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Zusammenfassung

Zellmigration ist für verschiedene biologische Prozesse wie Embryogenese, Wundheilung,
Immunantwort und Krebsmetastasierung von entscheidender Bedeutung. Die Physik kann
dazu beitragen, unser Verständnis der krafterzeugenden Mechanismen hinter der aktiven
Zellmigration zu verbessern, um die Entwicklung von Therapien für die Krebsbehandlung
und die regenerative Medizin zu unterstützen. In vitro-Studien mit planaren Zellsubstraten
zeigen sowohl erheblich unterschiedliche Zellmorphodynamiken, aber auch universelle
Beziehungen, die über verschiedene Zelllinien hinweg erhalten bleiben. Beispiele sind
die biphasische Adhäsions-Geschwindigkeits-Beziehung und die universelle Kopplung
zwischen Zellgeschwindigkeit und Zellpersistenz. Mechanische Modelle verknüpfen diese
Beziehungen mit physikalischen Kräften und verbinden so intrazelluläre Prozesse mit dem
Bewegungsverhalten. Der quantitative Vergleich von experimentellen Daten mit Modellen
erfordert jedoch reproduzierbare und standardisierte Bedingungen sowie umfangreiche
Statistiken.

Hier präsentiere ich eine automatisierte Zeitrafferanalyse der Einzelzellmigration
unter Verwendung einer Hochdurchsatz-Migrationsplattform und eines biophysikalischen
Modells. Eine Weiterentwicklung von Mikrostrukturierungsverfahren, mit dem Zweck,
Zellmigration auf eindimensionale Bahnen zu beschränken, vereinfachte die Datenerfas-
sung und die Analyse der Zelltrajektorien. Die standardisierte Mikrofabrikation von 1D-
Fibronektin-beschichteten Bahnen und die Scanning-Zeitraffer-Mikroskopie ermöglichten
reproduzierbare Versuchsbedingungen für die Hochdurchsatz-Datenerfassung und die
automatisierte Bildanalyse. Die Technik ermöglichte die Analyse von Tausenden von
Einzelzell-Trajektorien, wobei eine erhebliche Variabilität innerhalb derselben Zelllinie
festgestellt werden konnte, was für die Identifizierung universeller Verhaltensweisen
von Bedeutung ist. In diesem Zusammenhang haben wir bei der Brustkrebszelllinie
MDA-MB-231 Multistabilität in Form von vier Bewegungszuständen entdeckt. In Zusam-
menarbeit mit der Gruppe von Martin Falcke haben wir ein neuartiges biophysikalisches
Modell vorgeschlagen, das aus Kraftbilanzen an den Zellenden, einem verrauschten
Kupplungsmechanismus und einer nichtlinearen Integrin-Signalübertragung besteht. Das
Modell erklärt Multistabilität, die Adhäsions-Geschwindigkeits-Beziehung und die uni-
verselle Kopplung zwischen Zellgeschwindigkeit und Zellpersistenz. Die nichtlineare,
stochastische Natur des biophysikalischen Modells stellte jedoch für die Parameteropti-
mierung eine Herausforderung dar. Durch Training eines neuronalen Dichte-Schätzers
wurden die Modellparameter aus den experimentellen Trajektorien abgeleitet. Der Ansatz
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ordnet Parameterwerte effektiv verschiedenen Zelltypen zu und identifiziert den Wirkort
von Wirkstoffen wie Latrunculin A und Y-27632 ohne Vorkenntnisse.

Wir haben eine Zeitraffer- und Datenanalyseplattform für Studien zur Zellmigration mit
einem noch nie dagewesenen Durchsatz entwickelt. Unser zellmechanisches Modell erk-
lärt ein beispielloses Maß an komplexem Bewegungsverhalten, das durch umfangreiche
Statistiken validiert wird. Wir gehen davon aus, dass unsere Arbeit weitere Entdeckun-
gen im Zusammenhang mit den spezifischen Eigenschaften von Zelltypen, universellen
Beziehungen und biophysikalischen Mechanismen ermöglichen wird.



Summary

Cell migration is crucial in several biological processes, such as development, wound
healing, immune response, and cancer metastasis. Physics can help shed light on the
force generating mechanisms behind active cell migration, improving our understanding to
aid the development of therapies related to cancer treatment and regenerative medicine.
In vitro studies reveal diverse cell morphodynamics on plane adhesive substrates, as well
as universal relations conserved across different cell lines, such as the biphasic adhesion-
velocity relation and the universal coupling between cell speed and cell persistence.
Mechanical models link these relations to physical forces, thereby connecting intracellular
processes with motile behaviour. However, quantitative comparison of experimental data
to models requires reproducible conditions as well as extensive statistics.

Here, I present an automated time-lapse analysis of single-cell migration using a high-
throughput migration platform and a biophysical model. We advanced micropatterning
for confined cell migration on one-dimensional fibronectin lanes which simplified data
acquisition and trajectory analysis. Standardised microfabrication of 1D fibronectin coated
lanes and scanning time-lapse microscopy enabled reproducible experimental conditions
for high-throughput data collection and automated image analysis. The technique allowed
for analysis of thousands of single-cell trajectories, finding significant variability within the
same cell line, which is important for identifying universal behaviours. In this context, we
discovered multistability in the form of four motile states in the breast cancer cell line MDA-
MB-231. In collaboration with the group of Martin Falcke we proposed a novel biophysical
model that consists of force balances at the protrusion edges, a noisy clutch mechanism
and non-linear integrin signalling. The model explains multistability, the adhesion-velocity
relation and the universal coupling between cell speed and cell persistence. However,
the non-linear, inherently stochastic nature of the biophysical model presented significant
challenges, as parameter optimisation became mathematically and conceptually difficult.
By training a neural density estimator model parameters were inferred from experimental
trajectories. The approach effectively asigns parameter values to different cell types and
identifies the site of drug action, like latrunculin A and Y-27632 without prior knowledge.

We developed a time-lapse and data analysis platform for studies of cell migration
with unprecedented throughput. Our cell-mechanical model explains an unparalleled level
of complex motile behaviour, validated by extensive statistics. We anticipate that our work
will facilitate additional discoveries related to the specific characteristics of cell types,
universal relations, and biophysical mechanisms.



xii Summary



List of Publications

Parts of this dissertation have been published in or are about to be submitted to peer-
reviewed journals. Here, (J) denotes journal articles that have been peer-reviewed and
published and (M) manuscripts that are in the process of being peer-reviewed, ready for
submission, or in preparation.

J1 “On the adhesion–velocity relation and length adaptation of motile cells on stepped
fibronectin lanes”
Christoph Schreiber*, Behnam Amiri*, Johannes C. J. Heyn, Martin Falcke, Joachim O.
Rädler
* - authors contributed equally
Proceedings of the National Academy of Sciences 118.4 (2021) [1]

J2 “On multistability and constitutive relations of cell motion on fibronectin lanes”
Behnam Amiri, Johannes C. J. Heyn, Christoph Schreiber, Joachim O. Rädler,
Martin Falcke
Biophysical Journal (2023) [2]

J3 “Mesenchymal cell migration on one-dimensional micropatterns”
Johannes C. J. Heyn, Martin Falcke, Joachim O. Rädler
Frontiers in Cell and Developmental Biology 12 (2024) [3]

M1 “Cell-mechanical parameter estimation from 1D cell trajectories using simulation-
based inference”
Johannes C. J. Heyn*, Miguel Atienza Juanatey*, Martin Falcke, Joachim O. Rädler
* - authors contributed equally
submitted to PLOS ONE (2024), published as preprint [4]

M2 “Intrinsic cell-to-cell variance from experimental single-cell motility data”
Anton Klimek, Johannes C. J. Heyn, Debasmita Mondal, Sophia Schwartz, Joachim
O. Rädler, Prerna Sharma, Stephan Block, Roland R. Netz
submitted to PRX Life (2024), published as preprint [5]

M3 “Myosin VI and its effect on the migration of RPE cells”
Markus Kröss*, Johannes C. J. Heyn*, Joachim O. Rädler, Claudia Veigel
* - authors contributed equally



xiv List of Publications

Over the course of my graduation I had the opportunity to contribute to several conferences
and summer schools in the form of talks (T) and posters (P).

T1 international Physics of Living Systems (iPOLS), conference | 06/2022 | Montpellier,
France
Johannes C. J. Heyn, Behnam Amiri, Christoph Schreiber, Martin Falcke, Joachim O.
Rädler

T2 DPG Frühjahrstagung 2022, conference | 09/2022 | Regensburg, Germany
Johannes C. J. Heyn, Behnam Amiri, Christoph Schreiber, Martin Falcke, Joachim O.
Rädler

P1 DPG Frühjahrstagung 2021, conference | 09/2021 | virtual
Christoph Schreiber, Behnam Amiri, Johannes C. J. Heyn, Martin Falcke, Joachim O.
Rädler

P2 Physics of Cells (PhysCell) 2022, conference | 09/2022 | Rehovot & Ein Gedi, Israel
Johannes C. J. Heyn, Behnam Amiri, Christoph Schreiber, Martin Falcke, Joachim O.
Rädler

P3 DPG Frühjahrstagung 2023, conference | 03/2023 | Dresden, Germany
Johannes C. J. Heyn, Behnam Amiri, Christoph Schreiber, Martin Falcke, Joachim O.
Rädler

P4 CeNS/SFB1032, workshop | 09/2023 | Venice, Italy
Johannes C. J. Heyn, Miguel Atienza Juanatey, Behnam Amiri, Martin Falcke,
Joachim O. Rädler



Introduction

In 1623, Galileo introduced a now-famous metaphor frequently referenced by scientists:
“Nature”, he claimed, “is a book written in the language of mathematics” [6]. To this day,
most researchers and especially physicists hold a firm belief that only a quantitative
description of nature will lead to a thorough understanding of its structure and dynamics.
This assumption concerns both experimental observations as well as theoretical models
and affects both inanimate and animate matter. Hence, it does not come as a surprise
that the quest for quantitative measurements and mathematical models of biological
systems has established the interdisciplinary science of biophysics [7–11]. However, the
characterisation of animate or living matter has consistently been challenging due to
the intrinsic noise occurring at virtually all levels, ranging from fundamental molecular
and sub-cellular processes to the dynamics of tissues, organs and populations [12]. The
motile dynamics of mammalian cells is no exception to this observation.

Cell migration is an essential characteristic inherent to all mammalian cells. The
term cell motility describes the mechanism by which cells relocate from one location to
another. This capability is vital for various biological processes, such as cellular movement
during development, tumour metastasis, wound repair, and immune system functions
[13–15]. Impairments in cell motility processes can lead to significant adverse effects. The
ability to invade tissues and metastasise, for example, is a hallmark of cancer [16–18].
The dissemination of cancerous cells underscores the critical need to understand the
mechanisms governing cell motility.

Biological studies have identified the main protagonists of cell migration and a basic
theory of biological processes is by now well established: cell motility is facilitated by
a sophisticated mechanism that relies on treadmilling of the actin cytoskeleton. Actin
polymerisation at the cell’s front advances the leading edge while contractile forces retract
the rear. Cells establish adhesions to connect the cytoskeleton to the substrate, enabling
force transmission. These activities are orchestrated by a complex regulatory network
that involves hundreds of proteins [19–22].

Mathematical models bridge experiments and theories, offering mechanistic insights
into various aspects of cell migration. Due to the intricate nature of cell migration, these
models are typically modular, focussing on interactions between components such as
actin dynamics, protrusion, adhesion, contraction, and morphodynamics [23–25].

However, comparing these complex models with experimental data presents chal-
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lenges due to the heterogeneity of the data. For an effective comparison, it is crucial to
employ reproducible, standardised conditions and robust statistics. In vivo measurements
typically cannot satisfy these requirements which is why in vitro cell migration assays
are far more common. Recent advances in microfabrication allow precise control over
cell environments and adjustment of external parameters like ligand density, substrate
stiffness, and pore size [26–31]. Planar substrates mimic the in vivo environment of a cell
crawling on top of a basement membrane between epithelial tissues. The two-dimensional
(2D) migration along the adhesive substrate simplifies data acquisition because the cells
can be imaged and followed in a single focal plane. The use of one-dimensional (1D)
lanes for further confinement has been particularly beneficial as it reduces the complexity
of analysing cell movement to a one-dimensional problem [32, 33]. The use of scanning
time-lapse microscopy facilitates the parallel tracking of hundreds of cells over multiple
days, enabling a thorough examination of the motile behaviour of the cells [34]. However,
because of the heterogeneity of the data, even more data is necessary to study biological
phenomena like morphodynamics and said cell-to-cell variability, as well as to validate
complex cell-mechanical models. Automating 1D single-cell migration assays effectively
allows high-throughput analysis and produces large datasets, facilitating mathematical
model validation and data-driven insights [31, 35]. Increasingly detailed studies make it
possible to observe and explain cell migration at a new level of complex behaviour that
will lead to better cellular and molecular characterisation and classification [36].

The outline of this thesis is structured to guide the reader through the development
of a systematic framework that enables a high-throughput single-cell analysis of cell
motility.
Chapter 2 lays the foundation of this thesis by introducing key concepts of cell migration
and the vast experimental and theoretical toolbox to study it. Mesenchymal cell migration
is defined and methods of microfabrication, basic observations of cell motility and mathe-
matical modelling approaches are described.
Chapter 3 presents the experimental setup that allowed high-throughput data acquisition
and analysis. Building on the established technique of scanning time-lapse microscopy of
cells in 1D confinement, novel improvements of the setup are discussed that significantly
increase the efficiency of the data workflow to unprecedented throughputs.
Chapter 4 quantifies the cell-to-cell variance of migrating cells. To this end, the experimen-
tal 1D cell migration assay and the generalised Langevin equation are used, revealing
significant differences between cells even within the same cell line.
Chapter 5 presents a biophysical model linking observed phenomena to cytoskeletal
dynamics and cell-environment interactions. The mathematical framework considers force
balance at the cell’s leading edge, the noisy clutch of retrograde flow, and friction and drag
influenced by integrin signalling. The one-dimensional fibronectin lanes offer the crucial
experimental setup to quantitatively analyse cell motility and validate the biophysical
model.
Chapter 6 introduces simulation-based inference which was employed to pinpoint cell-
specific parameters affecting migration in both healthy and cancerous human epithelial
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cell lines. Using 1D trajectory data from automated imaging on micropatterned fibronectin
lanes, a neural density estimator was used to deduce parameters related to cell dynamics.
The findings indicated notable variations in actin polymerisation and protrusion length
between the cell lines. SBI successfully identified the impact of two cytoskeletal inhibitors
without prior knowledge.
Chapter 7 concludes the main results of this thesis and discusses implications and further
experiments.
Chapter A contains all the methods necessary to reproduce the contents of this thesis. It
provides experimental protocols and descriptions of the algorithms used in the main text.
Chapter B offers supplementary information that is not strictly needed to follow the main
text but may, nevertheless, lead to a better understanding. It contains additional figures
and more detailed information that were omitted in the main text for a more concise and
natural reading flow.
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Fundamental Concepts

The outline and content of this chapter is based in large parts on our review on “Mesenchy-
mal cell migration on one-dimensional micropatterns” [3] to which I contributed in writing
and visualisation. I will start by defining the object at the centre of this doctoral thesis,
i.e. the migration of single mesenchymal cells. I will then try to convince the reader that
one-dimensional (1D) confinement poses a worthwhile approach to limit variable space
and allow a quantitative study of cell migration. Then, I will introduce the two microfabri-
cation techniques for 1D migration platforms that I used for my studies. Afterwards, I will
present the most common biophysical modelling approaches with a focus on mechanical
models such as our protrusion competition model [1]. This section will be followed up by
an introduction to simulation-based inference (SBI) which is a mathematical method that
allows likelihood-free inference of model parameters based on neural density estimation,
an approach that I tested in the context of 1D cell motility.

1 Mesenchymal Cell Migration
Mesenchymal cell migration is a type of actively driven cell movement that is relevant for
several important biological processes such as embryonic development, tissue repair,
immune response and cancer metastasis [13, 37–41]. During embryonic development
mammalian cells not only proliferate and differentiate but also migrate to form various
tissues and organs [37, 42–44]. To repair connective tissue, fibroblasts, which are “the
principal active cell[s] of connective tissue” [45], migrate into wounds and regenerate the
tissue by secreting proteins of the extracellular matrix (ECM) [37, 38]. Certain immune
cells use mesenchymal-like migration, guided by spatial cues, to reach the region of
interest [38]. Cancer metastasis – when some cancer cells undergo a transition from
being of epithelial type to being of mesenchymal type (EMT) and start migrating away from
tumors to invade other tissues or organs – has long been a well-established hallmark of
cancer [16–18]. Consequently, understanding the mechanisms of mesenchymal migration
is crucial for the development of therapies related to wound healing, cancer treatment,
and regenerative medicine. Additionally, it also poses interesting physical questions as
I will show shortly. However, before diving into the topic, I will define what I mean by
“mesenchymal cell migration”.
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Figure 2.1: Phase contrast micrographs of mesenchymal cells migrating on a Fibronectin coated surface
in 2D. Cells are of the epithelial breast cancer type MDA-MB-231 with the fluorescent nuclear marker
H2B-mCherry displayed in pink. (A) Without external cues cells polarise along any direction in 2D. Even
cells in close proximity form protrusions without apparent directional alignment, with some cells even
forming multiple protrusions at the same time. (B-D) Once a cell has achieved uni-axial polarisation it can
elongate its body to a remarkable extend. The cell in (D) is 160 µm long while it is only several micrometres
wide. The stiffness of the nucleus causes an enlarged width at its position close to the geometrical centre of
the cell resulting in a spindle-shape characteristic for mesenchymal migration. Despite the cell adhering to
a flat 2D surface, its motile behaviour is reminiscent of 1D dynamics. Scale bars for all panels equal 10 µm.

The term mesenchymal in this context refers to the fact that cells phenotypically appear
similar to cells of the mesenchyme, a type of embryonic connective tissue that gives rise
to the development of most of the body’s connective tissues and organs [46–48]. Another
category of migration mode would be amoeboid in which cells migrate by changing their
shape accompanied by visible streaming of cytoplasm thereby resembling the behaviour
of amoebae, i.e. shape altering unicellular organisms [49]. The mesenchymal migration
mode is characterised by elongated, spindle-shaped cells that use protrusions called
lamellipodia to move, see Fig 2.1. Cells adhere strongly to the extracellular matrix through
focal adhesions and may secrete matrix-degrading enzymes to remodel their environment
as they migrate [50]. For cells on plane adhesive substrates, mesenchymal migration can
be described as a cyclic process consisting of the following steps: polarisation breaks
the spatial symmetry to establish an anterior-posterior (front-rear) axis, and membrane
protrusions form. Next, the protrusions are stabilised by transmembrane receptors which
anchor the cell to the substrate and allow a transduction of internal forces. Lastly, the cell
contracts and releases adhesions at its rear resulting in a displacement.

Front-back polarity is regulated primarily by the Rho GTPase Cdc42 although other
members of the Rho GTPase family such as Rac and Rho, as well as phosphoinositide
3-kinases (PI3Ks) and integrins are also involved [20, 51–55]. Rho GTPases are molecular
switches that are located at the membrane-cytosol interface. They cycle between a GTP-
bound on-state and a GDP-bound off-state, driven by GTPase-activating proteins (GAP)
and guanine nucleotide exchange factors (GEF), respectively [56]. Gradients of these
regulators lead to localised activation or inhibition of chemical reactions thereby breaking
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the initial spatial symmetry and establishing cell polarisation. The formation of protrusions
typically happens immediately after the polarisation of the cell. At the edge of the cell, just
under the plasma membrane, globular actin (g-actin), which is the monomeric form of actin,
polymerises at the barbed ends of filamentous actin (f-actin). Actin filaments together with
microtubules and intermediate filaments make up the cytoskeleton which gives the cell its
shape. The g-actin at the leading edge binds only to the growing filament when thermal
fluctuations (Brownian motion) cause a sufficiently large gap between the filament and
the plasma membrane. The monomer will then (with a certain probability) polymerise
onto the tip of the filament, effectively closing the gap. The polymerising filament, hence,
rectifies Brownian motion which gives rise to a unidirectional force, a mechanism termed
“Brownian ratchet” [57, 58]. If we assume for a moment the leading edge to be a stiff wall,
firmly anchored in the frame of reference, the polymerising filament’s force would lead
to a reaction force that pushes the filament away from the edge and towards the centre
of the cell. This flow of filaments is called actin retrograde flow and the mechanism is
termed treadmilling. This picture, however, leaves out the fact that the retrograde flow
experiences friction within the cytoplasm resulting in an anterograde force. This force
pushes the membrane forward thereby forming a protrusion. These protrusions are called
lamellipodia. They are thin sheets of cytoplasm that are 0.1 µm to 0.3 µm in thickness and
cover tens to hundreds of square micrometres [20, 59–63]. Behind its protruding contour
the lamellipodium is composed of a network of actin filaments with the protein complex
Arp2/3 mediating the branching of the filaments [64–72]. The actin filaments serve both
as the support structure that gives the cell its (dynamic) shape and as pathways for cargo
transport. Both functions are supported by motor proteins that can move along the actin
filaments using energy derived from Adenosine triphosphate (ATP) hydrolysis. These
proteins form the myosin superfamily [73]. All myosin motors, with the notable exception
of myosin VI, translocate towards the barbed end of actin filaments [74]. Of the 12 distinct
classes of human myosins, non-muscle myosin II is considered to be the most essential
motor protein for cell migration as it contributes to the contraction of the posterior of the
cell [20, 75, 76]. An increased expression of myosin light chain kinase (MLCK) which
activates myosin II has been linked to metastatic cancer cells [77]. Myosin II activity can
be selectively and specifically targeted by the small molecule inhibitor blebbistatin [78,
79].

Transmembrane receptors of the integrin family, located a few micrometres inwards
from the leading edge, are dynamically coupled to the cytoskeleton and form so called
focal adhesions. Integrins connect the cell to the substrate so that internal forces can be
transduced [19, 80–90]. The integrins’ coupling to the substrate results in an effective
drag of the actin network [91]. Without the coupling the actin network would not be able
to apply an anterograde force pushing the leading edge forward. Integrins engage with
extracellular matrix (ECM) macromolecules by binding to specific amino-acid sequences
such as the Arg-Gly-Asp (RGD) motif [92, 93]. The tripeptide sequence RGD can be
found on a variety of ECM molecules, most notably in the glycoprotein fibronectin (FN)
[94–97]. Fibronectin is one of the major components of the basement membrane on which
cells crawl e.g. during wound healing, next to collagen, laminin and fibrin. Integrins first
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Figure 2.2: The four key steps in cell migration: polarisation breaks the spatial symmetry; protrusion
formation leads to an elongation of the cell; adhesion formation stabilises the cytoskeleton and allows
a transduction of forces; contraction results in a translocation of the cell. (A) A visible hallmark of cell
polarisation is the spatial asymmetry of the cell caused by few focal adhesions at the rear side and a broad
front of focal adhesions at the cell’s front. This is accompanied by a rearward displacement of the nucleus
with respect to the cell’s geometrical centre. (B) At the leading edge of the cell, actin fibres polymerise
into a network that pushes the membrane forward thereby forming a protrusion called lamellipodium. (C)
Integrins form focal adhesions that stabilise the protrusion and transduce forces to the substrate. (D) Lastly,
the cell releases its adhesions at the rear and contracts resulting in a translocation. Based on the review by
Ridley et al. 2003 [20].

form short-lived adhesive structures called nascent adhesions upon engagement with FN.
These nascent adhesions promote Rac activity and activate other signalling pathways
that lead to myosin II recruitment. This in turn results in contractile forces that promote
further recruitment of proteins, including also even more myosin II, thereby developing the
adhesion site from a being a nascent adhesion to a stabilised focal adhesion [98–100].

Further back from the leading edge, i.e. closer to the centre of the cell, the pointed ends
of the actin filaments undergo depolymerisation, thereby replenishing the pool of actin
monomers [13, 67]. For a comprehensive review on actin as one of the major polymers
of the cytoskeleton see for example Pollard 2016 [101]. Actin binding compounds that
regulate the actin dynamics are commonly used as tools to investigate actin network
mechanics and cell migration. Researchers divide small actin binding molecules into two
groups: destabilisers and stabilisers [102]. Important compounds are the destabilisers cy-
tochalasin D and latrunculin A, as well as the stabiliser phalloidin [103–107]. Latrunculin A,
which was first found in the marine sponge latrunculia magnifica, specifically inhibits actin
polymerisation [103, 105]. Another commonly used tool is the specific ROCK-inhibitor
Y-27632 [108, 109]. Y-27632 can shed light onto the regulatory Rho/ROCK pathway which
is an essential control element in mesenchymal cell migration. Rho-associated protein
kinase (ROCK) increases myosin II activity and promotes cell adhesion [56]. Y-27632
diminishes these effects.

In contrast to the mesenchymal mode, cells that migrate in an amoeboid mode have
a more rounded morphology and can move in an adhesion-independent manner [50].
Amoeboid migration is often faster than mesenchymal migration (cell speed ~10 µm/min
for amoeboid vs ~1 µm/min for mesenchymal) and is used by cells like neutrophils (highly
mobile white blood cells that are part of the immune system) as well as some cancer
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cells [38, 88, 110]. Recent studies have also proposed the existence of another migration
mode, named “lobopodial” in which cells form bleb-like protrusions called lobopodia to
migrate using hydrostatic pressure [111]. For completeness one should also mention
that cells can not only migrate all by themselves but also collectively. The conceptional
relationship between single and collective cell migration is still a topic of active research
but falls outside the purview of this thesis [112].

