33980 5.555 5580 0.20 0.21 0.83 π -0.65 π

Table 6.3: Normalised amplitudes and relative phases of the poloidal sidebands of
a (3, 1) rotating tearing mode. Here, the dominant mode amplitude is a(3,1) = 1.0.

The analysis of SXR data shows the presence of a m = 1 mode – presumably a kink
mode – phase-locked to the m = 2 mode in both cases, which cannot be separated
from the contribution of the m = 1 sideband simulated on the q = 2 surface. Note
that, as mentioned above, the amplitude a(1,1) determined for the m = 1 poloidal
harmonic is smaller than the one that would be obtained for an m = 1 mode on the
q = 1 surface further in. This might explain the fact that the amplitudes a(1,1) are
not large compared to a(3,1) in the two cases of table 6.2.

The importance of considering the poloidal sidebands of any kind is particularly
apparent in the case of discharge 33980. The measured amplitudes ameas,k cannot be
reproduced by the m = 2 poloidal harmonic j(2,1)pert alone, as shown in figure 6.2, where
ameas,k and the phases φmeas,k of the Mirnov coils at the frequencies f = 7900Hz,
corresponding to the m = 2 mode, and f = 5580Hz, corresponding to the m = 3
mode, are shown together with the simulated Mirnov amplitudes and phases. The
consideration of the poloidal sidebands improves the agreement from α = 24.2◦ to
α = 9.54◦ for the m = 2 tearing mode and from α = 21.5◦ to α = 8.73◦ for the
m = 3 tearing mode.

The improvement in the agreement between measurement and simulation results by
considering the poloidal sidebands is less significant for the case of discharge 34008
as shown in figure 6.3. The addition of sidebands with ∆m = ±1 improves α from
18.7◦ to 14.5◦ for the m = 2 tearing mode and from α = 18.7◦ to α = 14.1◦ for the
m = 3 tearing mode.

Given these cases, it is difficult to conclude on a general rule for the amplitudes
of the poloidal sidebands resulting from the formulation according to equation 4.21
and the phase relations of these sidebands to the tearing modes. Although we are
confident that the m = 2 and m = 3 tearing modes are decoupled, there could still
be an ideal kink response contributing to the poloidal sidebands of the dominant
m component in addition to the sidebands arising from the perturbation current
density formulation. In particular, the amplitudes of the poloidal sidebands seem to
differ significantly between cases. The phase relation between a tearing mode and
its poloidal sidebands is further investigated in the following section 6.2.

6.1 Characterisation of poloidal sidebands of tearing modes
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Figure 6.2: Measured amplitudes and phases of the Mirnov coils (blue crosses) at
the m = 2 mode frequency f = 7900Hz (figure a)) and at the m = 3 mode frequency
f = 5580Hz (figure b)), where the dashed blue line is only for guidance, together
with the simulated amplitudes and phases for j

(2,1)
pert (figure a)) and for j

(3,1)
pert (figure

b)) alone (red squares) and for j(m,1)
pert with m ∈ {1, 2, 3} (figure a)) and m ∈ {2, 3, 4}

(figure b)) (green dots). The values of α are given in the lower right corner of figures
a) and b), where the upper value corresponds to the simulation with only one and
the lower value corresponds to the simulation with three Fourier components.

Figure 6.3: Measured and simulated amplitudes and phases of the Mirnov coils
as in figure 6.2. In discharge 34008 at t = 3.41 s, the m = 2 mode frequency is
f = 7700Hz (figure a)) and the m = 3 tearing mode rotates at f = 5600Hz (figure
b)).

6.1 Characterisation of poloidal sidebands of tearing modes
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6.2 Determination of mode composition for different β

As shown in section 6.1, the description of the perturbation current density according
to 4.21 requires the consideration of poloidal sidebands. Thus, to study the phase
relations between coupled modes and a single mode and its sidebands, we need to
distinguish between cases where a (3, 1) mode is present on the q = 3 surface and
cases where the m = 3 component corresponds to a poloidal sideband of the m = 2
mode on the q = 2 surface.

