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Zusammenfassung

In dieser Doktorarbeit werden zwei verschiedene Coulomb-Systeme im Vielteilchen-Limes
betrachtet. Zuerst wird das Tröpfchenmodell für die Wechselwirkung von Nukleonen mit
einem Hintergrund von Elektronen untersucht. Dabei wird der Grenzwert betrachtet bei dem
das Verhältnis der Elektronen- zur Neukleonenladungsdichte klein ist. In drei Dimensionen
wird gezeigt, dass der thermodynamische Limes der Grundzustandsenergie zur führenden
Ordnung der eines einzelnen Atomkernes entspricht wenn die Ladungsdichte klein ist. In
zwei Dimensionen wird der Koeffizient der führenden Ordnung hergeleitet und es werden
Fehlerschranken bewiesen, die die Größenordnung einer vermuteten Asymptotik der zweiten
Ordnung haben. Außerdem wird ein Resultat bewiesen zur gleichmäßigen Verteilung der
Energie im Raum mithilfe einer Methode, die Armstrong und Serfaty verwendeten um die
gleichmäßige Verteilung der Energie im Jellium Modell zu beweisen.

Das zweite Coulomb-System behandelt viele Polaronen in der Pekar-Tomasevich Näherung.
Benguria, Frank und Lieb bewiesen 2015, dass die entsprechende Grundzustandsenergie
propotional ist zu −N7/5 für große N . Sie bewiesen eine obere Schranke für den Koef-
fizienten und formulierten die Vermutung, dass diese scharf ist. In dieser Doktorarbeit
wird bewiesen, dass die Vermutung korrekt ist indem die entsprechende untere Schranke
hergleitet wird. Dabei wird ein geladenes Bose-Gas mit Coulomb-Wechselwirkung und
einem Hintergrund entgegengesetzter Ladung betrachtet. Mithilfe von Methoden von Lieb
und Solovej kann Bogolubov Theorie verwendet werden.
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Abstract

This thesis is concerned with two different Coulomb systems in the many-particle limit.
First of all, the liquid drop model for nuclei interacting with a neutralizing homogeneous
background of electrons is considered. The regime that is of interest is when the fraction
between the electron and the nucleon charge density is small. In three dimensions, it is
shown that in this dilute limit the thermodynamic ground state energy is given to leading
order by that of an isolated nucleus. In two dimensions, it is proven how the leading
order coefficient of the thermodynamic ground state energy is in the dilute limit and
error estimates are shown that reproduce the second order of a conjectured asymptotics.
Furthermore, a result is derived on the uniform distribution of energy in any dimension
which is based on a method Armstrong and Serfaty used to prove uniform distribution of
energy for the jellium model.

The second Coulomb system that is considered is the “neutral” case of the many-polaron
system in the Pekar-Tomasevich approximation. In 2015, Benguria, Frank and Lieb showed
that in this case the ground state energy goes as −N7/5 for large N . They proved an
upper bound for the coefficient and conjectured it to be the correct one. Here, it is
established that this is indeed true by proving the corresponding lower bound. To do
so, a one-component charged Bose gas with Coulomb interaction and a background with
variable charge distribution is studied. Adapting methods of Lieb and Solovej one can
justify Bogolubov theory for this model.
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Chapter 1

Introduction and Main Theorems

1.1 General Introduction
One of the most astonishing facts about nature is that it can be so precisely described
in terms of mathematics. Whether it is Newton’s mechanics describing the basics of how
we experience masses moving, accelerating or resting in every day life. Or whether it
is Maxwell’s equations describing electromagnetism. Even the behavior of the smallest
particles we currently know can be described using rigorous mathematics. Well, at least
some of the description is rigorous.

There are four known interactions in nature. [44] The interaction with the smallest
coupling constant is gravity. Since this interaction is so weak it has the largest bound states,
namely us living on earth or our solar system within our galaxy. At the same time, there is
only one type of mass. So there is no neutrality which is why gravity can reach arbitrarily
far.

The strongest interaction that is currently known is - as the name says - the strong
interaction. Because of this, it has the smallest bound states, for example protons and
neutrons within an atomic nucleus.

The interaction which is not as strong as the strong interaction but still much stronger
than gravity is electromagnetism. This is why it has bound states which are much larger
than protons or neutrons within an atomic nucleus, but still much smaller than the bound
states of gravity. For example matter as we experience it in everyday life is a bound state
of the electromagnetic interaction. Or, much simpler of course, molecules as well.

This thesis is concerned with large systems with Coulomb interaction, i.e. purely
electrostatics. There are two kinds of electric charges, positive and negative ones. The
strength of the Coulomb interaction therefore enforces neutrality resulting in a far field
which decays much faster than the Coulomb field of one type of charge itself.

Why do we do mathematics? Apart from physics and natural sciences there are
many applications of mathematics like engineering. However, one might suggest that it
is interesting to study mathematics in and of itself. Just as people have always been
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wanting to explore the earth as one can experience it, from sailors in the sixteens century to
physicists colliding high energy particles in the 20th century, apart from many other reasons
also just out of curiosity, so one might be interested in the a priori world of mathematics
for its own sake apart from all applications that it has and will have in the future.

The area of mathematics that this thesis is concerned with is analysis. Roughly put it
presupposes an a priori understanding of space (and maybe also of time) and than studies
what one might be able to say about definitions on this space.

Maxwell equations In the second half of the nineteenth century Maxwell formulated his
theory of the electromagnetic interaction [45, p. 310]. A charge distribution f : R3×R→ R
where (x, t) ∈ R3 × R denotes a position in space x at time t induces an electric field
E ∈ C1(R3 × R,R3) and a magnetic field B ∈ C1(R3 × R,R3) such that the system of
partial differential equations is fulfilled [45, p. 314] in suitable units

∇E = f, ∇×E = −∂B
∂t
,

∇B = 0, ∇×B = ∂E
∂t

+ j.

Here, j denotes the electric current that fulfills ∇j + ∂f
∂t

= 0 and it is assumed that the
electric polarization and the magnetization is zero. One observes that a magnetic field
that changes with time induces a rotational electric field and an electric field that changes
with time induces a rotational magnetic field. This is the mathematical description of
electromagnetic waves. Furthermore, the fact that the divergence of the magnetic field
vanishes implies that there are no magnetic monopoles.

In this thesis Coulomb systems are considered. So the charge distribution f is not
dependent on time, the electric current is zero and there are no rotational fields, neither
electric nor magnetic. This is why one can describe E in terms of a potential v ∈ C2(R3,R)
such that −∇v = cdE. The resulting partial differential equation depending on the static
charge density f and the potential v can be formulated in any dimension d ∈ N (let d ≥ 2).
It is the Poisson equation  −∆ v = cdf in Rd,

v ∈ H1(Rd),

where c2 := 2π and cd := (d− 2)|Sd−1| with the d− 1 dimensional unit sphere Sd−1. For
Q ⊆ Rd, H1(Q) denotes the Sobolev space of functions in the Lebesgue space L2(Q) that
have weak derivatives which are in L2(Q). One solution can be expressed in terms of the
fundamental solution of the Laplacian

v(x) :=
∫
Rd
G(x− y)f(y) dy ,

for x ∈ Rd, where G(x) := ln 1
|x| for d = 2 and G(x) := 1

|x|d−2 for d ≥ 3.
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Outline of this thesis In Chapters 2 and 3 the liquid drop model is considered in a
cube QL := (−L/2, L/2)d with a charge distribution 1Ωρ,L for Ωρ,L ⊂ QL and a constant
background ρ1QL where ρ ∈ (0, 1) and |Ω| = ρLd. The energy in d dimensions with whole
space boundary condition is

Eρ,L(Ωρ,L) := Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ)G(x− y)(1Ωρ,L(y)− ρ) dx dy , (1.1)

where G(x) := 1
|x|d−2 for d ≥ 3 and G(x) := ln 1

|x| for d = 2. Note that when subsets of Rd

are considered they are always assumed to be Lebesgue measurable.
In the following sections a more detailed motivation for this model is given. For now, just

note that there is an attractive short range term, the perimeter, and a repulsive long-range
term, the Coulomb energy of the system (see e.g. [32, 1, 25]). This thesis is concerned with
estimating the corresponding ground state energy

Eρ,L := inf
{
Eρ,L(Ω) : Ω ⊂ QL, |Ω| = ρLd

}
. (1.2)

In Chapter 2 the leading order for small densities ρ > 0 of the ground state energy is
derived in dimension d = 3 with explicit error estimates depending on the size of the whole
system L and the charge density of the background ρ ∈ (0, 1

2). It is assumed L� 1
ρ
. This

corresponds to first taking the thermodynamic limit L → ∞ and then, the dilute limit
ρ → 0. Note that these limits are taken separately. The challenge is that one does not
know whether the minimizer of the whole space problem is a ball.

In Chapter 3 further results on the liquid drop model are derived. First of all, the
ground state energy is considered in dimension d = 2. As one would expect the problem is
easier to solve than the three dimensional one. This is why the leading order of the limit
ρ→ 0 of the ground state energy is deduced as well as error estimates that reproduce the
order of a conjectured second order asymptotics. The proof gives insight into how connected
components (droplets) of a minimizer look like.

If one sets f = 1Ωρ,L − ρ1QL and integrates by parts, the energy can be written in terms
of the potential v

Eρ,L(Ωρ,L) = Per(Ωρ,L) + 1
2cd

∫
Rd

(−∆ v)v dx

= Per(Ωρ,L) + 1
2cd

∫
Rd
|∇v|2 dx .

In the second part of Chapter 3 a result on the uniform distribution of energy is derived
for d ≥ 2 on smaller scales R ∈ R with 1� R ≤ L. The local energy considered is

Per(Ωρ,L ∩QR(a)) + 1
2

∫
QR(a)

|∇v|2 dx ,

where QR(a) := a+QR. Note that a different scaling is used in this case without the factor
c−1
d . The proof follows an approach that Armstrong and Serfarty used to prove uniform
distribution of energy for the jellium model [2].
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(a) On the inside the nuclear force of the sur-
rounding nucleons cancels.

resulting force

(b) Close to the boundary there is an effective
force to the inside.

Figure 1.1: Nuclear force between the nucleons.

In Chapter 4 a completely different Coulomb system is considered. To prove a lower
bound on a large polaron system the energy is linearized. This leads to the energy of a one
component charged Bose gas taking the infimum over all possible background distributions
of opposite charge. It is estimated similar to Lieb and Solovejs work on the one and two
component charged Bose gases by Bogolubov theory [36, 37].

In the following sections a more detailed introduction to these chapters is given and the
main theorems of this thesis are stated. For Chapter 4 some basic concepts of mathematical
quantum mechanics are reviewed.

1.2 The three dimensional Liquid Drop Model
Chapter 2 on the three dimensional liquid drop model has been published in [13] as joined
work with Rupert Frank and Tobias König.

An atomic nucleus consists of protons and neutrons. While protons have a positive
electric charge, neutrons are – as the name suggests – electroneutral. What keeps the
nucleons together is the nuclear force which is attractive but short ranged. It can be
described by the Yukawa potential [44, p. 518]

Yω(r) = C

r
e−ωr

and it is effectively a nearest neighbor interaction. Inside of the nucleus the nuclear force
of the surrounding nucleons cancels. So effectively there is no nuclear force inside of the
nucleus. (See figure 1.1a.) On the boundary, however, the nuclear force of the surrounding
nucleons does not cancel. So any nucleon on the boundary experiences a resulting force
directed to the inside of the nucleus. This is why the nuclear force can be modeled as a
surface tension. (See figure 1.1b.)

Liquid Drop Model without background Gamow’s Liquid Drop Model [23] describes
an atomic nucleus in terms of an incompressible, charged liquid. It has recently attracted a
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lot of attention in mathematics, see, for instance, [9, 10, 6, 29, 31, 39, 16, 32, 8, 30, 17].
The energy of this simple model in nuclear physics consists of a surface tension which

is described by the perimeter term and an interaction which is described by the Coulomb
term. First of all, consider a single nucleus without background. Possible shapes of this
nucleus are (measurable) sets Ω ⊂ R3 and their measure |Ω| is interpreted as the number of
nucleons in suitable units. The energy of such a nucleus is, again in suitable units,

E0(Ω) := Per(Ω) + 1
2

∫
Ω

∫
Ω

1
|x− y|

dx dy , (1.3)

where Per(Ω) denotes the perimeter in the sense of De Giorgi

Per(Ω) := sup
{∫

Ω
∇F dx : F ∈ C1

c (R3,R3), |F| ≤ 1
}
,

(e.g. [15]). This leads to the variational problem of finding, for a given A > 0,

E0(A) := inf{E0(Ω) : Ω ⊂ R3, |Ω| = A} (1.4)

and e0 := infA>0
E0(A)
A

.
It is known [16] (see also [32]) that there is an A∗ > 0 such that e0 = E0(A∗)

A∗
and that

there is a minimizing set Ω∗ ⊂ R3 with |Ω∗| = A∗ such that E0(A∗) = E0(Ω∗). This set Ω∗
is strongly conjectured, but not known, to be a ball. Physically, it corresponds to a nucleus
with the greatest binding energy per nucleon, which is a certain isotope of nickel.

The perimeter term favors Ω to be concentrated at one point. It is optimized by a ball
(for a given nucleon number |Ω| = A > 0). In contrast, the Coulomb energy is maximal
for a ball. Since the perimeter term is heuristically proportional to

√
A and the Coulomb

term to A2 the perimeter term dominates for small A > 0. This is why, for small A > 0
the minimizer of E0 is a ball [31]. It is conjectured in [10] that there is an A1 > 0 such
that a minimizer of E0 exists and is a ball for any nucleon number A with 0 < A ≤ A1 and
such that there is no minimizer for A > A1. Furthermore, it is conjectured that A1 fulfills
E0(Ω1) = 2E0(Ω1/21/3). So one ball Ω1 with |Ω1| = A1 has two times the energy of a ball
with mass A1/2. In [15] Frank, Killip and Nam prove the nonexistence for A > 8. (See
Section 2 in [32] for an overview of the results.)

In the construction of the competitor set Ω that is used to prove the upper bound copies
of a ball are placed on a lattice and than it is shown how the proof has to be modified if
the minimizer of E0 is not a ball.

Liquid Drop Model with background The Coulomb force is very long ranged. Since
the Coulomb potential 1/r is not integrable at infinity, local neutrality is needed to consider
macroscopic systems. In nuclear matter it is a sea of delocalized electrons which provides a
background of opposite charge. Therefore, a background density ρ ∈ (0, 1) is introduced
and the system is considered inside a cube QL = (−L/2, L/2)3 with L > 0.

The three dimensional energy functional is

Eρ,L(Ωρ,L) = Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ) 1
|x− y|

(1Ωρ,L(y)− ρ) dx dy . (1.5)
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Here, Ωρ,L ⊂ QL is assumed to be a neutral configuration, that is |Ωρ,L| = ρL3. The goal
will be to derive the leading order of the ground state energy

Eρ,L = inf{Eρ,L(Ω) : Ω ⊂ QL, |Ω| = ρL3} (1.6)

in the dilute limit ρ→ 0.
The main result of Chapter 2 is the following theorem on the behavior for small ρ > 0

of the thermodynamic limit of the energy Eρ,L. It is proven for whole space boundary
conditions. However, in Chapter 3, Theorem 3.22, it is deduced that the thermodynamic
limit exists and is equal for Dirchlet, whole space, periodic and Neumann boundary
conditions.

Theorem 1.1. Let # ∈ {Dir,∞,Per,Neu} and ρ ∈ (0, 1
2 ]. Then, the thermodynamic limit

of the ground state energy for d = 3 is given by

lim
L→∞

1
L3E

#
ρ,L = E0(A∗)

A∗
ρ+ o(ρ) as ρ→ 0. (1.7)

In particular, it is equal for these boundary conditions

Remark 1.2. This result also holds for any boundary condition such that the potential
vρ,L of the minimizer Ωρ,L fulfills

∫
∂QL

vρ,Lν ·∇vρ,L dx′ ≤ 0 for all L > C and ρ ∈ (0, 1
2 ].

The leading order energy in the dilute limit comes from the energy of each droplet. The
interaction of different droplets, the interaction of droplets with the background and the
interaction of the background with the background only contribute to the energy at higher
order. In particular, this means that the nucleon number A of each connected component
is relevant for the leading order. The question of how droplets are arranged and whether
they are arranged in terms of a lattice or not is not relevant for the leading order.

1The conjecture that for small ρ a minimizer is given by a periodic arrangement of
nearly spherical droplets guides the proof of the upper bound. Since the arrangement of
the droplets does not contribute to the leading order evaluating the energy of a set of balls
on a simple cubic lattice gives an upper bound for the ground state energy that is sufficient
for these purposes. In the dilute limit ρ→ 0 these droplets should move infinitely apart.
Each one of the droplets should therefore be asymptotically equal to an energy-per-volume
minimizer of the full-space energy functional (1.3). This is why the energy per unit volume
should be given to leading order by inf0<|Ω|<∞ |Ω|−1E0(Ω) = (A∗)−1E0(A∗).

It is a well-known open problem to prove the periodicity of minimizers in this and other,
multi-dimensional minimization problems (crystallization conjecture). The strongest result
about local order for the liquid drop model (in any dimension d ∈ N) is shown in a work by
Alberti, Choksi and Otto [1].

Remarkably, in the physics literature [43, 28] it is proposed that there are phase
transitions at 0 < ρc1 < ρc2 < 1/2 < ρc3 = 1 − ρc2 < ρc4 = 1 − ρc1 < 1, where the

1The following part of this section is similar to what has been published in [13] as joined work with
Rupert Frank and Tobias König.
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dimensionality of the periodicity changes. For 0 < ρ < ρc1, minimizers are expected to be
sphere shaped and arranged in a three dimensional lattice, for ρc1 < ρ < ρc2, minimizers are
expected to be cylinder shaped and arranged in a two-periodic lattice and for ρc2 < ρ < ρc3
minimizers are expected to be slab shaped with respect to a one-dimensional lattice. For
ρ > 1/2 the situation reverses (since ρ 7→ 1− ρ corresponds to Ω 7→ R3\Ω) and one expects
a transition to cylindrical holes and then to spherical holes. Numerically, one has ρc1 ≈ 0.20
and ρc2 ≈ 0.35 [41]. In a recent result [24] the optimality of slab-like structures was
rigorously established in a multi-dimensional lattice model which, similarly to the present
model, contains an attractive short range term competing with a repulsive long-range term,
see also [12, 26].

Theorem 2.1 improves a result of Knüpfer, Muratov and Novaga [32]. They prove
a similar asymptotic equality in the ultra-dilute limit ρ ∼ L−2, where the background
density vanishes in the limit L → ∞. In contrast, here one can perform first the limit
L → ∞ and then ρ → 0. In the regime ρ ∼ L−2 it does not play a role yet that the
Coulomb potential is non-integrable at infinity. Controlling this phenomenon is, in fact,
one of the accomplishments in this work. However, [32] also contains results about Gamma
convergence and about the droplet structure of minimizers.

The even more dilute situation where ρ ∼ L−3 was considered by Choksi and Peletier [9].
Then, the leading order E(A∗)/A∗ in (2.3) and (2.4) should be replaced by E(ρL3)/(ρL3).
In this situation the upper bound (2.3) in this thesis is not applicable (at least not if ρL3 is
too small) and the lower bound (2.4) in this thesis is not tight. However, a simple variation
of the arguments in this thesis would also cover this regime. Note that [9] also establishes a
lower order correction to the energy and contains results about Gamma convergence.2

1.3 The two dimensional Liquid Drop Model
As it has been mentioned it is conjectured in the physics literature [43, 28] that there are
phase transitions in nuclear matter for certain values of ρ ∈ (0, 1) where the dimensionality
of the periodicity of a minimizer changes. For ρ ∈ (0, ρc1) it is assumed that a minimizer
consists of nearly spherical droplets. For ρ ∈ (ρc1 , ρc2) it is conjectured that a minimizer
consists of a parallel structure of cylinders. This phase can mathematically be described by
the two dimensional liquid drop model.

In two dimensions the Newtonian potential is minus the logarithm. Therefore, the
energy of the liquid drop model in QL = (−L/2, L/2)2 is

Eρ,L(Ωρ,L) = Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ) ln 1
|x− y|

(1Ωρ,L(y)− ρ) dx dy , (1.8)

for Ωρ,L ⊂ QL with |Ωρ,L| = ρL2. Consider the corresponding ground state energy

Eρ,L = inf
{
Eρ,L(Ω) : Ω ⊂ QL, |Ω| = ρL2

}
.

2End of the part of this section that is similar to what has been published.
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Similar to what has been done in three dimensions the following theorem on the
thermodynamic limit of the ground state energy for small ρ > 0 is derived in dimension two.
As before this asymptotics of the thermodynamic limit also holds for Dirichlet, periodic and
Neumann boundary conditions by Theorem 3.22. The energy of these boundary conditions
is defined in Section 1.4.

Theorem 1.3. Let # ∈ {Dir,∞,Per,Neu}. Then, for ρ ∈ (0, 1
C

), the thermodynamic limit
of the ground state energy for d = 2 is given by

lim
L→∞

1
L2E

#
ρ,L = 3

(
π

4 ln 1
ρ

)1/3

ρ+O
 ρ

(ln 1
ρ
)2/3

 as ρ→ 0. (1.9)

In particular, it is equal for these boundary conditions.

Remark 1.4. This expansion of the thermodynamic limit holds for any boundary condition
with a potential vρ,L of the energy minimizer Ωρ,L that fulfills

∫
∂QL

vρ,Lν ·∇vρ,L dx′ ≤ 0 for
all L ≥ C and ρ ∈ (0, 1

C
).

In the literature sometimes a screened version of this energy is considered with an
interaction that tends to zero exponentially at infinity. This avoids the difficulties that arise
since the Coulomb potential is not integrable at infinity. If one considers the unscreened
version Eρ,L these difficulties can be solved by placing disks on a lattice for the upper bound
such that there is local charge neutrality and such that the dipole and the quadrupole
moment of each droplet with the background of one lattice cell vanish. Then, the remaining
interaction at large distances r > 0 is of order 1

r3 which is integrable at infinity in two
dimensions. This is just the method that has been used in this thesis for the three
dimensional problem.

In [7] Chen and Oshita solve this issue for the upper bound by using an explicit formula
for the Green function for points on a lattice on the whole of R2. To get an idea of how a
minimizer of Eρ,L might look like they calculate the energy of several states and compare the
results. They show that a state consisting of an arrangement of discs on a hexagonal lattice
has the lowest energy among several other lattice arrangements. Indeed, they calculate the
energy of discs with equal radius arranged on a lattice αZ + βZ where α, β ∈ C\{0} and
Im(β/α) > 0. Here, R2 is identified with C which simplifies calculations a lot. The lattice
with hexagonal unit cell for which they got the lowest energy corresponds to α = e−iπ/6,
β = eiπ/6. They do not prove a lower bound on the ground state energy and it does not
currently seem to be realistic to prove a lower bound that is equal to the upper bound
of a lattice arrangement in the thermodynamic limit since this would require proving the
periodicity of minimizers. As Alberti-Choksi-Otto point out, this currently is a formidable
task [1].

In this thesis, a lower bound is proven that is equal to the leading order of the upper
bound in (3.5) in the dilute limit ρ→ 0. It might be possible to even prove a lower bound
that is equal to the second order, as well. Since the upper bound is stated in terms of the
jellium energy a corresponding lower bound does not need to make any assumption about
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whether the droplets are arranged in terms of a lattice or not. This will be discussed later
in greater detail.

Goldman, Muratov and Serfaty actually derive the second order asymptotics of the
ground state energy for an interaction which tends to zero at infinity exponentially fast
[25]. They consider the ultra-dilute limit where ρ ∝ L−2(ln 1

L
)1/3 converges to zero as L

tends to infinity. This is a remarkable result and their method of solving this problem has
been helpful for this work as well. To prove the lower bound they show that each connected
component either converges to a ball of a certain radius or becomes very small fast in the
limit ρ→ 0.

The conjectured second order asymptotics Considering the unscreened version of
the energy without coupling the limits L → ∞ and ρ → 0, one can conjecture that the
second order of the energy for small ρ > 0 is(

π

4

)1/3(
ln π + 1

2 + 4eJellium

)
ρL2

(ln 1
ρ
)2/3 ,

where eJellium is the thermodynamic limit of the ground state energy of the jellium model.
This is the second order of the upper bound proven in Theorem 3.1. The lower bound
reproduces the order of the conjectured asymptotics but it does not have the conjectured
coefficient.

The leading order in Theorem 3.1 comes from the part of the energy which can be
expressed as ∑

j

(√
4π|Ωj|+

1
2

∫
Ωj

∫
Ωj

ln 1
|x− y|

dx dy
)

with Ωρ,L = ⋃
j Ωj, pairwise disjoint Ωj1 ∩ Ωj2 = ∅ for j1 6= j2, every Ωj connected and

diam(Ωj) ≤ C(ln 1
ρ
)2/3. It actually does not depend on the shape of the Ωj but only on the

mass |Ωj| and the perimeter Per Ωj. The contribution of the shape is of subleading order.
Consequently, the next order is contained in the energy
∑
j

(
Per(Ωj)−

√
4π|Ωj|

)
+ 1

2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ) ln 1
|x− y|

(1Ωρ,L(y)− ρ) dx dy

−
∑
j

1
2

∫
Ωj

∫
Ωj

ln 1
|x− y|

dx dy .

The first term gives control over the difference of each connected component and a ball by
the quantitative isoperimetric inequality. The second term is precisely the Coulomb energy
without the self-energy of the connected components.

Since the first term favors connected components to be like a ball one expects the second
term to be similar to the jellium energy. The advantage of this approach is that one only
has to get results about the mass and shape of the droplets and that one does not need to
make any assumption about whether the droplets are arranged in terms of a lattice. The
proof of the lower bound in Theorem 3.1 actually shows that most droplets of a minimizer
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have mass less then C(ln 1
ρ
)−2/3 and perimeter less then C(ln 1

ρ
)−1/3. If droplets Ωi either

have mass larger than that or a perimeter that is larger than this, then their energy is
greater than C0(ln 1

ρ
)1/3|Ωi| with C0 > 3(π4 )1/3. So the sum of these masses |Ωi| fullfills

3
(
π

4 ln 1
ρ

)1/3∑
j

|Ωj|+ C0

(
ln 1
ρ

)1/3∑
i

|Ωi| ≤ 3
(
π

4 ln 1
ρ

)1/3
|Ωρ,L|+

C|Ωρ,L|
(ln 1

ρ
)2/3

⇐⇒
∑
i |Ωi|
|Ωρ,L|

≤ C

ln 1
ρ

.

Here, the sum over j denotes all droplets Ωj that have mass less then C(ln 1
ρ
)−2/3 and

perimeter less than C(ln 1
ρ
)−1/3. Their energy is bound from below by 3(π4 ln 1

ρ
)1/3|Ωj| (as

the proof of the lower bound shows). One can improve on this argument similar to what
Goldman, Muratov, Serfaty show in [25] and deduce that most droplet masses asymptotically
converge to an optimal mass and that their shape converges to that of a ball. This is done
in Chapter 3 as well.

1.4 Concerning boundary conditions
This section is similar to what has been published in [13] with Rupert Frank and Tobias
König in three dimensions.

In the literature the liquid drop model energy (1.1) is often considered with different
boundary conditions like Dirichlet, Neumann or periodic ones. To introduce the correspond-
ing energies, the liquid drop model energy is written in terms of the potential, first. For
Ωρ,L ⊂ QL with |Ωρ,L| = ρLd, let v∞ρ,L be the solution of the whole space problem−∆ v∞ρ,L = cd(1Ωρ,L − ρ1QL) in Rd,

v∞ρ,L ∈ H1(Rd),
(1.10)

where cd := (d − 2)|Sd−1| for d ≥ 3, c2 := 2π and with G(x) = 1
|x|d−2 in dimension d ≥ 3

and G(x) = ln 1
|x| in dimension d = 2. Integrating by parts gives

Eρ,L(Ωρ,L) = Per(Ωρ,L) + 1
2

∫
Rd

∫
Rd

(1Ωρ,L(x)− ρ1QL(x))G(x− y)(1Ωρ,L(y)− ρ1QL(y)) dx dy

= Per(Ωρ,L) + 1
2cd

∫
Rd

∫
Rd

(−∆ v∞ρ,L)v∞ρ,L dx

= Per(Ωρ,L) + 1
2cd

∫
Rd

∣∣∣∇v∞ρ,L
∣∣∣2 dx .

To define the liquid drop model energy for different boundary conditions, suppose vDir
ρ,L, v

Neu
ρ,L ∈

H1(QL) and vPer
ρ,L ∈ H1(Rd). For # ∈ {Dir,Per,Neu} let v#

ρ,L be the solution of

−∆ v#
ρ,L = cd(1Ωρ,L − ρ) in QL (1.11)
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with the corresponding boundary condition vDir
ρ,L(x) = 0 and ν ·∇vNeu

ρ,L (x) = 0 for x ∈ ∂QL

and vPer
ρ,L(x+ rL) = vPer

ρ,L(x) for all r ∈ Zd and x ∈ Rd. Then, define the energy functional

E#
ρ,L(Ωρ,L) := Per(Ωρ,L) + 1

2cd

∫
QL

∣∣∣∇v#
ρ,L

∣∣∣2 dx , (1.12)

and denote the corresponding ground state energy by
E#
ρ,L := inf{E#

ρ,L(Ω) : Ω ⊂ QL, |Ω| = ρLd}. (1.13)
for # ∈ {Dir,Per,Neu}. Note that sometimes for the whole space energy the analogous
notation is used E∞ρ,L := Eρ,L and E∞ρ,L := Eρ,L.

The energy of the Dirichlet problem is less than the one of the problem with whole
space or periodic boundary conditions which again are less than the energy of the Neumann
problem. Indeed, let # ∈ {∞,Per,Neu}, then

E#
ρ,L(Ωρ,L) ≥ Per(Ωρ,L) + 1

2cd

∫
QL

∣∣∣∇v#
ρ,L

∣∣∣2 dx

= Per(Ωρ,L) + 1
2cd

∫
QL

∣∣∣∇vDir
ρ,L + ∇v#

ρ,L −∇vDir
ρ,L

∣∣∣2 dx

≥ Per(Ωρ,L) + 1
2cd

∫
QL

∣∣∣∇vDir
ρ,L

∣∣∣2 dx+ 1
cd

∫
QL

∇vDir
ρ,L ·

(
∇v#

ρ,L −∇vDir
ρ,L

)
dx

= Per(Ωρ,L) + 1
2cd

∫
QL

∣∣∣∇vDir
ρ,L

∣∣∣2 dx+ 1
cd

∫
QL
vDir
ρ,L

(
−∆ v#

ρ,L + ∆ vDir
ρ,L

)
dx

+ 1
cd

∫
∂QL

vDir
ρ,Lν ·

(
∇v#

ρ,L −∇vDir
ρ,L

)
dx′

= EDir
ρ,L(Ωρ,L),

since −∆ v#
ρ,L = 1Ωρ,L − ρ = −∆ vDir

ρ,L in QL and vDir
ρ,L(x) = 0 for x ∈ ∂QL. It is clear that

the specific form of boundary condition for v#
ρ,L is not needed to bound the energy from

below by the Dirichlet energy.
Furthermore,∫

Rd\QL

∣∣∣∇v∞ρ,L
∣∣∣2 dx =

∫
Rd\QL

v∞ρ,L
(
−∆ v∞ρ,L

)
dx−

∫
∂QL

v∞ρ,Lν ·∇v∞ρ,L dx′

= −
∫
∂QL

v∞ρ,Lν ·∇v∞ρ,L dx′ ,

because −∆ v∞ρ,L = 0 in Rd\QL and for ν being the outer normal vector of ∂QL.
Therefore, integrating by parts gives

ENeu
ρ,L (Ωρ,L) = Per(Ωρ,L) + 1

2cd

∫
QL

∣∣∣∇v∞ρ,L + ∇vNeu
ρ,L −∇v∞ρ,L

∣∣∣2 dx

≥ Per(Ωρ,L) + 1
2cd

∫
QL

∣∣∣∇v∞ρ,L
∣∣∣2 dx+ 1

cd

∫
QL

∇v∞ρ,L ·
(
∇vNeu

ρ,L −∇v∞ρ,L
)

dx

= E∞ρ,L(Ωρ,L)− 1
2cd

∫
Rd\QL

∣∣∣∇v∞ρ,L
∣∣∣2 dx+ 1

cd

∫
∂QL

v∞ρ,Lν ·
(
∇vNeu

ρ,L −∇v∞ρ,L
)

dx′

≥ E∞ρ,L(Ωρ,L)
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since −∆ vNeu
ρ,L = 1Ωρ,L − ρ = −∆ v∞ρ,L in QL and ν ·∇vNeu

ρ,L = 0 on ∂QL.
A similar calculation shows ENeu

ρ,L (Ωρ,L) ≥ EPer
ρ,L (Ωρ,L) since

∫
∂QL

vPer
ρ,Lν · ∇vPer

ρ,L dx′ =
0. Actually, the energy of any boundary condition can be bounded from above by the
Neumann energy if the potential vρ,L of the minimizer Ωρ,L fulfills the assumption

∫
∂QL

vρ,L ν ·
∇vρ,L dx′ ≤ 0 for all L > C and ρ ∈ (0, 1

2 ].
Thus, for # ∈ {∞,Per} and for any Ωρ,L ⊂ QL with |Ωρ,L| = ρLd one has

EDir
ρ,L(Ωρ,L) ≤ E#

ρ,L(Ωρ,L) ≤ ENeu
ρ,L (Ωρ,L). (1.14)

Note that this inequality does not require to take the thermodynamic limit.
In Chapter 3 it is shown that the thermodynamic limit exists and is equal for Dirichlet,

whole space, periodic and Neumann boundary conditions. In particular this implies that
the results on the ground state energy for small ρ > 0 in dimension d ∈ {2, 3} derived in
Chapters 2 and 3 are also valid for Dirichlet, periodic and Neumann boundary conditions
in the thermodynamic limit.

