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Kurzfassung

Übergangsmetalloxide (TMOs) und andere Quantenmaterialien entfachen neuerlich großes
Interesse aufgrund ihrer Vielzahl an funktionalen Eigenschaften. Diese entstehen typischer-
weise durch starke elektronische Korrelationseffekte bei niedrigen Temperaturen, was ihre
theoretische Beschreibung äußerst komplex gestaltet. Die derzeit erfolgreichste Methode
zur Simulation solcher Materialien ist die dynamische Molekularfeldtheorie (DMFT). Diese
zeichnet sich durch eine exakte Beschreibung nichtlokaler kinetischer Terme aus, während
die Coulomb-Wechselwirkung als lokal angenommen wird.

Wir präsentieren sowohl methodische als auch konzeptionelle Fortschritte, welche uns die
Simulation von TMOs bei tiefen Temperaturen innerhalb der DMFT-Approximation mit
Tensornetzwerk-basierten Algorithmen ermöglichen. Insbesondere führen wir eine Baum-
Tensornetzwerkstruktur ein, den MT3N, welche speziell darauf ausgelegt ist, die komplexe
Korrelationsstruktur von Multiorbital-Modellen bestmöglich darzustellen. Ein wesentlicher
Vorteil unserer Tensornetzwerk-basierten Algorithmen ist die Möglichkeit Green’sche Funk-
tionen sowohl auf der Matsubara Achse, als auch direkt auf der reellen Frequenzachse zu
berechnen. Wir haben einen neuen Algorithmus zur analytischen Fortsetzung, MinKL,
entwickelt, der es uns ermöglicht, Informationen beider Green’schen Funktionen zu kom-
binieren, wodurch das Verfahren signifikant stabilisiert und die Genauigkeit im Vergleich
zu gängigen Algorithmen deutlich verbessert wird.

Zusätzlich stellen wir die Möglichkeit quantenmechanische Systeme entlang komplexer
Zeitkonturen zu entwickeln vor. Dies führt dazu, dass hochenergetische Zustände mit
zunehmenden Abstand zur reellen Zeitachse immer stärker unterdrückt werden. Dadurch
kann das Verschränkungswachstum während der Zeitentwicklung signifikant reduziert wer-
den, was zu erheblichen Laufzeit- und Genauigkeitsverbesserungen führt. Zudem disku-
tieren wir mehrere komplexe Zeitkonturen sowie verschiedene Methoden um Ergebnisse auf
die reelle Frequenzachse analytisch fortzusetzen. Damit können wir das Fermi-Flüssigkeits-
Verhalten von Multiorbital Systemen bis zu ≈ 0.002 eV auflösen.

Abschließend untersuchen wir das Übergangsmetalloxids LiV2O4, welches schwere Qua-
siteilchen bei tiefen Temperaturen formiert, eine Eigenschaft, welche typischerweise nur in
f-Orbital-Materialien auftritt. Unsere Entwicklungen ermöglichen es uns die Entstehung
dieser Quasiteilchen akkurat zu simulieren und eine neue Theorie dahinter zu präsentieren.





Abstract

Transition metal oxides (TMOs) and other quantum materials recently attracted immense
interest due to their plethora of functional properties. These properties are often the re-
sult of strong electronic correlation effects at low temperatures, rendering their theoretical
description challenging. The current state-of-the-art method for the simulation of such
materials is dynamical mean field theory (DMFT), which provides an exact description of
the kinetic part of the system while approximating the Coulomb interaction as local.

In this thesis, we present advances in tensor network based impurity solvers, which we
use to simulate intricate TMOs at low temperatures within the DMFT approximation.
We discuss both methodological and conceptual developments that result in significant
improvements in runtime and accuracy. We introduce a tree tensor network structure,
the MT3N, specifically tailored to optimally represent the intricate correlation structure
of multi-orbital impurity models. A significant advantage of tensor network based impu-
rity solvers is their ability to compute Green’s functions both on the Matsubara axis and
directly on the real frequency axis. We developed a new analytic continuation algorithm,
MinKL, that allows us to combine those Green’s functions to significantly stabilize the
procedure and improve its accuracy compared to prevalent algorithms.

Additionally, we introduce a novel concept of time evolution by evolving systems along
complex time contours. By shifting time evolution away from the real time axis, we signif-
icantly curtail entanglement growth, enabling substantial improvements in accuracy and
efficiency. We present several complex time contours along with multiple post-processing
methods that analytically continue our results back to the real frequency axis. These ad-
vancements enable us to resolve the Fermi liquid behavior of a multi-orbital system down
to ≈ 0.002 eV.

Finally, we use these developments in the study of the transition metal oxide LiV2O4.
This material has captivated researchers due to its heavy quasiparticle mass at low tem-
peratures, a rare occurrence outside f-orbital materials. Our algorithmic advancements
allow us to propose a new theory describing this compound’s emerging heavy fermion
regime.
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Chapter 1

Introduction

The development of the band theory of solids was fundamental to the digital revolution
of the 20th century. It provides a framework for understanding how valence electrons are
organized within a solid and how they contribute to its properties. When atomic orbitals
of solids are strongly overlapping, their electronic structure is typically well described by
an approximation of nearly free electrons where nuclei are assumed to be stationary, gen-
erating a periodic background potential. Instead of discrete energy levels, as in isolated
atoms, electronic energy levels in solids form a smooth band in momentum space [9]. This
allowed for a simple classification of materials into metals and insulators, i.e., a metal is a
solid with a partially filled band, whereas insulators are materials in which the Fermi level,
the energy up to which bands are filled, lies between two bands. Insulators can be further
subdivided into insulators and semiconductors, where the latter are typically characterized
by a smaller band gap. Bands in semiconductors can be shifted towards the Fermi level
upon appropriate doping, thus significantly increasing the number of partially filled states.
Such specifically tuned semiconductors are at the heart of modern field effect transistors
[10]; and by that, they are in the pocket of nearly every person on earth.

Modern material research is now, again, at the forefront of scientific progress driven by
an ever-growing demand for higher efficiency [11]. This led to the emergence of synthetic
quantum materials with tailored electronic properties, determined by quantum effects near
the Fermi edge [12, 13]. Promising candidates for such engineered materials are transition
metal oxides (TMOs), where strong electronic correlation effects give rise to a plethora of
functional properties, including superconductivity, Mott transitions, multiferroicity, and
strange metallicity [14–16]. Advancements in material synthesis techniques, especially
those involving thin-film deposition [17] and molecular-beam epitaxy [18], have enabled the
creation of layered artificial materials with precise control over their electronic properties
[14, 15]. However, the theoretical description of such materials is complicated. Typically,
TMOs have partially filled bands that stem from d-orbitals, which are spatially strongly
confined. This leads to a competition between kinetic energy terms of single electrons
and interaction effects between them. Thus, a simple description of effective potentials
in what is commonly referred to as strongly correlated materials becomes insufficient [19].
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This includes the simple description of nearly free electrons as well as more advanced ap-
proaches like density functional theory (DFT) [20–22] that considers the electron-electron
interactions via a self-consistently obtained effective potential [23].

An exact quantitative description of strongly correlated materials is numerically unfeasible.
However, in the past years, immense progress has been made in combining single-particle
approaches, like DFT, with more elaborate methods that directly account for interaction
effects [24–26]. Most notably, the combination of DFT with dynamical mean field the-
ory (DMFT) [27, 28], which is typically referred to as (DFT + DMFT), established itself
as the state-of-the-art for electronic structure simulations of strongly correlated materials
[1, 2, 29–33]. DMFT transforms the interacting lattice model into an impurity problem
by considering electron-electron interactions solely within the impurity cluster. The dy-
namic exchange between this cluster and the remaining lattice is represented through a
self-consistently optimized bath of free electrons [27, 29, 34]. Although this constitutes
a significant simplification of the problem at hand, it is nonetheless computationally de-
manding as it needs to be solved for all interacting single-particle Green’s functions of the
impurity cluster. As such, the actual solution of the impurity problem has evolved into its
own field of research, and large efforts have been devoted to developing efficient impurity
solvers.

In this thesis, we developed multiple tensor network based impurity solvers that work
both on the imaginary frequency axis [1, 2, 33–35] as well as directly on the real frequency
axis [6, 36–39]. These solvers have significant advantages over commonly used solvers.
They are neither restricted by the system size, unlike exact diagonalization (ED) [40, 41],
nor the specific type of interactions present in the impurity cluster, unlike the numerical
renormalization group (NRG) [42–44] or the presence of a sign problem, unlike continuous
time quantum Monte Carlo (CTQMC) [45]. We showcase the potential of our imaginary
time solver on the basis of the heavy fermion TMO LiV2O4 [46], which experiences dramatic
electronic correlations at very low temperatures, inaccessible to CTQMC. We precede our
presentation of these results with a complete discussion of our impurity solvers and algo-
rithmic advances therein.

Additionally, we introduce a novel approach in the realm of real frequency solvers: com-
plex time evolution [6]. Shifting time evolution contours away from the real time axis
significantly curtails entanglement growth, enabling substantial improvements in accuracy
and efficiency. This is due to the additional time evolution towards the imaginary time
direction, which effectively projects the state into a low-energy subspace by progressively
dampening high-energy contributions. We present several analytic continuation procedures
that continue our results back to the real frequency axis. Among them are simple analytic
expressions, rendering this approach stable, fast, and highly precise.
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This thesis is structured as follows: Chapter 2 provides an overview of tensor network
methods, with a particular focus on matrix product states (MPS) and tree tensor network
states (TTNS). In chapter 3, we explore dynamical mean field theory and briefly analyze
typical impurity Hamiltonians used in realistic material simulations. Chapter 4 details our
development of an imaginary time impurity solver, highlighting our implemented enhance-
ments. Similarly, chapter 5 discusses our advancements in the domain of real frequency
impurity solvers. In chapter 6, we introduce innovative tensor network structures tailored
for multiorbital impurity models. Our novel complex time impurity solver is presented
in chapter 7, where it is compared against our traditional real time solver and numerical
renormalization group (NRG) methods. Chapter 8 delves into our DFT+DMFT study of
the heavy fermion TMO compound LiV2O4. The thesis concludes with chapter 9, summa-
rizing our principal discoveries and contributions to the field.





Chapter 2

Tensor Networks

Tensor networks (TN) represent a broad category of sophisticated yet intuitively appealing
approaches for decomposing quantum many-body systems. Central to these methods are
rank-revealing decompositions, especially the singular value decomposition (SVD). These
methods have recently garnered increased interest and application across mathematics and
various physics disciplines. In the mathematical community, these approaches are, in their
one-dimensional variant, referred to as tensor trains (TT) [47]. The advent of new de-
composition strategies, like the tensor cross interpolation (TCI) algorithm [48, 49], has
broadened the application of these concepts to fields such as numerical integration [50, 51]
and, consequently, Monte Carlo methods [52]. It also sparked a dynamic new area of re-
search known as quantized tensor trains (QTT) [49, 53]. QTTs are pivotal in achieving
highly efficient representations of large-scale, structured data, including correlation func-
tions [53, 54] and Brillouin zone integrals [55]. Beyond these applications, tensor network
methods have been applied in modeling large biological systems [56], simulating turbulent
flows [57, 58], enhancing reinforcement learning algorithms [59] and compressing large lan-
guage models [60].

This chapter provides a foundational overview of tensor networks. Given their critical
role in the simulation of dynamic quantities like impurity Green’s functions, particular
emphasis will be given to time evolution methods for tensor networks. We will explore
various methodological advancements and present a revised "blueprint" for time evolution
within the framework of tensor networks. We aim to highlight the historical progression of
tensor network methods, anchoring our discussion in the foundational concepts of Matrix
Product States (MPS). As a one-dimensional tensor network state, MPS remains the most
commonly used tensor network state due to its many favorable numerical properties.
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2.1 Matrix Product States
Low-dimensional strongly correlated quantum systems; chains of interacting electrons or
electron-phonon systems, to name but a few, are host to a myriad of interesting correla-
tion effects. However, exact analytical solutions for these complex many-body systems are
scarce. The Bethe Ansatz [61, 62], a sophisticated method for solving integrable systems
primarily in one dimension, has been applied to certain cases. However, more complex
models or realistic materials are generally dependent on numerical techniques.

In 1975, Kenneth Wilson revolutionized the field of condensed matter physics by devel-
oping the numerical renormalization group (NRG) method. This groundbreaking work
gave a precise description of the Kondo model’s ground state, elucidating how conduction
electrons interact with magnetic impurities [42]. Wilson’s contribution extended beyond
the introduction of a mere algorithm; he highlighted the significance and effectiveness of
the renormalization group (RG) approach. This concept has since been embraced and
refined across various disciplines in physics, culminating in Wilson’s recognition with the
Nobel Prize. The core principle of RG methods lies in isolating the pertinent degrees of
freedom. Wilson achieved this by applying a logarithmic discretization to the conduction
band, crafting an effective Hamiltonian that adeptly captured the low-energy dynamics
by diminishing the influence of high-energy states. Despite its innovative approach, the
application of NRG has been primarily confined to impurity models since its inception,
with limited success in broader contexts [63].

Steven White’s development of the density matrix renormalization group (DMRG) in
1992 marked a significant breakthrough in the study of low-dimensional quantum systems
[63, 64]. Quickly emerging as the leading numerical method for analyzing strongly corre-
lated one-dimensional systems, DMRG excelled in both ground state simulations and the
investigation of dynamical properties [65–67]. Unlike NRG, which focuses on energy-based
state reduction, White’s method innovatively prioritizes states based on their contribution
to the density matrix, enhancing efficiency and accuracy. We aim to delve into White’s
rationale behind the asserted optimality of this truncation approach. Additional justifica-
tions are provided in [67]. We will closely follow [67, 68] in our derivation.

Consider that |ψ⟩ is the state of a bipartite system AB = A⊗B given as

|ψ⟩ =
mA∑
a=1

mB∑
b=1

cab |a⟩ |b⟩ , (2.1)

where cab ∈ C are wave function coefficients, |a⟩ , |b⟩ are basis states in A and B respec-
tively and ma,mb are the number of respective basis states. Let us now construct an
approximation on above wave function

∣∣∣ψ̃〉 by keeping fewer basis states in A,

∣∣∣ψ̃〉 =
m′

A∑
a′=1

mB∑
b=1

c̃a′b |a′⟩ |b⟩ , m′
A ≤ mA, (2.2)
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with |a′⟩ denoting the new basis states. The optimal coefficients c̃a′b |a′⟩ are determined
by minimizing the quadratic norm

∥∥∥|ψ⟩ − ∣∣∣ψ̃〉∥∥∥2

2
. This expression is minimized by selecting

the m′
A eigenvectors |a′⟩ corresponding to the largest eigenvalues wa′ of the density matrix

ρaa′ = ∑
b cabca′b [63]. We can thus measure the error of this truncation procedure as

∥∥∥|ψ⟩ − ∣∣∣ψ̃〉∥∥∥2

2
= 1−

m′
A∑
a′
wa′ = ϵt. (2.3)

In tensor network algorithms, these eigenvectors are typically obtained using singular value
decompositions [63].

With a truncation procedure in place, we now focus on the concept of matrix product
states (MPS). Due to their historical development, DMRG and MPS are often used inter-
changeably. However, in the wake of advancements in complex tensor network structures
[69–71], a distinction is commonly made: the decomposed state is known as a matrix
product state, while the algorithmic approach to finding the ground state is referred to as
DMRG.

2.1.1 Decomposition
Although matrix product states inherently resemble a one-dimensional chain, their appli-
cation extends beyond simulating one-dimensional systems [72]. For the sake of clarity,
however, let us consider a one-dimensional lattice system comprising L sites. An arbitrary
pure state on this lattice can be described as follows:

|ψ⟩ =
∑
{σi}

cσ1...σL
|σ1, . . . , σL⟩ , (2.4)

where {σi} = σ1, . . . , σL denotes the set of di basis states of the local Hilbert space Hi,
and cσ1...σL

is the L-dimensional coefficient tensor. In general, the coefficient tensor’s com-
plexity increases exponentially with the size of the system. In the exceptional uncorrelated
cases where the quantum state is representable as a product state, this tensor simplifies,
allowing decomposition into a product of individual components cσ1...σL

= ∏
i cσi

. Nonethe-
less, managing this tensor’s complexity remains a formidable challenge for systems with
strong electron correlations.

Although a trivial decomposition is not possible in the presence of entanglement, we can
construct a decomposition scheme that still preserves the correlation of the state while
leaving us with a local, decomposed representation of the coefficient tensor

cσ1...σL
=

∑
m1,...,mL−1

Mσ1
1,m1M

σ2
m1,m2 . . .M

σL
mL−1,1, (2.5)

with virtual bond indices mi. Contracting identically named bond indices results in a
matrix multiplication of the respective site tensor M . Consequently, the entire coefficient
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tensor can be reconstructed via successive matrix multiplications, thus marking the origin
of the term ’matrix product state’. This decomposition can be obtained by subsequent
singular value decompositions of the coefficient tensor. Let us showcase this idea on the
example of what is referred to as a left-canonical MPS. We follow a derivation presented
in [73].

Let us reshape the coefficient tensor as cσ1...σL
= Ψσ1,(σ2...σL) where Ψσ1,(σ2...σL) is a (d×dL−1)

dimensional matrix. A singular value decomposition of Ψ gives

Ψσ1,(σ2...σL) =
r1∑
a1

Uσ1,a1Sa1,a1V
†
a1,(σ2...σL) , (2.6)

with rank, also commonly called bond dimension, r1 ≤ d. We can multiply S and V †

and reshape the resulting matrix into a vector ca1...σL
. Decomposing the U matrix into a

collection of d row vectors Aσ1 with entries Aσ1
a1 = Uσ1,a1 gives us

cσ1...σL
= Ψσ1,(σ2...σL) =

r1∑
a1

Aσ1
a1ca1σ2...σL

. (2.7)

Reshaping ca1σ2...σL
and subsequently performing the SVD as presented in equation (2.6)

gives

cσ1...σL
= Ψσ1,(σ2...σL) =

r1∑
a1

Aσ1
a1ca1...σL

=
r1∑
a1

r2∑
a2

Aσ1
a1A

σ2
a1,a2ca2σ3...σL

, (2.8)

with rank r2 ≤ r1d ≤ d2. Iteratively performing this procedure leaves us with this decom-
position

cσ1...σL
=

∑
a1,...,aL−1

Aσ1
a0,a1A

σ2
a1,a2 . . . A

σL−1
aL−2,aL−1

AσL
aL−1,aL

, (2.9)

where we added dummy indices a0 = 1 and aL = 1 to consistently denote A as matrices.
The rank of a0 or aL can also be larger than one, for example, if one wants to express sums
of states in different quantum number sectors. This finally leaves us with a definition of a
left-canonical matrix product state:

|ψ⟩ =
∑
{σi}

Aσ1 . . . AσL |σ1, . . . , σL⟩ . (2.10)

The name "left-canonical" refers not solely to the iterative construction principle, see fig-
ure 2.1, but also to special properties gained due to the iterative use of singular value
decompositions. As U †U = 1 holds for U matrices that are the outcome of a SVD, the
following relation holds for the tensors obtained by the procedure above [73]:

∑
σi

Aσi†Aσi = 1. (2.11)
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σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

σ1 σ2 σ3 σ7 σ8σ6σ5σ4

σ1 σ2 σ3 σ7 σ8σ6σ5σ4

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

Figure 2.1: Decomposition of a quantum state into a matrix product state by the iterative
application of singular value decompositions. Grey bonds mark the outermost virtual legs
with bond dimension 1. The coefficient tensor can be restored by contracting over all
virtual legs (horizontal bonds).

We refer to A matrices fulfilling this property as left-normalized. As the choice to start
the decomposition procedure from the left is arbitrary, we can also perform a similar
decomposition strategy from the right and obtain the right-canonical form

|ψ⟩ =
∑
{σi}

Bσ1 . . . BσL |σ1, . . . , σL⟩ , (2.12)

where, again, exploiting properties of the SVD, V V † = 1 we find that B matrices obey
∑
σi

BσiBσi† = 1. (2.13)

As alluded to in our initial motivation for tensor networks, much of its success is rooted in
a truncation procedure based on Schmidt values. However, neither a bipartition of the left
canonical nor the right canonical form would result in a proper Schmidt decomposition [73],
thus significantly limiting the efficiency of local optimization procedures. Let us consider
this at the example of a bipartition of a left-canonical state |ψ⟩, as presented in [73], in
two subsystems A and B:
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σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

S4A4A3A2A1 B5 B6 B7 B8

Figure 2.2: Mixed canonical MPS. The first four sites are left normalized, S4 denotes the
singular value matrix, and the four rightmost sites are right normalized.

|ai⟩A =
∑

σ1,...,σi

(Aσ1 . . . Aσi)1,ai
|σ1, . . . , σi⟩ , (2.14)

|ai⟩B =
∑

σi+1,...,σi

(Aσi+1 . . . AσL)ai,1 |σi+1, . . . , σL⟩ , (2.15)

which allows us to write the total state as

|ψ⟩ =
∑
ai

|ai⟩A |ai⟩B . (2.16)

However, this does not represent a Schmidt decomposition as |ai⟩B does not form an
orthonormal set in general. For |ai⟩A this property immediately follows from their con-
struction, we find

A ⟨a
′
i|ai⟩A =

∑
σ1,...,σi

(Aσ1 . . . Aσi)∗
1,a′

i
(Aσ1 . . . Aσi)1,ai

, (2.17)

=
∑

σ1,...,σi

(Aσ1 . . . Aσi)†
a′

i,1
(Aσ1 . . . Aσi)1,ai

, (2.18)

=
∑

σ1,...,σi

(Aσi† . . . Aσ1†Aσ1︸ ︷︷ ︸
δa′

1,a1

. . . Aσi)a′
i,ai
, (2.19)

= δa′
i,ai
. (2.20)

In the last step, we iteratively used the left normalization defined in equation (2.11).
Calculating the overlap in B yields

B ⟨a
′
i|ai⟩B =

∑
σi+1,...,σL

(Aσi+1 . . . AσL)∗
a′

i,1
(Aσi+1 . . . AσL)ai,1, (2.21)

=
∑

σi+1,...,σL

(Aσi+1 . . . AσLAσL† . . . Aσi+1†)a′
i,ai
, (2.22)

which, in general, cannot be simplified further.
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σ5 σ6 σ7 σ8σ1 σ2 σ3 σ4

A4A3A2A1 B5 B6 B7 B8M4

Figure 2.3: Mixed canonical MPS with respect to an active site. The first three sites are
left normalized, the center site denotes the active site, and the four rightmost sites are
right normalized.

A similar problem arises for right-canonical states with the difference that states in A will
generally not form an orthonormal basis [73]. Hence, most local tensor network algorithms
use a further canonical form, the mixed-canonical representation. Assume we perform a
decomposition from the left up to site i as

cσ1...σL
=
∑
ai

(Aσ1 . . . Aσi)ai
Sai,ai

V †
ai,(σi+1...σL), (2.23)

and V †
ai,(σi+1...σL) can be subsequently decomposed from the right to [73]

|ψ⟩ =
∑

σ1,...,σL

Aσ1 . . . AσiSBσi+1 . . . BσL |σ1, . . . , σL⟩ , (2.24)

where S is a diagonal matrix containing the singular values of the bond between i and
i+ 1, see figure 2.2.

It becomes immediately apparent that by construction, this leads to a Schmidt decom-
position upon bipartition of the state into subsystems A and B. Let us, again, consider
such a bipartition, now given as

|ai⟩A =
∑

σ1,...,σi

(Aσ1 . . . Aσi)1,ai
|σ1, . . . , σi⟩ (2.25)

|ai⟩B =
∑

σi+1,...,σi

(Bσi+1 . . . BσL)ai,1 |σi+1, . . . , σL⟩ (2.26)

which leads to the Schmidt decomposition

|ψ⟩ =
∑
ai

Sai,ai
|ai⟩A |ai⟩B . (2.27)

The mixed canonical representation is the representation of choice for local tensor network
algorithms due to its efficient representation of inactive sites (sites that are not currently
updated) and its ability to generate a Schmidt decomposition upon bipartition.
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d d d d d d d d

d d2 d3 d L
2 d3 d2 d1 1

M1 M2 M3 M4 M5 M6 M7 M8

Figure 2.4: Maximum bond dimension profile of a MPS. The highest bond dimension in
an MPS of length 8 is dmax = d

L
2 = d4.

This comes as a consequence of the left and right normality of the subsystems. Note that
this representation is typically used in respect to what is called an active site

|ψ⟩ =
∑

σ1,...,σL

Aσ1 . . . Aσi−1MσiBσi+1 . . . BσL |σ1, . . . , σL⟩ , (2.28)

where the singular value tensor from equation (2.24) has been multiplied to the left, see
figure 2.3.

Equipped with a construction principle for matrix product state representations, let us
shift the focus from how to why; why are matrix product state decompositions efficient?
Let us reconsider the bond dimension profile of matrix product states. As we have seen in
equation (2.6), the bond dimension on the right virtual leg mi+1 = midi is upper bounded
by the left virtual leg, and the physical dimension of the site. Assuming the maximum
bond dimension for a complete MPS, this leaves us with

(1, d), (d, d2), . . . , (dL/2−1, d
L/2), (dL/2, d

L/2−1), . . . , (d2, d), (d, 1), (2.29)

where the numbers in brackets refer to the virtual leg on the left and right, respectively.
For simplicity, we assumed an even number of sites, the bond dimension of the MPS is
upper bounded by dL/2 as the upper bound on the bond dimension of a site tensor must be
fulfilled from the left as well as the right of the system, see figure 2.4 for a visualization.

In a simulation of O(1000) sites, this exact decomposition is just as impractical as ex-
act diagonalization. Fortunately, in practical applications, the theoretical upper bounds
on bond dimension remain often unattained, thus permitting the construction of efficient
yet numerically exact tensor network algorithms. An explanation for this can be found in
the area law of entanglement, which dictates that the growth of entanglement between a
subsystem and the finite remainder of the system is at most proportional to their boundary
[74, 75].

Specifically, for one-dimensional systems, this implies that the entanglement across any
bipartition would plateau, as the boundary of a one-dimensional system is constant. While
the area law does not hold in general, it has been rigorously validated for ground states of
local gapped Hamiltonians in one dimension [74–76]. This is why matrix product states
reign nearly uncontested as the numerical method of choice for one-dimensional quantum
systems.
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Figure 2.5: Tensor leg direction convention for matrix product states.

2.1.2 Tensor Diagrams

Before we move on to the formulation of tensor network algorithms, let us properly intro-
duce the commonly used short-hand graphical notation for tensors. Consider a tensor T
as a map from input vector spaces A and B to output vector spaces C and D and let us
further construct a basis in these vector spaces as {|a⟩A}, {|b⟩B}, {|c⟩C} and {|d⟩D}. We
can define this map with tensor coefficients T cdab as:

T : A⊗B → C ⊗D, (2.30)
T : |a⟩A ⊗ |b⟩B 7→ |c⟩C ⊗ |d⟩D =

∑
ab

T cdab |a⟩A ⊗ |b⟩B , (2.31)

a

b

c

d
T

Figure 2.6: Graphic representation of the tensor defined in equation (2.30). States from
input/output spaces are indicated by arrows pointing to/from the tensor T .

We represent this rank four tensor in graphic notation as a circle with four legs, each cor-
responding to one of the four vector spaces with arrows indicating the direction. So far,
we deliberately disregarded the direction of our tensor legs, as, for matrix product states,
there is some freedom in how one chooses to define them. In our tensor network toolkit,
SyTen [77, 78] a tensor Mσi

mi−1,mi
is to be understood as Mmi−1

σimi
where lower indices denote

incoming legs and upper indices denote outgoing legs.

For graphical representations of large tensor networks, we will continue to disregard leg
directions for simplicity, but we will present them for tensor contractions in our discussion
of algorithms. A graphical representation of an MPS with this convention can be found in
figure 2.5.
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|3⟩
M1

|1⟩ |1⟩ |0⟩ |1⟩
|2⟩ |1⟩ |1⟩ |0⟩

M2 M3 M4

Figure 2.7: Quantum number flow in matrix product states. The right dummy leg (mL)
represents the vacuum, while the left dummy leg (m0) denotes the quantum number sector
of the state.

The orientation of tensor legs acquires additional significance in the context of symmetries,
interpreted as a "flow of quantum numbers" within the matrix product state framework [78].
By imposing the condition that the aggregate quantum number sectors of the incoming
legs must match the quantum number sector of the outgoing leg, the right dummy leg (mL)
is naturally designated as the vacuum leg. Conversely, the left dummy leg (m0) represents
the quantum number sector of the state, as illustrated in figure 2.7.

2.2 Density Matrix Renormalization Group

This section aims to provide a concise overview of the density matrix renormalization group
(DMRG); a variational optimization algorithm for determining the ground states of quan-
tum many-body systems. More extensive reviews on DMRG can be found in [67, 73], for
reviews of DMRG adjacent algorithms like the infinite size density matrix renormalization
group (iDMRG), see [79].

DMRG seeks to find a state |ψ⟩ that minimizes the energy

min|ψ⟩E, with E = ⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(2.32)

for a Hamiltonian Ĥ where Ĥ is a hermitian operator. If |ψ⟩ is normalized, id est ⟨ψ|ψ⟩ = 1,
this is equivalent to minimizing ⟨ψ|Ĥ|ψ⟩. Hence, we can rewrite the above equation using
a Lagrange multiplier λ as

min|ψ⟩E = min|ψ⟩
(
⟨ψ|Ĥ|ψ⟩ − λ(⟨ψ|ψ⟩ − 1)

)
. (2.33)
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Figure 2.8: Effective Hamiltonian at site i = 3. Black boxes indicated contractions of
tensors required to build left (Li) and right (Ri) environment tensors.

This approach outlines a valid minimization process, yet the full potential of the MPS-
MPO framework is truly harnessed upon transitioning to a local optimization strategy.
Given that the complexity of updates in this minimization scales exponentially with the
number of sites involved, minimizing the number of active sites is generally advantageous.
Typically, optimization procedures are defined in sweeping patterns, iteratively updating
one or two sites at a time. Correspondingly, these algorithms are dubbed single-site DMRG
or two-site DMRG respectively [80]. Formulations defining the optimization procedure over
bond tensors, effectively describing zero-site introduced schemes, have been defined in [81].

For the sake of simplicity, let us introduce the single-site variant of DMRG. Consider
a MPS in mixed canonical representation with respect to a single site Mi. We can find the
extremal point of E as

∂E
∂M †

i

= Heff
i Mi − λMi

!= 0, (2.34)

where Heff
i is the effective Hamiltonian at site i, a rank 6 tensor constructed via the

contraction of left and right environment tensors Li−1 and Ri+1 with the MPO site tensor
Wi, see figure 2.8.
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Figure 2.9: Graphical representation of the single-site DMRG eigenvalue equation.

We can now identify equation (2.34) as a simple eigenvalue equation

Heff
i Mi = λMi. (2.35)

Determining the lowest eigenvalue and its corresponding eigenvector from the equation
above results in a new, locally optimal MPS tensor, denoted as M̃i. To closely approx-
imate the true ground state, one must iteratively sweep through the system, back and
forth, by first shifting the center site of the mixed canonical representation in a sweeping
direction and subsequently performing the update as described in equation (2.35) until
convergence is reached. The chosen bond dimension during the simulation plays a critical
role in determining the fidelity of the MPS approximation to the true ground state. With-
out truncation, equation (2.35) would already constitute the global groundstate. So far, as
the bond dimension is not altered, or at least not increased, during our update procedure
the primary means of enhancing the MPS approximation quality would be starting with
an initial state characterized by a higher bond dimension in the DMRG algorithm. Con-
sidering the impracticality of this approach, it is worth exploring strategies to dynamically
increase the bond dimension within MPS.

An equivalent formulation to equation (2.35) can be derived for two sites contracted to
a new site tensor in mixed canonical representation Mi,i+1. The application of the corre-
sponding effective Hamiltonian and the subsequent singular value decomposition, used to
separate M̃i,i+1 into Ãi and M̃i+1, leads to a potential increase in bond dimension between
sites i and i + 1 by the local bond dimension m̃ = dm [73]. However, applications of the
effective Hamiltonian to the site tensor scale as O(2m3d2w+m2d3w2) which, compared to
the scaling of the single sites scheme, leads to an additional factor d in both terms [78].
Hence, this constitutes a more expensive optimization procedure, especially for bosonic
systems or other systems with large local Hilbert spaces [3, 5, 7, 82].
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Figure 2.10: Expansion tensor used in DMRG3S and the local subspace expansion method
(LSE) for a left-to-right sweep, see section 2.3.2. The expansion is performed after the
optimization/evolution and before the shift of the orthogonality center/back-evolution for
DMRG3S or LSE, respectively.

A dynamic growth of bond dimension, and a change in basis states, in favorably scaling
single-site algorithms, can be achieved by the use of subspace expansion techniques [80, 83].
We want to introduce the concept of subspace expansion based on the work of Hubig et al.
[83]. While there have been earlier attempts at combining expansion terms with single-site
DMRG [80], they were hindered by poorly scaling perturbation terms that limited their
applicability [78]. Subspace expansion terms and their combination with single-site DMRG
have been discussed in the mathematics community as alternating minimum energy algo-
rithms (AMEn) [84, 85], whereas the method introduced by Hubig et al. became known
as strictly single-site DMRG (DMRG3S).

The update scheme of DMRG3S proceeds according to the original single-site algorithm
with an additional expansion after the update step, before shifting the orthogonality center
to the next site [83]. An expansion over the bond mi that leaves the overall state invariant
can be defined as

Mi;σi
→ M̃i;σi

=
[
Mi;σi

Ei;σi

]
(2.36)

Mi+1;σi+1 → M̃i+1;σi+1 =
[
Mi+1;σi+1

0

]
, (2.37)

where Mi;σi
and Ei;σi

are matrices in the MPS bond dimensions. It is straightforward to
see that the product of these matrices would leave the state invariant. Hubig et al. [83]
proposed an expansion tensor of the form

Ei = αLi−1MiWi, (2.38)
where all possible indices are contracted, and the right MPO and MPS legs are contracted
with a split tensor S to yield a rank 3 expansion tensor, as shown in figure 2.10. See [78]
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for a motivation of why this specific construction of the expansion tensor can yield global
information.