This is achieved using several discharges analysed in [22], where coupled m = 2 and
m = 3 modes are visible in the ECE data which are listed in table 6.4. Determining
the mode composition of these discharges from Mirnov data, as described in section
4.5, gives a normalised m = 3 mode amplitude a(3,1) > 0.25 in each case.

Coupled m = 2 and m = 3 modes:
Discharge t [s] βp f [Hz]

34536 7.56 0.25 479
33193 4.71 0.97 751
34635 1.85 0.30 759
31967 7.05 0.26 1060
35794 3.41 0.29 1300
35750 8.16 0.15 1550
34683 1.44 0.22 1732
33656 6.94 0.46 1967
34590 6.38 0.545 2019
34590 6.28 1.11 2251
35723 6.30 0.54 3249
34904 5.14 0.96 5189
34800 5.37 0.895 5802
33570 7.20 1.09 6857
34800 5.66 1.26 7225
34800 5.76 1.39 8030
34154 3.00 2.14 8441
34810 5.76 1.34 8721
34110 3.60 1.10 9201
33570 6.67 0.92 9247
34158 2.96 1.52 9550
33570 8.17 1.31 9832
34154 5.342 1.37 10094
34154 5.00 1.68 11333

Table 6.4: Discharges with coupled m = 2 and m = 3 modes and their times,
analysed (among others) in [22], together with the mode frequencies and βp.

Moreover, cases with a dominant m = 2 mode and a small amplitude of the m = 3
poloidal harmonic, a(3,1) < 0.20, were taken (cf. table 6.5) to analyse the phase
relation of a (2, 1) mode to its sidebands in the description used in this work. Since
the rotation of the plasma in AUG is mainly due to the NBI injection, which increases
the plasma β, there is an almost linear dependence between the poloidal plasma beta,
βp, and the mode frequency, as shown in figure 6.4.

As mentioned in section 2.4.5, tearing modes were expected to couple constructively
at the LFS [50], since the magnetic flux surfaces have a smaller distance on the
LFS and parallel currents are attracted by the j × B force (cf. equation 2.2). In

6.2 Determination of mode composition for different β
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Dominant m = 2 mode and small a(3,1):
Discharge t [s] βp f [Hz]

40488 1.53 0.55 153
38628 1.84 0.41 280
39661 5.70 0.86 448
34776 2.48 0.38 593
40703 7.10 0.71 635
41417 3.17 0.71 698
38706 3.00 0.42 719
41417 3.50 0.81 946
38761 2.70 0.81 1640
41117 2.12 0.40 2211
41417 2.24 0.41 2400
35354 3.60 0.38 2621
41417 4.46 0.52 3075
34776 2.36 0.67 3757
41417 3.82 0.96 4207
36171 5.61 0.86 4220
35354 3.41 0.67 4952
32388 2.50 0.30 5177
35667 1.66 0.59 5380
41417 4.15 1.10 5804
41417 1.81 0.85 7779
41091 6.05 1.24 9383

Table 6.5: Discharges with a dominant m = 2 mode and small a(3,1) < 0.20 and
their times, mode frequencies and βp.

Figure 6.4: Dependence of the mode frequency on βp for discharges listed in table
6.5, where the relative amplitude a(3,1) < 0.20, and table 6.4, where the relative
amplitude a(3,1) > 0.25.

[22] it was shown, by analysing the phase relation with ECE data and the model
developed in [29] using Mirnov data, that the phase relation between the m = 2 and
m = 3 tearing modes in AUG can vary from 0, i.e. constructive coupling on the LFS,
to π, i.e. constructive coupling on the HFS, depending on the plasma pressure and
rotation velocity. Using Mirnov measurements and the model developed in this work,

6.2 Determination of mode composition for different β



6 Application of the model | 81

the results of [22] are confirmed. This is shown in figure 6.5, where the relative phases
between m = 2 and m = 3, denoted according to equation 6.1, are compared with the
phase relation determined from ECE and modelled magnetic data in [22]. Note that
in [22], the poloidal harmonics m ∈ {2, 3, 4, 5} instead of m ∈ {1, 2, 3, 4} were used to
infer the poloidal mode composition, which however gives a similar result for φm=32,
indicating that – for large amplitudes a(3,1) – the m = 1 Fourier component can be
ignored for determining the phase relation between coupled m = 2 and m = 3 tearing
modes. As figure 6.5 shows, it is possible to derive information about the poloidal
mode structure, in particular the phase relation between coupled modes, using only
magnetic measurements, which are always available, and the model described in this
work.