The multistep process of mesenchymal cell migration has been observed across
a plethora of vastly different cell lines [32]. This observation leads to the question if
mesenchymal cell migration can be understood by a single biophysical model and, con-
sequently, if it is possible to quantitatively characterise and compare the migration of
different cell types.

2 Cell Migration in Confinement
General observations of mesenchymal cell migration include that the migration behaviour
strongly depends on various parameters of the extracellular environment such as pore
size of the ECM (in 3D), stiffness of the substrate (2D), chemical cues, and ligand density
[28, 113–117]. Cells are also capable of remodelling their environment by cleaving ECM
proteins or secreting and depositing proteins of their own such as FN into the ECM
[118]. Mesenchymal cells that are embedded in a matrix with a pore size significantly
smaller than their nuclear diameter rely strongly on matrix degradation [111, 119, 120].
Another observation is that cells not only move their position (locomotion) but also change
their shape (morphodynamics). Cells constantly develop new – sometimes multiple –
protrusions, change direction and speed [121–139].

To reduce the parameter space considerably and enable quantitative studies of cell
migration, cells are often studied in artificial confinement in vitro [140]. The simplest
confinement, from an experimental point of view, consists in placing cells on a protein
coated substrate. This way, cells crawl in a plane which makes image acquisition less
challenging compared to a 3D environment, and the assay already provides some control
over external parameters such as substrate stiffness and ligand density while also being
reproducible [60, 141]. To further reduce the phenomenon of cell migration to its underlying
mechanism, cells are confined to 1D micropatterns. This results in cells having two
protrusions at most, one at each end of the cell. The morphology and morphodynamic
of a cell can then be described by the position of the front (𝑥f (𝑡)), the position of the
nucleus (𝑥n(𝑡)), and the position of the back (𝑥b(𝑡)) of the cell along a single axis, see
Fig. 2.3 (A). This confinement allows the acquisition of large quantities of trajectories and
the identification of dynamic patterns in the data. The high-throughput of data makes it
not only possible to characterise and compare different cell lines but also provides the
foundation of the formulation of biophysical models [32, 140, 142, 143].

1D confinement is commonly achieved by adhesive patterns in the shape of lanes,
functionalised with ECM proteins such as fibronectin or collagen. The spaces between



10 2. Fundamental Concepts

these adhesive patterns are effectively blocked using cell-repellent block-copolymers like
poly(L-lysine) grafted poly(ethylene glycol) (PLL PEG) [33, 144–148]. A critical parameter
in this process is the width of the 1D microlanes, which is typically designed to match the
size of the cell nucleus [144, 146]. The primary method for data acquisition in cell migration
studies is live-cell time-lapse imaging. This technique enables detailed observation of cell
movement, morphology, and intracellular dynamics. Wide-field images superimposed
with fluorescence can visualise the geometry of the confinement and track the position of
the cell nucleus, see Fig. 2.3 (B). Wide-field images provide comprehensive information
about the overall shape of the cell, while fluorescent cytoskeleton markers reveal critical
intracellular structures and activities, such as the actin cortex or focal adhesions.

Micropatterns offer standardised and reproducible boundary conditions for cell motion,
facilitating the acquisition of large datasets of cell trajectories and enabling automated
image analysis. In scanning time-lapse mode, numerous adjacent fields of view are
imaged sequentially, allowing the acquisition of hundreds of migrating cells within a
single time-lapse interval. This method reduces the complexity of analysing cell migration
to tracking distinctive points over time, such as the position of the cell nucleus. For a
minimalistic description of cell shape dynamics, tracking the positions of the front and
back of the cell is sufficient to determine cell length 𝐿 over time. Long-term imaging using
incubation stages enables the tracking of migratory dynamics over extended periods such
as 48 h, see the kymograph in Fig. 2.3 (C). Kymographs, which are slices through a time
stack along the time-axis, visualise cell movement in a single image. Here, the vertical
axis represents the position along the micropattern while the horizontal axis represents
the progression of time from left to right. The standardised conditions and large statistical
datasets facilitate the comparison of migratory behaviours across different cell lines, as
first implemented on a large scale by Maiuri et al. in the “First World Cell Race” comprising
of 54 different cell types [32]. Notably, variations in mean cell speed, mean persistence
time, the fraction of time cells spend in a motile state, and the rate of transitions between
these states can be observed and compared across different cell lines.

In short, the use of 1D adhesive patterns functionalised with ECM proteins, combined
with advanced imaging techniques and standardised micropatterns, provides a robust
framework for studying and comparing the migratory behaviours of different cell lines.
This approach not only enhances our understanding of cell motility but also enables the
identification of fundamental principles governing cell movement as I will show shortly. First,
however, I will introduce the two main methods of microfabrication for 1D confinement.

3 Methods of Microfabrication for 1D Confinement
Micropatterns that confine cell migration require the fabrication of substrates with de-
fined areas functionalised by cell ahesive proteins (ligands). These adhesive areas are
surrounded by a passivation or non-fouling layer that inhibits cell attachement. Micropat-
terning techniques permit controlled experimental conditions, including ligand density,
substrate stiffness, and pattern geometry. Various geometries have been reported in the
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Figure 2.3: Single cell migration in one-dimensional (1D) confinement. 1D micropatterns facilitate the study
of mesenchymal cell migration by enabling the acquisition of large statistical datasets. (A) Schematic of
a cell on a lane functionalised with an extracellular matrix (ECM) protein. The cell’s migration is tracked
by the positions of its front (𝑥f), nucleus (𝑥n), and back (𝑥b) over time. (B) Micrograph of a human breast
cancer cell (MDA-MB-231) on a fibronectin (FN) lane. The cell contour is visible in phase contrast, with the
nucleus stained violet and the ECM protein green visualised using epi-fluorescence. Scale bar: 10 µm. (C)
Kymograph of a migrating cell, illustrating changes in velocity, direction, and cell length. Time progresses
from left to right. The vertical axis represents the position along the centre of the micropatterned lane.
Horizontal scale bar: 1 h, vertical scale bar: 100 µm. Adapted from Heyn et al. 2024 [3].

context of confined migration, including lanes of varying width and length, rings, and
zig-zag patterns. Microlanes have emerged as the standard geometry for 1D migratory
assays [32, 144, 149–154]. In recent years, two fabrication techniques have proven
particularly useful: microcontact printing and photopatterning [26, 155–157].

The principle idea behind the microcontact printing technique is to use a stamp in
the shape of the desired pattern that ‘prints’, i.e. transfers, proteins onto the substrate,
see Fig. 2.4 (A). These stamps have dimensions in the order of a few centimetres and
contain patterns of a spatial resolution of ca 1 micrometre. Stamps are typically made
from polymers such as the relatively cheap polydimethylsiloxane (PDMS). The PDMS is
poured in a negative mould that consists of a silicon (Si) wafer and a layer of photoresist.
The photoresist had previously been illuminated in such a way that it cured everywhere
but at the place of the pattern leaving a several micrometers deep negative mould. The
PDMS in the mould is then cured and cut into stamps. The stamps are subsequently
incubated with proteins. These stamps, with their protein-coated side, are then placed
onto the substrate to transfer the protein. Generally, the protein is simply physisorbed
onto the surface. The areas between the adhesive patterns can be blocked or passivated
by filling the negative spaces of the stamp with a blocking solution. Poly(L-lysine) grafted
poly(ethylene glycol) (PLL PEG) is the most commonly used non-fouling system to prevent
protein adsorption [158]. Microcontact printing is versatile, working with various ligands
and substrates, including gold, silver, metal-oxide surfaces, glass, and various plastics.
This versatility allows for the use of similar protocols with minimal adjustments to test the
effects of different substrates and substrate stiffnesses on cell migration. Once established,
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microcontact printing offers a reliable and economical method to produce micropatterns
[112, 155, 156, 159, 160]. However, the method is difficult to scale because the stamps’
size can’t easily reach dimensions larger then a couple of square centimetres before
bending too much and thereby distorting any micropatterns. Additionally, due to the
fact that stamps are placed manually the positioning and level placement of stamps is
reproducible only to a certain extent.

Photolithographic patterning techniques, or short photopatterning, involve the illumi-
nation of areas of the substrate that will turn into protein patterns, see Fig. 2.4 (B). The
first step of the process is typically the application of a blocking solution followed by a
layer of photo-activator to the substrate [160–165]. When the photoactive layer is exposed
to ultraviolet (UV) or near-UV light, the passivation layer is removed by a photoscission
mechanism, making the substrate locally receptive to ligands. The same effect can be
achieved without a photo-activator by using deep UV light [166]. By illuminating an area
in the shape of the desired pattern using either a mask or scanning with a UV beam,
the passivation layer is removed in a negative pattern. This pattern is then filled with the
desired ligands, which adhere to the substrate. Maskless projection lithography uses a
digital micromirror device (DMD) to spatially modulate the light. The surface of a DMD chip
is covered with an array of microscopic mirrors, with each mirror corresponding to a pixel
that can quickly be turned on or off. This way images of pattern motifs can be projected
on the substrate with a resolution of about one micrometre. Furthermore, DMDs make it
possible to tune the UV dose for each pixel of the image via exposure time, resulting in
different ligand densities. The ‘brighter’ a pixel, i.e. the longer it is illuminated, the more
passivation is removed due to photoscission, which in turn leads to more accessible
binding sites for ligands resulting in higher protein densities. While UV illumination via
masks enables the scaling of a highly reproducible pattern production, maskless methods
that scan the substrate with a beam excel in rapid prototyping. Pattern geometries can be
easily tested by changing the digital design without the need for a new photomask [167].
However, while both photopatterning techniques require specialist equipment, maskless
systems are much more expensive and more complex to operate.

Modulating ligand density, which is commonly used to tune cell adhesion strength,
is more straightforward with photopatterning than with microcontact printing because
the density depends on the illumination dose, which is easily controlled. However, pho-
topatterning is limited to thin, UV-transparent substrates, making it challenging to pattern
gel-coated substrates.

4 Basic Observations of Cells in 1D Confinement
One-dimensional (1D) assays have been instrumental in characterising various parame-
ters of cell motility, including velocity, traction force, and response to environmental cues
such as changes in ligand density [168]. Here, I provide an overview of key observations
on migrating cells.
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Figure 2.4: Microfabrication of 1D migration platforms. (A) In microcontact printing a PDMS stamp in the
shape of the desired pattern ‘prints’ proteins of the extracellular matrix (ECM) onto the substrate. In a first
step, the protein solution is applied to the stamp to cover the geometry of the pattern. The stamp then
transfers the proteins to the negatively charged substrate. Negative space is backfilled with the non-fouling
agent poly(L-lysine) grafted poly(ethylene glycol) (PLL PEG). (B) Photopatterning treats the substrate
with (UV-)light to render it locally susceptible to ECM proteins. First, the substrate is passivated with a
non-fouling coating. Second, a photoactive layer is added. Third, the desired pattern is either illuminated
through a photomask or by scanning the substrate using spatially modulated UV-light. The photoactive
layer removes the surface passivation upon treatment by UV-illumination. Now, the protein is added to the
substrate and adheres to the treated areas. Adapted from Heyn et al. 2024 [3].
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Cell behaviour is significantly influenced by the dimensionality of the substrate [169].
On ECM fibres or thin fibronectin lanes, cells adopt a uniaxial shape in the direction of
confinement [145, 164, 170]. Cells move faster on 3D fibres compared to on 2D surfaces,
and even faster on 1.5 µm wide fibronectin lanes. Fibroblasts show a biphasic velocity
response to lane width, with maximal velocity at 2.5 µm and slower velocities on both
thinner and wider lanes [164]. Different cell types, like human umbilical vein endothelial
cells (HUVECs) and fish epithelial keratocytes, exhibit increased velocity with wider lanes
[145, 153].

Another basic observation is that cells respond to environmental cues. One such
response is the preference of cells for areas that provide a higher adhesion strength. This
preference manifests itself in directed migration towards regions of high fibronectin density
[144, 171–173]. Fibroblasts prefer 2D regions to 1D lanes due to their ability to exert larger
traction forces [174]. This behaviour indicates a fundamental preference for tight adhesion,
that affects the cell state via integrin signalling and the clutch mechanism between f-actin
retrograde flow and stationary structures, see next Section. However, cells universally
display a velocity peak at intermediate adhesion strength. The adhesion-velocity relation
is hence biphasic. Initially, as adhesion increases, the velocity increases due to improved
transmission of force to the substrate. But for movement, cells must detach the rear
membrane from adhesion bonds, creating resistance and reducing velocity as adhesion
intensifies [80, 81, 83, 84, 173, 175–177]. Cells can also alter their environment by
secreting ECM proteins like fibronectin. This can create biochemical footprints that bias
migration over time, as observed by d’Alessandro et al. for MDCK epithelial cells [171].
Memory effects are more pronounced in strongly secreting cell lines and low initial protein
concentrations on 1D lanes. The effect has not been reported for the MCF-10A and MDA-
MB-231 cells studied in this thesis. Cells exhibit quasi-periodic motion due to polarisation
changes when encountering non-adhesive ends on short micropatterned lanes [33].

Doyle et al. observed that adhesions are mainly regulated at the edges of the cell,
which justifies why most modelling approaches focus on force generation at the protrusion
rather than at the centre of the cell [164]. Cells exert similar magnitudes of traction forces
at both front and rear, significantly exceeding the force required for movement [178–
180]. Changes in traction forces at one end do not correlate with force changes at the
other, suggesting that front contraction may not drive rear retraction. Protrusions at both
sides of the cell are common, with rearward protrusions increasing the propensity for
direction reversal. Front-rear interactions involve elastic spring forces, sufficient to affect
the probabilities of protrusion collapse.

Maiuri et al. report a universal coupling between cell speed and cell persistence
(UCSP) [32, 142]. Their analysis of 54 different cell types showed that, in both simple and
complex migration scenarios, faster cells tended to follow straighter paths, that is, to move
more persistently. Maiuri et al. suggest that the persistence time depends exponentially
on cell speed, see Fig. 2.5 (B). This observation has since been confirmed by Leineweber
and Fraley, who report comparable results for MDA-MB-231 cells [181].

An additional noteworthy observation is that both the shape and motility of cells
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exhibit significant changeability. Cells intermittently stop and resume movement, form new
protrusions, and change direction. This motility, in combination with the dynamic nature of
front and back protrusions, defines the motile states of cells [121–127, 130, 133, 137, 138].
Observations have revealed stationary and oscillatory dynamic regimes involving one
or more protrusions, sparking considerable interest in the concept of multistability within
cell motility [63, 143, 182–184]. The multistability of these dynamic states, characterised
by state transition dynamics, the biphasic adhesion-velocity relationship, and the UCSP,
seems to accurately represent motile behaviour across a wide variety of cell types [81,
142, 173, 175].

5 Biophysical Modelling
The field of cell mechanics and motility modelling is very active and diverse. However,
there are certain recurring aspects of modelling that I will present here. Models of cell
migration can broadly be divided into two categories: statistical models, that focus on the
random walk-like nature of cell trajectories, and mechanistic models that concentrate on
(mechanical, chemical) intracellular mechanisms. The mathematical model of each study
depends on the cell behaviours, properties, and biological hypotheses on motility and
morphodynamics that are being examined. Detailed reviews of modelling approaches
that go beyond the scope of this thesis have been published in [23, 185–187].

In statistical models, cells are viewed as Brownian particles with an emphasis on the
mean squared displacement (MSD) 𝐶MSD defined as:

𝐶MSD(𝑡) = ⟨(𝑥(0) − 𝑥(𝑡))2⟩. (2.1)

For a passive Brownian particle, the MSD is proportional to the time 𝑡 as

𝐶MSD(𝑡) = 2𝑛𝐷𝑡 (2.2)

in 𝑛 dimensions and with the diffusion constant 𝐷. The diffusion constant 𝐷 can theoreti-
cally be determined by the Einstein relation between the friction (𝛾) of a moving object
and its environment at temperature 𝑇 . If the particle is a perfect sphere of radius 𝑟, the
viscous friction can be calculated as 𝛾 = 6𝜋𝜂𝑟 with the viscosity of the solution 𝜂 and the
Boltzmann constant 𝑘B

𝐷 =
𝑘B𝑇

𝛾
=
𝑘B𝑇

6𝜋𝜂𝑟
. (2.3)

However, cells are neither perfect spheres nor do they move passively (in the context
of mesenchymal migration). They are irregular shaped, active objects that operate far
from equilibrium. Observations have shown that their MSD resembles that of a persistent
random walk (PRW), see Fig. 2.5 (A) [187, 188]. The MSD of the PRW is

𝐶MSD(𝑡) = 2𝑉𝜏p(𝑡 − 𝜏p(1 − 𝑒−𝑡/𝜏p)) (2.4)
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with the mean squared velocity𝑉 and the persistence time 𝜏p. Mitterwallner et al. evaluated
the validity of PRW models in cell motion by employing a Langevin equation with a general
memory kernel for velocity dynamics [189]. They observed slight negative friction on
short time scales, but otherwise, the cell motion adhered to a persistent random walk.
Persistence times, obtained from trajectories, vary by over two orders of magnitude,
showing significant cell behavioural diversity. Chapter 4 will expand on these findings.

D’Alessandro et al. modified the PRW model to show that cells prefer staying on a
fibronectin layer they deposit during movement [171]. This is modelled by increasing
the likelihood of cells re-entering areas they previously visited and where fibronectin
was deposited, utilising a persistent self-attracting random walk (PSATW) approach. At
a domain’s edge, cells are more prone to turn back rather than crossing over, causing
a back-and-forth motion along the domain. Experimentally, the domain expands with
each boundary visit, whereas in PSATW simulations, domain expansion occurs when
cells cross boundaries. This model successfully replicates the observed experimental
trajectories.

Mechanistic models focus on intracellular mechanisms to explain motile behaviour and
may incorporate chemical reaction networks, Fig. 2.5 (C), and / or mechanical elements,
Fig. 2.5 (D). Because actin polymerisation is an essential part of mesenchymal cell
migration, f-actin network dynamics is also an essential part of many models. The poly-
merisation of actin fibres at the protrusion edge is modelled as a ratchet that pushes the
cell membrane forward [57, 58, 190]. Bolado-Carrancio et al. investigated the dynamics of
polymerisation by studying a signalling network comprising the small GTPases Rac1 and
RhoA, the kinases ROCK and PAK, and Diaphanous related formin-1 (DIA) [137]. The
network shows oscillations in GTPase concentrations that influence polymerisation and
contraction activation. Complex feedback creates various state cycles, with a RhoA/Rac1
cycle leading at the cell front and a RhoA/ROCK cycle at the back, Fig. 2.5 (C). Maiuri et
al. use actin network dynamics to explain the universal coupling between cell speed and
cell persistence (UCSP), which suggests an exponential dependence of persistence time
on cell velocity, Fig. 2.5 (B) [142]. Their model is based on two essential assumptions.
The first posits that the polymerisation rate, which dictates retrograde flow velocity within
the cell, is regulated by a polymerisation inhibitor binding to f-actin. This inhibitor, carried
away from the leading edge by retrograde flow, halts edge movement when a critical
threshold is reached due to random fluctuations. The statistics of this stochastic event
manifest the UCSP. However, the f-actin-binding inhibitor is not specified. Maiuri et al.
derive an exponential relationship between persistence time and retrograde flow velocity
based on this inhibitor’s advection. The second assumption is that cell velocity 𝑣 is di-
rectly proportional to retrograde flow velocity 𝑣𝑟 , expressed as 𝑣 = 𝛼𝑣𝑟 , with a constant 𝛼.
Consequently, persistence time also exhibits an exponential dependence on cell velocity.

Another important component of many models is the force balance at the leading edge
of the cell. Here, friction between the retrogradely flowing f-actin network and stationary
structures in the lab frame of reference are essential, Fig. 2.5 (D). This process is often
modelled as a non-linear clutch controlled by integrin signalling [191]. The clutch mecha-
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Figure 2.5: Mathematical modelling of mesenchymal cell migration. (A) Models considering cells as active
Brownian particles with random motion analyze the mean squared displacement (MSD) from trajectories,
such as those shown from MDA-MB-231 human breast cancer cells, with N = 15. The blue line indicates
the population’s average MSD, while the dashed line shows a fitted persistent random walk (PRW) with a
persistence time 𝜏p = 5 min. (B) Universal coupling between cell speed and cell persistence (UCSP). Each
dot marks the average persistence time and average instantaneous speed of a single cell line. Adapted
from Maiuri et al. 2015 [142]. (C) Mathematical models based on signalling networks focus on chemical
reaction descriptions, transport, and diffusion of reactants, and consider concentration profiles of pathway
components. Illustrated is a prototypic system of bound/unbound RhoGTPases. (D) Mechanical models,
such as the one introduced in Chapter 5, describe cellular dynamics with forces (𝐹f,b), membrane tension
(elastic springs), f-actin network flow (𝑣r,f,b), drag (𝜁f,c,b) and friction (𝜅f,b that affect protrusions and the cell
body. Figure adapted from Heyn et al. 2024 [3].

nism can explain the biphasic adhesion-velocity relation and oscillations of protrusion
length [138, 183, 184, 192, 193]. Sens presents a model that connects two protrusions
containing a clutch by an elastic spring that represents the tension of the membrane [184].
The model of Ron et al., built on the model of Maiuri et al., posits a polymerisation inhibitor
dispersing through the cytosol and interacting with f-actin to regulate polymerisation in
two protrusions [183]. Both models report the coexistence of multiple motile states for
the same respective parameter set. Our observation of spontaneous state transitions will
also motivate us to incorporate a non-linear clutch mechanism in our biophysical model,
see Chapter 5.
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6 Simulation-Based Inference
Assuming that we have a mechanistic model that can simulate the trajectory of a cell,
expressed as vector x, by sampling from an input vector of parameters 𝜃, can we inverse
the approach and infer the parameter values 𝜃 that are the most plausible given an
observed trajectory x? This question is at the centre of the field of scientific inference.
Inferring 𝜃 from experimental data is often necessary to validate theoretical models or
compare model-based characterisations of cell motility. The solution to the inverse problem
depends a lot on the context and the design of the mechanistic model. Simulation-based
inference (SBI) is a method that can be useful if the underlying system is complex and
traditional inference methods are not applicable or computationally intractable. In the
following I will give an introduction to SBI, explaining how it works, when it is applicable
and what it’s advantages are.

Statistical analysis provides a powerful toolbox for scientific investigation and statistical
inference is one of its most important tools. The goal of statistical inference is “[...] to
infer properties of an underlying distribution of probability” [194]. The inference results
should be appropriate for an unprejudiced observer, i.e. they should be unbiased and
comprehensible. There are two main approaches to statistical inference, namely the
frequentist and the Bayesian approach that differ in their interpretation of uncertainty
[195]. The frequentist perspective primarily seeks to determine the probability of observing
a given data set under the assumption of the null hypothesis. In contrast, the Bayesian
methodology assesses the probability of a hypothesis in light of a specific data set [195].
For reasons of brevity I will focus here on Bayesian inference.

A function 𝑝(·) that takes an arbitrary vector x and outputs the density at x is called
a probability-density function or probability-density distribution. Density functions must
integrate to 1: ∫

𝑝(x)dx = 1 (2.5)

In the context of this thesis, the vector x usually describes an experimentally observable
variable or data. These data can be generated by a statistical model, a so-called simulator,
that takes in parameters 𝜃 and puts out a data vector x from the conditional density 𝑝(x | 𝜃):
x ∼ 𝑝(x | 𝜃). Examples could be an equation of motion that takes in parameters such as
the initial position 𝑥0 and velocity 𝑣0 of a cell to compute the position of the cell 𝑥(𝑡) at time 𝑡.
The statistical model might also incorporate additional variables x̃ that are unmeasured but
potentially observable and are referred to as missing or latent data, along with relatively
fixed components of the data-generating process serving as covariates [196]. In the
example of the equation of motion for a cell, this could be drag 𝐹drag(𝑣) that depends on
the velocity 𝑣 of the cell. The model calculates latent states x̃𝑖 ∼ 𝑝𝑖 (x̃𝑖 | 𝜃) and, using
the latent states, then the final data x ∼ 𝑝(x | 𝜃, x̃). This means that the joint distribution
(x, x̃) depends on the parameters 𝜃. This dependence can be expressed by factoring the
joint distribution (x, x̃, 𝜃) into a prior distribution 𝑝(𝜃) and the complete-data likelihood
𝑝(x, x̃ | 𝜃) [196]. The complete-data likelihood contains information about all latent states,
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so that we can write
𝑝(x | 𝜃) =

∫
𝑝(x, x̃ | 𝜃)dx̃ (2.6)

using the definition of the density function, see Eq. 2.5. The density function 𝑝(x | 𝜃) is
commonly referred to as likelihood (without “complete-data”). In real-world scenarios, the
likelihood is often intractable, e.g. because one does not have access to x̃ and therefore
can’t integrate over all dx̃. This poses a challenge because the likelihood is necessary to
apply Bayes’ Theorem to compute the posterior distribution 𝑝(𝜃 | 𝑥):

𝑝(x | 𝜃)𝑝(𝜃) = 𝑝(x, 𝜃) = 𝑝(𝜃 | x)𝑝(x) (2.7)

which is commonly written as

𝑝(𝜃 | x) = 𝑝(x | 𝜃)𝑝(𝜃)
𝑝(x) . (2.8)

The Bayes’ Theorem updates what we know about the probability of 𝜃 from the prior
distribution 𝑝(𝜃) (without knowledge of the data) by incorporating knowledge about the
likelihood of observing x given 𝜃, 𝑝(x | 𝜃), to arrive at the posterior distribution 𝑝(𝜃 | x)
(includes knowledge of the data). For a comprehensive textbook on Bayesian Inference
see for example G. E. P. Box and G. C. Tiao [197] or A. Stuart, K. Ord [198].