To achieve optimal convergence, the prefactor α must be adapted throughout DMRG.
The rationale behind this is that the energy can momentarily rise due to the expansion as
the weight of Schmidt coefficients and the energy contribution of their corresponding states
must not align [78, 83]. This implies that the expansion is typically associated with a slight
increase in energy. The prefactor α must hence be tuned down close to convergence. See
[78] for a description of the algorithmic procedure on how to best adapt α.

At this stage, no alterations have been made to the state. However, the optimization
procedure at site Mi+1 has the potential to adjust the weights of the states within the
expanded leg from zero if these states contribute to energy minimization [78]. This implies
that the bond dimension could sustain its increase even post-truncation, resulting in an
efficient and accurate DMRG implementation [78, 83]. This particular expansion tensor’s
application will be further explored in the context of time evolution methods, as detailed
in section 2.3.2.

2.3 Time-Dependent Variational Principle (TDVP)

The time-dependent variational principle (TDVP) is not just a tensor network algorithm,
but rather a fundamental principle of quantum mechanics [86, 87] that goes back to Dirac
[88] and Frenkel [89]. It plays an equivalently fundamental role in time evolution as the
Rayleigh-Ritz principle does for the ground state problem. In fact, the Rayleigh-Ritz
principle can be obtained from the Dirac-Frenkel principle in the static limit [86]. This
foreshadows one of the most significant results in tensor networks, that DMRG can be
retrieved as a limiting case of TDVP, namely taking the limit of infinite time steps dur-
ing imaginary time evolution limδτ→∞ e−δτĤ |ψ⟩ [90]. We will refer to the time-dependent
variational principle as Dirac-Frenkel principle to avoid confusion with the equally named
algorithm.

Given the time-dependent Schrödinger equation

i∂t |ψ(t)⟩ = Ĥ |ψ(t)⟩ , (2.39)

where Ĥ is a hermitian operator in the Hilbert space H and letM⊂ H be the variational
manifold on which the approximation to the wave function |ψ(t)⟩ shall lie. Let T|φ⟩M
denote the tangent space at |φ⟩ ∈ M. The variational principle for the approximate wave
function can be obtained by demanding that the time derivative of |φ⟩ satisfies

∂t |φ⟩ ∈ T|φ(t)⟩M (2.40)
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at every point and that the error of the approximation is minimal

min
|φ⟩
∥|ϵ⟩∥ = ∂t |φ⟩ −

1
i
Ĥ |φ(t)⟩ , (2.41)

where ∥|ϵ⟩∥ denotes the norm of the error [91]. Demanding the error to be minimal
essentially leaves us with an error that is unavoidable due to our approximation, i.e.
|ϵ⟩ /∈ M ⊂ H. This means that the error |ϵ⟩ is in the orthogonal complement of the
subspace spanned by all states in M, allowing us to rewrite the above conditions as

∂t |φ⟩ = P̂ (|φ⟩)1
i
Ĥ |φ⟩ , (2.42)

with the orthogonal projection P̂ (|φ⟩) : H → T|φ⟩M given by Re ⟨δφ| P̂ |φ⟩ = Re ⟨δφ|φ⟩
for all |δφ⟩ ∈ T|φ⟩M [91]. This allows us to transform the above equation to its more
commonly known form

Re ⟨δφ|ϵ⟩ = ⟨δφ| ∂t −
1
i
Ĥ |φ⟩ = 0, ∀ |δφ⟩ ∈ T|φ⟩M. (2.43)

This results in various advantageous properties such as the conservation of energy and
norm during real-time evolution [91] that are not trivially fulfilled by other time evolution
algorithms [90, 92]. The Dirac-Frenkel principle is not only foundational to tensor network
algorithms, but its near optimality for variational approximation in quantum molecular
dynamics simulations has been shown in [91], and it is widely used in other fields, (e.g. the
multi-configuration time-dependent Hartree (MCTDH) algorithm used in quantum chem-
istry [93–95]).

In tensor network language, the projector onto the tangent space of our variational Mani-
fold M is given as

P̂ (|φ⟩) =
L∑
i=1

Pi−1 ⊗ 1⊗ Pi+1 −
L∑
i=1

Pi ⊗ Pi+1. (2.44)

We note the similarity of this definition to equation (2.41) by recognizing the local nature of
our equations. The first term in our projector allows for variations of the site tensor (wave
function), and the second term minimizes the error projecting out components parallel to
our state by that guarantying norm conservation. Now, similar to equation (2.42), we can
insert the projector into our time-dependent Schrödinger equation, which we can formally
solve as

|φ(∆t)⟩ = e−iP̂ (|φ⟩)Ĥ∆t. (2.45)

As the above equation is not yet easily solvable, let us introduce a shorthand notation for
a site and bond projected Hamiltonian
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P̂ (|φ⟩)Ĥ =
L∑
i

Hs
i −

L∑
i

Hb
i (2.46)

Ĥs
i = Pi−1 ⊗ 1⊗ Pi+1Ĥ (2.47)

Ĥb
i = Pi ⊗ Pi+1Ĥ. (2.48)

Applying a symmetric second-order Suzuki-Trotter decomposition to the time evolved state
in equation (2.45) gives us [34]:

|φ(∆t)⟩ ≈ e−iĤs
0

∆t
2 eiĤb

0
∆t
2 . . . e−iĤs

L∆teiĤb
L∆t . . . e−iĤs

0
∆t
2 eiĤb

0
∆t
2 |φ⟩+O(∆t3). (2.49)

We directly identify the DMRG-like sweeping pattern, back and forth through the system.
Hence we can equate the time evolution of our state as successively performing two local
time evolutions of site and bond tensors: [90]

∂tMj = −iĤeff
j Mj (2.50)

∂tCj = +iĤeff
j Cj, (2.51)

where Mj denotes a site tensor and Cj the center matrix between bond j and j+1 denoted
by j. The extension to the two-site TDVP (2TDVP) is straightforward; one simple has to
forward-evolve a two-site tensor Mj,j+1 and backward-evolve a single-site tensor Mj+1, see
[90, 92] for a review.

Let us briefly motivate extensions of the standard TDVP algorithm by discussing po-
tential sources of error during time evolution. Typically, four sources of error in TDVP
are discussed [92]: The Trotter error of order O(∆t3) per time step; this error can usu-
ally be neglected as the prefactor of this scaling is often very small for reasonable bond
dimensions [92]. The Krylov error, i.e., the error associated with the inexact solution
of local equations; this source of error can, at times, be misleading as the absolute error
given by the eigensolver (typically Lanczos or Davidson) tends to severely underestimate
the actual error persistent in dynamic quantities. The Hochbruck-Lubich criterium often
gives a more accurate estimate of the actual error (e.g., the error in Green’s functions)
[96–98]. The truncation error that occurs during the separation of the two-site tensor
during 2TDVP; this is typically the main source of error during real-time evolution due to
the potentially exponential growth in bond dimension, see chapter 7. Lastly, we have the
ominous projection error. This error occurs upon the TDSE projection onto our MPS
manifold; see equation (2.41). As this error must be orthogonal to the MPS manifold, it
immediately follows that it depends upon the bond dimension. No projection error would
occur if the manifold would equal the full Hilbert space M = H. There is no feasible way
to measure the projection error during time evolution. However, estimates can be obtained
using multi-site variances [99].
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Figure 2.11: Local spin-spin susceptibility for the a1g orbital of LiV2O4 for various time
evolution algorithms (left), see chapter 8 for an in-depth discussion of this material. We
find that 2TDVP fails to accurately capture the dynamic of the system, whereas a single
time step with a global method, in this case, the global Krylov method (GK), accurately
captures the initial spread of information throughout the system and agrees with our
subspace expansion methods. The slight differences in (right) can be explained as LSE
expands the state more frequently than GSE. Both LSE and GSE have only been used
until τ = 2. After that, they follow the same procedure as the curve marked as 2TDVP.

As a rule of thumb, the projection error shrinks upon increasing the bond dimension and
the number of active sites involved in the evolution (2TDVP instead of 1TDVP) and grows
in the presence of long-range terms in the Hamiltonian. Notably, projection and truncation
errors are unaffected by the time step. It can hence, especially for imaginary time evolution
(t→ iτ), be advisable to use larger time steps as the increasing Trotter and Krylov errors
are not as substantial, see section 4.3.2 for a discussion about the use of exponentially
growing time steps during imaginary time evolution.
The projection error is typically largest in the first time step. The spread of local and
global excitations is curtailed if no appropriate basis states encoding the necessary long-
range correlations exist. Thus, these excitations are effectively truncated, marking an
unrecoverable loss of information. Notable attempts to mitigate this issue have been made,
for instance, utilizing global time evolution methods like the global Krylov (GK) solver for
the first time step [92] or adapting the TDVP sweeping pattern to mirror the spread
of information after a local quench [100]. However, these approaches are not universally
applicable due to either their sheer computational cost or their restriction to local quenches.
We hence want to direct our focus on subspace expansion techniques for TDVP in the
next sections, as they allow for a proper, global, description of quantum dynamics while
retaining the efficiency and adaptability of TDVP. See figure 2.11 for a comparison of the
aforementioned time evolution methods with subspace expansion techniques.
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2.3.1 Global Subspace Expansion (GSE)
The inability of 1TDVP to grow the bond dimension renders it unfit for many applications
due to the potentially linear growth of entanglement entropy S during real-time evolution.
This, in turn, results in a need for an exponentially growing bond dimension, given by
m ∼ eS, to accurately describe the system [101–106]. In addition to that, the usual pres-
ence of large projection errors at the initial time step severely limits the precision of any
TDVP mode that only uses local information, see figure 2.11. Recently, Yang and White
[107] proposed a new subspace expansion technique, the global subspace expansion (GSE),
that was demonstrated to overcome the aforementioned issues.

We will introduce the algorithm as presented by White and introduce further compu-
tational improvements that we developed later on. These improvements were developed in
close collaboration with Tizian Blatz, as detailed in [108].

Analogous to the DMRG3S algorithm, the expansion step is local. However, the con-
struction of the expansion tensors is performed globally. GSE employs ancillary states
|φ⟩n to expand the state |ψ⟩ at each bond. While the states |φ⟩n may be selected arbi-
trarily, we fundamentally seek to expand the tensor with elements that will facilitate in
the next application of the local time evolution operator. Thus, we construct the ancillary
states as

|φ⟩n = (1− δtĤ)n |ψ⟩ , (2.52)

up to an order k with n ≤ k− 1. These states can be regarded as an approximation to the
expansion of the global time evolution operator to k-th order

|ψ(t+ δt)⟩ = e−iĤδt |ψ(t)⟩ , (2.53)

where, unlike usual Krylov subspacesKk(Ĥ, |ψ⟩) the states are not constructed as {Ĥn |ψ⟩}kn
but with Ĥ → (1 − δtĤ). This choice has been proposed in [107] to avoid an additional
normalization of ancillary states.

The construction of these ancillary states and the enrichment step precede the actual
TDVP update procedure. For a right-to-left sweep the enrichment procedure at site i is
given as [107]:

(i) Perform a singular value decomposition of your original MPS on the leg in sweeping
direction

Mi
SVD= UiSiBi. (2.54)

Note that it is possible to substitute the SVD with a cheaper QR decomposition if one
does not wish to truncate at this step.
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(ii) Build the projector onto the orthogonal complement of the original state as

Pi = 1−B†
iBi. (2.55)

(iii) Project the active site M̃i of all ancillary states |φ⟩n onto the orthogonal complement of
|ϕ⟩ perform a direct sum of all projected tensors and perform a singular value decomposition
of the result

PiM̃i
SVD= ŨiS̃iB̃i. (2.56)

If the norm of all site tensors is zero after the projection, jump to step (v). Note that
we found it necessary to discard singular values smaller than ∼ 10−6 to ensure numerical
stability. This projection step is the crucial novelty of the expansion method as it ensures
the invariance of |ψ⟩ as B̃iB

†
i = 0, by construction.

(iv) Expand the original right-normalized tensor Bi with its projected ancillary counterpart
as

B′
i =

[
Bi

B̃i

]
, (2.57)

to obtain a new right-normalized tensor with an enlarged bond dimension.

(v) Shift the orthogonality center to the left

Mi−1 = Ai−1UiSiBiB
′
i = Ai−1MiB

′
i. (2.58)

This ensures that the next site tensor has an appropriately enlarged right leg. The shift of
the orthogonality center must likewise be performed for all ancillary states |φ⟩n.

Due to the global nature of this enrichment idea, it is both possible and, in some circum-
stances, sensible to extend this algorithm to higher-order TDVP schemes. The procedure
above can simply be performed before any TDVP update scheme described in section 2.3.

Adaptive GSE

We introduce several enhancements to the foundational GSE algorithm, with the principal
objective of diminishing its significant computational overhead. Our first strategy involves
integrating the enrichment procedure within the 1TDVP sweep to minimize the frequency
of reconstructing environment tensors. This can be achieved by performing the enrichment
procedure described above between the forward and backward evolution of 1TDVP. When
using symmetric integrators, see equation (2.49), the expansion is performed in the second
half time step. Care must be taken as the first expansion happens now after the initial
half time step; in order to diminish the projection error, it is hence advisable to perform a
standard GSE enrichment step before time evolution.

Furthermore, we propose a heuristic to determine opportune moments for applying the
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GSE, leveraging the singular value spectrum of site tensors. Given that singular values
are ordered, the magnitude of the smallest singular value in non-saturated bonds serves
as a proxy for the truncation error, a metric not directly accessible in the 1TDVP frame-
work. Expansion steps are initiated when singular values exceed a pre-defined threshold;
otherwise, the standard 1TDVP is employed. This approach significantly improves GSE’s
efficiency, considering that the Krylov subspace construction is the most resource-intensive
step of the algorithm. This heuristic criterion has demonstrated remarkable stability across
various problem sets, as detailed in [108].

Despite these efficiency improvements, GSE is often ill-suited for simulations where com-
putational efficiency is essential. Expansion schemes with more cost-effective construction
principles, like the local subspace expansion (LSE) detailed in the next section, typically
prevail. Therefore, we recommend using GSE, akin to the Global Krylov method; only for
a limited number of initial time steps and subsequently transition to less resource-intensive
alternatives.

2.3.2 Local Subspace Expansion (LSE)
The concept of Local Subspace Expansion (LSE) initially surfaced in a preprint [109], yet
was omitted in the subsequent peer-reviewed publication [107]. We presented a similar
approach in [7], that is significantly more efficient compared to GSE while maintaining
accurate results. At times, it even significantly exceeds the precision of the previous state-
of-the-art method, 2TDVP, particularly in the context of systems characterized by long-
range interactions or constrained bond dimensions [7], see figure 2.11.

This approach employs the expansion tensor originally devised for the DMRG3S algo-
rithm, leveraging its local construction principle that still provides global information [83],
given as

Ek
i = Li−1E

k−1
i Wi, (2.59)

with E0
i = Mi. Note that this expansion tensor does not include a tuneable coefficient α as

it is unnecessary in the context of time evolution. It is possible to construct higher-order
terms of this expansion tensor, akin to GSE. However, as the enrichment step is performed
at least twice as often in symmetric integration schemes, we did not find it necessary to go
beyond k = 1. However, it is plausible that higher-order expansion tensors combined with
fewer overall enrichment steps can further improve the efficiency of this method.

The LSE procedure is, at its core, similar to GSE as it also depends crucially upon a
projection onto the orthogonal complement of the current site tensor to ensure the invari-
ance of the state. For a left-to-right sweep, assuming a symmetric integration scheme, the
complete LSE procedure at site i is given as [7, 109]:

(i) Time evolve the active site tensor Mi(t)→Mi(t+ δt
2 ).
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(ii) Truncate the active site tensor Mi using a singular value decomposition to obtain

Mi = BiSiUi, (2.60)

where Bi is a rank three tensor. Unlike GSE, we advise against using a QR decomposition
in this step as this constitutes the only singular value decomposition of the site tensor;
thus, our only option to discard ineffective basis states.

(iii) Renormalize the singular value tensor after truncation and build the bond tensor
Di = SiUi. Evaluate heuristically whether to expand or skip the enrichment step.

(a) If no expansion is needed, jump to step (viii).

(b) Else, construct the projector onto the orthogonal complement of the site tensor as
Pi = 1−BiB

†
i .

(iv) Construct the expansion tensor up to order k as Ek
i = Li−1E

k−1
i Wi and normalize it.

(v) Project the Ek
i onto the orthogonal complement of the site tensor PiEk

i = E⊥
i .

(a) If the projection results in an empty expansion tensor, i.e. ∥E⊥
i ∥ = 0; jump to step

(viii).

(b) Else, use a singular value decomposition to truncate the projected expansion tensor
E⊥
i = B⊥

i S
⊥
i U

⊥
i . Again, we found a small but finite truncation threshold ∼ 10−6

necessary for stable, norm-conserving simulations.

(vi) Expand Bi with a direct sum as B̃i =
[
Bi B⊥

i

]
.

(vii) Expand to bond tensor Di with a zero tensor to match the size of the expanded

bond in B̃i. D̃i =
[
Di

0

]
.

(viii) Calculate new left contractions as Li = Li−1B̃
†
iWiB̃i. Note that B̃i = Bi if the

expansion step has been skipped.

(ix) Perform a back evolution of the bond tensor D̃i(t + δt
2 ) → D̃i(t). Again, note that

D̃i = Di if the expansion step has been skipped.

(x) Multiply the resulting bond tensor D̃i into the next site tensor Bi+1.

The efficiency of the Local Subspace Expansion (LSE) method is fundamentally deter-
mined by the pace at which the site tensor is expanded. Maintaining a modest, constant
maximum bond dimension for the projected expansion tensor, specifically in the range of
m ∼ 50− 100, consistently produces precise results across various simulations [7].





Chapter 3

Dynamical Mean Field Theory

Electronic structure calculations of strongly correlated materials are notably challenging
due to the simultaneous significance of both non-local and local correlations. The existence
of incoherent quasiparticles in transition metal oxides over a broad temperature range, at-
tributed to the suppression of the Fermi-liquid scale by Hund’s coupling [28], plays a crucial
role in the emergence of intricate electronic properties [14–16] which are directly pertinent
to experiment and the synthesis of quantum materials [17, 18]. Dynamical mean field the-
ory (DMFT) [27] established itself as the most successful numerical approach at addressing
these problems, demonstrating good agreement with experiments across a broad spectrum
of correlated materials [4, 110–113]. In the following, we will present a short summary
of DMFT and provide a detailed discussion of tensor network based impurity solvers and
functional materials in subsequent chapters.

Building upon the contributions of Metzner and Vollhardt [114], Georges et al. [115, 116]
successfully addressed the Hubbard model in infinite dimensions, presenting a solution for
its local Green’s function. This laid the groundwork for Dynamical Mean Field Theory
(DMFT) [27]. More precisely, Metzner and Vollhardt showed that for infinite dimensions
d, the self-energy of the Hubbard model becomes momentum-independent:

lim
d→∞

Σ(ω, k)→ Σ(ω). (3.1)

It was already shown previously by Kuramoto and Watanabe that the same holds true
in the limit of infinite coordination number zcoord [117], i.e., an infinite number of nearest
neighbors per lattice site. Subsequently, Georges et al. [27] argued that their method for
self-consistently calculating the local Green’s function of the Hubbard model in infinite
dimensions could be extended to systems with finite coordination numbers. They argued
that based on the large coordination number in many common 3-dimensional lattice struc-
tures, for instance zcoord = 8 for a body-centered-cubic lattice (iron, chromium,. . . ) or
zcoord = 12 for a face-centered-cubic lattice (gold, silver,. . . ), they would expect a local
self-energy to deviate only slightly from its full solution.
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Figure 3.1: Mapping of the lattice model onto a self-consistently determined impurity
model. The local interaction Hamiltonian remains the same while the coupling to and
within the bath (shown in grey) is determined iteratively.

However, this assumption can break down, especially in the vicinity of phase transitions.
Inoue et al. [118] demonstrated that the momentum dependency of the self-energy becomes
progressively more important as one approaches the Mott transition from the metallic
side. This sparked the creation of many extensions of the DMFT algorithm that aimed
to reestablish some momentum dependence of the self-energy. Most notably, we want to
mention the dynamic cluster approximation (DCA) [119, 120] that restores momentum
dependence by solving the DMFT equations for patches in the Brillouin Zone (BZ) and its
real space counterpart cellular DMFT (CDMFT) [110, 112, 121]. Refer to [4, 34] for our
work using CDMFT.

For the cause of our derivation, let us assume that the self-energy is indeed local. The
DMFT algorithm, as described by Georges and Kotliar [115], introduces an auxiliary im-
purity problem that can be viewed as a treatment of the lattice system in the atomic limit,
i.e., it has the same local interaction Hamiltonian as the full lattice problem. The impurity
itself couples to a non-interacting bath, see figure 3.1. The bath and its coupling to the
impurity site are described by the non-interacting Green’s function G(ω), see section 3.1
on how to construct the impurity Hamiltonian. Akin to classical mean-field theory, G can
be identified as a Weiss field. Ultimately, upon self-consistency, the Weiss field G itself is
chosen in such a way that the impurity Green’s function Gimp mimics the local Green’s
function G of the lattice problem [34]

Gimp(z) = δijGij(z), (3.2)

where z can either take the role of real frequencies ω or Matsubara frequencies iωn. As this
algorithm is designated to treat translationally invariant problems, i and j are unspecified
lattice positions. Initially, G can simply be constructed by some guess allowing us to solve
the impurity problem for Gimp and subsequently obtain the self-energy as

Σimp(z) = G−1(z)− (Gimp)−1(z). (3.3)
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This allows us to construct the lattice Green’s function G(z,k) from the Dyson equation
by using the locality of the self-energy Σ(z,k) = Σimp(z) as

G−1(z,k) = G−1
0 (z,k)− Σimp(z), (3.4)

where G0 is the non-interacting Green’s function of the lattice system. We extract the
local part of the lattice Green’s function by integrating over all momenta k

Gloc(z) := Gii(z) =
( 1

2π
)d
Vd

∫
BZ

dk
[
G−1

0 (z,k)− Σimp(z)
]−1

, (3.5)

where we took the continuum limit and the integration is performed in the first Brillouin
zone (BZ). Vd denotes the volume of the d-dimensional unit cell [34]. Substituting the
local Green’s function for the impurity Green’s function in equation (3.3) finally yields the
DMFT self-consistency condition as

(G loc)−1(z) = (Gloc)−1(z) + Σimp(z). (3.6)

We iterate above equations by identifying G = G loc until their deviation decreases below
a set convergence threshold |G loc − G| < ϵ at which point the impurity problem faithfully
mimics the lattice problem. A convergence threshold of ϵ ∼ 10−4 yields reliable results. We
note that the limit of infinite connectivity is not the only limit in which DMFT becomes
exact. In the atomic limit, i.e. t = 0, all sites can be treated independently. Hence, the
self-energy is local as well. Further, DMFT is trivially exact in the non-interacting limit as
the self-energy vanishes. To conclude this section, we want to present a step-by-step guide
for DMFT.

We start with an initial guess for the Weiss field G. Typically, one does not choose G
directly but obtains it from equation (3.6) by constructing an initial guess for the self-en-
ergy Σimp(z). DMFT is typically robust against symmetry-preserving initial choices of G
or Σimp(z). However, care must be taken in the vicinity of a phase transition as they often
suffer from hysteresis, e.g. the critical interaction strength for the transition from a metal-
lic to a Mott-insulating state typically depends upon whether the system is approached
from above or below the transition point, both in terms of interaction strength as well as,
but to a lesser extend, initial G [122]. We emphasize symmetry-preservation in this context
as DMFT often suffers from a spontaneous emergence of magnetic order that can either
be induced by a symmetry-broken G, e.g. by specifying different Weiss fields for up and
down spins, or a computational setup that does not exploit the SU(2) symmetry of the
underlying model. Equipped with an appropriately chosen G, from which we construct an
impurity problem, we iterate over the following steps until convergence:

(i) Solve the impurity problem to obtain Gimp
αβ (z). The indices α and β denote impu-

rity orbitals, see chapter 6 for a detailed discussion of multi-orbital simulations.

(ii) Construct the self-energy of the impurity model as:

Σimp
αβ (z) = G−1

αβ (z)− (Gimp
αβ )−1(z). (3.7)
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(iii) Equate the lattice self-energy with the self-energy of the impurity model based on the
assumption of locality:

Σαβ(z,k) = Σimp
αβ (z). (3.8)

(iv) Insert the self-energy into equation (3.4) and perform an integration over the momenta
of the lattice Green’s function G−1(ω,k) to obtain the local Green’s function

Gloc
αβ(z) =

( 1
2π
)d
Vd

∫
BZ

dk
[(
G−1

0 (z,k)− Σimp(z)
)−1

]
αβ

. (3.9)

(v) Use the DMFT self-consistency condition to obtain the non-interacting local Green’s
function G loc

αβ [
(G loc)−1

]
αβ

(z) =
[
(Gloc)−1(z) + Σimp(z)

]
αβ
. (3.10)

(vi) Check whether the deviation of G loc
αβ from the non-interacting Green’s function used to

construct the impurity problem Gαβ falls under a set threshold |G loc
αβ − Gαβ| < ϵ, if conver-

gence is reached exit here. Otherwise set Gαβ = G loc
αβ and construct the impurity problem

from it. Jump back to (i).

Typically, convergence is reached after 10-20 iterations. Convergence speed can be im-
proved by mixing, for instance, current and previous G, see [123]. However, such methods
should be employed with care as they might force incorrect results. We recommend using
them only if the self-consistency loop oscillates around the correct solution.

3.1 Impurity Models

The basis of all impurity solvers is the construction of the impurity model itself. While
different models exist for the simulation of various physical problems like the Hubbard-
Kanamori Hamiltonian used to describe transition metal oxides [1, 2, 28] or the periodic
Anderson model (PAM) [124, 125] that successfully modeled heavy fermion f-orbital com-
pounds, they usually follow the same simple structure that is already present in the single
impurity Anderson model (SIAM) [126]. We, hence, want to introduce the typical 3 part
structure of these Hamiltonians and how to subsequently obtain the hybridization function
required to construct them on the basis of the SIAM, given by:
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Ĥ = Ĥimp + Ĥbath + Ĥhyb (3.11)
Ĥimp = µ

∑
σ∈{↑,↓}

d̂†
σd̂σ + Un̂↑n̂↓ (3.12)

Ĥbath =
Lb∑
l=1

∑
σ

ξlĉ
†
lσ ĉlσ (3.13)

Ĥhyb =
Lb∑
l=1

∑
σ

(γld̂†
σ ĉlσ + h.c.), (3.14)

where d̂ and n̂ are the annihilation and particle number operators on the impurity site.
The creation operators on the Lb bath sites are denoted as ĉ†

lσ, and µ embodies all local
potentials of the impurity, e.g., the chemical potential or the double counting correction
that is relevant in DFT+DMFT simulations. The Hamiltonian of the SIAM is quadratic
in the single site operators of the bath ĉ†

lσ. They can hence be integrated out to yield [115]:

G(z)−1 = z − µ−
∫ dϵ

π

∆(ϵ)
z − ϵ

= z − µ−∆(z), (3.15)

where ∆(ϵ) is given as
∆(ϵ) = π

∑
l

γ∗
l γlδ(ϵ− ξl). (3.16)

Thus we can obtain a hybridization function ∆(z) for our impurity model that mimics the
local problem described by the Weiss field G as

∆(z) = z − µ− G(z)−1. (3.17)

Tensor network based impurity solvers and other ED-like algorithms can only represent
a finite number of bath sites due to the exponentially growing Hilbert space dimension.
Thus, they must approximate the Weiss field as [27]

Gd(z)−1 = z − µ−∆discr(z), (3.18)

where the last term denotes the discretized hybridization function, given as

∆discr(z) =
Lb∑
l

γ∗
l γl

z − ξl
. (3.19)

A faithful correspondence between the impurity model and the local problem defined by
G can hence be found if ∆discr(z) ≈ ∆(z). This can be achieved by appropriate fitting or
discretization procedures that will be introduced in chapter 4 and chapter 5.
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Figure 3.2: Crystal field splitting of d-orbitals under lattice symmetries. Numbers at each
level indicate the degeneracy. Adapted from [23].

3.1.1 Real Material Simulations
Materials with partially filled d-or f-shells are typically characterized by strong electronic
correlations [19, 27]. Among them are transition metal oxides (TMOs) that are prime
candidates for synthetic quantum materials due to their myriad of (tunable) functional
properties, including superconductivity, Mott transitions, and strange metallicity [14–16].

TMOs are characterized by narrow bandwidths that can be understood as the result of the
hybridization of spatially confined transition metal d-orbitals and ligand p-orbitals [23].
However, simple descriptions of such materials are typically unavailable as they are inher-
ently multiband materials; i.e, the Fermi level crosses several bands originating from these
hybridized orbitals [28].

Due to the total angular momentum of L = 2 in d-orbitals, they have a tenfold degeneracy,
one for each of the 5 available Lz quantum numbers and a factor 2 for spin. This degeneracy
is lifted in the presence of anisotropic crystal fields that arise in TMOs due to the strong
tendency of ligands towards negative valence [23]. Thus, for instance in the presence of a
cubic lattice, as found in the TMO SrVO3, see [39], the crystal field splits the tenfold de-
generate hybridized orbitals into fourfold degenerate, typically energetically less favorable,
eg orbitals and sixfold degenerate t2g orbitals [23], see figure 3.2. Additional degeneracies,
especially in partially filled orbitals, can be lifted in the presence of Jahn-Teller distortions
[23]. In the context of simulations, this property can lead to crucial simplifications as,
depending on the strength of the crystal field splitting, only 3 of the potential 5 orbitals
need to be treated in a full DFT+DMFT manner. If the crystal field splitting pushes the
eg bands far enough above the Fermi level, they essentially become uncorrelated. Thus,
they can be accurately described by less resource-intensive methods like DFT [20–22] or
constrained random phase approximation (cRPA) [127, 128]. We present a comparison of
3 orbital versus full 5 orbital simulations for the heavy fermion TMO LiV2O4 in chapter 8.
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Nonetheless, any appropriate description of such multiband materials must include in-
ter-orbital couplings, as they constitute the origin of strong correlation in them, especially
for materials that are not in the proximity of exhibiting metal-insulator transitions [28].
The appropriate Hamiltonian for the description of an entire d-shell is what is commonly
referred to as full slater Hamiltonian [129]. In the presence of cubic symmetry, this full
slater interaction term corresponds to the simpler Hubbard-Kanamori interaction term
[28]. Although the Kanamori parametrization is not generally the most appropriate de-
scription of TMOs, it is nonetheless commonly used as deviations are expected to be small.
A three-band impurity model with Hubbard-Kanamori interaction reads

ĤK = U
∑
m

n̂m↑n̂m↓ + U ′ ∑
m ̸=m′

n̂m↑n̂m′↓+

+ (U ′ − J)
∑

m<m′,σ

n̂mσn̂m′σ − J
∑
m ̸=m′

d̂†
m↑d̂m↓d̂

†
m′↓d̂m′↑

+ J
∑
m ̸=m′

d̂†
m↑d̂

†
m↓d̂m′↓d̂m′↑, (3.20)

where m,m′ run from 1 to 3, U and U ′ are the intra- and inter-orbital Hubbard interaction,
and J is the Hund’s coupling [6, 28]. d̂†

mσ and d̂mσ are fermionic creation and annihilation
operators on band m. Under the assumption of spherical symmetry, we have U ′ = U − 2J
[28]. Typically, U ′ deviates only slightly from U − 2J in non-cubic lattices. Depending on
the impurity solver, U ′ can also be chosen freely. While tensor network based impurity
solvers can typically consider arbitrary interactions, other methods, for instance, the nu-
merical renormalization group (NRG), rely heavily on the presence of symmetries. Hence,
they often consider yet another simplified version, the Dworin-Narath Hamiltonian [130],
which disregards the last term in equation (3.20) (known as pair hopping) and necessarily
has U ′ = U − J [28].

3.2 Impurity Solvers
So far, we glanced over one of the most important aspects of DMFT: the impurity solver.
At this point, we solely want to give a broad overview of commonly used impurity solvers;
various benchmark results can be found in chapter 7 and chapter 8.

The most commonly used impurity solver is the continuous-time hybridization expansion
(CTHYB) [131, 132]. It proved to be highly successful, especially in the context of real
material simulations [1, 133–135]. However, it suffers from the presence of a sign-problem,
thus effectively restricting it to the Matsubara frequency axis [136–138]. Specifically in
the context of large cluster DMFT calculations, the continuous-time interaction expansion
algorithm (CTINT) [45] is able to treat a significantly larger number of impurity sites
compared to the aforementioned method [139]. However, it is restricted to interaction
Hamiltonians that solely consist of density-density terms.
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Solver ω iωn T = 0 T ∀Ĥ imp large Lb large Ni

ED ✓ ✓ ✓ ✓ ✓ ✗ ✗

NRG ✓ ✓ ✓ ✓ ✗ ✓ ✗

CTHYB ✗ ✓ ✗ ✓ ✓ ✓ ✓
CTINT ✗ ✓ ✗ ✓ ✗ ✓ ✓

TN ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3.1: Concise comparison of the characteristics of various impurity solvers.
From left to right, the table summarizes key aspects as follows: Quantum Monte Carlo
(QMC)-based methods are generally unable to directly compute Green’s functions on the
real frequency axis or at zero temperature. Both NRG and CTINT are restricted in the
interaction Hamiltonians they can treat efficiently. The hybridization function requires dis-
cretization in ED-like solvers, whereas QMC based approaches typically work directly in the
thermodynamic limit. Tensor network based solvers are adept at handling a considerable
number of bath sites, Lb, whereas NRG and ED depend on a logarithmic discretization
or basis transformations, respectively. Typically, ED and NRG can treat no more than
3 impurity orbitals while results for 5 orbital simulations of real materials are available
for CTHYB [140] and TN [39] based solvers. CDMFT results with up to 64 interacting
impurities obtained using CTINT are documented in [139].