Figure 6.5: Figure a) shows the phase relations φm=32 determined from ECE data
in [22] (red crosses) and using the model described in section 4.4 (orange squares)
for the discharges listed in table 6.4 in dependence of βp. The direct comparison
between the phases is shown in figure b) (orange squares), where the phase relations
determined in [22] using the MIC code [29] are also shown (blue dots). The solid
and dashed black lines represent the identity and the identity line shifted by ±0.20π,
respectively.

If the poloidal sidebands represent a correction to the description of the perturbation
current density that is independent of βp, a fixed relation of the sidebands to the
mode is expected. We assume that the m = 1 component is always a poloidal
sideband, so that all phases, φ(1,1), determined for the cases listed in both tables 6.4
and 6.5 are taken for the evaluation of the phase relation between a tearing mode
and its sideband. As only cases with a dominant m = 2 mode or coupled m = 2
and m = 3 modes were selected, the m = 2 component always describes a tearing
mode on the q = 2 surface. In the cases, where the mode amplitude a(3,1) < 0.20,
listed in table 6.5, the m = 3 component is presumably a poloidal sideband of the
m = 2 mode. We use the phases φ(4,1) determined for the cases of table 6.4, where an
m = 3 mode is present on the q = 3 surface and the m = 4 component is assumed to
correspond to its ∆m = +1 sideband. In order to see the dominant phase relations,
the relative phases φm=12, φm=32 and φm=43 (cf. equation 6.1) are shown in figure
6.6. Figure a) shows the relative phases depending on βp, figures 6.6 b), c) and
d) show histograms of φm=12, φm=32 and φm=43, respectively. The phase relation
between the m = 1 and m = 2 poloidal harmonics is close to π, especially for higher
βp, with a mean value of φm=12 of 0.98π (cf. figure 6.6 b)). Figure 6.6 c) shows
that the phase relation φm=32 has no clear peak at a certain value, which could be

6.2 Determination of mode composition for different β
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partly explained by the fact that in some cases there might be an m = 3 mode on
the q = 3 surface, which is considered here as a sideband and has a phase relation
that depends on βp (cf. figure 6.5). Figure 6.6 d) suggests that the phase relation of
φm=43 has a peak at about −π/4 or slightly shifted further to the negative, with a
mean value of −0.18π. However, this peak is not as clear as in the case of figure b)
and would need to be confirmed with more data. Cases with βp ⩽ 0.5 are marked
by lighter colours in figures b), c) and d) to show where there is scatter in the phase
relations at low βpol.

Figure 6.6: Phase relations φm=12 (blue), φm=32 (orange) and φm=43 (green). Fig-
ure a) shows φm=12 (blue dots), φm=32 (orange squares) and φm=43 (green triangles)
depending on βp, where βp = 0.5 is marked by a vertical dashed line; figure b), c)
and d) show histograms of the individual phase relations, where values with βp ⩽ 0.5
are marked with lighter colours. The mean value is given in figures b) and d), where
a peak is visible in the histogram.

The phase relations between the m = 2 tearing mode and its poloidal sidebands
with ∆m = ±1 determined in figure 6.6 are compared with the phase relations
determined using the CASTOR3D [36] calculations presented in figure 2.7 (cf. section
2.4.2), where an m = 2 tearing mode was found. Figure 6.7 shows the phases of the
poloidal harmonics m = 1, m = 2 and m = 3 at the resonant q = 2 surface. As
described in section 2.4.1, the solution of the tearing mode equation 2.32 describes
a perturbation current density which changes sign at the resonant surface as shown
in figure 2.4. This is also the case for the CASTOR3D calculations of figure 2.7 and
can be seen by the phase jump of π in figure 6.7. The phase difference between the
m = 2 tearing mode and its poloidal sidebands is π, which corresponds to the phase
relations φm=12 shown in figure 6.6 b). The phase relation can be changed by the
existence of another resonant surface in the plasma and potentially a (small) tearing
mode on that resonant surface. As there is a q = 3 and a q = 4 surface in the
discharges used for this evaluation, the phase differences φm=32 and φm=43 can be

6.2 Determination of mode composition for different β
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different from π as it is the case in figure 6.6 c) and d).