1.5 Uniform Distribution of Energy and Existence of
the Thermodynamic Limit

Having the correct leading order constant in the dilute limit ρ → 0 in two and three
dimensions, one might ask whether the energy of the liquid drop model is uniformly
distributed throughout QL and what the minimal length scale is that one can prove this
uniform distribution of energy for.

Alberti, Choksi and Otto prove uniform distribution of energy in d dimensions with
d ∈ N down to the constant scale (with respect to L) in [1]. However, it is not clear how
the constant depends on the charge density ρ > 0.

The expected length scale for the minimal distance of two connected components of a
minimizer is l ∝ (ln 1

ρ
)−1/3ρ−1/2 in two dimensions and l ∝ ρ−1/3 in three dimensions. So

the result one would hope to prove is getting a minimal length scale of uniform distribution
of energy Cc−1

d,ρρ
−1/d for some large C > 0. Here c2,ρ := (ln 1

ρ
)1/3 and cd,ρ := 1 for d ≥ 3.

In this thesis uniform distribution of energy (with correct leading order coefficient) is
proven down to scale Cc1/2

d,ρ ρ
−1/2. So, in two dimensions the result is only by a factor of

(ln 1
ρ
)1/2 above the conjectured minimal length scale. In three dimensions it is a factor of

ρ−1/6.
If d = 2 and if one does not want an error which is greater than the error in Theorem

3.1, that is Cρ(ln 1
ρ
)−2/3, the result requires a length scale greater than C(ln 1

ρ
)5/3ρ−1/2.

The proof presented in this thesis is similar to the proof of Theorem 4 in [2]. There,
Armstrong and Serfaty prove uniform distribution of energy for the jellium model. The
techniques they use can be simplified in case of the liquid drop model.

Before sketching the idea of this proof, the following reformulation of the liquid drop
model energy is needed which Alberti, Choksi and Otto consider in [1]. Instead of writing
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the Coulomb energy in terms of the potential one just writes it in terms of the electric field
(which is denoted by b). This is essential for the proof of uniform distribution of energy
since it allows for cutting and pasting arguments.

Throughout this section it is assumed d ∈ N with d ≥ 2.

The energy in terms of the electric field Consider Q ⊆ Rd, a set Ω ⊂ Rd representing
the nuclear matter and the corresponding electric field b ∈ L2(Q,Rd). As in [1], define

E(Ω,b, Q) := Per(Ω ∩Q) + 1
2

∫
Q
|b|2 dx . (1.15)

Often one sets Q = QL = (−L/2, L/2)d, so if Ω ⊂ QL, abbreviate E(Ω,b) := E(Ω,b, QL).
Uniform distribution of energy will be proven in case of Neumann boundary conditions

ANeu(ρ,Q) :=
{

(ρ,Q) | Ω ⊂ Q and b ∈ L2(Q,Rd) with |Ω| = ρ|Q| such that

∇b = 1Ω − ρ in Q and b · ν = 0 on ∂Q
}
.

Furthermore, define the whole space boundary condition and the Dirichlet boundary
condition

A∞(ρ,Q) :=
{

(ρ,Q) | Ω ⊂ Q and b ∈ L2(Rd,Rd) with |Ω| = ρ|Q| such that

∇b = 1Ω − ρ1Q in Rd
}
,

ADir(ρ,Q) :=
{

(ρ,Q) | Ω ⊂ Q and b ∈ L2(Q,Rd) with |Ω| = ρ|Q| such that

∇b = 1Ω − ρ in Q
}
.

Denote the corresponding ground state energies by

E#(ρ,Q) := inf
{
E(Ω,b, Q) : (Ω,b) ∈ A#(ρ,Q)

}
,

with # ∈ {Neu,Dir} and E∞(ρ,Q) := inf{E(Ω,b,Rd) : (Ω,b) ∈ A∞(ρ,QL)}.
Clearly, one has EDir(ρ,Q) ≤ E∞(ρ,Q) ≤ ENeu(ρ,Q) because one can identify (Ω,b) ∈

ANeu(ρ,Q) with b ∈ L2(Rd) extended by 0 in Rd\Q. Then, (Ω,b) ∈ A∞(ρ,Q). And one
can simply restrict (Ω,b) ∈ A∞(ρ,Q) to (Ω,b|Q) ∈ ADir(ρ,Q).

Making use of the monotonicity of the Neumann and Dirichlet energies as in [1], later
on in Chapter 3 it is proven that the thermodynamic limits e#(θ) := limL→∞

1
Ld
E#(ρ,QL)

exist for # ∈ {Neu,Dir} and that they are equal. This also implies the existence and
equality of the thermodynamic limit of the ground state energy with whole space or periodic
boundary conditions.

The main result of this chapter is the following theorem. The error is better if small
length scales R are considered. With a similar method a result for large length scales can
be proven such that the error term is of order O(Rd−1).
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Theorem 1.5 (Uniform distribution of energy). Let (Ωρ,L,bρ,L) be a minimizer of E(·, ·, QL)
over ANeu(ρ,QL). Suppose ρ ∈ (0, 1

2 ] and L ≥ R ≥ Cδ−(d+1)/2c
1/2
d,ρ ρ

−1/2. For a ∈ QL such
that QR(a) ⊂ QL one has

E(Ωρ,L,bρ,L, QR(a)) = ENeu(ρ,QR(a)) +O(δcd,ρρRd), (1.16)

if the boundary can be estimated Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL) ≤ Cδcd,ρρR
d.

Remark 1.6. This condition on the boundary is always fulfilled if R is sufficiently large. If
smaller length scales are considered, one can make use of neutrality to find a good boundary
by averaging.

Note that this result is particularly interesting in the dilute limit which has been
considered so far in this thesis. Alberti, Choksi and Otto prove a remarkable result on the
uniform distribution of energy [1] but the dependence of the constant on the density ρ > 0
is not clear. If one tracks this dependence throughout their proof it becomes clear that
their constant actually gets worse for small ρ > 0, i.e. it tends to infinity like 1

ρn
for some

n > 0. The error in this estimate actually gets better for ρ→ 0.

Equivalence of the electric field and the Coulomb potential energies In the
introduction of [1] it is shown that the ground state energy is the same whether one
minimizes over electric fields or just writes the energy in terms of the Coulomb potential.
As it helps understanding this formulation this short proof is given below.

Let Ωρ,L ⊂ QL with |Ωρ,L| = ρLd and let vρ,L ∈ H2(QL) be such that −∆ vρ,L = 1Ωρ,L−ρ
in QL. Later it will be specified which boundary condition vρ,L should fulfill. For any
bρ,L ∈ L2(QL) with ∇bρ,L = 1Ωρ,L − ρ in QL in the sense of distributions, one has

E(Ωρ,L,bρ,L) = Per(Ωρ,L) + 1
2

∫
QL
|bρ,L|2 dx

= Per(Ωρ,L) + 1
2

∫
QL
|−∇vρ,L + bρ,L + ∇vρ,L|2 dx

= Per(Ωρ,L) + 1
2

∫
QL

(
|∇vρ,L|2 − 2∇vρ,L · (bρ,L + ∇vρ,L) + |bρ,L + ∇vρ,L|2

)
dx

≥ Per(Ωρ,L) + 1
2

∫
QL

(
|∇vρ,L|2 + 2vρ,L(∇bρ,L + ∆ vρ,L)

)
dx−

∫
∂QL

vρ,L(bρ,L + ∇vρ,L) · ν dx′

= Per(Ωρ,L) + 1
2

∫
QL
|∇vρ,L|2 dx−

∫
∂QL

vρ,L(bρ,L + ∇vρ,L) · ν dx′ ,

since ∇bρ,L = 1Ωρ,L − ρ = −∆ vρ,L in QL. If both bρ,L and vρ,L fulfill the Neumann
boundary condition, that is if bρ,L · ν = 0 on ∂QL and ν ·∇vρ,L = 0 on ∂QL, then the
boundary integral is zero. If vρ,L fulfills Dirichlet boundary condition, that is if vρ,L = 0 on
∂QL, then no assumption about the boundary of bρ,L is needed. The boundary integral
vanishes, anyway.

A similar calculation also holds for whole space boundary conditions. The integral over
QL is simply replaced by an integral over Rd and thus, there is no boundary term.
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If v#
ρ,L fulfills a given boundary condition # ∈ {Dir,Neu} for some Ωρ,L ⊂ QL with

|Ωρ,L| = ρLd, clearly, one has ∇v#
ρ,L ∈ A#(ρ,QL) and therefore,

E(Ωρ,L,∇v#
ρ,L, QL) = inf{E(Ωρ,L,bρ,L, QL) : (Ωρ,L,bρ,L) ∈ A#(ρ,QL)}. (1.17)

Similarly, E(Ωρ,L,∇v∞ρ,L,Rd) = inf{E(Ωρ,L,bρ,L,Rd) : (Ωρ,L,bρ,L) ∈ A∞(ρ,QL)}. This
justifies the previous definition of ADir(ρ,QL) which might not have been obvious.

Note that the ground state energy of the formulation in terms of electric field E#(ρ,QL)
has to be rescaled compared to the definition of the ground state energy in terms of the
Coulomb potential E#

ρ,L. Indeed, for whole space boundary conditions one has E∞(ρ,QL) =
c
d−1

3
d E∞

ρ,Lc
−1/3
d

with c2 = 2π and cd = (d− 2)|Sd−1| (not to be confused with cd,ρ).

Uniform distribution of energy To sketch the idea of the proof that is similar to the
proof of Theorem 4 by Armstrong and Serfaty in [2], let (Ω,b) be a minimizer of E(·, ·, QL)
over ANeu(ρ,QL). One would like to prove the upper bound for R ≤ L and a ∈ QL such
that QR(a) ⊆ QL

E(Ω,b, QR(a)) ≤ ENeu(ρ,QR(a)) + Ccnd,ρρ
1−εRd−2ε,

without specifying n ∈ R and ε > 0 at the moment. As previously defined c2,ρ := (ln 1
ρ
)1/3

and cd,ρ := 1 for d ≥ 3.
The basic idea of proving this is a cutting and pasting argument. Let (Ω0,b0) be a

minimizer of E(·, ·, QR(a)) over ANeu(ρ,QR(a)). Define Ω̃ := Ω\QR(a) ∪ Ω0 and

b̃(x) :=
b(x) in QL\QR(a),

b0(x) in QR(a).

One would then like to do the simple calculation

E(Ω,b, QR(a)) + E(Ω,b, QL\QR(a)) = E(Ω,b, QL)
= ENeu(ρ,QL) ≤ E(Ω̃, b̃, QL) = E(Ω0,b0, QR(a)) + E(Ω,b, QL\QR(a))
= ENeu(ρ,QR(a)) + E(Ω,b, QL\QR(a)).

This would imply the upper bound. Actually, the perimeter term is not quite additive.
One gets an additional surface term in ∂QR(a). But this is not the main difficulty. The
calculation above is wrong because one does not have (Ω̃, b̃) ∈ ANeu(ρ,QL) in general. It
does not necessarily fulfill the charge neutrality condition |Ω̃| = ρL2. One has |Ω0| = ρR2,
but there is no reason to assume |Ω\QR(a)| = ρ(L2 −R2).

The idea taken from the work of Armstrong and Serfaty [2] is to modify Ω̃ in QL\QR(a)
such that one has neutrality |Ω̃\QR(a)| = ρ2(L2 − R2) and such that b̃ · ν is continuous
on ∂QR(a) where ν is the outer normal vector of ∂QR(a). For this construction to work
one chooses a better boundary QT (a) with T ∈ [R + l̃, R + 2l̃] such that one is closer to
neutrality |Ω ∪QT (a)| ≈ ρT d.
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To make this connection between the boundary and charge neutrality more precise
remember that for (Ωρ,L,bρ,L) ∈ ANeu(ρ,QL) one has ∇bρ,L = 1Ωρ,L − ρ in QL. Therefore,
the Gauss-Green theorem implies

∣∣∣|Ωρ,L ∩QR(a)| − ρR2
∣∣∣ =

∣∣∣∣∣
∫
QR(a)

(1Ωρ,L(x)− ρ) dx
∣∣∣∣∣

=
∣∣∣∣∣
∫
QR(a)

∇bρ,L dx
∣∣∣∣∣ =

∣∣∣∣∣
∫
∂QR(a)

bρ,L · ν dx′
∣∣∣∣∣

≤ C
√
Rd−1

√∫
∂QR(a)

|bρ,L|2 dx′.

By averaging a T ∈ [R + l̃, R + 2l̃] is found such that
∫
∂QT (a) |bρ,L|

2 dx′ is not too large.
Then, one knows that ||Ωρ,L ∩QT (a)| − ρT 2| is not too large, either. So one has found a
cube that is not too far away from neutrality.

As in [2], the proof is based on a bootstrap of scales starting with L0 := L and then
arguing that uniform distribution of energy holds for all R ≥ L0/2. Iterating this argument
gives the desired result.

Large length scales A future project might be to derive a theorem that is particularly
suited for large scales R � ρ−1 with the method by Armstrong and Serfaty [2]. Then,
factors depending on ρ are not important whereas the exponent of the error term Rd−1 is
very important. The idea of this proof would basically be the same as for the one considered
in this thesis. However, the averaging argument has to be applied locally such that a
piecewise affine boundary is found that fulfills local energy estimates.

The thermodynamic limit Although the Coulomb potential is not integrable on Rd,
the thermodynamic limit of the ground state energy of the liquid drop model exists. This
fact can be explained by local charge neutrality (as one can explicitly see in the upper
bounds of the energy in dimensions two and three). The droplets and the background of
opposite charge cancel the leading orders of the Coulomb interaction. This effect is called
screening. So effectively any droplet only interacts with other droplets and the background
up to a range of C(ρ) with interaction energy greater than a small ε(ρ) > 0.

This is why the boundary condition should not matter in the thermodynamic limit. In
Chapter 3 a theorem is derived that shows that the thermodynamic limit exists and is
equal for Dirichlet, whole space and Neumann boundary conditions. Actually a whole range
of boundary conditions can be considered including periodic ones. One also expects the
structure of minimizers to be independent of the boundary condition in the thermodynamic
limit.
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1.6 Mathematical Quantum Mechanics
The second Coulomb system that is considered in this thesis is described by quantum
mechanics. (For a more detailed introduction to the quantum mechanics of many particles
e.g. refer to [35].)

Quantum mechanics is formulated in terms of a beautiful mathematical theory, namely
functional analysis. Every observable corresponds to a self-adjoint operator on a Hilbert
space H and the spectrum of this operator are the values one mighty possibly measure for
this observable in experiments. The operator corresponding to the energy of the system
is the Hamiltonian H. A physical state is a normalized vector ψ ∈ H. The energy of the
system in the state ψ is given by (ψ,Hψ), where (·, ·) denotes the inner product on H.

As a simple example consider just one particle in three dimensional Euclidean space
H := H2(R3). Then |ψ(x)| is the probability density for the particle being found at
x ∈ R3. The kinetic energy is described by H = −∆, so the energy of the system in ψ is
(ψ,−∆ψ) = ‖∇ψ‖2

L2(R3).
Starting with the Hilbert space H = H2(R3) of one particle and a one particle operator

like the kinetic energyH = −∆, one can consider a system ofN particles. The corresponding
Hilbert space is HN := H2((R3)N ) and a one particle operator H = −∆ induces an operator
HN by separately applying H to every particle, that is

HN :=
N∑
i=1

(−∆xi)

where x = (x1, . . . , xN) ∈ (R3)N .
Similarly an interaction of two particles that is described by a potential V : R3 → R

(for instance the Coulomb potential V (x) = 1
|x−y|) induces an operator on HN by letting it

act on each pair of two particles separately. Thus, the total Coulomb energy of the system
is described by the multiplication operator

∑
1≤i<j≤N

1
|xi − xj|

. (1.18)

Symmetry One of the basics of quantum mechanics is that a wave function ψ ∈ HN

describing N identical particles is either antisymmetric or symmetric. Indeed, let i, j ∈
{1, . . . , N}, i < j, ψ is called antisymmetric if and only if

ψ(x1, . . . , xN) = (−1)sψ(x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xN), (1.19)

for any (x1, . . . , xN) ∈ (R3)N and for s = 1. If this property holds for s = 0, ψ is called
symmetric.

The basic constituents of matter, protons, neutrons and electrons are particles described
by an antisymmetric wave function. They are called fermions. Some atomic nuclei are
fermions as well, some are described by a symmetric wave function. These are called bosons.
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The direct sum of the Hilbert spaces of all possible particle numbers in case of bosons is
called bosonic Fock space

Fsym(H) :=
∞⊕
N=0

⊗N

symH (1.20)

where ⊗N
sym is the symmetric N -fold tensor product. A one-particle operator H : H → H

induces an operator Q(H)

Q(H) :=
∞∑
N=0

HN (1.21)

on Fsym(H) where HN only acts on ⊗N
symH. Q(H) is called the second quantization of H.

The fermionic Fock space is defined similarly with the antisymmetric tensor product of
the one-particle Hilbert space H.

In Chapter 4 of this thesis the Fock space Fsym(L2(R3)) is considered.
Let (un)n∈N be an orthonormal basis of H (which is assumed to be separable) and let

f ∈ H. For any ψN ∈ Hsym
N := ⊗N

symH with

ψN =
∑

n1,...,nN

αn1...nNun1 ⊗ · · · ⊗ unN ,

define the operator a(f) : Hsym
N → Hsym

N−1 by

a(f)ψN :=
√
N

∑
n1,...,nN

αn1,...,nn(f, un1)un2 ⊗ · · · ⊗ unN

and similarly a∗(f) : Hsym
N → Hsym

N+1 by

a∗(f)ψN := 1√
N

∑
n1,...,nN

αn1,...,nNf ⊗sym un1 ⊗sym · · · ⊗sym unN .

For f, g ∈ H this definition implies the canonical commutation relation
[a(f), a∗(g)] = (f, g). (1.22)

Stability of matter Earlier in this thesis it is mentioned that matter as it is experienced
in everyday life or much simpler molecules are bound states of the electromagnetic interaction.
Actually, it is not as simple as that. If there was only the electromagnetic interaction the
system would not be stable. The reason why matter in this mathematical model is stable is
that it consists of fermionic particles. The size of an atom is much larger than the size of
an atomic nucleus precisely because electrons are fermions. Roughly speaking this means
that only two electrons (one spin up and one spin down) can be in the same one-particle
state. (For a discussion of the stability of matter refer to [35].)

The many particle limit The question of stability is connected to the question whether
the thermodynamic limit exists. So, is the energy proportional to the particle number N or
not? The mathematical model of N polarons that is considered is not stable, the energy
is proportional to −N7/5. This is connected with the fact that the typical length scales
L ∝ N−1/5+δL and l ∝ N−2/5+δl tend to zero very quickly with increasing particle number
N .
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Nuclear matter The liquid drop model actually shows what happens if there is no
antisymmetry condition in the mathematical model that keeps things apart. Atomic nuclei
are much closer to each other. The typical distance is of a completely different order of
magnitude in nuclear matter. Now the nuclear force is the attractive part in the energy
while the Coulomb interaction describes the repulsive part of the energy.

Hartree state of N bosons Consider a system of N bosons with Hamiltonian

HN :=
N∑
i=1

(−∆i) + 1
N − 1

∑
1≤i<j≤N

V (xi − xj),

with some potential V ∈ L1
loc(R3). A simple upper bound for the energy of the system is

given by (ψ,HNψ) for ψ(x1, . . . xN) := ∏N
i=1 ϕ(xi) where ϕ ∈ H2(R3). So all particles are

in the same one particle state ϕ. Then, the energy is

(ψ,HNψ) = N(ϕ,−∆ϕ) + N

2

∫
R2

∫
R2
|ϕ(x)|2V (x− y)|ϕ(y)|2 dx dy =: NEHF(ϕ).

EHF is called Hartree-Fock functional. If there is Bose-Einstein condensation, then one
actually has

inf
ψ∈D(HN ),‖ψ‖=1

(ψ,HNψ) = N inf
ϕ∈D(EHF),‖ψ‖=1

EHF(ϕ) + o(N).

So the leading order of the ground state energy of the large system is attained by all N
particles being in the same one particle state. Bogolubov theory considers the excitations
of states around this Hartree state to derive the second order ground state energy. This is
explained in [34] in a very elegant setting.

The Bogolubov Hamiltonian In 1947 Bogolubov tried to explain superfluidity in terms
of a Bose-Einstein gas [5]. Since he assumed the number of particles in the condensate
N0 = a∗0a0 to be much larger than the commutator [a0, a

∗
0] := a0a

∗
0 − a∗0a0 = 1 Bogolubov

had the idea to replace the operators a∗0 and a0 by the number
√
N0 to calculate the ground

state energy of the system.
Foldy used Bogolubov’s method in 1961 to study a charged Bose gas in the limit of high

densities [14]. Replacing a#
0 by

√
N0 and neglecting all terms that do not contain exactly

two a#
0 ∈ {a0, a

∗
0} Foldy diagonalized the resulting Hamiltonian to get an expression for the

ground state energy of the system. In [36] Lieb and Solovej confirm Foldy’s result rigorously.
They derive a lower bound for the thermodynamic ground state energy of the quantum
mechanical jellium model in the high density limit. Solovej also proves the corresponding
upper bound in [46].

Following Bogolubov’s approach, Lewin, Nam, Serfaty and Solovej show in [34] that
in a very general setting the second order of the energy is described by the Bogolubov
Hamiltonian if there is Bose-Einstein condensation. It is based on a unitary transform that
basically replaces the operators a∗0 and a0 by

√
N0. See also the recent works [27, 40].
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1.7 Large Polaron Systems and Bogolubov Theory
In a polar crystal there are phonons, i.e. modes of higher energy of atomic oscillations,
and electrons interacting with these phonons [4]. Fröhlich describes this physical system in
terms of a Hamiltonian containing the phonons as quantized fields and the the electron
as a scalar wave function [21, 22]. An upper bound for the ground state energy is given
by the non-linear Pekar-Tomasevich energy functional. Lieb and Thomas also prove a
corresponding lower bound if only one polaron (i.e. one electron with the polarization that
is induced in the ionic crystal) is considered in the limit of strong coupling α → ∞ [38].
A system of N Fröhlich polarons is considered by Frank, Lieb, Seiringer and Thomas in
[19, 20].

In Chapter 4 a sharp lower bound for the ground state energy of a polaron system
in the Pekar-Tomasevich approximation in the many particle limit is proven. Unlike the
liquid drop model in which the thermodynamic limit does exist, for this polaron system
the thermodynamic limit does not exist (at least in the case considered in this thesis that
is U = 1). The ground state energy in fact is proportional to N−7/5 as Benguria, Frank
and Lieb show in [3]. They prove an upper bound which they conjecture to be sharp and a
lower bound which differs by a factor of 22/5. In this thesis it is shown that their conjecture
is indeed true by proving the corresponding lower bound.

The Pekar-Tomasevich energy functional [42] is

E (N)
U [ψ] :=

∫
(R3)N

 N∑
i=1
|∇iψ|2 + U

∑
1≤i<j≤N

|ψ|2

|xi − xj|

 dx−D(ρψ, ρψ), (1.23)

where the particle density is defined

ρψ(z) :=
N∑
i=1

∫
· · ·

∫
(R3)N−1

|ψ(x1, . . . , xi−1, z, xi+1, . . . , xN)|2 dx1 . . . dxi−1 dxi+1 . . . dxN

and the Coulomb energy

D(ρ1, ρ2) := 1
2

∫
R3

∫
R3

ρ1(y)ρ2(z)
|y − z|

dy dz .

The term −D(ρψ, ρψ) is attractive. Minimizing the energy it favors polarons coming closer
together. The sum ∑

1≤i<j≤N
|ψ|2
|xi−xj | is the Coulomb term which is repulsive. The relative

strength of these two terms is described by the parameter U . (The Pekar-Tomasevich
energy actually contains another parameter, the coupling constant α, which is eliminated
by rescaling.)

Chapter 4 is concerned with the many particle limit N →∞ of the ground state energy

E
(b)
U (N) := inf

{
E (N)
U [ψ] : symmetric ψ ∈ H1((R3)N),

∫
(R3)N

|ψ|2 dx = 1
}
, (1.24)



1.7 Large Polaron Systems and Bogolubov Theory 21

in case U = 1. At this value for U there is a phase transition. For U > 1 the thermodynamic
limit exists [18], whereas for U < 1 the bosonic ground state energy E(b)

U (N) goes as −e(b)
U N3

with a constant e(b)
U as Benguria and Bley show in [4]. Benguria, Frank and Lieb [3] prove

in 2015 that for U = 1

−22/5A ≤ lim inf
N→∞

N−7/5E
(b)
1 (N) ≤ lim sup

N→∞
N−7/5E

(b)
1 (N) ≤ −A,

for a certain A > 0 and conjecture the upper bound to be sharp. The following theorem
shows that this is indeed true.

Theorem 1.7. In the bosonic case with U = 1,

lim
N→∞

N−7/5E
(b)
1 (N) = −A, (1.25)

where

−A = inf
{∫

R3
|∇φ|2 dx− I0

∫
R3
|φ|5/2 dx : φ ∈ H1(R3),

∫
R3
|φ|2 dx = 1

}
, (1.26)

with

I0 = 2
5

( 2
π

)1/4 Γ(3/4)
Γ(5/4) ≈ 0.6. (1.27)

The proof is based on a linearization of the Pekar-Tomasevich energy functional

E (N)
1 [ψ] = inf

σ
(ψ,HNψ) where ψ ∈ H1((R3)N) and

HN =
N∑
j=1

(−∆j) +
∑

1≤i<j≤N

1
|xi − xj|

−
N∑
j=1

∫
R3

σ(y)
|xj − y|

dy + 1
2

∫
R3

∫
R3

σ(y)σ(z)
|y − z|

dy dz .

Here, the infimum is taken over all σ ∈ L1(R3) such that
∫
R3
∫
R3

σ(y)σ(z)
|y−z| dy dz < ∞.

Therefore, the techniques applied are those of Bose gases, in particular Bogolubov theory.
The work is based on two remarkable papers by Lieb and Solovej on the one component
and the two component charged Bose gases [36, 37].

The first paper mentioned is about the quantum mechanical jellium model that is the
Hamiltonian HN with σ = ρ1QL for a constant ρ > 0. It has some similarity to the problem
considered in this thesis because of the interaction of the wave function with a background
of opposite charge. However, due to the fact that this background is chosen to be constant,
the thermodynamic limit does exist.

The second paper is more similar to the problem considered in this thesis. In the two
component charged Bose gas particles of charge −1 can accumulate around particles of
charge 1. Similarly, in this thesis σ might be more concentrated at one spot than at another.
This is why, for the two component charged Bose gas the thermodynamic limit does not
exist, either. The system implodes as the particle number tends to infinity.



22 1. Introduction and Main Theorems

The large length scale There are two relevant length scales of this problem - exactly,
the same es in [37]. Beginning with the system of N particles in the whole space R3, it is
then considered in a cube QL = (−L/2, L/2)3. As will be seen, the ground state in this
cube is sub-additive in the particle number N . That is, (without specifying the energy E
at the moment)

E(N1 +N2) ≤ E(N1) + E(N2).
This is why the energy on the whole of R3 can be estimated from below by the energy of the
system inside a cube of length scale L ∝ N−1/5+δL for some small δL > 0. So L describes
the size of the whole N particle system close to the ground state energy.

The small length scale As in [37] there is a small length scale l ∝ N−2/5+δl where
there is local condensation, i.e. most particles in a cube of size l are in the constant state.
This length scale l is where Bogolubov theory is applied. Heuristically, Bogolubov theory
describes the second order energy. However, in this system it describes the leading order of
the energy because there is local charge neutrality. In cubes of size l the difference of the
local particle number density nl−3 and the background σ is of subleading order. Proving
this is one of the challenges, but similar to what Lieb and Solovej have done one succeeds in
doing so. Actually, there are two terms in the lower bound which are difficult to estimate,
the non-neutrality term and the number of excitations.

The non-neutrality term is estimated by including it in the Bogolubov Hamiltonian that
describes the leading order. The number of excitations is estimated using the method of
localizing large matrices Lieb and Solovej developed in [36]. This is the major challenge
that Lieb and Solovej overcome, not by getting a good estimate for the wave function itself,
but by proving that there is a wave function of similar energy with a good estimate on the
local number of excited particles.



Chapter 2

Ground State Energy of the Three
Dimensional Liquid Drop Model

This chapter has been published [13]. It is joined work with Rupert Frank and Tobias König.
In this chapter Theorem 1.1 is proven which concerns the thermodynamic limit of the

ground state energy in the dilute limit. It basically says that limL→∞Eρ,L/L
3 is given to

leading order by the energy of an isolated nucleus that minimizes the energy E0 without a
background.

As usual in statistical mechanics, the system is considered in a cube QL = (−L/2, L/2)3

for L > 0. Allowed nuclear configurations are described by measurable sets Ωρ,L ⊂ QL that
are electroneutral |Ωρ,L| = ρL3 and their energy is

Eρ,L(Ωρ,L) = Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ) 1
|x− y|

(1Ωρ,L(y)− ρ) dx dy . (2.1)

The parameter ρ ∈ (0, 1) here describes the quotient between the electron and the nucleon
charge density. The ground state energy is given by

Eρ,L = inf
{
Eρ,L(Ω) : Ω ⊂ QL, |Ω| = ρL3

}
. (2.2)

The main result of this chapter is the following theorem. It is crucial that this established
uniformly in L.

Theorem 2.1 (Ground State Energy Asymptotics). There is a constant C > 0 such that
the following bounds hold.

(i) For all ρ ∈ (0, 1
2 ] and L > 0 such that ρ1/3L ≥ C, one has

Eρ,L
ρL3 ≤

E0(A∗)
A∗

+ Cρ1/3 + C

ρ1/3L
. (2.3)

(ii) For all ρ ∈ (0, 1] and L > 0, one has

Eρ,L
ρL3 ≥

E0(A∗)
A∗

− Cρ1/5. (2.4)



24 2. Ground State Energy of the Three Dimensional Liquid Drop Model

Remark 2.2. The bounds in Theorem 2.1 give the asymptotics of the energy for ρ close to
0. By a simple symmetry argument this theorem yields analogous asymptotics for ρ close
to 1. Namely, for ρ ∈ [1

2 , 1) and (1− ρ)1/3L ≥ C, one has

−C(1− ρ)1/5 − 6
L
≤ Eρ,L

(1− ρ)L3 −
E(A∗)
A∗

≤ C(1− ρ)1/3 + C

(1− ρ)1/3L
. (2.5)

This follows from the fact that the energy fulfills for Ω ⊂ QL

Eρ,L(Ω) = E1−ρ,L(QL\Ω)−
(
H2(∂QL)− 2H2(∂QL ∩ Ω)

)
,

where the closure of Ω is taken in the measure theoretic sense. The term in parentheses is
bounded in absolute value by 6L2. Therefore, (2.5) follows from the bounds in Theorem
2.1.

Remark 2.3. The power 1/5 of ρ in (2.4) is technical. It is an interesting question to
decide whether the power 1/3 in (2.3) is best possible. The assumption ρ1/3L ≥ C and the
corresponding remainder term in (2.3) are not severe restrictions in the thermodynamic
limit and are imposed mainly for a simple statement.

Remark 2.4. Note that this result implies the main theorem stated in the introduction,
namely Theorem 1.1 since in Chapter 3 the equality of the thermodynamic limit for Dirichlet,
whole space, periodic and Neumann boundary conditions is deduced in Theorem 3.22.

Note that this result is valid independently of whether the energy-per-volume minimizer
Ω∗ of the functional E0 without background is a ball or not. This is particularly relevant
for the proof of the upper bound (2.3). If Ω∗ is a ball, or more generally, if the quadrupole
moment of Ω∗ vanishes, the proof of the upper bound (2.3) is straightforward. If the
quadrupole moment of Ω∗ does not vanish, one needs to distort the lattice to achieve the
required cancellation in the long range behavior of the Coulomb potential.