As mentioned above, estimating the posterior distribution 𝑝(𝜃 | x) without access to
the likelihood function 𝑝(x | 𝜃) is a common challenge in stochastic models that try to
simulate real-life processes. Fortunately, a number of inference techniques have emerged
that are likelihood-free or simulation-based [199–201].

𝜃 → simulator → x
x→ simulation-based inference → 𝜃

Posterior density estimation approaches frame the likelihood-free inference problem
as a machine learning task that can be solved by training a neural network on data
generated by the simulator. The idea is to map x onto an estimate of 𝑝(𝜃 | x). To this
end, G. Papamakarios and I. Murray have developed a parametric approximation to
the exact posterior called sequential neural posterior estimation (SNPE) [202]. The
posterior distribution is derived from a family of density functions denoted by 𝑞Ψ (𝜃), with
Ψ representing their parameters. This distributional mapping from x to Ψ is learned by
adjusting the weights Φ of a neural network 𝐹 such that 𝑞𝐹 (𝑥,Φ) (𝜃) ≈ 𝑝(𝜃 |x). The network
is trained by simulating datasets {(𝜃 𝑗 , x 𝑗 )} using parameters drawn from a proposed prior
𝜃 ∼ 𝑝(𝜃) and minimising the loss function

L(Φ) = −Σ𝑁𝑗=1 log 𝑞𝐹 (x 𝑗 ,Φ) (𝜃 𝑗 )

with respect to the network weights Φ [202]. The process will result in learning the mapping
from x to the posterior 𝑝(𝜃 | x) as 𝑁 → ∞. Post-training, the target posterior 𝑝(𝜃 | x𝑜)
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is estimated for the observed data x𝑜 with 𝑞𝐹 (x𝑜,Φ). To minimise computational cost, the
algorithm should run only simulations that are informative about 𝜃 | x𝑜. This is achieved
by sampling from a proposal prior 𝑝(𝜃) that is constructed to yield values in the vicinity of
x𝑜 [202, 203]. However, this leads no longer to the real posterior 𝑝(𝜃 | x) but the proposal
posterior 𝑝(𝜃 | x):

𝑝(𝜃 | x) = 𝑝(𝜃 | x) 𝑝(𝜃)𝑝(x)
𝑝(𝜃)𝑝(x) (2.9)

with 𝑝(x) =
∫
𝜃
𝑝(𝜃)𝑝(x | 𝜃) [204]. Due to certain limitations, the original algorithm by

G. Papamakarios and I. Murray had to be adjusted to be fully generalised and applicable
even to multimodal inference problems while still being fast, accurate and requiring little
data [203, 204]. The latest version of the algorithm, developed by D. Greenberg et al. [204]
and called SNPE-C, defines the loss function in the following way. A family of proposal
density functions is constructed:

𝑞x,Φ(𝜃) = 𝑞𝐹 (x,Φ) (𝜃)
𝑝(𝜃)
𝑝(𝜃)

1
𝑍 (x,Φ) (2.10)

with the normalisation constant 𝑍 (x,Φ). The new loss function that is to be minimised
therefore becomes:

L̃(Φ) = −Σ𝑁𝑗=1 log 𝑞x,Φ(𝜃 𝑗 ). (2.11)

Algorithm 1 SNPE-C (see Greenberg et al. for more details [204])
Require: simulator with density 𝑝(x | 𝜃), data x𝑜, prior 𝑝(𝜃), density family 𝑞Ψ, neural

network 𝐹 (x,Φ), 𝑁 simulations per round, 𝑅 rounds
𝑝1(𝜃) ← 𝑝(𝜃)
for 𝑟 = 1..𝑅 do

for 𝑗 = 1..𝑁 do
sample 𝜃𝑟 , 𝑗 ∼ 𝑝𝑟 (𝜃)
simulate x𝑟 , 𝑗 ∼ 𝑝(x | 𝜃𝑟 , 𝑗 )

end for
Φ← arg minΦ Σ𝑟

𝑖=1Σ
𝑁
𝑗=1 − log 𝑞x𝑖, 𝑗 ,Φ(𝜃𝑖, 𝑗 ) ⊲ Eqs. 2.10, 2.11

𝑝𝑟+1(𝜃) ← 𝑞𝐹 (x𝑜,Φ) (𝜃)
end for
return 𝑞𝐹 (x𝑜,Φ) (𝜃)

The architecture chosen for the implementation of this density estimation approach
depends on the use case, but Mixture-Density Network (MDN) [205] and Masked Autore-
gressive Flow (MAF) [206] have been reported as successful approaches in the relevant
literature [207–211]. To mitigate overfitting issues arising from the limited training data
available in each round, the MDN can employ variational dropout for training [212]. One
significant benefit of SBI is that the inference utilises the same trained network for all ex-
perimentally obtained data points, unlike traditional numerical optimisation which requires
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a separate inference algorithm for each trajectory. Although network training involves
substantial computational resources, the inference process itself is not resource-intensive.

SNPE-C can hence be employed to estimate the parameter distribution of observed
data according to a mechanistic model. For applications in the domain of biophysics,
see for example [209, 213]. Fig. 2.6 represents the workflow of SBI for a biophysical
model of single cell migration. The model is used as a simulator that generates 𝑁 pairs
of parameters and trajectories {(𝜃 𝑗 , x(𝑡) 𝑗 )} by sampling from a prior 𝑝(𝜃). In the absence
of more detailed information, the initial prior may be uniform within a range of possible
parameter values and equal to zero outside this range. The proposal prior will be adjusted
at the end of each training round 𝑟 to focus on values of 𝜃 that are the most informative
for the posterior, see Alg. 1. The simulated trajectories are fed into a deep neural network
that may use a convolutional neural network (CNN) to obtain a latent feature vector, also
known as embedding. The extracted features are then fed into the neural density estimator
(NDE) that is trained to optimise the loss function as defined in Eq. 2.11 by comparing
the estimated posterior 𝜃 to the one that was used for simulation 𝜃true. This process
is repeated until the NDE estimates the posterior distribution to the desired accuracy.
Once the NDE is trained and well calibrated, the simulated trajectories can be swapped
for experimental data. The CNN extracts the summary features of the experimental
trajectories and the NDE estimates the posterior density distribution 𝑝(x𝑜 | 𝜃). Hence,
SBI can estimate the optimal set of model parameters that characterises an experimental
trajectory, concurrently evaluating the associated uncertainty.
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Figure 2.6: Simulation-based inference (SBI) of posterior distributions. A diagrammatic overview of the
SBI process shows a neural network initially trained on simulated data, which is later used for analysing
experimental data, see Alg. 1. (1) Parameters 𝜃 are randomly selected from the prior distribution 𝑝(𝜃) to
generate simulated trajectories x(𝑡). (2) These trajectories are converted to a low-dimensional feature
space using a convolutional neural network (CNN). (3) This condensed trajectory is then processed by
the neural density estimator (NDE), which estimates the posterior density. (4) The log-likelihood of the
NDE at the actual parameter point (X) serves as the loss function to refine the NDE, see Eq. 2.11. The
maximum likelihood of the trained NDE aligns with the true parameter point indicated by ‘X’. Next, the
trained SBI algorithm is applied to estimate parameters from empirical data. (5) Experimental trajectories
are reduced to a low-dimensional feature space by the same CNN as utilised in step (2), then input into
the previously trained NDE. (6) The derived posterior highlights a cell-specific parameter estimation that
elucidates interpretable cell characteristics as per the biophysical model. Adapted from Heyn et al. 2024 [4].



Development of a Setup for Standard-
ised High-Throughput Experiments

A quantitative understanding of mesenchymal cell migration and its underlying mecha-
nisms requires a large ensemble of single-cell trajectories. Intrinsic noise is a fundamental
aspect of many biological processes, manifesting itself as cell-to-cell variability in the
context of cell migration [214–216]. A considerable diversity of migratory behaviours is
observable within cell populations. Consequently, many cell trajectories are needed to
identify patterns that are universal across mesenchymal cells or characteristic for certain
cell lines. DiMilla et al., who were among the first to experimentally quantify the biphasic
adhesion-velocity relation in 1993, tracked several hundred cells for their study [173]. The
First World Cell Race, which led to the discovery of the universal coupling between cell
speed and cell persistence (UCSP), analysed the trajectories of more than 7,000 cells on
1D lanes in 2012 [32, 142]. For our quantitative analysis of motile states in MDA-MB-231
cells, we used more than 20,000 cell trajectories [2]. This was necessary because of the
rarity of certain state transitions, as I will discuss in Chapter 5.

Temporal and cell-to-cell variability are fundamentally attributed to intrinsic cellular
properties that fluctuate over time or vary among different cells, such as alterations in
protein concentrations or localisation. However, migrating cells additionally experience
variability in their external environment, including heterogeneity in the extracellular ma-
trix (ECM). This problem can be addressed by controlling the environment of cells via
microfabrication. Microfabricated migration platforms, such as 1D lanes, provide control
over the homogeneity of ligands, the stiffness of the substrate and the concentration of
supplements in cell culture media. In this way, standardised and reproducible conditions
can be ensured.

Once cells are seeded and begin migrating on the microfabricated platform, their
movement has to be recorded for later analysis. Data acquisition should align with the
scientific question being addressed. The method of acquisition should be optimized to
capture the greatest number of individual cell trajectories, all while meeting the spatio-
temporal demands of the research question, and considering additional constraints like
phototoxicity and photobleaching [217]. Modern scanning time-lapse microscopes can be
set up to meet these requirements.

After the acquisition of the time-lapse videos of migrating cells, the data need to be



24 3. Development of a Setup for Standardised High-Throughput Experiments

processed to retrieve the information that will answer the scientific question. Typically, only
the coordinates of the front, nucleus and back of the cell over time 𝑥 𝑓 ,𝑛,𝑏 (𝑡) are of interest.
Hence, the cells need to be segmented, tracked and the trajectories filtered to include
only valid single-cell data. Ideally, this process is fully automated and scalable to achieve
the required throughput. Due to the large amount of data involved in cell migration studies,
an appropriate storage solution and data management system should be in place, which
allows to easily retrieve, analyse and compare numerous measurements.

This chapter covers the setup which I developed to address all the requirements for
standardised high-throughput experiments for the study of single-cell migration. In the
final setup, a single experiment, conducted over the course of 48 h, yielded approximately
20 000 h of filtered trajectories from 1 000 cells. With the microfabrication of the migration
platform before the experiment requiring one day of work and the data analysis after the
experiment requiring another two days, i.e. a week in total per experiment, the setup
made it possible to acquire enough data to answer various questions of cell migration
within a few weeks. Additionally, the majority of steps in the acquisition process were
designed for parallelisation, allowing multiple experiments to be run at the same time,
further reducing the time to collect sufficient amount of data.

1 Microfabrication of 1D Migration Platforms
Initially, I produced cell migration assays using a microcontact printing protocol. Micro-
contact printing involves the use of a polymer stamp shaped like the target pattern to
transfer proteins onto a substrate, see Fundamental Concepts. The coating protein in
this thesis was fluorescently labelled FN if not stated otherwise. Fluorescence labelling
made it possible to visualise the pattern under a fluorescent microscope and determine
the density of fibronectin by fluorescent intensity. The respective protocols can be found
in Materials and Methods. The microcontact printing protocol was quick, inexpensive
and already well established in our laboratory when I started my work. Data acquired
for Chapters 4 and 5 are from experiments using microcontact printing. However, the
technique had multiple drawbacks that ultimately led me to switch to photopatterning.
Control over FN density is limited with microcontact printing. The density is typically set
by the FN concentration of the protein solution that is used as ink. However, the density
also depends on various other factors, such as the duration of the transfer, the surface
treatment of both the stamp and the substrate and the pressure with which the stamp
is applied to the surface. As a consequence, the resulting FN density varies with each
batch of fabrication even when the same FN concentration is used for the protein solution.
Furthermore, the physisorption of the protein to the substrate via van der Waals forces
may vary locally significantly, leading to inhomogeneous patterns. These inhomogeneities
are problematic since they constitute perturbations to cells that migrate along an FN lane
[1]. Additionally, the technique does not easily allow to print more than one FN density.
There are versions of the protocol for fabricating patterns of two different FN densities,
see Materials and Methods, but more than two densities, or even a density gradient, are
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Figure 3.1: Photopatterning results with the Primo device. (A) Digital motif of a test pattern designed to
test the spatial resolution in vertical and horizontal patterning direction of the Primo device. Annotations in
yellow, which are not part of the motif, indicate the width of the white lanes in pixels. (B) Corresponding
fluorescent FN pattern to the motif in (A). The motif was projected onto the photoactive layer on the imaging
dish. Areas that were illuminated, i.e. white areas of the motif, were susceptible to the labelled FN. The
spatial resolution allowed to resolve lanes with a width of a few micrometers (≈ 5 µm). Structures smaller
than that, e.g. the lanes with a width of 4 px, appeared only as a blur. (C) Photopatterning with the Primo
device produced homogeneous straight FN lanes that could easily be adjusted to all kinds of needs. In this
case, a lane numbering was added to facilitate recovering a position on the lane. A typical use case for
this scenario would be retrieving fixed cells after a time-lapse measurement. Scale bars in (B,C) represent
100 µm.
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Figure 3.2: Comparison of microfabrication protocols. (A) Fluorescence images showcasing fibronectin
lanes created via microcontact printing (left) and Primo photopatterning (right). Above these images are
intensity profiles measured along 40 lines in the x direction, while to the side, there are 40 intensity profiles
measured in the y axis. Adapted from M. Atienza Juanatey 2023 [218]. (B) Median intensity of microcontact
printed vs photopatterned pattern. The fibronectin density, as measured as fluorescent intensity, can be
matched between the two protocols which is important if photopatterning is to replace the microcontact
printing protocol. (C) Standard deviation of the fluorescence signal. Within a single fibronectin (FN) lane
the standard deviation is much lower for patterns created with photopatterning. Photopatterned lanes are
more homogeneous than their microcontact printed counterparts.
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practically not feasible. Also, for every new pattern design, a new stamp mould needs to
be manufactured. This makes prototyping time consuming and expensive. And on top
of all that, the fabrication of migration assays is not scalable using microcontact printing
because of the manual placement of the stamps.

In recent years, photopatterning has emerged as an increasingly popular alternative to
microcontact printing techniques, see Fundamental Concepts. I adapted a photopatterning
protocol initially developed by Strale et al. and Studer [167, 219], where a polymer brush
functions as an anti-fouling layer that is ablated using benzophenone and UV illumination.
Illuminating the polymer brush in the presence of benzophenone makes it adhesive,
facilitating the subsequent adhesion of FN. As illumination device, I used a Primo 2
module (Alvéole) mounted on an Eclipse Ti microscope (Nikon, Tokyo, Japan) which
allowed a precise spatial modulation of the UV-illumination. The protocol can be found in
Materials and Methods.

The Primo module is a maskless illumination device that allows one to pattern grey
scale motifs that can be designed with very little constraint, see Fig. 3.1. Each pixel in
the motif is assigned to a mirror in the digital micromirror device (DMD) of the Primo.
The translation of the pixel size from the motif to the protein pattern depends on the
magnification of the objective used to illuminate the photoactive layer on the imaging dish.
For a 4x magnification, the conversion is approximately 1.3 µm/px, while it is 0.5 µm/px
for 10x and 0.3 µm/px for 20x magnification. Panel (B) in Fig. 3.1 shows the result of
transferring the motif in (A) with a 4x magnification, which is sufficient to spatially resolve
up to a few micrometres. The 1D lanes that I produced for this thesis typically had a width
of 15 µm. Therefore, the spatial resolution achieved with a 4x magnification objective was
sufficient and my preferred setting. Although larger magnifications might have provided
even greater resolutions, they would have also increased production times due to the
smaller illuminated motif area, requiring the Primo device to take additional steps to scan
the imaging dish. An advantage of the photopatterning protocol compared to microcontact
printing is its flexibility. The design can be easily modified, adapted, and refined, allowing
for the optimisation of factors such as the ideal spacing between FN lanes, which varies
by cell type. It also enables the addition of markers to identify the location of specific cells
after completing a time-lapse measurement, as illustrated in Fig. 3.1 (C).

A direct comparison of photopatterned and microcontact printed patterns reveals that
photopatterning produces significantly more homogeneous lanes, see Fig. 3.2. Although
both methods yield lanes with a sharp side edge at the transition from FN to the antifouling
layer, the intensity of the fluorescence signal and therefore the FN density varies signifi-
cantly along the printed lanes. Hence, when it comes to the fabrication of homogeneous
patterns, the Primo photopatterning technique is clearly preferable to microcontact printing.
Switching between the two techniques was facilitated by the fact, that the photopatterning
protocol was easily adjusted to produce patterns with the same FN density (measured as
fluorescent intensity) as the microcontact printing protocol, see Fig. 3.2 (B).

However, the photopatterning protocol also had some disadvantages. The protocol
consists of a number of steps that are more sensitive and error prone than the micro-
contact printing procedure. The antifouling layer could crystallise, negatively affecting
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the micropattern. The photoactive gel needed to be evenly spread on the imaging dish;
otherwise, the pattern would also be uneven. The optics of the Primo module had to be
well aligned and focused to produce crisp patterns. If the motif was bigger than a single
DMD field, the motif needed to be “stitched”, that is, two DMD’s would be placed right next
to each other to produce a continuous pattern. This worked only after careful alignment
of the beam, which made the production of long FN lanes challenging. For examples of
possible pitfalls of the Primo photopatterning protocol, see Figs. B.1, B.2, B.3. Several
parameters, such as the illumination dose, the concentration of the PEG in the antifouling
coating, the concentration of FN in the protein coating and incubation times, had to be
adjusted before patterning was possible. Additionally, the illumination process can take
relatively long (>1 h) if a large area is to be patterned. Depending on the magnification
of the objective used for the illumination, the dimension of the area that the DMD can
illuminate at once is small (approximately 620 µm x 360 µm for a magnification of 20x)
compared to the area of the imaging dish (radius 21 000 µm), requiring the Primo device
to sequentially scan the dish.

Despite the limitations mentioned above, the Primo photopatterning technique led
to patterns of superior quality compared with those produced by microcontact printing
and offered almost endless options of pattern design to address various aspects of cell
migration. These were the main reasons why I chose photopatterning for experiments in
Chapter 6.

2 Time-lapse Optimisation
Data acquisition was achieved by scanning time-lapse light microscopy, employing both
phase contrast and fluorescent imaging.

Phase contrast microscopy is a technique that enhances the visibility of transparent
specimens by transforming variations in their refractive indices into contrast. This process
involves specialized condenser and objective lenses to impart phase shifts to light as it
moves through different areas of the specimen. While light passing straight through the
sample remains unchanged, light that is diffracted and phase-altered by the sample’s
structures experiences phase changes. To boost image contrast, constructive interfer-
ence is achieved between the diffracted and unchanged light. This is done by sending
background light through a phase ring, which alters the light by a quarter of a wavelength.
When the light is focused on the detector, this phase shift leads to constructive interfer-
ence between the background light and the scattered light emanating from sample-filled
regions in the field of view, thereby increasing brightness in these regions relative to those
without the sample [220–222].

Fluorescence microscopy is a standard method employed in cell biology that uses
fluorescent dyes or tagged molecules to visualise specific structures. This process begins
with excitation light from a white-light source passing through an excitation filter, which
allows only light of a particular wavelength capable of exciting the fluorophore to pass.
Alternatively, the light source can already be monochromatic, which is the case for most



2 Time-lapse Optimisation 29

LED’s and lasers, which makes the use of an excitation filter superfluous. The excitation
light is then directed by a dichroic mirror and concentrated through the objective lens onto
the specimen. When excited, the fluorescent molecules in the sample are temporarily
elevated to a higher energy level. As they return to their normal state, they emit a photon
of a longer wavelength. Some of this emitted light is captured by the objective and travels
through the dichroic mirror and the emission filter, which block the excitation light while
allowing the emitted light to reach the eyepiece or camera for viewing or capturing images.
This technique, which uses the same objective lens for both excitation and emitted light
paths, is known as epifluorescence [223–225]. Moreover, advancements in synthetic
molecules and the application of genetically encoded fluorescent proteins, such as those
labelled with green fluorescent protein (GFP), enable prolonged live imaging of cellular
activities with exceptional spatial and temporal detail [217].

For the experiments in this thesis, cells were seeded into imaging dishes and incubated
for 2 h to 3 h. When cells adhered to the patterns, the dishes were transferred to the
imaging setup consisting of an inverted fluorescence microscope equipped with an XY-
motorised stage, a so-called “Perfect Focus System” which kept the sample in focus,
and a heating chamber set to 37 °C. The imaging protocol can be found in Materials
and Methods. For most experiments, the data of interest were the position of the front,
nucleus and back of the cell over time plus the local FN density in the vicinity of the cell.
The FN density was not time-dependent, and the fluorescent intensity of the pattern was
the same before and after the experiment. Therefore, it was not necessary to image the
pattern at every time step. Instead, the fluorescent pattern was imaged once before the
start of the experiment, which saved valuable acquisition time and avoided unnecessary,
non-informative data. The position of the nucleus was recorded by epi-fluorescence
imaging of the nuclear marker Hoechst 33342 or H2B mCherry and the position of the
front and back of the cell along the lane by phase contrast imaging. To minimise the
acquisition time, phase contrast images were performed using the same filter set as for
the nuclear imaging, which avoided having to change filter cubes between images. The
short acquisition times (in the order of 1 s) and the motorised stage allowed to scan the
imaging dish and capture multiple fields of view per time step. The number of fields of
view that could be captured and consequentially the number of recorded cell trajectories
was limited by the temporal resolution. A temporal resolution of 10 min allowed to scan
approximately 300 fields of view, while 30 s was only enough to scan up to 20 fields of
view. Therefore, temporal resolution is among the biggest leavers to acquire large data
and should be considered carefully. Another important setting is the magnification of the
imaging. The higher the magnification the better is the spatial resolution (up to a certain
degree) but the smaller is the field of view and hence the number of cell trajectories that
can be recorded. I found 10x magnification to be the lowest magnification that still delivers
enough spatial resolution to detect the nucleus, as well as the cell front and back. A single
time-lapse measurement over 48 h with a 10x magnification and a temporal resolution
of 10 min resulted in the acquisition of time stacks of thousands of cells. These cells
needed to be segmented, tracked and the trajectories filtered, which is only scalable if
this process is automated.
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Figure 3.3: Standardised high-throughput experiments make it possible to acquire and analyse a large
number of trajectories. Each panel depicts the kymograph of a single segmented MDA-MB-231 cell for
40 h, with time running from left to right. The 182 trajectories depicted here are only a small, randomly
chosen selection of the more than 20,000 trajectories collected for this work. Visual inspection already
hints at a large cell-to-cell variance of cell lengths, migration velocity and persistence time even within the
same cell line and under identical experimental conditions.

3 Data Analysis Pipeline

Each measurement yielded time stacks with a size of a few hundred gigabytes. The
relevant information in the acquired data, however, was only the FN density and the
position of the cells with respect to the FN lane over time. To extract these informations,
the positions of the FN lanes and of the nuclei were detected via a threshold to the
fluorescent signals, see Materials and Methods. The positions of the nuclei were tracked
and their coordinates transformed to align with the direction of the FN lanes. The detection
of the front and back of cells from the phase-contrast images was more challenging
because a simple threshold algorithm would not be able to identify the correct outline of
cells. Therefore, I initially created kymographs of cells and manually traced the front and
rear positions; see Fig. 2.3 for an example of a kymograph. However, this approach was
time consuming and hardly scalable. Consequentially, I moved to an automated pipeline
that employed the deep learning algorithm “cellpose” to automatically segment cells [218,
226, 227]. The segmentation and tracking still needed approximately 48 h even on a
dedicated server (AMD EPYC 7402P 24-Core Processor with 256 GB DDR4 RAM and
Nvidia RTX Titan 24GB GPU) but the work was no longer manual and could even be
performed for multiple measurements at the same time. This made it possible to acquire
and analysis a large number of trajectories, see Fig. 3.3.

Due to the substantial number of experiments (𝑛>100), a data management system
had to be established. The metadata was organised in compliance with the Cell Migra-
tion Standardisation Organisation (CMSO) reporting guidelines, specifically through the
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Figure 3.4: Screenshot of experimental data base. The large number of experiments made it necessary,
to implement a data management system. Metadata was stored according to the reporting guidelines of
the Cell Migration Standardisation Organisation (CMSO), the so called Minimum Information About Cell
Migration Experiments (MIACME) checklist. Using a database written in SQL made it possible to store,
sort and filter the metadata either by code or via a graphical user interface such as the one seen in this
screenshot (DB Browser for SQLite). The complete SQL data base of experimental meta data is accessible
on my GitLab repository.

Minimum Information About Cell Migration Experiments (MIACME) checklist [228]. This
included information about the experimental setup (cell type, treatment, etc.), the imaging
condition (temporal resolution, magnification, etc.) and the data itself (number of fields of
view, extrated trajectories, etc.). The use of a SQL-based database enabled the storage,
sorting, and filtering of metadata, either by employing scripts or through a graphical user
interface like the one displayed in Fig. 3.4. An SQL-version of my experimental data base
can be found on my GitLab repository.

4 Discussion
The consistent improvement of the data acquisition and analysis towards a high-throughput
of cell trajectories made it possible to retrieve several thousand trajectories per week.
Except for the microfabrication of 1D FN lanes, the process could easily be parallelised
by deploying multiple microscopes and computational resources at the same time. As a
result vast amounts of data could be amassed which allowed a quantitative comparison
of experimental data to models.