Figure 6.7: Phase angle of the m = 1 (red), m = 2 (black) and m = 3 (blue)
poloidal harmonics shown in figure 2.7 at the resonant q = 2 surface at a normalised
toroidal flux of 0.45. (Figure: courtesy of Jonas Puchmayr, MPI for Plasma Physics)

The assumption that at higher frequencies, and thus higher differential rotation
between the q = 2 and q = 3 surfaces, the contribution at the q = 3 surface no longer
plays a role and the phase relation φm=32 between the m = 2 tearing mode and its
m = 3 sideband approaches π could not be confirmed. However, the result from
the linear MHD calculation that the tearing mode is in antiphase to its sidebands
could be reproduced for the phase relation between the m = 1 and m = 2 poloidal
harmonics.

6.3 Simultaneous application to Mirnov and radial field coils

Parts of the content, figures and text of this section are included in a publication ac-
cepted by Plasma Physics and Controlled Fusion (DOI 10.1088/1361-6587/adc0bd),
of which the author of this thesis is the first author.

After correcting the simulated amplitudes of the Mirnov coils to account for the
lack of radial currents in the vessel flange structure (cf. section 4.6.1) and with the
effective parameters σvessel,eff and Rsaddle,eff determined in section 4.6.2, the model
can be used to interpret the magnetic measurements of the different coil types in
AUG. The simulated complex measurements B̃sim,k, with the complex amplitudes
ã(m,1) (cf. equation 4.36) determined from the Mirnov coils, should also agree with
the measured complex amplitudes B̃meas,k for radial field coils k. We will show below
that this is the case for Ballooning and saddle coils.

Figures 6.8 and 6.9 show the comparison between B̃sim,k and B̃meas,k for different
coils k with ã(m,1) determined from the Mirnov coils for the discharges 38761 and
40703 at the frequencies f = 1640Hz and f = 635Hz, respectively. The plots a)
show B̃meas of the Mirnov coils as blue crosses. The dashed blue line connecting
the measured values is intended as a guide for the eye. B̃sim of the Mirnov coils are
shown as red dots in the plots a). The relative amplitudes and phases of j(m,1)

pert with
m ∈ {1, 2, 3, 4} are given in the legend. The complex coefficients ã(m,1) determined
from the Mirnov coils are used to calculate B̃sim,k for the Ballooning coils, the B-coils
and the saddle coils (red dots in plots b) and c)) which are compared with B̃meas,k

(blue crosses in plots b) and c)).

The amplitudes of the measured saddle and B-coils in the plots c) are determined
from the difference signals of the coil pairs that are ∆Φcoil = π apart, which is already

6.3 Simultaneous application to Mirnov and radial field coils
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done in hardware for the saddle coils (cf. section 3.3). Two measured difference
signals of the same coil types, e.g. ’SATew’ and ’SATns’, should have the same
amplitudes for rotating tearing modes, which is not exactly the case. Therefore,
error bars are introduced in the plots c) that represent the deviations of the measured
amplitudes of the difference signals of the same coil type. For the B-coils, large error
bars are present in both cases and the simulated mean B-coil amplitudes do not match
the measured ones. Owing to the limited availability of usable B-coil data for rotating
modes, as discussed in section 5.2, and the fact that the B-coils are surrounded by
additional structures that are difficult to replicate and are therefore not included in
the model, the B-coil data is shown here only for the sake of completeness.