Note that all implementations are limited to comparably large temperatures due to the
O(β3) scaling of QMC algorithms [132], where β denotes the inverse temperature.

In contrast to this, we want to highlight ED-like solvers that are generally more flexi-
ble, allowing them to operate both on the real frequency axis as well as the Matsubara axis
for simulations at both finite and zero temperatures. Exact diagonalization was among
the first impurity solvers used for DMFT simulations [40]. Nevertheless, the capability
to treat a large number of sites is constrained by the exponential growth of the Hilbert
space dimension, often restricting ED to rather crude solutions of the problem. Notable
effort has been made to significantly enhance the precision of the discretization of the hy-
bridization between the impurity and bath by heavily increasing the number of bath sites
Lb and selecting only the most relevant bath sites after a basis transformation [41]. ED
is, nonetheless, heavily limited in the number of impurities Ni it can accurately model.
Over the years, the Numerical Renormalization Group (NRG) emerged as a benchmark
technique due to its exceptional low-energy precision across a broad range of temperatures.
However, its exponential scaling severely limits the number of orbitals that can be treated.
Moreover, its dependency on non-abelian symmetries and orbital degeneracies restrict it
to approximative models that do not capture the full lattice interaction [141, 142].
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A major effort of this thesis was developing and improving tensor network impurity solvers.
We only want to briefly overview them at this point and provide a detailed discussion in the
following chapters. Tensor Network methods have been successfully used for simulations on
both the real frequency axis [36, 38, 39, 143–145] and Matsubara frequency axis [1, 2, 4, 33,
35]. Typically, these simulations were restricted to zero temperature. We present a concise
scheme to construct finite temperature DMFT simulations with TN network methods and
show a comparison with CTHYB data in chapter 8. Additionally, a notable limitation
of tensor network solvers on the real frequency axis has been their uniform frequency
resolution across the entire spectrum, which typically lags behind the performance of NRG
at low frequencies due to the latter’s logarithmic discretization. In chapter 7, we introduce
an innovative time evolution technique that allows us to significantly improve the low
energy resolution of our methods, enabling us to accurately model the Fermi-liquid behavior
of a 3-band model on the real frequency axis. We believe that this advancement paves the
way for high-precision simulations of transport properties in transition metal oxides.





Chapter 4

Imaginary Time Impurity Solver

The imaginary time impurity solver (IT) has been a powerhouse of TN-based impurity
solvers [1, 2, 4, 33] since its introduction in 2015 by F. Alex Wolf et al.[35], due to its
comparably low computational cost. While numerical improvements of the IT solver are
the subject of this thesis, its general implementation has been largely performed by Max
Bramberger; see [34]. Algorithmic advancements discussed in the following chapters are
all contained within our DMFT toolkit Optimized Basis Tensor Network Impurity Solver
(OTIS), which is a collaborative development with Max Bramberger. All tensor network
algorithms employed therein use our highly efficient toolkit SyTen [77, 78].

The IT solver computes Green’s functions directly on the Matsubara axis. Hence, a typi-
cally ill-conditioned analytic continuation is required to obtain dynamic quantities that are
directly comparable with experiment. See section 4.4 for details on analytic continuation
techniques. However, compared to QMC methods, which typically also work directly on
the Matsubara axis, it produces noise-free data that can be obtained directly at T = 0 or
at a wide range of temperatures.

Note that we will exchange z for Matsubara frequencies iωn in our DMFT equations.
They are constructed as ωn = (2n+1)π

βdiscr where βdiscr either corresponds to a fictitious temper-
ature βeff that solely sets the energy discretization in our T = 0 simulations, or the actual
inverse temperature β.

4.1 Discretization
For the sake of generality, let us consider the full matrix-valued hybridization function for
multi-orbital impurity models ∆ij(iωn) where i and j run over all impurity sites. We follow
a fitting procedure for the construction of ∆discr

ij (iωn) that was first introduced by Caffarel
and Krauth [40]. We can construct a cost function as:

χ(γil, ξil) = 1
Nmax

Nmax∑
n

ω−α
n

∑
ij

∣∣∣∆ij(iωn)−
∑
l

γ∗
ilγjl

iωn − ξil

∣∣∣2, (4.1)
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where Nmax takes the role of a high energy cut-off in the number of Matsubara frequencies.
We found that fitting the hybridization only up to roughly ωn = 6eV and disregarding the
high energy tail yields better results. As a caveat, we want to stress that all local terms
from equation (3.11) must be absorbed into µ, otherwise ∆ij(iωn) would not decay to zero
in the high energy limit, making it impossible to be faithfully fitted with our definition
of the cost function [34]. The parameter α can be used to put more emphasis on smaller
Matsubara frequencies in the cost function. We found a choice of α = 0.7 to yield good
results for metallic systems. Hybridization functions of insulating systems are generally
easier to fit, and no additional weighting function is required. Hence, we choose α = 0 here.
As the optimization landscape of the above cost function is, in general, rather complex,
we strongly encourage the use of Hessian-based optimization algorithms; see [34] for more
details.

The error of our discretization procedure given by the cost function χ is primarily depen-
dent on the bath size Lb and the energy resolution of our simulation, which is determined
by βdiscr (see figure 5.1 for a scaling analysis of the cost function)

4.2 Ground state search
Our objective is to solve the impurity model for the impurity Green’s function Gij(iωn).
This can be achieved by either computing it directly in frequency space, see [37, 145] or,
as it is typically found in modern implementations, obtaining it from performing a Fourier
transformation of the time-ordered Green’s function in imaginary time τ

Gij(τ) = −Θ(τ) ⟨ψ0|ĉi(τ)ĉ†
j|ψ0⟩+ Θ(−τ) ⟨ψ0|ĉ†

j ĉi(τ)|ψ0⟩ . (4.2)

Note that we omitted spin indices for the sake of clarity and that |ψ0⟩ denotes either the
ground state of our impurity model for T = 0 simulations or a thermofield double state for
simulations at finite temperatures. Thus, we must first find |ψ0⟩ in order to compute the
impurity Green’s function. The preparation of thermal states will be discussed separately
in section 8.3.

Although the ground state search typically does not amount to a large portion of the
overall computational cost of a single DMFT iteration, it becomes increasingly more com-
plex for multi-orbital problems. At βeff = 1000 the ground state search in LiV2O4, see
chapter 8, constituted roughly 8% of the total runtime for a 3-orbital simulation while it
already amounts to 38% of the total runtime in the full 5-orbital simulation. This stark
contrast in computational cost can be attributed to the rapidly increasing number of can-
didate quantum number sectors in our ground state search. We only present fundamental
concepts in this section, as the ground state search is rather unproblematic for the IT solver
compared to the real time solver due to the smaller number of bath sites. More advanced
algorithmic developments will be presented in section 5.3.
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The quantum number sector of the global ground state is typically not known ahead of
time. Therefore, we use DMRG, see section 2.2, in every possible quantum number sector
to obtain the ground state of the respective quantum number sector. Let us first clearly
define what we mean by quantum number sector. Both single and multi-orbital Hamilto-
nians conserve well-defined quantum numbers. For instance the SIAM model defined in
equation (3.11) conserves the total particle number N (U(1)) and the total spin S (SU(2)).
Hamiltonians of multi-orbital models like the Hubbard-Kanamori Hamiltonian, defined in
equation (3.20), also conserve the orbital parity P which yields an additional Z2 symmetry.

We can drastically reduce the number of quantum number sectors that we need to consider
by constructing a proper initial guess and only considering small deviations around said
guess. To obtain a good estimate for the particle number sector Nguess of the actual ground
state we count the negative (occupied) eigenvalues of our single particle Hamiltonian. We
can also restrict the total spin by physical intuition. If we know beforehand that we will,
for instance, describe a paramagnetic system, we can safely assume that the total spin will
likely be close to S = 0. As both of these restrictions are not exact, we typically allow for
some variance. We found that a ground state search in N ∈ {Nguess±2Ni} and S ∈ {±Ni

2 },
where Ni denotes the number of impurities, reliably yields the correct quantum number
sector. The overall number of quantum number sectors that need to be considered with
this approach depends approximately quadratically on the number of impurities. Thus,
increasing Ni results in a drastic increase in computational cost.

A possible remedy to this problem is to disregard symmetries of the Hamiltonian alto-
gether. While this approach will likely not result in the ground state, it can drastically
limit the number of quantum number sectors that need to be considered by obtaining an
even better initial guess for a proper ground state search in individual quantum number
sectors.

It can, at times, be beneficial to not exploit the full symmetry of the system for rea-
sons of computational efficiency. This can lead to degenerate ground states. For instance,
consider the quantum number sector {N = 10, S = 1} where N denotes the particle num-
ber and S the total spin. If we disregard the SU(2) of the Hamiltonian and instead only
consider a U(1) symmetry conserving the spin Sz, we will find 3 quantum number sectors
{N = 10, Sz ∈ {−1, 0, 1}} with degenerate ground state energies. The proper, symmetry-
conserving, ground state can be reconstructed as an equal-weighted superposition of all
its irreducible constituents [34]. Otherwise, an equal-weighted sum cannot be assured as
DMRG will typically not construct an equally weighted superposition itself.
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4.3 Time Evolution
After acquiring the ground state, we proceed to calculate the time-ordered impurity Green’s
function as

Gij(τ) = −Θ(τ) ⟨ψ0|ĉi(τ)ĉ†
j|ψ0⟩+ Θ(−τ) ⟨ψ0|ĉ†

j ĉi(τ)|ψ0⟩ . (4.3)

Again, note that |ψ0⟩ denotes either the ground state of our impurity model for T = 0
simulations or a thermofield double state. The time evolution of the operator ĉi(τ) is given
as

ĉi(τ) = eτ(Ĥ−E0)ĉie
−τ(Ĥ−E0). (4.4)

Here, we add an energy shift E0 = ⟨ψ0|Ĥ|ψ0⟩ that serves two purposes: it compensates
the factor that we would obtain by applying eτĤ to |ψ0⟩ and, especially relevant for imagi-
nary time-evolution, it ensures numerical stability as the non-unitary time evolution would
otherwise quickly reduce the norm below thresholds of numerical accuracy. This leaves us
with a simplified definition for our time-ordered Green’s function as

Gij(τ) = −Θ(τ) ⟨ψ0|ĉie−τ(Ĥ−E0)ĉ†
j|ψ0⟩+ Θ(−τ) ⟨ψ0|ĉ†

je
τ(Ĥ−E0)ĉi|ψ0⟩ . (4.5)

Thus we have to perform two time-evolutions, one for each excitation ĉ (ĉ†). We will refer
to the first term in equation (4.5) as particle Green’s function and to the second as hole
Green’s function

Gp
ij(τ) = −Θ(τ) ⟨ψ0|ĉie−τ(Ĥ−E0)ĉ†

j|ψ0⟩ , (4.6)
Gh
ij(τ) = Θ(−τ) ⟨ψ0|ĉ†

je
τ(Ĥ−E0)ĉi|ψ0⟩ . (4.7)

The Θ functions ensure that both time evolutions are performed in positive imaginary time
direction (decaying norm, i.e., e−|τ |(Ĥ−E0)).

We obtain the impurity Green’s function G(iωn) by a Fourier transformation of the time-
ordered Green’s function. For simulations at zero temperature, we choose to define the
Fourier transformation as

Gij(iωn) =
∫ ∞

−∞
eiωnτGT=0

ij (τ)dτ. (4.8)

This has several advantages that will become apparent once we discuss the usage of linear
prediction to extend time series, see section 4.3.1. We use a more commonly found definition
for the Fourier transformation for finite temperature Green’s functions

Gij(iωn) =
∫ β

0
eiωnτGT

ij(τ)dτ. (4.9)

Both of these definitions are equivalent due to the periodicity of Matsubara Green’s func-
tions. However, GT=0

ij (τ) and GT
ij(τ) have to be ordered differently, see figure 4.1.
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Figure 4.1: Exemplary depiction of a time-ordered Green’s function in our zero tempera-
ture ordering (left), see equation (4.8) and the more commonly used definition for finite
temperature simulations (right), see equation (4.9).

However, it is significantly easier to accurately account for particle and hole Green’s func-
tions that have been evolved, or extended, to different final times τmax using the definition of
equation (4.8). Whenever suitable, we will disregard the predicted part of our time-ordered
Green’s function and show it in the ordering we use for finite temperature simulations, see
figure 4.1 (right).
A subtlety of imaginary time calculations that has not been properly addressed so far is
the choice of the final time τmax. The choice is, arguably, well-defined for calculations at a
finite temperature. In this case the time-ordered Green’s function is periodic in β, resulting
in two time evolutions, each of which is performed until τmax = β

2 . Yet, the situation is not
as clear-cut for calculations at T = 0, i.e., β =∞. We consider it good practice to evolve
the system in time to at least T = βeff

2 , or until the Green’s function is decayed below a
certain threshold. We chose a threshold of 4×10−8. For finite temperature simulations, one
should find a smooth transition from particle to hole Green’s function at τ = β

2 . However,
it is not obviously apparent why this should hold true for T = 0 simulations given their
discretization at a fictitious βeff.

We examine this in more detail on the basis of simulations for a 3-orbital Dworin-Narath
Hamiltonian with U=4 eV and J=0.6 eV at half-filling, see section 3.1.1 for a definition of
the model. We use a semi-elliptical hybridization function for our calculations defined as

− 1
π

Im∆(ω) = D

2π

√√√√1−
(
ω

D

)2

, (4.10)

for ω ∈ [−D,D], where D = 2 eV denotes the half-band width in our model. We show the
time ordered Green’s function in figure 4.2.
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Figure 4.2: Zero-temperature time-ordered Green’s function for a fully degenerate 3-or-
bital Dworin-Narath Hamiltonian with U=4 eV and J=0.6 eV at half-filling. During time
evolution, we allowed for up to m = 4096 SU(2) states with a time-step of δτ = 0.05 and a
truncated weight of tw = 10−11. For time evolution we used GSE until τ = 5, 2TDVP until
τ = 50 and 1TDVP until the final time of τ = βeff

2 = 500. The inset shows the presence of
a minute gap between the particle and hole Green’s function at βeff

2 . We chose to present
an equal-weighted superposition of the particle and hole component at βeff

2 . We added
the shifted time-ordered Green’s function as defined in equation (4.11) as an additional
curve in the inset. Even though this gap is of the order of 10−6, it still has a drastic and
noticeable effect on the impurity Green’s function G(iωn) as shown in figure 4.3.

Calculations were performed at βeff = 1000 with a time evolution until τmax = βeff

2 allowing
for up to m = 4096 SU(2) states with a time-step of δτ = 0.05 and a truncated weight
of tw = 10−11. For time evolution, we used GSE until τ = 5, 2TDVP until τ = 50, and
1TDVP for the remainder. We find a small gap between the particle and hole Green’s
function at βeff

2 which, though its size is only in the order of ∼ 10−6 will lead to unphysical
behavior in both the impurity Green’s function G(iωn), see figure 4.3 and more importantly
the self-energy Σ(iωn), see figure 4.4.

To address the issue, we propose two strategies and discuss their effect on both the Green’s
function and the self-energy of our 3-orbital model. The first method involves the intro-
duction of a shift to the particle/hole Green’s functions to close the gap in the time-ordered
Green’s function. Such a shift can be motivated under the assumption of a constant error
during time evolution, for instance, a constant projection error as discussed in section 2.3.
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However, it’s crucial to note that attempting to directly counteract the underlying causes
of these deviations within tensor network algorithms may not be practical due to the re-
sulting exponential increase in computational demands.

We can eliminate the gap at βeff

2 by introducing a symmetric shift ∆PH to both the particle
and hole Green’s function with opposing signs, see inset of figure 4.2:

∆PH = 0.5(Gp
ij(
βeff

2 )−Gh
ij(
βeff

2 )) (4.11)

Gp
ij(τ)← Gp

ij(τ)−∆PH (4.12)
Gh
ij(τ)← Gh

ij(τ) + ∆PH . (4.13)

This effectively addresses the oscillations observed in the real part of Gij(iωn). However,
closing the gap leaves the imaginary part of the impurity Green’s function invariant, see
figure 4.3. The persistent oscillations in the imaginary part are indicative of an unphysical
solution as the system should adhere to the (generalized) Friedel sum rule, which dic-
tates limiωn→0 ImG(iωn) = 1. More importantly, while the shift mitigates oscillations in
the real part of the self-energy, unphysical behavior in the imaginary part prevails. We
find that the expected Fermi-liquid behavior, which anticipates limiωn→0 Im Σ(iωn) = 0, to
be completely hidden behind unphysical oscillations. Hence, the gap is not the origin of
unphysical behavior in the self-energy, and a simple shift, therefore, does not adequately
address the underlying issue. Thus, a second strategy is required using linear prediction.
The linear prediction method, as presented in [146], allows us to extend our particle/hole
Green’s function in τ until they are fully decayed, i.e. smaller than 10−10 in magnitude.
We want to first discuss the effect linear prediction has on our benchmark system before
moving on to a proper introduction of the method in section 4.3.1.

We observe that the real parts of our impurity Green’s functions obtained deploying the
shift and linear prediction strategies coincide perfectly with each other, see figure 4.3.
Moreover, we conclude that the extended decay of the particle/hole Green’s functions
leads to correct physical behavior in ImG(iωn) indicated by the accordance with the sum
rule. This also translates to the self-energy, where we report a perfect agreement between
both strategies in the real part. However, linear prediction additionally uncovers the Fermi
liquid behaviour of our system, as shown by the proper decay of the self-energy towards
zero, see figure 4.4.

Linear prediction is unavailable in finite temperature simulations as particle/hole Green’s
functions cannot be extended to arbitrary τ due to their periodicity. Therefore, a stan-
dalone discussion of this problem for finite temperature Green’s function is warranted and
can be found in section 8.3.1.
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Figure 4.3: Impurity Green’s function G(iωn) for the 3-orbital simulation as defined in
figure 4.2. We find that oscillations at low frequencies in the real part of the impu-
rity Green’s function are alleviated by the linear prediction method (lp) and the shift
method. While we report great mutual agreement of both post-processing methods for
ReG(iωn), the oscillations in ImG(iωn) remain for the shift due to the periodicity of the
Matsubara Green’s function. Linear prediction appears to accurately conserve the sum-
rule limiωn→0 ImG(iωn) = 1.
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Figure 4.4: Self-energy for the 3-orbital simulation as defined in figure 4.2. We observe
large oscillations in Re Σ(iωn) that are mitigated by both the linear prediction (lp) as
well as the shift method. We see a clear violation of physicality in Im Σ(iωn) by the shift
method, while linear prediction captures the Fermi-liquid behavior of the self-energy.
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Figure 4.5: Time-ordered Green’s function reconstructed via Fourier transformation from
an impurity Green’s function, which was obtained using linear prediction. Comparison
with the pure data reveals an enhanced low energy description as signified by the slower
decay in G(τ), cf text.

Linear prediction mitigates oscillations in our impurity Green’s function and effectively re-
stores proper physical behaviour, Yet, we can ask how it deviates from the simple, constant
shift method that solely mitigates oscillations. We obtain an answer to this question by
reconstructing the time-ordered Green’s function, constrained between 0 and β by Fourier
transforming the impurity Green’s functions that we initially obtained from our extended
time ordered Green’s function using linear prediction.

The reconstructed time-ordered Green’s function shows a significantly larger deviation
from the original time-ordered Green’s function compared to shift approach, see figure 4.5.
Moreover, the reconstructed Green’s function does no longer show any gap at βeff

2 . Con-
sidering the deviation from the original time-ordered Green’s function, we find that it
is, especially for intermediate times, dominated by an exponentially growing term with a
nearly constant exponent. However, as the deviation around βeff

2 from our original Green’s
function is large, this exponential term is not simply the result of an insufficiently converged
ground state. The overall slower decay, is indicative of a significantly enhanced descrip-
tion of the low energy physics as low lying excited states decay slower under imaginary
time evolution. This is consistent with our observation of oscillations at small Matsubara
frequencies in our original data. Hence, we conclude that a time evolution until βeff

2 does
not yield a sufficient description of low energy physics in zero temperature calculations.
Moreover, as tensor network based time evolution to a full decay of particle/hole Green’s
function is unfeasible, time series prediction methods are unavoidable for zero temperature
simulations.
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4.3.1 Linear Prediction
The derivation presented here is akin to the presentation in [146]. However, as we deem
linear prediction essential for zero temperature calculations, we also present it here.

Linear prediction extends a time series {xn} obtained at equidistantly-spaced points tn =
nδt in time by fitting it with exponentials of the form ceiωδt−ηδt with c ∈ C and ω, η ∈ R
allowing it to capture both oscillatory and decaying trends. With the ansatz that new
data points can be constructed beyond our latest time step, denoted as tobs, as a linear
combination of the p previous data points we obtain

x̃n = −
p∑
i=1

aixn−i. (4.14)

The coefficients ai can be determined by minimizing a cost function over a validation
interval (tobs − tfit, tobs]. Here, tfit should generally be chosen such that it does not include
any short time behavior [146, 147]. We can define the cost function χ as

χ(a) =
∑
n∈Nfit

|x̃n − xn|2, (4.15)

where Nfit denotes the number of data points in the validation interval. The minimization
procedure can be rephrased as a system of linear equations [146]

Ra = −r (4.16)

with
Rij =

∑
n∈Nfit

x∗
n−ixn−j (4.17)

ri =
∑
n∈Nfit

x∗
n−ixn. (4.18)

Hence, we solve for our coefficients ai by inverting R. We have not yet shown how our
prediction corresponds to exponentials of the form ceiωδt−ηδt. The identification of our
prediction with exponentials enables important post-processing steps that ensure the decay
of the predicted time series in the long time limit. Let us define the prediction procedure
as an iterative application of a matrix A on vectors Xn := (xn−1, . . . , xn−p)T as

Xn+1 = AXn, (4.19)

with

A ≡



−a1 −a2 −a3 · · · −ap
1 0 0 · · · 0
0 1 0 · · · 0
... . . . . . . . . . ...
0 · · · · · · 1 0

 . (4.20)
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We can predict our time series m time steps ahead by successive applications of A:

xn+m = (Xn+m)1 = (AmXn)1. (4.21)

This expression can be further simplified by decomposing A into its right eigenvectors as

xn+m = (AmXn)1 = (Y Dm
AY

−1Xn)1 =
p∑
i=1

ciαi, (4.22)

where Y denotes the right eigenvector matrix of A and DA is a diagonal matrix. The coef-
ficients ci are given by ci = Y1i(Y −1Xn)i. The eigenvalues αi encode resonance frequencies
and dampings as αi = eiωiδt−ηiδt [146]. Since, for our applications, we generally expect a
decaying time series, we want to ensure the decay in the long time limit by discarding all
eigenvalues αi with |αi| ≥ 1. This can be achieved by simply setting the corresponding
coefficient to zero ci → 0. Note that discarding a large amount of weight can lead to
discontinuities in the time series. To also account for the discarded weight w given as

w =
∑
i:|αi|≥1 |ci|∑p
i=1 |ci|

. (4.23)

we define a new cost function as

χ(Nfit, Nobs, p) = max(ϵ(Nfit, Nobs, p), w(Nfit, Nobs, p)), (4.24)

where Nfit/obs = tfit/obs
δt

and ϵ denotes the maximum difference between our predicted curve
and the actually computed time series within our fit interval Ifit given as

ϵ = max
n∈Ifit

|x̃n − xn|. (4.25)

This constitutes an integer-based optimization problem for which we created a custom
optimization procedure defined as follows:

i) Spawn independent processes for Nruns random initial configurations Ci = {Nfit, Nobs, p}.

ii) Initialize the step size in parameter space ∆C either as half the integer range between
the upper and lower bounds of each parameter or, if no bounds are given, half the initial
guess values.

iii) Spawn Nwalks process for each configuration Ci with different random seeds.

iv) Perform a random walk with Nsteps in parameter space with a step size ∆C and a
randomly drawn number r ∈ [−1, 1] and map the resulting step in parameter space to an
integer ∆step = int(r∆C).
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v) Set ∆C ← ∆C/2. If ∀δC ∈ ∆C : δC > 1 jump back to iv) and set the current con-
figuration to the best configuration that has been found during the random walk.

vi) Select the best result from all random walks and initial configurations as your op-
timization result.

We found that the optimization does not heavily depend upon the initial configuration.
Hence, Nruns can simply be set to one for most purposes. Therefore, we set Nwalks to the
number of available CPU threads and choose a Nsteps O(100). Note that the computa-
tional complexity grows approximately cubically in p. It is thus advisable to provide upper
bounds to the optimization procedure. We found an upper bound of pmax = 200 to yield
reliable results.

Linear prediction is generally a reliable time series prediction method for time-ordered
Green’s functions in the long-time limit. Moreover, we show that a tensor network based
time evolution until βeff

2 , or even further, is not required as linear prediction manages to
accurately predict low-energy physics from significantly earlier times. We applied linear
prediction at various times in our previously defined benchmark model and observe ex-
cellent agreement between time ordered Green’s functions obtained at τ = 300 eV−1 and
τ = βeff

2 = 500 eV−1, as shown in figure 4.6. Thus, we can significantly speed up our
simulations by limiting the time until which we perform a full tensor network based time
evolution.

While we found linear prediction to yield reliable results for functions that are sufficiently
well decayed before the onset of the prediction, we nonetheless want to mention notable
recent developments in the context of time series prediction. Tian et al. developed a
multi-step recursion algorithm in [147] that was shown to produce more accurate predic-
tions if only short time series are available. Lin et al. [148] present a novel approach based
on quantic tensor trains. They represent the time series as a MPS and extend the time
series based on an entanglement minimization procedure. We want to stress that using a
prediction method that could reliably predict G(τ) from earlier times compared to linear
prediction would significantly improve the computational efficiency of our imaginary time
solver.
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Figure 4.6: Time-ordered Green’s functions between τ ∈ [0, β] (left) obtained from tensor
network simulations up to a maximum τ with a further extension using linear prediction.
Data is shown for the 3-orbital model defined in figure 4.2. We present the absolute value of
the difference between the τ = 500 eV−1 curve and curves with shorter maximum evolution
times that were extended using linear prediction in the inset. We find that τ = 100 eV−1

and τ = 200 eV−1 show a stark increase of deviation with increasing prediction time while
τ = 300 eV−1 and τ = 400 eV−1 appear numerically exact. Note that τ = 300 eV−1 and
τ = 400 eV−1 are less accurate at τ = 0 eV−1 due to a deviation in the ground state caused
by random elements in the discretization and initial state preparation for the ground state
search. On the right, we show the corresponding imaginary part of the self-energy. Again,
the inset shows the absolute value of the deviation from the τ = 500 eV−1 curve. We find
that shorter maximum evolution times solely affect the low energy behavior and that the
seemingly small deviations in G(τ) are increased by roughly two orders of magnitude in
the self-energy.

4.3.2 How to Perform Efficient Simulations

We want to highlight some of our key improvements in tensor network methods for solving
impurity problems on the Matsubara axis, with a focus on optimizing time evolutions, the
computationally most intensive part of our simulations. Previously, time evolution strate-
gies combined the global Krylov method with 2TDVP, limiting the former to a single time
step due to its high computational cost [34].

Advances in the form of the local and global subspace expansion method now render this
combination unnecessary, see figure 2.11 and figure 4.7, significantly boosting efficiency by
approximately 2.5 times in zero-temperature simulations of the heavy-fermion compound
LiV2O4.
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Figure 4.7: Comparison between the old time evolution recipe, a single time step with
global Krylov and 2TDVP for the remainder, versus the new time evolution recipe using
the GSE method (left). We observe perfect agreement between our time evolutions while
achieving a runtime improvement by roughly 2.5. Data is shown for the heavy-fermion
compound LiV2O4 at βeff = 200, see chapter 8. Simulations were performed on 2 Intel(R)
Xeon(R) Platinum 8362 processors with 32 CPUs each.

For finite temperature analyses of the same material, these new approaches have demon-
strated remarkable time savings, completing tasks in hours that previously exceeded days
without performing a single time step. At β = 500, our new time evolution scheme needs
about 11 hours to complete on 4 Intel(R) Xeon(R) Platinum 8362 processors with 32 CPUs
each. In comparison the GK did not complete a single time step in the maximally allowed
time frame of 5 days. Note that it can sometimes be advisable to use the local subspace
expansion method instead of, or in combination with 1TDVP to generate new basis states.
However, this is more relevant for real time evolution rather than imaginary time evolution
as the latter tends to damp high energy contributions over time.

Selecting the appropriate time step for simulations isn’t straightforward, as TDVP er-
rors are not always fully accessible. A larger time step typically reduces overall projection
and truncation errors during time evolution but increases errors in the Krylov solver and
Trotter scheme, see section 2.3. However, both Krylov and Trotter errors have shown
resilience to larger time steps in imaginary time evolution. Possibly because as the state
progressively evolves it approaches an eigenstate, thus largely mitigating Krylov errors.
Therefore, we want to explore the usage of exponentially growing time steps defined as

δtn = min(δtΛn, δtmax). (4.26)

Here, Λ determines the growth-rate and δtmax marks the largest time step that we allow
for to keep the Trotter error in check.
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Figure 4.8: Deviation between time-ordered Green’s functions obtained using linear and
exponential time steps (left) and the corresponding self-energies (right). The exponential
time step is given as δtn = min(δtΛn, δtmax) with δt = 0.1, Λ = 1.01 and δtmax = 0.5.
The self-energies are indistinguishable from each other; see inset (right). The time-ordered
Green’s functions show small deviations from each other, though, as showcased by the
self-energy, they are ineffectual.

A choice of Λ = 1.01 and a capped maximum time step of δtmax = 0.5 yields good re-
sults. Moreover, using equidistant time steps after reaching the cap enables the extension
of the Green’s function using linear prediction. We found this approach to yield tremen-
dous efficiency improvements. This results in a cut of runtime for a single iteration of the
heavy-fermion compound LiV2O4 at β = 2000 from 31 to 10 hours on the same hardware.
While we found exponentially growing time steps to be remarkably stable and accurate, we
nonetheless recommend their usage only until convergence is reached. Afterwards, an ad-
ditional iteration should be performed using only equidistantly spaced time steps to check
for any major deviations. See figure 4.8 for a comparison of dynamic quantities computed
with exponential time steps.

Further algorithmic improvements will be discussed in chapter 6 when we introduce custom
tree tensor network structures for multi-orbital impurity problems.

4.4 Analytic Continuation
Our imaginary time impurity solver offers many computational advantages over its real
frequency counterpart, see chapter 5. Typically, real frequency solvers, at best, have an
energy resolution of roughly 10 meV for 3-orbital models. Yet, our imaginary time solver
accurately resolves strong correlation effects below < 1 meV, see chapter 8. When those
results are compared to experimental data much of this precision is lost. For that, Matsub-
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ara axis data needs to be mapped to real frequencies. Such a mapping between different
complex domains is referred to as analytic continuation.

An analytic continuation between G(iωn) and G(ω) is given as: [149]

G(iωn) =
∫ ∞

−∞
dω A(ω)

iωn − ω
, (4.27)

where A(ω) = − 1
π

ImG(ω) is the spectral function. The complexity of analytic continua-
tion becomes immediately apparent when we discretize the above equation yielding

G(iωn) = δω
∑
m

A(ω)
iωn − ωm

=
∑
m

KnmA(ωm), (4.28)

where δω denotes the frequency spacing and ωm the discretized frequencies. The map-
ping is now given by the analytic continuation Kernel Knm. However, calculating G(ω)
from G(iωn) requires an inverse of Knm. This inversion is generally ill-conditioned, render-
ing analytic continuation from Matsubara to real frequencies a numerically delicate task.
Improvements in terms of stability and accuracy can be achieved by selecting a differ-
ent Kernel connecting both complex domains. The connection between the time-ordered
Green’s function G(τ) and the spectral function A is given as

G(τ) = −
∫ ∞

−∞
dω e−τω

1 + e−ωβA(ω). (4.29)

This is typically the Kernel of choice in modern analytic continuation algorithms as it
only couples the real parts of G(τ) and A, which amounts to more stable optimization
procedures [150].

So far, several methods have been devised to stabilize this inversion and enhance the
accuracy of analytic continuation. The most widely used among them is the maximum
entropy method (MaxEnt) [151–153]. Additionally, the Padé approximation [154] and the
recently introduced Nevanlinna algorithm [155] offer alternative approaches, each with its
strengths and limitations. However, both of these approaches yield underwhelming results
when applied to TN input data. Thus, we will disregard them in our further discussion.

The MaxEnt method constitutes the current benchmark in terms of analytic continuation
algorithms. While it can regularly be outperformed by different methods [155] it produces
the most reliable results over a wide range of systems and applications. Algorithmically,
MaxEnt minimizes a functional of the spectral function given as

Qα[A] = 1
2χ

2[A]− αS[A], (4.30)

where χ2 denotes the difference between the time-ordered Green’s function G̃(τ) and the
current guess G(τ) = KA(ω). Typically, G̃(τ) is obtained as an average over multiple
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samples of our original time-ordered Green’s function with added random noise. The
addition of small random noise tends to stabilize the MaxEnt procedure [150]. Let C
denote the covariance matrix over the random G(τ) samples. With this, χ2 is given as

χ2[A] =
∑
kl

(G̃k(τ)−Gk(τ))∗C−1
kl (G̃l(τ)−Gl(τ)), (4.31)

and S denotes an entropy term given as [152]

S[A] =
∫ ∞

−∞
dω
[
A(ω)−D(ω)−A(ω) log A(ω)

D(ω)

]
, (4.32)

where D(ω) denotes the default model, a prior knowledge model of the spectral func-
tion. Typically, a flat default model is used, which signifies no prior knowledge about the
spectral function. Hence, the objective is to deduce the most probable spectral function.
The functional Q is minimized across a range of α values, which are usually exponentially
distributed. Selecting the optimal α remains difficult as no clearly optimal strategy has
emerged. Small α values risk overfitting the noise of the Green’s function, while large α
values simply make the spectral function resemble the default model D(ω).