Future development is likely to see further enhancements. Once a pattern motif is
established and the ability of the Primo device for rapid prototyping is no longer needed,
micropatterns can be fabricated using a mask of the motif and parallel illumination.
This way, the scanning illumination of the Primo module is avoided which reduces the
illumination step from around one hour to a few minutes. The imaging dishes could also

https://gitlab.physik.uni-muenchen.de/LDAP_ag-raedler/doktorarbeit_jheyn
https://gitlab.physik.uni-muenchen.de/LDAP_ag-raedler/doktorarbeit_jheyn
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be exchanged with channel slides. Channel slides consist of a number of low volume
channels (height of 100 µm) that run across the slide with in- and outlets to each channel.
Slides have the advantage of a smaller sample volume, which reduces the cost of
consumables like cell culture media and cell treatment solutions. Additionally, slides
would offer the possibility to exchange the medium during the measurement. This would
significantly extend the capabilities of the migration platform by being able to measure
live the response to drug treatments, different flow rates and different viscosities. The
time-lapse imaging can be improved by making use of larger camera sensors. The sensor
area of newer models with full frame specifications can be almost twice as big compared
to the setup presented in this thesis. An increased sensor area directly results in a higher
sample throughput and a more efficient workflow.

With an increasing number of experiments the collection of cell trajectories becomes
interesting to a rising number of stakeholders from academia, industry and scholarly
publishers. The reuse of the data requires a supporting infrastructure. To this end, Wilkin-
son et al. proposed guidelines in the form of the so-called “FAIR Principles” [229]. The
foundational principles – Findability, Accessibility, Interoperability, and Reusability – were
chosen to support the reuse of data by individuals but additionally enhance the ability
of machines to automatically find and use the data. If the experimental data was made
public in adherence with community specific adaptations of the FAIR principles, it would
facilitate data-driven discoveries in the cell migration community [230–232].



Intrinsic Cell-to-Cell Variability

Experimental observations of cell trajectories reveal an apparent variability among trajec-
tories in parameters such as velocity and persistence time, see Figs. 3.3 and B.4. This
variability arises from a convolution of three factors: the inherent stochasticity of the motion
itself (i.e. at the level of an individual), measurement errors, and intrinsic differences
between individual cells of the population. Quantifying the variability in migrating cells is
challenging and requires an assay that allows to monitor cells under identical conditions
over an extended period of time at a certain spatial-temporal resolution. This chapter aims
to quantify intrinsic cell-to-cell differences in migrating cells using the aforementioned
1D cell migration assay and the generalised Langevin equation (GLE). The content of
this chapter is based on the manuscript “Intrinsic cell-to-cell variance from experimental
single-cell motility data” by A. Klimek, J.C.J. Heyn, D. Mondal, S. Schwartz, J.O. Rädler, P.
Sharma, S. Block and R.R. Netz to which I contributed in investigation and data curation
of cell trajectories [5].

When looking at a randomly chosen sample of trajectories that were obtained from
the same cell line and under identical conditions, such as in Fig. 3.3, it becomes quickly
apparent that trajectories differ in metrics such as average velocity, acceleration, cell
length, and occurrence of directional changes. The fact that there are these phenotypic
cell-to-cell differences in the motile behaviour of cells is striking and might even be surpris-
ing, considering that the experimental setup with its standardised 1D Fibronectin lanes
was designed to minimise noisy external factors that could influence the cell trajectories.
However, each experimental assessment, that tries to characterise trajectories, will always
exhibit a spread arising from the randomness of the motion, measurement inaccuracies
and the variability stemming from differences among the individual single cells. The goal
of this study is to determine how much of the parameter spread is caused by cell-to-cell
differences.

To analyse the source(s) of the stochasticity one first needs to quantitatively charac-
terise trajectories to then compare the characteristic metrics. To this end, a mathematical
model is needed. The most general exact model describing cell motion is the generalised
Langevin equation (GLE):

¥𝑥(𝑡) = −
∫ 𝑡

𝑡0

Γ𝑣 (𝑡 − 𝑡′) ¤𝑥(𝑡′)d𝑡′ + 𝐹R(𝑡) (4.1)
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Figure 4.1: Exemplary trajectories of a polystyrene bead with radius 𝑟 = 0.5 µm in an aqueous solution (A)
and of an MDA-MB-231 breast cancer cell in 1D confinement (B). For (A) the trajectory length is 𝐿 = 24 s
and for (B) 𝐿 = 65 min. The insets show enlarged sections of the trajectories. These zoom-ins, especially
for (A), hint at the effect of discrete time steps on the observed trajectory. Adapted from Klimek, Heyn et al.
2024 [5].

Here, ¥𝑥(𝑡) is the acceleration of the position 𝑥(𝑡) at time 𝑡. Γ𝑣 (𝑡) is the memory kernel that
characterises how the acceleration at time 𝑡 depends on the velocity ¤𝑥(𝑡′) of previous
times. 𝐹R(𝑡) is a random force that represents the stochastic noise of the system. 𝐹R is
agnostic to the source of the noise, which means that it captures both the interactions of
the cell with its surroundings and intracellular force-generating processes. The GLE is a
universally applicable model that captures both passive and active motion.

In the following, we tested our GLE-based analysis first on a well-understood system
before moving on to cells. We chose polystyrene beads in an aqueous solution with a
known size distribution, a passive system, as control and then breast cancer cells of
the type MDA-MB-231 in 1D confinement, an active system, as the actual target. We
extracted the respective memory kernels and used them to simulate trajectories with
the same time length and temporal resolution as in our experiments. By varying the
variance of simulation parameters, we successfully estimated the intrinsic variance of the
parameters that characterise the individual objects in the experiments.

1 GLE-Based Analysis of Individual Trajectories

Exemplary trajectories of the polystyrene beads and the cancer cells are shown in Fig. 4.1.
We assume that the parameters governing the movement of the beads and the cancer
cells are stationary, i.e. do not evolve in time, and that they are Gaussian distributed.
The justification of these assumptions is given in the Supplementary Information in the
appendix of this thesis. We can then extract their memory kernels Γ(𝑡) via the velocity
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autocorrelation function (VACF) 𝐶𝑣𝑣 [233–235]. The VACF is defined as
𝐶𝑣𝑣 (𝑡) = ⟨𝑣(0)𝑣(𝑡)⟩. (4.2)

The VACF 𝐶𝑣𝑣 is the second derivative of the mean squared displacement (MSD), 𝐶𝑣𝑣 (𝑡) =
d2

d𝑡2𝐶MSD(𝑡), with 𝐶MSD defined as in Eq. 2.1. The VACF can be connected to the GLE in
Eq. 4.1 by averaging over the random force 𝐹R(𝑡) and multiplying both sides with the
initial velocity ¤𝑥(𝑡0). The resulting equation can be inverted to extract the memory kernel
Γ(𝑡) from the VACF. For a detailed description of the scheme, see SI of A. Klimek et al.
2024 [5]. The MSD, however, is usually a more intuitive metric to describe random motile
processes as it is a measure of the displacement of a particle over time.

For purely diffusive processes, such as the passive motion of beads in water, we ex-
pect the MSD to follow the Brownian prediction, 𝐶MSD(𝑡) = 2𝑛𝐷𝑡 Eq. 2.2, for a movement
in 𝑛 dimensions. The motion of the beads in water can be decomposed into orthogonal
coordinates because there is no coupling between the components of the motion. This
means that each component of the bead’s positional vector x(𝑡) can be analysed sepa-
rately, i.e. 𝑥(𝑡), 𝑦(𝑡) This results in a dimensionality of 𝑛 = 1 for each component and a
MSD of 𝐶MSD(𝑡) = 2𝐷𝑡 with the diffusion constant 𝐷. As the beads are almost perfect
spheres of radius 𝑟, the viscous friction can be calculated using the Einstein-Stokes
relation 𝐷 = 𝑘B𝑇/𝛾 = 𝑘B𝑇/(6𝜋𝜂𝑟), Eq. 2.3. For the observed length of the trajectories and
at the experimental temporal resolution Δ, the MSD’s for the trajectories of the polystyrene
beads show a linear behaviour in time, i.e. 𝐶MSD(𝑡) ∝ 𝑡, see Fig. 4.2 (A). Moreover, the
MSD’s are in good agreement with the theoretical prediction of eqs. 2.2 and 2.3 for a
sphere with radius 𝑟 = 0.5 µm, as represented as a green dashed line. The only peak of the
VACF of the polystyrene beads in Fig. 4.2 (B) is at time zero, indicating that consecutive
displacements are not correlated. This demonstrates that the persistence time of the
beads is shorter than the temporal resolution of the experiment Δ. Consequently, the
extracted memory kernel Γ(𝑡) is a delta function, see Fig. 4.2 (C). These analysis results
for the trajectories of the passive beads differ substantially from those of the actively mov-
ing cancer cells. The MSD of the cancer cells behaves as 𝐶MSD(𝑡) ∝ 𝑡1.6 which indicates
super-diffusive motility, see Fig. 4.2 (D). It is important to note that the majority of the cell
trajectories of the experimental data set, which is studied here, are shorter than 100 min,
see Fig. B.4 (A). This scarcity of data for long time scales means that the error bars of the
mean MSD (not shown) increase for larger 𝑡 and longer trajectories would be required
to thoroughly analyse this time regime, see Fig. 4.2 (D). For long time scales we would
expect a transition from the ballistic (∝ 𝑡2) to the diffusive regime (∝ 𝑡) in accordance with
the literature [188, 236–238]. The VACF of the cancer cells peaks at time zero, Fig. 4.2 (E).
This peak is followed by a pronounced dip at the first time step (𝑡 = Δ = 20 s), before the
VACF falls off to zero within a few minutes, indicating no correlation for longer time shifts.
The apparent two regimes of the VACF – first the dip, then the decay – are also visible
in the extracted memory kernel in Panel (F), where Γ(𝑡) quickly decreases and even
becomes negative for small 𝑡 before rising again to zero where it remains for larger 𝑡. The
dip is due to localisation noise that counteracts the correlation of consecutive velocities
and is therefore not a cell specific property [189, 233].
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The differences in the VACF’s, MSD’s and kernels for the beads and the cancer cells
imply that the two systems underlie different modes of motion and, consequently, that
the GLEs (Eq. 4.1) will differ. As foreshadowed by the dashed green line in Panel 4.2 (A)
already, the polystyrene beads can be considered as a purely diffusive system. This is
due to the fact that the persistence time of the beads is shorter than the experimental
time resolution Δ, see Panel 4.2 (B). This allows for an over-damped approximation and
simplifies the GLE to

¤𝑥(𝑡) =
√
𝐷𝜉 (𝑡) (4.3)

with the uncorrelated white noise 𝜉 (𝑡) (⟨𝜉 (𝑡)⟩ = 0 and ⟨𝜉 (0)𝜉 (𝑡)⟩ = 2𝛿(𝑡)). For the cancer
cells, the extracted kernel suggests a simple persistent random walk (PRW), which can
be formulated as a GLE with the memory kernel

Γ(𝑡) = 2𝛿(𝑡)/𝜏p (4.4)

with 𝜏p ≈ 2 min as persistence time. For large 𝑡 the term 𝜏p(1−𝑒−𝑡/𝜏p) in Eq. 2.4 goes to zero,
resulting in an effective diffusion with diffusivity 𝐷 = 𝑉𝜏p. The observed super-diffusive
behaviour in Fig. 4.2 (D) comes from the transition from the ballistic (𝐶MSD(𝑡) ∝ 𝑡2) to the
diffusive regime (∝ 𝑡). The VACF is given by

𝐶vv(𝑡) = 𝑉𝑒−𝑡/𝜏p . (4.5)

The analytical models for both the polystyrene beads and the cancer cells were fitted
to each trajectory individually – as opposed to the VACF of the mean trajectory. The
fitting procedure also takes into account the discretisation and the localisation errors
of the experimental data. The parameters that were fitted are the diffusion constant 𝐷
(Eq. 4.3) and the localisation noise 𝜎loc for the beads and the mean squared velocity 𝑉 ,
the persistence time 𝜏p (Eq. 4.5) and 𝜎loc for the cells. The procedure is described in
detail in A. Klimek et al. 2024 [5]. Two randomly chosen examples are shown in Fig. 4.3.
The fits are in good agreement with the experimental data, which confirms the choice of
analytical models.

2 Reproducing Experimental Parameter Distributions by
Simulation

Now that the MSD and VACF are established as quantitative metrics to characterise
individual trajectories and an analytical model is found for each motile system, we can
tackle the main question of this chapter: To what extent does the variability in parameters
obtained from experimental data arise due to individual differences compared to the
variability resulting from stochastic motion and experimental errors? To answer this, we
use simulations of our mathematical model that we compare with the experiment.

If all individual motile objects were identical, then one parameter set would be sufficient
to model all observed trajectories. We used the two analytical models given in Eqs. 4.3 and
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Figure 4.2: Experimentally determined MSD, VACF and memory kernels for beads (A-C) and cells D-F. Each
colour represents the data for a single individual trajectory, while the black lines represent the respective
population average. Memory kernels Γ(𝑡) were calculated from VACFs. The dashed green line in panel (A)
represents the prediction of the Einstein relation Eq. 2.3 for the diffusion of a sphere with radius 𝑟 = 0.5 µm
in water. The black dashed lines in (A) and (D) represent the scaling behaviour for the MSD. Adapted from
Klimek, Heyn et al. 2024 [5].
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Figure 4.3: The analytical solutions of the generalised Langevin equation, Eq. 4.1, are fitted to each
trajectory individually, with pure diffusion for the polystyrene beads, Eq. 4.3, and a persistent random walk
for the cancer cells, Eq. 4.4. The fits are shown as orange lines and the experimental data points as blue
dots. The exemplary fits shown here were chosen at random from the total ensemble. Adapted from Klimek,
Heyn et al. 2024 [5].

2.4 with the same trajectory length distribution as for the experimental data. Stochasticity
in the models paired with the finite observation time and the inevitable localisation error,
will always lead to some spread in the extracted parameters. This phenomenon can
be seen in Fig. 4.4 where the parameters extracted from fitting experimental data are
shown in blue and the parameters extracted from simulated data are shown in orange. In
Panels 4.4 (B) and (E) orange triangles originate from trajectories that were simulated
using a single parameter set, indicated by empty, light green symbols. The parameter
sets used as input are the median values of the experimental parameter sets. The spread
in the values for the parameters that have been extracted from the simulated data is due
solely to the inherent stochasticity of finite-length trajectories and 𝜎loc. The difference
between the spread of experimental versus simulated data therefore gives an indication
of the individual-to-individual variation. For the polystyrene beads in Panel 4.4 (B) the
spreads of the parameters retrieved from experimental and simulated data are almost
identical. The experimentally observed spread hence originates largely from the finite
length of the measurement and experimental noise, hence indicating a low bead-to-bead
variance. The opposite is true for the cancer cells in Panel 4.4 (E) where the variance
from simulated data is way smaller than the one found from experimental data. Here, the
discrete nature of the data and the localisation error alone can’t explain the spread of the
experimental data and it is unlikely that cells share the same identical parameter set.

Next, instead of using a single parameter set, we drew parameters from Gaussian
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distributions to simulate trajectories from which we then extracted parameters. By varying
the variance of the Gaussian input distribution and comparing the covariance to that
of the parameter distribution extracted from the experiment, we arrived at the optimal
input spread to explain the observed distributions, see Fig. 4.4 (C) and (F). For a detailed
description of the optimisation scheme, see A. Klimek et al. 2024 [5]. While the spread of
the experimental parameters for the beads was small and mostly due to the finite length
of the measurement, we find that the beads were actually not identical. We retrieved a
standard deviation of the bead radius Δ𝑟 = 86 ± 63 nm which is in agreement with the
standard deviation of Δ𝑟 ≈ 25 nm listed by the manufacturer. For cells, we obtained a
spread spanning nearly two orders of magnitude in both the mean squared cell speed 𝑉
(≈ 10−1 − 101𝜇m2/min2) and the persistence time 𝜏p (≈ 10−1 − 101min). This large spread
is despite the genomic identity and the controlled experimental environment.

3 Discussion
The approach presented here, using the generalised Langevin equation (GLE) and
simulating data with parameters from Gaussian distributions, can distinguish cell-to-cell
variance from motion stochasticity in experimentally obtained data. This method correctly
predicted the standard deviation of the radius of the polystyrene beads solely on the
basis of the trajectories of individual beads. The prediction was in good agreement
with the actual standard deviation of the beads radii as given by the manufacturer and
experimentally verified by atomic force microscopy (AFM). For cancer cells, the predicted
parameter spread is much larger than for polystyrene beads, which is in itself not surprising.
Upon visual inspection, one can already tell that the trajectories of the passively diffusing
beads are more similar to each other than the trajectories of the actively migrating cells.
The predicted spread of two orders of magnitude for the cells, however, is fascinating.
All cells are from the same cell line and therefore carry identical genomes. Although
mutation rates can be higher in cancer cells, it is unlikely that these can explain the large
cell-to-cell variance observed in this study [239, 240]. An analysis of the trajectories of
healthy cells should easily clarify this point. However, there might be a non-negligible
epigenomic variance between cells that results in differences in chromatin accessibility
or promoter architectures and, as a consequence, in gene expression levels [241, 242].
This is particularly likely since the recorded trajectory lengths are much shorter than
the doubling time of MDA-MB-231 cells (≈ 2 h vs ≈ 25 h, respectively [243, 244]). As a
consequence, each trajectory provides only a snapshot of the cell’s dynamics during its
cell cycle and different trajectories are likely to be measured in different stages of the
cycle, leading to different gene expression levels [245]. Additionally, local changes in
the environment of cells such as inhomogeneities in the Fibronectin density affect the
cell’s motile behaviour [1]. Although the fibronectin lanes were designed to be of constant
protein density and homogeneous throughout, they inevitably contain some impurities
and local imperfections. This is especially true since the micropatterns used for this study
were fabricated according to the microcontact printing protocol, see Microfabrication of
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Figure 4.4: Distribution of model parameters for polystyrene beads (A-C) and cancer cells (D-F). Localisation
error 𝜎loc and diffusion constant 𝐷 are shown for the beads, mean squared velocity 𝑉 and persistence time
𝜏p for the cells. The parameter values that were extracted from the individual experimental trajectories are
shown in blue. Parameters extracted from simulated trajectories are shown in orange. Simulations for (B)
and (E) only used a single parameter set as input, i.e. the median experimental values represented as
empty green triangles. Hence, the spread of the extracted parameters of the simulated trajectories in (B)
and (E) is only due to time discretisation and localisation errors. Trajectories for (C) and (F) were simulated
by drawing input parameters from a Gaussian distribution with the goal to achieve the same variance as for
the experimental data. The spread of the extracted parameters, again taking into account time discretisation
and localisation errors, is – per construction – identical to that of the experimental distribution. Adapted
from Klimek, Heyn et al. 2024 [5].
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1D Migration Platforms. Photopatterned substrates might lead to less external noise.
To further elucidate the effect of Fibronectin inhomogeneities it might be worthwhile to
compare the auto-correlation of the Fibronectin signal along the lane to that of the cells.
Future studies should also increase both the length of single cell trajectories and the
temporal resolution. As could be shown in Fig. 4.4 (B&E), finite and discrete measurement
intervals alone already lead to a significant spread in the extracted parameter distribution.
While the persistent random walk (PRW) fits the experimental data very well, its choice
as the analytical solution of the GLE is based mainly on the analysis of the velocity
autocorrelation function (VACF) 𝐶VV(𝑡) for 0 min < 𝑡 < 1 min which comprises only 3
sampling intervals Δ = 20 s. A higher sampling rate would strengthen the claim, that the
cell trajectories can be described by a PRW.

While the generalised Langevin equation is the most general description of single cell
motility, it offers little insight into the cell-mechanical dynamics underlying cell locomo-
tion. To understand the connection between cytoskeletal processes and cell motility a
biomechanical model is needed.
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Biophysical Modelling of Cell Migration

The variability and randomness of cell motility were the focus of the last chapter. This
chapter is about the general mechanisms underlying motile behaviour. Several observa-
tions on cell motility have been made for a variety of cell lines and are therefore considered
universal: cells exhibit a maximum velocity for intermediate adhesion strengths [173];
there is a universal coupling between cell speed and cell persistence (UCSP) [142]; and
the morphodynamics of cells can be classified into different coexisting motile states.

In this chapter, I propose and discuss a novel biophysical model that relates the
observed phenomena to the cytoskeletal dynamics and interactions of the cell with its
environment. The mathematical model is a result of the collaboration with the group
of Martin Falcke. It is based on the force balance at the leading edge of the cell, the
noisy clutch of retrograde flow, and friction and drag which depend on integrin signalling.
One-dimensional fibronectin (FN) lanes provide the experimental control necessary to
quantitatively study cell motility and test the biophysical model. The content of this chapter
is based on the two journal articles “On the adhesion-velocity relation and length adapta-
tion of motile cells on stepped fibronectin lanes” by C. Schreiber, B. Amiri, J.C.J. Heyn,
J.O. Rädler and M. Falcke, to which I contributed in investigation (mainly visualisation
of adhesion sites), and “On multistability and constitutive relations of cell motion on fi-
bronectin lanes” by B. Amiri, J.C.J. Heyn, J.O. Rädler and M. Falcke, to which I contributed
in investigation, data curation, visualisation and writing [1, 2].

1 Adhesion-Velocity Relation
For this study, we restricted cell motion again to 1D lanes coated with fibronectin (FN)
and passivated with PLL PEG everywhere else. With the lanes being 15 µm wide, the
cell morphology remained largely comparable to their two-dimensional shape, but major
protrusions were restricted to the direction of the lane. The confinement had several
advantages. It made it possible to expose cells to a well-defined homogeneous density
of ligands that could be measured using the intensity of the fluorescent FN label, see
Materials and Methods. The surface density of FN, 𝐵, was varied from 1 ng cm−2 up
to 200 ng cm−2. Furthermore, cells could be exposed to perturbations caused by local
changes in FN density using a two-stamp version of the microcontact printing protocol,
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Figure 5.1: Mesenchymal cells migrate fastest for intermediate adhesion strengths. (A) The kymograph
displays a single cell that migrates along a 1D fibronectin (FN) lane. The FN density varies between strips
of constant density, as indicated on the left side. The slope of the cell in the kymograph, that is the cell
velocity, changes noticeably between stripes of different FN densities. (B) Quantification of the biphasic
adhesion-velocity relation for 𝑁 = 6261 trajectories of single MDA-MB-231 cells (blue dots). Error bars
represent the standard error of the mean. (C) Fixed MDA-MB-231 cell on a FN step (moving upwards from
8 ng cm−2 to 40 ng cm−2). The position of the step is indicated by the white dotted line. Images of labelled
FN and phalloidin-stained f-actin were acquired with epifluorescence, and antibody-stained paxillin with
total internal reflection (TIRF). The density of the focal adhesion protein paxillin correlates with the FN
density and the location of the adhesion sites coincides with the ends, or anchor points, of the actin stress
fibres. Scale bar 10 µm. (A,C) adapted from C. Schreiber et al. 2021 [1], (B) adapted from B. Amiri, J. Heyn
et al. 2023 [2].
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see Microcontact Printing. Additionally, this setup simplified the analysis of cell trajectories
and the formulation of a biophysical model by confining the movement to 1D.

An example of a single MDA-MB-231 cell on a 1D lane is shown in Figure 5.1, Panel A.
The cell moves along the lane, crossing fields of varying FN density 𝐵, as indicated by
the red and blue rectangles on the left side. The kymograph reveals the trajectory of the
cell in a single image as a projection to the time axis. Changes in the slope of the cells
position over time, i.e. the cell velocity, are apparent at every change of FN density.

I observed the migration of MDA-MB-231 cells on FN coated lanes over a period of
48 h using scanning time-lapse microscopy. As detailed in Materials and Methods, a series
of fields of view were imaged sequentially at intervals of either 10 min or 30 s, collecting
data from 144 to 16 fields of view per round, respectively, averaging 23 trajectories
of individual cells per field. The mean duration of a single-cell trajectory was 11.6 ±
8.0 h, with longer trajectories becoming increasingly rare due to cell division, cell-cell
interaction and movement out of the field of view (Table B.1 and Fig. B.5). For the data in
this section, I tracked the position of the fluorescently labelled nuclei of 𝑁 = 6261 MDA-
MB-231 H2B mCherry cells with a time resolution of Δ =10 min. Next, I calculated the
instantaneous velocity 𝑣 = 𝑥𝑖+1−𝑥𝑖

Δ
and plotted the velocities against the FN density 𝐵. The

result is shown in Figure 5.1, Panel B. The instantaneous velocity, averaged over all cell
trajectories, increases with increasing FN density up to a maximum of 𝑣 =0.0084 µm s−1

at 𝐵 =24 ng cm−2. Velocities for FN densities higher than that decrease again before
slowly plateauing at ca 𝑣 =0.0065 µm s−1. Our observation of the biphasic dependency of
the velocity on the ligand density is in good agreement with reports on similar cell lines, as
discussed in Fundamental Concepts [80, 81, 83, 84, 173, 175–177]. Mesenchymal cells
exert forces on their environment via focal adhesions (FA) sites [246]. The FAs anchor
the cell to the substrate, often with the support of bundles of actin, also called stress
fibres, thereby causing friction between the retrograde flow of the actin network and their
stationary structures. To see if the density of adhesion structures correlates with ligand
density, I stained fixed cells for paxillin, an FA protein, and for f-actin using phalloidin, see
Materials and Methods. The MDA-MB-231 cell depicted in Fig. 5.1 (C) crosses from an
area of high FN density (40 ng cm−2) to an area of low FN density (8 ng cm−2). The cell
exhibits a high density of adhesion sites just a few micrometres back from the leading edge,
where stress fibres are also anchored (as seen in the f-actin image). The concentration
of f-actin is highest within the lamellipodium. However, the distribution of paxillin depends
not only on the relative position within the cell but also on the FN density, with a higher
density of paxillin in the region of high FN density.