As explained earlier, only the radial measurements are available for locked modes.
This means that B̃meas,k of the toroidal arrays of the Ballooning, saddle and B-coils
alone must be used to determine ã(m,1) of locked modes, which is more challenging
than in the rotating phase due to the limited number of toroidally distributed coils
at different poloidal positions. As previously mentioned, the procedure for deter-
mining the measured amplitudes ameas,k and phases φmeas,k at one poloidal position
from a toroidal array of coils is described in [53], the extension for using toroidally
distributed Ballooning coils at different minor radii and tilting angles is shown in
section 5.2. The limited availability of B̃meas,k for radial field coils k is illustrated
here for the rotating case, where toroidally distributed coils are not required. The
plots a) of figures 6.8 and 6.9 show the simulated (green dots) and measured (black
crosses) results of the Ballooning coil ’B31-01’, the B-coils ’Bu1’ and ’Bl1’ and the
saddle coil signal ’SATew’ in addition to the Mirnov results. As expected and consis-
tent with the measured amplitudes, the amplitudes of these radial coils are smaller
than or equal to the Mirnov amplitudes due to the effect of the conducting structures
even if Ballooning and B-coils are closer to the resonant surface. The phase in plot
a) is shifted for comparison by the different toroidal coil positions via

n (Φcoil,r − Φcoil,θ)

with Φcoil,r the toroidal positions of the radial field coils ’B31-01’, ’Bu1’, the signal
’SATew’ and ’Bl1’. The angle Φcoil,θ denotes the toroidal position of the poloidal
array of the Mirnov coils ’C09’ (cf. section 3.3). There is an expected phase difference
of approximate π

2 between the radial and the poloidal perturbation field components,
which is reproduced by the simulation.

Figures 6.8 and 6.9 show that there is agreement for all coil types that can be used
in the rotating phase, i.e. the measured amplitudes and phases (blue crosses) can be
reproduced by the simulation (red dots) for the radial and the poloidal field coils.
ã(m,1) obtained from the Mirnov coils are also valid for the other coil types, confirming
a consistent description of the measurements from the different coil types for rotating
modes with the model described here. The small deviations between B̃sim and
B̃meas of the Ballooning coils could be due to the poloidal tilt not being accurately
documented, which might be investigated in future research. The measured complex
amplitudes of the B-coils cannot be determined with sufficient accuracy, at least in
the rotating case. As discussed in section 5.2, the reasons for this must be found and,
if possible, eliminated before the integrated B-coil data can be used for the purpose
of studying locked modes.

6.3 Simultaneous application to Mirnov and radial field coils
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Figure 6.8: Comparison of simulated (red dots) and measured (blue crosses) am-
plitudes and phases for discharge 38761 at t = 2.7 s, where the tearing mode was
rotating at a frequency f = 1640Hz. ã(m,1) with m ∈ {1, 2, 3, 4} determined from
the Mirnov coils (plot a)) are used to calculate the simulated amplitudes and phases
for the toroidal Ballooning coils in the toroidal direction (plot b)) and for the B-coils
and saddle coils in poloidal direction (plot c)). The complex amplitudes of the radial
field coils are also shown in plot a) as green dots for the simulated values and black
crosses for the measured values.

6.3 Simultaneous application to Mirnov and radial field coils



86 | 6 Application of the model

Figure 6.9: Same plots as in figure 6.8 for discharge 40703 at t = 7.1 s, for a tearing
mode with f = 635Hz.

6.3 Simultaneous application to Mirnov and radial field coils



7 Summary and outlook

Tearing modes, a resistive MHD instability, with a toroidal mode number n = 1 pose
a significant challenge to the operation of large tokamaks planned in the future for
the generation of usable energy via nuclear fusion. In particular, toroidally coupled
modes, i.e. tearing modes with different poloidal mode numbers m rotating at the
same frequency, lead to a confinement degradation and potentially to a disruption, a
sudden loss of the thermal energy and the plasma current, which can severely damage
the machine. The analysis of (coupled) tearing modes is therefore important for a
physical understanding and for the initiation of countermeasures. For this purpose,
the poloidal mode composition of the tearing modes, i.e. the complex amplitudes
with amplitudes a(m,1) and phases φ(m,1) of the poloidal harmonics, must be deter-
mined, which requires magnetic measurements of the tearing modes and a model
that calculates the expected measurements for each poloidal harmonic.