Generally, the optimal α value is determined on the relation of the misfit χ2 and α. On a
log-log scale, this dependence can be characterized by 3 distinct regions [150, 152, 153, 156].
First, the noise-fitting region (small α) where their relation is typically constant. Here,
a clear distinction between signal and noise is not always possible, which likely results
in incorrect analytic continuations. Second, the transition or information-fitting region
in which their relation grows approximately linearly. Typically, optimal values of α are
chosen close to or within this region. Finally, the overfitting region (large α) in which
their relation is approximately constant, yet again, as typically, only the default model is
resuscitated.

Typically, much in the spirit of modern MaxEnt, the goal is to select the optimal α value
such that it is as close as possible to the noise-fitting regime, resembling the idea of min-
imal bias. A robust optimization approach is the line fit procedure [157]. This approach
fits lines to the noise and information fitting regions and selects α as the value at their
intersection, see figure 4.9.

While MaxEnt constitutes a remarkable improvement from a direct inversion of the Kernel,
it remains a bottleneck in the stability and accuracy of imaginary time impurity solvers.
MaxEnt primarily suffers from two problems.
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Figure 4.9: Visualization of the dependence of χ2 on α in an exemplary model and different
optimization strategies. MaxEnt does not have any prior knowledge about the spectral
function. With prior knowledge, optimization procedures can be greatly stabilized by
choosing the value of α at the inflection point. This comes with little to no accuracy
penalties when analytically continuating Green’s functions. Yet, we found it critical to use
the line fit method for self-energies.

First, due to the nature of imaginary time evolution, high-energy contributions are pro-
gressively damped out. Thus, time-ordered Green’s functions tend to have only limited
information about high-energy spectral features. Hence, these features succumb to the
added random noise, and analytically continued spectral functions cannot accurately cap-
ture multiplet structures. The relevance of an accurate high-energy description should not
be dismissed. Knowledge of the full range of validity is crucial when comparing our models
to experiments. Moreover, in a DMFT context, these comparisons are often based on the
self-energy and its derived quantities like the momentum resolved spectral function. Yet, a
direct analytic continuation of the self-energy is often unstable [157]. Thus, one typically
constructs an auxiliary Green’s function as [158],

Gaux(z) = [z − C − Σ(z)]−1, (4.33)

where the constant C is usually set to C = Σ(i∞) + µ, with µ representing the chemi-
cal potential [157]. However, the reconstruction of Σ(ω) from the analytically continued
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auxiliary spectral function Aaux(ω) requires invoking the Kramers-Kronig relation given as

G(z) =
∫ ∞

−∞
dωA(ω)

z − ω
. (4.34)

Here, z simply corresponds to real frequencies with a small broadening, i.e., z = ω + i0+.
Thus, incorrect high-energy structures can influence the accuracy of low-energy features.
Ultimately, this limits the accuracy of our imaginary time solver in comparisons to exper-
iment and its predictive power.

The second pitfall of MaxEnt is its strong parameter dependence. As alluded to above, the
analytically continued function strongly depends on the correct choice of α. While many
suggestions for optimal choices of α have been made [152, 157, 159], none has emerged as
clearly superior. Additionally, the result depends strongly on the chosen frequency grid.
Finer frequency grids tend to stabilize the optimization procedure and low-energy accuracy.
Yet, this is computationally cumbersome as the dimension of the Kernel directly depends
on the number of considered frequency points.

In the following section, we present our solution to both of these issues in the form of
a new analytic continuation approach, MinKL, that aims to make use of high-quality prior
knowledge models. Therefore, it is significantly more accurate compared to current state-
of-the-art MaxEnt implementations [150].

4.4.1 MinKL - High Precision Analytic Continuation
Modern MaxEnt algorithms typically focus on the optimization of α and disregard any
other parameter dependence. However, the choice of the correct default model can cru-
cially enhance the stability of MaxEnt. Thus, we will explore the role of the default model
and showcase its influence on analytically continued functions. This work has been per-
formed in close collaboration with Philipp Westhoff [160].

To begin, let us introduce the Kullback-Leibler (KL) divergence [161] defined as

K(P ||Q) =
∑
i

Pi log
(
Pi
Qi

)
, (4.35)

where P and Q are probability distributions, and Pi and Qi discrete probabilies defined on
the same sample space. It is a relative measure of information that is sometimes referred
to as relative entropy. It quantifies how much given probability distributions differ from
another, where K(P ||Q) = 0 implies P = Q. The entropy S(P ) = −∑i Pi logPi can be
obtained as a special case of the KL divergence where Q is a uniform probability distribu-
tion. Hence, a maximization of the entropy can generally be equated with a minimization
of the KL divergence [161]. The same holds true for the MaxEnt algorithm.
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Upon the reasonable assumption that both the spectral function as well as the default
model are normalized (

∫∞
−∞ dωA(ω) = 1), we can simplify equation (4.32) to

S[A] = −
∫ ∞

−∞
dωA(ω) log A(ω)

D(ω) . (4.36)

In fact, the lost terms serve no mathematical necessity other than to ensure that A(ω) =
D(ω) in the limit of large α [152]. Thus, it is evident that the proper entropic term in
MaxEnt simply corresponds to a KL divergence

S[A] = −K(A||D). (4.37)

Hence, we can formulate a functional minimization procedure akin to MaxEnt as

Qα[A] = 1
2χ

2[A] + αK(A). (4.38)

The definition of χ2 is still given by equation (4.31) and we define K(A) as

K[A] =
∫ ∞

−∞
dω
[
A(ω) log A(ω)

D(ω) −A(ω) +D(ω)
]
. (4.39)

Note that we also chose to include the additional terms to stay true to convention. Though,
formally, this method simply corresponds to MaxEnt with a different sign, we nonetheless
want to refer to it as MinKL as we believe that it reflects more accurately the nature of
the algorithm as it puts more emphasis on the default model. While the proper role of the
default model in MaxEnt was well understood in older literature [162], the lack of available
real frequency results led to an omission of the benefits of a properly chosen default model
in recent years.

Tensor network based impurity solvers can operate on the Matsubara axis and the real
frequency axis, see chapter 5. Current analytic continuation algorithms limit the accuracy
of the imaginary time solver, while real frequency solvers are simply limited by their high
computational demand. We propose to alleviate these shortcomings by effectively combin-
ing results from both solvers. Real frequency results shall serve as a default model for the
MinKL algorithm, thus stabilizing the analytic continuation procedure while preserving
the already high low-frequency precision of the imaginary time solver.

We will explore two test systems to demonstrate the method’s capabilities. Initially, we will
establish MinKL’s accuracy using high-precision reference data for the 3-orbital Dworin-
Narath Hamiltonian on the real frequency axis that we obtained using our new complex
time impurity solver, see chapter 7. Further details of this model can be found in sec-
tion 4.3 and section 7.4.
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Figure 4.10: Spectral functions for our MinKL default model D(ω) (left) obtained from
our complex time impurity solver, see chapter 7, and analytic continuations of βeff = 1000
Matsubara Green’s functions using MaxEnt and MinKL. We find overall good agreement
between all methods in the low-frequency range. However, MaxEnt fails to accurately
capture the multiplet structure of our model and does not show proper decay in the large
frequency limit. We notice a particle-hole asymmetry in (left). Hence, we have included
a symmetrized version of MinKL. We show the comparison of our input Green’s function
G(iωn) (right) with the Matsubara Green’s functions, which we obtained from our optimal
MaxEnt and MinKL spectral functions.

We analytically continue data for the 3-orbital Dworin-Narath Hamiltonian with U=4 eV
and J=0.6 eV at half-filling and βeff = 1000. Additional computational parameters are
detailed in figure 4.2. We find that the use of our high-precision reference data as a de-
fault model significantly improves the analytically continued spectral function. While both
MaxEnt and MinKL conserve the (generalized) Friedel sum rule πDA(0) = 2, the devia-
tion from our reference data near the Fermi edge is smaller for MinKL. Moreover, MinKL
maintains the accurate high-energy description of the default model, while MaxEnt cannot
resolve the upper Hubbard bands, see figure 4.10. When we analytically continue our ob-
tained spectral functions back to the Matsubara frequency axis, we find that both MaxEnt
and MinKL deviate only slightly from each other, thus corroborating that Matsubara axis
data is dominated by low-energy information. All analytically continued data was obtained
on a hyperbolic frequency mesh with 4001 points between ω

D
∈ [−4, 4].

We have shown that MinKL maintains the accuracy of high-precision reference data. How-
ever, the availability of such reference data renders analytic continuation irrelevant. Thus,
we want to consider a more realistic scenario, the transition metal oxide LiV2O4, which
will be discussed in detail in chapter 8. This material sparked interest due to its emerging
heavy-fermion physics at low temperatures [46].
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Figure 4.11: Comparison between spectral functions (left) and Matsubara Green’s functions
(right) between MinKL and MaxEnt for LiV2O4. We conclude that both methods show a
clearly pronounced quasiparticle peak just above the Fermi level. This peak was obscured
in our real frequency data used as the default model due to the necessity of a broadening
η. MaxEnt data offers a closer resemblance to our input G(iωn) on the Matsubara axis
initially. However, this is completely mitigated by our bootstrapping approach.

However, we cannot resolve this behaviour with our real-time solver; the quasiparticle peak
near the Fermi edge [163] is hidden due to the employed broadening of η = 0.0075 eV.

As these complex correlation effects only arise at very low temperatures, they pose severe
challenges to current state-of-the-art analytic continuation algorithms [150]. The analytic
continuation kernel depends linearly on τ , which in turn grows linearly with the inverse
temperature β, see equation (4.29). Hence, the computational cost of MaxEnt and MinKL
roughly scale as O(β3) due to matrix inversions in the optimization procedure. Thus, we
make use of the discrete Lehman representation (DLR) [164, 165] that effectively resamples
our time-ordered Green’s function in a nearly optimal way [164], compressing it to only
fractions of its former size. This leads to a roughly 200-fold decrease in computational
cost, which in turn allows us to use significantly finer frequency meshes compared to other
implementations, ultimately leading to more accurate results.

This enables us to analytically continue results from our imaginary time impurity solver
obtained at an inverse temperature of β = 4000. We use real frequency data from our
real time impurity solver, simulated at zero temperature and η = 0.0075. We used our
new MT3N tensor network, see chapter 6, with 400 bath sites per orbital. The specified
broadening required time evolution until a maximum evolution time of Tmax = 120, which
we extended further using linear prediction. We allowed for a maximum bond dimension
of m = 300 at a truncated weight of wt = 10−11 during time evolution.
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Figure 4.12: Parameter dependence of MaxEnt (left) and MinKL (right) for LiV2O4 at
β = 4000. We show 120 individual analytic continuations for evenly spaced values of α
within the specified parameter region; lines are colored accordingly. MaxEnt results vary
greatly with α. For large values of α, individual peaks are no longer discerned, and the
pronounced quasiparticle peak at the Fermi edge merges with the side peak. In contrast,
MinKL only shows a clear α dependency for frequencies between ω ∈ [−0.05, 0.05] eV.
The pronounced oscillations next to the quasiparticle peak in MinKL are likely the result
of an overfitting of noise, as MinKL is already well into the noise-fitting regime for these
values of α. Data was obtained on a hyperbolic frequency mesh with 4000 points between
ω ∈ [−4.5, 7.5] eV.

We find that MinKL perfectly captures all high-energy peaks present in our default model
while maintaining the low-energy information of the Matsubara axis and accurately resolv-
ing the quasiparticle peak near the Fermi edge, see figure 4.11. MaxEnt also manages to
resolve the quasiparticle peak near the Fermi edge. Yet, it already fails to accurately place
the first side peak at around −100 meV. Interestingly, the MaxEnt result shows a closer
resemblance to the input Green’s function when we compare them on the Matsubara axis.
We thus employ an extension to our MinKL scheme, which we will refer to as a bootstrap-
ping approach. Given that we have already shown that MinKL preserves the information of
highly precise reference data, see figure 4.10, and enhances data from less accurate default
models, see figure 4.11, we can posit that we can iteratively use the output of our analytic
continuation as a new default model.

Indeed, we find that just two bootstrapping iterations drastically reduce the deviation
between the input Green’s function and our MinKL result on the Matsubara axis. Ad-
ditional iterations show diminishing returns. Now, MinKL shows a closer resemblance to
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both inputs, G(iωn) from our imaginary time solver and the spectral function from our
real time solver. All analytically continued data was obtained using a hyperbolic frequency
mesh with 4000 points between ω ∈ [−4.5, 7.5] eV. The optimal α was selected as the value
at the inflection point, see figure 4.9.

Thus, MinKL accurately combines low-energy information from the Matsubara axis with
high-energy information obtained directly on the real frequency axis. Additionally, we
want to stress the drastically improved stability of the MinKL approach. The quality of
the default model significantly affects the optimization landscape of analytic continuation
algorithms. This is evident upon considering the dependence of the results on the opti-
mization parameter α.

We consider LiV2O4 at β = 4000, and select 120 equivally spaced values of α for log10(α) ∈
[4.5, 11.5], see figure 4.12. The result of MaxEnt is highly dependent on α, which renders
the estimation of correct peak heights and positions difficult. At large values of α, it tends
to fuse the quasiparticle peak at the Fermi edge with the side peak at around 10 meV. In
contrast, MinKL stably discerns both peaks for all values of α as both of them are already
separated in the default model. Note that the 3 distinct optimization regions, see figure 4.9,
appear compressed in MinKL. Thus, we are already well within the noise-fitting regime
at log10(α) = 6, whereas MaxEnt sits right at the transition between the information and
noise-fitting regime. Despite that, MinKL shows a significantly reduced result variability
over all considered values of α.

Finally, let us consider the analytic continuation of self-energies. In a DMFT context,
most quantities that are comparable to experiment are derived from the self-energy. Yet,
direct analytic continuation strategies between Matsubara and real frequency self-energies
are highly unstable. While indirect schemes, like the construction of auxiliary Green’s func-
tions [158], tend to fare better, analytic continuation of self-energies remains a delicate task.

At β = 4000, LiV2O4 is close to a transition into a heavy Fermi liquid. In a Fermi liquid,
we would expect the imaginary part of our self-energy to roughly scale as Im Σ(ω) ∼ ω2 at
lower frequencies [166]. Yet, our real time solver shows no traces of Fermi liquid behaviour,
despite simulatios being carried out at zero temperature. Interestingly, due to the heavy
quasiparticle mass, which is determined by the slope of the self-energy at low energies,
even the first point on the Matsubara axis is still far removed from zero.

Upon analytic continuation, MinKL accurately resolves all high-energy peaks in this com-
pound. Moreover, it appears to uncover the emerging Fermi liquid behaviour. At ω = 0,
the imaginary part of the self-energy sits at just Im Σ(ω = 0) = −0.007 eV. In compari-
son, our MaxEnt self-energy sits even higher than our broadened real frequency solver at
Im Σ(ω = 0) = −0.035 eV.
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Figure 4.13: Analytic Continuation of Σ(iωn) for LiV2O4 at β = 4000. Both analytic
continuation methods make use of an auxiliary Green’s function Gaux with a constant
C = 2. MinKL correctly resolves all high-energy peaks, appearing to even correct for peak
heights, in comparison to the broadened default model (left). Moreover, MinKL indicates
an onset of Fermi liquid behavior in this compound, which is missed entirely in MaxEnt.
This is also reflected on the Matsubara axis (right). MinKL shows a better resemblance
with the input data, indicating an overall more stable and accurate analytic continuation.
MinKL data is shown after 100 bootstrapping iterations.

Moreover, the validity of our MinKL results is corroborated by a closer resemblance of our
self-energy with the imaginary time impurity solver input on the Matsubara axis. Both
approaches determined the optimal α via the linefit method. Additionally, MinKL results
are further enhanced by 100 bootstrapping iterations. Data was obtained on a hyperbolic
frequency mesh with 8000 points between ω ∈ [−4.5, 7.5] eV. An offset of C = 2 was used
in the creation of the auxiliary Green’s function, see equation (4.33).





Chapter 5

Real Time Impurity Solver

During the early development phase of tensor network impurity solvers, considerable em-
phasis was put on directly determining the impurity Green’s function G(ω). Prominent
approaches include the continued fraction expansion technique by Hallberg et al. [167, 168],
and the Dynamic Density Matrix Renormalization Group (DDMRG) most notably inves-
tigated in the works of Raas et al. [143, 144] and Nishimoto et al. [169, 170]. Furthermore,
significant contributions were made by Chebyshev expansion solvers, pioneered by Wolf
et al. [37] and Ganahl et al. [145]. In more recent developments, the focus of tensor
network impurity solvers has transitioned to the computation of the retarded impurity
Green’s function G(t) and its subsequent conversion to G(ω) via Fourier transformation
[171]. Approaches differ in both tensor network structures [6, 36, 39, 172] and time evo-
lution schemes ranging from the Global Krylov (GK) method [35] to the Time Evolving
Block Decimation (TEBD) [38, 39] and TDVP in the most recent works [4, 172, 173]. How-
ever, computations on the real frequency axis are significantly more difficult. There are
primarily two reasons for this. First, the entanglement growth during real time evolution,
which we will discuss at length in chapter 7, and second, the necessity for large baths to
ensure smooth, physical, self-energies. We will thus present a detailed analysis of various
discretization procedures in the next section.

Note that we will exchange z for real frequencies ω in our DMFT equations.

5.1 Discretization
Let us consider the discretized hybridization function given as

∆discr(z) =
Lb∑
l

γ∗
l γl

z − ξl
. (5.1)

While this constitutes a smooth function on the Matsubara axis, it corresponds to a sum
over delta peaks on the real frequency axis. Hence, the choice of the optimal discretization
scheme is not as clear as for the IT solver. A comparison purely based on a cost function
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is generally not applicable due to the discontinuous nature of equation (5.1) on the real
frequency axis. Furthermore, the choice of discretization schemes also affects the entangle-
ment of our tensor network states and the revival time, which indicates the onset of finite
size effects during real time evolution.

However, the sum over delta peaks in equation (5.1) will become a sum over Lorentzians
upon taking the absolut value, i.e., a smooth function, upon introduction of a broadening
ω → ω + iη. In this case, we can, similar to our imaginary time solver, define a smooth
cost function as

χ(γil, ξil) = 1
Nmax

Nmax∑
n

∑
ij

∣∣∣∆ij(ω)−
∑
l

γ∗
ilγjl

ω + iη − ξil

∣∣∣2, (5.2)

where we omitted the weight factor compared to equation (4.1) as the real time solver
offers equal precision over the full frequency range. Currently, it is unfeasible to solve for
a completely unrestricted minimum of this cost function due to the large number of free
parameters due to the extensive number of bath sites needed for an accurate representation
of the hybridization, see figure 5.1. Hence, we propose to determine the minimum of the
cost function as follows. Note that we will assume a diagonal hybridization function in the
discussion of our procedure as ∆ij(ω) must be diagonalized in the presence of off-diagonal
contributions for all discretizaton procedures presented in this chapter.

i) Initialize outer optimization boundaries Iopt
i that will act as a high energy cut-off for the

considered frequency range of our discretization procedure.

ii) Separate Iopt
i into Lbath intervals Iil and define the bath on-site potentials ξil as ξil =

Iil+Iil+1
2 .

iii) Perform a least squares optimization as |∆ii(ω) − 1
ω+iη−ξil

|γil|2| to find the optimal
hopping terms |γil|2. Evaluate the cost function defined in equation (5.2) on the full fre-
quency range.

iv) Iteratively perform steps i)-iii) within a Nelder-Mead optimization procedure to find
the optimal discretization interval Iopt

i .

While this approach allows to define a stable, cost function based, optimization proce-
dure, it still has several shortcomings compared to the IT solver. Still, a vast number of
bath sites is required, see figure 5.1. Moreover, its viability strongly relies on the presence
of a substantial broadening, which ultimately limits the spectral resolution of our real time
solver. We will later on refer to this procedure as fit method.

So far, in the absence of a broadening, the common wisdom has been to use integration
based approaches to discretize the hybridization function.
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Figure 5.1: Comparison of the convergence speed of fit-based discretization procedures of
the real and imaginary time solver for the eπg orbital of LiV2O4, see chapter 8. On the left,
we show the cost function defined in equation (5.2) for various broadenings and numbers of
bath sites. We find that, while the cost function decreases roughly exponentially with the
number of bath sites, the exponent depends heavily on the broadening, rendering the fit
discretization unfeasible for small broadenings. In contrast, the discretization procedure
on the Matsubara axis (right) converges significantly faster in the number of bath sites.
However, the exponent depends upon the inverse temperature, which, akin to the broad-
ening on the real frequency axis, determines the energy resolution in our calculations.

In the following, we provide a brief introduction to these methods, commonly referred to as
direct discretization schemes. Similar derivations can be found in [43, 174, 175]. See [176]
for a full discussion of matrix-valued discretization procedures. We obtain a discretized
approximation to the hybridization function ∆(ω) by using the trapezoidal rule as [175]

∆ii(ω) =
∫
Ii

|γi(ξi)|2
ω − ξi

≈
∑
l

|γi(ξil)|2δξil
ω − ξil

, (5.3)

where ξil are node points with spacing δξil. We recieve our usual definition of the discretized
hybridization function by identifying

|γil|2 = |γi(ξil)|2δξil (5.4)

and the node points ξil as bath energies [175]. Following Wolf et al. [175], this approxima-
tion can be improved by reintroducing the integral formalism as

|γil|2 =
∫
Iil

dξi |γi(ξi)|2 = −
∫
Iil

dω 1
π

Im ∆ii(ω), (5.5)

ξil = 1
|γil|2

∫
Iil

dξi ξi|γi(ξi)|2 =
∫
Iil

dω ω Im ∆ii(ω)∫
Iil

dω Im ∆ii(ω) , (5.6)
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where we exchanged the multiplication with an interval δξil in equation (5.4) with an in-
tegration over disjoint intervals Iil. The bath energies are computed as weighted averages
over said intervals. The same equations, which constitute the heart of direct discretization
schemes, can be obtained in a more explicit derivation using a Fourier series expansion
that is detailed in [43]. However, both derivations rely on approximations. The quality
of the above discretization description clearly depends upon two quantities: the number
of intervals and the specific choice of intervals. For instance, NRG relies heavily upon an
energy separation in the system. Hence, it requires a logarithmic spacing of the discretiza-
tion intervals Il [43]. Tensor network impurity solvers do not suffer from this restriction
and can use a wide variety of differently spaced intervals.

The choice of intervals in direct discretization procedures substantially impacts various
aspects of our simulations. First and foremost, it affects the accuracy of our discretized
hybridization. Moreover, errors in the discretized hybridization function will directly influ-
ence the precision of our self-energy, see equation (3.7). Due to an insufficient amount of
bath sites or an improperly chosen broadening, strongly peaked discretized hybridization
functions can lead to unphysical oscillations in the self-energy that obscure physics. While
this effect can be somewhat mitigated by exchanging ∆discr(ω) for ∆(ω) in the Dyson equa-
tion, as shown for instance in [39], we strongly discourage this approach as it will often,
nonetheless, lead to an unphysical behavior in the self-energy. Among the most commonly
selected direct discretization schemes are linearly spaced intervals that offer an equal energy
resolution over the complete support of the discretization and equally weighted intervals
popularized by Wolf et al. [175], which we will denote as equal in the following. For the
latter, intervals are chosen such that they contain equal fractions of the weight of the bath
spectral function J(ω) = − 1

π
Im∆(ω). This allows for a better fit in areas of high spectral

weight which typically leads to a more accurate description around the Fermi edge. Even
better descriptions of the low energy physics can be obtained by the usage of logarithmic
discretization strategies. We will present data for both a standard logarithmic grid as well
as for a lin-log grid that uses logarithmically decreasing intervals near the Fermi-edge and
linearly spaced intervals for higher energies.

In the following, we will discuss various discretization schemes on the basis of our two
benchmark systems from the prior chapter, the SIAM model and LiV2O4, a transition
metal oxide that will be discussed in detail in chapter 8.
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Figure 5.2: Accuracy of different discretization schemes, as given by the cost function
defined in equation (5.2), for the SIAM model at a broadening of η = 0.01 (left) and
LiV2O4 at η = 0.05 (right). We find that linear discretization intervals perform significantly
better for small bandwidths and nearly match the precision of the fit discretization for the
SIAM model, while they constitute the worst discretization scheme for real materials.
We find that all direct discretization schemes converge to the same cost function value
in (right). This is a consequence of the finite broadening. Direct discretization schemes
do not account for broadening factors potentially added in the construction of ∆discr(ω).
However, as showcased in figure 5.7, direct discretization schemes are generally unable to
accurately reproduce hybridization functions with a viable number of bath sites at small
or zero broadening.

This distinction in two test cases is certainly of importance as the spectral width of the bath
spectral function of the SIAM is typically significantly smaller compared to its real-material
counterparts, see figure 5.5 and figure 5.6 for visualization of the hybridization of the SIAM
model, a semi-elliptical-density-of-states, and LiV2O4 respectively. Overall, the equally
weighted intervals offer high accuracy for both test systems, see figure 5.2. While the
linear discretization strategy slightly outperforms the equal method for the SIAM model,
due to the small extension of the bath spectral weight, it constitutes the worst method
for LiV2O4. The fit discretization offers the highest accuracy overall. However, note that
this comparison is inherently biased towards the fit method as direct discretization schemes
are, by construction, unable to reproduce the discretization function at a finite broadening.
This is highlighted by the convergence of all intervals to the same cost function value as
shown in figure 5.2.
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Figure 5.3: Revival times in the SIAM model for equally spaced intervals for various bath
sizes (left). The predicted revival times for Lb = 25 and Lb = 50 are indicated as grey
dashed lines. We observe a clear linear dependence of the onset of revivals on the number of
bath sites, as indicated by the periodicity in the revivals of Lb = 25. The spectral functions
(right) stress the importance of understanding when revivals occur ahead of time, as all
but one spectral function show clear, unphysical oscillations.

In that sense, we also want to point out a further effect of the discretization procedure:
the revival time. Generally speaking, we want to evolve in time for as long as possible in
order to improve our spectral resolution according to the Fourier reciprocity. The effect
of revivals during time evolution is showcased in figure 5.3, where we find that spectral
functions heavily oscillate if we evolve too far in time. The emergence of these revivals can
both be easily explained, as well as predicted, if we consider the hybridization function in
its Fourier domain representation:

∆(t) =
∫

dωJ(ω)e−iωt (5.7)

∆discr(t) =
Lb∑
l

γ∗
l γle

−iξlt. (5.8)

The discretization is now given as a sum over exponentials, and any finite sum over complex
exponentials will experience a revival. Luckily, for equally spaced intervals, this revival time
can be easily estimated as tmax = 2π

δξl
, as indicated in figure 5.3. This prediction is strictly

speaking only valid in the noninteracting case, which explains the small deviation from the
actually observed onset of the revival; however, the basic characteristics of this formula,
i.e., the linear dependency of the revival time on the number of bath sites, clearly holds
true also in the presence of interaction.
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Figure 5.4: Comparison of revival times in the SIAM model with Lb = 50 bath sites
for different discretization schemes (left). The discretization schemes based on linearly
spaced intervals experience the latest revival, while logarithmically spaced schemes are
only accurate for short periods. The later revival in the fit method compared to the linear
method can be explained by the truncation of high energy spectral weight during the fitting
procedure during the adaption of the frequency boundaries Iopt

i . This, however, leads to a
shift in the Hubbard side-peaks, as shown in (right).

As indicated before, the occurrence of a revival depends crucially on the energy discretiza-
tion in our system; however, for non-equidistantly spaced intervals, the prediction and
classification of revivals are not as obvious. While the revival occurs significantly earlier
for the equal-weight discretization compared to the linearly spaced intervals, the onset of
the revival is not as disruptive. This can potentially lead to serious errors during simula-
tions as their onset might go undetected. Overall, the logarithmic discretization schemes
experience the earliest revivals, requiring the largest number of bath sites to accurately
represent the long-time behavior. We find that the fit discretization has a slightly later
revival compared to the linear scheme. This is merely a consequence of the fact that the
fit discretization, per definition, is allowed to disregard high energy spectral weight; hence,
the energy discretization δξl is finer. This, however, leads to stark deviations in the peak
position of the upper and lower Hubbard bands as shown in figure 5.4. We do want to
stress that such issues will not be as severe in real-material simulations as they typically
do not feature sharp band edges.

While the fit discretization displays overall good convergence behavior at finite broad-
enings, it breaks down for η = 0, see figure 5.1.
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Figure 5.5: Discretized hybridization functions in time (left) and frequency (right) for
Lb = 25. We find a perfect agreement between our Fourier-domain approach with the
exact hybridization function and only small deviations for the direct discretization scheme.
The main benefit of our approach is based on the idea of obtaining ∆discr(ω) via Fourier
transformation. We see a stark deviation in (right) for ∆discr(ω) obtained via Fourier
transformation (Fourier-domain) and the direct construction in frequency space using the
bath paramters obtained from the Fourier-domain method (Fourier-domain ω).

So far, RT solvers were heavily restricted in their frequency resolution due to large entan-
glement growth during real time evolution. Hence, this did not constitute a severe issue
as the limit of η = 0 was inaccessible. However, with our recent introduction of complex
time impurity solvers (CT) [6], see chapter 7, calculations at zero broadening became a
possibility and improved discretization procedures a necessity.

Therefore, we introduce a new discretization technique that constructs the discretized
hybridization function via Fourier transformation. Thus, we will refer to this new method
as Fourier-domain scheme. A comparison of the hybridization functions in time defined in
equation equation (5.7) and equation (5.8), shows that both constitute smooth functions
even in the absence of a broadening. Hence, it is possible to define a cost-function in time
as

χ(γil, ξil) = 1
Nmax

Nmax∑
n

∑
ij

∣∣∣∆ij(tn)−
∑
l

γ∗
ilγjle

−iξiltn
∣∣∣2 (5.9)

to obtain our bath parameters, where Nmax = tmax
δt

denotes the number of time steps up
to a specified maximum evolution time. Let us first introduce the basic concepts of this
idea based on our two test systems before we give an outline for the actual algorithm. Due
to the smoothness of the discretized hybridization function in time, we can exactly fit the
hybridization function, see figure 5.5.
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Figure 5.6: Occurrence of revival effects in the hybridization of the eπg orbital of LiV2O4
for discretizations with Lb = 50 bath sites (left). We find a clear breakdown right at the
maximally specified optimization time (indicated by the grey line) for the Fourier-domain
method while it constitutes a numerically exact fit prior. Despite the early onset of a re-
vival, the Fourier-domain discretization still significantly outperforms other discretization
schemes in the frequency domain (right). All data on the frequency axis is shown for a
broadening of η = 0.05.

While the linear discretization shows only small deviations in the time domain, it devi-
ates significantly in the frequency domain. However, we want to argue that this is largely
based on a mathematically ill-posed construction, as shown in figure 5.5. Given that the
discretized hybridization is well decayed in time, we can simply construct its frequency
correspondent via Fourier transformation, thus avoiding a summation over delta peaks.
This leads to a vast improvement in spectral accuracy and allows for an excellent fit of the
hybridization, even at a small number of bath sites.

The SIAM model is inherently special as the onset of revivals occurs remarkably late.
It is thus necessary to discuss the viability of this approach also for real-materials. The
revival in LiV2O4 occurs significantly earlier, as shown in figure 5.6. To avoid a complete
breakdown of our fitting procedure, it is crucial to know precisely when the revival will
occur and limit the optimization to times until the according tmax. We thus construct our
algorithm as follows:

i) Perform a direct discretization with linear intervals.

ii) Determine the occurrence of the revival as tmax = 2π
δξl

.

iii) Construct ∆(t) =
∫

dωJ(ω)e−iωt and minimize equation (5.9), within t ∈ [0, tmax].
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Figure 5.7: Comparison of cost functions for various discretization procedures defined in
time (left) and frequency (right) for the eπg orbital of LiV2O4. The Fourier-domain scheme
shows significant improvements over all other considered discretization procedures for both
cost functions. This especially holds true if we consider the added curves in (right) that
display a vast improvement in accuracy at zero broadening. If not stated otherwise, data
is presented for a broadening of η = 0.05 on the frequency axis.

iv) Fourier transform ∆discr(t) to obtain ∆discr(ω).

This procedure allows us to find stable optima for arbitrary bath sizes and revival times,
leaving us with a new discretization procedure that significantly outperforms all other
schemes on both the time and frequency axis, see figure 5.7. We report that the Fourier-
domain discretization outperforms current state-of-the-art discretization procedures with
respect to accuracy by about 5 orders of magnitude in the time domain, which in itself is
remarkable. However, more importantly, without a broadening, we improve the precision
of ∆discr(ω) by up to 8 orders of magnitude compared to the equal direct discretization
scheme, which was commonly viewed as the most accurate discretization procedure so far
[39, 175].

As a curiosity, we want to add that the Fourier-domain discretization procedure would
open up the possibility of closing the entire DMFT self-consistency loop in time. Such an
idea, in a different context, has recently been discussed in [177] where they show that the
Dyson equation, in such a scenario, transforms into an integro-differential equation that
can be solved with moderate numerical effort. This would completely avoid any numerical
instabilities that emerge from the ill-conditioned representation of our quantities of interest
on the frequency axis.
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5.1.1 Improved Estimators
So far, we found that direct discretization procedures either require a vast number of bath
sites or a large broadening in order to generate a smooth discretized hybridization function,
see figure 5.7. This is even more pronounced in the context of NRG simulations where, typ-
ically, logarithmic grids are used that would necessitate even larger broadenings at higher
energies, thus altering the sum rule of spectral functions [178]. In order to avoid this issue,
Bulla et al. [178] devised a new strategy for the calculation of the self-energy in impurity
models that allows to obtain it without explicitly requiring the discretized hybridization
function.

These new strategies are commonly referred to as improved estimators (IE) and can be
derived by using first [178] and higher order [179] equations of motion (eom) for impurity
Green’s function. Using a first-order eom, the self-energy can be computed as [178, 179]

Σ = FG−1, (5.10)

where F denotes an additional correlator given as

F (ω) = −i
∫

dteiωtθ(t) ⟨Ψ0|
[
[V, ci,σ](t), c†

i,σ

]
|Ψ0⟩ , (5.11)

and V denotes the interaction part in our impurity Hamiltonian, which, in its most general
form, can be defined as

V =
∑
ijkl

Vijklc
†
ic

†
jckcl. (5.12)

While in theory this amounts to the calculation of additional overlaps during time evo-
lution, this definition conflicts with the possibility of splitting-up the time dependency
of the local operator within the correlation function definition, a trick commonly used in
real time simulations, see equation (5.38). Thus, improved estimators may necessitate the
calculation of one additional time evolution per impurity and spin during real time evolu-
tion. However, this is often nonetheless a worthwhile trade-off as improved estimators can
drastically increase the accuracy of the self-energy [179].