In summary, cell velocity increases with ligand density up to a peak, after which it
decreases and plateaus. This biphasic velocity response is likely to be related to the
density of adhesion structures. Any biophysical model that aims to describe and explain
cell motility should cover this biphasic adhesion-velocity relation. There are, however,
further phenomena that should also be included.
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2 Motile States

In addition to the 6 000 single cell trajectories of the last section, we analysed more than
14 000 trajectories with 10 min resolution and 400 trajectories with 30 s resolution (Table
B.1). This large amount of data made it possible to identify four distinct motile states, see
Fig. 5.2. We observed cells that were in a non-moving spread state and cells that were in
a moving state. Independent of that, cells kept a steady length or showed oscillations in
the length(s) of their protrusion(s). By combining the two metrics (spread vs moving and
oscillating vs steady length), we arrived at the four motile states depicted as kymographs
in Fig. 5.2 (B-E) and as segmented trajectories in Fig. 5.3. The state of a spread cell with
a steady cell length we call SS, a spread cell with oscillating length we refer to as SO,
cells that are moving with a steady length are assigned the state MS and cells that are
moving with oscillating length are MO. Hennig et al. have also presented the states SS
and MO with RPE1 cells and NIH-3T3 fibroblasts [138]. The two moving states, MS and
MO, manifest as movements in upward and downward directions, MS↑, MS↓, MO↑, and
MO↓, resulting in a total of six states observable.

A selection of six distinct state transitions are shown in Fig. 5.2 (F-K). Each transition
shown occurs on uniform lanes of homogeneous FN density without external influence.
Consequently, we refer to these as spontaneous transitions. Such a transition can also
be a change in direction, as in Panel (F), where the cell first moves downward (MS↓) and
then upward (MS↑).

To quantitatively analyse the motile states and transitions between them, the states
needed to be defined by a mathematical metric and thresholds, see Materials and Methods.
This allowed to automatically assign a motile state to each point in time for each segmented
cell trajectory, see Fig. 5.3. For a complete list of all possible state transitions in MDA-
MB-231 cells, see Fig. B.6.

The oscillatory behaviour observed in SO and MO often lacks consistent periodicity,
Fig. 3.3. This variability in repetitive protrusion events suggests a noisy excitable state
rather than the strictly defined regular oscillations of dynamical systems theory. In the
following section, it will become evident that our biophysical model encompasses regular
oscillations, noisy oscillations, and a noisy excitable regime.

Spread cells demonstrate a symmetrical appearance, with extensions emerging from
both ends, Fig. 5.2 (B,C). Cells in motion naturally show extensions at the leading edge,
e.g. Fig. 5.2 (D-J). Yet, additional rear extensions can be identified by detecting negative
rear edge velocities during oscillatory phases, as illustrated in Fig. 5.2 (E,J). Consequently,
oscillatory cells in motion have extensions at both the front and the rear. Fig. 5.2 (F) does
not allow us to determine whether there is a rear extension in a cell in the MS state during
continuous movement. Should rear extensions be present under these conditions, they
are presumably shorter than those at the front. Notably, the formation or elongation of
a rear extension precedes a change in direction in Fig. 5.2 (F) by approximately 30 min.
Therefore, extensions are present at both the front and rear during the transition. This
observation leads to the hypothesis that direction reversals may result from competition
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of the front and rear protrusion, as will be discussed later.

3 Biophysical Model
The biophysical model is motivated by the aforementioned universal observations and
consists of well-established force balances at the leading and trailing edge of the cell
and for the cell body, see Fig. 5.4 [124, 178–180, 190, 247–249]. The force of the
polymerisation of the actin network at the front of the cell 𝐹 𝑓 pushes the membrane
outward against an elastic force 𝐹spring = 𝐸 (𝐿 𝑓 −𝐿0), that depends linearly on the difference
of the actual protrusion length 𝐿 𝑓 and the resting protrusion length 𝐿0, and against drag
𝐹drag = 𝜁 𝑓 𝑣 𝑓 , that depends linearly on the velocity of the protrusion 𝑣 𝑓 and the drag
coefficient 𝜁 :

𝐹 𝑓 − 𝐹spring − 𝐹drag = 0 (5.1)

The polymerisation force 𝐹 𝑓 at the front of the cell arises from actin filaments pushing
against the membrane (see “Brownian ratchet”) and drives a retrograde flow of actin
filaments 𝑣𝑟 𝑓 against friction [180]: 𝐹 𝑓 = 𝜅 𝑓 𝑣𝑟 𝑓 with the friction coefficient 𝜅. For an
illustration see Fig. 5.4 (A), insets I and II. The elastic force 𝐹spring couples the leading
edge with the cell body, approximated by the centre of the nucleus, through the membrane
tension, which most likely originates from one-dimensional (1D) volume homeostasis
[250]. The cell experiences drag 𝐹drag mainly due to adhesions that bond the cell to the
substrate (Fig. 5.4 (A), inset III). The observation of the existence of rear protrusions
even for polarised cells mentioned above motivated us to model the 1D migration of
mesenchymal cells by defining the force balance at three points: the front (denoted by
the subscript 𝑓 ), the centre (𝑐) and the back (𝑏) of the cell. Thus, the model is defined by
the following system of equations:

𝜅f𝑣rf − 𝐸 (𝐿f − 𝐿0) − 𝜁f𝑣f = 0 (5.2)
𝐸 (𝐿f − 𝐿0) − 𝐸 (𝐿b − 𝐿0) − 𝜁c𝑣c = 0 (5.3)
−𝜅b𝑣rb + 𝐸 (𝐿b − 𝐿0) − 𝜁b𝑣b = 0 (5.4)

The inclusion of the cell body and the back protrusion is an extension to the model
presented in Schreiber et al. 2021 [1]. Front and back protrusions, as well as drag, act on
the cell body, Eq. 5.3. The extension was necessary to account for the morphodynamics of
the cell, e.g. oscillations of protrusion length. Another modification of the model compared
to Schreiber et al. 2021 [1] is the addition of a noisy clutch.

Various studies [193, 251–255] report the noisy clutch phenomenon from the retro-
grade flow of f-actin within protrusions [256]. This movement creates friction with structures
like stress fibres and adhesion sites [246, 257], enabling protrusion force transmission
to the substrate. The friction coefficient 𝜅 indicates clutch engagement, with higher val-
ues showing engagement and lower values showing disengagement. Initially, friction
force increases with slow retrograde flow velocity, then decreases past a critical velocity



48 5. Biophysical Modelling of Cell Migration

A

time
x

MO

SO

E

C

H MS MOG MS SS

time
x

K SO SSJ MO SSI SO MS

F MS MS

SS

MSD

B

time

x

Figure 5.2: Four motile states, as well as transitions between them, can be observed for MDA-MB-231 cells
on FN lanes. (A) Kymograph of a typical 48 h trajectory. (B) Spread cell with steady length (SS). (C) Spread
cell with oscillating length (SO). (D) Moving cell with steady length (MS). (E) Moving cell with oscillating
length (MO). (F) Transition from downward to upward-moving MS state. (G–K) Transitions: MS-SS (G),
MS-MO (H), SO-MS (I), MO-SS (J), SO-SS (K). Vertical blue lines show state transition points from the
change point algorithm defined in Materials and Methods. Kymographs have a 30 s time resolution. Time
moves left to right. Vertical scale: 100 µm, horizontal scale: 60 min. Scale in (B) applies to (B–E); scale in
(F) applies to (F–K). Adapted from Amiri, Heyn et al. 2023 [2].



3 Biophysical Model 49

H SO-SSE MS-SS G MS-SSF SS-MS  

D SOC MOB SSA MS

t 2h

10
0μ

m

I MS-SS  L SO-MOK MO-SOJ SS-MO

Figure 5.3: Automation enables high-throughput analysis of state transitions. Cells are automatically
segmented and tracked. The resulting trajectories are cut into phases of pure motile states, such as in
Panels (A-D), and are labelled accordingly. (E-L) This process makes it easy to study transitions between
motile states, such as the ones depicted here. For a complete list of all possible state transitions in MDA-
MB-231 cells, see Fig. B.6. Adapted from Heyn et al. 2024 [4].

(Fig. 5.4 (A) and (C), Panels II, respectively), leading to stick-slip transitions where re-
duced resistance and constant driving force cause sudden acceleration. Friction force
links to transient bonds between the f-actin network and immobile structures. Its biphasic
behaviour arises when these bonds dissociate at high velocities, causing clutch disen-
gagement [258]. Rebinding restores equilibrium density after high-speed phases, which
motivates the 𝜅-dynamics adapted from Craig et al. (2015) [193]:

d𝜅f
d𝑡

= 𝑘on(𝜅lim
𝑓 − 𝜅f) − 𝑘off𝑒

− 𝑣rf
𝑣slip 𝜅f + 𝜂 𝑓 (𝑡) (5.5)

d𝜅b
d𝑡

= 𝑘on(𝜅lim
𝑏 − 𝜅b) − 𝑘off𝑒

−
𝑣rb
𝑣slip 𝜅b + 𝜂𝑏 (𝑡) (5.6)

with the binding rate 𝑘on and the unbinding rate 𝑘off and an exponential acceleration
of bond dissociation by retrograde flow velocity 𝑣𝑟 [258]. 𝜅lim represents the maximum
value of 𝜅, defined by the adhesion strength of the substrate. The variables 𝜂 𝑓 and 𝜂𝑏
with ⟨𝜂 𝑓 ,𝑏 (𝑡)⟩ = 0 introduce Gaussian white noise, caused by the stochastic process of
bond creation and cleavage within the f-actin network and its interaction with stationary
structures. Note that I renamed 𝑐1 as 𝑘on, 𝑐2 as 𝑘off and 𝑐3 to 𝑣slip for clarity compared
to Amiri et al. (2023) [2]. Schreiber et al. (2023) showed that Hill-type equations of the
relation of friction coefficients 𝜅 and drag coefficients 𝜁 with the Fibronectin density 𝐵
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Figure 5.4: Cartoon of a mesenchymal cell on a one-dimensional fibronectin lane (A), the force balances
(B), and the model’s mechanical elements (C). The velocities of the leading and trailing protrusion edges
are 𝑣 𝑓 and 𝑣𝑏, respectively. The flow of f-actin networks occurs at retrograde flow rates 𝑣𝑟 𝑓 and 𝑣𝑟𝑏 . Forces
𝐹𝑏 = 𝜅𝑏𝑣𝑟𝑏 and 𝐹 𝑓 = 𝜅 𝑓 𝑣𝑟 𝑓 result from f-actin polymerisation, influencing the protrusion edge membrane and
facilitating retrograde flow against frictional forces. Drag experienced by the front and back edge membranes
has coefficients 𝜁 𝑓 and 𝜁𝑏, accordingly. Elastic forces 𝐸 (𝐿 𝑓 − 𝐿0) and 𝐸 (𝐿𝑏 − 𝐿0) are exerted between the
cell body and the edges, with 𝐿0 as the equilibrium length. The balance of elastic forces influences the
movement of the cell body against the drag force 𝜁𝑐𝑣𝑐. The lower panels display key relational types of
the model. The detachment force 𝐹de at the rear is directly proportional to the velocity. The frictional force
between the retrograde flow of the f-actin network 𝑣𝑟 and static structures shows a peak in its relationship
with retrograde flow (clutch). The polymerisation force 𝐹𝑝 is logarithmically tied to the network extension
rate 𝑣𝑒, influenced by the force-dependent polymerisation rate. Adapted from Amiri, Heyn et al. 2023 [2].
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quantitatively describe the adhesion-velocity relation [1]:

𝜅lim
𝑓 = 𝜅0 +

𝜅max𝐵𝑛𝜅
𝑓

𝐾
𝑛𝜅
𝜅 + 𝐵𝑛𝜅𝑓

(5.7)

𝜅lim
𝑏 = 𝜅0 +

𝜅max𝐵𝑛𝜅
𝑏

𝐾
𝑛𝜅
𝜅 + 𝐵𝑛𝜅𝑏

(5.8)

and

𝜁 𝑓 = 𝜁0 +
𝜁max𝐵

𝑛𝜁

𝑓

𝐾
𝑛𝜁

𝜁
+ 𝐵𝑛𝜁

𝑓

(5.9)

𝜁𝑐 = 𝜁0 + 𝑏
(
𝜁max𝐵

𝑛𝜁
𝑐

𝐾
𝑛𝜁

𝜁
+ 𝐵𝑛𝜁𝑐

)
(5.10)

𝜁𝑏 = 𝜁0 +
𝜁max𝐵

𝑛𝜁

𝑏

𝐾
𝑛𝜁

𝜁
+ 𝐵𝑛𝜁

𝑏

(5.11)

(5.12)

The base values for the drag coefficient and the friction coefficient are denoted as 𝜅0
and 𝜁0, respectively. The Hill coefficients are 𝑛𝜅 and 𝑛𝜁 , respectively, and 𝐾𝑛 is the ligand
concentration that produces half the occupation. The variable 𝑏 quantifies the influence
of the cell body on the overall drag exerted by the cell, relative to that of the protrusion. It
is important to note that the equations for the front and back of the cell are symmetric.

To relate the velocity of the actin retrograde flow from the laboratory reference system
to that of the cell, a Galilean transformation can be used to arrive at the extension rate
of the actin network 𝑣𝑒. The extension rate of the actin network is the vectorial sum of
the retrograde actin flow 𝑣rf and the cell velocity 𝑣: 𝑣𝑟 𝑓 + 𝑣 𝑓 = 𝑣e. The network extension
rate is set by the polymerisation rate of g-actin to f-actin, which is force dependent. This
motivates to model 𝑣𝑒 with an Arrhenius factor [257, 259]:

𝑣rf + 𝑣f = 𝑉
0
e exp(−𝑎𝐹f

𝑁
) − 𝑘− (5.13)

𝑣rb − 𝑣b = 𝑉0
e exp(−𝑎𝐹b

𝑁
) − 𝑘− (5.14)

with the base actin network extension rate 𝑉0
e . The coefficient 𝑎 = 𝑔𝑑/𝑘𝑏𝑇 incorporates

a geometrical component 𝑔 that results from averaging the orientation of the filaments
within the network, the increase in length 𝑑=2.7 nm contributed by each actin monomer to
the filament, and the thermal energy 𝑘𝑏𝑇 . The variable 𝑁 denotes the number of filaments
per unit edge contour length, while 𝑘− represents the rate of depolymerisation. We used
a value of 𝑁=248 µm−1 for all simulations, consistent with the work of Schreiber et al. [1].
This particular value leads to 𝑎/𝑁=1 µm/nN.
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Changes in the protrusion length 𝐿 arise from the difference of the velocities of cell
edge and nucleus:

d𝐿f
d𝑡

= 𝑣f − 𝑣c (5.15)
d𝐿b
d𝑡

= −𝑣b + 𝑣c (5.16)

Using the length dynamics of Eqs. 5.15 and 5.16 the velocity of the cell body is given by
Eq. 5.3

𝑣𝑐 =
𝐸 (𝐿 𝑓 − 𝐿𝑏)

𝜁𝑐
. (5.17)

Eqs. 5.5, 5.6, 5.15, 5.16 establish a fourth-order dynamical system that defines cell
motility. The values used for simulations are collected in Tab. B.2. Our findings reveal
that this model is capable of representing four distinct cellular states.

4 Analysis of Dynamic Cell States
Our biophysical model provides a framework for the characterisation and qualitative as
well as quantitative analysis of the morphodynamics of MDA-MB-231 cells. We simulated
approximately 6,100 cell tracks and compared the simulated data to the experimental data.
A summary of the simulation process and the simulated data can be found in the Supple-
mentary Information. Simulations using the control parameter value set 1, see Tab. B.2,
reproduce the biphasic adhesion-velocity relation with maximal cell velocity at interme-
diate FN densities with good agreement with the experimental results, see Fig. 5.1 (B).
Both the experimental and the simulated velocities saturate for large fibronectin densities.
However, unlike the asymmetric model in Schreiber et al. 2021 [1], consisting of only
one protrusion, the model presented here, consisting of two symmetrically constructed
protrusions, does not perfectly fit the velocities for low FN densities. The present model
predicts only spread states (SS and SO) for low FN densities, i.e. cells that are not moving,
which obviously decreases the average velocity. This is in contrast to the observed results.
A likely explanation is that the model presented here is symmetric with two protrusions,
unlike Schreiber et al. 2021, which included only one. This asymmetry in the previous
model might more accurately represent cell polarisation at low FN densities.

We applied the same state classification, see Materials and Methods, to both the
experimental and simulated data. The result shows a good qualitative agreement, as
evidenced in Fig. 5.5 (A). The model successfully reproduces all four dynamic cell states,
with oscillations observed on both sides for the SO state and only at the back for the MO
state. Furthermore, the model quantitatively captures cell velocity, oscillation period, and
amplitude, see Fig. 5.5 (B,C). Additionally, the model is capable of making predictions
about 𝜅-dynamics and the forces on the edge membrane that extend beyond the scope
of experimentally feasible measurements within this study. The retrograde flow velocity
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Figure 5.5: Analysis of dynamic cell states. (A) The upper panels show experimental kymographs, lower
panels depict simulations (without noise). Horizontal scale bars equal 30 min, vertical scale bars 50 µm.
Parameters for simulations are listed in Tab. B.2. (B) The experimentally determined temporal progression of
both the edge velocity and the length of a cell in the MO state is depicted with a blue front and orange back.
(C) A simulation (without noise) illustrates the temporal progression of parameters including edge velocity 𝑣
(solid line), retrograde flow 𝑣𝑟 (dashed line), cell length 𝐿, friction coefficient 𝜅, and force exerted on the
edge membrane 𝐹 in the MO state with a blue front and orange back. The biophysical model qualitatively
and quantitatively (velocity, oscillation amplitude and periodicity) captures the observed morphodynamics.
Adapted from Amiri, Heyn et al. 2023 [2].
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Figure 5.6: Analysis of multistability. (A) Fraction of time that cells spend in each of the four motile states for
the population average in experiments (2878 h of trajectories) and in simulations sampled from experiments
on a range of fibronectin concentrations. (B,C) Cell states of the noise-free model are represented by the
friction coefficient 𝜅 (B) and cell velocity 𝑣 (C) with respect to fibronectin density 𝐵. At low 𝐵, only the SS
state is present. At the branch point, moving states emerge and coexist with the spread state. Dashed
lines indicate oscillations beginning at fibronectin concentrations termed as Hopf bifurcations. All moving
states exhibit upward and downward motion (C). (D) The steady states are excitable as shown here for SS.
Without noise, the state remains steady. However, as soon as noise is switched on, marked by the dashed
blue line, excitations are evident. These dynamics are similar to noisy oscillations and can be classified as
such by our algorithm despite not being the same state according to dynamical systems theory. Adapted
from Amiri, Heyn et al. 2023 [2].
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in the back protrusion 𝑣𝑟𝑏 is always higher than in the front protrusion 𝑣𝑟 𝑓 due to the
additional edge velocity that pushes the actin network forward:

𝑣𝑟 𝑓 = 𝑣e − 𝑣 𝑓 (5.18)
𝑣𝑟𝑏 = 𝑣e + 𝑣𝑏 (5.19)

→ 𝑣𝑟𝑏 > 𝑣𝑟 𝑓 (5.20)

This inequality holds true because 𝑣 𝑓 would not be the front if both protrusions moved
with a negative velocity (𝑣 𝑓 and 𝑣𝑏 < 0). The front protrusion operates in the rising branch
(𝑣𝑟 < 𝑣𝑟cr) of the biphasic 𝐹-𝑣𝑟 relation (Fig. 5.4 (C) II), while the back protrusion operates
on the falling branch [260]. The force at the front edge is thereby higher than at the back
which moves the cell forward (𝜅 𝑓 > 𝜅𝑏 and 𝐹 𝑓 > 𝐹𝑏), Fig. 5.5 (C).

A comparison of the fraction of time that cells spend in each of the four motile states
on a population level shows good agreement for experimental and simulated trajectories,
Fig. 5.6 (A). For both experiment and simulation, oscillations in the length of the cell
(MO, SO) are significantly more prevalent than steady lengths (MS, SS) with moving
oscillating (MO) being the most frequent state. The distribution of cell states depends on
the fibronectin density 𝐵. Panels (B,C) in Fig. 5.6 show a bifurcation analysis of the cell
states for a version of the model without noise in the integrin clutch. For low FN densities
(𝐵 < 18 ng cm−2 for this particular parameter set), only the SS state is accessible. When 𝐵
is increased up to the first branch point, still only steady protrusion lengths are possible,
but the front and back protrusions can have different values of 𝜅, and the cell as a whole
can move up or down the lane (MS). This means that for the same value of 𝐵 the cell can
be in an SS, MS↑ or MS↓ state. Panel (C) also displays a biphasic relation for the velocity,
with maximum values for 𝐵 = 25 ng cm−2. However, this should not be confused with the
aforementioned plot of the adhesion-velocity relation which displays ensemble averaged
data (Fig. 5.1 (B)). Fig. 5.6 (C) does not reveal anything about the distribution of states
which influences the averaged velocity values of the ensemble. If 𝐵 is increased further,
to the so-called Hopf bifurcation, the protrusion lengths are no longer steady but start to
oscillate (SO and MO). The Hopf bifurcation occurs for smaller 𝐵 for the spread branch
then for the moving branch, resulting in the coexistence of SO and MS for a range of 𝐵.
For large values of 𝐵 only SO and MO coexist.

A single cell is characterised in the model by specific parameter values, while the cell
population in an experiment reflects numerous parameter sets because of cell variability.
Consequently, every possible co-existence pairing may occur within one experiment,
allowing both moving states to co-exist with both spread states. To account for cell-to-cell
variability, simulations were performed that allowed a variability of ±5% of the parameter
values given in Tab. B.2.

So far this analysis has focused only on the noise-free version of the model, i.e.
Eqs. 5.5, 5.6 without 𝜂(𝑡). However, the model captures the observations only if non-linear
dynamics are combined with noise. When retrograde flow reaches a velocity of 𝑣slip, it
slips, leading to peaks in edge velocity and flow rate, as seen in Fig. 5.5 (B,C), with a
sharp drop in the force 𝐹. Recovery of 𝜅 is gradual and covers most of the period. In the
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SS state, characterised by the tension of two opposing forces, the retrograde flow at 𝑣slip
matches the network extension rate, creating instability against critical 𝜅 fluctuations. Such
fluctuations might arise from bond changes between the f-actin network and stationary
structures. A sufficiently strong perturbation triggers a protrusion-retraction cycle. The
random occurrence of these perturbations is called noise, a constant factor in systems
as small as protrusions and vital in adhesion and retrograde flow, as indicated by several
studies [193, 261]. SS and MS states are excitable (Fig. 5.6 (D)), where minor, yet
critical, disturbances provoke large reactions; their cycle post-perturbation mirrors noisy
oscillations. Thus, bond noise often causes oscillation-like behaviour even in SS and
MS states. Oscillations depend on cell-specific parameters and noise levels, leading to
coexistence of oscillation-like and non-oscillation states in SS and MS depending on
the noise amplitude. Consequently, we put the noise within the retrograde flow’s clutch
mechanism, an intracellular process.

5 Transitions Between Cell States
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Figure 5.7: (A) Schematic of all possible state transitions. The areas of the squares representing the four
motile states are proportional to the fraction of time that MDA-MB-231 cells spend in these states, see
Fig. 5.6 (A). Dark blue lines show “real” state transitions, while dashed, light-blue lines represent transitions
caused by excitations of the two excitable states SS and MS. Transitions in the later case are an artefact
of the state classification. (B) Frequency plot of the transitions between the cell states for experimental
(orange) and simulated data (blue). MS↓ and MO↓ represent reversals of direction. Parameters of all
simulations are listed in Tab. B.2. Adapted from Amiri, Heyn et al. 2023 [2].

The phenomenon of multistability is illustrated through transitions, whereby a single cell
can exist in multiple states even when there is no variation in the parameters. Within this
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framework, states that move upward can co-exist alongside those that move downward
and cells can transition from moving to non-moving states and vice versa, see Fig. 5.6 (B,C)
and Fig. 5.7. In the context of the biophysical model, these transitions are attributed to
stochastic fluctuations within the clutch mechanism of the retrograde flow. It is plausible
that the same underlying factor is responsible for transitions in real cellular environments.
Due to their minuscule size, cells are notably vulnerable to thermal noise [12, 262, 263].

The bifurcation analysis, Fig. 5.6 (B,C), yields no co-existence of SO and SS, as well as
MO and MS, suggesting that there should not be spontaneous transitions between these
states. However, this is not what we observed, neither in experiments nor in simulations.
These could be perceived as artefacts emerging from the analysis of states. Occasionally,
excitable states exhibit oscillations long enough to be classified as an oscillating state,
but the detected “transition” does not genuinely represent a state transition. However,
the classification algorithm remains consistent across both experimental and simulated
datasets, which mitigates concerns about this issue.

Although transitions are postulated to occur spontaneously, it cannot be entirely
dismissed that there may be variations in parameter values throughout the duration of
the experiment. We did not find any time-dependent changes at the population level, but
we cannot exclude the possibility that parameter sets of individual cells might change
with the cell cycle. Future work might relate phases of the cell cycle to parameter sets to
answer this open question. However, at the population level, simulations of our model
with constant parameter sets result in frequencies of state transitions very similar to the
observed data, Fig. 5.7 (B).