The remainder of this chapter consists of three sections. Section 2.1 deals with the upper
bound (2.3) of Theorem 2.1 under the additional assumption that the energy-per-volume
minimizer Ω∗ is a ball. In Section 2.2 the necessary changes are described to remove this
assumption. Finally, Section 2.3 deals with the lower bound (2.4).

Throughout this chapter it is assumed d = 3.

2.1 Upper bound if Ω∗ is a ball
The purpose of this and the next section is to prove the first statement of Theorem 2.1,
which is restated here for convenience.

Proposition 2.5 (Upper Bound). There is a constant C > 0 such that, if ρ1/3L ≥ C and
ρ ≤ 1

2 , one has

Eρ,L
ρL3 ≤

E0(A∗)
A∗

+ Cρ1/3 + C

ρ1/3L
. (2.6)
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In order to not obscure the simple underlying idea, throughout this section make the
additional assumption that the minimizer Ω∗ of the whole space problem is a ball. As
explained in the introduction, this is strongly conjectured to be the case. In the following
Section 2.2 the technical modifications of the proof are explained to treat the case of general
Ω∗.

Proof of Proposition 3.4 when Ω∗ is a ball. For every pair (ρ, L) a suitable set Ωρ,L for Eρ,L
is constructed. The idea is to take Ωρ,L to be given by a cubic lattice arrangement on QL

of sets Ω∗. The period length l > 0 of the lattice will be chosen so that the requirement
|Ωρ,L| = ρL3 is fulfilled. Since each box of side length l should contain one copy of Ω∗, for
the mass density to be equal to ρ, assume ρl3 = A∗, or equivalently

l = A∗1/3ρ−1/3.

Let Cρ,L := {r ∈ lZ3 : Ql(r) ⊂ QL} be the set of lattice points r such that the cubes
Ql(r) are fully contained in QL and let Nρ,L := #Cρ,L denote the number of these cubes.

Define the set Ωρ,L to be the following disjoint union

Ωρ,L :=
⋃

r∈Cρ,L
(λρ,Lr + λρ,LΩ∗), (2.7)

where the rescaling factor λρ,L is given by

λ3
ρ,L = ρL3

A∗Nρ,L

. (2.8)

Recall that it is assumed that Ω∗ is a ball which is centered at the origin. Moreover, its
radius is denoted by r∗.

Note that the union in (3.7) is disjoint since ρ ≤ 1
2 . (Indeed, one has 1

2 l
3 ≥ ρl3 = A∗ =

4π
3 r

3
∗ and therefore, l > 2r∗.)
Informally, the construction of the set Ωρ,L can thus be described as follows. Fill QL

with small boxes Ql(r) of side length l as full as possible, place a copy of Ω∗ in the middle
of each box and enlarge the whole configuration slightly by the factor λρ,L.

The definition of λρ,L now ensures that the boxes Qλρ,Ll(λρ,Lr) cover QL completely and
that the mass constraint

|Ωρ,L| = Nρ,LA
∗λ3

ρ,L = ρL3 (2.9)

is fulfilled. Note also that with this choice, one even has local neutrality of Ωρ,L on every
box Qλρ,Ll(λρ,Lr), i.e. for every r ∈ Cρ,L,

|Ωρ,L ∩Qλρ,Ll(λρ,Lr)| = λ3
ρ,LA

∗ = ρλ3
ρ,Ll

3 = ρ|Qλρ,Ll(λρ,Lr)|. (2.10)

Since the number of boundary boxes is of order L2

l2
, it is easy to see that Nρ,L satisfies

the bounds
L3

l3
≥ Nρ,L ≥

L3

l3
− CL

2

l2
, (2.11)
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for some C > 0 independent of ρ and L. From (2.8), one thus obtains the bound

1 ≤ λ3
ρ,L ≤

ρL3

A∗
(
L3

l3
− C L2

l2

) = ρ

A∗(l−3 − CL−1l−2) = 1
1− C l

L

≤ 1 + C
l

L
, (2.12)

and so, in particular, limL→∞ λρ,L = 1.
In many situations below, to estimate subleading terms, the crude bound

1 ≤ λρ,L ≤ 2, (2.13)

is enough. It follows from (2.12) whenever l
L

= A∗1/3

ρ1/3L
≤ 1

C
.

The proof of the bound (3.6) consists in computing in three separate steps the self-energy,
the near-field and the far-field interaction energy of the set Ωρ,L. That is, the energy is
expressed as the sum of three terms

Eρ,L(Ωρ,L) = E (self)
ρ,L + E (near)

ρ,L + E (far)
ρ,L , (2.14)

by partitioning the double integral from the interaction term of Eρ,L. To simplify notation,
write

l = λρ,Ll, r = λρ,Lr, and s = λρ,Ls (2.15)

throughout the remaining proof. Define

E (self)
ρ,L := Per(Ωρ,L) +

∑
r∈Cρ,L

1
2

∫
Ql(r)

∫
Ql(r)

(1Ωρ,L(x)− ρ) 1
|x− y|

(
1Ωρ,L(y)− ρ

)
dx dy , (2.16)

and

E (near)
ρ,L :=

∑
(r,s)∈Vnear

1
2

∫
Ql(r)

∫
Ql(s)

(
1Ωρ,L(x)− ρ

) 1
|x− y|

(
1Ωρ,L(y)− ρ

)
dx dy , (2.17)

where
Vnear := V

(near)
ρ,L :=

{
(r, s) ∈ Cρ,L × Cρ,L and 1 ≤ |r − s|∞ ≤M

}
. (2.18)

Here, M ∈ N is a number fixed throughout the proof (let us say M = 10).
Lastly, define

E (far)
ρ,L :=

∑
(r,s)∈Vfar

1
2

∫
Ql(r)

∫
Ql(s)

(
1Ωρ,L(x)− ρ

) 1
|x− y|

(
1Ωρ,L(y)− ρ

)
dx dy , (2.19)

where
Vfar := V

(far)
ρ,L :=

{
(r, s) ∈ Cρ,L × Cρ,L and |r − s|∞ > M

}
. (2.20)

Step 1: Self-Energy. Similar to l, write

Ω∗ = λρ,LΩ∗ (2.21)
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here and throughout the remaining proof. Since Ωρ,L consists of Nρ,L disjoint copies of Ω∗,
one has

E (self)
ρ,L

ρL3 ≤
Nρ,L

ρL3

(
Per(Ω∗) + 1

2

∫
Ω∗

∫
Ω∗

dx dy
|x− y|

+ ρ2

2

∫
Ql

∫
Ql

dx dy
|x− y|

)
.

Since Nρ,L
ρL3 = 1

A∗λ3
ρ,L

by (2.9), one has

E (self)
ρ,L

ρL3 ≤
1
A∗

(
λ−1
ρ,L Per(Ω∗) +

λ2
ρ,L

2

∫
Ω∗

∫
Ω∗

dx dy
|x− y|

dx dy + Cρ2l5
)

≤ E(A∗)
A∗

+ E(A∗)
A∗

(λ2
ρ,L − 1) + Cρ2l5

≤ E(A∗)
A∗

+ C

ρ1/3L
+ Cρ1/3,

where the bound λ2
ρ,L − 1 ≤ C(λ3

ρ,L − 1) ≤ C l
L

= C 1
ρ1/3L

from (2.12) has been used for the
last inequality. Moreover, recall l ≤ λρ,Ll ≤ 2l, from (2.13).

Step 2: Near Field Interaction. Due to the periodicity of Ωρ,L, one has

E (near)
ρ,L

ρL3 = 1
ρL3

∑
(r,s)∈Vnear

1
2

∫
Ql(r)

∫
Ql(s)

(
1Ωρ,L(x)− ρ

) 1
|x− y|

(
1Ωρ,L(y)− ρ

)
dx dy

= 1
ρL3

∑
(r,s)∈Vnear

1
2

∫
Ql

∫
Ql

(1Ω∗(x)− ρ) 1
|rl + x− sl − y|

(1Ω∗(y)− ρ) dx dy

≤ 1
ρL3

∑
(r,s)∈Vnear

1
2

(∫
Ω∗

∫
Ω∗

1
|rl + x− sl − y|

dx dy + ρ2
∫
Ql

dx
∫
Ql

1
|y|

dy
)
, (2.22)

since the integral over the symmetric-decreasing function 1/| · | is largest on the cube
centered at 0. This follows from the observation that three Steiner symmetrizations with
respect to the coordinate directions e1, e2, e3 transform any cube Ql(µ) into the centered
cube Ql(0). Furthermore, for every r 6= s and x, y ∈ Ω∗ one has

|rl + x− sl − y| ≥ |r − s|l − |x− y| ≥ λρ,L(l − diam(Ω∗)) ≥ l/C.

Here, it has been estimated 1
2 l

3 ≥ ρl3 = A∗ = 4π
3 r

3
∗, which implies l− 2r∗ ≥ l/C. Therefore,

the right hand side of (2.22) is bounded from above by

1
ρL3

∑
r∈Cρ,L

M3
(
C

l
+ Cρ2l5

)
≤ C

L3l−3

ρL3

(
l−1 + ρ2l5

)
≤ Cρ1/3, (2.23)

by bound (2.11). For the last inequality, recall the choice ρl3 = |Ω∗| = A∗ and the bound
1 ≤ λρ,L ≤ 2 from (2.13).
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Step 3: Far Field Interaction. Due to the periodicity of Ωρ,L, one has

E (far)
ρ,L =

∑
(r,s)∈Vfar

1
2

∫
Ql(r)

∫
Ql(s)

(
1Ωρ,L(x)− ρ

) 1
|x− y|

(
1Ωρ,L(y)− ρ

)
dx dy

=
∑

(r,s)∈Vfar

1
2

∫
Ql

∫
Ql

(1Ω∗(x)− ρ) 1
|rl + x− sl − y|

(1Ω∗(y)− ρ) dx dy . (2.24)

The Taylor expansion

1
|a− b|

= 1
|a|

+ a · b
|a|3

+ 1
2

3(a · b)2 − a2b2

|a|5
+O

(
|b|3

|a|4

)
, (2.25)

is valid for a, b ∈ R3 with |a| ≥ 4|b|. Choose a = (r − s)l + x and b = y.
By the assumption that Ω∗ = B(0, r∗), the monopole, the dipole and the quadrupole

moments of 1Ω∗ − ρ1Ql vanish.
That is, for all a ∈ R3\{0}, the equation holds∫

R3
(1Ω∗(y)− ρ1Ql(y))

(
1
|a|

+ a · y
|a|3

+ 1
2

3(a · y)2 − a2y2

|a|5

)
dy = 0. (2.26)

This follows from the neutrality condition (2.10) and the symmetries of a ball and a cube
centered at 0. More precisely, the function 1Ω∗(y)− ρ1Ql(y) is invariant under the reflection
of one coordinate yi 7→ −yi as well as under the exchange of two coordinates yi and yj.

These symmetries cause the dipole, respectively the quadrupole moment to vanish. Note
that this is one of only two places where the additional assumption Ω∗ = B(0, r∗) enters in
the proof. The other one is the fact that Ω∗ = B(0, r∗) ⊂ Ql for ρ ≤ 1

2 if ρl3 = |Ω∗|. For
the necessary modifications to obtain an equation similar to (2.26) in the absence of the
assumption Ω∗ = B(0, r∗) refer to Section 2.2.

By (2.26), if one plugs in the expansion (2.25) and sets a = (r − s)l + x and b = y,
equation (2.24) is bounded from above by

C
∑

(r,s)∈Vfar

∫
Ql

∫
Ql

|1Ω∗(x)− ρ| |y|3

|rl − sl + x|4
|1Ω∗(y)− ρ| dx dy

≤ C
∑

(r,s)∈Vfar

∫
Ql

1Ω∗(x) + ρ

|(r − s)l + x|4
dx
∫
Ql

(1Ω∗(y) + ρ)|y|3 dy . (2.27)

Furthermore, |x| ≤
√

3 l/2 for x ∈ Ql. Since |r − s| > M = 10, it follows |(r − s)l̃ + x| ≥
l̃|r − s| − |x| ≥ 1

2 l̃|r − s|. Equation (2.27) can thus be estimated from above by

C
∑

(r,s)∈Vfar

24

l4|r − s|4
∫
Ql

(1Ω∗(x) + ρ) dx
(∫

Ω∗
|y|3 dy + ρ

∫
Ql

|y|3 dy
)

≤ C

l4
∑

(r,s)∈Vfar

1
|r − s|4

(
1 + ρl3

)(
1 + ρl6

)
≤ Cl−1(1 + ρl3)(l−3 + ρl3)

∑
(r,s)∈Vfar

1
|r − s|4

,

(2.28)
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where again it is used 1 ≤ λρ,L ≤ 2, and thus, l ≤ l ≤ 2l, from (2.13).
Since ρl3 = A∗, it remains to evaluate the last sum over the set Vfar. Recalling the

bound on the number of boxes Nρ,L ≤ L3

l3
, one has

∑
(r,s)∈Vfar

1
|r − s|4

≤
∑

r∈Cρ,L

∑
s∈Z3
s 6=r

1
|r − s|4

≤ L3

l3
∑

s∈Z3\{0}

1
|s|4

= CρL3. (2.29)

Putting together (2.24), (2.28) and (2.29) and using ρl3 = A∗, gives

1
ρL3E

(far)
ρ,L ≤ Cl−1 = Cρ1/3.

Step 4: Conclusion. Inserting the bounds proved in Steps 1-3 back into (2.14), one
obtains

Eρ,L(Ωρ,L)
ρL3 =

E (self)
ρ,L + E (near)

ρ,L + E (far)
ρ,L

ρL3 ≤ E(A∗)
A∗

+ Cρ1/3 + C
1

ρ1/3L
.

The proof of Proposition 3.4 is therefore complete.

2.2 Upper bound in the general case
Here, the necessary modifications are given to obtain the upper bound from Theorem 2.1 if
one does not make any symmetry assumption on the energy-per-volume minimizer Ω∗.

In case ρ > 1/C, inequality (2.3) is equivalent to the bound

Eρ,L
ρL3 ≤ C ′.

To show this, it is not necessary to use minimizers in the construction of our test set Ωρ,L.
It suffices to consider balls of any fixed radius r∗ > 0 arranged on a lattice just as it is done
in the proof of Proposition 3.4. Therefore, assume

ρ ≤ 1
C
.

The proof strategy of Theorem 2.1 in the absence of symmetry of Ω∗ is identical to
the one of the upper bound in Section 2.1. One constructs a competitor set made from
energy-per-volume minimizers Ω∗ arranged on a lattice. The difficulty one faces is that in
proving the error bound on the far-field interaction term, one cannot invoke the symmetry
of Ω∗ to prove that the monopole, dipole and quadrupole moments vanish as in (2.26).

This difficulty can be resolved by fine-adjusting the parameters of the lattice. More
precisely, it is shown that the analogue of (2.26) can still be achieved by considering a
suitably translated and rotated copy of Ω∗, arranged on a slightly distorted lattice.
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Notation. To deal with cuboids instead of cubes, it is necessary to introduce some
appropriate notation. For r ∈ R3 and l ∈ R3, define

Ql(r) := {x ∈ R3 : |xi − ri| < li/2 for i ∈ {1, 2, 3}}, (2.30)

and Ql := Ql(0).
More generally, given λ = (λ1, λ2, λ3) ∈ R3 and Ω ⊂ R3, define the ’inhomogeneous

dilation’ by λ of the set Ω to be λΩ := {(λ1x1, λ2x2, λ3x3) : x ∈ Ω}. Observe that
with these definitions, one has λQL = QLλ. Both notations shall be used according to
convenience.

It is intended to cover the cube QL with many copies of the cuboid of side lengths l.
Then, the parameter r ∈ lZ3 simply counts those cuboids in each direction.

Furthermore, for Ω ⊂ λQL, set

Eρ,L,λ(Ω) = Per(Ω) + 1
2

∫
λQL

∫
λQL

(1Ω(x)− ρ)|x− y|−1(1Ω(y)− ρ) dx dy ,

and define the corresponding ground state energy by

Eρ,L,λ = inf{Eρ,L,λ(Ω) : Ω ⊂ λQL, |Ω| = ρ|λQL|}.

With this notation, one can prove the following two key lemmas.

Lemma 2.6 (Vanishing Multipole Moments). Let Ω ⊂ R3 be a bounded set. Assume that
two numbers l0 > 0 and ρ ∈ (0, 1

2 ] are given such that |Ω| = ρl30. If η0 := l0
diam(Ω) is large

enough, then there is an orthogonal matrix U ∈ R3×3, a translation vector y ∈ R3 and a
scaling vector l = λl0 such that the set Ω0 := U(Ω + y) is contained in Ql and satisfies

0 =
∫
R3

(1Ω0(x)− ρ1Ql(x)) dx =
∫
R3
xi(1Ω0(x)− ρ1Ql(x)) dx

=
∫
R3

(3xixj − δij|x|2)(1Ω0(x)− ρ1Ql(x)) dx

for all i, j ∈ {1, 2, 3}. Furthermore, the scaling parameters λ = (λ1, λ2, λ3) fulfill

λ1λ2λ3 = 1 and |λi − 1| ≤ Cη−2
0 (i = 1, 2, 3)

for a certain constant C > 0.

Remark 2.7. Since the proof below does not use the special form of 1Ω as an indicator
function, the statement of Lemma 2.6 remains true if one replaces 1Ω by an arbitrary charge
distribution τ ≥ 0, τ ∈ L1(R3), with compact support.

Proof of Lemma 2.6. Let Ω ⊂ R3 satisfy |Ω| = ρl30. First, observe that since rotations and
translations do not change the volume |Ω| = ρl30, one always has

0 =
∫
R3

(1U(Ω+y)(x)− ρ1Ql (x)) dx ,
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as long as the constraint λ1λ2λ3 = 1 is satisfied, which implies |Ql | = l30.
Note that up to replacing Ω by its translate Ω + y for a suitable vector y ∈ R3, it can

be achieved that

0 =
∫
R3
xi(1Ω(x)− ρ1Ql ) dx for all i = 1, 2, 3. (2.31)

for every l ∈ R3. Indeed, the cube Ql is symmetric with respect to the coordinate planes
and thus

0 = ρ
∫
R3
xi1Ql (x) dx .

Moreover, for y ∈ R3 one has∫
R3

1Ω+y(x)xi dx =
∫
R3

1Ω(x)(xi + yi) dx =
∫

Ω
xi dx+ yi|Ω|,

Therefore, it suffices to set yi = − 1
|Ω|
∫

Ω xi dx. Continue for simplicity to denote the
translated version Ω + y which satisfies (2.31) by Ω. Note also that if Ω satisfies (2.31),
then so does UΩ, for any invertible matrix U ∈ R3×3.

It remains to ensure that the quadrupole moment vanishes by introducing an appropriate
U ∈ R3×3 and l = λl0 ∈ R3. Since the quadrupole moment of Ω,

P = (Pij)i,j=1,2,3 with Pij :=
∫

Ω
(3xixj − δij|x|2) dx ,

is a traceless symmetric 3 × 3-matrix with real entries, there is an orthogonal matrix
U ∈ R3×3 and numbers a, b ∈ R such that a 0 0

0 b 0
0 0 −a− b

 = UPUT =
∫

Ω
(3(Ux)i(Ux)j − δij|Ux|2) dx =

∫
UΩ

(3xixj − δij|x|2) dx .

(2.32)
That is, up to replacing Ω by its rotated version UΩ =: Ω0, whose monopole and dipole
moments still vanish by the remarks made above, one can assume that its quadrupole
moment is diagonal.

To make the quadrupole moment of (1Ω0 − ρ1Ql ) vanish, it is thus necessary to find a
cuboid Ql of volume |Ql | = l30 which contains Ω0 and satisfies

ρ
∫
Ql

(3x2
1 − |x|2) dx = a,

ρ
∫
Ql

(3x2
2 − |x|2) dx = b.

(2.33)

Setting l1 = λ1l0, l2 = λ2l0 and l3 = λ3l0 = l0
λ1λ2

(by the volume constraint), then by
rescaling and using the relation |Ω| = ρl30, the system (2.33) is equivalent to

2λ2
1 − λ2

2 −
1

λ2
1λ

2
2

= 12
|Ω|l20

a,

−λ2
1 + 2λ2

2 −
1

λ2
1λ

2
2

= 12
|Ω|l20

b.
(2.34)
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By adding these two equations, respectively subtracting them, one obtains the equations

λ2
1 + λ2

2 −
2

λ2
1λ

2
2

= 12(a+ b)
|Ω|l20

=: 2c1,

λ2
1 − λ2

2 = 4(a− b)
|Ω|l20

=: 2c2.

(2.35)

Inserting the second equation of (2.35) into the first one and changing to the center of mass
coordinate X = (λ2

1 + λ2
2)/2 gives the equation

X − 1
X2 − c2

2
= c1, (2.36)

which is equivalent to the cubic equation

p(X) := X3 − c1X
2 − c2

2X − 1 + c1c
2
2 = 0. (2.37)

It can be seen from (2.32) that |a+ b| ≤ 8 diam(Ω0)2|Ω0|. Therefore, the definition (2.35)
of the ci implies that |ci| < 48 diam(Ω0)2l−2

0 . Thus, if η0 = l0
diam(Ω0) is large enough, the

polynomial p will be very close to X3 − 1. Since X3 − 1 has exactly one complex zero close
to 1 (namely 1), one can apply Rouché’s theorem in a ball of radius ∼ η−2

0 around 1. Thus,
there exists exactly one complex zero X0 of p with |X0 − 1| ≤ Cη−2

0 . Since the coefficients
of p are real, uniqueness of the zero implies that X0 is in fact real.

One therefore gets solutions λ1, λ2 > 0 of (2.35) which satisfy

|λ1 − 1| = |λ
2
1 − 1|
λ1 + 1 = |X0 + c2 − 1|

λ1 + 1 ≤ Cη−2
0 ,

|λ2 − 1| = |λ
2
1 − 1|
λ1 + 1 = |X0 − c2 − 1|

λ1 + 1 ≤ Cη−2
0 .

Note that λ3 = 1/(λ1λ2) also fulfills |λ3 − 1| ≤ Cη−2
0 . Moreover, the fact that

∫
Ω0
xi dx = 0

implies easily that Ω0 ⊂ Ql0 for every l0 ≥ 2 diam(Ω). This completes the proof of Lemma
2.6.

The next lemma shows that for λ close to (1, 1, 1), one can replace the ground state
energy of QL by that of the cuboid QλL with only a small error.

Lemma 2.8 (Approximating Eρ,L by a cuboid Eρ,L,λ). Suppose that λ = (λ1, λ2, λ3) is
such that λ1λ2λ3 = 1 and assume that λi ∈ [1− δ, 1 + δ] for i = 1, 2, 3, for some δ ∈ [0, 1].
Then, one has

Eρ,L(Ω) ≤ (1 + Cδ)Eρ,L,λ[λΩ], for all Ω ⊂ QL, (2.38)

where C > 0 is a constant independent of δ, ρ, L and Ω. In particular, this implies

Eρ,L ≤ (1 + Cδ)Eρ,L,λ. (2.39)
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Proof. Let Ω ⊂ QL arbitrary and consider, for λ as in the statement, the set λΩ. Note
that since λ1λ2λ3 = 1, one has |λΩ| = |Ω| and |λQL| = |QL|.

To prove (2.38), consider the perimeter and Coulomb terms separately. Assume for
definiteness in the following that λ1 ≤ λ2 ≤ λ3. Firstly, recall the definition

Per(Ω) = sup
{∫

Ω
divϕ(x) dx : ϕ ∈ C1

c (R3,R3), ‖ϕ‖∞ ≤ 1
}
. (2.40)

For any ϕ as in (2.40) and λ ∈ R3 with λ1λ2λ3 = 1, define the vector field ϕλ ∈ C1
c (R3,R3)

by setting its i-th component to be ϕλ,i(x) = λiϕi(λ−1
1 x1, λ

−1
2 x2, λ

−1
3 x3). One easily checks

that ∫
Ω

divϕ(x) dx =
∫

λΩ
divϕλ(x) dx = ‖ϕλ‖∞

∫
λΩ

div ϕλ(x)
‖ϕλ‖∞

dx . (2.41)

Moreover, estimate

‖ϕλ‖2
∞ = sup

x∈R3

3∑
i=1

λ2
iϕ

2
i (λ−1

1 x1, λ
−1
2 x2, λ

−1
3 x3) ≤ λ2

3‖ϕ‖2
∞ ≤ 1 + Cδ. (2.42)

In view of the definition (2.40) of the perimeter, one can take the sup over all ϕ ∈ C1
c (R3,R3)

with ‖ϕ‖∞ ≤ 1 to obtain

Per(Ω) = sup
ϕ

∫
Ω

divϕ(x) dx = sup
ϕ
‖ϕλ‖∞

∫
λΩ

div ϕλ(x)
‖ϕλ‖∞

dx ≤ (1 + Cδ) Per(λΩ), (2.43)

where (2.42) is used for the last inequality.
To estimate the Coulomb term, it is convenient to pass to the Fourier representation.

Set f(x) := 1Ω(x)− ρ1QL(x), then

1λΩ(x)− ρ1λQL(x) = f(λ−1
1 x1, λ

−1
2 x2, λ

−1
3 x3) =: fλ(x),

and one easily computes that F[fλ](p) = F[f ](λ1p1, λ2p2, λ3p3). Therefore, it follows

1
4π

∫
QL

∫
QL

(1Ω(x)− ρ)(1Ω(y)− ρ)
|x− y|

dx dy =
∫
R3

|F[f ](p)|2
p2 dp =

∫
R3

|F[fλ](p)|2∑3
i=1 λ

2
i p

2
i

dp

≤ λ−2
1

∫
R3

|F[fλ](p)|2
p2 dp ≤ (1 + Cδ) 1

4π

∫
λQL

∫
λQL

(1λΩ(x)− ρ)(1λΩ(y)− ρ)
|x− y|

dx dy .
(2.44)

Combining estimates (2.43) and (2.44), the proof of (2.38) is complete.
The bound (2.39) on the ground state energy follows from (2.38) simply by taking the

infimum over all Ω ⊂ QL with |Ω| = ρL3. The proof of Lemma 2.8 is therefore complete.

Using Lemmas 2.6 and 2.8, one can give the proof of the upper bound from Proposition
3.4 without assuming any symmetry on Ω∗. Since most parts are identical to the proof in
Section 2.1, only the necessary modifications are given in the construction of the competitor
set at the beginning of the proof.
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Proof of Proposition 3.4 without symmetry of Ω∗. As in the proof given in Section 2.1, set
l0 := A∗1/3ρ−1/3 to be the characteristic length of the small boxes. Let Ω∗ be some set
satisfying |Ω∗| = A∗ and E [Ω∗] = E(A∗). One may assume (up to changing Ω∗ on a null-set)
that diam(Ω∗) < ∞, see [31, Lemma 4.1] and [39, Lemma 4]. By Lemma 2.6, there are
U ∈ R3×3 orthogonal, y ∈ R3 and λ ∈ R3 with |λi − 1| ≤ Cl−2

0 and λ1λ2λ3 = 1 such that
setting l = λl0, the set Ω∗0 := U(Ω∗ + y) is contained in Ql and satisfies

0 =
∫
R3

(1Ω∗0(x)−ρ1Ql ) dx =
∫
R3
xi(1Ω∗0(x)−ρ1Ql ) dx =

∫
R3

(3xixj−δij|x|2)(1Ω∗0(x)−ρ1Ql ) dx .
(2.45)

By Lemma 2.8, one has

Eρ,L ≤ (1 + Cl−2
0 )Eρ,L,λ = (1 + Cρ2/3)Eρ,L,λ. (2.46)

To prove Proposition 3.4, it therefore suffices to prove the upper bound

Eρ,L,λ
ρL3 ≤

E0(A∗)
A∗

+ Cρ1/3 + C

ρ1/3L
(2.47)

because the additional error term coming from the estimate (2.46) is subleading.
To prove (2.47), a competitor set is constructed by placing copies of the set Ω∗0 in boxes

Ql(r), r ∈ lZ3. Let Cl = {r ∈ lZ3 : Ql(r) ⊂ λQL} be the set of lattice points r such that
the cubes Ql(r) are fully contained in λQL. Then, setting

λ3
ρ,L,λ = ρL3

A∗|Cl |
, (2.48)

one obtains λQL as a union of the boxes Qλρ,L,λl0(r). That is, the large box can exactly be
covered by an integer number of small boxes. Therefore, define

Ωρ,L,λ =
⋃
r∈Cl

(λρ,L,λΩ∗0 + r).

Note that this definition fulfills the mass constraint

|Ωρ,L| = |Cl |A∗λ3
ρ,L = ρL3. (2.49)

The proof of Proposition 3.4 can now be finalized by following exactly the same steps as in
Section 2.1, using the vanishing of the multipole moments from (2.45) in the bound on the
far-field interaction. The remaining details are omitted.

2.3 Lower bound
In this section, the proof of the lower bound from Theorem 2.1 is given. Again, the result
is restated here for convenience.
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Proposition 2.9 (Lower Bound). There is a constant C > 0 such that for all ρ ∈ (0, 1],
L > 0,

Eρ,L
ρL3 ≥

E0(A∗)
A∗

− Cρ1/5. (2.50)

The proof of Proposition 3.5 is based on reducing the problem to a smaller length scale
1� R� L.

Define the Yukawa potential

Yω(x) = e−ω|x|
|x|

for x ∈ R3 and ω > 0.

Using Yω, the interaction part of Eρ,L(Ω) can be bounded from below as follows.

Lemma 2.10 (Lower bound on the interaction term). There is C > 0 such that for all
L > 0, all ρ ∈ [0, 1], all ω > 0 and all Ω ⊂ QL, one has∫

R3

∫
R3

(1Ω(x)− ρ1QL(x)) 1
|x− y|

(1Ω(y)− ρ1QL(y)) dx dy

≥
∫
R3

1Ω(x)Yω(x− y) 1Ω(y) dx dy − C|Ω|ρω−2.

Proof. First, one can estimate∫
R3

∫
R3

(1Ω(x)− ρ1QL(x)) 1
|x− y|

(1Ω(y)− ρ1QL(y)) dx dy

≥
∫
R3

∫
R3

(1Ω(x)− ρ1QL(x))Yω(x− y)(1Ω(y)− ρ1QL(y)) dx dy ,

because F[ 1
|x| ] =

√
2
π

1
|k|2 ≥

√
2
π

1
|k|2+ω2 = F[Yω](k), where the Fourier transform is denoted by

F[f ](k) := (2π)−3/2 ∫
R3 f(x)e−ikx dx for f ∈ L1(R3). Next,∫

R3

∫
R3

(1Ω(x)− ρ1QL(x))Yω(x− y) (1Ω(y)− ρ1QL(y)) dx dy

≥
∫
R3

∫
R3

1Ω(x)Yω(x− y) 1Ω(y) dx dy − 2ρ
∫
R3

∫
R3

1Ω(x)Yω(x− y)1QL(y) dx dy

≥
∫
R3

∫
R3

1Ω(x)Yω(x− y) 1Ω(y) dx dy − C|Ω|ρω−2, (2.51)

where it is bounded
∫
QL
Yω(x− y) dy ≤

∫
R3

e−ω|y|

|y| dy ≤ Cω−2.

One also needs to control the behavior of the perimeter term under localization of
Ω ⊂ QL to smaller boxes. The following lemma is useful for this purpose.

Lemma 2.11 (Localization of the perimeter term). Let Ω ⊂ R3 have finite perimeter.
Then for every R > 0,

Per(Ω) ≥
∑
m∈Z3

∫
Q1

Per(Ω ∩QR(m+ ξ)) dξ − 6|Ω|
R

.
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Proof. In every box, the boundary of Ω ∩QR(m+ ξ) consists of two parts: the portion of
∂Ω lying inside QR(m+ ξ), and the portion of Ω intersecting ∂QR(m+ ξ), which is added
by partitioning Ω into boxes. One therefore has that

∑
m∈Z3

∫
Q1

Per(Ω ∩QR(m+ ξ)) dξ

≤
∫
Q1

∑
m∈Z3

H2(∂Ω ∩QR(m+ ξ)) dξ +
∫
Q1

∑
m∈Z3

H2(Ω ∩ ∂QR(m+ ξ)) dξ

≤ Per(Ω) +
∫
Q1

∑
m∈Z3

H2(Ω ∩ ∂QR(m+ ξ)) dξ . (2.52)

Here, H2 denotes two-dimensional Hausdorff measure. It remains to evaluate the second
term in (3.10). Since all sets appearing there are subsets of faces of cubes, decompose

⋃
m∈Z3

Ω ∩ ∂QR(m+ ξ) =
3⋃
i=1

⋃
l∈Z

Ω ∩
{
x ∈ R3 : xi = R

(
l + 1

2 + ξi

)}
,

i.e. ’slices’ of Ω ∩ ∂QR(m + ξ) are distinguished according to the coordinate hyperplane
they are parallel to. Note that H2-almost every point in one hyperplane is contained in the
boundary of exactly two cubes adjacent to the plane. Thus, the union ⋃3

i=1 is disjoint up
to an H2-null set and one obtains
∫
Q1

∑
m∈Z3

H2(Ω∩∂QR(m+ξ)) dξ = 2
3∑
i=1

∫
[−1/2,1/2]3

dξ1 dξ2 dξ3
∑
l∈Z
H2(Ω∩{xi = R(l+1/2+ξi)}).