Now, we can re-express our search for the optimal discretization scheme based solely on the
convergence speed of the self-energy in the number of bath sites for various discretization
schemes. We consider the SIAM model as described previously. We restricted the maxi-
mum time to tmax = 80D−1 and the maximum bond dimension to m = 1536 during our
time evolutions to ensure a meaningful comparison. Let us first establish the convergence
speed in the impurity Green’s function as this upper bounds our accuracy of the self-energy.
We compare various smaller bath sizes to results from a discretization with Lb = 200 bath
sites. We observe an overall fast convergence of the impurity Green’s function in the num-
ber of bath sites for all discretization procedures, both in the time and frequency domain.
Notably, the equal-weight discretization scheme converges faster than other strategies; see
figure 5.8.
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Figure 5.8: Comparison of the convergence speed of the retarded impurity Green’s function
(left) and the impurity Green’s function in frequency representation (right) for different
discretization procedures. Data is shown for the SIAM model at U = 2D, half-filling and
tmax = 80D−1.
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Figure 5.9: Comparison of the convergence speed of the self-energy obtained from the
Dyson equation (left) and improved estimators (right) for different discretization proce-
dures. We conclude that the usage of improved estimators significantly boosts the con-
vergence speed of direct discretization procedures. Data is shown for the SIAM model at
U = 2D, half-filling and tmax = 80D−1.

This also holds true for our calculations of the self-energy using improved estimators, see
figure 5.9. However, as expected by now, upon using the Dyson equation, the Fourier-do-
main discretization procedure reigns clearly superior.



5.2 Optimal Basis 75

Thus we may finally conclude our study of discretization procedures. We demonstrated
that the Fourier-domain discretization procedure clearly outperforms competing strategies.
However, it can be bested by other strategies in combination with improved estimators.
Nonetheless, we want to stress that Fourier-domain discretization reaches the same accu-
racy with or without improved estimators, thus reinforcing the efficiency and accuracy of
our method.

5.2 Optimal Basis
Given that, somewhat independently of the choice of discretization procedure, one needs a
large number of sites to accurately represent the impurity model on a tensor network, there
has always been a vivid discussion on what the ideal representation might look like. Ini-
tially, certainly biased by early tensor network algorithms [143] and NRG [178], a chain-like
bath representation, where electronic sites in the bath are connected via nearest-neighbor
hopping terms was commonly considered to be ideal [180]. However, Wolf et al. [36]
showed that in-fact, a star-like representation, where bath sites are only indirectly con-
nected via second-order hopping processes over the impurity site, has significantly lower
entanglement during time-evolution. Several additional methods have been introduced that
promise significant performance improvements in impurity solvers based on basis transfor-
mations [41, 172, 181–184]. We will thus aim to properly introduce some of the most
promising methods below, and we will provide a small comparison study of them based
on the mutual information, a quantity often used to measure the entanglement in tensor
network states [185, 186].

Let us start our comparison by introducing the two historically most commonly used
representations, the star-geometry and the chain-geometry. The star-geometry is the stan-
dard mapping for impurity models. This is the mapping that we obtain directly from
the discretization procedures we discussed in the previous section. The definition of the
Hamiltonian in this representation is simply the usual definition for a SIAM model, see
equation (3.11):

Ĥ = Ĥimp + Ĥbath + Ĥhyb (5.13a)
Ĥimp = µ

∑
σ∈{↑,↓}

d̂†
σd̂σ + Un̂↑n̂↓ (5.13b)

Ĥbath =
Lb∑
l=1

∑
σ

ξlĉ
†
lσ ĉlσ (5.13c)

Ĥhyb =
Lb∑
l=1

∑
σ

(γld̂†
σ ĉlσ + h.c.). (5.13d)
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Figure 5.10: The hopping structure of an impurity model in star-geometry.

Constructing the chain-geometry representation is slightly more difficult and potentially
numerically unstable as it involves the Lanczos algorithm that crucially depends on the
use of high-precision arithmetic, especially when considering matrix-valued hybridizations
[187]. The Hamiltonian in chain-geometry is given as:

Ĥ = Ĥimp + Ĥpot + Ĥkin (5.14a)

Ĥpot =
Lb∑
l=1

∑
σ

ξ̃lĉ
†
lσ ĉlσ (5.14b)

Ĥkin =
∑
σ

(γ̃0d̂
†
σ ĉ1σ + h.c.) +

Lb−1∑
l=1

∑
σ

(γ̃lĉ
†
lσ ĉl+1σ + h.c.). (5.14c)

Here the impurity Hamiltonian Ĥimp is unchanged in comparison to the star geometry. The
long-range hopping in the star-geometry has now been exchanged for a nearest-neighbor
hopping term in Ĥkin. This leaves us with a tridiagonal single-particle Hamiltonian that
we can construct iteratively using the Lanczos algorithm. We will closely follow [36] in our
derivation.

The first term of our Hamiltonian describing the impurity-bath hybridization Ĥkin is al-
ready fully defined by the initial conditions of the Lanczos procedure

γ̃0 =
√∑

l

|γl|2, |c̃1⟩ = 1
Ṽ0

Lb∑
l=1

Vl |cl⟩ , (5.15)

where |c⟩ and |c̃⟩ denote single-particle states representing bath sites in star-geometry
and chain-geometry respectively. For the Lanczos recursion, it is sufficient to only consider
Ĥbath, as Ĥhyb only has a non-zero contribution in the first element and can thus be ignored
otherwise [36].
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Figure 5.11: The hopping structure of an impurity model in chain-geometry.

For n = 2, ..., Lb − 1, the Lanczos recursion is defined as:

ξ̃n = ⟨cn|Ĥbath|cn⟩ , (5.16a)
|ln⟩ = Ĥbath |c̃n⟩ − ξ̃n |c̃n⟩ − γ̃n−1 |c̃n−1⟩ , (5.16b)

γ̃n = |⟨ln|ln⟩|
1
2 , (5.16c)

|c̃n+1⟩ = 1
γ̃n
|ln⟩ . (5.16d)

Here n = 1 constitutes a special case of the recursion, in which case the definition for |ln⟩
has to be adapted to [36]:

|l1⟩ = Ĥbath |c̃1⟩ − ξ̃1 |c̃1⟩ . (5.17)

The coefficients ξ̃n and γ̃n are the newly updated coefficients in chain-geometry repre-
sentation. Note that the Lanczos algorithm constitutes a unitary transformation between
star-geometry and chain-geometry [36]. Hence, the physics must be equivalent in both rep-
resentations. However, the efficiency of tensor network algorithms heavily depends upon
the entanglement in the tensor network state. Thus, we will mainly discuss differences in
these mappings on the basis of entanglement measures. We will first discuss the entangle-
ment in the respective ground states on the basis of the mutual information and will later
discuss the correlation structure of these representations and the evolution of entangle-
ment with time. Mutual information is closely related to the Kullback-Leibler divergence
[188] discussed in section 4.4.1 and tells us how strongly two sites are correlated with each
other. We will follow [68, 185, 186] for its introduction in the context of tensor network
simulations. For that sake, let us first introduce the von Neumann entropy, defined as

S(ρ̂) = − tr(ρ̂ ln ρ̂) (5.18)

where ρ̂ is a density matrix. More precisely, we will consider the one- and two-orbital
reduced density matrices (RDM) given as

ρ̂i = tr\i |ψ⟩⟨ψ| , (5.19)
ρ̂ij = tr\ij |ψ⟩⟨ψ| , (5.20)

where the notation tr\i denotes that we trace out all sites except i. The mutual information
is then defined as [68]

Iij = (S(ρ̂i) + S(ρ̂j)− S(ρ̂ij))(1− δij). (5.21)
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Figure 5.12: Comparison between the ground state occupation numbers for the SIAM
model at U = 2D and half-filling for star (left) and chain (right) geometry representations.
We find a stark deviation in the relative occupations. The on-site energies ξ̃ in chain-
geometry show only minor variations from each other leading to a near uniform occupation
structure, contrary to the star-geometry where we find a Fermi distribution like occupation.

We will use this concept in a slightly adapted form introduced by Barcza et al. [185] that
transforms mutual information into a scalar quantity taking the distance between two sites
into account

IMI =
L∑
ij

Iij(i− j)2, (5.22)

where L denotes the system size. This measure reflects that tensor network algorithms
are mostly local and thus heavily disincentivize long-range correlations in a tensor network
state. Applying this measure to a SIAM model at half-filling with U = 2D and Lb = 20
leaves us with a mutual information of Istar

MI = 5.62 for the star-geometry and Ichain
MI = 74.48

for the chain geometry. This discrepancy can, in large parts, be explained by considering
the ground state occupation number in both representations. We find, for the SIAM
model at half-filling, that sites with a negative on-site energy are nearly fully occupied, see
figure 5.12 while sites with a positive on-site energy, whose occupation would constitute an
energy penalty, are nearly empty. In all representations, the impurity site has an occupation
near 1, which is what we expect for a system at half-filling. However, the chain-geometry
produces nearly uniform on-site energies that, in turn, lead to a near-uniform occupation of
the ground state. Note that fully empty or fully occupied sites can be represented highly
efficiently in tensor network methods as they can be described as product states. We
consider the closeness of the star-geometry representation to a Fermi-state like occupation
to be the main reason why it posts such a small entanglement compared to the chain
geometry.
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Figure 5.13: Comparison of the one-particle reduced density matrix of the SIAM model at
U = 2D and half-filling with Lb = 20 bath sites in star-geometry (left) and chain-geometry
(right). Correlations in the star-geometry are nearly perfectly localized. Only the impurity
site located in the middle shows small long-range correlations, whereas bath sites in chain-
geometry are strongly correlated with each other.

For the SIAM model, we find a roughly 4 times speed-up in the ground state search for
the star-geometry, which is very much indicative of the fact that the star-geometry sig-
nificantly outperforms the chain-geometry in terms of accuracy for the same runtime over
a complete DMFT iteration [36]. This is to some extent surprising as the bath represen-
tation in chain-geometry features only nearest-neighbor hopping terms, which would lead
to vanishing projection errors in two-site update schemes [92, 99]. However, it appears as
if the negative impact of the non-local occupation structure of the chain-mapping is far
greater than that of the non-local coupling of the star-geometry [36, 189]. We can nicely
visualize the localization structure of ground states by considering the one-particle reduced
density matrix, see figure 5.13.

The comparison between star- and chain-geometry can be summarized as a comparison
between a local correlation structure and a local hopping structure, and clearly, the corre-
lation structure wins. Recently, Kohn et al. proposed a new mapping that would effectively
combine the advantages of the chain and the star geometry, a beneficial occupation and
localization profile that is similar to the star-geometry while additionally featuring only,
at most, next-to-nearst-neighbor hopping terms, see figure 5.14. This is achieved by es-
sentially performing the Lanczos recursion twice, once for the particle bath sites and once
for the hole bath sites. Particle/hole bath sites refer to sites whose on-site energies are
smaller/larger than the Fermi energy.

They base their mapping, which we will refer to as double-chain mapping, on the ther-
mofield approach [190], a similar mapping has already been presented by de Vega et al. in
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the context of open quantum systems [191]. Ultimately, it is based on the same reasoning
that we used to explain the efficiency of the star-geometry, the closeness to a Fermi-state.
We will closely follow the derivation presented by Kohn et al. [192]. We start by redefining
the original single-site operators of our bath as

ĉl → ĉ1,l (5.23)

which allows us to denote their Fermi state as

|FS⟩ =
∏
l

Θ(−ξl)ĉ†
1,l |∅⟩ , (5.24)

where |∅⟩ denotes a vacuum state. We may further introduce a complimentary set of
operators acting upon a ficticius ancillary state.

ĉl → ĉ2,l. (5.25)

Note that doubling the Hilbert space is only necessary for finite temperature simulations.
This allows us to define a new set of fermionic single site operators as [192](

f̂1,l

f̂2,l

)
=
(

cos θl − sin θl
sin θl cos θl

)(
ĉ1,l

ĉ†
2,l

)
. (5.26)

This allows us to rewrite Ĥbath as

Ĥbath =
∑
l

ξl(ĉ†
1,lĉ1,l + ĉ2,lĉ

†
2,l) =

∑
l

ξl(f̂ †
1,lf̂1,l + f̂ †

2,lf̂2,l) (5.27)

and Ĥhyb as ∑
l

γld̂
†ĉ1,l =

∑
l

(γ1,ld̂
†f̂1,l + γ2,ld̂

†f̂2,l), (5.28)

with γ1,l = γl cos θl and γ2,l = γl sin θl. At T = 0, the Fermi distribution becomes a
step function. We can thus use cos θl = Θ(ξl) and sin θl = Θ(−ξl). Hence, the impurity
hybridizes with f̂1,l for ξl > 0 and f̂2,l for ξl < 0, effectively separating particle and hole
degrees of freedom. At T = 0, this allows us to perform a Lanczos tri-diagonalization for
each operator species, see equation (5.16). Afterward, we are free to order the resulting
particle/hole chains as we please. For the MPS it is advisable to order them as next-to-
nearest-neighbor chains [192]. For tree tensor networks one could theoretically spatially
separate both chains through the introduction of additional branching nodes, see chapter 6.
However, this counterproductive due to the inefficient scaling of branching nodes.
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Figure 5.14: The hopping structure of an impurity model in double-chain mapping.

The full SIAM model, after the double chain mapping, reads:

Ĥ = Ĥimp + Ĥpot + Ĥkin (5.29a)

Ĥpot =
Lparticle∑
l=1

∑
σ

ξ̃1,lĉ
†
1,lσ ĉ1,lσ +

Lhole∑
l=1

∑
σ

ξ̃2,lĉ
†
2,lσ ĉ2,lσ (5.29b)

Ĥkin =
∑
σ

(γ̃1,0d̂
†
σ ĉ1,1σ + h.c.) +

Lparticle−1∑
l=1

∑
σ

(γ̃1,lĉ
†
1,lσ ĉ1,l+1σ + h.c.) (5.29c)

+
∑
σ

(γ̃2,0d̂
†
σ ĉ2,1σ + h.c.) +

Lhole−1∑
l=1

∑
σ

(γ̃2,lĉ
†
2,lσ ĉ2,l+1σ + h.c.). (5.29d)

Here the subscript 1 in ĉ1,lσ denotes the single site operator for the particle sites after the
chain mapping, the same notation is used for on-site energies ξ̃ and hopping elements γ̃
for particle (1) and hole sites (2) respectively.

Representation Mutual Information FS overlap Runtime [min]
Star 5.621 0.976 2.83
Chain 74.486 0.982 11.71
Double-chain 3.760 0.996 1.82

Table 5.1: Comparison of mutual information and overlaps between a Fermi-state and the
actual ground state for different mappings of the SIAM model with Lb = 20 bath sites at
U = 2D and half-filling. We allowed for a maximum bond dimension of m = 128 in our
simulations.

Overall this mapping has several advantages. It has a lower mutual information than
any of our previously discussed mappings, see table 5.1, while also featuring a beneficial
correlation structure. This can, again, be explained by considering the occupation structure
in our state, see figure 5.15. We obtain an alternating pattern of nearly fully filled/empty
sites marking the separated chains.
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Figure 5.15: Occupation structure (left) and the one particle reduced density matrix (right)
for the double chain mapping. We report that the state again is very close to being either
fully empty or fully occupied while posting a more localized hopping structure that is
beneficial for the accuracy in tensor network methods. The RDM shows only minor off-
diagonal terms correlating the impurity site in the middle of the chain with the first two
sites that show the largest deviation from a Fermi state occupation.

This is also directly reflected by the correlation structure in the one-particle reduced den-
sity matrix as we only find significant correlation at the occupied sites and only little
correlation between the impurity in the first sites of our new chains. However, the runtime
of tensor network impurity solvers is typically dominated by time evolution. Hence, we
still have to compare how our representations behave during TDVP.

We find that the double-chain mapping shows both a lower initial entanglement in the
excited state and lower entanglement growth throughout time evolution, see figure 5.16.
Additionally, we show the entanglement scaling for LiV2O4. Note that LiV2O4 is only at
quarter-filling. However, the ground state entanglement of the double chain-mapping is,
surprisingly, unaffected by that. It is, however, nonetheless plausible that orbitals that
show a vast asymmetry in their occupation perform worse in the double-chain mapping
compared to the star-geometry. Otherwise, we consider our comparisons as a clear indica-
tion of the superiority of the double-chain mapping.

As a concluding remark to this section, we want to briefly discuss further basis-transforma-
tions, in particular how we choose to order spin degrees of freedom and basis transformation
techniques that lower the entanglement of the state by increasing the bond dimension of
the tensor network operator [181, 182, 184, 193].
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Figure 5.16: Comparison of the entanglement growth, indicated by the sum over all block
entropies, in different representations during time evolution for the SIAM model at half-
filling and U=2D for Lb = 20 bath sites (left) and for LiV2O4 with Lb = 50 bath sites
(right). Both calculations allowed for a maximum bond-dimension of m = 1536. We find
that the double-chain mapping is less entangled compared to other representations even
throughout time-evolution, thus clearly indicating that it marks a superior mapping.

Typically, spin degrees of freedom in impurity models are degenerate, i.e. they, have an
SU(2) symmetry that can, in theory, be exploited in simulations. While this may be nec-
essary to ensure a paramagnetic solution, it is generally computationally more efficient to
omit this symmetry and separate spin degrees of freedom from each other, see figure 6.5.
This can be achieved by unfolding an electronic site {|∅⟩ , |↓⟩ , |↑⟩ , |↓↑⟩} into two spinless
fermionic sites {|∅⟩ , |1⟩}. As one can easily see, this does not change the overall Hilbert
space dimension of our system but it doubles the number of sites in our tensor network.
This introduces a certain additional freedom in the sense that we can now, for multi-or-
bital impurity models, pose the question of whether it is computationally more efficient to
cluster orbital degrees of freedom figure 5.17 or spin degrees of freedom figure 5.18. We
find that the deviation in the mutual information for both orderings is within 1% of each
other; hence, a simple reordering of bath sites is rather unimpactful. This should come as
no surprise as the connectivity of our bath sites is highly limited. Thus, while a simple
reordering of bath sites is generally negligible, reordering entire orbitals in multi-orbital
real material simulations showed improvements in the mutual information of up to 10% in
our simulations.
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↓ ↑ ↓ ↑ ↓ ↑ ↑ ↓ ↑ ↓ ↑ ↓

Figure 5.17: This mapping keeps both spin degrees of freedom close to each other thus
minimizing the additional entanglement created through the separation of the interacting
sites. The blue/red sites depict sites belonging to a specific orbital, the darker sites depict
the impurities.

↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑

Figure 5.18: This mapping separates spin degrees of freedom from each other thus trying
to spatially separate information. The blue/red sites depict sites belonging to a specific
orbital, the darker sites depict the impurities.

Larger entanglement reductions can be obtained when we do not only allow for a reordering
of sites but also build superpositions of bath sites. Several attempts at this have been made
so far, and while these ideas are often presented as a novelty, their underlying concept is
often very similar [41, 182, 184, 193]: the natural orbital basis. The natural orbital basis is
a concept from quantum chemistry; more precisely, it is a basis in which the one-particle
reduced density matrix of the ground state becomes diagonal [194]. This constitutes a
unitary transformation where the transformation matrix can simply be obtained by diago-
nalizing the one particle reduced density matrix in the computational basis. This approach
is, however, not ideal for impurity problems as it would, in general, lead to superpositions
between impurity and bath sites. Thus, several custom approaches emerged that tried to
construct close approximations to the natural orbital basis that still persevere the locality
of the interaction Hamiltonian [41, 182, 193]. While all of these approaches showcased a
large reduction of the ground state entanglement, they typically suffer from severe issues
during time evolution. The basis does not remain ideal upon excitation and time evolution.
This is nicely showcased in [195]. The entanglement will slowly approach the entanglement
of the standard computational basis during time evolution. Note that the tensor network
operator (TNO) bond dimension is generally enlarged by a natural orbital transformation.
Thus, a similar entanglement in the state will lead to an overall decrease in the efficiency of
tensor network algorithms. As a consequence, one would need to permanently re-optimize
the basis in order to preserve computational efficiency. However, we expect this shortcom-
ing to be eliminated completely with our newly introduced complex time impurity solver,
see chapter 7. The reason for this is simple: The imaginary time evolution damps out
higher energy contributions to the state. Thus, it will remain close to the lowest-energy
eigenstate during time evolution, and it should be possible to construct a lasting, optimal
basis for it.
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5.3 Ground State Search

While the general approach to the ground state search remains the same in our imaginary
time solver, see section 4.2 we are faced with several new challenges. The biggest one is
that the computational effort for finding the correct ground state is significantly larger due
to the large number of bath sites. While we can still use the same tricks we introduced
earlier to reduce the number of candidate quantum number sectors, this is often insufficient
to make the ground state search feasible. We will, therefore, introduce two strategies that
will significantly reduce the runtime of the ground state search procedure while boosting
the overall accuracy of it by constructing better initial states.

We can construct a new, iterative procedure for our ground state search on the basis
of our observation that nearly all bath sites in star-geometry or the double-chain mapping
are either fully filled or empty. As discussed previously, we already use this assumption
to guess the particle number sector; see section 4.2. However, this typically slightly devi-
ates from the correct particle number sector for intermediate coupling strengths, and more
importantly, it does not yet restrict other symmetries of our Hamiltonian, e.g. orbital
parity. We can obtain a cheap and typically very accurate guess for the complete quan-
tum number sector by performing what we will dub iterative ground state search. The
idea is to iteratively add bath sites that are energetically closest to the Fermi edge to our
impurity cluster until the quantum number sector only changes by double occupations for
a predefined number of consecutive iterations. The procedure can be defined as follows:

i) Construct TNO and TNS for the impurity model without any bath sites and find the
correct ground state quantum number sector.

ii) Count the number of consecutive iterations ncount in which the quantum number sector
of the ground state changed by simply adding two particles per impurity.

iii) Add the closest remaining bath sites below and above to Fermi edge for each im-
purity to the current system and find the new ground state quantum number sector. If
the quantum number sector only changed by an added double occupation per impurity,
increase ncount by 1, otherwise set ncount = 0.

iv) Repeat iii) until the quantum number sector only changes by two particles per im-
purity for a given number of iterations ncount > nbreak.

v) Calculate the quantum number sector for the full system asN,S = Niter+2∗Nremaining, Siter
where Nremaining denotes the number of remaining bath sites in our system with negative
on-site energies.
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Figure 5.19: Runtime comparison for a multi-orbital impurity model with Lb = 100 bath
sites per orbital at half-filling (left) between our iterative ground state search procedure
and a full ground state search around a guessed particle number sector. In (right) we show
the significance of orbital degeneracies on the number of quantum number sectors that
need to be considered. Note that the comparison in (left) has been performed for a fully
degenerate system.

This procedure allows us to obtain the full quantum number sector as double occupancies
do not alter the spin symmetry or even the Z(2) symmetry originating from the orbital
parity in the Hubbard-Kanamori Hamiltonian. Additionally, we want to stress that it even
manages to correctly identify degenerate quantum number sectors, as these degeneracies
are also present during the iterative procedure. Care must thus be taken to still increase
ncount if the ground state quantum number sector is one of the degenerate ground states
but not exactly the same as in the prior iteration. It is beneficial to use the full symmetry
of the Hamiltonian in this step and, if need be, to change the symmetries under which
the tensor network transforms as an irreducible representation once the correct quantum
number sector has been identified. We found that already nbreak = 3 allows to reliably find
the correct quantum number sector. We showcase the potential of our new method based
on a multi-orbital impurity model at half-filling with a semi-elliptical density-of-states
and Hubbard-Kanamori interaction with U = 2D and J = 0.3D. We find a significant
speed up for our iterative ground state search procedure over the full ground state search
around a guessed quantum number sector, see figure 5.19. Note that this large speed-
up was obtained for a fully-degenerate system. Given the exponential growth of particle
number sectors that need to be considered in the absence of orbital symmetries, the relative
advantage of the iterative ground state search method can be expected to show a similar
exponential growth. As the final DMRG in the full system typically dominates the overall
runtime of the procedure, it does not critically depend upon the presence of degeneracies.



5.3 Ground State Search 87

40 60 80 100
Lb

0.0

0.2

0.4

0.6

0.8

1.0
in

it
|

0 complete
Fermi
PM Fermi

40 60 80 100
Lb

0.0

0.2

0.4

0.6

0.8

1.0

in
it
|

0

U = 0
U = 2D
U = 4D
U = 16D

Figure 5.20: Overlaps between the ground state and different initial states in the SIAM
model at half filling and U = 2D (left) and the impact of the interaction strength on the
overlap with a Fermi state (right).

So far, we focused on reducing the number of different DMRG instances that we have to
spawn simultaneously; now, let’s consider how we can speed up the convergence of each
DMRG simulation. Given that typical RT DMFT simulations consist of O(1000) sites,
the choice of a good initial state becomes crucial. Otherwise, one must allow for excessive
sweeping to produce the correct ground state occupation or might be stuck in a local min-
ima altogether. Hence, similar to our argument in section 4.2, we exploit that our target
state will be close to a Fermi state in the star geometry or the double-chain mapping. We
can construct our Fermi state initial guess as follows:

i) Diagonalize the single particle terms of the Hamiltonian and obtain eigenvalues D and
eigenvectors U .

ii) Construct N superpositions of creation operators as ĉ†
k = ∑

l Ulkĉ
†
l where N denotes

the number of particles and k runs over the N sites with smallest eigenvalues.

iii) Apply the resulting operators to a vacuum state. Note that if no exact application
is feasible, a variational application of ĉ†

k with truncation is advisable [92, 196].

To benchmark the effectiveness of this approach, we will consider the SIAM model at
half-filling for various interaction strengths, figure 5.20. We compare our results with a
complete state and what we will refer to as poor man’s Fermi state, i.e., a state that can
be constructed by setting U = 1. The complete state is the default construction principle
for initial states in SyTen. It randomly applies all single site operators until it creates
every possible basis on every bond [77]. We strongly discourage this construction principle
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as it is incredibly slow and, as shown in our test, does not constitute a good initial state.
In fact, the overlap between our ground state ψ0 and our complete initial state ψinit was
smaller than numerical accuracy even for only Lb = 25 bath sites. We conclude that the
Fermi state constitutes a remarkably good guess, even at a relatively large number of bath
sites. Note that, while in theory, the Fermi state is the exact solution solely for U = 0,
we find that even for unreasonable large interaction strengths, the overlap is persistently
high. The deviation from 1 for overlaps between our Fermi state and the ground state at
U = 0 for large bath sizes originates from our construction principle as we restricted the
bond dimension of our initial state to m = 32.

Both of these methods are an absolute necessity when performing 5 orbital simulations
due to the exponential growth in complexity. Moreover, we want to mention that it is
plausible that finite temperature simulations can become more efficient compared to zero-
temperature simulations due to the infeasibility of finding the correct ground state quantum
number sector. Especially since the energetic difference between quantum number sectors
in multi-orbital systems tends to be smaller than errors encountered during time evolution.
Hence, it is possible that fewer resources are needed to construct a good finite temperature
state than to find the true ground state of the system.

5.4 Time evolution
We want to finish our discussion of the real time impurity solver with its, generally, most
runtime-consuming part. Our quantity of interest is the impurity Green’s function G(ω),
which we can obtain via Fourier transformation from the retarded impurity Green’s func-
tion:

G(ω) =
∫ ∞

−∞
ei(ω+iη)tG(t)dt, (5.30)

where we added an additional Lorentzian broadening term η. The retarded impurity
Green’s function is given as

G(t) = −iθ(t) ⟨ψ0|
{
ĉi(t), ĉ

†
i

}
|ψ0⟩ , (5.31)

where |ψ0⟩ denotes either the ground state of our impurity model for T = 0 simulations or
a finite temperature state. We, again, shift the time evolution of the operator ĉi(t) by the
ground state energy E0 as

ĉi(t) = ei(Ĥ−E0)tĉie
−i(Ĥ−E0)t, (5.32)

to compensate for the phase factor. We can simplify above equation by introducing the
greater G> and lesser G< Green’s functions

G(t) = −iθ(t)(G>(t) +G<(t)), (5.33)

where G> and G< are defined as
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G>(t) = ⟨Ψ0|ĉie−i(Ĥ−E0)tĉ†
i |Ψ0⟩ (5.34)

G<(t) = ⟨Ψ0|ĉ†
ie
i(Ĥ−E0)tĉi|Ψ0⟩ . (5.35)

While a general discussion about tensor network methods would be no different to our
presentation of the imaginary time solver, see section 4.3, there is an additional peculiarity
of real time evolution of quantum states that we have to address, the entanglement growth.

In general, the entanglement growth in a quantum state during time evolution, quanti-
fied by the bipartite entanglement entropy S, see section 5.2, can be upper bounded as

S(t) ≤ S(0) + a−1vt, (5.36)

where v is a typical velocity scale of the system, such as the Fermi velocity, and a a con-
stant of unit length [6, 101–103]. This significantly limits the accessible times in tensor
network simulations as the bond dimension can be related to the entanglement entropy
with m ∼ eS [102, 103]. Thus, this leads to a potentially exponential growth in computa-
tional cost. Note, however, that this is typically not the case for impurity models as we
only consider local excitations where entanglement growth is typically logarithmic in time
[104, 106].

Nonetheless, we want to address a strategy that can often be exploited to effectively re-
duce the entanglement growth during real time simulation. The homogeneity in time,
which is typically found in impurity models, can be exploited to transform time-dependent
correlation functions as [197, 198]

⟨ψ0| ĉ†(0)ĉ(t) |ψ0⟩ = ⟨ψ0| ĉ†(−t′)ĉ(t′′) |ψ0⟩ , (5.37)

where we have split t into t = t′ + t′′. We can rewrite the above expression as

⟨ψ0| ĉ†(0)ĉ(t) |ψ0⟩ = [ĉ(−t′) |ψ0⟩]†ĉ(t′′) |ψ0⟩ . (5.38)

Thus, the time evolution until t has been split into two time evolutions up to −t′ and
t′′, respectively. Usually, entanglement growth is similar for forward and backward time
evolutions. Hence optimal speed-ups can be achieved by symmetrically splitting t as t′ =
t′′ = t/2. Thus, we trade a linear growth in the number of calculations we have to perform
for a significantly reduced entanglement growth, see figure 5.21. Ultimately, this leads to a
polynomial speed-up during time evolution. Note that this also significantly reduces errors
during TDVP as it drastically lowers the truncation error due to the lower entanglement
and further reduces the Trotter error due to the smaller time steps. However, reducing the
number of time steps and keeping the time step fixed might be numerically favorable, as
this further reduces projection and truncation errors during TDVP [92].
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Figure 5.21: Effectiveness of splitting a regular real time evolution into a forward and back-
ward evolution according to equation (5.38). We find a significantly reduced entanglement
growth in (left), where we added an effective curve for the split method in which we double
the time step to better visualize the stunted entanglement growth. We found the simula-
tion using the split to be roughly 2-3 times faster compared to regular time evolution. In
(right), we show the deviation of the retarded Green’s functions for both methods. Data
is shown for the SIAM model at half-filling, U = 2D and Lb = 59.



Chapter 6

Multi-Orbital Impurity Solvers

In 2017, Bauernfeind et al. [39] published a new tensor network structure specifically op-
timized for multi-orbital impurity problems. They showcased its effectiveness based upon
the simulation of real materials with up to 5 orbitals, a novelty at this point for tensor
network based solvers. This work promised a paradigm shift in the feasibility of real time
multi-orbital impurity solvers. However, it quickly became apparent that, though this net-
work structure significantly outperforms MPS based solvers, it still suffers immensely from
one of its core construction principles.

Baths of different orbitals typically do not interact directly with each other. Hence, a
tensor network structure that ideally reflects the connectivity of the Hamiltonian would
feature a connected impurity cluster with attached baths that only connect to their respec-
tive impurity site. Bauernfeind et al. proposed the Fork Tensor Product State (FTPS)
network that fulfills all of these criteria; see figure 6.1. However, these specialized net-
works feature computationally unfavorable rank 4 tensors as impurity sites. Thus, updates
involving two impurity sites scale as ∼ O(m5), marking them practically unfeasible for
complicated real material simulations. The scaling of tensor network algorithms is roughly
given as ∼ O(mz+1) where z denotes the number of legs that need to be contracted for
updates (marked as orange in figure 6.1).

Recently Gunst et al. [69] presented a novel idea of restructuring tree tensor network
states (TTNS) by introducing branching nodes, nodes that solely feature virtual legs. This
allowed them to maintain the favorable scaling of rank 3 tensors while preserving the repre-
sentational power of tree tensor networks. We, thus, want to present novel tensor network
structures, based upon these three-legged tree tensor network states (T3NS), to drastically
improve the performance of tensor networked based multi-orbital impurity solvers. The
general T3N framework has been created in close collaboration with Sam Mardazad; see
[68].
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Orbital  1

Orbital  2

Orbital 3

<- bath site

impurity site ->

Figure 6.1: General structure of a FTPS as it would be constructed for a three orbital
model with separated spin degrees of freedom. Orbitals are marked with the same color,
where impurity sites are shown in a darker shade, and bath sites are shown in a lighter tone
of their respective color. Spin degrees of freedom are marked with an arrow. We find 3
different scalings for two-site updates on the FTPS, dependent on the number of impurity
sites involved in the update. For two impurity sites we find a scaling of ∼ O(m5) and
for one and none a scaling of ∼ O(m4) and ∼ O(m3) respectively. Note that, due to the
non-interacting nature of the bath sites, the impurity sites are typically significantly more
entangled, resulting in the cost of variational updates of the network (DMRG or TDVP)
being dominated by impurity sites.