6 Reversal of Direction
Direction reversal is a critical phenomenon in cell dynamics, and 𝑡rev is defined as the
precise moment of this reversal. Approximately 10 min prior to 𝑡rev, the back protrusion
begins to slow down and subsequently shifts into a reverse movement characterised by
negative velocity, as depicted in Fig. 5.8 (A-C). Only after this initial deceleration of the
back does the front protrusion begin to decelerate, eventually collapsing and manifesting
a negative velocity peak, as seen in Fig. 5.8 (A-B,D). Ultimately, both the front and back
edges of the cell align to move uniformly.

The underlying mechanism relates to supercritical events that originate in the back
protrusion. These events exert a force substantial enough to cause the front protrusion to
collapse. In the MS state, this interaction is primarily induced by noise, while in the MO
state, it results from a combination of noise and subcritical oscillations.

This analysis indicates a competitive interaction between the rear and front protrusions,
reminiscent of a tug-of-war dynamic, that influences the persistence of cellular movement.
The duration of persistence is observed to be positively correlated with overall cell velocity,
which aligns with the findings of the universal coupling between cell speed and cell
persistence (UCSP) by Maiuri et al. [142]. The application of latrunculin A, which impedes
actin polymerisation, was modelled by reducing the rate of actin network extension 𝑉e in
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peaking 8 min after the reversal. Adapted from Amiri, Heyn et al. 2023 [2].



7 Discussion 59

simulations. This adjustment led to an increase in persistence time, in agreement with
experiments, Fig. 5.9 (A).

The model reveals that, in faster-moving cells, the front protrusion demonstrates
greater stability compared to slower-moving cells, whereas the back protrusion exhibits
reduced stability. This differential stability contributes to prolonged persistence times. In
slower cells, the back protrusion endures longer, exerting a sustained pulling force on
the nucleus and front protrusion, which itself produces a lower resistance force. This
culminates in more frequent direction reversals and hence in a lower persistence time.

The application of latrunculin A diminishes the actin network extension rate, conse-
quently affecting retrograde flow dynamics in both protrusions. This reduction enhances
back pulling but even more the resistance length of the front, ultimately facilitating direction
reversal. In conclusion, the described protrusion competition mechanism is rooted in the
elastic mechanical linkage between cell protrusions and the cell body, the non-linear
friction of the retrograde flow mechanism (clutch), and stochastic variances within the
clutch system, providing a coherent framework for understanding UCSP. Cells that move
faster exhibit increased retrograde flow resistance in the front and reduced in the rear,
thus supporting prolonged migratory persistence.

7 Discussion
For this chapter, I investigated the multistability and dynamics of MDA-MB-231 cells on
fibronectin (FN) lanes, focussing on the coexistence of different motile states. To this
end I analysed more than 20,000 single cell trajectories in standardised high-throughput
experiments. The four states we identified were: spread with steady length (SS), spread
with oscillating length (SO), moving with steady length (MS) and moving with oscillat-
ing length (MO). We detected spontaneous transitions between motile states which is
a hallmark of multistability. Furthermore, we observed the biphasic adhesion-velocity
relation and the universal coupling between cell speed and cell persistence (UCSP). We
presented a biophysical model that produced simulations which qualitatively and quantita-
tively matched the observed data suggesting a mechanical mechanism underlying these
universal observations of mesenchymal motility. The research revealed that restricting cell
motion to one dimension highlighted relationships between motility phenomena. Random
migration and UCSP arise from transitions between moving states, influenced by the noisy
clutch mechanism of integrin signalling. This mechanism, involving non-linear friction
between f-actin flow and stationary structures, is crucial for the cell’s multistability and
oscillatory behaviour.

The biophysical model consists of three key components: force balance at the cell’s
protrusion edges, the noisy clutch mechanism, and integrin signalling effects on drag and
friction coefficients. The components relate well-established biological observations to
mechanical equivalents. The non-linearity in the resulting system of differential equations,
in combination with noise, can explain the co-existence of motile states and spontaneous
transitions between them.
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Figure 5.9: (A) The cartoon depicts the definition of persistence time for this analysis. We defined it as
the average time during which a cell body maintains its moving direction on the 1D Fibronectin lanes.
The relation between cell speed and persistence time in control cells (9497 experimental trajectories)
and with latrunculin A applied (3368 experimental trajectories). Latrunculin A application was modelled
by decreasing the network extension rate 𝑉0

e from 0.030 µm s−1 to 0.022 µm s−1. (B) Cartoon depicting the
concept of back excitation duration. The correlation between back excitation duration and cell velocity
is shown through experiments and simulations (221 control experimental trajectories, 127 latrunculin A
experiments). At equivalent velocities, latrunculin A’s reduction of actin network polymerisation prolongs
back excitation duration. (C) Cartoon illustrating the concept of front resistance length. Latrunculin A
enhances the resistance length of the front protrusion, stabilising cell polarisation. Adapted from Amiri,
Heyn et al. 2023 [2].
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Our proposition to the ongoing discussion about the mechanism behind the UCSP
is that fast cells are more persistent due to a force differential between the front and
rear protrusion caused by differences in the retrograde flow of the actin network. This
is due to the asymmetric effect of cell speed 𝑣 on the actin flow, with an increase in the
back protrusion (𝑣𝑟𝑏) and a decrease in the front protrusion (𝑣𝑟 𝑓 ) at constant actin network
extension rate 𝑣𝑒, which effectively stabilises cell polarity.

In both our experiments and model, reducing the network extension rate with latrun-
culin led to increased persistence. According to our model and results, the noisy clutch
mechanism adequately accounts for the UCSP through natural direction changes driven
by protrusion competition. Maiuri et al. propose that an increase in network extension
rate must correlate with higher protrusion velocity, asserting the proportionality of the
velocities 𝑣e = 𝑎𝑣, where 𝑎 remains unchanged across different experimental settings
[142]. However, reduction of the actin network extension rate by latrunculin A lead to an
increased persistence, contrary to the prediction of Maiuri et al.’s theory and in line with
our simulations. We therefore have good reason to believe that our assumptions about
the mechanism behind direction reversals, namely the protrusion competition caused by
geometrical asymmetry of the actin flow, are justified.

Nonetheless, direct quantification of the retrograde actin flow 𝑣𝑟 during protrusion
oscillations and reversal events would further strengthen our model. Techniques such as
fluorescent recovery after photobleaching (FRAP) or fluorescence speckle microscopy
are capable of measuring the actin retrograde flow in the lamellipodium and the lamellar
region [176, 252, 254, 264–267]. Our examination of cell migration on 1D lanes enhances
these measurements by narrowing the focus to the anterior and posterior regions of the
cell regarding protrusion dynamics, while cells migrating on two-dimensional substrates
may generate protrusions in all planar orientations. The measured retrograde flow velocity
can then be compared with predictions of the biophysical model. Observations by Jurado
et al. and Vicente-Manzanares et al. support the relation between actin retrograde flow,
network extension rate and cell velocity as formulated in Eq. 5.20 but I am not aware of
any such data for MDA-MB-231 cells [83, 252].

Future work should also address cell-to-cell variability within the framework of our
biophysical model. The variability in this chapter was modelled by drawing from distribu-
tions of parameter values with a variability of ±5%, see Tab. B.2. We did not discriminate
between different sources of variability but applied the 5% spread to all model parameters.
Although this resulted in an ensemble of simulations similar to the experimental data, a
more nuanced approach would be preferable. To this end, the approach discussed in
Chapter 4 could provide insight into the sources and magnitudes of variability with respect
to the model parameters. This would help answer the question which parameters are
similar for all cells of a given population and which parameters are highly depended on
the individual cell.

For this study, we thoroughly tested our biophysical model against trajectories of
MDA-MB-231 cells. Since the model constituents are well established for a number of
other cell lines and the model reproduces universally observed phenomena such as the
adhesion-velocity relation, multistability and the UCSP, we hypothesise that our model is
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universally applicable for mesenchymal cell migration. However, this hypothesis needs to
be tested by analysing more and different cell lines on 1D lanes.

The model offered an explanatory connection between the biological processes that
make up the model constituents and the resulting motile dynamics. This connection
may be used to retrieve cell-specific parameters that explain differences between cell
populations, as well as characterise the cytoskeletal mechanisms behind cell migration.
However, this requires parameter optimisation in the context of non-linear stochastic
systems, which poses a challenging problem. A solution to this problem is presented in
the following chapter.



Cell-Mechanical Parameter Estimation
using Simulation-Based Inference

For this chapter, I applied simulation-based inference (SBI) to identify cell-specific param-
eters influencing migration in healthy and cancerous human epithelial cell lines, MCF-10A
and MDA-MB-231, respectively. Using 1D trajectory data from automated imaging on
micropatterned fibronectin lanes, a neural density estimator (NDE) was trained to infer
parameters related to cell dynamics. The results revealed significant differences in actin
polymerisation and protrusion length between the two cell lines. SBI effectively captured
the effects of two cytoskeletal inhibitors, offering insights into cytoskeletal mechanics and
their role in cell motility, which is crucial for understanding metastasis in cancer biology.
The content of this chapter is based in large parts on our preprint “Cell-mechanical param-
eter estimation from 1D cell trajectories using simulation-based inference” by J.C.J. Heyn,
M. Atienza Juanatey, M. Falcke and J.O. Rädler [4] to which I contributed in investigation,
data curation, visualisation and writing.

Automated time-lapse acquisition and image analysis of cells in 1D confinement give
access to large sets of 1D single cell trajectories, as I have shown in previous chapters.
When combined with mathematical modelling, these data sets can provide insights into
the mechanisms of cell migration. One such mathematical model is our biomechanical
model first introduced in Schreiber et al. 2021 [1] and extended in Amiri et al. 2023 [2].
As could be shown, the model quantitatively captures observed phenomena such as
the biphasic adhesion velocity, the UCSP, and the characteristic motile states (as well
as their transitions) in good agreement with experimental data. However, the non-linear,
inherently stochastic nature of our biomechanical model presents significant challenges,
as the impact of parameter variations is often non-intuitive. Consequently, parameter
optimisation becomes both mathematically and conceptually difficult, with the high dimen-
sionality of the problem rendering rigorous Bayesian inference computationally impractical.
This problem, of course, exists not only for our own model, but also for most complex
biomechanical models [138, 183, 184, 268]. As a result, researchers frequently rely on
intuition or trial-and-error methods for parameter exploration, which are labour-intensive
and unsystematic. A systematic and scalable framework for inferring parameters from
large-scale cell motility datasets would enable data-driven insights into the regulatory
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networks governing cell motility. In recent years, advances in the field of machine learning
made new tools available that estimate optimal parameter sets of mechanical models
based on large sets of training data. One such promising tool for parameter optimisation
is simulation-based inference. As described in Fundamental Concepts SBI is based on a
neural network architecture called neural density estimator (NDE). To train SBI, parameter
sets are drawn from the prior distribution, which represents a range of candidate values,
to generate simulated data using the mechanical model. Subsequently, the deep neural
network is trained to infer the parameters that govern the simulated data. Once the neural
density estimator is trained, it is applied to the experimental data to estimate the posterior
distribution of the underlying parameters. This approach has already been adopted in
several studies as a systematic method of parameter optimisation in mechanistic models
[209, 213, 269, 270]. However, we are the first, to our knowledge, to apply SBI in the
context of 1D cell migration.

1 SBI Correctly Estimates Parameters of Simulated Data
We started by simulating 1D cell trajectories of 24 h length, using the biomechanical
model as described in Amiri et al. [2]. Initial attempts with trajectories of shorter durations
had resulted in broad posterior distributions with smeared out peaks (data not shown). We
divided the simulated data into a training and a test data set. The neural density estimator
was trained on the training data set with the goal to estimate a posterior distribution for
each free parameter from a single trajectory with a known uniform prior, see Materials and
Methods. We then tested the trained neural density estimator on simulated data from the
test data set to which the network had not been exposed to. We compared the inferred
posterior distributions to the parameter sets that were actually used to simulate the data.
It became quickly apparent that the number of free parameters that are the target of the
neural density estimator had to be reduced because the estimated posterior distributions
were too smeared out and the true parameter values could not be identified precisely,
see Fig. 6.1 for the inference results for 10 free parameters. The problem, that density
estimation becomes drastically harder as dimensionality increases is called the curse
of dimensionality [271, 272]. Consequently, we reduced the complexity of the model
by fixing a number of parameters to constant values and removing some degrees of
freedom that had a negligible influence on the model’s dynamics, see Supplementary
Information. The 5 most influential model parameters that we chose as targets for SBI
are the following:

• 𝐿0: resting protrusion length,
• 𝑉0

e : actin network extension rate,
• 𝑘on: on-rate for dynamic integrin signalling,
• 𝜅max: maximum friction coefficient for integrin signalling,
• 𝑣slip: critical retrograde flow velocity.
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A complete table of the fixed and variable parameters along with a short description and
the prior values can be found at the Supplementary Information, Table B.3.

With the now reduced number of free parameters, we used 1,000,000 simulated
trajectories with known parameter values to train an NDE to infer the posterior distributions
of the 5 parameters listed above. The confidence level of the NDE was determined via
simulation-based calibration, see Supplementary Information. We found the trained NDE
to be unbiased and well calibrated, see Fig. B.7. To test the accuracy and predictive power
of the NDE we exposed it to test trajectories, i.e. simulated data with known parameters.
Just as for experimentally observed data, the test data would exhibit directional changes,
varying cell velocities and oscillating protrusion lengths. An example of a simulated
trajectory is displayed in the lower left corner of Fig. 6.2. The parameter set used for this
particular trajectory is indicated as vertical orange lines in the plots displaying the posterior
distributions on the diagonal and as white crosses in the plots of joint distributions in the
right-hand corner of the figure. The x-axes of the plots on the diagonal represent the
parameter values with the range set by the prior, the y-axes represent the probability 𝑝(𝜃𝑖).
The uniform posterior is indicated by grey horizontal lines for each parameter and the
inferred posterior distribution 𝑝(𝜃𝑖 | x) by bold blue lines. All inferred distributions display
a symmetric, pronounced peak, centred around the true parameter value as indicated by
the orange line. This result validates our approach as it implies an accurate and unbiased
inference. For the heat maps on the off-diagonal plane, the colour indicates the joint
probability 𝑝(𝜃𝑖, 𝑗 | x) with dark blue being the lowest probability and bright yellow the
highest. The sensitivity with which parameters are inferred shows variation. Parameters
such as the resting cell length 𝐿0 and the network extension rate 𝑉0

𝑒 , which display a sharp
prior distribution, can be estimated with particular precision. To summarise, utilising a
simulated trajectory with known parameters on the trained NDE accurately infers posterior
distributions for five free parameters that encompass the desired parameters with the
method’s precision.

2 Parameter Estimation from Experimental Trajectories
After the successful validation of the approach on simulated data, we applied the NDE
to experimentally obtained trajectories. The NDE estimates the posterior probabilities
for the experimental trajectory. Unlike for the simulated data, there is no ground truth or
known true parameter set 𝜃true on which the estimates can be validated. Consequently,
we used the most likely parameter set to simulate new trajectories to see if the inference
results were plausible. The simulated trajectory was then subjected to the NDE. This
routine tests if the biophysical model and the parameter sets inferred by the NDE capture
the motile dynamics of the cells.

Examples of 24 h long experimental trajectories xE(𝑡) of MDA-MB-231 cells are shown
in Fig. 6.3 (A, E). The trajectory in Panel (A) displays little movement of the cell’s nucleus
but constant oscillations of the cell’s protrusion lengths, corresponding to an SO-state.
In Panel (E), the trajectory is constantly moving in the same direction but slows down
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Figure 6.1: A large number of free parameters leads to imprecise inference results. A neural density estimator
trained to infer the posterior probabilities 𝑝(𝜃 | x) of 10 free parameters is applied to a simulated test trajectory.
The line plots on the diagonal represent the posterior distribution for each individual parameter 𝑝(𝜃𝑖 | 𝑥),
the 2D heatmaps above the diagonal show the distributions for each pairwise-combination of parameters
𝑝(𝜃𝑖 𝑗 | 𝑥) with blue representing the lowest and yellow the highest probability for a parameter combination.
Vertical lines in the plots on the diagonal and white crosses in the plots on the off-diagonal represent the
values that were used for the simulated trajectory. The pairwise distributions indicate correlations such as
for 𝐵 and any other parameter or for 𝑣rc and 𝑉0

e . The fact that the posterior distributions are smeared out
across the range of prior distributions, as marked by the range of the x-axis, indicates that the imprecision
of the NDE is in the order of the system size and consequently offers little insight.Adapted from Heyn,
Atienza Juanatey et al. 2024 [4].
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Figure 6.2: Simulation-based inference predicts the correct parameter values for simulated trajectories.
The distance-time graph in the lower left corner shows a simulated trajectory as described by eqs.5.2-5.4.
The blue line represents the position of the nucleus 𝑥c (𝑡) and grey lines represent the front and back of the
cell 𝑥f,b (𝑡). The plots on the diagonal show the corresponding posterior probabilities 𝑝(𝜃𝑖 | x) as inferred by
the trained neural density estimator (NDE) as blue lines. The limits of the x-axis correspond to those of
the prior, see Table B.3. Vertical orange lines indicate the true parameter values used for the simulated
trajectory shown here. Horizontal grey lines represent the uniform prior. The heatmaps in the upper right
hand corner show the posterior distributions for each pair of parameters 𝑝(𝜃𝑖, 𝑗 | x) with the true parameters
plotted as white crosses. Adapted from Heyn, Atienza Juanatey et al. 2024 [4].
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noticeably after ca 9 h. At the same point in time the initial length oscillations stop and
the cell length remains constant for the rest of the observation time. Panels (B,F) show
the posterior distributions 𝑝(𝜃E | xE) as inferred by the NDE. For both trajectories, the
posterior distribution for the actin network extension rate 𝑉0

e is sharply peaked, whereas
the distribution for 𝑣slip is quite expansive and nearly resembles a uniform posterior
distribution (indicated by the horizontal grey line). The resting protrusion length 𝐿0 displays
a pronounced peak for trajectory (A), which is in the same motile state throughout
the observation time. For the trajectory (E), which changes its motile behaviour, the
distribution for 𝐿0 is much broader. The integrin parameters 𝑘on and 𝜅max are comparable
for both trajectories. Panels (C,G) show simulated trajectories sampled from the most
likely parameter values in Panels (B,F), respectively. The simulated trajectories display a
noticeable similarity to their experimental counterparts. The overall net displacement (or
lack thereof for Panels (A,C)), speed and length oscillations appear to be well captured,
particularly for Panels (A,C). However, the transition from oscillating to steady protrusion
lengths in Panel (E) is not visible in Panel (G). The posterior distributions for the simulated
trajectories can be seen in Panels (D,H). The distributions are very similar to those in
Panels (B,F), respectively. However, the inferred distributions for 𝑘on in (D) and for 𝑣slip in
(H) are not better than the uniform prior. This means that the NDE either could not infer
any more information from the simulated data regarding the concerned parameters or that
all values within the prior could lead to such simulation results. Additionally, the fact that
the posterior distributions for the experimental trajectories and simulated trajectories vary,
implies that the biophysical model, while successfully reproducing all observed motile
states, does not reproduce all aspects of the experimental data which the NDE uses
to infer parameter distributions. Some details seem to get lost, which results in slightly
different trajectories.

However, overall, SBI can reliably infer probabilistic distributions of parameters for
single cell trajectories. Following this, we demonstrate that the parameter sets inferred
for populations of different cell types provide a significant characterisation, allowing the
distinction between cell lines.

3 Inference of Cell Type Specific Properties
The large intrinsic cell-to-cell variability means that single-valued metrics do not charac-
terise cell types well, see Chapter 4. A good characterisation of the motile behaviour of
one cell might be completely wrong for another cell of the same cell line. It seems there-
fore natural to compare not single values but distributions of properties when comparing
different ensembles of cells. To this end, we analysed NMDA = 85 single cell trajectories
for the breast cancer cell line MDA-MB-231 and NMCF = 301 single cell trajectories for the
healthy breast epithelia cell line MCF-10A. Ten randomly chosen trajectories per cell line
can be seen in Fig. 6.4 (A,B). The invasive MDA-MB-231 cells generally display a more
active motile behaviour compared to that of the healthy cell line MCF-10A. However, there
is also a fraction of MDA-MB-231 cells that is spread and does not show any displacement,



3 Inference of Cell Type Specific Properties 69

time (h)

x 
(µ

m
)

x 
(µ

m
)

E   Experiment F   Experiment

H   SimulationG   Simulation

time (h)
0 10 20

0 10 20

L0 kon vslip κmaxVeV
0

L0 kon vslip κmaxV0Ve

x 
(µ

m
)

x 
(µ

m
)

A   Experiment B   Experiment

D   SimulationC   Simulation

time (h)
0 10 20

time (h)
0 10 20

L0 V0 kon vslip κmaxVe

L0 kon vslip κmaxV0Ve

NDE
p(𝜃E|xE)

NDE
p(𝜃S|xS)

xS(𝜃true)

NDE
p(𝜃E|xE)

NDE
p(𝜃S|xS)

xS(𝜃true)

Figure 6.3: Inference of posterior probabilities for experimental data. (A) A typical 24 h long trajectory of an
MDA-MB-231 cell. The cell shows little displacement but oscillatory changes in its protrusion lengths. The
histograms in panel (B) display the posterior distributions 𝑝(𝜃i | x) for the five free parameters as inferred
by the neural density estimator (NDE). Horizontal grey lines represent the uniform prior, again. The most
likely parameter values 𝜃true for the trajectory in (A), i.e. the maximum values of the distributions in (B), were
used for the simulation of the trajectory in (C). Just like the experimental trajectory, the simulated trajectory
displays oscillating protrusions and little displacement. (D) The NDE correctly estimates the values of 𝐿0
and 𝑉0

e but does not provide a better estimate for 𝑘on than the uniform prior. Panels (E-H) are analogous
to panels (A-D). However, the trajectory in panel (E) is constantly moving albeit at different speeds. The
protrusion lengths in (E) oscillate for the first 9 h before staying relatively constant. The inferred posterior
distribution for 𝑉0

e is again prominently peaked (F). The simulation in (G) captures the movement of the
cell’s nucleus well and much better than the protrusion oscillations. The posterior distributions in (H), again
peak nicely for 𝐿0 and 𝑉0

e but are no better than the uniform prior for 𝑣slip. Vertical scale bars in (A, C, E, G)
represent 100 µm, vertical orange lines in (D, H) show the most likely parameter set 𝜃true. Adapted from
Heyn, Atienza Juanatey et al. 2024 [4].
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see also Chapter 5. The NDE estimated a posterior distribution for the model parameters
for each trajectory individually. These posterior distributions were merged for each cell
line, resulting in an ensemble distribution of cytoskeletal parameters, see Fig. 6.4 (C).

The ensemble distributions reveal that the primary differences between the MDA-MB-
231 and MCF-10A cell populations lie in the distribution of the parameters 𝐿0 and 𝑉0

e , with
MDA-MB-231 exhibiting a notably faster actin network extension rate. Both populations
show a wide and almost uniform distribution concerning the parameters 𝑘on and 𝑣slip.
Either the NDE can’t infer these parameters with any certainty or each trajectory has
it’s own distinct values for these parameters, resulting in a uniform distribution when
averaged over the population. The examples in Fig. 6.3 suggest it to be a combination
of the two. Both cell lines display a similar peak in the distribution of 𝜅max, suggesting a
consistently preserved signalling pathway among the cell lines.

In summary, determining five cell-type-specific model parameters via SBI facilitates
an objective and automated analysis of cell characteristics. The resting length 𝐿0 and the
extension rate of the actin network 𝑉0

e emerged as the most notable cell parameters.

4 SBI Analysis on the Effect of Inhibitors
To evaluate SBI’s potential further, we expose both cell lines to the cytoskeleton inhibitors
latrunculin A and Y-27632. Latrunculin A interferes with f-actin polymerisation; Y-27632
specifically targets the Rho-associated protein kinase (ROCK) within the Rho/ROCK
pathway, see Fundamental Concepts. We use the trained NDE, without applying any pre-
existing knowledge about the inhibitors’ mechanisms, to analyse the data sets. Treatment
with latrunculin A, when compared to the untreated control group in both MDA-MB-231
and MCF-10A cells, leads to changes in the estimated posterior distributions in only one
parameter. Only the actin polymerisation rate (𝑉0

e ) shows a significant decrease upon
treatment, see Fig. 6.5 (A). Similarly, Y-27632 decreases the polymerisation rate, too,
but additionally also shifts the probability distribution of the resting protrusion length 𝐿0
towards greater values, Fig. 6.5 (B).

The changes inferred in the parameter probability distribution align well with the
expected effects of the inhibitors. For latrunculin A, we anticipate a reduction in the actin
network extension rate 𝑉0

e because latrunculin A binds specifically to the barbed ends of
actin filaments. In our model, all other parameters are unrelated to actin polymerisation and
should remain unaffected by latrunculin A. The resulting distribution functions correspond
closely to these expectations.