The integrand on the right hand side only depends on one of the ξi. One can therefore do
the dξj-integrations with j 6= i to find that

∫
Q1

∑
m∈Z3

H2(Ω ∩ ∂QR(m+ ξ)) dξ = 2
3∑
i=1

∫ 1/2

−1/2

∑
l∈Z
H2(Ω ∩ {xi = R(l + 1/2 + ξi)}) dξi

= 2
3∑
i=1

∫
R
H2(Ω ∩ {xi = Rξi}) dξi = 2

R

3∑
i=1

∫
R
H2(Ω ∩ {xi = ξi}) dξi = 6|Ω|

R

by Fubini’s theorem. Plugging this in (3.10) completes the proof of Lemma 3.7.

In the next lemma the estimates above are combined to obtain the crucial lower bound
on the energy in terms of the auxiliary parameters R and ω.

Lemma 2.12. For every Ω ⊂ QL with |Ω| > 0 and every R > 0, one has that

Eρ,L(Ω)
|Ω| ≥ e−

√
3ωRE0(A∗)

A∗
− Cρω−2 − 6

R
.
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Proof. Let Ω ⊂ QL and R > 0. Ω is the (finite) disjoint union

Ω =
⋃

m∈Z3

(
Ω ∩QR(m+ ξ0)

)
=:

⋃
m∈Z3

Ω(m) (2.53)

for some ξ0 ∈ Q1 to be chosen below. Note that the choice of Ω(m) in (3.11) ensures that
diam(Ω(m)) ≤

√
3R.

Then, starting from Lemma 3.6 and dropping the interactions between different boxes,
one can estimate the energy from below as follows.

Eρ,L(Ω) ≥
∑
m∈Z3

(
Per(Ω(m)) + e−ω

√
3R1

2

∫∫
Ω(m)×Ω(m)

dx dy
|x− y|

)
+ PR − C|Ω|ρω−2

≥ e−
√

3ωR ∑
m∈Z3

E(Ω(m)) + PR − C|Ω|ρω−2 (2.54)

with the perimeter error term PR := Per(Ω)−∑m∈Z Per(Ω(m)).
For every m ∈ Z3 with |Ω(m)| > 0, one has E0(Ω(m))

|Ω(m)| ≥
E0(A∗)
A∗

, and therefore

∑
m∈Z3

E0(Ω(m)) =
∑

m∈Z3,|Ω(m)|>0

E0(Ω(m))
|Ω(m)|

|Ω(m)| ≥ E0(A∗)
A∗

∑
m∈Z3

|Ω(m)| = |Ω|E0(A∗)
A∗

. (2.55)

Together with (2.55), the lower bound (3.12) implies

Eρ,L(Ω) ≥ e−
√

3ωRE(A∗)
A∗

|Ω|+ PR − C|Ω|ρω−2. (2.56)

To bound the perimeter error PR appropriately, recall from Lemma 3.7 that the averaged
estimate holds

∫
Q1

 ∑
m∈Z3

Per(Ω ∩QR(m+ ξ))
 dξ ≤ Per(Ω) + 6|Ω|

R
, (2.57)

and therefore there exists ξ0 ∈ Q1 depending on Ω such that

∑
m∈Z3

Per(Ω ∩QR(m+ ξ0)) ≤ Per(Ω) + 6|Ω|
R

. (2.58)

With this choice of ξ0, one arrives at the bound

PR = Per(Ω)−
∑
m∈Z

Per(Ω(m)) ≥ −6|Ω|
R

. (2.59)

Combining (2.56) and (3.15) and dividing by |Ω|, the statement of Lemma 2.12 follows.

It only remains to minimize the errors of the lower bound to the ground state energy
Eρ,L.
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Proof of Proposition 3.5. Recalling that |Ω| = ρL3, by Lemma 2.12 one has

Eρ,L
ρL3 ≥ e−

√
3ωRE0(A∗)

A∗
− Cρω−2 − 6

R
. (2.60)

Since e−x ≥ 1− x, from (2.60) it is obtained

Eρ,L
ρL3 ≥

(
1−
√

3ωR
)E0(A∗)

A∗
− Cρω−2 − C

R

≥ E0(A∗)
A∗

− CωR− C

R
− Cρω−2.

Optimizing first in R, take R = ω−1/2. With that choice, one has the inequality

Eρ,L
ρL3 ≥

E0(A∗)
A∗

− Cω1/2 − Cρω−2.

Optimizing in ω gives ω = ρ2/5, and thus, one gets

Eρ,L
ρL3 ≥

E0(A∗)
A∗

− Cρ1/5.

The proof of Proposition 3.5 is now complete.



Chapter 3

Further Results on the Liquid Drop
Model

3.1 The Ground State Energy in Two Dimensions

Similar to what has been done in the previous chapter in three dimensions the ground state
energy per unit volume is considered for d = 2 in this section and Theorem 1.3 is proven.
The upper bound is formulated such that one might conjecture that it is sharp up to the
second order for small ρ > 0. The lower bound that is derived reproduces the order of this
conjectured second order asymptotics. It is only sharp to leading order, though. The proof
gives insight into how most connected components (droplets) behave in the dilute limit.
Most of them approach a certain mass and their shape approaches the shape of a disk.

Recall that for L > 0 the liquid drop model energy of a measurable set Ωρ,L ⊂ QL =
(−L/2, L/2)2 with |Ωρ,L| = ρL2 is given in d = 2 by

Eρ,L(Ωρ,L) = Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ) ln 1
|x− y|

(1Ωρ,L(y)− ρ) dx dy . (3.1)

The parameter ρ ∈ (0, 1) describes the quotient between the electron and the nucleon charge
density. The corresponding ground state energy is denoted by

Eρ,L = inf
{
Eρ,L(Ω) : Ω ⊂ QL, |Ω| = ρL2

}
. (3.2)

Note that the constraint |Ωρ,L| = ρL2 means that only neutral configurations are considered.
As in the three dimensional case, the behavior of the energy per unit volume Eρ,L/L2 is
considered in the dilute limit ρ tending to zero. Since the thermodynamic limit L→∞ is
taken first and then, the dilute limit ρ→ 0, one might assume that L is arbitrarily large
compared to 1/ρ.

The upper bound derived in this section is stated in terms of the ground state energy of
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jellium.

eJellium := lim
L→∞

1
L2 inf

(x1,...,xN )∈AJellium(L)

 ∑
1≤i<j≤N

ln 1
|xi − xj|

−
N∑
i=1

∫
QL

ln 1
|xi − z|

dz

+ 1
2

∫
QL

∫
QL

ln 1
|z − z̃|

dz dz̃
. (3.3)

The set of admissible configurations is

AJellium(L) :=
{

(x1, . . . , xN) ∈ (QL)N : N = L2,∀i, j ∈ {1, . . . , N} : xi 6= xj for i 6= j

and dist(xi, QL) ≥
√
ρ/π

}
.

Note that for technical reasons it is assumed that there is a tiny distance between each
point xi in the configuration and the boundary. (Compare how Armstrong and Serfaty
enforce a distance to the boundary in the jellium model in Section 2.3 of [2] by introducing
an additional potential in the energy.)

The main result of this section is the following theorem.

Theorem 3.1 (Ground State Energy Asymptotics). There is a constant C > 0 such that
the following bounds hold.

(i) For all ρ ∈ (0, 1
C

] and L > 0, one has

Eρ,L
ρL2 ≤ 3

(
π

4 ln 1
ρ

+ π

4

(
ln π + 1

2

)
+ π eJellium + πρ

4

)1/3

+RL/l, (3.4)

where RL/l → 0 as L→∞.

(ii) For all ρ ∈ (0, 1
C

] and L > 0, one has

Eρ,L
ρL2 ≥ 3

(
π

4 ln 1
ρ

)1/3

− C

(ln 1
ρ
)2/3 . (3.5)

Note that the dependence of the error estimates on the density ρ is explicit. In particular,
it is not necessary to couple the dilute limit to the thermodynamic limit as it is sometimes
done in the literature (e.g. [25]). This is very sensible from the perspective of physics. On
a macroscopic scale L the particle number N is so large that the limit N →∞ seems to be
a reasonable approximation. Regarding the density ρ, however, one cannot really assume
ρ = 0 because then there are neither particles nor matter. So ρ� 1

L
is physically a very

sensible assumption.
To formulate the result about the droplets, let Ωρ,L ⊂ QL be a minimizer of Eρ,L

over all measurable Ω ⊂ QL such that |Ω| = ρL2. In the proof of the lower bound it is
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shown that one may assume Ωρ,L = ⋃
j∈J Ωj with Ωj1 ∩ Ωj2 = ∅ for j1 6= j2, Ωj connected,

diam(Ωj) ≤ C(ln 1
ρ
)2/3 for all j ∈ J and

Per(Ωρ,L) ≥
∑
j∈J

Per(Ωj)−
C|Ωρ,L|
(ln 1

ρ
)2/3 .

Corollary 3.2 (Mass and Shape of Droplets). Define κ := 24/3π1/3

(ln 1
ρ

)2/3 . For ε > 0 let

Jε :=
j ∈ J :

 |Ωj|
κ
− 1

2

> ε or Per(Ωj)√
4π|Ωj|

− 1 > ε

.
Define the total mass of all droplets which are not close to the optimal disk mε := ∑

j∈Jε |Ωj|.
Then, for ρ ∈ (0, 1

C
)

mε

|Ωρ,L|
≤ C

ε ln 1
ρ

.

Remark 3.3. By the quantitative isoperimetric inequality Per(Ωj)√
4π|Ωj |

− 1 is a measure of how
close Ωj is to the shape a disk.

The next two subsections are concerned with the proof of Theorem 3.1. The corollary
on the mass and the shape of the droplets is proven in the final part of this section.

Throughout this section it is assumed d = 2.

3.1.1 Upper Bound on the Ground State Energy
The purpose of this section is to prove the first statement of Theorem 2.1, which is restated
here for convenience.

Proposition 3.4 (Upper Bound). There is a constant C > 0 such that, if ρ ≤ 1
C
, one has

Eρ,L
ρL2 ≤ 3

(
π

4 ln 1
ρ

+ π

4

(
ln π + 1

2

)
+ π eJellium + πρ

4

)1/3

+RL/l, (3.6)

where RL/l → 0 as L→∞.

Proof. To prove Proposition 3.4, construct, for every pair (ρ, L), a suitable state Ωρ,L and
evaluate the corresponding energy Eρ,L(Ωρ,L). The idea is to place discs B(0, lR) on points
lx1, . . . , lxN ∈ QL with l > 0. To make this precise, let Cρ,L := {x1, . . . , xN} ⊂ QL/l be a
discrete set such that

(i) dist(Cρ,L, ∂QL/l) ≥ R,

(ii) |x− y| ≥ 2R for x, y ∈ Cρ,L, x 6= y
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(iii) N := #Cρ,L = L2

l2
.

Now, define the trial state Ωρ,L to be the union

Ωρ,L :=
⋃

x∈Cρ,L
(lx+ lBR) (3.7)

and impose neutrality, i.e.

ρ = πR2.

Then,

|Ωρ,L| =
∑

x∈Cρ,L
|lBR| = Nl2πR2 = Nl2ρ = ρL2.

One has

Eρ,L(Ωρ,L) = Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(z)− ρ) ln 1
|z − z̃|

(1Ωρ,L(z̃)− ρ) dz dz̃

= N2πRl + l4

2

∫
QL/l

∫
QL/l

 ∑
x∈Cρ,L

1x+BR(z)− ρ
 ln 1
|z − z̃|

 ∑
y∈Cρ,L

1y+BR(z̃)− ρ
 dz dz̃

= N2πRl +
∑

x∈Cρ,L

l4

2

∫
x+BR

∫
x+BR

ln 1
|z − z̃|

dz dz̃

+
∑

x,y∈Cρ,L,x 6=y

l4

2

∫
x+BR

∫
y+BR

ln 1
|z − z̃|

dz dz̃

−
∑

x∈Cρ,L
ρl4

∫
x+BR

∫
QL/l

ln 1
|z − z̃|

dz dz̃ + ρ2l4

2

∫
QL/l

∫
QL/l

ln 1
|z − z̃|

dz dz̃ .

By Newton’s theorem one has

∫
x+BR

∫
y+BR

ln 1
|z − z̃|

dz dz̃ = π2R4 ln 1
|x− y|

.
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Furthermore,

−
∑

x∈Cρ,L
ρl4

∫
x+BR

∫
QL/l

ln 1
|z − z̃|

dz dz̃

= −
∑

x∈Cρ,L
ρl4πR2

∫
QL/l\(x+BR)

ln 1
|z − x|

dz −
∑

x∈Cρ,L
ρl4

∫
x+BR

∫
x+BR

ln 1
|z − z̃|

dz dz̃

= −ρ2l4
∑

x∈Cρ,L

∫
QL/l

ln 1
|z − x|

dz + ρ2l4
∑

x∈Cρ,L

∫
x+BR

ln 1
|z − x|

dz

− ρl4Nπ2R4
(

ln 1
R

+ 1
4

)
= −ρ2l4

∑
x∈Cρ,L

∫
QL/l

ln 1
|z − x|

dz + ρ2l4NπR2
(

ln 1
R

+ 1
2

)
− ρl4Nπ2R4

(
ln 1
R

+ 1
4

)

= −ρ2l4
∑

x∈Cρ,L

∫
QL/l

ln 1
|z − x|

dz + 1
4ρ

3l4N.

Therefore, with eJellium as defined above,

Eρ,L(Ωρ,L) = |Ωρ,L|

2
(
π

ρ

)1/2 1
l

+ l2

4 ρ
(

ln π
ρ

+ 1
2

)
+ ρl2

l2

L2

1
2

∑
x,y∈Cρ,L,x 6=y

ln 1
|x− y|

−
∑

x∈Cρ,L

∫
QL/l

ln 1
|xi − z|

dz + 1
2

∫
QL/l

∫
QL/l

ln 1
|z − z̃|

dz dz̃
+ 1

4ρ
2l2


= |Ωρ,L|

2
(
π

ρ

)1/2 1
l

+ l2

4 ρ
(

ln π
ρ

+ 1
2

)
+ ρl2eJellium + 1

4ρ
2l2


+ |Ωρ,L|ρl2RL/l.

Here, the error term is defined

RL/l := l2

L2

1
2

∑
x,y∈Cρ,L,x 6=y

ln 1
|x− y|

−
∑

x∈Cρ,L

∫
QL/l

ln 1
|xi − z|

dz

+ 1
2

∫
QL/l

∫
QL/l

ln 1
|z − z̃|

dz dz̃
− eJellium,

which vanishes as L→∞ if Cρ,L is chosen to be a minimizer of jellium.
Note that points of a minimizer x1, . . . , xN ∈ QL of jellium are separated by a constant,

i.e. mini 6=j |xi − xj| ≥ δ for some universal δ > 0 [33, Lemma 25]. The separation that is
assumed in the definition of Cρ,L is arbitrary small since 2R = 2

π1/2ρ
1/2.

Minimizing 2
(
π
ρ

)1/2 1
l

+ l2A(ρ) with respect to l > 0 yields

l :=
(
π

ρ

)1/6 1
A(ρ)1/3 ,
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where A(ρ) := 1
4ρ
(
ln π

ρ
+ 1

2

)
+ ρeJellium + 1

4ρ
2.

Therefore,

Eρ,L(Ωρ,L)
|Ωρ,L|

= 3
(
π

ρ
A(ρ)

)1/3

+RL/l

= 3
(
π

4 ln 1
ρ

+ π

4

(
ln π + 1

2

)
+ π eJellium + πρ

4

)1/3

+RL/l.

This concludes the proof of Proposition 3.4.

3.1.2 Lower Bound on the Ground State Energy
In this section, the proof of the lower bound from Theorem 3.1 is given. For convenience
this result is restated.

Proposition 3.5 (Lower bound). There is a constant C > 0 such that for all ρ ∈ (0, 1
C

],
L > 0,

Eρ,L
ρL2 ≥ 3

(
π

4 ln 1
ρ

)1/3

− C

(ln 1
ρ
)2/3 . (3.8)

First of all, replace the logarithmic interaction by the more regular potential

Yω(x) = K0(ω|x|), for x ∈ R2 and ω := Cωρ
1/2
(

ln 1
ρ

)1/3

.

Here, K0 denotes the modified Bessel function of second kind of order 0.

Lemma 3.6 (Lower bound on the interaction part). For all L > 0, ρ ∈ (0, 1), ω > 0 and
for all Ωρ,L ⊂ QL with |Ωρ,L| = ρL2, one has

1
2

∫
R2

∫
R2

(
1Ωρ,L(x)− ρ1QL(x)

)
ln 1
|x− y|

(
1Ωρ,L(y)− ρ1QL(y)

)
dx dy

≥ 1
2

∫
R2

∫
R2

1Ωρ,L(x)Yω(x− y) 1Ωρ,L(y) dx dy − 2πρ|Ωρ,L|ω−2.

Proof. The following estimate holds for the Fourier transform.

F[− ln |·|](k) = 1
|k|2
≥ 1
|k|2 + ω2 = F[Yω](k).

Here, the convention is used F[f ](k) := 1
2π
∫
R2 f(x)e−ikx dx for f ∈ L1(R2). Note that

neutrality ensures F[1Ωρ,L − ρ1QL ](0) = 0. Furthermore, F[1Ωρ,L − ρ1QL ] ∈ C1(R2) because



3.1 The Ground State Energy in Two Dimensions 45

1Ωρ,L − ρ1QL has bounded support. Thus, F[1Ωρ,L − ρ1QL ]/|k|2 is integrable at 0. Therefore,

1
2

∫
R2

∫
R2

(
1Ωρ,L(x)− ρ1QL(x)

)
ln 1
|x− y|

(
1Ωρ,L(y)− ρ1QL(y)

)
dx dy

≥1
2

∫
R2

∫
R2

(
1Ωρ,L(x)− ρ1QL(x)

)
Yω(x− y)

(
1Ωρ,L(y)− ρ1QL(y)

)
dx dy .

One arrives at the estimate stated in the lemma through the simple calculation

1
2

∫
R2

∫
R2

(
1Ωρ,L(x)− ρ1QL(x)

)
Yω(x− y)

(
1Ωρ,L(y)− ρ1QL(y)

)
dx dy

≥1
2

∫
R2

∫
R2

1Ωρ,L(x)Yω(x− y)1Ωρ,L(y) dx dy − ρ
∫
R2

∫
R2

1Ωρ,L(x)Yω(x− y)1QL(y) dx dy

≥1
2

∫
R2

∫
R2

1Ωρ,L(x)Yω(x− y)1Ωρ,L(y) dx dy − 2πρ|Ωρ,L|ω−2.

Here, the fact is used that
∫∞

0 K0(r)r dr = 1.

For Ωρ,L ⊂ QL with |Ωρ,L| = ρL2, let J ⊂ N and

Ωρ,L =
⋃
j∈J

Ωj with connected Ωj and Ωi ∩ Ωj = ∅ for i 6= j.

To prove Proposition 3.5 neglect the interaction of different connected components. By
Lemma 3.6, one has

Eρ,L(Ωρ,L) ≥ Per(Ωρ,L) + 1
2

∫
R2

∫
R2

1Ωρ,L(x)Yω(x− y) 1Ωρ,L(y) dx dy − 2πρ|Ωρ,L|ω−2

≥
∑
j∈J

(
Per(Ωj) + 1

2

∫
Ωj

∫
Ωj
K0(ω|x− y|) dx dy

)
− 2πρ|Ωρ,L|ω−2. (3.9)

Now, distinguish different cases depending on diam(Ωj).
Case 1: Suppose diam(Ωj) ≤ C1

(ln 1
ρ

)1/3 . Then,

Per(Ωj) + 1
2

∫
Ωj

∫
Ωj
K0(ω|x− y|) dx dy

≥ Per(Ωj) + 1
2 |Ωj|2K0(ω diam(Ωj))

≥
√

4π|Ωj|+
1
2 |Ωj|2 ln

(
1

C1Cωρ1/2

)

≥ |Ωj| inf
t>0

(√
4π
t

+ t2

2 ln
(

1
C1Cωρ1/2

))

≥ 3
(
π

4 ln 1
ρ

)1/3

|Ωj| −
C|Ωj|

(ln 1
ρ
)2/3 ,
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if C > 2
(
π
4

)1/3
ln(C1Cω). Here, the isoperimetric inequality Per(Ω(m)) ≥ 2π1/2|Ω(m)|1/2 is

used and the inequality K0(r) ≥ ln 1
r
for r > 0.

Case 2: Suppose diam(Ωj) > C1
(ln 1

ρ
)1/3 and |Ωj|1/2 ≤ C2

(ln 1
ρ

)1/3 . Then, 1 ≥ |Ωj |1/2(ln 1
ρ

)1/3

C2
and

thus,

Per(Ωj) ≥ diam(Ωj)

>
C1

(ln 1
ρ
)1/3

≥ C1

C2
2
|Ωj|

(
ln 1
ρ

)1/3

.

This is the desired inequality, if C1
C2

2
≥ 3

(
π
4

)1/3
.

Case 3: Suppose C1
(ln 1

ρ
)1/3 < diam Ωj ≤ C3

(
ln 1

ρ

)2/3
and |Ωj|1/2 > C2

(ln 1
ρ

)1/3 . Then,

1
2

∫
Ωj

∫
Ωj
K0(ω|x− y|) dx dy ≥ 1

2 |Ωj|2K0(ω diam(Ωj))

≥ 1
2 |Ωj|2 ln

 1
C3Cωρ1/2 ln 1

ρ


≥ 1

8 |Ωj|2 ln 1
ρ

≥ C2
2

8 |Ωj|
(

ln 1
ρ

)1/3

,

if ρ is sufficiently small. This is the desired inequality, if C2
2

8 ≥ 3
(
π
4

)1/3
.

Case 4: Suppose diam Ωj > C3
(
ln 1

ρ

)2/3
and |Ωj|1/2 > C2

(ln 1
ρ

)1/3 .
Solve this case by localizing the problem to smaller boxes. The following lemma is useful to
control the behavior of the perimeter term under this localization.

Lemma 3.7 (Localization of the perimeter term). Let Ω ⊂ R2 have finite perimeter. Then,
for every R > 0,

Per(Ω) ≥
∑
m∈Z2

∫
Q1

Per(Ω ∩QR(m+ µ)) dµ− 4|Ω|
R

.

Proof. In every box, the boundary of Ω ∩QR(m+ µ) consists of two parts: the portion of
∂Ω lying inside QR(m+ µ), and the portion of Ω intersecting ∂QR(m+ µ), which is added



3.1 The Ground State Energy in Two Dimensions 47

by partitioning Ω into boxes. One therefore has that∑
m∈Z2

∫
Q1

Per(Ω ∩QR(m+ µ)) dµ

≤
∫
Q1

∑
m∈Z2

H1(∂Ω ∩QR(m+ µ)) dµ+
∫
Q1

∑
m∈Z2

H1(Ω ∩ ∂QR(m+ µ)) dµ

≤ Per(Ω) +
∫
Q1

∑
m∈Z2

H1(Ω ∩ ∂QR(m+ µ)) dµ . (3.10)

It remains to evaluate the second term in (3.10). Since all sets appearing there are subsets
of the boundaries of squares, decompose

⋃
m∈Z2

Ω ∩ ∂QR(m+ µ) =
2⋃
i=1

⋃
l∈Z

Ω ∩
{
x ∈ R2 : xi = R

(
l + 1

2 + µi

)}
,

i.e. ’slices’ of Ω ∩ ∂QR(m+ µ) are distinguished according to the coordinate axis they are
parallel to. Note that H1- almost every point in one axis is contained in the boundary of
exactly two squares adjacent to the axis. Since the union ⋃2

i=1 is disjoint up to an H1-null
set, one therefore obtains∫
Q1

∑
m∈Z2

H1(Ω∩∂QR(m+µ)) dµ = 2
2∑
i=1

∫
[−1/2,1/2]2

∑
l∈Z
H1(Ω∩{xi = R(l+1/2+µi)}) dµ1 dµ2 .

Note that the integrand on the right hand side only depends on one of the µi. One can
therefore do the dµj-integration with j 6= i to find that∫

Q1

∑
m∈Z2

H1(Ω ∩ ∂QR(m+ µ)) dµ = 2
2∑
i=1

∫ 1/2

−1/2

∑
l∈Z
H1(Ω ∩ {xi = R(l + 1/2 + µi)}) dµi

= 2
2∑
i=1

∫
R
H1(Ω ∩ {xi = Rµi}) dµi = 2

R

2∑
i=1

∫
R
H1(Ω ∩ {xi = µi}) dµi = 4|Ω|

R

by Fubini’s theorem. Plugging this in (3.10) completes the proof of Lemma 3.7.

Let R := C3√
2

(
ln 1

ρ

)2/3
. Ωj is the (finite) disjoint union

Ωj =
⋃

m∈Z2

(
Ωj ∩QR(m+ µj)

)
=:

⋃
m∈Z2

Ω(m)
j (3.11)

for some µj ∈ Q1 to be chosen below. Note that the choice of Ω(m)
j in (3.11) ensures that

diam(Ω(m)
j ) ≤

√
2R = C3

(
ln 1

ρ

)2/3
.

Then, one can estimate the energy from below as follows.

Per(Ωj) + 1
2

∫
Ωj

∫
Ωj
K0(ω|x− y|) dx dy

≥
∑
m∈Z2

(
Per(Ω(m)) + 1

2

∫
Ω(m)
j

∫
Ω(m)
j

K0(ω|x− y|) dx dy
)

+ P (3.12)
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with the perimeter error term P := Per(Ω) − ∑
m∈Z Per(Ω(m)). Since diam(Ω(m)

j ) ≤
C3
(
ln 1

ρ

)2/3
, one can apply cases 1-3 to get the desired lower bound.

It remains to bound the perimeter error P appropriately. By Lemma 3.7 the averaged
estimate holds ∫

Q1

 ∑
m∈Z2

Per(Ωj ∩QR(m+ µ))
 dµ ≤ Per(Ωj) + 4|Ωj|

R
, (3.13)

and therefore there exists µj ∈ Q1 depending on Ωj such that

∑
m∈Z2

Per(Ωj ∩QR(m+ µj)) ≤ Per(Ωj) + 4|Ωj|
R

. (3.14)

With this choice of µj, one arrives at the bound

P = Per(Ωj)−
∑
m∈Z

Per(Ω(m)
j ) ≥ −4|Ωj|

R
= − 4

√
2

C3
(
ln 1

ρ

)2/3 |Ωj| (3.15)

This concludes the proof of Proposition 3.5.

3.1.3 Concerning the mass and shape of the droplets
Consider a minimizer Ωρ,L of Eρ,L over all Ωρ,L ⊂ QL such that one has charge neutrality
|Ωρ,L| = ρL2. Let Ωρ,L = ⋃

j∈J Ωj with Ωj1 ∩ Ωj2 = ∅ for j1 6= j2 and connected Ωj for all
j ∈ J . By Lemma 3.7 one may assume diam(Ωj) ≤ C(ln 1

ρ
)2/3 for all j ∈ J and

Per(Ωρ,L) ≥
∑
j∈J

Per(Ωj)−
C|Ωρ,L|
(ln 1

ρ
)2/3 .

In this section Corollary 3.2 is proven. The argument is similar to what is done in [25].
By Proposition 3.4 it is known

3
(
π

4 ln 1
ρ

)1/3

ρL2 + CρL2

(ln 1
ρ
)2/3 ≥ Eρ,L(Ωρ,L)

= Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ) ln 1
|x− y|

(1Ωρ,L(y)− ρ) dx dy

≥ Per(Ωρ,L) + 1
2

∫
QL

∫
QL

(1Ωρ,L(x)− ρ)K0(ω|x− y|)(1Ωρ,L(y)− ρ) dx dy

≥
∑
j∈J

Per(Ωj) + 1
2

∫
Ωj

∫
Ωj

ln 1
ω|x− y|

dx dy
− CρL2

(ln 1
ρ
)2/3 .

Here, K0 is the modified Bessel function of second kind of order 0 and ω := Cωρ
1/2(ln 1

ρ
)1/3.

In the last inequality the fact is used that K0(r) ≥ ln 1
r
for r > 0.
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Define J0 := {j ∈ J : diam(Ωj) ≤ C1(ln 1
ρ
)−1/3}. In the proof of the lower bound the

self-energy of droplets Ωj with j ∈ J0 is estimated from below by minimizing over all masses.
Now, one can get a result about the mass and shape of the droplets by expanding the
energy about this optimal mass κ := 24/3π1/3

(ln 1
ρ

)2/3 . For j ∈ J0, one has
√

4π|Ωj|+
1
2

∫
Ωj

∫
Ωj

ln 1
ω|x− y|

dx dy

≥ 3
(
π

4 ln 1
ρ

)1/3

|Ωj|+
3π1/3

28/3

(
ln 1
ρ

)1/3

|Ωj|
(
|Ωj|
κ
− 1

)2

− C|Ωj|
(ln 1

ρ
)2/3 .

For j ∈ J\J0 the proof of the lower bound implies

Per(Ωj) + 1
2

∫
Ωj

∫
Ωj

ln 1
ω|x− y|

dx dy ≥ C

(
ln 1
ρ

)1/3

− C|Ωj|
(ln 1

ρ
)2/3 ,

with C > 3(π4 )1/3.
These estimates imply the following bound

CρL2

(ln 1
ρ
)2/3 ≥ Eρ,L(Ωρ,L)− 3

(
π

4 ln 1
ρ

)1/3

ρL2

≥
∑
j∈J0

(
Per(Ωj)−

√
4π|Ωj|

)
+
∑
j∈J0

3π1/3

28/3

(
ln 1
ρ

)1/3

|Ωj|
(
|Ωj|
κ
− 1

)2

+
∑

j∈J\J0

(
C − 3

(
π

4

)1/3
)(

ln 1
ρ

)1/3

|Ωj| −
CρL2

(ln 1
ρ
)2/3 ,

with C > 3(π4 )1/3.
Define

Jε :=
j ∈ J : Per(Ωj)√

4π|Ωj|
− 1 > ε or

(
|Ωj|
κ
− 1

)2

> ε

.
If ( |Ωj |

κ
− 1)2 ≤ ε ≤ 1

4 , then
√

4π|Ωj| ≥ 1
C
|Ωj|(ln 1

ρ
)1/3. Therefore, one has

CρL2

(ln 1
ρ
)2/3 ≥

∑
j∈J0∩Jε

1
C
|Ωj|

(
ln 1
ρ

)1/3

ε+
∑

j∈J\J0

C

(
ln 1
ρ

)1/3

|Ωj|

≥
∑
j∈Jε

1
C
|Ωj|

(
ln 1
ρ

)1/3
ε = mε

C

(
ln 1
ρ

)1/3
ε.

This is equivalent to the corollary
mε

|Ωρ,L|
≤ C

ε ln 1
ρ

.

So the relative mass of all droplets which are not close to the optimal mass κ or not close
to the optimal shape (that is a disk), tends to zero as ρ tends to zero.
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3.2 Uniform Distribution of Energy for Minimizers
In this section, it is proven that the energy of a minimizer of the liquid drop model with
Neumann boundary condition in a cube QL := (−L/2, L/2)d with d ≥ 2 is uniformly
distributed on a smaller scale R ≤ L. The proof is similar to the proof of Theorem 4 in [2].

Let Ω ⊂ Rd, Q ⊆ Rd and b ∈ L2(Q,Rd). As in [1], define

E(Ω,b, Q) := Per(Ω ∩Q) + 1
2

∫
Q
|b|2 dx

and the set of admissible (Ω,b) satisfying Neumann boundary condition

ANeu(ρ,Q) :=
{

(Ω,b) | Ω ⊂ Q and b ∈ L2(Q,Rd) with |Ω| = ρ|Q| such that

∇b = 1Ω − ρ in Q and b · ν = 0 on ∂Q
}
.

Furthermore, define the minimal energy

ENeu(ρ,Q) := inf {E(Ω,b, Q) : (Ω,b) ∈ ANeu(ρ,Q)}.

Let c2,ρ := (ln 1
ρ
)1/3 and cd,ρ = 1 for d ≥ 3. The main result of this section is the following

theorem which is formulated for dimensions d ∈ N, d ≥ 2.