6.1 Three-legged Tensor Network States
We will first establish multiple novel tensor network structures that are based on T3N but
tailored towards multi-orbital impurity models. Afterward, we will provide benchmark re-
sults for them against our existing MPS solver and the current state-of-the-art FTPS solver.

First, let us consider the full T3NS as proposed by Gunst et al. in 2018. Our version,
which we adapted to impurity models, is constructed as a spanning tree of nodes that
connects all impurity sites, which we will refer to as base tree. Each bath is represented
by a tree of nodes connected to its respective impurity site via a branching node. This
structure exponentially compresses the distance between bath sites. For a given number
of layers NL of our bath representation, we would have

Lb =
NL∑
k

(Z − 1)k (6.1)

where Z is the coordination number of our network, i.e., Z = 3. Thus, while Lb grows
exponentially with NL, the distance between these sites still only depends linearly on NL.
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Orbital 1

Orbital 2

Orbital 3

<- bath site

impurity site ->

Figure 6.2: Depiction of a Three-Legged Tree Tensor Network (T3N) adapted for impurity
models. Branching nodes are shown in grey, whereas impurity and bath sites are color-
coded for each orbital, whereas impurity sites are shown in darker and bath sites in a lighter
tone of their respective color. The base tree connecting all impurity sites is indicated by
enlarged virtual bonds.

However, as we have found earlier, the correlation between bath sites is rather low in ideal
tensor network representations, see section 5.2. Hence, this does not result in a significant
reduction of entanglement in our system. In fact, as we shall find, the added number of
branching nodes drastically increases the computational cost compared to simpler repre-
sentations of the bath. This can simply be explained as single-site updates of branching
nodes scale as ∼ O(m4) whereas updates of physical sites scale as ∼ O(m3). Thus, branch-
ing nodes must significantly lower the entanglement of the state. Otherwise, they will lead
to additional costs in tensor network algorithms.

Hence, a generally better-suited tensor network structure is what we shall refer to as
fork three-legged tree tensor network (FT3N). This name was deliberately chosen as it
most closely compares to the FTPS. This structure allows for more efficient updates in
the bath while keeping different baths spatially separated. This already constitutes a vast
improvement over the full T3N due to the significantly lower number of branching nodes.
Interestingly, ground state energies obtained using FT3N are only slightly worse than those
obtained with T3N at a fixed bond dimension, see table 6.1. This indicates yet again that
bath sites are only weekly coupled with each other. Hence, further reducing their distance
from each other comes with little to no computational benefit.
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Orbital 1

Orbital 2

Orbital 3

impurity site ->

<- bath site

Figure 6.3: Depiction of a fork three-legged tree tensor network (FT3N). Structurally, this
bears the closest resemblance to the FTPS. However, note the additional branching node
compared to the MT3N shown in figure 6.4.

Orbital 2

Orbital 3

Orbital 1

<- bath site

impurity site ->

Figure 6.4: Depiction of a minimal three-legged tree tensor network (MT3N). The average
distance between impurity sites is reduced compared to the FT3N by flipping one orbital
and attaching it to the top of the tree. This figure has already been shown in [6]
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The last structure we want to consider is the minimal three-legged tree tensor network
(MT3N). The basic construction principle is simple: we want to create a network with a
minimal number of branching nodes while maintaining the accustomed representation for
multi-orbital impurity models. As we already stripped all branching nodes from our bath
representations in the FT3N, a further reduction is only possible in the base tree. We can
achieve this by inverting the order of one orbital and placing it on top of our tree, see
figure 6.4. This saves one additional branching node. While this might appear negligible,
updates involving branching nodes make up the lion’s share of computational cost during
variational update procedures. Moreover, it reduces the average distance between impurity
sites, which leads to a drastically improved convergence behavior.

We want to present benchmarks on the basis of a three-orbital model with a semi-el-
liptical density-of-states at half-filling and Hubbard-Kanamori interaction with U = 2D
and J = 0.3D discretized with Lb = 99 bath sites per impurity. We disregard the SU(2)
symmetry in our simulations and use the full electronic basis. We find that all of our tree
tensor networks significantly outperform our previous MPS impurity solver, some by as
much as one order of magnitude in runtime. Note that we base the comparison on energy
convergence per runtime as the direct comparison between bond dimensions in different
tensor network structures is poorly defined. However, we kept the configuration of the
local Krylov solver and a truncated weight of wt = 10−14 fixed for ground state searches.
Note that we perform twice as many sweeps in our MPS simulations to reflect the typical
tree tensor network sweeping pattern which would otherwise update sites twice as often
[199].

Within our tree tensor network structures, we find that both the FT3N and MT3N show
roughly the same performance, whereas the full T3N is about four times slower in com-
parison. However, we want to stress that the MT3N shows a significantly faster rate of
convergence compared to the FT3N. In fact, the MT3N obtained the final, converged en-
ergy after just 1.5 hours, a result that the FT3N was unable to fully reproduce even after
4.26 hours. Therefore, we conclude our comparison by affirming that the MT3N represents
the most effective T3N-based impurity solver. Moving forward, we will focus exclusively
on comparisons involving the MT3N in the subsequent section. All benchmark simulations
presented in this chapter have been performed on a single node with 2 Intel(R) Xeon(R)
Platinum 8362 processors with 32 CPUs each.
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Network bond dimension energy [eV ] runtime [h]
MPS 1024 -312.10878550 0.63
MPS 2048 -312.10885153 2.15
MPS 4096 -312.10886191 7.06
T3N 256 -312.10885192 0.96
T3N 512 -312.10886241 3.23
T3N 1024 -312.10886331 18.20
FT3N 256 -312.10885015 0.23
FT3N 512 -312.10886232 0.93
FT3N 1024 -312.10886330 4.26
MT3N 256 -312.10885768 0.21
MT3N 512 -312.10886305 1.15
MT3N 1024 -312.10886336 4.25

Table 6.1: Comparison of DMRG runtimes for different tensor network based impurity
solvers. All considered tree-tensor networks clearly outperform the MPS based solver.
Moreover, we want to stress that the MT3N solver reached the final energy after just 1.5
hours, thus also clearly outperforming the FT3N solver.

6.2 Comparison with state-of-the-art Tensor networks

We established that the MT3N is the most efficient tensor network representation for
multi-orbital impurity models among our tested tree-tensor network structures. Now, let
us provide comparisons based on full DMFT iterations with the current state-of-the-art
tensor network structures, our MPS solver [2, 4, 6] and the FTPS solver [39, 200]. The
FTPS simulations have been performed by Alexander Hampel [201].

Let us first establish the need for specialized tensor networks structures by presenting
a comparison, yet again, on the basis of a simple multi-orbital impurity model at half-fill-
ing with a semi-elliptical density-of-states and Hubbard-Kanamori interactions, now with
U = D and J = D/8 and a split electronic basis. As a precise comparison of runtimes
and associated errors is unfeasible, we present our best effort, which is to reach a similar
precision among all our calculations. See table 6.2 for an overview of simulation parame-
ters and table 6.3 for the associated mean sum rule errors δ = |nGS − nGF|, which mark
the difference between the mean ground state impurity occupations nGS and the mean
occupation derived from the impurity Green’s functions nGF. The latter can be obtained
as

nGF = −
∫ 0

−∞
Im G(ω)

π
dω. (6.2)



6.2 Comparison with state-of-the-art Tensor networks 97

1 2 3 4 5 6 7
orbitals

0

10

20

30

40

ru
nt

im
e 

[h
]

MPS U(1)
MT3N U(1)
MPS SU(2)

1 2 3 4 5 6 7
orbitals

0

10

20

30

40

50

ru
nt

im
e 

[h
]

MPS U(1)
MT3N U(1)

Figure 6.5: Runtime comparison of different tensor network structures for the imaginary
time solver (left) and the real time solver (right). We find that, while all tensor network
structures show an exponential growth in runtime with the number of orbitals, the base is
significantly smaller for the MT3N, allowing for the description of full d- or even f-orbital
system.

We resort to the mean as the error in multi-orbital impurity models in MPS greatly varies
between impurities due to different spatial separations between impurity and bath sites.

All tensor network based impurity solvers show an exponential scaling in the number
of impurity orbitals. However, the base is dramatically different leading to large overall
speed-ups for the MT3N solver over our traditional MPS implementation. We find that
the use of non-abelian symmetries becomes impactful only for our most difficult simulation
of seven-orbital systems, see figure 6.5. However, we want to stress that real material sim-
ulations, especially finite temperature calculations, profit from the additional symmetry
even at three-orbital simulations. Overall, we showcase the drastic difference in runtime
requirements for real and imaginary time solvers. While five-orbital simulations with MPS
are still feasible for the imaginary time solver, they are out of reach for the real time
solver due to the larger exponential growth in runtime. Note that while it appears as
if the five-orbital result for the real time solver would be even more accurate than the
MT3N, this simply constitutes a failure of our measure as the low energy description of
our model completely breaks down for the MPS and the small deviation from the sum rule
is a mere coincidence. Moreover, with the advent of our MT3N solver, we showed that the
simulation of seven-orbital impurity problems, i.e., f-orbital transition elements is in reach
for us already, within constraints on energy resolution and orbital degeneracy, marking an
exciting new research direction into their rich physics.
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Network solver symmetry mNorb=1 mNorb=2 mNorb=3 mNorb=5 mNorb=7

MPS IT U(1) 512 768 1024 1024 1536
MPS IT SU(2) 512 768 1024 1024 1200
MT3N IT U(1) - 256 256 256 300
MPS RT U(1) 512 512 512 1024 -
MT3N RT U(1) - 192 256 300 420

Table 6.2: Bond dimensions during time evolution used for our scaling comparison of
different tensor network solvers, see figure 6.5. All imaginary time simulations have been
performed at βeff = 400 with Lb = 9 bath sites and a truncated weight of wt = 10−11. We
used Lb = 199 bath sites and η = 0.005D for our real time solver. Again, time evolution
was performed with a truncated weight of wt = 10−11.

Network solver symmetry δNorb=1 δNorb=2 δNorb=3 δNorb=5 δNorb=7

MPS IT U(1) 0.0004 0.0007 0.0007 0.0013 0.0157
MPS IT SU(2) 0.0004 0.0007 0.0007 0.0008 0.0013
MT3N IT U(1) - 0.0006 0.0007 0.0009 0.0010
MPS RT U(1) 0.0020 0.0025 0.0046 0.0024 -
MT3N RT U(1) - 0.0025 0.0029 0.0034 0.0040

Table 6.3: Mean sum rule error δ = |nGS − nGF|. This measure breaks down in the
presence of stark oscillations as they do not affect the total weight. While the 5-band MPS
simulation of our RT solver appears more accurate than the MT3N solver, the contrary
is the case. The accuracy of the MPS solver at small frequencies breaks down completely
and the better conservation of the sum rule is just a mere coincidence.

So far, the FTPS constituted the most successful tensor network impurity solver. However,
as established earlier, it suffers from a fundamental flaw, the presence of rank 4 tensors, see
figure 6.1. We base our comparison on the simulation of the t2g orbitals of the insulating
perovskite SrMoO3 [200]. We find an overall good agreement between both solvers; see
figure 6.6. Note that the slight deviation between our results can be explained by the
unphysical behavior of the FTPS solver at high energies. The real part of the self-energy
should become stationary for higher energies. However, likely due to a faulty Fourier
transformation, this behavior is not observed in the FTPS result.



6.2 Comparison with state-of-the-art Tensor networks 99

10 5 0 5 10
0.0

0.5

1.0

1.5

2.0

Im
(

)
FTPS
MT3N

10 5 0 5 10

3.0

3.5

4.0

4.5

5.0

5.5

R
e

(
)

Figure 6.6: Comparison between self-energies obtained with FTPS and our novel MT3N
structure. We find an overall good agreement between both solvers. However, note that
the deviation at higher energies is likely the result of a faulty Fourier transformation as
the real part of the FTPS self-energy does not approach the stationary limit.

We present runtime comparisons between the FTPS solver and MT3N in table 6.4. Time
evolution was performed until tmax = 70.6eV−1 with a maximum bond dimension of
m = 200 and a truncated weight of wt = 10−10. Both solvers used Lb = 229 bath sites
to discretize the hybridization function using the fit discretization method with η = 0.08.
The FTPS solver was unable to complete time evolution within the maximally allowed time
frame of 5 days using 2TDVP due to its unfavorable O(m5) scaling. The MT3N solver is
nearly as fast as the FTPS 1TDVP runtime using 2TDVP and posts an impressive ∼ 2.8
times speed-up over the FTPS using 1TDVP. We present a further comparison with an
additional TDVP mode which we dub 1.5TDVP. In this mode, we only perform single-site
updates but contract branching nodes with the next physical node in sweeping direction
prior to the update, effectively yielding rank 4 tensors, i.e. a local correspondence to FTPS.

The large speed-up of the MT3N over the FTPS in 1TDVP can be roughly explained by
counting the number of O(m4) updates. Considering the unfolded representation shown in
figure 6.1, we find 4 rank 4 tensors, as the outer two impurity sites are only rank 3 tensors.
At a first glance, the MT3N also has 4 O(m4) updates. However, branching nodes do not
have physical legs. Thus, we would expect the MT3N to be faster by roughly a factor of
d where d is the local physical basis. Indeed this is roughly the speed up we find in our
simulations. In theory, the 1.5TDVP update scheme should match the performance of the
FTPS as branching nodes are pre-contracted with physical nodes for updates, thus result-
ing in updates on rank 4 tensors. We hence conclude that we have an additional ∼ 1.5
times speed-up that is simply the result of individual implementation details between the
ITensor [202, 203] based FTPS solver and our SyTen[77] toolkit.
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Network 1TDVP [h] 1.5TDVP [h] 2TDVP [h]
FTPS 6.6 - -
MT3N 2.3 3.65 8.65

Table 6.4: Runtime comparison for different TDVP modes for the FTPS and MT3N struc-
tures.



Chapter 7

Complex Time Impurity Solver

The following results are based on the author’s publication [6].

Real time impurity solvers are plagued by a growing complexity in two quantities. First,
the exponential growth of computational cost in the number of orbitals which we ad-
dressed with our novel MT3N structure that significantly lowers the base of said growth,
see figure 6.5. However, the arguably more fundamental challenge of the RT solver is the
polynomial growth in complexity during real time evolution, see section 5.4. This strongly
restricts the achievable frequency resolution of Green’s functions and, subsequently, self-en-
ergies and other derived quantities as the long time limit is generally inaccessible to tensor
network methods. By extending the time evolution to contours in the complex plane, en-
tanglement growth is curtailed, enabling numerically efficient high-precision calculations
of time-dependent correlators and Green’s functions with detailed frequency resolution.

Our goal is to combine real and imaginary time evolutions in the complex plane to de-
velop methods to extract real-time information while using imaginary-time evolution to
limit entanglement growth during time evolution. Imaginary time-evolution methods have
been frequently used for ground-state searches, which is reflected by the fact that imagi-
nary time evolution generally acts as a gradual energy truncation: it suppresses high-energy
states and enhances the weight of low-energy states exponentially in the long-time limit
[90, 204]. So far, energy truncation algorithms have only been combined successfully with
tensor network methods that calculated correlation functions directly in frequency space
[98, 205, 206]. This leads to much faster, less resource-intensive calculations, which in
turn give cheaper access to the same information as real-time evolutions or allow one to
proceed to longer times and with better frequency resolution. The idea of complex time
evolution has been recently discussed in the context of Quantum Monte Carlo simulations
[207]. Similar ideas are also published in another work [208].

We introduce contours in the complex plane as z(t) = t + iτ(t) and define a general
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time-dependent correlation function COP (z) as

COP (z) = ⟨ψ0| Ô†(z)P̂ |ψ0⟩ , (7.1)

where |ψ0⟩ is the ground state with energy E0 and

Ô(z) = e+i(Ĥ−E0)zÔe−i(Ĥ−E0)z, (7.2)

with z the complex-conjugate of z. Effectively, then

COP (z) = ⟨ψ0| Ô†e−i(Ĥ−E0)zP̂ |ψ0⟩ . (7.3)

Let us quickly visualize the core principle of complex time evolution before we move on to
an in-depth discussion of different contours in the complex-time domain. For the sake of
simplicity, let us consider a free electron placed at the center of a lattice with 200 sites.
The electron is governed by the usual tight binding model dispersion relation E(k) =
−2t cos(ka) with t = a = 1. We time evolve it along a complex contour tilted by various
angles α with respect to the real axis, where z(t) = t + it tanα, i.e. τ = t tanα > 0,
see section 7.2 for an in-depth discussion of this contour and its properties. We observe
that, upon time evolution in imaginary time direction, the energy decreases towards its
minimum of −2 as high energy contributions are damped out as we continuously apply
powers of our Hamiltonian, akin to an energy truncation. This contrasts the purely unitary
real time evolution that conserves the energy, see figure 7.1. This has two major beneficial
effects. First, entanglement is drastically reduced as ground states of gapped Hamiltonians
typically follow an area law entanglement [74], contrary to the volume law potentially
encountered for bulk states [209]. Secondly, it limits the extent of the light cone, which in
turn, again, potentially reduces the entanglement growth based on the upper bound that
can be placed upon the growth of the bipartite entanglement entropy S during real time
evolution of a local excitation

S(t) ≤ S(0) + a−1v log t, (7.4)

where v is the phase velocity in our simple example [101–103]. Note that we have only
considered the light cone spread in a single particle picture. A full investigation of many
particle systems with different dispersion relations and interactions is still needed to conclu-
sively address the effect of complex time evolution on the spread of information in quantum
many-body systems. However, we want to stress that this is a remarkable property as it can
make time evolutions of complicated two-dimensional or open quantum systems accessible
to tensor network methods.
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Figure 7.1: Decrease of the normalized energy expectation value over time on tilted complex
contours with angles α in a). We calculate the phase velocity from the dispersion relation
in b) at energies realized at different times, marked as black dots in a). We plot the phase
velocity at the same points in time, again marked with a black dot, alongside the light cone
spread in c) indicated by contour plots of the block entropy. We observe that the extracted
phase velocities from b) align perfectly with the observed light cone in c) validating our
simple picture for complex time evolution.

This chapter is structured as follows: first, we present easily implemented contours for
which reliable post-processing methods exist to extract the desired real-time result. The
various schemes allow mutual verification and present a different balance of speed vs pre-
cision. Then we will present comparisons both for the impurity spectral function and for
the numerically challenging calculation of the self-energy at very low frequencies, down
to the Fermi liquid regime where Im Σ(ω) ∼ ω2. We base these comparisons on the sin-
gle-impurity Anderson model for which highly precise data is available, both from tensor
network methods and the numerical renormalization group (NRG). Finally, we will illus-
trate the potential of our method on the example of a model with three impurity orbitals
that interact via Hubbard-Kanamori or Dworin-Narath interactions.
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Figure 7.2: Parallel contour t + iτ . Multiple complex parallel contours are obtained with
a small shift δτ from a first contour, cf. text.

7.1 Constant Imaginary Time: Parallel Contour

We now turn to the first complex-time method, where time is evolved along a complex
contour parallel to the real-time axis, i.e., at constant imaginary time, see figure 7.2. We
have z(t) = t + iτ with t ∈ [0, tmax] and τ > 0 constant. Here, z starts at 0, moves up
to iτ , and then continues from iτ to tmax + iτ . The entanglement growth with time is
strongly limited compared to the real time evolution, as illustrated in figure 7.3. This
contour suppresses high energy states aggressively, as reflected in the small entanglement
growth at short times compared to other contours, see figure A.1, where we compare the
time dependency of the entanglement for all the contours introduced in this work. It is,
therefore, advantageous to use comparatively small τ > 0 to retain a sufficient amount of
high energy spectral weight when used in combination with post-processing methods.
An attractive feature of the parallel contour is that additional parallel contours offset by
δτ can be obtained very cheaply from a first contour. Let us illustrate this point with one
correlator

⟨ψ0| ĉ†ĉ(t+ i(τ + δτ)) |ψ0⟩ = [e−(Ĥ−E0)δτ ĉ |ψ0⟩]†ei(Ĥ−E0)(t+iτ)ĉ |ψ0⟩ . (7.5)

We first compute the time evolution of the right ket up to time t+ iτ , and the additional
time evolution δτ for the left bra, which is cheap to compute for small δτ . Note that we
can use positive or negative δτ . In practice, we use δτ < 0, as illustrated in figure 7.2.
This allows us to obtain the correlations on a contour closer to the real axis, which is a
priori harder to compute, at the price of a positive exponential evolution of the left term
for a short time δτ .
Let us introduce the complex-time spectral function Aτ defined by

Aτ (ω) ≡ 1
2π

∫
dtei(ω+iη)t ⟨ψ0|{ĉ0(t+ iτ), ĉ†

0}|ψ0⟩ . (7.6)
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Figure 7.3: Evolution of the bond dimension profiles during complex time evolution
(parallel contour at τ = 1.3) in (left) and for real time evolution in (right). Both evolutions
were obtained for the SIAM model at U/D = 2 with Lb = 199 bath sites with a basis that
has been split into spin-up (sites 0-199) and spin-down (sites 200-399) degrees of freedom.
We find a significantly slower growth of bond dimension for the complex time evolution,
note the different time slices. It becomes obvious that imaginary time evolution acts as
an energy truncation as sites are ordered in energy. As this is a particle-hole symmetric
system, sites around 100 and 300 have on-site potentials that are nearly zero. Thus these
are the only sites that show significant correlation. We find that the real time evolution in
(right) quickly saturates the maximum bond dimension of m = 1024.

At τ = 0, this function is the ordinary spectral function Aτ=0(ω) = A(ω) = − 1
π

ImG(ω).
Due to the simple form of the contour, we can derive an explicit relation between Aτ and
A:

Aτ (ω) = A(ω)e−τ |ω|, (7.7)

which is exact in the limit η → 0 as is used here. Using the definition of the complex time
evolution equation (7.2), we obtain

⟨ψ0|{ĉ0(z(t)), ĉ†
0}|ψ0⟩ =

∑
A

|⟨ψ0|ĉ0|A⟩|2e−iEA(t−iτ)

+|⟨ψ0|ĉ†
0|A⟩|2e+iEA(t+iτ),

where |A⟩ is a eigenstate basis of the many-body HamiltonianH−E0, and EA its eigenvalue.
From the definition of Aτ (7.6), we have

Aτ (ω) =
∑
A

|⟨ψ0|ĉ0|A⟩|2δ(ω − EA)e−EAτ+

|⟨ψ0|ĉ†
0|A⟩|2δ(ω + EA)e−EAτ
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in the limit η → 0. By definition of the ground state, EA > 0. In the first term, ω = EA =
|ω|, while in the second term EA = −ω = |ω|, so we get

Aτ (ω) = e−|ω|τ ∑
A

|⟨ψ0|ĉ0|A⟩|2δ(ω − EA) +

|⟨ψ0|ĉ†
0|A⟩|2δ(ω + EA)

and therefore
Aτ (ω) = Aτ=0(ω)e−|ω|τ .

Our method consists simply in computingAτ (t), thenAτ (ω) using a Fourier transform, and
finally invert (7.7) to obtain the spectral function A(ω). Despite its apparent simplicity,
this inversion presents, however, two difficulties, both at low and high frequencies.
First, the inversion of (7.7) is clearly difficult at high frequencies, as small errors in Aτ (ω)
are amplified by the exponential. Such errors may result from a too small tmax for Aτ (t) to
be fully decayed, or from a broadening in the Fourier transform. This issue can be solved
by introducing a cut-off frequency ωc that limits the growth of the exponential factor as

A(ω) = Aτ (ω)eτ min(|ω|,ωc), (7.8)

where ωc is chosen such that it only acts in the high-frequency tail of the spectral function.
We found ωc = 3D to yield overall good results in our calculations.
Second, the inversion of (7.7) is also difficult at low frequencies, even though the expo-
nential term is close to 1. In DMFT, and in many other physics applications, we are
interested in a high-precision computation of the behavior of the spectral function A(ω)
or the self-energy Σ(ω) at low frequencies. The difficulty comes from the kink in Aτ (ω)
at ω = 0 in Eq. (7.7), caused by |ω| in e−τ |ω|. This is an exact feature, but as A(ω)
does not exhibit a kink at ω = 0, this must be exactly compensated by a kink in Aτ (ω)
at ω = 0. The latter requires high-accuracy results from long-time evolutions where ten-
sor network methods are limited. As a result, the compensation is imperfect; see figure 7.4.

Our solution to this issue uses a linear combination of a few Aτk
(ω) computed on parallel

contours t+iτk (as described above), which is designed to compensate for the low-frequency
singularity introduced by the e−τ |ω| factor. Introducing some weights ak, and defining the
function

h(ω) ≡
n∑
k=1

ake
−τk|ω|, (7.9)

we have

A(ω)h(ω) =
n∑
k=1

akAτk
(ω). (7.10)

We choose the weights ak such that the function h(ω) is flat close to ω = 0, see figure 7.4,
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Figure 7.4: Comparison of h(ω) for n equally spaced τk between [1.3 − 2(n − 1)δτ, 1.3]
with δτ = 0.075 (left) and the corresponding spectral functions (right) of the SIAM model
with U/D = 2, Nb = 299 and tmax = 150D−1. One can clearly see the effect of the
kink in the vicinity of ω = 0 for the direct application of equation (7.7). Our linear
superposition approach practically cancels the effect of the kink while maintaining an
overall high accuracy and a good agreement within different orders of the scheme with the
exception of n = 5.

i.e. we cancel the first powers of its low ω expansion:
n∑
k=1

ak = 1 (7.11a)

n∑
k=1

akτ
l
k = 0 (7.11b)

for l = 1, . . . , n − 1. As h is close to 1 at low ω, h(ω) = 1 + O(ωn), we can now safely
invert (7.10):

A(ω) = 1
h(ω)

n∑
k=1

akAτk
(ω). (7.12)

In practice, we need to take τk, which are neither too close (leading to large ai that amplify
numerical noise, due to the Vandermonde determinant in the linear system (7.11)), nor
too distant as time-evolution errors affect precision. For reasonably selected ai, the overall
result does not strongly depend upon n, see figure 7.4. In this work, we used n = 3 and
τk = 1, 1.15, 1.3, if not stated otherwise. We will refer to this approach as the parallel
(inversion) method.

A direct extrapolation, which we call the parallel (extrapolation) method, to τ = 0 us-
ing several parallel contours can also be performed. We present it in appendix A.1 for
completeness, but it is slightly inferior to the parallel (inversion) method. The parallel
(extrapolation) method will hence be used as a check for the parallel (inversion) method.
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Figure 7.5: Comparison of spectral functions obtained on a parallel contour (left):
"real" stands for the real-time reference data, τ = 1 on the parallel contour without post-
processing, parallel (extrapolation), and parallel (inversion) for the two methods mentioned
in the main text. Nearly all spectral weight can be recovered by both methods in excel-
lent agreement. The parallel (inversion) method used n = 3 with τk = 1, 1.15, 1.3; the
coefficients ak (see text) are then approximately 33.2,−57.8, 25.6. The parallel (extrapo-
lation) method used corrections to 6th order with 13 contours centered on τ = 1 with a
distance δτ = 0.075. Zoom at low frequencies with the same labels (right), showing the
high accuracy of the parallel (inversion) and parallel (extrapolation) methods at very low
frequencies.

We present results of the spectral function of the benchmark SIAM in figure 7.5. We use
δt = 0.2D−1, wt = 10−11, Nb = 59, tmax = 90D−1, and η = 0.001D. The simulation
reached a maximum bond dimension of m = 1023. Note that the simulations using purely
real time evolution resulted in a maximum bond dimension of m ∼ 1500 for wt = 10−10 and
m ∼ 2700 for wt = 10−11. Both the parallel (inversion) and parallel (extrapolation) meth-
ods provide spectral functions in excellent agreement with the much more costly (more
than an order of magnitude) real-time benchmark data both at higher and, in particular,
also at very low frequencies. The (generalized) Friedel sum rule πDA(0) = 2 is matched to
fractions of a percent. As both methods operate on the same numerical data, the parallel
(extrapolation) method provides a cheap control of the quality of the spectral function.
For figure 7.6, we use larger baths and a larger maximum bond dimension to calculate
the spectral function for larger values of U/D both by real-time calculations and by the
parallel (inversion) method. The Friedel sum rule is matched to very high accuracy in all
cases; real-time results are much less accurate for larger U/D.

The determination of the self-energy Σ(ω) is numerically more challenging than that of the
spectral function A(ω). We calculate it from the Dyson equation Σ(ω) = G−1

0 (ω)−G−1(ω),
where G0(ω) is the impurity Green’s function for the non-interacting case. Its inverse is
given by G0(ω)−1 = ω + iη − ϵ0 −∆(ω) with η = 0 here. We used the analytically known



7.1 Constant Imaginary Time: Parallel Contour 109

10 3 10 2 10 1

/D
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

DA
(

)

U/D = 2
U/D = 3

U/D = 4

real
parallel (inversion)

10 3 10 2 10 1 100

/D
10 5

10 4

10 3

10 2

10 1

100

Im
(

)/D

U/D = 2
U/D = 3
U/D = 4

real
parallel (inversion)
NRG

2

Figure 7.6: Spectral function of the SIAM for U/D ∈ {2, 3, 4} with Nb = 299, using the
n = 2 parallel (inversion) method with τk ∈ {1.15, 1.3} (left); the coefficients are approxi-
mately ak ∈ {8.6,−7.6}. We have an overall higher frequency resolution due to a finer bath
discretization, zero broadening, and a time evolution tmax ∈ {150D−1, 200D−1, 250D−1}.
The maximum bond dimension is m = 1500 SU(2) states. In all cases, in particular for
larger U/D, the matching of the Friedel sum rule is less accurate for the real-time method.
The corresponding self-energies are shown in (right).

hybridization function. We obtain G(ω) from the parallel (inversion) method, which yields
A(ω), i.e. the imaginary part of G(ω). We then use the Kramers–Kronig rule to obtain
the real part of G(ω).

To assess the quality of our self-energies, we henceforth include benchmark results from
NRG. The NRG data was obtained in a state-of-the-art implementation [123, 210–214]
based on the QSpace tensor library [215], using a symmetric improved estimator for the
self-energy [179]. All NRG simulations have been performed by Fabian Kugler. The latter
allows one to follow the imaginary part of the self-energy down to extremely low values of
| Im Σ|/D.

As shown in figure 7.6, the self energies calculated by complex time evolution reach the
Fermi-liquid ω2-regime. The final breakdown at very low frequencies (ω/D ≈ 0.007) is due
to small deviations from the sum rule and the use of Dyson’s equation. We expect that
the use of improved estimators [179] will alleviate this problem in future implementations.
Before the breakdown, agreement with NRG results is excellent. Note that self-energies
calculated from real-time results are much less accurate and plagued by unphysical oscil-
lations.
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Figure 7.7: Symmetrically split complex-time contour: Contour Cres from 0 to z is replaced
by two symmetric contours C+ and C− from 0 to z/2 and −z/2 respectively.

7.2 Time Evolution at Fixed Angles: Tilted Contour
In our second complex-time approach, time is evolved along a complex contour tilted by
various angles α with respect to the real axis, where z(t) = t+ it tanα, i.e. τ = t tanα > 0.
We adapt the symmetric splitting of real-time evolutions to the complex plane by splitting
z = z′ + z′′ with z′ = z′′ = z/2. Then we have

⟨ψ0| ĉ†(0)ĉ(z) |ψ0⟩ = [ĉ(−z/2) |ψ0⟩]†ĉ(z/2) |ψ0⟩ , (7.13)
⟨ψ0| ĉ(z)ĉ†(0) |ψ0⟩ = [ĉ†(z/2) |ψ0⟩]†ĉ†(−z/2) |ψ0⟩ . (7.14)

The two contours on which complex time evolution occurs now look as in Fig. 7.7. In all
calculations, we use δ|z| = 0.2D−1, and again wt = 10−11 and Nb = 59. The maximum
complex time is in all cases |z|max = 90D−1, or real times tmax = 90D−1 cosα. The resulting
Green’s function is Fourier transformed as

Gα(ω) =
∫ ∞

0
dtGα(t+ iτ)eiωt−ηt, (7.15)

again with η = 0.001D. The subscript α indicates that we evaluate on a tilted contour.
The spectral function A(ω) is extracted as Aα(ω) ≡ −(1/π)ImGα(ω). Results are shown
on a linear and a logarithmic frequency scale in figure 7.8. We do not expect to obtain the
correctA(ω) for α ̸= 0, asAα is just an intermediate step in the computation. Nevertheless,
we find that peak positions in Aα are well preserved for moderate angles, thus still allowing
for a rough interpretation of quasi-particle peaks. We report a significant reduction in the
entanglement entropy for all angles that can be understood as the result of damping the
statistical weight of high energy states, as reflected in a reduction in the time-dependent
energy expectation value of the system, see figure 7.9. The dampened growth in the
entanglement entropy leads to a speed-up of a factor of the order 100 in the SIAM model for
the specified parameters compared to our real-time reference calculation. This is reflected
in the very small final bond dimensions, m = 52 for α = 0.3, m = 66 for α = 0.2, and
m = 137 for α = 0.1.
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Figure 7.8: Comparison of spectral functions obtained on tilted contours with real-axis
reference data (’real’) and the tilted (MaxEnt) result from the tilted contour with α = 0.1
(left). The kink at ω/D = ±1 is model-specific. The dashed lines are data before post-
processing. We show a zoom the spectral functions of (left) on a logarithmic frequency
scale for ω/D > 0 in [10−3, 100] in (right).
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Figure 7.9: Energy (left) and entanglement entropy (right) during time-evolution for
U/D = 2. Imaginary time evolution along a tilted contour shifts the energy expectation
value of the time-evolving state towards the ground state energy. Entanglement entropy,
here given by the sum of the entanglement entropies for all system cuts, is reduced strongly
along the tilted contours, resulting in substantial speed-ups.