In the ASDEX Upgrade (AUG) tokamak, different types of passive coils are installed,
which are differently affected by the frequency dependent shielding currents in the
conducting structures induced by a rotating mode. For rotating modes, a poloidally
arranged array of Mirnov coils is used to measure (mainly) the poloidal perturbation
field of the mode. For locked modes, i.e. modes that are no longer rotating with
respect to the laboratory frame, the integrated measurement of the radial field com-
ponent is required, since the poloidal perturbation field component can no longer
be distinguished from the poloidal equilibrium magnetic field with sufficient preci-
sion. Thus, Mirnov coils cannot be utilised for locked modes, while most radial field
coils cannot be used for fast rotating modes due to the damping of the radial field
component in front of conducting structures. In order to analyse the poloidal mode
composition for all mode frequencies, i.e. rotating and locked modes, it is neces-
sary to combine the radial and poloidal field measurements in a consistent manner.
This requires a comparison in the low frequency range where all coils are available
and where shielding currents, flowing in the vacuum vessel and other conducting
structures, which might be non-toroidally symmetric, are important. An analytical
formula for the influence of mirror currents on the perturbation magnetic field in
front of a conducting wall in cylindrical approximation is not sufficient for an accu-
rate description. Therefore, a three-dimensional model using FEM and implemented
in the GetDP code [59] has been developed, which calculates the expected virtual
measurements generated by a perturbation current density of a single helicity, so
that the poloidal mode composition, i.e. a(m,1) and φ(m,1) for different poloidal mode
numbers, can be determined due to the linearity of the problem.

The perturbation current density describing a tearing mode is set to flow parallel to
the equilibrium magnetic field on the resonant surface, which is defined with a vary-
ing thickness according to the different distances between neighbouring magnetic
flux surfaces. In a torus, the perturbation current density has poloidal sidebands
with ∆m = ±1. The plasma in the model is treated as vacuum, which introduces
uncertainties in the determination of the mode composition that need to be con-
sidered. Relevant conducting structures affecting the measurements of the coils in
AUG are implemented to include the effect of the frequency dependent shielding
currents on the magnetic measurements. The frequency dependence of the virtual
measurements of the poloidal and radial field components in front of a conducting
wall, expected from the analytical cylindrical approximation, is shown to be modi-
fied in toroidal geometry. The distribution of the perturbation current density in a
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torus according to the straight field line angle θ∗, instead of θ in a periodic cylinder,
gives a non-monotonic frequency dependence of the perturbation magnetic field in
front of a resistive wall on the high field side. In addition, the implementation of the
support bridges of the passive stabilisation loop (PSL) is shown to be necessary to
obtain a loop between the PSL and the support bridges, and thus for the observed
attenuation of the measured Mirnov coil amplitudes behind the PSL. The evalu-
ation of the integrated toroidal current in the vacuum vessel gives a resistive time
scale of the wall of 5ms, which is in agreement with values from the literature [82].
By comparing the ratio of simulated to measured results from magnetic measure-
ments of different coil types, a correction to the amplitudes of the virtual Mirnov
coil measurements and effective parameters are determined. The model provides a
consistent description of the expected magnetic measurements of different coil types
for all frequencies. Agreement between simulated and measured Mirnov amplitudes
and phases was shown for different discharges covering a wide frequency range.

For locked modes, where only radial magnetic field measurements at far fewer poloidal
positions are available, it is necessary to validate that these poloidal positions are
sufficient to determine the poloidal mode composition. By comparing the complex
vectors of the virtual radial field measurements for two different poloidal harmonics,
it is shown that the m = 2 poloidal harmonic can be distinguished with the radial field
coils from the m = 3 poloidal harmonic, which are supposed to be the most relevant
tearing modes in terms of disruptions. The model is capable of calculating the
electromagnetic problem with non-conducting structures, corresponding to the case
of a locked mode. A method is presented to determine the poloidal mode composition
directly from toroidally and poloidally distributed magnetic measurements using the
real part of the simulation result, which is particularly useful for measurement coils
installed at the same poloidal positions but at different radial positions with different
tilting angles.