Theorem 3.8 (Uniform distribution of energy). Let (Ωρ,L,bρ,L) be a minimizer of E(·, ·, QL)
over ANeu(ρ,QL). If ρ ∈ (0, 1

2 ] and L ≥ R > Cc
1/2
d,ρ ρ

−1/2, then for all a ∈ QL such that
QR(a) ⊆ QL the following upper bound for the local energy holds

E(Ωρ,L,bρ,L, QR(a)) ≤ ENeu(ρ,QR(a)) + Cc
(d+2)/(d+1)
d,ρ ρd/(d+1)Rd−2/(d+1)

+ 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL) (3.16)

and the lower bound

E(Ωρ,L,bρ,L, QR(a)) ≥ ENeu(ρ,QR(a))− Cc(d+2)/(d+1)
d,ρ ρd/(d+1)Rd−2/(d+1). (3.17)

Remark 3.9. If R ≥ Cδ−(d+1)/2c
1/2
d,ρ ρ

−1/2, the first error term in equation (3.16) can be
estimated as

Cc
(d+2)/(d+1)
d,ρ ρd/(d+1)Rd−2/(d+1) ≤ δcd,ρρR

d.

Remark 3.10. The boundary term in equation (3.16) can be crudely estimatedHd−1(Ωρ,L∩
∂QR(a)) ≤ CRd−1. However, for minimizers Ωρ,L local neutrality is expected, that is
|Ωρ,L ∩QR(a)| ≈ ρRd. In this case, averaging over boundaries gives the better bound
2Hd−1(Ωρ,L ∩ ∂QR(a)) ≤ CρRd−1.
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Remark 3.11. The error term in this formulation of uniform distribution of energy is a
decent estimate for scales R that are close to the minimal length scale Cc1/2

d,ρ ρ
−1/2. In the

dilute limit that is considered in this thesis ρ is very small. This is why, the factor ρd/(d+1)

is more important than having an error term proportional to Rd−1. However, if one is
interested in large length scales R > Cc

1/2
d,ρ ρ

−1, it is more important to have an error term
proportional to Rd−1. With the method of Armstrong and Serfaty [2] it is also possible to
prove uniform distribution of energy of the form

E(Ωρ,L,bρ,L, QR(a)) = ENeu(ρ,QR(a)) +O(Rd−1), (3.18)
for R sufficiently large. Here, the error O(Rd−1) might depend on ρ > 0.

To prove uniform distribution of energy a simple estimate on the minimal Neumann
energy is needed.
Lemma 3.12 (Simple energy estimate). Let U = ⋃

i∈I Ui be the disjoint union of cuboids
Ui with side lengths in [1

2 l, l] where l ≥ Cc−1
d,ρρ

−1/d and ρ ∈ (0, 1
2). I.e. for i ∈ I assume

there exists l (i) ∈ [1
2 l, l]

d and r(i) ∈ U such that Ui = Ql (i)(r(i)) as defined in (2.30). Then,
ENeu(ρ, U) ≤ Ccd,ρρ|U |. (3.19)

where c2,ρ := (ln 1
ρ
)1/3 and cd,ρ := 1 for d ≥ 3.

Proof. First of all, the problem is reduced to the length scale Cc−1
d,ρρ

−1/d. To get a simple
upper bound for the Neumann energy, one can then evaluate the energy of a ball.

Since the Neumann energy is sub-additive one has
ENeu(ρ, U) ≤

∑
i∈I

ENeu(ρ, Ui). (3.20)

For simplicity assume l = Clc
−1
d,ρρ

−1/d with Cl ≥ 1. (If l is larger than that, one can simple
sub-divide the cuboids Ui in smaller ones and relabel them.) Since cuboids of different
centers are equivalent it suffices to consider Ui = Ql (i) =: Q for a general l (i) ∈ [1

2 l, l]
d.

Let λ := |Q|/ld and R > 0 be such that the d dimensional ball of radius R centered at 0
which is denoted by BR has mass λρ, that is |BR| = λρ. Then, |lBR| = λρld = ρ|Q|. Let
v ∈ H2(Q) be the solution with mean zero of the Poisson equation−∆ v = 1lBR − ρ in Q,

ν∇v = 0 on ∂Q,
(3.21)

where ν is the outer normal of ∂Q. Clearly (lBR,∇v) ∈ ANeu(ρ,Q) and therefore,

ENeu(ρ,Ql) ≤ E(lBR,∇v,Q) = Per(lBR) + 1
2

∫
Q
|∇v|2 dx

= ld−1 Per(BR) + 1
2

∫
Q

(−∆ v)v dx

= ld−1 Per(BR) + 1
2cd

∫
Q

∫
Q

(1lBR − ρ)GNeu(x, y)(1lBR − ρ) dx dy

= ld−1 Per(BR) + 1
2cd

∫
lBR

∫
lBR

GNeu(x, y) dx dy .
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Here, GNeu is the Green function of the Poisson equation on Q with Neumann boundary
condition which fulfills

∫
QGNeu(x, y) dx = 0 for y ∈ Q. The coefficient c2 = 2π and

cd = (d− 2)|Sd−1| for d ≥ 3 should not be confused with cd,ρ. Since dist(lBR, ∂Q) is large,
Proposition A1 in [2] states for y ∈ lBR

sup
x∈Q

∣∣∣∣GNeu(x, y)−G(x− y) + |Q|−1
∫
Q
G(x− z) dz

∣∣∣∣ ≤ C. (3.22)

As defined in the introduction G denotes the fundamental solution of the Poisson equation.
So in two dimensions G(x) = ln 1

|x| for x ∈ R2 and in d dimensions with d ≥ 3 it is
G(x) = 1

|x|d−2 for x ∈ Rd.
Since |lBR| ≤ ρld = c−dd,ρ ≤ 1, the Neumann ground state energy can be estimated

ENeu(ρ, Ui) ≤ ld−1 Per(BR) + 1
2cd

∫
lBR

∫
lBR

(
G(x− y)− |Q|−1

∫
Ql

G(x− z) dz + C
)

dx dy

= ld

1
l

Per(BR) + l2

2cd

∫
BR

∫
BR

(
G(x− y)− λ−1

∫
Q/l

G(x− z) dz
)

dx dy + CldR2d


≤ Cldcd,ρρ

1/dρ1−1/d + Cldc−2
d,ρρ

−2/dρc3
d,ρR

2 + Cρldc−dd,ρ ≤ Ccd,ρρ|Ui|.

This implies for the energy on the whole cube

ENeu(ρ, U) ≤
∑
i∈I

Ccd,ρρ|Ui| = Ccd,ρρ|U |. (3.23)

Similar to Lemma B.4 in [2], the following lemma is formulated.

Lemma 3.13 (Local neutrality). Let (Ωρ,L,bρ,L) ∈ ANeu(ρ,QL) and let U ⊂ QL be open.
Define

U+1 :=
{
x ∈ Rd : x ∈ U or dist(x, U) < 1

}
U−1 :=

{
x ∈ Rd : x ∈ U and dist(x, U) > 1

}
If ρ ∈ (0, 1/C], then one has the local neutrality bound

||Ωρ,L ∩ U | − ρ|U || ≤ C Per(U)1/2‖bρ,L‖L2(U+1\U−1) + CρPer(U). (3.24)

Proof. Let χ ∈ C1(Rd) be such that χ(x) = 1 for x ∈ U and χ(x) = 0 for x /∈ U+1. Then,

|Ωρ,L ∩ U | − ρ|U | ≤
∫
Rd
χ(x)(1Ωρ,L(x)− ρ) dx+ CρPer(U)

=
∫
Rd
χ(x)∇bρ,L dx+ CρPer(U) = −

∫
Rd

(∇χ(x))bρ,L dx+ CρPer(U)

≤ ‖∇χ‖2‖bρ,L‖L2(supp ∇χ) + CρPer(U)
≤ C(Per(U))1/2‖bρ,L‖L2(U+1\U) + CρPer(U).
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Similarly, let φ ∈ C1(Rd) be such that φ(x) = 1 for x ∈ U−1 and φ(x) = 0 for x /∈ U . Then,

ρ|U | − |Ωρ,L ∩ U | ≤
∫
Rd
φ(x)(ρ− 1Ωρ,L(x)) dx+ CρPer(U)

= −
∫
Rd
φ(x)∇bρ,L dx+ CρPer(U) =

∫
Rd

(∇φ(x))bρ,L dx+ CρPer(U)

≤ ‖∇φ‖2‖bρ,L‖L2(supp ∇φ) + CρPer(U)
≤ C(Per(U))1/2‖bρ,L‖L2(U\U−1) + CρPer(U).

3.2.1 Upper Bound on the Local Energy
First of all, the following proposition on the uniform distribution of energy is proven. Then,
the error is improved in a corollary to get the theorem stated in the beginning.

Proposition 3.14 (Uniform distribution of energy, upper bound). Let (Ωρ,L,bρ,L) be a
minimizer of E(·, ·, QL) over ANeu(ρ,QL). If ρ ∈ (0, 1

2 ] and L ≥ R ≥ Cc
1/2
d,ρ ρ

−1/2, then one
has for all a ∈ QL such that QR(a) ⊆ QL the local energy estimate

E(Ωρ,L,bρ,L, QR(a)) ≤ ENeu(ρ,QR(a)) + Cc
1+1/(2d+3)
d,ρ ρ1−1/(2d+3)Rd−1/(d+3/2)

+ 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL). (3.25)

Furthermore, the neutrality bound |Ωρ,L ∩QR(a)| ≤ ρ1/2Rd holds.

Remark 3.15. In particular, if R ≥ Cδ−(d+3/2)c
1/2
d,ρ ρ

−1/2, this implies

E(Ωρ,L,bρ,L, QR(a)) ≤ ENeu(ρ,QR(a)) + δcd,ρρR
d + 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL) (3.26)

for any δ > 0.

Corollary 3.16. If the assumptions of Proposition 3.14 hold, then

E(Ωρ,L,bρ,L, QR(a)) ≤ Ccd,ρρR
d. (3.27)

Proof. By Lemma 3.12 the Neumann energy can be estimated ENeu(ρ,QR(a)) ≤ Ccd,ρρR
d.

Furthermore, one can find a good boundary that fulfills Hd−1(Ωρ,L ∩ ∂QR(a)) ≤ Cρ1/2Rd−1

by averaging over boundaries as it is done in the proof of the upper bound.

Proof of Proposition 3.14. The idea of the proof is to change a minimizer locally in QR(a).
The resulting state gives an upper bound for the energy of a minimizer globally in QL.
Subtracting the energy in QL\QR(a), one gets an upper bound for the local energy in
QR(a).
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By assumption E(Ωρ,L,bρ,L, QL) = ENeu(ρ,QL) and |Ωρ,L| = ρLd. So, assume there
exists L0 > 0 such that the local energy is bounded for all a ∈ QL with QL0(a) ⊆ QL

E(Ωρ,L,bρ,L, QL0(a)) ≤ ENeu(ρ,QL0(a)) + C0c
1+1/(2d+3)
d,ρ ρ1−1/(2d+3)L

d−1/(d+3/2)
0

+ 2Hd−1(Ωρ,L ∩ ∂QL0(a)\∂QL) (3.28)

and such that the neutrality bound holds

|Ωρ,L ∩QL0(a)| ≤ ρ1/2Ld0. (3.29)

It will be proven that equation (3.25) holds for all R ≥ L0/2. This will also imply the
neutrality bound |Ωρ,L ∩QR(a)| ≤ ρ1/2Rd. Since this argument can be iterated the result
will follow down to scale R ≥ Cc

1/2
d,ρ ρ

−1/2.
Let (Ω1,b1) be a minimizer of E(·, ·, QR(a)) over ANeu(ρ,QR(a)) and (Ω2,b2) be a

minimizer of E(·, ·, QL\QR(a)) over ANeu(ρ,QL\QR(a)). Define Ω := Ω1 ∪ Ω2 and

b(x) :=
b1(x) if x ∈ QR(a),

b2(x) if x ∈ QL\QR(a).

Then, (Ω,b) ∈ ANeu(ρ,QL) and thus

ENeu(ρ,QL) ≤ E(Ω,b, QL) ≤ E(Ω1,b1, QR(a)) + E(Ω2,b2, QL\QR(a))
= ENeu(ρ,QR(a)) + ENeu(ρ,QL\QR(a)),

i.e. the minimal Neumann energy is sub-additive.
Therefore, one has the inequality for the minimizer (Ωρ,L,bρ,L) in QL

E(Ωρ,L,bρ,L, QR(a)) + E(Ωρ,L,bρ,L, QL\QR(a))
≤ E(Ωρ,L,bρ,L, QL) + 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL)
= ENeu(ρ,QL) + 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL)
≤ ENeu(ρ,QR(a)) + ENeu(ρ,QL\QR(a)) + 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL).

It remains to prove

ENeu(ρ,QL\QR(a)) ≤ E(Ωρ,L,bρ,L, QL\QR(a)) + C0c
1+1/(2d+3)
d,ρ ρ1−1/(2d+3)Rd−1/(d+3/2),

(3.30)

for all R ≥ L0/2 ≥ Cc
1/2
d,ρ ρ

−1/2.
For this purpose, apply the following lemma. (Compare to the inner case of Proposition

4.1 in [2].)
Lemma 3.17. Let R ≥ l̃ ≥ l ≥ Cc−1

d,ρρ
−1/d and assume

Sρ,L :=
∫
QR+2l̃\QR+l̃

|bρ,L|2 dx < ρ2

22d+3 l
d+1l̃. (3.31)



3.2 Uniform Distribution of Energy for Minimizers 55

Then,

ENeu(ρ,QL\QR(a)) ≤ E(Ωρ,L,bρ,L, QL\QR(a)) + Ccd,ρρ l̃R
d−1 + C

l

l̃
Sρ,L, (3.32)

where the constant C > 0 does not depend on C0.
To make use of the assumption for this iteration step equation (3.28) has to be

bounded from above. By Lemma 3.12 the minimal Neumann energy in QL0(a) satis-
fies ENeu(ρ,QL0(a)) ≤ Ccd,ρρL

d
0 if L0 ≥ Cc−1

d,ρρ
−1/d. Note that the error term is bounded as

well C0c
1+1/(2d+3)
d,ρ ρ1−1/(2d+3)L

d−1/(d+3/2)
0 ≤ cd,ρρL

d
0 if L0 ≥ Cc

1/2
d,ρ ρ

−1/2. To bound the surface
term in (3.28) from above, one could use the crude estimate 2Hd−1(Ωρ,L ∩ ∂QL0(a)) ≤
CLd−1

0 ≤ Ccd,ρρL
d
0 if L0 ≥ c−1

d,ρρ
−1. However, then the iteration would terminate at this

length scale for R. To get down to smaller length scales, apply the neutrality assumption
(3.29)

1
2

∫ 4L0

3L0

∫
∂QT (a)

1Ωρ,L dx′ dT =
∫
Q4L0 (a)\Q3L0 (a)

1Ωρ,L dx ≤ |Q4L0(a) ∩ Ωρ,L| ≤ 4dρ1/2Ld0.

Thus, there exists T ∈ (3L0, 4L0) such that

Hd−1(Ωρ,L ∩ ∂QT (a)) =
∫
∂QT (a)

1Ωρ,L dx′ ≤ 22d+1ρ1/2Ld−1
0 ≤ ρLd0,

if L0 ≥ 22d+1ρ−1/2. Therefore, it can be estimated

Sρ,L ≤
∫
QT (a)

|bρ,L|2 dx ≤ 2E(Ωρ,L,bρ,L, QT (a))

≤ Ccd,ρρL
d
0 + ρLd0

≤ Ccd,ρρR
d, (3.33)

if L0 ≥ Cc
1/2
d,ρ ρ

−1/2. Here, the assumption L0 ≤ 2R is used. Note that this constant C > 0
does not depend on C0. It only depends on the upper bound of Lemma 3.12. Minimizing
the right hand side of equation (3.32) with respect to l̃ > 0 (after estimating Sρ,L) gives
l̃ ∝ (lR)1/2. In order to meet condition (3.31), choose l := Cl(cd,ρρ−1)1/(d+3/2)R1−2/(d+3/2)

and thus, l̃ := Cl̃(cd,ρρ−1)1/(2d+3)R1−1/(d+3/2) with sufficiently large Cl̃ ≥ Cl > 0.
The condition R ≥ l̃ ≥ l is fulfilled since R ≥ Cc

1/2
d,ρ ρ

−1/2.
By equation (3.32) one gets

ENeu(ρ,QL\QR(a)) ≤ E(Ωρ,L,bρ,L, QL\QR(a)) + Cc
1+1/(2d+3)
d,ρ ρ1−1/(2d+3)Rd−1/(d+3/2),

which is (3.30) if C0 is chosen large enough in the beginning (depending on the constants
of Lemmas 3.12 and 3.17 ).

By Lemma 3.13 and inequality (3.33), one has

|Ωρ,L ∩QR(a)| ≤ ρRd + CR(d−1)/2‖bρ,L‖L2(QR+1(a)) + CρRd−1

≤ 1√
2
ρ1/2Rd + Cc

1/2
d,ρ ρ

1/2Rd−1/2 + CρRd−1 ≤ ρ1/2Rd,
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if R ≥ Ccd,ρ. This is the neutrality bound (3.29) that is assumed for this iteration and
thus, it concludes the proof of Proposition 3.14.

Proof of Lemma 3.17. The idea is to modify Ωρ,L ∩ (QL\QR(a)) close to the boundary in
such a way that it satisfies the Neumann boundary condition (just as it is done in the proof
of Proposition 4.1 in [2]). For this purpose let O := QL\QT (a) be the old region that is left
unchanged and N := QT (a)\QR(a) be the new region that is changed. Since

1
2

∫ R+2l̃

R+l̃

∫
∂QT (a)

|bρ,L|2 dx′ dT = Sρ,L

there exists a T ∈ [R + l̃, R + 2l̃] such that∫
∂QT (a)

|bρ,L|2 dx′ ≤ 2
l̃
Sρ,L. (3.34)

The factor 2 is due to the fact that the distance between ∂QR+l̃ and ∂QR+2l̃ is l̃
2 . One can

partition N into rectangles Ql(i) ∩N for i ∈ I := {k ∈ lZ2 : k ∈ N} and assume that the
constant Cl > 0 is chosen such that N ⊂ ∑i∈I Ql(i). Then, let v ∈ H2(Ql(i) ∩N ) be the
solution of the boundary value problem−∆ vi(x) = mi for x ∈ Ql(i) ∩N

∇vi(x) · ν = gi for x ∈ ∂(Ql(i) ∩N )

Here, gi(x) := −bρ,L(x) · ν for x ∈ Ql(i) ∩ ∂QT and gi(x) := 0 for x ∈ ∂(Ql(i) ∩ N )\∂QT .
The solution to this boundary value problem exists because

mi := −(|Ql(i) ∩N|)−1
∫
Ql(i)∩∂QT

bρ,L · ν dx′ .

One can estimate

|mi| ≤ 2dl−d
∣∣∣∣∣
∫
Ql(i)∩∂QT

bρ,L · ν dx′
∣∣∣∣∣

≤ 2dl−(d+1)/2
(∫

Ql(i)∩∂QT
|bρ,L|2 dx′

)1/2

≤ 2d+1/2l−(d+1)/2l̃−1/2S
1/2
ρ,L

≤ ρ

2 ,

where Sρ,L is estimated according to (3.31). Further, let ui ∈ H2(Ql(i)∩N ) be the solution
of the boundary value problem−∆ui(x) = ∑

j∈J 1xj+Brj (x)− ρi for x ∈ Ql(i) ∩N ,
∇ui(x) · ν = 0 for x ∈ ∂(Ql(i) ∩N ),
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where ρi := ρ + mi and J ⊆ N is finite with rj > 0 for j ∈ J . Since |mi| ≤ ρ
2 , one has

ρi ∈ [1
2ρ,

3
2ρ] for i ∈ I. Choose (xj)j∈J ⊂ N and rj > 0 for j ∈ J such that∑

j∈J
|Ql(i) ∩Brj | = ρi|Ql(i) ∩N|. (3.35)

Therefore, there exists a solution to this boundary value problem.
Now, define the modified set Ω̃ := (Ωρ,L ∩ O) ∪ ⋃j∈J(xj +Brj) and the modified vector

field

b̃ :=
bρ,L(x) for x ∈ O,
−∇ui(x)−∇vi(x) for x ∈ Ql(i) ∩N .

By definition b̃ · ν is continuous on ∂QT , b̃ · ν = 0 on ∂QL and

∇b̃ = 1Ω̃ − ρ in QL\QR(a).

By equation (3.35) one has

|Ω̃| = |Ωρ,L ∩ O|+
∑
j∈J
|Brj |

=
∫
O

(1Ωρ,L(x)− ρ) dx+ ρ|O|+ ρ|N |+
∑
i∈I

mi|Ql(i) ∩N|.

= ρ|QL\QR(a)|+
∫
O
∇bρ,L dx−

∑
i∈I

∫
Ql(i)∩∂QT

bρ,L · ν dx′

= ρ|QL\QR(a)|,

because of the Neumann boundary condition bρ,L · ν = 0 on ∂QL. Therefore, (Ω̃, b̃) ∈
ANeu(ρ,QL\QR(a)) and

ENeu(ρ,QL\QR(a))
≤ E(Ω̃, b̃, QL\QR(a))

= Per(Ωρ,L ∩ O) +
∑
j∈J

Per(Brj) + 1
2

∫
O
|bρ,L|2 dx+ 1

2
∑
i∈I

∫
Ql(i)∩N

|∇ui + ∇vi|2 dx

≤ Per(Ωρ,L\QR(a)) + 1
2

∫
QL\QR(a)

|bρ,L|2 dx+
∑
j∈J

Per(Brj) +
∑
i∈I

∫
Ql(i)∩N

|∇ui|2 dx

+
∑
i∈I

∫
Ql(i)∩N

|∇vi|2 dx .

The first two terms are just E(Ωρ,L,bρ,L, QL\QR(a)). So it remains to estimate the other
terms. As it is done in the proof of Lemma 3.12 choose (xj)j∈J ⊂ N and rj > 0 for j ∈ J
such that

2
∑
j∈J

Per(Ql(i) ∩Brj) +
∫
Ql(i)∩N

|∇ui|2 dx ≤ Ccd,ρρ|Ql(i) ∩N|. (3.36)
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Furthermore, with Lemma C.1 in [2] one has
∑
i∈I

∫
Ql(i)∩N

|∇vi|2 dx ≤
∑
i∈I

Cl
∫
Ql(i)∩∂QT (a)

|bρ,L|2 dx′

= Cl
∫
∂QT (a)

|bρ,L|2 dx′ ≤ C
l

l̃
Sρ,L.

After proving uniform distribution of energy down to scale Cc1/2
d,ρ ρ

−1/2, the bound on
Sρ,L in the proof of Proposition 3.14 can be improved.

Corollary 3.18 (Uniform distribution of energy, Upper Bound). Let (Ωρ,L,bρ,L) be a
minimizer of E(·, ·, QL) over ANeu(ρ,QL). If ρ ∈ (0, 1

2 ] and L ≥ R ≥ Cc
1/2
d,ρ ρ

−1/2, then one
has for all a ∈ QL such that QR(a) ⊆ QL the local energy estimate

E(Ωρ,L,bρ,L, QR(a)) ≤ ENeu(ρ,QR(a)) + Cc
(d+2)/(d+1)
d,ρ ρd/(d+1)Rd−2/(d+1)

+ 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL).

Proof. Instead of estimating Sρ,L ≤ Ccd,ρρR
d as in (3.33), one can estimate Sρ,L ≤

Ccd,ρρR
d−1l̃ if l̃ ≥ Cc

1/2
d,ρ ρ

−1/2. In order to meet the condition Sρ,L < ρ2

22d+3 l
d+1l̃ choose

the parameters l := Clc
1/(d+1)
d,ρ ρ−1/(d+1)R1−2/(d+1) and l̃ := Cl̃C

−1
l l with Cl̃ ≥ Cl > 0. Thus,

it is deduced

ENeu(ρ,QL\QR(a)) ≤ E(Ωρ,L,bρ,L, QL\QR(a)) + Ccd,ρρ l̃R
d−1 + C

l

l̃
Sρ,L

≤ E(Ωρ,L,bρ,L, QL\QR(a)) + Cc
(d+2)/(d+1)
d,ρ ρd/(d+1)Rd−2/(d+1),

if R ≥ l̃ ≥ Cc
1/2
d,ρ ρ

−1/2. A simple calculation shows l̃ ≥ Cc
1/2
d,ρ ρ

−1/2 if R ≥ Cc
1/2
d,ρ ρ

−1/2.

Remark 3.19. In particular, if R ≥ Cδ−(d+1)/2c
1/2
d,ρ ρ

−1/2, this implies

E(Ωρ,L,bρ,L, QR(a)) ≤ ENeu(ρ,QR(a)) + δcd,ρρR
d + 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL)

for any δ > 0. This is a significant improvement of the result of Proposition 3.14 which
required R ≥ Cδ−(d+3/2)c

1/2
d,ρ ρ

−1/2.

3.2.2 Lower Bound on the Local Energy
Proposition 3.20 (Uniform distribution of energy, lower bound). Let (Ωρ,L,bρ,L) be a
minimizer of E(·, ·, QL) over ANeu(ρ,QL). If ρ ∈ (0, 1

2 ] and L ≥ R ≥ Cc
1/2
d,ρ ρ

−1/2, then one
has for all a ∈ QL such that QR(a) ⊆ QL the local energy estimate

E(Ωρ,L,bρ,L, QR(a)) ≥ ENeu(ρ,QR(a))− Cc(d+2)/(d+1)
d,ρ ρd/(d+1)Rd−2/(d+1). (3.37)
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Proof. The lower bound is proven with the upper bound in Corollary 3.18 and the comple-
mentary case of Lemma 3.17. (Compare the outer case of Proposition 4.1 in [2].)
Lemma 3.21. Let 1

3R ≥ l̃ ≥ l ≥ C for large C > 0 and assume

Tρ,L :=
∫

(QR−l̃(a)\QR−2l̃(a))
|bρ,L|2 dx < ρ2

22d+3 l
d+1l̃. (3.38)

Then,

ENeu(ρ,QR(a)) ≤ E(Ωρ,L,bρ,L, QR(a)) + Ccd,ρρ l̃R
d−1 + C

l

l̃
Tρ,L (3.39)

Choose l := Clc
1/(d+1)
d,ρ ρ−1/(d+1)R1−2/(d+1) and l̃ := Cl̃C

−1
l l with sufficiently large Cl̃ ≥

Cl > 0. The condition 1
3R ≥ l̃ ≥ l is fulfilled since R ≥ Cc

1/2
d,ρ ρ

−1/2. By Proposition 3.14
one has

E(Ωρ,L,bρ,L, QR(a)) ≤ ENeu(ρ,QR(a)) + cd,ρρR
d + 2Hd−1(Ωρ,L ∩ ∂QR(a)\∂QL),

if R ≥ Cc
1/2
d,ρ ρ

−1/2. To get an estimate for the surface term, consider

1
2

∫ 2R

R

∫
∂QT (a)

1Ωρ,L dx′ dT =
∫
Q2R(a)\QR(a)

1Ωρ,L dx ≤ |Q2R(a) ∩ Ωρ,L| ≤ ρ1/2Rd,

Here, the last inequality follows from Corollary ??. Thus, there exists T ∈ (R, 2R) such
that

Hd−1(Ωρ,L ∩ ∂QT (a)) =
∫
∂QT (a)

1Ωρ,L dx′ ≤ 2ρ1/2Rd−1.

Therefore, one can estimate

Tρ,L ≤
∫
QT (a)

|bρ,L|2 dx ≤ 2E(Ωρ,L,bρ,L, QT (a))

≤ Ccd,ρρR
d−1l̃ + 8ρ1/2Rd−1

≤ Ccd,ρρR
d−1l̃ (3.40)

if l̃ ≥ Cc
1/2
d,ρ ρ

−1/2. Plugging this estimate in equation (3.39) gives

ENeu(ρ,QR(a)) ≤ E(Ωρ,L,bρ,L, QR(a)) + Cc
(d+2)/(d+1)
d,ρ ρd/(d+1)Rd−2/(d+1).

This is inequality (3.37).

Proof of Lemma 3.21. A straightforward adaption of the proof of Lemma 3.17 works in
this complementary case. This is why this proof is only sketched. (See also the proof of
Proposition 4.1 in [2].) Let O := QT (a) and N := QR(a)\QT (a). Since

1
2

∫ R−l̃

R−2l̃

∫
∂QT (a)

|bρ,L|2 dx′ dT = Tρ,L



60 3. Further Results on the Liquid Drop Model

there exists a T ∈ [R− 2l̃, R− l̃] such that∫
∂QT (a)

|bρ,L|2 dx′ ≤ 2
l̃
Tρ,L. (3.41)

As in the proof of Lemma 3.17, define the modified set Ω̃ := (Ωρ,L ∩ O) ∪ ⋃j∈J(xj + Brj)
and the modified vector field

b̃ :=
bρ,L(x) for x ∈ O,
−∇u(x)−∇vi(x) for x ∈ Ql(i) ∩N ,

such that (Ω̃, b̃) ∈ ANeu(ρ,QR(a)). Then, one can bound the energy from above

ENeu(ρ,QR(a)) ≤ E(Ω̃, b̃, QR(a))

= Per(Ωρ,L ∩ O) +
∑
j∈J

Per(Brj) + 1
2

∫
O
|bρ,L|2 dx+ 1

2
∑
i∈I

∫
Ql(i)∩N

|∇u+ ∇vi|2 dx

≤ Per(Ωρ,L ∩QR(a)) + 1
2

∫
QR(a)

|bρ,L|2 dx+
∑
j∈J

Per(Brj) +
∫
N
|∇u|2 dx+

∑
i∈I

∫
Ql(i)∩N

|∇vi|2 dx .

The first two terms are just E(Ωρ,L,bρ,L, QR(a)). The remaining terms are estimated as in
the proof Lemma 3.17.

3.3 Existence of the Thermodynamic Limit
The existence of the thermodynamic limit is not assumed when the uniform distribution
of energy is derived in the previous sections. This existence and its equality for several
boundary conditions can easily be proven based on uniform distribution of energy.

Theorem 3.22 (Thermodynamic limit). For ρ ∈ (0, 1
2 ], there exists e0(ρ) ∈ R, such that

for any given boundary condition # ∈ {Dir,∞,Neu} one has for L ≥ Cc
1/2
d,ρ ρ

−1/2

∣∣∣∣ 1
Ld
E#(ρ,QL)− e0(ρ)

∣∣∣∣ ≤ C

L1/(d+3/2) . (3.42)

In particular, the thermodynamic limit exists and is the same for these boundary conditions.

Note that the constant C > 0 does not depend on ρ. Rescaling the energy defined
in terms of the electric field E#(ρ,QL) gives the energy defined in terms of the Coulomb
potential E#

ρ,L. Indeed,

lim
L→∞

1
Ld
E#(ρ,QL) = 1

c
1/3
d

lim
L→∞

1
Ld
E#
ρ,L.

Here, c2 = 2π and cd = (d − 2)|Sd−1| as defined in the introduction. (It should not be
confused with cd,ρ.)
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Remark 3.23. A future project might be to improve to the error in this estimate with the
method used by Armstrong and Serfaty in [2]. For this purpose one has to prove estimates
for the minimizer of the Dirichlet energy.

Remark 3.24. As explained in Section 1.4 in the introduction the energy of any boundary
condition with a potential vρ,L of the minimizer Ωρ,L fulfilling∫

∂QL
vρ,L ν ·∇vρ,L dx′ ≤ 0 (3.43)

can be bounded from above by the Neumann energy and from below by the Dirichlet energy.
Therefore, the thermodynamic limit exists by the theorem above and is equal to e0(ρ). In
particular, this includes periodic boundary conditions.

In this section the existence of the thermodynamic limit and its equality for several
boundary conditions is proven based on uniform distribution of energy. Parts of it are
similar to the proofs of Lemma 3.1 and Lemma 3.10 in [1].

Proof of Theorem 3.22. The proof progresses in four steps. First of all, the super-additivity
of the Dirichlet energy and the sub-additivity of the Neumann energy imply their mono-
tonicity for the limit nL0 →∞ as n→∞ for n ∈ N (see Lemma 3.1 in [1]). Secondly, it is
shown that subsequences of these limits actually achieve the limit superior and the limit
inferior. Then, the existence of the thermodynamic limit is concluded (compare Lemma
3.10 in [1]) assuming that the Neumann energy can be bounded from above by the Dirichlet
energy. Finally, this remaining inequality is deduced. Note that this fourth step is crucial
since it is only known that the Dirichlet energy can be bounded from above by the Neumann
energy by inequality (1.14). Here, the proof is based on the method used by Armstrong
and Serfaty in [2] which is different to what is done by [1].