112 7. Complex Time Impurity Solver

To compute the spectral function A(ω), the data has to be post-processed, in this case by
an analytical continuation of the complex-time data to the real axis by MaxEnt, yielding
the tilted (MaxEnt) method. We follow the procedure outlined in [207] for the analytical
continuation. There is a connection between G(z) and the spectral function A in the case
of complex-time contours, given by

G
(
z
)

= −iΘ(t)
∫ ∞

−∞
dωA(ω)K

(
z, ω

)
, (7.16)

where the integration kernel K(z, ω) is defined as

K(z, ω) =
exp

(
− iz ω

)
, if ω ≥ 0

exp
(
− iz ω

)
, if ω < 0.

As the kernel may be complex-valued, the equations have to be slightly adapted [207].
Besides this, the well-established methods of MaxEnt were used [152, 216], see also sec-
tion 4.4. Analytic continuation was rather stable with this kernel. However, care must
be taken at low frequencies as the kink of the kernel at zero frequency causes results to
deviate from spectral functions obtained from purely real-time evolution. We propose two
different measures as possible solutions. First, we use a broadening around the discontinu-
ity by replacing the problematic sgn(ω) with tanh(ω/σ), with the free factor σ. The kernel
then reads

K(z, ω) = exp
(
− (it+ tanh(ω/σ)τ)ω

)
(7.17)

In the limit σ → 0, this kernel is exact. Hence, σ has to be chosen sufficiently small to
leave the overall structure of the inversion problem unchanged. We found sensible values to
be smaller than the width of the main peak at σ = 0.11. Although this change helps a bit,
it did not yield reliable results, leading to strong oscillations around ω = 0. We therefore
implemented a second method, which introduces a correction term to Q(A) = −χ2 +S(A),
that is maximized in normal MaxEnt. We rather take

Q(A) = −χ2 + αS(A)− β
∫ ∞

−∞
dω
(
dA
dω

)2
f(ω). (7.18)

The additional last term favors smooth spectral functions since, when maximizing Q, it
tries to minimize the quadratic slope of A. The observed quick oscillations around zero are
thus smoothed out as they increase the quadratic slope. f(ω) is a weighting factor focusing
on small frequencies. We used a Gaussian f(ω) = exp(−(ω/σ)2). The new parameter β
controls this correction term; we found β ≈ α to be a viable choice. For all MaxEnt
calculations involving the three-band model, we chose σ = 1. The MaxEnt with correction
term maintains the correct peak heights. Finding an even better stabilization of the Kernel
at low frequencies is subject of ongoing research.
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Figure 7.10: Contour for complex time evolution with no post-processing (left). Stable
version with a horizontal contour, cf Text (right).

The agreement with the real time data is overall very good, and the Friedel sum rule is
obeyed to 0.4%, yet there are small but noticeable deviations from the true A(ω) between
ω/D ∼ 10−2 and ω/D ∼ 10−1 (figure 7.8). This is not surprising as the analytic contin-
uation kernel is generally ill-conditioned, and its current formulation leads to deviations
around the Fermi edge. In comparison to the parallel (inversion) and parallel (extrapo-
lation) methods, accuracy is lower for the tilted (MaxEnt) method, in particular at low
frequencies. The tilted (MaxEnt) method is, however, the fastest, so it may be very useful
in DMFT applications for the intermediate steps of the iteration procedure. Note that the
tilted contour can also be combined with the extrapolation scheme of appendix A.1 to yield
the tilted (extrapolation) method; results will be shown for the self-energies calculated in
the following section.

7.3 Real Frequency Results Without Analytic Con-
tinuation

For an additional approach, we reformulate the idea of time splitting in the complex plane
in a different way by splitting real time into two complex times via t = z′ + z′′ with
z′ = t′ − iτ , z′′ = t′′ + iτ , t, t′, t′′, τ > 0 where t = t′ + t′′. Then

⟨ψ0| c†(0)c(t) |ψ0⟩ = [c(−z′) |ψ0⟩]†c(z′′) |ψ0⟩ . (7.19)

In this case, no analytical continuation or any other post-processing is required.
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Figure 7.11: Imaginary part of the retarded Green’s function vs t and spectral function
vs ω for the SIAM at U/D = 2 and other parameters as before, obtained using the kink
contour method with α′′ = 0.1 and α′ = π

2 . The "stable" label refers to the second contour
in figure 7.10 with tmax = 20D−1 or τmax = 0.998 = 1.996D−1. The "stable" contour result
is in excellent agreement with the real time reference data.

If we continue to use linear contours in the complex plane, we get two contours C+ and
C− in the upper right and lower left quadrants of the complex plane at angles α′ and α′′

which need not be identical as no symmetric splitting of t is required (see figure 7.10).
The two angles α′, α′′ can be chosen freely, but the imaginary time steps in C+ suppress
the entanglement growth of the real-time evolution, whereas the same steps increase that
entanglement growth on contour C−. This suggests a splitting where α′ > α′′ and hence
t′ < t′′. In our calculations, we chose α′′ = 0.1 and α′ = π/2, i.e. a purely imaginary time
evolution on a vertical contour C−; t = t′′ and t′ = 0.
Numerical instabilities in the time evolution on C− limit our maximum evolution time on
the corresponding contour C+ to about |z′′| = 20D−1 or τ ′′ = 1.996D−1 for α′′ = 0.1 and
α′ = π/2. The numerical instabilities in the time evolution on C− can be seen clearly in
figure 7.11. It might be suspected that the exponential growth of the weight of higher-
energy states on contour C− suppresses the contribution from low-energy states, which are
enhanced on contour C+ and numerical cancellations fail, leading to the instabilities. At
the onset of the instabilities, the norm difference is only of the order 104, which should
only lose insignificant digits. So even though exponential growth will eventually make this
method unstable, it does not seem to be the origin of the currently observed instabilities.
We suspect that they are related to the relatively subtle interplay of errors in the TDVP
method, which suggests that improvements are possible at the level of the time-evolution
method. A slight dependence of the system size on the onset of the breakdown further
indicates that this might simply be a consequence of approaching a volume law state, see
figure A.2.
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Figure 7.12: Spectral function A(ω) for a three-orbital model with Hubbard–Kanamori
interaction (left). All calculations are at truncated weight wt = 10−10 and without broad-
ening (η = 0). Real-time results stem from a time evolution up to tmax = 120D−1 with a
maximum bond dimension m = 1024. For the tilted (MaxEnt) method at angle α = 0.05
the corresponding values are tmax = 180D−1 and m = 2048, for the parallel (inversion)
method at τ = 1, tmax = 220D−1 and m = 1024; in that case, an increased bath size
Nb = 139 was used. The post-processing for the parallel (inversion) method used n = 3
contours at τk ∈ {1, 1.15, 1.3} with coefficients ak ∈ {33.2,−57.8, 25.6} (rounded). The
Friedel sum rule is obeyed to an accuracy of 0.2% for the tilted (MaxEnt) data and 0.02%
for the parallel (inversion) data versus 0.8% in the real-time calculation. (right) zoom into
(left) with additional data obtained from the tilted (extrapolation) method using contours
α ∈ [0.05, 0.1, 0.15, 0.2, 0.25, 0.3], averaging over all 4th order contributions. The oscil-
lations in the real-time result are now clearly visible. The tilted (MaxEnt) result using
α = 0.05 shows a similar unphysical slight dip between ω/D = 10−2 and 10−1 as for the
SIAM.

The instability is mended by continuing with a contour parallel to the real axis for larger
times before instabilities occur, see figure 7.10. Figure 7.11 shows the excellent quality
of the result for the spectral function of the SIAM. This method is at the moment the
least performant in speed, roughly a speed-up of a factor three, but attractive due to the
absence of post-processing. Methodological progress in the time-evolution methods may
make it fully competitive.

7.4 Multi-Orbital Problems
The need for reliable high-performance calculations of low-frequency information is partic-
ularly pressing for multiorbital models used in realistic quantum embedding computations
of strongly correlated materials [27, 29, 115], more specifically for transport computations.
Accurate real frequencies quantum impurity solvers are rare, with the notable exception
of NRG, which is, however, limited in the number of orbitals.
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Figure 7.13: Imaginary part of the self-energy of the Hubbard–Kanamori Hamiltonian.
The real-time result ("real") shows oscillations and fails at ω/D ≈ 0.05, missing the low-
frequency physics. The dotted line indicates the ω2 Fermi-liquid behavior of the self-energy.
The tilted (MaxEnt) and tilted (extrapolation) methods do not reach this regime. The
parallel (inversion) method (with n = 2, 3 with τk ∈ {1.15, 1.3} and ak ∈ {8.7, -7.7}) is in
very good agreement with NRG data but for a prefactor (see text) down to ω/D ≈ 0.002.

To benchmark our method in such a case, we use the three-orbital Anderson model with
the Hubbard–Kanamori interaction, see equation (3.20). For the sake of consistency with
real material calculations, we choose U ′ = U − 2J [28]. Each impurity couples to a bath
as in the SIAM. While it is not the most generic case (which would have non-diagonal
bath couplings), we expect our approach to generalize without major difficulty. As for
the density of states, we use the same semi-circular density of states as before and obtain
the bath parameters as for the SIAM. Each bath is modeled by Nb = 99 bath sites if not
stated otherwise. As interaction parameters, we consider U/D = 2 and J/D = 0.3. In all
calculations, we set η = 0.

The simulations are carried out using 2TDVP until t = 20D−1 and 1TDVP until the
final time of t = 180D−1. We use our novel MT3N tree-tensor network, which is tailored
to multiorbital impurity models, see chapter 6. The TDVP implementation follows [199].
Again, we use NRG results as a benchmark since it is currently the most accurate method
available for low frequencies. The Hubbard–Kanamori Hamiltonian in its band-degenerate
form has an SO(3) orbital symmetry which makes it accessible to standard multiorbital
NRG [141, 142, 217, 218] (without the need for interleaving the Wilson chain [44, 218–
221]). Note that we do not exploit the SO(3) orbital symmetry in our MT3N calculations
as it typically does not appear in multiorbital simulations of real materials.
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Despite the tailored representation on a tree-tensor network, pure real-time calculations
fail at high-frequency resolution. The complex-contour calculations, on the other hand,
yield reliable results. In figure 7.12, we show that the spectral function results from the
tilted (MaxEnt) method and from the parallel (inversion) method agree overall very well,
whereas the real-time results show unphysical wiggles. There is, however, again a small
discrepancy between the tilted (MaxEnt) and the parallel (inversion) methods at ω/D a
bit above 0.01. In view of the results below, we interpret this as an inaccuracy of the tilted
(MaxEnt) result. NRG results agree excellently at low frequencies but show the expected
deviations for larger frequencies due to the logarithmic discretization of NRG.

We calculate the self-energy of the Hubbard–Kanamori Hamiltonian as in the case of the
SIAM but add further methods to have some mutual benchmarking. We obtain G(ω) in
four different ways: (i) from a real-time calculation; (ii) from a tilted (MaxEnt) calcula-
tion at α = 0.05; (iii) from a tilted (extrapolation) calculation; and (iv) from a parallel
(inversion) calculation at τ = 1.3. In cases (ii) and (iv), we obtain A(ω) and then ImG(ω)
with the Kramers–Kronig transformation.
In Fig. 7.13, we observe that the real-time result shows weak but unphysical oscillations
at frequencies above ω/D ≈ 0.05 and fully misses the low-energy Fermi-liquid physics
Im Σ(ω) ∼ ω2 at lower frequencies. Both the tilted (MaxEnt) and tilted (extrapolation)
methods perform somewhat better but also fail at low frequencies. At higher frequencies,
the tilted (extrapolation) result perfectly agrees with the parallel (inversion) result.
The parallel (inversion) method easily reaches the ω2-regime. As in the case of the SIAM,
sum rule violations in connection with using Dyson’s equation lead to a breakdown at very
low frequencies. Interestingly, the breakdown does not occur at higher-frequency than in
the SIAM case, indicating that this problem is not aggravated by the higher complexity of
the studied model.
In the case of the three-band Hubbard–Kanamori model, NRG provides the best results
for comparison but is no longer an exact benchmark: The large dimension of the local
Hilbert space requires a rather large value of the discretization parameter, here Λ = 6 [43].
Averaging over nz shifted discretization grids mitigates the effects of a coarse resolution
of the hybridization function to some extent [123]. As discussed in [6], we found the best
results by extrapolating to nz → ∞. Generally, we observe that the NRG result for the
ω2 coefficient of − Im Σ decreases with increasing resolution of the hybridization function
(decreasing Λ, increasing nz). It is, therefore, remarkable that the MT3N result is slightly
offset from the NRG result by a factor < 1 in the ω2 regime before the breakdown occurs
at ω/D ≈ 0.002.

We also considered the Dworin–Narath Hamiltonian, which can be represented similarly
as in Eq. (3.20), except that one necessarily has U ′ = U − J and that the last term in
Eq. (3.20) (known as pair hopping) is missing [28]. It obeys a larger orbital symmetry
than the Hubbard–Kanamori Hamiltonian (SU(3) instead of SO(3)), and thus allows for
highly accurate NRG calculations at Λ = 4 (see [6]). Figure 7.14 shows the imaginary part
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Figure 7.14: Imaginary part of the self-energy of the Dworin–Narath Hamiltonian. The
parallel (inversion) method is in very good agreement with NRG data down to ω/D ≈
0.004. All calculations are at a truncated weight wt = 10−10. Real-time evolution is up
to tmax = 120D−1 with a maximum bond dimension m = 512. The tilted (MaxEnt)
method uses an angle α = 0.05 and goes to tmax = 180D−1 and maximum bond dimension
m = 1024, the parallel (inversion) method uses τ = 1 and goes to tmax = 140D−1 and
maximum bond dimension m = 1500, the bath size was increased to Nb = 139. Results
for the parallel (inversion) method are shown for n = 4 with τk ∈ {0.85, 1, 1.15, 1.3}; the
coefficients ak (see main text) are then approximately {9.8,−14.2, 7.5,−2.1}.

of the self-energy for the Dworin–Narath Hamiltonian with the same parameters as before
(U/D = 2 and J/D = 0.3). The performance of the time-evolution methods is similar
to Fig. 7.13: going toward low frequencies, the real-time evolution soon yields unphysi-
cal results, the tilted (MaxEnt) and tilted (extrapolation) schemes improve on this, while
the best result by far is obtained via the parallel (inversion) method. The corresponding
curve follows the Fermi-liquid ω2 behavior down to ω/D ≈ 0.004. Importantly, the agree-
ment with NRG is excellent, as the coefficients of the ω2 behavior match. This indicates
that the small difference in the prefactor of the self-energy in Fig. 7.13 comes from the fact
that the Hubbard–Kanamori NRG result is not fully converged in all numerical parameters.

The parallel (inversion) method emerges as the most reliable and performant among the
methods tested here. Moreover, it can be further improved systematically: it rests on
an analytically exact formula, and the breakdown at very low frequencies occurs because
G(t+ iτ) was not calculated for long enough times to yield highly reliable Gτ (ω) for very
small ω. As entanglement growth is curtailed, the region of ω2 scaling can be extended
to smaller frequencies by longer time evolutions. Note that the complex-time evolutions
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employed here easily generalize to less symmetric situations, as we did not use any of the
emerging larger symmetries and also have sufficient numerical efficiency to move to systems
with more than three orbitals. Additionally, we expect that the accuracy of the self-energies
provided by complex time evolution can be further improved by using improved estimators,
as in NRG [179].

7.5 Summary
Complex-time evolution is an addition to the toolbox of tensor network simulations that
offers high resolution when computing Green’s functions at low frequencies at a fraction of
the computational cost. At the same time, it maintains the quality of high-frequency data
previously available. The speedup compared to real time evolution is highest for the tilted
contour, about two orders of magnitude. MaxEnt, as a method of analytical continuation,
provides very good, but not excellent agreement with real-time data where the latter is
essentially exact.

The parallel contour calculations yielded the second highest speedup of (more than) an
order of magnitude; post-processing by two different methods, inversion and extrapolation,
provided excellent mutual agreement, allowing mutual control, as well as with benchmark
data. Results were always more accurate than tilted (MaxEnt) results. In the very low-fre-
quency regime for the self-energy of the three-band model, our most challenging calculation,
the tilted (extrapolation) method, ran into difficulties, but the parallel (inversion) method
was stable and accurate. The calculation of the self-energy of the Hubbard–Kanamori
and Dworin–Narath three-band models reaches successfully into the Im Σ(ω) ∼ ω2 Fermi
liquid regime down to ω/D ≈ 0.002 in agreement with NRG benchmark results. The
parallel (inversion) method, therefore, seems to provide the best compromise in speedup
and accuracy. It can be systematically improved to reach even lower frequencies, albeit at
mounting numerical cost. Design decisions here will reflect compromises between required
low-frequency resolution and available CPU time.

The availability of multiple complex time-evolution schemes that can be directly used or
post-processed in different ways to extract real-time information makes these methods very
controlled. We expect these methodological advances to be particularly useful in the con-
text of quantum-embedding methods using frequency-based information, such as DMFT
and its derivatives, where the efficiency of impurity solvers is paramount. In fact, the very
high efficiency of the tilted contour calculations may make them the preferred approach
for DMFT despite the limited accuracy. It remains subject to future research to apply
these methods in the context of global quenches or higher-dimensional systems simulated
directly on their real-space lattices. We expect that the suppression of high-energy contri-
butions by imaginary time evolution may give access to long-time information inaccessible
to real-time methods without substantial loss of accuracy.





Chapter 8

LiV2O4 - A Heavy Fermion TMO

The following results are based on the author’s preprint [8].

The transition metal oxide lithium-divanadate (LiV2O4) generated significant interest after
it was reported to exhibit heavy fermion behavior at low temperatures in 1997 by Kondo
et al. [46]. Prior to this discovery, heavy fermion behavior had only been observed in rare
earth elements, and it was essentially considered exclusive to f-orbital materials. However,
LiV2O4 demonstrated the same characteristic drastic increase in quasiparticle mass at low
temperatures, marking the first observed instance of such behavior in a d-orbital system.
The significance of this extends beyond mere novelty; it necessitates a reevaluation of the
foundational principles governing heavy fermion physics.

Previously, heavy fermion physics was understood to be intimately linked with the Kondo
effect. In 1964, Jun Kondo [222] explained the high spectral densities near the Fermi edge
and peculiar minima in the resistivity at low temperatures that had been reported for
various alloys by considering the scattering of itinerate conduction electrons at localized
magnetic moments. Essentially, this effect is not a direct consequence of specific band
structures or crystal symmetries but of the presence of localized magnetic moments in the
compound [222]. At high temperatures, conduction electrons scatter off these magnetic
moments, while at low temperatures, they form a bound, non-magnetic state with the
localized moments known as a Kondo singlet. Kondo, in his seminal work, already specu-
lated that the strong correlation of itinerate electrons with magnetic moments would lead
to a large enhancement of quasiparticle weight, foreshadowing the dawn of heavy fermion
materials.

A decade after Kondo’s findings, the first observations of compounds exhibiting large mass
enhancements were reported. These early works were based on cerium alloys [223, 224],
one of which was found to host superconductivity [224]. The latter study was the first ob-
servation of superconductivity in systems with strongly renormalized conduction electrons
[224]. Moreover, studies by Mathur et al. revealed that some cerium-based alloys host
unconventional, magnetically mediated superconductivity [225]. Overall, heavy fermion
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systems host a myriad of functional properties [225, 226] that are a direct consequence
of the strong electronic correlations within these compounds. Little is understood about
these materials due to the immense complexity associated with their simulation. Thus,
LiV2O4 is a rare opportunity to probe the mechanism behind heavy fermion physics and
associated effects without the need to describe 4f-orbital alloys.

We will introduce LiV2O4, detailing its structure and properties, and provide an overview
of theories that aim to explain the emergence of heavy fermion physics in a d-orbital ma-
terial in section 8.1. This will be followed by a discussion of our computational setup in
section 8.2 and newly employed methods in section 8.3. Subsequently, we will present a
detailed discussion of our results in section 8.4.

8.1 Material
LiV2O4 crystallizes in a face-centered cubic (fcc) spinel structure, identified by the space
group Fd3m, with crystallographic data obtained through neutron scattering experiments,
as reported by Kondo et al. [46]. The primitive unit cell is composed of 14 atoms, includ-
ing 4 vanadium (V) atoms. Each V atom sits in an octahedral crystal field exerted by the
surrounding oxygen atoms. They form corner-sharing oriented octahedra with a trigonal
D3d local point group symmetry. The crystal field lowers the overall symmetry, breaking
the t2g degeneracy which results in a single a1g orbital and energetically higher doubly
degenerate eπg orbitals, see figure 3.2. The formal valency of vanadium is +3.5, which leads
to an electron occupancy of 1.5 electrons per V site in this structure.

Despite extensive experimental and theoretical efforts aimed at understanding the mech-
anism behind the heavy fermion behavior observed in LiV2O4, the underlying principles
remain elusive. Nevertheless, we aim to provide a brief overview of previous findings and
proposed theories regarding the emergence of heavy quasiparticles in this material. We
will primarily focus on two prevalent theories. The first posits that the Kondo effect drives
the emergence of heavy quasiparticles akin to 7-orbital transition elements. The second
theory suggests that the large quasiparticle mass is a consequence of the geometric frustra-
tion inherent in the spinel crystal structure. Note that this idea is not based on a specific
mechanism but rather a general concept. Geometric frustration leads to an increase in en-
tropy in the material, which goes hand in hand with an increased specific heat coefficient,
thus indicating the formation of heavy quasiparticles.

The work of Kondo et al. not only reported the formation of heavy quasiparticles at low
temperatures but also firmly established the presence of local moments at higher tempera-
tures. They observed a clear correspondence with the Curie-Weiss law up to the estimated
Kondo temperature of roughly TK = 28 K. However, no evidence for magnetic order was
found above T = 4.2 K [46]. They interpreted their findings in the context of Kondo lattice
models but also speculated, in accordance with [227], that the geometric frustration of the
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crystal structure suppresses the onset of anti-ferromagnetic ordering and destabilizes the
local moments at low temperature, ultimately leading to Fermi liquid (FL) behavior [46].

Anisimov et al. [228] proposed that the heavy fermion behavior can be understood by
considering the interaction between local moments, i.e. electrons in the a1g orbital and the
spin of the itinerate electrons of the eπg orbitals. They argue that the strong Hund’s cou-
pling between these orbitals gives rise to an effective antiferromagnetic interaction between
localized moments and spins, similar to the Kondo exchange. The Kondo theory was fur-
ther substantiated by experimental findings by Shimoyamada et al. [163]. They observed
a sharp quasiparticle peak right above the fermi edge in their photoemission spectroscopy
experiments that scales akin to a Kondo peak, i.e., both the width and position of this
peak roughly scale as ∼ kBT . While this does corroborate the Kondo theory, it does not
yet prove the presence of Kondo or Kondo-like correlations in the material.

Urano et al. found that, while the low energy behavior agrees well with that of a Kondo like
material, the high energy transport behavior is substantially different from conventional
f-orbital heavy fermion compounds [229]. Moreover, they argue that, structurally, LiV2O4
is close to a spin glass phase, yet again, indicating the importance of geometric frustration
in this material [230]. Finally, orbital-resolved nuclear magnetic resonance measurements
by Shimizu et al. [231] found no indication of Kondo physics down to low temperatures,
signifying that the localized character of the a1g orbital persists down to the Fermi liquid
phase of LiV2O4. In light of these findings, the theory of geometric frustration became
significantly more popular and likely.

Lithium-divanadate exhibits a weak cusp in the magnetic susceptibility below T = 20 K
[46]. However, no magnetic order has been observed down to T = 0.02 K, indicating
strong frustration [46, 232]. Inelastic neutron scattering experiments of Tomiyasu et al.
[232] indicate that the formation of heavy quasiparticles in LiV2O4 can be attributed to
spin-orbit fluctuations. These fluctuations are argued to be a consequence of the forma-
tion of energetically degenerate magnetic states with a spatial correlation structure akin
to antiferromagnetic polytetrahedra. DFT studies by Gong et al. [233] later confirmed the
existence of ditetrahedron antiferromagnetic states with lower total energies compared to
other magnetic configurations.

While most efforts towards LiV2O4 have focused on describing the emergence of heavy
quasiparticles within the frameworks of Kondo physics or geometric frustration, it is im-
portant to highlight a third theory. The mechanism behind heavy fermion physics in
d-orbital systems does not appear to be unique. Similar compounds, specifically CaRuO3
[234] and Sr2RuO4 [235, 236], appear to host heavy quasiparticles due to their vicinity to
either quantum critical points or metal-insulator transitions [237].
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Figure 8.1: DFT band structure of LiV2O4. Individual contributions of a1g and eπg orbital
are color-coded. The k-path between high symmetry points in the first Brillouin zone is
shown in the inset. The k-summed density of states is shown in (right).

Arita et al. [238] proposed that the a1g orbital in LiV2O4 can be modeled as a lightly doped
Mott insulator and that heavy quasiparticles are a direct consequence of this. Their effec-
tive 2-orbital LDA+DMFT simulations (one a1g orbital and one eπg orbital) revealed the
emergence of a strong quasiparticle peak near the Fermi edge at low temperatures. They
employed standard QMC techniques for a series of high-temperature spectral functions
and complemented their data with T = 0 K results from their projective QMC method
[239, 240]. The simulations showed an emerging quasiparticle peak near the Fermi edge, in
accordance with experimental results [163]. This peak is preserved when the hybridization
between the a1g and eπg orbital is switched off [238]. They emphasized that this find-
ing would directly contradict previous Kondoesque explanations based on the interaction
between localized moments in the a1g orbital and itinerate electrons in the eπg orbital. More-
over, they claim that the heavy fermion physics in lithium-divanadate is simply the result
of the a1g orbital being close to a Mott transition. Similarly, a recent work by Crispino
et al. [241] argued that the emergence of heavy quasiparticles in d-orbital materials is the
consequence of frustrated orbitally selective Mott transitions (OSMT).
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8.2 DFT+DMFT
We performed DFT calculations using the Quantum ESPRESSO (QE) software pack-
age, where we fixed the structure parameters to match the experimental values reported
for 12 K [46]. We construct maximally localized Wannier functions (MLWF) using Wan-
nier90 for the low-energy states near the Fermi level. These functions accurately replicate
the QE bandstructure, as illustrated in figure 8.1. Integrating the projection of the density
of states onto the a1g and eπg orbital to the DFT Fermi level yields orbital occupations of
0.41 electrons per a1g orbital per spin and 0.545 per eπg orbital per spin.

We construct a tight-binding Hamiltonian HW90(R) in real space from our MLWFs that
accurately captures the essential low-energy physics of the compound. By employing Wan-
nier interpolation, we Fourier transform HW90(R) onto a dense 41× 41× 41 k-point mesh,
thus avoiding any k-point discretization errors. This ensures high accuracy in our calcu-
lations, even at low temperatures. We apply this procedure to both an effective 12-band
model (comprising a1g and eπg orbitals) and an effective 20-band model (incorporating all
five d-orbitals per V site). Additionally, we rotate the Hamiltonian into the crystal field
basis on each of the 4 V sites to diagonalize the local non-interacting Hamiltonian and the
hybridization function.

We performed constrained random phase approximation (cRPA) [127, 242] calculations to
determine the effective Coulomb interaction within our low-energy model. By bipartition-
ing the electronic structure into a subspace near the Fermi level and the remainder of the
system, we are able to compute the effective, partially screened Coulomb interaction in the
static limit (U(ω = 0)), which serves as the effective interaction in our low-energy model.
Additionally, we fit the full four-index effective interaction tensor to the three Kanamori
parameters: U , U ′, and J , see equation (3.20), to obtain a form that can be treated more
efficiently by impurity solvers. The resulting Kanamori parameters are: U = 3.94 eV,
U ′ = 2.83 eV, and J = 0.56 eV for the 3-orbital model and U = 4.23 eV, U ′ = 3.13 eV, and
J = 0.53 eV for the full 5-orbital model.

DMFT calculations are performed using the TRIQS [243] software library, and its in-
terface to electronic structure codes, TRIQS/DFTTools [244], in a one-shot manner;
that is, without updating the charge density in the DFT code. We solve the full interaction
problem either using our tensor network based impurity solvers or the QMC solver in the
hybridization expansion formulation, TRIQS/CTHyb[245]. All QMC based DMFT sim-
ulations are performed using TRIQS/Solid_DMFT [246]. We consider the DMFT cycle
to be converged when |G loc − G| < 10−4. Moreover, we closely monitor the convergence of
the first few Matsubara frequencies in the self-energy to ensure that our results are fully
converged, setting a threshold of ∼ 1 meV for the change per iteration.
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CTHyb calculations were performed from 290 K down to 11.6 K. Note that a significant
increase in warm-up time, up to 1 × 105 warm-up cycles per Monte Carlo walker, was
necessary to reliably ensure convergence. CTHyb results agree well with our TN solver
down to 11.6 K, where the onset of heavy fermion behavior is already indicated. However,
a further decrease of the simulation temperature is unfeasible for CTHyb due to the O(β3)
scaling of QMC algorithms.

We complement QMC results with our TN impurity solver, which offers a significantly
higher energy resolution at very low temperatures. We extended our previously dis-
cussed TN-based solver, as detailed in chapter 4, to non-zero temperatures using thermal
state purification [73, 247]. This enabled us to simulate temperatures as low as 2.9 K
(β = 4000 eV−1). We utilized several time evolution techniques during the calculation of
the impurity Green’s function. Initially, the global subspace expansion method (GSE) [107]
was employed until τ = 2 eV−1, followed by two-site TDVP[90, 248] until τ = 25 eV−1,
and subsequently the local subspace expansion method (LSE) [7, 109] for the remainder of
the time evolution. Time evolution was performed until τ = β

2 for both zero temperature
and finite temperature simulations. Additionally, zero temperature time-ordered Green’s
functions were extended using the linear prediction method [146] until they were fully de-
cayed, as described in section 4.3.1.

We used a similar procedure for the preparation of our thermal states. Initially, we em-
ployed the global Krylov method [92] until τ = 0.5 eV−1, followed by the global subspace
expansion method (GSE) [107] until τ = 5 eV−1, then the two-site TDVP[90, 248] until
τ = 20 eV−1, and finally the local subspace expansion method (LSE) [7, 109] until τ = β/2.
To limit the impact of truncation and projection errors we used exponentially increasing
time steps δτn = min(0.1× 1.01n, 0.5) eV−1 during thermal state preparation. Tensor net-
work based time evolutions were performed with a truncated weight of wt = 10−11 and
a maximum bond dimension of 1536 and 2048 SU(2) states for 3 orbital and 5 orbital
simulations, respectively. Ground state searches in our zero temperature calculations used
a truncated weight of wt = 10−14 while allowing for a maximum bond dimension of 2048
and 4096 SU(2) states for 3 orbital and 5 orbital simulations, respectively.

Significant deviations observed between self-energies obtained for β = 1000 by the QMC
solver and βeff = 1000 by the TN solver, required the extension of our TN framework
to finite temperature simulations, see figure 8.2. This further corroborates that no direct
correspondence between β and βeff exists. The substantial deviation directly results from
the low Fermi liquid temperature TFL in LiV2O4. Our finite temperature simulations at
β = 1000 correspond to an absolute temperature of 11.6 K, while TFL is suspected to be
below 10 K [249]. Thus, we only find a mere onset of a potential Fermi liquid behavior in
finite temperature simulations, while zero temperature simulations already show a more
pronounced emergence of a Fermi liquid phase.
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Figure 8.2: Comparison between self-energies obtained via TN or QMC methods at β =
1000 and βeff = 1000. The a1g orbital (left) shows a significant slope at low frequencies,
indicating the large mass enhancement characteristic of this compound. However, we
observe a stark difference between zero and finite temperature results. This discrepancy
directly results from the low Fermi liquid temperature in this material [249]. Only the
zero temperature self-energy shows a clear indication for the formation of a Fermi liquid.
However, we find a good agreement between both methods at β = 1000.

However, we find a good agreement between the QMC and finite temperature TN results
overall. The presence of small deviations at low energies will be discussed in section 8.3.2.
This finding is a remarkable testament to the efficiency and maturity of both approaches,
as both yield highly precise results even in largely unexplored territory.

8.3 Purification

Tensor network-based solvers have traditionally been used primarily for zero-temperature
simulations. However, accurate comparisons with QMC and, more importantly, experi-
mental results require finite-temperature data. Little is known about finite temperature
TN simulations in the context of DMFT. Recently, Cao et al. [250] proposed the use of
minimally entangled typical thermal state (METTS) for TN based impurity solvers. Yet,
the statistical averaging required in this approach leads to a significantly increased compu-
tational cost compared to zero temperature simulations. Thus, we propose a conceptually
simpler method for the simulation of materials at finite temperatures: purification. We
refer to [73, 247] for a detailed review on how to combine purification with tensor network
methods.
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Figure 8.3: Depiction of an infinite temperature MPS in the purification framework. Each
physical site (blue) has a neighboring ancilla counterpart (orange). Thus, the overall
Hilbert space size is doubled. These pairs are mutually maximally entangled, resulting in
an alternating bond dimension pattern.