The Rho/ROCK pathway is a crucial regulatory element in mesenchymal cell migra-
tion, exhibiting complex effects. ROCK phosphorylates LIM kinases, which subsequently
phosphorylate cofilin, a critical regulator of actin turnover that depolymerises f-actin. By
phosphorylating cofilin, ROCK/LIMK effectively inhibits actin depolymerisation. Addition-
ally, ROCK enhances myosin II activity and contractility by preventing myosin light chain
(MLC) dephosphorylation. Moreover, Rho and ROCK regulate cell-substratum adhesion
by promoting the assembly and turnover of focal adhesions [56].
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Figure 6.4: Inference of cell type specific properties. (A,B) Shown here are 10 randomly chosen experimental
trajectories for the breast cancer cell line MDA-MB-231 and the healthy breast epithelia cell line MCF-10A,
respectively. Trajectories of the invasive MDA-MB-231 cell line generally display a bigger motile activity
compared to that of the healthy cell line MCF-10A. (C) Ensemble posterior distribution of estimated model
parameters via SBI. The plots show the ensemble average of all sampled points for all trajectories of a
given population (NMDA = 85, NMCF = 301). The parameters that stand out most distinctly are the resting
length 𝐿0 and the actin polymerisation rate 𝑣0

e . Adapted from Heyn, Atienza Juanatey et al. 2024 [4].
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Srinivasan et al. observed that the inhibition of ROCK by Y-27632 in healthy primary
keratinocytes (HPKs) and epidermal carcinoma cell line (A-431 cells) resulted in the
loss of migration, contractility, focal adhesions, and stress fibres [273]. Our SBI analysis
indicates that Y-27632 reduces the polymerisation rate and prolongs the resting length of
cells, likely due to diminished contractility, which aligns with the general understanding
of Rho/ROCK signalling. It is unexpected, though, that Y-27632 does not lead to clear
changes in focal adhesion parameters 𝑘on and 𝜅max which is what we would expect
from the ROCK inhibitor. However, these parameter distributions appear too broad and
insensitive to show treatment effects.

In summary, we demonstrate that SBI effectively captures the effects of the inhibitors
latrunculin A and Y-27632 within an interpretable parameter space. An important finding
is the observation that the consistent reactions of both cell lines to the same treatments
suggest a common underlying mechanism.

5 Discussion
Estimating the optimal parameter set of complex, non-linear models, such as our biophys-
ical model of single cell motility, for real-world data is a mathematically and conceptually
challenging problem. We introduced simulation-based inference (SBI) as a method to
solve this problem. Using our biophysical model as simulator, we trained a neural density
estimator (NDE) on 1,000,000 simulated cell trajectories to estimate posterior distribu-
tions over the biophysical model parameters. We showed that the trained NDE could
successfully and without bias estimate posterior distributions based on observed data.
These distributions suggest the most probable values for the parameters, while also mea-
suring uncertainty and highlighting possible interactions among them. SBI can not only
characterise single trajectories but whole populations of cells, too. Because the inferred
parameters of the mechanistic model are interpretable, the results allow a meaningful
characterisation and comparison of migratory phenotypes and cytoskeleton inhibitors.

While SBI proved overall successful in this context, we also identified a number of
limitations to the approach. The initial number of free parameters had to be reduced to
improve the certainty of the inference procedure. Noise obfuscated the true parameter
set underlying the trajectories. As discussed in Chapter 4, noise can be found both on
a population level (cell-to-cell variability) and on a single cell level. While intra-cellular
sources of noise are inevitable and even a necessary aspect of a good characterisation
of cell motility, external sources of noise and the influence of latent variables should
be eliminated as far as possible. The experimental setup for this study was designed
with standardisation and reproducibility in mind. However, it is questionable whether the
fixation of the parameter for the fibronectin density 𝐵 of the model is completely justified
by the experiment because small local inhomogeneities can already influence the motile
behaviour of cells [1, 2, 171].

In line with the results of Chapter 4, we anticipate that enhancing the data foundation
by improving spatial and temporal resolution will further advance the SBI methodology to
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Figure 6.5: Ensemble posterior distribution for trajectories of cells treated with cytoskeletal inhibitors. (A)
MDA-MB-231 and MCF-10A cells were exposed to latrunculin A (LatA), an inhibitor of actin polymerisation,
and a control treatment (ctrl). The plots show the ensemble posterior distributions for the five model
parameters as estimated by the neural density estimator (NDE). Latrunculin A treatment leads to a
significant decrease of the most likely ensemble values for the actin network extension rate 𝑉0

e for both cell
lines. All other posterior distributions remain unchanged. (B) Treatment with the ROCK-inhibitor Y-27632
(Y27) has a similar effect on 𝑉0

e as latrunculin A. However, Y-27632 also shifts the resting protrusion
length 𝐿0 towards larger values. MDA-MB-231 experiments: 5 replications, NMDA_ctrl = 85, NMDA_LatA = 129,
NMDA_Y27 = 96; MCF-10A experiments: 4 replications, NMCF_ctrl = 301, NMCF_LatA = 465, NMCF_Y27 = 507.
Adapted from Heyn, Atienza Juanatey et al. 2024 [4].
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a certain degree. In our study, we achieved a balance between spatio-temporal resolution
and the number of cell trajectories. A higher spatio-temporal resolution inevitably leads to
a lower number of cell trajectories per measurement, see Chapter 3. The crucial factor for
data quality is the length of each trajectory; short trajectories lack sufficient information
to confidently deduce model parameters, whereas longer ones are eventually restricted
by the cell division cycle. Increasing the number of trajectories of the same length does
not necessarily improve SBI’s ability to characterise population ensembles because the
information content saturates. It also stands to question whether increasing the temporal
resolution (2 min for this study) would lead to better inference results. Whereas the
generalised Langevin equation (GLE) (Chapter 4, Eq. 4.1) aims to capture dynamics of
all time scales, the biophysical model presented in Chapter 5 was designed with the time
scale of a few minutes to several hours in mind. Dynamics on the time scale of seconds,
such as membrane ruffles, are not actively accounted for and experimental data including
these dynamics might therefore actually not improve SBI. Consequently, future research
should focus on expanding the dimensions of the trajectory by incorporating additional
metrics. Sensitivity analysis of the biophysical model suggests that measurements like
actin retrograde flow velocity or focal adhesion density could greatly enhance SBI’s
accuracy. The simulator, i.e. the biophysical model, is no black box and knowledge about
variables that have so far been treated as latent can be leveraged to increase the certainty
of the NDE. The NDE could be tweaked to sample only data in which latent states, such
as e.g. force balances, adhere to the physical constraints of the model. To this end, it
would also be worthwhile to analyse the summary statistics of the trajectories that are
calculated during the feature extraction step, see Fig. 2.6. Investigating the summary
statistics of the trajectories might reveal which extracted features are most crucial for NDE.
A complementary approach would be to use an autoencoder [274–276]. The autoencoder
compresses the data into a low-dimensional vector before expanding it again to represent
the original data. This process could be leveraged to find coordinates and governing
equations that might describe cell trajectories even better than our current biophysical
model. Physics-informed neural networks (PINNs), neural networks that respect the laws
of physics, are currently a very actively researched topic [277–281]. The key idea here is
to create a loss function that penalises results of the neural network that do not adhere to
physical laws or prior domain knowledge. Insights from this research might both support
solving the inverse problem and guide the design of mathematical models of cell motility.

High-throughput motility assays are vital for identifying cell-specific characteristics. The
standardised confinement of The First World Cell Race, by Maiuri et al., is used to evaluate
the speed and persistence of various cell lines [32, 142, 216, 282]. Unlike model-free AI
methods, SBI, based on a mechanistic model, infers interpretable features of cell motility.
Automated platforms that use SBI with established models can develop standardised
parameter databases, potentially advancing cell mechanics, pharmaceuticals, and clinical
research [229, 231]. SBI can extend to other cell motility models, such as those that
capture cell protrusion dynamics on shorter time scales [127, 283]. Overall, any complex
dynamic phenomenon that can be statistically quantified and represented with non-linear
partial differential equations is amenable to SBI.
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The SBI analysis of cell trajectories presented in this study integrates hypothesis-
driven modelling with AI-enabled analysis, which makes it highly beneficial for enhancing
our understanding of locomotion.
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Conclusion and Outlook

In this thesis, I presented an automated time-lapse analysis of single-cell migration us-
ing a high-throughput migration platform and a biophysical model. The comparison of
experimental data to models, which required reproducible and standardised conditions
as well as large-scale statistics, was made possible by this automated analysis. The
scanning time-lapse setup of 1D FN lanes enabled the collection of an extensive number
of single-cell trajectories. The data was used to investigate cell-to-cell variance, to ex-
plore the broad spectrum of motile behaviour and to scrutinise a cell-mechanical model.
We applied a machine-learning approach to assign parameter values of the model to
characterise different cell types and identify the site of action for two drugs. This work en-
ables ample testing of universality claims by allowing rapid analysis of numerous cell types.

We found that previous throughputs of hundreds of single-cell trajectories per week
on a comparable setup by Schreiber could be increased to several thousand trajectories
in the same time [34]. The key to this improvement was the fabrication of 1D FN-coated
lanes by photopatterning, in combination with deep learning-based image analysis. Pho-
topatterning improved the quality of the lanes compared to the microprinting method
in terms of the homogeneity of the FN coating, resulting in a lower number of rejected
imaging positions and hence more imaged cells. In summary, the current state of photoac-
tive microfabrication for cell migration is relatively advanced, attributed to its efficiency,
cost-effectiveness, and reproducibility. However, the present photopatterning protocol still
involves many manual steps that are time-consuming and error-prone. This limitation can
be mitigated by switching from a mask-less photopatterning protocol to a mask-based
version. Parallel UV-illumination and sufficiently sized masks render scanning the sub-
strate, a characteristic of mask-less devices like the Primo module, superfluous and make
it possible to treat multiple substrates in parallel.

In its present state, the migration assay is designed primarily for simplicity, sometimes
at the cost of physiological resemblance. More physiological conditions could be achieved
by changing some of the experimental conditions. The imaging dishes used in this thesis
had a plastic cover slip bottom. This facilitated reproducible protein coating but with a
Young’s modules in the range of 25 GPa it is several orders of magnitude stiffer than
epithelial tissue, which covers a range from a few kPa to a few MPa [284]. This difference in
stiffness is problematic because cells sense and respond to the stiffness of their substrate
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which may change their shape and morphodynamics [285]. A solution would be to coat
the substrate with PDMS to reduce its stiffness before applying a micropattern [286].
Furthermore, the complexity of in vivo environments can be modelled by exchanging the
fibronectin-only coating with a coating that contains other ECM proteins, too, such as
collagen and fibrinogen. To further increase the versatility of the platform, the imaging
dishes could be replaced by channel slides, i.e. imaging slides that carry six parallel
channels, each with its own in- and outlet. The channels would add the functionality of
a microfluidic setup, including the possibility to exchange reagents, vary the flow rate
of the cell culture medium and change the viscosity of the medium, all live during the
measurement. This can be used to scrutinise cell-mechanical models as I will discuss
further down.

The biophysical model presented in this thesis uses a novel combination of well
established model constituents. We assume the force balance, the noisy clutch and
integrin signalling to be ubiquitous in mesenchymal cells and, consequentially, our model
to be universal. However, the universality of the model needs to be tested. To this end,
future work should involve the analysis of additional cell lines, Fig. 7.1 (A). The cell-
mechanical parameter estimation via simulation-based inference (SBI) presented in
Chapter 6 can support the validation of the model. SBI can determine the optimal model
parameter set for each cell line assuming that the model is applicable. Should this not
be the case, the model’s simulations will not resemble the experimental trajectories,
disproving universality.

Another, equally important approach to determine the limitations of the model, is
to scrutinise its constituents. Essential for the adhesion-velocity relation of the model
is the assumption that adhesion strength directly correlates with ligand density. This
could be experimentally verified by measuring the density of FAs at a ligand density
step or gradient, Fig. 7.1 (B). For a quantitative determination of the density of FAs,
super-resolution microscopy would be advisable [287–291].

The drag factor 𝜁 of our biophysical model mainly entails interactions of the cell
with its environment via integrins. However, in contrast to the friction coefficient 𝜅, the
drag coefficient also encompasses resistive forces caused by other factors such as the
medium viscosity, Fig. 7.1 (C). Pittman et al. could show that cells can use ruffles of the
cell membrane to sense extracellular fluid viscosity [292]. On a microfluidic setup, it would
be possible to detect morphodynamic changes of cells depending on the viscosity of the
medium, which would be primarily connected to the drag coefficient in the model.

Measurements of actin retrograde flow, on the other hand, would be invaluable for
experimentally confirming the 𝜅 dynamics of the model, Fig. 7.1 (D). Appropriate methods
include fluorescent recovery after photobleaching (FRAP) and fluorescence speckle
microscopy [176, 252, 254, 264–267]. FRAP uses photobleaching to add a mark to the
fluorescently labelled actin network. Time-lapse measurements make it possible to follow
the photobleached area and quantify retrograde flow. For an example of FRAP in B16-F1
mouse cells, see Fig. B.8. If the retrograde flow velocity were measured in MDA-MB-231
cells, it could be contrasted with the biophysical model predictions.

Furthermore, the biophysical model and the cell migration platform can be used to
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elucidate the role of intracellular components. A worthwhile target would be the uncon-
ventional actin motor protein that is myosin VI (myo6), which studies imply to be linked to
cancer progression [293–295]. Myosin VI is an actin motor that travels, unlike all other
identified myosins, towards the minus end of the polarised actin filament [73]. Its functions
include cargo transport during endocytosis and structural support at the Golgi complex
but it is also implied in cell migration [296]. Together with the group of Claudia Veigel we
started to systematically analyse the effect of myo6 KO and myo6 overexpression on cell
migration, see Fig. B.9. To the naked eye, the trajectories of RPE WT display a similar
behaviour to the RPE myo6 KO and the RPE myo6 GFP mutants, see Panels (A-C). This
impression is supported by an analysis of the motile states for all three cell lines, see
Panel (D). However, on closer inspection, the RPE myo6 KO cells show a slightly impaired
migration velocity, as can be seen in Panel (E). The next steps would be to quantify the
model parameters using SBI. Differences in parameter values for these cell lines would
provide information about the site of action of myo6 during cell migration. The localisation
of the GFP-labelled myo6 motors would complete this study.

This thesis concentrated on single-cell migration. Nonetheless, with slight modifica-
tions to the experimental setup and data analysis, it could be adapted to investigate
collective cell behaviour. Interestingly, the raw data already includes cell-cell interactions,
but these were purposefully excluded from the analysis. Nevertheless, there were ap-
parent differences in the interaction of cells depending on the cell type. While MCF-10A
cells displayed a tendency to form trains and follow each other similar to the behaviour
reported by Vercruysse et al. [112], RPE cells showed no apparent interaction, but simply
glided past each other. Due to the ubiquity of cell-cell interaction in vivo, an extension of
our cell-mechanical model to include an interaction term would be a logical step to better
understand cell migration.

To conclude, the single-cell migration analysis discussed in this thesis offers an important
platform for advancing future research both horizontally, by exploring the universality of
models and relations, and vertically, by achieving a deeper and more detailed compre-
hension of cell migration.
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Figure 7.1: Next steps to scrutinize the biophysical model as presented in Amiri et al. (2023) [2]. (A) More
cell lines need to be analysed to validate the universality of the model. (B) Quantifying the density of
focal adhesions as a function of ligand density and testing the universality of the model by probing other
ECM proteins would further strengthen the model. (C) Life at low Reynold’s number means viscosity is
non-negligible. Applying microfluidics to change the viscosity of the medium decouples viscous 𝜁 drag from
adhesion. (D)Fluorescent recovery after photobleaching, illustrated in Fig. B.8, measures actin network
dynamics, playing a crucial role in confirming the 𝜅-dynamics.



Materials and Methods

1 Micropatterning
We confined the motion of cells to one dimension through micropatterns of the extracellular
matrix protein fibronectin (FN). First, we labelled the protein using a fluorescent dye that
would facilitate the detection and visual quality control of the micropattern as well as allow
for a quantification of the density of the patterned protein later on. Second, we fabricated
the desired micropattern onto a substrate using either a micro contact technique or a
photolithography technique. Third, depending on the goal of the experiment, the density
of FN was determined via fluorescent calibration.

1.1 Protein Labelling
We resuspended lyophilised human FN (YO Proteins, Ronninge, Sweden) in sterile
phosphate-buffered saline (PBS). Subsequently, we labelled the protein with one of two
fluorescent dyes. The protein was conjugated with either Alexa Fluor 488 5-SDP ester,
cat. no. A30052 or Alexa Fluor 647 NHS ester, cat. no. A20006 (Thermo Fisher Scientific,
Waltham, MA, USA). After the conjugation reaction, we separated the conjugate from free
dye using gel filtration chromatography. As gel filtration columns we used PD MiniTrap G-
25 (GE Healthcare Bio-Sciences AB, Uppsala, Sweden) or Zeba Spin Desalting Columns,
cat. no. 87768 (Thermo Fisher). We determined the concentration of the FN-solution
via optical absorption at 280 nm either on a Nanodrop (Thermo Fisher) or on a Cary
60 UV-Vis spectrophotometer (Agilent, Santa Clara, CA, USA) and via a colorimetric
Bradford assay. For the Bradford assay we used the Pierce Bradford Plus Protein Assay
Reagent, cat. no. 23236 (Thermo Fisher) and the protein standard bovine serum albumin
(BSA), CAS RN 9048-46-8 (Merck, Darmstadt, Germany).

1.2 Microcontact Printing
Imaging dishes with a polymer coverslip bottom (ibidi, Gräfelfing, Germany) were coated
with fluorescently labelled FN. To achieve this, a negative mould was fabricated in our
in-house clean room. The mould consists of a silicon (Si) wafer and a spin-coated
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layer of either the positive photoresist AZ 40XT (Merck) or the negative photoresist SU-
8 (Kayaku Advanced Materials, Westborough, MA, USA), depending on the desired
dimensions of the stamp. Using a scanning UV-laser device, the ProtoLaser LDI (LPKF
Laser & Electronics, Garbsen, Germany), we illuminated a positive (or negative) pattern
on the positive (or negative) photoresist. After baking and curing the photoresist, the
microstructured Si wafer could be used as a mould. We filled the mould with the polymer
polydimethylsiloxane (PDMS) with a monomer-to-cross-linker ratio of 10:1, degassed
the polymer, cured it at 50 °C for a few hours, removed it from its mould and cut it into
stamps. Then the stamps underwent a UV-treatment (PSD-UV, novascan, Boone, IA,
USA) for 5 min before we incubated them with a diluted solution of fluorescently labelled
FN. For most measurements the concentration of the solution was in the range of 1-
100 µg/ml. Subsequently we washed the coated stamps with purified water and placed
them on the UV-treated coverslip bottoms of the imaging dishes with the protein coated
side facing the substrate to transfer the protein. We filled the negative space between
the adhesive structures of the pattern with a non-fouling poly(ethylene glycol) (PEG)-
solution to block the formation of adhesion sites of cells in this area. If not specified
otherwise, the micropatterns that were fabricated using the microcontact printing protocol
were homogeneous lanes with a constant width of 15 µm.

Alternating fields of fibronectin densities, such as the ones described in Adhesion-
Velocity Relation were produced via an extra stamping step. For the two-proteins version
of the protocol, the protein of the first stamp was transferred onto a second stamp. Then,
a protein solution (typically of a different concentration than the first one) was filled in-
between the two stamps. The second stamp than transferred the two-protein pattern onto
the substrate and the protocol continues just like in the standard version.

1.3 Photopatterning
The protocol for the photolithographic micropatterning of proteins on imaging dishes starts
with the application of a non-fouling coating of the coverslip’s surface that gets selectively
removed at a later stage. To this end, we placed a drop of 0.01% (w/v) poly(L-lysine) (PLL)
(Merck) in an ibiTreat 𝜇-dish (ibidi) to cover the bottom’s negatively charged surface and
let it incubate for 30 min at room temperature. Afterwards we thoroughly rinsed the dish
with 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethane-1-sulfonic acid (HEPES) buffer (pH=8.3)
(Thermo Fisher) to remove excess PLL. Subsequently, we diluted PEG-SVA (Laysan
Bio, Arab, AL, USA) in HEPES buffer to a concentration of 100 µg/ml and applied it to
the surface. SVA is the ester that forms amide bonds between PLL and PEG, effectively
creating a non-fouling coating. Afterwards we rinsed the dish thoroughly with purified
water.

We diluted the photo-activator PLPP (Alvéole, Paris, France) in 99% ethanol so that
the PLPP gel could spread homogeneously on the surface of the dish. Next, the desired
micropattern was loaded onto the illumination device, which was a Primo 2 module
(Alvéole) mounted on an Eclipse Ti microscope (Nikon, Tokyo, Japan) and operated by
the dedicated Leonardo software (Alvéole). After a calibration step we brought the PLPP
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layer of the 𝜇-dish into the focus of the UV-LED of the Primo device. Then, the device
shined the pattern motif onto the 𝜇-dish using its digital micromirror device (DMD). Most
patterns had multiple repetitions of the motif resulting in the total dimensions of the pattern
being much bigger than the dimensions of a single DMD field. To be able to cover such
large areas the Leonardo software controlled the stage of the inverted microscope to
move the dish and illuminate the surface one field of DMD after another. For motifs of
a pattern that were larger than a single DMD we illuminated neighbouring fields in an
overlapping manner with gradients of light doses complementing each other in such a
manner that the resulting dose of the overlap would be exactly the same as in the centre
of the DMD field. The energy density of the UV beam could be tuned depending on the
desired protein density of the pattern. For most measurements we set it to 15 mJ/mm2.
After we had washed the 𝜇-dish thoroughly with purified water, we rehydrated the coating
with PBS for 5 min before we incubated the surface with a solution of fluorescently labelled
FN. After a thorough wash we incubated the pattern with PBS and stored the dishes at
7 °C until we seeded cells on them.

1.4 Determination of Fibronectin Density
We determined the density of FN proteins of the micropatterns via the intensity of their
fluorescent signal. We were able to do this by comparing the fluorescence intensity of
the pattern to that of a solution of FN of known concentration in a microfluidic channel of
known height. The microfluidic calibration slide was prepared in-house. The calibration
slide consists of a PDMS block with 5 channels of a defined height of 20 µm and inlets
on one side and outlets on the other side. The PDMS block was cast in a mould of cured
photoresist on a Si wafer and cured at 50 °C for a few hours. Afterwards we cut out the
PDMS block and bonded it onto a plasma treated glass slide. We filled the channels with
a dilution series of labelled FN and measured the intensity of the fluorescent signal on
the same microscopy setup and the same settings as for the cell migration experiments.
By fitting the intensity/concentration data with a linear function we obtained a calibration
factor that allowed to convert from fluorescence intensity to protein density.

2 Cell Lines and Cell Culture
The MDA-MB-231 H2B-mCherry and MDA-MB-231 H2B-mCherry Lifeact GFP cells
(gifts from Timo Betz, WWU Münster, Germany, now moved to Georg-August-University
Göttingen, Germany) were cultured in Leibovitz L-15 medium with 2 mM Glutamax (Thermo
Fisher) plus 10% fetal bovine serum (FBS) (Thermo Fisher) at 37 °C. The phosphate
buffered L-15 medium doesn’t require CO2 equilibration. Cells were passaged every 2-3
days using the cell detachment solution Accutase (Thermo Fisher). For experiments we
centrifuged the cell solution at 800 rcf for 3 min and resuspended the cells in medium. We
seeded about 5000 cells per dish. After 2–3 h, cells adhered to the micropatterns and
we exchanged the medium to L-15 medium without the pH indicator phenol red. We then
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transferred the samples to the microscope and started measurements within 1–2 h.
The MCF-10A cells (ATCC, Manassas, VA, USA) were cultured at 5% CO2 at 37 °C in

DMEM/F-12 medium including Glutamax (Thermo Fisher) supplemented with 5% horse
serum (Merck), 20 ng/ml human epidermal growth factor (Merck), 100 ng/ml cholera toxin
(Merck), 10 µg/ml insulin (Merck) and 500 ng/ml hydrocortisone (Merck). For passaging
we treated cells with Accutase for 15 min. For experiments we centrifuged at 500 rcf the
cell solution for 6 min and resuspended the cells in growth medium. We seeded about
5000 cells per dish. After 2–3 h, cells adhered to the micropatterns and we exchanged the
medium to growth medium containing the nuclear stain 25nM Hoechst 33342 (invitrogen,
Waltham, MA, USA). We then transferred the samples to the microscope and started
measurements within 1–2 h.

The hTERT RPE-1 CRL-4000TM cells, which in the following we refer to as RPE
(WT) (ATCC) and RPE MYO6 KO (KO achieved through CRISPR-Cas9 by Folma Buss,
University of Cambridge, Cambridge, UK and kindly provided by Claudia Veigel, LMU,
Munich Germany) cells were cultured in DMEM/F-12 medium including Glutamax (Thermo
Fisher) supplemented with 10% FBS (Thermo Fisher) at 5% CO2 at 37 °C. Cells were
passaged every 2-3 days using Accutase (Thermo Fisher). For experiments we centrifuged
the cell solution at 800 rcf for 3 min and resuspended the cells in medium. We seeded about
5000 cells per dish. After 2-3 h, cells adhered to the micropatterns and we exchanged the
medium to growth medium containing the nuclear stain Hoechst 33342 at a concentration
of 25 nM. We then transferred the samples to the microscope and started measurements
within 1-2 h.

The RPE MYO6 GFP (stabily transfected by Folma Buss and kindly provided by
Claudia Veigel) cells were cultured the same way as the RPE WT cells except for the
fact that the growth medium was additionally supplemented by 500 µg/ml G418-sulfate
(Geniticin, Thermo Fisher), an aminoglycoside antibiotic. Other then that the handling
was exactly the same.