Step 1. Monotonicity of the Dirichlet and of the Neumann energy Clearly,
EDir(ρ,QL) ≤ ENeu(ρ,QL). Let n ∈ (2N + 1). Then

1
ndLd

EDir(ρ,QnL) ≥ 1
Ld
EDir(ρ,QL)− C

L
. (3.44)

Indeed, suppose (Ω,b) is a minimizer of E over ADir(ρ,QnL). Then

EDir(ρ,QnL) = E(Ω,b, QnL) = Per(Ω) + 1
2

∫
QnL
|b|2 dx

≥
∑
r∈LZd

Per(Ω ∩QL(r))− CndLd−1 +
∑
r∈LZd

∫
QL(r)

|b|2 dx

=
∑
r∈LZd

E(Ω,b, QL(r))− CndLd−1

≥ nd inf
r∈LZd

E(Ω,b, QL(r))− CndLd−1

≥ ndEDir(ρ,QL)− CndLd−1,
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since the energy is translation invariant. So the Dirichlet energy is increasing.
Similarly, for n ∈ (2N + 1), one has

1
ndLd

ENeu(ρ,QnL) ≤ 1
Ld
ENeu(ρ,QL) + C

L
(3.45)

since nd copies of the minimizer (Ωρ,L,bρ,L) ∈ ANeu(ρ,QL) can be glued together. Indeed,
let Ω̃ := ⋃

r∈LZd,|r|∞≤n(Ωρ,L + r) and let b̃(x) := bρ,L(x − r) for x ∈ QL(r) and r ∈ LZd

with |r|∞ ≤ n. This construction fulfills the Neumann boundary condition, that is (Ω̃, b̃) ∈
ANeu(ρ,QnL). Therefore,

ENeu(ρ,QnL) ≤ E(Ω̃, b̃, QnL) ≤ ndE(Ωρ,L,bρ,L, QL) + ndLd−1 = ndENeu(ρ,QL) + ndLd−1.

So the Neumann energy is decreasing.

Step 2. It is sufficient to consider the sequence nL0 Let L0 > Cc
1/2
d,ρ ρ

−1/2. Define
the limit superior and the limit inferior of the ground state energy

e#
−(ρ) := lim inf

n→∞

1
ndLd0

E#(ρ,QnL0) and e#
+(ρ) := lim sup

n→∞

1
ndLd0

E#(ρ,QnL0), (3.46)

for # ∈ {Dir,Neu}. Since EDir(ρ,QL) ≤ ENeu(ρ,QL), trivially

eDir
± (ρ) ≤ eNeu

± (ρ).

The goal of the next part of the proof is to show

eNeu
+ (ρ) = lim sup

L→∞

1
Ld
ENeu(ρ,QL) and eNeu

− (ρ) = lim inf
L→∞

1
Ld
ENeu(ρ,QL). (3.47)

In particular, eNeu
± (ρ) is not dependent on L0.

Let (Lk)k∈N be a strictly increasing sequence in (0,∞) with Lk →∞ (k →∞) such that
lim supL→∞ 1

Ld
ENeu(ρ,QL) = limk→∞

1
Ld
k

ENeu(ρ,QLk). For any k ∈ N there exists nk ∈ N
such that Lk ∈ [nkL0, (nk + 1)L0]. By Theorem 3.8 one has

1
Ldk
ENeu(ρ,QLk) = 1

Ldk
E(Ωρ,Lk ,bρ,Lk , QLk)

= 1
Ldk
E(Ωρ,Lk ,bρ,Lk , QnkL0) + 1

Ldk
E(Ωρ,Lk ,bρ,Lk , QLk\QnkL0) +O

(
L−1
k

)
= 1
ndkL

d
0
ENeu(ρ,QnkL0) +O

(
L
−2/(d+1)
k

)
.

The energy on QLk\QnkL0 is estimated 0 ≤ E(Ωρ,Lk ,bρ,Lk , QLk\QnkL0) ≤ Cc
1/2
d,ρ ρ(Ldk−ndkLd0)

by uniform distribution of energy. Note that ndkLd0 = Ldk +O(L0L
d−1
k ). Therefore,

lim sup
L→∞

1
Ld
ENeu(ρ,QL) = lim

k→∞

1
Ldk
ENeu(ρ,QLk) = lim

k→∞

1
ndkL

d
0
ENeu(ρ,QnkL0)

≤ eNeu
+ (ρ) ≤ lim sup

L→∞

1
Ld
ENeu(ρ,QL).
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This proves the limit superior equality in equation (3.47) and shows eNeu
+ (ρ) is not dependent

on L0. Similarly, for a sequence (L̃k)k∈N that achieves the limit inferior it can be estimated

lim inf
L→∞

1
Ld
ENeu(ρ,QL) = lim

k→∞

1
L̃dk
ENeu(ρ,QL̃k

) = lim
k→∞

1
ñdkL

d
0
ENeu(ρ,QnkL0)

≥ eNeu
− (ρ) ≥ lim inf

L→∞

1
Ld
ENeu(ρ,QL).

Of course, ñk ∈ N is chosen such that L̃k ∈ [ñkL0, (ñk + 1)L0] and uniform distribution of
energy is applied.

Step 3. Concluding the proof Later it will be shown

1
Ld
ENeu(ρ,QL) ≤ 1

Ld
EDir(ρ,QL) + C

L1/(d+3/2) . (3.48)

The super-additivity of the Dirichlet energy (3.44) and the sub-additivity of the Neumann
energy (3.45) imply the estimates

eDir
± (ρ) ≥ 1

Ld
EDir(ρ,QL)− C

L
and eNeu

± (ρ) ≤ 1
Ld
ENeu(ρ,QL) + C

L
. (3.49)

Therefore, by inequality (3.48) it follows

eNeu
+ (ρ) ≤ eDir

− (ρ) ≤ eNeu
− (ρ) ≤ eNeu

+ (ρ). (3.50)

In particular, eDir
− (ρ) does not depend on L0 and limL→∞

1
Ld
ENeu(ρ,QL) = eNeu

− (ρ) =
eNeu

+ (ρ) =: e0(ρ). Furthermore, eNeu
+ (ρ) ≤ eDir

+ (ρ) ≤ eNeu
+ (ρ). In particular, eDir

+ (ρ) does not
depend on L0. Then, inequalities (3.48) and (3.49) can be combined to get

eDir
+ (ρ) ≤ eNeu

+ (ρ) ≤ 1
Ld
EDir(ρ,QL) + C

L1/(d+3/2) ≤ eDir
+ (ρ) + C

L1/(d+3/2) .

This implies limL→∞EDir(ρ,QL) = eDir
+ (ρ) = e0(ρ).

Step 4. Proving the remaining inequality Let (Ωρ,L,bρ,L) be the minimizer of
E(·, ·, QL) over ADir(ρ,QL). To show

EDir(ρ,QL) ≥ ENeu(ρ,QL)− Cc1+1/(2d+3)
d,ρ ρ1−1/(2d+3)Ld−1/(d+3/2),

let l ≤ l̃ ≤ 1
3R and T ∈ (R− 2l̃, R− l̃) be such that

l̃

2

∫
∂QT
|bρ,L|2 dx′ ≤ TDir

ρ,L :=
∫
QR−l̃(a)\QR−2l̃(a)

|bρ,L|2 dx (3.51)

Define the old region O := QT that is not changed and the new region N := QL\QT that
is changed. Exactly as in the proof of uniform distribution of energy choose (xj)j∈J ⊂ N
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and rj > 0 such that ∑j∈J |Brj(xj) ∩Ql(i)| = (ρ+mi)|Ql(i) ∩N| where N is partitioned
into rectangles Ql(i) ∩N for i ∈ I := {k ∈ lZd : k ∈ N}. It is assumed that the constant
Cl > 0 is chosen such that ∂QT (a) ⊂ ∑i∈I Ql(i). Furthermore,

mi := −(|Ql(i) ∩N| )−1
∫
Ql(i)∩∂QT

bρ,L · ν dx′ .

Let ui ∈ H2(N ) be the solution with mean zero of −∆u = ∑
j 1Brj (xj) − (ρ + mi) in

Ql(i) ∩ N and ν ·∇ui = 0 on ∂(Ql(i) ∩ N ). Furthermore, let vi ∈ H2(Ql(i) ∩ N ) be the
solution with mean zero of −∆ vi = mi in Ql(i)∩N and ν ·∇vi = g on ∂(Ql(i)∩N ) where
g = ν · bρ,L on ∂QT and g = 0 otherwise.

Define Ω := (Ωρ,L ∩ O) ∪ ⋃j∈J Brj(xj) and

b(x) :=
bρ,L(x) for x ∈ O,
−∇ui −∇vi for x ∈ Ql(i) ∩N .

This implies

|Ω| = |Ωρ,L ∩ O|+
∑
j∈J
|Brj |

=
∫
O

(1Ωρ,L(x)− ρ) dx+ ρ|O|+ ρ|N |+
∑
i∈I

mi|Ql(i) ∩N|

= ρ|QL\QR(a)|+
∫
O

∇bρ,L dx−
∑
i∈I

∫
Ql(i)∩∂QT

bρ,L · ν dx′

= ρLd.

Then, |Ω| = ρLd, b · ν is continuous on ∂QT and b · ν = 0 on ∂QL. Therefore (Ω,b) ∈
ANeu(ρ,QL) which implies

ENeu(ρ,QL) ≤ E(Ω,b, QL)

≤ E(Ωρ,L,bρ,L, QT (a)) +
∑
j

Per(Brj) +
∑
i

∫
Ql(i)∩N

|∇ui|2 dx+
∑
i

∫
Ql(i)∩N

|∇vi|2 dx

≤ EDir(ρ,QL) + Ccd,ρρR
d−1l̃ + C

l

l̃
TDir
ρ,L .

Lemma C.1 in [2] states that
∫
Ql(i)∩N |∇vi|2 dx ≤ Cl

∫
∂(Ql(i)∩N ) |g|

2 dx′.
By inequality (1.14) the Dirichlet energy can be estimated TDir

ρ,L ≤ EDir(ρ,QL) ≤
E∞(ρ,QL) ≤ Ccd,ρρL

d. Therefore, ENeu(ρ,QL) ≤ EDir(ρ,QL) + Ccd,ρρL
d−1l̃ + C l

l̃
cd,ρρL

d.
Minimizing over l̃ gives l̃ ∝

√
lL. To fulfill the condition TDir

ρ,L ≤ 2−2d−3ρ2l̃ld+1 = ρ2

C

√
Lld+3/2

choose l := Clc
1/(d+3/2)
d,ρ ρ−1/(d+3/2)R1−2/(d+3/2) and l̃ := Cl̃c

1/(2d+3)
d,ρ ρ−1/(2d+3L1−1/(d+3/2) with

Cl̃ ≥ Cl > 0. This condition ensures mi ∈ (1
2ρ,

3
2ρ). Then

ENeu(ρ,QL) ≤ EDir(ρ,QL) + Cc
1+1/(2d+3)
d,ρ ρ1−1/(2d+3)Ld−1/(d+3/2). (3.52)



Chapter 4

Large Polaron Systems and
Bogolubov Theory

In this chapter a lower bound on the energy of a polaron system in the Pekar-Tomasevich
approximation is proven. The idea is to linearize the energy and then, to estimate the
Hamiltonian of this linearized energy from below. To make this precise, recall that a system
of N polarons in the Pekar-Tomasevich approximation is described by

E (N)
1 [ψ] =

∫
(R3)N

 N∑
i=1
|∇iψ|2 +

∑
1≤i<j≤N

|ψ|2

|xi − xj|

 dx−D(ρψ, ρψ), (4.1)

where ψ ∈ H1((R3)N) is symmetric with
∫

(R3)N |ψ|
2 dx = 1. Furthermore, the one-particle

density is

ρψ(z) =
N∑
i=1

∫
· · ·

∫
(R3)(N−1)

|ψ(x1, . . . , xi−1, z, xi+1, . . . , xN)|2 dx1 . . . dxi−1 dxi+1 . . . dxN

(4.2)
for z ∈ R3 and the attractive term is

D(ρ1, ρ2) := 1
2

∫
R3

∫
R3

ρ1(y)ρ2(z)
|y − z|

dy dz . (4.3)

In this chapter the following lower bound on the corresponding ground state energy E(b)
1 (N)

is proven.

Theorem 4.1. The ground state energy of a Pekar-Tomasevich polaron system in the many
particle limit is bounded from below as

lim inf
N→∞

N−7/5E
(b)
1 (N) ≥ −A, (4.4)

where

A = inf
{ ∫

R3
|∇φ|2 dx+ I0

∫
R3
|φ|5/2 dx : φ ∈ H1(R3),

∫
R3
|φ|2 dx ≤ 1

}
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and

I0 = 2
5

( 2
π

)1/4 Γ(3/4)
Γ(5/4) ≈ 0.6.

Remark 4.2. Theorem 1.7 stated in the introduction follows from this theorem and the
corresponding upper bound proven by Benguria, Frank and Lieb [3, Theorem 1.1].

Since the proof is based on estimating the Hamiltonian of the linearized energy, a
one component charged Bose gas with a background distribution of opposite charge is
considered. This is why Bogolubov theory can be applied to derive the leading order. The
approach is a mixture of what Lieb and Solovej do to prove lower bounds on the energy of
a one component charged Bose gas with constant background [36] and of a two component
charged Bose gas [37].

4.1 Proof of the Main Result and Outline of the Chap-
ter

As it is done in [3], the non-linear energy of the polaron system can be expressed in terms
of the infimum of a linear ground state energy over all backgrounds σ

E
(b)
1 (N) = inf

σ
inf specH(N), (4.5)

for the Hamiltonian of a charged Bose gas

H(N) :=
N∑
i=1
−∆i +

∑
i<j

1
|xi − xj|

−
N∑
i=1

∫
R3

σ(y)
|y − xi|

dy + 1
2

∫
R3

∫
R3

σ(y)σ(z)
|y − z|

dy dz , (4.6)

with background σ ∈ L1(R3) such that D(σ, σ) < ∞. The linearization formula (4.5)
follows from the inequality(

ψ,H(N)ψ
)

= E (N)
1 [ψ] +D(ρψ − σ, ρψ − σ) ≥ E (N)

1 [ψ],

which holds since the Fourier transform of the Coulomb potential is positive.
After linearization, one has the quantum mechanical jellium model with a background

charge density similar to [36]. Unlike there, the background σ is not fixed to be the indicator
function ρ1QL for some ρ > 0. On the contrary, the infimum is taken over all possible
background distributions which makes this problem more similar to the two component
charged Bose gas treated by Lieb and Solovej in [37].

Similar to [37], the proof proceeds in three main steps.

1. Localizing the Hamiltonian to small cubes of length l ∝ N−2/5+δl for a small δl > 0.

2. Bounding the energy on a small cube from below.
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3. Putting the small cubes together to get a lower bound for the whole space problem.

To state the localization result, define the Hamiltonian acting on functions on the small
cube about kl,

H̃(k) = γε,t
N∑
i=1

(
K(k)
i − ε∆(k)

i,Neu

)
+

∑
1≤i<j≤N

w
(k)
R (xi, xj)

−
N∑
i=1

∫
R3
σ(y)w(k)

R (y, xi) dy + 1
2

∫
R3

∫
R3
σ(y)w(k)

R (y, z)σ(z) dy dz ,

where γε,t → 1 as ε, t→ 0 and where the interaction is given by

w
(k)
R (y, z) = χ

(k)
l (y)e−|y−z|/R

|y − z|
χ

(k)
l (z). (4.7)

Here, χ(k)
l is a localization function in C4

c (R3) which tends to the indicator function 1Ql(kl)
if the localization parameter t→ 0 as explained in Section A.1. The long distance cutoff
R ≤ l is defined in (4.11).

The first theorem gives a lower bound of E(b)
1 (N) in terms of this Hamiltonian H̃(k) on

Ql(kl). Since one can use exactly the same procedure of localizing the Hamiltonian as in
[37] (see also [36]), its proof is postponed to the appendix.

Theorem 4.3 (Localization to length scale l ∝ N−2/5+δl). The ground state energy of the
polaron system is bounded below as

E
(b)
1 (N) ≥ γγ̃ inf

γε,t T (Sψ0 ) + inf
σ

∑
k∈Z3

(
ψ, H̃(k)ψ

)
: ψ ∈ H0 with ‖ψ‖ = 1


− L3l−5 − Ct−4Nl−1 −N7/5

(
Ct−2(N1/5L)−2 + Ct−4(N1/5L)−1N−1/5

)
.

where γ, γ̃ → 1 as t→ 0. The wave function ψ is in the space

H0 :=
{
φ ∈⊗N

s L
2(R3)

∣∣∣∣ n̂(k)φ = 0 for kl /∈ Z3 ∩QL+l

}
.

where L ∝ N−1/5+δL for a small δL > 0.

Here, T (Sψ0 ) is a discrete kinetic energy of ψ which is defined in equations (A.7) and
(A.8) in the appendix. Its particular form is not needed for now. Furthermore, the particle
number operator in the k-th small cube is given by

n̂(k)(x) =
N∑
i=1

1Ql(kl)(xi),

where x ∈ (R3)N and where 1Ql is the characteristic function of the cube Ql = (−l/2, l/2)3.
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Define the number of particles in the condensate which are in the cube about kl

n̂
(k)
0 = l−3a∗(1Ql(kl)) a(1Ql(kl)),

where, for u ∈ L2(R3), the operators a(u) and a∗(u) act on the Fock space Fsym(L2(R3)) =⊕∞
N=0

⊗N
sym L

2(R3) as defined in the introduction. Furthermore, define the number of
excited particles in the k-th cube

n̂
(k)
+ = n̂(k) − n̂(k)

0 .

The next step is to get a lower bound on H̃(k). On this small scale most particles are
in the constant state, i.e. there is condensation. Similar to [36], Bogolubov theory will
be used to calculate the leading order contribution to the ground state energy. The main
difference is that one cannot get neutrality uniformly in space because of the background
σ ∈ L1(R3). Instead, an approximate neutrality is proven in a local version of the Coulomb
norm

√
D(σ, σ).

The remaining Sections 4.2-4.7 are devoted to prove the following theorem.

Theorem 4.4 (Lower bound on the local energy). For eigenstates ψ of n̂(k) with eigenvalue
n(k), one has the following estimate for the Hamiltonian

〈
H̃(k)

〉
≥−

〈
n̂

(k)
0

〉5/4
l−3/4

(
γ
−1/4
ε,t I0 + CK(ε, t, N, l)

)
−
〈
n̂

(k)
0

〉5/3
l−1/3(N2/5l)−5/3

(
Cε1/6 + CK(ε, t, N, l)

)
− Cε−1t−6n(k)l−1 − Ct−22l−2 − Cε−1t−8n(k).

Here, K(ε, t, N, l) = C
∑m
i=1 ε

−ait−bi(N2/5l)ciN−di with di > 0 for all i and m ∈ N.

The final step is putting together the locally constant condensate particle numbers
〈n̂(k)

0 〉 into one wave function φ̃ ∈ H1(R3) with the right properties. This work is already
done in [37]. Therefore, the result of section 12 of [37] is quoted.

Theorem 4.5. There exists a real valued φ̃ ∈ H1(R3) with compact support such that

T (Sψ0 ) =
∫
R3

(∇φ̃)2 and
∫
R3
φ̃2 ≤ N.

Furthermore, φ̃ can be chosen in such a way that one has, for all δ > 0,
∑
k∈Z3

〈
n̂

(k)
0

〉5/4
l−3/4 ≤ (1 + δ)

∫
R3
φ̃5/2 + δ

∫
R3

(∇φ̃)2 + Cδ−7l8N3 + Cδ−3/2l−3/4(L/l)3,

∑
k∈Z3

〈
n̂

(k)
0

〉5/3
l−1/3 ≤ C(N2/5l)5/3

∫
R3

(∇φ̃)2 + Cl−1/3(L/l)3.

With these three results the main theorem is proven.
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Proof of Theorem 4.1. From Theorems 4.3, 4.4 and 4.5 one has the lower bound for the
ground state energy of the polaron system

E
(b)
1 (N) ≥ γγ̃ inf

γε,t T (Sψ0 ) + inf
σ

∑
k∈Z3

(
ψ, H̃(k)ψ

)
: ψ ∈ H0 with ‖ψ‖ = 1


− L3l−5 − Ct−4Nl−1 −N7/5

(
Ct−2(N1/5L)−2 + Ct−4(N1/5L)−1N−1/5

)
.

≥ inf
{
A
∫
R3
|∇φ̃|2 dx−B

∫
R3
|φ̃|5/2 dx : φ̃ ∈ H1(R3) with

∫
R3
|φ̃|2 dx ≤ N

}
−DN7/5.

The coefficients are

A = γγ̃γε,t − γγ̃γ−1/4
ε,t I0δ − Cε1/6 − CK(ε, t, N, l)

B = (1 + δ)γγ̃
(
γ
−1/4
ε,t I0 +K(ε, t, N, l)

)
D = Ct−2(N1/5L)−2 + Ct−4(N1/5L)−1N−1/5

+ Cγγ̃
(
ε−1t−6(N2/5l)−1 + t−22(N1/5L)3(N2/5l)−5 + ε−1t−8N−2/5

+
(
γ
−1/4
ε,t I0 +K(ε, t, N, l)

)
δ−7(N2/5l)8N−8/5

+
(
γ
−1/4
ε,t I0 +K(ε, t, N, l)

)
δ−3/2(N1/5L)3(N2/5l)−15/4N−1/2

+
(
ε1/6 +K(ε, t, N, l)

)
(N1/5L)3(N2/5l)−10/3N−2/3

)
.

Here, K(ε, t, N, l) is a finite sum consisting of terms that have the form Cε−at−b
(
N2/5l

)c
N−d

with d > 0. Note that the sum of the local particle numbers is the total particle number,
i.e. ∑k∈Z n

(k) = N and the sum over 1 can be estimated∑
k,n(k) 6=0

l−2 ≤ L3/l5 = N7/5(N1/5L)3(N2/5l)−5.

Note that the conditions that are used in Sections 4.2-4.7 are

C1Nl
3 ≤ ε3 ⇐⇒ ε−3(N2/5l)3N−1/6 ≤ C−1

1 ,

C1l < εt4 ⇐⇒ ε−1t−4(N2/5l)N−2/5 < C−1
1 ,

ε−1/2l3/2 < R ⇐⇒ ε−1/2t−4(N2/5l)1/2N−1/5 < C−1,

(4.8)

where the last condition ensures that the short distance cutoff r is less than R.
Now it is shown that ε, t, δ, l and L can be chosen in such a way that A→ 1, B → I0

and D → 0 as N →∞ and such that the conditions (4.8) are satisfied, as well.

• First of all, choose l ∝ N−2/5+δl for such a small δl > 0 that all terms of the form
(N2/5l)cN−d in A, B, D and (4.8) still go to zero as N →∞.

• Then, choose L ∝ N−1/5+δL for such a small δL > 0 that (N1/5L)3(N2/5l)−5 still goes
to zero as N →∞ as well as all terms of the form (N1/5L)b(N2/5l)cN−d.
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• Finally, let ε, t, δ tend to zero so slowly that all terms in D and (4.8) as well as all
terms in K(ε, t, N, l) still tend to zero.

Furthermore, one has that γ, γ̃, γε,t → 1 as ε, t→ 0. To deduce the proposition define the
rescaled wave function

φ(z) = (AI0)6/5B−6/5N−8/10φ̃
(
(AI0)4/5B−4/5N−1/5z

)
,

and the new coordinates z = B4/5(AI0)−4/5N1/5x for x ∈ R3. Note that the norm of the
rescaled wave function is bounded

∫
R3 |φ|2 dz ≤ 1 since

∫
R3 |φ̃|2 dx ≤ N . Therefore, one has

the equality

A
∫
R3
|∇x φ̃|2 dx−B

∫
R3
|φ̃|5/2 dx = A−3/5B8/5I

−8/5
0 N7/5

(∫
R3
|∇z φ|2 dz − I0

∫
R3
|φ|5/2 dz

)
.

Since A→ 1 and B → I0 as N →∞, Theorem 4.1 follows.

4.2 Short Distance Cutoff and Second Quantization
From this point on up to Section 4.7, H̃(k) is estimated from below. For this purpose
choose one fixed σ ∈ L1(R3) with D(σ, σ) < ∞. Since the lower bound for H̃(k) will be
independent of σ, it also holds for the infimum over all σ.

The local Hamiltonian H̃(k) and the local particle number n̂(k) commute. Therefore, one
can assume ψ to be in an eigenspace of n̂(k) for all k ∈ Z3 and work with the eigenvalues
n(k) of the operator n̂(k) in the state ψ. Furthermore, the index (k) will be suppressed for
the sake of readability. However, the reader should keep in mind that this treatment is
done in the small cube Ql(kl).

It turns out that the energy of a cube is not relevant for the leading order if the particle
number n is too small or too big. This is why, for sections 4.2-4.6, it is assumed

C1εω(t)2 ≤ nl ≤ ε−4(N2/5l)10. (4.9)

The other case is easily estimated as subleading by using Lemma 4.7 (which does not need
this assumption on nl). Choose the constant C1 > 0 as in Lemmas 9.1 and 11.2 of [37].

In various places the two-body interaction of the Hamiltonian has to be bounded by its
supremum. This is why, in this section, wR as defined in (4.7) is replaced by

wr,R(y, z) = χl(y)Vr,R(y − z)χl(z), (4.10)

where the regularized potential is defined

Vr,R(z) = e−|z|/R − e−|z|/r
|z|

.
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Here, the cutoffs are introduced

r = (nl)−1/2l3/2 and R = η ω(t)−1l, (4.11)

where ω(t) = Cωt
−4 ≥ 1 and η = (1 + 2l/L)−1 ≤ 1. (Note that a small and unimportant

mistake in [37] is corrected by introducing η.) By choosing l = N−2/5+δl for a small δl > 0
and by using (4.9), one gets r ≤ ε−1/2l3/2 < R for large N , if ε and t tend to 0 sufficiently
slowly.

Note that the bounds hold

0 ≤ wr,R(y, z) ≤ 1
r
, and sup

y∈R3

∫
R3
wr,R(y, z) dz ≤ 4πR2. (4.12)

Define the Hamiltonian with a short distance cutoff in the potential

H̃r,R =
N∑
i=1

(
γε,tKi −

1
2εγε,t ∆i,Neu

)
+

∑
1≤i<j≤N

wr,R(xi, xj)

−
N∑
i=1

∫
R3
σ(y)wr,R(y, xi) dy + 1

2

∫
R3

∫
R3
σ(y)wr,R(y, z)σ(z) dy dz .

Lemma 4.6 (A lower bound with a regularized potential). The Hamiltonian on a small
cube is bounded from below by

H̃ ≥ H̃r,R − Cn2
(
ε−3/2r1/2 + r2l−3

)
.

To prove this lemma, note that one can bound the Hamiltonian of a one component
charged Bose gas with background σ

H(N)
w :=

N∑
i=1

Ti +
∑

1≤i<j≤N
w(xi, xj)−

N∑
i=1

∫
R3

σ(y)w(y, xi) dy + 1
2

∫
R3

∫
R3

σ(y)w(y, z)σ(z) dy dz ,

from below by the Hamiltonian of a two component Bose gas [37], with charges ei = 1 for
1 ≤ i ≤ N and ei = −1 for N + 1 ≤ i ≤ 2N ,

H(2N)
w :=

2N∑
i=1

Ti +
∑

1≤i<j≤2N
eiejw(xi, xj),

if the interaction w ∈ L1(R3 × R3) has a positive Fourier transform. Here, it is assumed
that the definition spaces of H(N)

w and H(N)
w contain H1((R3)N).

This estimate is used in [3] to prove a lower bound on the energy of the polaron system
that is not sharp. It is made precise in the following lemma which will help to transfer
results of [37] to this case. Its proof is elementary and left to the reader.
Lemma 4.7. For a normalized wave function ψ ∈ H1((R3)N), we have(

ψ,H(N)
w ψ

)
≥ 1

2
(
ψ ⊗ ψ,H(2N)

w ψ ⊗ ψ
)
, (4.13)

where (ψ ⊗ ψ)(x, y) := ψ(x)ψ(y) for all x, y ∈ (R3)N .
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Note that a different convention is used for the factor of the kinetic energy than [37].
When using Lemma 4.7 to transfer results from [37] to this case one therefore has to rescale
them.

Proof of Lemma 4.6. The error term that one gets by introducing a short distance cutoff
is estimated by the corresponding error term in the two component Bose gas [37]. To do
so, use Lemma 4.7 with w := wr as defined in (4.7) and Ti := −1

2ε∆i,Neu. Then, equation
(4.13) yields(

ψ,H(N)
wr ψ

)
≥ 1

2
(
ψ ⊗ ψ,H(2N)

wr ψ ⊗ ψ
)
≥ −Cn2(ε−3/2r1/2 + r2l−3).

In the last inequality Lemma 6.1 of [37] is used. The lemma follows since introducing a
short distance cutoff means subtracting the potential terms of H(N)

wr .

In order to bound the ground state energy of the Hamiltonian H̃r,R in the coming
sections from below, the second quantization of the Hamiltonian is used (similar to [37]).
For this purpose, for p ∈ πl−1N3

0, define as in [37]

up(z) = cpl
−3/2

3∏
i=1

cos(pi(zi + l/2)),

for z ∈ R3 and with c0 = 1 and 1 ≤ cp ≤ C for all p. Then, {up : p ∈ πl−1N3
0} is an

orthonormal basis consisting of eigenfunctions of the Laplacian −∆Neu with Neumann
boundary condition. In particular, the state u0 = l−3/2 is constant.

With the annihilation operators ap := a(up) and creation operators a∗p := a∗(up) one
can write the Hamiltonian as

H̃r,R = γε,t
N∑
i=1

(
Ki −

1
2ε∆i,Neu

)
+ 1

2
∑
pqµν

ω̂pqµνa
∗
pa
∗
qaµaν

−
∑
pqα

l3/2σ̂α ω̂pαq0a
∗
paq + 1

2
∑
αβ

l3σ̂ασ̂β ω̂αβ00, (4.14)

where the Fourier coefficients are defined by σ̂α =
∫
Ql
uα(z)σ(z) dz and

ω̂pqµν =
∫
Ql

∫
Ql

up(y)uq(z)wr,R(y, z)uµ(y)uν(z) dy dz .

Using wr,R(y, z) = wr,R(z, y), one immediately concludes the symmetry properties

ω̂pqµν = ω̂µqpν , ω̂pqµν = ω̂pνµq and ω̂pqµν = ω̂qpνµ. (4.15)

Furthermore, the bound supy
∫
wr,R(y, z) dz ≤ 4πR2 (stated in (4.12)) implies

|ω̂pqµν | ≤ 4πR2l−3, (4.16)

for all p, q, µ, ν.
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4.3 The Leading Order Estimate
This section covers the estimates that contribute to the ground state energy at leading
order. It is similar to section 6 in [36] and mainly differs from it in two ways. First of all,
the neutrality term is different since it is a function of space in this case and secondly, it
is not necessary to bring the kinetic energy into the desired form in this thesis since the
corresponding result of [37] can be used.

Define the main part of the Hamiltonian

Hmain =
N∑
i=1

γε,tKi + 1
2
∑
pq 6=0

ω̂pq,00
(
a∗pa

∗
0a0aq + a∗0a

∗
paqa0 + a∗pa

∗
qa0a0 + a∗0a

∗
0apaq

)

=
N∑
i=1

γε,tKi +
∑
pq 6=0

ω̂pq,00

(
a∗paqa

∗
0a0 + 1

2a
∗
pa
∗
qa0a0 + 1

2a
∗
0a
∗
0apaq

)
. (4.17)

Since one cannot control either of the terms in equation (4.37) of the subleading part
well, the following non-neutrality term has to be included in the treatment of the leading
order part. This is why the “quadratic” Hamiltonian is defined

HQ =
N∑
i=1

γε,tKi +
∑
pq 6=0

ω̂pq,00

(
a∗paqa

∗
0a0 + 1

2a
∗
pa
∗
qa0a0 + 1

2a
∗
0a
∗
0apaq

)

+
∑
p 6=0

∫
R3

∫
R3

(nl−3 − σ(y))wr,R(y, z)u0up(z) a∗pa0 dy dz

+
∑
p6=0

∫
R3

∫
R3
u0up(y) a∗0apwr,R(y, z) (nl−3 − σ(z)) dy dz . (4.18)

Bogolubov’s idea in [5] was to replace the operators a#
0 by

√
N0. So HQ is called like this

because it is quadratic in a#
p with p 6= 0. In this section the Hamiltonian HQ is bounded

from below for an arbitrary σ. This will give a lower bound for Hmain, too, since one can
just set σ = nl−3 to eliminate the term with a single a#

p , where p 6= 0.
Since all of the small cubes inside of the large one are equivalent, one can simply consider

the cube Ql = (−l/2, l/2)3, i.e. set k = 0 in this section. Then the following theorem holds.

Theorem 4.8 (The leading order estimate). Suppose C1εω(t)2 ≤ nl. Then, for any σ, the
quadratic Hamiltonian is bounded below as

HQ ≥ −γ−1/4
ε,t I0n

5/4l−3/4 − 1
2
∥∥∥nl−3 − σ

∥∥∥2

r,R
− Cε−1t−22nl−1, (4.19)

where the coefficient I0 is defined in equation (1.27) of the introduction and ‖nl−3 − σ‖2
r,R

is defined in the beginning of the next section.