In this work, we apply the model to rotating modes, where more magnetic measure-
ments are available at different poloidal positions. Two discharges, where the m = 2
and m = 3 tearing modes are known to be decoupled, show the importance of con-
sidering the poloidal sidebands with ∆m = ±1. In order to conclude a general phase
relation between the different poloidal harmonics, multiple discharges are analysed,
distinguishing between the m = 3 poloidal harmonic describing a tearing mode and
a poloidal sideband belonging to the m = 2 tearing mode. The result found in [22],
that the phase relation between coupled m = 2 and m = 3 tearing modes can vary
between 0 and π depending on the plasma β, is confirmed. The phase relation be-
tween the m = 1 poloidal sideband and the m = 2 poloidal harmonic is shown to
be π as expected from theory, while the relative phase between the m = 3 (m = 4)
poloidal sideband and the m = 2 (m = 3) poloidal harmonic has no clear relation
and is presumably influenced by the resonant q = 3 (q = 4) surface in the plasma.

Moreover, to proof a consistent description of the different coil types, the ampli-
tudes a(m,1) and phases φ(m,1) are determined from the Mirnov coils to calculate the
simulated virtual measurements B̃sim,k for all coil types. The resulting complex am-
plitudes B̃sim,k are found to agree with their corresponding measured values not only
for the Mirnov coils but also for radial field coils, confirming a consistent description
of the different magnetic measurements.

This work provides a tool for analysing the poloidal mode structure, which can be
used for all mode frequencies and magnetic measurements of different coil types.
Future work could simulate the poloidal sidebands with ∆m = ±1 on the resonant
surface of the q = m/1 surface in addition to the simulation on the q = m + ∆m
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surface, or even use the radial profiles of the perturbation current density determined
from stability calculations, as described in [35], to resolve the vacuum approxima-
tion. Moreover, this model might also be used in the future as a tool for determining
suitable coil positions in AUG that are planned for installation in the future. Pos-
sible extensions to the model by improving the properties of and implementing new
additional conducting structures could be made and are discussed in this work.

For locked mode analysis, the inconsistencies in the measured B-coil data found in
this work must first be understood and, if possible, corrected before these coils can be
used to determine the poloidal mode composition of locked modes using the model
described here. Since locked modes inherently have the same frequency, toroidal
mode coupling is thought to play an important role, which might be verified in
the future. Once the B-coil data can be used, the poloidal mode structure can be
analysed in (fast) rotating, locking and locked phases, so that the evolution towards
a disruption, during which rotating modes often become locked, can be studied due
to the consistent description of the different coil types. This will allow to analyse
the relevance of mode coupling for disruptions.

The present work is an important contribution to this goal, as a consistent description
of the poloidal and radial field coils is achieved by identifying and implementing
the relevant conducting structures that affect the measured perturbation field. The
phase relation between coupled rotating m = 2 and m = 3 tearing modes in AUG is
shown to depend on βpol and thus on the rotation frequency, which might indicate a
preferred phase relation between locked m = 2 and m = 3 tearing modes. The use
and development of the model allowed several cases to be analysed and lessons to be
learnt. As Einstein said, "the joy of looking and understanding is the most beautiful
gift of nature".





A Appendix

As described in section 4.4.3, the virtual coils are described via a post-calculation
where the magnetic vector potential is integrated along the coil winding. For the
B-coils, the points on the contour of the centre winding are taken directly from the
B-coil position documentation, the saddle coil is described by two segments of a circle
with radius Rsaddle and a vertical connection between them. The contours describing
the windings of the Mirnov and Ballooning cols are more complicated and described
in the following sections A.1 and A.2. The calculation of the B-coil area can be found
in section A.3.