3 Transfection Procedure

For transfection experiments on RPE MYO6 KO cells we used Lipofectamine 3000TM,
cat. no. L3000001 (Thermo Fisher), to introduce DNAs that encode for three different
mutations of the myosin VI gene. We split 800-1000k cells into a 6-well-plate and cultured
them until they reached roughly 80% confluency as estimated by visual inspection. We
diluted 3.7 µL of the Lipofectamine 3000 reagent in 125 µL of Opti-MEM medium (Thermo
Fisher) and 1.5 µg of DNA for WT-MYO6 (concentration at 1147 ng/µL), MYO6 S267A
(762 ng/µL) or MYO6 S267E (1374 ng/µL) (Maxiprep, Thermo Fisher) likewise in 125 µL of
Opti-MEM. We then added 3 µL of the amplifier reagent P3000 (concentration at 2 µL/µg)
to the diluted DNA and subsequently mixed it with the diluted Lipofectamine in a 1:1 ratio.
Afterwards, we let it incubate for 15 min to form lipoplexes. Finally we added the DNA-lipid
complexes to the cells and incubated everything for 24 h at 37 °C.
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4 Cytoskeletal Inhibitors
For inhibitor experiments we added 10 µM (+/-)-blebbistatin (Cayman Chemical, Ann
Arbor, MI, USA), 100 nM latrunculin A (Merck), 0.25 nM calyculin A (Thermo Fisher),
or 30uM Y-27632 (Merck) to the growth medium 2 h before the start of the experiment.
As control we used 0.3% dimethyl sulfoxide (DMSO) (Life Technologies, Darmstadt,
Germany) in growth medium.

5 Immunostaining
We fixed cells with 3.7% formaldehyde (Merck) in PBS after the time-lapse experiments
and permeabilised with 0.5% triton X-100 (Carl Roth, Karlsruhe, Germany). We inhibited
unspecific binding with a blocking solution consisting of 3.9% BSA (Thermo-Fisher) and
0.2% triton X-100. We then incubated the cells with a monoclonal mouse anti-paxillin
antibody (invitrogen) at a concentration of 5 µg/ml over night. After washing with PBS
we used 5 µg/ml goat anti-mouse antibodies conjugated with Alexa Fluor 488 (Abcam,
Cambridge, UK) as secondary antibodies. F-actin was labelled with 100 nM rhodamine
phalloidin (Abcam) in a blocking solution consisting of 10% normal goat serum in PBS.
Lastly, we washed the sample three times with PBS.

6 Microscopy
We conducted time-lapse imaging using an inverted fluorescence microscope (Nikon
Eclipse Ti, Nikon, Tokyo, Japan) that featured an XY-motorised stage, Perfect Focus
System (Nikon), and a heating chamber (Okolab, Pozzuoli, Italy) set to 37 °C. The mo-
torised stage, Perfect Focus System, a 10x CFI Plan Fluor DL objective (Nikon), a CMOS
camera (PCO edge 4.2, Excelitas PCO, Kelheim, Germany), and NIS Elements software
(Nikon) were employed to sequentially scan and capture images of arrays of fields of
view. Prior to initiating the time-lapse process, epifluorescence images of the FN patterns
were acquired. Subsequently, phase contrast images of the cells and epifluorescence
images of their nuclei were recorded over a 48 h period at intervals of 10 min or 30 s as
specified. A 10 min interval permitted scanning of approximately 17 x 17 = 289 fields of
view, while a 30 s interval allowed for 4 x 4 = 16 fields of view.

7 Image and Data Analysis
Image analysis for Chapters 4 and 5 was conducted using a combination of scripts
for MATLAB R2020a (MathWorks, Natick, MA, USA) and macros for FIJI (ImageJ).
FN lanes were detected through a Hough transformation applied to the fluorescence
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signal of labelled FN. Nuclei positions were tracked by using a threshold set post back-
ground correction and band-pass filtering on the fluorescent images. The x-coordinates
of the nuclei were adjusted to align parallel with the FN lanes. Cell front and back
positions were determined using kymographs created along the FN lane centre, fol-
lowed by manual segmentation of the cell edges. The code is available on GitHub at
behnam89amiri/Multistability_and_constitutive_relations_of_cell_motion.

For Chapter 6 the image analysis was conduced using Python (Python Software Foun-
dation) code. Lanes were again detected by a Hough transformation of the fluorescence
signal of the labelled FN. However, the cells were segmented using cellpose and the
fluorescently labelled nuclei were tracked using trackpy. Cellpose is a generalist algorithm
for cell and nucleus segmentation that we trained on our data [226, 227] and trackpy is a
Python package for particle tracking in 2D [297]. The cell trajectories were filtered to only
include cells that are on a FN lane, not too close to the edge of the field of view, not too
close to another cell and contain only one nucleus [218]. The code is available on GitHub
miguelatienza/onedcelltrack.

The experimental metadata was organised in compliance with the Minimum Information
About Cell Migration Experiments (MIACME) reporting guidelines, which can be found at
http://cmso.science/MIACME. The data was entered into a SQLite database file using
DB Browser for SQLite. An SQL-version of my data base containing the name, date and
meta data of all experiments used for this thesis and many more can be found on my
GitLab repository.

8 Classification of Motile States
A reliable and scalable high-throughput analysis of the motile states of single cells
requires an automated classification of states. To this end we introduced a minimal time
of consistency 𝑡𝑐. Should the motile behaviour during a period 𝑡 + 𝑡𝑐 be indicative of a
specific state, we assigned that state to the cell. We selected a duration of 1 h for this
period, which is adequately longer than the usual oscillation periods of approximately
15 min and allows us to differentiate between steady and oscillatory states. Identifying
transitions necessitates continuous tracks lasting at least 2𝑡𝑐 to distinguish between the
pre- and post-transition states.

The single-cell trajectories are divided into distinct states. To achieve this, we utilised a
technique that involves iterative change-point analysis based on cumulative sum (CUSUM)
statistics, akin to the approach in [144], to identify the transition moments between a
cell’s states. This algorithm is proficient at pinpointing the times when a significant shift in
motility pattern occurs. The interval between consecutive change points is considered an
episode where the cell maintains a particular state. Episodes shorter than 1 h are merged
with the preceding episode.

To classify the episodes into the motile states SS, SO, MS and MO, we established
two metrics. First, we assessed whether a cell is moving (MS, MO) or spread (SS, SO)
by comparing its average velocity during the episode with a critical speed (0.002 µm s−1).

https://github.com/behnam89amiri/Multistability_and_constitutive_relations_of_cell_motion
https://github.com/MouseLand/cellpose
https://github.com/soft-matter/trackpy
https://github.com/miguelatienza/onedcelltrack
http://cmso.science/MIACME/v0.3/#abstract
https://sqlitebrowser.org/
https://gitlab.physik.uni-muenchen.de/LDAP_ag-raedler/doktorarbeit_jheyn
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Cells are regarded as spread if their average velocity is below this critical speed and
as moving if it is above. However, the positional data X(𝑡) has to be filtered to remove
short-term fluctuations and long trends. To this end, we applied a band-pass filter with
a cut-off frequency of 1 h−1 and 6 h−1 to discard variations on time scales shorter than
10 min and longer than 1 h.

This filtered data includes the fluctuations in length and position of the cell body over
time, which are pertinent to the oscillations resulting from the competition of protrusions.
In an oscillatory state, these filtered variables exhibit significant variability, whereas they
remain nearly unchanged over time in a steady state. Therefore, summing the average
absolute deviations of the filtered length and cell body position serves as a measure of
oscillatory magnitude:

𝑂 =
1
𝑛

𝑛∑︁
𝑖=1

(
|𝐿 𝑓 ,𝑖 | + |𝑋 𝑓 ,𝑖 |

)
(A.1)

𝑂 represents the oscillation metric, while 𝑛 denotes the number of time frames for the
state. Here, 𝐿 𝑓 ,𝑖 refers to the length subjected to band-pass filtering, and 𝑋 𝑓 ,𝑖 indicates the
cell body position in the time frame 𝑖. We subsequently assessed this oscillation metric
for each cell episode against a critical threshold of 5 µm. Through manual evaluation of
the cell episodes and their corresponding oscillation metric values, we determined that
this threshold effectively classifies the cell states.

For a further discussion of the motility metrics, see Amiri, Heyn, et al. (2023), Supple-
mentary Information [2].

9 Neural Density Estimator

Simulations of the biomechanical model referred to in the chapter Cell-mechanical Pa-
rameter Estimation were implemented in Python [298] and Julia [299] by M. Atienza
Juanatey and are available from his GitHub repository miguelatienza/onedcellsim. The
open-source Python package “sbi”, created by Tejero-Cantero et al. from the Macke lab
[210], is employed to deduce the posterior distribution of model parameters of individual
cells based on their one-dimensional trajectories. Our neural network designed for density
estimation consists of two principal parts. Initially, the input, which is a cell trajectory,
undergoes dimensionality reduction and feature extraction through an embedding by a
convolutional neural network (CNN). Subsequently, the resulting features from the CNN
are processed by a neural spline flow network. Notably, the initial layer of the CNN was
altered from a one-dimensional to a two-dimensional structure, enhancing the ability to
capture the interconnections among the three time series (front, back, nucleus) that form
a single trajectory, thereby preserving relationships between the cell’s positions more
effectively.

https://github.com/miguelatienza/onedcellsim


88 A. Materials and Methods

10 Use of AI Assistance in Writing
In the process of writing this thesis, I utilised the assistance of large language models
(LLM’s), mainly but not exclusively OpenAI’s ChatGPT and Digital Science’s Writefull, to
aid in the generation of text. ChatGPT was employed to help clarify complex concepts and
refine language for certain sections of the thesis. The content produced by the LLM was
critically evaluated, revised, and supplemented by my own knowledge, ensuring that the
final work reflects my original research and understanding. All instances of AI-assisted
text generation were limited to non-technical language and editorial suggestions, without
compromising the integrity of the original analysis, data interpretation, or conclusions.
The use of such tools was intended to enhance the clarity and precision of the writing,
not to contribute to the intellectual content of the research itself.
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Figure B.1: Examples of possible pitfalls for the Primo photopatterning protocol. Micrographs of fibronectin
(FN) micropatterns that were labelled with the fluorescent dye Alexa 647. (A) The overview scan reveals a
selection of diverse micropattern motifs that were applied to a microwell in a single patterning session using
the Primo by Alvéole. The micrographs in (B-D) are zoom-ins of panel (A). They reveal various imperfections
in the pattern. (B) Crystalline structures occur if the passivation layer was not freshly prepared. (C) A wave
like pattern in FN densities appears if the photoactive gel is unevenly spread which leads to inhomogeneous
photoactivation during illumination. (D) If the FN is not washed off thoroughly, it leaves irregular patches on
an otherwise successfully patterned area. (E,F) The fluorescence intensity plot (F) along the 2000 µm long
blue lane (E) quantitively captures imperfections in the pattern. Crystalline structures, as shown in Panel
(B), appear as pronounced peaks while wave like inhomogeneities such as in (C) appear as undulations.
The scale bar in (A) is 1000 µm and 100 um in (B-D).
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A B

C D

Figure B.2: Impurities in photopatterning. Small, almost monodisperse structures with a diameter of a few
micrometres often appear on patterns. The structures are high density accumulations of FN. They can
appear as small circular dots (A-C) or as patchy speckles (D). The origin of these structures is not quite
clear yet but it has its cause probably in the dissolution of the PEG in solvent which may contain small air
bubbles after mixing. Scale bars 100 µm
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A

B C

Figure B.3: Alignment issues during photopatterning. Micrographs of fibronectin (FN) micropatterns that
were labelled with the fluorescent dye Alexa 647. (A) The photactivator is applied in an ethanol solution.
The ethanol evaporates and ideally leaves a homogenous layer of photoactivator. This evaporation process,
however, depends on experimental conditions such as temperature and humidity which are not always
kept constant during preparation. As a consequence, the photoactive layer may vary in thickness, which
causes iridescent effects during illumination similar to the colourful patterns on a soup film. Additionally,
the UV-laser was not correctly focused in this example, leading to very broad lanes, much wider than the
15 µm target width. (B) If the photopatterning device Primo is not well aligned, stitching of the pattern’s motif
can go awry. A gap is visible between the lane motif in this example. (C) Depending on the magnification
chosen for the photopatterning, the digital micromirror device (DMD) can be smaller than the actual motif.
In the example here, created with a 20x magnification, there is a visible offset along the lanes, where the
Primo device moved the stage to illuminate the next DMD of the same motif. Scale bars in (A-C) equal
100 µm.
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2 Intrinsic Cell-to-Cell Variance
As Fig. B.4 shows, the parameters of individual moving objects can be described by
Gaussian distributions. Furthermore, both systems, i.e. the polystyrene beads in water
as well as the cells in confinement are stationary and do not depend on time. As a
consequence, the generalised Langevin equation (4.1) can be inverted to extract the
memory kernel from the velocity autocorrelation function. For details, see SI of A. Klimek
et al. 2024 [5].
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Figure B.4: Assumptions check for the extraction of memory kernels for the polystyrene beads and
cancer cells. The first column displays the distributions of trajectory lengths 𝐿 in units of the experimental
discretisation time Δ for (A) beads with Δ = 0.02 s and (D) breast-cancer cells with Δ = 20 s. Simulations
were later sampled to follow the same distribution. The second column shows the velocity distributions of
individual moving objects. The values have been rescaled by subtracting their individual mean velocity ⟨𝑣ind⟩
and dividing by their individual standard deviation 𝜎ind for (B) polystyrene beads (⟨𝜎inds⟩ = 4.6 µm/s) and
(E) breast-cancer cells (⟨𝜎inds⟩ = 1.3 µm/s. Individual objects are distinguished by colour. The population
average is shown in black. It is in good agreement with the standard normal distribution as shown as a
bright blue dashed line. For three different time windows, the average over individually rescaled distributions
is identical for (C) polystyrene beads and (F) breast-cancer cells, which suggests the systems not to be
time-dependent. Adapted from Klimek, Heyn et al. 2024 [5].
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3 Biophysical Modelling

Name of data set Temporal res-
olution

Treatment Number of
trajectories

Total time

1_ctrl_30s 30 s control 221 2878 h
2_lat_30s 30 s latrunculin A 127 2343 h
3_blebb_30s 30 s blebbistatin 65 1165 h
4_ctrl_10min 10 min control 9497 96577 h
5_lat_10min 10 min latrunculin A 3368 54809 h
6_blebb_10min 10 min blebbistatin 3728 47638 h
7_untreated_10min 10 min untreated 6261 65378 h

Table B.1: Details of experimental data sets used for Chapter 5 including temporal resolution, treatment,
number of cell tracks, and total trajectory time. See also Fig. B.5. The data was published alongside the
journal article [2].

All simulations were executed using MATLAB (Mathworks). We conducted simulations
of around 6100 cell tracks, each lasting 15 h. This includes 2500 for the control, 2800 for
the latrunculin, and 800 for the blebbistatin conditions. Simulations begin with cells in
random states. Fibronectin densities on lanes are uniform across all simulations. The
experimental data sets include a variety of Fibronectin densities, and the simulations
mirrored these values. Analysis involved averaging across Fibronectin densities, with
simulation ensembles weighted identically to the experiments.
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Figure B.5: Distribution of lengths of cell trajectories for Chapter 5. (A) Boxplots for data sets 1-7 are
displayed (refer to Amiri et al. [2]). The orange lines represent the median track lengths, while the box
edges correspond to the first and third quartiles. Whiskers show the 5%- and 95%-percentiles. The symbol
𝑁 refers to the total number of cell trajectories. Overall, the average trajectory length is 11.6 h. Notably, the
distribution is right-skewed, as evidenced by a median trajectory length of 8.8 h, indicating a higher number
of trajectories are shorter than the average. The longest trajectory lasts 48 h due to the fixed duration of the
experiments. (B) A histogram for the trajectory lengths of all combined data sets is shown. The skewness
observed earlier is evident, with counts tapering off as trajectory lengths increase. Adapted from B. Amiri,
J. Heyn et al. 2023 [2].
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Parameter Set 1: control Set 2: latrunculin Set 3: blebbistatin Units
𝐸 3x10-3 3x10-3 3x10-3 nN µm−2

𝐿0 10 10 10 µm
𝑉0

e 3x10-2 2.2x10-2 3x10-2 µm s−1

𝑘− 5x10-3 5x10-3 5x10-3 µm s−1

𝑘on 1.5x10-4 1.5x10-4 1.5x10-4 s−1

𝑘off 7.5x10-5 7.5x10-5 7.5x10-5 s−1

𝑣slip 7.8x10-3 7.8x10-3 7.8x10-3 µm s−1

𝜅max 35 35 20 nN s µm−2

𝐾𝜅 35 35 35 ng cm−2

𝑛𝜅 3 3 3
𝜅0 1x10-2 1x10-2 1x10-2 nN s µm−2

𝜁max 1.4 1.4 1.2 nN s µm−2

𝐾𝜁 50 50 50 ng cm−2

𝑛𝜁 4 4 4
𝑏 3 3 3
𝜁0 1x10-1 1x10-1 1x10-1 nN s µm−2

𝛼 4x10-2 4x10-2 4x10-2 nN−2 s−2 µm4

Table B.2: The parameters used in the simulations are specified as follows: Set 1 applies to the control
condition, Set 2 to the latrunculin condition, and Set 3 to the blebbistatin condition. All simulations employing
parameter sets 1, 2, and 3 are conducted on homogeneous Fibronectin lanes.
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Figure B.6: Complete table of motile state transitions observed in the breast cancer cell line MDA-MB-231.
Cells on 1D fibronectin coated lanes were segmented and the cell front, back and nucleus were tracked.
The cell trajectories were split into episodes of motile states and each episode was ascribed one of the four
motile states: spread and steady length (SS), spread and oscillatory length (SO), motile and steady length
(MS), motile and oscillatory length (MO). This figure shows all possible transitions from one motile state to
another. Time runs from left to right, the y-axis is the position along the lane. All panels are to scale.
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4 Cell-Mechanical Parameter Estimation

Simplification of the Biomechanical Model
To achieve a meaningful parameter inference the size of the latent space of the original
model as described in Amiri et al. [2] needed a reduction. We assumed the fibronectin
density B as external parameter to be constant because all measurements that were
analysed for the chapter Cell-mechanical Parameter Estimation were conducted on
1D lanes of the same fibronectin density. The force-dependence for the actin network
extension rate 𝑉e, as well as the depolymerisation rate 𝑘− in Eq. 5.13 are negligible and
we therefore set 𝑉e = 𝑉0

e . Rescaling of the model proved that essentially 5 parameters
are necessary to cover the system’s dynamics. The choice of the 5 targets of the SBI
procedure was based on interpretability. The resulting parameters are: 𝐿0,𝑉0

e , 𝑘on, 𝜅max
and 𝑣slip, see Table B.3.

Parameter
name

Description Lower
bound

Upper
bound

Status Units

𝐿0 Resting protrusion length 1 40 variable µm
𝑉0

e Actin network extension rate 10−3 8 ∗ 10−2 variable µm/s
𝑘on On-rate for dynamics integrin

signalling
10−5 10−3 variable 1/s

𝑣slip Critical retrograde flow velocity 5 ∗ 10−3 4 ∗ 10−2 variable µm/s
𝜅max Maximum friction coefficient for

integrin signalling
1 70 variable nN s µm−2

𝜁max Maximum drag coefficient 1.4 1.4 fixed nN s µm−2

𝐸 Effective E-modulus 3 ∗ 10−3 3 ∗ 10−3 fixed nN µm−2

𝑘off Off-rate for dynamic integrin sig-
nalling

0.5 0.5 fixed 1/s

𝑏 = 𝜁c/𝜁f Contribution of the cell body to
the cell drag compared to the
protrusions

3 3 fixed -

𝐵 Fibronectin density 30 30 fixed ng cm−2

𝜖 Noise in the 𝜅-dynamics 1 1 fixed -
𝜖ext Localisation noise 0.5 2 latent µm

Table B.3: Table of all 10 parameters and the two noise amplitudes that enter the biomechanical model as
prior 𝑝(𝜃) in chapter 6. The 5 variable parameters are the target of the inference procedure, while all other
parameters are fixed to a constant value.

Quality of the Neural Density Estimator
To ensure the quality of the neural density estimator, we did not only check the accuracy
of its estimations, see Figs. 6.1 and 6.2 but also its calibration. To this end we followed
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the simulation-based calibration approach as proposed by Talts et al. [300]. The algorithm
to determine the quality of the calibration can be summarised in four steps:

1. N simulations are generated

2. L samples are sampled from the posterior 𝜃1, ..., 𝜃L ≈ 𝑝(𝜃 | x)

3. The rank statistics for 𝜃1, ..., 𝜃L are computed for each simulation (for more details
see Talts et al. [300])

4. The histogram for all N simulations is incremented

If the neural density estimator is well calibrated, the rank statistics for the Nsim simulations
is uniformly distributed. If the rank statistics deviate from a uniform distribution the posterior
is uncalibrated and, depending on its shape, might be biased towards shifted posterior
estimates or it might be over- or underconfident. The rank statistics for our neural density
estimator is shown in figure B.7 for 1,000 simulations. Overall the rank statistics for the
prior estimations are symmetric and fall within the expected distribution (marked in grey).
Consequently, we conclude the neural density estimator to be well calibrated with only 𝐿0
being slightly under-confident, which will result in broader inferred distributions compared
to the actual posterior distributions.
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Figure B.7: The rank statistics of 1,000 simulations indicates the quality of the neural density estimator. If
the rank statistics are uniformly distributed and unbiased, they fall within the grey area along the diagnoal.
According to this criterion, the posterior estimation for the parameters 𝑉0

e , 𝑘on, 𝑣slip and 𝜅max are well
calibrated but 𝐿0 is a little under-confident. We prefer under-confindent estimations over over-confident
estimations to avoid unreliable inference results [211]. Adapted from Heyn et al. [4].
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5 Conclusion and Outlook
Fluorescent recovery after photobleaching (FRAP) measurements can quantify the actin
retrograde flow in the lamellipodium and the lamellar region. The measured retrograde
flow velocity can then be compared to predictions of the biophysical model by Amiri et al.
2023 [2]. Fig. B.8 shows an example FRAP measurement on a B16-F1 mouse cell on a
2D substrate. This measurement was made possible by Prof. Dr. Klemens Rottner, TU
Braunschweig & Helmholtz-Zentrum für Infektionsforschung. Similar experiments with
MDA-MB-231 or MCF-10A cells are worthwhile propositions.

27st=-3s 0s 3s 45s18s

Figure B.8: Time series of micrographs showing GFP-labelled actin in B16-F1 mouse cell during fluorescent
recovery after photobleaching (FRAP). Shown is the lamellipodium and the lamellar region of the cell. At
time 𝑡 = 0 s (second panel) a powerful laser illuminates a rectangular region which bleaches all fluorescent
proteins within. Due to the actin retrograde flow, the dark rectangular region moves inwards. Scale bars
represent 10 µm. FRAP measurements like these can be used to scrutinise the biophysical model presented
by Amiri et al. (2023) [2].
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Figure B.9: The effect of a knock out (KO) and overexpression of the motor protein Myosin VI on cell migration.
(A-C) Trajectories of RPE WT and the two mutants RPE myo6 KO and RPE myo6 GFP (overexpression).
(D) Distribution of motile states. No significant differences could be observed. (E) Velocity distribution of
RPE WT and RPE myo6 KO cells. The median velocity of KO cells is slightly reduced.



List of Abbreviations

1D one-dimensional. xi, 2, 5, 11, 12, 23, 27, 31, 33, 34, 43–45, 47, 50, 61–64, 77

2D two-dimensional. 2, 6, 9, 14

3D three-dimensional. 9, 14

AFM atomic force microscopy. 39

ATP Adenosine triphosphate. 7

BSA bovine serum albumin. 81, 85

CAS RN Chemical Abstracts Service Registry Number. 81

cat. no. catalog number. 81, 84

CMSO Cell Migration Standardisation Organisation. 30, 31

CNN convolutional neural network. 21, 22, 87

DMD digital micromirror device. 12, 27, 28, 83, 92

DMSO dimethyl sulfoxide. 85

ECM extracellular matrix. 5, 7, 9–11, 13, 14, 23, 78, 80

EMT epithelial-mesenchymal transition. 5

f-actin filamentous actin. 7

FA focal adhesions. 45, 78

FBS fetal bovine serum. 83, 84

FN fibronectin. 7, 9, 11, 24–31, 43–45, 48, 52, 59, 77, 81–83, 85, 86, 90–92

FRAP fluorescent recovery after photobleaching. 1, 78, 80
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g-actin globular actin. 7

GAP GTPase-activating proteins. 6

GEF guanine nucleotide exchange factors. 6

GFP green fluorescent protein. 29

GLE generalised Langevin equation. 33–36, 38, 39, 41, 74, 93

HEPES 2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethane-1-sulfonic acid. 82

HUVECs human umbilical vein endothelial cells. 14

MAF Masked Autoregressive Flow. 20

MDN Mixture-Density Network. 20

MIACME Minimum Information About Cell Migration Experiments. 31, 86

MLCK myosin light chain kinase. 7

MSD mean squared displacement. v, 15, 35–37

myo6 myosin VI. 79

NDE neural density estimator. xi, 21, 22, 63–70, 72–74, 98–100

PBS phosphate-buffered saline. 81, 85

PDMS polydimethylsiloxane. 11, 13, 82, 83

PEG poly(ethylene glycol). 28, 82

PI3Ks phosphoinositide 3-kinases. 6

PINN physics-informed neural network. 74

PLL poly(L-lysine). 82

PLL PEG poly(L-lysine) grafted poly(ethylene glycol). 10, 11, 13, 43

PRW persistent random walk. 15, 17, 36, 41

rcf relative centrifugal force. 83, 84

ROCK Rho-associated protein kinase. 8, 16, 70

SBI simulation-based inference. 5, 18, 21, 22, 63, 64, 67, 70–72, 74, 78, 98
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Si silicon. 11, 81

SNPE sequential neural posterior estimation. 19–21

TIRF total internal reflection. 44

UCSP universal coupling between cell speed and cell persistence. xi, 14–17, 23, 43, 57,
59, 61, 63

UV ultraviolet. 12

VACF velocity autocorrelation function. v, 34–37, 41, 93

Y-27632 Trans-4-[(1R)-aminoethyl]-N-(4-pyridinyl)cylohexanecarboxamidedihydrochloride.
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