By setting σ = nl−3, one gets the bound for the main part of the Hamiltonian

Hmain ≥ −γ−1/4
ε,t I0n

5/4l−3/4 − Cε−1t−22nl−1. (4.20)
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In order to prove this theorem, some definitions are needed. Similar to [37], let
χl,k(z) = eikzχl(z) for z, k ∈ R3. Furthermore, introduce the operators

b∗k = a∗(Pχl,k) a0 and bk = a(Pχl,k) a∗0,

for k ∈ R3. Here, P is the projection on the subspace of L2(Ql) orthogonal to constants.
One then has the commutation relations [bk, bk′ ] = [b∗k, b∗k′ ] = 0 and

[bk, b∗k] = (Pχl,k,Pχl,k) a∗0a0 − a∗(Pχl,k)a(Pχl,k)

≤
∫
R3
χl(z)2 dz a∗0a0 ≤ l3n. (4.21)

The next step is to express HQ in terms of the operators bk and b∗k. For this purpose, as in
[36] let

hQ(k) = γε,t
2(2π)3

1
n+ 1

|k|4

|k|2 + (lt6)−2

(
b∗kbk + b∗−kb−k

)
+ V̂r,R(k)

2l3/2
(
τ(k)(b∗k + b−k) + τ(k)(bk + b∗−k)

+ (2πl)−3/2
(
b∗kbk + b∗−kb−k + b∗kb

∗
−k + bkb−k

))
, (4.22)

with the Fourier transform τ := F[(nl−3 − σ)χl] = (2π)−3/2 ∫
R3(nl−3 − σ(x))χl(x)e−ix · dx.

Lemma 4.9. One has the lower bound

HQ ≥
∫
R3
hQ(k) dk −

∑
pq 6=0

ω̂pq00 a
∗
paq. (4.23)

Proof. First of all, rewrite the kinetic energy as in [37]

γε,t
N∑
i=1
Ki = γε,t

∑
pq

(up,Kuq) a∗paq

= γε,t(2π)−3
∫
R3

|k|4

|k|2 + (lt6)−2

∑
pq 6=0

(up, χl,k)(χl,k, uq) a∗paq dk

= γε,t(2π)−3
∫
R3

|k|4

|k|2 + (lt6)−2a
∗(Pχl,k)a(Pχl,k) dk ,

where it is used

a∗(Pχk,l) =
∑
p 6=0

(up, χk,l) a∗p and a(Pχk,l) =
∑
q 6=0

(χk,l, uq) aq. (4.24)

One arrives at the first term of (4.22) by estimating

a∗(Pχl,k)a(Pχl,k) ≥ (n+ 1)−1a∗(Pχl,k)a0a
∗
0a(Pχl,k) = (n+ 1)−1b∗kbk.
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Now turn to the potential. The term with a single a#
p , where p 6= 0, is given by

∑
p 6=0

∫
R3

∫
R3

(nl−3 − σ(y))wr,R(y, z)u0up(z) a∗pa0 dy dz + h.c.

To write this term in Fourier space insert

wr,R(y, z) = (2π)−3/2
∫
R3
V̂r,R(k)χl,k(y)χl,k(z) dk ,

to get the expression

(2πl)−3/2
∫
R3

(∫
R3

(nl−3 − σ(y))χl,k(y) dy
)
V̂r,R(k)

∑
p 6=0

(∫
R3
up(z)χl,k(z) dz

)
a∗pa0 dk

+ h.c.

If one sets τ := F[(nl−3 − σ)χl] and uses equation (4.24) one arrives at

l−3/2
∫
R3
τ(k)V̂r,R(k) b∗k dk + h.c.

After symmetrizing, the claim of the lemma is concluded. To do so, note that Vr,R(z) =
Vr,R(−z) and therefore, V̂r,R(k) = V̂r,R(−k). Furthermore, since (nl−3 − σ)χl is real, one
has τ(−k) = τ(k).

The last line of equation (4.22) follows similarly and gives rise to the error term in
equation (4.23).

At this point, one can derive a lower bound on hQ(k) using a simple version of Bogolubov’s
argument. For this reason, quote Theorem 6.3 from [36].

Theorem 4.10. Let A ≥ B > 0 and κ ∈ C. Then, one has the inequality

A(b∗kbk + b∗−kb−k) +B(b∗kb∗−k + bkb−k) + κ(b∗k + b−k) + κ(bk + b∗−k)

≥ −1
2
(
A−
√
A2 −B2

)(
[bk, b∗k] +

[
b−k, b

∗
−k

])
− 2|κ|2
A+B

.

With the help of this theorem, the main theorem of this section can finally be proven.

Proof of Theorem 4.8. To prove this theorem, first apply Theorem 4.10 to the Hamiltonian
hQ defined in equation (4.22). Then, one can progress similar to the proof of Lemma 8.3 in
[37] to bring the leading order term into the desired form.

Define the numbers

Bk = V̂r,R(k)
2(2π)3/2l3

, Ak = Bk + γε,t
2(2π)3

1
n+ 1

|k|4

|k|2 + (lt6)−2 and κk = V̂r,R(k)
2l3/2 τ(k).
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With Theorem 4.10 and equation (4.21) the inequality holds

∫
R3
hQ(k) dk ≥ −

∫
R3

(
Ak −

√
A2
k −B2

k

)
nl3 dk −

∫
R3

2|κk|2
Ak +Bk

dk . (4.25)

Then, use Bk ≤ Ak to bound the last integral
∫
R3

2|κk|2
Ak +Bk

dk ≤
∫
R3

|κk|2

Bk

dk = 1
2 (2π)3/2

∫
R3
V̂r,R(k)|τ(k)|2 dk = 1

2
∥∥∥nl−3 − σ

∥∥∥2

r,R
.

Thus, one gets the desired neutrality term of (4.19).
Consider the first integral of the lower bound in (4.25). Integrating over αk instead of

k with α = γ
−1/4
ε,t (n+ 1)1/4l−3/4, one gets the integrand

n(n+ 1)1/4l−3/4

2(2π)3γ
1/4
ε,t

(
g(k) + f(k)−

(
(g(k) + f(k))2 − g(k)2

)1/2
)
, (4.26)

where

g(k) = 4π
(

1
|k|2 + (αR)−2 −

1
|k|2 + (αr)−2

)
and f(k) = |k|4

|k|2 + (αlt6)−2 .

The expression (4.26) is monotone increasing in g. Thus, one can simply estimate g(k) from
above by 4π|k|−2. In f it is monotone decreasing. So f(k) has to be bounded from below
appropriately. Defining a = (αlt6)−2 = γ

1/2
ε,t ((n+ 1)l)−1/2t−12, estimate

f(k) ≥ 0, if |k|2 ≤ 4a,
f(k) ≥ |k|2 − a, if |k|2 > 4a.

Turning to the root in (4.26) and supposing |k|2 > 4a, estimate

((
4π|k|−2 + |k|2 − a

)2
− (4π)2|k|−4

)1/2
≥
(
|k|4 + 8π

)1/2
(

1− 2a|k|−2 + a2

|k|4 + 8π

)1/2

≥
(
|k|4 + 8π

)1/2
(

1− a|k|−2 + a2

2(|k|4 + 8π) −
1
2a

2|k|−4 − Ca3|k|−6
)
, (4.27)

where the root is expanded about 1 and it is used a2(|k|4 +8π)−1 ≤ a2|k|−4 ≤ 2a|k|−2 < 1/2.
Then, (4.27) is bounded from below by

(
|k|4 + 8π

)1/2
− a− 8πa|k|−4 − 4πa2|k|−6 − Ca3|k|−4 − Ca3|k|−8

≥
(
|k|4 + 8π

)1/2
− a− Cε−1t−16a|k|−4.
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Here, the fact is used that a2 ≤ C(nl)−1t−24 ≤ Cε−1t−16 since nl ≥ C1εω(t)2. One therefore
gets∫

R3

(
Ak −

√
A2
k −B2

k

)
nl3 dk

≤ n(n+ 1)1/4l−3/4

2(2π)3γ
1/4
ε,t

 ∫
|k|<(4a)1/2

4π|k|−2 dk +
∫

|k|>(4a)1/2

(
4π|k|−2 + |k|2 −

(
|k|4 + 8π

)1/2
)

dk


+ Cε−1t−16
∫

|k|>(4a)1/2

a|k|−4 dk .

Since the error of combining the first two integrals is less then
∫
|k|<(4a)1/2(8π)1/2 dk = Ca3/2,

one gets the upper bound

n
(
n1/4 + 1

)
l−3/4

2(2π)3γ
1/4
ε,t

∫
R3

(
4π|k|−2 + |k|2 −

(
|k|4 + 8π

)1/2
)

dk + Cε−1t−16a1/2


≤ γ

−1/4
ε,t n5/4l−3/4 21/2

π3/4

∫ ∞
0

(
1 + x4 − x2(x4 + 2)1/2

)
dx+ Cε−1t−22nl−1.

The theorem follows by equations (4.23) and (4.30), since

21/2

π3/4

∫ ∞
0

(
1 + x4 − x2(x4 + 2)1/2

)
dx = 2

5

( 2
π

)1/4 Γ(3/4)
Γ(5/4) = I0.

4.4 Estimates on the Subleading Terms
This section is concerned with estimating those terms in the Hamiltonian H̃r,R that do not
contribute to the ground state energy at leading order.

These bounds will first be used to prove a-priori bounds in Section 4.5 and then, to
prove the lower bound on the Hamiltonian H̃ in Section 4.7. Since different terms are
difficult in these two applications, two different lower bounds are proven. The first one that
is used to prove the a-priori bounds and the second one to prove the lower bound on H̃.

As in Section 4.3 simply the cube Ql = (−l/2, l/2)3 is considered in this section.
One can proceed similar to section 5 of [36]. In this case, however, neutrality cannot be

expected to hold uniformly in space as the background charge density σ is not constant but
depends on the position in space. Therefore, it can only be controlled in the local Coulomb
norm

∥∥∥nl−3 − σ
∥∥∥
r,R

=
(∫

R3

∫
R3

(
nl−3 − σ(y)

)
wr,R(y, z)

(
nl−3 − σ(z)

)
dy dz

)1/2
,
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where wr,R is defined in equation (4.10). The fact that ‖·‖r,R defines a norm follows from
Vr,R having a positive Fourier transform. This implies that wr,R defines the kernel of a
positive integral operator. Using this norm, all of the terms containing σ will be bounded.
Then, the following result is deduced.

Theorem 4.11 (Lower bound on the subleading part of the Hamiltonian). The operator
inequality holds

H̃r,R −Hmain ≥
1
2(1− 3ε′)

∥∥∥nl−3 − σ
∥∥∥2

r,R
+ 1

2(1− 2ε′)
∑

pqµν 6=0
ω̂pqµν a

∗
pa
∗
qaµaν

−
(

1 + 1
2ε′
)

4πR2l−3n̂2
+ −

(
5 + 2

ε′

)
4πR2l−3n(n̂++ 1)

−
√

2
∥∥∥nl−3 − σ

∥∥∥
r,R
r−1/2n̂+ − ε′r−1n̂+. (4.28)

Moreover,

H̃r,R −HQ ≥
1
2(1− 3ε′)

∥∥∥nl−3 − σ
∥∥∥2

r,R
+
(1

2 −
1
ε′

) ∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν

−
(

1 + 3
2ε′
)

4πR2l−3n̂2
+ − ε′12πR2l−3nn̂+ − 2πR2l−3n

− 1
ε′

4πR2l−3(2n̂+ + 1)− 1
ε′
r−1n̂+(n̂+ + 1). (4.29)

Proof. Simply combine all estimates of this section in one inequality, i.e. combine Lemma
4.14, 4.15, 4.17 and 4.18. For the first bound, set ε′′ := ε′−1 in Lemma 4.14 and use
equation (4.32) in Lemma 4.15 and equation (4.37) in Lemma 4.17. For the second bound,
set ε′′ := ε′ in Lemma 4.14 and use equation (4.33) in Lemma 4.15 and equation (4.38) in
Lemma 4.17.

The terms of the Hamiltonian H̃r,R in (4.14) that shall be treated in this section are
the following.

ω̂pqµν The terms in the Hamiltonian containing ωpqµν with p, q, µ, ν 6= 0 describe the Coulomb
repulsion on functions orthogonal to constants and are thus positive. However, since
these terms are needed to bound negative ones, one has to find an upper bound for
them.

ω̂pqµ0 The terms with coefficients ωpqµ0, ωpq0ν , ωp0µν and ω0qµν with p, q, µ, ν 6= 0 are bounded
from below in [36]. Therefore, the corresponding the result can be used.

ω̂p0q0 Bounding the terms in the Hamiltonian with ω̂p0q0, ω̂0p0q or σ̂αω̂pαq0, where p, q 6= 0,
from below causes some difficulties since the estimate should contain the neutrality
term ‖nl−3 − σ‖ r,R without rendering the remainder uncontrollable. To resolve these
difficulties a Cauchy-Schwarz operator inequality is proven in Lemma 4.16.
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ω̂p000 The terms with coefficients ω̂p000 (or any other permutation of these indices) or
σ̂αω̂pα00, where p 6= 0, form the other most difficult part of the Hamiltonian. They
can only be estimated by two terms that cannot be controlled well. This is why one
has to take the part containing nl−3 − σ into the treatment of the leading order part.

ω̂0000 The sum of the terms with ω̂0000, σ̂αω̂0α00 or σ̂ασ̂βω̂αβ00 as coefficients is basically
positive. It will be bounded from below by ‖nl−3 − σ‖2

r,R minus some error.

Quote the following result that is proven in [36].

Lemma 4.12. One has the operator inequalities

0 ≤
∑
p,q 6=0

ω̂pq00 a
∗
paq =

∑
p,q 6=0

ω̂p00q a
∗
paq ≤ 4πR2l−3n̂+, (4.30)

and

0 ≤
∑

p,q,m 6=0
ω̂pmmq a

∗
paq ≤ r−1n̂+. (4.31)

Proof. See Lemma 5.4 in [36].

Then, consider the different parts of the Hamiltonian.

Lemma 4.13 (Bound on terms with ω̂pqµν). The following operator inequality holds.

0 ≤
∑

pqµν 6=0
ω̂pqµν a

∗
pa
∗
qaµaν ≤ r−1n̂2

+.

Proof. The operator 1
2
∑
pqµν 6=0 ω̂pqµν a

∗
pa
∗
qaµaν is the second quantization of the two-body

multiplication operator (P ⊗ P)wr,R(P ⊗ P). Here, P denotes the projection onto the
functions orthogonal to constants in L2(Ql). By equation (4.12) one has for all y, z ∈ R3

0 ≤ wr,R(y, z) ≤ 1
r
.

Since the second quantization of of the two-body operator P⊗P is 1
2 n̂+(n̂+−1), the lemma

follows.

Lemma 4.14 (Bound on terms with ω̂pqµ0). The sum of all terms in the Hamiltonian with
coefficients ω̂pqµ0, ω̂pq0ν, ω̂p0µν and ω̂0qµν, where p, q, µ, ν 6= 0, has the lower bound

−ε′′4πR2l−3nn̂+ −
1
ε′′
r−1n̂+ −

1
ε′′

∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν ,

for all ε′′ > 0.
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Proof. See Lemma 5.6 of [36].

Lemma 4.15 (Bound on terms with ω̂p0q0). The sum of all terms in the Hamiltonian with
coefficients ω̂p0q0, ω̂0p0q or σ̂αω̂pαq0, where p, q 6= 0, has the lower bound

−
√

2
∥∥∥nl−3 − σ

∥∥∥
r,R
r−1/2n̂+ − 4πR2l−3n̂2

+. (4.32)

Therefore, they are also bounded from below by

− ε′
∥∥∥nl−3 − σ

∥∥∥2

r,R
− 1

2ε′ r
−1n̂2

+ − 4πR2l−3n̂2
+, (4.33)

for all ε′ > 0.

Proof. The symmetry properties (4.15) imply ω̂p0q0 = ω̂0p0q. Therefore, the relevant terms
are

∑
p,q 6=0

(
1
2 ω̂p0q0 a

∗
pa
∗
0aqa0 + 1

2 ω̂0p0q a
∗
0a
∗
paqa0 − l3/2

∑
α

σ̂α ω̂pαq0 a
∗
paq

)

=
∑
p,q 6=0

(
ω̂p0q0n̂0 − l3/2

∑
α

σ̂α ω̂pαq0

)
a∗paq

=
∑
p,q 6=0

(
ω̂p0q0n− l3/2

∑
α

σ̂α ω̂pαq0

)
a∗paq − n̂+

∑
p,q 6=0

ω̂p0q0 a
∗
paq. (4.34)

The second term can be controlled by estimating

n̂+
∑
p,q 6=0

ω̂p0q0 a
∗
paq = l−3 n̂+

∫
R3

∫
R3
wr,R(y, z) dy

∑
p 6=0

up(z)ap

∗∑
q 6=0

uq(z)aq

 dz

≤ l−3 n̂+ sup
z′

∫
R3
wr,R(y, z′) dy

∫
R3

 ∑
p,q 6=0

up(z)uq(z) a∗paq

 dz ≤ 4πR2l−3n̂2
+.

The last inequality follows from the bound (4.12).
The first term in (4.34) equals

∫
R3

∫
R3

∑
p,q 6=0

a∗paqup(y)uq(y)wr,R(y, z)
(
nl−3 − σ(z)

)
dy dz

≥ −

 ∑
pqµν 6=0

ω̂pµqν a
∗
paq a

∗
µaν

1/2∥∥∥nl−3 − σ
∥∥∥
r,R
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where the operator inequality (4.35) of Lemma 4.16 is used. By Lemma 4.13, Lemma 4.12
and the fact that the root is operator monotone, conclude

−
∥∥∥nl−3 − σ

∥∥∥
r,R

 ∑
pqµν 6=0

ω̂pµqν a
∗
paq a

∗
µaν

1/2

= −
∥∥∥nl−3 − σ

∥∥∥
r,R

 ∑
pqµν 6=0

ω̂pµqν a
∗
pa
∗
µ aqaν +

∑
pmν 6=0

ω̂pmmν a
∗
paν

1/2

≥ −
∥∥∥nl−3 − σ

∥∥∥
r,R

(
r−1n̂2

+ + r−1n̂+
)1/2

≥ −
∥∥∥nl−3 − σ

∥∥∥
r,R

√
2 r−1/2n̂+.

To show the missing ingredient of the last proof, let X ⊆ Rd for some d ∈ N and let
W : X ×X → R be symmetric and positive definite. By this it is meant

∀f : X → C :
∫
X

∫
X
f(x)W (x, y)f(y) dx dy ≥ 0.

Furthermore, let A(x) and B(x) be closed and densely defined operators on some separable
Hilbert space H for every x ∈ X. Then, one can state following lemma.

Lemma 4.16 (Operator inequality of Cauchy-Schwarz type). The following operator
inequalities hold. First of all, for the product of a function and an operator∣∣∣∣∣∣∣Re

∫∫
X×X

f(x)W (x, y)A(y) dx dy

∣∣∣∣∣∣∣ (4.35)

≤

 ∫∫
X×X

f(x)W (x, y)f(y) dx dy


1/2 ∫∫

X×X

1
2
(
A(x)∗A(y) + A(x)A(y)∗

)
W (x, y) dx dy


1/2

.

And secondly, for the product of two operators∫∫
X×X

(
A(x)∗B(y) +B(x)∗A(y)

)
W (x, y) dx dy

≤
∫∫

X×X

A(x)∗W (x, y)A(y) dx dy +
∫∫

X×X

B(x)∗W (x, y)B(y) dx dy .
(4.36)

Proof. The second inequality follows from the fact that for all φ ∈ H(
φ,
∫∫

A(x)∗W (x, y)A(y) dx dy φ
)

=
∑
i

∫∫
(φ,A(x)∗vi)W (x, y)(vi, A(y)φ) dx dy ≥ 0,

for some orthonormal basis {vi} of the separable Hilbert space H.
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The first inequality is proven exactly as the Cauchy-Schwarz inequality of a scalar
product is proven. For this purpose, define

B = Re
∫∫

f(x)W (x, y)A(y) dx dy , and [f ]W =
(∫∫

f(x)W (x, y)f(y) dx dy
)1/2
.

Then, one gets

0 ≤
∫∫ (

A(x)− f(x)[f ]−2
W ReB

)∗
W (x, y)

(
A(y)− f(y)[f ]−2

W ReB
)

dx dy

+
∫∫ (

A(x)− f(x)[f ]−2
W ReB

)
W (x, y)

(
A(y)− f(y)[f ]−2

W ReB
)∗

dx dy

=
∫∫ (

A(x)∗A(y) + A(x)A(y)∗
)
W (x, y) dx dy + 2[f ]−2

W (ReB)2

−
(∫∫

A(x)∗W (x, y)f(y) dx dy +
∫∫

A(x)W (x, y)f(y) dx dy
)

(ReB)[f ]−2
W

− (ReB)[f ]−2
W

(∫∫
f(x)W (x, y)A(y) dx dy +

∫∫
f(x)W (x, y)A(y)∗ dx dy

)
=
∫∫ (

A(x)∗A(y) + A(x)A(y)∗
)
W (x, y) dx dy − 2[f ]−2

W (ReB)2.

This is equivalent to the inequality

(
Re

∫∫
f(x)W (x, y)A(y) dx dy

)2
≤ [f ]2W

∫∫ 1
2
(
A(x)∗A(y) + A(x)A(y)∗

)
W (x, y) dx dy .

The lemma follows since the root is operator monotone.

Lemma 4.17 (Bound on terms with ω̂p000). The sum of all terms in the Hamiltonian with
coefficients ω̂p000 (or any other permutation of these indices) or σ̂αω̂pα00, where p 6= 0, has
the lower bound

−ε′
∥∥∥nl−3 − σ

∥∥∥2

r,R
−
( 2
ε′

+ 4
)

4πR2l−3n(n̂+ + 1), (4.37)

for all ε′ > 0, or alternatively,

∑
p 6=0

∫
R3

∫
R3

(
u0up(y) a∗pa0wr,R(y, z)(nl−3− σ(z)) + (nl−3− σ(y))wr,R(y, z)u0up(z) a∗0ap

)
dy dz

−ε′8πR2l−3nn̂+ −
1
ε′

4πR2l−3(n̂+ + 1)2, (4.38)

for all ε′ > 0.



4.4 Estimates on the Subleading Terms 83

Proof. The relevant terms are

1
2
∑
p 6=0

(
ω̂p000

(
2a∗pa∗0a0a0 + 2a∗0a∗0a0ap

)
− 2l3/2

∑
α

σ̂αω̂pα00
(
a∗pa0 + a∗0ap

))

=
∑
p6=0

∫
R3

∫
R3

(
(n̂0l

−3 − σ(y))wr,R(y, z)u0up(z) a∗pa0

+ u0up(y) a∗0apwr,R(y, z)(n̂0l
−3 − σ(z))

)
dy dz

=
∑
p 6=0

∫
R3

∫
R3

(
u0up(z) a∗pa0wr,R(y, z)((n̂0 − 1)l−3 − σ(y))

+ ((n̂0 − 1)l−3 − σ(z))wr,R(y, z)u0up(y) a∗0ap
)

dy dz

If we now insert n̂0 = n− n̂+, we arrive at

∑
p 6=0

∫
R3

∫
R3

(
u0up(z) a∗pa0wr,R(z, y)(nl−3− σ(y)) + (nl−3− σ(z))wr,R(z, y)u0up(y) a∗0ap

)
dy dz

+
∑
p6=0

∫
R3

∫
R3

(
u0up(z) a∗pa0wr,R(z, y)(n̂+ + 1)l−3 + (n̂+ + 1)l−3wr,R(z, y)u0up(y) a∗0ap

)
dy dz

(4.39)

The first sum in (4.39) is already the desired first term of the alternative bound (4.38).
Since wr,R defines a positive integral operator, one has the Cauchy Schwarz inequality (4.36)
and thus, the second sum in (4.39) is bounded below by

∫
R3

∫
R3

ε′ ∑
p,q 6=0

u0up(z) a∗pa0wr,R(z, y)u0uq(y) aqa∗0

+ 1
ε′

(n̂+ + 1)l−3wr,R(z, y)(n̂+ + 1)l−3

 dy dz

≥ −ε′(n̂0 + 1)
∑
p,q 6=0

ω̂pq00 a
∗
paq −

1
ε′
ω̂0000(n̂+ + 1)2

≥ −ε′8πR2l−3nn̂+ −
1
ε′

4πR2l−3(n̂+ + 1)2. (4.40)

Here, the commutator relation [a0, a
∗
0] = 1 and equation (4.30) from Lemma 4.12 are used.

Furthermore, it is assumed n+ 1 ≤ 2n. This concludes the proof of the alternative bound
(4.38).

Now turn to the proof of the first bound (4.37). Use equation (4.40) with ε′ = 1 to
bound the second term in (4.39) from below by

−4πR2l−32nn̂+ − 4πR2l−32n(n̂+ + 1) ≥ −4 · 4πR2l−3n(n̂+ + 1),
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assuming n+ 1 ≤ 2n. Finally, the lemma follows by estimating the first term in (4.39) with
the help of the Cauchy-Schwarz inequality (4.36)∑
p 6=0

∫
R3

∫
R3

(
u0up(z) a∗pa0wr,R(z, y)(nl−3− σ(y)) + (nl−3− σ(z))wr,R(z, y)u0up(y) a∗0ap

)
dy dz

≥ −ε′
∥∥∥σ − nl−3

∥∥∥2

r,R
− 1

ε′

∫
R3

∫
R3

∑
p,q 6=0

u0up(z) a∗pa0wr,R(z, y)u0uq(y) aqa∗0 dy dz

= −ε′
∥∥∥σ − nl−3

∥∥∥2

r,R
− 1
ε′
∑
p,q 6=0

ω̂pq00 a
∗
paq(n̂0 + 1)

≥ −ε′
∥∥∥σ − n̂0l

−3
∥∥∥2

r,R
− 1
ε′

8πR2l−3nn̂+,

where equation (4.30) of Lemma 4.12 is used to bound the second term from below.

Lemma 4.18 (Bound on terms with ω̂0000). The terms with coefficients ω̂0000, σ̂αω̂α000 or
σ̂ασ̂βω̂αβ00 are bounded below by

1
2(1− ε′)

∥∥∥nl−3 − σ
∥∥∥2

r,R
− 1
ε′

2πR2l−3n̂2
+ − 2πR2l−3n. (4.41)

Proof. The relevant terms are
1
2 ω̂0000 a

∗
0a
∗
0a0a0 − l3/2

∑
α

σ̂α ω̂α000 a
∗
0a0 + 1

2 l
3∑
α,β

σ̂ασ̂β ω̂αβ00

= 1
2

∫
R3

∫
R3

(
n̂0l
−3wr,R(y, z) n̂0l

−3 − 2σ(y)wr,R(y, z) n̂0l
−3 + σ(y)wr,R(y, z)σ(z)

)
dy dz

− 1
2 ω̂0000n̂0.

= 1
2

∫
R3

∫
R3

(σ(y)− n̂0l
−3)wr,R(y, z) (σ(z)− n̂0l

−3) dy dz − 1
2 ω̂0000n̂0.

≥ 1
2
∥∥∥nl−3 − σ

∥∥∥2

r,R
+
∫
R3

∫
R3

(σ(y)− nl−3)wr,R(y, z) n̂+l
−3 dy dz − 1

2 ω̂0000n̂0.

≥ 1
2(1− ε′)

∥∥∥nl−3 − σ
∥∥∥2

r,R
− 1

2ε′
∫
R3

∫
R3
n̂+l

−3wr,R(y, z) n̂+l
−3 dy dz − 1

2 ω̂0000n̂0.

= 1
2(1− ε′)

∥∥∥nl−3 − σ
∥∥∥2

r,R
− 1

2ε′ ω̂0000 n̂
2
+ −

1
2 ω̂0000n̂0,

where the fact is used that ωr,R defines a positive integral operator and therefore, one has
the Cauchy-Schwarz inequality (4.36). Because of the bound 0 ≤ ω̂0000 ≤ 4πR2l−3 (see
equation (4.16)), the desired result (4.41) holds.

4.5 A-priori Estimates
In this section a-priori bounds are proven that are needed to estimate the subleading part
of the Hamiltonian that is considered in section 4.4.
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In doing so, Lemma 4.7 is used to bound the Hamiltonian from below by the Hamiltonian
of the two component Bose gas of [37]. This way, one can transfer their a-priori bounds on
the kinetic energy and on excitations to this case.

In addition, a-priori bounds on non-neutrality and Coulomb repulsion are needed.
Since this bound is deduced by estimating 〈H̃r,R〉 from below, it unfortunately cannot be
subleading. However, it will be subleading when multiplied with a damping factor ε′ or
M−2 which will prove to be sufficient.

The first a-priori bound shows that asymptotically almost all of the particles will be in
the condensate.

Lemma 4.19. Let C1 > 0 be the constant from (4.9). Suppose 〈H̃〉 ≤ 0 and C1Nl
3 ≤ ε3,

then one has

n ≤ C 〈n̂0〉 ,

and

n5/4 ≤ 〈n̂0〉5/4
(
1 + Cε−1(N2/5l)N−1/24

)
.

Proof. First, use Lemma 4.7 to transfer an a-priori bound on the number of excited particles
from [37] to this case. Let Ti = γε,tKi − γε,tε∆i,Neu and w = wR as defined in (4.7). By
equation (4.13), one can estimate

0 ≥
(
ψ, H̃ψ

)
=
(
ψ,H(N)

wR
ψ
)
≥ 1

2
(
ψ ⊗ ψ,H(2N)

wR
ψ ⊗ ψ

)
.

Therefore, Corollary 6.4 of [37] yields 〈n̂+〉 ≤ Cnε−1n1/3l. Since n1/3l ≤ N1/3l =
(N2/5l)N−1/15 this implies

〈n̂0〉 = n− 〈n̂+〉 ≥ n
(
1− Cε−1n1/3l

)
≥
(
1− CC−1/3

1

)
n = C−1n,

by the choice of C1 in (4.9) (see Lemma 11.2 of [37]). One arrives at the second equation of
the lemma by expressing n5/4 = n5/8n5/8 in terms of n̂0 and n̂+ and using the subadditivity
of the root.

Lemma 4.20 (Estimates on the kinetic energy and excitations). Given that 〈H̃r,R〉 ≤ 0
and assuming C1εω(t)2 ≤ nl and C1Nl

3 ≤ ε3 for the constant C1 > 0 from (4.9), the
following a-priori bounds hold.

〈
N∑
i=1
Ki
〉
≤ Cn5/4l−3/4ε−1/2t−2(nl)1/4, (4.42)

〈n̂+〉 ≤ Cε−3/2t−2(nl)3/2. (4.43)
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Proof. These bounds are proven in [37], so Lemma 4.7 can be used to get the same result
in this case. Set Ti = γε,tKi − 1

2γε,tε∆i,Neu and w = wr,R to start from equation (4.13)

0 ≥
(
ψ, H̃r,Rψ

)
=
(
ψ,H(N)

wr,R
ψ
)
≥ 1

2
(
ψ ⊗ ψ,H(2N)

wr,R
ψ ⊗ ψ

)
.

According to Lemma 9.1 of [37] and since (ψ, ψ) = 1, one then has(
ψ ⊗ ψ,

2N∑
i=1
Ki ψ ⊗ ψ

)
= 2

(
ψ,

N∑
i=1
Ki ψ

)
≤ Cn5/4l−3/4ε−1/2t−2(nl)1/4.

In the same way equation (4.43) is derived.

Lemma 4.21 (Estimate on non-neutrality and Coulomb repulsion). Given that 〈H̃r,R〉 ≤ 0
and assuming C1εω(t)2 ≤ nl ≤ ε−4(N2/5l)10 and C1Nl

3 ≤ ε3 for the constant C1 > 0 from
(4.9), the a-priori bound holds

∥∥∥nl−3 − σ
∥∥∥2

r,R
+
〈 ∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν

〉

≤ Cn5/4l−3/4
(
ε−3/2t−2(nl)5/4 +K(ε, t, N, l)

)
. (4.44)

Here, K(ε, t, N, l) = C
∑m
i=1 ε

−ait−bi(N2/5l)ciN−di with di > 0 for all i and m ∈ N.

Proof. By equation (4.28) of Theorem 4.11 and the bound (4.20) for the main part of the
Hamiltonian, one has〈

H̃r,R

〉
≥ − Cn5/4l−3/4 − Cε−1t−22nl−1

+ 1
2(1− 3ε′)

∥∥∥nl−3 − σ
∥∥∥2

r,R
+ 1

2(1− 2ε′)
〈 ∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν

〉

−
(

1 + 1
2ε′
)

4πR2l−3
〈
n̂2

+

〉
−
(

5 + 2
ε′

)
4πR2l−3n 〈n̂++ 1〉

−
√

2
∥∥∥nl−3 − σ

∥∥∥
r,R
r−1/2 〈n̂+〉 − ε′r−1 〈n̂+〉

By estimating
√

2
∥∥∥nl−3 − σ

∥∥∥
r,R
r−1/2 〈n̂+〉 ≤ ε′

∥∥∥nl−3 − σ
∥∥∥2

r,R
+ 1

2ε′ r
−1 〈n̂+〉2 ,

and choosing ε′ as a sufficiently small constant, one then arrives at〈
H̃r,R

〉
≥− Cn5/4l−3/4 − Cε−1t−22nl−1 − CR2l−3n 〈n̂++ 1〉 − Cr−1 〈n̂+〉 − Cr−1 〈n̂+〉2

+ 1
4
∥∥∥nl−3 − σ

∥∥∥2

r,R
+ 1

4

〈 ∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν

〉
.
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Note, that it is clear now, why the operator inequality of Lemma 4.16 is needed. Because
of it, one has the term Cr−1 〈n̂+〉2 that can easily be controlled by using equation (4.43).
Cr−1 〈n̂2

+〉 could not have been controlled, however, as there is no good bound on 〈n̂2
+〉, yet.