A.1 Mirnov contour

Starting point is the centre of a Mirnov coil at ϕ = 0x0
y0
z0

 ,

where the coordinate system introduced in section 4.2 is used. A corner point is then
described by x0

y0
z0

+
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where ∆x = 45mm is the width of a Mirnov coil, ∆y = 1mm is the vertical
distance between 2 windings, N ∈ [−65, 65] is the number of a specific winding,
∆z = 61.647mm is the effective length of a coil and dθ is the coil orientation relative
to the horizontal. The vectors connecting the corner points at ϕ = 0 arecos(dθ) −sin(dθ) 0
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As the Mirnov coils are located at ϕeval ̸= 0, the corner points and the connecting
vectors have to be rotated around the y-axis by

Ry(ϕeval) =

 cos(ϕeval) 0 sin(ϕeval)
0 1 0

−sin(ϕeval) 0 cos(ϕeval)


. Using the parameterisation, the 4 lines of the contour are defined as follows:

Ry(ϕeval) ·

x0 +A · sin(dθ) + ∆y ·N · cos(dθ)
y0 −A · cos(dθ) + ∆y ·N · sin(dθ)

z0 +
∆z
2

 =
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A.2 Ballooning coil contour

Similar to the contour of the Mirnov coils, the Ballooning coils are described by a
path consisting of 4 lines. We use the outer winding of the meander structure of the
Ballooning coils. The 4 lines are described by the following equations31:
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31Here ∆x = 74.8mm is the width of the (quadratic) Ballooning coil.

A.2 Ballooning coil contour
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A.3 Calculation of the B-coil area

The area of the B-coils can be calculated by the difference of the cone mantle surfaces,
Mmin and Mmax, where the B-coils lie. The surfaces Mmin and Mmax are

Mmin = πRminsmin

Mmax = πRmaxsmax

where Rmin and Rmax are the major radial coordinates of the cone mantle surfaces
and smin and smax are the cone mantle lines which are calculated according to

smin =
√
h2min +R2

min or rather smax =
√
h2max +R2

max ,

where the heights hmin and hmax are calculated with the help of the ray theorem:

Rmin

Rmax
=

hmin

hmax
(A.1)

and the known difference
∆h = hmax − hmax , (A.2)

so that
hmin =

∆h
Rmax
Rmin

− 1

and hmax can be calculated by using equation A.2. The area of the B-coils is then

ABcoil =
∆ϕBcoil

2π
· (Mmax −Mmin) ,

where ∆ϕBcoil is the toroidal expansion of the B-coils. This results in an area of

ABu = 0.3386m2

for the upper B-coils and
ABl = 0.3596m2

for the lower B-coils.

A.3 Calculation of the B-coil area





Acronyms
AUG ASDEX Upgrade: Tokamak in Garching near Munich

VDE Vertical Displacement Event

PSL Passive Stabilisation Loop: copper structure to mitigate VDEs

LFS Low Field Side: outboard side of a tokamak

HFS High Field Side: inboard side of a tokamak

MHD magnetohydrodynamic

NTM Neoclassical Tearing Modes

FEM Finite Element Method

ECE Electron Cyclotron Emission spectroscopy

SXR Soft X-Ray

SOL Scrape-Off Layer

TF Toroidal Field

LOS Line of Sight

ELM Edge Localised Mode

H-mode High confinement mode

NBI Neutral Beam Injection

FFT Fast Fourier Transform





Symbols

Variable Explanation

jpert,cyl perturbation current density in a periodic cylinder
jpert total perturbation current density in a torus
j
(m,n)
pert (m,n) component of jpert

ã(m,n) complex amplitude of j(m,n)
pert

a(m,n) amplitude of j(m,n)
pert

φ(m,n) phase of j(m,n)
pert

B̃meas,k complex amplitude of the measured perturbation field
of coil k

ameas,k amplitude of the measured perturbation field of coil k
φmeas,k phase of the measured perturbation field of coil k
B̃meas vector of complex amplitudes of the measured pertur-

bation field of k coils
B̃

(m,n)
sim,k complex amplitude of the simulated perturbation field

of coil k generated by j
(m,n)
pert

a
(m,n)
sim,k amplitude of the simulated perturbation field of coil k

generated by j
(m,n)
pert

φ
(m,n)
sim,k phase of the simulated perturbation field of coil k gen-

erated by j
(m,n)
pert

B̃
(m,n)
sim vector of complex amplitudes of the simulated pertur-

bation field of k coils generated by j
(m,n)
pert

B̃sim vector of complex amplitudes of the simulated pertur-
bation field of k coils generated by jpert

ã vector of complex amplitudes ã(m,n)
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