Any mixed state in physical space can be represented as a partial trace over a Schmidt
decomposition of a pure state [73]:

ρ̂P =
m∑
i=1

si |i⟩P ⟨i|P = TrA |ψ⟩ ⟨ψ| , (8.1)

|ψ⟩ =
m∑
i=1

si |i⟩P |i⟩A , (8.2)

where s are singular values, P denotes our physical Hilbert space, and A is an ancilla
space, which we assume to be identical to P. In MPS representation, this corresponds to
adding a neighboring ancilla site to each physical site, thus doubling the overall Hilbert
space dimension. See figure 8.3 for a depiction of a MPS in the purification framework.
Inserting an identity into the density matrix of a thermal state ρβ allows us to rewrite it
as

ρ̂β = 1
Z(β)e−βĤ = 1

Z(β)e−β/2Ĥ Îe−β/2Ĥ . (8.3)

Identifying Î = ρ̂β=0Z(β = 0) and expressing ρ̂β=0 as a purification allows us to rewrite
above equation as

ρ̂β = Z(0)
Z(β)e−β/2Ĥ TrA |ψ0⟩ ⟨ψ0| e−β/2Ĥ . (8.4)

As Ĥ does not act on A we can pull out the trace, which finally leaves us with

|ψβ⟩ = e−β/2Ĥ |ψ0⟩ . (8.5)

Thus, to obtain a finite temperature state, we must first find the infinite temperature state
|ψ0⟩. However, as ρ̂0 factorises as

ρ̂0 = 1
dL
Î = (1

d
Î)⊗L, (8.6)

we can simply purify the local mixed state on each physical site i as [73]

|ψi,β=0⟩ =
∑
σ

1√
d
|σ⟩P |σ⟩A . (8.7)
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Hence, the infinite temperature state can be easily constructed from maximally entangled
states between physical sites and their ancilla counterpart. This results in an alternating
bond dimension pattern in MPS as sites are only pairwise entangled; see figure 8.3. There
is a certain level of freedom in the choice of basis for these states. We strongly advise
constructing the state so that it conserves good quantum numbers of the Hamiltonian
[198]. For electronic systems, we construct our maximally entangled state as

|ψi,β=0⟩ = 1√
4

(
|↑P↓P ⟩+ |↑A↓P ⟩+ |↑P↓A⟩+ |↑A↓A⟩

)
. (8.8)

This conserves the particle number N , total spin S, and spin Sz throughout time evolution.
Note that this still allows for a grand canonical state after tracing out the ancilla space A.
For SU(2) invariant systems, as is the case here, one can construct the maximally entangled
state as

|ψi,β=0⟩ = 1√
3

(
|0P2A⟩+ |1P1A⟩+ |2P0A⟩

)
, (8.9)

where {0, 1, 2} denote the number of particles on each site.

8.3.1 How to stabilize finite temperature simulations
While we are able to simulate unprecedented low temperatures in real material simula-
tions, we are once again confronted with the presence of a gap in the time-ordered Green’s
function. Refer to section 4.3 for a discussion on how we addressed this issue in zero-tem-
perature simulations. We observe that Gp and Gh do not perfectly coincide at τ = β/2, this
time, however, they must. Moreover, our previous solution of extending G(τ) via linear
prediction is no longer applicable due to the periodicity and the therein implied growth
near G(τ = β/2).

The presence of a gap in the time-ordered Green’s function is not merely the consequence
of emerging inaccuracies in challenging material simulations. Even relatively simple simu-
lations of the Hubbard model at U = 2D at β = 8 with a semi-elliptical density of states
reveal a gap at G(τ = β/2), see figure 8.4. Moreover, the general behavior of the gap with
system size is inconsistent. While simulations with a single bath site at half-filling show no
gap, we observe the largest gap away from half-filling, see figure 8.4. The presence of the
gap was neither impacted by varying the timestep not using using high-precision global
time evolution methods. Yet, around 5× 10−4, the gap stabilizes, both for the simple test
case and for LiV2O4 at very low temperatures.

In our zero-temperature simulations, we relied on linear prediction to mitigate the ef-
fects of the gap. Specifically, we encountered two issues: the gap at G(τ = βeff/2) and an
improper description of low-energy physics. We demonstrated that a simple shift in the
time particle/hole Green’s function mitigates all observed oscillations in the real part of the
Green’s function while leaving the imaginary part, which shows no oscillations, unchanged,
as illustrated in figure 4.3.
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Figure 8.4: Comparison of gaps in the time-ordered Green’s function at τ = β/2. We show
the evolution of the gap in a one-band Hubbard model with U = 2D and semi-elliptical
density of states at β = 8 in (left). While simulations at half-filling (µ = 0) initially display
no gap, a clear formation of a gap is observed with larger bath sizes. The origin of this gap
remains somewhat mysterious. We find a decrease in the gap with bath length for systems
away from half-filling. This ultimately suggests that the gap is not purely a consequence of
inaccuracies in our simulations. Moreover, the use of high-precision global time evolution
methods does not impact the presence of this gap. We illustrate the evolution of this gap
in (right) over a wide temperature range for LiV2O4. The absolute size of the gap remains
stable for all considered temperatures.

Moreover, due to the periodicity of the time-ordered Green’s function, we do not expect
errors arising from an insufficiently long time evolution. Therefore, we can reasonably as-
sume that a shift, as defined in equation (4.11), effectively mitigates all effects of the gap.

We showcase the effectiveness of the shift on the example of LiV2O4 at β = 1000. We
find that oscillations in the real part of the impurity Green’s function are completely
mitigated, see figure 8.5. Upon careful inspection, we find that the maximum of the time-
ordered Green’s function is not located at τ = β/2 but rather slightly to the left of it, again,
hinting at a possible minor source of error. Resampling G(τ) on the dlr grid [164, 165]
shifts the maximum ever so slightly towards the middle. Although the impact of this
approach is seemingly minor, it significantly improves the high-energy behaviour and, by
that, the tail fitting accuracy of our Green’s function [34, 251]. The shift itself is sufficient
to unveil the onset of the heavy-fermion behaviour in the self-energy as indicated by the
stark trend of its imaginary part towards zero, see figure 8.6. Moreover, the progressively
smaller amplitudes of the oscillations in the self-energy at lower temperatures corroborate
the accuracy of the reconstruction of the proper self-energy via the shift.
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Figure 8.5: Presence of a minute gap at τ = β/2 in our simulations of the a1g orbital at
β = 1000, (left). We can mitigate oscillations in the impurity Green’s function (right)
that arise as a consequence of this gap by shifting the particle and hole Green’s functions
towards each other. This approach leaves the imaginary part of G(iωn) invariant. However,
other minor sources of error, for instance, a slightly shifted position of the maximum in
G(τ) persist.
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Figure 8.6: Shifting Gp and Gh towards each other reveals the heavy fermion behaviour
in the a1g orbital at β = 1000 (left). Moreover, the accuracy of the reconstruction is
corroborated by the ever-smaller oscillations (right) with decreasing temperature in the
original data. Minor deviations in the self-energy arise when combining the shift with the
DLR grid resampling, likely due to the improved high-energy behavior of the resampled
Green’s function.
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8.3.2 Odd/Even effect

Tensor network based impurity solvers do not work directly in the thermodynamic limit,
unlike QMC solvers. Despite this seemingly fundamental difference, they have often been
found to be in good agreement with each other [1, 4]. However, this agreement is partly
due to these studies’ comparably low energy resolution. The low temperatures accessed
by both solvers in the context of this work reveal a more concerning picture regarding
finite-size effects in tensor network impurity solvers.

We observed significant odd/even effects in the number of bath sites, both in the zero
temperature as well as the finite temperature results, albeit in a weaker form. We find
that even bath lengths result in a zero temperature ground state sector with an even total
number of particles and total spin S = 0. Conversely, odd bath lengths favor a ground
state with an odd total number of particles and total spin S = 0.5. This changes the
overall band parity of the a1g band, thus significantly influencing its low-energy behavior.
Consequently, this affects the observed onset of the heavy fermion behavior.

The emergence of a heavy Fermi liquid phase in this compound is intimately linked with
the disappearance of the local magnetic moment in the a1g orbital. The presence of the
local moment results in a strong scattering amplitude, as shown in figure 8.2. The magnetic
moment diminishes with decreasing temperature, ultimately resulting in the emergence of
Fermi liquid behavior and the therein implied S = 0 state. We find a stark deviation
between results with an odd or even number of bath sites, see figure 8.7. For even numbers
of bath sites we report a clear onset of Fermi liquid physics, while odd bath lengths show no
such indications. In contrast, the eπg orbital shows no noteworthy dependence on the num-
ber of bath sites. This highlights that the pronounced odd/even effects are a consequence
of the strong correlation effects and the low Fermi liquid temperature in this material.

Some of the on-site energies in the bath of the a1g orbital, determined during our dis-
cretization procedure, are ∼ O(10−4). This results in the observed stark volatility of the
total parity in the a1g band. We want to showcase that the strong odd/even effects are
merely a consequence of this instability of the ground state quantum number sector rather
than the result of a fundamentally different hybridization function.

As the small on-site energies imply a small energy gap to the lowest eigenstate in the
S = 0 quantum number sector, we can simply select the S = 0 state as our lowest energy
eigenstate in zero temperature simulations without encountering severe norm instabilities
during time evolution. Calculations at βeff = 1000 show a clear onset of heavy fermion
physics, even for odd bath sizes, see figure 8.8. Thus, we conclude that this behaviour is
independent of the number of bath sites, but strongly reliant on an S = 0 ground state.
Given that we would expect to find an S = 0 ground state in the FL phase, this aligns
perfectly with our physical expectation.
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Figure 8.7: Impact of the odd/even effect on LiV2O4 orbitals. We find that the emergence
of the heavy fermion behavior in the a1g orbital (left) at β = 1000 is critically dependent
on an even number of bath sites Lb, which favors a total spin of S = 0 in zero temperature
simulations. The local moment in the a1g orbital still prevails for odd bath lengths, i.e.,
no indication for the onset of heavy Fermi liquid behavior can be found. In contrast, we
observe little to no effect on the eπg orbital (right), corroborating that the presence of these
strong odd/even effects is intimately linked with the presence of magnetic moments and
low Fermi liquid temperature scale in this material.

We consider even bath sizes as the correct physical choice for LiV2O4. This choice is further
justified by the experimentally observed emergence of Fermi liquid behavior at very low
temperatures. Additionally, it is corroborated by the consistency with QMC results. This
comparison, see figure 8.2, reveals an overall good agreement between self-energies obtained
by both methods. Upon closer inspection, one finds that QMC results exhibit a slightly
smaller uptick at low frequencies compared to our MPS-based results. We consider this
small deviation to be a potential consequence of the S = 0 bias that our choice of bath
size may have introduced into the model. We consider such stark odd/even effects to be a
rare consequence of the interplay between local magnetic moments and the low coherence
temperature in this material. Given the overall stability of the eπg orbital self-energy for all
considered bath lengths, we remain confident in the accuracy of the tensor network solver.
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Figure 8.8: Self-energy in the a1g orbital at βeff = 1000 for odd bath lengths from the
S = 0.5 ground state and the energetically closest S = 0 state. We find that the emergence
of heavy fermion physics at this fictitious temperature is independent of the bath size and
only depends on the total spin.

8.4 Results

The heavy Fermi liquid regime in LiV2O4 has so far been inaccessible to DMFT calcula-
tions due to the very low FL coherence scale [46, 238]. However, our recent advances in
tensor network based impurity solvers allow us to access the low temperatures necessary to
describe the emerging heavy quasiparticle phase. We complement these results with QMC
data obtained at higher temperatures to study the full crossover from the incoherent metal
to the low-temperature heavy FL regime.

Results are shown for the a1g and eπg orbital of our 3-orbital model. The small elec-
tronic occupation of the eg orbitals, neg = 0.01, does not warrant a complete treatment
on the basis of the full 5-orbital simulations. Nonetheless, we will present a comparison of
3-orbital and 5-orbital self-energies in appendix B.
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Figure 8.9: Onset of heavy Fermi liquid behaviour in the a1g orbital (left). This is marked
by a steep trend of the self-energy towards zero for temperatures below approximately 10 K,
in agreement with experimental predictions [249]. The a1g and eπg orbital are denoted by
circles and crosses, respectively. We firmly establish the mutual agreement of our TN
and QMC impurity solvers over a wide range of temperatures. Additionally, we show the
development of the sharp quasiparticle peak near the Fermi edge in the a1g orbital (right)
with decreasing temperature, as has been observed experimentally in [163].

We establish a good agreement between TN and QMC self-energies over a wide range
of temperatures, see figure 8.9. Our tensor network results reveal the emerging heavy
FL regime below 10 K, which coincides well with experimental predictions [249]. The
a1g self-energy can be described in two regimes. The high-temperature regime above
ωn ≈ 0.006 (eV) is governed by the formation of a local magnetic moment, as shown
in figure 8.12. This leads to a strong scattering rate −ImΣa1g(i0+), as can be inferred from
figure 8.9. The scattering rate drops dramatically in the low-temperature regime below
ωn ≈ 0.006 (eV), indicating the emergence of a heavy Fermi liquid phase. The spectral
function shows the formation of a dominant, temperature-dependent quasiparticle peak
near the Fermi edge, as observed experimentally [163]. In contrast, the eπg self-energy de-
pends only weakly on temperature.

The direct correspondence between the inverse quasiparticle renormalization Z−1 = 1 −
∂ Im Σ
∂iωn
|(iωn→0) and the mass enhancement m∗/m = Z−1 within our DMFT approximation

breaks down for multi-orbital models [1]. We thus consider the specific heat coefficient
given as:

γ = π2k2
B

3
∑
mσ

Amσ(0)/Zmσ, (8.10)

where m and σ denote orbital- and spin indices, respectively.
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Figure 8.10: Self-energy for various Hund’s coupling strengths at β = 1000 (left), other
parameters are kept as is. We see that the onset of Fermi liquid behavior is progressively
pushed to smaller frequencies and, in that sense, temperatures. We show the mass en-
hancement and occupation of the a1g orbital for all considered J . We see that the onset
of heavy fermion physics is clearly driven by Hund’s coupling. Upon reaching an orbital
occupation of ≈ n = 0.9, we find a consistently high mass enhancement that no longer
depends strongly on J . Note that this is only visible for βeff = 1000. Finite temperature
simulations are still well above TFL for larger J . Thus, the mass enhancement appears to
be shrinking.

This accurately measures the mass enhancement in multi-orbital systems, which is directly
comparable with experimental results. We observe a rapid increase in γ in the low-tem-
perature regime. At T = 11.6 K we have γ = 159.24 mJ/mol K−2, whereas at T = 2.9 K,
we have γ = 3552.52 mJ/mol K−2. Additionally, we obtain a good agreement between
our estimates of the specific heat coefficient within our DFT model, γDFT = 17.09 mJ/mol
K−2, and previous estimates [252, 253]. Values are provided per formula unit of LiV2O4.
Note that in the high-temperature regime of our DMFT model, we observe only a small,
near-constant increase γ/γDFT ≈ 1.4, indicating that the material is only weakly correlated.
However, the strong enhancement in the low-temperature regime clearly necessitates our
DFT+DMFT approach to accurately capture the intricate correlation effects.

The formation of a strong quasiparticle peak was also reported in a previous, approximate
DMFT study by Arita et al. [240]. They proposed that LiV2O4 behaves akin to a weakly
under-doped Mott insulator (1-2% doping). Moreover, they classified the eπg orbitals as
mere spectators reducing their role to that of electron donors. Indeed, the orbital occupa-
tions of the DFT calculations read na1g = 0.41 and neπ

g
= 0.545, which differ significantly

from the fillings obtained in our DMFT calculations of roughly na1g = 0.9 and neπ
g

= 0.3.
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While this is in qualitative agreement with the mechanism proposed by Arita et al., the
filling of the a1g orbital is much lower than the necessary 1-2% doping that would result
in a similar mass enhancement in a simple 1-band model. Moreover, we find that Hund’s
coupling is essential for the formation of heavy quasiparticles in this material. Hund’s
coupling itself plays multiple key roles, which we shall establish below. It promotes the
significant redistribution of electrons from the eπg to the a1g orbital. In the absence of
Hund’s coupling, the orbital occupation in our DMFT study is roughly na1g = 0.66 and
neπ

g
= 0.42. More importantly, we find no heavy quasiparticles at β = 1000, see figure 8.10.

In fact, we find that the heavy fermion behavior is critically linked to the occupation of
the a1g orbital, which emerges upon reaching an occupation close to na1g ≈ 0.9.

We find a maximum in the inverse quasiparticle renormalization around J = 0.3 for
β = 1000 and J = 0.4 for βeff = 1000. We expect that this is not a true maximum
and that it will shift to slightly larger Hund’s coupling strengths upon lowering the tem-
perature. We do not consider the observed, drastic decrease in Z−1 for larger J to be
physically relevant. It is purely an effect of the chosen temperature, as the comparison
with zero temperature data indicates, see figure 8.10. We see that the increase in quasi-
particle mass is strongly correlated with the increase in the occupation of the a1g orbital,
both of which are driven by Hund’s coupling, reinforcing its critical role in this material.

While the description of LiV2O4 as an effective single orbital model close to a Mott tran-
sition appears far-fetched, the general importance of the orbital occupation cannot be
understated, also in the presence of Hund’s coupling. The total filling of LiV2O4 posi-
tions it right at the edge of the spin freezing regime of the Hubbard Kanamori Hamilto-
nian [254]. This regime is characterized by the formation of slowly decaying local magnetic
moments. These local moments lead to the creation of heavy quasiparticles, driven by the
spin-blocking mechanism in Hund’s metals, where electrons can only transition between
configurations with maximum spin.

So far, this regime has, to the best of our knowledge, only been firmly established within
degenerate model systems, far astray from our context here. However, as we will illustrate
below, the strong renormalization effects survive the presence of a crystal field splitting
and could serve as a possible explanation for the emergence of heavy quasiparticles.
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Figure 8.11: Transition towards the spin freezing regime of the Hubbard-Kanamori Hamil-
tonian with increasing orbital occupation n. Simulations have been performed at β = 1000
using the CT-Hyb impurity solver for U/D = 3.94 and J/D = 0.56. We observe the emer-
gence of the characteristic up-tick in the self-energy indicating the transition from the bad
metal to the Fermi liquid regime. For comparison, we show Σa1g in gray. The inset shows
the inverse quasiparticle renormalization for different fillings. We find that characteristics
of the spin freezing regime remain stable upon the introduction of a crystal field splitting
(right). This stability indicates that the spin-blocking mechanism is a possible cause be-
hind the emergence of heavy quasiparticles in LiV2O4.

We consider the Hubbard-Kanamori model on the degenerate Bethe lattice with interaction
parameters corresponding to the a1g orbital of LiV2O4, i.e., U/D = 3.94 and J/D = 0.56.
Simulations were performed at β = 1000 using the CTHyb solver. We find a strong increase
in Z−1 upon approaching half-filling, see inset figure 8.11. Moreover, we see the same char-
acteristic strong uptick of the self-energy that we observe in LiV2O4. Note that the Fermi
liquid temperature in this model system is still significantly higher compared to LiV2O4,
as indicated by the earlier onset of the kink in the self-energy, see figure 8.11. These re-
sults are in line with previous works on the spin freezing regime in Hund’s metals [254, 255].

The stark increase in quasiparticle mass at low temperatures even prevails upon the in-
troduction of a crystal field splitting. Note that the dominant kink at small frequencies
vanishes; however, the inverse quasiparticle renormalization remains large. The compari-
son with the fully degenerate model corroborates that the strong correlation effects do not
primarily originate from the vicinity of the electron occupation to half-filling but rather
the vicinity to an orbitally selective Mott transition (OSMT). In LiV2O4, the a1g orbital
is similarly close to an OSMT.
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Figure 8.12: Local spin-spin susceptibility in LiV2O4. The spin-spin correlation in the a1g
orbital is nearly constant in τ leading to a clear temperature dependence in χSzSz

m (νn = 0, T )
(right). We fit the temperature dependence with the Curie-Weiss law X = C

T−Θ and find
a near-perfect correspondence. However, no evidence for magnetic order above 4.2 K has
been observed experimentally [46]. In comparison, the spin-spin correlation in the eπg orbital
decays rapidly, showing no trace of a magnetic moment.

A further hallmark of the spin-blocking mechanism is the presence of a strong local mag-
netic moment, persisting down to very low temperatures. We want to establish the presence
of such a local magnetic moment by considering the local spin-spin susceptibility χSzSz

m (iνn),
where νn denotes the bosonic Matsubara frequencies. We can compute this quantity via
Fourier transformation of the local spin-spin correlation function in imaginary time:

χSzSz
m (iνn) =

∫ β

0
dτeiνnτ ⟨ψ0| Ŝz,m(τ)Ŝz,m |ψ0⟩ , (8.11)

where Ŝz is a spin operator and m runs over all orbitals.

We find evidence of local magnetic moments in the a1g orbital, that persist down to very low
temperatures. This is indicated by the slow decay of χSzSz

m (iνn), as shown in figure 8.12.
The spin-spin correlation function becomes nearly flat at the considered temperatures,
leading to a spin-spin susceptibility χSzSz

m (iνn = 0, T ) that is proportional to β, indicating
that the Curie-Weiss law holds [255]. Indeed, we find a nearly perfect fit between the
Curie-Weiss law and our simulations, see figure 8.12 (right).

Experiments showed that the spin-spin susceptibility in LiV2O4 follows a Curie-Weiss law
down to 16 K where it experiences a cusp and becomes nearly temperature independent
afterward [46]. Yet, we do not find a similar cusp in our simulations. This breakdown of
the Curie-Weiss law reported in experiment is expected at the crossover into the Fermi
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liquid regime. However, the behaviour in our model indicates a lower TFL in our model
compared to values reported in experiment.

While the spin-blocking mechanism appears compelling, the large filling of the a1g orbital
makes it cumbersome to disentangle it from other correlation effects that might arise in the
vicinity of a Mott transition [221]. Recent studies even suggested frustrated orbitally selec-
tive Mott transitions (OSMT) as the mechanism behind the emergence of heavy fermion
physics in d-orbital materials [241]. However, given that the a1g orbital is still relatively
far removed from an actual OSMT, we consider the spin-blocking mechanism of Hunds’s
metals to be the main contributor to the emergence of heavy quasiparticles in LiV2O4

8.5 Summary
We leveraged recent advances in our tensor network impurity solver to reach unprecedent-
edly low temperatures in the simulation of materials using DFT+DMFT studies, incorpo-
rating the full Hubbard-Kanamori interaction. This allowed us to probe the emergence of
heavy quasiparticles in the a1g orbital of the transition metal oxide LiV2O4.

Previous theoretical studies attributed the heavy fermion characteristic of this compound
to its geometric frustration [230, 231] and mechanisms akin to the Kondo effect [228]. A
more recent study by Arita et al. proposed that this material can essentially be understood
as a single orbital model close to a Mott transition.

Contrary to the claims by Arita et al., we find that Hund’s coupling plays a fundamental
role in the formation of heavy quasiparticles in LiV2O4. It drastically shifts the elec-
tron occupation towards the a1g orbital, increasing its filling from na1g = 0.66 to roughly
na1g = 0.9. This increase in orbital electron occupation is closely associated with the in-
crease in mass enhancement.

We show that characteristics of the spin-freezing regime of the Hubbard-Kanamori Hamil-
tonian persist in the presence of a crystal field splitting. This makes spin-blocking a viable
mechanism behind the intricate low energy physics of LiV2O4. We demonstrated the ex-
istence of local magnetic moments that persist to very low temperatures. However, it
remains unclear whether this might be the dominant effect behind the formation of heavy
quasiparticles in d-orbital materials.

Further investigations are needed to disentangle the apparent similarity with the spin
freezing regime and the strong correlation effects that might arise through a frustrated
orbitally selective Mott transition of the a1g orbital. It is important to note that both of
these effects are largely independent of the band structure. Therefore, we consider it cru-
cial to identify additional transition metal oxides that exhibit similarly low-energy physics
as LiV2O4 to better understand these intertwined mechanisms.



Chapter 9

Conclusion and Outlook

We presented methodological advances in the simulation of strongly correlated materials
using dynamical mean field theory and a study of the low-energy physics of the transition
metal oxide LiV2O4. Our recent advances enabled us to directly study the emergence of
heavy fermion physics in LiV2O4, allowing us to propose a new theory behind the forma-
tion of heavy quasiparticles in this d-orbital compound.

We introduced a new tensor network structure, the MT3N, that is tailored towards impu-
rity models. This development generated a 10x speed-up for 5-orbital models in our real
time impurity solver, enabling us to perform intricate real material simulations directly
on the real frequency axis. The imaginary time impurity solver also benefits from the
more efficient representation of correlation in the MT3N. Additionally, we generated an
impressive 3x runtime improvement by the usage of recently developed subspace expansion
algorithms during time evolution. These subspace expansion techniques proved crucial in
extending this solver to finite temperatures. Our purification approach allowed us to reach
temperatures as low as T = 2.9 K, an unprecedentedly low temperature for DFT+DMFT
material studies incorporating the full Hubbard-Kanamori interaction.

Despite these advances, accurately describing real materials across the full frequency range
remains challenging. To address this, we introduced a new analytic continuation algo-
rithm, MinKL, that combines results obtained on the Matsubara axis from our imaginary
time solver and real frequency data from our real time solver. This significantly improved
the stability of the otherwise ill-conditioned analytic continuation procedure. Moreover,
MinKL preserves the highly accurate low-energy description from our Matsubara axis data
and faithfully extends it with high-energy information from the real time solver results.
This allows us to obtain highly accurate real frequency data, even for challenging multi-or-
bital material simulations, enabling us to compare our numerical analysis with experimental
observations.
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Lastly, we introduced a novel time evolution concept by evolving systems along complex
time contours [6]. By shifting time evolution away from the real time axis, we significantly
curtail entanglement growth, enabling substantial improvements in accuracy and efficiency.
This is achieved by systematically suppressing high-energy states via imaginary time evo-
lution. We discussed several complex time contours along with multiple post-processing
methods that analytically continue our results back to the real frequency axis. Among
these, we introduced a tilted contour that posts a staggering 100x speed-up compared to
real time contours. However, this tremendous gain in efficiency comes at a loss of accuracy
due to the necessity of an ill-conditioned analytic continuation. Most notably, we presented
contours that either require no post-processing or where the analytic continuation simpli-
fies to a mere multiplication. The latter, parallel (inversion), method pars the precision of
NRG down to ω/D ≈ 0.002, a level of precision previously out of reach for tensor network
based real time impurity solvers all while preserving an impressive speed-up of more than
an order of magnitude.

Outlook
While we presented substantial advances in our tensor network impurity solvers, we still
see room for improvement. Although the imaginary time solver is not plagued by entangle-
ment growth during time evolution, the need for increasingly longer time evolutions upon
decreasing temperatures is cumbersome. Therefore, it is worthwhile to explore the option
of directly computing the Matsubara Green’s function in frequency space. This could be a
promising endeavor given the likely low number of poles needed to accurately describe it.

The vast number of bath sites needed to accurately capture low-energy physics in the
real time solver creates efficiency bottlenecks in otherwise insignificant parts of tensor net-
work simulations. More precisely, creating both the Hamiltonian and a good initial state
consumes considerable parts of the overall runtime of a real time DMFT iteration. We thus
urge replacing the generic TNO construction [256] in favour of a finite state machine based
construction principle [257]. Additionally, the importance of filesystem performance must
not be underestimated. At times, we spent nearly half of our runtime on I/O operations
in our imaginary time solver.

Complex time evolution has the potential to solve the basis optimization problem in real
time evolution. While basis transformations like the natural orbital basis [41] have shown
impressive speed-ups in DMRG, they fell short during time evolution. This is unsurprising
as these transformations are typically not dynamically adapted to the evolving state [195].
As we remain close to an eigenstate during complex time evolution, it is plausible that the
optimal basis also remains similar throughout time evolution.

There is still much to explore in the context of complex time evolution. It is yet unclear
how to best close the self-consistency loop in DMFT. There are essentially two options: to
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close it directly in complex time or to perform an analytic continuation in every iteration.
Conceptually, the first option offers many advantages and must be explored rigorously.
Nonetheless, further improvements of the post-processing of the tilted contour are equally
important, especially as complex time evolution is not restricted to impurity models.

Our advances enabled us to explore intricate physical phenomena at very low temperatures.
Combined with our efficient MT3N multi-orbital impurity solver these improvements will
allow us to accurately treat full 5-orbital systems, or even 7-orbital systems in the near
future. Additionally, we want to stress the relative simplicity and stability of extending
the impurity Hamiltonian in TN-based impurity solvers. This allows us to incorporate ad-
ditional interactions effects present in materials. Our recent advances in the simulation of
electron-phonon systems [3, 7] are transferable to our impurity solver. Incorporating them
into DFT+DMFT studies could mark an important step towards a better understanding
of the role of phonons in real materials.

Pushing the boundaries on what is numerically feasible inevitably brings us closer to re-
gions where the single-site approximation of DMFT eventually breaks down. Therefore, it
is important to extend efforts to cluster-DMFT methods, also in the context of material
research. While cellular DMFT methods sparked more interest recently [4], we consider
the possible extension of the DFT+DMFT approach to DFT+DCA (dynamical cluster
approximation) to be similarly intriguing, specifically considering that one will be severely
limited in the cluster size initially.





Appendix A

Post-processing for Complex Time
Contours

The following results are based on the author’s publication [6].

The ideal choice of the complex contour ultimately relies on the model and its specific
high energy quasi-particle peak structure because the loss of high-energy information is
greater if the contour is further away from the real-time axis during early times. A sec-
ond crucial aspect is the growth of entanglement entropies on the complex contours, as it
determines the computational cost. This is illustrated on figure A.1. Not surprisingly, the
real-time contour has the strongest overall growth of entanglement, which does not satu-
rate, explaining the vastly larger numerical resources required. The tilted contour (here
α = 0.1) starts with a similar growth of entanglement at early times when it is close to
the real axis but actually reveals even a slight decrease before saturation at some relatively
small value. The kink contour without post-processing (kink α = 0.1) has a very strong ini-
tial growth of entanglement, even stronger than for real-time evolution because it does not
exploit time-splitting in the real-time direction. Ultimately, though, entanglement strongly
resembles that of the tilted contour, reminiscent of the observed saturation of entangle-
ment growth for all complex-time contours. Finally, the parallel contour at constant τ has
the slowest early entanglement growth as it aggressively suppresses high-energy states but
settles on a somewhat larger saturation value as the contour stays closer to the real axis.
(Note that the α = 0.1 and τ = 0.563 data do not allow for immediate comparison; they
are rather indicative of typical behavior for the respective contours.) The saturation of
entanglement observed for all complex contours explains the large accessible times.
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Figure A.1: Comparison of the entanglement entropy on different complex-time contours.
We show the sum of the entanglement entropies for all system cuts as the system is het-
erogeneous. Kink α = 0.1 is the post-processing free contour with vertical contour along
the negative imaginary axis and a tilted contour in a positive imaginary direction un-
til t = 30D−1) and τ = 0.563 eV−1 a parallel contour with constant imaginary part
τ = 0.563 eV−1. Times of contours exploiting real-time splitting were multiplied by a
factor of 2 to represent the same final time.

A.1 Extrapolation Method
We assume that we know n Green’s functions G(t+ iτk) for n different τk. As seen previ-
ously, they can be generated at low numerical cost from a single contour. We approximate
the behavior by a power series incorporating terms up to order n− 1,

G(t+ iτ) = G(t) +
n−1∑
m=1

τmhm(t). (A.1)

For n values τk, we have n equations with n unknown variables, the Green’s function G(t)
we are interested in, and n− 1 coefficients hm(t) which we will not require explicitly. This
linear equation system can be written as g = M · h, where the vector components are
gk = G(t+ iτk), h0 = G(t) and hk = hk(t) for k > 0, and

Mkl = τ l−1
k . (A.2)

An inversion of M yields
G(t) =

n∑
k=1

(M1 k)−1 G(t+ iτk). (A.3)
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For increasing n, the inversion of M becomes more difficult. To stabilize it, it is useful to
re-scale both hk(t) and M such that G(t) remains unaffected. With τmax the largest τk, we
re-scale as

Mkl =
(
τk
τmax

)l−1
. (A.4)

If we want to solve at order n, but know G(t+ iτk) for more than n different τk, we found
a substantial increase of accuracy by averaging over all different n th-order extrapolations
with different choices of n values of τk. In practice, we used n = 6 for 13 different G(t+iτk).
In the calculations shown in the main text (figure 7.5 and figure 7.4), they were chosen
equidistantly (δτ = 0.075) centered on τ = 1. (Note that the extrapolation method can
also be applied to the linear contours of section 7.2, see figure 7.12.)

A.2 Stabilizing the Kink Method

The kink method appears rather charming due to the absence of any analytic continuation.
However, the observed breakdown of accuracy strongly limits its efficacy. We believe that
this breakdown is the result of the numerically challenging time evolution towards negative
complex time. This evolution increases the weight of high energy contributions in the state
and slowly moves towards the bulk. Thus, we expect that the area law of quantum states
no longer holds, and we find a dependence on the system size in the breakdown behavior.
Indeed if we compute the overlap of a quantum state given as

⟨ψ0| c†(0)c(0) |ψ0⟩ = [c(iτ) |ψ0⟩]†c(iτ) |ψ0⟩ (A.5)

with τ in [0, τmax] we expect it to be constant for all τ . However, the ill-conditioned
nature of the time evolution towards positive complex time leads to a violation of this
equation, see figure A.2. We can see a clear dependence in both the error in the Green’s
function as in the slope of the increasing entanglement entropy summed over all bonds.
This indicates that the breakdown of this method is directly linked to the breakdown of
the tensor network approximation, i.e. the inability to efficiently represent bulk states.
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Appendix B

LiV2O4: Comparison of Multi-orbital
models

While a full 5-orbital treatment of this material is unnecessary to probe its intricate low-
energy physics, it is nonetheless a testament to the capabilities of our impurity solver. The
eg orbitals are far removed from the Fermi edge, resulting in a minuscule electronic occu-
pation in our DMFT study of neg = 0.01, for zero temperature simulations at βeff = 1000.
Despite this seemingly small orbital occupation, the inclusion of the eg orbitals increases
the occupation of the a1g orbital even further, from na1g = 0.893 to na1g = 0.918. Note
that both these values are for zero-temperature simulations.

Note that neither even nor odd bath sizes result in an S=0 ground state for our 5-orbital
simulations; we hence cannot compare this compound’s physically relevant low-energy be-
havior. While this is arguably simply a bias in our discretization procedure which tends to
overestimate the local magnetic moment, it is also a testament to the strong competition
of correlation effects at such low temperatures.

The 5-orbital model shows a slightly increased scattering rate compared to the 3-orbital
simulation, which we consider to be a mere consequence of the larger orbital occupation,
as shown in figure B.1. The eπg orbitals are remarkably similar in both descriptions, while
the eg orbitals show only weak renormalization effects. The latter is to be expected given
how far removed the eg orbitals are from the Fermi edge.
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Figure B.1: Comparison of self-energies from 3-orbital and 5-orbital simulations of LiV2O4.
The self-energy of the a1g orbital (left) reveals an increased scattering rate which we con-
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compared to the 3-orbital simulation. We also show the self-energy of the eg orbital (right),
displaying only small renormalization effects congruent with its electronic occupation.
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