Choosing r = (nl)−1/2l3/2 and R ≤ l, because of the a-priori bound (4.43) the inequality
holds 〈

H̃r,R

〉
≥− Cn5/4l−3/4

(
ε−3/2t−2(nl)5/4 +K(ε, t, N, l)

)
+ 1

4
∥∥∥nl−3 − σ

∥∥∥2

r,R
+ 1

4

〈 ∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν

〉
,

where K(ε, t, N, l) = C
∑m
i=1 ε

−ait−bi(N2/5l)ciN−di with di > 0 for all i and m ∈ N. Here,
the assumption is used that C1εω(t)2 ≤ nl ≤ ε−4(N2/5l)10 and l = N−2/5+δl for some small
δl > 0. The lemma follows since 〈H̃r,R〉 ≤ 0.

4.6 Bound on the Excitations
In order to get an asymptotically sharp lower bound on the ground state energy, a better
bound on the Coulomb repulsion term is needed than the one of equation (4.44). In this
section this better bound is proven by showing that

〈
n̂2

+

〉
∼ 〈n̂+〉2. Lemmas 4.13 and 4.20

then yield the upper bound for the Coulomb repulsion.
As in [36] and [37], 〈n̂2

+〉 is not bounded for a general state ψ with negative energy.
Instead, the existence of a state ψ′ with a similar energy is proven such that n̂+ is sufficiently
localized. To do this, the method of localizing large matrices developed in [36] is used. One
thereby has to deal with the problem that the error of the energy can only be controlled by
the Coulomb repulsion term that one actually wants to bound. However, for this purpose
the bound (4.44) suffices even though it is greater than the leading order term. This
is because one has an additional damping factor of M−2 in the error which renders it
subleading, where M ∈ N is such that ε−3/2t−2(nl)3/2 ∈ [M,M + 1).

In the following lemma n̂+ is localized. Then, in a second lemma the error of this
localization is estimated (similar to [36]).

Lemma 4.22. Suppose C1εω(t)2 ≤ nl and C1Nl
3 ≤ ε3, where C1 > 0 is the constant from

(4.9), and suppose ψ is a normalized wave function such that(
ψ, H̃r,Rψ

)
≤ −M−2(|d1(ψ)|+ |d2(ψ)|). (4.45)

Then, there exists another normalized wave function ψ′, that is a superposition of eigen-
functions of n̂+ with eigenvalue less than CM only, such that(

ψ, H̃r,Rψ
)
≥
(
ψ′, H̃r,Rψ

′
)
−M−2(|d1(ψ)|+ |d2(ψ)|). (4.46)

The localization error M−2(|d1(ψ)|+ |d2(ψ)|) is defined and estimated in Lemma 4.23.
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Proof. Recall that ψ is an eigenfunction of n̂ with eigenvalue n. To apply the appropriate
theorem of [36], expand ψ = ∑n

m=0 cmvm, where each vm is a normalized eigenfunction of
n̂+ with eigenvalue m ∈ {0, 1, . . . , n}. Then, define

Amm′ =
(
vm, H̃r,Rvm′

)
for m ∈ {0, 1, . . . , n} and the corresponding matrix A := (Amm′)0≤m,m′≤n. Note that it is
Hermitian. Applying Theorem A.1 of [36] to the matrix A and the vector (c0, . . . , cn) yields
another wave function ψ′ satisfying (4.46) that is a superposition of vm+1, . . . , vm+M for
some m ∈ {0, . . . , n}. The error term only includes d1 and d2 as no term in the Hamiltonian
H̃r,R can change the number of excited particles by more than two. Here, it is assumed
M ≥ 3 which is true for a sufficiently small t > 0 since nl ≥ C1εω(t)2.

Since one has (ψ′, H̃r,Rψ
′) ≤ 0 due to equations (4.45) and (4.46) one can apply Lemma

4.20. Therefore, the estimate holds (ψ′, n̂+ψ
′) ≤ CM implying m ≤ CM and so, the proof

is finished.

Lemma 4.23. Given that the assumptions of Lemma 4.22 are satisfied, one can bound the
error in the case C1εω(t)2 ≤ nl ≤ ε−4(N2/5l)10 by

M−2(|d1(ψ)|+ |d2(ψ)|) ≤ Cε−1nl−1 + C 〈n̂0〉5/4 l−3/4K(ε, t, N, l), (4.47)

where K(ε, t, N, l) = C
∑m̃
i=1 ε

−ait−bi(N2/5l)ciN−di with di > 0 for all i and m̃ ∈ N.

The estimate of this lemma is proven separately for d1 and d2.

Proof of the estimate for d1. The error term d1 equals (ψ, H̃r,R(1)ψ) where H̃r,R(1) consists
of all the terms in H̃r,R which contain exactly one or exactly three a#

0 . These terms are
bounded in Lemmas 4.14 and 4.17 from below. The same proof actually works for the
upper bounds as well. Therefore, one has the bound

|d1(ψ)| ≤ CR2l−3n 〈n̂+ + 1〉+ C 〈n̂+〉 r−1 +
∥∥∥nl−3 − σ

∥∥∥2

r,R
+
〈 ∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν

〉
.

Then, one can estimate with Lemma 4.21

|d1(ψ)| ≤ CR2l−3n 〈n̂+ + 1〉+ C 〈n̂+〉 r−1 + Cn5/4l−3/4
(
ε−3/2t−2(nl)5/4 +K(ε, t, N, l)

)
.

Inserting the bound for 〈n̂+〉 from (4.43) and the choices r = (nl)−1/2l3/2 and R ≤ l, one
gets the upper bound

Cnl−1ε−3/2t−2(nl)3/2 + Cn5/4l−3/4ε−3/2t−2(nl)3/4l1/2

+ Cnl−1ε−3/2t−2(nl)3/2 + Cn5/4l−3/4K(ε, t, N, l).
= Cnl−1ε−3/2t−2(nl)3/2 + Cn5/4l−3/4

(
ε−3/2t−2(nl)3/4l1/2 +K(ε, t, N, l)

)
.
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Since M−2 ≤ 1, the error term can finally be bounded

M−2|d1(ψ)| ≤ Cnl−1t2ε3/2(nl)−3/2 + Cn5/4l−3/4
(
ε3/2t2(nl)−9/4l1/2 +K(ε, t, N, l)

)
.

Therefore, by inserting C1εω(t)2 ≤ nl ≤ ε−4(N2/5l)10 and l = N−2/5+δl , for a small δl > 0,
the upper bound holds

M−2|d1(ψ)| ≤ Cnl−1 + Cn5/4l−3/4K(ε, t, N, l),

and because of Lemma 4.19, the proof is finished.

Proof of the estimate for d2. The error term d2 equals (ψ, H̃r,R(2)ψ) where H̃r,R(2) consists
of all the terms in H̃r,R which contain exactly two a#

0 that are either both a∗0 or both a0.
Consider the unitary transform U which maps the basis vectors up to iup, for p 6= 0,

leaving u0 invariant. Then, Ua∗pU∗ = ia∗p, while UapU∗ = −iap. Therefore, U maps Hmain
to an operator which only differs from Hmain by a minus sign in the term that is called
H̃r,R(2). Since the bound (4.20) for Hmain remains invariant under U , one can conclude

|d2(ψ)| ≤
〈

N∑
i=1

γε,tKi +
∑
pq 6=0

ω̂pq,00a
∗
paqa

∗
0a0

〉
+ γ

−1/4
ε,t I0n

5/4l−3/4 + Cε−1t−22nl−1.

Using equations (4.42) and 4.30, one has

|d2(ψ)| ≤ Cn5/4l−3/4ε−1/2t−2(nl)1/4 + 4πR2l−3n 〈n̂+〉+ Cn5/4l−3/4 + Cε−1t−22nl−1.

Multiplying with M−2 and inserting (4.43) yields

M−2|d2(ψ)| ≤ Cε−1nl−1.

By Lemma 4.19 the proof is finished.

4.7 Proof of Theorem 4.4
In this section the lower bound on the energy in Ql is proven. Recall that 〈H̃〉 = (ψ, H̃ψ),
for an eigenfunction ψ ∈ H1(R3) of n̂ with eigenvalue n.

First of all, boxes with few or many particles are estimated by a lower bound which
does not contribute to the ground state energy at leading order. Note that sections 4.2-4.6
are not needed for this purpose (except for Lemma 4.7).

Lemma 4.24. Let C1 > 0 be the constant from (4.9). Suppose C1Nl
3 ≤ ε3 as well as

C1l < εt4. If either nl ≤ C1εω(t)2 or nl ≥ ε−4(N2/5l)10, then

〈H̃〉 ≥ − Ct−6nl−1 − Ct−22l−2 − Cε−1t−8n− C 〈n̂0〉5/4 l−3/4ε−1(N2/5l)N−1/15

− C 〈n̂0〉5/3 l−1/3
(
ε1/6(N2/5l)−5/3 + ε−2(N2/5l)4/3N−3/15

)
.
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Proof. Since this case does not contribute to the leading order term one can just use Lemma
4.7 to estimate it by the corresponding Hamiltonian H(2N)

w of the two component Bose gas
[37]. Therefore, choose C1 at least as large as in Lemma 9.1 of [37]. With w := wR as
defined in (4.7) and Ti := γε,tKi − 1

2γε,tε∆i,Neu, equation (4.13) reads
(
ψ, H̃ψ

)
=
(
ψ,H(N)

wR
ψ
)
≥ 1

2
(
ψ ⊗ ψ,H(2N)

wR
ψ ⊗ ψ

)
.

By Lemmas 11.4 and 11.5 from [37], the Hamiltonian is bounded from below by

〈H̃〉 ≥ − Cn5/4l−3/4ε−3/4(N2/5l)N−1/15

− Cn5/3l−1/3
(
ε1/6(N2/5l)−5/3 + ε−2(N2/5l)4/3N−3/15

)
.

− Ct−6nl−1 − Ct−22l−2 − Cε−1t−8n.

In case nl ≥ ε−4(N2/5l)10, the estimate has been used

21/4γε,tI0 n
5/4l−3/4 ≤ Cn5/3l−1/3(nl)−5/12 ≤ Cn5/3l−1/3ε5/3(N2/5l)−50/12

≤ Cn5/3l−1/3ε1/6(N2/5l)−5/3.

Then, the lemma follows because of Lemma 4.19.

To bound 〈H̃〉 from below all of the results of sections 4.2-4.6 are combined.

Proof of Theorem 4.4. Since the other case has already been covered in Lemma 4.24,
consider the case C1εω(t)2 ≤ nl ≤ ε−4(N2/5l)10. Furthermore, if 〈H̃〉 ≥ 0, the proof is
finished. Thus, assume 〈H̃〉 ≤ 0. Then, one can make use of Lemma 4.19.

First of all, it has to be considered what happens if the conditions of Lemma 4.20 or
Lemma 4.22 fail. So, suppose 〈H̃r,R〉 ≥ 0. Using the fact that r = (nl)−1/2l3/2, one has by
Lemma 4.6

〈H̃〉 ≥ −Cn2(ε−3/2r1/2 + r2l−3)
≥ −Cε−3/2n5/4l−3/4(nl)1/2l3/4 − Cnl−1.

As nl ≤ ε−4(N2/5l)10, one can get a bound of the desired form by Lemma 4.19. In the
following, it is therefore assumed 〈H̃r,R〉 ≤ 0. Note that this showed that the error of the
short distance cutoff is subleading which is why it suffices to bound 〈H̃r,R〉 from below
instead of 〈H̃〉.

In case condition (4.45) for the localization of the number of excited particles is not
satisfied, the expectation value 〈H̃r,R〉 is bounded from below by the bound in (4.47).
Therefore, it may be assumed that condition (4.45) is satisfied and thus, Lemma 4.22 can
be applied. Then, there exists another normalized wave function ψ′ with(

ψ, H̃r,Rψ
)
≥
(
ψ′, H̃r,Rψ

′
)
−M−2(|d1(ψ)|+ |d2(ψ)|)

≥
(
ψ′, H̃r,Rψ

′
)
− Cε−1nl−1 − C 〈n̂0〉5/4 l−3/4K(ε, t, N, l), (4.48)
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such that

〈n̂+〉′ ≤ Cε−3/2t−2(nl)3/2, (4.49)〈
n̂2

+

〉′
≤ Cε−3t−4(nl)3, (4.50)

where the expectation value with respect to ψ′ is denoted by 〈·〉′ to distinguish it from the
expectation value 〈·〉 with respect to ψ.

By Theorem 4.8 and equation (4.29) of Theorem 4.11, one has

H̃r,R ≥ − γ−1/4
ε,t I0n

5/4l−3/4 − 1
2
∥∥∥nl−3 − σ

∥∥∥2

r,R
− 4πnl−1

+ 1
2(1− 3ε′)

∥∥∥nl−3 − σ
∥∥∥2

r,R
+
(1

2 −
1
ε′

) ∑
pqµν 6=0

ω̂pqµν a
∗
pa
∗
qaµaν

−
(

1 + 3
2ε′
)

4πR2l−3n̂2
+ − ε′12πR2l−3nn̂+ − 2πR2l−3n

− 1
ε′

4πR2l−3(2n̂+ + 1)− 1
ε′
r−1n̂+(n̂+ + 1).

By Lemma 4.13, the lower bound holds

H̃r,R ≥− γ−1/4
ε,t I0n

5/4l−3/4 − Cnl−1 − Cε′
∥∥∥nl−3 − σ

∥∥∥2

r,R

− CR2l−3
(
n+ ε′nn̂+ + 1

ε′
(1 + n̂+) +

(
1 + 1

ε′

)
n̂2

+

)
− Cr−1

( 1
ε′
n̂+ + 1

ε′
n̂2

+

)
.

Since r = (nl)−1/2l3/2 and R ≤ ω(t)−1l and because of the neutrality bound (4.44) and the
bounds for excitations (4.49) and (4.50) it follows〈

H̃r,R

〉′
≥ −γ−1/4

ε,t I0n
5/4l−3/4 − Cnl−1 − ε′Cn5/4l−3/4

(
ε−3/2t−2(nl)5/4 +K(ε, t, N, l)

)
− Cω(t)−2l−1

(
ε′n ε−3/2t−2(nl)3/2 + 1

ε′

(
1 + ε−3/2t−2(nl)3/2

)
+
(

1 + 1
ε′

)
ε−3t−4(nl)3

)
− Cl−3/2(nl)1/2

( 1
ε′
ε−3/2t−2(nl)3/2 + 1

ε′
ε−3t−4(nl)3

)
.

Finally, choose ε′ := l1/4 to get〈
H̃r,R

〉′
≥ −γ−1/4

ε,t I0n
5/4l−3/4 − Cnl−1 − Cn5/4l−3/4

(
ε−3/2t−2(nl)5/4l1/4 +K(ε, t, N, l)

)
− Cn5/4l−3/4

(
ε−3/2(nl)5/4l1/4 + ε−5/4l3/4 + ε−3/2(nl)1/4l3/4 + ε−3t−4(nl)7/4l3/4

)
− Cn5/4l−3/4

(
ε−3/2t−2(nl)3/4l1/4 + ε−3t−4(nl)9/4l1/4

)
.

Therefore, by equation (4.48), Lemma 4.19 and by inserting nl ≤ ε−4(N2/5l)10 and l =
N−2/5+δl for a small δl > 0, the desired lower bound on the energy in a small cube is
concluded.
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Appendix A

Localization of the Hamiltonian

A.1 Putting the System into One Cube QL

Since the polaron system is unstable (i.e. the ground state energy cannot be bounded from
below by −CN), it implodes for N →∞. This is why one can put the whole system in a
box QL = (−L/2, L/2)3, where L → 0, and still get the correct leading order coefficient.
Since later on it is necessary that the volume is finite, the Hamiltonian H(N) is localized in
this section into one “large” cube QL.

The procedure of localizing the potential is very similar to that in [36] since for this
purpose it is not actually needed that the background charge density is the indicator
function ρ1QL . Everything works just as well with a general real background function
σ ∈ L1(R3) fulfilling D(σ, σ) <∞.

As in [36] the sliding method developed in [11] is used to decouple the Coulomb
interaction of different boxes. In this case, however, the localization has to be done twice
since one has two different relevant length scales. Since the two component Bose gas has the
same length scales, one can largely proceed as in [37]. For this purpose, now the necessary
notions are introduced.

First, choose the localization functions θ,Θ ∈ C4
c (R3) as it is done in Section 4 of [37].

They are approximations to step functions with parameter t ∈ (0, 1
2). Later t will tend

to zero slowly as N → ∞. (E.g. t ∝ (logN)−1 would work though it is not a very good
choice.) The properties of θ and Θ chosen in [37] are

(i) 0 ≤ θ(z),Θ(z) ≤ 1, θ(z) = θ(−z) and Θ(z) = Θ(−z) for all z ∈ R3.

(ii) supp θ ⊂ Q1−t whereas supp Θ ⊂ Q1+t.

(iii) θ(z) = 1 if z ∈ Q1−2t and Θ(z) = 1 if z ∈ Q1−t.

(iv) For i ∈ {1, 2, 3}, the derivatives of order i of θ,
√

1− θ2 and Θ are bounded by Ct−i
uniformly.

(v) One has ∑k∈Z3 Θ(z − k)2 = 1 for any z ∈ R3. (A.1)
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Also define the normalization constants γ := (
∫
R3 θ(z)2 dz)−1 and γ̃ := (

∫
R3 Θ(z)4 dz)−1.

One has
1 ≤ γ ≤ (1− 2t)−3 and (1 + t)−3 ≤ γ̃ ≤ (1− t)−3. (A.2)

The Coulomb interaction is very far reaching. However, the method developed in [11]
decouples the interaction of the different cubes and thus, reduces the problem to estimate
the energy of a single small cube Ql(kl) from below.

Define the Yukawa potential

Ym(z) = e−m|z|
|z|

, (A.3)

for m ≥ 0. Furthermore, let χ = θ or χ = Θ2 and let γχ = γ or γχ = γ̃, respectively.
Lemma A.1 (Localization of the potential). One has for all t < 1/2, for all x1, x2, ..., xN ∈
R3, all m ≥ 0, all λ > 0 and all σ ∈ L1(R3), fulfilling D(σ, σ) <∞,

∑
1≤i<j≤N

Ym(xi − xj)−
N∑
i=1

∫
R3
σ(y)Ym(y − xi) dy + 1

2

∫
R3

∫
R3
σ(y)Ym(y − z)σ(z) dy dz

≥ γχ
∫
R3

 ∑
1≤i<j≤N

χ
(
xi
λ
− µ

)
Y
m+ω(t)

λ

(xi − xj)χ
(
xj
λ
− µ

)

−
N∑
i=1

∫
R3
σ(y)χ

(
y

λ
− µ

)
Y
m+ω(t)

λ

(y − xi)χ
(
xi
λ
− µ

)
dy

+ 1
2

∫
R3

∫
R3
σ(y)χ

(
y

λ
− µ

)
Y
m+ω(t)

λ

(y − z)χ
(
z

λ
− µ

)
σ(z) dy dz

 dµ− Nω(t)
2λ ,

where ω(t) = Cωt
−4 and ω(t) ≥ 1 if t < 1/2.

Proof. Similar to the proof of Lemma 3.1 in [36], note that∫
R3
γχ χ(y + µ)Yλm+ω(y − z)χ(z + µ) dµ = h(y − z)Yλm+ω(y − z),

with the convolution h = γχχ ∗ χ. One has h(0) = γχ
∫
R3 χ(µ)2 dµ = 1 by the choice of

γχ. Therefore, h fulfills the assumptions of Lemma 2.1 in [11]. This lemma states that the
Fourier transform of F (z) = Yλm(z)− h(z)Yλm+ω(z) is positive if ω is large enough. As it
is done in [36], one can indeed choose ω(t) = Cωt

−4. In particular, it is independent of m
and λ. Therefore, the bound is deduced

∑
i<j

F (xi − xj)− λ3
N∑
i=1

∫
R3
σ(λy)F (y − xi) dy + λ6

2

∫
R3

∫
R3
σ(λy)F (y − z)σ(λz) dy dz

= 1
2

∫
R3

∫
R3

(
N∑
i=1

δ(y − xi)− λ3σ(λy)
)
F (y − z)

(
N∑
i=1

δ(z − xi)− λ3σ(λz)
)

dy dz

− 1
2

N∑
i=1

F (0) ≥ −Nω2 .
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Since this estimate holds for all σ, all λ > 0 and all m ≥ 0, the lemma is concluded after
rescaling.

Let ∆D denote the Dirichlet Laplacian in the cube QL = (−L/2, L/2)3. For σ ∈ L1(R3),
with D(σ, σ) <∞, define the Hamiltonian

H
(σ)
N,L :=

N∑
i=1
−∆i,D + γ̃

∑
1≤i<j≤N

Y 2ω(t)
L

(xi − xj)− γ̃
N∑
i=1

∫
QL
σ(y)Y 2ω(t)

L

(y − xi) dy

+ γ̃
1
2

∫
QL

∫
QL
σ(y)Y 2ω(t)

L

(y − z)σ(z) dy dz

acting on the space L2(QN
L ). Define

EL(N) := inf
σ

inf specH(σ)
N,L.

Theorem A.2 (Reducing the problem to one cube QL). One has the bound

E
(b)
1 (N) ≥ EL(N)−N7/5

(
Ct−2(N1/5L)−2 + Ct−4(N1/5L)−1N−1/5

)
.

Proof. For µ ∈ R3 define Θµ(x) = Θ(2x/L − µ). The length scale L/2 is used since
supp Θµ ⊂ µ+ [(−1− t)L/4, (1 + t)L/4] ⊂ QL(µ) which is just what one wants to end up
with. Then, by (A.1) ∑

q∈Z3

Θ2
µ+q(x) = 1.

By Lemma A.1 with λ = L/2 and m = 0 one has

∑
1≤i<j≤N

1
|xi − xj|

−
N∑
i=1

∫
R3

σ(y)
|y − xi|

dy + 1
2

∫
R3

∫
R3

σ(y)σ(z)
|y − z|

dy dz

≥ γ̃
∑
k∈Z3

∫
Q1

 ∑
1≤i<j≤N

Θ2
k+µ(xi)Y 2ω(t)

L

(xi − xj)Θ2
k+µ(xj)

−
N∑
i=1

∫
R3
σ(y)Θ2

k+µ(y)Y 2ω(t)
L

(y − xi)Θ2
k+µ(xi) dy

+ 1
2

∫
R3

∫
R3
σ(y)Θ2

k+µ(y)Y 2ω(t)
L

(y − z)Θ2
k+µ(z)σ(z) dy dz

 dµ− Nω(t)
L

. (A.4)

Now, a redundant sum is introduced over the square of

Fq,µ(x) = Θq1+µ(x1) · · ·ΘqN+µ(xN), for q = (q1, . . . , qN) ∈ (Z3)N and x ∈ (R3)N .
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Then, the right side of (A.4) becomes

γ̃
∑
k∈Z3

∑
q∈Z3N

∫
Q1
Fq,µ(x)

 ∑
1≤i<j≤N

δqi,kY 2ω(t)
L

(xi − xj)δqj ,k

−
N∑
i=1

∫
R3
σ(y)Θ2

k+µ(y)Y 2ω(t)
L

(y − xi)δqi,k dy

+ 1
2

∫
R3

∫
R3
σ(y)Θ2

k+µ(y)Y 2ω(t)
L

(y − z)Θ2
k+µ(z)σ(z) dy dz

Fq,µ(x) dµ− Nω(t)
L

.

As in the proof of Theorem 4.2 in [37], the estimate −∆ ≥ ∑k∈Z3 Θk+µ(−∆)Θk+µ−C(tL−2)
is used to get

N∑
i=1
−∆i ≥

∑
q∈(Z3)N

∫
Q1
Fq,µ(x)

N∑
i=1

(−∆i)Fq,µ(x) dµ− CN(tL)−2.

Then, by interchanging the sums and the infima we have

E
(b)
1 (N) ≥

∑
q∈(Z3)N

∫
Q1
Fq,µ(x)2 ∑

k∈Z3

inf
σ

inf spec H̃q,k,µ dµ−Nω(t)L−1 − CN(tL)−2, (A.5)

where the Hamiltonian is defined by

H̃q,k,µ =
N∑
i=1

δqi,k ∆(k+µ)
i,D + γ̃

∑
1≤i<j≤N

δqi,kY 2ω(t)
L

(xi − xj)δqj ,k

−
N∑
i=1

∫
QL(k+µ)

σ(y)Y 2ω(t)
L

(y − xi)δqi,k dy + 1
2

∫∫
(QL(k+µ))2

σ(y)Y 2ω(t)
L

(y − z)σ(z) dy dz ,

acting only on functions for which space variables are in the cube QL about k + µ. Note
that 0 ≤ Θ ≤ 1QL means that the Θ2

k+µ in the integral can be absorbed into the infimum
over σ. The Hamiltonian H̃q,k,µ is unitary equivalent to H(σ)

N,L with N replaced by Nk(q) =
|{i : qi = k}|. Therefore, equation (A.5) becomes

E
(b)
1 (N) ≥

∑
q∈(Z3)N

∫
Q1
Fq,µ(x)2 ∑

k∈Z3

EL(Nk(q)) dµ−Nω(t)L−1 − CN(tL)−2,

where one has ∑k∈ZNk(q) = N for any q ∈ (Z3)N . It remains to show that EL(N) is
sub-additive in N . Then, the theorem follows.

For this purpose, it is helpful to undo the linearization that has been introduced in
Section 4.1. That is, for ψ ∈ L2(QN

L ), consider the energy functional

E (N)
w [ψ] :=

∫
QNL

 N∑
i=1
|∇iψ|2 +

∑
1≤i<j≤N

w(xi, xj) |ψ|2
 dx−Dw(ρψ, ρψ), (A.6)
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where w(x, y) = Y2ω(t)/L(x− y) and

Dw(f, g) := 1
2

∫∫
QL×QL

f(y)w(y, z) g(z) dy dz .

By the same argument as in Section 4.1, one has

inf
‖ψ‖=1

E (N)
w [ψ] = inf

σ
inf specH(σ)

N,L = EL(N).

For an N1-particle wave function ψ1 and an N2-particle wave function ψ2, a straightforward
calculation shows

EL(N1 +N2) ≤ E (N1+N2)
w [ψ1 ⊗ ψ2] = E (N1)

w [ψ1] + E (N2)
w [ψ2].

Taking the infimum over all ψ1 and all ψ2 proves the sub-additivity of EL(N).

A.2 Reducing the problem to the length scale l of
local condensation

As explained before the idea of the proof is to localize the problem to the small length
scale l ∝ N−2/5+δl where most particles are in the condensate. This is where Bogolubov
theory is applied. In this section a lower bound on the energy is derived in terms of a local
Hamiltonian on Ql.

One main difficulty that arises, is the question on how to split the kinetic energy∑N
i=1−∆i,D into a low and a high momentum part. First of all, the kinetic energy between

different small boxes is needed, as it gives rise to the term
∫
R3 |∇Φ|2 dx in (1.26). But then,

the kinetic energy within each of the small boxes gives a positive contribution to the second
term −I0

∫
R3 |Φ|5/2 dx in (1.26). This difficulty was resolved by Lieb and Solovej in [37].

To quote their result on the localization of the kinetic energy the necessary notions are
introduced.

For µ ∈ R, let P(µ) be the projection onto the subspace of L2(Ql(µl)) orthogonal to
constants. The operator that is used to describe the kinetic energy in the small cube about
µl is then given by

K(µ) = P(µ)χ
(µ)
l

(−∆)2

−∆ + (lt6)−2χ
(µ)
l P(µ),

where P(µ) is regarded as an operator acting on L2(R3). The localization function is

χ
(µ)
l (z) = θ(z/l − µ),

where θ was chosen in the beginning of Section A.1. As in [37], the kinetic energy between
small boxes is measured by the quadratic form T induced by a lattice Laplacian which
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maps a function S : Z3 → R to

T (S) =
∑

k1,k2∈Z3

|k1−k2|=
√

2

1
12(S(k1)− S(k2))2 +

∑
k1,k2∈Z3

|k1−k2|=
√

3

1
24(S(k1)− S(k2))2. (A.7)

Define the particle number operator in the µ-th small cube

n̂(µ)(x) =
N∑
i=1

1Ql(µl)(xi),

where x ∈ (R3)N and where 1Ql is the characteristic function of the cube Ql. The number
of particles in the condensate which are in the cube about µl is

n̂
(µ)
0 = l−3a∗(1Ql(µl)) a(1Ql(µl)),

where the operators a(u) and a∗(u) in the Fock space ⊕∞N=0
⊗N

s L
2(R3) have been defined

in the introduction for u ∈ L2(R3). Finally, the number of excited particles in the µ-th
cube is given by

n̂
(µ)
+ = n̂(µ) − n̂(µ)

0 .

2
To turn to the localization of the kinetic energy, for a given wave function ψ, define the

map Sψµ : Z3 → R,

Sψµ (k) = l−1
((
〈n̂(k+µ)

0 〉+ 1
)1/2
− 1

)
, where 〈n̂(k+µ)

0 〉 =
(
ψ, n̂

(k+µ)
0 ψ

)
. (A.8)

Now, quote Lemma 5.1 from [37]. Note that this result is not needed on the space⊗N
s L

2(R3 × {1,−1}) but only on ⊗N
s L

2(R3 × {1}) ∼=
⊗N

s L
2(R3).

Lemma A.3 (Splitting the kinetic energy into low and high momentum part). Let ψ ∈⊗N
s L

2(R3) with
∫
(R3)N |ψ|

2 dx = 1 and suppψ ⊂ QN
L = (−L/2, L/2)3N , then for all ε > 0

and t ∈ (0, 1
2),

(1 + ε+ Ct3)
(
ψ,

N∑
i=1
−∆i,Dψ

)

≥
∫
Q3

1

ψ,∑
k∈Z3

N∑
i=1

(
K(k+µ)
i − ε∆(k+µ)

i,Neu

)
ψ

+ T (Sψµ )
 dµ− CL3l−5.

Here, −∆(µ)
Neu is the Laplacian on the small cube Ql(µl) fulfilling the Neumann boundary

condition.
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With this lemma, one can localize the Hamiltonian into many small cubes of size l� L.
Later, it will be chosen l ∝ N−2/5+δl for a small δl > 0. Define the Hamiltonian acting on
functions in the small cube about µl

H̃(µ) = γε,t
N∑
i=1

(
K(µ)
i − ε∆(µ)

i,Neu

)
+

∑
1≤i<j≤N

w
(µ)
R (xi, xj)

−
N∑
i=1

∫
R3
σ(y)w(µ)

R (y, xi) dy + 1
2

∫
R3

∫
R3
σ(y)w(µ)

R (y, z)σ(z) dy dz ,

where γε,t = (1 + ε+ Ct3)−1(γγ̃)−1 and where the interaction is given by

w
(µ)
R (y, z) = χ

(µ)
l (y)YR−1(y − z)χ(µ)

l (z) = χ
(µ)
l (y)e−|y−z|/R

|y − z|
χ

(µ)
l (z). (A.9)

The localization function is χ(µ)
l (z) = θ(z/l − µ), with θ as of the beginning of Section A.1.

The long distance cutoff is given by

R = η ω(t)−1l, (A.10)

where ω(t) = Cωt
−4 and η = (1 + 2l/L)−1 ≈ 1 since l � L. Note that a small and

unimportant mistake in [37] is corrected by introducing η.

Theorem A.4 (A lower bound in terms of the local Hamiltonian). The ground state energy
EL(N) of the polaron system in the large cube is bounded below by

EL(N) ≥ γγ̃ inf
‖ψ‖=1

inf
σ

ψ, ∑
k∈Z3

H̃(k)ψ

+ γε,t T (Sψ0 )
− L3l−5 − Nω(t)

2l .

The infimum is taken over wave functions ψ is in the space

H0 :=
{
φ ∈⊗N

s L
2(R3)

∣∣∣∣ n̂(k)φ = 0 for kl /∈ Z3 ∩QL+l

}
.

Proof. Apply Lemma A.1 with χ = θ, m = 2ω(t)/L and λ = l. Furthermore, use Lemma
A.3. One then gets

(
ψ,H

(σ)
N,Lψ

)
≥ γγ̃

∫
Q1

(ψ, ∑
k∈Z3

H̃(k+µ)ψ
)

+ γε,t T (Sψµ )
 dµ− L3l−5 − Nω(t)

2l .

One arrives at the theorem by commuting the infima and the integration and noting that
they are independent of µ ∈ Q1.
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